

Projekt współfinansowany ze środków Unii Europejskiej w ramach
Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Wrocław University of Technology

Business Information Systems

Adam Kasperski

DISCRETE OPTIMIZATION

AND NETWORK FLOWS

Wrocław 2011

Wrocław University of Technology

Business Information Systems

Adam Kasperski

DISCRETE OPTIMIZATION
AND NETWORK FLOWS

Developing Engine Technology

Wrocław 2011

Copyright © by Wrocław University of Technology

Wrocław 2011

Reviewer: Jacek Mercik

ISBN 978-83-62100-00-5

Published by PRINTPAP Łódź, www.printpap.pl

Preface

Discrete optimization is an important area of operations research and applied
computer science. Discrete optimization models have many applications in situ-
ations, where rational decisions have to be made. A wide and important field of
discrete optimization contains the so-called network problems. A network can be
seen as a set of points together with some connections between them. Networks
are used to model physical systems for example roads, electrical lines, computer
networks, ordering of tasks etc. They have many applications in management,
industry, defense, communication, logistics, health care, ecology etc.
The aim of this book is to introduce some basic discrete optimization prob-

lems defined on networks and present some methods of solving them. Most of
the content is presented at an elementary level and requires only some elemen-
tary mathematics. A reader not familiar with graph theory should first read
Appendix A, where some basic notion used for networks is described. More
advanced topics on linear programing and computational complexity are pre-
sented in Appendix B and Appendix C, but the material presented there is
not necessary to understand the rest of the book. All the sections contain a
number of examples, which illustrate the models and algorithms introduced.
The sections describing particular problems also contain some applications of
these problems in management. This book does not consider implementation of
the algorithms presented. Computer programmers can find the material in the
extensive literature devoted to algorithms and data structures.
This book is composed of three chapters and three appendices. In Chapter 1

the class of discrete optimization problems discussed in this book is introduced.
These optimization problems are solved by using algorithms. So, in Chapter 1
the notion of an algorithm is described. The concept of an efficient algorithm, i.e.
one that is able to solve large problems, is also explained. In Chapter 2 the class
of network flow problems is discussed. This class contains some basic problems
such as the shortest path, the maximum flow, the minimum cost assignment
etc. Furthermore, all the problems described in this chapter can be solved
efficiently. In particular, the network simplex algorithm is described, which
efficiently solves the general minimum cost flow problem. Unfortunately, many
important problems associated with networks are computationally hard. This
means that no efficient algorithms are known for them. In Appendix C some
elements of the theory of NP-completeness are described. This theory allows us
to classify computational problems into hard and easy. Some general methods

1

2

of dealing with hard problems are described in Chapter 3. These methods
include mathematical programming approach, branch and bound algorithm,
dynamic programming and approximation algorithms (in particular, the local
search technique).
There is extensive literature about discrete optimization and network flows.

The book by Ahuja et al. [3] is strongly recommended. It contains an excellent
description of network flow problems. Also, the books by Lawler [34], Bazaraa
et al. [7], Ford and Fulkerson [22] contain the material presented in this book.
Discrete and combinatorial optimization problems are discussed in the books by
Garfinkel and Nemhauser [24], Papadimitriou and Steiglitz [41], Schrijver [44]
and Chen et. al. [11]. The books on discrete mathematics [43], graph theory [17]
and computational complexity [40] are recommended to learn more about the
material discussed in this book. Additional literature will be given at the end
of each section.

Adam Kasperski
Institute of Industrial Engineering and Management

Wrocław University of Technology
Email: adam.kasperski@pwr.wroc.pl

Wrocław 2011

Contents

1 Introduction 5
1.1 What is a discrete optimization problem? 5
1.2 Algorithms and Complexity . 10
1.3 Summary . 15
1.4 Exercises . 16

2 Network Flows 17
2.1 Shortest path . 19

2.1.1 Applications . 21
2.1.2 A dynamic algorithm for acyclic networks 22
2.1.3 Dijkstra’s algorithm . 25
2.1.4 Floyd-Warshall algorithm 27
2.1.5 Project scheduling . 31
2.1.6 Summary . 34

2.2 Maximum flow . 35
2.2.1 Applications . 37
2.2.2 The Ford - Fulkerson algorithm 40
2.2.3 Summary . 43

2.3 Minimum cost flow . 45
2.3.1 Applications . 46
2.3.2 Establishing a feasible flow 47
2.3.3 The cycle canceling algorithm 49
2.3.4 Network simplex . 51
2.3.5 Summary . 61

2.4 Transportation problem . 63
2.4.1 Applications . 64
2.4.2 Network simplex . 66
2.4.3 Summary . 73

2.5 Minimum cost assignment . 75
2.5.1 Applications . 76
2.5.2 Successive shortest path algorithm 76
2.5.3 Summary . 79

2.6 Minimum spanning tree . 80
2.6.1 Applications . 81

3

4 CONTENTS

2.6.2 Kruskal’s algorithm . 81
2.6.3 Prim’s algorithm . 83
2.6.4 Summary . 84

2.7 Exercises . 86

3 Solving hard problems 91
3.1 Mathematical programming formulation 91
3.2 Branch and bound algorithm . 95
3.3 Dynamic programming . 100
3.4 Approximation algorithms and heuristics 104
3.5 Local search . 108
3.6 Summary . 111
3.7 Exercises . 113

A. Networks 119

B. Linear programming 127

C. NP-completeness 135

Chapter 1

Introduction

1.1 What is a discrete optimization problem?

In many real life applications, we wish to find an object, which minimizes a
given cost (or maximizes a given reward). Before we formally introduce the
problem, let us show some representative examples.

Example 1. Suppose that we have a map with some cities connected by roads.
We know the length of each road. A small map illustrating this example is
shown in Figure 1.1.

Figure 1.1: The map for Example 1.

Consider the following problems:

1. We wish to travel from B to F. What is the shortest route between these
two cities?

5

6 CHAPTER 1. INTRODUCTION

2. We wish to connect all the cities by telephone lines and the lines must
be placed along roads. Where should we place them to use the minimum
length of lines?

3. We are in the city A. We must visit all the cities exactly once and return
to A. What is the shortest tour which satisfies our requirements?

In each of the three problems we wish to find a different object in the given
map. The answer to the first problem is clearly the route B–D–F, whose total
length is 34 km. The answer to the second problem is the telephone network
shown in Figure 1.2. Note that this network connects all the cities and its total
length is equal to 63 km. Finally, the answer to the last problem is shown in
Figure 1.3. This figure shows a closed tour that visits all cities exactly once
and the length of this tour is 109 km. Problem 1 is an example of the shortest
path problem, problem 2 is an example of the minimum spanning tree problem
and problem 3 is an example of the traveling salesperson problem. All three
problems will be explored later in this book.

Figure 1.2: The shortest telephone network connecting all cities.

Example 2 (knapsack problem) There are n items in a store, each with a weight
wi and a value pi, for i = 1, . . . , n. We wish to determine, which items to take
so that their total weight is not greater than a given capacity W and their to-
tal value is as large as possible. For example, consider the set of 5 items with
weights 3,6,1,5,7 and values 2,4,1,4,7, respectively. We may take items whose
total weight does not exceed 10. Which items should we take? One can take, for
instance, items 1, 3 and 4 whose total weight equals 9 and total value equals 7.
On the other hand, items 4 and 5 cannot be both taken, because their total
weight exceeds 10. It turns out that the best choice is to take items 1 and 5,
which yields a total value of 9.

Example 3. There are n jobs J1, J2, . . . , Jn, which must be processed on a sin-
gle machine. Job Ji has a processing time equal to pi. We assume that the
processing of any job cannot be interrupted and the next job is processed just

1.1. WHAT IS A DISCRETE OPTIMIZATION PROBLEM? 7

Figure 1.3: The shortest tour that visits all cities.

after the previous is finished. Consider, for example, five jobs J1, J2, . . . , J5 with
processing times 2,4,1,5,3. These jobs can be processed, for instance, in order
(J2, J1, J5, J4, J3). The completion time C1 of job J1 in this ordering equals 6.
Similarly, C2 = 4, C3 = 15, C4 = 14 and C5 = 9 and the sum of completion
times, called the total flow time is equal to C1 + · · · + C5 = 48. We would like
to find an ordering of jobs for which the total flow time is minimal. In this
example, the best ordering is (J3, J1, J5, J2, J4), for which the total flow time
equals 35.

Example 4. Consider the map shown in Figure 1.4. This map is similar to
that from Example 1, but now some additional data are specified. In the city
B there is a store, in which there are 20 units of some product. This product
must be delivered to two shops. The first shop is located in the city G and
requires 15 units of the product and the second shop is located in the city E
and requires 5 units of the product. Now, for each road we have two numbers:
the first is the unit transportation cost and the second is the maximal number
of units which can be sent using this road. For example, we can send at most
3 units (that is 0,1,2 or 3 units) from B to A and sending 1 unit costs us $2.
Now the problem is how to send the product from the store to both shops in
the cheapest possible way. The solution to this problem is shown in Figure 1.5.
According to this solution, we should send 3 units from B to A, 10 units from
B to D, etc. Observe that this solution is feasible because no road carries more
units than its capacity. Also, the store sends exactly 20 units and every shop
receives the required amount of the product.

We have shown 4 different problems. In all of them three basic elements
can be distinguished. The first element consists of input data, that is all the
information we know and which is necessary to solve the problem. In Examples 1
and 4, the input data consist of a map with some numbers associated with
roads and cities. In Example 2 the input data consist of a set of items together

8 CHAPTER 1. INTRODUCTION

Figure 1.4: The map for Example 4.

with their weights and values and a limit W . Finally, in Example 3 the input
data consist of a set of jobs together with their processing times. A particular
realization of input data will be called an instance. For example, the map shown
in Figure 1.1 is an instance of the shortest path problem. The second common
element in all the examples is the set of solutions. A solution is an object which
we would like to compute. In Example 1, any route fromB to F is a solution and
the set of solutions contains all such routes. One of them is the routeB–D–F but
there are many others, for example B–A–C–F. Similarly, the set of solutions
may consist of all the possible telephone networks or all the possible closed
tours visiting every city exactly once. In Example 2, a solution is any subset
of the items, whose total weight does not exceed W . For the instance shown,
the subset of items {1, 3, 4} is a solution, but so are subsets {1, 5}, {2, 3}, {4},
etc. In Example 3, a solution is any ordering of jobs such as (J2, J1, J5, J4, J3),
(J3, J5, J1, J4, J2) etc. A description of a solution in Example 4 is more complex.
At this moment, we can informally define a solution as a precise transportation
plan, such as the one shown in Figure 1.5. The last common element in all these
problems is a cost function. Namely, we must be able to evaluate the total cost
of any solution.
We can now formally define an optimization problem. An optimization prob-

lem Π consists of:

1. A set DΠ of input data; each I ∈ DΠ is called an instance.

2. A set of solutions sol(I) for a given instance I ∈ Dπ.

3. A function f(x) denoting the cost of solution x ∈ sol(I).

1.1. WHAT IS A DISCRETE OPTIMIZATION PROBLEM? 9

Figure 1.5: A transportation plan.

For a given instance I ∈ DΠ we seek an optimal solution x∗ ∈ sol(I), which
minimizes (or maximizes) the function f(x), that is

f(x∗) = min(max){f(x) : x ∈ sol(I)}.

Let us go back again to Example 1. In this example, DΠ is the set of all
possible maps with specified road lengths. An instance I ∈ DΠ is a particular
map, like the one shown in Figure 1.1. The set sol(I) contains all routes between
two specified cities in a given map I. Finally, f(x) is the length of the route
x ∈ sol(I). A similar interpretation can be provided for all the remaining
examples and we leave this as an exercise.
Problem Π is called a discrete optimization problem if it can be formulated

as the following mathematical programming problem:

min(max) f(x1, x2, . . . , xn)
gi(x1, x2, . . . , xn) = (≤)bi i = 1, . . . ,m
xj integer j ∈ D

(1.1)

In this formulation, every solution x is described by a vector of decision vari-
ables (x1, x2, . . . , xn), where some variables, those whose indices belong to the
set D ⊆ {1, . . . , n}, must take integer values. The problem consists of an objec-
tive function, which is minimized or maximized and a set of m constraints. The
parameters (constants) appearing in (1.1) describe an instance I of the prob-
lem and the constraints of (1.1) describe the solution set sol(I). Finally, the
objective function, f(x1, . . . , xn), expresses the cost of a solution. In this book
we will consider the class of problems for which the objective function and all
the constraints are linear. This class includes most of the important problems
arising in practice.

10 CHAPTER 1. INTRODUCTION

Example 5. Consider the knapsack problem from Example 2. This problem
can be easily formulated in the form of (1.1). We introduce a variable xj for
each item j = 1, . . . , n. The variable xj takes the value 1 if we take item j
and takes the value 0 otherwise. Hence 0 ≤ xj ≤ 1 and xj is an integer, which
we can concisely denote as xj ∈ {0, 1}. The total value of a solution can be
now computed as

∑n
j=1 pjxj and this quantity should be maximized. We do

not want to exceed the capacity W , so the constraint
∑n

j=1 wjxj ≤ W must be
satisfied. Hence the model takes the following form:

max

n
∑

j=1

pjxj

n
∑

j=1

wjxj ≤ W

xj ∈ {0, 1} j = 1, . . . , n

1.2 Algorithms and Complexity

What does it mean to solve an optimization problem? Is it possible to get
an optimal solution for any such problem? If so, how large problems can be
solved? In this section we provide some answers to these questions. If we are
asked to find a shortest route from B to F on the map shown in Figure 1.1,
then we probably will not have any problems with providing the correct answer.
Consider, however, the whole map of some country containing thousands of cities
and roads. Then finding a shortest tour between two cities becomes a highly
nontrivial task and, for very large maps computer software must be used. But
before an optimal tour is computed, we must design a precise, step by step
method of solving the problem, namely we must provide an algorithm for it.

We can imagine an algorithm as a program written in some computer pro-
gramming language such as C or Pascal. Such an algorithm consists of a de-
scription of the input, a description of the output and a body, which consists
of a set of instructions permitted in a programming language (see Fgure 1.6).
In our case, the input to the algorithm is any instance I of an optimization
problem and the output is an optimal solution to this problem. The finite set
of instructions contained in the body tells us precisely, step by step, how this
optimal solution can be computed from the input. Observe that each step may
contain some elementary instructions in a computer language or a call of another
algorithm.

The first problem that arises is encoding an instance I. For the problems
shown in Examples 2 and 3, this is not difficult. Everyone familiar with pro-
gramming languages can easily encode an instance of the knapsack problem as
two numbers n, W and two tables containing the weights and values of items.
Encoding an instance of the scheduling problem from Example 3 is also easy.
However, encoding such an instance as a map is more complex and, at this
point, you may read Appendix A to learn how to do this.

1.2. ALGORITHMS AND COMPLEXITY 11

ALGORITHM A

INPUT: Description of input data

OUTPUT: Description of output

1: Step 1 (elementary instructions)

2: Step 2 (call of another algorithm)

3: Step 3

...

Figure 1.6: The outline of an algorithm.

Every encoded instance I of an optimization problem is stored in computer
memory as a sequence of bits. Therefore, it is natural to define the size of
an instance I as the number of bits required to store it. This is, however, not
practical and in computer science the size of an instance is typically measured by
providing some significant parameters describing it. For example, the size of a
collection of 32-bit integers a1, a2, . . . , an equals n. This collection requires 32n
bits to be stored. However, as we will see, constants such as 32 can be omitted.
We must, however, be careful if the size of the numbers in the collection is
not specified. Then, the size of an instance must be described by two numbers,
namely n and log a, where a = max{a1, . . . , an}. Notice that log a is the number
of bits required to store the integer number a.
It is clear that larger problems require more time to be solved. We now

define the running time of an algorithm.

Definition 1 We say that an algorithm runs in f(n) time if the number of
elementary steps performed for every instance of size n is at most f(n).

There are several important elements in this definition which should be well
understood. First, the running time of an algorithm is a function of its input
size n. There may be many instances of a fixed size n, say n = 100. For one
such instance the algorithm may perform 10 elementary steps, but the number
of steps for another instance may be equal to 20. It is important that f(n) is
the maximal number of steps performed over all instances of size n. So, the
running time is a pessimistic measure describing the behavior of the algorithm
in the worst case. It is also important that we measure the number of elemen-
tary steps, so we must be careful if another algorithm is called as a subroutine
at some step. Having such a function f(n), we can estimate the running time
of an algorithm by assuming that every elementary step takes some constant
time, say ∆t, which depends on the computer used. The running time is then
estimated as ∆tf(n).

Example 1. Consider the following, very simple problem. We have a collection
of n numbers a1, a2, . . . , an of a fixed size, say 32-bit integers. We wish to find
the maximal number in this collection. We can easily encode any instance of
this problem as n and the table A = [a1, a2, . . . , an]. The problem can be then
solved by using the algorithm shown in Figure 1.7.

12 CHAPTER 1. INTRODUCTION

ALGORITHM MAX

INPUT: Array A = [a1, . . . , an] of 32-bit integers and n.
OTUTPUT: The largest number in A
1: max := a1

2: forforfor i := 2 tototo n
3: ififif ai > max thenthenthen max := ai

4: nextnextnext i
5: returnreturnreturn max

Figure 1.7: Algorithm for computing the largest number in a given collection.

It is obvious that the algorithm correctly solves the problem, that is it re-
turns the right answer for every valid instance. Each step of this algorithm
contains some elementary instructions, so every step is elementary. The size of
the input is equal to n. For a fixed n the algorithm performs step 1 and step 5
exactly once. Furthermore, it performs exactly 3(n − 1) steps in the loop 2-4.
In consequence, the running time of the algorithm is f(n) = 3n − 1.

Analyzing the above example, we can conclude that the obtained running
time f(n) = 3n − 1 seems to be too detailed. In particular, it depends on
the way in which the pseudo code of the algorithm is presented. For instance,
if we split step 3 into two steps by moving the instruction max := ai to the
new line, then the loop would contain 4 steps and the running time would be
f(n) = 4n − 2. We thus can see that the constants in f(n) should be omitted
and the estimation of the running time should not depend on the presentation
of the pseudo code or implementation details. This can be done by using the
big O notation, which is defined as follows:

Definition 2 Let f(n) and g(n) be two functions, where n ∈ N . We say that
f(n) = O(g(n)) if there exist two constants c and n0 such that f(n) ≤ cg(n) for
all n > n0.

The notation f(n) = O(g(n)) means that function f(n) does not grow faster
than g(n) up to some constants c and n0.

Example 2. We will show that 3n + 7 = O(n). According to the definition, we
must find constants c and n0 such that 3n + 7 ≤ cn for all n > n0. We can
rewrite this as (c−3)n ≥ 7 for n > n0 and choose, for example, c = 4 and n0 = 7.

It is not difficult to show that if f(n) = aknk + ak−1n
k−1 + · · · + a0 is a

polynomial, then f(n) = O(nk). So, the polynomial f(n) grows as fast as nk up
to some constant factor. This fact is very useful in the analysis of the running
time of an algorithm. The constants, such as those obtained in Example 1,
depend on the presentation of the pseudo code, implementation details and
language used to implement the algorithm. Notice, however, that both 3n−1 =
O(n) and 4n−2 = O(n). We thus can say that the algorithm runs in O(n) time,

1.2. ALGORITHMS AND COMPLEXITY 13

regardless of the details. We can also say that the problem from Example 1 can
be solved in O(n) time. It can be shown that 2n 6= O(nk) for any k > 0. This
means that the exponential function grows faster than any polynomial.

An algorithm that runs in O(n) time is obviously very fast. Its running time
grows linearly with the problem size, which allows us to solve very large prob-
lems. In particular, we can find the maximal number in a collection containing
millions of numbers. We can say that this problem can be solved efficiently.
Can every optimization problem be solved efficiently? For example, is it pos-
sible to solve efficiently the traveling salesperson problem with a million cities
(Example 1 in Section 1.1)? Let us start by observing that it is not difficult to
construct a correct algorithm for all the sample optimization problems shown in
the previous section. This follows from the fact that for every instance I the set
of solutions sol(I) is finite. Given an instance I, we can simply enumerate all
the solutions from sol(I), compute their costs and output the best one. Such an
algorithm is called a brute force method. We will investigate now how efficient
such an algorithm can be.

Consider an instance of the traveling salesperson problem. We can measure
the size of this instance by the number of cities, denoted by n. Each tour can be
represented as a permutation of the n cities. This permutation simply says in
which order the cities are visited. Of course, not every permutation represents
a solution because there may be no road between two neighboring cities in this
permutation. We can, however, assume that such an infeasible permutation has
a very large cost and it cannot represent an optimal tour. It is well known that
the number of permutations is n! = 1 ∗ 2 ∗ 3 ∗ · · · ∗ n. Suppose that we can
enumerate one permutation and compute its cost within 10−6 seconds. What is
the time required to compute the best permutation using brute force? Clearly,
this time is about 10−6n!. Table 1.1 shows the times required to solve the
problem for various values of n.

n 10−6n!
10 3.6 s.
12 8 min.
15 363 h.
18 203 years
21 1 620 000 years

Table 1.1: Estimation of the running time of a brute force algorithm for the
traveling salesperson problem.

The results shown in Table 1.1 clearly demonstrate that the brute force
algorithm is useless. One can apply this algorithm only for very small instances,
where the number of cities does not exceed 15.

What about other problems? Consider the knapsack problem. We can
measure the size of an instance of this problem as the number of items n. The
brute force algorithm would explore all the possible subsets of the items. For

14 CHAPTER 1. INTRODUCTION

each such subset it computes its cost and checks whether the capacity W is not
exceeded (if so, then the subset is rejected). We can again assume that every
particular subset can be checked within a small time, say 10−6 s. The number
of subsets of an n-element set equals 2n. In consequence, the brute force runs
in a time of 2n10−6 s. Table 1.2 shows the times required to solve the problem
for different values of n. Again, we can see that brute force is useless for quite
small instances.

n 10−62n

10 0.001 s.
20 1.048 s.
50 35.7 years
100 1016 years

Table 1.2: Estimation of the running time of a brute force algorithm for the
knapsack problem.

We thus can see that algorithms running in O(n!) or O(2n) time are efficient
only for very small n. On the other hand, an O(n) algorithm runs in reasonable
time, even for very large n. We now provide a distinction between efficient and
inefficient algorithms.

Definition 3 An algorithm runs in polynomial time if its running time is O(nk)
for some fixed k > 0. Otherwise, an algorithm is called exponential.

Let us look now at Table 1.3, where the running times of polynomial algorithms
are compared with the running times of exponential ones.

n = 10 n = 20 n = 50 n = 100
O(n) 0.00001 s. 0.00002 s. 0.00005 s. 0.0001 s.
O(n2) 0.0001 s. 0.0004 s. 0.025 s. 0.01 s.
O(n3) 0.001 s. 0.008 s. 0.125 s. 1 s.
O(2n) 0.001 s. 1.048 s. 35.7 years 1016 years
O(n!) 3.6 s. 77 146 years 1050 years !!

Table 1.3: Estimation of the running time of different algorithms. We assume
that an elementary step can be performed in 10−6 s.

The polynomial algorithms, which run in O(n), O(n2) and O(n3) time, are
efficient and allow us to solve large instances. On the other hand, an exponential
algorithm may be inefficient even for small instances. We must, however, be
aware of two things. By an efficient polynomial algorithm, we mean an algorithm
running in O(nk) time for small k, say k = 1, 2, 3, 4. It is clear that an algorithm
running in O(n10) time might be useless in practice. Fortunately, for almost
all known polynomial algorithms k rarely exceeds 4. On the other hand, an
exponential algorithm may not be as bad as one might expect. Recall that

1.3. SUMMARY 15

we estimate the running time of an algorithm according to the worst case.
So, if an algorithm runs in O(2n) time, then it might perform 2n elementary
steps for rare and very artificial instances of size n. For typical instances the
number of performed steps may be much smaller. A well known example is the
famous simplex algorithm (see Appendix B), which is not a polynomial one.
However, the average number of elementary steps performed by this algorithm
is polynomial and poor behavior appears only for very artificial instances.
For the problems discussed in this book it is not difficult to design an al-

gorithm for solving them. An idea based on brute force almost always works.
Our goal, however, should be to design algorithms which are also efficient and
this task is much more challenging. As we will see, such efficient polynomial
algorithms are known for some problems, while for others the situation is more
complex. For example, no polynomial algorithm is known for the traveling sales-
person problem and it is widely accepted in the computer science community
that no such algorithm exists. Such hard problems require special treatment.
You may now read Appendix C to learn more about the complexity of optimiza-
tion problems.

1.3 Summary

1. An optimization problem Π consists of a set of input data DΠ, a set
of solutions sol(I) for each I ∈ DΠ and a cost function f(x) for each
x ∈ sol(I). Given an instance I ∈ DΠ, the aim is to find a solution
x∗ ∈ sol(I), which minimizes or maximizes the function f .

2. Π is called a discrete optimization problem if it can be formulated as a
mathematical programming problem in which some variables are restricted
to take integer values.

3. We solve optimization problems using algorithms. Each algorithm is a
finite step by step procedure, which takes an instance of an optimization
problem as the input and gives an optimal solution as the output.

4. We measure the running time of an algorithm as the maximal number
of elementary steps f(n) performed on input data of size n. We use big
O notation to hide all the constants dependent on the implementation
details.

5. An algorithm is polynomial if its running time is O(nk) for some fixed
value of k. Only polynomial algorithms with small k are efficient, where by
efficient we mean that they are able to solve large instances in reasonable
time.

6. Almost all discrete optimization problems have a trivial brute force algo-
rithm, which simply enumerates all the solutions. However, a brute force
algorithm generally requires exponential time and becomes useless even
for small problems.

16 CHAPTER 1. INTRODUCTION

7. There are a lot of discrete optimization problems for which no efficient
polynomial algorithm is known. An example is the traveling salesperson
problem.

There are many books on discrete and combinatorial optimization. The
book by Ahuja et al. [3] is recommended. The material presented in this
book can also be found in books by Papadimitriou and Steiglitz [41],
Lawler [34], Bazaara et al. [7] and Garfinkel and Nemhauser [24]. More
about the analysis of algorithms and data structures can be found in the
books by Cormen et al. [14] and Aho et al. [1].

1.4 Exercises

1. Describe the sets DΠ, sol(I) for I ∈ DΠ and the cost function f(x) for all
the sample problems presented in Section 1.1.

2. Show that 2n 6= O(nk) and n! 6= O(kn) for any fixed k > 0.

3. Consider the following algorithm:

INDEX

INPUT: Array A = [a1, . . . , an] of 32-bit integers, an integer a
OUTPUT: The first index of a in A or nullnullnull if a is not in A
1: forforfor i := 1 tototo n
2: ififif ai = a then returnthen returnthen return i and stopand stopand stop

3: nextnextnext i
4: return nullreturn nullreturn null

Using the big O notation, describe the running time of this algorithm.

4. The knapsack problem can be solved in O(nW) time. Does it mean that
the knapsack problem can be solved in polynomial time?

5. Design a polynomial algorithm for the sequencing problem from Example 3
in Section 1.1.

6. Describe a brute force method of solving the shortest path problem (Ex-
ample 1.1, Section 1.1). What is the running time of this brute force?

Chapter 2

Network Flows

In this chapter we consider a wide and important class of discrete optimization
problems, which we call network flows. At this point a reader who is not fa-
miliar with graph theory should read Appendix A, where some basic notions
regarding networks and some basic network algorithms are described. Networks
are used to model many real physical systems, such as electrical lines, telephone
networks, road systems, computer networks etc. They are also used to model
production processes. They have many applications in scheduling, planning, lo-
gistics, defense and industrial engineering. In a typical network flow problem we
wish to move some entity from one point to another in an underlying network
at the smallest possible cost. If this entity is not divisible, then we get a discrete
optimization problem defined on some network.

We will start with the simplest and most fundamental problem, called the
shortest path problem. In this problem we would like to find a shortest directed
path between two given nodes of a network. This problem has a lot of applica-
tions and has several efficient algorithms. Next, we consider the maximum flow
and the minimum cut problems, which also arise in many applications including
network reliability and analysis of traffic networks. Both the shortest path and
maximum flow are special cases of the minimum cost flow problem, which is
the most general problem considered in this chapter. The minimum cost flow
problem can be solved by using an adaptation of the simplex algorithm designed
to solve linear programming problems. This network simplex algorithm is very
efficient in practice. Furthermore, it allows us to perform a sensitivity analysis
of the optimal solution obtained. We will show how to apply this algorithm to
the transportation problem, which is a special case of the minimum cost flow.
In this chapter we will also consider the minimum cost assignment and the min-
imum spanning tree problems. In the first problem we wish to pair some objects
at a minimal possible cost. In the second one we would like to connect all the
nodes of a given network at the minimal possible cost.

Network flow problems constitute a wide class of discrete optimization prob-
lems which are polynomially solvable. This means that we can solve problems
in which the size of the input network is very large in reasonable time. This

17

18 CHAPTER 2. NETWORK FLOWS

property follows from the special algebraic structure of the linear program-
ming formulation of such problems. The theoretical properties of network flow
problems and their relationship with linear programming are discussed in Ap-
pendix B. The material presented in this chapter is mainly based on the book
by Ahuja et al. [3].

2.1. SHORTEST PATH 19

2.1 Shortest path

In this section we discuss one of the most natural and fundamental network
problems, namely the shortest path problem. Let G = (N,A) be a directed
network, where |N | = n and |A| = m. Each arc (i, j) ∈ A has an associated
cost cij . We wish to determine a cheapest (shortest) directed path between two
given nodes s and t in G. A sample problem is shown in Figure 2.1. The path
1-3-5 is the shortest one between nodes 1 and 5 and its total cost (length) is
equal to 3.

Figure 2.1: The path 1-3-5 is the shortest path from 1 to 5 in this network.

If we do not restrict the arc costs to be nonnegative, then we must be careful.
Consider the network shown in Figure 2.2. If we wish to find a shortest path
from 1 to 5, then we have a problem. Traversing the directed cycle 1-2-3-1 incurs
a total cost equal to -1. We can move along this cycle as many times as we wish
before going to node 5, each time decreasing the cost of the path. Therefore,
the optimal value is unbounded.

Figure 2.2: There is no shortest path between 1 and 5.

We may assume that it is prohibited to visit any node more than once, so we
are not allowed to move along any cycle. However, this assumption completely
changes the problem and makes it very difficult to solve (see Appendix C).
Therefore, we will assume that if there exists a cycle with a negative cost, then
the problem has no solution. So, we must be careful if negative arc costs in the
network are allowed and any algorithm for solving the shortest path problem
should be able to detect negative cycles in such networks.
In some applications the network may be undirected. If all arc costs are

nonnegative, then we can transform such an undirected network into a directed

20 CHAPTER 2. NETWORK FLOWS

one as shown in Figure 2.3. This transformation is not correct if some arcs have
negative costs, since it creates negative cycles.

Figure 2.3: Transforming an undirected network into a directed one.

Sometimes we wish to determine the shortest paths from node s to all the
other nodes in a network. The paths obtained can be represented by the so-
called tree of shortest paths. Consider the sample problem shown in Figure 2.4.
We would like to compute the shortest paths from node 1 to all the other nodes
in the network. These paths can be represented as a tree rooted at node 1. For
each node j 6= 1, there is a unique path from 1 to j in this tree, representing the
shortest path from 1 to j. Observe that the tree of shortest paths can be stored
in a single array [pred(1), . . . , pred(n)], where pred(i) is the direct predecessor
of node i 6= s in the tree and pred(s) = 0. We can encode the tree shown in
Figure 2.4 as [0, 3, 1, 2, 3]. This simple representation allows us to retrieve the
shortest path from 1 to any other node in G.

Figure 2.4: The tree of shortest paths from node 1.

Distance labels

All the algorithms computing the shortest paths in G work with distance labels.
A distance label is a number d(i) associated with node i ∈ N of network G
and d(i) is an upper bound on the length of the shortest path from node s to
i. Initially, we may fix d(s) = 0 and d(i) = ∞ for all i ∈ N \ {s}. During
its execution, an algorithm updates all the distance labels systematically and
when it terminates d(i) represents the length of a shortest path from s to i
for each i ∈ N . The basic operation performed by all these algorithms is the

2.1. SHORTEST PATH 21

so-called distance label updating. Consider a pair of nodes i, j ∈ N linked by
arc (i, j) ∈ A. If d(j) > d(i) + cij , then there must be a path from s to j
shorter than d(j) and we update d(j) so that d(j) = d(i) + cij . The algorithms
use different orders of label updating depending on the structure of the input
network G. We will describe the algorithms later in this section.

Longest path

In some applications we would like to find a longest path from s to t in a given
network G, that is a directed path from s to t of maximum cost (length). We
will assume that in this case the network is acyclic. Thus the problem is well
defined for both negative and nonnegative arc costs. A sample problem is shown
in Figure 2.5.

Figure 2.5: A sample network with the longest path from 1 to 5 shown in bold.

2.1.1 Applications

Application 1 (planning a route). The shortest path problem has obvious appli-
cations in planning routes. Given a map of roads, say in Poland, we would like
to find a shortest tour between two given points on this map. We can model the
road system as a network. The nodes of this network represent crossroads and
the arcs represent roads. The nonnegative arc costs may represent the lengths
or travel times of the roads.

Application 2 (production/inventory model). A car factory wants to establish a
production plan for the next k periods. In every period the customers’ demand
is equal to Q and it must be fully satisfied. Producing j cars costs c(j), where
j = 0, . . . , 2Q and c(0) = 0. Unsold cars can be stored at a cost of ml per unit in
periods l = 1, . . . , k. We assume that up to Q cars can be stored in every period.
How many cars should the factory produce during each period to minimize the
total cost? This problem can be represented as the directed network shown in
Figure 2.6.
The numbers at the nodes of the network denote the number of cars stored

in each period. Before the first and at the end of the kth period the store is
empty. In every period 1, . . . , k−1 we can store 0, 1, . . . , Q cars. The arcs of the

22 CHAPTER 2. NETWORK FLOWS

Figure 2.6: The network for the production/inventory model.

network represent transitions between two subsequent inventory states and the
cost of the transition (i, j) in the lth period can be computed in the following
way. The factory has i cars and must have j cars at the end of the period. So,
the factory must produce Q − i + j cars to satisfy demand and the production
cost is c(Q − i + j). Storing j cars costs jml. Hence, the total cost of the
transition (i, j) is c(Q− i+ j)+ jml. The optimal production plan can be found
by computing the shortest path in the network constructed.

Application 3 (renting a crane). A factory needs a crane, which will be used
during the next K months. The cost of renting a crane depends on the month
and on the number of months for which it is rented. If the factory rents a
crane at the beginning of the ith month and uses it until the end of the jth
month, then it must pay cij+1. We would like to determine the best strategy
for renting a crane. This problem can be represented as the directed network
shown in Figure 2.7. The nodes represent the beginning of the months and the
arcs represent all the possible ways of renting a crane. We obtain a best strategy
by computing a shortest path from node 1 to node K + 1 in this network.

2.1.2 A dynamic algorithm for acyclic networks

Suppose that the network is acyclic, i.e. it does not contain any directed cycle.
The networks from Examples 2 and 3 in previous section are acyclic. Observe
that in this case we do not need to worry about negative arc costs, because
the network cannot contain any directed cycle of negative cost. In an acyclic
network it is possible to label the nodes so that i < j for each arc (i, j) ∈ A.
Such a labeling is called a topological ordering and can be efficiently performed
in O(m) time, where m is the number of arcs (see Appendix A).

Let us associate two numbers with each node i ∈ N : d(i) denoting the

2.1. SHORTEST PATH 23

Figure 2.7: The network for the renting crane problem.

distance from node s to node i and pred(i) denoting the direct predecessor
of node i on a path from s to i. Our algorithm will iteratively modify these
numbers and at the end d(i) will be equal to the length of the shortest path
from s to i and the set of pred(j), j ∈ N , will allow us to retrieve the shortest
path from s to i. The algorithm is shown in Figure 2.8.

1: Establish a topological ordering of the nodes.
2: d(1) = 0, d(i) = ∞ for each node i = 2, . . . , n
3: pred(i) = 0 for all i = 1, . . . , n
4: for i = 1 to n do
5: for all j such that (i, j) ∈ A do
6: if d(j) > d(i) + cij then
7: d(j) := d(i) + cij , pred(j) = i
8: end if
9: end for
10: end for

Figure 2.8: A dynamic algorithm for acyclic networks.

Consider the sample network shown in Figure 2.9. This network is acyclic
and the nodes are numbered according to a topological ordering. We wish to
compute the shortest paths from s = 1 to all the other nodes in the network.
Initially d(1) = 0, pred(1) = 0 and d(i) = ∞ and pred(i) = 0 for all i > 1. This
means that the distance from 1 to 1 equals 0 and we have no information about
any path from s to i, where i > 1, at this moment. We will now consider the
nodes in order of the topological ordering. So, we start with node 1. There are
two arcs (1, 2) and (1, 3) leaving node 1. We thus update d(2) = d(1) + c12 = 2,
pred(2) = 1 and d(3) = d(1) + c13 = 5, pred(3) = 1 (see Figure 2.10a). The
next node is 2. There are three arcs (2, 3), (2, 4) and (2, 5) which leave node 2.
So we update the distance and predecessor labels of nodes 3,4 and 5 as shown
in Figure 2.10b. We then consider the remaining nodes in order 3,4 and 5.

24 CHAPTER 2. NETWORK FLOWS

Figure 2.9: A sample network after initialization.

Figure 2.10: Two steps of the dynamic algorithm.

The final results are shown in Figure 2.11. In Figure 2.11a all the nodes
contain the shortest distance from node 1 and the direct predecessor on the
shortest path from node 1. In Figure 2.11b the obtained tree of shortest paths
is shown.
The dynamic algorithm can easily be modified to compute a longest path in

G. It is enough to replace line 2 with d(1) = 0, d(i) = −∞, i = 2, . . . , n and the
condition in line 6 with d(j) < d(i) + cij .

Correctness and running time of the algorithm

Theorem 4 The dynamic algorithm solves the shortest path problem in acyclic
networks in O(m) time.

Proof. The crucial fact is that we consider the nodes in order of the topological
ordering. Initially d(1) = 0, so we have the correct shortest distance from node 1
to itself. We can now use induction to prove the correctness of the algorithm.
Suppose that during the ith iteration, steps 4-10 of the algorithm, d(1), . . . , d(i)
are the shortest distances from node 1. Consider iteration i + 1, where node
i + 1 is considered. Let j be the direct predecessor of node i + 1 on a shortest
path from s to i + 1. From the topological ordering, it follows that node j

2.1. SHORTEST PATH 25

Figure 2.11: The final results and the tree of shortest paths.

must be one of 1, . . . , i and, at this point, d(j) is the shortest distance from 1
to j. Hence, d(i + 1) = d(j) + cij+1 is the shortest distance from 1 to i + 1 and
pred(i + 1) = j. The dynamic algorithm scans every arc of G exactly once and
can be easily implemented to run in O(m) time. So it is linear with respect to
the number of arcs.

2.1.3 Dijkstra’s algorithm

If a network contains a directed cycle, then the simple dynamic algorithm, shown
in the previous section, does not work. This simply follows from the fact that it
is not possible to establish a topological ordering of nodes in a network which
is not acyclic (see Appendix A). Consider now a general network in which,
however, all arc costs are nonnegative. Let us partition the set of nodes into
two subsets: S - the set of marked nodes and S - the set of unmarked nodes.
During the execution of the algorithm we will know the shortest paths from s
to i for all nodes i in S. This algorithm, called Dijkstra’s algorithm, is shown
in Figure 2.12.

1: S := ∅, S := N
2: d(i) := ∞ for each node i ∈ N
3: d(s) := 0, pred(s) := 0
4: while S 6= ∅ do
5: Let i ∈ S be a node for which d(i) = min{d(j) : j ∈ S}
6: S := S ∪ {i}
7: S := S \ {i}
8: for all j such that (i, j) ∈ A do
9: if d(j) > d(i) + cij then d(j) := d(i) + cij , pred(j) := i
10: end for
11: end while

Figure 2.12: Dijkstra’s algorithm.

26 CHAPTER 2. NETWORK FLOWS

Consider the sample network shown in Figure 2.13. Note that this network is
not acyclic but all the arc costs are nonnegative. We would like to compute the
shortest paths from node 1 to all the other nodes. In Figure 2.13 the network
after initialization is shown. Now, according to Dijkstra’s algorithm, we must
find a node i ∈ S, which has the smallest value of d(i). This is node 1. So, we
add node 1 to S and remove it from S. Furthermore, we update nodes 2 and 3
(see Figure 2.14a). We again seek a node i ∈ S, which has the smallest value of
d(i) and now it is node 3. We add node 3 to S, remove it from S and update
nodes 4 and 6 (see Figure 2.14b). In the next step we need to choose node 4
and update node 2 (see Figure 2.14c). The algorithm proceeds until the set S
becomes empty. You may perform the remaining three steps and draw the tree
of shortest paths as an exercise.

Figure 2.13: A sample network after initialization, S = ∅, S = {1, . . . , 6}.

Figure 2.14: Three steps of Dijkstra’s algorithm. The grey nodes belong to S.

2.1. SHORTEST PATH 27

Correctness and running time of the algorithm

Figure 2.15: Illustration of the proof.

Theorem 5 Dijksta’s algorithm solves the shortest path problem in networks
with nonnegative arc costs in O(n2) time, where n is the number of nodes.

Proof. We will prove that if node i ∈ S is added to S in step 6 of the algorithm,
then d(i) is the shortest distance from s to i. Suppose, by contradiction, that i
is the first node added to S, which violates this property. This means that path
p of length d(i) is not the shortest one and there exists a path p∗ whose length
is smaller than d(i). It is easy to see that this path must use at least one node
from the set S other than i. Let k be the first node in p∗ which belongs to S. So
the path p∗ consists of two subpaths: p1 from s to k and p2 from k to i, which
belongs entirely to S. The node k is the first node in subpath p2. This situation
is shown in Figure 2.15. Since all arc costs are nonnegative, the length of p2

is nonnegative and, consequently, the length of p1 is smaller than the length of
p. Now observe that p1 must be the shortest path from s to k (otherwise p∗

is not the shortest path from s to i). Let j be the direct predecessor of k in
p∗. Since j ∈ S, node k was updated from node j and d(k) ≤ d(j) + cjk. So
d(k) is the length of p1 and d(k) < d(i). This is a contradiction, because node
i has the smallest value of d(i) among all nodes in S. Let us now estimate the
running time of the algorithm. The loop 4-11 is performed n times, because
we increase the set S by one in every iteration. Inside this loop we must find
a node i ∈ S with the smallest d(i), which takes O(n) time and update some
nodes, which also takes O(n) time in the worst case. Hence, the overall running
time of Dijkstra algorithm is O(n2).

2.1.4 Floyd-Warshall algorithm

In this section we describe an algorithm which works for all directed networks,
containing both directed cycles and negative arc costs. This algorithm will be
surprisingly simple. Its running time will be, however, O(n3), which is larger
than the running time of the dynamic and Dijkstra’s algorithms. In some ap-
plications, this running time may be prohibitive.

28 CHAPTER 2. NETWORK FLOWS

Let us arbitrarily number the nodes of the network from 1 to n. Let dk[i, j]
represent the length of a shortest path from node i to node j subject to the
condition that this path can use only the nodes 1, 2, . . . , k − 1 as internal nodes
(for the path i1 − i2 −· · ·− il−1 − il, the nodes i2, . . . , il−1 are internal). If there
is no such a path, then dk[i, j] = ∞. The algorithm described in this section
will be based on the following equality:

dk+1[i, j] = min{dk[i, j], dk[i, k] + dk[k, j]}. (2.1)

The proof of equality (2.1) is quite simple. A shortest path that uses only the
nodes 1, . . . , k as internal nodes fulfills one of the following two conditions: (1)
it does not use node k, in which case dk+1[i, j] = dk[i, j], (2) it does use node
k, in which case dk+1[i, j] = dk[i, k] + dk[k, j].

1: for all node pairs [i, j] ∈ N × N d[i, j] := ∞, pred[i, j] := 0
2: for all nodes i ∈ N d[i, i] := 0
3: for all arcs (i, j) ∈ A d[i, j] := cij , pred[i, j] := i
4: for k = 1 to n do
5: for all [i, j] ∈ N × N do
6: if d[i, j] > d[i, k] + d[k, j] then
7: d[i, j] := d[i, k] + d[k, j]
8: pred[i, j] := pred[k, j]
9: end if
10: end for
11: end for

Figure 2.16: The Floyd-Warshall algorithm.

We can now proceed by computing d1[i, j], d2[i, j], . . . , dn+1[i, j] for all (i, j) ∈
A. Obviously, dn+1[i, j] represents the shortest distance from i to j. This is
exactly what the Floyd-Warshall algorithm does. The algorithm is shown in
Figure 2.16. It additionally uses predecessor indices, pred[i, j], for each node
pair i, j. The value of pred[i, j] is the direct predecessor of node j on the path
from i to j. At any step of the algorithm, a finite value of d[i, j] means that
the network contains a directed path from node i to node j of length d[i, j]
and this path can be retrieved using the predecessor indices. In steps 6-9 the
algorithm updates the distances and predecessor indices, which is illustrated in
Figure 2.17.
We now illustrate the algorithm using the sample network shown in Fig-

ure 2.18.
In steps 1-3 we initialize d[i, j] and pred[i, j] for all node pairs i, j = 1, . . . , n.

We get:

d =

0 3 1 7 ∞
1 0 6 ∞ 2
∞ ∞ 0 −3 −1
∞ ∞ 6 0 ∞
∞ −1 ∞ 7 0

pred =

0 1 1 1 0
2 0 2 0 2
0 0 0 3 3
0 0 4 0 0
0 5 0 5 0

2.1. SHORTEST PATH 29

Figure 2.17: If d[i, j] > d[i, k] + d[k, j], then d[i, j] := d[i, k] + d[k, j] and
pred[i, j] := pred[k, j].

Figure 2.18: A sample network.

We then fix k = 1 and seek better paths that can use 1 as an inter-
nal node. For example, d[2, 3] > d[2, 1] + d[1, 3], so we update the distance
d[2, 3] := d[2, 1] + d[1, 3] = 2 and pred[2, 3] := pred[1, 3] = 1. Similarly,
d[2, 4] > d[2, 1] + d[1, 3], so we update d[2, 4] and pred[2, 4]. After this we get
the following distances and predecessor indices (the updated values are shown
in boxes):

d =

000 333 111 777 ∞∞∞

111 0 2 8 2
∞∞∞ ∞ 0 −3 −1
∞∞∞ ∞ 6 0 ∞
∞∞∞ −1 ∞ 7 0

pred =

000 111 111 111 000

222 0 1 1 2
000 0 0 3 3
000 0 4 0 0
000 5 0 5 0

We fix k = 2 and seek better paths which can use 2 as an internal node.
After performing these computations, we obtain the following distances and
predecessor indices:

d =

0 333 1 7 5
111 000 222 ∞∞∞ 222
∞ ∞∞∞ 0 −3 −1
∞ ∞∞∞ 6 0 ∞

0 −1−1−1 1 7 0

pred =

0 111 1 1 2
222 000 111 000 222
0 000 0 3 3
0 000 4 0 0

2 555 1 5 0

For k = 3 we get:

30 CHAPTER 2. NETWORK FLOWS

d =

0 3 111 -2 0

1 0 222 -1 1
∞∞∞ ∞∞∞ 000 −3−3−3 −1−1−1

∞ ∞ 666 0 5

0 −1 111 -2 0

pred =

0 1 111 3 3

2 0 111 3 3
000 000 000 333 333

0 0 444 0 3

2 5 111 3 0

For k = 4 we get:

d =

0 3 1 −2−2−2 0
1 0 2 −1−1−1 1
∞ ∞ 0 −3−3−3 −1
∞∞∞ ∞∞∞ 666 000 555
0 −1 1 −2−2−2 0

pred =

0 1 1 3 3
2 0 1 3 3
0 0 0 3 3
0 0 4 0 3
2 5 1 3 0

And finally for k = 5 we obtain:

d =

0 -1 1 −2 000
1 0 2 −1 111

-1 -2 0 −3 −1−1−1

5 4 6 0 555
000 −1−1−1 111 −2−2−2 000

pred =

0 5 1 3 333
2 0 1 3 333

2 5 0 3 333

2 5 4 0 333
222 555 111 333 000

The last two matrices contain the complete information about the shortest
paths between all the pairs of nodes i and j in the sample network. For example,
if we wish to get the shortest paths from node 4, then we should look at the
fourth row of the matrix pred, which is [2, 5, 4, 0, 3]. This row describes the tree
of shortest paths from node 4.

Detection of negative cycles

Consider the network shown in Figure 2.19.

Figure 2.19: A sample network with a negative cycle.

This network contains a cycle, 4-2-3-4, of negative length equal to -2. Ac-
cording to our assumption, there is no shortest path from node 4 to node 2

2.1. SHORTEST PATH 31

in this network. Let us see what will happen if we apply the Floyd-Warshall
algorithm to this network. After 3 iterations (k = 3) we get:

d =

0 3 5 6
1 0 2 3
∞ ∞ 0 1

−4 −5 −3 -2

pred =

0 1 2 3
2 0 2 3
0 0 0 3

2 4 2 3

We can see that the distance d[4, 4] = −2, which means that there is a
path from node 4 to itself (a cycle) of negative length equal to -2. This cycle
can be retrieved from the fourth row of the matrix pred in the following way:
pred[4, 4] = 3, so we get a partial path 3 − 4, then pred[4, 3] = 2, so the partial
path is 2−3−4 and finally pred[4, 2] = 4, which leads to the cycle 4−2−3−4.
Alternatively, we may try to draw the tree of shortest paths from node 4 and
we will also encounter the cycle 4 − 2 − 3 − 4.
The Floyd-Warshall algorithm is able to detect negative cycles in network

G. If at any step d[i, i] < 0 for some node i, then there is a cycle of negative
length from i to i. Furthermore, this cycle can be easily obtained from the ith
row of the matrix pred.

Correctness and running time of the algorithm

Theorem 6 The Floyd-Warshall algorithm solves the problem of finding the
shortest path between all pairs of nodes in general networks in O(n3) time,
where n is the number of nodes.

Proof. The correctness of the algorithm follows directly from equality (2.1). It
is also easy to see that the algorithm runs in O(n3) time, because the loop 4-11
is performed O(n3) times.
The running time of the Floyd-Warshall algorithm does not depend on the

network structure. It simply manipulates two square matrices of size n × n
and it is very easy to implement. However, the running time O(n3) may be
prohibitive in some applications.

2.1.5 Project scheduling

In this section we show an important application of the longest path problem
to the project scheduling. Recall that in the longest path problem the input
network G = (N,A) is assumed to be acyclic and we seek a longest directed path
(i.e. a path of maximum cost) between nodes s and t in G. Such a path can be
computed by using a slight modification of the dynamic algorithm presented in
Section 2.1.2. Consider the following example. A project consists of six activities
and their description is shown in Table 2.1. So we can see that instructing the
workers and buying materials should be done first. When these two activities
are completed, we can start producing tools 1 and tools 2. The tools 2 should
be additionally tested. Finally, tools 1 and 2 should be merged to obtain a
final product. Each activity has some duration time. For example, instructing

32 CHAPTER 2. NETWORK FLOWS

the workers takes 2 units of time, the materials can be bought within 5 units of
time etc. We would like to answer the following questions. What is the duration
time of the project and which activities are critical, that is their duration times
cannot be increased without increasing the project duration?

Activities Direct predecessors Duration times
A (Instruct the workers) - 2
B (Buy materials) - 5
C (Produce tools 1) A,B 6
D (Produce tools 2) A,B 2
E (Test tools 2) D 1
F (Merge tools 1 and 2) C,E 5

Table 2.1: Description of the sample project.

We can model the project as a directed and acyclic network G = (N,A)
whose arcs represent the activities and nodes the events denoting the start and
finish of the corresponding activities. Since the network is acyclic, we can use
a topological ordering to label the nodes. The network for the sample project
is shown in Figure 2.20. For example, the activity C is represented by the arc
(3, 5), where node 3 denotes the start and node 5 denotes the finish of C. The
duration time of the activity C is t35 = 6. The dashed arc represents a special
dummy activity, which expresses that the activities C and D must start after
A and B are completed.

Figure 2.20: The network representation of the sample project.

Let ET (i) denote the earliest starting time of the event i. The values of
ET (i) for all i ∈ N can be computed by using the following formula:

{

ET (1) = 0
ET (i) = max

{j: (j,i)∈A}
(ET (j) + tji) i = 2, . . . , n

Note that the values ET (i) represent the longest distances from node 1 to i
and they can be computed by applying a dynamic algorithm to the network.

2.1. SHORTEST PATH 33

Because n is the earliest time when the last activity is finished, ET (n) is the
earliest completion time of the project, so it is the project duration time. Let
LT (i) denote the latest starting time of event i ∈ N , which does not increase
the project duration time. The values of LT (i) for all i ∈ N can be computed
in the following way:

{

LT (n) = ET (n)
LT (i) = min

{j: (i,j)∈A}
(LT (j) − tij) i = n − 1, . . . , 1

Hence, we can compute the values of LT (i), i ∈ N , by performing a backward
dynamic computation, starting from the node n. The quantity TF (i, j) =
LT (j) − ET (i) − tij is called the total float of activity (i, j). The activities for
which TF (i, j) = 0 are called critical. Their duration times cannot be increased
without increasing the duration time of the project. Each longest (critical) path
in G is composed of some critical activities.
The values of ET (i), LT (i) and TF (i, j) for the sample project are shown

in Figure 2.21. We can see that the project duration time is equal to 16. The
longest (critical) path is 1−2−3−5−6 and is composed of the critical activities
B, C and F. All these activities have the total flow equal to 0, which means
that increasing their duration times increases the duration time of the project.
On the other hand, the activities A, D and E have the total flow equal to 3. So
we can increase the duration time of one of these activities by at most 3 units
without increasing the project duration time. Alternatively, we can delay the
starting time of each of these activities by at most 3 units without increasing
the project duration time.

Figure 2.21: Computing the time characteristics for the sample project.

The project can also be represented in the form of the Gantt chart (see
Figure 2.22). This chart clearly shows which activities should be executed at
each time and which activities can be delayed without increasing the project
duration time.

34 CHAPTER 2. NETWORK FLOWS

Figure 2.22: The Gantt chart of the sample project.

2.1.6 Summary

1. In the shortest path problem we seek a directed path from node s to node
t of minimum total cost (length). Most algorithms are able to compute
a tree of shortest paths, which contains a shortest path from s to every
other node of G.

2. If the input network has a directed cycle of negative cost, then the problem
has no solution.

3. If the network is acyclic, then a simple dynamic algorithm can be applied
to compute the shortest paths from node s to all other nodes of G. This
algorithm runs inO(m) time and can be easily modified to compute longest
paths in the network. Furthermore, the dynamic algorithm works with
both nonnegative and negative arc costs.

4. For general networks with nonnegative arc costs, Dijkstra’s algorithm can
be applied. This algorithm runs in O(n2) time and can be improved for
some sparse networks.

5. For general networks with any arc costs, the Floyd - Warshall algorithm
can be applied. This algorithm computes the shortest paths between each
pair of nodes and is able to detect negative cycles. The running time of
the algorithm is O(n3) and it may be too slow if the input network is very
large. The algorithm is very simple to implement and works with two
matrices containing distance and predecessor indices.

The implementation details of all the algorithms presented in this section
can be found, for example, in [14] and [45]. Dijkstra’s algorithm was first
described in [18]. The simplest and original version of Dijkstra’s algorithm
runs in O(n2) time. This running time can be improved for various classes
of networks and the corresponding references can be found in [3]. The
Floyd-Warshall algorithm is from [20] and [49].

2.2. MAXIMUM FLOW 35

2.2 Maximum flow

Let G = (N,A), |N | = n, |A| = m, be a directed network with a source node
s and a sink node t. Each arc (i, j) ∈ A has an associated capacity uij ≥ 0.
A flow f = (xij)(i,j)∈A in G is defined by numbers xij , specified for each arc
(i, j) ∈ A, fulfilling the following two conditions:

1. 0 ≤ xij ≤ uij for all (i, j) ∈ A.

2.
∑

{i:(i,k)∈A} xik =
∑

{j:(k,j)∈A} xkj for all nodes k ∈ N \ {s, t}.

Condition 1 means that the flow xij along arc (i, j) is nonnegative and cannot
exceed the arc capacity uij . Condition 2 means that the flow is not created
nor destroyed at any node k, other that s and t. Namely, the total inflow
to k is equal to the total outflow from k. The value of a flow f is defined as
|f | =

∑

{j:(s,j)∈A} xsj −
∑

{i:(i,s)∈A} xis. So, the value of f is the flow created
at the source node s and sent through the network to the sink node t. In the
maximum flow problem, we wish to determine a flow in G of maximum value.
A sample problem is shown in Figure 2.23. The numbers in brackets fulfill
conditions 1 and 2, so they establish a flow in this network. The value of this
flow is equal to 13 and, in fact, this is the maximum flow in this network.

Figure 2.23: A sample network with the solution to the maximum flow problem.

Flows and cuts

Recall that an s − t cut [S, S] in G is a partition of the node set N into two
subsets S and S such that s ∈ S and t ∈ S. We refer to an arc (i, j) with
i ∈ S and j ∈ S as a forward arc, and an arc (i, j) with i ∈ S and j ∈ S as a
backward arc. The capacity u[S, S] of an s− t cut [S, S] is the sum of capacities
of the forward arcs in the cut. A sample s− t cut [S, S] is shown in Figure 2.24.
We have S = {s, 2, 3} and S = {4, t}. The forward arcs in this cut are (2, 4)
and (3, t). Hence the capacity of this cut is equal to u24 + u3t = 13. A cut of
minimum capacity in G is called a minimum cut. One can verify that the cut
shown in Figure 2.24 is the minimum cut.
The notions of the maximum flow and the minimum cut are closely related.

Intuitively, if there is a cut in G of capacity U , then the maximum flow in

36 CHAPTER 2. NETWORK FLOWS

G cannot exceed U . This follows from the fact that any flow which can be
sent through this cut cannot exceed the total capacity of its forward arcs. The
relationship between the maximum flow and minimum cut is formally stated
in the following theorem (its formal proof can be found in the literature, see.
e.g. [3]):

Theorem 7 The value of the maximum flow in G is equal to the capacity of
the minimum cut in G.

Figure 2.24: A sample s − t cut of capacity 13.

Observe that the capacity of the cut shown in Figure 2.24 equals the value
of the flow f from Figure 2.23. So, the flow f is maximal.

Augmenting flow along paths and cycles

In all network algorithms considered in this, and also in the next sections, a
procedure called flow augmentation will often be used. So, it is very important
to understand this basic operation on a flow. Consider the example shown in
Figure 2.25.

Figure 2.25: Augmenting a flow along (a) a path and (b) a cycle.

2.2. MAXIMUM FLOW 37

In Figure 2.25a a sample path (not necessarily directed) 1-2-3-4-5, being a
part of some network, is shown. There is a flow along the arcs of this path.
Suppose that an additional δ units of flow appear at node 1 and should be
delivered to node 5 along this path. What is the maximal value of δ? The
additional flow is first sent along arc (1, 2). Since the flow along this arc is 2
and the capacity of this arc is 4, we can send maximum 2 units of flow along
(1, 2). The next arc on the path is (3, 2). In order to satisfy condition 2 for the
flow at node 2, we must decrease the flow along arc (3, 2) by δ. Since the flow
is nonnegative we can subtract at most 3 units from arc (3, 2). Proceeding in
this way, we can see that δ = min{4−2, 3, 7−4, 3−1} = 2. Hence, we can send
a maximum of δ = 2 units of flow from 1 to 5 along the path by increasing the
flow by δ along arcs (1, 2), (3, 4), (4, 5) and decreasing the flow by δ along arc
(3, 2). We can also send a flow from node 5 to 1 along this path and we leave
this as a an exercise.

Sending a flow around a cycle can be considered in a similar way. Consider
the sample cycle shown in Figure 2.25b. We can send a flow along this cycle in
a clockwise or counterclockwise direction. Consider the clockwise direction. So
we increase the flow by δ along arcs (1, 2), (3, 4), (4, 5) and decrease the flow
by δ along arcs (3, 2) and (1, 5). In consequence, δ = min{6 − 4, 3, 4 − 1, 8 −
3, 2} = 2 and we can send a maximum of 2 units along the cycle. We leave the
computation of δ for the counterclockwise direction as an exercise.

2.2.1 Applications

Application 1 (analysis of pipeline systems). Suppose that k water pumps are
located at points A1, . . . , Ak, which can provide s1, s2, . . . , sk liters of water per
minute. The water is delivered to points B1, . . . , Bl, which require d1, d2, . . . , dl

liters of water per minute. The pipeline system is modeled by a directed network,
whose arcs represent pipes with specified capacities (in liters per minute). Is it
possible to satisfy the water demand of all points? If not, which parts of the
system should be modernized? A sample problem is shown in Figure 2.26.

Figure 2.26: A sample pipeline system.

The solution to this problem is shown in Figure 2.27. We first modify the
network by adding a source s and a sink t. We then add arcs (s,A1), (s,A2) and

38 CHAPTER 2. NETWORK FLOWS

(s,A3) with capacities 5, 15 and 10 respectively and arcs (B1, t) and (B2, t) with
capacities 10 and 15. The capacities of these additional arcs represent the water
supplies and demands of the nodes. We then solve the maximum flow problem
for this modified network. The solution is shown in Figure 2.27. As we can see,
a maximum of 20 liters of water can flow through this system in one minute
and the water demand of both B1 and B2 cannot be satisfied. According to the
solution obtained, point B1 receives 8 liters per minute and point B2 receives 12
liters per minute. In order to find the weakest parts of this system, we compute
a minimum cut in the network. This minimum cut is shown in Figure 2.27
and the forward arcs in this cut are (A2, 1), (2, 3) and (4, 3). So, if we wish to
increase the flow in this system we should consider increasing the capacity of
these three arcs (pipes) first.

Figure 2.27: The solution to the sample problem.

Application 1 (analysis of traffic networks). A system of roads and crossroads
in a city is given. Each road (crossroad) has an associated capacity, which
represents the maximum number of cars which can pass through it within one
minute under certain traffic conditions. How many cars can pass through this
system in one minute? Where are the weakest parts of this system located? A
sample problem is shown in Figure 2.28. The system consists of three crossroads
and some roads connecting the crossroads. For each road and crossroad the
number of cars that can pass through it within 1 minute are shown.

Figure 2.28: A sample road system.

2.2. MAXIMUM FLOW 39

In order to analyze this sample road system, we build the network shown
in Figure 2.29. We split every crossroad with finite capacity into two points -
the start and the end of the crossroad. The arc joining these two points has a
capacity equal to the capacity of the crossroad. After computing the maximum
flow in this network, we find that a maximum of 27 cars can pass through this
system within 1 minute. The minimum cut is composed of arcs (s,A1) and
(B1, B2) and they represent the weakest parts of the road system.

Figure 2.29: A sample pipeline system.

Application 3 (network reliability). Given a network G = (N,A), what is the
minimum number of arcs that we should remove from the network so that it
contains no directed path from node s to node t? This problem arises in a
number of applications. For instance, G may represent an electrical network
providing energy from s to t. We may ask what is the robustness of this network,
namely how many lines must be damaged before energy is not delivered to t.
This problem can be solved by computing a minimum cut in G. Consider the
sample network shown in Figure 2.30.

Figure 2.30: A sample problem.

Suppose that energy must be delivered from s to t and energy is delivered
if there is a directed path from s to t. We first assume that the capacity of

40 CHAPTER 2. NETWORK FLOWS

every arc is equal to 1. We then compute a minimum cut in this network (see
Figure 2.30). This minimum cut contains 3 forward arcs, so at least three arcs
(representing lines) must be damaged before energy is not delivered from s to t.

2.2.2 The Ford - Fulkerson algorithm

In this section we present an algorithm for solving the maximum flow problem.
This algorithm will also give us a minimum cut as a byproduct. The idea of the
algorithm is as follows. It starts with flow equal to 0 along every arc and then
iteratively increases the value of the current flow until no additional increase
is possible. So we must address two questions: (1) how can we increase the
current flow and (2) how can we check whether the current flow is maximal?
Consider arc (i, j) ∈ A with capacity uij and flow 0 ≤ xij ≤ uij . We can
modify the flow along this arc in two ways. We can increase the flow by at most
uij −xij or decrease the flow by at most xij . This observation leads to the very
useful concept of a residual network. Let G = (N,A) be a network with a flow
f = (xij)(i,j)∈A. We construct a residual network G(f) in the following way:

1. For each arc (i, j) ∈ A we create two arcs:

• (i, j) with capacity rij = uij − xij

• (j, i) with capacity rji = xij

2. We remove all arcs in G(f) with 0 capacity (that is, with rij = 0).

An example of a residual network G(f) is shown in Figure 2.31. In Fig-
ure 2.31a a network with a sample flow f is shown. In Figure 2.31b the residual
network G(f) is shown. Notice that all the arcs in G(f) have positive capacities.
Notice also that each directed path in the residual network G(f) is also a path
(but not necessarily directed) in the original network G.

Figure 2.31: a) A network G with a flow f b) Residual network G(f).

How can we check, whether the flow shown in Figure 2.31a is maximal? We
can send an additional positive flow from s to t in G if there is a directed path
from s to t in G(f). This follows from the fact that every arc in G(f) shows
some possibility of modifying the flow in the original network G. If we look at
the residual network G(f) in Figure 2.31, then we can easily discover such a

2.2. MAXIMUM FLOW 41

path, for example s − 2 − 3 − t. This directed path in G(f) corresponds to the
same path s− 2− 3− t in the undirected version of the original network G. We
can now increase the flow by δ > 0 units along s−2−3−t. In order to determine
δ, we check the residual capacities of all the arcs on the path s − 2 − 3 − t in
G(f) and choose the minimum of these capacities, which in our case is equal
to 1. We now augment the flow along the path s− 2− 3− t in G by δ = 1 unit.
Namely, we increase the flow along arc (s, 2) by 1, decrease the flow along arc
(3, 2) by 1 and increase the flow along arc (3, t) by 1. We have thus increased
the value of the current flow by 1 (see Figure 2.32).

Figure 2.32: a) A network G with a flow f b) Residual network G(f). The
directed path s−2−3−t in G(f) corresponds to the augmenting path s−2−3−t
in G.

Consider now the example shown in Figure 2.33.

Figure 2.33: a) A network G with a flow f b) Residual network G(f).

The residual network G(f) for the flow f does not contain any directed path
from s to t. This means that it is not possible to increase the flow and f is the
maximum flow in G. We can however send some flow from s to the nodes 2
and 3. But this flow cannot be sent further. Define S = {s, 2, 3} and S = {4, t}.
Then [S, S] defines a cut in G. The capacity of this cut cannot be less than 20,
because the current flow is equal to 20. However, it also cannot be greater
than 20, because otherwise we could discover a directed path in G(f) to some

42 CHAPTER 2. NETWORK FLOWS

node in S. So [S, S] is a minimum cut in G. Summarizing, we can compute the
minimum cut in G in the following way. Let f be the maximum flow and let
S be the set containing the source node s and all the nodes i ∈ N for which
there is a directed path from s to i in G(f). Let S = N \S be the set of all the
remaining nodes. Then [S, S] is the minimum cut in G.

Theorem 8 A flow f is maximal in G if and only if there is no directed path
between s and t in the residual network G(f). Furthermore, if S is the set of
all the nodes that are reachable from s in G(f), then [S,N \ S] is a minimum
s-t cut in G.

Using Theorem 8, we can design an algorithm for computing the maximum
flow in G, which is shown in Figure 2.34. This algorithm is illustrated in Fig-
ure 2.35. We start with the flow along every arc being equal to 0, in which
case networks G and G(f) are the same (see Figure 2.35a). We then discover a
directed path s−1−2−t in G(f) and augment by 2 units of flow along this path
in G obtaining a flow f of value 2. We again construct the residual network
G(f) and seek a directed path in G(f). The algorithm finishes after performing
3 augmentations and the resulting flow of value 6 is shown in Figure 2.35d. This
figure also shows the minimum cut in G.

1: f := 0
2: while G(f) contains a directed path from s to t do
3: Identify a directed path p from node s to t in G(f)
4: δ := min{rij : (i, j) ∈ p}
5: Augment δ units of flow along p in G and update G(f)
6: end while

Figure 2.34: The augmenting path (Fulkerson - Ford) algorithm.

Observe that if all the arc capacities are integer, then the algorithm always
sends an integer flow along augmenting paths (i.e. δ is always integer). In
consequence, according to the obtained maximum flow, the flows along all the
arcs are integer. Let us emphasize this important result.

Theorem 9 If all the arc capacities are integer, then there is a maximum flow
f = (xij)(i,j)∈A such that all the xij are integer.

Running time of the algorithm

Theorem 10 The Ford-Fulkerson algorithm solves the maximum flow problem
in O(mnU) time, where U is the largest capacity among all the arcs.

Proof. Step 3 of the algorithm, where we seek a directed path in the residual
network, can be performed in O(m) time (see Appendix A). Observe that every
iteration of steps 2-6 increases the value of the current flow by at least one. So,
the number of augmentations equals O(m) multiplied by an upper bound on the

2.2. MAXIMUM FLOW 43

maximal flow in G. If all the arc capacities are integer and bounded by a finite
number U , then the capacity of any cut is at most nU . Hence, the maximum
flow is bounded by nU and the worst case running time of the algorithm is
O(mnU).
The generic Ford-Fulkerson algorithm may run in exponential time. An

example is shown in Figure 2.36, where the residual networks for the first three
iterations are shown. If we always send flow along the augmenting paths s −
1 − 2 − t or s − 2 − 1 − t, then the algorithm will perform 2 ∗ 10K iterations
each time increasing the flow by only 1. Note that there is no rule of choosing
a directed path in G(f) if there is more than one such path. So, in the worst
case, the algorithm will always choose s − 1 − 2 − t or s − 2 − 1 − t.
We can improve the running time of the algorithm using the following result:

Theorem 11 (Edmonds - Karp [19]) If the algorithm always chooses a short-
est directed path in G(f) (with respect to the number of arcs), then the Ford-
Fulkerson algorithm with this modification runs in O(nm2) time.

So using the simple modification of the algorithm, we get an algorithm which
runs in polynomial time. Observe that applying this modification to the problem
from Figure 2.36, we get the maximum flow in two steps, because we choose
path s − 1 − t or s − 2 − t and send 10K units within one iteration.

2.2.3 Summary

1. In the maximum flow problem we seek a flow of maximum value from a
source node s to a sink node t in a given network G with specified arc
capacities.

2. The value of the maximum flow is equal to the minimum capacity among
all s − t cuts in G.

3. The augmenting path (Ford-Fulkerson) algorithm solves the problem in
O(mnU) time, which can be improved to O(nm2) by using the simple
Edmonds-Karp modification. So the problem solvable in polynomial time.
The algorithm also returns a minimum cut as a byproduct.

4. If all the arc capacities are integer, then there exists a maximum flow such
that the flows along each arcs are integer.

The implementation details of all the algorithms presented in this section
can be found, for example, in [14] and [45]. The Ford-Fulkerson augment-
ing path algorithm was first described in [21]. The famous max flow -
min cut theorem was also first established in this paper. Some additional
interesting combinatorial results that are provable using the max flow -
min cut theorem can be found in [3] and [22]. The original Ford - Fulk-
erson algorithm does not run in polynomial time. Two polynomial time
implementations of this algorithm were suggested by Edmonds and Karp
in [19]. Some other efficient algorithms for the maximum flow problem are
also known and a description of them can be found in [3].

44 CHAPTER 2. NETWORK FLOWS

Figure 2.35: Illustration of the Ford-Fulkerson algorithm.

Figure 2.36: A pathological case for the algorithm [3].

2.3. MINIMUM COST FLOW 45

2.3 Minimum cost flow

In this section we consider one of the most important and most general network
problems, called the minimum cost flow problem. In fact, both the shortest path
and the maximum flow problems can be viewed as special cases of the minimum
cost flow problem. Let G = (N,A) be a directed network, where |N | = n and
|A| = m. We associate with each node i ∈ N an integer number b(i) which
indicates its supply or demand, depending on whether b(i) > 0 or b(i) < 0. If
b(i) > 0, then i is called a supply node and if b(i) < 0, then i is called a demand
node. We will assume that

∑

i∈N b(i) = 0, which means that the problem is
balanced, that is to say the total supply is equal to the total demand. Each arc
(i, j) ∈ A has an associated integer cost cij and integer capacity uij ≥ 0. A flow
f = (xij)(i,j)∈A in G is defined by numbers xij specified for each arc (i, j) ∈ A,
fulfilling the following two conditions:

1. 0 ≤ xij ≤ uij

2.
∑

{j:(k,j)∈A} xkj −
∑

{i:(i,k)∈A} xik = b(k) for all nodes k ∈ N .

The cost of the flow f is defined as c(f) =
∑

(i,j)∈A cijxij . In the minimum cost
flow problem we seek a flow with the minimum cost.
In order to provide an interpretation of flow, consider the example shown in

Figure 2.37.

Figure 2.37: A sample minimum cost flow problem.

Node 1 in this network is a supply node and supplies b(1) = 5 units. Nodes 4
and 5 are demand nodes and require b(4) = −2 and b(5) = −3 units respectively.
The remaining nodes, 2 and 3, are neither demand nor supply ones (they can be
viewed as transshipment nodes) and have b(2) = b(3) = 0. Notice that the total
supply equals the total demand, which can be expressed as b(1)+ · · ·+ b(5) = 0.
Suppose now that the 5 units, available at node 1, must be sent to nodes 4
and 5. Then condition 1 expresses the fact that the number of units sent along
arc (i, j) ∈ A is nonnegative and cannot exceed its capacity uij . Condition 2
means that for each node k ∈ N the total outflow from k minus the total inflow
to k is equal to b(k). One can check that the flow shown in Figure 2.37 fulfills
conditions 1 and 2 and its cost is 22.

46 CHAPTER 2. NETWORK FLOWS

In a given network G a flow satisfying conditions 1 and 2 may not exist. Fur-
thermore, even if a flow exists, there may be no flow of minimum cost because
the optimal value might be unbounded. The problem of computing a feasible
flow in G will be addressed in Section 2.3.2. Observe that the optimal value is
unbounded if there is a directed cycle in G of both negative cost and infinite
capacity (i.e. all the arcs in this cycle have infinite capacities). In this case,
we can augment the flow along this cycle by an arbitrary amount obtaining an
arbitrarily small cost. In this section we will make the following assumption:

Assumption. The input network G does not have a directed cycle of negative
cost.

Under the above assumption we can remove all infinite arc capacities. If
uij = ∞, then we can fix uij = M , where M is a sufficiently large constant.
Interestingly, we can also transform the problem so that there are no negative
arc costs. The approach based on node potentials and reduced arc costs will be
presented in Section 2.3.4.

2.3.1 Applications

Application 1 (optimal loading of an airplane [3]). A small company uses a
plane with a capacity of p passengers. The plane visits the cities 1, 2, . . . , n in
this fixed order. It can pick up passengers at any city and drop them off at any
other city. Let bij be the number of passengers available at city i, who want to
go to city j, and let fij denote the fare per passenger from i to j. How many
passengers should the plane carry between various cities to maximize the total
profit?

Figure 2.38: The network for 4 cities [3].

2.3. MINIMUM COST FLOW 47

The network for 4 cities is shown in Figure 2.38. We get an optimal solution
by computing a minimum cost flow for this network. Notice that the network
is acyclic, so our assumption from the previous section is satisfied.

Application 2 (dynamic lot sizing). A factory produces some product and it
wishes to meet prescribed demand dj for each of K periods j = 1, 2, . . . ,K
by producing up to aj in period j and/or by drawing upon the inventory Ij−1

carried forward from the previous period. The unit production cost in the jth
period is equal to cj and the unit inventory cost in the jth period is equal to
mj . We assume that up to I units can be stored between periods. The factory
wants to establish an optimal production plan.

Figure 2.39: The network for the dynamic lot sizing problem.

The network for this problem is shown in Figure 2.39. We get an optimal
solution by computing a minimum cost flow in this network.

2.3.2 Establishing a feasible flow

Most algorithms which solve the minimum cost flow problem typically start
with some flow and then iteratively decrease the cost of the current flow until
some optimality conditions are satisfied. Therefore, the first nontrivial problem
to be addressed is how to establish a starting feasible flow (i.e. satisfying the
conditions 1 and 2 from Section 2.3) in a given network G. Notice that there
may be no feasible flow in G at all. For example, if G consists of only two nodes,
1 and 2, linked by the arc (1, 2) and b(1) = 2, b(2) = −2, u12 = 1, then there is
no feasible flow in G. So, we must also be able to detect the situation, in which
a feasible flow does not exist.
There are several methods of determining a feasible flow in a network G.

The first one is illustrated in Figure 2.40. Given a network G, we first add a
source node s and a sink node t to G. We then add an additional arc (s, i) for
each supply node i ∈ N with cost 0 and capacity b(i) and an additional arc (i, t)
for each demand node i ∈ N with cost 0 and capacity −b(i). We then solve the
maximum flow problem in this modified network. If the maximal flow obtained
is less than the total supply (or equivalently the total demand), then there is no

48 CHAPTER 2. NETWORK FLOWS

feasible flow in the original network G; otherwise the maximum flow obtained
is a feasible flow in G.

Figure 2.40: Establishing a feasible flow.

The second method is shown in Figure 2.41. We add to network G an
additional node s with b(s) = 0 and an arc (i, s) for each supply node i ∈ N and
an arc (s, i) for each demand node i ∈ N . All these additional arcs have infinite
costs and infinite capacities. We may fix these costs and capacities using a
sufficiently large constant M . In this transformed network we can immediately
establish a feasible flow without any computational effort. We simply fix xis =
b(i) for all (i, s) ∈ A and xsi = −b(i) for all (s, i) ∈ A. The flow along all the
remaining arcs is equal to 0 (see Figure 2.41b). We can now compute an optimal
flow in this transformed network. If according to the optimal flow obtained, at
least one additional arc has a positive flow, then there is no feasible flow in the
original network. Otherwise, the optimal flow in the transformed network is
also an optimal flow in the original one.

Figure 2.41: Establishing a feasible flow. The additional dashed arcs have costs
and capacities equal to a sufficiently large constant M .

2.3. MINIMUM COST FLOW 49

The second method of obtaining a feasible flow is less time consuming. We
must, however, carefully fix the value ofM . Also, the algorithms for computing
an optimal flow will typically perform more iterations if the second method is
used. On the other hand, using the first method, we can quickly detect whether
there is a feasible flow in G.

2.3.3 The cycle canceling algorithm

As for the maximum flow, the concept of a residual network is very useful in the
minimum cost flow problem. It is similar to the one defined in Section 2.2.2.
We only have to additionally take the arc costs into account. Assume that an
arc (i, j) ∈ A with cost cij and capacity uij has a flow equal to xij . We can
increase the flow along this arc by at most uij − xij units at a cost of cij per
unit or decrease the flow by at most xij units at a cost of −cij per unit. This
leads to the following definition. Let G = (N,A) be a network with a flow
f = (xij)(i,j)∈A. We construct the residual network G(f) in the following way:

1. For each arc (i, j) ∈ A we create two arcs:

• (i, j) with capacity rij = uij − xij and cost cij

• (j, i) with capacity rji = xij and cost −cij

2. We remove all the arcs in G(f) with 0 capacity.

An example of a residual network is shown in Figure 2.42.

Figure 2.42: a) Network G with a flow f (b) Residual network G(f).

How can we check whether a flow f is optimal? Consider the example shown
in Figure 2.43. In Figure 2.43a a network G with a flow f is shown together with
its residual network G(f). The residual network G(f) contains directed cycle,
2-3-4-2, of negative cost equal to −1. The original network G also contains
cycle 2-3-4-2, which is however not directed. We can now augment the flow
δ > 0 around this cycle. Namely, we can increase the flow along arc (2, 3) by δ,
increase the flow along arc (3, 4) by δ and decrease the flow along arc (2, 4) by δ
(see Figure 2.43b). After this augmentation, we get another flow f1 whose cost
is c(f1) = c(f)+2δ+3δ−6δ = c(f)−δ. So c(f1) < c(f) and the flow f1 is better

50 CHAPTER 2. NETWORK FLOWS

than f . The value of δ is the minimum capacity among the arcs of the cycle
2-3-4-2 in G(f). So in our example δ = 2. We can summarize this observation
as follows: if the residual network G(f) contains a directed cycle of negative
cost, then it is possible to find a flow f1 whose cost is less than f by augmenting
the flow around this cycle. This observation also gives us a necessary condition
for the optimality of a flow f . Namely, if a flow f is optimal, then the residual
network G(f) does not contain any cycle of negative cost.

Figure 2.43: (a) Network G with a feasible flow f and G(f). (b) Augmenting a
flow around a cycle.

Suppose now that the residual network G(f) does not contain any cycle of
negative cost. Can we conclude that the flow f is optimal? The answer to this
question is positive and a proof of this fact can be found, for example, in [3].
We thus have the following important result:

Theorem 12 A flow f is optimal in G if and only if the residual network G(f)
contains no negative cost directed cycle.

Theorem 12 gives us a sufficient and necessary condition of optimality for
the flow f . In other words, given a flow f we can easily check whether this
flow is optimal and, if not, efficiently compute a flow f1 with lower cost. In
consequence, we can design a simple algorithm for computing an optimal flow,
called the cycle canceling algorithm (see Figure 2.44). This algorithm starts
with an initial feasible flow f , which can be obtained by using the methods
presented in the previous section. It then seeks a negative cost directed cycle
in G(f) and, if it finds one, then the flow f is improved by augmenting the flow
around this cycle. If there is no directed cycle of negative cost in G(f), then
the algorithm stops and returns f .
The cycle canceling algorithm is illustrated in Figure 2.45. In Figure 2.45a a

network G with an initial feasible flow f and the corresponding residual network

2.3. MINIMUM COST FLOW 51

1: Establish a feasible flow f in G
2: while G(f) contains a negative cost directed cycle do
3: Use some algorithm to identify a negative cost directed cycle W in G(f)
4: δ := min{rij : (i, j) ∈ W}
5: Augment the flow in the cycle W in G by δ units and update G(f)
6: end while

Figure 2.44: The cycle canceling algorithm.

G(f) are shown. This residual network contains a directed negative cost cycle
2-3-4-2. So we can decrease the cost of f by augmenting δ = 2 units along
this cycle in G. The network with the new flow is shown in Figure 2.45b. The
residual network for this flow again contains a directed negative cost cycle 2-1-
3-4-2, so we can find a better flow by augmenting the flow by δ = 1 unit around
this cycle. The final flow is shown in Figure 2.45c. The residual network for
this flow does not contain any directed negative cost cycle and, consequently,
this flow is optimal.

Running time of the algorithm

Theorem 13 The cycle canceling algorithm solves the minimum cost flow prob-
lem in O(nm2UC) time, where U is the largest capacity and C is the largest
absolute cost among all the arcs.

Proof. It is easy to check that the cost of an optimal flow belongs to the interval
[−mUC,mUC]. In each iteration the algorithm always decreases the cost of
the current flow. Therefore, the number of iterations performed is O(mUC).
A negative cycle can be detected in O(n3) time by using the Floyd-Warshall
algorithm, but a faster O(nm) time algorithm also exists (see e.g. [3]). So, the
running time of the cycle canceling algorithm is O(nm2UC).

The basic cycle canceling algorithm is not polynomial. Its generic version
does not specify the order in which negative cycles are selected from the residual
network. There are several improved versions of this algorithm. According to
one of them we always select a negative cycle of the smallest mean cost. With
this modification the cycle canceling algorithm runs in polynomial time (see [3]
for more details).

2.3.4 Network simplex

In this section we describe one of the most efficient algorithms for the minimum
cost flow problem, called the network simplex. The name of this algorithm
indicates that it is an adaptation of the well known simplex algorithm used for
solving linear programming problems (see Appendix B).

52 CHAPTER 2. NETWORK FLOWS

Figure 2.45: Illustration of the cycle canceling algorithm [3].

Spanning tree solution

For any flow f = (xij)(i,j)∈A in G = (N,A), we say that an arc (i, j) ∈ A is
free if 0 < xij < uij and restricted if xij = 0 or xij = uij . For the sample
problem shown in Figure 2.37, arcs (1, 2), (2, 4), (3, 4) and (3, 5) are free and all
the remaining arcs are restricted. A flow f and an associated spanning tree T
of the network G is a spanning tree solution if every nontree arc (i, j) /∈ T is a
restricted arc (alternatively, the network does not contain any cycle composed of
free arcs). Note that the tree arcs can be free or restricted. A sample spanning
tree solution is shown in Figure 2.46. The spanning tree associated with the
flow is composed of arcs (1, 2), (2, 4), (3, 4), (3, 5). Observe that all the nontree
arcs are restricted.

Now the crucial observation is that if the problem has an optimal solution,
then it also has an optimal spanning tree solution. This follows from the fact
that any solution can be transformed into to a spanning tree solution by can-

2.3. MINIMUM COST FLOW 53

Figure 2.46: A spanning tree solution. All the nontree arcs (3, 1), (1, 3), (2, 3)
and (4, 5) are restricted.

celing all the cycles composed of free arcs. Furthermore, this transformation
does not increase the cost of the flow. An example is shown in Figure 2.47.
Suppose that a network contains the cycle 1-2-3-4-5-1 composed of free arcs.
Since all arcs are free, we can augment the flow by δ > 0 in either the clockwise
or counterclockwise direction around this cycle. If we augment by δ clockwise,
then the cost of the resulting new flow will decrease by δ. It is easy to check that
the maximum value of δ is 2. After augmenting the flow around the cycle by 2
units we get a new flow of lower cost. Furthermore, the arc (4, 5) will become
restricted, so a cycle composed of free arcs will be canceled. We can cancel in
this way all the cycles composed of free arcs. This procedure is finite, because
after canceling a cycle at least one arc becomes restricted and the number of
arcs is finite.

Figure 2.47: Augmenting a flow around a cycle composed of free arcs.

The following observation summarizes our reasoning:

Observation 14 If the minimum cost flow problem has an optimal solution,
then it also has an optimal spanning tree solution.

54 CHAPTER 2. NETWORK FLOWS

Spanning tree structure

Let us partition the set of arcs in network G into three subsets: TTT - the spanning
tree arcs, LLL - the nontree arcs whose flow is set to 0 and UUU - the nontree arcs
whose flow is set to their capacity uij . Notice that all the arcs in LLL ∪ UUU are
restricted. The tri-partition (TTT ,LLL,UUU) is called a spanning tree structure. For a
given spanning tree structure (TTT ,LLL,UUU) we can compute a flow in the following
way. We first fix xij = 0 for all (i, j) ∈ LLL and xij = uij for all (i, j) ∈ UUU . It
remains to compute the flow on the tree arcs (i, j) ∈ TTT . Consider the example
shown in Figure 2.48.

Figure 2.48: Computing a flow for a given spanning tree structure.

In Figure 2.48a a network with spanning tree structure (TTT ,LLL,UUU) is shown.
We first fix the flow on the arcs in LLL and UUU . Notice that after fixing x67 = 2
we should modify the supply/demand of nodes 6 and 7 by adding 2 units to
b(7) and subtracting 2 units from b(6). The spanning tree with modified node
supplies/demands is shown in Figure 2.48b. Now it is easy to see that there is
a unique flow on the spanning tree arcs. We start the computation of this flow
by considering the leaves of the spanning tree. Node 6 must send 6 units, so the
flow along arc (6, 3) must be equal to 6. Similarly, node 7 must receive 10 units,
so the flow along arc (3, 7) must be equal to 10. We now modify the supply
of node 3, which becomes 2-10+6=-2. Consequently, the flow along arc (1, 3)
equals 2. We can proceed in this way and, as a result, we obtain the unique
flow along all the tree arcs. We can alternatively obtain the flow by solving the

2.3. MINIMUM COST FLOW 55

following system of linear equations:

x63 = 6
−x37 = −10
x42 = 3
x52 = 2
x13 + x63 − x37 = 2
−x12 − x42 − x52 = 13
x12 + x13 = 10

After obtaining the solution to this system, we must check whether the flow
along each arc is nonnegative and does not exceed its capacity, i.e. 0 ≤ xij ≤ uij

for all (i, j) ∈ T . If so, then we say that the spanning tree structure is feasible.
Let us summarize the above reasoning.

Observation 15 Given a spanning tree structure (TTT ,LLL,UUU), we can efficiently
check whether it is feasible and, if so, compute the unique flow corresponding to
this structure.

How can we check whether a given feasible spanning tree structure corre-
sponds to an optimal solution of the minimum cost flow problem? In order to
provide an answer to this question, we introduce the concepts of node poten-
tials and reduced costs. Let us associate a real number π(i), unrestricted in
sign, with each node i ∈ N . This number is called the potential of node i. Let
us now define the reduced costs cπ

ij = cij −π(i)+π(j) of the arcs (i, j) ∈ A with
respect to the node potentials π.
Suppose that we have replaced the original costs cij with the reduced costs

cπ
ij for all the arcs (i, j) ∈ A. Denote by c(f) the cost of a flow under the original
costs and by cπ(f) the cost of f under the reduced costs. The node potential
π(i) increases the cost of all the arcs entering i by π(i) and decreases the costs
of all the arcs leaving i by π(i). Thus the total decrease in the cost of the flow
equals π(i) times the outflow from node i minus the inflow to node i. Since this
difference equals the supply/demand of i, the decrease in the cost equals b(i)π(i).
Repeating this argument for each node we obtain cπ(f) = c(f)−

∑

i∈N π(i)b(i).
Since

∑

i∈N π(i)b(i) is a constant which does not depend on f , we conclude that
the problems with arc costs cij and cπ

ij have the same optimal solutions. Let us
formalize this result.

Observation 16 For any choice of node potentials π, the minimum cost flow
problems with arc costs cij and cπ

ij, (i, j) ∈ A, have the same optimal solutions.

We can now use the node potentials to verify the optimality of a given feasible
spanning tree structure.

Theorem 17 A spanning tree structure (TTT ,LLL,UUU) is optimal if it is feasible and
for some choice of node potentials π, the reduced arc costs cπ

ij = cij −π(i)+π(j)
satisfy the following conditions:

56 CHAPTER 2. NETWORK FLOWS

• cπ
ij = 0 for all (i, j) ∈ T

• cπ
ij ≥ 0 for all (i, j) ∈ L

• cπ
ij ≤ 0 for all (i, j) ∈ U

Proof. The theorem easily follows from Theorem 12 and Observation 16. In-
deed, suppose that some node potentials π satisfy the conditions from Theo-
rem 17. Let us replace the original costs cij with the reduced ones cπ

ij for all
(i, j) ∈ A. According to Observation 16, this modification does not change the
optimal solutions to the problem. We can now compute the flow f correspond-
ing to the spanning tree structure (TTT ,LLL,UUU) and construct the residual network
G(f) for this flow. It is easy to check that G(f) does not contain any arc with
negative cost. So the residual network G(f) cannot contain any directed cycle
of negative cost and, by Theorem 12, the flow f is optimal.
Consider now the example shown in Figure 2.49. In Figure 2.49a a sam-

ple network with a given spanning tree structure is shown. We wish to check
whether this spanning tree structure is optimal. In order to satisfy the opti-
mality conditions from Theorem 17, we must find the node potentials π such
that cπ

ij = 0 for all tree arcs (i, j) ∈ TTT . So these potentials have to satisfy the
following system of equations:

5 − π(1) + π(3) = 0
2 − π(6) + π(3) = 0
3 − π(3) + π(7) = 0
4 − π(1) + π(2) = 0
1 − π(4) + π(2) = 0
2 − π(5) + π(2) = 0

This system has n variables and n − 1 equations. We may arbitrarily fix one
potential, say π(1) = 0 and then compute the unique solution to the system
obtained. The node potentials computed are shown in Figure 2.49b. We can
now compute the reduced costs cπ

ij of all the arcs (i, j) ∈ A and check that
all the reduced costs satisfy the optimality conditions given in Theorem 17. If,
additionally, the spanning tree structure is feasible (we leave verification of this
as an exercise), then it is also optimal.

The network simplex algorithm

The idea of the network simplex algorithm is the following. We start with
an initial feasible spanning tree structure. This structure can be obtained, for
example, by using a slight modification of the second method of computing a
feasible flow presented in Section 2.3.2. In the example presented in Figure 2.41,
we should first add an additional arc, (s, 2). The initial feasible spanning tree
structure would be then TTT = {(1, s), (3, s), (s, 2), (s, 5), (s, 4)}, UUU = ∅ and LLL
would contain all the arcs of the original network G. Obtaining a feasible flow
for this structure is straightforward. Having this initial spanning tree structure,
we check whether it is optimal by computing the node potentials. If it is not

2.3. MINIMUM COST FLOW 57

Figure 2.49: Computing node potentials for a given spanning tree structure.

optimal, i.e. some arc violates the optimality conditions, we compute the next
spanning tree structure. The arc (k, l) that violates the optimality conditions
must be a nontree arc. So, adding (k, l) to TTT creates a unique cycle. We augment
the flow around this cycle so that arc (p, q) in this cycle becomes restricted.
Then the spanning tree structure is updated by moving (p, q) to LLL or UUU , as
appropriate. We continue this until some spanning tree structure satisfies the
optimality conditions. The flow associated with this structure is then optimal.

1: Determine an initial feasible spanning tree structure
2: Let f and π be the flow and node potentials associated with this structure
3: while some arc violates the optimality conditions do
4: Select an entering arc (k, l) violating the optimality conditions
5: Add the arc (k, l) to the tree and determine the leaving arc (p, q)
6: Perform the tree update and update f and π
7: end while

Figure 2.50: The network simplex algorithm.

We now illustrate the algorithm using the example shown in Figure 2.51.

In Figure 2.51a a sample network is shown together with an initial feasible
spanning tree structure and flow f . In Figure 2.51b the computed node po-
tentials and reduced costs are presented. The arc (1, 3) violates the optimality

58 CHAPTER 2. NETWORK FLOWS

Figure 2.51: (a) A feasible spanning tree structure (b) Reduced arc costs

conditions, because (1, 3) ∈ LLL and cπ
13 < 0. So we add (1, 3) to TTT , which cre-

ates a cycle 1-2-3-1. Since the flow along (1, 3) is 0, we wish to increase the flow
along (1, 3) by δ. If we increase the flow along (1, 3) by δ, then we must decrease
the flow along (2, 3) and (1, 2) by δ. So the maximal value of δ is equal to 1.
After augmenting δ = 1 unit around the cycle 1-2-3-1, the arc (2, 3) becomes
restricted (its flow decreases to 0). It is removed from TTT and added to LLL.

The second spanning tree structure, together with the associated flow, are
shown in Figure 2.52a. The node potentials and reduced costs corresponding
to this structure are presented in Figure 2.52b. In this case, arc (2, 4) violates
the optimality conditions because (2, 4) ∈ UUU and cπ

24 > 0. We add arc (2, 4) to
TTT , which creates the cycle 1-2-4-3-1. Since (2, 4) ∈ UUU , we wish to decrease the
flow along (2, 4) by δ. If we decrease the flow along (2, 4) by δ, then we must
decrease the flow along (1, 2) and increase the flow along (1, 3) and (3, 4) by δ.
So it is easy to verify that the maximal value of δ is 3. After augmenting the flow
around this cycle by 3 units, arc (1, 3) becomes restricted because x13 = u13.
We remove this arc from TTT and add it to UUU .

The third spanning tree structure and the associated flow are shown in Fig-
ure 2.53a. As we can see in Figure 2.53b, the node potentials and reduced costs
satisfy the optimality conditions. Hence, the flow is optimal.

2.3. MINIMUM COST FLOW 59

Figure 2.52: (a) A feasible spanning tree structure (b) Reduced arc costs

Correctness and the running time of the algorithm

It is clear that when the algorithm stops, then the resulting flow is optimal. This
follows from the fact that it satisfies the optimality conditions from Theorem 17.
Furthermore, if the flow around a cycle is augmented in line 5 of the algorithm
by a positive amount, then the new flow has lower cost than the previous one.
So, if we always augment the flow by a positive integer, then the algorithm
reaches an optimal solution in a finite number of steps.

Unfortunately, in some cases δ = 0, and after augmenting by 0 units, the new
flow is exactly the same as the previous one - only the spanning tree structure is
modified. Such augmentations are called degenerate. There are some instances
for which the algorithm performs an infinite number of degenerate augmenta-
tions. So the algorithm does not necessarily terminate in a finite number of
iterations. We can avoid this bad behavior by imposing some additional restric-
tions on the choice of the entering and leaving arcs. We do not describe the
details here and they can be found, for example, in [3].

The network simplex is very efficient in practice. However, the number of
iterations performed by the generic version of the algorithm may be exponential.
This phenomenon is known as stalling. In the literature, several antistalling
rules have been proposed and a polynomial time implementation of the network
simplex algorithm was described in [39].

60 CHAPTER 2. NETWORK FLOWS

Figure 2.53: (a) A feasible spanning tree structure (b) Reduced arc costs

Sensitivity analysis

The network simplex algorithm has an additional nice property. Namely, it
allows us to perform a sensitivity analysis of the optimal solution obtained.
Suppose that we have computed an optimal flow f . We may now ask the
following question: how much can the cost cij of a given arc (i, j) ∈ A vary so
that the flow f remains optimal?

Consider the example shown in Figure 2.54. In Figure 2.54a an optimal flow
is shown. Suppose first that we would like to check how the costs of the original
nontree arcs (1, 3) and (4, 5) can vary so that the flow remains optimal. The
cost of arc (1, 3) is equal to 3. Assume that its new cost is 3 + λ. Similarly, the
original cost of (4, 5) is 8 and assume that its new cost is 8 + λ. Since the arcs
considered are nontree ones, their costs do not influence the computations of the
node potentials. So the node potentials do not depend on λ and they are the
same as for the original costs. The node potentials and the reduced costs are
shown in Figure 2.54b. Arc (1, 3) belongs to UUU , so its reduced cost must satisfy
cπ
13 = −2 + λ ≤ 0. This yields λ ≤ 2, which means that f remains optimal if

c13 ∈ (−∞, 5] with all the other costs unchanged. A similar reasoning can be
carried out for arc (4, 5). In this case (4, 5) ∈ LLL, so c45 = 4 + λ ≥ 0. This gives
λ ≥ −4 and c45 ∈ [−1,∞).

Consider another example shown in Figure 2.55. Now we would like to
perform the sensitivity analysis for the tree arc (2, 4). We thus assume that the
cost of this arc is 2 + λ. This situation is a little more complex, because the
node potentials depend on the cost of the tree arc (2, 4) and, consequently, also
on λ. The node potentials and the reduced arc costs are shown in Figure 2.55b.
We must now determine all the values of λ for which the optimality conditions
are satisfied. For arcs (2, 3) ∈ LLL and (3, 1) ∈ LLL, we get 1 − λ ≥ 0, 6 + λ ≥ 0
respectively and for arc (1, 3) ∈ UUU , we have −2 − λ ≤ 0 . So, λ ∈ [−2, 1] and
c24 ∈ [0, 3].

2.3. MINIMUM COST FLOW 61

Figure 2.54: Sensitivity analysis for the nontree arcs (1, 3) ∈ UUU and (4, 5) ∈ LLL.

Figure 2.55: Sensitivity analysis for tree arc (2, 4) ∈ TTT .

2.3.5 Summary

1. In the minimum cost flow problem we seek a flow in a given network
with the minimum total cost. The shortest path and the maximum flow
problems are special cases of the minimum cost flow problem.

2. We assume that the problem is balanced, i.e. the total supply equals the
total demand and there is no directed cycle of negative length in the input
network.

3. The simplest algorithm that outputs an optimal flow is the cycle can-
celing algorithm. It iteratively decreases the cost of the current flow by
augmenting the flow around directed cycles of negative cost in the residual
network. However, this algorithm can be slow in practice.

4. The problem can be solved by using the network simplex algorithm. The
network simplex algorithm maintains a feasible spanning tree structure
and stops when the optimality conditions are satisfied. If all the arc ca-
pacities and node supply/demands are integer, then the algorithm returns
an optimal solution with integer flows. The network simplex algorithm is

62 CHAPTER 2. NETWORK FLOWS

an adaptation of the simplex algorithm used to solve linear programming
problems.

5. The network simplex algorithm is very efficient in practice. However,
the basic version of the algorithm may not terminate in a finite time,
due to degenerate augmentations. We can guarantee the finiteness of the
algorithm by applying some rules for adding and deleting arcs to/from the
current spanning tree structure.

6. The network simplex algorithm allows us to perform sensitivity analysis
of the optimal solution obtained.

The implementation details of the cycle canceling and network simplex al-
gorithms can be found, for example, in [14] and [45]. The cycle canceling algo-
rithm is credited to Klein [31]. The network simplex algorithm was developed
by Dantzig [16] by adapting the simplex algorithm for linear programming (see
also Appendix B). The network simplex algorithm became popular in the early
1970s, when some its efficient implementations were discovered. The problem
of degeneracy can be resolved by applying the strongly feasible spanning tree
technique proposed by Cunningham [15]. This technique is also described in [3].
The basic version of the network simplex algorithm may perform an exponential
number of iterations. A polynomial time implementation of this algorithm was
developed by Orlin [39]. There exist some other algorithms for the minimum
cost flow problem, such as successive shortest paths, primal - dual, out-of-kilter
and capacity scaling. Comprehensive descriptions of these algorithms can be
found in [3]. However, for most instances the network simplex algorithm is
regarded as the fastest one.

2.4. TRANSPORTATION PROBLEM 63

2.4 Transportation problem

In this section we consider the following transportation problem. We are given a
set of suppliers A1, A2, . . . , Am with positive supplies s1, s2, . . . , sm and a set of
customers B1, B2, . . . , Bn with positive demands d1, . . . , dn. We assume, at this
point, that the total supply equals the total demand, i.e.

∑m
i=1 si =

∑n
i=1 di.

The cost of transporting 1 unit from Ai to Bj equals cij . The flow f = (xij),
i = 1, . . . ,m, j = 1, . . . , n, in this problem must satisfy the following system of
constraints:

∑n

j=1 xij = si i = 1, . . . ,m
∑m

i=1 xij = dj j = 1, . . . , n
xij ≥ 0 i = 1, . . . ,m j = 1, . . . , n

(2.2)

So, each supplier Ai must send si units and each customer Bj must receive dj

units. We wish to find a flow f of minimum cost c(f) =
∑m

i=1

∑n
j=1 xijcij .

The transportation problem can be seen as a special case of the minimum
cost flow problem, in which the network has a special bipartite structure and all
arc capacities are infinite. Namely, the nodes of the network represent suppliers
and customers and the arcs lead only from suppliers to customers. An example
is shown in Figure 2.56. There are two suppliers A1 and A2 with supplies 10 and
15 and three customers B1, B2 and B3 with demands 5, 10 and 10 respectively.
All the possible connections between the suppliers and customers are specified
by a bipartite network G, whose arcs represent the connections between the
suppliers and customers. Each arc has a cost cij and infinite capacity. In the
sample flow, shown in Figure 2.56, A1 sends 10 units to B2, A2 sends 5 units to
B1 and 10 units to B3. The cost of this flow is 5 ∗ 1 + 10 ∗ 3 + 10 ∗ 5 = 85.
It is convenient to represent this problem in the form of a transportation

table. The rows represent suppliers, the columns represent customers and inside
the table we write the costs and a flow (see Figure 2.56).

Figure 2.56: A network representation of the transportation problem and the
corresponding transportation table.

Up to this point we have assumed that the problem is balanced, i.e. the
equality

∑m

i=1 si =
∑n

i=1 di holds. This condition need not be satisfied in some

64 CHAPTER 2. NETWORK FLOWS

applications. If
∑m

i=1 si >
∑n

i=1 di, then we can make the problem balanced by
adding an artificial customer with demand equal to

∑m

i=1 si −
∑n

i=1 di and all
transportation costs equal to 0. Similarly, if

∑m
i=1 si <

∑n
i=1 di, then we can

make the problem balanced by adding an artificial supplier with supply equal to
∑n

i=1 di−
∑m

i=1 si and all transportation costs equal to 0. Sometimes, there may
be no connection between supplier Ai and customer Bj . In this case we assume
that the cost cij = M , where M is a sufficiently large constant representing
infinity.
Consider the example shown in Figure 2.57. We can see that in the net-

work presented the total supply equals 25, while the total demand equals 20.
So we add an additional customer with demand 25-20=5. Also, there are no
connections between A1 and B2 or A2 and B3. Therefore, we fix c12 = M and
c23 = M in the transportation table, whereM represents the infinite cost of the
prohibited connections.

Figure 2.57: A sample problem, which is not balanced and some connections
are prohibited.

If we solve this problem and, according to the solution obtained, there is
a positive flow in a box with cost M , then the original problem has no solu-
tion. This means that there is no feasible flow in the network representing the
problem.

2.4.1 Applications

Application 1 (production/transportation problem). A company has m factories.
The ith factory produces si units of some product and the production cost of 1
unit equals qi. The product is transported to n cities. The jth city demands dj

units and the price of 1 unit equals pj . We assume that the total production of
all the factories is not less than the total demand of all the cities, i.e.

∑m

i=1 si ≥
∑n

i=1 di. The cost of transporting 1 unit from the ith factory to the jth city
equals cij . We would like to establish an optimal production and transportation
plan for the company.

2.4. TRANSPORTATION PROBLEM 65

Figure 2.58: Transportation table for the production/transportation problem.

The transportation table for this problem is shown in Figure 2.58. The rows
represent factories and the columns represent cities. The additional n+1th city
is an artificial customer, whose demand is equal to

∑

si−
∑

di. The production
costs and prices can be incorporated into the transportation table by computing
the total cost of sending 1 unit from the ith factory to the jth city, which is
equal to zij = cij + qi − pj . Notice that zij may be negative, which means that
sending 1 unit yields a positive profit. A flow to the artificial city can be inter-
preted as an unused part of the production capability of the appropriate factory.

Application 2 (transshipment problem). A company has m factories and the ith
factory produces si units of some product. The product must be delivered to
n customers and the demand of the jth customer equals dj . We assume that
the problem is balanced. The product can be sent to customers by using l ≥ 0
intermediate stores and the capacity of the kth store equals mk. All the possible
connections, together with their unit transportation costs, are given by network
G. We would like to establish an optimal transportation plan of the product
from the factories to the customers.

Consider the sample problem shown in Figure 2.59. There are three factories
F1, F2 and F3 with supplies 10, 5 and 8, two customers C1, C2 with demands
18 and 5, and two intermediate points, 1 and 2. The capacity of intermediate
point 1 is equal to 12, which means that at most 12 units can pass through
point 1. The capacity of intermediate point 2 is unlimited. The transportation
table for this example is shown in Figure 2.59. Observe that the points that
have both incoming and outcoming arcs, appear as both rows and columns in
the transportation table. Consider, for instance factory F2, whose supply is 5.
It can, however, send more than 5 units, since it can receive something from
other points in the network. So we define the supply of F2 as 5 + s and the
demand of F2 as s, which means that F2 will always send its 5 units (we will
fix the value of s later). Now the crucial observation is that F2 can send x + 5
units and receive x units, where x ∈ [0, s], since the remaining s − x units can

66 CHAPTER 2. NETWORK FLOWS

Figure 2.59: A sample transshipment problem. The empty boxes in the trans-
portation table have costs equal to M .

be placed in the box (F2, F2), which corresponds to the artificial arc (F2, F2)
with 0 cost. The optimal value of x can be obtained by solving the transporta-
tion problem. The value of s should be large enough and it may be equal, for
instance, to the total supply s = 5 + 8 + 10. The reasoning for the remaining
points in the network is similar, and we leave it as an exercise. Notice that the
capacity of point 2 is unlimited so we fix its supply and demand to s.

Application 3 (multi-period production problem.) A company produces some
product over K periods. In the ith period the factory can produce si units and
the demand is equal to di (this demand must be fully satisfied). The cost of
producing 1 unit in the ith period is equal to ci. Unsold production can be kept
in a store and sold later. The cost of keeping 1 unit in the store is constant and
equals m per period. We would like to establish an optimal production plan.
The transportation table for this problem is shown in Figure 2.60. We create

a row and a column for each period. Suppose that we produce the product in
the ith period and sell it in the jth period. This is not possible if j < i, so in
this case we fix cij = M . If j ≥ i, then we must add the cost of keeping the
product in the store to the production cost. Hence, cij = ci + (j − i)m.

2.4.2 Network simplex

Since the transportation problem is a special case of the minimum cost flow
problem, the network simplex algorithm, presented in Section 2.3.4, will also
solve the transportation problem. As we will see, however, this algorithm can be
simplified by using the facts that the network has a special bipartite structure
and there are no limits on the arc capacities. In particular, the second fact
implies that every spanning tree structure is represented as a partition (TTT ,LLL),
where TTT is the set of spanning tree arcs and LLL the set of arcs whose flow is
equal to 0. There is no set UUU , because the arcs have no upper bounds on

2.4. TRANSPORTATION PROBLEM 67

Figure 2.60: The transportation table for the multiperiod production problem.
The empty boxes in the transportation table have costs equal to M .

their flow. Furthermore, all the computations can be directly performed on the
transportation table and it is not necessary to store the network structure. We
will however keep the underlying network G in mind and make the following
three assumptions:

1. The problem is balanced.

2. The network G is a complete bipartite network, i.e. it contains an arc
between each supplier/customer pair.

3. All supplies and demands are positive.

These assumptions are not restrictive. We can always make the problem bal-
anced and make G complete by using the transformations shown in Section 2.4.
Also, if a supply (demand) node has 0 supply (demand), then such a node can
be removed from the network without changing the problem.

Computing an initial solution

Recall that the network simplex starts with an initial feasible spanning tree
structure and the solution (flow) corresponding to this structure. In the trans-
portation problem, there exists a simple method of establishing a feasible span-
ning tree structure (TTT ,LLL), which does not require the addition of artificial arcs
to the network. This method works as follows. We first represent the problem
in the form of a transportation table and set TTT = ∅. Let us choose any box
(p, q) in the table and put a flow equal to xpq = min{sp, dq} inside (p, q). So we
make the flow from Ap to Bq as large as possible without exceeding the supply
of Ap or the demand of Bq. We then modify the table by subtracting xpq from
both sp and dq. If sp = 0 and dq > 0, then we delete row p from the table. If
sp > 0 and dq = 0, then we delete column q from the table. Finally, if sp = 0

68 CHAPTER 2. NETWORK FLOWS

and dq = 0, then we delete either row p or column q, but not both. In this case,
if there is only one row in the table, then we delete a column and if there is only
one column in the table, then we delete a row. We then select another box and
repeat this procedure until the all the rows and columns are deleted.

Why does the presented method work? We must show two things: (a) after
deleting all rows and columns we get a flow satisfying conditions (2.2) inside the
transportation table, and (b) the obtained set of arcs TTT is a spanning tree of the
underlying network. Point (a) can be proved by induction. If we remove row
p from the table, then the flow must satisfy

∑n

j=1 xpj = sp and no additional
flow is later inserted in row p. A similar condition holds if we remove column
q. Furthermore, after removing row p or column q, we get a smaller problem,
which is also balanced. So, if the problem is finally reduced to a single box (k, l),
then sk = dl and the procedure finishes with a flow satisfying (2.2). To prove
(b), we need the assumption that all the supplies and demands are positive.
Then exactly m + n− 1 boxes are chosen and exactly m + n− 1 arcs are added
to TTT . Furthermore, the set of arcs in TTT must form a connected subgraph of G.
Otherwise, some node would not send anything or some node would not receive
anything, which would contradict the assumption that all supplies and demands
are positive. A connected subgraph of G with m+n nodes, containing n+m−1
arcs is a spanning tree of G.

Choosing the box to be filled is an arbitrary step in our procedure. In the lit-
erature several methods of choosing the sequence of boxes have been proposed. If
we always choose the box located in the top left corner of the transportation ta-
ble, then we get the north-west corner method, which is illustrated in Figure 2.61.
Using this method we first choose box (1, 1). After deleting row 1 we choose box
(2,1) and so on. As a result, we get TTT = {(1, 1), (2, 1), (2, 2), (2, 3), (3, 3), (3, 4)}
and LLL contains all the arcs, which do not belong to TTT . The solution associated
with (TTT ,LLL) is shown in the last table (see Figure 2.61).

8 6 10 2

9 12 13 7

14 9 16 10

35

50

40

45 20 30 30

35

8 6 10 2

9 12 13 7

14 9 16 10

0

50

40

10 20 30 30

35

10

8 6 10 2

9 12 13 7

14 9 16 10

0

40

40

0 20 30 30

35

10 20

8 6 10 2

9 12 13 7

14 9 16 10

0

20

40

0 0 30 30

35

10 20 20

8 6 10 2

9 12 13 7

14 9 16 10

0

0

40

0 0 10 30

35

10 20 20

10

8 6 10 2

9 12 13 7

14 9 16 10

0

0

30

0 0 0 30

35

10 20 20

10 30

Figure 2.61: An illustration of the north-west corner method.

2.4. TRANSPORTATION PROBLEM 69

The north-west corner method is very fast. It, however, does not take into
account the arc costs. In consequence, the first solution might be very poor. A
better initial solution can be obtained by at each step choosing the box with
the minimum cost. This is called the minimum element cost method and is
illustrated in Figure 2.62. We first choose box (1, 4), which has the smallest
cost. After removing column 4, we next choose box (1, 2) and so on. As a
result, we get TTT = {(1, 4), (1, 2), (2, 1), (2, 3), (3, 3), (3, 2)} and LLL contains all the
arcs, which do not belong to TTT . The solution associated with (TTT ,LLL) is shown
in the last table (see Figure 2.62).

8 6 10 2

9 12 13 7

14 9 16 10

35

50

40

45 20 30 30

8 6 10 2

9 12 13 7

14 9 16 10

5

50

40

45 20 30 0

30
30 5

8 6 10 2

9 12 13 7

14 9 16 10

0

50

40

45 15 30 0

305

45

8 6 10 2

9 12 13 7

14 9 16 10

0

5

25

0 0 30 0

305

45

15

5

8 6 10 2

9 12 13 7

14 9 16 10

0

5

40

0 15 30 0

305

45

15

8 6 10 2

9 12 13 7

14 9 16 10

0

0

25

0 0 25 0

305

45

15

5

25

Figure 2.62: An illustration of the minimum element cost method.

The network simplex algorithm

Consider the initial solution obtained by means of the north-west corner method,
shown in Figure 2.63a. In this figure, the associated spanning tree arcs TTT are
also shown. The empty boxes correspond to the arcs in LLL and the flow along
these arcs equals 0. Let us recall that in the next step of the network simplex
algorithm we have to compute the node potentials. These computations can be
performed in the same way as in Section 2.3.4. We only change the notation.
We use α(i) to denote the potential of supply node Ai and β(j) to denote the
potential of demand node Bj . We must set the potentials so that the reduced
costs of all the tree arcs are 0. Hence, the potentials must satisfy the following
system of equations:

8 − α(1) + β(1) = 0
9 − α(2) + β(1) = 0
12 − α(2) + β(2) = 0
13 − α(2) + β(3) = 0
16 − α(3) + β(3) = 0
10 − α(3) + β(4) = 0

70 CHAPTER 2. NETWORK FLOWS

We can easily solve this system by setting α(1) = 0, which uniquely determines
the values of all the remaining potentials. The computed potentials are shown
in Figure 2.63a. In the next step we compute the reduced costs cij −α(i)+β(j)
of all the other arcs. These reduced costs are shown in the table presented in
Figure 2.63b. Notice that the reduced costs of all tree arcs are equal to 0 as
required.

Figure 2.63: (a) The initial spanning tree solution, together with node potentials
(b) The reduced arc costs.

We can see that the reduced costs do not satisfy the optimality conditions
(Theorem 17), since they take negative values for some (i, j) ∈ LLL (i.e there are
some negative values in the empty boxes of the transportation table). We can
choose, for instance, arc (A3, B2) ∈ LLL, whose reduced cost is -6, and add this arc
to TTT . This creates the unique cycle composed of arcs (A3, B2), (A2, B2), (A2, B3)
and (A3, B3) (see Figure 2.64a). This cycle can be represented as a polygon in
the transportation table. The box (A3, B2) and some boxes corresponding to
the arcs of the spanning tree are located in the corners of this polygon. We can
now easily determine the value of δ, the change in the flow around the cycle.
If we add δ to box (A3, B2), then we must subtract δ from (A2, B2), add δ to
(A2, B3) and subtract δ from (A3, B3). So we can mark the boxes of the cycle
alternately with + and −, starting by marking the box (A3, B2) with + (see
Figure 2.64a). Now it is easy to see that δ is the minimum among the values
contained in the boxes marked with −, which in our case is equal to 10. We
change the flow around the cycle (increasing or decreasing according to the sign)
and the flow in box (A3, B3) falls to 0. Hence, arc (A3, B3) is removed from TTT
and added to LLL. The new spanning tree solution is shown in Figure 2.64b.

In Figure 2.65 the new spanning tree solution is shown. We again com-
pute the node potentials and reduced costs for this solution, which are shown

2.4. TRANSPORTATION PROBLEM 71

Figure 2.64: (a) Changing the flow around the cycle. (b) The next spanning
tree solution.

in Figure 2.65b. We can see that some arcs in LLL still violate the optimality
conditions. We choose such an arc, say (A1, B4) and add it to TTT . This creates
the unique cycle composed of 6 arcs shown in Figure 2.66a. As previously, we
can represent this cycle as a polygon in the transportation table. We mark the
box (A1, B4) with + and the remaining corners of this polygon alternately with
− and +. The minimum value of the flow among the boxes marked with − is
10, so we must change the flow around this cycle by 10 units. The flow along
arc (A2, B2) falls to 0 and this arc is removed from TTT and added to LLL. As a
result, we get the next spanning tree solution shown in Figure 2.66b. We must
now again compute the node potentials for this solution and check whether the
optimality conditions are satisfied, i.e. the reduced costs of all the arcs in LLL are
nonnegative. We leave this as an exercise.

Correctness of the algorithm

If the algorithm stops, then its correctness follows from the analysis described
in Section 2.3.4. Unfortunately, the basic version of the algorithm may not ter-

72 CHAPTER 2. NETWORK FLOWS

Figure 2.65: (a) The next spanning tree solution with node potentials. (b) The
reduced arc costs.

minate in a finite time due to degeneracy. Consider the sample problem shown
in Figure 2.67, in the first table the initial solution obtained by means of the
north-west corner method is shown. Notice that the flow along some spanning
tree arcs is 0 and we must distinguish these arcs from the arcs belonging to LLL.
After computing the node potentials, the reduced cost in box (3, 1) is negative,
so arc (A3, B1) is added to the spanning tree. However, no change can be made
to the flow around the cycle obtained. Therefore, only the current spanning
tree structure is changed (arc (A3, B1) is added to TTT , arc (A2, B2) is added to LLL
and the cost of the new flow is the same as the cost of the previous one. In the
worst case, the algorithm can perform infinite sequence of such degenerate aug-
mentations. There are some methods described in the literature (see e.g. [3]),
which allow us to avoid such bad behavior.

Sensitivity analysis

We can perform a sensitivity analysis of the optimal solution computed, similarly
to the sensitivity analysis shown in Section 2.3.4. Consider the optimal solution
shown in the table in Figure 2.68a. Assume that we would like to check how
much the cost of the nontree arc (A1, B4) can vary such that the solution remains
optimal. After computing the node potentials, the reduced cost of (A1, B4) is
3 + λ. In consequence, the solution remains optimal if λ ≥ −3 or, equivalently,
c14 ∈ [6,∞). Assume now that we would like to check how the cost of the
tree arc (A2, B2) can vary. Now the computations are more complex, because
the node potentials depend on λ (see Figure 2.68b). After computing the node
potentials and the reduced costs, we get 1−λ ≥ 0 and 15−λ ≥ 0. Hence λ ≤ 1
and c22 ∈ (−∞, 13].

2.4. TRANSPORTATION PROBLEM 73

Figure 2.66: (a) Changing the flow around the cycle. (b) The next spanning
tree solution.

2.4.3 Summary

1. In the transportation problem we wish to send some product directly from
suppliers to customers at the minimal total cost.

2. The problem is a special case of the minimum cost flow problem, where the
input network has a bipartite structure and all arc capacities are infinite.

3. The problem can be naturally represented in the form of a transportation
table.

4. Only balanced problems have feasible solutions. If a problem is not bal-
anced, then we make it balanced by adding an artificial supplier or artificial
customer, as appropriate.

5. We can apply a simplified version of the network simplex algorithm to
solve the problem. As in the general case, degeneracy may appear, which
can be avoided by imposing some additional restrictions on the way in
which the current spanning tree structure is modified.

74 CHAPTER 2. NETWORK FLOWS

Figure 2.67: A degenerate augmentation.

Figure 2.68: (a) Sensitivity analysis for the nontree arc (A1, B4). (b) Sensitivity
analysis for the tree arc (A2, B2).

6. We can easily perform a sensitivity analysis of the obtained optimal solu-
tion.

The transportation problem has a long history. It was first considered
in 1941 by Hitchcock [26] and is sometimes known as the Hitchcock prob-
lem. Of course, it is a special case of the minimum cost flow problem.
In consequence, it can be solved efficiently by using the network simplex
algorithm. Interestingly, every minimum cost flow problem can be trans-
formed into the transportation problem. This transformation was first
described in [48] and can also be found in [41].

2.5. MINIMUM COST ASSIGNMENT 75

2.5 Minimum cost assignment

We are given a set of objects A = {A1, A2, . . . , An} and a set of objects B =
{B1, B2, . . . , Bn}, where |A| = |B| = n. We wish to pair the objects from A and
B, so that each object from A is paired with exactly one object from B and vice
versa. Such a pairing is called an assignment. The cost of pairing objects Ai to
Bj equals cij and we wish to find an assignment with the minimum total cost.
A sample problem is shown in Figure 2.69. Sets A and B contain 3 objects. One
possible assignment is (A1, B2), (A2, B1) and (A3, B3). Its total cost is equal
to 11. It is easy to see that the minimum cost assignment problem is a very
special case of the transportation problem discussed in the previous section.
We can treat A as a set of suppliers with supplies equal to 1 and B as a set of
customers with demands equal to 1. By solving the transportation problem, we
get an optimal assignment.

Figure 2.69: A sample assignment problem as a transportation problem.

In this section will use another representation of this problem, which is
illustrated in Figure 2.70.

Figure 2.70: A sample assignment problem as a minimum cost flow problem.

76 CHAPTER 2. NETWORK FLOWS

We add a source node s with supply n and a sink node t with demand n. We
add arcs (s,Ai) and (Bi, t) for i = 1, . . . , n with costs 0 and capacities 1. The
arcs (Ai, Bj) have costs cij and capacities equal to 1. It is easy to see that an
integer flow f with the minimum cost in this network corresponds to an optimal
assignment. The flow on each arc can be either 0 or 1 and the arcs between Ai

and Bj whose flow is equal to 1 define the minimum cost assignment.

2.5.1 Applications

Application 1 (assigning jobs to machines) A factory has n machines and n jobs
to be completed. Each machine must be assigned to one job. The time required
to set up the ith machine for the jth job is tij . The factory wants to minimize
the total setup time needed for the n jobs. This is clearly an assignment problem
and can be represented in the form of the table shown in Figure 2.71.

Figure 2.71: The table for Example 1.

2.5.2 Successive shortest path algorithm

Since the minimum cost assignment problem is a special case of the minimum
cost flow problem, we could use the network simplex algorithm to obtain an
optimal solution (recall that the network simplex always returns an integer
solution). However, the special structure of the problem allows us to design
a simple and more efficient algorithm. Our strategy will be as follows. We
represent the problem as the minimum cost flow problem shown in Figure 2.70.
We start by assuming that b(s) = b(t) = 0 and iteratively increase b(s) and b(t)
by 1 until b(s) = b(t) = n. In each iteration we maintain a residual network
for the current flow in which all the arc costs are nonnegative. Hence, the
last residual network cannot contain any directed cycle of negative length and
corresponds to an optimal flow (assignment).
Consider the sample problem shown in Figure 2.72, which is represented as

a minimum cost flow problem. Initially, we assume that b(s) = b(t) = 0 and,
consequently, the flow f equal to 0 on every arc, is optimal. Of course, the
residual network G(f) is the same as G. Let d(i) be the shortest distance from

2.5. MINIMUM COST ASSIGNMENT 77

Figure 2.72: (a) Residual network for the initial flow and shortest distances (b)
Reduced costs and the shortest augmenting path.

node s to node i in G(f). Let us define the potential of node i as π(i) = −d(i)
(see Figure 2.72a) and compute the reduced arc costs cπ

ij = cij − π(i) + π(j) =
cij + d(i) − d(j) (see Figure 2.72b). We claim that cπ

ij ≥ 0 for all arcs (i, j).
Indeed, if cπ

ij < 0, then d(j) > cij + d(i), which would contradict the fact
that d(j) is the shortest distance from s to j. Furthermore, cπ

ij = 0 for all the
arcs belonging to the shortest path p = s − A1 − B2 − t from s to t. We can
now augment the flow from s to t along p by 1 unit and modify the flow f .
Observe that all arc costs in the new residual network G(f) are nonnegative
(see Figure 2.73a).

Figure 2.73: (a) Residual network for the second flow and shortest distances (b)
Reduced costs and the shortest augmenting path.

We can now repeat the same procedure for the network G(f). So we compute
the shortest distance d(i) from s to i in G(f), set π(i) = −d(i) (see Figure 2.73a)
and compute the reduced costs cπ

ij for all arcs (i, j) (see Figure 2.73b). Now
the shortest path from s to t, composed of arcs with zero reduced costs, is

78 CHAPTER 2. NETWORK FLOWS

s−A2−B1− t and we augment the flow by 1 unit along this path. All arc costs
in the new residual network G(f) must be nonnegative (see Figure 2.74a).

Figure 2.74: (a) Residual network for the third flow and shortest distances (b)
Reduced costs and the shortest augmenting path.

The last iteration is shown in Figure 2.74. We augment the flow by 1 unit
along the path shown in Figure 2.74b. After this, we get the final flow f and
the residual network G(f) is shown in Figure 2.75. The flow has the value of 3
(i.e. 3 units are sent from s to t) and G(f) does not contain any directed cycle
of negative cost. Hence, f is optimal. We can easily retrieve the minimum cost
assignment by looking at arcs leading from Bj to Ai in G(f). If there is an
arc (j, i), then arc (i, j) has a flow equal to 1 and Ai is paired with Bj . So
the minimum cost assignment in the example considered is (A1, B1), (A2, B3),
(A3, B2).

Figure 2.75: Residual network for the last flow.

2.5. MINIMUM COST ASSIGNMENT 79

Correctness and running time of the algorithm

Theorem 18 The successive shortest path algorithm solves the minimum as-
signment problem in O(n3) time.

Proof. The correctness of the algorithm follows from three observations. (1) As
we know from the previous chapters, replacing the original costs with reduced
ones does not change the problem. So, any such transformation of the costs
does not change the optimal solution of the problem. (2) In each iteration we
increase the value of the flow in the network G by 1. Starting with a flow of
value 0, we iteratively increase it to n and a flow of value n clearly exists. In
consequence, the last network must represent some assignment. (3) Finally, all
the residual networks contain only nonnegative arc costs. Therefore, none of
them can contain a directed cycle of negative cost. By Theorem 12, the solution
obtained must be optimal. The algorithm performs exactly n augmentations,
each time increasing the flow by 1. In each iteration we must solve the shortest
path problem in a network with nonnegative arc costs. This can be done in
O(n2) time by using Dijkstra’s algorithm. So the overall running time of the
algorithm is O(n3).

2.5.3 Summary

1. In the assignment problem we wish to pair objects from two sets A and
B at the minimum total cost.

2. The minimum cost assignment problem can be seen as a special case of
the transportation problem and, consequently, as a special case of the
minimum cost flow problem.

3. This very special structure of the problem allows us to design an effi-
cient successive shortest path algorithm for it. This algorithm outputs an
optimal solution in O(n3) time.

The minimum cost assignment problem has been a very popular research
topic within the operations research community. The first algorithm for this
problem was developed by Kuhn [33]. A survey on assignment algorithms can
be found in [9]. The successive shortest path algorithm, which can be applied
to solve a general minimum cost flow problem, was developed in [29] and its
description can also be found in [3].

80 CHAPTER 2. NETWORK FLOWS

2.6 Minimum spanning tree

We are given a connected undirected network G = (N,A), |N | = n, |A| = m,
with a cost cij associated with each arc (i, j) ∈ A. We wish to find a spanning
tree of G that has the smallest total cost. Recall that a spanning tree is an
acyclic subnetwork of G that connects all the nodes of G. A sample problem is
shown in Figure 2.76. The arcs, (1, 3), (1, 5), (2, 3), (3, 6), (4, 6) form a spanning
tree of the minimum total cost equal to 9.

Figure 2.76: A sample network with the minimum spanning tree shown in bold.

We will denote a spanning tree of G by T . We will refer to the arcs contained
in T as tree arcs and to the arcs not contained in T as nontree arcs. The following
property of a spanning tree is easy to establish:

Observation 19 Let T be a spanning tree of a network G = (N,A). Then the
following statements are true:

1. T has precisely n − 1 arcs.

2. For every nontree arc (k, l), the spanning tree T contains a unique path
from k to l. Furthermore, the arc (k, l) together with this unique path
forms a cycle.

3. If we delete any tree arc (i, j) from T , the resulting graph partitions the
node set into two connected components S and S. Thus [S, S] is a cut
in G.

We can illustrate the above observations using the example shown in Fig-
ure 2.77. The sample network has 6 nodes, so every spanning tree has exactly 5
arcs. Consider the nontree arc (5, 6). The spanning tree T contains a unique
path 5 − 1 − 3 − 6 from 5 to 6 and adding (5, 6) to this path creates a cycle
5−1−3−6−5 (see Figure 2.77a). If we remove arc (3, 6) from T , then the span-
ning tree splits into two connected components S = {1, 2, 3, 5} and S = {4, 6}.
The partition [S, S] is a cut in G (see Figure 2.77b).

2.6. MINIMUM SPANNING TREE 81

Figure 2.77: An illustration of Observation 19.

2.6.1 Applications

Application 1 (designing physical systems [3]). In all the problems described
below we have to construct a minimum spanning tree in some network.

1. We would like to connect terminals in cabling panels of electrical equip-
ment. We should wire the terminals to use the least possible length of
wire.

2. We wish to construct a pipeline network to connect a number of towns
using the smallest possible total length of pipeline.

3. We would like to link isolated villages in a remote region, which are con-
nected by roads, but not yet by telephone. We wish to determine along
which roads we should place telephone lines, using the minimum possible
length of lines to link each pair of villages.

4. We have to connect a number of computer sites by high speed lines. We
wish to determine a configuration that connects all the sites at the least
possible cost.

2.6.2 Kruskal’s algorithm

The algorithm presented in this section is based on the following theorem:

Theorem 20 ([3]) A spanning tree T ∗ is a minimum spanning tree if and only
if for every nontree arc (k, l) of G, cij ≤ ckl for every arc (i, j) contained in the
path in T ∗ connecting k and l.

Theorem 20 leads to the very simple algorithm presented in Figure 2.78.
Before we justify the correctness of this algorithm, we present how it works
using the simple example shown in Figure 2.79.
Initially T = ∅ and E contains all the arcs of the input network G. In the

first step we choose arc (1, 4) in E, because it has the smallest cost, equal to 1.
Since T ∪{(1, 4)} = {(1, 4)} is acyclic, we add arc (1, 4) to T (see Figure 2.79a).

82 CHAPTER 2. NETWORK FLOWS

1: T := ∅, E := A
2: while |T | < |N | − 1 do
3: Select arc (i, j) of the minimum cost from E and remove it from E
4: if T ∪ {(i, j)} is acyclic then T := T ∪ {(i, j)}
5: end while

Figure 2.78: Kruskal’s algorithm.

In the next step we choose arc (2, 4) from E. Again, T ∪{(1, 4), (2, 4)} is acyclic
so we add (2, 4) to T (see Figure 2.79b). In a similar way, arc (3, 5) is added
to T as shown in Figure 2.79c. In the next step we select arc (1, 5). At this
point, however, the set T∪{(1, 5)} = {(1, 4), (2, 4), (3, 5), (1, 5)} contains a cycle,
so we skip arc (1, 5) and select another arc, which is (2, 3) (see Figure 2.79d).
Proceeding in this way, we get the spanning tree shown in Figure 2.79e.

Figure 2.79: Illustration of Kruskal’s algorithm.

Correctness and running time of the algorithm

Theorem 21 Kruskal’s algorithm computes a minimum spanning tree of a
given network G in O(m log n) time.

Proof. Kruskal’s algorithm clearly returns a spanning tree of G, because the
returned subset of arcs T is an acyclic subgraph of G and |T | = n − 1. The
algorithm adds arcs to T in order of nondecreasing costs. Consider a nontree
arc (k, l). Two cases are possible. (a) The algorithm terminates before the arc
(k, l) is chosen from E in line 3. In this case, all the tree arcs have costs not

2.6. MINIMUM SPANNING TREE 83

greater than ckl and (k, l) satisfies the optimality condition from Theorem 20.
(b) The arc (k, l) is chosen in line 3 of the algorithm. Since (k, l) /∈ T , it must
form a cycle with the arcs previously added to T . However, the costs of these
arcs are not greater than ckl and (k, l) satisfies the optimality condition from
Theorem 20. Kruskal’s algorithm is very simple. However, its implementation
details may be quite involved. We may start by sorting the arcs of G, which
requires O(m log m) = O(m log n) time. We then examine the arcs one by
one, each time checking whether there is a cycle in T ∪ {(i, j)}, where (i, j) is
the examined arc. Such a cycle can be detected in O(n) time, so this naive
implementation runs in O(mn) time. This running time can be improved by
using more sophisticated data structures. One of the simplest implementations
runs in O(m log n) time, but there are implementations whose running time is
nearly linear with respect to m (see e.g. [3]).

2.6.3 Prim’s algorithm

The algorithm presented in this section is based on the following theorem:

Theorem 22 ([3]) A spanning tree T ∗ is a minimum spanning tree if and only
if for every tree arc (i, j) ∈ T , cij ≤ ckl for every arc (k, l) contained in the cut
formed by deleting arc (i, j) from T ∗.

Using Theorem 22, we can construct another simple algorithm for the prob-
lem. This algorithm, called Prim’s algorithm, is shown in Figure 2.80. We
illustrate how it works using the example shown in Figure 2.81.

1: T := ∅, S := {1}
2: while |T | < |N | − 1 do
3: Select arc (i, j) of the minimum cost from the cut [S, S].
4: T := T ∪ {(i, j)}
5: S = S ∪ {i, j}
6: end while

Figure 2.80: Prim’s algorithm.

Initially T = ∅ and S = {1} (in fact, we could use any node to initialize S).
The initial cut [S, S] is shown in Figure 2.81a, this cut contains arcs (1, 2), (1, 3),
(1, 5) and arc (1, 3) has the smallest cost equal to 1. So, we add (1, 3) to T and
update S := S∪{1, 3} = {1, 3}. The next cut [S, S] is shown in Figure 2.81b. It
contains arcs (1, 2), (2, 3), (3, 4), (3, 5) and (3, 6). The arc (3, 6) has the smallest
cost, so we add it to T and update S := S∪{3, 6} = {1, 3, 6}. We proceed in this
way until |T | = n−1 or, equivalently, S contains all the nodes of the network G.

Correctness and running time of the algorithm

Theorem 23 Prim’s algorithm computes a minimum spanning tree of a given
network G in O(m + n log n) time.

84 CHAPTER 2. NETWORK FLOWS

Figure 2.81: Illustration of Prims’s algorithm.

Proof. It is easy to see that Prim’s algorithm returns a spanning tree of G. It
follows from the fact that exactly n − 1 arcs are added to T and no cycle can
be created. We need to show that this tree is the minimum one. Consider a
tree arc (i, j) ∈ T . If we remove (i, j) from T , then T splits into two connected
components S and S, which define cut [S, S] in G. In line 3 of the algorithm
we assume that the arc (i, j) has the smallest cost among all the arcs in the
cut [S, S]. Therefore, the arc (i, j) satisfies the optimality conditions from The-
orem 22. Similarly to Kruskal’s algorithm, a naive implementation of Prim’s
algorithm runs in O(mn) time. The algorithm performs n − 1 steps, each time
scanning in O(m) time the list of arcs to find the arc of minimum cost in the cut
[S, S]. Using a more sophisticated implementation, we can achieve a running
time of O(m + n log n) (see e.g. [3]).

2.6.4 Summary

1. In the minimum spanning tree problem we seek a spanning tree of a given
network G whose total cost is minimal.

2. The problem arises in applications where we wish to connect all the nodes
of some network at the minimum possible cost.

3. The problem can be solved by several efficient algorithms, for example
Kruskal’s and Prim’s algorithms.

The minimum spanning tree is one of the most extensively studied problems
in operations research. It is also one of the oldest discrete optimization problems,

2.6. MINIMUM SPANNING TREE 85

for which an algorithmic solution was proposed. The problem was formulated
and solved by Boruvka in 1926 [38]. Later, these algorithms were rediscovered
by Kruskal [32] and Prim [42]. Both algorithms belong to the class of greedy
algorithms. The fastest algorithm to date was developed by Chazelle [10].It is
almost linear with respect to the number of arcs. The implementation details
of Kruskal’s and Prim’s algorithms can be found in [14] and [45]. A survey of
the algorithms for the minimum spanning tree problem can be found in [8].

86 CHAPTER 2. NETWORK FLOWS

2.7 Exercises

1. Using the dynamic algorithm, compute the tree of shortest paths and the
tree of longest paths from node A in the following network (first establish
a topological ordering of the nodes of this network):

2. Using Dijkstra’s algorithm, compute the tree of shortest paths from node
A in the following network:

3. Using the Floyd-Warshall algorithm, compute the shortest paths between
each pair of nodes in the following network:

4. For the project shown in the following table, construct the corresponding
network, compute the duration time of the project, compute the floats of
the activities, find the critical activities and draw the Gantt chart.

2.7. EXERCISES 87

Activity Direct predecessors Duration times
A - 1
B - 4
C - 2
D B,C 3
E A 2
F E,D 3
G C 2

5. Show that the shortest path problem and the maximum flow problem are
special cases of the minimum cost flow problem.

6. Consider the following network with a given flow from s to t. Check
whether this flow is maximal. If not, find the maximum flow and a mini-
mum cut in this network.

7. Compute the maximum flow and a minimum cut in the following network:

8. Consider the following instance of the minimum cost flow problem, speci-
fied by a network with a given feasible flow.

(a) Show that this flow is not optimal.

88 CHAPTER 2. NETWORK FLOWS

(b) Starting with this flow, compute an optimal flow using the cycle
canceling algorithm and the network simplex algorithm.

(c) Perform the sensitivity analysis for the optimal solution obtained.

9. Consider the following transportation problem.

(a) Construct the transportation table for this problem and compute the
initial solution using the north-west corner or the minimum element
cost method.

(b) Starting with the initial solution computed in the previous point, find
an optimal solution by using the network simplex algorithm.

(c) Perform the sensitivity analysis for the optimal solution obtained.

10. Solve the following minimum cost assignment problem.

2.7. EXERCISES 89

11. Using Prim’s and Kruskal’s algorithms, compute a minimum spanning tree
in the following network. Having computed a minimum spanning tree, can
you find another minimum spanning tree?

90 CHAPTER 2. NETWORK FLOWS

Chapter 3

Solving hard problems

In the previous chapter we discussed the class of network flow problems which
can be solved by efficient polynomial time algorithms. Unfortunately, there are
a lot of important problems, for which no such efficient algorithm is known. In
this chapter we present some general techniques for dealing with such problems.

3.1 Mathematical programming formulation

Perhaps the easiest and the most general method of solving a discrete opti-
mization problem is designing a mathematical programming model for it and
applying one of many available packages to solve it. Most discrete optimization
problems can be formulated as the following linear integer program:

min

n
∑

j=1

cjxj

n
∑

j=1

cijxj ≤ (=)bi i = 1, . . . ,m

xj ∈ Dj j = 1, . . . , n

(3.1)

We can distinguish four elements in (3.1). The first is a set of decision
variables x1, . . . , xn. These are unknown quantities whose values are to be
computed. Each variable xj has some domain Dj and in a discrete optimization
problem we assume that this domain is a set of integers. One very important,
special case is when xj ∈ {0, 1}, i.e. variable xj may take only two values 0 or
1. We call such variable a binary variable. Binary variables are very useful if
we wish to describe certain finite objects, such as subsets, permutations, paths,
trees or cycles. The second element of any mathematical model is a set of
parameters. The parameters are the constants cj , bi and aij , which describe an
instance of an optimization problem. Typical parameters are costs, traveling
times, capacities, demands etc. The parameters may also describe the structure
of the instance, for example, a set of connections in a given network. Having

91

92 CHAPTER 3. SOLVING HARD PROBLEMS

decision variables and parameters we can write an objective function, i.e. a
linear expression which has to be minimized or maximized. This expression
should represent the cost (or value) of a solution, where a solution is described
by the decision variables. Finally, we also provide a set of linear expressions
called constraints, which describe all the requirements to be satisfied.

In theory, there is no limit on the type of the objective function or con-
straints. They may take the form of any mathematical expression, which can be
evaluated. However, in practice we are able to solve model, in which all the ex-
pressions are linear and the model can be formulated using a linear program. In
many cases, nonlinear expressions can be linearized by using additional variables
(see the literature, e.g. [50]). There are some powerful computer packages for
solving linear programming problems such as CPLEX [27] or GLPK [28], which
can be used to solve the models constructed. Furthermore, these packages con-
tain modeling languages, which allow us to express the models and input data
in a natural way. We will now consider several examples. We will build models
for several problems for which no polynomial algorithms are known. We will
use the MathProg modeling language which is the part of the freely available
GNU GKLPK software [28].

Example 1. (vertex cover) We are given an undirected network G = (N,A).
The subset of nodes W ⊆ N covers the set of arcs, if for all (i, j) ∈ A either
i ∈ W or j ∈ W . We wish to find the smallest subset of nodes which covers all
the arcs of G. This problem arises in many applications. For example, you can
imagine N as a set of rooms in a museum and (i, j) ∈ A if a door exists between
rooms i and j. The problem is where to place cameras so that all the doors
are observed. We can solve this problem in the following way. Define a binary
variable xi ∈ {0, 1}. Then xi = 1 if and only if a camera is placed in room
i ∈ N . The number of cameras installed is thus

∑

i∈N xi. Since every door
must be observed, the condition xi + xj ≥ 1 must be satisfied for all (i, j) ∈ A.
The model in the MathProg language is the following:

setsetset N;

setsetset A withinwithinwithin N crosscrosscross N;

varvarvar x{N} binarybinarybinary;

maximizemaximizemaximize cost: sumsumsum{i ininin N} x[i];
cover{(i,j) ininin A}: x[i]+x[j]>=1;
solvesolvesolve;

displaydisplaydisplay x;

datadatadata;

#-----provide data

endendend;

Example 2. (knapsack problem) Consider the knapsack problem (Example 2
in Section 1.1). Le us introduce a binary variable xi ∈ {0, 1} for each item
i = 1, . . . , n. So xi = 1 if and only if item i is taken. The value of a given solution

3.1. MATHEMATICAL PROGRAMMING FORMULATION 93

can be expressed as
∑n

i=1 pixi and this expression should be maximized. There
is one constraint in the problem, which ensures that the capacity W cannot be
exceeded. So this constraint takes the form

∑n
i=1 wixi ≤ W . The model is of

the following form:
max

∑n

i=1 pixi
∑n

i=1 wixi ≤ W
xi ∈ {0, 1} i = 1, . . . , n

This basic problem can be extended. Suppose that, for some reasons, there are
pairs of packs which cannot be taken together and these pairs form set U . So,
if (i, j) ∈ U , then i cannot be taken with j. We can express this requirement
by adding constraints xi + xj ≤ 1 for all (i, j) ∈ U . Indeed, these constraints
assure that both xi and xj never simultaneously take values equal to 1. In the
MathProg language, the model is the following:

paramparamparam n;

paramparamparam p{1..n};
paramparamparam w{1..n};
paramparamparam W;

setsetset U withinwithinwithin n crosscrosscross n;

varvarvar x{1..n} binarybinarybinary;

profit: sumsumsum{i in 1..n} p[i]*x[i];
constr1: sumsumsum{i in 1..n} w[i]*x[i] <=W;
constr2{(i,j) in U}: x[i]+x[j]<=1;
solvesolvesolve;

displaydisplaydisplay x;

datadatadata;

#-----provide data

endendend;

Example 3. (constrained shortest path) We are given a directed network G =
(N,A) with two distinguished nodes s and t. We know the length dij > 0 and
travel time pij > 0 of each arc (i, j) ∈ A. We would like to find the shortest
directed path from s to t in G with the additional restriction that the total
travel time of this path cannot exceed T . This is a version of the shortest
path problem with one additional constraint. Let us introduce a binary vari-
able xij ∈ {0, 1} for each arc (i, j) ∈ A. Thus xij = 1 if and only if the
path uses arc (i, j). The objective function simply expresses the length of the
path and has the form

∑

(i,j)∈A dijxij . The additional constraint can be ex-

pressed as
∑

(i,j)∈A pijxij ≤ T . The most complex task is to ensure that the
solution obtained indeed describes a directed path from s to t in G. Notice
first that each path uses exactly one arc leaving s. So we have the constraint,
∑

{j:(s,j)∈A} xsj = 1. Similarly, every path uses exactly one arc to t. Hence,

we write
∑

{i:(i,t)∈A} xit = 1. Finally, for every intermediate node v ∈ N , other
than s and t, if the path enters v, then it must also leave v. We can express
this condition as

∑

{j:(v,j)∈A} xvj −
∑

{i:(i,v)∈A} xiv = 0. In fact, this condition

94 CHAPTER 3. SOLVING HARD PROBLEMS

expresses something more. It says that the path enters v as many times as it
leaves v. In consequence, some nodes may be visited more than once and the
solution may contain directed cycles. However, if all the lengths and times are
positive, then no such cycle can appear in any optimal solution and the solution
obtained indeed describes a directed path from s to t. The model in MathProg
takes the following form:

setsetset N;

setsetset A withinwithinwithin N crosscrosscross N;

paramparamparam s ininin N;

paramparamparam t ininin N;

paramparamparam d{A}>0;
paramparamparam p{A}>0;
paramparamparam T;

varvarvar x{A} binarybinarybinary;

maximizemaximizemaximize dist: sumsumsum{(i,j) ininin A} d[i,j]*x[i,j];
time: sumsumsum {(i,j)ininin A} p[i,j]*x[i,j]<=T;
c1: sumsumsum{(s,j) ininin A} x[s,j]=1;
c2: sumsumsum{(i,t) ininin A} x[i,t]=1;
c3 {v ininin N diffdiffdiff{s,t}}: sumsumsum{(v,j)ininin A} x[v,j] - sumsumsum{(i,v)ininin A}
x[i,v]=0;

solvesolvesolve;

displaydisplaydisplay x;

datadatadata;

#-----provide data

endendend;

Example 4. (traveling salesperson). Consider the traveling salesperson problem
in a directed network G = (N,A), |N | = n, with arc costs cij for each (i, j) ∈ A.
Recall that we seek a cheapest directed Hamiltonian cycle in G, i.e. a cheapest
directed cycle in G that visits every node of G exactly once. Let us introduce
a binary variable xij ∈ {0, 1} for each arc (i, j) ∈ A. Thus xij = 1 if and only
if we move from node i to node j in the tour represented by a solution. The
cost of such a tour can be expressed as

∑

(i,j)∈A cijxij . Observe that the tour
enters every node exactly once and leaves every node exactly once. We can
express this by adding the constraints

∑

{j:(i,j)∈A} xij = 1 for all i ∈ N and
∑

{j:(j,i)∈A} xji = 1 for all i ∈ N . These constraints, however, are not sufficient
because we may obtain, as a result, a solution composed of several disjoint
cycles. This undesired situation can be prohibited by using the following idea.
Suppose that we have b(1) = n−1 units of some product at node 1. Each node,
other than 1, requires 1 unit of the product, so b(i) = −1 for all i ∈ N \{1}. We
have to deliver the product from node 1 to the remaining nodes and this is a
classical network flow problem. Let yij ≥ 0 denote the flow along arc (i, j) ∈ A.
So the constraints

∑

{j:(i,j)∈A} xij −
∑

{j:(j,i)∈A} xji = b(i) must be satisfied for
all i ∈ N . What are the relationships between the variables xij and yij? We

3.2. BRANCH AND BOUND ALGORITHM 95

can send the product only along arcs such that xij = 1. We can ensure this by
adding the constraints yij ≤ (n− 1)xij for each (i, j) ∈ A. The resulting model
describes the traveling salesperson problem. Indeed, the variables xij , (i, j) ∈ A,
cannot now describe several disjoint cycles, because in this case the constraints
of the network flow problem would not be satisfied. The model written in the
MathProg language has the following form:

paramparamparam n;

setsetset A withinwithinwithin 1..n crosscrosscross 1..n;

paramparamparam c{A};
paramparamparam b{i ininin 1..n}:=ififif i==1 thenthenthen n-1 elseelseelse -1;
varvarvar x{A} binary;
varvarvar y{A} >=0;
minimizeminimizeminimize cost: sumsumsum{(i,j) ininin A} c[i,j]*x[i,j];
c1{i ininin 1..n}: sumsumsum{(i,j) ininin A} x[i,j]=1;
c2{i ininin 1..n}: sumsumsum{(j,i) ininin A} x[j,i]=1;
c3{i ininin 1..n}: sumsumsum{(i,j) ininin A} y[i,j]-sumsumsum{(j,i) ininin A}
y[j,i]=b[i];

c4{(i,j) ininin A}: y[i,j]<=(n-1)*x[i,j];
solvesolvesolve;

displaydisplaydisplay x;

datadatadata;

#-----provide data

endendend;

After writing the models, we can provide some input data and solve them
using an available routine. In the case of the MathProg language, we can use
the glpsol routine [28].

3.2 Branch and bound algorithm

In principle, every discrete optimization problem can be solved by a version of
the brute force algorithm. Recall that this algorithm simply evaluates all the
feasible solutions and returns the best one. As we have seen in Section 1.2, this
approach is very inefficient, because the running time of the brute force becomes
very long even for small instances of an optimization problem. In this section
we describe a more clever method of evaluating the solutions called the branch
and bound. In extreme cases, the branch and bound method may behave like
the brute force but, in most cases, it allows us to solve much larger instances.
In this section we will assume that the problem is a minimization one. It is easy
to adapt the reasoning to the maximization problems and we leave this as an
exercise.
Let S0 = sol(I) be the set of all solutions for a given instance I of some

optimization problem. As we know, computing an optimal solution in S0 may
be very complex. It may be, however, much easier to estimate the cost of an
optimal solution from below. Namely, we could compute a function B(S0) called

96 CHAPTER 3. SOLVING HARD PROBLEMS

a lower bound, which tells us that the cost of an optimal solution in S0 cannot be
less than B(S0). It is very important that the value of B(S0) can be efficiently
computed. In most cases, we can also efficiently compute a set of solutions (not
necessarily optimal) and assume that xbest is the best solution among them. We
can simply generate a set of random solutions and choose the best of them or
use some fast heuristic to obtain xbest.

At this point, we know that the cost of an optimal solution belongs to the
interval [B(S0), f(xbest)]. Hence, we have a solution xbest whose percentage
deviation from the optimum is at most (f(xbest)−B(S0))/B(S0) provided that
B(S0) > 0. If this error is small enough, then we may be satisfied and we accept
the solution xbest. If not, then we can proceed by performing a branch. A branch
consists of dividing the solution set S0 into two or more subsets S1, S2, . . . , Sk.
We then compute the lower bounds B(S1), B(S2), . . . , B(Sk) for all of these
subsets. If B(Si) ≥ f(xbest) then Si cannot contain a solution better than xbest.
In this case, we may reject Si and do not consider solutions from this set any
more. On the other hand, if B(Si) < f(xbest), then Si may contain a better
solution and this set must be further explored. We do this by branching Si and
computing the lower bounds for the subsets obtained. The algorithm stops when
all the subsets are rejected, i.e. there is nothing to branch. Notice that during
the execution of the branch and bound algorithm the lower bounds cannot
decrease and the cost of xbest cannot increase. So, the percentage deviation of
xbest from the optimum will decrease and we can terminate the algorithm if we
accept the deviation.

Figure 3.1: Branch and bound algorithm.

There are several parts of the algorithm whose details depend on the prob-
lem. In particular, we must establish a method of computing the lower bounds
and a method of branching. The execution of the branch and bound algorithm

3.2. BRANCH AND BOUND ALGORITHM 97

can be seen as a tree, whose nodes represent parts of the solution space. In
Figure 3.1 the current tree contains 6 nodes. The nodes S0 and S2 are rejected
and the nodes S3, S4 and S5 need to be explored. There are several ways of
choosing the next node to be explored. One of the most popular method con-
sists of choosing the node with the smallest lower bound B(Si). In general,
the running time of the branch and bound algorithm can be exponential. The
algorithm may also require a large memory to store the information about the
search tree. Nevertheless, the idea of branch and bound is regarded as the most
powerful technique for solving hard discrete optimization problems.

Example 1. We now design a branch and bound algorithm for the traveling
salesperson problem. In order to illustrate the algorithm, we use a small problem
with 5 cities, numbered from 1 to 5 and the cost matrix shown in Table 3.1.
Observe that the cost of traveling from city i to i is set to ∞. In this way we
prohibit traveling from any city to itself.

1 2 3 4 5
1 ∞ 132 217 164 58
2 132 ∞ 290 201 79
3 217 290 ∞ 113 303
4 164 201 113 ∞ 196
5 58 79 303 196 ∞

Table 3.1: Cost matrix for the sample problem.

A good idea for obtaining the first tour is to use the fast and intuitive nearest
neighbor method. We start from city 1 and check which city is the nearest one.
This is city 5, so we travel from 1 to 5. We are now in city 5 and we again check
which city is the nearest one. This is city 1. However, we cannot return at this
point to 1, so the second nearest city is 2 and we travel to 2. Proceeding in this
way, we finally get the tour 1-5-2-4-3-1 with a total cost of 855. This tour is our
xbest. We now focus on computing a lower bound. Let us look at Figure 3.2.

Figure 3.2: (a) Every tour is an assignment, but (b) not every assignment is a
tour.

We can treat each tour as an assignment. For example, the tour shown in

98 CHAPTER 3. SOLVING HARD PROBLEMS

Figure 3.2a assigns 3 to 2, 2 to 1, 1 to 4, 4 to 5 and 5 to 3. We can represent this
assignment as a matrix with 1’s placed in box (i, j) if i is assigned to j. This
matrix has exactly one 1 in each column and exactly one 1 in each row. However,
not every assignment represents a tour. An example is shown in Figure 3.2b,
where the assignment represents two separate cycles.

Now the crucial fact is that, contrary to the optimal tour, the assignment of
minimum cost can be computed efficiently (see Section 2.5). Since the set of all
assignments contains all the tours, the cost of the optimal tour cannot be less
than the cost of the optimal assignment. Consequently, the cost of the optimal
assignment is a lower bound on the cost of the optimal tour. The optimal
assignment is shown in Figure 3.3. Its cost equals 625, so B(S0) = 625.

Figure 3.3: The optimal assignment and the tour xbest

At this point, we have the following information. We know that the cost of
the optimal tour belongs to the interval [625, 855]. Furthermore, we know that
the tour xbest has total cost 855. So the cost of xbest is at most 31.1% greater
than the optimum. If we are satisfied with this error, then we can terminate
the algorithm and return the tour xbest. But we are not, so we have to perform
a branch (see Figure 3.4).

Figure 3.4: The results of branching.

3.2. BRANCH AND BOUND ALGORITHM 99

Clearly, no tour can contain the cycle 2-5-2. So we can divide the solution
set S0 into two sets. In S1 we prohibit the arc 2−5 by setting the traveling cost
from 2 to 5 to be∞, while in S2 we prohibit the arc 5−2 by setting the traveling
cost from 5 to 2 to be∞. We then compute the optimal assignments for S1 and
S2 and the results obtained are shown in Figure 3.4. The optimal assignment
for S1 has a total cost equal to 682 and it is not a tour. However, we know
that the optimal tour in S1 has a cost of not less than 682. The optimal assign-
ment for S2 is a tour and has a total cost of 668. At this point, we can update
xbest to 1-3-4-2-5. This tour is optimal because no better tour can exist in S1

or S2. This follows from the inequalities B(S1) ≥ f(xbest) and B(S2) ≥ f(xbest).

Example 2. The branch and bound algorithm can be used to solve the general
linear integer programming problem problem (3.1) (see Section 3.1). The key
observation is that after removing the integrality constraints, we get a linear
programming problem which can be solved efficiently. Furthermore, the cost of
the optimal solution to the linear program is a lower bound on the optimal cost
in the original problem. Consider the following example:

z∗ = min−8x1 − 5x2

6x1 + 10x2 ≤ 45
9x1 + 5x2 ≤ 45
x1, x2 ≥ 0, x1, x2 integer

z∗R = min−8x1 − 5x2

6x1 + 10x2 ≤ 45
9x1 + 5x2 ≤ 45
x1, x2 ≥ 0,

We get the value of z∗R by removing the integrality constraints for the variables
x1 and x2. The resulting problem can be solved efficiently. In this case, we can
use the graphical method (see Figure 3.5). When there are more variables, the
simplex algorithm can be used.

Figure 3.5: Integer feasible solutions (black circles) and the optimal solution
after removing the integrality constraints.

After removing the integrality constraints, we get the optimal solution x1 =
3.75 and x2 = 2.25 with the value of the objective function z∗R = −41.25.

100 CHAPTER 3. SOLVING HARD PROBLEMS

Therefore, we know that −41.25 is a lower bound on the value of the objective
function in the original problem. However, the solution obtained is not integer
and we have to perform a branch. Let us choose variable x1. Since x1 = 3.75
and it cannot take fractional values, either x1 ≤ 3 or x1 ≥ 4. Considering these
two cases we get two nodes of the branch and bound tree labeled as S1 and
S2 (see Figure 3.6). In S1 we add the constraint x1 ≤ 3 and in S2 we add
the constraint x1 ≥ 4. We solve both problems and again we get fractional
solutions. Hence, we branch S2 by considering two cases x2 ≤ 1 and x2 ≥ 3.
The second case leads to an infeasible problem. The first case (S3) again leads
to a fractional solution, where x2 = 4.44. So we perform another branch by
considering two cases x2 ≤ 4 and x2 ≥ 5. As a result, we get the tree shown in
Figure 3.6.

Figure 3.6: The results of branching.

We can terminate the algorithm at this point. At nodes S5 and S6 we have
obtained integer solutions. The better solution is x1 = 5 and x2 = 0 with
the value of the objective function -40. At node S1 there is still a fractional
solution. However, the lower bound at this node is B(S1) = −37.5, which is
greater than -40. So no better solution can be obtained by branching S1. The
optimal solution is thus x1 = 5 and x2 = 0.

3.3 Dynamic programming

Dynamic programming is the second general technique for solving discrete op-
timization problems. It can be applied to problems possessing a special struc-
ture. We have described such an algorithm in Section 2.1, where we discussed
the shortest path problem in acyclic networks. We now consider the following
example:

3.3. DYNAMIC PROGRAMMING 101

Example 1. A company wants to invest $5 000 000 in 3 factories. There are sev-
eral possibilities for investment in each factory and they are listed in Table 3.2.
For example, the company can invest $2 000 000 in Factory 1, $3 000 000 in
Factory 2 and $0 in Factory 3, which gives a total profit of $15 000 000. Which
variants should be chosen in each factory to maximize the total profit?

Factory 1 Factory 2 Factory 3
Variant i c1(i) p1(i) c2(i) p2(i) c3(i) p3(i)
1 0 0 0 0 0 0
2 1 5 2 8 1 4
3 2 6 3 9 - -
4 - - 5 12 - -

Table 3.2: The costs cj(i) and the profits pj(i) in million $ for investment i in
factory j

A naive approach to solving this problem would be to try all the possibilities,
i.e. all the possible combinations of the investment variants. This is of course a
kind of brute force method, which would work quite well for our small example,
but fail for lager instances. If there were n factories with m investment variants,
then we would have to check mn possibilities. This is too many even for small
problems, say with n = 10 and m = 10. This naive approach also performs a
lot of unnecessary work by examining infeasible investment variants, i.e. those
which exceed the given budget. We now show a much more efficient method of
solving this problem, which is based on the idea of dynamic programming.
We divide the problem into three subproblems. In the first subproblem we

consider only Factory 1. Let f1(x) be the maximum profit in Factory 1 under
the assumption that we have x dollars. Hence, the value of f1(x) expresses the
best variant in Factory 1 under the assumption that we have x dollars to spend.
This quantity can be computed in the following way:

f1(x) = max
{i:c1(i)≤x}

{p1(i)}.

In the second subproblem we consider Factory 1 and Factory 2. Now f2(x) is the
maximum profit from both factories assuming that we can spend x dollars. If we
have x dollars, then we can choose only those variants i in Factory 2, for which
c2(i) ≤ x. If we choose the ith variant, then our profit will be p2(i)+f1(x−c2(i)).
The first term p2(i) results from choosing the ith variant in Factory 2 and the
second term f1(x − c2(i)) expresses the value of the best variant in Factory 1,
when we have x − c2(i) dollars remaining. Hence, f2(x) can be computed as
follows:

f2(x) = max
{i:c2(i)≤x}

{p2(i) + f1(x − c2(i))}.

Finally, we consider the third subproblem with all three factories. The function
f3(x) expresses the maximum profit from all three factories under the assump-
tion that we can spend x dollars. We can repeat the same argument as used

102 CHAPTER 3. SOLVING HARD PROBLEMS

previously and compute f3(x) in the following way:

f3(x) = max
{i:c3(i)≤x}

{p3(i) + f2(x − c3(i))}.

We have now some recursive relationships involving fi(x) for i = 1, 2, 3. We get
an optimal solution by computing f3(5), i.e. the value of an optimal investment
for all three factories assuming that we have $5 000 000. The computation of
f3(5) is shown in Figure 3.7.

Figure 3.7: Solving the problem by dynamic programming.

We first construct a network, whose nodes represent all the possible states
fi(x) in the problem. Thus we start with f3(5) and check that this state can
be reached from f2(5) (we can choose variant 1 in Factory 3) and f2(4) (we
can choose variant 2 in Factory 3). We represent these transitions by arrows
(f2(5), f3(5)) and (f2(4), f3(5)) with profits 0 and 4, respectively. We consider
nodes f2(5) and f2(4) in a similar way. As a result, we get a directed and acyclic
network. The optimal solution can be obtained by computing a longest path in
this network. This path is shown in Figure 3.7. Its value is equal to 18 and we
should choose variant 2 in Factory 3, variant 2 in Factory 2 and variant 3 in
Factory 1.

Example 2 (knapsack problem) Consider the knapsack problem, which was de-
fined in Section 1.1 (Example 2). In principle, we could evaluate all the solutions
to this problem and choose the best one. We would have to, however, evalu-
ate up to 2n solutions, which is prohibitive even for small n. We now show a
much faster method of solving this problem. We divide the problem into n + 1
subproblems numbered from 0 to n. In the ith subproblem, we compute the

3.3. DYNAMIC PROGRAMMING 103

optimal solution for the subset of items {1, . . . , i}. If i = 0, then the set of
items is empty. Let fi(x) be the value of the optimal solution to the ith sub-
problem, under the assumption that we can take items whose total weight does
not exceed x. Of course f0(x) = 0 for all x since there are no items to take.
How can we compute fi(x) for i > 0? In the ith subproblem we have to decide
whether to take item i. We can do this only if x ≥ wi. So, if x < wi, then
fi(x) = fi−1(x). If x ≥ wi, then we have two possibilities: we do not take i and
fi(x) = fi−1(x), or we take i and fi(x) = fi−1(x − wi) + pi. Since we wish to
maximize the value of the items taken, we should choose the possibility which
gives us a greater value of fi(x). Summarizing, we get the following recursive
formula:

f0(x) = 0

fi(x) =

{

fi−1(x) x < wi

max{fi−1(x), fi−1(x − wi) + pi} x ≥ wi
i = 1, . . . , n

We obtain an optimal solution by computing fn(W). The computations for
a sample problem with 4 items are shown in Figure 3.8. The nodes of the
network constructed represent all the possible states fi(x) and the arcs represent
transitions between states. We compute the longest path in this network, which
corresponds to the optimal solution {2, 3, 4}.

Figure 3.8: Solving the knapsack problem by dynamic programming.

We now estimate the running time of the dynamic algorithm. The network
contains O(nW) nodes. The special structure of this network allows us to com-

104 CHAPTER 3. SOLVING HARD PROBLEMS

pute the longest path in O(nW) time. So we can get an optimal solution to
the knapsack problem in O(nW) time. Notice that this is much better than the
running time of the brute force algorithm, which is O(n2n). If W is not very
large, then we can efficiently solve problems with thousands of items.

After analyzing these two examples, we can informally describe the general
idea of dynamic programming. We first split the problem into a sequence of
n subproblems, where the last, nth, subproblem represents the whole prob-
lem. We then define a function fi(x), with the argument x representing the
state in subproblem i. In the first example x is the amount of money pos-
sessed and in the second example x is the available capacity. Finally, there are
some recursive relationships, which allow us to compute fi(x) having computed
f1(x), . . . , fi−1(x). We obtain an optimal solution by computing fn(x0), where
x0 is the state in the original problem. The computations can be represented
as a directed network, whose nodes are all the possible values of fi(x). We first
build this network by working backwards using the recursive relationships. We
then compute the longest (or the shortest if we are minimizing the objective
function) path in the network obtained, which represents an optimal solution to
the original problem. The algorithms based on this approach are much faster
than the brute force algorithm.

3.4 Approximation algorithms and heuristics

If an instance of a hard optimization problem is large, then it may not be possi-
ble to compute an optimal solution in reasonable time. For example, computing
a shortest traveling salesperson tour for thousands of cities may be a hopeless
task. In this case, we might be satisfied with a solution which is close to opti-
mal, if such a solution can be computed quickly.

Example 1 (vertex cover) In Section 3.1 (Example 3) we described the vertex
cover problem. This problem is known to be computationally hard. Consider
the algorithm shown in Figure 3.9.

1: W := ∅
2: while G contains some arc do
3: Choose any arc (i, j) of G
4: W := W ∪ {i, j}
5: Remove all the arcs incident to i and j from G.
6: end while
7: return W

Figure 3.9: An approximation algorithm for the vertex cover problem.

The algorithm chooses any arc (i, j) of G, adds nodes i and j to the cover
constructed and removes from G all the arcs incident to i and j. The algorithm

3.4. APPROXIMATION ALGORITHMS AND HEURISTICS 105

stops when G has no arcs. It is easy to observe that W is a cover in G, i.e.
all the arcs of G are covered by some node in W . Furthermore, the algorithm
is very fast and can easily be implemented to run in O(m) time. We can thus
suspect that W need not be an optimal solution, since otherwise the vertex
cover problem would be easy to solve. Let W ∗ be a minimum cover. Observe
that if an arc (i, j) is chosen in line 3, then either i or j must belong to W ∗

(otherwise the arc (i, j) would not be covered). This implies that |W ∗| ≥ |W |/2
or, equivalently, |W | ≤ 2|W ∗|. This inequality means that the size of the cover
constructed is at most two times larger than the size of the minimum cover.

Let us now introduce the following definition. An algorithm A is said to be
a k-approximation algorithm for a minimization problem Π if:

1. A runs in polynomial time.

2. For every instance I ∈ DΠ, the algorithm A returns a solution x ∈ sol(I)
such that f(x) ≤ kf(x∗). The constant k is called the worst case ratio
for A.

The corresponding definition for a maximization problem is very similar. We
must only replace f(x) ≤ kf(x∗) with f(x) ≥ 1

k
f(x∗) in condition 2. Con-

dition 1 means that algorithm A is fast. Condition 2 means that, for every
instance of the problem, A returns a solution whose cost is at most k times
greater (smaller) than the optimum. Observe that a 1-approximation algorithm
is an exact algorithm for Π, so if Π is computationally hard, then we should
expect that k > 1. Of course, the value of k should be as small as possible.

Example 2 (metric traveling salesperson) Consider the traveling salesperson
problem defined in Section 1.1 (Example 1). We discuss here a special met-
ric version of this problem, where the arc costs satisfy the so called triangle
inequality, that is for every three nodes i, j, k the inequality cik ≤ cij + cjk must
hold. We also assume that the problem is symmetric, i.e. cij = cji for all nodes
i, j. A special case is Euclidean problem, where the nodes are located in a plane
and cij = cji is the Euclidean distance between i and j. Consider the problem
with 6 nodes shown in Figure 3.10.

Figure 3.10: An approximation algorithm for the metric traveling salesperson
problem.

106 CHAPTER 3. SOLVING HARD PROBLEMS

In the first step, we compute a minimum spanning tree T for G, as shown
in Figure 3.10a. Let us denote the optimal tour by π∗. It follows that f(T) ≤
f(π∗), so the total cost of T is not greater than the total cost of an optimal
tour. The proof of this observation results easily by contradiction. Suppose
that f(T) > f(π∗). If we remove any arc from π∗, then we get a spanning
tree whose cost is less than T , which contradicts the fact that T is a minimum
spanning tree. In the next step, we transform T by replacing every undirected
arc of T by two directed arcs as shown in Figure 3.10b. Note that the degree
of every node in the network obtained is even, so this network has an Eulerian
cycle, i.e. a walk that visits every arc exactly once. The Eulerian cycle of the
network from Figure 3.10b is L = 1 − 2 − 1 − 5 − 6 − 5 − 4 − 5 − 3 − 5 − 1
and, clearly, f(L) = 2f(T) ≤ 2f(π∗). We can now transform L into a traveling
salesperson’s tour by removing the repeated nodes from L. Hence we get the
tour π = 1− 2− 5− 6− 4− 3− 1 shown in Figure 3.10c. Removing a node from
L cannot increase the cost of the walk obtained, which follows from the triangle
inequality. For example, replacing 2−1−5 with 2−5 does not increase the cost
because c25 ≤ c21 +c15. Hence, we get f(π) ≤ f(L) ≤ 2f(π∗) and the algorithm
presented is a 2-approximation for the metric traveling salesperson problem.

The algorithm can be additionally improved and the idea is shown in Fig-
ure 3.11.

Figure 3.11: Christofides algorithm for the metric traveling salesperson.

The first step is the same as previously. We construct a minimum spanning
tree T for the set of nodes. The next step, however, is different. We consider the
nodes of the spanning tree T obtained which have an odd degree (nodes 2,3,4 and
6). The number of such nodes must be even, so we construct a matchingM with
the minimum cost for them (see Figure 3.11b). The minimum cost matching can
be computed in polynomial time. In this example, the minimum cost matching

3.4. APPROXIMATION ALGORITHMS AND HEURISTICS 107

is (2, 6) and (3, 4). We add this matching to T obtaining a network, where all
the nodes have an even degree. The last steps are the same as in the previous
algorithm. We compute an Eulerian cycle L and remove all the repeated nodes
from L obtaining a tour π. As previously, we have f(T) ≤ f(π∗). It also follows
that f(M) ≤ f(π∗)/2. In consequence, f(π) ≤ f(T) + f(M) ≤ 3/2f(π∗). The
algorithm, called Christofides algorithm, has an approximation ratio equal to
3/2.

For some optimization problems it is believed that no k-approximation algo-
rithms exist (see Appendix C for a deeper discussion on this topic). A polyno-
mial algorithm, which returns a solution to an optimization problem is called a
heuristic. The solution returned by a heuristic may be arbitrarily far from the
optimum in the worst case. We can expect, however, that this solution will be
of good quality for most typical instances. Consider the following examples:

Example 3 (graph coloring). We are given an undirected network G = (N,A). A
coloring is an assignment of a color to each node i ∈ N , so that every two nodes
i, j linked by arc (i, j) ∈ A have distinct colors. We wish to find a coloring that
uses a minimum number of colors. The graph coloring is a very famous problem
having a long history. It is also one of the hardest problems in discrete opti-
mization. In order to find a reasonable coloring, the following simple method
can be used. Assume that the colors are numbered 1, 2, We order the nodes
of G with respect to nonincreasing degrees (the number of incident arcs) and
successively assign the smallest possible color to each node in this order. This
algorithm works well for many instances. However, it is not a k-approximation
algorithm for any finite k and this fact is illustrated in Figure 3.12. All the nodes
in the sample network have the same degree equal to n. So the algorithm may
assign colors to the nodes in any order. If this order is 1,2,. . . 2n, then it uses
n colors. But it is easy to see that two colors are enough to color this network.
So the worst case ratio for this algorithm is n/2, which can be arbitrarily large.

Figure 3.12: A sample graph coloring problem.

Example 4 (general traveling salesperson). Again, consider the traveling sales-
person problem, but now we do not impose any restrictions on the arc costs.
We will assume, however, that the network is complete, i.e. there is an arc

108 CHAPTER 3. SOLVING HARD PROBLEMS

between every pair of nodes i and j. The following algorithm for constructing a
tour seems to be natural. Starting from node 1, we always move to the closest
unvisited node. This natural algorithm is only a heuristic, because the solu-
tion obtained may be arbitrarily bad. Consider the sample problem shown in
Figure 3.13. It is easy to check that, starting from node 1, we visit the nodes
in order 1-2-3-4-1 obtaining a tour with cost 3 + K. The value of K can be
arbitrarily large so the worst case ratio for this algorithm is (3 + K)/6, which
can also be arbitrarily large. Nevertheless, the nearest neighbor heuristic is very
fast and may be useful if some tour should be constructed quickly.

Figure 3.13: A sample traveling salesperson problem.

3.5 Local search

One of the most general methods of solving hard discrete optimization problems
is local search. The idea of local search is as follows. We start with an initial
solution x0. We then move to another solution x1 in some neighborhood of x0.
The next solution x2 is obtained by moving to some solution in the neighborhood
of x1. We continue this until some stopping criterion is satisfied. A neighbor-
hood function N is a function which specifies for each solution x ∈ sol(I) a set
N (x) ⊆ sol(I), which is called the neighborhood of x. Consider the following
example:

Example 1 (traveling salesperson). Let us denote by π a subset of arcs ofG which
forms a tour. Then Nk(π) = {π′ : |π \ π′| ≤ k} is called a k-opt neighborhood.
Hence, Nk(π) contains all tours, which differ from π in at most k arcs. The
2-opt neighborhood is illustrated in Figure 3.14. A sample tour π is shown in
Figure 3.14a. We get a tour π′ ∈ N2(π) by removing two arcs in π and adding
two new arcs to the resulting subset of arcs. Observe that |π \ π′| = 2.

A solution x̂ ∈ sol(I) is called a local minimum if f(x̂) ≤ f(x) for all
x ∈ N (x̂). Hence, x̂ is a local minimum if there is no better solution in its
neighborhood. In a similar way, we can define a local maximum. Observe that
the definition of a local minimum (maximum) depends on the neighborhood
function N . In general, a local minimum (maximum) can be different from the
global one. Having defined a neighborhood function, we can construct the sim-
plest local search algorithm called the iterative improvement (see Figure 3.15).

3.5. LOCAL SEARCH 109

Figure 3.14: a) A sample tour π. b) A sample tour π′ ∈ N2(π).

1: Generate a starting solution x ∈ sol(I)
2: repeat
3: Choose x′ ∈ N (x) with the minimal cost f(x′)
4: if f(x′) < f(x) then x := x′

5: until f(x′) ≥ f(x) for all x′ ∈ N (x)
6: return x

Figure 3.15: The iterative improvement algorithm for a minimization prob-
lem [37].

The idea of the iterative improvement algorithm is very simple. We start
with an initial solution x, which may be generated randomly. We then scan the
neighborhood of x and seek a best solution x′ in this neighborhood. If the cost
of x′ is less than the cost of x, then we move to x′ and repeat the procedure.
The algorithm stops if the current solution cannot be improved, i.e. if x is a
local minimum. The iterative improvement algorithm is simple and also fast in
many cases. Furthermore, it often returns quite good solutions. In particular, it
performs well for the traveling salesperson problem with the 3-opt neighborhood
function.

The iterative improvement algorithm has two drawbacks. It always stops at a
local minimum and scans the whole neighborhood of the current solution, which
may be inefficient if the neighborhood size is large. Instead of enumerating all
the solutions in N (x), we may select x′ ∈ N (x) uniformly at random. Hence,
x′ is chosen randomly from N (x) with probability 1/|N (x)|. We move to the
solution x′ if f(x′)−f(x) < t, i.e. we move to x′ if the increase in cost is smaller
than a given threshold t > 0. The threshold t is a parameter which allows us
to control the search process. Large values of t enable us to explore large parts
of the solution space, while small values of t allow us to explore a part of the
solution space more exhaustively. A good idea is to fix a large threshold at the
beginning of the algorithm and then decrease its value during its execution. The
algorithm stops after performing a given number of iterations. The threshold
acceptance algorithm is shown in Figure 3.16

The threshold acceptance algorithm can be additionally refined by modify-
ing the rule of moving to worse solutions. We move to the solution x′ ∈ N (x)

110 CHAPTER 3. SOLVING HARD PROBLEMS

1: Generate a starting solution x ∈ sol(I)
2: xbest := x
3: repeat
4: Choose x′ ∈ N (x) uniformly at random.
5: if f(x′) < f(xbest) then xbest := x′

6: if f(x′) − f(x) < t then x := x′

7: until stop criterion
8: return xbest

Figure 3.16: Threshold acceptance for a minimization problem [37].

with probability 1 if f(x′) < f(x) and with probability exp((f(x) − f(x′))/tk)
if f(x′) ≥ f(x). Observe that the probability of moving to a worse solution is
positive, but less than 1. Furthermore, the smaller is the difference f(x)−f(x′)
the smaller is the probability of moving to x′. The parameter tk is called the
temperature and it allows us to control the search process. The larger tk the
larger is the probability of moving to worse solutions. At the beginning, we
should choose a large value for tk and decrease it during the execution of the al-
gorithm. The resulting algorithm is called simulated annealing (see Figure 3.17)
in analogy to the physical process for obtaining low energy states of a solid in
a heat bath.

1: Generate a starting solution x ∈ sol(I)
2: xbest := x
3: k := 1
4: repeat
5: Choose x′ ∈ N (x) uniformly at random.
6: if f(x′) < f(xbest) then xbest := x′

7: if f(x′) ≤ f(x) then x := x′

8: else
9: if exp((f(x) − f(x′))/tk) >rand[0,1) then x := x′

10: k := k + 1
11: until stop criterion
12: return xbest

Figure 3.17: Simulated annealing for a minimization problem [37].

The last local search algorithm is a modification of the iterative improve-
ment algorithm. We also scan the whole neighborhood of the current solution x
and choose the best solution x′ ∈ N (x). However, we do not terminate if x′ is
local minimum and we always move to x′. So we always move to the neighbor
that returns the smallest increase in cost. The straightforward application of
this idea may lead to cycling, i.e. we may repeatedly return to the same lo-
cal minimum, either immediately or within a few iterations. In order to avoid
such undesired behavior, we introduce the so-called tabu list. The tabu list con-
tains descriptions of the moves which are forbidden for a number of iterations.

3.6. SUMMARY 111

Consider, for example, the traveling salesperson problem with the 2-opt neigh-
borhood function. Suppose that we have performed the move from tour π to
π′ shown in Figure 3.14. In order to forbid going back to π, we can add to the
tabu list the two elements {(2, 3), 5} and {(4, 5), 5}, which means that we forbid
moves in which we add edges (2, 3) or (4, 5) for the next 5 iterations. Observe
that the tabu list contains just some attributes of the forbidden moves. In con-
sequence, moving to some unvisited solutions may be prohibited. To prevent
us from missing attractive solutions, we equip the algorithm with the so-called
aspiration criterion, which may work as follows. If moving to a solution x is
prohibited by the tabu list, then we nevertheless accept x if it is better than the
best solution found so far. We will say that the solution x′ ∈ N (x) is admissible
if the move to x′ is not prohibited by the tabu list or is allowed because the
aspiration criterion is satisfied. The resulting algorithm, called a tabu search is
shown in Figure 3.18.

1: Generate a starting solution x ∈ sol(I)
2: T := ∅
3: xbest := x
4: repeat
5: Choose the best admissible solution x′ ∈ N (x)
6: if f(x′) < f(xbest) then xbest := x
7: x := x′

8: Update the tabu list T
9: until stop criterion
10: return xbest

Figure 3.18: Tabu search for a minimization problem [37].

Local search algorithms are very general and, in most cases, easy to imple-
ment. They have been successfully applied to many hard discrete optimization
problems, including the traveling salesperson problem.

3.6 Summary

1. A lot of important discrete optimization problems are computationally
hard, which means that no efficient polynomial time algorithms are known
for them.

2. Perhaps the easiest method of solving a hard optimization problem is
to formulate a linear programming model for it and apply one of several
available packages to get an optimal solution. In many cases, the packages
are able to provide an optimal solution in reasonable time.

3. For a hard problem, we can design a branch and bound algorithm or an
algorithm based on the dynamic programming technique. The branch and
bound algorithm is often the best exact method of solving a hard problem.

112 CHAPTER 3. SOLVING HARD PROBLEMS

4. If the instance of a hard problem is large and we have to quickly compute a
good solution, then we can apply a k-approximation algorithm. This algo-
rithm outputs a solution, which is not necessarily optimal, but is of some
guaranteed quality. However, not every problem has a k-approximation
algorithm (see Appendix C). In this case, we can use a heuristic which,
however, may return an arbitrarily bad solution in the worst case. Never-
theless, we can expect that the heuristic will give reasonable solutions for
typical instances.

5. Local search algorithms can be seen as sophisticated heuristics. They are
easy to implement and return good solutions in many cases. They are a
good choice if a problem is hard and the instance is very large.

There is an extensive literature on various methods of solving hard prob-
lems. Building mathematical models for practical problems is an impor-
tant area of operations research (see. e.g. [50]). A description of the
branch and bound method, together with some applications, can be found,
for example, in [35]. An application of the branch and bound method to
the traveling salesperson problem can be found, for example, in [6]. The
branch and bound algorithm for integer linear programming can be found
in [24]. Dynamic programming is described in [46]. Approximation is an
important field of computer science. Many results and algorithms can be
found in [47] and [5]. The Christofides algorithm for the metric travel-
ing salesperson problem was first described in [12]. A good description of
various methods of solving hard problems can be found in [36]. A lot of
results on local search can be found in [37]. Some applications of local
search to large scale problems can be found in [2]. The simulated anneal-
ing algorithm was developed in 1983 [30] and the tabu seach technique was
proposed in 1986. More information on tabu seach can be found in [25].

3.7. EXERCISES 113

3.7 Exercises

1. A factory wants to open m stores. The factory considers n places, so that
n > m. In place i a store with capacity Ci can be built. The distance
between places i and j is equal to dij . The factory wants to open m stores
to maximize their total capacity. However, the stores should be located
so that the distance between any pair of open stores is not greater than
K. Build a model for this problem.

2. An area of some factory is divided into mn squares. Some squares are
occupied by valuable packs (we assume that every square may be occupied
by at most one pack). We must place some cameras in the area to observe
the packs. Every camera can observe r squares to the left, r squares to the
right, r squares up and r squares down. It is prohibited to place cameras
on the squares occupied by packs. Where should we place cameras so that
every pack is observed and the total number of cameras is minimized?
Build a model for this problem.

3. In some area there is a setCCC of cities with a symmetric matrixD containing
travel times (in minutes) between each pair of cities. For each city i ∈ CCC
there is a number ui denoting the number of citizens in i. The government
wants to build k fire stations and each fire station must be placed in a
different city. The fire stations should be placed so that the traveling time
from each city to the nearest fire station is not greater than 10 minutes.
Because the budget is limited, it may be hard to satisfy this demand.
Where should the fire stations be placed so that the number of citizens
for whom no fire station is reachable within 10 minutes is minimal? Build
a model for this problem.

4. We are given an undirected graph G = (V,E). A cut [V1, V2] in G is a
partition V1 ∪ V2 = V such that V1 ∩ V2 = ∅. Let u(V1, V2) denote the
number of arcs with one endpoint in V1 and one endpoint in V2. We wish
to determine a cut, for which the value of u(V1, V2) is maximized. Build
a model for this problem.

5. We are given an undirected graph G = (V,E). We wish to assign a color
to each node of the graph so that no two adjacent nodes share the same
color. We would like to find such a coloring using the minimum number
of distinct colors. Build a model for this problem.

6. Build linear programming models for all the network flow problems con-
sidered in Chapter 2.

7. Use the branch and bound algorithm to solve the following discrete opti-
mization problem:

114 CHAPTER 3. SOLVING HARD PROBLEMS

min −5x1 − 4x2

x1 + 2x2 ≤ 6
−2x1 + x2 ≤ 4
5x1 + 3x2 ≤ 15
x1, x2 ≥ 0, x1, x2 integer

8. Design a branch and bound algorithm for the knapsack problem and, using
it, solve the following problem:

max 5x1 + 3x2 + 6x3 + 6x4 + 2x5

5x1 + 4x2 + 7x3 + 6x4 + 2x5 ≤ 15,
x1, . . . , x5 ∈ {0, 1}

9. Show that the cost of a minimum spanning tree of G is a lower bound on
the cost of the optimal traveling salesperson’s tour in G.

10. Apply dynamic programming to solving the traveling salesperson problem.

11. Using the dynamic programming, solve the knapsack problem with 4 items
whose weights are 4,2,3,1 and values are 50, 15, 20, 12, respectively and
the capacity W = 6.

12. Consider the maximum cut problem from Exercise 4. Let us define the
following neighborhood function for this problem: the cut [V ′

1 , V ′
2] is in a

neighbor of [V1, V2] if |V
′
1 \V1| ≤ 1 and |V ′

1 \V1| ≤ 1 (i.e. we obtain [V ′
1 , V ′

2]
by moving one node between V1 and V2). Show that the iterative improve-
ment algorithm, starting with any cut, is a 2-approximation algorithm for
this problem.

13. Consider the following minimum Steiner tree problem. Given an undi-
rected network G = (N,A) with nonnegative arc costs and whose nodes
are partitioned into two sets, required and Steiner, find a minimum cost
tree in G (i.e. an acyclic and connected subnetwork of G) that contains
all the required nodes and any subset of the Steiner nodes.

(a) Show that the shortest path and minimum spanning tree problems
are special cases of the minimum Steiner tree problem.

(b) Construct a 2-approximation algorithm for this problem.

(c) Propose a neighborhood function for this problem.

14. Consider the following simple heuristic for the knapsack problem: sort the
items by decreasing ratio of of value to weight, and then greedily pick the
items in this order until the capacity W is not violated.

(a) Show that this algorithm may return a solution which is arbitrarily
far from the optimum. Hence, it is only a heuristic.

(b) Can you improve this algorithm to guarantee the worst-case ratio
of 2?

Bibliography

[1] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms.
Addison-Wesley, Reading, 1983.

[2] R. Ahuja, Ö. Ergun, J. Orlin, and A. Punnen. A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics, 123:75–
102, 2002.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[4] S. Arora and B. Barak. Computational Complexity. A Modern Approach.
Cambridge University Press, 2009.

[5] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi. Complexity and Approximation. Combinatorial Optimiza-
tion Problems and Their Approximability Properties. Springer, 1999.

[6] E. Balas and P. Toth. Branch and bound methods. In E. L. Lawler, J. K.
Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors, The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. John
Wiley & Sons, New York, 1985.

[7] M. S. Bazaraa, J. J. Jarvis, and H. F. Sherali. Linear Programming and
Network Flows. John Wiley & Sons, New York, second edition, 1990.

[8] C. F. Bazlamaçci and K . S. Hindi. Minimum-weight spanning tree algo-
rithms A survey and empirical study. Computers & OR, 28(8):767–785,
2001.

[9] R. E. Burkard. Selected topics on assignment problems. Discrete Applied
Mathematics, 123(1-3):257–302, 2002.

[10] B. Chazelle. A minimum spanning tree algorithm with inverse-ackermann
type complexity. Journal of the ACM, 47:1028–1047, 2000.

[11] D.S. Chen, R.G. Batson, and Y. Dang. Applied Integer Programming.
Modeling and Solution. John Wiley and Sons, 2 edition, 2010.

115

116 BIBLIOGRAPHY

[12] N. Christofides. Worst-case analysis of a new heuristic for the traveling
salesman problem. Technical report, GSIA, Carnegie-Mellon University,
Pittsburgh, 1976.

[13] S. Cook. The complexity of theorem proving procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing., pages
151–158, 1971.

[14] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT
Press, 1990.

[15] W. H. Cunningham. A network simplex method. Mathematical Program-
ming, 11:105–116, 1976.

[16] G. B. Dantzig. Application of the simplex method to a transportation
problem. In T. C. Koopmans, editor, Activity Analysis and Production and
Allocation. Wiley, 1951.

[17] R. Diestel. Graph theory. Springer-Verlag, 2 edition, 2000.

[18] E. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematik, 1:269–271, 1959.

[19] Edmonds and Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM, 19, 1972.

[20] R. W. Floyd. Shortest path. Commun. ACM, 5(6):345, 1962.

[21] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956.

[22] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press,
1962.

[23] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman,
San Francisco, 1979.

[24] R. Garfinkel and G. Nemhauser. Integer Programming. John Wiley and
Sons Inc., 1972.

[25] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1998.

[26] F. L. Hitchcock. The distribution of a product from several sources to
numerous localities. J. Math. Phys., 20:224–230, 1941.

[27] http://www-01.ibm.com/software/integration/optimization/cplex opti-
mizer/.

[28] http://www.gnu.org/software/glpk/.

BIBLIOGRAPHY 117

[29] W. S. Jewell. Optimal flow through networks. Operations Research, 10:476–
499, 1962.

[30] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.

[31] M. Klein. A primal method for minimal cost flows. Management Science,
14:205–220, 1967.

[32] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. In Proc. Am. Math. Soc., pages 48–50, 1956.

[33] H. W. Kuhn. The hungarian method for the assignment problem. Naval
Res. Logist. Quart., 2:83–97, 1955.

[34] E. Lawler. Combinatorial Optimization. Networks and Matroids. Saunders
College Publishing, 1976.

[35] E. L. Lawler and D. E. Wood. Branch and bound methods: a survey.
Operations Research, 14:699–719, 1984.

[36] Z. Michalewicz and B. F. Fogel. How to Solve It. Modern Heuristics.
Springer-Verlag, 2000.

[37] W. Michiels, E. Aarts, and J. Korst. Theoretical Aspect of Local Search.
Springer - Verlag, 2007.

[38] J. Nesetril, E. Milkova, and H. Nesetrilova. Otokar łboruvka on minimum
spanning tree problem: Translation of both the 1926 papers, comments,
history. Discrete Mathematics, 233:3–36, 2001.

[39] J. B. Orlin. A polynomial time primal network simplex algorithm for min-
imum cost flows. Mathematical Programming, 77:109–129, 1997.

[40] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[41] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Algo-
rithms and Complexity. Prentice-Hall, 1982.

[42] R. C. Prim. Shortest connection networks and some generalizations. Bell
System Technical Journal, 36:1389–1401, 1957.

[43] K. A. Ross and C. R. B. Wright. Discrete Mathematics. Prentice-Hall,
1985.

[44] A. Schrijver. Theory of Linear and Integer Programming. Wiley and Sons,
1986.

[45] R. Sedgewick. Algorithms in C. Addison-Wesley, 1990.

[46] M. Sniedovich. Dynamic Programming: Foundations and Principles. CRC
Press, 2 edition, 2010.

118 BIBLIOGRAPHY

[47] V. V. Vazirani. Approximation Algorithms. Springer, 2004.

[48] H. M. Wagner. On a class of capacitated transportation problems. Man-
agement Science, 5:304–318, 1959.

[49] S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–
12, 1962.

[50] H.P. Williams. Model Building in Mathematical Programming. John Wiley
and Sons, 1994.

A. Networks

In this chapter we describe some graph theoretic definitions, which are necessary
to understand the material presented in this book. We also present some basic
network algorithms. The material presented in this section is based on [3].

Networks, path and cycles

A network (directed graph) G = (N,A) consists of a set N of nodes and a set A
of arcs, whose elements are ordered pairs of nodes. A sample network is shown
in Figure 19.

Figure 19: A sample network, where N = {1, 2, . . . , 7} and A =
{(1, 2), (1, 3), (2, 3), (2, 4), (3, 6), (4, 5), (4, 7), (5, 7), (6, 7)}.

A walk in G = (V,A) is a sequence of nodes i1− i2−· · ·− ir such that either
ak = (ik, ik+1) ∈ A or ak = (ik+1, ik) ∈ A for all 1 ≤ k ≤ r − 1.

Figure 20: Two walks: 1 − 2 − 5 − 4 and 1 − 2 − 5 − 4 − 2 − 3.

119

120 A. NETWORKS

A path is a walk without any repetition of nodes. A directed path is a path
in which for any two consecutive nodes ik and ik+1 on the path (ik, ik+1) ∈ A.

Figure 21: A path 1 − 2 − 5 − 4 and a directed path 1 − 2 − 4 − 5.

A cycle is a path i1 − i2 − · · · − ir together with the arc (ir, i1) or (i1, ir).
We will also use the notation i1− i2−· · ·− ir − i1. A directed cycle is a directed
path i1 − i2 − · · · − ir together with arc (ir, i1). A Hamiltonian cycle in G is a
directed cycle containing all the nodes of G. A network is acyclic if it contains
no directed cycle. Observe that the network in Figure 19 is not acyclic.

Figure 22: A cycle 2 − 5 − 3 − 2 and a directed cycle 2 − 4 − 5 − 2.

A network is connected if it contains a path between each pair of its nodes.
A network is strongly connected if it contains at least one directed path between
each pair of its nodes. The network in Figure 19 is connected, but it is not
strongly connected. A tree is a connected network that contains no cycle. A
spanning tree of G = (N,A) is a tree that contains all the nodes of G.

Figure 23: A spanning tree of G

121

It is not difficult to show that a tree on n nodes contains exactly n− 1 arcs.
Furthermore, each pair of nodes of in a tree is connected by a unique path and
adding a new arc to a spanning tree creates a unique cycle.
A network is bipartite if we can partition its node set into two subsets N1

and N2, so that for each arc (i, j) ∈ A either i ∈ N1 and j ∈ N2 or i ∈ N2 and
j ∈ N1. It can be shown that a network is bipartite if and only if it does not
contain a cycle having an odd number of arcs.

Figure 24: A bibaprtite network, where N1 = {1, 2, 3}, N2 = {4, 5}.

A cut is a partition of the node set N into two parts S and S = N \S. Each
cut defines a set of arcs [S, S] that have one endpoint in S and another endpoint
in S. A cut is an s− t-cut if s ∈ S and t ∈ S. Removing all the arcs from [S, S]
splits the network into two components.

Figure 25: The 1 − 7-cut S = {1, 2, 3}, S = {4, 5, 6, 7}, [S, S] =
{(2, 4), (5, 2), (5, 3), (3, 6)}.

A network is undirected when the arcs are unordered pairs of distinct nodes.
An undirected arc (i, j) can be regarded as a two-way connection between i and
j, or as a pair of arcs, (i, j) and (j, i). When drawing an undirected network, we
omit all arrows. Walks, paths, trees, cycles and cuts have the same definitions

122 A. NETWORKS

as for directed graphs, except that we do not distinguish between directed and
undirected cases.

Network representations

An instance of a network problem is a network G = (N,A), together with arc
costs cij and arc capacities uij for all (i, j) ∈ A. The size of such an instance
is specified by four numbers: the number of nodes n = |N |, the number of
arcs m = |A|, the quantity log C, where C is the largest arc cost and the
quantity log U , where U is the largest arc capacity. A sample instance is shown
in Figure 26.

Figure 26: An instance of a network problem.

The first method of representing a network is the node - arc incidence matrix.
The rows of this matrix correspond to nodes and the columns correspond to arcs.
For arc (i, j) we write 1 in the ith row and −1 in the jth row. The following
node - arc incidence matrix represents the network shown in Figure 26. The arc
costs and capacities can be stored in two additional matrices.

(1, 2) (1, 3) (2, 4) (3, 2) (4, 3) (4, 5) (5, 3) (5, 4)
1 1 1 0 0 0 0 0 0
2 −1 0 1 −1 0 0 0 0
3 0 −1 0 1 −1 0 −1 0
4 0 0 −1 0 1 1 0 −1
5 0 0 0 0 0 −1 1 1

The second method is the node - node adjacency matrix. Both the rows and
columns of this matrix correspond to nodes and we write 1 in ith row and jth
column if (i, j) ∈ A and 0 otherwise. The following node - node adjacency
matrix represents the network shown in Figure 26. As previously, the arc costs
and capacities can be stored in two additional matrices.

1 2 3 4 5
1 0 1 1 0 0
2 0 0 0 1 0
3 0 1 0 0 0
4 0 0 1 0 1
5 0 0 1 1 0

123

The third method of representing a network is the adjacency list. In this rep-
resentation, a data structure called a linked list is used. We first create a list
linking all the nodes of the network. We then link to each node an additional
list containing all the adjacent nodes. The adjacency list for the network in Fig-
ure 26 is shown in Figure 27. Notice that we can store additional information
for each arc, in particular the arc costs and capacities.

Figure 27: The adjacency list for the network in Figure 26

A comparison of the network representations is shown in Table 3.

Representation Input size Features
Node-arc inc. matr. knm 1. Space inefficient

2. Too expensive to manipulate
3. Important for theoretical reasons

Node-node adj. matr. kn2 1. Suited to dense networks
2. Easy to implement

Adjacency list k1n + k2m 1. Space efficient
2. Efficient to manipulate
3. Suited to dense and sparse netw.
4. More difficult to implement.

Table 3: Comparison of different network representations [3]. Input size is the
number of bits required to store the network, k, k1, k2 are constants.

Basic network algorithms

Consider the following search problem: given a directed network G = (N,A)
find all the nodes that are reachable by directed paths from a given node s ∈ N .
An algorithm for solving this problem is shown in Figure 28. Its idea is very
simple. It iteratively marks all the nodes which are reachable from s and adds
the marked nodes to LIST . A node i is removed from LIST if all the nodes
j such that (i, j) ∈ A have been marked. The algorithm additionally keeps the
direct predecessor pred(i) of every node i ∈ N along a directed path from node s.
Therefore, when the algorithm terminates we can easily retrieve a directed path
from s to i ∈ N (if such a path exists).
This search algorithm is fast. It runs in O(m) time. It also has the following

property: if in line 5 we always select nodes from the front of the LIST (i.e.

124 A. NETWORKS

in FIFO order), then we get paths from s to all the reachable nodes with the
minimum number of arcs.

1: Unmark all nodes in N
2: Mark node s
3: pred(i) := 0 for all i ∈ N , LIST := {s}
4: while LIST 6= ∅ do
5: Select a node i in LIST
6: if node i is incident to an admissible* arc (i, j) then
7: Mark node j
8: pred(j) := i
9: Add node j to LIST .
10: else
11: Delete node i from LIST
12: end if
13: end while

Figure 28: Search algorithm [3]. (*) Arc (i, j) is admissible if j is unmarked.

Consider the following reverse search problem: given a directed network
G = (N,A). Find all the nodes in the network from which we can reach a given
node t along a directed path. To solve this problem, it is enough to reverse the
arc directions in G and run the algorithm for the search problem with s′ = t
and t′ = s. Obviously, this also requires O(m) time.
Suppose now that we would like to verify whether a given directed network

G is strongly connected. A simple approach to solving this problem would be
to run the search algorithm for each node in G in turn as a starting node. This
would require O(nm) time. There is, however, a much faster method. Let us
choose any node s of G. It is easy to verify that the network G is strongly
connected if and only every node is reachable from s and node s is reachable
from every other node of G. The implication ⇒ is obvious. To see why the
implication ⇐ is true, consider any two nodes i and j in G such that i 6= j.
Since s is reachable from i and j is reachable from s, there must be a directed
path from i to j. Using this simple observation, we can determine the strong
connectivity of G by executing the search algorithm twice, solving the search
and reverse search problems. This requires O(m) time.
Let us label the nodes of the network G = (N,A) by distinct numbers from

1 through n = |N |. We say that this labeling is a topological ordering of nodes
if (i, j) ∈ A implies i < j. It can be shown that G has a topological ordering
of nodes if and only if it is acyclic. So by establishing a topological ordering,
we can ensure that G contains no directed cycle. Establishing a topological
ordering is not difficult. We present the idea of the algorithm using the example
shown in Figure 29. We first seek a node, which has no incoming arcs and we
give it the label 1 (see Figure 29a). Such a node must exist in every acyclic
network. We then delete this node together with all the arcs emanating from
it. We again seek a node with no incoming arcs and give it the label 2 (see

125

Figure 29b). We repeat this procedure until all the nodes are labeled (the input
graph is acyclic) or there is no node with no incoming arcs (the graph is not
acyclic). In the former case, a topological ordering has been established.

Figure 29: Establishing a topological ordering.

126 A. NETWORKS

B. Linear programming

In this section we briefly discuss one of the most important class of optimization
problems, namely linear programming problems. We present some properties
of this class and show its connections with the minimum cost flow problem. A
linear programming problem is of the following form:

min c1x1 + c2x2 + · · · + cqxq

a11x1 + a12x2 + · · · + a1qxq = b1

. . .
ap1x1 + ap2x2 + · · · + apqxq = bp

0 ≤ xi ≤ ui i = 1, . . . , q

(2)

The problem consists of an objective function, which should be minimized, and a
set of linear constraints. The first p constraints have the form of linear equalities
and the last q constraints have the special form of boundary constraints, which
bound the values of all the variables from above and below. It can be shown
that (2) is the most general form of the linear programming problem. If we wish
to maximize the objective function, then we multiply it by -1 and minimize. If
a constraint has the form of a ≤ or ≥ inequality, then we can convert it to
an equality by adding or subtracting an additional slack variable from the left
hand side of this constraint. If some variable xi is unrestricted in sign, then we
replace xi with x+

i − x−
i , x

+
i ≥ 0, x−

i ≥ 0. If some variable xi is not bounded
from above, then ui = ∞ and we simply write xi ≥ 0. We will also assume
that bi ≥ 0 and bi is integer for all i = 1, . . . , p. If bi < 0 then we multiply the
ith constraint by -1. If bi is rational, then we multiply the ith constraint by a
suitable constant.

The class of linear programming problems is perhaps the most important
class of optimization problems, which can be solved efficiently. A polynomial
algorithm for this problem was discovered by Leonid Khachiyan in 1979. In
practice the simpler simplex algorithm, discovered by George Dantzig in 1947,
is often used. The simplex algorithm does not run in polynomial time. It is,
however, fast for most problems arising in practice. In this section we describe
the main idea of the simplex method and we show how it can be applied to the
minimum cost flow problem.

127

128 B. LINEAR PROGRAMMING

Basis structure

Let us partition the set of q variables into three sets BBB, LLL and UUU , where BBB
contains exactly p variables, for which the vectors [a1i, a2i, . . . , api], i ∈ BBB, are
linearly independent, LLL is the set of variables whose values are equal to 0, and UUU
is the set of variables whose values are equal to their upper bounds ui. The set
BBB is called a basis, the variables in BBB are called basic variables and the partition
(BBB,LLL,UUU) is called a basis structure. For the simplicity of the presentation, we
renumber the variables so that BBB = {x1, . . . , xp}. The values of the variables in
LLL and UUU are determined, so if we fix xi = 0 for all xi ∈ LLL and xi = ui for all
xi ∈ UUU , then the constraints take the following form:

a11x1 + a12x2 + · · · + a1pxp = b′1
. . .
ap1x1 + ap2x2 + · · · + appxp = b′p
0 ≤ xi ≤ ui i = 1, . . . , p

(3)

Now observe, that there is a unique solution to the first p constraints, since they
form a system of p linear equations with p variables and these constraints are
linearly independent. We can solve this system and check whether the obtained
solution satisfies the boundary constraints. If this is the case, then we say
that the basis structure (BBB,LLL,UUU) is feasible and is associated with the unique
solution.

Optimality conditions

Consider a feasible spanning tree structure (BBB,LLL,UUU). As previously, we renum-
ber the variables so that BBB = {x1, . . . , xp}. We know that this structure corre-
sponds to a unique feasible solution to the linear programming problem. Now
our aim is to check whether this solution is optimal. Let us assign numbers
π(1), . . . , π(p), called potentials, to the first p constraints of (2). We can trans-
form the objective function in the following way:

q
∑

j=1

cjxj +

p
∑

i=1

[π(i)(

q
∑

j=1

aijxij − bi)]. (4)

This transformation does not change the value of the objective function, because
the second term in the sum equals 0. After easy algebraic manipulations, we
can rewrite (4) as follows:

p
∑

j=1

[cj −

p
∑

i=1

π(i)aij]xj +

q
∑

j=p+1

[cj −

p
∑

i=1

π(i)aij]xj +

p
∑

i=1

π(i)b(i) (5)

The quantity cπ
j = cj −

∑p

i=1 π(i)aij is the reduced cost of variable xj with
respect to the potentials π. We can now choose potentials π, so that the reduced
costs of all the basic variables are 0. Namely, we compute the potentials by
solving the following system of linear equations cj −

∑p

i=1 π(i)aij = 0, j =

129

1, . . . , p. This is a system of p linear equations with p variables. Furthermore,
these equations are linearly independent, so the system has a unique solution.
So finally the objective can be expressed as:

q
∑

j=p+1

cπ
j xj +

p
∑

i=1

π(i)b(i) =
∑

j∈UUU

cπ
j uj +

p
∑

i=1

π(i)b(i). (6)

Now observe that if cπ
j ≥ 0 for all j ∈ LLL and cπ

j ≤ 0 for all j ∈ UUU , then it is not
possible to decrease the value of the objective function (6). It follows from the
fact that all the decision variables xj are nonnegative. Let us summarize this
observation:

Theorem 24 A solution corresponding to a feasible basis structure (BBB,LLL,UUU) is
optimal if for some potentials π(1), . . . , π(p) the reduced costs cπ

j , j = 1, . . . , q,
satisfy the following optimality conditions:

1. cπ
j = 0 for all j ∈ BBB

2. cπ
j ≥ 0 for all j ∈ LLL

3. cπ
j ≤ 0 for all j ∈ UUU

Moving to another feasible basis structure

Suppose now that a feasible basis structure (BBB,LLL,UUU) does not satisfy the op-
timality conditions from Theorem 24. We can transform the constraints of (2)
and represent them in terms of the basic variables x1, . . . , xp in the following
way:

x1+ +a′
1p+1xp+1 + · · · + a′

1qxq = b′1
x2+ +a′

2p+1xp+1 + · · · + a′
2qxq = b′2

. . .
xp+ +a′

pp+1xp+1 + · · · + a′
pqxq = b′p

0 ≤ xi ≤ ui i = 1, . . . , q

(7)

We then get the solution x̂j = b′j −
∑

i∈UUU a′
ijui for j ∈ BBB = {1, . . . , p}, xj = 0

for j ∈ LLL and xj = uj for j ∈ UUU .
Assume that cπ

j < 0 for some xj ∈ LLL. Then by increasing the value of xj , we
can decrease the value of the objective function. We would like to compute the
maximum value xj can be increased to. Consider the entires a

′
ij for i = 1, . . . , p.

If a′
ij > 0, then we can increase xj by at most δi = x̂i/a′

ij units and keep the
value of the basic variables x̂i nonnegative. If a

′
ij < 0, then we can increase xj

by at most δi = |(ui − x̂i)/a′
ij | units and keep the value of x̂i not greater than

ui. Finally xj cannot be increased by more than uj . So we take the minimum
of uj and all the δi and increase xj by this amount. It may, however, happen
that no upper bound on the increase in xj can be established (for example, if all
a′

ij < 0 and ui = ∞ for all i = 1, . . . , q). In this case, the problem is unbounded
and has no optimal solution. If, after an increase in xj , xj < uj , then at least

130 B. LINEAR PROGRAMMING

one variable from BBB, say xk, satisfies xk = 0 or xk = uk. In the former case, we
move xk to LLL and in the latter one, we move xk to UUU . We also move the variable
xj to BBB in this way obtaining another feasible basic structure. If xj = uj , then
the new feasible basic structure is obtained by moving xj from LLL to UUU . Notice
that we also get a feasible solution corresponding to this new basis structure.
The reasoning is exactly the same if cπ

j > 0 for some variable xj ∈ UUU . In this
case, we have to decrease the value of xj , so we must compute the minimum
possible new value for xj . We leave the details as an exercise.

Simplex algorithm

The implementation of the reasoning presented in the previous points is known
as the simplex algorithm. There are many technical details involving this imple-
mentation and we refer to the existing literature for a description of them. The
general idea is as follows. We start with an initial feasible basis structure (some
methods of obtaining such a structure can be found in the literature [7, 44]).
We then check whether it is optimal by computing the potentials and reduced
costs. If the optimality conditions are violated, then we compute another feasi-
ble basis structure by moving some variables between the sets BBB, LLL and UUU . The
algorithm terminates if the current structure satisfies the optimality conditions.
However, the algorithm may not terminate in a finite time, because some moves
may be degenerate, i.e. they do not improve the value of the objective function.
This happens, when the upper bound on the increase (or decrease) in the value
of the variable entering BBB is 0. In this case, only the basis structure is changed,
while the values of all the variables are unchanged. If we are not careful, then
the algorithm may fall into an infinite loop, repeating a sequence of degenerate
moves. There are, however, some simple methods of dealing with degeneracy,
which ensure that the simplex algorithm runs in finite time (see the literature).

Example 1. Consider the following problem:

min x1 + x2 − 2x3 + 5x4

2x1 − x2 − x3 + x4 = 13
x1 + x2 + 2x3 − x4 = 3
0 ≤ x1 ≤ 7, 0 ≤ x2 ≤ 6, 0 ≤ x3 ≤ 5, 0 ≤ x4 ≤ 3

Let us choose the initial basis structure BBB = {x1, x2}, LLL = {x3} and UUU = {x4}.
So we set x3 = 0, x4 = 3 and solve the following system of linear equations:

2x1 − x2 = 10
x1 + x2 = 6

We obtain the feasible solution x1 = 16/3, x2 = 2/3, x3 = 0, x4 = 3 corre-
sponding to the basis structure. Let us now associate potentials π(1) and π(2)
with the two equality constraints. We compute the potentials by solving the
following system of linear equations:

2π(1) + π(2) = 1
−π(1) + π(2) = 1

131

Hence, π(1) = 0 and π(2) = 1 and the reduced costs are cπ
1 = 0, cπ

2 = 0, cπ
3 = −3

and cπ
4 = 6. Observe that both cπ

3 and cπ
4 violate the optimality conditions. So

we have to move to another basis structure by either increasing the value of x3

or by decreasing the value of x4. Let us represent the linear constraints of the
sample problem in terms of the basic variables x1 and x2:

x1+ +1/3x3 = 16/3
x2 +1/2x3 −x4 = −7/3

Assume first that we increase the value of x3. Since x4 = 3 we can transform
the problem into:

x1+ +1/3x3 = 16/3
x2 +1/2x3 = 2/3

Since all the variables are nonnegative and x3 ≤ 4, we can increase x3 up to
min{16/3 : 1/3, 2/3 : 1/2, 4} = 4/3. After this, the value of x2 falls to 0. So
we get another basic structure, where BBB = {x1, x3}, LLL = {x2}, UUU = {x4}. The
solution corresponding to this structure is x1 = 44/9, x2 = 0, x3 = 4/2 and
x4 = 3.
Assume now that we wish to decrease the value of x4. The value of x3 = 0,

so we can represent the problem as:

x1 = 16/3
x2 = −7/3 + x4

Now it is easily seen that we can decrease the value of x4 to 7/3 and keep
x2 nonnegative. After this, the value of x2 falls to 0. So, we get another basic
structure, whereBBB = {x1, x4}, LLL = {x2, x3}, UUU = ∅. The solution corresponding
to this structure is x1 = 16/3, x2 = 0, x3 = 0 and x4 = 7/3.

Integer optimal solutions

Of course, an optimal solution to the linear programming problem need not be
integer, even if all the input data are integer. Let (BBB,LLL,UUU) be a basis structure
corresponding to an optimal solution. We first fix xi = 0 for all i ∈ LLL and
xi = ui for all i ∈ UUU . The values of the basic variables can be then determined
by solving the system of linear equations with p variables and p constraints,
which is of the form (3). Let us denote by B the matrix [aij]p×p in (3). Since
B is nonsingular, the inverse matrix B−1 exists and the basic variables take the
values B−1bbb′T , where T denotes the transposition. Observe now that if all the
entries of the matrix B−1 are integer, then all the basic variables take integer
values.
Let A be a p × q matrix with integer elements. We say that A is totally

unimodular if each square submatrix of A has determinant 0, +1 or −1. Assume
now that A = [aij]p×q is the matrix of integer coefficients aij given in (2). If
A is totally unimodular, then any its square submatrix B corresponding to a
basis BBB has determinant 1 or −1. In this case, we know from linear algebra
that all the elements of the inverse matrix B−1 are integer and, consequently,

132 B. LINEAR PROGRAMMING

the problem (2) has an integer optimal solution. Furthermore, this solution can
be found by applying the simplex algorithm. Let us summarize this important
fact.

Theorem 25 If the matrix A = [aij]p×q of coefficients given in (2) is totally
unimodular, then the values of the variables in the optimal solution returned by
the simplex algorithm are integer.

Relations to the network simplex

The minimum cost flow problem can be formulated as the following linear pro-
gramming problem:

min
∑

(i,j)∈A

cijxij

∑

{j:(k,j)∈A}

xkj −
∑

{j:(j,k)∈A}

xjk = b(k) k ∈ N

0 ≤ xij ≤ uij (i, j) ∈ A

(8)

Of course, the problem is of the same form as (2). Let us denote byN the matrix
of coefficients aij in (8). Observe that N is the node - arc incidence matrix of
the network G and all its elements are 0, +1 or -1 (see Appendix A). A sample
node - arc incidence matrix, which describes the network from Figure 26, is
shown below:

x12 x13 x24 x32 x43 x45 x53 x54

1 1 1 0 0 0 0 0 0
2 −1 0 1 −1 0 0 0 0
3 0 −1 0 1 −1 0 −1 0
4 0 0 −1 0 1 1 0 −1
5 0 0 0 0 0 −1 1 1

The following theorem characterizes the matrix N .

Theorem 26 ([3]) The matrix N is totally unimodular.

Proof. We need to show that every square submatrix B of N of size k has
determinant 0, 1 or -1. This result can be established by performing induction
on k. It is obviously true for k = 1, because each entry of N is 0, 1 or -1.
Suppose now that every square submatrix of N of size k has determinant 0,
1 or -1. Consider a square submatrix B of size k + 1. Consider three cases.
(1) B contains a column with no nonzero element. Then detB = 0 and the
theorem follows. (2) Every column of B has exactly two nonzero elements, in
which case, one of these elements must be 1 and the other -1. Then summing
all the rows of B yields the zero vector, implying that the rows in B are linearly
dependent and, consequently, detB = 0. (3) Some column, say the lth column,
of B has exactly one nonzero element in the ith row. This element must be 1
or -1. Using the Laplace expansion, we obtain detB = ±detB′, where B′ is the

133

square matrix obtained by deleting the lth column and the ith row. From the
induction assumption, detB′ is 0, 1 or -1 and the theorem follows.
Theorem 26 is of great importance. It implies that if all the input data of

the minimum cost flow problem are integer, then the problem has an integer
optimal solution. Furthermore, this solution can be computed by applying the
simplex algorithm. In fact, the network simplex described in Section 2.3.4 is
a simplex algorithm, in which the special structure of the minimum cost flow
problem is used. Let us analyze this step by step.
Observe first that the rows of N are linearly dependent. It follows from

the fact that adding all these rows together we get the zero vector. We can
thus remove any row from N and there are at most n− 1 basic variables in the
problem. Each variable xij corresponds to an arc (i, j) ∈ A. Consider a basis
structure (BBB,LLL,UUU) for (8). The set BBB contains at most n − 1 basic variables.
Let us recall that a spanning tree of the network G = (N,A) contains |N | − 1
arcs. This coincidence is not accidental.

Theorem 27 A set of arcs T is a spanning tree of G if and only if the variables
corresponding to these arcs form a basis for the minimum cost flow problem.

We omit the proof of the above theorem. It can be found, for example, in [3].
An illustration is shown in Figure 30. We first delete row 1. The spanning tree
T of G (shown in bold) corresponds to the basis BBB = {x12, x24, x43, x45}.

Figure 30: A spanning tree T of G corresponds to a basis of the linear program-
ming problem.

So, in the minimum cost flow problem, a basis structure is equivalent to a
spanning tree structure (TTT ,LLL,UUU), where TTT = BBB. It is now easy to check whether
(TTT ,LLL,UUU) is feasible. We do not need to solve the system of linear equations (7).
We can instead perform the computations directly on the corresponding span-
ning tree (as shown in Section 2.3). Observe that while computing the values
of the basic (spanning tree) variables only additions and subtractions are per-
formed. So, if all the input data are integers, then the resulting flows must also
be integer.
Each equality constraint in (8) corresponds to some node i ∈ N . There-

fore, we can refer to potentials as the node potentials. The reduced costs are
cπ
ij = cij −

∑p

i=1 π(i)aij = cij − π(i) + π(j) and we compute them by solving

134 B. LINEAR PROGRAMMING

the system of equations cij − π(i) + π(j) = 0 for all (i, j) ∈ TTT . Again, these
computations can be performed directly on the corresponding spanning tree
(see Section 2.3). Theorem 17 is now equivalent to Theorem 24. If some vari-
able (arc) violates the optimality condition, then we move to another feasible
spanning tree (basis) structure, as shown in Section 2.3. We again perform only
additions and subtractions working directly on the corresponding spanning tree.
In consequence, the next flow will also be integer. We thus can see that the net-
work simplex algorithm is an adaptation of the simplex algorithm in which the
special structure of the minimum cost flow problem is taken into account.

C. NP-completeness

In this chapter we describe some notions of the theory of NP-completeness.
More information about this large and important field of computer science can
be found in the literature [5, 4, 40, 47, 23]. The theory of NP-completeness gives
an evidence that some natural and important discrete optimization problems are
computationally intractable. We start by considering the class of decision prob-
lems. A decision problem Π consists of a set of input data (instances) DΠ and
a question such that for each instance I ∈ DD the answer is either yes or no.
Consider the following examples of decision problems:

sat: We are given a boolean formula φ(x1, . . . , xn). Is it possible to assign
boolean values to the variables x1, . . . , xn so that the value of φ is 1? For exam-
ple, for the formula (x1 ∧ x2) →∼ x2, the answer is yes because we can assign
x1 = 0 and x2 = 1, which makes the value of φ equal to 1. On the other hand,
the answer for the formula x1∧ ∼ x1 ∧ x2 is no, because no assignment makes
the value of this formula equal to 1.

3-sat: This problem is similar to the previous one with the exception that the
input formula is in the conjunctive normal form, in which each clause contains
at most 3 literals. For example, the following formula is a valid instance of this
problem: (x1∨ ∼ x2 ∨ x3) ∧ (x1 ∨ x4) ∧ (∼ x1 ∨ x3 ∨ x4). One can check that
the answer to this particular formula is yes.

Hamiltonian cycle: We are given an undirected network G = (N,A). Is
there a Hamiltonian cycle in G?

Hamiltonian path: We are given a directed network G = (N,A) with two
distinguished nodes s and t. Is there a directed path from s to t that visits
every node of G exactly once?

Reachability: We are given a directed network G = (N,A). Is there a di-
rected path between two given nodes s and t in G?

Partition: We are given a collection of integers C = (a1, a2, . . . , an). Is it
possible to find a subset I ⊆ {1, . . . , n}, such that

∑

i∈I ai = 1
2

∑n
i=1 ai?

135

136 C. NP-COMPLETENESS

We would like to solve decision problems using algorithms (see Section 1.2).
An algorithm solves a decision problem Π if it takes an instance I ∈ DΠ as the
input and returns the correct answer yes or no for I. We can now define the
class of tractable problems:

Definition 28 A decision problem Π belongs to the class P if it can be solved
by a polynomial time algorithm.

Recall that polynomial time algorithms are efficient in the sense that they can
solve computational problems in reasonable time even for large instances. There-
fore, the class P contains decision problems which are easy from a computational
point of view. Among the problems described at the beginning of this chapter,
the problem reachability belongs to P. In order to check whether there is a
directed path between two given nodes of G, a simple search algorithm which
runs in O(m) time can be applied (see Appendix A).
Do the remaining problems belong to P? Before we discuss this question, let

us make the following observation. All the sample decision problems described
at the beginning of this chapter share a common property. Namely, if I is an
instance for which the answer is yes, then it is possible to give a short proof
of this fact. For sat and 3-sat, the proof simply involves finding a boolean
assignment for which the formula has value 1. ForHamiltonian cycle (path),
the proof constructs a subset of arcs, which forms a Hamiltonian cycle (path) in
G. Finally, for the partition problem, the proof involves constructing a subset
of C whose elements sum to 1

2

∑n

i=1 ai. Note that, in each of these cases, the
proof y satisfies the following three properties: (1) y is short, formally its size is
polynomially bounded by the size of the instance I, |y| = O(|I|k) for some fixed
k; (2) given instance I and proof y, we can decide in polynomial time whether
y is a proof of I; (3) a proof of I exists if and only if the answer to I is yes. If
a decision problem Π possesses such a property, then we say that it has a short
proof. We can now introduce the following class of problems:

Definition 29 A decision problem Π belongs to the class NP if it has a short
proof.

It is easy to observe that P ⊆ NP, because for problems in P we can verify
the answer for I in polynomial time without any help from a proof. Observe
next that all decision problems in NP have a trivial brute force algorithm which
works as follows: given an instance I, check all possible proofs; if you find a valid
proof y for I then the answer is yes; otherwise the answer is no. Consider, for
example, the sat problem. The brute force algorithm simply checks all binary
sequences of length n. If at least one such sequence satisfies the formula, then
the answer is yes and, otherwise, the answer is no. Similarly, we can list all the
possible subsets of arcs in G and thus find one which forms a Hamiltonian cycle
or path in G. Of course, the brute force algorithm will not run in polynomial
time, because the number of potential proofs is exponential in the size of I.
For example, there are 2n possible boolean assignments for n variables and the
brute force must check all of them in the worst case, i.e. to be sure that the
answer is no.

137

One of the most important questions in computer science is whether all
problems in NP have polynomial time algorithms. So far, no-one has been able
to provide an answer. But it is widely accepted that

P 6= NP,

which means that the class NP contains the problems which cannot be solved
by fast polynomial algorithms. But we should keep in mind that P 6= NP is
only a conjecture and no-one has been able to provide a proof to date.

We now try to identify problems in NP which may be computationally hard
(recall that NP also contains easy problems, such as reachability). First
consider the following example:

Example 1 (dancing problem) We have a set of n boys and a set of n girls. For
boy/girl pair (i, j) we know whether i would like to dance with j. We organize
a dancing party and the problem is to check whether it is possible to compose n
dancing pairs. We can solve this problem using the method shown in Figure 31.
We construct a network G whose nodes represent boys and girls. We add arc
(i, j) if i wants to dance with j. We add a source node s and link it to nodes
representing boys and a sink node t linked to nodes representing girls. We fix
the capacities of all the arcs in G to 1. Now it is easy to check that it is possible
to compose n pairs if and only if there is a flow of value n from s to t in G.

Figure 31: Solving the dancing problem

Example 1 illustrates the idea of the reduction of one problem to another.
In this particular case, we have transformed the dancing problem into the max-
imum flow one. We can now use any algorithm for computing the maximum
flow and, as a result, we get the solution of the dancing problem. This reduc-
tion has an additional important property, namely it transforms the dancing
problem into the maximum flow problem in polynomial time. Indeed, the re-
sulting network has 2n2 nodes and up to n2 + 2n arcs. We can thus conclude
that the dancing problem is not more difficult than the maximum flow problem
or, equivalently, that the maximum flow problem is at least as difficult as the
dancing problem.

138 C. NP-COMPLETENESS

Definition 30 A decision problem Π1 is polynomially reducible to a decision
problem Π2, Π1 ≺ Π2, if there is a polynomial time algorithm A, which for a
given instance I ∈ DΠ1

returns instance A(I) ∈ DΠ2
such that the answer to I

is yes if and only if the answer to A(I) is yes

We can now define the hardest problems in NP:

Definition 31 A decision problem Π is NP-complete if

• Π ∈ NP

• Π′ ≺ Π for all Π′ ∈ NP

Notice that the second condition in the above definition is very strong. It
requires that every problem in NP is polynomially reducible to Π. This means
that having a polynomial algorithm for an NP-complete problem Π, we would
be able to solve all the problems in NP in polynomial time. It is not obvious
that an NP-complete problem exists. However, this is the case due to the
following famous theorem, proven by Cook in 1971:

Theorem 32 (Cook [13]) The 3-sat problem is NP-complete.

Hence, the 3-sat problem is a hardest problem in NP. If one could solve this
problem in polynomial time, then all problems in NP would be solvable in
polynomial time. Of course, this would imply P = NP. We can express this
in the following equivalent way: if P 6= NP, then there is no polynomial time
algorithm for 3-sat.
It turns out that there are a lot of NP-complete problems. In fact, we

know thousands of them. For example, we can immediately conclude that sat
is NP-complete. Clearly this problem belongs to NP and it cannot be easier
than 3-sat. We can prove the NP-completeness of many problems by using
the following theorem:

Theorem 33 If Π′ ∈ NP and Π ≺ Π′ for some NP-complete problem Π, then
Π′ is NP-complete.

The above theorem says that in order to prove the NP-completeness of some
problem Π′ ∈ NP we must find an NP-complete problem Π and reduce Π
to Π′. Using this theorem, the NP-completeness of the Hamiltonian cycle,
Hamiltonian path and partition problems has been proved. The correspond-
ing reductions from 3-sat are not trivial and can be found in the literature (for
example in [40]).
Let us summarize what we have learned so far. If one proves that a decision

problem is NP-complete, then this is very strong evidence that this problem is
computationally hard. This means that no fast polynomial algorithm exists for
this problem if the conjecture P 6= NP is true. We now apply the framework
presented to optimization problems. There is a natural link between optimiza-
tion and decision problems. Let Π be an optimization problem. We assume that
Π is a minimization problem and the reasoning for maximization problems will

139

be the same. Consider the following decision version of Π. Given an instance
I ∈ DΠ decide whether there is a solution x ∈ sol(I) such that f(x) ≤ K, where
K is a given number. First notice that this decision problem is not harder than
the optimization one. If we can find an optimal solution x∗ in polynomial time,
then providing an answer to the decision problem is trivial. It is enough to
check whether f(x∗) ≤ K. On the other hand, if the decision problem is hard,
say NP-complete, then the optimization problem can not be easier.

Definition 34 An optimization problem is NP-hard if its decision version is
NP-complete.

We immediately get the following theorem:

Theorem 35 If P 6= NP, then no polynomial algorithm exists for any NP
hard problem.

We now show several examples.

Theorem 36 The traveling salesperson problem is NP-hard.

Proof. Consider an instance of the Hamiltonian cycle problem. So we are
given an undirected network G = (N,A), |N | = n, and we ask whether G
has a Hamiltonian cycle. We construct an instance of the traveling salesperson
problem in the following way. The network G′ = (N ′, A′) is a complete graph
with the same set of nodes as G. If (i, j) ∈ A, then we fix the cost of (i, j) ∈ A′

to 1 and otherwise we fix the cost of (i, j) ∈ A′ to 2. Now it is easy to check
that G has a Hamiltonian cycle if and only if there is a salesperson’s tour in G′

with total cost not greater than n.
Observe that the proof shows something more. If all the costs in the traveling

salesperson problem are 1 or 2, then the triangle inequality is automatically
satisfied. So the special metric version of the problem is also NP-hard.

Theorem 37 The knapsack problem is NP-hard.

Proof. Consider an instance of the partition problem. So we have a col-
lection C = (a1, a2, . . . , an) of integers and we ask whether there is a subset
I ⊆ {1, . . . , n} such that

∑

i∈I ai = S, where S = 1
2

∑n

i=1 ai. Let {1, . . . , n}
be the set of items. We fix the values pi = ai and weights wi = ai for all
i = 1, . . . , n. We also fix W = S. We now claim that there is a subset of
items X ⊆ {1, . . . , n} of total value f(X) ≥ S if and only if the answer to the
partition problem is yes. Suppose that the answer to the partition prob-
lem is yes and let I be the corresponding subset. Then X = I is a feasible
solution such that f(X) = S. On the other hand, if X is a feasible solution
such that f(X) ≥ S, then

∑

i∈X pi =
∑

i∈X ai ≥ S. But X is feasible so
∑

i∈X wi =
∑

i∈X ai ≤ S. In consequence,
∑

i∈X ai = S, I = X and the answer
to the partition problem is yes.

Theorem 38 The integer (0-1) linear programming problem is NP-hard.

140 C. NP-COMPLETENESS

Proof. This theorem follows directly from the fact that the knapsack problem is
NP-hard. Recall that the knapsack problem can be represented as a 0-1 linear
programming problem with only one constraint (see Example 5 in Section 1.1).
Since this problem is NP-hard, the more general class of 0-1 (integer) linear
programming problems is also NP-hard.
From the above theorem, it follows that linear integer programming prob-

lems are generally much harder to solve than linear programming problems with
continuous variables. This does not mean, however, that all discrete optimiza-
tion problems are NP-hard. An important class of problems, which are solvable
in polynomial time (and thus not NP-hard), has been discussed in Chapter 2.
In Section 2.1 we discussed the shortest path problem. We assumed that

the problem has no solution when there is a directed cycle of negative cost in
G. We can, however, omit the problem of negative cycles by assuming that
it is prohibited to visit any node of G more than once. Unfortunately, this
assumption makes the shortest path problem NP-hard.

Theorem 39 If we assume that no node on a path from s to t can be repeated,
then the shortest path problem becomes NP-hard.

Proof. Consider an instance of the Hamiltonian Path problem. So we are
given a directed network G = (N,A), |N | = n and we ask whether G has
a Hamiltonian path from a given node s to a given node t. Recall that a
Hamiltonian path is a directed path that visits every node of G exactly once.
Let us now define the cost of each arc in G to be equal to -1. We can now
solve the shortest path problem from s to t in G with the additional assumption
imposed in the theorem. It is easy to see that G has a Hamiltonian path from
s to t if and only if there is a path from s to t of total cost not greater than
−(n − 1). If G has a Hamiltonian path, then this path has exactly n − 1 arcs
and its cost is −(n − 1). On the other hand, if there is no Hamiltonian path in
G, then every path from s to t with no repeated nodes, has less than n− 1 arcs.
So its cost is greater than −(n − 1). Since the Hamiltonian path problem is
NP-complete, the modified shortest path problem is NP-hard.
We now present another interesting result. Consider again the shortest path

problem with the following modification. Suppose that the distance dij and
travel time pij of each arc (i, j) ∈ A are specified. So we have two parameters
associated with each arc of the network. Now the problem consists of computing
a shortest path in G under the additional assumption that the travel time for
this path is not greater than a given time limit T . We discussed this problem in
Section 3.1 (Example 3), where we have called it the constrained shortest path
problem. We now prove the following result:

Theorem 40 The constrained shortest path problem is NP-hard.

Proof. Consider an instance of the Partition problem. So we have a collection
of integer numbers C = (a1, a2, . . . , an) and ask whether it is possible to find
a subset I ⊆ {1, . . . , n} such that

∑

i∈I ai = 1
2

∑n
i=1 ai. The reduction to the

constrained shortest path problem is shown in Figure 32.

141

Figure 32: The reduction from the partition problem to the constrained shortest
path problem.

For each number ai we form a network consisting of four nodes and four arcs,
whose distances and travel times are shown in Figure 32. We fix T = 1

2

∑n
i=1 ai.

It is not difficult to verify that the answer to the Partition problem is yes if
and only if there is a feasible path from s to t in the network whose length is not
greater than 1

2

∑n
i=1 ai. If the answer is yes, then there is a subset I such that

∑

i∈I ai = 1
2

∑n

i=1 ai. We can build a path from s to t by choosing the upper
node for all i ∈ I and the lower node for all i /∈ I. It is easy to see that the
length and the traveling time of this path is equal to 1

2

∑n
i=1 ai. On the other

hand, if the answer to the Partition problem is no, then for every path p in
G, either its length or travel time will be greater than 1

2

∑n

i=1 ai.
In Section 3.4 we introduced the concept of a k-approximation algorithm.

Recall that such an algorithm runs in polynomial time and returns a solution x
such that f(x) ≤ kOPT , where OPT is the cost of an optimal solution. Even if
an optimization problem is NP-hard, there may exist a k-approximation algo-
rithm for it. We have seen several examples in Section 3.4. We now show that for
the general traveling salesperson problem it is believed that no k-approximation
algorithm exists.

Theorem 41 If P 6= NP, then there is no k-approximation algorithm for the
traveling salesperson problem for any fixed k ≥ 1.

Proof. The proof is similar to that of Theorem 36. Consider an instance
G = (N,A), |N | = n, of the Hamiltonian cycle problem. The corresponding
instance of the traveling salesperson problem is formed by the complete network
G′ = (N ′, A′) with the same set of nodes as G. If (i, j) ∈ A, then we fix the
cost of (i, j) ∈ A′ to 1 and otherwise we fix the cost of (i, j) ∈ A′ to nk + 1. If
G has a Hamiltonian cycle, then there is a tour in G′ of cost equal to n. On
the other hand, if there is no Hamiltonian cycle in G, then all tours have a cost
not less than nk + 1. Suppose now that we have a polynomial k-approximation
algorithm for the traveling salesperson problem. Applying this algorithm to the
network G′, we obtain a tour π such that f(π) ≤ kn if G has a Hamiltonian
cycle and a tour π such that f(π) ≥ kn + 1 otherwise. In consequence, the
k-approximation algorithm would be able to solve the Hamiltonian cycle
problem in polynomial time and P = NP.

142 C. NP-COMPLETENESS

Theorem 41 is much stronger than Theorem 36. Not only is the traveling
salesperson NP-hard, but also obtaining a suboptimal tour with guaranteed
performance is hard. Any polynomial time algorithm for the traveling sales-
person problem can return an arbitrarily bad tour for some instances. Notice,
however, that the costs in the network G′ need not satisfy the triangle inequality
and, indeed, the metric version of the problem, where the triangle inequality is
satisfied, has a 3/2-approximation algorithm (the Christofides algorithm).

Index

NP-complete, 138
NP-hard, 139
P 6= NP, 137
0-1 linear programming, 139

acyclic network, 22, 120
adjacency list, 123
algorithm, 10
arcs, 119
artificial customer, 64
artificial supplier, 64
aspiration criterion, 111
assignment, 75

balanced problem, 45, 63
basic variables, 128
basis, 128
basis structure, 128
big O, 12
binary variable, 91
bipartite network, 121
boundary constraints, 127
branch and bound, 95
branching, 96
brute force, 13, 95

capacity, 35
capacity of s-t cut, 35
Christofides algorithm, 106
class NP, 136
class P, 136
connected network, 120
constrained shortest path, 93, 140
constraints, 9, 92
cost function, 8
CPLEX, 92
critical activities, 33

cut, 121
cycle, 120
cycle canceling algorithm, 50

decision problem, 135
decision variables, 91
degeneracy, 59, 72, 130
demand node, 45
Dijksta algorithm, 25
directed cycle, 120
directed graph, 119
directed path, 120
discrete optimization problem, 9
distance label, 20
dynamic algorithm, 23
dynamic programming, 100

exponential time, 14

feasible basis structure, 128
flow, 35, 45
flow augmentation, 36
Floyd-Warshall algorithm, 28
Ford-Fulkerson algorithm, 42
free arc, 52

GLPK, 92
graph coloring, 107

Hamiltonian cycle, 120
heuristic, 107

inflow, 35
input data, 7
instance, 8
iterative improvement, 108

k-approximation algorithm, 105

143

144 INDEX

knapsack, 6, 13, 92, 102, 139
Kruskal’s algorithm, 82

linear integer program, 91
linear programming, 127
local maximum, 108
local minimum, 108
local search, 108
longest path, 31
lower bound, 96

mathematical programming, 9
MathProg, 92
maximum flow, 35
metric traveling salesperson, 105
minimum cost assignment, 75
minimum cost flow, 45, 132
minimum cut, 35
minimum element cost, 69
minimum spanning tree, 6, 80

negative cycle, 19, 30
neighborhood function, 108
network, 119
network flows, 17
network simplex, 57, 69
node - arc incidence matrix, 122
node - node adjacency matrix, 122
node potentials, 55
node-arc incidence matrix, 132
nodes, 119
north-west corner, 68

objective function, 9, 92
optimal solution, 9
optimization problem, 8
outflow, 35

path, 120
polynomial algorithm, 14, 136
polynomial reduction, 137
polynomial time, 14
potentials, 128
Prim’s algorithm, 83
project scheduling, 31

reduced cost, 128

reduced costs, 55
residual network, 40, 49
restricted arc, 52
reverse search problem, 124
running time, 11

s-t cut, 35, 121
search algorithm, 124
search problem, 123
sensitivity analysis, 60, 72
short proof, 136
shortest path, 6, 19
simplex algorithm, 130
simulated annealing, 110
sink node, 35
solution, 8
source node, 35
spanning tree, 80, 120, 133
spanning tree solution, 52
spanning tree structure, 54, 133
stalling, 59
strongly connected network, 120
successive shortest path, 76
supply node, 45

tabu list, 110
tabu search, 111
temperature, 110
threshold acceptance, 110
topological ordering, 22, 124
total float, 33
totally unimodular matrix, 131
transhippment problem, 65
transportation problem, 63
transportation table, 63
traveling salesperson, 6, 13, 94, 97, 107,

108, 139
tree, 120

undirected network, 19, 121

value of the flow, 35
vertex cover, 92, 104

walk, 119
worst case ratio, 105

	Contents
	Preface
	Chapter 1. Introduction
	1.1 What is a discrete optimization problem?
	1.2 Algorithms and Complexity
	1.3 Summary
	1.4 Exercises

	Chapter 2. Network Flows
	2.1 Shortest path
	2.1.1 Applications
	2.1.2 A dynamic algorithm for acyclic networks
	2.1.3 Dijkstra’s algorithm
	2.1.4 Floyd-Warshall algorithm
	2.1.5 Project scheduling
	2.1.6 Summary

	2.2 Maximum flow
	2.2.1 Applications
	2.2.2 The Ford - Fulkerson algorithm
	2.2.3 Summary

	2.3 Minimum cost flow
	2.3.1 Applications
	2.3.2 Establishing a feasible flow
	2.3.3 The cycle canceling algorithm
	2.3.4 Network simplex
	2.3.5 Summary

	2.4 Transportation problem
	2.4.1 Applications
	2.4.2 Network simplex
	2.4.3 Summary

	2.5 Minimum cost assignment
	2.5.1 Applications
	2.5.2 Successive shortest path algorithm
	2.5.3 Summary

	2.6 Minimum spanning tree
	2.6.1 Applications
	2.6.2 Kruskal’s algorithm
	2.6.3 Prim’s algorithm
	2.6.4 Summary

	2.7 Exercises

	Chapter 3. Solving hard problems
	3.1 Mathematical programming formulation
	3.2 Branch and bound algorithm
	3.3 Dynamic programming
	3.4 Approximation algorithms and heuristics
	3.5 Local search
	3.6 Summary
	3.7 Exercises

	Bibliography
	A. Networks
	B. Linear programming
	C. NP-completeness
	Index

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move up by 56.69 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Up
 56.6929
 14.1732

 Both
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 128
 146
 145
 146

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move down by 28.35 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Down
 28.3465
 14.1732

 Both
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 130
 146
 145
 146

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move right by 14.17 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Right
 14.1732
 14.1732

 Odd
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 130
 146
 144
 73

 1

 HistoryItem_V1
 TrimAndShift

 Range: all even numbered pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move left by 14.17 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Left
 14.1732
 14.1732

 Even
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 131
 146
 145
 73

 1

 HistoryItem_V1
 TrimAndShift

 Range: all even numbered pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move left by 14.17 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Left
 14.1732
 14.1732

 Even
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 131
 146
 145
 73

 1

 HistoryItem_V1
 TrimAndShift

 Range: all even numbered pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move left by 2.83 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Left
 2.8346
 14.1732

 Even
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 131
 146
 145
 73

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move right by 2.83 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Right
 2.8346
 14.1732

 Odd
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 132
 146
 144
 73

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 20.00, distance 10.00 (points)
 Add frames around each page: no
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 50 down, columns 50 across
 Align: centre
 Registration colour: All separations
 PDF/X handling: Ignore PDF/X
 Annotations and form fields: UNKNOWN

 0.0000
 Prompt
 10.0001
 20.0001
 1
 Corners
 0.2999
 ToFit
 50
 50
 1.2000
 FormsAndFields
 0
 0
 1
 0.0000
 0
 IgnoreAll

 D:20110731140922
 841.8898
 a4
 Blank
 595.2756

 Tall
 886
 110

 0.0000
 AllSeps
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

