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ON BAYESIAN TESTS IN AUDITING 
 

JANUSZ L. WYWIAŁ 

Katowice University of Economics, Faculty of Management, Department of Statistics 

1 Maja 50, 40-287 Katowice, Poland  

janusz.wywial@ue.katowice.pl 

 

Abstract  

In auditing the problem of testing hypotheses about frequency of incorrect items 

is considered. It is treated as the particular case of compliance testing problems. Usually, 

classical statistical tests are used to testing those types of hypotheses. In the paper 

the Bayesian approach will be considered. The hypothesis will be tested on the basis 

of the simple random sample or on the basis of the simple random sample drawn from strata. 

Usually, Bayesian statistical inference in auditing is based on confidence intervals. Here, 

instead of that two well known Bayesian rules will be considered. Presented procedures will 

be illustrated by means of empirical examples. 

Key words: Bayesian testing of hypothesis, compliance test, stratified population, risk 

function, Bayes factor.  

 

DOI: 10.15611/amse.2014.17.31 

 

1. Introduction  

The quality internal control system is audited. The audit is based on testing methods 

of processing selected operations by the system under control. The system is good when it has 

been operating continuously and effectively. Formally, the system is treated as a population 

of subsystems, which are mutually independent. Let p be probability that the controlled 

subsystem is wrong. It means that P(X=1)=p, P(X=0)=1-p. The following hypotheses 

are considered:  

H0: p=p0,  H1: p=p1> p0,       

 

where p0 is the admissible (tolerable, acceptable) level of the probability that the audited 

system works incorrectly and p1 is the inadmissible level of this probability. Moreover, let 

p1>p0. Defined hypotheses are usually verified on the basis of the simple sample denoted by 

X1, X2,…, Xn where P(Xi=x)=P(X=x), i=1,..,n, while Xi and Xj are mutually independent. It is 

well known that the sum 



n

i

iXM
1

 has Bernoulli distribution with the following probability 

function.  

 

 mnm pp
m

n
pmMP 








 )1()|(        (2) 

 

According to the classical Neyman-Pearson framework the above hypotheses are usually 

verified on the basis of the test statistic M or on the basis of its standardized version   
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So, the hypothesis H0 is rejected when the p-value evaluated on the basis of formula 

s=P(Mm|H0)=P(Tt|H0) where  is the assumed significance level. In practice of 

auditing the probability p is usually very small (p<0.04) and in this case there are troubles 

with the exact evaluation of the probabilities P(Mm|H0) or P(Tt|H0) even when it is 

assumed that the sample size is large, see e.g. Ryan (2013).  

 When we allow that the probability p is a value of a random variable, the Bayesian 

approach is considered to testing the above formulated hypotheses, see e.g. Ghosh 

and Meeden (1997),  Robert (2007), Santer and Duffy (1989) or Statistical Models 

and Analysis in Auditing (1989). In this case the hypotheses are formulated as follows  

 

H0: pp1,  H1: p>p1,     (1) 

 

Now let us underline that p is treated as a value of a random variable and p1 is fixed. 

The distribution of p is called a prior one. The framework of Bayesian inference is based on 

the posterior distribution of p. It is explained in details below under the additional 

assumptions.  

 

2. Inference under Bayesian approach  

2.1 . The homogenous population  

Let us take into account the Bayesian model proposed by Meeden (2003). The particular 

case of that model is defined by the following assumptions. Similarly, like it is above the sum 





n

i

iXM
1

 has Bernoulli distribution.  The beta distribution B(u,z) is the prior distribution 

of the probability p with the following density function: 

 

 
 
   

11 )1()(  



 zu pp

zu

zu
pf , for p(0,1)     (3) 

 

where: 



0

1)( dxex x , >0. 

 

Moreover:  

zu

u
pE


)( ,  

   1
)(

2



zuzu

uz
pV , 

 

  uzzu

zuzu
p

2

1)(2
)(1




  is skewness coefficient, 

 

The beta distribution is usually taken into account as the prior distribution of the probability 

p, see, e.g. Santer and Duffy (1989).   
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The joint distribution of M and p is:  

 

 
   

11 )1(),(  











 zmnum pp

m

n

zu

zu
mph  

 

The marginal distribution of M is: 

 

 
   

   
 zun

zmnum

m

n

zu

zu
dpmphmg
















 

1

0

),()(  

 

The posterior distribution of parameter p is: 

 

 
   

11 )1()|(  



 zmnum pp

zmnum

zun
mph     (4) 

 

Let c0 be the loss dealing with situation when H0 is accepted when H1 is true. It means 

that the auditor accepts the system when it works incorrectly. Let c1 be the loss generated 

by rejecting H0 when it is true. It means that the well working system is not accepted.   

According to the general Bayessian rule of testing statistical hypothesis, 

see e.g. Krzyśko (2004), pp. 254-5 and 323-5 or Robert (2007), pp. 225-8, the following 

posterior probabilities are evaluated:  

 

  
1

0

1 )|(|

p

dpmphmppP ,    

1

1

1

)|(|
p

dpmphmppP .  

 

So,  mppPc |11   is the risk of accepting the hypothesis H1 when H0 is true. Moreover,  

 mppPc |10   is the risk of accepting H0 when H1 is true. The decision rule is as follows. 

The hypothesis  

H0 is rejected when  mppPc |11  <  mppPc |10  , 

H0 is accepted when  mppPc |11    mppPc |10  .  

The just written decision rule is equivalent to the following. The hypothesis H0 is rejected 

when   

  r
cc

c
mppP 




10

0
1 | ,        (5) 

 

the hypothesis H0 is accepted when  

 

  r
cc

c
mppP 




10

0
1 | .       (6) 
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Let us note that if c0=c1, then 
2

1

10

0 



cc

c
r . The value 

2

1
r  is usually taken into account 

in practical analysis.  

 The next rule of making decision is based on the basis of the following Bayes factor, 

see, e.g. Robert (2007), pp. 227: 

 

 
 

 
 1

1

1

1

|

|

ppP

ppP

mppP

mppP
B








        (7) 

 

Let )(log10 Bl  . Usually, the rule of making the decision is as follows.  

If 0<l0.5, the evidence against H0 is poor, 

if 0.5<l1, it is substantial,  

if 1<l2, it is strong,  

if l>2, it is decisive.  

Frequently, see e.g. Santer and Duffy (1989), in order to asses the parameters u and z, 

it is assumed that u+z=n and E(M)=p0 where p0 is the mean value of the admissible 

(or expected) level of probability that the audited system works unwell. Hence, on the basis 

of equation 
0)( p

n

u
pE   we have: u=np0 and z=n-u=n(1-p0). This leads to the following: 

 
)ˆ(

1

)1(
)( 00 pV

n

pp
pV 




 .  Moreover, the parameters u and z can be estimated by means 

of the well-known empirical Bayes procedure, see e.g. Copas (1972), Griffiths 

and Krutchokoff (1971) or Walter and Hamdani (1987).  

Example 1. The auditor controls 40 accounting documents. He has found that two 

of them contain errors. It is assumed that the internal control system is good when p0=0.03. 

The auditor states that the internal control system is wrong when p0.08=p1 where p1 

is inadmissible probability of finding such documents. 

Hence, we have:  m=2, n=40, p0=0.03, u=1.2, z=38.8 and  

 

H0: p<p1=0.08,  H1: pp1=0.08.  

 

The posterior distribution is:  

 

 
   

8.752.2 )1(
8.762.3

80
)2|( ppph 




 ~B(3.2,76.8) 

 

In this case E(p|2)=0.04, V(p|2)=0.0005, 1(p|2)=1.1202. Using the R- function: 

pbeta(0.08,3.2,76.8) we have:  

 

  
2

1
9463.02|1  rppP  

 

Hence, the auditor should accept the internal control system as well working.  
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The prior distribution of p is: 

 

 
   

)8.38,2.1(~)1(
8.382.1

40
)( 8.372.0 Bppph 




  

 

In this case E(p|2)=0.03, V(p|2)=0.0007, 1(p|2)=1.7874.  Let us note that the variance is 

larger in the case of the prior distribution than in the posterior distribution. The skewness 

coefficients satisfy a similar relation. So, the prior distribution of p is more asymmetric than 

the posterior one which is confirmed by Figures 1 and 2.  

 
Figure 1. The density of the prior beta distribution B(1.2,38.8).  
Source: Own preparation. 

 

 
Figure 2. The density of the posterior beta distribution B(3.2,76.8). 
Source: Own preparation. 
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Using pbeta(0.08,1.2,38.8) function call we obtain:   .008.01  ppP 9435, 

  .02|08.0 pP 0537,   .008.0 pP 0566. 

0569.1
9490.0

0031.1
B ,  l=0.0241.  

Concluding, the evidence against good quality of working internal control system (against H0) 

is poor because 0<l0.5.  

 

 

2.2.The stratified population  

Now the considered system is treated as the non-homogeneous population of subsystems, 

which are mutually independent. Let us assume that the population is divided into H strata 

corresponding to homogeneous subsystems. Let ph be probability that the controlled 

subsystem is wrong in h-stratum. So, we can write P(Xh=1)=ph, P(Xh=0)=1-ph, h=1,…,H. 

The following hypotheses are considered:  

 





H

h
hh

H

h
hh ppwpHppwpH

1
11

1
10 :,:     (8) 

 

where p1 is inadmissible level of probability that the audited system works incorrectly. 

The stated hypotheses are verified on the basis of simple samples drown from the strata under 

the traditional frequency approach e.g. by Wendell and Schmee (1996). Here, the following 

Bayesian model is considered, see Meeden (2003). The simple random sample drawn from h-

stratum is denoted by 
hnhhh XXX ,2,1, ,...,, . The sum 




n

i

ihh XM
1

,  has binomial distribution 

with the following probability function.  

 

 hhh mnm

h

h

h

hhh pp
m

n
pmMP











 )1()|( , h=1,…,H.    (9) 

 

Let us assume that the beta distribution B(uh,zh) is the prior distribution 

of the probability ph and its density function is: 

 

 
   

11
)1()(







 hh z

h

u

h

hh

hh
hh pp

zu

zu
pf , h=1,…,H.     (10) 

 

Under the assumption that random variables p1, p2,..., pH are independent, their joint 

distribution is of the beta-type with the following density function:  

 





H

h

hhH pfpppf
1

21 )(),...,,(        (11) 

 

The posterior distribution of the parameter ph is: 
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 
   

11
)1()|(







 hhhhh zmn

h

um

h

hhhhh

hhh
hh pp

zmnum

zun
mpg    (12) 

 

Simple samples are independently drawn from the strata. So, m1,m2,...,mH are independent 

and the joint posterior distribution of p1, p2,..., pH  has the following density function:  

 





H

h

hhhHH mpgmmmpppg
1

2121 )|(),...,,|,...,,(      (13) 

 

According to the Bayesian rule of testing statistical hypothesis and the expressions  

(11) and (13) the following probabilities are evaluated:  

 

H

ppw

HHH

H

h

hh dpdpdpmmmpppgmmmppwP
H

h
hh

...),...,,|,...,,(,...,, 21212121

1

1

1
1


 















 , (14) 

  

H

ppw

H

H

h

hh dpdpdppppfppwP
H

h
hh

...),...,,( 2121

1

1

1
1


 




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






 .    (15) 

   

Those probabilities let us make the decision on accepting or rejecting the hypothesis H0 

on the basis of the rules defined by the expressions (5)-(7). But now there is a problem 

with calculation of the integral. They can be evaluated on the basis of appropriate numerical 

methods or through the Monte-Carlo approach.  

Example 2. The auditor controls 15, 17 and 18 accounting documents drawn from 

three strata which fractions are respectively w1=0.2, w2=0.3, w3=0.5. He does not find 

documents with errors in the samples drawn from the strata. It is assumed that in each stratum 

the internal control system is good when p0=0.03. The auditor states that the internal control 

system is wrong when p0.07=p1 where  p1 is an inadmissible probability of finding 

documents with errors. 

Hence, we have:  m1=0, n1=15, m2=0, n2=17, m3=0, n3=18, p0=0.03, u1= p0n1=0.45, 

z1=n1-u1=14.55, u2=p0n2=0.51, z2=n2-u2=16.49, u3=p0n3=0.54, z3=n3-u3=17.46. On the basis 

of the procedure from the Appendix we have: 

  9310.0...)3,1,2|,,(0,0,007.05.03.02.0 21

07.05.03.02.0

321321

321

 


H

ppp

dpdpdppppgpppP ,  

   

  9180.0),,(07.05.03.02.0 321

07.05.03.02.0

321321

321

 


dpdpdppppfpppP
ppp

.  

 

B=1.2052,  l=0.0811.  

Hence, the evidence against the conclusion that the internal control system works good is poor 

because 0<l0.5.  
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Example 3. The auditor controls 80, 40 and 100 accounting documents drawn from 

three strata which fractions are respectively w1=0.2, w2=0.3, w3=0.5. He has found that there 

are 1, 1 and 2 documents with errors in the samples drawn from the 1, 2 and 3 strata, 

respectively. It is assumed that in each stratum the internal control system is good when 

p0=0.08. The auditor states that the internal control system is wrong when p0.1=p1 

where  p* is inadmissible probability of finding documents with errors.  

 The formulated problem can be considered as testing of the following hypotheses  

 





H

h
hh

H

h
hh ppwpHppwpH

1
11

1
10 :,:     (16) 

 

After appropriate evaluations involving the computer procedure we have 

 

  rdpdpdppppgpppP H

ppp

 


2

1
421.0...)3,1,2|,,(5,1,21.05.03.02.0 21

1.05.03.02.0

321321

321

,  

   

  16.0),,(1.05.03.02.0 321

1.05.03.02.0

321321

321

 


dpdpdppppfpppP
ppp

.  

 

B=3.8174,  l=0.5818.  

 

Hence, the evidence against the conclusion that the internal control system does not work 

properly is substantive because 0.5<l<1.  

 

3. Conclusions  

In conclusion the proposed method is a kind of adaptation of the well-known Bayesian 

testing statistical hypothesis. The presented Bayesian audit rules seem to be original in the 

background of statistical inference methods taken into account in auditing, see e.g. Statistical 

Models and Analysis in Auditing (1989). The Bayesian approach can be seriously considered 

in the case of small samples and even in the case when all values observed in the sample 

drawn from binary variable are the same as in Example 2. This approach is based 

on additional information about the parameters of considered population, which should 

be known in advance. That information is represented by a prior distribution 

and its parameters. Usually, the posterior distribution depends on those parameters, which are 

assessed by means of several reasonable ways. More formally, in practice those parameters 

are estimated by means of several complex methods like empirical or hierarchical Bayes. 

Those methods let us improve or modify the proposed testing procedure. In the paper the beta 

distribution was taken into account as a prior one. Of course it is possible to look for other 

prior distributions useful in the considered audit problem.  

 

Appendix  
The R procedure implementing the evaluation of the expressions (14) and (15) is given 

below. Observations of H - dimensional prior (posterior) distribution of mutually independent 

probabilities [p1,p2,…,pH] are evaluated by means of the beta-distribution generator of pseudo-
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random values. Next, it is checked if the inequality specified by the hypothesis H0 is true. These 

operations are replicated a large number of times. Finally, the probabilities given by the 

equations (14) and (15) are assessed by means of the frequency of the true inequalities.  

 

it=10000 

p0=0.08 

p1=0.1 

#number of the strata: 

H=3 

#the strata fractions: 

w=as.matrix(c(0.2,0.3,0.5),H,1); 

u=as.matrix(0,H,1); z=as.matrix(0,H,1);  

n=as.matrix(c(80,40,100),H,1) 

m=as.matrix(c(1,1,2),H,1) 

u=p0*n; z=n-u 

 

Bayesfactor=function(p,w,u,z,n,m,it){ 

# Function implementing the Monte-Carlo integration.  

# H0: w1*p1+w2*p2+...+wH*pH<p, 

# w - H-element column vector of the strata fractions, 

# u=[u_h], z=[z_h], h=1,...,H - vectors of the prior beta distributions B(u_h,z_h), 

# n=[n_h], h=1,...,H - vector of the strata sample sizes, 

# m=[m_h], h=1,...,H - vector of success in the strata sample,  

# it - number of Monte-Carlo iterations, 

H=nrow(w)  

prior=matrix(0,H,1) 

posterior=matrix(0,H,1) 

Nprior=0 

Nposterior=0 

t=1 

while (t<=it) 

{for (h in 1:H)  

 {prior[h]=rbeta(1,u[h],z[h]) 

   posterior[h]=rbeta(1,m[h]+u[h],m[h]-m[h]+z[h]) 

  } 

 if (t(prior)%*%w<p) Nprior=Nprior+1 

 if (t(posterior)%*%w<p) Nposterior=Nposterior+1 

 t=t+1 

} 

Nprior=Nprior/it 

Nposterior=Nposterior/it 

Bf=Nposterior*(1-Nprior)/((1-Nposterior)*Nprior) 

as.matrix(c(Nposterior,Nprior,Bf,log10(Bf)),1,4) 

} 

 

Bayesfactor(p1,w,u,z,n,m,it) 
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