ISSN 1507-3858

Gregory (Grzegorz) E. Kersten, Dmitry Gimon

InterNeg Research Center J. Molson School of Business, Concordia University Montreal, Canada e-mail: {gregory, d.gimon}@jmsb.concordia.ca

CONCESSION-MAKING IN MULTI-BILATERAL NEGOTIATIONS AND MULTI-ATTRIBUTE AUCTIONS¹

Abstract: Reverse auctions and negotiations are two common procurement mechanisms. The drawback of many auctions is their sole focus on price. The drawback of negotiations is that they are sequential, slow and costly. The Internet enables multi-attribute auctions and multi-bilateral multi-attribute negotiations efficiently. In both processes concession-making plays a key role. The paper presents typology of concessions, which has been empirically verified. The results show that: (1) bidders and negotiators use all types of permissible concessions; (2) bidders make more concessions in auctions than in negotiations; and (3) the use of single-and multiple-attribute concessions differs between auctions and negotiations. The results also show that buyers obtain the highest profit through auctions, then competitive negotiations and the lowest through cooperative negotiations. The reverse is true for the sellers.

Keywords: reverse auctions, multi-attribute auctions, multi-bilateral negotiations, concession-making, behavioral experiments.

1. Introduction

In social interactions people need to hear, accommodate and even accept arguments made by others. This means that often they need to make concessions. The popular meaning of concession is giving away something to a person who asked for it, or yielding. Concession-making in negotiations has been extensively studied experimentally and in the field [Cialdini et al. 1975; Esser, Komorita 1975; Kwon, Weingart 2004]. Research shows that negotiators make concessions in order to move towards an agreement, prevent the counterpart from leaving the negotiation and to encourage counterpart to reciprocate [Komorita, Esser 1975; Bateman 1980].

There is more to negotiation than concession-making. Concessions are focused on the substantive issues and discount education and learning, and it is learning that may be the key to successful negotiations [Zartman 1977; Spector 2007]. Such

¹ Selected parts of this article were published under non-exclusive copyright in *Proceedings of the Federated Conference on Computer Science and Information Systems FedCSIS 2012* [Kersten, Gimon 2012].

widely accepted concepts as a "win-win negotiation" may rely on the negotiators' realization that they may not be in opposition and that there may be alternatives that satisfy everybody's needs [Fisher, Ury 1983; Schneider 2002; Raiffa et al. 2003]. Admittedly though, in commercial and business exchanges, concessions play a key role in reaching an agreement.

1.1. Concession-making

Concession-making may appear to be a simple process. According to Pruitt [1981], it is a change of the negotiator's position that reduces the level of benefit sought and is seen as an improvement by the counterpart. Concessions, we are told, are advantageous because of their potential – if both parties make concessions, then they should reach an agreement. However, the relationship between concessions and agreement is, as we show in this paper, not as straightforward as it appears.

Even if we assume that concession is the key ingredient of reaching an agreement, we need to determine when and what concessions should be made in order to achieve an agreement that is beneficial to the concession-maker and/or to both parties. There is certain ambiguity regarding (1) the concessions' contribution to the probability of reaching an agreement, and (2) the agreement's value (utility) to each party and to both parties jointly.

The theory of gradual reciprocation assumes that concessions should be contingent so that they can be reciprocated [Osgood 1962]. This theory may be contrasted with another early theory of a hardening of the concession-taker position [Siegel et al. 1961]. Thompson [1996] proposed a strategic concessions model in which one party's first offer is the best possible solution for this party. The probability that it will be rejected by the counterpart is high. When this happens, then the party proceeds with the next most preferred solution (i.e. makes a minimal concession), then the next one, and so on.

Concession-making becomes more complex when a negotiation concerns multiple attributes and the negotiators have different preferences over attributes and their values. If the negotiators have no information about each other's preferences, then concession-making may lead to a very bad agreement, even in a single-attribute negotiation [Follett 1940; Fisher, Ury 1983]. Such a possibility is more likely in multi-attribute negotiations. One way to alleviate this problem is to make concessions on one attribute at a time and ask whether the counterpart prefers the new offer over the previous one. This process can be coupled with a tit-for-tat (i.e. reciprocal) rule [Shakun 2005]. If, however, the negotiators do not exchange information about their preferences or do not provide concrete feedback regarding concessions, then concession monotonicity cannot be assured.

Based on the assumed contribution of concessions to agreements, a number of algorithms have been formulated with the purpose to support human negotiators [Chen et al. 2005; Kersten 2005] and construct negotiation software agents [Meyer

et al. 2004; Lopes, Coelho 2010; Yang et al. 2010]. To account for the lack of information that the concession-maker has about the preferences and interests of the concession-taker, several methods have been proposed, including, the structural (dis)similarity of alternatives [Faratin et al. 1998] and the monotonicity and strength of the parties opposition to the preferences over the negotiated attributes [Kersten, Noronha 1998; Endriss 2006]. These and other works rely on the typical, albeit inaccurate, concept of concession, namely that of making a "lose-win" concession, in which the concession-maker accepts a loss for the benefit of the concession-taker to improve their position, is necessary to reach an agreement.

1.2. Multi-bilateral negotiations

Face-to-face business negotiations are presumed to be bilateral [Bonaccorsi et al. 2000; Bajari et al. 2009; Subramanian 2010]. Multi-bilateral face-to-face negotiations may be preferred over bilateral; however, they have high costs, are cumbersome in terms of gathering all participants in the same place, and are prone to information leakage and collusion when multiple bid-takers are located in close proximity. Therefore, they are considered difficult and often impractical. Despite the high costs and other difficulties, there have been instances of gatherings of several potential buyers (sellers) in multi-bilateral face-to-face negotiations, for example, the sale of Universal by Vivendi and the Glenmorangie whisky distiller to LVMH [Subramanian, Zeckhauser 2004].

The concept of multi-bilateral negotiation is not new, such negotiations have been practiced among governments and large business organizations [Dahrendorf 1973; Shakun 2005]. In the past, conducting such negotiations was a laborious, slow and costly process. Similarly to auctions, all parties had to gather in one place. In addition, the single-part side (e.g. the buyer in the procurement negotiation) had to either accept transparency and negotiate with one counterpart in the presence of the other counterparts or shuttle from one counterpart to another. Online marketplaces removed the costs and other frictions associated with participation, making multibilateral negotiation a viable option. Multi-bilateral negotiations and auctions are used in similar settings, even by apparently similar participants, in narrowly defined markets [Thomas, Wilson 2012].

1.3. Reverse auctions

In addition to studying concession-making in multi-bilateral negotiations, the paper also presents concessions made by bidders in multi-attribute reverse auctions. These two mechanisms are selected because (1) they are the key mechanisms in procurement, and (2) they are comparable – both deal with multiple sellers and a single buyer. The multi-attribute problem is selected because this type of problem is typical for procurement [Ferrin, Plank 2002].

Auction literature is concerned with the design of mechanisms followed by studies of their allocative efficiency, revenue maximization, fairness and other features of the mechanism [Bichler 2000; Bichler, Kalagnanam 2005]. With the exception of the consideration of concession-making by software agents that participate in auctions [Faratin et al. 1998; Sim, Wong 2001], little has been said in auction literature about concessions made by human participants.

Auctions are defined by an explicit set of rules which determine resource allocation and prices on the basis of the offers made by market participants [McAfee, McMillan 1987]. The following four characteristics differentiate auctions from other exchange mechanisms [Kersten et al. 2008]:

1. Auction rules are *explicit* and known to the bidder prior to the auction. Therefore, rules cannot be modified during the auction.

2. The rules describe the mechanisms completely, thus allowing for the determination of one or more winners solely based on the offers. Auctioneers or any other parties have no discretion in the winner's choice.

3. Rules typically include:

a) *bidding rules* stating how offers can be formulated and when they can be submitted,

b) allocation rules describing who gets what on the basis of submitted offers,

c) *pricing rules* selecting the auction winner and stating the prices which the bidders have to pay.

In multi-attribute auctions the pricing rule is replaced by a scoring or utility rule [Che 1993; Branco 1997; Kersten et al. 2010]. The price may but does not have to be included in this rule.

1.4. Overview

This paper builds on and extends an earlier work on the concession-making process in auctions and negotiations [Kersten et al. 2012a]. The concession-making process is studied based on two forms of categorization. As far as we know, this is the first such specification that has been formulated and experimentally verified.

The purpose of this work is to share insights into concession-making behavior in auctions and negotiations. The next section formalizes the concept of concession and discusses their categories and types. In Section 3, two experiments designed to study concession-making in reverse auctions and in negotiations are introduced. The general results of this experiment are also discussed in this section. In the study we focus on the sellers who bid or negotiate in order to obtain a contract. In both situations there are several sellers competing for a single contract. A comparison of concessions made by sellers in auctions and negotiations is presented in Section 4. A discussion, presented in Section 5, concludes the paper.

2. Concession categories and types

2.1. Preliminaries

For the purpose of this study, a concession is equated with the "subtraction operator" for the concession-maker and the "addition operator" for the concession-taker [Kersten et al. 2012a]. This means that when a concession takes place, then some value is subtracted from the benefits of the maker and a value is added to the taker's utility. In price bargaining this process is straightforward: a dollar of concession made by the seller reduces the price, increasing savings for the buyer. In multi-attribute negotiations, the values reduced and increased represent individual utility, revenue, costs, etc. They are typically different for buyers than for sellers and also within each group.

In order to define and categorize concessions, we use the following notation. Let:

 $x = [x_i, j = 1, ..., n]$ an offer comprising *n* attribute;

X-set of feasible offers, ($x \in X \subset R^n$);

I – set of participating sellers (bidders or negotiators);

t – round index (t = 1, ..., T);

 u_i - value function (utility) of seller I, $(i \in I)$;

 u_{b} – value function (utility) of buyer b.

2.2. Concession bookkeeping

In concession bookkeeping we need to know who provides a concession and to whom. This gives us two different ways of calculating concessions:

Definition 1. Given two consecutive offers x_{t} and x_{t+1} , (*t* is round index):

 $u_i(\mathbf{x}_{t+1}) = u_i(\mathbf{x}_t) - c_{ii}$ is seller's *i*, $(i \in I)$ perspective on own concession, while $u_b(\mathbf{x}_{t+1}) = u_b(\mathbf{x}_t) + c_{bit}$ is the buyer's *b* perspective on the concession made by seller *i*.

While both concession parameters c_{ii} and c_{bii} refer to the same act, i.e. the seller's *i* proposal to replace offer x_i with x_{i+1} , there is an important difference between them: c_{ii} reflects the subjective effort of the concession-maker that he or she makes in order to reach an agreement. Beyond this, however, it has little effect on the process. This is because the progress of the process is determined by the buyer, who is the concession-taker.

If c_{bit} is not positive, then the buyer rejects the offer associated with this concession because he or she prefers another offer over the one made by this particular concession-maker. Therefore, the buyer expects an offer made by a seller to be an improvement over the earlier offers made by this and other sellers.

In general, it is possible for the concession-maker to make a reverse concession (to improve his or her position), but the concession-taker sees the change as a positive concession. The reverse situation is also possible.

2.3. Nine categories

Concessions made by one side need not be considered as concessions by the other side. This is because the perspective which the concession-maker wishes to convey may not be visible to the concession-taker. The two perspectives on the concessions taken, together with the concessions' impact on the buyer's and the seller's utility values, allow us to distinguish nine categories of concession pairs. Let the seller and the buyer concessions be defined respectively by:

$$c_s = c_{st} = u_s(\mathbf{x}_t) - u_s(\mathbf{x}_{t+1})$$
 and $c_b = c_{bst} = u_b(\mathbf{x}_{t+1}) - u_b(\mathbf{x}_t)$

Given these formulae, the nine categories are formulated as shown in Table 1.

Concession malter	Concession-taker				
Concession-maker	Positive	Null	Negative		
Positive	$c_{s} > 0; c_{b} > 0$	$c_s > 0; c_b = 0$	$c_s > 0; c_b < 0$		
Null	$c_s = 0; c_b > 0$	$c_s = 0; c_b = 0$	$c_s = 0; c_b < 0$		
Negative	$c_{s} < 0; c_{b} > 0$	$c_{s} < 0; c_{b} = 0$	$c_{s} < 0; c_{b} < 0$		

Table 1. Nine categories of concessions

Source: own elaboration.

Note that for the concession-makers, a positive concession decreases their utility while a positive concession for concession-takers increases their utility.

Some of the concessions listed in Table 1 have been discussed in the negotiation literature. For example, the pair ($c_s < 0$; $c_b > 0$) can be associated with "win-win" because it leads to both the concession-maker's and the concession-taker's improvement in their position. The pair ($c_s > 0$; $c_b < 0$) is a "lose-lose" because both sides are worse off while ($c_s > 0$; $c_b > 0$) is a "lose-win" and it corresponds to what a typical concession is assumed to be.

2.4. Two types

In addition to the two perspectives based on the concession-maker and the concessiontaker, we also distinguish the following two types of concessions:

Single-attribute concession is defined by two consecutive offers made by the same seller, which differ in the value of only one attribute. For example, if the concession involves attribute k, then:

$$c_{it}^{k} = u_{i}(x_{1,t}, ..., x_{k,t+1}, ..., x_{n,t}) - u_{i}(x_{1,t}, ..., x_{k,t}, ..., x_{n,t})$$

Multi-attribute concession is defined by two consecutive offers made by the same seller, which differs in the value of two or more attributes. For example, if the concession involves attributes k and n, then:

 $c_{it}^{k} = u_{i}(x_{1,t}, ..., x_{k,t+1}, ..., x_{n,t}, x_{n,t+1}) - u_{i}(x_{1,t}, ..., x_{k,t}, ..., x_{n,t}).$

Multi-attribute concessions allow for *logrolling*, which is "the exchange of loss on some attributes, usually less important in priority or value, for gain in other attributes, usually more important" [Tajima, Fraser 2001, p. 218]. The purpose of logrolling is to improve the offer for the concession-taker but at a minimum cost to the concession-maker [Pruitt 1983; Kersten, Szapiro 1986].

Single-attribute concessions are often associated with *sequential negotiation* in which the parties negotiate and agree on one attribute then move to negotiating on another attribute, etc. In contrast, *simultaneous negotiation* requires that the parties negotiate on all attributes at the same time. Experimental and field studies show that simultaneous negotiations produce better agreements in terms of joint value and lower concessions than those produced in sequential negotiations [Froman Jr, Cohen 1970; Pruitt 1981; Weingart et al. 1993].

3. Experiment

In the spring of 2012 we conducted auction and negotiation experiments that allowed us to observe concession-making. The systems, the case and the experimental setting are described in detail in [Kersten et al. 2012a; Kersten et al. 2012bc). In this section, concession-making of the experiment participants is discussed in detail.

3.1. General results

In the experiment a total of 54 negotiations and 33auctions were conducted online. In both negotiations and auctions, the participants used systems which provided them with decision support aids, including a calculator which could (1) rate every alternative by assigning a score between zero and one hundred,(2) generate alternatives for a given profit value, and (3) select alternatives using graphical tools [Kersten et al. 2012bc].

In each negotiation there were three or four sellers; in each auction there were four sellers. In some negotiation instances the role of one of the sellers was played by a software agent. Software agents had either a competitive or a cooperative strategy. Sellers in the negotiation competed for an agreement awarded from either a cooperative or competitive buyer. The buyers were trained to play these roles.

Since in auctions buyers neither communicate with sellers nor make concessions (the buyers are auction owners), we focus on concessions made by the sellers.

The experiment settings and the number of instances are given in Table 2.

Six instances in the negotiations ended without agreement, so we excluded them from the analysis. We removed six other instances in the negotiations where the agents won because we are interested in concession-making by human participants. We ran Kolmogorov-Smirnov non-parametric tests to check if the number of sellers affected the negotiation outcomes and process – it did not. For example, when

			Three sellers	Four sellers
	Auctio	ons		31
Negotiations	Integrative	– No agent	11	
buyer	- Competitive agent	6	5	
	Competitive	– No agent	4	5
buyer	- Integrative agent	8	2	
		- Competitive agent	6	7

Table 2. Experiment design

Source: own elaboration.

a competitive buyer negotiated with two human sellers and an agent, the distribution of the sellers' profit was not significantly different from the case with three human sellers and an agent (p = 0.329). Since there was no difference between negotiations with three and four sellers, we merged them.

Then, we checked if using an agent or agent strategy affected the outcomes and/or the process. Since there was no significant difference between negotiations with or without agents, or between those with cooperative or competitive agents, we merged those negotiations together. For example, the distribution of the sellers' profit negotiating with a cooperative buyer did not significantly differ when one of the sellers was an agent (p = 0.998).

We also removed two auctions which ended with a profit equal to 51 and 63. All the remaining auctions resulted in an average profit equal to -5.4 and no other auction had a profit greater than 24.

Those results of the experiments which are useful for concession analysis are given in Table 3.

	Austion	Negotiation		
	Auction	Cooperative	Competitive	
No. of instances	31	22	22	
% of agreements	100	95	95	
Avg. seller's profit	-5.4	17.3*	11.2*#	
Avg. buyer's profit	77.4	56.3*	62.1*	
% of dominating alternatives	1.6	1.3	0.8	

Table 3. General results

Note: significance compared to auctions: * $p \le 0.005$; $\hat{p} \le 0.05$, and between integrative and competitive negotiations: * $p \le 0.005$; # $p \le 0.05$.

Source: own elaboration.

The sellers' profit in both cooperative negotiations (17.3) and competitive negotiations (11.2) is significantly higher than in auctions (-5.4). In cooperative

negotiations, sellers achieve a significantly higher profit than in competitive negotiations (p = 0.017). Buyers realize the highest profit in auctions, then the second highest in competitive negotiations and the lowest in cooperative negotiations.

These results indicate that auctions are more competitive than both cooperative and competitive negotiations. The percentage of dominating alternatives was not significantly different in the two mechanisms.

3.2. Theoretical winners

In our experiments the parties cannot redefine the problem or introduce new and remove current attributes. Therefore, it is only through concession-making that they can "win", i.e. achieve an agreement and become the auction winner. If the participants were rational and completely followed the information they were given in the case, then one particular person (role) should win.

Dreekoven neinte		Seller			
Breakeven points	Cres	Nart	Peeka	Rito	
– for Cres	25	64	45	53	
– for Nart	25	10	22	24	
– for Peeka	33	30	15	32	
– for Rito	55	35	62	22	
Buyer's rating of the best offer at seller's breakeven point	92	92	90	92	
Buyer's rating of the worst offer at seller's breakeven point	47	80	75	44	

Table 4. Breakeven point and corresponding best profit for others

Source: own elaboration.

In each instance four sellers were trying to get a contract. The sellers' preferences and their breakeven points, at which profits turn into losses, differ. The result of these differences was that the sellers had different theoretical chances to get the contract. Table 4 shows the seller's rating corresponding to the breakeven point for each role.

There may be many alternatives associated with the same rating. Therefore, we can select an alternative for which the seller's profit is zero (i.e. corresponding to the breakeven point) but the buyer's rating assumes the highest value, i.e.:

$$\max u_{R}(\boldsymbol{x}) : \boldsymbol{x} \in X^{i}, (i \in I),$$

where $X^i (X^i \subset X)$ is a set of breakeven offers for seller *i*.

The highest buyer's rating for every seller is also shown in Table 4.

We may also select an alternative from these yielding breakeven values for a given seller and the highest is the highest rated for another seller. There were four sellers in the experiment: Cres, Nart, Peeka and Rito (in the case they were known by their full names). The breakeven rating for Cres is 25; the best alternative for the buyer (which for Cres has rating 25) has rating 92. The best alternative for Nart, from among breakeven alternatives for Cres, yields rating 64. Ratings for other sellers are given in Table 4.

We see that Cres, Nart and Rito are the theoretical winners for both auctions and negotiations. This is because they may offer an alternative that is at their reservation level and which yields rating 92 for the buyer, which is higher than what Peeka could offer without violating his or her breakeven values.

The auction procedure used in the experiments may bring about another theoretical winner. This will happen if one bidder can make an offer that is on his or her reservation level. If this offer yields a rating below another bidder's reservation level, then following this offer, the procedure may remove the alternatives which are above the other bidder's reservation level – even if they are better for the buyer. This need not happen in negotiations because the buyer is able to control the removal of alternatives making them infeasible in further offers. Table 3 shows that this is not the case for the preference structures used in the experiment.

3.3. Auction and negotiation winners

Table 4 lists theoretical winners: Cres, Nart, and Rito under the condition that no seller is willing to incur losses. Table 5 gives the results from the two experiments.

		Negot	iations		
	Auctions	Cooperative	Competitive		
Cres (%)	4 (13)	0 (0)	1 (5)		
Nart (%)	15 (5)	8 (38)	5 (24)		
Peeka (%)	7 (23)	11 (52)	7 (33)		
Rito (%)	5 (16)	2 (10)	8 (38)		
Theoretical winners					
Winners (%)	24 (24)	10 (25)	14 (32)		
Who did not win (%)	75 (76)	29 (75)	29 (67)		
Avg. seller's profit	-4.4	15.7	12.4		
Th	eoretical nor	n-winners			
Winners (%)	7 (28)	11 (58)	7 (41)		
Who did not win (%)	18 (72)	8 (42)	10 (58)		
Avg. seller's profit	-8.7	18.9	8.9		

Table 5. Distribution of winners

Source: own elaboration.

Table 5 shows the distribution of actual winners among theoretical winners and among other sellers in each of the experiment settings. In auctions the distribution of actual winners (24% among theoretical winners and 28% among others) did not differ ($\chi^2(1, N = 124) = 0.150, p = 0.698$). This means that they have equal chances to win. The concept of theoretical winners is based on the assumption that bidders cannot bid below their breakeven points. Since the average sellers profit was negative, bidders bid below their breakeven point. That could explain the insignificant difference in the distributions of winners between the theoretical winners and the others.

In cooperative negotiations, 25% of the theoretical winners won, which was significantly rarer than the percentage for other sellers (58%) ($\chi^2(1, N = 58) = 5.754$, p = 0.016). In competitive negotiations, theoretical winners won in 32% – this did not significantly differ from the percentage of winners among other sellers (41%) ($\chi^2(1, N = 60) = 0.398$, p = 0.528). Even this result for cooperative negotiations is puzzling, the fact that theoretical winners did not have significantly higher chances to win than other sellers in negotiations is true for both negotiation settings.

Theoretical winners have an advantage only if other sellers submit offers at the level of their breakeven points. Theoretical winners are able to continue making concessions without incurring losses. The results given in Table 5 indicate one or more of the three situations that took place:

1. Theoretical winners were unwilling to make a large concession moving them towards their break-even point.

2. Sellers, other than theoretical winners, accepted an offer made by the buyer which yielded a small profit for them.

3. The buyers accepted an offer even though they could have tried to get bigger concessions from the sellers.

The last two situations are in line with the social exchange theory which posits that people reciprocate when they are offered something [Bottom et al. 2006; Cropanzano, Mitchell 2005]. In negotiations, contrary to auctions, a relationship is formed, which gives grounds for *reciprocity* – a repayment in kind which does not need to be explicitly formulated by either side of the exchange [Esser, Komorita 1975]. Reciprocity rules do not require a long-lasting and/or future-oriented relationship. Building on fairness and social membership pushes people to respond in-kind to concessions that they are offered.

4. Concession-making

Participants of auctions and negotiations engage in concession-making in order to achieve an agreement (contract). In auctions every seller is *pushed* by the seller who submitted the most recent winning offer – every seller has to make a concession that increases the value for the buyer more than the current winning concession does. Sellers in auctions make concessions in order to increase the distance between their offer and the most recent offer made by the winning seller. Sellers face very different

pressures in negotiations, rather than being pushed they are *pulled* by the offer made by the buyer. Sellers in negotiations make concessions in order to reduce the distance between their earlier offer and the buyer's most recent offer. In this section we analyze and compare concession-making in both auctions and negotiations.

4.1. Concessions in auctions and negotiations

The results of the experiments related to the sellers' concession-making are shown in Table 6.

The average total concession in auctions (43.8) is significantly higher than in cooperative negotiations (32.7, p = 0.001). It is not significantly higher in competitive negotiations (36.5).

There may be several reasons why – from the singular perspective on the buyer's profit – auctions appear to be a much better transaction mechanism than negotiations. For example, in negotiations the sellers may ask the buyer to make concessions, also the sellers do not know what the other sellers are proposing, except for the information conveyed by the buyer. Another likely reason is that, because buyers are not competing among themselves for a contract, they are in a monopolistic situation, while sellers are not. Although in negotiations, buyers are also in a monopolistic situation they are socially present allowing the buyers to raise their concerns, ask for explanations, refer to fairness or compassion, and make promises. This important difference is due to reciprocity rules on which people rely in social interactions and which for many may also have a moral dimension [Cropanzano, Mitchell 2005]. Therefore, buyers may feel obliged to repay in kind to sellers who make positive concessions.

	Annetione	Negotiations ^A		
	Auctions	Cooperative	Competitive	
Total concession (seller rating)	43.8	32.7*	36.5	
Total concession (buyer rating)	45.1	36.3^	36.8	
No. of offers (avg.)	8.1	3.9*	3.7*	
- Submitted by winners	11.7	3.8*	4.7*	
Concession per offer (sellers)	6.4	10.1*	11.6*	
Concession per offer (buyer)	6.6	11.2*	11.7*	
No. (%) of null concessions ^B	41 (5)	3 (2)	3 (2)	
No. (%) of negative concessions	138 (18)	9 (6)	8 (5)	

Table 6. Sellers' behavior

^ Significance compared to auctions: * $p \le 0.01$; ^ $p \le 0.05$; ^B Per cent of the total no. of all concessions.

Source: own elaboration.

The average concession per offer in an auction is equal to 6.4, while in negotiation it is equal to 10.1 and 11.6 for cooperative and competitive processes respectively. The difference between auctions and both types of negotiations is significant (p < 0.001). The reason for smaller concessions in auctions may be caused by the possibility to send several offers in one round. In such case a small or negative concession may be used to try to find a better offer for the buyer within one round. This strategy is of little cost to bidders.

Another interesting observation coming from this experiment is that there is little difference between competitive and cooperative buyers in terms of sellers' concessions and, accordingly, their substantive outcomes. The average number of offers in auctions was smaller than the average number of offers in the negotiations. This difference was significant for all the sellers.

The sellers did not only submit more offers, but they also made greater concessions per offer in negotiations than in auctions. Because the average profit made by the winner was smaller in the auctions than in the negotiations (see Table 2), the winner had to make a greater number of offers in an auction than in a negotiation.

Null concessions were more frequent in the auctions than in the negotiations, maybe because in auctions bidders can submit several offers in a round, they may try to find an offer that will be better for a buyer but the same for them. For the same reason, the number of negative concessions (meaning that for the seller the new offer was better than the last one) is higher in auctions than in negotiations. Lastly, we found no significant difference in the average number of offers made in cooperative and competitive negotiations.

4.2. Observed concession categories

Our proposition (see Section 2) to distinguish positive, null and negative together with two perspectives led to nine possible configurations shown in Table 1. The number of concessions made by all participants (both winners and non-winners) in each category is shown in Table 7.

Typically, concessions are positive for sellers and buyers. However, the remaining eight categories also occur. This provides empirical evidence for the concession categorization formulated in Section 2.

In the auctions, 29% of concessions were not positive-positive (i.e. lose-win). In 10% they were negative-negative, meaning that bidders were able to submit a new offer with a better rating for themselves than their last offer and worse for the buyer. This type of concessions was possible because bidders could submit several offers in a single round. For example, following the first offer in the round which was positive for the buyer as compared with the seller's last offer in the previous round, the seller could submit in the same round offers which yielded a negative concession for the buyer. In 6% of cases, bidders submitted win-win (negative-positive) offers. In auctions, 9% of concessions were positive for a buyer and null- or negative-type for a bidder.

Concession-maker:	Concession-taker: buyer (buyer'sprofit)					
Seller(seller's profit)	Positive Null		Negative			
Auctions (total: 784 concessions)						
Positive (%)	560 (71)	18 (2)	27 (3)			
Null (%)	27 (3)	8 (1)	6(1)			
Negative	49 (6)	13 (2)	76 (10)			
Cooperative negotiations (total: 159 concessions)						
Positive (%)	139 (87)	2 (1)	6 (4)			
Null (%)	2 (1)	1 (1)	0 (0)			
Negative (%)	1 (1)	1 (1)	7 (4)			
Competitive negotiations (total: 157 concessions)						
Positive (%)	135 (86)	3 (2)	8 (5)			
Null (%)	2 (1)	1 (1)	0 (0)			
Negative (%)	2 (1)	0 (0)	6 (4)			

	_	a .			0	11	
Table	1.	Catego	oriza	fion.	ot	all	concessions
		Care			~ -	****	•011••0010110

Source: own elaboration.

In the negotiations, the sellers' negative-positive concessions were less frequent (1% in cooperative and 1% in competitive negotiations) than in auctions. The likely reason is the different information that is available to sellers in auctions and negotiations. Sellers know that the auction mechanism allows them to make progressive offers and they are able to select an offer that meets this condition and yields maximum utility for them. Also, they are informed which offer is the winning offer so they can adjust their offers. In negotiations, the mechanism is replaced by the buyers, who rarely inform sellers about the best offer on the table.

In the negotiations, the number of concessions that were not positive-positive was 13% in cooperative and 14% in competitive negotiations. This implies what negotiation theory and practice consider a typical concession, but there are many other types of concession that should not be ignored.

In the negotiations, negative-positive (i.e. win-win) concessions were observed only in 1% of the cases as opposed to 6% in auctions. In the negotiations cases, loselose concessions (4% for cooperative and 5% for competitive negotiations) were observed more often than in the auctions (3%). While not significantly different, the fact that in negotiations the difference of this type of concessions is small is surprising because the buyers were giving information about their needs and preferences. A possible explanation may be that only a percentage of sellers was competing.

Negative-negative concessions are *reverse concessions* because they make the concession-maker better-off and the concession-taker worse-off. A significant percent of this category of concessions was made in auctions(10%) and 4% in cooperative and in competitivenegotiation. This could be attributed to the possibility of submitting multiple offers in every round of the auctions. The bidders, after making the first offer, could submit more offers that were better for them than the first one. In negotiations, such an offer may be perceived badly by the buyer who may try penalizing the seller who made it. In negotiations there is no such risk, but there is a chance that one of these offers becomes the winning one.

Null concessions were observed rarely in negotiations (2%) and more often in auctions (5%). In auctions the majority of null concessions (66%) were positive for the buyer.

The participants were provided with decision aids (including, profit (loss) calculation, offer generators, interactive and dynamics charts), which they could use in deciding on a concession [Kersten et al. 2012bc]. One may expect that these aids should help negotiators in the process analysis and concession-making. These aids are, however, of limited use if the parties do not exchange relevant information, primarily information about their preferences (profits and losses).

4.3. Observed concession types

Single- and multi-attribute concessions are the two types discussed in Section 2.4. Multi-attribute concessions are cognitively difficult activities in both auctions and negotiations. While such concessions allow for logrolling and hence the joint improvements, they also require an assessment of changes caused by two or more attributes. In particular, the seller seeks concessions that may increase the buyer's profit but does not decrease his or her own profit.

Table 8 shows the concession types made by winners. We also show the percentage of concessions of a given type in the total normalized value of a concession. This percentage is calculated based on the total value of concessions normalized for every winner, i.e. 100% of concession value made by every winner was of one or two types. If, for example, the average single-attribute concession value is 40%, then sellers' concessions of this type contributed to 40% of the total concession they made, on average. We call this parameter "concession value contribution" (CVC). There was only one winner who used solely single-attribute concessions; therefore, in Table 8 we show multi-attribute and mixed types of concessions.

In the auctions only 17% of winners made only multi-attribute concessions. In the negotiations the picture is different: 63% of the winners in the cooperative and 44% in the competitive negotiations made only multi-attribute concessions. We know of no other studies which experimentally compare the frequency of singleand multi-attribute concessions; therefore, we cannot claim that these frequencies are high in negotiations and low in auctions. The difference between auctions and negotiations is significant and warrants more studies into the reasons.

We also cannot claim that making multi-attribute concessions results in better outcomes. While sellers achieved significantly higher profit in auctions than in negotiations, they did so whether they made only multi-attribute or both singleand multi-attribute concessions. The results shown in Table 8 suggest that it is the mechanism that affects the outcomes, i.e. negotiations are better for sellers and auctions are better for buyers.

Sellers' concession value	Auctions	Negotiations			
contribution (cvc)		Cooperative	Competitive		
Only multi-attribute concessions					
No. of sellers (%)	5 (17)	12 (67)	8 (44)		
- CVC multi-attribute	100	100	100		
– CVC multi-attribute (buyer)	100	100	100		
Winner's profit	-6.6	16.6*	11.5#		
Buyer's profit	78.2	57.8*	61.0^		
Both single- and	l multi-attribute d	concessions			
No. of sellers (%)	24 (83)	6 (33)	10 (56)		
- CVC multiple-attribute	66	81	81		
- CVC single-attribute	34	19	19		
- CVC multi-attribute (buyer)	72	81	85		
- CVC single-attribute (buyer)	28	19	15		
Winner's profit	-4.5	17.0*	7.3*		
Buyer's profit	76.8	56.5*	66.2*		

Table 8. Winners' single- and multi-attribute concessions

Note: significance as compared to auctions: *p < 0.01; $^{p} < 0.05$; significance between integrative and competitive negotiations: * $p \le 0.005$; # $p \le 0.05$.

Source: own elaboration.

Participants who made both single- and multi-attribute concessions showed a predisposition for making more of the latter. As before, the negotiators' multiattribute concessions contributed more to the total value of concessions than those made by the bidders. Those winners who used multi-attribute concessions only were observed less frequently in auctions than in both settings of negotiations. The possible reason is that bidders were able to use a single-attribute concession to correct their first offer made in the round; they could have tried to make offers that were better to them before the round closed.

Those winners who use single-attribute concessions were observed more often in cooperative than in competitive negotiations. A possible explanation is that in competitive negotiations the sellers may engage in trading-off with the buyers on an attribute-per-attribute basis.

When the sellers made two types of concessions, the share (percentage) of the total average concession value is different in the seller's profit than in the buyer's profit. In our experiments the differences are not significant but their occurrence

is interesting. The contribution of multi-attribute concessions to the sellers' total concession value is lower or the same as the contribution to the buyers' concession value. For example, in auctions CVC multi-attribute is 66% of the total concessions measured with the seller's profit function and 72% when measured with the buyer's profit function. This suggests that by making a multi-attribute concession the seller "gives" more to the buyer but concedes less. The opposite is true for the single-attribute concessions. In auctions, for example, 34% of CVC measured with the seller's profit.

The use of single-attribute concessions is about half of the multi-attribute ones in the auctions and a quarter in the negotiations. In the auctions this category was mostly used with a round and, therefore, it had no effect on the profit values. In the negotiations its use was much lower. Given that the above mentioned differences in the CVC measurement in the seller's and the buyer's profit functions were small, the profit values realized when only multi-attribute type and when mixed type were used did not differ significantly.

4.4. Offer generator

We mentioned that making multi-attribute concessions is cognitively difficult. The reason that so many participants made such concessions is that the systems were equipped with an offer generator tool. A user could change attribute values manually and observe the resulting profit value. Alternatively, he or she could enter a desired profit value and the tool displayed seven alternatives with the same or similar value [Kersten et al. 2012bc].

In Table 9 we show the number and the percentage of concessions made with and without the generator. The generator was used significantly more often in auctions than in cooperative and competitive negotiations ($\chi 2(1, n = 942) = 45.531$, p < 0.001 and $\chi 2(1, n = 941) = 51.135$, p < 0.001, respectively). However, there is no significant difference in the use of the generator by the sellers who participated in the competitive and cooperative negotiations ($\chi 2(1, n = 315) = 0.176$, p = 0.675).

Offers model	Austions	Negotiations		
Offers made.	Auctions	Cooperative	Competitive	
With generator (%)	372 (47)	29 (18)	26 (17)	
Without generator (%)	412 (53)	129 (82)	131 (83)	
- Single-attribute concessions w/out gen. (%)	112 (27)	31 (24)	23 (18)	
– Multi-attribute concessions w/out gen. (%)	300 (73)	98 (76)	108 (82)	

Table 9. The use of the offer generator

Source: own elaboration.

We do not show the single- and multi-attribute concessions made with the help of the generator because in this case users considered profit rather than attributes. We show it, however, when offers were constructed without the generator – in this case the users had to change one or more attribute values.

The percentage of single-attribute concessions made without the generator is not significantly different for auctions and cooperative negotiations ($\chi 2(1, n = 541) = 0.502$, p = 0.478). However, the percentage of single-attribute concessions made without the generator is significantly higher in auctions than in competitive negotiations ($\chi 2(1, n = 543) = 4.931$, p = 0.026). The percentage of single-attribute concessions made without the generator is not significantly different in competitive and cooperative negotiations ($\chi 2(1, n = 543) = 4.931$, p = 0.026). The percentage of single-attribute and cooperative negotiations ($\chi 2(1, n = 543) = 4.931$, p = 0.026). The percentage of single-attribute concessions made without the generator is not significantly different in competitive and cooperative negotiations ($\chi 2(1, n = 260) = 1.655$, p = 0.198).

Table 10 shows the impact of the offer generator on the profit achieved by the concession-maker and the concession-taker.

	A	Nego	tiations		
	Auctions	Cooperative	Competitive		
Winners who did not use generator					
No. (%) of winners	14 (48)	13 (68)	12 (67)		
Avg. seller's profit	-1.4	18.5	11.6		
Avg. buyer's profit	74.9	54.4	61.4		
Winners who used both generator and offer form					
No. (%) of winners	9 (31)	5 (26)	6 (33)		
Avg. seller's profit	-4.7	11.2	4.3		
Avg. buyer's profit	76.6	64.4	68.8		
Winners who used generator only					
No. (%) of winners	6 (21)	1 (5)	0 (0)		
Avg. seller's profit	-13.0^#	31.0	_		
Avg. buyer's profit	82.8*	47.0	_		

Table 10. Impact of the generator use on outcomes

Note: compared to the winners who did not use the generator: $p \le 0.01$, $p \le 0.05$; compared to the winners who used the generator and formulated an offer form: $p \le 0.05$.

Source: own elaboration.

Those winners in auctions who did not use the generator achieved a profit (-1.4) that was not significantly different from the one achieved by the winners who used both the generator and the formulated offer form (-4.7; p = 0.383). The buyers' profit does not significantly differ either (p = 0.607).

Those winners who used the generator only achieved significantly (p = 0.015) lower profit (-13.0) than the winners who did not use the generator (-1.4). The

buyers' profit was significantly higher (p = 0.01) for the winners who used the generator only (82.8) than for the winners who did not use the generator (74.9).

Those winners in auctions who used the generator only achieved a significantly lower (p = 0.036) profit (-13.0) than the winners who used both the generator and the formulated offer form (-4.7). The buyers' profit was not significantly different for those two groups (p = 0.123). In both negotiation settings the number of winners who used the generator only is not sufficient for analysis.

In the cooperative negotiations the difference in the achieved profits between the winners who used the generator only and the winners who used both the generator and the formulated offer form is not significant (p = 0.128 for seller's profit; p = 0.094 for buyer's profit).

In the competitive negotiations the difference in the achieved profit between the winners who used the generator and other winners is not significant (p = 0.119 for seller's profit; p = 0.147 for buyer's profit).

5. Conclusions

The importance of concession-making in both auctions and negotiations is unquestionable. This paper proposes two distinct categorizations of concessions and empirically shows that, if allowed, all nine categories and two types are employed in reverse auctions and in multi-bilateral negotiations.

We found that sellers in auctions make many more concessions than sellers in negotiations. Moreover, the average concession per offer in auctions is greater than in negotiations. The total value of concessions was, therefore, significantly greater in auctions. Consequently, auction winners ended up with significantly worse agreements than the winners in negotiations.

One explanation for this result is the auction mechanism which imposes more constraints on the permissible offers and thus restricts the space of feasible offers for the sellers. In multi-bilateral negotiations, however, there is more space for the search of joint solutions, and there is also a possibility to use concessions as a means of eliciting reciprocal steps from the buyers. Thus, the average concessions made by the seller may be smaller, and the outcomes are relatively more favorable.

Another possible explanation is the buyers' active participation in negotiations but not in auctions. This participation allows the sellers to explain their needs and ask for better contract conditions. In negotiations, buyers can make offers which could be considered as buyers' aspiration levels by sellers. Knowing this level may prevent sellers from making offers lower than the buyers' offers, which might result in higher outcomes.

Based on these results, one may conclude that buyers prefer employing reverse auctions in procurement because they can extract more from sellers. Such a conclusion is only partially correct for two key reasons: (1) there are situations in which both buyers and sellers have interests (e.g. relationship and commitment) in the value which cannot be determined through an auction; (2) there are goods and services which need to be negotiated because their specification cannot be determined a priori. Therefore, both reverse auctions and multi-bilateral negotiation have been used in procurement [Kraljic 1983; Handfield, Straight 2003].

Kersten et al. [2012bc] reported that the difference between average concessions by the sellers in negotiations when comparing competitive vs. cooperative buyers was not significant and that win-win offers were observed more often in auctions than in negotiations. Here we can add that win-lose and other categories of offers occur in auctions if the protocol allows it.

This experiment also shows that using a single-attribute concession does not significantly change the achieved outcomes either in auctions or negotiations. This is troublesome because single-attribute offers are an indicator of a competitive tactic while multi-attribute offers indicate a cooperative tactic [Weingart et al. 1996; Raiffa et al. 2003]. Making single-attribute offers is cognitively easier and makes the process easier to control but the offer generator should reduce these difficulties. The fact that this did not happen requires further investigation

Another puzzling result is the use of the offer generator. We have no answer why the generator was used significantly more often in auctions than in negotiations. The generator focuses users on the value (profit, loss) of the complete offer. If a user considers only one attribute and does not want to analyze other attributes, then the generator may increase rather than decrease the cognitive load. A possible and troubling explanation is that participants were more concerned with making concessions than with assessing their implications.

Acknowledgments

We thank Norma Paradis, Shikui Wu and Bo Yu for their contribution to the system design and experiment organization. This work has been supported by grants from the Social Sciences and Humanities Research Council of Canada (SSHRC), the Natural Sciences and Engineering Research Council of Canada (NSERC) and Concordia University.

References

- Bajari P. et al., Auctions versus negotiations in procurement: An empirical analysis, *Journal of Law, Economics, and Organization* 2009, Vol. 25(2), pp. 372–399.
- Bateman T.S., Contingent concession strategies in dyadic bargaining, Organizational Behavior and Human Performance 1980, Vol. 26(2), pp. 212–221.
- Bichler M., An experimental analysis of multi-attribute auctions, *Decision Support Systems* 2000, Vol. 29(3), pp. 249–268.
- Bichler M., Kalagnanam J., Configurable offers and winner determination in multi-attribute auctions, *European Journal of Operational Research* 2005, Vol. 160(2), pp. 380–394.

- Bonaccorsi A. et al., Auctions vs. Bargaining: An Empirical Analysis of Medical Device Procurement, LEM Papers Series, Pisa, Laboratory of Economics and Management, Sant Anna School of Advanced Studies, 2000, p. 17.
- Bottom W.P. et al., Building a pathway to cooperation: Negotiation and social exchange between principal and agent. Administrative Science Quarterly 2006, Vol. 51(1), pp. 29–58.
- Branco F., The design of multidimensional auctions, *The RAND Journal of Economics* 1997, Vol. 28(1), pp. 63–81.
- Che Y.K., Design competition through multidimensional auctions, *The RAND Journal of Economics* 1993, Vol. 24(4), pp. 668–680.
- Chen E. et al., Agent-supported negotiations on e-marketplace, *International Journal of Electronic Business* 2005, Vol. 3(1), pp. 28–49.
- Cialdini R.B. et al., Reciprocal concessions procedure for inducing compliance: The door-in-the-face technique, *Journal of Personality and Social Psychology* 1975, Vol. 31(2), pp. 206–215.
- Cropanzano R., Mitchell M.S., Social exchange theory: An interdisciplinary review, Journal of Management 2005, Vol. 31(6), pp. 874–900.
- Dahrendorf R., The foreign policy of the EEC, The World Today 1973, pp. 47-57.
- Endriss U., Monotonic Concession Protocols for Multilateral Negotiation, ACM, 2006.
- Esser J., Komorita S., Reciprocity and concession making in bargaining, *Journal of Personality and Social Psychology* 1975, Vol. 31(5), pp. 864–872.
- Faratin P. et al., Negotiation decision functions for autonomous agents, *Robotics and Autonomous Systems* 1998, Vol. 24, pp. 159–182.
- Ferrin B.G., Plank R.E., Total cost of ownership models: An exploratory study, *Journal of Supply Chain Management* 2002, Vol. 38(3), pp. 18–29.
- Fisher R., Ury W., *Getting to Yes. Negotiating Agreement Without Giving In*, Penguin Books, New York 1983.
- Follett M.P., Constructive Conflict. Dynamic Administration: The Collected Papers of Mary Parker Follett. H.C. Metcalf and L. Urwick, Harper, New York 1940, pp. 30–49.
- Froman Jr, L.A., Cohen M.D., Compromise and logroll: Comparing the efficiency of two bargaining processes, *Behavioral Science* 1970, Vol. 15(2), pp. 180–183.
- Handfield R.B., Straight S.L., What sourcing channel is right for you?, *Supply Chain Management Review* 2003, Vol. 7(4), pp. 63–68.
- Kersten G.E., E-negotiation systems: Interaction of people and technologies to resolve conflicts, *The Magnus Journal of Management* 2005, Vol. 1(3), pp. 71–96.
- Kersten G.E. et al., On comparison of mechanisms of economic and social exchanges, [in:] H. Gimpel, N. Jennings, G.E. Kersten, A. Ockenfels, C. Weinhardt (Eds.), *The Times Model. Negotiation, Auction and Market Engineering*, Springer, Haidelberg 2008, pp. 16–43.
- Kersten G.E. et al., A Procedure for Multiattribute Reverse Auctions with two Strategic Parameters, InterNeg Research Papers, Concordia University, Montreal 2010.
- Kersten G.E. et al., Concession Patterns in Multi-issue Negotiations and Reverse Auctions. Proceedings of the International Conference on Electronic Commerce, ACM Press, Singapore 2012a.
- Kersten G.E. et al., Negotiation and auction mechanisms: Two systems and two experiments e-life, [in:] M.J. Shaw, D. Zhang, W.T. Yue (Eds.), *Web-enabled Convergence of Commerce, Work, and Social Life*, Springer, New York 2012b, pp. 400–412.
- Kersten G.E. et al., *A Multiattribute Auction Procedure and Its Implementation*, HICSS 45, IEEE, Hawaii 2012c.
- Kersten G.E., Gimon D., Concession-making in multi-bilateral negotiations and multi-attribute auctions, [in:] M. Ganzha, L. Maciaszek, M. Paprzycki(Eds.), *Proceedings of the Federated Conference on Computer Science and Information Systems FedCSIS 2012*, Polskie Towarzystwo Informatyczne, IEEE Computer Society Press, Warsaw, Los Alamitos, CA 2012, pp. 995–1002.

- Kersten G.E., Noronha S.J., Rational agents, contract curves, and inefficient compromises, *IEEE Systems, Man, and Cybernetics* 1998, Vol. 28(3), pp. 326–338.
- Kersten G.E., Szapiro T., Generalized approach to modeling negotiations, *European Journal of Opera*tional Research 1986, Vol. 26(1), pp. 142–149.
- Komorita S.S., Esser J.K., Frequency of reciprocated concessions in bargaining, *Journal of Personality* and Social Psychology 1975, Vol. 32(4), pp. 699–705.
- Kraljic P., Purchasing must become supply management, *Harvard Business Review* 1983, Vol. 83(5), pp. 109–117.
- Kwon S., Weingart L.R., Unilateral concessions from the other party: Concession behavior, attributions, and negotiation judgments, *Journal of Applied Psychology* 2004, Vol. 89(2), pp. 263–278.
- Lopes F., Coelho H., Concession Behaviour in Automated Negotiation, Springer Verlag, 2010.
- McAfee R.P., McMillan J., Auctions and bidding, *Journal of Economic Literature* 1987, Vol. 25(2), pp. 699–738.
- Meyer T. et al., *Logical Foundations of Negotiation: Outcome, Concession and Adaptation*, American Association for Artificial Intelligence, 2004.
- Osgood C., An Alternative to War or Surrender, University of Illinois Press, Urbana 1962.
- Pruitt D.G., Negotiation Behavior, Academic Press, New York 1981.
- Pruitt D.G., Strategic choice in negotiation, American Behavioral Scientist 1983, Vol. 27(2), pp. 167– -194.
- Raiffa H. et al., *Negotiation Analysis. The Science and Art of Collaborative Decision Making*, Harvard University Press, Cambridge 2003.
- Schneider A.K., Shattering negotiation myths: Empirical evidence on the effectiveness of negotiation style, *Harvard Negotiation Law Review* 2002, Vol. 7, pp. 143–403.
- Shakun M.F., Multi-bilateral multi-issue e-negotiation in e-commerce with a tit-for-tat computer agent, Group Decision and Negotiation 2005, Vol. 14(5), pp. 383–392.
- Siegel S. et al., Bargaining and group decision making: Experiments in bilateral monopoly, *American Economic Review*1961, Vol 51(3), pp. 420–421.
- Sim K.M., Wong E., Toward market-driven agents for electronic auction, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 2001, Vol. 31(6), pp. 474–484.
- Spector B., Negotiation as Learning: Pedagogy and Theory. Annual Conference of the International Studies Association, Chicago 2007.
- Subramanian G., *Negotiauctions: New Dealmaking Strategies for a Competitive Marketplace*, Norton, New York 2010.
- Subramanian G., Zeckhauser R., For sale, but how? Auctions versus negotiations, *Negotiation* 2004, Vol. 3–5.
- Tajima M., Fraser N.M., Logrolling procedure for multi-issue negotiation, Group Decision and Negotiation 2001, Vol. 10(3), pp. 217–235.
- Thomas C.J., Wilson B.J., Horizontal product differentiation in auctions and multilateral negotiations, *Economica* 2013 [forthcoming].
- Thompson L., Team negotiation an examination of integrative and distributive bargaining, *Journal of Personality and Social Psychology* 1996, Vol. 70(1), pp. 66–78.
- Weingart L.R. et al., The impact of consideration of issues and motivational orientation on group negotiation process and outcome, *Journal of Applied Psychology* 1993, Vol. 78(3), pp. 504–517.
- Weingart L.R., Knowledge matters the effect of tactical descriptions on negotiation behavior and outcome, *Journal of Personality and Social Psychology* 1996, Vol. 70(6), pp. 1205–1217.
- Yang Y.et al., Subjective effectiveness in agent-to-human negotiation: A frame x personality account, [in:] Argumentation in Multi-Agent Systems, Springer 2010, pp. 134–149.
- Zartman W., Negotiation as a joint decision-making process, *Journal of Conflict Resolution* 1977, Vol. 21(4), pp. 619–638.

DECYZJE O USTĘPSTWACH W WIELO-DWUSTRONNYCH NEGOCJACJACH ORAZ WIELOKRYTERIALNYCH AUKCJACH

Streszczenie: Aukcje odwrotne (holenderskie) oraz negocjacje wielo-dwustronne, w których jeden nabywca negocjuje z wieloma sprzedawcami, to dwa często spotykane mechanizmy w transakcjach pomiędzy organizacjami. W artykule porównujemy odwrotne aukcje wielo-atrybutowe z wielo-dwustronnymi negocjacjami. Ustępstwa w obu procesach dotyczą zarówno cen, jak i innych atrybutów sprzedawanego produktu. Od tych ustępstw zależy uzyskanie kontraktu na sprzedaż. W artykule proponujemy oraz weryfikujemy eksperymentalnie taksonomię ustępstw, która jest oparta na dwóch kryteriach. Wyniki sugerują, że: (1) zarówno negocjatorzy, jak i uczestnicy aukcji używają wszystkich możliwych rodzajów ustępstw, (2) uczestnicy aukcji robią większe ustępstwa niż negocjatorzy, oraz (3) motywacja eksperymentatorów wpływa na zakres ustępstw uczestników. Wyniki sugerują także, iż nabywcy osiągają najwyższy zysk w aukcjach, następnie w negocjacjach kompetytywnych, a najniższy zysk w negocjacjach kooperatywnych. Dla sprzedawców najlepsze są kooperatywne negocjacjac, a najgorsze aukcje.

Słowa kluczowe: aukcje odwrotne, aukcje wieloatrybutowe, negocjacje wielo-dwustronne, ustępstwa, eksperymenty.