POLITECHNIKA WROCŁAWSKA INSTYTUT BUDOWNICTWA

OCENA METODAMI AKUSTYCZNYMI PROCESU NISZCZENIA BETONÓW SAMOZAGĘSZCZONYCH

Raport serii PRE nr 9/07

Tomasz Gorzelańczyk

Rozprawa doktorska

Promotor: prof. dr hab. inż. Jerzy Hoła

Słowa kluczowe: beton samozagęszczony, metody akustyczne, proces niszczenia, struktura porów powietrznych, wilgoć, naprężenia inicjujące pękanie i krytyczne

Wrocław 2007

SPIS TREŚCI

Wykaz ważniejszych oznaczeń stosowanych w pracy4			
1.	WPROWADZENIE W TEMATYKĘ PRACY	6	
2.	CELE, ZAKRES I TEZY PRACY	9	
	2.1. Cele pracy	9	
	2.2. Zakres pracy	9	
	2.3. Tezy pracy	10	
3.	ANALIZA LITERATURY PRZEDMIOTU	11	
	3.1. Krótkie wprowadzenie do betonu	11	
	3.2. Znaczenie podstawowych składników stwardniałego betonu	12	
	3.3. Beton samozagęszczony	14	
	3.3.1. Informacje podstawowe	14	
	3.3.2. Metody projektowania składu	16	
	3.3.3. Metody badania mieszanek	20	
	3.4. Destrukcja naprężeniowa doraźnie ściskanego betonu	23	
	3.4.1. Czynniki wpływające na destrukcję naprężeniową	23	
	3.4.2. Kształtowanie się poziomów naprężeń inicjujących pękanie i naprężeń krytycznych w betonie w świetle dotychczasowych badań	27	
	3.4.3. Metody badawcze i kryteria wyznaczania poziomów naprężeń inicjujących pękanie i naprężeń krytycznych	30	
4.	ZAKRES BADAŃ WŁASNYCH I STOSOWANA W PRACY METODYKA	39	
	4.1. Charakterystyka badanego materiału	42	
	4.1.1. Mieszanki betonowe	42	
	4.1.2. Próbki betonowe i sposób ich przechowywania	43	
	4.2. Zakres badań własnych i stosowana w pracy metodyka	44	
	4.2.1. Badania właściwości reologicznych mieszanek betonowych	44	
	4.2.2. Badania struktury porów powietrznych z wykorzystaniem analizatora obrazu	45	
	4.2.3. Badania charakterystyki i struktury porów powietrznych z wykorzystaniem porozymetru rtęciowego	46	
	4.2.4. Badania procesu niszczenia i odkształcalności	47	
	4.3. Statystyczne techniki analizy wyników pomiarów i badań	50	

5.	WYNIKI BADAŃ I ICH ANALIZA	56
	5.1. Wyniki badań właściwości reologicznych mieszanek betonowych	56
	5.2. Wyniki badań podstawowych właściwości fizycznych i mechanicznych	59
	5.3. Wyniki badań struktury porów powietrznych	63
	5.4. Badania procesu niszczenia betonów samozagęszczonych różniących się strukturą porów powietrznych.	69
	5.5. Badania wpływu wilgotności na proces niszczenia betonów samozagęszczonych	81
	5.6. Porównanie procesu niszczenia badanych betonów samozagęszczonych z wybraną grupą betonów zwykłych i wysokowartościowych	99
6.	ANALIZY POKAZUJĄCE ZNACZENIE UZYSKANYCH REZULTATÓW BADAŃ WŁASNYCH DLA PRAKTYKI BUDOWLANEJ	110
7.	WNIOSKI I UWAGI KOŃCOWE	118
	7.1. Podsumowanie	118
	7.2. Wnioski	119
	7.3. Proponowane kierunki dalszych badań	121
L	ITERATURA	123

Wykaz ważniejszych oznaczeń stosowanych w pracy

Α	- całkowita zawartość powietrza w stwardniałym betonie,
A_{300}	 zawartość mikroporów o średnicy poniżej 0,3 mm,
EA	- emisja akustyczna,
E_{cm}	- moduł sprężystości betonu,
\overline{L}	- wskaźnik rozmieszczenia porów powietrznych,
Ν	- liczba cykli obciążenia,
N_t	-tempo zliczeń EA,
N_{zd}	-tempo zdarzeń EA,
RMS	-wartość skuteczna sygnału emisji akustycznej,
V	-objętość właściwa porów w betonie,
V_L	-prędkość podłużnych fal ultradźwiękowych w betonie ściskanym,
V_L^{p},V_L^{k}	-prędkość podłużnych fal ultradźwiękowych w betonie ściskanym:
	początkowa, końcowa,
ΣN_t	-suma zliczeń EA,
ΣN_{zd}	-suma zdarzeń EA,
f	-częstotliwość obciążeń wyrażona w Hz,
f_c	-wytrzymałość betonu na ściskanie,
f_{cm}	-wytrzymałość średnia betonu na ściskanie,
<i>f</i> _{cm,90}	-wytrzymałość średnia betonu na ściskanie po 90 dniach,
f_c^{f}	-wytrzymałość zmęczeniowa betonu ściskanego,
f_c^{dt}	-wytrzymałość betonu na ściskanie poddanego długotrwałym obciążeniom
	stałym,
р	-porowatość całkowita betonu,
r	-promień porów,
\overline{r}	-średni promień porów,
t	-czas,
W	-wilgotność betonu,
α	-powierzchnia właściwa porów powietrznych w zakresie promieni 5–7500 nm,
α'	-powierzchnia właściwa porów powietrznych w zakresie średnic 10–4000 μ m,

$\mathcal{E}_{cx}, \mathcal{E}_{cy}$	-podłużne i poprzeczne odkształcenie jednostkowe betonu wywołane
	ściskaniem,
V_c	-współczynnik odkształcenia poprzecznego betonu,
$V_{\sigma_i}, V_{\sigma_{cr}}$	-współczynniki zmienności wartości naprężeń inicjujących pękanie i
	krytycznych w betonie ściskanym,
Δv_c	-różnicowy współczynnik odkształcenia poprzecznego betonu ściskanego,
ΔV	-sumaryczne odkształcenie objętościowe betonu ściskanego,
$\Delta V/V$	-jednostkowe odkształcenie objętościowe betonu ściskanego,
$ ho^{f}$	-współczynnik asymetrii cyklu,
σ_{c}	-naprężenie ściskające w betonie,
σ_c/f_c	-stosunek naprężenia ściskającego do wytrzymałości betonu na ściskanie,
$oldsymbol{\sigma}^{d}_{c}$	-naprężenie ściskające spowodowane obciążeniem długotrwałym,
σ_i, σ_{cr}	-naprężenia inicjujące pękanie i naprężenia krytyczne w betonie ściskanym,
$\sigma_{im}, \sigma_{crm}$	-średnie naprężenia inicjujące pękanie i naprężenia krytyczne w betonie
	ściskanym,
$\overline{\sigma}_{_{im}}$, $\overline{\sigma}_{_{crm}}$	-średnie arytmetyczne ze średnich naprężeń inicjujących pękanie i naprężeń
	krytycznych w betonie ściskanym,
$oldsymbol{\sigma}_{c}^{\min}$, $oldsymbol{\sigma}_{c}^{\max}$	-naprężenie minimalne i maksymalne w cyklu.

1. WPROWADZENIE W TEMATYKĘ PRACY

Beton jest jednym z podstawowych materiałów konstrukcyjnych w budownictwie stosowanym na szeroką skalę. Z betonu wznoszone są różnego rodzaju obiekty, konstrukcje i elementy. Do jego powszechnego zastosowania przyczynia się dostępność składników, stosunkowo niskie koszty wytworzenia, możliwość stosowania w różnych warunkach atmosferycznych, możliwość wznoszenia elementów i obiektów w różnych technologiach (monolitycznej, prefabrykowanej), itp.

Stosowane obecnie betony, z uwagi na swoje właściwości i przeznaczenie, dzielą się na kilka grup [50, 83]. Jedną z tych grup stanowią betony specjalne, do których zalicza się beton samozagęszczony. Technologia tego betonu, znana jest od około 20 lat i stanowi dziś naukę wykorzystującą różne dziedziny wiedzy. Możliwy jest dzięki temu intensywny rozwój prac nad tym materiałem, pozwalający m. innymi lepiej poznać jego strukturę i wpływ na jej budowę nowych dodatków, domieszek i różnych czynników technologicznych.

Należy w tym miejscu wyjaśnić, że w literaturze przedmiotu używa się nazewnictwa beton samozagęszczony, lub beton samozagęszczalny. W rozprawie przyjęto za autorem pracy [50] nazewnictwo beton samozagęszczony.

W literaturze jest udowodnione, że proces niszczenia betonu zwykłego i wysokowartościowego pod doraźnym obciążeniem ściskającym ma charakter trójstadialny. Wizualnym efektem przebiegu tego procesu, obserwowanym w badaniach laboratoryjnych, są poziomy naprężeń inicjujących pękanie σ_i i krytyczne σ_{cr} [4, 42]. Udowodnione jest istnienie związku między poziomami przedmiotowych naprężeń a wieloma czynnikami technologicznymi i niemechanicznymi czynnikami eksploatacyjnymi, obejmującymi warunki, w których beton pracuje [42]. Można tutaj wymienić m. innymi takie czynniki jak: rodzaj kruszywa, wielkość ziaren kruszywa, uziarnienie kruszywa, rodzaj dodatku oraz domieszki, impregnację polimerem, obróbkę termiczną w parze niskoprężnej i w polu mikrofalowym, zawilgocenie, zaolejenie olejem mineralnym.

W literaturze dostrzegana jest zależność wytrzymałości zmęczeniowej betonu i wytrzymałości długotrwałej betonu od poziomów naprężeń inicjujących pękanie σ_i i krytycznych σ_{cr} . Uznaje się, że poziom naprężeń σ_i odpowiada trwałej wytrzymałości zmęczeniowej betonu, natomiast poziom naprężeń σ_{cr} odpowiada wytrzymałości długotrwałej [25, 42]. Warto zauważyć, że beton samozagęszczony jest obecnie również używany do wykonywania elementów konstrukcyjnych poddanych m. innymi obciążeniom wielokrotnie zmiennym i długotrwałym.

W badaniach procesu niszczenia obciążonego betonu bardzo przydatne są nieniszczące metody akustyczne, do których zalicza się metodę ultradźwiękową oraz metodę emisji akustycznej [23, 42, 102, 106]. Warto w tym miejscu zwrócić uwagę na szczególną przydatność metody emisji akustycznej pozwalającej na bieżąco śledzić zarówno jakościowe jak i ilościowe zmiany zachodzące w betonie, powstające wskutek narastającego obciążenia.

Biorąc pod uwagę coraz częstsze i szersze zastosowanie betonów samozagęszczonych w praktyce, wydaje się być interesujące i potrzebne zbadanie procesu niszczenia ściskanych betonów samozagęszczonych oraz wyznaczenie dla nich poziomów naprężeń inicjujących pękanie σ_i i krytycznych σ_{cr} . Przebieg tego procesu znany jest na przykład w betonach zwykłych, wysokowartościowych i nasączonych metakrylanem metylu [42]. Brak jest natomiast w literaturze szerszej wiedzy na ten temat jeśli chodzi o betony samozagęszczone, tzn. betony zawierające w swoim składzie znaczne ilości frakcji drobnych i pylastych. Warto w tym miejscu podać, że w przypadku betonów zwykłych, wraz ze wzrostem w ich składzie ilości drobnych frakcji kruszywa poziom naprężeń inicjujących pękanie σ_i maleje, w stosunku do poziomów tych naprężeń wyznaczonych w betonach, które charakteryzują się uważanym w praktyce za przeciętny, punktem piaskowym zawierającym się w przedziale 30–40% [42].

Ponadto interesujące może być czy struktura porów powietrznych w betonach samozagęszczonych zależy od zastosowanego superplastyfikatora i w jakim stopniu wpływa ona na proces niszczenia, a także czy w betonach samozagęszczonych podobnie jak w betonach zwykłych na proces ten ma wpływ tak istotny jest czynnik eksploatacyjny jakim jest wilgotność. Wyniki tych badań, oprócz znaczenia poznawczego mogą być przydatne w praktyce, m. innymi w prognozowaniu zachowania się tego materiału w różnych warunkach eksploatacyjnych, co wiąże się bezpośrednio z problemami trwałości i bezpieczeństwa eksploatacji konstrukcji z niego wykonanych, podlegających m. innymi obciążeniom wielokrotnie zmiennym, długotrwałym, stałym, przeciążeniom.

Powyższe rozważania posłużyły do sformułowania celów pracy i poznania na drodze badawczej odpowiedzi na pytania, czy na proces niszczenia ściskanych doraźnie betonów samozagęszczonych ma wpływ struktura porów powietrznych oraz wilgotność, a także wyjaśnienia, na ile proces niszczenia tych betonów różni się jakościowo w porównaniu z przebiegiem tego procesu w betonach zwykłych i wysokowartościowych.

Praca składa się z 7 rozdziałów. Rozdział 1 stanowi wprowadzenie w problematykę pracy.

W rozdziale 2 podano cele i zakres, jaki obejmuje niniejsza rozprawa oraz sformułowano trzy tezy.

Rozdział 3 zawiera analizę literatury przedmiotu. Omówiono w nim m. innymi znaczenie podstawowych składników stwardniałego betonu, przedstawiono podstawowe informacje dotyczące betonów samozagęszczonych, metod projektowania ich składu oraz sposobów badania podstawowych właściwości reologicznych mieszanek samozagęszczalnych. W rozdziale tym opisano także przebieg destrukcji naprężeniowej ściskanego doraźnie betonu i wyszczególniono najważniejsze czynniki wpływające na tę destrukcję, pokazano jak w świetle dotychczasowych badań kształtują się w różnych betonach poziomy naprężeń σ_i i σ_{cr} i zwrócono uwagę na praktyczny aspekt ich znajomości. Zamieszczono również w tym rozdziale informacje odnośnie metod badawczych i kryteriów wyznaczania poziomów naprężeń σ_i i σ_{cr} w betonie ściskanym.

Rozdział 4 zawiera zakres własnych badań doświadczalnych oraz stosowaną w pracy metodykę.

W rozdziale 5, kluczowym dla rozprawy, zamieszczono wyniki zrealizowanych badań własnych i ich analizę, w tym m. innymi: badania właściwości reologicznych zaprojektowanych samozagęszczalnych mieszanek betonowych, badania struktury porów powietrznych stwardniałych betonów samozagęszczonych, badania procesu niszczenia betonów samozagęszczonych różniących się strukturą porów powietrznych oraz zawilgoceniem. W rozdziale tym dokonano także jakościowego porównania procesu niszczenia badanych betonów samozagęszczonych z wybraną grupą betonów zwykłych i wysokowartościowych.

W rozdziale 6 zamieszczono analizy obliczeniowe przeprowadzone na bazie rezultatów uzyskanych z badań własnych, pokazujące przydatność tych rezultatów dla praktyki budowlanej.

Rozdział 7 obejmuje wnioski i uwagi końcowe, w tym proponowane kierunki dalszych badań naukowych.

Rozprawę kończy wykaz literatury.

W zakończeniu wprowadzenia wypada podać, że badania do niniejszej rozprawy finansowane były ze środków przyznawanych przez KBN na realizację projektu badawczego nr 4 T07E 020 28, tytuł projektu "Badanie odkształcalności i procesu niszczenia betonów samozagęszczonych"

8

2. CELE, ZAKRES I TEZY PRACY

2.1. Cele pracy

Podstawowym celem pracy jest ocena procesu niszczenia ściskanych doraźnie stwardniałych betonów samozagęszczonych wykonanych z użyciem różnych superplastyfikatorów i wykazanie, że na proces ten ma wpływ struktura porów powietrznych oraz wilgotność. Celem jest także wykazanie, że proces niszczenia badanych betonów samozagęszczonych różni się jakościowo w porównaniu z procesem niszczenia grupy wybranych betonów zwykłych i wysokowartościowych. Celem praktycznym pracy jest m. innymi próba właściwego spojrzenia na przydatność betonów samozagęszczonych do pracy statyczno-wytrzymałościowej w niektórych budowlanych elementach konstrukcyjnych, z punktu widzenia trwałości i bezpieczeństwa eksploatacji.

2.2. Zakres pracy

Zakres, jaki obejmuje rozprawa związany jest z celami pracy i można go zawrzeć w następujących punktach:

- 1. Dokonanie krytycznego przeglądu literatury tematu, w tym m. innymi: projektowania składu mieszanek samozagęszczalnych i metod badania ich podstawowych właściwości reologicznych, budowy struktury stwardniałego betonu i znaczenia jej podstawowych składników, przebiegu niszczenia ściskanych betonów zwykłych i wysokowartościowych, kształtowania się poziomów naprężeń inicjujących pękanie σ_i i krytycznych σ_{cr} , metod badawczych i kryteriów przydatnych w wyznaczaniu poziomów tych naprężeń.
- 2. Opracowanie zakresu badań własnych i stosowanej metodyki.
- 3. Zaprojektowanie czterech mieszanek samozagęszczalnych o podobnym składzie, z użyciem kruszywa żwirowego o maksymalnej wielkości ziaren 16 i 8 mm, ale różniących się zastosowanym superplastyfikatorem.
- 4. Ocena właściwości reologicznych zaprojektowanych mieszanek samozagęszczalnych.
- 5. Wykonanie z zaprojektowanych mieszanek samozagęszczalnych odpowiedniej liczby próbek betonowych do badań.
- 6. Poznanie na drodze badawczej struktury porów powietrznych w stwardniałych betonach samozagęszczonych.

- 7. Wykonanie badań przebiegu niszczenia ściskanych doraźnie betonów samozagęszczonych z wykorzystaniem trzech metod, ultradźwiękowej, emisji akustycznej i pomiaru odkształceń, wraz z określeniem w tych betonach poziomów naprężeń inicjujących pękanie i krytycznych.
- 8. Analiza uzyskanych wyników badań.
- 9. Porównanie procesu niszczenia badanych betonów samozagęszczonych z opisanym w literaturze procesem niszczenia betonów zwykłych i wysokowartościowych.
- 10. Podsumowanie, wyciągnięcie wniosków naukowych i praktycznych oraz podanie kierunków dalszych badań.

2.3. Tezy pracy

W pracy postawiono trzy tezy, które autor zamierza udowodnić przeprowadzonymi badaniami i analizami:

- W stwardniałych betonach samozagęszczonych struktura porów powietrznych zależy od superplastyfikatora użytego do wykonania mieszanki betonowej i ma wyraźny wpływ na proces niszczenia ściskanego betonu ocenianego nieniszczącymi metodami akustycznymi.
- 2. Nieniszczące metody akustyczne pozwalają wykazać, że w ściskanych betonach samozagęszczonych wilgotność istotnie wpływa na poziom naprężeń inicjujących pękanie σ_i , natomiast jej wpływ na poziom naprężeń krytycznych σ_{cr} jest niewielki.
- 3. Istnieje jakościowa różnica w przebiegu niszczenia ściskanych betonów samozagęszczonych, w porównaniu z betonami zwykłymi i wysokowartościowymi.

3. ANALIZA LITERATURY PRZEDMIOTU

3.1. Krótkie wprowadzenie do betonu

Beton od ponad stu lat jest jednym z podstawowych materiałów konstrukcyjnych w budownictwie. Jest to materiał wieloskładnikowy, heterogeniczny i anizotropowy. Podstawowymi składnikami stwardniałego betonu zwykłego są: ziarna kruszywa różnych frakcji, stwardniały zaczyn cementowy, warstwa przejściowa łącząca przede wszystkim powyższe składniki, pory, nieprzekrystalizowane ziarna cementu i woda [4, 5, 50, 52, 53, 70, 80, 83].

W praktyce budowlanej z uwagi na różne przeznaczenie, stosowane są oprócz betonu zwykłego betony specjalne charakteryzujące się żądanymi w danych warunkach właściwościami [49, 50, 69, 83]. Do wykonania tych betonów stosowane są, oprócz kruszywa, cementu i wody różnego rodzaju dodatki, specjalne cementy z dodatkami mineralnymi i domieszki. Jako dodatek stosuje się na przykład popiół lotny, pył krzemionkowy, mączkę wapienną, włókna polipropylenowe, szklane i stalowe [3, 6, 33, 36, 47, 50, 54, 83, 98, 101, 119, 126]. Jeżeli chodzi o domieszki, to najczęściej do mieszanki betonowej dodawane są domieszki redukujące ilość wody (upłynniające mieszankę betonową), superplastyfikatory, napowietrzające, przyspieszające lub opóźniające wiązanie, przyspieszające twardnienie, zwiększające mrozoodporność [68, 75, 115, 119].

Uproszczony model struktury stwardniałego betonu specjalnego przedstawiono na rysunku 3.1.

Rys. 3.1. Uproszczony model struktury stwardniałego betonu specjalnego

Do betonów specjalnych można zaliczyć m. innymi beton: hydrotechniczny, wodoszczelny, żaroodporny i ogniotrwały, o podwyższonej odporności na ścieranie, przewidziany do pracy w środowisku chemicznie agresywnym, przeznaczony do nawierzchni drogowych i lotniskowych, polimerowo-cementowy [50, 83]. Zalicza się także do nich beton samozagęszczony, który w praktyce budowlanej pojawił się stosunkowo niedawno [12, 49, 50, 60, 76, 86, 87, 117, 127].

3.2. Znaczenie podstawowych składników stwardniałego betonu

W literaturze znaczenie podstawowych składników stwardniałego betonu zostało opisane szeroko w wielu pracach. Wiedza na ten temat została zebrana m. innymi w [4, 23, 41]. Dlatego w niniejszej pracy bardzo syntetycznie potraktowano ten problem. Nieco większą uwagę zwrócono jedynie na porowatość i wilgotność, ponieważ badano w pracy ich wpływ na proces niszczenia betonu samozagęszczonego.

Ziarna kruszywa, otoczakowe lub łamane, będące rozdrobnionym materiałem pochodzenia mineralnego, stanowią w strukturze betonu wypełnienie rozproszone, zespolone wskutek stwardnienia zaczynu cementowego [4, 23, 28, 38, 42, 50, 83]. W przypadku kruszyw otoczakowych najczęściej stosowane są ziarna o wielkości od 2 do 16 mm, lub 20 mm, natomiast w przypadku kruszyw łamanych w przedziale od 2 do 16 mm, a niekiedy do 32 mm.

Stwardniały zaczyn cementu portlandzkiego składa się z hydratów różnych związków, określanych jako żel. Można tutaj wymienić zwłaszcza uwodnione krzemiany wapnia, wodorotlenek wapnia, uwodnione gliniany, glinokrzemiany i siarczanogliniany wapnia, pozostałości nieuwodnionych ziaren cementu, pory [4, 42]. Pod względem ilościowym dominującym składnikiem są uwodnione krzemiany wapnia. Rolą stwardniałego zaczynu jest wypełnienie wszystkich jam między ziarnami kruszywa, otulenie ziaren i zespolenie ich w całość tak, aby powstał materiał o żądanych właściwościach technicznych.

Warstwa przejściowa usytuowana jest na styku stwardniałego zaczynu cementowego i ziaren kruszywa. Powstaje ona w wyniku różnych procesów fizycznych, fizykochemicznych i chemicznych, zachodzących na granicy styku tych składników betonu [4, 52, 67]. Fakt, że warstwa ta jest najsłabszym elementem struktury betonu, w porównaniu ze stwardniałym zaczynem cementowym i kruszywem, sprzyja lokowaniu się w niej i na jej styku

z kruszywem mikrodefektów strukturalnych będących wynikiem naprężeń własnych [4, 20, 23, 38, 42, 99].

W strukturze stwardniałego betonu istnieją różnego rodzaju i różnej wielkości pory, redukujące efektywny przekrój przenoszący obciążenie. Przyjmując powszechnie stosowany podział porów według ich wielkości, można wymienić w stwardniałym betonie pory żelowe, pory kapilarne i makropory [42, 89]. Średnice porów żelowych zawierają się w przedziale 0,5–10 nm. Wynikają one z krystalicznej budowy żelu. Mogą one stanowić niemal 30% jego objętości i są wypełnione wodą związaną chemicznie. Pory kapilarne w stwardniałym zaczynie mogą stanowić do 40% jego objętości [83]. Mają one średnice zawierające się w przedziale od 10 nm do 10 µm i tworzą system połączonych ze sobą kanalików. Wypełnione są one wodą wolną. Z kolei makropory mają średnice mieszczące się w przedziale 0,1–1,0 mm i powstają podczas układania i wibrowania mieszanki betonowej, wskutek nadmiaru wody zarobowej i pęcherzyków powietrza, zablokowanych na przykład pod większymi ziarnami kruszywa. W zależności od warunków wilgotnościowych, panujących podczas eksploatacji betonu, pory te mogą być w całości lub w części wypełnione wodą.

Porowatość jest parametrem silnie determinującym właściwości betonu, a pierwszorzędne znaczenie w tym względzie przypisuje się porom kapilarnym [42, 52, 67, 83]. Stwierdzono doświadczalnie, że wytrzymałość zarówno stwardniałego zaczynu cementowego, jak i betonu zależy od porowatości [42, 89].

Struktura porów powietrznych w betonie w dużej mierze może zależeć od użytej domieszki. Struktura ta może mieć istotne znaczenie dla przebiegu niszczenia ściskanego betonu. W odniesieniu do betonów samozagęszczonych brak jest w literaturze badań potwierdzających lub zaprzeczających temu stwierdzeniu.

Wilgoć w strukturze stwardniałego betonu występuje zarówno w zaczynie cementowym i warstwie przejściowej, jak i w porach. Jej ilość nie jest bez znaczenia z punktu widzenia zachowania się tego materiału podczas niszczenia spowodowanego obciążeniem [38, 39, 42, 44]. Znajdująca się w dojrzałym betonie wilgoć występuje w postaci wody związanej chemicznie, wody półzwiązanej (wody żelowej) oraz wody wolnej [42]. Woda związana chemicznie jest istotnym składnikiem sieci krystalicznej betonu. Z kolei woda półzwiązana, rozdziela się na wodę zeolityczną i adsorpcyjną, związaną fizykochemicznie siłami powierzchniowymi z fazami stałymi betonu. Odgrywa ona główną rolę w żelach [42]. Woda wolna jest związana z fazami stałymi betonu słabymi wiązaniami fizykomechanicznymi. Przenika z otoczenia do wnętrza betonu mikroporami i kapilarami, przede wszystkim wskutek

procesu kondensacji kapilarnej nasyconej pary wodnej znajdującej się w makroporach. Bardzo istotne jest to, że woda ta stosunkowo łatwo jest usuwalna z betonu w temperaturze 105–110°C.

W zależności od sposobu eksploatacji konstrukcji ruch kapilarny wody wolnej w betonie, może odbywać się w szerokim zakresie wilgotności tego materiału, to znaczy od stanu pełnego nasycenia, poprzez maksymalną wilgotność sorpcyjną, do stanu suchego [38, 39, 42]. Jeśli pory i kapilary w betonie wypełnione są wodą następuje nieliniowy adsorpcyjny spadek wytrzymałości tego materiału na ściskanie. Przyczyną tego jest częściowe rozpuszczanie się więzi między kryształkami sieci strukturalnej [39, 42]. Zjawisko spadku wytrzymałości nasyconego wodą betonu jest częściowo odwracalne w tym sensie, że po wysuszeniu materiał odzyskuje wytrzymałość zbliżoną do tej, jaką miał w stanie wyjściowym. Spadek wytrzymałości jest również związany z rozrywaniem struktury obciążanego betonu przez rozklinowujące działanie wody znajdującej się w mikrorysach [38, 42].

Jak wyjaśniono w pracy [42], rozklinowujące działanie wody silnie wspomaga destrukcję naprężeniową betonu, zwłaszcza wtedy, gdy materiał ten znajduje się w stanie pełnego nasycenia.

W przypadku betonów zwykłych, rozpoznany jest wpływ wilgotności na proces niszczenia pod obciążeniem ściskającym. Natomiast w literaturze brak jest takich badań odnośnie betonów samozagęszczonych.

3.3. Beton samozagęszczony

3.3.1. Informacje podstawowe

Beton samozagęszczony, w języku angielskim *Self-Compacting Concrete* (SCC), jest zaliczany do betonów nowej generacji. Innowacyjność tego specjalnego betonu polega na samozagęszczaniu się mieszanki betonowej i całkowitej eliminacji jej mechanicznego zagęszczania w trakcie układania. Zdolność mieszanki do samozagęszczania uzyskuje się dzięki zastosowaniu odpowiednich dodatków i domieszek, w połączeniu z odpowiednim doborem pozostałych składników. Mieszanka samozagęszczalna zagęszcza się i odpowietrza pod wpływem własnego ciężaru, wypełniając szczelnie formę lub deskowanie, nawet wtedy gdy współczynnik zbrojenia elementu jest duży.

Pierwsze próby dotyczące zastosowania betonów samozagęszczonych przeprowadzone zostały w Japonii na początku lat 80 ubiegłego wieku i dotyczyły konstrukcji monolitycznych [11, 12, 87, 117, 123]. Były one na tyle obiecujące, że spowodowały zainteresowanie tym materiałem zarówno badaczy jak i praktyków. Za twórców koncepcji betonów samozagęszczonych uważani są Okamura i Ozawa [10, 60, 86-88], a rok 1988 przyjmuje się jako ten, w którym po raz pierwszy nastąpiła w pełni udana próba zastosowania betonu samozagęszczonego w budownictwie [87]. Od tego momentu w wielu ośrodkach naukowych na świecie, a także w Polsce, prowadzone są prace badawcze nad betonami samozagęszczonymi, dotyczące m. innymi metod optymalizacji składu, badania właściwości świeżej mieszanki, badania właściwości betonu stwardniałego. Odbywają się liczne konferencje, na których prezentowane są osiągnięcia badaczy dotyczące tej tematyki [1, 17, 34, 57]. Trzeba nadmienić, że rozwój technologii betonów samozagęszczonych przyczynił się do rozwoju produktów chemii budowlanej, a w szczególności do powstania nowej generacji superplastyfikatorów i środków napowietrzających.

Wraz Z rozwojem badań naukowych nastapiło zainteresowanie betonem samozagęszczonym na skalę przemysłową w wielu krajach, m. innymi w Japonii, USA, Kanadzie, a także w Europie. Pierwsze zastosowanie betonu samozagęszczonego w Europie datuje się na 1998 rok [10]. Betony te są obecnie coraz częściej stosowane do wykonywania różnych konstrukcji betonowych i żelbetowych, na przykład: płyt i filarów mostowych, ścian tuneli i zbiorników, szkieletów budynków wysokich, elementów prefabrykowanych itp. Na razie są one jednak indywidualne, w tym rozumieniu, że nie wprowadzono jeszcze tej technologii do produkcji mieszanek towarowych. Jako przykład wymienić można m. innymi następujące obiekty, do wykonania których użyty został beton samozageszczony: budynek Millenium Tower w Wiedniu [10], budynek teatru narodowego w Hadze, biurowiec firmy Dyckerhoff w Wiesbaden, monolityczne pale fundamentowe mostu dla szybkiej kolei Frankfurt - Kolonia [10], elementy konstrukcyjne obiektów autostrady w Norwegii [22], kompleks handlowo - rozrywkowy City Forum II w Gdańsku [18], most Zamkowy w Rzeszowie [100], ściana boczna zagłębienia "Wisłostrady" w tunel drogowy w Warszawie [19], ściany ogniowe w Fabryce VW w Poznaniu [114], tory wodowania statków Pochylni Wulkan w Szczecinie [114], kościół OO. Jezuitów (pierwotnie kościół ewangelicko augsburski św. Jana) w Łodzi [56]. W prefabrykacji najszersze zastosowanie tej technologii ma obecnie miejsce w Holandii i Szwecji [9, 15, 126]. W Polsce przykładem może być zakład prefabrykacji w Gorzkowicach, w którym produkowane są z użyciem betonu samozageszczonego dźwigary spreżone o przekroju dwuteowym o długościach do 30 m [65].

Podsumowując, za główne czynniki przyczyniające się do zainteresowania betonem samozagęszczonym na skalę przemysłową uważa się m. innymi [1, 10-12, 37, 50, 60, 72, 85, 86-88, 117, 123, 124, 127]:

- brak konieczności mechanicznego zagęszczania mieszanki, nawet w miejscach gdzie zbrojenie jest gęsto ułożone,
- obniżenie poziomu hałasu szczególnie w zakładach prefabrykacji,
- łatwość wykonywania konstrukcji o skomplikowanych kształtach,
- zwiększenie szybkości betonowania,
- bardzo wysoką jakość wykonania elementów przejawiającą się brakiem raków, gładkimi powierzchniami, itp.,
- bardzo dobrą przyczepność do starego betonu co daje możliwość uzupełniania ubytków,
- redukcję efektu rozsegregowywania się składników mającego niekiedy miejsce w przypadku betonów zwykłych.

3.3.2. Metody projektowania składu

Ogólnie rzecz biorąc, skład betonu samozagęszczonego, w porównaniu z betonem zwykłym, charakteryzuje się większą zawartością frakcji pylastych, mniejszą zawartością kruszywa grubego oraz zastosowaniem nowej generacji superplastyfikatorów zapewniających mieszance wymaganą płynność. Zawartość frakcji pylastych w mieszance jest znacznie wyższa niż w betonach zwykłych i wynosi wg zaleceń [60, 64, 66, 73, 78, 82, 104, 112, 113, 121] od 380 do 600 kg/m³. Przykładowo na rysunku 3.2 pokazano dla celów porównawczych, procentowe proporcje składu betonu zwykłego i samozagęszczonego. Z kolei w tabeli 3.1 podano podstawowe wymagania odnośnie zawartości głównych składników w 1 m³ mieszanki samozagęszczalnej [33, 46, 60, 87, 110].

Warto dodać, że do wykonania betonu samozagęszczonego nadaje się większość produkowanych rodzajów cementów, zwłaszcza wyższych klas wytrzymałości. Możliwe jest także stosowanie szerokiej gamy super miałkich i drobnych wypełniaczy, w tym na przykład mielonego kamienia wapiennego, popiołów lotnych i żużli, pyłów krzemionkowych oraz mielonych mączek kamiennych. Dodatkowo można stosować domieszki napowietrzające poprawiające mrozoodporność [50, 74, 75, 120]. Możliwe jest też stosowanie dodatków w postaci włókien stalowych lub innych stanowiących zbrojenie rozproszone [36, 47, 50, 98].

Rys. 3.2. Przykładowe proporcje składu betonu zwykłego i samozagęszczonego [32, 83]

Składnik mieszanki betonowej	Zalecana zawartość	
Frakcje pylaste	380 – 600 [kg/m ³]	
(cement + dodatki minerame)		
Woda	$150 - 210 \ [kg/m^3]$	
Kruszywo grube	$750 - 1000 \ [kg/m^3]$	
Piasek	48 – 55% całkowitej masy kruszywa	

Tabela 3.1. Zalecana zawartość głównych składników mieszanki betonowej samozagęszczalnej

W literaturze opracowanych zostało kilka metod projektowania betonów samozagęszczonych. Najlepiej udokumentowane są: metoda japońska (Okamury i Ozawy) [10, 16, 17, 60, 78, 82, 87, 122], metoda francuska (Sardana, Ferrarisa i de Larrarda) [16, 122], metoda szwedzka [10, 16] oraz metoda minimalnej ilości zaczynu (Van i Montgomery) [16, 122]. Są to metody doświadczalne lub doświadczalno-analityczne.

Metoda japońska

Jest doświadczalną i najczęściej stosowaną metodą projektowania składu betonu samozagęszczonego [10, 16, 17, 60, 78, 82, 87, 122]. Polega ona na doborze metodą prób i błędów, proporcji składników, przy przyjęciu założeń wyjściowych dotyczących:

- ograniczenia zawartości kruszywa grubego,

- przyjęcia niskiej wartości współczynnika w/c,
- zastosowania wysokoefektywnych superplastyfikatorów.

W metodzie tej wyróżnić można dwa etapy projektowania mieszanki. Pierwszym etapem jest zaprojektowanie składu zaprawy. Polega on na takim doborze ilości dodatku i piasku do zaczynu składającego się z wody i cementu o ustalonym w/c (nie należy przekraczać wartości 0,5), aby uzyskać odpowiednią płynność i lepkość zaprawy. Ilość piasku stanowi przeciętnie 38 – 45% objętości zaprawy. Do utworzonej zaprawy dodaje się następnie domieszkę (superplastyfikator) w takiej ilości, aby spełnione były poniższe warunki [78, 122]:

$$200 \le d_{sr} \le 280 \text{ [mm]},\tag{3.1}$$

$$5 \le t_m \le 10 \text{ [s]},$$
 (3.2)

gdzie: d_{sr} jest średnią średnicą rozpływu zaprawy mierzoną z użyciem stożka do zapraw, a t_m czasem wypływu zaprawy z lejka V-funnela. W przypadku niewłaściwego d_{sr} koryguje się ilość superplastyfikatora, a w przypadku niewłaściwego t_m ilość dodatku. Za duża ilość piasku powoduje na ogół uzyskanie za niskich wartości d_{sr} nawet przy dużych dawkach superplastyfikatora, natomiast zbyt mała ilość piasku może spowodować za wysoką lepkość i za dużą ilość spoiwa w mieszance (warunek ekonomiczny).

Gdy zaprawa spełni powyższe warunki, można przystąpić do dozowania kruszywa grubego. Zalecenie projektowe wygląda następująco [78, 122]:

$$0.5\rho_n^{z}[\text{kg/m}^3] \le G [\text{kg/m}^3] \le 0.55\rho_n^{z}[\text{kg/m}^3], \qquad (3.3)$$

gdzie: *G* jest ilością kruszywa grubego, a ρ_n^z gęstością nasypową kruszywa grubego w stanie zagęszczonym. Wartość 0,50 jest bliska optimum dla kruszyw łamanych, a wartość 0,55 dla otoczakowych. Dwuetapowy sposób projektowania nie daje możliwości skomponowania mieszanki kruszywa o optymalnych dla betonu właściwościach, tzn. uziarnienia i szczelności stosu okruchowego.

Zaletą tej metody projektowania składu jest stosunkowo szybkie i proste ustalenie składu mieszanki bez konieczności użycia specjalistycznego sprzętu pomiarowego. Za wadę tej metody można uznać to, że uzyskuje się mieszanki o stosunkowo dużej ilość zaczynu, co jest mało ekonomiczne z uwagi na duże zużycie cementu.

Metoda francuska

Bazuje na ocenie samozagęszczalności mieszanki betonowej na podstawie jej parametrów reologicznych, tj. naprężeń ścinających τ_0 i lepkości plastycznej η_{pl} [16, 122] i jest to metoda

doświadczalno-analityczna. Jej istotą jest założenie, że gwałtowny wzrost naprężeń ścinających występuje wtedy, gdy "najgrubsze" ziarna kruszywa osiągną stan bliski maksymalnej możliwej do uzyskania koncentracji objętościowej w stosie okruchowym (stan bliski nasycenia) i następuje ich wzajemne blokowanie. Za warunek uzyskania samozagęszczalności mieszanki przyjęto w tej metodzie kryteria [122]:

- płynięcia - τ'_0 ,

- samoodpowietrzenia η'_{pl} ,
- urabialności K'_{cg}
- braku segregacji K'_{p} .

W metodzie tej, stosując cztery wyżej wymienione kryteria oceny kompleksowo ocenia się mieszankę ze względu na jej samozagęszczalność. Graniczny stan koncentracji objętościowej "najgrubszych" ziaren kruszywa w stosie okruchowym, powodujący blokadę przepływu uzyskuje się przez ograniczenie wielkości i ilości kruszywa grubego. Objętość i szczelność kruszywa bezpośrednio uzyskuje się stosując kryterium lepkości η'_{pl} , natomiast kryteria urabialności i segregacji pozwalają określić wartość współczynnika K' (stanu nasycenia). Właściwości zaczynu uwzględnione są zarówno w wyznaczonej dla mieszanki granicy płynięcia τ_0 , uwzględniającej wpływ rodzaju i ilość zastosowanego superplastyfikatora, oraz w kryterium braku segregacji $K'_{p \min}$ uwzględniającym zawartość ziaren $d_i < 80 \mu m$. Dodatkowo, segregacja weryfikowana jest pomiarem zagłębienia ziaren grubych, poniżej górnej powierzchni próbki kontrolnej.

Omówiona metoda jest pracochłonna, wymaga wykonania stosunkowo rozbudowanych badań i obliczeń, a także posiadania laboratorium wyposażonego w specjalistyczne reometry.

Metoda szwedzka

Jest metodą doświadczalną opierającą się na dwóch założeniach, a mianowicie [10, 16]:

- doborze najbardziej szczelnego stosu okruchowego przy zastosowaniu możliwie najgrubszego uziarnienia kruszywa (tzw. "frakcji grubej"), lecz nie powodującego blokady przepływu mieszanki w świetle prętów zbrojenia,
- użyciu jak najmniejszej ilości zaczynu, niezbędnej do uzyskania betonu samozagęszczonego.

Kruszywo w tej metodzie jest bardzo starannie projektowane, zarówno z warunku maksymalnej szczelności jak i maksymalnej ilości kruszywa grubego tak, aby nie nastąpiło

blokowanie przepływu mieszanki między prętami zbrojenia. W przeciwieństwie do wymagań stawianych dla kruszywa, nie ma w tej metodzie specjalnych wymagań stawianych w stosunku do zaczynu, z wyjątkiem zalecenia, aby sumaryczna ilość frakcji pylastej kształtowała się na poziomie 500 - 525 kg/m³ [16].

Metoda ta pozwala na zmniejszenie zużycia zaczynu w porównaniu z metodą japońską, lecz jest pracochłonna ze względu na wymaganą dużą ilość wykonywanych testów na mieszankach próbnych.

Metoda minimalnej ilości zaczynu

Jest rozbudowaną metodą szwedzką. Jest to metoda analityczno-doświadczalna [16, 122]. W metodzie tej w sposób analityczny wyznacza się maksymalną objętość kruszywa z uwzględnieniem warunku blokowania przepływu oraz minimalną objętość zaprawy. Doświadczalnie optymalizuje się natomiast wzajemne proporcje udziału kruszywa i zaczynu w celu zapewnienia samozagęszczalności betonu. Część analityczna oparta jest na dwóch niezależnych kryteriach: kryterium fazy stałej, określające maksymalną ilość kruszywa V_{max} przy zachowaniu warunku nie blokowania przepływu i kryterium fazy ciekłej, wyznaczające minimalną ilość zaczynu $V_{z min}$ niezbędnego do zapewnienia samozagęszczalności mieszanki.

W metodzie tej nie uwzględnia się właściwości reologicznych zastosowanej zaprawy. Brak uwzględnienia wpływu właściwości zaprawy w początkowej fazie projektowania powoduje, że zaprojektowane ilości składników należy korygować licznymi testami na zarobach próbnych.

3.3.3. Metody badania mieszanek

Technologia betonu samozagęszczonego wykorzystująca wysokojakościowe produkty chemii budowlanej jest szczególnie wrażliwa na wszelkie zmiany, nieprawidłowości i nieregularności w produkcji. Szczególnie istotna jest stabilność cech składników mieszanki, takich jak: uziarnienie kruszywa, wilgotność kruszywa, skład chemiczny cementu, a także prawidłowy, co do sposobu i czasu jej transport i układanie. W przypadku tej technologii, rola laboratorium nie ogranicza się tylko do zaprojektowania składu wyjściowego mieszanki. Wskazana jest bieżąca kontrola cech mieszanki wbudowywanej.

Jeśli mieszanka nie zdoła sama wypełnić dokładnie formy i otulić zbrojenia, wspomaganie rozpływu techniką wibracyjną nie jest już praktycznie możliwe, bo może spowodować

segregację składników i "bleeding". Dlatego konieczne jest kontrolowanie podstawowych właściwości reologicznych mieszanki betonowej, żeby być pewnym, że rzeczywiście mamy do czynienia z mieszanką samozagęszczalną. Najistotniejsze grupy mierzalnych właściwości tych mieszanek to przede wszystkim: urabialność, podatność na segregację, zmiany własności w czasie, zawartość ilości powietrza [8, 105, 116, 118].

Poniżej pokrótce przedstawiono metody badania podstawowych właściwości reologicznych mieszanek samozagęszczalnych. Natomiast w dalszej części pracy (w p. 4.2.1 i 5.1) szczegółowo omówiono te metody, które wykorzystano w badaniach własnych.

Powszechnie stosowane, normowe metody badania konsystencji, uznawanej za miarę urabialności betonów zwykłych [92], nie są przydatne do badania mieszanek samozagęszczalnych [51, 63, 111, 116, 118]. Jednak pomimo tego, że brak jest jak dotąd przepisów normowych dotyczących betonów samozagęszczonych, opracowano szereg metod oceny urabialności (rozumianej jako płynność i zdolność mieszanki do przepływu między prętami zbrojenia oraz jej samopoziomowania się). Skonstruowano w tym celu wiele urządzeń pomiarowych. Metody te można umownie podzielić na trzy grupy, z których dla każdej wspólną cechą jest charakter mierzonej wielkości:

- Grupa 1 rozpływ nieograniczony bądź ograniczony, w cm i s,
- Grupa 2 przepływ z przeszkodami, czas i poziom wypełnienia w s i cm,
- Grupa 3 wypływ w czasie, w s.

Do pierwszej grupy należą metody, w których wykorzystywany jest normowy "stożek Abramsa" lub stożek w połączeniu z pierścieniem wykonanym z prętów zbrojeniowych (metoda J-Ring) [60, 63, 87, 113, 121, 126]. Miarą urabialności jest średnica rozpływu mieszanki umieszczonej w stożku Abramsa, a w przypadku zastosowania metody J-Ring, dodatkowo ocenia się zdolność mieszanki do przepływu między prętami zbrojeniowymi i tym samym skłonność do blokowania kruszywa grubego.

Druga grupa metod zawiera wiele rozwiązań, różniących się konstrukcją sprzętu i sposobem badania. Wspólną ideą wszystkich rozwiązań jest próba bezpośredniego pomiaru zdolności mieszanki betonowej do wypełnienia deskowania (formy) ze zbrojeniem. Najczęściej w tym celu wykorzystywane są urządzenia o nazwach: "L-Box" [14, 60, 87, 113, 121, 126] lub "U-box" [87, 113, 126]. W metodach tych mierzy się czas przepływu mieszanki przez przeszkodę w postaci prętów zbrojeniowych oraz "wysokości" uzyskane przez mieszankę po ustaniu przepływu [87, 113, 121, 126].

Trzecia grupa metod obejmuje różnej konstrukcji lejki do pomiaru czasu wypływu określonej porcji mieszanki. Najczęściej stosowane są lejki typu V [14, 60, 87, 113, 121]. Wtedy miarą konsystencji jest czas mierzony od chwili otwarcia napełnionego lejka do momentu jego całkowitego opróżnienia [60, 87, 113, 121].

Podatność na segregację mieszanek samozagęszczalnych można oceniać zarówno poprzez bezpośrednie badanie świeżej mieszanki, jak i przez badanie tężejącego bądź stwardniałego betonu. Najprostsza metoda polega na pomiarze ilości zaczynu oddzielonego z mieszanki po określonym czasie, po umieszczeniu jej na sicie o oczkach 5 mm. Uznaje się, że mieszanka jest całkowicie odporna na segregację, jeśli ubytek jest mniejszy niż 15% masy próbki, zaś dostatecznie odporna, gdy ubytek ten nie przekracza 30%. Inna metoda polega na pobraniu próbek mieszanki z wysokiej (500 mm) formy, z jej górnej i dolnej części i wypłukaniu kruszywa grubego z obu próbek. Mieszanka odporna na segregację powinna mieć w przybliżeniu równą ilość kruszywa grubego w próbce "dolnej" i "górnej" [126].

Inną prostą metodą oceny zachowania się w czasie mieszanki pozostającej w bezruchu, którą można zastosować z powodzeniem na placu budowy, jest metoda bazująca na wykorzystaniu "stożka Abramsa". W metodzie tej, cztery stożki Abramsa napełnia się jednocześnie mieszanką i obciąża. Badanie kolejnych rozpływów wykonuje się na przykład co 15 min, co pozwala ocenić zmianę urabialności w czasie, spowodowaną ujawnieniem się tiksotropowości [126].

Istotną cechą mieszanek samozagęszczalnych jest także czas zachowania ich właściwości reologicznych, które można zbadać w laboratorium stosując reometry, lepkościomierze i taksometry.

W zakończeniu tego punktu warto podać, że znane jest urządzenie powalające określić strukturę pęcherzyków powietrza w świeżej mieszance betonowej. Jest to aparat o nazwie Air-Void-Analyzer (AVA), który pozwala określić zarówno zawartość pęcherzyków powietrza jak i ich rozmieszczenie w objętości mieszanki, co może być wykorzystane m. innymi w prognozowaniu mrozoodporności stwardniałego betonu [74, 120].

3.4. Destrukcja naprężeniowa doraźnie ściskanego betonu

3.4.1. Czynniki wpływające na destrukcję naprężeniową

Destrukcja naprężeniowa, lub inaczej proces niszczenia, ściskanego betonu jest ściśle uzależniona od jego struktury. Szczególne znaczenie ma tu ilość, wielkość, kształt i rozkład pierwotnych mikrodefektów strukturalnych powstałych na etapie tworzenia się tego materiału [4, 23, 38, 42, 80]. Istotne znaczenie może mieć także struktura porów i pustek powietrznych.

Badania wykazują, że na destrukcję naprężeniową betonu wpływ mają czynniki technologiczne związane m. innymi ze składem mieszanki betonowej i warunkami zaistniałymi na etapie tworzenia się betonu. Jak wynika z rysunku 3.3, do czynników tych można zaliczyć m. innymi: rodzaj kruszywa [20, 21, 38, 42], wielkość ziaren kruszywa [40], uziarnienie kruszywa [38, 42], zastosowany dodatek np.: pył krzemionkowy i superplastyfikator [2, 42, 101] mikrozbrojenie rozproszone [4], impregnację polimerem [42], a także obróbkę termiczną w parze niskoprężnej i w polu mikrofalowym [71, 109]. Stwierdzone jest również uzależnienie procesu niszczenia od niemechanicznych czynników eksploatacyjnych obejmujących warunki, w których beton może pracować, w szczególności od wilgotności [38, 39, 42, 44] i zaolejenia olejem mineralnym [42].

Analizę procesu niszczenia komplikuje fakt dużej niejednorodności struktury betonu, co jest bezpośrednią przyczyną niejednorodnego rozkładu sił wewnętrznych i naprężeń wywołanych przez ściskające obciążenie zewnętrzne. Te niejednorodne rozkłady naprężeń oraz występowanie mikrodefektów powstałych m. innymi w wyniku naprężeń własnych, na etapie tworzenia się materiału, powodują, że w betonie obserwuje się występowanie lokalnych koncentracji naprężeń. Koncentracje te powodują powstawanie, kumulację i propagację mikrorys i rys, co prowadzi w rezultacie do dezintegracji struktury poprzez utratę stabilności wewnętrznej. Koncentracje naprężeń mogą występować w różnych izolowanych punktach struktury i powodować, w miejscach gdzie naprężenia rozciągające przekraczają jej lokalne wytrzymałości, powstawanie lokalnych nieciągłości. Powstałe mikrorysy początkowo lokalnie powiększają się, a następnie łączą się w rysy biegnące równolegle do kierunku działania obciążenia zewnętrznego i tworzą ciągłą sieć spękań [4, 23, 38, 42].

Cechą charakterystyczną betonu jest to, że rozwój jego zarysowania nie prowadzi do powstania pojedynczej dużej rysy, ale do powstania całego rozgałęzionego systemu rys. Zjawisko to jest wynikiem hamowania rozwoju zarysowania m. innymi przez ziarna kruszywa i pory, które powodują chwilowe "zatrzymanie się" mikrorysy. Zjawisko to sprawia, że w miarę rozwoju zarysowania wyraźnie zwiększa się zapotrzebowanie na energię. Procesy stopniowego rozwoju i hamowania zarysowania wzajemnie się przeplatają i występują wielokrotnie w wielu punktach struktury betonu. Dalszy wzrost obciążenia powoduje powstanie dużych odkształceń niesprężystych, co jest z kolei przyczyną kształtowania się rozległego układu dużych rys. Ostateczne zniszczenie następuje w chwili, gdy układ ten staje się wewnętrznie niestabilny [4, 23, 27, 38, 42].

Rys. 3.3. Wybrane czynniki technologiczne i niemechaniczne czynniki eksploatacyjne wpływające na destrukcję naprężeniową betonu

W oparciu o dane literaturowe można przyjąć za udowodnione, że przebieg niszczenia betonu zwykłego, a także wysokowartościowego pod doraźnym obciążeniem ściskającym ma charakter trójstadialny [4, 23, 27, 38, 41-43]. Stadia te, to stabilna inicjacja mikrorys, stabilny rozwój i propagacja mikrorys, niestabilna propagacja mikrorys [4, 23, 27, 38, 42].

Stadium stabilnej inicjacji rys charakteryzuje się tym, że w odosobnionych punktach struktury betonu ujawniają się mikrorysy zapoczątkowane na etapie tworzenia się tego materiału w postaci mikroszczelin, porów oraz lokalnych koncentracji naprężeń rozciągających. Tworzenie się tych mikrorys łagodzi istniejące koncentracje naprężeń, prowadząc do przywrócenia równowagi sił wewnętrznych. Charakterystycznym jest, iż na tym etapie niszczenia istniejące mikrorysy nie rozwijają się, zachodzi natomiast zjawisko ich pomnażania [4, 23, 38, 42].

Wzrost obciążenia powoduje, że destrukcja betonu wchodzi w drugie stadium, w którym zachodzą dwa równoczesne procesy: zjawisko propagacji rys powstałych w stadium pierwszym oraz dalsze tworzenie się stabilnych mikrorys. Rysy pomnażają się i rozprzestrzeniają się w sposób stabilny, w tym sensie, że jeżeli przyrost obciążenia zewnętrznego zostanie wstrzymany, to rozwój zarysowania także ustanie [4, 23, 38, 42].

Stadium trzecie, końcowe, występuje wówczas, gdy na skutek dalszego wzrostu obciążenia układ rys rozwinął się do tego stopnia, że staje się niestabilny. Pod wpływem wyzwalającej się energii odkształcenia, rysy rozprzestrzeniają się samoczynnie, aż do całkowitego zniszczenia struktury. Zniszczenie na tym etapie może nastąpić nawet bez dalszego przyrostu obciążenia zewnętrznego [4, 23, 38, 42].

Rozdzielające opisane stadia poziomy naprężeń przyjęto w literaturze nazywać naprężeniami inicjującymi pękanie σ_i i naprężeniami krytycznymi σ_{cr} . Naprężenia te są wizualnym efektem przebiegu niszczenia ściskanego betonu, obserwowanym w badaniach laboratoryjnych [42].

Jak już wspomniano wcześniej proces niszczenia ściskanego betonu zależy od wielu czynników technologicznych i eksploatacyjnych, w tym od składu betonu i różnego rodzaju domieszek i dodatków. Stąd poziomy naprężeń inicjujących pękanie i naprężeń krytycznych także są od nich uzależnione.

Za [25, 27, 42, 109] uznaje się, że poziom naprężeń inicjujących pękanie σ_i jest granicą dla liniowej sprężystości betonu, co oznacza, że w betonie ściskanym doraźnie, przy naprężeniu $\sigma_c \leq \sigma_i$, zależność $\sigma_c - \varepsilon_c$ jest prawie liniowa i beton zachowuje się jak ciało liniowo sprężyste. Również liniowo sprężyste cechy wykazuje beton podczas ściskających obciążeń powtarzalnych, nie powodujących przekroczenia naprężeń σ_i .

Poziom naprężeń σ_i jest również uznawany za równy trwałej wytrzymałości zmęczeniowej betonu. Z prac [24, 25, 103] wynika, że naprężenie $\sigma_c^{\max} < \sigma_i$, nie powoduje zniszczenia zmęczeniowego. Przyjmuje się jednak, że twierdzenie to jest prawdziwe przy liczbie cykli obciążenia $N \le 10^7$ i przy współczynniku asymetrii cyklu $\rho^f > 0$. Należy dodać, że jeśli naprężenia $\sigma_i < \sigma_c^{\max} < \sigma_{cr}$, to do zmęczeniowego zniszczenia betonu ściskanego dochodzi po skończonej liczbie cykli N, zależnej od współczynnika asymetrii ρ^f i czasu trwania cyklu obciążenia. Zniszczenie takie jest określane mianem zmęczenia wysokocyklicznego. Zmęczenie wysokocykliczne charakteryzuje się dwufazowością niszczenia betonu. Natomiast gdy naprężenie $\sigma_c^{\max} > \sigma_{cr}$, wówczas mamy do czynienia z tzw. niskocyklowym zniszczeniem betonu [103].

Poziom naprężeń σ_i jest także granicą dla liniowego pełzania betonu, przy ściskających obciążeniach długotrwałych [83]. Oznacza to, że jeśli naprężenie powodowane obciążeniem długotrwałym nie przekracza poziomu σ_i , to istniejące w betonie mikrorysy powiększają się, ale nie powstają nowe. W tym zakresie obciążeń przyjmuje się, że beton jest ciałem lepkosprężystym.

Z kolei poziom naprężeń σ_{cr} jest uznawany za granicę nieliniowego pełzania i długotrwałą wytrzymałość na ściskanie betonu [24, 25, 103]. Oznacza to, że jeśli naprężenia od obciążeń stałych zawierają się w przedziale $\sigma_i \leq \sigma_c^d < \sigma_{cr}$, to wskutek powstawania nowych mikrorys w rejonach styku kruszywa ze stwardniałym zaczynem cementowym i w samym zaczynie beton wykazuje cechy ciała nieliniowo lepkosprężystego. Badania potwierdzają też, że gdy $\sigma_c^d \geq \sigma_{cr}$, wtedy wskutek łączenia się ze sobą mikrorys i ich niestabilnej propagacji proces odkształcania się betonu pod ściskającymi obciążeniami stałymi staje się niestabilny. Ponieważ niestabilna propagacja mikrorys w betonie rozpoczyna się przy naprężeniu równym σ_{cr} , naprężenie to i wytrzymałość długotrwała betonu uznawane są więc za równe sobie [42].

Należy podkreślić, że w praktyce naprężenia inicjujące pękanie σ_i i naprężenia krytyczne σ_{cr} mogą być bardzo przydatne do oceny predyspozycji elementów żelbetowych na zarysowanie. Praca [20] udowodniła istnienie jednoznacznego związku wartości naprężeń σ_i i σ_{cr} w danym betonie z wartościami momentu rysującego oraz morfologią rys w zginanych belkach żelbetowych z niego wykonanych.

Z rozpatrywanymi naprężeniami σ_i i σ_{cr} wiąże się ściśle zjawisko samoregeneracji struktury betonu. Jak wynika z prac [38, 79] niemal pełna samoregeneracja rys powstałych w obciążonym betonie jest możliwa, jeśli poziom naprężeń ściskających $\sigma_c < \sigma_i$. Po przekroczeniu w betonie poziomu naprężeń σ_{cr} zjawisko samoregeneracji nie występuje.

Biorąc pod uwagę przeprowadzone studia literaturowe należy stwierdzić, że brak jest w literaturze prac dotyczących oceny na drodze badawczej procesu niszczenia ściskanych doraźnie betonów samozagęszczonych.

3.4.2. Kształtowanie się poziomów naprężeń inicjujących pękanie i naprężeń krytycznych w betonie w świetle dotychczasowych badań

Badania wykazują, że poziomy naprężeń inicjujących pękanie i naprężeń krytycznych osiągają różne wartości w różnych betonach. Mogą one także osiągać różne wartości w betonach o podobnej wytrzymałości na ściskanie. Jak wcześniej wspomniano jest to rezultat ich skorelowania zarówno ze stanem struktury przed obciążeniem, uwzględniającym występowanie w niej naprężeń własnych i związanych z nimi mikrodefektów strukturalnych, jak i procesem narastania mikrouszkodzeń powodowanych obciążeniem. Są one więc skorelowane zarówno z czynnikami technologicznymi i warunkami zaistniałymi na etapie tworzenia betonu, ale również niemechanicznymi czynnikami eksploatacyjnymi.

W tabeli 3.2 przedstawiono zbiorcze zestawienie względnych wartości poziomów naprężeń inicjujących pękanie i naprężeń krytycznych, w zależności od oddziałujących na beton ściskany różnych czynników technologicznych i eksploatacyjnych. Wykorzystano w tym celu wyniki badań uzyskane przez wielu badaczy, które zostały zebrane i zestawione w pracy [44].

Z analizy wyników badań zamieszczonych w tabeli 3.2 wynika, że w zależności od oddziałujących na beton ściskany różnych czynników technologicznych i niemechanicznych czynników eksploatacyjnych względne wartości poziomów naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} mieszczą się w bardzo szerokich przedziałach. Jak pokazano na rysunku 3.4, stanowiącym ilustrację tabeli 3.2, naprężenia σ_i zawierają się w przedziałe od 0,17 do 0,60 σ_{c}/f_c , a naprężenia σ_{cr} w przedziałe od 0,66 do 0,91 σ_{c}/f_c .

Tabela 3.2. Zbiorcze zestawienie względnych wartości poziomów naprężeń inicjujących
pękanie σ_i i naprężeń krytycznych σ_{cr} przy uwzględnieniu oddziałujących na beton ściskany
różnych czynników technologicznych i eksploatacyjnych [44]

C militated	Względne wartości poziomów napreżeń <i>σ</i> . i <i>σ</i>		
Czynniki technolog	σ_i/f_c	σ_{cr}/f_c	
Normalne warunki cieplno-wilgotr	0,46 - 0,51	0,80 - 0,88	
Powietrzno-suche warunki cieplno	-wilgotnościowe dojrzewania	0,40 - 0,46	0,70 - 0,81
Zawilgocenie do stanu pełnego nas	sycenia wodą	0,20 - 0,30	0,90
Wysuszenie do stanu suchego w te	0,30	0,80 - 0,82	
Temperatury obniżone lub ujemne	0,17 - 0,23	0,71 – 0,75	
Obróbka termiczna w parze niskop	0,36 - 0,41	0,81 - 0,90	
Obróbka termiczna w parze niskop	0,34 - 0,35	0,76 - 0,91	
Obróbka termiczna w polu mikrofa	0,37	0,83	
Formowanie na gorąco w temperat	urze 45°C	0,41	0,81
	otoczakowe	0,41 - 0,50	0,70 - 0,83
Rodzaj kruszywa	wapienne	0,51	0,88
	bazaltowe	0,45	0,80
	$20\% \le \text{punkt piaskowy} \le 47\%$	0,40 - 0,45	0,70 - 0,81
Uziarnienie kruszywa	$47\% < \text{punkt piaskowy} \le 60\%$	0,50	0,82 - 0,83
	60% < punkt piaskowy ≤ 100%	0,24 - 0,34	0,86 - 0,90
Stan powierzchni kruszywa		$0,\!40-0,\!50$	0,83 - 0,86
Domieszka superplastyfikatora	0,45	0,66 – 0,77	
Domieszka superplastyfikatora i do	0,50 - 0,60	0,81 - 0,84	
Dodatek stalowego mikrozbrojenia	0,45	0,89	
Impregnacja polimerem	-	0,90	
Zaolejenie olejem mineralnym	0,30 - 0,40	0,75 - 0,80	
Wiek betonu	do 28 dni	0,20 - 0,30	0,76 - 0,80
	powyżej 28 dni	0,30 - 0,45	0,76 - 0,80

Rys. 3.4. Przedziały zawierania się poziomów naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} w ściskanych doraźnie betonach poddanych działaniu różnych czynników technologicznych i eksploatacyjnych

W celu ułatwienia interpretacji wpływu poszczególnych czynników na wartości poziomów naprężeń inicjujących pękanie i naprężeń krytycznych, w pracach [42,44] zaproponowano rozdzielenie szerokich przedziałów zawierania się poziomów przedmiotowych naprężeń na trzy części. Wartości poziomów naprężeń σ_i i σ_{cr} mieszczące się w skrajnych częściach tych przedziałów określono odpowiednio mianem niskie i wysokie, a mieszczące się w środkowej ich części mianem przeciętne [42,44].

Według tego podziału, niskie poziomy naprężeń inicjujących pękanie objęte są granicami 0,17–0,35 σ_{c}/f_{c} . Są one charakterystyczne przede wszystkim dla tych betonów, które: zostały zamrożone w pierwszej dobie twardnienia lub dojrzewały w temperaturach ujemnych, zostały całkowicie nasycone wodą lub wysuszone i pozbawione wody wolnej, mają wiek nieprzekraczający 28 dni, w których udział frakcji piaskowych przekracza 60% całości kruszywa otoczakowego, dojrzewały w sposób przyspieszony w parze niskoprężnej w temperaturze 80°C lub wyższej [44]. Przeciętne poziomy naprężeń σ_i , objęte granicami 0,36–0,45 σ_{c}/f_c , są charakterystyczne dla najszerszej grupy betonów, w tym m. innymi.: dojrzewających w normalnych warunkach cieplno-wilgotnościowych, dojrzewających w różnych warunkach powietrzno-suchych, w których udział frakcji piaskowych zawiera się w przedziale od 20 do 47% całości kruszywa otoczakowego, obrabianych termicznie w parze

niskoprężnej w temperaturze niższej niż 80°C [44]. Wysokimi poziomami naprężeń σ_i , wyższymi od 0,45 σ_c/f_c , charakteryzuje się wąska grupa betonów. Zaliczają, się do niej przede wszystkim betony, w których udział frakcji piaskowych zawiera się w przedziale od 47 do 60% całości kruszywa otoczakowego, wykonane z użyciem kruszywa wapiennego, wykonane z domieszką superplastyfikatora i dodatkiem pyłu krzemionkowego [44].

Z kolei niskie wartości poziomów naprężeń σ_{cr} , nieprzekraczające poziomu 0,75 σ_{c}/f_{c} , są charakterystyczne przede wszystkim dla tych betonów, które: uległy zamrożeniu w pierwszej dobie twardnienia, dojrzewały w temperaturach ujemnych, zawierają nie więcej niż 25% frakcji piaskowych w stosunku do całości kruszywa otoczakowego [44]. W środkowej części podanego przedziału, objętej granicami 0,76 i 0,85 σ_{c}/f_{c} , mieszczą się przeciętne wartości tych naprężeń charakterystyczne m. innymi dla betonów wykonanych z użyciem kruszywa bazaltowego, wysuszonych do stanu suchego w temperaturze 105°C oraz betony wykonane z domieszką superplastyfikatora i dodatkiem pyłu krzemionkowego [44]. Wysokie wartości naprężeń σ_{cr} , wyższe od poziomu 0,85 σ_{c}/f_{c} , są zaś charakterystyczne m.innymi dla betonów: wykonanych z użyciem kruszywa otoczakowego o punkcie piaskowym wyższym od 85%, wykonanych z użyciem kruszywa wapiennego, dojrzewających w parze niskoprężnej w temperaturze wyższej niż 80°C, całkowicie nasyconych wodą i zawierających rozproszone mikrozbrojenie stalowe.

Podsumowując, należy zauważyć, że przedstawione powyżej rezultaty badań dotyczą betonów zwykłych i wysokowartościowych. Z analizy dostępnej literatury wynika, że brak jest podobnych badań dotyczących betonu samozagęszczonego, na podstawie których można by było ocenić na przykład wpływ składu i przynajmniej niektórych istotnych dla praktyki budowlanej czynników technologicznych i eksploatacyjnych na proces niszczenia i kształtowanie się poziomów naprężeń inicjujących pękanie i naprężeń krytycznych w tym betonie

3.4.3. Metody badawcze i kryteria wyznaczania poziomów naprężeń inicjujących pękanie i naprężeń krytycznych

Do wyznaczania poziomów naprężeń inicjujących pękanie i naprężeń krytycznych w ściskanym betonie najczęściej stosowane są nieniszczące metody akustyczne do których zalicza się metodę ultradźwiękową oraz metodę emisji akustycznej [23, 28, 38, 42, 61, 62, 101, 102, 107-109]. Z powodzeniem stosuje się także do tego celu metodę pomiaru

odkształceń [23, 28, 38, 42, 45, 101, 102, 109]. Znane są jeszcze inne metody pomocne w ocenie procesu destrukcji naprężeniowej betonu, do których można zaliczyć na przykład metodę pomiaru oporności warstwy elektrooporowej oraz metody mikroskopowo-rentgenograficzne. Jak wynika z przeprowadzonego rozpoznania literaturowego metody te stosowane są jednak sporadycznie [23, 42].

Metoda ultradźwiękowa

Metoda ultradźwiękowa opiera się na związkach pomiędzy prędkością fal sprężystych o wysokiej częstotliwości rozprzestrzeniających się w ośrodku stałym, a własnościami tego ośrodka. Z teorii ruchu falowego wynika, że prędkość rozchodzenia się podłużnych fal sprężystych w betonie zależy od jego modułu sprężystości i rodzaju składników materiałowych [7].

Z punktu widzenia reologii beton nie stanowi ciała sprężystego. W celu opisania jego właściwości, jako przybliżenie przyjmuje się ośrodek lepko-sprężysty o uproszczonym trójparametrowym modelu Kelvina [7], który przedstawiono na rysunku 3.5. Składa się on z dwóch sprężyn i tłumika. Przez odpowiedni dobór charakterystyk sprężyn E_D i E_b opisujących cechy sprężyste materiału oraz przez dobór współczynnika lepkości η tłumika, można w oparciu o taki model rozpatrywać procesy odkształcalności betonu i rozchodzenia się w nim fal sprężystych [7, 38]. Jak wiadomo, w metodzie ultradźwiękowej wykorzystywane są głównie fale podłużne o częstotliwości od 40 do 1000 kHz [7, 38]. Przyjmuje się, że dla drgań o takich częstotliwościach wpływ czynnika lepkiego, w przyjętym modelu ciała lepko-sprężystego, ogranicza odkształcenia sprężyste tak, że prędkość podłużnej

Rys. 3.5. Model reologiczny betonu jako ciała lepko-sprężystego [7]

fali ultradźwiękowej V_L zależy tylko od początkowego modułu sprężystości E_D i gęstości materiału γ . Można to opisać wzorem 3.4 [7, 38]:

$$V_L = \sqrt{\frac{E_D}{\gamma}} \,. \tag{3.4}$$

W metodzie ultradźwiękowej deskryptorami wykorzystywanymi do analizy przebiegu destrukcji naprężeniowej ściskanego betonu, umożliwiającymi wyznaczenie poziomów naprężeń σ_i i σ_{cr} są czas przejścia lub prędkość rozprzestrzeniania się podłużnej fali ultradźwiękowej propagowanej prostopadle do kierunku działającego obciążenia [7, 38, 39, 42].

Z badań wynika, że w przypadku betonów zwykłych, zwłaszcza tych o niższej wytrzymałości, trudne jest często ustalenie jednoznacznego kryterium umożliwiającego wyznaczenie poziomów naprężeń σ_i z wykorzystaniem tej metody. Możliwe jest natomiast ustalenie takiego kryterium w przypadku naprężeń σ_{cr} . Jest to zanik możliwości pomiaru prędkości podłużnej fali ultradźwiękowej, propagowanej prostopadle do kierunku działającego obciążenia [38-40, 42], co ilustruje krzywa l pokazana na rysunku 3.6.

Rys. 3.6. Kryteria wyznaczania poziomów naprężeń σ_i i naprężeń σ_{cr} w betonie ściskanym z wykorzystaniem metody ultradźwiękowej: 1 – w betonach zwykłych, 2 – w betonach wysokowartościowych [42]

Natomiast w przypadku betonów o wyższej wytrzymałości, w tym zwłaszcza betonów wysokowartościowych przyjęte kryteria ilustruje krzywa 2, na rysunku 3.6. I tak, poziom naprężenia, od którego rozpoczyna się wyraźny spadek prędkości podłużnej fali ultradźwiękowej jest równoważny z poziomem naprężenia σ_i . Poziom naprężeń zaś, przy którym obserwuje się zanik możliwości pomiaru prędkości tej fali przyjęto za równoważny z poziomem naprężenia σ_{cr} [41, 42].

Metoda emisji akustycznej

Metoda emisji akustycznej (EA) opiera się na znajomości zjawiska powstawania i rozprzestrzeniania się w danym ośrodku fal sprężystych, powstałych w materiale wskutek wyzwolenia zakumulowanej w nim energii sprężystej [77]. Każdy materiał, lub wykonany z niego element, ma pierwotny lub nabyty podczas eksploatacji niejednorodny w swojej objętości rozkład energii sprężystej. Gdy pojawi się przyczyna zewnętrzna zmieniająca ten stan, na przykład bodźce mechaniczne lub termiczne, to lokalnie lub w wielu obszarach jego struktury zapoczątkowują się procesy deformacyjne [77]. Obszar struktury, w którym proces deformacji zachodzi, uważa się za źródło emisji akustycznej. Takim procesem jest na przykład pękanie, w trakcie którego część zakumulowanej energii ulega wygenerowaniu w postaci fal sprężystych.

W betonie tłumienie fal sprężystych jest niewielkie. Szybko rozprzestrzeniają się więc one w tym materiale i gdy docierają do jego powierzchni, są odbierane przez przetworniki emisji akustycznej, które transformują je na napięcie elektryczne. Tak zarejestrowane sygnały są następnie poddawane obróbce elektronicznej w aparaturze pomiarowej i uzyskują końcową postać deskryptorów emisji akustycznej. Ważną cechą urządzeń stosowanych w tej metodzie jest zakres częstotliwości pomiarowych. W przypadku betonu zawiera się on w zasadzie w przedziale 50 kHz – 1000 kHz [38,42]. Liczba i rodzaj deskryptorów zależą od klasy aparatury pomiarowej. Do niedawna były to przede wszystkim: suma zliczeń emisji akustycznej i tempo zliczeń emisji akustycznej oraz średnia wartość skuteczna sygnału emisji akustycznej (*RMS*). Obecnie preferowane są suma zdarzeń emisji akustycznej i tempo zdarzeń emisji akustycznej [42, 77].

Dotychczasowe doświadczenia badaczy związane z zastosowaniem metody emisji akustycznej w badaniach betonu pokazują jej niezaprzeczalne zalety. Na pierwszym planie stawia się nie tylko możliwość ciągłego i bieżącego śledzenia zachowania się tego materiału pod wpływem oddziaływania różnych czynników zewnętrznych, ale także wczesne sygnalizowanie mikrozmian struktury lub bardzo wolno powiększających się defektów [42, 77, 102].

Wzorując się na pracy [77] na rysunku 3.7 pokazano przykładowy pojedynczy impuls emisji akustycznej i jego parametry.

Rys. 3.7. Przykładowy impuls emisji akustycznej; τ - czas trwania impulsu, τ_1 – czas narastania, τ_2 – czas zaniku, U_m – wartość szczytowa amplitudy

Jak wcześniej wspomniano, dotychczas najczęściej wykorzystywanymi deskryptorami emisji akustycznej, pozwalającymi wyznaczyć w betonie ściskanym doraźnie poziomy naprężeń inicjujących pękanie i naprężeń krytycznych, były: tempo zliczeń emisji akustycznej, suma zliczeń emisji akustycznej oraz wartość skuteczna sygnału emisji akustycznej. Należy podać, że w pracy w badaniach własnych wykorzystano tempo zdarzeń emisji akustycznej N_{zd} oraz wartość skuteczną sygnału emisji akustycznej RMS. O wyborze jako deskryptora tempa zdarzeń EA, zadecydowano dlatego, że na wartość N_{zd} znikomo mały wpływ ma poziom dyskryminacji. Sprawia to, że deskryptor ten ma bardzo dobrą korelację z rzeczywistą liczbą zdarzeń emisji akustycznej, powstałych w badanym materiale i dlatego ma większą wartość użytkową [77].

Poniżej omówiono kryteria wyznaczania poziomów naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} w betonie ściskanym zgodnie z [42], przykładowo na podstawie znajomości deskryptorów emisji akustycznej, takich jak tempo zliczeń EA oraz wartość skuteczna sygnału EA. W przypadku tempa zliczeń EA należy dokonać ich pomiaru w funkcji czasu niszczenia oraz sporządzić wykres bezwzględnego lub względnego naprężenia ściskającego, narastającego w funkcji czasu niszczenia [42]. W przypadku wartości skutecznej sygnału EA należy dokonać jej pomiaru, na przykład w funkcji względnego naprężenia ściskającego [42]. Rysunek 3.8 pokazuje przykładowe przebiegi wymienionych deskryptorów EA w ściskanym betonie, w których obserwuje się trójetapowość. Na rysunku tym zamieszczono także przykładowy wykres względnego naprężenia ściskającego, oznaczonego przez σ_c/f_c narastającego w funkcji czasu niszczenia.

Rys. 3.8. Ilustracja wyznaczania poziomów naprężeń σ_i i naprężeń σ_{cr} w betonie ściskanym na podstawie pomiarów emisji akustycznej: a) tempa zliczeń EA, b) wartości skutecznej sygnału EA [42]

Z rysunku 3.8 wynika, że wartości wymienionych deskryptorów EA są początkowo niewielkie. Następnie widoczny jest etap umiarkowanego wzrostu tempa zliczeń oraz umiarkowanie skokowy wzrost wartości skutecznej sygnału EA. W etapie końcowym wzrost ten jest gwałtowny, a w przypadku wartości skutecznej sygnału EA zdecydowanie skokowy. W celu wyznaczenia poziomów naprężeń σ_i i naprężeń σ_{cr} należy ustalić czasy niszczenia, po upływie których wartości tempa zliczeń EA zaczynają najpierw rosnąć umiarkowanie, a następnie rosną gwałtownie. Odniesienie tych czasów na wykres, sporządzony w funkcji czasu niszczenia, umożliwia określenie poziomów przedmiotowych naprężeń. W przypadku wartości skutecznej sygnału EA, której przykładowy przebieg w ściskanym betonie pokazano na rysunku 3.8b, należy zlokalizować punkty, w których następuje umiarkowanie skokowy wzrost i zdecydowanie skokowy wzrost wartości tego deskryptora. Punkty te, odniesione na oś względnego naprężenia ściskającego wskazują poszukiwane poziomy naprężeń σ_i i naprężeń σ_{cr} [42].

Jak wcześniej wspomniano, w badaniach własnych jako jeden z deskryptorów emisji akustycznej wykorzystano tempo zdarzeń emisji akustycznej N_{zd} . W literaturze brak jest opisu kryteriów wyznaczania w betonie ściskanym doraźnie, poziomów naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} , przy wykorzystaniu tego deskryptora. Bazując na kryterium dotyczącym wyznaczania poziomów tych naprężeń na podstawie znajomości tempa zliczeń EA na rysunku 3.9 zilustrowano te kryteria. Z rysunku tego wynika, że wartość tempa zdarzeń emisji akustycznej N_{zd} jest początkowo niewielka. Następnie widoczny jest etap umiarkowanego wzrostu tego deskryptora, a w etapie końcowym wzrost ten jest gwałtowny. W celu wyznaczenia poziomów naprężeń σ_i i naprężeń σ_{cr} , należy ustalić czasy niszczenia, po upływie których wartości tempa zdarzeń EA, zaczynają najpierw rosnąć umiarkowanie, a następnie rosną gwałtownie. Odniesienie tych czasów na wykres względnego naprężenia ściskającego, sporządzony w funkcji czasu niszczenia, umożliwi określenie poziomów przedmiotowych naprężeń.

Rys. 3.9. Ilustracja wyznaczania poziomów naprężeń σ_i i naprężeń σ_{cr} w betonie ściskanym na podstawie pomiarów tempa zdarzeń EA
Metoda pomiaru odkształceń

W metodzie pomiaru odkształceń podstawę wyjściową do wyznaczenia w betonie poziomów naprężeń σ_i i naprężeń σ_{cr} stanowią pomierzone, w funkcji przyrostu naprężeń ściskających, jednostkowe odkształcenia podłużne ε_{cx} i poprzeczne ε_{cy} . W tej metodzie, pomiaru odkształceń dokonuje się na powierzchni zewnętrznej [25, 28, 38, 42, 101]. Kryteria umożliwiające wyznaczenie poziomów tych naprężeń, zgodnie z [25, 38, 42], ilustruje rysunek 3.10.

Rys. 3.10. Kryteria wyznaczania poziomów naprężeń σ_i i naprężeń σ_{cr} w betonie ściskanym za pomocą metody pomiaru odkształceń [25, 38, 42]

Z rysunku 3.10 wynika, że naprężenie inicjujące pękanie σ_i jest równoważne z takim poziomem naprężenia, przy którym występuje:

minimum wartości współczynnika rozszerzalności poprzecznej v_c (rys. 3.10a),
 gdzie:

$$V_c = \frac{\mathcal{E}_{cy}}{\mathcal{E}_{cx}},\tag{3.5}$$

- maksimum wartości jednostkowych odkształceń objętościowych $\Delta V/V$ (rys. 3.10b) gdzie:

$$\frac{\Delta V}{V} = \Delta \varepsilon_{cx} - 2\Delta \varepsilon_{cy}.$$
(3.6)

Z kolei naprężenie krytyczne σ_{cr} odpowiada takiemu poziomowi naprężenia, przy którym:

- wartość różnicowego współczynnika rozszerzalności poprzecznej Δv_c opisana zależnością (3.7) przekracza 0,5 (rys. 3.10a)

$$\Delta V_c = \frac{\Delta \mathcal{E}_{cy}}{\Delta \mathcal{E}_{cx}},\tag{3.7}$$

- występuje maksimum wartości sumarycznych odkształceń objętościowych ΔV (rys. 3.10b)

$$\Delta V = \varepsilon_{cx} - 2\varepsilon_{cy}, \qquad (3.8)$$

– następuje zmiana znaku wartości jednostkowych odkształceń objętościowych $\Delta V/V$ (rys. 3.10b)

$$\frac{\Delta V}{V} = \Delta \varepsilon_{cx} - 2\Delta \varepsilon_{cy} \,. \tag{3.9}$$

4. ZAKRES BADAŃ WŁASNYCH I STOSOWANA W PRACY METODYKA

Zakres przeprowadzonych badań własnych ilustrują schematy zamieszczone, na rysunkach 4.1–4.3. I tak na rysunku 4.1 zestawiono zaprojektowane w pracy mieszanki betonowe samozagęszczalne i zastosowane metody badawcze do oceny ich właściwości reologicznych. Z kolei na rysunku 4.2 zestawiono wykonane z zaprojektowanych mieszanek betony i serie i przeprowadzone badania ich właściwości fizycznych i mechanicznych oraz struktury porów powietrznych. Natomiast na rysunku 4.3 zestawiono metody wykorzystane w ocenie procesu niszczenia badanych betonów samozagęszczonych.

Rys. 4.1 Zestawienie zaprojektowanych mieszanek betonowych samozagęszczalnych i metod wykorzystanych do oceny ich właściwości reologicznych

Rys. 4.2. Zestawienie badanych właściwości fizycznych i mechanicznych oraz struktury porów powietrznych w wykonanych betonach i seriach betonów samozagęszczonych

Rys. 4.3. Zestawienie badanych betonów samozagęszczonych i metod wykorzystanych do oceny procesu niszczenia

4.1. Charakterystyka badanego materiału

4.1.1. Mieszanki betonowe

Zaprojektowano cztery mieszanki betonowe samozageszczalne, oznaczone literami A-D różniące się użytym superplastyfikatorem. Do wykonania mieszanek A i B użyto superplastyfikator oznaczony symbolem S_A , a do mieszanek C i D superplastyfikator oznaczony S_V . Wielkość maksymalnego ziarna kruszywa w mieszankach A i C wynosiła 16 mm, natomiast w mieszankach B i D 8 mm. Składy mieszanek ustalono doświadczalnie. "metodą japońską", korzystając ze wskazówek podanych w [46, 60, 87, 110, 113, 121]. Przy ich komponowaniu uwzględniono m. innymi następujące założenia:

- mieszanki zostały wykonane z użyciem kruszywa naturalnego żwirowego, płukanego, z kopalni "Mietków" o uziarnieniu 2–16 mm lub 2–8 mm i piasku płukanego również z kopalni "Mietków" o uziarnieniu 0–2 mm,
- zastosowano cement portlandzki marki CEM I 42,5 R,
- zastosowano popiół lotny VKN z Elektrociepłowni Wrocław,
- składy mieszanek modyfikowano odpowiednią ilością superplastyfikatora nowej generacji oraz popiołu lotnego w taki sposób, aby uzyskać żądany rozpływ. Superplastyfikator S_A wykonany został na bazie eteru polikarboksylowego, natomiast superplastyfikator S_V na bazie kombinacji polikarboksylanów i regulatorów lepkości, wiązania i twardnienia.
- użyto wody zdatnej do picia.

Składy zaprojektowanych mieszanek zamieszczono w tabeli 4.1, w przeliczeniu na 1 m³.

Oznaczenie		Skład	y mieszar	nek beton	Współczynnik wodno-	Punkt		
mieszanki betonowej	Kruszywo grube K _g	Piasek K _d	Cement C	Popiół lotny P	Woda W	Superplastyfikator SP	$\frac{W}{C+P}$	[%]
А	1064	581	355	143	164	3,15	0,34	35,3
В	896	747	325	109	195	3,25	0,45	45,5
С	1064	581	355	143	164	4,18	0,34	35,3
D	896	747	325	109	195	4,25	0,45	45,5

Tabela 4.1. Zestawienie składów zaprojektowanych mieszanek betonowych A-D

4.1.2. Próbki betonowe i sposób ich przechowywania

W celu udowodnienia postawionych w pracy tez przyjęto odpowiedni program badań. Dla jego realizacji z poszczególnych mieszanek betonowych samozagęszczalnych A–D wykonano zgodnie z [81, 93, 94] po:

- 80 próbek betonowych o wymiarach 150×150×150 mm przeznaczonych do przeprowadzenia w różnych terminach badań wytrzymałości na ściskanie,
- 50 próbek betonowych o wymiarach 100×100×100 mm przeznaczonych do badań metodą ultradźwiękową,
- 12 próbek betonowych walcowych o średnicy 113 mm i wysokości 350 mm, z których
 6 przeznaczono do badań metodą pomiaru odkształceń i 6 do wyznaczenia modułu sprężystości *E_{cm}*,
- 5 próbek betonowych prostopadłościennych o wymiarach 100×100×500 mm, z których wycinano po 9 mniejszych elementów próbnych o wymiarach 50×50×100 mm przeznaczonych do badań metodą emisji akustycznej,

Ponadto wykonano z każdej mieszanki po 10 próbek o wymiarach 150×150×150 mm i o wymiarach 100×100×100 mm, które wykorzystano do badań właściwości fizycznych i struktury porów powietrznych.

Wszystkie badania realizowano po 90 dniach dojrzewania betonu, z wyjątkiem badań wytrzymałości na ściskanie, które wykonano ponadto po 3, 7, 14 i 28 dniach.

Próbki podzielono na serie. Oznaczenie serii powiązano ze sposobem przechowywania próbek, a mianowicie:

- próbki serii A_k-D_k przechowywano przez 90 dni w komorze klimatycznej w temperaturze powietrza +18°C (±1°C) i wilgotności względnej powietrza 95% (±5%), (stan maksymalnej wilgotności sorpcyjnej),
- próbki serii A_s-D_s przechowywano przez 86 dni w komorze klimatycznej w temperaturze powietrza +18°C (±1°C) i wilgotności względnej powietrza 95% (±5%), a następnie suszono je w temperaturze 105°C do stałego ciężaru (stan suchy),
- próbki serii A_w-D_w przechowywano przez 86 dni w komorze klimatycznej w temperaturze powietrza +18°C (±1°C) i wilgotności względnej powietrza 95% (±5%), a następnie nasycono je wodą do stanu pełnego nasycenia.

W celu udowodnienia tezy pierwszej badaniom poddano, w układzie porównawczym, próbki betonowe serii A_k i C_k oraz B_k i D_k .

Do udowodnienia tezy drugiej badaniom poddano próbki betonowe serii A_k, A_s, A_w, B_k, B_s, B_w, C_k, C_s, C_w i D_k, D_s, D_w.

W celu udowodnienia tezy trzeciej wykorzystano próbki betonowe serii A_k, B_k, C_k i D_k.

4.2. Zakres badań własnych i stosowana w pracy metodyka

4.2.1. Badania właściwości reologicznych mieszanek betonowych

Badania właściwości reologicznych zaprojektowanych mieszanek betonowych A–D tzn. płynności i zdolności do przepływu mieszanki między prętami zbrojenia, przeprowadzono zgodnie z zaleceniami podanymi w pracach [87, 113, 121], za pomocą metody stożka Abramsa, metody J-Ring i metody L-Box.

Za pomocą stożka Abramsa sprawdzano, czy poszczególne mieszanki wykazują odpowiednią płynność. Mierzono najpierw czas rozpływu T_{500} , w którym mieszanka wypływająca ze stożka osiągała "rozpływ" o średnicy 500 mm, a następnie maksymalną średnicę rozpływu. Zalecane w [87, 113, 121] czasy rozpływu przyjmuje się od 2 do 5 sekund, a maksymalną średnicę rozpływu od 650 do 800 mm.

Metodą pozwalającą jednocześnie określić rozpływ mieszanki oraz ocenić jej przepływ między prętami zbrojenia, jest metoda J-Ring, wykorzystująca stożek Abramsa w połączeniu z pierścieniem z prętów zbrojeniowych. Schemat stanowiska badawczego wykorzystanego do badań tą metodą pokazano na rysunku 4.4. Mierzono średnice rozpływu mieszanki betonowej w dwóch prostopadłych kierunkach. Zgodnie z [113, 121] zalecana różnica w pomierzonych średnicach rozpływu d_1 i d_2 nie powinna przekraczać 50 mm.

Rys. 4.4. Schemat stanowiska do badań właściwości reologicznych mieszanek betonowych metodą J-Ring

Do oceny zdolności przepływu mieszanki między prętami zbrojenia oraz jej samopoziomowania się wykorzystano skrzynkę wypływową L-Box. Na rysunku 4.5 pokazano schemat skonstruowanego urządzenia o tej nazwie, w którym mierzono czas przepływu mieszanki betonowej między prętami zbrojenia oraz wysokości H_1 i H_2 uzyskane przez mieszankę odpowiednio na początku (przy zasuwie) i na końcu skrzynki, po upływie 5 minut od momentu podniesienia zasuwy. Zalecana w pracach [60, 87, 113, 121] wartość stosunku pomierzonych wysokości H_2/H_1 powinna zawierać się w przedziale 0,8–1,0.

Rys. 4.5. Schemat skrzynki wypływowej L-Box

4.2.2. Badania struktury porów powietrznych z wykorzystaniem analizatora obrazu

Do badania i analizy struktury porów powietrznych w zakresie średnic porów $10 - 4000 \,\mu\text{m}$ w stwardniałych betonach samozagęszczonych serii A_k–D_k wykorzystano analizator obrazu Image Pro Plus 4.1, z dodatkowym modułem Scope Pro, współpracujący z mikroskopem stereoskopowym Nikon SMZ800, kamerą Sony DXC950P i stolikiem skaningowym Marzhauser SCAN 150×150. Badania te wykonano wg normy [91] i specjalnej procedury opisanej w [58, 59], w Pracowni Pól Odkształceń Instytutu Podstawowych Problemów Techniki Polskiej Akademii Nauk w Warszawie, na stanowisku badawczym pokazanym na rysunku 4.6.

Rys. 4.6. Stanowisko badawcze do badania struktury porów powietrznych w stwardniałych betonach

Dla każdej serii betonu badania przeprowadzono na wyciętych próbkach plastrach o wymiarach 100×100×20 mm, które szlifowano kolejno proszkami karborundu (SiC) o gradacjach 320, 600 i 1200. Po uzyskaniu wymaganej jakości powierzchni barwiono je wodoodpornym markerem a wypełnianie porów powietrznych wykonywano pastą cynkową na ciepło. Wyznaczanymi parametrami definiującymi strukturę porów powietrznych były:

- całkowita zawartość powietrza w stwardniałym betonie (A),
- zawartość mikroporów o średnicy poniżej 0,3 mm (A₃₀₀),
- wskaźnik rozmieszczenia porów powietrznych (\overline{L}),
- powierzchnia właściwa porów powietrznych (α).

4.2.3. Badania charakterystyki i struktury porów powietrznych z wykorzystaniem porozymetru rtęciowego

Badania charakterystyki i struktury porów powietrznych stwardniałych betonów samozagęszczonych serii A_k – D_k w zakresie promieni porów 5–7500 nm, wykonano za pomocą porozymetru rtęciowego firmy Carlo Erba Strumentazione model 2000, połączonego z komputerem, posiadającym program do obróbki danych eksperymentalnych. Badania te wykonano w Laboratorium Porozymetrycznym Katedry Energetyki Procesowej Wydziału

Inżynierii Materiałowej i Metalurgii Politechniki Śląskiej. Dla każdej serii betonu badania przeprowadzono na próbkach naważkach. Do analizy porozymetrycznej odważano około 3.0 g badanego materiału. Naważkę umieszczano w dylatometrze, którą następnie odgazowywano przy ciśnieniu do 2 kPa. Próbkę dopełniano rtęcią, a potem przenoszono do retorty wysokociśnieniowej i badano w zakresie ciśnień od 0.1 do 200 MPa. Metoda badania polega na pomiarze objętości wtłoczonej rtęci dla poszczególnych ciśnień. Przy ciśnieniu 0.1 MPa rtęć osiąga penetrację porów o promieniu około 7500 nm, przy 1 MPa około 700 nm, przy 10 MPa około 80 nm, przy 100 MPa około 10 nm, przy 200 MPa około 5 nm. Badania te pozwoliły określić:

- porowatość całkowitą (*p*),
- objętość właściwą porów (V),
- średni promień porów (\bar{r}) ,
- powierzchnię właściwą porów (α ').

Charakterystykę porowatości, pokazującą objętość porów w dowolnym przedziale promieni w zakresie promieni 5–7500 nm, przedstawiono w pracy w postaci krzywych w układzie współrzędnych *V*, *r*; gdzie *V* stanowi, w cm³/g, objętość porów próbki wypełnionych rtęcią, a *r* jest promieniem, w nm.

4.2.4. Badania procesu niszczenia i odkształcalności

Badania procesu niszczenia zrealizowano w próbie doraźnego ściskania trzema metodami, a mianowicie metodami akustycznymi, ultradźwiękową i emisji akustycznej oraz w celach porównawczych metodą pomiaru odkształceń.

Na rysunku 4.7 pokazano schemat stanowiska, na którym realizowano badania procesu niszczenia betonów samozagęszczonych A–D z wykorzystaniem metody ultradźwiękowej. Badano po 10 próbek o wymiarach $100 \times 100 \times 100$ mm z każdej serii betonu, po 90 dniach dojrzewania zgodnie z [48, 90, 97]. Użyto próbnik ultradźwiękowy UNIPAN 543 z odczytem cyfrowym i głowice ultradźwiękowe o częstotliwości 100 kHz oraz maszynę wytrzymałościową Heckert EDB 400. W metodzie tej wykorzystywanym parametrem jest prędkość podłużnej fali ultradźwiękowej V_L określanej w kierunku prostopadłym do kierunku działania obciążenia, w funkcji przyrostu naprężeń ściskających.

Rys. 4.7. Schemat stanowiska badawczego do pomiaru prędkości podłużnych fal ultradźwiękowych w betonie ściskanym

Metodą emisji akustycznej badano po 6 próbek o wymiarach $50 \times 50 \times 100$ mm z każdej serii betonu. Badania przeprowadzono z wykorzystaniem wieloczujnikowego zestawu aparaturowego do pomiaru emisji akustycznej firmy Vallen-Systeme Gmbh AMS3, dwóch czujników VS 150-M o paśmie przenoszenia 100-450 kHz oraz maszyny wytrzymałościowej Instron 1126. Badania te zrealizowano w Zakładzie Wytrzymałości Materiałów na Wydziale Mechanicznym Politechniki Wrocławskiej. W trakcie ściskania tych próbek rejestrowanymi deskryptorami emisji akustycznej w funkcji czasu, były tempo zdarzeń N_{zd} oraz wartość skuteczna sygnału *RMS*. Na rysunku 4.8 pokazano schemat, a na rysunku 4.9 widok stanowiska badawczego do pomiaru emisji akustycznej. Ściskanie próbek realizowano z wyeliminowaniem tarcia na styku ich powierzchni z płytami dociskowymi maszyny wytrzymałościowej. W tym celu powierzchnie te szlifowano, tak aby zachowana była ich wzajemna równoległość z dokładnością do 0,05 mm, a następnie smarowano je smarem technicznym.

Rys. 4.8. Schemat stanowiska badawczego do pomiaru emisji akustycznej w betonie ściskanym

Rys. 4.9. Widok stanowiska badawczego do pomiaru emisji akustycznej w betonie ściskanym: a) maszyna wytrzymałościowa Instron 1126, b) zestaw aparaturowy Vallen-Systeme Gmbh AMS3, c) próbka betonu przygotowana do badania

W metodzie pomiaru odkształceń liczba badanych próbek walcowych dla każdej serii badanego betonu wynosiła 6 i miały one średnicę 113 mm i wysokość 350 mm. Badania przeprowadzono w maszynie wytrzymałościowej Walter+Bai Ag LFV-3000-S. Rejestrowano w funkcji przyrostu naprężeń ściskających jednostkowe odkształcenia podłużne ε_{cx} i poprzeczne ε_{cy} betonu, z pomocą tensometrów elektrooporowych o długości 60 mm i automatycznego mostka tensometrycznego. Tensometry przyklejano parami w środku wysokości próbki, jeden pionowo i jeden poziomo, po przeciwległych stronach próbki. W sumie na każdej próbce znajdowały się 4 tensometry. Na rysunku 4.10 pokazano schemat stanowiska badawczego do pomiaru jednostkowych odkształceń w betonie ściskanym.

Rys. 4.10. Schemat stanowiska badawczego do pomiaru jednostkowych odkształceń podłużnych i poprzecznych w betonie ściskanym

4.3. Statystyczne techniki analizy wyników pomiarów i badań

• Popełnione w badaniach błędy względne pomiarów

Popełnione w badaniach błędy względne pomiarów, obliczone zgodnie z [35], zawierały się w przedziałach:

- dla prędkości podłużnych fal ultradźwiękowych V_L , 0,51–0,58%,
- dla tempa zdarzeń emisji akustycznej N_{zd}, 0,70–1,61%,
- dla odkształceń podłużnych \mathcal{E}_{cx} , 0,41–0,58%,
- dla odkształceń poprzecznych \mathcal{E}_{cy} , 0,90–1,23%.

Określenie niezbędnej liczby badanych próbek

Określenia niezbędnej liczby badanych próbek dokonano na podstawie statystycznej analizy wyników badań wstępnych, za pomocą rozkładu t-Studenta [7], zgodnie z warunkiem opisanym wzorem:

$$\frac{t_{\alpha}}{\sqrt{n}} \le \frac{\vartheta}{\nu},\tag{4.1}$$

gdzie: t_{α} - kwantyl rozkładu rzędu α o k stopniach swobody,

- n liczba próbek,
- ϑ założona tolerancja wartości średniej,
- v współczynnik zmienności.

Przykładowe rezultaty przeprowadzonego sprawdzenia dla wybranych serii betonów i wykorzystanych metod badawczych przedstawiono w tabeli 4.2.

Z tabeli 4.2 wynika, że dla przyjętej tolerancji wartości średniej $\vartheta = 0,05$ i założonym poziomie istotności $\alpha = 0,05$ przyjęte do badań, poszczególnymi metodami, liczby próbek są wystarczające.

Metoda badawcza	Zmienna losowa x_i V_L , RMS, ε_{cx}	Wartość średnia 	Odchylenie standardowe s	Współczynnik zmienności v	$\frac{t_{\alpha}}{\sqrt{n}} \leq \frac{\vartheta}{\nu}$
	V _L [km/s] Beton serii A _k 4,60 4,58 4,61 4,64 4,57 4,60 4,60 4,59 4,61 4,60	4,60	0,019	0,0041	$\frac{2,262}{\sqrt{10}} \le \frac{0,10}{0,0041}$ $0,71 < 24,39$
Ultradźwiękowa	Beton serii A _s 4,39 4,40 4,41 4,37 4,36 4,43 4,38 4,40 4,40 4,39	4,39	0,020	0,0046	$\frac{2,262}{\sqrt{10}} \le \frac{0,10}{0,0046}$ $0,71 < 21,74$
	Beton serii A _w 4,75 4,76 4,72 4,74 4,79 4,73 4,75 4,76 4,77 4,74	4,75	0,020	0,0043	$\frac{2,262}{\sqrt{10}} \le \frac{0,10}{0,0043}$ $0,71 < 23,26$
	<i>RMS</i> [mV] przy poziomie naprężeń <i>σ</i> _{cr}				
	Beton serii C _k 45,0 46,5 45,0 45,0 47,0 46,5	45,83	0,931	0,0203	$\frac{2,571}{\sqrt{6}} \le \frac{0,05}{0,0203}$ $1,04 < 1,30$
Emisji akustycznej	Beton serii C _s 43,5 44,5 42,0 40,5 45,0 43,0	45,83	0,931	0,0203	$\frac{2,571}{\sqrt{6}} \le \frac{0,05}{0,0384}$ $1,04 < 2,46$
	Beton serii C _w 18,0 18,5 19,0 20,0 19,0 19,5	19,00	0,707	0,0372	$\frac{2,571}{\sqrt{6}} \le \frac{0,05}{0,0372}$ $1,04 < 1,34$
Pomiaru odkształceń	ε_{cx} [10 ⁻⁶] Beton serii B _k 1698 1750 1721 1617 1687 1715	1698,0	45,175	0,0266	$\frac{2,571}{\sqrt{6}} \le \frac{0,05}{0,0266}$ $1,04 < 1,87$

Tabela 4.2. Przykładowe rezultaty sprawdzenia niezbędnej liczby badanych próbek betonowych według rozkładu t-Studenta

Jednoczynnikowa analiza wariancji

Jednoczynnikowa analiza wariancji jest podstawową metodą wnioskowania statystycznego pozwalającą ustalić wpływ określonego czynnika (zmiennej) na wyniki eksperymentu naukowego [84]. Analiza wariancji pozwala stwierdzić, czy dany czynnik wywiera istotny wpływ na wyniki, a zmienność średnich spowodowana jest nie tylko błędami eksperymentalnymi.

W pracy jednoczynnikową analizę wariancji uzyskanych wyników badań, przeprowadzono z wykorzystaniem dodatku Analysis ToolPak w arkuszu kalkulacyjnym Microsoft Excel, w celu wykazania statystycznego wpływu wilgotności badanych betonów samozagęszczonych na proces ich niszczenia,.

Istotą analizy wariancji jest podział całkowitej sumy kwadratów odchyleń obliczonej dla całego zbioru danych liczbowych na składniki odpowiadające różnym źródłom zmienności, co pozwala na określenie wpływu różnych czynników na wartość badanej cechy. W celu przybliżenia podstawowych założeń jednoczynnikowej analizy wariancji przyjęto ogólne założenie, że rozważanych jest *a* populacji A_1 , A_2 , ..., A_a . Z każdej populacji pobrano próbę losową o liczebności *r*. Przyjmując oznaczenie X_{ij} jako obserwację numer *j* w *i*-tej próbie w tabeli 4.3 pokazano (na wartościach ogólnych) zestawienie wszystkich prób, ich sum kwadratów i średnich arytmetycznych.

Nazwa		Nun	ner observ	vacji		Suma	Średnia
populacji	1	2	3		r	X_{i} .	$\overline{X_i}$.
A_1	<i>X</i> ₁₁	X_{12}	<i>X</i> ₁₃		X_{1r}	$X_1 = \sum X_{1j}$	$\overline{X_1} = \frac{1}{r} X_1.$
A_2	X_{21}	X_{22}	X_{23}		X_{2r}	$X_2 = \sum X_{2j}$	$\overline{X_2} = \frac{1}{r} X_2.$
A_3	<i>X</i> ₃₁	X_{32}	<i>X</i> ₃₃		X_{3r}	$X_3 = \sum X_{3j}$	$\overline{X_3} = \frac{1}{r} X_3.$
A_a	X_{a1}	X_{a2}	X_{a3}		X_{ar}	$X_a = \sum X_{aj}$	$\overline{X_a} = \frac{1}{r} X_a.$
						$X \dots = \sum_{i=1}^{a} X_i.$	$\overline{X}_{} = \frac{1}{ar} X_{}$

Tabela 4.3. Przykładowe zestawienie prób losowych pobranych z a populacji

Podstawową tożsamością w jednoczynnikowej analizie wariancji jest równanie (4.2),

$$nS_{y}^{2} = nS_{A}^{2} + nS_{e}^{2}, ag{4.2}$$

gdzie:

$$nS_{y}^{2} = \sum_{i=1}^{a} \sum_{j=1}^{r} \left(X_{ij} - \overline{X}_{..} \right)^{2} = \sum_{i=1}^{a} \sum_{j=1}^{r} X_{ij}^{2} - \frac{1}{n} X_{..}^{2} , \qquad (4.3)$$

$$nS_{A}^{2} = r \sum_{i=1}^{a} \left(\overline{X_{i}} - \overline{X_{..}} \right)^{2} = \frac{1}{r} \sum_{i=1}^{a} X_{i}^{2} - \frac{1}{n} X_{..}^{2}, \qquad (4.4)$$

$$nS_{e}^{2} = \sum_{i=1}^{a} \sum_{j=1}^{r} \left(X_{ij} - \overline{X_{i}} \right)^{2} = \sum_{i=1}^{a} \sum_{j=1}^{r} X_{ij}^{2} - \frac{1}{r} \sum_{i=1}^{a} X_{i}^{2}.$$
(4.5)

W ten sposób całkowita suma kwadratów odchyleń nS_y^2 obliczona dla całego zbioru danych liczbowych została rozbita na sumę dwóch składników nS_A^2 oraz nS_e^2 . Składnik nS_A^2 reprezentuje zmienność między średnimi populacjami i zawiera pewną porcję zmienności losowej, natomiast czynnik nS_e^2 określa zmienność losową (zmienność błędu doświadczalnego). Porównanie nS_A^2 i nS_e^2 pozwala stwierdzić, czy istnieje różnica między średnimi poszczególnych populacji $m_1, m_2, m_3, \dots m_q$.

W jednoczynnikowej analizie wariancji do testowania hipotezy zerowej H_0 : $m_1 = m_2 = m_3$ = ... = m_a wobec alternatywy H_1 : nie wszystkie średnie m_i są równe, stosowana jest funkcja testowa opisana wzorem (4.6),

$$F_0 = \frac{V_A}{V_e},\tag{4.6}$$

gdzie:

$$V_A = \frac{nS_A^2}{a-1},$$
 (4.7)

$$V_{e} = \frac{nS_{e}^{2}}{a(r-1)}.$$
(4.8)

Funkcja testowa ma rozkład F z (*a*-1) i *a*(*r*-1) stopniami swobody. Hipoteza zerowa H_0 jest odrzucana przy poziomie istotności α , jeżeli $F_0 > F[\alpha; (a-1); a(r-1)]$.

Wartości krytyczne $F[\alpha; (a-1); a(r-1)]$ odczytuje się z tablic rozkładu Fishera-Snedecora. Wyniki obliczeń zestawia się najczęściej w tzw. tablicy analizy wariancji, której przykład zamieszczono w tabeli 4.4.

				•	
Źródło zmienności	Suma kwadratów	Stopnie swobody	Średni kwadrat	Funkcja testowa	Wartość krytyczna
A. między grupami	nS_A^2	(<i>a</i> -1)	V_A	F_0	F_{lpha}
E. błąd (wewnątrz grup)	nS_e^2	<i>a</i> (<i>r</i> -1)	V_e	_	_
razem	nS_y^2	<i>ar</i> -1	_	_	_

Tabela 4.4. Przykładowa tablica analizy wariancji

Test NIR

Odpowiedź uzyskana na podstawie testu analizy wariancji nie zawsze jest wystarczająca, szczególnie w przypadku porównywania wyników badań większej liczby populacji (a > 2). Jeżeli w wyniku przeprowadzonego testu stwierdzono istotne statystycznie różnice pomiędzy porównywanymi średnimi, może być konieczne określenie, które z par średnich różnią się statystycznie istotnie. W takiej sytuacji właściwym narzędziem statystycznym jest test NIR (najmniejszej istotnej różnicy), który przeprowadzono z użyciem programu Statistica. Efektem tego testu jest macierz wartości p wskazujących na prawdopodobieństwo błędu związanego z przyjęciem hipotezy o istnieniu różnic między parami średnich (tabela 4.5). Jeżeli wartość p nie przekracza założonej w analizie wartości poziomu istotności α , to różnice pomiędzy parami średnich należy traktować jako statystycznie istotne.

Nazwa populacji	A_1	A_2	A_3	 A_a
A_1	_	<i>p</i> ₁₂	<i>p</i> ₁₃	 p_{1a}
A ₂	$p_{21} = p_{12}$	—	P ₂₃	 P_{2a}
A_3	$P_{31} = p_{13}$	$p_{32} = p_{23}$	—	 P_{3a}
A_a	$p_{a1} = p_{1a}$	$p_{a2} = p_{2a}$	$p_{a3} = p_{3a}$	 _

Tabela 4.5. Przykładowa tablica wartości p testu NIR

5. WYNIKI BADAŃ I ICH ANALIZA

5.1. Wyniki badań właściwości reologicznych mieszanek betonowych

W tabelach 5.1–5.3 zamieszczono wyniki badań właściwości reologicznych zaprojektowanych mieszanek samozagęszczalnych A-D, uzyskanych za pomocą metody stożka Abramsa, metody J-Ring i skrzynki wypływowej L-Box. W tabelach tych podano także wymagania dla poszczególnych badanych właściwości.

Oznaczenie	Czas uzyskania rozpływu o średnicy 500 mm	Średnica rozpływu	Wym wg [87, 1	agania 113, 121]
betonowej	T_{500}	r	T_{500}	r
5	[8]	[mm]	[s]	[mm]
А	5,0	680		
В	4,6	660	2 – 5	650 - 800
С	4,9	690		
D	4,1	710		

Tabela 5.1. Wyniki badań właściwości reologicznych mieszanek betonowych A–D za pomocą metody stożka Abramsa

Jak wynika z tabeli 5.1. uzyskane czasy rozpływu T_{500} badanych mieszanek betonowych A–D mieściły się w przedziale 4,1 – 5,0 s, natomiast pomierzone średnice rozpływu *r* mieściły się w przedziale 660 – 710 mm. Spełnione zostały więc wymagania podane w pracach [87, 113, 121].

Na rysunku 5.1 pokazano natomiast przykładowo rezultat badania rozpływu mieszanki betonowej C za pomocą stożka Abramsa.

Rys. 5.1. Rezultat badania rozpływu mieszanki betonowej C za pomocą metody stożka Abramsa

Oznaczenie mieszanki	Pomierzone średnice rozpływu w dwóch wzajemnie prostopadłych kierunkach		Różnica pomiędzy pomierzonymi średnicami rozpływu	Wymagania wg [113,121]
betonowej	d_1	d_2	$ d_1-d_2 $	$ d_1 - d_2 $
	[mm]	[mm]	[mm]	[mm]
А	580	610	30	
В	565	590	25	< 50
С	590	625	35	_200
D	610	640	30	

Tabela 5.2. Wyniki badań właściwości reologicznych mieszanek betonowych A–D za pomocą metody J-Ring

Jak wynika z tabeli 5.2 dla wszystkich badanych mieszanek samozagęszczalnych różnice w pomierzonych średnicach rozpływu w dwóch wzajemnie prostopadłych kierunkach są mniejsze od 50 mm, można zatem uznać, że nie następuje blokowanie kruszywa grubego między prętami zbrojenia.

Na rysunku 5.2 pokazano przykładowo rezultat badania rozpływu mieszanki A za pomocą metody J-Ring.

Rys. 5.2. Rezultat badania rozpływu mieszanki betonowej A za pomocą metody J-Ring

Tabela 5.3.	8. Wyniki badań właściwości reologicznych mieszanek betonowych A-	-D uzyskane
	z wykorzystaniem skrzynki wypływowej L-Box.	

	Pomierzone www	okości mieszanki	Stosunek	Wymagania
Oznaczenie	przy zasuwie	H_1 i na końcu	pomierzonych	wg [60, 87,
mieszanki	skrzynki wy	pływowej H ₂	wysokości	113, 121]
betonowej	H_1	H_2	H_2/H_1	H_2/H_1
	[mm]	[mm]	[-]	[-]
А	76	66	0,87	
В	75	64	0,85	0.80 - 1.00
С	74	68	0,92	-,,
D	75	70	0,93	

Jak wynika z tabeli 5.3 badane mieszanki A–D spełniły wymagania podane w pracach [60, 87, 113, 121], bo stosunki pomierzonych wysokości H_2/H_1 mieszczą się w przedziale od 0,85 do 0,93.

Na rysunku 5.3 pokazano przykładowo rezultat badania mieszanki betonowej D z wykorzystaniem skrzynki wypływowej L-Box.

Rys. 5.3. Rezultat badania rozpływu mieszanki betonowej D w skrzynce wypływowej L-Box

W podsumowaniu przeprowadzonych badań właściwości reologicznych zaprojektowanych w pracy mieszanek betonowych A–D, należy stwierdzić, że spełniają one wymagania stawiane mieszankom samozagęszczalnym.

5.2. Wyniki badań podstawowych właściwości fizycznych i mechanicznych

Wyniki badań właściwości fizycznych takich jak gęstość *D*, gęstość właściwa ρ_w , porowatość *p*, nasiąkliwość n_w , wilgotność masowa w_m , określonych po 90 dniach dojrzewania dla badanych serii betonów samozagęszczonych A_k–D_k, zestawiono w tabeli 5.4 w postaci wartości średnich.

Należy wyjaśnić, że:

- gęstość *D* określono zgodnie z [96],
- gęstość właściwą ρ_w określono przy użyciu kolby Le Chateliera zgodnie z [50],
- porowatość wyznaczono wg wzoru (5.1), na podstawie [50],

$$p=1-s, (5.1)$$

gdzie:

s - jest to wskaźnik szczelności betonu wyrażony stosunkiem gęstości D do gęstości właściwej ρ_w :

nasiąkliwość n_w określono wg wzoru (5.2), zgodnie z [50],

$$n_w = \frac{m_n - m_s}{m_s} \left[\%\right],\tag{5.2}$$

gdzie:

- *m*_n masa próbki maksymalnie nasyconej [g],
- m_s masa próbki wysuszonej w 105°C [g],
- określenia wilgotności masowej w_m dokonano za pomocą metody suszarkowowagowej zgodnie z [50]. W tym celu z każdej serii betonu pobierano po 3 próbki, które ważono, a następnie suszono w temperaturze 105 °C do stałej masy, po czym z zależności (50) wyznaczano wilgotność masową wyrażoną w procentach,

$$w_m = \frac{m_w - m_s}{m_s} \, [\%], \tag{5.3}$$

gdzie:

m_w – masa próbki o aktualnej wilgotności [g],

m_s – masa próbki wysuszonej w 105°C [g].

Oznaczenie betonu	Oznaczenie serii betonu	Gęstość D [g/cm ³]	Gęstość właściwa ρ_w [g/cm ³]	Porowatość <i>p</i> [%]	Nasiąkliwość n _w [%]	Wilgotność masowa w _m [%]
	A _k	2,282	2,63	13,54	5,51	4,05
А	A _s	-	-	-	-	0,00
	A _w	-	-	-	-	6,51
	B _k	2,200	2,61	15,70	6,83	4,69
В	B _s	-	-	-	-	0,00
	B _w	-	-	-	-	7,22
	C_k	2,311	2,64	12,46	5,64	4,24
C	C _s	-	-	-	-	0,00
	C _w	-	-	-	-	6,71
	D _k	2,236	2,62	14,67	5,17	4,89
D	D _s	-	-	-	-	0,00
	D _w	-	-	-	-	7,53

Tabela 5.4. Zestawienie właściwości fizycznych badanych serii betonów

Określenia wytrzymałości na ściskanie dokonano po 3, 7, 14, 28 i 90 dniach dojrzewania, na 10 próbkach sześciennych o wymiarach $150 \times 150 \times 150$ mm w każdym terminie, zgodnie z [13, 95]. Natomiast określenia modułu sprężystości dokonano po 90 dniach dojrzewania na 6 próbkach walcowych o średnicy 113 mm i wysokości 350 mm zgodnie z [13]. W tabeli 5.5 zestawiono otrzymane średnie wartości wytrzymałości na ściskanie f_{cm} oraz średnie wartości modułu sprężystości E_{cm} badanych betonów. Ilustracją tabeli 5.5 jest rysunek 5.4.

Oznaczenie	Oznaczenie	Średni	ia wytrzym	ałość na śc	iskanie f _{cm}	[MPa]	Moduł
betonu	serii betonu	ро 3	ро 7	po 14	po 28	ро 90	sprężystości
		dniach	dniach	dniach	dniach	dniach	E_{cm} [GPa]
	A_k	22,65	<u>32,37</u>	<u>36,18</u>	<u>40,82</u>	<u>44,52</u>	30.95
		8,6%	5,6%	8,7%	5,3%	4,2%	,
А	A _s	-	-	-	-	<u>46,99</u> 6,5%	-
	A_{w}	-	-	-	-	<u>40,05</u> 5,3%	-
	B _k	<u>15,68</u> 7,2%	<u>20,36</u> 6,4%	<u>22,54</u> 7,8%	<u>27,02</u> 4,7%	<u>32,41</u> 4,8%	27,61
В	B _s	-	-	-	-	<u>40,31</u> 5,5%	-
	B_{w}	-	-	-	-	<u>29,80</u> 4,9%	-
	C _k	<u>35,12</u> 6,3%	<u>45,31</u> 4,3%	<u>50,24</u> 6,7%	<u>55,43</u> 8,9%	<u>59,24</u> 5,1%	38,45
C	Cs	-	-	-	-	<u>63,45</u> 7,2%	-
	C _w	-	-	-	-	<u>56,96</u> 6,8%	-
D	D _k	<u>19,44</u> 7,2%	<u>24,13</u> 4,8%	<u>32,17</u> 5,4%	<u>38,34</u> 6,6%	<u>41,82</u> 5,8%	30,79
	D _s	-	-	-	-	<u>42,97</u> 6,7%	-
	D_{w}	-	-	-	-	<u>33,13</u> 4,3%	-

Tabela 5.5. Średnie wartości wytrzymałości na ściskanie f_{cm} oraz modułu sprężystości E_{cm} badanych serii betonów

[°] Uwaga: pod kreską podano wartości współczynników zmienności.

Rys. 5.4. Przyrost średniej wytrzymałości na ściskanie f_{cm} betonów samozagęszczonych serii A_k – D_k w funkcji czasu, opisany równaniami krzywych regresji

Jak wynika z rysunku 5.4 przyrost wytrzymałości na ściskanie badanych serii betonów w funkcji czasu nie jest jednakowy. Porównując średnie wartości wytrzymałości na ściskanie, uzyskane w poszczególnych terminach badawczych przez betony o tym samym składzie, tzn. serie A_k i C_k , wykonane z użyciem kruszywa o maksymalnej wielkości ziaren 16 mm, widać, że wyższe wartości wytrzymałości osiąga beton serii C_k modyfikowany superplastyfikatorem S_V . Beton ten po 90 dniach dojrzewania osiągnął wytrzymałość $f_{cm} = 59,24$ MPa, natomiast beton serii A_k modyfikowany superplastyfikatorem $S_A f_{cm} = 44,54$ MPa. Podobna sytuacja ma miejsce w przypadku betonów serii B_k i D_k , które mają ten sam skład, lecz kruszywo w maksymalnej wielkości ziaren 8 mm, tzn. wyższą wytrzymałość f_{cm} osiągnął beton serii D_k modyfikowany superplastyfikatorem S_V .

5.3. Wyniki badań struktury porów powietrznych

Celem udowodnienia pierwszej tezy przeprowadzono szczegółowe badania struktury porowatości w przedziałach średnic porów 10–4000 μ m oraz promieni porów 5–7500 nm betonów serii A_k, B_k, C_k i D_k, dojrzewających do terminu badania w komorze klimatycznej. Uzyskane wyniki podano w układzie porównawczym dla serii A_k i C_k oraz B_k i D_k.

I tak, uśrednione wartości parametrów charakteryzujących strukturę porów powietrznych w zakresie średnic porów 10 - 4000 μ m dla betonów serii A_k i C_k oraz B_k i D_k podano w tabeli 5.6.

Badany parametr		Oznaczenie serii betonu					
badany paramet	A _k	B _k	C _k	D_k			
Całkowita zawartość powietrza w stwardniałym betonie A [%]	6,70	8,30	2,90	4,45			
Zawartość mikroporów o średnicy poniżej 0,3 mm A_{300} [%]	1,50	2,96	0,70	1,74			
Wskaźnik rozmieszczenia porów powietrznych \overline{L} [mm]	0,26	0,11	0,33	0,13			
Powierzchnia właściwa porów powietrznych α[mm ⁻¹]	17	36	21	45			

Tabela 5.6. Zestawienie uśrednionych wyników badań struktury porów powietrznych w porównywanych betonach serii A_k i C_k oraz B_k i D_k

Natomiast na rysunkach 5.5 i 5.6 zamieszczono wykresy przedstawiające rozkłady zawartości porów powietrznych w zależności od średnicy pora w betonach serii A_k i C_k oraz B_k i D_k . Przykładowe obrazy struktury porów powietrznych, dla betonów serii A_k i B_k oraz C_k i D_k ilustrują odpowiednio rysunki 5.7 i 5.8.

Rys. 5.5. Rozkład zawartości porów powietrznych w zależności od średnicy pora w betonach serii A_k i C_k

Rys. 5.6. Rozkład zawartości porów powietrznych w zależności od średnicy pora w betonach serii B_k i D_k

Porównując przedstawione w tabeli 5.6 i na rysunku 5.5 rezultaty badań struktury porów powietrznych w betonach serii A_k i C_k widać, że w przypadku betonu serii C_k modyfikowanego superplastyfikatorem S_V zarówno całkowita zawartość powietrza *A* jak i zawartość mikroporów o średnicy poniżej 0,3 mm A_{300} jest mniejsza. Widać ponadto, że w betonie serii C_k, mniejsza zawartość powietrza występuje niemal w całym przedziale porów. Natomiast większą wartością charakteryzuje się dla tego betonu wskaźnik rozmieszczenia porów \overline{L} , co koresponduje z wartościami parametrów *A* i A_{300} . Większa jest także w betonie serii C_k powierzchnia właściwa porów powietrznych α . Na tej podstawie można wnioskować, że struktura porów powietrznych w betonie serii C_k cechuje się korzystniejszymi parametrami, w porównaniu z betonem serii A_k. Podobne stwierdzenia, dotyczące betonów serii B_k i D_k, wynikają z analizy tabeli 5.6 i rysunku 5.6, tzn. korzystniejszymi parametrami charakteryzującymi strukturę porów powietrznych, cechuje się beton serii D_k, był modyfikowany superplastyfikatorem S_V.

Rys. 5.7. Przykładowe obrazy struktury porów powietrznych w powiększeniu około 30x w betonie serii A_k (po lewej) i w betonie serii B_k (po prawej).

Rys. 5.8. Przykładowe obrazy struktury porów powietrznych w powiększeniu około 30x w betonie serii C_k (po lewej) i w betonie serii D_k (po prawej).

Z kolei uśrednione rezultaty badań porowatości porównywanych betonów serii A_k i C_k oraz B_k i D_k uzyskane metodą porozymetrii rtęciowej, zamieszczono w tabelach 5.7 i 5.8 oraz na rysunkach 5.9–5.12. I tak w tabeli 5.7 zamieszczono rezultaty badań porowatości całkowitej *p*, objętości właściwej porów *V*, średniego promienia porów \overline{r} i powierzchni właściwej porów α' . Natomiast w tabeli 5.8 zamieszczono procentowy rozkład porów według przyjętych przedziałów promieni w zakresie promieni porów 5–7500 nm. Natomiast na rysunkach 5.9 i 5.10 przedstawiono wykresy charakterystyki porowatości odpowiednio dla betonów serii A_k i C_k oraz B_k i D_k . Rysunki 5.11 i 5.12 ilustrują z kolei procentowy udział porów według dowolnie przyjętych przedziałów promieni odpowiednio dla porównywanych serii A_k i C_k oraz B_k i D_k .

Tabela 5.7. Rezultaty badań porowatości porównywanych betonów serii A_k i C_k oraz B_k i D_k w zakresie promieni porów 5–7500 nm

Radany parametr	Oznaczenie serii betonu					
Dadany parametr	A _k	B _k	C _k	D_k		
Porowatość całkowita <i>p</i> [%]	12,71	13,02	11,90	12,44		
Objętość właściwa porów V [mm ³ /g]	24,08	32,81	17,85	29,35		
Średni promień porów <i>r</i> [nm]	3,90	6,20	6,15	15,70		
Powierzchnia właściwa porów α' [m²/g]	7,12	3,97	2,66	2,88		

Tabela 5.8. Procentowy udział porów wg przyjętych przedziałów promieni dla porównywanych betonów serii A_k i C_k oraz B_k i D_k w zakresie promieni porów 5–7500 nm

Oznaczenie serii betonu	Procentowy udział porów w przedziałach promieni [nm]									
	5 - 15	15 - 50	50 - 80	80 - 150	150 - 200	200 - 250	250 - 500	500 - 750	750 - 1000	> 1000
A_k	29,63	24,87	5,98	7,71	3,08	2,58	6,61	3,38	3,43	12,51
$\mathbf{B}_{\mathbf{k}}$	25,60	23,11	12,53	9,82	3,18	2,52	6,89	2,93	1,84	11,47
C_k	39,86	24,08	5,80	7,09	2,96	3,07	4,55	3,11	1,04	8,48
D_k	28,82	25,50	5,75	6,52	2,51	2,12	5,73	4,03	3,20	15,60

Rys. 5.9. Charakterystyka porowatości porównywanych betonów A_k i C_k w zakresie porów 5–7500 nm (krzywe przyrostu objętości porów *V* w funkcji ich promieni *r*)

Rys. 5.10. Charakterystyka porowatości porównywanych betonów B_k i D_k w zakresie porów 5–7500 nm (krzywe przyrostu objętości porów *V* w funkcji ich promieni *r*)

Rys. 5.11. Procentowy udział porów według przyjętych przedziałów promieni dla porównywanych betonów serii A_k i C_k w zakresie promieni porów 5–7500 nm

Rys. 5.12. Procentowy udział porów według przyjętych przedziałów promieni dla porównywanych betonów serii B_k i D_k w zakresie promieni porów 5–7500 nm

Z analizy tabeli 5.7 wynika, że w betonie serii C_k modyfikowanym superplastyfikatorem S_V porowatość całkowita *p* i objętość właściwa porów *V* są mniejsze niż w betonie serii A_k modyfikowanym superplastyfikatorem S_A . Również powierzchnia właściwa porów α w betonie serii C_k jest mniejsza niż w betonie serii A_k . Natomiast większą wartością

charakteryzuje się średni promień porów r. Z analizy charakterystyki porowatości przedstawionej na rysunku 5.9 wynika, że w całym zakresie rozpatrywanych promieni porów, (5–7500 nm), porowatość betonu serii C_k jest mniejsza w porównaniu z betonem serii A_k. Analogiczne stwierdzenia wynikają z analizy rezultatów badań uzyskanych dla betonów serii B_k i D_k.

Analizując z kolei rezultaty badań zawarte w tabeli 5.8 oraz na rysunkach 5.11 i 5.12 można zauważyć, że procentowy udział porów o promieniach w zakresie 5–7500 nm jest wyraźnie mniejszy w betonie serii C_k , w porównaniu z betonem serii A_k . Jedynie w przedziale porów o promieniach w zakresie 200–250 i 5–15 nm beton serii C_k charakteryzuje się większym udziałem procentowym porów. Natomiast w przypadku betonów serii B_k i D_k w zakresie porów o promieniach 150–7500 nm, procentowy udział porów jest niemal identyczny, a dla porów o promieniach w zakresie 5–100 nm beton serii D_k modyfikowany superplastyfikatorem S_v, charakteryzuje się mniejszym procentowym ich udziałem.

Z przedstawionej analizy wynika jednoznacznie, że struktura porów powietrznych w badanych betonach samozagęszczonych zależy od superplastyfikatora zastosowanego do modyfikacji mieszanki betonowej. Wynika także, że struktura tych porów w betonie serii C_k , w porównaniu z betonem serii A_k , oraz betonu serii D_k w porównaniu z B_k , cechuje się korzystniejszymi parametrami.

5.4. Badania procesu niszczenia betonów samozagęszczonych różniących się strukturą porów powietrznych

W celu udowodnienia, że proces niszczenia badanych betonów samozagęszczonych zależy od struktury porów powietrznych, która jak wykazano w punkcie 5.3 zależy od superplastyfikatora użytego do modyfikacji mieszanki betonowej, badaniom poddano serie A_k , B_k , C_k i D_k , przechowywane w komorze klimatycznej.

Rezultaty badań uzyskane metodami ultradźwiękową, emisji akustycznej [29,30] i pomiaru odkształceń przedstawiono w pracy w układzie porównawczym dla serii A_k i C_k oraz dla serii B_k i D_k . Warto w tym miejscu przypomnieć, że betony A i C wykonane zostały z mieszanek betonowych o takim samym składzie i wielkości maksymalnego ziarna kruszywa żwirowego wynoszącego 16 mm, lecz były modyfikowane innym superplastyfikatorem, tzn. beton A modyfikowano superplastyfikatorem S_A , a beton C superplastyfikatorem S_V . Analogicznie rzecz ma się z betonami B i D, które także wykonano z mieszanek betonowych o takim samym składzie i wielkości maksymalnego ziarna kruszywa żwirowego wynoszącego 8 mm i beton B był modyfikowany superplastyfikatorem S_A , a beton D superplastyfikatorem S_V .

Na rysunku 5.13 zamieszczono wykresy zmiany prędkości podłużnych fal ultradźwiękowych w funkcji przyrostu względnej wartości naprężeń ściskających w porównywanych betonach samozagęszczonych serii A_k i C_k . Podobne wykresy zamieszczono na rysunku 5.14 dla betonów serii B_k i D_k .

Rys. 5.13. Zmiana prędkości podłużnych fal ultradźwiękowych w ściskanych betonach serii A_k i C_k w funkcji przyrostu względnej wartości naprężeń

Rys. 5.14. Zmiana prędkości podłużnych fal ultradźwiękowych w ściskanych betonach serii B_k i D_k w funkcji przyrostu względnej wartości naprężeń

Z przedstawionych na rysunku 5.13 rezultatów wynika, że w porównywanych seriach betonów prędkość podłużnych fal ultradźwiękowych V_L maleje wraz ze wzrostem poziomu naprężeń. Spadek tej prędkości jest obserwowany od pewnego poziomu naprężeń, po przekroczeniu którego intensywność tego zjawiska wzrasta. Poziom ten nie jest jednakowy w badanych betonach. W betonie serii A_k spadek tej prędkości obserwuje się od poziomu 0,33 σ_c/f_c , natomiast w betonie C_k od poziomu 0,38 σ_c/f_c . W obydwu betonach pomiar prędkości podłużnych fal ultradźwiękowych jest możliwy jedynie do takiego poziomu naprężeń, po przekroczeniu którego następuje ich całkowite tłumienie. Poziom ten jest różny w poszczególnych seriach i dla serii A_k wynosi 0,90 σ_c/f_c , a dla serii C_k 0,93 σ_c/f_c . W myśl kryteriów podanych w punkcie 3, poziom naprężenia, od którego obserwuje się wyraźny spadek prędkości podłużnych fal ultradźwiękowych odpowiada poziomowi naprężenia inicjującego pękanie σ_i . Natomiast poziom naprężenia, przy którym następuje zanik możliwości pomiaru prędkości podłużnych fal ultradźwiękowych równoznaczny jest z poziomem naprężenia krytycznego σ_{cr} . Poziomy te zaznaczono na rysunku 5.13. Z przeprowadzonych badań wynika, że beton serii C_k wykonany z użyciem superplastyfikatora S_V wykazuje wyższe wartości naprężeń inicjujących pękanie i naprężeń krytycznych, w porównaniu z betonem serii A_k . Warto także zauważyć, że początkowa prędkość podłużnych fal ultradźwiękowych V_L w betonie serii A_k jest niższa w stosunku do betonu serii C_k . Wynika to m. innymi z faktu, że porowatość betonu serii A_k jest większa, a wytrzymałość na ściskanie niższa.

Analizując rezultaty badań przedstawione na rysunku 5.14 można zauważyć podobną sytuację. Beton serii D_k , modyfikowany superplastyfikatorem S_V charakteryzuje się wyższymi wartościami naprężeń inicjujących pękanie i naprężeń krytycznych. Także i początkowa prędkość podłużnych fal ultradźwiękowych w betonie D_k jest wyższa, co wynika m. innymi z jego mniejszej porowatości całkowitej *p*.

Z kolei na rysunkach 5.15 i 5.17 zamieszczono przebieg tempa zdarzeń N_{zd} emisji akustycznej zarejestrowanego w funkcji czasu ściskania porównywanych betonów, tzn. serii A_k i C_k oraz serii B_k i D_k . Natomiast na rysunkach 5.16 i 5.18 zamieszczono dla tych betonów rezultaty przebiegu wartości skutecznej sygnału emisji akustycznej (*RMS*) zarejestrowanej w funkcji czasu ściskania. Na rysunkach 5.15–5.18 naniesiono także wykres przyrostu względnej wartości naprężeń ściskających σ_c/f_c w funkcji czasu niszczenia *t* oraz zaznaczono poziomy naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} , wyznaczone według kryteriów podanych w punkcie 3.

Rys. 5.15. Zapis tempa zdarzeń N_{zd} emisji akustycznej wraz z naniesionym wykresem przyrostu względnej wartości naprężeń ściskających σ_c/f_c w funkcji czasu niszczenia w betonie samozagęszczonym: a) serii A_k, b) serii C_k

Rys. 5.16. Zapis wartości skutecznej sygnału (*RMS*) emisji akustycznej wraz z naniesionym wykresem przyrostu względnej wartości naprężeń ściskających σ_c/f_c w funkcji czasu niszczenia w betonie samozagęszczonym: a) serii A_k, b) serii C_k

Rys. 5.17. Zapis tempa zdarzeń N_{zd} emisji akustycznej wraz z naniesionym wykresem przyrostu względnej wartości naprężeń ściskających σ_c/f_c w funkcji czasu niszczenia w betonie samozagęszczonym: a) serii B_k, b) serii D_k

Rys. 5.18. Zapis wartości skutecznej sygnału (*RMS*) emisji akustycznej wraz z naniesionym wykresem przyrostu względnej wartości naprężeń ściskających σ_c/f_c w funkcji czasu niszczenia w betonie samozagęszczonym: a) serii B_k, b) serii D_k

Z przedstawionych rezultatów pomiaru emisji akustycznej wynika jednoznacznie, że proces niszczenia badanych betonów jest trójstadialny. Charakter przebiegu tempa zdarzeń N_{zd} oraz wartości skutecznej sygnału (*RMS*) emisji akustycznej w funkcji czasu niszczenia jest podobny we wszystkich badanych seriach, w tym rozumieniu, że w początkowej fazie niszczenia wartości obydwu rejestrowanych deskryptorów EA są niewielkie, następnie widoczny jest umiarkowany wzrost tempa zdarzeń N_{zd} oraz wartości skutecznej sygnału EA, a w stadium końcowym niszczenia wzrost ten jest gwałtowny. Wyznaczono dla badanych betonów poziomy naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} wg kryteriów podanych w punkcie 3. Stwierdzono, że większymi wartościami poziomów przedmiotowych naprężeń charakteryzują się serie betonów modyfikowane superplastyfikatorem S_V. Przykładowo dla betonu serii C_k poziomy naprężeń σ_i i σ_{cr} wynoszą odpowiednio 0,38 σ_{c}/f_c i 0,92 σ_{c}/f_c , podczas gdy, w betonie serii A_k poziomy te wynoszą 0,33 σ_c/f_c i 0,91 σ_c/f_c .

Z kolei na rysunkach 5.19 i 5.20 zamieszczono wykresy jednostkowych odkształceń podłużnych ε_{cx} i poprzecznych ε_{cy} porównywanych serii betonu A_k i C_k oraz serii B_k i D_k w funkcji przyrostu względnej wartości naprężeń ściskających σ_c/f_c . Na tej podstawie wyznaczono charakterystyki odkształceniowe, a mianowicie: zmianę współczynnika Poissona ν oraz sumarycznych odkształceń objętościowych ΔV , w funkcji σ_c/f_c . I tak na rysunkach 5.21 i 5.22 zamieszczono wykresy zmiany współczynnika ν w funkcji przyrostu względnej wartości naprężeń ściskających σ_c/f_c odpowiednio dla serii betonu A_k i C_k oraz B_k i D_k. Na rysunkach tych zaznaczono także poziomy wartości naprężeń inicjujących pękanie σ_i wyznaczone zgodnie z kryteriami podanymi w punkcie 3. Natomiast na rysunkach 5.23 i 5.24 zamieszczono dla porównywanych serii betonów wykresy przebiegu zmienności sumarycznych odkształceń objętościowych ΔV , także w funkcji σ_c/f_c , na których również naniesiono wyznaczone zgodnie z kryteriami podanymi w punkcie 3, poziomy naprężeń krytycznych σ_{cr} .

Rys. 5.19. Odkształcenia jednostkowe podłużne ε_{cx} i poprzeczne ε_{cy} betonów serii A_k i C_k w funkcji przyrostu względnej wartości naprężeń ściskających σ_{c}/f_{c}

Rys. 5.20. Odkształcenia jednostkowe podłużne ε_{cx} i poprzeczne ε_{cy} betonów serii B_k i D_k w funkcji przyrostu względnej wartości naprężeń ściskających σ_{c}/f_{c}

Rys. 5.21. Zmiana współczynnika Poissona ν w funkcji przyrostu względnej wartości naprężeń ściskających $\sigma_{c'}f_{c}$: a) w betonie serii A_k, b) w betonie serii C_k

Rys. 5.22. Zmiana współczynnika Poissona ν w funkcji przyrostu względnej wartości naprężeń ściskających σ_c/f_c : a) w betonie serii B_k, b) w betonie serii D_k

Rys. 5.23. Przebieg zmienności sumarycznych odkształceń objętościowych ΔV w funkcji przyrostu względnej wartości naprężeń ściskających σ_c/f_c : a) w betonie serii A_k, b) w betonie serii C_k

Rys. 5.24. Przebieg zmienności sumarycznych odkształceń objętościowych ΔV w funkcji przyrostu względnej wartości naprężeń ściskających $\sigma_{c'}/f_c$: a) w betonie serii B_k, b) w betonie serii D_k

Z analizy wykresów zamieszczonych na rysunkach 5.19 i 5.20 wynika, że beton serii C_k charakteryzuje się wyższymi odkształceniami podłużnymi ε_{cx} i niższymi odkształceniami poprzecznymi ε_{cy} w stosunku do betonu serii A_k . W przypadku betonu serii C_k do wyższego

poziomu naprężeń ściskających widoczna jest liniowa zależność jednostkowych odkształceń podłużnych i poprzecznych w funkcji naprężeń ściskających. Podobna sytuacja ma miejsce w przypadku betonu serii D_k , w porównaniu z betonem serii B_k .

Wyznaczone na rysunkach 5.15–5.18 i 5.21–5.24 wartości poziomów naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} dla porównywanych serii betonów A_k i C_k oraz B_k i D_k zestawiono w tabeli 5.9. W tabeli tej podano także średnie wartości (względne i bezwzględne) naprężeń σ_{im} i σ_{crm} obliczone przy uwzględnieniu rezultatów badań uzyskanych za pomocą trzech metod badawczych.

Tabela 5.9. Wartości poziomów naprężeń σ_i i σ_{cr} oraz średnie wartości (względne i bezwzględne) poziomów naprężeń σ_{im} i σ_{crm} określone w betonach serii A_k – D_k za pomocą metod: ultradźwiękowej, emisji akustycznej i pomiaru odkształceń

		Metoda pomiarowa					Średnie wartości			
Oznaczenie serii betonu	Ultradźwiękowa		Emisji akustycznej		Pomiaru odkształceń		σ_{im}		σ_{crm}	
	σ_i [-]	σ_{cr} [-]	σ_i [-]	σ_{cr} [-]	σ_i [-]	σ_{cr} [-]	[-]	MPa	[-]	MPa
A _k	$\frac{0.33}{8,7\%}^{*}$	<u>0,90</u> 2,1%	<u>0,33</u> 5,4%	<u>0,91</u> 4,2%	<u>0,34</u> 2,8%	<u>0,91</u> 3,9%	0,333	14,83	0,907	40,51
B _k	<u>0,31</u> 7,6%	<u>0,85</u> 1,5%	<u>0,30</u> 8,6%	<u>0,86</u> 7,5%	<u>0,29</u> 3,4%	$\frac{0,82}{4,2\%}$	0,300	9,72	0,843	27,22
C _k	<u>0,38</u> 6,4%	<u>0,93</u> 2,1%	<u>0,38</u> 6,6%	<u>0,92</u> 4,4%	<u>0,39</u> 4,1%	<u>0,95</u> 3,2%	0,383	22,67	0,933	55,69
D _k	<u>0,33</u> 8,8%	<u>0,90</u> 1,3%	<u>0,34</u> 5,9%	<u>0,90</u> 2,9%	<u>0,33</u> 3,3%	<u>0,91</u> 2,7%	0,337	14,09	0,903	38,27

^{*} Uwaga: pod kreską podano wartości współczynników zmienności.

Jak wynika z tabeli 5.9, beton serii C_k w porównaniu z betonem serii A_k charakteryzuje się wyższym poziomem naprężeń inicjujących pękanie σ_{im} i wyższym poziomem naprężeń krytycznych σ_{crm} . Analogiczna sytuacja występuje w przypadku betonu D_k , w porównaniu z betonem B_k . Warto przypomnieć, że betony serii C_k i D_k wykonane zostały z użyciem superplastyfikatora S_V .

Celem wykazania wpływu struktury porów powietrznych na proces niszczenia badanych betonów samozagęszczonych, na rysunkach 5.25–5.28 sporządzono wykresy zależności średnich względnych wartości poziomów naprężeń inicjujących pękanie σ_{im} i naprężeń krytycznych σ_{crm} , od m. innymi takich parametrów charakteryzujących tę strukturę jak: całkowita zawartość powietrza *A* (rys. 5.25), porowatość całkowita *p* (rys. 5.26), wskaźnik rozmieszczenia porów powietrznych \overline{L} (rys. 5.27), powierzchnia właściwa porów powietrznych α (rys. 5.28).

Rys. 5.25. Zależność średnich względnych wartości poziomów naprężeń σ_{im} i σ_{crm} od całkowitej zawartości powietrza *A* w stwardniałym betonie samozagęszczonym (zakres średnic porów 10-4000 µm): a) serii A_k i C_k, b) B_k i D_k

Rys. 5.26. Zależność średnich względnych wartości poziomów naprężeń σ_{im} i σ_{crm} od porowatości całkowitej *p* w stwardniałym betonie samozagęszczonym (zakres promieni porów 5-7500 nm): a) serii A_k i C_k, b) serii B_k i D_k

Rys. 5.27. Zależność średnich względnych wartości poziomów naprężeń σ_{im} i σ_{crm} od wskaźnika rozmieszczenia porów powietrznych \overline{L} w stwardniałym betonie samozagęszczonym (zakres średnic porów 10-4000 µm): a) serii A_k i C_k, b) serii B_k i D_k

Rys. 5.28. Zależność średnich względnych wartości poziomów naprężeń σ_{im} i σ_{crm} od powierzchni właściwej porów powietrznych α w stwardniałym betonie samozagęszczonym (zakres średnic porów 10-4000 µm): a) serii A_k i C_k, b) serii B_k i D_k

Z analizy rysunków 5.25 i 5.26 wynika, że mniejszej zawartości powietrza A i mniejszej porowatości całkowitej p w samozagęszczonym betonie serii C_k odpowiadają wyższe poziomy naprężeń inicjujących pękanie σ_{im} i naprężeń krytycznych σ_{crm} . Fakt ten można wytłumaczyć tym, że mniejsza zawartość powietrza w stwardniałym betonie i mniejsza porowatość całkowita to mniejsza ilość osłabień struktury. Podczas niszczenia przejawia się to tym, że stadium stabilnego rozwoju mikrorys rozpoczyna się przy wyższym wytężeniu.

Z kolei analizując rysunki 5.27 i 5.28 widać, że większej wartości wskaźnika rozmieszczenia porów powietrznych \overline{L} oraz większej powierzchni właściwej porów powietrznych α odpowiadają także wyższe wartości zarówno naprężeń σ_{im} jak i naprężeń σ_{crm} . Porównując beton serii C_k z betonem serii A_k widać, że beton C_k charakteryzuje się większymi wartościami tych parametrów, tzn. \overline{L} i α . Można na tej podstawie wnioskować, że gdy w strukturze betonu pory powietrzne są rozmieszczone rzadziej i ich powierzchnia właściwa jest większa, to struktura jest bardziej jednorodna. W betonie takim stadium stabilnej propagacji rys zaczyna się wtedy przy wyższym poziomie naprężeń, a stadium katastroficznego niszczenia staje się nieco "krótsze". Jeśli chodzi o porównywane betony serii B_k i D_k, to uzyskane rezultaty badań są zbieżne z tymi jakie uzyskano dla betonów serii A_k i C_k i na ich podstawie można wyciągnąć podobne wnioski.

5.5. Badania wpływu wilgotności na proces niszczenia betonów samozagęszczonych

W celu udowodnienia, że w badanych betonach samozagęszczonych wilgotność istotnie wpływa na poziom naprężeń inicjujących pękanie σ_i , natomiast jej wpływ na poziom naprężeń krytycznych σ_{cr} jest niewielki, badaniom poddano próbki wykonane z betonów A– D, serii A_k, A_s, A_w, B_k, B_s, B_w, C_k, C_s, C_w i D_k, D_s, D_w, charakteryzujące się różną wilgotnością w chwili badania. W badaniach tych wykorzystano metody ultradźwiękową i emisji akustycznej, w próbie ściskania osiowego [31,32].

Na rysunkach 5.29–5.32 zamieszczono wykresy zmiany prędkości podłużnych fal ultradźwiękowych w funkcji przyrostu względnej wartości naprężeń ściskających, w badanych seriach betonu.

Rys. 5.29. Zmiana prędkości podłużnych fal ultradźwiękowych w ściskanych betonach samozagęszczonych serii A_k, A_s i A_w w funkcji przyrostu względnej wartości naprężeń

Rys. 5.30. Zmiana prędkości podłużnych fal ultradźwiękowych w ściskanych betonach samozagęszczonych serii B_k, B_s i B_w w funkcji przyrostu względnej wartości naprężeń

Rys. 5.31. Zmiana prędkości podłużnych fal ultradźwiękowych w ściskanych betonach samozagęszczonych serii C_k , C_s i C_w w funkcji przyrostu względnej wartości naprężeń

Rys. 5.32. Zmiana prędkości podłużnych fal ultradźwiękowych w ściskanych betonach samozagęszczonych serii D_k, D_s i D_w w funkcji przyrostu względnej wartości naprężeń

Z przedstawionych na rysunku 5.29 rezultatów badań wynika, że wraz ze wzrostem poziomu naprężeń ściskających następuje w badanych seriach betonu spadek prędkości podłużnych fal ultradźwiękowych V_L . Spadek ten jest zauważalny, od poziomu 0,24 σ_c/f_c dla serii A_w , od poziomu 0,31 σ_c/f_c dla serii A_s i od poziomu 0,33 σ_c/f_c dla serii A_k . Po przekroczeniu tych poziomów naprężeń intensywność zaobserwowanego zjawiska wzrasta. Pomiar prędkości podłużnych fal ultradźwiękowych jest możliwy jedynie do takiego poziomu naprężeń, przy którym następuje całkowite ich tłumienie. Poziom ten jest różny w poszczególnych seriach. Jest on najniższy w betonie serii A_k i wynosi 0,90 σ_c/f_c , natomiast najwyższy jest w serii A_w i wynosi 0,93 σ_c/f_c .

Stwierdzone prawidłowości można tłumaczyć tym, że proces niszczenia betonów o większej wilgotności przebiega łagodniej ze względu na obecność w makroi mikrokapilarach większej ilości wody. Woda zapełniając swoją objętością nowo tworzące się w strukturze obciążanego betonu mikrorysy, łagodzi wpływ destrukcji naprężeniowej na wartość tłumienia fal ultradźwiękowych. W myśl kryteriów podanych w punkcie 3, poziom naprężenia, od którego obserwuje się wyraźny spadek prędkości podłużnych fal ultradźwiękowych odpowiada poziomowi naprężenia inicjującego pękanie σ_i . Natomiast poziom naprężenia, przy którym następuje zanik możliwości pomiaru prędkości tych fal równoznaczny jest z poziomem naprężenia krytycznego σ_{cr} . Poziomy te zaznaczono na rysunku 5.29.

Należy także zauważyć, że początkowa prędkość podłużnych fal ultradźwiękowych w badanych seriach nie jest jednakowa i jest wyraźnie zależna od stopnia zawilgocenia betonu. W miarę wzrostu zawilgocenia, prędkość ta rośnie. Wynika to z faktu, że tłumienie fali ultradźwiękowej napotykającej na drodze swego przejścia pory i różnego rodzaju mikrodefekty wypełnione powietrzem, jest znacznie wyższe, niż w przypadku porów i mikrodefektów wypełnionych wodą.

Analizując rezultaty badań przedstawione na rysunkach 5.30–5.32 dotyczące pozostałych badanych serii betonu obserwuje się podobną sytuację do opisanej wyżej.

Z kolei na rysunkach 5.33, 5.35, 5.37 i 5.39 zamieszczono rezultaty przebiegu tempa zdarzeń N_{zd} emisji akustycznej zarejestrowanego w funkcji czasu ściskania betonów serii A_k , A_s , A_w , B_k , B_s , B_w , C_k , C_s , C_w i D_k , D_s , D_w . Natomiast na rysunkach 5.34, 5.36, 5.38 i 5.40 zamieszczono także dla tych samych betonów i serii rezultaty przebiegu wartości skutecznej sygnału emisji akustycznej (*RMS*) zarejestrowanej w funkcji czasu ściskania. Na wszystkich wymienionych rysunkach naniesiono także wykresy przyrostu względnej wartości naprężeń ściskających σ_c/f_c w funkcji czasu niszczenia *t* oraz zaznaczono poziomy naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} , wyznaczone według kryteriów podanych w punkcie 3.

Rys. 5.33. Zapis tempa zdarzeń N_{zd} emisji akustycznej wraz z naniesionym wykresem przyrostu względnej wartości naprężeń ściskających σ_c/f_c w funkcji czasu niszczenia w betonie samozagęszczonym: a) serii A_k, b) serii A_s, c) serii A_w

Rys. 5.34. Zapis wartości skutecznej sygnału (*RMS*) emisji akustycznej wraz z naniesionym wykresem przyrostu względnej wartości naprężeń ściskających σ_c/f_c w funkcji czasu niszczenia w betonie samozagęszczonym: a) serii A_k, b) serii A_s, c) serii A_w

Rys. 5.35. Zapis tempa zdarzeń N_{zd} emisji akustycznej wraz z naniesionym wykresem przyrostu względnej wartości naprężeń ściskających σ_c/f_c w funkcji czasu niszczenia w betonie samozagęszczonym: a) serii B_k, b) serii B_s, c) serii B_w

Rys. 5.36. Zapis wartości skutecznej sygnału (*RMS*) emisji akustycznej wraz z naniesionym wykresem przyrostu względnej wartości naprężeń ściskających σ_c/f_c w funkcji czasu niszczenia w betonie samozagęszczonym: a) serii B_k, b) serii B_s, c) serii B_w

Rys. 5.37. Zapis tempa zdarzeń N_{zd} emisji akustycznej wraz z naniesionym wykresem przyrostu względnej wartości naprężeń ściskających σ_c/f_c w funkcji czasu niszczenia w betonie samozagęszczonym: a) serii C_k, b) serii C_s, c) serii C_w

Rys. 5.38. Zapis wartości skutecznej sygnału (*RMS*) emisji akustycznej wraz z naniesionym wykresem przyrostu względnej wartości naprężeń ściskających σ_c/f_c w funkcji czasu niszczenia w betonie samozagęszczonym: a) serii C_k, b) serii C_s, c) serii C_w

Rys. 5.39. Zapis tempa zdarzeń N_{zd} emisji akustycznej wraz z naniesionym wykresem przyrostu względnej wartości naprężeń ściskających σ_c/f_c w funkcji czasu niszczenia w betonie samozagęszczonym: a) serii D_k, b) serii D_s, c) serii D_w

Rys. 5.40. Zapis wartości skutecznej sygnału (*RMS*) emisji akustycznej wraz z naniesionym wykresem przyrostu względnej wartości naprężeń ściskających σ_c/f_c w funkcji czasu niszczenia w betonie samozagęszczonym: a) serii D_k, b) serii D_s, c) serii D_w

Z przedstawionych na rysunkach 5.33–5.40 rezultatów badań wynika, że charakter przebiegu tempa zdarzeń N_{zd} i wartości skutecznej sygnału *RMS* emisji akustycznej w czasie niszczenia jest generalnie podobny w badanych betonach. Wartości obydwu deskryptorów emisji akustycznej są początkowo niewielkie, następnie widoczny jest etap umiarkowanego wzrostu tempa zdarzeń N_{zd} oraz umiarkowanie skokowy wzrost wartości skutecznej sygnału. W etapie końcowym wzrost ten jest gwałtowny, a w przypadku wartości skutecznej sygnału zdecydowanie skokowy. Jak wynika z tych rysunków, wartości pomierzonych deskryptorów emisji akustycznej są jednak wyraźnie zróżnicowane w badanych seriach. I tak w seriach betonu nasyconych wodą do stanu pełnego nasycenia, stwierdzono najmniejszą aktywność akustyczną i tym samym najniższą wartość rejestrowanych deskryptorów emisji akustycznej. Najwyższą aktywność akustyczną stwierdzono natomiast w seriach betonu suchego. Przykładowo wartość skuteczna sygnału (*RMS*) emisji akustycznej dla betonu serii A_w wynosi około 19 mv, a dla serii A_s około 38 mv.

Należy sądzić, że wpływ zawilgocenia betonu na wartość tempa zdarzeń N_{zd} emisji akustycznej powstających podczas jego niszczenia jest związany przede wszystkim z osłabieniem połączeń między kryształami sieci strukturalnej. Osłabienie to wynika z faktu, iż połączenia te przy zwiększaniu zawilgocenia materiału częściowo rozpuszczają się, powodując niewielkie zmniejszenie wytrzymałości betonu na ściskanie (patrz tabela 5.5). Rozmiękczenie struktury betonu bezpośrednio rzutuje na liczbę potencjalnych miejsc, gdzie może nastąpić uszkodzenie struktury oraz na charakter przebiegu jej niszczenia, co objawia się w postaci rejestrowanej liczby i mocy impulsów emisji akustycznej. Sugestię tą potwierdzają obserwacje obrazów impulsów akustycznych zarejestrowanych podczas niszczenia badanych betonów, z których przykładowo trzy, dla betonu serii C_k , C_s i C_w pokazano na rysunku 5.41. Z rysunku tego można odczytać, że wraz ze wzrostem zawilgocenia betonu, m. innymi skróceniu ulega czas trwania impulsu oraz maleje wartość jego amplitudy.

Porównując przykładowo wyznaczone w badanych seriach betonu A poziomy naprężeń inicjujących pękanie σ_i , najwyższą wartością tych naprężeń charakteryzuje się beton serii A_k dojrzewający w komorze klimatycznej, natomiast najniższą beton serii A_w nasycony wodą do stanu pełnego nasycenia. Analogiczna sytuacja ma miejsce w przypadku pozostałych badanych serii B_k, B_s, B_w, C_k, C_s, C_w i D_k, D_s, D_w, w takim rozumieniu, że beton serii oznaczonej indeksem "k" (będący w stanie maksymalnej wilgotności sorpcyjnej) charakteryzuje się najwyższą wartością poziomu naprężeń inicjujących pękanie σ_i w stosunku

do betonów serii oznaczonych indeksem "s" (stan suchy) lub "w" (będącego w stanie pełnego nasycenia wodą).

W przypadku naprężeń krytycznych σ_{cr} , sytuacja jest odwrotna, niż w przypadku naprężeń inicjujących pękanie. Najwyższą wartość przedmiotowych naprężeń stwierdzono w seriach betonu oznaczonych indeksem "w", tzn. w seriach A_w, B_w, C_w i D_w.

Rys. 5.41. Przykładowe obrazy impulsów akustycznych zarejestrowane podczas ściskania betonów: a) serii C_k - przy względnym poziomie naprężeń około 0,94 σ_c/f_c , b) serii C_s - przy względnym poziomie naprężeń około 0,93 σ_c/f_c , c) serii C_w - przy względnym poziomie naprężeń około 0,95 σ_c/f_c ,

Zaznaczone na rysunkach 5.29–5.40 wartości poziomów naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} dla badanych serii betonów zestawiono w tabeli 5.10. W tabeli tej podano także średnie wartości (względne i bezwzględne) naprężeń σ_{im} i naprężeń σ_{crm} obliczone przy uwzględnieniu rezultatów badań uzyskanych za pomocą obydwu metod badawczych.

Celem lepszego zobrazowania wpływu wilgotności na kształtowanie się poziomów naprężeń inicjujących pękanie σ_{im} i naprężeń krytycznych σ_{crm} w badanych betonach samozagęszczonych A–D, na rysunku 5.42 pokazano uogólniony wykres przebiegu zmienności średnich względnych wartości poziomów tych naprężeń w zależności od wilgotności.

Tabela 5.10. Zbiorcze zestawienie wartości poziomów naprężeń σ_i i σ_{cr} oraz średnich wartości (względnych i bezwzględnych) naprężeń σ_{im} i σ_{crm} określone w badanych betonach serii A_k, A_s, A_w, B_k, B_s, B_w, C_k, C_s, C_w i D_k, D_s, D_w za pomocą metody ultradźwiękowej i emisji akustycznej

	Metoda pomiarowa				Średnie wartości			
Oznaczenie serii betonu	Ultradźwiękowa		Emisji akustycznej		σ_{im}		σ_{crm}	
	σ_i [-]	σ_{cr} [-]	σ_i [-]	σ_{cr} [-]	[-]	MPa	[-]	MPa
A _k	$\frac{0,33}{8,7\%}^{*}$	<u>0,90</u> 2,1%	<u>0,33</u> 4,3%	<u>0,91</u> 3,3%	0,330	15,58	0,905	40,51
A _s	<u>0,31</u> 8,6%	<u>0,91</u> 2,2%	<u>0,29</u> 3,8%	<u>0,91</u> 2,4%	0,300	14,56	0,910	42,76
A_{w}	<u>0,24</u> 5,4%	<u>0,93</u> 1,8%	<u>0,25</u> 4,1%	<u>0,92</u> 3,2%	0,245	9,61	0,925	37,24
B_k	<u>0,31</u> 7,6%	<u>0,85</u> 1,5%	<u>0,30</u> 1,8%	<u>0,86</u> 2,5%	0,305	10,21	0,855	27,22
B _s	<u>0,29</u> 8,3%	<u>0,86</u> 2,3%	<u>0,28</u> 2,4%	<u>0,87</u> 2,1%	0,285	11,69	0,865	34,26
B_{w}	<u>0,24</u> 9,1%	<u>0,89</u> 1,2%	<u>0,25</u> 3,6%	<u>0,90</u> 2,7%	0,245	8,34	0,895	27,42
C_k	<u>0,38</u> 6,4%	<u>0,94</u> 2,1%	<u>0,38</u> 2,7%	<u>0,92</u> 1,3%	0,380	22,27	0,930	55,29
C _s	<u>0,29</u> 5,4%	<u>0,93</u> 2,6%	<u>0,31</u> 3,3%	<u>0,91</u> 1,1%	0,300	19,03	0,920	58,37
C_w	<u>0,25</u> 6,1%	<u>0,95</u> 1,0%	<u>0,26</u> 3,4%	<u>0,93</u> 1,3%	0,255	14,09	0,940	56,36
D_k	<u>0,33</u> 8,8%	<u>0,90</u> 1,3%	<u>0,34</u> 3,1%	<u>0,89</u> 2,1%	0,335	13,32	0,895	38,97
D_s	<u>0,28</u> 7,4%	<u>0,91</u> 1,9%	<u>0,30</u> 3,3%	<u>0,90</u> 1,3%	0,290	11,26	0,905	34,75
D_{w}	$\frac{0,25}{8,4}$	<u>0,92</u> 1,0%	<u>0,28</u> 4,3%	<u>0,91</u> 1,4%	0,265	8,94	0,915	30,64

^{*} Uwaga: pod kreską podano wartości współczynników zmienności.

Rys. 5.42. Uogólniony wykres zmienności średnich względnych wartości poziomów naprężeń σ_{im} i naprężeń σ_{crm} w zależności od wilgotności badanych serii betonów samozagęszczonych

Ζ analizy tabeli 5.10 i rysunku 5.42 wynika, że w badanych betonach samozagęszczonych wilgotność ma istotny wpływ na kształtowanie się poziomu naprężeń inicjujących pękanie σ_i . Biorąc za punkt wyjścia betony suche, w miarę wzrostu ich wilgotności średnie wartości poziomu naprężeń σ_{im} rosną i osiągają swoje maksimum wtedy gdy beton charakteryzuje się maksymalną wilgotnością sorpcyjną, a następnie maleją. Jest bardzo prawdopodobne, że po przekroczeniu w betonie wilgotności zbliżonej do maksymalnej sorpcyjnej, ujawnia się niekorzystny dla struktury wpływ rozklinowującego działania wody. Wpływ ten można wytłumaczyć w następujący sposób. Wraz z rosnącą wilgotnością betonu woda wolna w coraz większym stopniu wypełnia mikrorysy, pory i inne mikrodefekty strukturalne, powstałe na etapie technologicznym. Narastające obciążenie ściskające i zmniejszająca się wraz z przyrostem naprężeń ściskających objętość próbki przyczynia się do migracji wody w głąb mikrorys. Migrująca woda napiera na "wierzchołki" mikrorys, powodując ich propagację. Zjawisko to nasila się wraz z rosnącym zawilgoceniem betonu w takim rozumieniu, że propagacja ta rozpoczyna się wcześniej, tzn. przy niższym względnym poziomie naprężeń ściskających.

Jeżeli chodzi z kolei o naprężenia σ_{cr} , to na podstawie analizy tabeli 5.10 oraz rysunku 5.42 należy stwierdzić, że w badanych seriach betonów samozagęszczonych, wilgotność ma niewielki wpływ na poziom tych naprężeń. Fakt ten można wytłumaczyć tym, że podczas

ściskania, w końcowej fazie niszczenia, powstałe rysy, są już na tyle szerokie, że woda wolna znajdująca się w nich nie powoduje już efektu rozklinowującego.

Aby powyższe rozważania potwierdzić i jednoznacznie wykazać, że w badanych seriach betonów samozagęszczonych wilgotność istotnie wpływa na poziom naprężeń inicjujących pękanie σ_i , natomiast jej wpływ na poziom naprężeń krytycznych σ_{cr} jest niewielki, dokonano statystycznej analizy wyników badań z wykorzystaniem jednoczynnikowej analizy wariancji przy założonym poziomie istotności $\alpha = 0,05$ oraz testu NIR. Rezultaty analiz wykonanych przykładowo dla betonów C i D, serii C_k, C_s, C_w oraz D_k, D_s, D_w, zamieszczono w tabelach 5.11–5.22.

• Rezultaty statystycznej analizy wyników badań wpływu wilgotności na poziomy naprężeń σ_i i σ_{cr} w betonie C, wyznaczone za pomocą metody ultradźwiękowej

Wartości poziomów naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} w betonie serii C_k, C_s i C_w wyznaczone za pomocą metody ultradźwiękowej zestawiono w tabeli 5.11, natomiast rezultaty przeprowadzonej jednoczynnikowej analizy wariancji podano w tabeli 5.12.

	Oznaczenie serii betonu							
Nr próbki	$\mathbf{C}_{\mathbf{k}}$		C_s		C_{w}			
	σ_i	σ_{cr}	σ_i	σ_{cr}	σ_i	σ_{cr}		
1	0,41	0,94	0,31	0,93	0,23	0,96		
2	0,36	0,95	0,28	0,91	0,25	0,95		
3	0,39	0,94	0,29	0,91	0,27	0,95		
4	0,42	0,94	0,28	0,94	0,22	0,94		
5	0,37	0,88	0,32	0,93	0,24	0,94		
6	0,36	0,94	0,29	0,87	0,25	0,93		
7	0,37	0,94	0,31	0,94	0,24	0,95		
8	0,41	0,95	0,27	0,94	0,26	0,94		
9	0,35	0,94	0,30	0,95	0,25	0,96		
10	0,38	0,94	0,29	0,94	0,26	0,95		
Średnie wartości	0.20	0.04	0.00	0.02	0.05	0.07		
σ_{im} i σ_{crm} [–]	0,38	0,94	0,29	0,93	0,25	0,95		
Odchylenie standardowe s [–]	0,024	0,020	0,016	0,024	0,015	0,009		
Współczynnik zmienności v [%]	6,4	2,1	5,4	2,6	6,1	1,0		

Tabela 5.11. Poziomy naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} określone za pomocą metody ultradźwiękowej w badanych betonach serii C_k , C_s i C_w

Naprężenia	Źródło zmienności	Suma kwadratów	Stopnie swobody	Średni kwadrat	Funkcja testowa F_0	Wartość krytyczna F_{α}
σ_{i}	Między grupami	0,09393	2	0,04696	131,95	3,35
	W obrębie grup	0,00961	27	0,00036	-	-
	Razem	0,10354	29	-	-	-
σ _{cr}	Między grupami	0,00221	2	0,00110	3,14	3,35
	W obrębie grup	0,00949	27	0,00035	-	-
	Razem	0,01170	29	-	-	-

Tabela 5.12. Tablica analizy wariancji poziomów naprężeń σ_i i σ_{cr} w betonie serii C_k, C_s i C_w

Porównując wartości F_0 oraz F_α dla betonów serii C_k , C_s i C_w (przy poziomie istotności $\alpha = 0,05$) widać, że $F_0 > F_\alpha$. Uzyskane wyniki poddano także testowi NIR (tabela 5.13). Test ten wykazał statystycznie istotną różnicę średnich wartości σ_{im} pomiędzy wszystkimi badanymi seriami betonu. Oznacza to, że istnieje statystycznie istotny wpływ wilgotności na poziom naprężeń inicjujących pękanie σ_i w badanych betonach serii C_k , C_s i C_w .

Natomiast w przypadku naprężeń krytycznych σ_{cr} , nie stwierdzono statystycznie istotnego wpływu wilgotności na wartości poziomów tych naprężeń, ponieważ jak wynika z tabeli 5.12 wartość $F_0 < F_{\alpha}$.

Tabela 5.13. Tablica wartości p testu NIR

Nazwa	C_k	C_{s}	C_{w}
populacji	$\sigma_{im} = 0.38$	$\sigma_{im} = 0,29$	$\sigma_{im} = 0,25$
C_k	_	5,71×10 ⁻¹¹	2,67×10 ⁻¹⁵
C_s	5,71×10 ⁻¹¹	_	6,60×10 ⁻⁶
C _w	2,67×10 ⁻¹⁵	6,60×10 ⁻⁶	_

Uwaga: w tablicy pogrubioną czcionką zaznaczono wartości p < 0.05

• Rezultaty statystycznej analizy wyników badań wpływu wilgotności na poziomy naprężeń σ_i i σ_{cr} w betonie C wyznaczone za pomocą metody emisji akustycznej

Wartości poziomów naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} w betonie serii C_k, C_s i C_w wyznaczone za pomocą metody emisji akustycznej zestawiono w tabeli 5.14, natomiast rezultaty przeprowadzonej jednoczynnikowej analizy wariancji podano w tabeli 5.15.

Za pomocą metody cimsji ak	ustyczne	j w Daua	iryen bet		$\Pi C_k, C_s$	$1 C_W$		
	Oznaczenie serii betonu							
Nr próbki	C_k		Cs		C_{w}			
	σ_i	σ_{cr}	σ_i	σ_{cr}	σ_i	σ_{cr}		
1	0,37	0,92	0,31	0,91	0,25	0,94		
2	0,38	0,92	0,32	0,92	0,27	0,92		
3	0,39	0,93	0,33	0,90	0,26	0,91		
4	0,38	0,90	0,31	0,93	0,27	0,93		
5	0,36	0,91	0,30	0,91	0,26	0,94		
6	0,38	0,93	0,31	0,91	0,25	0,93		
Średnie wartości								
σ_{im} i σ_{crm} [–]	0,38	0,92	0,31	0,91	0,26	0,93		
Odchylenie standardowe s [–]	0,010	0,012	0,010	0,010	0,009	0,012		
Współczynnik zmienności v [%]	2,7	1,3	3,3	1,1	3,4	1,3		

Tabela 5.14. Poziomy naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} określone za pomocą metody emisji akustycznej w badanych betonach serii C_k, C_s i C_w

Tabela 5.15. Tablica analizy wariancji poziomów naprężeń σ_i i σ_{cr} w betonie serii C_k, C_s i C_w

Naprężenia	Źródło zmienności	Suma kwadratów	Stopnie swobody	Średni kwadrat	Funkcja testowa F_0	Wartość krytyczna F_{α}
σ_{i}	Między grupami	0,04093	2	2,05×10 ⁻²	209,32	3,68
	W obrębie grup	0,00147	15	9,78×10 ⁻⁵ -		-
	Razem	0,04240	17	-	-	-
σ_{cr}	Między grupami	0,0007	2	0,00035	2,76	3,68
	W obrębie grup	0,0019	15	0,00013	-	-
	Razem	0,0026	17	-	-	-

Porównując wartości F_0 oraz F_α dla betonów serii C_k , C_s i C_w (przy poziomie istotności $\alpha = 0,05$) widać, że $F_0 > F_\alpha$. Uzyskane wyniki poddano także testowi NIR (tabela 5.16). Test ten wykazał statystycznie istotną różnicę średnich wartości σ_{im} pomiędzy wszystkimi badanymi seriami betonu. Oznacza to, że istnieje statystycznie istotny wpływ wilgotności na poziom naprężeń inicjujących pękanie σ_i w badanych betonach serii C_k , C_s i C_w .

Natomiast w przypadku naprężeń krytycznych σ_{cr} , nie stwierdzono statystycznie istotnego wpływu wilgotności na wartości poziomów tych naprężeń, ponieważ jak wynika z tabeli 5.15 wartość $F_0 < F_{\alpha}$.

		A	
Nazwa	C_k	C_s	C_{w}
populacji	$\sigma_{im} = 0.38$	$\sigma_{im} = 0.31$	$\sigma_{im} = 0,26$
C_k	_	1,25×10 ⁻⁸	2,31 ×10 ⁻¹²
C_s	1,25×10 ⁻⁸	_	1,21×10 ⁻⁷
C_{w}	2,31×10 ⁻¹²	1,21×10 ⁻⁷	_

Tabela 5.16. Tablica wartości p testu NIR

Uwaga: w tablicy pogrubioną czcionką zaznaczono wartości p < 0.05

• Rezultaty statystycznej analizy wyników badań wpływu wilgotności na poziomy naprężeń σ_i i σ_{cr} w betonie D wyznaczone za pomocą metody ultradźwiękowej

Wartości poziomów naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} w betonie serii D_k, D_s i D_w wyznaczone za pomocą metody ultradźwiękowej zestawiono w tabeli 5.17, natomiast rezultaty przeprowadzonej jednoczynnikowej analizy wariancji podano w tabeli 5.18.

	Oznaczenie serii betonu							
Nr próbki	Γ	D _k	D _s		D_{w}			
	σ_i	σ_{cr}	σ_i	σ_{cr}	σ_i	σ_{cr}		
1	0,34	0,92	0,32	0,93	0,26	0,92		
2	0,36	0,90	0,24	0,92	0,21	0,93		
3	0,33	0,91	0,28	0,91	0,27	0,92		
4	0,31	0,89	0,29	0,88	0,22	0,93		
5	0,37	0,91	0,28	0,92	0,25	0,90		
6	0,31	0,90	0,28	0,92	0,25	0,92		
7	0,33	0,89	0,27	0,91	0,24	0,92		
8	0,38	0,91	0,27	0,93	0,27	0,91		
9	0,29	0,89	0,30	0,89	0,26	0,92		
10	0,31	0,92	0,29	0,93	0,23	0,91		
Średnie wartości	0.22	0.00	0.28	0.01	0.25	0.02		
$\sigma_{im} i \sigma_{crm}$ [–]	0,55	0,90	0,20	0,91	0,25	0,92		
Odchylenie standardowe s [–]	0,029	0,012	0,021	0,017	0,021	0,009		
Współczynnik zmienności v [%]	8,8	1,3	7,4	1,9	8,4	1,0		

Tabela 5.17. Poziomy naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} określone za pomocą metody ultradźwiękowej w badanych betonach serii D_k , D_s i D_w

Naprężenia	Źródło zmienności	Suma kwadratów	Stopnie swobody	Średni kwadrat	Funkcja testowa F_0	Wartość krytyczna F_{α}
	Między grupami	0,03822	2	0,01911	33,05	3,35
σ_i	W obrębie grup	0,01561	27	0,00058	-	-
	Razem	0,05383	29	-	-	-
	Między grupami	0,00104	2	0,00116	3,02	3,35
$\sigma_{\!cr}$	W obrębie grup	0,00464	27	0,00034	-	-
	Razem	0,00568	29	-	-	-

Tabela 5.18. Tablica analizy wariancji poziomów naprężeń σ_i i σ_{cr} w betonie serii D_k , D_s i D_w

Porównując wartości dla betonów serii D_k , D_s i $D_w F_0$ oraz F_α (przy poziomie istotności $\alpha = 0,05$) widać, że $F_0 > F_\alpha$. Uzyskane wyniki poddano także testowi NIR (tabela 5.19). Test ten wykazał statystycznie istotną różnicę średnich wartości σ_{im} pomiędzy wszystkimi badanymi seriami betonu. Oznacza to, że istnieje statystycznie istotny wpływ wilgotności na poziom naprężeń inicjujących pękanie σ_i w badanych betonach serii D_k , D_s i D_w .

Natomiast w przypadku naprężeń krytycznych σ_{cr} , nie stwierdzono statystycznie istotnego wpływu wilgotności na wartości poziomów tych naprężeń, ponieważ jak wynika z tabeli 5.18 wartość $F_0 < F_{\alpha}$.

Nazwa populacji	D_k $\sigma_{im} = 0,33$	$D_{ m s}$ $\sigma_{ m im} = 0,28$	$egin{array}{c} {D_{ m w}} \ \sigma_{\!im} = 0,\!25 \end{array}$
D _k	_	6,08×10 ⁻⁵	1,08×10 ⁻⁸
D _s	6,08×10 ⁻⁵	_	0,0024
D_{w}	1,08×10 ⁻⁸	0,0024	_

Tabela 5.19. Tablica wartości p testu NIR

Uwaga: w tablicy pogrubioną czcionką zaznaczono wartości p < 0.05

• Rezultaty statystycznej analizy wyników badań wpływu wilgotności na poziomy naprężeń σ_i i σ_{cr} w betonie D wyznaczonych za pomocą metody emisji akustycznej

Wartości poziomów naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} w betonie serii D_k, D_s i D_w wyznaczone za pomocą metody emisji akustycznej zestawiono w tabeli 5.20, natomiast rezultaty przeprowadzonej jednoczynnikowej analizy wariancji podano w tabeli 5.21.

Za pomocą metody chinsji ak	beq metody emisji akustycznej w badanych betonach sem D_k , $D_s + D_w$							
	Oznaczenie serii betonu							
Nr próbki	D _k		D _s		D_{w}			
	σ_i	σ_{cr}	σ_i	σ_{cr}	σ_i	σ_{cr}		
1	0,33	0,92	0,29	0,91	0,27	0,92		
2	0,32	0,91	0,31	0,91	0,29	0,90		
3	0,34	0,87	0,29	0,90	0,27	0,92		
4	0,35	0,89	0,30	0,88	0,30	0,89		
5	0,33	0,88	0,31	0,91	0,29	0,92		
6	0,34	0,89	0,31	0,90	0,28	0,91		
Średnie wartości								
σ_{im} i σ_{crm} [–]	0,34	0,89	0,30	0,90	0,28	0,91		
Odchylenie standardowe s [–]	0,010	0,019	0,010	0,012	0,012	0,013		
Współczynnik zmienności v [%]	3,1	2,1	3,3	1,3	4,3	1,4		

Tabela 5.20. Poziomy naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} określone za pomocą metody emisji akustycznej w badanych betonach serii D_k , D_s i D_w

Tabela 5.21. Tablica analizy wariancji poziomów naprężeń σ_i i σ_{cr} w betonie serii D_k , D_s i D_w

Naprężenia	Źródło zmienności	Suma kwadratów	Stopnie swobody	Średni kwadrat	Funkcja testowa F_0	Wartość krytyczna <i>F</i> _α
	Między grupami	0,00823	2	0,00412	34,96	3,68
σ_{i}	W obrębie grup	0,00177	15	0,00012	-	-
	Razem	0,00100	17	-	-	-
	Między grupami	0,00083	2	0,00042	1,94	3,68
σ_{cr}	W obrębie grup	0,00322	15	0,00021	-	-
	Razem	0,00405	17	-	-	-

Porównując wartości F_0 oraz F_α dla betonów serii D_k , D_s i D_w (przy poziomie istotności $\alpha = 0.05$) widać, że $F_0 > F_\alpha$. Uzyskane wyniki poddano także testowi NIR (tabela 5.22). Test ten wykazał statystycznie istotną różnicę średnich wartości σ_{im} pomiędzy wszystkimi badanymi seriami betonu. Oznacza to, że istnieje statystycznie istotny wpływ wilgotności na poziom naprężeń inicjujących pękanie σ_i w badanych betonach serii D_k , D_s i D_w .

Natomiast w przypadku naprężeń krytycznych σ_{cr} , nie stwierdzono statystycznie istotnego wpływu wilgotności na wartości poziomów tych naprężeń, ponieważ jak wynika z tabeli 5.21 wartość $F_0 < F_{\alpha}$.

		1	
Nazwa	$\mathbf{D}_{\mathbf{k}}$	Ds	D_{w}
populacji	$\sigma_{im} = 0,34$	$\sigma_{im} = 0,30$	$\sigma_{im} = 0,28$
$\mathbf{D}_{\mathbf{k}}$	_	8,57×10 ⁻⁵	5,92×10 ⁻⁷
D _s	8,57×10 ⁻⁵	_	0,01043
D_{w}	5,92×10 ⁻⁷	0,01043	_

Tabela 5.22. Tablica wartości p testu NIR

Uwaga: w tablicy pogrubioną czcionką zaznaczono wartości p < 0.05

Reasumując, przeprowadzone analizy statystyczne potwierdziły jednoznacznie, że w badanych seriach betonów samozagęszczonych wilgotność istotnie wpływa na poziom naprężeń inicjujących pękanie σ_i , natomiast jej wpływ na poziom naprężeń krytycznych σ_{cr} jest statystycznie nieistotny.

5.6. Porównanie procesu niszczenia badanych betonów samozagęszczonych z wybraną grupą betonów zwykłych i wysokowartościowych

Aby wykazać, że istnieje jakościowa różnica w przebiegu niszczenia ściskanych doraźnie betonów samozagęszczonych, w porównaniu z betonami zwykłymi i wysokowartościowymi, wybrano do tego celu dwa badane w pracy betony samozagęszczone A i C oraz z literatury [23, 38, 42, 101, 102] grupę sześciu betonów zwykłych i sześciu betonów wysokowartościowych.

W tabelach 5.23 i 5.24 podano za [23, 38, 42, 101, 102], odpowiednio dla betonów zwykłych i wysokowartościowych, składy mieszanek betonowych w przeliczeniu na 1 m³ oraz wytrzymałość na ściskanie f_{cm} określoną w czasie badania tego procesu. Jeśli chodzi o składy mieszanek betonowych samozagęszczalnych A i C to podano je w pracy w tabeli 4.1. Natomiast wytrzymałość na ściskanie f_{cm} tych betonów podano w tabeli 5.5.

Wszystkie porównywane betony (samozagęszczone, zwykłe i wysokowartościowe) charakteryzowały się podobnym sposobem przechowywania i warunkami cieplnowilgotnościowymi dojrzewania do czasu badania (komora klimatyczna, temperatura powietrza +18°C (\pm 1°C) i wilgotność względna powietrza 95% (\pm 5%)).

Wybrane (analizowane) betony zwykłe charakteryzowały się zbliżonym składem, w tym przede wszystkim: rodzajem kruszywa, podobną wielkością maksymalnego ziarna kruszywa, zbliżonym punktem piaskowym, stosunkiem w/c i rodzajem cementu.

Podobnie rzecz ma się z wybranymi dla celów porównawczych betonami wysokowartościowymi, z tą różnicą, że do ich wykonania użyte było kruszywo bazaltowe.

Warto podać, że w betonach samozagęszczonych użyte było kruszywo żwirowe o maksymalnej wielkości ziarna 16 mm.

Lp. Oznaczen i betonu	Oznaczenie		Składy mie	eszanek ł	oetonowych [Punkt piaskowy	Średnia wytrzymałość	
	mieszanki i betonu	Autorzy badań	Drzy badań Kruszywo Cement w grube Piasek portlandzki Woda żwirowe CEM I		w/c	[%]	na ściskanie f_{cm} [MPa]		
1	BZ 1	Furtak [23]	1208**	604	329	190	0,58	33,3	28,8
2	BZ 2	Hoła, Moczko	1438,8*	479,6	294,2	163,4	0,55	25,0	44,8
3	BZ 3	[38]	1188,0*	716,0	320,0	177,0	0,55	37,6	27,3
4	BZ 4	Ranachowski [102]	1261,2**	608,8	354,0	177,0	0,50	32,5	34,9
5	BZ 5	Hole [42]	1185,3*	711,20	321,5	178,6	0,56	37,5	42,3
6	BZ 6	H01a [42]	1340,1*	574,3	305,7	169,9	0,56	30,0	34,6
* W ** W	 * wielkość maksymalnego ziarna kruszywa 16 mm ** wielkość maksymalnego ziarna kruszywa 20 mm 								

Tabela 5.23. Zestawienie składów mieszanek betonowych oraz średnich wytrzymałości na ściskanie f_{cm} wybranych betonów zwykłych

Tabela 5.24. Zestawienie składów mieszanek betonowych oraz średnich wytrzymałości na ściskanie f_{cm} wybranych betonów wysokowartościowych

Lp.	Oznaczenie mieszanki i betonu	Autor	S	w/c	Średnia wytrzymałość					
			Kruszywo grube	Piasek	Cement portlandzki CEM I	Pył krzemion- kowy	Woda	Super- plasty- fikator		na sciskanie f_{cm} [MPa]
1	BWW 1		1606*	564	364	29,0	127	5,45	0,35	95,0
2	BWW 2	Rajski [101]	1606*	564	357	35,7	125	7,15	0,35	95,0
3	BWW 3		1606*	564	383	38,3	115	7,67	0,30	103,0
4	BWW 4		2085	.*)	450	-	146	9,00	0,32	88,7
5	BWW 5	Hoła [42]	2096	.*)	450	13,5	140	11,25	0,31	98,9
6	BWW 6		2069)*	450	31,5	140	13,50	0,31	110,3
* w	* wielkość maksymalnego ziarna kruszywa 16 mm									

Badania procesu niszczenia porównywanych betonów samozagęszczonych, zwykłych i wysokowartościowych były prowadzone na próbkach podobnych pod względem kształtu i wielkości. Badania wykonane zostały z użyciem tych samych nieniszczących metod akustycznych, tj. metody ultradźwiękowej i emisji akustycznej i ponadto metody pomiaru odkształceń. Również kryteria wyznaczania poziomów naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} w tych betonach były takie same lub podobne.

Biorąc powyższe pod uwagę, zdaniem autora, wybrana z literatury w celach porównawczych grupa betonów zwykłych i wysokowartościowych jest reprezentatywna dla postawionego w pracy zadania.

Korzystając z prac [23, 38, 42, 101, 102] w tabelach 5.25 i 5.26 zestawiono wyznaczone wartości względne poziomów naprężeń inicjujących pękanie i naprężeń krytycznych, odpowiednio dla przedmiotowych betonów zwykłych i wysokowartościowych.

Bazując na rezultatach badań zamieszczonych w tabelach 5.25 i 5.26 sporządzono rysunki pokazujące przedziały zawierania się poziomów naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} w analizowanych betonach zwykłych (rys. 5.43) i wysokowartościowych (rys. 5.44). Na rysunkach tych naniesiono średnie wartości poziomów naprężeń $\overline{\sigma}_{im}$ i $\overline{\sigma}_{crm}$, obliczone jako średnie arytmetyczne ze średnich σ_{im} i σ_{crm} .

	Oznaczonia			М	Średnie wartości					
Lp. mieszanki i betonu	Autorzy badań	Ultradźwiękowa		Emisji Por akustycznej odks:		Pom odksz	iaru tałceń	ر. [_]	σ	
	1 Cotonia		σ_i [-]	σ_{cr} [-]	σ_i [-]	σ_{cr} [-]	σ_i [-]	σ_{cr} [-]	<i>O_{im}</i> [-]	
1	BZ 1	Furtak [23]	0,47	0,78	-	-	0,46	0,77	0,465	0,775
2	BZ 2	Hoła, Moczko [38]	-	0,75	0,40	0,75	0,41	0,76	0,405	0,753
3	BZ 3		-	0,70	0,40	0,70	0,42	0,73	0,410	0,710
4	BZ 4	Ranachowski [102]	-	-	0,35	0,64	0,40	0,70	0,375	0,670
5	BZ 5	Hoła [42]	-	0,83	0,45	0,80	0,45	0,81	0,450	0,813
6	BZ 6		-	0,76	0,41	0,75	0,41	0,76	0,410	0,757
								$\overline{\sigma}_{_{im}}$	0,419	
								$\overline{\sigma}_{\scriptscriptstyle crm}$		0,746

Tabela 5.25. Wartości poziomów naprężeń σ_i i σ_{cr} , średnie wartości σ_{im} i σ_{crm} oraz $\overline{\sigma}_{im}$ i $\overline{\sigma}_{crm}$ określone w betonach zwykłych za pomocą metod akustycznych i pomiaru odkształceń

	Oznaczania	Autorzy badań		Ν	Średnie wartości					
Lp. mieszanki	mieszanki i betonu		Ultradźwiękowa		Err akusty	nisji ycznej	Pon odksz	niaru tałceń	σ[-]	σ [-]
			σ_i [-]	σ _{cr} [-]	σ_i [-]	σ_{cr} [-]	σ_i [-]	σ_{cr} [-]		Ccrm [-]
1	BWW 1	Rajski [101]	-	-	0,53	-	-	0,72	0,530	0,720
2	BWW 2		-	-	0,51	-	-	0,80	0,510	0,800
3	BWW 3		-	-	0,45	-	-	0,86	0,450	0,860
4	BWW 4		0,45	0,78	0,45	0,76	-	0,78	0,450	0,773
5	BWW 5	Hoła [42]	0,50	0,80	0,52	0,80	-	0,83	0,510	0,810
6	BWW 6		0,55	0,84	0,56	0,83	-	0,85	0,555	0,840
								$\overline{\sigma}_{_{im}}$	0,501	
								$\overline{\sigma}_{\scriptscriptstyle crm}$		0,801

Tabela 5.26. Wartości poziomów naprężeń σ_i i σ_{cr} , średnie wartości σ_{im} i σ_{crm} oraz $\overline{\sigma}_{im}$ i $\overline{\sigma}_{crm}$ określone w betonach wysokowartościowych za pomocą metod akustycznych i pomiaru odkształceń

Rys. 5.43. Przedziały zawierania się poziomów naprężeń inicjujących pękanie σ_{im} i naprężeń krytycznych σ_{crm} w analizowanych betonach zwykłych

Rys. 5.44. Przedziały zawierania się poziomów naprężeń inicjujących pękanie σ_{im} i naprężeń krytycznych σ_{crm} w analizowanych betonach wysokowartościowych

Jak wykazała analizy literatury przedmiotu, dokonana w punkcie 3, jest udowodnione, że proces niszczenia zarówno betonów zwykłych jak i wysokowartościowych ma charakter trójstadialny. Rezultaty badań wykonanych w pracy, zamieszczone w punktach 5.4 i 5.5, świadczą o tym, że proces niszczenia ściskanych doraźnie betonów samozagęszczonych A i C, także ma charakter trójstadialny, tzn. można w tym procesie wyróżnić trzy jakościowo różne stadia niszczenia, podobnie jak w analizowanych betonach zwykłych i wysokowartościowych.

Z analizy wyników badań przedstawionych w tabeli 5.25 i na rysunku 5.43 wynika, że w analizowanych betonach zwykłych, stadium stabilnej inicjacji rys kończy się przy względnym poziomie naprężeń 0,38–0,47 σ_c/f_c . Następnie rozpoczyna się stadium stabilnej inicjacji i propagacji rys, które obserwowane jest do poziomu 0,67–0,82 σ_c/f_c , po którym następuje stadium katastroficznego niszczenia. Z kolei na podstawie rezultatów badań przedstawionych w tabeli 5.26 i na rysunku 5.44 można stwierdzić, że w analizowanych betonach wysokowartościowych, stadium stabilnej inicjacji rys kończy się przy względnym poziomie naprężeń 0,45–0,55 σ_c/f_c . Następnie zaczyna się stadium stabilnej inicjacji i propagacji rys, które obserwowane jest do poziomu 0,72–0,86 σ_c/f_c , po którym następuje stadium katastroficznego niszczenia.

Analizując rezultaty badań zabrane w punkcie 5.4 w tabeli 5.9 sporządzono rysunek 5.45, na którym pokazano przedziały zawierania się poziomów naprężeń σ_{im} i σ_{crm} w badanych betonach samozagęszczonych A i C. Na rysunku tym naniesiono także średnie wartości poziomów naprężeń $\overline{\sigma}_{im}$ i $\overline{\sigma}_{crm}$ obliczone jako średnie arytmetyczne ze średnich wartości σ_{im} i σ_{crm} zebranych w tabeli 5.9. Z rysunku tego wynika, że stadium stabilnej inicjacji rys w badanych betonach samozagęszczonych kończy się przy względnym poziomie naprężeń 0,33–0,38 σ_{c}/f_{c} . Następnie rozpoczyna się stadium stabilnej propagacji rys, które obserwowane jest aż do poziomu 0,91–0,93 σ_{c}/f_{c} , po przekroczeniu którego rozpoczyna się stadium katastroficznego niszczenia. Warto wtrącić, że uwzględniając przyjęty w punkcie 3.4.2 podział przedziałów zawierania się poziomów naprężeń inicjujących pękanie i naprężeń krytycznych, określone w badanych betonach samozagęszczonych wartości naprężeń σ_{ir} należy zaliczyć do poziomów wysokich.

Rys. 5.45. Przedziały zawierania się poziomów naprężeń inicjujących pękanie σ_{im} i naprężeń krytycznych σ_{crm} w betonach samozagęszczonych A i C

Bazując z kolei na rysunkach 5.43–5.45 sporządzono rysunki 5.46 i 5.47, na których pokazano przedziały zawierania się naprężeń inicjujących pękanie σ_{im} i naprężeń krytycznych σ_{crm} w badanych w pracy betonach samozagęszczonych A i C na tle przedziałów tych

naprężeń określonych w analizowanych betonach zwykłych (rys. 5.46) i wysokowartościowych (rys. 5.47).

Rys. 5.46. Przedziały zawierania się poziomów naprężeń inicjujących pękanie σ_{im} i naprężeń krytycznych σ_{crm} w porównywanych względem siebie betonach samozagęszczonych i zwykłych

Rys. 5.47. Przedziały zawierania się poziomów naprężeń inicjujących pękanie σ_{im} i naprężeń krytycznych σ_{crm} w porównywanych względem siebie betonach samozagęszczonych i wysokowartościowych

Z rysunku 5.46 widać, że w betonach samozagęszczonych poziom naprężeń inicjujących pękanie zaczyna się przy niższym względnym naprężeniu ściskającym σ_c/f_c , niż w betonach zwykłych, a z rysunku 5.47, że przy zdecydowanie niższym niż w betonach wysokowartościowych. Jeżeli chodzi o naprężenia krytyczne, to w badanych betonach samozagęszczonych są one z kolei wyższe, od tych którymi charakteryzuje się zarówno grupa analizowanych w pracy betonów zwykłych i wysokowartościowych.

Na rysunku 5.48 zestawiono obliczone średnie względne wartości naprężeń inicjujących pękanie $\overline{\sigma}_{im}$ i naprężeń krytycznych $\overline{\sigma}_{crm}$ dla porównywanych betonów samozagęszczonych, zwykłych i wysokowartościowych. Z analizy tego rysunku wynika, że betony samozagęszczone charakteryzują się niższą średnią wartością naprężeń inicjujących pękanie $\overline{\sigma}_{im}$, zarówno w porównaniu z betonami zwykłymi jak i wysokowartościowymi. Jeżeli chodzi o średnie wartości naprężeń krytycznych $\overline{\sigma}_{crm}$, to w przypadku betonów samozagęszczonych są one z kolei wyższe, niż w betonach zwykłych i wysokowartościowych.

Rys. 5.48. Średnie wartości naprężeń inicjujących pękanie $\overline{\sigma}_{im}$ i naprężeń krytycznych $\overline{\sigma}_{crm}$ obliczone dla porównywanych betonów samozagęszczonych, zwykłych i wysokowartościowych

Rezultaty badań zamieszczone na rysunkach 5.46–5.48 świadczą jednoznacznie o tym, że istnieją jakościowe różnice w procesie niszczenia badanych betonów samozagęszczonych i wybraną grupą betonów zwykłych i wysokowartościowych.

W celu wyraźniejszego uwypuklenia tych różnic, zwrócono uwagę na drugie stadium procesu niszczenia badanych betonów samozagęszczonych, a mianowicie na stadium stabilnej

propagacji rys. Pomocne są w tym rysunki 5.49 i 5.50, które ilustrują minimalną i maksymalną "długość" stadium stabilnej propagacji rys w porównywanych między sobą betonach.

Jak wynika z rysunków 5.49 i 5.50, minimalny przedział stabilnej propagacji rys w badanych betonach samozagęszczonych zawiera się od 0,38 do 0,91 σ_c/f_c , natomiast w analizowanych betonach zwykłych od 0,47 do 0,67 σ_c/f_c i wysokowartościowych od 0,56 do 0,72 σ_c/f_c . Z kolei maksymalny przedział stabilnej propagacji rys w betonach samozagęszczonych zawiera się od 0,33 do 0,93 σ_c/f_c , a w betonach zwykłych od 0,38 do 0,81 σ_c/f_c i wysokowartościowych od 0,45 do 0,86 σ_c/f_c . Łatwo zauważyć, że obydwa przedziały, zarówno minimalny jak i maksymalny w betonach samozagęszczonych są znacznie szersze w porównaniu z betonami zwykłymi i wysokowartościowymi. Fakt ten świadczy jednoznacznie o istnieniu jakościowej różnicy w przebiegu niszczenia.

Rys. 5.49. Minimalna i maksymalna "długość" stadium stabilnej propagacji rys w porównywanych między sobą betonach samozagęszczonych i zwykłych

Rys. 5.50. Minimalna i maksymalna "długość" stadium stabilnej propagacji rys w porównywanych między sobą betonach samozagęszczonych i wysokowartościowych

Wyjaśnienia tego należy szukać w składzie betonów. Betony samozagęszczone zawierają w swoim składzie więcej drobnych frakcji kruszywa i więcej frakcji pylastych, co przyczynia się do ich większej porowatości i może przyczyniać się do większego skurczu. Warto zauważyć, że zarówno pory, jak i mikropęknięcia wynikające ze skurczu są mikrodefektami przyczyniającymi się do powstawania naprężeń własnych w strukturze betonu, co w konsekwencji prawdopodobnie powoduje, że stadium stabilnej propagacji rys rozpoczyna się przy niższym poziomie naprężeń σ_c/f_c .

Biorąc pod uwagę uzyskane rezultaty można przypuszczać, że stosunkowo niski poziom naprężeń inicjujących pękanie σ_i w badanych betonach samozagęszczonych, może być niekorzystny z punktu widzenia trwałości i bezpieczeństwa eksploatacji konstrukcji z niego wykonanych, bo jak podano w punkcie 3.4.1, naprężenia σ_i utożsamiane są ze zmęczeniową wytrzymałością betonu. Jest to szczególnie istotne w elementach podlegających obciążeniom wielokrotnie zmiennym, na przykład w płytach mostowych czy belkach podsuwnicowych. Starano się to wykazać w pracy w punkcie 6.

Natomiast szeroki przedział stadium stabilnej propagacji rys w omawianych betonach samozagęszczonych, może okazać się korzystny z punktu widzenia trwałości
i bezpieczeństwa wykonanych na przykład z nich zginanych elementów, obciążonych statycznie. Można spodziewać się, że podczas eksploatacji takich elementów mniejsze będzie prawdopodobieństwo przekroczenia górnej granicy stadium stabilnej propagacji rys, bo kończy się ono na bardzo wysokim poziomie σ_{c}/f_{c} , trudnym do przekroczenia w normalnych warunkach eksploatacyjnych. Wydaje się być bardzo prawdopodobne, że w czasie trwania tego stadium, w elementach takich wykonanych z betonów samozagęszczonych pojawiać się będą rysy o małej wysokości i rozwartości. Jest to korzystne z punktu widzenia większej odporności na wnikanie ze środowiska do wnętrza betonu wilgotności i agresywnych związków chemicznych, powodujących na przykład korozję betonu [55, 89].

6. ANALIZY POKAZUJĄCE ZNACZENIE UZYSKANYCH REZULTATÓW BADAŃ WŁASNYCH DLA PRAKTYKI BUDOWLANEJ

Jak podano w punkcie 3.4.1, znajomość w betonie poziomów naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} wiąże się z problemami trwałości i bezpieczeństwa eksploatacji konstrukcji z niego wykonanych, podlegających m. innymi obciążeniom wielokrotnie zmiennym, długotrwałym, stałym, przeciążeniom. Znajomość ta umożliwia przede wszystkim właściwe spojrzenie na problem przydatności danego betonu do pracy statyczno-wytrzymałościowej w konkretnych konstrukcyjnych elementach budowlanych.

Korzystając z pracy [25] przyjęto dla ściskanego betonu samozagęszczonego zależność do obliczania wytrzymałości zmęczeniowej, wykorzystującą rezultaty uzyskane z badań własnych w zakresie wartości poziomów naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} .

Zależność ta ma postać:

$$f_{c}^{f} / f_{c} = CN^{-A} (1 + B\rho^{f} \log N) C_{f}, \qquad (6.1)$$

gdzie:

C – współczynnik wyrażający stosunek wytrzymałości dynamicznej do statycznej przy jednokrotnym obciążeniu (za [25] przyjęto wartość 1,16),

 ρ^{f} – współczynnik asymetrii cyklu,

 σ_c^{\min} – minimalne naprężenie cyklu,

 σ_c^{max} – maksymalne naprężenie cyklu,

- C_f współczynnik uwzględniający wpływ częstotliwości zmiany obciążeń na wytrzymałość zmęczeniową,
- *A*, *B* współczynniki uwzględniające stan struktury betonu poprzez uzależnienie ich od wartości naprężeń σ_i i σ_{cr} .

Współczynnik asymetrii cyklu ρ^{f} opisany jest zależnością

$$\rho^{f} = \sigma_{c}^{\min} / \sigma_{c}^{\max} , \qquad (6.2)$$

z kolei współczynnik Cf można opisać zależnością

$$C_f = 1 + 0.07 (1 - \rho^f) \log f$$
, (6.3)

gdzie *f* jest częstotliwością zmiany obciążeń, w Hz, natomiast współczynniki A i B można obliczyć z zależności (6.4) i (6.5)

$$A = 0,008 - 0,118 \log(\sigma_i / f_c), \tag{6.4}$$

$$B = 0.118(\sigma_{cr}/\sigma_{i}-1). \tag{6.5}$$

I tak, na rysunkach 6.1–6.7 pokazano, jak przedstawia się obliczona z wykorzystaniem tej zależności wytrzymałość zmęczeniowa niektórych z badanych w pracy betonów samozagęszczonych oraz porównawczego betonu zwykłego BZ 5 (patrz tabela 5.23) i wysokowartościowego BWW 5 (patrz tabela 5.24), w funkcji liczby cykli obciążania N i wartości współczynnika asymetrii cyklu ρ^f oraz częstotliwości zmiany obciążenia f.

Porównując obliczone wytrzymałości zmęczeniowe dla przedmiotowych betonów samozagęszczonych, z wytrzymałościami wyznaczonymi dla betonu zwykłego BZ 5 i wysokowartościowego BWW 5 (rysunki 6.1 i 6.2), wyraźnie widać, że w przypadku betonów samozagęszczonych, wytrzymałości te są niższe. Przyczyny niższej wytrzymałości zmęczeniowej tych betonów, należy upatrywać w ich składzie, a w szczególności w dużej zawartości drobnych frakcji kruszywa i frakcji pylastych. Jak wykazano w pracy [42], wraz ze wzrostem zawartości kruszywa drobnego w betonie, zmniejsza się poziom naprężeń inicjujących pękanie a wraz z nim wytrzymałość zmęczeniowa betonu. Najniższą wytrzymałością zmęczeniową spośród badanych w pracy [42] betonów różniących się punktem piaskowym, charakteryzował się ten, w którym drobne kruszywo stanowiło 100% stosu okruchowego.

Z kolei porównując między sobą badane betony samozagęszczone serii A_k , B_k , C_k i D_k (patrz rysunek 6.3) można stwierdzić, że wytrzymałość zmęczeniowa tych betonów nie jest jednakowa. Można powiedzieć, że zależy ona od struktury porów powietrznych, która jak wykazano w punkcie 5.3 zależy z kolei od superplastyfikatora użytego do modyfikacji betonu. Biorąc przykładowo pod uwagę betony serii A_k i C_k , widać, że wyższą wytrzymałością zmęczeniową charakteryzuje się beton serii C_k wykonany z użyciem superplastyfikatora S_V , w porównaniu do betonu serii A_k , wykonanego z użyciem superplastyfikatora S_A . Analogiczna sytuacja jest w przypadku betonów B_k i D_k . Spośród przedstawionych na rysunku 6.3 betonów samozagęszczonych, najwyższą wytrzymałością zmęczeniową charakteryzuje się beton C_k , dla którego średni poziom naprężeń σ_{im} wynosi 0,38 σ_{c}/f_c . Najmniejszą wytrzymałością zmęczeniową charakteryzuje się natomiast beton B_k , w którym to betonie występuje najniższy poziom naprężeń σ_{im} wynoszący 0,30 σ_{c}/f_c .

Rys. 6.1. Obliczona wytrzymałość zmęczeniowa betonów A_k, B_k, BZ5 i BWW5, w funkcji cykli obciążania przy przyjęciu $\rho^f = 0$ i f = 1 Hz

Rys. 6.2. Obliczona wytrzymałość zmęczeniowa betonów C_k, D_k, BZ5 i BWW5, w funkcji cykli obciążania przy przyjęciu $\rho^f = 0$ i f = 1 Hz

Rys. 6.3. Obliczona wytrzymałość zmęczeniowa betonów serii A_k , B_k , C_k i D_k , w funkcji cykli obciążania przy przyjęciu $\rho^f = 0$ i f = 1 Hz

Na rysunkach 6.4–6.7 pokazano zaś, jak przedstawiają się wytrzymałości zmęczeniowe betonów samozagęszczonych serii A_w , B_w , C_w i D_w nasyconych wodą do stanu pełnego nasycenia, w stosunku do betonów świadków serii A_k , B_k , C_k i D_k dojrzewających normalnie. Z rysunków tych jednoznacznie wynika, że wilgoć zawarta w betonie ma istotny wpływ na wytrzymałość zmęczeniową. Zawilgocenie betonu powoduje znaczny spadek tej wytrzymałości. Zależność ta jest obserwowana we wszystkich badanych betonach samozagęszczonych. Spośród porównywanych serii wytrzymałość zmęczeniowa najwyższa jest betonie serii C_w charakteryzującym się średnim poziomem naprężeń σ_{im} wynoszącym 0,26 σ_c/f_c . Jest ona natomiast najniższa w betonie serii B_w , w którym średnia wartość σ_{im} jest również najniższa i równa 0,24 σ_c/f_c . Sytuacja ta jest istotna dla praktyki budowlanej. Może ona wystąpić na przykład podczas eksploatacji płyty pomostu w moście, gdy wskutek uszkodzenia izolacji wodochronnej tej płyty nastąpi silne zawilgocenie wbudowanego w nią betonu samozagęszczonego.

Rys. 6.4. Obliczona wytrzymałość zmęczeniowa betonów serii A_k i A_w , w funkcji cykli obciążania przy przyjęciu $\rho^f = 0$ i f = 1 Hz

Rys. 6.5. Obliczona wytrzymałość zmęczeniowa betonów serii C_k i C_w, w funkcji cykli obciążania przy przyjęciu $\rho^f = 0$ i f = 1 Hz

Rys. 6.6. Obliczona wytrzymałość zmęczeniowa betonów serii B_k i B_w , w funkcji cykli obciążania przy przyjęciu $\rho^f = 0$ i f = 1 Hz

Rys. 6.7. Obliczona wytrzymałość zmęczeniowa betonów serii D_k i D_w , w funkcji cykli obciążania przy przyjęciu $\rho^f = 0$ i f = 1 Hz

W kontekście przeprowadzonych w pracy badań własnych warto zwrócić uwagę na rysunek 6.8, który sporządzono wzorując się na pracy [42], będący ilustracją zależności (6.1) dla różnych wartości współczynnika asymetrii cyklu ρ^{f} . Jego analiza unaocznia ważną rolę naprężeń σ_{i} i σ_{cr} w procesie niszczenia ściskanego betonu samozagęszczonego, przy obciążeniach wielokrotnie zmiennych.

Rys. 6.8. Zależność wytrzymałości zmęczeniowej betonu samozagęszczonego serii C_k w funkcji liczby cykli obciążania *N* i współczynnika asymetrii cyklu ρ^f

Przykładowo w odniesieniu do mostów betonowych z rysunku 6.8 wynika, że przy tym samym dopuszczalnym wytężeniu prawdopodobieństwo zniszczenia zmęczeniowego płyty pomostu wykonanego przykładowo z betonu samozagęszczonego serii C_k w którym $\sigma_{im} = 0.38 \sigma_c/f_c$ i $\sigma_{crm} = 0.93 \sigma_c/f_c$, może być znacznie większe niż dźwigarów głównych. Jak wynika z pracy [42], współczynnik ρ^f dla płyty pomostu wynosi zazwyczaj około 0,25, a dla dźwigarów głównych zawiera się w przedziale 0,60–0,70.

Określone w pracy poziomy naprężeń σ_i i σ_{cr} mogą posłużyć także do obliczenia wytrzymałości ściskanego betonu samozagęszczonego poddanego długotrwałym obciążeniom stałym. Zgodnie z [26, 41] wytrzymałość tę dla danego betonu, obliczyć można w chwili czasu *t* z zależności

$$f_c^{dt} = k_0 k_t f_{cm}, (6.6)$$

gdzie: k_0 jest współczynnikiem uwzględniającym wiek betonu w chwili przyłożenia obciążenia, a k_t jest współczynnikiem uwzględniającym ubytek wytrzymałości betonu wskutek działania obciążenia. Gdy czas oddziaływania długotrwałego obciążenia stałego na dany beton wynosi ponad 3 lata, współczynnik k_t przyjmuje wartość graniczną równą naprężeniom krytycznym σ_{cr} [26, 41]. Ponieważ ubytek wytrzymałości jest związany z powstawaniem i rozwojem mikrodefektów w strukturze obciążonego betonu, powyższa propozycja jest uzasadniona tylko do obciążeń, które wywołują naprężenia ściskające równe lub większe od naprężeń σ_{i} .

7. WNIOSKI I UWAGI KOŃCOWE

7.1. Podsumowanie

Celem niniejszej rozprawy było przede wszystkim zbadanie nieniszczącymi metodami akustycznymi procesu niszczenia ściskanych doraźnie stwardniałych betonów samozagęszczonych wykonanych z użyciem różnych superplastyfikatorów i wykazanie, że na przebieg tego procesu ma wpływ struktura porów powietrznych oraz wilgotność. Ponadto celem było wykazanie, że proces niszczenia badanych betonów samozagęszczonych różni się jakościowo w porównaniu z przebiegiem procesu niszczenia grupy wybranych betonów zwykłych i wysokowartościowych. Celem praktycznym pracy była próba spojrzenia na przydatność betonów samozagęszczonych do pracy statyczno-wytrzymałościowej w niektórych budowlanych elementach konstrukcyjnych, z uwagi na ich trwałość i bezpieczeństwo eksploatacji.

Przyjęte w rozprawie za punkt wyjścia tezy zostały zdaniem autora udowodnione, a postawione cele osiągnięte.

Prawidłowość postawionej tezy pierwszej, dotyczącej zależności struktury porów powietrznych w stwardniałym betonie samozagęszczonym od superplastyfikatora użytego do wykonania mieszanki betonowej oraz wpływu tej struktury na proces niszczenia betonu podczas doraźnego ściskania została w pracy potwierdzona. Wykazano to przede wszystkim w punktach 5.3 i 5.4. W punkcie 5.3 przedstawiono rezultaty badań struktury porów powietrznych czterech serii betonów samozagęszczonych, natomiast w punkcie 5.4 zamieszczono wyniki badań ich procesu niszczenia, przeprowadzone za pomocą trzech niezależnych metod badawczych.

Z kolei prawidłowość postawionej tezy drugiej odnośnie istotnego wpływu wilgotności na poziom naprężeń inicjujących pękanie σ_i oraz niewielkiego jej wpływu na poziom naprężeń krytycznych σ_{cr} w badanych betonach samozagęszczonych, wykazano w punkcie 5.5. W punkcie tym przedstawiono rezultaty badań procesu niszczenia w próbie doraźnego ściskania, 12 serii betonów samozagęszczonych charakteryzujących się różną wilgotnością w chwili badania, przeprowadzone z wykorzystaniem metod akustycznych. Zamieszczono także rezultaty przeprowadzonych analiz statystycznych z wykorzystaniem jednoczynnikowej analizy wariancji i testu NIR, potwierdzających istnienie tego wpływu.

Natomiast prawidłowość postawionej tezy trzeciej odnośnie istnienia jakościowej różnicy w procesie niszczenia badanych betonów samozagęszczonych, w porównaniu

z analizowanymi w pracy wybranymi betonami zwykłymi i wysokowartościowymi, wykazano w punkcie 5.6. W punkcie tym dokonano porównania wyznaczonych wartości poziomów naprężeń inicjujących pękanie i naprężeń krytycznych dwóch badanych betonach samozagęszczonych, z wartościami poziomów tych naprężeń określonymi w sześciu betonach zwykłych i sześciu wysokowartościowych wybranych z literatury.

7.2. Wnioski

Na podstawie dokonanego przeglądu literatury tematu, przeprowadzonych rozważań, przedstawionych i przeanalizowanych oraz zinterpretowanych rezultatów badań sformułowano wnioski końcowe wskazujące na prawidłowość postawionych w rozprawie tez.

- Przeprowadzone badania wykazały, że w stwardniałych betonach samozagęszczonych, struktura porów powietrznych zależy od superplastyfikatora użytego do wykonania mieszanki betonowej. Struktura ta w stwardniałych betonach wykonanych z użyciem superplastyfikatora S_V cechuje się korzystniejszymi parametrami, w porównaniu z betonami wykonanymi z użyciem superplastyfikatora S_A, bo:
 - w przedziałach średnic porów 10–4000 µm zarówno całkowita zawartość powietrza A jak i mikroporów o średnicy poniżej 0,3 mm A_{300} jest mniejsza, natomiast większą wartością charakteryzuje się wskaźnik rozmieszczenia porów \overline{L} i powierzchnia właściwa porów α ,
 - w zakresie promieni porów 5–7500 nm porowatość całkowita p, objętość właściwa porów V i powierzchnia właściwa porów α są mniejsze, a średni promień porów \bar{r} jest większy.
- 2. Badania procesu niszczenia betonów samozagęszczonych przeprowadzone z wykorzystaniem dwóch nieniszczących metod akustycznych: ultradźwiękowej i emisji akustycznej oraz dodatkowo metody pomiaru odkształceń, wykazały, że podobnie jak w betonach zwykłych i wysokowartościowych, proces ten ma charakter trójstadialny, tzn. występuje w nim stadium stabilnej inicjacji rys, stadium stabilnej propagacji rys oraz stadium katastroficznego niszczenia. Należy jednak zauważyć istotne różnice w "długościach" poszczególnych stadiów w badanych betonach samozagęszczonych, w porównaniu z betonami zwykłymi i wysokowartościowymi.

- 3. Wyznaczone za pomocą metody ultradźwiękowej, emisji akustycznej i pomiaru odkształceń średnie wartości naprężeń inicjujących pękanie σ_{im} w badanych betonach samozagęszczonych zawierają się ogólnie w przedziale 0,300–0,383 σ_c/f_c , natomiast średnie wartości naprężeń krytycznych σ_{crm} w przedziale 0,843–0,933 σ_c/f_c . Jest istotne, że betony wykonane z użyciem superplastyfikatora S_V charakteryzują się wyższymi wartościami poziomów tych naprężeń w porównaniu z betonami o takim samym składzie, lecz wykonanych z użyciem superplastyfikatora S_A. I tak, w betonach modyfikowanych superplastyfikatorem A_V naprężenia σ_{im} zawierają się w przedziale 0,337–0,383 σ_c/f_c , a σ_{crm} w przedziale 0,903–0,933 σ_c/f_c . Natomiast w betonach modyfikowanych superplastyfikatorem S_A naprężenia σ_{im} są niższe i zawierają się w przedziale 0,300–0,333 σ_c/f_c . Niższe są także naprężenia σ_{crm} , które zawierają się w przedziale 0,843–0,907 σ_c/f_c .
- 4. W stwardniałych betonach samozagęszczonych stwierdzono istnienie zależności między parametrami charakteryzującymi strukturę porów powietrznych a poziomami naprężeń inicjujących pękanie σ_i i naprężeń krytycznych σ_{cr} . Przykładowo, mniejszej zawartości powietrza *A*, mniejszej porowatości całkowitej *p* oraz większej wartości wskaźnika rozmieszczenia porów powietrznych \overline{L} i większej powierzchni właściwej porów powietrznych α , odpowiadają wyższe poziomy naprężeń inicjujących pękanie σ_{im} i wyższe poziomy naprężeń krytycznych σ_{crm} .
- 5. Nieniszczące metody akustyczne pozwoliły wykazać, że w badanych betonach samozagęszczonych wilgotność istotnie wpływa na poziom naprężeń inicjujących pękanie σ_i , natomiast jej wpływ na poziom naprężeń krytycznych σ_{cr} jest niewielki. Fakt ten został bezsprzecznie potwierdzony analizami statystycznymi, a mianowicie jednoczynnikową analizą wariancji i testem NIR. I tak, w zależności od tego jak silne jest zawilgocenie betonu samozagęszczonego, poziom naprężeń σ_{im} zawiera się w przedziale 0,245–0,380 σ_{c}/f_c , a naprężeń σ_{crm} w przedziale 0,855–0,940 σ_{c}/f_c . Biorąc za punkt odniesienia betony dojrzewające w komorze klimatycznej dla których poziom naprężeń σ_{im} zawiera się w przedziale 0,305–0,380 σ_{c}/f_c , w miarę wzrostu wilgotności betonu średnia wartość poziomu naprężeń σ_{im} maleje i w stanie pełnego nasycenia wodą zawiera się w przedziale 0,245–0,265 σ_{c}/f_c . Podobną zależność obserwuje się w przypadku zmniejszania wilgotności od stanu maksymalnej wilgotności sorbcyjnej do stanu suchego. Betony znajdujące się w tym stanie wilgotnościowym charakteryzują się poziomem naprężeń σ_{cr} , to

na podstawie badań stwierdzono, że w badanych betonach samozagęszczonych, wilgotność ma na niego niewielki wpływ.

- 6. Przeprowadzone w pracy badania i analizy wykazały jednoznacznie, że istnieje jakościowa różnica w przebiegu niszczenia ściskanych betonów samozagęszczonych, w porównaniu z wybraną grupą ściskanych betonów zwykłych i wysokowartościowych. Stwierdzono, że betony samozagęszczone charakteryzują się niższą średnią wartością naprężeń inicjujących pękanie $\overline{\sigma}_{im}$, niż betony zwykłe i wysokowartościowe. W betonach samozagęszczonych poziom $\overline{\sigma}_{im}$ wynosi 0,36 σ_{c}/f_{c} , natomiast w betonach zwykłych 0,42 σ_{c}/f_{c} i w wysokowartościowych 0,50 σ_{c}/f_{c} . Jeżeli chodzi o średnie wartości poziomów naprężeń krytycznych $\overline{\sigma}_{crm}$, to w betonach samozagęszczonych są one z kolei wyższe, niż w betonach zwykłych i wysokowartościowych. Wynoszą one w betonach samozagęszczonych 0,90 σ_{c}/f_{c} . Stąd w badanych betonach samozagęszczonych obserwuje się zdecydowanie "dłuższe" stadium stabilnej propagacji rys i "krótsze" stadium katastroficznego niszczenia.
- 7. Na podstawie przeprowadzonych analiz obliczeniowych dotyczących kształtowania się wytrzymałości zmęczeniowej w badanych betonach samozagęszczonych i w analizowanych w pracy przykładowych betonach zwykłym i wysokowartościowym stwierdzono, że w betonie samozagęszczonym, wytrzymałość ta jest najniższa. Oznacza to, że elementy konstrukcyjne wykonane z betonu samozagęszczonego, poddane obciążeniom wielokrotnie zmiennym, mogą ulec zniszczeniu po mniejszej liczbie cykli. Jest to bardzo realne zwłaszcza wtedy gdy beton samozagęszczony jest zawilgocony wodą do stanu pełnego nasycenia.

7.3. Proponowane kierunki dalszych badań

Dalsza kontynuacja tematu pracy, zdaniem autora, powinna dotyczyć m. innymi:

a) Badań zginanych belek żelbetowych wykonanych z betonu samozagęszczonego, w zakresie wyznaczenia wartości momentu rysującego i obserwacji morfologii rys, oraz porównania uzyskanych rezultatów dla takich samych elementów wykonanych z betonu zwykłego lub/i wysokowartościowego.

- b) Badań procesu niszczenia betonów samozagęszczonych wykonanych z użyciem domieszek napowietrzających oraz nowych superplastyfikatorów wchodzących do praktyki budowlanej.
- c) Wyznaczenia w badanych w pracy betonach samozagęszczonych parametrów mechaniki pękania i powiązania ich z naprężeniami inicjującymi pękanie i krytycznymi w celu stworzenia uogólnionego kryterium ilościowej klasyfikacji odporności betonu na zarysowanie.

LITERATURA

- [1] Assié S., Escadeillas G., Marchese G.: *Durability of Self-Compacting Concrete*.
 Proceeding PRO33 3rd International RILEM Symposium: Self-Compacting Concrete. RILEM Publications S.A.R.L., 2003, s.655-662.
- [2] Biliszczuk J., Rajski O.: *Odkształcalność i proces niszczenia betonów wysokowartościowych*. Inżynieria i Budownictwo, 1999, nr 12, s. 623-627.
- [3] Boukerou I., Małasiewicz A.: Wpływ ilości i rodzaju włókien na parametry betonu samozagęszczalnego. Budownictwo ogólne. Zagadnienia konstrukcyjne, materiałowe i cieplno-wilgotnościowe w budownictwie. Wydawnictwa Uczelniane Akademii Techniczno-Rolniczej w Bydgoszczy, Bydgoszcz, 2005, s. 11-18.
- [4] Brandt A.M., Burakiewicz A., Kajfasz S., Kasperkiewicz J., Kowalczyk R., Pietrzykowski J.: *Kompozyty betonowe – ich struktura i własności mechaniczne*. Praca zbiorowa – Własności mechaniczne i struktura kompozytów betonowych. Ossolineum, Wrocław, 1974, s. 9-298.
- [5] Brandt A.M.: Zastosowanie doświadczalnej mechaniki zniszczenia do kompozytów o matrycach cementowych. Praca zbiorowa Mechanika kompozytów betonowych. Ossolineum, Wrocław, 1983, s. 449-504.
- [6] Brandt A. M.: Zastosowanie włókien jako uzbrojenia w elementach betonowych. Konferencja: "Beton na progu nowego Milenium", Kraków, Polski Cement, 2000, dokument w wersji elektronicznej.
- Brunarski L., Runkiewicz L.: Podstawy i przykłady stosowania metod nieniszczących w badaniach konstrukcji z betonu. ITB, Warszawa, 1983.
- [8] Bundyra-Oracz G., Grodzicka A.: Aspekty reologiczne stosowania dodatków i domieszek w betonach samozagęszczalnych. Materiały XIX Konferencji Naukowo-Technicznej: "Beton i Prefabrykacja", Jadwisin 2004, 2004, s. 173-180.
- [9] Chrabczyński G., Analiza zagranicznych doświadczeń badawczych i zastosowań praktycznych dotyczących betonowych mieszanek samozagęszczalnych w przemysłowej produkcji prefabrykatów. Materiały XVIII Konferencji Naukowo-Technicznej: "Beton i Prefabrykacja", Jadwisin 2002, 2002, s. 45-52.

- [10] Chrabczyński G., Woyciechowski P.: Istota i kierunki rozwoju technologii samozagęszczalnych mieszanek betonowych (SCC) w budownictwie. Konferencja Naukowo-Techniczna: "Technologiczne, organizacyjne i ekonomiczne aspekty rozwoju budownictwa", Olsztyn-Łańsk 2002, s. 15-25.
- [11] Collepardi M.: Self-Compacting Concrete: What is New?. ACI Materials Journal, vol. 217, 2003, s. 1-16.
- [12] Cylejewski A., Jawański W.: Beton samozagęszczalny doświadczenie i przyszłość. Materiały XVIII Konferencji Naukowo-Technicznej: "Beton i Prefabrykacja", Jadwisin 2002, s. 335-343.
- [13] Czarnecki L., (red.), Beton według Normy PN-EN 206-1 komentarz praca zbiorowa. Polski Cement Sp. z o.o., Kraków, 2004, 303 s.
- [14] Czkwianianc A., Pawlica J., Ulańska D.: Właściwości mechaniczne i reologiczne betonów samozagęszczalnych. I Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN i Komitetu Nauki PZITB "Krynica 2004", t III, s. 109-116.
- [15] Czołgosz R., Świerczyński W.: *Beton SCC i ASCC w prefabrykacji*. Materiały Budowlane, nr 11, 2000, s. 21-24.
- [16] Czopkowski R.: Wskaźnik reologiczny zaczynu w projektowaniu samozagęszczalności betonów. VII Sympozjum Naukowo-Techniczne: "Reologia w technologii betonu".
 Wydawnictwo Górażdże Cement, Gliwice, 2005, s. 95-106.
- [17] Czopowski E.: Formuła kompozytowa betonu podstawą koncepcji projektowania betonów samozagęszczalnych. Konferencja: "Dni Betonu – tradycja i nowoczesność", Wisła, 2006, s. 67-80.
- [18] Daszkiewicz M.: Beton samozagęszczalny na budowie City Forum II w Gdańsku.
 Polski Cement . Nr 2 (18), 2002, s. 34-36.
- [19] Faleńska M., Gajger W., Klang W., Wleklak A.: Wdrożenie technologii betonu samozagęszczalnego (SCC) klasy B40 przy wykonaniu ściany bocznej nr 15LZ (wanny) na budowie zagłębienia "Wisłostrady" w tunel drogowy. Materiały XVIII Konferencji Naukowo-Technicznej: "Beton i Prefabrykacja", Jadwisin 2002, 2002, s. 100-105.
- [20] Flaga K., Furtak K.: Wpływ jakości kruszywa na zarysowanie belek żelbetowych.
 Archiwum Inżynierii Lądowej, t.28, z.1-2, 1982, s 113-133.

- [21] Franczyk M.: Wpływ składu mieszanki betonowej na właściwości betonu wysokowartościowego. Praca doktorska, Wydział Budownictwa i Inżynierii Środowiska Politechniki Rzeszowskiej, Rzeszów, 2002, 194 s.
- [22] Frydendal L.F., Pedersen B., Morstsell E., Lonningen S., Hellum J.: Implementation of SCC in Norwegian structures. Proceeding PRO33 – 3rd International RILEM Symposium: Self-Compacting Concrete. RILEM Publications S.A.R.L., 2003, s.958-967.
- [23] Furtak K.: Wpływ mikrodefektów strukturalnych w betonie na pracę mostowych belek żelbetowych. Praca doktorska, Wydział Budownictwa Lądowego, Instytut Dróg, Kolei i Mostów Politechniki Krakowskiej, Kraków, 1979, 203s.
- [24] Furtak K.: Wytrzymałość betonu poddanego obciążeniom wielokrotnie powtarzalnym. Archiwum Inżynierii Lądowej, t. 30, z. 4, 1984, s. 677-697.
- [25] Furtak K.: Nośność przekrojów normalnych w zginanych elementach żelbetowych poddanych obciążeniom zmiennym ze szczególnym uwzględnieniem obiektów mostowych. Politechnika Krakowska, Zeszyt Naukowy, nr 4, 1985, s 213.
- [26] Furtak K.: Wytrzymałość eksploatacyjna betonu. Prace Instytutu Badawczego Dróg i Mostów, Poznań, nr 3, 1990, s. 45-58.
- [27] Furtak K.: Destrukcja naprężeniowa betonu. Konferencja Dni Betonu tradycja i nowoczesność. Konferencja: "Dni Betonu – tradycja i nowoczesność", Szczyrk, 2002, s. 427-439.
- [28] Góra J.: Wpływ kruszyw węglanowych, granitowych i bazaltowych na doraźne właściwości mechaniczne i odkształceniowe betonów zwykłych oraz wysokowartościowych. Praca doktorska, Wydział Budownictwa i Inżynierii Środowiska Politechniki Świętokrzyskiej w Kielcach, Kielce, 2005, 124 s.
- [29] Gorzelańczyk T., Hoła J.: Ocena procesu niszczenia ściskanych betonów samozagęszczonych metodami akustycznymi. Zeszyty Problemowe "Badania Nieniszczące", Materiały konferencyjne 34 Krajowej Konferencji Badań Nieniszczących, Zakopane, 2005, s. 234-237.
- [30] Gorzelańczyk T., Hoła J.: Stress failure testing of self-compacted concrete by acoustic emission method. Medzinarodna konferencia. Vyvojove tendencie v technologii stavieb. Zbornik. Bratislava, 2006, s. 75-80.

- [31] Gorzelańczyk T., Hoła J.: *The use of acoustic emission to assess the influence of dampness on the course of failure of self-compacted concrete*. Defektoskopie 2006.
 36th International Conference Exhibition. Proceedings. Tabor, Czech Republic, s. 67-73.
- [32] Gorzelańczyk T., Hoła J.: Wpływ wilgotności betonu samozagęszczonego na przebieg niszczenia określonego metodą emisji akustycznej. Zeszyty Problemowe "Badania Nieniszczące", Materiały konferencyjne 35 Krajowej Konferencji Badań Nieniszczących, Szczyrk, 2006, s. 127-130.
- [33] Grzeszczyk S., Podkowa P.: Wpływ rodzaju mikrowypełniacza na właściwości samozagęszczalnej mieszanki betonowej. Materiały XIX Konferencji Naukowo-Technicznej: "Beton i Prefabrykacja", Jadwisin 2004, s. 257-262.
- [34] Hammer T.A.: Cracking susceptibility due to volume changes of Self Compacting Concrete (SCC). Proceeding PRO33 – 3rd International RILEM Symposium: Self-Compacting Concrete. RILEM Publications S.A.R.L., 2003, s.553-557.
- [35] Hansel H.: Podstawy rachunku błędów. PWN, Warszawa, 1968.
- [36] Heirman G., Vandewalle L.: The influence of fillers on the properties of Self-Compacting Concrete in fresh and hardened state. Proceeding PRO33 – 3rd International RILEM Symposium: Self-Compacting Concrete. RILEM Publications S.A.R.L., 2003, s. 606-618.
- [37] Hoffmann C., Leemann A.: Homogeneity of structures made with Self-Compacting Concrete and conventional concrete. Proceeding PRO33 – 3rd International RILEM Symposium: Self-Compacting Concrete. RILEM Publications S.A.R.L., 2003, s. 619-627.
- [38] Hoła J., Moczko A.: Analiza procesu niszczenia wybranych struktur betonowych przy wykorzystaniu metody ultradźwiękowej i emisji akustycznej. Praca doktorska, Instytut Budownictwa Politechniki Wrocławskiej, Wrocław, 1984, 206 s.
- [39] Hoła J., Pyszniak J.: *Wpływ wilgotności betonu na przebieg niszczenia ocenianego metodami akustycznymi*. Archiwum Inżynierii Lądowej, t. 36, z.4, 1990, s. 423-435.
- [40] Hoła J.: Effects of aggregate grading on the stress degradation compressed concrete. Archives of Civil Engineering, Vol. 38, No. 1-2, 1992, s. 85-101.

- [41] Hoła J.: *Acoustic-emission investigation of failure of high-strength concrete*. Archives of Acoustics, Vol. 24, No. 2, 1999, s. 233-244.
- [42] Hoła J.: Naprężenia inicjujące i krytyczne a destrukcja naprężeniowa w betonie ściskanym. Prace Naukowe Instytutu Budownictwa Politechniki Wrocławskiej nr 76, Seria: Monografie nr 33, Oficyna Wydawnicza PWr, Wrocław, 2000, 182 s.
- [43] Hoła J.: Determination of initiating and critical stress levels in compressed plain and high-strength concrete by acoustic methods. Archives of Acoustic, Vol. 25, 2000, s.57-65.
- [44] Hoła J.: Experimentally determined effects of technological and service factors on stress-induced destruction of concrete under compression. Engineering Transactions, Vol. 50, No. 4, 2002, s. 251-265.
- [45] Hoła J., Kapelko A., Gorzelańczyk T.: Właściwości techniczne i odkształcalność betonów cementowych specjalnych. Budownictwo w energetyce. IV Konferencja naukowo-techniczna, Wrocław-Bogatynia-Złotniki Lubańskie, 2004, Prace Naukowe Instytutu Budownictwa Politechniki Wrocławskiej, s. 59-66.
- [46] Holschemacher K.: Hardened properties of self-compacting concrete. Modern building materials, structures and techniques. Proceedings of the 8th International Conference, Vilnius, Selected Papers, 2004, s. 55-60.
- [47] Holschemacher K., Müller T.: Influence of fibre type on hardened properties of steel fibre reinforced concrete. Modern building materials, structures and techniques. Proceedings of the 9th International Conference, Vilnius, 2007, dokument w wersji elektronicznej.
- [48] Instrukcja stosowania metody ultradźwiękowej do nieniszczącej kontroli jakości betonu w konstrukcji, Instrukcja ITB nr 209, Warszawa, 1977,
- [49] Jamrozy Z.: *Beton obecnej i przyszłej ery*. Inżynieria i Budownictwo nr 4/2001, s. 215-217.
- [50] Jamroży Z.: Beton i jego technologie. Wydawnictwo Naukowe PWN, Warszawa-Kraków, 2005, s 520.
- [51] Jaramillo A., Victor J.W.R., Vargas J.R.M., Ros P.S., Barbarosa M. P.: Reduced models test for the characterization of the rheologic properties of Self-Compacting

Concrete (SCC). Proceeding PRO33 – 3rd International RILEM Symposium: Self-Compacting Concrete. RILEM Publications S.A.R.L., 2003, s.240-250.

- [52] Jarmontowicz A.: Wpływ mikrostruktury zaczynu na wytrzymałość betonu zwykłego. Prace Naukowe Instytutu Techniki Budowlanej, Seria: Monografie, rok XLV, Warszawa, 1990.
- [53] Jasiczak J., Mikołajczyk P.: Technologia betonu modyfikowanego domieszkami i dodatkami. Przegląd tendencji krajowych i zagranicznych. Wydawnictwo Politechniki Poznańskiej, Poznań 1997, 164 s.
- [54] Kamiński M., Kubiak J., Łodo A. i inni, Badania elementów konstrukcyjnych o przektoju pierścieniowym z betonu wirowanego. M. Kamiński (red.), Dolnośląskie Wydawnictwo Edukacyjne, Wrocław, 1996, 185 s.
- [55] Kamiński M.: Pędziwiatr J., Styś D.: Projektowanie konstrukcji żelbetowych według normy PN-B-03264:2002. Dolnośląskie Wydawnictwo Edukacyjne, Wrocław, 2004, 365 s.
- [56] Kapelko A.: Beton samozagęszczalny do remontu konstrukcji betonowych w obiektach zabytkowych. Materiały X Jubileuszowej konferencji naukowo-technicznej: "Problemy remontowe w budownictwie ogólnym i obiektach zabytkowych". Prace naukowe Instytutu Budownictwa Politechniki Wrocławskiej Nr 82, seria: Konferencje Nr 31, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2002, s. 153-159.
- [57] Kapelko A., Kapelko R.: Doświadczenia ze stosowania betonów samozagęszczalnych SCC do budowy szybu górniczego. Konferencja: "Dni Betonu – tradycja i nowoczesność", Wisła, 2006, s. 757-772.
- [58] Kasperkiewicz J:. Załocha D.: Wyniki badań struktury porów powietrznych w stwardniałym betonie samozagęszczalnym. Raport, Polska Akademia Nauk, Instytut Podstawowych Problemów Techniki, Warszawa, 2004, 23 s.
- [59] Kasperkiewicz J., Zieliński M.: Wyniki badań struktury porowatości i analizy makroskopowej próbek betonów. Raport, Polska Akademia Nauk, Instytut Podstawowych Problemów Techniki, Warszawa, 2005, 18 s.
- [60] Kaszyńska M.: Beton samozagęszczalny rozwój technologii i wyniki badań.
 Konferencja: "Dni Betonu tradycja i nowoczesność", Wisła 2004, s. 95-110.

- [61] Kaszyński J.: Ultradźwiękowe badania betonu z uwzględnieniem zarysowania. Prace Naukowe Politechniki Szczecińskiej, Żelbetowych i Technologii Betonu, nr 3, Szczecin, 2003.
- [62] Kaszyński J.: Badania prędkości fal ultradźwiękowych w betonie przy narastających naprężeniach ściskających. Zeszyty Problemowe "Badania Nieniszczące", Materiały konferencyjne 35 Krajowej Konferencji Badań Nieniszczących, Szczyrk, 2006, s 199-203.
- [63] Khayat K. H.: *Workability, testing and performance of Self-Consolidating Concrete.* ACI Materials Journal, vol. 96, no. 3, 1999, s. 346-353.
- [64] Khurana R., Saccone R.: *Fly Ash in Self-Compacting Concrete*. ACI Materials Journal, vol. 199, 1999, s. 259-274.
- [65] Klosa M., Pauch C.: Stosowanie betonu samozagęszczalnego w produkcji elementów prefabrykowanych. VII Sympozjum Naukowo-Techniczne: "Reologia w technologii betonu". Wydawnictwo Górażdże Cement, Gliwice, 2005, s. 113-120.
- [66] Klug Y., Holschemacher K.: Comparison of the hardened properties of self compacting and normal vibrated concrete. Proceeding PRO33 3rd International RILEM Symposium: Self-Compacting Concrete. RILEM Publications S.A.R.L., 2003, s. 596-605.
- [67] Kucharska L.: W/C wskaźnik wpływu warstwy przejściowej na właściwości mechaniczne betonów zwykłych i WWB i ich podział. Cement-Wapno-Beton, nr 2, 1999, s 39-45.
- [68] Kucharska L.: Domieszki upłynniające w betonie, przykłady zastosowań. Konferencja: "Beton na progu nowego Milenium", Kraków, Polski Cement, 2000, s. 55-72.
- [69] Kucharska L.: Katastrofy, awarie i uszkodzenia, a beton i jego rozwój. XX Konferencja Naukowo-Techniczna: "Awarie Budowlane", Szczecin-Międzyzdroje 2001, Wydawnictwo Uczelniane Politechniki Szczecińskiej, 2001, s. 89-118.
- [70] Kuczyński W. i inni: *Technologia betonu, cz. II. Projektowanie betonów*.Budownictwo betonowe, t. I, cz. 2, Arkady, Warszawa, 1972.
- [71] Kuśnierz A.: Obróbka termiczna betonu mikrofalami w zastosowaniu do budownictwa rolniczego. Praca doktorska, Instytut Budownictwa Mechanizacji i Elektryfikacji Rolnictwa, Zielona Góra, 1988, s.147.

- [72] Lessard M., Salazar B., Talbot K.: *Self-consolidating concrete solves challenging placement problems*. Concrete International, vol. 25, No. 8, 2003, s. 80-81.
- [73] Li L., Hwang C.: *The mixture proportion and property of SCC*. Proceeding PRO33 3rd International RILEM Symposium: Self-Compacting Concrete. RILEM Publications S.A.R.L., 2003, s.525-529.
- [74] Łaźniewska B.: Wpływ samozagęszczalności mieszanki betonowej na efekty jej napowietrzenia. VIII Sympozjum Naukowo-Techniczne "Cement – właściwości i zastosowanie, Reologia w technologii betonu". Wydawnictwo Górażdże Cement, Gliwice, 2006, s. 119-131.
- [75] Łukowski P.: Domieszki do zapraw i betonów. Polski Cement, Kraków 2003, 68 s.
- [76] Ma J., Dietz J., Dehn F.: Ultra high performance Self-Compacting Concrete.
 Proceeding PRO33 3rd International RILEM Symposium: Self-Compacting Concrete. RILEM Publications S.A.R.L., 2003, s.136-142.
- [77] Małecki I.: Charakterystyka i klasyfikacja sygnałów EA. W: Emisja akustyczna, źródła, metody, zastosowanie, red. I. Malecki i J. Ranachowski, Polska Akademia Nauk, Instytut Podstawowych Problemów Techniki, Warszawa, 1994, s. 19-33.
- [78] Mierzwa J., Urban M.: Specyfika kształtowania własności betonów samozagęszczalnych (SCC). Materiały XVIII Konferencji Naukowo-Technicznej: "Beton i Prefabrykacja", Jadwisin 2002, s. 227-234
- [79] Moczko A.: *Autogenous healing of plain concrete*. Brittle Matrix Composites 2, eds.A.M. Brandt, I.H. Marshall, Elsevier Appleid Science, London, 1989, s. 259-263.
- [80] Moczko A.: Wpływ wybranych parametrów strukturalnych na właściwości mechaniczne i destrukcję naprężeniową betonu. W: Struktura a właściwości betonu i kompozytów betonopodobnych. Stan wiedzy w Polsce, red. J. Kasperkiewicz, PWN, Warszawa, 1989, s. 50-59.
- [81] Moczko A.: Badania stwardniałego betonu według norm europejskich. VI Sympozjum Naukowo-Techniczne: "Reologia w technologii betonu". Wydawnictwo Górażdże Cement, Gliwice, 2004, s. 53-64.
- [82] Nagamoto N., Ozawa K.: Mixture properties of Self-Compacting, High-Performance concrete. ACI Materials Journal, vol. 172, 1999, s. 623-636.

- [83] Neville A. M.: Właściwości betonu. Polski Cement, Kraków, 2000, 874 s.
- [84] Niedokos E.: Zastosowania rachunku prawdopodobieństwa i statystyki matematycznej. Wydawnictwo Akademii Rolniczej, Lublin, 1995, 199 s.
- [85] Nielsson I., Wallevik O. H.: *Mix design of HS-SCC and practical application*.
 Proceeding PRO33 3rd International RILEM Symposium: Self-Compacting Concrete. RILEM Publications S.A.R.L., 2003, s.506-513.
- [86] Okamura H., Ozawa K.: Self-Compactable High-Performance Concrete in Japan. ACI Materials Journal, vol. 159, 1996, s. 31-44.
- [87] Okamura H., Ouchi M.: Self-Compacting Concrete. Journal of Advanced Concrete Technology, Vol. 1, No. 1, April 2003, Japan Concrete Institute, 2003, s. 5-15.
- [88] Okamura H, Maekawa K., Mishima T.: Performance Based Design for Self-Compacting Structural High-Strength Concrete. ACI Materials Journal, vol. 228, 2005, s. 13-34.
- [89] Piasta W. G.: Korozja siarczanowa betonu pod obciążeniem długotrwałym. Monografie, studia, rozprawy 21, Wydawnictwo Politechniki Świętokrzyskiej, Kielce, 2000, 224 s.
- [90] PN-74/B-06261. Nieniszczące badania konstrukcji z betonu. Metoda ultradźwiękowa badania wytrzymałości betonu na ściskanie.
- [91] PN-EN 480-11:2000 Domieszki do betonu, zaprawy i zaczyny. Oznaczanie charakterystyki porów powietrznych w stwardniałym betonie.
- [92] PN-EN 12350:2001. Badania mieszanki betonowej.
- [93] PN-EN 12390-1:2001. Badania betonu. Część 1: Kształt, wymiary i inne wymagania dotyczące próbek do badania i form.
- [94] PN-EN 12390-2:2001. Badania betonu. Część 2: Wykonywanie i pielęgnacja próbek do badań wytrzymałościowych.
- [95] PN-EN 12390-3:2001. Badania betonu. Część 3: Wytrzymałość na ściskanie próbek do badania.
- [96] PN-EN 12390-7:2001. Badania betonu. Część 7: Gęstość betonu.
- [97] PN-EN 12504-4:2004. Badania betonu. Część 4: Oznaczanie prędkości fali ultradźwiękowej.

- [98] Ponikiewski T.: Aspekty technologiczne zastosowania betonu samozagęszczalnego modyfikowanego zbrojeniem rozproszonym. Prace Naukowe Instytutu Budownictwa Politechniki Wrocławskiej, Seria: Studia i Materiały – Technologia i zarządzanie w budownictwie. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2006, s. 75-82.
- [99] Prokopski G.: Badanie wpływu warstwy stykowej kruszywo-zaprawa na odporność betonów na pękanie. Archiwum Inżynierii Lądowej – Tom XXXV Z. 3-4/1989, Rzeszów, 1989.
- [100] Radomski W.: Pierwsze w Polsce zastosowanie betonu samozagęszczonego w konstrukcji mostu. Inżynieria i Budownictwo NR 2/2003, s. 103-107.
- [101] Rajski O.: Wpływ mikrokrzemionki na odkształcalność i proces niszczenia betonów wysokowartościowych. Praca doktorska, Instytut Inżynierii Lądowej Politechniki Wrocławskiej, Wrocław, 1995, 135 s.
- [102] Ranachowski Z.: Wyznaczanie naprężeń krytycznych w betonie przy pomocy zautomatyzowanych pomiarów metodą emisji akustycznej. Praca doktorska, Instytut Budownictwa Politechniki Wrocławskiej, Wrocław, 1990, 118 s.
- [103] Ratajczak G.: Ograniczenie naprężeń w betonie a problem trwałości mostów z betonu zbrojonego. Prace Instytutu Badawczego Dróg i Mostów, Poznań, nr 4, 1994, s 5-19.
- [104] Rudžionis Ž., Ivanauskas E.: Investigations on properties of self-compacting concrete modified by fly ashes admixture. Modern building materials, structures and techniques.
 Proceedings of the 8th International Conference, Vilnius, 2004, dokument w wersji elektronicznej.
- [105] Rudžionis Ž., Ivanauskas E., Navickas A. A.: Aplication of new investigation methods for rheological and technological properties of self-compacting concrete prognosis. Modern building materials, structures and techniques. Proceedings of the 9th International Conference, Vilnius, 2007, dokument w wersji elektronicznej.
- [106] Runkiewicz L.: Badania konstrukcji żelbetowych. Biuro Gamma, Warszawa, 2002, 166 s.
- [107] Runkiewicz L.: Tendencje rozwojowe badań nieniszczących w budownictwie. Zeszyty Problemowe "Badania Nieniszczące", Materiały konferencyjne 32 Krajowej Konferencji Badań Nieniszczących, Międzyzdroje, 2003, s. 89-102.

- [108] Runkiewicz L.: Ocena trwałości i niezawodności elementów żelbetowych za pomocą metod nieniszczących. Materiały Budowlane, nr 12, 2005, s. 2-4.
- [109] Rybiański M.: Wytrzymałość i odkształcalność betonu poddanego oddziaływaniu obniżonych temperatur. Praca doktorska, Instytut Budownictwa Politechniki Wrocławskiej. Komunikat I-2/K-88/76, Wrocław, 1976, 226 s.
- [110] Shi C., Wu Y.: Mixture proportioning and properties of Self-Consolidating lightweight concrete containing glass powder. ACI Materials Journal, vol. 102, no. 5, 2005, s. 355-363.
- [111] Śliwiński J., Czołgosz R.: Spostrzeżenia z praktycznego projektowania składu betonów samozagęszczalnych (SCC). IV Sympozjum Naukowo-Techniczne: "Reologia w technologii betonu". Wydawnictwo Górażdże Cement, Gliwice, 2002, s. 53-60.
- [112] Sonebi H., Bahadori-Jahromi A., Bartos P.J.M.: Development and optimisation of medium strength Self Compacting Concrete by using pulverised fly ash. Proceeding PRO33 – 3rd International RILEM Symposium: Self-Compacting Concrete. RILEM Publications S.A.R.L., 2003, s.514-524.
- [113] Specification and Guidelines for Self-Compacting Concrete. EFNARC The European Federation of Specialist Construction Chemicals and Concrete Systems, February 2002, 32 s.
- [114] Świerczyński W.: Produkcja prefabrykatów betonowych w technologii ASCC i SCC.
 IV Sympozjum Naukowo-Techniczne: "Reologia w technologii betonu".
 Wydawnictwo Górażdże Cement, Gliwice, 2002, s. 31-42.
- [115] Świerczyński W., Czołgosz R.: Polimerowe superplastyfikatory III generacji w betonach towarowych – przyszłość domieszek. Konferencja: "Dni Betonu – tradycja i nowoczesność", Wisła 2004, s. 151-165.
- [116] Szwabowski J.: Reologia samozagęszczalnych mieszanek betonowych. IV Sympozjum Naukowo-Techniczne: "Reologia w technologii betonu". Wydawnictwo Górażdże Cement, Gliwice, 2002, s. 61-76.
- [117] Szwabowski J., Śliwiński J.: *Betony samozagęszczalne*. Polski Cement Budownictwo, Technologie, Architektura, nr 2 (22), 2003, s. 42-45.

- [118] Szwabowski J.: Reologia betonów nowej generacji. V Sympozjum Naukowo-Techniczne: "Reologia w technologii betonu". Wydawnictwo Górażdże Cement, Gliwice, 2003, s. 73-88.
- [119] Szwabowski J.: *Domieszki i dodatki wybrane aspekty stosowania*. Materiały XIX Konferencji Naukowo-Technicznej: "Beton i Prefabrykacja", Jadwisin 2004, s. 89-99.
- [120] Szwabowski J, Łaźniewska B.: Influence of properties of self-compacting concrete on the effect of air-entrainment. Modern building materials, structures and techniques. Proceedings of the 9th International Conference, Vilnius, 2007, dokument w wersji elektronicznej.
- [121] The European Guidelines for Self-Compacting Concrete. Specification, Production and Use. EFNARC The European Federation of Specialist Construction Chemicals and Concrete Systems, May 2005, 68 s.
- [122] Urban M.: Metody projektowania betonów samozagęszczalnych (SCC). III Sympozjum Naukowo-Techniczne: "Reologia w technologii betonu". Wydawnictwo Górażdże Cement, Gliwice, 2001, s. 61-72.
- [123] Utsi S., Jonasson J., Wallin K., Ekman T.: Development of SCC for civil engineering applications. Proceeding PRO33 – 3rd International RILEM Symposium: Self-Compacting Concrete. RILEM Publications S.A.R.L., 2003, s.567-575.
- [124] Vieira M., Bettencourt A.: Deformability of hardened SCC. Proceeding PRO33 3rd International RILEM Symposium: Self-Compacting Concrete. RILEM Publications S.A.R.L., 2003, s.637-644.
- [125] Woyciechowski P.: Analiza metod badania mieszanek samozagęszczalnych pod kątem oceny ich przydatności do stosowania w prefabrykacji. Materiały XVIII Konferencji Naukowo-Technicznej: "Beton i Prefabrykacja", Jadwisin 2002, s. 322-332.
- [126] Woyciechowski P., Chuda A., Jackiewicz-Rek W.: Wysokopopiołowe betony samozagęszczalne. Budownictwo ogólne. Zagadnienia konstrukcyjne, materiałowe i cieplno-wilgotnościowe w budownictwie. Wydawnictwa Uczelniane Akademii Techniczno-Rolniczej w Bydgoszczy, Bydgoszcz, 2005, s. 69-76.
- [127] Zia P., Nunez R. A., Mata L. A., Dwairi H. M.: Implementation of Self-Consolidating Concrete for Prestressed Concrete Girders. ACI Materials Journal, vol. 228, 2005, s. 297-316.