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Chapter 1

Introduction

An impressive development of computer science in the last decades has been
manifested across all paths of life, spanning from communication and admin-
istration to economy, education and technology. There has been observed
constant increase in computational capabilities of successive generations of
classical integrated circuits (expressed by the co-called Moore’s law1) is the
result of a fast-growing processor and memory-unit miniaturization. How-
ever, these trends are limited due to materials atomic structure and quan-
tum processes appearing within the nanometer scale of physical phenomena,
which replace macroscopic electronic effects used in classical information pro-
cessing. In order to transcend these limitations and ensure further dynamic
increase in information-processing system speed and effectiveness, possibili-
ties of quantum processing (differing from classical) of information are being
considered now. Each type of information, both classical and quantum, is
considered as physical in terms of its carrier. Classical information concerns
a classical physical entity and a classical measurement upon it, which is
repeatable and non-destructive. On the other hand, quantum information
denotes physical content of a quantum system, unaccessible as a whole for
the observer, but only partially accessible due to the measurement process
on the quantum system, which is non-repeatable and destructive. Quantum
information is identified with a quantum state carrier (of a quantum system,
a qubit being the simplest one, i.e., a quantum state in two dimensional, the
smallest possible Hilbert space), both for its pure state defined by a quantum
wave function or for its mixed state defined by a density matrix.

Quantum information processing grew up for a wide division of quantum
mechanics in overlap with information theory. Though it does not give a
new formulation to quantum theory, it enhances, however, the insight into

1G. Moore—Intel-co-founder; according to him, computer computational capability
doubles every 24 months
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quantum physics taking advantage of information notions. Quantum physics,
from its beginning almost 100 years ago, is still far from completeness and
full understanding. Since it bases on non-intuitive formulations, like the wave
function in Hilbert space in probability complex amplitude terms, this does
not allow the classical physics interpretations. Both the foundations of quan-
tum description and the limiting transition to macroscopic world are objects
of many various attempts of interpretations. Though the so-called Kopen-
hagen interpretation due to Niels Bohr seems to be commonly accepted, still
there does not exist a direct experimental confirmation of any particular
interpretation and it is a field of continuing discussions and various type ar-
gumentations (over 10 distinct interpretations have been taken into account
including also philosophical attitudes). From this point of view quantum
information processing contributes seriously to this discussion allowing for
employing some information-originated argumentations. It should be, how-
ever, emphasized that classical information theory is not suitable for such at-
tempts and the appropriate generalization towards quantum world is required
within information theory. This is, however, more or less equivalent to quan-
tum mechanics formulation though observed from a new perspective, which
would, as it is believed, result in constructive ideas for both information and
quantum understanding. It makes this field of fundamental character despite
even of practical-use goals and already attained partial achievements, like a
quantum computer-toy demonstration, quantum teleportation or quantum
cryptography.

The idea of employing quantum evolution for information processing cor-
responds with the feasibility of deterministic control over a quantum system
in order to execute a previously designed quantum algorithm. However, such
a deterministic evolution, also called unitary or coherent, requires a totally
isolated quantum system. Unfortunately, no quantum system can be totally
isolated from the environment. Any quantum system is extremely suscep-
tible to the slightest environment influence. In consequence, ideal—unitary
or coherent—evolution becomes perturbed, and quantum information un-
dergoes uncontrollable and irreducible dissipation to the environment, thus
thwarting the realization of prior quantum algorithms. Therefore, despite
the advantages of quantum information processing (relating to exponen-
tial increase in Hilbert space dimension with the increase in the number of
qubits, which results in ultra-fast, classically inaccessible, parallel processing
of quantum information), the attainability of a scalable quantum computer
is seriously hindered due to decoherence phenomena. Gaining more knowl-
edge about decoherence processes in quantum systems may, in consequence,
enable us to develop new technologies transcending these limitations and fa-
cilitating the attainability of quantum gates. This aspect seems to be the
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most important segment of quantum information science.
Quantum state decoherence progresses along two channels: relaxation,

i.e., quantum state annihilation, and dephasing, i.e., phase relations change
within quantum state description. Relaxation, or amplitude decoherence is
expressed by modifications (in limit, disappearance) of diagonal elements of
quantum state density matrix, whereas dephasing (phase decoherence) cor-
responds to similar changes of off-diagonal elements of density matrix2. Both
types of decoherence appear due to interaction with the environment, and
become the more significant the stronger the interaction is. In particular,
phase decoherence whose kinetics seems to impose most limitations on the
attainability of a quantum computer within all presently discussed technolo-
gies seems to be the most complex phenomenon.

Solid-state technology, which is promising for new practical realizations
of quantum processing of information3, is burdened with phase decoherence
processes which have a far-reaching implications, in particular, their time pe-
riods are inconveniently located in relation to necessary conditions required
for quantum gates scaling in order to implement quantum error correction
(the so-called DiVincenzo conditions). Both charge and spin degrees of free-
dom of quantum states in a solid state phase (in particular, of states in quan-
tum dots) undergo dephasing due to their environment (however, it should
be emphasized that spin degrees of freedom seem to be more decoherence-
resistant than orbital degrees of freedom since they are less susceptible to
direct crystal-phonon-induced interaction, but on the other hand, they re-
quire much longer periods of time-control than orbital degrees of freedom
also due to weaker interaction with spins).

In the second part of this course we present a decoherence analysis, in
particular, the phase decoherence of charge (orbital) and spin degrees of
freedom of excitations localized in quantum dots, dealing with the issues of
limitations on the feasibility of quantum information processing, as well as
other coherent control processes (for nanotechnology and spintronics) within
quantum dots technology.

The notion of quantum dot [1, 2, 3] comprises various nanometer-size
semiconductor structures, manufactured by means of different technologies
resulting in spatial limitations on carrier dynamics (electrons and holes), as
well as excitations of electron-hole pairs (excitons). Quantum dots corre-
spond to localization of carriers in all three dimensions, while confinement

2quantum state description in terms of density matrix can be applied both to pure and
mixed states—as will be described in the following sections

3due to high degree of advancement of technologies of creating quantum solid-state
structures (mainly the so-called quantum dots) and attaining controllable quantum states
in these structures
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to nanometer-scale dynamics in only one dimension leads to the so-called
quantum well and in two dimensions—to quantum wire. Nanometer-scale
limitations on quantum dynamics results in kinetic energy quantization4,

∆E ≥ (∆p)2

2m∗ ≃ h̄2

2m∗d2
≃
{

10 meV, d ∼ 10 nm,
1 eV, d ∼ 0.1 nm.

(1.1)

In the case of quantum dots, quantization energy locates within a range
accessible for control by means of external fields (electric and magnetic) con-
trary to atoms (for them, quantum state control by means of external fields
requires such values that are beyond reach of present technology). This ad-
vantage of quantum dots, which are relatively easy to create due to a variety
of existing technologies as well as their parameters flexibility, possibility of
immersing them in various media or even creating or modifying them by
means of external fields, makes them a very promising target of new nan-
otechnology and spintronic practical projects.

Various semiconductor materials may be used to create quantum dots.
Note that insulator or metallic nanoparticles are also manufactured (how-
ever, collective electron liquid in metallic nanoparticles manifests distinct
physical properties in comparison with semiconductor quantum dots, which
explains why metallic nanostructures are not named quantum dots). For
opto-electronic use, semiconductor dots seem best suited due to their local-
ization within other nanostructures (e.g. quantum wells) and well-established
technology of control over such systems. Semiconductor quantum dots may
be manufactured by means of etching technology after high resolution pho-
tolitographic process (with the use of ion or electron beam) has been ap-
plied (ordinary optic litography of resolution up to 200-300 nm is not suffi-
ciently precise). Other technologies used here are, among others: Stransky-
Krastanov dot self-assembling method consisting in applying epitaxy layers
of MBE or MOCVD type [MBE, Molecular Beam Epitaxy, MOCVD , Metal
Organic Chemical Vapor Deposition]. Various lattice constants in successive
epitaxy layers result in spontaneous creation of nanocrystals on ultra-thin the
so-called wetting layer (due to contraction type effects). Electrical focusing
in a quantum well [1, 5, 6] comprises still another well-promising technique,
which, despite being at an early stage (due to lack of sufficiently precise
electrodes), offers the highest dot parameter flexibility and allows for switch-
ing the dot on/off within the working time periods of devices based on such

4Coulomb energy scales at 1/d (and is of the order of meV for quantum dots), while
kinetic energy scales as 1/d2, which leads to shell properties of dots, distinct in comparison
to atoms (more complicated Hund-type rules for quantum dots), since both energies remain
in mutual proportion of d, which favors Coulomb energy for dots contrary to atoms [1] at
the scale of meV order
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technology [1, 4, 5, 6].
The possibility of control over quantum states of carriers in quantum

dots and their coherent (deterministic, controllable) time evolution are vital
for nanotechnological and spintronic applications (especially this concerns
the so-called single-electron or single-photon devices) as well as for quantum
processing of information. Absence of decoherence, or its significant reduc-
tion up to the lowest possible level, at least within the time periods of control
realization, is essential for all of these applications. However, decoherence
is unavoidable due to irreducible dot-environment interaction (there are no
means of a total dot isolation). In the case of nano-structures, quantum
dots including, there appears a new class of physical phenomena within de-
coherence and relaxation range, entirely distinct form analogous processes in
bulk materials or in atomic physics. This is due to characteristic nanoscale-
confinement energy, reaching values close to typical energy parameters of
crystal collective excitations (energy characteristics of band acoustic and op-
tical phonons). This convergence of energy scales results in resonance effects
which is different from what is observed in atomic physics, where the scale
of the atom-confinement energy is by 3 orders of magnitude higher than en-
ergy of crystal collective excitation, resulting in a weak phonon influence on
atom states (included as a very small perturbation only). Specific decoher-
ence effects in quantum dots result form a strong (resonance) coupling effect
between the carriers trapped in them and the sea of various types of phonons
(as well as with other collective excitations, or with local degrees of freedom,
e.g. admixtures). That is why the frequently used notion of ’artificial atom’
in reference to quantum dots is to some extent misleading.

The same reasons are responsible for the fact that too accurate quan-
tum dot modeling which does not account for environment-induced collec-
tive degrees of freedom may give rise to false conclusions since due to sig-
nificant hybridization-induced (decoherence) changes of energy levels reach
up to 10%. This reduces the modeling fidelity if the environment effects are
neglected. Therefore, what present-day physics of nanostructures should em-
brace is recognition of complex decoherence and relaxation effects observed
in quantum dots for trapped carriers spin and charge, which are essentially
different from what is observed in bulk materials and atoms.
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Chapter 2

Quantum information
processing—theoretical concept

2.1 Information: comparing classical and quan-

tum information

Information has a material character— it does not exist without a physical
carrier. There are various information carriers, each carrying a specific type
of information. Macroscopic physical systems are carriers of classical infor-
mation. Such systems are characterized by physical quantities which have in-
terpretation within information processing—classical measurement yields nu-
merical value (real) representing information contained in the system. Clas-
sical measurement on a macroscopic object is repeatable and does not cause
perturbation to the system. It does not favor any individual measurement
or the observer, neither does it alter the state of the system measured. Re-
peatable measurement is feasible, and it yields comparable results, which can
be characterized by means of a real random variable whose distribution re-
flects the accuracy of the measurement and the influence of the surrounding
environment (information noise/perturbations in the case of open physical
systems) [92]. This repeatability ostensibly makes classical information of
abstract nature still, however, retaining its physical character in the sense
of its macroscopic carrier. These macroscopic physical values are defined by
means of statistical thermodynamics—therein lies the tangible relation be-
tween the basic notions of information theory and statistical physics. Both
fields rely heavily on the notion of entropy (Shannon entropy [92] and the
2nd law of thermodynamics), which reflects the basic feature of macroscopic
systems—their chaotization, i.e., ”forgetting” about microscopic initial con-
ditions (caused by even slight influence from the surrounding environment—
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deterministic chaos), and manifesting mean behavior according to probability
principles. Main features of classical information are as follows:

• classical information—macroscopic physical systems are characterized
by physical quantities,

• classical measurement is repeatable and not-demolishing—classical in-
formation (measurement result) assumes ostensibly abstract nature (fa-
vors neither the observer nor the particular measurement),

• classical information (real numbers, physical quantities characteristic of
macroscopic systems) satisfies the laws of thermodynamics (especially
the 2nd law of thermodynamics) and is rooted in the notion of entropy.

Each macroscopic system has microscopic structure, and therein, at this
level its non-classical, quantum character manifests (despite its macroscopic
complexity, of the order of ∼ 1023 [i.e., Avogadro’s number], the system
behaves in a classical way, i.e., according to thermodynamic or probabilis-
tic description). Quantum information is carried by a quantum carrier. It
does not have any classical interpretation. A part of quantum information
can be translated into classical information (real numbers) by performing a
measurement on a quantum state (von Neumann-type measurement). How-
ever, only a small part of quantum information, linear with respect to the
size of the system (the number of particles) is available—in accordance with
the uncertainty principle (despite the exponential increase in the size of the
space attainable for the system state [the dimension of Hilbert space]) [14].
A wave function (for closed, i.e., isolated systems) or a density matrix (for
open systems, interacting with the environment) is a mathematical model
of quantum information (or quantum state). The measurement performed
on a quantum state is non-repeatable and demolishing for the system; it
favors the observer and a single act of measurement. What is more, such
measurement is indeterministic. The evolution of a closed quantum system
is deterministic (unitary → conserves the dimension of a Hilbert space →
entropy → information). An open quantum system does not undergo a uni-
tary evolution. If complex enough (the number of particles of Avogadro’s
number order) and open, the system’s evolution is of thermodynamic nature
and manifests classical macroscopic behavior. The thermodynamic evolu-
tion of such systems is unitary again (it conserves classical information—it is
isoentropic [9, 10, 11, 12, 13, 91], but only in the case of reversible processes;
real processes in macroscopic objects are irreversible, i.e., entropy increases
during their evolution, as the system tends to reach the more probable states.
Main features of quantum information:
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• quantum information is contained in a physical quantum carrier [pure
or mixed quantum state],

• quantum information does not have any classical interpretation,

• a measurement on a quantum state is demolishing and non-repeatable;
it provides only a small part of classical information about otherwise
unavailable quantum information,

• a mathematical model of a quantum information carrier is a wave func-
tion, in the case of an isolated system [pure state], or a density matrix,
for an open system interacting with the environment [mixed state],

• a quantum system (quantum information) undergoes deterministic uni-
tary evolution if it is isolated; a measurement on it or the interaction
with the environment, disturbs the unitary evolution.

2.1.1 Description of quantum information

Classical and quantum measurement—access to information

In order to obtain information, measurements are performed on its carrier.
In the classical case, when a macroscopic physical characteristic of a system
is an information carrier, the measurement of this characteristic does not
change it, and the measurement can be repeated. In the case of a quantum
system, the measurement is destructive, i.e. cannot be repeated. Therefore
it is said that the measurement favors the observer performing the measure-
ment. In classical physics, the role of an observer was not favored in any
way, and the measurement was of secondary importance, which allowed for
introducing of an abstract notion of random variable assuming various val-
ues (i.e. measurement results, being always real numbers). In the case of
quantum systems, the measurement is the most paramount aspect of the
process of obtaining information. Implying a human observer, information
obtained in the process of the measurement on a system—the information
carrier—must be expressed via numbers in such a way that it is perceivable by
human senses and consciousness (for example, observed as the movement of
a gauged pointer). Such constraint causes that various measurement results
(distinguished by a man) require that the macroscopic degrees of freedom
be differentiated (∼ 1023 degrees of freedom, thus noticeably in macroscopic
level) in the measuring instrument used to perform measurement even on
a small quantum system. The measurement is the result of the interaction
between the measuring instrument and the measured system. Due to this
interaction, quantum entanglement between the system and the instrument

15



appears. This entanglement satisfies Schmidt representation requirements
[9], i.e. quantum entanglement can only be of symmetrical nature.

Measurement in quantum mechanics

In quantum mechanics, measurements of each physical quantity are asso-
ciated with a Hermitean operator. It is because of the real nature of the
eigenvalues of these operators, which are interpreted as measurement results.
Hermitean operators have been thus chosen to function as observables. The
eigenvalues of a given oprator unambigously define it via the spectral repre-
sentation,

Â =
∑
n

anP̂n, (2.1)

where an denotes the n-th eigenvalue (real in case of a Hermitean operator)
of operator Â, while P̂n denotes a projection operator on an eigen-space,
referring to the n-th eigenvalue. The projection operator meets the criteria
for being Hermitean and nilpotent,

P̂+
n = P̂n, (2.2)

P̂nP̂m = δnmP̂n. (2.3)

Note that the spectral theorem holds true both for bounded and un-
bounded linear operators1 existing in infinite spaces (e.g. differentiation op-
erator is unbounded, which entails the property of unboundedness for the
operators of momentum and kinetic energy). For unbounded operators, com-
mon generalizations working in linear algebra do not apply (eigenvalues may
not form a countable ON basis) [93].

Von Neumann’s measurement scheme

It is assumed in quantum mechanics that, in accordance with von Neumann’s
postulate, in the process of the measurement of a quantity A (whose operator
has spectral representation (2.1)) performed on a state |Ψ >, a result of an
is obtained (one of operator A eigen-values) with probability pn,

pn = ||P̂n|Ψ > ||2 =< Ψ|P̂+
n P̂n|Ψ >=< Ψ|P̂n|Ψ >, (2.4)

1a(n) (un)bounded operator is such an operator Â for which there exists (does not
exist) a positive constant C such that ||Â(x)|| ≤ C||x|| on a unit ball, ||x|| ≤ 1 (where
||...||—Hilbert space norm) [93]
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while wave-function |Ψ > collapses to the function (the so-called von Neu-
mann collapse):

P̂n|Ψ >

< Ψ|P̂n|Ψ >1/2
. (2.5)

The choice of a projection operator is completely random, it is only the
probability of this choice that is defined by (2.4).

Schrödinger’s equation—unitary evolution

The Schrödinger equation ih̄∂|Ψ>
∂t

= Ĥ|Ψ > describes how a system’s quan-
tum state |Ψ > changes in time, which in terms of unitary evolution can be
expressed in the following form,

|Ψ(t) >= e−iĤt/h̄|Ψ(0) > (2.6)

(in the case when the Hamiltonian does not explicitly depend on time)2.
Quantum unitary evolution is a deterministic process, i.e. it follows a

unique trajectory in the Hilbert space (its uniqueness follows from the exis-
tence of a unique solution of the differential Schrödinger equation).

If an observer wishes to find out anything about the state of the system,
he necessarily needs to carry out a measurement of some quantity, but this
activity inevitably results in a random wavefunction collapse to a randomly
determined eigenvector (or, more generally, the eigenspace), in accordance
with von Neumann projection. Due to the collapse, quantum information is
irreversibly and randomly lost—after the measurement, the system assumes
a state defined by an eigenvalue of the measured quantity, entirely incom-
patible with the measured state (the only exception is when the measured
state is identical with some eigen-state of the operator of the measured quan-
tity, then, after the measurement, this state remains unchanged). The von
Neumann’s projection is random. The only element that is determined is
the probability of ”the direction of projection”, which, for a given state at
a certain moment, is denoted by pn. The randomness of the choice of the
direction of von Neumann’s projection constitutes a nondeterministic ele-
ment of the quantum evolution. However, it should be noted that at the
moment of the measurement, the system ceases to be closed (and that is
why it no longer undergoes unitary, deterministic evolution). The quantum
measurement means that the system interacts with the measuring instru-
ment and, during the measurement process, the system is not closed (not

2for a time-dependent Hamiltonian, |Ψ(t + dt) >= (1 + dt
ıh̄ Ĥ)|Ψ(t) >= Û |Ψ(t) >,

Û+Û = Û Û+ = 1, with accuracy to the linear term in dt
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isolated). Unlike the classical measurement (harmless to the state of the
measured system), the quantum measurement (von Neumann’s projection),
in a significant and irreversible (nondeterministic) way perturbs the state of
the system under measurement.

Physically, the quantum measurement consists in the interaction between
the system under measurement and the measuring instrument, and this in-
teraction cannot be reduced to whatever small value (in the case of classical
measurement of macroscopic quantities, the interaction between the instru-
ment and the system is negligible).

During the process of quantum measurement (von Neumann’s projec-
tion), the unitary evolution of the quantum system becomes disrupted. After
completing the measurement and withdrawing the measuring instrument, the
system resumes its unitary evolution. However, further evolution proceeds
from a different initial state, namely from the state established after complet-
ing the measuring process (this state has been determined quite randomly
by the von Neumann’s projection). Quantum information, in terms of the
system wavefunction existing prior to the measurement, some of it has been
lost due to the measurement (the measurement causes the system ”to for-
get” the previous initial state and then to adjust itself to a new initial state,
randomly determined by von Neumann’s projection.

2.2 Density matrix—description the informa-

tion state

If system A remains in its pure state, then its description by means of a
wavefunction |Ψ > represents complete quantum information contained in
this state, identified with this wavefunction. If, however, the system inter-
acts with another system (which typically happens due to unavoidable inter-
action with the surrounding environment), the description of the quantum
information needs to be extended. To provide a more complete description, a
so-called density matrix is introduced, which carries more general quantum
information, both for an (idealized) isolated and non-isolated (interacting
with the surrounding environment) system.

Density matrix of a pure state system

For a pure state system (an isolated system), a density matrix is introduced
as an operator of projection onto this state [9, 10, 27]:
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ρ̂ = |Ψ >< Ψ|, ρ̂ =
∑
i,j

c∗i cj|j >< i|, |Ψ >=
∑
i

ci|i > . (2.7)

Then, for an observable M its expected value is

< M̂ >=< Ψ|M̂ |Ψ >= Tr(ρ̂M̂). (2.8)

Density matrix of a mixed state system

A system interacting with another system (e.g., with the surrounding en-
vironment) can also be described by means of a density matrix. If system
A interacts with system B, and they form together an isolated system A+B
which as a whole is in a pure state defined in the Hilbert space being a tensor
product of both Hilbert spaces corresponding to systems A and B,

|Ψ >AB∈ HA ⊗HB, (2.9)

then, in accordance with the previous formula, a density matrix of A+B
system is

ρ̂AB = |Ψ >AB AB < Ψ|. (2.10)

If, for Hilbert spaces HA, HB, ON bases {|i >A}, {|r >B} are selected, then
|Ψ >AB=

∑
i,r
air|i >A ⊗|r >B, in accordance with the definition of tensor

product of both spaces. From the density matrix of the total system A+B
(in pure state), a B-system trace can now be performed. This procedure
yields a density matrix of system A interacting with system B (system A is
no longer in its pure state but in mixed state). Therefore, a density matrix
of system A in mixed state is defined as,

ρ̂A = TrB(ρ̂AB) =
∑
r

B < r|ρ̂AB|r >B

=
∑

r,i,j,p,s
aipa

∗
js B < r|p >B B < s|r >B |i >A A < j|

=
∑
i,j,r

aira
∗
jr|i >A A < j|.

(2.11)

Unlike formula (2.7), formula (2.11) contains additional index r over
which the summation goes for the mixed state. Therefore, in the case of
mixed state, density matrix is no longer a projection operator. However, in
all these cases the density matrix has the following properties:

• ρ̂+ = ρ̂—is a Hermitean operator,

• ∀|Ψ> < Ψ|ρ̂|Ψ >≥ 0—is non-negative,
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• Tr(ρ̂) = 1.

From the property of being hermitean, the density matrix can be diag-
onalized by choosing a suitable Hilbert space basis. The eigenvalues of this
operator are real (as for each hermitean operator) and non-negative (which
follows from the second property). The trace of this operator equals to 1 and
does not depend on the choice of the basis, therefore the total sum of the
eigenvalues equals to 1. This means that in the Hilbert space of system A,
HA, there exists such basis {|i >A} that

ρ̂A =
∑
i

pi|i >A A < i|, (2.12)

where pi denote these eigenvalues, 0 ≤ pi ≤ 1, and
∑
i
pi = 1.

When the system is in a pure state, its density matrix is ρ̂A = |Ψ >A

A < Ψ|, with only one eigenvalue equal to 1. Then (in accordance with the
former description) the density matrix becomes a projection operator onto
this single pure state (single eigenvector) of system A. Generally, the density
matrix is a sum of some projection operators onto the orthogonal eigenvectors
corresponding to particular eigenvalues (this sum ceases to be a projection
operator)3.

When the density matrix is not a projection operator, i.e. when system A
is not in a pure state, we say that the system is in a mixed state. Therefore,
in accordance with formula (2.12), system A is in a state |i > with probability
pi (it is in none of its pure state but in a mixture of them—that is why this
state is called a mixed state). Although system A is not in a pure state, the
whole system A+B is (in accordance with the assumption). Note, however,
that this mixed state is a result of the interaction between systems A and B,
and it means their quantum correlation. This correlation is called quantum
entanglement [9, 10, 11, 12, 13].

The simplest case of quantum state is a qubit, whose state is described
by a vector in a two dimensional Hilbert space. Thus a mixed state of a
qubit and its pure state constitute elementary forms of quantum information
whose carriers is just this qubit.

3projection operator P̂ must fulfill the condition of being nilpotent, i.e. P̂ 2 = P̂ ,
which leads to Tr(P̂ 2) = Tr(P̂ ); however, for a density matrix of a mixed state, there is
ρ̂ =

∑
i

pi|i >< i|, Tr(ρ̂2) =
∑
i

p2i <
∑
i

pi = Tr(ρ̂), thus for a mixed state density matrix

ρ̂2 ̸= ρ̂, therefore this is not a projection operator
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2.3 Schmidt’s representation and entangled

states

The fact that each density matrix is hermitean causes that for system A
being part of system A+B, in Hilbert space HA, there exists a basis in which
the density matrix of system A is diagonal, i.e.

ρ̂A =
∑
i

pi|i >A A < i|. (2.13)

The wavefunction of a pure state of system A+B can be expressed by
means of this basis of system A Hilbert space, i.e.,

|ψ >AB=
∑
i,r

air|i >A| ⊗|r >B=
∑
i

|i >A ⊗
[∑
r

air|r >B

]
=
∑
i

|i >A ⊗ ˜|i >B.

(2.14)

Vectors ˜|i >B do not form an ON basis in HB, but still they are orthogonal
(they are not normalized) because,

TrB(|ψ >AB AB < ψ|) =
∑
r

B < r|∑
i
|i >A ⊗ ˜|i >B

∑
j

A < j| ⊗ B<̃ j||r >B

=
∑
i,j B<̃ j| ˜|i >B|i >A A < j| =

∑
i
pi|i >A A < i|

(2.15)

and B<̃ j ˜|i >B = δijpi. Vectors ˜|i >B can be normalized,

|i >′
B=

1
√
pi

˜|i >B, (2.16)

but only in the case of non-zero pi (the number of these vectors is the same as
the number of non-zero eigenvalues of density matrix ρ̂A =

∑
i
pi|i >A A < i|).

Then, the number of these vectors can be increased to obtain a complete ON
basis in HB.

A pure state wavefunction of system A+B can be expressed via vectors
|i >′

B in the following form (in accordance with (2.14)):

|ψ >AB=
∑
i

√
pi|i >A ⊗ |i >′

B (2.17)

and this is a representation of an entangled state (both bases are ON in the
spaces of systems A and B). Note, however, that these beses have been picked
out for a specific entangled state of the whole system (they are different for
different entangled states of system A+B).
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The above description of a pure state (generally, an entangled one) of a
system made up of two subsystems is called Schmidt’s representation. This
representation shows that quantum information of two interacting systems is
written symmetrically into both systems. This fact resembles the symmetry
of classical interactions expressed in Newton’s Third Law of Dynamics (the
law of reciprocal action)—therefore it seems highly probable that Schmidt’s
representation underlies the symmetry of the classical principle of reciprocal
action.

To verify: employing Schmidt’s representation (i.e., formula (2.17), the
density matrix of a mixed state of system A can be expressed in a diagonal
form

ρ̂A = TrB(|Ψ >AB AB < Ψ|) =
∑
i

pi|i >A A < i|, (2.18)

at the same time, the density matrix of system B can also be expressed in a
diagonal form, i.e.

ρ̂B = TrA(|Ψ >AB AB < Ψ|) =
∑
i

pi|i >′
B B < i|′. (2.19)

This representation (i.e. when the bases in both spaces conform to Schmidt’s
representation) yields diagonal density matrices which, more importantly,
have the same eigenvalues (the numbers of them are identical although the
dimensions of HA and HB may be different; in such a case both density
matrices differ in the level of degeneration of the eigenvalue equal to zero).

Further conclusions following from the abovementioned representation
can be linked to the way and uniqueness of re-constructing the entangled state
wavefunction by means of both density matrices ρ̂A i ρ̂B [9, 10, 11, 12, 13].

Schmidt number

The number of non-zero (common) eigenvalues of density matrices ρ̂A and
ρ̂B is called Schmidt number. If Schmidt number is greater than 1, the
state |ψ >AB is called an entangled state (as both systems have identical
eigenvalues, it can be said that both systems are mutually entangled at the
same rate). In the case when Schmidt number is 1, the state is not entangled,
or separable (such state can be expressed via single tensor product of two
pure states of both systems, not as a linear combination of such products, as
it is the case of entangled states).

As the above considerations show, Schmidt number cannot be increased
by means of local operations on only one system. The entanglement of both
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systems results from the interaction, or reciprocal exchange of quantum in-
formation between these systems. It is necessary that they both participate
in the process. However, it is extremely interesting that Schmidt number
can be decreased if certain operations are performed locally on one of the
subsystems—such situation is considered below along with the case of quan-
tum teleportation. The possibility of decreasing of Schmidt number due to
operating on only one subsystem (e.g., only on one member of the entangled
pair of qubits) constitutes an important aspect of information processing—it
enables to get rid of quantum information accumulated by a system (qubit)
during former interactions with other systems. Otherwise, quantum infor-
mation (due to subsequent interactions) would accumulate on single systems,
which, in the light of the multitude of particles and their mutual interactions
in the microworld, seems highly implausible.

It is important to emphasize that quantum entanglement (or mutual and
symmetrical information exchange between two subsystems) is a non-local
phenomenon (the spatial wave function arguments in the Hilbert spaces of
both entangled systems may be geometrically distant) triggered by inter-
action. It is a unique quantum effect with no classical counterpart—the
entanglement is linked to the linear algebra of the Hilbert spaces and basic
properties of tensor product.

2.4 Von Neumann measurement scheme–Żurek

superselection (einselection)

The attempts at explaining working of von Neumann measurement scheme
have been undertaken since the first days of formulating the formalism of
quantum mechanics. However, the unitary evolution formalism still fails to
encompass the randomness contained in the wavefunction collapse. This issue
has become a cause for deep concern because of a growing rate of agreement
on the part of researchers that von Neumann projection should be interpreted
in terms of information processing as conversion from quantum to classical
information.

The measurement on a quantum system is performed with a classical
measuring instrument so that the result of the measurement process is dis-
cernible in a macroscopic, classical way. The conventional approach would
be to observe the deflection of a measuring instrument pointer (but also a
discernible flash of display on a computer screen). The possibility of macro-
scopic identification of the measurement result requires that a macroscopic
number of atoms of the order of Avogadro’s number ∼ 1023 (the number
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of degrees of freedom) is employed, even though a state of a single qubit is
measured. In this meaning, making one electron interact with another one
does not constitute a measurement as there is no conversion from quantum
to classical information.

An interesting interpretation of von Neumann projection was provided
by W. Żurek [94]. Below follows an outline of his argumentation.

Let us consider an observable (a quantity being measured) whose her-
mitean operator is Â, and, for the sake of simplicity, assume that the op-
erator has only two eigenvectors: |1 > and |2 > with two eigenvalues λ1
and λ2, respectively. These two eigenvalues denote two probable results of
measurement of the quantity linked to operator Â. Let us also assume that
the quantum state being measured is a qubit spanned on vectors |1 > and
|2 >. Any pure state of the qubit is described by coherent superposition
|Ψ >= x|1 > +eiψ

√
1 − x2|2 >, x, ψ ∈ R, x ∈ [0, 1], ψ ∈ [0, 2π). In accor-

dance with von Neumann’s projection principle, the measurement on a qubit
in state |Ψ > of a quantity A with probability x2 yields the result λ1 and the
change of state form |Ψ > to |1 >, and, with probability 1 − x2, result λ2 is
obtained and state |Ψ > changes to |2 >.

For a pure state |Ψ > the density matrix assumes the following form (in
matrix representation):

|Ψ >< Ψ| =

(
x2, e−iψx

√
1 − x2

eiψx
√

1 − x2, 1 − x2

)
,

This matrix is a Hermitean one with trace 1. The diagonal elements of the
density matrix denote the probabilities of the results of measuring of quantity
A. The off-diagonal elements denote phase differences ψ of superposition co-
efficients (as of complex numbers). The measurement of quantity A provides
no information about phase difference of ψ. The measurement destroys this
part of quantum information (of quantum state) contained in the difference
of phases between the coefficients of superposition. This fact assumes the
following form in the matrix formulation,

|Ψ >< Ψ| =

(
x2, e−iψx

√
1 − x2

eiψx
√

1 − x2, 1 − x2

)
=⇒

(
x2, 0
0, 1 − x2

)
.

Let us assume that the state of the instrument before the measurement is
given by its wavefunction |Φ0 >. Instrument P and the system being mea-
sured form together a greater system which prior to the measuring process
is in its pure state |Ω0 >= |Ψ > ⊗|Φ0 >.
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The density matrix of system U is expressed as a trace over all states of the
instrument taken from the density matrix of the system and the instrument
combined,

ρ̂ = TrP |Ω0 >< Ω0|

=

(
x2 < Φ0|Φ0 >, x

√
1 − x2e−iψ < Φ0|Φ0 >

x
√

1 − x2eiψ < Φ0|Φ0 >, (1 − x2) < Φ0|Φ0 >

)
,

(2.20)

where integral < Φ0|Φ0 > results from taking a trace over all states of the
measuring instrument P: TrP ... =

∑
r

P < r|...|r >P , where {|r >P} denotes

a basis in the Hilbert space of the instrument (
∑
r
|r >P P < r| = 1—a

basis completeness condition). Thus TrP (|Φ >P P < Ψ|) =
∑
r
< r|Φ ><

Ψ|r >=< Ψ|∑
r
|r >< r|Φ >=< Ψ|Φ >. From the normalization requirement

P < Ψ|Ψ >P= 1, which indeed produces the original density matrix.

If the state of a system measured was |1 >, then the same state would
be obtained after the measurement (for such a case x = 1), the same would
happen if the state was |2 >, then following the measurement this eigenstate
would remain unchanged as well. In the first case, the state of instrument P
after measurement, Φ1, would denote a certain state with information about
the measurement result entered, and in the second case—Φ2. Therefore

|1 > ⊗|Φ0 >=⇒ |1 > ⊗|Φ1 >, |2 > ⊗|Φ0 >=⇒ |2 > ⊗|Φ2 > . (2.21)

If the measurement is performed on superposition |Ψ >= a1|1 > +a2|2 >,
then the measurement follows the scheme,

|Ω0 >= (a1|1 > +a2|2 >)⊗|Ψ >=⇒ a1|1 > ⊗|Φ1 > +a2|2 > ⊗|Φ2 >= |Ω1 > .
(2.22)

After the measurement, neither the instrument nor the system are in their
pure states despite forming a pure state |Ω1 > of a combined system U+P
(which is an entangled state). In this entangled state, system U is found as
if partly in state |Φ1 > and partly in |Φ2 >. It is a non-separable element of
a tensor product (an entangled state of the system and the instrument).

After the measurement, the density matrix of the whole system U+P
becomes a projection operator |Ω1 >< Ω1|. Taking trace over all instrument
states, the form of the after-measurement density matrix of the system may
be determined,
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TrP (|Ω1 >< Ω1|)

=

 x2 < Φ1|Φ1 >, x
√

(1 − x2)e−iψ < Φ1|Φ2 >

x
√

(1 − x2)e−iψ < Φ2|Φ1 >, (1 − x2) < Φ2|Φ2 >

 . (2.23)

The value of the integral < Φ1|Φ2 > may be inferred from the difference
in the number of macroscopic degrees of freedom of both these functions
(they need to differ on so many degrees of freedom as they refer to two
macroscopically discernible states of the measuring instrument). W. Żurek
argued [94, 95] that this a multiple integral with multiplicity of order of
Avogadro number and with the similar number of arguments for which both
under-integral functions differ one from the other. This fact is responsible
for decreasing in relation to 1 of the values of corresponding individual inte-
grals in the multiple integral. If each individual integral yields a value only
narrowly lower than 1, then the multiple integral practically attains 0 (due
to multiplication of a great multitude of factors only narrowly lower than 1).

Thus, the above outline may explain the disappearance of the off-diagonal
elements of the density matrix and why the measurement yields a density
matrix compatible with von Neumann’s scheme (complete phase decoher-
ence).

The above argumentation allows to notice the link between the measurement-
induced disappearance of off- diagonal elements (phase factors) of the density
matrix and the great number of degrees of freedom of the instrument involved
in the process of von Neumann measurement. These degrees of freedom are
being involved in terms of information processing. They contain the informa-
tion about the measurement result, which for different results is entered in
a different way. In order to allow for a macroscopic discernibility of various
results, each needs to be entered in a characteristic way by means of a huge
number of the instrument’s degrees of freedom.

However, there is a quandary about how information contained in a qubit
(a system of only two degrees of freedom) may trigger a macroscopic num-
ber (of order of Avogadro number) of the instrument’s degrees of freedom
understood in terms of information processing. Schmidt’s representation,
which guarantees the symmetry of information transfer during an interac-
tion and the measurement itself, is still operative. An attempted explication
of this key problem to the understanding of the conversion from quantum
information to classical information follows below.
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2.4.1 The possible scenario of quantum measurement
including relativistic limit for interaction propa-
gation

While performing von Neumann-type measurments on a qubit, the informa-
tion about its state must be entered into the measuring instrument is such a
way that a macroscopic number of degrees of freedom is involved (changed)
in order to make different measurement readings macroscopically discernible.

And yet, from Schimdt’s representation it follows that due to an interac-
tion between a qubit with two degrees of freedom and a measuring instru-
ment with a great number of degrees of freedom only the smaller of these
two numbers determines the possibility of mutual exchange of information
during interaction (entanglement). Therefore, it is impossible to enter the
information about the qubit involving more than two degrees of freedom of
the instrument, a fact which would disable macroscopic reading of the in-
strument indication. So there is a question to address: what happens during
von Neumann projection. In order to provide an answer, let us consider the
following scenario of von Neumann projection.

A small quantum system (a qubit) enters into interaction with a similarly
small fragment of a measuring instrument. During the measurement process,
information about the small quantum system (the qubit) is subsequently en-
tered into small and mutually interacting fragments of the instrument. The
interaction between these fragments carrying information about the qubit
being measured propagates with a finite velocity c (the speed of light). Thus
to enter information about the qubit, takes time of ∼ L

c
(L—the length of the

measuring instrument). This way the time for von Neumann projection to
take place is estimated. Such interpretation of quantum measurement shows
its intrinsically relativistic nature, and despite many attempts at providing
its proper interpretation [94, 95]) probably underlies the failure in explaining
this phenomenon in the framework of non-relativistic quantum mechanics.
Non-relativistic approach assumes immediate switching on of interaction in
the whole space, which is not so—interaction does not propagate with a ve-
locity greater than the speed of light in vacuum. However, generalization of
quantum mechanics to relativistic case faces fundamental (insurmountable as
of yet) obstacles. The basic difficulty of relativistic quantum mechanics con-
sists in the modification of uncertainty principles [27], ∆E∆t ∼ h̄ and hence
∂E
∂p

∆p∆t ∼ h̄, but ∂E
∂p

< c, thus ∆p ∼ h̄
c∆t

, which means that uncertainty of
momentum itself is limited during the measurement on it; in result, the ob-
servation of time-dependent evolution of momentum is infeasible, dynamics
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excluded4.

Similarly, dimensional analysis of fundamental constants and length di-
mension yields the following combination h̄

m0c
= ∆l. This quantity can be

interpreted as the uncertainty of a particle position (the infeasibility of posi-
tion measurement excludes the notion of wavefunction). The second part of
the formula shows that by decreasing ∆l the threshold for creating particle-
antiparticle pair, ∆l = h̄c

m0c2
, may be exceeded, which disables position mea-

surement of the particle with accuracy greater than ∆l.

The explanation of the mechanism of von Neumann projection seems to
require deeper understanding of the relativistic nature of quantum descrip-
tion and that is why it cannot be presented in terms of unitary evolution in
the framework of non-relativistic quantum theory (despite many attempts at
it [94, 95]).

This study proposes a possible experimental illustration of the relativistic
nature of von Neumann projection. The speed of light in vacuum is c, but
in systems with reduced speed of light, this reduced value determines the
rate of (electromagnetic) interaction transmission, which may account for
the increased time of quantum measurement. A well-recognized Cherenkov
radiation [96, 97] is emitted when an electron passes through a medium
(e.g., water) with velocity greater than the speed of light in this medium.
A photonic ”shock wave” is generated that is behind with respect to the
moving electron. A similar phenomenon occurs for a sound wave when the
sound source moves faster than the sound in a given medium. It seems that
it is infeasible to perform an optical measurement of an upcoming Cherenkov
electron the same as it is impossible to hear an upcoming missile moving with
velocity greater than the speed of sound.

2.5 Geometric properties of the density matrix—

geometry of quantum information

A set of density matrices of a given quantum system forms a convex set (a
convex linear combination of two density matrices: ρ̂1 and ρ̂1, ρ̂ = λρ̂1 +
(1 − λ)ρ̂2, λ ∈ R, λ ∈ [0, 1], also forms a density matrix [i.e. is a Hermitean
operator, non-negatively defined and with trace 1]). It proves that a set of

4momentum is precisely defined for free particles (in accordance with translational
invariance)—only such particles are viable in relativistic quantum mechanics (then, mo-
mentum can undergo an infinitely long process of measurement); thus, states of free par-
ticles can be determined prior to and after the interaction, but not during the course
of

28



density matrices is a convex set in the space of all linear operators (which
means that it contains all points of segments connecting any two of its points).

It can be observed that on the boundary of the set of density matrices (in
the case of n-dimensional Hilbert space), there are density matrices with at
least one eigenvalue equal to 0 (due to the fact of 0 being on the boundary
between positive and negative eigenvalues, and satysfying the property of the
density matrix being nonnegative, the matrices with 0 eigenvalue must be on
the boundary of the set of density matrices). If all, but one, eigenvalues equal
0 then the density matrix corresponds to the projection operator onto one
state. It becomes then the pure state density matrix. Such matrix is found
on the boundary of the set of density matrices, and, what is more, becomes a
so-called extremal point of this set. This follows from the fact that the pure
state density matrix cannot be represented as a convex combination of other
density matrices. It can be proven by contradiction: let us assume that the
pure state matrix can be represented as a linear combination of two distinct
density matrices:

|Ψ >< Ψ| = λρ̂1 + (1 − λ)ρ̂2.

Then for any state |Φ >, orthogonal to |Ψ >, there is < Φ|Ψ >< Ψ|Φ >=
0 = λ < Φ|ρ̂1|Φ > +(1 − λ) < Φ|ρ̂2|Φ >, but due to the property of
nonnegative definition of all density matrices, there is < Φ|ρ̂1(2)|Φ >= 0. As
|Φ > has been arbitrarily chosen, we obtain |Ψ >< Ψ| = ρ̂1 = ρ̂2, which
contradicts the initial assumption.

In the case of two dimensional Hilbert space (i.e., a qubit), all boundary
states are extremal (which follows from the fact that only one eigenvalue
may be equal to 0 in the case of 2 × 2 density matrix). For spaces of higher
number of dimenstions, there are not only pure states on the boundary of
the set of density matrices (these are the extremal points of the boundary).
Mixed states do not become extremal points as their diagonal representation
is an example of a convex decomposition over other density matrices. Mixed
states, thus, may constitute either the inner points of the convex set of all
density matrices of a given system or the boundary points, but they are not
extremal points of the boundary.

The representation of a mixed state as a convex combination of two other
density matrices is not unique. Despite this fact, for an arbitrary observable
M̂ there is,

Tr(ρ̂M̂) = λTr(ρ̂1M̂) + (1 − λ)Tr(ρ̂2M̂)

and the result is independent of the convex representation. Thus, for mixed
states, there exist many possible convex decompositions of the density ma-
trices, which, however, defy identification in the process of measurement.
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The pure state, being an extremal point cannot be represented in the form
of a convex decomposition. This hidden lack of uniqueness of convex repre-
sentations for mixed states (not distinguished, however, in measurement)
shows one more significant feature of quantum infromation contained in
mixed states of a given system. Just as entanglement, it does not have a
classical counterpart.

2.5.1 The geometry of a qubit—the convex set of den-
sity matrices of a qubit (the Bloch sphere)

The abovementioned geometrical properties of quantum information is best
exemplified by a qubit. The denstity matrices of a qubit are 2 × 2 complex
matrices. As they must be Hermitean matrices, their real parameters are
reduced to the number of 4. Any Hermitean matrix can be represented as a
linear combination, with real coefficients, of four Hermitean matrices:

1̂ =

(
1 0
0 1

)
, σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
,

the last three matrices are Pauli’s matrices. These matrices are traceless
while the unit matrix is of trace 2. Thus, if only Hermitean matrices of
trace 1 are considered, the number of coefficients can be reduced to 3: P =
(Px, Py, Pz), which can be interpreted as the coordinates of a real vector,

ρ̂ =
1

2
(1̂ + P · σ̂) =

1

2

(
1 + Pz Px − iPy
Px + iPy 1 − Pz

)
. (2.24)

The condition for nonnegative definition of the denstity matrix leads to
further constraints. In the case of matrix 2× 2, this condition (equivalent to
having nonnegative eigenvalues) becomes reduced to the following require-
ment: λ1λ2 ≥ 0 (as, at the same time, for the density matrix of a qubit
λ1 + λ2 = 1).

The product of the matrix eigenvalues equals to its determinant. There-
fore, det(ρ̂) = (1 − P 2)/4 ≥ 0 → 0 ≤ P 2 ≤ 1. This means that the set
of density matrices of a qubit is isomorphic with a unit ball (the so-called
Bloch sphere).

In accordance with the general properties of the (convex) sets of density
matrices, presented in the previous section, the interior of the Bloch sphere
constitute mixed states whereas the surface—the pure states. All points on
the ball boundary are extremal, which means that on the surface of Bloch
sphere there are only pure states.
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pure states
(sphere surface)

mixed states
(sphere interior)

maximal mixed states
(sphere center)

Figure 2.1: The Bloch sphere is a unit ball in a 3D abstract space (the notion
sphere instead of ball is used for the sake of tradition)

The inner points of the Bloch sphere may by represented (in infinitely
many ways) as convex combinations of a pair of extremal points, the end-
points of a chord passing through a given inner point of the sphere. The
centre of the sphere P = 0 corresponds to the density matrix ρ̂ = 1

2
1̂. In this

case, the diameter endpoints define a pair of pure states which, after being
mixed in the proportion of 1

2
, form a maximally mixed state.

2.5.2 The Bell states

The simplest interacting system, i.e., one with entanglement, is represented
by a pair of qubits (in a four dimensional Hilbert space). This space allows
for a choice of a basis on non-entangled states,

|1 >A ⊗|1 >B, |2 >A ⊗|1 >B, |1 >A ⊗|2 >B, |2 >A ⊗|2 >B.
However, another choice of the basis is also possible. In particular, it

can be one made up of maximally entangled states (i.e., corresponding to
maximally mixed states of both system A and system B). Such basis may
assume the following form,

|Ψ+ > = 1√
2
(|1 >A ⊗|2 >B +|2 >A ⊗|1 >B),

|Ψ− > = 1√
2
(|1 >A ⊗|2 >B −|2 >A ⊗|1 >B),

|Φ+ > = 1√
2
(|1 >A ⊗|1 >B +|2 >A ⊗|2 >B),

|Φ− > = 1√
2
(|1 >A ⊗|1 >B −|2 >A ⊗|2 >B).

(2.25)

These states are called the Bell states, and the basis—the Bell basis. Op-
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erations performed on the entangled states may generate nonclassical (based
on quantum entanglement) effects referring to quantum information, which
do not have any classical counterpart. The procedures of superdense coding
[10, 11, 12] and quantum teleportation [98, 99] are ones of them. They will
be presented briefly in the ensuing paragraph.

2.6 Quantum protocols

2.6.1 Superdense quantum coding

One can easily notice that, from the Bell states representations in the form
of (2.25), it is possible to generate all Bell states starting from only one, by
performing local operations only on qubit B, namely

|1 >B→ |1 >B, |2 >B→ |2 >B =⇒ |Ψ+ >→ |Ψ+ >,
|1 >B→ −|1 >B, |2 >B→ |2 >B =⇒ |Ψ+ >→ |Ψ− >,
|1 >B→ |2 >B, |2 >B→ |1 >B =⇒ |Ψ+ >→ |Φ+ >,
|1 >B→ −|2 >B, |2 >B→ |1 >B =⇒ |Ψ+ >→ |Φ− > .

(2.26)

This situation means that it is possible to double information coding
capacity in comparison to a classical pair of bits: 00, 01, 10, 11. In the case
of a pair of classical bits, in order to obtain all four states of the pair of
bits, it was necessary to alter (code) both bits. It refers also to the space
basis composed of non-entangled states, i.e., the basis |1 >A ⊗|1 >B, |2 >A

⊗|1 >B, |1 >A ⊗|2 >B, |2 >A ⊗|2 >B (in this case coding on both states
is also required). However, if quantum entanglement is used and the basis
given by (2.25), then the coding may be performed only on one qubit in the
pair. This quantum effect is called the superdense coding, and it may serve
the purpose of quantum information processing [9, 10, 11, 12, 13].

2.6.2 Quantum teleportation

Another important example how to utilize quantum entanglement is the phe-
nomenon of quantum teleportation [98, 99]. It can be described in the fol-
lowing way. Assuming that there is particle A (qubit A) in its pure state:
|ϕ >A= a1|1 >A +a2|2 >A, |a1|2 + |a1|2 = 1, and our aim is to transfer (tele-
port) this state onto particle C (qubit C), away from particle A. An auxiliary
particle B (qubit B) is employed, which, together with particle C forms CB
pair in an entangled state. It can be one of maximally entangled Bell states—
e.g., state |Ψ− >CB= 1√

2
(|1 >C ⊗|2 >B −|2 >C ⊗|1 >B). This state may
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be generated while performing measurement on the pair of particles (CB,
in this case) with a measuring device, for which its Hermitean operator has
the spectral representation in the form of projection operators onto the four
Bell states of qubits B and C. Such measurement, or von Neumann projec-
tion onto Bell states (2.25), corresponds to the interaction between particles
(qubits) B and C, which results in quantum entanglement. However, just
like in the case of each quantum measurement, it is impossible to predict
which one of Bell states is picked due to the randomness of von Neumann
projection.

Let us assume, for example, that the measurement on the pair of qubits
B and C in the Bell basis generates, due to von Neumann projection, the
following state |Ψ− >CB. Then, the system of three qubits ABC is found in
the pure state,

|Ω >ABC = |ϕ >A ⊗|Ψ− >CB

= (a1|1 >A +a2|2 >A) ⊗ ( 1√
2
(|1 >C ⊗|2 >B −|2 >C ⊗|1 >B))

= 1
2
{|Ψ+ >AB ⊗(−a1|1 >C +a2|2 >C)

+ |Ψ− >AB ⊗(−a1|1 >C −a2|2 >C)
+ |Φ+ >AB ⊗(a1|2 >C −a2|1 >C)
+ |Φ− >AB ⊗(a1|2 >C +a2|1 >C)} .

(2.27)
The above formula is an algebraic identity, following from the fact that

the same vector of a linear space can be represented differently by means of
changing the basis in eight dimensional space HA⊗HB ⊗HC . In particular,
vector |Ω >ABC can be represented in the basis of this space in the following
form,

|Ψ+ >AB ⊗|1 >C , |Ψ− >AB ⊗|1 >C , |Φ+ >AB ⊗|1 >C , |Φ− >AB ⊗|1 >C ,
|Ψ+ >AB ⊗|2 >C , |Ψ− >AB ⊗|2 >C , |Φ+ >AB ⊗|2 >C , |Φ− >AB ⊗|2 >C .

Such a choice of the basis leaves coefficients ai with the qubit (particle)
C although, initially, they were with qubit A. They are with qubit C, but in
four various combinations. Let us emphasize that such situation follows from
the possibility of the change of basis in Hilbert space of multi-particle (multi-
qubit) systems with the entangled states. Then, particles A and B can be
brought closer and measured on in terms of Bell states measurement, i.e.,
introduce the interaction between them by means of such a measurement.
This measurement is followed by a random, unpredictable choice of one out
of four Bell states of AB pair. Simultaneously, in accordance with (2.27)
a pure state of particle C is picked with only one combination of unknown
coefficients a1 and a2 (which are prepared to be teleported from qubit A onto
qubit C).

However, if von Neumann projection of pair AB onto the Bell states brings
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it into e.g., state |Φ− >AB, then particle C will certainly be found in state
a1|2 >C +a2|1 >C . And it suffices to locally exchange states |1 >C and |2 >C

on (distant) particle C in order to obtain the initial state of particle A now
located on particle C. It cannot be predicted, though, which result of the
projection onto the Bell states is realized. For the sake of the example, we
have assumed the fourth result, but due to the randomness of von Neumann
projection not until the projection has ended does the observer (Alice) know
what local operations on qubit C are to be performed in order to obtain the
desirable initial state on qubit A.

Effective teleportation from A onto C requires classical information about
which Bell state is realized in von Neumann measurement on AB performed
by Alice. This classical information should be passed to the observer at
qubit C (Bob) via classical communication channels (this information can
be sent to Bob—the observer at qubit C by Alice, who has performed Bell
measurements on AB).

The requirement that additional classical information is passed limits the
speed of quantum teleportation due to the finite speed of light (in the classical
channel). Although quantum information reaches particle B immediately, for
Bob it is obscure, unless he had got a classical message on the result of Bell
projection for the pair AB. This fact proves that a system with classical
information is completely different from a system without this information.

It is important to notice that the measurement performed by Alice on
pair AB generates entanglement of particles A and B, but simultaneously
disentanglement of particles C and B—after the measurement, particle C is
found in the pure state despite not being measured on. At the same time,
particle A becomes entangled with particle B (and pair AB does not carry
any information about coefficients a1 and a2—all this information is already
found on qubit C).

Another important aspect of the protocol presented herein is the No-
Cloning rule—particle A sheds its pure state which appears on particle C;
the quantum state is not copied but passed (teleported). Qubit C may be
found at any distance from qubit B provided the initial entanglement BC is
mantained, which means that teleportation is performed over any distance
(i.e., over which entanglement is maintained).

Quantum teleportation provides an example of an important process dis-
entanglement of quantum states. In the process of von Neumann projection
in the basis of entangled states of qubits AB, qubit C becomes disentangled
and is brought into the pure state. It all happens without qubit C, but only
locally on qubits A and B (despite initial entanglement between B and C).
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Figure 2.2: A schematic diagram of the process of quantum teleportation:
particle 2 (B), quantum-entangled with particle 3 (C), is involved in another
entanglement with particle 1 (A) due to the measurement on pair 1-2 (AB);
then particle 3 (C) disentangles, and particle 1 (A) sheds its state onto parti-
cle 3 (C) provided is has been suitably measured (the measurement has been
correlated with a previously unknown measurement result of pair 1-2 (AB))

2.7 No-Cloning, No-Broadcasting, No-Deleting

theorems for quantum information

An unknown, pure quantum state cannot be copied [100]. If it could, it would
result in breaking the uncertainty principle—for example location could be
measured on one state, and momentum could be measured on the copy. The
impossibility of copying a pure state and an unknown quantum state follows
from the following argumentation. Let us assume that there exists operator
Â by means of which a quantum state can be copied, i.e., Â|Ψ >= |Ψ > |Ψ >.
Therefore Â(a1|1 > +a2|2 >) = (a1|1 > +a2|2 >)(a1|1 > +a2|2 >) = a21|1 >
|1 > +a1a2|1 > |2 > +a2a1|2 > |1 > +a22|2 > |2 >.

This operator is nonlinear and it does not satisfy the linearity condition
(required by the superposition principle). If it was linear, then Â(a1|1 >
+a2|2 >) = a1|1 > |1 > +a2|2 > |2 >—both equations can agree only if
the copied state is |1 > or |2 > (i.e., when it is known state, then either
a1 = 1, a2 = 0, or a1 = 0, a2 = 1; an unknown states correspond to arbitrary
and unknown coefficients a1 and a2).

In the same way it can be shown that quantum information cannot be
deleted (No-Deleting theorem [101, 102, 103])—this also follows from the fact
that it is impossible to find a linear representation of such operation. No-
Cloning theorem makes quantum information broadcasting also impossible:
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No-Broadcasting theorem [104, 105]. These features of quantum information
make quantum information significantly different from classical information,
which defies the No-Cloning, No-Deleting, No-Broadcasting rules.

2.8 Limitations on quantum processing of in-

formation

Unavoidable decoherence—uncontrolled quantum information leakage into
the surrounding environment due to the system interaction with the environment—
perturbs ideal quantum procedures which ensure the running of quantum
schemes. If, however, decoherence is kept below a certain threshold, quan-
tum error corrections can be made by applying the so-called quantum error
correction schemes [14], which enables the realization of any quantum proce-
dures of a quantum computer or any other deterministic quantum project.

In classical information processing, quantum error correction consists in
multiplying classical information, and verifying the multiplied (redundant)
classical registers form time to time—(infrequently) appearing errors are
identified and corrected immediately. In the quantum case, the multiplication
of quantum information is impossible (No-Cloning theorem) and quantum er-
ror correction is based on a different scheme:

• seeking more decoherence-resistant areas of the Hilbert space (multi-
qubit states which, in a pair of qubits, record symmetrically both ”true”
and ”false” are decoherence-resistant, e.g., singlet-type qubit states;
information (or quantum states) symmetrization, requires, however,
multiplication of quantum registers, which makes decoherence rise ex-
ponentially,

• attempting an information carrier replacement for a more decoherence-
resistant one (temporarily, a state can be teleported onto a more resis-
tant carrier).

In order to satisfy quantum error correction requirements, DiVincenzo
formulated a set of conditions [7, 8, 22, 20] which allow for the possibility
of the implementation of quantum error correction (the typical decoherence
time must be at least of 6 orders longer than the typical time of quantum
procedures). None of currently suggested solutions for the quantum com-
puter has satisfied these time restrictions. This situation may follow from
the fact that the same interactions which allow for qubit control (logical op-
erations) are also responsible for decoherence. The stronger (energetically)
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these interactions are, the faster logical operations are carried out. However,
the same interactions couple the system with the surrounding environment
and produce strong decoherence effects. In nanotechnological and optical
projects of quantum computers (multi-qubit), the difference in the time-rate
of quantum operation in relation to decoherence still has not exceeded 3
orders of magnitude.

However, it is expected that further intensive research in this area should
result in

• finding another method of quantum error correction (despite a great
effort, there is still no relevant solution),

• finding a combined solution with qubit conversion (between a fast con-
trolled carrier and a decoherence-resistant one—unfortunately, qubit
conversion is also inconveniently long-lasting),

• finding global, topological, and thus decoherence-resistant, carriers of
quantum information, in them

– braid groups [17] (and nonabelian anyons)—herein, the times of
logical operations are expected to be of 30 orders of magnitude
greater than those of decoherence processes [18] (however, this is
still unclear and doubtful if experimentally viable),

– it is hoped that superconductive states may satisfy DiVincenzo
conditions as they have non-local properties to a great extent.

In the case of quantum cryptography, equipment requirements [72, 106,
107, 108] are more easily met in respect to decoherence, so this is why this
quantum technology (public key distribution via a quantum channel) has
been practically used in optical systems [fiber-optical ones, over distances of
10 km (up to 1000 km) and outdoors, over distances of 2 km].
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Quantum algorithms
Algorithm author Acceleration in compari-

son to classical procedures
Deutsch and Jozsa’s algo-
rithm, 1992

”Oracle setting”, differ-
entiation between a bal-
anced function (a function
of the same number of val-
ues of 0,1 or 1,0 on a bit)
and a constant (0,0 or 1,1
on a bit) on the register of
N bits

exponential accel.

Simon’s algorithm, 1997 Differentiation between
objective function 1-1 and
a ’gluing’ function 2-1 on
the register of N bits

exponential accel.

Shor’s algorithm for fac-
torization, 1994

Finding prime numbers
(factorization)

exponential accel.

Fourier’s Transform , Ki-
taev, 1995

Fast quantum Fourier’s
Transform—the basis of
all quantum algorithms

Grover’s algorithm, 1995 ”Finding a needle in
a haystack”, database
search

quadratic accel.

Shor’s algorithm of quan-
tum error correction, 1996

Quantum error correction
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The level of advancement of quantum information technology
Hardware type The number

of qubits re-
quired

The number
of steps be-
fore decoher-
ence

Status

Quantum cryptography
on signle qubits

1 1 implemented (market
product)

Quantum cryptography
on entangled states

2 1 demonstrated

CNOT gate 2 1 demonstrated
A system of gates 2 2 demonstrated
Deutsch’s algorithm 2 3 demonstrated
Channel capacity duplica-
tion

2 2 close to realization

Teleportation 3 2 demonstrated (photons
over the distance of 10 km
in an optic wire, electrons
over the distance of 1cm)

Entanglement exchange 4 1 demonstrated
Repeater for cryptogra-
phy

several several incomplete theory

Qantum simulation several several toy demostration
Grover’s algorithm with
toy-data

3+ 6+ demonstrated

Ultra-precise standard of
frequency

several several expected

Entanglement purification several several expected
Quantum computer (toy-
demo)

3-5 (128
qubits D-
Wave ?)

10-100 displayed

Computer based on
trapped ions 3-5 qubits

demonstrated

NMR spin computer 3-5
qubits

demonstrated

Superconductive com-
puter

demonstration uncertain
(private company)

Shor’s algorithm with toy-
data

16+ 100+ realization sought

Qantum factorizing ma-
chine

100+ 1000

Universal qantum com-
puter

1000+ 1000+
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DiVincenzo conditions that enable scalable quantum computer project viability
1 a properly defined qubit—two quantum states separated from the remaining

states of the system (relativly wide energy gaps, forbidden transitions), so that
information entered therein does not leak out

2 the possibility of information recording on the qubit defined—i.e., the possibil-
ity of generating any superposition of two qubit states by means of external,
macroscopically controlled, field (e.g., Rabi’s oscillations within a realistic range
of fields)

3 designing and implementing an universal two-qubit operation, which may en-
able to perform any logical quantum operation (a CNOT gate, or any other
one, may work as such a universal gate provided there exists an effective way
of switching on or off of qubit interactions, i.e., the entanglement of two qubits
can be controlled

4 ensuring that time-rates of logical operations performance and decoherence to
appear do not be lower than 6 orders

5 ensuring that output information can be read
6 ensuring that the whole system can be reset

DiVincenzo conditions that enable quantum cryptography
1 defining a free information carrier—a mobile qubit (e.g. a photon)
2 enabling to maintain quantum properties of mobile qubits at a constant level

over long distances
3 enabling the identification of a qubit state (measurement)

2.9 Time evolution of density matrix—evolution

of quantum information

The density matrix describes a mixed state (in particular also a pure state) of
the sub-system (let say) A of the total system A+B (B describes surround-
ings of the system A) which undergoes time evolution according to quantum
mechanics rules, i.e., the total system A + B unitary evolves being all the
time in a pure state:

ih̄
∂|Ψ >AB (t)

∂t
= HAB|Ψ >AB (t), (2.28)

where HAB = HA+HB+HintA,B is the Hamiltonian of the total system A+B
including interaction of subsystems A and B. From the above it follows a
time evolution of the density matrix the subsystem A, because:

ρ̂A(t) = TrBρ̂AB(t) = TrB|Ψ(t) >AB AB < Ψ(t)|. (2.29)

It is clear that time evolution of the subsystem A is governed by both
Hamiltonians of A and B subsystems due to their interaction. In a gen-
eral case it makes rather complicated behaviour, wahich cannot yield simple
description and certainly not within only A subsystem. In some special sit-
uations it is possible, however, to approximate the true evolution by model
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nonunitary evolution only within the A subsystem Hilbert space, unless the
interaction HintAB dissappears. In the latter case both subsystems evolve
independently according own unitary evolution, i.e.,

ih̄
∂|Ψ >A (t)

∂t
= HA|Ψ >A (t), ih̄

∂|Ψ >B (t)

∂t
= HB|Ψ >B (t). (2.30)

The above Shrödinger equations determine the unitary evolutions of both
subsystems (and of the total system) with respective evolution operators,
ÛA(t) and ÛB(t), and for the total system, ÛAB(t) = ÛA(t) ⊗ ÛA(t) 5.

This evolution can be thus treated as evolution of a pure state6.
In a general case density matrix of the subsystem A has the form (at an

arbitrary choise of the basis in Hilbert space for the subsystem A),

ρ̂A =
∑
i.j.k

aia
∗
j |i >A A < j|, (2.31)

or in the basis in which is diagonal:

ρ̂A =
∑
r

pr|r >A A < r|. (2.32)

This matrix is a result of the trace operation taken of the pure state density
matrix of the total system A+B, ρ̂AB = |Ψ >AB AB < Ψ|, where |Ψ >AB=∑
i.j ci,j|i >A ⊗|j >B.

In the case of unitary evolution (when HintA,B = 0) we have:

|Ψ(t) >AB= ÛAB(t)|Ψ(0) >AB=
∑
i,j

ai,jÛA(t)|i >A ⊗ÛB(t)|j >B . (2.33)

The vectors ÛA(t)|i >A and ÛB(t)|j >B at each time moment t defines new
bases in Hilbert spaces of the systems A and B, respectively, since unitary
evolution tranforms bases into bases. Thus at an arbitrary time moment t
one can take trace over the space B from the density matrix of the total
system A+B and in result one can get the density matrix for the subsystem
A with the same coefficients (though in the changed basis),

ρ̂A(t) = TrB|Ψ(t) >AB AB < Ψ(t)| =
∑
i,j,k aika

∗
jk|i(t) >A A < j(t)|

=
∑
i,j,k aika

∗
jkÛ(t)|i(0) >A A < j(0)|Û+(t) =

∑
r pr|r(t) >A A < r(t)|

=
∑
r prÛ(t)|r(0) >A A < r(t)|Û+(t)

= Û(t)ρ̂A(0)Û+(t),
(2.34)

5for the time indepedent Hamiltonian the evolution operator has the form: Û(t) =
e−iHt

6in fact, the unitary evolution determined by HA drives a pure state, unless the initial
state was prepared as a mixed one, which then undergoes the unitary evolution
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both in the diagonal or arbitrary representations.
Thus, an unitary evolution of density matrix has the form7

ρ̂A(t) = Û(t)ρ̂A(0)Û+(t). (2.35)

One ca rewrite it in the form of differential equation, of which solution is
the above density matrix,

ih̄
∂ρ̂A(t)

∂t
= [ĤA, ρ̂A(t)], (2.36)

which is easy noticeable due to Shrödinger equations, ih̄∂|i>A

∂t
= ĤA|i >A and

−ih̄∂<i|A
∂t

=A< i|ĤA. The above equation is called the Liouville equation for
the desity matrix (it is the same dynamical equation as for the statistical
operator in quantum statistical physics).

The evolution of the density matrix can be represented in a geometrical
manner on the Bloch sphere for a qubit.

Of particular interest8 is the qubit defined by two stationary states9,

|Φ1(r, t) >A= eiE1t/h̄|ϕ1(r, t) >A, ĤA|Φ1(r, t) >A= E1|Φ1(r, t) >A,

|Φ2(r, t) >A= eiE2t/h̄|ϕ2(r, t) >A, ĤA|Φ2(r, t) >A= E2|Φ2(r, t) >A .
(2.37)

If the qubit is in a pure state,

|Ψ(t) >A= c1e
iE1t/h̄|ϕ1(r, t) >A +c2e

iE2t/h̄|ϕ2(r, t) >A, (2.38)

then the density matrix attains the form:

ρ̂A(t) =

[
|c1|2 c1c

∗
2e
iω0t

c∗1c2e
−iω0t |c2|2

]
, (2.39)

where ω0 = E2−E1

h̄
.

It is easy to generalise the above equations for the case of Hamiltonian,
ĤA = Ĥ0 + Ĥ ′

A(t) and the qubit spanned on two stationary states of the
Hamiltonian Ĥ0,

ih̄
∂ρ̂A(t)

∂t
= [(Ĥ0 + Ĥ ′

A(t)), ρ̂A(t)], (2.40)

or in the H0 Hamiltonian representation:

ih̄
∂ρij
∂t

= Eiρij − Ejρij +
∑
k

(H ′
ikρkj − ρikH

′
kj), (2.41)

7as the operator Û(t) is unitary, thus Û+ = Û−1

8also due to links with two-level laser systems [109]
9for stationary states the time evolution is exceptionally simple
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where i, j, k = 1, 2 and H ′
ij =A< Φ|Ĥ ′

A(t)|Φ >A. Remembering that the
density matrix in Hermitean with the trace equal to one, only two of its
matrix elements ρij (in the case of a qubit) are independent: ρ11 being a real
function, and ρ12 being a complex function. These matrix elements satisfy
the following equations:

∂ρ11
∂t

= i
h̄
(ρ12H

′
21 − c.c.),

∂ρ12
∂t

= iω0ρ12 − i
h̄
(1 − 2ρ11)H

′
12 − i

h̄
ρ12(H

′
11 −H ′

22),
(2.42)

note that ρ22 = 1 − ρ11 and ρ∗12 = ρ21.

Using the representation of the Bloch sphere on can write:

Px = 2Reρ12,
Py = −2Imρ12,
Pz = ρ11 − ρ22,

(2.43)

Then, the evolution of density matrix of qubit can written as follows:

∂P
∂t

= F × P,

F =
(
1
h̄
(H ′

12 +H ′
21),

i
h̄
(H ′

12 −H ′
21),−ω0 − 1

h̄
(H ′

22 −H ′
11)
)
.

(2.44)

Note that the vector F is real-valued (Fx = 2
h̄
ReH ′

12 and Fy = − 2
h̄
ImH ′

12).
Frequently, due to symmetry reasons, H ′

11 = H ′
22 = 0, and then Fz = ω0.

It is clear that equation (2.44) describes a precession of the Bloch vector
P around the vector F. Therefore, the unitary (coherent) evolution of the
qubit density matrix is the precession-like movement around the vector F.
Note that the decoherence will correspond, within this geometrical reprsen-
tation, to the time-dependent shortening of the vector P length (being equal
to 1 for a pure state)—this type of dynamics will be related to diagonal (re-
laxation) decoherence, and to the time-dependent change of the orientation
of the vector P inside the Bloch sphere, accompanying the length shorten-
ing (along e.g., a spiral type trajectory, which could be modelled by simple
parameters)—for off-diagonal (dephasing) decoherence. To describe such a
decoherence, being the non-unitary evolution of the density matrix, the anal-
ogy to nonequlibrium equation for statistical operator of Boltzmann type is
usually employed. The corresponding collision integer (with at most two time
scales) in the Boltzmann equation allows to model arbtrary movement of P
vector inside the Bloch sphere as the effective model of decoherent nounitary
dynamics of qubit information contents (density matrix).
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2.10 Rabi oscillations—information control over

qubit

Single-qubit operations—setting on demand any superposition of qubit |Ψ >=
a1|1 > +a2|2 > can be accomplished by means of the so-called Rabi’s os-
cillations. Let us consider a strictly two-level system (a qubit) [practically
generated when the possibility of another inter-level transitions is negligible
(e.g., in atom with a pair of energy levels distant enough from other states)]
with external time-dependent perturbation with frequency close to (or equal)
the energy gap of a given pair of energy levels.

Let there be two stationary states of a two-level system:

H0|1 >= E1|1 >,

H0|2 >= E2|2 > .

An external perturbation, e.g., an interaction with a e-m wave in a dipole
approximation10 in the form of e-m field potential,

V (t) ∼ V0cos(ωt)

produces Hamiltonian perturbation11 [µZ—magnetic moment],

H ′ = −µzE = −µz(E0e
iωt + c.c.).

This perturbation generates a time-dependent (nonstationary) evolution of
the system described by a wave function which, however, can be represented
as a linear combination of |1 > and |2 >, i.e.,

|Ψ(t) >= a1(t)|1 > +a2(t)|2 >

and it satisfies the formula,

ih̄
∂|Ψ(t) >

∂t
= (H0 +H ′)|Ψ(t) > .

Assuming that states |1 > and |2 > are isotropic, (then < 1||µz|1 >=<
2|µz|2 >= 0) the following equations are obtained

ih̄
∂a1
∂t

= a2 < 1′| − 1

2
µzE0|2′ >

[
ei(ω−ω0)t + e−i(ω+ω0)t

]
,

10when the wave-length is significantly bigger than the system size
11field E along z axis is selected

44



ih̄
∂a2
∂t

= a1 < 1′| − 1

2
µzE0|2′ >

[
ei(ω+ω0)t + e−i(ω−ω0)t

]
,

where ω0 = E2−E1

h̄
, time functions are extracted from stationary states, i.e.,

|i >= e−iEit/h̄|i′ >.
The formulas above contain fast-changing terms e±i(ω+ω0), which can be

neglected in comparison with slow-changing terms e±i(ω−ω0) (this is the so-
called rotating-axes approximation) [109]—the fast terms would generate an
additional weak-oscillation structure imposed onto slow-changing relation-
ship. Such a fast-oscillating structure cannot be observed due to its inconve-
nient time-resolution, and can only be considered after taking average over
longer time periods—that is why these terms are negligible.

After omitting the fast-changing functions, the system of differential equa-
tions assumes the following form,

∂2a1
∂t2

− i(ω − ω0)
∂a1
∂t

+
|x|2

4
a1 = 0,

where x = <1′|µzE0|2′>
h̄

. This equation has a solution (it is a linear one),

a1 =
(
A1e

iΩt/2 +B1e
−iΩt/2

)
ei(ω−ω0)t/2,

where Ω =
√

(ω − ω0)2 + |x|2. For the initial conditions a1(0) = 0 (then

a2(0) = 1 [chosen real], as the normalization condition leads to |a1|2 + |a2|2 =
1) the constants A1 and B1 can be determined. Then,

a1(t) =
ix

Ω
sin

Ωt

2
ei(ω−ω0)t/2,

a2(t) =
(

cos
Ωt

2
− ω − ω0

2Ω
sin

Ωt

2

)
ei(ω−ω0)t/2.

The above equations determine the probability of the system being found
in state |1 >,

|a1(t)|2 =
|x|2

Ω2

(
sin

Ωt

2

)2

(cf. Fig. 4.12). These oscillations are called Rabi’s oscillations. Following
the so-called π impulse, i.e., after time t = π

Ω
, the ”filling” of state |1 >

reaches its maximum—this maximum equals 1 only for the situation of exact
resonance, i.e., when ω = ω0 (outside the resonance, it is lower than 1).
Rabi’s frequency of the periodic transition between states |1 > and |2 > and,
simultaneously, periodic emision and absorption of a photon of e-m wave, is
proportional to a matrix element (at resonance, Ω = |x|), i.e., the greater is
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E0, the greater the Rabi’s frequency is. Greater E0 corresponds to higher
intensity of e-m waves (e.g. of a laser beam).

It should be added that for a time-restricted impulse (e.g. a π-impulse),
a strictly monochromatic e-m wave cannot be generated—which shows that
satisfying all conditions for Rabi’s oscillations is practically feasible only
within a certain range of approximation. However, experiments in atom
spectroscopy proved them feasible. Rabi’s oscillations exist in each two-level
system (a qubit) with a perturbation of a non-zero matrix element between
both qubit states and their frequency fitting with the qubit energy gap (the
qubit is spanned between its stationary states). In particular, for spin-qubit
states along z-axis in z-oriented constant magnetic field, Rabi’s oscillation
can be iduced by Pauli’s term with lateral (along x or y-axis) time dependent
magnetic field.
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Chapter 3

Decoherence—the main
obstacle for practical
realization of quantum
information processing

3.1 Quantum dots—the perspective technol-

ogy for quantum gates

The idea of employing quantum evolution for information processing corre-
sponds with the feasibility of deterministic control over a quantum system in
order to execute a previously designed quantum algorithm. However, such
a deterministic evolution, also called unitary or coherent, requires a totally
isolated quantum system. Unfortunatelly, no quantum system can be totally
isolated from the environment. Any quantum system is susceptible to the
environment influence. In consequence, unitary or coherent evolution is per-
turbed, and quantum information undergoes uncontrollable and irreducible
leakage to the environment. Therefore, the attainablility of a scalable quan-
tum computer is seriously hindered due to decoherence phenomena. Better
recognition of decoherence processes in quantum systems may, however, en-
able to develop new technologies transcending these limitations and facilitat-
ing the attainability of quantum gates.

Quantum state decoherence progresses along two channels: relaxation,
i.e., quantum state annihilation, and dephasing, i.e., phase relations change
within quantum state description. Relaxation, or amplitude decoherence is
related to decreasing in time of diagonal elements of quantum state density
matrix, whereas dephasing (phase decoherence) corresponds to reducing of
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off-diagonal elements of density matrix. Both types of decoherence are caused
by the interaction with the environment, and become the more significant
the stronger the interaction is.

Solid-state techonology, which is promising for new practical realizations
of quantum processing of information using nanometer scale semiconductor
quantum dots, is burdened mostly with phase decoherence processes. Both
charge (i.e., orbital) and spin degrees of freedom of quantum states in quan-
tum dots undergo dephasing due to their environment (however, it should
be emphasized that spin degrees of freedom seem to be more decoherence-
resistant than orbital degrees of freedom since they are less susceptible to
direct crystal-phonon-induced interaction, but on the other hand, they re-
quire much longer periods of time-control than orbital degrees of freedom
also due to weaker interaction with spins).

Below we present a decoherence analysis, in particular phase decoherence
of charge (orbital) and spin degrees of freedom of excitations localized in
quantum dots, dealing with the issues of limitations on the feasibility of
quantum information processing, as well as other coherent control processes
within quantum dots technology.

The notion of quantum dot[1, 2, 3] comprises various nonometre-size semi-
conductor structures, manufactured by means of different technologies result-
ing in spacial limitations on carrier dynamics (electrons and holes), as well
as excitations of electron-hole pairs (excitons). Quantum dots correspond to
localization of carriers in all three dimensions, which results in kinetic energy
quantization,

∆E ≥ (∆p)2

2m∗ ≃ h̄2

2m∗d2
(3.1)

In the case of quantum dots with d ≃ 10 nm, quantization energy locates
within a range (∼ 10 eV) easy accessible for control by means of external
fields (electric and magnetic) contrary to atoms (for typical atom confine-
ment scale of 0.1 nm, the energy quantization is in the considerable higher
range ∼ 1 eV, inconvenient for control, except for by light). This advan-
tage of quantum dots, which are relatively easy to create due to a variety
of existing technologies as well as their parameters flexibility makes them a
very promising for new nanotechnology, spintronic and quantum information
processing projects.

Various semiconductor materials may be used to manufacture quantum
dots. Semiconductor quantum dots may be manufactured by means of etch-
ing technology employing high resolution photolitography (with the use of
ion or electron beams). Self-organization methods are also exploited, accord-
ing to the Stransky-Krastanov self-assmebling method consisting in applying
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subsequent epitaxy layers with different lattice constant. Electrical focusing
in a quantum well [1, 5, 6] comprises another well-promising technique, which
offers the high dot parameter flexibility and allows for dot switching on/off
on demand [1, 4, 5, 6].

In the case of semiconductor quantum dots, decoherence is, however, un-
avoidable due to strong dot-environment interaction (there aro no means of
a total dot isolation). In the case of nano-structures, quantum dots includ-
ing, there appears a new class of physical phenomena within decoherence
and relaxation range, entirely distinct form analogous processes in bulk ma-
terials or in atomic physics. This is due to characteristic meV–scale energy
resulting due to nanoscale-confinement, reaching values close to typical en-
ergy parameters of crystal collective excitations (of band acoustic and optical
phonons). This coincidence of energy scales results in resonance effects which
is diffrent from what is observed in atomic physics, where the scale of the
atom-confinement energy is by 3 orders of magnitude higher than energy of
crystal collective excitation, resulting in a weak phonon influence on atom
states. Specific decoherence effects in quantum dots result form a strong (of
resonance type) coupling effect between the carriers trapped in them and the
sea of various types of collective excitations in surrounding medium, which
highly modifies quantum dot states. Therefore the frequently used notion of
’artificial atom’ in referrence to quantum dots is to some extent misleading.
(hybirdization-induced changes of energy levels reach up to 10%). There-
fore, the decoherence and relaxation effects observed in quantum dots and
triggered by quantum dot trapped carrier spin or charge (which are essential
different from what is observed in bulk materials and atoms), seem to be
of central importance for any possible quantum dot applications, including
quantum information processing.

Decoherence in quantum systems—quantum information loss

Theoretical and idealized considerations of quantum information process-
ing [7, 8, 9, 10, 11, 12, 13] disregard the basic phenomenon accompaning
quantum evolution which is unavoidable decoherence. The notion of coher-
ent evolution refers to dynamics of an ideal isolated quantum system defined
by the Hamiltionian and Heisenberg-Shrödinger equation

ih̄
∂|Ψ(t) >

∂t
= Ĥ|Ψ(t) > . (3.2)

This differential equation unambiguously defines a trajectory in Hilbert
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space, up to the moment of measurement (then a random quantum collapse
appears, according to von Neumann scheme). The requirement of wave func-
tion renormalization (conservation of the particle number, for the elementary
case, at least one particle) makes the Hamilton operator Hermitean as well
as the evolution operator unitary,

|Ψ(t) >= eiĤt/h̄|Ψ(0) > . (3.3)

Such a form of the unitary operator of evolution, true for a time-independent
Hamiltonian, may be easily generalized to a time-dependent Hamiltonian
(when the Hamiltonian is explicitly time-dependent, its evolution can be
described by superposition (integration) of unitary evolution operators at
subsequent times dt; in accordance with Schrödinger equation, |Ψ(t+dt) >=
(1 − i

h̄
Ĥ(t)dt)|Ψ(t) >, or |Ψ(t + dt) >= Û(t, dt)|Ψ(t) >, where Û(t, dt) =

1 − i
h̄
Ĥ(t)dt, Û+Û = Û Û+ = 1 [with accuracy to the linear in dt terms]).

For a time-dependent Hamiltionian, the superposition yields the operator

expressed as [15, 16] Texp, i.e., Te
∫
H(t)dt, where T denotes time chronology

operator. Ideal evolution of an isolated quantum system is always unitary—it
is referred to as coherent evolution. And such a type of evolution is assumed
for all idealized quantum-information schemes (e.g., for quantum algorithms).

However, in real-life physical processes, quantum systems are never isolated—
there is always some degree of interaction with the environment. Even ex-
tremely low-level interaction results in coherent evolution perturbation, i.e.,
in decoherence. In such cases, the system evolution depends on the environ-
ment evolution proportionally to the sterngth of the system-environment
interaction. Non-coherent evolution defies determnism, indispensable for
any quantum process algorithm. Decoherence leads to loss of control over
quantum information processing, which may be understood as uncontrollable
leakage of information to the environment. The degree of decoherence can
be measured by means of variety of methods, among others, by von Neu-
mann entropy estimation, or in the framework of fidelity loss, where fidelity
is defined via scalar product of the system wave function for different times
[9, 10, 11, 12, 13, 14].

In classical information science, each information carrier also undergoes
environment-induced perturbation. However, due to macroscopic definition
of a bit-related state, slight changes do not result in changes in the discrete
bit value. In the case of quantum information, there is opposite situation—a
qubit state is defined by a suitable wave function (density matrix, in gen-
eral) [9, 10, 11, 12, 13], and that is why even small perturbations generate
significant changes in its state and loss of information contained in the qubit.

In order to ensure high fidelity of information processing, error correction
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methods are employed. For the classical case, high fidelity of information
systems can be achieved by means of bit multiple recording (redundancy
of classical information). Errors of classical information processing appear
randomly and individually, thus, when the whole register with redundant
information is tested (to ensure detecting and correction of minority errors)
with sufficient frequency, then fidelity at any required degree can be achieved.

A direct method of information multiplication cannot be applied to qubits
due to no-cloning limitation [9, 10, 11, 12, 13]. However, other methods
of quantum error correction, relying on the fact that multi-qubit states of
singlet-type are more decoherenc-resistant may be employed. Such singlet-
type states, symmetrized over all qubit caunting basis: |0 >a ⊗ |1 >b>
−|1 >a ⊗ |0 >b>, self-contain both ’truth’ and ’non-truth’ (in basis vector
terms), and therefore are decoherence-invariant (but only for cases when both
qubits are same-affected, which is not a rule) [14].

This method of quantum information localization in invariant subspaces
of more complex Hilbert spaces, spanned over generalized singlet states,
though effective, leads itself to decoherence increase with the unavoidable
increase in the number of qubits (singlet-type states require at least two
qubits). The increase in the number of interacting qubits, leads, to both
exponential rise of decoherence with the number or qubits (∼ eN for inde-
pendent decoherence induced affect on N qubits, and ∼ eN

2
for the same

affect on all qubits) [14]. Therefore, quantum error correction algorithms
presented herein require multiplication of quantum gate to maintain its fi-
delity1.

System multiplication for the needs of quantum error correction and, in
consequence, decoherence increase imposes further requirements for practi-
cal implementation of high-fidelity universal gate of a quantum computer. It
must be assumed that one- and two-qubit operations are by 6 orders of mag-
nitude faster than the time-decoherence characteristic of one qubit. These
are the so-called DiVincenzo conditions [7, 8, 20, 21, 22], the meeting of
which constitutes the greatest challenge for quantum information process-
ing. So far, no effective quantum system (qubit implementation) satisfying
these conditions has been created. There are three-qubit quantum comput-
ers (based on trapped ions and NMR technology) [14], but far from reaching
DiVincenzo conditions, and that is why they cannot be scaled up to a big
quantum computer (of 1000- or even 10-100-qubit computer). There has been

1there are other methods of quantum error correction such as e.g., fast teleportation of
information (state) to a better isolated parts of the system, or application of topological,
global, degrees of freedom of Hall-type systems (anyons and composite fermions [17, 18,
19]) as topological-quantum information carriers resistant to decoherence [the latter is of
a local nature, thus it would weakly influence on global topological degrees of feedom]
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intensive research of various quantum systems, particularly within solid-state
technology, which seem suitable for the implementation of necessary in/out
procedures (quantum information measurement, i.e., its conversion to more
comprehensible classical information). Nanometer-size entities seem espe-
cially promising as within this range of localization the energy of quantum
systems is of meV scale. Such values of energy facilitate quantum system con-
trol due to easy technologically attainable corresponding ranges of electric
and magnetic fields (for atoms, the eV-energy scale results from 0.5 nm-
diameter localization and makes them rather resistant to external control
within the technically realistic range of electric and magnetic fields). Arti-
ficially manufactured nanometre-size entities, quantum dots, gain more and
more favour in the area of quantum information processing implementations,
and quantum engineering, in general.

In the following chapters, analysis of phase decoherence of orbital (charge)
and spin (magnetic) degrees of freedom in quantum dots is presented, with
assessment of perspectives of they applications to practical realization of
quantum algorithms.

3.2 Phase decoherence of orbital degrees of

freedom in nanostructures

Orbital degrees of freedom pertain to charge type excitations such as elec-
trons, holes, excitons (i.e., electron-hole pairs) which are found in condensed
phase materials. These type of excitions has been well recognised in semi-
conductor structures owing to the development of advanced technologies of
semiconductor systems (e.g., high scale integration technology used in clas-
sical information processing). As charge carriers, these exctitations interact
with the electric field of the electromagnetic wave so they can be controlled by
means of quantum optics methods. Charge type excitations can be localized
in nanometer-scale artificial structures manufactored within various semicon-
ductor heterostructures, quantum dots. Excitons attract special interest as
they can be accurately controlled by electromagnetic wave within the visible
(or near infrared) light range corresponding to typical energy gap separat-
ing electron states from hole states in semiconductors (a typical material is
GaAs and quantum dots will be e.g., self-assembled structures of GaAs/InAs
type). By accommodating the energy of (incident light) photons with the
energy of the exciton, an exciton state in Rabi oscillation regime can be cre-
ated in which the superposition state of the charge qubit spanned on the
states |1 >—no exicton in a quantum dot, |2 >—one excition in a quantum
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dot can be selected. The techniques of ultra-high frequency laser impulses
(measured in femtoseconds) and the resulting application of a high inten-
stity beam allowing for the presence of high-frequency Rabi oscillations [23]
attracted a lot of interest from the side of quantum information processing
research. This interest has been centred on the fact that life-time of excitons
in the dots is measured in nanoseconds (this may suggest a difference of 6
orders of magnitude between the control time and the amplitude decoherence
time, which is required by DiVincenzo’s criteria [7, 8, 14, 20, 21, 22]).

Nevertheless, in quantum dots, the interaction between excitons (elec-
trons and holes) and phonons of the surrounding crystal is unavoidable and
must be accounted for in all considerations, which diametrically changes this
ostensibly convenient situation. Phonons are quanta of the crystal oscilla-
tions; acoustical phonons refer to the oscillations of the density type (all the
atoms in the unit cell oscillate in the same direction) and optical phonons are
related with polarisation oscillations (all the opposite-sign ions in the unit
cell oscillate in opposite direction; in ionic crystals can be excited by means
of the light, thus are called optical). Both types of phonons can interact
with charge type degrees of freedom in quantum dots. Phonons can be of
transversal or longitudinal polarisation, but these are the longitudinal modes
(LO and LA for optical and acoustic phonons, respectively) that contribute
most substantialy to the interaction with the electrons/excitons [26].

In polar materials (e.g., GaAs, a weakly polar semiconductor), LO phonon
interaction prevails. The interaction of charges with LO phonons is charac-
terised by means of dimensionless Fröhlich constant [26, 28]. The higher
the constant value, the stronger the interaction is between the charges and
LO phonons, and for the semiconductor GaAs 3D (bulk) the constant aver-
ages out around 0.06. For quantum dots GaAs/InAs, experiments (infrared
absorption in a magnetic field and the broadening of the satellite lumines-
cence peak connected to LO pnonons, expressed quantitatively via so-called
Huang-Rhys factor [24]) show a double value of the constant, which suggests
a substantial increase of the interaction with LO phonons. This phenomenon
has been explained [25] with regard to certain ambiguity [26] in the defini-
tion of LO phonon-electron interaction in crystals. The interaction between
a LO phonon and an electron leads to the polarisation of the crystal lat-
tice by the electron moving around. This polarisation (i.e. an appropriate
packet of optical phonons) is dynamic and leads to a reverse interaction with
the polarisation inducing electron. It can be thought of as being composed
of two components: intertial, which lags behind the moving electron, and
non-inertial, which accompanies the moving electron. The latter component
should be contained in the total crystal field which defines the electron itself
(the electron in the crystal is not a free particle, but includes, by its defi-
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nition, the periodic crystal field—thus can be characterised by the effective
mass and quasi-momentum instead of the momentum). The necessity of ex-
tracting only the inertial part of polarisation from the total interaction of
the electron and LO phonons leads to the abovementioned ambiguity in the
definition of the electron. When the electron is trapped in a quantum dot,
it moves with a quasiclassical velocity [27] which exceeds the velocity of a
free band electron. Thus, it better escapes out of the dynamic polarization,
which results in the increase in the inertial part of polarization and the in-
teraction between the electron and LO phonons in quantum dots. The more
localized electron in smaller quantum dot the bigger quasiclassical velocity of
the electron and the bigger the increase in the interaction with LO phonons
is. The quantitative analysis of the problem agrees well with the experimen-
tal data. It should be emphasized, though, that the marked increase in the
value of Fröhlich constant in quantum dots parallels the increase in decoher-
ence of electron/exciton states in dots due to the increase in the interaction
between the small system of the quantum dot and the sea of LO phonons in
the crystal.

The energy scale corresponding to nanometer localization of electrons
(excitons) in quantum dots ranges from a few to several dozen meV. The
same energy scale also characterises the phonons in crystals, in which the
energy of LA phonons ranges from 10 to 20 meV at the edge of the Brillouin
zone and the energy of LO phonons at the centre of the Brillouin zone (a gap
in the LO phonons spectrum at point Γ [26, 28]) reaches 30 meV. Thus in the
case of quantum dots we deal with a strong coupling regime for an interaction
of QD charge degrees of freedom with phonons (of all types). The same
energy scale of both types of excitations, local in quantum dots and collective
ones in the surrounding crystal, results in strong mutual hybridization of
these excitations, or dressing of electrons (holes) or excitons in phonons and
creation of composite particles (quasiparticles)—polarons [26, 28, 29, 30, 31,
32].

The creation of polarons in quantum dots is a strongly decoherent pro-
cess (much stronger so than it is in bulk material). The dynamics of this
process can be invesitigated employing the Green function techniques [31].
By means of this technique, the correlation function of the exciton (electron)
in the quantum dot can be expressed, which defines the overlap (the scalar
product) of the state of the carrier gradually dressed by phonons with the
initial state of the bare exciton (or electron) in the dot. Thus it is possible to
quantatively characterise the leakage of quantum information (fidelity loss)
due to the entanglement (in a quantum sense) of QD charge with deformation
and polarization degrees of feedom of the whole crystal, which are entirely
beyond control.
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The inertia of the crystal lattice is so disadvantageous that makes it im-
possible to maintain the coherence of orbital degrees of freedom dynamics
(unitary quantum evolution of the excitations) within time periods required
by the DiVincenzo conditions. The typical times of dressing charge-type ex-
citations in phonons are located within the time-range of single picoseconds,
which is the centre of the 6-orders time window between the ampitude deco-
herence time for excitons in QDs and the time scale of the quickest techniques
of their excitations. On both sides of this window, there appear windows of
3-orders of magnitude, which precludes the implementation of the quantum
error-correction scheme due to the fact of not fulfilling DiVincenzo condi-
tions.

These strongly unfavourable estimations indicate that it may be impossi-
ble to scale a quantum computer in quantum dot technology (more generally,
in only by light-controlled solid nanostructures, at least with the currently
proposed quantum error-correction schemes) [7, 8, 14].

It should be emphasized that LA phonons are of greater importance in
the process of dressing the excitons in phonons (polaron decoherence effects)
despite the fact that their interaction with excitons is energetically much
weaker (at least by one or two orders of magnitude) than in the case of LO
phonons. Strong dephasing due to LA phonons corresponds to a wide linear
dispersion of acoustic phonons, which in turn leads to a more immiediate and
significant than in other phonon modes induced change in the wave functions
of a charge-type excitations in quantum dots.

LA-phonons induced decoherence (phase decoherence, or dephasing, cor-
responding to the reduction of the off-diagonal elements of density matrix
[9, 10, 11, 12, 13]) is, as can be shown by means of a microscopic analysis, a
relatively fast process and its time is of order of the ratio of the dot diameter
and the sound velocity (it is of the scale of a picosecond). Acoustic phonons
are especially inconvenient as they are present in any crystal (as well as in
any amorphous material) and that is why the above-presented mechanism of
decoherence is of unavoidable nature 2.

Strong decoherence restrictions on the quantum evolution of charge de-
grees of freedom in quantum dots encouraged the researchers to concentrate
their attention on spin degrees of freedom in nanostructures, which do not
interact directly with phonons, instead of pursuing the idea of construct-
ing an only by light controlled quantum computer based on quantum dots
[7, 8, 31]. There have emerged a few interesting ideas of logic gates based on

2strong dephasing exists also at temperature 0K due to phonon emission; at higher
temperatures, the dephasing effects are enhanced due to phonon absorption effects, which
become more important with the rise of the temperature
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spin effects in quantum dots (cf. chapter 4).

3.2.1 Phonon-induced dephasing of exciton localized
in quantum dot

An exciton created in a QD by means of an nonadiabatic process (in time of
sub-picosecond order) [33, 5, 6] is a bare particle (an electorn-hole pair) which
is gradually dressed in phonons until it becomes a polaron. The time within
which the polaron is created depends on lattice inertia. It is relatively long
and its accurate evaluation is an important task. The process of hybridization
of a QD localized exciton with the collective excitations of the crystal lattice
surrounding the QD is in fact a time-dependent evolution of a nonstationary
state, which at the initial time (the moment of the excitation creation) is
identical with the state of the bare exciton. The bare exciton is not the
stationary state of the whole system, QD exciton and the sea of phonons in
the surrounding crystal interacting with it (a polaron represents a stationary
state of such a comlex system). The nonstationary initial state (the bare
exciton)3 undergoes further nonstationary evolution. In the nonstationary
state, the energy is not determined, however, the mean energy is shared in
time between the subsystems, the quantum dot and the phonon sea. The
mean energy of a bare quantum dot exciton is higher in comparison to the
polaron energy (whose energy is lower and therefore it is created by means of
interaction with phonons energy minimisation). The excess energy of lattice
deformation (for acoustical phonons) together with polarisation energy (for
optical phonons) is carried outside the quantum dot by LA and LO phonons,
respectively (by their wave packets). A quantum dot polaron is created—a
hybridized state of an exciton dressed in LA and LO phonon cloud4. The
time scale of QD polaron creation is of the order of the time that a phonon-
wave packet needs to leave the quantum dot area. It needs to be emphasized
that this process is not to be interpreted in terms of Fermi’s golden rule5 [27].
The process of polaron creation is the nonstationary state evolution, in which
the elementary processes of phonon absorption or emission contribute in the
virtual sense (without energy conservation). Note, that the polaron energy

3the electric field of e-m wave interacts with the charge and, in consequence, excites
a bare electron from the valence band into the quantum dot, the resulting hole is also
captured by the quantum dot—a bare QD exciton is thus created

4actually, the name of polaron refers to electrons dressed in LO phonons [28]—a process
dominating in strongly polar materials; here the name refers generally to an electron or
exciton dressed in all types of phonons

5in such an approach, quantum phase transitions resulting from a time-dependent per-
turbation refer to transitions between stationary states, which is no case here
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is shifted with respect to the bare quantum dot exciton energy by a few meV
[31], while the LO phonons energy has a much greater gap, h̄Ω ≃ 36, 4meV
(in GaAs). The kinetics of polaron creation corresponds to the coherent
evolution of an entngled state of two interacting systems, a quantum dot
exciton and the sea of phonons (of various types), and this state in non-
separable [31].

The exciton-phonon system is represented by the following Hamiltionian:

H =
∑
nEna

+
n an +

∑
q,s h̄ωs(q)c+q,scq,s

+ 1√
N

∑
q,n1,n2,s Fs(n1, n2,q)a+n1

an2

(
cq,s + c+−q,s

)
,

(3.4)

where the LO interaction (s = o) and LA interaction (s = a) is represented
by the following functions

Fo(n1, n2,q) = −e
q

√
2πh̄Ω

vϵ̃

∫
Φ∗
n1

(Re,Rh)

×
(
eiq·Re − eiq·Rh

)
Φn2(Re,Rh)d3Red

3Rh

(3.5)

and

Fa(n1, n2,q) = −
√

h̄q

2MCa

∫
Φ∗
n1

(Re,Rh)

×
(
σee

iq·Re − σhe
iq·Rh

)
Φn2(Re,Rh)d3Red

3Rh.

(3.6)

Here c(+)
q,s denote anihilation (creation) operators [boson] for LO/LA phonons

with quasi-momentum q and frequency ωo(q) ≡ Ωq ≃ Ω− βq2 (Ω represents
an energy gap for phonons LO at Γ point) and ωa(q) = Caq, Ca—sound ve-
locity (LA), M represents the mass of ions in the unit cell, σe,h—deformation
potential constant of an electron and hole, respectively, v—the volume of
the unit cell, N—the number of cell in the crystal, ϵ̃ = (1/ϵ∞ − 1/ϵ0)

−1—an
effective dielectric constant, Re,Rh represent the coordinates of an electron
and hole, Φn(Re,Rh) denotes the quantum dot exction (electron) wave func-
tion and a(+)

n —the exciton (electron) anihilation (creation) operator [they are
then of boson (fermion) type], s numbers a phonon branch—at this point,
we consider phonons both longtitudinal optical (LO)(s = o) and acoustical
(LA) (s = a) [the interaction between a charge and longitudinal modes is
considerably stronger than with transversal modes, that is why only the first
ones are further considered] [26, 28]. The interaction between an exciton
and phonons from both branches has the simplest linear form with respect
to the phonon operators (the third element in the Hamiltonian). It can be
represented by means of graphs like in Fig.3.1.

Vertices of this type (as in Fig. 3.1) result in the mass operators of Green
functions, both for the exciton (electron) and the phonon, without the linear
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Figure 3.1: The vertices representing the exciton-phonon interaction; the
dotted lines—phonons; the continuous lines—excitons

term with respect to the interaction; for the exciton it is illustrated by the
graph as in Fig. 3.2.

The two bottom graphs correspond to the complete expressions for the
mass operator (thick lines represent the full Green functions; the effective
vertex of the exciton-phonon interaction is also marked [the shaded vertex]).
It is an accurate form of the mass operator. Within the first approximation,
the effective vertex can be replaced with a bare one (it is an approximation
with controlled accuracy—the terms of higher order than quadratic with re-
spect to interaction are omitted6. Given that the charge-phonon interaction
is weak, this approximation leads to a small error. The bare vertices of this
interaction (the corresponding functions appearing in the Hamiltionian) at-
tain the form (which results from the mechanism of interaction between the
charge and LO phonons—by means of polarization, and with LA phonons—
by means of deformation) [26, 28] given by (3.5, 3.6) formulae, with the
integrals representing the overlap integral of the localized exciton states (ini-
tial and final) with the phonon plane wave. These integrals represent the
bottle-neck effect, typical for quantum dots [34, 35], resulting from the ab-
sence of translational invariance of a quantum dot system and leading to the
non-conservation of the momentum (quasi-momentum). The overlap inte-
gral with the plane wave favours the momentum q ≃ h̄

d
, where d denotes a

quantum dot size. If the exciton was not localized, that is represented also
by a plane wave, this integral would yield the law of angular momentum con-
servation, corresponding to the translational invariance of the system in that
case. In the case of a quantum dot licalized exciton this integral does not
become Dirac’s delta but defines those quasi-momenta q of phonons which
were involved in the interaction. At the same time the law of conservation
of energy holds true for each vertex (i.e., for the interaction process), which
results from the unperturbed uniformity of time in the case of quantum dot
localized states. Due to the above functions, the fact of selection of fixed val-
ues of quasi-momentum for QD localized exciton (electron) states is called
the bottle neck effect. The presence of the abovementioned integrals results

6subsequent bare vertices enter the effective vertex
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Figure 3.2: The exciton mass operator; the two bottom graphs correspond
to the complete formulae representing the mass operator (the thick line rep-
resents the full Green function; the effective vertex of the exciton-phonon
interaction is marked [the shaded vertex])

in eliminating all phonon modes except those found within the range of q ≃ h̄
d

(d a quantum dot size, typicaly of 10 nm order), thus the range of significant
quasi-momentum of a phonon interacting with a quantum dot charge is of
the order of 1-10% Brillouin zone close to its centre (as illustrated in Figs
3.3-3.5 [in Fig. 3.4 the dotted line (continuous) refers to the electron (exci-
ton) ground state probability densities [31] modelled in a variational manner;
below the analytical form of the function is given [31]]).

The model (variational) ground state exciton wave function in a parabolic
quantum dot assumes the following form (including Coulomb interaction e-h)

Φ0(re, rh) =
1

(π)3/2
1

LeLhLz
exp

[
− r2e⊥

2L2
e

− r2h⊥
2L2

h

− z2e + z2h
2L2

z

]
, (3.7)

where re,h⊥ denotes the positions of the exciton components (e and h) in
the xy plane of QD. The numerically estimated parameters for a quantum
dot characterized by values in Tab. 1 are Le = 6.6 nm, Lh = 5.1 nm,
and Lz = lz (wich agrees sufficiently well with a more accurate numerical
calculation, accurate diagonalization [31]; the agreement is illustrated in Fig.
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Figure 3.3: Comparision of interaction form-factors of the exciton-LO phonon
(∼ k2e−ak

2
) and exciton-LA phonon (∼ ke−ak

2
) according to (3.8) functions,

for various values of a

[a
rb

. 
u

n
it
s
]

Figure 3.4: Probability density for the electron (the continuous line) and for
the hole (the dashed line) for the exction ground state as compared with the
particle states without Coulomb interaction (the dotted line) [31]

3.5). The noticeable difference between the electron and the hole effective
lateral dimensions results from the fact that the e-h Coulomb interaction
energy is comparable to inter-level energy of the heavier holes while the
energy of the lighter electrons is quantized with greater inter-level gaps.

The above form of the ground state QD exciton wave function yields the
following phonon coupling functions

|Fo(0, 0,k)|2 ≃ πe2h̄Ωk2

18vϵ̃
(L2

e − L2
h)2e−αk

2
= go

k2

k2m
e−αk

2
,

|Fa(0, 0,k)|2 ≃ h̄k
2MCa

(σe − σh)2e−αk
2

= ga
k
km
e−αk

2
,

(3.8)

where km = (6π2/v)1/3 denotes the Debye wave vector (≃ 1.1 ·1010m−1), α =
l2/2, l is the quantum dot size averaged over all directions (this is the averaged
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Figure 3.5: LA and LO phonon-exction interaction functions for the ground
state QD exciton—in accordance with formulae (3.8) (the dashed line), on
the basis of accurate numerical diagonalization (the continuous line)[31]

ground state-dimension of an excition), the same for e and h (l is significantly
smaller than the lateral dimentions Le(h) but greater than the vertical one

Lz). The exponential factor e−αk
2

corresponds to the abovementioned bottle-
neck QD effect. These functions are illustrated by the lines in Figs 3.3, 3.5
(they approximate a more accurate numerical result [31]—the continuous
line in Fig. 3.5). Thus, both these functions (often called form-factors of the
exciton-phonon interaction) assume non-zero values in the vicinity of point Γ
and reach the maximum for quasi-momentum p ≃ h̄

d
(d ∼ l). What matters

here, is the fact that this behaviour closely corresponds to the bottle-neck
effect, which replaces the momentum conservation condition for the system
without translational invariance [34, 35].

The bottle-neck effect (which seems to limit the importance of phonons
in nano-structures) led to an under-evaluation of the phonon role in quantum
dots and of their input in the total interaction in nano-structures [34]. This
mistaken view often resulted in the underestimation of phonon-induced phe-
nomena in many physical processes in quantum dots. Despite the fact that
the coupling constants (and form-factors including the bottle-neck effect) are
rather small valued, the resonant coincidence (proximity) of energy levels of
quantum states for carriers localized in quantum dots and bulk phonon en-
ergy characteristics resuls in a strong increase in nonperturbative effects of
mutual hybridisation of both subsystems (excitons/electrons and phonons)
leading to significant polaron-type effects, both for LA and LO phonons. It
is a vital process in the case of quantum dots for which such hybridization
effects result in the chagne of quantum states within even 10% and lead to
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significant effects of time dependent processess of amplitude decoherence (re-
laxation, i.e. decreasing of diagonal elements of density matrix [36, 37, 30]),
as well as of phase decoherence (dephasing, i.e., a decreas in off-diagonal el-
ements of density matrix) [9, 10, 11, 12, 13]. From the list of parameters for
the GaAs/InAs system (Tab. 1), one can notice that the interaction between
the exciton and LO phonons is significantly bigger (of one order of magni-
tude) than with LA phonons (cf. the values of the paramteres g in formulae
(3.8)).

In order to give the description of fidelity loss [9, 14] we shall discuss
exciton correlation function ⟨an1(t)a

+
n2

(0)⟩. For n1 = n2 it corresponds to the
overlap of the exciton state at time t = 0 with this state at the initial moment
t = 0 (for n1 = n2 = 0—for the ground state of the exciton changing into
a polaron after being gradually dressed in LA and LO phonon clouds). The
modulus of this correlation function gives thus a measure of fidelity of the
time-dependent (nonstationary) exciton state. The averaging ⟨...⟩ denotes
the temperature-dependent averaging over the phonon states, assuming the
exciton vacuum state [39], that is without change of state of a bare exciton,
which corresponds to the fact that the the great canonical averaging sector
without exction, vacuum, it energetically distant, here of order ∼ 1eV [the
energy of exciton] from the next exciton sectors.

The Fourier transform of the crrelation function is called the spectral
density [15, 16, 40],

In1,n2(ω) =
∫ ∞

−∞
⟨an1(t)a

+
n2

(0)⟩eiωtdt, (3.9)

The spectral density function can be expressed by the imaginary part of
the retarded Green function,

ImGr(n1, n2, ω) = −I(n1, n2, ω)/(2h̄), (3.10)

where
Gr(n1, n2, t) = − i

h̄
Θ(t)⟨[an1(t), a

+
n2

(0)]−⟩
= 1

2π

∫∞
−∞Gr(n1, n2, ω)e−iωtdω,

(3.11)

is the commutation retarded Green function which describes the linear dielec-
tric response to the electromagnetic wave coupled to an exction [in the case
on instant creation of an exciton, the time-dependent electromagnetic signal
is assumed as Dirac’s delta δ(t)]. In our case, Green function Gr(n1, n2, t) and
the correlation function can be obtained by including the interaction between
the exciton and the LA and LO phonon sea via the stadard temperature-
dependent Matsubara Green function techniques [15, 16], or via the casual
Green function techniques [40]. Both these methods lead to a Dyson-type
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equation with an appropriate mass operator. The advantage of Matsubara
Green function approach over the others consists in the derivation of the
Dyson equation with the mass operator and the possibility of its modelling
in terms of Feynman graphs; the causal function technique needs the Tyab-
likov spliting-type procedures [40] with relatively lower level of transparency,
though fully equivalent with Matsubara attitude. Both these methods lead
to the Dyson equation with an appropriate mass operator, which acounts for
the interaction of exciton with the see of phonons.

In the case of weak exciton-phonon coupling (which is nature of the cur-
rently discussed case), the mass operator attains form [40] as illustrated by
the graphs in Fig. 3.2. For the bulk semiconductor [41], with accuracy up
to g2s [Fs(n1, n2,k) ∼ gs, where gs is exciton-phonon constant], both real
and imaginary parts of mass operator M are obtainded in the following form
(for the effective vertex, the components of higher order are omitted, i.e.,
muli-phonon processes are not included),

∆n(ω) = 1
N

∑
k,s,n1

|Fs(n, n1,k)|2[
(1+Nk,s)[h̄ω−En1−∆n1 (ω−ωs(k))−h̄ωs(k)]

[h̄ω−En1−∆n1 (ω−ωs(k))−h̄ωs(k)]2+γ2n1
(ω−ωs(k))

+
Nk,s[h̄ω−En1−∆n1 (ω+ωs(k))+h̄ωs(k)]

[h̄ω−En1−∆n1 (ω+ωs(k))+h̄ωs(k)]2+γ2n1
(ω+ωs(k))

] (3.12)

and
γn(ω) = 1

N

∑
k,s,n1

|Fs(n, n1,k)|2[
(1+Nk,s)γn1 (ω−ωs(k))

[h̄ω−En1−∆n1 (ω−ωs(k))−h̄ωs(k)]2+γ2n1
(ω−ωs(k))

+
Nk,sγn1(ω+ωs(k))

[h̄ω−En1−∆n1 (ω+ωs(k))+h̄ωs(k)]2+γ2n1
(ω+ωs(k))

]
,

(3.13)

where Nk,s is Bose-Einstein distribution function defining the temperature-
dependent population of phonon mode k, s,

Mn,n(ω) = ∆n(ω) − iγn(ω), Gr(n, n, ω) = [h̄ω − En −Mn,n(ω) + iϵ]−1

(for T = 0, Nk,s = 0). The above system of equations enables the time-
dependent analysis of dressing the exciton in a cloud of phonons.

For GaAs surrounding medium, the material parametres are taken from
Ref. [42], and a InAs/GaAs QD is modelled wihin parabolic approximation

[1] with curvature h̄ωe0 = 20 meV, h̄ωh0 = 3.5 meV, le =
√

h̄
m∗

eω
e
0

= lh =√
h̄

m∗
h
ωh
0

= 7.5 nm, which results in identical size of the ground state of the

electron and the hole (when the Coulomb interaction is not accounted for);
the QD vertical dimension (the QD is significantly flattened) is le(h)z ≃ 2 nm
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(with suitably atjusted parabolic curvature ωe(h)
z )7.

For exciton-LO phonon interaction, Fröhlich constant is of importance
[26, 28]

αe =
e2

ϵ̃

√
m∗

2h̄3Ω
. (3.14)

Its value grows in nanostructures [25, 29], which influences significantly
quantum dot polaron related processes. The explanation of the strong in-
crease in the value of LO phonon coupling is provided in one of the following
chapters.

In equation (3.12), the first component provides the main contribution—
polaron red-shift resulting form exciton-LO polaron interaction, is prevailing
in a polar material (GaAs is a weakly polar material). Let us notice that
equations (3.12) – (3.13) contain full Green’s function (in accordance with
the graph in Fig. 3.2). Taking γn(ω) = 0 at the right-hand part of equation
(3.12), the first order approximation for the energy shift is,

∆n(ω) =
1

N

∑
k,n1

|Fo(n, n1,k)|2
[

1 +Nk,o

h̄ω − En1 − ∆n1(ω − Ω) − h̄Ω
(3.15)

+
Nk,o

h̄ω − En1 − ∆n1(ω − Ω) + h̄Ω

]

+
1

N

∑
k,n1

|Fa(n, n1,k)|2
[

1 +Nk,a

h̄ω − En1 − ∆n1(ω − Cak) − h̄Cak

+
Nk,a

h̄ω − En1 − ∆n1(ω − Cak) + h̄Cak

]
.

As it has already been noticed, the first term of the equation provides the
dominating contribution, while the second—of a significantly smaller order
of magnitude [due to a smaller value of LA phonon coupling constant] can
safely be neglected here. However, this term to greater extent than the first
one contributes substantially to the derivative d∆/dω|ω=E+∆. The derivative
of the first term [∼ F 2/(h̄Ω)2] is small due to the gap in dispersion of LO
phonons but this derivative is important for estimating the residuum of the
Green function at its pole—in equation (3.18). Moreover, in the first term
of this equation, the weak dispersion of LO phonons is neglected due to

7numerical estimations of how the quantum dot shape and modelling above the
parabolic approximation influence the polaron show that they only weakly affects the
quantum dot structure and polaron characteristics [31]
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its insignificant contribution to energy shift ∆ (which has been verified via
numerical methods) [31]. The numerical solution of equation (3.15) for n = 0
yields the polaron energy shift ∆0 ∼ −5 meV (for the structure paremeters
listed in Tab. 1).

For the descripiton of the kinetics of polaron creation, i.e., of the process
of dephasing of an non-adiabatically excited exciton (this is experimentally
observed at the picosecond time scale [33]), the imaginary part of the mass
operator and the out-of-pole form of the imaginary part of Green’s function
is of high importance—it provides the complete information about spectral
intensity (not limited to the poles defining the energy and lifetime of quasi-
particles, here polarons). Fourier transform of the spectral intensity yields
the unknown correlation function. The imaginary part of the mass operator
is given by Eq. (3.13). Taking γ = 0 in its right-hand side,

γn(ω) = π
N

∑
k,n1

{|Fo(n, n1,k)|2
[(1 +Nk,o)δ(h̄ω − En1 − ∆n1 − h̄Ωk)

+Nk,oδ(h̄ω − En1 − ∆n1 + h̄Ωk)]
+|Fa(n, n1,k)|2 [(1 +Nk,a)δ(h̄ω − En1 − ∆n1 − h̄Cak)

+Nk,aδ(h̄ω − En1 − ∆n1 + h̄Cak)]} .

(3.16)

The first term in equation (3.16) defines the polarisation energy transfer to
the LO phonon sea, while the second one defines deformation energy transfer
(smaller) to the LA phonon sea during the process of gradual exciton dressing
in both type phonon modes. Term γ can be estimated for the ground state
of exciton (n = 0) [higher excited levels neglected]; integrating over k yields,

γ0(ω) ≃ Ax3e
− αx2

h̄2C2
a [Θ(x)(1 +N(x)) − Θ(−x)N(−x)] (3.17)

+B
[
Θ(h̄Ω − x)(h̄Ω − x)3/2e−

α(h̄Ω−x)
h̄β Θ(−0.6h̄Ω + x)(1 +N(x))

+Θ(h̄Ω + x)(h̄Ω + x)3/2e−
α(h̄Ω+x)

h̄β Θ(−0.6h̄Ω − x)N(−x)
]
,

where x = h̄ω − Ẽ0, Ẽ0 = E0 − ∆0 is the energy of an excited polaron,

N(x) = (e
x

kBT − 1)−1,

A =
(σe − σh)2

4πρh̄3C5
a

, B =
e2h̄Ω(L2

e − L2
h)2

36ϵ̃2(h̄β)5/2

(LO phonon dyspersion as defined in [43] Ωk = Ω−βk2 and at the zone edge
k = km, Ωkm = 0.6Ω). The first term of equation (3.17) corresponds to LA
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phonons channel of energy dissipation, while the second one—LO phonons
dissipation channel. Numerical parameters of this equation for the structure
under investigation (Tab. 1) are listed in Tab. 2.

As γ0 equals 0 at x = 0 [which results from equation (3.17)], this point
is understood as the well-defined Green’s function pole (it corresponds to
a stable quasiparticle—the polaron, this is the exciton dressed in phonon
clouds [a generalization of an ordinary electron polaron dressed only in LO
phonon cloud [28, 36]]). The time-dependent evolution of phonon dressing is
given by the correlation function, corresponding to Green’s function in the
form of,

Gr(0, 0, ω) =
1

h̄ω − E0 − ∆(ω) + iγ(ω) + iϵ
(3.18)

=
a−1

x+ iγ′(x) + iϵ
,

where
a = 1 − d∆(ω)

h̄dω
|ω=Ẽ′

0

= 1 + 1
N

∑
k,s

∣∣∣∣Fs(0,0,k)
h̄ωs(k)

∣∣∣∣2 [1 + 2Ns(k)],
(3.19)

γ′(x) = γ(x)/a (x = h̄ω − Ẽ ′
0, Ẽ

′
0 = Ẽ0/a), ϵ = 0+. The imaginary part of

this retarded Green’s function (3.18) attains form,

ImGr(0, 0, ω) = −a−1πδ(x) − a−1γ′(x)/x2

1 + (γ′(x)/x)2
. (3.20)

The inverse Fourier transform of spectral intensity (the imaginary part
of the retarded Green’s function) gives the correlation function in the time
domain,

I(t) = −2h̄
1

2π

∫ ∞

−∞
dωImGr(0, 0, ω)e−iωt,

(indices n1 = n2 = 0 of function I are suppressed).
The first term in (3.20) yields,

I(1)(t) = a−1e−i
Ẽ0
h̄
t.

Notice that in the second term of equation (3.20), for temperatures T <
100 K, the second term in the denominator can be safely neglected for LA
phonons (consistently with the accuracy assumed within the perturbative
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treatment). This allows us to exchange the order of integration with respect
to ω and k—first the inverse Fourier transform can be calculated and si-
multaneously the Dirac’s delta can be employed in equation (3.16). Such
integration over frequencies (energy) yields a convenient representation of
the correlation function,

I(2)(t) = 1
N

∑
k

∣∣∣Fa(0,0,k)
h̄ωa(k)

∣∣∣2
×
{

[1 +Ns(k)]e−i[Ẽ0/h̄+ωs(k)]t +Ns(k)e−i[Ẽ0/h̄−ωs(k)]t
}
.

(3.21)

Notice that comparing with Eq. (3.19), for t = 0 leads to I(1)(t = 0) = a−1

and I(2)(t = 0) = 1−a−1, which in effect results in appropriate normalization
of the correlation function.

Spectral intensity and its reverse Fourier transform (its modulus) are
plotted in Figs 3.6—3.11 for various temperatures and QD dimensions. The
fact that the numerically calculated correlation function agrees well with the
experimentally obtained data [33]— cf. Fig. 3.9 (upper), for a small quantum
dot and sub-picosecond excitations, may confirm the validity of the theory
developed here. The LA channel (although negligible in terms of energy with
comparison to LO channel in GaAs) is the fastest and the most effective in the
dephasing process. LO channel is slower and accompanied by fast oscillations
(beats of ∼ 100 fs corresponding to the existance of LO gap) [LO channel
of dephasing can be significanlty intensified due to anharmonic decay of LO
phonons, e.g., for GaAs/InAs up to 10 ps] [44]. Dephasing produced by
LO phonons is significantly weaker than the LA one (contrary to the energy
shift). The inclusion of LO channel results in a weak modification of strong
LA dephasing—cf. Figs 3.10 and 3.11. Figure 3.11 (right) presents the type
of the scaling of dephasing time versus a quantum dot dimension—linear for
the LA channel and quadratic for the LO channel. This behaviour agrees
well with the simple relationship: dephasing time ≃ l

vg
, vg—phonon group

velocity, l—quantum dot dimension. For LA phonons vg = Ca, which yields
a linear function of l while for LA phonons vg = 2βk ∼ 2β/l, which results
in a quadratic dependence on quantum dot dimension ∼ l2/(2β). Conclusive
proof of this result follows below.
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Tab.1. Quantum dot and material parameters for GaAs/InAs
electron effective mass in GaAs m∗

e 0.067me

hole effective mass (heavy) in GaAs m∗
h 0.38me

electric constant in GaAs (static) ϵ0 12.9
electric constant in GaAs (dynamic) ϵ∞ 10.9
electron deformation potential in GaAs σe 6.7 eV
hole deformation potential in GaAs σh −2.7 eV
LO-phonon energy at Γ point in GaAs h̄Ω 36.4 meV
density of GaAs ρ 5.36 g/cm3

sound velocity (LA) in GaAs Ca 4.8× 105 cm/s
electron confiment energy in GaAs/InAs dot h̄ωe

0 20 meV
hole confiment energy in GaAs/InAs dot h̄ωh

0 3.5 meV

lateral dimension of quantum dot (electron) le =
√

h̄
m∗

eω
e
0

7.5 nm

lateral dimension of quantum dot (hole) lh =
√

h̄
m∗

h
ωh

0

7.5 nm

dot height (electron and hole) l
e(h)
z 2 nm

Debye wave vector in GaAs km =
(

6π2

v

)1/3
1.1× 1010 m−1

Fröhlich constant in GaAs-bulk (electron) αe =
e2

ϵ̃

√
m∗

e

2h̄3Ω
0.07

Fröhlich constant in GaAs/InAs dot (electron) α′
e =

e2

ϵ̃′

√
m∗

e

2h̄3Ω
0.15

Tab. 2. Parameters of exciton-phonon (LA and LO) interaction for a GaAs/InAs dot

exciton-LA phonon coupling constant A = (σe−σh)
2

4πρh̄3C5
a
≃ 0.29 meV−2

exciton-LO phonon coupling constant B =
e2h̄Ω(L2

e−L2
h)

2

36ϵ̃2(h̄β)5/2
≃
(

l[nm]
6

)4
6.3× 105 meV−1/2

lateral exciton dimension (electron) Le ≃ 6.6(l[nm]/6) nm
lateral exciton dimension (hole) Lh ≃ 5.1(l[nm]/6) nm
mass operator exponent (LA) α

h̄2C2
a
≃ (l[nm]/6)21.8 meV−2

mass operator exponent (LO) α
h̄β ≃ (l[nm]/6)2149 meV−1

3.2.2 The universal rule for the estimation of dephas-
ing time of localized excitons in nanostructures

In order to estimate dephasing time of a quantum dot (or other nanostruc-
tre) localized excitation (e.g., an exciton) due to hybridisation with collective
excitations in the surrounding medium (e.g., with band phonons), a phe-
nomenological picture can be applied motivated within the Green functions
approach [31]. The correlation function,

I(t) =< a0(t)a
+
0 (0) >= − h̄

π

∫
dωImGre

−iωt (3.22)
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[where a(+) denotes the quantum dot exciton annihilation (creation) operator]
permits a reasonable assumption that characteristic dephasing time parallels
the rapid decrease in the value of its modulus (clearly evident in Figs 3.9,
3.10). The correlation function is an inverse Fourier transform of spectral
intensity (cf. Fig. 3.6), which is expressed via the imaginary part of the
retarded one-particle commutation Green function Gr of exciton [15, 16]. For
a short time scale (i.e., large values of Fourier frequencies ω), the imaginary
part of the retarded Green function is proportional to the imaginary part of
masss operator (due to Eq. (3.20)), which is expressed (with multi-phonon
effects neglected) by the following formula [15, 16],

γ ∼
∫
dk |F (k)|2 δ(ω − E − ω(k)), (3.23)

the interaction vertices assuming their general form (the interaction between
QD localized degrees of freedom and non-localized crystal excitations ex-
pressed by means of plane waves),

F (k) ∼< Ψ0|eikr|Ψ0 >, (3.24)

where |Ψ0(r) > is a wave function od a quantum dot localized exciton corre-
sponding to its ground state with energy E (for the simplicity of the descrip-
tion, a single-particle localized excitation is considered here, e.g., an electron
[one-dimension picture, h̄ = 1]). Thus, the correlation function,

I(t) ∼ e−iEt
∫
dr |Ψ0(r)|2

∫
dkF ∗(k)ei(kr−ω(k)t), (3.25)

appears to attain the form of a time-dependent overlap of probability density
of a quantum dot localized particle,

|Ψ0(r)|2 , (3.26)

with a collective excitation wave packet (phonons) escaping from the quan-
tum dot-space region, ∫

dkF ∗(k)ei(r−
∂ω(k)
∂k

t)k (3.27)

(with k center, k ∼ 1/l, l is the quanum dot diameter due to the above-
mentioned QD bottleneck effect entered here via F (k)]). The wave packet
carries off the excess (deformation or polarization) energy of the particle be-
ing dressed to the quantum dot surrounding region in the crystal with group
velocity vg = ∂ω(k)

∂k
(for k ∼ 1/l). Thus the dephasing time corresponds to

the time of decrease in value of modulus I(t), which here is of the order of
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τ ≃ l
vg

, where l is the quanum dot dimension averaged over all directions [the

quantum dot exciton state dimension] (as illustrated in Figs 3.12 – 3.14).
In this representation, the dephasing time is of the order of the proportion

of a quantum dot dimension l to phonon group velocity, i.e. the volocity of
the phonon packet carrying off the excess energy from the quantum dot to
the surrounding medium (this is evolution of a nonstationary quantum dot
state of a nonadiabatically excited bare exciton). For LA phonons, the group
velocity remains constant and equals to the sound velocity vg = Ca, which
results in a linear dependence of the dephasing time with respect to quantum
dot dimension,

τ ≃ l

Ca
;

for optical phonons vg = 2βk ∼ 2β/l leading to a quadratic depence of
dephasing time on l,

τ ≃ l

vg
= l

(
∂ϵ

∂p

)−1

=
h̄l

2βk
≃ h̄l2

2β
,

as k ≃ 1/l (due to the bottle-neck effect, the centre of the wave packet
in the momentum space). In the case of LO phonons, the dephasing time
scales quadraticly with dot dimension and thus for the state-of-art structures
attains values much bigger than the dephasing time for the LA channel (with
the linear scaling) (cf. Fig. 3.11).

3.2.3 Enhancement of the interaction between charges
and LO phonons in nanostructures

The picture of an electron(also hole or excition)–phonon interaction is to
some extent ambiguous, as was mentioned in the itroduction [26]. An electron
moving inside a crystal, causes local lattice polarization, i.e, produces a wave
packet of LO phonons. Such polarization contains two components:

• inertial, remaining within the area of polarization,

• noninertial, accompanying the moving electron which has triggered the
polarization (the component keep pace with the electron).

The noninertial part of the phonon cloud should be accounted for in the
definition of the electron—as an effective lattice quasiparticle. The remaining
inertial polarization interacts with the escaping electron and can be presented
as LO phonon-electron interaction. Thus, the magnitude of this interaction
is significantly dependent on the velocity of the electron—the faster it moves,
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the better it escapes the self-triggered polarization phonon cloud, and then
the inertial polarization (the part responsible for the LO phonon-electron
interaction) increases. A lattice band electron moves with various velocity,
depending on its quasi-momentum [26], its group velocity (quasiclassical)
[27] v = ∇pEp, where Ep—the band dispersion, whose value varies from
zero in point Γ through its maximum value within the Brillouin zone to
zero again at the edges of the zone. A quantum dot localized electron8

moves faster—its quasiclassical velocity scales inversly proportionally to the
quantum dot linear dimension. The smaller the quantum dot dimension, the
more significant the effect, leading to the increase in value of LO phonons
coupling at the order of mangnitude even of several hundreds per cent.

In order to provide a more adequate quantitative analysis of this effect,
the following approximation can be made. LO phonon-electron interaction
can be presented by means of a dimensionless material constant—Fröhlich
constant [26, 28]:

αe =
e2

ϵ̃

√
m∗

2h̄3Ω
, (3.28)

where: ϵ̃ = (1/ϵ∞ − 1/ϵ0)
−1; for bulk matrial bulk, ϵ0 = 12.9, ϵ∞ = 10.9,

m∗ = 0.067me i h̄Ω = 36 meV, and then αe = 0.07 which has been exper-
imentally confirmed for GaAs bulk [42]. For a QD localized electron (e.g.
GaAs/InAs), experimental data indicate significant increase in the value of
αe [29, 25]. Recent measurement of QD far-infrared absorption reveals al-
most double increase in polaron infrared spectrum dispersion (anti-crossing)
in the magnetic field [29], which suggests a double increase in value of the
Fröhlich constant within the quantum dot, αe ∼ 0.15 (for quantum dots of
∼ 10 − 15 nm in size). For smaller quantum dots, still greater increase in
the value of the effective constant αe has been observed [46, 47], visible via
the measurement of the Huang-Rhys constant [24] (the constant represents
the ratio of the LO satllite peak intensity and the central photoluminescence
peak of PL spectrum—the increase in the LO satellite peak is well depicted
in Fig. 3.15). This increase can be explined via the abovementioned idea of
a nonadiabatic correction for LO phonon-electron interaction.

Let us remember that the noninertial part of the local polarization trig-
gered by the lattice electron, and which keeps pace with it, has already been
included in the crystal field defining the electron. That is why the iner-

8for example, a cubic quantum dot of size of 10 nm, GaAs type, would be a nanocrystal
(usually, nanocrystal deformed by a strain in the case of self-assembled quantum dot with
the lattice incommensurence) of the elementary crystal cell size equal 20× 20× 20 in the
elementary crystal cell units (lattice constant for GaAs is ≃ 0.5 nm)
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tial part of the local polarisation interacting with the lattice electron can be
presented as: P(r) = P0(r) − P∞(r), where

P0 =
ϵ0 − 1

4πϵ0
D, P∞ =

ϵ∞ − 1

4πϵ∞
D,

corresponds to static and high-frequency polarization, respectively (here, the
notion ”high-frequency” refers to frequency significantly larger than that of
a phonon frequency, but lower than that of an atom confinement), D denotes
electric induction, P(r) = D/(4πϵ̃), which yields further [26, 28] the Fröhlich
constant formula (3.28).

For a quantum dot confined electron, the inertial part of the polarization
is, however, greater in comparison to a free-moving band electron. For a
quantum dot with the diameter d, the lower limit of the electron velocity
equals to vd ≃ h̄/(m∗d) and is greater (especially for the conduction-band
electron velocity close to the point Γ, where it is zero); thus the inertial
part of the polarization for a quantum dot electron increases—it escapes
the polarization cloud more effectively. When the confinement parameter d
reaches the atomic scale given by a (a denotes the diameter of the elementary
cell), then the lower limit of the quasiclassical velocity of the electron attains
atomic scale and equals to vd = va ≃ h̄/(m∗a). In such a case, the inertial
part of the local polarization is P0. Thus, assuming proportional increase in
the value of the inertial part of the polarization in relation to the value of
the electron quasiclassical velocity (its lower limit), from P0−P∞ for lattice
electrons, to P0 for atom-bound electrons, we can write for this polarization:
P′(r) = P0(r) − ηP∞(r), where factor η (0 ≤ η ≤ 1) is dependent on the
localization scale (in a quantum dot). Obviously, η = 1 when d → ∞ and
η = 0 when d reaches the value of atom dimension, d ≃ a. Therefore, within
the linear approximation in relation to the small parameter a/d, one obtains
η = 1−a/d and for a quantum dot confined electron, P′(r) = D/(4πϵ̃′), with
the effective dielectric constant ϵ̃′,

1

ϵ̃′
=

1 − a/d

ϵ∞
− 1

ϵ0
+
a

d
.

This formula yields renormalized Fröhlich constant (3.28) with ϵ̃ replaced
by ϵ̃′.

An additional small correction can result from a change of the effec-
tive mass in the nanostructure due to localization and strain effects in a
InAs/GaAs self-assembled dot. A theoretical estimation leads to a conclu-
sion that for strain-induced InAs/GaAs QD [45], similar in size as discussed
above, the effective mass m∗ ≃ 0.05me. This change in the effective mass
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does not cause any significant correction to αe as the shift from the value for
GaAs-bulk, m∗ ≃ 0.067me is rather small, and αe ∝

√
m∗, resulting in the

renormalization factor ≃ 0.9, (as indicated in Fig. 3.16).

For InAs/GaAs quantum dots with radius of the order of 10 nm (i.e.,
d ≈ 20 nm), the renormalized Fröhlich constant ≈ 0.15 is confirmed by
FIR spectroscopy measurement for such dots (FIR spectroscopy) [29]. The
increase in LO electron-phonon interaction leads to the significant enhance-
ment of Huang-Rhys parameter [24] corresponding to the increase in the
intensity of LO satellite peak within the quantum dot photoluminescence
spectrum (for InAs/GaAs) [46, 47]—Fig. 3.15. Huang–Rhys parametr scales
as αe (some further corrections result from the different values of Fröhlich
constant for the electron and hole, which make up an exciton [they have
distinct effective masses]). For dots of diameter ∼ 5 − 9 nm [47], the cor-
responding αe ∼ 0.4 − 0.3, and for dots with diameter ∼ 15 − 19 nm [46],
αe ∼ 0.25−0.18. In the former case, it gives a factor of 6−5 and in the latter,
4−3 for the Huang-Rhys parameter, which is confirmed by the experimental
data (cf. Fig. 3.16).

3.2.4 Fidelity restrictions for Pauli spin blocking due
to phonon-induced dephasing; limit for hybrid
quantum computer

Phonon-induced orbital degrees of freedom dephasing in quantum dots leads
also to spin effects. The inertia of the process of polaron formation—exciton
dressing in a phonon cloud, results in a temporal suspension of Pauli exclusion
principle, which rules out the possibility of two quantum dot electrons with
same-oriented spins occupying the same energy state (e.g., the ground state),
while allowing two electrons with opposite-oriented spins (as shown in Fig.
3.17). However, spin Pauli blocking can become temporarily inefficient when
one electron in the quantum dot has already been dressed in phonon cloud—
it changed into a polaron, a particle (quasiparticle) different from a next bare
electron, which can be nonadiabatically excited to the same energy level in
the quantum dot. What differentiates these two particles, the polaron and
bare electron, is the polaron phonon cloud producing temporal inefficiency
of Pauli blocking. For QD polarons, it leads to the blocking inefficiency of
the order of magnitude of about 10%, this is a nonadiabatically excited bare
electron will occupy aroud 10% of a QD state dimension already occupied by a
polaron with the same spin orientation. After the dephasing time elapses, the
second electron is also dressed in a phonon cloud, and this electron (polaron
in fact) is excluded from the occupied state, in agreement with Pauli exclusion
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principle.
The effect of temporal inefficiency of Pauli blocking results in an error in

spin-charge conversion procedures which are necessary for an arrangement
of hybridised quantum gates [51], in which fast information processing (en-
tangled qubits control) of QD orbital degrees of freedom is assumed to be
performed, and the storage of information is to be maintained on more re-
sistant spin qubits. However, such procedure may only be realised if the
charge-spin conversion is carried out adiabatically, thus with no informa-
tion leakage. But the charge-spin qubit conversion needs Pauli spin blocking
operative. The temporal inefficiency of the blocking, as describe above, re-
quires significant deceleration in charge-spin conversion up to the time scale
of greater order than charge quantum dot dephasing time (i.e., of the order
of at least 10 ps). Such deceleration rather puts limitation on the advantages
of the hybridized solution [51] over other local schemes of quantum informa-
tion processing in quantum dots (equally restricted by the phase decoherence
processes). The procedure of charge-spin conversion employing the scheme
of Pauli spin blocking (cf. Fig. 3.17) can be carried out only in a relativly
slow adiabatic regime (it would take more than 10 ps) if the requirement for
no information leakage is to be maintained.
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Figure 3.6: The spectral intensity versus energy (x = h̄ω − Ẽ ′
0) for a quan-

tum dot of a dimension averaged over all directions l = 6 nm (upper); the
temperature-evolution of the side band due to LA phonons (middle) and the
satellite peak due to LO phonons (bottom). Only the side band (due to LA
phonons) increases in value as the temperature rises (within the discussed
range of temperature). LO absorption processes are negligible within this
temerature range (the left-hand satellite peak corresponds to LO phonon ab-
sorption, smaller by several orders of magnitude than the right-hand one—of
emission nature, its contribution becomes more significant for T > 80 K); the
satellite peak LO phonon-induced increases significantly with the increase
in the value of quantum dot Fröhlich constant [expressed by Huang-Rhys
factor][24]—Fröhlich constant in bulk (a), in a quantum dot (b)
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Figure 3.7: The evolution of the side band due to acoustic phonons (LA)
versus quantum dot dimension and temperature for T ≥ 0 K (the same
temperatures for each QD dimension l = 3, 6, 12 nm)
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Figure 3.8: Evolution of the satellite peak (the right-hand one—
corresponding to LO phonons emission—versus quantum dot dimension; in
practical terms it is not dependent on temperature for T < 80 K
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Figure 3.9: Modulus of the correlation function |⟨a(t)a+(0)⟩| (the fidelity
measure of the ground excitonic state) versus time for rising temperatures.
The three plots correspond to small, medium and large quantum dots and
contain curves related to the same set of temperatures as given in the upper
plot. For the small quantum dot, the experimentally observed fidelity loss for
a nonadiabatically excited exciton (for 0.2 ps pulse) [33] is well reproduced
in the upper figure.
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Figure 3.10: The typical shape of the modulus of the correlation function
of an exciton interacting simultaneously with LO and LA phonons. The
oscillations, corresponding to the gap in LO phonons spectrum [the frequency
is ∼ 1/Ω ∼ 100fs], are significantly stronger for a quantum dot due to the
increase in the value of the effective Fröhlich constant (upper)
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Figure 3.11: Left: the modulus of the correlation function for, respectively,
LA (upper) and LO (lower) phonons only. Right: exciton dressing time vs
averaged quantum dot dimension l for the LA channel (upper), the linear
dependence, and for the LO channel (lower), a quadratic dependence on l
.
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Figure 3.12: The correlation function decrease in value corresponds to the de-
crease of overlap of the local distribution of a quantum dot partcle (exciton)
with the phonon (LA) wave packet carrying off the excess energy; correlation
function is the overlap of a quantum dot particle (exciton) probability den-
sity, |Ψ(r)|2 (upper left), with the wave packet escaping from the quantum

dot-space region A(r, t) =
∫ ∫

e−ikr
′|Ψ(r′)|2dr′ei(r±

dϵ(|k|)
d|k| sign(k)t)kdk (illustrated

here as A(r) for a sequence of times τ—time-scale of dephasing)
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Figure 3.13: LO phonon wave packet kinetics, A(r, t) =∫ ∫
e−ikr

′|Ψ(r′)|2dr′ei(r±
dϵ(|k|)
d|k| sign(k)t)kdk (for a 1D model) for LA phonons

escaping a quantum dot-space region due to exciton-LA phonon interaction;
wave packet group velocity, noticeably, being constant
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Figure 3.14: LO phonon wave packet kinetics, A(r, t) =∫ ∫
e−ikr

′ |Ψ(r′)|2dr′ei(r±
dϵ(|k|)
d|k| sign(k)t)kdk (for a 1D model) escaping a quan-

tum dot-space region due to LO phonon dressing of exciton—the times
proportional to 1:3:5 in the consecutive graphs

Figure 3.15: LO phonon satellite peak increase in spectral intensity vs
Fröhlich constant for various quantum dot dimensions (for each quantum
dot dimenstion, the upper curve corresponds to the renormalized Fröhlich
constant, the lower one—the nonrenormalized constant (bulk))—the ratio
of satellite peak intensity to central peak intensity is given by Huang-Rhys
coefficient [24]
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Figure 3.16: Effective Fröhlich constant versus the quantum dot diameter—
quantum dot of GaAs/InAs type; solid circles—data extracted from a Huang-
Rhys parameter for a pyramid-shape quantum dots with base length 19, 17,
15 nm [46], open circle—for an extremely small quantum dots, 5-9 nm [47]
(from Huang-Rhys parameter), square—from FIR attenuation in magnetic
field measurement [29]
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electron

Figure 3.17: Time-dependent restriction on spin Pauli blocking in quantum
dots due to phonon charge dephasing: nonadiabatically exctited quantum
dot electron is a bare particle, i.e., is a different particle (with accuracy up
to 5-10%) in comparison to phonon dressed polaron already storred in the
quantum dot, which results in partial and temporal (until quickly excited
electron dephasing is completed) inefficiency of spin Pauli blocking (the ar-
rows indicate spin orientation)
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Chapter 4

Decoherence of spin degrees of
freedom in quantum dots

Coupling of quantum dot orbital degrees of freedom with subsystem of phonons
in surrounding material result in hybridisation effects which, in turn, cause
quantum dot charge phase decoherence, as described in the previous chapter.
Spin degrees of freedom do not interact directly with with phonons—spin de-
grees of freedom of a quantum dot excitations interact rather weakly with
lattice oscillations due to their links to orbital (charge) degrees of freedom,

• via spin-orbit coupling [48],

• via specific Hund-like rules for multi-electron quantum dots [1]—the
filling of subsequent shell in multi-electron quantum dot depends on
total electron (hole) spin of a given shell1, which, in effect, link spin
and orbital degrees of freedom.

Weak spin coupling with phonons suggests that spin of a quantum dot elec-
tron constitutes a well-isolated quantum system (insignificant spin-orbit in-
teraction results in an extremely slow spin decoherence, the same due to weak
interaction with nuclear spins) suitable for qubit definition. One can expect
that for spin qubits in quantum dot DiVincenzo conditions would be satisfied
[7, 8, 22]. Due to minor influence of the surrounding medium, quantum dot
spin coherence maintains until of the order of µs [20]. However, difficulty
arises when Rabi oscillations are implemented (for single-qubit operations).
Because of a low value of a gyromagnetic factor in semiconductors, qubit
spin control (qubit spanned on two spin orientations in an external constant
magnetic field) via Rabi oscillations is extremely slow and DiVincezo con-

1the generalization of singlet and triplet states
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ditions are again hardly satisfied (Pauli term, gµBszB, leads to very small
Zeeman splitting of only 0.03 meV/T, in GaAs).

For two-qubit operations of spin qubits, no such disadvantage exists—
there is an effective procedure of spin qubit interaction switching on and off
[20, 22] resulting in qubit entanglement control at the time scale of picosec-
onds. The idea of spin interaction control follows from the phenomenon of
exchange interaction between two spins, being strong Coulomb interaction
induced [49]. The exchange energy it is the singlet–triplet energy gap for the
spin pair [49], and consequently it is of (several) meV order in magnitude,
resulting in picosecond time-scale of entangled qubit control. The scheme of
this control relies on the singlet and triplet states of an electron pair (each
electron captured in an individual quntum dot but located closely enough to
maintain their quantum indistinguishability 2) and their relation with orbital
structure of corresponding wave functions. Due to the fermionic nature of
electrons

• the singlet state 1√
2
(| ↑>1 ⊗| ↓>2 −| ↓>1 ⊗| ↑>2) ⇐⇒ |0, 0 > corre-

sponds to symmetric orbital wave function,

• the triplet states


| ↑>1 ⊗| ↑>2 ⇐⇒ |1,−1 >
1√
2
(| ↑>1 ⊗| ↓>2 +| ↓>1 ⊗| ↑>2) ⇐⇒ |1, 0 >

| ↓>1 ⊗| ↓>2 ⇐⇒ |1, 1 >


correspond to antisymmetric orbital wave function,

so that the complete spin-orbital wave function remains antisymmetric, as
is required for fermions. In the absence of magnetic field, the singlet state
is the ground state [49], but as the field increases in value3 it becomes less
in energy convenient and finally the triplet state is preferred (with parallel
spin orientation)4. For the critical field (of the oder of a few T for quantum
dots), both singlet and triplet states have the same energy, which means
that the exchange qubit interaction is switched off (the exchange interaction
constant is expressed via the difference in the energy value for the singlet and
triplet) [49]. It can be switched on again by varying the value of the applied
external magnetic field and shifting the system out of the degeneracy point.
Exchange interaction equal to energy gap between triplet and siglet states
(of orbital, Coulomb interaction in nature) varies within several meV range,
which allows for rapid entanglement of qubits.

2their localized wave functions must overlap
3magnetic field breaks symmetry of time reversion
4parallel spin orientation is also preferred due to the Pauli term, which is, however, of

very low value, and its contribution to energy competition is negligible; the triplet spin
state is preferred due to minimisation the energy of Coulomb interaction by antisymmetric
orbital state in the presence of magnetic field breaking time reversion symmetry [49]
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Let us mention also that the possibility for using exchange interaction to
implement and control over single spin qubits has been investigated, which
resulted in

• singlet and triplet defined qubit on a two-electron quantum dot of He
type [50],

• spin qubit defined by the spin states with Sz = ±1/2 of three electrons
[20] but separated energetically by a strong exchange-like interaction—
i.e., qubit defined by a pair |1/2,−1/2 >s, |1/2, 1/2 >t or a pair
|1/2, 1/2 >s, |1/2,−1/2 >t [spin states of three electrons can be clas-
sified according to spin addition rule: first, 2 spins of 1/2 are added

yielding a singlet |0, 0 > and triplet


|1,−1 >
|1, 0 >
|1, 1 >

 and then the third

spin of 1/2 is added yielding 8 three-electron spin states
|1/2,−1/2 >s |1/2, 1/2 >s

|3/2,−3/2 >t |3/2,−1/2 >t |3/2, 1/2 >t |3/2, 3/2 >t

|1/2,−1/2 >t |1/2, 1/2 >t

].

In both cases, however, for the collective qubit definition the number
of particles must be increased, which results in the enhancement of local
decoherence ∼ eN (N—number of qubits). On the other hand, however, it
would be conveniently directed towards the application of collective-global
(thus more robust against decoherence) subspaces of the Hilbert space for
multiparticle systems for quantum information processing [14].

The scheme of entangled qubits control relies on the symmetry-induced
close connection between spin exchange interaction and orbital, thus strong,
Coulomb interaction of electrons (leading to energy gap between singlet and
triplet states of meV order in magnitude). Due to this strong Coulomb inter-
action and following spin exchange interaction, the time rates of double-qubit
gate unitary operations are of the order of picoseconds, which suggests the
convenience of spin degrees of freedom for quantum information processing.
A model of quantum gate based on the abovementioned idea was proposed by
DiVincenzo [20, 21, 22]. In his model, a pair of H-type quantum dots (single
qubit spanned on electron spin states |1/2,−1/2 >, |1/2, 1/2 >) was anal-
ysed for two qubit operations. However, for the implementation of a quantum
computer, single-qubit operations are necessary, which unfortunately are ex-
tremely slow for the defined spin qubit on single electron spin states. The idea
to accelerate signle-qubit operations can be associated with the enhancement
of giromagnetic factor in semiconductor suroundings with magnetic dopants
(so-called diluted magnetic semiconductors) [52, 53, 54, 55, 56, 57, 58] in a
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magnetically ordered phase. In such materials of low concentration of mag-
netic ions (of a few per cent range), typically Mn2+ ones, phase transition
from a magnetically ordered phase takes place due to mediating role of band
holes [55]. Such phase transition takes place even at temperatures exceeding
100K (in Ga(Mn)As) [55, 56] and, additionaly, can be controlled via hole
concentration in the semiconductor [54, 53, 59, 60, 61]. Magnetic ordering
of the material produces internal extremely strong Weiss-like magnetic field
which acts exclusively on spin degrees of freedom (does not act on orbital
ones), thus leading to a significant increase in value of Pauli term, i.e., in en-
hancement of effective giromangetic factor. This suggests that single-qubit
operations could be accelerated up to the level required by DiVincenzo crite-
ria in QDs in diluted magnetic semiconductors (such structures have already
become available).

However, introducing an additional spin subsystem, and such is the mag-
netic dopant part of semiconductor causes a new problem. Such subsys-
tem is a source of collective excitations—spin waves, which interact directly
with qubit spin. In this system, spin waves (magnons) behave like phonons
and produce similar spin decoherence effects (as presented for phonons and
charges in the previous chapter).

A more detailed analysis of the problem (as will be presented below)
shows that spin waves cause harmful decoherence within time time rates of
order of 500-1000 ps, which is a serious negative side effect threatenig the
feasibility of spin logic gate (again, in the center of the 6-order time win-
dow between control time and decoherence amplitude for spins [62]). The
promising opportunuity is, however, possibility to diminish the amplitude
of this dephasing, which in opposite to phonon-induced effect in the case of
spin waves can be achieved at low temperature, as it will be demonstrated
in the following paragraphs. The essential elements of the analysis are as
follows: (1) the averaging over random distribution of magnetic admixtures
in diluted magnetic semiconductor [64] which yields spin waves spectrum
in Holstein-Primakoff representation [65, 66] [the averaging restores effective
translational invariance in randomly doped system [64] and allows for the
application of momentum representation, (2) determining of spin waves dis-
persion in diluted magnetic semiconductor with respect to hole and magnetic
dopant concentration, (3) analysing the structure of interaction between spin
waves and spin of a quantum dot exciton. The quadratic dispersion of spin
waves found as the result of this analysis turns out to be crucial for the
timing of phase decoherence caused by the spin collective modes. The esti-
mation of the time of the process is given as quantum dot dimension divided
by spin waves group velocity, according to the general rule presented in the

90



paragraph 3.2.2, (vg = ∇ϵ(p) ∼ p ∼ h̄
d
), τ ∼ d

1/d
∼ d2; time scales as square

of quantum dot dimension (marked as d), similarly as in the case of LO
phonons (rapidly increases as the dot dimension increases) and for typical
dots of dimension of about 10 nm reaches values of the order of 500 ps.

This inconvenient estimation of phase decoherence, which both for orbital
and spin degrees of freedom in quantum dots (in diluted magnetic semicon-
ductor surroundings, in the latter case) is placed in the center of the 6-order
time window between operation times and amplitude decoherence times, i.e.,
relaxation5, and so it suggests that implementation of scalable gates with er-
ror correction (i.e., constructing a big quantum computer based on quantum
dot technology) may not be feasible. It may be a consequence of, not yet
completely recognised, double nature of the phenomenon in which the the
same interaction both enables control of the process and destabilizes its co-
herence (at best allowing for only partial fulfillment of DiVinzenco criteria).
Considering such limitations likely to exist in other systems (trapped ions,
NMR) [14], it seems that it is either new (of lower redundancy) schemes for
quantum error correction or non-local, topological, collective error-less solu-
tions that are necessary (if such are obtainale at all) for the feasibilty of a
scalable of practical use quantum computer [18, 19].

Another possibility on the way to achieve a quantum logic gate in bulk
nanostructure technology is the mentioned above hybrid structue [51]—storing
information in relatively decoherence resistant spin qubits while carrying out
logical operations (especially single-qubit ones) on fast orbital degrees of
freedom of nanostructures. However, what is necessary is no information
dissipation and fast procedure of spin–charge qubit conversion. As it was
demonstrated above, the spin–charge conversion employing Pauli blocking
scheme is, however, strongly inaccurate unless it is performed adiabatically,
i.e., relatively slow in order to preserve a sufficient fidellity level, which seems
to preclude scaling of hybrid constructions. The abovementioned serious time
restrictions in the scheme of spin–charge conversion were not accounted for
in the previous projects [51].

It is necessary to emphasize that in each of the discussed cases of co-
herent engineering of quantum states in quantum dots (orbital and spin
ones) strong limitations exist preventing scaling for error correction imple-
mentation. Despite this limitation, numerous experiments (confirming the
discussion hereof) are carried out on QDs, both on their charge and spin
degrees of freedom. Optical charge control methods are technically more fea-
sible that is why Rabi oscillations on QD exciton qubits have already been

5exciton relaxation is of Markov type, i.e., with no memory, while exciton dephasing is
a non-Markov-type process, i.e., with memory of the initial state [67]

91



demonstrated [68, 69, 70], as well as entanglement of exciton states (with
no control, though) [71]. Investigation of decoherence in nanostructers is of
primary importance also for the less demanding techniques of quantum in-
formation processing, e.g., quantum cryptography [72] (in which satisfying
of all DiVincenzo criteria is not necessary [7, 8, 73]).

4.1 Model description of diluted magnetic semi-

conductor (DMS)—spin waves

Carrier-induced ferromagnetism [52, 53] in diluted magnetic semiconduc-
tors (DMS) [54, 55, 56, 57, 58, 60, 61] refers to, e.g., p-doped semiconduc-
tors of III1−xMnxV type (e.g., Ga1−xMnxAs) and of II1−xMnxVI type (e.g.,
Zn1−xMnxSe) in which cations have been partially replaced with ions of a
transition metal (typically Mn2+). In the discussion of the properties of these
materials, the mean-field theory as well as the modified RKKY (Ruderman-
Kittel-Kasuya-Yosida) scheme have been applied [55, 56, 57, 58, 60]. All
these models predict correctly ferromagnetic ordering in DMS [55, 60, 74, 75]
but overestimate the stability of the ordered phase. Thermal and quantum
fluctuations, which can destroy long-range order and reduce the critical tem-
perature estimations, are analysed by application of path integrals for the
RKKY-type formulation [76, 77, 78] and various numerical procedures, e.g.,
numerical random phase approximation (RPA) [79] or Monte Carlo simu-
lations [80]. For a theoretical description of the DMS spin subsystem, the
model of dopant spin exchange mediated by band holes is commonly adopted
[55, 60, 76, 77]. The exchange interaction of p− d type between band holes
and impurity magnetic atoms results in ferromagnetic alignment of magnetic
dopants. Band holes involved in this interaction strongly enhance indirect
ferromagnetic exchange of magnetic dopants, which dominates over the orig-
inal antiferromagnetic direct exchange interaction of these dopants [54]. This
indirect coupling for low hole concentration (lower than the magnetic dopant
concentration) is strong enough to cause the critical temperature of ferromag-
netic transition in DMS to reach high values (especially high, Tc ∼ 110 K, for
Ga0.947Mn0.053As [55, 81, 82] and even higher for Mn-doped GaN [83, 84]).
Note that in materials III1−xMnxV, the Mn atoms are simultaneously mag-
netic dopants and shallow acceptor centers (supplying itinerant band holes),
which results in a relatively high critical temperature in these materials [55]
and quasi-metallic collective state of holes in low temperatures. In materials
of II1−xMnxVI type, Mn-dopants are not acceptors and supplementary p-
doping is required with possible nonmetallic low-temperature hole properties
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(in the case of deeper acceptor centres). To account for the role of itinerant
holes in magnetic ordering, in particular in Ga1−xMnxAs [76, 77, 78, 80, 85],
extensive studies have been done, including integrating out the hole degrees of
freedom (within the path-integral formulation and a partly numerical anal-
ysis) in order to determine the effective spin subsystem and estimate its
ground state at T=0 [76] as well as the role of spin fluctuations [78, 79] and
Stoner excitations [77] for both low and high temperatures (mainly via the
numerical or semi-numerical methods).

Below is presented fully analytical formulation of low-temperature DMS
model [62] as well as DMS thermodynamic properties and effective spin
excitations—spin waves, including the randomness of dopant distribution.
Analytical form of DMS spin waves dispersion is derived, which, in turn,
allows for the estimation of their contribution to DMS low-temperature ther-
modynamics and quantum dot spin carriers decoherence in the case of DMS
surroundings of the quantum dot. The comparison between the theoretical
results [62] and the available experimental data will be made in order to
verify the model.

The spin of magnetic impurity—a transition metal atom—is composed of
Z non-paired spins of d- shell electrons and the maximal projection of this
spin is equal to S = Z/2 (for Mn, S = 5/2). In DMS under discussion,
mangetic impurity concentration is low (of a few %) and it is assumed that
dopants are randomly distributed in the crystal [75]. For the sake of simplic-
ity, we assume that magnetic dopants are located substitutionally and not
at interstitial sites in the crystal lattice.

Hamiltonian for a DMS system is as follows [54, 55, 76, 77]:

Ĥ = Ĥs + Ĥp. (4.1)

where Ĥs represents a DMS spin subsystem (in a weak external magnetic
field B = (0, 0, B)):

Ĥs = −gpµBB
Np∑
j=1

szj − g0µBB
∑
n
Szn

−2
Np∑
j=1

∑
n
Ap (Rj − Rn) ŝj · Ŝn,

(4.2)

here, ŝj,Rj i Ŝn,Rn are the operators of spin of the j-th hole and the n-th
impurity atom (located at lattice point Rn); Ap (Rj − Rn) is the p − d ex-
change integral; Ap (R) < 0 (of antiferromagnetic type) and |Ap (R)| ∼ 1eV ;
gp i g0 are Lande factors (gyromagnetic) for a band hole and impurity atom

respectively; µB = h̄|e|
2m0c

—is the Bohr magneton; the n summation goes over
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lattice points occupied by magnetic dopants; hole concentration xp = Np

N
,

magnetic dopant concentration x = Ni

N
, Np—number of band holes partic-

ipating in spin exchange, Ni—number of magnetic dopants, N—number of
DMS elementary cells (note that usually not all nominally magnetic admix-
tures participate in magnetic ordering in DMS; therefore x corresponds rather
to its effective value [87]). Ĥp is the fermionic Hamiltionian of holes. This
is the subject of structure modelling for various types of DMS (e.g., in the
case of III(Mn)V, the ions Mn2+ are simultaneously magnetic acceptor cen-
tres, while in II(Mn)VI additional acceptor centres must be included). For
Ga(Mn)As, an exhaustive discussion of the form of hole Hamiltonian for
DMS has been presented for a 6-band model based on the Kohn-Luttinger
Hamiltonian [76, 77] for valence bands beyond a parabolic model approxi-
mation (Monte-Carlo type of studies) [77, 80, 85]. For the sake of preserving
the analytical method, our discussion is confined to one-band hole model,
referring to various limiting types of low-temperature behaviour:

• for shallow acceptors—quasi-metallic ground state of holes (collective
holes) (at T=0),

• for deeper acceptors—insulator ground state of holes (localized holes)
(at T=0).

In the latter case, holes are captured by acceptors (in the ground state)
provided that acceptor concentration is low enough to allow for separation
between centers. The hole orbits, though, should be big enough to overlap
with many magnetic dopants (of higher concentration, xp < x). In the case
of high rate of hole localization, the model (4.2) can serve only as a rough
approximation with the exchange integral reduced by factor << 1.

Averaging over random distributions of mangetic dopants and ac-
ceptors in DMS

We will focus our discussion on low temperature behaviour of DMS, i.e.,
low-energy excitations in this system. Assuming that the ground state of
magnetic admixtures is aligned with the magnetic field [76] then Ŝ+n =√

2S − B̂+
n B̂nB̂n ≃

√
2SB̂n, Ŝ−n = B̂+

n

√
2S − B̂+

n B̂n ≃
√

2SB̂+
n , Ŝzn =

−S + B̂+
n B̂n, where B̂(+)

n are the Holstein-Primakoff (HP) bosonic operators
for admixtures [65, 66] (Ŝ±n = Ŝxn± iŜyn). It is also assumed [76] that total
spin of holes is smaller than total spin of admixtures and, due to negative
and high value of the exchange integral p − d, which results in hole-spin
counter-aligned with respect to the magnetic field, which approximates well
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the ground state of spin sub-system of holes (ferrimagnetic-like one). There-

fore ŝ+j =
√

1 − b̂+j b̂j b̂j ≃ b̂j, ŝ−j = b̂+j

√
1 − b̂+j b̂j ≃ b̂+j , ŝzj = 1

2
− b̂+j b̂j, where

b̂
(+)
j —HP bosonic operators for holes (ŝ±j = ŝxj±iŝyj). At low temperatures,

only the main terms of HP representation are included. Then Hamiltonian
Ĥs attains the form,

Ĥs = Es +
∑
n
PnB̂

+
n B̂n +

Np∑
j=1

Qj b̂
+
j b̂j

−
Np∑
j=1

∑
n
Cj,n

(
b̂jB̂

+
n + b̂+j B̂n

)
,

(4.3)

where
Pn = −g0µBB − v0

(2π)3

∫
Ãp (k)

∑
j
eik·(Rj−Rn)d3k,

Qj = gpµBB − 2S v0
(2π)3

∫
Ãp (k)

∑
n
eik·(Rj−Rn)d3k,

Cj,n =
√

2S v0
(2π)3

∫
Ãp (k) eik·(Rj−Rn)d3k,

Es = g0µBSNiB − gpµBNpB/2

+S v0
(2π)3

∫
Ãp (k)

Np∑
j=1

∑
n
eik·(Rj−Rn)d3k,

(4.4)

Es is the ground state energy of DMS spin sub-system;

Ãp (k) =
1

v0

∫
d3kAp (R) exp (−ik · R) ,

(v0 = V /N—the volme of the elementary cell).

The distribution of magnetic dopants and acceptors is random, which
requires the averaging over all possible distributions. It should be noted that
what should be averaged over distributions is the macroscopic quantities
expressed in terms of thermodynamic and quantum averages (for a specific
distribution of dopants, first a macroscopic value is calculated which is next
averaged over all possible distributions of the dopants). DMS spin sub-system
contributes to the system free energy

F = −kBT ln

{
Tr

[
exp

(
− Ĥ

kBT

)]}
, (4.5)

where the overbar denotes the averaging over random distributions of mag-
netic dopants and acceptors. For the sake of convinience, let us introduce
the following operator

∆Ĥs = Ĥs −
⟨
Ĥs

⟩
p
, (4.6)
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where ⟨
Ĥs

⟩
p

= Trp

[
Ĥs exp

(
−Ĥp − Fp

kBT

)]
, (4.7)

Fp = −kBT ln

(
Trp

[
exp

(
− Ĥp

kBT

)])
, (4.8)

Trp goes over the states of the hole sub-system. therefore
⟨
Ĥs

⟩
p

depends

only on magnetic dopants spin. The Hamiltonian Ĥ, thus, attains the form,

Ĥ = Ĥs + Ĥp =
⟨
Ĥs

⟩
p

+ Ĥp + ∆Ĥs. (4.9)

For a small correction ∆Ĥs, perturbation representation Texp can be applied
[15, 16]:

exp
(
− Ĥ
kBT

)
= exp

(
−
⟨Ĥs⟩

p
+Ĥp

kBT

)
σ̂ (β) ,

σ̂ (β) = T̂τ exp

[
−

β∫
0

∆Ĥs (τ) dτ

]
, β = 1

kBT
,

(4.10)

∆Ĥs(τ) is Matsubara-like picture (interaction representation with imaginary
time) [15]. Corrections to the free energy induced by ∆Ĥs, after averaging
over distributions, are of at least quadratic order with respect to ∆Ĥs. It is
also assumed that ground state corrections resulting from structural fluctua-
tions (i.e., scattering on magnetic fluctuations of random non-homogeneous
distribution of magnetic admixtures) are small compared with Es. If only
quadratic terms in eguation (4.3) are retainded, the operator ∆Ĥs preserves
its quadratic form in Holstein-Primakoff operators [65, 66] and the contri-
bution from Tτexp to F can be neglected (consistently with the assumed
accuracy) as being of too high order (after averaging, the linear terms with
respect to ∆Ĥs disappear). Thus, F = Fp+Fs, which means that at low tem-
peratures scattering of spin excitations on structural fluctuations of magnetic
dopant density distribution can be neglected.

The averaging of the perturbation series Tτexp

A perturbaion series Tτexp has form [15, 16]:

exp

(
− Ĥ

kBT

)
= exp

−
⟨
Ĥs

⟩
p

+ Ĥp

kBT

 σ̂ (β) ,
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where

σ̂ (β) = Tτ exp

[
−

β∫
0

∆Ĥs (τ) dτ

]
=

∞∑
n=0

(−1)n

n!

β∫
0
dτ1...

β∫
0
dτnTτ

{
∆Ĥs (τ1) ...∆Ĥs (τn)

}
,

∆Ĥs (τ) = e

(
⟨Ĥs⟩p+Ĥp

kBT
τ

)
∆Ĥse

(
−
⟨Ĥs⟩p+Ĥp

kBT
τ

)
,

β = 1/kBT , Tτ is the Matsubara imaginary-time τ chronology ordering op-
erator.

As operators
⟨
Ĥs

⟩
p

and Ĥp commute and do not depend on magnetic

admixtures distribution, so,

−kBT ln

Tr
exp

−
⟨
Ĥs

⟩
p

+ Ĥp

kBT



 = Fp + Fs, (4.11)

where

Fs = −kBT ln

Tr(s)
exp

−
⟨
Ĥs

⟩
p

kBT



 (4.12)

and
F = Fp + Fs − kBT ln [1 + σ̂]

≃ Fp + Fs − kBT
∞∑
m=1

(−1)m σ̂m

m!

(4.13)

and

σ̂ =
∞∑
n=1

(−1)n

n!

β∫
0
dτ1...

β∫
0
dτn

⟨
Tτ
{

∆Ĥs (τ1) ...∆Ĥs (τn)
}⟩

0
,

⟨...⟩0 = Tr

{
exp

(
−
⟨Ĥs⟩

p
+Ĥp−Fs−Fp

kBT

)
...

}
.

The averaging over random distribution of magnetic dopants and acceptors
(marked with the overbar) yields,

σ̂ =
∞∑
n=2

(−1)n

n!

β∫
0
dτ1...

β∫
0
dτn

⟨
Tτ

{
∆Ĥs (τ1) ...∆Ĥs (τn)

}⟩
0

= 1
2

β∫
0
dτ1

β∫
0
dτ2

⟨
Tτ

{
∆Ĥs (τ1) ∆Ĥs (τ2)

}⟩
0

+ ... .
(4.14)

It should be noted that the summation in the above formula (4.14) starts
from n = 2, in accord with the abovementioned comment in the previous
paragraph.
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4.1.1 The method of averaging over random admixture
distributions

For Ni << N , a random distribution of admixtures in crystal can be assumed
and the elementary cell dimension can be neglected, which allows for adopting
a continuum model with V,Ni, N → ∞ (for x = const, v0 = V/N = const).
Then

∫
V
d3R1...d

3RNi
P (R1, ...,RNi

) = 1, where P (R1, ...,RNi
) denotes prob-

ability density for admixture configuration (R1, ...,RNi
). If A(R1, ...,RNi

)
is an arbitrary function of admixture configuration, then averaging over all
possible configurations yields,

A(R1, ...,RNi
)

=
∫
V
d3R1...d

3RNi
A(R1, ...,RNi

)P (R1, ...,RNi
). (4.15)

For A in the form of

A(R1, ...,RNi
) =

∑
n1 ̸=...̸=ns

a(Rn1 , ...,Rns),

where the summation goes over admixture occupied lattice points n1, ...,ns
(for a certain configuration of admixtures) [for example, the potential energy
of admixtures, U(R1, ...,RNi

) =
∑

n1 ̸=n2

u(Rn1 − Rn2)], the averaging attains

the form,∫
V
d3R1...d

3RNi
P (R1, ...,RNi

)
∑

n1 ̸=... ̸=ns

a(Rn1 , ...,Rns)

=
∫
V
d3R1...d

3Rsa(R1, ...,Rs)

× ∑
n1 ̸=... ̸=ns

δ(R1 − Rn1)...δ(Rs − Rns)

=
(
x
v0

)s ∫
V
d3R1...d

3Rsa(R1, ...,Rs)Fs(R1, ...,Rs),

(4.16)

where [64],

Fs(R1, ...,Rs)

=
(
V
N

)s (
N
Ni

)s ∑
n1 ̸=... ̸=ns

δ(R1 − Rn1)...δ(Rs − Rns)

and this function denotes probability density of s admixture localization at
points R1, ...,Rs. For s = 1, this probability is Ni

N
(does not depend on R

as all lattice points are assumed equivalent), thus
∑
n
δ(R − Rn) = Ni

N
= x

v0

and F1 = 1. As |Ri − Rj| → ∞, Fs(R1, ...,Rs) → F1(R1)...Fs(Rs) thus
Fs(R1, ...,Rs) = 1 + gs(R1, ...,Rs) and gs(R1, ...,Rs) → 0, for |Ri − Rj| →
∞.
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The application of the averaging scheme for magnetic dopants and
acceptors in DMS

In order to average over all configurations of randomly located magnetic
dopants, a distribution function Fs (R1, ...,Rs) is introduced, which describes
the probability of impurity atoms localization at points R1, ...,Rs

Fs (R1, ...,Rs)

=
(
V
N

)s (
N
Ni

)s ∑
n1 ̸=...̸=ns

δ (R1 − Rn1) ...δ (Rs − Rns),
(4.17)

the summation goes over all lattice points occupied by the dopants (n1, ...,ns)
(the overbar in (4.17) indicates averaging over the configurations of randomly
distributed dopants). As all lattice positions for dopants are assumed to be
equivalent, therefore, F1 (R) = v0

x

∑
n
δ (R − Rn) = 1 and

∑
n

δ (R − Rn) =
x

v0
. (4.18)

The binary distribution function F2 (R1,R2),

F2 (R1,R2) =
v20
x2

∑
n1,n2 ̸=n1

δ (R1 − Rn1) δ (R2 − Rn2)

= 1 + g (R1 − R2) ,
(4.19)

(g—binary correlation function) can serve for the modelling of dopant corre-
lation via the structural form factor (which is presented below).

For operators B̂(+)
n , their densities can be introduced along the following

scheme [65],
∑
n
B̂(+)

n =
∫
V
B̂(+) (R)

∑
n
δ (R − Rn) d3R. Equation (4.18) leads

to, ∑
n
B̂

(+)
n =

∫
V
B̂(+) (R)

∑
n
δ (R − Rn)d3R

= x
v0

∫
V
B̂(+) (R) d3R.

(4.20)

Now, the averaging over the ground state of holes is performed (as we
consider the low-temperature limit) in order to eliminate hole-fermionic de-
grees of freedom. There are two cases that should be considered as they
correspond to the two abovementioned limiting types of hole ground states
in DMS.

a) If an acceptor potential V (rj) (j enumerates the acceptors) is deep
enough (i.e., we deal with localized holes or an insulator-type hole state at
T = 0), then the eigen-function and energy of the ground state of holes (the
Hamiltonian Ĥp) attains the following form,
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Ψ0

(
r1, ..., rNp

)
= ϕ0 (r1) ...ϕ0

(
rNp

)
,

Fp ≈ E0 = Npε0 −Np∆,
(4.21)

where ϕ0 (r) and ε0 is the eigen-function and eigen-value of the hole ground
state in the acceptor potential V (∆ is the band gap). We have assumed that
an average distance between acceptor centres is significantly larger than an
orbit of a localized hole. Therefore, the averaging of an arbitrary function
A
(
R1, ..,RNp

)
of hole coordinates should be carried out via averaging over

both the hole subsystem state and the configuration of randomly located
acceptors. This averaging is given by the following formula,

⟨A⟩p =
∫

Ψ∗
0 (r)A

(
Rn1 + r1, ...,RnNp

+ rNp

)
Ψ0 (r) d3r

≈ A
(
Rn1 , ...,RnNp

) ∫
|Ψ0 (r)|2d3r,

(4.22)

where Rn1 , ...,RnNp
are lattice localisations of acceptor centres, and r =

(r1, ..., rNp). Like for magnetic dopants, a suitable distribution function can
be introduced, F (p)

s (R1, ...,Rs), which defines the probability of acceptor
centers localization at R1, ...,Rs:

F (p)
s (R1, ...,Rs)

=
(
V
N

)s (
N
Np

)s ∑
n1 ̸=...̸=ns

δ (R1 − Rn1) ...δ (Rs − Rns),
(4.23)

summation goes over all lattice points occupied by acceptors (n1, ...,ns). As

F
(p)
1 (R) = v0

xp

∑
n
δ (R − Rn) = 1, therefore

⟨Np∑
j=1

δ (R − Rj)

⟩
p

=
∑
n

δ (R − Rn) =
xp
v0
. (4.24)

Just like for magnetic dopants, hole density functions can be introduced

instead HP hole operators
Np∑
j=1

b̂
(+)
j =

∫
b̂(+) (R)

Np∑
j=1

δ (R − Rj) d
3R, and then,

⟨Np∑
j=1

b̂
(+)
j

⟩
p

=
xp
v0

∫
b̂(+) (R) d3R. (4.25)

b) If, however, unlike for case (a), acceptor centres are shallow, then the
hole ground state may be collective, quasi-metallic one (e.g., for Ga1−xMnxAs,
insulator-metal transition has been numerically estimated [RPA] [79] for
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x ∼ 0.03). The eigenfuction of such collective state can be approximated by
Slater determinant Φ0 for single-particle hole states, with the normalization
factor ∼ 1√

V NpNp!
(Bloch functions are normalized to the crystal volume).

In this case the averaging should be performed over the hole state Φ0 (but
not over acceptor centres distributions, which due to hole collectivization
becomes unimportant),

⟨A⟩p = ⟨A⟩p =
∫

Φ∗
0 (R)A (R)Φ0 (R) d3R,

where R =
(
R1, ...,RNp

)
. One can easily notice that,

⟨Np∑
j=1

δ (R − Rj)

⟩
p

=
1

V

Np∑
j=1

∫
δ (R − Rj) d

3Rj =
xp
v0
, (4.26)

like for case (a)—equation (4.24) (the normalization factor in Slater determi-
nant yields a factor identiclal to the one obtained via averaging over random
localizations of acceptor centres in case (a)), which leads again to equation
(4.25).

For HP spin operators, Fourier representation can be applied [65],

B̂(+) (R) = 1
(2π)3

v0√
x

∫
B̂(+) (k) exp (ik · R) d3k, (4.27)

b̂(+) (R) = 1
(2π)3

v0√
xp

∫
b̂(+) (k) exp (ik · R) d3k. (4.28)

Taking into account the following,⟨∑
n
e−ik·Rnf (Rn)

⟩
p

= x
v0

∫
e−ik·Rf (R) d3R,⟨

Np∑
j=1

e−ik·Rjf (Rj)

⟩
p

= xp
v0

∫
e−ik·Rf (R) d3R,

the averaged Hamiltonian
⟨
Ĥs

⟩
p
, attains the form [it should be emphasized

that with the accuracy up to the quadratic terms, which is consistent with
omitting scatterings of exctiations on structual fluctuations of dopants, the
averaging of macroscopic quantities—free energy—turns out to be equivalent
with the Hamiltonian averaging],⟨

Ĥs

⟩
p

= N
{
g0µBSxB − gpµBxpB/2 + SxxpÃp (0)

}
+ v0

(2π)3

∫ ˆ̃Hs (k) d3k,
(4.29)
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where,
ˆ̃Hs (k) = εsB̂

+ (k) B̂ (k) + εpb̂
+ (k) b̂ (k)

+γ (k)
[
b̂ (k) B̂+ (k) + b̂+ (k) B̂ (k)

]
,

(4.30)

with,

εs = −g0µBB − xpÃp (0) ,

εp = gpµBB − 2SxÃp (0) ,

γ (k) = −
√

2SxxpÃp(k).

From the above it follows that the type of disorder (expressed by at least

binary correlation function) does not affect
⟨
Ĥs

⟩
p
, in which only densities x

and xp and xp contribute. The binary correlations may cause small correc-
tions if direct exchange interaction of magentic dopants is taken into account
(significantly weaker than the indirect one)—this effect is discussed in one of
the following pragraphs.

4.1.2 Diagonalization of the effective spin Hamiltonian
in DMS—spin waves

A Bogolubov-type diagonalization of Hamiltionian ˆ̃Hs (k) (4.30) can now
be performed. To do so, the linear transformation of operators B̂ (k) =
vkα̂1 (k) + ukα̂2 (k) , b̂ (k) = ukα̂1 (k) − vkα̂2 (k) , (u2k + v2k = 1) is applied,
which yields,

ˆ̃Hs (k) = ε1 (k) α̂+
1 (k) α̂1 (k) + ε2 (k) α̂+

2 (k) α̂2 (k) , (4.31)

where,

u2k = 1
2

{
1 +

√
1 − 4γ2(k)

[ε1(k)−ε2(k)]2

}
,

v2k = 1
2

{
1 −

√
1 − 4γ2(k)

[ε1(k)−ε2(k)]2

}
,

(4.32)

and
ε1,2 (k) = 1

2
[(gp − g0)µBB − C]

±1
2

√
[(gp + g0)µBB − C]2 + 8SxxpÃ2

p (k)),
(4.33)

here, C = Ãp (0) (xp + 2Sx).

As exchange integral Ap (R) diminishes exponentially with the increasing
distance R [89],

Ap (R) = Ap exp (−2R/lex),
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where, lex ∼ a (v0 = a3), therefore,

Ãp (k) = Ãp(0)

[1+k2l2ex/4]
2 , Ãp (0) = π2

4
l3ex
v0
Ap. (4.34)

In the absence of external magnetic field (B = 0), and taking eguation
(4.34) into account, the expression for ε1,2 (k) can be rewritten as,

ε1,2 (k)

= −1
2
Ãp (0) (xp + 2Sx)

{
1 ±

√
1 − 8Sxxp

(xp+2Sx)2
f
(
k2l2ex
4

)}
,

f
(
k2l2ex
4

)
= 1 − 1

[1+k2l2ex/4]
4 .

(4.35)

Therefore, the Hamiltonian
⟨
Ĥs

⟩
p
, following (4.31), attains the following

form ⟨
Ĥs

⟩
p

= N
{
g0µBSxB − gpµBxpB/2 + 2xxpÃp (0)

}
+ v0

(2π)3

∫ 2∑
j=1

εj (k) α̂+
j α̂j (k)d3k.

(4.36)

The formulae above indicate that, in DMS at low temperatures, the spec-
trum of spin excitations consists of two branches of spin waves. In the ab-
sence of external magnetic field (B = 0), the lower branch ε2 (k) is gapless,
i.e., ε2 (0) = 0, while the upper branch (optical) ε1 (k) has a gap (the gap
is relatively wide ε1 (0) = −Ãp (0) (xp + 2Sx)). Hence, the DMS as a whole
is equivalent to a ferrite with two magnetic sublattices. It is this type of
magnetic material which is characterised by the the presence of a gapped
higher-energy spin-wave branch (with the gap of the order of the exchange
interaction of different sublattices) [90]. Note that the energy of spin wave
branche ε2 (k) increases with k, while of branche ε1 (k)—decreases (cf. Fig.
4.1).

For klex << 1 (in proximity of point Γ), magnon dispersion can be ap-
proximated by, {

ε1 (k) = ε0 −Dk2,
ε2 (k) = Dk2,

(4.37)

with ε0 = −Ãp (0) (xp + 2Sx) , D = −Ãp (0) 2Sxxp
xp+2Sx

l2ex (while the limiting

behaviour for klex >> 1, ε1 (∞) = −Ãp (0) 2Sx, ε2 (∞) = −Ãp (0)xp). From
relation (4.36) it follows that,

⟨
α̂+
j (k) α̂j′ (k′)

⟩
s

=
(2π)3

v0
δ (k − k′) δjj′nj (k) , (4.38)
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Figure 4.1: Spin-wave dispersion for a DMS at several concentrations of
holes mediating the spin exchange; inset: optical magnon gap versus hole
concentration (curve B) and versus dopant concentration (at constant xp/x)
(curve A)

where ⟨...⟩s = Tr

{
... exp

(
−
⟨Ĥs⟩

p
−Fs

kBT

)}
, nj (k) =

[
exp

(
εj(k)

kBT

)
− 1

]−1
. For

k → k′: (2π)3

v0
δ (k − k′) → 1

v

∫
V
d3R = N thus

⟨
α̂+
j (k) α̂j (k)

⟩
s

= Nnj (k).

4.1.3 The influence of binary correlations of dopant
distributions in DMS

Binary correlations in the random magnetic dopant distributions can be ac-
counted for via function F2 (equation (4.19)); they do not influence hole-
dopant indirect exchange but the direct dopant-dopant exchange. For small
concentration of magnetic dopants and short-range exchange interaction, the
direct dopant-dopant exchange is considerably smaller than the indirect ex-
change mediated by band holes. However, if the direct exchange term,

−1

2

∑
n,m̸=n

J(Rn − Rm)Ŝn · Ŝm, (4.39)

104



is included in the Hamiltonian (4.2) then, after the averaging over dopant
distributions (as presented above), additional terms appear in the effective
Hamiltonian (compared to (4.29)):⟨

Ĥs

⟩
p

= −Nix
S2

2
J̃(0) −Nix

S2

2
v0

(2π)3

∫
J̃(k)[a(k) − 1]d3k

−Nig0µBBS +NpgpµBB/2 +
√
NiNpxxpSÃp(0)

+ v0
(2π)3

∫
Ĥs(k)d3k,

(4.40)

with
Ĥs(k) = ϵs(k)B̂+(k)B̂(k) + ϵp(k)b̂+(k)b̂(k)

+γ(k)
[
b̂(k)B̂+(k) + b̂+(k)B̂(k)

]
and

ϵs(k) = −g0µBB − xpÃp(0) + xS
[
J̃(0) − J̃(k)

]
+xS v0

(2π)3

∫ [
J̃(k1) − J̃(k1 − k)

]
[a(k1) − 1]d3k1,

ϵp(k) = gpµBB − x2SÃp(0), γ(k) = −
√

2SxxpÃp(k). The tilde over J i A

indicates the Fourier picture: Ã(k)
[
J̃(k)

]
= 1

v0

∫
A(k) [J(k)] e−ik·Rd3R, and

for the binary correlation function there is (4.19):

g(r) = 1 +
v0

(2π)3

∫
[a(k) − 1] eik·rd3k,

and its Fourier transform is g̃(k) = (2π)3

v0
δ(k) + [a(k) − 1]. Structural form-

factor a(k) introduced here, can be used for the modelling of the random
dopant distribution type (in the case of experimentally observed dopant dis-
tributions, e.g., they can form a sublattice) [64]. In the above estimations,
we have taken into account that,∑

n,m
J(Rn − Rm) = Nix

v0
(2π)3

∫
J̃(k)g̃(k)d3k,∑

n,m
J(Rn − Rm)B̂+

n B̂m

= x
(

v0
(2π)3

)2 ∫
J̃(k1)g̃(k1)B̂

+(k1 + k2)B̂(k1 + k2)d
3k1d

3k2.

Formula (4.40) yields Eq. (4.29) if J is neglected.
The role of direct exchange dopant interaction increases along with the

dopant concentration. After the diagonalization of Hamiltonian (4.40), spin
wave dispersion attains form (the generalization of Eq. (4.33) for non-zero
J),

ϵ1,2 =
ϵs(k) + ϵp(k)

2
± 1

2

√
[ϵs(k) − ϵp(k)]2 + 4γ2(k). (4.41)
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For klex << 1 it results in:

ϵ1 = −Ãh(0)(xp + x2S) − D̃1k
2, ϵ2 = D̃2k

2,

D̃1 = − xp
xp+x2S

D̃ +
γ1
√

2Sxxp

xp+x2S
,

D̃2 = − x2S
xp+x2S

D̃ +
γ1
√

2Sxxp

xp+x2S
,

D̃ = −xS
2
d2J̃
dk2

∣∣∣
k=0

− 4π
3
xS v0

(2π)2

∞∫
0

[a(q) − 1] d
dq

(
q2 dJ̃

dq

)
dq,

γ1 =
√

2Sxxp
d2Ãp

2dk2

∣∣∣∣
k=0

(note that D̃ and γ1 have positive values and for J = 0, D̃ disappears).
Therefore, our claim is that binary correlations in magnetic dopant distri-
butions (entering via form-factor a(k)) remain insignificant unless direct ex-
change interaction (usually weak) has been included. This result confirms the
numerical analysis (within Monte-Carlo simulations) [80], which also show
weak relationship between DMS magnetic properties and random dopant dis-
tribution as well as the type and the range of the exchange integral [80, 85]
(especially at low temperatures).

4.1.4 Low-temperature properties of DMS—the influ-
ence of spin waves

In order to present low-temperature magnetization in DMS, the relations
(4.31)-(4.33) and (4.38) can be applied. DMS magnetization density, made
up of hole magnetization and of magnetic dopants, is

Mz (T ) = N
V
µB

(
g0Sx− 1

2
gpxp

)
+

+ 1
V

v0
(2π)3

∫ {
−g0µB

⟨
ˆ̃B
+

(k) ˆ̃B (k)
⟩
s

+gpµB

⟨
ˆ̃b
+

(k) ˆ̃b (k)
⟩
s

}
= µB

v0
{(g0Sx− gpxp/2)

+π
2

1∫
0
z2 [Kn1 +Rn2] dz

}
d3k,

(4.42)

where K = −g0v2z + gpu
2
z, R = −g0u2z + gpv

2
z , z = k/kmax = ka/π (a wave

vector cannot be greater than kmax = π/a); ε1 (z) = ε0 − D∗z2, ε2 (z) =
D∗z2, where D∗ = D/a2, and u2z ≈ u20 = xp/(xp + 2Sx), v2z ≈ v20 =
2Sx/(xp + 2Sx); n1,2 is the Bose-Einstein distribution for spin waves. In
the case of T → 0,

1∫
0

z2n1dz <<

1∫
0

z2n2dz ≈ 2, 612

(
kBT

D∗

)3/2

,
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Figure 4.2: Low-temperature correction to DMS magnetization of spin waves
(∼ T 3/2) for several concentration values and giromagnetic factors: A (x =
0.1, xp = 0.5, g0 = 2, gp = 1.6), B (x = 0.1, xp = 0.1, g0 = 2, gp = 1.6), C
(x = 0.1, xp = 0.02, g0 = 2, gp = 2), D (x = 0.1, xp = 0.01, g0 = 2, gp = 1)

only the lower branch of spin waves contributes to the magnetization, and
for low temperatures the following formula is obtainded for Mz (T ):

Mz (T ) ≈ µB
v0

{
gpSx

(
g0
gp

− xp
2Sx

)
+4.1 g02Sx

xp+2Sx

(
gp
g0

− xp
2Sx

) (
kBT
D∗

)3/2}
.

(4.43)

From the above expression, it follows that Mz (T ) at small T strongly
depends both on the ratio of concentrations xp/x and the ratio of giromag-
netic factors g0/gp. For Mn dopant, one can assume g0 = 2, and for the
holes gp = 2 with j = 1/2 and gp = 4/3 with j = 3/2 (effective factor gp
for Ga(Mn)As, as has been estimated on the basis of the magnetization in
the six-band Kohn-Luttinger model versus x and xp, varies from 1.45 to 1.6)
[76].

We investigate a case in which the total magnetic moment of dopants
is greater than the total magnetic moment of holes, i.e. g0

gp
> xp

2Sx
; that

is why the first term in equation (4.43) is awlays positive. However, at
hole concetration xp high enough, xp

2Sx
> gp

g0
, the second term in equation

(4.43) becomes negative, which means that the DMS magnetic moment di-
minishes with the temperature increase, proportionally to T 3/2 (at low tem-
peratures). For low and medium hole concentration, when xp

2Sx
< gp

g0
, the

DMS magnetic moment increases with the temperature ∼ T 3/2 (fig. 4.2).
This uncommon low-temperature and low-hole concentration behaviour of
spontaneous DMS magnetization can be explained if one notes that, with the
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temperature increase, hole-spin alignment is more changeable than the align-
ment of magnetic dopant spins. With further temperature increase, Ms (T )
reaches its maximum value, and than drops to zero at the critical temper-
ature [54, 55, 60]. Note also, that if g0/gp = 1, then the DMS magnetic
moment always increases with the temperature for xp < x (close to T = 0).
The sign of the term ∼ T 3/2 depends on the ratio xp

x
(which may correspond

to the experimentally observed concave-convex transition for DMS magne-
tization, so different from the characteristic Curie magnetization observed
at medium temperatures, with respect to the concentrations of holes and
dopants [55, 56]).

The averaged energy of DMS spin subsystem, according to equation
(4.36), in the absence of external magnetic field, is

Es (T ) =
⟨⟨
Ĥs

⟩
p

⟩
s

= N

{
2xxpÃp (0) + π

2

1∫
0
z2

2∑
j=1

εj (z)nj (z)dz

}
.

(4.44)

At low temperatures,

1∫
0

z2ε1n1dz <<

1∫
0

z2ε2n2dz ≈ 0.891D∗
(
kBT

D∗

)5/2

,

thus, it follows that gapped spin waves actually do not contribute to the total
energy. Therefore, Es (T ), for low T , assumes the following form

Es (T ) = N

2xxpÃp (0) +
π

2
0.891D∗

(
kBT

D∗

)5/2
 (4.45)

and the contribution to DMS magnon gas (spin waves) specific heat, at
low temperatures, is given by ∆Cs = 1

V
∂Es

∂T
= amagT

3/2, where: amag =

3.5
v0
kB
(
kB
D∗

)3/2
. Magnon contribution to DMS specific heat increases with the

temperature increase, according to the 3/2 power law, typical of ferromag-
netic materials. Since heat capacity of phonon gas is proportional to T 3,
therefore, CV = aphT

3 + amagT
3/2, or T−3/2CV = aphT

3/2 + amag, which
allows for determination of D∗ (resulting from the measuerment of DMS
specific heat).
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4.2 Decoherence of exciton spin in a quantum

dot within a DMS medium

4.2.1 Temperature-dependent energy shift for exciton
in a quantum dot embedded in a DMS material

Part of DMS magnetization generated by spin waves (temperature-dependent)
allows for estimating the temperature-dependent energy shift of the ground
state of a quantum dot exction embedded in a DMS material. The spin
structure of a quantum dot exciton corresponds to the four allowed spin
configurations for the electron and hole pair making up an exciton. In the
absence of external magnetic field and in the paramagnetic phase of DMS ma-
terial surrounding the quantum dot, these four spin states are degenerated.
In a magnetically ordered phase of a DMS, the internal Weiss field splits
the energy levels (due to spontaneous magnetization of magnetic dopant sys-
tem); only this part of DMS magnetization influences the QD excitons [only
dopant spins undergo the exchange interaction with e-h pair spins in a quan-
tum dot]). The temperature term in the DMS magnetization formula for
a magnetic dopant system leads to temperature-dependent energy of split
levels (especially, to the energy shift of the lowest of them—the ground state
energy). In the experiment [86, 87], energy incerase with the increase of tem-
perature of this state is observed (blue-shift), which is explained below in the
framework of the present model. The Hamiltonian describing the interaction
of e-h pair (the exciton) in a QD surrounded by a DMS material attains the
following form (the spins of band holes contribute nothing here),

Ĥsd(Re,Rh) = −2β0
∑
n

Ae(Re − Rn)ŝe · Ŝn (4.46)

−2β0
∑
n

Ah(Rh − Rn)ŝh · Ŝn,

where: ŝe(h) is a QD electron (hole) spin operator, Rn—magnetic dopant

localization (Mn2+) in DMS, Ŝn is the dopant spin operator; the summation
over n goes over all dopant occupied lattice sites. Factor Ae(h)(Re(h) − Rn)
defines the exchange interaction s−d between an electron (hole) of a quantum
dot exciton and a magnetic dopant (phenomenological factor β0 accounts
for the additional diminishing of the exchange integral resulting from the
structural separation of a quantum dot embedded in a DMS crystal, and it
is adjusted to match the experimental data [86, 87]).

The exciton energy shift (for same-oriented (1) and opposite-oriented (2)
spins of e-h pairs) attains form:
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E1(2)nsz = En + ∆

+2szSxiβ
[
Ãe(0) − (+)Ãh(0)

]
m(T ),

(4.47)

where En denotes the energy of a bare quantum dot exciton (in the paramag-
netic phase of a DMS), sz = ±1

2
is the electron spin projection of an e-h pair

for the opposite-oriented [(1,sz = ±1
2
)] or same-oriented [(2,sz = ±1

2
)] e-h

spins, S—DMS magnetic dopant spin, m(T ) denotes temperature-dependent
magnetization component of a DMS dopant spin subsystem. For material
parameters, see Tab. 3 (for the e-h pair ground state, i.e., [1, sz = 1

2
]

state), temperature-dependent term contributing to the dopant magnetiza-
tion m(T ) ∼ 5.6 ·10−3T 3/2 can be estimated [62]. Energy shift of QD exciton
following from the abovementioned formulas, can be compared with (via Eq.
(4.47) and for β0 ∼ 0.1 [86, 87]) the experimental data for a system of a
quantum dot embedded in a DMS: Zn0.75Mn0.25Se/CdSe [86, 87] (Tab. 4).
Comparison of the calculated shift with the experimental data (for material
parameters listed in Tab. 3), presented in Tab. 4, confirms the theortical
model presented hereof.

Tab.3. Structural paramteres for Zn0.75Mn0.25Se/CdSe[86, 87, 88]

spin exchange interaction for holes Ãp(0) (≃ Ãh(0)) -1.3 eV

spin exchange interaction for electrons Ãe(0) 0.26 eV
magnetic dopant concentration x 0.25
hole concentration xp 0.025
factor of structural separation β0 0.1
spin of Mn2+ dopant 5/2
lattice constant (ZnSe) 0.57 nm
electron (hole) effective mass (ZnSe) 0.2 (0.6) me

dot dimension (CdSe) (model) 10 nm

Tab.4. ∆E for EMP for a quantum dot in DMS: Zn0.75Mn0.25Se/CdSe
T[K] experiment [87] [eV] model [eV]
2 2.085 2.085
9 2.088 2.087
20 2.090 2.091
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4.2.2 Dephasing of quantum dot excition spin by spin
waves excited in the quantum dot-surrounding
DMS

By analogy with dephasing of orbital (charge) degrees of freedom of quantum
dot-trapped carriers by dressing in phonons (hybridisation of localized and
collective states), one can expect a similar phenomenon in respect to quantum
dot-carriers spins (of electrons, holes or excitons) due to their hybridisation
with magnons (spin waves) existing in the DMS medium surrounding the
dot, i.e., in its magnetically ordered phase (only then spin waves can be
found there). Dressing of a spin structure of a localized exciton in spin
waves corresponds to creating an excitonic magnetopolaron (EMP) (further
generalization of a phonon polaron).

Dephasing of an excitonic state due to creation a quantum dot magne-
topolaron EMP is connected with a DMS subsystem inertia. In the case of a
quantum dot exciton rapidly (nonadiabatically) excited, its spin undergoes
delayed hybridisation with spin waves modes. A bare excition, whose spin
interacts with the DMS subsystem, is not in its ground state. The creation
of EMP, or gradual dressing of exctionic spin structure in a cloud of QD-
localized spin waves, is accompanied by the transfer of excess spin exchange
energy carried off by a wave-packet of magnons to the surrounding crystal
(outside the quantum dot) (EMP energy is lower than the energy of a bare
exciton, which makes an EMP a stable quasiparticle). In this nonstationary
state energy is not determined, though as the mean value is shared between
interacting subsystems of quantum dot exciton and DMS magnons (and sim-
ilarly to the formation of phonon polaron the corresponding dressing process
cannot be interpreted in terms of Fermi golden rule but rather as the nonsta-
tionary evolution of a quantum entagled state of the total system with parts
linked in an unseparaable manner).

In order to estimate the time of dephasing of exciton spin due to creating
a magnetopolaron EMP together with a cloud of magnons, the following
formula can be used, by analogy with similar phonon effects,

τ ≃ d

vg
,

where vg denotes the group velocity of a packet of magnons carrying off
excess exchange energy to the outside area of the dot of dimension of d. This
group velocity vg = ∂ω>(k)

∂k
(at k ∼ 1/d, due to the quantum dot bottle-neck

effect, similarly as for phonons). Dressing exciton spin in DMS spin waves
is a similar process to creating polarons with LO-phonons because magnons
like LO-phonons have quadratic dispersion. Applying the above formulae
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Figure 4.3: The time of quantum dot exciton spin dephasing versus quantum
dot dimension (parabolic type of scaling) for various admixture and hole
concentrations in DMS

describing DMS magnon dispersion, the time of dephasing can be estimated
as follows,

τ ≃ d

vg
= d

(
∂ϵ

∂p

)−1

=
h̄d

2Dk
≃ h̄d2

2D
,

where k ≃ 1/d (in accordance with the bottle-neck effect [34, 35]). Therefore,
the time of dressing in magnons (quantum dot-spin dephasing) scales as d2,
and is relatively long for typical nanostructures. This dephasing time of the
exciton spin depends on magnetic admixture and band-hole concentration
in the DMS medium via D, Eq. (4.37). The examples are shown in Fig.
4.3. For a DMS QD of type Zn(Mn)Se/CdSe of ∼ 10nm and for magnetic
admixture concentration x = 0.25, and hole concentration xp = 0.025, the
dephasing time calculated from the above formula reaches the value observed
experimentally for the system (Zn0.75Mn0.25Se/CdSe) [86, 87, 88], i.e., around
150 ps. The time of exciton annihilation in this system is of the order of 600
ps, which allows for a complete creation of an EMP magneto-polaron in the
dot.

Quantum dot spin dephasing due to its being dressed in a spin wave cloud
from the magnetic medium is important for the reasons of the estimation of
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the efficiency of coherent quantum dot spin control schemes, and the pos-
sibility of using spin for information processing in magnetic nanostructures.
Magnetic nanostructures (using e.g., DMS) seem to be a very promising ma-
terial for various information processing applications due to the fact that spin
control can be achieved in much shorter time (magnetic-field-induced Rabi
oscillations of a spin qubit) [7, 8], which is the consequence of the giant in-
crease in Pauli term (effective giromagnetic factor increase). The above anal-
ysis of magnetic systems shows, however, that the presence of spin waves in
magnetically ordered phases leads to strong decoherence effects, which were
previously overlooked. Spin dephasing due to inertia of creation of magneto-
polarons is as unfavourable as in the case of polaron formation in respect to
charge in nanostructures. Time of QD spin dephasing in DMS falls within
a 6-order window between the times of spin-control (picoseconds) and the
time of amplitude decoherence of quantum dot spin (microseconds), required
by DiVincenzo conditions [7, 8, 22] (needed for the implementation of quan-
tum error correction). The whole time scale of quantum dot spin kinetics is
shifted in relation to charge kinetics by 3 orders of magnitude towards slower
processes, but with the dephasing, which places inconvenintly right in the
center between the times of control and relaxation.

4.3 Microscopic description of quantum dot

spin dephasing in magnetic medium

Let us consider a diluted magnetic semiconductor (DMS) type III-V (e.g.,
Ga(Mn)As) or II-VI (e.g., Zn(Mn)Se). Additionally, let us assume that in the
DMS material there is a quantum dot (e.g., Ga(Mn)As/InAs or Zn(Mn)Se/CdSe
[86, 87, 88]). A rapidly excited (nonadiabatically) exction in quantum dot is
considered. The Hamiltonian of the whole system has the form,

Ĥ = Ĥex + Ĥsd + Ĥpd, (4.48)

where the excitonic part in the quantum dot (for a model of a quasi-2D
parabolic quantum dot [1] in a weak external magnetic field perpendicular
to the quantum dot plane),

Ĥex = Ĥe(Re) + Ĥh(Rh) − e2

ϵ0|Re−Rh|
+∆ + geµBBŝze + ghµBBŝzh,

(4.49)
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and single-particle Hamiltonian of a quantum dot electron (hole),

Ĥe(h) = − h̄2

2m∗
e(h)

[
∆r + ∂2

∂z2

]
+1

2
m∗
e,h(ω

2
0,e(h) + 1

4
ω2
c,e(h))r

2 +
h̄ωc,e(h)

2
l̂z + Ue(h)(z),

(4.50)

here, R = (r, z), r = (x, y); ω0,e(h)—the curvature of parabolic lateral confin-

ing potential for the qunatum dot electron (hole); ωc,e(h) = |e|B
m∗

e(h)
c
—cyclotron

energy; Ue(h) = V0Θ(|z| − z/z0)—vertical quantum dot confining potential;

∆—forbidden gap (e-h); µB = h̄|e|
2mec

—Bohr’s magneton, ge(h)—giromagnetic
factor of a quantum dot electron (hole); ŝze(h)—z-component of electron
(hole) spin operator; m∗

e(h)—electron (hole) effective mass; B = (0, 0,−B)—
external magnetic field.

Exchange interaciton (s(p)-d) between magnetic admixtures in DMS and
e-h pair in a quantum dot has the following form [90, 86, 87],

Ĥsd(Re,Rh) = −2β0
∑
n
Ae(Re − Rn)ŝe · Ŝn

−2β0
∑
n
Ah(Re − Rn)ŝh · Ŝn,

(4.51)

where Re(h)—electron (hole) position in the quantum dot; ŝe(h)—quantum
dot electron (hole) spin operator operator; Rn—the magnetic admixture po-
sition in DMS lattice point n (for the sake of simplicity, the inter-point
positions of admixtures are neglected); Ŝn—spin operator of magnetic ad-
mixture at point Rn; the summation over n goes over all admixture-occupied
lattice points; β0—a phenomenological coefficient which accounts for an ad-
ditional decrease of the exchange interaction with the quantum dot due to
dot-structure separation (experimentally adjusted, β0 ∼ 0.1 [86, 87, 88]).
Factor Ae(h)(Re − Rn) describes the exchange interaction between the elec-
tron (hole) and the admixture (Ae(Re − Rn) > 0 and Ah(Re − Rn) < 0).

Ĥpd is the Hamiltonian of a DMS magnetic subsystem—of magnetic ad-
mixtures and band holes,

Ĥpd = Ĥp + gpµBB
Np∑
j=1

ŝz + g0µBB
∑
n
Ŝzn

−2
∑
n

Np∑
j=1

Ap(Rj − Rn)ŝj · Ŝn,
(4.52)

where Rj, ŝj denote the position and spin of j-th hole, g0, gp—giromagnetic
(Lande) factors of a magnetic admixture and band hole, respectively.

The fermionic Hamiltionian of band holes—Hp—can be modelled for shal-
low and deep acceptors in the was presented in the one of the previous para-
grahs. In both cases Ĥp does not overtly depend on a particular acceptor
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distribution in a crystal, which makes the averaging over hole states and
admixture concentration easier (in comparison with the scheme applied for
magnetic dopants).

For the spin structure of a quantum dot exciton, a representation of four
spin states of e-h pair sze = ±1

2
; szh = ±1

2
is assumed; they are degener-

ated in the absence of magnetic field and for a DMS paramagnetic phase.
Therefore, the exciton eigen-functions and eigen-energy (corresponding to
the Hamiltionian Hex) assume the form,

• for opositely-oriented spins of e-h pair (j = 1),

Ψ1
n,sz(Reσe,Rhσh) = ψ1

n(Re,Rhσh)ϕsz(σe)ϕ−sz(σh), (4.53)

• for same-oriented spins of e-h pair (j = 2),

Ψ2
n,sz(Reσe,Rhσh) = ψ1

n(Re,Rhσh)ϕsz(σe)ϕsz(σh). (4.54)

The energy of these states equals

Ej=1(2)nsz = En + (ge − (+) gh)µBszB + ∆,

where the minus sign refers to j = 1, and the plus to j = 2, and,

∫
ψ∗
n(Re,Re)ψm(Re,Re)d

3Red
3Rh = δnm,

∑
σ

ϕ∗
sz(σ)ϕs′z(σ) = δszs′z ,

n—refers to a suitable set of quantum numbers (without spin) and sz =

±1
2

(the projection of the electron spin in e-h pair). a
(+)
jnsz denotes bosonic

exciton annihilation (creation) operator for the state jnsz (j = 1, 2 for the
opositely- and same-oriented spins in e-h pair). The Hamiltonian (4.49) can
be expressed as

Ĥex =
∑
jnsz

Ejnsz â
+
jnsz âjnsz . (4.55)

The Hamiltonian (4.51) can also be rewritten (in the basis of excitonic
states (4.55)), i.e.

∑
µ,µ′

< µ|Ĥsd|µ′ > â+µ âµ′ , where µ = (jnsz).

115



4.3.1 Exchange interaction between DMS admixture
and quantum dot exciton

The Hamiltonian of spin exchange between quantum dot exciton and DMS
magnetic admixture assumes the following form (4.51), i.e. Ĥsd(Re,Rh) =
−2β0

∑
n
Ae(Re − Rn)ŝe · Ŝn − 2β0

∑
n
Ah(Re − Rn)ŝh · Ŝn.

Remembering that the part corresponding to e-h system has one-particle
form, the representation Ĥsd =

∑
µ,µ′

< µ|Ĥsd|µ′ > â+µ âµ′ , z µ = (jnsz) can be

applied, with µ = (jnsz), which yields the following formula,

Ĥsd = −2β0
∑

mnsz ,n′s′z

Ŝm·[
â+1nsz â1n′s′z

{
< n|Ae|n′ >

∑
σe
ϕ∗
sz(σe)ŝeϕs′z(σe)

+ < n|Ah|n′ >
∑
σh
ϕ∗
−sz(σh)ŝhϕ−s′z(σh)

}
+â+2nsz â2n′s′z

{
< n|Ae|n′ >

∑
σe
ϕ∗
sz(σe)ŝeϕs′z(σe)

+ < n|Ah|n′ >
∑
σh
ϕ∗
sz(σh)ŝhϕs′z(σh)

}
+â+1nsz â2n′s′z

{
< n|Ae|n′ >

∑
σe
ϕ∗
sz(σe)ŝeϕs′z(σe)

+ < n|Ah|n′ >
∑
σh
ϕ∗
sz(σh)ŝhϕ−s′z(σh)

}
+â+2nsz â1n′s′z

{
< n|Ae|n′ >

∑
σe
ϕ∗
sz(σe)ŝeϕs′z(σe)

+ < n|Ah|n′ >
∑
σh
ϕ∗
−sz(σh)ŝhϕs′z(σh)

}]
,

(4.56)

where

< n|Ae(h)|n′ >
=
∫
ψ∗
n(Re,Rh)Ae(h)(Re,(h) − Rm)ψn′(Re,Rh)d

3Red
3Rh.

Then, the Fourier transform is applied, f(R) = v0
(2π)3

∫
d3kf̃(k)eik·R, where

v0 = V
N

denotes the volume of unit crystal cell, i.e.,

< n|Ae,h(Re,h − Rm)|n′ >=
v0

(2π)3

∫
d3kF

(e,h)
nn′ (k)eik·Rm .

Since for s = 1/2 there is ϕ1/2 =

(
1
0

)
i ϕ−1/2 =

(
0
1

)
, therefore, the
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non-zero sums are the following,∑
σ
ϕ∗
1/2(σ)ŝxϕ−1/2(σ) = 1/2,

∑
σ
ϕ∗
−1/2(σ)ŝxϕ1/2(σ) = 1/2,∑

σ
ϕ∗
1/2(σ)ŝyϕ−1/2(σ) = −i/2, ∑

σ
ϕ∗
−1/2(σ)ŝyϕ1/2(σ) = i/2,∑

σ
ϕ∗
1/2(σ)ŝzϕ1/2(σ) = 1/2,

∑
σ
ϕ∗
−1/2(σ)ŝzϕ−1/2(σ) = −1/2,

(4.57)

for Pauli matrices

ŝx = 1
2

(
0 1
1 0

)
, ŝy = 1

2

(
0 −i
i 0

)
, ŝz = 1

2

(
1 0
0 −1

)
.

Thus,

Ĥsd = − v0β0
(2π)3

∫
d3k

∑
nn′,m e−ik·Rm

{
2Ŝzm[(

F e
nn′(k) − F h

nn′(k)
) 1/2∑
sz=−1/2

szâ
+
1nsz â1n′sz

+
(
F e
nn′(k) + F h

nn′(k)
) 1/2∑
sz=−1/2

szâ
+
2nsz â2n′sz

+F e
nn′(k)

1/2∑
sz=−1/2

szâ
+
1nsz â2n′sz

+F h
nn′(k)

1/2∑
sz=−1/2

szâ
+
1nsz â2n′−sz

+F e
nn′(k)

1/2∑
sz=−1/2

szâ
+
2nsz â1n′sz

−F h
nn′(k)

1/2∑
sz=−1/2

szâ
+
2nsz â1n′−sz

]
+F e

nn′(k)
[
Ŝ(−)
m â+1n1/2â1n′−1/2 + Ŝ(+)

m â+1n−1/2â1n′1/2

]
+F h

nn′(k)
[
Ŝ(−)
m â+1n−1/2â1n′1/2 + Ŝ(+)

m â+1n1/2â1n′−1/2

]
+(F e

nn′(k) + F h
nn′(k))[

Ŝ(−)
m â+2n−1/2â2n′1/2 + Ŝ(+)

m â+2n1/2â2n′−1/2

]
+F e

nn′(k)
[
Ŝ(−)
m â+1n1/2â2n′−1/2 + Ŝ(+)

m â+1n−1/2â2n′1/2

]
+F h

nn′(k)
[
Ŝ(−)
m â+1n1/2â2n′1/2 + Ŝ(+)

m â+1n−1/2â2n′−1/2

]
+F e

nn′(k)
[
Ŝ(−)
m â+2n1/2â1n′−1/2 + Ŝ(+)

m â+2n−1/2â1n′1/2

]
+F h

nn′(k)
[
Ŝ(−)
m â+2n−1/2â1n′−1/2 + Ŝ(+)

m â+2n1/2â1n′1/2

]}
,

(4.58)

where Ŝ(±)
m = Ŝx,m ± iŜy,m. Notice that F e,h

nn′(k))∗ = F e,h
nn′(−k) and F e,h

nn′(k →
0) = Ãe,h(0)δnn′ .

4.3.2 The Hamiltonian of spin waves in DMS

For spin operators of magnetic admixtures in DMS Ŝm the following bosonic
Holstein-Primakoff representation [65, 66] is applied—as presented in the
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previous paragraphs. If we assume that the system is in the ground state
[76, 77] in which admixture spins are aligned along the external field, and
hole spins are counter-oriented, then for the admixtures at low temperatures

there is: Ŝ(−)
n =

√
2S − B̂+

n B̂nB̂n ≃
√

2SB̂n, Ŝ
(+)
n = B̂+

n

√
2S − B̂+

n B̂n ≃
√

2SB̂+
n , Ŝz,n = −S + B̂+

n B̂n, and for the holes Ŝ
(−)
j =

√
1 − b̂+j b̂j b̂j ≃

b̂j, Ŝ
(+)
j = b̂+j

√
1 − b̂+j b̂j ≃ b̂+j , Ŝz,n = 1/2 − b̂+j b̂j. This representation yields

the following form of the DMS Hamiltionian (for
⟨
B̂+

n B̂n

⟩
,
⟨
b̂+j b̂j

⟩
<< 1):

Ĥpd ≃ −g0µBBSNi + gpµBB
1
2
Np + S

Np∑
j=1

∑
n
Ap(j, n)

+
∑
n

(
g0µBB −∑

j
Ap(j, n)

)
B̂+

n B̂n

+
∑
j

(
−gpµBB − 2S

∑
n
Ap(j, n)

)
b̂+j b̂j

−
√

2S
Np∑
j=1

∑
n
Ap(j, n)(b̂jB̂

+
n + b̂+j B̂n) + Ĥp

(4.59)

(Ap(j, n) = Ap(Rj − Rn)).
Assuming that Ni << N (x = Ni/N < 1), where Ni denotes the number

of admixtures at random positions in a DMS crystal (N is the number of unit
cells), as it has been already mentioned, not all admixtures contribute to the
DMS ordering, e.g. in the samples analysed by the authors of the papers
[86, 87], only about 20% of admixtures were active, which might be included
in their effective spin, S ≃ 0.41, and not 2.5, as is required for Mn. With
random distribution of magnetic admixtures (as well as acceptor centers),
all macroscopic (thermodynamic) measurable quantities should be averaged
over all possible dopant distributions—in accordance with the scheme pre-
sented in the previous paragraphs. According to this scheme, the averaging
of free energy and other macroscopic quanitites is, in our case, equivalent
with the averaging of the Hamiltionian on condition that the collective ex-
citation scatternings on structural fluctuations of admixture distribution are
negligible, which agrees with the fact that only quadratic terms of HP oper-
ators Hamiltonian are included to the Hamiltonian. The averaging leads to
a continuous model and restores translational invariance of a dopant crys-
tal, which, in turn, enables to apply momentum reperesentation of collective
excitations (spin waves).

For a continuum-type representation of HP operators B̂(+)
n (in accordance

with the formerly applied averaging method [64]), there is,

B̂(+)
n = B̂

(+)
Rn
, [B̂R1 , B̂

+
R2

] =
v0
x
δ(R1 − R1).
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Alike for HP operators of band holes: b̂
(+)
j = b̂

(+)
Rn

, a continuum-type

representation can be applied, then [b̂R1 , b̂
+
R2

] = v0
xp
δ(R1 − R1).

For operators B̂(+)(r) i b̂(+)(r), their Fourier representation is applied,

B̂(+)(r) = v0
(2π)3

√
x

∫
d3keik·rB̂(+)(k), (4.60)

and [B̂(k), B̂+(k′)] = (2π)3

v0
δ(k − k′);

b̂(+)(r) = v0
(2π)3

√
xp

∫
d3keik·rb̂(+)(k), (4.61)

and [b̂(k), b̂+(k′)] = (2π)3

v0
δ(k − k′).

The result of spin operators averaging over random distributions of DMS
magnetic admixtures and hole states, as well as acceptor centers random
positions in DMS, can be presented in the following way. For HP spin op-
erators of admixtures, according to the definition of averaging over random
distributions of these admixtures,

∑
l
e−ik·RlB̂l =

√
xB̂(k),

∑
l
e−ik·RlB̂+

l =
√
xB̂+(−k),∑

l
e−ik·Rl = x

v0
(2π)3δ(k),∑

l
e−ik·RlB̂+

l B̂l = v0
(2π)3

∫
d3k′B̂+(k′)B̂(k′ + k),∑

l
B̂+

l B̂l = v0
(2π)3

∫
d3k′B̂+(k′)B̂(k′),

(4.62)

and, similarly, for HP spin operators of holes (averaged over acceptor distri-
butions and over the hole ground state),

∑
j
e−ik·Rl b̂j =

√
xpb̂(k),

∑
j
e−ik·Rl b̂+j =

√
xpb̂(−k),∑

j
e−ik·Rj = xp

v0
(2π)3δ(k),∑

j
e−ik·Rj b̂+j b̂j = v0

(2π)3

∫
d3k′b̂+(k′)b̂(k′ + k),∑

j
b̂+j b̂j = v0

(2π)3

∫
d3k′b̂+(k′)b̂(k′),∑

nj
A(Rj − Rn) =

√
NiNp

√
xxpÃ(0),∑

nj
A(Rj − Rn)B̂+

n B̂n = v0
(2π)3

xp
∫
d3k′Ã(0)

∫
d3kB̂+

k B̂k,∑
jn
A(Rj − Rn)b̂+j b̂j = x v0

(2π)3
Ã(0)

∫
d3kb̂+(k)b̂(k),∑

jn
A(Rj − Rn)[b̂jB̂+

n + b̂+j B̂n]

=
√
xpx

v0
(2π)3

∫
d3k

[
Ã∗(k)b̂(k)B̂+(k) + Ã(k)b̂+(k)B̂(k)

]

(4.63)
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(a tilde denotes the Fourier transform).
By means of the above formulae, the Hamiltonians Ĥsd and Ĥpd can be

averaged,

Ĥsd = 2xSβ0
∑
nsz

{
[Ãe(0) − Ãh(0)]â+1nsz â1nsz

+[Ãe(0) − Ãh(0)]â+2nsz â2nsz + Ãe(0)â+1nsz â2nsz
+Ãh(0)â+1nsz â2n−sz + Ãe(0)â+2nsz â1nsz − Ãh(0)â+2nsz â1n−sz

}
−2β0

v0
(2π)3

∫
d3k′d3k′′B̂+(k′′)B̂(k′′ + k′)

∑
nn′sz

sz{
[F e
nn′(k′) − F h

nn′(k′)]â+1nsz â1n′sz

+[F e
nn′(k′) + F h

nn′(k′)]â+2nsz â2n′sz

+F e
nn′(k′)â+1nsz â2n′sz + F h

nn′(k′)â+1nsz â2n′−sz
+F e

nn′(k′)â+2nsz â1n′sz − F h
nn′(k′)â+2nsz â1n′−sz

}

(4.64)

−
√

2Sxβ0
v0

(2π)3

∫
d3k

∑
nn′

{
B̂(k)

[
F e
nn′(k)

(
â+
1n+ 1

2

â1n′− 1
2

+â+
2n 1

2

â2n′− 1
2

+ â+
1n 1

2

â2n′− 1
2

+ â+
2n 1

2

â1n′− 1
2

)
+F h

nn′

(
k)(â+

1n− 1
2

â1n′+ 1
2

+ â+
2n 1

2

â2n′− 1
2

+â+
1n 1

2

â2n′ 1
2

+ â+
2n− 1

2

â1n′− 1
2

)]
+B̂+(−k)

[
F e
nn′

(
k)(â+

1n− 1
2

â1n′ 1
2

+â+
2n− 1

2

â2n′ 1
2

+ â+
1n− 1

2

â2n′ 1
2

+ â+
2n− 1

2

â1n′ 1
2

)
+F h

nn′(k)
(
â+
1n 1

2

â1n′− 1
2

+â+
2n− 1

2

â2n′ 1
2

+ â+
1n− 1

2

â2n′− 1
2

+ â+
2n 1

2

â1n′ 1
2

)]}
.

Similarly,

Ĥpd = −g0µBBSNi + gpµBB
1
2
Np +

√
NiNpxxpSÃp(0)

+
∑
j

h̄2k2j
2m∗

h
+ v0

(2π)3

∫
d3kĤpd(k),

(4.65)

Ĥpd(k) = εdB̂
+(k)B̂(k) + εpb̂

+(k)b̂(k)

+γp(k)[b̂(k)B̂+(k) + b̂+(k)B̂(k)],

with

εd(k) = g0µBB − xpÃp(0),
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εp(k) = −gpµBB − x2SÃp(0), γ(k) = −
√

2SxpxÃp(k).

Notice that, Ãp(k) = Ãp(−k) = Ã∗
p(k).

4.3.3 Spin waves in a magnetic subsystem in DMS

Hamiltonian (4.65) can be diagonalized by by means of canonical (Bogolubov-
type) transformation (presented in one of the previous paragraphs),

B̂ (k) = vkα̂1 (k) + ukα̂2 (k) ,

b̂ (k) = ukα̂1 (k) − vkα̂2 (k) ,
(4.66)

(where u2k + v2k = 1), and expressed in the following diagonalized form:

Ĥpd(k) = ε1(k)α̂1(k)†α̂1(k) + ε2(k)α̂2(k)†α̂2(k),

where boson operators α̂1(k), α̂2(k) denote spin waves operators and cor-
responding to them dispersion relations ε1(k), ε2(k) assume the following
form,

ε1,2(k) =
1

2
[εp + εd] ±

1

2

√
[εp − εd]2 + 4γ2(k), (4.67)

with

u2k = 1
2

{
1 +

√
1 − 4γ2(k)

[ε1(k)−ε2(k)]2

}
,

v2k = 1
2

{
1 −

√
1 − 4γ2(k)

[ε1(k)−ε2(k)]2

}
.

(4.68)

For zero external magnetic field and small k (klex ≪ 1), dispersion of spin
waves can be expressed in the following form, ε1(k) = −Ãh(0)(xp + x2S) −
Dk2, ε2(k) = Dk2, where D depends on admixture and hole concentration
(4.37). There are two branches of spin waves (like for a ferrimagnetic): a
gapless branch ε2(k) (ε2(0) = 0) and a gapped branch ε1(k).

Hamiltionian Ĥsd should also be expressed by means of operators α̂1(k),
α̂2(k). Consequently, the effective Hamiltonian of the whole system is estab-
lished in the following form,

Ĥeff = Ĥ = E0 + Ĥ0 + Ĥ1, (4.69)

with
E0 = −g0µBBSNi − β0S

2Ni, (4.70)

Ĥ0 =
∑
jnsz

ϵjnsz â
+
jnsz âjnsz + x

v0
(2π)3

∑
i

∫
d3kεi(k)α̂+

i (k)α̂i(k), (4.71)

where ϵjnsz = En+(ge− (+)gh)µBBsz +2xS[Ãe(0)− Ãh(0)]sz +∆, and εi(k)
are determined by formula (4.67); E0 denotes the ground state energy of
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free band holes, and two spin DMS subsystems (of holes and of admixtures)
spin-exchange interact. The diagonal part of effective Hamiltonian Ĥ0 is a
sum of energy of two types of elementary excitations in the system: quantum
dot-localized excitons (with same- or oppositely-oriented spins in e-h pair),
and two types of DMS magnons (gapless and gapped—so-called ”optical” [by

an analogy with LO phonons]). The last term Ĥ1 = Ĥsd (equation (4.64))
with operators expressed by means of diagonalizing transformation (4.66)
refers to the interaction between these elementary excitations of the system,
including the following effects:

• interaction between a quantum dot exciton and magnons (spin waves),
with two magnons (creation and annihilation); it is important to note
that there is an interaction term without any change in the spin pro-
jections of e-h pair,

• the processes linked to absorption or emission (creation) of a magnon
[single-magnon processes] with simultaneous spin-flip in the exciton
spin structure.

It needs to be stressed that such complex nature of the interaction be-
tween spin waves (magnons) and quantum dot excitons makes this phe-
nomenon different from the interaction between phonons and quantum dot
excitons (presented in the first part hereof)—in the case of magnons, spin
conservation rule should be accounted for (irrelevant for phonons).

4.3.4 Dressing of quantum dot excitons in DMS magnons—
Hamiltonian s-d

The Hamiltonian of interaction of quantum dot exciton with magnetic ad-
mixtures Ĥsd can be expressed in the following form,

Ĥsd = Ĥ1
sd + Ĥ2

sd, (4.72)

where
Ĥ1
sd −

(
v0

(2π)3

)2
2Sxβ0

∫
d3k1

∫
d3k2[

vk2α̂
+
1 (k2) + uk2α̂

+
2 (k2)

]
[vk2+k1α̂1(k2 + k1) + uk2+k1α̂2(k2 + k1)]∑
n,n′

1/2∑
sz=−1/2

sz
{[
F e
nn′(k1) − F h

nn′(k1)
]
â+1nsz â1n′sz

+
[
F e
nn′(k1) + F h

nn′(k1)
]
â+2nsz â2n′sz

+
[
F e
nn′(k1)â

+
1nsz â2n′sz + hc

]
+
[
F h
nn′(k1)â

+
1nsz â2n′−sz + hc

]}
,

(4.73)
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Ĥ2
sd = −

√
2Sxβ0

v0
(2π)3

∫
d3k

∑
n,n′

{[vkα̂1(k) + ukα̂2(k)][
F e
nn′(k)

(
â+1n1/2â1n′−1/2 + â+2n1/2â2n′−1/2

+â+1n1/2â2n′−1/2 + â+2n1/2â1n′−1/2

)
+F h

nn′(k)
(
â+1n−1/2â1n′1/2 + â+2n1/2â2n′−1/2

+â+1n1/2â2n′−1/2 + â+2n1/2â1n′−1/2

)]
+ hc

}
.

(4.74)

The first term Ĥ1
sd refers to exciton-spin wave interaction involving two

magnons (this term contains simultaneously magnon creation and annihila-
tion operators). The term contains part of interaction without any exciton
spin change of e-h pair (at the same time, there are magnon creation and
annihilation operators, which mutually cancel out spin changes, so that the
exciton does not receive the magnon spin). The second term of Ĥ2

sd of spin-
flip-type for e-h pair, describes the act of absorption or emission of a single
magnon with a simultaneous change of spin of e-h pair, which cancels out
the spin carried off by a magnon.

We look for this term of the Hamiltionian which does not change the
ground state of an exciton—such term leads to pure dephasing, which is
our current objective. The remaining terms, corresponding with the change
of exciton state, lead to relaxation, i.e., to amplitude decoherence (exciton
state changes). Only Ĥ1

sd contains a term that does not lead to an exciton
state change; it is of a double-operator both for magnons and exciton—
therefore, the corresponding vertex (in Fenyman graph terms) is a qadratic
(not a triangle, as in the case of phonon-charge interaction, when the spin
conservation rule was irrelevant). Term Ĥ2

sd must not contain such an element
because spin carried off by an individual magnon must be cancelled out by the
change of exciton spin, which gives the change of exciton state (the vertices
corresponding to these elements of the Hamiltonian are triangles—like in the
case of phonons—they do not result, however, in pure exciton dephasing but
in its relaxation transitions (amplitude decoherence).

The fact that term Ĥ1
sd which contains diagonal interaction is of a quadratic

vertex form, leads to the structural change in the mass operator equation (in
comparison with phonons and triangle vertices). The first-order diagram (cf.
Fig. 4.4) with respect to the interaction (with a closed magnon loop) does not
contribute to the imaginary part of the mass operator—it only describes real
exciton energy shift due to (magnons) magnetization [it is a temperature-
dependent exciton state energy shift; the states are split and shifted by the
total spontaneous DMS magnetization (beyond the critical temperature they
are degenrated)—magnons contribute little to this magnetization, which has
been estimated near T = 0 and compared with with the experimental data
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Figure 4.4: Contribution to the mass operator: first-order (left), second-
order—arising from Ĥ2

sd (right) and from Ĥ1
sd (middle)

[31, 62]]. Such a diagram does not result in dephasing because the rele-
vant component of the mass operator does not contain an imaginary part
(the correlation function of dephasing is linked only to the imaginary part of
Green function [spectral intensity] via the Fourier transform, and thus with
the imaginary part of the mass operator). The imaginary contribution to
the mass operator comes from the second-order diagram with respect to the
interaction (quadratic) (cf. Fig. 4.4)—this diagram describes pure exciton
dephasing.

The second term of Hamiltonian Ĥ2
sd (with triangle vertices) does not

contribute to pure exciton dephasing—although it also contributes imaginary
terms to the exciton mass operator, but not to its diagonal part (non-diagnal
imaginary components of the mass operator describe dephasing mixed with
simultaneous amplitude decoherence of states, which, however, does not in-
fluence pure dephasing).

The term in the mass operator, linear with respect to the quadratic ver-
tex, defines energy shift of the exciton (especially, the shift of ground state
energy),

ϵ1(2)nsz = En + ∆ + (ge − (+)gh)µBszB

+2szSxiβ0
[
Ãe(0) − (+)Ãh(0)

]
mi(B, T ),

(4.75)

where

mi(B, T ) = 1 − v0
S(2π)3

∫
d3k

[
v2kn1(k) + u2kn2(k)

]
(4.76)

(for Ãe(0) > 0, Ãh(0) < 0 and
∣∣∣Ãe(0)

∣∣∣ < ∣∣∣Ãh(0)
∣∣∣ there is the following

ordering of QD exciton states in the magnetic phase of DMS, ϵ1n−1/2 <
ϵ2n1/2 < ϵ2n−1/2 < ϵ1n1/2).

Near T = 0, for Zn0.75Mn0.25Se, the contribution to dopant magnetization
from magnons is m(0, T ) ≃ 5.63710−3T 3/2, which results in blue-shift of the
EMP ground state (10 − 1/2) with the increase in temperature as observed
in Zn0.75Mn0.25Se/CdSe—Tab. 4 (experimental results adjustment).
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4.4 Estimation of the mass operator and its

imaginary part for multi-angle vertices

Green-Matsubara function (GMF) (imaginary time function) has the follow-
ing form [15, 16]:

Gη
Â,B̂

(τ1 − τ2) = − << TηÂ(τ1)B̂(τ2) >>, (4.77)

where Â(τ) = eτĤÂe−τĤ denotes imaginary-time-dependent Heisenberg pic-
ture, t = −iτ , Tη denotes imaginary-time chronology ordering operator τ

(η = 1 for bosons, η = −1 for fermions), TηÂ(τ1)B̂(τ2) = Θ(τ1−τ2)Â(τ1)B̂(τ2)+

ηΘ(τ2−τ1)B̂(τ2)Â(τ1); << ... >>= Tr 1
Q
e−β(Ĥ−µN̂)..., Q = Tre−β(Ĥ−µN̂), β =

1/kT .
When operators Â, B̂ are annihilation and creation operators of the sec-

ond quantisation, then GMF is called single-particle and its Fourier compo-
nents (a Fourier series components, as GMF is defined on the line segment
[−β, β]) for free particles (no interaction) assumes the following form [15]
(h̄ = 1):

Gη
âi,â

+
j

(ων) =
δij

iων − Ei
,

{
iων = iπ

β
2ν, ν ∈ Z for η = 1

iων = iπ
β
(2ν + 1), ν ∈ Z for η = −1.

(4.78)

Analytical continuation Gη
âi,â

+
j

(ων) on the complex plane equals the mero-

morphic function—the retarded Green function Fourier transform (the upper
semiplane) and the advanced Green function Fourier transform (the lower
semiplane) (commutation for η = 1, anti-commutation for η = −1),

G
η,r(a)

âi,â
+
j

(t) = ±Θ(±t) << [ai(t), aj(0)]−η >>,

Gη
âi,â

+
j

(iων → E = ω + iΓ) = 2πiGη

âi,â
+
j

(E),

Gη

âi,â
+
j

(E) =
∫
dω

I
âi,â

+
j
(ω)(eβω−1)

E−ω .
(4.79)

Spectral intnesity Iâi,â+j
(ω) is identical with the Fourier transform of the

correlation function employed herein for dephasing description, and is ex-
pressed by means of the imaginary part of Gη

âi,â
+
j

(E).

GMF function can be estimated by means of graphic methods (Feymnan
graphs, which is possible for non-zero temperature after including imaginary
time [15, 16]) and, after analytical continuation, retarded (advanced) Green
function can be estimated (it has a physical interpretation of generalized
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Figure 4.5: Graphic representation of the Dyson’s equation

susceptibility in accordance with Kubo’s theory of linear response [15, 91]). In
the case of a single-particle Green functions, the poles of its Fourier transform
define quasiparticles in the system. Graphic methods for GMF (based on
the Wick’s theorem) [15, 16] facilitate perturbation-controlled accuracy (with
respect to interaction) estimation of GMF for systems of interacting particles.

If, graphically, a thick direction-oriented line represents the full (with
interaction included) GMF, and a thin line represents a bare (no interaction)
GMF, and the interaction vertex (in imaginary-time interaction picture, i.e.,
the Heisenberg picture without interaction) is taken as a ’bare’ vertex, then
Dyson’s equation is satisfied [15, 16] (it has simple graphic interpretation—cf.
Fig. 4.5),

Gη(i.j, ων) = G(0)η(i.j, ων) +
∑
i′,j′

G(0)η(i.i′, ων)Σ(i′, j′, ων)Gη(j′.j, ων), (4.80)

where Σ(i′, j′, ων) denotes a mass operator. Dyson’s equation is diagonal
in terms of frequency, which follows from time (imaginary) uniformity and
can be diagonal with respect to particle indices i, j due to symmetry, af-
ter diagonalization (as in the case of spin waves presented herein), or via
approximation. The diagonal case of Dyson’s equation is,

Gη(i.ων) =
1

(G(0)η(i.ων))−1 − Σ(i, ων)
=

1

ih̄ων − Ei − Σ(i, ων)
, (4.81)

which results in simple analytical continuations. The crucial role of the mass
operator (of its imaginary part) for the estimation of the imaginary part of
Fourier transform of the retarded (advanced) Green function —and of the
spectral intensity, results from the following relation (3.18):

Gr(0, 0, ω) = 1
h̄ω−E0−∆(ω)+iγ(ω)+iϵ

= a−1

x+iγ′(x)+iϵ
, with a residuum in the pole

a = 1− d∆(ω)
h̄dω

|ω=Ẽ′
0
, Σ = ∆− iγ, γ′(x) = γ(x)/a (with argument x renormal-

ized, x = h̄ω − Ẽ ′
0, Ẽ

′
0 = Ẽ0/a), ϵ = 0+. The imaginary part of the Green

function attains the following form (3.20): ImGr(0, 0, ω) = −a−1πδ(x) −
a−1γ′(x)/x2

1+(γ′(x)/x)2
(and the correlation function I(t) = − h̄

π

∫∞
−∞ dωImGr(0, 0, ω)e−iωt).
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in interaction picture

Figure 4.6: A triangle vertex in Matsubara representation of interaction (the
continuous line—exciton, the dashed line—phonon

The mass operator, and its imaginary part in particular, are dependent
on the interaction vertex (fig. 4.4). The shaded vertices denote the effec-
tive ones—representing graphs which cannot be crisscrossed by 2 (3) lines
[if there exist two vertex types simultaneously, the contribution from both
is included in the mass operator, but the equations diverge since the mu-
tual dependence of the vertices influence the structure of the equations—in
such cases, controlled approximation with respect to interaction should be
employed].

4.4.1 The lowest-order approximation of a mass oper-
ator for multi-angle vertices

Let us estimate contributions of two graphs (for a mass operator) as in Fig.
4.7.

An analytic formula related to the upper graph assumes the following
form,

1

β

∑
iji′j′

v(k; ii′)v(jj′; l)
∑

ων1 ,ων2 ;ων1+ων2=ων

Gij(ων1)Gi′j′(ων2), (4.82)
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Figure 4.7: Contribution to the mass operator from triangle vertices of the
lowest order (the continuous line—GMF for an exiton, the dashed line—GMF
for a phonon)

and for the lower graph there is,

1

β

∑
iji′j′

v(ki; i′)v(j′; jl)
∑

ων1 ,ων2 ;ων2=ων1+ων

Gji(ων1)Gi′j′(ων2). (4.83)

If bare FGN
(

G(0)
ij (ων) = δij

iων−ϵi

)
are to represent GMF, then an appro-

priate formula for the upper graph needs to be calculated,

1

β

∑
ν1

1

iων − ϵi

1

iων − iων1 − ϵi′
(4.84)

and the same for the lower graph,

1

β

∑
ν2

1

iων + ων2 − ϵi

1

iων2 − ϵi′
(4.85)

(in the figure, the dashed line—a phonon GMF, and its respective energy
ϵ—phonon energy, the continuous line—an exciton GMF, and its respective
energy ϵ is exciton energy [similarly, the indices of phonon states denote
momentum, and for an exciton this is a set of qunatum numbers for a QD
exciton—for indices i, j, k, l respectively]). These formulae have the form of
Fourier convolution,

1

β

∑
ν1

f(ων − ων1)g(ων) =
∫ β

0
eiωντf(τ)g(τ)dτ, (4.86)

and for (imaginary) time-dependent GMF (for η = 1—as for bosons),
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G(0)
ij (τ) = −δij [ni + Θ(τ)] e−ϵiτ , ni =

1

eβϵi − 1
, (4.87)

the convolutions resolve to the form (for the upper graph),

δijδi′j′ [ni+1][ni′+1]
e−βϵie−βϵ

′
i − 1

iων − ϵi − ϵi′
= −δijδi′j′

1 + ni + ni′

iων − ϵi − ϵi′
T→0−→ − δijδi′j′

iων − ϵi − ϵi′
,

(4.88)
(for the lower graph),

δijδi′j′ [ni′ + 1]ni
e−βϵi′eβϵi − 1

iων − ϵi′ + ϵi
= δijδi′j′

ni′ − ni
iων − ϵi′ + ϵi

T→0−→ 0, (4.89)

for bosons eiβων = eiπ2ν = 1 and ni+1 = nie
βϵi , ni → 0 for T → 0 (nie

βϵi → 1,
(ni + 1)e−βϵi → 06, v(k1, k2; k3) = v∗(k3, k2; k1). Thus the lower graph does
not contribute (vanishes) at T → 0.

The above example can be generalized to a simple rule for estimating
contribution to the mass operator from and muli-angle vertices:

• if the internal Green function, bare or full [in the latter case with the
energy renormalized by the real part of the mass operator (for self-
consistent equations)] has the same direction as the graph orietation
(assumed from the left to the right), then it contributes factor [ni + 1]
and negative energy in the exponent and in the denominator in the
expression for the mass operator: e−βϵi ...−1

iων−ϵi... ,

• if the internal Green function, bare or full [in the latter case with the
energy renormalized by the real part of the mass operator (for selfcon-
sistent equations)] has the opposite direction to the graph orientation
(assumed from right to left), then it contributes factor [ni], and positive
energy in the exponent and in the denominator in the expression for
the mass operator: eβϵi ...−1

iων+ϵi...
.

The rule above facilitates determination of contributions to the mass op-
erator for multi-angle vertices, in particular for a square vertex (the only one
resulting in pure dephasing of an exciton by spin waves in DMS—in accor-
dance with the previous paragraphs). The diagonal graph, for exciton states
[the ground state in particular] (cf. Fig. 4.8) contributes

6ni(x) =
1

ex/kT−1
≃ kT/x, which for small values of x may result in singularity at x = 0

(of Bose-Einstein condensation type)—therefore, in the absence of such condensation, this
singularity is neglected and a small energy shift is assumed (an energy gap or chemical
potential) x ↔ x+ |µ|
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Figure 4.8: Contribution to the exciton mass operator resulting in pure de-
phasing of spin in state n of exciton (the continuous lines—exciton GMF,
the dashed lines—magnon GMF)

∑
k1,k2 |V (k1, k3 = n;n, k2)|2[1 + n1][1 + n3]n2

e−βϵ1e−βϵ3eβϵ2−1
iων−ϵ1−ϵ3+ϵ2

= −∑k1,k2 |V (k1, k3 = n;n, k2)|2 [1+n1]n2

iων−ϵ1−ϵ3+ϵ2 ,
(4.90)

the last identity on the assumption that n3 = 0; the lower line—exciton
one—(same-directed as the graph) contributes [1 + n3] but with n3 = 0, or
(opposite-directed as the graph) contributes n3, with n3 = 0, which agrees
with the accepted model of exciton vacuum (i.e., T = 0 for excitons despite
possibility of T ̸= 0 for magnons) [39]. Indices k1, k2 of spin waves represent
momentum and the number of a magnon branch (i.e., k = (k, i), i = 1, 2
numbers the lower branch (1) or the upper branch (2) of spin waves in DMS.

4.4.2 The imaginary part of a mass operator

The method of calculating mass operator contributions presented above mat-
ters when it is necessary to find its imaginary part, which directly influences
spectral intensity and its reverse Fourier transform—the correlation function.
The form of the contribution to the mass operator which corresponds with
pure dephasing (i.e., it corresponds to an exciton diagonal vertex) assumes
the following form,

∼
∑

|V |2[1 + nj]ni...
eβϵie−βϵj ...− 1

iων + ϵi − ϵj...
.

This component of the mass operator can by analytically continued [due
to the transition from Matsubara-Fourier components to the retarded (ad-
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vanced) Green function transform] [15, 16]. This yields the following expres-
sion,

∼
∑

|V |2[1 + nj]ni...
eβϵie−βϵj ...− 1

E + ϵi − ϵj...
, E = ω + iΓ,

which, due to the following relation,

1

x+ iΓ
= P

1

x
− iπδ(x),

leads to determining the imaginary part of the contribution to the mass
operator:

−π
∑

|V |2[1 + nj]ni...
(
eβϵie−βϵj ...− 1

)
δ(ω + ϵi − ϵj...).

When quantum dot exciton charge degrees of freedom interact with LA
and LO phonons, the formulae yield respective contributions to the imagi-
nary part of an exciton mass operator in the form presented by appropriate
equations in part one (equations (3.12), (3.13)).

When quantum exciton spin interacts with spin waves in DMS, the imag-
inary part of a mass operator (corresponding to the graph in Fig. (4.8) and
leading to pure dephasing) attains the following form:

γn(ω, T ) = π
2∑

i,j=1

∑
k1,k2

|V (n,k1, i;n,k2, j)|2

×[ni(k1) + 1]nj(k2)δ(ω − En − εi(k1) + εj(k2)),
(4.91)

for the ground state of exciton n = 0; the interaction,

V (n,k1, i;n,k2, j)|n=0 = β02Sx

[
vk2vk1 , vk2uk1

uk2vk1 , uk2uk1

]
×
(
F e
00(k1 − k2) − F h

00(k1 − k2)
)
,

the matrix in respect to the numbering of magnon branches (i, j) =

[
11, 12
21, 22

]
,

ni(k)—Bose-Einstein distribution for the i-th magnon branch in DMS, uk, vk—
coefficient of diagonalizing transform for DMS magnons.

F
e(h)
nn′ (k) = Ãe(h)(k)

∫
d3Re

∫
d3RhΨ

∗
n(Re,Rh)e

ik·Re(h)Ψn(Re,Rh),

Ãe(h)(k) =
1

v0

∫
d3RAe(h)(R)e−ik·R,
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Ψ∗
n(Re,Rh) denontes an orbital part of state n wave-function of a quantum

dot exciton (for the ground state,

Ψ0 =
1

π3/2LeLhLz
exp

{
−r2e/2L2

e − r2h/2L
2
h − (z2e + z2h)/2L

2
z

}
,

Re(h) = (re(h), ze(h))),

Ae(h)(R) = Ae(h)e
−2R/lex , lex ∼ a, (a3 ≃ v0),

Ãe(h)(k) =
Ãe(h)(0)

[1 + k2l2ex/4]2
, Ãe(h)(0) =

π2

4

l3ex
v0
Ae(h).

The material parameters (as well as constants Ãe(h)(0)) for a quantum dot
in DMS surroundings [Zn(Mn)Se/CdSe] are listed in Tab. 3.

All the above relationships lead to,

γ0(ω, T ) = π
∑

k1,k2

|V (k1 − k2, 0)|2

×
{

[n1(k1) + 1]n1(k2)v
2
k2
v2k1

δ(ω − E0 − ε1(k1) + ε1(k2))

+ [n1(k1) + 1]n2(k2)v
2
k2
u2k1

δ(ω − E0 − ε1(k1) + ε2(k2))
+ [n2(k1) + 1]n1(k2)u

2
k2
v2k1

δ(ω − E0 − ε2(k1) + ε1(k2))

+ [n2(k1) + 1]n2(k2)u
2
k2
u2k1

δ(ω − E0 − ε2(k1) + ε2(k2))
}
,

(4.92)
ε1(k) = Dk2, ε2(k) = D0 − Dk2, V (k1 − k2, 0) = β02Sx(F e

00(k1 − k2) −
F h
00(k1 − k2)) = f(k1 − k2 = k) = A e−αk2

[1+βk2]2
, A = β02Sx(Ãe(0) − Ãh(0)),

β = l2ex/4, α = l2/2 (l—the dimension of a quantum dot exciton in the
ground state averaged over directions [≃ quantum dot dimension], lex—the
exchange interaction range).

Or,

γ0(x, T ) = πA2 ∑
k1,k2

e−2α(k1−k2)
2

[1+β(k1−k2)2]4

×
{

[n1(k1) + 1]n1(k2)v
2
k2
v2k1δ(x−D(k21 − k22))

+ [n1(k1) + 1]n2(k2)v
2
k2
u2k1δ(x+D0 −D(k21 + k22))

+ [n2(k1) + 1]n1(k2)u
2
k2
v2k1δ(x−D0 +D(k21 + k22))

+ [n2(k1) + 1]n2(k2)u
2
k2
u2k1δ(x−D(k22 − k21))

}
,

(4.93)

x = ω − E0, n1(k) = 1

eDk2/kT−1
, n2(k) = 1

e(D0−Dk2)/kT−1
and (for low k,

k/kmax << 1, kmax = π/a) u2k = xp
xp+2Sx

− Bk2, v2k = 2Sx
xp+2Sx

+ Bk2,

B = xp
x

2S−xp/x
(2S+xp/x)3

2Sl2ex, D0 = −Ãp(0)(xp + 2Sx), D = −Ãp(0) 2Sxpx
xp+2Sx

l2ex
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time

radius

Figure 4.9: Time evolution of a magnon wave packet leaving a quantum dot
region (1D model) and transferring the excess exchange energy to the DMS
medium at time of EMP formation in QD: for the first (fourth) component
in formula (4.93)—A and B (for time ratio 1 : 4); for the second (third)
component in formula (4.93)—C (contribution one order of magnitude lower
in comaparison to A)

(Ãp(0) denotes exchange interaction between admixtures and band holes;
we assume that Ãh(0) = Ãp(0), and remembering that for a quantum dot
exchange interaction has been additionally renormalized by the factor β0).

4.4.3 Magnon-induced versus phonon-induced QD ex-
citon dephasing

Due to different type of vertex interaction responsible for pure dephasing,
exciton-phonon (triangle vertex) and exciton-magnon (quadratic vertex) they
lead to significantly different phenomena. Spin conservation in the vertex
(during interaction) requires participation of two magnons (exciton spin state
remains unchanged), unlike phonons, in case of which single-photon emission
or absorption is feasible with exciton state unchanged. For magnons, magnon
emission must be accompanied by a magnon absorption (in order to balance
the loss of spin in the vertex due to spin wave emission—equation (4.91)).
Although factors corresponding to emission (of type [1+n]) assume non-zero
values even at T = 0 (this is true for phonons), the absorption factor (of
type n; the probability of magnon absorption is proportional to the number
of magnons) falls to zero for T → 0, and this is the reason why exciton spin
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Figure 4.10: Contribution to the mass operator of the exciton at the lowest
order with respect to the interaction of magnons, the exciton state unchanged
(this graph does not contribute the imaginary part)

dephasing by magnons becomes smaller and smaller (→ 0) with temperature
falling to T = 0 (in the case of phonons, dephasing remains non-zero even
at T = 0 due to only phonon emission, even in phonon vacuum for T = 0).
What is more, for magnons n2 << n1 for → 0 (due to a magnon gap)
contribution at low temperatures comes from terms with factors n1(1 + ni).

At higher temperatures, when the number of thermodynamic magnons
(liable to absorption) rises high enough, magnon-induced spin dephasing is
as effective as phonon-induced charge dephasing. The difference between
both effects presented herein emphasises the fact that spin is more resistant
to DMS-magnon-induced dephasing at low temperature due to spin conser-
vation constraints in comparison to phonon-induced charge dephasing (which
is strong even at T = 0).

4.4.4 The real correction to the mass operator

The graph presented in Fig. 4.8 leads to the imaginary part of the mass
operator (4.91), but it also contains the real part, which contributes a cor-
rection to exciton energy. This correction is of the second order with respect
to interaction V , and is smaller than the first-order correction in the interac-
tion corresponding to the graph in fig. 4.10 (this graph does not contribute
an imaginary part).

The upper loop (in Fig. 4.10) contributes to the mass operator in accor-
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dance with general rules for graphs [15]:

lim
τ ′→τ, τ ′>τ

Gα̂pα̂
+
q

(τ, τ ′) =<< α̂+
q α̂p >> (∼ δpq) (4.94)

and is expressed by a magnon distribution function (after summation over
(k, i)—or by magnon-induced magnetization (which has already been pre-
sented in one of the previous paragraphs).

4.5 Singlet-triplet quantum gate model in He-

type quantum dots

In order to avoid time limitations related to spin qubits in quantum dots,
one can consider employing singlet and triplet states to implement spin qubit
instead of a single spin. Such a minimal collective qubit seems to be more
resistant to decoherence, especially that in a uniform magnetic field, the
transition element between its states equals zero (singlet-triplet transition is
triggered only by non-uniform field, while for single spin transtions up/down
the uniform field is sufficient). This idea was suggested in the paper [50],
where is discussed employment of He-type quantum dots for qubit imple-
mentation. Such quantum structure has been attracting more attention re-
cently due to the appearance of new technologies of obtaining quantum dots,
i.e. quantum dots in DMS materials. In such materials, there is observed a
significant rise in effective giromagnetic factor in Pauli term (for the magnet-
ically ordered phase), which effectively increases triplet state gaps and allows
for a more accurate definition of qubit while employing only the lowest of
the triplet states (more distant from the others in Weiss field). How Weiss
field influences one-qubit operations, for a qubit spanned over singlet and
triplet states, is of little importance because the non-zero transition element
for singlet-triplet state of a pair of electrons produces only non-uniform mag-
netic field (magnetization in the ordered phase of DMS is uniform). Weiss
field could speed-up single-qubit operations on single-spin qubits because
matrix transition element between states |1/2, 1/2 > and |1/2,−1/2 > is
non-zero for uniform magnetic field. But for Rabi oscillations to appear, dy-
namic field is required (Appendix B) (two spin orientations in non-zero field
remaind nondegenerated), which precludes Weiss field as a means for contin-
uous state control (of Rabi oscillations) even for single-spin qubits. What is
more, the unfavourable decoherence mentioned above (as well as amplitude
one) caused by spin waves in the ordered phase seems to limit the usefullness
of these materials for scalable logical spin gates (with the requirement for
error correction satisfying DiVincenzo conditions). However, the possibility
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triplet

vertical pair of He type dots

Figure 4.11: A model of a quantum gate using a pair of He-type quantum
dots (left); a qubit in a He-dot spanned over the following states: siglet state
|0, 0 > and the lower triplet state |1,−1 >, the energy gap between them is
adjusted by means of a control field (right)

that pure spin dephasing be switched off at T = 0 (and its significant re-
duction at low temperature) indicates that spins may be applicable for some
practical uses in DMS-type structures.

The idea of a qubit and a gate employing singlet and triplet states in He-
type quantum dots is based on the following assumptions. In a quantum dot
of He-type, an electron pair may be found in a singlet state of anti-symmetric
spin structure 1√

2
(| ↑ > | ↓ > −| ↓ > | ↑ >), or in one of 3 symmetric states

of a triplet: | ↑ > | ↑ >, | ↓ > | ↓ >, 1√
2

(| ↑ > | ↓ > +| ↓ > | ↑ >). The qubit
in a quantum dot of He-type can be spanned over a singlet state and the
lowest-energy (in magnetic field) triplet state | ↑ > | ↑ > (in the absence of
magnetic field, degeneration of triplet stats precludes a correct definition of a
qubit, which may result in quantum information leakage). In DMS materials
in the magnetically ordered phase, there additionally appears very strong
internal Weiss field (acting paramagnetically—i.e., enhancing Pauli term),
which causes strong split in the energy levels of triplet states (even in the
absence of the external field) and allows for an appropriate definition of a
qubit (cf. Fig. 4.11).

Rabi oscillation at singlet-triplet degeneration point

The configuration of a singlet-triplet in a two-electron dot is advantageous
in facilitating effective control of the energy gap between its two states. A
singlet, in the absence of magnetic field, refers to the ground state; however,
with the field induction rising (which leads to time reversal symmetry break-
ing at magnetic field presence) a triplet state becomes favoured more and
more in terms of energy [49] until a critical field value is reached at which
both levels crisscross and at higher fields the triplet state reaches lower en-
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Figure 4.12: Rabi oscillation (circles on the Bloch sphere—left) for resonance
and for non-exact resonance

ergy than the singlet state [49]. The value of the critical field depends on dot
dimension and can be approximated by the following formula [50]

B∗[T ] ≃ h̄ω0[meV ]/1.6.

Therefore, for shallow and extensive dots this field may be of 1T order, which
is easy technically attainable at present.

Rabi oscillation constitues a method of qubit control. For a two-level
system (qubit) and dynamic perturbation ∼ V eiωt, solution describing evo-
lution of a non-stationary state amounts to qubit oscillation between its two
states with frequency ∼ |V |. At the same time, satisfying the requirement
for resonance adjustment of perturbation h̄ω = ∆E (∆E denotes energy gap
between two stationary states of a nonperturbed qubit) generates a cyclic
energy flow between the two-level system and the signal.

Rabi oscillation generates change in time-dependent coherent superposi-
tion of both qubit states: switching out perturbation signal at an appropriate
moment, any suitable superposition may be obtained—i.e., any qubit state.
If the signal frequency is out of resonance, h̄ω ̸= ∆E, then Rabi oscillation
is incomplete, h̄ω ̸= ∆E (does not reach 1)—as is visualised in Fig. 4.12.

When ∆E → 0 decreases (as it happens at the degeneration point for a
singlet-triplet qubit—cf. Fig. 4.11), Rabi oscillation still exist, even at the
degeneration point, however, for static perturbation. From the perturbation
analysis of such case [27, 50, 38] a static nonuniform magnetic field leads to a
time-dependent coherent qubit evolution in the degeneration point. Switch-
ing off the perturbation by leaving the degeneration point (then the static
field does not generate Rabi oscillation), any qubit superposition is attain-
able to fix. Non-uniform static magnetic field generates Rabi oscillation of
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a singlet-triplet qubit at a degeneration point. Non-uniformity of magnetic
field is instrumental in creating a non-zero matrix element between a singlet
and triplet, thus, the control over such a qubit may consist in constant pres-
ence of non-uniform (at a nanometric scale) magnetic field—e.g., generated
by magnetic admixtures located within the closest proximity of He dot (or
even inside the dot)—and cyclical switching on/off singlet-triplet degenera-
tion by the external control magnetic field.

Qubit-pair entanglement control in double He-type quantum
dot system

There exists Coulomb interaction between two He-type qubits localised in
close proximity of each other (the dots can be located vertically to each other
at the distance of a few nm) [5, 38]. However, magnitude of this interaction—
i.e., whether it generates slow or fast two-qubit operations—depends on the
value of dimensionless ratio between the interaction and the other energetic
scale of the system: the energy gap of stationary states spanning the qubit. In
the case of singlet-triplet qubit, the energy gap may be widened quite freely
by the external magnetic field—He-dot singlet-triplet energy gap depends
on magnetic field and veries from several meV to zero. Therefore, relative
Coulomb interaction between two qubits can be made weak or strong, and
thus control two-qubit operations by slowing them down (practically, to a
halt) or speeding them significantly up.

Although such scheme seems attractive (e.g., there seem to exist addi-
tional ways of macroscopic control of temperature and DMS hole concen-
tration, which enables magnetic transition control in this subsystem), in
practice it is not so effective: the additional magnetic subsystem generates
spin waves, and the spin decoherence mechanism by dressing in collective
modes (spin waves), as presented above, proves as unfavourable an effect
as the phonon effects are for charge. Spin dephasing in quantum dots due
to magnon hybridisation, however, becomes negligible at low temperature
(as discussed earlier herein), which again indicates some superiority of spin
degrees of freedom over charge ones.
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Chapter 5

Comments

Constructing a logic gate for a quantum computer within quantum dot tech-
nology has motivated numerous research and project across the world. Quan-
tum dots (also called artificial atoms) and systems based on them (artificial
molecules, or dot matrices) offer many possibilities due to their following
features: flexibility of their parameters, variety of methods of their manu-
factoring, the possibility of electrons, holes, excitons or exciton complexes
bonding to form various structures, the technical easy of controlling them
by means of external fields, attainability of 2D or 3D confined dynamics (if
dot geometry permits, e.g., quasi-planar 2D or 3D quantum dots). Theoret-
ical analysis has been conducted, concerning both orbital (charge) and spin
(magnetic) degrees of freedom of quantum dot carriers in order to estab-
lish the attainability of quantum bits (qubit controllable by Rabi oscillation
technique).

Quantum dots seem promising candidates for quantum computer building
blocks. On the one hand, quantization of localized carriers dynamics results
in working within the familiar framework of atoms and allows for employing
quantum optics methods, though for appriximately 10−−100 times lower en-
ergy scale in comparison to atoms, since quantum dots manifest lower energy
range for quantization in comparison to atoms (corresponding to nanometer
localization scale) resulting in much easier technological attainability of sys-
tem manipulation. Moreover, quantum dots and relating quantum elements
can be built-in upon well known technology matching with typical semcon-
ductor integrated circuits of classical information processing (essential for
input and output procedures arrangement).

However, despite those promising features and hard experimental work,
quantum information processing within quantum dot technology has as yet
not gone beyond the stage of a two-qubit low-fidelity gate of non-scalable
bi-exciton realization. The disparity between expectations and theoretical
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concepts and advancements experimental work and technology suggests that
there are important still unexplored aspects decisive for the coherent control
over quantum states in quantum dots.

This work attempts to identify and provide suitable discussion (both qual-
itative and quantitative) of these critical aspects. It has been presented that
despite certain similarity between quantum dots and natural atoms, there is
no close analogy between these systems. Quantum dots are built into the
heterostructure of a semiconductor crystal and undergo irremovable interac-
tion with crystal lattice. The essence of the unavoidable disturbing coher-
ent quantum processses in these systems consists in the fact that dynamic
lattice response (related to dressing of quantum-dot-localized excitations,
e.g., of an exciton, in collective phonon modes existing in the surrounding
medium) leads to a significant phase decoherence of charge states when they
are optically controlled within several-picosecond period due to fast, sub-
picosecond, optical switch over of the state. Decoherence, generating uncon-
trollable leackage of quantum information, leads to loss of control over the
quantum information carrier (quantum dot qubit). This means that qubit
control is attainable only within adiabatic regime, i.e., within time periods
well longer than picoseconds. This picosecond time-scale is inconveniently
localized between time-scales of femtosecond order, the fastest possible for
optical methods of quantum dot charge control (which underlie the optimistic
expectations regarding attainability of quantum gate implementation) and
nanosecond-order, which is the annihilation-time of a quantum dot exciton.
Such a relation between the time scales generates error of the order of at least
10−3, and precludes (in accordance with DiVincenzo conditions) both quan-
tum error correction and scalable implementation of quantum information
processing within quantum dot technology with charges optically driven.

In particular we have above described some aspects concerning phonon
decoherence, which could be listen as follows:

• formulation a phenomenological universal method of estimation of time
dephasing in nanostructures,

• providing microscopic justification of this method within Green func-
tion framework (exploting out-of-pole Green function characteristics),

• explaining the strong (scalable with nanostructure size, up to 400% for
ultra-small quantum dots) increase in charge–optical phonons coupling
in nanostructures (effective Fröhlich constant increase),

• estimating time of dephasing of charge degrees of freedom in quantum
dots due to various types of polaron creation—introducing the notion
of generalized electron and exciton polaron localized in a quantum dot,

140



• indicating time-dependent constraint on Pauli spin blocking in nanos-
tructures due to lattice inertia.

The last result seems to preclude the easy attainability of a certain class
of quantum computers, namely those based on spin–charge qubit conver-
sion (fast charge processing, while information storing on more decoherence-
resistant spins) due to unfavourble limitations to time-dependent quantum
information conversion process.

Dephasing has been analysed in the framework of polaron-creation ki-
netics formalism (more genrally—within the formalism of localized nonsta-
tionary states hybridised with the environment collective excitations) via of
Green function methods. The analysis of the correlation function (Fourier
transform of spectral intensity) yielded a universal method of time estima-
tion of nanostructure localized carrier dephasing which has been defined as
a ratio of nanostructure dimension to group velocity of collective excitations
in the surrounding medium (of phonons or magnons) carrying excess inter-
action energy out of the nanostructure region. Depending on the excitation
dispersion, time of decoherence scales differently with dot dimension (for
LA phonons, scaling is linear, but for LO phonons and magnons it scales
quadratically since their dispersion near the point Γ).

Spin decoherence in the regime of magnetic control has also been dis-
cussed (in the case of diluted semiconductor quantum dot surroundings, with
strong giromagnetic factor in the ordered phase) based on the generally held
assumption that spin degrees of freedom are more promising and more de-
coherence resistant than charges for potential quantum qubit arrangements.
However, other, not taken into account in idealised model proposals, deco-
herence limitations present in spin control schemes have been identified (as
magnon-induced decoherence). There has been presented an original method
of entanglement control by means of controlling the relative role of interac-
tion (not the interaction itself) between qubits via external-field-controlled
energy separation gap of qubit states as well as describing Rabi oscillation at
singlet-triplet degeneration point in the case of He-type quantum dot setup.

Concerning spin-wave-induced (magnon-induced) spin dephasing we have
discussed above the following issues:

• description of spin part of DMS system, including:

– formulating of a method of averaging over random distributions of
admixtures in DMS and carrying out this averaging over random
distributions of magnetic dopants and acceptors in order to restore
effective translational invariance of the system
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– integrating out fermion (hole) degrees of freedom of the system
both for shallow and deep acceptor centres

– diagonalizing of effective DMS spin Hamiltonian—determining of
analytical form of spin wave dispersion relative to magnetic ad-
mixtures concentration and band holes concentration mediating
exchange interaction in DMS

– analysing of low-temperature DMS thermodynamics (magnetiza-
tion and DMS specific heat capacity contribution from spin waves

– verifying the role of disorder in DMS

• phenomenological estimation of dephasing time due to hybridization of
local and collective spin degrees of freedom

• microscopic justification of this phenomenological rule in the case of
magnons in DMS

– determinig of the spin-exciton interaction Hamiltinian for a quan-
tum dot exciton with spin waves in DMS

– determinig the imaginary part of exciton mass operator, respon-
sible for spin dephasing in DMS surroundings

– comparison of phonon-induced exciton-charge dephasing versus
magnon-induced spin dephasing

– indicating of pure spin dephasing disappearance in nanostructures
at T = 0 (contraty to phonon-induced charge dephasing)

• modelling of a spin gate (singlet-triplet in He-type dots) and of control
methods (Rabi oscillations at the degeneration point and control of
qubit entanglement control in quantum dots immersed in DMS).

Though spin dephasing, in terms of time, again locates inconveniently
in the middle of DiVincenzo window (for spins, it is shifted by 3 orders
of magnitude towards longer time periods in relation to charge degrees of
freedom), its reducing at low temperature would allow, however, to avoid
the harmfull decoherence, diminishing it to sufficiently small amplitude rate.

With regard to orbital (i.e., charge) degrees of freedom in quantum dots
for construction of a scalable light-controlled quantum computer within solid
state technology, these presented analyses show that semiconductor nan-
otechnology defies DiVincenzo conditions which are necessary for the im-
plementation of quantum error correction, which in turn, is an indispensable
condition for the feasibility of a big (multi-qubit scalable) quantum computer
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construction. The irremovable phase decoherence (i.e. uncontrollable leack-
age of quantum information), in the case of charge states in quantum dots, is
inconveniently located in the middle of a 6-orders window between character-
istic control time and amplitude decoherence time. This dephasing is strong
also at T = 0. Implementations based on spin degrees of freedom seem thus
more promising although this experimental field is also constraint by deco-
herence phenomena, especially within magnetically ordered media (magnons
behave similarly to phonons). However, in the case of spins, their advantage
over charges (that is pure spin dephasing suppression at low temperature) is
expected, which may help in attainability of quantum information processing
within low-temperature spintronic thechnology.

The results concerning the analyses of prospects and limitations of co-
herent quantum control of nanosystems bear more general importance for
quantum engineering. All nanotechnological and spintronic devices based on
single-particle features such as individual spins, electrons and photons may
function effectively only within the range of their quantum state control.
Therefore, limitations due to loss of coherence concern these applicatins as
well. However, it should be emphasised that despite the unattainability of a
scalable quantum computer as yet, other simpler and cohernet-controllable
quantum nano-devices may be attainable. They may be employed in new-
generation optoelectronics and spintronics, e.g., in quantum cryptography as
coherent sources of spin-polarized electrons.

Research on the environment impact on quantum dot states has been
growing in importance—changes generated by phonons or other collective
crystal excitations are quite significant and capable of quantum state modi-
fication within even 10%-range. That shows the fundamental difference be-
tween artificial-atom (quantum dot) physics and atomic physics in which,
due to distinct energy relations, the environment impact is insignificant.

The results concernig dephasing illustrate a fundamental fact that the
same interaction which enables the system control, at the same time, is re-
sponsible for generating its decoherence (allowing for only partial fulfillment
of DiVincenzo conditions, at most). Therefore, in the face of irremovable
decoherence limitations, the construction of a big quantum computer within
solid-state technology may be hardly attainable (especially if the framework
were to be based on light-controlled orbital degrees of freedom). New theo-
retical ideas are needed—perhaps in seeking topological methods of avoiding
decoherence by employing collective superconducting states or by the means
of topological—braid degrees of freedom in Hall systems (non-local topologi-
cal or collective degrees of freedom seem to be more resistant to the local-type
decoherence).
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