
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Wrocław 2012

Polskie Towarzystwo Statystyczne 
Oddział we Wrocławiu

ŚLĄSKI PRZEGLĄD
STATYSTYCZNY
Silesian Statistical Review

Nr 10 (16)



 

 

RADA NAUKOWA 
Walenty Ostasiewicz 

Tadeusz Bednarski, Luisa Canal, Stanislava Hronová, 
Katarzyna Ostasiewicz, Angiola Pollastri, Emilia Zimková 

KOMITET REDAKCYJNY 
Walenty Ostasiewicz (redaktor naczelny) 

Zofia Rusnak (zastępca redaktora naczelnego) 
Edyta Mazurek (sekretarz naukowy) 

Tadeusz Borys, Stanisław Heilpern, Janusz Wywiał 

ADRES REDAKCJI 
Katedra Statystyki 

Uniwersytetu Ekonomicznego we Wrocławiu 
ul. Komandorska 118/120, 53-345 Wrocław 
tel. (71) 36-80-356, tel./fax (71) 36-80-357 
e-mail: walenty.ostasiewicz@ue.wroc.pl 

RECENZENCI WSPÓŁPRACUJĄCY Z CZASOPISMEM 
Jakub Fisher, Helena Jasiulewicz, Krystyna Melich, 

Stanisława Ostasiewicz, Katarzyna Sawicz, Włodzimierz Szkutnik, 
Paulina Ucieklak-Jeż, Marek Walesiak, Jerzy Wawrzynek, Emilia Zimková 

Publikacja jest dostępna na stronie www.ibuk.pl 
Streszczenia opublikowanych artykułów są dostępne 

w międzynarodowej bazie danych 
The Central European Journal of Social Sciences and Humanities 

http://cejsh.icm.edu.pl 
oraz w The Central and Eastern European Online Library www.ceeol.com 

Informacje o naborze artykułów i zasadach recenzowania znajdują się 
na stronie internetowej Wydawnictwa 

www.wydawnictwo.ue.wroc.pl 



Spis treści 

Od redakcji   5 

Stanisława Bartosiewicz,  Elżbieta Stańczyk,  Niektóre aspekty  
historii społeczno-gospodarczej Polski w latach 1918-2011  
(na podstawie badań GUS-u)   7 

Joanna Dębicka, Matrix approach to analysis of a portfolio  
of multistate insurance contracts   39 

Stanisław Heilpern, Risk processes with dependent claim size  
and claim occurrence times   57 

Anna Nikodem-Słowikowska, Ulepszenie aproksymacji  
indywidualnego modelu ryzyka przez kolektywny model  
ryzyka   69 

Anna Zięba,  Analiza wpływu stresorów na pracowników   83 

21. Scientific Statistical Seminar “Marburg-Wroclaw”, Marburg  

September 26-29, 2011. Extended summaries of selected  
paper   93 

Eckart Elsner,  Der Breslauer Oberbürgermeister und der Berliner 
Statistiker. Über Johann Gustav Süssmilch (1740-1791) und 
Seinen Vater Johann Peter (1707-1767)   105 

Edyta Mazurek, Wrocławskie obchody 100-lecia istnienia Polskiego 
Towarzystwa Statystycznego   111 

Walenty Ostasiewicz,  Italian cradle of chance calculus   121 

Katarzyna Ostasiewicz,   Problem stabilnych małżeństw,   
czyli o pożytkach z teorii gier płynących   131 

Beata Zmyślona, Applications of Mathematics and Statistics  
in Economy. The 14th International Scientific Conference   153 

Agata Girul, Ważniejsze dane o województwach   159 



4  Spis treści 
 

 

ŚLĄSKI 

PRZEGLĄD 

STATYSTYCZNY 

Nr 10 (16) 

Summaries 

Stanisława Bartosiewicz,  Elżbieta Stańczyk, Some aspects  
of socio-economic history of Poland in years 1918-2011  
(on the basis of research by CSO)   38 

Joanna Dębicka, Macierzowe podejście do analizy portfela  
ubezpieczeń wielostanowych   55 

Stanisław Heilpern, Procesy ryzyka z zależnymi wypłatami  
i okresami między wypłatami   68 

Anna Nikodem-Słowikowska, Improving the approximation  
of individual risk model by the compound risk model   81 

Anna Zięba, Analysis  of stressors effect on employees   92 
Walenty Ostasiewicz,  Włoska kolebka rachunku losów   129 



21. SCIENTIFIC STATISTICAL SEMINAR 

“MARBURG-WROCLAW”, 

MARBURG SEPTEMBER 26-29, 2011 

ŚLĄSKI 
PRZEGLĄD 
STATYSTYCZNY 

Nr 10 (16) 

EXTENDED SUMMARIES OF SELECTED PAPERS ISSN 1644-6739 

PAGE'S CUSUM IN SEQUENTIAL CHANGE-POINT  

ANALYSIS – ASYMPTOTIC DISTRIBUTION  

OF THE STOPPING TIME 

Stefan Fremdt  (University of Cologne) 

1. Introduction 

The two worldwide economic crises of the last decade have revealed 
the consequences of mispricing of risks and assets due to a misspecifi-
cation of the valuation models applied. The importance of monitoring 
procedures to guarantee the validity of the underlying model is there-
fore beyond all question. As a consequence sequential monitoring 
procedures have evoked more and more interest in recent years and 
are required to cope with the dependence structures inherent in many 
economic data sets. One of the most common approaches for the con-
struction of such a monitoring procedure is based on so-called cumu-
lative sum (CUSUM) detectors, bringing with them the property that 
they work best for very early change-points. We will present a 
CUSUM-based procedure going back to an idea of Page [1954] that 
offers a higher stability concerning the time of change and the under-
lying model is chosen in such a way that it is applicable to a variety of 
time series models from economy and econometrics. After the intro-
duction of this procedure in the context of linear models a result on 
the distribution of the corresponding delay time in the special case of 
the so-called location model is presented that shows the desired prop-
erties for our procedure. 
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2. Model description 

Consider the linear model: 

     
                     

where xi is a p × 1 random vector and βi is a real vector of the same 
dimension. 

We assume that for the first m observations the so-called “noncon-
tamination assumption” (cf. [Chu et al. 1996]) holds, i.e., 

 βi = β0,    1 ≤ i ≤ m (1) 

We would like to test the constancy of the regression parameters βi in 
time which leads to the null hypothesis 

 H0:    βi = β0,    i = m + 1, m + 2; … ; 

and we choose to test alternatives given by one abrupt change in the 
regression parameter at an unknown change-point, i.e., 

HA:  there is k* ≥ 1 such that βi = β0,  m < i < m + k*, 

and βi = β*,  i = m + k*,  m + k* + 1, … ,  with Δm = β* – β0 ≠ 0: k – k.  

The detection procedure will consist of a stopping time τ chosen in 
such a way that under the null hypothesis 

        ( ( )   )    (2) 

for some prescribed level α, 0 < α < 1, and under the alternative 

        ( ( )   )    (3) 

We assume the following conditions on the regressors and the error 
terms: 

(A.1) Eεi = 0,   Eεiεj = 0   (i ≠ j) and    
  ≤ D  with some D > 0, 

(A.2)    
  = (1, x2i, … , xpi),   1 ≤ i < ∞, 

(A.3)  {εi,  1 ≤ i < ∞}  and  {xi,  1 ≤ i < ∞}  are independent, 

there are a positive definite matrix C and a constant ξ > 0 such that 

 |
 

 
∑     

 
       |   (   )           (4) 



Extended summaries of selected papers 95 

 

 

ŚLĄSKI 

PRZEGLĄD 

STATYSTYCZNY 

Nr 10 (16) 

(A.4)  For every m there are a constant σ > 0 and independent Wiener 
processes 

{W1,m(t):   t ≥ 0}   and {W0,m(t):   t ≥ 0}   such that  

   
     

 

  
| ∑         ( )

   

     

|    ( )       (   )                     ( )  

and 

∑        ( )    ( 
 )      (   )                                 (6)

 

   

 

with some κ < 1/2. 
The residuals of the model are defined via 

 εi = yi    
  ̂      i = 1, 2, … , 

where  ̂  denotes the OLSE for β from the “training period” (y1, x1), 
… , (ym; xm), i.e., 

 ̂  ( ∑     
 

     

)

  

∑      

     

 

3. Page's CUSUM procedure and its asymptotic properties 

Many sequential detection procedures in the literature are constructed 
as first-passage time of a so-called detector over a certain boundary 
function. E.g., Horváth et al. [2004] proposed as a detector the (ordi-
nary) CUSUM of the residuals, i.e., 

 ̂(   )  ∑   ̂

       

              

and as a boundary function 

 (   )     
 
 (  

 

 
) (

 

   
)
 

    ̃(   )  

with c = c(α, γ) and 
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 0 ≤ γ < min(ξ,  
 
). (7) 

The approach of Horváth et al. [2004] for i.i.d. error terms was ex-
tended by Aue et al. [2006] to allow certain dependence structures by 
introducing Assumptions (A.1) and (A.4). We refer to them for exam-
ple time series satisfying the assumptions of the model. Now we want 
to introduce a monitoring procedure that, as was already mentioned, 
goes back to an idea of Page [1954] and we define the Page CUSUM 
detector by: 

 ̂ (   )     
     

| ̂(   )   ̂(   )|  

The corresponding stopping time is then given by 

     ( )              ̂ (   )   (   )   

where inf Ø = ∞ and the constant c in the definition of g can be de-
rived from Theorem 1 below which implies that (2) holds for 
     ( ). 

Theorem 1 [Fremdt 2012b] 
Assume that (1), (A.1) - (A.4) and (7) hold. Then under the null hy-
pothesis we have 

       (
 

 ̂ 
        

 ̂ (   )

 (   )
  )   (                

 

  
| ( )  

   

   
 ( )|   )  

for all real c, where  ̂ 
  

 

   
∑ (  ̂  

 

 
∑   ̂

 
   )

 
 
   . 

Under the alternative hypotheses the detector diverges and hence 
τPage(m) also satisfies (3) as the following theorem shows. 

Theorem 2 [Fremdt 2012b] 
Let c1 denote the first column of C and assume that (1), (A.1) – (A.4) 
and (7) hold. Then under the alternative HA, if   

       and  
√ |    |     as  m → ∞  we have 

 

 ̂ 

   
     

 ̂ (   )

 (   )
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4. Asymptotic distribution of the stopping time 

Aue and Horváth [2004] investigated in a sequential setup the asymp-
totic normality of the CUSUM-stopping-time in the case of the so-
called location model with the alternative hypothesis of a change in 
the mean for relatively early changes (i.e. the change-point k* is locat-
ed relatively close to the end of the training period in terms of m). In 
this section we will present the asymptotic distribution of the stopping 
times based on Page's CUSUM detector in this location model and 
show hereby that the Page CUSUM procedure from Section 3 offers 
more stability concerning the time of change. The location model as a 
special case of the model (1) is given via 

    {
                             
                       

 (8) 

where μ and    are real numbers and 1 ≤ k* < ∞ denotes the unknown 
time of change. The corresponding hypotheses are then 

 H0:  μ = 0 and     HA:  |  | > 0 

We need the following assumptions on    and k*: 

(A.5)  there exists a θ > 0 such that k* = ⌊   ⌋  with  0 ≤ β < 1, 

(A.6)  √ |  |
(   )
→     , 

(A.7)  |  | = O(1) : 

The limit behaviour of the stopping time is determined by the behav-
iour of  mβ(1-γ)-1/2+γ|  |  for which we distinguish the following three 
cases: 
(I)   (   )      |  | 

(   )
→      0, 

(II)   (   )      |  | 
(   )
→     ̃  (   )   and 

(III)   (   )      |  | 
(   )
→        

To state our main result on the asymptotic distribution of the stopping 
time we first introduce the distribution function Ψ depending on the 
set of assumptions, i.e. the given case (I), (II) or (III). Under (II) de-
note by d1 the unique solution of 



98  21. Scientific Statistical Seminar "Marburg-Wroclaw" 

 

 

ŚLĄSKI 

PRZEGLĄD 

STATYSTYCZNY 

Nr 10 (16)      
 

  
  

   
  

For all real x let 

 ( )  

{
 
 

 
 

 ( )                                                                                ( )              

 (    
      

 ( )   )                                                  (  )        

 (    
      

 ( )   )  {
                       
  ( )      

       (   )          

 

where Φ(x) denotes the standard normal distribution function. 

Theorem 3 [Fremdt  2012a] 
Let {Xn}n=1,2,… be a sequence of random variables according to (8) 
such that (A.1), (A.4) and (A.5) – (A.7) are satisfied and let  γ   [0, 
1/2). Then for all real x under HA 

   
   

 (
     ( )    

  

  )     (  )   ̅( )  

where am is the unique solution of 

   (
       

|  |
 

  

  
 )

  (   )

 

and 

    √  |  |  (   (  
  

  

))
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A BRIEF GLIMPSE AT BLOCKWISE  

ALGEBRAIC MULTIGRID 

Leonid Torgovitski (University of Cologne) 
Tanja Clees (Fraunhofer Institute SCAI) 
Caren Tischendorf (University of Cologne) 

1. Introduction 

“Algebraic Multigrid” (AMG) is a highly efficient iterative method for 
solving large (1-100 millions of variables) sparse linear systems of 
equations Ax = b. It became a major research topic in numerical analy-
sis in the last 15 years and is applied in industry, mainly to solve sys-
tems arising from discretization of PDEs. Stochastic applications are 
for example simulation of stochastic PDEs and computation of the 
stationary probability vector for Markov transition matrices [Rosseel 
et al. 2008; De Sterck et al. 2010].  

Nowadays effort is put into applying AMG to “strongly” coupled 
PDE-systems e.g. by blockwise approaches. Clees [2008] for example 
showed a convergence result for blockwise AMG under the assump-
tion of blockwise diagonally dominance. The main aim of the present 
note is to derive a generalization of this result. 

Blockwise diagonal dominance is defined for block-structured ma-
trices 

  [

         

   
         

] 
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with square matrices Ci,i as follows. 

Definition. A matrix C = [Ci,j ] is blockwise diagonally dominant in a 
p-norm if all Ci,i are invertible and 

   
     

∑‖    
      ‖ 

  

   

 

with 1 ≤ p < ∞. 

Remark. For the trivial partitioning into 1×1-blocks a blockwise di-
agonally dominant matrix is simply (weakly) diagonal dominant. Fur-
thermore it is easy to see that for a fixed partition blockwise diagonal-
ly dominance in a p1-norm is generally not implied by blockwise di-
agonally dominance in a p2-norm as well as it is generally not implied 
by weak diagonal dominance. 

2. Algebraic Multigrid 

Classical one-level iteration-schemes for solving Ax = b like Gauss-
Seidel iteration and Jacobi iteration (as well as their weighted and/or 
blockwise versions) are cheap and fast for many low dimensional 
problems but typically far too slow for high-dimensional problems [cf. 
Trottenberg et al. 2001]. AMG combines those classical iteration-
schemes (which smooth the error1 in the algebraic sense for the con-
sidered system, [Brandt 1986; Stüben 2001] with a coarse-level cor-

rection in a hierarchical way to obtain a cheap and fast method also 
for high-dimensional problems. The idea is that an error, which cannot 
be diminished by a classical scheme is then efficiently reduced by a 
coarse-level correction2 and vice versa. For a review of the fundamen-
tal principles of “smoothing” and “coarse-grid correction” we refer to 
Trottenberg et al. [2001]. 

The algorithm of (blockwise) AMG can be introduced on the basis 
of a two-level cycle. (Note that the terms “level” and “grid” are used 

                                                   
1 Exact solution of Ax = b minus the approximation. 
2 Because for properly chosen classical iteration-schemes such an error is smooth. 
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as synonyms.) For solving the original block-structured fine-level sys-

tem 

   [

         

   
         

] [
  

 
  

]  [
  

 
  

]                          (1) 

with           and       a two-level method constructs coarse-level 

systems of much lower dimension 

     [

      
        

 

   
      

        
 

] [

   
 

 
   

 
]  [

   
 

 
   

 
]                   (2) 

with           and        and 1 ≤ i1 < … ≤ in ≤ N. We assume that 
system (2) is partitioned according to (1), i.e. block       

  has the same 
size as 

kk iiA , .To map fine-level vectors into the coarse-level and vice-

versa we need an interpolation            and a restriction            
as transfer-operators. We will consider a symmetric positive-definite 
matrix A and in that case the restriction-mapping is (typically) defined 
as the transpose of the interpolation, i.e.     = (   )  and the coarse-
level Matrix AH is defined purely algebraically according to the Ga-

lerkin-Principle 

     
    

             
  (  

 )   

As interpolation-mapping we consider the blockwise interpolation 
which is defined by  

 (  
   )  {

  
                    

∑      
 

      
,                      [

   
 

 
   

 
] 

with matrix-valued “weights” Wij and set C = {i1 < … < in} represent-
ing the coarse-level and the complementary set F = {1, … ,N} − C. 
We implicitly assume that       is partitioned according to (1), i.e. 
(  

   )  has the same size as block Xi and that for each i   {1, … ,N} 
there is at least one j   C with Ai,j ≠ 0. 



102  21. Scientific Statistical Seminar "Marburg-Wroclaw" 

 

 

ŚLĄSKI 

PRZEGLĄD 

STATYSTYCZNY 

Nr 10 (16) 

Finally we need a (blockwise) smoother, i.e. a classical iteration-
scheme (with iteration matrix S, certain vector d and an initial approx-
imation u(0) to the exact solution u* of (1)) 

 u(k+1) := Su(k) + d,     k = 1, 2, ... 

that smoothes the error in the algebraic sense for the considered sys-
tem. Appropriate choices are e.g. block-Gauss-Seidel and suitable 
weighted block-Jacobi iteration (cf. [Clees 2005]). 

Suppose that u(0) is an approximation to u* and we want to obtain a 
better approximation  ̅( ). The smoother and the coarse-level correc-
tion are therefore combined in the following way: 
1. Pre-Smoothing: Do v1 ≥ 1 iteration steps with a (consistent) 

blockwise smoother  ( )   (  )  
2. Coarse-Level Correction: 

• Build the residual of the last approximation r := B     (  ). 
• Restrict this residual on the coarse level      

 ( ). 
• Solve the coarse-level equation 

 AH = eHrH. (3) 

• Prolongate the exact solution   
  (  )     onto the fine 

level, i.e. compute   
 (  

 ) and correct the last approximation 
as following  ̅( )   (  )    

 (  
 ). 

3. Post-Smoothing: Do v2 ≥ 1 iteration steps with a (consistent) 
blockwise smoother  ̅( )   ̅(  ). 

Remark. To obtain a multilevel (multigrid) procedure we apply the same 
two-level procedure recursively to solve the coarse-level system (3). 

For further discussion we restate the procedure in terms of operators. 
The iteration step of the coarse-level correction  (  )   ̅( ) is given by 

 ̅( )    (  )    

with d =    (  )    
   and the iteration matrix K = I −    (  )    

  . 
One iteration of the whole two-level procedure  (  )   ̅(  ) then can 
be written as 

 ̅(  )   (     ) 
(  )    

with iteration matrix  (     )          and a suitable w. 
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3. Convergence result 

The following theorem was shown by Clees [2008] for the special 
case p = 2. We show that the assertion holds true for the general case 
1 ≤ p < ∞. Note that the spectral radius  ( (     )) is the asympto-

tic convergence rate of a two-level method, i.e. approximately the 
average error-reduction in each step. 

Theorem. Suppose A = [Ai,j] is symmetric positive-definite and 
blockwise diagonally dominant in p-norm with 1 ≤ p < ∞. For     defi-
ned by 

           
                      

∑ ‖    
      ‖    

∑ ‖    
      ‖    

 

for i   F and j   C we have 

 ( (     ))  √             

and σ = 1/4 with blockwise-Gauss-Seidel as smoother. 
This Theorem extends the classical convergence results (cf. Theo-

rem 4.1 Brandt [1986] and Theorem 1 in Stüben [2001]) to the block-
wise case proving an upper bound on convergence of the same type. 
The same result with a comparable σ can be obtained for a suitable 
weighted block-Jacobi smoother (cf. [Torgovitski 2011]). This bound 
shows that it is possible to control the convergence rate by a clever 
choice of the coarse level, i.e. the set C and (as long as the blocks Ai,i 
are not “too big”) easy computable weights. Note that only the set C 
and the weights Wij have to be specified for the two-level method. The 
proof of the above theorem is elaborated in detail in Torgovitski 
[2011] and reduces to showing that certain matrices with a rather 
complicated structure are positive semi-definite. This can be done 
using the following characterization which was stated in Clees [2008] 
for the special case p = 2. 

Lemma. Suppose C is symmetric. If C = [Ci,j] is blockwise diagonally 
dominant in a p-norm (1 ≤ p < ∞) and Ci,i are positive-definite for all i 
then C is positive-semi-definite. 
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For the special case of a trivial partitioning this is a well-known 
result which is a direct consequence of the Gershgorin Theorem. The 
general case 1 ≤ p < ∞ was proven in Torgovitski [2011] by use of 
blockwise p-norms. Here is a short alternative proof. 
Proof. From Theorem 2 in Feingold and Varga [1962] we conclude 
that all eigenvalues of blockdiag(A)−1A lie inside 

{       |   |     
     

∑‖    
      ‖ 

   

} 

and since C is blockwise diagonally dominant their real-part is non-
negative. The assertion follows now from Theorem 7.6.3 in Horn and 
Johnson [1990]. 

References 

Brandt A., Algebraic multigrid theory: The symmetric case, “Applied Mathematics and 
Computation” 1986, 19(1-4), pp. 23-56. 

Clees T., AMG Strategies For PDE Systems with Applications in Industrial Semiconduc-

tor Simulation, PhD thesis, University of Cologne, Shaker Verlag,  2004. 
Clees T., On measuring the Quality of Interpolation, Slides of the presentation, 9th Euro-

pean Multigrid Conference (EMG), Bad Herrenalb, Germany 2008. 
De Sterck H., Manteuffel T., McCormick S., Miller K., Ruge J., Sanders G., Algebraic 

multigrid for Markov chains, “SIAM Journal on Scientific Computing” 2010, 32, pp. 
544-562. 

Feingold D., Varga R., Block diagonally dominant matrices and generalizations of the 

Gerschgorin circle theorem, “Pacific Journal of Mathematics” 1962, 12 (4), pp. 
1241-1250. 

Horn R., Johnson C., Matrix Analysis, Cambridge University Press, Cambridge 1990. 
Rosseel E., Boonen T., Vandewalle S., Algebraic multigrid for stationary and time-

dependent partial differential equations with stochastic coefficients, Wiley Online 
Library, 1962, 15 (2-3), pp. 141-163. 

Stüben K., A review of algebraic multigrid, “Journal of Computational and Applied 
Mathematics” 2001, 128 (1-2), pp. 281-309. 

Torgovitski L., Untersuchungen zür Blockdiagonaldominanz für Algebraische Mehrgit-

terverfahren, Diploma Thesis, University of Cologne 2011. 
Trottenberg U., Oosterlee C., Schüller A., Multigrid, Academic Press, New York 2001. 




