

Projekt współfinansowany ze środków Unii Europejskiej w ramach
Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Wrocław University of Technology

Internet Engineering

Jacek Mazurkiewicz

SOFTCOMPUTING

Wrocław 2011

Wrocław University of Technology

Internet Engineering

Jacek Mazurkiewicz

SOFTCOMPUTING
Developing Engine Technology

Wrocław 2011

Copyright © by Wrocław University of Technology

Wrocław 2011

Reviewer: Tomasz Walkowiak

ISBN 978-83-62098-23-1

Published by PRINTPAP Łódź, www.printpap.pl

3

Table of contents

Part 1. Multilayer Perceptron .. 6

1.1. Theoretical Background ... 7

1.1.1. Introduction .. 7

1.1.2. Learning Modelling.. 8

1.1.3. Activation Function ... 10

1.1.4. Learning Rule ... 10

1.1.5. MLP Learning Algorithm .. 12

1.2. List of Problems ... 15

1.3. Phases of Laboratory Exercises ... 15

1.4. Hints for the List of Problems .. 16

Part 2. Kohonen Neural Network ... 20

2.1. Theoretical Background ... 21

2.1.1. Introduction .. 21

2.1.2. Retrieving Phase of Kohonen Neural Network Algorithm 21

2.1.3. Classic Learning Algorithm for Kohonen Neural Network 22

2.2. List of Problems ... 24

2.3. Phases of Laboratory Exercises ... 24

2.4. Hints for the List of Problems .. 24

Part 3. Hopfield Neural Network .. 28

3.1. Theoretical Background ... 29

3.1.1. Hopfield Neural Network .. 29

3.1.2. Retrieving Phase .. 30

3.1.3. Hebbian Learning Algorithm ... 31

3

4

3.1.4. Delta-Rule Learning Algorithm .. 31

3.1.5. Pseudoinverse Learning Algorithm ... 32

3.2. List of Problems ... 32

3.3. Phases of Laboratory Exercises ... 32

3.4. Hints for the List of Problems .. 32

Part 4. Genetic Algorithms ... 36

4.1. Theoretical Background ... 37

4.1.1. Introduction .. 37

4.1.2. Encodings and Optimisation Problems ... 38

4.1.3. Genetic Algorithm – Selection, Mutation, Recombination 39

4.1.4. Crossover Operation Details ... 43

4.2. List of Problems ... 44

4.3. Phases of Laboratory Exercises ... 44

4.4. Hints for the List of Problems .. 44

Part 5. Expert Systems .. 47

5.1. Theoretical Background ... 48

5.1.1. Knowledge and its Representation ... 48

5.1.2. Members of Expert System Development Team .. 50

5.1.3. Structure of the Rule-Based Expert System .. 52

5.1.4. Expert System Characteristic .. 52

5.1.5. Forward Chaining and Backward Chaining.. 56

5.1.6. Conflict Resolution .. 59

5.1.7. Metaknowledge .. 60

5.1.8. Advantages of Expert System .. 61

5.2. List of Problems ... 61

5.3. Phases of Laboratory Exercises ... 62

4

5

5.4. Hints for the List of Problems .. 63

Part 6. Fuzzy Logic ... 64

6.1. Theoretical Background ... 65

6.1.1 Fuzzy Set Theory.. 65

6.1.2. Fuzzy Set Operations ... 69

6.1.3. Fuzzy Logic ... 70

6.1.4. Fuzzy Knowledge – Based Systems ... 72

6.1.5. Development of Fuzzy Expert Systems ... 80

6.1.6. Tuning Fuzzy Systems .. 80

6.2. List of Problems ... 81

6.3. Phases of Laboratory Exercises ... 81

6.4. Hints for the List of Problems .. 81

References ... 83

5

6

Part 1. Multilayer Perceptron

7

1.1. Theoretical Background

1.1.1. Introduction

The Multilayer Perceptron is an example of an artificial neural network that is

used extensively for the solution of a number of different problems, including pattern

recognition and interpolation. It is a development of the Perceptron neural network

model, that was originally developed in the early 1960s but found to have serious

limitations.

Artificial Neural Networks (ANNs) attempt to model the functioning of the

human brain. The human brain for example consists of billions of individual cells called

neurons. It is believed by many (the issue is contentious) that all knowledge and

experience is encoded by the connections that exist between neurons. Given that the

human brain consists of such a large number of neurons (so many that it is impossible to

count them with any certainty), the quantity and nature of the connections between

neurons is, at present levels of understanding, almost impossible to assess. The issues as

to whether information is actually encoded at neural connections (and not at the

quantum level for example, as argued by some authors – see Roger Penrose “The

Emperor's New Mind"), is beyond the scope of this course. The assumption that one can

encode knowledge neutrally has led to some interesting and challenging algorithms for

the solution of AI problems, including the Perceptron and the Multilayer Perceptron

(MLP).

Neurons can be modelled as simple input-output devices, linked together in a

network. Input is received from neurons found lower down a processing chain, and the

output transmitted to neurons higher up the chain. When a neuron fires, it passes

information up the processing chain. This inherent simplicity makes neurons fairly

straightforward entities to model. It is in modelling the connections that the greatest

challenges occur. When real neurons fire, they transmit chemicals (neurotransmitters) to

the next group of neurons up the processing chain alluded to in the previous subsection.

7

8

These neurotransmitters form the input to the next neuron, and constitute the messages

neurons send to each other. These messages can take one of two different forms:

– excitation – excitatory neurotransmitters increase the likelihood of the next neuron in

the chain to fire,

– inhibition – inhibitory neurotransmitters decrease the likelihood of the next neuron to

fire.

If we can model neurons as simple switches, we model connections between

neurons as matrices of numbers (called weights), such that positive weights indicate

excitation, negative weights indicate inhibition. How learning is modelled depends on

the paradigm used.

1.1.2. Learning Modelling

Using artificial neural networks it is impossible to model the full complexity of

the brain of anything other than the most basic living creatures, and generally ANNs

will consist of at most a few hundred (or few thousand) neurons, and very limited

number of connections between them. Nonetheless quite small neural networks have

been used to solve what have been quite difficult computational problems. Generally

Artificial Neural Networks are basic input and output devices, with the neurons

organized into layers. Simple Perceptrons consist of a layer of input neurons, coupled

with a layer of output neurons, and a single layer of weights between them (Fig. 1.1.).

Fig. 1.1. Simple Perceptron Architecture

Input Layer Output Layer

Middle Layer

I
n
 p

 u
 t

 S

 i
 g

 n
 a

 l
 s

O
 u

 t
 p

 u
 t

 S

 i
 g

 n
 a

 l
 s

8

9

The learning process consists of finding the correct values for the weights

between the input and output layer. The schematic representation given in (Fig. 1.1.) is

often how neural nets are depicted in the literature, although mathematically it is useful

to think of the input and output layers as vectors of values (I and O respectively), and

the weights as a matrix. We define the weight matrix Wio as an i o matrix, where i is

the number of input nodes, and o is the number of output nodes. The network output is

calculated as follows:

 O = f(IWio) (1.1)

Generally the data is presented at the input layer, the network then processes the

input by multiplying it by the weight layer. The result of this multiplication is processed

by the output layer nodes, using a function that determines whether or not the output

node fires. The process of finding the correct values for the weights is called the

learning rule, and the process involves initialising the weight matrix to a set of random

numbers between -1 and +1. Then as the network learns, these values are changed until

it has been decided that the network has solved the problem. Finding the correct values

for the weights is achieved by using a learning paradigm called supervised learning.

Supervised learning is sometimes referred to as training. The some testing data is used

to train the network, this constitutes input data for which the correct output is known.

Starting with random weights, an input pattern is presented to the network, which makes

an initial guess as to what the correct output should be. During the training phase, the

difference between the guess made by the network and the correct value for the output

is assessed, and the weights are changed in order to minimise the error. The error

minimisation technique is based on traditional gradient descent techniques. While this

may sound frighteningly mathematical, the actual functions used in neural networks to

make the corrections to the weights are chosen because of their simplicity, and the

implementation of the algorithm is invariably uncomplicated.

9

10

1.1.3. Activation Function

The basic model of a neuron used in Perceptrons and MLPs is the McCulloch-

Pitts model, which dates from the late 1940s. This modelled a neuron as a simple

threshold function:

00

01
)(

x

x
xf (1.2)

This activation function was used in the Perceptron neural network model, and

as can be seen this is a relatively straightforward activation function to implement.

1.1.4. Learning Rule

The Perceptron learning rule is comparatively straightforward. Starting with a

matrix of random weights, we present a training pattern to the network, and calculate

the network output. We determine an error function E:

 E(O) = (T - O) (1.3)

Where in this case T is the target output vector for a training input. In order to

determine how the weights should change, this function has to be minimised. What this

means is to find the point at which the function reaches its minimum value. The

assumption we make about the error function is that if we were to plot all of its potential

values into a graph, it would be shaped like a bowl, with sides sloping down to a

minimum value at the bottom.

In order to find the minimum values of a function, differentiation is used.

Differentiation is used to give the rate at which functions change, and is often defined as

the tangent on a curve at a particular point. If our function is perfectly bowl shaped,

then there will be only one point at which the minimum value of a function has a

tangent of zero (i.e. have a perfectly at tangent), and that is at its minimum point.

In neural network programming the intention is to assess the effect of the

weights on the overall error function. We can take (1.3) and combine it with (1.1) to

obtain the following:

10

11

 E(O) = (T - O) = T – f(IWio) (1.4)

We then differentiate the error function with respect to the weight matrix. The

discussion on Multilayer Perceptrons will look at the issues of function minimisation in

greater detail. Function minimisation in the Simple Perceptron Algorithm is very

straightforward. We consider the error of each individual output node, and add that error

to the weights feeding into that node. The Perceptron learning algorithm works as

follows:

1. initialise the weights to random values in range [-1, 1],

2. present an input pattern to the network,

3. calculate the network output,

4. for each node n in the output layer...

(a) calculate the error En = Tn - On,

(b) add En to all of the weights that connect to node n (add En to column n of

the weight matrix,

5. repeat the process from 2. for the next pattern in the training set.

This is the essence of the Perceptron algorithm. It can be shown that this

technique minimizes the error function. In its current form it will work, but the time

taken to converge to a solution (i.e. the time taken to find the minimum value) may be

unpredictable, because adding the error to the weight matrix is something of a 'blunt

instrument' and results in the weights gaining high values if several iterations are

required to obtain a solution. This is akin to taking large steps around the bowl in order

to find the minimum value. If smaller steps are taken, we are more likely to find the

bottom.

In order to control the convergence rate and reduce the size of the steps being

taken, a parameter called a learning rate is used. This parameter is set to a value that is

less than one, and means that the weights are updated in smaller steps (using a fraction

of the error). The weight update rule becomes the following:

 Wio(t + 1) = Wio(t) + εEn (1.5)

11

12

Which means that the weight value at iteration t + 1 of the algorithm, is

equivalent to a fraction of the error εEn added to the weight value at iteration t.

1.1.5. MLP Learning Algorithm

The principle weakness of the Perceptron was that it could only solve problems

that were linearly separable. The simple Perceptron, based on units with a threshold

activation function, could only solve problems that were linearly separable. Many of the

more challenging problems in AI are not linearly separable however, and thus the

Perceptron was discovered to have a crucial weakness, and returning to the problem of

modeling logic gates, the exclusive-or problem (XOR) is in fact not linearly separable.

To obtain a bilinear solution we could add another layer of weights to the simple

Perceptron model, but that brings the problem of assessing what happens in the middle

layer. For a simple task such as the XOR problem, we could fairly easily work out what

expected outputs for the middle layer of units should be, but finding a solution that

would be completely automated would be incredibly difficult.

The essence of the supervised neural network training is to map input to a

corresponding output, and adding an additional layer of weights makes this impossible,

using the threshold function given in (1.2). A better solution to the problem of learning

weights is to use standard optimisation techniques. In this case we identify an error

function which is expressed in terms of the neural network output. The goal of the

network then becomes to find the values for the weights such that the error function is at

its minimum value. Thus gradient descent techniques can then be used to determine the

impact of the weights on the value of the error function.

We need to have an error function that is differentiable, which means it should

be continuous. The threshold function is not continuous, and so is unsuitable. A

function that works in a similar way to the threshold function, but that is differentiable

is the Logistic Sigmoid Function (Fig. 1.2.):

12

13

xe

xf

1

1
)((1.6)

Hyperbolic tangent

Fig. 1.2. Different types of activation function

Adjusting the value of to values of less than one make the slope shallower with the

effect that the output will be less clear (more numbers around the centre of the graph,

rather than clear indications of firing or not firing. Shallower slopes are useful in

interpolation problems.

Step function Sign function

+1

-1

0

+1

-1

0 X

Y

X

Y

+1

-1

0 X

Y

Sigmoid function

+1

-1

0 X

Y

Linear function

0 if ,0

0 if ,1

X

X
Y step

0 if ,1

0 if ,1

X

X
Y sign

X

sigmoid

e
Y

1

1
XY linear

1

-1

g(a)

a3-3

 aag tanh)(

13

14

This function, when viewed in profile behaves in a very similar way to the threshold

function, with x values above zero tending to one, and values below zero tending to

zero. This function is continuous, and it can be shown that its derivative is as follows:

))(1)(()(' xfxfxf lsflsflsf (1.7)

Because the function is differentiable, it is possible to develop a method of

adjusting the weights in a Perceptron over as many layers as may be necessary.

The basic MLP learning algorithm is outlined below. This is what you should attempt to

implement.

1. Initialise the network, with all weights set to random numbers between -1 and +1.

2. Present the first training pattern, and obtain the output.

3. Compare the network output with the target output.

4. Propagate the error backwards.

(a) Correct the output layer of weights using the following formula:

)(hohoho oww (1.8)

where who is the weight connecting hidden unit h with output unit o, η is the

learning rate, oh is the output at hidden unit h. δo is given by the following:

))(1(ooooo otoo (1.9)

where oo is the output at node o of the output layer, and t - o is the target output

for that node.

(b) Correct the input weights using the following formula:

)(ihihih oww (1.10)

where wih is the weight connecting node i of the input layer with node h of the

hidden layer, oi is the input at node i of the input layer, η is the learning rate. δh

is calculated as follows:

o

hoohhh woo)()1((1.11)

14

15

5. Calculate the error by taking the average difference between the target and the

output vector. For example, the following function could be used:

p

ot
E

p

n oo

1

2)(
 (1.12)

where p is the number of units in the output layer.

6. Repeat from 2 for each pattern in the training set to complete one epoch.

7. Shuffle the training set randomly. This is important in order to prevent the network

from being influenced by the order of the data.

8. Repeat from step 2 for a set number of epochs, or until the error ceases to change.

1.2. List of Problems

1. Traffic signs recognition using a Multilayer Perceptron.

2. Thermal pictures of human faces recognition by a Multilayer Perceptron.

3. Translation system based on a Multilayer Perceptron: pictures of characters and

digits into a Braille alphabet signs.

4. Translation system based on Multilayer Perceptron: pictures of characters into a

Morse alphabet signs.

5. Neural network as device for a function approximation.

6. Neural network as an inverted pendulum controller.

1.3. Phases of Laboratory Exercises

1. Check and improve the necessary softcomputing knowledge.

2. Prepare and collect the necessary data sets: for training and for testing.

15

16

3. Realise the necessary data preprocessing and/or data postprocessing using different

types of ready-to-use software or by “hand-made” software prepared by the

laboratory group.

4. Prepare your own software to implement the proper softcomputing algorithms. The

main goal is to create the correctly working engine, user interface utilities are not so

important. The software environments and systems you can use for implementation

are limited, but the actual possibilities ought to be discussed with the laboratory

supervisor.

5. Turn on and tune the prepared software engine, supply the input training and/or

testing data. If the engine works correctly, check what happens when the starting

point parameters change, explore the sensitivity of engine for the different sets of

available parameters and find the solution of the problem. At the end, check if the

used softcomputing solution is correctly fitted to the problem.

6. Prepare the final report including the following parts:

– the short description of the problem with necessary assumptions,

– definitions and descriptions of the training and testing sets of input data with

description of the preprocessing procedures,

– definitions and descriptions of the of output data with description of the

postprocessing procedures,

– description of the tuned topology and parameters of the prepared softcomputing

engine,

– detailed results analysis and final remarks.

1.4. Hints for the List of Problems

Problem No. 1

1. The graphical definitions of the road signs are described in the Traffic Law – use

them.

2. Create the training and the testing tests by choosing the subset of signs from

each category.

16

17

3. Set the uniform size – measured in pixels – for all traffic signs pictures, reduce

the size as much as possible but remember to preserve the most important details

of the picture.

4. Convert the traffic signs pictures to gray-scale or to black and white

representation.

5. Each pixel is a single component of the input vector for Multilayer Perceptron,

do not forget to normalise the pixel values.

6. Train the Multilayer Perception by the training set of pictures, check it using the

testing set and corrupted pictures of the signs, discuss the type of corruptions

with the laboratory supervisor.

Problem No. 2

1. Thermal pictures of human faces are available from the laboratory supervisor –

use them.

2. Divide the available set of pictures into two separable sets: for training and for

testing.

3. Set the uniform size – measured in pixels – for all pictures, reduce the size as

much as possible but remember to preserve the most important details of the

picture.

4. Convert the pictures to gray-scale representation.

5. Each pixel is a single component of the input vector for Multilayer Perceptron,

do not forget to normalise the pixel values.

6. Train the Multilayer Perception by the training set of pictures, check it using the

testing set and corrupted pictures of the signs, discuss the type of corruptions

with the laboratory supervisor.

Problem No. 3

1. The Braille Alphabet signs represent the visible characters and digits by the set

of convexities in special raster. The size of raster is not uniform – so it is

necessary to choose the subset of characters and/or digits represented by the

raster of the identical size.

2. Code the convexity/no convexity in the raster by binary representation: 1 or 0.

3. Choose the printable font of visible characters in black and white representation.

17

18

4. Divide the available set of pictures into two separable sets: for training and for

testing.

5. Set the uniform size – measured in pixels – for all pictures of characters, reduce

the size as much as possible but remember to preserve the most important details

of the picture.

6. Each pixel is single component of the input vector for Multilayer Perceptron.

7. Train the Multilayer Perception by the training set of pictures, check it using the

testing set and corrupted pictures of the signs, discuss the type of corruptions

with the laboratory supervisor.

Problem No. 4

1. The Morse Alphabet signs represent the visible characters and digits by the

vector of dashes and dots. The size of the vector is not uniform – so it is

necessary to choose the subset of characters and/or digits represented by the

vector of the identical size.

2. Code the dash/dot in the vector by binary representation: 1 or 0.

3. Choose the printable font of visible characters in black and white representation.

4. Divide the available set of pictures into two separable sets: for training and for

testing.

5. Set the uniform size – measured in pixels – for all pictures of characters, reduce

the size as much as possible but remember to preserve the most important details

of the picture.

6. Each pixel is a single component of the input vector for Multilayer Perceptron.

7. Train the Multilayer Perception by the training set of pictures, check it using the

testing set and corrupted pictures of the signs, discuss the type of corruptions

with the laboratory supervisor.

Problem No. 5

1. Choose the trigonometric function, fix the domain and the calculate the values of

the function. Prepare the samples of the function.

2. Use as training set the samples taken from the begin and from the end of the

fixed domain.

3. The answer of the Multilayer Perceptron should restore the samples from the

middle part of the fixed domain.

18

19

4. Check the distance between the correct function value and the value pointed by

the Multilayer Perceptron.

Problem No. 6

1. The general idea is to substitute the real PID controller by Multilayer Perceptron

based engine. The second Multilayer Perceptron should be used to emulate the

inverted pendulum.

2. Use the results of well-known classic solutions of the inverted pendulum

controller to train the MLP controller.

3. Take the set of well-known observations describing the real inverted pendulum

to train the “MLP pendulum”.

4. It is necessary to find and discuss the relations: velocity, force, angle,

acceleration.

19

20

Part 2. Kohonen Neural Network

21

2.1. Theoretical Background

2.1.1. Introduction

Suppose that an input pattern has N features and is represented by a vector x in

an n-dimensional pattern space. The network maps the input patterns to an output space.

The output space in this case is assumed to be one-dimensional or two-dimensional

arrays of output nodes, which possess a certain topological ordering. The question is

how to train a network so that the ordered relationship can be preserved. Kohonen

proposed to allow the output nodes interact laterally, leading to the self-organising

feature map. This was originally inspired by a biological model. For example a random

sequence of two-dimensional patterns can be mapped to an array of output nodes, with a

preserved topology.

Fig. 2.1. Kohonen Neural Network

2.1.2. Retrieving Phase of Kohonen Neural Network Algorithm

During the retrieving phase all neurons from Kohonen map calculate the

Euclidean distance between the weights and the output vector and the winner neuron is

the one with the shortest distance. So each neuron from Kohonen map calculates the

output value according to the classical weighted sum:

21

22

1

0

),(
N

l

lijl wxjiOut (2.1)

where:

Out(i, j) – output value calculated by single neuron from Kohonen map indexed

by (i, j) if Kohonen map is rectangular, for 1-D Kohonen map we have

only single index i,

xl – component of N-elements size input vector,

wlij – weight associated with connection from component of input learning

vector xl and neuron indexed by (i, j) if Kohonen map is rectangular, for

1-D Kohonen map we have only a single index i.

2.1.3. Classic Learning Algorithm for Kohonen Neural Network

The most prominent feature is the concept of excitatory learning within a

neighbourhood of the wining neuron. The size of the neighbourhood slowly decreases

with each iteration. The selection of a winner can be modulated by the frequency

sensitivity of the output nodes. The other possible way is to modulate the learning rate

by the frequency sensitivity. It is hard to say which solution is better or more accurate.

So for the discussion presented below we decided for the second possibility.

The learning algorithm is based on the Grossberg rule. All weights are modified

according to the following equation:

))()(,,,()()()1(kwxjijikkwkw lijl
ww

lijlij (2.2)

where:

k – iteration index,

 – learning rate function,

xl – component of input learning vector

wlij – weight associated with connection from component of input learning vector xl

and neuron indexed by (i, j) if Kohonen map is rectangular, for 1-D Kohonen

map we have only a single index i.

22

23

 – neighbourhood function, (i
w
 ,j

w
) – indexes related to winner neuron, (i, j) –

indexes related to single neuron from Kohonen map

The learning rate is a decreasing function, for presented discussion we assume

a linear decreasing form. Learning rate function is responsible for the number of

iterations – it marks the end of learning process. This way there isn't any factor to

determine if number of iterations is satisfactory.

The neighbourhood function – often called Mexican Hat – could be realised in

many different ways. The main problem is to determine a group of neurons which are

neighbours of the winner neuron. These neurons increase their output value during

single learning step.

The maximum gain is related to the winner, if neighbourhood neuron is further

to the winner this increase is less significant. Neurons which are not neighbours should

decrease their output value or their output value should not change. The presented

solution is based on the following description of the neighbourhood function:

(2.3)

where:

a – neighbourhood parameter, can be changed during learning algorithm

r – distance from winner neuron to each single neuron from Kohonen map,

calculated by indexes of neurons as follows: (2.4)

rvaluesotherfor
a

rfor
ar

ar
rfor

jiji ww

0

)
2

,0(
)sin(

01

),,,(

22)()(jjiir ww

23

24

The learning procedure is iterative. The whole algorithm can be described by following

steps:

1. All weights are initialised by random values generated from range (-1, 1).

2. The winner neuron for each learning vector is created by calculating the net output

using random values of weights with ordinary Kohonen map retrieving algorithm.

3. All weights are modified using Grossberg rule (2.1) for single learning vector xl

using current value of learning rate function as well as current value of

neighbourhood function assuming the proper winner neuron created in step 2.

4. The learning rate function value is modified, the neighbourhood parameter a (2.2)

is modified and if the learning rate function value is greater than zero step 3 is

executed for the next learning vector, else the learning algorithm stops.

2.2. List of Problems

1. Traffic signs recognition using a Kohonen Neural Network.

2. Thermal pictures of human faces recognition by a Kohonen Neural Network.

3. Picture compression using a Kohonen Neural Network.

4. Human recognition based on a fingerprint by a Kohonen Neural Network.

2.3. Phases of Laboratory Exercises

1. Check and improve the necessary softcomputing knowledge.

2. Prepare and collect the necessary data sets: for training and for testing.

3. Realise the necessary data preprocessing and/or data postprocessing using different

types of ready-to-use software or by “hand-made” software prepared by the

laboratory group.

4. Prepare your own software to implement the proper softcomputing algorithms. The

main goal is to create the correctly working engine, user interface utilities are not

so important. The software environments and systems you can use for

24

25

implementation are limited, but the actual possibilities ought to be discussed with

the laboratory supervisor.

5. Turn on and tune the prepared software engine, supply the input training and/or

testing data. If the engine works correctly, check what happens when the starting

point parameters change, explore the sensitivity of engine for the different sets of

available parameters and find the solution of the problem. At the end, check if the

used softcomputing solution is correctly fitted to the problem.

6. Prepare the final report including the following parts:

– the short description of the problem with necessary assumptions,

– definitions and descriptions of the training and testing sets of input data with

description of the preprocessing procedures,

– definitions and descriptions of the of output data with description of the

postprocessing procedures,

– description of the tuned topology and parameters of the prepared softcomputing

engine,

– detailed results analysis and final remarks.

2.4. Hints for the List of Problems

Problem No. 1

1. The graphical definitions of the road signs are described in the Traffic Law – use

them.

2. Create the training and the testing tests by choosing the subset of signs from

each category.

3. Set the uniform size – measured in pixels – for all traffic signs pictures, reduce

the size as much as possible but remember to preserve the most important details

of the picture.

4. Convert the traffic signs pictures to gray-scale or to black and white

representation.

5. Each pixel is a single component of the input vector for Kohonen Neural

Network, do not forget to normalise the pixel values.

25

26

6. Train the Kohonen Neural Network by the training set of pictures, check it using

the testing set and corrupted pictures of the signs, discuss the type of corruptions

with the laboratory supervisor.

Problem No. 2

1. Thermal pictures of human faces are available from the laboratory supervisor –

use them.

2. Divide the available set of pictures into two separable sets: for training and for

testing.

3. Set the uniform size – measured in pixels – for all pictures, reduce the size as

much as possible but remember to preserve the most important details of the

picture.

4. Convert the pictures to gray-scale representation.

5. Each pixel is a single component of the input vector for a Kohonen Neural

Network, do not forget to normalise the pixel values.

6. Train the Kohonen Neural Network by the training set of pictures, check it using

the testing set and corrupted pictures of the signs, discuss the type of corruptions

with the laboratory supervisor.

Problem No. 3

1. Choose not too large picture recorded in grey scale.

2. Divide the picture into equal rectangular pieces. Each piece is a single training

vector for the Kohonen Neural Network.

3. Each pixel is single component of the input vector for the Kohonen Neural

Network, do not forget to normalise the pixel values.

4. Train step by step the Kohonen Neural Network using the pieces of the picture.

Create this way the set of “neurons-winners” responsible for the pieces of the

picture.

5. The weight vectors of the “neurons-winners” aggregate the data about the whole

pieces of the picture. The lower number of the “neurons-winners” mean the

better compression factor.

6. Calculate the compression factor as the function of number of pieces

7. Repeat the experiment with different pictures – try to choose the pictures

characterised by variant dynamic scale.

26

27

Problem No. 4

1. Find the available fingerprint database. Choose the subset of fingerprint pictures

– each person ought to be described by the same number of prints.

2. Divide the available set of pictures into two separable sets: for training and for

testing.

3. Set the uniform size – measured in pixels – for all pictures, reduce the size as

much as possible but remember to preserve the most important details of the

picture.

4. Convert the fingerprint pictures to gray-scale or to black and white

representation.

5. Each pixel is a single component of the input vector for a Kohonen Neural

Network, do not forget to normalise the pixel values.

6. Train the Kohonen Neural Network by the training set of pictures, check it using

the testing set and corrupted pictures of the fingerprints, discuss the type of

corruptions with the laboratory supervisor.

27

28

Part 3. Hopfield Neural Network

29

3.1. Theoretical Background

3.1.1. Hopfield Neural Network

The binary Hopfield net has a single layer of processing elements, which are

fully interconnected - each neuron is connected to every other unit. Each

interconnection has an associated weight. We let wji denote the weight to unit j from

unit i. In Hopfield network, the weight wij and wji has the same value. Mathematical

analysis has shown that when this equality is true, the network is able to converge. The

inputs are assumed to take only two values: 1 and -1. The network has N nodes

containing hard limiting nonlinearities. The output of node i is fed back to node j via

connection weight wij.

Fig. 3.1. Hopfield neural network

29

30

3.1.2. Retrieving Phase

During the retrieving algorithm each neuron performs the following two steps [2]:

Step 1 – computes the coproduct:

p pj

j

N

j pk w v k () ()

1
1

 (3.1)

where:

wpj – weight related to feedback signal,

vi(k) – feedback signal,

p – bias,

Step 2 – updates the state:

0)1(1

0)1()(
0)1(1

)1(

k

kkv

k

kv

p

pp

p

p

for

for

for

 (3.2)

The process is repeated for the next iteration until convergence, which occurs when

none of the elements changes state during any iteration:

p p p pv k v k y () ()1 (3.3)

The initial conditions for the iteration procedure require the following equation:

p p pv x ()0 (3.4)

The converged state of Hopfield net means the net has already reached one of attractors.

An attractor is a point of local minimum of energy function (Liapunov function):

 E x w x x xij i
j

N

i

N

j i
i

N

i()

1

2 11 1
 (3.5)

 xxWxxE
TT

2

1
)((3.6)

30

31

3.1.3. Hebbian Learning Algorithm

The training patterns are presented one by one in a fixed time interval. During

this interval, each input data is communicated to its neighbour N times:

ji

jixx
w

for

for
N

M

m

m

j

m

i

ij

0
1

)()(1
 (3.7)

The realisation of Hebbian learning algorithm is very easy, but the algorithm results in

rather low capacity of the net:

 Mmax = 0,138 N (3.8)

where:

Mmax - maximum number of training vectors,

M - number of training vectors

3.1.4. Delta-Rule Learning Algorithm

The weights are calculated in recurrent way including all training patterns, according to

the following matrix equation:

 Tiii xWxx
N

WW)()()(

 (3.9)

where:

 [0,7, 0,9] - learning rate,

N - number of neurons,

W - matrix of weights,

x - input vector.

The learning rate has the same influence on the training process as a learning

rate that appeared with the multilayer networks. The learning process stops when the

next training step generates the changes of weights which are less than the established

tolerance .

31

32

The Delta-Rule learning algorithm provides very good robustness of the network

for the failed input vectors and as good as possible capacity of the net – equal to the

number of neurons:

 Mmax = N (3.10)

3.1.5. Pseudoinverse Learning Algorithm

To calculate the proper values of weights we need the full set of the training

vectors. The correct weight values means that the input signal generates itself as output

and the converged state is available at once:

 XXW (3.11)

One of the possible solutions can be found as follow:

 XXXXW
TT

1

 (3.12)

The algorithm is sophisticated, but guarantees the robustness and capacity of the

network at the level close to the net trained by the Delta-Rule algorithm:

 Mmax = N (3.13)

3.2. List of Problems

1. Traffic signs recognition using a Hopfield Neural Network.

2. Thermal pictures of human faces recognition by a Hopfield Neural Network.

3. Human recognition based on a fingerprint by a Hopfield Neural Network.

3.3. Phases of Laboratory Exercises

1. Check and improve the necessary softcomputing knowledge.

2. Prepare and collect the necessary data sets: for training and for testing.

32

33

3. Realise the necessary data preprocessing and/or data postprocessing using different

types of ready-to-use software or by “hand-made” software prepared by the

laboratory group.

4. Prepare your own software to implement the proper softcomputing algorithms. The

main goal is to create the correctly working engine, user interface utilities are not so

important. The software environments and systems you can use for implementation

are limited, but the actual possibilities ought to be discussed with the laboratory

supervisor.

5. Turn on and tune the prepared software engine, supply the input training and/or

testing data. If the engine works correctly, check what happens when the starting

point parameters change, explore the sensitivity of engine for the different sets of

available parameters and find the solution of the problem. At the end, check if the

used softcomputing solution is correctly fitted to the problem.

6. Prepare the final report including the following parts:

– the short description of the problem with necessary assumptions,

– definitions and descriptions of the training and testing sets of input data with

description of the preprocessing procedures,

– definitions and descriptions of the of output data with description of the

postprocessing procedures,

– description of the tuned topology and parameters of the prepared softcomputing

engine,

– detailed results analysis and final remarks.

3.4. Hints for the List of Problems

Problem No. 1

1. The graphical definitions of the road signs are described in the Traffic Law – use

them.

2. Create the training and the testing tests by choosing the subset of signs from

each category.

33

34

3. Set the uniform size – measured in pixels – for all traffic signs pictures, reduce

the size as much as possible but remember to preserve the most important details

of the picture.

4. Convert the traffic signs pictures to black and white representation.

5. Each pixel is a single component of the input vector for a Hopfield Neural

Network.

6. Train the Hopfield Neural Network by the training set of pictures, check it using

the testing set and corrupted pictures of the signs, discuss the type of corruptions

with the laboratory supervisor.

7. Compare the results of the recognition if the net is trained according to three

basic training methods.

Problem No. 2

1. Thermal pictures of human faces are available from the laboratory supervisor –

use them.

2. Divide the available set of pictures into two separable sets: for training and for

testing.

3. Set the uniform size – measured in pixels – for all pictures, reduce the size as

much as possible but remember to preserve the most important details of the

picture.

4. Convert the pictures to black and white representation.

5. Each pixel is a single component of the input vector for a Hopfield Neural

Network.

6. Train the Hopfield Neural Network by the training set of pictures, check it using

the testing set and corrupted pictures of the signs, discuss the type of corruptions

with the laboratory supervisor.

7. Compare the results of the recognition if the net is trained according to the three

basic training methods.

Problem No. 3

1. Find the available fingerprint database. Choose the subset of fingerprint pictures

– each person ought to be described by the same number of prints.

2. Divide the available set of pictures into two separable sets: for training and for

testing.

34

35

3. Set the uniform size – measured in pixels – for all pictures, reduce the size as

much as possible but remember to preserve the most important details of the

picture.

4. Convert the fingerprint pictures to black and white representation.

5. Each pixel is a single component of the input vector for a Hopfield Neural

Network.

6. Train the Hopfield Neural Network by the training set of pictures, check it using

the testing set and corrupted pictures of the fingerprints, discuss the type of

corruptions with the laboratory supervisor.

7. Compare the results of the recognition if the net is trained according to the three

basic training methods.

35

36

Part 4. Genetic Algorithms

37

4.1. Theoretical Background

4.1.1. Introduction

Genetic Algorithms are a family of computational models inspired by evolution.

These algorithms encode a potential solution to a specific problem on a simple

chromosome-like data structure and apply recombination operators to these structures

so as to preserve critical information. Genetic algorithms are often viewed as function

optimizer, although the range of problems to which genetic algorithms have been

applied is quite broad.

An implementation of a genetic algorithm begins with a population of (typically

random) chromosomes. One then evaluates these structures and allocates reproductive

opportunities in such a way that those chromosomes which represent a better solution to

the target problem are given more chances to “reproduce” than those chromosomes

which are poorer solutions. The “goodness” of a solution is typically defined with

respect to the current population.

This particular description of a genetic algorithm is intentionally abstract

because in some sense, the term genetic algorithm has two meanings. In a strict

interpretation, the genetic algorithm refers to a model introduced and investigated by

John Holland (1975) and by students of Holland (e.g., DeJong 1975). It is still the case

that most of the existing theory for genetic algorithms applies either solely or primarily

to the model introduced by Holland, as well as variations on what will be referred to in

this book as the canonical genetic algorithm. Recent theoretical advances in modeling

genetic algorithms also apply primarily to the canonical genetic algorithm (Vose, 1993).

In a broader usage of the term, a genetic algorithm is any population-based model that

uses selection and recombination operators to generate new sample points in a search

space. Many genetic algorithm models have been introduced by researchers largely

working from an experimental perspective. Many of these researches are application

oriented and are typically interested in genetic algorithms as optimisation tools.

37

38

4.1.2. Encodings and Optimisation Problems

Usually there are only two main components of most genetic algorithms that are

problem dependent: the problem encoding and the evaluation function.

Consider a parameter optimization problem where we must optimize a set of

variables either to maximize some target, such as profit, or to minimize cost or some

measure of error. We might view such a problem as a black box with a series of control

dials representing different parameters; the only output of the black box is a value

returned by an evaluation function indicating how well a particular combination of

parameter settings solves the optimization problem. The goal is to set the various

parameters so as to optimize some output. In more traditional terms, we wish to

minimize (or maximize) some function F(X1, X2, ..., XM).

Most users of genetic algorithms typically are concerned with problems that are

nonlinear. This also often implies that it is not possible to treat each parameter as an

independent variable which can be solved in isolation from the other variables. There

are interactions such that the combined effects of the parameters must be considered in

order to maximize or minimize the output of the black box. In the genetic algorithm

community, the interaction between variables is sometimes referred to as epitasis.

The first assumption that is typically made is that the variables representing

parameters can be represented by bit strings. This means that the variables are discrete

in an a priori fashion, and that the range of the digitising corresponds to a power of two.

For example, with 10 bits per parameter, we obtain a range with 1024 discrete values. If

the parameters are actually continuous then this digitisation is not a particular problem.

This assumes, of course, that the digitisation provides enough resolution to make it

possible to adjust the output with the desired level of precision. It also assumes that the

digitisation is in some sense representative of the underlying function.

If some parameter can only take on an exact finite set of values then the coding

issue becomes more difficult. For example, what if there are exactly 1200 discrete

values which can be assigned to some variable Xi. We need at least 11 bits to cover this

38

39

range, but this codes for a total of 2048 discrete values. The 848 unnecessary bit

patterns may result in no evaluation, a default worst possible evaluation, or some

parameter settings may be represented twice so that all binary strings result in a legal set

of parameter values. Solving such coding problems is usually considered to a part of the

design of the evaluation function.

Aside from the coding issue, the evaluation function is usually given as part of

the problem description. On the other hand, developing an evaluation function can

sometimes involve developing a simulation. In other cases, the evaluation may be

performance based and may represent only an approximate or partial evaluation. For

example, consider a control application where the system can be in any one of an

exponentially large number of possible states. Assume a genetic algorithm is used to

optimize some form of control strategy. In such cases, the state space must be sampled

in a limited fashion and the resulting evaluation of control strategies is approximate and

noisy (c.f., Fitzpatrick and Grefenstette, 1988).

The evaluation function must also be relatively fast. This is typically true for any

optimization method, but it may particularly pose an issue for genetic algorithms. Since

a genetic algorithm works with a population of potential solutions, it incurs the cost of

evaluating this population. Furthermore, the population is replaced (all or in part) on a

generational basis. The members of the population reproduce, and their offspring must

then be evaluated. If it takes 1 hour to do an evaluation, then it takes over 1 year to do

10000 evaluations. This would be approximately 50 generations for a population of only

200 strings.

4.1.3. Genetic Algorithm – Selection, Mutation, Recombination

The first step in the implementation of any genetic algorithm is to generate an

initial population. In the canonical genetic algorithm each member of this population

will be a binary string of length L which corresponds to the problem encoding. Each

string is sometimes referred to as a “genotype” (Holland, 1975) or, alternatively, a

39

40

“chromosome” (Schaffer, 1987). In most cases the initial population is generated

randomly. After creating an initial population, each string is then evaluated and

assigned a fitness value.

The notion of evaluation and fitness are sometimes used interchangeably.

However, it is useful to distinguish between the evaluation function and the fitness

function used by a genetic algorithm. The evaluation function, or objective function,

provides a measure of performance with respect to a particular set of parameters. The

fitness function transforms that measure of performance into an allocation of

reproductive opportunities. The evaluation of a string representing a set of parameters is

independent of the evaluation of any other string. The fitness of that string, however, is

always defined with respect to other members of the current population.

In the canonical genetic algorithm, fitness is defined by: fi / f where fi is the

evaluation associated with string i and f is the average evaluation of all the strings in the

population. Fitness can also be assigned based on a string‟s rank in the population

(Baker, 1985; Whitley, 1989) or by sampling methods, such as tournament selection

(Goldberg, 1990).

It is helpful to view the execution of the genetic algorithm as a two stage

process. It starts with the current population. Selection is applied to the current

population to create an intermediate population. Then recombination and mutation are

applied to the intermediate population to create the next population. The process of

going from the current population to the next population constitutes one generation in

the execution of a genetic algorithm. Goldberg (1989) refers to this basic

implementation as a Simple Genetic Algorithm (SGA).

We will first consider the construction of the intermediate population from the

current population. In the first generation the current population is also the initial

population. After calculating fi / f for all the strings in the current population, selection is

carried out. In the canonical genetic algorithm the probability that strings in the current

40

41

population are copied (i.e., duplicated) and placed in the intermediate generation is

proportional to their fitness.

Fig. 4.1. One generation is broken down into a selection phase and recombination phase

There are many ways to do selection. We might view the population as mapping

onto a roulette wheel, where each individual is represented by a space that

proportionally corresponds to its fitness. By repeatedly spinning the roulette wheel,

individuals are chosen using “stochastic sampling with replacement” to fill the

intermediate population.

A selection process that will more closely match the expected fitness values is

“remainder stochastic sampling”. For each string i where fi / f is greater than 1.0, the

integer portion of this number indicates how many copies of that string are directly

placed in the intermediate population. All strings (including those with fi / f less than

1.0) then place additional copies in the intermediate population with a probability

corresponding to the fractional portion of fi / f. For example, a string with fi / f = 1.36

places 1 copy in the intermediate population, and then receives a 0.36 chance of placing

41

42

a second copy. A string with a fitness of fi / f = 0.54 has a 0.54 chance of placing one

string in the intermediate population.

“Remainder stochastic sampling” is most efficiently implemented using a

method known as Stochastic Universal Sampling. Assume that the population is laid out

in random order as in a pie graph, where each individual is assigned space on the pie

graph in proportion to fitness. Next an outer roulette wheel is placed around the pie with

N equally spaced pointers. A single spin of the roulette wheel will now simultaneously

pick all N members of the intermediate population. The resulting selection is also

unbiased (Baker, 1987).

After selection has been carried out, the construction of the intermediate

population is complete and recombination can occur. This can be viewed as creating the

next population from the intermediate population. Crossover is applied to randomly

paired strings with a probability denoted pc. (The population should already be

sufficiently shuffled by the random selection process). Pick a pair of strings. With

probability pc “recombine” these strings to form two new strings that are inserted into

the next population.

Consider the following binary string: 1101001100101101. The string would

represent a possible solution to some parameter optimization problem. New sample

points in the space are generated by recombining two parent strings. Consider the string

1101001100101101 and another binary string, yxyyxyxxyyyxyxxy, in which the values

0 and 1 are denoted by x and y. Using a single randomly chosen recombination point, 1

point crossover occurs as follows:

11010 \/ 01100101101

yxyyx /\ yxxyyyxyxxy

Swapping the fragments between the two parents produces the following offspring.

11010yxxyyyxyxxy and yxyyx01100101101

42

43

After recombination, we can apply a mutation operator. For each bit in the

population, mutate with some low probability pm. Typically the mutation rate is applied

with less than 1% probability. In some cases, mutation is interpreted as randomly

generating a new bit, in which case, only 50% of the time will the “mutation” actually

change the bit value. In other cases, mutation is interpreted to mean actually flipping the

bit. The difference is no more than an implementation detail as long as the user/reader is

aware of the difference and understands that the first form of mutation produces a

change in bit values only half as often as the second, and that one version of mutation is

just a scaled version of the other.

After the process of selection, recombination and mutation is complete, the next

population can be evaluated. The process of evaluation, selection, recombination and

mutation forms one generation in the execution of a genetic algorithm.

4.1.4. Crossover Operation Details

The general idea of the crossover operation is to exchange of “genetic material”

between two individuals from population. The exchange between parents generates

children – the new individuals. Finally the parents are substituted by children in

population.

Fig. 4.2. Crossover operation

43

44

Steps of the crossover operation:

- select couples of chromosomes from parents set randomly according to a crossover

probability pc (0.5, 1),

- choose a point of crossing lk (gene‟s position in chromosome) as a number from

[1, L-1], L – length of chromosome,

- descendants creation by parents genes exchange.

Fig. 4.3. Types of crossover operation

4.2. List of Problems

1. Genetic Algorithms for minima search of multimodal functions.

2. Genetic Algorithms for maxima search of multimodal functions.

4.3. Phases of Laboratory Exercises

1. Check and improve the necessary softcomputing knowledge.

2. Prepare and collect the necessary data sets: for training and for testing.

44

45

3. Realise the necessary data preprocessing and/or data postprocessing using different

types of ready-to-use software or by “hand-made” software prepared by the

laboratory group.

4. Prepare your own software to implement the proper softcomputing algorithms. The

main goal is to create the correctly working engine, user interface utilities are not so

important. The software environments and systems you can use for implementation

are limited, but the actual possibilities ought to be discussed with the laboratory

supervisor.

5. Turn on and tune the prepared software engine, supply the input training and/or

testing data. If the engine works correctly, check what happens when the starting

point parameters change, explore the sensitivity of engine for the different sets of

available parameters and find the solution of the problem. At the end, check if the

used softcomputing solution is correctly fitted to the problem.

6. Prepare the final report including the following parts:

– the short description of the problem with necessary assumptions,

– definitions and descriptions of the training and testing sets of input data with

description of the preprocessing procedures,

– definitions and descriptions of the of output data with description of the

postprocessing procedures,

– description of the tuned topology and parameters of the prepared softcomputing

engine,

– detailed results analysis and final remarks.

4.4. Hints for the List of Problems

Problem No. 1

1. Choose the representative of the polynomial type of function.

2. Fix the domain and the value of the function.

3. Divide the fixed domain into intervals.

4. Using the known set of genetic algorithm operations find the possible minima in

each interval.

45

46

5. Check the influence of the interval division for the achieved results.

6. Find the optimal interval division for chosen function.

Problem No. 2

1. Choose the representative of the polynomial type of function.

2. Fix the domain and the value of the function.

3. Divide the fixed domain into intervals.

4. Using the known set of genetic algorithm operations find the possible maxima in

each interval.

5. Check the influence of the interval division for the achieved results.

6. Find the optimal interval division for chosen function.

46

47

Part 5. Expert Systems

48

5.1. Theoretical Background

5.1.1. Knowledge and its Representation

Knowledge is a theoretical or practical understanding of a subject or a domain.

Knowledge is also the sum of what is currently known, and apparently knowledge is

power. Those who possess knowledge are called experts. Anyone can be considered a

domain expert if he or she has deep knowledge (of both facts and rules) and strong

practical experience in a particular domain. The area of the domain may be limited. In

general, an expert is a skilful person who can do things other people cannot. The human

mental process is internal, and it is too complex to be represented as an algorithm.

However, most experts are capable of expressing their knowledge in the form of rules

for problem solving.

 IF the „traffic light‟ is green

 THEN the action is go

 IF the „traffic light‟ is red

 THEN the action is stop

The term rule in AI, which is the most commonly used type of knowledge

representation, can be defined as an IF-THEN structure that relates given information or

facts in the IF part to some action in the THEN part. A rule provides some description

of how to solve a problem. Rules are relatively easy to create and understand. Any rule

consists of two parts: the IF part, called the antecedent (premise or condition) and the

THEN part called the consequent (conclusion or action).

IF antecedent

THEN consequent

A rule can have multiple antecedents joined by the keywords AND

(conjunction), OR (disjunction) or a combination of both.

48

49

 IF antecedent 1 IF antecedent 1

 AND antecedent 2> OR antecedent 2

 . .

 . .

 . .

 AND antecedent n> OR antecedent n

 THEN consequent THEN consequent

The antecedent of a rule incorporates two parts: an object (linguistic object) and

its value. The object and its value are linked by an operator. The operator identifies the

object and assigns the value. Operators such as is, are, is not, are not are used to assign

a symbolic value to a linguistic object. Expert systems can also use mathematical

operators to define an object as numerical and assign it the numerical value.

 IF „age of the customer‟ < 18

 AND „cash withdrawal‟ > 1000

 THEN „signature of the parent‟ is required

Rules can represent relations, recommendations, directives, strategies and heuristics:

Relation

 IF the „fuel tank‟ is empty

 THEN the car is dead

Recommendation

 IF the season is autumn

 AND the sky is cloudy

 AND the forecast is drizzle

 THEN the advice is „take an umbrella‟

49

50

Directive

 IF the car is dead

 AND the „fuel tank‟ is empty

 THEN the action is „refuel the car‟

Strategy

 IF the car is dead

 THEN the action is „check the fuel tank‟;

 step1 is complete

 IF step1 is complete

 AND the „fuel tank‟ is full

 THEN the action is „check the battery‟;

 step2 is complete

Heuristic

 IF the spill is liquid

 AND the „spill pH‟ < 6

 AND the „spill smell‟ is vinegar

 THEN the „spill material‟ is „acetic acid‟

5.1.2. Members of Expert System Development Team

There are five members of the expert system development team: the domain

expert, the knowledge engineer, the programmer, the project manager and the end-

user. The success of their expert system entirely depends on how well the members

work together.

The domain expert is a knowledgeable and skilled person capable of solving

problems in a specific area or domain. This person has the greatest expertise in a given

domain. This expertise is to be captured in the expert system. Therefore, the expert must

be able to communicate his or her knowledge, be willing to participate in the expert

50

51

system development and commit a substantial amount of time to the project. The

domain expert is the most important player in the expert system development team.

The knowledge engineer is someone who is capable of designing, building and

testing an expert system. He or she interviews the domain expert to find out how a

particular problem is solved. The knowledge engineer establishes what reasoning

methods the expert uses to handle facts and rules and decides how to represent them in

the expert system. The knowledge engineer then chooses some development software or

an expert system shell, or looks at programming languages for encoding the knowledge.

And finally, the knowledge engineer is responsible for testing, revising and integrating

the expert system into the workplace.

The programmer is the person responsible for the actual programming,

describing the domain knowledge in terms that a computer can understand. The

programmer needs to have skills in symbolic programming in such AI languages as

LISP, Prolog and OPS5 and also some have experience in the application of different

types of expert system shells. Additionally, the programmer should know conventional

programming languages like C, Pascal, FORTRAN and Basic.

The project manager is the leader of the expert system development team,

responsible for keeping the project on track. He or she makes sure that all deliverables

and milestones are met, interacts with the expert, knowledge engineer, programmer and

end-user. The end-user, often called just the user, is a person who uses the expert

system when it is developed. The user must not only be confident in the expert system

performance but also feel comfortable using it. Therefore, the design of the user

interface of the expert system is also vital for the project‟s success; the end-user‟s

contribution here can be crucial.

51

52

Fig. 5.1. Members of Expert System Development Team

5.1.3. Structure of the Rule-Based Expert System

In the early seventies, a production systems model was proposed as the

foundation of the modern rule-based expert systems. The production model is based on

the idea that humans solve problems by applying their knowledge (expressed as

production rules) to a given problem represented by problem-specific information. The

production rules are stored in the long-term memory and the problem-specific

information or facts in the short-term memory.

5.1.4. Expert System Characteristic

The knowledge base contains the domain knowledge useful for problem

solving. In a rule-based expert system, the knowledge is represented as a set of rules.

Expert System

End-user

Knowledge Engineer ProgrammerDomain Expert

Project Manager

Expert System
Development Team

52

53

Fig. 5.2. Production System Model

Fig. 5.3. Basic Structure of the Rule-Based Expert System

Conclusion

REASONING

Long-term Memory

Production Rule

Short-term Memory

Fact

Inference Engine

Knowledge Base

Rule: IF-THEN

Database

Fact

Explanation Facilities

User Interface

User

53

54

Each rule specifies a relation, recommendation, directive, strategy or heuristic

and has the IF (condition) THEN (action) structure. When the condition part of a rule is

satisfied, the rule is said to fire and the action part is executed. The database includes a

set of facts used to match against the IF (condition) parts of rules stored in the

knowledge base. The inference engine carries out the reasoning, whereby the expert

system reaches a solution. It links the rules given in the knowledge base with the facts

provided in the database. The explanation facilities enable the user to ask the expert

system how a particular conclusion is reached and why a specific fact is needed. An

expert system must be able to explain its reasoning and justify its advice, analysis and

conclusion. The user interface is the means of communication between a user seeking

a solution to the problem and an expert system. An expert system is built to perform at a

human expert level in a narrow, specialised domain. Thus, the most important

characteristics of an expert system is its high-quality performance. No matter how fast

the system can solve a problem, the user will not be satisfied if the result is wrong. On

the other hand, the speed of reaching a solution is very important. Even the most

accurate decision or diagnosis may not be useful if it is too late to apply, for instance, in

an emergency, when a patient dies or a nuclear power plant explodes. Expert systems

apply heuristics to guide the reasoning and thus reduce the search area for a solution. A

unique feature of an expert system is its explanation capability. It enables the expert

system to review its own reasoning and explain its decisions. Expert systems employ

symbolic reasoning when solving a problem. Symbols are used to represent different

types of knowledge such as facts, concepts and rules. Even a brilliant expert is only a

human and thus can make mistakes. This suggests that an expert system built to perform

at a human expert level also should be allowed to make mistakes. But we still trust

experts, even if we recognise that their judgements are sometimes wrong.

Likewise, at least in most cases, we can rely on solutions provided by expert

systems, but mistakes are possible and we should be aware of this. In expert systems,

knowledge is separated from its processing (the knowledge base and the inference

54

55

engine are split up). A conventional program is a mixture of knowledge and the control

structure to process this knowledge. This mixing leads to difficulties in understanding

and reviewing the program code, as any change to the code affects both the knowledge

and its processing. When an expert system shell is used, a knowledge engineer or an

expert simply enters rules in the knowledge base. Each new rule adds some new

knowledge and makes the expert system smarter.

Fig. 5.4. Complete Structure of the Rule-Based Expert System

User

External
Database

External Program

Inference Engine

Knowledge Base

Rule: IF-THEN

Database

Fact

Explanation Facilities

User Interface
Developer

Interface

Expert System

Expert

Knowledge Engineer

55

56

5.1.5. Forward Chaining and Backward Chaining

In a rule-based expert system, the domain knowledge is represented by a set of

IF-THEN production rules and the data is represented by a set of facts about the current

situation. The inference engine compares each rule stored in the knowledge base with

facts contained in the database. When the IF (condition) part of the rule matches a fact,

the rule is fired and its THEN (action) part is executed. The matching of the rule IF

parts to the facts produces inference chains. The inference chain indicates how an

expert system applies the rules to reach a conclusion.

Fig. 5.5. Inference Engine Cycles via Match-Fire Procedure

An example of the inference chain

Rule 1: IF Y is true

 AND D is true

 THEN Z is true

Rule 2: IF X is true

Knowledge Base

Database

Fact: A is x

Match Fire

Fact: B is y

Rule: IF is THEN is A x B y
Rule: IF A is x THEN B is y

 A X

B

E

Y

D

Z

56

57

 AND B is true

 AND E is true

 THEN Y is true

Rule 3: IF A is true

 THEN X is true

Forward chaining is the data-driven reasoning. The reasoning starts from the

known data and proceeds forward with that data. Each time only the topmost rule is

executed. When fired, the rule adds a new fact in the database. Any rule can be executed

only once. The match-fire cycle stops when no further rules can be fired. Forward

chaining is a technique for gathering information and then inferring from it whatever

can be inferred. However, in forward chaining, many rules may be executed that have

nothing to do with the established goal. Therefore, if our goal is to infer only one

particular fact, the forward chaining inference technique would not be efficient.

Fig. 5.6. Forward Chaining

Match Fire

Knowledge Base

Database

A B C D E

X

Match Fire

Knowledge Base

Database

A B C D E

L X

Match Fire

Knowledge Base

Database

A C D E

Y L

B

X

Match Fire

Knowledge Base

Database

A C D E

Z Y

B

L X

Cycle 1 Cycle 2 Cycle 3

X & B & E Y

Z Y & D

L C

L & M

A X

N

X & B & E Y

Z Y & D

L C

L & M

A X

N

X & B & E Y

Z Y & D

L C

L & M

A X

N

X & B & E Y

Z Y & D

L C

L & M

A X

N

57

58

Fig. 5.7. Backward Chaining

Backward chaining is the goal-driven reasoning. In backward chaining, an

expert system has the goal (a hypothetical solution) and the inference engine attempts to

find the evidence to prove it. First, the knowledge base is searched to find rules that

Match Fire

Knowledge Base

Database

A B C D E

X

Match Fire

Knowledge Base

Database

A C D E

Y X

B

Sub-Goal: X Sub-Goal: Y

Knowledge Base

Database

A C D E

Z Y

B

X

Match Fire

Goal: Z

Pass 2

Knowledge Base

Goal: Z

Knowledge Base

Sub-Goal: Y

Knowledge Base

Sub-Goal: X

Pass 1 Pass 3

Pass 5 Pass 4 Pass 6

Database

A B C D E

Database

A B C D E

Database

B C D E A

Y Z

?

X

?

X & B & E Y

L C

L & M

A X

N

Z Y & D

X & B & E Y

Z Y & D

L C

L & M

A X

N

L C

L & M N

X & B & E Y

Z Y & D

A X

X & B & E Y

Z Y & D

L C

L & M

A X

N

X & B & E Y

L C

L & M

A X

N

Z Y & D

X & B & E Y

Z Y & D

L C

L & M

A X

N

58

59

might have the desired solution. Such rules must have the goal in their THEN (action)

parts. If such a rule is found and its IF (condition) part matches data in the database,

then the rule is fired and the goal is proved. However, this is rarely the case. Thus the

inference engine puts aside the rule it is working with (the rule is said to stack) and sets

up a new goal, a subgoal, to prove the IF part of this rule. Then the knowledge base is

searched again for rules that can prove the subgoal. The inference engine repeats the

process of stacking the rules until no rules are found in the knowledge base to prove the

current subgoal.

If an expert first needs to gather some information and then tries to infer from it

whatever can be inferred, he or she chooses the forward chaining inference engine.

However, if your expert begins with a hypothetical solution and then attempts to find

facts to prove it, he or she chooses the backward chaining inference engine.

5.1.6. Conflict Resolution

Lets consider three simple rules for crossing a road:

Rule 1:

 IF the „traffic light‟ is green

 THEN the action is go

Rule 2:

 IF the „traffic light‟ is red

 THEN the action is stop

Rule 3:

 IF the „traffic light‟ is red

 THEN the action is go

We have two rules, Rule 2 and Rule 3, with the same IF part. Thus both of them

can be set to fire when the condition part is satisfied. These rules represent a conflict

59

60

set. The inference engine must determine which rule to fire from such a set. A method

for choosing a rule to fire when more than one rule can be fired in a given cycle is

called conflict resolution. in forward chaining, BOTH rules would be fired. Rule 2 is

fired first as the topmost one, and as a result, its THEN part is executed and linguistic

object action obtains value stop. However, Rule 3 is also fired because the condition

part of this rule matches the fact ‘traffic light’ is red, which is still in the database. As a

consequence, the object action takes new value go.

Fire the rule with the highest priority. In simple applications, the priority can be

established by placing the rules in an appropriate order in the knowledge base. Usually

this strategy works well for expert systems with around 100 rules.

Fire the most specific rule. This method is also known as the longest matching

strategy. It is based on the assumption that a specific rule processes more information

than a general one.

Fire the rule that uses the data most recently entered in the database. This

method relies on time tags attached to each fact in the database. In the conflict set, the

expert system first fires the rule whose antecedent uses the data most recently added to

the database.

5.1.7. Metaknowledge

Metaknowledge can be simply defined as knowledge about knowledge.

Metaknowledge is knowledge about the use and control of domain knowledge in an

expert system. In rule-based expert systems, metaknowledge is represented by

metarules. A metarule determines a strategy for the use of task-specific rules in the

expert system.

Metarule 1:

 Rules supplied by experts have higher priorities than rules supplied by novices.

60

61

Metarule 2:

 Rules governing the rescue of human lives have higher priorities than rules

concerned with clearing overloads on power system equipment.

5.1.8. Advantages of Expert System

- natural knowledge representation,

- an expert usually explains the problem-solving procedure with such expressions

as this: “In such-and-such situation, I do so-and-so”,

- these expressions can be represented quite naturally as IF-THEN production

rules.

- uniform structure,

- production rules have the uniform IF-THEN structure. Each rule is an

independent piece of knowledge,

- the very syntax of production rules enables them to be self-documented,

- separation of knowledge from its processing,

- the structure of a rule-based expert system provides an effective separation of

the knowledge base from the inference engine.

- this makes it possible to develop different applications using the same expert

system shell.

- dealing with incomplete and uncertain knowledge,

- most rule-based expert systems are capable of representing and reasoning with

incomplete and uncertain knowledge.

5.2. List of Problems

1. Expert system for car purchase assistance.

2. Expert system for heart attack risk estimation.

3. Expert system for diabetes risk estimation.

61

62

4. Expert system for a type and make of mobile phone selection based on user needs.

5. Expert system for selection of places for events in Wrocław.

5.3. Phases of Laboratory Exercises

1. Check and improve the necessary softcomputing knowledge.

2. Prepare and collect the necessary data sets: for training and for testing.

3. Realise the necessary data preprocessing and/or data postprocessing using different

types of ready-to-use software or by “hand-made” software prepared by the

laboratory group.

4. Prepare your own software to implement the proper softcomputing algorithms. The

main goal is to create the correctly working engine, user interface utilities are not so

important. The software environments and systems you can use for implementation

are limited, but the actual possibilities ought to be discussed with the laboratory

supervisor.

5. Turn on and tune the prepared software engine, supply the input training and/or

testing data. If the engine works correctly, check what happens when the starting

point parameters change, explore the sensitivity of engine for the different sets of

available parameters and find the solution of the problem. At the end, check if the

used softcomputing solution is correctly fitted to the problem.

6. Prepare the final report including the following parts:

– the short description of the problem with necessary assumptions,

– definitions and descriptions of the training and testing sets of input data with

description of the preprocessing procedures,

– definitions and descriptions of the of output data with description of the

postprocessing procedures,

– description of the tuned topology and parameters of the prepared softcomputing

engine,

– detailed results analysis and final remarks.

62

63

5.4. Hints for the List of Problems

All Problems

1. Choose and collect the data and information related to the problem.

2. Divide the collected data into categories, create the knowledge base and

chaining mechanisms.

3. Prepare the set of questions for users.

4. Implement the knowledge base, the chaining, and the user interface.

5. Tune the system, check the available answers and results.

63

64

Part 6. Fuzzy Logic

65

1.1. Theoretical Background

6.1.1 Fuzzy Set Theory

The basic idea of the fuzzy set theory is that an element belongs to a fuzzy set

with a certain degree of membership. A fuzzy set is a set with fuzzy boundaries. A

proposition is neither true nor false (fuzzy logic), but may be partly true (or partly false)

to any degree. This degree is usually taken as a real number in the range [0,1]. This way

the fuzzy logic is an extension of classic two-valued logic – the truth value of a sentence

is not restricted to true or false.

In the fuzzy set theory a classical example is a set is tall men. The elements of

the fuzzy set “tall men” are all men, but their degrees of membership depend on their

height.

Fig. 6.1. Tall men fuzzy set

The x-axis represents the universe of discourse the range of all possible values

applicable to a chosen variable. In our case, the variable is the man‟s height. According

 Degree of Membership

Fuzzy

Mark

John

Tom

Bob

Bill

1

1

1

0

0

1.00

1.00

0.98

0.82

0.78

Peter

Steven

Mike

David

Chris

Crisp

1

0

0

0

0

0.24

0.15

0.06

0.01

0.00

Name Height, cm

205

198

181

167

155

152

158

172

179

208

65

66

to this representation, the universe of men‟s heights consists of all tall men. The y-axis

represents the membership value of the fuzzy set. In our case, the fuzzy set of tall men

maps height values into corresponding membership values.

A fuzzy set is a set with fuzzy boundaries. Let X be the universe of discourse and

its elements be denoted as x. In the classical set theory, crisp set A of X is defined as

function fA(x) called the characteristic function of A

Fig. 6.2. Crisp and fuzzy set of tall men

fA(x): X {0, 1}, where fA(x) =1 if x A or fA(x) =0 if x A

In the fuzzy theory, fuzzy set A of universe X is defined by function A(x) called the

membership function of set A

A(x): X [0, 1] where A(x) = 1 if x is totally in A or A(x) = 0 if x is not in A

or 0 < A(x) < 1 if x is partly in A

150 210170 180 190 200160

Height, cm
Degree of
Membership

Tall Men

150 210180 190 200

1.0

0.0

0.2

0.4

0.6

0.8

160

Degree of
Membership

170

1.0

0.0

0.2

0.4

0.6

0.8

Height, cm

Fuzzy Sets

Crisp Sets

66

67

For any element x of universe X, membership function A(x) equals to the degree

to which x is an element of set A. This degree, a value between 0 and 1, represents the

degree of membership of element x in set A.

Fuzzy Subset A

Fuzziness

1

0
Crisp Subset A Fuzziness

x

X

 (x)

Fig. 6.3. More crisp and fuzzy sets defined on the universe

150 210170 180 190 200160

Height, cm
Degree of
Membership

Tall Men

150 210180 190 200

1.0

0.0

0.2

0.4

0.6

0.8

160

Degree of
Membership

Short Average ShortTall

170

1.0

0.0

0.2

0.4

0.6

0.8

Fuzzy Sets

Crisp Sets

Short Average

Tall

Tall

67

68

Typical functions that can be used to represent a fuzzy set are sigmoid, Gaussian

and pi. However, these functions are computation-intensive. Therefore, in practice, most

applications represent fuzzy subsets by linear fit functions.

A linguistic variable is a fuzzy variable. For example, the statement “John is

tall” implies that the linguistic variable John takes the linguistic value tall. The range of

possible values of a linguistic variable represents the universe of discourse of that

variable.

For example, the universe of discourse of the linguistic variable speed might

have the range between 0 and 220 km/h and may include such fuzzy subsets as very

slow, slow, medium, fast, and very fast.

A linguistic variable carries with it the concept of fuzzy set qualifiers, called

hedges. Hedges are terms that modify the shape of fuzzy sets. They include adverbs

such as very, somewhat, quite, more or less and slightly.

Short

Very Tall

Short Tall

Degree of
Membership

150 210180 190 200

1.0

0.0

0.2

0.4

0.6

0.8

160 170

Height, cm

Average

Tall
Very Short Very Tall

Fig. 6.4. Fuzzy sets with the hedge very

68

69

1.1.2. Fuzzy Set Operations

- Complement

The complement of a set is an opposite of this set. For example, if we have the set of

tall men, its complement is the set of NOT tall men. When we remove the tall men set

from the universe of discourse, we obtain the complement. If A is the fuzzy set, its

complement -A can be found as follows: -A(x) = 1 A(x).

- Containment

The set of tall men contains all tall men; very tall men is a subset of tall men. However,

the tall men set is just a subset of the set of men. In crisp sets, all elements of a subset

entirely belong to larger set. In fuzzy sets, however, each element can belong less to the

subset than to the larger set. Elements of the fuzzy subset have smaller memberships in

it than in the larger set.

- Intersection

In classical set theory, an intersection between two sets contains the elements shared by

these sets. For example, the intersection of the set of tall men and the set of fat men is

the area where these sets overlap. In fuzzy sets, an element may partly belong to both

sets with different memberships. A fuzzy intersection is the lower membership in both

sets of each element. The fuzzy intersection of two fuzzy sets A and B on universe of

discourse X:

AB(x) = min [A(x), B(x)] = A(x) B(x), where xX

- Union

The union of two crisp sets consists of every element that falls into either set. For

example, the union of tall men and fat men contains all men who are tall OR fat. In

fuzzy sets, the union is the reverse of the intersection. That is, the union is the largest

69

70

membership value of the element in either set. The fuzzy operation for forming the

union of two fuzzy sets A and B on universe X can be given as: AB(x) = max [A(x),

B(x)] = A(x) B(x), where xX

Fig. 6.5. Operations of fuzzy sets

1.1.3. Fuzzy Logic

Fuzzy logic is an extension of classic two-valued logic – the truth value of a sentence is

not restricted to true or false. Example of fuzzy sentences: Φ = Height(John, tall)

|Φ| = 0.9, Ψ = Speed(Mazda, fast) |Ψ| = 0.3. The truth value of each logic connective

can be defined:

|-Φ| = 1 – |Φ|

|Φ Ψ| = min {|Φ|, |Ψ|} /* t-norm */

Complement

0
x

1

 (x)

0
x

1

Containment

0
x

1

0
x

1

A B

Not A

A

Intersection

0
x

1

0
x

A B

Union

0

1

A B

A B

0
x

1

0
x

1

A

B

A

B

 (x)

 (x) (x)

70

71

|Φ Ψ| = max {|Φ|, |Ψ|} /* t-conorm */

|Φ →Ψ| = min {1 - |Φ| + |Ψ|, 1} /* Lukasiewicz */

There are four types of fuzzy logics:

– Classic logic

• Crisp sentence: Height(John, 180) → Weight(John, 60)

• Crisp data: Height(John, 180)

– Truth-functional multi-valued logic (Fuzzy knowledge base)

• Fuzzy sentence: Height(John, tall) → Weight(John, heavy)

• Crisp data: Height(John, 180)

– Possibilistic logic (Uncertain knowledge base)

• Crisp sentence: Height(John, 180) → Weight(John, 60)

• Fuzzy data: Height(John, tall)

– Uncertain fuzzy knowledge base

• Fuzzy sentence: Height(John, tall) → Weight(John, heavy)

• Fuzzy data: Height(John, tall)

Fuzzy Inference

– Classic logic

• Resolution – sound and complete: {l1l2, L1l2}├res {l1L1}

– Possibilistic logic

• Possibilitic resolution principle – sound and complete

{(l1l2,a1), (L1l2, a2)}├pres

{l1L1,min{a1, a2}}

71

72

Truth-functional multi-valued logic (Fuzzy knowledge base)

– Generalized Modus Ponens – sound and complete

– According to Lukasiewicz:

 |Φ →Ψ| = min {1 - |Φ| + |Ψ|, 1}

 => |Φ →Ψ| ≤ 1 - |Φ| + |Ψ|

 => if set | Φ →Ψ | = 1 - |Φ| + |Ψ| => then |Ψ| = |Φ| + (|Φ →Ψ| – 1)

– |Ψ| = |Φ| if |Φ →Ψ| = 1, i.e., the truth value of Φ →Ψ is always true, which serves

as the basis for using “clipping” to get output in Fuzzy Control or Knowledge-

based Systems

1.1.4. Fuzzy Knowledge – Based Systems

Fuzzy Knowledge-based Systems or Fuzzy Control Systems are a special type of

truth-functional multi-valued logic. Fuzzy rules are used to relate fuzzy sets, The truth

value of each fuzzy rule is 1. Fuzzy rule representation:

IF x is A THEN y is B

where x and y are linguistic variables; and A and B are linguistic values determined by

fuzzy sets on the universe of domains X and Y, respectively.

A fuzzy rule can have multiple antecedents:

IF project_duration is long

 AND project_staffing is large

 AND project_funding is inadequate

 THEN risk is high

72

73

The consequent of a fuzzy rule can also include multiple parts:

IF temperature is hot

 THEN hot_water is reduced;

 cold_water is increased

Difference between crisp and fuzzy rules:

– crisp rule:

 IF speed is >100

 THEN stopping_distance is long

– fuzzy rule:

 IF speed is fast

 THEN stopping_distance is long

In a fuzzy system, all rules fire to some extent, or in other words they fire

partially. If the antecedent is true to some degree of membership, then the consequent is

also true to that same degree.

Operations for Mamdani fuzzy inference model we can discuss in four steps.

The first one is a fuzzification of the input variables. The rule evaluation is the second.

Next we have to aggregate the rule outputs and finally do the defuzzification is

necessary.

We examine a simple two-input one-output problem that includes three rules:

Rule: 1 Rule: 1

 IF x is A3 IF project_funding is adequate

 OR y is B1 OR project_staffing is small

73

74

 THEN z is C1 THEN risk is low

 Rule: 2 Rule: 2

 IF x is A2 IF project_funding is marginal

 AND y is B2 AND project_staffing is large

 THEN z is C2 THEN risk is normal

 Rule: 3 Rule: 3

 IF x is A1 IF project_funding is inadequate

 THEN z is C3 THEN risk is high

Step 1: Fuzzification

Take the crisp inputs, x1 and y1 (project funding and project staffing), and determine

the degree to which these inputs belong to each of the appropriate fuzzy sets.

Fig. 6.6. Fuzzification

Step 2: Rule Evaluation

Take the fuzzified inputs, (x=A1) = 0.5, (x=A2) = 0.2, (y=B1) = 0.1 and (y=B2) = 0.7, and

apply them to the antecedents of the fuzzy rules. If a given fuzzy rule has multiple

Crisp Input

y1

0.1

0.7

1

0
y1

B1 B2

Y

Crisp Input

0.2

0.5

1

0

A1 A2 A3

x1

x1 X

 (x = A1) = 0.5

 (x = A2) = 0.2

 (y = B1) = 0.1

 (y = B2) = 0.7

74

75

antecedents, the fuzzy operator (AND or OR) is used to obtain a single number that

represents the result of the antecedent evaluation. This number (the truth value) is then

applied to the consequent membership function. To evaluate the disjunction of the rule

antecedents, we use the OR fuzzy operation. Typically, fuzzy expert systems make use

of the classical fuzzy operation union: AB(x) = max [A(x), B(x)].

Fig. 6.7. Mamdani–style rule evaluation

Similarly, in order to evaluate the conjunction of the rule antecedents, we apply

the AND fuzzy operation intersection: AB(x) = min [A(x), B(x)].

Clipping: The most common method of correlating the rule consequent with the

truth value of the rule‟s antecedent is to cut the consequent membership function at the

level of the antecedent truth. Since the top of the membership function is sliced, the

clipped fuzzy set loses some information. Clipping is still often preferred because it

involves less complex and faster mathematics, and generates an aggregated output

surface that is easier to defuzzify.

Scaling: The original membership function of the rule‟s consequent is adjusted

by multiplying all its membership degrees by the truth value of the rule antecedent.

A3

1

0 X

1

y10 Y

0.0

x1 0

0.1
C1

1

C2

Z

1

0 X

0.2

0

0.2
C1

1

C2

Z

A2

x1

Rule 3:

A1
1

0 X 0

1

Zx1

THEN

C1 C2

1

y1

B2

0 Y

0.7

B1
0.1

C3

C3

C30.5 0.5

OR
(max)

AND
(min)

OR THENRule 1:

AND THENRule 2:

IF x is A3 (0.0) y is B1 (0.1) z is C1 (0.1)

IF x is A2 (0.2) y is B2 (0.7) z is C2 (0.2)

IF x is A1 (0.5) z is C3 (0.5)

75

76

Scaling offers a better approach for preserving the original shape of the fuzzy set; it

generally loses less information and can be very useful in fuzzy expert systems.

Fig. 6.8. Clipped and scaled membership functions

Step 3: Aggregation of the rule outputs

Aggregation is the process of unification of the outputs of all rules. We take the

membership functions of all rule consequents previously clipped or scaled and combine

them into a single fuzzy set. The input of the aggregation process is the list of clipped or

scaled consequent membership functions, and the output is one fuzzy set for each output

variable.

Fig. 6.9. Aggregation of the rule outputs

Degree of
Membership

1.0

0.0

0.2

Z

Degree of
Membership

Z

C2

1.0

0.0

0.2

C2

0

0.1

1
C1

Cz is 1 (0.1)

C2

0

0.2

1

Cz is 2 (0.2)

0

0.5

1

Cz is 3 (0.5)

ZZZ

0.2

Z0

C3
0.5

0.1

76

77

Step 4: Defuzzification

The input for the defuzzification process is the aggregate output fuzzy set and the output

is a single number. Centroid technique based defuzzification methods. It finds the point

where a vertical line would slice the aggregate set into two equal masses.

Mathematically this centre of gravity (COG) can be expressed as:

 (6.1)

COG can be obtained by calculating it over a sample of points.

Fig. 6.10. COG

b

a

A

b

a

A

dxx

dxxx

COG

 (x)

1.0

0.0

0.2

0.4

0.6

0.8

160 170 180 190 200

a b

210

A

150

X

1.0

0.0

0.2

0.4

0.6

0.8

0 20 30 40 50 10 70 80 90 100 60

Z

Degree of
Membership

67.4

4.67
5.05.05.05.02.02.02.02.01.01.01.0

5.0)100908070(2.0)60504030(1.0)20100(

COG

77

78

Finding the centroid of a two-dimensional shape by integrating across a

continuously varying function is not computationally efficient. For Sugeno fuzzy

inference model we use a single spike, a singleton, as the membership function of the

rule consequent. A singleton, or more precisely a fuzzy singleton, is a fuzzy set with a

membership function that is one at a single particular point on the universe of domain

and zero everywhere else. Rule representation of Sugeno fuzzy inference model is very

similar to the Mamdani method. Sugeno changed only a rule consequent. Instead of a

fuzzy set, he used a mathematical function of the input variable.

IF x is A

 AND y is B

 THEN z is f(x, y)

where x, y and z are linguistic variables; A and B are fuzzy sets on universe of domains

X and Y, respectively and f (x, y) is a mathematical function.

The most commonly used zero-order Sugeno fuzzy model applies fuzzy rules in the

following form:

IF x is A

 AND y is B

 THEN z is k

where k is a constant. In this case, the output of each fuzzy rule is constant. All

consequent membership functions are represented by singleton spikes.

Fig. 6.11. Sugeno-style aggregation of the rule outputs

z is k1 (0.1) z is k2 (0.2) z is k3 (0.5)

0

1

0.1

Z 0

0.5

1

Z0

0.2

1

Zk1 k2 k3 0

1

0.1

Zk1 k2 k3

0.2
0.5

78

79

Fig. 6.12. Sugeno-style rule evaluation

Fig. 6.13. Sugeno-style defuzzification: Weighted average (WA)

Mamdani method is widely accepted for capturing expert knowledge. It allows

us to describe the expertise in more intuitive, more human-like manner. However,

Mamdani-type fuzzy inference entails a substantial computational burden. On the other

hand, Sugeno method is computationally effective and works well with optimization

A3

1

0 X

1

y10 Y

0.0

x1 0

0.1

1

Z

1

0 X

0.2

0

0.2

1

Z

A2

x1

IF x is A1 (0.5) z is k3 (0.5)Rule 3:

A1
1

0 X 0

1

Zx1

THEN

1

y1

B2

0 Y

0.7

B1
0.1

0.5 0.5

OR
(max)

AND
(min)

OR y is B1 (0.1) THEN z is k1 (0.1)Rule 1:

IF x is A2 (0.2) AND y is B2 (0.7) THEN z is k2 (0.2)Rule 2:

k1

k2

k3

IF x is A3 (0.0)

0 Z

Crisp Output

z1

z1

65
5.02.01.0

805.0502.0201.0

)3()2()1(

3)3(2)2(1)1(

kkk

kkkkkk
WA

79

80

and adaptive techniques, which makes it very attractive in control problems, particularly

for dynamic nonlinear systems.

1.1.5. Development of Fuzzy Expert Systems

 Specify the problem and define linguistic variables.

 Determine fuzzy sets.

 Elicit and construct fuzzy rules.

 Encode the fuzzy sets, fuzzy rules and procedures to perform fuzzy inference

into the expert system.

 Evaluate and tune the system.

1.1.6. Tuning Fuzzy Systems

 Review modelled input & output variables, and if required redefine their ranges.

 Review the fuzzy sets, and if required, define additional sets on the universe of

domain. The use of wide fuzzy sets may cause slow performance.

 Provide sufficient overlap between neighbouring sets. It is suggested that

triangle-to-triangle and trapezoid-to-triangle fuzzy sets should overlap between

25% to 50% of their bases.

 Review the existing rules, and if required add new rules to the rule base.

 Examine the rule base for opportunities to write hedge rules to capture the

pathological behaviour of the system.

 Adjust the rule execution weights. Most fuzzy logic tools allow control of the

importance of rules by changing a weight multiplier.

80

81

 Revise shapes of the fuzzy sets. In most cases, fuzzy systems are highly tolerant

of a shape approximation.

1.2. List of Problems

1. Fuzzy logic controller for an inverted pendulum.

2. Fuzzy logic used in simple games: tic-tac-toe (cross and circle), sea battle, etc.

1.3. Phases of Laboratory Exercises

1. Check and improve the necessary softcomputing knowledge.

2. Prepare and collect the necessary data sets: for training and for testing.

3. Realise the necessary data preprocessing and/or data postprocessing using different

types of ready-to-use software or by “hand-made” software prepared by the

laboratory group.

4. Prepare your own software to implement the proper softcomputing algorithms. The

main goal is to create the correctly working engine, user interface utilities are not so

important. The software environments and systems you can use for implementation

are limited, but the actual possibilities ought to be discussed with the laboratory

supervisor.

5. Turn on and tune the prepared software engine, supply the input training and/or

testing data. If the engine works correctly, check what happens when the starting

point parameters change, explore the sensitivity of engine for the different sets of

available parameters and find the solution of the problem. At the end, check if the

used softcomputing solution is correctly fitted to the problem.

6. Prepare the final report including the following parts:

– the short description of the problem with necessary assumptions,

– definitions and descriptions of the training and testing sets of input data with

description of the preprocessing procedures,

81

82

– definitions and descriptions of the of output data with description of the

postprocessing procedures,

– description of the tuned topology and parameters of the prepared softcomputing

engine,

– detailed results analysis and final remarks.

1.4. Hints for the List of Problems

Problem No. 1

1. The general idea is to substitute the real PID controller by fuzzy logic based

engine. The Multilayer Perceptron should be used to emulate the inverted

pendulum.

2. Use the typical for fuzzy logic observations to create the necessary control

mechanisms for the inverted pendulum driving.

3. Take the set of well-known observations describing the real inverted pendulum

to train the “MLP pendulum”.

4. It is necessary to find and discuss the relations: velocity, force, angle,

acceleration.

Problem No. 2

1. The general idea is to use fuzzy logic combined to other softcomputing methods

to build better than typical algorithm for a simple game.

2. The proposed method ought to improve the game algorithm based on the

previous runs.

3. Try to compare the results when the softcomputing methods are in use to the

typical algorithm results.

82

83

References

1. Ch. M. Bishop, Neural Networks for Pattern Recognition, Clarendon Press,

Oxford, 1996

2. B. Bouchon Meunier, R. R. Yager, L. A. Zadeh, Fuzzy Logic and Soft

Computing, Advances in Fuzzy Systems – Applications and Theory, Vol. 4,

World Scientific Publishing, 1995

3. R. Hecht-Nielsen, Neurocomputing, Addison-Wesley, 1994

4. O. Castilo, A. Bonarini, Soft Computing Applications, Advances in Soft

Computing, Springer Berlin Heidelberg, 2008

5. M. Caudill, Ch. Butler, Understanding Neural Networks, MIT Press 1995

6. E. Damiani, L. C. Jain, M. Madravio, Soft Computing in Software Engineering,

Studies in Fuziness and Soft Computing, Springer Berlin Heidelberg, 2009

7. S. Y. Kung, Digital Neural Networks, Prentice-Hall, 1998

8. D. K. Pratihar, Soft Computing, Science Press, 2009

9. S. N. Sivanandam, S. N. Deepa, Principles of Soft Computing, Wiley, 2008

10. A. K. Srivastava, Soft Computing, Narosa Publishing House, 2009

11. D. A. Waterman, A Guide to Expert Systems, Addison-Wesley, 2005

12. D. Zhang, Parallel VLSI Neural System Design, Springer Berlin Heidelberg,

2006

83

	Contents
	Part 1. Multilayer Perceptron
	1.1. Theoretical Background
	1.1.1. Introduction
	1.1.2. Learning Modelling
	1.1.3. Activation Function
	1.1.4. Learning Rule
	1.1.5. MLP Learning Algorithm

	1.2. List of Problems
	1.3. Phases of Laboratory Exercises
	1.4. Hints for the List of Problems

	Part 2. Kohonen Neural Network
	2.1. Theoretical Background
	2.1.1. Introduction
	2.1.2. Retrieving Phase of Kohonen Neural Network Algorithm
	2.1.3. Classic Learning Algorithm for Kohonen Neural Network

	2.2. List of Problems
	2.3. Phases of Laboratory Exercises
	2.4. Hints for the List of Problems

	Part 3. Hopfield Neural Network
	3.1. Theoretical Background
	3.1.1. Hopfield Neural Network
	3.1.2. Retrieving Phase
	3.1.3. Hebbian Learning Algorithm
	3.1.4. Delta-Rule Learning Algorithm
	3.1.5. Pseudoinverse Learning Algorithm

	3.2. List of Problems
	3.3. Phases of Laboratory Exercises
	3.4. Hints for the List of Problems

	Part 4. Genetic Algorithms
	4.1. Theoretical Background
	4.1.1. Introduction
	4.1.2. Encodings and Optimisation Problems
	4.1.3. Genetic Algorithm – Selection, Mutation, Recombination
	4.1.4. Crossover Operation Details

	4.2. List of Problems
	4.3. Phases of Laboratory Exercises
	4.4. Hints for the List of Problems

	Part 5. Expert Systems
	5.1. Theoretical Background
	5.1.1. Knowledge and its Representation
	5.1.2. Members of Expert System Development Team
	5.1.3. Structure of the Rule-Based Expert System
	5.1.4. Expert System Characteristic
	5.1.5. Forward Chaining and Backward Chaining
	5.1.6. Conflict Resolution
	5.1.7. Metaknowledge
	5.1.8. Advantages of Expert System

	5.2. List of Problems
	5.3. Phases of Laboratory Exercises
	5.4. Hints for the List of Problems

	Part 6. Fuzzy Logic
	6.1. Theoretical Background
	6.1.1 Fuzzy Set Theory
	6.1.2. Fuzzy Set Operations
	6.1.3. Fuzzy Logic
	6.1.4. Fuzzy Knowledge – Based Systems
	6.1.5. Development of Fuzzy Expert Systems
	6.1.6. Tuning Fuzzy Systems

	6.2. List of Problems
	6.3. Phases of Laboratory Exercises
	6.4. Hints for the List of Problems

	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move down by 70.87 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Down
 70.8661
 14.1732

 Both
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 22
 83
 82
 83

 1

 HistoryItem_V1
 Nup

 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Sheet orientation: tall
 Layout: scale to rows 1 down, columns 1 across
 Align: centre

 0.0000
 10.0001
 20.0001
 0
 Corners
 0.2999
 Fixed
 1
 1
 0.9000
 0
 0
 1
 0.0000
 0

 D:20110802000129
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 630
 275
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move left by 14.17 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Left
 14.1732
 14.1732

 Both
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 11
 83
 82
 83

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move right by 2.83 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Right
 2.8346
 14.1732

 Both
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 11
 83
 82
 83

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move down by 14.17 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Down
 14.1732
 14.1732

 Both
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 11
 83
 82
 83

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 11 to page 83; only odd numbered pages
 Font: Times-Roman 13.0 point
 Origin: bottom right
 Offset: horizontal 79.37 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BR

 11
 TR
 1
 0
 1005
 173
 0
 13.0000

 Odd
 73
 11
 SubDoc

 CurrentAVDoc

 79.3701
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 10
 83
 82
 37

 1

 HistoryItem_V1
 DelPageNumbers

 Range: all pages

 1
 560
 315

 AllDoc

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 10
 83
 82
 83

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 11 to page 83; only odd numbered pages
 Font: Times-Roman 12.0 point
 Origin: bottom right
 Offset: horizontal 56.69 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BR

 11
 TR
 1
 0
 1005
 173
 0
 12.0000

 Odd
 73
 11
 SubDoc

 CurrentAVDoc

 56.6929
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 10
 83
 82
 37

 1

 HistoryItem_V1
 DelPageNumbers

 Range: all pages

 1
 560
 315

 AllDoc

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 10
 83
 82
 83

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 11 to page 83; only odd numbered pages
 Font: Times-Roman 12.0 point
 Origin: bottom right
 Offset: horizontal 48.19 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BR

 11
 TR
 1
 0
 1005
 173
 0
 12.0000

 Odd
 73
 11
 SubDoc

 CurrentAVDoc

 48.1890
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 10
 83
 82
 37

 1

 HistoryItem_V1
 DelPageNumbers

 Range: all pages

 1
 560
 315

 AllDoc

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 13
 83
 82
 83

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 17 to page 83; only odd numbered pages
 Font: Times-Roman 12.0 point
 Origin: bottom right
 Offset: horizontal 45.35 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BR

 17
 TR
 1
 0
 1005
 173
 0
 12.0000

 Odd
 67
 17
 SubDoc

 CurrentAVDoc

 45.3543
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 16
 83
 82
 34

 1

 HistoryItem_V1
 DelPageNumbers

 Range: all pages

 1
 560
 315

 AllDoc

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 16
 83
 82
 83

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 17 to page 83; only odd numbered pages
 Font: Times-Roman 11.0 point
 Origin: bottom right
 Offset: horizontal 42.52 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BR

 17
 TR
 1
 0
 1005
 173
 0
 11.0000

 Odd
 67
 17
 SubDoc

 CurrentAVDoc

 42.5197
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 16
 83
 82
 34

 1

 HistoryItem_V1
 DelPageNumbers

 Range: all pages

 1
 560
 315

 AllDoc

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 16
 83
 82
 83

 1

 HistoryItem_V1
 AddNumbers

 Range: all odd numbered pages
 Font: Times-Roman 11.0 point
 Origin: bottom right
 Offset: horizontal 42.52 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BR

 1
 TR
 1
 0
 1005
 173
 0
 11.0000

 Odd
 83
 1
 AllDoc

 CurrentAVDoc

 42.5197
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 0
 83
 82
 42

 1

 HistoryItem_V1
 AddNumbers

 Range: all even numbered pages
 Font: Times-Roman 11.0 point
 Origin: bottom left
 Offset: horizontal 42.52 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BL

 1
 TR
 1
 0
 1005
 173
 0
 11.0000

 Even
 83
 1
 AllDoc

 CurrentAVDoc

 42.5197
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 0
 83
 81
 41

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 20.00, distance 10.00 (points)
 Add frames around each page: no
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 50 down, columns 50 across
 Align: centre
 Registration colour: All separations
 PDF/X handling: Ignore PDF/X
 Annotations and form fields: UNKNOWN

 0.0000
 Prompt
 10.0001
 20.0001
 1
 Corners
 0.2999
 ToFit
 50
 50
 1.2000
 FormsAndFields
 0
 0
 1
 0.0000
 0
 IgnoreAll

 D:20110802000724
 841.8898
 a4
 Blank
 595.2756

 Tall
 886
 110

 0.0000
 AllSeps
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

