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ZERO-INFLATED CLAIM COUNT MODELING  
AND TESTING – A CASE STUDY

Abstract: In this paper the application of parametric count data models in claim counts 
modeling is investigated. Insurance portfolios have a very specific characteristic, i.e. for many 
policies there are no claims observed in the insurance history for a given period of time. As 
the zero-inflation and over-dispersion effects are a common situation in insurance portfolios, 
three models: zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB) and zero-
inflated generalized Poisson regression (ZIGP) are tested against the classic Poisson model. 
The 4-step procedure for modeling zero-inflation effect is proposed. This procedure is applied 
in the case study. For all calculations the R CRAN software was used.
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1. Introduction 

In insurance practice, the important part of ratemaking is to model the claims count 
distribution, where a regression component is included to take the individual 
characteristics into account. A very common method chosen for modeling a claim 
count is a regression model, as in [Denuit et al. 2007] with the use of Poisson 
distribution, which is a special case of a Generalized Linear Model (GLM Poisson). 
In claim count regression, independent variables (rating variables) may be interpreted 
as risk factors. For the selection of these variables into the model, one may use 
traditional methods from [Miller 1990] or adopt genetic algorithms as in [Gamrot 
2008]. Literature review reveals that, in particular, attempts are undertaken to find a 
probabilistic model for the claims count distribution in motor third-party liability, 
where usually the claims count distribution is assumed to be Poisson. However, the 
insurance portfolios have a very specific characteristic, i.e. for many policies there 
are no claims observed in the insurance history for a given period of time. This 
means that the data contains lots of zeros and, as a consequence, the Poisson 
regression may not give satisfactory results. In order to allow the presence of excess 
zeros in an insurance portfolio, the zero-inflated models are applied [Wolny- 
-Dominiak 2011]. The classic model is the zero – inflated Poisson model (ZIP) 
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[Lambert 1992], which is a mixture of a Poisson distribution and a zero point mass. 
The generalization of this model is possible and then the zero-inflated generalized 
Poisson model (ZIGP) is obtained. The generalized Poisson distribution usually is 
used when the occurrence of claims is probably dependent, which is a common 
situation in non-life insurance [Yip, Yau 2005]. 

The other problem often existing in insurance data is the incidence of over-
dispersion, which means that data exhibit greater variability than allowed for the 
Poisson model (the mean is not equal to variance). The reason for that may be the 
disregarding of some latent factors affecting the claims occurrence. Usually in the 
case of over-dispersion in the ZIP model, the zero-inflated negative binomial (ZINB) 
model is used [Hall 2000]. In literature there are some simulation studies with the 
score test for over-dispersion based on the ZIGP model, which illustrate that the 
ZIGP model has higher empirical power than the ZINB model [Yang et al. 2009]. 
This paper aims to propose and apply a procedure to select between the ZIP, ZINB 
and ZIGP models in the case of the zero – inflation and the over-dispersion occurrence 
in insurance portfolio. 

This paper is organized into five sections, and the introduction. In Section 2 the 
automobile insurance data used in the case study is presented. Section 3 includes a 
brief description of the ZIP, ZINB and ZIGP models for insurance data; Section 3 
contains three hypothesis tests, which can be made to accept or reject models. In 
section 4 the estimation MLE method is discussed. For all the calculations the R 
CRAN software is used.

2. Motor Third-Party liability insurance dataset

To present the modeling process with the zero-inflated and over-dispersion 
occurrence, a case study based on the real-world dataset is analyzed. The data 
contains information about Motor Third-Party liability insurance from a Swedish 
insurance company [De Jong, Heller 2008]. There are five exogenous variables for 
every policy, as well as the total number of claims at fault that were reported within 
a yearly period. The following list of variables were considered in claims count 
models:

1. age – age band of policy holder A (youngest), B, C, D, E, F,
2. gender – gender male, female,
3. area – area of residence A, B, C, D, E, F,
4. veh.age – vehicle age A (new), B, C, D,
5. veh.body – vehicle body type bus, convertible, coupe, hatchback, hardtop, 

motorized caravan/combi, minibus, panel van, roadster, sedan, station wagon, truck, 
utility,

6. num.clams – The number of claims: 0, 1, 2, 3, 4.
Every variable can have an influence on the number of claims (called rating 

variable) as well as on the occurrence of the zero-inflation effect. The maximum 
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number of reported claims recorded is four and the rate of the total zero claims is 
93.19%. The empirical distribution is shown in Table 1.

Table 1. The number of claims in the dataset

Number of claims Observed % observed
0 63 232 93.19
1 4333 6.39
2 271 0.40
3 18 0.03
4 2 0.00
Total 67 856  

Source: own elaboration.

In modeling, three zero-inflated models are investigated against the Poisson 
model: ZIP, ZINB and ZIGP. To select the optimal model, the following four-step 
procedure is applied: 1. selection of two subsets of variables, the subset of rating 
variables and the subset of variables affecting the zero–inflation occurrence, for each 
ZIP, ZINB and ZIGP model separately; 2. performance of hypothesis testing for the 
zero-inflation effect and over-dispersion occurrence; 3. comparison between every 
pair of ZIG, ZINB and ZIGP models using the Vuong test; 4. maximum likelihood 
(ML) estimation of structural parameters and calculating goodness-of-fit measures.

For all calculations, the software R CRAN was applied. In order to execute the 
ML estimation, a few packages were used: {pscl} package for ZIP/ZINB models, the 
Vuong test and {ZIGP} package for the ZIGP model. The score test is achieved via 
the implementation of the score statistics )ˆ(βS  (see Section 3).

3. Claims count models

Claims data are discrete count data for which, in most cases, the Poisson distribution 
is applied for modeling. Let the response variable iY , 1,...,i n=  be the number of 
claims in the portfolio of n  risk classes. If iY  follows the Poisson distribution, the 
mean claims count ( )i iE Y λ=  is assumed to be constant in every risk class, which 
implies that ( ) var( )i i iE Y Y λ= = . As was mentioned above, the assumption about 
equality of mean and variance usually is not satisfied for insurance data, which often 
display over-dispersion. This means that the heterogeneity within risk classes is 
allowed by defining a distribution for the parameter iλ . Typically, assuming iλ  to be 

the Gamma distribution with two first moments ( )i iE λ µ= , 
2

var( ) i
i

µ
λ

α
=  and |i iY λ  

to be the Poisson distribution with ( | )i i iE Y λ λ= , the number of claims iY  follows  

a negative binomial distribution with probability density function given by [Lawless 
1987]:
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This distribution is also known as gamma-Poisson mixture distribution, where 
the mean claims count is ( )i iE Y µ=  and the variance is var( ) (1 )i i iY µ αµ= + . 

The other model, which can be fitted in the case of the over-dispersion effect, is 
the generalized Poisson distribution given by [Famoye, Singh 2006]:
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with the mean and the variance respectively: ( )i iE Y µ= , 2var( ) (1 )i i iY µ αµ= + . If 
0α = , the above model reduces to the Poisson distribution with no over-dispersion 

effect. The general form of zero-inflated (ZI model) distribution can be expressed as 
follows:

(1 ) ( , , ),    0
( )

(1 ) ( , , ),            0
i i i

i
i i i

f y y
P Y y

f y y
ϖ ϖ µ α

ϖ µ α
+ - =

= =  - >
, 1,...,i n= ,

where ϖ  is the probability of zero claims count and ( , , )i if yµ α  is the probability 
density function, most often generalized Poisson or negative binomial. The zeros 
from the first equation of the generalized Poisson distribution are called “structural” 
zeros and from the second equation – “sampling” zeros. The first two moments in 
zero-inflated models are: ( ) (1 )i iE y ϖ µ= -  and 2var( ) ( )[(1 ) ]i i i iy E y αµ ϖµ= + + .

The variable iY  depends on rating variables ijX , 1,...,j k= , which influence the 
claims count (e.g. in automobile insurance: the age of driver or the engine capacity) 
by the log link function 

1
exp( )

k

i ij j
j

Xµ β
=

= ∑ . In turn, the parameter iϖ  are linked 

with explanatory variables via the logit function 
1

ln( )
1

t

j ij
j

Zϖ γ
ϖ =

=
- ∑ , where ijZ , 

1,...,j t=  are variables affecting the occurrence of “sampling” zeros. When the 
distribution ( , , )i if yµ α  is assumed to be Poisson, the ZIP model is received, for  
a negative binomial – the ZINB model and for a generalized Poisson – the ZIGP 
model.

For the analyzed insurance dataset, all ZIP, ZINB and ZIGP models are 
investigated against the Poisson model. Firstly, the selection of the subset of variables 
is made by the backward elimination technique. This technique starts by estimating 
ZIP, ZINB and ZIGP models with all combinations (1024 possibilities) of rating 
variables and variables affecting the occurrence of “sampling” zeros. For further 
analysis only statistically significant variables in each model are taken into account, 
which are: age and veh.body as rating variables and Intercept for modeling “sampling” 
zeros.
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4. Score tests in claim count modeling

The goal of this section is to give a brief description of the course of conduct in the 
claims count model testing. As was mentioned above, the insurance portfolios 
usually have more zero claims than are expected in the Poisson model, which means 
the zero–inflation occurrence. For testing whether there are many observed zeros, 
the score test in which the probability iϖ , 1,...,i n=  is assumed to be constant across 
observations (in our case – all policies) can be applied [Van den Broek 1995]. The 
null hypothesis takes a form 0 : 0H ϖ = . The score statistic is defined as:

2
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where y  is the average of the claims count. The statistic ˆ( )S β  follows an asymptotic 
2χ  distribution with 1 degree of freedom. In cases of dataset with the zero-inflation 

occurrence, the over-dispersion effect occurred as the consequences of high variability 
for zero claims. So in fact if the null hypothesis is rejected in the above score test that 
means the over-dispersion occurrence. For such data, the Poisson model is not 
appropriated and leads to a serious underestimation of standard errors and regression 
parameters. The solution is to apply a ZIP, ZINB or ZIGP model. To select one of those 
three models, the Vuong test can be applied [Vuong 1989].This test compares two 
models based on Kullback–Leibler information criteria as a measure of the distance 
between these models. Assuming that 1

1( , )f x β  and 2
2 ( , )f x β  are two competing 

claims count models the null hypothesis is as follows: 
1 2

1 2
0 1 2: max [log ( , )] max [log ( , )] 0H LR E f x E f x

β β
β β≡ - =

1 2

1 2
0 1 2: max [log ( , )] max [log ( , )] 0H LR E f x E f x

β β
β β≡ - = . If the consi-dered models are non-nested, under the null 

hypothesis 0H  the statistic 1 2
1 2

1

ˆ ˆ[log ( , ) log ( , )]n n

n

i
i

n f x f xβ β
=

-∑  follows a normal 

distribution 2(0, )N w , where 1 2
1 2[log ( , ) log ( , )]w E f x f xβ β= - . 

In the case study, firstly the test for the zero-inflation occurrence is applied in the 
Poisson model. According to the score statistic ˆ( ) 0.0046S β = - , the null hypothesis 
should be rejected (significant at level 5%), which means that the zero-inflated effect 
occurs in the data. A comparison of zero-inflated models using the Vuong test yields 
the following results:

Table 2. Vuong test value for ZIP, ZINB and ZIGP

Model1 Model2 Vuong Statistics LR
ZIP ZINB 1.36 (ZINB > ZIP)
ZIP ZIGP 1.39 (ZIGP > ZIP)

ZIGP ZINB 1.34 (ZINB > ZIGP)

Source: own elaboration.

Ekonometria 1_(39)_Dziechciarz.indb   148 2013-08-23   12:48:54



Zero-inflated claim count modeling and testing – a case study 149

Summarizing, the two tests show that in the analyzed case study, the zero-
inflation effect occurs and the ZINB model provides the best results. But the 
Kullback–Leibler distances for all pairs of models vary slightly, so in the estimation 
all models are still taken into consideration.

5. Parameters estimation

Parameters in the zero-inflated models are estimated by the maximum likelihood 
estimation method (MLE). The log-likelihood functions of the ZIP and ZINB models 
are given by [Yip, Yau 2005]:
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The parameters estimation of the ZIP and ZINB models is achieved via R CRAN 
using the zeroinfl function from the {pscl} package (see Table 1). To obtain the 
maximum likelihood estimates for the ZIGP model, the log-likelihood function is as 
follows [Famoye, Singh 2006]:

( )
1

0

0

ln ln(1 ) ln( )
1 1

[ ln( ) ( 1) ln(1 ) ln( !) (1 )]
1 1

i

i

i

i

ZIGP

y

i i
i i i i i

y i i

L n e

y y y y y

µ
αµϖ ϖ

ϖ ϖ
µ µ

α α
αµ αµ

-
+

=

>

= - + + + +
- -

+ + - + - - +
+ +

∑

∑                                                                                                  
 .

In this case, the est.zigp function from the {ZIGP} package is applied.

Table 3. Results of fitting ZIP, ZINB and ZIGP models

ZIP s.e. ZIP ZINB s.e. ZINB ZIGP s.e. ZIGP
1 2 3 4 5 6 7

Intercept –0.8043 0.3449 –1.3497 0.3548 –1.3505 0.5086
veh.bodyBUS 0.0000 – 0.0000 – 0.0000 –
veh.bodyCONVT –1.7059 0.6770 –1.7200 0.6790 –1.6962 0.6652
veh.bodyCOUPE –0.7462 0.3600 –0.7623 0.3632 –0.7707 0.3449
veh.bodyHBACK –1.0471 0.3406 –1.0611 0.3439 –1.0576 0.3251
veh.bodyHDTOP –0.8560 0.3508 –0.8687 0.3541 –0.8579 0.3354
veh.bodyMCARA –0.4631 0.4334 –0.4719 0.4368 –0.4616 0.4177
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1 2 3 4 5 6 7
veh.bodyMIBUS –1.1667 0.3723 –1.1807 0.3754 –1.1749 0.3579
veh.bodyPANVN –0.8093 0.3618 –0.8251 0.3650 –0.8366 0.3470
veh.bodyRDSTR –0.5734 0.6935 –0.6138 0.6935 –0.7253 0.7019
veh.bodySEDAN –0.9955 0.3405 –1.0110 0.3437 –1.0204 0.3249
veh.bodySTNWG –0.9598 0.3407 –0.9740 0.3440 –0.9756 0.3252
veh.bodyTRUCK –1.0109 0.3512 –1.0267 0.3544 –1.0382 0.3361
veh.bodyUTE –1.2228 0.3450 –1.2379 0.3482 –1.2421 0.3297
agecatA 0.0000 – 0.0000 – 0.0000 –
agecatB –0.1693 0.0559 –0.1712 0.0560 –0.1795 0.0553
agecatC –0.2040 0.0545 –0.2058 0.0547 –0.2129 0.0539
agecatD –0.2314 0.0544 –0.2335 0.0545 –0.2428 0.0538
agecatE –0.4268 0.0608 –0.4285 0.0609 –0.4330 0.0603
agecatF –0.4365 0.0692 –0.4388 0.0694 –0.4491 0.0689
AIC 36 041 36 042 36 030

Source: own elaboration.

The AIC=36 030.5 is the lowest value between ZIP, ZINB and ZIGP, which 
suggests that the ZIGP model gives the best results for this dataset and should be 
applied in the ratemaking process. Probably the lower AIC can be achieved in the 
case of a repeal of the assumption of a constant value ϖ . Unfortunately, at this time, 
{pscl} and {ZIGP} packages do not give such technical possibilities. 

6. Conclusions

The claim count modeling is one of the important steps in the ratemaking process, 
especially in bonus-malus system. So the researchers are still continuing and deve-
loping the technique of this type of modeling. Because the zero-inflation and the 
over-dispersion effects in insurance datasets are a common situation, the enlargement 
of the ZIP and ZINB models to a ZIGP model could give better estimations. This 
paper shows a short procedure of testing such effects and estimating models which 
can be applied in insurance practice. To make this procedure more sophisticated, in 
place of the van der Broek and Vuong tests, other techniques like bootstrapping 
[Yang et al. 2009] or ordered statistics can be used.
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MODELOWANIE LICZBY SZKÓD  
Z UWZGLĘDNIENIEM EFEKTU NADMIERNEJ LICZBY ZER 
ORAZ NADMIERNEJ DYSPERSJI – STUDIUM PRZYPADKU

Streszczenie: W niniejszej pracy rozważamy zastosowanie parametrycznych modeli, służą-
cych do estymacji zmiennych licznikowych, w procesie modelowania liczby szkód w zakła-
dzie ubezpieczeń. Portfele ubezpieczeniowe mają specyficzny charakter, a mianowicie dla 
bardzo dużej liczby polis nie następuje żadna szkoda, co oznacza, iż w danych występuje duża 
liczba zer. Zatem modelując liczbę szkód, należy brać pod uwagę ten efekt. Dlatego też  
w pracy testujemy trzy modele uwzględniające efekt nadmiernej liczby zer: ZIP, ZINB oraz 
ZIGP w porównaniu z klasyczną regresją Poissona w proponowanej 4-etapowej procedurze 
modelowania liczby szkód. Procedurę tę stosujemy w studium przypadku. Do wszelkich ob-
liczeń wykorzystujemy program R CRAN. 

Słowa kluczowe: liczba szkód, ZIP, ZINB, ZIGP.
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