

Projekt współfinansowany ze środków Unii Europejskiej w ramach
Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Wrocław University of Technology

Advanced Informatics and Control

D. P. Goodall, O. C. L. Haas

SIGNAL AND IMAGE

PROCESSING
Developing

Wrocław 2011

�
�

�������	
��������	��	����������	
�
�
�
�

�������	�����������	���	�������	
�
�
�

��	��	������� 	!�	��	"�	#���	

	
$��%�"	�%�	�&��'	

�(!�'$$�%�	
�����)���	'�����	����������	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������	*+,,

�
�

������	
�������������������������������
����	��
�������������

�
�

��������s�� ���
�!"�#$��
�%
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

&'#(�)*+,+-,.��)+,+),*�
�
�

/$���
�0���/�&(�/1/�23045����"��������"���

Preface

This book is one of a series of Masters level monographs, which have been
produced for taught modules within a common course designed for Advanced
Informatics and Control. The new common course development forms a collab-
oration between Coventry University, United Kingdom, and Wroclaw University
of Technology, Poland. The new course recognises the complexity of new and
emerging advanced technologies in informatics and control, and each text is
matched to the topics covered in an individual taught module. The source
of much of the material contained in each text is derived from lecture notes,
which have evolved over the years, combined with illustrative examples, which
may well have been used by many other authors of similar texts. Whilst the
sources of the material may be many, any errors that may be found are the sole
responsibility of the authors.

Most forms of communication are usually performed using signals that are
transmitted electronically. Such signals, which, for example, may be speech
signals or image signals, often need to be processed to achieve some desired
objective. Hence, the importance of methods for processing signals. In this
text, we consider only certain aspects of signal processing, including speech
processing, and discuss in detail some methods of image processing. Much of
the work on image processing is based on using the computer software package
MATLAB� and the Image Processing Toolbox.

Outline of the book

The material in this book has been developed for a set of eleven lecture/ tutorial
(weekly) sessions. A possible teaching strategy, comprising the main topic areas,
is listed in the following two tables; one table for speech processing and one table
for image processing.

Lecture Topic

Signal Processing
Signal processing concepts and discrete-time analysis

1 Classification of signals and systems; convolution;
linear models; review of z-transform and properties.

Discrete-time system responses

2 Inverse z-transforms; impulse and step responses;
causality; system function; BIBO stability.

Spectral analysis

3 Frequency and steady-state response for discrete-time
systems; Fourier transform and properties;
Fourier transform of periodic signals.

4 Sampling theorem and aliasing; discrete Fourier transform;
discrete spectra; digital filters and windows.

Random discrete-time processes

5 Random processes; autocorrelation and cross-correlation
functions; white-noise process; response of linear systems
with random inputs.

6a Power spectral density; cross spectral density;
application to response of linear, time-invariant filters;
system identification; speech quantization and encoding.

Lecture Topic

Image Processing
Image processing concepts and fundamentals

6b Digital image processing fundamentals; sampling and
quantization.

7 Image enhancement; histogram processing; types of noise.

8 Smoothing and sharpening filters; low pass, high pass
filtering; region-oriented segmentation.

9 Mathematical morphology; relationship between pixels;
point, line, edge and combined detection.

10 Case study 1: Automatic organ segmentation on CT
images.

11 Case study 2: Target tracking using mathematical
morphology.

The principal material of this book is composed of two parts. The first
part considers important aspects of signal processing, whilst the second part
introduces some specialised techniques for image processing.
In the first part, Chapter 1 introduces the main concepts of signals and

linear systems. Also, since ‘real-life’ signals contain some random components
and are not precisely known, in general, random signals (usually known as
stochastic signals) are defined and some examples of well-known deterministic
signals are presented. Such ‘real-life’ signals are often composed of more than
one signal. Simplistically, the composition may be modelled in an additive
fashion. However, in practice, some signals are composed through convolution
and this process is explained, together with its properties, in Chapter 1.
Chapter 2 introduces discrete linear models and filters, through difference

equations. An analysis tool for discrete-time analysis, namely the z-transform,
is presented and some properties of the z-transform are studied. Using the z-
transform, the discrete-time system response to a unit impulse sequence and
the unit step sequence is investigated. The concept of a system function is in-
troduced and, since stability of systems and filters is important, bounded-input
bounded-output stability is discussed. Also, definitions of causality and finite
impulse response/ infinite impulse response of systems and filters are provided.
Finally, in this chapter, an application to speech production models for speech
processing is presented.
As well as investigating systems/ filters in the time-domain, a frequency-

domain approach can be used. Chapter 3 provides a study on frequency-domain
techniques, utilising the frequency response function for a linear system, which
can be applied to estimating the steady-state response of a system or filter.
Using the Fourier transform, a sampling process is investigated and the so-
called ‘aliasing’ problem analysed. Discrete Fourier transform and spectra are
defined, as well as the power spectrum. Finally, Chapter 3 discusses the role of
digital filters with respect to frequency components of the output signal, and
the use of windows in the time-domain.
As signals are usually contaminated by noise, which may be a random sig-

nal, a study of the response of a linear system to random inputs is important.
Chapter 4 introduces some special functions used for the analysis of systems with
random inputs. Moreover, in many applications, autoregressive models are ap-
propriate and, for such models, linear predictive filters can be used to identify
the parameters of the model. These linear predictive filters are also studied in
Chapter 4, and an application to speech processing is given. The power spectral
density of a signal is defined and utilised for investigating the response of linear
systems. Finally, in Chapter 4, speech quantization and encoding is studied.

In the second part of the book, a practical approach to digital image process-
ing, with a minimal amount of mathematical derivations, is presented. Readers
with a mathematical background and interested in the mathematical under-
pinning of specific techniques will be referred to one of the following books
that were used to support the material presented in Part II: [Sonka et al., 1999,
Nixon and Alberto, 2002, Forsyth and Ponce, 2003, Bernd, 2004] and, in ad-
dition, [Bovik, 2005]. In this second part of the book on image processing,
[Gonzalez et al., 2004] is used as the main reference for some of the MATLAB�-
based examples and explanations. The work, underpinning some the medical
applications and research examples described in this book, can be found in the
Part II of [Haas and Burnham, 2008].

Acknowledgements

With regard to Part I on Signal Processing, David Goodall is indebted to col-
leagues and students of Coventry University (U.K.) who helped him, directly
or indirectly, in the preparation of this book; in particular, he would like to
mention Mike Chapman (at Coventry University). In addition, David Goodall
would like to give special thanks to Mike Herring, formerly of Cheltenham and
Gloucester College of Higher Education (U.K.), during initial exploratory ex-
cursions into Speech Processing. Furthermore, David Goodall acknowledges the
support given by his wife, Alison, and his three daughters, Tanja, Emma and
Fiona, whilst preparing this book.
With regard to the Part II on Image Processing, Olivier Haas acknowledges

the support given by his wife, who had to cope with their young children, whilst
he was busy preparing the chapters for this book.

Contents

Preface iii
Outline of the book . iii
Acknowledgements . vii

Glossary xv
Nomenclature . xv
Useful MATLAB� commands for image processing xix

List of figures xxvi

List of tables xxvii

I Signal Processing 1

1 Signals and systems 3
1.1 Introduction . 3
1.2 Classification of signals and systems 3
1.3 Deterministic/stochastic signals 6
1.4 Convolution of signals . 6
1.5 Exercises . 12

2 System models, responses and the system function 15
2.1 Introduction . 15
2.2 Discrete linear models and filters 15
2.3 z-transforms . 16

2.3.1 z-transform of a sequence 16
2.3.2 The inverse z-transform 21

ix

2.4 Solution of linear difference equations with constant coefficients 25
2.5 Discrete-time system responses 26

2.5.1 The impulse response . 27
2.5.2 Causality, FIR/IIR systems/filters and the system function 28
2.5.3 The step response . 30

2.6 A voiced/unvoiced speech production model for speech processing 32
2.6.1 Physiological aspects of speech production 33
2.6.2 Lossless tube model [optional] 34
2.6.3 Digital speech production model 36

2.7 System function and BIBO stability 38
2.8 Exercises . 39

3 Frequency response, Fourier spectra and sampling 45
3.1 Introduction . 45
3.2 Frequency and steady-state response 46
3.3 The Fourier transform . 55

3.3.1 Properties of the Fourier transform 57
3.3.2 Fourier transform of power signals 59
3.3.3 Fourier transforms of periodic signals 60

3.4 The sampling theorem and aliasing 63
3.5 The discrete Fourier transform (DFT) 68
3.6 Discrete spectra . 71

3.6.1 Power spectrum . 74
3.7 Digital filters . 75
3.8 Windows . 77
3.9 Exercises . 82

4 Response of linear systems to random inputs 89
4.1 Introduction . 89
4.2 Random processes . 89
4.3 Autocorrelation/autocovariance functions 91

4.3.1 Properties of the autocorrelation function 92
4.3.2 Pitch period estimation for voiced speech 96

4.4 Cross-correlation and cross-covariance functions 100
4.4.1 Properties of the cross-correlation function 100

4.5 White-noise process . 101
4.6 AR models and linear predictive filters 102

4.6.1 Estimation of prediction coefficients for a speech signal
and the speech gain parameter 107

4.6.2 Formant estimation for voiced speech 108
4.7 Response of linear time-invariant systems with random inputs . 109
4.8 Power spectral density . 117
4.9 Response of a linear, time-invariant filter 120
4.10 Application to system identification 124
4.11 Speech quantization and encoding 125

4.11.1 Pulse code modulation (PCM) 125
4.11.2 Differential pulse code modulation (DPCM) 127
4.11.3 Response of linear filters to quantization noise 128

4.12 Exercises . 130

II Image Processing 135

5 Digital image processing fundamentals 137
5.1 Introduction . 137
5.2 Image representation . 138
5.3 Type of images with MATLAB� 140
5.4 Converting data classes and image types 141

5.4.1 Data types and conversions 141
5.4.2 Image types and conversions 142

5.5 Reading and writing images . 144
5.5.1 Reading and writing DICOM images 147

5.6 Manipulating images obtained from movies in MATLAB� . . . 149
5.7 Displaying images with MATLAB� 155

5.7.1 Image Tool Navigation Aids: imtool 155
5.7.2 Displaying an image using ‘imshow’ 155

5.8 Sampling . 157
5.8.1 Re-sampling an image with the aid of MATLAB� 158

5.9 Quantization . 164
5.10 Conclusions . 169

6 Histogram processing 171
6.1 Thresholding . 176

6.1.1 An example illustrating the segmentation of coins based
on histogram information 176

6.1.2 Global thresholding . 179
6.1.3 Adaptive thresholding . 180

6.2 Histogram stretching . 180

6.3 Histogram equalisation . 185
6.4 Summary . 191

7 Grey level operations 195
7.1 Point operation on images . 195
7.2 Arithmetic operators in the MATLAB� image processing toolbox196

7.2.1 Subtraction: brightness, negative, and movement 196
7.2.2 Addition: brightness adjustment 200
7.2.3 Multiplication: contrast adjustment 200
7.2.4 Division: contrast adjustment 200
7.2.5 Linear combination: stretching and contrast adjustment . 201

7.3 Log transformation . 203
7.4 Power law transformation . 203

8 Spatial and frequency domain filtering 205
8.1 Spatial filters . 205
8.2 Two dimensional convolution and correlation in MATLAB� . . 206

8.2.1 Convolution . 206
8.2.2 Correlation . 207
8.2.3 Filtering . 208

8.3 Using a MATLAB� pre-defined filter in the spatial domain . . . 211

9 Smoothing, averaging and low pass filters 213
9.1 Mean filters . 214

9.1.1 Arithmetic mean filter . 214
9.1.2 Geometric mean filter . 214
9.1.3 Harmonic mean filter . 214
9.1.4 Contraharmonic mean filter 214

9.2 Order-statistics filters . 215
9.2.1 Median filter for bipolar and unipolar impulse noise . . . 216
9.2.2 Minimum filter for finding the darkest points in the image,

with ‘salt’ noise . 217
9.2.3 Maximum filter for finding the brightest points in the im-

age, with ‘pepper’ noise 217
9.2.4 Midpoint filter for randomly distributed noise 217
9.2.5 Alpha-trimmed mean filter for a combination of noise types218

9.3 Edge detection . 219
9.3.1 The gradient (a first order derivative) 219
9.3.2 The Laplacian . 220

9.3.3 Gradient operators and masks 227

9.4 Noise in imaging . 232

9.5 Adding noise to images using MATLAB� 233

9.6 Summary . 234

9.7 Removing noise . 237

10 Mathematical morphology and set notations 243

10.1 Fundamental morphological operators 244

10.1.1 The dilation operator, ⊕ , for bridging gaps 246
10.1.2 The erosion operator, � , for eliminating irrelevant details 247

10.2 Structuring elements . 250

10.2.1 Constructing a structuring element in MATLAB� 250

10.2.2 Examples of structuring elements 251

10.3 Combining dilation and erosion 254

10.3.1 Opening, denoted by ◦ . 254
10.3.2 Closing, denoted by • . 254

10.4 Hit-and-Miss transformation . 255

10.5 Skeleton . 257

10.5.1 The Euler number determined using MATLAB� 258

10.6 Thinning . 259

10.7 Thicken . 259

10.8 Top hat . 262

10.9 Bottom hat . 262

10.10 Morphological operations implemented in bwmorph 262

A Summation formulae 267

B Table of bilateral z-transforms and properties 269

B.1 Table of bilateral z-transforms 269

B.2 Properties of z-transforms . 269

C Tables of Fourier transforms and properties 273

C.1 Tables of Fourier transforms . 273

C.2 Properties of the Fourier transform 273

D Proof of Proposition 4.1 277

E Answers to the exercises 279
E.1 Chapter 1 . 279
E.2 Chapter 2 . 280
E.3 Chapter 3 . 283
E.4 Chapter 4 . 291

Bibliography 293

Signal processing index 297

Image processing index 303

Glossary

Nomenclature

≈ approximately equal to

∈ belongs to
def
= defined as

� end of example or proof

! factorial

exp exponential

iff if and only if

lim limit

max maximum

Z set of integers

N set of natural numbers

R set of real numbers

R
+ {r ∈ R : r > 0}

C set of complex numbers

∩ intersection of sets

|a| absolute value of a ∈ R

i satisfies i2 = −1

�{·} real part

	{·} imaginary part

|z| modulus of z ∈ C

arg[·] argument of a complex number

conj(·) complex conjugate

f ′(·) 1st derivative of f

f (n)(·) nth derivative of f∮
C

integration around a closed contour C

δ(·) unit impulse signal

ζ(·) unit step signal

pα(·) unit pulse signal of width α

r(·) unit ramp signal

a(·) exponential signal

Nomenclature (cont.)

yδ impulse response

yζ step response

(x ∗ y)(·) convolution of x and y

{x(·)} denotes the sequence x

Z [{·}] z-transform

X(z) bilateral z-transform of {x(k)}
X+(z) unilateral z-transform of {x(k)}
Z−1 [·] inverse z-transform

H
(
eiθ
)

system frequency response∣∣H (
eiθ
)∣∣ system gain spectrum

arg
[
H
(
eiθ
)]

system phase-shift spectrum

AR autoregressive

ARMA autoregressive moving average

MA moving average

FIR finite impulse response

IIR infinite impulse response

BIBO bounded-input bounded-output

F {·} Fourier transform

F (iω) Fourier transform of f(t)

F−1 {·} inverse Fourier transform

|F (iω)| amplitude spectrum of f(t)

θ(ω) phase spectrum of signal f(t)

E(·) energy in a signal

Pav(·) average power in a signal

G(ω) energy spectral density

|F (iω)|2 energy spectrum of signal f(t)

ω0 fundamental frequency

Nomenclature (cont.)

T (sampling) period

γ
T
(·) unit comb function, with period T

p(t) continuous-time sampling function

fs sampling frequency

xs sampled signal

DFT discrete Fourier transform

IDFT inverse discrete Fourier transform

DTFT discrete-time Fourier transform

FFT fast Fourier transform

X(n) DFT of signal {x(k)}
|X(n)| DFT amplitude spectrum

ψn DFT phase spectrum

P (n) power spectrum

{rectN (k)} rectangular window sequence

μx mean of random variable x

σx or x standard deviation of x

σ2
x or Var[x] variance of x

E [·] expected/ average value

Rxx(·) autocorrelation function

Cxx(·) autocovariance function

〈·〉 time average

Rxy(·) cross-correlation function

Cxy(·) cross-covariance function

(S/N)out output signal-to-noise ratio

Sxx(θ) power spectral density

Sxy(θ) cross spectral density

Useful MATLAB� commands for image processing

adapthisteq(I) Enhances the contrast of the intensity image I
by transforming the values using contrast-limited
adaptive histogram equalization (CLAHE).

MOV=aviread(FILENAME) Reads the AVI movie FILENAME into the
movie structure MOV. If FILENAME does not
include an extension, then ‘.avi’ will be used.

MOV=aviread(...,INDEX) Reads only the frame(s) specified by INDEX.
INDEX can be a single index or an array of indices
into the video stream, where the first frame is
number one.

L=BWLABEL(BW,N) Returns a matrix L, of the same size as BW,
containing labels for the connected components in
BW. N=4 specifies 4-connected objects and N=8
specifies 8-connected objects; if argument is
omitted,then the default is 8.

C=conv2(A,B) Computes the two-dimensional convolution of A
and B. If one of these matrices describes a
two-dimensional finite impulse response (FIR) filter,
the other matrix is filtered in two dimensions.
The size of C, in each dimension, is equal to the
sum of the corresponding dimensions of the input
matrices, minus one. That is, if the size of A is
[ma, na] and the size of B is [mb, nb], then the size
of C is [ma+mb− 1, na+ nb− 1].

C=conv2(A,B,’shape’) Returns a subsection of the two-dimensional
convolution, as specified by the shape parameter:
’full’ returns the full two-dimensional convolution
(which is the default);
’same’ returns the central part of the convolution
of the same size as A;
’valid’ returns only those parts of the convolution
that are computed without the zero-padded edges.
For this option, C has size
when ma ≥ mb and na ≥ nb. Otherwise conv2
returns [].

corr2(A,B) Computes the correlation coefficient between A and
B, where A and B are matrices or vectors of the
same size.

double(X) Returns the double-precision value of X.
If X is already a double-precision array, ’double’
has no effect.

Useful MATLAB� commands for image processing (cont.)

B=edge(I) Takes an intensity image I as its input
and returns a binary image B of the
same size as I, with 1’s where the
function finds edges in I and 0’s
elsewhere. An example is:
B=edge(I,’canny’,thresh,sigma).

find(X) Finds indices of non-zero elements by
returning the linear indices
corresponding to the non-zero entries
of the array X. X may be a logical
expression.

filter2(B,X) Filters the data in X with the 2-D
FIR filter in thematrix B. This is
computed using 2-D correlation and
is the same size as X.

H=fspecial(’gaussian’) Creates a rotationally symmetric
Gaussian lowpass filter.

H=fspecial(’gaussian’,hsize,sigma) Creates a rotationally symmetric
Gaussian lowpass filter of size ‘hsize’,
with standard deviation ‘sigma’.
‘hsize’ can be a vector specifying the
number of rows and columns in H, or
a scalar.

im2bw(I,level) Converts greyscale image I to a binary
image. The output image replaces all
pixels in the input image with
luminance greater than the level with
a value of 1 (white) and replaces all
other pixels with a value of 0 (black).

image(C) Creates an image graphics object by
interpreting each element in a matrix
C as an index into the figure’s
colormap, or directly as RGB values,
depending on the data specified.

imfilter(A,H) Filters the multi-dimensional array A
with the multidimensional filter H.

imhist(I,N) Displays a histogram with N bins for
intensity image I above a greyscale
colour-bar of length N.
If I is a binary image, then N=2.

Useful MATLAB� commands for image processing (cont.)

imread(A) Returns the image data in the array A.

imread(FILENAME,FMT) Reads a greyscale or colour image from

the file specified by the string

FILENAME, where the string FMT

specifies the format of the file.

imshow(I) Displays the intensity image I.

irerode(IM,SE) Erodes the greyscale, binary, or packed binary

image IM, returning the eroded image, IM2. SE is

a structuring element object, or array of

structuring element objects, returned by the strel

function.

nlfilter(A,[M N],FUN) For general sliding-neighborhood operations, the

command applies the function FUN to each

M-by-N sliding block of A. FUN is a function that

accepts an M-by-N matrix as input and returns a

scalar: C = FUN(X). C is the output value for the

central pixel in the M-by-N block X.

FUN must be a FUNCTION HANDLE. Here

NLFILTER calls FUN for each pixel in A.

NLFILTER zero pads the M-by-N block at the

edges, if necessary.

medfilt2(A,[M N]) Performs median filtering of matrix A, where

each output pixel contains the median value in the

M-by-N neighbourhood around the corresponding

pixel in the input image.

ordfilt2(A,ORDER,DOMAIN) Replaces each element in A by the ORDER-th

element in the sorted set of neighbours specified by

the nonzero elements in DOMAIN.

regionprops(L,properties) Measures a set of properties for each labelled

region in the label matrix L.

I=rgb2gray(RGB) Converts the truecolor image RGB to the greyscale

intensity image I.

strel(shape,parameters) Creates a structuring element, SE, of the type

specified by shape. Depending on shape, strel can

take additional parameters.

uint8(X) Converts the elements of array X into unsigned

integers, where the unsigned 8-bit integer is in the

range 0 to 255.

List of Figures

1.1 Various types of signals. 5
1.2 (a) Convolution of {x} and {y}. (b) Deconvolving {y} from

{x ∗ y}. 10

2.1 (i) Unit impulse response. (ii) Unit step response. 32
2.2 Schematic diagram of the vocal and nasal tracts. 33
2.3 Acoustic lossless tube model. 35
2.4 Signal flow diagram for the junction of tube k and tube k + 1. . 36
2.5 Analysis model. 38
2.6 Synthesis model. 38

3.1 Pole-zero plot. 51
3.2 (i) Gain spectrum, and (ii) phase-shift spectrum for H(z). . . . 52
3.3 Filter response to (i) {δ(k−5)}, (ii) {ζ(k−5)}, and (iii) {p10(k)}. 53
3.4 A graphical representation of a unit comb function 62
3.5 Sampling switch. 63
3.6 Amplitude spectrum of a bandlimited signal. 65
3.7 Amplitude spectrum of a sampled signal with no aliasing. . . . 65
3.8 Amplitude spectrum with aliasing, when ωa = ω0−ωmax < ωb =

ωmax. 65
3.9 DFT transform domains. 69
3.10 Gain and phase spectra. 72
3.11 Amplitude spectrum for x(k) = cos(0.4πk) − sin(0.6πk), 0 ≤

k ≤ 10. 73
3.12 Amplitude spectrum for zero-padded data. 73
3.13 Amplitude spectrum for additional sampling points. 74
3.14 Amplitude and phase spectra for the filter. 76
3.15 Amplitude spectrum for the filtered signal. 77

xxiii

3.16 Amplitude spectrum with bandwidth (ω2 − ω1). 77
3.17 Rectangular window. 78
3.18 DTFT of the rectangular window sequence. 79
3.19 Bartlett window . 80
3.20 Hann window . 80
3.21 Hamming window . 80
3.22 Blackman window . 81
3.23 Amplitude spectra for a) Rectangular b) Bartlett c) Hann

windows. 81

4.1 Typical graph of an autocorrelation function Rxx(k). 93
4.2 (i) Periodic signal. (ii) Autocorrelation sequence. 94
4.3 (i) Shifted autocorrelation sequence. (ii) Autocorrelation sequence

with zero-mean data. 95
4.4 Unbiased estimate of the autocorrelation sequence for the zero-

mean data. 96
4.5 (i) Modelled noisy voiced speech. (ii) Autocorrelation function

with zero-mean data. 99
4.6 Forward and backward predictions 106
4.7 Lattice structure . 106
4.8 Log-amplitude spectrum using linear predictive coding. 110
4.9 a) Log-amplitude spectrum and envelope b) Log-magnitude

power spectrum. 110
4.10 (i) Modelled noisy voiced speech. (ii) Power spectral density. . . 121
4.11 DPCM encoder. 128
4.12 DPCM decoder. 129

5.1 A screen-view illustrating the use of the MATLAB� image viewer,
called by using the command imtool, to inspect pixels RGB val-
ues. 156

5.2 Images illustrating the effect of sampling on an image. 161
5.3 Images illustrating the effect of sampling on a CT image. 163
5.4 Images illustrating the effect of quantization. 164
5.5 Illustrating the quantization of a CT image using manually se-

lected quantization levels. 167

6.1 Images illustrating the use of histograms. 175
6.2 Illustrating the use of histogram and derivative of histogram to

select a threshold value for bony structures in an image. 177

6.3 a) Illustrating the knowledge gained from the shape of the image
histogram to select the threshold automatically; b) Image of four
coins, of similar grey level, to be segmented automatically. . . . 178

6.4 Example of separating coins using Otsu’s method. 181

6.5 Histograms of the original and stretched images. 184

6.6 Images illustrating the use of a MATLAB� function to adjust
the image grey levels. 185

6.7 Images illustrating the use of a MATLAB� function to adjust
the image grey levels. 188

6.8 Images illustrating the use of a MATLAB� function to adjust
the image grey levels. 189

6.9 Images illustrating the use of histogram shaping. 192

7.1 Images illustrating the use of subtraction to darken an image. . 197

7.2 Images illustrating the use of alternative MATLAB� commands
to calculate a negative image. 198

7.3 Images illustrating the use of imabsdiff to detect movement. . 199

7.4 Images illustrating the use of Addition, Division, Multiplica-
tion, Complement and Linear combination applied to the image
stored in cameraman.tiff. 202

8.1 Filtered images produced by the MATLAB� functions conv2,
filter2 and imfilter. 210

9.1 Illustrating the use of Laplacian to enhance the edges of regions
of interest. 222

9.2 Illustrating the output of edge detectors based on the first as
well as the second derivative. 224

9.3 Small amount of Gaussian noise on the grey level profile affecting
an image and the corresponding first and second derivative of
the image. 225

9.4 The inappropriateness of first and second derivative filters to
detect the edge in a noisy image. 226

9.5 Images illustrating the use of the MATLAB� command imnoise
to add noise to images. 235

9.6 Illustrating the effect of noise on image histograms. 236

9.7 Illustrating the effect of noise on images and their histogram. . 239

9.8 Illustrating the trade off between obtaining a large number of
false positives and not being able to obtain a closed contour of
the regions of interest. 240

9.9 Illustrating the benefit of applying low pass filtering to obtained
closed contours of regions of interest. 241

10.1 (a) Two sets A and B. (b) The union of A and B. (c) The
intersection of A and B. (d) The difference: A − B. (e) The
complement of A. 245

10.2 Illustrating the ability of bridging gaps in letters using a struc-
turing element [0 1 0; 1 1 1; 0 1 0]. 247

10.3 Illustrating the effect of erosion depending on the size of the
structuring element. 249

10.4 Examples using SE = strel(’square’,W). 251
10.5 Examples using SE = strel(’rectangle’,W). 252
10.6 Examples using SE = strel(’octagon’,W). 253
10.7 Images illustrating the effect of skeletonisation, where, for dis-

play, imcomplement is used. 258
10.8 Images illustrating the effect of thinning, where imcomplement

is used for display. 260
10.9 Images illustrating the effect of thickening, where imcomplement

is used for display. 261
10.10 Images illustrating the use of morphological operators to count

grains of rice. 266

E.1 Amplitude and phase spectra for the filter. 290
E.2 Amplitude spectrum for the filtered signal. 290

List of Tables

1.1 Deterministic signals. 7

8.1 MATLAB� image processing filter types. 211

10.1 Set operations and associated MATLAB� expressions. 244

B.1 Table of bilateral z-transforms. 270

C.1 Table of Fourier transforms for finite energy signals. 274
C.2 Table of Fourier transforms for power signals. 274

xxvii

Part I

Signal Processing

Chapter 1

Signals and systems

1.1 Introduction

In order to develop the analytical tools for processing signals, basic signal and
systems classifications are necessary. These can be found in many books on sig-
nal processing, such as [Balmer, 1997, Ziemer et al., 1998]. Currently in view
of electronic communications and many other applications, analysis and pro-
cessing of discrete-time signals and, in addition, analysis of discrete-time sys-
tems is very important. These topics have been studied by many authors,
such as [Bellanger, 1990, Jackson, 1996, Jong, 1982, Oppenheim et al., 1999,
Stearns and Hush, 1990] and [Proakis and Manolakis, 1989], to name but a few.
Often, in practice, many signals are complex in nature, in that the signals

may consist of a combination of many signals. To analyse such signals some
assumptions are made, such as, for example, assuming the signal of interest is
composed of a linear combination of other signals. However, this is not the only
possibility. For example, a signal may be composed of a convolution of signals.
This topic is discussed in this chapter, as well as classification of signals and
systems, both continuous-time and discrete-time.

1.2 Classification of signals and systems

A signal may be a function of one or more independent variables, e.g. a voice
signal is a function of time, whereas an image signal is a function of two spatial
variables.

3

Definition 1.1 A continuous-time signal is a signal x(t) that varies contin-
uously with time t, where t ∈ R or an appropriate subset.

Remark 1.1 A continuous-time signal is not necessarily a continuous function
of time; for example,

x(t) =

{
1, t ≥ 0,
0, t < 0,

is a discontinuous continuous-time signal.

Definition 1.2 A discrete-time signal is a signal x(k) which is defined only
at a sequence of discrete values k, i.e. k ∈ I (a subset of the set of integers, viz.
I ⊂ Z).

The amplitude of a signal may assume a continuous range of values or a set
of discrete values. In the latter case, the signal is said to be quantized . A
continuous-time signal with continuous range of amplitude is sometimes referred
to as an analogue signal, whilst a quantized discrete-time signal is referred to
as a digital signal. In most engineering applications, the signal is analogue in
nature and is to be processed using a digital computer. This is accomplished
by sampling the continuous-time signal at discrete values to produce a sampled-
data signal. Some different types of signal are shown in Figure 1.1.
A system is defined in terms of a transformation (or operator) that maps input
signal(s) into output signal(s). For the system illustrated in the diagram:

x � T � y

we may write y = Tx.
Systems can be classified in the same way as signals, i.e. continuous-time

systems, discrete-time systems, analogue and digital systems. Furthermore, a
system may be classified as either linear or nonlinear .

Definition 1.3 If x1 and x2 are two inputs to a system with responses (i.e.
outputs) y1, y2, respectively, then a system is linear iff

T (ax1 + bx2) = aTx1 + bTx2 = ay1 + by2,

where T is the system operator and a, b are arbitrary constants (this is known
as the principle of superposition); otherwise, the system is said to be non-
linear.

4

(a) (b)
�

�
t

�

�
t

(c) (d)
�

�

�
�

�

�
�

�

� �
n

�

�
�

�
�

�
�

�
�

�

n

Figure 1.1: Various types of signals.

5

A time-invariant system is one in which none of the parameters of the system
change with time, i.e., for a continuous-time system, if Tx(t) = y(t) then Tx(t−
τ) = y(t− τ). In a time-varying system the input-output relationship changes
with time.
Sometimes, the concept of ‘memory’ may be important for a system. In

particular, a discrete-time, memoryless system is defined in Definition 1.4.

Definition 1.4 A discrete-time system is memoryless iff the output y(k) at
every value k depends only on the input x(k) at the same value of k.

For example, the system in which x(k) and y(k) are related by y(k) = [x(k)]2, for
each value of k, is memoryless, whereas the ideal delay system for which y(k) =
x(k−κ), where κ is a fixed positive constant (known as the delay of the system),
is not memoryless.
Another important concept is that of ‘causality’.

Definition 1.5 A discrete-time system is causal (or nonanticipatory) iff
the output y(k) depends on the input x(k0) for k ≥ k0 (i.e. the response to an
input does not depend on future values of that input).

Analogous to Definitions 1.4 and 1.5, memoryless and causal continuous-time
systems can also be defined.

1.3 Deterministic/stochastic signals

Deterministic signals are signals which can be modelled by known functions of
time. Some examples of deterministic signals are given in Table 1.1.
Non-deterministic signals are known as stochastic, which are random in na-

ture. Signals, containing both random and deterministic elements, often occur
when obtained from measurements of some process. Measurements are typi-
cally contaminated with noise, usually considered as a random signal, either
from sensors, measurement instrumentation, the surrounding environment, or
even the process itself.

1.4 Convolution of signals

Convolution of signals is a very important topic in signal processing. A study of
this can be found in [Gabel and Roberts, 1987, Ziemer et al., 1998] and Chap-

6

signal continuous-time (t ∈ R) discrete-time (k ∈ Z)

unit step ζ(t)
def
=

{
0, t < 0

1, t ≥ 0
ζ(k)

def
=

{
0, k < 0

1, k ≥ 0

unit ramp r(t)
def
=

{
0, t < 0

t, t ≥ 0
r(k)

def
=

{
0, k < 0

k, k ≥ 0

unit pulse pα(t)
def
=

{
1, 0 ≤ t < α, α ∈ R

+

0, otherwise
pα(k)

def
=

{
1, 0 ≤ k < α, α ∈ N

0, otherwise

unit impulse δ(t)
def
= lim

α→0

1

α
pα(t) δ(k)

def
=

{
1, k = 0

0, k �= 0

exponential a(t)
def
= α

t
a(k)

def
= α

k

Table 1.1: Deterministic signals.

ter 2 of [Proakis and Manolakis, 1989]. A further study of this topic, involv-
ing extensive use of the computer software package MATLAB�, is given in
[Ingle and Proakis, 1997].
Consider, initially a discrete deterministic signal {x(k)}. The general term

of this (arbitrary) sequence can be expressed as a sum of scaled, delayed unit
impulses.

�

��
�

�

�
�

�

�
�

�
43210-1-2-3-4

k

x(k)

For the example shown above,

x(k) = a−3δ(k+3)+a−1δ(k+1)+a0δ(k)+a1δ(k−1)+a2δ(k−2)+a4δ(k−4),

where ai are the magnitudes of the appropriate impulses. More generally, the
general term of an arbitrary sequence can be expressed as

x(k) =
∞∑

m=−∞
x(m)δ(k −m). (1.1)

7

Definition 1.6 The convolution of the two sequences {x(k)} and {y(k)} is
defined by

(x ∗ y)(k) def
=

∞∑
m=−∞

x(m)y(k −m).

Important properties of convolution for discrete-time signals are:

(CD1) Commutativity: (x ∗ y)(k) = (y ∗ x)(k)

� y(k) �x(k) z(k)
is the same as � x(k) �y(k) z(k)

(CD2) Associativity: ((x ∗ y1) ∗ y2)(k) = (x ∗ (y1 ∗ y2))(k)

� y1(k) � y2(k) �x(k) z(k)
is the same as � y(k) �x(k) z(k)

where y(k) = (y1 ∗ y2)(k)

(CD3) Distributivity: (x ∗ (y1 + y2))(k) = (x ∗ y1)(k) + (x ∗ y2)(k)

�

�

y2(k)
�

�

y1(k)

�

��
��

�x(k) z(k)
Σ

+

+

is the same as � y(k) �x(k) z(k)

where y(k) = y1(k) + y2(k)

(CD4) By definition of δ(k) and convolution, the impulse sequence has the
property that if y(k) = δ(k − k0), k0 ∈ Z, then (x ∗ y)(k) = x(k − k0).

Example 1.1 Evaluate the convolution (x ∗ y)(k) when

8

a) x(k) = akζ(k), with a ∈ R, and y(k) = p3(k), where {p3(k)} is the unit
pulse sequence defined in Table 1.1;

b) x(k) = y(k) = ζ(k).

Solution:

a) Now, by definition of {p3(k)}, y(k) can be expressed in the form y(k) =
δ(k)+ δ(k− 1)+ δ(k− 2) and, hence, by the convolution impulse sequence
property (CD4) it follows that

(x ∗ y)(k) = akζ(k) + ak−1ζ(k − 1) + ak−2ζ(k − 2) =

2∑
j=0

ak−jζ(k − j).

b) By Definition 1.6,

(x ∗ y)(k) =
∞∑

m=−∞
ζ(m)ζ(k −m).

It can be verified that the following result holds for all m:

ζ(m)ζ(k −m) =

{
0, k < 0,

ζ(m)− ζ(m− k − 1), k ≥ 0.

Now ζ(m)−ζ(m−k−1) = pk+1(m) =

{
1, 0 ≤ m ≤ k,
0, otherwise,

and, therefore,

(x∗y)(k) =

⎧⎪⎨
⎪⎩

0, k < 0,
k∑

m=0

1, k ≥ 0,
=

{
0, k < 0,

k + 1, k ≥ 0,
= (k+1)ζ(k). (1.2)

Alternatively, since ζ(k) may be represented by

∞∑
n=0

δ(k − n), then

(x ∗ y)(k) = ζ(k) ∗
(∞∑

n=0

δ(k − n)

)
=

∞∑
n=0

ζ(k) ∗ δ(k − n).

Using the convolution property for impulse functions, see (CD4),

(x ∗ y)(k) =
∞∑
n=0

ζ(k − n).

Noting that ζ(k−n) = 0 when k < 0 and when n > k, this leads to (1.2).

�

9

Example 1.2 Using MATLAB�,

a) plot the sequence obtained from the convolution of the sequences {x} =
{1, 1, 1, 2, 2, 2, 3, 3, 3} and {y} = {1, −1, 1, −1, 1};

b) confirm the result obtained in (a) by deconvolving the sequence {y}
from the sequence {x ∗ y}.

Solution:

a) The following MATLAB� commands may be used:

z=[1 1 1]; x=[z 2*z 3*z]; % generation of sequence x

y=[1 -1 1 -1 1]; % generation of sequence y

c=conv(x,y); % forms convolution sequence

stem(c) % discrete plot of convolution sequence

which produce the graph shown in Figure 1.2(a).

b) The MATLAB� commands:

% deconvolving the sequence y from the sequence x*y

[q,r]=deconv(c,y);

stem(q)

produce the graph shown in Figure 1.2(b).

0 2 4 6 8 10 12 14
−1

−0.5

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3
(a) (b)

Figure 1.2: (a) Convolution of {x} and {y}. (b) Deconvolving {y} from {x∗y}.

�

10

Example 1.3 Determine the convolution of the two sequences: {x(k); k = 2 :
1 : 5} = {−2, 4, 1, −1} and {y(k); k = −3 : 1 : 1} = {3, 1, 0, −2, 5}, using
MATLAB�, and, in particular, write down the value (x ∗ y)(0).

Solution: As in Example 1.2, MATLAB� can be used to determine the
convolution of the two sequences. However, in this example, the time-indices
for the two sequences do not begin at zero. Hence, the time-index information
for the convolved sequence is required. The MATLAB� commands:

x=[-2 4 1 -1];

y=[3 1 0 -2 5];

tix=[2:5]; % time-indices for x

tiy=[-3:1]; % times-indices for y

cb=tix(1)+tiy(1); % beginning of time-index for x*y

ce=tix(length(x))+tiy(length(y)); % end of time-index for x*y

tixy=[cb:ce] % time-index interval

convxy=conv(x,y)

produce the results:

tixy =

-1 0 1 2 3 4 5 6

convxy =

-6 10 7 2 -19 18 7 -5

Thus, it is clear that (x ∗ y)(0) = 10.

�

Consider, now, the case of continuous-time signals.

Definition 1.7 For continuous-time signals, f and g defined on (−∞,∞), the
convolution operation is defined as

(f ∗ g)(t) def
=

∫ ∞

−∞
f(τ)g(t− τ) dτ.

Analogous properties, to (CD1-4), hold for convolution of continuous-time sig-
nals, namely:

11

(CC1) Commutativity: (f ∗ g)(t) = (g ∗ f)(t);

(CC2) Associativity: ((f ∗ g1) ∗ g2)(t) = (f ∗ (g1 ∗ g2))(t);

(CC3) Distributivity: (f ∗ (g1 + g2))(t) = (f ∗ g1)(k) + (f ∗ g2)(t);

(CC4) if g(t) = δ(t− a), a ∈ R, and f is continuous, then (f ∗ g)(t) = f(t− a)
holds.

1.5 Exercises

Exercise 1.1 Consider the following discrete-time systems, modelled by
y = Tx (where x is the input and y is the corresponding output):

a) Tx(k) = (k − 1)x(k − 1);

b) Tx(k) = sin(x(k))x(k);

c) Tx(k − 1) = x(k − 2)− 3x(k − 1);

d) Tx(k − 1) = sin(k)x(k).

Determine whether the systems are (i) linear (ii) time-invariant (iii) memoryless
(iv) causal.

Exercise 1.2 A discrete signal {x(k)} is defined by

x(k)
def
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, k < 0,
1, 0 ≤ k ≤ 10,
0, 11 ≤ k ≤ 15,
1, 16 ≤ k ≤ 20,
0, k ≥ 21.

Express x(k) in terms of the unit step function ζ(k).

Exercise 1.3 If the discrete-time signal {z(k)} is such that z(k) = (x ∗ y)(k),
where x(k) = 2−kζ(k) and y(k) = 2δ(k) + 4δ(k − 1) + 4δ(k − 2), calculate and
plot z(k) for k = 0, 1, 2, 3, 4, 5 and 6.

12

Exercise 1.4 Confirm that, for all m,

ζ(m)ζ(k −m) =

{
0, k < 0,

ζ(m)− ζ(m − k − 1), k ≥ 0.

Hence, or otherwise, evaluate the convolution (x ∗ y)(k), where x(k) = ζ(k) and
y(k) = akζ(k) with a ∈ R

+ satisfying 0 < a < 1.

Exercise 1.5 Using MATLAB�, determine the convolution of the following
two sequences:

a) {x(k)} = {1, −1, 0, 2, 4} and {y(k)} = {5, −2, 5};

b) {x(k); k = −2 : 1 : 2} = {3, 0, 0, −2, −1} and
{y(k); k = 1 : 1 : 4} = {2, −2, 0, −2}.

Exercise 1.6 Compute the convolution of the pair of discrete-time signals:

a) x1(k) = ζ(k)− ζ(k−M), x2(k) = δ(k), where M ≥ 1 is a fixed real
constant;

b) x1(k) = ζ(k)− ζ(k −M), x2(k) = ζ(k).

Exercise 1.7 Evaluate the convolution of the continuous-time signals f(t) =
ζ(t− T1)− ζ(t− T2), with T2 > T1 > 0, and g(t) = e−atζ(t), with a ∈ R

+.

13

Chapter 2

System models, responses
and the system function

2.1 Introduction

In this chapter, discrete discrete linear models and filters are introduced through
difference equations. To analyse such models and filters appropriate analysis
tools are required. One of the most important for digital systems is the concept
of a z-transform. Definitions and properties are given in this chapter.
In addition, discrete-time system properties, such as stability and responses

of a system to impulse and step inputs are examined. Moreover, a particular
application, namely speech processing, is introduced and an appropriate model
is presented for voiced/unvoiced speech.

2.2 Discrete linear models and filters

Suppose that in a certain discrete-time system the increase in output y(k) at
time k is proportional to the increase in input x(k) at time k − 1. The input-
output relationship of the discrete-time system can be modelled by

y(k)− y(k − 1) = c[x(k − 1)− x(k − 2)],

where c is the constant of proportionality, which may be rewritten as

y(k) = y(k − 1) + cx(k − 1)− cx(k − 2). (2.1)

15

This equation is called a difference equation. It relates the output signal y(k) to
its previous value y(k− 1) and the two past values of the input signal, x(k− 1)
and x(k−2). Since y(k) is a linear combination of y(k−1), x(k−1) and x(k−2),
(2.1) is termed a linear difference equation. A general linear difference equation
has the form:

y(k) =
N∑
i=1

ai(k)y(k − i) +
M∑
j=0

bj(k)x(k − j), (2.2)

with aN (k) �= 0, bM (k) �= 0.

Remark 2.1 If ai = 0, for all i, then y(k) is referred to as a moving-average
(MA) process, whilst if bj = 0, for all j except j = 0, and aN �= 0 then y(k)
is called an autoregressive (AR) process. In general, y(k) (given by (2.2)) is
known as an autoregressive moving-average (ARMA) process.

The integer N is the order of the difference equation.
Suppose the elimination of some undesirable component of a discrete-time

signal (for example noise), or the extraction of signal components within a
certain range of frequencies, is required. The signal may be filtered using a
linear difference equation. For example, in a particular process the difference
equation

18y(k) = 3y(k − 1) + 4y(k − 3) + 8x(k)− 12x(k − 2)

is used. In this context the third order difference equation is termed a digital
filter and, since all the coefficients are constant, is a time-invariant filter.

2.3 z-transforms

The z-transform method is a transform method suitable for the analysis of
discrete-time systems, whereas the familiar Laplace transform method is used
for continuous-time systems when time is restricted to the interval [0,∞).

2.3.1 z-transform of a sequence

The z-transform of a sequence {x(k)} is defined as

Z [{x(k)}] def=
∞∑

k=−∞
x(k)z−k = X(z),

16

where the values of z ∈ C are such that the series converges. This is sometimes
known as a two-sided (or bilateral) z-transform. Consider, for example, the
z-transform of the finite sequence {x(k)} given by

x(k) =

{
(k − 1)(−2)k+1, |k| ≤ 2

0, otherwise

(i.e. x(−2) = 3
2 , x(−1) = −2, x(0) = 2, x(1) = 0, x(2) = −8, otherwise

x(k) = 0, or, alternatively, x(k) = 3
2δ(k + 2)− 2δ(k + 1) + 2δ(k)− 8δ(k − 2)).

X(z) =
2∑

k=−2

x(k)z−k =
3

2
z2 − 2z + 2− 8

z2
,

which converges for all z except at z = 0 and z = ∞, i.e. the region of conver-
gence is {z ∈ C : 0 < |z| < ∞}.
A one-sided (or unilateral) z-transform of a sequence {x(k); k ≥ 0, k ∈ Z} is
defined by

Z [{x(k)}] def=
∞∑
k=0

x(k)z−k.

Example 2.1 Find the z-transform and region of convergence for the sequence
{x(k)} given by

a) x(k) = akζ(k) b) x(k) = −bkζ(−k − 1),

where a, b ∈ C.

Solution:

a) By definition,

X(z) = Z
[{
akζ(k)

}]
=

∞∑
k=−∞

akζ(k)z−k =

∞∑
k=0

(az−1)k,

which converges to 1/
(
1− az−1

)
, provided

∣∣az−1
∣∣ < 1,

i.e. X(z) =
z

z − a
, with region of convergence {z ∈ C : |z| > |a|}.

17

b) X(z) = −
∞∑

k=−∞
bkζ(−k − 1)z−k, but ζ(−k − 1) =

{
0, k ≥ 0,
1, k < 0,

and,

therefore,

X(z) = −
−1∑

k=−∞
bkz−k (k=−n)

= −
∞∑
n=1

(b−1z)n.

Note that

∞∑
n=1

an =

(∞∑
n=0

an

)
− 1 and so X(z) = 1−

∞∑
n=0

(b−1z)n,

which converges to 1− 1/(1− b−1z), provided
∣∣b−1z

∣∣ < 1,

i.e. X(z) =
z

z − b
, with region of convergence {z ∈ C : |z| < |b|}.

�

Example 2.1 illustrates that different sequences can have the same z-transform,
except that the regions of convergence are different. For ease of computation, a
table of z-transforms is provided in Table B.1 (Appendix B).

We now list some of the important properties of the z-transform.

(Z1) Linearity: If Z [{x(k)}] = X(z) with region of convergence R1 = {z ∈
C : α1 < |z| < α2} and Z [{y(k)}] = Y (z) with region of convergence
R2 = {z ∈ C : β1 < |z| < β2}, then, for any constants a and b,

Z [{ax(k) + by(k)}] = aX(z) + bY (z)

with region of convergence R1 ∩R2.

(Z2) Delay/Advance property: Let Z [{x(k)}] = X(z) with region of con-
vergence R = {z ∈ C : c1 < |z| < c2} then

Z [{x(k ±m)}] = z±mX(z)

with region of convergence R.
Consider the sequence {x(k)ζ(k)} = {x(0), x(1), x(2), . . .}.
If Z [{x(k)ζ(k)}]=X+(z), whereX+(z) denotes the unilateral z-transform

18

of {x(k)}, then the sequence {x(m), x(m+ 1), . . .} has z-transform

Z [{x(k +m)ζ(k)}] =
∞∑
k=0

x(k +m)z−k

=
∞∑

j=m

x(j)z−j+m (with j = k +m)

= zm

⎧⎨
⎩

∞∑
j=0

x(j)z−j −
m−1∑
j=0

x(j)z−j

⎫⎬
⎭

= zmX+(z)− zm
m−1∑
j=0

x(j)z−j .

(Z3) Multiplication by an exponential ak: Suppose Z [{x(k)}] = X(z)
with region of convergence R = {z ∈ C : c1 < |z| < c2}, then

Z
[{
akx(k)

}]
= X

(z
a

)
,

with region of convergence {z ∈ C : |a|c1 < |z| < |a|c2}.
(Z4) Multiplication by k: Let Z [{x(k)}] = X(z) with region of convergence

R = {z ∈ C : c1 < |z| < c2}, then

Z [{kx(k)}] = −z
dX

dz
(z),

with region of convergence R.

(Z5) Convolution: If Z [{x(k)}] = X(z) with region of convergence Rx and
Z [{y(k)}] = Y (z) with region of convergence Ry, then, for

(x ∗ y)(k) =
∞∑

m=−∞
x(m)y(k −m),

Z [{(x ∗ y)(k)}] = X(z)Y (z),

with region of convergence Rx ∩Ry.

(Z6) Initial Value Theorem: For the sequence {x(k)} that is zero for k < k0,
then x(k0) can be evaluated using the result:

x(k0) = lim
z→∞

zk0X(z).

19

(Z7) Final Value Theorem: If Z [{x(k)}] = X(z) and lim
k→∞

x(k) exists, then

lim
k→∞

x(k) = lim
z→1

[z−1(z − 1)X(z)].

If {x(k)} is a causal sequence, then

lim
k→∞

x(k) = lim
z→1

[(z − 1)X+(z)].

Example 2.2 Determine the z-transform of the sequence {p(k)}, where p(k) ={
1, 0 ≤ k ≤ 8,
0, otherwise.

Solution: Note, for k0 ∈ N,

ζ(k)− ζ(k − k0) =

{
1, 0 ≤ k ≤ k0 − 1
0, otherwise.

Thus, p(k) = ζ(k) − ζ(k − 9) and so, using the linearity property (Z1) and the
delay property (Z2),

P (z) = Z [{ζ(k)− ζ(k − 9)}] = z

z − 1
− z−9

(
z

z − 1

)
=

z(1− z−9)

z − 1
.

�

Example 2.3 Find the z-transform of the sequences

a) {eak sin(ωk)ζ(k)} b) {eakδ(k − k0)} c)
{
sin

(
π
2k
)
ζ(k) ∗

(
1
4

)
ζ(k)

}
,

where a ∈ R and k0 ∈ N.

Solution:

a) From Table B.1 (Appendix B), Z [{sin(ωk)ζ(k)}] = z sin(ω)

z2 − 2z cos(ω) + 1
.

Using the multiplication by an exponential property of z-transforms (Z3),

Z
[{
eak sin(ωk)ζ(k)

}]
= Z

[{
(ea)k sin(ωk)ζ(k)

}]
=

(
z
ea

)
sin(ω)(

z
ea

)2 − 2
(

z
ea

)
cos(ω) + 1

=
zea sin(ω)

z2 − 2zea cos(ω) + e2a
.

20

b) Using Table B.1 (Appendix B), Z [{δ(k)}] = 1 and so, in view of the delay
property (Z2), Z [{δ(k − k0)}] = z−k0 . Hence, using the multiplication by
an exponential property (Z3),

Z
[{
eakδ(k − k0)

}]
=
(z

ea

)−k0

= eak0z−k0 .

c) Using Table B.1 (Appendix B) and the convolution property (Z5),

Z
[{
sin

(
π
2 k
)
ζ(k) ∗

(
1
4

)
ζ(k)

}]
=

z

z2 + 1
× z

z − 1
4

=
z2

(z2 + 1)(z − 1
4)

.

�

2.3.2 The inverse z-transform

If X(z) =

∞∑
k=−∞

x(k)z−k converges to an analytic function, with region of con-

vergence R, then

{x(k)} = Z−1 [X(z)] =
1

2πi

∮
C

X(z)zk−1 dz,

where C is a closed contour which lies within the region of convergence R. Some
inversion methods are considered and described in Example 2.4.

Example 2.4 Find the inverse transform of X(z) =
z

z2 − 3z + 2
with region

of convergence:

a) {z ∈ Z : |z| > 2} b) {z ∈ Z : |z| < 1} c) {z ∈ Z : 1 < |z| < 2}.
Solution:

1. Residue method: If the singularities of X(z) are poles of finite order,
then {x(k)} = Z−1 [X(z)] can be found using:

Z−1 [X(z)] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
all poles of X(z)zk−1

inside C

[residue of X(z)zk−1], k ≥ 0

−
∑

all poles of X(z)zk−1

outside C

[residue of X(z)zk−1], k < 0.

21

Remarks 2.2

(i) If X(z)zk−1 has a simple pole at z = a then the residue is[
(z − a)X(z)zk−1

]
z=a

.

(ii) More generally, if X(z)zk−1 has a pole of order m at z = a then the
residue is [

1

(m− 1)!

dm−1

dzm−1

{
(z − a)mX(z)zk−1

}]
z=a

.

Now X(z)zk−1 =
z × zk−1

z2 − 3z + 2
=

zk

(z − 1)(z − 2)
which has simple poles

at z = 1 and z = 2 when k ≥ 0, whilst for k < 0 there are poles at
z = 1, z = 2 and z = 0.

a) Consider k ≥ 0.

Z−1 [X(z)] =

{[
(z − 1)

zk

(z − 1)(z − 2)

]
z=1

+

[
(z − 2)

zk

(z − 1)(z − 2)

]
z=2

}
= {−1 + 2k}.

For k < 0, there are no poles outside C and so Z−1 [X(z)] = 0.
Hence, {x(k)} is the sequence {(−1 + 2k)ζ(k)}.

b) Consider k ≥ 0.
There are no poles inside C and therefore Z−1 [X(z)] = 0.
For k < 0, the pole at z = 0 lies inside C, whilst the poles at z = 1
and z = 2 lie outside C. Therefore,

x(k) = −
[
(z − 1)

zk

(z − 1)(z − 2)

]
z=1

+

[
(z − 2)

zk

(z − 1)(z − 2)

]
z=2

= 1− 2k.

22

Thus,

x(k) =

{
1− 2k, k < 0

0, k ≥ 0
= (1− 2k)ζ(−k − 1).

c) If k ≥ 0, only the pole at z = 1 lies inside C. Hence,

Z−1 [X(z)] =

{[
(z − 1)

zk

(z − 1)(z − 2)

]
z=1

}
= {−1}.

When k < 0 there is one pole at z = 2 lying outside C. Therefore,

Z−1 [X(z)] =

{
−
[
(z − 2)

zk

(z − 1)(z − 2)

]
z=2

}
= {−2k} .

Hence,

x(k) =

{
−2k, k < 0
−1, k ≥ 0,

that is x(k) = −2kζ(−k − 1)− ζ(k).

2. Partial fractions :

X(z) =
z

(z − 1)(z − 2)
= z

{
1

z − 2
− 1

z − 1

}
=

z

z − 2
− z

z − 1

a) |z| > 2. Using Table B.1 (Appendix B),
x(k) = 2kζ(k) − 1kζ(k) = (2k − 1)ζ(k).

b) |z| < 1. Using Table B.1 (Appendix B),
x(k) = −2kζ(−k − 1)−

(
−1kζ(−k − 1)

)
= (1− 2k)ζ(−k − 1).

c) 1 < |z| < 2, i.e. |z| > 1 and |z| < 2. Since z = 1 lies outside the
region |z| > 1, we include the term 1kζ(k). Also, since z = 2 lies
outside the region |z| < 2, we include the term −2kζ(−k − 1).
Thus, x(k) = −2kζ(−k − 1)− ζ(k).

�

Remarks 2.3

(i) An inversion method based on convolution can also be used for this
example. However, it is not discussed here.

23

(ii) A division method can be used for signals whose z-transform is a quo-
tient of polynomials and which exist only for k ≥ 0 or k < 0, but not
both.

Example 2.5 With the aid of MATLAB�, find the inverse transform ofX(z) =
3

4z2 − 4z − 3
with region of convergence:

a)
{
z ∈ Z : |z| > 3

2

}
b)

{
z ∈ Z : 1

2 < |z| < 3
2

}
c)

{
z ∈ Z : |z| < 1

2

}
.

Solution: Firstly, X(z) is expressed in powers of z−1, i.e.

X(z) =
3z−2

4− 4z−1 − 3z−2
=

b(z)

a(z)
.

The MATLAB� command [r,p,k]=residuez(b,a) evaluates
b(z)

a(z)
in the form

r(1)

1− p(1)z−1
+ . . .+

r(n)

1− p(n)z−1
+ k(1) + k(2)z−1 + . . .

and results in

X(z) =
0.25

1− 1.5z−1
+

0.75

1 + 0.5z−1
− 1 =

0.25z

z − 1.5
+

0.75z

z + 0.5
− 1.

Hence,

X(z)zk−1 =
0.25zk

z − 1.5
+

0.75zk

z + 0.5
− zk−1.

a) k < 0: Poles are z = 1.5, −0.5, 0. Since no poles lie outside C, x(k) = 0.
k = 0: Poles are z = 1.5, −0.5, 0.
All poles lie inside C, and so x(k) = 0.25(1.5)k + 0.75(−0.5)k − 1.
k > 0: Poles are z = 1.5, −0.5.
All poles lie inside C, and so x(k) = 0.25(1.5)k + 0.75(−0.5)k.
Therefore,

x(k) =

⎧⎨
⎩

0, k < 0,

0.25(1.5)k + 0.75(−0.5)k − 1, k = 0,

0.25(1.5)k + 0.75(−0.5)k, k > 0

= [0.25(1.5)k + 0.75(−0.5)k]ζ(k)− δ(k).

24

b) k < 0: Since only the pole at z = 1.5 lies outside C, x(k) = −0.25(1.5)k.
k = 0: Since only the poles at z = 0, −0.5 lie inside C,
x(k) = 0.75(−0.5)k − 1.
k > 0: Since only the pole at z = −0.5 lies inside C, x(k) = 0.75(−0.5)k.
Therefore,

x(k) =

⎧⎨
⎩

−0.25(1.5)k, k < 0,

0.75(−0.5)k − 1, k = 0,

0.75(−0.5)k, k > 0,

= −0.25(1.5)kζ(−k − 1) + 0.75(−0.5)kζ(k)− δ(k).

c) k < 0: Since the poles at z = 1.5, −0.5 lie outside C,
x(k) = −0.25(1.5)k − 0.75(−0.5)k.
k = 0: Since only the poles at z = 0 lies inside C, x(k) = −1.
k > 0: No poles lie inside C.
Therefore,

x(k) =

⎧⎨
⎩

−0.25(1.5)k − 0.75(−0.5)k, k < 0,
−1, k = 0,
0, k > 0,

= −[0.25(1.5)k + 0.75(−0.5)k]ζ(−k − 1)− δ(k).

�

2.4 Solution of linear difference equations with
constant coefficients

The z-transform may be used to solve linear difference equation with constant
coefficients. The method is illustrated in Example 2.6.

Example 2.6 Obtain a closed form solution to the linear, second order differ-
ence equation

x(k + 2)− 2x(k + 1) + x(k) = 1, k ≥ 0, k ∈ Z ,

given x(0) = 0 and x(1) = − 1
2 .

25

Solution: The first step is to take the (unilateral) z-transform of the difference
equation. The resulting equation is then solved for X+(z). Finally, by inversion,
the sequence {x(k)} can be found. By the linearity property (Z1),

Z [{x(k + 2)}]− 2Z [{x(k + 1)}] + Z [{x(k)}] = Z [{1}] .

Hence, using the advance property (Z2) and Table B.1 (Appendix B),[
z2X+(z)− z2(x(0) + x(1)z−1)

]
− 2 [zX+(z)− zx(0)] +X+(z) =

z

z − 1

and so
(z2 − 2z + 1)X+(z) =

z

z − 1
+ zx(1) + (z2 − 2z)x(0).

Using x(0) = 0 and x(1) = − 1
2 ,

(z − 1)2X+(z) =
z

z − 1
− z

2

and therefore

X+(z) =
z

(z − 1)2

(
1

z − 1
− 1

2

)
=

z(3− z)

2(z − 1)3
.

Now zk−1X+(z) =
zk(3 − z)

2(z − 1)3
has a pole of order 3 at z = 1. The residue at

z = 1 is[
1

2!

d2

dz2

(
zk(3− z)

2

)]
z=1

=
1

4

[
d

dz

(
kzk−1[3− z] + zk(−1)

)]
z=1

=
1

4

[
k(k − 1)zk−2(3− z)− 2kzk−1

]
z=1

=

{
1

2
k(k − 2)

}
.

Thus x(k) =
1

2
k(k − 2), k ≥ 0.

�

2.5 Discrete-time system responses

In this section, discrete-time system responses to inputs, such as a unit step
function, an impulse function and sinusoids, are investigated.

26

2.5.1 The impulse response

The impulse response of a discrete-time system is defined to be the output
that results when the input is the unit impulse sequence, {δ(k)}, and the system
is initially quiescent.
Any linear, discrete system can be completely characterized by its unit im-

pulse response: suppose hm(k) be the response of a linear system to δ(k −m).

�δ(k −m) LINEAR SYSTEM

T
�hm(k)

The response of the system to the signal x(k) is

y(k) = Tx(k) = T

[∞∑
m=−∞

x(m)δ(k −m)

]
(from (1.1))

=

∞∑
m=−∞

x(m)T [δ(k −m)], since the system is linear,

=

∞∑
m=−∞

x(m)hm(k) (2.3)

Assume that the linear, discrete system is time-invariant, then, if h(k) is the
response to δ(k), h(k − m) is the response to δ(k − m) and so (2.3) may be
written as

y(k) =

∞∑
m=−∞

x(m)h(k −m). (2.4)

Thus, any linear, time-invariant, discrete system is completely characterized
by its unit impulse (sample) response, h(k), in the sense that, given the input
sequence {x(k)}, the output sequence {y(k)} can be determined if {h(k)} is
known.

Remark 2.4 Similarly, a continuous-time system, which is linear and time-
invariant, is characterized by its impulse response h(t). Using the definition of

27

Biblioteka
Przekreślenie

convolution, then, for input x(t), the corresponding output is given by

y(t) =

∫ ∞

−∞
x(τ)h(t − τ) dτ = (x ∗ h)(t) =

∫ ∞

−∞
h(τ)x(t − τ) dτ = (h ∗ x)(t).

2.5.2 Causality, FIR/IIR systems/filters and the system
function

Causality and FIR/IIR systems

It follows from Definition 1.5 that a discrete-time system, which is linear and
time-invariant, is causal iff

h(k) = 0 for k < 0. (2.5)

Note that for a linear, time-invariant, causal system, h(k −m) = 0 for k < m
and, therefore, (2.4) reduces to

y(k) =
k∑

m=−∞
x(m)h(k −m)

(n=k−m)
=

∞∑
n=0

h(n)x(k − n). (2.6)

In view of (2.5), the concept of causality is often applied to signals (see Definition
2.1 for discrete-time signals).

Definition 2.1 A discrete-time signal {x(k)} is causal iff x(k) = 0 for k < 0.

Thus, for example, {ζ(k)} is a causal sequence. The sequence {ζ(−k − 1)} is
sometimes known as an anti-causal sequence, since ζ(−k − 1) = 0 for k ≥ 0.
Note that, if an input to a discrete-time system, say {x(k)}, is a causal

signal, then (2.6) can be replaced by

y(k) =

k∑
m=0

x(m)h(k −m) =

k∑
m=0

h(m)x(k −m).

In this case, the impulse (or sample) response has only a finite number of non-
zero values. In general, a linear, time-invariant system may have a impulse
response that is of finite duration or infinite duration. A system with impulse
response of finite duration is referred to as a nonrecursive or finite impulse
response (FIR) system, and, if the impulse response is of infinite duration,

28

the system is called a recursive or infinite impulse response (IIR) system. In
the literature, FIR filters are sometimes known as moving average (MA) or
transversal filters, whilst IIR filters are called autoregressive moving average
(ARMA) filters.

Remark 2.5 Strictly speaking, a difference equation realization of a MA filter
has the form:

y(k) =
1

M1 +M2 + 1

M2∑
m=−M1

x(k −m).

Suppose ai = 0 for all i ≥ 1 in (2.2), then the linear system (2.2) is a FIR
system, since

y(k) =
M∑

m=0

bmx(k −m) (2.7)

and, comparing (2.7) with (2.6),

h(m) =

{
bm, m = 0, 1, . . . ,M
0, otherwise.

In contrast, if N ≥ 1 then (2.2) is either an IIR or FIR system.

System function

A discrete-time, linear, time-invariant system is completely characterized by
its unit impulse response and can be represented by (2.3). Thus, assuming
zero initial conditions and taking the z-transform of (2.3), one obtains, using
z-transform convolution property (Z5),

Y (z) = Z [{(h ∗ x)(k)}] = H(z)X(z),

where

H(z) =
∞∑

k=−∞
h(k)z−k = Z [{h(k)}] .

The transform

H(z) =
Y (z)

X(z)

29

is called the system (or transfer) function. If x(k) = δ(k) then X(z) = 1 and,
therefore, Y (z) = H(z)X(z) = H(z). Hence, if the impulse response is denoted
by {yδ(k)}, then

{yδ(k)} = Z−1 [H(z)] .

2.5.3 The step response

The step response for a discrete-time linear system is defined to be the output
that results when the input is a unit step sequence, {ζ(k)}, assuming the system
is initially quiescent. Denoting this response by {yζ(k)}, then

{yζ(k)} = Z−1

[
H(z)

z

z − 1

]
.

Since {δ(k)} = {ζ(k)}− {ζ(k− 1)}, the impulse response can be obtained from
the step response using the result:

{yδ(k)} = {yζ(k)− yζ(k − 1)}. (2.8)

Example 2.7 A causal, linear, time-invariant system is modelled by the differ-
ence equation

y(k) = y(k − 1)− 0.25y(k − 2) + x(k) − x(k − 1).

a) Determine the system functionH(z) and state the region of convergence.

b) Evaluate the unit step and impulse responses. In addition, generate and
plot these responses using MATLAB�.

Solution:

a) Taking the z-transform of the difference equation,

Y (z) = z−1Y (z)− 0.25z−2Y (z) +X(z)− z−1X(z),

or

(
1− z−1 + 0.25z−2

)
Y (z) =

(
1− z−1

)
X(z).

30

Hence, the system function is

H(z) =
Y (z)

X(z)
=

1− z−1

1− z−1 + 0.25z−2
=

z(z − 1)

z2 − z + 0.25
=

z(z − 1)

(z − 1
2)

2
.

Since the system is causal, the region of convergence is
{
z ∈ C : |z| > 1

2

}
.

b) Let Yζ(z) denote the z-transform of the unit step response, then

Yζ(z) = H(z)
z

z − 1
=

z2

(z − 1
2)

2
.

Using partial fractions,

Yζ(z)

z
=

z

(z − 1
2)

2
=

1

z − 1
2

+
1
2

(z − 1
2)

2

and so

Yζ(z) =
z

z − 1
2

+
1
2z

(z − 1
2)

2
.

Taking inverse z-transforms,

yζ(k) =
(
1
2

)k
ζ(k) + 1

2k
(
1
2

)k−1
ζ(k) = (1 + k)

(
1
2

)k
ζ(k).

The impulse response can be found using (2.8).

yδ(k) = yζ(k)− yζ(k − 1) = (1 + k)
(
1
2

)k
ζ(k)− k

(
1
2

)k−1
ζ(k − 1).

Since δ(k) = ζ(k)− ζ(k − 1), it follows that

yδ(k) = (1 + k)
(
1
2

)k
ζ(k)− 2k

(
1
2

)k
[ζ(k)− δ(k)],

but 2k
(
1
2

)k
δ(k) = 2k

(
1
2

)k ∣∣∣∣
k=0

δ(k) = 0 and so

yδ(k) = (1 + k)
(
1
2

)k
ζ(k)− 2k

(
1
2

)k
ζ(k) = (1− k)

(
1
2

)k
ζ(k).

The unit step and impulse responses for the filter, over 25 samples, were
generated using the MATLAB� commands:

31

b=[1 -1 0]; a=[1 -1 0.25];

subplot(2,1,1); impz(b,a,25);

subplot(2,1,2); stepz(b,a,25);

and are illustrated in Figure 2.1. The responses can also be displayed, us-
ing the Filter Visualization Tool (fvtool), with the MATLAB� command
fvtool(b,a) and then clicking on the appropriate button.

0 5 10 15 20
−0.5

0

0.5

1

n (samples)

A
m

pl
itu

de

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

n (samples)

A
m

pl
itu

de

(ii)

(i)

Figure 2.1: (i) Unit impulse response. (ii) Unit step response.

�

2.6 A voiced/unvoiced speech production model
for speech processing

In this section, speech processing is considered and an appropriate system func-
tion is suggested for modelling the vocal and nasal tracts as shown in Fig-
ure 2.2 (for more details, see [Rabiner and Schafer, 1978, Deller et al., 2000]).

32

Other useful references on speech processing are the following: [Flanagan, 1972,
Quatieri, 2001]

Oral
cavity

Nasal
cavity

Pharyngeal

cavity

Lungs

Trachea�
��� �

Glottis �

Nasal
Tract

Vocal
Tract

�
�
Oral
sound

�
�
Nasal
sound

Figure 2.2: Schematic diagram of the vocal and nasal tracts.

2.6.1 Physiological aspects of speech production

A speech signal is the result of an acoustic pressure wave that is formed when air
is forced through anatomical structures in the human speech production system.
A crude physiological model of the human speech production system consists
of the following elements: lungs, trachea (windpipe), glottis (valve), pharyngeal
cavity (throat), oral (mouth) and nasal (nose) cavities, illustrated in Figure 2.2.
As shown in the schematic illustration in Figure 2.2, the subsystem representing

33

the nasal cavity is often known as the nasal tract model, whilst the pharyngeal
and oral cavities are said to comprise the vocal tract model.
The vocal tract produces a sound when the lungs contract, forcing air up

through an air-passage known as the trachea. The increase in air pressure causes
the glottis, a valve, to burst open, momentarily, before quickly closing. When
this is repeatedly performed, a very nearly periodic waveform is produced by
this mechanism. The resulting flow of air is then perturbed by the vocal tract
(or vocal and nasal tracts) to produce a sound. Some factors that can affect the
waveform are : tension in the vocal chords, lung pressure, shape of the vocal
cavities. The mouth, nose and throat are the primary resonating cavities. Their
resonant characteristics can be changed (thereby altering the speech waveform)
by moving the lips, tongue, jaw, and soft palate at the back of the mouth.
Speech sounds can be classified into a number of distinct classes. Three impor-
tant classes are:

a) voiced sounds : produced when quasi-periodic pulses of air excite the vocal
tract (for example, ‘u’, ‘i’, ‘d’, ‘w’, etc.);

b) unvoiced sounds (or fricatives): generated by forming a constriction in the
vocal tract and forcing air through the constriction. This creates a noise
source which excites the vocal tract (for example, ‘sh’, ‘f’, ‘s’);

c) plosive sounds : obtained by making a complete closure of the vocal tract
(with lips), building up pressure behind the closure, and abruptly releasing
it (for example, ‘p’, ‘b’).

Resonances in the vocal tract are characterized by resonant frequencies in the
vocal tract spectrum, which are called formant frequencies (or simply formants);
the frequency bandwidth for human speech production being approximately 7
or 8 kHz. Tension of the vocal chords can affect pitch, namely an increase in
tension causes the chords to vibrate at a higher frequency. The time between
successive openings of the glottis valve, producing the quasi-periodic pulses of
air, is called the ‘fundamental period’. By convention, see [Deller et al., 2000]
for a fuller discussion, the fundamental period is often referred to as the ‘pitch
period’. Pitch period and formant estimation are two of the most important
problems in speech processing.

2.6.2 Lossless tube model [optional]

Due to soft tissue surrounding the vocal tract, sound waves in the vocal tract
primarily propagate in one direction, namely along the vocal tract. Assuming

34

there is no loss of sound through the boundary walls of the vocal tract, an acous-
tic model for speech production usually consists of a concatenation of lossless
acoustic tubes with constant cross-sectional areas {Ak}, which are chosen to
approximate the vocal tract ‘area’ function. A diagrammatic representation is
shown in Figure 2.3. Considering two adjacent tubes, namely tube k and tube

A1 A2 A3 A4 A5 A6

Figure 2.3: Acoustic lossless tube model.

k+1, it is well known (see [Deller et al., 2000] and [Rabiner and Schafer, 1978])
that the ‘volume’ velocity, vk(t, x), in the k

th tube is given by

vk(t, x) = v+k

(
t− x

c

)
− v−k

(
t+

x

c

)
,

where t denotes time, x is the distance measured from the left-hand end of the
kth tube, c (assumed to be constant) is the speed of sound in air, and v+k (·) and
v−k (·) denote the respective velocities of the travelling waves in the positive and
negative directions in the kth tube; moreover, by applying boundary conditions
at the junction of tube k and tube k + 1, the following equations hold:

v+k+1(t) = (1 + rk)v
+
k (t− τk) + rkv

−
k+1(t)

v−k (t+ τk) = −rkv
+
k (t− τk) + (1− rk)v

−
k+1(t) ,

where τk denotes the delay incurred in travelling the length of the k
th tube

and rk (known as the reflection coefficient) is the proportion of the forward
travelling wave in tube k, v+k (t − τk), that is reflected into tube k + 1. At the
boundary of the junction of the tubes the value of the reflection coefficient, rk,
is determined by

rk =
Ak+1 −Ak

Ak+1 +Ak

35

and it can be shown (see Exercise 2.20) that

−1 ≤ rk ≤ 1 .

A signal flow graph representation is given in Figure 2.4. It is noted that the sig-

Delay
τk

Delay
τk

v
−

k
(t) 1− rk v

−

k+1(t)

v
+

k
(t) 1 + rk v

+

k+1(t)

−rk rk

TUBE k TUBE k + 1

Figure 2.4: Signal flow diagram for the junction of tube k and tube k + 1.

nal flow graph contains only additions, multiplications and delays and, therefore,
a discrete-time model, utilizing these operations, can easily be implemented.
Assuming N tubes, in the model, are equal in length and each delay is half

the sampling delay, i.e. τk = T/2, then the z-transform system function can be
shown (see, for example, Chapter 3, §3.2, in [Deller et al., 2000] and Chapter 3,
§3.3.4, in [Rabiner and Schafer, 1978] for more details) to have the form

H(z) =
Gz−

N
2 (1 + r1)(1 + r2) . . . (1 + rN)

1−
N∑

k=1

akz
−k

=

Gz−
N
2

N∏
k=1

(1 + rk)

1−
N∑

k=1

akz
−k

,

where the gain term, G, is constant. The poles of H(z) define the formants
(resonances) of the lossless tube model.

2.6.3 Digital speech production model

In order to analyse a speech (continuous-time) signal, the signal is sampled to
obtain a discrete-time signal, {s(m)}. It is assumed that speech production can

36

be modelled by a linear time-varying filter that is excited by an input, {x(m)},
consisting of a quasi-periodic train of impulses, in the case of voiced sounds, or a
random noise source, in the case of unvoiced sounds. Usually during excitation,
vocal and nasal tract properties of a speech signal change relatively slowly with
time and, for most speech signals, we may assume that these properties remain
fixed over short time periods, such as 10-20 msec. Thus, in these short time
periods, speech production is assumed to be modelled by time-invariant filters.
A linear time-invariant model for speech production is usually taken to be of
the form:

S(z) = G(z)V (z)L(z)X(z),

where S(z) = Z [{s(m)}], X(z) = Z [{x(m)}], G(z) is the glottal shaping model,
V (z) a , and L(z) a lip radiation model. Experimentally, it is found that a
reasonably good model for the vocal tract system function has the form:

H(z) =
S(z)

X(z)
= G(z)V (z)L(z) ≈

Gs

⎡
⎣1− q∑

j=1

bjz
−j

⎤
⎦

[
1−

p∑
k=1

akz
−k

] ,

where the constant Gs ∈ R
+ is known as the speech gain parameter. For non-

nasal, voiced sounds an all-pole filter (namely an AR filter) is a good approx-
imation for the system function. Thus, a further simplification of the speech
production model (for non-nasal, voiced sounds) is:

S(z) = Gs

X(z)

A(z)
,

where

A(z)
def
= 1−

p∑
k=1

akz
−k.

The parameters of the speech production model, namely {ak; k = 1, 2, . . . p}
and Gs may be estimated for a short segment of speech, for example 20 msec
or 260 samples when sampled at 13 kHz (using the analysis model illustrated
in Figure 2.5). Moreover, an analysis can be performed to identify the type
of excitation, i.e. quasi-periodic train of impulses or a random noise source,
and, in the case of voiced speech, compute an approximate value of the pitch
period. This information can be encoded and used for the synthesis of speech
(see Figure 2.6).

37

short segment
of speech�

identify

voiced/unvoiced

model
and

compute parameters

� encoder �system parameters;

excitation;

pitch period

output

Figure 2.5: Analysis model.

decoder

vocal
tract
model

lip

radiation
model

random
noise
generator

impulse

train
generator

glottal

shaping

model

input

speech parameters

output

synthesized
speech

Figure 2.6: Synthesis model.

2.7 System function and BIBO stability

Another important property of systems is that of stability.

Definition 2.2 A system is stable (or bounded-input / bounded-output
(BIBO) stable) iff, for any bounded input, the output is bounded at all times
given zero initial conditions.

Theorem 2.1 Discrete-time systems, which are linear and time-invariant, are
stable iff

∞∑
k=−∞

|h(k)| < ∞;

38

whereas linear, time-invariant, continuous-time systems are stable iff∫ ∞

−∞
|h(t)| dt < ∞.

Clearly, in view of Theorem 2.1, all linear, time-invariant, FIR systems and MA
processes are BIBO stable.
A useful stability result can be obtained in terms of the system function

H(z), introduced in §2.5.1.

Theorem 2.2 A linear, time-invariant,discrete-time system, with system func-
tion H(z) and zero initial conditions, is BIBO stable iff the region of convergence
for H(z) contains the unit circle centered at the origin in the z plane.

Therefore, this theorem can be used to determine stability for a given H(z)
without obtaining the impulse response or checking outputs for all bounded
input signals.

Remark 2.6 FIR filters are always stable.

If a linear, time-invariant, discrete-time system is causal, H(z) converges every-
where in the region |z| > r, where r is the largest radius of the circle containing
the poles of H(z). Hence, if the system is both stable and causal, all the poles
of H(z) must lie inside the unit circle.

Corollary 2.1 A causal, linear, time-invariant, discrete-time system, with sys-
tem function H(z) and initially quiescent, is BIBO stable iff all the poles of H(z)
lie inside the unit circle centered at the origin in the z plane.

Definition 2.3 A linear, time-invariant, discrete-time system is said to be
minimum-phase iff all the poles and all the zeros of the system function lie
inside the unit circle {z ∈ Z : |z| = 1}.

2.8 Exercises

Exercise 2.1

Consider filters, modelled by the following input-output relationships:

a) y(k)− y(k − 2) + x(k) = 0;

39

b) y(k) = (−1)ky(k − 1) + 2−kx(k − 1);

c) y(k + 2) = x(k + 2)− 5x(k);

where {x(k)} denotes the input and {y(k)} the corresponding output to the
filter. Classify the filters as (i) moving average (MA), (ii) autoregressive (AR),
(iii) autoregressive moving average (ARMA). Also, determine which of the filters
are time-invariant.

Exercise 2.2 Determine the z-transform and its region of convergence for each
of the following discrete signals {x(k)}:

a) x(k) =

⎧⎨
⎩

0, k < 0,

ak, 0 ≤ k ≤ 5,
0, k ≥ 6;

b) x(k) = 3(− 1
2)

kζ(k)− 2(3)kζ(−k − 1);

c) x(k) = 1
2δ(k) + δ(k − 1)− 1

3δ(k − 2);

d) x(k) = kζ(k − 1).

Exercise 2.3 Given the signal {x(k)}, where

x(k) =

⎧⎨
⎩

0, k < 0,

ak, 0 ≤ k ≤ 10,

1 + ak, k ≥ 11,

express x(k) in terms of ζ(k) and, hence, use the delay property (Chapter 2,
Z2) to find the z-transform of the signal {x(k)}, together with its region of
convergence.

Exercise 2.4 Find Z [{(x ∗ y)(k)}], when x(k) = δ(k) + 1
2ζ(k) and y(k) =

δ(k)− 2δ(k − 2), using

(i) the convolution property (Chapter 1, CD4): if y(k) = δ(k−k0), k0 ∈ Z,
then (x ∗ y)(k) = x(k − k0), and then determine the z-transform of the
resulting sequence, using the delay property (Chapter 2, Z2);

(ii) the convolution z-transform property (Chapter 2, Z5).

40

Exercise 2.5 Find the z-transform of the signal {x(k)}, defined by x(k)
def
=

(12)
k+2ζ(k), using the advance property (Chapter 2, Z2). Also, determine the

region of convergence.

Exercise 2.6 Invert the following z-transforms of causal sequences.

a)
2z2 − 3z

z2 − 3z + 2
b)

z2 − z

(z − 4)(z − 2)2
c)

z − 3

z2 − 3z + 2

Exercise 2.7 Solve the difference equation defined, for k ≥ 0 (k ∈ Z), by

6y(k + 2) + 5y(k + 1)− y(k) = 10 , y(0) = 0, y(1) = 1.

Exercise 2.8 Using the partial fraction expansion method, with the help of
MATLAB� (if required), find the inverse z-transform of

X(z) =
z(z2 − 4z + 5)

(z − 1)(z − 2)(z − 3)

for the following regions of convergence:
a) {z ∈ C : 2 < |z| < 3}; b) {z ∈ C : |z| > 3}; c) {z ∈ C : |z| < 1}.

Exercise 2.9 The system function of a causal, linear, time-invariant AR pro-
cess is

H(z) = z2/
(
z2 − 1

4

)
.

a) Obtain a difference equation realisation for this filter.

b) Determine {yζ(k)} and {yδ(k)} and comment whether the process is
FIR or IIR, stating your reasons.

Exercise 2.10 If X(z) = Z [{x(k)}] and X(z) =
z(4− 3z)

z2 + 4
, |z| > 2, find x(k).

Exercise 2.11 A linear, time-invariant, discrete system with input x(k) and
output y(k) is characterized by its sample response: h(k) = akζ(k) for 0 < a < 1.
Find the response y(k) of the system to the input signal x(k) = ζ(k). Comment
on the stability of the system.

Exercise 2.12 Consider a discrete system with unit sample response h(k) given
by h(k) = 2−kζ(k).

41

a) Find a difference equation realization of the system.

b) If the input to the system is x(k) = 2δ(k) + 4δ(k− 1)+ 4δ(k− 2), cal-
culate, using the MATLAB� command filter, y(k) for k = 0, 1, 2, 3, 4, 5
and 6, assuming the system is initially quiescent.

c) Is the system (i) stable (ii) causal?

Exercise 2.13 A linear, time-invariant, discrete filter is characterized by its
unit impulse response h(k) given by h(k) = 3(− 1

4)
kζ(k − 1). Is the filter a)

causal; b) stable; c) FIR or IIR? Give your reasons.

Exercise 2.14 For the system modelled by

50y(k + 2)− 35y(k + 1) + 6y(k) = 25[x(k + 1) + x(k)], k ∈ Z,

a) find the impulse and step responses to the system;

b) plot the impulse and step responses using MATLAB� for k = 0, . . . 20.

Exercise 2.15 Find, using z-transforms, the unit step response of a discrete
system with the unit impulse response function

h(k) =

{
3k, k < 0,

0.4k, k ≥ 0.

Exercise 2.16 Given a causal system specified by its system function:

H(z) =
z(z − 1)

(z − 1
2)(z +

1
4)

,

a) find a difference equation realization of the system;

b) determine the impulse response of the system;

c) is the system minimum-phase?

Exercise 2.17 Suppose the unit step response of a linear,time-invariant, causal
filter is

yζ(k) =
[(
− 1

2

)k
+ 6

(
3
4

)k]
ζ(k).

42

a) Find the system function, H(z), for this filter.
Plot the poles and zeros of H(z), using MATLAB�, and state the region
of convergence for H(z).

b) Explain why the filter is stable.

c) Is the filter minimum-phase?

d) Find the unit impulse response of the filter.

e) Obtain a difference equation realization for the filter.

Exercise 2.18 A stable filter has a zero at −2 and two simple poles at 1
2 and

− 3
4 . In addition, it is known that yδ(1) =

7
4 , where {yδ(k)} denotes the response

of the filter to the unit impulse sequence {δ(k)} with zero initial conditions.

a) Determine the system function and its region of convergence.

b) Is the filter causal?

c) Determine the step response of the filter and plot the step response,
using MATLAB� , for k = 0 . . . 24 (k ∈ Z).

Exercise 2.19 Investigate BIBO stability for a linear causal system with sys-
tem function

H(z) =
1

z2 + αz − α
,

where α is a real parameter.

Exercise 2.20 [Optional] For two adjacent, lossless, acoustic tubes, tube k and
tube k+1, with respective constant cross-sectional areas Ak > 0 and Ak+1 > 0,
the reflection coefficient rk, for the junction of the two tubes, can be expressed
as

rk =

Ak+1

Ak
− 1

Ak+1

Ak
+ 1

or rk =
1− Ak

Ak+1

1 + Ak

Ak+1

.

Using these results, show that −1 ≤ rk ≤ 1 .

43

Chapter 3

Frequency response, Fourier
spectra and sampling

3.1 Introduction

In Chapter 2, the impulse and step responses were studied as solutions to a
difference equation. This was, essentially, a study in the time-domain. In this
chapter a response of a system is viewed in the frequency-domain, which leads
to a function, of frequency, that allows one to estimate a steady state response
of a system to sinusoids.

Since sampling is an important aspect of signal processing, this is inves-
tigated, via the Fourier transform and a study of a signal’s spectra, and the
well-known problem of aliasing is discussed. The spectrum of a signal is impor-
tant and many books have been written on spectral analysis; for more details
see [Kay, 1987] and [Marple, 1987], to name but a few. In addition, the discrete
Fourier transform is introduced, for analysing digital signals, and some appro-
priate spectra are described. Since window functions are often used to filter
digital signals in the time-domain, a number of common windows are described
in this chapter and spectral properties of various windows are illustrated.

45

3.2 Frequency and steady-state response

Consider the response of a linear, time-invariant, discrete-time system to a com-
plex exponential input of the form x(k) = exp(iθk), where θ represents angular
frequency and i denotes

√
−1. Suppose the impulse response of the system is

{h(k)}, then the output response is

y(k) = (h ∗ x)(k) =
∞∑

m=−∞
h(m)x(k −m) =

∞∑
m=−∞

h(m)eiθ(k−m).

Thus,

y(k) = eiθk
∞∑

m=−∞
h(m)e−iθm;

that is the output signal is the original input signal, with x(k) = eiθk, multiplied
by a function which only depends on frequency θ.

Definition 3.1 Let {h(k)} denote the impulse response of a linear, BIBO sta-
ble, time-invariant, discrete-time system. Then

H(eiθ)
def
=

∞∑
m=−∞

h(m)e−iθm (3.1)

is called the frequency response of the linear, time-invariant system.

Therefore, the output can be written as

y(k) = eiθkH(eiθ) = x(k)H(eiθ)

and, hence, the magnitude of the output is the magnitude of the input multiplied
by |H(eiθ)|. Now |H(eiθ)| is known as the gain spectrum (or sometimes
amplitude response or magnitude response) whilst arg[H(eiθ)] is called
the phase-shift spectrum (or phase response).
Some of the main properties of the frequency response are:

(FR1) H(eiθ) is periodic in θ with period 2π;

(FR2) |H(eiθ)| is an even function of θ and symmetrical about π;

(FR3) arg[H(eiθ)] is an odd function of θ and antisymmetrical about π.

46

Remark 3.1 h(k) can be recovered from H(eiθ) by using

h(k) =
1

2π

∫ π

−π

H(eiθ)eiθk dθ. (3.2)

Consider the response of a linear, time-invariant, causal, system with system
function

H(z) =
b(z)

a(z)

to a causal input sequence obtained by sampling eiωt with sampling period T ,

i.e. the input sequence is {x(k)} = {eiωkT ζ(k)} = {
(
eiωT

)k
ζ(k)}. Assuming

the system is initially quiescent,

Y (z) = H(z)X(z) = H(z)
z

z − eiθ
,

where θ = ωT is referred to as a normalized frequency variable. Thus,

Y (z)

z
=

b(z)

a(z)

1

z − eiθ
.

Suppose the system is BIBO stable and, for the sake of simplicity, that H(z)
has only simple poles at z = λi, i = 1, 2, . . . , n. Performing a partial fraction
expansion gives

Y (z)

z
=

n∑
j=1

αj

z − λj

+
β

z − eiθ
.

Therefore,

{y(k)} = Z−1 [Y (z)] = Z−1

⎡
⎣ n∑
j=1

αjz

z − λj

+
βz

z − eiθ

⎤
⎦

=

⎧⎨
⎩
⎛
⎝ n∑

j=1

αj(λj)
k + βeikθ

⎞
⎠ ζ(k)

⎫⎬
⎭ .

Since the system is assumed to be stable, then |λj | < 1 for all j and all the terms
in the summation decay to zero as k → ∞. This means that the long-term
or steady-state response of a stable system with input sequence {x(k)} =

47

{eikθζ(k)} is simply {βeikθζ(k)} = β{x(k)}. Using the cover-up rule, the factor
β is found to be

β = H(eiθ),

which is the system function H(z) evaluated on the unit circle z = eiθ. Thus,
the frequency response can be determined from

H(eiθ) = H(z)
∣∣
z=eiθ

.

For a stable system H(z), the input signal {x(k)} = {eikθ} gives rise to the
steady-state response

{y(k)} =
{
H(eiθ)eikθ

}
.

By taking real and imaginary parts, the respective steady-state responses to the
inputs {cos(kθ)} and {sin(kθ)} are given by

�
{
H(eiθ)eikθ

}
=
{
|H(eiθ)| cos(kθ + φ0)

}
(3.3a)

and

	
{
H(eiθ)eikθ

}
=
{
|H(eiθ)| sin(kθ + φ0)

}
, (3.3b)

where |H(eiθ)| is the gain spectrum and φ0 = argH(eiθ) is the phase-shift
spectrum. In particular, if the input is the d.c. signal {Aζ(k)}, where A is a
constant, then the steady-state output is

{
AH(ei0)ζ(k)

}
, whereH(ei0) is known

as the d.c. gain.

Example 3.1 A causal, linear, time-invariant system is modelled by

y(k) + 1
2y(k − 2) = x(k − 1), k ∈ Z.

a) Show that the system is BIBO stable.

b) Determine the gain and phase-shift spectra.

c) Find the steady-state output of the system when the input signal, for
k ≥ 0, is

x(k) = 3− 6 sin
(
π
3 k
)
+ 5 cos

(
π
2 k
)
.

Solution:

48

a) Taking the z-transform of the difference equation,

Y (z) + 1
2z

−2Y (z) = z−1X(z)

and so

H(z) =
Y (z)

X(z)
=

z−1

1 + 1
2z

−2
.

The poles of H(z) satisfy z2 + 1
2 = 0, i.e. z = ± 1√

2
i. Since |z| = 1√

2
< 1,

the system is BIBO stable.

b) The frequency response is

H(eiθ) = H(z)
∣∣
z=eiθ

=
e−iθ

1 + 1
2e

−i2θ
=

1

eiθ + 1
2e

−iθ

=
1

3
2 cos(θ) + i 12 sin(θ)

.

Hence, the gain spectrum is

|H(eiθ)| = 1√
9
4 cos

2(θ) + 1
4 sin

2(θ)
=

2√
9 cos2(θ) + sin2(θ)

or
2√

1 + 8 cos2(θ)
or

2√
5 + 4 cos(2θ)

.

The phase-shift spectrum is

argH(eiθ) = arg 1− arg
(
3
2 cos(θ) + i 12 sin(θ)

)
= 0− tan−1

(1
2 sin(θ)
3
2 cos(θ)

)
= − tan−1

(
1
3 tan(θ)

)
.

49

c)
θ

∣∣H (
eiθ
)∣∣ argH

(
eiθ
)

0 2
3 0

π
3

2√
3

−π
6

π
2 2 −π

2

Therefore, since x(k) = 3 − 6 sin
(
π
3 k
)
+ 5 cos

(
π
2 k
)
= 3ei0 − 6	{eiπ3 k} +

5�{eiπ2 k}, then, using (3.3a-b), the steady-state output is

y(k) = 3H
(
ei0
)
− 6

∣∣H (
ei

π
3

)∣∣ sin (π3 k + argH
(
ei

π
3

))
+ 5

∣∣H (
ei

π
2

)∣∣ cos (π2 k + argH
(
ei

π
2

))
= 3× 2

3 − 6× 2√
3
sin

(
π
3 k − π

6

)
+ 5× 2 cos

(
π
2k − π

2

)
= 2− 4

√
3 sin

(
(2k − 1)π6

)
+ 10 sin

(
π
2 k
)
.

�

Example 3.2 A causal digital filter has system function

H(z) =
5(2− z−1)

(5− 4z−1)(4 + 3z−1)
.

a) Find the difference equation realization of the filter.

b) Using MATLAB�, determine the poles and zeros of H(z) and illustrate
diagrammatically. Comment on the stability of the filter.

c) Plot, using MATLAB�, the gain and phase-shift spectra of H(z).

d) Using MATLAB�, plot the response of the filter {y(k)}, for k ∈ Z

satisfying −10 ≤ k ≤ 40, when the input is the (i) unit impulse {δ(k−5)},
(ii) unit step {ζ(k − 5)}, (iii) unit pulse {p10(k)}.

e) Find, using the z-transform final value theorem, the steady-state for the
unit step response.

Solution:

50

a)

H(z) =
Y (z)

X(z)
=

5(2− z−1)

(5− 4z−1)(4 + 3z−1)

=⇒ (20− z−1 − 12z−2)Y (z) = (10− 5z−1)X(z)

Taking inverse z-transforms,

20y(k)− y(k − 1)− 12y(k − 2) = 10x(k)− 5x(k − 1).

b) With H(z) in ascending powers of z−1, H(z) =
10− 5z−1

20− z−1 − 12z−2
=

b(z)

a(z)
.

Thus, the following MATLAB� commands can be used.

b=[10 -5];

a=[20 -1 -12];

zplane(b,a); % Plots the poles and zeros of H(z)

magz=abs(roots(a))’ % Magnitudes of the poles of H(z)

The poles and zeros of H(z) are illustrated in Figure 3.1.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

ina
ry

Pa
rt

Figure 3.1: Pole-zero plot.

The commands produce the result:

magz= 0.8000 0.7500.

Since the filter is causal and the magnitudes of both poles are less than
unity, the system is (BIBO) stable.

51

c) Plots of the gain and phase-shift spectra of H(z) may be obtained using
the MATLAB� commands:

% Evaluate the 256-point complex frequency response

[h,w]=freqz(b,a,256);

% Determine the gain and phase-shift spectra

mag=abs(h); phase=angle(h);

subplot(2,1,1); plot(w,mag); grid;

xlabel(’frequency’); ylabel(’magnitude’);

title(’Gain spectrum’)

subplot(2,1,2); plot(w,phase); grid;

xlabel(’frequency’); ylabel(’phase’);

title(’Phase-shift spectrum’)

and are illustrated in Figure 3.2.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

frequency

m
ag

ni
tu

de

Gain spectrum

0 0.5 1 1.5 2 2.5 3 3.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

frequency

ph
as

e

Phase−shift spectrum
(ii)

(i)

Figure 3.2: (i) Gain spectrum, and (ii) phase-shift spectrum for H(z).

Alternatively, the command fvtool(b,a) can be used to display the gain
spectrum and phase-shift spectrum.

52

d) The response to the unit impulse sequence {δ(k − 5)} and the unit step
sequence {ζ(k− 5)} are shown in Figure 3.3 (i) and (ii), respectively, and
the response to the unit pulse sequence {p10(k)} is shown in Figure 3.3
(iii).

−10 −5 0 5 10 15 20 25 30 35 40
−0.5

0

0.5
Impulse response

k

y
(k

)

−10 −5 0 5 10 15 20 25 30 35 40
0

0.5

1
Step response

k

y
(k

)

−10 −5 0 5 10 15 20 25 30 35 40
0

0.5

1
Filter response

k

y
(k

)

(iii)

(ii)

(i)

Figure 3.3: Filter response to (i) {δ(k − 5)}, (ii) {ζ(k − 5)}, and (iii) {p10(k)}.

These graphs were obtained using the following MATLAB� commands.

53

k=[-10:40];

% Unit impulse: delta(k-5) for -10<=k<=40

x1=[k-5 == 0];

% Unit step: zeta(k-5) for -10<=k<=40

x2=[k-5 >= 0];

% Unit pulse: p 10(k) for -10<=k<=40

x3=[k >= 0]-[k-10 >= 0];

y1=filter(b,a,x1); % Filter response to unit impulse

y2=filter(b,a,x2); % Filter response to unit step

y3=filter(b,a,x3); % Filter response to unit pulse

figure(3);

subplot(3,1,1);stem(k,y1); title(’Impulse response’);

xlabel(’k’); ylabel(’y(k)’)

subplot(3,1,2);stem(k,y2); title(’Step response’);

xlabel(’k’); ylabel(’y(k)’)

subplot(3,1,3);stem(k,y3); title(’Filter response’);

xlabel(’k’); ylabel(’y(k)’)

54

e) Using the Final Value Theorem for z-transforms (see §2.3.1, property
(Z7)),

lim
k→∞

yζ(k) = lim
z→1

(z − 1)Yζ(z)

= lim
z→1

zH(z)

= lim
z→1

5z(2− z−1)

(5− 4z−1)(4 + 3z−1)

= 5
7 ≈ 0.7143 .

This is confirmed graphically in Figure 3.3 (ii).

�

MATLAB� is also useful for designing digital filters such as, for example, But-
terworth and Chebyshev (try butter and cheby1, using the ‘help’ command in
MATLAB�).

3.3 The Fourier transform

The Fourier transform of t �→ f(t) is defined as

F {f(t)} def
=

∫ ∞

−∞
f(t)e−iωt dt = F (iω), (3.4)

where ω is real, and the inverse transform is defined as

f(t) = F−1 {F (iω)} def
=

1

2π

∫ ∞

−∞
F (iω)eiωt dω. (3.5)

F (iω) is called the continuous frequency spectrum of f(t). We may write

F (iω) = |F (iω)| exp(iθ(ω)).

Definition 3.2 The continuous amplitude spectrum of f(t) is defined as
|F (iω)| and θ(ω) is the continuous phase spectrum of f(t).

55

A set of sufficient conditions for the existence of F (iω) are the Dirichlet condi-
tions:

a) f(t) is absolutely integrable, that is

∫ ∞

−∞
|f(t)| dt < ∞;

b) f(t) must have a finite number of maxima and minima and finite discon-
tinuities in any finite interval.

These sufficient conditions are satisfied by many useful signals; in particular,
those signals for which ∫ ∞

−∞
|f(t)|2 dt < ∞. (3.6)

The energy in a signal f(t), E(f), is defined by

E(f)
def
=

∫ ∞

−∞
|f(t)|2 dt.

Thus, the above conditions include finite energy signals, i.e. those that satisfy
(3.6). For those signals that have infinite energy, the concept of average power,
defined by

Pav(f)
def
= lim

T→∞
1

T

∫ T
2

−T
2

|f(t)|2 dt,

is more useful. For finite energy signals, the average power, is zero. Average
power is more useful for aperiodic or random signals.

Remark 3.2 It is possible to obtain Fourier representations for certain classes
of infinite energy signals. In particular, Fourier representations can be obtained
for signals whose average power is finite, that is Pav(f) < ∞.

56

For finite energy signals, E(f) can be expressed in the frequency domain.

E(f) =

∫ ∞

−∞
|f(t)|2 dt

=
1

2π

∫ ∞

−∞
f∗(t)

∫ ∞

−∞
F (iω)eiωt dω dt (using (3.5))

=
1

2π

∫ ∞

−∞
F (iω)

∫ ∞

−∞
f∗(t)eiωt dt dω

=
1

2π

∫ ∞

−∞
F (iω)conj

(∫ ∞

−∞
f(t)e−iωt dt

)
dω,

where conj(·) denotes the operation of complex conjugation. Hence, using (3.4),

E(f) =
1

2π

∫ ∞

−∞
F (iω)conj(F (iω)) dω =

1

2π

∫ ∞

−∞
|F (iω)|2 dω.

This result is known as Parseval’s theorem for Fourier transforms.

Definition 3.3

G(ω)
def
=

1

2π
|F (iω)|2

is the energy spectral density of the signal f(t).

Remark 3.3 Analogous to |F (iω)| being known as the amplitude spectrum of
f(t), |F (iω)|2 is sometimes known as the energy spectrum of f(t).

3.3.1 Properties of the Fourier transform

(FT1) Linearity: If F {f1(t)} = F1(iω) and F {f2(t)} = F2(iω) then

F {af1(t) + bf2(t)} = aF1(iω) + bF2(iω), where a, b are constants.

(FT2) Symmetry: If F {f(t)} = F (iω) then F {F (it)} = 2πf(−ω).
If t �→ f(t) is an even function, then F {F (it)} = 2πf(ω).

(FT3) Change of scale: If F {f(t)} = F (iω) then, for a real constant α �= 0,

F {f(αt)} =
1

|α|F
(
i
ω

α

)
.

57

(FT4) Time shift (Delay): If F {f(t)} = F (iω) then

F {f(t− t0)} = F (iω) exp(−iωt0).

(FT5) Frequency shift (Modulation): If F {f(t)} = F (iω) then

F {f(t) exp(iω0t)} = F (i(ω − ω0)).

(FT6) Frequency differentiation and integration: If F {f(t)} = F (iω)
then

(i) F {−itf(t)} =
dF

dω
(iω)

(ii) F
{
f(t)

−it

}
=

∫
F (iω) dω.

(FT7) Time differentiation and integration: If F {f(t)} = F (iω) then

(i) F {f ′(t)} = iωF (iω), assuming f → 0 as t → ±∞.
In general, assuming f, f ′, . . . f (n−1) → 0 as t → ±∞,

F
{
f (n)(t)

}
= (iω)nF (iω).

(ii) F
{∫ t

−∞
f(u) du

}
=

1

iω
F (iω) + πF (0)δ(ω),

where δ(t), the impulse function, has the property:∫ ∞

−∞
g(t)δ(t− t0) dt = g(t0), (3.7)

assuming g(t) is continuous at t = t0.
This integration property can be applied to functions whose energy
is infinite but average power is finite.

(FT8) Convolution theorems:

Theorem 3.1 If F {f(t)} = F (iω) and F {g(t)} = G(iω), then

F {f(t)g(t)} =
1

2π

∫ ∞

−∞
F (iu)G(i(ω − u)) du

def
=

1

2π
(F ∗G)(iω).

58

Remark 3.4 The above result is sometimes known as frequency convo-
lution.

Alternatively, the convolution theorem may be written in the form:

Theorem 3.2 If F {f(t)} = F (iω) and F {g(t)} = G(iω), then

F−1 {F (iω)G(iω)} =

∫ ∞

−∞
f(u)g(t− u) du = (f ∗ g)(t).

Here, (f ∗ g)(t) is referred to as time convolution.

Remark 3.5 The convolution operation has both the commutative and
associative properties.

3.3.2 Fourier transform of power signals

Some functions are not absolutely integrable, for example the unit impulse func-
tion, the unit step function and trigonometric functions. For each of the above
cases, the signals have infinite energy, but their power is finite.

(i) Impulse function: An application of (3.7) with g(t) = e−iωt gives∫ ∞

−∞
e−iωtδ(t− t0) dt = e−iωt0 ,

that is
F {δ(t− t0)} = exp(−iωt0).

In particular,
F {δ(t)} = 1.

Using the symmetry property (FT2) and the change of scale property
(FT3),

F {exp(iω0t)} = 2πδ(ω − ω0) and, hence, F {1} = 2πδ(ω). (3.8)

(ii) Unit step function: Using the impulse function property (3.7), for t �= 0,

ζ(t) =

∫ ∞

−∞
ζ(τ)δ(τ − t) dτ.

59

Let τ = t− v then, as a result of the definition of ζ(t),

ζ(t) =

∫ ∞

−∞
ζ(t− v)δ(−v) dv =

∫ t

−∞
δ(−v) dv , for t �= 0.

Using the Fourier transform property (FT7)(ii),

F {ζ(t)} = F
{∫ t

−∞
δ(−v) dv

}
=

1

iω
F {δ(−t)} + π

[
F {δ(−t)}

]
ω=0

δ(ω).

Since F {δ(t)} = 1, it follows from property (FT3) that F {δ(−t)} = 1.
Therefore,

F {ζ(t)} =
1

iω
+ πδ(ω).

3.3.3 Fourier transforms of periodic signals

Suppose T ∈ R
+ and f(t) is periodic with period T . Then f(t) can be expressed

in terms of the exponential Fourier series as

f(t) =

∞∑
n=−∞

Fne
inω0t,

where ω0 =
2π

T
(rad.sec−1) is the fundamental frequency and

Fn =
1

T

∫
period

f(t)e−inω0t dt.

Now, formally,

F (iω) = F
{ ∞∑

n=−∞
Fne

inω0t

}
=

∞∑
n=−∞

FnF
{
einω0t

}
,

using the linear property (FT1). Here, it is assumed that the function f is such
that the change in order of summation and integration is allowable. It follows
from (3.8) that

F (iω) = 2π

∞∑
n=−∞

Fnδ(ω − nω0). (3.9)

60

The result (3.9) shows that the Fourier amplitude spectrum of the periodic
signal f(t) is given by a series of impulses of magnitude 2π|Fn| at intervals of
ω0.
The next example illustrates how to identify, in a straightforward manner,

the particular frequencies of periodic components in a signal using the Fourier
transform.

Example 3.3 Determine the Fourier transform of f(t) = 1+ cos(t)− 3 sin(2t).

Solution: Since 1 = e0it, cos(t) = 1
2

(
eit + e−it

)
and sin(2t) = 1

2

(
e2it − e−2it

)
,

then f can be expressed as: f(t) = e0it + 1
2

(
eit + e−it − 3e2it + 3e−2it

)
. Since

f is periodic with period T = 2π,

f(t) =

∞∑
n=−∞

Fne
inω0t

with ω0 = 2π/T = 1, F0 = 1, F1 = F−1 = 1
2 , F2 = − 3

2 , F−2 = 3
2 , and Fn = 0,

otherwise. Thus, from (3.9) with ω0 = 1, it follows that

F {f(t)} = F (iω) = 2π

∞∑
n=−∞

Fnδ(ω − n)

= π[2δ(ω) + δ(ω − 1) + δ(ω + 1)− 3δ(ω − 2) + 3δ(ω + 2)].

−2 −1 0 1 2

−3π

−2π

−π

π

2π

3π

ω

F (iω)

Thus, the impulses in the Fourier transform at ω = ±1 and ±2 indicate that
the signal, f(t), has periodic components with (angular) frequencies of 1 and
2 rads./sec., respectively.

�

61

Fourier transform of a unit comb function

Consider the unit comb function, which is defined by

t �→ γ
T
(t)

def
=

∞∑
k=−∞

δ(t− kT).

�

�

� � � � � � �

−3T −2T −T 0 T 2T 3T
t

1

γ
T
(t)

Figure 3.4: A graphical representation of a unit comb function

Since γ
T
(t) is periodic, with period T , it can be represented by its Fourier series:

γ
T
(t) =

∞∑
k=−∞

Γne
ikω0t, where ω0 =

2π

T
and Γn =

1

T

∫ 1
2
T

− 1
2
T

γ
T
(t)e−ikω0t dt.

By definition of γT ,

Γn =
1

T

∫ 1
2
T

− 1
2
T

δ(t)e−ikω0t dt

=
1

T

∫ ∞

−∞
g(t)δ(t) dt, where g(t) =

{
eikω0t, |t| < 1

2T,
0, otherwise,

=
1

T
g(0), by definition of δ(t),

=
1

T
.

Hence

γ
T
(t) =

1

T

∞∑
n=−∞

eikω0t.

62

Taking the Fourier transform of both sides and using (3.9),

F {γ
T
(t)} =

2π

T

∞∑
n=−∞

δ(ω − nω0)

and, since ω0 = 2π/T ,

F {γ
T
(t)} = ω0

∞∑
n=−∞

δ(ω − nω0) = ω0γω0
(ω). (3.10)

Thus, the transform of a unit comb function is composed of the product of ω0

with the unit comb function in the frequency domain, where the impulses are
located at the harmonic frequencies nω0 = n2π/T .

3.4 The sampling theorem and aliasing

� � ��
�

�x(t) xs(t)

Figure 3.5: Sampling switch.

An analogue signal x(t) can be sampled at the points t = nT , where T is
the sampling period, to produce sampled values. This can be achieved using
a sampling switch which closes briefly every T seconds. The switch is such
that a value of x(t) is obtained when the switch is closed and a zero value
when the switch is open. The sampled signal xs(t) can be modelled by xs(t) =
x(t)p(t), where p(t) is called the sampling function. In practice, the time during
which p(t) is non-zero is small compared to the period T and ideally p(t) can
be modelled by an infinite train of impulse functions of period T . Thus, an
appropriate representation for p(t) is

p(t) =
∞∑

n=−∞
δ(t− nT) = γ

T
(t).

Hence,
xs(t) = x(t)γ

T
(t).

63

Using the frequency convolution theorem (Theorem 3.1) and (3.10),

F {xs(t)} =
ω0

2π
X(iω) ∗ γω0

(ω), where ω0 =
2π

T
,

=
1

T

∞∑
n=−∞

X(iω) ∗ δ(ω − nω0).

Formally, by interchanging the order of integration and using the definition of
δ(t),

X(iω) ∗ δ(ω − nω0) =

∫ ∞

−∞
X(iu)δ(ω − nω0 − u) du

=

∫ ∞

−∞

∫ ∞

−∞
x(t)e−iutδ(ω − nω0 − u) du dt

= X(i(ω − nω0)).

Therefore,

F {xs(t)} =
1

T

∞∑
n=−∞

X(i(ω − nω0)) = fs

∞∑
n=−∞

X(i(ω − nω0)), (3.11)

where fs = T−1 is the sampling frequency.
In all practical signals, there is some frequency beyond which the energy is

negligible, for example, in musical signals frequencies beyond the range of the
human ear are of no interest. Let ωmax ∈ R

+ be the maximum frequency of
interest. Now suppose all the frequencies above the maximum value are filtered
out. This new signal is still denoted by x(t) since it contains all the useful
information in the original signal. Suppose x(t) has an amplitude spectrum of
the form illustrated in Figure 3.6. Here, X(iω) is said to be bandlimited in the
sense that it is zero beyond the frequency ωmax. In this case, ωmax is called

the bandwidth of the continuous-time signal x(t). Since
∞∑

n=−∞
X(i(ω − nω0)) is

a periodic function with period ω0, if
1
2ω0 > ωmax then

∣∣∣∣∣
∞∑

n=−∞
X(i(ω − nω0))

∣∣∣∣∣
has graph as shown in Figure 3.7. It is clear from Figure 3.7 that all the
relevant information of |X(iω)| is retained. However, if 1

2ω0 < ωmax the shifted
graphs overlap with each other and this causes loss of information in the band

64

�

�|X(iω)|

−ωmax ωmax ω0

Figure 3.6: Amplitude spectrum of a bandlimited signal.

�

�

−ω0 −ωmax ωmax

1

2
ω0

ω0 ω0

Figure 3.7: Amplitude spectrum of a sampled signal with no aliasing.

�

�

ω00 ωa ωb ω

Figure 3.8: Amplitude spectrum with aliasing, when ωa = ω0 − ωmax < ωb =
ωmax.

[ω0 − ωmax, ωmax] (see Figure 3.8). This is known as aliasing. To remove
aliasing, we must ensure 1

2ω0 ≥ ωmax, that is fs ≥ ωmax/π. Defining

fmax
def
= ωmax/(2π),

65

which is the maximum frequency in Hz (Hertz), then fs ≥ 2fmax and so, in
order to avoid aliasing, the minimum sampling frequency must be 2fmax Hz.
Alternatively, in terms of the sampling period, T ≤ (2fmax)

−1.

Theorem 3.3 A bandlimited signal x(t), having no frequency components above
fmax Hz, is completely specified by samples that are taken at a uniform rate
greater than 2fmax Hz, that is the sampling interval is less than (2fmax)

−1 sec-
onds, or, alternatively, the signal bandwidth must be less than π/T , where T is
the sampling period.

Remarks 3.6

(i) The above theorem is usually attributed to either Nyquist or Shannon
(or both). The frequency 2fmax is known as the Nyquist rate and π/T is
called the Nyquist frequency.

(ii) In order to account for other effects than simply aliasing, for example,
sampling over a finite interval, in practice, T < (10fmax)

−1 is recom-
mended as a guideline.

(iii) Further information on sampling can be found in [Bellanger, 1990,
Haddad and Parsons, 1991, Oppenheim et al., 1999] and, in addition, see
[Ziemer et al., 1998].

The Fourier transform of the analogue signal can be recovered from the Fourier
transform of the sampled data signal by filtering out all frequency components
above ωmax. This can be accomplished by using a low pass filter which trans-
mits all frequencies below ωmax and attenuates all frequencies above ωmax. For
example, the filter with

H(iω)
def
=

{
1, |ω| < ωmax,
0, otherwise,

where H(iω) is the Fourier transform of the impulse response of the filter, is an
ideal low pass filter. From (3.11),

Xs(iω)H(iω) =
1

T
X(iω),

or
X(iω) = TXs(iω)H(iω).

66

This result can then be used to show how x(t) can be recovered from xs(t).
From tables of the Fourier transform,

F {h(t)} = 2ωmaxsinc(ωmaxω),

where

h(t) =

{
1, |t| < ωmax,

0, otherwise,
and x �→ sinc(x) def

=

⎧⎨
⎩

sin(x)

x
, for x �= 0,

1, for x = 0.

Hence, using the symmetry property (FT2),

F {2ωmaxsinc(ωmaxt)} = 2πH(iω),

where H(iω) is defined above, and so

F−1 {H(iω)} = π−1ωmaxsinc(ωmaxt).

Therefore,

x(t) = F−1 {X(iω)}
= F−1 {TXs(iω)H(iω)}
= Txs(t) ∗ [π−1ωmaxsinc(ωmaxt)], using Theorem 3.2,

= xs(t) ∗ sinc(ωmaxt), since T = (2fmax)
−1 = π(ωmax)

−1,

=

{ ∞∑
n=−∞

x(nT)δ(t− nT)

}
∗ sinc(ωmaxt).

Now, by definition of δ(t), it follows from the continuous-time convolution prop-
erty (CC4) that

δ(t−nT)∗sinc(ωmaxt) =

∫ ∞

−∞
δ(u−nT)sinc(ωmax(t−u)) du = sinc(ωmax(t−nT)).

Thus

x(t) =
∞∑

n=−∞
x(nT)sinc(ωmax(t− nT)).

67

3.5 The discrete Fourier transform (DFT)

discrete Fourier transform (DFT) The z-transform of a sequence {x(k)} is

X(z) =

∞∑
k=−∞

x(k)z−k

and so the frequency response can be expressed as

X
(
eiω
)
=

∞∑
k=−∞

x(k)e−iωk. (3.12)

Here,
∞∑

k=−∞
x(k)e−iωk is known as the discrete-time Fourier transform (DTFT)

of the sequence {x(k)}. The inverse transform is defined by

x(k)
def
=

1

2π

∫ π

−π

X
(
eiω
)
eiωk dω.

The formula (3.12) is not directly applicable to data analysis using a computer
since

a) the formula assumes x(k) is known for all k;

b) ω is continuous.

Suppose an analogue signal, x(t), is sampled to produce a discrete signal x(kT),
where it is assumed that the sample values are equally spaced with sampling
period T . In practice, it is more likely that a finite set of N sampled values
{x(k); k = 0, 1, . . . , N − 1}, where

x(k) = x(kT),

have been generated. The spectrum of this sequence is

X
(
eiθ
)
=

N−1∑
k=0

x(k)e−iθk,

where θ is the normalised frequency θ = ωT .

68

Suppose X
(
eiθ
)
is sampled uniformly at intervals of θ =

2π

N
, that is N

distinct values of X
(
eiθ
)
, say X(n), n = 0, 1, . . . , N − 1, then

X(n) =

N−1∑
k=0

x(k)e−i 2πkn
N .

By convention, X(n), a sampled version of the periodic discrete-time Fourier
transform, is known as the discrete Fourier transform (DFT) of the sequence
{x(k)}. The inverse discrete Fourier transform (IDFT) of the sequence {X(n)}
is

x(k) =
1

N

N−1∑
n=0

X(n)ei
2πkn

N .

It can be shown, see Discrete-time Signal Processing by A.V. Oppenheim and
R.W. Schafer (Prentice-Hall, 1989), that an estimate of the Fourier transform
of the analogue signal x(t), sampled at small intervals, is the DFT of {x(k)}
multiplied by the factor TN−1. Special algorithms have been developed to
determine the discrete Fourier transform efficiently (usually N is a power of 2).
These are referred to as fast Fourier transforms (FFTs).

There are three possible transform domains for the DFT, namely n or θn
def
=

n(2π/N) or Ωn
def
= n(2π/(NT)).

�

�
�{DFT[x(k)]}

or �{DFT[x(k)]}

n or θn or Ωn

*
*
*
*

*

*
*

*

*

*

*
*

*
*

Figure 3.9: DFT transform domains.

1. n is called the digital frequency index.

69

2. θn is the digital frequency (rads.).

3. Ωn is the analogue frequency (rads./sec.).

Also, δθ
def
= θ1 = 2π/N rads. is known as the digital frequency resolution, whilst

δΩ
def
= Ω1 = 2π/(NT) rads./sec. is known as the analogue frequency resolution.

Remark 3.7 Since frequency indices greater than N/2 are redundant for real
signals, the highest observable unaliased frequency is related to the N/2 frequency
index. In the case of the digital frequency θ 1

2
N , this is π rads., whilst the analogue

frequency Ω 1
2
N is π/T rads./sec.

Note that the duration of the time signal being sampled is

NT =
2π

δΩ
. (3.13)

By the sampling theorem (namely Theorem 3.3), for a bandlimited signal to be
recoverable from the samples of the signal, fs ≥ 2fh, that is

T =
1

fs
≤ 1

2fh
,

where fs denotes sampling frequency and fh represents the highest frequency
content of the signal (in Hz). Using (3.13), this provides a lower limit on the
number of signal samples that must be taken in order to meet a specified fre-
quency resolution. Thus, if the analogue frequency resolution, δΩ, is specified
then, to avoid aliasing, the number of samples must satisfy

N ≥ 4πfh
δΩ

,

whilst if the frequency resolution is specified in Hertz, say δf , then

N ≥ 2fh
δf

,

since δf = δΩ/(2π). This is then the lower limit on the number of samples
required to compute the DFT.

70

3.6 Discrete spectra

For a discrete signal x(k) of length N , its energy is defined as

E(x)
def
=

N−1∑
k=0

|x(k)|2.

Parseval’s relation for discrete signals takes the form:

N−1∑
k=0

|x(k)|2 =
1

N

N−1∑
n=0

|X(n)|2. (3.14)

This relation shows that the energy computation can be carried out in the
frequency domain as well as the time domain.
As in the case of a continuous time signal, discrete spectra can be defined.

Definition 3.4 Since X(n) = |X(n)| exp(iψn), the DFT amplitude spec-
trum is defined to be |X(n)| and ψn is the DFT phase spectrum.

For applications, the discrete spectra can be computed using MATLAB�. The
DFT and IDFT are obtained using the commands fft and ifft (note that, in
MATLAB�, the i notation is replaced by j).

Example 3.4 Using MATLAB�, plot the amplitude and phase spectra for the
sequence {x(k)}, where

x(k) = sin(2πf1k) + cos(2πf2k),

f1 = 10, f2 = 25 and k = 0 : 0.01 : n− 0.01, with n = 30.

Solution: The following MATLAB� commands:

n=30; k=[0:0.01:n-0.01];

x=sin(2*pi*10*k)+cos(2*pi*25*k); % Generates given sequence

y=fft(x); % Computes the DFT of x

% Determine the amplitude and phase spectra

as=abs(y); ps=unwrap(angle(y));

f=[0:length(y)-1]*99/length(y); % computes the frequency vector

subplot(121); plot(f,as); title(’Amplitude’);

set(gca,’XTick’,[10 25 75 90]);

subplot(122); plot(f,ps*180/pi); title(’Phase’);

set(gca,’XTick’,[10 25 75 90]);

71

produce the plots in Figure 3.10.

10 25 75 90
0

200

400

600

800

1000

1200

1400

1600
Amplitude

10 25 75 90
0

1

2

3

4

5

6

7

8 x 104 Phase

Figure 3.10: Gain and phase spectra.
�

When processing a signal, sometimes the signal is padded with additional zeros.
This has the effect of producing closely spaced samples in the spectrum, that is
it produces a high-density spectrum. However, it does not give a high-resolution
spectrum, because no new information is added to the signal. To obtain a high-
resolution spectrum more signal data is required.

Example 3.5 Consider the sequence {x(k)}, where
x(k) = cos(0.4πk)− sin(0.6πk).

a) Plot the amplitude spectrum of {x(k)} for 0 ≤ k ≤ 10, k ∈ Z.

b) Append 490 zeros to {x(k)}, 0 ≤ k ≤ 10, k ∈ Z, and plot the new
amplitude spectrum and compare the result with that obtained in a).

c) Using 490 additional sampling points, determine and plot the amplitude
spectrum of {x(k)} for 0 ≤ k ≤ 500, k ∈ Z.

Solution:

a) Using MATLAB�, an estimate of the amplitude spectrum is obtained by
the following commands:

n=10; k1=[0:1:n];

x1=cos(0.4*pi*k1)-sin(0.6*pi*k1); y1=fft(x1);

w=2*pi/length(y1)*k1; plot(w/pi,abs(y1)), grid,

title(’Amplitude spectrum’),

xlabel(’Frequency in multiples of pi’);

72

0 0.5 1 1.5 2
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
Amplitude spectrum

Frequency in multiples of pi

Figure 3.11: Amplitude spectrum for x(k) = cos(0.4πk)− sin(0.6πk), 0 ≤ k ≤
10.

It is clear from Figure 3.11 that it is difficult to draw any conclusions due
to the lack of samples in the spectrum.

b) The required MATLAB� commands are:

k2=[0:1:50*n];

x2=[x1 zeros(1,490)]; y2=fft(x2);

w=2*pi/length(y2)*k2; plot(w/pi,abs(y2)), grid,

title(’Amplitude spectrum’),

xlabel(’Frequency in multiples of pi’);

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7
Amplitude spectrum

Frequency in multiples of pi

Figure 3.12: Amplitude spectrum for zero-padded data.

Using the data padded with additional zeros, Figure 3.12 indicates that,
possibly, the sequence has two dominant frequencies at ω = 0.4π and
ω = 0.6π, approximately.

73

c) The MATLAB� commands:

x3=cos(0.4*pi*k2)-sin(0.6*pi*k2); y3=fft(x3);

w=2*pi/length(y3)*k2; plot(w/pi,abs(y3)), grid,

title(’Amplitude spectrum’),

xlabel(’Frequency in multiples of pi’);

produce the graph shown in Figure 3.13. With additional sequence data,

0 0.5 1 1.5 2
0

50

100

150

200

250
Amplitude spectrum

Frequency in multiples of pi

Figure 3.13: Amplitude spectrum for additional sampling points.

Figure 3.13 confirms that there are two dominant frequencies at ω = 0.4π
and ω = 0.6π.

�

The two-dimensional FFT and its inverse can be computed in MATLAB� with
the commands: fft2 and ifft2. These functions are useful for 2-dimensional
signal processing and image processing.

3.6.1 Power spectrum

The total average power of a sequence {x(k), k ∈ Z} is

Pav(x)
def
= lim

N→∞
1

2N + 1

N∑
k=−N

|x(k)|2.

For a finite sequence {x(k), k = 0, 1, . . .N − 1},

Pav(x)
def
=

1

N

N−1∑
k=0

|x(k)|2 =
1

N2

N−1∑
n=0

|X(n)|2, (using (3.14)).

74

The power spectrum of the finite sequence {x(k), k = 0, 1, . . .N − 1} is defined
by

P (n)
def
=

|X(n)|2
N2

for 0 ≤ n ≤ N − 1.

3.7 Digital filters

To process signals, appropriate filters, such as MA, AR, ARMA, for example, are
designed to achieve some desired objectives, such as passing or rejecting signals
of different frequencies. A low-pass filter is designed to pass all signals with
frequencies less than a cut-off, or critical frequency, and reject all signals
greater than the cut-off frequency, whilst a high-pass filterhas the opposite
effect. Thus, a high-pass filter rejects all signals of frequency less than the cut-off
frequency and pass signals whose frequency content is greater than the cut-off
frequency. Other types of filters are the band-reject filter and band-pass
filter; for more details, see Signal Processing In Electronic Communication by
Chapman et al (Horwood Publishing, 1997).

Example 3.6 A third order filter is described by the difference equation

y(k) = 0.5772y(k− 1)− 0.4218y(k− 2) + 0.0563y(k− 3) + 0.0985x(k)

+ 0.2956x(k− 1) + 0.2956x(k− 2) + 0.0985x(k − 3)

and the input to the filter is the signal described by, for 0 ≤ k ≤ 100, k ∈ Z,

x(k) = sin(0.1πk)− cos(0.3πk)− 3 cos(0.6πk) + cos(0.7πk) + 2 sin(0.8πk).

Using MATLAB�, plot the amplitude and phase spectra of the filter and confirm
that it is a low-pass filter by plotting the amplitude spectrum of the filtered
signal.

Solution: The following MATLAB� commands:

75

a=[1.0000 -0.5772 0.4218 -0.0563];

b=[0.0985 0.2956 0.2956 0.0985];

[h,w]=freqz(b,a,256);

mag=abs(h); phase=angle(h);

figure(1), plot(mag), title(’Amplitude spectrum’),

grid, xlabel(’Frequency in multiples of pi’);

figure(2), plot(phase), title(’Phase spectrum’),

grid, xlabel(’Frequency in multiples of pi’);

k=[0:100];

x=sin(0.1*pi*k)-cos(0.3*pi*k)-3*cos(0.6*pi*k)+cos(0.7*pi*k)...

...+2*sin(0.8*pi*k);

y=filter(b,a,x);

w=2*pi/length(y)*k; as=abs(fft(y));

figure(3),plot(w/pi,as), title(’Amplitude spectrum’),

grid, xlabel(’Frequency in multiples of pi’);

produce the graphs illustrated in Figures 3.14 and 3.15. Figure 3.15 indicates

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Amplitude spectrum

Frequency in multiples of pi
0 0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0

1

2

3

4
Phase spectrum

Frequency in multiples of pi

Figure 3.14: Amplitude and phase spectra for the filter.

that the components of {x(k)} with frequencies ω = 0.6π, 0.7π and ω = 0.8π
have been attenuated by the low-pass filter.

�

The bandwidth of a filter is a measure of the extent of the significant band of
frequencies in the spectrum. There are many ways in which this can be defined.
One particular definition is the interval of frequencies for which the amplitude
spectrum remains within 1/

√
2 of its maximum value. For example, consider the

76

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

45

50
Amplitude spectrum

Frequency in multiples of pi

Figure 3.15: Amplitude spectrum for the filtered signal.

amplitude
spectrum

A

A√
2

ωω1 ω2

Figure 3.16: Amplitude spectrum with bandwidth (ω2 − ω1).

amplitude spectrum illustrated in Figure 3.16. For this example the bandwith
is (ω2 − ω1).
An ideal frequency-selective filter has, in general, a noncausal, infinite-

duration, impulse response. Often when filtering signals, it is desired to im-
plement a causal filter with finite impulse response (FIR). This can be achieved
by selecting an appropriate window function, as described in Section 3.8, and
windowing the signal data.

3.8 Windows

Often in spectral analysis, there is a need to apply a time-weighting function
to a signal, known as a window, before applying a Fourier transformation in

77

order to achieve some desired objective. Here, in this section, we consider some
well-known windows.

Rectangular window

The rectangular window sequence, illustrated in Figure 3.17, is defined by

�

�
� � � � � � � � � � � � � � �

� � � � � � � �
−N 0 N k

1

w(k)

Figure 3.17: Rectangular window.

w(k) = rectN (k)
def
= ζ(k +N)− ζ(k − (N + 1)) =

{
1, |k| ≤ N
0, otherwise.

Since

W (z) =
(
zN − z−(N+1)

)(z

z − 1

)
=

zN+ 1
2 − z−(N+1

2
)

z
1
2 − z−

1
2

,

the DTFT of the sequence {w(k)} is

W
(
eiθ
)
=

sin
(
1
2 (2N + 1)θ

)
sin

(
1
2θ
) =

(2N + 1)sinc
(
1
2 (2N + 1)θ

)
sinc

(
1
2θ
) .

The graph of this function is illustrated in Figure 3.18. The discontinuities in
the sampled signal produced by the ideal window function generate additional
spectral components. This is referred to as spectral leakage. Windows which
approach zero smoothly at either end of the sampled signal are used to minimize
spectral leakage.
The first positive (negative) zero in its spectrum is the smallest positive

(largest negative) value of θ such that W (eiθ) = 0. The main lobe of the
window function is that part of the graph of W (eiθ) that lies between the first
positive and first negative zero in W (eiθ). The main lobe width is the distance
between the first positive and negative zeros in W (eiθ). As the length of the
window increases, the main lobe narrows and its peak value rises, that is as N

78

�

�

θ

W (eiθ)

Figure 3.18: DTFT of the rectangular window sequence.

becomes large, W (eiθ) approaches an impulse, which is desirable. However, the
main disadvantage is that the amplitudes of the side lobes also increase.

The use of any window leads to distortion of the spectrum of the original
signal caused by the size of the side lobes in the window spectrum (producing
oscillations in the filter response, known as Gibb’s phenomenon) and the width
of the window’s main spectral lobe. The window function can be selected so
that the amplitudes of the sides lobes are relatively small, with the result that
the size of the oscillations are reduced; however, in general, the main lobe width
does not decrease. Thus, in choosing a window, it is important to know the
trade-off between having narrow main lobe and low side lobes in the window
spectrum.

Some well-known window functions that taper to zero in a smooth fashion
are defined and illustrated in Figures 3.19-3.22.

Bartlett window

w(k) =

(
1− |k|

N

)
rectN (k)

This is sometimes known as the triangular window.

Hann window

w(k) =
1

2

(
1 + cos

(
πk

N

))
rectN (k)

79

�

�

� �
� �
� �
� �

��
��

��
�

� � � � � � � � � � � � � � � � � � � �
−N 0 N k

1
w(k)

Figure 3.19: Bartlett window

�

�

� �� �� �� �� �� ��

� � � � � � � � � � � � � � � � � � � �
−N 0 N k

1
w(k)

Figure 3.20: Hann window

Hamming window

w(k) =

[
0.54 + 0.46 cos

(
πk

N

)]
rectN (k)

�

�

� �� �� �� �� �� �� ��

� � � � � � � � � � � � � � � � � �
−N 0 N k

1
w(k)

Figure 3.21: Hamming window

Blackman window

w(k) =

[
0.42 + 0.5 cos

(
πk

N

)
+ 0.08 cos

(
2πk

N

)]
rectN (k)

80

�

�

� �� �� �� �
� �� ��

� � � � � � � � � � � � � � � � � � � �
−N 0 N k

1
w(k)

Figure 3.22: Blackman window

The normalised amplitude spectra for the Rectangular window, Bartlett win-
dow and Hann window are illustrated in Figure 3.23.

a) b) c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Normalised amplitude spectrum

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Normalised amplitude spectrum

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Normalised amplitude spectrum

Figure 3.23: Amplitude spectra for a) Rectangular b) Bartlett c) Hann
windows.

In particular, for further information, including more explanation on Gibb’s phe-
nomenon, see [Ziemer et al., 1998], and for more details on the spectral prop-
erties of the above windows see [Haddad and Parsons, 1991]. In MATLAB�,
these windows can be generated using rectwin, bartlett, hann, hamming, and
blackman.
With respect to speech processing, a segment of speech is obtained by win-

dowing the speech signal. The number of samples in the speech segment should
be chosen to be as ‘small’ as possible, due to the time-varying nature of the sig-

81

nal. On the other hand, to give a clear indication of periodicity when analysing
the speech segment, the window must have a duration of at least two pitch
periods of the voiced speech signal. Also, a rectangular window gives a much
stronger indication of periodicity than, for example, the Hamming window, since
the result of applying the Hamming window is to taper the speech segment.

3.9 Exercises

Exercise 3.1

A discrete-time system has a unit impulse response h(k) given by

h(k) = 1
2δ(k) + δ(k − 1) + 1

2δ(k − 2).

a) Find the system frequency responseH(eiθ) and, using MATLAB� , plot
the corresponding amplitude and phase spectra.

b) Determine the step response of the system.

Exercise 3.2 A discrete-time system with input x(k) and output y(k) is char-
acterized by the difference equation: y(k) = x(k + 1) + x(k − 1).

(a) Find the unit impulse response of this system. (b) Is the system causal?
(c) Is the system linear? (d) Does this difference equation realization represent
a FIR or IIR filter? (e) Find the frequency response of the system. (f) Is the
system stable?

Exercise 3.3 A linear, time-invariant system is described y(k) + 1
4y(k− 1) =

3x(k). Determine

a) the gain and phase-shift spectra;

b) the gain and phase-shift spectra when θ = 0, 13π, π and, hence, find the
steady-state output of the system for the input signal

x(k) = 5 + 1
3 cos

(
1
3πk

)
− sin

(
πk + 1

4π
)
.

Exercise 3.4 Determine the magnitude of the frequency response for the MA
filter

y(k) =
1

M

M−1∑
m=0

x(k −m),

whereM ∈ N, and, using MATLAB� , obtain its graph in the case whenM = 4.

82

Exercise 3.5 A discrete-time, linear, time-invariant, causal filter is described
by the difference equation:

y(k) = 1
2y(k − 1) + ax(k), a ∈ R, a > 0.

a) Find the system function, H(z), and show that the filter is bounded-
input bounded-output (BIBO) stable.

b) Select the parameter a such that |H(ei0)| = 1 and, for this case,

(i) show that the gain and phase-shift spectra are

|H(eiθ)| = 1√
5− 4 cos(θ)

and argH(eiθ) = − tan−1

(
sin(θ)

2− cos(θ)

)
;

(ii) find the steady-state output of the filter when the input signal is

2− 3 cos
(
π
3 k
)
+ 6 sin (πk) .[

You may use the result: tan−1
(
1/

√
3
)
= π

6 .
]

Exercise 3.6 Suppose the characteristics of H(eiθ), the frequency response for
a digital filter, are shown below:

�

�

−π − 3

4
π 3

4
π π

θ

4

|H(eiθ)|

�

�
�
�
�
�
�
�
�
�
�
�
�
��

−π

π

−π

π

θ

arg[H(eiθ)]

a) Determine h(k), the unit impulse response.

b) Does h(k) represent a FIR or IIR filter?

c) Is the filter causal?

Exercise 3.7 A system has the unit sample response h(k) given by

h(k) = −1

4
δ(k + 1) +

1

2
δ(k)− 1

4
δ(k − 1).

83

a) Is the system stable?

b) Is the system causal?

c) Find the frequency response and plot the corresponding amplitude and
phase spectra using MATLAB� .

Exercise 3.8 A glottal pulse filter is defined by G(z) = (z+1)2/z3. Determine,
for this filter,

a) a difference equation realization;

b) the impulse and step responses;

c) the gain spectrum (amplitude response).

Exercise 3.9 The radiation of sound waves by the lips is often modelled,
through sampling of the ‘volume’ velocity, by a discrete time-invariant causal
system with system function

L(z) =
�1(1− z−1)

z−1 + �2
,

where �1 > 0, �2 > 1 and �2 ≈ 1. Explain why this system BIBO stable and
find the gain spectrum for L(z).

Exercise 3.10 A glottal shaping filter is modelled by a two-pole system with

impulse response sequence {g(k)}, where g(k) = αkζ(k)−
(
4
5

)k
ζ(k), α is a fixed

parameter which satisfies 4
5 < α < 1, and {ζ(k)} denotes the unit step sequence.

a) Find its frequency response G(eiθ) and show that

G(ei0) =
5α− 4

1− α
G(eiπ) =

−(5α− 4)

9(1 + α)
.

b) Determine a value of α such that

20 log10 |G(ei0)| − 20 log10 |G(eiπ)| = 40 dB.

84

Exercise 3.11 Show that a causal system modelled by

2y(k + 1) + αy(k) = x(k), k ∈ Z, α ∈ R,

is BIBO stable if and only if |α| < 2. For the case α = 1, calculate the frequency
response and, using MATLAB� , plot the amplitude response over the range
−2π ≤ θ ≤ 2π.

Exercise 3.12 Find the frequency response of the autoregressive causal filter

y(k) = ay(k − 1) + x(k) , |a| < 1.

Hence, or otherwise, determine the steady-state response to the input x(k) =
cos(kθ)ζ(k).

Exercise 3.13 Find the z-transfer function for the system

8y(k + 2) + 2y(k + 1)− y(k) = x(k) + 2x(k + 1), k ∈ Z,

which is causal, and verify that it is a stable system. Using MATLAB�, plot
the amplitude response over the range −2π ≤ θ ≤ 2π.

Exercise 3.14 Determine the amplitude and phase spectra for

f(t) = A[e−αtζ(t) − eαtζ(−t)], real A, α > 0.

Exercise 3.15 Determine the energy spectral density for the triangular pulse

f(t) =

{
1− |t|/T, |t| < T

0, otherwise.

Exercise 3.16

Use Parseval’s relation and the table of Fourier transforms to find the energy in
the signals:

(a) x(t) =
1

1 + t2
(b) x(t) = sinc(t) (use the symmetry property).

Exercise 3.17

85

Using the symmetry property for the Fourier transform, show that the Fourier
transform of
f(t) = a

π
sinc(at), a > 0, is

F (iω) =

{
1, |ω| < a,
0, otherwise.

Hence, using the time-shift property and the identity eiθ ≡ cos(θ) + i sin(θ),
determine

g(t) = F−1 {G(iω)} def
= F−1 {cos(ω)F (iω)} .

How fast should g(t) be sampled for perfect reconstruction, if a = 1
2π?

Exercise 3.18 A signal x(t) and its transform X(iω) are shown below:

� �

� �

0 0
	
	
	
	
	
		

1 T

−T T t

x(t)

−2ω0−ω0 ω0 2ω0 ω

X(iω)

Suppose x(t) is sampled every 0.01T seconds to produce a signal x(n).

a) Sketch a graph of F {x(nT)}.

b) Can x(t) be reconstructed from x(n)?

c) If possible, determine the Nyquist sampling rate for x(t).

Exercise 3.19 Consider the signal x(t) = 6 cos(10πt) sampled at 7Hz and
14Hz.

a) Find (i) X(iω) (ii) Xs(iω) when fs = 7 and fs = 14, and sketch the
spectrum.

b) Suppose the reconstruction filter is an ideal low pass filter H(iω), with
bandwidth πfs and amplitude response (fs)

−1.
Sketch the graph of Xs(iω)H(iω) when fs = 7 and fs = 14. In each case,
reconstruct the continuous time signal. Explain your results.

86

Exercise 3.20 Determine the minimum number of signal samples that must
be taken to evaluate the frequency spectrum of the signal, which has no fre-
quency component higher than 2.5 kHz, whilst ensuring an analogue frequency
resolution of at least 45Hz. What is the minimum sampling period for the
signal?

A signal x(t) has been sampled at a rate of 50 samples/sec. to give a total of
1000 samples. A 1000-point DFT is taken and the resulting �[X(n)], 	[X(n)]
are shown in the diagrams below.

�

�

0
n

�

�

0
n

100 50

−50

�[X(n)] �[X(n)]

�

10

�

990

�

11

�

989

a) What is the time duration of the sampled segment of x(t)?

b) What is the digital frequency resolution?

c) What is the corresponding analogue frequency resolution in Hz?

d) What is the highest unaliased analogue frequency that one could see?

e) Determine the power spectrum for the signal {x(k) : k = 0, 1, . . . , 999}.

Exercise 3.21 Consider a 16-point DFT shown in the following diagrams.

�

�
n

0

�

�
n

0

�[X(n)]

5

1

−2
−3

� � �

�

3
�
�
5 � � 8

�
� �11

�
�

�

13
� �
15

�[X(n)]

4

−4

� � �
�

3 � � � � � � � � � �
�

13
� �

a) If the time samples are 0.03 sec. apart, what are the corresponding
analogue radian frequencies and the associated analogue frequency reso-
lution?

87

b) Find the power spectrum for the sequence {x(k) : k = 0, 1, . . . , 15}.

Exercise 3.22 Using the fft MATLAB� command, confirm Parseval’s rela-
tion for the sequence

x =
[
i 1 + i 2 1− i −i

]
.

Exercise 3.23 Determine the power spectrum for the sequence {x(k)}, given:
X(0) = 0 X(1) = 3

2 + i 32 X(2) = 1 X(3) = 3
2 − i 32 .

Exercise 3.24 A third order filter is described by the difference equation

y(k) = −1.1619y(k− 1)− 0.6959y(k− 2)− 0.1378y(k− 3) + 0.0495x(k)

− 0.1486x(k − 1) + 0.1486x(k − 2)− 0.0495x(k − 3)

and the input to the filter is the signal described by, for 0 ≤ k ≤ 100, k ∈ Z,

x(k) = cos(0.3πk)− 2 cos(0.6πk) + cos(0.7πk) + 4 sin(0.8πk)− 3 sin(0.9πk).

Using MATLAB�, plot the amplitude and phase spectra of the filter and de-
termine whether the filter is low-pass or high-pass and confirm your analysis by
plotting the amplitude spectrum of the filtered signal.

88

Chapter 4

Response of linear systems
to random inputs

4.1 Introduction

In practice, many deterministic signals are contaminated by noise, giving rise
to stochastic/random signals. Therefore, in this chapter, random processes are
discussed. In order to analyse such signals, functions with special properties
are utilised. In this chapter, the functions: autocorrelation, autocovariance,
cross-correlation and cross-covariance are studied. These functions enable one
to investigate the response of linear systems to random inputs.

As an application, autoregressive models and linear predictive filters are used
to estimate certain speech parameters and formants, in non-nasal voiced speech,
in speech processing.

Finally, speech quantization and encoding is investigated, using linear pre-
dictive filters, and the response of linear filters to quantization noise is examined.

4.2 Random processes

Only real random processes will be considered here.

Definition 4.1 A random (or stochastic) process is a set of functions of
some parameter (usually time) that has certain statistical properties.

89

For a random signal, x(t), its time behaviour could follow any of an infinite
number of different paths. The set of all possible time behaviours of a signal is
called an ensemble. An ensemble member is referred to as a realization of the
random process. For any fixed t the value of x(t) cannot be identified, although
typically certain ranges of values will be more probable than others. In this
manner, for every fixed t, x(t) can be regarded as a random variable.

Definition 4.2 If Ω is any set and x assigns a real number to every element
ω ∈ Ω, then x is said to be a random variable and Ω is called the sample
space.

Information concerning random variables can be obtained by examining various
statistics.
The mean (value) and variance of a random variable x are defined by

μx = x
def
= E [x]

σ2
x = V ar[x]

def
= E

[
(x− x)2

]
,

respectively, where E [·] denotes expected or average value. The expected value
operator satisfies the following rules: suppose c1, c2 are constants and x is a
random variable, then

(a) E [c1] = c1 (b) E [c1g1(x) + c2g2(x)] = c1E [g1(x)] + c2E [g2(x)] .

As a consequence of (a) and (b), it is easily shown that

σ2
x = E

[
x2
]
− μ2

x = x2 − μ2
x. (4.1)

Another commonly used statistic is standard deviation which is defined by

σx
def
= {V ar[x]} 1

2 .

If μx = 0, then V ar[x] = x2 is known as the mean square value and σx

is known as the root mean square (r.m.s.) value. The mean is known as a
first order statistic, whilst the variance is a second order statistic. Some other
important averages of interest of a random process x(t), with reference to second
order statistics, are the autocorrelation and autocovariance functions.

90

4.3 Autocorrelation/autocovariance functions

The autocorrelation function, Rxx(t1, t2), is defined by

Rxx(t1, t2)
def
= E [x(t1)x(t2)] = x(t1)x(t2),

whilst the autocovariance function, Cxx(t1, t2), is defined by

Cxx(t1, t2)
def
= Rxx(t1, t2)− μx(t1)μx(t2).

Definition 4.3 A random process, x(t), is said to be stationary in the wide-
sense (or weakly stationary) if its mean is a constant and the autocorrelation

function, Rxx(t1, t2), depends only on the time difference τ
def
= t2 − t1, that is

E [x(t)] = μx

E [x(t)x(t + τ)] = Rxx(τ).

Assume a random process is stationary in the wide-sense and x̃(t) is a re-
alization of the random process. In practice, there is only one sample function
available for analysis. Thus, x̃(t) can be used to determine time statistics such
as the time average:

μ = 〈x̃(t)〉 def
= lim

τ→∞
1

2τ

∫ τ

−τ

x̃(t) dt,

time variance and time autocorrelation function:

σ2 =
〈
x̃2(t)

〉
− μ2 and Rx̃x̃(τ) = 〈x̃(t)x̃(t+ τ)〉 .

For the discrete case, with x̃(m) as the sampled value of x̃(t), with sampling
period T chosen so that MT = τ ,

〈x̃(m)〉 = lim
M→∞

1

2M + 1

M∑
m=−M

x̃(m)

and

Rx̃x̃(k) = lim
M→∞

1

2M + 1

M∑
m=−M

x̃(m)x̃(m+ k).

91

Definition 4.4 A wide-sense stationary random process is said to be ergodic
to the nth order if an nth order ensemble statistic is equal to the corresponding
time statistic.

Remark 4.1 In general, it is difficult to check whether a process is ergodic. In
practice, if ensemble statistics are time-independent (in some sufficiently large
time interval or the time interval of interest) and corresponding time statistics
for a selection of realizations are reasonably in agreement, then the process may
be assumed to be ergodic.

Under an assumption of ergodicity, ensemble statistics for a random process
can be estimated from an associated time statistic. For example, if a discrete
random process is wide-sense stationary and ergodic to the second order, then

Rxx(k) = E [x(m)x(m + k)] = 〈x̃(m)x̃(m+ k)〉 = Rx̃x̃(k),

for any realization x̃(k).

4.3.1 Properties of the autocorrelation function

Concepts of energy and power can be used for classifying stochastic signals. As-
suming a random process is wide-sense stationary and ergodic, the total energy
of the discrete process x(m) is defined as

E(x)
def
=

∞∑
m=−∞

x̃2(m).

For processes which have infinite energy, the concept of power is more useful.
The average power of a random process x(m) is defined as

Pav(x)
def
= E

[
x2(m)

]
= lim

M→∞
1

2M + 1

M∑
m=−M

x̃2(m).

Remark 4.2 If x(m) has finite energy, then its average power is zero.

Thus, if x(m) is an ergodic process and wide-sense stationary, then

Pav(x) = Rxx(0) = Rx̃x̃(0).

92

For a wide-sense stationary, ergodic, discrete random process, the autocorrela-
tion function Rxx(k) = E [x(m)x(m + k)] has the following properties:

(AF1) Rxx(−k) = Rxx(k);

(AF2) Rxx(0) = x2(m) = σ2
x + μ2

x (from (4.1));

(AF3) |Rxx(k)| ≤ Rxx(0);

(AF4) R(x+y)(x+y)(k)=Rxx(k)+Ryy(k)+E [x(m)y(m+ k)]+E [x(m+ k)y(m)];

(AF5) If x(m) contains a periodic component, with periodM , then Rxx(k) also
contains a periodic component, with period M ;

(AF6) −σ2
x + μ2

x ≤ Rxx(k) ≤ σ2
x + μ2

x. If x(m) has non-zero mean, the term μ2
x

is known as the dc component of Rxx(k).

A typical graph of an autocorrelation function is shown in Figure 4.1.

�

�

� �
�

�
�

�

�

� � �

�

�
�

�

�
� �

μ2
x − σ2

x

μ2
x

μ2
x + σ2

x

Rxx(k)

k

Figure 4.1: Typical graph of an autocorrelation function Rxx(k).

Example 4.1 Obtain, using MATLAB�, graphs of the deteministic signal
{x(k)}, where x(k) = 50 + 10 sin(1

10πk) and k ∈ N with 1 ≤ k ≤ 500, and
its autocorrelation sequence. Also,

a) determine the mean value of the signal;

93

b) modify the graph, by a horizontal shift, so that the main peak occurs
at k = 0;

c) overcome the masking of the periodicity in the signal by subtracting the
value of the mean from the data and re-computing the autocorrelation
sequence.

Solution: The following MATLAB� commands produce the graphs of the
periodic sequence and its autocorrelation sequence, illustrated in Figure 4.2:

n=500; k=[1:n]; % set number of data points

x=50+10*sin(pi*k/10); % generates periodic sequence

r=xcorr(x); % determines autocorrelation sequence

subplot(211); plot(k,x); title(’Periodic signal’);

subplot(212); plot(r);

title(’Graph of autocorrelation function’);

0 100 200 300 400 500
40

45

50

55

60
Periodic signal

0 200 400 600 800 1000
0

1000

2000

3000
Graph of autocorrelation function

(ii)

(i)

Figure 4.2: (i) Periodic signal. (ii) Autocorrelation sequence.

a) Using the MATLAB� command mean(x) gives the mean value of the
signal as 50.0000.

94

b) A plot of the horizontal shift on the graph of the autocorrelation sequence
can be obtained using the commands:

m=length(r);

y=r(((m-1)/2+1):m);

subplot(211); plot(y)

This graph is illustrated in Figure 4.3 (i).

0 100 200 300 400 500
0

1000

2000

3000
Horizontal shift of the autocorrelation function

0 100 200 300 400 500
−50

0

50
Shifted autocorrelation function for zero−mean data

(ii)

(i)

Figure 4.3: (i) Shifted autocorrelation sequence. (ii) Autocorrelation sequence
with zero-mean data.

c) The MATLAB� commands:

xbar=mean(x) % mean of the sequence

r=xcorr(x-xbar); % or use: r=xcov(x)

a=r((m-1)/2+1:m); % autocorrelation sequence with

zero-mean data

subplot(212); plot(a);

title(’Shifted autocorrelation function for zero-mean data’);

95

produce the graph obtained in Figure 4.3 (ii), which clearly confirms the
periodicity in the original signal.

The expected value of the estimate of the autocorrelation sequence ob-
tained using MATLAB� is different from Rxx(k) by a factor N − |k|,
where N is the length of the sequence, as can be seen in Figure 4.3
(ii). This MATLAB� estimate is biased. An unbiased estimate is ob-
tained using the MATLAB� command xcorr(x-xbar,’unbiased’) (or
xcov(x,’unbiased’)), which is illustrated in Figure 4.4.

0 100 200 300 400 500
−100

−50

0

50

100
Unbiased estimate of the autocorrelation sequence

Figure 4.4: Unbiased estimate of the autocorrelation sequence for the zero-mean
data.

�

4.3.2 Pitch period estimation for voiced speech

The autocorrelation function is very useful for estimating periodicities in signals
(see §4.3.1 property (AF5)), including speech. In practice, a segment of speech
{s(m); m = 0, 1, . . . ,M − 1} is available for analysis. The ‘short-time’ auto-
correlation function (which is an estimate of the true autocorrelation function)
is determined by

Rss(m) =
M−1−m∑

j=0

s(j)s(j +m).

This will exhibit cyclic behaviour as a result of the quasi-periodic nature of the
voiced speech segment. For voiced speech, peaks occur in Rss(m) approximately

96

at multiples of the pitch period. Hence, the pitch period of a speech signal can
be estimated by finding the location of the first maximum in the autocorrelation
function. This is achieved by dividing each term of this sequence by the total en-
ergy of the speech segment to produce the normalised sequence Rss(m)/Rss(0).
The separation between adjacent peaks in this normalised sequence is also an
estimate of the pitch period, which can be found using a peak-picking algorithm.
If the value of this peak is at least 0.25, then the segment of speech is consid-
ered voiced with a pitch period equal to the value of m for which the normalised
sequence has a maximum. If there are no strong periodicity peaks, then this
indicates a lack of periodicity in the waveform, implying that the section of the
speech signal is unvoiced.

Example 4.2 Over a short time-frame (k = 1 : n, n = 1200), a voiced speech
signal is modelled as the output from a linear, causal, time-invariant filter, with
system function

H(z) =
1

1− 0.2z−1 − 0.23z−2 − 0.05z−3 − 0.12z−4
,

and the input to the filter is a weighted finite ‘train’ of delayed impulses

⎧⎨
⎩10

m∑
j=1

δ(k − (jT − 10))

⎫⎬
⎭ ,

with T = 80 and m = n/T . Using MATLAB�, add zero-mean noise (with
variance 4) to this signal via the MATLAB� command randn and plot the graph
of the modelled noisy speech signal and its associated autocorrelation function.
From the graph of the autocorrelation function, estimate the pitch period of the
modelled speech signal, assuming the sampling period is 0.098msec.

Solution: The followingMATLAB� commands were used to obtain the graphs
in Figure 4.5.

97

n=1200; T=80; m=n/T; k=[1:n]; % initial data

% impulse sequence of length T with impulse at k=10

p=[[1:T]-10 == 0];

% periodic repeat (period m) of impulse sequence

q=p’*ones(1,m);

r=10*q(:)’; % weighted impulse train

a=[1.0 -0.2 -0.23 -0.05 -0.12];

b=[1];

y=filter(b,a,r)’; % filter finite train of delayed impulses

% modelled voiced speech with additive noise

% (mean 0 and variance 4)

x=y+2*randn(n,1);

subplot(211);

plot(k,x), title(’Modelled noisy voiced speech signal’);

% autocorrelation function for zero-mean signal

w=xcov(x,’unbiased’); wlen=length(w);

z=w((wlen-1)/2+1:wlen);

% lag=(no. of points)/4 for autocorrelation function

tau=1:length(z)/4;

subplot(212); plot(tau,z(1:length(tau))), grid,

title(’Autocorrelation function for signal with zero mean’)

From Figure 4.5 (ii), it is clear that there are dominant peaks at approximately
N = 80, 160, 240, which suggests that the pitch period is approximately 80×
0.098msec ≈ 7.84msec.

�

Pitch period estimation using the power spectrum

Append the speech samples with N − M zeros, where N ≥ M is a power of
2. Apply a N -point FFT on this new data sequence to produce the spectral
sequence {ŝ(k); 0 ≤ k ≤ N − 1}. An estimate of the power spectrum is then
obtained by evaluating

1

N

N−1∑
k=0

|ŝ(k)|2.

The inverse Fourier transform of the power spectrum then provides an estimate
of the autocorrelation function. This leads to an estimate of the pitch period
by the method described previously.

98

0 200 400 600 800 1000 1200
−10

0

10

20
Modelled noisy voiced speech signal

0 50 100 150 200 250 300
−2

0

2

4

6
Autocorrelation function for signal with zero mean

(ii)

(i)

Figure 4.5: (i) Modelled noisy voiced speech. (ii) Autocorrelation function with
zero-mean data.

99

4.4 Cross-correlation and cross-covariance func-

tions

cross-covariance function There are other useful second order statistics. For two
random processes x(t) and y(t), the cross-correlation function is defined by

Rxy(t1, t2)
def
= E [x(t1)y(t2)] .

The cross-covariance function is defined by

Cxy(t1, t2)
def
= Rxy(t1, t2)− μx(t1)μy(t2).

Two processes, x(t) and y(t), are said to be uncorrelated when

Cxy(t1, t2) = 0.

For wide-sense stationary processes,

Rxy(t1, t2) = Rxy(τ), where τ = t2 − t1,

and, if x(t) and y(t) are jointly ergodic,

Rxy(τ) = lim
T→∞

1

2T

∫ T

−T

x̃(t)ỹ(t+ τ) dt.

For discrete processes that are wide-sense stationary and ergodic,

Rxy(k) = E [x(m)y(m+ k)] = 〈x̃(m)ỹ(m+ k)〉

= lim
M→∞

1

2M + 1

M∑
m=−M

x̃(m)ỹ(m+ k).

4.4.1 Properties of the cross-correlation function

Properties of Rxy(k):

(C-CF1) Rxy(−k) = Ryx(k);

(C-CF2) |Rxy(k)| ≤ {Rxx(0)Ryy(0)}
1
2 ≤ 1

2{Rxx(0) +Ryy(0)};

(C-CF3) If x(k), y(k) are statistically independent, i.e. uncorrelated, then

Rxy(k) = Ryx(k) = μxμy; (4.2)

100

(C-CF4) If both x(k) and y(k) contain a periodic component, with period M ,
then both Rxy(k) and Ryx(k) contain a periodic component, with period
M .

Remark 4.3 In view of the definition of Rxy(k), property (AF4) of the auto-
correlation function can be expressed as

R(x+y)(x+y)(k) = Rxx(k) +Rxy(k) +Ryx(k) +Ryy(k) (4.3)

and, if x and y are uncorrelated, then

R(x+y)(x+y)(k) = Rxx(k) +Ryy(k) + 2μxμy.

4.5 White-noise process

Definition 4.5 A white random process is a wide-sense stationary, ergodic
random process for which any two realizations are statistically independent.

Remark 4.4 If x and y are statistically independent, E [xy] = μxμy.

For a white random process,

Rxx(k) = E [x(m)x(m + k)]

= E [x(m)]E [x(m+ k)]

= μ2
x,

when k �= 0. When k = 0, Rxx(0) = E
[
x2(m)

]
= σ2

x + μ2
x. Thus,

Rxx(k) = μ2
x + σ2

xδ(k).

In particular, if the white process has zero mean, then

Rxx(k) = σ2
xδ(k).

Definition 4.6 A random process, n(m), is white noise if it is a white process
and μn = 0, in which case, for white noise,

Rnn(k) = σ2
nδ(k).

101

4.6 AR models and linear predictive filters

When performing an analysis in the frequency domain, AR (parametric) mod-
elling has a number of advantages over FFT (non-paramtric) techniques. FFT
techniques assume some periodicity in the signal. In addition, a fast sampling
rate must be applied and, for meaningful results, a large amount of data is re-
quired. Whereas AR modelling only assumes a weakly stationary process and
the sampling rate can be less than the sampling rate using FFT techniques.
Moreover, as the number of parameters is relatively small, less data is required,
and an increased frequency resolution can be obtained when compared to FFT
techniques.

The method of linear prediction is based on an AR model and the classical
least squares method. With applications to speech processing, many authors
have investigated the method of linear prediction, sometimes known as linear
predictive coding (see [Goldberg and Riek, 2000, Haddad and Parsons, 1991],
[Makhoul, 1975, Papamichalis, 1987] and [Rabiner and Schafer, 1978], for ex-
ample. Moreover, some MATLAB� software for analysis-by-synthesis linear
predictive coding is presented in [Ramamurthy and Spanias, 2009].

Suppose a discrete process has data s(m), m = 0, . . .M − 1, where M is
the number of signal samples. It is assumed that an appropriate model for the
process is the AR model

s(m) = x(m) +

p∑
k=1

aks(m− k), (4.4)

where ak are the model parameters (possibly time-varying), p ≥ 1 and x(m) is
the model input. If s(m) is required for m ≥ M , a linear predictor of the form

s̃(m) =

p∑
k=1

αks(m− k),

where s̃(m) is the predicted value of s(m), αk are the prediction coefficients and
p is the order of the filter, may be used to predict s(m). Using time averages
instead of ensemble averages, the predictor coefficients may be determined by
minimizing the mean square error

E =
∑
m

|e(m)|2,

102

where e(m) = s(m) − s̃(m) is the error signal for the mth sample and it is
assumed that the error signal is non-zero only for 0 ≤ m ≤ p+M−1. A standard
procedure (see, for example, [Rabiner and Schafer, 1978, Chapman et al., 1997]
and [Deller et al., 2000]) can be used to determine a sufficient condition for
minimizing the mean square error, with respect to the predictor coefficients. It
is found that the predictor coefficients must satisfy a set of linear equations of
the form

p∑
k=1

αkr(|i − k|) = r(i) , i = 1, . . . p, (4.5)

where r(i) =
M−1∑
m=0

s(m)s(m−i) is the short-time autocorrelation function, which

are known as the normal equations. If the input to the model is white noise,
the equations represented by (4.5) are sometimes referred to as the Yule-Walker
equations. The matrix

⎡
⎢⎢⎢⎢⎣

r(0) r(1) r(2) · · · r(p− 1)
r(1) r(0) r(1) · · · r(p− 2)
r(2) r(1) r(0) · · · r(p− 3)
· · · · · · · · · · · · · · ·
r(p − 1) r(p − 2) r(p− 3) · · · r(0)

⎤
⎥⎥⎥⎥⎦ ,

known as the autocorrelation matrix, is a Toeplitz matrix, namely the matrix is
symmetric and the elements along a diagonal from top left to bottom right are
all equal. An efficient recursive method for solving equation (4.5) is the Durbin-
Levinson algorithm (see [Rabiner and Schafer, 1978, Chapman et al., 1997]):

1.

e(0) = r(0)

k1 = r(1)/e(0)

α
(1)
1 = k1

e(1) = (1− k21)e
(0)

103

2. For 2 ≤ i ≤ p

ki =

⎧⎨
⎩r(i)−

i−1∑
j=1

α
(i−1)
j r(i − j)

⎫⎬
⎭ /e(i−1)

α
(i)
i = ki

α
(i)
j = α

(i−1)
j − kiα

(i−1)
i−j , 1 ≤ j ≤ i− 1

e(i) = (1− k2i)e
(i−1).

The prediction coefficients are the given by α
(p)
k , k = 1, . . . p.

Remarks 4.5

(i) The algorithm also generates prediction coefficients for predictors of or-
der less than p.

(ii) The prediction coefficients can be determined using the MATLAB�

command [c,e]=levinson(r,p), where c = [c1 c2 . . . cp] are the predic-
tion coefficients for the AR model

s(m) = x(m) −
p∑

k=1

cks(m− k), (4.6)

e is the..., r is the associated autocorrelation matrix and p is the order of
the predictor. However, note that, in MATLAB�, the assumed model (4.6)
is different to the model given in (4.4). Therefore, if using MATLAB�

to determine the prediction coefficients for the model (4.4), the prediction
coefficients are given by ak = −ck for k = 1, . . . p.

In speech processing, the above method is known as the autocorrelation method.
Another method, known as the covariance method, is based on the assumption
that the signal s(m) is not wide-sense stationary. However, for this method,
signal values outside the interval 0 ≤ m ≤ M − 1 are required, specifically,
s(m) for −p ≤ m ≤ M − 1. For more details on the covariance method see
[Rabiner and Schafer, 1978].

104

Lattice filter formulation

In the ith stage of the Durbin-Levinson algorithm, {α(i)
j , j = 1, 2, . . . i} denotes

the set of coefficients of the ith order linear predictor. The prediction error, in
this case, would be

e(i)(m) = s(m)−
i∑

k=1

α
(i)
k s(m− k) . (4.7)

This can be interpreted as predicting s(m) using the i samples {s(m − i +
k), k = 1, . . . i}. Suppose, now, the i samples are used to predict s(m − i).
We may define the backward prediction error sequence

b(i)(m) = s(m− i)−
i∑

k=1

α
(i)
k s(m+ k − i) . (4.8)

It can be shown that (4.7) and (4.8) may be rewritten in the form :

e(i)(m) = e(i−1)(m)− kib
(i−1)(m− 1) (4.9)

b(i)(m) = b(i−1)(m− 1)− kie
(i−1)(m). (4.10)

Initially, e(0)(m) = b(0)(m)
def
= s(m). Since (4.9) represents a forward predic-

tion using an ith order predictor, the notation e(i)(m) is replaced by f (i)(m).
The formulation :

f (i)(m) = f (i−1)(m)− kib
(i−1)(m− 1)

b(i)(m) = b(i−1)(m− 1)− kif
(i−1)(m)

is known as a lattice filter and the coefficients ki are known as reflection or PAR-
COR (partial correlation) coefficients. Using this structure e(m) = f (p)(m).
This structure is known to be stable provided |ki| ≤ 1 and can be illustrated
diagramatically, as shown in Figure 4.7 (note that D represents delay). In par-
ticular, Burg used this lattice formulation, to develop a procedure based upon
minimizing the sum of the mean square forward and backward prediction errors,
that is Burg’s method minimized

M−1∑
m=0

[{f (i)(m)}2 + {b(i)(m)}2].

As in the Durbin-Levinson method, the prediction coefficients are given by

α
(p)
k , k = 1, . . . p.

105

�

�

�

�

�
�s(m− i)

s(m− i+ 1)

s(m− i+ 2)

s(m− 2)

s(m− 1)

s(m)� � � � � � � �

�
backward prediction

�
forward prediction

Figure 4.6: Forward and backward predictions

�

� � � �
���
�
�

�
��
�
�
��
�
��� D � � ����

�
�

���

�
��
�
�
��
�
��

� � � �
���
�
�

�
��
�
�
��
�
��� D � � ����

�
�

���

�
��
�
�
��
�
��

�

�

s(m)

f (0)(m) f (1)(m) f (2)(m)

b(0)(m) b(1)(m) b(2)(m)

−k1

−k1

−k2

−k2

Figure 4.7: Lattice structure

106

Remarks 4.6

(i) Note that Burg’s algorithm does not give the exact solution to (4.5);
only an approximate solution. However, the method is computationally
very efficient.

(ii) Details on lattice filters can be found in [Haddad and Parsons, 1991,
Ingle and Proakis, 1997, Jackson, 1996],and[Rabiner and Schafer, 1978].

4.6.1 Estimation of prediction coefficients for a speech sig-
nal and the speech gain parameter

For speech, an all-pole (AR) model is appropriate model for non-nasal voiced
sounds. The composite effects of radiation, vocal tract and glottal excitation
can be represented by a time-varying digital filter with system function of the
form :

H(z) =
Gs

1−
p∑

k=1

akz
−k

,

where Gs is known as the speech gain parameter. This model gives a good
representation of speech sounds provided p is large enough. The filter is excited
by either a impulse train for voiced speech or a random noise sequence for
unvoiced speech. For this filter, the speech samples s(m) are related to the
excitation x(m) by the difference equation

s(m) = Gsx(m) +

p∑
k=1

aks(m− k). (4.11)

A linear predictor :

s̃(m) =

p∑
k=1

αks(m− k)

may be used for this system, in which case the prediction error is

e(m) = s(m)−
p∑

k=1

αks(m− k).

If the speech signal fits the model (4.11) exactly and if αk = ak, then e(m) =
Gsx(m), that is, for voiced speech, e(m) would consist of a train of impulses.

107

This suggests a method (known as linear predictive coding) for the determina-
tion of the pitch period of a voiced speech segment. First, the autocorrelation,
or covariance, or lattice filter, method may be used to find the predictor coef-
ficients. The error signal e(m) is then determined and the difference between
consecutive peaks in e(m) is an estimate of the pitch period. By matching the
energy in the signal with the energy in the predicted samples, an analysis shows
that (see, for example [Rabiner and Schafer, 1978, Chapman et al., 1997] and,
in addition, Chapter 10 in [Ingle and Proakis, 1997]) the speech gain parameter
can be estimated from

G2
s ≈ r(0) −

p∑
k=1

αkr(k) . (4.12)

The estimated result (4.12) also holds for the case of unvoiced speech when the
input is assumed to be white noise with unity variance.

4.6.2 Formant estimation for voiced speech

As stated earlier, a simple model for voiced speech is excitations produced by
the vocal chords and filtered by the vocal tract. For an adult male, the reso-
nances produced by the vocal tract are approximately 1kHz apart. However, the
location of these resonances (or formants) can be changed by moving the tongue
and lips. Normally, only the first three formants are of importance (in prac-
tice). Formant estimation is often performed using frequency-domain analysis.
The segment of speech, obtained by windowing, must be long enough that the
individual harmonics can be resolved, but short enough that the speech signal
can assumed to be approximately stationary. Normally, a window is chosen to
be at least two or three pitch periods long. The pitch period varies from a max-
imum of approximately 1/80s in adult males to a minimum of approximately
1/400s in adult females. For example, three periods of 100Hz voiced speech is
approximately 30ms. The signal is usually sampled in the range 8-13kHz and
the number of data samples is chosen to be a power of two. In the spectrum,
the narrow peaks are the harmonics of the excitation, whilst the peaks in the
envelope of the peaks in the spectrum indicate the formants due to the vocal
tract.
Assuming an all-pole model,

H(z) =
Gs

1−
p∑

k=1

akz
−k

,

108

the model parameters and speech gain parameter Gs can be estimated (as ãk
and G̃s) using an appropriate technique, such as the method of linear prediction
(see, for example, [Chapman et al., 1997]). Then, the spectrum can be obtained
by evaluating H(z) on the unit circle z = eiθ. One method of achieving this is
to divide G̃s by the DFT of the sequence {1, −ã1, −ã2, . . . , −ãp, 0, 0, 0, . . .},
where the sequence is padded with zeros so that the length of the sequence, say
N , is a power of two, to obtain

G̃s

1−
p∑

k=1

ãke
−i 2πn

N
k

, n = 0, 1, . . . , N − 1.

For sufficiently large N , the magnitude of the resulting sequence yields a high-
resolution representation of the speech gain spectrum

∣∣H (
eiθ
)∣∣ ≈ G̃s∣∣∣∣∣1−

p∑
k=1

ãke
−iθk

∣∣∣∣∣
.

The formants are estimated by detecting the peaks in the spectrum envelope.
The peaks in the spectrum envelope can be accentuated by evaluating the

spectrum on a circle with radius ρ < 1. This technique is important for the
case in which two formants are close to each other. This modification can be
achieved quite easily by premultiplying the linear prediction parameters by ρ
before computing the DFT.
An example in which the log-amplitude spectrum has been determined using

a linear predictive filter is illustrated in Figure 4.8.
Using f = n/(NT) to determine frequency in Hertz, the formants are estimated
to be 386Hz, 2699Hz and 4048Hz. Log-amplitude spectra, determined using a)
the FFT; and b) the power spectrum, are illustrated in Figure 4.9.

4.7 Response of linear time-invariant systems
with random inputs

The general problem is: given an input to a linear, time-invariant system (with
zero initial conditions), which is a member of a wide-sense stationary, ergodic,
discrete random process, find the cross-correlation function, Rxy(k), between

109

0 50 100 150 200 250 300
10

20

30

40

50

60

70

n

dB

Figure 4.8: Log-amplitude spectrum using linear predictive coding.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70
a)

n

dB

0 50 100 150 200 250 300
40

45

50

55

60

65
b)

n

dB

Figure 4.9: a) Log-amplitude spectrum and envelope b) Log-magnitude power
spectrum.

the input, x(k), and the output, y(k), and, also, the autocorrelation function,
Ryy(k), in terms of Rxx(k) and the unit impulse response, h(k).

Proposition 4.1 Suppose x(k) is a wide-sense stationary random process. If,
for each realization x̃(k),

ỹ(k) =

∞∑
m=−∞

w(m)x̃(m, k),

where w(m) is a finite-energy, deterministic waveform, then y(k) is wide-sense
stationary.

Proof: The proof of Proposition 4.1 is provided in Appendix D.

�

110

Let x(k), a wide-sense stationary, real random process, be the input to a linear,
time-invariant system with impulse response h(k). Then

y(k) =

∞∑
j=−∞

h(j)x(k − j),

and, from the proof of Proposition 4.1,

μy = μx

∞∑
j=−∞

h(j).

Also,

Rxy(k) = E [x(m)y(m+ k)] = E

⎡
⎣ ∞∑
j=−∞

h(j)x(m+ k − j)x(m)

⎤
⎦

=
∞∑

j=−∞
h(j)E [x(m+ k − j)x(m)]

=

∞∑
j=−∞

h(j)Rxx(k − j)

= (h ∗Rxx)(k).

Note that, since Rxx is an even function,

Ryx(k) = Rxy(−k) = (h ∗Rxx)(−k) = h(−k) ∗Rxx(k). (4.13)

Therefore,

Ryy(k) = E [y(m)y(m+ k)]

= E

⎡
⎣y(m)

∑
j

h(j)x(m + k − j)

⎤
⎦ ,

=
∑
j

h(j)E [y(m)x(m + k − j)]

=
∑
j

h(j)Ryx(k − j)

= (h ∗Ryx)(k)

= h(k) ∗ [h(−k) ∗Rxx(k)] , from (4.13).

111

Thus, we have the important results:

Rxy(k) = (h ∗Rxx)(k) (4.14)

and
Ryy(k) = [h(k) ∗ h(−k)] ∗Rxx(k). (4.15)

Remark 4.7 If the mean and variance of x are known and the mean of y is
known, then the variance of y can be determined from

σ2
y = Ryy(0)− μ2

y

= ((h ∗ h) ∗Rxx)(0)− μ2
y

= (μ2
x + σ2

x)(h ∗ h)(0)− μ2
y.

Note that

h(k) ∗ h(−k) =

∞∑
j=−∞

h(j)h(j − k)

and, in particular,

(h ∗ h)(0) =
∞∑

j=−∞
h2(j). (4.16)

Example 4.3 White noise, with variance σ2, is input to a linear, causal, time-
invariant filter with system function

H(z) =
2

4 + 3z−1
.

a) Show that, for k ≥ 0, the cross-correlation of the output, y, with the
input, x, is

Ryx(k) =
1
2σ

2δ(k).

b) Show that the autocorrelation function for the output, Ryy(k), satisfies
the recurrence relation

4Ryy(k) = σ2δ(k)− 3Ryy(k − 1), k ≥ 0. (4.17)

112

c) Using the recurrence relation in (4.17), find the average power in the
output signal.

d) Find the variance in the output signal in terms of σ.

Solution:

a)
H(z) =

2

4 + 3z−1
=

1

2

(
z

z + 3
4

)

and, therefore, h(k) = 1
2

(
− 3

4

)k
ζ(k). Since {x} is white noise, Rxx(k) =

σ2δ(k) and so it follows, from (4.13) and using property (CD4) of §1.3,
that

Ryx(k) = h(−k) ∗Rxx(k) = σ2 1
2

(
− 3

4

)−k
ζ(−k).

To determine Ryx(k) for k ≥ 0, note that

ζ(−k) =

{
1, k ≤ 0,
0, k > 0,

and so, for k ≥ 0, ζ(−k) = δ(k).

Thus, for k ≥ 0, Ryx(k) =
1
2σ

2
(
− 3

4

)−k
δ(k) = 1

2σ
2δ(k).

b) Since

H(z) =
Y (z)

X(z)
=

2

4 + 3z−1
=⇒

(
1 + 3

4z
−1
)
Y (z) = 1

2X(z),

then y(k) + 3
4y(k − 1) = 1

2x(k).
Now, by definition, Ryy(k) = E [y(m)y(m+ k)], but

y(m+ k) = − 3
4y(m+ k − 1) + 1

2x(m+ k)

and so

Ryy(k)=E
[
y(m)

(
1
2x(m+ k)− 3

4y(m+ k − 1)
)]
= 1

2Ryx(k)− 3
4Ryy(k−1).

Hence, using the result of part a), it follows that, for k ≥ 0,
Ryy(k) =

1
4σ

2δ(k)− 3
4Ryy(k − 1).

c) The average power in the output signal can be determined from Pav(y) =
Ryy(0).

k = 0: Ryy(0)=
1
4σ

2 − 3
4Ryy(−1)= 1

4σ
2 − 3

4Ryy(1), since Ryy is even
k = 1: Ryy(1) = − 3

4Ryy(0)

Hence, Ryy(0) =
1
4σ

2 + 9
16Ryy(0) ⇐⇒ Ryy(0) =

1
4σ

2/ 7
16 = 4

7σ
2.

113

d) Using the difference equation obtained in (4.17),

μy = E [y(m)] = E
[
− 3

4y(m− 1) + 1
2x(m)

]
= − 3

4E [y(m− 1)] + 1
2E [x(m)] = − 3

4μy +
1
2μx.

Since μx = 0, it follows that μy = 0 and so, since Ryy(0) = μ2
y + σ2

y , it
follows that

σ2
y = Ryy(0)− μ2

y = Ryy(0) =
4
7σ

2.

�

If x(k) = f(k)+ g(k), where f(k) is a deterministic signal and g(k) is a member
of a wide-sense stationary random process, the output is

y(k) = (h ∗ (f + g))(k) = v(k) + w(k),

where v(k) is the deterministic output signal and w(k) is a member of a wide-
sense stationary random process. The ‘amount’ of noise present in the output
signal can be quantified by using the output signal-to-noise (S/N) ratio, defined
by

(S/N)out =
Pav(v)

Pav(w)
=

Rvv(0)

Rww(0)
. (4.18)

Sometimes this ratio is expressed in decibels (dB), i.e.

10 log10

(
Pav(v)

Pav(w)

)
.

A ‘high’ value of the (S/N) ratio (much greater than 1) indicates that the
amount of noise present is relatively low compared to the signal content, namely
it indicates a relatively clear signal; whilst a low value of the (S/N) ratio implies
that the signal is contaminated by a significant amount of noise.

If g(k) is an uncorrelated, zero-mean random process, then

Rxy(k) = (h ∗ (Rff +Rgg)) (k)

and

Ryy(k) = [h(k) ∗ h(−k)] ∗ (Rff +Rgg) (k).

114

Now consider a linear, time-invariant system with input x(k) = f(k) + g(k),
where both f(k) and g(k) are members of random processes which are wide-
sense stationary. If the impulse response is h(k), then the output is

y(k) = ((f + g) ∗ h)(k).

Invoking (4.3),

Rxy(k) = (h ∗Rxx)(k) = (h ∗ (Rff +Rfg +Rgf +Rgg)) (k)

and
Ryy(k) = [h(k) ∗ h(−k)] ∗ (Rff +Rfg +Rgf +Rgg) (k).

If f and g are from different sources, i.e. the signals are uncorrelated, then, as
a consequence of (4.2),

Rgf (k) = μgμf = Rfg(k).

Hence,

Rxy(k) = (h ∗ (Rff +Rgg)) (k) + 2μfμg (4.19)

and
Ryy(k) = [h(k) ∗ h(−k)] ∗ [(Rff +Rgg) (k) + 2μfμg] . (4.20)

For this case, an important problem is the construction of a linear filter (the
Wiener filter), whose impulse response, h(k), is designed to minimize

Ree(0) = E
[
e2(k)

]
,

where e(k)
def
= y(k) − f(k) denotes the error signal, i.e. the effect of noise is

minimized.

Example 4.4 Consider a discrete system with impulse response

h(k) = 3
2δ(k) + 2δ(k − 1) + 1

2δ(k − 2)

which has an input consisting of the deterministic sequence {ζ(k)} with additive,
uncorrelated, white noise {n(k)}, whose variance is 1

2 .

a) Find the output signal independent of noise.

b) Determine the output signal-to-noise ratio.

115

Solution:

a) f(k) = (h ∗ ζ)(k) = [32δ(k) + 2δ(k − 1) + 1
2δ(k − 2)] ∗ ζ(k).

Since, for any x(k) and m ∈ Z,

x(k) ∗ δ(k −m) =

∞∑
j=−∞

x(k)δ(k −m− j) = x(k −m)

and so

f(k) = 3
2ζ(k) + 2ζ(k − 1) + 1

2ζ(k − 2).

b) Let g(k) = (h ∗ n)(k), then, from (4.18),

(S/N)out =
Rff (0)

Rgg(0)
.

Now, by definition,

Rff (0) = E
[
f2(k)

]
= lim

M→∞
1

2M + 1

M∑
m=−M

f2(m).

Since f(k) = 0, k < 0, and f(0) = 3
2 , f(1) = 7

2 , f(k) = 4, for k ≥ 2, then

E
[
f2(k)

]
= lim

M→∞
1

2M + 1

[(
3
2

)2
+
(
7
2

)2
+ (M − 1)42

]
= 8.

Also, in view of (4.15) and (4.16),

Rgg(0) = ((h ∗ h) ∗Rnn)(0) =
1
2

∞∑
j=−∞

h2(j) = 1
2

[(
3
2

)2
+ 22 +

(
1
2

)2]
= 13

4 .

Thus,

(S/N)out = 8/
(
13
4

)
= 32

13 .

�

116

4.8 Power spectral density

Consider a wide-sense stationary random process x(k). In general, the discrete
Fourier transform of a realization x̃(k) of the random process x(k) will not exist.
However, defining

x̃N (k)
def
=

{
x̃(k), −N ≤ k ≤ N

0, otherwise,

the DTFT of x̃N (k), namely

X̃N (eiθ) =

N∑
k=−N

x̃N (k)e−iθk,

exists and is a random variable. The power spectral density, which measures the
power present in a signal as a function of frequency, is defined as

Sxx(θ)
def
= lim

N→∞

{
1

2N + 1
E
[∣∣∣X̃N(eiθ)

∣∣∣2]} .

An important theorem concerning the power spectral density is the following.

Theorem 4.1 (Wiener-Khinchine) Suppose x(k) is a wide-sense stationary
random process, then

Sxx(θ) =

∞∑
k=−∞

Rxx(k)e
−iθk.

Remarks 4.8

(i) Sometimes Sxx(θ)
def
= Sxx(z)

∣∣
z=eiθ
, where Sxx(z) = Z [{Rxx(k)}], is

used as a definition for Sxx(θ).

(ii) Note that since Rxx is an even function, i.e. Rxx(−k) = Rxx(k),
the region of convergence of Sxx(z) has the form {z ∈ C : a < |z| <
a−1, with 0 < a < 1}.

From Theorem 4.1, since

Sxx(θ) = Z [{Rxx(k)}]
∣∣∣
z=eiθ

,

117

Rxx(k) =
1

2πi

∮
C

Sxx(z)z
k−1 dz,

where C is the contour z = eiθ. With z = eiθ,

Rxx(k) =
1

2π

∫ π

−π

Sxx(θ)e
iθk dθ. (4.21)

This same technique can be used to obtain (3.2) from (3.1). In particular,
putting k = 0 in (4.21),

Rxx(0) =
1

2π

∫ π

−π

Sxx(θ) dθ.

However, Rxx(0) = Pav(x) (see §4.3.1) and, therefore, it is for this reason that
Sxx(θ) is known as the power spectral density.
Properties of the power spectral density are:

(PSD1) Sxx(−θ) = Sxx(θ) for a real process;

(PSD2) For real θ, Sxx(θ) is real and Sxx(θ) ≥ 0 for all θ;

(PSD3) Sxx(θ + 2πn) = Sxx(θ), n ∈ Z;

(PSD4)
1

2π

∫ π

−π

Sxx(θ) dθ = Rxx(0) = x2(k) = Pav(x).

Corresponding to the cross-correlation function Rxy(k), the cross spectral den-
sity is defined by

Sxy(θ)
def
= Sxy(z)

∣∣∣
z=eiθ

, where Sxy(z) = Z [{Rxy(k)}] .

118

Since Rxy(k) = Ryx(−k),

Sxy(z) = Z [{Ryx(−k)}]

=

∞∑
k=−∞

Ryx(−k)z−k

=

∞∑
m=−∞

Ryx(m)zm

=

∞∑
m=−∞

Ryx(m)(z−1)−m

= Syx(z
−1).

Hence,

Sxy(θ) = Syx(z
−1)

∣∣∣
z=eiθ

.

The cross spectral density Sxy(θ) is not necessarily a real, even, or positive
function of θ.

Example 4.5 For the modelled voiced speech data of Example 4.2, determine
and plot the power spectral density against frequency (in Hz) using MATLAB�,
by specifying a Welch spectrum estimator (using the command:
spectrum.<ESTIMATOR>) and selecting power spectral density (using the com-
mand psd), given the sampling frequency 10.204 kHz. Hence, estimate the first
three formants for the voiced speech data.

Solution: The graph of the power spectral density, illustrated in Figure 4.8,
was obtained using the MATLAB� commands:

119

n=1200; T=80; m=n/T; k=[1:n]; % initial data

% impulse sequence of length T with impulse at k=10

p=[[1:T]-10 == 0];

% periodic repeat (period m) of impulse sequence

q=p’*ones(1,m);

r=10*q(:)’; % weighted impulse train

a=[1.0 -0.2 -0.23 -0.05 -0.12];

b=[1];

y=filter(b,a,r)’; % filter finite train of delayed impulses

% modelled voiced speech with additive noise

% (mean 0, variance 4)

x=y+2*randn(n,1);

figure(1); subplot(211);

plot(k,x), title(’Modelled noisy voiced speech signal’);

%

fs=10204;

h=spectrum.welch % creates a Welch spectral estimator

pxx=psd(h,x,’fs’,fs) % calculates power spectral density

subplot(212); plot(pxx)

The formants are obtained from the location of the peaks in the power spec-
tral density and the first three formants are estimated as 287Hz, 1273Hz, and
1833Hz.

�

4.9 Response of a linear, time-invariant filter

It is assumed that the filter is causal, that is h(k) = 0 for k < 0. If x(k) is
the input (a wide-sense stationary random process) and y(k) the output to the
filter, then, as shown by (4.15),

Ryy(k) = h(k) ∗ h(−k) ∗Rxx(k).

Thus,

Syy(z) = H(z)H(z−1)Sxx(z), (4.22)

whereH(z) is the system function for the digital filter. In particular, the average
power in the output is

y2(k) = Ryy(0) = Z−1
[
H(z)H(z−1)Sxx(z)

] ∣∣∣
k=0

.

120

0 200 400 600 800 1000 1200
−10

0

10

20
Modelled noisy voiced speech signal

0 1 2 3 4 5
−34

−32

−30

−28

−26

Frequency (kHz)

P
o

w
e

r/
fr

e
q

u
e

n
c
y
 (

d
B

/H
z
)

Power Spectral Density Estimate via Welch
(ii)

(i)

Figure 4.10: (i) Modelled noisy voiced speech. (ii) Power spectral density.

121

Remark 4.9 Since the region of convergence of H(z)H(z−1) is of the form
{z ∈ C : α < |z| < α−1}, then, if the region of convergence of Sxx(z) is
{z ∈ C : β < |z| < β−1}, the region of convergence for H(z)H(z−1)Sxx(z) is
{z ∈ C : γ < |z| < γ−1}, where γ = max{α, β}.

Also, from (4.14),
Rxy(k) = (h ∗Rxx)(k)

and, therefore,

Sxy(z) = Z [{Rxy(k)}] = H(z)Sxx(z). (4.23)

Consider the case when the input to the filter consists of a deterministic input
f(k) and uncorrelated noise n(k), assumed to be wide-sense stationary. From
(4.22), the z-transform of the power spectral density of the output noise g(k) =
(n ∗ h)(k) is given by

Sgg(z) = Z [{Rgg(k)}] = H(z)H(z−1)Snn(z)

and, using (4.23), the z-transform of the cross spectral density of the input and
output noise is given by

Sng(z) = Z [{Rng(k)}] = H(z)Snn(z).

When the input x(k) to the filter consists of a random signal f(k) plus zero-
mean, uncorrelated noise n(k), which are both members of wide-sense stationary
random processes, then, if y(k) is the output, it follows from (4.19) and (4.20)
that

Ryy(k) = [h(k) ∗ h(−k)] ∗ (Rff +Rnn)(k)]

and
Rxy(k) = (h ∗ (Rff +Rnn))(k).

Hence, taking z-transforms,

Syy(z) = H(z)H(z−1)(Sff + Snn)(z)

and
Sxy(z) = H(z)[Sff(z) + Snn(z)].

122

Example 4.6 Consider a discrete, linear, time-invariant system with system
function

H(z) =
1

1− 0.6z−1
, |z| > 0.6,

which has as input the deterministic signal x(k) =

∞∑
m=0

δ(k − m) plus uncor-

related noise, n(k) (assumed to be wide-sense stationary), with power spectral
density given by

Snn(z) =
2z

(z + 1
2)(z + 2)

,
{
z ∈ C : 1

2 < |z| < 2
}
.

a) Show that the z-transform of {x(k)} is X(z) =
z

z − 1
, |z| > 1.

b) Find the deterministic output f(k) = (h ∗ x)(k), where h(k) is the
impulse response.

c) Given that the output noise, g(k), is given by g(k) = (h ∗ n)(k), de-
termine the output noise power spectral density, Sgg(z), and indicate the
region of convergence.

d) Find the mean square output noise fluctuations g2(k).

Solution:

a) By definition, x(k) = ζ(k) and hence, using tables, X(z) =
z

z − 1
, |z| > 1.

b) Z [{f(k)}] = H(z)X(z)

=

(
z

z − 0.6

)(
z

z − 1

)
=

z2

(z − 0.6)(z − 1)

with region of convergence:

{z ∈ C : |z| > 0.6} ∩ {z ∈ C : |z| > 1} = {z ∈ C : |z| > 1}.

Therefore,

{f(k)} = Z−1 [F (z)] = Z−1

[
z

(5
2

z − 1
−

3
2

z − 0.6

)]

and so
f(k) =

[
5
2 − 3

2 (0.6)
k
]
ζ(k).

123

c) From (4.22),

Sgg(z) = H(z)H(z−1)Snn(z)

=

(
z

z − 0.6

)(
z−1

z−1 − 0.6

)(
2z

(z + 1
2)(z + 2)

)

=

(
z

z − 0.6

)(
1

1− 0.6z

)(
2z

(z + 1
2)(z + 2)

)

=
2z2

(z − 0.6)(1− 0.6z)(z + 1
2)(z + 2)

.

The region of convergence for Snn(z) is
{
z ∈ C : 1

2 < |z| < 2
}
, whilst the

region of convergence for H(z)H(z−1) is
{
z ∈ C : 3

5 < |z| < 5
3

}
. Hence,

the region of convergence for Sgg(z) is{
z ∈ C : 1

2 < |z| < 2
}
∩
{
z ∈ C : 3

5 < |z| < 5
3

}
=
{
z ∈ C : 3

5 < |z| < 5
3

}
.

d) Now

g2(k) = Rgg(0) = Z−1

[
2z2

(z − 0.6)(1− 0.6z)(z + 1
2)(z + 2)

]∣∣∣∣
k=0

.

Hence,

Rgg(0) =
∑

all poles of Sgg(z)z
−1

inside C

[residue of Sgg(z)z
−1]

=
2z

(1− 0.6z)(z + 1
2)(z + 2)

∣∣∣∣
z=0.6

+
2z

(z − 0.6)(1− 0.6z)(z + 2)

∣∣∣∣
z=−0.5

=
6
5(

16
25

) (
15
10

) (
13
5

) − 1(
− 11

10

) (
13
10

) (
3
2

)
=

125

132
≈ 0.9470 .

�

4.10 Application to system identification

system identification Consider a linear, time-invariant, causal filter with sys-
tem function H(z) and suppose it is required to identify H(z) or, equivalently,

124

the impulse response, {h(k)}. If the input to the filter, x(k), is a wide-sense
stationary random process and the output is y(k), then, from (4.23),

Sxy(z) = H(z)Sxx(z).

In addition, suppose the input is a zero-mean white process, i.e. white noise,
then

Rxx(k) = σ2
xδ(k) and Sxx(z) = σ2

x.

For this input,
H(z) = Sxy(z)/σ

2
x.

Thus, the system function for the filter can be identified by computing σ2
x and

Sxy(z).
Alternatively, since

Rxy(k) = (h ∗Rxx)(k)

= (h ∗ (σ2
xδ))(k)

= σ2
xh(k),

the unit impulse response can be determined by evaluating Rxy(k)/σ
2
x.

4.11 Speech quantization and encoding

Some techniques, generally known as waveform encoding, are considered for
digitizing an analogue speech waveform. A digital signal can be generated by
sampling the continuous speech waveform to produce a sequence of sampled
values. In addition, in order to obtain a digital representation, it is necessary
to quantize the sampled values, that is restrict the sampled values to some
specified finite set of values. This process can give rise to quantization er-
ror (sometimes known as quantization noise). Further details can be found
in [Bellanger, 1990, Goldberg and Riek, 2000, Haddad and Parsons, 1991] and
[Oppenheim et al., 1999].

4.11.1 Pulse code modulation (PCM)

Let s(t) denote an analogue speech waveform and fmax the highest frequency in
the spectrum of s(t). The speech signal is then sampled at a frequency fs which,
to reduce the effect of aliasing, is chosen to satisfy fs > 2fmax. Each sampled

125

value, say s(n), is then quantized to one of 2b finite set of values, where b is
the number of bits used to represent each sample value, and, thus, each sample
value of the digital signal can be represented by a sequence of b bits. Therefore,
the rate at which the digitized speech signal can be transmitted is bfs bits per
second (bps). A mathematical model of the quantization process is

s̃(n) = s(n) + q(n),

where s̃(n) represents the quantized value of s(n), and q(n), the quantization
error, is assumed to be additive noise. It is also assumed that the quantization is
uniform in the sense that the absolute difference between consecutive quantized
levels is always the same. In this case, assuming that the number of quantized
levels is sufficiently large, the quantized error is characterised statistically by
the uniform probability density function

p(x) =
1

Δ
, −Δ

2
≤ x ≤ Δ

2
,

where Δ = 2−b is the step size of the quantizer (for more details on this, see
[Deller et al., 2000]). Since the quantised error is characterised statistically by
the uniform probability density function, its mean is zero and, therefore,

σ2
q = E

[
q2
]
= Pav(q).

It is known that the mean square value of the quantization error, sometimes
known as quantization noise power, is

σ2
q = E

[
q2
]
=

Δ2

12
=

1

12
(2−2b),

and, in decibels (with units dB), the mean square value of the quantization error
is

10 log10

(
Δ2

12

)
= 10

[
log10 2

−2b − log10 12
]

= 10
[
b log10 2

−2 − log10 12
]
≈ −6.02b− 10.79 (dB).

Thus, the quantization noise decreases approximately by 6.02b dB/bit for each
bit used in a uniform quantizer. High-quality speech requires a minimum of 12
bits per sample. Therefore, for high quality speech, a bit rate of 12 bfs is required
and the quantization noise power is approximately −6.02×12−10.79 = −83.03
dB.

126

Usually, speech signals have the property that small signal amplitudes oc-
cur more frequently than large signal amplitudes. Due to this characteristic, a
non-uniform quantizer, which produces more closely spaced levels at low signal
amplitudes and more widely spaced levels at large signal amplitudes, is more
useful. A non-uniform quantized effect can be obtained by compressing the sig-
nal amplitude, utilizing a nonlinear device, and then using a uniform quantizer.
An example of a nonlinear compressor is the logarithmic compressor, defined
by

|y| = 1 + log(A|s|)
1 + log(A)

and A = 87.56,

which is used in European communications systems, and is known as the A-law.
In encoding a speech waveform at a sampling rate of 8000 samples per second
and with 8 bits per sample, a bit rate of 64000 bps can be achieved using a
logarithmic compressor for the PCM encoded speech. However, a uniform PCM
quantizer requires 12 bits per sample to achieve a similar level of fidelity. To
reconstruct the signal from the quantized values, obtained using a logarithmic
compressor, an inverse logarithmic relation is used to revert to the ‘normal’ form
of the signal amplitude.

4.11.2 Differential pulse code modulation (DPCM)

There is usually a significant correlation between successive samples of a speech
signal, when sampled at the Nyquist rate or higher. Thus, the change in the
average amplitude between successive samples is relatively small. DCPM is a
scheme that exploits this characteristic and it results in a lower bit rate for the
speech signal. Differential pulse code modulation is designed so that it encodes
the differences between successive samples, rather than the samples themselves.
In general, few bits are required to represent the differences between samples,
since these differences are usually smaller than the actual signal amplitudes.
Thus, in DPCM, the input to the quantizer is the signal obtained by the dif-
ference e(n) = s(n) − s̃(n), where s(n) is the unquantized input sample and
s̃(n) is an estimate of the input sample. The method of linear prediction (see
Section 4.6) can be used to estimate s̃(n). Thus, it is assumed that s̃(n) can be
estimated using a pth predictor, namely

s̃(n) =

p∑
k=1

αks(n− k),

127

where αk are the prediction coefficients. The general design technique for DPCM
is the following. The ‘difference’ signal {e(n)} is input to the quantizer, which
has output {d(n)}, and each value of the quantized prediction error is encoded
into a sequence of binary digits and transmitted over a channel to a receiver.
Suppose the input to the predictor is {x(n)} and the output is {x̃(n)}. Then
x(n) is designed to represent {s(n)} modified by the quantization process, and
satisfies x(n) = d(n) + x̃(n). Finally, the input to the quantizer is defined to be
the difference e(n) = s(n) − x̃(n). If the prediction is good, then a quantizer
with a given number of levels can be adjusted to give a smaller quantization
error than would be possible when quantizing the input directly. A block dia-
gram illustrating a DPCM encoder is given in Figure 4.11. To decode, the same

�

�

�
	

��

� Quantizer � � To the channel

�Predictor�

�

	

��

�

s(n) e(n) d(n)

x(n)x̃(n)

+
−

+

+

Figure 4.11: DPCM encoder.

linear predictor that was used in the encoding technique is synthesized and its
output, x̃(n), is used to determine the signal sample modified by the quanti-
zation process, x(n), with x(n) = d(n) + x̃(n). A block diagram illustrating a
DPCM decoder is given in Figure 4.12.

4.11.3 Response of linear filters to quantization noise

When an analogue signal is passed through an analogue-to-digital converter this
gives rise to quantization errors (usually known as quantization noise). Consider
the effect of the quantization error, say {q(k)}, being passed through a linear,
time-invariant, causal, stable filter with system function H(z). It is known

128

�Predictor�

�
�

�
	

��

� � To the D/A
converter

d(n) x(n)

x̃(n)

+
+

Figure 4.12: DPCM decoder.

that if the quantization error has zero mean and {h(k)} is the impulse response
sequence associated with H(z), then the (average) power in the quantization
output noise, say {q0(k)}, is given by

Pav(q0) = Rq0q0(0) = σ2
q

∞∑
k=0

h2(k) = σ2
qRhh(0),

where {Rhh(k)} = Z−1
[
H(z)H

(
z−1

)]
denotes the autocorrelation sequence

associated with {h(k)} and σ2
q is the variance of the quantization noise.

Example 4.7 The output of a 4-bit quantizer is input to a first order, causal,
IIR filter with system function

H(z) =
1

z − 1
4

.

Assuming the quantization error has zero mean, estimate the quantization noise
power in the output to the filter.

Solution: For a b-bit quantizer the quantization noise power is σ2
q = 1

12 (2
−2b)

and so, for a 4-bit quantizer, σ2
q = 1

12 (2
−8) ≈ 3.255× 10−4.

Since H(z) =
(
z − 1

4

)−1
, H

(
z−1

)
=
(
z−1 − 1

4

)−1
= z/

(
1− 1

4z
)
and so

H(z)H
(
z−1

)
=

z(
z − 1

4

) (
1− 1

4z
) = z

{
− 1

4(
z − 1

4

)
(z − 4)

}

=
16

15

(
z

z − 1
4

− z

z − 4

)

129

with region of convergence
{
z ∈ C : 1

4 < |z| < 4
}
.

From Table B.1 (Appendix B),

Z−1
[
H(z)H

(
z−1

)]
= 16

15

[(
1
4

)k
ζ(k)− 4kζ(−k − 1)

]
.

Therefore,

Rhh(0) =
16
15

[(
1
4

)k
ζ(k)− 4kζ(−k − 1)

]∣∣∣
k=0

= 16
15 .

Hence,
Pav(q0) ≈ 3.255× 10−4 × 16

15 ≈ 3.5× 10−4.

�

4.12 Exercises

Exercise 4.1 The input, x(k), to a linear, stable, discrete system, with unit
sample response h(k), is assumed to be a white process with zero mean and
variance σ2

x. Express the autocorrelation function for the output, Ryy(k), in
terms of its sample response and the variance of the input, and write down the
average power in the output.

Exercise 4.2 The input to a linear, time-invariant system, with impulse re-
sponse function h(k) = δ(k) + 1

2δ(k − 3), is {x(k) + n(k)}, where {x(k)} is a
deterministic signal and {n(k)} is uncorrelated random white noise with vari-
ance 1

4 . The output from the system is of the form {y(k) +m(k)}, where the
sequence {y(k)} represents the deterministic output signal and {m(k)} is the
noise output.
Find the cross-correlation function Rnm(k) and show that the output noise au-
tocorrelation function is

Rmm(k) = 1
8δ(k + 3) + 5

16δ(k) +
1
8δ(k − 3).

Exercise 4.3 A linear, causal, time-invariant, digital filter, with system func-
tion

H(z) =
1

1− 1
4z

−1 − 1
8z

−2
,

has white noise with variance σ2
x as input.

130

a) Show that, for k ≥ 0, the cross-correlation of the output with the input
is:

Ryx(k) = σ2
xδ(k).

b) Show that Ryy(k) = E [y(m)y(m+ k)], the autocorrelation for the out-
put, satisfies the recurrence relation:

Ryy(k) =
1
4Ryy(k − 1) + 1

8Ryy(k − 2) + σ2
xδ(k), k ≥ 0.

c) Using the recurrence relation, above, with k = 0, 1, 2, find the mean
square value of the output.

Exercise 4.4 A discrete filter, known as a ‘averager’, has output

y(k) = 1
2 [x(k) + x(k − 1)]

in response to an input x(k). If the input is a white process with mean μx and
variance σ2

x, determine the average power in the output of the ‘averager’.

Exercise 4.5 Given that the input, x(k), to a linear, discrete system, with
h(k) = δ(k)− δ(k − 3), is the sum of the deterministic signal f(k) = kζ(k) and
uncorrelated white noise n(k) with Rnn(k) = δ(k), find

a) Rww(k) and Rnw(k)

b) w2(k) and g(k)

c) the output signal-to-noise ratio,

where x(k) = f(k) + n(k), y(k) = g(k) + w(k) is the output, g(k) is the deter-
ministic output signal, and w(k) is the noise output.

Exercise 4.6 Show that, if x(k) = A + x̂(k), where A is a constant and
E [x̂(k)] = 0, then

Rxx(k) = A2 +Rx̂x̂(k).

Exercise 4.7 If x(k) is a wide-sense stationary, random process and h(k) is
the unit impulse response of a linear, time-invariant system with output y(k),
which is also wide-sense stationary, show that

μy = μx

∞∑
k=−∞

h(k).

131

Exercise 4.8 Prove that Rxy(k) = Ryx(−k).

Exercise 4.9 Evaluate the autocorrelation function

Rxx(τ) =

∫ ∞

−∞
x(s)x(s − τ) ds

for the deterministic, finite-energy signal t �→ x(t)
def
= e−tζ(t).

Exercise 4.10

a) Which of the following functions could be a power spectral density:

(i)
2θ

5 + θ2
(ii)

6

θ2 + π2
(iii)

1

1 + 2 cos(θ)

(iv) 4− cos(θ) (v) 3 cos(θ)− i ?

b) For those processes in Exercise 4.10 a) which qualify as a power spectral
density, evaluate the mean square value of the process.

Exercise 4.11 If x(k) is a zero-mean, ergodic process with Rxx(k) = ca|k|,
where a, c �= 0 are real constants, find Sxx(z).

Exercise 4.12 Given the power spectral density Sxx(z) = (0.5z2 + z+0.5)/z,
with z = eiθ, find its autocorrelation sequence. Hence, determine the average
power of the process.
Given that the mean of the process is 1

2 , find the variance of the process.

Exercise 4.13 Consider the system function:

H(z) =
z

z − 1
2

+
z

z + 1
4

, |z| > 1
2 .

a) Find H(z)H(z−1) and indicate the region of convergence.

b) Suppose x(k), assumed to be a wide-sense stationary random process,
is the input to a linear, time-invariant system, with system function given
above in Exercise 4.13. a).
If Rxx(k) = 2δ(k), find the mean square value of the output.

132

Exercise 4.14 An input sequence, with power spectral density (0.4z2+0.7z+
0.4)/z, is applied to a digital filter. The cross spectral density between the input
and output is found to be

z2 + 1.75z + 1

(z − 0.2)(z − 0.6)
.

What are the system function and impulse response for the filter?

Exercise 4.15 The z-transform of a power spectral density of a wide-sense
stationary noise process, {n(k)}, with zero mean, is

Snn(z) = 12z/((z + 2)(2z + 1)),

with region of convergence
{
z ∈ C : 1

2 < |z| < 2
}
. Suppose the noise process

is passed through a linear, causal, time-invariant, pole-zero filter with system
function H(z). It is found that the z-transform of the cross-spectral density
between the input noise, {n(k)}, and the output noise, {v(k)}, for the digital
filter is

Snv(z) =
3z

(z − 3
4)(z + 2)

.

a) Determine H(z).

b) Deduce that the z-transform of the power spectral density for the output
noise is

Svv(z) = 12z/((4z − 3)(4− 3z)),

with region of convergence
{
z ∈ C : 3

4 < |z| < 4
3

}
.

c) Find the mean square output noise fluctuations, v2(k) = Rvv(0), where
Rvv(k) denotes the output noise autocorrelation function.

Exercise 4.16 Find the power spectral density, Syy(θ), for the output from
the causal, MA filter:

y(k) =
1

2
[x(k) + x(k − 1)],

given that the input is white noise with variance σ2
x. Also, determine the z-

transform of the cross spectral density of the input with the output, namely
Sxy(z).

133

Exercise 4.17 Assume that x(k), a zero-mean, wide-sense stationary, white
process, has a variance of 2. Suppose that x(k) is the input to:

a) an ideal lowpass filter with

H(eiθ) =

{
2, 0 < |θ| < 1

2π,

0, 1
2π < |θ| < π,

and H(eiθ) = H(ei(θ+2π));

b) an ideal bandpass filter with

H(eiθ) =

{
2, 1

4π < |θ| < 1
2π,

0, otherwise,

and H(eiθ) = H(ei(θ+2π)).

Evaluate and sketch (i) Rxx(k) (ii) Sxx(θ) (iii) Syy(θ), where y is the output
from the filter.
Determine y2(k) (hint: use (4.21)).

Exercise 4.18 Consider a first order, causal filter with difference equation

y(k) = −1

2
y(k − 1) + x(k),

where {x(k)} is the input sequence and {y(k)} is the corresponding output
sequence. Given that the output of a 8-bit quantizer is input to the filter and
assuming the quantization error has zero mean, estimate the quantization noise
power in the output to the filter.

134

Part II

Image Processing

Chapter 5

Digital image processing
fundamentals

5.1 Introduction

A digital image can be obtained from many different sources and imaging modal-
ities exploiting different principles, such as incident light, x-ray, ultrasound or
infrared radiation to name a few. Readers wishing to have more information
on the different imaging modalities can refer to the introductory Chapter of
[Bernd, 2004]. Those readers wishing to have more information on the hu-
man vision system and machine vision technology can refer to the introductory
chapters in [Nixon and Alberto, 2002] and [Forsyth and Ponce, 2003]. It is im-
portant to note that, irrespective of the imaging modality exploited, an image
is only a possible representation of reality, it is not the actual object or phe-
nomenon being imaged. Image processing is, as such, an extension of signal
processing where the signal obtained by a camera can be noisy, affected by the
sampling or spatial resolution of the acquisition device as well as the quanti-
zation for its digital representation in terms of grey levels or colours. Such a
realisation is particularly important in medical images where the images are
not the organs. Recent medical imaging techniques aim to register different
types of images together in order to exploit their relative benefits. Computed
Tomography (CT) provides the best geometrical accuracy, however, magnetic
resonance imaging (MRI) provides better soft tissue imaging, making it the
modality of choice for brain imaging. Functional imaging, such as functional

137

MRI, has been used to provide information on the brain activity. Position
Emission Tomography (PET) imaging can provide information on the tumour
activity, but is not geometrically accurate; hence, it has to be merged with a
CT image to be exploitable. The technologies adopted to locate tumour and
patient motion, just before or during the treatment, include mega-voltage X-ray,
kilo-voltage X-ray, optical, electromagnetic, ultrasound, as well as air flow and
volume, using a spirometer. These on-line imaging and monitoring techniques
are required to be correlated to the images used for planning. Correlating infor-
mation between different modality, using image registration, requires assump-
tions to be made on the anatomical changes that may have occurred, resulting
in organs, and to a lesser extent tumour volume, being geometrically different.
Non-rigid registration is currently the method of choice for both; performing
such a mapping automatically delineates organs based on a deformable ATLAS
[Commowick et al., 2008, Sims et al., 2009]. The main issue is to verify that the
resulting distorted image, created to ‘fit’ the new patient geometry, corresponds
to the actual shape of the tumour and surrounding tissues, which can only be
truly assessed during surgery. The current challenge of medical imaging is not
only to provide a ‘true’ representation of reality, but to do so at the right time.
Three dimensional ‘movies’ of organs can now be reconstructed off-line, using
techniques such as respiratory correlated computed tomography, commonly re-
ferred to as four dimensional (4D) CT (see [Pan et al., 2004]), as well as four
dimensional cone beam imaging (discussed in [Sonke et al., 2005]).

5.2 Image representation

An image is traditionally expressed as a continuous function of two, three or even
four variables. A still image taken, for example, by a camera will be represented
by a function of two variables: MyStillImage = f(x,y) where x and y can be
coordinates within a standard coordinate system, with x representing the row
and y the column if f(x,y) is expressed in a matrix format (for example, using
MATLAB�). The element of the image at the location (x, y) is referred to as a
pixel and is associated a particular colour.

Remarks 5.1

a) In MATLAB� the origin of the coordinate system is the top left of the
image, such that the coordinate x represents the row element starting from
the top and y represents the column starting from the left.

138

b) Due to MATLAB� matrix indexing rules, the top left pixel is repre-
sented by the element ImageName(1,1) as opposed to ImageName(0,0)
(see [Gonzalez et al., 2004]).

A movie or video can be represented by a function of three (black and white
video) variables, where x and y indicate the pixel location associated with a grey
level or colour and the variable t is the time at which each image is acquired.
MATLAB� organises each video using structures. Colour video have a RGB
image associated with each movie frame, where each pixel, located at (x, y),
is associated with three colours. 3D images are a series of concatenated 2D
images that form a volume. Each element (x, y, z) of the volume is referred to
as a voxel.
Respiratory correlated computed tomography produces 4D images, which

are 3D spacial images as a function of time.
This book will focus on 2D images, as the aforementioned image represen-

tations can all be expressed as a set of 2D images. Note, however, that some
of the 2D imaging techniques have been readily extended to volumetric images.
To represent a 2D image into a computer, it is necessary to discretise both x
and y in terms of depth of colour and pixel size. A convenient representation
for ‘geometrical’ discretisation is that of data in matrix form. The image f is
sampled and quantized such that it results in a digital image A containing M
rows, N columns associated with one grey level value in the case of grey level
images, or three colour values R, G and B in the case of RGB images.

Sampling f produces A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1N
a21 a22 . . . a2N
...

...
...

aM1 aM2 . . . aMN

⎤
⎥⎥⎥⎦ .

Each element of A is referred to as a pixel, image element, or picture element
(see [Gonzalez et al., 2004]).
In grey-level images, each element ofA, namely aij , is associated with a grey-

level value, that is an integer from a prescribed set of integers that represents
different shades of grey. The most important decision to take is to determine
the most appropriate number of grey levels. In practice, the number of distinct
grey levels L is an integer, which is a power of 2, that is L = 2k, where k ∈ N.
The discrete levels are usually equally spaced in the interval [0, L− 1]. Such an
image representation is traditionally referred to as a k-bit image, or having a
dynamic range [0, L− 1].

139

Exercise 5.1 Determine the range of grey level available in an 8-bit image.

The number of bits required to store an image is M ×N × k.

Exercise 5.2 How many bits are required to store a 512 by 512 images con-
taining 256 grey levels?

5.3 Type of images with MATLAB�

The image processing toolbox supports binary, indexed, intensity, and Red-
Green-Blue (RGB) image types. Note that [Forsyth and Ponce, 2003] offers a
good description of the theoretical and technical background associated with
different types of light source and colour representation of an image.
The description of the MATLAB� functions and data format are based on

(The MathWorks, Inc., 2010).

Binary image: An image, containing only black and white pixels, represented
as a logical array of 0’s and 1’s, respectively.

Indexed image: An image whose pixel values are represented by an array,
containing an integer values between 1 and n, where n is the number
of distinct set of RGB values within the colour-map (usually called a col-
ormap). It is, in effect, a look-up table associating an integer, representing
a colour, with the element within the colormap, that is the colour to be
used when displaying the image. The colormap is always an n × 3 array
of class double. Note that, if the colours displayed are found to be un-
suitable, it is possible to modify the colormap to obtain different colours
without modifying the information in the original image.

Grey scale or grey level images: An image (previously referred to in the
literature as an intensity image) consisting of intensity values between 0
(black) and 1 (white) representing grey levels within the range [0, 2n] (see
Section 5.2).

RGB or truecolour image: An image in which each pixel is specified by
three values (as opposed to an index referring to an element in a colour
map , see indexed image) – one each for the red, green, and blue compo-
nents of the pixel’s color. In MATLAB�, an RGB image is represented by
anm×n×3 array. A pixel with (0, 0, 0) is black, (k, k, k) is white, (k, 0, 0)
is red and so on. (k is the quantization level.) For more information of
colour images see [Sonka et al., 1999], p23.

140

Remark 5.2 By default, MATLAB� stores most data in arrays of class dou-
ble (64-bit) floating-point numbers. For image processing, however, this data
representation is not appropriate due to the large amount of mathematical oper-
ations to be performed on images and the relatively small values of each element
representing information within an image. To reduce memory requirements and
speed up image processing algorithms, it is standard to use 8-bit or 16-bit un-
signed integers, or boolean for black and white images.

5.4 Converting data classes and image types

5.4.1 Data types and conversions

By default MATLAB� data type will be double. Using MATLAB�, a double
data type can be converted to:

8-bit unsigned integer with the command -

UnsignedInteger8bits = uint8(DoubleMatrix);

16-bit unsigned Integer -

UnsignedInteger16bits = uint16(DoubleMatrix);

These commands output an integer by taking only the integer part of the double
data type and applying restrictions such that the resulting number is in the
range

[
0, 28

]
or
[
0, 216

]
.

To convert to boolean type, use the MATLAB� command:

LogicalNumber = logical(DoubleMatrix);

If the argument DoubleMatrix contains elements different from 0 or 1, they are
converted to 1 by default. It is good practice to ensure that logical numbers are
either 0 or 1 when created as a matrix. For example, the MATLAB� command:

DoubleInRangeZeroToOne =mat2gray(DoubleMatrixA, [Amin, Amax]);

converts a double data type to a double data type in the range [0, 1], where 0
denotes black, 1 denotes white, and values in DoubleMatrixA less than Amin are
set to 0 and values in DoubleMatrixA greater than Amax are set to 1.

141

5.4.2 Image types and conversions

An image is read using the command imread and can be converted to

(i) 8-Bit Unsigned Integer type with MATLAB� command:

UnsignedInteger8bitsImage = im2uint8(ImageType);

(ii) 16 Bit Unsigned Integer type with command:

UnsignedInteger16bitsImage = im2uint16(ImageType);

(iii) logical (binary image) type with MATLAB� command:

BlackAndWhiteImage = im2bw (ImageType);

(iv) double data type using:

DoubleImage = im2double (ImageType);

Some other conversions are as follows:

demosaic: This converts a Bayer pattern encoded image to a truecolor (i.e.
RGB) image. A Bayer filter mosaic, or colour filter array, refers to the
arrangement of colour filters that let each sensor, in a single-sensor digital
camera, record only red, green, or blue data. The Bayer pattern em-
phasizes the number of green sensors to mimic the human eye’s greater
sensitivity to green light. A MATLAB� command has the form RGB =
demosaic(Image, sensorAlignment), where sensorAlignment is one of
the following text strings ’gbrg’, ’grbg’, ’bggr’, ’rggb’ that specifies
the Bayer pattern. Each string represents the order of the red, green, and
blue sensors by describing the four pixels in the upper-left corner of the
image (left-to-right, top-to-bottom).

dither: This converts a grey-scale image to a binary image or converts a RGB
image to an indexed image. The MATLAB� command

X = dither(ImageRGB, map, Qm, Qe)

142

creates an indexed image from RGB, where Qm specifies the number of
quantization bits to use along each colour axis for the inverse colormap,
and Qe specifies the number of quantization bits to use for the colour space
error calculations. If Qe < Qm, dithering cannot be performed, and an
undithered indexed image is returned in X. If one omits these parameters,
dither uses the default values Qm = 5 and Qe = 8. If all arguments except
the image are omitted, dither converts to a binary image (black and
white).

gray2ind: This converts a grey-scale image to an indexed image. The command

[X,map] = gray2ind(I,ColormapSize)

converts the image I to an indexed image X. The argument ColormapSize
specifies the size of the colormap.

For example, gray(ColormapSize) generates a gray colormap with
ColormapSize grey levels where ColormapSize must be an integer be-
tween 1 and 65536 for grey scale images, with default ColormapSize= 64.
If the image is a binary image then the default for ColormapSize is 2.

grayslice: This converts a grey-scale image to an indexed image by using
multi-level thresholding. The command X = grayslice(I,n) thresholds
the intensity image I returning an indexed image in X. Threshold values
can be specified using X = grayslice(I,v), which thresholds the inten-
sity image I using the values of v, where v is a vector of values between 0
and 1, returning an indexed image in X.

im2bw: This converts a grey-scale image, indexed image, or truecolor image, to
a binary image, based on a luminance threshold.

ind2gray: This converts an indexed image to a grey-scale image.

ind2rgb: This converts an indexed image to a truecolor image.

mat2gray: This converts a data matrix to a grey-scale image, by scaling the
data.

rgb2gray: This converts a RGB image to a grey-scale image.

hsv2rgb: This converts a hue-saturation-value (HSV) colormap to a red-green-
blue (RGB) colormap

143

Remark 5.3 To work with images that use other color spaces, such as
HSV, first convert the image to RGB, process the image, and then convert
it back to the original color space. For more information on the means
by which MATLAB� handles different colour images please refer to the
Section: Help>Image Processing Toolbox>User’s Guide >Color.

rgb2ind: This converts a truecolor image to an indexed image.

5.5 Reading and writing images

Image files contain generally two parts: a header, where the format is described
together with relevant file information, and the data. To read the image header,
the following function is used: info = imfinfo(filename,fmt), which returns
a structure, info, whose fields contain information about an image in a graphics
file.
The most widely used command to load an image in the workspace is imread,

where specific image formats can be read with specialised reading functions. At
the time of writing this book, other supported formats include three medical im-
age formats: DICOM (most widely used), Mayo Analyze 7.5 and Interfile Files,
as well as a ‘photographer’s’ format: High Dynamic Range Images. This book
will focus on reading and writing typical image formats using imread/imwrite
as well as medical data using dicomread/dicomwrite.
The format for imread is as follows:

[A, map] = imread(’imagefilename’,’extension’);

or

[A, map] = imread(’imagefilename.extension’);

Similarly, to create an image, the imwrite command can be used. The structure

imwrite(A,map,filename,fmt.,Param1,Val1,Param2,Val2...)

writes the image A to the file specified by filename, in the format specified
by fmt. The image A can be an M × N (grey-scale image) or an M × N × 3
(truecolor image) array. The parameters are optional and relate to a specific
image format. For example, with jpeg images, two useful parameters are the
’Bitdepth’, which gives the number of bits used for a grey level or a colour
image, and ’Quality’, where a value of 100 denotes the best quality and the
largest file size.

144

Using imread/imwrite it is possible to read/ write the following image file
formats:

‘bmp’ Windows Bitmap
‘cur’ Windows Cursor resources
‘gif’ Graphics Interchange Format
‘hdf’ Hierarchical Data Format (HDF)
‘ico’ Windows Icon resources (ICO)
‘jpg’ or ‘jpeg’ Joint Photographic Experts Group (JPEG)
‘JP2’ JPEG 2000 Joint Photographic Experts Group 2000
‘JPF’ JPEG 2000 Joint Photographic Experts Group 2000
‘JPX’ JPEG 2000 Joint Photographic Experts Group 2000
‘J2C’ JPEG 2000 Joint Photographic Experts Group 2000
‘J2K’ JPEG 2000 Joint Photographic Experts Group 2000
‘pbm’ Portable Bitmap (PBM)
‘pcx’ Windows Paintbrush (PCX)
‘pgm’ Portable Greymap (PGM)
‘png’ Portable Network Graphics (PNG)
‘pnm’ Portable Anymap (PNM)
‘ppm’ Portable Pixmap (PPM)
‘ras’ Sun Raster (RAS)
‘tif’ or ‘tiff’ Tagged Image File Format (TIFF)
‘xwd’ X Windows Dump (XWD)

Today, one of the most common file formats for digital camera has extension
‘jpg’. The following example illustrates the typical steps of obtaining informa-
tion about the image, reading the image into MATLAB� and displaying it.

Example 5.1 To read an image stored in greens.jpg and display the result,
the following MATLAB� commands may be used:

145

% Example: reading jpg images

close all, % close all figures

clear all, % clear all data in the workspace

% Define the path where all the test images are located

impath = ’C:\MATLABimagproc\SampleImages\’;
% display information about the image

% (not for use with DICOM images)

info = imfinfo([impath,’greens.jpg’]);

% read a jpeg image using two equivalent expressions

Igreens= imread([impath,’greens.jpg’]);

IgreensB = imread([impath,’greens’],’jpg’);

% Creates one figure at a time and displays one image within

% each figure. The images displayed will be identical.

figure(1);imshow(Igreens);
figure(2);imshow(IgreensB);

Specific image formats require other commands to be used. For example, to read
a high dynamic range image into the MATLAB� workspace, use the hdrread
function as in

hdr image = hdrread(’office.hdr’);

High Dynamic Range (HDR) images attempt to capture the whole tonal range
of real-world scenes (called scene-referred), using 32-bit floating-point values to
store each colour channel. The output image HDR image is an m× n× 3 image
of type single. To view an HDR image, you must first convert the data to a
dynamic range that can be displayed correctly on a computer. Use the tonemap
function to perform this conversion. The command tonemap converts the high
dynamic range image into an RGB image of class uint8. Suitable commands
are:

rgb = tonemap(hdr image);

imshow(rgb);

To create a high dynamic range image from a group of low dynamic range
images, use the makehdr function as in hdr image = makehdr(files). To write
a high dynamic range image from the MATLAB� workspace into a file, use the
hdrwrite function in the form: hdrwrite(hdr image,’filename’).

146

5.5.1 Reading and writing DICOM images

The second example deals withDigital Imaging and Communications inMedicine
(DICOM) images. DICOM is a standard that was created to overcome difficul-
ties associated with each manufacturer having their own proprietary format. It
is a standard which was instigated in 1938 by the American College of Radi-
ology (ACR) and the National Electrical Manufacturers Association (NEMA).
They released in 1993 the version 3.0 of the standard, which was then renamed
DICOM. The DICOM standard has become widely accepted, but it is still in
evolution to accommodate issues raised by users. Similarly, the behaviour of
the MATLAB� command dicomread has evolved, since it was first introduced.
To write DICOM images the command: dicomwrite(..., ’ObjectType’,
IOD,...), where IOD refers to the DICOM information object that is required
for a particular type of image. The IOD supports: ’Secondary Capture Image
Storage’ (which is the default), ’CT Image Storage’, ’MR Image Storage’,
but not DICOMrt for radiotherapy, which is a specific DICOM format than
contains additional information (or metadata) relating to radiotherapy treat-
ment planning. A MATLAB� user can, however, create their own version of
DICOMrt by adding the required metadata such as the ’outlined target vol-
ume’ or’treatment plan information’ using the dicomwrite command with the
CreateMode option set to ’Copy’. In this mode, dicomwrite writes the image
data to a file, also including the metadata that is specified by the user as a
parameter. Note that MATLAB� does check whether the modified DICOM
format contains the set of required metadata to be appropriately supported by
third party software.

Example 5.2 To read an image stored in US-PAL-8-10x-echo.dcm and display
the result, the following MATLAB� commands may be used:

147

% Define the path for the location of the test images.

impath = ’C:\MatlabImagProc\SampleImages\’;
%

% Read the dicom image, dicom info.

infoUS = dicominfo(’US-PAL-8-10x-echo.dcm’);

[ImOriginal, map] = dicomread(’US-PAL-8-10x-echo.dcm’);

infoCT = dicominfo(’CT-MONO2-16-ankle.dcm’);

ImCT = dicomread(infoCT);

%

% Write DICOM images.

% Write CT image X to a DICOM file along with its metadata.

% Use the dicominfo function to retrieve metadata ’infoCT’

% from a DICOM file.

dicomwrite(ImCT, [impath,’CTfile.dcm’], infoCT)

%

% Display the dicom images.

imtool(ImCT) % Display image using interative tool

[ImCTRead, map] = dicomread([impath,’CTfile.dcm’]);

figure(1);

subplot(121),imshow(ImCT,’InitialMagnification’,100)

subplot(122),imshow(ImCTRead,’InitialMagnification’,100)

%

% Obtain and modify the file information by reading the file

% information.

dicomanon([impath,’CT-MONO2-16-ankle.dcm’],...

...[impath,’UScopy01anonym.dcm’]);

infoAnonym = dicominfo([impath,’CT-MONO2-16-ankle.dcm’]);

%

% Write the character xyz as the family name.

infoCT.PatientName.FamilyName=’xyz’;

%

% Anonymise the data (by removing the name).

infoAnonym.PatientName

implay(ImOriginal) % play US dicom movie

Analyze 7.5 is a file format, developed by the Mayo Clinic, for storing MRI
data. An Analyze 7.5 data set consists of two files:

Header file (filename.hdr) Provides information about dimensions, identifi-
cation, and processing history. You use the analyze75info function to

148

read the header information.

Image file (filename.img) Image data, whose data type and ordering are de-
scribed by the header file. You can use analyze75read to read such image
data into the MATLAB� workspace:

info = analyze75info(’brainMRI.hdr’);

X = analyze75read(info);

Interfile is a file format that was developed for the exchange of nuclear
medicine image data. An Interfile data set consists of two files:

Header file (filename.hdr) Provides information about dimensions, identi-
fication and processing history. You use the interfileinfo function to
read the header information.

Image file (filename.img) Image data, whose data type and ordering are de-
scribed by the header file. You use interfileread to read the image data
into the MATLAB� workspace.

The MATLAB� commands:

nfo = interfileinfo(’dyna’);

X = interfileread(’dyna’);

Examples of such images can be downloaded from the Interfile Archive main-
tained by the Department of Medical Physics and Bioengineering, University
College, London, UK:
http://www.medphys.ucl.ac.uk/interfile/.

5.6 Manipulating images obtained from movies
in MATLAB�

It is now possible to read and play a wide range of different formats for movies,
provided that the operating system you use supports the appropriate format and
codec. Movie files can be quite large and, hence, it is a good idea to check the
size of the movie before opening it or playing it using the command mmfileinfo.
For example, the MATLAB� commands:

info = mmfileinfo(’xylophone.mpg’);

info

149

produce the following results:

Filename: ’xylophone.mpg’

Path: ’C:\MATLAB R2010a\toolbox\matlab\audiovideo’
Duration: 4.7020

Audio: [1x1 struct]

Video: [1x1 struct]

and

info.Video % Access the video format information

gives

ans =

Format: ’MPEG1’

Height: 240

Width: 320

There are two MATLAB� commands to play a movie: implay and movie. The
command implay opens and plays a compatible movie file. It is the simplest
command to use for this purpose. For example, one could write

implay(’xylophone.mpg’); % Read and play the mpg movie

The MATLAB� command movie can only play a movie which is defined by a
matrix whose columns are ‘movie frames’. To generate a MATLAB� movie, it
is, therefore, necessary to create the movie frame data structure. To extract
one image from a movie, i.e. create a frame, use the command getframe, which
returns a snapshot (namely a pixmap) of the current axes or figure, namely
a movie frame. A movie frame can also be created from a 4D array using
the following sample code, where cdata is one of the required properties of
the image object which contains the data, that is the image for each frame.
For example, movie frame data structure creation can be achieved using the
MATLAB� commands:

for k = 1:numberOfFrames

mov(k).cdata = a4DarrayCreatedByReadCommand(:,:,:,k);

mov(k).colormap = [];

end

150

To be able to perform some image processing, it is, however, more important to
be able to access information on each frame of the movie than to play it. The
MATLAB� command aviread enables one to create, directly, a MATLAB�

movie structure. The kth image or frame in the movie can then be extracted
using the command [ImageData,Map] = frame2im(mov(k)). MathWorks is
currently recommending to use mmreader instead of the function aviread, which
only reads AVI files. The function mmreader creates a multimedia reader object
for reading video files. It is a new MATLAB� function created to handle a
wide variety of movie file formats or containers, which describes the layout
of the file (for example, .avi, .mpg, .mov), and various codec support; here,
codec describes how to code/decode the data. Note that if the codec is not
available, MATLAB� may not be able to read the file, even if it is one of the
listed formats. This is a common occurrence for avi files created on a 32 bit
system with Microsoft XP operating system using Indeo5 codec. Indeed, Indeo
does not provide support for the Windows 7 operating system. To obtain file
formats supported by the mmreader, one can use the MATLAB� command:
mmreader.getFileFormats. Some possible output might be:

Video File Formats:

.asf - ASF File

.asx - ASX File

.avi - AVI File

.mj2 - Motion JPEG2000

.mpg - MPEG-1

.wmv - Windows Media Video

Note that these formats are available in a Windows operating system. Assuming
that the movie file is compatible, there are three steps to access each image
frame:

(i) Create a multimedia reader object using the function mmreader.

(ii) Read the video frames from the multimedia reader object to create a 4D
matrix, with dimension H × W × B × F , where H is the image frame
height, W is the image frame width, B is the number of bands in the
image (for example, 3 for RGB), and F is the number of frames that are
read.

(iii) Extract an image or a set of images from the movie by:

a) using an array matrix, indexing from the 4D matrix created in (ii);

151

b) creating a movie frame data structure and subsequently extracting a
frame using [ImageData,Map] = frame2im(mov(k)).

Remark 5.4 Note that to create the appropriate data structure, in order to
load each movie frame into the structure, it is a good idea to pre-allocate the
memory.

The following example, namely Example 5.3, illustrates the use of the principal
MATLAB� commands to read a movie and then extract the individual frame
information.

Example 5.3 Consider the problem of reading a movie file and extracting im-
age frames. The following MATLAB� commands may be used to create a
MATLAB� movie structure from the video frames:

152

% Obtain general information on the movie.

%

info = mmfileinfo(’xylophone.mpg’);

%

% open and play a compatible movie file

%

implay(’xylophone.mpg’);

%

% Create the MATLAB object containing the movie information.

%

xyloObj = mmreader(’xylophone.mpg’);

%

% Pre-allocate the movie structure.

% Determine the number of frames and image size.

%

nFrames = xyloObj.NumberOfFrames;

vidHeight = xyloObj.Height;

vidWidth = xyloObj.Width;

%

% Create a structure of cdata or movie frames:

% cdata is a property of an image object, it contains the data

% array.

%

mov(1:nFrames) = struct(’cdata’, zeros(vidHeight, vidWidth,...

...3,’uint8’),’colormap’, []);

%

% Read in all video frames.

%

vidFrames = read(xyloObj);

%

% Create a MATLAB movie structure from the video frames.

%

for k = 1 : nFrames

mov(k).cdata = vidFrames(:,:,:,k);

mov(k).colormap = [];

end

To create an avi file from the movie frames and play the avimovie, the following
commands can be used:

153

% Create a figure to display the video.

hf = figure;

%

% Resize the figure based on the video’s width and height

set(hf, ’position’, [150 150 vidWidth vidHeight])

%

% Play back the movie once at the video’s frame rate.

% mov is the movie defined by a matrix whose columns are movie

% frames.

movie(hf, mov, 1, xyloObj.FrameRate);

%

% Create an avi file from the movie frames and an avi file

% object, which can be used to build an avi movie.

% Once all the frames have been added to the movie object,

% the object must be closed to enable the file to be written in

% the appropriate format, otherwise the avi file created will

% be unreadable.

% The frame rate specified is 10 per second, which is less than

% the initial frame rate. This will play the original movie in

% slow motion.

aviobj = avifile(’xylophone.avi’,’compression’,’None’,’fps’,10);

%

% Create a figure.

hf = figure;

%

% Resize the figure based on the video’s width and height

set(hf, ’position’, [150 150 vidWidth vidHeight])

%

% Append the frame(s) contained in the MATLAB movie MOV to the

% avi file.

aviobj = addframe(aviobj,mov);

%

% Finishes writing and closes the movie (IMPORTANT LAST STEP).

aviobj = close(aviobj);

%

% Play the avi movie.

implay(’xylophone.avi’)

154

Exercise 5.3 Write down the command used to load into MATLAB� bmp, tif
and jpg image files present in the directory:
W:\EC\STUDENT\m19mse\SampleImages.

Exercise 5.4 Write down the MATLAB� command to load a jpeg file and
display it as a grey-level image file.

5.7 Displaying images with MATLAB�

5.7.1 Image Tool Navigation Aids: imtool

The MATLAB� command imtool can be used to display image data I using
the commands:

imtool(I)

% specify the range of grey levels in [LOW HIGH]

imtool(I,[LOW HIGH])

or load a file containing an image within the format listed in Section 5.3, namely
imtool(filename).

A useful command to close all the image viewers is: imtool close all. A
screen-view illustrating the use of imtool is shown in Figure 5.1.

5.7.2 Displaying an image using ‘imshow’

imshow(A,L) displays the intensity image A with L discrete levels of grey. If
you omit L, imshow uses 256 grey levels on 24-bit displays, or 64 grey levels on
other systems.

OLD version: imshow(A,L,’truesize’) This command calls the true-size
function, which maps each pixel in the image to one screen pixel. The com-
mand imshow(A,L,’notruesize’) does not call the truesize function.

NEW version: imshow(A,’InitialMagnification’,100) shows the actual size
of the image.

truesize(A) uses the image height and width for [MROWS MCOLS]. This
results in the display having one screen pixel for each image pixel.

image(A) displays matrixA as an image. Each element ofA specifies the colour
of a rectangular segment in the image.

155

Figure 5.1: A screen-view illustrating the use of the MATLAB� image viewer,
called by using the command imtool, to inspect pixels RGB values.

156

Remark 5.5 The image(A)function may not display the expected image colour.
The colour associated with each pixel will be determined by the specified col-
ormap. If you do not specify the colormap, MATLAB� will create one for you
that may change depending on other functions that you are using (as the other
functions may create other colormaps). See Section 5.3 on image type and, in
particular, indexed image.

imagesc(A) The imagesc function scales image data to the full range of the
current colormap and displays the image.

subimage(A,map) This command displays multiple images in the same figure,
even if the images have different colormaps. The command subimage works by
converting images to truecolor for display purposes, thus avoiding colormap
problems, for example,

subplot(1,2,1), subimage(X1,map1)

subplot(1,2,2), subimage(X2,map2)

5.8 Sampling

Definition 5.1 Sampling is defined as the process of creating a finite size
image, comprising M rows and N columns.

Remark 5.6 To define the appropriate level of sampling, i.e. the number of
pixels per millimetre, it is necessary to ensure that all required regions of interest
(ROI) are represented by at least two pixels (see [Sonka et al., 1999]). Such an
approach would help separate noise from actual feature. Note that selecting the
image sampling to have 5, as opposed to 2, pixels to describe the smallest ROI
is advantageous from a practical perspective.

Example 5.4 Suppose that an image, which measures 10 cm by 10 cm, is
available for analysis. To display the image on a computer, the image has to
be divided into a number of rows and columns. This process is called sampling.
Note that it may be of advantage to use a lower resolution than visually accept-
able to quickly segment images using automated algorithms. The elements i, j
characterising the location of the centres of each of the matrix elements of A are
expressed as integer values i.e. (i, j) ∈ {1, 2 . . .N} × {1, 2, . . .M}. However,
these coordinates may not correspond exactly to the actual value of the physical
coordinates.

157

Suppose the image consists of a digital photograph of a mug, showing a 9
cm tall mug. Depending on the resolution of the photograph, 9 cm may be
represented by 100 pixels, for example. In this case, the third pixel from the
bottom of the mug would be located at 3/100× 9 cm = 0.27 cm.

�

Exercise 5.5 A quarter circle is to be digitised using a grid with a resolution
of 0.2 by 0.2 units and represented as a black and white image. Write down the
rules you are using to colour the pixels inside the quarter circle. How could you
improve the representation of the quarter circle?

−1 −0.8 −0.6 −0.4 −0.2 0
0

0.2

0.4

0.6

0.8

1

Exercise 5.6 A person is subject to a CT scan that takes transversal images
of the body. The cross section of the person is encompassed within a rectangle
of 35 cm by 25 cm. The resolution of the scanner is 0.2 × 0.2 cm. How many
pixels are required to image the cross section of the patient?

Exercise 5.7 Suppose that a 10cm by 10cm image is divided into 512 rows and
512 columns. What is the area of a pixel?

5.8.1 Re-sampling an image with the aid of MATLAB�

Re-sampling an image can be achieved using the commands:

B = imresize (A, M,METHOD)

B = imresize (A,[MROWS MCOLS],METHOD)

Using imresize, one can specify the size of the output image in two ways.

(i) by specifying the factor to be used on the image:

158

% For a ReductionFactor satisfying 0 < ReductionFactor ≤ 1
A 1 = imresize(A,ReductionFactor)

(ii) by specifying the dimensions of the output image:

A 2 = imresize(A,[Number of Rows, Number of Columns])

The argument ‘METHOD’ is used to choose the interpolation method that can be
selected from:

• ’nearest’ (default) - nearest neighbour interpolation;

• ’bilinear’ - bilinear interpolation;

• ’bicubic’ - bicubic interpolation.

There follows some MATLAB� code to format sampling and quantization ex-
amples, and illustrate the use of InitialMagnification.

159

% Sampling and quantization examples

% close all figures and clear workspace

close all % close all figures

imtool close all % closes all the image viewers

clear all % clear all data in the workspace

%

% Define the path where all the test images are located

ImPath = ’C:\MATLABImagProc\SampleImages\’;
%

% read the images

I256 = imread([ImPath,’lenna256.gif’]);

%

% resample one of the images to reduce its resolution from

% the initial 256 by 256 to 128 by 128, and 32 by 32

% (8 times less than the original image size.

I128 = imresize(I256,[128,128]);

I32 = imresize(I256,[32,32]);

%

% equivalent command using ratio or scale instead of number

of rows and column

I32bis = imresize(I256,1/8);

%

% Illustrating the use of sampling

% Using subplot, the magnification is set automatically.

figure(1);

subplot(221); imshow(I256)

title([’I256=imread([ImPath,’’lenna256.gif’’])’])

subplot(222); imshow(I128)

title([’imresize(I256,[128,128])’])

subplot(223); imshow(I32)

title([’I32 = imresize(I256,[32,32])’])

subplot(224); imshow(I32bis)

title([’I32bis = imresize(I256,1/8)’])

Programming such a code in MATLAB� would produce the images illustrated
in Figure 5.2.

160

I256= imread([ImPath,’lenna256.gif’]) imresize(I256,[128,128])

I32 = imresize(I256,[32,32]) I32bis = imresize(I256,1/8)

Figure 5.2: Images illustrating the effect of sampling on an image.

161

Consider an example that illustrates the use of InitialMagnification.

% Illustrating the use of InitialMagnification

% To increase or decrease the image seen within the

% figure when there is only one image per figure

%

figure(1);

imshow(I256,’InitialMagnification’,100)

title(’imshow(I256,’’InitialMagnification’’,100)’)

figure(2);

imshow(I128,’InitialMagnification’,200)

title(’imshow(I128,’’InitialMagnification’’,200)’)

figure(3);

imshow(I32,’InitialMagnification’,800)

title(’imshow(I32,’’InitialMagnification’’,800)’)

figure(4);

h=imshow(I128,’InitialMagnification’,100)

title(’imshow(I128,’’InitialMagnification’’,100)’)

To illustrate the benefit of applying sampling, consideration is given to a CT
image where the aim is to identify regions of interest. It is possible to apply a
so called coarse-to-fine approach by initially considering an image with a low
resolution to obtain the main image features. In the example, described in
Figure 5.3, the image is down sampled from a 512 to a 256, then to a 32, and,
finally, to a 16 pixels square image. If can be observed that, even with as
little as 16 pixels, the main bony structures (in white) can still be observed,
together with the shape of the bladder, which corresponds to the light grey
regions between the bones. Once the main feature location has been identified
on an image, which is quick to process (as it is smaller than the original), the
search for features can be directed to the regions identified using finer resolution
until all the required details have been found.

Exercise 5.8 Assume that a digital image, comprising 512 columns and 512
rows, represents an area of 10 cm by 10 cm. What is the area represented by a
pixel?

Exercise 5.9 Read/load an image from:
W:\EC\STUDENT\m19mse\SampleImages
and determine the coarsest sampling acceptable to display that image on the
screen. Repeat the process with other images. What do you observe?

162

I256= imread([ImPath,’CT25v6.jpg’]) imresize(I256,[128,128])

I32 = imresize(I256,[32,32]) I16 = imresize(I256,[16,16])

Figure 5.3: Images illustrating the effect of sampling on a CT image.

163

5.9 Quantization

Quantization is equivalent to digitizing the amplitude value of the signal, namely
the grey level value within an image.

In the example, shown in Figure 5.4, an original CT image, obtained using
256 different grey levels, is modified by reducing the number of grey levels to
64, 16 and, finally, 4.

subplot(221);subimage(I256i, Map256);

200 400

100

200

300

subplot(222)); subimage(I256i32, Map32)

200 400

100

200

300

subplot(223);subimage(I256i16, Map16);

200 400

100

200

300

subplot(224); subimage(I256i4, Map4);

200 400

100

200

300

Figure 5.4: Images illustrating the effect of quantization.

Example 5.5 Making use of Figure 5.4, quantization is used to simplify the
image and extract the main features, or regions of interest, assuming that these
regions of interest have a distinct range of grey levels.

164

% Close all figures and clear workspace

close all, % close all figures

imtool close all % closes all the image viewers

clear all, % clear all data in the workspace

%

% Define the path where all the test images are located

ImPath = ’C:\MATLABImagProc\SampleImages\’;
%

% read the images

I256= imread([ImPath,’CT25v6.jpg’]);

I256=imcrop(I256,[30 40 440 320]);

%

% convert grey level to indexed image with 256 grey levels

[I256i, I256map256] = gray2ind(I256,2^8);

%

% reduce the number of grey levels from 256 to 16

% using minimum variance quantization

% Note that it is difficut for the human eye

% to differentiate between 256 bits and 16 bits images

[I256i32,I256map32] = imapprox(I256i,I256map256,32,’nodither’);

Consider reducing the number of grey levels from 256 to 4,and 2, using minimum
variance quantization.

165

% Reduce the number of grey levels from 256 to 4

% using minimum variance quantization

[I256i16,I256map16] = imapprox(I256i,I256map256,16,’nodither’);

%

% reduce the number of grey levels from 256 to 2

% using minimum variance quantization

[I256i4,I256map4] = imapprox(I256i,I256map256,4,’nodither’);

figure(1);

subplot(221); subimage(I256i, I256map256);

title(’subplot(221);subimage(I256i,I256map256);’)

subplot(222); subimage(I256i32,I256map32);

title(’subplot(222)); subimage(I256i32,I256map32)’);

subplot(223);subimage(I256i16,I256map16);

title(’subplot(223);subimage(I256i16,I256map16);’)

subplot(224); subimage(I256i4,I256map4);

title(’subplot(224); subimage(I256i4,I256map4);’)

%

% convert back to grey level

Igray=ind2gray(I256i4,I256map4);

figure(2); imshow(Igray)

Note that the MATLAB� algorithms implemented in imapprox.m to perform
quantization may not give rise to the regions that are required. In order to
quantize the image into relevant levels, it is recommended to study the histogram
of the image and identify a series of grey level thresholds that could be used
to separate the regions of interest. This can be performed quickly by using
the contrast tool within imtool and selecting a small grey level window and
dragging it across the histogram, whilst checking the pixels highlighted in the
image display window. In the following example, three grey level thresholds are
selected manually to separate the regions of interest based on their typical grey
level values. By contrast to the MATLAB� approach, four distinct regions are
now visible representing the air, the soft tissues, the organs and the bones, see
Figure 5.5.

166

Figure 5.5: Illustrating the quantization of a CT image using manually selected
quantization levels.

167

% Illustrating the effect of histogram based quantization

%

% Allocates 4 grey levels based on histogram information

% and looks for pixels within four distinct ranges.

% Changes their grey levels to four distincive ones

% and converts to double type.

Idouble = im2double(I256,’indexed’);

%

% create the output image

I256 4 = uint8(zeros(size(I256)));

%

% centre of first significant valley around grey level 75

% create first region for grey levels less than 75

I1=find(Idouble<75);
I256 4(I1)=0;

%

% centre of second significant valley around grey level 100

% create second region for grey levels between 75 and 100

I2=find(Idouble>=75 & Idouble <100);
I256 4(I2)=64;

%

% centre of third significant valley around grey level 115

% create third region for grey levels between 100 and 115

I3=find(Idouble>=100 & Idouble <115);
I256 4(I3)=128;

%

% create fourth region for grey levels above 115

I4=find(Idouble>115);
I256 4(I4)=255;

%

% display the resulting image

figure,imshow(I256 4)

The next Chapter will present, in more detail, the meaning of a histogram
and how to exploit the information that is contained within it.

Exercise 5.10 Explain in your own words, and using examples, the concept of
sampling and quantization.

168

Exercise 5.11 An image file is named mypicture.jpg. Write down some ap-
propriate MATLAB� commands to load the image and plot, on the same figure,

• the original image;

• an image re-sampled such that it contains half of the original number of
pixels;

• an image quantised such that it contains a quarter of the grey level of the
original image;

• a ‘scaled’ image in the MATLAB� sense.

5.10 Conclusions

This chapter has introduced the concept of digital images and videos. It has
described the tools and functions available within MATLAB� to read a wide
variety of image and video files, provided that the appropriate codec are installed
on the computer. MATLAB� associates a variable to each file read and such
variable can be subsequently manipulated using a wide range of image processing
functions to analyse, pre-process and extract information from the image. Video
can be read and converted to a series of image frame that can be manipulated
as easily as any other image within MATLAB�. A suggested starting point
when designing an algorithm to analyse and extract relevant information from
an image is to use the graphical tool imtool. Such tool provide the means
to inspect the range of grey levels within the image as well as within specific
regions of interest that may need to be analysed. The concepts of sampling and
quantization have been reviewed in the context of image processing and means to
reduce the number of grey level or resize the image have been illustrated. The
next chapter will assume that one can read an image, manipulate the image
data, and display it. The focus of Chapter 6 will be histogram processing.

169

Chapter 6

Histogram processing

A histogram of a digital image with grey levels in the range [0, L−1] is a discrete
function h(rk) = nk, where rk is the kth grey level and nk is the number of
pixels in the image having grey level rk. It is common practice to normalise the
histogram by dividing each of its values by the total number of pixels in the
image (see [Gonzalez et al., 2004]).
To obtain an image histogram it is, therefore, required to plot the number of

pixels, NoPixels, in the image, Img, having the same grey level against that grey
level values, GreyValue. For image data types, the histogram can be displayed,
using [NoPixels,GreyValue] = imhist(Img,NoOfBins)
The number of bins in the histogram is specified by the image type. If Img is

a grey-scale image, then the command imhist uses a default value of 256 bins.
The commands imhist can also return the histogram counts, that is the number
of times a pixel within a specific range, determined by the number of bins used,
is encountered, namely NoOfBins, and the bin locations in GreyValue.

Example 6.1 Let us assume that there are 100 different grey levels, from grey
level value 0 up to grey level value 99, and that the bin size is 5. The range of
grey levels for each bin will therefore be: 0 to 4 for the first bin, 5 to 9 for the
second bin, and 95 up to 99 for the last bin. The count, or number of pixels
per bin, will be determined by adding one to a particular bin count each time a
pixel is within the range is encountered. For example, if there are 6 pixels with
grey levels between 0 and 4, the first bin count will be equal to 6.

Note that MATLAB� commands to produce histograms depend on the data

171

type. An histogram can also be obtained for double type data using the com-
mand [n,xout] = hist(Y,nbins). However, such a syntax does not work with
images.

Remark 6.1 Note the when a histogram is characterised by having a large num-
ber of pixels in a single bin (normally representing the background), it is possible
to use the log scale for the y-axis or to normalise the histogram with reference
to the highest peak outside the background.

The following MATLAB� commands illustrate the calculation of image his-
togram with various number of bins or set of range of grey levels. Initially, the
path where all the test images are located is defined and the colour is converted
to the grey level of the cropped RGB image.

% Close all figures and clear workspace.

close all, % close all figures

imtool close all, % closes all the image viewers

clear all, % clear all data in the workspace

% Define the path where all the test images are located.

DIRimages=’C:\MatlabImagProc\SampleImages’;
[RGB,map]=imread([DIRimages,’\CoventryMoon\IMG 0160.jpg’]);
% Convert colour to grey level of the cropped RGB image.

% It is better to work with the smallest possible image

% and, therefore, crop the image, if necessary, immediately

% after reading the file.

GREY = rgb2gray(RGB(400:1700,800:2050,:));

Then, the image histogram is calculated and displayed.

172

% Grey level information criteria (based on image histogram

% processing).

%

% Calculate the image histogram to look at the distribution of

% grey levels for 256, 64, 32, 16 and 8 different bins of

% grey levels.

% Calculate the image histogram and return:

% greyLevelValue and NoOccurence,

% which is the number of times this grey level is encountered.

[COUNTS256,X256]=imhist(GREY,256);

[COUNTS64,X64]=imhist(GREY,64);

[COUNTS32,X32]=imhist(GREY,32);

[COUNTS16,X16]=imhist(GREY,16);

[COUNTS8,X8]=imhist(GREY,8);

figure(1);clf; % create a figure and clear it

subplot(221),imshow(GREY) % display the original image in grey

% Calculate and display the image histogram,

% which uses a default value of 256 bins.

subplot(222),imhist(GREY);

% Where the region of interest is relatively small compared to

% the whole image, it may be beneficial to display

% the histogram on a semi-log scale.

%

% Display the histograms for different grey level resolutions.

subplot(223),semilogy(X256,COUNTS256)

hold on,semilogy(X64,COUNTS64,’r’)

semilogy(X32,COUNTS32,’g’)

semilogy(X16,COUNTS16,’c’)

semilogy(X8,COUNTS8,’k’)

To create a new image with a reduced number of grey levels (see Section 5.9
on quantization in Chapter 5), it is possible to use the grey levels corresponding
to the centre of the bins used to calculate the image histogram. The following
programwill set the grey level values in the vectorX8 returned by the commands
[COUNTS8,X8]=imhist(GREY,8); as new grey level to all the pixels that are
within the range [X8(i), X8(i+ 1)].

173

% Create a new image based on the grey levels corresponding to

% the number of bins used in the histogram.

% 1) Use 8 grey levels.

MOONdouble = double(GREY);

MOONthresh8 = GREY;

[COUNTS8,X8]=imhist(GREY,8);

for i=1:length(X8)

I=find(MOONdouble>=round(X8(i))-round(X8(1)));

MOONthresh8(I)=round(X8(i));

end

[COUNTS8b,X8b]=imhist(MOONthresh8,256);

subplot(224),imshow(MOONthresh8);

subplot(223)

hold on

semilogy(X8b,COUNTS8b,’*r’)

axis([0 256 100 max(max(COUNTS8b))+100])

% 2) Use 16 grey levels.

MOONdouble = double(GREY);

MOONthresh16 = GREY;

for i=1:length(X16)

I=find(MOONdouble>=round(X16(i))-round(X16(1)));

MOONthresh16(I)=round(X16(i));

end

[COUNTS16b,X16b]=imhist(MOONthresh16,256);

figure(2);

subplot(221),imshow(MOONthresh16);

subplot(223), imhist(MOONthresh16,256)

subplot(222),imshow(GREY) % display the original image in grey

% Calculate and display the image histogram,

% where the default value is 256 bins.

subplot(224),imhist(GREY);

An example showing some images and their corresponding histograms is shown
in Figure 6.1.

Making use of information from a histogram, it is possible to identify the
background and other objects. Usually the background is represented by a
large number of pixels around a limited number of grey levels, thereby creating
a peak in the histogram. Regions of interest (ROI) that are also characterised by
distinct ranges of grey levels can also be recognised by peaks in the histogram.

174

Quantized image 16 grey levels

0

5

10
x 104 Histogram quantized image

0 50 100 150 200 250

Original image 256 grey levels

0

1

2

3
x 104 Histogram original image

0 50 100 150 200 250

Figure 6.1: Images illustrating the use of histograms.

175

To separate the ROI from the background, or different ROI, one technique that
can be used involves detecting the valleys between the peaks characterizing the
ROI considered. Alternatively, it is possible the choose the mid-point between
two successive peaks. These points, that are identified, correspond to a grey
level value that could be used as threshold to separate the ROIs, or a ROI from
the background.

6.1 Thresholding

Thresholding is a method widely used to segment images using grey level prop-
erties of the objects within the image. For example, thresholding could be used
to extract a light object from a dark background, or vice versa.

Example 6.2 Bone segmentation in CT images
In the example shown in Figure 6.2, a threshold value of 132 was selected to
segment the bony structure in a CT image. This threshold value was selected
by analysing the shape of the histogram of the original image shown in Figure
6.2a) and looking at the change in gradient of the histogram (see Figure 6.2d)).
The criteria considered are as follows: the bony structure is represented by a
wide range of white or light grey levels. The grey level of the bony structure
reflects the fact that bones are of high density, but marrow regions are of lesser
density. The grey level value of the various organs belongs to a narrow range,
say between 100 and 130. The number of pixels defining the regions of interest,
such as the bladder, is much larger than the number of pixels defining the bony
structures. This is clearly illustrated in the histogram of the image (Figure
6.2a)) and the gradient of the histogram (Figure 6.2d)).

Remark 6.2 Using the thresholding method, small white regions, that are not
bones, have been wrongly identified as bone outside the bony structures. This is
a known side effect of thresholding, that does not use information with respect
to the location of the pixels. To remove such small regions, it is possible to use
mathematical morphology (discussed in Chapter 10).

6.1.1 An example illustrating the segmentation of coins
based on histogram information

Consider an image of four coins (shown in Figure 6.3b)), of similar grey level,
which are to be segmented automatically. Figure 6.3 shows the histogram (il-

176

a) b)

c) d)

Figure 6.2: Illustrating the use of histogram and derivative of histogram to
select a threshold value for bony structures in an image.

177

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

a)

b)

Figure 6.3: a) Illustrating the knowledge gained from the shape of the image
histogram to select the threshold automatically; b) Image of four coins, of similar
grey level, to be segmented automatically.

178

lustrated in Figure 6.3a) of an image representing four coins (shown in Figure
6.3b). The objects to be segmented are much darker than the background
and are represented by the small ‘hill’ at a grey levels around 94. The light
background covers a much larger region centred on grey level 229. There are
different techniques to differentiate between two objects of different sizes and
grey levels in an image. One simple approach is to calculate the minimum and
the maximum grey level in the image and use a grey level value in the middle
as threshold. The problem with such a method is that there may just be a
few noisy pixels at a low and/or high grey level. To alleviate this problem one
could consider the minimum and maximum grey level for a number of pixels
greater than a given number. None of the above, however, consider the grey
levels of the objects in order to determine the appropriate threshold, and such
a technique assumes that the region of interest will be either lighter or darker
than other regions in the image. A widely accepted technique, to determine the
most appropriate threshold, is described in the following subsection.

6.1.2 Global thresholding

The graythresh function uses Otsu’s method, which chooses the threshold
to minimise the variance of the black and white pixels (for more details see
[Otsu, 1979]). The MATLAB� commands to convert a grey level image to
black and white using Otsu’s method are:

Level = graythresh(A);

% Converts an image to a binary image,

% based on threshold value ’Level’

BW = im2bw(A, Level);

For example, the following commands show how to separate the coins within
the image eight.tiff (illustrated in Figure 6.3) from the background.

179

% Separation of coins

[A,map] = imread([ImPath,’eight’],’tif’);

%

% Calculate the threshold using Otsu’s method

level = graythresh(A);

BW = im2bw(A,level);

BW1 = im2bw(I,210/255);

%

% Generate the images

imshow(BW);

subplot(222);

xlabel(’Threshold: Otsu’’s method’);

imshow(BW);

subplot(224);

xlabel(’Threshold: manual’);

imshow(BW1)

The resulting images are shown in Figure 6.4.

6.1.3 Adaptive thresholding

Thresholding with a single threshold can fail to extract a whole object, depend-
ing on the background illumination, for example. One approach is to divide
the image into sub-images such that the illumination in each of the sub-images
is approximately uniform. Then a threshold is calculated for each sub-image.
The adaptivity comes from the dependence of the threshold on the pixel loca-
tion. For more information regarding threshoding, please refer to Chapter 10 in
[Gonzalez et al., 2004] and Chapter 2 in [Bovik, 2005].

Exercise 6.1 Design your own thresholding technique based on a priori knowl-
edge of the image histogram to extract an object of your choice from one of the
image in:
W:\EC\STUDENT\m19mse\SampleImages.
Compare the result of your algorithm with some MATLAB� built-in functions.

6.2 Histogram stretching

In some circumstances the range of grey level within an histogram does not cover
the whole range of possible grey levels. For example, if an image is underexposed

180

0 100 200 300
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Histogram of image

Threshold: Otsu’s method

Threshold: manual

Threshold
Otsu’s
method

Threshold
manual

Figure 6.4: Example of separating coins using Otsu’s method.

181

it will look dark and the highest pixel value may not reach 255 (assuming an 8
bit image). It is possible to increase the contrast in such an image by ensuring
that the grey levels are re-scaled, such that they start at zero (by subtracting
the minimum grey level in the image from all the pixels within the image and
then multiplying the resulting image by the ratio of the ideal range of grey
levels, that is 256− 1 = 255, divided by the current range of grey levels).

The following MATLAB� example illustrates a possible implementation,
within MATLAB�, of histogram stretching based on Chapter 2 of the Handbook
of image and video processing by Al Bovik [Bovik, 2005]. Note that histogram
stretching is also referred to as contrast stretching. It will change the image grey
levels into a number of distinct grey levels separated from each other. This will
result in a non-smooth histogram appearing as an inverted comb with separated
peaks. If it is then necessary to use an algorithm to detect peaks and valleys, it
will be necessary to ignore all the bins within the histogram that do not have
any pixels, that is ignore the zero in the histogram ‘count’.

182

% Load the image into MATLAB

DIRimages=’C:\MATLABImagProc\SampleImages\’;
[A,map]=imread([DIRimages,’rice.png’]);

%

% Histogram stretching

% uses g(n) = FSHS(f) = (K-1)/(B-A)*[f(n)-A]

% see p28 Handbook of image and video processing where

% K = 256 no of grey levels, A= min grey value,

% B = max grey value and f(n) is the image

NoGreyLevels=256;

[Apix,Aval]=imhist(A,NoGreyLevels);

%

% Convert to double to be able to use min,max and arithmetic

% operators to calculate min and max grey levels

Adouble=double(A);

MinGrey = min(min(Adouble)); MaxGrey = max(max(Adouble));

% Multiply the original image matrix by the inverse of the

% ratio between the current range of grey level divided by the

% required range of grey levels.

Astretched=uint8((NoGreyLevels-1)/(MaxGrey-MinGrey)*...

...(double(A)-MinGrey));

%

% Check the result on the histogram

[ASpix,ASval]=imhist(Astretched,NoGreyLevels);

MinGreyS = min(min(Astretched)); MaxGreyS = max(max(ASval));

%

% plot the graphs

figure(1); clf

stem(Aval,Apix)

hold on

stem(ASval,ASpix,’c’);

title(’Effect of histrogram stretching’);

legend(’Original image histogram’,’Stretched image histogram’);

figure(2); clf

subplot (121),imshow(A),title(’Original image’)

subplot (122),imshow(Astretched),title(’Stretched image’)

Histogram stretching can be obtained using the MATLAB� command J =
imadjust(I). It maps the values in intensity image I to new values in J such

183

that 1% of data is saturated at low and high intensities of I. Note that satu-
rating 1% of the data enables one to ignore outliers, namely infrequent pixels
at 0 or 255, which have no significance. The following syntax can be written to
perform contrast adjustment:

J = imadjust(I,[low in; high in],[low out; high out])

J = imadjust(...,gamma)

newmap = imadjust(map,[low in high in],[low out high out],gamma)

RGB2 = imadjust(RGB1,...)

This increases the contrast of the output image J. The syntax J = imadjust(I)
is equivalent to imadjust(I,stretchlim(I)). To find limits to stretch the con-
trast of an image, use the function LOW HIGH = stretchlim(I,TOL), which re-
turns a pair of intensities that can be used by imadjust to increase the contrast
of an image. The command TOL = [LOW FRACT HIGH FRACT] specifies the frac-
tion of the image to saturate at low and high intensities. An example illustrating
the histograms of an original image and the stretched images is shown in Figure
6.5. In addition, an image of some grains of rice, together with the correspond-

0 50 100 150 200 250 300
0

500

1000

1500
Effect of histrogram stretching

Original image histogram
Stretched image histogram

Figure 6.5: Histograms of the original and stretched images.

ing image after performing histogram stretching, is illustrated in Figure 6.6.

184

Original image Stretched image

Figure 6.6: Images illustrating the use of a MATLAB� function to adjust the
image grey levels.

Exercise 6.2 Write your own MATLAB� code to implement contrast or his-
togram stretching such that 5% of the pixels within the image becomes satu-
rated. Check the outcome by displaying the histogram of the resulting image
and comparing it with the original image.
Hint: use the command stretchlim or the function find to identify the pixels
with minimum, as well as maximum, values.

The following section deal with a further refinement of the idea of re-mapping the
range of grey levels within an image, using histogram equalization techniques.

6.3 Histogram equalisation

Histogram equalisation is useful for interpreting images and differentiating be-
tween grey levels that are close together. It can happen that most of the pixels
within an image have only a small number of distinct grey levels, thereby not
using the full range of possible grey levels for that particular image type. To
improve the contrast of the image, it is possible to spread the grey levels over
the whole range of possible values, either equally or with particular histogram
shapes. By default, histogram equalisation aims to produce a flat histogram. It
is, however, possible to shape the histogram with other distributions, than a uni-

185

form one, in order to adapt to specific environments; for example, underwater,
night, neon lighting. Note that what may look good for human understand-
ing may not add significant advantages for automatic segmentation and object
recognition. Hence, histogram equalization should be used with care. Indeed,
histograms that have only a two or three small grey value range may not look
any better once equalised.

The main idea of histogram equalisation is to even out the number of grey
levels within an image by regrouping them, or separating them, to increase the
contrast between regions of interest that may have similar grey levels. Histogram
equalisation performs the following steps:

1. calculate the image histogram;

2. calculate the cumulative image histogram (namely the cumulative sum of
pixels in the various bins);

3. set B(x, y) = round((2k − 1)/(N × M) × Hc(A(x, y))), where k is the
number of bits in the image A, N and M are the number of rows and
columns in the image, respectively, Hc is the cumulative histogram.

This formulation can be implemented as a look-up table, which maps an input
(the range of grey level values from 0 to 255) to an output (the normalised
cumulative image histogram such that its maximum value is 255). Each image
pixel can then be transformed by changing its current value (the input of the
look-up table) to equal its corresponding values in the normalized cumulative
histogram. For example, let us assume that an image contains 1000 pixels with
values between 0 and 255 and that 50 pixels have grey levels between 0 and 25,
and 500 pixels had grey levels between 0 and 100. Normalising the cumulative
histogram is equivalent to dividing 255 by the number of pixels in the image and
multiplying the result by the number of pixels between 0 and a particular grey
level. Hence, 50× 255/1000 and 500× 255/1000 gives 13 and 128, respectively,
after rounding. This means that the grey level 25 and 100 on the original image
will be replaced by the grey levels 13 and 128, respectively, on the equalised
image. The grey level 25 has been reduced as only a small proportion of the
pixels were between 0 and 25, whereas the grey level 100 has been increased
because half of the pixels have a grey level of 100 (and 100 is less than half of
255).

186

[Aw,Bw]=imhist(A,256); % calculate the histogram using 256 bins

HistCumSum =cumsum (Aw); % calculate the cumulative sum

% normalise the cummulative histogram between 0 and 255

H=round((256-1)*HistCumSum/prod(size(A)));

% Compare the image grey values to the input of the look-up

% table [0 255] to generate a matrix whose values correspond

% to the output H of the look-up table.

B=uint8(interp1([0:1:255],H,double(A)));

The above MATLAB� code is equivalent to the MATLAB� function histeq.
The process of histogram equalisation is illustrated in Figure 6.7.
Other MATLAB� commands that are useful are the following.

• J = histeq(I,NoOfBins) enhances the contrast of images by transform-
ing the values in an intensity image, or the values in the colormap of an
indexed image, so that the histogram of the output image approximately
matches a specified histogram. (By default, histeq tries to match a flat
histogram with 64 bins, although one can specify a different histogram
instead; see the reference page in MATLAB� for histeq.)

• J =adapthisteq(I,’NumTiles’,Val1,’ClipLimit’,Val2,’NBins’,..
.....Val3,’Range’,Val4,’Distribution’,Val5,’Alpha’,Val6)

enhances the contrast of the intensity image I by transforming the values
using contrast-limited adaptive histogram equalization (CLAHE); see, for
example, pp. 474–485 in [Zuiderveld, 1994]. CLAHE operates on small
regions in the image, called tiles, rather than the entire image. Each tile’s
contrast is enhanced, so that the histogram of the output region approx-
imately matches the histogram specified by the ’distribution’ parameter
which can be:

’uniform’ (default) - this produces a flat histogram;

’rayleigh’ - a bell-shaped histogram is obtained in this case;

’exponential’ - this displays a curved histogram.

After performing the equalization, adapthisteq combines neighbouring
tiles using bilinear interpolation to eliminate artificially-induced bound-
aries. To avoid amplifying any noise that might be present in the image,
one can use adapthisteq optional parameters (see MATLAB� help) to
limit the contrast, especially in homogeneous areas. An example of the

187

0 50 100 150 200 250 300
0

1

2

3 x 105
Cumulative sum of
no of pixels per bin

0 50 100 150 200 250 300
0

1

2

3

4 x 104
Histograms of original and

 equalised image

original image equalised image

Figure 6.7: Images illustrating the use of a MATLAB� function to adjust the
image grey levels.

188

Adaptive histogram equalisation

Iadapt=adapthisteq(GREY);imshow(Iadapt)

Figure 6.8: Images illustrating the use of a MATLAB� function to adjust the
image grey levels.

189

use of adaptive histogram equalisation is given with the example of an
image of the moon over Coventry (U.K.), see Figure 6.8.

The following MATLAB� commands illustrate histogram shaping. Initially,
the histogram of the original image is obtained, then histogram equalisation is
performed and the histogram of the equalised image calculated. Then, shaping
the histogram is performed and the histogram of the equalised image is obtained.

% Illustrating histogram shaping

DIRimages=’C:\MATLABImagProc\SampleImages\’;
[A,map]=imread([DIRimages,’v21.bmp’]);

%

% Calculate the histogram of the original image.

[NoPix, GreyVal]=imhist(A);

%

% Use either uint8 or indexed images.

% By default, uses a flat distribution to remap the grey levels

% such that the resulting histogram should have the same number

% of pixels in each bin.

NoBins=8;

NoPixInImg=prod(size(A));

%

% Flat histogram

hgram1 = ones(1,NoBins)*NoPixInImg/NoBins;

%

% Histogram equalisation

I1=histeq(A,hgram1); % same as: I1=histeq(A);

%

% Calculate the histogram of the equalised image.

[NoPix1, GreyVal1]=imhist(I1,length(hgram1));

%

% Shaped histogram

hgram2 = [1 0.8 0.3 0.6 0.4 0.8 0.6 0.2]*prod(size(A))/NoBins;

%

% Histogram equalisation (shaping)

I2=histeq(A,hgram2);

%

% Calculate the histogram of the equalised (histogram shaping)

% image

[NoPix2, GreyVal2]=imhist(I2,length(hgram2));

190

Finally, the images are generated, including plots of the normalised histograms.

% Display results in figures

%

figure(1); clf

subplot(221), imshow(A), title(’Original image’);

subplot(223), imshow(I2), title(’Histogram shaping’)

subplot(122),

% nomalising the histogram

%

plot(GreyVal1,NoPix1/max(NoPix1))

hold on

plot(GreyVal,NoPix/max(NoPix),’r’)

plot(GreyVal2,NoPix2/max(NoPix2),’g’)

plot(GreyVal2,hgram2/max(hgram2),’go’)

plot(GreyVal1,hgram1/max(hgram1),’+’)

axis([0 255 0 1.01])

title(’Effect of different equalisation strategies’)

Some images illustrating the use of histogram shaping are shown in Figure 6.9.

Exercise 6.3 Plot the histograms of an image, from the directory
W:\EC\STUDENT\m19mse\SampleImages, stretch the image histogram and
compare the resulting histogram with the original image. Comment on the
outcome of the operation on the resulting image.

Exercise 6.4 Apply histogram equalisation techniques, with images from from
the directory W:\EC\STUDENT\m19mse\SampleImages, and verify the effect
of the equalisation by displaying the histogram of the equalised image and com-
paring it with the histogram of the original image. Try to improve the results
obtained by using the default settings.

6.4 Summary

This chapter has presented some methods to analyse the information within an
image and enhance the image using its histogram. It has been seen that a his-
togram can provide useful information as to the nature of the image taken and
the number of regions of interest. A histogram can be used to select the range

191

Original image

Histogram shaping

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Effect of different equalisation strategies

Figure 6.9: Images illustrating the use of histogram shaping.

192

of grey level for regions of interest to be segmented and analysed in order to be
automatically identified. Certain operations, such as histogram stretching and
equalisation, can effectively improve the contrast of an image. Adaptive his-
togram equalisation is the technique of choice when the image contains regions
with significantly different grey levels. Histogram equalisation and stretching is,
however, mainly a tool to improve the visual aspect of an image and may not
be appropriate if automatic techniques, exploiting the shape of the histogram,
are used to identify regions characterised by a set of valleys surrounding a peak
in the histogram (the peak corresponding to a group of pixels with similar grey
levels). For more information see Section 3.2 in [Gonzalez et al., 2004], Chapter
4 in [Sonka et al., 1999] and Chapter 2 in [Bovik, 2005].

193

Chapter 7

Grey level operations

7.1 Point operation on images

Point operations or grey level operations perform a grey level transformation on
each pixel of the form:

B(x, y) = f(A(x, y)) for each (x, y), if Min ≤ B(x, y) ≤ Max,
B(x, y) = Min, if B < Min,
B(x, y) = Max, if B > Max.

where f is called a transfer (or mapping) function, A the original image, B
the transformed image, (x, y) the pixel coordinates, Min represents the lowest
possible grey level andMax the maximum allowed grey level. It is important to
note that throughout this section the aboveMin-Max constraints are assumed.
When used with uint8 or uint16 data, each arithmetic function rounds

and saturates its result before passing it on to the next operation. This can
significantly reduce the precision of the calculation. A better way to perform
this calculation is to use the imlincomb function. In this case, imlincomb
performs all the arithmetic operations, in the linear combination, in double
precision and only rounds and saturates the final result.

Remark 7.1 Such operations are independent on the neighbourhood of the pixel,
or its location.

Since images are represented by matrices, addition and subtraction operations
can be performed in a straightforward manner. Other operations such as mul-

195

tiplication and division can be achieved in MATLAB� using .* and ./ .

Remark 7.2 To use standard arithmetic operators, you must convert the im-
ages to class double. The Image Processing Toolbox includes a set of functions
that implement arithmetic operations for all numeric, non-sparse data types.
The advantages are that no conversion to the double data type is necessary and
overflow is handled automatically via application of the Min-Max constraints,
although this can be an issue when several operations are carried out one after
another.

7.2 Arithmetic operators in the MATLAB� im-

age processing toolbox

The image processing toolbox in MATLAB� supports the following operations.

imabsdiff(Img1, Img2): The absolute difference of two images.

imsubtract(Img1, Img2): Subtraction of two images.

imadd(Img1, Img2): Addition of two images.

imcomplement(Img1): The complement an image.

imdivide(Img1, Img2): Division of two images.

immultiply(Img1, ImgOrNumber): Multiplication of images.

imlincomb(Scalar1,Img1,Scalar2,Img2. . .): Computes the linear combi-
nation of two images.

7.2.1 Subtraction: brightness, negative, and movement

Brightness adjustment

When a constant positive value is removed from the pixels of A(x, y) it results
in a darker image, as shown in Figure 7.1.

Exercise 7.1 Select an image from the SampleImages directory and assess the
effect of

(i) OutputImage = imabsdiff (Img1, Img2): Absolute difference of two
images;

196

Figure 7.1: Images illustrating the use of subtraction to darken an image.

197

(ii) OutputImage = imsubtract(Img1, Img2): Subtraction of two images.

Negative image

Since the maximum value of grey level is: 2k = L − 1, where k is the number
of bits, typically 8, such that L is 256, with grey levels from 0 to 255, the ap-
propriate MATLAB� commands for producing a negative image are: B(x,y) =
L-1-A(x,y) or NegativeImage = 2∧k-1-OriginalImage. Images, illustrating
the use of alternative MATLAB� commands to calculate a negative image, are
shown in Figure 7.2.

Figure 7.2: Images illustrating the use of alternative MATLAB� commands to
calculate a negative image.

Exercise 7.2 Select an image from
W:\EC\STUDENT\m19mse\SampleImages

198

and find its negative using imcomplement, imabsdiff, imsubtract and stan-
dard matrix operations (i.e. in double to be converted to unit8 for display).

Movement detection

Let us consider a video sequence. When an image A(x, y, t1) taken at time t1 is
subtracted from another image A(x, y, t2) taken at time t2 using the same fixed
camera, it is possible to detect objects that have moved in the scene. A common
application of this technique are speed cameras. An appropriate MATLAB�

command is B(x,y) = A(x,y,t1) - A(x,y,t2). The following commands are
useful.
imabsdiff (Img1, Img2): Absolute difference of two images;
imsubtract(Img1, Img2): Subtraction of two images.

Images illustrating the use of imabsdiff to detect movement are given in Figure
7.3.

Figure 7.3: Images illustrating the use of imabsdiff to detect movement.

199

Exercise 7.3 To find a square located at different position within an image,
the MATLAB� commands imabsdiff and imsubtract can be used. Comment
on the effect of the these two functions.

Exercise 7.4 Study the effect of the location and grey level value of the square
shape superimposed on various images, such as the image stored in the file
cameraman.tiff. You should notice that depending on the grey level value
selected, you may not always be able to detect it.

Note that image subtraction is an effective tool to remove unwanted objects
from a picture. For example, suppose that one is trying to take a photograph
of a monument and there are pedestrians, cyclists or cars passing in front of the
monument. If one takes several images of the monument from the same location,
then it is possible to subtract the different images to identify the region of the
image that has changed. To create an image without an unwanted object, one
can then replace the part of the image with an object by the same part of
another image without that object.

7.2.2 Addition: brightness adjustment

When a constant positive value is added to the pixels of A(x, y) it results in a
brighter image, which is illustrated in Figure 7.1. The MATLAB� command:

imadd (Img1, ImgOrScalar)

can be used to perform the calculation B(x, y) = A(x, y) + constant.

7.2.3 Multiplication: contrast adjustment

To determine B(x, y) = A(x, y).× constant, the command:

immultiply(Img1, ImgOrScalar)

can be used.

7.2.4 Division: contrast adjustment

To adjust contrast, the MATLAB� command:

imdivide(Img1, ImgOrScalar)

can be used to determine B(x, y) = A(x, y))./constant.

200

7.2.5 Linear combination: stretching and contrast adjust-
ment

For contrast adjustment and stretching, the command:

imlincomb(K1,A1,K2,A2,...,Kn,An)

can be used to determine

B(x, y) = constant1×A1(x, y)) + constant2×A2(x, y)) + . . . ,

where A1 and A2 denote images, which may be identical.

Remarks 7.3 Now Z = imlincomb(K1,A1,K2,A2,...,Kn,An) computes

K1×A1+K2×A2+ ...+Kn×An,

where K1, K2, . . .Kn are real, type double scalars and A1, A2, . . .An are real,
nonsparse, numeric arrays with the same class and of the same size. Note that
Z has the same class and size as A1. Values above 255, in the case of unit8 im-
ages, are automatically truncated. In fact, the command imlincomb can be use
to prevent some of this truncation happening at an early stage. Here, imlincomb
performs the addition and division in double precision and only truncates the
final result.
In the version that uses nested arithmetic functions, imadd adds 255 and

50 and truncates the result to 255 before passing it to imdivide. The aver-
age returned in Z(1, 1) is 128. To illustrate this, consider the following. The
commands:

X = uint8([255,10,75;44,225,100]);

Y = uint8([50,20,50;50,50,50]);

Z = imdivide(imadd(X,Y),2)

produces the results

Z =

128 15 63

47 128 75

and

Z2 = imlincomb(.5,X,.5,Y)

201

Figure 7.4: Images illustrating the use of Addition, Division, Multiplica-
tion, Complement and Linear combination applied to the image stored in
cameraman.tiff.

202

produces the results

Z2 =

153 15 63

47 138 75

7.3 Log transformation

The log transform has the following structure:

s = c log(r + 1), where c is a constant and r ≥ 0.

An example of a corresponding MATLAB� command having this form is

B = c*log10(A + 1)

A particular example of a MATLAB� command is

DisplayFrequencySpectrum = 70*log10(abs(fft2(A))+1)

The log transform maps a narrow range of low grey level values in the input into
a wider range of output levels. The opposite is true of higher values of input
levels.

7.4 Power law transformation

The power law transform has the following structure:

s = c(r + ε)γ , where c and r are positive constants and ε is an offset.

An example of a corresponding MATLAB� command having this form is

B = c*(A + e).∧ g

Note that if γ < 1, then it maps a narrow range of dark input values into a
wider range of output values. Also, the power law transform is more flexible
than the log transform.
The square root transformation function:

B(x, y) =
√
A(x, y)× 255

can be used to brighten the image, stretch dark regions and reduce contrast of
bright regions.

203

Chapter 8

Spatial and frequency
domain filtering

Many applications, such as edge detection, smoothing, etc., make use of filters ,
also referred to as masks, kernels, templates or windows.

Filters in the spatial and the frequency domain constitute a Fourier trans-
form pair. This means that it is possible to design a filter in the frequency
domain and then obtain a corresponding filter in the spatial domain.

Remark 8.1 According to Section 4.2 in [Gonzalez et al., 2004], it can be more
effective and efficient to start designing a filter in the frequency domain and then
find an equivalent filter in the spatial domain. The main reason for this is that
it is possible to represent spatial filters by relatively small matrices (of order
3× 3) in the spatial domain.

8.1 Spatial filters

The basic idea is to move a filter or mask over each pixel in the original image.
At each point, calculate the response of the filter using a predefined relationship
(for more details see Section 3.5 in [Gonzalez et al., 2004]).

For linear filters, the relationship is calculated as the sum of the products of
the filter coefficients by their corresponding pixels in the image. This process
for obtaining the filtered image g(z, y) (or R) is called correlation.

205

z1 z2 z3

z4 z5 z6

z7 z8 z9

w1 w2 w3

w4 w5 w6

w7 w8 w9

R

g(z, y) =
a∑

s=−a

b∑
t=−b

w(s, t)f(x+ s, y + t), a = 1
2 (m− 1), b = 1

2 (n− 1)

An alternative notation is :

R =

m×n∑
i=1

wizi =

9∑
i=1

wizi

8.2 Two dimensional convolution and correla-
tion in MATLAB�

8.2.1 Convolution

Linear filtering of an image is accomplished through an operation called convo-
lution. In convolution, the value of an output pixel is computed as a weighted
sum of neighbouring pixels. The matrix of weights is called the convolution
kernel , also known as the filter .

For example, suppose the image is

A =

⎡
⎢⎢⎢⎢⎣

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

⎤
⎥⎥⎥⎥⎦

206

and the convolution kernel is

h =

⎡
⎣ 8 1 6

3 5 7
4 9 2

⎤
⎦ .

The A(2, 4) output pixel is calculated as follows: Rotate the convolution kernel
180◦ about its center element to produce

Hrotated =

⎡
⎣ 2 9 4

7 5 3
6 1 8

⎤
⎦ .

Slide the center element of the convolution kernel so that it lies on top of A(2,4),
the element on the second row and fourth column of A. Multiply each weight
in the rotated convolution kernel by its corresponding grey level in the image
pixel A. ⎡

⎣ 1 8 15
4 14 16
13 20 22

⎤
⎦ � ∗

⎡
⎣ 2 9 4

7 5 3
6 1 8

⎤
⎦ .

In this case, applying the convolution to calculate the filtered value for the
position (2,4) would give 575. Such a value, being larger than 255 (the maximum
possible value for an 8 bit image), will be truncated to 255.

8.2.2 Correlation

The operation called correlation is closely related to convolution. In correlation,
the value of an output pixel is also computed as a weighted sum of neighbouring
pixels. The difference is that the matrix of weights , in this case called the
correlation kernel , is not rotated during the computation.
The MATLAB� implementation is as follows.

A = [1 8 15;7 14 16;13 20 22]

B = [8 1 6;3 5 7;4 9 2]

Note that, in this case the matrix representing the filter has been rotated by
180 degrees. ⎡

⎣ 1 8 15
4 14 16
13 20 22

⎤
⎦ � ∗

⎡
⎣ 8 1 6

3 5 7
4 9 2

⎤
⎦ .

207

In the case of correlation, the sum of the individual products is equal to 585,
which would also be truncated to 255. It is common practice to design rotation-
ally invariant spatial filters such that the convolution or correlation would lead
to an identical result. The MATLAB� command C = conv2(A,B,’shape’)
uses a straightforward formal implementation of the two-dimensional convolu-
tion equation in spatial form. If a and b are functions of two discrete variables,
n1 and n2, then the formula for the two-dimensional convolution of a and b is

c(n1, n2) =

∞∑
k1=−∞

∞∑
k2=−∞

a(k1, k2)b(n1 − k1, n2 − k2).

In practice however, conv2 computes the convolution for finite intervals. If
the ’shape’ argument is specified as ’Full’, MATLAB� returns the full two-
dimensional convolution, which is the default. If ’shape’ is specified as ’Same’,
MATLAB� returns the central part of the convolution, which is of the same size
as A. If ’shape’ is replaced by ’Valid’, MATLAB� returns only those parts
of the convolution that are computed without the zero-padded edges. Using the
’Valid’ option, the resulting image, which is smaller than the original image
(of size ma× na), is dependent on the filter dimension (mb× nb), and has size
(ma−mb+ 1)× (na− nb+ 1).

8.2.3 Filtering

The MATLAB� command Y = filter2(H,X,’shape’) filters the data in X

with the two-dimensional FIR filter in the matrixH. It computes the result (Y)
using two-dimensional correlation, and returns the central part of the correlation
that is the same size as X. The command filter2 uses conv2 to compute the
full 2-D convolution of the FIR filter. By default, filter2 then extracts the
central part of the convolution that is the same size as the input matrix, and
returns this as the result. If the ’shape’ parameter specifies an alternate part
of the convolution for the result, filter2 returns the appropriate part. Note
that filter2 rotates the filter matrix 180◦ to create a convolution kernel. It
then calls conv2, the two-dimensional convolution function, to implement the
filtering operation. The rotation of the matrix, prior to calling conv2, cancels
out the rotation of the kernel that occurs in conv2 when the convolution is
implemented.

The MATLAB� command B = imfilter(A,H,Options) filters the multi-
dimensional array A with the multi-dimensional filter H.

208

Boundary Options

Input array values, outside the bounds of the array, are implicitly assumed to
have the value X, with default value zero.

’symmetric’: This option mirror-reflects the array across the array border.

’replicate’: This option adds additional rows and column where the individ-
ual pixel values are identical to that of the border of the image. This process is
repeated for each row and column to be added to the image.

’circular’: This option adds additional rows and column to the edge of the
image, assuming the input grey level pattern in the image is periodic. For ex-
ample, if a pattern of grey level intensity follows a sine wave, then the padded
element will carry on the sine wave pattern.

Size Options

These adjust the size of the output array.

’same’: This results in the same size as the input array (which is the default).

’full’: This produces the ‘full’ filtered result, and so is larger than the input
array.

Correlation and Convolution Options

’corr’: This option filters using correlation, which is the default, and produces
the same result as filter2.

’conv’: This filters using convolution and so rotates the filter matrix by 180◦.

Example 8.1 This example illustrates the use of the MATLAB� commands:
conv2, filter2 and imfilter, applied to an image.

Image Size of array Data type

A 246× 300 73800 uint8 array
B1 248× 302 599168 double array
B2 246× 300 590400 double array
B3 246× 300 73800 uint8 array

Note that, using conv2 and filter2, the output matrix is bigger than the
input matrix (which represents the original image). These functions require the
user to specify the filter matrix, which is to be applied to the image. Problem

209

Figure 8.1: Filtered images produced by the MATLAB� functions conv2,
filter2 and imfilter.

210

specific filters can thus be defined if the filters, implemented in MATLAB�, are
not appropriate. The function imfilter produces an output whose data type is
the same type as the input image. It converts the image and the filter matrices
to double type, in order to perform the convolution and then convert the output
to the same format as the image to be filtered.

8.3 Using a MATLAB� pre-defined filter in the
spatial domain

MATLAB� offers a number of filters to perform low pass or high pass filtering.
Low pass filters are used to smooth images, whilst high pass filter enhance details
such as edges. Some useful MATLAB� commands are the following.

H=fspecial(filter type, parameters) This creates a two-dimensional filter
H, for use with imfilter(A,H), of the type specified in Table 8.3.

Command Function

gaussian Gaussian lowpass filter
sobel Sobel horizontal edge-emphasizing filter
prewitt Prewitt horizontal edge-emphasizing filter
laplacian Filter approximating the two-dimensional Laplacian operator
log Laplacian of Gaussian filter
average Averaging filter
unsharp Unsharp contrast enhancement filter

Table 8.1: MATLAB� image processing filter types.

BW = edge(A,edge finding methods) This returns a binary image BW of the
same size as A, with 1’s where the function finds edges in A and 0’s
elsewhere. To determine edges, MATLAB� uses edge-finding methods
which look for places in the image where the intensity changes rapidly, by
finding the first derivative of the intensity larger in magnitude than some
threshold, or by finding the second derivative of the intensity that has a
zero crossing. Some particular examples are:

211

BW = edge(I,’sobel’,thresh,direction)

BW = edge(I,’prewitt’,thresh,direction)

BW = edge(I,’roberts’,thresh)

BW = edge(I,’log’,thresh,sigma)

BW = edge(I,’zerocross’,thresh,h)

BW = edge(I,’canny’,thresh,sigma)

B = medfilt2(A,[m n]) This performs median filtering (using a m×n neigh-
bourhood) of the matrix A in two dimensions. The command medfilt2
pads the image with 0’s on the edges, so the median values for the points
within [m/2, n/2] of the edges might appear distorted.

B = ordfilt2(A,order,domain,S,padopt) Here, using this command, two-
dimensional order-statistic filtering is performed, where each element in
A is replaced by the ‘order’th element in the sorted set of neighbours
specified by the nonzero elements in the domain.

J = wiener2(I,[m n],noise) This command performs two-dimensional pixel-
wise adaptive noise-removal filtering (low pass) based on statistics (mean
and standard deviation) estimated from a local neighbourhood of each
pixel. The additive noise (namely Gaussian white noise) is assumed to be
white noise. The MATLAB� command [J,noise] = wiener2(I,[m n])
also estimates the additive noise, before performing the filtering process.
The command wiener2 returns this estimate of the noise.

Some MATLAB� demonstrations can be obtained using the commands:

firdemo, which illustrates spatial and frequency filter design;
edgedemo, which uses the ‘edge’ function to apply different edge detection meth-
ods to a variety of images;
nrfiltdemo, which applies linear and non-linear filtering noise techniques to
images corrupted with various source of noise.

212

Chapter 9

Smoothing, averaging and
low pass filters

Smoothing filters are used to reduce noise in an image or for blurring. They
result in the removal of small (unnecessary) details from an image, prior to the
extraction of a large structure. They can also be used to bridge the gap between
lines or curves, missing a few pixels, that are required to be connected.

The output of a smoothing filter is the average of the pixels contained in
the neighbourhood of the filter mask. It results in an image with reduced sharp
transitions in grey levels. The general formulation of a weighted average filter
is:

f(x, y) =

a∑
s=−a

a∑
t=−a

w(s, t)g(x+ s, y + t)

a∑
s=−a

a∑
t=−a

w(s, t)

, a =
m− 1

2
, b =

n− 1

2
,

where w(s, t) corresponds to the weight associated with a particular element of
the mask located at position (s, t) and g(x+s, y+ t) corresponds to the original
image covered by the filter.

213

9.1 Mean filters

9.1.1 Arithmetic mean filter

The arithmetic mean filter is the average value of the original pixels g(s, t)
covered by the filter area denoted by Sx,y :

f(x, y) =
1

mn

∑
(s,t)∈Sx,y

g(s, t).

9.1.2 Geometric mean filter

The geometric mean is the product of all the elements covered by the filter area
defined by Sxy elevated to the power 1/(mn) :

f(x, y) =

⎡
⎣ ∏
(s,t)∈Sx,y

g(s, t)

⎤
⎦

1
mn

.

This filter has a similar effect to the arithmetic mean filter, but tends to loose
less details in the process. For more information on the geometric mean see:

http://www.math.toronto.edu/mathnet/plain/questionCorner/geomean.html

9.1.3 Harmonic mean filter

The harmonic mean is calculated as follows:
mn∑

(s,t)∈Sx,y

g(s, t)
.

Such a filter works well with salt noise and Gaussian noise, but fails for pepper
noise.

9.1.4 Contraharmonic mean filter

The contraharmonic filter is calculated as follows:∑
(s,t)∈Sx,y

(g(s, t))Q+1

∑
(s,t)∈Sx,y

(g(s, t))Q
,

214

where Q is called the order of the filter. Positive values of Q eliminates pepper
noise and negative values of Q eliminate salt noise.

Remark 9.1 Note that this filter is equivalent to the arithmetic mean filter
when Q = 0 and the harmonic mean filter when Q = −1.

Exercise 9.1 Using conv2, filter2 and imfilter, calculate the convolution
of images from the directory W:\EC\STUDENT\m19mse\SampleImages and
the following mask:

H =

⎡
⎣ 0 1 0

1 −4 1
0 1 0

⎤
⎦ .

What do you observe?

Exercise 9.2 Write down the MATLAB� commands and observations to add
Gaussian and ‘salt’ noise, ‘pepper’ noise and ‘salt and pepper’ noise and then
filter them with an arithmetic mean filter.

Exercise 9.3 Write down the commands and observations to filter the images
created in Exercise 7.1 with a geometric mean filter.

Exercise 9.4 Write down the commands and observations to filter the images
created in Exercise 7.1 with a harmonic mean filter.

Exercise 9.5 Write down the commands and observations to filter the images
created in Exercise 7.1 with a contraharmonic mean filter.

Exercise 9.6 Compare the effects of the filters introduced in this section.

9.2 Order-statistics filters

Order-statistics filters are spatial filters, whose response is based on ordering
the pixels contained in the image area encompassed by the filter. The response
of the filter at any point is determined by the ranking result.
The MATLAB� command

B=ordfilt2(A,NthElement,domain,S,padopt)

215

performs two-dimensional order-statistic filtering. This filter replaces each ele-
ment in A by the NthElement element in the sorted set of neighbours specified
by the nonzero elements in the domain. This means that for a 3 × 3 filter (9
elements in total), ordfilt2 will replace the element corresponding to the cen-
tral pixel in the original image, covered by the filter, by the element ranked at
the nth position in the original image.

9.2.1 Median filter for bipolar and unipolar impulse noise

The MATLAB� command B=ordfilt2(A,5,ones(3,3)) implements a 3 × 3
median filter. Consider, for example, the 3× 3 median filter⎡

⎣ 1 3 4
8 40 10
12 22 18

⎤
⎦ .

The filtering process gives:

Section of A

covered by a

3× 3 filter 5th element of the ordered set

⎡
⎣ 1 3 4

8 40 10

12 22 18

⎤
⎦ =⇒

[
1 3 4 8 10 12 18 22 40

]
=⇒

⎡
⎣ � � �

� 10 �

� � �

⎤
⎦

Element in the original image

to be replaced by the filtered value

The MATLAB� command B=medfilt2(A,[m n]) performs median filtering
(using a m× n neighbourhood) of the matrix A in two dimensions. The com-
mand medfilt2 pads the image with 0’s on the edges, so the median values for
the points within [m/2, n/2] of the edges might appear distorted.

Exercise 9.7 Write down the MATLAB�commands which adds ‘salt and pep-
per’ noise to an image of your choice and then apply median filters of various
sizes, using both ordfilt2 and medfilt2 commands. Comment on your results.

216

9.2.2 Minimum filter for finding the darkest points in the
image, with ‘salt’ noise

The MATLAB� commands B=ordfilt2(A,1,ones(3,3)) implements a 3 × 3
minimum filter and B=ordfilt2(A,1,[0 1 0; 1 0 1; 0 1 0]) replaces each
element in A by the minimum of its north, east, south, and west neighbours.

⎡
⎣ 1 3 4

8 40 10
12 22 18

⎤
⎦ =⇒

[
3 8 10 22

]
=⇒

⎡
⎣ 1 3 4

8 3 10
12 22 18

⎤
⎦ .

⎡
⎣ 0 1 0

1 0 1
0 1 0

⎤
⎦ Mask used to select

elements to be ordered

9.2.3 Maximum filter for finding the brightest points in
the image, with ‘pepper’ noise

The MATLAB� command ordfilt2(A,9,ones(3,3)) implements a 3×3max-
imum filter, which finds the brightest points in the image, with ‘pepper’ noise.

9.2.4 Midpoint filter for randomly distributed noise

The midpoint filter calculates the midpoint between the maximum and the
minimum values in the area encompassed by the filter. It can be defined as
follows:

f(x, y) =
1

2

[
max

(s,t)∈Sx,y

g(s, t) + min
(s,t)∈Sx,y

g(s, t)

]
,

where f(x, y) is the value of the filtered image at the point (x, y), g(x, y) is the
original image and Sx,y is the area covered by the filter, centred on the set of
coordinates (x, y).

217

9.2.5 Alpha-trimmed mean filter for a combination of noise
types

This filter is similar to the arithmetic mean filter, but uses a smaller range of
grey levels to calculate the average. This helps in the case where a few pixels
have significantly different values than the remainder of the pixels. In particular
it uses

m× n− (d/2 lowest grey level values)− (d/2 highest grey level values)

pixels, where m and n are the numbers of rows and columns in the image
respectively and d is used to specify the number of high and low grey levels to
ignore, in order to calculate the mean of the pixels covered by the filter area
such that:

f(x, y) =
1

mn− d

∑
(s,t)∈Sx,y

gmn−d(s, t),

where g(mn−d)(s, t) corresponds to the remainingm×n−d pixels in the original
image, excluding the d/2 pixels with highest grey level values and the d/2 pixels
with lowest grey level values.

Remark 9.2 Note that, when d = 1, the alpha-trimmed mean filter is equivalent
to the arithmetic mean filter.

Exercise 9.8 Implement the midpoint filter using ordfilt2 and/or other com-
binations of appropriate MATLAB� commands.

Exercise 9.9 Implement an alpha-trimmed mean filter using a combination of
appropriate MATLAB� commands.

Exercise 9.10 Write a MATLAB� m-file to compare and demonstrate the
effectiveness of the smoothing filters introduced in this Chapter.

This section has described the behaviour of number of typical low pass filters
implemented in the spatial domain for use in image processing. Since low pass
filtering will remove noise, as well as information that may be relevant, it is,
therefore, necessary to establish the requirements of a smoothing filter for the
particular application. It is common practice to apply a low pass filter before
detecting the contour of regions of interest in the image using edge detectors.
The next section, namely Section 9.3, describes a number of edge detectors that
are widely available; some of which combine smoothing and edge detection. This

218

section will describe a few noise models and highlight the issues associated in
filtering images with noise and present means to reduce noise in the image for
edge detection purposes.

9.3 Edge detection

An edge is a ‘marked’ transition between two regions of interest within an image.
Ideally an edge exhibits a high degree of discontinuity. To detect this discon-
tinuity it is possible to use filters based on derivatives. Indeed, the stronger a
signal discontinuity, the higher will be its derivative. To alleviate this problem,
an approximate derivative of the image can be used, which is effectively a low
pass filter that reduces the noise. The following two subsections present edge
detectors based on a gradient or first derivative, and the Laplacian or second
derivative. Issues highlighted with such operators will then be highlighted in
three figures.

9.3.1 The gradient (a first order derivative)

The gradient of a function f at coordinates (x, y) is defined as follows:

∇f
def
=

⎡
⎢⎣

∂f

∂x
∂f

∂y

⎤
⎥⎦ .

In image processing, however, the gradient is often used to refer to the magnitude
of the ‘mathematical gradient’, namely:

|∇f | =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

.

To simplify the implementation of the gradient, it is common practice to ap-
proximate it with:

|∇f | ≈
∣∣∣∣∂f∂x

∣∣∣∣+
∣∣∣∣∂f∂y

∣∣∣∣ = Gx +Gy,

where Gx =

∣∣∣∣∂f∂x
∣∣∣∣ and Gy =

∣∣∣∣∂f∂y
∣∣∣∣. The direction of the gradient is also an

important quantity that is perpendicular to the direction of the edge at that

219

point. It is given by:

tan−1

⎛
⎜⎝
⎡
⎢⎣

∂f

∂x
∂f

∂y

⎤
⎥⎦
⎞
⎟⎠ .

The gradient can be implemented using masks of order n × n, where n is an
odd number. Consider the case when n = 3. It is assumed that the element
calculated is the central element of the image covered by the mask (denoted z5).

z1 z2 z3

z4 z5 z6

z7 z8 z9

The elements of the mask along the vertical, horizontal or diagonals are approx-
imated by the derivative operator, such that the product of these elements with
the image result in an expression similar to:

∂f

∂x
(x, y) ≈ f(x+ 1, y)− f(x, y).

In theory, the sum of all the elements of the mask should be zero.

9.3.2 The Laplacian

The Laplacian (namely the Laplacian operator) is based on second order deriva-
tives. It has the same properties in all directions (that is it is rotationally
invariant) and is defined by

∇2f(x, y)
def
=

∂2f

∂x2
(x, y) +

∂2f

∂y2
(x, y).

The Laplacian can be approximated by a convolution sum.
The following masks, of order 3× 3, are often used:⎡

⎣ 0 1 0
1 −4 1
0 1 0

⎤
⎦ and

⎡
⎣ 1 1 1

1 −8 1
1 1 1

⎤
⎦ ,

220

which return only edge information. The masks:⎡
⎣ 2 −1 2

−1 −4 −1
2 −1 2

⎤
⎦ and

⎡
⎣ −1 2 −1

2 −4 2
−1 2 −1

⎤
⎦

also return some information on the grey level.
Note the right mask uses the following in the vertical and horizontal direction:

∂2f

∂x2
(x, y) ≈ f(x+ 1, y) + f(x− 1, y)− 2f(x, y) (9.1)

∂2f

∂y2
(x, y) ≈ f(x, y + 1) + f(x, y − 1)− 2f(x, y). (9.2)

where f(·, ·) denotes the image, and the coefficients of f , in (9.1)-(9.2), namely
1, 1, −2, are elements of the filter.

Issues with the Laplacian:

• Laplacian masks are rotationally symmetric, which means that edges in all
orientation contribute to the result. They are, therefore, unable to detect
edge direction.

• The Laplacian gives rise to a double edge.

• The Laplacian is extremely sensitive to noise.

The sign of the Laplacian indicates which side of the edge is the brighter, (−), or
the darker (+). Therefore, if a negative sign is followed by a positive sign, this
shows a transition from a light to a dark grey level (see [Gonzalez et al., 2009]).
Laplacians are generally used on smoothed images (that is after a smoothing
filter has been applied to the image). This helps reduce the negative effect of
noise on the response of the filter. The response of the Laplacian is positive
on one side of an edge and negative on the other side. This means that by
adding some percentage of its response to the original image it is possible to
sharpen the edge on an image, as shown in Figure 9.1. The top left illustration
in Figure 9.1 represents the original image; the negative image of the Laplacian
is shown in the top right of the figure; the edge enhanced image resulting from
the subtraction of the Laplacian from the original image is shown in the bottom
left of the figure, whilst a comparison between the image profiles for the original
and the edge enhances image is given in the bottom right plot.

221

Original Image Laplacian of the image

Original Image − Laplacian
0 50 100

0

100

200

300

Pixel index: column

g
re

y
 l
e

v
e

l

Image profiles

original image
edge enhanced

Figure 9.1: Illustrating the use of Laplacian to enhance the edges of regions of
interest.

222

In theory, as mentioned previously, the sum of all the elements of the mask
should be zero. When they are not, it means that information relative to the
image grey level is also included in the filter.

To illustrate the issues associated with edge detection in the presence of noise
an artificial image was created with a series of constant grey levels followed by
a slope of slowly varying grey levels up to another plateau within which two
step changes in grey level occurred, see Figure 9.2 (top left). The profile along
one of the row of the image calculated using the function improfile is shown
on the top right of Figure 9.2. The bottom two plots in Figure 9.2 show the
first and the second derivative. The profile, along the image column, of the first

derivative, implemented using the approximation
∂f

∂x
≈ f(x + 1) − f(x), and

its second derivative, implemented using the expression
∂2f

∂x2
(x) ≈ f(x + 1) +

f(x− 1)− 2f(x), are shown in the bottom two figures. To detect the edge it is
then necessary to specify a threshold value above which the gradient and/or the
Laplacian response would indicate the presence of an edge. In the particular
example of Figure 9.2, it is possible to take the absolute value of the gradient
and specify a threshold of 10 to indicate strong edges at positions 43 and 47,
respectively. The second derivative can be used to detect the start and the end
of the slope, as well as the double step change at columns 43 and 47. Note
that sharp edges such as the step change are characterised by two consecutive
edges. Such feature can be exploited to increase the edge contrast. A good
illustration of the effect of noise on edge detection is given in Section 10 of
[Gonzalez et al., 2004].

Figure 9.3 illustrates that, with a small amount of Gaussian noise, the edge
detection process will be slightly more complex as false edges, characterised by
a non-null gradient, are created. This spurious response is emphasised by the
Laplacian. In particular, one additional edge may be found half way to the slope
of the grey level profile represented in the top right plot.

Figure 9.4 illustrates that, with an order of magnitude more noise, it becomes
impossible to detect the actual edges of the different regions using the previously
identified threshold, nor with a new set of thresholds, given that the Laplacian,
at the actual edge location of the region of interest, is of equivalent or smaller
magnitude than that due to noise.

223

grey level image

0 10 20 30 40 50
50

100
150
200

Image profile

Pixel index: column
g
re

y
 l
e
v
e
l

0 10 20 30 40 50
−20

0

20

S
e
c
o
n
d
 d

e
ri
v
a
ti
v
e

Pixel index: column

0 10 20 30 40 50
−20

0

20

D
e
ri
v
a
ti
v
e

Pixel index: column

Figure 9.2: Illustrating the output of edge detectors based on the first as well
as the second derivative.

224

Gaussian noise: mean=0, variance=5e−005

0 10 20 30 40 50
50

100
150
200

Image profile

Pixel index: column
g
re

y
 l
e
v
e
l

0 5 10 15 20 25 30 35 40 45 50
−50

0

50

D
e
ri
v
a
ti
v
e

Pixel index: column

0 5 10 15 20 25 30 35 40 45 50
−50

0

50

S
e
c
o
n
d
 d

e
ri
v
a
ti
v
e

Pixel index: column

Figure 9.3: Small amount of Gaussian noise on the grey level profile affecting
an image and the corresponding first and second derivative of the image.

225

Gaussian noise: mean=0, variance=0.0005

0 10 20 30 40 50
0

100

200

Image profile

Pixel index: column
g
re

y
 l
e
v
e
l

0 5 10 15 20 25 30 35 40 45 50
−50

0

50

D
e
ri
v
a
ti
v
e

Pixel index: column

0 5 10 15 20 25 30 35 40 45 50
−50

0

50

S
e
c
o
n
d
 d

e
ri
v
a
ti
v
e

Pixel index: column

Figure 9.4: The inappropriateness of first and second derivative filters to detect
the edge in a noisy image.

226

9.3.3 Gradient operators and masks

Roberts operator

The Roberts operator is more useful with binary images. It utilises the sum of
the magnitude of the difference of the diagonal neighbours.

w1 w1w2 w2w3 w3

w4 w4

w7 w7

−1 0

0 1

0 −1

1 0

Gx = z9 − z5 Gy = z8 − z6

The Roberts method finds edges using the Roberts approximation to the deriva-
tive. It returns edges at those points where the gradient of I is maximum. The
edge magnitude is calculated using:

|A(r, c)−A(r − 1, c− 1)|+ |A(r, c− 1)−A(r − 1, c)|

instead of the original formulation which is:√
[A(r, c)−A(r − 1, c− 1)]2 + [A(r, c− 1)−A(r − 1, c)]2 .

Suitable MATLAB� commands are:

BW = edge(I,’roberts’)

BW = edge(I,’roberts’,thresh)

[BW,thresh] = edge(I,’roberts’,...)

Prewitt operator

The Prewitt method finds edges using the Prewitt approximation to the deriva-
tive. It returns edges at those points where the gradient of I is maximum. This
method uses

∂f

∂x
(x, y) ≈ f(x+ 1, y)− f(x, y)

in both the vertical and the horizontal directions.

227

Row mask:

−1 −1 −1

0 0 0

1 1 1

Column mask:

−1

−1

−1

0

0

0

1

1

1

Gx = (z7 + z8 + z9)− (z1 + z2 + z3) Gy = (z3 + z6 + z9)− (z1 + z4 + z7)

Convolve the row mask by the image to obtain s1 and convolve the row mask by

the image to obtain s2. Then calculate the edge magnitude using
√
s21 + s22 and

the edge direction, which is perpendicular to the edge itself, using tan−1(s1/s2).
Some appropriate MATLAB� commands are:

BW = edge(I,’prewitt’)

BW = edge(I,’prewitt’,thresh)

BW = edge(I,’prewitt’,thresh,direction)

[BW,thresh] = edge(I,’prewitt’,...)

Sobel operator

The Sobel operator provides some smoothing. The Sobel method finds edges
using the Sobel approximation to the derivative. It returns edges at those points
where the gradient of I is maximum.

Row mask:

−1 −1−2

0 0 0

1 12

Column mask:

−1

−1

−2

0

0

0

1

1

2

Gx = (z7 + 2z8 + z9)− (z1 + 2z2 + z3) Gy = (z3 + 2z6 + z9)− (z1 + 2z4 + z7)

228

As for the Prewitt operator, convolve the row mask by the image to obtain s1
and convolve the row mask by the image to obtain s2. Then calculate the edge

magnitude using
√
s21 + s22 and the edge direction using tan

−1(s1/s2). Appro-

priate MATLAB� commands are:

BW = edge(I,’sobel’)

BW = edge(I,’sobel’,thresh)

BW = edge(I,’sobel’,thresh,direction)

[BW,thresh] = edge(I,’sobel’,...)

Kirsch compass mask

Here, only one mask is used and it is rotated to the eight major compass direc-
tions:

Vertical edge referred to as ‘North’ and ‘South’;
Diagonal edge referred to as ‘Northwest’, ‘Southeast’, ‘Southwest’

and ‘Northeast’;
Horizontal edge referred to as ‘West’ and ‘East’.

⎡
⎣ −3 −3 5

−3 0 5
−3 −3 5

⎤
⎦

⎡
⎣ −3 5 5

−3 0 5
−3 −3 −3

⎤
⎦
⎡
⎣ 5 5 5

−3 0 −3
−3 −3 −3

⎤
⎦
⎡
⎣ 5 5 −3

5 0 −3
−3 −3 −3

⎤
⎦

k0 k1 k2 k3

North Northwest West Southwest

⎡
⎣ 5 −3 −3

5 0 −3
5 −3 −3

⎤
⎦

⎡
⎣ −3 −3 −3

5 0 −3
5 5 −3

⎤
⎦
⎡
⎣ −3 −3 −3

−3 0 −3
5 5 5

⎤
⎦
⎡
⎣ −3 −3 −3

−3 0 5
−3 5 5

⎤
⎦

k4 k5 k6 k7

South Southeast East Northeast

The edge magnitude is the maximum value of the convolution of each of the
masks with the image. The edge direction is defined by the mask that produces
the maximum magnitude.

229

Robonson compass mask

⎡
⎣ 1 0 −1

2 0 −2
1 0 −1

⎤
⎦

⎡
⎣ 0 −1 −2

1 0 −1
2 1 0

⎤
⎦

⎡
⎣ −1 −2 −1

0 0 0
1 2 1

⎤
⎦

⎡
⎣ −2 −1 0

−1 0 1
0 1 2

⎤
⎦

r4 r5 r6 r7

⎡
⎣ −1 0 1

−2 0 2
−1 0 1

⎤
⎦

⎡
⎣ 0 1 2

−1 0 1
−2 −1 0

⎤
⎦

⎡
⎣ 1 2 1

0 0 0
−1 −2 −1

⎤
⎦

⎡
⎣ 2 1 0

1 0 −1
0 −1 −2

⎤
⎦

r0 r1 r2 r3

This is a similar principle to the Kirsch compass mask, but simpler to implement
as one only needs to convolve the first 4 masks and negate the results from the
first four for the other four.

The edge magnitude is the maximum value of the convolution of each of the
masks with the image.
The edge direction is defined by the mask that produces the maximum magni-
tude.

Frei-Chen masks

Frei-Chen masks form a complete set of basis vectors. As such any 3 × 3 sub-
image can be represent by a weighted sum of the nine Frei-Chen masks.

1

2
√
2

⎡
⎣ 1

√
2 1

0 0 0

−1 −
√
2 −1

⎤
⎦ 1

2
√
2

⎡
⎣ 1 0 1√

2 0 −
√
2

1 0 −1

⎤
⎦ 1

2
√
2

⎡
⎣ 0 −1

√
2

1 0 −1

−
√
2 1 0

⎤
⎦ 1

2
√
2

⎡
⎣

√
2 −1 0

−1 0 1

0 1 −
√
2

⎤
⎦

f1 f2 f3 f4

230

1

2

⎡
⎣ 0 1 0

−1 0 −1
0 1 0

⎤
⎦ 1

2

⎡
⎣ −1 0 1

0 0 0
1 0 −1

⎤
⎦ 1

6

⎡
⎣ 1 −2 1

−2 4 −2
1 −2 1

⎤
⎦ 1

6

⎡
⎣ −2 1 −2

1 4 1
−2 1 −2

⎤
⎦

f5 f6 f7 f8

1

3

⎡
⎣ 1 1 1

1 1 1
1 1 1

⎤
⎦

f9

The first four masks (f1 - f4) comprise the edge subspace. The second four
masks (f5 - f8) comprise the line subspace. The last mask (f9) is the average
subspace.

To use the Frei-Chen masks for edge detection, select the subspace of interest
(i.e. f1 to f9) and find the relative projection of the image onto that particular
subspace using the following formulae:

cos(θ) =

√
M

S
, M =

∑
k∈{e}

(Is, fk)
2 =

9∑
k=1

(Is, fk)
2 ,

where e consist of the set of masks of interest, (Is, fk) refers to the process of
overlaying the mask on the sub-image, multiplying the coincident terms and
summing the results (for more details see [Umbaugh, 2010]).

Canny operator

The Canny method finds edges by looking for local maxima of the gradient of I.
The gradient is calculated using the derivative of a Gaussian filter. The method
uses two thresholds to detect strong and weak edges, and includes the weak
edges in the output only if they are connected to strong edges. Therefore, this
method is less likely than the other methods to be affected by noise, and more
likely to detect true weak edges. Some appropriate MATLAB� commands are:

231

BW = edge(I,’canny’)

BW = edge(I,’canny’,thresh)

BW = edge(I,’canny’,thresh,sigma)

[BW,threshold] = edge(I,’canny’,...)

Zero-crossing method

The zero-crossing method finds edges by looking for zero crossings after filtering
I with a specified filter. Some MATLAB� commands are:

BW = edge(I,’zerocross’,thresh,h)

[BW,threshold] = edge(I,’zerocross’,...)

Laplacian of Gaussian

The Laplacian of Gaussian method finds edges by looking for zero crossings
after filtering I with a Laplacian of the Gaussian filter. This filter is defined by

∇2h(r)
def
= −

[
r2 − σ2

σ4

]
e−

r2

2σ2 ,

where h(r) = −e−
r2

2σ2 , r2 = x2 + y2 and σ is the standard deviation with x and
y the coordinates of the pixel intensity values I(x, y).
The filter can be implemented using the MATLAB� commands:

BW = edge(I,’log’)

BW = edge(I,’log’,thresh)

BW = edge(I,’log’,thresh,sigma)

[BW,threshold] = edge(I,’log’,...)

9.4 Noise in imaging

Noise can arise in imaging during the acquisition, the transmission or the con-
version to different image formats.
As an example, consider obtaining images of a robot football system. It is

clear that the camera needs to warm up to provide a stable output and the
amount of light in the room is also very important. To ensure that the robots
are recognised, artificial lighting is used. However, if the room used for the

232

demonstration has any window, the daylight will affect the colour seen by the
charge-coupled-device (CCD) sensor.
Noise can be independent of image coordinates if the source of the noise is

in the process, or can depend on the coordinates. For example, different parts
of the robot footballer could be exposed to different light conditions. These
lighting conditions may result in a different type or level of noise.
Images can also be corrupted during transmission from the video input to

the processing computer. To minimise such noise, coaxial cables can be used
to transmit the images to the personal computer, which is used to control the
robot footballers.
Noise models can be defined in the spatial domain, which are described fully

in [Gonzalez et al., 2004] (see Chapter 5, Table 5.1), or in the frequency domain
using various Fourier properties of the noise.

9.5 Adding noise to images using MATLAB�

MATLAB� can generate noise in the image using the function imnoise, with
a command of the form:

NoisyImage=imnoise(OriginalImage,TypeOfNoise,NoiseParameters)

Some particular examples are:

J = imnoise(I,’gaussian’,m,v) adds Gaussian white noise of mean m and
variance v to the image I. The default is zero mean noise with 0.01
variance.

J = imnoise(I,’localvar’,V) adds zero-mean, Gaussian white noise of local
variance V to the image I. Here, V is an array of the same size as I.

J = imnoise(I,’localvar’,image intensity,var) adds zero-mean, Gaus-
sian noise to an image I, where the local variance of the noise, var, is
a function of the image intensity values in I. The image intensity
and the var arguments are vectors of the same size, and the command
plot(image intensity,var) plots the functional relationship between
noise variance and image intensity. The image intensity vector must
contain normalized intensity values ranging from 0 to 1.

J = imnoise(I,’poisson’) generates Poisson noise from the data instead of
adding artificial noise to the data. In order to respect Poisson statistics,

233

the intensities of unit8 and uint16 images must correspond to the number
of photons (or any other quanta of information). Double-precision images
are used when the number of photons per pixel can be much larger than
65535 (but less than 1012); the intensity values vary between 0 and 1 and
correspond to the number of photons divided by 1012.

J = imnoise(I,’salt & pepper’,d) adds ‘salt and pepper’ noise, also re-
ferred to as bipolar impulse noise, to the image I, where d is the noise
density. This affects approximately d*prod(size(I)) pixels. The default
is 0.05 noise density.

J = imnoise(I,’speckle’,v) adds multiplicative noise to the image I, using
the equation J = I+n× I, where n is uniformly distributed random noise
with mean 0 and variance v. The default for v is 0.04.

Remark 9.3 The mean and variance parameters for ‘gaussian’, ‘localvar’, and
‘speckle’ noise types are always specified as if the image were of class double
in the range [0, 1]. If the input image is of class uint8 or uint16, the imnoise
function converts the image to double, adds noise according to the specified type
and parameters, and then converts the noisy image back to the same class as
the input.

Figure 9.5 shows the effect of adding noise to an image, using the MATLAB�

command imnoise and various parameter options, and Figure 9.6 illustrates
the effect of noise on the resulting image histogram. It can be observed that
the original image contained only three distinct grey levels. The distribution
of pixels around the three initial grey levels is characteristic of the distribution
of the noise model used. To facilitate the visualisation of the result a semi-log
scale was used to display the histogram.

9.6 Summary

Images can be corrupted by noise. In order to minimise the effect of noise on
the image, it is useful to determine, approximately, the type of noise that is
present. Spatial noise can be described by random numbers characterised by
a probability density function (PDF) or by a cumulative distribution function
(CDF). Assuming that a CDF is given by Fz(w), where w is a distributed ran-
dom variable in the interval (0, 1), then the random variable z can be calculated

234

imnoise(I,’gaussian’,0,0.0001) imnoise(I,’localvar’,0.01*rand(size(I)))

imnoise(I,’salt & pepper’,0.05) imnoise(I,’speckle’,0.04)

Figure 9.5: Images illustrating the use of the MATLAB� command imnoise to
add noise to images.

235

0 100 200

100

grey level

O
cc

ur
en

ce

imnoise(I,’gaussian’,0,0.0001)

0 100 200

100

imnoise(I,’localvar’,0.01*rand(size(I)))

grey level

O
cc

ur
en

ce

0 100 200

100

grey level

O
cc

ur
en

ce

imnoise(I,’salt & pepper’,0.05)

0 100 200

100

 imnoise(I,’speckle’,0.04)

grey level

O
cc

ur
en

ce

Figure 9.6: Illustrating the effect of noise on image histograms.

236

from its CDF by solving the equation: z = F−1
z (w), that is find the solution to

Fz(z) = w.
The MATLAB� command

NoisyImage=imnoise(OriginalImage,TypeOfNoise,NoiseParameters)

can add various type of noise to an image, including: gaussian, uniform, and
salt & pepper. The histogram of a noisy image can help identify the type of
noise in the image.

9.7 Removing noise

Certain filters and mathematical morphology can help in removing some noise,
see Section 9.1.

• Linear filter, such as Gaussian or average filters.

• Nonlinear filter, such as a Median filter.

• Adaptive filter,where the filter adapts to the statistical information present
in the part of the image considered, in order to calculate its output.

• The wiener2 function applies a Wiener filter (a certain type of linear
filter) to an image adaptively, tailoring itself to the local image variance.
If the variance is large, wiener2 performs little smoothing. If the variance
is small, wiener2 performs more smoothing. The filter command wiener2
performs best when the noise is additive noise with constant-power (for
example, a ‘white’ process), such as Gaussian noise.

• Mathematical morphology can be performed, using the command imopen,
which removes a small particle or noise pixel. The radius of the structuring
element indicates the size of the particle/noise to remove. (Note that this
topic is not discussed until the next chapter.)

Exercise 9.11 Using MATLAB�, read the image: ckt-board-orig.tif, located
at:
W:\ec\student\m19mse\SampleImages\GW2004\dipum images ch03\
and add Gaussian noise with zero mean and a standard deviation of 0.1 (recall
that the variance is the square of the standard deviation). Describe the effect
of Gaussian noise. Explain what happens when you increase and decrease the
variance.

237

Exercise 9.12 Using MATLAB�, read the image: ckt-board-orig.tif, located
at:
W:\ec\student\m19mse\SampleImages\GW2004\dipum images ch03\
and add uniform noise with variance of 0.05. Describe the effect of uniform
noise. Explain what happens when you increase and decrease the variance.

Exercise 9.13 Using MATLAB�, read the image: ckt-board-orig.tif, located
at:
W:\ec\student\m19mse\SampleImages\GW2004\dipum images ch03\
and add add bipolar impulse noise with a noise density of 0.07. Describe the
effect of bipolar impulse noise. Explain what happens when you increase and
decrease the noise density.

Illustrative example

An image representing three regions of interest of distinct grey level has been
corrupted with Gaussian noise and, additionally, binomial impulse noise (Salt
and Pepper). Figure 9.7 shows the original image, as well as the noise corrupted
image together with a comparison of their histograms. The Gaussian noise
results in Gaussian distributions centred around the original grey level of each
three regions of interest. The binomial impulse noise is characterised by the
black and white pixel on the noisy image and by two sets of pixels at 0 and 255.

Figure 9.8 illustrates the application of four different filters to the noisy
image. It can be clearly seen that filters, that do not contain any smoothing
combined with the edge detection, exhibit false positives. In particular, the
binomial impulse noise, which creates pixel grey level significantly different from
its neighbours, results in high gradient change and, hence, high magnitude in
the resulting filtered image. It is possible to reduce the number of edges created
by the Gaussian noise, within each region of interest, however, this also leads
to open contours of the regions of interest, with a few pixels missing. Closed
contours can be obtained, but at the cost of a large number of false positives.
Filters based on the Laplacian operator or Gaussian filter and the Canny filter
produce better contours. The Canny filter is the only one able to produce a
closed contour as well as no false positive within the regions of interest. This is
due to its ability to make use of weak edge responses to link two strong edges
together.
Figure 9.9 clearly demonstrate the benefits of making use low pass filtering

prior to applying an edge detector. All the edge detectors applied produce

238

Original image

Gaussian + Salt&Pepper noise
Filtered image

Median + Average
0 100 200 300

0

100

200

300

400

500

600

700

800

Grey level

O
cc

ur
en

ce

Histogram comparison

Original image
Filtered image

Figure 9.7: Illustrating the effect of noise on images and their histogram.

239

imfilter(I,fspecial(’sobel’,0.14)) imfilter(I,fspecial(’roberts’,0.2))

edge(I,’log’,0.0085) edge(I,’canny’,[0.01 0.5])

Figure 9.8: Illustrating the trade off between obtaining a large number of false
positives and not being able to obtain a closed contour of the regions of interest.

240

closed contour. The edges are rounded due to the application of the average
filter which reduces the pixel intensity at the edges of each square region. In
this particular case, the best combination is to apply a median filter, followed
by an average filter, prior to using the Roberts edge detector, which emphasises
horizontal and vertical edges.

imfilter(I,fspecial(’sobel’)) imfilter(I,fspecial(’roberts’))

edge(I,’log’,0.004) edge(I,’canny’,[0.05,0.4])

Figure 9.9: Illustrating the benefit of applying low pass filtering to obtained
closed contours of regions of interest.

241

Chapter 10

Mathematical morphology
and set notations

Morphology is a broad set of image processing operations that process images
based on shapes. A structuring element is applied, through morphological op-
erations to an input image, which creates an output image of the same size.
Mathematical morphology is based on set theory. Using set theory terminology,
a digital image can be represented by a function f(x, y), where (x, y) ∈ Z × Z

and f is a mapping that assigns a value (namely an integer) to each pair of
distinct coordinates (x, y).

The following notation will be utilised in the subsequent work.

A digital image can be represented by a set A ⊂ Z×Z and w = (x, y) ∈ Z×Z is
an element of that digital image. If a pixel belongs to the image A, then w ∈ A.
If a pixel does not belongs to an image, then w �∈ A. If a set A of pixels satisfies
a specified condition, then the set A is expressed as A = {w|condition}. If the
set A is empty, then this is denoted by A = ∅.
For example, using the above notation, the reflection of a set A can be expressed,
formally, as Â = {w|w = −b, for b ∈ A} and the translation of a set A by
z = (z1, z2) is given by Az = {w|w = a + z, for a ∈ A}. Other important
notations concerning intersection, union, complement and difference of sets (see

243

Table 10.1) are defined by:

intersection: A ∩B
def
= {w|w ∈ A and w ∈ B}

union: A ∪B
def
= {w|w ∈ A or w ∈ B}

complement: Ac def
= {w|w �∈ A}

difference: A−B
def
= A ∩Bc

and are illustrated graphically in Figure 10.1.

Set operation Description MATLAB� expressions Name

for binary images

A ∩B Intersection A & B AND

A ∪B Union A|B OR

Ac Complement ∼A NOT

A−B Difference A & ∼B DIFFERENCE

Table 10.1: Set operations and associated MATLAB� expressions.

Exercise 10.1 Create two matrices filled with 1 or 0 such that, in one matrix,
the elements 1 form a square and, in the second matrix, the elements 1 form a
triangle, with the triangle having a point common with the square. Determine
the complement, the union, the intersection, the difference, the reflection and
the translation by z = (3, 5) of the square and the triangle.

Exercise 10.2 Perform the OR, AND and NOT logical operations with the
square and the triangle, introduced in Exercise 10.1.

10.1 Fundamental morphological operators

morphological operators Morphological image processing is based on set theory
and the operations of dilation and erosion. A thorough description of these
topics can be found in [Gonzalez et al., 2004].

244

(a) (b)

(c) (d)

(e)

A A

A A

B B

B B

A

Figure 10.1: (a) Two sets A and B. (b) The union of A and B. (c) The
intersection of A and B. (d) The difference: A−B. (e) The complement of A.

245

10.1.1 The dilation operator, ⊕ , for bridging gaps
The dilation operation, denoted by ⊕ , grows or thickens objects of a binary
image. The definition of dilation (see [Gonzalez et al., 2004]) is:

A⊕B
def
= {z|

(
B̂
)
z
∩A �= ∅},

where
(
B̂
)
z
denotes the reflection of all elements of B, about the origin, trans-

lating the origin of B̂ to the point z.
This definition means that the dilation of A, by the structuring element B,

is the set consisting of all the structuring element origin location (?), where the
reflected and translated B overlaps at least some portion of A. This means that
an element 1 appears in the dilated image at the origin of the structuring element
whenever at least one pixel of the original image is covered by the structuring
element. Using MATLAB�, the dilation process produces an output pixel whose
value is the maximum value of all the pixels in the neighbourhood of the input
pixel. Pixels beyond the image border are assigned the minimum value afforded
by the data type, for example, when using binary or grey scale, it gives a zero
value.
Some properties of dilation are the following.

(D1) Commutativity: A ⊕ B = B ⊕ A. Note that, in image processing, the
image is conventionally the first operand of A ⊕ B and the structuring
element the second.

(D2) Associativity: A⊕ (B ⊕C) = (A⊕B)⊕C. This property can be used to
advantage if a structuring element B can be decomposed into two struc-
turing elements B1 and B2. Then dilating A with B is the same as dilating
A with B1 and dilating the result with B2.

(D3) Dilation can be expressed as a union of shifted point sets:

A⊕B =
⋃
b∈B

Ab.

(D4) Dilation is invariant to translation: (A)z ⊕B = (A⊕B)z .

In MATLAB�, dilation can be performed using a command with the following
structure:

TransformedImage = imdilate(ImageObject,StructuringElement)

246

To assess the effect of dilation, the following MATLAB� routine can be used:

% Set dilated image output to grey (half the max grey level)

% Set elements corresponding to 1 in original image to white

%

Idil = imdilate(ImageObject,StructuringElement);

Index = find(ImageObject==max(max(ImageObject)));

Index1 = find(Idil==max(max(Idil)));

Ioutput=zeros(size(ImageObject));

Ioutput(Index1) = double(max(max(Idil)))/2;

Ioutput (Index)= double(max(max(ImageObject)));

Dilation can be used to bridge gaps, as shown in Figure 10.2.

Figure 10.2: Illustrating the ability of bridging gaps in letters using a structuring
element [0 1 0; 1 1 1; 0 1 0].

Remark 10.1 The grey pixels have been obtained by subtracting the dilated
image from the original image, resulting in the edge of the pattern being drawn.

10.1.2 The erosion operator, � , for eliminating irrelevant
details

The erosion operation, denoted by � , shrinks or thins objects in binary im-
ages. The manner and extent of the ‘shrinking’ is controlled by the structuring
element. The definition of erosion (see [Gonzalez et al., 2004]) is:

A�B
def
= {z| (B)z ⊆ A.

247

This definition means that the erosion of A by the structuring element B is
the set of all points z such that B, translated by z, is contained in A, that is it is
a subset of A. This means that a 1 appears in the eroded image, at the place of
the origin (or centre) of the structuring element, whenever the whole structuring
element fits into A. Using MATLAB�, the erosion process produces an output
pixel whose value is the minimum value of all the pixels in the neighbourhood
of the input pixel. In a binary image, if any of the pixels is set to 0, the output
pixel is set to 0. Pixels beyond the image border are assigned the maximum
value afforded by the data type.
Some properties of erosion are the following.

(E1) Erosion and dilation are dual of each other with respect to complement
and relfection: (A�B)c = Ac ⊕ B̂.

(E2) Erosion is translation invariant.

In MATLAB�, dilation can be performed using a command with the following
structure:

TransformedImage = imerode(ImageObject,StructuringElement)

The effect of erosion can be assessed using the following MATLAB� routine:

% This code set the original pixels in grey

% and the remaining pixels in the eroded image in white

%

Ierode = imerode(ImageObject,StructuringElement) ;

Index1 = find(ImageObject==max(max(ImageObject)));

Index = find(Ierode==max(max(Ierode)));

Ioutput = zeros(size(ImageObject));

Ioutput(Index1) = double(max(max(ImageObject)))/2;

Ioutput(Index) = double(max(max(ImageObject)));

The effects of erosion can be seen in Figure 10.3.

Remark 10.2 There are other methods to display the pixels affected by the
morphological operations. For example, the MATLAB� command:

Isub=imsubtract(Image, Ierode);imshow(Isub)

will show only the contours.

248

Figure 10.3: Illustrating the effect of erosion depending on the size of the struc-
turing element.

249

10.2 Structuring elements

The structuring element consists of a pattern specified by the coordinates of a
number of discrete points relative to some origin. Normally Cartesian coordi-
nates are used and so a convenient way of representing the element is as a small
image on a rectangular grid.
When a morphological operation is carried out, the origin of the structuring

element is typically translated to each pixel position in the image in turn, and
then the points within the translated structuring element are compared with the
underlying image pixel values. The details of this comparison, and the effect of
the outcome depend on which morphological operator is being used
(see http://homepages.inf.ed.ac.uk/rbf/HIPR2/strctel.htm).
An important point to note is that although a rectangular grid is used to

represent the structuring element, not every point in that grid is part of the
structuring element in general. Hence, the elements may contain some blanks.
In many texts, these blanks are represented as zeros (which is not strictly cor-
rect).

10.2.1 Constructing a structuring element in MATLAB�

The function strel is used to construct structural elements that are stored
as strel objects. These objects are decomposed into a number of structuring
elements. These can be used by some of the image processing functions to speed
up the calculations. For example, the command

SE = strel(shape,parameters)

creates a structuring element, SE, of the type specified by shape, where each
structuring element has parameters to define its formation. By default, the
origin of the structuring element is at the centre of the matrix describing the
structuring element. To have an origin not at the centre, it is possible to define
a matrix where the non-zero elements are not centred around the centre of the
matrix; for example, ⎡

⎣ 0 0 1
0 1 1
0 0 1

⎤
⎦ .

Exercise 10.3 Assess the effect of various structuring elements by applying
erosion, dilation, opening and closing on binary images provided on the W
drive. Comment on your results.

250

10.2.2 Examples of structuring elements

The MATLAB� command SE=strel(’square’,W) creates a square structuring
element whose width is W pixels. Note that W must be a non-negative integer
scalar (see Figure 10.4). The command SE=strel(’rectangle’,MN) creates a

Figure 10.4: Examples using SE = strel(’square’,W).

251

flat, rectangle-shaped structuring element, where MN specifies the size. Here MN
must be a two-element vector of non-negative integers. The first element of MN
is the number of rows in the structuring element neighbourhood; the second
element is the number of columns (see Figure 10.5). In addition, the command

Figure 10.5: Examples using SE = strel(’rectangle’,W).

252

SE=strel(’line’,LEN,DEG) creates a flat, linear structuring element, where
LEN specifies the length, and DEG specifies the angle (in degrees) of the line,
as measured in a counter-clockwise direction from the horizontal axis. Note
that LEN is, approximately, the distance between the centres of the structur-
ing element members at opposite ends of the line. The MATLAB� command
SE=strel(’diamond’,R) creates a flat, diamond-shaped structuring element,
where R specifies the distance from the structuring element origin to the points
of the diamond. Note that R must be a non-negative integer scalar. The com-
mand SE=strel(’octagon’,R) creates a flat, octagonal structuring element,
where R specifies the distance from the structuring element origin to the sides
of the octagon, as measured along the horizontal and vertical axes. Here, R
must be a non-negative multiple of 3 (see Figure 10.6). The MATLAB� com-

Figure 10.6: Examples using SE = strel(’octagon’,W).

mand SE=strel(’arbitrary’,NHOOD) creates a flat structuring element where
NHOOD specifies the neighbourhood. Here, NHOOD is a matrix containing 1’s
and 0’s; the location of the 1’s defines the neighbourhood for the morphologi-
cal operation. The centre (or origin) of NHOOD is its centre element, given by
floor((size(NHOOD)+1)/2). One can omit the ‘arbitrary’ string and just use

253

strel(NHOOD).

The MATLAB� command SE=strel(’arbitrary’,NHOOD,HEIGHT) creates a
non-flat structuring element, where NHOOD specifies the neighbourhood. The
argument HEIGHT is a matrix the same size as NHOOD containing the height val-
ues associated with each non-zero element of NHOOD. The HEIGHT matrix must
be real and finite-valued. One can omit the ‘arbitrary’ string and just use
strel(NHOOD,HEIGHT).

10.3 Combining dilation and erosion

Mathematical morphology uses dilation and erosion operations as a basis. New
operators can be formed by combining a number of dilations/erosions and ero-
sions/dilations with different structuring elements. This is possible because di-
lation and erosion are not inverse transformations, that is if an image is eroded
and then dilated, then the resulting image is not the original image.
This section will consider opening, closing operations, and the hit-or-miss

transformation, that is also used as a building block to derive more complex
transformations.

10.3.1 Opening, denoted by ◦
The opening operation is an erosion by a structuring element B followed by a
dilation of the result by the same structuring element:

A ◦B = (A�B)⊕B.

Opening can also be interpreted as the union of all translations of B that fit
entirely within A (see [Gonzalez et al., 2004]). An appropriate MATLAB� com-
mand has the structure:

TransformedImage = imopen(ImageObject,StructuringElement)

10.3.2 Closing, denoted by •
The closing operation is a dilation followed by an erosion, using the same struc-
turing element. Closing can be interpreted as the complement of the union of all
translations of B that do not overlap A. An appropriate MATLAB� command
has the structure:

254

TransformedImage = imclose(ImageObject,StructuringElement)

Exercise 10.4 Write a MATLAB� function file that takes as argument the
structuring element ‘[0 1 0;1 1 1;0 1 0]’ and, in addtion, the original im-
age ‘ImageObject’ and returns ‘SeeEffectOfDilate’ or ‘SeeEffectOfErode’,
‘SeeEffectOfOpen’ and ‘SeeEffectOfDilate’. Test your function with various
images and comment on your results.

Exercise 10.5 Using black and white images, provided on the W drive, check
that you are able to fill gaps using the closing operation. Write down the
appropriate MATLAB� commands to achieve this and write down any relevant
observations.

Exercise 10.6 Check that the opening operation allows you to separate struc-
tures that are linked together by a few pixels.

10.4 Hit-and-Miss transformation

The hit-or-miss operation preserves pixels whose neighbourhoods match the
shape of the structuring element SE1 and do not match the shape of the struc-
turing element SE2. The MATLAB� implementation

BW2 = bwhitmiss(OriginalImage,SE1,SE2)

performs the hit-and-miss operation defined by the structuring elements SE1
and SE2. Here, SE1 and SE2 can be flat structuring element objects, created by
strel, or neighbourhood arrays.

Remark 10.3 The neighbourhoods of SE1 and SE2 should not have any over-
lapping elements.

The syntax bwhitmiss(BW1,SE1,SE2) is equivalent to

imerode(BW1,SE1);

imerode(∼BW1,SE2)

The MATLAB� command BW2 = bwhitmiss(BW1,INTERVAL)performs the hit-
and-miss operation, defined in terms of a single array, called an interval. An in-
terval is an array whose elements can contain 1, 0, or −1. The 1-valued elements

255

make up the domain of SE1, the −1-valued elements make up the domain of
SE2, and the 0-valued elements are ignored. The syntax bwhitmiss(INTERVAL)
is equivalent to bwhitmiss(BW1,INTERVAL == 1,INTERVAL == -1).

Example 10.1 Consider an example of the use of the hit-or-miss transforma-
tion to detect the centre of a ‘+’ shape, defined by⎡

⎣ 0 1 0
1 1 1
0 1 0

⎤
⎦

for an image represented by A, where

A= ⎡
⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 1 1 0 0
0 1 1 1 0 0 0 1 1 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

SE1= SE2=⎡
⎣ 0 1 0

1 1 1
0 1 0

⎤
⎦

⎡
⎣ 1 0 1

0 0 0
1 0 1

⎤
⎦

If any element circled in A matches elements of the structural element SE2, then
the output is zero, indicating that the shape, illustrated in SE1, does not match
the pattern.

The MATLAB� command HM1=bwhitmiss(A,SE1,SE2) gives⎡
⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

INT2=

⎡
⎣ 0 1 0

1 1 1
0 1 0

⎤
⎦

256

Ignoring the circled elements in A, which correspond to the zeros in the structural
element INT2, the hit-or-miss transformation will find in A the required shape,
represented by the elements in the dashed line, given in INT2.

The MATLAB� command HM3=bwhitmiss(A,INT2) gives⎡
⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

Two ‘+’ are detected if
surrounding pixels are ignored.

INT1= ⎡
⎣ −1 1 −1

1 1 1
−1 1 −1

⎤
⎦

The structural element INT1 performs the same operation, combining SE1 and
SE2 into a single structuring element.

The MATLAB� command HM2=bwhitmiss(A,INT1) gives⎡
⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

10.5 Skeleton

It has been seen that the open operation (introduced in §10.3.1) forces the shape
of the template/structuring element on the convex part of an edge. The close
operation (see §10.3.2) forces the shape of the template/structuring element on
the concave part of an edge. Erode and open operations can be combined to
form a skeleton operation. The skeleton operation reduces all objects in an

257

image to lines, without changing the essential structure of the image. This can
be achieved in MATLAB� using a command with the following structure:

SkeletonImage = bwmorph(OriginalImage,’skel’,NoOfTime)

The command SkeletonImage = bwmorph(OriginalImage, ’skel’,Inf), with
NoOfTime = Inf, removes pixels on the boundaries of objects, but does not al-
low objects to break apart. The remaining pixels make up the image skeleton.
This option preserves the Euler number.
Some images illustrating the effect of skeletonisation are shown in Figure

10.7.

Figure 10.7: Images illustrating the effect of skeletonisation, where, for display,
imcomplement is used.

10.5.1 The Euler number determined using MATLAB�

Using MATLAB�, the bweuler function returns the Euler number for a binary
image. The Euler number is a measure of the topology of an image. For an
image containing a number of objects, the Euler number is defined as the num-
ber obtained by subtracting the number of holes in those objects from the total

258

number of objects in the image. One can use either 4- or 8-connected neigh-
bourhoods.

Connectivity is a criteria that describe how pixels in an image form a connected
group.

Remarks 10.4 Pixels are connected if their edges or corners touch. This
means that if two adjoining pixels are ones, they are part of the same object, re-
gardless of whether they are connected along the horizontal, vertical, or diagonal
direction.

In the example illustrated in Figure 10.7, there are nine 8-connected objects and
two holes. The Euler number is calculated using the MATLAB� command: eul
= bweuler(SK,8), and gives the result: eul = 7.

10.6 Thinning

Thinning removes pixels so that an object, without holes, shrinks to a minimally
connected stroke, namely a line segment, and an object with holes shrinks to
a connected ring, halfway between each hole and the outer boundary. This
operation can be achieved, in MATLAB�, using a command with the following
structure:

SkeletonImage = bwmorph(OriginalImage,’thin’,NoOfTime)

with NoOfTime = Inf, thins objects to lines. This option preserves the Euler
number. Some images illustrating the effect of ‘thinning’ are shown in Figure
10.8.

10.7 Thicken

This operation thickens objects by adding pixels to the exterior of objects. Using
NoOfTime = Inf, it adds pixels to the exterior of objects, until doing so would
result in previously unconnected objects being 8-connected. This operation can
be achieved in MATLAB� using a command with the following structure:

SkeletonImage = bwmorph(OriginalImage,’thicken’,NoOfTime)

Some images illustrating the effect of ‘thickening’ are shown in Figure 10.9.

259

Figure 10.8: Images illustrating the effect of thinning, where imcomplement is
used for display.

260

Figure 10.9: Images illustrating the effect of thickening, where imcomplement
is used for display.

261

10.8 Top hat

The MATLAB� option ’tophat’, in the command bwmorph(OriginalImage,
’tophat’,NoOfTime), returns the image with the morphological opening of the
image subtracted.

10.9 Bottom hat

In the MATLAB� command

SkeletonImage = bwmorph(OriginalImage, ’bothat’,NoOfTime)

the option ’bothat’ (which abbreviates ‘bottom hat’) performs morphological
closing (namely dilation followed by erosion) and subtracts the original image.

10.10 Morphological operations implemented in
bwmorph

’bridge’ bridges unconnected pixels, that is it sets 0-valued pixels to 1 if they
have two nonzero neighbours that are not connected. For example:⎡

⎣ 1 0 0
1 0 1
0 0 1

⎤
⎦ becomes

⎡
⎣ 1 1 0

1 1 1
0 1 1

⎤
⎦ .

’clean’ removes isolated pixels, that is individual 1’s that are surrounded by
0’s, such as the centre pixel in this pattern:⎡

⎣ 0 0 0
1 0 1
0 0 0

⎤
⎦ .

’fill’ fills isolated interior pixels, that is individual 0’s that are surrounded
by 1’s, such as the centre pixel in this pattern:⎡

⎣ 1 1 1
1 0 1
1 1 1

⎤
⎦ .

262

’hbreak’ removes H-connected pixels. For example:⎡
⎣ 1 1 1

0 1 0
1 1 1

⎤
⎦ becomes

⎡
⎣ 1 1 1

0 0 0
1 1 1

⎤
⎦ .

’majority’ sets a pixel to 1 if five or more pixels in its 3-by-3 neighbourhood
are 1’s; otherwise, it sets the pixel to 0.

’remove’ removes interior pixels. This option sets a pixel to 0 if all its 4-
connected neighbours are 1, thus leaving only the boundary pixels on.

’spur’ removes spur pixels, that is pixels that are not connected. For example:⎡
⎢⎢⎣

0 0 0 0
0 0 1 0
0 1 0 0
1 1 0 0

⎤
⎥⎥⎦ becomes

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 1 0 0
1 1 0 0

⎤
⎥⎥⎦ .

’dilate’ performs dilation using the structuring element ones(3).

’erode’ performs erosion using the structuring element ones(3).

’open’ implements morphological opening (namely erosion followed by dila-
tion).

’close’ performs morphological closing (namely dilation followed by erosion).

Exercise 10.7 Modify the matrix I, representing the original image, to high-
light the differences between the various operators. Justify your modifications.

Exercise 10.8 Write the MATLAB� code and justify the results obtained for
the image, represented by I, where

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0 0 1 0
0 1 1 1 0 0 1 0 0 1 1 1
0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 1 0 0 1
0 1 0 1 0 0 1 0 1 0 0 1
0 0 1 0 0 0 1 1 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

using the command bwmorph with the various options:

263

BR = bwmorph(I,’bridge’) MAJ = bwmorph(I,’majority’)

CLE = bwmorph(I,’clean’) RV = bwmorph(I,’remove’)

CLO = bwmorph(I,’close’) SH = bwmorph(I,’shrink’,inf)

OP = bwmorph(I,’open’) TK = bwmorph(I,’thicken’,inf)

DG = bwmorph(I,’diag’) TN = bwmorph(I,’thin’,inf)

DL = bwmorph(I,’dilate’) SK = bwmorph(I,’skel’,inf)

ER = bwmorph(I,’erode’) SP = bwmorph(I,’spur’,inf)

FL = bwmorph(I,’fill’) TH = bwmorph(I,’tophat’,inf)

HB = bwmorph(I,’hbreak’) BH = bwmorph(I,’bothat’,inf)

Example 10.2 Consider an image of some non-overlapping grains of rice. This
example will illustrate the use of morphological operators to count the number
of rice grains. The particular morphological operators used are indicated in the
following MATLAB� commands and their effects are shown in Figure 10.10.

264

I = imread(’rice.png’)

figure(1);

clf

subplot(331)

subimage(I)

%

subplot(332)

background = imopen(I,strel(’disk’,5));

subimage(background)

background1 = imfilter(background ,fspecial(’gaussian’,10));

%

subplot(333)

surf(double(background(1:8:end,1:8:end))),zlim([0 255]);

set(gca,’ydir’,’reverse’);

I2 = imsubtract(I,background);

%

subplot(334)

subimage(I2)

%

subplot(335)

I3 = imadjust(I2);

imshow(I3);

%

subplot(336)

level = graythresh(I3);

bw = im2bw(I3,level);

subimage(bw)

%

subplot(337)

[labeled,numObjects] = bwlabel(bw,4);

subimage(labeled);

%

subplot(338)

pseudo color= label2rgb(labeled,@spring,’c’,’shuffle’);

subimage(pseudo color);

%

subplot(339)

pindata=regionprops(labeled,’basic’);

max([pindata.Area]);

hist([pindata.Area],20)

265

Figure 10.10: Images illustrating the use of morphological operators to count
grains of rice.

266

Appendix A

Summation formulae

Finite summations

(i)

n∑
r=1

r =
n(n+ 1)

2

(ii)

n∑
r=1

r2 =
n(n+ 1)(2n+ 1)

6

(iii)

n∑
r=0

ar =
1− an+1

1− a
, a �= 1

(iv)

n∑
r=0

rar =
a[1− (n+ 1)an + nan+1]

(1 − a)2
, a �= 1

267

Infinite summations

(i)
∞∑
r=0

ar =
1

1− a
, for |a| < 1 and diverges for |a| ≥ 1.

(ii)

∞∑
r=0

rar =
a

(1 − a)2
, for |a| < 1 and diverges otherwise.

268

Appendix B

Table of bilateral
z-transforms and properties

B.1 Table of bilateral z-transforms

B.2 Properties of z-transforms

Let C denote the set of complex numbers.
Suppose Z [{x(k)}] = X(z) denotes the bilateral z-transform of {x(k)}, with
region of convergence Rx = {z ∈ C : α1 < |z| < α2}, and Z [{y(k)}] = Y (z)
denotes the bilateral z-transform of {y(k)}, with region of convergence Ry =
{z ∈ C : β1 < |z| < β2}. Let X+(z) = Z [{x(k)ζ(k)}] denote the unilateral
z-transform of {x(k)}.

a) Linearity: For any constants a and b,

Z [{ax(k) + by(k)}] = aX(z) + bY (z)

with region of convergence Rx ∩Ry.

b) Delay/Advance property:

Z [{x(k ±m)}] = z±mX(z), with region of convergence Rx.

Consider the sequence {x(k)ζ(k)} = {x(0), x(1), x(2), . . .}, where {ζ(k)}

269

Sequence Transform Region of convergence

δ(k) 1 all z

akζ(k)
z

z − a
|z| > |a|

−bkζ(−k − 1)
z

z − b
|z| < |b|

k(k − 1) . . . (k − (n− 2))

(n− 1)!
ak−n+1ζ(k)

z

(z − a)n
|z| > |a|

sin(ωk)ζ(k)
z sin(ω)

z2 − 2z cos(ω) + 1
|z| > 1

cos(ωk)ζ(k)
z(z − cos(ω))

z2 − 2z cos(ω) + 1
|z| > 1

−ak

k
ζ(k − 1) loge(1− az−1) |z| > |a|

a−k

k
ζ(−k − 1) loge(1− az) |z| < |a|−1

Table B.1: Table of bilateral z-transforms.

denotes the unit step sequence. Then

Z [{x(k +m)ζ(k)}] = zmX+(z)− zm
m−1∑
j=0

x(j)z−j .

c) Multiplication by an exponential ak:

Z
[{

akx(k)
}]

= X
(z
a

)
,

with region of convergence {z ∈ C : |a|α1 < |z| < |a|α2}.
d) Multiplication by k:

Z [{kx(k)}] = −z
dX

dz
(z), with region of convergence Rx.

270

e) Convolution: For x(k) ∗ y(k) =
∞∑

m=−∞
x(m)y(k −m),

Z [{x(k) ∗ y(k)}] = X(z)Y (z)

with region of convergence Rx ∩Ry.

f) Initial value theorem: For the sequence {x(k)} that is zero for k < k0,
then x(k0) can be evaluated using the result

x(k0) = lim
z→∞

zk0X(z).

g) Final value theorem:
If lim

k→∞
x(k) exists, then lim

k→∞
x(k) = lim

z→1
[z−1(z − 1)X(z)].

If {x(k)} is a causal sequence, then lim
k→∞

x(k) = lim
z→1

[(z − 1)X+(z)].

h) Inversion: If {x(k)} = Z−1 [X(z)] and the singularities of X(z) are poles
of finite order, then

{x(k)} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
all poles of X(z)zk−1

inside C

[
residue of X(z)zk−1

]
, k ≥ 0,

−
∑

all poles of X(z)zk−1

outside C

[
residue of X(z)zk−1

]
, k < 0,

where C is a closed contour which lies within the region of convergence.

271

Appendix C

Tables of Fourier
transforms and properties

All constants, for example A, a, ω0, are assumed to be real and positive.
For finite energy signals, see Table C.1, whilst for power signals , see Table C.2.

C.1 Tables of Fourier transforms

C.2 Properties of the Fourier transform

Suppose F {f(t)} = F (iω) and F {g(t)} = G(iω), where F {·} denotes Fourier
transform.

a) Linearity: For any constants a and b,

F {af(t) + bg(t)} = aF (iω) + bG(iω).

b) Symmetry:

F {F (it)} = 2πf(−ω).

If t �→ f(t) is an even function, then

F {F (it)} = 2πf(ω).

273

Function Transform

e−atζ(t) 1/(a+ iω){
1, |t| < a
0, otherwise

2asinc(ωa)⎧⎨
⎩ A

[
1− |t|

a

]
, |t| < a

0, otherwise
Aasinc2

(ωa
2

)
e−a|t| 2a/(a2 + ω2)

e−at2 (π/a)
1
2 exp

(
−ω2/(4a)

)
1/(a2 + t2) (π/a) exp(−a|ω|)

Table C.1: Table of Fourier transforms for finite energy signals.

Function Transform

1 2πδ(ω)

δ(t) 1

ζ(t) πδ(ω) + 1/(iω)

sgn(t) 2/(iω)

exp(iω0t) 2πδ(ω − ω0)

|t| −2/(ω2)

Table C.2: Table of Fourier transforms for power signals.

274

c) Change of scale: For a real constant α �= 0,

F {f(αt)} =
1

|α|F
(
i
ω

α

)
.

d) Time shift (Delay):

F {f(t− t0)} = F (iω) exp(−iωt0).

e) Frequency shift (Modulation):

F {f(t) exp(iω0t} = F (i(ω − ω0)).

f) Frequency differentiation and integration:

(i) F {−itf(t)} =
dF (iω)

dω

(ii) F
{
f(t)

−it

}
=

∫
F (iω) dω.

g) Time differentiation and integration:

(i) F {f ′(t)} = iωF (iω), assuming f → 0 as t → ±∞.
In general, assuming f, f ′, . . . f (n−1) → 0 as t → ±∞,

F
{
f (n)(t)

}
= (iω)nF (iω).

(ii) F
{∫ t

−∞
f(u) du

}
=

1

iω
F (iω) + πF (0)δ(ω).

h) Convolution:

F {f(t)g(t)} =
1

2π

∫ ∞

−∞
F (iu)G(i(ω − u)) du =

1

2π
F (iω) ∗G(iω)

and

F−1 {F (iω)G(iω)} =

∫ ∞

−∞
f(u)g(t− u) du = f(t) ∗ g(t).

275

Appendix D

Proof of Proposition 4.1

Proof:

μỹ = E [ỹ(k)] = E
[∞∑
m=−∞

w(m)x̃(m, k)

]
=

∞∑
m=−∞

w(m)E [x̃(m, k)]

=

∞∑
m=−∞

w(m)μx̃, since x(k) is wide-sense stationary,

= μx̃

∞∑
m=−∞

w(m).

and, hence, μỹ is independent of k.

Rỹỹ(m1,m2) = E [ỹ(m1)ỹ(m2)]

=
∑
r1

∑
r2

w(r1)w(r2)E [x̃(r1,m1)x̃(r2,m2)]

=
∑
r1

∑
r2

w(r1)w(r2)Rx̃x̃(r1, r2,m2 −m1),

since x(k) is wide-sense stationary.
Clearly, Rỹỹ(m1,m2) is a function of m2 −m1, only.

�

277

Appendix E

Answers to the exercises

E.1 Chapter 1

1. a) linear; time-varying; not memoryless; causal;

b) nonlinear; time-invariant; memoryless; causal;

c) linear; time-invariant; not memoryless; causal;

d) linear; time-varying; not memoryless; non-causal.

2. ζ(k)− ζ(k − 11) + ζ(k − 16)− ζ(k − 21)

3. z(0) = 2, z(1) = 5, z(2) = 6.5, z(3) = 3.25, z(4) = 1.625,

z(5) = 0.8125, z(6) = 0.40625

4.
(1− ak+1)

1− a
ζ(k)

5. a) {5, −7, 7, 5, 16, 2, 20};
b) {(x ∗ y)(k); k = −1 : 1 : 6} = {6, −6, 0, −10, 2, 2, 4, 2}

6. a) ζ(k) − ζ(k −M);

b) (k + 1)ζ(k) + (M − k − 1)ζ(k −M) or, alternatively,
M−1∑
m=0

ζ(k −m).

279

7. (f ∗ g)(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, t ≤ T1,
1
a

(
1− e−a(t−T1)

)
, T1 < t < T2,

1
a

(
e−a(t−T2) − e−a(t−T1)

)
, t ≥ T2.

E.2 Chapter 2

1. a) AR, time-invariant; b) ARMA, time-varying; c) MA, time-invariant.

2. a) 1+az−1+a2z−2+a3z−3+a4z−4+a5z−5, converges for all z except
z = 0;

b) 2z

(
3

2z + 1
+

1

z − 3

)
, 1

2 < |z| < 3;

c)
1

2
+

1

z
− 1

3z2
, converges for all z except z = 0;

d)
z

(z − 1)2
, |z| > 1.

3. x(k) = akζ(k) + ζ(k − 11); X(z) =
z

z − a
+

z−10

z − 1
, |z| > max{1, |a|}

4. (i) (x∗y)(k) = δ(k)−2δ(k−2)+ 1
2ζ(k)−ζ(k−2) and so Z [{(x ∗ y)(k)}] =

1− 2z−2 +
0.5z

z − 1
− z−1

z − 1
.

(ii) X(z) = Z [{x(k)}] = 1 +
0.5z

z − 1
and Y (z) = Z [{y(k)}] = 1 − 2z−2

and so Z [{(x ∗ y)(k)}] = X(z)Y (z) = 1− 2z−2 +
0.5z

z − 1
− z−1

z − 1
.

5. X(z) =
2z3

2z − 1
− z2 − 1

2
z =

1

4

(
z

z − 1
2

)
, |z| > 1

2

6. a)
{
(1 + 2k)ζ(k)

}
; b)

{
[3(4)k−1 − (3 + k)(2)k−2]ζ(k)

}
;

c)
{
(2− 2k−1)ζ(k) − 3

2δ(k)
}
or
{
(2− 2k−1)ζ(k − 1)

}
7. y(k) = 1 + 1

7 (−1)k+1 − 1
7 (

1
6)

k−1

8. a) (1− 2k)ζ(k)− 3kζ(−k − 1); b) (1 + 3k − 2k)ζ(k);

c) (2k − 3k − 1)ζ(−k − 1)

280

9. a) y(k)− 1
4y(k − 2) = x(k)

b) yζ(k) =
[
1
6

(
− 1

2

)k − (
1
2

)k+1
+ 4

3

]
ζ(k).

Since yδ(k) = yζ(k)− yζ(k − 1), it follows that

yδ(k) =
[
1
6

(
− 1

2

)k − (
1
2

)k+1
+ 4

3

]
ζ(k)

−
[
1
6

(
− 1

2

)k−1 −
(
1
2

)k
+ 4

3

]
ζ(k − 1).

Alternatively, since yδ(k) = Z−1 [H(z)],

yδ(k) =
1
2

[(
1
2

)k
+
(
− 1

2

)k]
ζ(k).

The AR process is an IIR process since there are an infinite number
of non-zero terms in {yδ(k)}.

10. x(k) = 2k
[
2 sin

(
π
2 k
)
− 3 cos

(
π
2 k
)]

ζ(k)

11. y(k) = 1
1−a

(1− ak+1)ζ(k);
Stable system since H(z) has a pole at z = a, which lies in the unit circle
in the z-plane.

12. a) y(k)− 1
2y(k − 1) = x(k)

b) Using x=[2 4 4 0 0 0 0]; a=[1 -0.5]; b=[1]; y=filter(b,a,x),
gives y(0) = 2, y(1) = 5, y(2) = 6.5, y(3) = 3.25, y(4) = 1.625, y(5) =
0.8125, y(6) = 0.4063.

c) (i) Yes (ii) Yes

13. a) Yes, since h(k) = 0 for k < 0.

b) Yes, since H(z) has a pole at z = − 1
4 , which lies in {z ∈ C : |z| < 1}.

c) IIR, since h(k) has an infinite number of non-zero terms.

14. a) yδ(k) =
[
7
(
2
5

)k−1 − 13
2

(
3
10

)k−1
]
ζ(k − 1);

yζ(k) =
[
50
21 − 35

3

(
2
5

)k
+ 65

7

(
3
10

)k]
ζ(k)

b) The MATLAB� commands:

a=[1 -0.7 0.12]; b=[0 0.5 0.5];

impz(b,a,21);

stepz(b,a,21)

281

give the following:

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n (samples)

Im
pu

lse
 re

sp
on

se

0 5 10 15 20
0

0.5

1

1.5

2

2.5

n (samples)

St
ep

 re
sp

on
se

15.
[
13
6 − 2

3

(
2
5

)k]
ζ(k) + 1

2 (3)
k+1ζ(−k − 1)

16. a) y(k + 2) = x(k + 2)− x(k + 1) + 1
4y(k + 1) + 1

8y(k);

b) 1
3

[
5(− 1

4)
k − 2(12)

k
]
ζ(k);

c) No, since H(z) has a zero at z = 1.

17. a)
(z − 1)(7z + 9

4)

(z + 1
2)(z − 3

4)
; The region of convergence is {z ∈ C : |z| > 3

4}.

The following plot was obtained from MATLAB� using the com-
mands:
a=[1 -0.25 -0.375]; b=[7 -4.75 -2.25]; fvtool(b,a):

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
Pa

rt

Pole/Zero Plot

b) The system function has poles at z = − 1
2 ,

3
4 , which lie in the unit

circle |z| = 1.

c) No, since the zero z = 1 does not lie inside the unit circle.

282

d) 6δ(k) +
[
3
(
− 1

2

)k − 2
(
3
4

)k]
ζ(k)

e) y(k) = 1
4y(k − 1) + 3

8y(k − 2) + 7x(k)− 19
4 x(k − 1)− 9

4x(k − 2)

18. a) H(z) =
7(z + 2)

4(z − 1
2)(z +

3
4)
; {z ∈ C : |z| > 3

4}

b) Since the filter is stable, the region of convergence is of the form
{z ∈ C : |z| > 3

4}.
Hence, the filter is causal.

c)
[
6− 7

(
1
2

)k
+
(
− 3

4

)k]
ζ(k)

The MATLAB� commands:

a=[1 0.25 -0.375]; b=[0 1.75 3.5];

stepz(b,a,25)

produce the plot:

0 5 10 15 20 25
0

1

2

3

4

5

6

7

n (samples)

Am
pl

itu
de

19. BIBO stable: −1 < α < 1
2

E.3 Chapter 3

1. a) H(e−iθ) = e−iθ(1 + cos(θ));
Since y(k) = 1

2x(k) + x(k − 1) + 1
2x(k − 2), then, the MATLAB�

commands:

283

a=[1]; b=[0.5 1 0.5];

[h,w]=freqz(b,a,256);

mag=abs(h); phase=angle(h);

plot(mag), title(’Amplitude spectrum’);

plot(phase),title(’Phase spectrum’)

give the following plots:

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Amplitude spectrum

0 50 100 150 200 250 300
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
Phase spectrum

b) 1
2ζ(k) + ζ(k − 1) + 1

2ζ(k − 2)

2. a) h(k) =

⎧⎨
⎩

1, k = −1,
1, k = 1,
0, otherwise;

b) no; c) yes;

d) FIR; e) 2 cos(θ); f) yes.

3. a) |H(eiθ)| = 12√
17 + 8 cos(θ)

and argH(eiθ) = tan−1

(
sin(θ)

4 + cos(θ)

)

b) |H(ei0)| = 12

5
, |H(ei

π
3)| = 12√

21
, |H(eiπ)| = 4;

argH(ei0) = argH(eiπ) = 0, argH(ei
π
3) = Θ

def
= tan−1

(√
3

9

)
;

y(k) = 12 +
4√
21

cos
(
1
3π +Θ

)
− 4 sin

(
πk + 1

4π
)

4. |H(eiθ)| = 1

M

∣∣∣∣∣sin
(
θM
2

)
sin

(
θ
2

)
∣∣∣∣∣ =

∣∣∣∣∣sinc
(
θM
2

)
sinc

(
θ
2

)
∣∣∣∣∣;

Using the MATLAB� commands:

284

a=[1]; b=[0.25 0.25 0.25 0.25];

fvtool(b,a)

the following graph was obtained:

0 0.2 0.4 0.6 0.8
−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

Ma
gni

tud
e (

dB
)

Magnitude Response in dB

5. a) H(z) = az/
(
z − 1

2

)
. Since there is a simple pole at z = 1

2 , the filter
is BIBO stable.

b) (i) Since H(eiθ) = a/
(
1− 1

2e
−iθ

)
, the condition |H(ei0)| = 1 gives

a = 1
2 .

(ii) Consider x(k) = 2ei0 − 3�{eiπ3 k}+ 6	{eiπk}.
θ

∣∣H(eiθ)
∣∣ argH(eiθ)

0 1 0

π
3

1√
3

−π
6

π 1
3 0

Therefore, the steady-state output is

y(k) = 2−
√
3 cos

(
(2k − 1)π6

)
+ 2 sin (πk) .

6. a) For θ ∈
[
− 3π

4 , 3π
4

]
, |H(eiθ)| = 4 and argH(eiθ) = −θ.

Therefore, H(eiθ) =

{
4e−iθ, θ ∈

[
− 3π

4 , 3π
4

]
0, otherwise.

The result h(k) =
1

2π

∫ π

−π

H(eiθ)eikθ dθ gives h(k) = 3 sinc
(
3
4π(k − 1)

)
b) IIR

c) noncausal

285

7. a) yes; b) no; c) 1
2 (1− cos(θ));

a=[0 1]; b=[-0.25 0.5 -0.25];

[h,w]=freqz(b,a,256);

mag=abs(h); phase=angle(h);

plot(mag), title(’Amplitude spectrum’);

plot(phase),title(’Phase spectrum’)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Amplitude spectrum

0 50 100 150 200 250 300
−6

−4

−2

0

2

4

6

8

10

12 x 10−15 Phase spectrum

8. a) y(k) = x(k − 1) + 2x(k − 2) + x(k − 3)

b) yδ(k) = δ(k − 1) + 2δ(k − 2) + δ(k − 3);
yζ(k) = ζ(k − 1) + 2ζ(k − 2) + ζ(k − 3)

c) 2|1 + cos(θ)|

9. L(z) has a single simple pole z = −�−1
2 . Since �2 > 1, the pole lies in the

open unit disk in the z-plane;

|L(eiθ)| = �1

√
2(1− cos(θ))

1 + �22 + 2�2 cos(θ)

10. a)
eiθ

eiθ − α
− eiθ

eiθ − 0.8
; c)

91

109
= 0.8349 (4D)

11. H(eiθ) =
1

2eiθ + 1
=

2e−iθ + 1

5 + 4 cos(θ)
;

The commands:

a=[2 1]; b=[0 1];

fvtool(b,a)

286

give:

0 0.2 0.4 0.6 0.8
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Normalized Frequency (×π rad/sample)

M
ag

nit
ud

e
(d

B)

Magnitude Response in dB

12. H(eiθ) =
1− a cos(θ) − ia sin(θ)

1− 2a cos(θ) + a2
; y(k) =

cos(kθ)− a cos((k + 1)θ)

1− 2a cos(θ) + a2

13. H(z) =
2z + 1

(4z − 1)(2z + 1)
;

The system is stable since the poles z = 1
4 , − 1

2 lie in the open unit disk.

The MATLAB� commands:

a=[8 2 -1]; b=[0 2 1];

fvtool(b,a)

give:

0 0.2 0.4 0.6 0.8
−14

−13.5

−13

−12.5

−12

−11.5

−11

−10.5

−10

−9.5

Normalized Frequency (×π rad/sample)

M
ag

nit
ud

e
(d

B)

Magnitude Response in dB

14. |F (iω)| = 2Aω/(α2 + ω2); argF (iω) = −π
2 .

15.
T 2

2π
sinc4

(
1
2ωT

)

287

16. a) E(x) = π
2

b) Show that X(iω) = πf(ω), where f(ω) =

{
1, |t| < 1

0, otherwise
,

and so E(x) = π

17. g(t) =
a

2π
[sinc (a(t+ 1)) + sinc (a(t− 1))]; At least 0.5 Hz.

18. b) Not exactly, since X(iω) is not bandlimited.

c) Since X(iω) is not bandlimited, there is no Nyquist rate.

19. (i) 6π[δ(ω − 10π) + δ(ω + 10π)]

(ii) fs = 7,

Xs(iω) = 42π

∞∑
n=−∞

[δ(ω − 10π − 14πn) + δ(ω + 10π − 14πn)];

fs = 14,

Xs(iω) = 84π

∞∑
n=−∞

[δ(ω − 10π − 28πn) + δ(ω + 10π − 28πn)];

Xs(iω)H(iω) =

{
6π[δ(ω − 4π) + δ(ω + 4π)], fs = 7,

6π[δ(ω − 10π) + δ(ω + 10π)], fs = 14.

20. 112; 0.0002 s

21. a) 20 s; b) 0.002π rad; c) 0.05Hz; d) 50π rad./sec.;

e) P (10) = P (990) = 0.01, P (11) = P (989) = 0.002, P (n) = 0 otherwise.

22. a) Spacing: 25
6 π

Frequencies: �[X(n)] : 0, 25
2 π, 125

6 π, 100
3 π, 275

6 π, 325
6 π rad/sec

	[X(n)] : 25
2 π, 325

6 π rad/sec

b) P (0) = 1
256 , P (3) = P (13) = 41

256 , P (5) = P (11) = 9
256 , P (8) = 1

64 ,
P (n) = 0 otherwise.

23. The MATLAB� commands:

x=[j 1+j 2 1-j -j];

sx=sum(x.*conj(x))

y=fft(x);

syn=sum(y.*conj(y))/5

288

produce the results: sx=10 and syn=10.

24. P (0) = 0, P (1) = 9
32 = 0.28125, P (2) = 1

16 = 0.0625,
P (3) = 9

32 = 0.28125

These results can be obtained using MATLAB� with the commands:

x=[0 1.5*(1+j) 1 1.5*(1-j)];

pspec=x.*conj(x)/(length(x)∧2)

25. The following MATLAB� commands:

a=[1.0000 1.1619 0.6959 0.1378];

b=[0.0495 -0.1486 0.1486 -0.0495];

[h,w]=freqz(b,a,256);

mag=abs(h); phase=angle(h);

figure(1); plot(w/pi,mag), grid,

title(’Amplitude spectrum’),

xlabel(’Frequency in multiples of pi’);

figure(2); plot(w/pi,phase), grid,

title(’Phase spectrum’),

xlabel(’Frequency in multiples of pi’);

k=[0:100];

x=cos(0.3*pi*k)-2*cos(0.6*pi*k)+cos(0.7*pi*k)...

...+4*sin(0.8*pi*k)-3*sin(0.9*pi*k);

y=filter(b,a,x);

w=2*pi/length(y)*k; as=abs(fft(y));

figure(3); plot(w/pi,as), grid,

title(’Amplitude spectrum’),

xlabel(’Frequency in multiples of pi’)

produce the graphs illustrated in Figures E.1 and E.2.
Figure E.1 indicates that the filter is high-pass and this is confirmed in
Figure E.2, which shows that the components of {x(k)} with frequencies
0.3π, 0.6π and 0.7π have been attenuated by the high-pass filter and the
components with frequencies 0.8π and 0.9π have been passed through the
filter with little attenuation.

289

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Amplitude spectrum

Frequency in multiples of pi
0 0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0

1

2

3

4
Phase spectrum

Frequency in multiples of pi

Figure E.1: Amplitude and phase spectra for the filter.

0 0.5 1 1.5 2
0

20

40

60

80

100

120

140
Amplitude spectrum

Frequency in multiples of pi

Figure E.2: Amplitude spectrum for the filtered signal.

290

E.4 Chapter 4

1. Ryy(k) = σ2
xh(k)∗h(−k) and Pav(y(k)) = σ2

xh(0)∗h(0) = σ2
x

∞∑
k=−∞

[h(k)]2.

2. Rnm(k) = (h ∗Rnn)(k) =
1
4δ(k) +

1
8δ(k − 3);

[Hint: To find Rmm(k), you may use: Z [{h(k) ∗ h(−k)}] = H(z)H(z−1)
and then take inverse z-transforms to find h(k) ∗ h(−k).]

3. c) 448
405σ

2
x

4. μ2
x + 1

2σ
2
x

5. a) Rww(k) = 2δ(k)− δ(k− 3)− δ(k+3) and Rnw(k) = δ(k)− δ(k− 3)

b) w2(k) = 2; g(k) = kζ(k)− (k − 3)ζ(k − 3)
or g(k) = δ(k − 1) + 2δ(k − 2) + 3ζ(k − 3)

c) (S/N)out =
9
4 .

9. 1
2e

−|τ |

10. a) 4− cos(θ); b) 4

11.
c(a− a−1)z

(z − a)(z − a−1)
, |a| < |z| < |a|−1

12. Rxx(k) =
1
2δ(k + 1) + δ(k) + 1

2δ(k − 1), Pav(x) = 1, σ2
x = 3

4

13. a)
z(2z − 0.25)(2− 0.25z)

(z − 0.5)(z + 0.25)(1− 0.5z)(1 + 0.25z)
, 0.5 < |z| < 2

b) y2(k) =
376

45

14. H(z) =
2.5z

(z − 0.2)(z − 0.6)
; h(k) = 6.25[(0.6)k − (0.2)k]ζ(k)

15. a) Now Snv(z) = H(z)Snn(z) and, therefore,

H(z) = Snv(z)/Snn(z) =
2z + 1

4z − 3
.

c) v2(k) = Rvv(0) = Z−1

[
12z

(4z − 3)(4− 3z)

] ∣∣∣∣∣
k=0

=
12

7
.

291

16. Syy(θ) = σ2
x cos

2
(
1
2θ
)
; Sxy(z) =

1
2σ

2
x

(
1 + z−1

)
17. a) (i) Rxx(k) = 2δ(k)

(ii) Sxx(θ) = 2

(iii) Syy(θ) =

{
8, 0 < |θ| < π

2 ,

0, π
2 < |θ| < π,

Syy(θ) = Syy(θ + 2π);

b) (i) The same as that in Exercise 17. a).

(ii) The same as that in Exercise 17. b).

(iii) Syy(θ) =

{
8, π

4 < |θ| < π
2 ,

0, otherwise,

Syy(θ) = Syy(θ + 2π);

y2(k) =

{
4, for Exercise 17. a)
2, for Exercise 17. b)

18. 1.695× 10−6

292

Bibliography

[Balmer, 1997] Balmer, L. (1997). Signals and systems - an introduction. Pren-
tice Hall, Harlow, Essex, U.K., 2nd edition.

[Bellanger, 1990] Bellanger, M. (1990). Digital processing of signals - theory
and practice. John Wiley & Sons, Chichester, West Sussex, U.K.

[Bernd, 2004] Bernd, J. (2004). Practical Handbook on image processing for
scientific and technical applications. CRC Press, Boca Raton, Florida, U.S.A.,
2nd edition.

[Bovik, 2005] Bovik, A. (2005). Handbook of Image and Video Processing. El-
sevier Academic Press, San Diego, California, U.S.A.

[Chapman et al., 1997] Chapman, M., Goodall, D., and Steele, N. (1997). Sig-
nal processing in electronic communications. Horwood Publishing, Chichester,
West Sussex, U.K.

[Commowick et al., 2008] Commowick, O., Arsigny, V., Isambert, A., Costa, J.,
Dhermain, F., Bidault, F., Bondiau, P.-Y., Ayache, N., and Malandain, G.
(2008). An efficient locally affine framework for the smooth registration of
anatomical structures. Medical Image Analysis, 12:427–441.

[Deller et al., 2000] Deller, J., Hansen, J., and Proakis, J. (2000). Discrete
time processing of speech signals. Wiley-IEEE Press, New York, U.S.A., 2nd
edition.

[Flanagan, 1972] Flanagan, J. (1972). Speech analysis, synthesis and perception.
Springer-Verlag, New York, U.S.A.

293

[Forsyth and Ponce, 2003] Forsyth, D. and Ponce, J. (2003). Computer Vision
A Modern Approach, Int. Ed. Pearson Education, Upper Saddle River, New
Jersey, U.S.A.

[Gabel and Roberts, 1987] Gabel, R. and Roberts, R. (1987). Signals and linear
systems. John Wiley & Sons, New York, U.S.A., 3rd edition.

[Goldberg and Riek, 2000] Goldberg, R. and Riek, L. (2000). A practical hand-
book of speech coders. CRC Press, Boca Raton, Florida, U.S.A.

[Gonzalez et al., 2004] Gonzalez, R., Woods, R., and Eddins, S. (2004). Digi-
tal image processing using MATLAB�. Prentice Hall (Pearson Education),
Upper Saddle River, New Jersey, U.S.A.

[Gonzalez et al., 2009] Gonzalez, R., Woods, R., and Eddins, S. (2009). Dig-
ital image processing using MATLAB�. Gatesmark Publishing, Knoxville,
Tennessee, U.S.A., 2nd edition.

[Haas and Burnham, 2008] Haas, O. and Burnham, K., editors (2008). Intelli-
gent and adaptive systems in medicine (Part II Artificial Intelligence Applied
to Medicine). CRC Press (Taylor & Francis), New York, U.S.A.

[Haddad and Parsons, 1991] Haddad, R. and Parsons, T. (1991). Digital Signal
Processing - theory, applications and hardware, volume I. Computer Science
Press, New York, U.S.A.

[Ingle and Proakis, 1997] Ingle, V. K. and Proakis, J. (1997). Digital signal
processing - using MATLAB� V.4. PWS Publishing Company, Boston, MA,
U.S.A.

[Jackson, 1996] Jackson, L. (1996). Digital filters and signal processing. Kluwer
Academic Publishers, Norwell, MA, U.S.A., 3rd edition.

[Jong, 1982] Jong, M. (1982). Methods of discrete signal and system analysis.
McGraw-Hill, New York, U.S.A.

[Kay, 1987] Kay, S. (1987). Modern Spectral Estimation: Theory and Applica-
tion. Prentice-Hall, Englewood Cliffs, New Jersey, U.S.A.

[Makhoul, 1975] Makhoul, J. (1975). Linear prediction: A tutorial review. Proc.
IEEE, 63:561–580.

294

[Marple, 1987] Marple, S. (1987). Digital spectral analysis with applications.
Prentice Hall, New Jersey, U.S.A.

[Nixon and Alberto, 2002] Nixon, M. and Alberto, A. (2002). Feature extraction
and image processing. Newnes (Elsevier), Burlington, Massachusetts, U.S.A.

[Oppenheim et al., 1999] Oppenheim, A., Schafer, R., and Buck, J. (1999).
Discrete-time signal processing. Prentice-Hall International, London, U.K.,
2nd edition.

[Otsu, 1979] Otsu, N. (1979). A threshold selection method from gray-level
histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9:62–66.

[Pan et al., 2004] Pan, T., Lee, T., Rietzel, E., and Chen, G. (2004). 4D-CT
imaging of a volume influenced by respiratory motion using multi slice CT.
Med. Phys., 34:333–340.

[Papamichalis, 1987] Papamichalis, P. (1987). Practical approaches to speech
coding. Prentice Hall, Upper Saddle River, New Jersey, U.S.A.

[Proakis and Manolakis, 1989] Proakis, J. and Manolakis, D. (1989). Introduc-
tion to digital signal processing. Macmillan Publishing Company, New York,
U.S.A.

[Quatieri, 2001] Quatieri, T. (2001). Discrete-time speech signal processing -
principles and practice. Prentice-Hall, Upper Saddle River, New Jersey,
U.S.A.

[Rabiner and Schafer, 1978] Rabiner, L. and Schafer, R. (1978). Digital pro-
cessing of speech signals. Prentice-Hall, Upper Saddle River, New Jersey,
U.S.A.

[Ramamurthy and Spanias, 2009] Ramamurthy, K. and Spanias, A. (2009).
Matlab software for the code excited linear prediction algorithm: the federal
standard - 1016. Morgan and Claypool publishers, San Rafael, California,
U.S.A.

[Sims et al., 2009] Sims, R., Isambert, A., Gregoire, V., Bidault, F., Fresco, L.,
Sage, J., Mills, J., Bourhis, J., Lefkopoulos, D., Commowick, O., Benkebil,
M., and Malandain, G. (2009). A pre-clinical assessment of an atlas-based au-
tomatic segmentation tool for the head and neck. Radiotherapy and Oncology,
93:474–478.

295

[Sonka et al., 1999] Sonka, M., Hlavac, V., and Boyle, R. (1999). Image process-
ing, analysis, and machine vision. PWS Publishing, Pacific Grove, California,
U.S.A., 2nd edition.

[Sonke et al., 2005] Sonke, J., Zijp, L., Remeijer, P., and van Herk, M. (2005).
Respiratory correlated cone beam CT. Med. Phys., 32:1176–1186.

[Stearns and Hush, 1990] Stearns, S. and Hush, D. (1990). Digital signal anal-
ysis. Prentice-Hall, Englewood Cliffs, New Jersey, U.S.A., 2nd edition.

[Umbaugh, 2010] Umbaugh, S. (2010). Digital image processing and analysis:
human and computer vision applications with CVIPtools. CRC Press (Taylor
& Francis), Boca Raton, Florida, U.S.A., 2nd edition.

[Ziemer et al., 1998] Ziemer, R., Tranter, W., and Fannin, D. (1998). Signals
and systems - continuous and discrete. Prentice Hall, Upper Saddle River,
New Jersey, U.S.A.

[Zuiderveld, 1994] Zuiderveld, K. (1994). Contrast limited adaptive histograph
equalization. Graphic Gems IV (Academic Press Professional), San Diego,
California, U.S.A.

Useful web addresses for image processing

Some useful web sites can be found at:

http://homepages.inf.ed.ac.uk/rbf/HIPR2/hipr_top.htm

http://www.fftw.org/links.html

http://www.imageprocessingbook.com

http://www.fftw.org/links.html

http://www.fftw.org/links.html

http://www.efg2.com/Lab/Library/ImageProcessing/Algorithms.htm#GeneralAlgorithms

http://www-2.cs.cmu.edu/~cil/vision.html

http://www-video.eecs.berkeley.edu/

296

Signal processing index
amplitude response, 46
amplitude spectrum, 55
analogue frequency resolution, 70
analogue signal, 4
analogue systems, 4
anti-causal sequence, 28
AR process, 16
model, 102

ARMA process, 16
autocorrelation function, 91
properties, 92

autocovariance function, 91
average power, 56, 74

band-pass filter, 75
band-reject filter, 75
bandlimited signal, 64
bandwidth, 64

bandwidth, 34
BIBO stability, 38

causality, 6, 28
anti-causal signal, 28
causal signal, 28
causal system, 6, 28

comb function, 62
continuous-time signal, 4
continuous-time systems, 4
convolution, 6
Fourier transform properties, 59
properties, 8
time-indices, 11
z-transform property, 19, 271

cross-correlation function, 100
properties, 100

cross-covariance function, 100

deterministic signal, 6

297

difference equation, 16, 25
order, 16

digital filter, 16
digital frequency resolution, 70
digital signal, 4
digital systems, 4
discrete Fourier transform (DFT), 68
fast Fourier transforms, 69
inverse discrete Fourier transform, 69

discrete linear models, 15
discrete-time Fourier transform (DTFT), 68
discrete-time signal, 4
discrete-time systems, 4

energy, 56, 71
finite energy, 56
Parseval’s relation, 71

energy spectral density, 57
energy spectrum, 57

Filter Visualization Tool, 32
fvtool, 32, 52

filters, 15
all-pole, 37
AR filters, 37, 75
ARMA filters, 29, 75
bandwidth, 76
Butterworth, 55
Chebyshev, 55
difference equation realization, 16
digital, 75
FIR filters, 29
stability, 39
IIR filters, 29
MA filters, 29, 75
stability, 39
time-invariant, 16
transversal filters, 29

FIR system, 28

298

formants, 34
estimation, 108

Fourier transform, 55
Dirchlet conditions, 56
inverse transform, 55
Parseval’s theorem, 57
periodic signals, 60
power signals, 59
properties, 57

frequency response, 46
properties, 46

frequency spectrum, 55

gain spectrum, 46

high-pass filter, 75

impulse sequence, 6
convolution property, 8
impulse response, 27

linear predictive filter, 102
lattice filter formulation, 105
partial correlation coefficients, 105
reflection coefficients, 105

linear system, 4
difference equation realization, 16
response to random inputs, 109, 120

lip radiation model, 37
lossless tube model, 34
low-pass filter, 75

MA process, 16
magnitude response, 46
memoryless system, 6
minimum-phase systems, 39

nasal tract, 34
noise, 6
nonlinear system, 4

299

phase response, 46
phase spectrum, 55
phase-shift spectrum, 46
pitch period, 34
estimation using autocorrelation function, 96
estimation using linear predictive coding, 108
estimation using power spectrum, 98

power spectral density, 117
Wiener-Khinchine theorem, 117

power spectrum, 75
pulse sequence, 6

quantized signal, 4

random process, 89
average power, 92
energy, 92
ergodicity, 92
expected value, 90
stationary in the wide-sense, 91
time autocorrelation function, 91
time average, 91
time variance, 91
weakly stationary, 91
white random process, 101
white-noise process, 101

random variable, 90
mean value, 90
variance, 90

reflection coefficient, 35

sampled-data signal, 4
sampling, 63
aliasing, 65
sampling theorem, 66

signal-to-noise ratio, 114
speech gain parameter, 37
estimation, 107

speech production model, 32

300

speech quantization and encoding, 125
differential pulse code modulation, 127
pulse code modulation, 125

speech sounds, 34
fricatives, 34
plosive, 34
unvoiced, 34
voiced, 34

steady-state response, 47
step sequence, 6
step response, 30

stochastic signal, 6
system function, 30
system identification, 124

time autocorrelation function, 91
time average, 91
time variance, 91
time-invariant system, 6, 27
time-varying system, 6

unit comb function, 62

vocal tract, 34
model, 37
system function, 37

weakly stationary random process, 91
white random process, 101
white-noise process, 101
window function, 77
Bartlett, 79
Blackman, 80
Gibb’s phenomenon, 79
Hamming, 80
Hann, 79
rectangular, 78

z-transform, 16
bilateral, 17

301

exponential property, 19, 270
Final Value Theorem, 20, 55, 271
Initial Value Theorem, 19, 271
inverse, 21
residue method, 21, 271
properties, 18
region of convergence, 17, 18
table, 18, 269
unilateral, 17, 26

302

Image processing index

arithmetic operators, 196
imabsdiff, 196
imadd, 196
imcomplement, 196
imdivide, 196
imlincomb, 196
immultiply, 196
imsubtract, 196

binary image, 140
brightest points in the image, 217
brightness adjustment, 196
addition, 199

colormap, 140
connectivity, 259
contrast adjustment, 184
division, 201
linear combination, 201
multiplication, 201

contrast of bright regions, 204
contrast-limited adaptive histogram equalization, 187
convolution, 206
’conv’, 209
conv2, 208
kernel, 206
two dimensional using MATLAB�, 206

correlation, 207
’corr’, 209
filter2, 209
kernel, 207
matrix of weights, 207

darkest points in the image, 217
data types, 141
logical, 141
uint16, 141, 195

303

uint8, 141, 195
displaying an image, 145
image tool navigation aid imtool, 155
imshow, 145, 155
subimage, 157

edge detection, 205, 219
improfile, 223

edge detector
zero-crossing method, 232

enhancing edges, 211
Euler number, 258
bweuler, 258

filter, 205, 206
adaptive noise-removal filtering, 212
average, 211
boundary options, 209
’circular’, 209
’replicate’, 209
’symmetric’, 209
edge, 211
’canny’, 212
’log’, 212
’prewitt’, 212
’roberts’, 212
’zerocross’, 212
filter2, 208
filters the multi-dimensional array, 208
imfilter, 208, 211
FIR filter, 208
gaussian, 211
high pass, 211
laplacian, 211
log, 211
low pass, 211
low pass filter, 212, 218
medfilt2, 212
ordfilt2, 212

304

prewitt, 211
size options, 209
’full’, 209
’same’, 209
smoothing filter, 213
sobel, 211
unsharp, 211
wiener2, 212

frequency domain filtering, 205
filter design, 212

gradient function, 219
the Laplacian, 220

gradient masks, 227
gradient operators, 227
Canny operator, 231
Frei-Chen masks, 230
Kirsch compass mask, 229
Laplacian of Gaussian, 232
Prewitt operator, 227
Roberts operator, 227
Robonson compass mask, 230
Sobel operator, 228

grey level operations, 195
imlincomb, 195

grey-level images, 139

histogram, 171
equalisation, 185
adapthisteq, 187
histeq, 187
imhist, 171
NoOfBins, 171
stretching, 180
imadjust, 183

image brightening, 204
image conversions, 142
demosaic, 142

305

dither, 142
gray2ind, 143
grayslice, 143
hsv2rgb, 143
im2bw, 142, 143
im2double, 142
im2uint16, 142
im2uint8, 142
ind2gray, 143
ind2rgb, 143
mat2gray, 143
rgb2gray, 143
rgb2ind, 144

image file formats, 145
Analyze 7.5, 148
Interfile, 149

image formats, 146
hdrread, 146

image representation, 138
MyStillImage, 138
pixel, 139

image type, 142
truecolor, 142

indexed image, 140

kernels, 205

log transform, 203

masks, 205
mathematical morphology, 176, 243
mean filters, 214
arithmetic mean filter, 214
contraharmonic mean filter, 214
geometric mean filter, 214
harmonic mean filter, 214

metadata, 147
morphological operators, 244
bwmorph

306

’bothat’, 262
’bridge’, 262
’clean’, 262
’close’, 263
’dilate’, 263
’erode’, 263
’hbreak’, 263
’majority’, 263
’open’, 263
’remove’, 263
’spur’, 263
’tophat’, 262
closing operation, 254
combining dilation and erosion, 254
dilation operator, 246
properties, 246
erosion operator, 247
properties, 248
hit-and-miss operation, 255
opening operation, 254
skeleton operation, 257
using bwmorph, 258
thicken, 259
thinning operation, 259

movement detection, 199
movie files, 149
create a frame using aviread, 150
create a frame using mmreader, 151
information, 149
play using implay and movie, 150

negative image, 198
noise, 212
’salt’ noise, 217
‘pepper’ noise, 217
addition of noise, 233
imnoise, 233
additive Gaussian white noise, 212
bipolar impulse noise, 216

307

noise in imaging, 232
removing noise, 237
unipolar impulse noise, 216

power law transform, 204

quantization, 164
gray2ind, 165
imapprox, 165

reading images, 144
DICOM images, 147
dicomread, 144
imread, 144

RGB images, 139

sampling
re-sampling images using imresize, 158
sampling images, 157

set notations, 243
complement, 244
difference, 244
intersection, 244
union, 244

smoothing, 205
smoothing images, 211
spatial domain filtering, 205
spatial filters, 205, 215
alpha-trimmed mean filter, 218
filter design, 212
median filter, 216
ordfilt2, 216
ordfilt2, 216
midpoint filter, 217
minimum filter, 217
order-statistics filters, 215
ordfilt2, 216
rotationally invariant, 208

square root transformation, 204

308

stretch dark regions, 204
stretching images, 201
division, 201

structuring elements, 250
construction, 250
strel, 250

templates, 205
thresholding, 176
adaptive, 180
global
graythresh, 179
Otsu’s method, 179

tonemap function, 146
types of images
high dynamic range, 146

voxel, 139

windows, 205
writing images, 144
DICOM images, 147
dicomwrite, 144
imwrite, 144

309

	Contents
	Preface
	Out line of the book
	Acknowledgements

	Glossary
	Nomenclature
	Useful MATLAB commands forimageprocessing

	List of Figures
	List ofTables
	Part I. Signal Processing
	Chapter 1. Signals and systems
	1.1. Introduction
	1.2. Classification of signals and systems
	1.3 Deterministic/stochastic signals
	1.4. Convolution of signals
	1.5. Exercises

	Chapter 2. System models, responses and the system function
	2.1. Introduction
	2.2. Discrete linear models and filters
	2.3. z-transforms
	2.3.1. z-transformofasequence
	2.3.2. The inverse z-transform

	2.4. Solution of linear difference equations with constant coefficients
	2.5. Discrete-time system responses
	2.5.1. Theimpulseresponse
	2.5.2. Causality, FIR/IIR systems/filters and the system function
	2.5.3. The step response

	2.6. A voiced/unvoiced speech production model for speech processing
	2.6.1. Physiological aspects of speech production
	2.6.2. Lossless tube model [optional]
	2.6.3. Digital speech production model

	2.7. System function and BIBO stability
	2.8. Exercises

	Chapter 3. Frequency response, Fourier spectra and sampling
	3.1. Introduction
	3.2. Frequency and steady-state response
	3.3. The Fourier transform
	3.3.1. Properties of the Fourier transform
	3.3.2. Fourier transform of power signals
	3.3.3. Fourier transforms of periodic signals

	3.4. The sampling theorem and aliasing
	3.5. The discrete Fourier transform (DFT)
	3.6. Discrete spectra
	3.6.1 Powerspectrum

	3.7. Digital filters
	3.8. Windows
	3.9. Exercises

	Chapter 4. Response of linear systems to random inputs
	4.1. Introduction
	4.2. Random processes
	4.3. Autocorrelation/autocovariance functions
	4.3.1. Properties of the autocorrelation function
	4.3.2. Pitch period estimation for voiced speech

	4.4. Cross-correlation and cross-covariance functions
	4.4.1. Properties of the cross-correlation function

	4.5. White-noise process
	4.6. AR models and linear predictive filters
	4.6.1. Estimation of prediction coefficients for a speech signal and the speech gain parameter
	4.6.2. Formant estimation for voiced speech

	4.7. Response of linear time-invariant systems with random inputs
	4.8. Power spectral density
	4.9. Response of a linear, time-invariant filter
	4.10. Application to system identification
	4.11. Speech quantization and encoding
	4.11.1. Pulse code modulation (PCM)
	4.11.2. Differential pulse code modulation (DPCM)
	4.11.3. Response of linear filters to quantization noise

	4.12. Exercises

	Part II. Image Processing
	Chapter 5. Digital image processing fundamentals
	5.1. Introduction
	5.2 Image representation
	5.3. Type of images with MATLAB
	5.4. Converting data classes and image types
	5.4.1. Data types and conversions
	5.4.2. Image types and conversions

	5.5. Reading and writing images
	5.5.1. Reading and writing DICOM images

	5.6. Manipulating images obtained from movies in MATLAB
	5.7. Displaying images with MATLAB
	5.7.1. Image Tool Navigation Aids: imtool
	5.7.2. Displaying an image using ‘imshow’

	5.8. Sampling
	5.8.1. Re-sampling an image with the aid of MATLAB

	5.9. Quantization
	5.10. Conclusions

	Chapter 6. Histogram processing
	6.1. Thresholding
	6.1.1. An example illustrating the segmentation of coins based on histogram information
	6.1.2. Global thresholding
	6.1.3. Adaptive thresholding

	6.2. Histogram stretching
	6.3. Histogram equalisation
	6.4. Summary

	Chapter 7. Grey level operations
	7.1. Point operation on images
	7.2. Arithmetic operators in the MATLAB image processing toolbox
	7.2.1. Subtraction: brightness, negative, and movement
	7.2.2. Addition: brightness adjustment
	7.2.3. Multiplication: contrast adjustment
	7.2.4. Division: contrast adjustment
	7.2.5. Linear combination: stretching and contrast adjustment

	7.3. Log transformation
	7.4. Power law transformation

	Chapter 8. Spatial andfrequency domain filtering
	8.1. Spatialfilters
	8.2. Two dimensional convolution and correlation in MATLAB
	8.2.1. Convolution
	8.2.2. Correlation
	8.2.3. Filtering

	8.3. Using a MATLAB pre-defined filter in the spatial domain

	Chapter 9. Smoothing, averaging and low pass filters
	9.1. Mean filters
	9.1.1 Arithmetic mean filter
	9.1.2. Geometric mean filter
	9.1.3. Harmonic mean filter
	9.1.4. Contraharmonic mean filter

	9.2 Order-statistics filters
	9.2.1. Median filter for bipolar and unipolar impulse noise
	9.2.2. Minimum filter for finding the darkest points in the image, with 'salt’ noise
	9.2.3. Maximum filter for finding the brightest points in the image, with ‘pepper’ noise
	9.2.4. Midpoint filter for randomly distributed noise
	9.2.5. Alpha-trimmed mean filter for a combination of noise types

	9.3. Edge detection
	9.3.1. The gradient (a first order derivative)
	9.3.2. The Laplacian
	9.3.3. Gradient operators and masks

	9.4. Noise in imaging
	9.5. Adding noise to images using MATLAB
	9.6. Summary
	9.7. Removing noise

	Chapter 10. Mathematical morphology and set notations
	10.1. Fundamental morphological operators
	10.1.1. The dilationoperator, ⊕, for bridging gaps
	10.1.2. The erosion operator, ⊕, for eliminating irrelevant details

	10.2. Structuring elements
	10.2.1. Constructing a structuring element in MATLAB®
	10.2.2. Examples of structuring elements

	10.3. Combining dilation and erosion
	10.3.1. Opening, denoted by o
	10.3.2. Closing, denoted by •

	10.4. Hit-and-Miss transformation
	10.5. Skeleton
	10.5.1. The Euler number determined using MATLAB®

	10.6. Thinning
	10.7. Thicken
	10.8. Top hat
	10.9. Bottom hat
	10.10. Morphological operations implemented in bwmorph

	Appendix A. Summation formulae
	Appendix B. Table of bilateral z-transforms and properties
	B.1. Table of bilateral z-transforms
	B.2. Properties of z-transforms

	Appendix C. Tables of Fourier transforms and properties
	C.1 Tables of Fourier transforms
	C.2 Properties of the Fourier transform

	Appendix D. Proof of Proposition 4.1
	Appendix E. Answers to the exercises
	E.1 Chapter 1.
	E.2 Chapter 2.
	E.3 Chapter 3.
	E.4 Chapter 4.

	Bibliography
	Signal processing index
	Image processing index

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 None
 Left
 14.1732
 14.1732

 Both
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 0
 337
 336
 337

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 20.00, distance 10.00 (points)
 Add frames around each page: no
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 50 down, columns 50 across
 Align: centre
 Registration colour: All separations
 PDF/X handling: Ignore PDF/X
 Annotations and form fields: UNKNOWN

 0.0000
 Prompt
 10.0001
 20.0001
 1
 Corners
 0.2999
 ToFit
 50
 50
 1.2000
 FormsAndFields
 0
 0
 1
 0.0000
 0
 IgnoreAll

 D:20110728161932
 841.8898
 a4
 Blank
 595.2756

 Tall
 886
 110

 0.0000
 AllSeps
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

