
INFORMATYKA EKONOMICZNA BUSINESS INFORMATICS 4(30) · 2013

ISSN 1507-3858

Adio Akinwale, Joseph Shonubi, Adebayo Adekoya,
Adesina Sodiya, Tosin Mewomo
Federal University of Agriculture, P. M. B. 2240, Abeokuta
e-mail: aatakinwale@yahoo.com, dejishow2yk @yahoo.com, lanlenge@gmail.comsinaron-
ke@yahoo.co.uk, mewomo@yahoo.com

ONTOLOGY OF INPUT VALIDATION ATTACK
PATTERNS ON WEB APPLICATIONS

Summary: Web applications have been the main intrusion target, and input errors from
the web users lead to serious security vulnerabilities. Many web applications contain such
errors, making them vulnerable to remotely exploitable input validation attacks such as SQL
Injection, Command Injection, Meta-Characters, Formatting String, Path Traversal and Cross
Site scripting. In this paper, we present ontology to represent patterns of input validation
attacks on web applications. More specifically, our ontology is based on individual subclasses,
properties and inverse functional properties, domain and range of input validation attack
patterns. The ontology is implemented and interpreted with the web application development
language OWL (Ontology Web Language).

Keywords: input validation attacks, patterns, ontology, web application.

1. Introduction

A web application is typically a client/server software that handles user requests
coming from clients such as web browsers. To serve the user requests, it often
requires accessing system resources such as databases and files at the server end. The
system resources are a part of the trusted environment and often contain security-
critical data. Hence these resources need appropriate protection to maintain their
confidentiality and integrity, otherwise it cannot be trusted. It cannot be directly used
to access the system.

Web applications usually take inputs from users through form, cookies, or some
other standard channels, and use these input data in further processing operations,
such as querying databases, generating web pages, or executing commands. Becau-
se the input data are from the remote users and may contain malicious values, they
need to be validated before use. Once a web application fails to do so, attackers
can exploit the system’s vulnerabilities to launch specific attacks. The following are

Informatyka_Ekonom_4(30).indb 11 2014-06-16 23:09:08

12 Adio Akinwale et al.

examples of popular input validation attacks: SQL injections, cross-site scripting,
and command injections. These attacks can cause many serious problems, such as
the leak of sensitive information and corruption of critical data.

Web applications are designed to present to any user with a web browser
a system-independent interface to some dynamically generated content. A user can
log into the web database through a web browser, if he/she is using a web database
application. These applications normally interact with databases to access persistent
data. This interaction is commonly done within a general-purpose programming
language, such as Java, through an application programming interface (API) [Su,
Wassermann 2009].

However, any user’s input that is not handled properly can pose serious security
problems. This is because queries are constructed dynamically in an ad hoc manner
through low-level string manipulations. This is ad hoc because databases interpret
query strings as structured, meaningful commands, while web applications often
view query strings simply as unstructured sequences of characters. This semantic
gap, combined with the improper handling of user input, makes web applications
susceptible to a large class of malicious attacks known as command injection attacks.

Web applications are designed to meet business needs due to the demand on
developers to push out more and more web applications at a faster rate than the de-
velopers could handle. The implication of this is that the developer will be focused
more on the development of these applications and less on ensuring the security of
the applications.

2. Related works

In Anitha Nalluri and Dulal C. Kar [2005], a Web-based data mining system to ana-
lyze intrusions was presented. The system was implemented using all the freeware
available in the public domain. The system finds anomalous activity that uncovers
a real attack process and identifies long and ongoing patterns. It was used to analyze
host-based traffic features, time-based traffic features, protocol-based traffic featu-
res, and associated intrusions. With the help of this system, rules were generated to
capture the behavior of the intrusions as well as of normal activity.

Jeffery Undercoffer and John Pinkson [Undercoffer, Joshi, Pinkston 2003]
present a target-centric ontology for intrusion detection, the ontology presented is
based on the analysis of many classes of computer intrusion and their corresponding
attacks strategies, which are categorized according to: system component targeted,
means of attack, consequence of attack and location of attacker.

They compared the taxonomy and ontology for modeling a computer attack,
and found that modeling with ontology gives better understanding and a wider sco-
pe than taxonomy. They used the ontology specification language DAML+OIL to
implement ontology. They also combined ontology (DAML+OIL) and an inference
engine to initiate an event recognition language.

Informatyka_Ekonom_4(30).indb 12 2014-06-16 23:09:08

Ontology of input validation attack patterns on web applications 13

The transformation process, together with its two constituents-pattern detection
and an ontology transformation process, were presented by [Sv´ab-Zamazal, Sv´atek
2008]. Pattern detection process is based on SPARQL and the transformation process
is based on an ontology alignment representation with specific extensions regarding
detailed information about the transformation.

3. Input Validation Attacks

The single biggest cause of web application vulnerabilities is the lack of proper input
validation. Through a web application, attackers or intruders can use these lapses
to attack rear components, such as a database. Input validation attacks are used to
generate information errors, to obtain uninformed data access, execute commands,
grab passwords and so on.

3.1. Types of Input Validation attack patterns

SQL injection
A SQL injection attack consists of the insertion of a SQL query via the input

data from the client to the application. A successful SQL injection exploit can read
sensitive data from the database, modify database data (Insert/Update/Delete),
execute administration operations on the database (such as shutdown the DBMS),
recover the content of a given file present on the DBMS file system and in some
cases issue commands to the operating system. SQL injection attacks are a type of
injection attack, in which SQL commands are injected into data-plane input in order to
effect the execution of predefined SQL commands. SQL injection is a code injection
technique that exploits a security vulnerability occurring in the database layer of an
application. SQL injection is one of the oldest attacks against web applications.

Guy-Vincent Jourdan [2009], the vulnerability is present when user input is
either incorrectly filtered for string literal escape characters embedded in SQL sta-
tements or user input is not strongly typed and thereby unexpectedly executed. This
is an instance of a more general class of vulnerabilities that can occur whenever one
programming or scripting language is embedded inside another.

Cross-Site Scripting (XSS)
Many websites have options that allow users to enter data and then dynamical-

ly generate web pages based on the input. A cross-site scripting vulnerability may
occur if the user input is not properly validated. Attackers exploit this vulnerability
by embedding malicious script into the generated page. The script is automatically
executed on the machine of any user who views the generated page.

Wikipedia (2010), an attacker can use XSS to send a malicious script to an
unsuspecting user. The end user’s browser has no way of knowing that the script
should not be trusted, and will therefore execute the script which it thinks came

Informatyka_Ekonom_4(30).indb 13 2014-06-16 23:09:08

14 Adio Akinwale et al.

from a trusted source. The malicious script can access any cookies, session tokens,
or other sensitive information retained by the users’ browser. These scripts can even
rewrite the content of the HTML page.

Meta-Character Attack
Hackers can change the behaviour of a web application by inserting meta-cha-

racters into an URL-encoded parameter within query strings. Since many meta-cha-
racters are interpreted differently by different servers, the risk depends on the opera-
ting system, programming languages and workflow of the affected application.

Format String Attack
In a format string attack, an attacker changes the format specification sent to

a common program function like prinf(), uncovering information about the system
or even executing arbitrary code.

The format string exploit occurs when the submitted data of an input string is
evaluated as a command by the application. In this way, the attacker could execute
code, read the stack, or cause a segmentation fault in the running application, cau-
sing new behavior that could compromise the security or the stability of the system.

Path Traversal Attack
Path traversal vulnerabilities allow a hacker to execute commands or view data

outside the intended target path. Path traversal attacks are normally carried out via
unchecked URL input parameters, cookies and HTTP request headers.

A path traversal attack aims to access files and directories that are stored outside
the web root folder. By browsing the application, the attacker looks for absolute links
to files stored on the web server. By manipulating variables that reference files with
“dot-dot-slash (../)” sequences and its variations, it may be possible to access arbi-
trary files and directories stored on the file system, including the application source
code, configuration and critical system files, limited by system operational access
control. Wikipedia (2010), attacker uses “../” sequences to move up to root directory,
thus permitting navigation through the file system.

4. Ontology

Ontology is an integration of a specific domain of knowledge in a common vo-
cabulary, which provides basic concepts in a domain and the relations among the
concepts. Noy and McGuinnes [2002] gave reasons why someone would want to
develop an ontology, they are :
• to enable the reuse of domain knowledge,
• to make domain assumptions explicit,
• to separate domain knowledge from operational knowledge,
• to analyze domain knowledge.

Informatyka_Ekonom_4(30).indb 14 2014-06-16 23:09:08

O
ntology of input validation attack patterns on w

eb applications
15

Web applications

Input Attack Patterns

Location

SQL Injection
Attacks

Local Remote

System Command
Injection Attacks

Meta Characters
Attacks

Cross-Site
Scripting Attacks

Format String
Attacks

Path Traversal
Attacks

Network

System

Victim of

Sent from

Target at

Sub-Class of Sub-Class of

Sub-Class of

InputNetwork Protocol
Uses

Provide from

Figure 1. Ontology of Input Validation attack patterns

Source: own elaboration.

Inform
atyka_Ekonom

_4(30).indb 15
2014-06-16 23:09:08

16 Adio Akinwale et al.

Ontology consists of concepts (classes) in the domain of knowledge, difference
features and the attributes are used to the describe concept in the ontology using
properties to show relations among classes and subclasses of the domain in Figure 1.

System and web applications are the victim of network attacks or intrusions. The
heart of the ontology is where we introduce the Input that is Input Attack Patterns.

Network protocols are the means of attack (Uses). The attack can be from remote
or within (local) which are subclasses of Location. SQL Injection, System Command
Injection, Meta Characters, Cross-Site Scripting, Format String and Path Traversal
Attacks are the patterns of input validation attacks on web applications, also sub-
-classes of our super class (Input attack patterns).

4.1. Class ontology of Input Validation attack patterns

Individuals
Individuals represent objects in the domain in which we are interested, the indi-

viduals in our ontology are SQL, DOS, FSA, MC, CSS and PTA inside INPUT VA-
LIDATION classes. In Figure 2, individuals are represented by diamond symbols.
OWL classes are interpreted as sets that contain individuals

SQL DOS

FSA
MC

CSS

PTA

INPUT VALIDATION CLASS

Figure 2. Representation of Individuals

Source: own elaboration.

Subclasses
Classes are organized into a superclass-subclass hierarchy, which is known as ta-

xonomy. Subclasses are subsumed by their superclasses, for example class command
injection attack and classes HTML form, Cookies, and URL parameters, are subclas-
ses of class command injection attack which means that any such input would result
in command injection attack.

In Figure 3 subclasses are represented by diamond symbols inside circles repre-
senting classes.

Informatyka_Ekonom_4(30).indb 16 2014-06-16 23:09:08

Ontology of input validation attack patterns on web applications 17

Properties and Inverse
Properties are a binary relationship on an individual (i.e. properties link two

individuals together)
The property isCommandOn links individual SQL injection attacks to the indi-

vidual SQL command or the property isInsertingOn links the individual Command
Injection attacks to the individual URL.

SQL command

SQL Injection Attacks

Meta-Character

Unchecked URL
input

Unchecked HTTP Header

FF

Malicious Scripts

URL

HTMlF

Cookies

Command Injection
Attacks

Meta Characters Attacks
Format String Attacks

Cross Site Scripting

Path traversal Attacks

Figure 3. Representation of classes and subclasses

Source: own elaboration.

5. Sample Codes, OWL/RDF Classes, Sub-classes
and Properties Representations

Sample Codes for SQL Injection Attack
In SQL: select id, firstname, lastname from intrusionbase
If one provides: Firstname: shonubi’al , lastname: joseph
The query string becomes:
select id, firstname, lastname from intrusionbase where firstname = ‘shonubi’ al’

and lastname =’joseph’ , which the database attempts to run as incorrect syntax near
al’ as the database tried to execute shonubi.

SQL injection attack resulted from an injection of some codes into SQL com-
mands, Guy-Vincent Jordan [2009].

Sample Codes for Path Traversal Attack Patterns
This attack can be executed with an external malicious code injected on the path,

like the Resource Injection attack. To perform this attack it is not necessary to use
a specific tool- attackers typically use a spider/crawler to detect all URLs available.

This attack is also known as “dot-dot-slash”, “directory traversal”, directory
climbing” and “backtracking”.

Sample: In many operating systems, null bytes %00 can be injected to terminate
the filename. For example, sending a parameter like:

Informatyka_Ekonom_4(30).indb 17 2014-06-16 23:09:09

18 Adio Akinwale et al.

?file=secret.doc%00.pdf , will result in the Java application seeing a string that
ends with “.pdf” and the operating system will see a file that ends in “.doc”. Attac-
kers may use this trick to bypass validation routines, Guy-Vincent Jordan [2009].

OWL/RDF Representing Class, Subclasses and Properties SQL Injection
Attack Patterns

In Figure 4 Class (SQL Injection attack) has sub-class (SQL command codes)
and property (isResultOf) that shows the relationship between the class and subclass.
Figure 5 below shows the OWL/RDF presentation.

SQL Injection Attacks SQL command codes

Resulted From

Is result of (consequence)

Figure 4. Class, sub-class and properties of SQL injection attack patterns.

Source: own elaboration.

<owl:Class rdf:about="&sqlcommand;SQLInjection">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&sqlcommand;ResultedFrom"/>
<owl:someValuesFrom rdf:resource="&sqlcommand;sqlCommands"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<!-- http://www.semanticweb.org/ontologies/sqlcommand.owl#sqlCommands -->
<owl:Class rdf:about="&sqlcommand;sqlCommands">
<rdfs:subClassOf rdf:resource="&sqlcommand;SQLInjection"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&sqlcommand;isResultOf"/>
<owl:someValuesFrom rdf:resource="&sqlcommand;SQLInjection"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
</rdf:RDF>

Figure 5. OWL/RDF representing class, subclasses and properties SQL injection attack patterns

Source: own elaboration.

OWL/RDF representing Class, subclasses and properties Path Traversal
attack patterns

Informatyka_Ekonom_4(30).indb 18 2014-06-16 23:09:09

Ontology of input validation attack patterns on web applications 19

Path Traversal Attacks
UHTTP codes pattern

Resulted From

Is result Of (consequence) UURLinput codes pattern

Figure 6. Class, sub-class and properties of Path Traversal attack patterns

Source: own elaboration.

In Figure 6 Class (Path Traversal Attacks) has sub-classes (UHTTP_ codes pattern,
UURLinput_codes pattern) and property (isResultOf) that shows the relationship

between the class and subclasses. Figure 7 below shows the OWL/RDF presentation.

<owl:Class rdf:about="&pathtraversal;Path_Traversal_Attacks">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&pathtraversal;Resultedfrom"/>
<owl:someValuesFrom rdf:resource="&pathtraversal;UURLinput_pattern"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&pathtraversal;Resultedfrom"/>
<owl:someValuesFrom rdf:resource="&pathtraversal;UHTTP_pattern"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<!-- http://www.semanticweb.org/ontologies/pathtraversal.owl#UHTTP_pattern -->
<owl:Class rdf:about="&pathtraversal;UHTTP_pattern">
<rdfs:subClassOf rdf:resource="&pathtraversal;Path_Traversal_Attacks"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&pathtraversal;Resultedfrom"/>
<owl:someValuesFrom rdf:resource="&pathtraversal;Path_Traversal_Attacks"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<!-- http://www.semanticweb.org/ontologies/pathtraversal.owl#UURLinput_pattern -->
<owl:Class rdf:about="&pathtraversal;UURLinput_pattern">
<rdfs:subClassOf rdf:resource="&pathtraversal;Path_Traversal_Attacks"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&pathtraversal;isResultOf"/>
<owl:someValuesFrom rdf:resource="&pathtraversal;Path_Traversal_Attacks"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
</rdf:RDF>

Figure 7. OWL/RDF representing Class, subclasses and properties Path Traversal attack patterns

Source: own elaboration.

Informatyka_Ekonom_4(30).indb 19 2014-06-16 23:09:09

20 Adio Akinwale et al.

Sample code for Cookie grabber attack patterns
If the application does not validate the input data, the attacker can easily steal

a cookie from an authenticated user. All the attacker has to do is to place the follo-
wing code in any posted input (i.e. message boards, private messages, user profiles):

<SCRIPT type=”text/javascript”>
var adr = ‘../evil.php?cakemonster=’ + escape(document.cookie);
</SCRIPT>
The above code will pass an escaped content of the cookie (according to RFC

content must be escaped before sending it via HTTP protocol with GET method) to
the evil.php script in “cakemonster” variable. The attacker then checks the results of
his/her evil.php script (a cookie grabber script will usually write the cookie to a file)
and use it.

In some instances, a hacker can execute operating system commands by injec-
ting them via HTML forms, cookies or a URL parameter. Using this type of attack
the hacker is able to execute system-level functions such as removing and copying
files, sending emails, and calling operating system tools to modify the application’s
input and output. From Wikipedia (2010)

OWL/RDF representing Class, subclasses and properties System Command
injection attack patterns

In Figure 8, Class (System command attacks) has sub-classes (cookies_ codes
pattern,

HTMF _codes pattern and URL codes pattern) and property (isResultOf) that
shows the relationship among the class and subclasses. Figure 9 below shows the
OWL/RDF presentation.

URL codes pattern
System command attack

Resulted From

URL codes pattern

HTMF codes pattern
Resulted From

Cookies codes pattern

Figure 8. Class, sub-class and properties of System Command attack patterns

Source: own elaboration.

Informatyka_Ekonom_4(30).indb 20 2014-06-16 23:09:09

Ontology of input validation attack patterns on web applications 21

<owl:Class rdf:about="&commandinjection;Cookies_pattern">
<rdfs:subClassOf rdf:resource="&commandinjection;commandInjection"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&commandinjection;isResultOf"/>
<owl:someValuesFrom rdf:resource="&commandinjection;commandInjection"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<!-- http://www.semanticweb.org/commandinjection.owl#HTMIF_pattern -->
<owl:Class rdf:about="&commandinjection;HTMIF_pattern">
<rdfs:subClassOf rdf:resource="&commandinjection;commandInjection"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&commandinjection;isResultOf"/>
<owl:someValuesFrom rdf:resource="&commandinjection;commandInjection"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<!-- http://www.semanticweb.org/commandinjection.owl#URL_pattern -->
<owl:Class rdf:about="&commandinjection;URL_pattern">
<rdfs:subClassOf rdf:resource="&commandinjection;commandInjection"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&commandinjection;isResultOf"/>
<owl:someValuesFrom rdf:resource="&commandinjection;commandInjection"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

Figure 9. OWL/RDF representing class, subclasses and properties of System Command attack patterns

Source: own elaboration.

Sample codes for Format String attack in Denial of Service
In this case, when an invalid memory address is requested, normally the program

is terminated for example, printf (userName);
The attacker could insert a sequence of format strings, making the program show

the memory address where a lot of other data are stored. Then the attacker increases
the possibility that the program will read an illegal address, crashing the program
and causing its non-availability.

printf (%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s);

OWL/RDF representing Class, subclasses and properties Format String
patterns

In Figure 10 Class (Format String attacks) has sub-class (FF_Codes) and proper-
ty (isResultOf) that shows the relationship between the class and subclasses. Figu-
re 11 below shows the OWL/RDF presentation.

Informatyka_Ekonom_4(30).indb 21 2014-06-16 23:09:09

22 Adio Akinwale et al.

Format String Attacks FF codes

Resulted From

Is result Of (consequence)

Figure 10. Class, sub-class and properties of Format String attack patterns

Source: own elaboration.

6. Conclusion and further work

The main contribution of this paper, so far, is the identification of classes of input
validation attack patterns on web applications with their sample codes of launching
attacks on web applications. The paper focuses more on intrusion patterns of by-pass
network intrusion detection and access to network applications.

<owl:Class rdf:about="&FormatStringpatterns;FF_pattern">
<rdfs:subClassOf rdf:resource="&FormatStringpatterns;Format_String_patterns"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&FormatStringpatterns;ResultedFrom"/>
<owl:someValuesFrom rdf:resource="&FormatStringpatterns;Format_String_patterns"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:about="&FormatStringpatterns;Format_String_patterns">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&FormatStringpatterns;isResultOf"/>
<owl:someValuesFrom rdf:resource="&FormatStringpatterns;FF_pattern"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
</rdf:RDF>

Figure 11. OWL/RDF representing class, subclasses and properties of System Command attack patterns

Source: own elaboration.

Ontology was used with individual, classes, sub-classes, relations and properties
of our domain ontology. OWL was used to implement our ontology. Further research
should be carried out on how to use ontology to model a reliable and efficient intru-
sion detection system in both network-based and web-based attacks and intrusions.

Informatyka_Ekonom_4(30).indb 22 2014-06-16 23:09:09

Ontology of input validation attack patterns on web applications 23

Also, rules can be designed to cater for identified attack patterns in the classes of
input validation attack patterns.

Reference

Crosbie M., Price K., Curry D.A., Intrusion Detection Systems, www.cerias.purdue.edu/about/history/
coast_resources/idcontent/ids.html [accessed: 9.03.2004].

Fernandez D., Detección De Intrusos En GNU/Linux, 2007, www.emagister.com [accessed: 19.07.2011].
Intrusion Detection System (2009), www.cerias.purdue.edu/coast/intrusion-detection/ids.html [acces-

sed: 21.06.2011].
Jordan G.-V., Command Injections, School of Information Tech. and Engineering University of Ottawa,

Ottawa 2009.
Nalluri A., Kar D.C, A Web-Based System for Intrusion Detection, CCSC: South Central Conference, 2005.
Noy N.F., McGuinnes D.L., Ontology Development 101(2002): A Guide to Creating Your First On-

tology, Technical Report, Stanford University, http: //protege.stanford.edu/publications/ontology
development/ontology101-noy-mcguinness.html.

Scarfone K., Mell P., Guide to Intrusion Detection and Prevention Systems (IDPS), “Computer Secu-
rity”, February 2007.

Su Z., Wassermann G., The Essence of Command Injection Attacks in Web Applications, University of
California, Davis 2009.

ˇSv´ab-Zamazal O., Sv´atek V., Pattern-Based Ontology Transformation Service, Online Paper, 2008.
Category of Web-Based Attacks (2010), www.mediawiki.com [accessed: 17.02.2012].
Undercoffer J., Joshi A., Pinkston J., Modeling Computer Attacks: An Ontology for Intrusion Detection,

2003.
Understanding the Cause and Effect of CSS Vulnerabilities (2009),www.technicalinfo.net/papers/CSS.

html [accessed: 20.02.2012].
Varshovi A., Sadeghiyan B., Ontological Classification of Network Denial of Service Attacks: Basis for

a United Detection Framework, 2004.

ONTOLOGIA WZORCÓW SPRAWDZANIA ATAKÓW
DOTYCZĄCYCH POPRAWNOŚCI DANYCH WEJŚCIOWYCH
W APLIKACJI SIECI WEB

Streszczenie: Aplikacje internetowe są głównym celem włamań, a błędy wejściowe użyt-
kowników internetowych prowadzą do poważnych luk w bezpieczeństwie. Wiele aplikacji
internetowych zawiera takie błędy, co czyni je podatnymi na zdalnie przeprowadzane ataki
niepoprawnymi danymi wejściowymi (input validation attacks), takie jak: SQL Injection,
wstrzykiwanie poleceń, metaznaków, łańcuchy formatujące, skrypty międzyścieżkowe (path
traversal scripting) i skrypty międzyserwerowe (cross site scripting). W niniejszym artykule
przedstawiamy ontologię do reprezentacji wzorców ataków niepoprawnymi danymi wejścio-
wymi. Prezentowana ontologia opiera się na indywidualnych podklasach, właściwościach
oraz odwróconych właściwościach funkcjonalnych, domenach i zakresach wzorców ataków
niepoprawnymi danymi wejściowymi. Ontologia jest implementowana i interpretowana przez
język tworzenia aplikacji internetowych OWL (Ontology Web Language).

Słowa kluczowe: input validation attacks, wzorce, ontologia, aplikacje internetowe.

Informatyka_Ekonom_4(30).indb 23 2014-06-16 23:09:09

