

Projekt współfinansowany ze środków Unii Europejskiej w ramach
Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Wrocław University of Technology

Internet Engineering

Maciej Nikodem

ADVANCED DATABASES

Wrocław 2011

Wrocław University of Technology

Internet Engineering

Maciej Nikodem

ADVANCED DATABASES

Developing Engine Technology

Wrocław 2011

Copyright © by Wrocław University of Technology

Wrocław 2011

Reviewer: Jacek Mazurkiewicz

ISBN 978-83-62098-85-9

Published by PRINTPAP Łódź, www.printpap.pl

Contents

1 Introduction 5

2 Database concepts 7
2.1 Representing real world . 7

3 Theory of relational database systems 11
3.1 Relational model . 11
3.2 Relational algebra . 16
3.3 Normal forms . 22

3.3.1 Decomposition of relations 22
3.3.2 Normalisation . 26

4 Relational database management systems 35
4.1 Structured Query Language . 35

4.1.1 BNF syntax - general SQL notation 35
4.1.2 Data Definition Language 37
4.1.3 Data Manipulation Language 38
4.1.4 Data Control Language . 38

4.2 Database basics . 39
4.2.1 Data types . 39
4.2.2 Differences in implementations of data types in different DBMS 47

4.3 Database objects . 48
4.3.1 Tables, views . 49
4.3.2 Indices . 53
4.3.3 Stored procedures and functions 56
4.3.4 Triggers . 58

3

4 CONTENTS

5 XML extensions to RDBMS 61
5.1 XML columns . 61
5.2 XPath, XQuery and extensions to SQL 64

5.2.1 Extensions to SQL language 65
5.2.2 XPath . 66
5.2.3 XQuery . 70
5.2.4 XPath and XQuery in Microsoft SQL Server 71

6 Security of databases 79
6.1 Access control . 80

6.1.1 Privileges in database management systems 80
6.1.2 Discretionary access control 82
6.1.3 Mandatory access control 88

6.2 Data privacy . 92
6.2.1 Encryption algorithms and key hierarchy 92
6.2.2 File level encryption . 95
6.2.3 Database-level encryption 96
6.2.4 Cell-level encryption . 97

6.3 Data integrity . 99
6.3.1 Integrity . 99
6.3.2 Transactions . 102

Chapter 1

Introduction

The file system that comes with any operating system is a quite primitive kind of da-
tabase management system in which data are kept in big unstructured named clumps
called files. The great thing about the file system is its invisibility and capability to
store any data that may be represented in a digital form. However, not every way of
storage is efficient in particular situations, especially when datasets are large and fre-
quent searching over these data is required. Obviously anyone (or at least a large group
of people) can write their own program for storing, reading and searching in large files,
however, it is very unlikely that these programs will run efficiently. Moreover, if many
applications are allowed to access the same data, than new challenges arise – programs
may attempt to read and write the same data file simultaneously raising questions about
data correctness, integrity or leading to deadlocks of application.

Database management systems are solution that allows to overcome a large amount
of difficulties that may arise in a multiuser data access. Database management systems
(DBMSs) are created to free the programer from taking too much care about accessing
the data within a program. ”Too much” means that DBMS does not solve all of the
problems but when configured and used properly, and when datasets, that DBMS is
managing, are properly constructed then difficulties are minimised and most problems
are efficiently solved. This points out two important aspects that should be kept in mind
when implementing any database-based applications:

• database and database management system are two different things,

• database management system requires a wisely constructed database in order to
benefit from its functionality.

5

6 CHAPTER 1. INTRODUCTION

Database can be seen as a logical structure used to store data. It consist of columns, that
store data of particular kind, type and possibly with additional restrictions. Columns
are organised in tables that store related data. Data stored in several tables can be
also related, so database also stores information about such relations. On the other
hand DBMS is an application that is responsible for managing both the logical and
physical data storage, interfaces users /applications to the database and ensures that no
data in the database can be lost (or generated) incidentally. It is important to keep this
difference in mind as both terms are often used interchangeably.

Since DBMS ”only” ensures database is logically correct (integral) therefore it has
to be taught when database is correct and when it doesn’t. DBMS determine status of
the database based on constraints (e.g. primary keys, foreign keys, indices, constraints,
etc.) and/or procedures (e.g. triggers, stored procedures, functions). Both mechanisms
are defined for a particular database and are required to verify its condition. In other
words – if database has no constrains defined on it then DBMS cannot verify whether
these constraints are meet or no. Consequently, DBMS can interface the user to the
database but cannot ensure the data inserted to or read from the database is logically
correct.

The remaining part of this script presents a narrow part of topics related to data-
bases and DBMS. First part focuses on relational theory which is a theoretical back-
ground required to create efficient and useful database structures. Second part focuses
on mechanisms that are used to ensure correctness of the database as well as functions
and procedures that are provided by DBMS in order to manipulate the database and
the data. Practical examples presented in this script focus mostly on two DBMSs –
MySQL1 and Microsoft SQL Server (MsSQL)2. Some information and examples from
Oracle3 and DB24 servers are also presented.

At the end of this script you will find a list of bibliography. However, it is important
to notice that this bibliography mostly consist of Internet addresses that point to docu-
mentation of different DBMS as this is the most up to date source of information about
this kind of software. For general description of databases and DBMS the reader is
referred to [9],[10] as well as different Web pages, e.g. http://infolab.stanford.
edu/˜ullman/fcdb.html.

1http://www.mysql.com/
2http://www.microsoft.com/sqlserver/en/us/default.aspx
3http://www.oracle.com/us/index.html
4http://www.ibm.com/software/data/db2/

Chapter 2

Database concepts

2.1 Representing real world
Notion of contemporary relational databases was first introduced by Edgar Frank Codd
in 1970 with his paper A Relational Model of Data for Large Shared Data Banks [7].
This paper states four important aspects of databases and proposes a relational model
and normal forms as a method to ensure them. According to Codd main purposes of
using databases are:

• users must be protected from having to know how the data is organised in the
database – internal storage,

• activities of users should remain unaffected when internal storage of data is chan-
ged,

• there should be a clear distinction and independence between order of data stored
in internal storage and order of presentation,

• indices are optional – they may be used to facilitate and speed up access to data
but data should be available regardless of whether indices exist. Moreover, acti-
vities of users should remain invariant as indices come and go.

Above mentioned properties do not exhaust all aspects of data storage since they focus
on data availability and user activities. These properties can be complemented with
other aspects that concern data storage (e.g. data compression in order to reduce the
memory required), correctness (e.g. coding, backups of data to ensure data recovery in

7

8 CHAPTER 2. DATABASE CONCEPTS

case of errors) or security (e.g. access control ensuring that only legitimate users can
read/write data).

Irrespectively of their name databases store not only data but also information. The
difference is that information conveys dependencies between data and gives particular
meaning to data that otherwise can mean arbitrary many things. Information is about
interpreting the data.

Example 2.1
Table 2.1 represents some data stored in a table. Although it may be a very effective
method of storage, there is no particular meaning of this data.

Table 2.1: Some data stored in a table
1 5 9
2 5 7
3 5 2
2 6 12
3 6 3
4 7 1
6 7 1

However, if we have knowledge about how this data should be interpreted then
we will be able to gain full information from it. For example each row of the table
represents a component ID and the amount of this component (quantity) that have to
be used in order to assembly a particular part (cf. tab. 2.2). �

Table 2.2: Table representing assembly process
component part quantity

1 5 9
2 5 7
3 5 2
2 6 12
3 6 3
4 7 1
6 7 1

Another difference is that in most cases word datum is used to describe elementary,
atomic facts that cannot be divided further. Such data is easier to store effectively, e.g.

2.1. REPRESENTING REAL WORLD 9

minimising overall memory requirements. On the other hand in most cases informa-
tion can be divided into smaller pieces such that each conveys some partial information
while all together give original information. Since information has granular nature thus
manipulating information does not necessarily affect it whole. Instead it can affect only
a piece of information. Storing information requires databases to reflect this granular
nature of information in all aspects. First of all, information should be stored in such
a way that allows to divide it into pieces and perform operations on either a piece or
the whole information. When operating on a piece of information no other information
should be affected. Second, databases have to ensure that once some information is sto-
red it can be read without any change – no information is lost. Moreover, information
that were not written into the database cannot be read out – database cannot generate
information (it can represent information in different way, e.g. aggregate, but cannot
produce new facts!).

In the field of databases, aforementioned difficulties are known as insert, update and
delete anomalies. They may appear in a database depending on its structure. Proper
design of database and normalisation process ensures that all of these anomalies are
either eliminated or are left intentionally to ensure completeness and correctness of the
information stored in the database management system (see chapter 3.3.2).

Update anomaly is mostly due to information redundancy in table/database which
means that the same data can be stored several times. When redundant information
is modified then the database management system has to ensure that all redundant
entries are modified. Update anomaly means that the system fails to do so leaving
some occurrences of information (or part of it) not modified and causing information
in the database to be incorrect. Avoiding update anomaly is also important in order to
ensure that information stored in the database is consistent and valid. Otherwise, update
anomaly may lead to inconsistent information or may lead to information generation.

Delete anomaly may occur in normalised databases with no redundancy where data
is stored in separate, related tables (e.g. separate table for cities, street names, house
numbers and students with references to city, street and house number of their inhabi-
tancy). When deleting piece of information in such a database then we may acciden-
tally delete data that is part of other information. In a given example, delete anomaly
means that removing student John Smith from New York with all details of his inhabi-
tancy will leave all other students from New York with no information about the city
they live – we will lose a piece of information about them that was not intended to be
deleted.

In contrast to previous anomalies insert anomaly can occur in redundant and nor-
malised databases. It happens when storing some information into the database requ-
ires some other information to be stored simultaneously. It is worth mentioning that,
unlike other anomalies, insert anomaly may be desired ensuring completeness of data

10 CHAPTER 2. DATABASE CONCEPTS

when storing information into the database. For example student database may requ-
ire to store inhabitancy information simultaneously with personal information of each
student.

Chapter 3

Theory of relational database
systems

3.1 Relational model
Relation is defined on sets S 1, S 2, . . . , S n and is represented as a set of tuples each of
which has its first element from S 1, second from S 2, and so on. In mathematical sense
relation is a subset of the Cartesian product of S 1 × . . . × S n. Set S j is usually called a
j-th domain or attribute of the relation. Relation is of degree n (or n-ary relation) if it
is a subset of Cartesian product of n sets. Relation description consist of relation name
followed by the list of its attributes in brackets:

R (A,B, . . .) . (3.1)

Whenever it is required to represent functional dependencies between attributes of the
relation, then they follow attributes of the relation:

R (A,B, . . . ; {A→ CD}, {BE→ C}) . (3.2)

Set of attributes will be denoted as X,Y,Z.
Relations are often represented in form of arrays/tables but it is important to re-

member that such a convenient representation is not an essential part of the relational
approach. Representing relations in form of a table introduces notion of rows that are
often used as a synonym for tuples. However tuples of relation and rows of a table
differ significantly. Informally it can be said that rows of a table in a database manage-
ment system, store simple data while values of elements of a tuple can be complex, e.g.

11

12 CHAPTER 3. THEORY OF RELATIONAL DATABASE SYSTEMS

element of a tuple can be a tuple of some other relation1. A good example is a relation
that stores information about students. Such relation may consist of student first name,
last name and address which is another realtion consisting of street name, flat number,
city and post code:

Student
(
fname, lname, Addr

(
street, flat, city, pcode

))
. (3.3)

The same relation represented in a form of a single database table would, most likely,
have the following structure:

Student
(
fname, lname, street, flat, city, pcode

)
. (3.4)

Additionally, relations store only data that represents some information so if there is
no information, no data is stored in fact. In contrast, modern database management
systems often store a special NULL value that represents no information2. Finally, there
are no duplicate tuples in relation as well as in the result of relational operation, while
database management system can store tables with duplicate rows and can return result
sets with duplicates in response to SQL commands.

Table representation of n-ary relation R has the following properties [7]:

1. each row represents a tuple of R consisting of n elements,

2. the ordering of rows is immaterial,

3. all rows are distinct,

4. ordering of columns is insignificant – it corresponds to the ordering of domains
S j in Cartesian product but is not significant for interpretation of the relation,

5. significance of each column is conveyed by labelling it with the name of the
corresponding domain.

Relation is subject to modifications – as time progress new tuples can be inserted into
the relation, existing tuples can be deleted as well as some components in existing
tuples can be modified. It is quite unlikely that in some time instant all values from
domains S j are stored in relation (columns of table). More likely relation consists
of only some subsets of these domains. These subsests are called active domain at a
particular instant of time.

1Nowadays there are exceptions from this rule as many DBMS start allow to store complex structures in
a single table row, e.g. XML data

2According to SQL standards (e.g. [1], [2]) NULL is A special value, or mark, that is used to indicate the
absence of any data value.

3.1. RELATIONAL MODEL 13

Remark – Nowadays, regardless of the definitions of domain and active domain, most
databases use word domain (instead of active domain) to address set of values stored
in a particular column of the table.

Normally, one attribute (or a combination of attributes) of the relation has values
that uniquely identify each tuple. Such attribute (or set) is called a primary key. Primary
key is non redundant. It means that no two tuples with the same values of primary key
exist in the relation. There may be more then one set of attributes uniquely identifying
each tuple of the relation. If so then primary key can be chosen arbitrarily while all
possible primary keys are called candidate keys. When representing a relation attributes
of the primary key are underlined. A social security number (SSN) is a good example
of an attribute for primary key

Student
(
SSN, fname, lname, Addr

(
street, flat, city, pcode

))
. (3.5)

Primary keys can be determined based on functional dependencies between attributes
of relation. Functional dependency (FD) determines attributes (or sets of attributes)
that unambiguously define other attributes. For example functional dependency

AB→ C (3.6)

means that values of attributes A and B together clearly determine value of attribute C.
In other words, if we take all tuples for which value of attributes A and B equals a and
b, respectively, then value of attribute C for these tuples will be the same. There are
five axioms regarding functional dependencies (so called Armnstrong’s axioms):

1. decomposition: if XY → ZP then both set of attributes Z and P are uniquely
determined by XY, i.e.:

XY→ ZP ⇒ XY→ Z and XY→ P. (3.7)

However, observe that neither X nor Y itself uniquely determine Z and P.

2. union:

X→ Y, and X→ Z ⇒ X→ YZ. (3.8)

3. transitivity:

X→ Y, Y→ Z ⇒ X→ Z. (3.9)

14 CHAPTER 3. THEORY OF RELATIONAL DATABASE SYSTEMS

4. augmentation: for any set of attributes X,Y,Z

X→ Y ⇒ XZ→ YZ. (3.10)

5. reflexivity:

Y ⊆ X ⇒ X→ Y. (3.11)

There is no requirement that all attributes of the relation have to be part of some func-
tional dependencies. While some attributes may appear in a number of FDs others may
not be part of any FD at all. Following FDs can be defined in relation Student:

SSN → fname, lname, Addr
pcode → city

street, flat, city → pcode

Functional dependencies are used to determine attributes of primary key for the
relation. Primary key is the smallest possible set of attributes of a relation such that
remaining attributes can be determined based on the attributes from the primary key
and functional dependencies. Formally, primary key is defined as the smallest set of
attributes X of a relation R (XY) such that its closure X+ is a set of all attributes, i.e.
X+ = XY. Closure of the set of attributes X is determined based on functional de-
pendencies. At first closure equals to the set of attributes, i.e.: X+ = X. Closure is
then extended with every attribute Y < X+ such that there is a functional dependency
X → Y and X ∈ X+. This is repeated as long as there are no attributes outside closure
or no new attribute can be added to it. Algorithm 1 presents details of the procedure.

Algorithm 1 Finding closure of set of attribiutes.
Require: relation R (X,F) where X, F is set of attributes and functional dependencies

respectively. Set of attributes Y ⊆ X.
Ensure: closure of set Y.

1: set Y+ = Y
2: for every functional dependency {A→ B} ∈ F such that A ⊆ Y+ do
3: set Y+ = Y+ ∪ B,
4: end for

Example 3.1
Find closure A+ in relation R(ABCD) with FDs AB→ C, A→ B and D→ C. First, it
follows from A→ B that A+ = AB. Later, from AB→ C we have that A+ = ABC. �

3.1. RELATIONAL MODEL 15

Primary key is the smallest set of attributes X such that its closure X+ contains all
attributes of relation R. According to the definition, primary key in R from example
3.1 equals AD.

Example 3.2
Let R be a relation that stores information about cars registered in Poland

R (VIN, numberPlate, colour, model) , (3.12)

where VIN is a Vehicle ID Number. Since following FDs exist in this relation

VIN → numberPlate, colour, model
numberPlate → VIN, colour, model,

therefore both VIN and numberPlate attributes are candidate primary keys. Either of
them can be used as a primary key for R. �

As presented in the above example it may happen that there are several set of attribu-
tes that can be a primary key for the relation. Such possible primary keys are called
candidate keys. When primary key is selected from candidate keys then all attributes
that belong to primary key are called prime attributes, while remaining are refereed
to as non-prime attributes. Set of attributes that includes all prime attributes is called
superkey.

Example 3.3
Let R be a relation representing students, course and grade obtained

R
(
ID, fname, lname, course, grade

)
. (3.13)

There are two FDs in R:

ID → fname, lname,
ID, course → grade,

therefore ID, course is a primary key for relation R

R
(
ID, fname, lname, course, grade

)
. (3.14)

�

A common requirement for tuples of relation R is to reference tuple (or tuples)
of relation S (possibly S = R means that reference concerns elements of the same

16 CHAPTER 3. THEORY OF RELATIONAL DATABASE SYSTEMS

relation). In other words reference denotes dependencies and connections between
information stored in different relations (or the same relation) and are represented by
foreign keys. Foreign key is an attribute (or set of attributes) of relation R that is not
a primary key of R but its values are from the primary key of relation S . Note, that
whereas foreign key in R is not a primary key of R it is possible that attributes of foreign
key are proper subset of attributes constituting primary key in R. Because values of
foreign key come from the primary key of relation S , therefore, active domains of
foreign key in R can only have values that come from the active domains of primary
key in S . A relation R can have zero or more foreign keys. Foreign keys in the same
relation may have some attributes in common.

3.2 Relational algebra
Relations are sets so in general all of the usual operations that are applicable to sets are
also applicable to relations. However, whereas the result of operation applied to sets is
always a set this is not necessary true for relation. For example union of binary (two
elements) relation and ternary (three elements) relation is not a relation anymore, since
there are two or three attributes in resulting tuples. Operations of relational algebra
act upon one or two operands that transform a single relation (or pair of relations)
into a new relation. Although in relational algebra any operation outputs result that is
a relation, this is not necessary true for contemporary database management system.
Database management systems draw on relational algebra but for user convenience
implement extended set of operands that may produce sets of data that are not relations.
In particular every relational operator in relational algebra is designed to operate on
and produce sets of data that are free of duplicate tuples. This is not necessary true for
database management systems.

There is a number of relational operations that can be defined [8] but eight opera-
tions are basic:

• theta-select (σ) – selects a subset of tuples from relation.

• projection (π) – restricts list of attributes in tuples.

• Cartesian product (×) – concatenates tuples from two relations.

• theta-join (Zθ) – selects and concatenates tuples from two relations.

• natural join (Z) – select and concatenates tuples from two relations removing
duplicate attributes.

3.2. RELATIONAL ALGEBRA 17

• union (∪) – unionises two relations that store similar facts.

• intersection (∩) – finds common part of two relations that store similar facts.

• difference (\) – finds tuples that exit in one relation but do not exit in the second
one.

Theta-select (σ) takes two arguments where one is a relation and the other is a condi-
tion that all returned tuples have to satisfy. If no comparator was specified then it is
assumed by default that the equality comparator should be used. Theta in the name of
the operator stands for the comparators that can be used with select operand. In con-
temporary database management systems all arithmetic comparators as well as logic
operands and Boolean comparisons can be used.

Example 3.4
Suppose that the selection operator σsalary>=10000 is applied to the following relation

R
emp id SSN fname lname salary
12 ASW14324HM John Smith 10 000
13 QWE423145G Alice Pawn 12 000
14 TRQ12387TT Bob Knight 9 500
25 WRO65321TQ John Smith 10 000

As a result we get a relation that consist of three tuples: �

σsalary>=10000(R)
emp id SSN fname lname salary
12 ASW14324HM John Smith 10 000
13 QWE423145G Alice Pawn 12 000
25 WRO65321TQ John Smith 10 000

Projection (π) operator acts on a single relation and a list of its attributes that are
to be projected. It generates a relation that consists all distinct tuples from the original
relation but attributes of each tuple are limited to these that were listed as a command
parameter. Duplicates (if any) are removed so that the resulting tuples form a relation.

Example 3.5
Suppose that the project operation πfname, lname, salary is applied to the following
relation

18 CHAPTER 3. THEORY OF RELATIONAL DATABASE SYSTEMS

R
emp id SSN fname lname salary
12 ASW14324HM John Smith 10 000
13 QWE423145G Alice Pawn 12 000
14 TRQ12387TT Bob Knight 9 500
25 WRO65321TQ John Smith 10 000

Projecting only these three attributes will lead to the following relation (with no dupli-
cate tuples). �

πfname, lname, salary(R)
fname lname salary
John Smith 10 000
Alice Pawn 12 000
Bob Knight 9 500

Cartesian product operator (×) employs two relations R, S and generates a relation
R × S that consist of all tuples from relation R concatenated with every tuple from
S . If there are r and s tuples in relations R, S respectively, then the resulting Cartesian
product contains r·s tuples. Therefore, Cartesian product operator is more of theoretical
interest. It is used to define more complicated join operators, however, should never be
used in real life database systems.

Theta-join operator (Zθ) takes two relations R and S as an argument and outputs
relation that contains tuples from relation R concatenated with tuples of relation S , but,
in contrast to Cartesian product, tuples are concatenated only when specified condition
is true. Condition that is used to decide whether two tuples are to be concatenated
involves comparing attribute (or attributes) from tuple of relation R with attribute (or
attributes) from every tuple of relation S . The attributes to be compared are explicitly
indicated in join command. Similar as for theta-select operator, theta stands for one of
possible comparators that can be used when defining the join condition.

If input arguments R, S for theta-join operator are relations then the result of ope-
ration is a relation too. In particular there are no duplicate tuples in the result and if
there are any attributes in relations R and S that have the same name then names are
preceded with relation name. If join condition is omitted then it is assumed that equ-
ality comparator is used and join is carried out with respect to all attributes with the
same names in both relations.

3.2. RELATIONAL ALGEBRA 19

Example 3.6
Lets assume we have two relations R and S

R
emp id name home city
12 John Smith Washington
13 Alice Pawn Princeton
14 Bob Knight Seattle
25 John Smith Warsaw

S
city state
Washington District Columbia
Princeton New Jersey
Seattle Washington

If we join both relations using condition R.city = S .city then we will get the relation
R Zθ

R.home city=S .city S �

R Zθ
R.home city=S .city S

emp id name home city state city
12 John Smith Washington District Columbia Washington
13 Alice Pawn Princeton New Jersey Princeton
14 Bob Knight Seattle Washington Seattle

In theta-join attributes used in join condition are always included in tuples of the
resulting relation. As a consequence resulting relation contains two attributes (or more
if more then one attribute were used in join condition) that differ in names but have
exactly the same value in each tuple. Natural join operator (Z) is similar to theta-join
however one of the redundant attributes is omitted from the result. Retained attribute
is assigned a name of an attribute from the original relations and the name that comes
first alphabetically is chosen. Natural join is the most useful join operator in theory
of database systems, in particular it is used in normalisation of relations (see chapter
3.3.2).

Example 3.7
If we take relations R, S from previous example then natural join of these relation
equals �

R ZR.home city=S .city S
emp id name state city
12 John Smith District Columbia Washington
13 Alice Pawn New Jersey Princeton
14 Bob Knight Washington Seattle

20 CHAPTER 3. THEORY OF RELATIONAL DATABASE SYSTEMS

Union operator (∪) brings together in one relation all tuples from two relations that
are its operands, provided that both of them contain the same facts. In particular to
union relation R and S it is required that both of them have the same number and types
of attributes. Moreover, any duplicate tuples are removed from the result of union
operator. If above conditions are not meet then, due to different number of elements
in tuples and/or different types of values in the same attribute, the result will not be
a relation. When two relations can be unionised then we say that they are union-
compatible.

Intersection operator (∩) is applicable to two relations R and S if they are union-
compatible (i.e. conform requirements for being operands of union operator). The
result of the operation consists of all tuples that appear in both original relations. Since
R, S are relations thus R ∩ S does not contain duplicate tuples either.

Difference operator (\) is also applicable to two union-compatible relations. The
result of applying relation difference to relations R and S (i.e. R \ S) is a relation that
contains all the tuples from R except those that appear in S .

Example 3.8
Suppose we have two relations R and S :

R
emp id fname lname
12 John Smith
13 Alice Pawn
14 Bob Knight
25 John Smith

S
cust id fname lname
12 John Smith
23 Alice Pawn
14 Bob Knight
36 John Smith

The result of applying union, intersect and difference operators to these relation are
presented on page 21. �

Relational operators mentioned above are basic operator that can be used to define
more complex operators. For more details reader should refer to [8], while now we
focus on three variants of join operator defined previously, that are widely used in
modern relational database management systems. It is also important to notice that
these operations are not valid in relational algebra as they introduce NULL3 values which
does not exist in relational model. These operators are called outer joins to distinguish
them from join defined earlier that is also called inner join.

Left outer join of relations R and S (i.e. R X S) is a union of inner join R Z S and
remaining tuples of R (that were rejected during inner join) expanded with S -like tuple

3According to SQL standards (e.g. [1], [2]) NULL is A special value, or mark, that is used to indicate the
absence of any data value.

3.2. RELATIONAL ALGEBRA 21

R ∪ S
emp id fname lname
12 John Smith
13 Alice Pawn
14 Bob Knight
25 John Smith
23 Alice Pawn
36 John Smith

R ∩ S
cust id fname lname
12 John Smith
14 Bob Knight

R \ S
emp id fname lname
13 Alice Pawn
25 John Smith

S \ R
cust id fname lname
23 Alice Pawn
36 John Smith

which values are set to NULL. In other words, left outer joins takes all rows from left
relation (R) and concatenates them with corresponding tuples from right relation (S).
If no corresponding tuple in S is found then tuple from R is concatenated with NULL
values. Left outer join ensures that resulting relation contains all tuples from relation
R. Similarly Right outer join operator (Y) takes all tuples from right relation (S) and
concatenates them with corresponding tuples from left relation (R) or NULL values if
no corresponding tuple is found. In contrast to left outer join the result contains all
tuples from relation S . Full outer join operator ([) is a union of left outer join and
right outer join. The result contains all tuples from both relations that are arguments
of this operand. Similarly to theta-join and natural join operator all outer joins take an
additional condition that tuples of both relations have to satisfy in order to be included
in the result. Resulting relation contains all attributes from both relations exactly as it
was the case for theta-join operator.

Example 3.9
The relation R and S contain information about customers and suppliers respectively:

R
rec id name address
12 John Smith 1600 Pennsylvania Ave, Washington
13 Alice Pawn 4 Wall Street, New York
14 Bob Knight 8949 Wilshire Boulevard, Beverly Hills

S
sup id name address
12 John Smith 4 Wall Street, New York
13 Alice Pawn 4 Wall Street, New York
36 John Smith 25 Carleton Street, Cambridge

Following tables represent results of left, right and full outer joins of relations R and S :
�

22 CHAPTER 3. THEORY OF RELATIONAL DATABASE SYSTEMS

R Xrec id=sup id S
R.rec id R.name R.address S.sup id S.name S.address
12 John Smith 1600 Pennsylvania Ave, Washington 12 John Smith 4 Wall Street, New York
13 Alice Pawn 4 Wall Street, New York 13 Alice Pawn 4 Wall Street, New York
14 Bob Knight 8949 Wilshire Boulevard, Beverly Hills NULL NULL NULL

R Yrec id=sup id S
R.rec id R.name R.address S.sup id S.name S.address
12 John Smith 1600 Pennsylvania Ave, Washington 12 John Smith 4 Wall Street, New York
13 Alice Pawn 4 Wall Street, New York 13 Alice Pawn 4 Wall Street, New York
NULL NULL NULL 36 John Smith 25 Carleton Street, Cambridge

R [rec id=sup id S
R.rec id R.name R.address S.sup id S.name S.address
12 John Smith 1600 Pennsylvania Ave, Washington 12 John Smith 4 Wall Street, New York
13 Alice Pawn 4 Wall Street, New York 13 Alice Pawn 4 Wall Street, New York
14 Bob Knight 8949 Wilshire Boulevard, Beverly Hills NULL NULL NULL

NULL NULL NULL 36 John Smith 25 Carleton Street, Cambridge

3.3 Normal forms
In order to store relations in a database management system it is required to represent
them in form of a two-dimensional column-homogenous tables. Since such tables can
store only simple data types, therefore eliminating nonsimple domains/attributes from
relations becomes essential. Moreover, the elimination procedure, called normalisa-
tion, allows to minimise the probability of delete, insert and update anomalies that may
appear in relations with nonsimple attributes.

Normalisation is a step by step procedure that transforms relation from one normal
form to another based on functional dependencies i.e. dependencies between set of
attributes that arise from real live (cf. definition of functional dependencies on page
13). During this process relation R (X) is decomposed into smaller relations R1 (X1)
and R2 (X2) with attributes that are proper subset of original attributes (i.e. X1,X2 ∈ X)
and every original attribute belongs either to relation R1 or R2 (i.e. X1 ∪ X2 = X).

3.3.1 Decomposition of relations
Decomposition means that information stored in original relation will be also divided
and pieces of information will be stored separately in new relations. If R is removed,
then in order to reconstruct original information relations R1 and R2 have to be joined
together. This is done through natural join operator (Z) that is one of the basic operator
in relational algebra. Natural join operand (R1 Z R2) takes every tuple from relation
R1 and searches for corresponding tuple in R2. Corresponding tuples are found by
value comparison of attributes that are common for both relations. When found then
tuple from R1 is expanded with attributes from R2 that are not in R1. If there are k > 1
corresponding tuples in R2 then k tuples will be added to the result of natural join

3.3. NORMAL FORMS 23

operator but duplicate tuples are rejected.

Example 3.10
Table R1 Z R2 represents a natural join of relation R1 with R2: �

R1

A B C
1 4 12
2 1 12
2 3 9

R2

A C D
2 12 3
1 12 4
1 12 5
2 9 5
2 9 2

R1 Z R2

A B C D
1 4 12 4
1 4 12 5
2 1 12 3
2 3 9 2
2 3 9 5

Decomposition of relation also requires to decompose and/or modify functional
dependencies. This is obvious since functional dependencies of relation involve only
attributes of the relation. Therefore, if we have R(ABCD; {D → C}, {A → D}) then
functional dependency {D → C} is not valid in decomposed relation R1 (ABC) since
D is not an attribute of R1. However, because {A → D} exist in original relation, thus
{A→ C} holds in R1.

As a consequence, whenever relation is decomposed deduction of functional de-
pendencies has to be done in order to find functional dependencies that are valid in
decomposed relations. Algorithm 2 presents procedure for deducting functional de-
pendencies.

Relation decomposition can be achieved in one of four ways:

• into independent relations – with no lose of data and functional dependencies,

• dependency preserving – with no lose of functional dependencies (i.e. data are
lost),

• lossless – with no lose of data (i.e. functional dependencies are lost),

• with lose of data and functional dependencies.

When relation R (X,F) is divided into R1 (X1,F1) and R2 (X2,F2) with no loose of data
and functional dependencies then:

1. all functional dependencies F+ (i.e. that can be deducted from functional depen-
dencies F) can be also deducted from functional dependencies in F1 and F2, that
is

F+ = (F1 ∪ F2)+ , (3.15)

24 CHAPTER 3. THEORY OF RELATIONAL DATABASE SYSTEMS

Algorithm 2 Deducting functional dependencies for decomposed relation
Require: relation R (X,F) where X, F is set of attributes and functional dependencies

respectively, and its decomposition R1 (X1) where X1 ⊂ X.
Ensure: functional dependencies F1 that hold in R1 (X1)

1: let F+ be a set of dependencies deducted from R (X,F),
2: set F+ = F,
3: for every A ⊆ X do
4: find closure A+,
5: for every B ∈ A+ \ A do
6: if A→ B < F+ and is a nontrivial functional dependency then
7: add A→ B to F+,
8: end if
9: end for

10: end for
11: leave in F+ functional dependencies A → B such that both A and B are subset of
X1.

2. natural join of relations R1 and R2 gives exactly the same data as stored in R (no
data is lost and no new data is created).

When one of the above condition is not satisfied then decomposition loses data or func-
tional dependencies respectively. If neither condition is satisfied then decomposition
loses information about both functional dependencies and data.

In order to verify whether decomposition is dependency preserving it is required to
check whether functional dependencies, that can be deducted from decomposed rela-
tions, are the same as those deducted from the original relation. Therefore, in general
case we have to first decompose relation and then verify whether this decomposition
preserves functional dependencies or not.

Formally we can say that decomposition of relation R(X; F) into relations R1(X1; F1)
and R2(X2; F2) preserves functional dependencies if and only if:

1. X1 ∪ X2 = X,

2. (F1 ∪ F1)+ = F+.

Example 3.11
Find functional dependencies in R1 (ACD) and R2 (BCD) that are decomposition of
R (ABCD; {AB→ C}, {A→ B}, {D→ C}).

3.3. NORMAL FORMS 25

We start with determining F+ for relation R. According to algorithm 2 we take
all possible subsets of attributes X = {A, B,C,D}, calculate its closures and deduce
functional dependencies:

A : A+ = {A,B,C} ⇒ {A→ B}, {A→ C},

B : B+ = {B},

C : C+ = {C},

D : D+ = {C,D} ⇒ {D→ C},

AB : AB+ = {A,B, C} ⇒ {AB→ C},

AC : AC+ = {A,B, C} ⇒ {AC → B}, but this is trivial dependency since
{A→ BC},

AD : AD+ = {A,B, C, D} ⇒ {AD → BC}, but this is trivial due to augmenta-
tion axiom and since both A and D themselves determine C,

...

Finally we get F+ = {{A→ BC}, {D→ C}} which yields R1 (ACD; {A→ C}, {D→ C})
and R2 (BCD; {D→ C}). Note that there is no functional dependency for attribute B
which means that {A→ B} (that holds in R) cannot be deducted from R1,R2. It follows
that during this decomposition of R functional dependencies are lost. �

Unlike for decomposition with no lose of FD, where after the decomposition it can
be verified whether it preserves dependency or not, there are rules that ensure decom-
position of relation will be lossless (will preserve data). Precisely, relation R (X,F) is
decomposed with no lose of data, into R1 (YZ1,F1) and R2 (YZ2,F2) if and only if:

1. Y ∪ Z1 ∪ Z2 = X,

2. Z1 ∩ Z2 = ∅,

3. Y→ Z1 ∈ F.

Example 3.12
Decomposition of R (ABCD; {AB→ C}, {A→ B}, {D→ C}) into R1(ACD; {A→ C}, {D→
C}) and R2 (BCD; {D→ C}) does not preserve data. It is so since for this decomposi-
tion Y = {CD}, Z1 = {A}, Z2 = {B} and these sets of attributes don’t satisfy third
requirement for lossless decomposition.

26 CHAPTER 3. THEORY OF RELATIONAL DATABASE SYSTEMS

R
A B C D
a1 b1 c1 d1
a2 b2 c1 d1

R1

A C D
a1 c1 d1
a2 c1 d1

R1

B C D
b1 c1 d1
b2 c1 d1

The fact that this decomposition does not preserve data can be presented on a simple
example with three relations R, R1 and R2. It can be easily verified that R1 Z R2 has
two additional tuples when compared to original relation R.

Remark – Joining decomposed relation may be a good method to show that decom-
position is in fact lossy. However, it is not a method to decide whether decomposition
is lossless or not. Mismatched example may falsely show decomposition is lossless.

�

3.3.2 Normalisation

Normalisation is a systematic process of transforming relations in order to ensure that
their structure is suitable for database management systems, table-like representation
and ensuring data integrity (e.g. free of insert, update and delete anomalies). Since
1970, when Edgar F. Codd [7] proposed first normal form (1NF), database theorist
proposed seven additional normal forms (2NF, 3NF, BCNF, 4NF, 5NF, DKNF, 6NF)
among which first five are the most significant.

Relation is in first normal form (1NF) if it can be stored in a two-dimensional,
column-homogenous table that stores data of simple types. To represent relation in
1NF it is required to:

• eliminate repeating data (information redundancy) in individual tuples,

• create separate relations for each set of data (each entity),

• designate a primary key for each relation.

First normal form focuses on the shape of a tuple which must contain constant num-
ber of attributes. It excludes existence of optional attributes which are used only in
some tuples while they are left empty in others. Instead, if variable amount of simi-
lar information has to stored it is required to create separate relations for each set of
information.

3.3. NORMAL FORMS 27

Example 3.13
Lets assume that we want to store information about employees, access level, permis-
sions at given level and their current and last salary. This information can be stored in
relation R

(
fname, lname, access, perm, salary, prevsalary

)
but what happens when we

add a requirement to store last but one salary also? Whereas adding additional attribute
is the simplest answer it is not the solution since in practice it requires modification of
database structure and program. On the other hand, we may separate information into
two relations and add primary key as follows:

R1

(
emp id, fname, lname, access, perm

)
, R2

(
emp id, salary

)
(3.16)

then we can smoothly accommodate a dynamic number of salaries. Additional attri-
bute valid until in relation R2 can be used to distinguish between current and previous
salaries. Both relations R1,R2 are in 1NF. �

Relations that are in 1NF can still feature anomalies. Lets consider relation R1

(
emp id,

fname, lname, access, perm
)

from example 3.13. In this relation insert anomaly occurs
since there is no possibility to store information about an employee that has no access
level and permissions. When updating information on employee last name that has
several access level and we forget to update all entries for this user then update anomaly
occur. Finally if an employee quits the company and related tuples are deleted then we
will also lose information about access levels and permissions he had.

Second normal form (2NF) focuses on functional dependencies between primary
key and non-prime attributes (i.e. attributes that are not part of primary key). In second
normal form all non-prime attributes have to be full functionally dependent on primary
key. Full functional dependency on primary key means that there is no non-prime
attribute that depends on part of the primary key. Formally, if R (X,F) and Y ⊂ X is a
candidate key then for every set of attributes Z ⊆ X \ Y:

Y→ Z and ¬∃U ⊂ Y : U→ Z (3.17)

Lets focus on relation R1 from example 3.13. There are two functional dependencies in
this relation: {emp id → fname, lname} and {emp id, access → perm}. There is only
one candidate key in this relation, namely emp id, access which means that attributes
fname, lname are functionally dependent on part of the primary key. Therefore R1 is
not in 2NF.

Relation that is in 1NF can be transformed to 2NF through normalisation proce-
dure. Normalisation is a relation decomposition procedure presented in algorithm 3.
Note that this procedure is the same for normalisation between 1NF, 2NF, 3NF and
BCNF, as well as it is a lossless decomposition of relation (cf. lossless decomposition
requirements on page 25).

28 CHAPTER 3. THEORY OF RELATIONAL DATABASE SYSTEMS

Algorithm 3 Relation normalisation
Require: relation R (X,F) in xNF to be normalised to (x+1)NF
Ensure: relations Ri (Xi,Fi) that are decomposition of R (X,F) and are in (x+1)NF

1: find functional dependency Y→ Z that violates condition for (x+1)NF,
2: find closure Y+,
3: decompose R based on this functional dependency into relations:

R1 (Y+,F1),

R2 ((X \ Y+) ∪ Y,F2),

where F1,F2 are functional dependencies deducted for decomposed relations,
4: if Ri is not in (x+1)NF then
5: normalise Ri

6: end if

Example 3.14
Relation R(emp id, fname, lname, access, perm; {emp id→ fname, lname}, {emp id, access→
perm}) is not in 2NF since attributes fname, lname are not full functionally dependent
on the primary key. Therefore, functional dependency {emp id → fname, lname} vio-
lates the 2NF and relation needs to be decomposed.

1. find closure of emp id:

emp id+ =
{
emp id, fname, lname

}
2. deduce all nontrivial functional dependencies from R:

{emp id→ fname, lname}
{emp id, access→ perm}

3. decompose R into:

R1(emp id, fname, lname, {{emp id→ fname, lname}})
R2(emp id, access, perm, {{emp id, access→ perm}})

that are both in 2NF.

�

3.3. NORMAL FORMS 29

Remark – If primary key of relation consist of one attribute only then relation is in
2NF.

In 2NF every non-prime attribute is fully dependent on the candidate key, however,
such a functional dependency can be transitive. Transitive dependency A → C means
that attribute C depends functionally on some other attribute B which in turns depends
on A. Transitive dependency means that there is no direct functional dependency but
such a dependency can be deducted.

Example 3.15
Lets extend relation R1 from example 3.14 with additional attribute fnameinitial. Value
of new attribute functionally depends on fname attribute, so new relation equals

R1(emp id, fname, lname, fnameinitial, {emp id→ fname, lname}, {fname→ fnameinitial}).

Since {emp id → fname} and {fname → fnameinitial} thus there is a transitive depen-
dency {emp id→ fnameinitial}. Therefore, R1 is in 2NF but not in 3NF. �

Transitive dependencies in 2NF may lead to insert, update and delete anomalies and
should be removed through normalisation to 3NF.

In third normal form (3NF) all non-prime attributes are directly functionally de-
pendent on every primary key or superkey (set of attributes that contains primary key).
Formally, relation R(ABCD; F) is in 3NF if and only if:

• it is in 2NF,

• for every functional dependency X → Y in F one of the following conditions is
satisfied:

– Y is a subset of X – if so then according to reflexivity axiom (see Arm-
strong’s axioms, page 13) this functional dependency is trivial, or

– X is a superkey – if so and due to the fact that R is in 2NF and augmentation
axiom this functional dependency is trivial, or

– Y is a subset of primary key of the relation R.

Based on Amstrong’s axioms if either of two first conditions hold then functional de-
pendency X → Y is trivial and can be simply dropped. Third condition means that in
3NF primary key (or subset of its attributes) can be functional dependent on non-prime
attribute of the relation. It is also allowed that there exist a functional dependency
between different attributes of primary key.

30 CHAPTER 3. THEORY OF RELATIONAL DATABASE SYSTEMS

Example 3.16
Relation

R(emp id, fname, lname, fnameinitial, {emp id→ fname, lname}, {fname→ fnameinitial}).

is in 2NF and isn’t in 3NF due to the fact, that fnameinitial is in transitive functio-
nal dependency on the primary key. Relation R can be decomposed with respect to
{{fname→ fnameinitial}} yielding relations:

R1(fname, fnameinitial, {{fname→ fnameinitial}})
R2(emp id, fname, lname, {{emp id→ fname, lname}})

that are both in 3NF. �

Since in 3NF every non-prime attribute is directly functional dependent on the primary
key, therefore, update anomaly will not occur for non-prime attributes. However, since
attributes of primary key can still be functionally dependent on other attributes thus
insert and update anomaly may still occur.

Boyce-Cood normal form (BCNF) was proposed to eliminate update, insert and de-
lete anomalies. This is achieved through eliminating functional dependencies between
non-prime attributes and prime attributes as well as between attributes of the primary
key. Formally, relation is in BCNF if and only if all functional dependencies result from
primary key (i.e. primary key is on the right side of every functional dependency).

Example 3.17
Relation R(street, city, zip code, {street, city → zip code}, {zip code → city}) is in
3NF since all non-prime attributes (i.e. zip code) are directly functional dependent on
the primary key. However, since there is a functional dependency between non-prime
attribute and primary key attribute (i.e. city), therefore, relation is not in BCNF. When
we decompose relation R with respect to functional dependency {zip code→ city} then
we will get the following relations:

R1(zip code, city, {{zip code→ city}})
R2(zip code, street)

Decomposed relations are in BCNF and this decomposition is lossless. However, func-
tional dependency {{street, city→ zip code}} was lost and cannot be deducted from R1
and R2. �

As presented in example 3.17 normalisation to BCNF always leads to lose of functional
dependencies. It is so, since functional dependencies in 3NF (where every non-prime

3.3. NORMAL FORMS 31

attribute depends on the primary key – {X→ Y}), that do not satisfy BCNF, have non-
prime attribute on left and prime attribute on the right side (i.e. {A→ B} where B ⊆ X
and A ⊆ Y). When decomposing relation according to algorithm 3 and with respect to
{A → B} then non-prime attribute A occurs in both decomposed relations while prime
attribute B appear only in one of them (in the other one X \B appears). However, since
prime attributes X do not appear in either of decomposed relation, therefore functional
dependency X → B does not belong to any of these relations. Moreover, it cannot be
deducted from functional dependencies in either of decomposed relations, since non of
them consist of all prime attributes X.

Fourth normal form (4NF) deal with multivalued dependencies. Despite similari-
ties multivalued dependencies are not functional dependencies and therefore are repre-
sented with two-head arrow (i.e. if {A � B} then A 9 B). Multivalued dependency
{A� B} does not mean that A clearly determines B but that A relates to set of values of
attribute B. If there are multivalued dependencies in relation then again update, insert
and delete anomalies may occur. This will happen if there is, in relation R(X; F):

• more then one nontrivial multivalued dependency in relation, or

• one multivalued dependency such that Y� Z and Y , X \ {Z}.

Intuitively, relation R(X; F) is in 4NF when all functional and multivalued dependen-
cies result from relation key – in BCNF this requirement only applied to functional
dependencies. Relation that is in BCNF can be thus decomposed to 4NF using algori-
thm 3. Decomposition does not necessarily preserve functional dependencies.

Example 3.18
Lets consider relation R(emp id, language, skill) that stores information about langu-
ages and skills of employees. Since there are no functional dependencies in this rela-
tion, therefore, all tree attributes form primary key and so R is in BCNF. Nevertheless
there are two multivalued dependency

{{emp id� language}}
{{emp id� skill}}

since each employee may speak several languages and posses several skills.
Lets assume that we have two employees: Alice (emp id = 1) and Bob (emp id =

2). Alice speaks English, French and Polish and holds certificates in accounting and
project management. Bob speaks English and German and used to work as bricklayer,
plumber and painter. This information can be stored in relation R as follows
Despite fact that this relation is in BCNF it still features anomalies. For example as-
sume that Alice doesn’t speak French. If we delete corresponding tuple then we also

32 CHAPTER 3. THEORY OF RELATIONAL DATABASE SYSTEMS

R
emp id language skill

1 English accounting
1 French project management
1 Polish
2 English bricklayer
2 German plumber
2 painter

lose information about Alice skill – delete anomaly. Similarly, if Alice learns Japa-
nese then we have to add new tuple with empty (or set to NULL) skill attribute – insert
anomaly.

If we decompose relation R with respect to one of the multivalued dependency then:

R1(emp id, language; {emp id� language}),
R2(emp id, skill; {emp id� skill}),

and both relations are in 4NF. Note that in this example decomposed relations R1,R2
are exactly the same independently of whether decomposition was conducted with re-
spect to {emp id � language} or {emp id � skill}. This is not the case in general.
�

3.3. NORMAL FORMS 33

Table 3.1: Summary of normal forms
Normal form Description
1NF Relation has no repeating attributes, each relation represents single

facts, each attribute has simple domain (no complex data types)
2NF Every non-prime attribute is fully functional dependent on relation

candidate key (this functional dependency may be transitive). If can-
didate key consist of exactly one attribute then relation is in 2NF.
Decomposition to 2NF is lossless and dependency preserving.

3NF Every non-prime attribute is directly functional dependent on candi-
date key (there is no transitive dependency on any candidate key).
Decomposition to 3NF is lossless and dependency preserving.

BCNF Every functional dependency has primary key on the left side. There
are no non-trivial functional dependencies between non-prime and
prime attributes and between two (or more) prime attributes. Decom-
position to BCNF is lossless but does not preserve functional depen-
dencies.

4NF Every functional and non-trivial multivalued dependency result from
relation primary key (have key on the left side). Decomposition to
4NF is lossless but does not necessarily preserve functional depen-
dencies.

Chapter 4

Relational database
management systems

Relational database management system draw on relational model presented in chap-
ter 3, however, real life implementation have extended some of its aspects. Also some
requirements resulting from relational model have been alleviated in order to develop
systems that are more convenient. Due to differences between relational model and
database management systems different names were introduced. In particular tables
reflect relations from the relational model; columns – attributes; rows – tuples, and
data types – domains. Also a number of additional elements (database objects) have
been added to further simplify and improve properties of database-based system.

4.1 Structured Query Language

4.1.1 BNF syntax - general SQL notation

BNF (Backus Normal Form) is a notation for representing syntactics of the Structured
Query Language. In practice SQL uses extended version of BNF which defines each
semantic element of language using characters, character strings, other syntactic ele-
ments and symbols. According to [1] BNF used to represent SQL supports following
symbols:

<> angle brackets delimit the names of syntactic elements i.e. non-terminal symbols
of the SQL that are defined somewhere else,

35

36 CHAPTER 4. RELATIONAL DATABASE MANAGEMENT SYSTEMS

::= is a definition operator that separates the element defined (that appears to the left
of this symbol) from its definition (that appears to the right),

[] square brackets indicate optional elements in the formula so elements within
the brackets can be either explicitly specified or omitted,

{ } braces indicate group of elements (parts) in the formula, it behaves similarly to
brackets in traditional algebra,

| is an alternative operator which means that parts of the formula preceding and
following the operator are alternative to each other – either preceding of follo-
wing element appears in the formula. This operator is usually enclosed in braces
or square brackets to specify alternative for some elements of the formula,

... lower dots indicate that the element to which they apply may be repeated in the
formula any number of times. If lower dots follow the closing brace then they
apply to the whole group enclosed in braces. When they follow the element then
they apply to this element only,

!! double exclamation introduces English text when the formula is expressed in text
rather then BNF notation.

Square brackets and braces can be nested to any depth as well as alternative operator
may appear at any depth.

To read the definition of SQL element and/or generate a valid SQL command it is
required to transform the element definition from the BNF notation to a correct instance
of an SQL element. This can be done according to the algorithm 4.

SQL language is composed of three basic sets of commands:

• data definition language (DDL) - used to create, modify and delete objects in
database,

• data manipulation language (DML) - used to manipulate the data stored in the
database,

• data control language (DCL) - used to control privileges required to access the
data.

4.1. STRUCTURED QUERY LANGUAGE 37

Algorithm 4 Generating an instance of SQL element from BNF definition of the ele-
ment.
Require: BNF definition of the SQL element.
Ensure: instance of the element.

1: for every alternative part in the BNF definition select one of possible alternatives
and replace the alternative part with it,

2: replace each lower dots with one or more instances of element they apply to,
3: for every part of the definition enclosed with square brackets, either delete this part

and brackets or change square brackets to braces,
4: for every part of the definition enclosed in braces do
5: generate an instance of SQL from this part of definition. Algorithm 4 is executed

recursively with part of the definition as its input argument.
6: end for
7: for every non-terminal element in the definition do
8: find definition of the non-terminal element,
9: generate an instance of SQL from BNF definition of the non-terminal element.

Algorithm 4 is executed recursively with definition of the non-terminal element
as its input argument.

10: end for

4.1.2 Data Definition Language

Data definition language (DDL) consist of statements that enable to create, modify
and delete database objects such as tables, views, stored procedures, triggers, indices,
relation and cryptographic keys, sequences and so on. Three basic DDL commands
are:

• CREATE - used to create new objects in the database,

• ALTER - used to modify objects that already exist in the database,

• DROP - used to remove objects from the database.

In all database management systems executing DDL statements is only restricted to
users that hold admin privilege (e.g. ddladmin) but in some cases additional permis-
sions may be required as well. For example a REFERENCE privilege is required to
create view with SCHEMABINDING clause (cf. chapter 6.1.1).

38 CHAPTER 4. RELATIONAL DATABASE MANAGEMENT SYSTEMS

4.1.3 Data Manipulation Language
Data manipulation language (DML) is the most often used set of SQL statements. DML
is used to actually manipulate the data stored in database tables either directly or in-
directly (e.g. through data inserts, deletes to/from views). There are four basic DML
commands:

• SELECT - used to select data stored in a table,

• INSERT - used to insert new data into a database table,

• UPDATE - used to modify the data already stored in a table,

• DELETE - used to remove selected data from the table.

Except for this basic commands DML provides a number of various operators and
functions that enable to operate the data efficiently. In particular contemporary database
management systems enable standard software constructions such as loops (for, while)
and conditional branches (if). Aggregate functions, standard mathematical, string and
date operators are also supported. Similar to DDL execution of DML statements is
subject to privileges but the difference is in the granularity of privileges. Access rights
control execution of each basic DML command separately thus enabling the particular
user to be granted ability to execute only some commands (cf. chapters 6.1.1 and
6.1.2).

4.1.4 Data Control Language
Data control language (DCL) is used to create users, assign them to groups (roles) and
define privileges they are entitled to use. DCL will differ significantly depending on
whether discretionary or mandatory access control is used. When discretionary access
control is used (which is the case for most RDBS) then there are two basic commands
used to control privileges:

• GRANT - used to give new privilege to a user or group,

• REVOKE - used to cancel privilege that was given earlier.

Some DBMS (e.g. MsSQL) also support DENY command that prohibits users/groups
from using some privileges. If DENY command is supported then REVOKE cancels
both granted and denied privileges.

Granularity and types of privileges differ between different DBMS, however, there
is a set of privileges that all such systems have in common, these are privileges concer-
ning:

4.2. DATABASE BASICS 39

• data manipulation operations such as INSERT, UPDATE, DELETE and SE-
LECT,

• database objects such as CREATE, DROP, ALTER, REFERENCE, CONTROL,
EXECUTE, etc.

More details on access control can be found in chapter 6.1.

4.2 Database basics

4.2.1 Data types
Data type in database management system is equivalent to domain in relational model
so it defines a set of values that can be represented in a table’s column. Traditionally
value determined by data type was atomic so there was no logical subdivision of it
[1] – these data types are called predefined or ”build-in”. However, current SQL stan-
dards (i.e. [2]) extended capabilities and introduced collection types such as array and
multiset types.

There are 17 basic predefined data types that can be divided into 7 groups [2]:

• character data types - CHARACTER, CHARACTER VARYING, CHARAC-
TER LARGE OBJECT (CLOB),

• binary data type - BINARY LARGE OBJECT (BLOB),

• integer data types - SMALLINT, INTEGER, BIGINT,

• non-integer data types - NUMERIC, DECIMAL, FLOAT, REAL, DOUBLE
PRECISION,

• data and time data types - DATE, TIME, TIMESTAMP,

• boolean data type - BOOLEAN,

• interval data type - INTERVAL.

For each data type there is a set of rules and restrictions that apply when reading,
writing, assigning or comparing values of this type. Obvious and the most important
is the set of values that is allowed by data type. The value can be either NULL value
or non-NULL value. A NULL value is a special value that is a member of every data
type distinct from all non-NULL values. It has no literal associated with it although the
keyword NULL is commonly used to indicate its value (e.g. to distinguish NULL value

40 CHAPTER 4. RELATIONAL DATABASE MANAGEMENT SYSTEMS

from empty character string). NULL value behaves similarly to NaN (not-a-number) in
traditional arithmetic that is:

• two NULL values are incomparable,

• any arithmetic operator outputs NULL when at least one of its arguments is NULL,

• concatenation of character strings outputs NULL when one of strings is NULL,

• character string equal to NULL is of the length NULL.

CHARACTER string is a sequence of characters taken from a single character set
of positive, non-negative length. Columns that are of character type are described by
four elements:

• the name of the data type – that is CHARACTER, CHARACTER VARYING,
CLOB,

• the length (for CHARACTER data type) or the maximum length (for CHARAC-
TER VARYING and CLOB) of the character string,

• the character set – the set of characters that can be put into the character string,

• collation name – that is the name of the method that will be used to compare
different character strings.

There are also there variants of standard character types – NATIONAL CHARAC-
TER, NATIONAL CHARACTER VARYING, NATIONAL CHARACTER LARGE
OBJECT. The only difference to the standard character types is that they have an
implementation-defined character set. The difference between CHARACTER and CHA-
RACTER VARYING data types of length n is that the former one forces all character
strings to be of length n. It means that storing short character strings in CHARACTER(n)
data type column appends the string with white spaces to the total length of n. For co-
lumns of both data types, if the length of the assigned character string is grater than
n, then string will be either truncated (if truncated characters are all white spaces) or
exception will be raised. In general assigning, comparing and operating on character
strings is possible only when strings are of the same character set. Strings of different
character sets can be also compared if there is a collation that is applicable to both
character sets. A number of functions for operating on character strings is also defined
in the standard, the most commonly used are:

• ‖ – is a concatenation operator that joins characters of its operands,

4.2. DATABASE BASICS 41

• SUBSTRING – returns part of the character string determined by either starting
position and length or pattern and escape string (with keywords SIMILAR and
UNESCAPE),

• OVERLAY – replaces any occurrence of a substring with new substring,

• LOWER and UPPER – converts all to characters to lower and upper case respec-
tively,

• TRIM – removes all leading and trailing white spaces from the string,

• CHAR LENGTH – returns number of characters in the character string,

• POSITION – returns position of first occurrence of substring in given string,

• [NOT] LIKE – returns Boolean true or false depending on whether character
string matches the given pattern. Pattern can contain percent (%) and under-
score () character to escape any sequence of characters and a single character
respectively,

• [NOT] SIMILAR – is an extended variant of [NOT] LIKE that uses regular
expressions to define the pattern.

BINARY LARGE OBJECT (BLOB) is a sequence of bytes that has neither character
set nor collation associated with it and it is only described by a data type and maximum
length of the binary string expressed in bytes. As a result, all binary strings are assi-
gnable. Similarly to character strings, binary strings can be truncated when stored in
BLOB column but only when all truncated bytes are equal zero. Otherwise, exception
is raised. Binary string can be also compared. However, they can be only compa-
red for equality and two binary strings are equal if they have the same length. SQL
standard defines concatenation operator as well as SUBSTRING, OVERLAY, TRIM,
OCTET LENGTH, POSITION and [NOT] LIKE functions for BLOBs that are analo-
gous to functions defined for character strings.

Numeric data types are used to store integer and real numbers. Columns that are of
numeric type are parametrised by four properties:

• name of the numeric type – that is NUMERIC, DECIMAL, INTEGER, SMAL-
LINT, FLOAT, REAL, DOUBLE PRECISION,

• precision of the numeric type,

• scale of the numeric type if it is an exact numeric type,

42 CHAPTER 4. RELATIONAL DATABASE MANAGEMENT SYSTEMS

• indication of whether precision and scale are represented in decimal or binary.

Depending on the storage method numeric types can be divided into exact and appro-
ximate numeric types. An exact numeric type (NUMERIC, DECIMAL, INTEGER,
SMALLINT) has two parameters: precision and scale. Precision is a positive number
grater then 0 that determines number of significant digits in a numeric type. Precision
is the maximal number of digits that can be used to represent an exact numeric value,
that can be stored both on the left and right of the decimal point. Scale is a non-negative
(can be equal 0) number that determines number of digits that can be stored to the right
of the decimal point. When scale equals 0 then numeric type stores integer values.
Exact numeric types store all numbers in the data type range exactly.

Value of an approximate numeric type (FLOAT, REAL, DOUBLE PRECISION)
consist of a mantissa (M), an exponent (E) and a sign bit (S). Mantissa is a signed
numeric value while exponent is signed integer that specifies the magnitude of the
mantissa with respect to the particular (usually binary) radix (β). Precision for an
approximate numeric values is defined as a number of significant bits that are used
to represent the mantissa. Value of a approximate numeric data type is the mantissa
multiplied by the radix to the exponent:

(−1)S · M · βE (4.1)

Approximate numeric type cannot represent exactly all values in the data type range,
which means that some of them are rounded or truncated towards the value that can
be represented. In contemporary databases approximate numeric types use standard
representation of floating point numbers defined in IEEE 754 [4].

SQL standard defines rounding and truncation as a procedures to transform numeric
values cannot be represented with given numeric data type. These procedures are used
whenever value cannot be represented in an approximate data type or value has larger
scale then the exact numeric type. Value t obtained by truncation for a given numeric
type is not further from zero then the original value v that was truncated. The absolute
value of t is thus smaller or equal to v and the difference between v and t is less then the
difference between two successive values of that numeric type. In contrast to truncation
value r that is a result of rounding is the closest numeric value that can be represented
in a given numeric type. The difference between v and r is less then the half of the
difference between two successive values of the numeric type. If there are two values
r1 and r2 satisfying the above condition then it is implementation-dependent which
value is taken.

Using exact numeric types is somehow more intuitive since precision and scale
refer to number of decimal digits. Therefore, if exact numeric data type can store
numbers with precision P and scale S then all numeric values that have at most P − S

4.2. DATABASE BASICS 43

decimal digits to the left and S decimal digits to the right of the decimal point, can
be stored exactly - i.e. exactly the same value will be read. On the other hand if
approximate numeric type is used then even simple decimal numeric values may be
rounded/truncated. This is due to the fact that all contemporary database management
systems (as well as almost all computer systems) use IEEE 754 standard that represents
mantissa in binary radix. Unfortunately, P binary digits may be not enough to represent
numeric value that has even a few decimal digits to the right of the decimal point.
Consequently it is a common misunderstanding that single/double precision IEEE 754
numeric can store decimal numbers with 7/15 decimal digits to the right of the decimal
point.

Example 4.1
IEEE 754 stores normalised numeric values (other then 0, NaN, ±∞, etc.) using the
unsigned mantissa 1 ≤ M < 2 (only fractional part is stored), unsigned exponent E
encoded with bias B and a single bit S to represent the sign of the value. Number of
bits required for storage of numeric value equals 32 bits for single precision (1 bit to
store S , 8 bits for E and 23 bits for M) and 64 bits for double precision (1 bit to store
S , 11 bits for E and 52 bits for M). Exponent bias equals +127 and +1023 for single
and double precision respectively. The value of the numeric stored in single/double
precision IEEE 754 format is calculated as follows:

(−1)S (1 + M) · 2E−B. (4.2)

When storing decimal value (7.1)10 in IEEE 754 numeric format we will get

0 10000001 11000110011001100110011

and

0 10000001 1100011001100110011001100110011001100110011001100110

for single and double precision representation respectively. If we now calculate value
of both numerics we get:

(−1)0(1 + 0.77499997615814208984375) · 2129−127 = 7.0999999... (4.3)

for single precision format, and

(−1)0(1 + 0.77499999999999991118215802998748) · 2129−127 = 7.0999999... (4.4)

for double precision format. It can be clearly seen that approximate numeric data types
cannot store exact value of such simple numeric and may introduce errors especially
when used in some computations. �

44 CHAPTER 4. RELATIONAL DATABASE MANAGEMENT SYSTEMS

Using approximate numeric data type may have serious consequences to the result of
the computations performed in database management systems. The following example
works for MsSQL Server 2008.

Example 4.2
Assume we have a table T that consist of two columns: AmountR and AmountD, of
real and decimal(18,2) types respectively. At first this table is empty and we execute
the following SQL command:

INSERT INTO T (AmountR, AmountD) VALUES (0.01, 0.01).

Now selecting the data with

SELECT AmountR, AmountD FROM T

command returns correct values of AmountR=0.01 and AmountD=0.01. We may
conclude that both values are stored correctly, however, if we execute the following
command:

SELECT 100000000000*AmountR - 100000000000*AmountD FROM T

then we get -64 as a result. This indicates that values stored in both columns are in-
terpreted differently. Similar difference will occur when we use aggregation function
such as SUM or AVG. For example command

SELECT SUM(AmountR) AS SumOfAmountR, SUM(AmountD) AS SumOfAmountD
FROM T

returns SumOfAmountR=0.00999999977648258 while SumOfAmountD=0.01 even if
there is only one row in this table! �

Database management systems provide a wide range of operands and functions for
numeric variables that can be divided into three groups

• type converting functions – these functions can be used to convert particular
numeric data type to other numeric data types (e.g. integer value to exact/ap-
proximate numeric value) as well as to other data types (e.g. character, binary,
money etc.),

• mathematical operands – that are used to perform calculations on numeric values,

• aggregate functions – that are used to calculate aggregate values for selected sets
of data.

There are two variants of conversions between data types: implicit and explicit. Im-
plicit conversions are those that occur without specifying the conversion function (e.g.

4.2. DATABASE BASICS 45

1. user-defined (highest) 2. sql variant 3. xml
4. datetime 5. smalldatetime 6. float
7. real 8. decimal 9. money
10. smallmoney 11. bigint 12. int
13. smallint 14. tinyint 15. bit
16. ntext 17. text 18. image
19. timestamp 20. uniqueidentifier 21. nvarchar
22. nchar 23. varchar 24. char
25. varbinary 26. binary (lowest)

Table 4.1: Precedence of data types in MsSQL DBMS

CONVERT, CAST in MsSQL). This conversions are performed automatically by the
DBMS that converts input data into types that allow to execute desired operations. Im-
plicit conversion of different data types is based on the data type precedence that orders
data types from highest to lowest precedence. Whenever operator combines operands
of different types then these operands with data type of lower precedence are conver-
ted to data type of the operand with the highest precedence. Since DBMS determines
the desired data type based on the precedence rules, therefore it may happen that data
types used will be different then assumed by the database programer and finally will
lead to different results than expected (see example 4.3). On the other hand, explicit
conversions require specification of convert function and the data type to convert to.
Basic mathematical functions that can be used on numeric data types include:

+ is an addition operator that adds two numeric values,

- subtracts two numeric values or calculate negative value if only subtrahend is
specified,

* is an arithmetic multiplication operator that returns the data type of the argument
with the higher precedence,

/ divides two numerics and returns the data type of the argument with the higher
precedence. If both arguments are integers then / returns quotient of the division,

% is a modulo operator that returns reminder of one integer divided by another,

& is a bitwise logical AND operator that can be applied to integer values,

| is a bitwise logical OR operator for integer values,

ˆ is a bitwise exclusive OR (EXOR) operator,

46 CHAPTER 4. RELATIONAL DATABASE MANAGEMENT SYSTEMS

˜ is a bitwise logical NOT operator.

Contemporary database management systems can also compute basic aggregate func-
tions that operate on a set of values and return a single value as a result. All aggregate
functions mentioned below have an optional argument that specifies whether duplicate
values are discarded or not. Basic aggregate functions include:

• COUNT – returns number of items in a group,

• SUM – returns sum of values in a group,

• MAX/MIN – returns maximal/minimal value from a group,

• AVG – returns average value of elements in a group,

• VAR – returns statistical variance of the elements,

• STDEV – returns statistical standard deviation of the elements,

Example 4.3
Assume we want to use MsSQL DBMS (instead of a calculator) to find the percentage
of the salary that Alice spends every month. Alice earns 4 500 USD and spends 3 250
USD per month. Executing the following SQL query

SELECT (3250/4500)*100

yields 0 since both 3250 and 4500 are integer values for which / operator returns qu-
otient value of the division – that is in fact 0. The same will happen if we leave out
brackets. If we reorder terms of the multiplication operand and execute:

SELECT 100*3250/4500

then the result is 72 since DBMS first computes multiplication and then calculates qu-
otient from the division of two integers – quotient from 325 000 divided by 4 500 is
72. Finally, if we execute

SELECT 100*3250.0/4500

then the result is 72,222222 since DBMS converts all terms to fractional numeric data
type before performing calculations. �

Money data type is a special variant of an exact numeric data type that has fixed preci-
sion and scale. Precision of a numeric data type varies between DBMS from 10 to 19
decimal digits while scale is constant and equal 4. Nevertheless, money data type is su-
itable for storing basic facts such as salaries in employee table it may cause numerous

4.2. DATABASE BASICS 47

problems if more complex dependencies or larger amount of data are stored. Problems
may arise when there are complex arithmetic dependencies between data that may lead
to lose of precision, unwanted rounding and inconsistent data.

Example 4.4
Assume table Invoices stores name of the item, NET unit price, no o items sold, NET
value, VAT rate and GROSS value with price and values stored in money data type
columns. If we want to store information about 1000 laptops sold with 22% VAT rate
for total GROSS value of 1 000 000 USD then Invoice table should store the following
information:

Invoices
Item NET unit price Quantity NET value VAT rate GROSS value
Laptop 819.6721311475 1000 819 672.131147 22% 1 000 000.0000
...

However, due to restricted scale of money data type the DBMS will store

Invoices
Item NET unit price Quantity NET value VAT rate GROSS value
Laptop 819.6721 1000 819 672.1311 22% 1 000 000.0000
...

As a result we get inconsistent data since

819.6721 · 1000 · 1.22 = 999 999.9620 , 1000 000.00.

�

Due to difficulties that arise from using monetary data types it is advised to use exact
numeric data types with scale matched to the actual needs.

4.2.2 Differences in implementations of data types in different DBMS
Whereas all database management system implement all predefined data types there
are differences in data type names (e.g. character types in MsSQL are called: char,
varchar and CLOB) and slight differences in processing the data. MySQL databa-
ses management system, for example, silently truncates too long character strings even
if non-white spaces are removed. However, this default behaviour can be changed
through proper adjustment of system parameters. On the other hand Oracle does not
remove a trailing white spaces when inserting character string to a CHARACTER co-
lumn of shorter length, but rises an exception instead.

48 CHAPTER 4. RELATIONAL DATABASE MANAGEMENT SYSTEMS

There is also a difference in string concatenation operator. Whereas MySQL, Post-
greSQL and DB2 use standard-defined ‖ operator MsSQL uses + operator instead.

MsSQL has no BOOLEAN data type but uses additional BIT data type to represent
Boolean values as 0, 1 or NULL. It also has different implementation of TIMESTAMP
data type that cannot be used to store date and time values. Originally, in MsSQL
2000/2005, column of timestamp data type is equivalent to 8 byte long BINARY or
BINARY VARYING type and is updated automatically every time a row containing this
column is inserted or updated. Since there can be only one timestamp column in each
table and its value is guaranteed to be unique within the whole database, therefore, it
can be used as a mechanism for version-stamping of rows. In new versions of MsSQL
server timestamp column is depreciated and a new data type rowversion should be
used instead.

There are also differences in interpreting NULL values. According to the standard
two NULL values are incomparable but this brings in a question whether single column
that is not allowed to store duplicates is allowed to store more then one NULL value.
In other words, the question is whether in practice incomparable should be interpreted
as NULL = NULL or NULL , NULL. The answer depends on the database management
system – most database management systems (e.g. PostgreSQL, MySQL, DB2) allow
a number of NULLs to be stored in such column (so it follows that NULL , NULL),
MsSQL allows at most one NULL value (so NULL = NULL) while it can be both in
Oracle depending on situation.

4.3 Database objects

Traditionally database management systems were developed in order to simplify data
storage, data access and separate users from physical representation of the information.
Based on relational model and algebra DBMS implemented tables that are still solely
responsible for storing data in a way that enables reconstruction of information. The-
refore, tables composed of columns are the most obvious object in relational DBMS.
However, when DBMS were developed it appeared that tables itself cannot ensure all
the properties we would like to have. This caused the requirement for additional ob-
jects that are complement to tables. Probably the most obvious are primary and foreign
keys that result directly from relational model and are required to reconstruct informa-
tion from data stored in tables. Views, indices, triggers, stored procedures, functions,
cursors and data domain are only an example of other objects that can be found in
contemporary relational DBMS.

4.3. DATABASE OBJECTS 49

4.3.1 Tables, views
Table in relational database management system corresponds to relation in relational
model. As such table consist of columns, that correspond to attributes of relation, and
rows that correspond to tuples. The most important differences between tables and
relations in relational model (cf. chapter 3.1) are:

• in general elements stored in columns of tables can only be of simple data types
while attributes can store complex types, e.g. relations,

• relations does not allow duplicate tuples while duplicate rows in tables of DBMS
are acceptable,

• tuples in relation are unordered whereas table implies particular ordering of rows,
nevertheless DBMS does not guarantee any ordering of rows unless an ORDER
BY clause is specified.

Beside tables have additional metadata associated with each column that define data
type, default value and constrains on that column. The data in the table is physically
stored in the database which is the main difference when compared to views.

Tables contain columns that are specified with three basic parameters:

• name,

• data type,

• constraint.

Column constrains can be any of the following:

• NULL,

• DEFAULT,

• UNIQUE, or

• CHECK.

NULL constraint allows to define whether column accepts NULL values or not. Typically,
when column is defined it is assumed that it allows NULL value to be stored in it. On the
other hand, if NOT NULL clause is used then column will not accept any NULL values.

DEFAULT constraint defines default value for a column that will be inserted into
the column when no value for that column is set in INSERT statement. If column
is defined with NOT NULL constraint and has no DEFAULT value defined then any

50 CHAPTER 4. RELATIONAL DATABASE MANAGEMENT SYSTEMS

INSERT statement will fail if it does not set value for that column. Such behaviour
is alleviated in MySQL where DBMS inserts data type dependent default value – e.g.
empty string for char, varchar and related columns, 0 for numeric columns, or current
date/time for datetime columns.

UNIQUE constraint tells the DBMS that values within a single column have to be
distinct – no two rows can have the same value in that column. It should be noticed
that UNIQUE constraint differs from UNIQUE index. The former one is defined for a
single column while the later is defined for an ordered set of columns (possibly only
one column). UNIQUE index will be discussed in section 4.3.2.

CHECK constraint allows to enforce simple business rules on data stored in parti-
cular column through defining restrictions that data inserted into column has to meet.
CHECK constraint may only use simple rules such as checking whether numeric va-
lues fall into the desired range, or strings are of the desired length. By default CHECK
constraint is only used to verify new data inserted or updated into the column – if check
fails then INSERT/UPDATE also fails. Additionally most database management sys-
tems enable to check data already stored in a column against the constraint. CHECK
constraint is implemented in most modern DBMS, however, this is not the case for
MySQL which does not support CHECK clauses at this time.

Most database management systems allow for creating a temporary tables that exist
in the database as long as user/ application that created these tables is connected to the
database. In MsSQL temporary tables are created when table name starts with single
or double number character (’#’). Single # means that table is temporary and available
only in current connection to the database. When connection is terminated the table
is automatically dropped. Double ## means that temporary table is available to all
connections to the current database. Such a table is dropped when all connections that
have used that table are terminated.

View is a table-like database object that consist of rows returned as a result of SE-
LECT command. Since views display rows from table(s) (or other view(s)) thus rows
contained in a view does not have to be stored in the database. Therefore in most cases
only view definition is stored in the database. Consequently, from the functional point
of view whenever SELECT statement references the view then DBMS substitutes the
view name with its definition (i.e. SELECT statement included in view definition).

Since view is defined using SQL SELECT command, therefore, it may contain co-
lumns from several tables (may use JOIN operations) and restrict rows that are included
in the view (using WHERE clauses). View definition can also use aggregate functions
and clauses GROUP BY and HAVING. Since views are defined on a underling table(s)
therefore defining the view there is no need to define data types, defaults or constraints
for each column. These parameters will be inherited from columns of the underling
table(s).

4.3. DATABASE OBJECTS 51

Because vies are similar to tables therefore similar operations can be applied to
them. In particular data can be selected from view in exactly the same way as it is
possible for tables. Also all relational algebra operators apply to views.

In some cases data can be inserted, updated and deleted from views. However, since
views does not store data but contain selected data from underlining table(s), therefore,
inserting, updating and deleting data from view actually modifies the underling table(s).
Such modifications to the base tables are only possible if view is updatable which
means that DBMS must be able to unambiguously determine column(s) of a single
base table that are about to be modified. Requirements for a view to be updatable may
vary between different database management systems, however some requirements are
general:

• any modifications (UPDATE, INSERT, DELETE) to the view must reference
columns from only one base table,

• columns being modified must directly reference columns/data in the underling
table. In particular columns of a view that are derived as:

– an aggregate function (e.g. AVG, COUNT, MIN, MAX, etc.),

– a computation from other columns, or

– a result of a set operators UNION, EXCEPT, INTERSECT,

are not updatable,

• all columns from the base table being modified that do not have default value
defined and do not allow NULL value are included in a view. If such columns are
not included in a view then INSERT/UPDATE statements cannot set values for
them. This in turn causes the SQL INSERT/UPDATE statement executed against
the base table to fail since values for required column(s) are not set.

• columns being modified are not included in GROUP BY, HAVING or DISTINCT
clauses.

If any of the above conditions is not satisfied then view (or some columns from the
view) is not updatable.

Satisfying the above mentioned conditions does not ensure all modifications to the
view are possible. For example, to successfully execute an INSERT statement against
the view it has to be both updatable and has to set values for all columns of the base
table that do not have default value defined and do not allow NULL value. Falling to
do so will cause the underlining INSERT statement, executed against the base table, to
fail since values for required columns are not given in the statement. Since updatable

52 CHAPTER 4. RELATIONAL DATABASE MANAGEMENT SYSTEMS

view can be only used to modify columns included in view definition, therefore, if view
does not include all such columns of the base table then executing INSERT statements
against the view is not possible at all.

Ability to insert and update data in an updatable view may be also restricted by
view definition. Most contemporary DBMS support WITH CHECK OPTION clause
that forces all data modification to be verified against view definition. If view was
defined with this option then data contained in INSERT/UPDATE operations is verified
whether it meets the criteria included in the WHERE clause of the SELECT statement
used to define the view. Data can be modified only if it will remain visible through the
view after the modification is committed.

Example 4.5
Database management system contains a table Student that stores information about
security social number (ssn), first name (fname), last name (lname) and age (age) and
a view defined as follows

CREATE VIEW view T AS
SELECT ssn, fname, lname, age FROM Student WHERE age>26
WITH CHECK OPTION.

View view T is updatable however executing commands

INSERT INTO view T (ssn, fname, lname, age) VALUES (42, ’Ann’, ’Knight’, 21)

and

UPDATE view T SET age=24 WHERE fname=’John’

will cause DBMS to report an error. It is so since view is defined with WITH CHECK
OPTION and value of age in both command does not satisfy the condition age>26 used
in this definition. �

Views does not store data but rather define which columns and rows from some
table(s) to contain in a view. Therefore, views are susceptible to changes in a structure
of the base table(s). By default DBMS verify correctness of the view when defined
and accessed through SQL statements against this view. When view is not accessed
then base table can be altered and possibly some columns contained in a view can
be dropped. DBMS will allow to drop such columns unless SCHEMABINDING option
was specified when view was defined. When view is defined with SCHEMABINGIND
option then DBMS prevents the base tables to be altered in a way that would affect the
view (e.g. columns of the base tables, that are included in a view, cannot be dropped).
To modify the base table the view must be first modified or dropped.

4.3. DATABASE OBJECTS 53

4.3.2 Indices
Relational model assumes that tuples in relation are unordered and similarly rows in a
table have no particular ordering. In most real live applications, however, information
are ordered so database management systems have to have mechanisms to speed up
data ordering. Similarly, since people have an ability to assimilate restricted set of
information at one time, thus it is reasonable to incorporate mechanisms that enable
quick searching of data in large datasets. Quick search mechanism is also required for
some relational algebra operations. For example JOIN operations of tables T and V
require to find rows in V that correspond to the row selected from T. All of the above
mentioned requirements can be efficiently satisfied using indices.

Indices are used to logically organise rows of the table in order to speedup access
to this data – that is to speedup execution of SELECT statements. Regardless of the
implementation, indices can be seen as some kind of lists that tells the DBMS where to
find data it is looking for or how to traverse through the rows of the table to get some
column sorted in ascending/descending order. Introducing indices into the database
requires additional information to be generated and stored along with the table data.
Consequently, whenever data in the table is modified the index needs also to be updated
and/or rebuild. As a result indices affect execution of INSERT, UPDATE and DELETE
statements, which may be time consuming if indices are large.

Indices are implemented in a way that minimises storage requirement and time
overhead required to rebuild the index when data is modified. Particular implementa-
tion depends also on the type of data that is indexed, so that different index structures
are used for indexing string, numeric and spatial data types.

The most basic and the most often supported structure of indices used in DBMS
are:

• hash tables,

• B-trees and B+-trees,

• generalised search trees,

• full-text,

• R-trees and R+-tress,

• spatial.

R/R+-trees and spatial indices are dedicated to index spatial information (e.g. location
of objects) and are based on B-trees-like tree structure. They are becoming popular in

54 CHAPTER 4. RELATIONAL DATABASE MANAGEMENT SYSTEMS

contemporary database management systems and implemented as a standard. Genera-
lised search trees are generalisation of B/B+-trees that can be used to build a variety
of search tress. Providing a concurrent and recoverable height-balanced search tree as
well as ability to use with arbitrary any data type that can have hierarchy defined are the
most important virtues of this index structure. Hash tables and B/B+-trees are standard
structures for indices used in DBMS. They may be easily used to index string, numeric
and date/time data types. Indices are defined to speed up data access through building
an additional data structure that is used to look for data. However different SELECT
statements may require different indices as well as different indices may improve only
some operations on the data. In particular order of columns in index definition is also
relevant.

Example 4.6
Assume we have a two column hash index Ind1 on a table Student defined as follows:

CREATE INDEX Ind1 USING HASH ON Student(fname, lname)

When index Ind1 is constructed DBMS takes every row of the table Student, appends
binary representation of value stored in column fname with binary representation of
lname and calculates the hash value. The resulting hash value will be different than
hash value for index Ind2 defined as

CREATE INDEX Ind2 USING HASH ON Student(lname, fname).

Both indices will also differ from Ind3:

CREATE INDEX Ind3 USING HASH ON Student(lname).

As a consequence all three hash indices speed up different SELECT statements. In
particular any of the above indices can be used to speed up execution of

SELECT * FROM Student WHERE fname=’John’ AND lname=’Smith’,

while only Ind1 is useful for speeding up

SELECT * FROM Student WHERE fname=’John’

and none improves execution of

SELECT * FROM Student WHERE fname LIKE ’Jo%’

command.
Lets focus on the first SELECT command:

SELECT * FROM Student WHERE fname=’John’ AND lname=’Smith’.

When Ind1/Ind2 is used then DBMS simply calculates hash value of values given in

4.3. DATABASE OBJECTS 55

WHERE clause and use index to filter out rows of the table Student that have the same
hash value. When Ind3 is defined then DBMS uses it to filter out all these rows that
contain information about students with last name ’Smith’ and later goes through this
record set one by one to leave only these records that have fname=’John’. In case of
the second SELECT command

SELECT * FROM Student WHERE fname=’John’

only index Ind1 is useful. Using Ind2 or Ind3 in this case is pointless since they cannot
speed up execution of this query – with high probability hash value of ’John’ differ
from hash values of lname concatenated with fname and lname itself. Even if, by a
small chance, these hash values are equal then the resulting row is not the result set
we are looking for, because we are looking for all students with fname=’John’ and not
only those that have their last name ’John’. Executing the last command (that looks for
all student with first names that begin with ’Jo’) DBMS will not use any of the above
defined indices since ’Jo’ may be followed with a vast number of different characters
and computing all possible hash function is inefficient. Therefore, when this command
is executed DBMS simply scans the whole table to find rows that meet the criteria. �

It may follow from the example 4.6 that no indices improve searches over the string
data when wildcharacters (i.e. %,) are used, however, this is only true for indices that
are based on hash table. If B/B+-tree and fulltext indices are used then some queries
may be speed up with an index. For example if B-tree index is used then the B-tree
structure is constructed by analysing values stored in a column letter by letter. The
resulting B-tree arranges string values based on ASCII codes of successive letters of
each string. Therefore, such an index can speed up execution of

SELECT * FROM Studenci WHERE fname=’Jo%’

command by analysing only part of the B-tree to get all the rows that have first names
starting with ’Jo’. B-tree index cannot, however, improve execution of

SELECT * FROM Studenci WHERE fname=’%hn’

statement since % corresponds to any string of characters and there is no other way
then going through all the rows to find these that satisfy WHERE clause. Apart from
improving searches in tables of the database indices may be also used to ensure uni-
queness of data within the set of columns. Unique index defined on a set of columns
ensures that no two rows can have the same values stored in this columns. If unique
index is defined on a single table then it is very similar to unique property for that co-
lumn. However, unique property for a column does not create an index that improves
searches over that column while unique index does. Because unique index creates an
index therefore order of columns in its definition is important to set of SQL statements

56 CHAPTER 4. RELATIONAL DATABASE MANAGEMENT SYSTEMS

whose execution will be improved. While important to efficiency the order of columns
is irrelevant for preventing duplicates in a table.

The only one difficulty about using unique indices is with NULL values. As stated
in SQL standard (e.g. [2]) NULL values are incomparable, which means that we can
neither tell NULL=NULL nor NULL,NULL. If so then the obvious question is if unique
index (and similarly unique constraint) allows to store multiple NULLs in unique co-
lumn? Answer depends on the database management system and its implementation.
For example PostgreSQL, MySQL and DB2 allow multiple NULLs to be stored in a
column with unique index (unique constraint) defined, MsSQL does not allow multiple
NULLs, while Oracle allows if remaining columns store different values (whole rows
differ) and does not allow otherwise.

Most database management systems distinguish between so called clustered and
non-clustered indices. Clustered index arranges the physical data storage so that rows
of the table are sorted according to the index. In other words clustered index arranges
data both logically and physically. Physical ordering of the rows speeds up data access
and simplifies read/write operations to the memory/disk. On the other hand when data
stored in a table is modified then DBMS has to rearrange data storage witch may be
time consuming if large amount of data is modified. Since physical storage can be
organised only in one way thus each table may have at most one clustered index de-
fined. If more indices are required then they have to be non-clustered, which means
that they only introduce logical order of the rows. In comparison to clustered indices
non-clustered indices yield smaller overhead when data in the table is modified since
no physical data has to be rearranged. On the other hand when non-clustered index is
used then data related logically (e.g. all students whose name starts with ’Jo’) may be
distributed in memory/disk. Therefore, several memory/disk access may be required
and execution of SELECT statements with non-clustered index may be slower then
with clustered index.

There are no precise rules when to use clustered and non-clustered indices however
some recommendations can be given. In particular clustered indices should not be used
on columns that frequently and/or significantly change since then costly rearrangement
of storage may be required – use non-clustered indices instead. On the other it is advi-
sed to use clustered indices when data in a table is accessed sequentially. Such situation
occurs during JOIN operations, execution of range queries that use BETWEEN, >, ≥,
< or ≤ operators and queries with ORDER BY or GROUP BY clauses.

4.3.3 Stored procedures and functions
Stored procedures and functions are another types of objects that are available in most
contemporary database management systems and can be run by users and application

4.3. DATABASE OBJECTS 57

that access the database. Stored procedures differ from functions in that they do not
return values in place of their name and therefore cannot be used directly in an expres-
sion. To run a stored procedure DBMS require to run it with an EXEC/CALL SQL
statement. There are no other difference so the remaining part of this section applies
both to stored procedures and functions unless stated differently.

Stored procedure consists of set of SQL statements that are executed when stored
procedure is run. SQL statements that are part of a stored procedure can be almost
any valid commands of the SQL language with a few exceptions. In particular stored
procedures can modify data stored in the database, alter database structure (in MsSQL
stored procedure cannot create stored procedures, views and triggers) or change access
privileges as well as define local variables and execute other procedures and functions.
Stored procedure is atomic which means that either all SQL commands included in its
definition are executed correctly and committed to the database or execution is termi-
nated and all changes already made are rolled back.

Procedures can have arguments that can be either input or both input-output. Some
database management systems (e.g. MySQL) also allow arguments to be of output
type. Input type arguments correspond to arguments passed by value in software pro-
graming languages, while output and input-output types can be regarded as arguments
passed by reference. Changes made to both output and input-output type arguments are
durable after the procedure is terminated. The difference is that output type arguments
cannot be used to pass values into the procedure and when procedure starts value of
output type parameters is set to NULL (MySQL). Similar as in other programing lan-
guages arguments have their name and data type defined and may also have a default
values defined.

Stored procedures may be used in order to ensure business and/or integrity rules
that cannot be forced by other means, extend access control and improve efficiency of
the DBMS. Since procedures can return datasets therefore an example of application
is to conceal database structure and give the user access only to the selected or anony-
mised data that is returned by a stored procedure or function. DBMSs (e.g. MsSQL,
MySQL) also have additional mechanisms to control who is allowed to execute stored
procedure. There is a separate privilege (EXECUTE) in MsSQL that is required to exe-
cute the stored procedure. In MySQL when stored procedures is defined then one can
decide whether it will be executed within his security context – so called DEFINER –
or INVOKER. If DEFINER security context is used then every statement within this
procedure is executed with respect to privileges of the creator of the stored procedure,
irrespectively who runs it. With INVOKER security context statements from the pro-
cedure will be executed with respect to privileges of the user that runs the procedure.

Stored procedures are stored in the database management server in a pre-compiled
form that is suitable for faster execution when compared to executing the same com-

58 CHAPTER 4. RELATIONAL DATABASE MANAGEMENT SYSTEMS

mands send from the application one by one. If there are large number of statements
or operation to perform on the database are complex then using a stored procedure we
may benefit from lower communication overhead (only name of the procedure and its
arguments have to be send to the DBMS) and reusability – the same procedures does
not have be implemented separately in different programs using the same database. All
of the above mentioned benefits are not for free and using stored procedures involves
some shortcomings. In particular stored procedures and functions are computational
power and memory demanding thus affecting the overall performance of database ma-
nagement system. Computational power requirements are additionally intensified due
to the fact that procedures use SQL language. Since SQL is a declarative language thus
in many situations implementation of business rules may be more complex then when
the same is implemented in procedural language. For the same reason and due to lack
of good developing environments debugging stored procedures is inconvenient.

4.3.4 Triggers
Triggers can be interpreted as a special type of stored procedures that cannot be run
by a database user or application manually but are run automatically when pre-defined
event is detected. Traditionally such events that cause trigger to execute are related to
modification of data in the database table and view. Such triggers are called a DML
triggers. Additionally, some database management systems (e.g. MsSQL) also allow
to define triggers that execute automatically in response to modification of database ob-
jects (so called DDL triggers) and users login to the database (so called logon triggers).

There are three events that may cause DML triggers to execute: data insert, update
and delete that occur when single INSERT/UPDATE/DELETE command is executed.
When triggering event is detected then DBMS checks whether BEFORE trigger is de-
fined. If so, then execution of triggering event is postponed and SQL statements from
the BEFORE trigger are executed. When BEFORE trigger is finished then postpo-
ned event is executed again. After the executing event finishes DBMS checks whether
AFTER trigger is defined for that event. If so, then SQL statements included in AFTER
trigger are executed. This is the most typical implementation of DML triggers howe-
ver there are some difference between different database management systems. For
example, MsSQL does not have an AFTER trigger but uses an INSTEAD OF trigger.
If INSTEAD OF trigger is defined then triggering SQL command is not executed at
all and is replaced with commands included in this trigger. Similar solution is used in
DB2 but IBM allows to fire the trigger BEFORE, AFTER or INSTEAD OF triggering
command (so INSTEAD OF is an additional option to BEFORE and AFTER).

It follows that DML triggers may be run BEFORE or AFTER/INSTEAD OF data
modification, thus they are suitable for verification of data stored in the database and

4.3. DATABASE OBJECTS 59

ensuring integrity of information. To do so statements included in the trigger have to
be able to access data stored both in the table/view triggering command refers to and
in command itself.

Accessing data from the table/view is relatively easy since trigger can contain SQL
commands that simply select or modify this data, however, some restrictions may ap-
ply. In BEFORE INSERT/UPDATE trigger data selected from the table/view does not
contain new values inserted/modified by triggering command. In AFTER UPDATE-
/DELETE trigger the original data stored in the table prior to execution of triggering
command is no longer available – since command was already executed and data has
been modified/deleted. To access data included in a triggering SQL command triggers
use two variables NEW and OLD. Structure of these variables is the same as a structure
of a table row for which trigger was defined, but they contain data that is about to be
inserted into the table (NEW) or removed from the table (OLD). Similarly there are
some restrictions on using these variables. NEW is a read-write variable that can be
only accessed in triggers that are executed in response to INSERT and UPDATE ope-
ration – NEW contains all-NULL values in DELETE trigger since DELETE command
does not insert any data into the table. In contrast, OLD is a read-only variable that
contains all-NULL values in INSERT trigger.

Using NEW/OLD variables is the most common solution found in most database
management systems. Different solution is used in MsSQL where a table-like varia-
bles INSERTED and DELETED are used. The difference between NEW/OLD and
INSERTED/DELETED is that NEW/OLD store data included in a single SQL com-
mand while INSERTED/DELETED can store multiple rows if more then one row is
affected with triggering command. The difference becomes obvious if we consider the
following example

Example 4.7
Assume we have a table Employee that stores information about all employees of the
company (including salary) and has an UPDATE trigger defined. How many times will
be the trigger fired when following SQL command is executed

UPDATE Employee SET Salary=Salary+100 ?

In most database management systems (e.g. MySQL, Oracle) triggers are fired once
for each triggering event that is affected row of the table. Therefore, the above SQL
command will fire UPDATE trigger once for each row of the table with NEW/OLD
variables adjusted to each execution of the trigger. In MsSQL, however, trigger will be
fired only once and INSERTED/DELETED variables will contain all the data that are
about to be inserted to/deleted from the table. �

Enhanced variant of triggers is implemented in DB2 management systems since trig-

60 CHAPTER 4. RELATIONAL DATABASE MANAGEMENT SYSTEMS

gers can be either fired for a single row of a table being modified (as in MySQL) or
for the whole statement regardless of how many rows of the table are affected (as in
MsSQL). If trigger is fired for each modified row of the table then NEW/OLD varia-
bles represent single row of data being modified. When trigger is fired only once for a
statement then NEW/OLD are table-like variables that store all the data affected by the
triggering command.

Since triggers contain SQL commands thus they may modify data in database ta-
bles. Consequently, triggers can fire other triggers or the same trigger again. It may
happen that execution of nested triggers may cause infinite loop that would have cause
the database management system to fail. To prevent such situation DBMS define ma-
ximum level to which triggers can be nested. Every trigger fired increases current
nested level while termination of the trigger decreases it. If current nested level exceed
maximum nested level allowed then execution of trigger is terminated.

Chapter 5

XML extensions to RDBMS

eXtensible Markup Language (XML) has been widely adopted as a method to represent
data. Its main advantage is platform-independence and ease of exchanging information
among loosely coupled, disparate systems, for example in business-to-business and
workflow applications.

XML format is increasingly present in modern applications thus it was also neces-
sary to enable databases to store XML documents rather then transforming them to (or
generating from) the relational form. Storing native XML data in a relational database
provides benefits in the areas of data management and query processing. Additionally,
most DBMS already support XML documents and provide users with built-in functions
and algorithms that enable to manipulate these documents easily.

The following section focuses on Microsoft SQL database server and mechanisms
that are provided for managing XML documents in that server.

5.1 XML columns
MsSQL server has a dedicated xml data type that is used to store XML documents.
This data type is specialised and stores the XML document in a parsed tree structure in
BLOB field. This storage method preserves XML structure and includes information
about containment hierarchy, document order as well as elements and attributes values.
Specifically, the InfoSet content of the XML data is preserved with respect to insigni-
ficant white spaces, order of attributes, namespace prefixes, and XML declaration.

Prior to dedicated xml data type XML documents were stored in a CLOB fields
or where mapped to relational tables (called shredding). Quite obviously, both me-

61

62 CHAPTER 5. XML EXTENSIONS TO RDBMS

thods are impractical – CLOB make it difficult to parse, search and crop parts of XML
documents, while object-relational and relational-object mapping is time consuming,
impractical for recursive structures and ordered data (relational representation is unor-
dered while in XML documents order of elements is crucial). Storing XML documents
in a dedicated data type allows easier access to data, enables to create indices for ele-
ments of the XML document, and to use dedicated commands and functions.

According to Microsoft the way XML data should be stored depends on the type of
XML document as well as operations that will be applied to it. If XML is highly struc-
tured with known schema, the relational model is likely to work best for data storage.
On the other hand, if the structure is semi-structured or unstructured, or unknown, then
using xml data type is a good choice. It is also a good solution if storage has to be
platform-independent in order to ensure portability. Additionally, it is an appropriate
option if some of the following properties are satisfied:

• data is sparse or the structure of the data is unknown, or may change significantly
in the future,

• data represents containment hierarchy, instead of references among entities, and
may be recursive,

• order of data is inherent,

• data will be queried or updated partially based on its structure.

If none of these conditions are met then you should use the relational data model. For
example, if data is in XML format but application just uses the database to store and
retrieve it, then a varchar column is all that is require.

Storing the data in an xml column has additional benefits that include verification
whether the XML data is well formed or valid, and support for fine-grained query and
updates into the XML data. In general the most important reasons to use native xml
data type includes:

• requirement to share, query and modify XML data in an efficient and transacted
way on database level with fine-grained data access,

• guarantee that the data is well formed and also optionally validate the data against
the XML schemas,

• requirement for efficient and scalable searching over the XML data that can be
achieved with dedicated XML indices,

• requirement for SOAP, ADO.NET, and OLE DB access to XML data.

5.1. XML COLUMNS 63

The xml column implements the ISO standard XML data type, thus it can store well-
formed XML version 1.0 documents as well as fragments of XML content with an
arbitrary number of top-level elements.

Typed and untyped XML
Each column of xml data type can be optionally associated with a collection of XML
schemas which in that case is called typed. Association of xml column with XML
schema provides validation constraints and data type information. Validation constra-
ins are similar to table and cell-level constraints that can be defined in relational tables
and are checked whenever data in the XML document is modified. Database server
rollbacks changes if these constraints are not met. Schemas can also provide informa-
tion about data types of attributes and elements in the xml column. This enables more
precise operational semantics when compared to untyped xml. For example DBMS
can verify if arguments of arithmetic operations are decimals or strings. Because of
this, storage of typed xml columns can be more compact then untyped.

There are several situations that suggest whether typed or untyped xml column
should be used. In particular untyped column should be used when:

• schema for the XML document is unknown,

• schemas are known, but for some reasons users don’t want the database server
to validate the data. For example, validation is done on application level and/or
database has to store parts of the XML documents that may not be valid.

On the other hand typed columns should be used when schemas are known and:

• database server is required to validate your XML documents according to the
schema,

• users want to query XML documents with high efficiency.

Typed XML columns can store XML documents or content and additionally have to
provide the collection of XML schemas. The difference between XML documents
and content is that documents can have exactly one top-level element whereas content
allows the column to store multiple top-level element in a single XML instance.

Listing 5.1 presents an example of schema definition in MsSQL database mana-
gement server. Listing 5.2 presents a definition of very simple table with typed xml
column.

64 CHAPTER 5. XML EXTENSIONS TO RDBMS

Listing 5.1: Example of XML Schema definition� �
CREATE XML SCHEMA COLLECTION XMLStudent
AS N’<?xml v e r s i o n =”1 .0” e n c o d i n g =”UTF−16”?>
<xsd : schema e l e m e n t F o r m D e f a u l t =” q u a l i f i e d ”

xmlns : xsd =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema”>
<xsd : e l e m e n t name=” S t u d e n t ”>
<xsd : complexType><xsd : complexConten t ><xsd : r e s t r i c t i o n

bas e =” xsd : anyType”>
<xsd : sequence >
<xsd : e l e m e n t name=”FName” t y p e =” xsd : s t r i n g ” />

<xsd : e l e m e n t name=”LName” t y p e =” xsd : s t r i n g ” />

<xsd : e l e m e n t name=” S t u d e n t I D ” t y p e =” xsd : i n t e g e r ” />

<xsd : e l e m e n t name=” Address ” maxOccurs=” unbounded ”>
<xsd : complexType><xsd : complexConten t ><xsd : r e s t r i c t i o n

b ase =” xsd : anyType”>
<xsd : sequence >
<xsd : e l e m e n t name=”Type ” t y p e =” xsd : s t r i n g ” />

<xsd : e l e m e n t name=” Address1 ” t y p e =” xsd : s t r i n g ” />

<xsd : e l e m e n t name=” Address2 ” t y p e =” xsd : s t r i n g ” />

</ xsd : sequence >
</ xsd : r e s t r i c t i o n ></ xsd : complexConten t ></ xsd : complexType>

</ xsd : e lement >
</ xsd : sequence >
</ xsd : r e s t r i c t i o n ></ xsd : complexConten t ></ xsd : complexType>
</ xsd : e lement >
</ xsd : schema> ’�

5.2 XPath, XQuery and extensions to SQL

Database management systems that support xml data type also support an extended
set of SQL command as well as an XPath and XQuery language. XPath [13] and
XQuery [14] are standardized by W3C consortium and are dedicated to manipulate
XML documents and their content. Additionally, most DBMSs support extension to
the XML language that allows to modify structure of the XML documents – so called
XML DML language.

5.2. XPATH, XQUERY AND EXTENSIONS TO SQL 65

Listing 5.2: Example of CREATE TABLE command with typed xml column� �
CREATE TABLE S t u d e n t s (

PK STRUDENT i n t i d e n t i t y (1 , 1) ,
FName v a r c h a r (5 0) DEFAULT ’ ’ ,
LName v a r c h a r (5 0) DEFAULT ’ ’ ,
Data xml ([XMLStudent])

)�
5.2.1 Extensions to SQL language
Extensions to standard SQL language enable to generate an XML document from the
relational data. In MsSQL server this transformation can be done in the following
ways:

• casting sting types to xml data type,

• using SELECT command with optional FOR XML clause,

• using constant assignments,

• using bulk loads.

The first method allows to convert a string containing an XML document into an xml
data type object, that can be stored into the xml column. The string to be converted
has to include a valid XML structure, in particular all XML tags have to closed. The
result of the function is an untyped XML document. Casting from string to xml is a
default operation when data is inserted or modified in xml column. Listing 5.3 presents
an example of such situation.

Optional clause FOR XML in SELECT statement tells the MsSQL server to convert
the result set of SELECT command into an XML document. The general structure of
the command is as follows:

SELECT list of columns FROM table name ... FOR XML mode,

where mode can have one of the four values:

• AUTO,

• PATH,

66 CHAPTER 5. XML EXTENSIONS TO RDBMS

Listing 5.3: Example of INSERT SQL command with XML data� �
INSERT INTO S t u d e n t s (FName , LName , Data) VALUES

(’ John ’ , ’ Smith ’ ,
’<S t u d e n t ><FName>John < / Fname><LName>Smith < /LName>
<Address><Type>Home< / Type><Address1>Wroclaw < / Address1><Address2 />
</ Address>
</ S t u d e n t > ’)�

Listing 5.4: Result of a SQL command with FOR XML AUTO clause� �
<S t u d e n t s FName=” John ” LName=” Smith ” />

<S t u d e n t s FName=” A l i c e ” LName=” Knigh t ” />�
• RAW,

• EXPLICIT.

In AUTO mode DBMS generates an XML document in which each row of the result
set is a single XML tag <table name> with attributes that take names from names of
the returned columns and values from each row of the result set. For example SQL
command:

SELECT FName, LName FROM Students FOR XML AUTO,

returns an XML content presented on listing 5.4.
Similar command with PATH mode will return each row as a single XML element
<row> with children elements that correspond to each column of the result set (listing
5.5). Remaining modes enable for further structure adjustment of the resulting XML
documents – details can be found in [11].

5.2.2 XPath
XPath [13] is a language that is used to navigate through elements and attributes of
XML document. It is also a basis of XQuery language. XPath was designed specifi-
cally to reflect the hierarchical structure of the XML documents, to simplify navigation

5.2. XPATH, XQUERY AND EXTENSIONS TO SQL 67

Listing 5.5: Result of a SQL command with FOR XML PATH clause� �
<row>
<FName>John < /FName>
<LName>Smith / LName>

</ row>
<row>
<FName>Al ice < /FName>
<LName>Knigh t / LName>

</ row>�
between nodes of the document and compute values from its content. To navigate thro-
ugh XML document XPath uses paths and axis that point to specific node or set of
nodes. Paths can be either absolute or relative. Absolute paths start from the root of
the XML document and begin with a single slash / sign. On the other hand relative
path begins with a double slash // sign and select all nodes in the XML document. For
example, the difference between the following two XPath expressions

/Students/Address/Address1
//Address1

is that the first expression selects Address1 element that is located in Address and Stu-
dent element. On the other hand, the second expression selects all Address1 elements
despite their exact location in the XML document. It is worth to remember that XPath
expressions return the node of the XML document together with all the subnodes.

In order to select sequence of XML elements relative to the current (also called con-
text) node the XPath defines axes. Axes (fig. 5.1) allow to traverse the XML structure
in forward (towards the end of the XML document) and reverse (towards the beginning
of the document) directions:

• forward axes:

– child – contains the direct children of the context node,

– descendant – is a transitive closure of the child axis. It contains all the
descendants of the context node, i.e. child nodes of the context node, child
nodes of all childes and so on.

– following-sibling – contains the context node’s following siblings, i.e. those
children of the context node’s parent that occur after the context node in the

68 CHAPTER 5. XML EXTENSIONS TO RDBMS

Students

Student2Student1

FName

LastName

Address

Type Address2Address1

Address

Type Address2Address1

FName

LastName

Child

Descendants

Students

Student2Student1

FName

LastName

Address

Type Address2Address1

Address

Type Address2Address1

FName

LastName

Following-sibling

Following

Figure 5.1: Some axes of the XML document

document order,

– following – contains all nodes that are descendants of the context’s node
parent, are not descendants of the context node itself, and occur after the
context node in the document order,

– descendant-or-self – contains the context node and its descendants,

– self – contains just the context node itself,

– attribute – contains the attributes of the context node,

• reverse axes:

– parent – contains the parent of the context node, or an empty sequence if
the context node has no parent,

– ancestor – is a transitive closure of the parent axis. It contains all the an-
cestors of the context node, i.e. the parent, the parent of the parent, and so
on.

5.2. XPATH, XQUERY AND EXTENSIONS TO SQL 69

– preceding-sibling – contains the context node’s preceding siblings, i.e. those
children of the context node’s parent that occur before the context node in
the document order,

– preceding – contains all nodes that are descendants of the root of the tree
in which the context node is found, are not ancestors of the context node,
and occur before the context node in the document,

– ancestor-or-self – contains the context node and its ancestors. It follows
that root node is always included in the ancestor-or-self axis of any node.

XPath also defines node tests which are conditions that must be true for each node
selected by a step of the XPath expression. The condition may be based on the kind of
the node (element, attribute, text, document, comment, or processing instruction), the
name of the node, or (in the case of element, attribute, and document nodes), the type
annotation of the node. There are several tests that might be used in path expressions,
here only the most commonly used are listed:

• node() – matches any node,

• text() – matches any text node (i.e. node that contains text),

• element() – matches any element node.

Path expressions can also contain predicates. Predicates are always enclosed in square
brackets and are used to filter sequence of XML elements. Those for which the pre-
dicate value is true are retained, and those for which the predicate value is false are
discarded. Predicate can be used to select particular XML element from the sequence
of elements or elements with particular value of the attribute. For example:

/Students/Address[2]
/Students/Address[Type=”Home”]

returns second address of each student and address that has Type attribute equal to
”Home” respectively. Predicates can be verified against any element of the path expres-
sion, thus:

/Students[FName=”John”][LName=”Smith”]/Address[Type=”Home”]/Address2

will return the second part of John Smith’s home address.
It should be not surprising that predicates may consist of comparison operands that

can be divided into following groups:

• value comparisons,

70 CHAPTER 5. XML EXTENSIONS TO RDBMS

• general comparisons,

• node comparisons.

Value comparisons – eq (equal), ne (not equal), lt (lower then), le (lower equal), gt
(greater then) and ge (greater equal) – are used for comparing single values. When
compared operands are evaluated and converted to their least common type using type
promotion which is analogous to types precedence in RDBMS (cf. tab. 4.1 in chapter
4.2.1). General comparison operators include =, ! =, <, <=, > and >=. These opera-
tors are existentially quantified comparisons that may be applied to operand sequences
of any length. The result of a general comparison that does not raise an error is al-
ways true or false. When evaluating a general comparison in which either operand is
a sequence of items, an implementation may return true as soon as it finds an item in
the first operand and an item in the second operand that have the required magnitude
relationship. Node comparisons are used to compare two nodes, by their identity or by
their document order. An example of such operand are:

• is – returns true only if the left and right operands evaluate to exactly the same
single node,

• << – returns true only if the node identified by the left side occurs before the
node identified by the right side in document order,

• >> – is the opposite to the previous one.

Apart from the above basic capabilities XPath also implements for expressions (that
can iterate over sequence of nodes), conditional expression (if ... then ... else),
quantified expressions (some|every ... in ...), cast function, and a number of
predefined functions (e.g. first(), last(), count(), position(), etc.).

5.2.3 XQuery

XQuery [14] is a query language dedicated to operate on XML data and is the same
for XML what SQL language to relational databases. Similar to SQL XQuery is a
declarative language. XQuery relies on XPath (cf. chapter 5.2.2) and XML schema
data types. XPath expressions are used to navigate through the XML documents in
order to access sequence of nodes. Moreover, any expression that is syntactically valid
and executes successfully in both XPath and XQuery returns the same result in both
languages. Since these languages are so closely related, their grammars and language
descriptions are generated from a common source to ensure consistency. Sequence

5.2. XPATH, XQUERY AND EXTENSIONS TO SQL 71

of nodes returned by path expression is an input to XQuery command that outputs a
sequence of XML nodes or atomic values.

The basic building block of XQuery is the expression, that is a string of charac-
ters, and may be constructed from keywords, symbols, and operands. XQuery al-
lows expressions to be nested with full generality. XQuery provides a feature called a
FLWOR expression (pronounced ”flower”) that supports iteration and binding of va-
riables to intermediate results. This kind of expression is often useful for computing
joins between two or more documents and for restructuring data. The name FLWOR
comes from following keywords:

• for,

• let,

• where,

• order by,

• return.

The for and let clauses generate an ordered sequence of tuples each containing XML
node, or sequence of XML nodes. The optional where clause serves to filter the tuple
stream, retaining some of them and discarding others. The optional order by clause can
be used to reorder the stream. The return clause constructs the result of the FLWOR
expression. The return clause is evaluated once for every tuple in the tuple stream, after
filtering by the where clause, using the variable bindings in the respective tuples. The
result of the FLWOR expression is an ordered sequence containing the results of these
evaluations, concatenated as if by the comma operator.

5.2.4 XPath and XQuery in Microsoft SQL Server

This section presents some basic operations on XML documents that can be used in
MsSQL server. All of the remaining examples will be based on one XML Schema
presented on listing 5.6. The schema defines the XML structure with Student element
as root. Student contains obligatory integer attribute StudentID and an optional attri-
bute element Nationality. It also consist of sequence of elements FName, LName and
Address. Since these elements are defined as a sequence, therefore, in XML docu-
ments they will have to appear in the same order. Additionally, first two elements have
to appear exactly once while Address element can appear 0 or more times within a sin-
gle Student element. Address is of complex type and contains two string elements –

72 CHAPTER 5. XML EXTENSIONS TO RDBMS

Listing 5.6: Definition of XML Schema� �
<?xml v e r s i o n =” 1 . 0 ” e n c o d i n g=”UTF−16”?>
<xsd : schema e l e m e n t F o r m D e f a u l t=” q u a l i f i e d ”

xmlns : xsd=” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema”>
<xsd : e l e m e n t name=” S t u d e n t ”>
<xsd : complexType>
<xsd : sequence >

<xsd : e l e m e n t name=”FName” t y p e=” xsd : s t r i n g ” />
<xsd : e l e m e n t name=”LName” t y p e=” xsd : s t r i n g ” />
<xsd : e l e m e n t name=” Address ” minOccurs=” 0 ” maxOccurs=” unbounded ” >

<xsd : complexType>
<xsd : sequence >

<xsd : e l e m e n t name=” Address1 ” t y p e=” xsd : s t r i n g ” />
<xsd : e l e m e n t name=” Address2 ” t y p e=” xsd : s t r i n g ” />

</ xsd : sequence >
<xsd : a t t r i b u t e name=” Type ” t y p e=” xsd : s t r i n g ” />

</ xsd : complexType>
</ xsd : e lement >

</ xsd : sequence >
<xsd : a t t r i b u t e name=” S t u d e n t I D ” t y p e=” xsd : i n t e g e r ” />
<xsd : a t t r i b u t e name=” N a t i o n a l i t y ” t y p e=” xsd : s t r i n g ” use=” o p t i o n a l ” />
</ xsd : complexType>

</ xsd : e lement >
</ xsd : schema>�
Address1 and Address2. It also contains an optional attribute Type. Listing 5.7 presents
an example of valid XML document with respect to the schema.

In order to insert data into an xml column (called XMLData) a standard INSERT
command can be used with XML data given as a string of characters. Listing 5.8
presents an example of such an INSERT command. It is worth to notice that the XML
data included in the SQL command has two root elements. Such data is a valid XML
– i.e. satisfies XML schema defined, however, it is not well-formed. Presented SQL
command will raise an error if the xml column was defined with DOCUMENT clause.
However, it was defined with CONTENT clause then its execution is successful.
Data stored in an XML column can be accessed and modified using the following
methods:

• selecting the whole xml column in a standard SQL command,

• using dedicated functions to access elements of the XML column.

5.2. XPATH, XQUERY AND EXTENSIONS TO SQL 73

Listing 5.7: Example of valid XML document� �
<S t u d e n t S t u d e n t I D=” 192000 ” N a t i o n a l i t y =”PL”>
<FName>Sandra < /FName>
<LName>Knight < /LName>
<Address Type=” O f f i c e ”>
<Address1 >1600 P e n n s y l v a n i a Ave< / Address1>
<Address2>Washington , D. C. < / Address2>

</ Address>
<Address Type=”Home”>
<Address1 >1 Neve r l and Rd< / Address1>
<Address2>Los Angeles < / Address2>

</ Address>
</ S t u d e n t >�
MsSQL offers the following functions that allow to manipulate the XML content:

• query(),

• value(),

• exist(),

• nodes(),

• modify().

Each function takes an XQuery command as input and optional additional parameters
and outputs a result of execution of this command, possibly casted to the standard SQL
data type.

Function query() specifies an XQuery against an instance of the xml data type and
returns an untyped XML data. For example:

SELECT Data.query(’/Student/Address[@Type=”Home”]’) AS XMLData
FROM Students

returns all rows from the Students table (fig. 5.2). Each row contains one column
that stores an XML data composed of all Address elements from the XML data stored
in that row, which have the attribute Type equal to ”Home”. The function returns all
Address elements that satisfy this condition together with all of its descendants. If there

74 CHAPTER 5. XML EXTENSIONS TO RDBMS

Listing 5.8: Example of INSERT command with XML data� �
INSERT INTO S t u d e n t s (Data) VALUES

(N’<S t u d e n t S t u d e n t I D =”192000”>
<FName>Sandra < /FName><LName>Knight < /LName>
<Address Type=” O f f i c e ”>

<Address1 >1600 P e n n s y l v a n i a Ave< / Address1>
<Address2>Washington , D. C. < / Address2>

</ Address>
<Address Type=”Home”>

<Address1 >1 Neve r l and Rd< / Address1>
<Address2>Los Angeles < / Address2>

</ Address>
</ S t u d e n t >
<S t u d e n t S t u d e n t I D =”171100”>
<FName>Br ice < /FName>
<LName>Creek < /LName>

</ S t u d e n t > ’)�
are a few Address elements of that type in a single row of the table then the resulting
row includes all these elements. If xml column doesn’t contain any XML element that
satisfy XQuery condition then the corresponding row in the output is empty.

Figure 5.2 shows empty rows in the result set. These rows correspond to table rows
that does not have an Address element with attribute Type equal ”Home”. Consequently
the XQuery command:

/Student/Address[@Type=”Home”]

returns no XML elements. In order to eliminate such rows from the SQL result set
method exist() and WHERE clause can be used. Method exist() returns 1 for the
XQuery expression that returns a nonempty result and 0 otherwise. Previous SQL
command can therefor be modified to:

SELECT Data.query(’/Student/Address[@Type=”Home”]’) AS XMLData
FROM Students
WHERE Data.exist(’/Student/Address[@Type=”Home”]’)=1,

which returns only last two rows of the previous result set (cf. fig. 5.2).
Method value() performs an XQuery against content of the XML column and

returns a value of SQL type. This method takes two input arguments – first is an

5.2. XPATH, XQUERY AND EXTENSIONS TO SQL 75

Figure 5.2: Result of simple SQL command with query() method. Note that the last
row contains two root elements, while first rows are empty since no XML elements
matched the predicate used.

Figure 5.3: Result of simple SQL command with value() method.

XQuery expression, second is a string that represents name of a valid SQL data type,
e.g. ’varchar(30)’. In contrast to query() this method requires an XQuery expression
that returns a singleton (one element set) or empty set. It returns a scalar value and
allows to extract a value from an XML instance stored in an xml type column. In this
way, it is possible to specify SELECT queries that combine or compare XML data with
data in non-XML columns. For example:

SELECT Data.value(’(/Student/Address[@Type=”Home”]/Address1)[1]’, ’varchar(50)’)
AS Address1,
Data.value(’(/Student/Address[@Type=”Home”]/Address2)[1]’, ’varchar(50)’)
AS Address2
FROM Students
WHERE Data.exist(’/Student/Address[@Type=”Home”]’)=1,

will return two elements of address in separate columns. Note that there is an index
used in both query function (i.e. [1]) that ensures the XQuery will return at most
one element from the XML data. Figure 5.3 presents result of execution of the above
SQL command. Observe, that the last row contains only one set of address information
despite the fact that there where two addresses of type ”Home” stored in the xml column
(cf. fig. 5.2). It is so, since we used index in XQuery expression. We could also use
index [2] in order to get information about second home address.

76 CHAPTER 5. XML EXTENSIONS TO RDBMS

An obvious question arise how can we know how many particular XML elements
(e.g. addresses of type ”Home”) there are in an XML data structure stored in a column?
This information can be returned using a count() function that is defined in an XQuery
language. For example:

SELECT Data.value(’count(/Student/Address[@Type=”Home”])[1]’, ’int’) AS Cnt
FROM Students,

returns number of home addresses stored in xml column in each row of the table.
Method value() can be also used to search for elements in XML column that

satisfy a particular condition when compared with SQL column. For example, as-
sume that table students contains relational column ’FirstAddress’. In order to find the
Address2 for which Address1=FirstAddress the following command can be used:

SELECT Data.query(’(/Student/Address[@Type=”Home”]/Address2)[1]’) AS Address2
FROM Students
WHERE Data.value(’(/Student/Address[@Type=”Home”]/Address1)[1]’, ’varchar(50)’)
=FirstAddress.

Nevertheless the above command executes correctly it is recommended, due to effi-
ciency reasons, to use exist() method with sql:column() method:

SELECT Data.query(’(/Student/Address[@Type=”Home”]/Address2)[1]’) AS Address2
FROM Students
WHERE Data.exist(’/Student/Address[@Type=”Home”]/Address1
= sql:column(”FirstAddress”)’)

Method modify() modifies the contents of an XML column. This method takes
an XML DML [12] statement to insert, update, or delete nodes from the XML data.
The modify() method of the xml data type can only be used in the SET clause of
an UPDATE statement. There are three keywords that can be used in XML DML
language:

• insert,

• delete,

• replace value of.

Keyword replace value of allows to change value of a particular element in the XML
document. For example:

UPDATE Students SET Data.modify(’replace value of (/Student/FName)[1] with ”Adam”’)
WHERE Data.exist(’/Student[FName=”John”]’)=1,

5.2. XPATH, XQUERY AND EXTENSIONS TO SQL 77

changes first name of a student John into Adam.
Keyword delete deletes an element from the XML document. The element to be

deleted is identified with XQuery expression that may point either single element or
set of elements to be deleted. Also all the nodes or values that are contained within the
selected nodes, are deleted. If the expression returns an empty sequence, no deletion
occurs and no errors are returned. For example:

UPDATE Students SET Data.modify(’delete /Student/Address’)
WHERE Data.exist(’/Student[@StudentID=171100]’)=1,

deletes all the addresses from and XML documents from all rows of the table in
which XML document contains information about student with StudentID=171100.
Note that if an XML document contains several students and at least one of them has
StudentID=171100 then addresses of all students in that document will be deleted.

Keyword insert allows to insert one or more elements identified by an XML con-
tent or XQuery expressions as child nodes or siblings of the node identified by second
XQuery expression. Similar as in replace value of the second XQuery expression
has to identify a singleton. The expression that determines things to be inserted can
result in a node, and also a text node, or in an ordered sequence of nodes. If the
expression results in a value or a sequence of values, the values are inserted as a single
text node with a space separating each value in the sequence. Insert keyword allows
to specify where new nodes should be entered, this parameter can have the following
values:

• into – nodes will be inserted as a direct descendants (child nodes) of the node
identified by the second expression. If the node determined by second expression
has any child nodes then it is required to use additional as first or as last
argument to specify where the new node should be added.

• after – nodes will be inserted as siblings directly after the node identified by
second expression,

• before – nodes will be inserted as siblings directly before the node identified by
second expression.

For example:

UPDATE Students SET Data.modify(’insert
<Address><Address1> Janiszewskiego 11/17 </Address1><Address2 /></Address>
as last into (/Student[@StudentID=171100])[1]’)
WHERE Data.exist(’/Student[@StudentID=171100]’)=1,

inserts an address for student with StudentID=171100. Note, that Address2 element

78 CHAPTER 5. XML EXTENSIONS TO RDBMS

is empty but it cannot be omitted since then the inserted XML content would not meet
the requirements imposed by XML schema (cf. listing 5.6) and error message would
be returned.

Chapter 6

Security of databases

Security in database management systems refers to procedures and algorithms that ena-
ble to protect stored data from being accessed by unauthorised person. To ensure au-
thorised access to data DBMS have to implement three basic mechanisms:

• user identification and authentication,

• user authorisation, and

• data encryption.

Identification is a procedure that tells user identity to the system. Identification can
be simply achieved with unambiguous login assigned to each user and entered when
logging in. It enables user to introduce him/herself to the system, however, it does not
ensure that the user is who he claims to be. Verification of user identity is achieved
through authentication procedure. In such procedure system ask users to give some
credentials that are known both to the system and the identified user.

Authorisation refers to procedure that verifies whether authenticated (or at least
identified) user is allowed to take requested actions so it verifies user privileges.

Example 6.1
Money withdraw at automatic teller machines (ATMs) is subject to both identification,
authentication and authorisation. Bank card with magnetic card or microprocessor
identifies owner of the bank account, personal identification number (PIN) authentica-
tes the card holder to the bank while authorisation verifies whether money withdraw
should be allowed or not (e.g. due to withdraw limits or lack of money). �

79

80 CHAPTER 6. SECURITY OF DATABASES

6.1 Access control
Access control is about managing and verifying privileges of users that request DBMS
to perform some actions. While access control seems to be a very straightforward
concept there are numerous challenges when it comes to implementation.

Theory of access control strategies differentiates between users, subject and objects.
Group of users consist of people and computer software that access the system and can
be identified as an individual entity. Individual user can login into the system a number
of times as well as he may run a number of applications. Each instance of user may have
different privileges thus becoming different subjects. Objects (or securables) are any
elements in the system that may be accessed by subjects, while privileges determine
operations and actions that may (or may not) be taken. Since objects in DBMS form
a hierarchical structure, therefore, in many cases privileges assigned to superior object
are inherited by subordinate objects. For example SELECT privilege granted to table
implicitly grants SELECT privileges to all columns of that table.

Existing database management systems implement either discretionary access con-
trol, mandatory access control or both.

6.1.1 Privileges in database management systems
Contemporary database management systems share similar access privileges that may
be granted to subjects. All privileges can be divided into three sets:

• data manipulation privileges,

• data control and procedure/function related privileges,

• server-level privileges.

Data manipulation privileges are the best known and the most often used as they di-
rectly determine which data can or cannot be accessed by subjects. Select, update,
insert and delete rights determine whether it is possible to execute SELECT, UPDATE,
INSERT and DELETE SQL statements respectively. In most DBMS these privileges
enable to grant or deny access to whole tables and views. Some DBMS (e.g. MsSQL)
allow to control data manipulation privileges in greater detail enabling to grant access
only to selected columns of the table/view. Column level access control applies only
to SELECT and UPDATE commands. INSERT and DELETE commands affect whole
row of the table thus they require that user has corresponding privileges to the whole
table (and thus to all the columns).

Data control privileges determine what kind of DDL statements can be executed
by user. This group of privileges may differ in number and functionality significantly

6.1. ACCESS CONTROL 81

Table 6.1: Major privileges in MsSQL 2008 DBMS and kinds of objects to which they
apply

Privilege Applies to
SELECT Tables, views, table’s/view’s columns
UPDATE Tables, views, and their columns
INSERT Tables, views
DELETE Tables, views
CONTROL Stored procedures, functions, tables, views
REFERENCES Tables, views, and their columns
EXECUTE Stored procedures, scalar and aggregate functions
ALTER Stored procedures, functions, tables, views
VIEW DEFINITION Stored procedures, functions, tables, views

between different database management servers. In MsSQL 2008 [3] server there are
five main permissions:

• CONTROL – refers to ownership-like capabilities. The grantee of the CON-
TROL permission has all defined permissions on the object as well as on all
subordinated objects. For example, CONTROL on a database object implies all
privileges on the database, on all schemas in this database, and on all objects
within all schemas within the database.

• ALTER – determines whether subject is allowed to change properties of object,
except for ownership. Similar to CONTROL privilege, if ALTER is granted
to the object then user is allowed to alter, create and drop any object within
that object. For example, ALTER privilege on a database includes the ability to
create, alter and drop objects from the database.

• CREATE – confers the ability to create objects within a database.

• VIEW DEFINITION – enables the user to access metadata (e.g. definition) of
the object.

• REFERENCES – this privilege is required to define foreign keys and views with
SCHEMA BINDING clause.

Table 6.1 presents major privileges in MsSQL 2008 DBMS and kinds of objects to
which they apply. Most DBMS use privileges that allow user to perform some opera-
tion – so called positive privileges. In such a situation user that haven’t been granted
a particular privilege (e.g. SELECT) is not allowed to use that privilege (e.g. display

82 CHAPTER 6. SECURITY OF DATABASES

rows of the table). When granted the privilege the corresponding SQL operations can
be executed and the privilege can be revoked to prevent user from future execution of
these operations. Granting and revoking privileges is controlled by GRANT and RE-
VOKE commands respectively that can be executed by entitled user (this depends on
the access control model used, see successive sections).

Some DBMS (e.g. MsSQL) enable do define both positive and negative privileges
that allow to prevent user to execute some operations. Similarly to positive privileges,
negative privileges can be also revoked. In such situation a grantee that was revoked a
negative privilege is no longer denied to use it. However, it does not tell whether or not
grantee is allowed to use this privilege, since to do so it maybe required to have this pri-
vilege granted. If DBMS supports negative privileges then users in such a system may
be granted, denied or have no privileges to an object. When either first or the second
situation is the case the user is allowed or denied to use the privilege on that object. In
the third case effective privilege depends on other criteria such as privileges owned by
the group user is assigned to, or privileges user inherits from superior objects. Negative
permissions make the access control more flexible, however, also require methods to
cope with situations when a user is both granted and denied privilege at the same time.

6.1.2 Discretionary access control

In discretionary access control (DAC) system does not distinguish between users and
subjects simply matching single user to a single subject. As a consequence when log-
ged user runs an application it inherits privileges of that user. Therefore, users and
subjects are synonyms when talking about the DAC model (which is not the case in
mandatory access control). This simplifies privilege management while having serious
consequences to the security level attained and thus application of database manage-
ment systems.

Another simplification arise from the fact that managing access privileges is discre-
tionary with respect to object owner. It means, that owner of an object (e.g. database,
table, stored procedure, etc.) decides what are the privileges other subjects have to this
object. Owner of an object can grant privileges to that object to any user, as well as
can grant some users with the ability to grant privilege on their own. This is achieved
through granting the privilege with GRANT OPTION clause. Above mechanisms sim-
plify management of access control rights but also require all users of the DBMS to
take care of privileges owned by other to objects they created. In large DBMS this may
cause a lot of difficulties. In particular it has to be determined what are the privileges
owned by users to newly created objects if no permissions where granted by the object
creator. Such situation is called incompleteness and can be solved in three ways:

6.1. ACCESS CONTROL 83

• users are denied any privilege on the new created objects,

• users are granted all privileges, or

• users inherit privileges from the object superior to the new created one. For
example, if new table is created then users of the database inherit all privilege
they have on the database to the table.

Management of privilege in large, multi-user DBMS may be impractical if each
user is granted separate privileges. To simplify management contemporary database
systems allow to create groups (also called roles) of users that share the same privileges
to some objects. Similar to database objects, user groups can have a hierarchical struc-
ture thus groups can consist of both users and other groups. This simplifies privilege
management but at the same time requires to decide what are the effective privileges
of the particular user if he is a member of some group (or groups) with different set of
privileges assigned to the user and groups. This issue becomes even more important
when DBMS allows for negative privileges and user can be granted a privilege that is
denied on the group user belongs to – so called inconsistency. If such situation occurs
then database system has to decide whether grant or deny privileges are superior. Such
conflict can be solved in four ways:

• more specific privilege is superior,

• less specific privilege is superior,

• grant privilege is superior,

• deny privilege is superior.

If first or second rule is used then effective privilege results from the database object
hierarchy. For example, if more specific privilege are superior and user is granted a
SELECT privilege on a table and denied SELECT privilege on the database then he is
allowed to select data from the table. On the other hand, if less specific privileges are
superior, then executing the select command will rise an access denied error. Rema-
ining rules set priority to either grant or deny privileges respectively. If such solution
is used then user is granted (denied) a particular privilege if this privilege is granted
(denied) to that user or any group user belongs to, irrespectively of object hierarchy.

Example 6.2
Table 6.2 represent privileges of four users to the same table and its columns, where ’+’
and ’-’ denote positive and negative privilege respectively. For which user executing
the SQL command:

84 CHAPTER 6. SECURITY OF DATABASES

SELECT * FROM Table1

will succeed/fail? �

Table 6.2: User privileges on table Table1 and its columns (example 6.2)
Privileges Objects
Users Table1 Table1.fname Table1.lname
Alice +SELECT
Bob +SELECT -SELECT +SELECT
John -SELECT +SELECT
Marry -SELECT +SELECT +SELECT

Table 6.3: Result of execution of SELECT command on table Table1 by users with
different privileges (example 6.2)

Method of solving Alice Bob John Marry
inconsistency
more specific superior OK FAIL FAIL OK
less specific superior OK OK FAIL FAIL
positive superior OK OK FAIL OK
negative superior OK FAIL FAIL FAIL

In MsSQL database management server, which supports both positive and negative
privileges, it is assumed that deny privilege is superior to grant, except for the column-
level SELECT privilege. If user is denied SELECT on the table, but granted SELECT
on some columns of that table, then user is allowed to select data from that columns
only.

Revoking privileges in DAC model is up to the owner of the object as well as
users that were granted privileges with GRANT OPTION clause. If no privileges were
granted with GRANT OPTION clause then revoking is a straightforward assuming
that owner of an object remembers who was granted the privilege. Situation changes
when privileges were granted with GRANT OPTION which enables grantees to hand
privileges over to other users. In such case revoking privilege from the grantee should
also revoke this privileges from users that were handed this privilege over.

Example 6.3
Alice is an owner of table T1. She grants all privilege to T1 with GRANT OPTION
to Bob, and SELECT privilege with GRANT OPTION to Eve. Later on, Mathew is
granted all privileges to T1 by Bob, and a SELECT privilege from Eve. Consequently,

6.1. ACCESS CONTROL 85

Mathew was handed over all privileges on T1 (see fig.6.1 upper). Now assume that
Alice does no longer trust Bob and revokes his privileges on table T1. What should be
the privileges of Mathew if Bob has no privileges on T1 any more?

Observe, that if Mathew is left with all privileges on T1 then there is no way these
privileges can be revoked by Bob since to grant/revoke privileges user has to hold that
privilege itself (fig. 6.1 lower left). Therefore, it is reasonably to revoke Mathew’s pri-
vileges simultaneously with revocation of Bob’s privileges. Precisely, Mathew should
lose all the privileges he was granted by Bob that were not granted to him by other
users. It follows that after revoking Bob’s privileges on T1 Mathew should be left only
with SELECT privilege on T1 since this was granted by Eve (fig. 6.1 lower right). �

Alice
(+all on table T1)

1. +all with GO

Bob
(+all on table T1)

2. +SELECT with GO

Eve
(+all on table T1)

Mathew
(+all on table T1)

4. +all3. +SELECT

Alice
(+all on table T1)

Bob
(no rights to table T1)

+SELECT with GO

Eve
(+all on table T1)

Mathew
(+all on table T1)

+all+SELECT

Alice
(+all on table T1)

Bob
(no rights to table T1)

+SELECT with GO

Eve
(+all on table T1)

Mathew
(+SELECT on table T1)

+SELECT

Figure 6.1: Example of privileges handed over by different users (upper) and two po-
ssible results of their revocation – worse (lower left), better (lower right) (example 6.3)

To overcome problem of revoking privileges that were previously granted with
GRANT OPTION clause and thus possibly handed over to other users, some database
systems (e.g. MsSQL) implement a revocation command with CASCADE clause. In

86 CHAPTER 6. SECURITY OF DATABASES

such situation owner of a database object can easily revoke privileges from all users. In
DBMS where cascaded revocation is not available (e.g. MySQL) users has to be very
careful when granting privileges with GRANT OPTION. It is so since managing the
privileges that were handed over by grantees, who have GRANT OPTION for that pri-
vilege, is troublesome and requires access to the database that sores information about
all databases and users defined in the DBMS – in MySQL and MsSQL servers this
database is called INFORMATION SCHEMA.

Discretionary access control in connection to separate privileges for tables and
views has one potential threat to the security of access control.

Example 6.4
Bob and Alice are two users of the same database and both hold the privilege to create
new objects in this database. Assume Bob has created a table Bob secrets and revoked
all privileges on that table from Alice. Consequently, Alice cannot select any data from
that table, but since she can create new objects she may try to create view that will
reference all the data from Bob secrets table. As an owner of that view she should have
all the privilege to it and should be able to access Bob’s data. The above scenario is
sound but intuitively such situation cannot happen since it would compromise security
of the database system. The question is which of the above mentioned steps cannot be
executed?

The scenario assumes that Alice executes the following SQL commands:

1. CREATE VIEW Alice view AS SELECT * FROM Bob secrets ,

2. SELECT * FROM Alice view.

Result of the above commands will go differently in different database management
systems but in none Alice will be able to execute successfully the last command and
display Bob’s secrets. For example, in MySQL DBMS Alice will not be allowed to
execute the first command since to create a view that references table (or other view)
the user has to have SELECT privilege on that table (or view). In MsSQL, on the other
hand, the first command succeeds, however Alice is not granted the SELECT privilege
on the view she created. Moreover, as long as she doesn’t have the CONTROL privilege
on the database, she is not allowed to modify privileges for the view she created (she
cannot grant privileges for herself). If she holds CONTROL privilege on the database,
then she has all permissions to all objects in the database. Moreover, she can access
the view as well as Bob’s secret table, so there is no need for Alice to create the view
any more. �

Another issue in DAC model is an indirect access to data stored in the table. Indirect
access to the table means that user that is not granted the SELECT privilege on that

6.1. ACCESS CONTROL 87

table can use other commands to find out what data is stored in the table. Presumably
this will not give the ability to access all the data and will require a lot of time to find out
what is stored in the table but anyway it will compromise the access control security.

Assume Bob, who is a spy, has gained all the privileges to table Secret agents(SSN,
fname, lname, address) owned by Alice, except for the SELECT privilege. At first it
seems that he cannot read the data stored in the table. However, he is allowed to
perform INSERT, UPDATE and DELETE operations and in particular he may try to
execute the following SQL statement:

UPDATE Secret agents SET fname=fname WHERE lname=’Smith’.

Will the command be executed correctly by the DBMS? If so, then Bob will infer that
Smith is in fact Alice’s secret agent, despite the fact that he cannot read the contents
of the table directly. To prevent such indirect access to data DBMSs prevent user
from executing SQL statements with WHERE clause if no SELECT privilege has been
granted to that user. In other words Bob is not allowed to execute previous statem, but
still can run:

UPDATE Secret agents SET fname=fname.

This will not reveal who is a secret agent but usual after executing such a query DBMS
responds with information how many rows of a table/view were affected. If so then
Bob will know how many agents work for Alice. In extreme case if Bob has eliminated
someone he suspected to be Alice’s agent, he may check whether the number of agents
in the table falls. If not then wrong person was eliminated.

If UPDATE privilege is revoked from Bob but he knows, that SSN is a unique co-
lumn (possibly primary key since SSN functionally determines all remaining columns),
then he may check whether a particular SSN is stored in a table. If he knows the SSN
of a person he suspects as an agent then he executes

INSERT INTO Alice agents (SSN) VALUES (’123456789’).

If this command raises an error saying that the SSN value violates the unique index
(primary key) then he knows that the person is in fact an agent. Otherwise, Bob just
needs to run a DELETE statement to clear the table in order not to disclose his activity.

Last but not least possibility is to use DELETE command. This is particularly help-
ful if Bob has no information on unique indexes and/or keys for the table. This prevents
him from using INSERT statements but he may still draw on DELETE privilege in a
very similar way – Bob simply tries to delete the row related to person with SSN he
knows:

DELETE FROM Alice agents WHERE SSN=’123456789’.

88 CHAPTER 6. SECURITY OF DATABASES

If the suspected person is in fact an agent then row of a table will be deleted and DBMS
will respond with number of rows affected greater then 0. Ok, but how to prevent Alice
from detecting that someone was messing up with her secret table? One possibility is
to execute a DELETE statement within a transaction that is afterwards rolled back, so
no changes are written to the database (to read more on transactions see chapter 6.3.2).

The main difficulty in DAC model is that it has too many dependencies that affect
the correctness of the security policy. This includes large number of different privile-
ges, privilege inheritance and their priorities as well as the fact that privileges are (or
can be) controlled by every user which makes it difficult to assure that every object has
privileges as specified.

6.1.3 Mandatory access control

The most important difference between discretionary (DAC) and mandatory access
control (MAC) arise from the fact, that security policy (i.e. access privileges) are cen-
trally controlled by a security administrator rather then each user separately. Moreover,
users do not have the ability to overwrite the policy, and for example, grant access to
their files to other users. Secondly in MAC model differentiates between users and
subjects, which means that different applications run by the same user may have diffe-
rent access rights. Third difference comes from the fact, that MAC doesn’t address the
privileges directly but rather determine whether subject is allowed to access objects. If
this is the case then either subject is allowed to read and write data, or additional DAC
is used to determine what operations can be performed. According to Trusted Compu-
ter System Evaluation Criteria (TCSEC) [15] a MAC model is ”a mean of restricting
access to objects based on the sensitivity (as represented by a label) of the information
contained in the objects and the formal authorisation (e.g., clearance) of subjects to
access information of such sensitivity”.

One of the best known implementation of the MAC model was proposed by David
Elliott Bell and Leonard J. LaPadula [6] (see also [5]). The BLP model, verifies user
permissions based on security class related to the subject (cS) and object (cO). Each
security class consist is a pair

c = 〈L,C〉 , (6.1)

where S denotes security level and C is a set of security categories.
Security level is a single element from the set of security levels. The set of security

levels is fully ordered witch means that for any two elements from the set a and b either
a > b or a < b. Traditionally this set consist of four elements:

U < C < S < TS, (6.2)

6.1. ACCESS CONTROL 89

where U, C, S and TS denote unclassified, confidential, secret and top secret security
levels respectively. Set of security categories is a subset of all possible security catego-
ries which constitute an unordered set of elements. Categories are simply names that
determine areas of interests or application – traditionally categories can be defined as
’Army’, ’Air force’, ’Marines’, ’Special forces’, ’Infantry’, ’Intelligence’, etc.

In order to decide whether subject with security class cS can access object with
class cO it is required to determine the relation between these two classes. Comparison
of security classes can only have one out of three results:

• cS ≥ cO,

• cS ≤ cO, or

• cS , cO otherwise.

Since set of all categories cannot be ordered therefore deciding whether cS ≥ cO or
cS ≤ cO is decided as follows:

cS ≥ cO iff LS ≥ LO and CO ⊆ CS , (6.3)
cS ≤ cO iff LS ≤ LO and CS ⊆ CO. (6.4)

It is important to note, that whenever neither cS ≥ cO nor cS ≤ cO holds then security
classes of subject and object are incomparable (cS , cO) and access is not granted.

Example 6.5
For the security classes:

• c1 =
〈
TS ,
{
Army, Air force

}〉
,

• c2 =
〈
TS ,
{
Army, Infantry

}〉
,

• c3 = 〈S , {Air force}〉,

• c4 =
〈
S ,
{
Army, Infantry

}〉
,

following relations hold:

• c1 ≥ c3,

• c2 ≥ c4, and

• c1 , c2, c1 , c2, c2 , c3, c3 , c4.

�

90 CHAPTER 6. SECURITY OF DATABASES

BLP model introduces two rules for accessing objects. Simple security property
states that subject is allowed read access to an object if and only if

cS ≥ cO. (6.5)

It follows that subject can read objects that are on the same or lower security level
and have security categories that are subset of categories assigned to the subject. This
access rule is also called no read up rule. The second rule is so called *-property (it
should be read as ”star property”) and states that subject can modify an object if and
only if

cS ≤ cO. (6.6)

*-property means that subjects can only write information to objects that are on the
same or higher security level and for which set of categories contains set of categories
assigned to the subject. Some publications also distinguish between write and append
access. If such distinction takes place then write access refers to the process of writing
the objects that can be also read. This is the case when subject and object are in the
same security class which means that

cS ≥ cO and cS ≤ cO. (6.7)

On the other hand append refers to accessing the objects that have higher security class
compared to the security class of a subject. Nevertheless, this difference is only a
naming convention since in both cases *-property has to be met.

Simple security and *-properties ensure no data will be revealed to unauthorised
subject since it is not possible to read objects with higher security class. Also subject
with high security class cannot leak the secret information since it cannot be written on
security level lower than security level of this subject. Unfortunately in many practical
situations writing objects in lower security level is required. Lets consider the following
example.

Example 6.6
A general and a lieutenant are in security class cG = 〈TS , {Army, Air f orce}〉 and cL =

〈S , {Air f orce}〉 respectively. Since cS ≥ cL thus lieutenant cannot read object (e.g.
files) created by general but can create objects that will be available to general. On the
other hand, general can read everything that was created by lieutenant but cannot write
an object that will be available to him. As a consequence general is not able to create
an object storing orders for the lieutenant which is clearly unacceptable in real life. �

To overcome problem mentioned in the above example the BLP model differentiates
between maximal security class (cmax

S) and current security class (cS) of a subject. Ma-
ximal security class is the highest class subject can have, while current security class is

6.1. ACCESS CONTROL 91

the class subject is currently using. The difference between both classes is in security
level – in current class security level is smaller or equal to the security level of the
maximal class

cS = 〈L,C〉 , (6.8)

where L ≤ Lmax
S and cmax

S = 〈Lmax,C〉. Getting back to the example it follows that
whenever general wants to issue an order to the lieutenant he is required to login to the
system on the security level S, create the order, and then login back to security level
TS in order to have access to top secret objects.

Unfortunately BLP model does not solve all the security issues. In particular it
is still possible to leak the information indirectly, using subliminal channels. In BLP
model Bob with high security class can mount a subliminal channel to Alice that has
the lowest security class. This is possible since both Bob and Alice can have write
access to objects in Bob’s security class. Since in computer systems no two subjects
can simultaneously have write access to an object (e.g. file) thus Bob may lock the file
for writing depending on the bit of information he wants to convey to Alice (fig. 6.2).
If they agree that they will attempt to access the file repeatedly, lets say every second,
then depending on whether Alice successfully gains the file access or not she knows
the bit of information ”sent” by Bob. This mechanism can be then used to leak any
information from the high security class that is accessible to Bob.

The Sun jurnalist
(U)

NATO General
(TS)

0111 0001 1101 0011
1001 1100 0000 0010
0101 1011 0110 1011
1011 1001 0001 0110
0110 0000 0111 1111
0111 1110 0111 1000
...

Secret file SF1 (TS)

Runs program that reads single bit
of file SF1 every second and
opens file F for write asccess

1. Reads succesive bit2a. If bit equals 1
then opens files F

File F (TS)

Runs program that tries every
second to open file F for writing

2b. If file is opend then
bit=0, otherwise bit=1

Figure 6.2: Example of the subliminal channel in BLP model

Centralised privilege management as well as restrictive access control policy enable
to ensure high level of security. Unfortunately mandatory access control procedures are

92 CHAPTER 6. SECURITY OF DATABASES

difficult to implement, inconvenient for most users and still prone to covert channels.
Since MAC is less user friendly then DAC thus most computer systems and database
management systems implement only discretionary access control. Mandatory control
is used in military and administrative applications so it is implemented in dedicated
computer systems and databases. Also some widely available operating systems (e.g.
Microsoft Windows Vista, 2008 and 7) and DBMS (e.g. Oracle, DB2) have built-in
plugins that enable to use mandatory access control.

6.2 Data privacy

Ensuring access control enables DBMS to control whether or not users are allowed
to access particular database objects and/or perform some operations (e.g. create or
modify tables). Unfortunately, even if access control is properly configured it doesn’t
ensure 100% security as adversary may try to access data stored on the computer hard
drive, in the memory or being transmitted over the Internet. Attacker may also gain
temporary access to the database (e.g. as a consequence of breaking into the computer
system) or database backups and copy all the information. To prevent secret infor-
mation from being disclosed to third parties DBMS allow to encrypt data stored in
the databases and tables. Data encrypted with good encryption algorithms (e.g. AES)
is secure, even if cryptograms are disclosed, since it is infeasible to decrypt it if the
encryption key is unknown.

There are there levels for encrypting the data stored in the DBMS

• file system encryption,

• database-level encryption,

• cell-level encryption.

6.2.1 Encryption algorithms and key hierarchy

Encryption algorithms are procedures that transform text that can be understood by
everyone (so called plaintext) into unreadable form (ciphertext). The transformation is
reversible so ciphertext can be decrypted to get a readable plaintext. Transformation
from plaintext to ciphertext and vice verse goes according to encryption and decryption
procedures. These procedures take plaintext (or ciphertext) and an encryption key as
an input and output a ciphertext (plaintext). Using wrong key to decrypt a ciphertext
gives an output that have nothing to do with the original plaintext that was encrypted.

6.2. DATA PRIVACY 93

Encryption algorithms can be divided into symmetric and asymmetric algorithms.
Symmetric algorithms use a single key to encrypt plaintext and decrypt the resulting
ciphertext. If such an algorithm is used to secure communication over the Internet all
parties that communicate have to share common encryption key prior to transmission.
Requirement to exchange the encryption key prior to transmission and in safe manner
is the biggest drawback of these group of algorithms. The advantage of symmetric
encryption is the use of simple operations to transform plaintext into ciphertext (usually
substitutions, permutations, addition or multiplications) and relatively short encryption
keys – between 128 and 256 bits. Consequently, symmetric encryption algorithms
can encrypt data with high throughput which makes them suitable for processing large
amount of data. Nowadays there are several symmetric encryption algorithms that
were verified and proved to be secure enough to be used in order to ensure privacy.
The most popular algorithms are: Advanced Encryption Standard (AES), International
Data Encryption Algorithm (IDEA), RC6, Sprent, Twofish and Blowfish.

Asymmetric algorithms use two different keys to encrypt and decrypt the data. Both
keys, however, are not random but are related to each other according to a mathema-
tical formula and some additional secret. Interrelationship ensures also that knowing
one key, but without knowledge on the secret, it is infeasible to calculate the other one.
This allows to public one key and keep the other one secret. Public key can be then
used for encrypting plaintext that can be later decrypted only with the secret key from
the same pair. Asymmetric algorithms does not require to exchange the encryption key
in a secure way, but this is achieved at cost of higher computational complexity and
larger encryption keys that vary from 512 up to 2048 bits depending on the algorithm.
Consequently, asymmetric algorithms run much slower then symmetric and are not su-
itable for encrypting large amounts of data. In contrast to previous group asymmetric
algorithms are suitable for creating a digital signatures for messages. In fact, this is
the most often used application of these algorithms. Nowadays most DBMS imple-
ment two asymmetric algorithms – RSA, that can be used both for data encryption and
signing, and Digital Signature Standard (DSS) that is dedicated for signing purposes.

Security of all encryption algorithms is up to the security of encryption keys. In
particular encryption keys have to be stored in a safe way ensuring that they cannot
be accessed by unauthorised users. Within the database management systems keys are
stored in an encrypted form and can be decrypted either by the DBMS or by the user.
To decrypt the key DBMS/user has to know security password or another key that was
used during encryption. It follows that some keys protect others which leads to the
hierarchy of keys.

One the most developed key hierarchy was created in MsSQL database manage-
ment server [3]. MsSQL uses a 6 level hierarchical encryption and key management
infrastructure in which keys from lower levels are protected by keys from higher level

94 CHAPTER 6. SECURITY OF DATABASES

Table 6.4: Encryption algorithms in different database management systems
Database management systems

Algorithm MsSQL 2008 MySQL 5.5 Oracle
DES + +

3DES + +

AES 128/192/256 128 128/192/256
RC2 +

RC4 +

RSA 512/1024/2048

or optional password. Precisely, keys from each layer are used to encrypt the keys from
the layer below by using a combination of certificates, asymmetric keys, and symmetric
keys. Additionally, asymmetric and symmetric keys can be stored outside of MsSQL
Server in so called Extensible Key Management (EKM) module. The highest level of
key hierarchy (fig. 6.3) stores an DBMS service master key (SMK) that is protected by
the operating system and available only to the operating system. This key is generated
when instance of DBMS is installed and cannot be deleted. This key is used to protect
database master keys (DMKs). Database master key is used to protect single database.
It is used for encrypting the whole database when transparent data encryption (TDE)
is turned on (see chapter 6.2.3). When TDE is enabled then to access the database it is
required to get the Service Master Key, decrypt Database Master Key and use this key
to decrypt the database. This work when database is run on a single server, however,
database can be backed up and moved to another server. Since TDE yields backups
to be encrypted as well and the new DBMS has different service master key with high
probability, therefore, there has to be some other way to access the DMK. This chal-
lenge was solved with an optional password that may be used to protect the DMK. If
password is defined then DMK is available either to the original DBMS or to anyone
that knows the password. When encrypted backup is restored on a new server then user
is asked to enter the password, original database master key is decoded and encryp-
ted with SMK of the server on which backup is restored. Database master key may
be changed at any time, but when TDE is enabled than any modification of the DMK
yields the whole database to be decypted and reencrypted with modified key. Service
master key and database master key are all symmetric keys.

Database master key is also used for securing certificates1 and asymmetric key
within a database which are used in turn to protect symmetric keys. Certificates, asym-

1Certificate is an asymmetric public key digitally signed by trusted authority that binds the key to the
identity of some person, device or service that holds a corresponding private (secret) key.

6.2. DATA PRIVACY 95

Figure 6.3: Layers of encryption in MsSQL database management server (figure from
http://msdn.microsoft.com/en-us/library/ms189586.aspx)

metric and symmetric keys are used to encrypt the data stored in the database tables
and they may be used for cell-level encryption (see chapter 6.2.4). Additionally, cer-
tificates, asymmetric and symmetric keys may be protected by passwords. Passwords
may be also used to encrypt the data.

6.2.2 File level encryption

Encrypting the file system is an option of almost all contemporary operating systems.
It enables to store files on hard drives in an encrypted form, that can be read only by
the operating system that knows the correct encryption key. Such key can be either
entered manually by user when starting the computer, or be stored on a memory stick

96 CHAPTER 6. SECURITY OF DATABASES

and loaded whenever needed. The most important advantage of file system encryption
is its transparency to the applications running in the computer system. Encryption
and decryption is performed automatically whenever application is reading from or
writhing to the disk respectively. Transparency ensures applications do not have to be
modified which means that file system encryption can be turned on and off whenever
needed. The drawback is that data is decrypted when read from the disk so everyone
with access to the operating system typically has access to all the data encrypted on
that system. If either an attacker access memory, memory is paged by the operation
system or system is hibernated then unencrypted data is stored to disk and can be
accessed easily. In addition, operating system backups still require another solution
because a system administrator can see the data unencrypted during backup routines.
Also turning encryption on and off requires the hard drive to be encrypted/decrypted
with may take a lot of time. Another disadvantage of disk encryption is that it typically
does not support separation of duties between the system administrator and database
administrator.

If we consider a DBMS running on an encrypted file system then it is ensured that
stealing the hard disk from the computer will not allow the adversary to read the data.
However, if adversary manages to brake into the operating system, then he may easily
copy the database file into other file system (which is not encrypted) and then access the
data stored inside. This method does not prevent data from being read out if someone
gets access to the DBMS since data manipulated by the DBMS is already decrypted.
Nevertheless this drawbacks, this kind of encryption is sometimes the only one solution
since some DBMS does not support encryption or available methods of encryption are
inadequate for particular application (e.g. are too time consuming).

6.2.3 Database-level encryption
Some database management systems allow for encrypting a particular databases stored
in the DBMS. If available, this type of encryption is similar to file system encryption
as it is transparent to the applications using the database. Unlike the previous type,
database-level encryption encrypts only selected database (not the whole file system)
and is implemented by the DBMS. Database level encryption offers the advantage of
being transparent to client applications so, similar like with file system encryption, does
not require the application to be modified when encryption is turned on. For the same
reason database level encryption is also called a transparent data encryption (TDE).

Database level encryption operates at I/O level thus any data written to the data-
base files (on the disk) is encrypted. Encryption also refers to backups and database
snapshots, so they are encrypted on the disk as well. However, similar to file system en-
cryption, data that is in use by the DBMS is not encrypted since transparent encryption

6.2. DATA PRIVACY 97

does not provide protection at memory level and while transmitted to and from the se-
rver. A disadvantage of this method is that it incurs CPU and memory overhead during
every database access. As reported by Microsoft and Oracle the average performance
loss is about 5% but in the worse case it can be as high as 28%.

6.2.4 Cell-level encryption
Cell-level encryption enables to encrypt every single cell of the database table. Cell-
level encryption can either use a symmetric or asymmetric encryption algorithms, ho-
wever, for better performance symmetric algorithms should be used. Since encrypted
data is a sequence of bytes therefore, encrypted data is not a string of characters even if
the plaintext consisted only of alphanumeric chars. Consequently, in order to store en-
crypted data in the column of a database table it is required to use binary data type for
that column (e.g. varbinary). Additionally most DBMS does not differentiate between
columns of varbinary data type that store binary data and encrypted data. This has
significant consequences since enabling the encryption on a varchar column requires:

• to change column data type to varbinary,

• modify (most usually drop) all the indices that were declared for that column,

• modify the user application that is accessing that column.

First two modifications refer to DBMS system itself and are direct consequence of
encryption. Both modifications may have enormous consequences to the database per-
formance. First of all, not all database management system enable to index the binary
data type columns. Even if indexing of binary columns is possible then indexing en-
crypted data has nothing to do with ordering the plaintexts. It follows that searching
encrypted data is slower compared to searching corresponding plaintexts first due to
lack of indices, second due to requirement to decrypt all the ciphertexts.

Cell-level encryption also requires the application to be modified since suitable
encryption/decryption clauses have to be included in SQL commands. For example, in
MsSQL server there are following encryption/decryption clauses:

• symmetric encryption:

– CREATE SYMMETRIC KEY – is an SQL command that create symmetric
encryption key and assigns an encryption algorithm to it,

– EncryptByKey – is a function that performs encryption with a symmetric
key and encryption algorithm declared for that key,

98 CHAPTER 6. SECURITY OF DATABASES

– DecryptByKey – is a function that allows to decrypt information encrypted
with EncryptByKey,

– EncryptByPassPhrase – is a function that encrypts a plaintext using a pas-
sword as an encryption key,

– DecryptionByPassPhrase - decrypts whatever was encrypted with Encrypt-
ByPassPhrase with the password as a key.

• asymmetric encryption:

– CREATE ASYMMETRIC KEY – is an SQL command that create asym-
metric encryption key and assigns an encryption algorithm to it,

– EncryptByAsmKey (EncryptByCert) – are functions that encrypt messages
with asymmetric key (certificate),

– DecryptByAsmKey (DecryptByCert) – are functions that decrypt cipherte-
xts encrypted with EncryptByAsmKey (EncryptByCert),

• digital signing:

– SignByAsymKey (SignByCert) – signs a massage using the asymmetric
key (certificate),

– VerifySignedByAsmKey (VerifySignedByCert) – verifies signature gene-
rated with SignByAsymKey (SignByCert) functions.

If we want to store first and last names encrypted with AES algorithm then following
SQL command has to be executed:

INSERT INTO Employees (fname, lname) VALUES
(EncryptByKey(Key GUID(’MyFirstKey’), ’John’),
EncryptByKey(Key GUID(’MyFirstKey’), ’Smith’)) .

Prior to executing the above statement it is required to create a symmetric encryption
key which can be done in following way:

CREATE SYMMETRIC KEY MyFirstKey WITH ALGORITHM = AES 256
ENCRYPTION BY PASSWORD ’SecurePassword’ .

In MsSQL command that creates the encryption key also declares the encryption al-
gorithm that will be used. Later on, when data is being encrypted, there is no need to
specify the encryption algorithm to be used.

Some database management systems (e.g. Oracle) simplify cell-level data encryp-
tion by making it more transparent to the user and applications. Oracle enables to

6.3. DATA INTEGRITY 99

set a parameter ENCRYPT when creating a table and defining a column in that table.
Column can be of any type, and is accessed via standard SQL commands with no ad-
ditional functions. Database management system automatically detects whether or not
particular column is encrypted and modifies SQL commands if necessary.

It is important to remember that cell-level encryption lowers performance of DBMS
more significantly then transparent data encryption (database level encryption). There-
fore, cell-level encryption should be used only when it is really needed. In particular,
it should be considered if it is really necessary to encrypt columns that:

• are used in range queries – i.e. SQL commands with WHERE clause that conta-
ins BETWEEN operator or looks for rows that fall into the range of values,

• change very often,

You should also avoid to encrypt primary key columns or columns with indices since
indexing encrypted columns does not improve searching. Encryption also degrades
overall performance that can be as high as 30% lower, compared to database without a
cell-level encryption.

6.3 Data integrity
Database management systems are interfaces between the users and the data. The most
important advantage of this interface is separation of physical data access procedures
and their logical interpretation. This enable user/programer to focus on manipulating
the data rather then taking care on how this data is stored and whether it is correct
and coherent. On the other hand DBMS has to maintain procedures and algorithms for
ensuring that data is correct. Integrity constrains and transactions are mechanisms that
are used for this purpose.

6.3.1 Integrity
Integrity constraints ensure static correctness of the data stored in the database. These
constraints ensure data corresponds to (represents) real live objects and data entered
into the database is accurate, valid and consistent. For example, integrity constraints
can ensure that speed of movement cannot be greater then speed of light, age of human
being cannot be negative or each e-mail address has to contain @ sign and at least one
dot. Data integrity also address uniqueness and ensures quality of data. For exam-
ple, if an employee is entered with an id=123, the database should not allow another
employee to have the same ID value. If you have an gender column then rows can

100 CHAPTER 6. SECURITY OF DATABASES

only take ’F’ and ’M’ values for that columns while other values should be rejected.
Moreover, when there is another table that stores names of the departments and each
employee is assigned to exactly one department, then database server has to ensure that
each employee is assigned to the department that exist in the department table. Deter-
mining the correct values and integrity constraints as well as deciding how to enforce
them are two important steps in planning table and database structure.

Data integrity falls into four categories:

• entity integrity,

• domain integrity,

• referential integrity,

• user-defined integrity.

Entity integrity

Entity integrity states that row of a table is unique, not NULL, can be uniquely identified
and data stored in different rows will not mix. Entity integrity enforces the integrity
of the identifier column (or columns). This can be achieved through primary key of a
table, indexes, UNIQUE constraints or, IDENTITY properties.

Domain integrity

Domain integrity is the validity of entries for a given column. It can be enforced by
restricting the data type of the column, the format (through CHECK constraints and
rules), or the range of possible values (through FOREIGN KEYs, CHECK constraints,
DEFAULT and NOT NULL definitions, and rules). Domain integrity can be as simple
as a data type with list of values allowed. A good example is aforementioned gender
column that can be declared as char(1) column with acceptable values of ’F’ and ’M’.

Referential integrity

Referential integrity preserves the defined relationships between tables when records
are entered or deleted. In most database servers, referential integrity is based on rela-
tionships between foreign keys and primary keys or between foreign keys and unique
keys in two related tables. Referential integrity ensures that key values are consistent
across tables. Such consistency requires that there be no references to nonexistent va-
lues and that if a key value changes, all references to it change consistently throughout
the database. An example of referential integrity is relationship between employees

6.3. DATA INTEGRITY 101

and departments they work. Referential integrity in that case force the ID of the de-
partment, stored in the employee table, to be a valid ID that exist in department table
as well.

Enforcing referential integrity is usually achieved through foreign keys that prevent
user from

• inserting rows to a related table if there is no associated row in the primary table
(e.g. employee cannot be assigned to the department that does not exist),

• updating the primary table that results in orphaned rows in a related table (e.g.
changing the ID of the department without updating IDs in corresponding rows
of the related table),

• deleting rows from primary table if there are matching rows in the related table
(e.g. dropping the department that has employees assigned).

To ensure referential integrity on updates and deletes in primary table foreign keys
allow to decide what to do if row from the primary table is updated or deleted. This
is done when foreign key is defined through declaration an ON DELETE and ON
UPDATE actions. There are four basic actions that can be taken:

• CASCADE – row in referencing table is updated/delete whenever row in primary
table is updated/deleted,

• NO ACTION – means that no action will be executed and commands run against
the primary table will be rolled back (no data will be updated or dropped),

• SET NULL – referencing columns in the referencing table are set to NULL whe-
never primary column from primary table is updated or the corresponding row is
deleted,

• SET DEFAULT – this action is similar to SET NULL however it inserts the
DEFAULT value to the referencing columns instead of NULL.

User-defined integrity

User-defined integrity allows to define specific business rules that do not fall into one
of the other integrity categories. All of the integrity categories support user-defined in-
tegrity (all column- and table-level constraints in CREATE TABLE, stored procedures,
and triggers).

102 CHAPTER 6. SECURITY OF DATABASES

6.3.2 Transactions
A database transaction is a unit of work executed on database management system that
is treated in a coherent and reliable way. In particular multiple transactions, e.g. run by
many users, are independent of each other and can be executed concurrently. Unit of
work can be made up of one or more commands, for example, a number of SELECT,
INSERT, UPDATE, DELETE operations or operations that change the physical struc-
ture of the database. In the very simple case the transaction consist of a single SQL
command executed against the database management system. In other words, simple
command

SELECT * FROM Employee,

is executed within a transaction. This is default behaviour of most DBMS, however,
some of them allow to disable this functionality. If so then, each SQL command exe-
cuted has to be ”manually” committed or rolled back with SQL commands COMMIT
and ROLLBACK respectively. For example, disabling the auto commit is possible in
MySQL and Oracle database servers by simply running an SQL command

SET AUTOCOMMIT=0

for MySQL and

SET AUTOCOMMIT OFF

for Oracle server. When auto commit is enabled then one can start the transaction by
executing

BEGIN TRANSACTION

or

START TRANSACTION

commands. When started all successive SQL commands are executed within transac-
tions and are not committed to the database until this is done explicitly by COMMIT
command that commits all the commands from the transaction. Obviously, transaction
can be also rolled back with ROLLBACK command which yields all the commands
from the transaction to be rolled back also.

By definition transaction has to meet four requirements that are often refered to by
the acronym ACID:

• atomicity,

• consistency,

• isolation,

6.3. DATA INTEGRITY 103

• durability.

Atomicity

Atomicity states that transactions are executed on ”all-or-nothing” basis which means
that all operations included within single transaction are either executed correctly or
terminated and rolled back. If all operations are executed correctly then transaction
is committed and all changes are permanently stored in the database. On the other
hand, if single operation from the transaction fails then transaction is terminated and
all changes already made within that transaction are cancelled and rolled back. No
changes made by transactions that were rolled back are stored in the database.

Consistency

Consistency in database management systems refers to its truthfulness that it stores
correct representation of real word and assurance that every modification made to the
database transforms one consistent state into another. Consistency is ensured based
on integrity rules that determine the conditions and dependencies between data in the
database required to maintain its consistent state. Transaction consistency ensure that
when transaction terminates (either due to commitment or rollback) the state of the
database is correct. If, for some reason, a transaction violates integrity rules, the entire
transaction is terminated, rolled back and the database returns to initial, consistent state.

Following example presents that ensuring data consistency when multiple transac-
tions run in parallel may be difficult.

Example 6.7
Listing 6.1 presents two transactions that access sequentially the same row of the table.
Purpose of both transactions is to verify whether there is enough money on account
123 to withdraw the required amount. If the amount of money is large enough then
new amount (after withdraw) is stored in the database. If the amount available on
account is to small then no money is withdraw since bank does not allow debits. Now,
since both transactions run simultaneously thus it may happen that there is enough
money for each withdraw but to less to withdraw both amounts. Consequently, both
transactions successfully manage to withdraw required amount despite fact, that the
resulting balance will be negative. As a result there is a debit on account 123 which
can be treated as inconsistency since bank does not allow debits and so this would not
happen in real live.

�

104 CHAPTER 6. SECURITY OF DATABASES

Listing 6.1: Consistency challenges in simultaneous execution of two transactions� �
T r a n s a c t i o n 1 T r a n s a c t i o n 2

1 . BEGIN TRANSACTION
2 . SELECT amount FROM Account WHERE i d =123
3 . BEGIN TRANSACTION
4 . SELECT amount FROM Account

WHERE i d =123
5 i f (amount>=withdraw) {

UPDATE Account
SET amount=amount−withdraw

WHERE i d =123
}

6 . i f (amount>=withdraw) {
UPDATE Account

SET amount=amount−withdraw
WHERE i d =123

}

7 . COMMIT COMMIT�
Isolation

Isolation refers to the requirement that concurrent transactions cannot access data that
has been modified during a transaction that has not been completed. In other words,
each transaction must remain unaware of other concurrently executing transactions
with one exception – transaction may be forced to wait for another transaction to com-
plete if it requires the data already modified by to other one. Strict isolation, however,
prevents transactions from running concurrently so quite often it is desirable to sacrify
isolation at cost of greater concurrency. Less restrictive isolation may lead to ano-
malies, which occur when one transaction access data already read/modified by other
transaction. There are three main anomalies:

• dirty read,

• unrepeatable read,

• phantoms.

Dirty read, also called read uncommitted occurs when transaction reads data that were
modified by other transaction that has not finished yet. In such a case transaction reads
data, that may disappear from the database if the transaction that have modified it is
rolled back.

6.3. DATA INTEGRITY 105

Listing 6.2: Dirty read in simultaneous execution of two transactions� �
T r a n s a c t i o n 1 T r a n s a c t i o n 2 (READ UNCOMMITTED)

1 . BEGIN TRANSACTION
2 . BEGIN TRANSACTION
3 . UPDATE Employee

SET s a l a r y = s a l a r y +1000 WHERE i d =123
4 . SELECT s a l a r y FROM Employee

WHERE i d =123
5 . ROLLBACK
6 . COMMIT�
Example 6.8
Listing 6.2 presents two concurrent transactions that access the same data. After trans-
action 1 updates the data in the Employee table, but before it terminates, second trans-
action reads contents of the table. Since transaction 1 has already modified row in the
Employee table, thus transaction 2 will get its new value in its result set. However,
after a while transaction 1 is rolled back which cause all the modification made by this
transaction to be deleted from the database (database returns to its original state, i.e.
consistent state prior to transaction 1). It follows that transaction 2 have read data that
has never existed in a table, since transaction 1 was never committed.

�

Unrepeatable read occurs when transaction reads the same data twice (or more) and
every time the resulting result set contains the same rows but data in these rows chan-
ges. Such situation may happen when one transaction is reading the table several times
while at the same time another transaction updates information that is part of the result
set.

Example 6.9

Two transactions presented on listing 6.3 run concurrently and access the same data. At
the beginning transaction 2 selects all the employees that live in Warsaw. While pro-
cessing the successive commands of transaction, transaction 1 updates phone numbers
for all employees living in Warsaw by adding proper area code. Consequently, when
transaction 2 again selects information about all the employees living in Warsaw the
result set contains the same rows but data in that rows has changed. �

106 CHAPTER 6. SECURITY OF DATABASES

Listing 6.3: Unrepeatable read in simultaneous execution of two transactions� �
T r a n s a c t i o n 1 T r a n s a c t i o n 2 (UNREPEATABLE READ)

1 . BEGIN TRANSACTION
2 . BEGIN TRANSACTION
3 . SELECT s a l a r y FROM Employee

WHERE i d =123
4 . UPDATE Employee

SET s a l a r y = s a l a r y +1000 WHERE i d =123
5 . COMMIT
6 . SELECT s a l a r y FROM Employee

WHERE i d =123
7 . COMMIT�
The last anomaly that may occur when transactions are run concurrently are phantom
reads. This term denotes situation in which transaction, that executes the same SE-
LECT command within single transaction, gets different result sets – i.e. result sets
that consist of different set of rows, despite fact, that the same command was executed.
Such situation may occur when one transaction executes the same command several
times while another transaction is deleting old or inserting new data that meet criteria
specified in WHERE clause of the SELECT statement.

Example 6.10
In listing 6.4 transaction 2 executes the same SQL command twice but prior to second
execution transaction 1 inserts new row into the table Employee. Consequently, second
SELECT command returns larger set of rows. However, the additional row returned is
not a valid, since transaction 1 was later on rolled back.

�

It is important to notice that uncommitted read occurs when transaction tries to read
data modified by another transaction that has not been finalised yet. On the other
hand unrepeatable reads and phantoms occur when transaction modifies data that were
already accessed (read) by another transaction, that will access the same data again
before it terminates. It follows that to prevent anomalies it is required to:

• prevent transaction from reading data from unfinished transactions,

• prevent transaction from accessing the rows that were already accessed by ano-
ther transaction that is not completed,

• prevent transaction from adding/deleting rows of table that meet criteria specified
in WHERE clause used in another transaction that is not completed.

6.3. DATA INTEGRITY 107

Listing 6.4: Phantom reads in simultaneous execution of two transactions� �
T r a n s a c t i o n 1 T r a n s a c t i o n 2

1 . BEGIN TRANSACTION
2 . BEGIN TRANSACTION
3 . SELECT s a l a r y FROM Employee
4 . INSERT INTO Employee (id , s a l a r y , name)

VALUES (1 4 8 , 10000 , ’ John Smith ’)
5 . SELECT s a l a r y FROM Employee
6 . ROLLBACK
7 . COMMIT�
This is achieved with transaction isolation levels that implement above mentioned re-
strictions. The less restrictive isolation level, and thus the most concurrent one, is called
READ UNCOMMITTED. When transaction is run in this isolation level then it is al-
lowed to read all the data, even if it was modified by transaction that haven’t finished
yet. Next isolation level is called READ COMMITTED. Transactions running on this
isolation level are not allowed to read data that was modified by other transaction until
this transaction is finished (either committed or rolled back). READ COMMITTED
prevents transaction from reading data that may be rolled back in a while, however it
does not ensure that data will not be modified by other transactions. Third isolation
level, REPEATABLE READS, ensures that transaction running with this isolation le-
vel prevents any other transaction from modifying the data it has accessed. The last,
and the most restrictive isolation level is SERIALIZABLE. When transaction is run in
this isolation level then no other transaction can modify, insert or delete any data that
satisfies WHERE clauses from all the commands executed in this transaction. Seriali-
zable forces all transactions to run sequentially so it degrades benefits that arise from
concurrency, however, ensure anomalies will not occur.

In all isolation levels, when transaction cannot execute some operation then it is
locked until the requested data is available again and can be accessed. To ensure trans-
actions do not lock each other for long it is required to make them as short as possible,
so they run for a short period of time and terminate. If it is required to lock access to
some rows for longer, then other techniques (e.g. table locks) should be used.

Four isolation levels mentioned above allow to ensure that anomalies will not occur.
Table 6.5 presents isolation levels and anomalies they prevent. Transaction isolation
level can be controlled by user of the database management server and specified before
the transaction is started. If not specified then server default isolation level is used. To
specify isolation transaction level it is enough to execute an SQL command

108 CHAPTER 6. SECURITY OF DATABASES

Table 6.5: Isolation levels and anomalies they prevent. Plus sign (+) means that particu-
lar isolation level prevents anomaly; Minus (-) means that it does not prevent anomaly,
so it may occur.

Anomaly
Isolation level uncommitted read unrepeatable reads phantoms
READ UNCOMMITTED – – –
READ COMMITTED + – –
REPEATABLE READ + + –
SERIALIZABLE + + +

SET TRANSACTION ISOLATION LEVEL isolation level,

where isolation level specifies the name of isolation level requested.

Durability

Durability is the ability to recover the committed transaction if any kind of system
failure occurred (either hardware or software error). Durability guarantees that once
successful finalisation of a transaction has been notified to user, there is no possibility
that the results of transaction are lost (not stored in the database). Whatever happens
transaction’s data changes will survive any system failure as well as all integrity con-
straints are satisfied. Durability does not imply a permanent state of the database. A
subsequent transaction may modify data changed by a prior transaction without viola-
ting the durability principle.

Bibliography

[1] SQL 1992. Information Technology - Database Language SQL. Digital Equip-
ment Corporation, 1992.

[2] SQL 2003. ISO/IEC 9075:2003 Information Technology - Database Language
SQL. Digital Equipment Corporation, 2003.

[3] Microsoft SQL Server 2008. SQL Server Books Online. Mi-
crosoft Corporation, 2011. http://msdn.microsoft.com/en-
us/library/ms130214%28v=sql.100%29.aspx.

[4] IEEE 754-2008. IEEE Standard for Floating-Point Arithmetic. IEEE Computer
Society, 2008. http://standards.ieee.org/findstds/standard/754-2008.html.

[5] David Elliott Bell. Looking back at the bell-la padula model. In Proceedings
of the 21st Annual Computer Security Applications Conference, pages 337–351,
Washington, DC, USA, 2005. IEEE Computer Society.

[6] David Elliott Bell and Leonard J. LaPadula. Secure computer systems: Mathe-
matical foundations. Technical report, MITRE CORP Bedford MA, November
1973. http://handle.dtic.mil/100.2/AD770768.

[7] Edgar F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, 1970.

[8] Edgar F. Codd. The Relational Model for Database Management. Addison-
Wesley, 1990.

[9] Ramez Elmasri and Navathe Shamkant. Fundamentals of Database Systems. Ad-
dison Wesley, 6 edition, 2010.

109

110 BIBLIOGRAPHY

[10] Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom. A First Course in Da-
tabase Systems. Prentice Hall, 3 edition, 2007.

[11] XML in Microsoft SQL Server. Implementing XML in SQL Se-
rver. Microsoft Corporation, 2011. http://technet.microsoft.com/en-
us/library/ms189887%28SQL.100%29.aspx.

[12] XML DML in Microsoft SQL Server. XML Data Modification Language
(XML DML). Microsoft Corporation, 2011. http://technet.microsoft.com/en-
us/library/ms177454%28SQL.100%29.aspx.

[13] XPath language. XML Path Language (XPath) 2.0. W3C Consortium, December
2010. http://www.w3.org/TR/xpath20/.

[14] XQuery language. XQuery 1.0: An XML Query Language. W3C Consortium,
December 2010. http://www.w3.org/TR/xquery/.

[15] TCSEC. Trusted Computer System Evaluation Criteria. Department of Defense,
December 1983. http://csrc.nist.gov/publications/history/dod85.pdf.

Index

Access control, 80
*-property, 90
DAC, 82
incompleteness, 82
inconsistency, 83
MAC, 88
negative privileges, 82, 83
positive privileges, 81
privileges, 80
simple security property, 90

BNF, 35

Data types, 39
NULL, 39
binary large object, 41
character strings, 40
money, 46
numeric, 41
numeric approximate, 42
numeric exact, 42

Database anomalies, 9
delete anomaly, 9
insert anomaly, 9
update anomaly, 9

Database objects
function, 56
index, 53
stored procedure, 56
table, 49

triggers, 58
view, 50

Decomposition, 23
dependency preserving, 24
lossless, 25

Encryption
asymmetric, 93
cell-level, 97
database encryption, 96
file system encryption, 95
key hierarchy, 93
keys, 93
symmetric, 93
TDE, 96

Functional dependency, 13, 22
Armnstrong’s axioms, 13

Index, 53
NULL values, 56
clustered, 56
non-clustered, 56
order of columns, 54
UNIQUE, 55
wildcharacters, 55

Integrity, 99
domain, 100
entity, 100
referential, 100

111

112 INDEX

user-defined, 101

Multivalued dependencies, 31

Normalisation, 22, 26
1NF, 26
2NF, 27
3NF, 29
4NF, 31
BCNF, 30

Relational algebra, 16
Cartesian product, 18
difference, 20
full outer join, 21
intersection, 20
left outer join, 20
natural join, 19
outer join, 20
projection, 17
right outer join, 21
theta-join, 18
theta-select, 17
union, 20

Relational model, 11
attributes, 11
attributes closure, 14
candidate key, 15
foreign key, 16
non-prime attributes, 15
primary key, 15
prime attributes, 15
superkey, 15

Table, 49
temporary, 50

Transaction, 102
anomalies, 104
atomicity, 103

consistency, 103
durability, 108
isolation, 104
isolation level, 107

Trigger, 58
data access, 59
events, 58
nested triggers, 60

View
SCHEMABINDING, 52
updatable, 51
WITH CHECK OPTION, 52

XML, 61
data type, 61
SQL extensions, 65
storage, 61
typed column, 63

XPath, 66
axis, 67
comparison, 69
predicates, 69

XQuery, 70
XQuery in MsSQL, 73

exist, 74
modify, 76

delete, 77
insert, 77
replace, 76

query, 73
value, 74

	Contents
	Chapter 1. Introduction
	Chapter 2. Database concepts
	2.1 Representing real world

	Chapter 3. Theory of relational database systems
	3.1 Relational model
	3.2 Relational algebra
	3.3 Normal forms
	3.3.1 Decomposition of relations
	3.3.2 Normalisation

	Chapter 4. Relational database management systems
	4.1 Structured Query Language
	4.1.1 BNF syntax - general SQL notation
	4.1.2 Data Definition Language
	4.1.3 Data Manipulation Language
	4.1.4 Data Control Language

	4.2 Database basics
	4.2.1 Data types
	4.2.2 Differences in implementations of data types in different DBMS

	4.3 Database objects
	4.3.1 Tables, views
	4.3.2 Indices
	4.3.3 Stored procedures and functions
	4.3.4 Triggers

	Chapter 5. XML extensions to RDBMS
	5.1 XML columns
	5.2 XPath, XQuery and extensions to SQL
	5.2.1 Extensions to SQL language
	5.2.2 XPath
	5.2.3 XQuery
	5.2.4 XPath and XQuery in Microsoft SQL Server

	Chapter 6. Security of databases
	6.1 Access control
	6.1.1 Privileges in database management systems
	6.1.2 Discretionary access control
	6.1.3 Mandatory access control

	6.2. Data privacy
	6.2.1 Encryption algorithms and key hierarchy
	6.2.2 File level encryption
	6.2.3 Database-level encryption
	6.2.4 Cell-level encryption

	6.3 Data integrity
	6.3.1 Integrity
	6.3.2. Transactions

	Bibliography
	Index

 HistoryItem_V1
 TrimAndShift

 Range: all even numbered pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 None
 Left
 11.3386
 14.1732

 Even
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 0
 112
 111
 56

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move right by 8.50 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Right
 8.5039
 14.1732

 Odd
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 16
 112
 110
 56

 1

 HistoryItem_V1
 TrimAndShift

 Range: all even numbered pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move left by 8.50 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Left
 8.5039
 14.1732

 Even
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 17
 112
 111
 56

 1

 HistoryItem_V1
 TrimAndShift

 Range: all even numbered pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move left by 2.83 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Left
 2.8346
 14.1732

 Even
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 17
 112
 111
 56

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move right by 2.83 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Right
 2.8346
 14.1732

 Odd
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 20
 112
 110
 56

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 20.00, distance 10.00 (points)
 Add frames around each page: no
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 50 down, columns 50 across
 Align: centre
 Registration colour: All separations
 PDF/X handling: Ignore PDF/X
 Annotations and form fields: UNKNOWN

 0.0000
 Prompt
 10.0001
 20.0001
 1
 Corners
 0.2999
 ToFit
 50
 50
 1.2000
 FormsAndFields
 0
 0
 1
 0.0000
 0
 IgnoreAll

 D:20110728152628
 841.8898
 a4
 Blank
 595.2756

 Tall
 886
 110

 0.0000
 AllSeps
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

