
INFORMATYKA EKONOMICZNA BUSINESS INFORMATICS 3(29) . 2013
ISSN 1507-3858

Radosław Klimek, Piotr Szwed, Stanisław Jędrusik
AGH University of Science and Technology, Krakow
e-mail: {rklimek, pszwed}@agh.edu.pl, jedrusik@zarz.agh.edu.pl

APPLICATION OF DEDUCTIVE REASONING
TO THE VERIFICATION
OF ARCHIMATE BEHAVIORAL ELEMENTS*

Abstract: The formal verification of business models has recently become an intensively
researched area. It is expected that the application of formal tools may bring such benefits to
organizations as the improved quality of products and services and a lower ratio of operational
errors. In this paper we discuss the application of a deduction-based method for the verification
of the behavioral aspects of ArchiMate models. The first step in our method consists in the
translation of the ArchiMate model into Linear Temporal Logic (LTL) formulas. The resulting
LTL formulas are then verified to check the expected temporal properties. The verification
process is based on the semantics tableaux method and is conducted with an LTL prover. The
method is discussed using an example of a business process implemented within a surveillance
system.

Keywords: Deductive temporal reasoning, software verification, ArchiMate, semantics table-
aux method, Linear Temporal Logic.

1. Introduction

Nowadays, enterprise IT systems follow the Service Oriented Architecture paradigm.
They are distributed into a set of services that can be composed using the choreography
pattern or orchestrated with business processes. As the systems become more and
more complex, various languages and notations aimed at modeling enterprise
architectures are used. They include process-oriented BPMN and EPCs, UML
diagrams and, more recently, ArchiMate, the language allowing to build coherent
models expressing relations between various elements of an enterprise architecture:
processes, roles, artifacts, services, software components and infrastructure.

An advantage of business notations is that they are relatively simple and intuitive
to use. They can be used in communication between various involved stakeholders,
define models that can be further ported to executable process languages, e.g. BPEL
or XPDL as well, as may be considered a formal business reference that is required
for various certification authorities.

* This work was supported by the AGH UST internal grant no. 11.11.120.859.

Informatyka Ekon._3(29)_Korczak.indb 76 2014-02-04 10:00:13

Application of deductive reasoning to the verification of ArchiMate behavioral elements 77

Recently, with the growing popularity of business modeling languages, various
attempts to apply in this field the tools and techniques of formal verification can be
observed. Apparently, formal methods may bring such benefits to business as the
improved quality of products and services, smaller ratio of operational errors,
reduced cost and greater competitiveness.

Nevertheless, the application of formal methods to the verification of business
models or its parts, e.g. processes, encounter various barriers. The first problem is
related to ambiguities in specifications. Actually, most business modeling notations
lack formal semantics. It is provided when translating the models into the statements
of executable languages.

The second issue that hinders the application of formal methods is the lack of
tools, preferably integrated with modeling platforms, that would automatically build
formal specifications and perform verification indicating errors or issuing warnings
about potential problems.

In this paper we aim at making a step towards the automated verification of a
business model. We investigate an application of formal deduction-based techniques
to an automated verification of behavioral descriptions embedded within ArchiMate
models. We propose a verification system comprising of three tools: an off-the-shelf
ArchiMate modeler, a generator of temporal logic formulas describing the process
model, and a tableaux based prover.

The motivation for the work is the lack of tools for the deduction-based formal
verification of business models. Another motivation is the lack of tools for the
automatic generation of logical specifications from ArchiMate models.

The contribution of the work arises from the following: rules for the automatic
generation of logical specifications considered as sets of temporal logic formulas are
defined and a complete deduction-based system, which enables an automated and
formal verification of ArchiMate business models is proposed. The reasoning process
is performed using the semantic tableaux method for temporal logic. An example of
the approach is provided.

The paper is organized as follows: Section 2 discusses the problems of the
application of formal methods (and in particular Temporal Logic) to verification. It
is followed by Section 3 briefly describing the ArchiMate language. Then, in Section
4, an example of a process specification using ArchiMate is provided. Section 5
defines the rules governing the translation of ArchiMate models to LTL formulas. In
Section 6 an architecture of the verification system is described and an example of a
checked property is given. Section 7 presents the known approaches to the verification
of business models. Finally, Section 8 gives the concluding remarks.

2. Formal methods

Formal methods are understood as a set of principles for the precise formulation of
the important artifacts formed when developing and refining software models. They
enable revealing, questioning and removing ambiguities and flaws in specifications.

Informatyka Ekon._3(29)_Korczak.indb 77 2014-02-04 10:00:13

78 Radosław Klimek, Piotr Szwed, Stanisław Jędrusik

Moreover, the formality of the used languages leads to rigorous analysis and
verification.

System verification methods fall into two categories [Huth et al. 2004; Clarke et
al. 1996]: proof-based and model-based. The general idea of proof-based methods is
very simple. The system under verification is expressed as a set of formulas Γ in an
appropriate symbolic logic. The specification is represented by another formula φ.
The verification method is to try to prove that Γ

φ. In the model-based approach

the system is expressed by a model M in an appropriate symbolic logic. The
specification is represented by a formula φ. The verification methods is try to check
if model M satisfies φ, i.e. M

φ.

The key issue in formal verification methods is the choice of the symbolic logic
language. The language should be strong enough to express all the significant
properties of the verified system. On the other hand, it must be ensured that the
logical system is sound and complete. When selecting the logical language, one
needs to keep in mind that the increase of a language’s expressiveness may lead to
the loss of soundness or completeness.

One of the most frequently used logics in system verification is Temporal Logic
(TL). It brings in logical symbols for reasoning about varying logical valuations of
formulas throughout the flow of time. Two basic unary operators are ◊ for “sometime
(or eventually) in the future” and □ for “always in the future”. The distinguishing
feature of TL formulas is that the value of the TL formula is not fixed as true or false
in any given model as in predicate, propositional or other classic logic. Any model in
TL may have many states. The TL formula may be true in some of them and false in
the others. TL is also a well-established formalism for the specification and
verification of reactive and concurrent systems. It allows to describe both temporal
relations between the reached states or events occurring within a system and to
specify the expected properties.

Liveness and safety are standard elements of a taxonomy of system properties.
Liveness means that the computational process achieves its goals, i.e. something
good eventually happens. Safety means that the computational process avoids
undesirable situations, i.e. something bad never happens.

In recent years a number of temporal logics has been proposed. Temporal logic
exists in many varieties, however, these considerations are limited to the linear-time
temporal logic (LTL). Linear temporal logic refers to infinite sequences of
computations considered as linear structures and our attention is focused on the
propositional linear time logic PLTL. These sequences are formally represented as
Kripke structures, which define semantics of TL, i.e. a syntactically correct, or a
well-formed, formula can be satisfied by an infinite sequence of truth evaluations
over a set of atomic propositions AP. The basic issues related to temporal logics and
their syntax and semantics are discussed in many works, e.g. [Emerson 1990; Wolter,
Wooldridge 2011].

Informatyka Ekon._3(29)_Korczak.indb 78 2014-02-04 10:00:13

Application of deductive reasoning to the verification of ArchiMate behavioral elements 79

The properties of time structure are fundamental to logic. Of particular
significance is minimal temporal logic, e.g. [van Benthem 1993-95], also known as
temporal logic of the class K. Minimal temporal logic is an extension to a classical
calculus defining the axiom and the inference rule

. The essence of the logic is the fact that there are no specific assumptions
pertaining to the time structure order. The following formulas may be considered as
typical examples of this logic: , , etc.
The considerations of this work are limited to this logic since it allows to define
many system properties (safety, liveness) and it is also easier to build a deduction
engine or use the existing verified provers.

The application of deductive approach to the validation of business processes
faces the problem of the automatic obtaining of logical specifications from business
models. The need to build them manually can be recognized as a major obstacle to
untrained users, due to the fact that the process of specifying a large collection of
formulas is difficult and monotonous.

For temporal logic, that is a suitable language for expressing behavior and
reasoning about it, such specifications are constituted by the set of temporal logic
formulas When the number of formulas is large, which is not an
extraordinary situation, then in practice it is not possible to build a logical specification
manually. It follows that this process usually requires (very) skilled human
intervention. Thus, in order to move the deductive-based formal verification from a
pen-and-paper approach to the engineers’ needs, the automation of the generation
process seems particularly important.

3. ArchiMate

ArchiMate [The Open Group 2012; Van Den Berg et al. 2007] is a contemporary,
open and independent language for the description of enterprise architectures.
It comprises three main modeling layers: business, application and technology. The
business layer includes business processes and objects, functions, events, roles and
services. The application layer contains components, interfaces, application services
and data objects. The technology layer gathers such elements as artifacts, nodes,
software, devices, communication channels and networks. ArchiMate allows to
present an architecture in the form of views which, depending on the needs, can
include only items in one layer or can show the vertical relations between layers, e.g.
a relationship between a business process and a function of the component software.

ArchiMate was built in opposition to UML [Rumbaugh et al. 2004], which can
be seen as a collection of unrelated diagrams, and Business Process Modeling
Notation BPMN [OMG, January 2011] which covers mainly the behavioral aspect of
enterprise architecture. The definition of a language has been accompanied by the
assumption that in order to build an expressive business model it is necessary to use
the relationships between completely different areas, starting from business

Informatyka Ekon._3(29)_Korczak.indb 79 2014-02-04 10:00:13

80 Radosław Klimek, Piotr Szwed, Stanisław Jędrusik

motivation to business processes, services and infrastructure. ArchiMate goes beyond
UML [Nick 2009]: it defines a metamodel on the basis of which a user can create and
illustrate the relationships between elements of different layers.

ArchiMate provides a small set of constructs that can be used to model behavior.
It includes Business Processes, Functions, Interactions, Events and various
connectors (Junctions), which can be attributed with a logical operator specifying
how inputs should be combined or output produced. According to language
specification, casual or temporal relationships between behavioral elements are
expressed with the use of the triggering relation. On the other hand, ArchiMate
models frequently use composition and aggregation relations, e.g. to show that
a process is built from smaller behavioral elements (sub-processes or functions).
It should be also noted that the Business Activity present in the ArchiMate 1.0
specification was removed in version 2.0. Instead, an atomic process should be used.
Although the set of behavioral elements seems to be very limited when compared
with BPMN [OMG, January 2011], after adopting a certain modeling convention its
expressiveness can be similar [Szwed et al. 2013]. An advantage of the language is
that it allows to comprise, in a single model, a broad context of business processes
including roles, services, processed business objects and elements of lower layers
responsible for implementation and deployment. Another process modeling notation
that can be almost directly mapped on ArchiMate constructs is Event-driven Process
Chain (EPC) [Scheer 1999; Scheer, Nüttgens 2000]. Indeed, all the behavioral
elements of both languages are exactly the same: events, functions (or processes in
ArchiMate) and various joins and splits (XOR, OR and AND). In spite of almost the
20 year presence of EPC tools on the market and thousands of deployments in
modeling business organizations, there is no consensus of semantics of EPCs.
Analyses of several semantics variations have revealed certain erroneous patterns,
e.g. the famous vicious circle [Van der Aalst et al. 2002] resulting in a deadlock
caused by the improper use of synchronization joins. Due to the correspondence
between EPC and ArchiMate constructs, discussions and discovered problems
related to EPCs semantics apply also to ArchiMate models.

4. Example of a business model

In this section we present an exemplary ArchiMate model of a process developed
and used within a surveillance system. The goal of the process is to coordinate the
actions of intervention groups whose aim is to apprehend an object violating a
restricted area. Such processes are often implemented in facilities for which the
protection of restricted areas is particularly important, e.g. airports or military zones.
This model is a result of our work on an intelligent surveillance system based on the
analysis of digital images developed within the SIMPOZ project1. One of the

1 http://www.simpoz.pl/..

Informatyka Ekon._3(29)_Korczak.indb 80 2014-02-04 10:00:13

Application of deductive reasoning to the verification of ArchiMate behavioral elements 81

solutions adopted in the system was to use a workflow defined in XPDL language in
order to integrate various system components. The development of the workflow
was preceded by a business analysis step, in which a model of a surveillance system
was elaborated using the ArchiMate language [Szwed et al. 2013].

The entire model of the workflow is far too complex to be presented here.
In order to illustrate the verification procedure we selected only an excerpt.
The extracted part consists of one high-level process (Apprehending an object
violating a restricted zone) and two extending sub-processes (Request for support,
Establish contact with the intervention group). We assume that every process starts
and ends with an event as well as that the events may be triggered by the environment
or by sub-processes.

Figure 1. Model of the process of apprehending an object violating restricted area

Source: own elaboration.

The high-level process of apprehending an object violating a restricted area is
presented in Figure 1. It is triggered by the zone violation event (Alarm – zone
violation). The first task is to assign an intervention group (Assign intervention
group). The assignment is based on a business rule, e.g. find the closest group. The
next step requires some form of interaction between the operator and the intervention

Informatyka Ekon._3(29)_Korczak.indb 81 2014-02-04 10:00:13

82 Radosław Klimek, Piotr Szwed, Stanisław Jędrusik

group in order to confirm starting (Confirm starting intervention). Then the
intervention group is trying to localize and apprehend an object violating the
restricted area (Localize and apprehend the object). While performing this task the
intervention group may request support. Contact with the intervention group may
also be lost. All these exceptional cases are modeled as events (R.1 − Request for
support, R.1 − No contact with the group). The appropriate event handling procedures
are presented in Figures 2 and 3. The successful completion of latter task should be
reported to the operator (Report the apprehension). Then the intervention group must
decide about the further course of intervention (Decide about the further course of
intervention). The operator should be informed about this decision (Report the
decision to the operator). The main flow ends with two alternative events: either
calling the police to take the detainee (To the police − take the detainee) or with
a simple termination in the case, when police participation is not required (R.1 −
Terminate). The terminated event has special semantics. It terminates all instances of
the process and its child sub-processes and removes the unhandled events from the
system queues. The internal Stop event occurring in the two other sub-processes
terminates only a given sub-process.

Figure 2. Model of the process handling support requests

Source: own elaboration.

The model in Figure 2 presents the procedure of handling requests for support
(R.1 − Request for support). This event is triggered by the intervention group. The
procedure begins with entering the request to the system (Input request to the system).
Then the operator makes an assessment of the situation (Assess the situation), which
can yield three possible outcomes. Firstly, the operator may find that support is not
necessary; this is modeled as triggering stop event (R.1 − Stop). Secondly, the
operator may conclude that additional intervention group is needed. The process of
sending the next intervention group may be simply modeled by triggering recursively

Informatyka Ekon._3(29)_Korczak.indb 82 2014-02-04 10:00:13

Application of deductive reasoning to the verification of ArchiMate behavioral elements 83

the zone violation event (Alarm - zone violation). Finally, in a severe case, a request
for the police support may be issued (To the police − request for support).

The last out of the set of extending sub-processes is presented in Figure 3.
It handles cases when there is no contact with the intervention group (R.1 − No contact
with the group). The simplest and most obvious solution is to contact using other
communication channels (Try to contact by other means). Establishing the contact is
modeled as receiving appropriate event (R.1 − Communication established). This
path ends with simple stop event (R.1 − Stop). In the case of time out (R.1 − Waiting
time T1 elapsed), the dispatcher should update the intervention description and send
the next intervention group (Update intervention description and send a new group).
Similarly to the previous sub-process, this is modeled as triggering the zone violation
event (Alarm − zone violation).

5. Modelling ArchiMate behavioural constructs

This section gives the formally defined rules for the translation of behavioral elements
within an ArchiMate specification into LTL formulas. The internal structure of an
ArchiMate model constitutes a graph of nodes linked by directed edges. Both nodes
and edges are attributed with information indicating the type of an element or
a relation. While generating the LTL formulas describing the behavioral aspects
of ArchiMate model, we focus on the components of the Business layer: processes
(or functions), events and various junctions. We apply a linear procedure which visits
nodes, analyzes their successors and generates the LTL formulas describing control
flows.

It should be noted that the ArchiMate behavioral constructs have no precisely
defined semantics. In fact, the translation from an ArchiMate specification to LTL

Figure 3. Model of the process of establishing contact with the intervention group

Source: own elaboration.

Informatyka Ekon._3(29)_Korczak.indb 83 2014-02-04 10:00:13

84 Radosław Klimek, Piotr Szwed, Stanisław Jędrusik

assigns a semantics, which, although arbitrarily selected, follows a certain intuition,
e.g. how to interpret an activity or an event.

Definition 1 (ArchiMate model). ArchiMate model is a multiple
 where

 • is a set of vertices,
 • is a set of edges,
 • is a set of ArchiMate element types,
 • is a set of relations,
 • is a function that assigns element types to graph vertices
 • assigns relation types to edges.

As the considerations in the work focus on business layer elements that are used
to specify behavior, it is assumed that = { , , ,

, , , , } and ={ ,
, , }.

5.1. Modelling atomic activities

By an atomic process (function, interaction) we mean a process that is not linked
with other elements by a composition relation. It represents a basic unit of behavior
which corresponds to the activity concept of other languages, e.g. UML. A process
can be executed if its environment is in a state enabling its activation. After a process
terminates, it causes state changes in the surrounding world [Gruninger, Fox 1994].
While defining LTL formulas describing processes and other elements, we follow the
directions of relations and specify only the transitions between the internal states of
elements and the caused states. In turn, the reached caused states enable the activation
of other elements. Hence, after processing all the relevant elements, a complete
network of states of the whole system specified in LTL is obtained. To model the
execution of an atomic process, two states (and the corresponding propositions in
LTL): start and end are used. A process is considered imperfect even if it has a name
in imperative mood suggesting an achievement, e.g. register invoice, scan document
or send message. Once invoked (the start state becomes active), the process can
successfully complete reaching the end state or be interrupted by an event starting an
alternative flow of control. Such an approach to modeling business processes can be
explicitly supported by language constructs. In particular, the BPMN notation allows
to attach various types of interrupting events to activities, e.g. timer, error or
cancellation. In ArchiMate, an association relation between processes and events can
be used to distinguish the events triggered upon process completion and those
interrupting the normal flow. Figure 4 illustrates this approach. The end state and
Interrupting event are successors of the process start state. On the other hand, the
states of the surrounding elements that can be reached by the normal triggering
relation are successors of the end state.

Informatyka Ekon._3(29)_Korczak.indb 84 2014-02-04 10:00:14

Application of deductive reasoning to the verification of ArchiMate behavioral elements 85

Figure 4. Two states: start and end used in a model of an atomic process

Source: own elaboration.

Atomic processes, functions and interactions (ArchiMate equivalents to activities)
are imperfect and require two states (and propositions) to model their behavior. In turn,
events and junctions are perfect and their activation can be modeled by singular states
(truth values of propositions). To describe all behavioral elements in a uniform manner
we define two functions, and that map vertices from ArchiMate model
to a set of propositions . It is assumed that if a certain vertex represents a
process, a function or an interaction, i.e. ,
then . For the other elements: events and junctions

 holds. We extend these functions to sets of vertices, i.e.
 and .

By we will denote a set of
behaviors that are triggered by .

} is a set of events linked with by association
relation.

 is a set of children of
as defined by composition relation. Let be a set of LTL formulas obtained
from a set of propositions by applying classical or temporal operators and
using parentheses. For brevity of notation we will further omit and write
simply . We define two auxiliary functions: mapping formulas

 and converting a set of propositions into a formula in
disjunctive normal form (2).

start end

Process P

Interrupting
Event

e1

en

...

c1

ci

...

enabling states

caused states

Informatyka Ekon._3(29)_Korczak.indb 85 2014-02-04 10:00:14

86 Radosław Klimek, Piotr Szwed, Stanisław Jędrusik

, (1)

. (2)

5.2. Atomic process, function or interaction

LTL formulas defining temporal relations for atomic activities (processes, functions
and interactions) are generated according to Rule 1. Rules for other ArchiMate
elements have a similar form. Each rule contains a precondition part separated from
its postcondition by a horizontal line. The generated formulas are placed in double
square brackets .

Rule 1. Atomic process, function or interaction

LTL formulas describing the behavior for the sequence of two active elements
Confirm starting intervention and Assign intervention group in Figure. 1 are presented
below (original transcription is preserved). They were generated according to Rule 1.

%BusinessInteraction Confirm_starting_intervention (Confirm starting
intervention)
[](Confirm_starting_intervention_start => <> Confirm_starting_intervention_
end) &
[]~(Confirm_starting_intervention_start & Confirm_starting_intervention_end)
&
[](Confirm_starting_intervention_end => <> Localize_and_take_over_the_
object_start) &
[]~(Confirm_starting_intervention_end & Localize_and_take_over_the_object_
start) &
% BusinessProcess Assign_intervention_group (Assign intervention group)
[](Assign_intervention_group_start => <> Assign_intervention_group_end) &
[]~(Assign_intervention_group_start & Assign_intervention_group_end) &
[](Assign_intervention_group_end => <> Confirm_starting_intervention_start) &
[]~(Assign_intervention_group_end & Confirm_starting_intervention_start) &

Figure 5. An excerpt of the model with a sequence of two active elements

Source: own elaboration.

Informatyka Ekon._3(29)_Korczak.indb 86 2014-02-04 10:00:14

Application of deductive reasoning to the verification of ArchiMate behavioral elements 87

5.3. Events

According to the ArchiMate specification [The Open Group 2012], a business event
is something that happens and influences behavioral elements (processes, functions
and interactions). The events has no duration, thus they can be modeled as single
boolean variables.

Functions and map an event to the same proposition, which
change value to true if the event occurs. An event can be linked by triggering relations
with multiple recipients (or sinks in the Event Driven Architecture). Events are
somehow similar to AndJunctions. The occurrence of both activates all elements
linked by a triggering relation. However, we assume that, unlike AndJunctions, the
activation of elements triggered by an event is not synchronized (c.f. Rule 2).

Rule 2. Event

5.4. Junctions

The ArchiMate language defines three types of connectors:
 • Junction that can be considered a typical XOR connector, i.e. it activates exactly

one output.
 • OrJunction being a typical OR connector activating at least one output.
 • AndJunction that can be used in two modes: when used to merge flows on input

it requires their synchronization. In the second mode it starts a parallel execution
of output flows.
ArchiMate junctions have counterparts in EPC, BPMN (exclusive, inclusive and

parallel gateways) and XPDL transition restrictions [The Workflow Management
Coalition 2008]. Similarly to events, junctions are modeled by single state variables.
If a junction is activated, in a subsequent step elements linked by triggering relations
should be activated according to assumed semantics. As there are three types of
junctions, we define three rules (Rule 3-5) for translating them to LTL formulas.

Rule 3. Junction

Figure 6 gives an example of a junction and LTL formulas generated according
to Rule 1 for the process P1 and Rule 3 for the junction element.

Informatyka Ekon._3(29)_Korczak.indb 87 2014-02-04 10:00:14

88 Radosław Klimek, Piotr Szwed, Stanisław Jędrusik

% BusinessProcess P1 (P1)
[] (P1_start => <> P1_end),
[]~(P1_start & P1_end),
[] (P1_end => <> Junction),
[]~(P1_end & Junction),
% Junction Junction (Junction)
[] (Junction => <>
((P2_start & ~P3_start) | (~P2_
start & P3_start))),
[]~(Junction & P2_start),
[]~(Junction & P3_start),

Figure 6. An example of junction (left) and corresponding LTL formulas (right)

Source: own elaboration.

Rule 4. OrJunction

An excerpt of the model in which OrJunction appears is shown in Figure 7. The
formulas generated according to Rule 4 state that after the junction is activated at
least one of the processes P2 and P3 must be started.

% BusinessProcess P1 (P1)
[] (P1_start => <> P1_end),
[]~(P1_start & P1_end),
[] (P1_end => <> Or_Junction),
[]~(P1_end & Or_Junction),
% OrJunction Or_Junction (Or Junction)
[] (Or_Junction =>
<> (P2_start | P3_start)),
[]~(Or_Junction & (P2_start & P3_start)),

Figure 7. An example of ORJunction (left) and corresponding LTL formulas (right)

Source: own elaboration.

Let us define the relation
describing a set of input for the element .

Rule 5. AndJunction

Informatyka Ekon._3(29)_Korczak.indb 88 2014-02-04 10:00:14

Application of deductive reasoning to the verification of ArchiMate behavioral elements 89

Figure 8 shows a typical pattern of parallel process execution. After the process
P1 terminates the first AndJunction becomes active. Then the processes P2 and P3
are launched. Activation of the process P4 requires the synchronization of P2 and P3,
which is provided by the application of the second junction (AndJunction_0). The
corresponding LTL formulas are given below.

% BusinessProcess P1 (P1)
[] (P1_start => <> P1_end),
[]~(P1_start & P1_end),
[] (P1_end => <> And_Junction),
[]~(P1_end & And_Junction),
% AndJunction And_Junction (And Junction)
[] (And_Junction => <> (P2_start & P3_start)),
[]~(And_Junction & P2_start),
[]~(And_Junction & P3_start),
% BusinessProcess P2 (P2)
[] (P2_start => <> P2_end),
[]~(P2_start & P2_end),
[] (P2_end => <> And_Junction_0),
[]~(P2_end & And_Junction_0),
% BusinessProcess P3 (P3)
[] (P3_start => <> P3_end),
[]~(P3_start & P3_end),
[] (P3_end => <> And_Junction_0),
[]~(P3_end & And_Junction_0),
% AndJunction And_Junction_0 (And Junction)
[](P2_end & P3_end) => <> And_Junction_0),
[] (And_Junction_0 => <> P4_start),
[]~(And_Junction_0 & P4_start),
% BusinessProcess P4 (P4)
[] (P4_start => <> P4_end),
[]~(P4_start & P4_end),

Figure 8. An example of ANDJunction used to implement parallel execution pattern (top)
and corresponding LTL formulas (bottom)

Source: own elaboration.

Informatyka Ekon._3(29)_Korczak.indb 89 2014-02-04 10:00:14

90 Radosław Klimek, Piotr Szwed, Stanisław Jędrusik

5.5. Discussion

In this section, the formal rules governing the translation of the basic ArchiMate
behavioral elements of business layer into LTL formulas were defined. It should be
noted that ArchiMate syntax strictly defines how elements of various types can be
combined, however without giving semantics to them (at least in cases of behavioral
elements). Hence, the rules can be considered to be an assignment of semantics to
the language patterns.

After an analysis of several examples, we decided not to define the rules for
elements composed of lower level activities. The ArchiMate syntax seems to manifest
some flaws in this case. An activity modeled as a process, function or interaction can
be a part (as defined by the composition relation) of several high-level behavioral
elements. Moreover, a complex process can be composed of lower level activities,
but junctions and internal events are not included into the composition. Therefore we
decided to treat complex processes as kinds of views helping to organize the models,
rather than manageable entities.

6. Deduction-based verification

System specification in the form of LTL formulas obtained by applying
rules defined in the previous section can be checked for either its validity or
entailment: . The second case is particularly interesting, as can
express a desired system property pertaining to the temporal ordering of states and
events. The approach proposed in this work consists in applying a semantic tableaux
method to reason about entailment. The method is described briefly in Section 6.1,
which is followed by Section 6.2 giving an outline of a verification system
architecture. Finally we present an example of specification in Section 6.3.

6.1. Semantic tableaux method

Semantic tableaux is a decision-making procedure for checking satisfiability of a
formula. To do so, it shows that the negation of an initial formula cannot be satisfied,
hence, the initial formula is a tautology. To verify an entailment it
suffices to prove that is unsatisfiable.

The main principle of propositional tableaux is to “break” complex formulae
into smaller ones until complementary pairs of literals are produced or no further
expansion is possible The method originates from the classical logic, but it can be
also used for temporal logics [d’Agostino et al. 1999]. Generally speaking, the
method is based on well-defined rules of formula decomposition and expansion.
They allow to handle each of the logical connectives. When the rules are applied,
branches of the inference tree are built. They correspond to alternatives appearing in
formulas placed at the tree nodes. The inference tree is completed when no formula

Informatyka Ekon._3(29)_Korczak.indb 90 2014-02-04 10:00:14

Application of deductive reasoning to the verification of ArchiMate behavioral elements 91

can be further broken down, i.e. no complementary pairs of literals can be produced.
The branches in the tree can be of two kinds: open or closed. A branch is closed if it
can be established that a set of literal formulas, i.e. atomic formulas or its negations,
on this branch has no model. In practice, this corresponds to a condition that a pair
of contradictory formulas can be found on the branch. If all branches of the tree have
contradictions, the whole inference tree is closed. If the negation of the initial formula
is placed in the root, this leads to the statement that the initial formula is true. A very
simple, yet illustrative example of the reasoning tree, is shown in Figure 10. The
negation of the initial formula is placed in the
root of the tree. All branches are closed (red nodes) which means that the initial
formula is always satisfied.

6.2. Deduction-based verification system

The architecture of the deduction-based verification system is shown in Figure 9.
The system consists of three components:

1) Modeler which allows to prepare and develop business models using
ArchiMate language. In this case the Archi software, an excellent free modeling tool
[Archi 2013] was used.

Figure 9. An architecture of deduction system

Source: own elaboration.

Informatyka Ekon._3(29)_Korczak.indb 91 2014-02-04 10:00:14

92 Radosław Klimek, Piotr Szwed, Stanisław Jędrusik

2) Generator which generates logical specifications from ArchiMate models.
We have implemented a component that applies the rules described in Section 5 to
elements of a business layer and yields a set (a conjunction) of LTL formulas. It is
deployed as a plugin to the Archi modeler.

3) Prover, takes as input logical specifications (a set of temporal logic formulas
describing a verified system) and a query, i.e. an examined property represented by
a single formula, checks its validity and issues a response (Yes or No).

The prover is a crucial component of the verification system. Recently, a
prototype reasoning engine for linear and future time minimal temporal logic was
implemented2, c.f. Figure 10. It allows to examine logical validity for formulas
expressing liveness or safeness, as described above. Internally, the prover applies the
semantic tableaux method customized to the requirements of reasoning on validity
of LTL formulas.

Figure 10. A prototype system of inference using the semantic tableaux method

Source: own elaboration.

An advantage of the described system (Figure 9) is that it can give an instantaneous
response whenever the specification of a model is changed or when there is a need
for a new inference due to a newly introduced property.

2 The engine was implemented as a student project under supervision of one of the authors of this
work.

Informatyka Ekon._3(29)_Korczak.indb 92 2014-02-04 10:00:14

Application of deductive reasoning to the verification of ArchiMate behavioral elements 93

6.3. Example of verification

In this section we return to the ArchiMate model of apprehending an object violating
restricted area as presented in Section 4. For this model, 71 temporal formulas were
generated. Due to the limited size of the work it is not possible to show them all.
Thus, a subset of the whole logical specification Γ is shown below.

% BusinessProcess Update_intervention_description_and_send_a_new_group (Update
intervention description and send a new group)
[](Update_intervention_description_and_send_a_new_group_start => <> Update_
intervention_description_and_send_a_new_group_end) &
[]~(Update_intervention_description_and_send_a_new_group_start & Update_
intervention_description_and_send_a_new_group_end) &
[] (Update_intervention_description_and_send_a_new_group_end => <> Alarm___
zone_violation_1) &
[]~(Update_intervention_description_and_send_a_new_group_end & Alarm___zone_
violation_1) &
% BusinessInteraction Confirm_starting_intervention (Confirm starting intervention)
[] (Confirm_starting_intervention_start => <> Confirm_starting_intervention_end) &
[]~(Confirm_starting_intervention_start & Confirm_starting_intervention_end) &
[] (Confirm_starting_intervention_end => <> Localize_and_take_over_the_object_
start) &
[]~(Confirm_starting_intervention_end & Localize_and_take_over_the_object_start) &
% BusinessProcess Assign_intervention_group (Assign intervention group)
[] (Assign_intervention_group_start => <> Assign_intervention_group_end) &
[]~(Assign_intervention_group_start & Assign_intervention_group_end) &
[] (Assign_intervention_group_end => <> Confirm_starting_intervention_start) &
[]~(Assign_intervention_group_end & Confirm_starting_intervention_start) &
% BusinessProcess Try_to_contact_by_other_means (Try to contact by other means)
[] (Try_to_contact_by_other_means_start => <> Try_to_contact_by_other_means_
end) &
[]~(Try_to_contact_by_other_means_start & Try_to_contact_by_other_means_end) &
[] (Try_to_contact_by_other_means_end => <> ((R.1___Waiting_time_T1_elapsed
& ~R.1___Communication_established) | (~R.1___Waiting_time_T1_elapsed &
R.1___Communication_established))) &
[]~(Try_to_contact_by_other_means_end & R.1___Waiting_time_T1_elapsed) &
[]~(Try_to_contact_by_other_means_end & R.1___Communication_established) &
% BusinessProcess Input_request_to_the_system (Input request to the system)
[] (Input_request_to_the_system_start => <> Input_request_to_the_system_end) &
[]~(Input_request_to_the_system_start & Input_request_to_the_system_end) &
[] (Input_request_to_the_system_end => <> Assess_the_situation_start) &
[]~(Input_request_to_the_system_end & Assess_the_situation_start) &
% BusinessEvent R.1___Communication_established (R.1 - Communication established)
[] (R.1___Communication_established => <> R.1___Stop_0) &
[] ~(R.1___Communication_established & R.1___Stop_0) &
% Junction Junction (Junction)
[] (Junction => <> ((To_the_police___take_the_detainee & ~R.1___Terminate)
| (~To_the_police___take_the_detainee & R.1___Terminate))) &
[]~(Junction & To_the_police___take_the_detainee) &
[]~(Junction & R.1___Terminate) &
% BusinessEvent To_the_police___request_for_support (To the police - request for
support)

Figure 11. A subset of logical specification of the verified system

Source: own elaboration.

Informatyka Ekon._3(29)_Korczak.indb 93 2014-02-04 10:00:14

94 Radosław Klimek, Piotr Szwed, Stanisław Jędrusik

Let us consider a liveness property expressed formally by the following formula:

□�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧_𝑣𝑣𝑣𝑣𝑧𝑧𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣𝑧𝑧𝑧𝑧
⇒ ◊� (𝑇𝑇𝑧𝑧_𝑣𝑣ℎ𝑧𝑧_𝑝𝑝𝑧𝑧𝐴𝐴𝑣𝑣𝑝𝑝𝑧𝑧_𝑣𝑣𝐴𝐴𝑡𝑡𝑧𝑧_𝑣𝑣ℎ𝑧𝑧_𝑑𝑑𝑧𝑧𝑣𝑣𝐴𝐴𝑣𝑣𝑧𝑧𝑧𝑧𝑧𝑧 ∧ ¬𝑅𝑅. 1_𝑇𝑇𝑧𝑧𝐴𝐴𝐴𝐴𝑣𝑣𝑧𝑧𝐴𝐴𝑣𝑣𝑧𝑧)
∨ (¬𝑇𝑇𝑧𝑧_𝑣𝑣ℎ𝑧𝑧_𝑝𝑝𝑧𝑧𝐴𝐴𝑣𝑣𝑝𝑝𝑧𝑧_𝑣𝑣𝐴𝐴𝑡𝑡𝑧𝑧_𝑣𝑣ℎ𝑧𝑧_𝑑𝑑𝑧𝑧𝑣𝑣𝐴𝐴𝑣𝑣𝑧𝑧𝑧𝑧𝑧𝑧 ∧ 𝑅𝑅. 1_𝑇𝑇𝑧𝑧𝐴𝐴𝐴𝐴𝑣𝑣𝑧𝑧𝐴𝐴𝑣𝑣𝑧𝑧)��

 (3)

which can be understood that, if a zone violation alarm is triggered then sometime in
the future only one of the following events will be triggered: the police will take the
detainee or the terminate event will be triggered.

When analyzing if a specification satisfies the property expressed by the
formula (3), a new formula (4), is constructed and submitted to the prover.)

Γ ⇒ �□�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧_𝑣𝑣𝑣𝑣𝑧𝑧𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣𝑧𝑧𝑧𝑧

⇒ ◊� (𝑇𝑇𝑧𝑧_𝑣𝑣ℎ𝑧𝑧_𝑝𝑝𝑧𝑧𝐴𝐴𝑣𝑣𝑝𝑝𝑧𝑧_𝑣𝑣𝐴𝐴𝑡𝑡𝑧𝑧_𝑣𝑣ℎ𝑧𝑧_𝑑𝑑𝑧𝑧𝑣𝑣𝐴𝐴𝑣𝑣𝑧𝑧𝑧𝑧𝑧𝑧 ∧ ¬𝑅𝑅. 1_𝑇𝑇𝑧𝑧𝐴𝐴𝐴𝐴𝑣𝑣𝑧𝑧𝐴𝐴𝑣𝑣𝑧𝑧)

∨ (¬𝑇𝑇𝑧𝑧_𝑣𝑣ℎ𝑧𝑧_𝑝𝑝𝑧𝑧𝐴𝐴𝑣𝑣𝑝𝑝𝑧𝑧_𝑣𝑣𝐴𝐴𝑡𝑡𝑧𝑧_𝑣𝑣ℎ𝑧𝑧_𝑑𝑑𝑧𝑧𝑣𝑣𝐴𝐴𝑣𝑣𝑧𝑧𝑧𝑧𝑧𝑧 ∧ 𝑅𝑅. 1_𝑇𝑇𝑧𝑧𝐴𝐴𝐴𝐴𝑣𝑣𝑧𝑧𝐴𝐴𝑣𝑣𝑧𝑧)���
 (4)

A presentation of a full inference tree which contains more than two thousand
nodes, would exceed the size of the work. All branches of the semantic trees are
closed, i.e. formula 4 is satisfied in the considered model. If the tree had open
branches, this would indicate that the input formula cannot be satisfied. In this case
the prover would provide information about the source of the error, which can be
considered an important advantage of the method.

7. Related work

The recent work by Morimoto [Morimoto 2008] surveys the formal verification tools
for business processes. It discusses, in the context of business process management,
the applications of such formalisms as automata, model checking, process algebras
and Petri nets. The described approaches can be considered as variations of either
model checking or simulation. In particular, model checking seems to be the most
often used. There are several reports on the application of the model checking
approach, e.g. to perform a verification of e-business processes [Anderson et al.
2005], or BPMN models extended with resource constraints [Watahiki et al. 2011].
In the work by Deutsch et al. [Deutsch et al. 2009], the verification of data-centric
business processes is studied. The correctness problem was expressed in the LTL-
FO, an extension to the Linear Temporal Logic, in which propositions were replaced
by First Order statements about data objects. A salient consequence of modeling
operations on data are infinite domains. Hence, the problem of correctness verification
can be undecidable.

An application of CTL to the verification of BPEL processes was reported in the
work by Mongiello and Castelluccia [Mongiello, Castelluccia 2006]. Three types of

Informatyka Ekon._3(29)_Korczak.indb 94 2014-02-04 10:00:14

Application of deductive reasoning to the verification of ArchiMate behavioral elements 95

correctness properties were analyzed: invariants, properties of final states and
temporal relations between activities. The first two can be classified as the safeness,
the last as the liveness property. Similarly, in the work by Fu et al. [Fu et al. 2002],
CTL was applied to the verification of e-services and workflows with both a bounded
and unbounded number of process instances.

The application of deduction-based approach is rare in the area of business
models verification. The work by Shankar [Shankar 2009] contains a comprehensive
study for the area of verification using automated deduction and deduction-based
techniques. To the best of our knowledge, no attempts have been made to define
formally semantics and perform a verification for the behavioral elements of
ArchiMate. Some suggestions and research direction can be found in an early
document [De Boer et al. 2003]. On the other hand, in a few publications [Ettema,
Dietz 2009; Azevedo et al. 2011] ontologies were applied to define semantics for
subsets of ArchiMate elements and relations. However, all of the research themes
mentioned above are different from the approach presented in the work.

8. Conclusion

This paper presents a new framework for the automated verification of the behavioral
aspects of ArchiMate models. The main contributions of our approach are the
translations rules from the ArchiMate model into LTL formulas and an application of
deductive reasoning and semantic tableaux methods. More tangible results of our
work are the following: a plugin into ArchiMate modeler allowing for automatic LTL
formula generation and an LTL prover used here for system verification purposes.
Our approach fits into the general scheme of system verification. It assumes that the
system under consideration is translated into a set of formulas in a certain symbolic
logic, and then is verified whether another formula (called specification of the
system) can be entailed from this set of formulas. The usefulness of such verification
approaches largely depends on whether translation rules adequately represent the
semantics of selected aspect of the verified system.

Although the considerations in this work are focused on deductive reasoning and
the semantic tableaux method, automatically generated LTL specifications can be
verified with other methods, e.g. the resolution method.

The defined set of rules for transforming ArchiMate models into LTL formulas
considers only atomic processes and functions. It is an open question how to give
semantics to explicitly specified high-level behavioral elements aggregating low-
level behaviors. At present they are treated as views of organizing models, however
we are analyzing alternative approaches.

Informatyka Ekon._3(29)_Korczak.indb 95 2014-02-04 10:00:15

96 Radosław Klimek, Piotr Szwed, Stanisław Jędrusik

References

Anderson B., Hansen J.V., Lowry P., Summers S., Model checking for e-business control and assuran-
ce, “Systems, Man, and Cybernetics, Part C: Applications and Reviews”, IEEE Transactions on
2005, vol. 35, no. 3, pp. 445-450.

Archi, ArchiMate modelling tool, 2013, http://archi.cetis.ac.uk/download.html [accessed: 23 April
2013].

Azevedo C., Almeida J., Van Sinderen M., Quartel D., Guizzardi G., An ontology-based semantics for
the motivation extension to ArchiMate, [in:] Enterprise Distributed Object Computing Conference
(EDOC), 2011 15th IEEE International, 2011, pp. 25-34.

Clarke E., Grumberg O., Peled D., Model Checking, MIT Press, 1999.
Clarke E., Wing J. et al., Formal methods: State of the art and future directions, “ACM Computing

Surveys” 1996, vol. 28 (4), pp. 626-643.
d’Agostino M., Gabbay D., Hähnle R., Posegga J., Handbook of Tableau Methods, Kluwer Academic

Publishers, 1999.
De Boer F., Bonsangue M., der Doest H., Groenewegen L., Jonkers H., Stam A., van der Torre L.,

Analysis of Enterprise Architectures (q4), 2003, https://doc.telin.nl/dscgi/ds.py/Get/File-31618
[accessed: 15 June 2013].

Deutsch A., Hull R., Patrizi F., Vianu V., Automatic verification of data-centric business processes, [in:]
Proceedings of the 12th International Conference on Database Theory ACM, 2009, pp. 252-267.

Emerson E., Handbook of Theoretical Computer Science, Elsevier, MIT Press, 1990, vol. B, Temporal
and Modal Logic, pp. 995-1072.

Ettema R., Dietz J., ArchiMate and DEMO − Mates to date?, [in:] Advances in Enterprise Engine-
ering III, ser. Lecture Notes in Business Information Processing, eds. A. Albani, J. Barjis, J. Dietz,
Springer Berlin Heidelberg, 2009, vol. 34, pp. 172-186, http://dx.doi.org/10.1007/978-3-642-
01915-9_13 [accessed: 20 June 2013].

Wolter F., Wooldridge M., Temporal and dynamic logic, “Journal of Indian Council of Philosophical
Research” 2011, vol. XXVII(1), pp. 249-276.

Fu X., Bultan T., Su J., Formal verification of e-services and workflows, [in:] Web Services, E-Business,
and the Semantic Web, Springer, 2002, pp. 188-202.

Gruninger M., Fox M.S., An activity ontology for enterprise modelling, Department of Industrial En-
gineering, University of Toronto, 1994.

Huth M., Ryan M., Logic in Computer Science. Modelling and Reasoning about Systems, Cambridge
University Press, 2004.

Mongiello M., Castelluccia D., Modelling and verification of BPEL business processes, [in:] Model-
-Based Development of Computer-Based Systems and Model-Based Methodologies for Pervasive
and Embedded Software, 2006, MBD/MOMPES 2006, Fourth and Third International Workshop
on IEEE, 2006, p. 5.

Morimoto S., A survey of formal verification for business process modeling, [in:] Proceedings of the 8th
International Conference Computational Science (ICCS 2008), June 23-25, 2008, Kraków, Po-
land, Part II, ser. Lecture Notes in Computer Science, eds. M. Bubak, G.D. van Albada, J. Dongar-
ra, P.M.A. Sloot, vol. 5102, Springer Verlag, 2008, pp. 514-522.

Nick M., Will there be a battle between ArchiMate and the UML?, 2009, http://blogs.msdn.com/b/
nickmalik/archive/2009/04/17/will-there-be-a-battle-between-ArchiMate-and-the-uml.aspx [ac-
cessed 10 June 2013].

OMG, Business Process Model and Notation (BPMN) version 2.0, OMG, Tech. Rep., January 2011.
http://www.omg.org/spec/BPMN/2.0 [accessed 10 June 2013].

Rumbaugh J., Jacobson I., Booch G., Unified Modeling Language Reference Manual, 2nd edition. Pe-
arson Higher Education, 2004.

Informatyka Ekon._3(29)_Korczak.indb 96 2014-02-04 10:00:15

Application of deductive reasoning to the verification of ArchiMate behavioral elements 97

Scheer A., Aris – Business Process Modeling, ser. ARIS – Business Process Modeling, Springer, 1999.
Scheer A.-W., Nüttgens M., ARIS architecture and reference models for business process management,

[in:] Business Process Management, Springer, 2000, pp. 376-389.
Shankar N., Automated deduction for verification, “ACM Computing Surveys” 2009, vol. 41 (4),

pp. 20:1-20:56.
Szwed P., Chmiel W., Jedrusik S., Kadluczka P., Business processes in a distributed surveillance system

integrated through workflow, “Automatyka/Automatics”, in press, 2013.
The Open Group, Open Group Standard, ArchiMate 2.0 Specificattion, 2012, http://www.opengroup.

org [accessed: 11 July 2013].
The Workflow Management Coalition, Process Definition Interface – XML Process Definition Langu-

age, Workflow Management Coalition Workflow Standard, version 2.1a, The Workflow Manage-
ment Coalition, Tech. Rep., 2008, http://www.wfmc.org/Download-document/.

Van Benthem J., Handbook of Logic in Artificial Intelligence and Logic Programming, ser. 4. Claren-
don Press, 1993-95, ch. Temporal Logic, pp. 241-350.

Van Den Berg H., Bosma H., Dijk G., Van Drunen H., Van Gijsen J., Langeveld F., Luijpers J., Nguyen T.,
Oosting R., Gerand Slagter and et al., ArchiMate made practical,Work, 2007.

Van der Aalst W.M., Desel J., Kindler E., On the semantics of EPCs: A vicious circle, [in:] Proceedings
of the EPK, 2002, pp. 71-80.

Watahiki K., Ishikawa F., Hiraishi K., Formal verification of business processes with temporal and re-
source constraints, [in:] Systems, Man, and Cybernetics (SMC), 2011 IEEE International Confe-
rence on IEEE, 2011, pp. 1173-1180.

WFMC-TC-1025-Oct-10-08-A-Final-XPDL-2.1-Specification.html [accessed: 11 July 2013].

ZASTOSOWANIE WNIOSKOWANIA DEDUKCYJNEGO
DO WERYFIKACJI OPISÓW ZACHOWANIA
W JĘZYKU ARCHIMATE

Streszczenie: Formalna weryfikacja modeli biznesowych stała się ostatnio przedmiotem in-
tensywnych badań. Oczekuje się, że zastosowanie metod formalnych może przynieś takie
korzyści, jak zwiększenie jakości produktów i usług oraz zmniejszenie liczby błędów opera-
cyjnych. W pracy omówiono zastosowanie metody wykorzystującej wnioskowanie dedukcyj-
ne do weryfikacji elementów behawioralnych w modelach języka ArchiMate. Pierwszy krok
zaproponowanej metody polega na translacji modelu ArchiMate do postaci formuł liniowej
logiki temporanej (LTL). Następnie weryfikuje się, czy spełniają one założone własności tem-
poralne. W procesie weryfikacji używane jest narzędzie dowodzenia, w którym zastosowano
technikę tablic semantycznych. Opisując metodę weryfikacji, wykorzystano przykład procesu
biznesowego zaimplementowanego w systemie nadzoru.

Słowa kluczowe: wnioskowanie dedukcyjne, weryfikacja oprogramowania, ArchiMate, me-
toda tablic semantycznych, liniowa logika temporalna.

Informatyka Ekon._3(29)_Korczak.indb 97 2014-02-04 10:00:15

