

Projekt współfinansowany ze środków Unii Europejskiej w ramach
Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Wrocław University of Technology

Advanced Informatics and Control

Adam Janiak, Maciej Lichtenstein

ADVANCED ALGORITHMS IN

COMBINATORIAL OPTIMIZATION
Developing Engine Technology

Wrocław 2011

Wrocław University of Technology

Advanced Informatics and Control

Adam Janiak, Maciej Lichtenstein

ADVANCED ALGORITHMS IN

COMBINATORIAL OPTIMIZATION
Developing Engine Technology

Wrocław 2011

Copyright © by Wrocław University of Technology

Wrocław 2011

Reviewer: Andrzej Kasprzak

ISBN 978-83-62098-87-3

Published by PRINTPAP Łódź, www.printpap.pl

Contents

Glossary 7

1 Introduction 9

2 Combinatorial optimization 11
2.1 Introduction . 11
2.2 Examples of combinatorial problems 12
2.3 Introduction to Computational Complexity Theory 15

2.3.1 Complexity of algorithms 16
2.3.2 Complexity of problems 17

2.4 Combinatorial optimization methods 20
2.4.1 Exact methods . 20
2.4.2 Approximation and heuristic algorithms 21

3 Simulated annealing and its extensions 23
3.1 Introduction . 23
3.2 Simulated annealing (SA) . 24

3.2.1 Solutions representation and perturbations 25
3.2.2 Annealing schemes . 26

3.3 An example of simulated annealing algorithm 29
3.3.1 Solution perturbation . 29

3.4 Temperature change . 29
3.5 Main loop of the algorithm . 30
3.6 Sample run of the algorithm . 31
3.7 Modifications of simulated annealing 32

3.7.1 Threshold accepting (TA) 32
3.7.2 Record-to-record travel (RRT) 32

3

3.7.3 Great deluge algorithm (GDA) 33
3.7.4 Demon algorithm (DA) . 33

3.8 Conclusions . 34

4 Tabu search (TS) 35
4.1 Introduction . 35
4.2 Short-term memory . 37
4.3 Long-term memory . 38
4.4 Medium-term memory . 38
4.5 Example algorithm . 39

4.5.1 Solution representation . 39
4.5.2 Initial solution . 39
4.5.3 Neighborhood . 39
4.5.4 Tabu list . 39
4.5.5 Aspiration criterion . 40
4.5.6 Diversification . 40
4.5.7 Halting . 40

4.6 Conclusiuons . 40

5 Genetic algorithms 43
5.1 Introduction . 43
5.2 Natural selection and mutation in Nature 44
5.3 Evolution as a paradigm for problem solving 45
5.4 General scheme of a genetic algorithm 47

5.4.1 Population size . 48
5.4.2 Population initialization . 49
5.4.3 Fitness evaluation . 51
5.4.4 Selection . 51
5.4.5 Crossover operations . 52
5.4.6 Mutation operations . 55
5.4.7 Halting . 56

5.5 An Example of the Genetic Algorithm 58
5.5.1 Basics notion and the traps we have to avoid 58
5.5.2 Partially-Mapped Crossover 60
5.5.3 The exchange mutation (EM) 61
5.5.4 Deciding on a fitness function 61
5.5.5 Selection . 62
5.5.6 Alternative operators for the TSP 62

5.6 Extended mechanisms . 66

5.6.1 Elitism . 66
5.6.2 Steady state selection . 66
5.6.3 Fitness proportionate selection 66
5.6.4 Tournament selection . 67

6 Ant colony optimization (ACO) 69
6.1 The biological motivation . 69
6.2 The ACO algorithm . 70

6.2.1 The artificial ants . 71
6.2.2 Pheromone update and daemon actions 72

6.3 An example of ACO . 73
6.3.1 Pheromone trails . 73
6.3.2 Solution construction . 73
6.3.3 Pheromone evaporation 74

7 Artificial Immune Systems (AIS) 75
7.1 Introduction . 75
7.2 Natural immune system . 76

7.2.1 The cells of immune system 76
7.2.2 How it all works? . 78

7.3 The clonal selection principle . 79
7.3.1 Hypermutation . 80
7.3.2 The clonal selection vs. genetic algorithms 82

7.4 An example of the clonal selection algorithm (CSA) 83

8 Further reading 89

Bibliography 90

5

6

Glossary

ACO Ant colony optimization

AIS Artificial immune systems

APC Antigen presenting cell

CSA Clonal selection algorithm

DIVM Displaced inversion mutation

DM Displacement mutation

GA Genetic algorithm

GC Germinal center

GDA Great deluge algorithm

IM Insertion mutation

IVM Inversion mutation

KNAPSACK Knapsack problem

MHC Major histocompatibility complex

NK Natural killer cells

OBX Order-based crossover

PART Partition problem

PBX Position-based crossover

7

8

PMX Partially mapped crossover

RRT Record-to-record travel algorithm

SA Simulated annealing

SM Scramble mutation

TA Threshold accepting algorithm

TS Tabu search

TSP Traveling salesman problem

Chapter 1

Introduction

The process of optimization is the process of obtaining the best, if it is possi-
ble to measure and change what is good or bad. In practice, one wishes the
most or maximum (e.g., salary, profit) or the least or minimum (e.g., ex-
penses, energy). Therefore, the word optimum is taken to mean maximum
or minimum depending on the circumstances; ‘optimum’ is a technical term
which implies quantitative measurement and is a stronger word than best
which is more appropriate for everyday use. Likewise, the word optimize,
which means to achieve an optimum, is a stronger word than improve. Opti-
mization theory is the branch of mathematics encompassing the quantitative
study of optima and methods for finding them. Optimization practice, on
the other hand, is the collection of techniques, methods, procedures, and
algorithms that can be used to find the optima.

Optimization problems occur in most disciplines like engineering, physics,
mathematics, economics, administration, commerce, social sciences, and
even politics. Optimization problems abound in the various fields of en-
gineering like electrical, mechanical, civil, chemical, and building engineer-
ing. Typical areas of application are modeling, characterization, and design
of devices, circuits, and systems; design of tools, instruments, and equip-
ment; design of structures and buildings; process control; approximation
theory, curve fitting, solution of systems of equations; forecasting, produc-
tion scheduling, quality control; maintenance and repair; inventory control,
accounting, budgeting, etc. Some recent innovations rely almost entirely on
optimization theory, for example, neural networks and adaptive systems.

Most real-life problems have several solutions and occasionally an in-

9

10 CHAPTER 1. INTRODUCTION

finite number of solutions may be possible. Assuming that the problem at
hand admits more than one solution, optimization can be achieved by finding
the best solution of the problem in terms of some performance criterion. If
the problem admits only one solution, that is, only a unique set of parameter
values is acceptable, then optimization cannot be applied.

This book is devoted to the Nature-inspired methods of solving hard
combinatorial optimization problems. The scope of the book starts with
the introduction to the optimization and, in particular, with the definition
of combinatorial optimization problems (Chapter 2). Chapter 2 also deals
with the elements of the Computation Complexity Theory, and summa-
rizes the methods that can be applied to solve combinatorial optimization
problems. Chapters 3-7 describe five Nature-inspired methods of problem
solving. These methods are simulated annealing, tabu search, genetic algo-
rithms, ant colony optimization, and artificial immune systems, respectively.
Every method is described and an example is given. The book is concluded
with the references to other books and papers that can be good start to for
deeper understanding of the methods described on the forthcoming pages.

This book is not intended to be complete or precise. It is a textbook
summarizing the facts about the subjects of the course "Advanced algorithms
in combinatorial optimization" that is given on the Faculty of Electronics,
Wrocław University of Technology, to the computer engineering students.
All details of the subjects are given during the lectures of the mentioned
above course, and this textbook is only a "helpful hand" for those that do
not attend to the classes much often. On the other hand it can be helpful
for the students of other fields related to the algorithmic issues of problems
solving.

Chapter 2

Combinatorial optimization

2.1 Introduction
The general optimization problem can be viewed as a couple (S, f), where
S is the set of problem feasible solutions, and f : S → R is the objective
function that assigns to each solution s ∈ S a real (or integer) number, which
evaluates the solution worth. The aim of the optimization problem can be
stated as: find the element s∗ ∈ S for which function f is maximized or min-
imized. Since minimization and maximization are very similar (the problem
of maximization of function f is equivalent to the problem of minimization
of function −f), we will focus our attention on minimization problems.

Depending on the properties of the set S and the function f we can
obtain various classes of optimization problems, such as continuous opti-
mization, discrete optimization, etc. One of this classes are combinatorial
optimization problems that are the main topic of this book.

In any combinatorial optimization problem the set S is finite, and
variables that define solutions are discrete in nature. The popularity
of combinatorial optimization problems stems from the fact that in many
real-world problems the objective function and constraints are of different
nature (nonlinear, nonanalytic, black box, etc.) whereas the search space is
finite.

Any (combinatorial) optimization problem can be stated as follows.

Definition 1 Given the set S and the function f , find global minimum of
function f .

11

12 CHAPTER 2. COMBINATORIAL OPTIMIZATION

The definition of the global minimum is as follows.

Definition 2 The global minimum to the problem (S, f) is an element
s∗ ∈ S such that ∀s ∈ S : f(s∗) ≤ f(s).

Since the set S in any combinatorial optimization problem has finite num-
ber of elements, there always exists a procedure for its solution. This proce-
dure, called complete enumeration or brute force method, iterates through
every solution s ∈ S for which it calculates the function value f(s), and then
returns a solution or a set of solutions with smallest calculated function
value. It is clear that this method returns the global minimum or the set of
global minima. The time required by this procedure is linearly dependent
of the number of elements in the set S and the time required to calculate
the single value of function f . So if we can calculate the function value for
every s in finite time, then the brute force method runs in finite time. On the
other hand, time required for the brute force method may be unacceptable
form practical point of view. We will discuss this issue in what follows.

2.2 Examples of combinatorial problems
There are many combinatorial problems that arose from real-life issues.
In this section we present some of them (the most important ones). Not all
problems stated here are optimization problems, but as we see later on, they
are also combinatorial in nature, and have many relations to combinatorial
optimization problems.

The problems of partition the given set into some numbers of disjoint
subsets have many forms. We present in this section some of them. The
first problem we are going to present is called just a Partition Problem and
usually is denoted by PART. Its definition is as follows.

Definition 3 (PART) There is a given the set N = {1, ..., n} of n elements.
Each element j ∈ N has a value xj which is non negative integer, such
that all xj sum up to an even value, i.e.,

∑
j∈J xj = 2B, where B is an

integer. Is there a subset X ⊆ N such that
∑
j∈X = B?

The problem seems quite easy to solve; let us consider the following
example.

We are given 5 elements (set N = {1, 2, 3, 4, 5}) with values xj , j ∈ N
summarized in the following table:

2.2. EXAMPLES OF COMBINATORIAL PROBLEMS 13

j xj
1 3
2 5
3 6
4 4
5 2

It is easy to calculate that in the above example the value ofB = 1
2

∑
j∈J xj =

10, and thus we are looking for subset X for which sum of elements values
equals 10. After quick look at the above table we can say that the answer
to the question stated in the problem is "yes". The example subset X con-
tains elements 3 and 4, i.e. X = {3, 4} because x3 + x4 = 6 + 4 = 10. It is
also easy to observe that the set N\X = {1, 2, 5} also gives the "yes" answer
to the problem’s question. That’s why this problem is called the "Partition
Problem". We are looking for partition of the set N into two subsets X and
N\X , with the same value of the sum of element’s values.

At first look this problem is easy to solve. But will it be easy to partition
the set of n = 20 elements? What about the set of n = 1, 000 elements?
Before we give an answer to these questions we will stop for a while and
consider the problem’s solution space.

The first question is "what is the solution of the partition problem?" And
"how many such solutions are possible?" The answer to the first question
is simple: the solution to the PART is the subset of the set N . The second
question need some calculations, but it is known that there are exactly 2n

different subsets of the set of n elements.
Now, we can think about simple, complete enumeration algorithm that

solve the PART. This algorithm can be stated as follows.
1: for each X ⊆ N do
2: if

∑
j∈X = B then

3: return "yes" answer
4: end if
5: end for
6: return "no" answer

In the worst case, the algorithm have to check every subset X of the
set N . Note that for n = 20 the number of such subsets equals 2n = 220 =
1, 048, 576. That’s over the 1 million solutions to check! Yes, but nowadays
computers are fast! Assume that the computer can check each subset in
1µs. Thus the entire algorithm will run a little longer than a 1 second.

14 CHAPTER 2. COMBINATORIAL OPTIMIZATION

And what about n = 100? Let’s see... 2n = 2100 =

1, 267, 650, 600, 228, 229, 401, 496, 703, 205, 376

WOW! That is a really big number! And the computer will spend something
like 1.26×1024 seconds, i.e., something like 40, 000, 000, 000, 000, 000 years to
complete this task! Well no, our world will be gone much sooner.

One can say that the computers are getting faster very quickly, so this
issue will not exist in near future. Well, consider one billion times faster
computer. Will it help? Yes, the processing will take now "only" 40 million
years ;). And finally consider the PART with n = 1000 elements ... so you
see that the issue will not be solved by faster computers. Finally, we have
to state that the PART is an example of decision problem. The decision
problem is a problem that always has "yes" or "no" answer.

Another interesting problem can be defined as follows.

Definition 4 (KNAPSACK) There is a given set N = {1, ..., n} of n ele-
ments. Each element j ∈ N has given its size aj ≥ 0 and its value wj ≥ 0.
There is also given a value B which represents the knapsack capacity.
The problem is to find the subset X ⊆ N such that∑

j∈X
aj ≤ B, (2.1)

and the value of
V =

∑
j∈X

wj

is maximal.

The problem is to find the subset of elements that fit into a given knap-
sack (the inequality (2.1)) with maximal total value. It is easy to notice that
the solution space of this problem also contains 2n elements (all the subsets
of the set N) but not all solutions in this set are feasible, i.e., they do not
satisfy inequality (2.1).

The next problem we are going to present is called the Traveling Sales-
man Problem (TSP for short) and has different solution space, than the
problems two previously defined.

2.3. INTRODUCTION TO COMPUTATIONAL COMPLEXITY THEORY 15

Definition 5 TSP There is a given set N = {1, ..., n} of n cities and the
matrix D = (dij : i ∈ N, j ∈ N, i 6= j) of distances between them, where
dij ≥ 0 is the distance from the city i to the city j. The problem is to find a
tour that minimizes the total distance. The tour have to visit all the cities
in N and starts and ends in the same city.

The tour in the TSP can be represented by the permutation of the set
N . Let π = (π(1), ..., π(n)) denotes the permutation of the elements of the
set N , where π(j) is the jth element of this permutation. For example if
π = (4, 2, 3, 1) then the route starts with city 4, then visits city 2, next city
3, next city 1 and finally returns to city 4. For such representation the TSP
can be stated as follows.

Find permutation π such that the value of

F =

n−1∑
j=1

dπ(j)π(j+1) + dπ(n)π(1),

is minimized.
It is easy to notice that since the tour is in fact a cycle (starts and ends

in the same city) then the first element of π can be fixed to an arbitrary
city. Thus the problem solution space will contain all the permutations of
the n − 1 elements, and there is (n − 1)! such permutations. This factorial
function (n− 1)! increases very fast with the increase of the value of n. For
example for n = 10 it has a value of 3,628,80, whereas for n = 20 it has a
value of 121,645,100,408,832,000.

2.3 Introduction to Computational Complexity
Theory

In previous section we stated that it is possible to find an algorithm for the
solution of "virtually any" combinatorial optimization problem, however, the
simplest brute force approach may (and usually is) impractical. The reason
for that is that any algorithm requires the two kind of resources to execute:
time and space. The time complexity of an algorithm is the number of steps
required to solve a problem of size n, where n is the count of problem input
data (e.g. number of elements in PART or KNAPSACK, number of cities in
TSP, etc.).

16 CHAPTER 2. COMBINATORIAL OPTIMIZATION

2.3.1 Complexity of algorithms
The goal in the determination of the computational complexity of an algo-
rithm is not to obtain its exact running time, but an asymptotic bound on the
step count of its execution. The Landau notation (or Big-O notation) makes
use of such asymptotic analysis. It is one of the most popular notations in
the analysis of algorithms.

Definition 6 (Big-O notation) An algorithm has a complexity t(n) = O(g(n))
if there exist positive constants n0 and C such that t(n) ≤ Cg(n),∀n > n0.

In this case, the function t(n) is upper bounded by the function g(n). The
Big-O notation can be used to compute the time or the space complexity of
an algorithm. Some properties of the Big-O notation are summarized below.

Property 1 If a(n) = O(t(n)) and b(n) = O(g(n)) then a(n)+b(n) = O(t(n)+
g(n)) = O(max{t(n), g(n)}).

Property 2 If a(n) = O(t(n)) and b(n) = O(g(n)) then a(n)×b(n) = O(t(n)×
g(n)).

Property 3 If positive polynomial p(n) is of degree k then p(n) = O(nk).

Remind that positive polynomial p(n) of degree k is a function:

p(n) = akn
k + ak−1n

k−1 + ...+ a2n
2 + a1n+ a0,

where aj ≥ 0, j = 1, ..., k − 1 and ak > 0.

The complexity of algorithms classifies them into main two classes polynomial-
time algorithm and above-polynomial-time algorithms.

Definition 7 (polynomial-time algorithm) An algorithm is a polynomial-
time algorithm if its complexity is O(p(n)), where p(n) is a positive poly-
nomial function of the problem size n.

Definition 8 (above-polynomial-time algorithm) An algorithm is an above-
polynomial-time algorithm if its complexity cannot be bounded by any
polynomial p(n).

2.3. INTRODUCTION TO COMPUTATIONAL COMPLEXITY THEORY 17

Note, that for example an algorithm with time complexity O(n log n) is
polynomial time algorithm because it can be bounded by O(n2) for any base
of the logarithm.

A special case of the above-polynomial-time algorithms are the exponential-
time algorithms which can be defined as follows.

Definition 9 (exponential-time algorithm) An algorithm is an exponential-
time algorithm if it is above-polynomial-time algorithm and its complexity
is O(an), where a is a real constant strictly greater than 1.

From the practical point of view, either polynomial as well as above-
polynomial time algorithm may be not efficient, taking into account that
exponential-time algorithms are usually useless to solve moderate size of
problem instances. For example brute force method introduced in previous
section is impractical, but also an algorithm with the time complexity of
O(n100) usually cannot be applied in practice.

The significant part of the computational complexity theory deals not
with the complexity of algorithms, but with the complexity of the problems.

2.3.2 Complexity of problems
The complexity of a problem is "in a sense" equivalent to the complexity
of the best possible algorithm solving that problem. From the theoretical
point of view, the problem is tractable (which means "easy to solve") if there
exist a polynomial-time algorithm for its solution. On the other hand, the
problem is intractable (difficult to solve) if such algorithm doesn’t exist.

The computational complexity theory deals in its basis with languages (a
strings over some alphabet) and Touring machines. However, all the results
are applicable to the decision, as well as optimization problems.

To be more correct, the results of the computational complexity theory
are applicable to decision problems, however, every optimization problem
can be "converted" to its decision version. Such conversion is done in the
following way.

If a optimization problem is defined as "minimize (or maximize) a func-
tion f(s) over the set S", then its decision version of that problem is "given
an integer F , is there a solution s′ ∈ S such that f(s′) ≤ F (or f(s′) ≥ F for
maximization)?".

The main aspect of the complexity of problems is to categorize them
into complexity classes. A complexity class is a set of all problems that can

18 CHAPTER 2. COMBINATORIAL OPTIMIZATION

be solved using a given amount of time or space. The are two main classes
that categorize problems according to their time complexity: P and NP .

Definition 10 (the class P) The given problem P belongs to the class P
if there exists a polynomial-time algorithm for its solution.

Definition 11 (the class NP) The given problem P belongs to the class
NP if there exists a polynomial-time algorithm that verifies answer to the
problem for a given (guessed) solution.

It is quite obvious that P ⊆ NP . The question whether P = NP is the
most important open question of the whole theory (many research has been
done in this matter and the question is still open, however, it seems that the
correct answer is "no", i.e. P 6= NP).

To define the most important class in the whole theory we have to define
an additional term – the polynomial reduction.

Definition 12 (the polynomial reduction) The polynomial reduction of
the decision problem P1 into the decision problem P2 (which will be de-
noted as P1 ∝ P2) is a function t that express every datum in P2 by the
data of P1 and satisfies the following conditions:

• the values of t can be calculated in polynomial time for every in-
stance of P1,

• the constructed instance of P2 has the "yes" answer if and only if the
source instance of P1 also has "yes" answer.

The construction of the polynomial reduction is not an easy task. For
the details we refer the reader to the literature.

Finally we can define the most important classes of the theory of com-
putational complexity.

Definition 13 (the class of NP-complete problems) The decision prob-
lem P is NP-complete if P ∈ NP and for any other problem Q ∈ NP ,
Q ∝ P .

From the definition of the polynomial reduction follows that if a polynomial-
time algorithm exists to solve an NP-complete problem, then all problems
of class NP may be solved in polynomial time. This, however, seems to

2.3. INTRODUCTION TO COMPUTATIONAL COMPLEXITY THEORY 19

be not the case, thus no polynomial-time algorithms seems to exist for any
NP-complete problem.

The NP-completeness is defined for the decision problems. The similar
term is defined for the optimization problems.

Definition 14 (the class of NP-hard problems) The optimization problem
is NP-hard if its decision version is NP-complete.

The relations between the complexity classes of the problems are de-
picted in Figure 2.1.

Note, that every problem defined in the previous section (PART, KNAP-
SACK, TSP) belongs to the class of NP-complete or NP-hard problems.

Figure 2.1: The relation of complexity classes of problems

Most of the real-world optimization problems are NP-hard for which
provably efficient algorithms do not exist. They require exponential time
(unless P = NP) to be solved to optimality.

20 CHAPTER 2. COMBINATORIAL OPTIMIZATION

2.4 Combinatorial optimization methods
Following the complexity of the problem, it may be solved by an exact
method or an approximate method. Exact methods obtain optimal solutions
and guarantee their optimality. For NP-complete problems, exact algorithms
are non polynomial time algorithms. Approximate (or heuristic) methods
may generate near optimal solutions in a reasonable time for practical use,
but there is no guarantee of finding a global optimal solution.

2.4.1 Exact methods

In the class of exact methods one can find the following classical algorithms:
dynamic programming, branch and bound, constraint programming, and
A∗ family of search algorithms developed in the artificial intelligence com-
munity. Those enumerative methods may be viewed as tree search algo-
rithms. The search is carried out over the whole interesting search space,
and the problem is solved by subdividing it into simpler problems.

Dynamic programming

Dynamic programming is based on the recursive division of a problem into
simpler subproblems. This procedure is based on the Bellman’s principle
that says that “the sub policy of an optimal policy is itself optimal”. This
stage wise optimization method is the result of a sequence of partial deci-
sions. The procedure avoids a total enumeration of the search space by
pruning partial decision sequences that cannot lead to the optimal solution.

Branch and bound

The branch and bound algorithm and A∗ are based on an implicit enumer-
ation of all solutions of the considered optimization problem. The search
space is explored by dynamically building a tree whose root node repre-
sents the problem being solved and its whole associated search space. The
leaf nodes are the potential solutions and the internal nodes are subprob-
lems of the total solution space. The pruning of the search tree is based on
a bounding function that prunes subtrees that do not contain any optimal
solution.

2.4. COMBINATORIAL OPTIMIZATION METHODS 21

Constraint programming

Constraint programming is a language built around concepts of tree search
and logical implications. Optimization problems in constraint programming
are modeled by means of a set of variables linked by a set of constraints. The
variables take their values on a finite domain of integers. The constraints
may have mathematical or symbolic forms.

Exact methods can be applied to small instances of difficult problems.
For NP-hard optimization problems the order of magnitude of the maximal
size of instances that state-of-the-art exact methods can solve to optimality
is up to 100. Moreover, to achieve this some of the exact algorithms have
to implemented on large networks of workstations.

2.4.2 Approximation and heuristic algorithms
In the class of approximate methods, three subclasses of algorithms may
be distinguished: approximation algorithms, approximation schemes, and
heuristic algorithms. Unlike heuristics, which usually find "good” solutions
in a reasonable time, approximation algorithms provide provable solution
quality and provable run-time bounds.

Approximation algorithms

In approximation algorithms, there is a guarantee on the bound of the ob-
tained solution from the global optimum. An ε-approximation algorithm
generates an approximate solution s not less than a factor ε times the opti-
mum solution s∗.

Approximation schemes

There are two classes of approximation schemes (which are in fact families
of algorithms), namely:

Polynomial-time approximation scheme (PTAS). An algorithm scheme
is a PTAS if it is polynomial-time (1 + ε)-approximation algorithm for any
fixed ε > 0. Note that running time of the algorithm may depend exponen-
tially on the value of ε (1/ε to be more precise).

Fully polynomial-time approximation scheme (FPTAS). An algorithm
scheme is a FPTAS if it is polynomial-time (1 + ε)-approximation algorithm

22 CHAPTER 2. COMBINATORIAL OPTIMIZATION

for any fixed ε > 0, and it is polynomial either in the problem size as well
as in 1/ε.

Heuristics and metaheuristics

Heuristics find “good” solutions on large-size problem instances. They al-
low to obtain acceptable performance at acceptable costs in a wide range of
problems. In general, heuristics do not have an approximation guarantee
on the obtained solutions. They may be classified into two families: specific
heuristics and metaheuristics. Specific heuristics are tailored and designed
to solve a specific problem and/or instance. Metaheuristics are general-
purpose algorithms that can be applied to solve almost any optimization
problem. They may be viewed as upper level general methodologies that
can be used as a guiding strategy in designing underlying heuristics to solve
specific optimization problems. This book is mainly focused on the meta-
heuristic approaches.

Chapter 3

Simulated annealing and its
extensions

3.1 Introduction
Simulated annealing (SA) is a random-search technique which exploits an
analogy between the way in which a metal cools and freezes into a minimum
energy crystalline structure (the annealing process) and the search for a
minimum in a more general system; it forms the basis of an optimization
technique for combinatorial and other problems.

Simulated annealing was developed in 1980 to deal with highly nonlinear
problems. SA approaches the global maximization problem similarly to
using a bouncing ball that can bounce over mountains from valley to valley.
It begins at a high temperature which enables the ball to make very high
bounces, which enables it to bounce over any mountain to access any valley,
given enough bounces. As the temperature declines the ball cannot bounce
so high, and it can also settle to become trapped in relatively small ranges
of valleys. A generating distribution generates possible valleys or states to
be explored. An acceptance distribution is also defined, which depends on
the difference between the function value of the present generated valley
to be explored and the last saved lowest valley. The acceptance distribution
decides probabilistically whether to stay in a new lower valley or to bounce
out of it. All the generating and acceptance distributions depend on the
temperature. It has been proved that by carefully controlling the rate of

23

24 CHAPTER 3. SIMULATED ANNEALING AND ITS EXTENSIONS

cooling of the temperature, SA can find the global optimum. However, this
requires infinite time.

3.2 Simulated annealing (SA)
Simulated annealing’s major advantage over other methods is an ability to
avoid becoming trapped in local minima. The algorithm employs a random
search which not only accepts changes that decrease the objective function
f (assuming a minimization problem), but also some changes that increase
it. The latter are accepted with a probability:

P = e
−∆
T ,

where ∆ is the increase of the objective function, and T is a control param-
eter, which by analogy with the original application is known as the system
temperature irrespective of the objective function involved. The implemen-
tation of the basic SA algorithm is straightforward. Algorithm 1 shows its
structure.

Algorithm 1 Basic scheme of simulated annealing
1: generate the initial solution s
2: set solutions current = s, and best = s,
3: set the initial temperature T
4: while stopping condition is not satisfied do
5: generate perturbed solution p on the basis of current solution
6: calculate ∆ = f(p)− f(current)
7: if ∆ ≤ 0 then
8: current = p
9: else

10: if U [0, 1] ≤ e−∆
T then

11: current = p
12: end if
13: end if
14: if f(current) ≤ f(best) then
15: set best = current
16: end if
17: Decrease the temperature T according to annealing scheme
18: end while

3.2. SIMULATED ANNEALING (SA) 25

Simulated annealing can deal with highly nonlinear models, chaotic and
noisy data and many constraints. It is a robust and general technique. Its
main advantages over other local search methods are its flexibility and its
ability to approach global optimality. The algorithm is quite versatile since
it does not rely on any restrictive properties of the model. SA methods are
easily tuned. For any reasonably difficult nonlinear or stochastic system,
a given optimization algorithm can be tuned to enhance its performance
and since it takes time and effort to become familiar with a given code, the
ability to tune a given algorithm for use in more than one problem should
be considered an important feature of an algorithm.

Since SA is a metaheuristic, a lot of choices are required to turn it into
an actual algorithm. There is a clear tradeoff between the quality of the
solutions and the time required to compute them. The tailoring work re-
quired to account for different classes of constraints and to fine-tune the
parameters of the algorithm can be rather delicate. The precision of the
numbers used in implementation is of SA can have a significant effect upon
the quality of the outcome.

To turn the framework given in Algorithm 1 into an actual algorithm,
the following elements have to be provided:

• an initial solution,

• a generator of random changes in solutions (i.e., how to perturb the
current solution),

• an annealing scheme – an initial temperature and rules for lowering
it as the search process progress.

In the following we will discuss these three elements.

3.2.1 Solutions representation and perturbations
When attempting to solve an optimization problem using the SA algorithm,
the most obvious representation of the control variables is usually appropri-
ate. However, the way in which new solutions are generated may need some
thought. The solution generator should introduce small random changes,
and allow all possible solutions to be reached.

The SA algorithm does not require or deduce derivative information, it
merely needs to be supplied with an objective function for each trial solu-
tion it generates. Thus, the evaluation of the problem functions is essentially

26 CHAPTER 3. SIMULATED ANNEALING AND ITS EXTENSIONS

a "black box" operation as far as the optimization algorithm is concerned.
Obviously, in the interests of overall computational efficiency, it is important
that the problem function evaluations should be performed efficiently, espe-
cially as in many applications these function evaluations are by far the most
computationally intensive activity.

Some thought needs to be given to the handling of constraints when
using the SA algorithm. In many cases the routine can simply be pro-
grammed to reject any proposed changes which result in constraint viola-
tion, so that a search of feasible space only is executed. However, there is
one circumstance in which this approach cannot be followed: if the feasible
space defined by the constraints is (suspected to be) disjoint, so that it is
not possible to move between all feasible solutions without passing through
infeasible space. In this case the problem should be transformed into an
unconstrained one by constructing an augmented objective function incor-
porating any violated constraints as penalty functions.

Essentially, the initial solution should be selected randomly. Any other
selection of initial solution (e.g. delivered by some heuristic) requires to
adjust the annealing scheme discussed later on in some sophisticated man-
ner. Usually, such approach doesn’t improve the algorithms efficiency and
effectiveness.

3.2.2 Annealing schemes
The annealing scheme determines the degree of uphill movement permit-
ted during the search and is thus critical to the algorithm’s performance.
The principle underlying the choice of a suitable annealing schedule is eas-
ily stated: the initial temperature should be high enough to melt the system
completely and should be reduced towards its freezing point as the search
progresses. Choosing an annealing schedule for practical purposes is some-
thing of an art.

The standard implementation of the SA algorithm is one in which homo-
geneous Markov chains of finite length are generated at decreasing tem-
peratures. The following parameters should therefore be specified:

• an initial temperature,

• a final temperature or a stopping conditions,

• a length for the Markov chains, and

• a rule for decrementing the temperature.

3.2. SIMULATED ANNEALING (SA) 27

Initial temperature

A suitable initial temperature is one that results in an acceptance probability
of value close to 1. In other words, there is an almost 100% chance that a
change which increases the objective function will be accepted. The value of
initial temperature will clearly depend on the objective function and, hence,
be problem-specific. It can be estimated by conducting an initial search
in which all increases are accepted (i.e., the fixed number of iterations of
simulated annealing in which all perturbed solutions are unconditionally ac-
cepted) and calculating the maximum objective increase observed δf . Then,
the initial temperature T0 is given by:

T0 =
−δf
ln(p)

,

where p is a probability close to 1 (e.g. 0.8–0.9).

Final temperature and stopping conditions

In some simple implementations of the SA algorithm the final temperature
is determined by fixing the number of temperature values to be used, or
the total number of solutions to be generated (total number of iterations).
Alternatively, the search can be halted when it ceases to make progress.
Lack of progress can be defined in a number of ways, but a useful basic
definition is no improvement (i.e. no new best solution) being found in an
entire Markov chain at one temperature.

Length of Markov chains

An obvious choice for L, the length of the Markov chain, is a value that de-
pends on the size of the problem. Alternatively it can be argued that a min-
imum number of transitions tmin should be accepted at each temperature.
However, as temperature approaches 0, transitions are accepted with de-
creasing probability so the number of trials required to achieve tmin accep-
tances approaches 1 . Thus, in practice, an algorithm in which each Markov
chain is terminated after L transitions or tmin acceptances, whichever comes
first, is a suitable compromise.

28 CHAPTER 3. SIMULATED ANNEALING AND ITS EXTENSIONS

Decreasing the temperature

In the SA algorithm, the temperature is decreased gradually such that

Ti > 0,∀i,

and
lim
i→∞

Ti = 0,

where i denotes the iteration of an algorithm.
There is always a compromise between the quality of the obtained solu-

tions and the speed of the cooling scheme. If the temperature is decreased
slowly, better solutions are obtained but with a more significant computation
time. The temperature T can be updated in different ways:

Linear In the trivial linear scheme, the temperature T is updated as fol-
lows: T = T − α, where α is a specified constant value. Hence, we have

Ti = T0 − iα,

where Ti represents the temperature at iteration i.

Geometric In the geometric scheme, the temperature is updated using the
formula

T = αT,

where α ∈ [0, 1]. It is the most popular cooling function.

Logarithmic The temperature at iteration i is calculated using the follow-
ing formulae:

Ti =
T0

log(i)
.

This scheme is too slow to be applied in practice but has been proven to
have the property of convergence to a global optimum.

Modified logarithmic The main trade-off in a cooling scheme is the use
of a large number of iterations at a few temperatures or a small number of
iterations at many temperatures. Modified logarithmic scheme such as

Ti =
Ti−1

1 + αTi−1

3.3. AN EXAMPLE OF SIMULATED ANNEALING ALGORITHM 29

may be used where α is some constant parameter. Only one iteration is
allowed at each temperature in this very slow decreasing function.

Random number generation

A significant component of an SA code is the random number generator,
which is used both for generating random changers in the control variables
and for the (temperature dependent) increase acceptance test. It is impor-
tant, particularly when tackling large scale problems requiring thousands
of iterations, that the random number generator used have good spectral
properties.

3.3 An example of simulated annealing algorithm
The implementation of simulated annealing is actually quite simple in any
high-level programming language. We’ll describe three of the functions
that make up the simulated annealing implementation, the main simulated
annealing algorithm, perturbing a tour, and decreasing the temperature.

3.3.1 Solution perturbation
Given a solution, we can create an adjacent solution using the function that
randomly select two cities in the tour, and swap them. An additional loop
is required to ensure that we have selected two unique random points (so
that we don’t swap a single city with itself). Once selected, the two cites are
swapped and the function is complete.

3.4 Temperature change
The temperature schedule is a factor in the probability for accepting a worse
solution. In this example, we will use a geometric decay for the temperature:

T = αT.

In this case, we use an alpha of 0.999. The temperature decay using this
equation is shown in Figure 3.1.

30 CHAPTER 3. SIMULATED ANNEALING AND ITS EXTENSIONS

Figure 3.1: Temperature change during the search process

3.5 Main loop of the algorithm

The algorithm loops around the temperature, constantly reducing until it
reaches a value near zero. The initial solution has been initialized prior to
this function with a randomly generated tour. We take the current solution
and perturb it (randomly alter it) for a number of iterations (the length of
the Markov chain). If the new solution is better, we accept it by copying it
into the current solution. If the new solution is worse, then we accept it with
a probability defined by earlier. The worse the new solution and the lower
the temperature, the less likely we are to accept the new solution. When
the Markov chain reaches its length, the temperature is reduced and the
process continues. When the algorithm completes, we receive the city tour.

3.6. SAMPLE RUN OF THE ALGORITHM 31

3.6 Sample run of the algorithm

The relative fitness of the solution over a run is shown in Figure 3.2 This
graph shows the length of the tour during the decrease in temperature.
Note at the left-hand side of the graph that the relative fitness is very erratic.
This is due to the high temperature accepting a number of poorer solutions.
As the temperature decreases (moving to the right of the graph), poorer
solutions are not accepted as readily. At the left-hand side of the graph, the
algorithm permits exploration of the state space, where at the right-hand of
the graph, the solution is fine-tuned.

Figure 3.2: Best tour length found during the search process

32 CHAPTER 3. SIMULATED ANNEALING AND ITS EXTENSIONS

3.7 Modifications of simulated annealing
Other similar methods of simulated annealing have been proposed in the
literature, such as threshold accepting, great deluge algorithm, record-to-
record travel, and demon algorithms The main objective in the design of
those simulated-annealing-inspired algorithms is to speed up the search of
the SA algorithm without sacrificing the quality of solutions.

3.7.1 Threshold accepting (TA)
Threshold accepting (TA) may be viewed as the deterministic variant of
simulated annealing. TA escapes from local optima by accepting solutions
that are not worse than the current solution by more than a given threshold
V , i.e., if ∆ is less than a given threshold V then a new perturbed solution is
accepted. If ∆ > V then current solution remains unchanged. The threshold
value V is decreased during the search process, which is similar to annealing
scheme in classical SA method.

The threshold V is updated according to an annealing schedule. It must
be set as a deterministic non-increasing step function in the number of
iterations i. The threshold decreases at each iteration and then reaches the
value of 0 after a given number of iterations.

TA is a fast algorithm compared to SA because the generation of random
number and exponential functions consume a significant amount of com-
putational time. The literature reports some performance improvements
compared to the simulated annealing algorithm in solving combinatorial
optimization problems such as the traveling salesman problem.

3.7.2 Record-to-record travel (RRT)
This algorithm is also a deterministic optimization algorithm inspired from
simulated annealing. The algorithm accepts a non-improving neighbor solu-
tion with an objective value less than the record minus a deviation D. record
represents the best objective value of the visited solutions during the search,
i.e., record = best in the scheme presented in Algorithm 1. The bound de-
creases with time as the objective value record of the best found solution
improves.

The record-to-record travel algorithm has the advantage to be dependent
on only one parameter, the deviation D value. A small value for the deviation

3.7. MODIFICATIONS OF SIMULATED ANNEALING 33

will produce poor results within a reduced search time. If the deviation is
high, better results are produced after an important computational time.

3.7.3 Great deluge algorithm (GDA)
The great deluge algorithm was proposed by Dueck in 1993. The main dif-
ference with the SA algorithm is the deterministic acceptance function of
neighboring solutions. The inspiration of the GDA algorithm comes from
the analogy to the direction a hill climber would take in a great deluge to
keep his feet dry. Finding the global optimum of an optimization problem
may be seen as finding the highest point in a landscape. As it rains inces-
santly without end, the level of the water increases. The algorithm never
makes a move beyond the water level. It will explore the uncovered area
of the landscape to reach the global optimum.

A generated neighbor solution is accepted if the absolute value of the
objective function is less than the current boundary value, named waterlevel.
The initial value of the waterlevel is equal to the initial objective function.
The level parameter in GDA operates somewhat like the temperature in SA.
During the search, the value of the level is decreased monotonically. The
decrement is a parameter of the algorithm.

The great deluge algorithm needs the tuning of only one parameter, the
rs value that represents the rain speed. The quality of the obtained results
and the search time will depend only on this parameter. If the value of the
rs parameter is high, the algorithm will be fast but will produce results of
poor quality. Otherwise, if the rs value is small, the algorithm will generate
relatively better results within a higher computational time. An example of
a rule that can be used to define the value of the rs parameter may be the
following: a value smaller than 1% of the average gap between the quality
of the current solution and the waterlevel.

3.7.4 Demon algorithm (DA)
The demon algorithm is another simulated annealing-based algorithm that
uses computationally simpler acceptance functions.

The acceptance function is based on the energy value of the demon.
The demon energy is initialized with a given value D. A non-improving
solution is accepted if the demon has more energy than the decrease of
the objective value. When a DA algorithm accepts a solution of increased
objective value, the change value of the objective is added to the demon’s

34 CHAPTER 3. SIMULATED ANNEALING AND ITS EXTENSIONS

energy. In the same manner, when a DA algorithm accepts an improving
solution, the decrease of the objective value is debited from the demon.

The acceptance function of demon algorithms is computationally simpler
than in SA. It requires a comparison and a subtraction, whereas in SA it
requires an exponential function and a generation of a random number.
Moreover, the demon values vary dynamically in the sense that the energy
D depends on the visited solutions during the search, whereas in SA and
TA the temperature (or threshold) is not dynamically reduced. Indeed, the
energy absorbed and released by the demon depends mainly on the accepted
solutions.

3.8 Conclusions
As with genetic algorithms, discussed later on, a major advantage of SA is its
flexibility and robustness as a global search method. It is a "weak method"
which does not use problem-specific information and makes relatively few
assumptions about the problem being solved. It can deal with highly non-
linear problems and "almost any" functions. Simulated annealing is a very
powerful and important tool in a variety of disciplines. A disadvantage is
that the SA methods are computation-intensive. Faster variants of simulated
annealing exist, but they are not easy to code and therefore they are not
widely used.

Chapter 4

Tabu search (TS)

4.1 Introduction

Tabu search (TS) can be viewed as beginning in the same way as ordinary lo-
cal or neighborhood search, proceeding iteratively from one point (solution)
to another until a chosen termination criterion is satisfied. Each solution,
say s, has an associated neighborhood N(s), and each solution s′ ∈ N(s) can
be reached from s by an operation called a move.

TS can be contrasted with a simple descent method where the goal is
to minimize some function f(s), where s ∈ S. Such a method only permits
moves to neighbor solutions that improve the current objective function
value and ends when no improving solutions can be found. The final s
obtained by a descent method is called a local optimum, since it is at least
as good as or better than all solutions in its neighborhood. The evident
shortcoming of a descent method is that such a local optimum in most
cases will not be a global optimum, i.e., it usually will not minimize f(s) over
all s ∈ S.

TS behaves like a simple descent algorithm, but it accepts non-improving
solutions to escape from local optima when all neighbors are non-improving
solutions. Usually, the whole neighborhood is explored in a deterministic
manner, whereas in SA a random neighbor is selected. As in local search,
when a better neighbor is found, it replaces the current solution. When
a local optima is reached, the search carries on by selecting a candidate
worse than the current solution. The best solution in the neighborhood is

35

36 CHAPTER 4. TABU SEARCH (TS)

selected as the new current solution even if it is not improving the current
solution. Tabu search may be viewed as a dynamic transformation of the
neighborhood. This policy may generate cycles – that is, previous visited
solutions could be selected again. To avoid cycles, TS discards the neighbors
that have been previously visited. It memorizes the recent search trajectory.
Tabu search manages a memory of the solutions or moves recently applied,
which is called the tabu list. This tabu list constitutes the short-term memory.
At each iteration of TS, the short-term memory is updated. Storing all visited
solutions is time and space consuming. Indeed, we have to check at each
iteration if a generated solution does not belong to the list of all visited
solutions. The tabu list usually contains a constant number of tabu moves.
Usually, the attributes of the moves are stored in the tabu list.

By introducing the concept of solution features or move features in the
tabu list, one may lose some information about the search memory. We
can reject solutions that have not yet been generated. If a move is "good",
but it is tabu, do we still reject it? The tabu list may be too restrictive – a
non-generated solution may be forbidden. Yet for some conditions, called
aspiration criteria, tabu solutions may be accepted. The admissible neighbor
solutions are those that are non-tabu or hold the aspiration criteria.

The framework of Tabu Search consists of several steps which are de-
scribed below and depicted in Algorithm 2.

Algorithm 2 Basic scheme of tabu search
1: generate the initial solution s
2: set solutions current = s, and best = s
3: create tabu list TL, and add s to TL
4: while stopping condition is not satisfied do
5: Select best, non-tabu solution s′ from N(current)
6: Check aspiration criterion
7: if f(s′) < f(current) then
8: set current = s′

9: end if
10: if f(current) < f(best) then
11: set best = current
12: end if
13: update TL with current
14: end while

The tabu list (short-term memory) and the aspiration criterion are the

4.2. SHORT-TERM MEMORY 37

basic mechanisms in tabu search method. Commonly used additional mech-
anisms consist of long-term memory, and medium-term memory. In the fol-
lowing we describe the roles of these three kinds of memory in the search
process.

4.2 Short-term memory

The role of the short-term memory is to store the recent history of the
search to prevent cycling. The naive straightforward representation con-
sists in recording all visited solutions during the search. This representation
ensures the lack of cycles but is seldom used as it produces a high com-
plexity of data storage and computational time. For instance, checking the
presence of all neighbor solutions in the tabu list will be prohibitive. The
first improvement to reduce the complexity of the algorithm is to limit the
size of the tabu list. If the tabu list contains the last k visited solutions, tabu
search prevents a cycle of size at most k. Using hash codes may also reduce
the complexity of the algorithms manipulating the list of visited solutions.
In general, attributes of the solutions or moves are used. This representa-
tion induces less important data storage and computational time but skips
some information on the history of the search. For instance, the absence
of cycles is not ensured. The most popular way to represent the tabu list is
to record the move attributes. The tabu list will be composed of the reverse
moves that are forbidden. This scheme is directly related to the neighbor-
hood structure being used to solve the problem. If the move m is applied
to the solution s to generate the solution s′ then the move m′ that translates
solution s′ back into s is stored in the list. This move is forbidden for a
given number of iterations, named the tabu tenure of the move. If the tabu
list contains the last k moves, tabu search will not guarantee to prevent a
cycle of size at most k.

The size of the tabu list is a critical parameter that has a great impact
on the performance of the tabu search algorithm. At each iteration, the last
move is added to the tabu list, whereas the oldest move is removed from
the list. The smaller is the value of the tabu list, the more significant is
the probability of cycling. Larger values of the tabu list will provide many
restrictions and encourage the diversification of the search as many moves
are forbidden. A compromise that depends on the landscape structure of
the problem and its associated instances must be found.

38 CHAPTER 4. TABU SEARCH (TS)

4.3 Long-term memory

Long-term memory has been introduced in tabu search to encourage the
diversification of the search. The role of the long-term memory is to force
the search in non explored regions of the search space. The main repre-
sentation used for the long-term memory is the frequency memory. As in
the recency memory, the components associated with a solution have to be
defined first. The frequency memory will memorize for each component
the number of times the component is present in all visited solutions. The
diversification process can be applied periodically or after a given number
of iterations without improvement.

As for the intensification, the diversification of the search is not always
useful. It depends on the landscape structure of the target optimization
problem. For instance, if the landscape is a “massif central” where all good
solutions are localized in the same region of the search space within a small
distance, diversifying the search to other regions of the search space is use-
less. The search time assigned to the diversification and the intensification
components of TS must be carefully tuned depending on the characteristics
of the landscape structure associated with the problem.

4.4 Medium-term memory

The role of the intensification is to exploit the information of the best found
solutions (elite solutions) to guide the search in promising regions of the
search space. This information is stored in a medium-term memory. The
idea consists in extracting the (common) features of the elite solutions and
then intensifying the search around solutions sharing those features. A
popular approach consists in restarting the search with the best solution
obtained and then fixing in this solution the most promising components
extracted from the elite solutions. The main representation used for the
medium-term memory is the recency memory. First, the components as-
sociated with a solution have to be defined; this is a problem specific task.
The recency memory will memorize for each component the number of
successive iterations the component is present in the visited solutions. „It is
common to start the intensification process after a given period or a certain
number of iterations without improvement.

4.5. EXAMPLE ALGORITHM 39

4.5 Example algorithm
Tabu Search is a heuristic that, if used effectively, can promise an efficient
near-optimal solution to the TSP. The basic steps of the algorithm applied
to the TSP are presented below.

4.5.1 Solution representation
AA feasible solution is represented by a sequence of cities where cities ap-
pear in the order they are visited and each city appears only once. The first
and the last visited cities are fixed to 1. The starting city is not specified in
the solution representation and is always assumed to be the city 1.

4.5.2 Initial solution
A good feasible, yet not-optimal, solution to the TSP can be found quickly
using a greedy approach. Starting with the first city in the tour, find the
nearest city. Each time find the nearest unvisited city from the current city
until all the cities are visited.

4.5.3 Neighborhood
A neighborhood of a given solution is defined as any other solution that
is obtained by a pair wise exchange of any two cities in the solution (swap
move). This always guarantees that any neighborhood of a feasible solution
is always a feasible solution (i.e., does not form any sub-tour). If we fix city 1
as the start and the end city for a problem of n cities, there are O(n2) such
neighbors of a given solution. At each iteration, the neighbor with the best
objective value (minimum distance) is selected.

4.5.4 Tabu list
To prevent the process from cycling in a small set of solutions, some at-
tribute of recently visited solutions is stored in a Tabu List, which prevents
their occurrence for a limited period. For TSP problem, the attribute used
is a pair of cities that have been exchanged recently. A Tabu structure stores
the number of iterations for which a given pair of nodes is prohibited from
exchange.

40 CHAPTER 4. TABU SEARCH (TS)

4.5.5 Aspiration criterion
Tabu list may sometimes be too powerful: it may prohibit attractive moves,
even when there is no danger of cycling, or they may lead to an overall
stagnation of the searching process. It may, therefore, become necessary
to revoke tabus at times. In TSP it may be done by allowing a move, even
if it is tabu, if it results in a solution with an objective value better than that
of the current best-known solution.

4.5.6 Diversification
Quite often the process may get trapped in a space of local optimum. To
allow the process to search other parts of the solution space (to look for the
global optimum), it is required to diversify the search process, driving it into
new regions. This is done using frequency based memory. The frequency
information is used to penalize non-improving moves by assigning a larger
penalty (frequency count adjusted by a suitable factor) to swaps with greater
frequency counts. This diversifying influence is allowed to operate only on
occasions when no improving moves exist. Additionally, if there is no im-
provement in the solution for a pre-defined number of iterations, frequency
information can be used for a pair wise exchange of cities that have been
explored for the least number of times in the search space, thus driving the
search process to areas that are largely unexplored so far.

4.5.7 Halting
The algorithm terminates if a pre-specified number of iterations is reached.

4.6 Conclusiuons
TS has been successfully applied to many optimization problems. Compared
to simulated annealing, various search components of TS are problem spe-
cific and must be defined. The search space in TS is much larger than in lo-
cal search and simulated annealing. The degree of freedom in designing the
different ingredients of TS is important. The representation associated with
the tabu list, the medium-term memory, and the long-term memory must
be designed according to the characteristics of the optimization problem at
hand. This is not a straightforward task for some optimization problems.

4.6. CONCLUSIUONS 41

Moreover, TS may be very sensitive to some parameters such as the size of
the tabu list.

42 CHAPTER 4. TABU SEARCH (TS)

Chapter 5

Genetic algorithms

“Programming today is a race between software engineers striving to
build bigger and better idiot-proof programs, and the Universe trying to
produce bigger and better idiots. So far, the Universe is winning.” –
Richard Cook

5.1 Introduction

Reading the above Cook’s sentence, the first question that arises is “Why the
Universe is winning?”. The answer is quite simple: “Because the Universe
uses genetic algorithm.”

GAs are a special subset of metahueristics, which use a form of biological
mimicry which emulates the process of natural selection.

“Three billion years of evolution can not be wrong. It is the most
powerful algorithm there is.”

This quotation from Goldberg sums up the aim of Genetic Algorithms;
to model nature, and harness their proven ability to refine solutions, or
animals, to a very efficient form. They are a form of metahueristic search,
used to find solutions to difficult problems, possibly even NP-hard, where it
is not feasible to enumerate all possibilities in order to find the best solution.

A Genetic Algorithm (GA) is a type of metahueristic algorithm, designed
to operate on optimization problems. Optimization problems typically de-

43

44 CHAPTER 5. GENETIC ALGORITHMS

mand that a certain variable be either minimized or maximized, while re-
maining legal within some set of constraints. These problems are often
extremely large in their nature, usually to the point of NP-hardness, which
effectively means that finding the exact or optimum solution is infeasibly dif-
ficult. To enumerate every possible solution and evaluate them to determine
which is the optimum would take an inordinate amount of time.

GAs work by creating a selection of possible problems, called the pop-
ulation, and breeding them with each other. This alone would not refine
the solutions in any way, so the process of natural selection is used to kill
off the section of the least efficient solutions in each generation. Each so-
lution is evaluated by a fitness method which uses some problem-specific
algorithm to calculate the goodness of that solution. In a simple model of
natural selection the best solutions from each generation are used to create
the next one, and the worst are deleted.

To create the next generation, a combination of mutation and crossover
is used. Crossover takes some qualities from two solutions and creates
another - this models breeding and procreation. Mutation is also used, as in
evolution, randomly to change these solutions in the hope that a desirable
feature is introduced. Mutation is also important in order to avoid local
optima, which are areas of the search space that appear to be optimum, but
are actually just isolated by neighboring solutions of a less desirable nature.

5.2 Natural selection and mutation in Nature
Within nature, members of a population are born, procreate, and die. Pro-
creation creates offspring which are a combination of the two parents, with
occasional mutation also operating on the genes. This mutation does not
necessarily have to be obvious or large. The mutation of a single gene can
have little or no effect, but equally may have large repercussions - entirely
dependent on its role within the body. It is often the case that combinations
of genes affect a certain characteristic so that the alteration of a gene may
have no obvious effect, but actually subtly alter many characteristics.

Mutation can occur within any cell in the body, and usually occurs during
replication. There are mechanisms which reduce the amount of mutation
that is allowed to occur, but they are not infallible. There are two types
of cell in living creatures; somatic and germline. Germline cells produce
sperm and eggs, and all other cells are somatic. Therefore if the mutation
occurs in the somatic cells, then this mutation will die with the cell, but if it

5.3. EVOLUTION AS A PARADIGM FOR PROBLEM SOLVING 45

occurs in the germline cells then it will be passed onto offspring - provided
the organism is not detrimentally affected to the point of not surviving to
procreation.

These mutations can be beneficial or harmful, and can provide the animal
with an advantage over the other members of the species, or cause it to be
less capable of survival than others. The mutations are more than likely
to be detrimental than beneficial, as “there are more ways of being dead
than being alive”1, i.e., within the vast space of possible gene sequences,
there are few that represent living and surviving organisms, and an almost
limitless amount of pools of non-living amino acids.

For example, an increase in the capability to detect certain smells may
make the animal a better hunter, or enable it to detect predators better, and
in either case it would provide the animal with an advantage over other
members of that species. This would mean that it would be more likely to
survive to adulthood, and to procreate, spreading its genes. An animal with
a detrimental mutation however, such as a reduced sense of smell, would
be more likely to succumb to starvation or attack from predators before
procreation could occur. This is natural selection, and is a natural feedback
process which causes ‘good’ genes to spread, and takes ‘bad’ genes out of
the pool. It is this interplay between entirely random mutation, and non
random selection that makes up the process of evolution, causing species to
adapt to their environment - not by intent but by default. It is a process that
takes an almost unimaginable length of time to occur. There is little doubt
that usually feedback mechanisms operate to regulate the size of populations

5.3 Evolution as a paradigm for problem solving
The powerful refinement and improvement abilities of natural selection can
be harnessed to solve combinatorial optimization problems using a com-
puter.

By creating a model of an environment, where the organisms become
potential solutions to the problem, and genes become variables modeling
that solution, we can recreate natural selection to ‘breed’ solutions that in-
crease in fitness with each generation. We can simulate all processes of
evolution; procreation can be modeled by combining two or more solutions
in certain ways, mutation can be modeled using random number genera-

1E. Dawkins “The Blind Watchmaker”

46 CHAPTER 5. GENETIC ALGORITHMS

tors, natural selection and death can be modeled using a fitness evaluation
method, and selecting which solutions will ‘survive’ to the next generation.

In this way we can explore the search space, refining our solutions, and
avoiding local optimums by including random mutation — some of which
will be detrimental and will not survive to procreation, and some which will
be beneficial and will steer the solutions towards unexplored space.

Work conducted in the 1950’s and 1960’s in cellular automata started the
idea of using GAs to solve problems inherent in engineering, wherever they
constituted optimization problems.

In the 1980s research into GAs started, and an international conference
for the field was founded. As early as 1995 there were several successful
examples of GA optimization being used in industry including Texas Instru-
ments designing chips to minimize size but maintain functionality. Critical
designs such as the engine plans leading to the development of the Boeing
777 engine by General Electric were also developed using GAs.

US West uses GAs to design fiber-optic cable networks, cutting design
times from two months to two days, and saving US West $1 million to $10
million on each network design. Genetic Algorithm derived designs have
now even been used in satellites by NASA, with the development of an aerial
being taken completely out of engineers hands. The orbit of those same
satellites is now even determined with the use of a Genetic Algorithm.

GAs and genetic programming algorithms, which use GA type evaluation
and mutation to write functional code, are by no means a ‘silver bullet ’.
There are several reasons for which they are not suited to all problems, and
these are examined here. Sometimes GAs or genetic programming provide
solutions that are so complex or convoluted that no human programmer
could decipher what is being performed within. Because they do not follow
any logical examination of the problem, as a human designer would, they
may find an extremely counter-intuitive way to achieve a certain task. No
design of any kind is actually performed in order to find a solution, so
apparent logic in the result is not guaranteed.

The methods that GAs use to design systems are not necessarily logical
so the finished code, no matter how effective, may be all but indecipherable
to the human user. This means that sometimes full testing is not possible,
and code that appears to work completely cannot be proven to work in all
cases. Goldberg talks of the difference between conceptual machines and
material machines, i.e. an algorithm and a vehicle engine respectively. One
is fully testable, but the other is not necessarily so.

Although this is a normal problem with testing; not all cases can be

5.4. GENERAL SCHEME OF A GENETIC ALGORITHM 47

tested, but if the code is readable then a talented tester can devise test cases
that will likely trip the system up which is not possible with highly complex
code. This creates ethical problems with implementing GA derived designs
in mission critical or real time applications. Bearing in mind that a failure in
air traffic control, life support hardware etc could be fatal, or that failure in
a financial institution could be disastrous in other ways. GA is also used to
develop actual mechanical devices. Goldberg tells an amusing story about
an airline passenger worrying about the design and its testing. If you were
to imagine a plane as a GA, and the passenger as a GA user, then you could
imagine the stress that the thought of a failure would cause.

One interesting problem that arises from the use of Genetic Algorithms
is the moral or ethical implications arising from a design that is not of
human derivation. If there is a fundamental flaw in a human design, and
this leads to a failure involving financial loss or human injury then the
blame is apportioned to the engineer responsible for the negligent design.
However, if a GA designs a system that leads to a failure (possible due to
unforeseen emergent behavior as a result of massive complexity) then it is
difficult to find the root cause of this issue.

5.4 General scheme of a genetic algorithm
The way genetic algorithms work is essentially mimicking evolution. First,
you figure out a way of encoding any potential solution to your problem
as a “digital” chromosome. Then, you create a start population of random
chromosomes (each one representing a different candidate solution) and
evolve them over time by “breeding” the fittest individuals and adding a
little mutation here and there. With a bit of luck, over many generations,
the genetic algorithm will converge upon a solution. Genetic algorithms do
not guarantee a solution, nor do they guarantee to find the best solution,
but if utilized the correct way, you will generally be able to code a genetic
algorithm that will perform well. The best thing about genetic algorithms
is that you do not need to know how to solve a problem; you only need
to know how to encode it in a way the genetic algorithm mechanism can
utilize.

Typically, the chromosomes are encoded as a series of binary bits. At the
start of a run, you create a population of chromosomes, and each chromo-
some has its bits set at random. The length of the chromosome is usually
fixed for the entire population. The important thing is that each chromo-

48 CHAPTER 5. GENETIC ALGORITHMS

some is encoded in a such way that the string of bits may be decoded to
represent a solution to the problem at hand. It may be a very poor solution,
or it may be a perfect solution, but every single chromosome represents a
possible solution. Usually the starting population is terrible in terms of the
solutions the chromosomes of this population encode. Anyway, an initial
population of random chromosomes is created (let’s say one hundred of
them for this example), and then you execute Algorithm 3.

Algorithm 3 Basic scheme of genetic algorithm
1: Generate initial population of n chromosomes
2: while solution is not found do
3: Test each chromosome to see how good it is at solving the problem

and assign a fitness score accordingly
4: Select two members from the current population. The probability of

being selected is proportional to the chromosome’s fitness the higher
the fitness, the better the probability of being selected.

5: Dependent on the Crossover Rate, crossover the chosen chromo-
somes at a randomly chosen point

6: Step through the chosen chromosome’s bits and mutate dependent
on the Mutation Rate.

7: Repeat steps 4, 5, and 6 until a new population of n members has been
created.

8: end while

Each loop through the algorithm is called a generation (steps 3 through
7). We call the entire loop an epoch and will be referring to it as such in the
remaining text. In the following we will discuss each step of the presented
scheme of GA. It will become clear that each step is indeed an algorithm
in its own right, and that there are numerous choices of strategy for each.
A GA is simply an abstraction of a subset of algorithms. It should also be
noted that the huge variation of approaches possible for each of the several
components of a GA means that there is a vast number of programs that
fall under this catch-all title. A taxonomy of different approaches to the GA
idea would be an extremely complex tree.

5.4.1 Population size
Population size is the term used for the number of solutions held by the
GA. The population size is a critical variable, which presents a trade-off

5.4. GENERAL SCHEME OF A GENETIC ALGORITHM 49

between the computational power of each generational iteration, and the
computational intensity of each iteration. A small number of solutions allows
a greater number of generations to iterate in a given time, because each
generation will be less computationally intensive.

A large population size will provide more variety in each generation,
which means greater likelihood of a benefcial solution, but the trade-off is
that each generation will take longer to compute. However, within a rela-
tively small amount of generations the solutions will begin to converge on
a similar solution. The amount of variation on average will decrease as the
generation number increases, although the rate will vary on the magnitude
of the mutation. Therefore it may be beneficial to choose a smaller value
for the population size.

Small variations, if beneficial, will propagate through a small population
just as they will through a larger one. Although a large population size
means that there is more mutation per generation, the faster computation
of a smaller population size would be capable of allowing a similarly large
amount of mutation over a small number of solutions within the same time
period. The only constraint on the population size is that the initial popula-
tion needs to be at least 2 solutions large, as with any smaller amount no
crossover operations would be possible, and it would be impossible to derive
any more beneficial solutions in this way.

5.4.2 Population initialization
The initialization of the first generation population could conceivably alter
the speed with which the program finds a solution that satisfies the halting
algorithm. The distance of the solution’s fitness from optimum would affect
the number of generations needed to satisfy the halting algorithm.

In the extreme case it is possible that one of the initial solutions actually
satisfies the halting algorithm, in which case the program would complete
before any crossover or mutation was necessary.

With an entirely homogenous population, the algorithm would rely on
mutation in order to provide variance in early generations, as crossover
between similar solutions achieves little. By creating a varied initial popu-
lation it is conceivable that good solutions would be found quicker, and the
algorithm would complete faster.

The exact method of initialization that would provide the optimum start is
unknown, as is the magnitude of the positive effect possible. It is highly likely
that a varied population would be more beneficial than a homogenous one

50 CHAPTER 5. GENETIC ALGORITHMS

to some extent however, and any attempt to vary the genes would provide
a small advantage at the very least.

There are several possible techniques for initializing populations, but the
most efficient method would vary not only from problem to problem, but
also from instance to instance within each problem.

Pre-defined variance

One possible approach would be to have designed, pre-defined variance in
the solutions. These could be identical for each run of the algorithm, or
designed for each instance of the problem. It may be possible to tailor. In
this way, possible “good” traits could be engineered into the algorithm. For
example, in the scenario presented in Table 5.1, a GA is searching for a
solution to a problem, where the optimum value is 8. The fitness algorithm
simply calculates the integer value of the binary string which makes up the
solution representation, and returns the inverted difference between that
value and the optimum.

Table 5.1: Example scenario for pre-defined variance population initialization

binary string chromosome integer value of the string fitness value
0000 0 -8
0011 3 -5
0110 6 -2
1001 9 -1
1100 12 -4
1111 15 -7

If it was possible to estimate the approximate region of the optimal so-
lution, then it would be possible to create the initial solutions within this
range. Within a few generations, any initial population would congregate
around the optimal solution. However, by approximating the optimum with
the initialization, this process can be speeded up. The amount of effort re-
quired to tailor a good range of solutions around an approximation would
not be beneficial however, as the saving made in computational time would
be minimal in comparison.

It is conceivable that a system could be developed where a user inputs
an approximate solution, and the program randomly generates the initial

5.4. GENERAL SCHEME OF A GENETIC ALGORITHM 51

population with slight derivations from this. This would reduce the amount
of time necessary to set up the algorithm, but retain most of the benefit of
this approach.

Randomly generated solutions and evenly spaced solution

A very simple method of initializing solutions would be to randomly generate
them. As a GA would have code to create random variation in the mutation
method, it would be a trivial matter to adapt this to fully populate the initial
designs.

Another method would be to take the search space, and the number of
solutions in the population, and to calculate an even spread throughout.

5.4.3 Fitness evaluation
The fitness evaluation section of the GA determines which solutions are
removed, and which progress to the next generation. It uses an algorithm
to calculate how good a certain solution is. Once each generation has been
created, the fitness of each solution is evaluated and ranked.

Fitness evaluation mimics the environment in which members of a species
would live. The higher the fitness value, the more likely a solution is to sur-
vive to the next generation, and the lower it is the more likely it is that
the solution will die off. Therefore the fitness evaluation mimics anything
dangerous in a real world environment - predators, disease, famine, etc.

The fitness evaluation is extremely problem specific, and must be de-
signed very carefully. It can be a simple case of maximizing one value,
or there may be many complex and interacting values to take into account.
These must be analyzed, weighted and summed within the fitness evaluation
code, and condensed to one value with which that solution may be judged.

5.4.4 Selection
Roulette wheel selection is a method of choosing members from the pop-
ulation of chromosomes in a way that is proportional to their fitness for
example, the fitter the chromosome, the greater probability it has of being
selected. It does not guarantee that the fittest member goes through to the
next generation, merely that it has a very good probability of doing so. It
works like this: Imagine that the population’s total fitness score is repre-
sented by a pie chart, or roulette wheel (see Figure 5.1). Now, you assign a

52 CHAPTER 5. GENETIC ALGORITHMS

slice of the wheel to each member of the population. The size of the slice
is proportional to that chromosome’s fitness score the fitter the member is,
the bigger the slice of pie it gets. Now, to choose a chromosome, all you
have to do is spin the wheel, toss in the ball, and grab the chromosome that
the ball stops on.

Figure 5.1: Example roulette wheel of nine chromosomes (labels denote
the fitness value and percentage of the wheel, respectively)

5.4.5 Crossover operations
Crossover is one of the two main methods used in GAs in order to alter
solutions. It is important to use both, as one maintains desirable traits while
combining solutions, and the other introduces random noise in the hope of
creating emergent properties that add value.

Crossover is the operation that allows solutions to combine. If mutation
was used alone then it would essentially be a random solution generator, but
would still work. Crossover allows the retention of desirable traits, without
the need to keep entire solutions.

Mutation alone is not mathematically guaranteed to work, although it is
infinitesimally unlikely that it would not at some point reach optimality or
close to it. Crossover is the method by which a GA can take value from
previous solutions, and build the next generation of solutions in a semi-
intelligent manner.

5.4. GENERAL SCHEME OF A GENETIC ALGORITHM 53

The method of crossover requires careful thought, and its success is
highly dependent on the problem to which it is applied. The encoding
that is used to represent a single solution needs to be paired to crossover.
For example, if a solution consists of three variables, all 4 bits long, then
our total solution occupies 12 bits. The simplest crossover approach would
be to bisect two solutions, and create two new solutions by combining the
start of one and the end of another, and vice versa. If this approach was
taken though, the efficiency of the program would be greatly reduced. Any
time that a good value for the middle variable was found there is a good
chance that it would be overwritten by the next generation. However, if the
crossover was designed with the solution in mind, then the solutions could
be trisected and recombined to preserver the value of individual variables.
This would be more likely to arrive at a solution in a reasonable length of
time.

Single point crossover

Single point crossover is the simplest form of crossover operation. It simply
takes the bits of a pair of solutions, and bisects them at the same arbitrary
point, the tail or head sections are then exchanged. (See Figure 5.2) In this
way the pair of parent solutions can create a pair of children that share
certain aspects of both solutions. If the two sections that make up the new
child both contain features that are beneficial then a successful evolution
has occurred, and a solution that exceeds the fitness of previous solutions
has been created.

Figure 5.2: Example of the single point crossover operation applied to
binary chromosomes

54 CHAPTER 5. GENETIC ALGORITHMS

Double point crossover

With double point crossover the strategy is similar to single point, but the
transferred section of bits does not have to include the tail or head of a solu-
tion. (See Figure 5.3) This enables greater flexibility in the sections altered,
and also provides all genes with an equal chance of exchange, whereas in
the single point strategy any point chosen is guaranteed to swap the end
gene, and will favor genes towards the edge of the solution.

Figure 5.3: Example of the double point crossover operation applied to
binary chromosomes

Cut and splice crossover

Cut and splice is ax technique that does not maintain solution length, which
means that it is not acceptable for all GAs. In both double and single point
crossover the length of the solution is kept, and therefore genes can have
specific properties. For example, in a GA that designed possible engine parts
each gene could represent a quality of that part such as height or thickness.
In single and double point crossover these values would be swapped around,
but maintain their context and meaning, but in a strategy which varies so-
lution length this is not possible. Instead, cut and splice is more fitting to
problems where the solution strings represent a solution to some singu-
lar problem to optimize, for example in certain combinatorial optimization
problems.

5.4. GENERAL SCHEME OF A GENETIC ALGORITHM 55

Uniform crossover

In uniform crossover the bits from each parent are swapped, depending
upon a probability. In half uniform crossover the number of differing bits
between the two parents is calculated, and this number is divided by two. The
resulting number is the number of non-matching bits that will be exchanged.

5.4.6 Mutation operations

With a straightforward mutation-only algorithm it would be possible to reach
an optimal solution, but this entirely random approach would not yield any
significant increase over any other brute-force approach. Because of this it
would not classify as a GA, or even a metaheuristic.

To fully equip a GA with the ability to find a solution as close as possi-
ble to optimality within a given time it is desirable to use a combination of
crossover and mutation operations. With solely crossover operations there
is a distinct possibility that the algorithm would work towards a local opti-
mum and remain there, as promising solutions are crossed with others a
local optimum would quickly propagate through the solutions in use, and
stall the algorithm. With a mutation operation involved as well, random so-
lutions are thrown into contention throughout the cycle of finding a solution,
and this may eventually enable an algorithm to branch out from underneath
a local optimum, in order to pursue other avenues.

Mutation is an essential part of any successful genetic algorithm. With-
out mutation an algorithm would simply combine the fittest solutions. This
would mean that the generations would quickly converge into an amalgam
of good solutions, and cease to improve. Mutation can be performed in a
number of ways, and each will be appropriate for different problems.

In fact, mutation alone is capable of finding a solution, even the optimum
solution, given sufficient time. For example, consider an algorithm with a
population of only one solution, that only operates upon the solution with
mutation. After each generation the solution is either better or worse than
the previous one, and either fulfills the halting algorithm, or does not. It
will eventually stumble upon a good enough solution. However, with a well
designed GA we can reach a satisfactory result far quicker. It should be
noted however that it can often be useful to create a simple algorithm such as
this in order to get started in development of a more complex and intelligent
system.

56 CHAPTER 5. GENETIC ALGORITHMS

5.4.7 Halting
Halting is an important and difficult problem in GAs. Without some form
of halting criteria, that is checked at every generation, the program would
continue to run, even once significant gains in fitness where no longer being
generated by new generations. There are many techniques that are used to
halt GAs, and their appropriateness depends entirely on the application, but
they fall into two main categories; those that are based on the runtime of
the algorithm, and those that are based on the quality of the solutions.

Resource based halting

It is often the case that a GA can only be allocated a certain amount of a
resource, specifically time or computing cycles, to complete. In real time
critical systems it may be vital to arrive at a solution within a given period,
and in this case it is the role of the algorithm to find the best solution possible
in that time. Even in non-critical systems such as GPS route planners it is
necessary to impose some time constraints to avoid annoying the user; it
is unlikely that a user would be willing to wait hundreds of hours to find
the optimal route when 5 seconds of calculation may find a route near to
optimality.

In cases such as this the halting criteria are time or computing cycle
based, rather than being associated with the fitness of the final solution.
The algorithm will check, at the end of every generation cycle, to see if it
has exceeded its allocated time, or if it is likely to in the next cycle, and
the algorithm can then be halted. In extremely time critical systems this
anticipation of possible time overruns can be used to avoid the algorithm
exceeding its time constraints in between halting checks. The number of
generations can also be the limiting factor, in a very loose time sensitive case,
which although not accurate in terms of time constraints is very simple to
implement.

Solution fitness based halting

If time is less of a constraint, then halting can be based on the fitness of
the solutions. This is more desirable from a reliability point of view, as the
output can be guaranteed to be of a certain quality, determined in the halting
method. Complete enumeration and evaluation is still a desirable practice,
and it does not mean that they are obsolete. The reason for this is that there

5.4. GENERAL SCHEME OF A GENETIC ALGORITHM 57

is no way to find optimality for a problem, without enumerating all possible
solutions, which can be a very time intensive procedure. A large traveling
salesman problem would demand that an enormous number of different
solutions be enumerated and evaluated in order to find an optimal solution,
where as a GA could be run for an arbitrary amount of time, and with each
iteration reach a better solution.

To implement solution based halting, the algorithm must be provided
information about what is an acceptable solution, in terms of the fitness
evaluation method. In this way the algorithm can check at each generation,
to see if the best solution of that generation exceeds the acceptability levels,
and halt if it does. If not then the algorithm simply proceeds with the
next iteration of the generation loop. This acceptability level can be set to a
certain value, derived from the user, or it can be derived by some algorithm
within the system, that ensures bounded in-optimality.

Progress based halting

Another method that can be used is to monitor the progress that the al-
gorithm is making, in terms of numerical improvements correlating to the
fitness of the best solution of each successive generation. This progress can
be recorded and analyzed, in order to determine the most reasonable time
to stop the algorithm. It is highly likely that the algorithm will go through a
very short initial phase of confusion, especially if the initial population was
randomly generated and extremely varied, and then go through a period of
rapid improvement, before tailing off in a curve.

There will be exceptions to this curve, in that mutation will occasionally
throw up a new solution that avoids a local optimum, and causes a period
of noticeable growth again. However, there will come a time when the
progress that the algorithm makes will be negligible. This can be used as a
halting strategy in many ways, for example the algorithm could be instructed
to halt if 3 successive generations did not improve the best solution by more
than 1%.

58 CHAPTER 5. GENETIC ALGORITHMS

5.5 An Example of the Genetic Algorithm

5.5.1 Basics notion and the traps we have to avoid

Now that you understand the basics of genetic algorithms, we will spend this
chapter looking at a completely different way of encoding genetic algorithms
that solves problems involving permutations. A good example of this is the
famous problem called “Traveling Salesman Problem”. This problem is
usually abbreviated to the TSP, which saves a lot of typing ;).

One of the great things about tackling the TSP during your learning
curve and the main reason we are devoting over a section to it – is that
it is a fantastic way of witnessing how making changes to your code can
affect the results. Often, when coding genetic algorithms, it is not easy
to visualize what effect a different mutation or crossover operator has on
your algorithm, or how a particular optimization technique performs, but
the TSP provides you with great visual feedback, as you shall see. As you
will discover when you start tinkering with your own genetic algorithms,
finding a solution for over 15,000 cities is quite an achievement! You will be
starting modestly, though. Twenty or so cities should be plenty for your first
routing. Although, trying to get your algorithm to perform well on larger
numbers of cities can get addictive!

At this point, it may be a good idea for you to make coffee, sit back, close
your eyes, and spend a few minutes thinking about how you might tackle
this problem. . .

As you may have realized, you can not take the same approach that you
did in previous section to crossover operations. The main difference with
the TSP is that solutions rely on permutations, and therefore, you have
to make sure that all your chromosomes represent a valid permutation
of the problem – a valid tour of all the cities. If you were to represent
possible solutions using the binary encoding and crossover operator from
the previous section, you would see how you would run into difficulties very
quickly. Take the eight city example. You could encode each city as a 3-bit
binary number, numbering the cities from 0 to 7. So, if you had two possible
tours, you could encode them like this:

possible tour binary encoded tour
3, 4, 0, 7, 2, 5, 1, 6 011 100 000 111 010 101 001 110

2, 5, 0, 3, 6, 1, 4, 7 010 101 000 011 110 001 100 111

5.5. AN EXAMPLE OF THE GENETIC ALGORITHM 59

Now, choose a crossover point (represented by a “|”) after the fourth city,
and see what offspring you get.

before crossover (parents)

no binary encoded tour decoded tour
1 011 100 000 111|010 101 001 110 3, 4, 0, 7, 2, 5, 1, 6

2 010 101 000 011|110 001 100 111 2, 5, 0, 3, 6, 1, 4, 7

after crossover (offspring)

no binary encoded tour decoded tour
1 011 100 000 111|110 001 100 111 3, 4, 0, 7, 6, 1, 4, 7

2 010 101 000 011|010 101 001 110 2, 5, 0, 3, 2, 5, 1, 6

You can see that there is a major problem! Both of the offspring have
produced tours that contain duplicate cities, which of course means they are
invalid.

To get this to work, you would have to code some hideous error-checking
function to remove all the duplicates, which would probably lead to the
destruction of any improvement gained up to that point in the tour. So, in
the quest for a solution, a different type of crossover operator needs to be
invented that spawns only valid offspring. Also, can you imagine what the
previous mutation operator would do with this type of encoding? That is
right, duplicate tours again. So, you also need to think about how you might
implement a new type of mutation operator. Before you go any further
though, does not binary encoding seem rather inelegant to you in the context
of this problem? A better idea would be to use integers to represent each
city. This, as you will see, will make life a lot easier all around. So, to clarify,
the tour for parent one, shown in the preceding table, would be simply
represented as a vector of integers (3, 4, 0, 7, 2, 5, 1, 6).

You will save a lot of computer time if you do it this way, because you
do not have to waste processor cycles decoding and encoding the solutions
back and forth from binary notation.

As before, a crossover operator, a mutation operator, and a fitness func-
tion need to be defined. The most complex of these for the TSP is the
crossover operator, because, as discussed earlier, a crossover function must
provide valid offspring. So, we will wade in at the deep end and start with
operator called PMX - Partially Mapped Crossover.

60 CHAPTER 5. GENETIC ALGORITHMS

5.5.2 Partially-Mapped Crossover
There are many solutions that provide valid offspring for a permutation-
encoded chromosome: Partially-Mapped Crossover, Order Crossover, Alternating-
Position Crossover, Maximal-Preservation Crossover, Position-Based Crossover,
Edge-Recombination Crossover, Subtour-Chunks Crossover, and Intersec-
tion Crossover to name just a few. In this section we will be discussing one
of the most popular crossover types: Partially-Mapped Crossover, or PMX
as it is more widely known. Later on, we will give descriptions of some of
the alternatives, because it will be good practice for you to experiment with
different operators to see what effect they may have on the efficiency of
your genetic algorithm. But for now, let’s just use PMX.

So, assuming the eight city problem has been encoded using integers,
two possible parents may be:

Parent 1: (2 , 5 , 0 , 3 , 6 , 1 , 4 , 7)

Parent 2: (3 , 4 , 0 , 7 , 2 , 5 , 1 , 6)

To implement PMX, you must first choose two random crossover points
let’s say after 3rd and 6th city. So, the split is made at the “|”’s, like so:

Parent 1: (2 , 5 , 0 ,|3 , 6 , 1|, 4 , 7)

Parent 2: (3 , 4 , 0 ,|7 , 2 , 5|, 1 , 6)

Then you look at the two center sections and make a note of the mapping
between parents. In this example: 3 is mapped to 7, 6 is mapped to 2, and 1
is mapped to 5.

Now, iterate through each parent’s genes and swap the genes wherever
a gene is found that matches one of those listed. Step by step it goes like
this:

Step 1 (here the children are just direct copies of their parents)
Child 1: (2 , 5 , 0 , 3 , 6 , 1 , 4 , 7)

Child 2: (3 , 4 , 0 , 7 , 2 , 5 , 1 , 6)

Step 2 (3 and 7)
Child 1: (2 , 5 , 0 , 7 , 6 , 1 , 4 , 3)

Child 2: (7 , 4 , 0 , 3 , 2 , 5 , 1 , 6)

5.5. AN EXAMPLE OF THE GENETIC ALGORITHM 61

Step 2 (6 and 2)
Child 1: (6 , 5 , 0 , 7 , 2 , 1 , 4 , 3)

Child 2: (7 , 4 , 0 , 3 , 6 , 5 , 1 , 2)

Step 3 (1 and 5)
Child 1: (6 , 1 , 0 , 7 , 2 , 5 , 4 , 3)

Child 2: (7 , 4 , 0 , 3 , 6 , 1 , 5 , 2)

And we have got it! The genes have been crossed over and you have
ended up with valid permutations with no duplicates. This operator can be
a little difficult to understand at first, so it may be worth your while to read
over the description again. And then, when you think you’ve grasped the
concept, try performing this crossover yourself with pen and paper. Make
sure you understand it completely before you go on

5.5.3 The exchange mutation (EM)
After PMX, this operator is a pushover! Remember, you have to provide an
operator that will always produce valid tours. The Exchange Mutation (EM)
operator does this by choosing two genes in a chromosome and swapping
them. For example, given the following chromosome:

(5 , 3 , 2 , 1 , 7 , 4 , 0 , 6)

The mutation function chooses two genes at random, for example 4 and
3, and swaps them:

(5 , 4 , 2 , 1 , 7 , 3 , 0 , 6)

which results in another valid permutation.

5.5.4 Deciding on a fitness function
A fitness function, which gives an increasing score the lower the tour length,
is required. You could use the reciprocal of the tour length, but that does not
really give much of a spread between the best and the worst chromosomes
in the population. Therefore, when using fitness proportionate selection,

62 CHAPTER 5. GENETIC ALGORITHMS

it is almost pot luck as to whether the fitter genomes will be selected. A
better idea is to keep a record of the worst tour length in each generation
and then iterate through the population again subtracting each genome’s
tour distance from the worst. This gives a little more spread, which will
make the roulette wheel selection much more effective. It also effectively
removes the worst chromosome from the population, because it will have
a fitness score of zero and, therefore, will never get selected during the
selection procedure.

5.5.5 Selection

Roulette wheel selection is going to be used again but this time with a differ-
ence. To help the genetic algorithm converge more quickly, in each epoch
before the selection loop you are going to guarantee that n instances of the
fittest genome from the previous generation will be copied unchanged into
the new population. This means that the fittest genome will never be lost to
random chance. This technique is most often referred to as elitism which
will be discussed later on.

5.5.6 Alternative operators for the TSP

The first topic we are going to cover will be a discussion of those alterna-
tive mutation and crossover operators for the traveling salesman problem.
Although none of them will improve the algorithm by a staggering amount,
we feel that we should spend a little time going over the more common
ones because it is interesting to see how many different ways there are of
approaching the problem of retaining valid permutations. Also, some of
them give very interesting and thought provoking results when you watch
the TSP algorithm in progress. More importantly, though, it will teach you
that for every problem, there can be a multitude of ways to code the opera-
tors. Again – and we know we keep saying this – please make sure you play
around with different operators to see how they perform. You will learn a
lot.

There have been many alternative mutation operators dreamed up by en-
thusiastic genetic algorithm researchers for the TSP. Here are descriptions
of a few of the best

5.5. AN EXAMPLE OF THE GENETIC ALGORITHM 63

Scramble mutation (SM)

Choose two random points and “scramble” the cities located between them.
(0 , 1 , 2 , 3 , 4 , 5 , 6 , 7)

becomes
(0 , 1 , 2 , 5 , 6 , 3 , 4 , 7)

Displacement mutation (DM)

Select two random points, grab the chunk of chromosome between them,
and then reinsert at a random position displaced from the original.

(0 , 1 , 2 , 3 , 4 , 5 , 6 , 7)

becomes
(0 , 3 , 4 , 5 , 1 , 2 , 6 , 7)

This is particularly interesting to watch because it helps the genetic al-
gorithm converge to a short path very quickly, but then takes a while to
actually go that few steps further to get to the solution.

Insertion mutation (IM)

This is a very effective mutation and is almost the same as the DM operator,
except here only one gene is selected to be displaced and inserted back into
the chromosome. In tests, this mutation operator has been shown to be
consistently better than any of the alternatives mentioned here.

(0 , 1 , 2 , 3 , 4 . 5 , 6 , 7)

becomes
(0 , 1 , 3 , 4 , 5 , 2 , 6 , 7)

Inversion mutation (IVM)

This is a very simple mutation operator. Select two random points and
reverse the cities between them.

(0 , 1 , 2 , 3 , 4 , 5 , 6 , 7)

becomes
(0 , 4 , 3 , 2 , 1 , 5 , 6 , 7)

64 CHAPTER 5. GENETIC ALGORITHMS

Displaced Inversion Mutation (DIVM)

Select two random points, reverse the city order between the two points,
and then displace them somewhere along the length of the original chro-
mosome. This is similar to performing IVM and then DM using the same
start and end points.

(0 , 1 , 2 , 3 , 4 , 5 , 6 , 7)

becomes
(0 , 6 , 5 , 4 , 1 , 2 , 3 , 7)

As with mutation operators, inventing crossover operators that spawn
valid permutations has been a popular sport amongst genetic algorithm
enthusiasts. Here are the descriptions of the better ones.

Order-Based Crossover (OBX)

To perform order-based crossover, several cities are chosen at random from
one parent and then the order of those cities is imposed on the respective
cities in the other parent. Let’s take the example:

Parent 1: (2 , 5 , 0 , 3 , 6 , 1 , 4 , 7)

Parent 2: (3 , 4 , 0 , 7 , 2 , 5 , 1 , 6)

The underlined cities are the cities which have been chosen at random.
Now, impose the order – 5, 0, then 1 – on the same cities in Parent 2 to give
Offspring 1 like so:

Offspring 1: (3 , 4 , 5 , 7 , 2 , 0 , 1 , 6)

City one stayed in the same place because it was already positioned in
the correct order. Now the same sequence of actions is performed on the
other parent. Using the same positions as the first:

Parent1: (2 , 5 , 0 , 3 , 6 , 1 , 4 , 7)

Parent2: (3 , 4 , 0 , 7 , 2 , 5 , 1 , 6)

Parent 1 becomes:

5.5. AN EXAMPLE OF THE GENETIC ALGORITHM 65

Offspring 2: (2 , 4 , 0 , 3 , 6 , 1 , 5 , 7)

Position-Based Crossover (PBX)

This is similar to Order-Based Crossover, but instead of imposing the order
of the cities, this operator imposes the position. So, using the same example
parents and random positions, here is how to do it.

Parent1: (2 , 5 , 0 , 3 , 6 , 1 , 4 , 7)

Parent2: (3 , 4 , 0 , 7 , 2 , 5 , 1 , 6)

First, move over the selected cities from Parent 1 to Offspring 1, keep-
ing them in the same position.

Offspring 1: (* , 5 , 0 , * , * , 1 , * , *)

Now, iterate through Parent 2’s cities and fill in the blanks if that city
number has not already appeared. In this example, filling in the blanks
results in:

Offspring 1: (3 , 5 , 0 , 4 , 7 , 1 , 2 , 6)

Get it? Let’s run through the derivation of Offspring 2, just to be sure.
First, copy over the selected cities into the same positions.

Offspring 2: (* , 4 , 0 , * , * , 5 , * , *)

Now, fill in the blanks.

Offspring 2: (2 , 4 , 0 , 3 , 6 , 5 , 1 , 7)

Now that you’ve seen how others have tackled the crossover operator,
can you dream up one of your own? This is not an easy task, so congratu-
lations if you can actually invent one! We hope running through a few of

66 CHAPTER 5. GENETIC ALGORITHMS

the alternative operators for the traveling salesman problem has given you
an indication of the scope you can have with genetic algorithm operators.

5.6 Extended mechanisms
For the remainder of this chapter, we are going to discuss various tools
and techniques you can apply to just about any kind of genetic algorithm to
improve its performance.

5.6.1 Elitism
As previously discussed, elitism is a way of guaranteeing that the fittest
members of a population are retained for the next generation. To expand
on this, it can be better to select n copies of the top m individuals of the
population to be retained. It is often find that retaining about 2-5% of the
population size gives good results.

It is worth to note that using elitism works well with just about every
other technique described in this chapter.

5.6.2 Steady state selection
Steady state selection works a little like elitism, except that instead of choos-
ing a small amount of the best individuals to go through to the new gen-
eration, steady state selection retains all but a few of the worst performers
from the current population. The remainder are then selected using muta-
tion and crossover in the usual way. Steady state selection can prove useful
when tackling some problems, but most of the time it s inadvisable to use
it.

5.6.3 Fitness proportionate selection
Selection techniques of this type choose offspring using methods which give
individuals the better chance of being selected the better their fitness score.
Another way of describing it is that each individual has an expected number
of times it will be chosen to reproduce. This expected value equates to the
individual’s fitness divided by the average fitness of the entire population.
So, if you have an individual with a fitness of 6 and the average fitness of

5.6. EXTENDED MECHANISMS 67

the overall population is 4, then the expected number of times the individual
should be chosen is 1.5.

5.6.4 Tournament selection
To use tournament selection, n individuals are selected at random from the
population, and then the fittest of these genomes is chosen to add to the new
population. This process is repeated as many times as is required to create
a new population of genomes. Any individuals selected are not removed
from the population and therefore can be chosen any number of times.

This technique is very efficient to implement because it does not require
any of the preprocessing or fitness scaling sometimes required for roulette
wheel selection and other fitness proportionate techniques. Because of this,
and because it is a darn good technique anyway, you should always try this
method of selection with your own genetic algorithms. The only drawback
is that tournament selection can lead to too quick convergence with some
types of problems. There is an alternative description of this technique: A
random number is generated between 0 and 1. If the random number is
less than a pre-determined constant, for example T (a typical value would
be 0.75), then the fittest individual is chosen to be a parent. If the random
number is greater than T then the weaker individual is chosen. As before,
this is repeated until a new population of the correct size has been spawned.

68 CHAPTER 5. GENETIC ALGORITHMS

Chapter 6

Ant colony optimization
(ACO)

6.1 The biological motivation
The inspiring source of ACO is the pheromone trail laying and following
behavior of real ants which use pheromones as a communication medium.
In analogy to the biological example, ACO is based on the indirect com-
munication of a colony of simple agents, called (artificial) ants, mediated by
(artificial) pheromone trails.

The whole idea of ACO is motivated by observing the behavior of real
(living) ants in the laboratory. In many ant species, individual ants may de-
posit a pheromone (a particular chemical that ants can smell) on the ground
while walking. By depositing pheromone they create a trail that is used, e.g.,
to mark the path from the nest to food sources and back. In fact, by sensing
pheromone trails foragers can follow the path to food discovered by other
ants. Also, they are capable of exploiting pheromone trails to choose the
shortest among the available paths leading to the food. Deneubourg and
his colleagues used a double bridge connecting a nest of ants and a food
source to study pheromone trail laying and following behavior in controlled
experimental conditions. They ran a number of experiments in which they
varied the ratio between the length of the two branches of the bridge. The
most interesting, for our purposes, of these experiments is the one in which
one branch was longer than the other. In this experiment, at the start the

69

70 CHAPTER 6. ANT COLONY OPTIMIZATION (ACO)

ants were left free to move between the nest and the food source and the
percentage of ants that chose one or the other of the two branches was
observed over time. The outcome was that, although in the initial phase
random oscillations could occur, in most experiments all the ants ended up
using the shorter branch.

This result can be explained as follows. When a trial starts there is no
pheromone on the two branches. Hence, the ants do not have a preference
and they select with the same probability either of the two branches. There-
fore, it can be expected that, on average, half of the ants choose the short
branch and the other half the long branch, although stochastic oscillations
may occasionally favor one branch over the other. However, because one
branch is shorter than the other, the ants choosing the short branch are
the first to reach the food and to start their travel back to the nest. But
then, when they make a decision between the short and the long branch,
the higher level of pheromone on the short branch biases their decision
in its favor. Therefore, pheromone starts to accumulate faster on the short
branch which will eventually be used by the great majority of the ants.

It should be clear by now how real ants have inspired AS and later al-
gorithms: the double bridge was substituted by a graph, and pheromone
trails by artificial pheromone trails. Also, because we wanted artificial ants
to solve problems more complicated than those solved by real ants, we gave
artificial ants some extra capacities, like a memory (used to implement con-
straints and to allow the ants to retrace their path back to the nest without
errors) and the capacity for depositing a quantity of pheromone propor-
tional to the quality of the solution produced (a similar behavior is observed
also in some real ants species in which the quantity of pheromone deposited
while returning to the nest from a food source is proportional to the quality
of the food source found).

6.2 The ACO algorithm

Algorithm 4 presents the template algorithm for ACO. First, the pheromone
information is initialized. The algorithm is mainly composed of two iterated
steps: solution construction and pheromone update. An optional daemon
actions can also take place.

6.2. THE ACO ALGORITHM 71

Algorithm 4 Basic scheme of Ant Colony Optimization algorithm
1: Initialize the pheromone trails
2: while stopping condition is not satisfied do
3: for each ant do
4: Construct a solution using pheromone trail
5: end for
6: Update the pheromone trails
7: Execute optional daemon actions
8: end while

6.2.1 The artificial ants

Artificial ants used in ACO are stochastic solution construction procedures
that probabilistically build a solution by iteratively adding solution compo-
nents to partial solutions by taking into account:

• heuristic information on the problem instance being solved, if available,
and

• (artificial) pheromone trails which change dynamically at run-time to
reflect the agents’ acquired search experience.

A stochastic component in ACO allows the ants to build a wide variety of
different solutions and hence explore a much larger number of solutions
than greedy heuristics. At the same time, the use of heuristic information,
which is readily available for many problems, can guide the ants towards
the most promising solutions.

Informally, the behavior of ants in an ACO algorithm can be summa-
rized as follows. A colony of ants concurrently and asynchronously move
through adjacent states of the problem by building paths on some graph G.
They move by applying a stochastic local decision policy that makes use of
pheromone trails and heuristic information. By moving, ants incrementally
build solutions to the optimization problem. Once an ant has built a solution,
or while the solution is being built, the ant evaluates the (partial) solution
and deposits pheromone trails on the components or connections it used.
This pheromone information will direct the search of future ants.

Besides ants’ activity, an ACO algorithm includes two additional proce-
dures: pheromone trail update and optional daemon actions.

72 CHAPTER 6. ANT COLONY OPTIMIZATION (ACO)

6.2.2 Pheromone update and daemon actions

The update of the pheromone is carried out using the generated solutions.
A global pheromone updating rule is applied in two phases:

• Pheromone evaporation is the process by means of which the pheromone
deposited by previous ants decreases over time. From a practical point
of view, pheromone evaporation is needed to avoid a too rapid conver-
gence of the algorithm towards a suboptimal region. It implements a
useful form of forgetting, favoring the exploration of new areas of the
search space.

• A reinforcement phase where the pheromone trail is updated accord-
ing to the generated solutions.

Three different strategies of reinforcement phase may be applied

• Online step-by-step pheromone update: The pheromone trail is up-
dated by an ant at each step of the solution construction

• Online delayed pheromone update: The pheromone update is applied
once an ant generates a complete solution. For instance, each ant will
update the pheromone information with a value that is proportional
to the quality of the solution found. The better the solution found, the
more accumulated the pheromone.

• Off-line pheromone update: The pheromone trail update is applied
once all ants generate a complete solution. This is the most popular
approach.

Daemon actions can be used to implement centralized actions which
cannot be performed by single ants. Examples are the activation of a local
optimization procedure, or the collection of global information that can be
used to decide whether it is useful or not to deposit additional pheromone
to bias the search process from a non-local perspective. As a practical
example, the daemon can observe the path found by each ant in the colony
and choose to deposit extra pheromone on the components used by the ant
that built the best solution. Pheromone updates performed by the daemon
are called off-line pheromone updates.

6.3. AN EXAMPLE OF ACO 73

6.3 An example of ACO
Let us consider the application of ACO algorithms to the TSP problem. De-
signing an ACO algorithm for the TSP needs the definition of the pheromone
trails and the solution construction procedure.

6.3.1 Pheromone trails
A pheromone tij will be associated with each edge (i, j) of the graph G. The
pheromone information can be represented by an n×n matrix T where each
element tij of the matrix expresses the desirability to have the edge (i, j) in
the tour. The pheromone matrix is generally initialized by the same values.
During the search, the pheromone will be updated to estimate the utility of
any edge of the graph.

6.3.2 Solution construction
Each ant will construct a tour in a stochastic way. Given an initial arbitrary
city i, an ant will select the next city j with the probability

Pij =
tij∑
k∈M tik

, for each j ∈M,

where M is the set of all not yet visited cities. The ants use a randomly
selected initial city in the construction phase.

The additional problem-dependent heuristic is defined by considering the
values qij = 1

dij
, where dij represents the distance between the cities i and j.

The higher the heuristic value qij , the shorter the distance dij between cities
i and j. Computing the decision transition probabilities, Pij is performed as
follows:

Pij =
tαijq

β
ij∑

k∈M tαikq
β
ik

, for each j ∈M,

where α and β are controlling parameters. If α = 0, the proposed ACO al-
gorithm will be similar to a stochastic greedy algorithm in which the closest
cities are more likely selected. If β = 0, only the pheromone trails will guide
the search. In this case, a rapid emergence of stagnation may occur where
all ants will construct the same suboptimal tour. Hence, a good trade-off
must be found in using those two kinds of information.

74 CHAPTER 6. ANT COLONY OPTIMIZATION (ACO)

Then, the pheromone update procedure has to be specified. For instance,
each ant will increment the pheromone associated with the selected edges
in a manner that is proportional to the quality of the obtained tour:

tij = tij + δ,

where δ = 1/f , and f is the length of the tour computed by an ant. Then,
good tours will emerge as the result of the cooperation between ants through
the pheromone trails.

6.3.3 Pheromone evaporation
The classical evaporation procedure is applied for the pheromone trails. For
each edge, its pheromone tij will evaporate as follows:

tij = (1− ε)tij ,

where ε ∈ [0, 1] represents the reduction rate of the pheromone.
Initializing the numerous parameters of ACO algorithms is critical. Some

sensitive parameters such as α and β can be adjusted in a dynamic or an
adaptive manner to deal with the classical trade-off between intensification
and diversification during the search. The optimal values for the parame-
ters α and β are very sensitive to the target problem. The number of ants is
not a critical parameter. Its value will mainly depend on the computational
capacity of the experiments.

Chapter 7

Artificial Immune Systems
(AIS)

7.1 Introduction
Immunology is a relatively new science. Its origin is addressed to Edward
Jenner, who discovered, over 200 years ago (in 1796) that the vaccinia, or
cowpox, induced protection against human smallpox, a frequently lethal dis-
ease. Jenner called his process vaccination, an expression that still describes
the inoculation of healthy individuals with weakened, or attenuated samples
of agents that cause diseases, aiming at obtaining protection against these
diseases. When Jenner introduced the vaccination, nothing was known about
the ethnological agent of immunology. Nowadays, humans still do not know
exactly how we fight the pathogens, but much progress has been made
in this matter. This progress lead us to the concept of artificial immune
systems (AIS).

Recently, attention has been drawn to mimic biological immune systems
for the development of novel optimization algorithms. Indeed, the immune
system is highly robust, adaptive, inherently parallel, and self-organized. It
has powerful learning and memory capabilities and presents an evolutionary
type of response to infectious foreign elements. An AIS may be seen as an
adaptive system that is inspired by theoretical immunology and observed
immune processes.

The biological processes that are simulated to design AIS algorithms

75

76 CHAPTER 7. ARTIFICIAL IMMUNE SYSTEMS (AIS)

include pattern recognition, clonal selection for B-cells, negative selection
of T cells, affinity maturation, danger theory, and immune network theory.
In this chapter we will focus on clonal selection algorithm, which is highly
related to the genetic algorithms.

It should be noted that as Artificial Immune Systems is still a young and
evolving field, there is not yet a fixed algorithm template.

7.2 Natural immune system
The main purpose of the immune system is to keep the organism free from
pathogens that are unfriendly foreign microorganisms, cells, or molecules.
The immune system is a complex set of cells, molecules, and organs that
represents an identification mechanism capable of perceiving and combat-
ing a dysfunction from our own cells (infectious self), such as tumors and
cancerous cells, and the action of exogenous microorganisms (infectious
non-self). In the surface of pathogens like viruses, fungi, bacteria, and par-
asites, there are antigens (Ag) that simulate the immune responses. Antigens
represent substances such as toxins or enzymes in the microorganisms that
the immune system considers foreign. There exist two types of immunities:
the innate immune system and the adaptive immune system.

The innate immune system plays a crucial role in the initiation and
regulation of immune responses. The innate system is called so because
the body is born with the ability to recognize a microbe and destroy it im-
mediately. It protects our body from nonspecific pathogens.

The adaptive immune system completes the innate one and removes
the specific pathogens that persist to it. The adaptive immunity is made
essentially by lymphocytes, a certain type of white blood cells that has two
types of cells: the B cells and the T cells. These cells are responsible for
recognizing and destroying any antigen.

7.2.1 The cells of immune system
The immune system is composed of a great variety of cells that are origi-
nated in the bone marrow, where plenty of them mature. From the bone
marrow, they migrate to patrolling tissues, circulating in the blood and lym-
phatic vessels. Some of them are responsible for the general defense,
whereas others are “trained” to combat highly specific pathogens. For an

7.2. NATURAL IMMUNE SYSTEM 77

efficient functioning, a continuous cooperation among the agents (cells) is
necessary.

Lymphocytes are small leukocytes that possess a major responsibility
in the immune system. There are two main types of lymphocytes: B lym-
phocyte (or B cell), which, upon activation, differentiate into plasmocyte
(or plasma cells) capable of secreting antibodies; and T lymphocyte (or T
cell). Most of the lymphocytes is formed by small resting cells, which only
exhibit functional activities after some kind of interaction with the respec-
tive antigens, necessary for proliferation an specific activation. The B and
T lymphocytes express, on their surfaces, receptors highly specific for a
given antigenic determinant. The B cell receptor is a form of the antibody
molecule bound to the membrane, and which will be secreted after the cell
is appropriately activated.

B cells and antibodies

The main functions of the B cells include the production and secretion of
antibodies (Ab) as a response to exogenous proteins like bacteria, viruses
and tumor cells. Each B cell is programmed to produce a specific antibody.
The antibodies are specific proteins that recognize and bind to another par-
ticular protein. The production and binding of antibodies is usually a way
of signaling other cells to kill, ingest or remove the bound substance. As
the antibody molecule represents one of the most important recognition
devices of the immune system.

T cells

The T cells are called so because they mature within the thymus. Their
function include the regulation of other cells’ actions and directly attack the
host infected cells. The T lymphocytes can be subdivided into three major
subclasses: T helper cells (Th), cytotoxic (killer) T cells and suppressor T
cells. The T helper cells, or Th cells for short, are essential to the activation
of the B cells, other T cells, macrophages and natural killer (NK) cells. They
are also known as CD4 or T4 cells. The killer T cells, or cytotoxic T cells, are
capable of eliminating microbial invaders, viruses or cancerous cells. Once
activated and bound to their ligands, they inject noxious chemicals into the
other cells, perforating their surface membrane and causing their destruc-
tion. The suppressor T lymphocytes are vital for the maintenance of the

78 CHAPTER 7. ARTIFICIAL IMMUNE SYSTEMS (AIS)

immune response. They are sometimes called CD8 cells, and inhibit the ac-
tion of other immune cells. Without their activity, immunity would certainly
loose control resulting in allergic reactions and autoimmune diseases. The T
cells work, primarily, by secreting substances, known as cytokines or, more
specifically, lymphokines and their relatives, the monokines produced by
monocytes and macrophages. These substances constitute powerful chem-
ical messengers. The lymphokines promote cellular growth, activation and
regulation. In addition, lymphokines can also kill target cells and stimulate
macrophages.

Natural killer cells

The natural killer cells (NK) constitute another kind of lethal lymphocytes.
Like the killer T cells, they contain granules filled with powerful chemi-
cals. They are designated natural killers because, unlike the killer T cells,
they do not need to recognize a specific antigen before they start acting.
They attack mainly tumors and protect against a great variety of infectious
microbes. These cells also contribute to the immune regulation, secreting
large amounts of lymphokines.

7.2.2 How it all works?
As discussed previously, our body is protected by a diverse army of cells
and molecules that work in concert with each other, where the ultimate
target of all immune responses is an antigen (Ag), which is usually a foreign
molecule from a bacterium or other invader.

Specialized antigen presenting cells (APCs), such as macrophages, roam
the body, ingesting and digesting the antigens they find and fragmenting
them into antigenic peptides. Pieces of these peptides are joined to major
histocompatibility complex (MHC) molecules and are displayed on the sur-
face of the cell. Other white blood cells, called T cells or T lymphocytes,
have receptor molecules that enable each of them to recognize a differ-
ent peptide-MHC combination. T cells activated by that recognition divide
and secrete lymphokines, or chemical signals, that mobilize other compo-
nents of the immune system. The B lymphocytes, which also have receptor
molecules of a single specificity on their surface, respond to those signals.
Unlike the receptors of T cells, however, those of B cells can recognize parts
of antigens free in solution, without MHC molecules. When activated, the

7.3. THE CLONAL SELECTION PRINCIPLE 79

B cells divide and differentiate into plasma cells that secrete antibody pro-
teins, which are soluble forms of their receptors. By binding to the antigens
they find, antibodies can neutralize them or precipitate their destruction by
complement enzymes or by scavenging cells. Some T and B cells become
memory cells that persist in the circulation and boost the immune system’s
readiness to eliminate the same antigen if it presents itself in the future.
Because the genes for antibodies in B cells frequently suffer mutation and
editing, the antibody response improves after repeated immunizations, this
phenomenon is called affinity maturation.

Through the recognition and distinction of specific molecular patterns,
the antibodies play a central role in the immune system. Antigens are di-
verse in structure, forcing the antibody repertoire to be large. The genetic
information necessary to code for this exceedingly large number of differ-
ent, but related, proteins is stored in the genome of a germline cell and
transmitted through generations.

7.3 The clonal selection principle
The clonal selection principle is the algorithm used by the immune system
to describe the basic features of an immune response to an antigenic stim-
ulus. It establishes the idea that only those cells that recognize the antigens
proliferate, thus being selected against those which do not. Clonal selec-
tion operates on both T cells and B cells. The immune response occurs
inside the lymph nodes and the clonal expansion of the lymphocytes occurs
within the germinal centers (GCs), in the follicular region of the white pulp,
which is rich in antigen presenting cells. When an animal is exposed to an
antigen, some subpopulation of its bone marrow’s derived cells (B lympho-
cytes) respond by producing antibodies. Each cell secretes only one kind of
antibody, which is relatively specific for the antigen. By binding to these im-
munoglobulin receptors, with a second signal from accessory cells, such as
the T-helper cell, an antigen stimulates the B cell to proliferate (divide) and
mature into terminal (non-dividing) antibody secreting cells, called plasma
cells. While plasma cells are the most active antibody secretors, large B
lymphocytes, which divide rapidly, also secrete Ab, albeit at a lower rate.
While B cells secrete Ab, T cells do not secrete antibodies, but play a cen-
tral role in the regulation of the B cell response and are preeminent in cell
mediated immune responses. Lymphocytes, in addition to proliferating or
differentiating into plasma cells, can differentiate into long-lived B memory

80 CHAPTER 7. ARTIFICIAL IMMUNE SYSTEMS (AIS)

cells. Memory cells circulate through the blood, lymph and tissues, proba-
bly not manufacturing antibodies, but when exposed to a second antigenic
stimulus commence differentiating into large lymphocytes capable of pro-
ducing high affinity antibody, preselected for the specific antigen that had
stimulated the primary response. The main features of the clonal selection
theory are:

• the new cells are copies of their parents (clone) subjected to a mutation
mechanism with high rates (somatic hypermutation),

• elimination of newly differentiated lymphocytes carrying self-reactive
receptors,

• proliferation and differentiation on contact of mature cells with anti-
gens;

• the persistence of forbidden clones, resistant to early elimination by
self-antigens, as the basis of autoimmune diseases.

The analogy with natural selection should be obvious, the fittest clones
being the ones that recognize antigen best or, more precisely, the ones that
are triggered best. For this algorithm to work, the receptor population or
repertoire, has to be diverse enough to recognize any foreign shape. A
mammalian immune system contains an heterogeneous repertoire of ap-
proximately 1012 lymphocytes in human, and a resting (unstimulated) B cell
may display around 105–107 identical antibody-like receptors. The repertoire
is believed to be complete, which means that it can recognize any shape.

7.3.1 Hypermutation
In a T cell dependent immune response, the repertoire of antigen-activated B
cells is diversified basically by two mechanisms: hypermutation and receptor
editing. Only high-affinity variants are selected into the pool of memory
cells. This maturation process takes place in a special micro environment
called germinal center (GC).

Antibodies present in a memory response have, on average, a higher
affinity than those of the early primary response. This phenomenon, which
is restricted to T-cell dependent responses, is referred to as the maturation
of the immune response. This maturation requires that the antigen binding
sites of the antibody molecules in the matured response be structurally dif-
ferent from those present in the primary response. Three different kinds of

7.3. THE CLONAL SELECTION PRINCIPLE 81

mutational events have been observed in the antibody V-region: point muta-
tions, short deletions, and non-reciprocal exchange of sequence following
gene conversion (repertoire shift).

Random changes are introduced into the variable region genes and oc-
casionally one such change will lead to an increase in the affinity of the
antibody. It is these higher-affinity variants which are then selected to enter
the pool of memory cells. Not only the repertoire is diversified through a
hypermutation mechanism but, in addition, mechanisms must exist such that
rare B cells with high affinity mutant receptors can be selected to dominate
the response. Due to the random nature of the somatic mutation process,
a large proportion of mutating genes become non-functional or develop
harmful anti-self specificities. Those cells with low affinity receptors, or the
self-reactive cells, must be efficiently eliminated (or become anergic) so that
they do not significantly contribute to the pool of memory cells. How B
cells with compromised antigen binding abilities are eliminated is not fully
understood. Apoptosis in the germinal centers is likely. Apoptosis is a subtle
cell death process, often equated with programmed cell death.

The analysis of the development of the antibody repertoire expressed
on B cells in the germinal center has clearly demonstrated the key role
that these structures play in the maturation of the immune response. Both
processes are of vital importance for the maturation — hypermutation of
the variable region and selection of higher-affinity variants. The increase
in antibody affinity from the primary to the secondary response, and so on,
shows that maturation of the immune response is a continuous process.

A hypermutation mechanism is quite rapid. On average one mutation
per cell division will be introduced. A rapid accumulation of mutations is
necessary for a fast maturation of the immune response, but the majority
of the changes will lead to poorer or non-functional antibodies. If a cell that
has just picked up a useful mutation continues to be mutated at the same
rate during the next immune responses, then the accumulation of delete-
rious changes may cause the loss of the advantageous mutation. Thus, a
short burst of somatic hypermutation, followed by a breathing space to al-
low for selection and clonal expansion, may form the basis of the maturation
process. The selection mechanism may provide a means by which the regu-
lation of the hypermutation process is made dependent on receptor affinity.
Cells with low affinity receptors may be further mutated and, as a rule, die
through apoptosis. In cells with high-affinity antibody receptors however,
hypermutation may be inactivated.

82 CHAPTER 7. ARTIFICIAL IMMUNE SYSTEMS (AIS)

7.3.2 The clonal selection vs. genetic algorithms

The clonal selection functioning of the immune system reveals it to be a
remarkable microcosm of Charles Darwin’s law of evolution, with the three
major principles of repertoire diversity, variation and natural selection, each
playing an essential role. Repertoire diversity is evident in that the immune
system produces far more antibodies than will be effectively used in binding
with an antigen. In fact, it appears that the majority of antibodies produced
do not play any active role whatsoever in the immune response. As previ-
ously discussed, natural variation is provided by the variable gene regions
responsible for the production of highly diverse population of antibodies,
and selection occurs, such that only antibodies able to successfully bind with
an antigen will reproduce and maintained as memory cells. The similarity
between adaptive biological evolution and the production of antibodies is
even more striking when one considers that the two central processes in-
volved in the production of antibodies, genetic recombination and mutation,
are the same ones responsible for the biological evolution of sexually re-
producing species. The recombination and editing of immunoglobulin genes
underlies the large diversity of the antibody population, and the mutation of
these genes serves as a fine-tuning mechanism (see Section 4). In sexually
reproducing species, the same two processes are involved in providing the
variations on which natural selection can work to fit the organism to the
environment (Holland, 1995). Thus, cumulative blind variation and natural
selection, which over many millions of years resulted in the emergence
of mammalian species, remain crucial in the day-by-day ceaseless battle to
survival of these species. It should also be noted that recombination of im-
munoglobulin genes involved in the production of antibodies differs some-
what from the recombination of parental genes in sexual reproduction. In
the former, nucleotides can be inserted and deleted at random from recom-
bined immunoglobulin gene segments and the latter involves the crossing-
over of parental genetic material, generating an offspring that is a genetic
mixture of the chromosomes of its parents. Whereas adaptive biological
evolution proceeds by cumulative natural selection among organisms, re-
search on the immune system has now provided the first clear evidence
that ontogenetic adaptive change can be achieved by cumulative blind vari-
ation and selection within organisms. The natural selection can be seen to
act on the immune system at two levels. First, on multiplying lymphocytes
for selection of higher affinity clones for reaction with pathogenic microbes.
Second, on multiplying people for selection of the germ-line genes that are

7.4. AN EXAMPLE OF THE CLONAL SELECTION ALGORITHM (CSA)83

most able to provide maximal defense against infectious diseases coupled
with minimal risk of autoimmune disease.

7.4 An example of the clonal selection algorithm
(CSA)

Figure 7.1: Trade-off between the speed of the maturation of the population
and the clone size, for the TSP

The clonal selection principle is used by the immune system to describe
the basic features of an immune response to an antigenic stimulus. It estab-
lishes the idea that only those cells that recognize the antigens proliferate,
thus being selected against those which do not. The selected cells are subject
to an affinity maturation process, which improves their affinity to the selec-
tive antigens. In this section, we present a the clonal selection algorithm,
which takes into account the affinity maturation of the immune response.
The algorithm is capable of solving TSP problem. The main immune aspects
taken into account in the CSA are as follows:

• maintenance of the memory cells functionally disconnected from the

84 CHAPTER 7. ARTIFICIAL IMMUNE SYSTEMS (AIS)

repertoire,

• selection and cloning of the most stimulated individuals,

• death of non-stimulated cells,

• affinity maturation and re-selection of the higher affinity clones,

• generation and maintenance of diversity, and

• hypermutation proportional to the cell affinity.

The algorithm works as follows depicted in Algorithm 5.

Algorithm 5 Basic scheme of CSA algorithm
1: Generate a set of candidate solutions, composed of the subset of memory

cells added to the remaining population.
2: while solution is not found do
3: Determine them best individuals of the population, based on an affinity

measure.
4: Clone (reproduce) these m best individuals of the population, giving

rise to a temporary population of clones. The clone size is an increas-
ing function of the affinity measure of the antigen.

5: Submit the population of clones to a hypermutation scheme, where
the hypermutation is proportional to the affinity of the antibody. A
maturated antibody population is generated.

6: Re-select the improved individuals from matured antibody population
to compose the memory set. Some members of the population can be
replaced by other improved members of matured antibody population.

7: Replace low affinity antibodies of the population, maintaining its diver-
sity.

8: end while

The algorithm was allowed to run 20 generations, with a population of
size M = 10. In the Figure 7.1 we present the trade-off between the speed
of the repertoire maturation and the clone size, for the TSP problem. The
maximum, minimum and mean values, taken over ten runs are presented.
We can notice that, the larger the clone size, i.e., the size of the intermediate
population of clones, the faster the reach of local optima.

7.4. AN EXAMPLE OF THE CLONAL SELECTION ALGORITHM (CSA)85

Figures 7.2–7.7 presents how the immune algorithm evolves the best
solution for a population of 300 individuals, with a rate of 20% of newcomers.
In this case, low affinity individuals are allowed to enter the repertoire after
each 20 generations. This scheduling is supposed to leave a breathing space
to allow for the achievement of local optima, followed by the replacement
of the poorer ones.

Figure 7.2: Solution obtained at 10th generation of the CSA for exemplary
TSP instance

86 CHAPTER 7. ARTIFICIAL IMMUNE SYSTEMS (AIS)

Figure 7.3: Solution obtained at 50th generation of the CSA for exemplary
TSP instance)

Figure 7.4: Solution obtained at 100th generation of the CSA for exemplary
TSP instance)

7.4. AN EXAMPLE OF THE CLONAL SELECTION ALGORITHM (CSA)87

Figure 7.5: Solution obtained at 200th generation of the CSA for exemplary
TSP instance)

Figure 7.6: Solution obtained at 250th generation of the CSA for exemplary
TSP instance)

88 CHAPTER 7. ARTIFICIAL IMMUNE SYSTEMS (AIS)

Figure 7.7: Solution obtained at 300th generation of the CSA for exemplary
TSP instance)

Chapter 8

Further reading

Anyone who wants to improve oneself skills in the topics discussed in this
book should consider visiting library for good literature. In the following
text we will propose some books and papers that deal with particular topics
considered within this book. First of all, the best (in our opinion) book that
deals with Nature-inspired methods of problem is [Tal09]. Some results can
be also found in [AL97] and [dC06].

Regarding the optimization itself, we may refer the reader to the books
[Bel57], [Ber04], [APP06], and [Ata99]. More advanced topics can be found
in [Mie99], [Ehr05], [Apt03], and [DV99].

There are not so many books that deal with the Computational Com-
plexity Theory. Historically the first results are in [Kar72]. One of the first
books is [GJ79], however, it may be difficult to obtain it. For quite clear and
complete presentation we refer the reader to the book [Weg05]. The most
complete, however, somehow difficult to read (at least for us) is the book
[Pap94]

The simulated annealing algorithm was introduced in [KGV83]. Some
good texts regarding this topic can found in [AK89], [AL87], and [Aze92].
Similarly, the tabu search method was introduced in [Glo89] and [Glo90].
Good books that deal with tabu search are: [Gen02], [Glo96], and [Vos93].

The genetic algorithms are based on the theory of evolution introduced
by Charles Darwin in [Dar59], whereas algorithms were introduced by Hol-
land in [Hol75], and extended by his student in [Gol89]. There are large
number of publications regarding GA method. We can advise the following
book to read: [BFM00], [CVL02]. More popular-science approach can be

89

90 CHAPTER 8. FURTHER READING

found in [Daw86].
Topics considered in this book regarding Ant Colony Optimization are

more precisely described in [DB05], and [DS01]. Advanced topics in this
matter are covered by [BM08] and [BDT99].

Finally, the good books regarding Artificial Immune Systems are [Das99]
and [dCT99]. The background on the CSA algorithm is precisely presented
in [Bur59].

Bibliography

[AK89] E. H. L. Aarts and J. Korst. Simulated Annealing and Boltzmann
Machines. Wiley, 1989.

[AL87] E. H. L. Aarts and R. J. M.Van Laarhoven. Simulated Annealing:
Theory and Applications. Reidel, Dordrecht„ 1987.

[AL97] E. H. L. Aarts and J. K. Lenstra. Local Search in Combinatorial
Optimization. Wiley, 1997.

[APP06] G. Appa, L. Pitsoulis, and H. P.Williams. Handbook on Modeling
for Discrete Optimization. Springer, 2006.

[Apt03] K. Apt. Principles of Constraint Programming. Cambridge Uni-
versity Press, 2003.

[Ata99] M. J. Atallah. Handbook of Algorithms and Theory of Computing.
CRC Press, 1999.

[Aze92] R. Azencott. Simulated Annealing: Parallelization Techniques.
Wiley, New York, 1992.

[BDT99] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence:
From Natural to Artificial Systems. Oxford University Press, 1999.

[Bel57] R. Bellman. Dynamic Programming. Princeton University Press,
1957.

[Ber04] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Bel-
mont, 2004.

91

92 BIBLIOGRAPHY

[BFM00] T. Back, D. B. Fogel, and T. Michalewicz. Evolutionary Computa-
tion: Basic Algorithms and Operators. Institute of Physics Pub-
lishing, 2000.

[BM08] C. Blum and D. Merkle. Swarm Intelligence: Introduction and
Applications. Springer, 2008.

[Bur59] F. M. Burnet. The Clonal Selection Theory of Acquired Immunity.
University Press, Cambridge, 1959.

[CVL02] C. A. C. Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolution-
ary Algorithms for Solving Multi-Objective Optimization Prob-
lems. Kluwer Academic Publishers, 2002.

[Dar59] C. Darwin. On the Origin of Species by Means of Natural Selec-
tion. John Murray, London, 1859.

[Das99] D. Dasgupta. Artificial Immune Systems and Their Applications.
Springer, 1999.

[Daw86] R. Dawkins. The Blind Watchmaker. Longman, 1986.

[DB05] M. Dorigo and C. Blum. Ant colony optimization theory: A survey.
Theoretical Computer Science, 344:243–278, 2005.

[dC06] L. N. de Castro. Fundamentals of Natural Computing. Chapman
& Hall, 2006.

[dCT99] L. N. de Castro and J. I. Timmis. Artificial Immune Systems: A
New Computational Intelligence Approach. Springer, 1999.

[DS01] M. Dorigo and T. Stutzle. The ant colony optimization metaheuris-
tic: Algorithms, applications and advances. Handbook of Meta-
heuristics, pages 251–285, 2001.

[DV99] A. Dean and D. Voss. Design and Analysis of Algorithms. Springer,
1999.

[Ehr05] M. Ehrgott. Multicriteria Optimization. Springer, 2005.

[Gen02] M. Gendreau. An introduction to tabu search. In Handbook of
Metaheuristics. Kluwer, 2002.

BIBLIOGRAPHY 93

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, 1979.

[Glo89] F. Glover. Tabu search. Part I. ORSA Journal on Computing, 1:190–
206, 1989.

[Glo90] F. Glover. Tabu search. Part II. ORSA Journal on Computing,
2:4–32, 1990.

[Glo96] F. Glover. Tabu search and adaptive memory programming. In
Advances, Applications and Challenges. Kluwer, 1996.

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

[Hol75] J. H. Holland. Adaptation in Natural and Artificial Systems. Uni-
versity of Michigan Press, 1975.

[Kar72] R.M. Karp. Reducibility among combinatorial problems. in: R.E.
Miler, J.W. Ratcher (eds), Complexity of Computer Computations,
Plenum Press, NY, pages 85–103, 1972.

[KGV83] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimisation by simu-
lated annealing. Science, 220:671–680, 1983.

[Mie99] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer,
1999.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison
Wesley, 1994.

[Tal09] El-Ghazali Talbi. Metaheuristics. From desing to implementation.
A John Wiley and Sons, Inc., 2009.

[Vos93] S. Voss. Tabu search: Applications and prospects. In Network
Optimization Problems. World Scientific, USA, 1993.

[Weg05] Ingo Wegener. Complexity Theory. Exploring the Limits of Effi-
cient Algorithms. Springer, 2005.

	Contents
	Glossary
	Chapter 1. Introduction
	Chapter 2. Combinatorial optimization
	2.1 Introduction
	2.2 Examples of combinatorial problems
	2.3 Introduction to Computational Complexity Theory
	2.3.1 Complexity of algorithms
	2.3.2 Complexity of problems

	2.4 Combinatorial optimization methods
	2.4.1 Exact methods
	2.4.2 Approximation and heuristic algorithms

	Chapter 3. Simulated annealing and its extensions
	3.1 Introduction
	3.2 Simulated annealing (SA)
	3.2.1 Solutions representation and perturbations
	3.2.2 Annealing schemes

	3.3 An example of simulated annealing algorithm
	3.3.1 Solution perturbation

	3.4 Temperature change
	3.5 Main loop of the algorithm
	3.6 Sample run of the algorithm
	3.7 Modifications of simulated annealing
	3.7.1 Threshold accepting (TA)
	3.7.2 Record-to-record travel (RRT)
	3.7.3 Great deluge algorithm (GDA)
	3.7.4 Demon algorithm (DA)

	3.8 Conclusions

	Chapter 4. Tabu search (TS)
	4.1 Introduction
	4.2 Short-term memory
	4.3 Long-term memory
	4.4 Medium-term memory
	4.5 Example algorithm
	4.5.1 Solution representation
	4.5.2 Initial solution
	4.5.3 Neighborhood
	4.5.4 Tabu list
	4.5.5 Aspiration criterion
	4.5.6 Diversification
	4.5.7 Halting

	4.6 Conclusiuons

	Chapter 5. Genetic algorithms
	5.1 Introduction
	5.2 Natural selection and mutation in Nature
	5.3 Evolution as a paradigm for problem solving
	5.4 General scheme of a genetic algorithm
	5.4.1 Population size
	5.4.2 Population initialization
	5.4.3 Fitness evaluation
	5.4.4 Selection
	5.4.5 Crossover operations
	5.4.6 Mutation operations
	5.4.7 Halting

	5.5 An Example of the Genetic Algorithm
	5.5.1 Basics notion and the traps we have to avoid
	5.5.2 Partially-Mapped Crossover
	5.5.3 The exchange mutation (EM)
	5.5.4 Deciding on a fitness function
	5.5.5 Selection
	5.5.6 Alternative operators for the TSP

	5.6 Extended mechanisms
	5.6.1 Elitism
	5.6.2 Steady state selection
	5.6.3 Fitness proportionate selection
	5.6.4 Tournament selection

	Chapter 6. Ant colony optimization (ACO)
	6.1 The biological motivation
	6.2 The ACO algorithm
	6.2.1 The artificial ants
	6.2.2 Pheromone update and daemon actions

	6.3 An example of ACO
	6.3.1 Pheromone trails
	6.3.2 Solution construction
	6.3.3 Pheromone evaporation

	Chapter 7. Artificial Immune Systems (AIS)
	7.1 Introduction
	7.2 Natural immune system
	7.2.1 The cells of immune system
	7.2.2 How it all works?

	7.3 The clonal selection principle
	7.3.1 Hypermutation
	7.3.2 The clonal selection vs. genetic algorithms

	7.4 An example of the clonal selection algorithm (CSA)

	Chapter 8. Further reading
	Bibliography

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 None
 Down
 28.3465
 14.1732

 Both
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 8
 93
 92
 93

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move right by 14.17 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Right
 14.1732
 14.1732

 Odd
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 8
 93
 92
 47

 1

 HistoryItem_V1
 TrimAndShift

 Range: all even numbered pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move left by 14.17 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Left
 14.1732
 14.1732

 Even
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 9
 93
 91
 46

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 20.00, distance 10.00 (points)
 Add frames around each page: no
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 50 down, columns 50 across
 Align: centre
 Registration colour: All separations
 PDF/X handling: Ignore PDF/X
 Annotations and form fields: UNKNOWN

 0.0000
 Prompt
 10.0001
 20.0001
 1
 Corners
 0.2999
 ToFit
 50
 50
 1.2000
 FormsAndFields
 0
 0
 1
 0.0000
 0
 IgnoreAll

 D:20110728155012
 841.8898
 a4
 Blank
 595.2756

 Tall
 886
 110

 0.0000
 AllSeps
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

