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I. Basic properties of nanostructures 

 
�anostructures are solid state (crystalline) objects of ultra-small sizes which fall intermediate 

between molecular and microscopic (micrometer) length scales. They are sufficiently small to 

exhibit quantization of dynamics of confined carriers (conduction electrons and/or valence 

holes). To allow control over the (small) number of confined carriers, nanostructures are 

usually made of semiconductors (→ semiconductor nanostructures). Typically small effective 

mass in the semiconductor medium (relative to vacuum) ensures persistence of quantum 

effects in nanostructures of typical length scales exceeding atoms or molecules by at least an 

order of magnitude (i.e., reaching tens of nanometers) – of course, at least at sufficiently low 

temperatures.  

Nanostructures are most obviously differentiated with regard to the number of nanotextured 

spatial dimensions. In unconfined/untextured systems the electron motion remains continuous 

(i.e., not quantized) in all three spatial dimensions (3D). These are called bulk systems, to be 

contrasted with all kinds of nanostructures.  

In the so-called quasi-2D nanostructures, quantum confinement occurs in a single spatial 

direction, leaving unconfined carrier motion over the remaining two-dimensional surface. 

Such structures involve surfaces, interfaces, and their combinations. For example, a quantum 

well is obtained between a pair of parallel interfaces, i.e., inside a thin layer of one 

semiconductor material sandwiched between the adjacent layers of another semiconductor, 

whose higher energy position of the conduction band (and/or lower energy position of the 

valence band) produce the potential energy barriers and so define a potential well inside. A 

natural, atomically 2D system is a single sheet of graphite (carbon) called graphene. 

In the so-called quasi-1D nanostructures, confinement in two spatial dimensions leads to the 

quantized dynamics, and the continuous motion is only possible along a line. Among these 

systems one can list various forms of quantum wires, nanopillars, nanorods, and nanorings 

(closed loops). Atomic quasi-1D systems include carbon nanotubes (sufficiently narrow for 

strong quantization of the motion around the tube) and certain linear polymers. 

Quasi-0D systems are often called quantum dots or artificial atoms, as they – similarly to 

their natural analogs – are nanoscale dot-like objects, containing a small and controllable 

number of confined electrons (and/or holes). Depending on the form or fabrication method, 

various quantum dots are also called nanocrystals, nanoparticles, nanoislands, or nanospheres. 

 

1. Sizes, shapes, and materials 

Depending on the fabrication process, quantum dots can have much greater variety of sizes 

and shapes than natural atoms or molecules. An obvious lower limit is the size of a single 

atom (consider the so-called ‘covalent’ radii of several atoms: H: 0.025 nm, C: 0.070 nm, Si: 

0.110 nm, Ga: 0.130 nm, As: 0.115 nm), or the lattice constant of the involved semiconductor 

(Si-diamond: 0.543 nm, GaAs-zincblende: 0.565 nm, CdTe-zincblende: 0.648 nm). A dot 

4



 

extending a mere 5-10 atoms will therefore measure about 3-6 nm in that given direction. The 

largest systems still called quantum dots measure tens of nm in some direction, corresponding 

to well over a hundred atoms.  

In terms of shape, especially the larger quantum dots can have quite arbitrary geometry, 

defined by – to give but several examples – (i) remote electrodes, made to flexible shape by 

means of nanolithography and producing an electrostatic lateral confining potential for the 

carriers, initially trapped in two or less dimensions by some other method; (ii) physical shape 

of the nanoscale crystalline object either placed in vacuum/glass or inside another 

semiconductor characterized by an unfavorable band energy.  

Of course, in smaller dots the actual shape of the electronic wave functions inside the dot does 

not accurately follow the shape of the physical nanostructure (or the confining potential), but 

instead it becomes much smoother, often nearly circular/spherical despite evidently broken 

rotational symmetry of the structure. Still, at least the relation between two or three spatial 

dimensions can be varied freely even in the smallest structures. For example, the so-called 

self-assembled dots can be grown in form of cut-out spheres or pyramids, with the aspect ratio 

(between the characteristic dimension in the plane of growth and normal to this plane) 

strongly dependent on the chosen materials (e.g., the relative lattice mismatch between the 

semiconducting material used for the quantum dot itself and for the surrounding barrier – 

producing strain needed for the spontaneous growth of the dots) or the growth conditions 

(temperature, deposition rate, subsequent processing such as annealing, etc.). 

Although the number of potentially applicable semiconducting materials is huge (consider all 

elemental semiconductors, but also the wealth of known binary, ternary, … compounds), the 

nanostructures are often grown using those materials for which the present technology allows 

for sufficient accuracy in growth of pure nanocrystals or in the epitaxial growth of essentially 

defect-free quasi-two-dimensional layers, or for sufficient precision in the further necessary 

nanolithography. Among the commonly used elemental semiconductors are Si, Ge, and C (the 

latter used in form of natural nanoparticles called fullerenes – for 0D, nanotubes – for 1D, or 

graphene or ultra-thin graphite – for 2D). The most familiar compounds are GaAs (most often 

matched with AlGaAs, both having nearly the same lattice constant and thus allowing for the 

essentially strain-free interfaces) or InGaAs (used for the opposite reason – as having quite 

strong lattice mismatch with GaAs, and thus offering large strain, needed for spontaneous 

formation of so-called self-assembled dots) – all representing the III-V compounds. Of the II-

VI compounds the most common are probably CdTe and ZnSe, although many others are 

used as well. 

 

  Self-assembled quantum dot 
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2. Fabrication methods  

The methods used to obtain quantum dots can be naturally divided into those following either 

the top-down or bottom-up approach. In the first one, the dot is achieved progressively, in a 

sequence of steps, from a larger (often more-dimensional) structure, by such means as nano-

lithography or application of external potentials. In the second approach, a spontaneous 

growth of a useful nanostructure is achieved by a natural self-propelled mechanism, of course 

driven by a tendency of the carefully designed macro-system to minimize its relevant (local) 

energy. In general, creation of quantum wires or dots, which confine the carriers to a space 

with at least two of three dimensions limited to the range of the de Broglie wavelength, 

requires far more advanced technology than fabrication of quasi-2D quantum wells.  

The earliest method of obtaining quantum dots was implemented by Reed et al. [1], who 

etched them in a structure containing two-dimensional electron gas. The process proceeds in 

the following steps: The surface of a sample containing one or more quantum wells is covered 

with a polymer mask, and then partly exposed. The exposed pattern corresponds to the shape 

of the created nanostructure. Because of the required high resolution, the mask is not exposed 

to visible light, but to the electron or ion beam (electron/ion beam lithography). At the 

exposed areas the mask is removed. Later, the entire surface is covered with a thin metal 

layer. Using a special solution, the polymer film and the protective metal layer are removed, 

and a clean surface of the sample is obtained, except for the previously exposed areas, where 

the metal layer remains. Next, by chemically etching the areas not protected by the metal 

mask, the slim pillars are created, containing the cut-out fragments of quantum wells. In this 

way, the motion of electrons, which is initially confined in the plane of the quantum well, is 

further restricted to a small pillar with a diameter on the order of 10-100 nm. A doped base 

serves as the source of free carriers, which flow into the quantum wells, created above the 

buffer layers and separated by the barriers. The etching depth drops beneath the interface 

between the last quantum well and the buffer layer. A metal mask that remains after the 

etching process may serve as the top electrode. The voltage applied to the electrode controls 

the number of carriers confined in the dots. The simplicity of producing thin, homogeneous 

quantum wells makes GaAs the most commonly used material for creating dots by means of 

etching.  

Another method consists in the creation of miniature electrodes over the surface of a quantum 

well by means of lithographic techniques. The application of an appropriate voltage to the 

electrodes produces a spatially modulated electric field, which localizes the electrons within a 

small area. The lateral confinement created in this way shows no edge defects, characteristic 

of the etched structures. An electric gate can also be created around the etched dot, thus 

allowing, at least partly, the elimination of edge defects and additional squeezing of electrons. 

The process of spreading a thin electrode over the surface of a quantum well may produce 

either single quantum dots [2,3] or large arrays (matrices) of dots [4,5,6,7]. Modulation of the 

electric potential, produced by applying voltage to an electrode, can be realized by a previous 

preparation (using a lithographic technique) of a regular array of islets of nonmetallic material 

(e.g., of the barrier material) on the surface of the sample. As a result, the distance between 

the electrode (overlying the surface with the islets) and the plane of the quantum well is 

modulated, and the electrons are bound in small areas under the prepared islets. 

Instead of modulating the distance between the electrode and the well, it is also possible to 

build a pair of parallel, thin electrodes above the well. The lower electrode can have regularly 

6



 

placed holes, which is where quantum dots are to be created [8,9]. If a voltage is applied to 

the pair of electrodes, the result is a change both in the dot size and the depth of the confining 

potential. The potential depth influences the number of confined electrons. However, when 

the additional electrode is introduced between the quantum-well layer and the doped layer, the 

number of electrons and the potential depth can be changed independently. 

 

  Etching of a quantum dot 

 

A very advantageous feature of quantum dots whose electrons are confined by the electric 

field produced by a set of electrodes is their smooth lateral confinement, showing no edge 

effects. Possibility of controlling certain parameters is also very important. In experimental 

reports one can find information about these types of dots, which can be created on, for 

example, GaAs, InSb, or Si  

Brunner et al. [10] describe a method for obtaining quantum dots based on a quantum-well 

material by local heating of a sample with a laser beam. A parent material of a single, 3 nm 

thick GaAs quantum well was used, and this was prepared using the molecular beam epitaxy 

method (MBE). It was then placed between a pair of 20 nm thick Al0.35Ga0.65As barriers. The 

topmost 10 nm thick GaAs cap layer was covered with a 100 nm coating of Si3N4, protecting 

the surface against oxidation or melting by the laser beam. Modulation of the band gap in the 

quantum well was obtained by local heating on the sample with an argon-laser beam with a 

power of 5.5 mW. The laser beam was guided along a rectangular contour surrounding an 

unilluminated area of diameter 300-1000 nm. At a temperature of about 1000 C a rapid 

interdiffusion of Al and Ga atoms occurred between the well and the barriers, which led to the 

creation of a local modulation of the material band structure, i.e., to the creation of the 

potential barrier, which surrounds the unilluminated interior of the rectangle. For larger 

dimensions of the illuminated rectangle the obtained effective potential that confines the 

electrons was flat inside the dot (this area will be called A -- pure GaAs), and steep near the 
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edge (area B – a solution of AlGaAs replaced pure GaAs due to heating). With a decrease of 

the illuminated rectangle, the area A shrinks. According to the authors, for dimensions near 

450 nm the effective potential confining electrons is close to an isotropic parabola. However, 

it should be mentioned that the details of the electron confining potential in a quantum dot of 

any type cannot be measured directly (except for the geometric dimensions) and are 

alternatively obtained through the interpretation of various indirect effects, related to the 

electronic structure of the object. 

It is also possible to create quantum dots in the form of semiconductor microcrystals 

immersed in glass dielectric matrices. In the first experiment based on that idea, carried out by 

Ekimov et al. [11], silicate glass with about 1% addition of the semiconducting phase (CdS, 

CuCl, CdSe, CuBr) was heated for several hours at a temperature of several hundred degrees 

Celsius, which led to the formation of appropriate microcrystals of almost equal sizes. 

Knowledge of the dependence of the average crystal radius on the temperature and heating 

time allowed for controlling their size. The radii of dots measured in different samples varied 

in the range 1.2-38 nm. As a dielectric matrix, the alkaline chlorides can be used instead of 

glass. The heating of such a matrix with the addition of copper leads to the formation of CuCl 

microcrystals. 

Quantum dots can also be created through the selective growth of a semiconducting 

compound with a narrower band gap (e.g., GaAs) on the surface of another compound with a 

wider band gap (e.g., AlGaAs) [12]. The restriction of growth to chosen areas is obtained by 

covering the surface of the sample with a mask (SiO2) and etching on it miniature triangles. 

On the surface that is not covered with the mask the growth is then carried out with the metal-

organic chemical vapor deposition method (MOCVD), at a temperature of 700-800 C. The 

crystals that are created have the shape of tetrahedral pyramids, and hence when the first 

crystallized layers are the layers of the substrate compound (AlGaAs) and only the top of the 

pyramid is created of GaAs, it is possible to obtain a dot of effective size below 100 nm.  

A different variant of the method of selective growth is described by Lebens et al. [13]. Onto 

the 2 µm thick Al0.38Ga0.62As substrate a layer of 10 nm thick GaAs was deposited and 

covered with a 20 nm Si3N4 mask. The mask was later illuminated in chosen areas with the 

electron beam and removed through the plasma etching. In the growth process, which is 

carried out with the metal-organic vapor phase epitaxy method (MOVPE), GaAs sedimented 

only outside the areas covered with the mask. The thickness of the crystallizing GaAs layers 

was determined to be 100 nm. After covering the newly created structure with a layer of  

Al0.2Ga0.8As, quantum dots of diameter 70-300 nm and quantum wires of width 90-300 nm 

and length ~0.1 mm were obtained. 

Petroff and DenBaars [14] describe another method for the self-crystallization of quantum 

dots that does not require the creation of a mask. When the lattice constants of the substrate 

and the crystallized material differ considerably (7% in the case of GaAs and InAs, the most 

commonly used pair of compounds), only the first deposited monolayers crystallize in the 

form of epitaxial, strained layers with the lattice constant equal to that of the substrate. When 

the critical thickness is exceeded, a significant strain occurring in the layer leads to the break-

down of such an ordered structure and to the spontaneous creation of randomly distributed 

islets of regular shape and similar sizes. The shape and average size of islets depend mainly 

on factors such as the strain intensity in the layer as related to the misfit of lattice constants, 

the temperature at which the growth occurs, and the growth rate. The phase transition from 

8



 

the epitaxial structure to the random arrangement of islets is called the Stranski-Krastanow 

transition. For the maximum misfit of lattice constants (InAs and GaAs), the transition occurs 

at the 1.8 monolayer deposition. When the process of crystallization is terminated shortly after 

reaching the phase transition, the islets evolve to the state of quasi-equilibrium, in which they 

assume the shape of pyramids or flat, circular lenses, formed on a thin layer of InGaAs (the 

wetting layer). When the inhomogeneous InGaAs layer is eventually covered with another 

GaAs layer, a structure of a quantum well with significantly increased thickness in very small 

areas is obtained. 

Raymond et al. [15] reported growth of self-assembled dots in the shape of lenses with 

~36 nm diameter and ~4.4 nm height (with fluctuations of 5-10%). Marzin et al. [16] obtained 

dots in the shape of regular pyramids with a square base of side ~24 nm and height ~2.8 nm 

(with fluctuations of ~15%), and distance between neighboring dots ~55 nm. 

The quantum dots formed in the Stranski-Krastanow phase transition are called self-organized 

or self-assembled dots (SAD). The small sizes of the self-assembled quantum dots (diameters 

in the range of 30 nm or even smaller), homogeneity of their shapes and sizes in a 

macroscopic sample, perfect crystal structure (without edge defects), and the fairly convenient 

growth process, without the necessity of the precise deposition of electrodes or etching – are 

among their greatest advantages. Thus, from the very beginning there was great (and now 

fulfilled) hope regarding their future application in electronics and opto-electronics. 

Most recently, a new generation of quantum dots are expected to be soon obtained from 

graphene – a novel quasi-two-dimensional material in form of atomically thin single 

honeycomb layer of carbon (for its pioneering experimental studies, Geim and Novoselov 

jointly received the 2010 Nobel prize in physics). Relativistic nature of carriers (electrons and 

holes) in graphene makes their lateral confinement more difficult than in conventional 

semiconductors. Namely, the so-called Klein tunneling paradox forbids confinement by 

means of a simple potential barrier, such as those produced by the electrodes. However, 

confinement of initially 2D electrons to quasi-1D nano-strips or quasi-0D nano-islands 

remains possible by physically cutting such structures out of en extended sheet of graphene. 

Among the outstanding issues is the stability of the edge of such terminated graphene 

structures (e.g., the possibility of edge passivation with hydrogen). Intense theoretical work in 

this direction, driven largely by the unique electronic and mechanical properties of (extended) 

graphene but also by its natural cleanliness and reduced dimensionality, promises fast 

progress also in fabrication technology.  

 

  Graphene 
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3. Electronic structure  

Electronic structure of quantum nanostructures is generally well described within the effective 

mass theory, with effective band parameters (energy gaps, band offsets at the interfaces, 

effective masses) inherited – to a good approximation – from the bulk host semiconductor 

compounds. If at all needed, modification to these parameters is largely the consequence of 

strain (which necessarily occurs near any interface separating materials of different lattice 

constants) or non-uniform composition of the material from which the heterostructure is 

formed (arising due to interdifussion of atoms across the interface during or after the growth 

process). Another effect, most significant in small structures, is the leakage of the wave 

functions of confined carriers into the barriers, leading to the averaging of band parameters of 

the nanostructure material and of the surrounding barrier material. It need be emphasized that 

even in the relatively small nanostructures, their finite spatial extent does not invalidate the 

effective mass description (even though, strictly speaking, this theory requires periodic crystal 

structure and potentials slowly varying on lengt hscale of the inter-atomic separation). 

Characteristic energy and length scales for bulk semiconductors are defined by the effective 

mass m* (isotropic for the electrons – for the conduction band involves the atomic s-orbitals; 

anisotropic for the various types of holes – for the valence band emerges from the p-orbitals), 

and the effective dielectric constant ε. These parameters enter into the convenient scaling 

parameters: effective Bohr radius  

BB a
m

a
*

*
ε

=
 

where aB ≈ 0.053 nm is the Bohr radius (in vacuum), and effective Rydberg 

Ry
m

Ry
2

*
*

ε
=

 

where Ry ≈ 13.6 eV is the Rydberg (in vacuum). The large values of the dielectric constant ad 

well as typically low effective masses (at least for the electron) in the most commonly used 

semiconductor compounds cause significant enhancement of this effective length scale and 

significant reduction of this effective energy scale – compared to those relevant for vacuum 

(i.e., to the hydrogen atom). For example, for bulk GaAs, ε=12.5 (this is the so-called static 
dielectric constant; in general ε depends on frequency) and m*=0.067 (for the conduction 
band). This leads to 

nm10187* ≈≈ BB aa  

and 

meV8.5
2330

1
* ≈≈ RyRy

. 

Needless to say, using effective units removes physical constants from the effective-mass 

Schrödinger equation, which simplifies to the form: 

( )[ ] ( ) ( )rrrrrrrrrrrr φφ EV =+∇− 2

. 

One of the important consequences of the reduced dimensionality of semiconductor 

nanostructures is a qualitatively different form of the density of states, compared to the bulk 
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material. Density of states (ρ=d�/dE) is defined as the number of available single-particle 

states per unit energy range (or the inverse of the average energy spacing), taken per unit 

volume of space. In a three-dimensional medium, the number of electron states up to a wave 

vector k is 

3

3

3

3

23

82

3

4
2 







=














= −
−

π
ππ

π
k

L
L

k�

 

Differentiating this with respect to energy gives 
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Assuming parabolic dispersion (i.e., an isotropic and constant effective mass m*) 
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and, finally, 
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which shows the well-known square-root (increasing) dependence on energy. 

In less than three dimensions the derivation proceeds similarly, but the expression for �(k) is 

different. Specifically, in two dimensions 
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which is independent of k or E. For discrete bands, corresponding to the quantized motion in 

the perpendicular direction, this becomes: 
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which shows an inverse-square-root divergence. For the quantized motion in the two 

perpendicular directions, this becomes 

( )∑ −Θ
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Finally, in fully spatially quantized, zero-dimensional systems (where the motion in any 

direction is not characterized by a continuous wave vector k), one finds 

( )∑ −∝
i

iEE
dE

d�
δ

, 

that is, the density of states consisting of a series of discrete peaks at the energies 

corresponding to the quantized levels. 

The calculation of single-particle energy levels in particular nanostructures usually involves 

identification of the mechanism of confinement, definition of the adequate modeling potential, 

and solution of the corresponding stationary Schrodinger equation. Depending on a particular 

confinement, its potential can be calculated from first principles or modeled in a convenient 

phenomenological form, with the physically intuitive parameters treated as free parameters or 

matched to the available experimental information. Obviously, the problem can often be 

greatly simplified by taking advantage of relevant symmetries – both simple geometric (e.g., 

following from the rotational or reflective symmetry of the physical structure) or more subtle, 

dynamic (e.g., consisting of effective decoupling of degrees of freedom corresponding to the 

incommensurate characteristic excitation energy scales; another example being the harmonic 

confinement which results in the degeneracy of energy levels and emergence of the shell 

structure in the spectrum). The accuracy in modeling the single-particle energy spectrum of 

the nanostructure depends on its purpose; qualitative features (such as symmetries) are most 

important in the search of new phenomena (e.g., arising from interactions in many-electron 

systems); on the other hand, accuracy may be essential in designing real devices. 
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4. Comparison with atomic and macroscopic systems 

The defining properties which contrast nanostructures from larger, macroscopic systems are 

the quantization of energy levels and of the number of confined carriers. Let us stress that the 

quantization becomes essential when its characteristic energy (dependent not only on size, but 

also on effective mass) exceeds other relevant energy scales such as the average phonon 

energy (controlled by the lattice temperature). 

Compared to smaller systems, such as natural atoms or molecules, nanostructures show more 

pronounced interaction and correlation effects, owing to a different ratio of the characteristic 

single-particle (quantization) energy to the characteristic interaction (correlation) energy. 

However, it is the size in the effective units that matters, as can be readily understood by 

estimating crudely the single-particle energy E from a particle-in-a-box model 

22
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and taking the interaction energy scale U as corresponding to the length scale of the system 

L

e
U

ε

2

=
. 

Indeed, the correlation-to-quantization energy ratio can be expressed as 
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, 

meaning that similar correlation effects as in single natural atoms will occur in semiconductor 

nanostructures extending many atoms in length. 

Thus, Hund rules predicting few-electron correlation effects in degenerate atomic shells are 

also valid in small symmetric dots, but inter-shell correlations begin to play the dominant role 

in larger structures. 

A rather obvious difference between artificial and natural atoms or molecules is a far greater – 

in the former case – available variation in their size, shape (including geometrical symmetry), 

and dynamical properties of the confinement (Coulomb, hard-wall, nearly harmonic – leading 

to the presence or absence of a particular shell structure and to the emergence or removal of 

the particular selection rules for the relevant internal transitions). A practically important tool 

in tuning electronic (or magnetic) properties of quantum dots is by means of nanodesign of 

their interior – for example by placing an appropriate number of magnetic atoms inside the 

dot, which on one hand can be addressed from outside by external magnetic field and on the 

other – couple magnetically to the confined electrons or holes. 

Another useful distinction lies in the separation of electron and hole bands (in semiconductor 

structures – convenient from the point of view of possible resonant excitation, often by means 

of simple photo-absorption in the range of wave lengths close to the visible light). Also the 

electron-hole symmetry is not exact (thus, conveniently tunable) in the semiconductors, in 

contrast to the fixed electron-positron symmetry in vacuum (i.e., in natural atoms). Thus, 

semiconductor structures can be rather easily populated with positive and negative carriers by 
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means of photo-excitation (practically, illumination), and the photo-carriers can be made live 

sufficiently long to allow their manipulation, for example by means of electric potentials. 

Finally, natural atoms can be thought of as essentially isolated when considered in vacuum. In 

contrast, semiconductor nanostructures are always embedded in (and thus coupled to) the 

surrounding medium which is a thermodynamic environment characterized by its own length 

and energy scales. And so, phonon effects cannot be ever completely eliminated in quantum 

dots, often undermining a simple purely quantum mechanical picture of a controlled number 

of electrons confined by an effective and static potential. 

 

5. Role of dimensionality; extended versus fully confined systems 

Reduced dimensionality (compared to bulk, or three dimensions) allows novel realizations of 

quantum mechanics in the sense of quantum statistics. Namely, the only statistics allowed in 

three dimensions are those of Bose and Fermi, corresponding to the phase of a many-body 

wave-function merely acquiring a phase of +1 (i.e., no phase) or -1 upon an exchange of a 

pair of particles. This, of course, is the “topological” contribution to the phase change, 

resulting from the fact that the exchange took place, and not from the way it did. The wave-

function acquires also a trivial phase exp(-ωt) associated with the time passage, unrelated to a 

possible exchange during this time. It also may acquire a so-called geometric (or Berry) 

phase, connected to the paths swept by the individual particles, also unrelated to whether the 

particles exchange or not. Thus, in three dimensions, the “topological” effect of an exchange 

of a pair of particles on the many-body wave function can only be either null (Bosons) or a 

phase factor of -1 (Fermions).  

The proof is straightforward and relies on the topological equivalence of (the paths of) a 

double exchange among the pair of particles and a closed loop of one particle around the 

other, which exclusively in three dimensions is also topologically equivalent to identity (i.e., 

null operation, or no exchange at all). Clearly, the assumption of the latter equivalence is no 

longer valid in two dimensions, where a loop around a particle cannot be continuously 

removed, and thus reduced to a null operation. Hence, the topological effect of a double 

exchange may emerge, resulting in a wider variety of statistics, besides the Bosons or 

Fermions.  

The precise mathematical description of the adiabatic exchanges among the identical particles 

involved the concept of a braid group. Each “braid” – an element of this group – represents a 

topologically unique spatial transformation of a certain number of particles N from their 

initial positions R1, R2, ..., RN to the same set of positions (but, of course, not all the particles 

need end up in their individual initial positions). Braid group is distinct (larger) from the 

permutation group. Indeed, a braid represents not only the permutation but also the 

topological class of the path along which the exchange took place (e.g., which particle made a 

loop around which).  

The fact that Fermions and Bosons are the only quantum statistics allowed in three 

dimensions can be expressed as that the only relevant irreducible representations of the braid 

group are one-dimensional and, moreover, they only include two elements: 1 and -1, such that 

each element squared results in an identity. 

In contrast, in two spatial dimensions, more complex representations also become relevant. 

Among the one-dimensional representations the lack of requirement that each element 
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squared must result in an identity allows for the braids represented by an arbitrary exchange 

phase θ, so that the factor multiplying the many-body wave-function in result of an exchange 

can be anything, exp(iθ), not only -1 or 1. Such hypothetical particles are called Anyons. 
They were first postulated by Leinaas and Myrheim [17], later studied (and actually named) 

by Wilczek [18], and currently believed to occur in the so-called fractional quantum Hall 

systems [19]. Specifically, the elementary carrier of an electric charge in the so-called 

Laughlin liquid [20] (an incompressible quantum liquid phase of electrons formed in two 

dimensions and in a high perpendicular magnetic field) has been convincingly demonstrated 

[21] to carry a fractional charge e/3, corresponding to a fractional exchange phase of θ=π/3. 

However, even more exotic quantum statistics are also possible, corresponding to the multi-

dimensional representations of the braid group. In such case, more than a single quantum state 

must correspond to the same spatial configuration (R1, R2, ..., RN) of a set of quantum 

particles. These different quantum states need obviously be distinguished by “topological” 

rather than orbital quantum numbers. Let’s denote their number by g. Thus, an arbitrary state 

with the spatial configuration (R1, R2, ..., RN) is a linear combination of those g basis states. It 

can be conveniently represented by a g-dimensional vector in this basis. Now, a braid, which 

stands for a particular adiabatic position exchange among the N particles, must describe the 

fact that although such an exchange must bring the N particles back to their original spatial 

configuration, it does not have to restore the original quantum state (represented by the g-

dimensional vector). Thus, the topological effect of the process of braiding consists of a 

rotation of the vector state in the corresponding g-dimensional Hilbert space. And hence, such 

a braid must be represented by a g-dimensional square matrix, rather than by a simple phase 

factor exp(iθ). Since multiplication of the matrices need not be Abelian, neither need be the 

actual topological effect of the sequence of exchanges (braids) among the particles. Thus, the 

various possible corresponding quantum statistics are generally called non-Abelian, and the 

hypothetical quantum particles obeying such statistics – non-Abelions. 

Whether the non-Abelian quantum particles occur in nature remains an open fundamental 

question, and an object of intensive current studies (both theoretical and experimental). The 

most plausible candidates are the quasiparticle excitations of another (non-Laughlin) electron 

liquid formed in the fractional quantum Hall regime. The so-called Pfaffian wave-function 

proposed by Moore and Read [22], whose excitations have been demonstrated to be non-

Abelian, appears (mostly from the numerical simulations) to capture the essence of the real 

many-electron state in the corresponding conditions. By capturing the essential behaviour we 

mean an adiabatic connection between the model wave-function and the actual physical state, 

and thus a correct description of the qualitative/topological features, such as the quantum 

statistics. 

Thus, spatial confinement of electrons from three down to two dimensions opens the door to 

topological many-body effects associated with braiding. This also remains true in the lower-

dimensional nanostructures, as long as the confinement in one direction (typically that of 

growth) is much stronger than in the other (lateral) directions. In such case, the lateral 

confinement may lead to complete spatial quantization of the electrons, but without a 

complete destruction of the topological properties of the initially two-dimensional state. 

Finally, strong confinement to only one direction removes the possibility of adiabatic position 

exchange altogether, again resulting in a completely new topological characteristics.
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II.  Overview of computational methods 

 

1. Many-body states of non-interacting particles  

Let us consider a system of N identical, non-interacting particles, the dynamics of each of 

them being governed by a single-particle Hamiltonian h(x), expressed through a composite 

variable x (including spatial and spin coordinates). The single-particle eigenstates are then 

obtained from the Schrödinger equation 

( ) ( ) ( )xuxuxh kkk ε=
. 

In the absence of interactions, the many-body Hamiltonian is simply an uncoupled sum of 

single-particle Hamiltonians 

( )∑
=

=
�

i

ixhH
1  

The solution to the corresponding many-body Schrödinger equation has the form of a product 

of the single particle states (called spin-orbitals) 

( )∏
=

=
�

i

ik xu
i

1

ψ
. 

The energy of this state is simply the sum of the corresponding single particle energies 
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i

k i
E

1

ε
. 

For the Fermions, which obey the Pauli exclusion principle (forbidding any pair to occupy the 

same spin-orbital), the ground state can be constructed from the sequence of the lowest N spin 

orbitals 
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k

kkGS xu
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with the corresponding ground state energy 

∑
=

=
�

k

kGSE
1

ε
. 

However, Fermions not only obey the Pauli exclusion principle, but do so as a consequence of 

the requirement that a pair exchange results in a minus sign acquired by the wave-function. 

Hence, the many-Fermion wave-function must be completely anti-symmetric with respect to 

all pair exchanges. The above expressions for ψ clearly are not. The anti-symmetrization can 

readily be applied to the above expressions, to result in the so-called Dirac-Slater determinant 

form of the many-Fermion wave-function, i.e., a determinant involving N Fermions 

distributed in all possible (N!) ways among the N select spin-orbitals 
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For the ground state, this becomes 
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to reflect the occupation of the lowest N spin-orbitals. 

For Bosons, whose wave function need be symmetric with respect to pair exchanges, the 

expression for ψ is analogous to the above, except that the determinant is replaced by the 

permutant, and the normalization  prefactor is adjusted for the case when more than one 

Boson occupies the same spin-orbital. 

In particular, the many-Boson ground state is a condensate in the lowest spin orbital, obtained 

by setting k1 = k2 = … = kN = 1. 

Importantly, the symmetrization or anti-symmetrization only affects the form od the wave-

function, while the energy remains the sum of the single-particle energies, insensitive to the 

statistics. 

 

2. Hartree approximation  

In the presence of pair interaction among the particles, defined by its potential v(x1,x2), the 

many-body Hamiltonian takes the form 
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,
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1

. 

Here, the factor (1/2) adjusts for the double counting of each pair (i,j) and (j,i). For the 

interaction dependent only on the relative position (i.e., on distance) r12=|r1-r2|, such as 

Coulomb interaction among the electrons 
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e
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(here, the dielectric constant 4πεε0 is set to unity) this simplifies to 
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. 

The above Hamiltonian appears unstable (towards either collapse or expansion, depending on 

the sign on the interaction), but in real many-electron systems the stability is secured by the 
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presence of a charge neutralizing background of the nuclei. Specifically, Coulomb attraction 

among the electrons and ions is hidden in the single particle Hamiltonian 

( ) ( )∑
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+=
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rV
m

p
xh

1

2

2 α
α

 

where α labels the ions, and rα is the distance between a given electron and the α
th
 ion. 

At a fixed ion density (which also determines the electron density), the remaining term in the 

Hamiltonian which accounts for the ion-ion interaction is a constant, and it can be omitted. 

However, it need be remembered that the above many-electron Hamiltonian H must be 

considered at a fixed electron density. 

The presence of an interaction term makes it impossible to factorize the Hamiltonian and 

obtain a general and analytic solution. In the approximate approach due to Douglas Hartree, 

it is assumed that each electron moves in an average Coulomb field of the other electrons. 

This leads to the following single-particle Schrödinger equation 

( ) ( ) ( ) ( ) ( )kkkkk

kk

kkkkkk xuxuxurvdxxh ε=
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. 

This so-called Hartree equation can be rewritten as follows by rearranging the involved sum 

(adding and subtracting the k=k’ term) 

( ) ( ) ( )[ ] ( ) ( )xuxuxxVxh kkk

SI

kH ε=Σ−+
. 

Here,  

( ) ( ) ( )∫= '',' xnrrvdxxVH  

is the Hartree potential expressed through the total electron density 
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2

'''

k
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which in turn involves the occupation numbers nk’=1 or 0, depending on whether the (k’)
th
 

space orbital is occupied or not. 

The other term 

( ) ( ) ( )∫=Σ
2

'',' xurrvdxx k

SI

k  

is called the self-interaction correction, as it removes the (unphysical) k=k’ term added in the 

definition of VH. 

The Hartree approximation provides quite an accurate description of the electronic structure 

of isolated atoms, and also allow the estimates of atomic electron densities n(x) which agree 

fairly well with those obtained experimentally from the X-ray scattering. 

The formal justification of the method comes from the observation that it is equivalent to the 

search for the set of (so-called Hartree) spin-orbitals uk(x) such that the product many-electron 

wave function 
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minimizes the average energy (expectation value of the Hamiltonian). Let us stress that this is 

an optimal set of spin-orbitals for the lowest-energy many-body wave function which is not 

anti-symmetrized. 

The search proceeds using the variational principle. The relevant variational equation is 

0=− ψδψ HE
 

where δψ is an infinitesimal variation of ψ, obtained by varying separately each of the 
involved uk by δuk. 

The Hartree method replaces the N-electron problem by an effective single-electron problem, 

but at a cost of using in the Schrödinger equation the unknown quantity  

( ) ( )2'' xuxn k−
. 

The equations must hence be solved iteratively – beginning with a starting guess for the set of 

spin-orbitals uk, which are then used to calculate the Hartree and self-interaction potentials, 

from which a better approximation to the optimal set of spin-orbitals uk can be calculated by 

solving the single-particle Schrödinger equation. The procedure must then be repeated until 

reaching self-consistency (i.e., the convergence of the energies εk and spin orbitals uk). 

 

  Douglas Rayner Hartree (1897-1958) 
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3. Hartree-Fock approximation  

This method, introduced by Douglas Hartree and Vladimir Fock, is an improvement over the 

Hartree approximation in that it accounts for the requirement of that the many-Fermion (e.g., 

many-electron) wave function must be anti-symmetric. Being somewhat less intuitive, it is 

best explained in the variational language, as follows. 

Like in the Hartree method, the goal of the Hartree-Fock method is to find an optimal set of 

spin-orbitals uk(x), such that the average total energy is minimized with respect to the anti-

symmetrized products of those spin-orbitals. Total energy means here the total single-particle 

and interaction energy, and the average total energy means the expectation value of the many-

electron Hamiltonian H.  

( ) ( )∑∑
≠
==

+=
�

ji
ji

ij

�

i

i rvxhH

)(
1,1 2

1

 

On the other hand, the anti-symmetrized product of spin-orbitals uk(x) is the Dirac-Slater 

determinant introduced earlier 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )����

�

�

GS

xuxuxu

xuxuxu

xuxuxu

�

L

MOMM

L

L

21

22212

12111

!

1
=ψ

. 

The average value of H in such a state is compactly expressed in the “bra-ket” notation, where 

the “ket” |k〉 stands for the single particle state corresponding to the wave-function uk(x), and 
the “bra” 〈k| denotes the complex conjugate u*k(x). For example, the scalar product of states k 

and k’ is written as 

( ) ( ) ''

* kkxuxudx kk =∫  

and the matrix element of a single-particle operator h becomes 

( ) ( ) ( ) ''

* khkxuxhxudx kk =∫ . 

Analogously, pair states are denoted as follows 

( ) ( ) ',~'' kkxuxu kk  

( ) ( ) ',~'*

'

* kkxuxu kk , 

so that the two-body interaction matrix element becomes 

( ) ( ) ( ) ( ) ( ) ',','','' '

*

'

* llvkkxuxuxxvxuxudxdx llkk =∫ ∫ . 

Using this notation, the average total energy (expectation value of H) in the many-body state 

spanned by the set of spin-orbitals uk(x) can be written as 
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2

1

, 
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where nk=1 or 0 is the occupation of the spin-orbital uk, as defined earlier. The first interaction 

term inside the square bracket is called the direct term, and it gives the average interaction 

energy of a pair of distinguishable particles occupying spin-orbitals k and l (distinguishable – 

therefore the pair wave-function is a simple product, without anti-symmetrization). The latter 

term is called an exchange term, as it gives the amplitude of an interchange of a pair of 

identical particles in spin-orbitals k and l, caused by their mutual interaction. This term 

emerges for a pair of identical Fermions, as a result of their wave-function being 

antisymmetric 

( ) ( ) ( ) ( ) ( )[ ]xuxuxuxuxx kkkkkk ''', ''
2

1
', −=ψ

. 

The presence of an exchange term in the expression for E is the only difference between the 

Hartree and Hartree-Fock methods. 

The variational procedure proceeds as follows. The goal is to minimize E with respect to the 

variation of uk(x) by an arbitrary δuk(x), with an additional constraint that the set of spin-
orbitals remains ortho-normal 

',' kkkk δ=
. 

This is achieved by using the method of Lagrange multipliers (λk,k’), giving the following 

relation to be satisfied for an arbitrary first-order change δu*k(x) 
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This leads to the following set of single-particle equations 
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in which the first of the two integrals is the Hartree potential VH, and the second one is called 

the exchange term. These equations can be simplified by applying a unitary transformation to 

ensure a diagonal form 

klkkl δελ =
. 

The simplified equations  read 

( ) ( )[ ] ( ) ( ) ( ) ( )xuxuxxdxxuxVxh kkkXkH ε=Σ++ ∫ '','
 

where Σx(x,x’) is the (non-local) exchange potential defined as 

( ) ( ) ( ) ( )∑−=Σ
l

lllX xuxunrrvxx ''',', *

. 

The l=k term in Σx(x,x’) is the self-interaction term known from the Hartree approximation. 

The remaining k≠l exchange terms make the difference between the Hartree and Hartree-Fock 

approximations. 
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  Vladimir Aleksandrovich Fock 

 

4. Correlations and entanglement 

By construction of the many-body states in the form of the products of single-particle spin-

orbitals (whether anti-symmetrized or not), both Hartree and Hartree-Fock approximations 

exclude the effect of correlation. Such correlation (among the motion of different particles) 

would manifest itself by the dependence of the many-body wave-function on the relative 

positions (distances), evidently absent in the product expression. 

Let us illustrate this on a simple example for two particles. In the product pair state, whether 

anti-symmetrized 

( ) ( ) ( ) ( ) ( )[ ]xuxuxuxuxx kkkkkk ''', ''
2

1
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or not 

( ) ( ) ( )'', '', xuxuxx kkkk =ψ
, 

one particle is in state uk regardless of the other particle, and the other is in state uk’ regardless 

of the first. This is precisely the lack of (their) correlation. Let us denote this state (anti-

symmetrized or not) as 

',kk
 

In contrast, in the following state 

K++ ',', llkk
 

one particle is in the state uk only if the other is in the state uk’ (and vice versa), one is in the 

state ul only if the other is in ul’ (and vice versa), etc. This is a perfectly correlated state, in a 

sense that the state of one particle completely determines the state of the other. Another term 

commonly used in this context is entanglement. 
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Note also that the correlation does not hide in the fact that there are more than one term 

forming a linear combination. As a counter-example, let us consider the following state 

',',',', kllkllkk +++
. 

It is perfectly uncorrelated in a sense that the state of one particle (e.g., uk versus ul) has no 

influence on the state of the other particle (uk’ versus ul’). In other words, detection of one 

particle in either of the two allowed states (e.g., uk or ul) provides no information about the 

state of the other particle (uk’ or ul’). 

Rather obviously, states of intermediate degree of correlation (entanglement) are also possible 

in which state of one particle determines the states of the other one only to some extent. 

 

5. Correlation hole 

Let us consider the effect of electron correlation in an extended system (where an exact 

numerical treatment is not applicable). The idealized system to consider is the free electron 

gas. Relevant to simple metals, this model has nuclear charges evenly smeared out in space 

and forming a uniform positive background, compensating negative charge of the electrons. 

Hence, in the Hartree approximation, each electron feels no force, or a constant (zero) 

potential in the whole space. The solutions of the single-particle Hartree equations are 
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where V is the volume and m is the electron mass. 

In the ground state, these states are filled up from k=0 to the highest one k= kF called Fermi 

momentum, each with two electrons of the opposite spin. Of course, the Fermi momentum 

depends on density n 
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(the factor 1/2 on the right hand side due to the spin degeneracy), and the Fermi energy is 

m
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A convenient measure of density is the average radius per electron rs defined as 

n
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Using this quantity, one can write 
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Let us now observe that the plane waves are the eigenstates of the exchange term in the 

Hartree-Fock equation 
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This allows the calculation of an average exchange energy per electron εx 
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(the factor 1/2 for the double counting of all pairs). The result is 
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Let us now introduce the concept of a correlation hole. We begin by rewriting the exchange 

term of the Hartree-Fock equation as 
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The term in the square brackets is the single-particle effective exchange potential VHF(x). It 

can be interpreted as an electrostatic potential attributed to a fictitious electron density  
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which is normalized to 

( ) 1',' =∫ xxndx HF  

corresponding to the fact that each electron interacts with N-1 other electrons that can be 

counted as N electrons contained in the Hartree potential VH minus the unit charge of the so-

called exchange hole. What is the density profile of the exchange hole (around its electron)? If 

all orbitals were occupied (corresponding to an infinite Fermi energy), i.e., all nl=1, then 

( ) ( ) ( )''* xxxuxun
l

lll −=∑ δ
 

and thus also 

( ) ( )'', xxxxnHF −= δ  
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which would mean a correlation hole which is localized precisely on an electron. For a Fermi 

sphere extending up to a finite Fermi wave vector kF, nHF(x,x’) is broadened to a characteristic 

Fermi width of 

s

F

F r
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3
2

==
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λ
. 

In both Hartree and Hartree-Fock approximations, each electron feels an average Coulomb 

field from the other electrons. However, the electron-electron repulsion creates a correlation 

hole around each electron. This hole screens the charge of its electron (when immersed in the 

sea of other electrons) and in this way lowers the total interaction energy. 

Let us write the electron density as 
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i.e., the probability (per unit volume) to find an electron at position r. Here, ψ is the many (N) 

electron ground state, and ri are the electron positions. 

Analogously, one can define the pair correlation function as 
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i.e., the joint probability to find an electron at position r and another electron at position r’. 

The pair correlation function can be used to write the total many-body Coulomb energy as 
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For completely uncorrelated electrons, by definition,  

( ) ( ) ( )'', rnrnrrn = . 

In general, one can introduce a function g(r,r’) and write 

( ) ( ) ( ) ( )[ ]',1'', rrgrnrnrrn += . 

From the normalization of 

( ) 1',' −=∫ �rrndr
 

one immediately obtains the following sum rule 

( ) ( ) 1'',' −=∫ rnrrgdr
 

which, again, means that each electron is screened by an exchange-correlation hole dragged 

with itself. 

To understand the relative contributions of exchange and correlation to this hole let us 

consider a spin-unpolarized system, with N↑ and N↓ electrons of the respective spin. Clearly, 
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each spin-↑ electron interacts with N↑-1 electrons  of the same spin and with N↓ electrons of 

the opposite spin. Thus, separating the density and function g(r,r’) into two spin components, 

one gets 

( ) ( ) 1'',' −=∫ ↑↑↑ rnrrgdr
 

( ) ( ) 0'',' =∫ ↑↑↓ rnrrgdr
. 

These sum rules can be interpreted as that the “same-spin” exchange hole remains equal to -1 

also in the presence of correlations, and that while the local “opposite-spin” correlation hole is 

also equal to -1, the compensating charge must accumulate on the surface so as to ensure the 

latter condition. 

 

6. Thomas-Fermi model 

Thomas-Fermi model is an approximate quantum mechanical theory of the electronic 

structure calculations that does not directly involve the many-body wave-functions. Instead it 

is formulated entirely in terms of the electronic density and as such it can be regarded as a 

precursor to the modern density functional theory. The Thomas-Fermi model is strictly correct 

only in the limit of an infinite nuclear charge. When used as an approximation for realistic 

atomic or molecular systems, it yields poor quantitative predictions, even failing to reproduce 

some general features of the density such as shell structure in atoms and Friedel oscillations in 

solids. It has, however, found useful applications through the ability to extract qualitative 

behavior analytically. 

The key assumption is that the electrons are distributed uniformly in phase space with two 

electrons in every  

( )32 hπ   

of phase volume. In each element of real space volume d
3
r, the electrons fill a sphere of 

momentum space reaching up to the Fermi momentum pF defined at this given point of real 

space. The number of electrons inside this Fermi sphere is 
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and the equation of the number of electrons when counted in the real and momentum spaces 

gives the following key relation between the local density and the local Fermi wave-vector 
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or, inversely, 
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The local Fermi energy also depends on the electron density, as follows 
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Substituting this into the classical expression for the kinetic energy 
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where an average over a uniformly occupied momentum sphere is 
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one obtains the so-called Thomas-Fermi kinetic energy functional 
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Or, briefly, 
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7. Density functional theory 

Like the Thomas-Fermi model, density functional theory (DFT) involves the local electronic 

density n(r) rather than the many-electron wave-functions, and thus expresses all the relevant 

properties of the system, such as the energy, as functionals of the density function n(r). The 

DFT theory depends on two Hohenberg-Kohn theorems [23].  

The first Hohenberg-Kohn theorem establishes that the ground state properties of a many-

electron system are uniquely determined by its electron density (a function of the position). 

Therefore, at least in principle, it allows to reduce the many-body problem of N electrons with 

the total number of 3N spatial coordinates to only 3 spatial coordinates, through the use of 

functionals F[n] of the electron density n(r).  

Obviously, the density function n(r) is uniquely determined by the many-body wave-function 

( ) ( )∫∫∫=
2
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3 ,,,, �� rrrrrdrdrd�rn KK ψ
. 

According to the first Hohenberg-Kohn theorem, for the ground state this statement can be 

reversed, to say that the ground state wave function is uniquely determined by the ground 

state density. In other words, the ground state wave function is the functional of density 

( )[ ]rnGSGS ψψ =
. 

Consequently, any expectation value in the ground state is also a functional of density 

( )[ ] ( )[ ] ( )[ ]rnOrnOrnO GSGSGSGSGS == ψψψψ
. 

The second Hohenberg-Kohn theorem defines an energy functional for a many-electron 

system and ascertains that the ground state electron density minimizes this energy functional. 

The total energy functional 

( )[ ] ( )[ ] ( )[ ]rnUVTrnrnEE GSGSGSGS ψψ ++==
 

contains the kinetic energy T, the single particle (external) potential energy V, and the 

interaction (internal) potential energy U.  

The kinetic energy functional  

( )[ ]rnT GS  

can be taken from the Thomas-Fermi approximation or one of its later refinements, and the 

external potential is simply expressed as 

( )[ ] ( ) ( )∫= rnrVrdrnV GSGS

3

. 
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The key challenge is to find an accurate interaction energy functional 

( )[ ]rnU GS . 

Within the framework of Kohn-Sham density functional theory (named after Walter Kohn and 

Lu Jeu Sham) [24], the intractable many-body problem of interacting electrons in a static 

external potential is converted to a tractable problem of non-interacting electrons moving in 

an effective (“Kohn-Sham”) potential. The effective potential includes the external potential 

and the effects of the Coulomb interactions between the electrons, e.g., the exchange and 

correlation interactions. Modeling the latter two contributions is the chief difficulty. The 

simplest approximation is the so-called local-density approximation, using the exact Thomas-

Fermi exchange energy of a uniform electron gas.  

The single-particle Schrödinger equation  

( ) ( ) ( )rrrv
m

iiieff φεφ =
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which involves the fictitious effective local “Kohn-Sham” potential veff(r) is called the Kohn-

Sham equation. As it describes non-interacting fermions, the resulting many-body Kohn-

Sham wave function is constructed as a Dirac-Slater determinant from the set of lowest-

energy Kohn-Sham orbitals φi. Thus, the total N-electron density is given by 
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(from now on we shall skip the obvious subscript “GS”). In the following expression for the 

total energy functional 

[ ] [ ] [ ] [ ] [ ]nEnVnVnTnE xcHexts +++=
 

The first term Ts is the Kohn-Sham kinetic energy functional, expressed through the Kohn-

Sham orbitals as 
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The second term Vext is the external single-particle potential (e.g., the electron-ion interaction) 

[ ] ( ) ( )∫= rnrvrdnV extext
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. 

The third term VH is the Hartree energy 
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Finally, the fourth and last term Exc is the exchange-correlation energy. 

The Kohn-Sham equations are obtained self-consistently by the variation of the total energy 

functional E[n] with respect to the set of Kohn-Sham orbitals which in turn define the Kohn-

Sham potential in the following way 
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with the Hartree potential 
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and the exchange-correlation potential defined as 
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, 

which must be determined independently. 

Let us also mention that the Kohn-Sham orbital energies εi have little physical meaning in 

themselves; their connection to the total energy being 
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The exchange-correlation energy can be estimated from a local density approximation (LDA). 

There are a number of choices how to define a local approximation (i.e., one which depends 

only on the value of the electronic density at a given position, and not on its derivatives) to the 

exchange-correlation energy. However, most common and successful are those derived from 

the homogeneous electron gas model (to the extent that LDA is often regarded synonymous 

with the functionals based on the homogeneous electron gas approximation). The “jellium” 

model of a homogeneous electron gas involves a large number N interacting electrons in a 

large space volume V (yielding a finite density n=N/V), with a uniform positive charge 

compensating background.  

A local density approximation for the exchange-correlation energy is generally written as 

[ ] ( )( ) ( )rnrnrdnE xc

LDA

xc ε∫= 3

 

where εxc(n) is the exchange-correlation energy density, a function of electron density alone. 

The exchange and correlation contributions are separated 

LDA

c

LDA

x

LDA

xc EEE +=
 

and sought independently.  

In the first term, the exchange energy density εx can be calculated analytically for the jellium 

model of a homogeneous electron gas (compare an equivalent earlier expression for exchange 

energy per particle, using parameters α and rs) 
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and then (as a local density approximation) used in an unchanged form also for an arbitrary 

non-homogeneous system, by taking  
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that is, by assuming that the relation between εx and n is local (i.e., independent of ∂n/∂r). 

An accurate estimate to the correlation energy density εc(n) poses a bigger problem. Analytic 

expressions for the correlation energy density of the homogeneous electron gas are not 

known, except for the high- and low-density limits (corresponding to an infinitely-weak and 

infinitely-strong correlation, respectively). For intermediate densities, the best known answer 

is obtained from the quantum Monte Carlo computations [25]. 

 

   Walter Kohn (1923-) 

 

8. Quantum Monte Carlo 

Another known strategy to solve the many-body problem which involves correlations is 

through a direct search for an explicitly correlated wave-function to minimize the (interacting) 

many-body Hamiltonian. The arising Hamiltonian matrix elements between many-body states 

are in form of multi-dimensional integrals, which are computed using a (stochastic) Monte 

Carlo method. Several variants of the quantum Monte Carlo method have been introduced, 

known as: variational, diffusion, or path integral quantum Monte Carlo, etc. 

The motivation for the quantum Monte Carlo method as opposed to the density functional 

theory is in that the many-body wave-function ψ, although a complicated mathematical 

object, obeys a well-known (Schrödinger equation) 

ψψ EH =  

while the equation which governs the dynamics of the (admittedly, relatively much simpler) 

total density function n is generally unknown 

[ ] [ ] [ ] [ ] [ ] [ ] ?; =+++= nEnEnVnVnTnE xcxcHexts . 
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Thus, arguably, the available exchange-correlation functionals Exc[n] are serious uncontrolled 

approximations, potentially spoiling the accuracy of the density functional theory approach. 

In contrast, quantum Monte Carlo method does not depend on those approximations. 

However, it is relatively more demanding in terms of the computation costs, and thus only 

capable of addressing problems with a relatively smaller number of particles. Thus the key 

issue when comparing quantum Monte Carlo to density functional theory (and, on the other 

side, to the exact numerical diagonalization) is the scaling of the computation costs of each 

method with the system size and the accuracy of the representation of a particular physical 

problem (possibly with an essentially infinite number of particles) by a numerically tractable 

finite system of N particles. In the last aspect, the boundary conditions may become important 

as construction of a finite, N-particle model of an extended system characterized by a finite 

density necessarily involves some kind of a boundary (either edge or periodicity) which might 

or might not introduce a significant artifact to the model. 

Let us begin by considering only real wave functions  

( )XΨ  

expressed through a composite many-body position (r) and spin (σ) 

{ } { } { }( )��rrrX σσσ ,,,,,, 2211 K=
. 

The numbers of spin-↑ and spin-↓ electrons will be denoted by  

↑�   and  ↑↓ −= ���
. 

As the electrons are fermions, the many-electron wave-function Ψ must be anti-symmetric 

with respect to an exchange of any pair of electrons. Consider an expectation value of a spin-

independent operator A with respect to Ψ 
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where  

( )�rrrR ,,, 21 K=
 

is a position in the 3N-dimensional “configuration space”, and the sums run over all spin 

configurations with a given N↑ and N↓. 

Using antisymmetry of wave function, X can be replaced by 

{ } { }{ } { }( )↓↓↑↑= +↑↑
,,,,,,,,' 11 ��� rrrrX KK

, 

which allows relabeling components of the dummy integration variable and taking advantage 

of the fact that integrals for each spin configuration {σ} with the same numbers N↑ and N↓ are 

the same. Thus, the spin sums can be removed, and the expectation value can be evaluated as 

( ) ( ) ( )
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where 

( ) { } { }{ } { }( )↓↓↑↑=Ψ +↑↑
,,,,,,,, 11 ��� rrrrR KK

 

is (only) anti-symmetric with respect to the exchanges of electrons having the same spin (as 

the electrons with different spin are effectively distinguishable). 

The normal starting point for the construction of a quantum Monte Carlo many-electron trial 

wave function is the set of single-electron orbitals from either Hartree-Fock approximation or 

density functional theory. An anti-symmetric wave-function is constructed out of such orbitals 

in a standard manner, by forming a Dirac-Slater determinant. When electrons are unpolarized, 

a product of anti-symmetric wave-functions (a pair of determinants, separately for spin-↑ and 
spin-↓ electrons) is constructed instead of a single determinant 
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Here, ψ are the set of lowest-energy single-electron orbitals. Of course, using two smaller 

determinants instead of one is advantageous because computation of a determinant costs ~N
3
. 

The main advantage of quantum Monte Carlo is the capability of using more complicated 

wave functions than Dirac-Slater determinants. Furthermore, the correlation effects are 

introduced in compact fashion through the adequate prefactors (in contrast to the post-

Hartree-Fock methods using computationally inconvenient sums of many determinants). 

Thus, the starting-point wave-function in form of a Dirac-Slater determinant is improved by 

adding a so-called Jastrow prefactor J(R) expressed in terms of relative coordinates and thus 

explicitly accounting for the correlations among the individual electrons 

( ) ( )[ ] ( ) ( )���� rrrDrrrDRJR ,,,,exp 2121 KK ++↑↑ ↑↑↑
=Ψ

. 

Since the Dirac-Slater determinant is anti-symmetric with respect to pair electron exchanges, 

the Jastrow prefactor must be symmetric (to maintain the correct anti-symmetry of the whole 

wave-function). Thanks to the exponential form of the Jastrow prefactor in the wave function, 

J(R) can be written as a sum of different terms corresponding to a number of different causes 

of correlation (e.g., among the electrons, among an electron and a nucleus, among a pair of 

electrons and a nucleus, etc.; terms describing correlations of electrons with the same or 

opposite spins are also conveniently distinguished).  

The Jastrow prefactor must satisfy certain general boundary conditions called the Kato cusp 

conditions. These are (for rij , ri and rj all treated as independent variables) 
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  for the electron pair of opposite spin (↑↓), and 
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  for the electron pair of the same spin (↑↑). 

Note that the addition of the Jastrow factor does not affect the nodal surface (the set of points 

R in the configuration space for which the wave function vanishes) which is completely 

determined by the constituent Dirac-Slater determinant. 

In variational quantum Monte Carlo (VMC), the many-body wave function contains a number 

of free parameters which are optimized using the variational principle (e.g., by minimizing 

expectation value of Hamiltonian). The VMC energy is therefore defined as the expectation 

value of the Hamiltonian H with respect to trial wave function Ψ. It can be written as 

( ) ( )
( )∫

∫
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Ψ
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RdR
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2
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where 

( ) ( ) ( )RHRREL ΨΨ= −1

 

is called the “local energy.” The VMC energy can be conveniently evaluated by using the 

Metropolis algorithm to generate a sequence of configurations {R} distributed according to 

Ψ2
(R) and then by averaging the corresponding local energies. If needed, the expectation 

values of other operators are evaluated in a similar fashion. 

 

9. Configuration interaction metod 

The method of exact diagonalization of the Hamiltonian matrix in the basis of single-particle 

configurations (called the configuration interaction method) will be described in detail in the 

following sections. In brief, it consists of spanning the many-body Hilbert space by Dirac-

Slater determinants (or “configurations”) which involve a convenient set of single-particle 

spin-orbitals (for example, although not necessarily, the eigenstates of the single-particle 

Hamiltonian h). In this basis, the Hamiltonian matrix often becomes sparse, since the pair 

interaction (typically representing the off-diagonal part of the Hamiltonian matrix) can only 

couple (through an elementary process of the two-electron scattering) those configurations 

which differ by the occupation of at most four spin-orbitals. Such matrix can be efficiently 

diagonalized using various iterative methods related to the classical Lanczos algorithm. If 

only the actual sought many-body state indeed falls (to sufficient projection) in the chosen 

configuration basis, the method is essentially exact in describing the correlation effects. 

Unfortunately, high computation cost limits its application to smaller systems than those 

tractable by quantum Monte Carlo (or density functional theory). 
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III. Configuration interaction method 

 

1. Example of exact diagonalization (single particle discretization) 

1.1 Schrödinger equation in discretized real space 

As an example of application of the method of exact diagonalization (although not yet in the 

configuration basis) let us consider a single particle moving in an external potential V(r). As a 

basis of states, let us use the states localized in the narrow areas of the real space. To do this, 

let us discretize the space in each direction (x, y, …) by introducing a rectangular grid. For 

simplicity, the total length of the system in each direction will be assumed equal and called L. 

The number of divisions in each direction will also be assumed equal, such that each space 

box has the dimensions ∆d
, where d is the dimensionality of the allowed space. The dimension 

of basis is therefore N=(L/∆)d, and we shall assume that N can be sufficiently large that the 

resulting N×N Hamiltonian matrix cannot be diagonalized in a completely straightforward 

manner. 

The basis wave function corresponding to the particle located at box number j is 

( ) 2d

j r
−∆=φ

 inside the j
th
 box (around r=rj), and 

( ) 0=rjφ
 elsewhere. 

 

 

 

We shall also use the standard “bra-ket” notation 

jj =φ
 

Obviously, the boxes do not overlap, so the basis is orthonormal 

ijji δ=
. 

Strictly speaking, being discontinuous at the box edge, these are not valid wave functions. 

However, they still allow to obtain a computational scheme which gives the correct physical 

results in the limit of ∆→0. 
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The Hamiltonian operator contains the kinetic energy K and the external potential V. Its 

matrix elements in the above basis are (we shall use the effective units, with the Planck 

constant and the mass both set to unity) 

( ) ( )∫ ∇=≡ rrrdjKiK ji

d
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and 
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. 

For the kinetic energy, derivatives can be approximated by the central difference operator. In 

one dimension (easily generalized to d>1) this is 
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so that the kinetic energy matrix element becomes 
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Or, the action of the kinetic energy operator on a basis state can be written as 
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. 

Combining both kinetic energy and external potential contributions, the only non-vanishing 

matrix elements of the Hamiltonian are 

( )
2,

1

∆
+= iii rVH

,  and 

21,
2

1

∆
−=±iiH

. 

Generalization to more than one dimension (d>1) is straightforward 

( )
2, ∆

+=
d

rVH iii

,  and 

[ ] 2,
2

1

∆
−=iiH δ

, 

where δ[i] denotes the 2d nearest neighbours of the box number i. Note that the hopping 

matrix element becomes stronger for the smaller volume elements (in accordance with the 

uncertainty principle). 
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1.2 Continuum limit 

Let us now demonstrate the correct continuum limit of this model, on an example of a free 

particle in one dimension, in a periodic box (so-called closed chain). The correct energy 

eigenstates are  

( ) ikr

k er =ψ
 

with k=2πn/L, n=0, 1, …; the corresponding eigenenergies are 

2

2

1
kEk =

. 

Let us now consider this problem in the discretized space. The discrete coordinate  
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puts a limit on the allowed (inequivalent) momenta. Namely, since 
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Let consider the following proposed state 
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and determine the action of the Hamiltonian (i.e., the kinetic energy operator) on this state 

∑∑
−

=

−

=





 ++−−
∆

−==
1

0
2

1

0

1
2

1
1

2

1111 �

j

ikr
�

j

ikr
jjje

�
jHe

�
kH jj

. 

After shifting the dummy indices in the j±1 terms, this becomes 
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Hence, |k〉 has been demonstrated to be an eigenvector, with a corresponding eigenenergy 

( )∆−
∆

= kEk cos1
1
2

 

which for a small ∆ can be expanded into the following Taylor series 

K+∆−= 422

24

1

2

1
kkEk

 

which agrees to the leading order with the continuum result, and therefore justifies the 

discretization procedure as a treatment of the kinetic energy. Note here also that the 

discretized kinetic energy is lower than the true energy. 
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1.3 Diagonalization 

The above established procedure allows conversion of a problem of a particle moving in a 

continuous d-dimensional space in the field of an external potential – into the problem of a 

sparse N-dimensional Hamiltonian matrix, which can be diagonalized quasi-exactly (on a 

computer). 

Since the matrix is large and sparse, and since most likely only some of the low-energy 

eigenenergies and/or eigenstates are needed as physically meaningful, a particularly suitable 

diagonalization method is the Lanczos algorithm (which will be discussed in detail later). The 

key idea (common to all “power” methods) is that a repeated action of a Hamiltonian on an 

arbitrary state Φ (which can be expanded into a linear combination of the eigenstates Ψk) 

creates a state whose expansion is dominated by those eigenstates which correspond to the 

extremal eigenvalues). 

 

2. Lanczos algorithm 

Let us consider a large Hamiltonian matrix H. The following procedure converts it into the 

tridiagonal form, and thus transforms the original arbitrary dynamical problem into a one-

dimensional chain in which each subsequent state is only coupled to its pair of backward and 

forward neighbors. 

1. Let us begin with a normalized vector u0 (either guessed or chosen at random). 

2. Vector v1 is obtained by action of the Hamiltonian onto u0  

01 Huv =
. 

3. Then, vector w1 is obtained by orthogonalization of v1 to u0 

( ) 00111 uuvvw •−=
. 

4. Finally, the next Lanczos vector u1 is obtained by the normalization of w1 

1

1
1

w

w
u =

. 

The preceding steps are now repeated so that the next Lanczos vector un+1 is constructed by 

acting with H onto the preceding Lanczos vector un, followed by orthogonalization to two 

preceding Lanczos vectors and finally completed by the normalization 

5. nn Huv =+1 ; 

6. 
( ) ( ) nnnnnnnn uuvuuvvw •−•−= +−−+++ 111111 ; 

7. 1

1
1

+

+
+ =

n

n
n

w

w
u

. 

Thus, beginning with a (nearly) arbitrary starting vector u0, the above procedure generates the 

so called Lanczos basis 

{ }nu  

with the following properties: 
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1. Hamiltonian is tridiagonal in the Lanczos basis  

(despite orthogonalization only to two preceding vectors in the procedure). 

2. The Lanczos matrix elements 

nnnnH uv •= +1,
 

111, −+− •= nnnnH uv
 

are computed during the basis generation (with no additional computational cost). 

3. The dominant cost of each Lanczos iteration is one matrix-vector multiplication 

4. When analyzed as a function of Lanczos dimension (i.e., the number of generated 

Lanczos vectors; i.e., the number of Lanczos iterations), the extreme Lanczos 

eigenvalues (eigenvalues of the Hamiltonian expressed in the Lanczos basis) converge 

exponentially quickly to the exact eigenvalues of the Hamiltonian (in the full basis). 

5. The number of Lanczos iterations needed to reach full numerical convergence for the 

ground state is typically much smaller than the dimension of the Hamiltonian matrix. 

6. The cost of diagonalization of the tridiagonal Lanczos matrix is of the order of N 

operations (i.e., negligible compared to the cost of matrix-vector multiplication 

performed during each Lanczos iteration). 

The following should be realized when chosing the initial Lanczos vector u0: 

1. Lanczos procedure preserves the symmetry of the initial vector u0  

(at least, in principle, assuming lack of accumulating numerical errors). 

2. In practice, accumulation of the numerical errors (after a sufficient number of 

iterations) may lead to an escape from the invariant subspace of u0 (of course, if only 

such escape should lower the energy). 

3. Still, if the symmetry of the sought ground state is known, choosing u0 with this 

symmetry is desirable so as to reduce the number of iterations until convergence. 

4. Also, choosing u0 with a large overlap with the eventual ground state improves the 

convergence. 

5. Lacking such insight, u0 can be generated at random and still guarantee convergence 

with the probability of one. 

Observations regarding the computational cost: 

1. The dominant cost is a single matrix-vector multiplication in each iteration. 

2. This multiplication can be optimized for efficiency by taking advantage of the 

structure of the matrix (sparsity). 

3. The number of iterations needed to reach convergence if usually of the order of 10
2
. 

4. Since the matrix-vector multiplication can be done “on-the-fly” and since only three 

Lanczos vectors need be stored in memory at each given time, the dimensions 

tractable on the currently available PC workstations exceed one billion. For example, 

for the dimension of D=10
9
, the memory required to store three vectors is 24GB. 
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Sparsity of the Hamiltonian is essential for an efficient matrix-vector multiplication. It occurs 

naturally for a pair interaction expressed in the configuration interaction basis. In order to 

demonstrate it, consider a Hamiltonian with a two-body interaction V 

∑∑ +=
ji

ij

i

i VTH
,

ˆ

 

which in the second quantization reads 

∑∑ +++ +=
lkji

lkjiijkl

ji

jiij aaaaVaaTH
,,,,

ˆ

 

(where a and a+ are the annihilation and creation operators).  

Consider also the configuration basis for N particles 

vacaaaiiii
�i

ii�

+++== KK
21

,,, 21
. 

It is essential to realize that the matrix element of the two-body interaction Hamiltonian H in 

the basis of single-particle configurations  

jHi ˆ
 

must vanish unless these two configurations |i〉 and |j〉 differ only at four or fewer orbitals, so 
that they can be connected with a quartic term like (a

+
a)(a

+
a). This fact naturally produces a 

sparse matrix, increasingly so for the larger N (in comparison to 2). 

 

3. Manipulation and storage of sparse matrices 

Since the Hamiltonian matrices suitable for exact diagonalization are commonly large and 

sparse, there are essentially two strategies to deal with the problem of their storage: One is the 

compression; the other is avoiding storage by carrying out the matrix-vector multiplication 

“on-the-fly”. Let us begin with the concept of matrix compression. 

The basic idea is to avoid storing zero matrix elements (and possibly also repeated elements). 

In the most direct method, the position (row and column) as well as the value are stored for 

each of the nonzero matrix elements. Let us denote the matrix dimension by D. Then the 

memory required to store the whole uncompressed matrix in the standard “double” precision 

(8 bytes per floating point number) is  

28 DB ⋅ .  

When compressed, this becomes  

( ) GBGBB ⋅=⋅+⋅ 16842  

where it was assumed that a four-byte integer is sufficient/needed to store the row or column 

index. Defining the sparsity s as the fraction 

2DGs =  

the compressed-to-uncompressed memory ratio becomes 

40



 

s
DB

GB
2

8

16
2
=

⋅
⋅

 

And it hugely favours compression for the sparse matrices (s<<1). 

Further obvious compression can take advantage of the fact that the matrix may be symmetric 

(and this only a half, either one above or below the diagonal, need be stored) or that the 

diagonal may have a very different sparsity then the off-diagonal part (and thus the two can be 

stored separately). 

Additional compression can employ the fact that many matrix elements may repeat 

themselves, and thus they may be tabulated so that each non-zero element would be stored 

with a short (possibly two-byte) pointer to the table of all genuine matrix elements rather than 

directly to a specific eight-byte value. Such repetition of matrix elements naturally occurs for 

the pair interaction Hamiltonians in the configuration basis, where the scattering matrix 

element between two N-body configurations depends only on those orbitals defining the two-

body scattering process that couples the N-body configurations, and the occupation of any 

other orbitals (unchanged in this two-body scattering can only affect the sign of the matrix 

elements (through the anti-commutation rules for fermions) 

BAHBAiBAiiHiBAii �� ,',',,,,,,,,,',,',,, 2121 ±=KKKKKK
. 

Thus, the magnitude of the above matrix element remains insensitive to the (unchanged) N-2 

occupied orbitals, and this element is bound to repeat in the matrix for their any other 

combination – as long as (A,B,A’,B’) remain the same. 

A particularly convenient compression format (for the purpose of efficient matrix-vector 

multiplication) is the so-called “compressed-row format.” In this scheme, the non-zero matrix 

elements are stored row by row, so that for each of them only the value (or a pointer to the 

table of values) and the column need be stored. Additionally, it must be stored which matrix 

element begins a new row so that the complete position (row and column) can be restored for 

each matrix element value.  

As an example, let us consider the following symmetric matrix 























=

0.46.603.30

6.62.702.32.5

005.101.1

3.32.300.20

02.51.105.4

H

 

Let us call the vector of diagonal matrix element values as DH[...],the vector of off-diagonal 

matrix element values as OH[...], the vector of columns as JH[...], and the vector of new-row-

markers as IH[...].  

[ ]
[ ]
[ ]
[ ]6,5,5,3,1

5,5,4,4,3

6.6,3.3,2.3,2.5,1.1

0.4,2.7,5.1,0.2,5.4

=

=

=

=

IH

JH

OH

DH
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The length of both DH and IH is the dimension of the matrix D, and the length of both OH 

and JH is the number of non-zero matrix elements above the diagonal G. Using this 

compression, the vector-matrix multiplication  
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proceeds as follows (in Fortran) 

DO row = 1, D 

  Q[row] = P[row] * DH[row] 

END DO 

DO row = 1, D-1 

  DO element = IH(row), IH(row+1)-1 

   col = JH[element] 

  val = OH[element] 

   Q[row] = Q[row] + P[col] * val 

   Q[col] = Q[col] + P[row] * val  

  END DO 

END DO 

Furthermore, if the matrix elements within each row are ordered by column, then instead of 

storing columns in vector JH, one may choose to store the increase in the column index 

compared to the previous matrix element in the same row. As these increments will generally 

be smaller than the columns themselves, storing them in JH may require fewer bytes per entry 

(e.g., two instead of four). As a safety net against (rare) situations when the increment is so 

large that it will not fit in the allocated memory cell (e.g., two bytes), one may add another 

vector JJH of 4-byte integers (and placing a conventional marker such as “-1” into JH would 

signal that a given column need be read from JJH. 

 

4. Efficient computation of matrix elements 

Speed- and memory-efficient computation of the Hamiltonian matrix is especially crucial 

when it is calculated “on the fly” instead of being stored between successive Lanczos 

iterations. This is achieved by a rather literal implementation of the second quantization, as 

will be described below. 

 

4.1. Representation of the configuration basis 

Each basis state (N-particle configuration) 

vacaaaiiii
�i

ii�

+++== KK
21

,,, 21  

is not stored as (what might appear as a natural choice) a table of indices 
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[ ]Di�kindex KK 1,1 ==  

where a composite “index” denotes the single-particle state created by a
+
index, k labels the 

particles, and i labels the configurations. Such storage depends explicitly on N (which 

requires explicit scaling of the programs), by explicit labelling the particles it does not take 

advantage of the anti-symmetrization of the configurations (in fact, to avoid their double 

counting, the genuine configurations have to be generated with an additional requirement that 

(for example) the indices are ordered as follows 

[ ] [ ]ikindexikindex ,', p     for   'kk <  

which is also somewhat problematic for composite indices. Furthermore, storage in this way 

is not memory-efficient, by taking 

D�B ⋅⋅4  

of space for the whole basis (assuming that each index can be stored as a 4-byte integer). 

Therefore, a better option is to store each basis state (configuration) as a sufficiently long 

binary number 

K110001010010110010  

where the position of each bit is associated with a single-particle spin-orbital, and the value of 

the bit (1 or 0) represents that a given spin-orbital is occupied or not. 

For example, the four-particle configuration 

vacaaaa
++++=
64306,4,3,0

 

would be represented by a binary number 

89222201001101000 6430 =+++=K  

For this coding, the length of the binary number need be sufficient to store all spin-orbitals. 

For example, a convenient standard four- and eight-byte integers allow for 32 or 64 spin-

orbitals, respectively; a larger number of spin-orbitals in a given problem may require a 

somewhat less convenient coding in form of several integers. In contrast to the previous 

coding, the total memory needed to store a basis scales with the number of spin-orbitals S 

rather than with the number of electrons 

DSB ⋅⋅ 81  

In practice, when using standard (4-byte) or long (8-byte) integers instead of S-bit long ones, 

this memory amounts to  

DB ⋅4    or   DB ⋅8 . 

However, the biggest advantage is not in the potential savings in memory space, but in the 

elegance and ease to compute the many-body matrix elements. 

For the reasons that will become clear in the next paragraphs, it is convenient to sort the basis 

so that the binary numbers representing the consecutive configurations are ordered. 
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4.2. Finding non-zero matrix elements 

In the computation of the Hamiltonian matrix (or the matrix of any other relevant operator) it 

is critical to efficiently determine those elements which are non-zero. To this end, the 

arguably natural method of scanning the matrix element by element and checking which one 

is potentially non-zero (for example, by checking which Hamiltonian matrix element connects 

two configurations which are only different in at most two spin-orbitals, as allowed by a two-

body interaction scattering) – is dramatically inefficient. Indeed, it requires 

2D  

such checks, which can be dramatically reduced by scanning only the rows of the matrix (that 

is, going through the matrix row by row) or, equivalently, going through the entire basis 

configuration by configuration. For each such “initial” configuration, all possible “final” 

configurations are generated by literally applying the second-quantization version of the 

Hamiltonian. For the Hamiltonian including a two-body interaction this means 

∑∑ +++ +=
lkji

�lkjiijkl

ji

�jiij� iiiaaaaViiiaaTiiiH
,,,

21

,

2121 ,,,,,,,,,ˆ KKK

 

where each non-zero element in the sums is a different allowed “final” configuration, with up 

to two spin-orbitals which are different from the “initial” configuration, as given by the one-

body scattering j�i or  the two-body scattering (i,j)�(k,l). The absolute magnitudes of matrix 

elements constructed in this way are obviously Tij or Vijkl (explicitly only dependent on those 

spin-orbitals between which the scattering actually occurs), respectively, so they do not 

require additional computation. However, the signs in front of these matrix elements does 

depend on the occupation of all other spin-orbitals, as follows from the anti-commutation of 

the fermionic creator operators a
+
 in the definition of the configuration 

vacaaaiiii
�i

ii�

+++== KK
21

,,, 21 . 

A simple rule is that once a certain (arbitrary) ordering of spin-orbitals is assumed and used 

consistently, each scattering process in which all (one or two) scattering particles jump over a 

total number of occupied orbitals which is even – has the amplitude (matrix element) Tij or 

Vijkl, while the scattering processes in which all (one or two) scattering particles jump over a 

total number of occupied orbitals which is odd – have the amplitudes (matrix elements) with a 

reversed sign: -Tij or -Vijkl. 

The number of operations needed to compute the whole matrix is now proportional to 

1D  

and also to the number of allowed one- and two-body scatterings (which is of the same order 

of magnitude as the number of operations in a single “check” of the previous method) and the 

number of operations needed to determine the column of each matrix element. 

Indeed, let us carefully observe that while in the method of scanning the entire matrix element 

by element both row and column of each element are determined automatically, in the present 

method of running through the initial configurations it costs additional effort to determine the 

column. Since the column of the matrix element is simply the position of the corresponding 

“final” configuration in the basis, determination of the column is equivalent to the search of a 

given “final” configuration in the basis.  
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Now, in the most primitive search procedure which involves comparison of the given “final” 

configuration with all basis configurations one by one, this gives an additional factor of D
1
 

operations per matrix element so that altogether the method also involves  

2D  

of “check” operations. 

However, if the basis is sorted (and the binary representation of the basis configurations 

allows their convenient and efficient comparison with respect to position in the basis), then 

the search can be done much faster, for example by the method of bisection (note that 

bisection does not require that the position-to-configuration function is continuous, only that it 

is monotonic) which scales as log D, so that the total number of operations scales as 

DD log  

which, obviously, can be orders of magnitude lower than D
2
. 

 

4.3. Determining the column of a matrix element 

Let us look more closely at the application of bisection method to the calculation of the 

column of a matrix element. 

Let us denote the position of each configuration in the basis by 

Dj ,,2,1 K=  

and their (binary) value of each configuration by 

b. 

The function  

( )jb  

is precisely the definition about the basis which is stored in memory (this is simply the 

information about the occupied spin-orbitals in each jth configuration). It can be stored 

efficiently as a table of elements b, because the arguments j fill densely (actually, even 

completely) their interval from j=1 to D, and thus they can be treated as indices of the table b. 

The fact the basis is ordered means that the function b(j) is monotonic. 

The calculation of the Hamiltonian matrix begins with the loop over “initial” configurations, 

that is over j=1…D. For each j, the corresponding configuration b is read immediately from 

the table b(j) which is stored in memory. The “final” configurations are now also readily 

constructed from the initial configuration b, which explicitly tells about the occupied and 

empty spin-orbitals – available for the “scattering from” or “scattering to” processes. 

However, each “final” configuration b’ constructed from the given b by action of the second-

quantization Hamiltonian need also be assigned its position j’ in the basis, which is equivalent 

to the column of the given matrix element. This assignment b’�j’ involves the inverse 

“basis” function 

( )bj . 

Unfortunately, the inverse basis function j(b) cannot be stored because the values b are sparse 

in their relevant interval of all binary numbers with the number of digits dictated by the 
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number S of allowed spin-orbitals. For example, when the number of particles is N=10 and 

the number of spin-orbitals is S=30, the total number of configurations (ignoring any 

symmetries such as connected to the conservation angular momentum, parity, etc.) is 

7103 ⋅≈







=

�

S
D  

which only takes 4B*D=120MB of memory to store the basis as a table of 4-byte (i.e., 32-bit) 

integers. In contrast, if the inverse function j(b) were to be stored as a table, its length would 

have to be the total number of S-digit binary numbers, which is  

9102 ≈S  

and would require a much larger (though not yet forbidding) memory of 4B*2
S
=4GB. For a 

somewhat larger system of the same particle-to-orbital proportion (N,S)=(12,36), storage of 

b(j) as a table of 8-byte integers is still possible by requiring about 10GB of memory, but 

storing j(b) as a table of 4-byte integers would require as much as 275GB of memory, not to 

be found on any widely available workstation.  

This comparison of the memory needed to store b(j) and j(b) is even more dramatic when 

additional symmetries of the Hamiltonian allow its block diagonalization already at the level 

of the generation of the basis, thus greatly reducing D of each block compared to (S,N).  

When j(b) cannot be stored as a table, it must be computed “on the fly”. Provided that j(b) is 

monotonic (that is, the basis is ordered, which can be either ensured during basis generation or 

achieved by a sorting procedure), this can be done by the method of bisection. Namely, the 

pair of indices:  

LOj    and   HIj  

are initially chosen such that  

( ) ( )HILO jbbjb << '  

and then in each successive iteration the search range is narrowed by replacing either end jLO 

or jHI by the midpoint 

( )HILOMID jjj +=
2

1
 

depending on whether  

( )MIDjbb >'    or   ( )MIDjbb <' . 

In the absence of a hint, the initial range must be chosen as the full range 

1=LOj    and  DjHI =  

and the number of required iterations is 

D2log . 

However, a strategy which is intermediate between storing the entire table j(b) and running 

bisection in the full range (1,D) can also be easily implemented. In this strategy, the inverse 
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basis function j(b) is stored partially, in the following manner. The 2
S
-long full range of 

configurations b is divided into a number L of sub-intervals, each of length  

L

S2
=Λ ,  

and stored in a table are the lowest indices j of all configurations falling into a given sub-

interval. Thus, by calculating for a given configuration b its corresponding sub-interval index 

Λ
=
b

β  

and reading from the stored table the lowest indices j0 of this and of the next sub-interval, the 

bisection can be restricted to a shorter j-interval (limiting the average number of iterations) 

( )β0jjLO =    and  ( ) 110 −+= βjjHI  

 

It is particularly convenient and intuitive to choose the sub-interval number L as a power of 2 

KL 2= . 

In this case, the calculation of β is a fast “binary shift” operation (by K bits to the left), and 
the division into b-sub-intervals simply means the classification of each configuration b by its 

K leading bits. In other words, all configurations beginning with a given K-bit number have 

assigned (and stored) a j-sub-interval within which the bisection is carried out. This is clearly 

an intermediate choice between:  

(i) complete classification of configurations (by all of their bits) – that is, storing the entire 

inverse basis function j(b) in memory and thus eliminating the need for bisection altogether; 

(ii) no classification whatsoever – that is running the bisection in the full range (1,D).  

The flexibility in choosing K allows convenient optimization of the entire matrix computation 

procedure with respect to speed and required memory. 

 

5. “Ghost” states 

In the absence of numerical errors, Lanczos procedure with explicit orthogonalization to only 

two preceding Lanczos vectors produces an exactly tri-diagonal Hamiltonian in the Lanczos 

basis which is exactly orthogonal. However, the accumulation of such (even very small) 

errors in real computation leads to an abrupt loss of accuracy after a sufficiently large number 

of operations (that is, iterations).  

An example of this effect are the “ghost states”, which typically appear in form of a sudden 

(as a function of the number of Lanczos iterations) drop of the energy of an earlier converged 

(or nearly converged) excited level. The mechanism is that a sudden loss of orthogonality of 

the Lanczos basis in effect of an accumulation of small rounding errors results in an artificial 

doubling of the extremal eigenvalues. Thus, an energy level which suddenly appears in the 

gap between the actual eigenenergies, after it has departed from a higher, nearly converged 

level, but before it has converged again to a lower, now artificially doubled level – is called a 

“ghost state” or “ghost level”. 
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While the “ghost states” have no effect on the convergence of the single lowest (or highest) 

eigenenergy, they undermine counting of the ground state degeneracy. More importantly, they 

often make it impossible to reach simultaneous and satisfactory convergence of several 

excited states, and thus to determine at least the low-energy part of the excitation spectrum. 

What are the available remedies for “ghost states”? A fairly obvious one is performing an 

explicit orthogonalization of each new Lanczos vector to all of the preceding vectors (instead 

of only to the last two). This option has its costs. First of all, it requires storing all of the 

preceding Lanczos vectors, either in memory or on the disk. For huge dimensions of the basis, 

this may easily limit the number of iterations due to the lack of memory. On the other hand, 

the computational cost of orthogonalization grows steadily with each iteration. To remedy 

these two effects, the Lanczos procedure can be terminated before the full convergence, and 

then new initial Lanczos vector or vectors can be constructed from those of the terminated 

procedure. When not only the ground state but also a number of excited states are sought for, 

feeding only the ground state of the terminated Lanczos tri-diagonal Hamiltonian as a new 

initial Lanczos vector – is not sufficient. Instead, a block of an appropriate number of vectors 

must be obtained and fed in at the start of a new run of the Lanczos algorithm. 

 

6. Calculation of eigenvectors 

The need for storage of all Lanczos vectors (instead of only three at a time) arises also when 

the ground state vectors are sought in addition to the ground state energy. Since, obviously, 

diagonalization of the tri-diagonal Lanczos Hamiltonian produces a ground state expressed in 

the Lanczos basis, this basis must be available to subsequently perform the conversion of this 

ground state to the initial configuration basis. When storing enough vectors is not possible, an 

alternative is to simply run the Lanczos procedure twice – the first time to build the Lanczos 

Hamiltonian matrix, whose diagonalization provides the coordinates of the ground or relevant 

excited states in the Lanczos basis; and the second time – to build the ground state vector “on 

the fly”, by taking advantage of the earlier determined expansion coefficients. 

 

7. Simultaneous resolution of an additional quantum number 

Quite commonly, the goal of diagonalization procedure is not finding the absolute ground 

state, but the ground state in a particular invariant subspace. For example, the energy 

spectrum may be sought as a function of an additional conserved quantum number, which 

defines the splitting of the total Hilbert space into the invariant subspaces corresponding to 

different eigenvalues of this additional conserved quantity (for example, total parity, angular 

momentum, or spin). Or, at least, knowledge of the lowest state at a given total spin or angular 

momentum may be desired in order to compare the two phases (or resolve their competition). 

Even if only the absolute ground state is sought, running the Lanczos algorithm inside its 

invariant subspace may speed up convergence as it is likely to enlarge the energy gap above 

the ground state (the gap to the next state of the same symmetry likely being larger than the 

gap to the next state of any symmetry whatsoever), and the convergence rate of the Lanczos 

procedure is known to depend critically on the separation of the given energy level from the 

rest of the spectrum. Thus, the problem at hand is to run the Lanczos procedure within an 

invariant subspace. To be specific, let us consider the total spin S and its projection Sz. 
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In the case of Sz the solution is trivial, because Sz can be written as a sum of single-particle 

quantities (single-particle spin projections) 

( )∑
=

=
�

i

i

zz sS
1

 

and thus configurations contained in the basis can be chosen as the eigenstates of Sz. In this 

case, because of the conservation of Sz 

[ ] 0, =zSH  

the Hamiltonian does not couple configurations of different Sz 

zz SSzzzz SHSSHS ′=′ δ  

This means that the Hamiltonian matrix is block-diagonal, and thus that each different block 

corresponding to a particular value of Sz can be diagonalized separately. Of course, this is 

easily done by generating the basis exclusively with configurations having the given Sz. 

Hence, resolution of the additional conserved quantum number Sz can be done already at the 

level of basis generation. It should be done whenever possible as (besides other benefits 

mentioned above) it obviously reduces dimension of the Hilbert space which is the key 

parameter determining speed and memory requirements of the algorithm. 

The case of the total spin S cannot be solved in an analogous way, since the relevant operator 

S
2
 is not a linear but quadratic expression in the single-particle operators 
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2222  

and thus the (uncorrelated, by definition) single-particle configurations are not its eigenstates.  

The first observation could be that if the initial Lanczos vector were chosen as an eigenvector 

of S, then (at least in the absence of numerical rounding errors) so would be each successive 

Lanczos vector – as a trivial consequence of the vanishing commutator 

[ ] 0, =SH  

and the whole Lanczos procedure would be automatically self-restricted to the invariant 

subspace of this initial vector. 

How can an eigenstate with an arbitrary value of S be efficiently generated? In general, this is 

a problem of finding an eigenstate (of S
2
) corresponding to a known eigenvalue (S(S+1)). In 

the case of total spin it can be further simplified by generating the basis with 

SSz =  

and then looking for the solution to 

0=−ψS  

which can be recast as looking for the (zero-mode) ground state of a Hermitian operator 

−+SS  

(different from S
2
 only by an Sz-dependent shift). 
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Formally, this is a two-particle operator which can be conveniently expressed in the second-

quantization form as 

∑ ↑↓
+
↓

+
↑

−+ =
ij

jiji
ccccSS  

and treated by an independent Lanczos procedure as if it were a kind of interaction (albeit 

evidently producing a much sparser matrix). 

Once the initial Lanczos vector has been generated as an eigenvector of S, and the Lanczos 

algorithm is run with finite rounding errors, the same accumulation of errors as discussed 

earlier in the context of ghost states now emerges again. Namely, the successive Lanczos 

vectors are slowly losing their (initially full) projection onto the invariant subspace of S, so 

that after sufficiently many iterations the Lanczos procedure may return a ground state with a 

different S. However, this problem will only arise if the invariant subspace of S does not 

contain the actual ground (in which case the growing Lanczos basis will be automatically 

attracted to the true ground state, and thus leak out of the initial subspace corresponding to S). 

The accumulation of rounding errors is therefore harmless if the correct value of S for the true 

ground state can be anticipated, but when the goal is to find the true ground state anyway. 

When the sought energy spectrum at some value of S lies above a ground state at a different 

spin S0, the accumulation of rounding errors must be remedied by, for example, a repeated 

projection onto the correct invariant S-subspace (at least after each number of iterations; in 

practice this is best done after each iteration). The projection onto the S-subspace is readily 

implemented as an independent Lanczos procedure for the operator 

−+SS  

started from the current Lanczos vector of the Lanczos procedure for H. In other words, the 

perpetual projection onto the S-subspace is achieved by nesting the Lanczos procedure for 

S
+
S
-
 inside (after each iteration) the “main” Lanczos procedure for H. It is important to note 

that since a single Lanczos step for H can only cause a very small leakage of the next Lanczos 

basis vector outside of the S-subspace, such vector is guaranteed to be an almost exact ground 

state of S
+
S
-
. Hence, when fed into the internal S-Lanczos, it will usually converge quickly 

and produce a state that is virtually unchanged (only “straightened” in terms of S) so that the 

Lanczos connection within the main chain of vectors coupled by H remains essentially 

preserved (as is necessary for the main Lanczos procedure to converge to an eigenstate of H). 

Let us finally remark that the small number of required iterations for the internal Lanczos loop 

is not always guaranteed by the near exactness of the initial vector for the internal procedure. 

Rather, it critically depends on the separation of the lowest (zero-mode) eigenstate of S
+
S
-
 

from the low-lying excitations. In the case of total N-electron spin, the spectrum contains the 

eigenvalues od the form S(S+1) which become progressively denser toward the lower end of 

the spectrum. The gap from the lowest state at 

( ) 01 =+SS  

to the next state at  

( ) 21 =+SS  

can become quite small compared to the width of the entire spectrum  

( )1+MAXMAX SS  
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where   

�SMAX
2

1
=  

when the system size N becomes large. To be precise 

( ) 2

1

1

1021

�SS MAXMAX

∝
+

⋅−⋅
 

which can cause somewhat slow convergence in large systems. This is even more problematic 

with the total orbital angular momentum which is conserved in systems with spherical 

symmetry. For example, in an atomic-like shell of angular momentum l the maximum total 

angular momentum of N fermions is 

( )1
2

1
−− ���l  

and the gap-to-width ratio becomes quickly even smaller than for the total spin. In those 

cases, running the nested Lanczos only after certain iterations of the main loop might be a 

better choice. 

When more than one additional quantum number need be resolved (of course, assuming they 

all commute both with one another and with the Hamiltonian), this can be done efficiently by 

simply running the internal loops (for example, for S, L, …) one immediately after another. 

This is usually a more efficient option than seeking a zero mode of a linear combination 

−+−+ ⋅+⋅ LLSS βα  

with some optimized (positive) α and β. And definitely it is not advised to combine additional 

quantum numbers with the Hamiltonian in the form 

−+⋅+ SSH λ  

in attempt to find its ground state for a very large λ (the convergence is then very poor due to 
the artificially widened spectrum – again, compared to the low-energy gap of H itself, which 

the Lanczos procedure is aimed at resolving). 

 

8. Concrete example of configuration interaction method 

A particular example of the application of the configuration interaction method comes from 

the field of fractional quantum Hall effect. The actual physical system of relevance is the two-

dimensional electron gas in a quantizing (strong) perpendicular magnetic field B. 2D electron 

concentration ρ is such that the electrons fill a fraction ν of the lowest Landau level, whose 
macroscopic degeneracy g is proportional to the magnetic flux through the sample (of area A) 

ehc

AB
g =  

 The single-particle cyclotron gap  

Bc ∝ωh  
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exceeds the characteristic Coulomb energy 

B
e

∝
λ

2

 

where λ is the magnetic length. In result, the electrons are effectively confined to an isolated, 

degenerate, partially filled (lowest) Landau level. After the constant total cyclotron energy is 

removed from the Hamiltonian by a trivial gauge transformation, all that is left is the electron-

electron (Coulomb) interaction 

∑=
ji ijr

e
H

,

2

. 

Perturbative treatment of the (sole) interaction term is not possible because of an obvious lack 

of a small expansion parameter, making this problem ideally suitable for an exact calculation. 

In order to employ the configuration interaction method, the actual extended system need be 

accurately modeled (represented) by a finite system of N electrons. To maintain the correct 

Landau level filling factor ν while using a finite electron number N, the area of the system A 

must also be restricted. This means applying some kind of boundary conditions. A particularly 

convenient geometry for the study of liquid many-electron phases (in contrast to the Wigner 

crystal or other broken-symmetry phases) was introduced by Haldane [26]. The so-called 

Haldane sphere has a Dirac magnetic monopole of strength  

e

hc
Q2  

at its center, which produces an isotropic radial magnetic field, perpendicular to the surface 

and having a fixed magnitude at each point (on the surface). Although it has a finite area 

22 44 λππ QR =  

and thus also a finite Landau level degeneracy 

12 += Qg , 

Haldane sphere is a highly symmetrical geometry, with the group of rotations replacing the 

group of translations of the original extended plane. Thus, the conservation laws which on a 

plane are a consequence of the invariance under the group of so-called magnetic translations 

translate into Haldane spherical geometry in form of the conservation of the total angular 

momentum L and its projection M. Indeed, there is a one-to-one correspondence between the 

conserved quantum numbers in both geometries, and the plane can be regarded as a limit of 

the spherical geometry (for an infinite radius when expressed in the units of magnetic length) 

0
1

→=
QR

λ
. 

The first step in the configuration interaction is the solution of the single-particle problem 

[27]. Here, owing to the spherical symmetry, the single-particle states Y are obviously the 

eigenstates of the length l and projection m of the orbital angular momentum. They are called 

“monopole harmonics”  

( )Ω
r

mlQY ,,  
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and are generalizations of the spherical harmonics (the latter being the special case for Q=0). 

The angular momenta allowed for an electron in the presence of a Dirac magnetic monopole 

of strength 2Q are 

nQln +=  

with 

K,1,0=n  

The energy only depends on angular momentum and reads 

( )[ ]21
2

Qll
Q

E c
l −+=

ωh
. 

The angular momentum shells represent degenerate Landau levels of the planar geometry, 

also separated by gaps which converge to the cyclotron energy in the limit of large 2Q (that is, 

of large R/λ), which is seen more clearly in the following (equivalent) expression 

( )







 +
++=

Q

nn
nE cn

2

1

2

1
ωh . 

In particular, the lowest shell of n=0 represents the lowest Landau level.  

Let us now turn to a particular correlated many-electron state called a Laughlin quantum 

liquid, which in an extended system occurs at the Landau level filling factor ν=1/3. An 
extended many-body wave-function on a plane can be uniquely mapped onto the Haldane 

sphere. In general, the relation between the filling factor ν, the Landau level degeneracy g, 
and the electron number N, which for an infinite system is simply 

g

�
=ν  

on a finite sphere involves an additional “shift” γ 

γ
ν

−=
�

Q2  

which depends on the particular form of the wave-function, but (for a given wave-function) 

not on the system size N. In particular, the Laughlin ν=1/3 liquid is represented by a series of 
finite non-degenerate (L=0) ground states on a sphere which occur at 

)1(32 −= �Q . 

So the problem to be addressed numericall is that of N electrons in a shell of angular 

momentum 

)1(
2

3
−= �l . 

To be specific, let us choose N=6 and 2l=15. The single-particle states are labeled by the 

orbital angular momentum projection m. The allowed configurations are 

611 ,,, mmm K . 
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The two-body matrix elements  

( ) ( ) ( ) ( )∫ ΩΩ
Ω−Ω

ΩΩΩΩ= 1,,2,,

21

2

2

*

,,1

*

,,214321 4321
,,

rr
rr

rrrr

mlQmlQmlQmlQ YY
R

e
YYddmmVmm  

can be derived analytically or computed [26]. They are related to the so-called Haldane pair 

pseudopotential VL (pair energy as a function of relative pair angular momentum) through the 

Clebsch-Gordan coefficients 

∑=
L

L mmLVLmmmmVmm 43214321 ,,,, . 

The projection M of the total orbital angular momentum can be resolved at the stage of basis 

generation, while its length L need be resolved by nesting the Lanczos loops. 

Let us now count the number of relevant six-electron configurations (dimension of the Hilbert 

space or of the Hamiltonian matrix to be diagonalized). For N distinguishable particles the 

number of states would be huge 

21677716166 === �gD  

(recall that g=2Q+1). For N particles which are still distinguishable but have hard cores 

preventing any two of them to occupy the same spin-orbital (as required by Pauli exclusion 

principle), the dimension shrinks to  

( ) ( )
( )

7607655
!10

!16

!

!
11 ==

−
=+−−=

�g

g
�gggD K  

For N indistinguishable particles with hard cores, such as fermions whose wave function must 

be symmetric under exchange of any pair of coordinates, the dimension of the Hilbert space 

shrinks dramatically to 

0088
6

16
=








=








=

�

g
D . 

Due to rotational symmetry of the Hamiltonian, the Wigner-Eckart theorem guarantees that 

the energy and all other scalar quantities (such as pair correlation functions, etc.) only depend 

on the length of the total angular momentum L, but not on its projection M. Therefore , the 

diagonalization need not be repeated for each M. However, the Hilbert space for a given M 

only contains the states with 

ML ≥ . 

Hence, in order to have a guarantee that the Hilbert space contains the ground state whose 

angular momentum L in not known in advance, one has to consider M=0. 

The M=0 subspace has the dimension of 

338=D . 

Hence, the exact computation of the entire spectrum for the (N,2Q)=(6,16) system requires 

D=338 Lanczos iterations for the Hamiltonian matrix of (an equal) dimension D=338. If the 

eigenvectors were computed along with the eigenvalues, the energy spectrum can then be 
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resolved into different angular momentum (L) channels by the calculation of the expectation 

values of  

−+LL  

in each eigenstate. 

Alternatively, L can be resolved by nesting the Lanczos loops for H and for L
+
L
-
. The 

dimensions of the relevant Hilbert spaces would then be  

K,293,310,319,330,332,338=MD    for   K,5,4,3,2,1,0=M  

and the numbers of allowed multiplets corresponding to different L, are 

K,17,9,11,2,61, =−=Γ +== LMLMML DD    for   K,4,3,2,1,0=L  

(In this example, ΓML would also be the required number of iterations, as these are too small 

numbers to reach convergence even for the extremal eigenstates sooner than completing the 

Lanczos procedure.) 

Let us now look at the concrete numerical results. 

The following Fig.1 displays the energy spectrum for the above example of N=6 electrons on 

a Haldane sphere, in the lowest angular momentum shell (that is, in the lowest Landau level) 

for the magnetic flux 2Q=15. The configuration basis corresponds to M=0, and has dimension 

of D=338. The Lanczos tridiagonal Hamiltonian matrix is diagonalized after each Lanczos 

iteration, and the resulting energies are shown with the blue dots. For this particular figure, 

the Lanczos procedure is carried out with full orthogonalization (each new Lanczos vector is 

explicitly orthogonalized to all preceding Lanczos vectors, not only to the last two). 

Clearly, while the complete energy spectrum is obtained after performing the number of 338 

iterations equal to the full dimension of the dimension of configuration basis D, the extremal 

eigenenergies converge much sooner. This is especially true of the ground state which (as it 

represents an incompressible Laughlin liquid) separated from the excitations by a fairly large 

gap. The states at slightly higher energies converge after a somewhat larger number of 

iterations, but also much sooner than the states from the middle of the band, which require 

completing the Lanczos procedure to the last D
th
 iteration to converge. 

The closeup view of the first 30 iterations of the same computation is presented in the 

following Fig.2, which most clearly shows the contrast in the rate of convergence between the 

extremal and isolated eigenvalues (for example, the ground state with an energy gap) and the 

levels from inside the energy spectrum. 
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Fig.1  Full energy spectrum as a function of the number of Lanczos iterations, for the Lanczos 

algorithm carried out with full orthogonalization. 
 

 
Fig.2  Close-up view of  the low-iteration sector of Fig.1 
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The illustration of the emergence of “ghost states” is presented in the following Figs.3 and 4, 

which show an analogous evolution of the Lanczos energy spectrum as that of Figs.1 and 2, 

but this time for the Lanczos procedure carried out in a standard manner, that is with each 

new Lanczos vector explicitly orthogonalized to only two preceding ones. All other details are 

the same as in Fig.1 (in particular, the Hamiltonian matrix is identical).  

At low energy (just above the ground state), the successive ghosts emerge from the above 

quasi-continuum and fall onto the ground state energy level at a fairly regular rate (around the 

iteration number 60, 105, 150, 190, 240, 280, and 320). As a result, the numerically computed 

ground state is 8-fold (nearly) degenerate after running D=338 iterations. On the other hand, 

the interior of the band has never reached convergence. And extracting reliable estimates of 

the excited energy levels (even of the few very lowest excitations) is problematic and requires 

a rather tedious analysis of the shown full evolution of the Lanczos spectrum. On the positive 

side, when the true degeneracy of the ground state is known in advance, the ground state 

energy (exclusively) converges just as quickly and reliably as in Fig.1, free of the ghost effect.  

 

 
Fig.3  Full energy spectrum as a function of the number of Lanczos iterations, for the Lanczos 

algorithm carried out with orthogonalization performed to the previous two vectors. 
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Fig.4  Zoom into the low-iteration sector of Fig.3 

 

Finally, in Fig. 5 evolution of the Lanczos spectrum is shown for the calculation with the 

nested loops for the Hamiltonian and angular momentum, thus resolving the quantum number 

L in addition to M. This particular graph is for L=0. Thus, the Lanczos procedure is carried 

out in the same 338-dimensional configuration basis of M=0 as used for Figs. 1-4, but the 

complete set of Γ0=6 eigenstates with L=0 is obtained after all Γ0=6 iterations and, these six 

iterations being such a small number, all these iterations are indeed required to reach an 

accurate solution (even for the ground state). 
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Fig.5  Energy spectrum in the zero total angular momentum (L=0) channel as a function of the 

number of Lanczos iterations, for the Lanczos algorithm for the squared angular momentum operator 

nested inside the Lanczos algorithm for the Hamiltonian. 
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