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SOME METHOD OF DETECTING THE JUMP CLUSTERING 

PHENOMENON IN FINANCIAL TIME SERIES 

MACIEJ KOSTRZEWSKI 
Cracow University of Economics, Department of Econometrics and Operations Research,  

27 Rakowicka Street, Cracow, Poland  

email: maciej.kostrzewski@uek.krakow.pl 

Abstract 

News might trigger jump arrivals in financial time series. The "bad" and "good" news seems 

to have a distinct impact. In the study, the Bayesian double exponential jump-diffusion model 

and the jump-diffusion model with M jumps are applied to model logarithmic rates of return 

and detect jumps. The technique proposed in the paper enables the analysis of jump 

frequency. The methodology, founded upon the idea of latent variables and Markov Chain 

Monte Carlo methods, is illustrated with two empirical studies. Periods of no jumps 

alternating with the ones of frequent jumps confirm the existence of jump clustering. 

Key words: double exponential jump-diffusion model, JD(M)J model, Bernoulli jump-

diffusion model, Bayesian inference, MCMC methods, latent variables, jump clustering. 

DOI: 10.15611/amse.2014.17.15 

1. Introduction 

Jumps in the time series of asset returns are often defined as the values exceeding some 

arbitrarily chosen thresholds. Obviously, different thresholds lead to a different number of jumps. 

Thresholds are commonly set symmetrically either around zero or the sample mean and are 

defined as a multiple of the sample standard deviation. Quite often the empirical distribution of 

logarithmic rates of return features negative skewness, in the case of which symmetric thresholds 

seem no longer valid. In what follows, the latent variables are used to identify the data points 

which feature a jump. Specifically, it is assumed that a jump occurs at the i-th moment if the 

posterior probability of a jump exceeds an arbitrarily chosen value corresponding to the 

aforementioned thresholds. However, the problem of asymmetry or symmetry is not a matter 

here. In the research we are preoccupied with inference about jumps (in particular detecting them 

and analyzing the frequency of jumps) rather than relating them with, e.g., macroeconomic 

releases, with the caveat, however, that we make no pretense of settling how good or how bad the 

models in question perform in terms of either the in- or the out-of-sample fit. 

The presented methodology enables one to identify (in probabilistic terms) the moments 

when a jump has occurred. Having that it is further of a particular interest to examine whether 

the jump activity is variable over time and whether jumps tend to cluster over time. It is worth 

noting that even though the models under consideration – similarly as some other common 

specifications – do not account for any dependence structure in the occurrence of jumps, it is 

still informative (in the context of detecting jump clusters) to inspect the series of time  

elapsed between consecutive jumps, for it still can exhibit patterns suggestive of clustering. 

The analysis is performed within two Bayesian models: the double exponential jump diffusion 

process (DEJD model) and the jump-diffusion model with M jumps (JD(M)J model) 

developed by (Kostrzewski, 2012, 2013a, 2013b). 
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The very term “jump clustering” – quite analogous to the one of “volatility clustering”, 

pervading the GARCH and SV literature – means that jump arrivals (or times between two 

consecutive jumps) tend to cluster. Jump clusters have been already discussed in the financial 

econometrics literature – see, e.g., (Maheu and McCurdy, 2004), (Yu, 2004), (Knight and 

Satchell, 2007), (Lee and Mykland, 2008), (Lee, 2012). The main idea is based on the 

assumption of a stochastic jump intensity which follows an autoregressive structure or a self-

exciting process. Moreover, (Lee, 2012) investigated the jump size dynamics and showed 

evidence of a short-term jump size clustering. 

The contribution of the paper resides in performing an analysis of jump frequency and 

designing some simple method of detecting the jump clustering phenomenon. The main idea 

of the methodology is based on three steps: 

1. Identify times of jumps by means of any Bayesian jump diffusion model. 

2. Inspect the frequency of jumps by plots of the posterior probabilities of jumps, the series 

of waiting times between successive jumps and the plot of the autocorrelation function of 

these times. 

3. Make a decision, based on the plots, about the jump clustering. 

 The use of the proposed methodology is particularly justified in the context of settling 

whether the structure of some common jump-diffusion models should be extended so as to 

take the jump clustering phenomenon explicitly into account. 

2. The models 

Consider a standard Wiener process  
0


ttWW , a Poisson process  

0


ttNN  with the 

intensity parameter 0 , and a sequence of independent random variables  
1


jjQQ . Let 

us assume that W , N  and Q  are mutually independent. Finally,  
0


ttSS  denotes the price 

process of some risky asset. 

The logarithm of S  is governed by a jump-diffusion process that constitutes the solution of 

the equation: 

  .
2

1
ln 2

ttt QdNdWdtSd 







   (1) 

It might be shown that: 
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The process is built of two components: the (pure) diffusion part,  

 ,
2

1 2

tt WW 







   (3) 

representing continuous variations in the series, and the (pure) jump component, ,
1

i

N

Ni

Q
t

t






 

reflecting abnormal (extreme) movements in returns. The continuous price behavior between 

jumps is described by the geometric Brownian motion, W , while the arrival rate of jumps is 

described by the homogeneous Poisson process, N , and the jump magnitudes – by Q . 
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The distribution of logarithmic rates of return,  
t

t

S

S ln , is an infinite mixture (Hanson, 

Westman 2002): 
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where kf  are some densities. Since the series given by (4) is infinite, the density is 

intractable. Therefore, consider the following finite approximation of (4): 
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  (5) 

The approximation restricts the number of jumps over any time interval   to M . The case of 

0M  indicates no jumps over interval  . 

Further considerations are restricted to the discrete time framework. Time series 

 nxxx ,...,, 21  is comprised of  
it

it

S

S

ix 1ln   observed at times ,..., 21 tt . Moreover, 

01   ii tt  is a fixed time interval between following observations. Denote the vector of 

parameters as  . If we normalize the approximation given by (5), under 1M  we obtain the 

conditional data density (given the parameters,  ): 

     ,
11

1
xfxfxp

jQXX 






  (6) 

where   tWX   2

2
1: , and 

jQj fQ  . The first term on the right-hand side of (6) is 

referred to as the diffusion component, whereas the second one – as the jump-diffusion 

component. 

In what follows, only two models are considered. In the first one, further referred to as the 

DEJD model, logarithmic rates of return are assumed to follow the distribution given by (6) 

while jQ  has a double exponential distribution with density  

           ,expexp ,00, xxpxxpxf UUUDDDQ j   II  (7) 

where 0,0  DU  . The second specification, termed the JD  2 J model, is defined  by 

assuming a normal distribution for jQ :     













2

2
1

2

1 exp
Q

Q

Qj

x

Q xf , and setting 2M . 

The choice of 2M , by means of Bayes rules, is presented in (Kostrzewski, 2013a). Both 

structures are used to model series of daily logarithmic rates of return, indicating 252
1 . 

3. The Bayesian models 

A Bayesian statistical model is defined by the joint density: 

     ,,  pxpxp   (8) 

where  nxxx ,...,1  is the observed data,   is the vector of unknown parameters,  xp  is 

the sampling density and  p  is the prior density. The inference rests upon the posterior 
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density  xp   of   given data x  (Bernardo and Smith, 2002): 

 
   

 
.

xp

pxp
xp


   (9) 

Given x ,  xp  – as a function of   – is called the likelihood function, whereas  xp  is the 

marginal data density. 

Under the DEJD specification the process S  depends on six unknown parameters 

 DUUp  ,,,,, , where           ,0,01,0,0,0R . While analyzing a 

time series which is (or, rather, is believed to be) a trajectory of a jump-diffusion process, one 

does not actually know if a given data point has been generated by the pure diffusion or the 

jump-diffusion component. In other words, one cannot determine which component of the 

series in (6), i.e.  xf X  or  xf QX   underlies a given observation. To manage the problem let 

us introduce latent variables  n ,...,1 , where  1,0,1i . The value 0i  means no 

jump at (an interval)  it . The values 1i  and 1i  mean that a jump occurs and its 

value is either negative or positive, respectively. Moreover, it is convenient to introduce latent 

variables  nJJJ ,...,1  corresponding to the value of a jump, where: 

      

   

      ,exp1,

,0,

,exp1,

,0

0

0,

jjjJp

jjJp

jjjJp

UUii

ii

DDii











I

I







 (10) 

and 0  is the Dirac delta function. 

The Bayesian model is then given by:  

     .,,,,,,, JpJxpJxp    (11) 

More information about the Bayesian DEJD model could be find in (Kostrzewski, 2013b). 

Under the JD(2)J specification the process S  depends on five unknown parameters 

 2,,,, QQ   , where           ,0,01,0,0,0R . The idea of the 

Bayesian JD(M)J specification is similar to the DEJD one. More information about the 

Bayesian JD(2)J model can be find in (Kostrzewski, 2012, 2013a). 

Posterior characteristics of the unknown quantities are calculated via the Markov Chain 

Monte Carlo (MCMC) methods (Gamerman and Lopes, 2006), combining the Gibbs sampler, 

the independence and the sequential Metropolis-Hastings algorithms, as well as the 

acceptance-rejection sampling (Chib and Greenberg, 1995). The theorems stated in 

(Kostrzewski, 2013a, 2013b) make the algorithm ready to use. The prior structures introduced 

into the models in question are presented in (Kostrzewski, 2013a) and (Kostrzewski, 2013b) 

for the JD(M)J model and the DEJD model, respectively.  

Formally, the occurrence of a jump is equivalent to 0i . Unfortunately, one does not 

observe i , but the posterior probability of a jump,  xP i 0 , can be evaluated for each day 

ni ,...,1 . Let us assume that a jump occurs at the i-th period if the probability  xP i 0  

exceeds an arbitrarily chosen value of 5.0 . The resulting series consisting of zeros and ones 

corresponding to such i’s that   5.00  xP i  and   5.00  xP i , respectively, is further 



 
 

145 

 

employed in assessing the frequency of jumps as well as studying the jump clustering 

phenomenon. 

4. Examples 

This section illustrates the methodology outlined above. Two real-world datasets are under 

study. First, the series of daily logarithmic rates of return on the ICE ECX futures based on 

the underlying European Union CO2 emission allowances is fit with the DEJD structure. 

Secondly, the dataset of logarithmic rates of return on the S&P100 Index is fit with the JD(2)J 

specification. 

All relevant computations were performed in R (R Core Team, 2013). The numerical 

algorithms applied in the research require monitoring the convergence of the generated 

Markov chain to its limiting stationary distribution. Convergence of all MCMC samplers 

exploited in the research is confirmed by the visual inspection of ergodic means, standard 

deviations and CUMSUM statistics plots. The results are robust to the choice of the starting 

point for the MCMC procedure.  

4.1 Analysis for the CO2 under DEJD model 

The European Climate Exchange (ECX) manages Carbon Financial Instruments traded on 

the ICE Futures Europe electronic platform. The ICE ECX futures are based on the 

underlying European Union CO2 emission allowances (EUA) and traded on the platform. 

They are standardized products. The contract volume amounts to 1,000 CO2 EU Allowances. 

Each EU Allowance entitles one to emit one tonne of carbon dioxide equivalent gas. Future 

prices are quoted in Euro per metric tonne. Trading model is based on continuous trading. 

Further analysis is restricted to closing prices of future contracts expiring on 16 December, 

2013, over the period 3 January, 2011 through 1 October, 2013. The number of observations 

equals n = 709. Let us note that the period under study covers Phase II (2008-2012) and Phase 

III (2013-2020) of the European Union Emissions Trading Scheme (EU ETS). The EU ETS 

enables market participants to use the Phase II permits during Phase III. 

Table 1 contains some basic posterior characteristics of the DEJD model's parameters. The 

presented results are based on 000,200  MCMC draws, preceded by 000,30  burn-in cycles.  

Table 1 Posterior means (  xE | ) and standard deviations (  xD | ) for the ICE ECX futures  

   xE |   xD |  

  0.138 0.282 

  0.360 0.032 

  119.164 46.923 

Up  0.412 0.079 

D  22.170 3.660 

U  20.365 4.051 

Source: Own elaboration. 

 

Figure 1 displays the marginal posteriors of parameters in the DEJD model, along with the 

prior densities. The plots reveal a considerable contribution of the data to the shape of 

marginal posteriors (except for  ). 
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Figure 1 Marginal posterior (bars) and prior densities (solid line) of parameters in the DEJD 

model estimated for the ICE ECX futures. 
Source: Own elaboration. 

 

Figure 2 depicts the logarithmic rates of return (with a band of nnx  2  and nnx  2  

where nx  and n  denote the sample mean and standard deviation, respectively), and the 

values of probabilities  xP i 1  and  xP i 1  against the number of successive days, 

provided that   5.01  xP i  and   5.01  xP i . Note that higher posterior probabilities 

of a jump go along with higher volatility of the time series. 
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Figure 2 The modeled time series of daily log-returns (top), the series of 

      }...,,2,1;1{
5.01:

niixP
xPii

i



I  (middle), and the series of  

      }...,,2,1;1{
5.01:

niixP
xPii

i



I  (bottom). 

Source: Own elaboration. 
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Figure 3 presents the posterior probabilities of a jump, i.e.  xP i 0  (only the ones that 

exceed 5.0 ), the values of the time elapsed between consecutive jumps (with the number of a 

jump represented by the horizontal axis) and the corresponding (empirical) autocorrelation 

function (ACF) calculated for the series of times between consecutive jumps. 

One can easily observe periods of no jumps alternating with the ones of frequent jumps. 

The values of the ACF for the first lag equals 0.2 and appears statistically significant (at the 

significance level of 0.05). The results may be perceived as indicative of the jump clustering 

phenomenon. 

 

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0

0
.

0
0

.
4

0
.

8

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

0
2

0
5

0

0 5 1 0 1 5 2 0

-
0

.
2

0
.

4
0

.
8

 

Figure 3 The time series of the posterior probabilities of a jump (only the ones exceeding 0.5; 

top), the series of times between successive jumps (middle), and the autocorrelation function 

of the times between consecutive jumps (bottom). 
Source: Own elaboration. 

4.2 Analysis for the S&P100 under JD(2)J model 

To illustrate the methodology advanced in the paper above, we also analyze a series of 

daily logarithmic rates of return on the S&P 100 Index over the period from March 5, 1984 

through July 8, 1997. The series has already been employed by (Honore, 1998), who fits it 

with the Bernoulli jump-diffusion model by means of the maximum likelihood method, as 

well as by (Kostrzewski, 2013a). Quotations on the S&P100 Index have been downloaded 

from http://www.econstats.com. 

Figure 4 displays the posterior probabilities of a jump (only the ones that exceed 5.0 ), the 

series of waiting times between consecutive jumps and the ACF for the latter series. Similar 

remarks to the ones formulated in the previous case can be made here. Clearly, periods of no 

jumps alternate with the ones of frequent jumps. That the jumps noticeably tend to cluster 

over time is also indicated by the first and the second lag autocorrelation coefficients, which 

are equal around 0.4 and statistically significant. More details on the estimation results are 

available from the author upon request. 
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Figure 4. The time series of the posterior probabilities of a jump (only the ones exceeding 0.5; 

top), the series of times between successive jumps (middle), and the autocorrelation function 

of the times between consecutive jumps (bottom). 
Source: Own elaboration. 

5. Final remarks 

The presented methodology is capable of detecting jumps and the jump clustering 

phenomenon. The empirical examples show that jump may indeed tend to cluster and that the 

phenomenon itself can actually be diagnosed by means of models whose structure does not 

incorporate potential autocorrelation of the waiting time between jumps per se. Jump activity 

may vary over time so that the assumption of a constant jump intensity might appear no 

longer valid.  

It appears that the methodology may provide some indications as to whether or not employ 

jump-diffusion models for a time series. In that context, one of the main conclusions (and a 

very broad one) is that financial time series models which allow jumps as well as jump 

clustering, indeed, might be empirically adequate. Therefore, the focus of future research 

should be placed upon, for instance, specifications with stochastic jump intensity employing 

either Hawkes processes (Hawkes, 1971) or non-homogeneous Poisson processes, which 

would enhance the model structure so as to account for jump clustering explicitly. Moreover, 

further studies could concentrate on jump clustering, yet under stochastic volatility 

framework. 
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