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1. Introduction

Until the nineties most of the research in artificial intelligence (AI) concentrated on sym-
bolic systems. The systems where symbolic representations of world properties and their
syntax based processing rules played a key role in modelling of the intelligence. In such
systems reasoning was performed using formal processing rules, without a connection to
semantic interpretations of predefined symbols. Outputs of such systems were generated
using formal syntactic transpositions of symbols and as such were unbound to physical
objects of the environment. They were simply a result of formal reasoning.

A noticeable shift in thinking came with (Brooks 1990, 1991) who proposed behavioural
approach to intelligence. Brooks neglected the need of symbolic representation in mod-
elling of AI systems. He proposed an idea of intelligence arising from interactions between
an agent and an environment. Behavioural approach assumed there is no need to process
the rules syntactically and intelligent response of a system can be a reaction resulting
from previously performed world interactions.

The proposal of Brooks is closely related to the idea of embodied cognition (Anderson
2003), a position that intelligence is a result of interaction between a mind, a body and an
environment. Embodied cognition is treated as a situated activity resulting from actions
of beings. On the contrary to behavioural approach of Brooks embodied cognition does
not neglect the need for abstract syntactic reasoning, but it acknowledges it to be only
a part of broad spectrum of cognitive processes. Embodied cognition assumes most of
cognitive processes should be bound to the mental representations often also called as
internal reflections or mental images residing in a mind of an intelligent being. This
assumption inspired some of the researchers to change the way of modelling of natural
language. In the new approach natural language is treated only as a part (a surface
representation) of a set of cognitive processes and can not be analysed without them.
Language symbols should be related to their mental representations and indirectly to
physical objects. Such approach gained popularity in case of robotic systems, where
sensory data (perceptions) should play the key role in determining agent’s actions. It
became important to model relations between the language symbol, the speaker and the
physical environment.

It has been ancient Greece, where we can find first discussions on the nature and the
role of symbols (Cuypere and Willems 2008) but today’s science usually starts with a
work on the nature of signs from De Saussure (1983). He proposed a two-part model
of the sign composed of the signifier and the signified (fig. 1.1). The signifier stands for
the form which the sign takes. The signified stands for the concept the sign represents.
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Figure 1.1. Sign according to De Saussure (1983)

There are a few more detailed interpretations of the form and the concept of the sign.
Here I assume the form represents some part of the perception of the environment: the
sound wave (as we hear it), the image (as we see it). The concept of the sign is the part
of a mental state in the intelligent being, activated or associated with the occurrence of
the sign.

According to De Saussure the sign must have both the signifier and the signified. Like
two sides of a paper the both parts must coexist in order to call them a sign. One always
requires the other but they can be separated for analytical purposes. Arrows in the
model were used to show interaction between both parts. Either the signifier activates
the signified (when we percept the sign) or the signified activates the signifier (when we
utter the sign).

At about the same time as De Saussure, Peirce proposed a different model of sign con-
sisting of three elements: an representamen, an interpretant and an object (Peirce 1931).
The representamen and the interpretant can be treated more or less as respectively the
signifier and the signified from the De Saussure’s theory. The key difference lies in the
addition of the object. The object is something the sign stands for in respect to some
sort of idea. Inclusion of the object allowed to model a connection between the sign and
the external world. In the simplest case the object may be the physical object such as a
ball, a lamp, a cow etc. and the sign refers to some property of that object such as its
colour, being lit, being alive etc..

Figure 1.2. Semiotic Triangle according to (Richards and Ogden 1989)

Peirce’s model can be illustrated using a semiotic triangle (fig. 1.2) from (Richards
and Ogden 1989). The ‘symbol’ (A) is analogous to the representamen, the ‘thought or
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reference’ (B) to the interpretant and the ‘referent’ (C) to the object. In the terms of
De Saussure’s model, the symbol is analogous to the signifier and ‘thought of reference’
to the signified.

De Saussure stressed that the connection between the signifier and the signified is arbi-
trary. Arbitrariness of a sign meant that the way the signifier looks or sounds is indepen-
dent from the signified. In other words, any name is a good name for a particular signifier.
De Saussure referred to the language system as a non-negotiable ‘contract’ into which
one is born. Semantics of the sign are arbitrary to us and we must obey them. Peirce had
a different idea on the arbitrariness. He called interactions between the representamen,
the interpretant and the object as semiosis. He was aware of the dynamic structure of
a sign system and treated semiosis as a process binding the three elements of the sign.
Natural languages are not, of course, arbitrarily established but once the sign has come
into historical existence it cannot be arbitrarily changed (Lévi-Strauss 2008). For well
established symbols, the semantics stay unchanged and are given to us in advance.

In terms from the semantic triangle, De Saussure tried to model the edge A-B. De
Saussure was particularly interested in connections between signs, rather than between
their references to external world or particular properties of signifiers. He claimed that
a system of signs such as natural language is parallel and much independent to external
world and signs take their meanings from their relations to other signs. He seemed to
ignore the importance of empirical experiences. The addition of object in Peirce’s model
allowed for some sort of connection between the sign (the signified and the signifier) and
the part of world being described by that sign.

Classical approaches to AI from the nineties were based on boolean logic with Tarski
interpretations of truth based on truth tables (Tarski 1944, 1969). According to classical
notion of truth: ‘To say of what is that it is not, or of what is not that it is, is false, while
to say of what is that it is, and of what is not that it is not, is true’ (from Aristotle’s
Metaphysics). Let M be a model structure and φ be a language symbol (for example
a natural language statement). Semantics of φ are given a priori. In terms of classical
definition of truth the occurence of a relation M |= φ should be treated as ‘what is
that it is’. Such approach relates directly to edge A-C between the symbol and the
referent. Vertex B (the interpretant or the signified) is omitted in this model. In result
the role of the bearer of the interpretant (the intelligent being) is also omitted. This has
lead to a series of interpretative problems with logical statements such as alternative or
implication (See (Ingarden 1949; Pelc 1986; Jadacki 1986) for a few examples). Many of
such problems seem to result from the lack of proper references to speaker’s subjective
knowledge. Furthermore, in classical model, it is impossible to include different moods
of the speaker. According to Ingarden (1949) different modis (potentialis, irrealis and
realis) should not be omitted in logics.

It became quite clear that the role of the intelligent being as a interpreter of the sign, that
itself forms a complex structure, should no longer be neglected. Works from De Saussure
and Peirce have offered important theoretical grounds for modelling of signs and their
role in artificial intelligent beings, but they lacked in formal mathematical solutions. The
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problems of modelling the relation between the signifier (or representamen), signified (or
interpretant) and the object have later been reinterpreted and addressed in the works in
the fields of cognitive science and AI such as (Harnad 1990; Vogt 2003; Roy and Reiter
2005).

This work also addresses one of such sub-problems, namely the symbol grounding prob-
lem. This problem is assumed to be one of the hardest and most important problems
in AI and robotics (Vogt 2003). The symbol grounding problem has been introduced
in the famous work of Harnad (1990). To explain the problem author presented an
example of Chinese/Chinese Dictionary-Go-Round. Suppose one has to learn Chinese.
The only source of information he has is a Chinese to Chinese dictionary. He can learn
symbols by looking on other meaningless symbols. In result the person ends in an infinite
merry-go-round over the dictionary never learning anything. When it comes to a com-
puter program, it can reposition the symbols (for example using syntactic rules), never
understanding their meaning1. Harnad suggested grounding symbols in sensory data
gathered by an artificial system. In such a way, a link between empirical experiences
from current or past moments and the symbol itself is built. In order to understand
symbols, they have to be somehow connected to physical objects or more precisely per-
ceptions of these objects. Construction of such a connection is a key task in solving the
grounding problem.

One of sub-problems of the symbol grounding problem is the anchoring problem (Corade-
schi and Saffiotti 2000; Vogt 2003). It concerns joining the symbols to their represen-
tations held within sensory information. In terms of semiotic triangle anchoring allows
for construction of a link between the symbol and the referent (edge A-C). Unlike in
classical approach, the link is not directly provided, but constructed with the use of
sensory information gathered by an intelligent being (a robot). The problem seems to
be at least partially solved in some simple domains of objects and properties. Please
refer to (Coradeschi and Saffiotti 2000; Steels and Belpaeme 2005) for exemplary solu-
tions. The grounding problem seems simpler when one possesses sensory data where a
representation of object or feature can be easily extracted.

Eco (1996) and others noted that the link between the symbol and the physical object
is not always existent. For example a unicorn has no representation in the real world.
On the other hand we have no problem with imagining what a unicorn is. It is simply
a horse with a horn. At least some of the symbols must be defined only in terms of
other symbols. Furthermore, it is often impossible to construct a direct link between
the sensory data and the symbol because the symbol is currently not perceived or has
an abstract meaning. In particular, complex statements such as: ‘P or Q’, ‘If P, then
Q’, ‘I believe that P’, ‘It is possible that P’ can not be directly associated to sensory
data. Such statements possess ‘a meta-meaning’ that extends beyond simple objects and
properties.

1 De Saussure was criticised for neglecting the importance of empirical experiences in his theory.
Chinese/Chinese Dictionary-Go-Round is a perfect example proving that at least some of the symbols
must be anchored to the sensory data.
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In order to solve the grounding problem for complex sentences, one has to properly model
all concepts lying in the vertices of the semiotic triangle and their connections represented
by triangle’s edges. It is crucial to construct internal structures of an intelligent being,
so that they allow for proper modelling of signified / interpretant associated to complex
sentences. Contents of these internal structures should depend on empirical experiences
(perceptions) of the environment. In the end a relation between the symbol and the
internal structures must provide intuitive meaning of the complex sentence compliant
with its natural language understanding.

The entry point of this thesis is in the work of Katarzyniak published as a book in Polish
(2007) and partially in a series of articles in English (Katarzyniak 2001, 2003, 2005,
2006). Katarzyniak addressed the grounding problem for the case of complex symbols
such as modal sentences. Author proposed models for all elements of semiotic triangle
to allow for grounding of a given class of modal formulas. In his work the grounding
process is considered from a perspective of an autonomous cognitive agent located in a
not necessarily physical environment. Grounding itself is understood as a construction
of a indirect link between empirical knowledge and a symbol. The link is constructed
through a mental representation built autonomously by the agent. The grounding process
is performed from the empirical knowledge to the symbol (not the other way), so the
agent is treated as a potential speaker, not a listener.

Author defined a formal language, that covers simple statements ‘o exhibits p’ (p(o)) and
complex statements with conjunctions such as: ‘and’ (p(o)∧ q(o)), ‘or’ (p(o)∨ q(o)) and
‘either ... or’ (p(o)∨ q(o)). Formulas can be extended to their modal forms by one of three
modal operators: ‘I know that’ (Know), ‘I believe that’ (Bel) and ‘It is possible that’
(Pos). Proposed simple and modal formulas should not be confused with classical formu-
las or classical modal formulas with Tarski or Kripke interpretations. Author assumed
that the semantics of formulas and modal operators are arbitrary and compliant with
their intuitive and conventional understanding in natural language. Such assumption is
consistent with the arbitrariness of symbols proposed by De Saussure. Further author
proposed a set of formal common-sense constraints on the usage of formulas resulting
from conventional denotations of modal statements. These constraints do not refer to
truth conditions (as in classical approaches), but to subjective knowledge of the cognitive
agent. For example one of such constraints implied that ‘It is possible that o exhibits p’
(Pos(p(o))) denotes also that the speaker (the agent) does not know if o exhibits p.

The referents (vertex C) from the semiotic triangle are represented by a simple environ-
ment model consisting of sets of recognizable atomic objects and their binary properties.
The agent observes this world and doing so builds its empirical knowledge base. Agent
is limited in its perceptive abilities so obtained data consists of incomplete reflections
of the environment states. Proposed model of the environment and empirical data does
not refer directly to sensory data. It has been assumed that obtained data is already
processed so that objects and their properties are indicated and recognised.

To model the signified (vertex B) in the semiotic triangle a two-layer mental model was
proposed. A bottom layer models unconscious area and a top layer models conscious area
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of an artificial mind state. Such approach is consistent with fundamental assumptions
on other mind models from non-technical literature such as (Paivio 1990; Freeman 1999,
2000). Proposed model further consists of grounding sets that contain previously gath-
ered observations of the environment (including the current one) forming an empirical
grounding material for various modal formulas.

Finally author defined a key component: a set of epistemic relations that model edge
A-B of the semiotic triangle. These epistemic relations are validated against grounding
sets being the elements of the mental representation. Only a proper distribution of
grounding material allows for grounding of the given formulas. Formula is grounded
only when epistemic relation holds. In such case formula, together with the mental
representation, constructs, what I call, a mental sign. I use term ‘mental’ because both
the formula (the signifier) and the mental representation (the signified) exist only in the
mind of the agent. The grounded formula (sign) is ‘activated’ in the mind but does not
have to be externalised (i.e. uttered). For an example: One may imagine a dog (mental
representation) and doing so activate a symbol ‘dog’ (formula) but he does not need to
literally utter a word ‘dog’. The symbol stays properly grounded even if it is not uttered.

Epistemic relations rely on a set of parameters called grounding thresholds. Only a some
of possible settings of these parameters ensure the grounding process meets a set of
common-sense postulates. Author has formulated and proven a set of theorems that in
turn defined proper settings of the grounding thresholds. When a setting of grounding
thresholds meets criteria outlined in the set of theorems, then epistemic relations meet
previously formulated common-sense constraints resulting from conventional natural lan-
guage understanding of modal formulas. This implies that all assumed denotations of
signs in forms of complex modal statements hold.

Katarzyniak’s grounding theory is described in detail in chapter 2. Formal models of
the environment, the empirical knowledge base and the grounding sets are presented.
Formal language of modal formulas and their respective epistemic relations are defined.
The whole process of grounding is explained. Some computational examples have also
been provided.

Katarzyniak’s grounding theory may be further developed to allow for grounding of
new types of complex statements. This thesis does so by adding support for conditional
sentences and their modal extensions. Addition of conditionals to the grounding theory
seems to be the next natural step, after conjunctions and alternatives, in its development
process.

Conditionals are the sentences of the form: ‘If P , then Q’. The P phrase is called an an-
tecedent and theQ phrase is a consequent. These statements can be later divided into two
main groups: indicatives and subjunctives. Indicatives refer to real plausible possibilities
while subjunctives express hypothetical, counter-factual claims. Usually subjunctives
can be easily distinguished from indicatives because they contain ‘would/could/should’
phrase in the consequent. Please refer to (Bennett 2003) for a detailed analysis of this
classification. Conditionals are particularly interesting because they are widely used in
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everyday life and their usage circumstances can significantly differ from situation to
situation. It seems there is no perfect theory on conditionals. Most of older theories
directly refer to environment states often inaccessible to the speaker. Such approach
seems to be a dead end resulting in various interpretative problems (Pelc 1986; Jadacki
1986; Bennett 2003; Ajdukiewicz 1956; Edgington 1995). Recent theories on conditionals
often discard absolute truth conditions and tend to model these statements with respect
to the subjective knowledge of the speaker (Oberauer 2010). For example a theory from
Johnson-Laird and Byrne (2002) builds the meaning of conditionals from mental models.
This thesis fits into the new stream, as conditionals grounding conditions are validated
against and in accordance to the subjective mental representations. Hopefully such an
approach shall solve at least some of well known problems that harass known theories
on conditionals.

The fundamental claim of the thesis is that:
It is possible to design an agent, who, for a provided empirical knowledge base structure,
shall meet a series of common-sense constraints imposed on the process of grounding
messages in form of modal conditional formulas.

This thesis extends the grounding theory, so almost all of theoretical basis and assump-
tions are directly transferred from it. Addition of modal conditionals to the grounding
theory requires a series of steps to be made. Firstly the language has to be extended with
formal formulas representing various kinds of modal conditional sentences. Secondly a
model for mental representations (grounding sets) needs to be reconsidered. Thirdly a
common-sense constraints on their usage need to be proposed. These constraints need to
take into consideration speaker’s subjective knowledge. Proposed constraints must en-
sure conventional natural language denotations of conditionals. Constraints need to be
formulated also for various modal extensions of conditionals. Finally epistemic relations
must be formulated, so that they allow for proper grounding of conditionals. A series
of theorems must be formulated and analytically proven to ensure previously proposed
constraints can be met for the correctly chosen parameters (grounding thresholds).

Conditional sentences can be classified in may ways depending on chosen criterion. There
are many possible usage patterns and meaning of conditionals. Chapter 3 presents a
general discussion on conditional statements. Some of classifications of conditionals are
given. In particular a distinction to indicatives and subjunctives is considered. There
is also a short notice on the ‘then’ adverb that seems innocent but its occurrence sig-
nificantly changes the meaning of a conditional. A subset of conditionals is separated
to further analysis. Proposed extended theory deals only with indicative conditionals,
leaving subjunctives for future research. Afterwards an extension to the formal lan-
guage of formulas is defined. Existing language from the grounding theory is extended
with conditional sentences. Considered conditionals can contain one of three possible
modal operators (Pos,Bel,Know). These modal operators can be fitted into two pos-
sible places. Operator can be put either at the beginning of the conditional forming of
what I call a modal conditional or in the consequent forming a conditional modality. The
distinction between the two types of modal conditionals is sketched. Finally semantics

9



of conditionals are defined. These semantics are meant to comply with conventional
understanding of conditionals. Unlike in classical approaches, proposed semantics also
refer to the speaker’s subjective and partial knowledge. At this stage explanation of
assumed semantics is based on readers intuitive understanding of conditionals. Simple
usage examples are presented and explained to signalize assumed meaning of condition-
als.

Chapter 4 briefly describes the most known approaches to conditionals. It is shown
that material implication, despite its undoubted importance in proof systems, is not a
good model for natural language conditional sentences. The problems arise from the fact
that the falsity of an antecedent is enough for the material implication to be true. This
feature of material implication has been widely criticized. Further famous Ramsey test is
introduced and discussed. Objective and subjective approaches to conditionals are com-
pared. There are many arguments against treating conditionals as truth-functionals (a
statements whose truth may be defined by truth of its compounds). Finally probabilistic
approaches are explained. Some of the typical pitfalls are presented and discussed.

Chapter 5 starts with a series of references to previous works on conditionals from Aj-
dukiewicz, Jadacki, Bogusławski, Clark, Woods, Edgington, Bennet and others. Author
tries to prove that many problems with conditionals tend to arise from the ignorance of
the language commons. Once conditional statement is said, it tells not only about the
world but also about the speaker himself. Namely about the speaker’s knowledge (or
actually the lack of it) on the antecedent and the consequent. A epistemic, subjective,
context dependent, connection between the antecedent and the consequent is postu-
lated. Further a rational, common-sense criteria of conditionals usage are searched. In
particular Gricean theory on implicatures is referred. Typical conclusions made by a
listener of a message in form of a conditional are presented. Conventional denotations
and implicatures of conditionals are formulated. These implicatures refer not only to the
world state but also to the speaker’s knowledge. Further the role of the modal operators
is discussed. Their Influence on the meaning of conditionals is carefully analysed. Two
different positions of the modal operators in conditionals are considered. All that leads to
a series of postulates forming conventional assumptions on the meaning of conditionals
and their modal extensions. These common-sense postulates are later transformed into
three groups of formal constraints: C1, C2 and C3. First group of constraints reflects
a broad meaning of conditionals that in many ways resembles material implication.
Groups 2 and 3 further constrain the meaning of conditionals hopefully forming their
conventional understanding in natural language.

Formal extension to the grounding theory is presented in chapter 6. Grounding process
is formally specified for conditional formulas. Grounding sets modelling mental repre-
sentation of modal formula are defined. Further a measure called grounding strength
is defined. The grounding strength numerically measures the distribution of empirical
material used to ground conditional formula. Depending on this measure’s value dif-
ferent modal operators can be added to conditionals. A pragmatic filter in form of a
conditional relation is defined. This relation is associated to constraints groups 2 and 3.
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Finally epistemic relations are defined. There are 3 separate propositions for epistemic
relations: normal epistemic relation, pragmatic epistemic relation and strictly pragmatic
epistemic relation (definitions: 6.8-6.17). Each of the propositions is associated to one of
previously formulated common-sense constraints.

The behaviour of epistemic relations depends on the choice of parameters called ground-
ing thresholds. It is important to choose a proper setting of these parameters as not all
grounding thresholds ensure rational grounding results. In chapter 7, through a series
of theorems, rational settings of grounding thresholds are defined. Any setting meeting
theorems 7.12, 7.32 and 7.58 ensures meeting of simultaneous usage constraints defined
in table 5.2. In such a way a rational behaviour, in accordance with common-sense
constraints, of the grounding process of conditionals is analytically proven.

In chapter 8 the grounding theory is compared to other known theories on conditionals.
The grounding theory, although not perfect and quite narrow, seems to posses a series
of qualities not present in other theories. The grounding theory has many common
features with the proposition of (Johnson-Laird and Byrne 2002). Both are based on
mental representations and both suggest mental representations are only partially ex-
plicit (conscious). Theory from Johnson is more general, but doesn’t define many of the
technical details present in the grounding theory.

In the end some usage examples of the extended grounding theory have been provided.
Chapter 9 starts with a computational example presenting the work-flow of the grounding
theory. Various features of the theory are exemplified and shortly discussed. Second
example utilizes grounding theory of conditionals to summarize the transaction base.
Finally there is an example based on well known Mushrooms dataset from (Bache and
Lichman 2013) where the grounding theory is utilized to provide a mushroom picker
with context dependent tips in form of conditional sentences.



2. The existing grounding theory

This thesis extends the existing theory of grounding of modal formulas in agent systems
by Radosław Katarzyniak. The grounding theory has been published as in book in
Polish (2007) and partially in a series of articles in English (Katarzyniak 2001, 2003,
2005, 2006). Katarzyniak addresses the grounding problem for a given class of modal
formulas. Modality is expressed in form of three modal operators for possibility, belief and
knowledge. Semantics of modal formulas are assumed to be consistent with conventional
understanding of respective natural language statements.

In this chapter the theory is briefly summarized to outline its key features. Formal
mathematical definitions of agent structures and grounding process components have
been provided. Most of these definitions are later directly transferred to the thesis.

The grounding process addressed by the grounding theory is modelled within a cognitive
agent. It is hence important to at least sketch what is meant by the term cognitive agent
and how it is modelled in the grounding theory.

Defining of the terms ‘agent’, ‘intelligent agent’ and ‘cognitive agent’ from computer
science is not easy. Every definition seems to be either too narrow or too broad (Franklin
and Graesser 1997). One of the most general definitions states that:

“An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through actuators.” (Russell
2009)

It is a very broad definition that catches only the most general aspects of being an agent.
Agent should be located in some environment (real or artificial). It should observe this
environment (gather some data from it) and finally take actions or make decisions.

The definition states that something may be only viewed as an agent. This shifts the
problem from being an agent to interpreting something as an agent. This way even a
thermostat can be an agent (Jennings et al. 1998). It observes the environment (measures
temperature) and changes the heating level.

In computer science the agent is usually a software that interacts with other agents,
performs some data processing and makes decisions to achieve predefined goals.

It is usually required that the agent is intelligent, hence the term ‘intelligent agent’. This
term is also hard to define, as it is hard to define what intelligence is. It is informally
understood that the agent performs some non-trivial reasoning.
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One usually requires many additional features from the intelligent agent (Wooldridge
et al. 1995; Jennings et al. 1998). It should be autonomous, meaning it makes some
decisions or takes actions on its own. It should possess social abilities, meaning it is able
to communicate with other agents (possibly humans). It should be rational, roughly
meaning its actions may be justified in the context of asserted goal. It should also be:
reactive, pro-active, adaptive, possess learning skills etc.. On the other hand lacking of
some of these features does not necessarily mean a computer program is not an agent.

In computer science a ‘cognitive agent’ (Huhns and Singh 1998) is a kind of intelligent
agent that implements some of cognitive processes of humans, i.e. some of thinking
mechanisms. Cognitive agent tries to directly model some of humans mind components
or is designed to reflect some of humans cognitive processes. One of the best known
models of the cognitive agent is BDI (Belief, Desire, Intention) agent (Rao et al. 1995).
The belief stands for agent’s knowledge. The desire may be interpreted as agent’s long
term goals. The intentions are currently pursued aims.

The cognitive agent considered within the grounding theory is meant to possess language
skills i.e. it is able to utter a communicate in form of a modal formula. Agent is assumed
to be autonomous as it decides on its own which formulas to utter. Agent is also ra-
tional as it may utter only formulas whose meaning is consistent with our conventional
understanding of respective natural language proposition.

In the grounding theory the cognitive agent is the intelligent being realizing the ground-
ing of symbols in form of modal formulas. Formulas are grounded within the agent, so
their semantics are analysed from a perspective of the agent as the messages source. The
agent is responsible for constructing the links between the mental representation, the
symbol and the object and hence grounding the symbol in the perceptions of the object.
In that sense the agent realizes the semiotic triangle. The grounding theory defines
agent’s components that are crucial in the context of formula grounding process. Other
agent’s aspects such as: predefined goals, possible actions, decision models, reasoning
processes, etc. are not considered.

2.1. The grounding process

The symbol grounding problem is one of most important problems in artificial intelligence
and cognitive sciences (Vogt 2003). Symbol grounding is a task of finding meanings
of symbols and in narrower sense understanding the meaning itself. The problem has
been described in the broadly cited work of Harnad (1990). Harnad suggests grounding
symbols in sensory data gathered by an artificial system. In such a way, a link between
empirical experiences and the symbol itself is built. Unfortunately this link is indirect
and for more complex symbols it requires links not only to most recent sensory data but
also to previous empirical experiences gathered by the artificial system.

The grounding process is a trip from sensory data to a natural language statement (or the
other way round). What makes the grounding process hard is the knowledge bearer who
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stands in the middle of the road. The knowledge bearer is a living being that observes,
remembers, reinterprets and finally externalises its thoughts using natural language. A
language so complex, that it seems a miracle we are able to use it.

To ground a symbol intelligent being forms a structure that can be formally represented
as a semiotic triangle (Richards and Ogden 1989) (see fig. 1.2). The semiotic triangle (also
called the semiotic triad or the semantic triangle) links an external object (vertex C), a
symbol occurrence (vertex A) and mental representation (vertex B). From a perspective
of a developer of the cognitive agent, the grounding process can be described in a series
of steps. In the first step agent obtains new sensory data from the environment. The
external object is perceived by the agent. The agent stores observations of the object in
its internal empirical knowledge base. In the next step various cognitive processes use
data stored in the knowledge base to construct a mental representation of the object.
This mental representation doesn’t have to necessarily depend on current observation.
It can (and often must) depend on past observations of the considered object. This
way a link between the object and its mental representation is built (edge B-C). In the
last step, when the mental representation is coherent with arbitrary semantics of some
language symbol it can (but doesn’t have to) construct a link between itself and the
symbol (edge A-B). This link shall later be modelled by an epistemic relation. In such
a way the mental symbol comes to existence in artificial or natural mind. The mental
symbol is grounded in (bound to) the mental representation (edge A-B) and indirectly
to the external object (edge A-C). Later the mental symbol can (but again doesn’t have
to) be externalised (uttered, written down, told, shown etc.) to form the physical symbol
in the environment.

The statement (the modal formula) grounding problem addressed by the grounding the-
ory from Katarzyniak is a sub-problem of the symbol grounding problem. The grounding
theory analyses the process in a direction described above, starting from the object (when
the agent sees or thinks of the object). The grounding process can be analysed the other
way round, starting from the symbol. Such situation happens when one notices a symbol
which in turn forces forming of coherent mental representation. This direction is not con-
sidered by the grounding theory. Figure 2.1 visualises all steps of the grounding process.
Formal mathematical symbols used inside the diagram shall be defined and explained
later.

Some of the sub-steps in the grounding process are difficult tasks themselves. A shift
from the sensory data to objects and properties requires specialized object recognition
algorithms. Cognitive processes that form mental representations from empirical material
need to be modelled by various clustering, classification, reasoning, data mining, pattern
recognition, etc. algorithms. A step from properly grounded modal formula to uttered
natural language sentence needs sophisticated pragmatic filters and translation to natural
language. All these elements are outside the scope of the grounding theory. Aspects
covered by the theory have been marked by the grey area on figure 2.1. The theory itself
puts most effort on the construction of the link between mental representation and the
symbol (edge A-B of the semiotic tirangle).
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Figure 2.1. The Grounding process in the context of agent and its environment. Grey
area marks topics covered by the grounding theory. Mathematical notations are defined

later in the thesis.

2.2. Environment and empirical knowledge

To model the grounding process one needs to define all vertices and edges of the semiotic
triangle. The grounding theory starts with a simple model of the environment, that is
observed by the agent.

2.2.1. Environment model

The external environment of the cognitive agent (the external world) is a dynamic
system of atomic objects. A line of time points T = {t1, t2, ...} is assigned to this
world. Each state of the world is always related to one and only one time point. At
each time point objects of the world exhibit or do not exhibit particular properties
P = {P1, P2, ..., PK}. Formally such a world can be captured as follows (Katarzyniak
and Nguyen 2000; Katarzyniak 2005):

Definition 2.1. Each state of the external environment related to the time point t is
called t-related world profile and is represented by the following relational system:

WP (t) =< O,P1(t), P2(t), ..., PK(t) >

The following interpretation of elements of WP (t) is assumed:
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— Set O = {o1, o2, ..., oM} is the set of all atom objects of the external world.
— Set P = {P1, P2, ..., PK} is the set of unique properties that can be attributed to the

objects from O.

Each object o ∈ O may or may not exhibit a particular property P ∈ {P1, P2, ..., PK}
(at a particular time point t).

— For t ∈ T , the symbol P (t) denotes a unary relation P (t) ⊆ O
— The condition o ∈ P (t) holds if and only if the object o exhibits the property P at

the time point t.
— The condition o 6∈ P (t) holds if and only if the object o does not exhibit the property

P at the time point t.

2.2.2. Empirical knowledge base

The cognitive agent observes the environment (obtains sensory data from it). This sen-
sory data is transformed and preprocessed to recognize world’s objects and their prop-
erties. The processing of the sensory data is outside the scope of the grounding theory.
It is assumed agent can internally store representations of particular states of properties
P1, P2, ..., PK in individual objects o1, o2, ..., oM .

Each individual perception of the environment realizes as internal reflections of objects
(not) exhibiting properties. These internal reflections are held within a formal data struc-
ture called a base profile, which is related to the concept of the world profile introduced
above (see definition 2.1). The content of each base profile is always associated to this
part of the external world which was covered by the related perception. This property of
base profiles corresponds to the constrained cognitive capabilities of natural and artificial
agents which are never able to observe the overall current state of all external objects
at one time point t. The internal reflection of an individual observation realized by the
cognitive agent at a moment t is called t-related base profile and is given by the following
definition:

Definition 2.2. The internal reflection of an observation of the world (usually partial)
realized at a time point t is called t-related base profile and is given by the relational
system:

BP (t) =< O,P+1 (t), P−1 (t), P+2 (t), P−2 (t), ..., P+K (t), P−K (t) >

For each k = 1, 2, ...,K and o ∈ O, the following interpretations and constraints are
assumed for t-related base profiles:

— The set O = {o1, o2, ..., oM} consists of all representations of atom objects o ∈ O,
where the symbol o (used in the context of this base profile) denotes a unique internal
reflection of the related atomic object located in the external world.

— P+k (t) ⊆ Pk(t), P−k (t) ⊆ O \ Pk(t) and P+k (t) ∩ P−k (t) = ∅ hold.
— the relation o ∈ P+k (t) holds if and only if the agent observed at the time point t that

the object o exhibited property Pk.
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— the relation o ∈ P−k (t) holds if and only if the agent observed at the time point t that
the object o did not exhibit the property Pk.

In relation to each t-related base profile BP (t) the idea of knowledge ignorance P±(t)
is defined as regards to the observed state of particular property P ∈ {P1, P2, ..., PK}:

Definition 2.3. The t-related P -ignorance is defined as this set of atomic objects which
members were not covered by any observation of the world carried out by the agent at
the time point t. The content of t-related P -ignorance is given as follows:

P±(t) = O \ (P+(t) ∪ P−(t))

While world state WP (t) contains representations of real physical objects, base profile
BP (t) contains only their reflections obtained from perceptions made by the agent. An
internal reflection of an object held within base profile BP (t) is only a surface represen-
tation of the physical external object in WP (t). The perception is greatly constrained
by temporal, spacial and physical limitations.

The process of constructing of internal reflections from the perceptions of real world (from
sensory data) is not considered within the grounding theory. It is simply acknowledged,
such process takes place and it is faultless. To keep notation simple, the same symbols
are used to denote external world objects, properties and their internal reflections. A
reader should be aware that they are not the same.

At each time point t ∈ T the overall state of basic empirical knowledge collected and
stored by cognitive agent in its internal knowledge base is given as a temporally ordered
set of base profiles (Katarzyniak and Nguyen 2000; Katarzyniak 2005). The related
definition is given as follows:

Definition 2.4. The overall state of empirical knowledge collected by the cognitive agent
up to the time point t is given as the following temporally ordered collection of base
profiles:

KS(t) = {BP (t̂) : t̂ ∈ T ∧ t̂ ¬ t}

SetKS(t) holds all empirical knowledge resulting from environment perceptions gathered
by an agent up to time moment t. The moment t is usually interpreted as the current
moment.

2.3. Formal language of modal formulas

The grounding theory considers the grounding problem for a given class of formulas and
their modal extensions. These modal formulas are constructed from a formal language
L. This section defines syntax and intuitive semantics of this language.
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2.3.1. Language syntax

Definition 2.5. Alphabet of language L consists of:

— O = {o1, o2, ..., oN} a set of perceptually recognizible objects1

— Γ = {p1, p2, ..., pK} a set of perceptually recognizible unary properties2

— ¬ symbol of negation
— ∧,∨, ∨ symbols of a conjunction, disjunction and exclusive disjunction.
— Pos,Bel,Know modal operators of possibility, belief and knowledge
— (, ) brackets

Definition 2.6. Let sets Lb, Lc, LM be defined as:

— Lb is a set of all simple formulas of the forms: pk(on), ¬pk(on), where pk ∈ Γ and
on ∈ O.3

— Lc is a set of all complex non-modal formulas of the forms: φ δ ψ where φ ∈
{pi(on),¬pi(on)}, ψ ∈ {pj(on),¬pj(on)}, i 6= j and δ ∈ {∧,∨, ∨}.

— LM is a set of all modal formulas of the forms: Pos(θ), Bel(θ),Know(θ), where
θ ∈ Lb ∪ Lc.

Any formula from set L = Lb ∪ Lc ∪ LM is a proper formula of language L. No other
formula is allowed.

Please notice the language is not extensible. Multiple conjunctions or nested modal
operators are not allowed. Given exemplary formulas Pos(Bel(pk(on))), p1(on)∧p2(on)∨
p3(on) are NOT proper formulas of the language L.

2.3.2. Intuitive language semantics

Formulas of language L are treated as formal representations of natural language sen-
tences. The grounding theory assumes that the semantics of the considered language are
arbitrarily given. The semantics are meant to be compliant with conventional denota-
tions of respective natural language sentences. Table 2.1 defines intuitive semantics of
formulas of language L considered within the grounding theory.

Provided semantics are compliant with common-sense interpretations of natural language
sentences. These semantics are neither formal, classical interpretations with truth tables
from Tarski nor formal Kripke semantics of modal logic.

The interpretation of formulas of language L provides that property Pk has already
assigned language symbol pk and that the perception of object on is directly related
to real environment object on. Atomic objects and their binary properties possess fixed
language labels. This effectively implies that the grounding process of simple non-modal

1 I shall also use symbol o marking chosen object on ∈ O.
2 I shall also use symbols p, q. Each symbol is marking some chosen property pk ∈ Γ.
3 When it is clear, I shall use shorthand notation: p and q to denote some fixed properties and

objects p(o) and q(o)
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Table 2.1. Formulas and their semantics (p ∈ Γ, o ∈ O, φ, ψ ∈ Lb, θ ∈ Lb ∪ Lc)

formula intuitive semantics

simple statements

p(o) Object o exhibits property P .
¬p(o) Object o does not exhibit property P .

complex statements

φ ∧ ψ φ and ψ.
φ ∨ ψ φ or ψ.
φ∨ψ Either φ or ψ.

simple and complex modal statements

Pos(θ) It is possible that θ.
Bel(θ) I believe that θ.
Know(θ) I know that θ.

statements pk(on) is assumed to be already done. The grounding theory addresses the
grounding problem only on modal and complex statement levels.

Formulas formally represent agent’s empirical knowledge state. Denotations of formulas
are considered from the perspective of the agent as a speaker. It is assumed the formula’s
denotation is constructed with respect to the knowledge of the speaker (the agent).
This implies that agent’s mental model should comply with intuitive understanding of
the statement treated as being uttered by him. The grounding of a formula in agent’s
mental model must sustain the intuitive understanding of the associated natural language
statement. This in turn enforces a series of common-sense constraints on the grounding
of these formulas. The grounding theory must not allow for simultaneous grounding of
formulas that are intuitively conflicting. For example a formula Pos(p(o)) conventionally
denotes that the speaker (the agent) does not know whether o exhibits P or not. Hence
simultaneous grounding of Pos(p(o)) and formula Know(p(o)) should be disallowed.
For a second example a formula Know(p(o) ∨ q(o)) denotes the speaker knows that o
exhibits one of the properties. But it also denotes that the speaker does not know whether
o exhibits P and he does not know whether o exhibits Q. In result the grounding theory
must disallow for simultaneous grounding of the Know(p(o) ∨ q(o)) and for example
Know(p(o)).

2.4. The mental model

The language of modal formulas and the empirical knowledge base formally define con-
tents of vertices A and C of the semiotic triangle respectively. The only missing vertex
is C which represents agent’s thought image of the object.
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From the perspective of cognitive linguistics the sign is correlated with a structure in a
mind called a mental representation. It can be assumed that the mental representation
contains empirical material that is ‘activated’ by the symbol. The choice of the ‘activated’
material is made autonomously (and at least partially unconsciously) by the agent.
Such choice can be made from previous interactions with the environment and other
agents. This process is often described as semiosis (Peirce 1931) that is controlled by
various cognitive processes. Activated material forms the meaning of the symbol. Mental
representations are one of the elementary theoretical structures used in the grounding
theory.

Language production is a very complex cognitive process that involves multilevel actions
of the mind. In natural agents, such as humans, the processing of language is not lim-
ited to conscious phenomena. In contrary, there are many important levels of cognitive
activities, which influence the process of producing ‘linguistic’ labels of cognitive states.

According to linguists, spoken language is only a surface representation of a deeper sense
and the choice of a particular representation is strictly defined by the whole empirical
experience held within natural or artificial agents. The whole gathered material plays
important role on every level of language related activities. In particular it is assumed
that all gathered empirical knowledge, including latest perceptions, determines the choice
of a surface representation.

Unconscious processes play important role in the choice of final surface (language) rep-
resentation. A level of awareness, has impact on the form of external expression. The
awareness itself produces different levels of conviction, expressed within a surface rep-
resentation. It is claimed empirical material buried within unconscious area determines
awareness level, forcing agents such as humans, to express uncertainty within uttered
statements.

Different awareness levels may result from incapability to thoroughly process vast em-
pirical material. The more agents think on particular issue, the greater the awareness
and the more certain they may become.

The empirical knowledge in form of internal reflections is used to construct mental repre-
sentation (Pitt 2012) of object and its property. This mental representation is supported
by appropriate and relevant empirical material chosen autonomously by the agent. Later
mental representation can be associated with an external surface language representation
(Grice 1957; Searle 1983).

Suppose the agent directly observes the object o. He perceives that o exhibits P (o ∈
P+(t)). The direct observation leads to activation of associated language formula p(o). In
such case grounding process of a language description is trivial with respect to definitions
proposed by the grounding theory. The theory assumes atomic objects and their binary
properties are already grounded.

Such simple situation does not happen when the object is NOT directly observed. When
object is not observed agent has to refer to its previous observations of the object.
Such situation has been exemplified in figure 2.2. This figure visualises the fundamental
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Figure 2.2. The role of empirical material in the construction of mental representation
for currently unobserved object o.

assumptions on the role of the mental model in the grounding of modal formula. Various
cognitive processes activate empirical material adequate for the description of object
o. One can distinguish between two situations: where object was observed to exhibit P
(o ∈ P+) and where it didn’t exhibit P (o ∈ P−). Cognitive processes result in activation
of two complementary mental representations. Some parts of them can emerge in the
conscious area while most of them stay in the unconscious part of agent’s mind. One
can say that observations in the conscious area provide explicit examples of o (not)
exhibiting P . One is aware of explicit observations as he can point and describe them.
Other observations (in the unconscious area) stay hidden from direct introspection but
are felt and influence agent’s state of mind.

2.4.1. The cognitive state

At each time moment agent is in some cognitive state where some part of knowledge
is activated to introspection. This structure is modelled in the grounding theory as a
partition of empirical material (definition 2.7).

Definition 2.7. At each time point t ∈ T agent is in a cognitive state whose contents
are modelled by a binary partition of the set KS(t):

MS(t) = {MS(t),MS(t)}

where MS(t) ∪MS(t) = KS(t) and MS(t) ∩MS(t) = ∅.
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Empirical material is partitioned into two areas: conscious MS(t) and unconscious area
MS(t) forming a two level structure. The distribution to conscious and unconscious parts
depends on agent’s mental capabilities. For humans the division results from focussing
on some phenomenon, where most adequate empirical material plays the key role in
situation’s evaluation, while the rest of it stays deep in mind but is internally felt. This
feeling results in an awareness level influencing the choice of mental representations and
defining the states of mind and further cognitive processes.

In computer systems this distribution may be understood as a division into thoroughly
processed data and data partially processed or awaiting to be processed. Katarzyniak
in his book also called these areas using technical terms: working memory and perma-
nent memory. Where working memory is meant to contain data currently being pro-
cessed. Such approach can be aligned with fundamental assumptions of mind models
from non-technical literature (Paivio 1990; Freeman 1999, 2000). For details please refer
to (Katarzyniak 2007). The division of empirical material into two parts is also much
consistent with theory of mental models and possibilities (Johnson-Laird and Savary
1999). Johnson proposed that some models should be divided into two types: explicit
and implicit. His explicit models can be treated as residing in conscious area and implicit
models reside in unconscious area.

Proposed cognitive state model is obviously a cruel simplification of real human cognitive
states. This model mirrors only the most crucial properties of the cognitive state. The
properties that are important in the context of the grounding process.

2.4.2. The grounding sets

The final division between conscious and unconscious levels of awareness depends not
only on mental capabilities but also on agent’s point of focus. This point of focus includes
considered context and in result also considered utterances. If agent focuses on property
P , the resulting cognitive state shall be different than when it considers property Q.
Mental representation of object o (not) being P is a part of mental model associated
to internal reflections where o and its P were known. Mental representation of two
properties of some object consists of internal reflections where both of these properties
were known. There can be more than two complementary mental representations.

Cognitive state model proposed by definition 2.7 can be further partitioned into com-
plementary representations according to valuations of the properties. For one property
P the model can be divided into two sets. First set contains empirical material with ob-
servations where object o exhibited property P . These observations support a statement
p(o). The second set contains empirical material where object o did not exhibit property
P and it supports statement ¬p(o). These two sets have been visualized on figure 2.2 by
two ovals, the first is filled with lines and the second one is filled with dots. These two
sets represent two competing representations of object o (not) exhibiting P .
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Within the grounding theory these two representations are called grounding sets and
contain empirical material for respective valuations of properties.

Definition 2.8. Grounding sets associated with property P ∈ P of object o ∈ O define a
division of the grounding material into two mutually disjoint sets according to valuations
of the property P :

Cp(o)(t) ={BP (t̂) ∈ KS(t) : o ∈ P+(t̂)}
C¬p(o)(t) ={BP (t̂) ∈ KS(t) : o ∈ P−(t̂)}

where t̂ ∈ T denotes any time moment t̂ ¬ t.

Grounding sets presented in definition 2.8 are divided according to one property and ob-
ject. These sets formally model mental representation of object o (not) exhibiting P . Each
of them supports one of two competing formulas: p(o) and ¬p(o). Such grounding sets
are constructed for simple modal formulas such as: Pos(p(o)), Bel(p(o)), Know(p(o))
and Pos(¬p(o)), Bel(¬p(o)), Know(¬p(o)).
The agent can also simultaneously consider two properties P and Q of the object o.
In this case the grounding material covers observations where both of these properties
have been observed. It can be divided into four mutually exclusive sets according to
valuations: o ∈ P+ ∩Q+, o ∈ P+ ∩Q−, o ∈ P− ∩Q+ and o ∈ P− ∩Q−. These sets have
been presented in definition 2.9. In such case each set supports one of four competing
formulas: p(o) ∧ q(o), p(o) ∧ ¬q(o), ¬p(o) ∧ q(o) and ¬p(o) ∧ ¬q(o).

Definition 2.9. Grounding sets associated with a pair of properties P,Q ∈ P of ob-
ject o ∈ O define a division of the grounding material into four mutually disjoint sets
according to valuations of the properties P and Q:

Cp(o)∧q(o)(t) ={BP (t̂) ∈ KS(t) : o ∈ P+(t̂) ∧ o ∈ Q+(t̂)}
Cp(o)∧¬q(o)(t) ={BP (t̂) ∈ KS(t) : o ∈ P+(t̂) ∧ o ∈ Q−(t̂)}
C¬p(o)∧q(o)(t) ={BP (t̂) ∈ KS(t) : o ∈ P−(t̂) ∧ o ∈ Q+(t̂)}
C¬p(o)∧¬q(o)(t) ={BP (t̂) ∈ KS(t) : o ∈ P−(t̂) ∧ o ∈ Q−(t̂)}

where t̂ ∈ T denotes any time moment t̂ ¬ t.

Only a proper distribution of the grounding material between the two (or four) sets
allows for grounding of particular simple (or complex) modal formula. Intuitively the
more material in set Cp(o)(t), the more willing we are to accept a statement Bel(p(o))
or even a statement Know(p(o)).

The grounding sets can be later divided according to conscious and unconscious areas
of the cognitive state MS(t). Such subsets shall be denoted with additional upper and
lower lines respectively:
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Let φ ∈ {p(o),¬p(o)}, ψ ∈ {q(o),¬q(o)}:

C
φ = Cφ ∩MS(t), Cφ = Cφ ∩MS(t), Cφ = C

φ ∪ Cφ (2.1)

C
φ∧ψ = Cφ∧ψ ∩MS(t), Cφ∧ψ = Cφ∧ψ ∩MS(t), Cφ∧ψ = C

φ∧ψ ∪ Cφ∧ψ (2.2)

According to the provided definitions of the cognitive state and the grounding sets, it
may seem that a modal formula enforces construction of the grounding material. Such
situation would take place if the agent was treated as a listener. In the grounding theory
the agent plays the role of the speaker and the grounding material precedes the formula.
Only if agent’s cognitive state and grounding sets form a proper distribution, a particular
formula can be grounded (not the other way).

A more sophisticated agent could (and should) simultaneously construct many grounding
sets associated to various modal formulas on different properties and objects. Such a
construction is outside the scope of the grounding theory but it has been employed
in various works utilizing it (see (Skorupa and Katarzyniak 2012; Skorupa et al. 2012;
Popek 2012) for examples).

2.5. Grounding of modal formulas

The key element modelled by the grounding theory is the edge A-B between the cognitive
state and the modal formula of the semiotic triangle. A series of constraints imposed on
agent’s cognitive state need to be met in order to sustain intuitive semantics of a modal
formula. These constraints have been included in epistemic satisfaction relations. Given
modal formula is acknowledged to be properly grounded only if its epistemic relation
holds. If this relation does not hold, link A-B is not constructed and formula can’t be
grounded.

In this section epistemic relations for simple modal formulas and modal conjunctions are
presented. For epistemic relations for other types of formulas (alternatives and exclusive
alternatives) please refer to (Katarzyniak 2007).

There are two theoretical concepts associated with epistemic relations that need in-
troduction. First of them is the relative grounding strength. It is a measure over the
grounding strengths that models agents certainty level. The second concept is related
to the choice of particular modal operator. This choice is modelled with the use of
grounding thresholds, being numeric parameters defining certainty intervals related to
respective modal operators.

2.5.1. The grounding strengths

Grounding of a modal formula depends on the distribution of grounding material divided
between the grounding sets. Dennett proposed that: ‘multiple exposure to x - that is,

24



sensory confrontation with x over suitable period of time - is the normally sufficient con-
dition for knowing (or having true beliefs) about x’ (Dennett 1997). Intuitively the more
numerous Cp(o) is, the more willing the agent to utter Bel(p(o)) or even Know(p(o)).
This simple idea incorporates common-sense requirements for uttering different levels of
certainty, i.e. possibility, belief and knowledge. The grounding theory defines a measure
over the grounding sets, called the relative grounding strength to numerically express
the influence of the grounding material on agent’s certainty levels (definitions 2.10 and
2.11).

Definition 2.10. Relative grounding strength at time moment t ∈ T for a simple for-
mula p(o) is calculated as:

λp(o)(t) =
card(Cp(o)(t))

card(Cp(o)(t) ∪ C¬p(o)(t))

The relative grounding strength takes values from the interval [0, 1]. When the grounding
strength is 0, there were no observations where o exhibited P . When the grounding
strength is equal to 1, o exhibited P in all past observations of the property.

For a conjunction p(o)∧ q(o) the grounding material is divided into four grounding sets
and the grounding strength is defined as:

Definition 2.11. Relative grounding strength at time moment t ∈ T for a conjunction
p(o) ∧ q(o) is calculated as:

λp(o)∧q(o)(t) =
card(Cp(o)∧q(o)(t))

card(Cp(o)∧q(o)(t) ∪ Cp(o)∧¬q(o)(t) ∪ C¬p(o)∧q(o)(t) ∪ C¬p(o)∧¬q(o)(t))

Grounding strengths for various negations of properties, such as λ¬p(o)(t) or λp(o)∧¬q(o)(t),
are calculated symmetrically to the ones provided in definitions 2.10 and 2.11. One should
respectively change negations of properties.

2.5.2. The grounding thresholds

The grounding strength measures the distribution of the grounding material between
complementary competing experiences. In this sense the grounding strength λp(o)(t)
measures agent’s certainty level of o exhibiting P . Similarly the grounding strength
λp(o)∧q(o)(t) measures agent’s conviction in o exhibiting P and Q. Some values of the
grounding strength can be associated with particular modal operators of the possibility
and the belief. The choice of the modal operator is constrained by the grounding thresh-
olds. The grounding thresholds are parameters in form of real numbers from interval
[0, 1]. For simple modal formulas the grounding thresholds are defined as:

0 ¬ λbminPos < λbmaxPos ¬ λbminBel < λbmaxBel ¬ 1 4 (2.3)
4 In the grounding theory 0 < λbminPos was proposed. It has been later suggested to change it to

0 ¬ λbminPos, so that λbminPos = 0 can be chosen.
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and for the modal conjunctions they are similarly defined as:

0 ¬ λ∧minPos < λ∧maxPos ¬ λ∧minBel < λ∧maxBel ¬ 1 5 (2.4)

The modal operator of possibility (Pos) is associated with grounding thresholds λbminPos,
λbmaxPos (λ∧minPos, λ

∧
maxPos for conjunctions). The modal operator of belief (Bel) is as-

sociated with the grounding thresholds λbminBel, λ
b
maxBel (λ∧minBel, λ

∧
maxBel for conjunc-

tions). When the grounding strength is in interval: λbminPos < λp(o) < λbmaxPos the modal
operator of possibility can be chosen. Similarly for the modal operator of belief and the
grounding thresholds λbminBel, λ

b
maxBel. Intuitively values of λp(o)(t) close to zero should

allow for grounding of Pos(p(o)). Values close to one, should result in the grounding of
Bel(p(o)). The modal operator of possibility should be grounded for lower values of the
grounding strength λp(o)(t). Additionally it has been assumed that at most one of modal
operators should be simultaneously grounded. Agent should be unable to concurrently
ground two statements like Pos(p(o)) and Bel(p(o)). That is why given inequalities
between the grounding thresholds were proposed.

The final choice of the grounding thresholds can be done by an expert. In the grounding
theory it has been proposed that these thresholds can be learned from social interactions
made by agents and hopefully humans. The final choice of the exact values should be a
result of semiosis.

Constraints provided by inequalities 2.3 and 2.4 are only initial. As it is later shown
these constraints are not strict enough to ensure meeting of common-sense postulates
on the grounding process.

2.5.3. Epistemic relations

Epistemic relations are the key components of the grounding theory. These relations bind
agent’s cognitive state with respective modal formulas. Each formula type has its own
epistemic relation. Only if the epistemic relation holds, the formula can be grounded.
Otherwise agent’s cognitive state can not be properly described with the given formula.
Epistemic relations for simple modal formulas are defined as:

Definition 2.12. Let t ∈ T and cognitive state MS(t) be given. For every property
P ∈ P and object o ∈ O:

— Epistemic relation MS(t) |=E Pos(p(o)) holds iff

o ∈ P±(t) ∧ C
p(o)(t) 6= ∅ ∧ λbminPos < λp(o)(t) < λbmaxPos

6

5 In the grounding theory 0 < λ∧minPos was proposed. It has been later suggested to change it to
0 ¬ λ∧minPos, so that λ∧minPos = 0 can be chosen.

6 Previously in (Katarzyniak 2007) the lower bound λbminPos < λp(o)(t) has been set to λbminPos ¬
λp(o)(t). It has been later suggested to change it to strict inequality.
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— Epistemic relation MS(t) |=E Bel(p(o)) holds iff

o ∈ P±(t) ∧ C
p(o)(t) 6= ∅ ∧ λbminBel ¬ λp(o)(t) < λbmaxBel

— Epistemic relations MS(t) |=E Know(p(o)) and MS(t) |=E p(o) hold iff

either o ∈ P+(t) or o ∈ P±(t) ∧ C
p(o)(t) 6= ∅ ∧ λp(o)(t) = 1

where λbminPos, λ
b
maxPos, λ

b
minBel, λ

b
maxBel are fixed parameters called the grounding thresh-

olds.

The epistemic relations for simple modal formulas have been constructed from the per-
spective of the agent as a message source. Although it has not been directly stated in
the grounding theory, the epistemic relations ground statements that speak about the
current time moment. They describe the currently observed situation. The conditions
o ∈ P±(t) refer directly to the time moment t and clearly suggest that statements
Pos(p(o)) or Bel(p(o)) are describing currently observed situation.

The proposed form of epistemic relations already suggests some fundamental intuitive
meaning of the grounded formulas. Statement Pos(p(o)) can be grounded if three con-
ditions hold. Firstly, the agent can not currently observe the object o to measure the
property P . This is ensured by the condition o ∈ P±(t). In such state the agent must
refer to its past empirical experiences. The agent must recall past observations of o
exhibiting P . This is modelled by the condition C

p(o)(t) 6= ∅. Finally the agent has to
refer (partially unconsciously) to its empirical material to measure the state of conviction
into o exhibiting P . Only if there were enough observations of o (not) exhibiting P in the
past, the agent can use the possibility modal operator. This is ensured by the condition
λbminPos < λp(o)(t) < λbmaxPos.

Constraints o ∈ P±(t) and λp(o)(t) < λbmaxPos directly suggest a physical meaning of the
possibility operator. This meaning is different from the logical meaning (as in Kripke
semantics). In the logical meaning one can say p(o) is possible even if he directly knows
that p(o) holds. Such interpretation is not intuitive as one is misleading the listener.
Possibility operator, in its physical interpretation, is allowed only when one is uncertain
of the factual state of the environment. It is not true in the grounding theory that
Know(p(o)) implies also Pos(p(o)). In fact the opposite is true. A more accurate state
of knowledge grounding Know(p(o)), excludes less accurate state grounding Pos(p(o)).

The belief operator posesses interpretation similar to interpretation of the possibity
operator. For belief modal operator the agent requires that o has exhibited P more often
in the past. This follows from inequalities 2.3 and the condition λbminBel ¬ λp(o)(t) <
λbmaxBel.

Formulas p(o) and Know(p(o)) have the same grounding conditions and as such are
equivalent in the grounding theory. They are equivalent according to assumed inter-
pretation where only agent’s cognitive state and knowledge is considered. Statement ‘o
exhibits p’, stated by the agent, denotes that she knows p(o) holds. Formula Know(p(o))
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can be grounded in two separate cases. Either the agent has directly observed o to exhibit
P at the moment t or in the past it has always been that o exhibited P . In the first case,
where condition o ∈ P+(t) is met, there is no need to refer to past observations.

The grounding theory defines similar epistemic relations for modal conjunctions:

Definition 2.13. Let t ∈ T and cognitive state MS(t) be given. For every property pair
P,Q ∈ P, P 6= Q and object o ∈ O:

— Epistemic relation MS(t) |=E Pos(p(o) ∧ q(o)) holds iff:

o ∈ P±(t) ∧ o ∈ Q±(t) ∧ C
p(o)∧q(o)(t) 6= ∅ ∧

λ∧minPos < λp(o)∧q(o)(t) < λ∧maxPos
7

— Epistemic relation MS(t) |=E Bel(p(o) ∧ q(o)) holds iff:

o ∈ P±(t) ∧ o ∈ Q±(t) ∧ C
p(o)∧q(o)(t) 6= ∅ ∧

λ∧minBel ¬ λp(o)∧q(o)(t) < λ∧maxBel

— Epistemic relations MS(t) |=E Know(p(o) ∧ q(o)) and MS(t) |=E p(o) ∧ q(o) hold
iff:

either o ∈ P+(t) ∧ o ∈ Q+(t)

or o ∈ P±(t) ∧ o ∈ Q±(t) ∧ C
p(o)∧q(o)(t) 6= ∅ ∧

λp(o)∧q(o)(t) = 1

where λ∧minPos, λ
∧
maxPos, λ

∧
minBel, λ

∧
maxBel are fixed parameters called the grounding thresh-

olds.

Interpretation of possibility and belief operators in modal conjunctions stays the same
as for simple modal statements. The agent can ground the formula Pos(p(o)∧q(o)) only
if she has not observed any of the properties. If at least one of them was observed the
agent must resign from the usage of the possibility and beliefs operators.

To ground formulas with various negations such as Know(¬p(o)) or Pos(¬p(o) ∧ q(o))
one should symmetrically apply negations to conditions of definitions 2.12 and 2.13.

For other types of modal formulas (alternatives and exclusive alternatives) please refer
to (Katarzyniak 2007).

2.5.4. Common-sense constraints

The epistemic relations form a formal system of requirements based on the grounding
strengths and thresholds. Definitions themselves impose preliminary constraints on the
grounding of modal formulas but do not ensure rational behaviour. For example for a
purposely bad setting of the grounding thresholds such that λbminBel = 0.3 and λbmaxBel =
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0.9 it is possible to simultaneously ground two formulas: Bel(p(o)) and Bel(¬p(o)). Such
simultaneous grounding should be disallowed as the two formulas conflict each other
according to our intuitive understanding of belief.

The grounding thresholds need to meet a series of constraints to provide common-sense
behaviour of the grounding theory. Katarzyniak proposed such constraints in form of
formal theorems. These theorems define what settings of the grounding thresholds al-
low (or disallow) concurrent grounding of given subsets of modal formulas. Exemplary
theorems for simple modal formulas are:

Theorem 2.1. If epistemic relation MS(t) |=E Pos(p(o)) is met, then MS(t) |=E
Bel(p(o)) is not met.

Theorem 2.2. A necessary condition to allow for simultaneous grounding two state-
ments Pos(p(o)) and Pos(¬p(o)) in the same cognitive state MS(t) is:

λbminPos < 0.5 < λbmaxPos

Exemplary theorems for modal conjunctions are:

Theorem 2.3. Let α, β ∈ {p(o) ∧ q(o), p(o) ∧ ¬q(o),¬p(o) ∧ q(o),¬p(o) ∧ ¬q(o)} and
α 6= β. A necessary condition to disallow of simultaneous grounding of two formulas
Bel(α) and Bel(β) is:

0.5 < λminBel or λmaxBel < 0.5

Theorem 2.4. Let α, β, γ, δ ∈ {p(o)∧ q(o), p(o)∧¬q(o),¬p(o)∧ q(o),¬p(o)∧¬q(o)} be
four different conjunctions. It is possible to set grounding thresholds, so that all four for-
mulas: Bel(α), Pos(β), Pos(γ), Pos(δ) can be simultaneously met in the same cognitive
state.

For formal proofs and more theorems please refer to (Katarzyniak 2007). All such theo-
rems have been formulated with respect to common-sense and intuitive natural language
understanding of modal formulas according to previously assumed interpretations. Many
of theorems provide additional constraints on possible settings of the grounding thresh-
olds. See 2.2 and 2.3 for two examples. Such constraints from all theorems for simple
modalities can be joined together. One obtains inequality 2.5.

0 < λbminPos ¬ 0.5 ¬ λbmaxPos ¬ λbminBel < 1− λbminPos ¬ λbmaxBel ¬ 1 (2.5)

Similarly all theorems for modal conjunctions lead to one set of constraints given by
inequality 2.6.

0 < λ∧minPos <
1
6
< 0.5 < λ∧maxPos ¬ λ∧minBel < 1− 3λ∧minPos ¬ λ∧maxBel ¬ 1 (2.6)

Any setting of the grounding thresholds meeting those constraints also meets all prop-
erties described in a series of theorems. This implies that all common-sense postulates
can be met by the grounding theory.
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2.6. Computational example

To visualise the work-flow of the grounding theory let me introduce a simple computa-
tional example.

Let the environment consist of three perceptually recognizable objects O = {o1, o2, o3}
and three properties P = {P1, P2, P3}. Language symbols associated with the properties
are respectively Γ = {p1, p2, p3}.
Agent is situated in this environment and observes it. Observations gathered by the
agent up to time moment t = 6 are encapsulated in 6 base profiles KS(6) = {BP (1),
BP (2), ..., BP (6)} whose contents have been presented in table 2.2. For example at time
moment t̂ = 4 agent has observed that objects o1 and o3 do not exhibit property P1 and
object o2 exhibits P2 and does not exhibit P3. For the current time moment t = 6 the
agent has observed o1 does not exhibit P3 and o3 exhibits P1 and P3. The agent has not
observed whether o1 exhibits P1 or P2 and has not observed any of the properties of o2.
Formally the current base profile can be written as:

BP (6) =< O,P+1 (6), P−1 (6), P+2 (6), P−2 (6), P+3 (6), P−3 (6) >

O = {o1, o2, o3},
P+1 (6) = {o3}, P−1 (6) = ∅,
P+2 (6) = ∅, P−2 (6) = ∅,
P+3 (6) = {o3}, P−3 (6) = {o1}.

Table 2.2. Agent’s knowledge state up to current time moment t = 6

t̂ P+1 P−1 P+2 P−2 P+3 P−3
6 o3 o3 o1
5 o1, o3 o2 o2 o2
4 o1, o3 o2 o2
3 o1, o3 o2 o2 o2 o1
2 o1, o3 o2 o2 o1 o3
1 o1 o2 o3 o3 o1

Agent’s knowledge is distributed between conscious and unconscious areas (working and
permanent memory). The division is a result of various cognitive processes. Let us assume
agent’s cognitive state (definition 2.7) is set to:

MS(6) = {BP (6), BP (5), BP (4)}
MS(6) = {BP (3), BP (2), BP (1)}

Where MS(6) is the conscious and MS(6) is the unconscious area. Such division can
result from focusing on last observations.
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Let grounding thresholds be set to:

λbminPos = λ∧minPos = 0.1, λbmaxPos = λ∧maxPos = 0.6,

λbminBel = λ∧minBel = 0.6, λbmaxBel = λ∧maxBel = 1.

Such setting can result from social semiosis. This setting meets constraints 2.5 and 2.6.
Meeting of common-sense postulates is analytically ensured.

Now let us focus on exemplary grounding sets and strengths that can be obtained from
agent’s knowledge. These sets and strengths are further used to ground modal formulas
with the use of epistemic relations. Grounded formulas describe current time moment
according to agent’s empirical knowledge.

For a base formula p1(o1) the grounding sets are:

Cp1(o1)(6) = {BP (5), BP (3), BP (2)}, C¬p1(o1)(6) = {BP (4)}

the grounding strength, according to definition 2.10, is λp1(o1)(6) = 3
4 . Similarly for

¬p1(o1) the grounding strength is λ¬p1(o1)(6) = 1
4 .

All conditions for the epistemic relation for Bel(p1(o1)) hold (definition 2.12). Simi-
larly all conditions for Pos(¬p1(o1)) hold. These two formulas can be simultaneously
grounded. It means ‘I believe o1 exhibits P1’ and ‘It is possible o1 does not exhibit P1’
properly (intuitively) describe agent’s knowledge state. Agent does not know whether o1
currently exhibits P1 as he has not observed it. Agent also thinks, that o1 rather exhibits
P1. This knowledge comes from previous experiences.

For object o2 and property P2, the grounding sets are:

Cp2(o2)(6) = {BP (4), BP (2)}, C¬p2(o2)(6) = {BP (5), BP (3)}

and the grounding strengths are λp2(o2)(6) = λ¬p2(o2)(6) = 0.5. In such a case both
formulas Pos(p2(o2)) and Pos(¬p2(o2)) can be grounded.

The agent has observed that at the current time moment t = 6 object o3 exhibits P3.
Condition o ∈ P+3 (6) holds and both formulas p3(o3), Know(p3(o3)) can be grounded.
They can be grounded regardless of the distribution of the grounding material between
the grounding sets.

For an exemplary modal conjunction let us consider object o2 and its properties P2 and
P3. The grounding sets are:

Cp2(o2)∧p3(o2)(6) = ∅, Cp2(o2)∧¬p3(o2)(6) = {BP (4)},
C¬p2(o2)∧p3(o2)(6) = {BP (5), BP (3)}, C¬p2(o2)∧¬p3(o2)(6) = ∅

Other observations BP (6), BP (2), BP (1) do not participate in the grounding process,
as at least one of the properties was unknown to the agent. For such a setting formulas
Bel(¬p2(o2)∧p3(o2)), Pos(p2(o2)∧¬p3(o2)) can be grounded and formulas Pos(p2(o2)∧
p3(o2)), Pos(¬p2(o2) ∧ ¬p3(o2)) can NOT be grounded.

All formulas that can be grounded intuitively describe agent’s knowledge about the
current time moment.
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2.7. Summary

Presented grounding theory provides formal criteria for grounding of a given class of
modal formulas. The grounding process is modelled with respect to the semiotic triangle.
The definitions of the empirical knowledge base, the formal language of modal formulas
and the cognitive state model the three vertices of the semiotic triangle. To model all the
vertices some necessary simplifications had to be made. The system of atomic objects
and their binary properties has been formulated for the empirical knowledge base. As for
the mental model, a two layer representation of the cognitive state partitioned into the
grounding sets has been proposed. It has been assumed that the mental representation
results from various cognitive processes that themselves are outside the scope of the
grounding theory. Proposed representations simplify perceptive and cognitive abilities of
living beings such as humans but they contain all the features necessary for the grounding
of modal formulas.

The epistemic relations (definitions 2.12, 2.13), together with the formal constraints on
the grounding thresholds (equations 2.5, 2.6) define the grounding conditions for simple
modal formulas and modal conjunctions. These conditions ensure common-sense, intu-
itive, conventional understanding of respective natural language sentences is sustained.
The meaning of sentences is constructed with respect to agent’s subjective knowledge
and treating the agent as a potential message source.

In the grounding theory, the grounding process ends when the sign in form of a modal
formula is grounded in the mind of the agent. Many formulas can be simultaneously
grounded forming mental signs. Some of these signs can, but do not have to be later
externalised (uttered). The grounding theory does not define which signs should be
uttered. This task depends on agent’s and listener’s aims or needs.

Book (Katarzyniak 2007) contains numerous examples utilising the grounding theory in
implementations of BDI agents. Author proposed a few contextualization techniques and
methods for choosing the most informative utterance out of a set of properly grounded
formulas. The grounding theory has been also extended in various directions and utilized
in some tasks (Lorkiewicz et al. 2011; Skorupa et al. 2012; Popek 2012). Some minor
improvements and changes have also been suggested (Lorkiewicz et al. 2012).

This thesis extends the grounding theory by addition of a new type of formulas in
form of indicative conditionals with modal operators. Fundamental building blocks of
the grounding theory are directly transferred to the constructed extension. Only a minor
change to the cognitive state shall be proposed to allow for more flexible contextualization
of the grounded sentences.

To allow for grounding of conditionals, a formal language has to be extended with ade-
quate modal formulas. Conventional semantics of conditional sentences and their modal
extensions must be defined. Furthermore formal constraints resulting from conventional
usage patterns and denotations of conditionals need to be formulated. Finally epistemic
relations must be proposed.
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The next two chapters concentrate on conditional sentences and their meaning. Some of
well known theories on conditionals are briefly discussed. Formal extension to the lan-
guage is defined in section 3.2. Epistemic relations are proposed in three forms, differently
restricting the meaning of conditionals, in chapter 6.



3. Modal conditional statements

Conditional statements are the statements of a form: “If A, then B”. The A phrase is
called a cause (an antecedent) and the B phrase is an effect (a consequent). Provided
definition is a simplification, please refer to (Bennett 2003) for a broad discussion on the
definition of conditionals. Informally, one may say the antecedent influences, or more
strongly: causes, the consequent. Both the antecedent and the consequent may take
different grammatical forms changing sentence meaning. For some simple examples:

— If she loves him, she will marry him.
— If she loved him, she would marry him.
— If she had loved him, she would have married him.

Conditional statements are broadly used in everyday language. Their meaning differs
based on usage patterns, context, speaker’s mood etc. In order to maintain clarity and
avoid misunderstandings of this technical work, I am forced to constrain conditionals
meaning. This requires a short review of conditionals’ classifications and usage patterns.

3.1. On the classification of conditionals

There are many ways to classify conditionals. Furthermore there are many special types
of conditionals and usage patterns. Conditionals may be used as claims, propositions,
commands, offers, questions etc.. See (Pelc 1986; Jadacki 1986; Bennett 2003) for broad
reviews.

The most common division is into indicative and subjunctive or counter-factual condi-
tionals. Indicatives are the conditionals that refer to real plausible situations. Situations
where the antecedent and the consequent are seen as factual possibilities. On the contrary
the subjunctive conditionals refer to unrealistic situations that did not happen or are
very unlikely to happen. Usually subjunctive conditionals have ‘would’ phrase in the
consequent while indicatives do not. For example (from (Clark 1971)):

— ‘If it rains, the match will be cancelled.’ - is an indicative conditional
— ‘If it were to rain, the match would be cancelled.’ - is a subjunctive conditional

Within the first sentence a speaker thinks it may rain, because maybe it is windy and
cloudy. In the second sentence a speaker does not think that a rain is a real possibility
and in result he claims the match won’t be cancelled.
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Woods (Woods 2003) claims the distinction between indicatives and subjunctives is not
entirely correct and in my opinion he is right, but for our purposes the explanation
presented above should be good enough.

Conditionals may be used for different purposes and to express many moods. There are
conditional statements, claims, commands, questions ... similarly there are conditional
beliefs, desires, fears ... (Edgington 2008).

Further, conditionals may be classified based on a relation type between an antecedent
and a consequent. Examples of such distinction:

— Cause-effect relation: If your parachute does not open, you will die. (Pelc 1986)
— Symbol relation: If flags are left at half of a mast, the ruler is dead. (Pelc 1986)
— Common practice: If you are caught stealing, you will go to prison. (Pelc 1986)
— To mark a general relation understood as a formal material implication (∀xF (x) →

G(x)) (Pelc 1986)
— Structural relation: If today is Monday, tomorrow will be Tuesday.
— Analytical relation: If Alice is a mother of Bob, then Bob is a son of Alice.

The conditional statements may have ‘then’ adverb or not. Existence of ‘then’ marks a
relation between the antecedent and the consequent (Davis 1983). Not every intuitively
acceptable conditional without word ‘then’ is acceptable when ‘then’ is added. Consider:
‘(Even) if war breaks out tomorrow, the tides will (still) continue to rise and fall’. When
we insert ‘then’, we obtain ‘If war breaks out tomorrow, then the tides will continue to
rise and fall’ that suggests dependence between tides and war, which is absurd (Bennett
2003).

3.2. Formal language of conditionals

In the grounding theory natural language statements have been represented by formal
language of formulas with fixed conventional semantics. To allow for grounding of condi-
tionals this language needs to be extended. Adequate formulas representing conditional
sentences with modal operators need to be added. At least intuitive semantics need to
be provided. There are numerous usage patterns and different meanings conditionals can
take. These patterns and meanings shall be limited to some ‘typical’ situations.

3.2.1. Language syntax

Definition 3.1. Let the alphabet of the extended language L′ consist of all symbols of
the language L provided in definition 2.5 and additionally a symbol ‘→’ of a conditional
statement.
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Definition 3.2. Let the extended language L′ consist of all formulas of the language L
provided in definition 2.6 and additionally of three sets of formulas L→, L→M , LM→ for
conditionals with modal operators:

— L→ is a set of all conditionals of the form: φ→ ψ, where φ, ψ ∈ Lb.
— L→M is a set of all conditional modalities: φ→ Pos(ψ), φ→ Bel(ψ), φ→ Know(ψ),
where φ, ψ ∈ Lb.

— LM→ is a set of all modal conditionals: Pos(φ→ ψ), Bel(φ→ ψ),Know(φ→ ψ),
where φ, ψ ∈ Lb.

Any formula from set L′ = L ∪ L→ ∪ L→M ∪ LM→ is a proper formula of the extended
language L′. No other formula is allowed.

Any formula of the form φ→ Π(ψ), where Π ∈ {Pos,Bel,Know} is called a conditional
modality and formula of the form Π(φ→ ψ) is called a modal conditional.

Defined language L is not extensible. It means that formulas Bel(p(o)) → Pos(p(o)),
p(o)→ Pos(p(o)→ q(o)) are NOT proper.

Where it is clear, a shorthand notation: p and q to denote p(o) and q(o) shall be used.
For example Pos(p → q) denotes Pos(p(o) → q(o)) where object o is assumed to be
known and fixed.

3.2.2. Language semantics

In further chapter 4 I shall more broadly discuss on the meaning of conditional statements
and their usage constraints. Here I refer to reader’s intuitive understanding of condition-
als. I focus mostly on assumed meaning according to previously proposed classifications
(see section 3.1). I also impose technical restrictions on the structure of antecedent and
the consequent and provide examples of usage patterns to constrain assumed semantics.

Table 3.1 presents intuitive semantics for formulas of language L. It is assumed, each
statement is referring to exactly specified objects. Suppose agent utters formula Pos(p(o)→
q(o)). It should be understood as: “It is possible (from agent’s perspective) that if object
o is p (one fixed object), then o is q (one fixed object)”. For example: “I believe that, if
the apple is red, then it is ripe” is understood as referring to one fixed instance of the
apple being now somewhere in the environment, not a general rule for all apples.

I assume formulas represent typical indicative conditionals. By typical I mean simple
conditionals used in casual situations. I assume these are used without complex con-
versational context. Furthermore, conditionals are used to state some noticed fact or
answer a simple question related to the consequent. I am considering only conditional
statements (not questions, commands, etc.) joined with conditional beliefs.
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Table 3.1. Formulas and their semantics (φ, ψ ∈ Lb)

formula intuitive semantics

conditional statement

φ→ ψ If φ, then ψ.

conditional modalities

φ→ Pos(ψ) If φ, then it is possible that ψ.
φ→ Bel(ψ) If φ, then I believe that ψ.
φ→ Know(ψ) If φ, then I know that ψ.

modal conditionals

Pos(φ→ ψ) It is possible that if φ, then ψ.
Bel(φ→ ψ) I believe that if φ, then ψ.
Know(φ→ ψ) I know that if φ, then ψ.

I am also not considering any metaphorical or special types of conditionals, like for
example so called Thomason conditionals1.

Within all considered conditionals I assume ‘then’ adverb is present, so some kind of
dependence between the antecedent and the consequent is required.

Modal operators Pos, Bel and Know understanding is consistent with their natural
language interpretation (Hintikka 1962). These operators should not be mistakenly un-
derstood as formal operators of modal logic with their relational interpretation based on
worlds (Kripke 1963).

Conditional statements and phrases ‘It is possible that’, ‘I believe that’, ‘I know that’
shall be evaluated from agent’s perspective as an autonomous knowledge bearer and
utterance source. Statement’s ‘truth’ shall be evaluated based on agent’s knowledge, not
as an absolute, generally accepted, truth. I am studying, whether an agent can (or can’t)
utter a given statement basing only on its knowledge. What I am introducing here, is
an auto-epistemic approach to statement’s truth. I am trying to answer a question: If
I were an agent and knew only what it knows, would I agree that given statements’
usage is proper or not. In other words: would I (as an agent) feel allowed to utter given
statement. I am evaluating subjective notion of truth, different than absolute truths or
Kripke relational models.

Conditional modalities (statements of the form p(o) → Π(q(o))) refer to agent’s knowl-
edge state, where:

— Agent thinks that p(o) is possible (doesn’t know that ¬p(o)).
— Agent is considering q(o) in the context of p(o).

1 An example of a Thomason conditional is: ‘If Sally is deceiving me, I do not believe it.’ (Willer
2010).
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— Agent doesn’t explicitly know that q(o) does not hold.
— Agent is aware of a similar situation where p(o) holds and q(o) does not - knows

neglecting example (only for Pos and Bel operators).
— Agent evaluates a subjective chance of q(o) holding, assuming p(o) holds.

Knowledge state description is provided here only to clarify assumed semantics. Require-
ments on knowledge state shall be broadly discussed later.

To illustrate such a knowledge state, consider an example to establish assumed conven-
tional meaning of a conditional modality.

Example:
A: If P , then it is possible that Q.
B: Why do you think so?
A: Because Q sometimes holds, when P holds. It happened that P and Q held. It also
happened that P held and Q did not.
B: And if P does not hold?
A: Then Q also can’t hold.

Speaker A utters conditional modality p(o) → Pos(q(o)). When B asks about details,
A reveals that Q may happen assuming P . The uncertainty is applied to Q happening
(assuming P ), not the conditional itself. A knows conditional p(o)→ q(o) is not true, as
he possesses example denying it. Speaker’s mental state strictly points to the consequent
as the uncertainty source. Assuming P , Q may happen or not. Q is related to P , but P
does not determine it. The example presents a typical situation where the conditional
modality may be used and supplies the meaning of a statement we are assuming.

Modal conditionals (Π(p(o)→ q(o))) refer to agent’s knowledge state, where:

— Agent thinks that p(o) is possible (doesn’t know that ¬p).
— Agent is considering q(o) in the context of p(o).
— Agent doesn’t explicitly know that q(o) does not hold.
— Agent is unaware of a similar situation where p(o) holds and q(o) does not - has not

found a neglecting example yet.
— Agent is not sure (has some intuitive doubts) whether conditional between p(o) and

q(o) holds (only for Pos and Bel).

Knowledge state description is provided here only to clarify assumed semantics. Require-
ments on knowledge state shall be broadly discussed later.

Again we shall consider an example to illustrate such knowledge state and establish
statement’s meaning:

Example:
A: It is possible that if P , then Q.
B: Why do you think so?
A: Because in all situations I can currently remember, whenever was P , there was also
Q.
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B: So, why do you think it is only possible?
A: Because it seems to me, there may exist other situations where it isn’t so.

Here A utters a modal conditional Pos(p(o)→ q(o)). Speaker A has no explicit examples
denying the conditional itself but he feels something is not known yet. Something may
still ‘go wrong’. Statement p(o) → q(o) may be true, but A is unable to prove it yet,
he is not convinced. Speaker A unconsciously feels that not all possibilities have been
thoroughly analysed (at least not yet). Some empirical material influences his certainty
level denying a stronger statement Bel(p(o) → q(o)). This material possesses examples
denying the conditional but is hidden somewhere in a unconscious knowledge. Material
has not migrated to conscious area because, for example, A had no time to thoroughly
consider it. Unconscious material may or may not be relevant to a conversational context.
Speaker feels that, hence he is uncertain.

The remaining question is: Where does uncertainty applied to modal conditionals come
from and how to model such ‘intuition’ in computer systems? Within this work we assume
that gathered empirical knowledge supplies such uncertainty but does not supply an
explicit example denying the conditional (at least not at the moment of the utterance).
Such example has not been retrieved / discovered within knowledge base. This may
happen due to: real-time requirements. Agent may also be unable to decide whether
gathered empirical knowledge is suitable within currently considered context.



4. On some approaches to conditionals

Within this chapter I try to explain how conditionals are understood in natural language
and when they are used. I explain why their meaning significantly differs from material
implication. Some of the most known existing approaches are briefly discussed. I also
mention which of conditional’s usage aspects are analyzed.

4.1. Conditionals and material implication

The most known approach to taming conditionals is a material implication. Here we
denote the material implication of predicates p and q by: p⇒ q. Its semantics are defined
by truth table 4.1. The only situation where material implication is false happens when
an antecedent is true and a consequent is false. From all possible truth valuations of
p⇒ q, table 4.1 seems the only feasible candidate for conditionals. If truth conditions of
conditional can be defined by truth valuations of the antecedent and the consequent, then
this solution must be right (Edgington 2008). In such a form the material implication is
equivalent to the alternative ¬p ∨ q.

Table 4.1. Truth table of material implication. 1 means true, 0 means false

p q p⇒ q

0 0 1
0 1 1
1 0 0
1 1 1

Unfortunately, despite its undoubted importance in logical systems, the material impli-
cation does not model the meaning of conditionals well. Let us look at a few natural
language examples:

— If the moon is a piece of cheese, then I can jump 100 meters high.
— If birds can fly, then Roosevelt was a president of United States.
— If I am a snail, then Earth is round.

All the statements above are true when treated as material implications, although no
one would use such statements in typical, everyday situations. The problem comes from
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the fact that the falsity of an antecedent is enough for the material implication to be
true. Similarly the truth of the consequent is enough for the material implication to be
true. Statements being true as material implications are not necessarily acceptable as
conditional statements.

Consider a statement from (Clark 1971): ‘If Hitler hadn’t committed suicide, Germany
would have won the war’. This statement is true as a material implication but fails our
understanding of a conditional. Committing suicide is simply not enough to win the
war. Unfortunately almost any counter-factual conditional is true according to material
implication. This happens simply because the antecedent is known to be false.

The problem gets even bigger when we try to analyze different grammatical forms of
counter-factual conditionals. ‘If Oswald hadn’t killed Kennedy, somebody else would
have’. seems at least weird, especially when compared to: ‘If Oswald didn’t kill Kennedy,
somebody else did’ (Adams 1970). If we assume Oswald in fact killed Kennedy, both
implications are true. But the former is clearly wrong and the latter seems good. The
problem comes from different attitudes expressed within a conditional statement. A
slight change in grammar may have huge impact on statements meaning. According to
Pelc (Pelc 1986) it is impossible to put various conditional statements into one material
implication. According to Ingarden (Ingarden 1949) (p. 312) different modis (potentialis,
irrealis and realis) should not be omitted in logics. Speakers knowledge on the subject
plays a crucial role in a decision whether a conditional is correct or wrong.

Defenders of the material implication as a proper model of a conditional statement
eventually fail to strong arguments against it (Ingarden 1949; Pelc 1986; Jadacki 1986;
Edgington 1995). Even if material implication models a conditional statement, it fails to
model its proper usage patterns because subjective knowledge is ignored. Although ma-
terial implication plays a key role in formal logics it simply does not model conditionals
well.

4.2. Ramsey test

If the material implication is not a good model of a conditional statement, then what is?
There are numerous works on that subject and it seems there is no perfect candidate.
Going deeper into conditionals analysis leads to new unexpected problems. When it
comes to understanding conditionals, probably the most discussed declaration is the
Ramsey test (Ramsey 1929):

“If two people are arguing ‘If p, will q?’ and are both in doubt as to p, they
are adding p hypothetically to their stock of knowledge, and arguing on that basis
about q ... We can say they are fixing their degrees of belief in q given p.” based
on (Bradley 2007)
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Ramsey put this sentence in the footnote of his paper but it has had a significant
influence on many of future works on conditionals. Statement probably describes the
most important aspect of conditional sentences: assume that p and argue whether q.
This is a big step when compared to material implication. When the antecedent is false,
conditionals truth should be evaluated by assuming the antecedent and arguing about
the consequent. In such a way we may reason on statements like: “If moon is a piece of
cheese, then I can fly.” or “If moon is a piece of cheese, then we will be able to eat it.”.
The former is false, because assuming moon being cheese does not make me able to fly.
The later is true, because at some time point one can go to the moon and eat its surface.

Unfortunately Ramsey test’s contents have ambiguous meaning leading to a lot of in-
terpretative problems, when going into technical details (Read and Edgington 1995;
Lindström and Rabinowicz 1998; Bradley 2007).

Most discussed problems occur in the case of counter-factual conditionals. These prob-
lems are related to a way of adding p to stock of knowledge. It is unclear how to change
beliefs when p is contradictory with it.

Secondly, Ramsey test does not explain how to ‘argue about q’. Does the chance for q
have to change in any way when adding p? Can q be guaranteed to hold regardless of p?

Ramsey test, although generally correct, is very unclear and does not explain all required
aspects, even for the most simple conditionals. Firstly it is not clear how to add p to
stock of knowledge: Does it mean that p can’t already be in our beliefs? Can it be
contradictory to our beliefs? Secondly: How do you argue about q, how do you fix your
degree of belief? Is it enough for q to have high probability? Thirdly: Don’t situations
where not p matter?

4.3. Objectivity and conditionals

Defining conditionals truth conditions requires assumption that they have absolute truth
valuation. It means that they can always be true or false regardless of the speaker and
time. There are many arguments against treating conditionals as truth-functionals (a
statements whose truth may be defined by truth of its compounds).

One of such arguments comes from Gibbard (Gibbard 1980). He claims that if two
statements are consistent, a person may believe them both. For consistent P , and any
Q, people do not simultaneously believe both ‘If P , Q’ and ‘If P , ¬Q’ (this is not in
accordance with the material implication). Although it may happen that one person
believes ‘If P , Q’ while the other ‘If P , ¬Q’. They both are rational and basing their
beliefs on known facts. Gibbard provided a Sly Pete story to support his example, but
I shall use an example from Dorothy Edgington (Edgington 1995) (page 294) as it does
not suffer from critics to Gibbard’s example:

In a game, (1) all red square cards are worth 10 points, and (2) all large
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square cards are worth nothing. X caught a glimpse as Z picked a card and saw
that it was red. Knowing (1), he believes “If Z picked a square card, it is worth 10
points”. Y, seeing it bulging under Z’s jacket, where Z is keeping it out of view,
knows it is large. Knowing (2), he believes “If Z picked a square card, it is worth
nothing”. (Someone who knows all the relevant facts knows it isn’t square, and
has no use for a conditional beginning “If it is square”.)

Both X and Y have reasons to state their statements. Furthermore X has reasons to
reject Y’s statement and the opposite. From godlike perspective we simply know the
conditional has no use here because P is false. But neither of speakers knows that, hence
both of their conditionals were used rationally. A reasonable observer cannot say one
is wrong and the other is good. On the other hand he would not utter both of them.
In fact he would use neither of them. It seems that looking from a omniscient godlike
perspective truth conditions of a conditional are those of material implication. But it
is not how conditionals are used. The need for conditionals comes from a lack of exact
knowledge, from subjective attitude. We need conditional claims to suppose on unknown
situations. God has no need for conditionals because he simply knows whether antecedent
and consequent hold (this is consistent with Dorothy Edgington’s claims).

I do not wish to argue whether conditionals are truth functionals or not. Edgington’s
(or Gibbard’s) example does not neglect material implication, but it shows that the
applicability of a conditional depends on speakers subjective view and knowledge. In my
opinion we should speak not about the truth of conditionals, but a usage consistent with
the speakers mental attitude. If we are trying to decide whether a conditional can be
uttered or not, we have to rely on agent’s subjective knowledge. It does not matter to
me whether a conditional is true or not, or even if it can have assigned a truth value.
It matters, whether it is rational to state such a statement. As the example shows, this
analysis can be done only from agent’s subjective perspective. Its knowledge determines
whether a conditional is well or badly used.

4.4. Probabilistic approach

Some of well known approaches to conditionals are related to the idea of conditional
probability. The preliminary works on the subject come from Ramsey. The idea has
been extended and studied by Jeffrey, Adams and Stalnaker (based on (Edgington 1995)
pp. 259-262).

The conditional probability itself comes from Bayes equation:

P (P ∧Q) = P (Q|P )p(Q) (4.1)

The first move towards conditionals requires a shift from probability to belief. Instead of
assuming some objective probability distribution (P ) we assume existence of subjective
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probable belief (b) in a speaker. In such a way we avoid interpretative problems related
to subjectivity described in section 4.3. Probable belief (b) meets all basic arithmetical
properties characteristic for probability (like: sum to one, probability of disjoint sets, con-
ditional probability, etc.). The thesis used to define conditionals in terms of conditional
belief ((Edgington 1995) p. 263):

b(Q if P ) = b(Q ∧ P )/b(P ) (4.2)

Equation 4.2 states that our belief in a conditional ‘If P , Q’ is equal to our belief in
both P and Q divided by belief in P . In such a way we may have some partial belief
in a conditional. Let’s say I am 90% sure that if the lights are on, they are at home.
Assuming equation 4.2 states that my belief in a conditional is 0.9.

Such approach would be a big step towards taming at least indicative conditionals unless
Lewis proof (Lewis 1976). He has proven, there is no proposition at all such that your
degree of belief in its truth systematically matches your degree of belief in Q given P . In
other words: there is no X such that p(X) = p(Q|P ) in all probability distributions in
which these are defined (Edgington 1995). In result one cannot treat conditional belief
as a belief in a conditional.

Additionally the theories based on thesis 4.2 do not work well for absurd conditionals
like: ‘If you don’t smoke, you will get cancer.’ or ‘If birds can fly, then Roosevelt was a
president of United States.’



5. Common-sense usage criteria

Within this chapter I try to explain how and when conditionals are used in situations
analysed within this work. I shall refer to works on pragmatics, rationality and natural
language usage patterns. Based on these I will formulate common-sense postulates on
the usage of conditionals. In the end I shall formulate formal constraints, resulting from
the common-sense postulates, required for the proper grounding of conditionals.

5.1. Rational and epistemic view on conditionals

One of interesting works on the matter of material implication relation to conditional
statements comes from Ajdukiewicz (Ajdukiewicz 1956), who defends material impli-
cation by shifting the problem to language common. He claims that interpretation of
a conditional as a material implication is correct but the problem lies in condition-
als’ usage patterns. Although his approach has been later criticized (Jadacki 1986; Bo-
gusławski 1986), he notices an interesting feature: conditionals applicability depends on
the language common. Some conditional statements are simply not used, because it is
unreasonable to do so.

According to Pelc (Pelc 1982) “people think a conditional is well built (and true) if: (a)
they see a semantic relation between an antecedent and a consequent, (b) they are not
convinced of falsity of the antecedent and the consequent, (c) they are not sure of their
truth, (d) see a conditional connection between the antecedent and the consequent.”
Pelc, not without a reason, refers here to peoples’ opinion on a well built conditional.
He considers criteria a-d in the context of subjective knowledge and language commons.

Similarly Clark (Clark 1971) claims that “the standard natural language conditional
implies some connection between antecedent and consequent beyond the truth-value
relations required by the material implication ... . And such a conditional also implies
uncertainty about, or disbelief in, the antecedent and the consequent.”. Going further
he says1: “implications may arise, not from the meaning of ‘if’, but in virtue of some
general conversational requirements or conventions about relevance, point, etc.”.

One of the tempting suggestions is that there must exist some sort of connection, relation
or dependence between the antecedent and the consequent. Defining such connection is
a challenge itself (Barwise 1985; Braine and O’Brien 1991; Johnson-Laird and Byrne

1 Clark refers to Grice’s implicature (Grice 1957)
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2002). This connection seems difficult to describe as it can be very subtle and context
dependent. Yet a proper evaluation of this connection could filter out many of absurd
conditionals like ‘If I am a snail, then Earth is round’.

Woods (Woods 2003) claims connection between the antecedent and the consequent
exists, but is only epistemic in nature. I must agree with him. It exists only in speakers
mind and is highly dependent on circumstances and subjective knowledge. This relation
realizes in the form of possibilities within speaker’s mind. This way one can explain,
there is a relation between the antecedent and the consequent that does not have to
exemplify itself as a general dependence between the two. The word ‘then’ seems to play
a crucial role in defining of this connection. If you omit it, you can know the consequent
regardless of the antecedent (Davis 1983; Bennett 2003).

All mentioned authors claim that a distinction between the material implication and
natural language conditional is required. All give hints on how conditionals should be
analysed. Their works often focus on a discussion on how to compare the material im-
plication and the conditional statement. I do not wish to get into the middle of this
discussion. Instead I focus on common-sense, rational criteria of statements grounding
within agent’s empirical knowledge. These criteria come from natural language usage
patterns of conditionals, not from formal truth valuations of the material implication.
Furthermore these criteria should be evaluated against speaker’s (agent’s) subjective
knowledge state.

5.2. Implicatures for a conditional statement

When it comes to rational understanding and reasonable usage of language one cannot
omit works of Grice (Grice 1957). He introduced a term implicature to distinguish what
is meant by a statement from what is meant by a speaker. Suppose an example (Davis
2012):

Alan: Are you going to Paul’s party?
Barb: I have to work.

We know Barb’s statement in this conversational context answers Alan’s question well,
although it does not answer it directly. Barb, by telling that she has to work, also states
that she is not going to the party. The statement itself doesn’t tell anything about a
party but the answer to the stated question can be deduced from the context. This is
what Grice calls an implicature.

An easier example is: “Some athletes smoke”. It is natural to conclude that the speaker
also means that not all athletes smoke (or at least he does not know that). Otherwise
the speaker would use a stronger statement: “All athletes smoke”. The infered fact that
‘not all athletes smoke’ is an implicature.

There are various types of implicatures. Two most general kinds are: conversational im-
plicatures and conventional implicatures. Conversational implicatures refer to the mean-
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ing that is not included in statement’s conventional meaning, but comes from conversa-
tional context. Alan and Barb is an example of a conversational implicature. Conven-
tional implicatures refer to things that are conventionally assumed about a statement2.
Exemplary ‘Some athletes smoke’ implies there are athletes that smoke and additionally
‘Not all athletes smoke’ and ‘More than one athlete smokes’.

Depending on context and our knowledge, implicatures may be added or removed from
a statement. For a simple example: ‘Some athletes smoke. In fact all do.’ removes im-
plicature ‘Not all athletes smoke’. Conditionals similarly have implicatures that may be
removed.

Grice developed a general theory on how to handle implicatures. This theory is based on
a few principles, all of which roughly can be described as rational principles of language
usage. I do not wish to go into details of his theory. I will just mark that it is important
for the speaker to obey implicatures, if he doesn’t want to mislead a listener or be
wrongly understood.

I formulate conventional implicatures for conditional statements. In other words: I try
to find assumptions a rational listener makes upon hearing a conditional statement
and hence the speaker should consider them when uttering such a statement. These
implicatures shall be later used to formulate formal common-sense constraints.

Suppose a speaker utters an indicative conditional proposition ‘If p(o), then q(o)’. A
reasonable listener may conclude that:

I1.1 Speaker does not know that not p(o). p(o) is at least possible.
I1.2 Speaker does not know that not q(o). q(o) is at least possible.
I1.3 Speaker either knows q(o) or thinks that if he knew p(o) holds, he would also know
or conclude q(o).

In my opinion these conclusions are the most general conventional implicatures of an
indicative conditional statement. All of these conclusions roughly cover remarks made
by (Ajdukiewicz 1956; Clark 1971; Pelc 1982) (see section 5.1). It is in the nature of
implicatures that there are specific situations, where some of them may be removed.

Implicatures I1.1 and I1.2 refer to speakers knowledge about the antecedent and the
consequent. When the speaker utters an indicative conditional statement, he mustn’t
know that not p(o) and he mustn’t know that not q(o). If he knew that not p(o), the
uttered conditional would be a subjunctive. If he knew that not q(o), he would be lying.
These implicatures are not valid for subjunctive conditionals.

Implicature I1.3 states that either q(o) is already known to hold or p(o) implies q(o).
It means that situation where p(o) and not q(o) is impossible, at least according to the
speaker. This implicature can be removed when the speaker is in a motivational mood.
Consider:

— ‘If you don’t wear a hat, you will catch a cold’ - mother speaking to her child.

2 I am assuming a wider definition of a conventional implicature than Grice does. Here it means any
implicature that can (without a context) be inferred from a statement by default

47



— ‘If you smoke, you will get a lung cancer.’ - speaking to a smoker.
— ‘If we support them louder, they will win’ - on a football stadium.

Not wearing a hat doesn’t necessarily mean that one will catch a. A mother is protective
and wants to warn her child on a possibly dangerous situation. Similarly smoking does not
mean that one will surely get lung cancer. Supporting a team is a matter of motivation
and faith. All the three examples could be extended with modal operators to improve
the precision of the utterance:

— If you don’t wear a hat, then it is possible that you will catch a cold.
— If you smoke, then it is possible that you will get a lung cancer.
— I believe that if we support them louder, then they will win.

Unfortunately, in this form, the statements would loose their motivational mood.

It is important to mark that we often use conditional of the form ‘If P , then Q’ when we
are almost certain of the consequent3. We very rarely can be absolutely certain. Suppose
terrorists have taken hostages and threaten to detonate a bomb. Two police officers stand
outside the building and one of them says: ‘If you go in there, you will die’. He can’t
be 100% sure that going into the building implies death. Terrorists may not detonate
the bomb; the bomb may be a fake; the fuse may not work, etc.. There are hundreds of
reasons why one won’t die. But the policeman is not considering them. When uttering
a conditional ‘If you go in there, you will die’, the only viable option he thinks of is
a detonation. In his mind, the consequence of death is a certainty. When referring to
speakers state of knowledge, I1.3 is almost always a reasonable implicature. Although
it is usually not true, when referring of all the possibilities, including very minor and
improbable ones. It is not that the speaker removes the implicature. The speaker’s mind
has constructed only mental representations for P ∧Q and ¬P ∧¬Q. At the moment of
speaking: ‘If we support them louder, they will win.’ the ‘support louder’ and ‘not win’
is not an option in the speakers mind. Constructed mental representation is only partial
and subjective to the speaker.

Implicatures I1.1-I1.3 are not the only ones a reasonable hearer may apply. If they were,
a conditional: ‘If birds can fly, then Roosevelt was the president of United States’ would
be perfectly good for us. We usually apply stronger implicatures of the form:

I2.1 Speaker does not know whether p(o) (both p(o) and ¬p(o) are possible).
I2.2 Speaker does not know whether q(o) (both q(o) and ¬q(o) are possible).
I2.3 q(o) is not guaranteed without p(o).

Implicatures I2.1 and I2.2 are stronger forms of implicatures I1.1 and I1.2. When a
speaker utters the conditional statement (as an answer to question on q(o), to state a
relation between p(o) and q(o), as a propositional statement) he shouldn’t know neither
the antecedent, nor the consequent. If he knew the antecedent, he would also know the

3 Refer to the idea of conditional belief in section 4.4 that was an interesting candidate to solve this
problem.
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consequent. If he knew the consequent, there would be no need to analyse whether it
holds in the context of the antecedent.

Again implicatures I2.1 and I2.2 can be removed depending on a context and speaker’s
intentions. For example when we are explaining some phenomenon or our reasoning
process. Examples of conditionals not meeting the implicatures are:

— ‘If I heat water to 100 degrees, it will boil’ - said by a teacher on a physics lesson.
— ‘I know she stayed at home. If she stayed at home, then she will not come’ - said by

a friend, talking to his fellow, about a girl.

It is not that the speaker removes the implicature. In his mind appropriate mental models
for P and not P have been constructed. In the first case the teacher may be performing
an experiment where water is heated. The teacher knows he will heat the water to 100
degrees. But the conditional is said in a more general context, namely for every heated
water, not just the one at the lesson. Similarly a statement ‘If she stayed at home, then
she will not come’ is constructed with respect to a hypothetical situation where she has
not stayed at home.

Implicature I2.3 is related to implicatures I2.1 and I2.2. If q(o) was known to be true
without p(o) the speaker would know q(o) and in the consequence would have no point
in stating a conditional. It does not mean that p(o) is the required knowledge to ensure
q(o). There may be other factors determining q(o) but the speaker has no knowledge of
them as well.

Proposed conventional implicatures refer strongly to speakers subjective mood. I think,
this is a strong evidence that conditionals in their casual usage cannot be analysed
without referring to speakers knowledge and his subjective mind state.

All of the implicatures may be removed from a conditional in a particular context. This
is one of the reasons that makes conditionals so hard to define.

5.3. Understanding uncertainty - modal operators

Adding uncertainty to conditionals in form of modal operators of possibility, belief or
knowledge makes conditionals even harder to understand. Following (Katarzyniak 2007)
I am assuming natural language understanding of modal operators. Possibility operator
(It is possible that p(o)) means that the agent finds p(o) possible to hold, but does
not know that p(o) holds. I am again referring to agent’s knowledge. Belief operator (I
believe that p(o)) means that the agent thinks that p(o) rather is, but is uncertain of
it. Knowledge operator (I know that p(o)) means that agent with no doubt knows p(o).
Agent can know p(o), if she has directly observed (o ∈ P+(t)) or inferred it.

Due to natural language understanding of modal operators it is necessary for a speaker
to always choose a modal operator describing his mental state (uncertainty level) most
precisely. This implies two general common-sense constraints:
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— Always choose at most one operator to describe your knowledge.
— Choose a modal operator that describes your knowledge precisely.

According to these general constraints, it should be impossible for example to: Tell
that something is (only) possible, when the speaker knows it. Simultaneously use two
statements that differ only on modal operator i.e. ‘I believe p(o)’ and ‘I know p(o)’.
These constraints are in accordance with assumptions made in the grounding theory
(Katarzyniak 2007).

Analysing modality within conditional statements (for example p(o)→ Pos(q(o)), Pos(p(o)→
q(o))) can be very tricky, unless we realize that in everyday usage it is often omitted.
Going back to the example: ‘If you smoke, you will get a lung cancer’ compared to ‘If you
smoke, then it is possible that you will get a lung cancer’. Second one is more precise,
but looses its motivational mood. In everyday usage we often omit modalities to: make
statement simpler, stress the consequent or motivate the listener. I assume analysed
agent doesn’t possess such capabilities and apply strict criterion to always add modal
operator when it fits the statement. This implies, designed agent will always use a modal
operator within a conditional statement unless it is certain of the consequent (assuming
the antecedent).

5.3.1. Modal operator’s influence on a meaning

For conditionals without modal operators (p(o) → q(o)) and with knowledge operator
(p(o)→ Know(q(o))) it is assumed that q(o) should always hold when p(o) does. When
one adds a modal operator of possibility or belief, the assumption does not hold. Modal
operator adds certain uncertainty to conditional. Modal conditional can be also used,
where q(o) doesn’t have to hold in all cases where p(o) does.

On the other hand one does not want to resign from influence of p(o) on q(o) entirely, as
this would allow for many absurd conditionals. Exemplary statement: ‘If he is tall, then
it is possible that the apple is red.’ has no reasonable sense (at least not in any typical
circumstances). The antecedent has some chance of being true, so does the consequent.
Both are possible, but they are clearly unrelated. One can again refer to the connection
between antecedent and consequent discussed earlier.

Dependence between the antecedent and the consequent can be tricky. Let us have a
look at two examples of similar conversations:

Example 1:4

A: Can this apple be ripe?
B1: If the apple is green, then it is possible that it is ripe.
B2: If the apple is red, then it is ripe.

4 In examples 1 and 2 is is assumed: all red apples are ripe, some green apples can be ripe, most
green apples are not ripe yet.
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Example 2:
A: Can the green apple be ripe?
B1: If the apple is green, then it is possible that it is ripe.
B2: A green apple can be ripe.

B1 and B2 represent alternative answers B can give. Within the example 1, B2 seems to
be the correct answer. If we use B1, we are misleading A. From B1 A may infer that red
apples can’t be ripe. On the other hand, within example 2, answer B1 seems correct but
B2 would be better. Stated question makes the difference. Within example 1, A requires
a more detailed knowledge on the relation between a color and being ripe. Answer B2
may suggest to A that the red apple (at which he may be looking at) is not ripe. We
are dealing with a conventional implicature of a conditional that tells us something not
only about apple being red and ripe but also about it being green (not being red) and
ripe. Within example 2, the question removes this implicature from conditional and
answer B1 is correct. Both A and B know, nothing was said about apple not being ripe.
Meaning of the conditional is degraded to that of statement B2. This example suggests
that conditionals generally tell us not only about p(o)∧ q(o) but also about ¬p(o)∧ q(o).
However it is possible to remove declaration on ¬p(o) ∧ q(o) from conditional’s sense.
When this declaration is removed, I shall say the meaning of a conditional is degraded.
Otherwise I tell the meaning is full.

If You agree with me that conventionally the conditional tells us about both situations
where p(o) and ¬p(o) and the modal operator must be chosen according to the assumed
natural language usage constraints (see introductory section of this chapter), then there
remains a question on how those situations may be modelled. To answer it, I shall use a
smoker and a cancer example:

Within the example given by table 5.1 a modal operator is ‘good’ when it is well suited
to speaker’s certainty level. Modal operator is ‘bad’ when a different operator should
be used - when different operator suits better. Meaning is ‘degraded’ if conditional says
only on situations when antecedent holds (see apple examples above). Meaning is ‘full’
if whole meaning of the conditional is sustained.

Belief in table is understood as a speaker’s subjective believe in the consequent. Gener-
ally, if a consequent is very likely to happen (for the speaker), then belief in it is high. If it
is unlikely to happen, belief is low. Belief (in the consequent) is understood to ‘rise’, when
the consequent seems more probable assuming the antecedent holds. It means that when
the antecedent doesn’t hold the consequent seems less probable than in hypothetical
situations where the antecedent holds. Occurrence of the antecedent raises belief of the
consequent. Opposite situation happens when belief ‘falls’, then the consequent is less
probable assuming the antecedent.

There is a strict correlation between ‘full’/‘degraded’ meaning of a conditional and
‘rise’/‘fall’ of the belief in the consequent. In my opinion this correlation holds for all
conditionals and is a key to understanding how we use them. It is not enough for our
belief in the consequent to be high (see section 4.4).
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Table 5.1. A smoker and a cancer example

If he is a smoker, then it is possible that he has a cancer.
p(o)→ Pos(q(o)) belief: rises meaning: full modal operator: good
If he is a smoker, then it is possible that he doesn’t have a cancer.
p(o)→ Pos(¬q(o)) belief: falls meaning: degraded modal operator: bad
If he is not a smoker, then it is possible that he has a cancer.
¬p(o)→ Pos(q(o)) belief: falls meaning: degraded modal operator: good
If he is not a smoker, then it is possible that he doesn’t have a cancer.
¬p(o)→ Pos(¬q(o)) belief: rises meaning: full modal operator: bad
If he is a smoker, then I believe that he has a cancer.
p(o)→ Bel(q(o)) belief: rises meaning: full modal operator: bad
If he is a smoker, then I believe that he doesn’t have a cancer.
p(o)→ Bel(¬q(o)) belief: falls meaning: degraded modal operator: good
If he is not a smoker, then I believe that he has a cancer.
¬p(o)→ Bel(q(o)) chance: falls meaning: degraded modal operator: bad
If he is not a smoker, then I believe that he doesn’t have a cancer.
¬p(o)→ Bel(¬q(o)) chance: rises meaning: full modal operator: good

The belief for the consequent changes (doesn’t stay the same) in every statement from a
smoker and a cancer example. This happens because these two things are related. In my
opinion the change in belief is required for us, to be able to even consider a conditional.
If it doesn’t change, we do not consider a conditional statement at all. Following (Woods
2003) the connection between the antecedent and the consequent can be only epistemic in
nature, relative to speakers knowledge and circumstances, but it always exists. Following
(Davis 1983) such dependence always exists with conditionals containing ‘then’ conjunct.

This leads to a conclusion that the change in belief is a conventional implicature suitable
both for full and degraded meanings of conditionals:

I2.4 Speaker’s belief in the consequent changes, depending on whether antecedent is
assumed to hold or not to hold.

We can use conditionals in wider (degraded) sense, like: ‘If he is a smoker, then I believe
that he doesn’t have a cancer’, but only if this sense is known to be assumed both by a
speaker and a listener. Otherwise the speaker is misleading the listener.

A rise of belief in the consequent must happen to use conditional in its full mean-
ing. When hearing a conditional statement with modality we conventionally assume that
speaker’s belief in a consequent rises, when he assumes an antecedent holds. This rise of
belief is also a conventional implicature:

I3.1 Speaker’s belief in the consequent is greater, when antecedent is assumed to hold,
compared to situations where antecedent is assumed not to hold.
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I2.4 and I3.1, like other implicatures, can be removed from a statement in specific situ-
ations. Consider an example:

Example 3:
A: Can this person be a girl, if the ball is red?
B1: If the ball is red, it is possible that this person is a girl.
B2: This person can be a girl regardless of the ball’s colour.

Within example 3, the ball’s colour and person’s sex are unrelated. Despite that, B1
seems a reasonable answer. Within the dialogue, speaker A forces a conditional on B. In
result B can answer with B1, although B2 would probably be a more informative and
precise answer.

When it comes to the choice between modal operators, we tend to use operator that
mirrors our level of belief well. The belief operator (Bel) shall be used, when assuming
the antecedent makes the consequent likely to happen. The possibility operator (Pos)
shall be used, when (assuming the antecedent) the consequent is rather unlikely to
happen. At the same time, without the antecedent, the consequent is usually even more
unlikely to happen or impossible (see implicature 3.1). The knowledge operator (Know)
shall be used, if assuming the antecedent makes us certain about the consequent.

5.3.2. Modal operator’s position within a conditional

When it comes to conditionals, a modal operator can be situated in different places in a
sentence. Here two cases are considered:

— Conditional modality : a modal operator is placed in a consequent (p(o)→ Pos(q(o)),
p(o)→ Bel(q(o)), p(o)→ Know(q(o)) ).

— Modal conditional : a modal operator is placed at the beginning of a statement
(Pos(p(o)→ q(o)), Bel(p(o)→ q(o)), Know(p(o)→ q(o)) ).

Interpreting those two types of statements requires analysis of conventional implicatures
of conditionals together with modal operators. Let us look at two statements: ‘If p(o),
then I believe that q(o)’ and ‘I believe that if p(o), then q(o)’. Do these two differ in
meaning? If yes, then how? And finally: How to formulate this difference formally?

Let us compare two examples with belief operator:

— ‘I believe that if it is a bird, then it can fly.’ compared to ‘If it is a bird, then I believe
that it can fly’.

— ‘I believe that if they love each other, then they will get married.’ compared to ‘If
they love each other, then I believe that they will get married’.

Within the former pair, the second statement seems slightly better. Within the later,
the first sentence seems slightly better. But why? In my opinion, conditional modality
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stresses uncertainty at the consequent, while modal conditional stresses uncertainty for
the whole statement.

The modality in a consequent means that the speaker: Knows the conditional p(o)→ q(o)
is not true. Knows that p(o) significantly changes the chance of q(o). Even if he found
out p(o) holds and q(o) does not, he would not be wrong. q(o) is not guaranteed by p(o).
Returning to the example: the speaker knows that there are birds that can not fly, but
most of them can.

Placing modality before the whole statement means that the speaker has some doubts
whether the conditional as a whole holds. He is not sure whether p(o) → q(o) is as
the whole sentence true or not. If he found out that p(o) holds and q(o) does not, he
would feel he was wrong (his belief was wrong). Returning to the example: we tend to
believe that true love should lead to a wedding. If this doesn’t happen, we ask questions
if it was really a true love. It seems that an eventual wedding is written somewhere
in the definition of true love. On the other hand, we know that not every love leads
to a wedding. That’s why we use the modal operator of belief at the beginning of the
conditional. We can’t (or don’t want to) deny it and we can’t prove it.

In my opinion we are dealing with two types of beliefs here. One is of statistical nature: I
know most examples in the past supported my claim but some did not. Another one is of
metaphysical nature, something like: I am not familiar with the domain I am speaking
about, but I believe it may be so (it either is so or not, but I am not in a position
to be sure which one it is). We can notice such distinction also for simple statements
(Bel(p(o))). A statement ‘I believe that this bird can fly’ (I don’t know the exact species)
represents a statistical possibility. On the contrary a statement ‘I believe all birds can
fly.’ (said by a child unfamiliar with birds that can’t fly, like ostriches or penguins) is of
metaphysical nature.

Similar situation happens for possibility operator. When it is applied to the beginning of
a conditional, it applies uncertainty to the whole statement. Applied to the consequent,
stresses uncertainty of the consequent, given the antecedent.

In case of the modal operator in front of a statement (for example Pos(p(o) → q(o)))
the uncertainty applies to whole conditional, speaker claims the conditional is true but
is uncertain of that. Applying modal operator to the consequent (for example p(o) →
Pos(q(o))) stresses that the speaker sees some distribution between situations p(o)∧q(o)
and p(o) ∧ ¬q(o). To explain this phenomenon more, let me use a bulb example:

— Know(p(o)→ q(o)): I know that, if the bulb shines, then you turned the light switch
on earlier.

— Pos(q(o)→ p(o)): It is possible that, if you turned the light switch on, then the bulb
does not shine.

— q(o)→ Pos(p(o)) If you turned the light switch on, then it is possible that the bulb
does not shine.

If the bulb lights it surely must have been turned earlier on. Yet it is possible that
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the bulb does not light, although the switch was turned on. This happens when the
bulb is broken. When speaking of the one specific bulb, we can accept simultaneously
statements 1 and 2. Within statement 2, the speaker does not dispute whether there is
some probabilistic distribution between turning the switch and lighting the bulb. The
speaker tells, simply that either the bulb lights or not (either he is right or wrong).
Within statement 3, the speaker tells the bulb may lit or not lit at some chance. He
marks that there is some possibility of (not) lighting.

The choice between possibility, belief and knowledge operators depends strictly on our
certainty levels. We tend to use a modal operator that is well fitted to the certainty level.

Conventional implicatures for conditionals with modal operators are:

I1.4 For ‘If p(o), then I it is possible that q(o)’
Speaker thinks that q(o) may hold, when p(o) is assumed to hold.

I1.5 For ‘If p(o), then I belive that q(o)’
Speaker thinks that q(o) rather holds, when p(o) is assumed to hold.

I1.6 For ‘It is possible that if p(o), then q(o)’
Speaker is uncertain, whether p(o) implies q(o).

I1.7 For ‘I believe that if p(o), then q(o)’
Speaker is somewhat uncertain, whether p(o) implies q(o).

Implicatures I1.4 and I1.5 state that q(o) may hold or not. Antecedent p(o) does not have
to imply q(o). On the other hand, implicatures I1.6 and I1.7 state that the speaker is
uncertain whether p(o) causes q(o). Speaker wishes to be so, but feels he may be wrong.

5.4. Common-sense constraints

Thesis considers a problem of grounding modal conditional statements within the cogni-
tive agent. Proper grounding is understood here as a relation between a statement and
agent’s knowledge state that exists only when it meets common-sense constraints re-
lated to natural language usage and understanding of conditionals and modal operators.
Within this section I formulate such common-sense constraints. These constraints are
related to conventional implicatures I1.1 - I3.1 and additional conclusions underlined in
sections earlier. Constraints are formulated to suit a model of the cognitive agent that
is using indicative conditionals to answer simple questions or to describe some observed
environment. Agent formulates conditionals basing only on its empirical knowledge con-
sisting of past and current observations of the environment.

5.4.1. Formal constraints

Implicatures provided earlier have been divided into three groups: I1.* (I1.1 - I1.7), I2.*
(I2.1, I2.2, I2.3, I2.4) and I3.* (I3.1). Group I1.* provides most general implicatures a
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reasonable message recipient can make. Groups I2.* and I3.* provide additional implica-
tures that further constrain conditional’s meaning. Provided implicatures are related to
conventional situations where conditionals are used in natural language communication.

Most of proposed implicatures can be removed from a statement in particular circum-
stances. To avoid interpretative problems further reasoning on conditionals is limited to
indicative conditionals uttered to answer simple questions related to the consequent or
to describe observed environment. In accordance with formal language specifications the
antecedent and the consequent refer to binary properties an object may posses or lack.

Constraints proposed below define properties of agent’s cognitive state required for
proper grounding of a conditional statement. Cognitive state is constructed from em-
pirical knowledge and has been formally defined in section 2.4. Proposed constraints
are formulated from implicatures, but refer directly to agent’s empirical knowledge.
Constraints are divided into three groups. Group C1 is related to implicatures I1.*.
Group C2 is related to implicatures I2.*. Adding C2 to C1 further filters conditionals to
ensure rational usage of conditionals. Finally adding C3 (related to I3.1) makes the most
restrictive group of constraints ensuring conditionals obey all conventional implicatures
and hence sustain the most typical understanding of a modal conditional statement.

Consider a conditional with p(o) as an antecedent and q(o) as a consequent. Relevant
empirical material is accessible to an agent via cognitive state MS(t). It contains base
profiles that support the antecedent (o ∈ P+) or neglect it (o ∈ P−)5. Similarly the
consequent is supported (o ∈ Q+) or neglected (o ∈ Q−). A specific distribution of
empirical material between these disjoint cases allows for proper grounding of conditional
statements. For the conditional to be properly grounded the following constraints must
be met:

Constraints group C1

C1.1 For all statements:
Agent possesses empirical material where o ∈ P+. o ∈ P+ is at least possible.

C1.2 For all statements:
Agent possesses empirical material where o ∈ Q+. o ∈ Q+ is at least possible.

C1.3 For p(o)→ q(o), p(o)→ Know(q(o)) and Know(p(o)→ q(o)):
In the cognitive state there is no observation where o ∈ P+ and o ∈ Q−.

C1.4 For p(o)→ Pos(q(o)):
Agent possesses empirical material, where o ∈ Q+ and o ∈ P+. There is also a lot of
data, where o ∈ P+ and o ∈ Q−.

C1.5 For p(o)→ Bel(q(o)):
Agent possesses empirical material, where o ∈ P+ and o ∈ Q+ held. There is also some
data, where o ∈ P+ and o ∈ Q−.

5 The time index was intentionally removed as I am referring to any time moment
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C1.6 For Pos(p(o)→ q(o)) and Bel(p(o)→ q(o)):
Within conscious area, there is no empirical material, where o ∈ P+ and o ∈ Q−.

C1.7 For Pos(p(o)→ q(o)):
Agent possesses a lot of empirical material (in unconscious area), where o ∈ P+ and
o ∈ Q−.

C1.8 For Bel(p(o)→ q(o)):
Agent possesses some empirical material (in unconscious area), where o ∈ P+ and o ∈
Q−.

Constraints C1.1 and C1.2 are a result of implicatures I1.1 and I1.2 respectively. These
constraints limit usage to indicative conditionals. If agent knew ¬p(o) or ¬q(o), the
conditional would be a counter-factual conditional.

Constraint C1.3 is a result of implicature I1.3. It means P must imply Q. According
to constraint C1.3, for all conditionals with modal operator of knowledge (Know) the
position of modal operator does not matter, i.e. they have the same usage restrictions.
Constraint C1.3 refers directly to material implication, whose truth is defined by induc-
tive reasoning: For all experienced P and Q, whenever was P , there was also Q. Based
on inductive reasoning, material implication: p(o)⇒ q(o) is true. Similarly p(o)→ q(o),
p(o)→ Know(q(o)) and Know(p(o)→ q(o)) are true (according to this constraint).

Constraints C1.4 and C1.5 have been deduced from implicatures I1.4 and I1.5 respec-
tively. These constraints impose natural language understanding of modal operators of
possibility and belief. Constraints C1.3, C1.4 and C1.5 are assumed to be disjoint. This
is a result of common-sense assumptions on modal operators, where at most one of them
can be used.

Constraint C1.6 is a joined conclusion on implicatures I1.6 and I1.7. It states that agent’s
uncertainty can’t be applied to the consequent. Agent is uncertain about the conditional
sentence as a whole. There is no relevant, explicitly accessible empirical material that
would deny the conditional sentence.

Constraints C1.7 and C1.8 provide conditions for uncertainty in accordance with im-
plicatures I1.6 and I1.7 respectively. This phenomenon is modelled by the division of
agent’s empirical material into conscious and unconscious areas. Unconscious area of
cognitive state is the source of this uncertainty. Similarly to constraints C1.3-C1.5 it is
assumed C1.7 and C1.8 can’t be simulatenously met.

Constraints’ Group C1 does not filter statements like:

— If he is tall, then birds can fly. (no constraints to ensure dependence between P and
Q)

— If the ball is red, then it is possible that this person is a girl. (no constraints to ensure
dependence between P and Q)

— If 2 + 2 = 4, then a word ‘apple’ is a noun. (no constraints to ensure the speaker
doesn’t know P or Q)
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This group does not constrain formulas enough to ensure every uttered (and previously
properly grounded) conditional possesses its conventional natural language meaning.

Additional group C2

Group C2 refers to rational usage of conditionals and is related to implicatures I2.1-4.

For all conditionals:
C2.1 Agent possesses empirical material supporting both o ∈ P+ and o ∈ P−.
C2.2 Agent possesses empirical material supporting both o ∈ Q+ and o ∈ Q−.
C2.3 The distribution of empirical material between o ∈ Q+ and o ∈ Q− is significantly
different, between observations where o ∈ P+ and where o ∈ P−.

Together constraints C1 and C2 filter conditional according to common, rational usage
of conditionals. Usually, the speaker mustn’t know neither the antecedent, nor the con-
sequent. If he knew at least one of them, he would mislead the listener. Such assumption
is valid for the considered usage of a conditional. A epistemic connection between the
antecedent and the consequent is required (see implicature I2.4). Constraints still do not
filter out conditionals in their ‘degraded’ sense (see section 5.3.1) like:

— If he is a smoker, then I believe he doesn’t have a lung cancer. (no constraints on the
rise of belief in the consequent)

— If the apple is green, then it is possible that it is ripe.

Additional group C3

Constraint C3 is deduced from implicature I3.1. It limits conditionals usage to situa-
tions where the belief in the consequent is higher when one assumes the antecedent.
Adding constraint C3 to groups C1 and C2 forces the most restrictive understanding of
conditionals. It ensures ‘full’ meaning of conditionals is sustained (see section 5.3.1).

C3 For all conditionals:
Empirical material supports the thesis that o ∈ Q+ is significantly more probable, when
o ∈ P+, compared to observations where o ∈ P−.

A conditional sentence obeying all constraints C1 + C2 + C3 can always be understood
as a typical indicative conditional statement. The statement said by a speaker who
doesn’t know neither p(o), nor q(o). Additionally the statement said to underline that
p(o) increases speakers belief in q(o).

5.4.2. Simultaneous usage constraints

Basing on constraints from section 5.4.1 one can outline pairs of conditionals that can or
can not be used simultaneously. It means that a reasonable speaker, obeying constraints
C1, C2 and C3 can / can’t be in a position to utter (at the same time moment and
cognitive state) both statements.
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Table 5.2. Some non-trivial pairs of modal conditionals and their acceptability according
to constraints C1-C3. Columns C1, +C2 and +C3 mean usage of only constraints C1,
C1+C2 and C1+C2+C3 respectively. Symbol 3 means simultaneous usage of statements
is allowed and 5 means it is disallowed. Numbers Cn refer to constraints that disallow

simultaneous usage of given pairs.

no. pair C1 +C2 +C3
S1 p→ Know(q), ¬p→ Know(q) 3 5 C2.2 5

S2 p→ Know(q), ¬p→ Know(¬q) 3 3 3

S3 p→ Know(q), p→ Know(¬q) 5 C1.14 5 5

S4 p→ Know(q), p→ Bel(q) 5 C1.3, C1.51 5 5

S5 p→ Know(q), p→ Pos(q) 5 C1.3, C1.41 5 5

S6 p→ Bel(q), p→ Pos(q) 5 C1.4, C1.51 5 5

S7 p→ Know(q), p→ Pos(¬q) 5 C1.3, C1.4 5 5

S8 p→ Bel(q), p→ Bel(¬q) 5 C1.55 5 5

S9 p→ Bel(q), p→ Pos(¬q) 3 3 5 C3
S10 p→ Know(q), q → Pos(¬p) 3 3 3 5 C32

S11 p→ Bel(q), q → Bel(¬p) 3 3 5 C32

S12 p→ Bel(q), q → Pos(¬p) 3 3 5 C32

S1’ Know(p→ q), Know(¬p→ q) 3 5 C2.2 5

S2’ Know(p→ q), Know(¬p→ ¬q) 3 3 3

S3’ Know(p→ q), Know(p→ ¬q) 5 C1.34 5 5

S4’ Know(p→ q), Bel(p→ q) 5 C1.3, C1.81 5 5

S5’ Know(p→ q), Pos(p→ q) 5 C1.3, C1.71 5 5

S6’ Bel(p→ q), Pos(p→ q) 5 C1.7, C1.81 5 5

S7’ Know(p→ q), Pos(p→ ¬q) 5 C1.3, C1.7 5 5

S8’ Bel(p→ q), Bel(p→ ¬q) 5 C1.85 5 5

S9’ Bel(p→ q), Pos(p→ ¬q) 3 3 5 C3
S10’ Know(p→ q), Pos(q → ¬p) 3 3 3 5 C32

S11’ Bel(p→ q), Bel(q → ¬p) 3 3 5 C32

S12’ Bel(p→ q), Pos(q → ¬p) 3 3 5 C32

1 Statements are unacceptable simultaneously due to an assumption that only one modal
operator can be used. We assume constraints mentioned in the table are disjoint.
2 It is impossible for both beliefs for Q (assuming P ) and ¬P (assuming Q) to rise.
3 see the bulb example
4 This pair can’t be used as indicative conditionals. p is at least possible.
5 It is unwise to believe both in q and ¬q. ‘Some data’ in constraints C1.5 and C1.8
mean there is not much data.



6. Grounding of conditional statements

Whole grounding process should be evaluated simultaneously on a word, a phase and a
sentence levels. An agent figures out the meaning of words, then phrases and in the end
whole statements. All levels may influence each other. Within the grounding theory and
this thesis the grounding process is constrained only to the sentence level. It is assumed
simple words and phases have been previously grounded by the agent. Grounding shall be
considered only on a modal formula level. A fixed and known meaning of objects and
properties language representations is assumed, so agent is able to associate internal
reflection o ∈ P+(t) with a language representation p(o).

Grounding on a sentence level requires a construction of a relation between the cognitive
state and the external representation in form of modal conditional formula. In order for
such relation to be proper, it must stand in compliance with common-sense constraints
proposed earlier. Only then an uttered formula sustains it conventional meaning. In
result a recipient may reason not only on the environment but also on speaker’s sub-
jective knowledge state. Depending on a conditional’s usage, recipient’s conclusions can
be limited according to constraints C1, C1+C2 or C1+C2+C3. Solution to the ground-
ing problem is obtained by proposing of formal grounding criteria in form of episemic
relations for conditionals.

The proposed empirical knowledge and cognitive state model provide information neces-
sary to solve the grounding problem for typical conditionals. In the simplest case, when
speaking of a directly perceived object, the grounding process can be realized in the
following steps:

1. A physical object o has property P in environment (o ∈ P (t)).
2. Agent perceives this feature, what results in a realization of an internal reflection
o ∈ P+(t).

3. Agent forms a cognitive model that holds only one base profile: BP (t).
4. Mental representation consists only of one reflection o ∈ P+(t).
5. Agent assigns a language representation to mental representation and utters p(o)

(‘Object o is p’).

Realization of step 5 requires the grounding process on word and phrase levels. In order
to choose proper language representation, one has to construct a link between language
symbol p(o) and its mental representation o ∈ P+(t), so symbol p(o) must be previously
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grounded. It is assumed such process has already taken place and this problem is outside
the scope of the grounding theory.

Process described in steps 1-5 above is the simplest case, where described object is
directly observed. The relation between internal reflections and mental representations
usually is not so straightforward. It is never straightforward, when described objects
are not perceived directly or when considering complex statements. For a conditional
statement p(o) → Bel(q(o)), the grounding process can be realized in the following
steps:

1. A physical object o has properties P and Q (o ∈ P (t), o ∈ Q(t)).
2. Agent is unable to directly observe these properties (o ∈ P±(t), o ∈ Q±(t)).
3. Agent constructs a cognitive state. It consists of base profiles from empirical knowl-

edge KS(t) relevant to current circuimstances.
4. Mental representation of a conditional statement is formed from the cognitive state.

Mental representation is a result of past observations of o (not) being P and (not)
being Q.

5. Agent assigns a matching language representation from language L′ describing ob-
tained mental representation and utters p(o) → Bel(q(o)) (‘If o exhibits p, then I
believe o exhibits q’).

The transition from physical object to an external language representation is realized
through the cognitive state. The cognitive state in turn is constructed from past empirical
knowledge, not from a direct observation. Assignment of the language representation to
the mental representations performed in step 5 is crucial for proper grounding of a
modal conditional formula. It is necessary to formulate criteria that allow grounding
of conditionals consistent with the common-sense constraints. This is the key problem
addressed in the thesis.

Next section slightly changes definition of one component of the grounding theory, the
cognitive state. This slight change allows for more flexibility in the choice of utterances
context.

The layout of further sections is similar to the one used to present the grounding theory in
chapter 2. Firstly grounding sets that distribute empirical material to four mutual cases
of o (not) being P and (not) being Q are defined. After that (section 6.3) a measure
called grounding strength is defined. It quantifies the empirical material distribution
with respect to a conditional. Section 6.4 proposes an conditional relation that is used
to filter out irrational usage patterns of conditionals. Finally, in sections 6.5-6.7, formal
definitions of epistemic relations for conditionals are formulated. Epistemic relations are
proposed in three variants, each related to one group of previously presented constraints.
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6.1. Cognitive state redefined

Mental representation is a part of the cognitive state (the state of all object repre-
sentations and processes realized in mind). Cognitive state model is understood in the
grounding theory as a structure, ordering preprocessed empirical material MS(t), taking
part in grounding of modal statements. Cognitive state model holds observations from
the past. These observations are distributed into two levels (conscious and unconscious).

In its raw form, the grounding theory allows for grounding of statements about the
current time moment. It is easy to change respective definitions of epistemic relations
2.12, 2.13 to allow for grounding of statements generally describing agents knowledge. To
do so one can simply remove requirements related to the current observation: o ∈ P±(t),
o ∈ Q±(t) or o ∈ P+(t), o ∈ Q+(t). There are a few papers that have employed this
approach.

Although the grounded formulas are about the current time moment, dependencies be-
tween the properties are not taken into consideration by the grounding theory. In the
computational example (section 2.6), one can notice that o1 and o3 always together
exhibit or lack the property P1. One can discover this knowledge and use it to conclude
o1 exhibits P1 at time moment t = 6. Such reasoning is outside the scope of the grounding
theory. The grounding theory, in its raw form, always uses whole empirical material (see
definition 2.7 for the cognitive state) as the conscious and unconscious areas always sum
to KS(t). In result utterances are not contextualized.

Mental representation depends greatly on the choice of empirical material supporting
it. This empirical material should be relevant to considered context i.e. to the context
of an utterance. When the agent is speaking of some object o and its property P in
general (simply summaries its knowledge base), all the empirical material, where these
were observed, takes part in the construction of mental representation.

Katarzyniak, later in his book (Katarzyniak 2007), proposed a few strategies that allow
for contextualisation. A few solutions to this problem can be also found in (Popek 2012).
All of these approaches usually have two common features. Firstly the empirical material
is filtered to discard observations (base profiles) that are irrelevant to considered circum-
stances. This implies that only relevant empirical material takes part in the grounding
process. Secondly some distance measure between base profiles is presented to divide
the empirical material between conscious and unconscious areas. Base profiles that are
similar to the assumed context (for example to the current observation) are placed into
the conscious area.

To allow for more flexibility in contextualisation the definition of the cognitive state is
slightly changed:

Definition 6.1. Agent’s cognitive state model at moment t denoted as CS(t) is defined
as a division of knowledge state KS(t) into CS(t) and CS(t):

CS(t) = CS(t) ∪ CS(t) ⊆ KS(t) and CS(t) ∩ CS(t) = ∅
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Sets CS(t) and CS(t) are called conscious and unconscious areas of knowledge state at
moment t.

In comparison to the original definition 2.7, there may be some non-empty area KS(t) \
CS(t) excluded from the cognitive state. Empirical material held within this area is
meant to be irrelevant to the considered context. Such a minor change does not neglect
the assumptions made in the grounding theory. It simply allows for more flexibility in
the choice of the context. Empirical material taking part in the grounding process can
now be freely filtered depending on particular needs.

This change allows to switch the referent of the statement (for example the described
time) without redefining the cognitive state model or the epistemic relations. When the
agent is speaking on current time moment only relevant, most similar, empirical material
should be chosen. Suppose the agent has observed that at moment t object o exhibits P .
Further assume the agent wants to utter a statement about o exhibiting P now (at the
current time moment). In such case only the direct observation matters. Past empirical
material is irrelevant as it is not important how many times this property has (not)
been observed. In such case the cognitive state should hold only the current observation
resulting in a partition CS(t) = {BP (t)}, CS(t) = ∅ and the grounding of a formula
Know(p(o)). Now suppose the agent has not observed at time t whether the object o
exhibits P . In order to utter a statement about o exhibiting P (now, not generally) the
agent has to refer to its past experiences. In the grounding theory the agent has to use
all of the empirical knowledge. But the intelligent agent should choose only the empirical
material that is somehow relevant. The changed definition of the cognitive state simply
allows for choosing of the relevant material. The relevance of the empirical material is a
separate matter outside the bounds of this work.

From now all components of the grounding theory such as the grounding sets and ground-
ing strengths use the newly defined cognitive state CS(t) (definition 6.1) instead of the
original version MS(t) (definition 2.7).

Obviously the proposed cognitive state model is still a cruel simplification of real human
cognitive states. This model mirrors only the most crucial properties of real cognitive
states. The properties that are important in the context of the grounding process.

The distribution to conscious and unconscious parts depends on agent’s mental capabil-
ities. For humans the division results from focussing on some phenomenon, where most
adequate empirical material plays the key role in situation’s evaluation, while the rest
of it stays deep in mind but is internally felt. This feeling results in an awareness level
influencing the choice of mental representations and defining the states of mind and
further mental processes. In computer systems this distribution may be understood as a
division into thoroughly processed data and data partially processed or awaiting to be
processed.

The final division between conscious and unconscious levels of awareness depends not
only from the mental capabilities but also from agent’s point of focus. This point of focus
includes considered context (for example time bounds) and considered properties. If the
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agent focuses on property P , the resulting cognitive state shall be different than when
she considers property Q.

One can think of many possible solutions to the problem of constructing the cognitive
state partitions according to the proposed model. As this is a separate problem, the
grounding theory does not focus on it. Within simulations presented in chapter 9 some
simple exemplary solutions are proposed. In further paragraphs it is simply assumed
that the partition of the empirical material in the cognitive state is fixed for given time
moment.

6.2. The grounding sets

When considering the grounding of a complex statement i.e. a conditional formula p(o)→
q(o), mental representations of both properties P and Q have to be considered within
the cognitive state. All base profiles, where both properties were observed form a mental
representation of an interrelation between these properties. This mental representation
forms the whole relevant grounding material of a conditional formula. The grounding
sets for a conditional are defined similarly as the grounding sets for a conjunction.

Definition 6.2. Let grounding material for a given cognitive state and a formula ex-
pressing information about object o and its properties P and Q be defined as a set C:

C(t, o, P,Q) = {BP (t̂) ∈ CS(t) : o ∈ P+(t̂) ∪ P−(t̂) ∧ o ∈ Q+(t̂) ∪Q−(t̂)}

where t̂ ∈ T denotes any time moment t̂ ¬ t.

The grounding material can be divided into conscious and unconscious areas according
to the cognitive state:

C(t, o, P,Q) = C(t, o, P,Q) ∩ CS(t), C(t, o, P,Q) = C(t, o, P,Q) ∩ CS(t)

Grounding material C can also be divided into the grounding sets, Cp(o)∧q(o), Cp(o)∧¬q(o),
C¬p(o)∧q(o), C¬p(o)∧¬q(o). Each grounding set contains past observations supporting one
of four possible situations1.

Definition 6.3. Grounding sets define a partition of grounding material into four mu-
tually disjoint cases according to valuations of properties P and Q:

Cp(o)∧q(o) ={BP (t̂) ∈ C : o ∈ P+(t̂) ∧ o ∈ Q+(t̂)}
Cp(o)∧¬q(o) ={BP (t̂) ∈ C : o ∈ P+(t̂) ∧ o ∈ Q−(t̂)}
C¬p(o)∧q(o) ={BP (t̂) ∈ C : o ∈ P−(t̂) ∧ o ∈ Q+(t̂)}
C¬p(o)∧¬q(o) ={BP (t̂) ∈ C : o ∈ P−(t̂) ∧ o ∈ Q−(t̂)}

1 To simplify notation, object o and time t are often omitted. We consider one fixed object o and
time moment t. Symbols p and q are short notations of p(o) and q(o) respectively. Symbols C,CS, CS
etc. are short forms of C(o, P,Q, t), CS(t), CS(t) etc.
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where t̂ ∈ T denotes any time moment t̂ ¬ t.

For example set Cp(o)∧¬q(o) contains observations where object o exhibited property P
but didn’t exhibit Q. Intuitively, the more grounding material in Cp(o)∧q(o) and the less
material in Cp(o)∧¬q(o), the more willing we are to utter a conditional p(o)→ q(o).

Grounding material where object o was P (Q) regardless of Q (P ) can be calculated as
an union of sets:

Cp(o) = Cp(o)∧q(o) ∪ Cp(o)∧¬q(o) (6.1)

Cq(o) = Cp(o)∧q(o) ∪ C¬p(o)∧q(o) (6.2)

Eventually each grounding set can be divided into conscious and unconscious partitions.
Let φ ∈ {p(o),¬p(o)}, ψ ∈ {q(o),¬q(o)}:

C
φ∧ψ = Cφ∧ψ ∩ C, Cφ∧ψ = Cφ∧ψ ∩ C and Cφ∧ψ = C

φ∧ψ ∪ Cφ∧ψ (6.3)

Together grounding sets form a grounding material that can be freely divided into types
of situations residing in conscious or unconscious parts of agent’s mind:

C = Cp(o)∧q(o) ∪ Cp(o)∧¬q(o) ∪ C¬p(o)∧q(o) ∪ C¬p(o)∧¬q(o) (6.4)

C = C
p(o)∧q(o) ∪ Cp(o)∧¬q(o) ∪ C¬p(o)∧q(o) ∪ C¬p(o)∧¬q(o) (6.5)

C = Cp(o)∧q(o) ∪ Cp(o)∧¬q(o) ∪ C¬p(o)∧q(o) ∪ C¬p(o)∧¬q(o) (6.6)

6.3. The relative grounding strength

To quantify a interrelation between object’s properties P and Q one requires a numeric
measure. Such measure, similarly as in the grounding theory, is called a relative grounding
strength. The relative grounding strength is a value between 0 and 1. Intuitively, when
it is close to 1, we are willing to accept a conditional statement.

Definition 6.4. Let the cognitive state CS(t) be given. Let the relative grounding strength
of a base formula p(o)→ q(o) be defined as2:

λp(o)→q(o) =
card(Cp(o)∧q(o))

card(Cp(o)∧q(o) ∪ Cp(o)∧¬q(o))

Since the sets Cp(o)∧q(o) and Cp(o)∧¬q(o) are disjoint:

card(Cp(o)∧q(o) ∪ Cp(o)∧¬q(o)) = card(Cp(o)∧q(o)) + card(Cp(o)∧¬q(o)).

2 Relative grounding strengths for ¬p(o) or ¬q(o) are calculated similarly
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To be able to calculate grounding strength one requires that the denominator is not
zero. If the denominator were equal to zero, considered conditional statement would not
be an indicative conditional. If it were that always not p, we would be dealing with a
subjunctive conditional, which is not considered within the thesis.

One can find similarities between the relative grounding strength and conditional prob-
ability or more precisely an estimator for conditional probability. The main difference is
that grounding strength is subjective and calculated from the cognitive state. In oppo-
sition to conditional probability or belief we are not searching for a formal conditional
probability distribution. Relative grounding strength is a measure quantifying impact of
the grounding material on Q provided that P .

6.4. The conditional relation - a pragmatic filter

The knowledge that the antecedent holds (or doesn’t hold) must impact the subjective
chance of holding of the consequent. Strawson (Strawson 1952) claims that natural lan-
guage conditional implies some kind of connection between antecedent and consequent.
Ajdukiewicz (Ajdukiewicz 1956) shifts the problem to language common. Grice (Grice
1957) calls it implicature. It is difficult to deny that there must be some kind of relation
that joins antecedent and consequent yet it can be very difficult to grasp. According to
(Woods 2003) this connection can be only epistemic in its nature. It can be valid only
in particular circumstances for a particular person. If there is no such connection, there
is no point in stating an indicative conditional. This property of conditionals has been
already more throughly discussed in section 5.1.

Here conditionals are evaluated from agent’s perspective basing on its knowledge. It
seems reasonable to model such an epistemic connection between the antecedent and the
consequent. To model this phenomenon a conditional relation (Skorupa and Katarzyniak
2011) is introduced.

Definition 6.5. Let f : [0, 1]→ [0, 1] and f : [0, 1]→ [0, 1] are lower and upper boundary
functions respectively iff they meet the following criteria:

1. f(x) ¬ x and f(x)  x for all x
2. f, f are monotonically increasing (non-decreasing)
3. f, f are continuous on [0, 1]

For a given upper and lower boundary functions one can define conditional and strict
conditional relations:

Definition 6.6. We say q(o) is conditionally related to p(o) if and only if:

λp(o)→q(o) > f(λ¬p(o)→q(o)) or λp(o)→q(o) < f(λ¬p(o)→q(o))
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Definition 6.7. We say q(o) is strictly conditionally related to p(o) if and only if:

λp(o)→q(o) > f(λ¬p(o)→q(o))

For Q to be conditionally related with P , there must be a significant difference in the
occurences of Q between situations where P holds and the ones where it does not. The
required absolute value of that difference changes depending on various λp(o)→q(o) and
λ¬p(o)→q(o) settings. Strict conditional relation requires the chance for Q to rise when
P holds. In other words: agent must notice a significant increase in the occurrences of
o ∈ Q+(t) in situations, where o ∈ P+(t).

The main advantage of conditional relation is that it can be used to filter out lots of
unreasonable conditionals like: ‘If he is tall, then birds can fly’, ‘If the Moon is a piece of
cheese, then I can jump 100 meters.’. Furthermore conditional relation works well with
modalities. Conditional relation does not hold for a statement: ‘If birds can fly, then it
is possible you will die on a day with an even date’. It is possible you will die on a day
with an even date, but it is possible regardless of birds abilities.

The main disadvantage is that it can filter out some roughly related antecedents and
consequents. Upper and lower boundary functions must be chosen carefully. One can
choose any upper boundary function f as long as it meets provided criteria. Let us
propose a few exemplary upper boundary functions:

f c(x) =
√
r2 − (x− x0)2 − x0 + 1, where r  1, x0 =

1 +
√

2r2 − 1
2

(6.7)

f s(x) = n
√
x, where n  2 (6.8)

f q(x) = −(1− x)n + 1, where n  2 (6.9)

Function f c is a circle fragment crossing points (0,0) and (1,1). Parameter r is a radius of
that circle. The smaller the radius, the more significant difference between λp(o)→q(o) and
λ¬p(o)→q(o) is required. Figure 6.1 presents exemplary fc function. Grey area contains all
points meeting strict conditional relation (see definition 6.7).

Theorem 6.1 states that a lower boundary function can be easily constructed from an
upper boundary function and vice versa.

Theorem 6.1. Function f(x) is a proper upper boundary function iff f(x) = 1−f(1−x)
is a proper lower boundary function.

Proof. Obviously f(x) = 1 − f(1 − x) is a continous function over [0, 1]. Proper lower
boundary function has to meet condtions 1 and 2.
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Condition 1: We know that f(x)  x.

f(x)  x / x = 1− t
f(1− t)  1− t

t  1− f(1− t) = f(t)

Condition 2: We know that for any a > 0: f(x+ a)  f(x)

f(x+ a)  f(x) / x = 1− t
f(1− t+ a)  f(1− t)

1− f(1− t+ a) ¬ 1− f(1− t)
f(t− a) ¬ f(t)

The proof in the opposite direction is similar.

Required absolute difference between λp(o)→q(o) and λ¬p(o)→q(o) varies based on their
values. Let us analyse four exemplary points in the context of strict conditional relation
and upper boundary function given by figure 6.1.

Assume λp(o)→q(o) = 1 and λ¬p(o)→q(o) = 0.2. This setting meets conditional relation. In
case of P we are sure of Q. Without P , Q is only possible. It is the most typical case,
where conditionals are used.

Secondly assume a setting: λp(o)→q(o) = 0.5, λ¬p(o)→q(o) = 0.6. Such point doesn’t lie
within grey area presenting strict conditional relation. On the contrary, the point might
be accepted by a conditional relation. When P holds, chance for Q diminishes. Please
compare with constraints C2, C3 and section 5.3.1.

Thirdly assume λp(o)→q(o) = 0.2, λ¬p(o)→q(o) = 0.05. Overall chance of Q is small. This
point (for reasonable radius r) lies within grey area and the conditional relation holds.
Although the absolute probability difference is low (equal to 0.15), the occurrence of P
increases chance for Q four times.

In the end, let us assume a point λp(o)→q(o) = 1, λ¬p(o)→q(o) = 1. In such case λp(o)→q(o) =
λ¬p(o)→q(o) and conditional relation doesn’t hold for any upper boundary function. We
know that Q always occurs regardless of P , so there is no point in stating a conditional.
The nth root function fs requires little difference between λp(o)→q(o) and λ¬p(o)→q(o),
when λ¬p(o)→q(o) is close to one and a significant difference, when it is close to zero.
nth power function f q has the opposite property: significant difference, when λ¬p(o)→q(o)

probability is low and little difference, when it is high.

6.5. (Normal) epistemic relations

In this section the epistemic satisfaction relations for: p(o) → Know(q(o)), p(o) →
Bel(q(o)) and p(o) → Pos(q(o)) is defined. If the epistemic relation holds, the state-
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Figure 6.1. Exemplary upper boundary function f c. Grey area marks allowed combina-
tions of the grounding strengths according to the strict conditional relation definition

6.7.

ment can be properly grounded (has conventional meaning). The definitions tell whether
agent’s cognitive state allows for grounding of the conditional statements.

There are three variants of the definitions. Definitions from variant 1, given by 6.8-6.13,
are consistent with constraints group C1 but do not meet constraints C2 and C3. Defini-
tions 6.14 and 6.15 additionally meet pragmatic constraints from group C2. Definitions
6.16 and 6.17 meet all constraints from group C1, C2 and C3. The former definitions
enforce the most restrictive and conventional understanding of conditional sentences.

In definitions CS is used as a short notation for CS(t). Current time moment t ∈ T is
assumed to be fixed and known.

6.5.1. Epistemic relations for conditional modalities

Definitions 6.8-6.10 present proper grounding conditions for the conditional modalities,
where the modal operator is placed in the consequent. These epistemic relations shall be
also called normal epistemic relations and have been designed to meet constraint group
C1.

Definition 6.8. Epistemic relation CS |=E p(o)→ Pos(q(o)) holds iff
1. Cp(o) 6= ∅
2. λminPos < λp(o)→q(o) ¬ λmaxPos

Definition 6.9. Epistemic relation CS |=E p(o)→ Bel(q(o)) holds iff
1. Cp(o) 6= ∅
2. λminBel < λp(o)→q(o) < λmaxBel
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Definition 6.10. Epistemic relation CS |=E p(o)→ Know(q(o)) holds iff
1. Cp(o) 6= ∅
2. λp(o)→q(o) = 1

In order to obtain epistemic relations for various negations of p(o) or q(o) one should
symmetrically apply negations in the definitions 6.8-6.10. For example a formula ¬p(o)→
Bel(q(o)) can be grounded iff C¬p(o) 6= ∅ and λminBel < λ¬p(o)→q(o) < λmaxBel.

Provided definitions for normal epistemic relations already suggest some intuitions on the
previously assumed meaning of conditionals. Condition Cp(o) 6= ∅ requires that agent’s
cognitive state contains observations where o exhibited p. This means that the agent must
not know that ¬p(o). If she new that, the statement would be a subjunctive conditional.
This condition is directly related to implicature I1.1 and constraint C1.1.

The conditions limiting possible values of the grounding strength λp(o)→q(o) constrain
agent’s levels of belief in the consequent. For p(o) → Know(q(o)) this level of belief
must be equal to 1. This means that whenever was p(o) there also was q(o). Parameters
λminPos, λmaxPos, λminBel, λmaxBel are called the grounding thresholds. These thresholds
have to be set in advance by an expert (or evaluated by the agent, see (Lorkiewicz et al.
2011)). We wish the belief modal operator to denote higher level of belief than the
possibility operator. It is hence initially assumed that:

λminPos ¬ λminBel and λmaxPos ¬ λmaxBel (6.10)

Inequalities 6.10 form only initial restrictions as they do not guarantee meeting of simul-
taneous usage constraints (see table 5.2). For example for an intentionally badly chosen
setting λminBel = 0.4 and λmaxBel = 0.9 it is possible to simultaneously ground two
statements: p(o) → Bel(q(o)) and p(o) → Bel(¬q(o)). Both statements intuitively con-
tradict each other and must not be grounded together. To meet the simultaneous usage
constraints it is crucial to provide further limitations for the grounding thresholds. For
example implicature I1.2 and the respective constraint C1.2 tells that the agent must
not know q(o). This constraint shall be met only when λminPos  0. The final limitations
on the grounding thresholds are presented in chapter 7.

Normal epistemic relations 6.8-6.10 allow for grounding of indicative conditionals in
their broad meaning. A dependence between the antecedent and the consequent is not
required. The agent may already know that p(o) (or q(o)) holds and still ground a
conditional using normal epistemic relation. In that sense, the conditional can be uttered
as an answer to a question: ‘Is it possible that q(o) when p(o)?’. The answer may be
‘Yes. If p(o) then it is possible that q(o)’. The agent says nothing about situations where
¬q(o). The agent does not indicate any connection / dependence between p(o) and q(o).
In the sense defined by the normal epistemic relation it is simply stated that q(o) may
hold when p(o) holds.
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6.5.2. Epistemic relations for modal conditionals

Definitions 6.11-6.13 present proper grounding conditions for the modal conditionals,
where the modal operator is placed before the whole conditional statement.

Definition 6.11. Epistemic relation CS |=E Pos(p(o)→ q(o)) holds iff
1. Cp(o)∧¬q(o) = ∅, Cp(o) 6= ∅
2. βminPos < λp(o)→q(o) ¬ βmaxPos

Definition 6.12. Epistemic relation CS |=E Bel(p(o)→ q(o)) holds iff
1. Cp(o)∧¬q(o) = ∅, Cp(o) 6= ∅
2. βminBel < λp(o)→q(o) < βmaxBel

Definition 6.13. Epistemic relation CS |=E Know(p(o)→ q(o)) holds iff
1. Cp(o)∧¬q(o) = ∅, Cp(o) 6= ∅
2. λp(o)→q(o) = 1

The parameters βminPos, βmaxPos, βminBel, βmaxBel are the grounding thresholds for the
modal conditionals. The thresholds have the same role as λminPos, λmaxPos, λminBel,
λmaxBel used for conditional modalities. Similarly it is initially assumed that:

βminPos ¬ βminBel and βmaxPos ¬ βmaxBel (6.11)

Definitions 6.11-6.13 differ from 6.8-6.10 in the condition 1. For modal conditionals it is
required that there are no observations within the conscious area of the cognitive state
that deny the conditional p(o)→ q(o). The agent has not found any ‘explicit’ occurrences
denying the conditionals, but such experiences may be present in the unconscious area of
the cognitive state. This way the uncertainty regarding the whole conditional is modelled.
The agent ‘feels’ that she is uncertain but has no explicit example for the uncertainty.
The uncertainty is hidden in the unconscious area.

For such an interpretation the modal conditional may be used to express agent’s uncer-
tainty when the empirical material is only partially processed. The agent may be asked
about q(o). She is required to answer quickly and says Bel(p(o)→ q(o)). The agent only
partially processed the empirical knowledge what resulted in a cognitive state where
most of the material stays in the unconscious area. The conscious area holds only few
most adequate past observations referring to the described situation. Neither of those
observations denies the conditional. In that sense, agent’s mind state can be explained
as: ‘It may be that p(o)→ q(o) but the agent is uncertain’. The agent needs more time
(or data) to gain certainty.
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6.6. Pragmatic epistemic relations

Below pragmatic epistemic relations 6.14 and 6.15 are defined. These relations further
constrain the meaning of conditionals. Definitions of pragmatic epistemic relations have
been designed to meet constraint groups C1 and C2.

Definition 6.14. Let Π ∈ {Pos,Bel,Know}. Pragmatic epistemic relation CS |=PE
p(o)→ Π(q(o)) holds iff epistemic relation for CS |=E p(o)→ Π(q(o)) holds and:
1. C¬p(o) 6= ∅
2. λp(o)→q(o) > f(λ¬p(o)→q(o)) or λp(o)→q(o) < f(λ¬p(o)→q(o))

(the conditional relation holds).

Definition 6.15. Let Π ∈ {Pos,Bel,Know}. Pragmatic epistemic relation CS |=PE
Π(p(o)→ q(o)) holds iff epistemic relation for CS |=E Π(p(o)→ q(o)) holds and:
1. C¬p(o) 6= ∅
2. λp(o)→q(o) > f(λ¬p(o)→q(o)) or λp(o)→q(o) < f(λ¬p(o)→q(o))

(the conditional relation holds).

It is required that C¬p(o) 6= ∅. This means that the antecedent can’t be already known
to hold. This condition together with the condition Cp(o) 6= ∅ for the normal epistemic
relation implies that the agent must not know whether the antecedent holds or not.
Both of these conditions intuitively ensure the meeting of implicature I2.1 and related
constraint C2.1.

It is also additionally required that the conditional relation between p(o) and q(o) holds.
This ensures that there is a dependence between the antecedent and the consequent.
The conditional relation intuitively ensures the meeting of implicature I2.3 and related
constraint C2.3.

It is required for the agent not to know whether the consequent holds or not (implicature
I2.2 and constraint C2.3). When the consequent is known to hold (not hold) in advance
the grounding strength λp(o)→q(o) is equal to 1 (0 respectively). The constraint is met
because of the required conditional relation as it is impossible that 1 = λp(o)→q(o) >
f(λ¬p(o)→q(o)) = f(0) or 0 = λp(o)→q(o) < f(λ¬p(o)→q(o)) = f(0).

When the pragmatic epistemic relation is used to ground a conditional it imposes a
meaning that is more constrained than by the normal epistemic relation. The agent must
not know neither the antecedent, nor the consequent. Furthermore the agent must have
noticed some dependence between the antecedent and the consequent. The chance for the
consequent must be significantly different between the situations where the antecedent
holds and the consequent holds. When the agent utters a conditional p(o)→ Bel(q(o)),
grounded with the pragmatic epistemic relation 6.9, she also means that: ‘I do not know
if the antecedent holds’, ‘I do not know if the consequent holds’, ‘The antecedent influ-
ences the consequent’, ‘If the antecedent holds then the consequent rather holds’ Agent’s
conclusions are based on previous observations of the environment. The antecedent may
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increase or decrease the chance for the consequent. The direction of the change of this
chance is not specified.

Intuitively the pragmatic epistemic relation allows for example for grounding of a condi-
tional ‘If you do not smoke, then it is possible you will get a lung cancer’. Not smoking
does not cause cancer, but it is still possible one will get it. The pragmatic epistemic
relation does not allow for grounding of not related features such as: ‘If the Earth is
round, then I can jump 1 meter high’.

Functions f and f are called the boundary functions and should meet the criteria pro-
vided in definition 6.5. These criteria are only initial as they do not guarantee meeting
of all the simultaneous usage constraints (see table 5.2). Similarly to the grounding
thresholds, the boundary functions must meet a series of limitations in order to meet all
of the simultaneous usage constraints. Final limitations on the grounding thresholds are
presented in chapter 7.

6.7. Strictly pragmatic epistemic relations

Definitions 6.16 and 6.17 have been designed to meet the most demanding group of
grounding conditions C1, C2 and C3.

Definition 6.16. Let Π ∈ {Pos,Bel,Know}. Strictly pragmatic epistemic relation
CS |=SPE p(o) → Π(q(o)) holds iff epistemic relation for CS |=E p(o) → Π(q(o)) holds
and:
1. C¬p(o) 6= ∅
2. λp(o)→q(o) > f(λ¬p(o)→q(o)) (strict conditional relation holds).

Definition 6.17. Let Π ∈ {Pos,Bel,Know}. Strictly pragmatic epistemic relation
CS |=SPE Π(p(o) → q(o)) holds iff epistemic relation for CS |=E Π(p(o) → q(o)) holds
and:
1. C¬p(o) 6= ∅
2. λp(o)→q(o) > f(λ¬p(o)→q(o)) (strict conditional relation holds).

The strictly pragmatic epistemic relations differ from the pragmatic epistemic relations
in the condition on the conditional relation. In strictly pragmatic epistemic relations the
strict conditional relation is required. This means that the chance for the consequent
must be higher when the antecedent holds than when it does not hold.

The strictly pragmatic epistemic relations are meant to impose conventional and ‘full’
(see the smoker and cancer example given by table 5.1) understanding of the conditional.
An exemplary conditional p(o)→ Bel(q(o)) grounded according to the conditional rela-
tion means that: ‘I do not know neither the antecedent, nor the consequent’, ‘The an-
tecedent influences the consequent’, ‘If the antecedent holds then the consequent rather
holds’, ‘If the antecedent does not hold then the consequent also rather does not hold’.
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The antecedent, if it holds, increases the chance for the consequent. If the antecedent
does not hold that chance is much smaller.

The strictly pragmatic epistemic relations provide very constrained and much specified
meaning of conditionals. This meaning possesses all of conventionally assumed implica-
tures upon hearing an indicative conditional. Intuitively the strictly epistemic relation
allows for grounding of a statement ‘If you smoke then it is possible you will get a
lung cancer’. The strictly pragmatic epistemic relation does not allow for grounding of
statements like: ‘If the apple is green then it is possible it is ripe’, ‘If the Earth is round
then I can jump 2 meters’. These statements are allowed respectively by the pragmatic
epistemic relation and the normal epistemic relation.

The upper boundary function f should meet criteria provided in definition 6.5. Again
these criteria are only initial as they do not guarantee meeting of all the simultaneous
usage constraints (see table 5.2). Similarly to the grounding thresholds, the upper bound-
ary function must meet a series of limitations in order to meet all of the simultaneous
usage constraints. Final limitations on the grounding thresholds are presented in chapter
7.



7. Properties of epistemic relations for
conditionals

Proposed definitions of epistemic relations for conditional formulas (definitions 6.8-6.17)
require proper setting of grounding thresholds and boundary functions. The choice of
these parameters has a crucial influence on the behavior of epistemic relations. Badly
chosen parameters can lead to uttering of unreasonable or even contradictory sets of
statements.

Within this chapter a series of theorems that provide limitations on the grounding thresh-
olds and the boundary functions are presented. Meeting of these limitations ensures
meeting of the simultaneous usage constraints provided in table 5.2.

In the end it is proven that these parameters can be chosen so that all of common-sense
requirements are met. Choosing a grounding threshold setting meeting 7.5 ensures agent
rationally uses conditionals according their simple meaning defined by normal epis-
temic relation (see constraints group C1). Similarly, choosing a pragmatic epistemic
relation, grounding thresholds and boundary functions meeting 7.5, 7.7, 7.8 ensures that
agent rationally uses conditionals according to their pragmatic meaning (see constraints
C2). Finally, choosing a strictly pragmatic epistemic relation, grounding thresholds and
boundary functions with accordance to 7.5, 7.15, guarantees conditionals are used in
their most restrictive meaning (see constraint C3).

In further sections 7.1, 7.2 and 7.3, theorems related to the normal, pragmatic and
strictly pragmatic epistemic relations respectively are formulated and proven. Section
7.4 defines conditions that bind conditional modalities and modal conditionals. In the
last section 7.6 all of the theorems and the constraints are summarized and compared
to common-sense usage criteria provided earlier.

Within all theorems a fixed and constant agent’s cognitive state model C is assumed.
If not stated differently, variables Π,Ξ ∈ {Pos,Bel,Know} denote any of the modal
operators. For clarity each theorem is marked with: (Normal), (Pragmatic), (Strict) or
(ALL) meaning it applies to normal, pragmatic, strictly pragmatic epistemic relation or
all of them respectively.
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7.1. Theorems for normal epistemic relation

Theorem 7.1. (Normal) Epistemic relation CS |=E p→ Know(q) can be met.

Proof. Grounding sets and strength setting such that λp→q = 1 allows for epistemic
relation for knowledge operator.

Theorem 7.2. (Normal) Epistemic relation CS |=E p→ Bel(q) can be met iff λminBel <
λmaxBel, λminBel < 1 and 0 < λmaxBel.

Proof. Grounding strength λp→q belongs to [0, 1]. If λminBel < 1 or 0 < λmaxBel is not
met, then grounding strength requirement λminBel < λp→q < λmaxBel can’t be met.
Similarly for λminBel < λmaxBel.

If for some λp→q, λminBel < λp→q < λmaxBel, all three inequalities must hold.

Theorem 7.3. (Normal) Epistemic relation CS |=E p→ Pos(q) can be met iff λminPos <
λmaxPos, λminPos < 1 and 0 ¬ λmaxPos.

Proof. Proof of theorem 7.3 is similar to the proof of theorem 7.2.

Theorem 7.4. (Normal) Let conditions given by theorems 7.1-7.3 be met and let Π 6= Ξ.
It is possible to set grounding thresholds, so that meeting of epistemic relation CS |=E
p→ Π(q) excludes meeting of epistemic relation CS |=E p→ Ξ(q).
A sufficient and necessary condition is:

λmaxPos ¬ λminBel < λmaxBel ¬ 1.

Proof. Definitions 6.8, 6.9, 6.10 differ only on grounding strengths requirements. We
have:

definition 6.8: λminPos < λp→q ¬ λmaxPos
definition 6.9: λminBel < λp→q < λmaxBel
definition 6.10: λp→q = 1

Condition provided by theorem 7.4 ensures that grounding strength requirements given
above are disjoint. This proves sufficiency.

Proof of necessity can be performed by contradiction.

If λmaxBel ¬ 1 is not met, then epistemic relations for p → Bel(q) and p → Know(q)
can be met simultaneously for λp→q = 1.

If λmaxPos < 1 is not met, then epistemic relations for p → Pos(q) and p → Know(q)
can be met simultaneously for λp→q = 1.

If (λminPos, λmaxPos] ∩ (λminBel, λmaxBel) 6= ∅, then there exists λp→q that meets both
p→ Pos(q) and p→ Bel(q). Due to initial restriction 6.10, intersection of both sets can
be empty only when λmaxPos ¬ λminBel.
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Theorem 7.5. (Normal) Let the condition given by theorem 7.4 be met. It is possible
to set grounding thresholds so that meeting of epistemic relation CS |=E p → Know(q)
excludes meeting of normal epistemic relation CS |=E p → Π(¬q). A sufficient and
necessary condition is:

0 ¬ λminPos

Proof. Suppose by contradiction that both epistemic relations are met. They can be met
only if λp→q = 1 and λp→¬q = 1− λp→q = 0. Grounding threshold requirement:

— λminPos < λp→¬q ¬ λmaxPos is met only if λminPos < 0.
— λminBel < λp→¬q < λmaxBel is met only if λminBel < 0.
— λp→q = 1 is never met.

This implies both epistemic relations can be met only if λminPos < 0 or λminBel < 0.
From initial requirement 6.10 we already know λminPos ¬ λminBel. In result one obtains
λminPos < 0. This proves sufficiency.

If by contradiction 0 > λminPos, then a grounding strength setting λp→q = 1, λ¬p→q =
0.5λmaxPos meets epistemic relations for both formulas. This proves necessity.

Conditions provided by theorems 7.4 and 7.5 together lead to an initial constraints
on grounding thresholds 7.1. These are necessary and sufficient conditions that ensure
epistemic relations for conditional formulas can be met at all. Furthermore, constraints
ensure that at most one modal operator can be used. I.e. It is impossible to use two
different modal operators for the same conditional statement in the same situation.

Initial constraints for grounding thresholds:

0 ¬ λminPos < λmaxPos ¬ λminBel < λmaxBel ¬ 1 (7.1)

Most of theorems provided later assume this constraint setting.

Theorem 7.6. (Normal) Assume a grounding threshold setting meeting inequalities 7.1.
Normal epistemic relations CS |=E p→ Π(q) and CS |=E ¬p→ Ξ(q) can be both met.

Proof. Required grounding strength for p→ Π(q) is:

λp→q =
card(Cp∧q)

card(Cp∧q) + card(Cp∧¬q)

respective grounding strength for ¬p→ Ξ(q) is:

λ¬p→q =
card(C¬p∧q)

card(C¬p∧q) + card(C¬p∧¬q)

Pairs of sets Cp∧q, Cp∧¬q and C¬p∧q, C¬p∧¬q can be fixed independently. Grounding
strength λp→q does not depend on λ¬p→q. Both statements can be concurrently grounded
regardless of chosen modal operators and grounding thresholds.
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Theorem 7.7. (Normal) Assume a grounding threshold setting meeting inequalities 7.1.
Epistemic relations CS |=E p→ Π(q) and CS |=E ¬p→ Ξ(¬q) can be both met.

Proof. Inequalities 7.1 ensure all statement types can be grounded according to normal
epistemic relation. Grounding strengths λp→q and λ¬p→¬q are calculated from disjoint
grounding sets: Cp∧q ∪Cp∧¬q and C¬p∧¬q ∪C¬p∧q. One can obtain any desired values of
these grounding strengths.

Theorem 7.8. (Normal) Assume a grounding threshold setting meeting inequalities 7.1.
It is possible to set grounding thresholds, so that meeting of epistemic relation CS |=E
p → Bel(q) excludes meeting of epistemic relation CS |=E p → Bel(¬q). A necessary
and sufficient condition is:

λminBel  0.5 ∨ 0.5 ¬ λmaxBel

Proof. Assume by contradiction that condition from theorem 7.8 is met and both state-
ments can be grounded. Then, there exist λp→q, λp→¬q such that:

λminBel < λp→q < λmaxBel and λminBel < λp→¬q < λmaxBel

Adding two inequalities leads to:

2λminBel < λp→q + λp→¬q < 2λmaxBel

Both grounding strengths are dependent (λp→¬q = 1− λp→q):

2λminBel < 1 < 2λmaxBel

what is contradictory to the condition from theorem 7.8. This proves sufficiency.

Now assume by contradiction that condition from theorem 7.8 is not met and both
statements can’t be grounded. When the condition is not met, then a contradictory
condition λminBel < 0.5 < λmaxBel is met.

Let λp→q = λp→¬q = 0.5 and λ¬p→q = 0, λ¬p→¬q = 1−λ¬p→q = 1. For such setting both
formulas meet normal epistemic relation for belief operator:

λminBel < λp→q = λp→¬q = 0.5 < λmaxBel

We obtain a contradiction, what proves necessity.

Theorem 7.9. (Normal) Assume a grounding threshold setting meeting inequalities 7.1.
It is possible to set grounding thresholds so that normal epistemic relations CS |=E p→
Pos(q) and CS |=E p → Bel(¬q) can be both met. A necessary and sufficient condition
is:

λminPos + λminBel < 1 < λmaxPos + λmaxBel
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Proof. From definition 6.8 for p→ Pos(q) we know that:

λminPos < λp→q ¬ λmaxPos (7.2)

and from definition 6.9 for p→ Bel(¬q) and definition of λp→q we know that:

λminBel < λp→¬q = 1− λp→q < λmaxBel (7.3)

Meeting of both conditions requires that their sums are also met:

λminPos + λminBel < 1 < λmaxPos + λmaxBel

This proves condition’s necessity.

To prove condition’s sufficiency we have to show that there always exists a setting of
λp→q (0 ¬ λp→q ¬ 1) and λp→¬q = 1 − λp→q meeting inequalities 7.2 and 7.3. We shall
consider four mutually exclusive cases:

Case 1: Assumption: a. λminBel + λmaxPos < 1 and b. λmaxBel + λminPos > 1

In such case we assume1:

λp→q =
λminPos + λmaxPos

2

Proving inequality 7.2 is straightforward (see restriction 7.1):

λminPos < λp→q =
λminPos + λmaxPos

2
< λmaxPos

Now we will prove inequality 7.3:

λp→¬q = 1− λminPos + λmaxPos
2

> (assumption a)

1− λminPos + 1− λminBel
2

> (condition from theorem 7.9)

1− 1− λminBel + 1− λminBel
2

= λminBel

and

λp→¬q = 1− λminPos + λmaxPos
2

< (assumption b)

1− 1− λmaxBel + λmaxPos
2

< (condition from theorem 7.9)

1− 1− λmaxBel + 1− λmaxBel
2

= λmaxBel

1 All settings assumed within this proof meet requirement: 0 ¬ λp→q ¬ 1
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This finishes the proof for case 1.

Case 2: Assumption: a. λminBel + λmaxPos < 1 and b. λmaxBel + λminPos ¬ 1

In such case we assume:

λp→q =
λmaxPos + 1− λmaxBel

2

First we will prove inequality 7.2:

λp→q =
λmaxPos + 1− λmaxBel

2
 (assumption b)

λmaxPos + 1− 1 + λminPos
2

=

λminPos + λmaxPos
2

> λminPos

and

λp→q =
λmaxPos + 1− λmaxBel

2
< (condition from theorem 7.9)

λmaxPos + 1− 1 + λmaxPos
2

= λmaxPos

Now we will prove inequality 7.3:

λp→¬q = 1− λmaxPos + 1− λmaxBel
2

> (assumption a)

1− 1− λminBel + 1− λmaxBel
2

=

λminBel + λmaxBel
2

> λminBel

and

λp→¬q = 1− λmaxPos + 1− λmaxBel
2

< (condition from theorem 7.9)

1− 1− λmaxBel + 1− λmaxBel
2

= λmaxBel

This finishes the proof for case 2.

Case 3: Assumption: a. λminBel + λmaxPos  1 and b. λmaxBel + λminPos > 1

In such case we assume:

λp→q =
λminPos + 1− λminBel

2
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First we will prove inequality 7.2:

λp→q =
λminPos + 1− λminBel

2
> (condition from theorem 7.9)

λminPos + 1− 1 + λminPos
2

= λminPos

and

λp→q =
λminPos + 1− λmaxBel

2
¬ (assumption a)

λminPos + 1− 1 + λmaxPos
2

< λmaxPos

Now we will prove inequality 7.3:

λp→¬q = 1− λminPos + 1− λminBel
2

> (condition from theorem 7.9)

1− 1− λminBel + 1− λminBel
2

= λminBel

and

λp→¬q = 1− λminPos + 1− λminBel
2

> (assumption b)

1− 1− λmaxBel + 1− λminBel
2

=

λminBel + λmaxBel
2

> λminBel

This ends the proof for case 3.

Case 4: Assumption: λminBel + λmaxPos  1 and λmaxBel + λminPos ¬ 1

In such case we assume:

λp→q =
1− λmaxBel + 1− λminBel

2

First we will prove inequality 7.2:
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λp→q =
1− λmaxBel + 1− λminBel

2
> (condition from theorem 7.9)

1− λmaxBel + 1− 1 + λminPos
2

 (assumption b)

1− 1 + λminPos + λminPos
2

= λminPos

and

λp→q =
1− λmaxBel + 1− λminBel

2
< (condition from theorem 7.9)

1− 1 + λmaxPos + 1− λminBel
2

¬ (assumption a)

λmaxPos + 1− 1 + λmaxPos
2

= λmaxPos

Proving inequality 7.3 is straightforward (see restriction 7.1):

λminBel < λp→¬q = 1− λp→q =
λmaxBel + λminBel

2
< λmaxBel

This ends the proof for case 4. Proofs for all four cases together form a proof of condition’s
sufficiency in theorem 7.9.

Theorem 7.10. (Normal) Assume a grounding threshold setting meeting inequalities
7.1. It is possible to set grounding thresholds, so that normal epistemic relations CS |=E
p → Pos(q) and CS |=E p → Pos(¬q) can be both met. A necessary and sufficient
condition is:

λminPos < 0.5 ¬ λmaxPos

Proof. From definition 6.8 for p→ Pos(q) we know that:

λminPos < λp→q ¬ λmaxPos

and from the same definition for p→ Pos(¬q) we know that:

λminPos < λp→¬q ¬ λmaxPos

Meeting both conditions requires that their sums are also met:

2λminPos < 1 ¬ 2λmaxPos
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dividing by 2 gives:
λminPos < 0.5 ¬ λmaxPos

this proves necessity.

To prove sufficiency we have to show that for every threshold setting, meeting condition
in theorem, there exists at least one setting of λp→q and λp→¬q that meets both epistemic
relations. Assume λp→q = λp→¬q = 0.5. From definitions of epistemic relations we get
two exactly the same inequalities:

λminPos < 0.5 ¬ λmaxPos

that are the same as the assumed condition. This ends the proof.

Theorem 7.11. (Normal) Assume a grounding threshold setting meeting inequalities
7.1. Normal epistemic relations CS |=E p → Π(q) and CS |=E q → Ξ(¬p) can be both
met if and only if Ξ 6= Know.

Proof. Let c1, c2, c3, c4 denote:

c1 = card(Cp∧q), c2 = card(Cp∧¬q), c3 = card(C¬p∧q), c4 = card(C¬p∧¬q).

In such case, grounding strengths are:

λp→q =
c1

c1 + c2
, λq→¬p =

c3
c3 + c1

(7.4)

When CS |=E p→ Π(q) is met, then λp→q > 0 and c1 > 0. This means that λq→¬p < 1.
Both epistemic relations for p→ Π(q) and q → Know(¬p) can’t be simultaneously met.

On the other hand one can choose c1, c2, c3, c4, so that grounding strengths 7.4 are
independently any rational numbers such that: λp→q ∈ (0, 1] and λq→¬p ∈ (0, 1). All
combinations of modal operators, such that Ξ 6= Know, can be simultaneously grounded.

7.1.1. Constraints for the grounding thresholds

Theorem 7.12. (Normal) It is possible to set grounding thresholds so that all conditions
from theorems 7.1-7.11 are met simultaneously. A necessary and sufficient conditions
are:

0 ¬ λminPos < 1− λminBel ¬ 0.5 ¬ λmaxPos ¬ λminBel < λmaxBel ¬ 1 (7.5)

Proof. All theorems 7.1-7.11 provide necessary and sufficient conditions required for
different properties of epistemic relation for conditional formulas. These conditions are:

1. λminPos ¬ λminBel ∧ λmaxPos ¬ λmaxBel (from initial restriction 6.10),
2. λmaxPos ¬ λminBel < λmaxBel ¬ 1 (from 7.4)
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3. 0 ¬ λminPos (from 7.5),
4. λminBel  0.5 ∨ 0.5 ¬ λmaxBel (from 7.8),
5. λminPos + λminBel < 1 < λmaxPos + λmaxBel (from 7.9),
6. λminPos < 0.5 ¬ λmaxPos (from 7.10).

Intersection of these constraints shall provide sufficient and necessary conditions for all
properties to be simultaneously met.

From 1, 2 and 3 we obtain initial constraints for grounding thresholds already defined
in equation 7.1:

0 ¬ λminPos < λmaxPos ¬ λminBel < λmaxBel ¬ 1

Constraints 1 (λmaxPos ¬ λmaxBel) and 6 (0.5 ¬ λmaxPos) imply that within constraint
4, inequality 0.5 ¬ λmaxBel is false, so λminBel  0.5 must be true.

Inequalities 0.5 ¬ λmaxBel and 0.5 ¬ λmaxPos together imply 1 < λmaxPos + λmaxBel
that is part of constraint 5.

Inequality λminPos + λminBel < 1 from 5 can be transformed to an equivalent form:
λminPos < 1− λminBel. From λminBel  0.5 we obtain 1− λminBel ¬ 0.5.

Finally, the intersection of all constraints can be written as:

0 ¬ λminPos < 1− λminBel ¬ 0.5 ¬ λmaxPos ¬ λminBel < λmaxBel ¬ 1

Any grounding threshold setting meeting constraints 1-6 also meets condition 7.5 and
vice versa.

7.2. Theorems for pragmatic epistemic relation

Following theorems apply to pragmatic epistemic relation as proposed by definition 6.14.
Pragmatic epistemic relation is a stricter version of normal epistemic relation. It requires
a dependence between the antecedent and the consequent in form of the conditonal
relation (definition 6.6).

Some proofs use general lemmas provided later in section 7.2.2.

Final sufficient constraints on boundary functions that ensure proper grounding of con-
ditionals, have been proposed in section 7.2.1.

Theorem 7.13. (Normal, Pragmatic) If pragmatic epistemic relation CS |=PE p →
Π(q) is met, then normal epistemic relation CS |=E p→ Π(q) is also met.

Proof. Normal pragmatic epistemic relation requires respective grounding thresholds to
be met. Pragmatic epistemic relation requires meeting of the same grounding thresholds
and additionally meeting of conditional relation.
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Theorem 7.13 states that meeting of pragmatic epistemic relation implies meeting of
respective normal epistemic relation.

Theorem 7.14. (Pragmatic) It is possible to set boundary functions, so that pragmatic
epistemic relation CS |=PE p→ Know(q) can be met a necessary and sufficient condition
is: f(0) < 1.

Proof. Firstly I assume that CS |=PE p → Know(q) and wish to prove f(0) < 1. The
only grounding strength λp→q meeting epistemic relation for knowledge operator must
be equal to 1. From conditional relation we obtain:

λp→q > f(λ¬p→q) or λp→q < f(λ¬p→q)

Second inequality can’t be met because: λp→q = 1  f(λ¬p→q). When the first inequality
λp→q > f(λ¬p→q) is met, then:

1 = λp→q > f(λ¬p→q)  f(0)

We obtain the condition f(0) < 1.

Secondly I assume f(0) < 1 and wish to prove that there exists grounding strength set-
ting meeting CS |=PE p→ Know(q). Assume grounding strengths: λp→q = 1, λ¬p→q =
0. In such case:

λp→q = 1 > f(0) = f(λ¬p→q)

This setting meets all criteria for pragmatic epistemic relation for knowledge operator.

Theorem 7.15. (Pragmatic) Assume a grounding threshold setting meeting inequalities
7.5. It is possible to set boundary functions and grounding thresholds so that pragmatic
epistemic relation CS |=PE p→ Bel(q) can be met. A necessary and sufficient condition
is:

f(0) < λmaxBel or f(1) > λminBel.

Proof. Firstly, I assume CS |=PE p → Bel(q) is met. In such case λminBel < λp→q <
λmaxBel and one of conditional relations: (case 1) λp→q > f(λ¬p→q) or (case 2) λp→q <
f(λ¬p→q) holds. In case 1:

λmaxBel > λp→q > f(λ¬p→q)  f(0)

and in case 2:
λminBel < λp→q < f(λ¬p→q) ¬ f(1)

so indeed either f(0) < λmaxBel or f(1) > λminBel.

Secondly, I assume (case 1) f(0) < λmaxBel or (case 2) f(1) > λminBel and prove that
there exists a grounding strengths setting meeting pragmatic epistemic relation. Let’s
start with case 1 and a setting:

λ¬p→q = 0, λp→q = minλmaxBel − ε.
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Where ε is any value from set ε ∈ (0, εmax) and εmax > 0 is:

εmax = min{λmaxBel − λminBel, 1− f(0), λmaxBel − f(0)}

Then grounding threshold requirement is met:

λp→q = min{1, λmaxBel} − ε < λmaxBel

λp→q = λmaxBel − ε > λmaxBel − λmaxBel + λminBel = λminBel

and conditional relation is met:

λp→q = λmaxBel − ε > λmaxBel − λmaxBel + f(0) = f(λ¬p→q)

Now let’s assume case 2 and a setting:

λ¬p→q = 1, λp→q = λminBel + ε.

Where ε is any value from set ε ∈ (0, εmax) and εmax > 0 is:

εmax = min{λmaxBel − λminBel, f(1)− λminBel}

Then grounding threshold requirement is met:

λp→q = λminBel + ε > λminBel

λp→q = λminBel + ε < λminBel + λmaxBel − λminBel = λmaxBel

and conditional relation is met:

λp→q = λminBel + ε < λminBel + f(1)− λminBel = f(1) = f(λ¬p→q)

This ends proof.

Theorem 7.16. (Pragmatic) Assume a grounding threshold setting meeting inequalities
7.5. It is possible to set grounding thresholds and boundary function so that pragmatic
epistemic relation CS |=PE p→ Pos(q) can be met. A necessary and sufficient condition
is:

f(0) < λmaxPos or f(1) > λminPos.

Proof. Proof of theorem 7.16 is similar to the proof of theorem 7.15. One needs to change
grounding thresholds respectively.

Theorems 7.14-7.16 provide sufficient and necessary conditions that ensure all pragmatic
epistemic relations can be met at all. They are similar to theorems 7.1-7.3 for normal
epistemic relation.

Because of dependence between normal and pragmatic epistemic relations (theorem
7.13), theorem 7.4 provides sufficient conditions that ensure at most one of formulas
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p → Know(q), p → Bel(q), p → Pos(q) can meet pragmatic epistemic relation concur-
rently.

Normal epistemic relation allows for simultaneous grounding of statements p → Π(q)
and ¬p→ Ξ(q) regardless of chosen modal operators. Pragmatic epistemic relation also
allows it, if at least one of modal operators is not a knowledge operator. If one says
both p → Know(q) and ¬p → Know(q), then he simply knows q. Using of conditional
statement is not rational in this situation and should be denied by pragmatic epistemic
relation (theorem 7.21). Theorems 7.17-7.22 provide conditions that ensure all remaining
pairs are accepted.

Theorem 7.17. (Pragmatic) Assume a grounding threshold setting meeting inequalities
7.5. It is possible to set grounding thresholds and upper and lower boundary functions so
that pragmatic epistemic relations CS |=PE p → Bel(q) and CS |=PE ¬p → Bel(q) can
be both met. A sufficient and necessary condition is:

λmaxBel > f(λminBel) and f(λmaxBel) > λminBel

Proof. The proof of theorem 7.17 can be implied directly from lemmas 7.41 and 7.42.
Assume λmin = λminBel and λmax = λmaxBel. If λmax > f(λmin) and f(λmax) > λmin,
then there exist numbers λ = λp→q and λ = λ¬p→q that meet all requirements of
pragmatic epistemic relation (lemma 7.42). Otherwise such numbers don’t exist (lemma
7.41).

Theorem 7.18. (Pragmatic) Assume a grounding threshold setting meeting inequalities
7.5. It is possible to set grounding thresholds and upper and lower boundary functions so
that pragmatic epistemic relations CS |=PE p→ Pos(q) and CS |=PE ¬p→ Bel(q) can
be both met. A sufficient and necessary condition is:

λmaxBel > f(λminPos) and f(λmaxBel) > λminPos

Proof. Assume λmaxBel > f(λminPos) and f(λmaxBel) > λminPos. From lemma 7.42
(λmin = λminPos, λmax = λmaxBel) we already know that there exist numbers λ = λp→q

and λ = λp→q meeting:

λminPos < λp→q < λmaxBel, λminPos < λ¬p→q < λmaxBel,

λp→q < f(λ¬p→q), λ¬p→q > f(λp→q)

I only need to prove that among all such numbers there always exist ones that also meet:

λp→q ¬ λmaxPos and λminBel < λ¬p→q

For that I shall use lemma 7.36. Numbers λ, λ can be constructed as λ = λminPos + ε
and λ = λmaxBel − ε. Where ε is any value between 0 and εmax. It is enough to choose ε
small enough to fit λp→q, λ¬p→q into the provided inequalities. Let:

0 < ε < min{εmax, λmaxBel − λminBel, λmaxPos − λminPos}
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then:

λp→q = λminPos + ε < λmaxPos

λ¬p→q = λmaxBel − ε > λmaxBel − λmaxBel + λminBel = λminBel

This proves condition from theorem 7.18 is sufficient.

Now I shall prove necessity. The only possible setting of inequalities related to boundary
functions is:

λp→q < f(λ¬p→q), λ¬p→q > f(λp→q).

Other settings are impossible, because we quickly obtain contradictions:

λmaxPos  λp→q > f(λ¬p→q)  λ¬p→q > λminBel  λmaxPos
λminBel < λ¬p→q < f(λp→q) ¬ λp→q ¬ λminPos < λminBel

If λmaxBel > f(λminPos) and f(λmaxBel) > λminPos is not met, then there is no setting
λ = λp→q, λ = λ¬p→q that would meet all conditions for pragmatic epistemic relation
(from lemma 7.41).

Theorem 7.19. (Pragmatic) Assume a grounding threshold setting meeting inequalities
7.5. It is possible to set grounding thresholds and upper and lower boundary functions so
that pragmatic epistemic relations CS |=PE p→ Pos(q) and CS |=PE ¬p→ Pos(q) can
be both met. A sufficient and necessary condition is:

λmaxPos > f(λminPos) and f(λmaxPos) > λminPos

Proof. The proof of theorem 7.17 can be implied directly from lemmas 7.41 and 7.42.
Assume λmin = λminPos and λmax = λmaxPos. If λmax > f(λmin) and f(λmax) > λmin,
then there exist numbers λ = λp→q and λ = λ¬p→q that meet all requirements of
pragmatic epistemic relation (lemma 7.42). Otherwise such numbers don’t exist (lemma
7.41).

Lemma 7.20. (Pragmatic) Meeting of all conditions provided by theorems 7.14 - 7.19
implies that:

f(0) < λmaxPos and f(1) > λminBel (7.6)

Joining the conditions from theorems 7.14 - 7.19 leads to a more general requirements
as stated by lemma 7.20. These requirements shall be asserted in most of the following
theorems regarding pragmatic epistemic relation.

Proof. From theorem 7.19 we obtain:

λmaxPos > f(λminPos)  f(0)

and from theorem 7.17 we obtain:

λminBel < f(λminBel) ¬ f(1)
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Theorem 7.21. (Pragmatic) Meeting of pragmatic epistemic relation CS |=PE p →
Know(q) excludes meeting of pragmatic epistemic relation CS |=PE ¬p→ Know(q).

Proof. Assume by contradiction that both pragmatic epistemic relations hold. In such
case λp→q = 1 and λ¬p→q = 1. From conditional relation and an upper boundary function
(f(x)  x) we obtain a contradiction:

1 = λp→q > f(λ¬p→q)  λ¬p→q = 1

similarly from conditional relation and an lower boundary function (f(x) ¬ x) we obtain
a contradiction:

1 = λp→q < f(λ¬p→q) ¬ λ¬p→q = 1

This ends proof.

Theorem 7.22. (Pragmatic) Assume a grounding threshold and boundary function set-
ting meeting inequalities 7.5 and 7.6. Let Π 6= Know. Pragmatic epistemic relations
CS |=PE p→ Know(q) and CS |=PE ¬p→ Π(q) can be both met.

Proof. CS |=PE p→ Know(q) implies λp→q = 1. In order for CS |=PE ¬p→ Π(q) to be
met, one requires:

λ¬p→q < f(λp→q) = f(1)

From the proof of theorem 7.6 we already know λp→q and λ¬p→q can be fixed indepen-
dently. When f(1) > λminBel (see equation 7.6) one can choose any λ¬p→q that meets
respective grounding threshold setting for possibility (λminPos < λ¬p→q < λmaxPos ¬
λminBel) or belief operator (λminBel < λ¬p→q < f(1)).

Normal epistemic relation allows for simultaneous meeting of p → Π(q) and ¬p →
Ξ(¬q) (theorem 7.7). So does pragmatic epistemic relation, when constraints provided
by theorems 7.23-7.28 are met.

Theorem 7.23. (Pragmatic) Assume a grounding threshold and boundary function set-
ting meeting inequalities 7.5 and 7.6. Epistemic relations CS |=PE p → Know(q) and
CS |=PE ¬p→ Know(¬q) can be both met.

Proof. Let grounding strengths λp→q = 1 and λ¬p→¬q = 1. Grounding threshold require-
ments are met. Conditional relations are also met, because:

λp→q = 1 > λmaxPos > f(0) = f(1− λ¬p→¬q) = f(λ¬p→q)

λ¬p→¬q = 1 > λmaxPos > f(0) = f(1− λp→q) = f(λp→¬q)

Pragmatic epistemic relation is met for both formulas.

Theorem 7.24. (Pragmatic) Assume a grounding threshold and boundary function set-
ting meeting inequalities 7.5 and 7.6. It is possible to set grounding thresholds and up-
per and lower boundary functions so that pragmatic epistemic relations CS |=PE p →
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Know(q) and CS |=PE ¬p → Bel(¬q) can be both met. A sufficient and necessary
condition is:

f(1− λmaxBel) < 1

Proof. Assume both pragmatic epistemic relations are met, then λp→q = 1, λp→¬q = 0
and λminBel < λ¬p→¬q < λmaxBel. Conditional relation also must be met. The case where
λp→q < f(λ¬p→q) can’t hold. So λp→q > f(λ¬p→q) must be met and we obtain:

1 = λp→q > f(λ¬p→q) = f(1− λ¬p→¬q)  f(1− λmaxBel).

This proves necessity.

To prove condition’s sufficiency I shall construct a grounding strengths setting meeting
both pragmatic epistemic relations.

Let λmin = 1−λmaxBel and λmax = 1. From lemma 7.35 we know, there exists ε(1)max > 0,
such that for every ε ∈ (0, ε(1)max), λmax − ε > f(λmin + ε).

Similarly, let λmin = 0 and λmax = λmaxBel, from the same lemma 7.35 we know there
exists ε(2)max > 0 such that for every ε ∈ (0, ε(2)max), λmax − ε > f(λmin + ε).

Let λp→q = 1 and λ¬p→¬q = λmaxBel − ε, where ε = 0.5 min{λmaxBel − λminBel, ε
(1)
max,

ε
(2)
max}.

Grounding threshold requirement for belief operator is met because:

λ¬p→¬q = λmaxBel − ε < λmaxBel

λ¬p→¬q = λmaxBel − ε > λmaxBel − λmaxBel + λminBel = λminBel

Conditional relation for both statements is also met, because of lemma 7.35:

λp→q = 1 > 1− ε > f(1− λmaxBel + ε) = f(1− λ¬p→¬q) = f(λ¬p→q)

λ¬p→¬q = λmaxBel − ε > f(0 + ε)  f(0) = f(λp→¬q)

This proves sufficiency.

Theorem 7.25. (Pragmatic) Assume a grounding threshold and boundary function set-
ting meeting inequalities 7.5 and 7.6. It is possible to set grounding thresholds and up-
per and lower boundary functions so that pragmatic epistemic relations CS |=PE p →
Know(q) and CS |=PE ¬p → Pos(¬q) can be both met. A sufficient and necessary
condition is:

f(1− λmaxPos) < 1

Proof. Proof of theorem 7.25 can be constructed similarly to the proof of theorem 7.24.
One needs to change grounding thresholds respectively.
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Theorem 7.26. (Pragmatic) Assume a grounding threshold and boundary function set-
ting meeting inequalities 7.5 and 7.6. It is possible to set grounding thresholds and upper
and lower boundary functions so that pragmatic epistemic relations CS |=PE p→ Bel(q)
and CS |=PE ¬p→ Bel(¬q) can be both met. A sufficient and necessary condition is:

f(1− λmaxBel) < λmaxBel

Proof. When both pragmatic epistemic relations are met, we have:

λminBel < λp→q < λmaxBel and λminBel < λ¬p→¬q < λmaxBel

and
λp→q > f(λ¬p→q)

Case where λp→q < f(λ¬p→q) can’t be met, because (from λminBel  1 − λminBel and
f(x) ¬ x):

λp→q > λminBel  1− λminBel  f(1− λminBel)  f(1− λ¬p→¬q) = f(λ¬p→q)

When λp→q > f(λ¬p→q) is met, so must be:

λmaxBel > λp→q > f(λ¬p→q) = f(1− λ¬p→¬q)  f(1− λmaxBel)

This proves necessity.

To prove condition’s sufficiency I shall construct a grounding strengths values that meet
both pragmatic epistemic relations.

Let λmin = 1−λmaxBel and λmax = λmaxBel. According to lemma 7.35 there exists εmax,
such that for every ε ∈ (0, εmax), λmax − ε > f(λmin + ε). Let:

ε = 0.5 min{εmax, λmaxBel − λminBel}

and let λp→q = λ¬p→¬q = λmaxBel−ε. Grounding threshold requirement is met, because:

λp→q = λ¬p→¬q =λmaxBel − ε < λmaxBel

λp→q = λ¬p→¬q =λmaxBel − ε > λmaxBel − λmaxBel + λminBel = λminBel

and, according to lemma 7.35, conditional relation is met, because:

λp→q = λ¬p→¬q = λmaxBel − ε
> f(1− λmaxBel + ε)

= f(1− λp→q) = f(1− λ¬p→¬q)
= f(λ¬p→q) = f(λp→¬q)

This proves sufficiency.

91



Theorem 7.27. (Pragmatic) Assume a grounding threshold and boundary function set-
ting meeting inequalities 7.5 and 7.6. It is possible to set grounding thresholds and upper
and lower boundary functions so that pragmatic epistemic relations CS |=PE p→ Bel(q)
and CS |=PE ¬p→ Pos(¬q) can be both met. A sufficient and necessary condition is:

(f(1− λmaxPos) < λmaxBel ∧ f(1− λmaxBel) < λmaxPos)

or

(f(1− λminPos) > λminBel ∧ f(1− λminBel) > λminPos)

Proof. Meeting of pragmatic epistemic relations for both formulas means meeting of
grounding threshold requirements:

λminBel < λp→q < λmaxBel and λminPos < λ¬p→¬q ¬ λmaxPos

There are four possible cases for conditional relations:

1. λp→q > f(λ¬p→q) and λ¬p→¬q > f(λp→¬q)
2. λp→q < f(λ¬p→q) and λ¬p→¬q < f(λp→¬q)
3. λp→q < f(λ¬p→q) and λ¬p→¬q > f(λp→¬q)
4. λp→q > f(λ¬p→q) and λ¬p→¬q < f(λp→¬q)

Case 3. can’t be met, because meeting it leads to a contradiction:

1− λ¬p→q = λ¬p→¬q > f(λp→¬q)

= f(1− λp→q)  1− λp→q

 1− f(λ¬p→q)  1− λ¬p→q

Similar contradiction can be shown for case 4, so it also can’t be met.

It is either case 1. that implies:

λmaxBel > λp→q > f(λ¬p→q) = f(1− λ¬p→¬q)  f(1− λmaxPos),
λmaxPos  λ¬p→¬q > f(λp→¬q) = f(1− λp→q)  f(1− λmaxBel)

or case 2. that implies:

λminBel < λp→q < f(λ¬p→q) = f(1− λ¬p→¬q) ¬ f(1− λminPos),
λminPos < λ¬p→¬q < f(λp→¬q) = f(1− λp→q) ¬ f(1− λminBel).

Cases 1. and 2. imply the condition from theorem 7.27. This proves necessity.

To prove sufficiency I shall construct grounding threshold setting meeting both pragmatic
epistemic relations. Firstly assume (case 1):

f(1− λmaxPos) < λmaxBel ∧ f(1− λmaxBel) < λmaxPos
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Let λmin = 1−λmaxPos and λmax = λmaxBel. According to lemma 7.35 there exists ε(1)max,
such that for every ε ∈ (0, ε(1)max), λmax − ε > f(λmin + ε).

Similarly let λmin = 1 − λmaxBel and λmax = λmaxPos. According to lemma 7.35 there
exists ε(2)max, such that for every ε ∈ (0, ε(2)max), λmax − ε > f(λmin + ε).

Let grounding strengths be:

λp→q = λmaxBel − ε
λ¬p→¬q = λmaxPos − ε
λp→¬q = 1− λmaxBel + ε

λ¬p→q = 1− λmaxPos + ε

where ε > 0 is defined as:

ε = 0.5 max{ε(1)max, ε(2)max, λmaxBel − λminBel, λmaxPos − λminPos}

For such setting, according to already mentioned lemma 7.35, both conditional relations
are met. Grounding thresholds are also met, because:

λp→q = λmaxBel − ε < λmaxBel

λp→q = λmaxBel − ε > λmaxBel − λmaxBel + λminBel = λminBel

λ¬p→¬q = λmaxPos − ε < λmaxPos

λ¬p→¬q = λmaxPos − ε > λmaxPos − λmaxPos + λminPos = λminPos

Proof for (case 2), where:

f(1− λminPos) > λminBel ∧ f(1− λminBel) > λminPos,

is performed similarly to the proof for case 1. One should use lemma 7.34 and a setting:

λp→q = λminBel + ε

λ¬p→¬q = λminPos + ε

λp→¬q = 1− λminBel − ε
λ¬p→q = 1− λminPos − ε

Sufficiency is proved.

Theorem 7.28. (Pragmatic) Assume a grounding threshold and boundary function set-
ting meeting inequalities 7.5 and 7.6. It is possible to set grounding thresholds and upper
and lower boundary functions so that pragmatic epistemic relations CS |=PE p→ Pos(q)
and CS |=PE ¬p→ Pos(¬q) can be both met. A sufficient and necessary condition is:

f(1− λmaxPos) < λmaxPos or f(1− λminPos) > λminPos
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Proof. Meeting of pragmatic epistemic relation for both formulas means grounding
threshold requirements meet inequalities:

λminPos < λp→q < λmaxPos and λminPos < λ¬p→¬q ¬ λmaxPos

Conditional relations can be met when either (case 1):

λp→q > f(λ¬p→q) and λ¬p→¬q > f(λp→¬q)

or (case 2):
λp→q < f(λ¬p→q) and λ¬p→¬q < f(λp→¬q)

other cases are impossible for the same reason as provided in the proof of theorem 7.27.

From case 1 we conclude:

λmaxPos  λp→q > f(λ¬p→q) = f(1− λ¬p→¬q)  f(1− λmaxPos)

and from case 2 we conclude:

λminPos < λp→q < f(λ¬p→q) = f(1− λ¬p→¬q) ¬ f(1− λminPos)

Both cases lead to the condition from theorem 7.28. This proves necessity.

To prove sufficiency I shall construct a grounding threshold setting meeting both prag-
matic epistemic relations. Firstly assume that (case 1) f(1− λmaxPos) < λmaxPos.

Let λmin = 1 − λmaxPos and λmax = λmaxPos. According to lemma 7.35 there exists
εmax, such that for every ε ∈ (0, εmax), λmax − ε > f(λmin + ε).

Let grounding strengths be:

λp→q = λ¬p→¬q = λmaxPos − ε
λp→¬q = λ¬p→q = 1− λmaxPos + ε

where ε = 0.5 min{εmax, λmaxPos − λminPos}.
Lemma 7.35 implies that conditional relations are met. Similarly grounding threshold
requirements are met, because:

λp→q = λ¬p→¬q = λmaxPos − ε < λmaxPos

λp→¬q = λ¬p→q = 1− λmaxPos + ε

> 1− λmaxPos + λmaxPos − λminPos = 1− λminPos > λminPos

Inequality 1− λminPos > λminPos can be implied from lemma 7.33.

Proof for (case 2), where f(1− λminPos) > λminPos, is performed similarly to the proof
for case 1. One should use lemma 7.34 and a setting:

λp→q = λ¬p→¬q = λminPos + ε

λp→¬q = λ¬p→q = 1− λminPos − ε

Sufficiency is proved.
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Because of dependence between normal and pragmatic epistemic relations (theorem
7.13), theorem 7.5 provides sufficient condition that disallows simultaneous meeting of
pragmatic epistemic relations CS |=PE p→ Know(q) and CS |=PE p→ Π(¬q).
Similarly theorem 7.8 provides sufficient condition that disallows simultaneous meeting
of pragmatic epistemic relations CS |=PE p→ Bel(q) and CS |=PE p→ Bel(¬q).
Other combinations of formulas p → Π(q) and p → Ξ(¬q) can be simultaneously met
by normal epistemic relation (theorems 7.9 and 7.10) and pragmatic epistemic relation.
Theorems 7.29 and 7.30 provide required constraints in the case of pragmatic epistemic
relation.

Theorem 7.29. (Pragmatic) Assume a grounding threshold and boundary functions
setting meeting inequalities 7.5 and 7.6. Pragmatic epistemic relations CS |=PE p →
Pos(q) and CS |=PE p→ Bel(¬q) can be both met.

Proof. I shall construct a grounding threshold setting that meets both pragmatic epis-
temic relations. Let:

bmax = min{λmaxBel, 1− λminPos},
bmin = max{λminBel, 1− λmaxPos},
pmax = 1− bmin = min{1− λminBel, λmaxPos},
pmin = 1− bmax = max{1− λmaxBel, λminPos}

and let grounding strength setting be defined as:

λp→q = pmin + ε

λp→¬q = 1− λp→q = bmax − ε
λ¬p→q = 1

λ¬p→¬q = 1− λ¬p→q = 0

where

ε =0.5 min{bmax − bmin, pmax − pmin,
f(1)− λminBel, λmaxPos − f(0)}.

Values f(1)− λminBel, λmaxPos− f(0) are both positive (lemma 7.33). Similarly bmax−
bmin, pmax − pmin are positive (theorem 7.9 and inequality 7.5). In result ε is always
positive.

Firstly I shall prove grounding threshold requirements are met:

λp→q = pmin + ε = max{1− λmaxBel, λminPos}+ ε > λminPos

λp→q = pmin + ε

< pmin + pmax − pmin = pmax

= min{1− λminBel, λmaxPos}
¬ λmaxPos
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and

λp→¬q = bmax − ε = min{λmaxBel, 1− λminPos} − ε < λmaxBel

λp→¬q = bmax − ε
> bmax − bmax + bmin = bmin

= max{λminBel, 1− λmaxPos}
 λminBel

Secondly I shall prove conditional relations λp→q < f(λ¬p→q) and λp→¬q > f(λ¬p→¬q)
hold:

λp→q = pmin + ε

< pmin + f(1)− λminBel
= max{1− λmaxBel, λminPos}+ f(1)− λminBel
¬ f(1) = f(λ¬p→q)

λp→¬q = bmax − ε
> bmax − λmaxPos + f(0)

= min{λmaxBel, 1− λminPos} − λmaxPos + f(0)

 f(0) = f(λ¬p→¬q)

In conclusion a threshold setting meeting both epistemic relations exists. This ends proof
of sufficiency.

Theorem 7.30. (Pragmatic) Assume a grounding threshold and boundary functions
setting meeting inequalities 7.5 and 7.6. Pragmatic epistemic relations CS |=PE p →
Pos(q) and CS |=PE p→ Pos(¬q) can be both met.

Proof. I shall construct a grounding strength setting that meets both pragmatic epis-
temic relations. Let grounding strength setting be defined as:

λp→q = λmaxPos − ε,
λp→¬q = 1− λp→q = 1− λmaxPos + ε

λ¬p→q = 0

λ¬p→¬q = 1− λ¬p→q = 1

where ε is a positive number such that:

ε =0.5 min{2λmaxPos − 1, λmaxPos − f(0), f(1)− λminBel}
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Such setting meets grounding thresholds requirement, because:

λp→q = λmaxPos − ε < λmaxPos

λp→q = λmaxPos − ε
> λmaxPos − 2λmaxPos + 1 = 1− λmaxPos > λminPos

λp→¬q = 1− λmaxPos + ε > 1− λmaxPos > λminPos

λp→¬q = 1− λmaxPos + ε

< 1− λmaxPos + 2λmaxPos − 1 = λmaxPos

and it meets conditional relations:

λp→q = λmaxPos − ε
> λmaxPos − λmaxPos + f(0)

= f(0) = f(λ¬p→q)

λp→¬q = 1− λmaxPos + ε

< 1− λmaxPos + f(1)− λminBel
¬ f(1) + 1− λmaxPos − λmaxPos
= f(1) + 1− 2λmaxPos ¬ f(1) + 1− 2 · 0.5
= f(1) = f(λ¬p→¬q)

Proposed grounding strength setting meets pragmatic epistemic relations for both for-
mulas.

Theorem for normal epistemic relation 7.11 states CS |=E p → Π(q) and CS |=E q →
Ξ(¬p) can be both met iff Ξ 6= Know. Pragmatic epistemic relation has exactly the same
property as stated by theorem 7.31.

Theorem 7.31. (Pragmatic) Assume a grounding threshold and boundary functions
setting meeting inequalities 7.5 and 7.6. Pragmatic epistemic relations CS |=PE p →
Π(q) and CS |=PE q → Ξ(¬p) can be both met if and only if Ξ 6= Know.

Proof. Theorems 7.11 and 7.13 imply that when both epistemic relations are met, then
Ξ 6= Know.

Let c1, c2, c3, c4 denote:

c1 = card(Cp∧q), c2 = card(Cp∧¬q), c3 = card(C¬p∧q), c4 = card(C¬p∧¬q).

Now assume Ξ 6= Know. From the proof of theorem 7.11 we know that one can choose
c1, c2, c3, c4, so that grounding strengths become any rational numbers: λp→q ∈ (0, 1] and
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λq→¬p ∈ (0, 1). We only need to prove that conditional relation can also be met. It can
be met, when:

λp→q =
c1

c1 + c2
> f

(
c3

c3 + c4

)
= f(λp→¬q)

λq→¬p =
c3

c3 + c1
< f

(
c4

c4 + c2

)
= f(λ¬q→¬p)

Left sides of inequalities do not depend on c4. When c4 increases:

lim
c4→∞

λp→¬q = 0 and lim
c4→∞

λ¬q→¬p = 1.

One can choose c4 big enough to obtain λp→¬q as close to 0 and λ¬q→¬p as close to 1 as
one wishes.

Boundary functions are continuous, non-decreasing and meet f(1) > λminBel, f(0) <
λmaxPos. This implies there exist values λ¬p→q and λ¬q→¬p, respectively small enough
and big enough, to meet f(λp→¬q) > λminBel and f(λ¬q→¬p) < λmaxPos.

In result one can choose values c1, c2, c3, c4 that meet both grounding thresholds and
conditional relations. Formal construction of grounding strengths can be performed sim-
ilarly as in previous theorems.

7.2.1. Constraints for the boundary functions

Some of theorems 7.14-7.31 provide constraints on grounding thresholds and boundary
functions. Meeting of these constraints guarantees some formulas can or can not be
grounded simultaneously and in result used together. It is possible to set grounding
thresholds and boundary functions so that all of the constraints are met all together.
Theorem 7.32 provides general conditions that ensure meeting of all the properties. This
theorem states that all common-sense criteria described in chapter 5 can be met by the
proposed grounding theory of conditional formulas.

Theorem 7.32. (Pragmatic) Let grounding thresholds setting meet inequalities 7.5. It is
possible to set lower and upper boundary functions so that all conditions from theorems
7.14-7.31 are simultaneously met by pragmatic epistemic relation. Sufficient conditions
are:

f(max{λminPos, 1− λmaxPos}) < λmaxPos ¬ f(λminBel) < λmaxBel (7.7)

f(min{λmaxBel, 1− λminPos}) > λminBel  f(1− λminBel) > λminPos (7.8)

Proof. When 7.5 is assumed, theorems 7.14-7.31 provide necessary and sufficient con-
straints for particular properties of pragmatic epistemic relation. To provide necessary
and sufficient conditions for all properties to be met together, one needs to take inter-
section of these constraints.
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Theorem 7.17 requires:

λmaxBel > f(λminBel) and f(λmaxBel) > λminBel

and theorem 7.19 requires:

λmaxPos > f(λminPos) and f(λmaxPos) > λminPos

The intersection of these constraints is simply:

f(λminPos) < λmaxPos and f(λminBel) < λmaxBel

f(λmaxBel) > λminBel and f(λmaxPos) > λminPos

We can use λmaxPos ¬ λminBel ¬ f(λminBel) and λminBel  λmaxPos  f(λmaxPos) to
rewrite constraints in a neater form:

f(λminPos) < λmaxPos ¬ f(λminBel) < λmaxBel (7.9)

f(λmaxBel) > λminBel  f(λmaxPos) > λminPos (7.10)

One can notice that:

f(0) ¬ f(λminPos) < λmaxPos ¬ λminBel ¬ f(λminBel) < λmaxBel ¬ 1,

f(1)  f(λmaxBel) > λminBel  λmaxPos  f(λmaxPos) > λminPos  0,

so conditions for theorems: 7.14, 7.15, 7.16 and 7.18, as less restrictive, are already
guaranteed by inequalities 7.9 and 7.10.

From lemma 7.33 we know λminBel > 1 − λmaxBel and λmaxPos < 1 − λminPos, so
λmaxBel > 1− λminBel and λminPos < 1− λmaxPos. This, together with inequalities 7.9,
7.10, implies that:

f(1− λmaxBel) ¬ f(1− λmaxPos) ¬ (7.11)

¬ f(λmaxPos) ¬ f(λminBel) < λmaxBel ¬ 1

This means conditions from theorems 7.24, 7.25 and 7.26 are already guaranteed by 7.9
and 7.10.

Theorem 7.28 provides condition f(1−λmaxPos) < λmaxPos or f(1−λminPos) > λminPos.
It is already met on f(1−λminPos) > λminPos, as from lemma 7.33 and inequalities 7.10
we obtain:

f(1− λminPos)  f(λmaxPos) > λminPos

Since we are searching only for sufficient criteria, we can still add f(1 − λmaxPos) <
λmaxPos to them. We obtain:

f(max{λminPos, 1− λmaxPos}) < λmaxPos ¬ f(λminBel) < λmaxBel (7.12)
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The only theorem, whose condition is not met yet, is 7.27 with a constraint:

(f(1− λmaxPos) < λmaxBel ∧ f(1− λmaxBel) < λmaxPos)

or

(f(1− λminPos) > λminBel ∧ f(1− λminBel) > λminPos)

Inequality f(1−λmaxPos) < λmaxBel is already guaranteed by 7.11. We have two possible
situations (case 1) f(1 − λmaxBel) < λmaxPos or (case 2) f(1 − λminPos) > λminBel ∧
f(1− λminBel) > λminPos.

In case 1 inequality f(1 − λmaxBel) < λmaxPos is not guaranteed by 7.11 but it is
guaranteed by 7.12. This constraint has to be added to 7.9.

f(max{λminPos, 1− λmaxPos}) < λmaxPos ¬ f(λminBel) < λmaxBel

that is the same as condition 7.7 from the theorem.

In case 2 neither of inequalities f(1 − λminPos) > λminBel,f(1 − λminBel) > λminPos is
guaranteed and they have to be added to 7.10. We obtain:

f(min{λmaxBel, 1− λminPos}) > λminBel  f(1− λminBel) > λminPos

that is the same as condition 7.8 from the theorem.

Given constraints 7.7,7.8 are not necessary because only one of inequalities from theorem
7.27 must be met and second inequality from theorem 7.28 is already met by weaker
criteria.

7.2.2. Useful lemmas

Lemma 7.33. Inequalities: f(1) > λminBel > 1 − λmaxBel and f(0) < λmaxPos <
1 − λminPos hold for all grounding threshold and boundary function settings meeting
inequalities 7.5 and 7.6.

Proof. From 7.5 we can imply:

λminPos < 1− λminBel ¬ 1− λmaxPos, hence λmaxPos < 1− λminPos
1− λmaxBel < 1− λminPos ¬ 0.5 ¬ λminBel

From above and from 7.6:

1− λminPos > λmaxPos > f(0)

1− λmaxBel < 0.5 ¬ λminBel < f(1)
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Let 0 ¬ λmin < λmax ¬ 1 be some real numbers and let f, f be lower and upper
boundary functions.

Lemma 7.34. If f(λmax) > λmin, then:

∃εmax > 0 : ∀ε ∈ (0, εmax) ⇒ λmin + ε < f(λmax − ε)

Proof. Assume f(λmax) > λmin. We wish to prove εmax exists.

Let x be a solution of equation:

f(x) = −x+ λmin + λmax (7.13)

Boundary function f(x) ¬ x is non-decreasing, continuous and defined on [0, 1]. g(x) =
−x + λmin + λmax is a line crossing points (λmin, λmax) and (λmax, λmin). Both points
lie within a square area [0, 1]× [0, 1]. If f(1)  λmin + λmax − 1, then the crossing point
g(x) = f(x) exists and lies within [0, 1].

The f(1)  λmin + λmax − 1 is already known to hold, because:

f(1)  f(λmax) > λmin = λmin + 1− 1  λmin + λmax − 1

Assume by contradiction solution x  λmax, then:

λmin + λmax = f(x) + x

 f(λmax) + λmax

> λmin + λmax

we obtain a contradiction, hence x < λmax. This in turn implies that εmax = λmax−x >
0. Now I will prove λmin + ε < f(λmax − ε) for every ε ∈ (0, εmax).

λmin + ε < λmin + εmax

= λmin + λmax − x
= f(x) + x− x = f(x)

= f(λmax − εmax)

¬ f(λmax − ε)

This ends proof.

Lemma 7.35. If f(λmin) < λmax, then:

∃εmax > 0 : ∀ε ∈ (0, εmax) ⇒ λmax − ε > f(λmin + ε)

Proof. Proof construction method is the same as for lemma 7.34.

Lemma 7.36. If f(λmax) > λmin and f(λmin) < λmax, then:

∃εmax > 0 : ∀ε ∈ (0, εmax) ⇒ λmin + ε < f(λmax − ε) ∧ λmax − ε > f(λmin + ε)
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Proof. Lemma 7.36 is a direct consequence of lemmas 7.34 and 7.35. Simply let εmax =
min{ε(1)max, ε(2)max}, where ε(1)max, ε

(2)
max are found εmax’s from lemmas 7.34 and 7.35.

Lemma 7.37. If numbers λ, λ, such that:

λmin < λ ¬ λmax, λmin < λ ¬ λmax and λ < f(λ),

exist, then:
f(λmax) > λmin.

Proof. Let λ, λ be some numbers meeting conditions given in the lemma. Then:

f(λmax)  f(λ) and f(λ) > λ  λmin

so f(λmax) > λmin must be met.

Lemma 7.38. If:
f(λmax) > λmin,

then there exist numbers λ, λ, such that:

λmin < λ < λmax, λmin < λ < λmax and λ < f(λ).

Proof. Let: λ = λmax − ε and λ = λmin + ε, where ε ∈ (0,min{λmax − λmin, εmax}) and
εmax is constructed according to lemma 7.34. The εmax exists because f(λmax) > λmin.

According to the same lemma 7.34: λ < f(λ) holds.

Obviously λ = λmax− ε < λmax and λ = λmin+ ε > λmin. I only need to prove λ > λmin
and λ < λmax:

λ = λmin + ε < λmin + λmax − λmin = λmax

λ = λmax − ε > λmax − λmax + λmin = λmin

This ends proof.

Lemma 7.39. If numbers λ, λ, such that:

λmin < λ ¬ λmax, λmin < λ ¬ λmax and λ > f(λ),

exist, then:
f(λmin) < λmax.

Proof. Proof of lemma 7.39 can be constructed in the same manner as the proof of lemma
7.37.

Lemma 7.40. If:
f(λmin) < λmax,

then there exist numbers λ, λ, such that:

λmin < λ < λmax, λmin < λ < λmax and λ > f(λ).
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Proof. Proof of lemma 7.40 can be constructed in the same manner as the proof of lemma
7.38.

Lemma 7.41. If numbers λ, λ, such that:

λmin < λ ¬ λmax, λmin < λ ¬ λmax and λ < f(λ), λ > f(λ),

exist, then:
f(λmax) > λmin and f(λmin) < λmax.

Proof. Lemma 7.41 is a direct consequence of lemmas 7.37 and 7.39.

Lemma 7.42. If:
f(λmax) > λmin and f(λmin) < λmax,

then there exist numbers λ, λ, such that:

λmin < λ < λmax, λmin < λ < λmax and λ < f(λ), λ > f(λ).

Proof. Lemma 7.42 is a direct consequence of lemmas 7.38 and 7.40.

7.3. Theorems for strictly pragmatic epistemic relation

Theorem 7.43. (Pragmatic, Strict) If strictly pragmatic epistemic relation CS |=SPE
p→ Π(q) is met, then pragmatic epistemic relation CS |=PE p→ Π(q) is also met.

Proof. Proof is straightforward. Pragmatic epistemic relation can be met when λp→q >
f(λ¬p→q) or λp→q < f(λ¬p→q). Strictly pragmatic epistemic relation can be met only
when λp→q > f(λ¬p→q).

Theorems 7.13 and 7.43 together imply that whenever strictly pragmatic epistemic re-
lation is met, then also normal epistemic relation is met.

Theorem 7.44. (Pragmatic, Strict) Strictly pragmatic epistemic relation is equivalent
to pragmatic epistemic relation, if the lower boundary function is a constant function of
0 ( ∀xf(x) = 0 )

Proof. When f(x) is a constant function of 0, condition λp→q < f(λ¬p→q) is never
met and effectively we are imposing strict conditional relation requirements (λp→q >
f(λ¬p→q)).

Theorem 7.44 implies that any pair of formulas prohibited to be simultaneously grounded
by normal or pragmatic epistemic relation shall also be prohibited by strictly pragmatic
epistemic relation. This feature applies to theorems: 7.5, 7.8, 7.21. When one substitutes
normal or pragmatic epistemic relations with strictly pragmatic epistemic relation in
these theorems, provided conditions shall be sufficient but not always necessary.
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All pairs of formulas allowed to be simultaneously grounded by pragmatic epistemic
relation are not always allowed by strictly pragmatic epistemic relation. Whenever one of
formulas must be grounded using lower boundary function requirement λp→q < f(λ¬p→q)
the pair will not be allowed. This remark applies to theorems: 7.17, 7.18, 7.19.

Theorem 7.45. (Strict) It is possible to set boundary functions so that strictly pragmatic
epistemic relation CS |=SPE p → Know(q) can be met. A necessary and sufficient
condition is: f(0) < 1.

Theorem 7.46. (Strict) Assume a grounding threshold setting meeting inequalities 7.5.
It is possible to set boundary functions and grounding thresholds so that strictly pragmatic
epistemic relation CS |=SPE p→ Bel(q) can be met. A necessary and sufficient condition
is:

f(0) < λmaxBel.

Theorem 7.47. (Strict) Assume a grounding threshold setting meeting inequalities 7.5.
It is possible to set grounding thresholds and boundary function so that strictly pragmatic
epistemic relation CS |=SPE p→ Pos(q) can be met. A necessary and sufficient condition
is:

f(0) < λmaxPos.

Proof. Theorems 7.45-7.47 can be directly implied from theorem 7.44 and theorems
7.14-7.16.

Theorems 7.45-7.47 provide conditions that ensure all types of conditional formulas can
be grounded according to strictly pragmatic epistemic relation.

Lemma 7.48. (Strict) Meeting of all conditions provided by theorems 7.45 - 7.47 implies
that:

f(0) < λmaxPos (7.14)

Joining the conditions from theorems 7.45 - 7.47 leads to a more general requirement,
as stated by lemma 7.48. This requirement ensures strictly pragmatic epistemic relation
can be met for all modal operators. Requirement 7.48 shall be assumed in most of the
following theorems.

Proof. Because λmaxPos < λmaxBel ¬ 1, theorem 7.47 provides most restrictive require-
ments, which are stated in the lemma as inequality 7.14.

Normal epistemic relation allows for simultaneous grounding of all combinations of for-
mulas p → Π(q) and ¬p → Ξ(q) (see theorem 7.6). Pragmatic epistemic relation allows
all combinations where at least one of modal operators is not a knowledge operator.
Required constraints have been provided in theorems 7.17-7.19, 7.21 and 7.22. Strictly
pragmatic epistemic relation does not allow for grounding of any of two formulas of the
forms p→ Π(q) and ¬p→ Ξ(q). The chance for consequent (assuming antecedent) can’t
incerase in both conditionals. Theorem 7.49 states this fact and is true even without
constraints 7.5 or 7.5, 7.7, 7.8.
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Theorem 7.49. (Strict) Meeting of strictly pragmatic epistemic relation CS |=SPE p→
Π(q) excludes meeting of CS |=SPE ¬p→ Ξ(q).

Proof. Assume both strictly pragmatic epistemic relations are met, then, from strict
conditional relation:

λp→q > f(λ¬p→q) and λ¬p→q > f(λp→q)

Using the requirement f(x)  x and joining two inequalities leads to:

λp→q > f(λ¬p→q)  λ¬p→q > f(λp→q)  λp→q

We obtain a contradiction, so both formulas can’t be simultaneously met.

When considering pairs of the forms p → Π(q) and ¬p → Ξ(¬q) strictly pragmatic
epistemic relation behaves similarly to pragmatic epistemic relation. Theorems 7.50-7.55
provide sufficient conditions.

Theorem 7.50. (Strict) Assume a grounding threshold and boundary functions setting
meeting inequalities 7.5 and 7.14. Strictly pragmatic epistemic relations CS |=SPE p →
Know(q) and CS |=SPE ¬p→ Know(¬q) can be both met.

Proof. Proof is the same as the proof of theorem 7.23.

Theorem 7.51. (Strict) Assume a grounding threshold and boundary function setting
meeting inequalities 7.5 and 7.6. It is possible to set grounding thresholds and upper and
lower boundary functions so that strictly pragmatic epistemic relations CS |=SPE p →
Know(q) and CS |=SPE ¬p → Bel(¬q) can be both met. A sufficient and necessary
condition is:

f(1− λmaxBel) < 1

Proof. Proof is the same as the proof of theorem 7.24.

Theorem 7.52. (Strict) Assume a grounding threshold and boundary function setting
meeting inequalities 7.5 and 7.6. It is possible to set grounding thresholds and upper and
lower boundary functions so that strictly pragmatic epistemic relations CS |=SPE p →
Know(q) and CS |=SPE ¬p → Pos(¬q) can be both met. A sufficient and necessary
condition is:

f(1− λmaxPos) < 1

Proof. Proof of theorem 7.52 can be constructed similarly to the proof of theorem 7.24.
One needs to change grounding thresholds respectively.

Theorem 7.53. (Strict) Assume a grounding threshold and boundary function setting
meeting inequalities 7.5 and 7.6. It is possible to set grounding thresholds and upper
and lower boundary functions so that strictly pragmatic epistemic relations CS |=SPE
p → Bel(q) and CS |=SPE ¬p → Bel(¬q) can be both met. A sufficient and necessary
condition is:

f(1− λmaxBel) < λmaxBel
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Proof. Proof is the same as the proof of theorem 7.26.

Theorem 7.54. (Strict) Assume a grounding threshold and boundary function setting
meeting inequalities 7.5 and 7.6. It is possible to set grounding thresholds and upper
and lower boundary functions so that strictly pragmatic epistemic relations CS |=SPE
p → Bel(q) and CS |=SPE ¬p → Pos(¬q) can be both met. A sufficient and necessary
condition is:

f(1− λmaxPos) < λmaxBel ∧ f(1− λmaxBel) < λmaxPos

Proof. Proof of theorem 7.54 is a special case of the proof of theorem 7.27. Simply use
case 1 situations, whenever different cases are considered.

Theorem 7.55. (Strict) Assume a grounding threshold and boundary function setting
meeting inequalities 7.5 and 7.6. It is possible to set grounding thresholds and upper
and lower boundary functions so that strictly pragmatic epistemic relations CS |=SPE
p → Pos(q) and CS |=SPE ¬p → Pos(¬q) can be both met. A sufficient and necessary
condition is:

f(1− λmaxPos) < λmaxPos

Proof. Proof of theorem 7.54 is a special case of the proof of theorem 7.28. Simply use
case 1 situations, whenever different cases are considered.

Let us consider pairs of formulas the form p→ Π(q) and p→ Ξ(¬q). Normal epistemic
relation allows for simultaneous grounding of two pairs of this form: p → Bel(q) with
p → Pos(¬q) and p → Pos(q) with p → Pos(¬q) (theorems 7.9 and 7.10). Other pairs
are disallowed by theorems 7.5 and 7.8. Pragmatic epistemic relation allows and disallows
the same pairs as normal epistemic relation. Required constraints have been provided
by theorems 7.29 and 7.30.

Strictly pragmatic epistemic relation does not allow for simultaneous grounding of any
of both formulas of the form p→ Π(q) and p→ Ξ(¬q) (theorem 7.56). This property is
a result from strict conditional relation, where a raise in the chance of the consequent is
required.

Theorem 7.56. (Strict) Meeting of strictly pragmatic epistemic relation CS |=SPE p→
Π(q) excludes meeting of CS |=SPE p→ Ξ(¬q).

Proof. Assume by contradiction that epistemic relations for both formulas can be met.
Strictly pragmatic epistemic relation for p→ Π(q) requires:

λp→q > f(λp→¬q),

while strictly pragmatic epistemic relation for p→ Ξ(¬q) requires:

λp→¬q > f(λp→q).
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From above and the definition for upper boundary function: f(x) > x we have:

λp→q > f(λp→¬q) > λp→¬q > f(λp→q) > λp→q

what is a contradiction.

Both normal and pragmatic epistemic relations allow for pairs of the form: p → Π(q)
and q → Ξ(¬p) if Ξ 6= Know (theorems 7.11, 7.31). Strictly pragmatic epistemic relation
does not allow for such pairs. This is stated in theorem 7.57.

Theorem 7.57. (Strict) Meeting of strictly pragmatic epistemic relation CS |=SPE p→
Π(q) excludes meeting of CS |=SPE q → Ξ(¬p).

Proof. Let c1, c2, c3, c4 denote:

c1 = card(Cp∧q), c2 = card(Cp∧¬q), c3 = card(C¬p∧q), c4 = card(C¬p∧¬q).

Suppose by contradiction that epistemic relations for both formulas can be met. From
strict conditional relation for CS |=SPE Π(p → q) we get λp→q > f(λ¬p→q)  λ¬p→q,
hence:

c1
c1 + c2

=
card(Cp∧q)

card(Cp∧q ∪ Cp∧¬q)
>

card(C¬p∧q)
card(C¬p∧q ∪ C¬p∧¬q)

=
c3

c3 + c4

and for CS |=SPE Ξ(q → ¬p) we get λq→¬p > f(λ¬q→¬p)  λ¬q→¬p, hence:

c3
c3 + c1

=
card(C¬p∧q)

card(C¬p∧q ∪ Cp∧q)
>

card(C¬p∧¬q)
card(C¬p∧¬q ∪ Cp∧¬q)

=
c4

c4 + c2

Multiplying by denominators leads to:

c1c3 + c1c4 > c1c3 + c2c3 and c2c3 + c3c4 > c1c4 + c3c4

Simplifying and joining two inequalities leads to:

c1c4 > c2c3 > c1c4

We obtain a contradiction.

7.3.1. Constraints for strictly pragmatic epistemic relation

Similarly as for normal and pragmatic epistemic relations, all properties given by theo-
rems 7.45-7.57 can be simultaneously met by strictly pragmatic epistemic relation. The-
orem 7.58 provides sufficient constraints on grounding threshold setting and boundary
functions. These constraints are not necessary.
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Theorem 7.58. (Strict) Let grounding thresholds meet inequalities 7.5. It is possible to
set lower and upper boundary functions so that all conditions from theorems 7.45-7.57
can be simultaneously met by strictly pragmatic epistemic relation. A sufficient condition
is:

f(max{λminPos, 1− λmaxPos}) < λmaxPos ¬ f(λminBel) < λmaxBel (7.15)

Proof. Theorem 7.58 is a consequence of theorem 7.32. Theorems 7.45-7.57 do not pro-
vide new constraints regarding upper boundary function. The setting that is suitable for
pragmatic epistemic relation given in equation 7.7, is also suitable for strictly pragmatic
epistemic relation.

7.4. Theorems for epistemic relations for modal conditionals

Theorem 7.59. (ALL) All theorems for epistemic relations for conditional modalities
(theorems 7.2-7.58) also hold for respective epistemic relations for modal conditionals.

One can simply substitute φ → Π(ψ) with Π(φ → ψ) and λminPos, λmaxPos, λminBel,
λmaxBel with βminPos, βmaxPos, βminBel, βmaxBel respectively.

Proof. Epistemic relations for modal conditionals defined by 6.11-6.13, 6.15 and 6.17
additionally require C

p∧¬q = ∅. This is the only difference to epistemic relations for
conditional modalities (6.8-6.10, 6.14 and 6.16).

Conscious grounding sets Cp∧q, Cp∧¬q, C¬p∧q, C¬p∧¬q can be empty regardless of the
contents of grounding sets Cp∧q, Cp∧¬q, C¬p∧q, C¬p∧¬q. This additional requirement does
not influence any of previous theorems.

Theorem 7.60. (ALL) Normal/pragmatic/strictly pragmatic epistemic relation for
Know(p→ q) is equivalent to respective epistemic relation for p→ Know(q).

Proof. Condition 2 from definition 6.13 also implies Cp∧¬q = ∅. If Cp∧¬q would not be
empty, then:

1 = λp→q =
card(Cp∧q)

card(Cp∧q) + card(Cp∧¬q)
<

card(Cp∧q)
card(Cp∧q)

= 1

This leads to a contradiction. Similarly for pragmatic and strictly pragmatic epistemic
relations (additional conditions on conditional relation are the same).

Theorem 7.60 states that statements “I know that if p, then q” and “If p, then I know
that q” have equivalent grounding conditions. Hence either both statements can be
simultaneously grounded or neither of them.
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Theorem 7.61. (ALL) It is possible to set grounding thresholds so that meeting of
normal/pragmatic/strictly pragmatic epistemic relation Ξ(p → q) implies meeting of
respective epistemic relation for p→ Ξ(q). A sufficient condition is:

λminPos = βminPos, λmaxPos = βmaxPos,

λminBel = βminBel, λmaxBel = βmaxBel

Proof. When respective grounding thresholds are equal and normal epistemic relation
for modal conditional is met, then all conditions provided by definitions 6.8-6.10 for con-
ditional modalities are also met. Similarly for pragmatic and strictly pragmatic epistemic
relations.

7.5. Exemplary grounding threshold and boundary function setting

One can choose grounding threshold and boundary function setting meeting all inequal-
ities 7.5, 7.7, 7.8. This setting is adequate for all types of proposed epistemic relations.
An exemplary grounding threshold setting is:

λminPos = 0, λmaxPos = λminBel = 0.6, λmaxBel = 1 (7.16)

It meets constraints 7.5, because:

0 = λminPos < 1− λminBel = 0.4 ¬ 0.5

¬ λmaxPos = 0.6 = λminBel < λmaxBel = 1

The key advantage of choosing λmaxPos = λminBel is that there is no gap where agent
could obtain too big grounding strength to use possibility operator and too small to use
belief modal operator. Choice of λminPos = 0, λmaxBel = 1 ensures all values λp→q ∈ (0, 1]
of the grounding strength are covered by some modal operator2.

Exemplary upper and lower boundary functions can be constructed from f c (see equation
6.7):

f(x) =
√
r2 − (x− x0)2 − x0 + 1, r = 2, x0 ' 1.823 (7.17)

f(x) = 1− f(1− x)

2 Except zero that denotes the conequent is impossible in case of the antecedent.
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These functions and a threshold setting 7.16, meet inequalities 7.7 and 7.8:

f(max{λminPos, 1− λmaxPos}) ' 0.583

< λmaxPos = 0.6

¬ f(λminBel) ' 0.760

< λmaxBel = 1

f(min{λmaxBel, 1− λminPos}) = 1

> λminBel = 0.6

 f(1− λminBel) ' 0.240

> λminPos = 0

One has too choose a radius r big enough to meet all inequalities. For example radius r =
1 does not meet them. The bigger radius one chooses, the less ‘impact’ of the consequent
is required. When one chooses too small radius, inequality f(1− λmaxPos) < λmaxPos is
not met. This inequality is a consequence of condition from theorem 7.55 that in turn
allows for simultaneous usage of CS |=SPE p→ Pos(q) and CS |=SPE ¬p→ Pos(¬q).

7.6. Comparison to the simultaneous usage constraints

Table 7.1 presents pairs of formulas that can or can not be simultaneously met by
respective epistemic relations when constraints 7.5, 7.7, 7.8 are met. Intuitively formulas
that can be met together can be uttered together.

For example both formulas p → Bel(q), p → Pos(¬q) (S9) can be uttered according
to normal and pragmatic epistemic relations, but not according to strictly pragmatic
epistemic relation. Antecedent p can influence consequent q. Assuming p, we can be
rather certain of q and think that ¬q is possible. Yet it is impossible that whenever
antecedent holds, consequent’s chance of holding increases and concurrently decreases.
That is why this pair can’t be simultaneously uttered in the most restrictive meaning of
both conditionals. Either p causes q or it causes ¬q.
Please compare table 7.1 with table 5.2 that in turn summaries what pairs should be
accepted/denied according to common-sense constraints. Both tables match on all pairs.
This exemplifies that the grounding theory fulfils assumed common-sense constraints.



Table 7.1. Some non-trivial pairs of modal conditionals and their acceptability according
to proven theorems. Columns ‘Normal’, ‘Pragmatic’ and ‘Strict’ refer to epistemic rela-
tion, pragmatic epistemic relation and strictly pragmatic epistemic relation respectively.
Symbol 3 denotes that simultaneous usage of statements is possible. Symbol 5 denotes
that simultaneous usage is disallowed. Numbers refer to corresponding theorems for

simultaneous acceptance or denial of given pairs.

no. pair Normal Pragmatic Strict
S1 p→ Know(q), ¬p→ Know(q) 3 7.6 5 7.21 5 7.49
S2 p→ Know(q), ¬p→ Know(¬q) 3 7.7 3 7.23 3 7.50
S3 p→ Know(q), p→ Know(¬q) 5 7.5 5 5

S4 p→ Know(q), p→ Bel(q) 5 7.4 5 5

S5 p→ Know(q), p→ Pos(q) 5 7.4 5 5

S6 p→ Bel(q), p→ Pos(q) 5 7.4 5 5

S7 p→ Know(q), p→ Pos(¬q) 5 7.5 5 7.5 5 7.56
S8 p→ Bel(q), p→ Bel(¬q) 5 7.8 5 7.8 5 7.56
S9 p→ Bel(q), p→ Pos(¬q) 3 7.9 3 7.29 5 7.56

S10 p→ Know(q), q → Pos(¬p) 3 7.11 3 7.31 5 7.57
S11 p→ Bel(q), q → Bel(¬p) 3 7.11 3 7.31 5 7.57
S12 p→ Bel(q), q → Pos(¬p) 3 7.11 3 7.31 5 7.57
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8. Comparison to other theories on conditionals

Proposed grounding theory covers the conventional meaning of indicative conditionals. It
proposes the formal criteria in form of epistemic relations required for proper grounding
of conditionals. Grounding is performed on empirical material accessible to the agent.
Further it is proven that the theory meets a series of common-sense criteria on simulta-
neous usage of conditionals.

It is important to notice the grounding process is designed from speakers perspective to
allow for a rational utterance of a conditional statement in a typical context. From the
listeners perspective the grounding process works differently, as he has to compare his
empirical material with the speakers knowledge and intentions. A cooperative listener
modifies a meaning of a conditional message in order to fit it to the possessed knowledge.
In result the listener conforms to the speaker. Many of other theories on conditionals do
not specify whether statements are considered from the speaker’s or the listener’s per-
spective. But the analysis process and empirical experiments are usually performed from
the listener’s perspective. This has an important impact on obtained results and shall
be the source of crucial differences between the grounding theory and other solutions.

Within this chapter proposed grounding theory is compared to the most known theories
on indicative conditionals. Similarities and differences are outlined.

8.1. Shortly on the material implication

A few words on the material implication have been already mentioned in section 4.1.
It has been said that truth table of material implication does not model all aspects of
conditionals. The falsity of the antecedent or the truth of the consequent is enough for
the truth of the material implication. Speakers subjective incomplete knowledge and
mood are not considered. In result material implication doesn’t model rational usage
patterns as it allows for statements like:

— If the moon is a piece of cheese, then I can jump 100 meters high.
— If birds can fly, then Roosevelt was a president of United States.
— If I am a snail, then Earth is round.

Proposed grounding theory constraints usage of such statements. Statements 1 and 3
are disallowed due to Cp(o) 6= ∅ criterion. These statements can’t be used as indicative
conditionals because the antecedents are known not to hold. Second statement is allowed
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only by the normal epistemic relation 6.10 and 6.13 that models only the most broad
meaning of a conditional. The only requirement for normal epistemic relation is that
the antecedent can’t be known not to hold. Pragmatic epistemic relation does not allow
for the second statement, because there are no proofs for empirical dependence between
the antecedent and the consequent. If the speaker doesn’t see such dependence, rational
usage of a conditional is forbidden. For pragmatic and strict epistemic relations neither
the antecedent nor the consequent can be known.

8.2. A conditional probability or belief based theories

Between 1965 and 1987 emerged a broad group of theories (Adams 1975; Stalnaker 1980;
Jackson 1987) based on Ramsey test (already presented in section 4.2) and conditional
belief (already presented in section 4.4).

Theories were broadly discussed and differed in some aspects but one claim stayed con-
stant:

Our belief in a conditional ‘If A, B’ is equal to the conditional belief in B
assuming that A.

Such approach had an interesting advantages over material implication as it allowed for
a partial belief in a conditional. Later this claim has been used to model subjunctives
with the help of possible worlds (see (Gibbard 1980) for a review).

The normal epistemic relations from grounding theory are compatible with this claim.
Relative grounding strength λp(o)→q(o) is similar to conditional belief. Depending on
the strength’s value one shall say p(o) → Pos(q(o)) or p(o) → Bel(q(o)) or p(o) →
Know(q(o)). In result normal epistemic relations form a theory similar to theories based
on conditional belief.

The problem with this claim is that it is enough for belief in the consequent B to be
high when antecedent A holds. When it comes to uttering a conditional this constraint
is not strict enough. One may have high belief in B regardless of A. For example: ‘If you
eat apples, you will die before 2080’. The speaker may be almost certain the listener will
die before 2080, so his belief in conditional should be high. Unfortunatelly it isn’t, as it
does not depend on eating apples. Pragmatic and strictly pragmatic epistemic relations
of the grounding theory are free of this fallacy.

8.3. Modal logic and Kripke semantics

When it comes to modal operators one cannot omit mentioning of modal logic with
Kripke semantics (Garson 2013). Modal logic introduces two modal operators of pos-
sibility ‘♦’ and necessity ‘�’. Kripke introduced relational semantics based on frames.
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A frame is a pair 〈W,R〉, where elements of W are worlds and R is a relation between
the elements of W . R is often called accessibility relation denoting which worlds are ac-
cessible from a given world w ∈W . Semantics for non-modal formulas are taken directly
from propositional logic. Kripke semantics allow for interpretation of modal formulas.
Let p, q be atomic formulas of propositional logic and A,B be modal formulas. Further,
let w, x ∈W and |= be a satisfaction relation, then:

w |= A iff w satisfies A
w |= ¬A iff w 6|= A
w |= A ∧B iff w |= A and w |= B
w |= A⇒ B iff w 6|= A or w |= B
w |= �A iff ∀x∈W : (wRx)⇒ (x |= A)
w |= ♦A iff ∃x∈W : (wRx) and (x |= A)

In particular, satisfaction relation for modal implications is defined as:

w |= p⇒ �q iff w 6|= p or ∀x∈W (wRx)⇒ (x |= q)
w |= p⇒ ♦q iff w 6|= p or ∃x∈W (wRx) and (x |= q)
w |= �(p⇒ q) iff ∀x∈W (wRx)⇒ (x |= p⇒ q)
w |= ♦(p⇒ q) iff ∃x∈W (wRx)⇒ (x |= p⇒ q)

Accessibility relation R can be transitive, reflexive, symmetric, etc.. Possible interpre-
tations of satisfaction relation vary greatly, depending on the shape of the accessibility
relation. One can construct many types of modal logics by simply changing the properties
of accessibility relation.

Modal logic with Kripke semantics uses definition of implication from Boolean logic. In
result modal implication �(p ⇒ q) is not free of shortcomings already mentioned for
material implication. The falsity of the antecedent or the truth of consequent is still a
sufficient condition for the truth of implication.

Kripke semantics define satisfaction relation with respect to some chosen world w often
denoted as a factual world. This world is used to evaluate whether some modal formula
is satisfied or not. In the considered case, we would like the worlds to be interpreted
as possible variants of some not thoroughly known environment. Unfortunately, in such
case, there exists a major interpretative problem with the choice of the factual world
w (Katarzyniak 2007). If one knows which of the worlds is factual, he does not need
to consider other worlds (unless he is thinking counter-factually). If one does not know
which world is factual, he does not know how to evaluate w |= �A or w |= ♦A, as w is
not fixed. It is also impossible not to know whether A is satisfied in w, as it stands in
contradiction with the principle of bivalence.

Let us focus on a case where the accessibility relation is an equivalence relation (it is
transitive, reflexive and symmetric). In such case [w]R ⊆ W forms an equivalence class
with respect to R. When R is an equivalence relation, [w]R may be interpreted as a
set of all worlds consistent with agent’s knowledge about the environment. For modal
formulas ♦p and �p the satisfaction relation either holds in all worlds from [w]R or in
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none of them. For modal formulas ♦p and �p it no longer matters which of the worlds
from [w]R is the factual one.

Unfortunately this is not the case for formulas of propositional logic. In my opinion
there are serious problems with semantics of modal implications p ⇒ �q and p ⇒ ♦q.
Problems arise due to the the choice of the factual world. Suppose w1, w2 ∈ [w]R. If
w1 6|= p, then w1 |= p ⇒ �q, regardless of the chosen consequent q. At the same time,
if w2 |= p, then w2 |= p ⇒ �q may not hold. Depending on the chosen factual world
the implication can be true or not. But I don’t know which world is the factual one.
How can I tell whether this modal implication is true or not? If I know which of the two
worlds is the factual one I do not need to use a conditional. I simply know p and q.

Even greater problems arise for possibility operator. In my opinion the semantics of
♦(p ⇒ q) are wrongly modelled. Suppose R is an equivalence relation and we have a
total of 10 worlds in one equivalence class [w]R. In 9 of these worlds there is p and ¬q and
in the 10th world there is ¬p and ¬q. For such a setting w |= �(¬q) and w |= ♦(p⇒ q)
but nobody sane would utter this conditional. The only setting of worlds where ♦(p⇒ q)
does not hold, is where every accessible world satisfies p and ¬q. This means the only
situation where one can’t say ♦(p ⇒ q) is when one knows that p and ¬q. This is
irrational.

Finally, for every R such that ∀w∃x : wRx, whenever �A is true, ♦A is also true. This
is intuitive in the context the most broad meaning of possibility. On the other hand,
uttering ♦A, when one knows A, is misleading.

As a result modal logic with Kripke semantics does not model uttering of conditionals
well. There are interpretative problems related to the choice of factual world. It repeats
shortcomings of material implication. It uses a very broad unintuitive understanding of
the modal operator of possibility.

8.4. Mental models and possibilities

Johnson presented an interesting theory on conditionals (Johnson-Laird and Byrne 2002;
Byrne and Johnson-Laird 2009) that tries to define the meaning of conditionals in terms
of the theory of mental models and possibilities (Johnson-Laird and Savary 1999). John-
son focuses on conditionals of the forms ‘If p then q’ and ‘If p then possibly q’. The
world ‘possibly’ has a meta-meaning as it is a general substitute for phrases like: ‘may
be’, ‘is permissible’, ‘is allowed’, ‘can’ etc.. The theory of conditionals and the theory of
mental models are quite complex so it is difficult to shortly describe them. I will try to
outline some of the key facts of Johnson’s theory to compare it to the grounding theory
of conditionals.

The theory of mental models (Johnson-Laird and Savary 1999) has been originally for-
mulated to model human’s elementary deductive reasoning. Theory takes into account
the fact that humans often construct incomplete minimal mental models for statements.
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Informally, the fundamental principle states that the mental model represents a setting
of one or more assertions that are true (hypothetically). If such assertions can be all
concurrently true, the mental model represents a possibility. Exemplary mental models
for the statement ‘The battery is dead or the circuit is not connected’ are (Johnson-Laird
and Byrne 2002):

factual possibilities: dead
¬ connected

dead ¬ connected

Each row represents a mental model. Row ‘¬ connected’ denotes that battery is not con-
nected and tells nothing about battery being dead. Third row ‘dead’ and ‘¬ connected’
is associated with a mental model of battery being both dead and not connected. There
is no mental model for ‘¬ dead’ and ‘connected’ as it is not a possibility (it is false) for
the considered statement. Mental models represent assertions supporting the sentence,
not neglecting it1.

Depending on background knowledge and the amount of time spent on reasoning about
a statement mental model can be simpler or more complex. If one knows the battery
can’t be both dead and not connected he will not consider a mental model holding both
‘dead’ and ‘¬ connected’. If one thinks longer about a statement he may construct a
fully explicit model:

factual possibilities: dead connected
¬ dead ¬ connected

dead ¬ connected

The background idea of this theory is that mental models are constructed in a prede-
fined order. Humans construct models that are as simple as possible and concentrate on
the models ‘most strongly’ supporting a statement, not neglecting it. The models that
are minimal for understanding a statement are constructed as first. Proposed approach
seems to explain typical mistakes made in humans’ reasoning processes what has been
confirmed by numerous experiments (Johnson-Laird and Savary 1999; Oberauer 2010).

Proposed theory of mental models (and conditionals) defines what mental models are
constructed for simple and complex statements. The fact that some mental models are
constructed prior to others is taken into account. The process of constructing mental
models is considered from listeners perspective. Proper understanding of a heard state-
ment is not the same as feeling the urge to utter a statement2. This is an important
difference to the grounding theory, where this process is analysed from speakers per-
spective.

1 According to this theory false assertions can be later inferred from true assertions
2 For example we adjust the meaning of the statement in order to properly understand the speaker.
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To model the meaning of conditionals authors extend the theory of mental models with 5
principles (Johnson-Laird and Byrne 2002). Principle 2 refers to subjunctive conditionals
and will be skipped here.

First principle plays the key role in proposed theory and refers to something Johnson
calls a core meaning. The core meaning is understood as a meaning assigned to basic
conditionals with neutral content that is independent from context and background
knowledge. The principle states that the core meaning of a conditional ‘If p then q’
refers to three possibilities:

P Q
¬P Q
¬P ¬Q

And a core meaning of a conditional ‘If p then possibly q’ is the tautological interpreta-
tion, which refers to all four possibilities:

P Q
P ¬Q
¬P Q
¬P ¬Q

Principle 1 simply states that the listener of a ‘true’ conditional sentence ‘If p then
q’ can construct at most 3 possibilities. Mental model associated with P and ¬Q is a
factual impossibility. For a conditional ‘If p then possibly q’ all mental models can be
possibilities. Some of the mental models are optional and may be missing. For example,
for a statement ‘If p then possibly q’, the pragmatics of the situation often rule out
mental model ¬P and Q. Listener often assumes that Q is impossible in the absence of
P .

The most interesting part of Johnson’s theory comes with principle 3 called the principle
of implicit models:

‘Basic conditionals have mental models representing the possibilities in which
their antecedents are satisfied, but only implicit mental models for the possibilities
in which their antecedents are not satisfied. ...’

For a statement ‘If p then q’ mental model P , Q is explicitly present and mental models
¬P , Q and ¬P , ¬Q are only implicit. Term ‘implicit’ is a bit confusing. It means the
models are not built or fully developed in reasoners mind. Reasoner is aware of their
existence but does not explicitly construct and consider them.

Similarly for a statement ‘If p then possibly q’ mental models P , Q and P , ¬Q are
explicitly present and mental models ¬P , Q and ¬P , ¬Q are only implicit.

According to principle 3, when a human considers a conditional he constructs explicit
models with satisfied antecedent. Other models are optional and depend on listeners
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background knowledge and time spent on the analysis of a statement. At first the listener
constructs a mental model for P and Q if such model is not a factual possibility the
conditional can’t be accepted. Further the listener may try to construct a mental model
for P and ¬Q. In the end listener may, but doesn’t have to analyse mental models for
¬P , Q and ¬P , ¬Q.

Principle 4 refers to the listeners background knowledge on the antecedent and the
consequent. It states that constructed mental models depend on the meaning of the
antecedent and the consequent. For example, if the listener knows the consequent is
impossible in the absence of the antecedent he will not construct a mental model for it.

Principle 5 tells that the context of a conditional depends on long-term memory and
particular circumstances of the utterance. This context influences the process of con-
struction of the mental models.

Principles 4 and 5 are rather general and do not formally define how long-term memory,
background knowledge or context influence mental models construction process. Johnson
considers many types of conditionals and proposes a total of 10 different settings of
possibilities depending on the contents of a conditional statement. Johnson describes
the construction of mental models with the help of many examples. Unfortunately he
does not provide formal criteria on when which setting to use. When compared to the
grounding theory, his theory is meant to cover more types of conditionals including
subjunctives. Yet, he does not consider the belief modal operator.

Johnson’s theory has much in common with the grounding theory proposed here. Mental
models have similar interpretation to grounding sets. Explicit and implicit models are
similar to conscious and unconscious areas of cognitive state. In the grounding theory the
cognitive state is constructed from empirical experiences within some context. Cognitive
state defines the contents of grounding sets. Johnson’s theory does not explain how
exactly the context and long-term memory influences the mental models.

Unlike in Johnoson’s theory, the grounding theory focuses on providing criteria for utter-
ing a statement. Johnson’s theory focuses on possibilities constructed from the perspec-
tive of sentence recepient. It is important whether some mental model is a possibility or
not. There is no measure quantifying the influence of particular possibilities. If Johnson’s
theory were used to decide whether a conditional can be uttered, it would not be free of
some of the typical shortcomings mentioned earlier. For example the tautological setting
of mental models for ‘If p then possibly q’ allows for statements like: ‘If he is tall, then
it is possible that the apple is red’.

Principles 1 and 3 constrain mental models for two types of statements: ‘If p then q’, ‘If
p then possibly q’. These conditions are much aligned with normal epistemic relations
proposed in definitions 6.8 and 6.10 respectively. For the formula p → Pos(q) it is
required that Cp 6= ∅ and λminPos < λp→q ¬ λmaxPos. This implies that neither Cp∧q

nor Cp∧¬q can be empty. For Johnson’s mental models, this means both P , Q and P ,
¬Q have to be factual possibilities.

For the formula p → Know(q) it is required that Cp 6= ∅ and λp→q = 1. This in turn
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implies that Cp∧¬q = ∅. For Johnson’s mental models, P , Q is a possibility and P , ¬Q
is an impossibility.

Johnson’s work focuses on mental models constructed for conditional sentences but does
not provide explicit criteria of pragmatic and rational statement usage. His theory aligns
in key aspects with the grounding theory proposed here. Merging of both theories is
certainty an interesting aim worth pursuing. The predicates of Johnson’s theory may be
helpful in defining and implementing the construction process of the cognitive state.



9. Usage examples

9.1. Computational example

Following section presents a simple computational example constructed upon agent’s
knowledge state of 8 base profiles. The example is meant to explain the grounding
process. Three cases of the grounding process and its results are presented and discussed.

9.1.1. Knowledge state

Let agent’s perceptive abilities be limited to recognition of three objects O = {o1, o2, o3}
and four properties P = {P1, P2, P3, P4}. Further, let grounding threshold and boundary
functions be set as in equations 7.16 and 7.17.

Agent has gathered observations for 8 time moments, where t = 8 is the current time
moment. Internal reflections are gathered in 8 base profiles held in agent’s knowledge
state KS = {BP (1), BP (2), ..., BP (8)}.
Contents of base profiles are presented in table 9.1. Rows and columns represent base
profiles and properties respectively. Cells contain perceptions of objects (not) exhibiting
particular properties. For example, at time moment t̂ = 5 agent has observed that o1
and o2 exhibit property P+3 (o1 ∈ P+3 (5) and o2 ∈ P+3 (5)), while o3 does not exhibit it
(o3 ∈ P−3 (5)). At the same time moment t = 5 property P2 was not covered by perception
for object o3 (o3 6∈ P+2 (5) and o3 6∈ P−2 (5)). Agent has not observed whether o3 exhibits
P2 or not.

Agent can use empirical knowledge presented in table 9.1 to reason about environment,
draw conclusions and eventually utter statements. Agent processes empirical knowledge
using its mental capabilities in accordance with its intentions. This results in a particular
cognitive state. This cognitive state can be later used to ground conditional formulas.
The formulas properly grounded may be eventually uttered. The following three sections
present different cases of grounding process and its results depending on the formed
cognitive state.
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Table 9.1. Agent’s knowledge state up to current time moment t = 8

t̂ P+1 P−1 P+2 P−2 P+3 P−3 P+4 P−4
8 o1 o3 o1, o2 o1 o3 o1
7 o3 o1 o1 o1 o3 o1, o2
6 o1 o1, o2 o2 o2
5 o3 o2 o1 o1, o2 o3 o2 o1
4 o1 o2 o3 o2 o2
3 o3 o1, o2 o1 o2, o3 o2
2 o1, o3 o2 o2, o3 o2 o1
1 o3 o1 o1, o2 o2, o3 o2

9.1.2. Case 1: Context free example

Assume all empirical knowledge resides in conscious area of cognitive state model. Such
state can be used to utter a context free (general) statement of whole empirical knowl-
edge.

CS(t) = KS(t), CS(t) = ∅ (9.1)

Case 1.1: Assume agent is focused on object o1 and its properties P1 and P2, for which
grounding sets are:

Cp1(o1)∧p2(o1) = {BP (6), BP (8)},
Cp1(o1)∧¬p2(o1) = ∅,
C¬p1(o1)∧p2(o1) = {BP (7)},
C¬p1(o1)∧¬p2(o1) = {BP (1)}

The grounding strengths are calculated from the grounding sets:

λp1(o1)→p2(o1) = 1, λp1(o1)→¬p2(o1) = 0,

λ¬p1(o1)→p2(o1) = 0.5, λ¬p1(o1)→¬p2(o1) = 0.5,

One can notice that whenever o1 exhibited P1, it also exhibited P2. There are observations
where o1 exhibited P1 and where it did not. Similarly, there are observations where o1
exhibited P2 and where it did not. Neither the antecedent, nor the consequent is known
to (not) hold.

Upper boundary function meets λp1(o1)→p2(o1) > f(λ¬p1(o1)→p2(o1)).

For such a cognitive state model the following epistemic relations (definitions 6.8-6.17)
are met:

— CS |=SPE Know(p1(o1)→ p2(o1)),
— CS |=SPE p1(o1)→ Know(p2(o1)),
— CS |=E ¬p1(o1)→ Pos(p2(o1)),
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— CS |=E ¬p1(o1)→ Pos(¬p2(o1)),
and the following exemplary epistemic relations are NOT met:

— CS 6|=E p1(o1)→ Pos(¬p2(o1))
— CS 6|=PE ¬p1(o1)→ Pos(p2(o1))
— CS 6|=PE ¬p1(o1)→ Pos(¬p2(o1))
Formulas Know(p1(o1) → p2(o1)) and p1(o1) → Know(p2(o1)) meet all types of epis-
temic relations (see theorems 7.13 and 7.43). These two formulas can be used as condi-
tionals in their conventional meaning having all typical implicatures.

Formula p1(o1)→ Pos(¬p2(o1)) can’t be grounded, because there was never ¬p2(o1), in
case of p1(o1).

Formulas ¬p1(o1) → Pos(p2(o1)) and ¬p1(o1) → Pos(¬p2(o1)) meet only normal epis-
temic relation. Pragmatic epistemic relation is not met, because conditional relation
is not met. These formulas imply only that p2(o1) is possible when ¬p1(o1) (degraded
meaning).

Case 1.2: Assume the cognitive state given as in equation 9.1. Let now the agent focus
on object o3 and its properties P1 and P3. Respective grounding sets are:

Cp1(o3)∧p3(o3) = {BP (1)},
Cp1(o3)∧¬p3(o3) = {BP (5), BP (7)},
C¬p1(o3)∧p3(o3) = {BP (2)},
C¬p1(o3)∧¬p3(o3) = {BP (8), BP (3)}

and the calculated grounding strengths are:

λp1(o3)→p3(o3) =
1
3
, λp1(o3)→¬p3(o3) =

2
3
,

λ¬p1(o3)→p3(o3) =
1
3
, λ¬p1(o3)→¬p3(o3) =

2
3

Because λp1(o3)→p3(o3) = λ¬p1(o3)→p3(o3), p3(o3) is not conditionally related to p1(o3).

For such a cognitive state the following epistemic relations (definitions 6.8-6.17) are met:

— CS |=E p1(o3)→ Pos(p3(o3)),
— CS |=E p1(o3)→ Bel(¬p3(o3))
and the following exemplary epistemic relations are NOT met:

— CS 6|=PE p1(o3)→ Pos(p3(o3)),
— CS 6|=PE p1(o3)→ Bel(¬p3(o3)).
Pragmatic epistemic relations are not met, because conditional relation is not met. Agent
can utter p1(o3)→ Pos(p3(o3)) or p1(o3)→ Bel(¬p3(o3)) only in their degraded mean-
ing, where dependence between the antecedent and the consequent is not required. It is
possible to simultaneously claim that p3(o3) is possible and we believe ¬p3(o3) (assuming
p1(o3)).
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9.1.3. Case 2: Known antecedent or consequent

Let the cognitive state, similarly as the in previous case, consist of all empirical knowledge
accessible to the agent:

CS(t) = KS(t), CS(t) = ∅ (9.2)

Let agent focus on o1 and properties P2 and P3, for which grounding sets are:

Cp2(o1)∧p3(o1) = {BP (7), BP (8)},
Cp2(o1)∧¬p3(o1) = ∅,
C¬p2(o1)∧p3(o1) = {BP (3), BP (5)},
C¬p2(o1)∧¬p3(o1) = ∅

Case 2.1: Let agent consider p2(o1) as an antecedent. Grounding strengths are:

λp2(o1)→p3(o1) = 1, λp2(o1)→¬p3(o1) = 0,

λ¬p2(o1)→p3(o1) = 1, λ¬p2(o1)→¬p3(o1) = 0

Feature p2(o1) is not conditionally related to p3(o1), because λp2(o1)→p3(o1) = λ¬p2(o1)→p3(o1).

For such a cognitive state model the following exemplary normal epistemic relations are
met:

— CS |=E Know(p2(o1)→ p3(o1)),
— CS |=E Know(¬p2(o1)→ p3(o1))

and respective pragmatic epistemic relations are NOT met:

— CS 6|=PE Know(p2(o1)→ p3(o1)),
— CS 6|=PE Know(¬p2(o1)→ p3(o1)).

When the consequent p3(o1) is known to hold, the conditional statement p2(o1)→ p3(o1)
can be uttered only in its degraded meaning (one simply knows p3(o1) assuming p2(o1)).
Pragmatic epistemic relations are not met, there is no point in uttering a conditional,
when the consequent holds regardless of the antecedent.

Case 2.2: Now let agent consider p3(o1) as an antecedent. Respective grounding strengths
are:

λp3(o1)→p2(o1) = 0.5, λp3(o1)→¬p2(o1) = 0.5

Antecedent is already known to hold because set C¬p3(o1) = ∅. Grounding strengths
λ¬p3(o1)→p2(o1), λ¬p3(o1)→¬p2(o1) can’t be calculated.

The normal epistemic relations are met:

— CS |=E p3(o1)→ Pos(p2(o1)),
— CS |=E p3(o1)→ Pos(¬p2(o1))
and the follwoing normal epistemic relations are NOT met:
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— CS 6|=E ¬p3(o1)→ Pos(p2(o1)),
— CS 6|=E ¬p3(o1)→ Pos(¬p2(o1))
because of C¬p3(o1) = ∅.
When antecedent is known not to hold, one deals with subjunctive conditionals so con-
sidered indicative conditionals can’t be grounded.

When the antecedent or the consequent is known (not) to hold in advance, one can’t use
a conditional in its full conventional meaning. Pragmatic epistemic relations are never
met.

9.1.4. Case 3: Different contexts

The contents of cognitive state are context driven and depend on current observations,
agent’s intentions and desires. The choice of empirical material included in the cognitive
state model influences grounding process. Different statements can be grounded depend-
ing on the contents of conscious and unconscious areas of cognitive state. Following three
cases exemplify this phenomenon.

Let agent focus on object o2 and its properties P3 and P4.

Case 3.1: In this case the agent considers only the observations where o2 exhibited P2.
In result, conscious area contains all situations where o2 ∈ P+2 and unconscious area is
empty (C = ∅).

CS(t) = {BP (4), BP (5), BP (6), BP (7), BP (8)}, CS(t) = ∅

The grounding sets are:

C
p3(o2)∧p4(o2) = {BP (5), BP (6)}, Cp3(o2)∧p4(o2) = ∅

C
p3(o2)∧¬p4(o2) = ∅, Cp3(o2)∧¬p4(o2) = ∅

C
¬p3(o2)∧p4(o2) = ∅, C¬p3(o2)∧p4(o2) = ∅

C
¬p3(o2)∧¬p4(o2) = {BP (4)}, C¬p3(o2)∧¬p4(o2) = ∅

Such conscious state can be suitable for example when speaking in the context of current
moment t = 8. In this moment agent has observed o2 ∈ P+2 (8) (see table 9.1). Agent
may conclude property P2 is important and influences properties P3 and P4. For that
reason agent considers only empirical knowledge where o2 ∈ P+2 .

In such case epistemic relation:

— CS |=SPE Know(p3(o2)→ p4(o2))

is met.

Formula CS |=SPE Know(p3(o2) → p4(o2)) can be properly grounded and eventually
uttered. This time agent does not generally summarize its whole knowledge. The meaning
of conditional is constrained to a particular context (where o2 ∈ P+2 ). The speaking agent
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and a recipient must have previously aligned contexts on P2. This is required, so that
the speaking agent shall not mislead the recipient.

Case 3.2: Assume conscious area contains all observations where o2 ∈ P+2 and uncon-
scious area contains observations where o2 ∈ P−2 .

CS(t) ={BP (4), BP (5), BP (6), BP (7), BP (8)},
CS(t) ={BP (1), BP (2), BP (3)}

This situation is similar to previous one, but observations o2 ∈ P−2 are not excluded
from mental state and influence agent’s reasoning. Yet situations where o2 ∈ P+2 are
more important.

Grounding sets are:

C
p3(o2)∧p4(o2) = {BP (5), BP (6)}, Cp3(o2)∧p4(o2) = {BP (2)}

C
p3(o2)∧¬p4(o2) = ∅, Cp3(o2)∧¬p4(o2) = {BP (1)}

C
¬p3(o2)∧p4(o2) = ∅, C¬p3(o2)∧p4(o2) = {BP (3)}

C
¬p3(o2)∧¬p4(o2) = {BP (4)}, C¬p3(o2)∧¬p4(o2) = ∅

and grounding strengths are:

λp3(o2)→p4(o2) = 0.75, λp3(o2)→¬p4(o2) = 0.25,

λ¬p3(o2)→p4(o2) = 0.5, λ¬p3(o2)→¬p4(o2) = 0.5.

The following epistemic relations are met:

— CS |=SPE Bel(p3(o2)→ p4(o2))
— CS |=SPE Pos(¬p3(o2)→ ¬p4(o2))
— CS |=PE p3(o2)→ Pos(¬p4(o2))
— CS |=PE ¬p3(o2)→ Pos(p4(o2))

and epistemic relations are NOT met:

— CS 6|=SPE p3(o2)→ Pos(¬p4(o2))
— CS 6|=SPE ¬p3(o2)→ Pos(p4(o2))

In comparison to case 3.1, agent no longer claims Know(p3(o2)→ p4(o2)), as the current
context is broader. There is some uncertainty in the agent, disallowing it to exclude
situations where o2 ∈ P−2 . This uncertainty may result from lack of time to fully process
and analyse possessed knowledge.

Case 3.3: Now assume conscious area contains all situations where o2 ∈ P−2 and uncon-
scious area contains situations where o2 ∈ P+2 . This is a reversed situation in comparison
to case 3.2. Conscious grounding sets switch places with unconscious ones. Grounding
strengths stay the same as in case 3.2.

Now the following epistemic relation:

— CS |=PE Pos(¬p3(o2)→ p4(o2))
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is met, because C¬p3(o2)∧¬p4(o2) = ∅.
Yet the following epistemic relations are no longer met:

— CS |=SPE Bel(p3(o2)→ p4(o2))
— CS |=SPE Pos(¬p3(o2)→ ¬p4(o2))

because Cp3(o2)∧¬p4(o2) = {BP (1)} 6= ∅ and C
¬p3(o2)∧p4(o2) = {BP (3)} 6= ∅.

Cases 3.1-3.3 exemplify how the contents of the cognitive state influence grounding
process. Depending on circumstances different statements can be properly grounded
from the same empirical material.
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9.2. Summarizing transaction base

Proposed grounding theory has been utilized to summarize simple transaction base (Sko-
rupa and Katarzyniak 2012) with modal conditional formulas. The transaction base has
been filled with random data, so that one has through understanding of provided data
characteristics. Obtained results can be compared to known probability distributions.

9.2.1. Transaction base

Let P = {p1, p2, ..., pK} be a set of attributes. Further let database D be defined as a
multiset: D = {d(1), d(2), ..., d(t)} where each transaction dt̂ ∈ D, t̂ = 1, 2, ..., t is a vector

of attributes’ values d(t̂) = (p(t̂)1 , p
(t̂)
2 , ..., p

(t̂)
K ). Each attribute can take one of three values

p
(t̂)
k ∈ {−1, 0, 1}. A following interpretation is assumed:

— p
(t̂)
k = 1 - transaction dt̂ has attribute pk.

— p
(t̂)
k = −1 - transaction dt̂ does not have attribute pk.

— p
(t̂)
k = 0 - attribute pk is unknown for transaction dt̂.

9.2.2. Method for Choosing Conditional Statements

Proposed grounding theory, presented in chapter 6, has been used to describe the trans-
action base with conditional sentences. Let p, q ∈ P. A user may ask questions regarding
the antecedent or the consequent or both. Questions may take the one of three forms:

— p→? - What does p imply? (find conditionals with p as an antecedent)
— ?→ q - What does q depend on? (find conditionals with q as a consequent)
— p → q - Does q depend on p? (find conditionals with p as an antecedent and q as a

consequent)

Agent analyses transaction base to find suitable conditionals. In the analysis process
agent utilizes proposed theory to constructs grounding sets and calculate grounding
strengths.

Depending on the type of the input question, method searches for proper conditionals
with the fixed antecedent or the consequent. Method checks all required combinations
of pairs of attributes’ values against strictly pragmatic epistemic relation 6.16. Each
statement satisfying respective relation, is returned as an output.

9.2.3. Program simulation

Proposed method has been implemented to check its work-flow and present exemplary
results.
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A grounding thresholds setting given by equation 7.16 was assumed. If not stated oth-
erwise, f c (see eq. 6.7) was taken as an upper boundary function. Radius r was set to
1.5.

9.2.4. Used data

Transaction base used within program consisted of 5000 transactions. There were 10
attributes p1, p2, ..., p10. Values of each attribute were generated randomly. Each attribute
could hold, not hold or be unknown. To simulate dependencies between attributes some
conditional distributions were used. A random database has been chosen, to allow for
through understanding of delivered data. This way one can discuss results against input
distributions. Whole setting of uniform distributions is given below:

P (p1) = 0.6 P (p2|¬p1) = 0.3, P (p2|p1) = 0.8
P (p3|¬p2) = 0.5, P (p3|p2) = 1 P (p4) = 0.3
P (p5|¬p1) = 0.5, P (p5|p1) = 0.1 P (p6|¬p4) = 0.05, P (p6|p4) = 0.2
P (p7) = 0.5 P (p8|¬p5) = 0.8, P (p8|p5) = 0.9
P (p9) = 0.2 P (p10|¬p9) = 0, P (p10|p9) = 1

Attributes p1, p4, p7 and p9 are independent. All other attributes directly or indirectly
depend on values of independent attributes. For an example: p2 depends on p1. If p1
holds, probability of p2 is equal to 0.8. When p1 doesn’t hold, probability of p2 is only
0.3. For a second example: p10 is equivalent to p9, either both attributes hold or none of
them. For a third example: p6 has an overall low probability. It is slightly higher when
p4 holds.

Finally some of values have been randomly masked, so that they are unknown to the
program. About 20% of values were unknown.

9.2.5. Exemplary Results

Table 9.2 presents exemplary questions asked (column 2) and answers given by the agent
(column 3).

Question 1 asks about attributes influencing p10. Program correctly recognizes that p9
and p10 are equivalent by stating two conditional formulas with knowledge operator (see
input data description). No other conditionals are returned as p10 does not depend on
any other attributes.

There is no answer to question 5, as attribute p7 does not influence other attributes. No
conditional is suitable as an answer. Again system behaves correctly.

Question 6 on p8 has no answers, because dependence between p5 and p8 is very weak.
According to input data, probabilities are P (p8|¬p5) = 0.8, P (p8|p5) = 0.9. The 0.1
difference between probabilities is not enough to claim that they are conditionally re-
lated. Statement testing fails on conditional relation that requires a more significant
dependence.

128



Table 9.2. Exemplary questions and answers made (f = f c, r = 1.5)

no. question answers
1. ?→ p10 p9 → Know(p10),¬p9 → Know(¬p10)
2. ?→ p2 p1 → Bel(p2),¬p1 → Bel(¬p2),

p3 → Bel(p2),¬p3 → Know(¬p2)
3. ?→ p6 p4 → Pos(p6),¬p4 → Bel(¬p6)
4. p2 → p3 p2 → Know(p3),¬p2 → Pos(¬p3)
5. p7 →? no answers

6. ?→ p8 no answers

For attribute p6 (question 3), there is also a sight probability difference of 0.15, depending
on p4. Here we receive conditionals as answers. This happens, because in case of p4, p6
is four times as probable. Slight change in probability greatly increases chance for p6.
Agent notices that and utters statements forming a desired result. Small probability of
a consequent doesn’t necessarily mean that there is no conditional dependence.

Table 9.3. Program answers for different upper boundary functions f

question function f answers

?→ p6 f c, r = 1 no answers

f c, r = 3 p4 → Pos(p6),¬p4 → Bel(¬p6)
f c, r = 4 p4 → Pos(p6),¬p4 → Bel(¬p6),

p5 → Pos(p6),¬p5 → Bel(¬p6)

fs, n = 2 ¬p4 → Bel(¬p6)
f q, n = 2 p4 → Pos(p6)

?→ p8 f c, r = 1 no answers

f c, r = 3 p5 → Bel(p8),¬p5 → Pos(¬p8)
f c, r = 4 p1 → Pos(¬p8),¬p1 → Bel(p8),

p5 → Bel(p8),¬p5 → Pos(¬p8)

The choice of upper boundary function f has a crucial impact on the answer. Table 9.3
presents program answers for two exemplary questions and different functions. Attribute
p6 has low probability that is slightly higher when p4 holds. Attribute p8 has high
probability that is slightly higher when p5 holds (see data specification in section 9.2.4).
One can assume that proper common-sense answers are p4 → Pos(p6),¬p4 → Bel(¬p6)
for p6 and p5 → Bel(p8),¬p5 → Pos(¬p8) for p8. Choosing f c with r = 3, gave such
answers for both questions. Choosing too big radius r additionally allowed sentences
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about unrelated attributes (p5 and p1 respectively). Setting to small radius r = 1 gave
no answers.

For other upper boundary functions f s and f q (see equations 6.8 and 6.9), there were dif-
ferent answers. Function fs prefers consequents with high conditional probability (¬p6),
f q prefers ones with low conditional probability (p6).
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9.3. The application example: Mushroom adviser

Proposed grounding theory may be utilized to describe dataset with discrete attributes.
Dataset can be transformed to agent’s knowledge state and instances held within dataset
may be converted to base profiles. Knowledge state may later be used to check epis-
temic relations of conditional formulas. Because grounding theory meets a series of
common-sense criteria, returned formulas should possess conventional and intuitive mean-
ing of natural language sentences.

Mushrooms dataset (Bache and Lichman 2013) has been chosen for an exemplary imple-
mentation of description of data with conditional formulas. This dataset is a well known
reference set often used for testing classification algorithms. Dataset consists of hypo-
thetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and
Lepiota Family. Each species is described by 22 discrete attributes and a classification
attribute. Classification attribute tells whether mushroom is edible or poisonous. There
are total of 8124 instances in the data set and about half of them are poisonous. Some
values for one attribute (stalk-root) are missing.

Let p and e denote ‘poisonous’ and ‘edible’ respectively. Suppose a is some attribute
describing mushroom instances and v is some value of this attribte. Let a = v denote
‘Attribute a is v’ or ‘Attribute a has property v’. Because grounding theory meets a series
of common-sense criteria, a properly grounded formula1 of the form (a = v) → Pos(p)
has a conventional meaning of a conditional: ‘If a is v, then it is possible that mushroom
is poisonous’. Formula possesses the following conventional implicatures of a conditional
statement:

— Attribute a may, but doesn’t have to have value of v.
— Mushroom may, but doesn’t have to be poisonous.
— When a = v, it is possible that the mushroom is poisonous.
— When a 6= v, mushroom rather isn’t or can’t be poisonous.

The grounding theory has been defined on binary properties, whereas mushrooms are de-
scribed with discrete and usually non-binary attributes. To allow application of ground-
ing theory, 23 discrete attributes have been converted to 126 binary properties P =
{p1, p2, ..., p126}. Missing values stayed as unknown. In this form the dataset can be in-
terpreted as a knowledge state KS(t) where each mushroom sample is treated as a base
profile BP (t̂). For a general description of the dataset, cognitive state simply contains
all knowledge (CS(t) = KS(t)).

1 In this example, it is assumed, formula is properly grounded, when strictly pragmatic epistemic
relation is met.
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9.3.1. General knowledge

In an exemplary implementation I was searching for conditionals of the forms: (a = v)→
Π(e) and (a 6= v)→ Π(e), where Π ∈ {Pos,Bel,Know}, a is an attribute name, v is its
value and e denotes ‘edible’.

Data set contains 126 binary properties, so there were total of 252 possible antecedents.
For each antecedent there were 3 possible modal operators. In result there were a total
of 756 candidates for conditional sentences.

Every valid attribute and value combination was checked against strictly pragmatic
epistemic relation (definition 6.16). Grounding thresholds and boundary function were
chosen as in equations 7.16 and 7.17. Every time relation held, respective formula was
added to the result.

A total of 87 formulas were properly grounded: 24 with knowledge operator, 36 with belief
operator and 27 with possibility operator. These formulas were later translated to natural
language sentences using simple substitution table. Exemplary returned sentences were:

1. If cap-shape is sunken, then I know that mushroom is edible.
2. If cap-color is green, then I know that mushroom is edible.
3. If odor is almond, then I know that mushroom is edible.
4. If odor is anise, then I know that mushroom is edible.
5. If habitat is waste, then I know that mushroom is edible.
6. If odor is none, then I believe that mushroom is edible.
7. If habitat is meadows, then I believe that mushroom is edible.
8. If odor is not creosote, then it is possible that mushroom is edible.2

9. If cap-shape is not knobbed, then it is possible that mushroom is edible.3

Running the method for the rules of the form (a = v) → Π(p) (p denotes ‘poisonous’)
lead to similar results. Exemplary statements were:

1. If odor is fishy, then I know that mushroom is poisonous.
2. If gill-color is green, then I know that mushroom is poisonous.
3. If odor is creosote, then I know that mushroom is poisonous.
4. If odor is not none, then I believe that mushroom is poisonous.
5. If habitat is not meadows, then it is possible that mushroom is poisonous.

All returned formulas generally summarize mushrooms dataset and have intuitive natural
language meaning.

2 When the odor is creosote, the mushroom is certainly poisonous. There were no instances of edible
mushrooms with creosote odor.

3 When cap-shape is knobbed, mushroom may also be edible. About 27% of mushrooms with
knobbed cap shape are edible and about 54% of all other mushrooms instances are edible.
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9.3.2. Context specific utterances

The grounding theory can be also utilized in a context specific circumstances to advise
a mushroom picker on the edibility of a mushroom.

Suppose the picker sees a mushroom, but does not know if it is edible. The picker takes
a photo of the mushroom using his smart-phone. The photo is passed to a software that
analyses it and extracts as many mushroom’s features as possible. This way features such
as the cap shape or the colour can be determined, yet it is impossible to obtain the odour.
Later the features are passed to a specialized software agent that compares them against
mushroom database. Firstly the agent tries to determine on mushroom edibility. If it
is not possible to determine the edibility, the agent uses a grounding theory to support
the picker with helpful tips in the form of conditionals. For example the program may
suggest: ‘If the odour is almond, then I know the mushroom is edible’. The picker may
consider the advise and smell the mushroom to check its odour.

In order not to complicate the example too much I introduce only a sketch of the solution.
The algorithm works more or less as follows:

1. Construct current base profile BP (t) and fill it according to the features determined
from the mushroom’s photo.

2. Within the mushroom dataset find instances that are consistent with all known at-
tributes from BP (t) (where respective attributes have the same values as the known
attributes in BP (t)). Put all found instances into conscious area of mental state
CS(t).

3. If cardinality of CS(t) is very small, find instances that are most similar to BP (t)
and put them into unconscious area of mental state CS.

4. If all instances of mushrooms in mental state CS(t) = CS(t)∪CS(t) are edible (or all
of them are poisonous), simply return ‘I know the mushroom is edible (poisonous)’.

5. Similarly as in section 9.3.1 apply grounding theory to find all suitable conditional
statements of the forms (a = v) → Π(e) and (a = v) → Π(p). Instead of the whole
database use mental state CS(t) = CS(t) ∪ CS(t) obtained in steps 2 and 3.

6. Rank obtained conditional statements (for example on their usability to the picker).
Return highest ranked statement(s).

In step 3 a predefined cardinality should be picked. Too small cardinality may lead to
unpredictable results. One should choose a similarity measure that depends only on the
known attributes from BP (t).

In step 6 the ranking measure may prefer the statements with antecedents that the
picker can easily check. Additionally the ranking measure may prefer the statements
with antecedents that are likely to hold.

The grounding theory was used to extract suitable conditional statements. Because of
that, agent returns context specific conditional utterances that possess conventional
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meaning. A simple ranking mechanism should ensure that the returned statements are
useful for the picker.
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10. Summary

Work presented a new approach to conditionals. The approach starts with a shift from
paradigm of conditionals truth conditions to subjective and rational usage conditions.
Indicative conditionals usage patterns are analysed from the speaker’s perspective. Work
provides the grounding theory in form of formal conditions that allow for the choice of
conditionals with accordance to speakers empirical incomplete knowledge. It has been
proven that proposed theory meets a common-sense constraints derived from conditionals
conventional usage patterns. This novel approach allows for the choice of utterances that
sustains intuitive natural language meaning of conditionals. This choice can be performed
autonomously by a properly designed cognitive agent.

Proposed theory is an extension of existing grounding theory (Katarzyniak 2007) of
modal formulas where modality is reperesented by three modal operators of possiblity,
belief and knowledge. Provided theory extends existing grounding theory by adding
modal conditionals to considered formal language. Formal conditions of proper grounding
of conditional formulas in form of epistemic relations have been presented. Three types
of epistemic relations have been proposed. Normal epistemic relation models the most
broad and general meaning of conditionals. Strictly pragmatic epistemic relation models
very narrow and intuitive understanding of a conditional statement.

Two possible applications of presented theory have been proposed. The grounding theory
has been utilized to offer a summary of an artificial transaction base and a benchmark
dataset with discreet attributes. Promising results have been obtained in a series of
simulations. Returned utterances seem to sustain conventional and intuitive meaning of
conditionals.
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