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Preface 

This textbook have its origin in courses on Solid State Physics taught first in Polish in years 

2001-2012 at Wrocław University of Technology for students from varies faculties: Physics, 

Chemistry and Engineering with different background in physics. The same concern students 

attending course Theory of Condensed Matter on the second level study. The composition of 

the students in the course of is typically 70% from the Physics (continuation of the first level 

study) and the rest are from Technical Physics and from other countries. As a consequence of 

the this there was a necessity to have a textbook which gives a concise account of main 

elements of physics of solid states valuable for variety of students. One problem encountered 

in teaching physics of condensed matter was the lack of adequate textbook which can be 

realised in one semester. There are many very good textbook on this subject but to 

commodious to be taught in one semester. The object of this book is to present the basic 

properties of condensed matter in a very short manner. In this textbook the fundamental 

aspects of theory of condensed matter in presented in the order: crystal structures, lattice 

vibrations, electronic properties and electron and hole concentrations in solids. Bibliography 

at the end of the book should be helpful for the reader who needs extended knowledge in a 

special area of condensed matter. It is designed to be of the interest to graduate students of 

physics, chemistry and engineering. It is hoped that it will also serve as a review for young 

scientist working in different areas of study who need to be familiar with basics of condensed 

matter. 

 

Wrocław                                                                                                                   Leszek Bryja 

April   2012                                                                                                          Joanna Jadczak 
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1. Introduction. Symmetry in crystals  

 

Direct lattice 

 

   Most of solids states have a crystal structure. In crystallography the first idea of 

mathematical description of crystal is to introduce a point group, called direct lattice with set 

of points defined as: 

1 1 2 2 3 3R n a n a n a ,                                             (1.1) 

where
1a , 

2a  and 
3a  are primitive lattice vectors and

1n , 
2n  and 

3n  are integral numbers.  

   The direct lattice is immersed in a real 3 dimensional space: 

1 1 2 2 3 3r ra r a r a ,                                               (1.2) 

where 
1r , 

2r  and 
3r  are real numbers. 

 

Miller’s indices 

 

   A plane formed by lattice points: 

1 1 2 2 3 3,0,0 0, ,0 0,0,n a n a n a ,                     (1.3) 

can be represented by a formula: 

1 1 2 2 3 3

1
x y z

n a n a n a
.                                      (1.4) 

   Product of 
1n , 

2n  and 
3n  is equal to: 

1 2 3n n n m p ,                                                 (1.5) 

where m is the minimal common multiple of 
1n , 

2n  and 
3n . 

   We can define a set of numbers: 

1 2 3

m m m
h k l

n n n
,                                       (1.6) 

called Miller’s indices. 
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   Equation representing a set of parallel lattice planes can then be expressed in a form: 

1 2 3

0, 1, 2...
x y z

h k l p p
a a a

.                              (1.7) 

   For simplicity we describe a set of such planes by , ,h k l . 

 

Fig. 1.2. The primary lattice axis. 

 

   A vector defined as: 

1 2 3R ha ka la                                       (1.8) 

is called a lattice axis and is represented by , ,h k l . The primary lattice axis is presented in 

the Fig. 1.2. 

 

Reciprocal lattice 

 

   For a given direct lattice we can define a reciprocal lattice with primitive reciprocal lattice 

vectors 
*

ib  satisfying a condition:  
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*

i j ijb a .                                                      (1.10) 

   The set of vectors satisfying above condition can be chosen in different ways. The most 

common base of reciprocal vectors 
*

ib  is given in a form: 

* * *
2 3 3 1 1 2

1 2 3

1 2 3 1 2 3 1 2 3

a a a a a a
b b b

a a a a a a a a a
.                   (1.11) 

   The reciprocal lattice space is defined as a set of points: 

* * **
1 2 31 2 3R m b m b m b ,                                         (1.12) 

where m1, m2 and m3 are integral numbers. 

   The reciprocal lattice is immersed in a real 3 dimensional space: 

* * **
1 2 31 2 3r r b r b r b .                                              (1.13) 

   The vector 
*

, ,h k l  in the reciprocal lattice is perpendicular to the plane , ,h k l  in the 

direct lattice and vice versa.  

   The distance between planes , ,h k l  in the direct lattice is equal to the invert length of 

vector 
*

, ,h k l
R  in a reciprocal lattice: 

( , , ) *

[ , , ]

1
h k l

h k l

d
R

.                                                    (1.14) 
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2. Vibrations of the crystal lattice. Part I - acoustic phonons 

 

Acoustic vibrations 

 

The vibrations of atoms in crystal in a harmonic approximation. Semi-classical 

picture. 

   Let us consider a one dimensional crystal with the lattice constant a  and an atoms mass 

equal to m  (Fig. 2.1) 

 

 

Fig. 2.1. A one dimensional crystal with the lattice constant a  and an atom mass m . 

 

   Newton 2nd law for n-th atom in one dimensional crystal with lattice constant is: 

1 1n n n n nm ,                              (2.1) 

where m is a mass of atom, 
n

 is a displacement of an atom n  from its equilibrium position 

and a force constant a string. We are looking for the solution in a form of a wave function: 

( )i qna t

n e .                                                     (2.2) 

   Inserting (3.2) into (3.1) we obtain: 

2 2 2 cos 1iqa iqam e e qa .                        (2.3) 

   After simple calculations we obtain: 

4
sin

2

qa

m
.                                                       (2.4) 

   When 0q  we obtain: 
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qa
m

.                                                      (2.5) 

   Velocity of sound in a crystal equals: 

0 /q

a
u a

q m m a
.                                            (2.6) 

  In three dimensions we have: 

0q

E
u

q
,                                                      (2.7) 

where E is the Young’s modulus and  is a density of a material. 

    Such vibrations are called acoustic vibrations. The vibrations with the shortest wavelength 

are those in which the neighbour atoms are displaced in opposite directions, it is they have 

opposite amplitudes A. It is related to the wavelength of the vibration: 

min
min 2

2
a a .                                 (2.8) 

   It corresponds to the maximum wavelength vector: 

max

min

2
q

a
.                                          (2.9) 

   So the total dependence of vibrations of atoms in crystals is related to the variation of a 

wave vector from: 

0q
a

                                           (2.10) 

   The dependence of acoustic vibration in the whole wave vector zone is presented in the Fig. 

2.2. 
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Fig. 2.2 Energy dispersion of acoustics phonons. 

 

Quantization of vibrations. Energy quanta-phonon 

 

   The harmonic oscillations are well known problem in quantum mechanics. The vibrations 

total energy is given in a form: 

0

1

2
q q q q

q q

E n E n ,                                   (2.11) 

where 
0E  is a crystal lattice ground state at absolute zero temperature and qn  is the number 

quasi-particle with energy q  called phonons. 

   Phonons have also momentum: 

fp q .                                                             (2.12) 

  The total momentum of phonons equals: 

q

q

p n q .                                                           (2.13) 
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   In the formalism of second quantization, phonons with wave vector q  are described by 

creation qa  an annihilation qa  operators: 

' '

1

1

..., ,... 1 ..., ,...

..., ,... ..., ,...

..., ,... ..., ,...

, .

q q q q

q q q q

q q q q

q q q

q q qq

a n n n

a n n n

a a n n

a a N

a a

                                     (2.14) 

   In this formalism the Hamiltonian and the energy of phonons are expressed in a form: 

2

1

2

q

q q q q

q

q q

q

H a a a a

E n

                                             (2.15) 
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3. Vibrations of the crystal lattice. Part II - optical phonons 

 

   Let’s us regard a simplified problem of a crystal lattice vibration in one dimensional 

approximation with lattice constant equal to a. The vibrations of a crystal with two different 

base atoms, of mass 
1m  and 

2m  can be expressed in a form: 

1 1 2 2 1 1 1 2 1

2 2 1 1 1 2 2 2 1

( )

( ) .

n n n n n

n n n n n

m

m
                                      (3.1) 

 

Fig.3.1 The scheme of crystal with two different base atoms. 

 

   Since the equation n  is conjugated with equations 1n  and 1n  by variables 
2 1n

 and 

1 1n
we are looking for the solution in a form of a wave function: 

1 1

2 2 ,

i qna t

n

i qna t

n

e

e
                                                     (3.2) 

   where 
1n

and 
2n

 denote different amplitudes and phases for both atoms. Inserting (3.10) 

into (3.9) we obtain: 

2

1 1 2 2 1 1 1 2

2

2 1 1 1 2 2 2 1

( )

( )

iqa

iqa

m e

m e
.                                (3.3)  

  After simple calculations we obtain: 

2

1 1 1 2 2 2 1

2

1 1 2 2 2 1 2

( ) 0

( ) 0.

iqa

iqa

m e

e m
                         (3.4) 

   A nontrivial solution for 
1

and 
2

 is obtained only when the determinant of above matrix 

equals: 
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2 2 2

1 1 2 2 1 2( ) ( ) 0m m ,                        (3.5) 

where 

2 2 2

1 2 1 22 cosqa                                       (3.6) 

and  

2 1 1 2
.                                                 (3.7) 

   If we put: 

1 2m m m                                                       (3.8) 

and simplifying the solution to the analytical one: 

2
2 2

1 2 0m                                             (3.9) 

we still have two solutions (two different vibrations) due to the difference of the string 

constants 1 and 2: 

1 2

1,2
m

.                                                    (3.10) 

When 0q  we have: 

1 2

1 2

2
0

m
                                               (3.11) 

and when q
a

 we have: 

1 2
1 2

2 2
.

m m
                                                     (3.12) 

   We obtain a discontinuity gap that is phonon energy gap: 

2 1

2
gE

m
.                                              (3.13) 

   The dependence of both vibration frequencies in the whole wave vector zone are presented 

in the Fig. 3.1 
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Fig 3.1. The energy dispersion of acoustic and optical phonons – lower and upper branch 

respectively. 
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4. Debye theory of the specific heat 

 

   Albert Einstein assumed in his specific heat calculations that both transversal and 

longitudinal vibrations frequency are independent on the vibrations wave vectors: 

.

T

L

const

const
                                                                 (4.1) 

   He extended Dulong-Pettite law which states that specific heat capacity of a crystal is 

constant and equals: 

3vc RT ,                                                                 (4.2) 

but his calculations were not satisfied in very low temperatures. 

 

Fig. 4.1. The comparison between the Debye’s dispersion of the vibration frequency and the Einstein’s  

              assumption. 

   Peter Debye assumed in his calculations linear dispersion on the vibration frequency: 

T T

L L

u q

u q
.                                                                (4.3) 

   The density of states of vibrations in 3 dimensional wave vector space for each of three 

vibration branches equals to: 

3

3

1

8
q cm .                                                        (4.4) 

   The number of states in a sphere a of radius q and a width dq for one branch equals to: 
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Fig.4.2 The sphere of wave vectors length from q  to q dq . 

 

2
2

3 2

1
4

8 2

q dq
dN q dq .                                               (4.5) 

   On the other hand taking density of state in one dimensional frequency state Z( ) we 

obtain: 

1dN Z d ,                                                      (4.6) 

also for one vibration branch. From equations 4.5 and 4.6 we have: 

2

1 2 3

3

2
Z

u
.                                                        (4.7) 

   If we assume for simplicity that all three velocities of sound are the same we finally obtain 

the total density of states in a frequency space: 

2

2 3

3

2
Z

u
.                                                     (4.8) 

   Since the linear dependence of a vibration frequency is not proper we have to determine the 

maximum value of a vibration frequency following simple calculations: 

2 3
2

2 3 2 3

0 0

3
3

2 2

m m

mN Z d d
u u

.                                (4.9) 

   So that 

23 6m u N ,                                                        (4.10) 

this gives the shortest wavelength of vibrations: 
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min 323

2 1,6

6 NN
.                                                  (4.11) 

   Phonons are bosons described by a Bose-Einstein statistic: 

1
( )

1

B

kT

f

e

.                                                       (4.12) 

   The value of a physical quantity A in thermal equilibrium can expressed as: 

2

2 3

0 0

3 ( )
( ) ( ) ( ) ( )

2 ( )
1

m m

B

kT

A Z f A d A d
u

e

.        (4.13) 

   Introducing so called Debye temperature 
DT : 

m
DT

k
,                                                         (4.14) 

a thermal equilibrium of quantity A equals: 

3 / 2

2

0

3
( )

2 1

DT T

x

kT x dx
A A x

u e
,                                       (4.15) 

where 

mx
kT

.                                                    (4.16) 

   Since 

2

3 3

1 6

D

N

u kT
                                               (4.17) 

we finally have: 

 

3 / 2

0

9 ( )
1

DT T

x

D D

T T x dx
A N A x

T T e
.                                    (4.18) 

   In order to calculate the specific heat of a solid we have to substitute ( )A  and 

AN N   where AN  is the Avogadro constant. After simple calculations we obtain: 

4 / 3

0

9
1

DT T

x

D D

T T x dx
U R

T T e
,                                    (4.19) 
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where 
AR kN  is a gas constant. 

 

I. High temperature limit 

 

   In the high temperature limit we have: 

1DT T and x                                             (4.20) 

and we can make simple approximation: 

3 3
2

1 ~1 1x

x x
x

e x
.                                            (4.21) 

   Finally we have a total energy of crystal equals to: 

4 /

2

0

9 3
DT T

D

D

T
U RT x dx RT

T
.                                       (4.22) 

   A specific heat of a crystal is given by: 

3V

v

U
C R

T
.                                                   (4.23) 

   We can also calculate the number of phonons simply putting 1A : 

3 /

0

9
9

2

DT T

D D

T T
n N xdx N

T T
.                                   (4.24) 

   From equations (3.22) and (3.24) we have the average energy of phonons: 

2

3
D

U
kT

n
.                                              (4.25) 

 

II. Low temperature limit 

 

DT T                                                          (4.26) 

   In low temperatures we can put /DT T : 

4
3

0

9
1

D x

D

T x dx
U RT

T e
.                                                (4.27) 
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   Since 

3 4

0
1 15x

x dx

e
                                                      (4.28) 

we have that the total energy of crystal: 

443

5

T
U R .                                                     (4.29) 

   A specific heat of a crystal: 

3412

5
V

T
C R .                                                     (4.30) 

   The number of phonons is: 

3 3/ 2 2

0 0

9 9
1 1

T

x x
T

T x dx T x dx
n N N

e e
,                                      (4.31) 

this gives: 

3n T .                                                               (4.32) 

   From equations (3.29) and (3.32) we have the average energy of phonons: 

~
U

T
n

.                                                         (4.33) 
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5. Quantum Mechanics 

 

Why quantum mechanics is indispensable in solid state physics? 

 

   In order to describe so complicated system we have to use quantum mechanics formalism. 

Obviously we always have to use quantum mechanics when we consider physical problems in 

an atomic scale but even in particle physics we often apply classical methods to have a 

simplified, general view of a problem in question. So why do we really need to use quantum 

mechanics and what are the arguments that convince us that without quantum mechanics we 

cannot understand what really occurs in solid state. 

   The most direct argument comes from the theory of conductance. The classical mechanical 

description of conductance proposed by Paul Drude almost at the same time when Ernest 

Rutherford proposed his model of atom consisting of positive heavy nuclei and light 

electrons. Drude interpreted conductivity as a movement of free electron gas in crystal lattice 

of positively charged ions. In this model the conductance is given by a formula: 

vm

lne2

,                                                            (5.1) 

where n is an electron concentration, m – the mass of an electron, v – the electrons velocity 

and l –the mean free path of an electron. The eq. 5.1 can be converted into form for mean free 

path of an electron l: 

ne

vm
l

2
.                                                           (5.2) 

   All physical quantities on the right side of eq. 5.2 can be estimated with very good accuracy. 

The mass and charge of electron is known. The conductivity and concentration can be 

determined in experiment (measurement of resistance and Hall effect) and velocity can be 

evaluated from thermodynamical considerations. It turns out that the mean free path of an 

electron is of the range of 5x10-6m (50 nm) in a room temperature and increase up to 1cm in 

T=1K. The similar mean free path is evaluated in semiconductors. 

   The distance between atoms in lattice is of the range 0,3 nm so even in a room temperature 

the mean free path of electrons is of the range of a few hundred lattice constants. In classical 

picture it state that in spite of Coulomb interactions between an electron and ionized atom 
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cores electron can move a path of hundreds lattice constants without collision, it is scattering 

with them. When we go down with temperature the path between scatterings can exceed a 

million lattice constant. This means that solid state is actually transparent for an electron 

movement. 

   Above phenomena cannot be interpreted with the use of classical methods. Nevertheless the 

classical model is considered an electron due to Coulomb interaction should scatter almost 

with each atom on his path. Its movements should be zigzag type and its mean free path 

should be of the range of one lattice constant.  

   One has to put reproach that the formula 4.1 is not true. The mean free path can be however 

determined directly from experiment. When dimensions of the conductor are big enough their 

properties are govern by bulk properties. When in turn the size of conductor is lowered below 

the mean free path of electrons it should be observed as an abrupt decrease of its conductivity. 

And such effects are observed in experiments. Hence the accurate determination of 

conductance of metals in low temperatures requires samples big enough.  

   This simple example shows that we cannot obtain valuable results on properties of electrons 

in a solid state without a use of quantum mechanics methods. 

The Hamiltonian for a crystal can be described in a form: 

'

'
'

'

'

222

,

2 2

, ,

ˆˆ 1ˆ
2 2 2 4

1
,

2 44

jj ji

i j j ji j j j
j j

j

j i i j i ji j i j

Z Z epp
H

m M

Z e e

R R

r rr R

           (5.3) 

   where 
ir  denotes the positions of valence electrons and jR  denotes the positions of ion 

cores, it is nucleus with core electrons strongly bound with nuclei. 

   Since the problem is too complicated due to a huge number of particles involved (N~10
23

) 

we have to make a number of simplifications except the already made with dividing electrons 

for valence and core ones.  

   Hamiltonian in the adiabatic approximation can be expressed in a form: 

0, ,ions j e i j e ion i jH H H HR r R r R .                       (5.4) 

   The electronic Hamiltonian is expressed in a form: 
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'
'

'

22 2

,, 0

1

2 2 44

ji
e

i i ji ii i ji i
i i

Z ep e
H

m r Rr r
.                      (5.5) 

   The mean field approximation also called one electron approximation: 

2

1 ( ) ( ) ( ) ( )
2

e n n n n

p
H V E v

m
r R r ,                       (5.6) 

where V(R) reflects crystal lattice potential. In this approximation we of course do not know 

the exact form of crystal potential but only its symmetry. Fortunately the unknown data can 

be determined in experiment in some extent. 
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6. Bloch function and the ˆkp  method 

  

   In crystals in the mean field approximation we assume that the potential encountered by 

electron has lattice translation symmetry: 

ˆV r V Tr V r R
n

,                                               (6.1) 

where R
n

 is an arbitrary lattice vector. 

   We have to solve the Schrödinger equation: 

ˆ , ,H r t E r t                                                    (6.2) 

With a time independent Hamiltonian: 

2 2ˆˆ
2 2

p
H V r V r

m m
                                        (6.3) 

and energy operator: 

E i
t

.                                                            (6.4)  

   So we have to solve fallowing equation: 

2
, ,

2
V r r t i r t

m t
.                                   (6.5) 

   Since the Hamiltonian is time independent we can look for the solution in the form: 

,r t r t                                                  (6.6) 

and after simple calculations we obtain a wave function in a form: 

,

E
i t

r t r e ,                                                   (6.7) 

where r  is a solution of time independent equation, so called stationary Schrödinger 

equation: 

Ĥ r E r .                                                           (6.8) 

 



23 
 

Bloch function 

 

   If we know the wave function of electron in each point of primitive crystal cell  we 

also know it at any point in crystal: 

R A ,                                                         (6.9) 

where according to quantum mechanics: 

2
1A .                                                                  (6.10) 

   Since A=A(R) we can write: 

if R
R e .                                                    (6.11) 

   Since the translations form a group two translations by vectors R1 and R2 have to satisfy 

three equations: 

1ˆ
1 1

if R
T R r R e ,                                         (6.12) 

2ˆ
2 2

if R
T R r R e ,                                        (6.13) 

1 2ˆ
1 2 1 2

if R R
T R R r R R e ,                            (6.14) 

hence 

ˆ ˆ ˆ
1 2 1 2

T R R T R T R                                           (6.15) 

and we have: 

1 2 1 2

0̂ 0

f R R f R f R

f

.                                                  (6.16) 

   The only function satisfying these conditions is linear function: 

f R k R .                                                               (6.17) 

   Inserting (6.17) to (6.11) we have 
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k RR e .                                                     (6.18) 

   Since r R  we have: 

k

ik ikr ikrr R e e u r e .                         (6.19) 

   This is so called Bloch function: 

k

ikrr u r e ,                                                        (6.20) 

where 
k

u r  has the periodicity of the lattice: 

k k
u r u r R .                                                       (6.21) 

 

 Fig. 6.1 Bloch function 

 

   The full wave function has a form: 

,
k

E
i kr t

r t u r e .                                       (6.22) 

 

ˆk p  equation 

 

   When we insert the Bloch wave function: 

ikrr u r e
k

                                                     (6.23) 

to the Schrödinger equation: 

Ĥ r E r ,                                                   (6.24) 
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we have: 

2

2

ikr ikrV r u r e Eu r e
k km

.                                ) 

   After simple calculations we can eliminate 
ikre  and obtain an equation for u r

k
 only: 

22 2 2

2 2

k
ik V r u r Eu r

k km m m
.               (6.26) 

   We can rewrite this equation in a form: 

22 2
ˆ

2 2

k
V r kp u r E u r

k km m m
.               (6.27) 

   This so called ˆk p  equation. To solve it we can use the perturbation theory: 

' '

0
ˆ ˆH H u r E u r

k k
,                                            (6.28) 

where  

0

2
ˆ

2
H V r

m
                                                       (6.29) 

and 

0 0 0 0 0
ˆ ( 0)H u r E u r E E k                               (6.30) 

is the solution for 0k . The term 

'ˆ ˆH kp
m

                                                                        (6.31) 

is the perturbation and 

2
'

2

2

k
E E

m
                                                                     (6.32) 

is renormalized energy. 

   Using non-degenerate perturbation theory and limit the extension to the term of the second 

order we have: 
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2
'

' '0 ...
nl

n n nn

l n n l

H
E k E H

E E
,                              (6.33) 

where 

2
' ' 3 3

0 0 0 0
ˆ

nl n l n l

i
H u r H u r d r k u r u r d r

m
.                (6.34) 

   We can express energy in a form: 

23 3 3

1 1 1

0 ...
2

n n i i ij ij i j

i i i

E k E a k b k k
m

.                           (6.35) 

   When there is an energy extreme at 0k  than linear term equals to zero and we can 

express the energy of electron in the crystal in a form: 

23 3

*
1 1

0
2

i j

n n

i i ij

k k
E k E

m
.                                                       (6.36) 

   We limited solution to second order terms. Here, the term 
*

ijm  is defined as an effective 

mass. 

   If we choose axis of the frame of reference along to the main crystal directions we can 

simplify above equation to: 

2 2 2 2

1 2 3

1 2 3

0
2

n n

k k k
E k E

m m m
.                                           (6.37) 

   When a crystal has only one distinguished axis the electron energy can be expressed in a 

form: 

2 2 2 2

1 2 3

* *
0

2
n n

k k k
E k E

m m
,                                             (6.38) 

where 
*m  and 

*m are the effective mass perpendicular and parallel to distinguished axis.  

   For cubic crystals in which all three axes are equivalent, it is physical quantities are 

identical in all directions we have only one effective mass and the electron energy has a form: 

2 2

0
2

n n

k
E k E

m
.                                                         (6.39) 
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   This is the case of more well known and commonly used semiconductors as Silicon and 

Gallium Arsenide. 
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7. Effective mass tensor 

 

Group velocity 

 

   Since each linear combination of wave function  

i kr t

k k
r u r e                                                (7.1) 

is a solution of Schrödinger equation we can take the solution in the form: 

3,
i kr t

k
r t A u r e d k ..............................(7.1.a) 

in a certain vicinity of a given point in wave vector space k : 

0k k ,                                                      (7.2) 

0 0 kk k .                                            (7.3) 

   After long but not complicated calculations we obtain solution as a function: 

0 0

1 2 30
,

i k r t

k
r t Au r e J J J ,                                 (7.4) 

this also has a form of the Bloch function.  

   Integrals jJ  equal: 

( )

2sin
j j

j

jdk i x t
jdk

j j j

k

j

j

d
k x t

dk
J e d J

d
k x t

dk

                     (7.5) 

   Integrals have maximum when 

0kr t .                                                           (7.6) 

   So the wave packet velocity  

1
kv E k                                                          (7.7) 

equals to group velocity. 
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Fig. 7.1. The schematic draw of 
sin x

x
 function. 

   For parabolic bands: 

2 2 2

1 2 3

* * *

1 2 3

( )
2

k k k
E k

m m m
,                                        (7.8) 

an electron velocity is: 

1 2 3

* * *

1 2 3

k k k
v

m m m
.                                            (7.9) 

   Generally we have an expression: 

*m v k .                                                   (7.10) 

   We can introduce momentum mass 

i i imv k .                                                 (7.11) 

   Combining equations (6.7) and (6.11) we finally have: 
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2

1 1

i i imomentum

E

m k k
.                                   (7.12) 

 

Influence of external fields on an electron motion. 

 

   Let us introduce some useful formulas. When an external field is applied to the crystal we 

can write: 

k

dE dk
F v E k k v

dt dt
.                                       (7.13) 

   The field changes the pseudo momentum of an electron 

F k .                                                            (7.14) 

   This could be e.g. Lorentz force: 

F q E v B .                                                  (7.15) 

 

Effective mass tensor 

 

   Further we can calculate an acceleration of an electron: 

2

1 1 1
( ) ( ) ( )k k k k k

d
v E k E k k E k F

dt
.          (7.16) 

   Since 

1v m F                                                      (7.17) 

we have a formula for effective mass tensor: 
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2 2 2

2

1 1 2 1 3

2 2 2
1

2 2 2

2 1 2 2 3

2 2 2

2

3 1 3 2 3

1 1
k k

E E E

k k k k k

E E E
m E

k k k k k

E E E

k k k k k

.                  (7.18) 

   When we direct axis of a frame along the main axis of the crystal, the effective mass tensor 

is limited to diagonal terms only: 

*

1

1

*

2

*

3

1
0 0

1
0 0

1
0 0

m

m
m

m

.                                          (7.19) 
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8. Brillouine zone 

 

General properties of energy gaps 

 

   We will prove that the energy of electron in crystal obeys two general equalities. The 

conjugation of Schrodinger equation: 

Ĥ r E r ,                                                                    (8.1) 

* *

Ĥ r E r                                                                 (8.2) 

is  

* *Ĥ r E r .                                                                   (8.3) 

   Since conjugation of a product is product of conjugations and both energy and all constants 

in Hamiltonian are real. 

When we take a wave function in the form of Bloch function: 

ikx

k kx e u x                                                            (8.4) 

we immediately obtain 

* * ikr

kr u r e .                                                        (8.5) 

   Both functions are the solution of the same Hamiltonian Ĥ  so we have first equality: 

n nE k E k .                                                      (8.6) 

   The second equality is a consequence of the symmetry of the Bloch function (8.4). We will 

proof it for simplicity only for one dimensional crystal but the equality holds also in three 

dimensions. We can transform the Bloch function (8.4): 

2 2i k n x inx
a a

k kx e e u x ,                                            (8.7) 

where 1, 2...n . 

   It is easy to show that the function in brackets has the same lattice periodicity as ku x . 

   To prove this statement we make a substitution:  
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x x ma ,                                                          (8.8) 

where 1, 2...m . 

We have: 

2 2 2
( )

2

2

in x ma inx inx
imna a a

k k k
k n

a

e u x ma e u x e e u x u x ,                (8.9) 

this states that in a crystal both function are equivalent: 

2

2

i k n x
ikx a

k k
k n

a

x e u x e u x                                     (8.10) 

and have the same energy: 

2
E k E k n

a
.                                                    (8.11) 

   In three dimensions it states: 

 

*2E k E k R .                                                  (8.12) 

 

Brillouine zone in one dimensional model  

   Those two periodicity conditions allows to reduce the wave vector space in one dimension 

to 2π/a. It is useful to choose the centre of this space in k=0. This gives the so called reduced 

k vector zone: 

k
a a

.                                                            (8.9) 

   This zone is named a Brilloine zone. 
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Fig.8.1 Brillouine zone in 1dimensional model. 
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9. Nearly empty lattice. Energy gap 

 

   The free electron is described by a function 

ikxe ,                                                             (9.1) 

where we put normalization constant A=1. Its energy is described by a simple square 

dependence on wave vector k: 

2 2

2

k
E k

m
.                                                           (9.2) 

   The electron moves in constant potential with arbitrary period a . Let us assume that the 

lattice constant is equal a and potential energy V=0. We can formally reduce dependence 

(9.2) to first Brillouine zone: 

k
a a

                                                             (9.3) 

and write down it energy as: 

22 2

2
E k k n

m a
,                                                  (9.4) 

where 

0, 1, 2,...n                                                        ((9.5) 

denotes for different energy bands. The electron energies and functions for given bands can be 

written in a form: 

2 2

1 1
2

ikxk
E e

m
,                                                      (9.6a) 

2

2
2

2 2

2

2

i k x
a

k
a

E e
m

,                                                 (9.6b) 

2

2
2

3 3

2

2

i k x
a

k
a

E e
m

,                                              (9.6c) 
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2

2
4

4 4

4

2

i k x
a

k
a

E e
m

,                                              (9.6d) 

2

2
4

5 5

4

2

i k x
a

k
a

E e
m

.                                              (9.6e) 

   If we do not want to use absolute value of the wave vector we can write down the wave 

function for positive and negative value separately: 

2 2 2

0

( ) ( )

0

i x
a

ikx

i x
a

e k
a

e u x u x

e k
a

.                                 (9.7) 

 

Fig. 9.1 Band structure of free electrons in the empty lattice. 
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Nearly empty lattice. Energy gap. Energy gap at the border of energy zone 

 

   Let us introduce to the empty one dimensional lattice with lattice constant a the potential 

energy of the same periodicity in simple harmonic function form: 

2 2

0
0

2
cos

2

i x i x
a a

V
V x V x e e

a
.                                       (9.8) 

   We have to solve Schrodinger equation: 

2 2

2
( )

2

d
V x x E x

m dx
.                                             (9.9) 

   We will solve it treating V(x) as a perturbation. We could expect the stronger influence on 

electron energy of perturbation V(x) near points where bands intersect, it is in a case of 

degeneration at k=0 or k= /a. Let us solve eq. (9.9) near k= /a for wave vectors: 

k
a

,                                                                (9.10) 

where  is a small displacement. When we write down the energy and the wave function for 

first two bands at above points in (9.7) notation we have: 

22

1 1
2

i x
aE e

m a
,                                      (9.11a) 

22

2 2
2

i x
aE e

m a
.                                   (9.11b) 

   When we put in those functions to equation (9.9) we have 

2 32

0 0

2 32

0 0

2 2 2

2 2 2

i x i x i x
a a a

i x i x i x
a a a

V V
E e e e

m a

V V
e E e e

m a

.                     (9.12) 

   If we remove from above equations all terms 3 /a which describe higher bands (here third) 

we obtain linear set of equations for two functions 1

i x
ae  and 2

i x
ae : 
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22

0 1

22

0

2

0

2 2

02 2

V
E

m a

V
E

m a

,                                                (9.13) 

which has nontrivial solution only when the matrix determinant is equal to zero: 

2 22 2

0 0
2 2 4

V
E E

m a m a
.                       (9.14a) 

   So we have solved simple quadratic equation: 

2
2 2 4 2

2 2 2 4

02 2 2

1
0

4 4
E E V

m a m a
,                      (9.14b) 

2 2
4 2 4 2 4 2

2 2 2 2 2

0 02 2 2 2 2 2

4
V V

m a m a m a
,                     (9.14c) 

which solutions are: 

2
2 2 2 2 2

2 2 0

2 2
4

2 2 4

V
E

m a m a
.                         (9.15) 

   At Brillouine border at k= /a we immediately obtain the energy gap: 

2 2

0

22 2 2

g

a

EV
E E

a m a
,                                     (9.16) 

where  

2 2

022
a gE and E V

m a
.                                          (9.17) 
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Fig. 9.1 a) Band structure of free electrons in the empty lattice b) Band structure of electrons in nearly 

empty lattice. 

 

 

Effective mass at the border of energy zone 

 

   When we approximate dependence (9.15) by polynomials up to second order (Taylor’s 

theorem) we obtain: 

2 2 2 2 2 2 2 2

0

2 2

0

4

2 2 2 2 2

V
E

m a m V m m a
,                              (9.18) 

what we can write in a short form: 

2 2

0 *2 2

gE
E E

m
,                                           (9.19) 

where 
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*

04
1

g

m
m

E

E

                                                      (9.20) 

is an effective mass. 

   We obtained two different effective masses. Since for most of semiconductors E0 is usually 

at least one order of magnitude greater than Eg we can make an approximation: 

*

04

gmE
m

E
.                                                    (9.20) 

   We obtained two very important information: 1
0
 the effective mass has opposite sign for 

two nearest bands, 2
0
 the effective mass is proportional to energy gap. 

 

kp  methods 

 

   We can obtain similar results in kp  methods (see lecture): 

' 'H H u E u ,                                                  (9.21a) 

where 

'H kp
m

                                                         (9.21b) 

and 

2 2
'

2

k
E E

m
.                                                    (9.21c) 

   In the perturbation theory in approximation up to the second order we have: 

22 2 2 2
ln

0 ...
2

n n

l n n l

Pk k
E E

m m E E
                                    (9.22) 

   When we take into account only two energy levels at 0k , the last occupied by electrons 

10E  and the first unoccupied 
20E , it is assumed that the rest of the levels are separated from 

them and the energy gap equals to: 

20 10 gE E E ,                                                       (9.23) 
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and we have an expression for the electron energy in a form: 

2 2

0 *2

k
E k E

m
,                                                  (9.24) 

where an effective mass is expressed by a simple formula: 

*

2

122
1

g

m
m

P

mE

,                                                      (9.25) 

   It is convenient to define a term: 

2

122
p

P
E

m
,                                                      (9.26) 

which has an energy dimension. 

   Than the effective mass is expressed in a form: 

*

1
p

g

m
m

E

E

.                                                  (9.27) 

   The pE  is proportional to the energy width the energy band which is about 10meV for 

semiconductors and the energy gap gE  for semiconductors is in the order of 1-2 meV and we 

can make a simple approximation to evaluate the effective mass: 

* g

p

mE
m

E
                                                   (9.28) 

   We see that the effective mass is proportional to energy gap and has opposite sign for upper 

and lower bands, called the conduction band and the valence band respectively. 

 

Brillouine zone in 3 dimensions 

 

   In three dimensions both general energy dependences holds, it is: 

E k E k                                                           (9.29) 

and 
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*2E k E k R ,                                               (9.30) 

where  

* * *

1 1 2 2 3 3

*R m a m a m a                                             (9.31) 

are vectors in reciprocal lattice.  

   To prove dependence (9.24) we have to show that wave function for k: 

ikrr e u r
k k

                                                    (9.32) 

are identical with those for k+2 R
*
. We can write: 

* *( 2 ) 2i k R r i R rr e e u r
k k

.                                  (9.33) 

   The function 
*2i R re  is an periodical function since: 

* * *

1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3

* * *2 ( ) 2 2

* 2 ( )( )2

* *2 ( )2 2 1

i R r R i R r i R Re e e

i m a m a m a m a m a m ai R re e

i m n m n m ni R r i R re e e

                   (9.34) 

   We can include this function term to periodic Bloch function: 

*2( )
*2

iR ru r e u r
kk R

                                          (9.35) 

and then we obtain the Bloch function in a form: 

*( 2 )
* *2 2

i k R r
r e u r

k R k R
.                        (9.36) 
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Construction of the first Brillouine zone: 

 

   With the use of dependence of (9.23) and (9.24) we can construct first Brillouine zone. The 

centre of Brillouine zone is at 0k . All vectors belonging to first Brillouine zone has to 

obey the rule: 

**

*
2

2

RkR

R
.                                                     (9.37) 

   Which is a projection of k  on any vector in reciprocal space. The 
*R  must be not greater 

than halve of 
*R  times 2

It can be also written in a form: 

2
* *kR R .                                                      (9.38) 

   In the Fig. 9.1 the Brillouine for the cubic face cantered lattice (FCC) is presented. Also the 

names most important points and directions are introduced. 
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Fig. 9.2 The I Brillouine zone with the names of characteristic points and directions. 
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10. Tight binding model. Born-Karman periodicity lemma  

 

Crystal as a set of interacting atoms 

 

   When we bring closer two identical atoms due to symmetry we obtain two symmetrical and 

anti- symmetrical combinations of degenerated functions (1) and (2)  describing an 

electron on atoms 1 and 2: 

(1) (2)

(1) (2)

s

a

.                                                    (10.1) 

   Above wave function are presented schematically in the Fig. 10.1. 

 

Fig. 10.1. The schematic picture of the symmetric and anti-symmetric functions of a two 

identical electrons. 

   When we increase the distance between atoms, an initial energy state equal for both 

electrons, splits into two energy levels (see Fig. 10.2). 

 

Fig. 10.2. The splitting of energy of an electron state into two symmetric and anti-symmetric 

states. 
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When we bring together N atoms we obtain a band consist of Nth very close electron energy 

level. Since the valence and conduction bands have usually the width in the range of about 

10eV, so for a crystal consisting with N~10
23

the energy in a band is a quasi continuous 

function with distance between energy levels equal to E~10
-22

eV. 

 

Tight binding model in one dimension 

 

   Consider one dimensional crystal with N atoms and a lattice constant a. When atoms do not 

interact, they are far away from each other, the Hamiltonian can be written in a form: 

2

0

12

N

i

i

H V
m

,                                               (10.2) 

where 
iV  is the potential energy operator for i-th atom. When we assume that the 

eigenfunction for the valence electron is not degenerated we have: 

0i i iH E .                                                     (10.3) 

   When atoms form a crystal the additional perturbation periodic potential appears:  

p cr iV V V                                                     (10.4) 

which is the difference between crystal and atomic potential. So now we have the 

Hamiltonian in a form: 

0 pH H V .                                                      (10.5) 

   Let us assume that this potential mixes only functions of nearest atoms: 

* 3 * 3

1 1i p i i p iV V d r V d r ,                                    (10.6) 

where V>0 which denotes that the total energy of the crystal is smaller than separate atoms. 

According to a general rule of quantum mechanics we are looking for the solution as a linear 

combinations of atomic functions i : 

1

N

i i

i

b .                                                      (10.7) 

   The Schrodinger equation can be written in a form: 
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0

1

0
N

p i p

i

H E H E V b E E V .                  (10.8) 

   When we multiply both sides by function *

m
 and then integrate them we obtain: 

0 1 1m m mb E E b b W .                                     (10.9) 

   We are looking for the solution in a form: 

nik ma

mb e                                                    (10.10) 

and after simple calculations we obtain: 

0 2 cos sE E W k a .                                        (10.11) 

Fig. 10.1  

Born – Karman periodicity conditions 

 

   Since all crystals are finite the translation symmetry does not hold. To omit this difficulties 

Born and Karman proposed a formula: 

( )j jr N a r                                            (10.12) 

this means that  

j j j jikN a ikN aikr ikr ikr

j jk k k
u r e u r N a e e u r e e .                 (10.13) 

since the Bloch term 
k

u r  is periodic. From the definition it means that: 

1j jikN a
e                                                     (10.14) 
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it is 

2 j

j

j

n
ka

N
                                                 (10.15) 

and further that the wave vector is quantized: 

*
2 j

nj j

j

n
k a

N
                                             (10.16) 

where 
jn  may have

jN  distinct values: 

1,2,...j jn N    

Density of states in 3 dimension wave vector space 

 

   In order to calculate the density of state in wave vector space we have to calculate the 

volume of the elementary cell in reciprocal space and divide the total number of state 

1 2 3N N N  by its value: 

3' * 3 * * *

1 2 32 8V V a a a                                          (10.17) 

where 
*

ia  are the vectors of the reciprocal space: 

* * * * * *
* * *2 3 3 1 1 2
1 2 3

el el el

a a a a a a
a a a

V V V
                            (10.18) 

and 
elV  is the volume of the elementary cell in the direct space. 

   After long calculations we obtain: 

3
' 8

el

V
V

                                                                 (10.19) 

and the density of state: 

1 2 3 1 2 3

' 3 38 8

el krN N N N N N V V
k

V
                                      (10.20) 

   Often in trial calculations we put 
31krV cm  and we have: 

3

3

1

8
k cm                                                   (10.21) 
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   As it can be easily calculated the density of state of electrons in the conduction band with 

the isotropic effective mass equals: 

*

2 2

1 2

2

m
E E                                (10.22) 
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11. Metals, semiconductors and dielectrics classification. The idea of a hole 

 

Properties of fully occupied bands 

 

   Let us consider the fully occupied bands. In calculation of mean statistical values of 

physical quantities of electrons in conduction or valence bands it is more convenient to 

replace the sum by an integral: 

3 3

3

1

4k SB SB

f k f k k d k f k d k .                         (11.1) 

   In the case of fully occupied band all mean statistical physical values are equal to zero due 

to the symmetry of Brillouine zone. 

   Mean value of the electron pseudo-momentum 

0
k

k .                                                        (11.2) 

   Mean value of the electron velocity 

3

3 3

1 1
0

4 4
k

SB SB

v v k E k d k E k d .                 (11.3) 

   Mean value of the electron effective mass 

1 1 3

3 2

3 2 3

1

4

1 1
0

4 4

k k

k SB

k

SB SB

M m k E k d k

E k d v k d

.                                  (11.4) 

   Mean value of the electron spin 

2

1

0
2

N

i

i

S G .                                                     (11.5) 

   Current passing through a full band 
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2

1

0
N

i

i

j e v e v .                                        (11.6) 

   Mean value of the electron acceleration 

2
1 1

1

0
N

i

v m p M p .                                         (11.7) 

 

Concept of a hole and its properties 

 

   Let us remove one electron from fully occupied band. The lack of one electron can be 

described as a hole in the electron sea 

2 1 2

1 1

( ) ( ) ( ) ( )
N N

h e e i e i e e

i i

f k f k f k f k .                                 (11.8) 

   Such an object can be treated as quasi-particle; it is a particle possessing all physical 

quantities of normal particle but only within the crystal. 

   The main properties of a hole are: 

   The wave vector of a hole is opposite to the wave vector of an electron: 

h ek k .                                                            (11.9) 

   The velocity of a hole is opposite to the velocity of an electron for the same wave vector of 

an electron 
ek : 

h e e ev k v k                                                   (11.10) 

and is the same for opposite wave vectors (see equation 11.9): 

h d e ev k v k .                                                 (11.11) 

   The effective mass of a hole is opposite to the effective mass of an electron: 

h em k m k .                                                (11.12) 

   The charge of a hole is positive: 
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h ek k e .                                               (11.13) 

   When the energy of all electrons in a full band is: 

0 e

k

E E k ,                                                (11.14) 

than the energy of a hole is: 

0h eE k E E k .                                             (11.15) 

   When we consider an electron in a valence band than since the energy is lowered by 
gE  in 

respect to conduction band and effective mass of electron in a valence band is negative we 

have: 

2 2

*2
e g

e

k
E E

m
.                                              (11.16) 

So the energy of the hole in a valence band is: 

2 2

*2
h g

h

k
E E

m
.                                                 (11.17) 

   The hole translation velocity can be calculated from energy dependence on wave vector in 

the same way as for the electron: 

1
d hh k kv E .                                              (11.18) 

   The influence of external field is expressed in a form: 

hk e .                                                      (11.19) 

   When one has started to count the energy from the bottom of the valence band the energy of 

a hole is expressed by simple formula: 

2 2

*2 h

k
E

m
.                                                       (11.20) 
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Fig. 11.2. The notation of calculation of the energy for electrons in the conduction band and 

holes in the valence band. 
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12. Effective mass approximation. Excitons 

 

Effective mass approximation 

 

   The Schrödinger equation can be expressed in a form: 

2
1

2
m E .                                                     (12.1) 

   In pure crystal, without imperfections and external fields, an electron can be described by 

the Bloch function: 

ikrr e u r
k k

                                                  (12.2) 

and energy expressed in a form: 

2 23
1

*
, 1

0 0
2 2

i j

i j ij

k k
E k E E k m k

m
,                           (12.3) 

where 1

*

1

2 ij

m
m

 is an effective mass tensor . 

   In the presence of additional potentials (except crystal potentials) and excitations of 

electrons the Bloch function is not longer a good solution of the Schrodinger equations. When 

those fields are weak and slowly varying in space one can use the wave function in a form 

( ) k k
r r u r , where k r  is so cold envelope function. Without additional fields it can 

be shown (but unfortunately after long and complicated calculations) that the envelope 

function is the solution of similar equation as (12.1) but with effective mass tensor: 

0 0

2
1

2
k km E .                                                  (12.4) 

   In case of cubic crystals with one effective mass m
*
 (scalar) this equation can be written in 

the simplified form: 

0 0

2

*2
k kE

m
.                                                    (12.5) 
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   It can be proved that in the presence of slowly varying fields equation (12.5) transforming 

into: 

2

*

ˆ
2

slow k k
V r E

m
.                                      (12.6) 

   This equation is named an effective mass equation, or an effective mass approximation. 

 

Spin-orbit interaction 

 

   Spin, fourth degree of freedom of an electron appears as a natural solution of Dirac 

equation. Since this equation is complicated, dependences of electron energy due to spin are 

introduced to Schrodinger equation in a simplified form: 

, ,SOH H r E r ,                                           (12.7) 

where  

, ( )r r .                                                (12.8) 

( )r  and  describe the wave function of electron in real 3 dimensional space and spin 

respectively. 

   The interaction of the spin magnetic moment s  with magnetic field B produce by orbital 

motion of an electron can be easily estimated. Crystal field can be expressed by crystal 

potential: 

1
cr crV

e
.                                                        (12.9) 

   The movement of electron in varying electric field produces magnetic field: 

1
cr cr

v
B V p

c mec
.                                   (12.9) 

   The energy of magnetic moment in magnetic field is: 

2
s

e
E B B

mc
,                                        (12.10) 

where  
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1 0 0 1 0
, ,

0 1 0 0 1
x y z x y z

i

i
              (12.11) 

are so called Pauli matrices describing the spin. 

   Hence spin-orbit interaction energy can be expressed in e form: 

2 22
crE V p

m c
                                    (12.12) 

or included into Hamiltonian as additional term: 

2

2
2

so crH V p p i
mc

.                           (12.13) 

   It can be also shown that the whole dependence on a spin in Hamiltonian is expressed in a 

form: 

2

2
( ) ( )

2

ikr ikr

so k so cr kH e u r e H k G V u r
mc

.            (12.14) 

   Introducing the spin change one of general rule of energy dependence on wave vector into: 

, ,E k E k .                                             (12.15) 
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13. Electron and hole concentrations in semiconductors and dielectrics  

 

   The electrons in metals are not longer described by the Maxwell-Boltzmann statistics 

( ) B

E

k Tf E Ne                                                              (13.1) 

but by the quantum Fermi-Dirac distribution function: 

( )

1
( ) 0 ( ) 1

1
e F

b

e e eE E

k T

f E f E

e

,                          (13.2) 

where 
FE  is so called the Fermi Energy.  

   Since the hole in the valence band means that there is a lack of an electron, we have: 

( )

1
( ) 1 ( )

1
d F

b

d d e E E

k T

f E f E

e

                      (13.3) 

where we use the equality 
d eE E . 

   In intrinsic semiconductors it is convenient to count the energy of electrons and holes from 

the middle of the forbidden energy gap gE : 

'

2

g

e e

E
E E ,                                               (13.4) 

'

2

g

d d

E
E E .                                                  (13.5) 

   From the symmetry reason, it is if we notice that probability of finding an electron in the 

conduction band is almost the same as finding a hole in the valence band we can assume that 

the Fermi energy is located close to the middle of the energy gap gE . Also we have: 

gE kT  .                                                    (13.6) 

   So we can approximate the distribution function for electrons and holes by formulas: 

2

2

1

1

g eF

g e F

E EE

kT kT kT
e E E E

kT kT

f e e e

e e

                     (13.7) 

and 
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2

2

1

1

g eF

g d F

E EE

kT kT kT
d E E E

kT kT

f e e e

e e

                  (13.8) 

 

   In order to obtain the concentrations of electrons in the conduction band and holes in the 

valence band we have to calculate two integrals: 

( ) ( )en f E E dE ,                                                          (13.9) 

( ) ( )dp f E E dE .                                                          (13.10) 

   Taking into account approximation (13.7) the concentration of electrons is: 

3/2
*

2
2 2

0

3/2
*

2
2 2

0

1 2

2

1 2
.

2

g F

g F

E E E

e kT kT kT

E E

xe kT kT

m
n e e Ee dE

m kT
e e xe dx

                     (13.11) 

   The integral in equation (13.11) is:  

0

3

2 2

xxe dx                                      (13.12) 

so the electron concentration in the conduction band is: 

3/2
*

2
2

2
2

g F
E E

e kT kT
m kT

n e e                                    (13.13) 

   In similar way we can calculate the concentrations of holes in the valence band equals to: 

3/2
*

2
2

2
2

g F
E E

d kT kT
m kT

p e e                                     (13.14) 

   In the case of the intrinsic semiconductor without any impurities the concentrations of 

electrons in the conduction band and holes in the valence band are equal and we can name 

them 
sn : 

sn n p                                                     (13.15) 

   It is easy to show that the intrinsic Fermi level is: 
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*

*

3
ln

4

d
Fs

e

m
E kT

m
                                            (13.16) 

so it is exactly in the middle of the energy gap and at 0T  and very slowly increases 

towards higher energy with the increase of the temperature.  

   The intrinsic concentration is: 

3/2
*

2
2

2
2

gE

kT
s

m kT
n e                                          (13.17) 

where we introduce the term: 

* * *

e dm m m                                                      (13.18) 

   In the case of moderately doped of semiconductors by shallow impurities we can also show 

that the concentrations for electrons and holes are equal to: 

FsF EE

kT kT

sn n e ,                                                             (13.19) 

FsF EE

kT kT

sp n e                                                                (13.20) 

and we obtain an equality: 

2

snp n                                                                        (13.21) 

   This is a very important law. It shows that we cannot have higher concentrations of both 

electrons and holes and their product is constant. 
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14. Shallow donors and acceptors in semiconductors 

 

   When we substitute the host crystal atom by an atom with one more electron, and an ion 

radius of both atoms are not very different, for example Si from the IV group by As from the 

V group we can treat an additional electron as bound with the positive centre. Than we can 

calculate the energy of such an electron as the energy of electron in a Hydrogen atom taking 

into account the effective mass 
*

em different from the mass of the electron mass 
em  and the 

relevant permittivity 
0
. We obtain the Hydrogen like energy levels: 

4 * *

2 2 2 2 2

0 0

1 13.6 1

2

e e
n

e e

e m m eV m
E

n m n m
                           (14.1) 

2 * *

0 02

0 0 0

0.5e e
B

m m
r A

e m m m
                                  (14.2) 

   The binding energy of such an electron, called donor is equal to: 

*

2

0 0

1
13.6 e

D

m
E eV

m
.                                           (14.3) 

   The effective mass of the order of 
* 0.1e em m  and permittivity 

0 10  so the binding 

energy is in the range of meV and the electron can be easy ionized to the conduction band at room 

temperature  This explains the name donor given to electron since it is a source of electrons to the 

conduction band energy. The scheme of the energy levels of a donor is presented in the Fig. 14. 1. 

   In the opposite case when we introduce into a host lattice an atom with one less electron having 

weakly bound hole called an acceptor. 

*

2

0 0

1
13.6 d

A

m
E eV

m
                                          (14.4) 

   The electron from the valence band can be bound on such a state giving holes in the valence 

band which can conduct a current. The mechanism of transfer of electrons (acceptation) gives 

name of this state. 
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Fig 14.1 Diagram of the three bound states of a shallow donor electron near conduction band. 
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