
Zastosowania badań operacyjnych
Zarządzanie projektami,
decyzje finansowe, logistyka

PRACE NAUKOWE
Uniwersytetu Ekonomicznego we Wrocławiu
RESEARCH PAPERS
of Wrocław University of Economics

238

Redaktor naukowy
Ewa Konarzewska-Gubała

Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Wrocław 2011

Recenzenci: Stefan Grzesiak, Donata Kopańska-Bródka, Wojciech Sikora,
Józef Stawicki, Tomasz Szapiro, Tadeusz Trzaskalik

Redaktor Wydawnictwa: Elżbieta Kożuchowska

Redaktor techniczny: Barbara Łopusiewicz

Korektor: Barbara Cibis

Łamanie: Małgorzata Czupryńska

Projekt okładki: Beata Dębska

Publikacja jest dostępna w Internecie na stronach:
www.ibuk.pl, www.ebscohost.com,
The Central and Eastern European Online Library www.ceeol.com,
a także w adnotowanej bibliografii zagadnień ekonomicznych BazEkon
http://kangur.uek.krakow.pl/bazy_ae/bazekon/nowy/index.php

Informacje o naborze artykułów i zasadach recenzowania znajdują się
na stronie internetowej Wydawnictwa
www.wydawnictwo.ue.wroc.pl

Kopiowanie i powielanie w jakiejkolwiek formie
wymaga pisemnej zgody Wydawcy

© Copyright by Uniwersytet Ekonomiczny we Wrocławiu
 Wrocław 2011

ISSN 1899-3192
ISBN 978-83-7695-195-9

Wersja pierwotna: publikacja drukowana

Druk: Drukarnia TOTEM

00-Spis tresci-wstep.indd 4 2013-01-16 09:25:54

Spis treści

Wstęp .. 9

Część 1. Zarządzanie projektami i innowacjami

Tomasz Błaszczyk: Świadomość i potrzeby stosowania metod badań opera-
cyjnych w pracy polskich kierowników projektów 13

Barbara Gładysz: Metoda wyznaczania ścieżki krytycznej przedsięwzięć
z rozmytymi czasami realizacji zadań .. 25

Marek Janczura, Dorota Kuchta: Proactive and reactive scheduling in prac-
tice ... 34

Tymon Marchwicki, Dorota Kuchta: A new method of project schedule
levelling .. 52

Aleksandra Rutkowska, Michał Urbaniak: Harmonogramowanie projek-
tów na podstawie charakterystyk kompetencji – wrażliwość modelu na
różne aspekty liczb rozmytych ... 66

Jerzy Michnik: Zależności między kryteriami w wielokryterialnych mode-
lach zarządzania innowacjami .. 80

Część 2. Podejmowanie decyzji finansowych

Przemysław Szufel, Tomasz Szapiro: Wielokryterialna symulacyjna ocena
decyzji o finansowaniu edukacji wyższej ... 95

Marek Kośny: Koncepcja dominacji pierwszego i drugiego rzędu w analizie
wzorca zmian w rozkładzie dochodu .. 111

Agnieszka Przybylska-Mazur: Podejmowanie decyzji monetarnych w kon-
tekście realizacji celu inflacyjnego ... 120

Agata Gluzicka: Analiza ryzyka rynków finansowych w okresach gwałtow-
nych zmian ekonomicznych ... 131

Ewa Michalska: Zastosowanie prawie dominacji stochastycznych w kon-
strukcji portfela akcji .. 144

Grzegorz Tarczyński: Analiza wpływu ogólnej koniunktury giełdowej
i wzrostu PKB na stopy zwrotu z portfela akcji przy wykorzystaniu roz-
mytych modeli Markowitza .. 153

00-Spis tresci-wstep.indd 5 2013-01-16 09:25:54

6 Spis treści

Część 3. Problemy logistyki, lokalizacji i rekrutacji

Paweł Hanczar, Michał Jakubiak: Wpływ różnych koncepcji komisjonowa-
nia na czas realizacji zamówienia w węźle logistycznym 173

Mateusz Grzesiak: Zastosowanie modelu transportowego do racjonalizacji
dostaw wody w regionie ... 186

Piotr Wojewnik, Bogumił Kamiński, Marek Antosiewicz, Mateusz Zawi-
sza: Model odejść klientów na rynku telekomunikacyjnym z uwzględnie-
niem efektów sieciowych ... 197

Piotr Miszczyński: Problem preselekcji kandydatów w rekrutacji masowej
na przykładzie wybranego przedsiębiorstwa .. 211

Część 4. Pomiar dokonań, konkurencja firm, negocjacje

Marta Chudykowska, Ewa Konarzewska-Gubała: Podejście ilościowe do
odwzorowania celów strategicznych w systemie pomiaru dokonań organi-
zacji na przykładzie strategii miasta Wrocławia ... 231

Michał Purczyński, Paulina Dolata: Zastosowanie metody DEA do pomiaru
efektywności nakładów na reklamę w przemyśle piwowarskim 246

Mateusz Zawisza, Bogumił Kamiński, Dariusz Witkowski: Konkurencja
firm o różnym horyzoncie planowania w modelu Bertrand z kosztem de-
cyzji i ograniczoną świadomością cenową klientów 263

Jakub Brzostowski: Poprawa rozwiązania negocjacyjnego w systemie Nego-
Manage poprzez zastosowanie rozwiązania przetargowego 296

Część 5. Problemy metodologiczne

Helena Gaspars-Wieloch: Metakryterium w ciągłej wersji optymalizacji
wielocelowej – analiza mankamentów metody i próba jej udoskonalenia . 313

Dorota Górecka: Porównanie wybranych metod określania wag dla kryte-
riów oceny wariantów decyzyjnych ... 333

Maria M. Kaźmierska-Zatoń: Wybrane aspekty optymalizacji prognoz
kombinowanych .. 351

Artur Prędki: Spojrzenie na metody estymacji w modelach regresyjnych
przez pryzmat programowania matematycznego 365

Jan Schneider, Dorota Kuchta: A new ranking method for fuzzy numbers
and its application to the fuzzy knapsack problem 379

00-Spis tresci-wstep.indd 6 2013-01-16 09:25:54

Spis treści 7

Summaries

Part 1. Project and innovation management

Tomasz Błaszczyk: Awareness and the need for operations research methods
in the work of Polish project managers .. 24

Barbara Gładysz: A method for finding critical path in a project with fuzzy
tasks durations .. 33

Marek Janczura, Dorota Kuchta: Proaktywne i reaktywne harmono-
gramowanie w praktyce .. 51

Tymon Marchwicki, Dorota Kuchta: Nowa metoda niwelacji harmono-
gramu projektu .. 64

Aleksandra Rutkowska, Michał Urbaniak: Project scheduling using fuzzy
characteristics of competence – sensitivity of the model to the use of dif-
ferent aspects of fuzzy numbers ... 79

Jerzy Michnik: Dependence among criteria in multiple criteria models of
innovation management .. 92

Part 2. Financial decision-making

Przemysław Szufel, Tomasz Szapiro: Simulation approach in multicriteria
decision analysis of higher education financing policy 110

Marek Kośny: First and second-order stochastic dominance in analyses of
income growth pattern .. 119

Agnieszka Przybylska-Mazur: Monetary policy making in context of exe-
cution of the strategy of direct inflation targeting 130

Agata Gluzicka: Analysis of risk of financial markets in periods of violent
economic changes ... 143

Ewa Michalska: Application of almost stochastic dominance in construction
of portfolio of shares ... 152

Grzegorz Tarczyński: Analysis of the impact of economic trends and GDP
growth in the return of shares using fuzzy Markowitz models 169

Part 3. Logistics, localization and recrutment problems

Paweł Hanczar, Michał Jakubiak: Influence of different order picking con-
cepts on the time of execution order in logistics node 185

Mateusz Grzesiak: Application of transportation model for rationalization of
water supply in the region ... 196

Piotr Wojewnik, Bogumił Kamiński, Marek Antosiewicz, Mateusz Za-
wisza: Model of churn in the telecommunications market with network
effects .. 210

00-Spis tresci-wstep.indd 7 2013-01-16 09:25:54

8 Spis treści

Piotr Miszczyński: The problem of pre-selection of candidates in mass re-
cruitment on the example of the chosen company 227

Part 4. Performance measurement, companies competition, negotiations

Marta Chudykowska, Ewa Konarzewska-Gubała: Quantitative approach
to the organization strategy mapping into the performance measurement
system: case of strategy for Wroclaw city .. 245

Michał Purczyński, Paulina Dolata: Application of Data Envelopment An-
aysis to measure effectiveness of advertising spendings in the brewing
industry ... 262

Mateusz Zawisza, Bogumił Kamiński, Dariusz Witkowski: Bertrand com-
petition with switching cost .. 295

Jakub Brzostowski: Improving negotiation outcome in the NegoManage
system by the use of bargaining solution .. 309

Part 5. Methodological problems

Helena Gaspars-Wieloch: The aggregate objective function in the continu-
ous version of the multicriteria optimization – analysis of the shortcom-
ings of the method and attempt at improving it .. 332

Dorota Górecka: Comparison of chosen methods for determining the weights
of criteria for evaluating decision variants ... 350

Maria M. Kaźmierska-Zatoń: Some aspects of optimizing combined fore-
casts ... 363

Artur Prędki: Mathematical programming perspective on estimation meth-
ods for regression models ... 378

Jan Schneider, Dorota Kuchta: Nowa metoda rankingowa dla liczb
rozmytych i jej zastosowanie dla problemu rozmytego plecaka 389

00-Spis tresci-wstep.indd 8 2013-01-16 09:25:54

 PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU nr 207
 RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS nr 238 • 2011

Zastosowanie badań operacyjnych
Zarządzanie projektami, decyzje finansowe, logistyka ISSN 1899-3192

Tymon Marchwicki, Dorota Kuchta
Technical University in Wrocław

A NEW METHOD
OF PROJECT SCHEDULE LEVELLING

Summary: We consider the problem of project schedule levelling and propose a new algo-
rithm, based on the pattern matching algorithms. The activity resource requirements and free
resources are considered as two patterns which are to be matched. We explain the idea of the
algorithm (the pattern matching algorithms have to be modified in order to be used to solve
the problem in question) and prove its computational complexity, which turns out to be
O(n2).

Keywords: RCPSP, resource gaps, complexity, continuous time schedule, project schedule
levelling.

1. Introduction

The method described in this paper concerns project schedule levelling. We may
imagine a situation in which the whole schedule is known, activities already have
their start times assigned, but there is a need to move backward or forward some of
the activities, so that the resource constraints stay valid.

The problem can be defined as follows: Let A be the set of already scheduled ac-
tivities (tasks): A = {a1, a2, …, an}, where each activity is characterized as a triple
ai = <si, di, qi >, i =1 … n, where si is the activity start time, di is the activity duration,
qi is the amount of resources used by this activity. What is more, we assume that each
activity ai has its list of successors S(ai) and predecessors P(ai). These lists, in partic-
ular, may be empty. Additionally we assume the resource constraints for the project:
R={r1, r2, …, rM}. Each rk has the form of the condition that specifies the amount of
resources of the k-th type for the whole project. It is also important that we assume
the continuous time: each activity can start at any arbitrary moment of time. We then
take one activity ai from the set A for which there is not enough resources in the peri-
od it is planned for (together with all its successors and predecessors), move this
activity forward/backward to some arbitrary place t0 and we ask what the new sched-
ule is, so as ai and all its successors/predecessors are rescheduled to such time mo-

A new method of project schedule levelling

53

ments that their start times are greater/less than t0 (or equal to) and the resource con-
straints are fulfilled. The problem is illustrated in Figure 1.

t
0

AB
G0 G1 G2

Figure 1. Finding resource gaps.

Source: own study.

Figure 1 shows a situation in which each activity (grey rectangle) is already

scheduled and has its fixed position in the timeline and new activity (dashed rectan-
gle) is being inserted. Activities that overlap (i.e. are executed paralelly at the same
time as other activities) are drawn in this diagram in different lines. Resource con-
straint is that no more than two activities can be executed at the same time (let us say
that each activity uses 1 unit of resources and we only have 2 units of resources
available at each moment of time during the whole project execution). In this repre-
sentation gaps are empty spaces so as at least one diagram line is empty. The idea of
the algorithm showed in Figure 1 can be described in three steps: 1) We have an
activity at position “A”. 2) We move this activity backward to position t0 (the move-
ment is symbolised by an arrow). 3) Because we moved activity backward to the
place where there is no resource gap, we need to move it to the first place before t0
that has available resources. Gap 1 (marked as “G1”) is too short for the activity, so
finally our activity goes to position “B” which belongs to gap 0 (“G0”).

In the literature there are various algorithms for determining a feasible schedule
in case the resources are limited [e.g. Deckro et al. 1989; Brucker et al. 1999; Gem-
mil et al. 1999; Chatourou , Haouari 2008). Most of them are heuristics (in the sense
that they do not necessarily minimise the project completion time), as the problem in
question (with the project completion time as the objective function) is NP-hard. The
problem stated in this article is a special case of resource-constrained scheduling
problem where the schedule is considered to change during time and all schedule
modifications need to be done in an on-line manner (i.e. rescheduling problem). Re-
scheduling is needed due to different environment disturbances: machine breakdown,
processing time variation, job(s) cancellation (as listed in [Cheng et al. 2005]). Re-
scheduling techniques have been studied in several articles and there are different
approaches. An overview of rescheduling techniques can be found in [Vieira et al.
2003] and [Liu, Shih 2009]. As in case of scheduling, many rescheduling methods
also incorporate heuristics. The examples can be found in [Aufenanger et al. 2009] or
[Cheng et al. 2005]. It is common knowledge that heuristics behave in various ways

Tymon Marchwicki, Dorota Kuchta 54

for various project instances. There are approaches that take advantage of local tech-
niques which reschedule only the subset of tasks that might be affected [Kuster et al.
2007]. There are also techniques that try to build a robust schedule, which means that
the schedule quality does not change significantly when a disruption occurs (as de-
fined in [Pfeiffer et al. 2007]). Sometimes the simplest solution such as the allocation
of additional resources, switches from one process variant to another or task shift is
only needed. The example of such a technique is presented in [Artigues et al. 2003].
Here we would like to present another heuristic with a fairly good computational
complexity, based on the pattern matching algorithms. To our best knowledge, no
such algorithms have been known so far. In section 2 we present the idea of the
method and its basic procedures and in section 3 the proof concerning its computa-
tional complexity in the worst case.

2. The algorithm idea

The method consists of two procedures. The first procedure builds a resource profile
for a given schedule, the second procedure is a matching procedure that iterates
through elements of the resource profile and tries to match the activity to the nearest
available gap. We first present this very simple and intuitive procedure for building
resource profile for the schedule with continuous time and activities that can start/end
at any arbitrary moment of time. We then present a matching procedure.

Procedure used for building the resource profile is based on the “change points”
in resource availability. Because different activities have different resource require-
ments, activities start times and end times (together with project resource constraints
change points) determine the points where available resources can possibly change
(but they do not have to). We first iterate through all activities and add their start
times and end times to the list of “change points”. Other points that should be added
here are the points where project resource constraints change. Change points are
finally sorted (Figure 2a). The main procedure is based on these change points: each
pair of subsequent points is taken one after another to create subsequent time inter-
vals (Figure 2c). To calculate the resource that is available for each time interval we
need another helper procedure (see Figure 2b) that iterates through all tasks and
checks which of the tasks are executed within this interval. (It checks if the given
interval is the subinterval of the activity time range.) Before sorting all the change
points (Figure 2a) and creating intervals, the two “special” change points need to be
added to this list. These are “boundary change points” that are the artificial change
points in minus infinity and plus infinity time moments. They are needed to have the
full list of all time intervals where the activity can be put into. Different intervals
created in this way represent different time periods where available resources are
fixed. New interval means that available resources are (possibly) different from the
previous one.

A new method of project schedule levelling

55

Procedure GetChangePoints(activities)
 Let changePoints be the empty list
For each ai in ativities
 If ai startTime is not already in changePoints list
 Add ai startTime to the list
 End if
 If (ai startTime + ai duration) is not already in changePoints
list
 Add (ai startTime + ai duration) to the list
 End if
End for
Add boundary change points to the list (-infinity and +infinity)
Sort changePoints list
Return changePoints
End procedure

Figure 2a. Calculating all change points, where resource availability can possibly change

Source: own study.

Procedure GetResourceUsage(intervalStart, intervalEnd, activities)
 resourceUsed = 0
For each ai in activities
 If middle of interval is within ai time range
 resourceUsed = resourceUsed + ai resource usage
 End if
 End for
 Return resourceUsed
End procedure

Figure 2b. Calculating resource usage of the time interval

Source: own study.

Procedure GetResourceProfile(activities)
Let resourceProfile be the empty list of intervals
changePoints = getChangePoints(activities) figure 2a
For each cj in changePoints
 intervalStart = cj
 intervalEnd = cj+1
resourcesUsed = getResourceUsage(intervalStart, intervalEnd,
activities) figure 2b
Add new interval with intervalStart, intervalEnd & resourcesUsed
parameters to the resourceProfile
End for
Return resourceProfile
End procedure

Figure 2c. Building resource profile according to the change points determined (Figure 2a)
and using resource calculation procedure (Figure 2b)

Source: own study.

Tymon Marchwicki, Dorota Kuchta 56

Figure 3a presents the result of getChangePoints procedure for the schedule from
Figure 1. Change points are drawn as dashed lines. Change points are all activities
start times and end times extended with +inf and –inf time points and then sorted. We
assume that the resource constraint (maximum amount of resources available) is
fixed for the whole project duration. Figure 3b presents the resource profile with
available resource values calculated for this schedule.

-inf +inf

Figure 3a. Change points for the schedule from Figure 1

Source: own study.

-inf +inf

0 1 2 1 2 2 1 0 1 0

Figure 3b. Resource profile corresponding to the schedule from Figure 1 and change points
from Figure 3a

Source: own study.

The first interval (formed from the first boundary change point and the first “or-

dinary” change point) is always the gap, where all project resources are available. No
resources are used here, because there are no activities. The last interval (formed
from the last “ordinary” change point and the last boundary change point) is similar,
it contains all available resources. The intervals that are in between the first and the
last interval may vary in amount of resources used (which implies the amount of free
resources, if resource constraint is constant for the whole project), depending on
number and type of activities that are executed within this interval (see Figure 3b).

After the resource profile is known, we may apply the matching procedure to
match activity that is being moved to the proper resource gap.

We can identify finding resource gap in the resource profile as a problem of pat-
tern matching. There are several such algorithms that has been widely studied in the
literature – they concern text pattern matching. These are: KMP algorithm (Knuth-
Morris-Pratt), Boyer-Moore algorithm, Rabin-Karp algorithm and the algorithm
based on constructing finite automats [Cormen et al. 2004]. The best of them (KMP
and finite automata) algorithms have O(n) time complexity where n is the text length.
We can reduce the problem described in this article to a problem of pattern matching
with two symbols only: positive and negative symbols. Positive symbols are those

A new method of project schedule levelling

57

resource profile intervals that have available resources for the activity, negative are
those that do not have enough amount of resources. The pattern is the activity being
moved and we can imagine that it consists of positive symbols only and has variable
length. The length is variable, because the length of the pattern is fixed, but resource
profile elements have variable length, so when we try to match our pattern to the
profile, every time we have different number of elements that should match. This is
presented in Figure 4. We now describe why none of the standard patterns matching
algorithms can be applied to our problem

The basic problem here is that the length of the pattern is variable and (depending
on the resource elements lengths) the pattern should be compared to different number
of elements. That is why we are not able to construct a reasonable automat, because
it would then have infinite number of states. We cannot omit this variable length
problem not only in a case of automat algorithms, but also with all other standard
text-match algorithms mentioned above. There exist methods that match variable
length patterns [Rahmann et al. 2006], but they operate on patterns that vary in length
counted in number of symbols, but all symbols have fixed “unit” length, which again
cannot be applied to the problem considered here.

Actually our problem is much simpler than described methods, although symbol
lengths may vary. The simplicity arises from the fact that we have only two symbols
and our pattern consists of one (“positive”) symbol only.

The matching procedure can be examined for two different cases. The first case
is that we are moving our task forward, so the nearest gap is searched in the future.
The second case concerns moving task backward and searching gap in the past. For
simplicity we present matching procedure for only one case – while moving task
forward. Analogue procedure can be applied for moving backward. The changes will
be in reference points we consider as well as in membership intervals (we introduce
these definitions shortly). The process goes as follows: 1) We moved activity for-
ward to the new place, which is some point t0 (which means that activity start time
equals t0). 2) This point does not have to be the right point to put our activity at, be-
cause resource constraints may not hold. 3) We start our matching procedure to find
the nearest resource gap. Particularly we may find this gap at t0. It happens when
there are available resources in the place we moved our activity to. But in general we
should find the gap in the future of t0 time moment, which means somewhere on the
right (compare this to Figure 1, where we have the opposite situation – gap is
searched in the past).

To present our method the two basic definitions need to be introduced. We first
define the reference point. The reference point is the point that identifies the activity
position. For the case being described (searching gaps in the future) it is convenient
to choose the activity start time as a reference point. We also need to define the
membership interval. Membership interval is the interval connected with every re-
source element. When reference point is within this interval, we say that our activity
starts at this resource element and from this element we will start our matching pro-

Tymon Marchwicki, Dorota Kuchta 58

cedure. For our case, the membership interval is the interval [a; b], which is the range
of the resource element (but considered without the right closure, so that subsequent
resource elements do not intersect).

-inf +inf

0 1 2 1 2 2 1 0 1 0

Membership interval start
(inclusive)

Membership interval end
(exclusive)

Activity reference point

Figure 4. Matching procedure starts from the modified binary search

Source: own study.

The matching procedure starts from searching the resource profile element we
are at. When our activity is being moved, we do not know at which resource element
we stopped, so we need to find it (Figure 4). In Figure 4 we are moving forward.
Activity is coloured grey and the resource profile element that was found through
binary search is coloured light grey. Every time we move activity to some arbitrary
point t0, we first need to search this initial resource element. Once we find it, we can
execute the main matching procedure. The initial search procedure is realised as a
binary search that searches the proper resource profile element we should begin
matching from. Unlike standard binary search that uses single values and >, <, =
operators to compare them, our binary search uses membership intervals and com-
pares them with the reference point. Using operator > in standard binary search is
replaced by a simple check if our reference point is on the right of the membership
interval. Operator < is replaced by an opposite check if our reference point is on the
left. Operator = is replaced with the check if reference point is within the member-
ship interval.

After the search is complete, the main procedure can be executed. It starts match-
ing from the resource profile element that was determined in binary search (light
grey rectangle in Figure 4). The main procedure examines subsequent shifts to check
if activity is matched (Figure 7b). The exception is the first check, when we do not
shift activity, but leave it as it is – at the place it was put into – see Figure 5. In this
picture we have a situation that activity was first moved somewhere over the re-
source element indexed with i = 2. We first try to match it without shifting/aligning it
to the beginning of the resource element, but leave it as it is. It turns out that the first
element does not match (symbol “X” over i = 2). We then shift activity to index 3
(which is the first element after the element that did not match) aligning it to the be-

A new method of project schedule levelling

59

ginning of the resource profile element and we check if this position is matched.
Although index 3 matches, the next index (i = 4) does not match (symbolised by
letter “X” over i = 4). The main procedure uses helper procedure IsResourceMatched
to check if current shift matches (Figure 7a). If current shift matches, we have found
the right place. If current shift does not match, the index that first did not match is
remembered and the main procedure jumps to the next index after this index. It is

-inf +inf

1 0 1 0

Subsequent checks – shift and align to resource profile elements

The first check – leave as is

 i = 0 i = 1 i = 2 i = 3 i = 4 i=5 i=6 i=7 i=8 i=9

x x
222 110

Figure 5. Shifts illustration used by MatchActivity procedure

Source: own study.

x

Figure 6. Correct shifts illustration

Source: own study.

Procedure IsResourceMatched(ai, index)
 isMatched = true
 while isMatched & element intersects with activity
If there is not enough amount of resources for this activity in
this capacity element
 isMatched = false
 remember index that first does not match
End if
index = index + 1
 End while
End procedure

Figure 7a. Helper matching procedure that checks if a given shifted activity is matched to all
the resource elements from the resource profile.

Source: own study.

Tymon Marchwicki, Dorota Kuchta 60

very important to notice that if not the whole activity is matched and we know the
index that first did not match, we can for sure move to the element that is situated
just after the capacity element that first did not match, because for sure all shorter
shifts will not be correct. Figure 6 depicts this observation. For simplicity and with-
out loose of generality we present a case where all symbols (both from the pattern
and symbols we compare our pattern to) have equal length. White rectangles repre-
sent positive symbols (i.e. that have free resources). Grey rectangle with letter “X” is
a negative symbol without free resources.

Procedure MatchActivity(ai)
matched = false
 startIndex = BinarySearchElementIndex() figure 4
 index = startIndex

 While matched = false
 If index <> startIndex
 shiftActivity to resurce index
 End if

 matched = IsResourceMatched(ai, index) figure 5

 If matched = false
 index = index that first not matched + 1
 End if
 End while
 Return ai
End procedure

Figure 7b. Matching procedure used for finding resource gaps

Source: own study.

In the next section we discuss the complexity of the algorithm.

3. Algorithm complexity

To calculate the algorithm upper bound execution time (O-notation, [Cormen et al.
2004]) as a function of number of activities (n), we analyse each line of the pseudo-
code presented in the article, associate fixed cost with each line and ask how many
times the operation in the line was executed. We than simplify its expression by re-
placing sums of costs with one fixed cost and consider only the leading term of this
expression [Cormen et al. 2004].

In Table 1 sums are indexed from 0 to 2n – 1, because the list length grows (from
0 to 2n) after each step and each time the whole list needs to be checked to determine
if an element does not already exist in the list. What is more, we assume that the time
complexity of the sorting algorithm that we use is logarithmic.

A new method of project schedule levelling

61

Table 1. Procedure GetChangePoints

Line of code Cost No. of times
Let changePoints be the empty list c1 1
For each ai in ativities c2 N

If ai startTime is not already
in changePoints list

c3 2 1

0

n

i
i

−

=
∑

Add ai startTime to the list c4 n
If (ai startTime + ai duration) is not already
in changePoints list

c5 2 1

0

n

i
i

−

=
∑

Add (ai startTime + ai duration) to the list c6 n
Add boundary change points to the list
(-infinity and +infinity)

c7 1

Sort changePoints list 8 logc n n⋅ 1

Source: own study.

The time of the above procedure is then:

1 1 2 3 4 5 6 7 8

2 3 5
3 5 8 2 4 6 1 7

2 2

2 1 2 1() log
2 2

() log ()
2 2

log ().

n nT n c c n c n c n c n c n c c n n

c cc c n c n n c c c n c c

an b n n cn d O n

− −
= + + + + + + +

= + + + − + − + + + =

= + ⋅ + + =

We perform similar calculations for the second procedure (GetResourceUsage).
Calculated complexity of this procedure is then O(n).

Table 2. Procedure GetResourceUsage

Line of code Cost No. of times
resourceUsed = 0 c1 1
For each ai in ativities c2 n
If middle of interval is within ai time range c3 n
resourceUsed = resourceUsed + ai c4 n

Source: own study.

Thus we have 2 () ()T n O n= .

Third procedure (GetResourceProfile) uses the previous two procedures and we
use results calculated above (lines associated with costs c2 and c6) to determine pro-
cedure’s time complexity (Table 3).

Tymon Marchwicki, Dorota Kuchta 62

Table 3. Procedure GetResourceProfile

Line of code Cost No. of times

Let resourceProfile be the empty list of intervals c1 1

changePoints = getChangePoints(activities) 2
2c n 1

For each cj in changePoints c3 2n

intervalStart = cj c4 2n

intervalEnd = cj+1 c5 2n

resourcesUsed = getResourceUsage (intervalStart,
intervalEnd, activities) 6c n 2n

Add new interval with intervalStart, intervalEnd &
resourcesUsed parameters to the resourceProfile c7 2n

Source: own study.

Thus we have 2
3 () ()T n O n= .

For the next procedure (IsResourceMatched) we can observe that its execu-
tion time (number of times the while loop is executed) is dependent on the task
length. We denote task length as m (number of resource profile elements used)
and we use this value also to determine the execution time of subsequent proce-
dure (MatchActivity).

Table 4. Procedure IsResourceMatched

Line of code Cost No. of times

isMatched = true c1 1

while isMatched & element intersects with activity c2 m

If there is not enough amount of resources for this
activity in this capacity element

c3 m

isMatched = false c4 1

index that first does not match c5 1

index = index + 1 c6 m

Source: own study.

Thus we have 4 () ().T m O m=

For the last procedure we use modified binary search algorithm, that has loga-
rithmic complexity. This logarithmic time is included in our calculations (Table 5).

A new method of project schedule levelling

63

Table 5. Procedure MatchActivity

Line of code Cost No. of times
matched = false c1 1
startIndex = BinarySearchElementIndex()

2 logc n 1
index = startIndex c3 1
While matched = false c4 n/m
If index <> startIndex c5 n/m
shiftActivity to resource index c6 1
matched = IsResourceMatched(ai, index)

7c m n/m
If matched = false c8 n/m
index = index that first did not match + 1 c9 n/m

Source: own study.

Thus we have 5 () ().T n O n=

The last procedure (MatchActivity) is executed recursively for every successor.

Maximum number of such successors is n, so the total time complexity for this pro-
cedure will be multiplied by n. We denote this time by T6(n).

Thus we have 2
6 () ().T n O n=

The total execution time for the whole algorithm is the sum of the execution time
of two main procedures: GetResourceProfile and MatchActivity. We calculate this
total time as:

2
3 6() () () ().T n T n T n O n= + =

The above calculations show that our algorithm total time complexity is O(n2) in
the worst case.

4. Conclusions

The method described here is an algorithm that finds resource gaps in continuous
time projects schedule, determining a feasible project schedule. Its pessimistic time
complexity is O(n2), where n is the number of tasks used in our schedule. We as-
sumed one resource constraint for the whole project, but the algorithm could be easi-
ly extended to the case when there are various resource constraints in various peri-
ods. Further research is needed to find out for which project network types the algo-
rithm proposed here behaves better than O(n2) and better than other project levelling
heuristics known from the literature.

Tymon Marchwicki, Dorota Kuchta 64

Literature

Artigues C., Michelon P., Reusser S., Insertion techniques for static and dynamic resource-
-constrained project scheduling, “European Journal of Operational Research” 2003, no. 149,
p. 249-267.

Aufenanger M., Lipka N., Klopper B., Dangelmaier W., A knowledge-based Giffer-Thompson heuris-
tic for rescheduling job-shops, IEEE Symposium on Computational Intelligence in Scheduling,
Nashville, USA, 2009, p. 22-28.

Bandelloni M., Tucci M., Rinaldi R., Optimal resource leveling using non-serial dynamic program-
ming, “European Journal of Operational Research” 1994, no. 78(2), p. 162-177.

Brucker P., Drexl A., Möhring R., Neumann K., Pesch E., Resource-constrained project scheduling:
Notation, classification, models, and methods, “European Journal of Operational Research”
1999, no. 112, p. 3-41.

Chatourou H., Haouari M., A two-stage-priority-rule-based algorithm for robust resource-constrained
project scheduling, “Computers & Industrial Engineering” 2008, no. 55(1), p. 183-194.

Cheng M., Sugi M., Ota J., Yamamoto M., Ito H., Inoue K., Online job shop rescheduling with reac-
tion-diffusion equation on a graph, Intelligent Robots and Systems (IROS 2005), Edmonton,
Canada, 2005, p. 3219-3224.

Cormen T., Leiserson C., Rivest R., Stein C., Wprowadzenie do algorytmów, Wydawnictwa Nauko-
wo-Techniczne, Warszawa 2004.

Deckro R.F., Hebert J.E., Resource Constrained Project Management, “OMEGA International Jour-
nal of Management Science” 1989, no. 17(1), p. 69-79.

Gemmill D.D., Edwards M.L., Improving resource-constrained project schedules with look-ahead
techniques, “Project Management Journal” 1999, no. 30(3), p. 44-55;

Kuster J., Jannach D., Friedrich G., Local rescheduling – a novel approach for efficient response to
schedule disruptions, IEEE Symposium on computational intelligence in scheduling 2007, SCIS,
p. 79-86.

Liu S., Shih K., Construction rescheduling based on a manufacturing rescheduling framework, “Au-
tomation in Construction” 2009, no. 18 (2009), p. 715-723.

Pfeiffer A., Kadar B., Monostori L., Stability-oriented evaluation of rescheduling strategies by using
simulation, “Computers in Industry” 2007, no. 58, p. 630-643.

Rahman M., Iliopoulos C., Lee I., Mohamed M., Smyth W., Finding Patterns with Variable Length
Gaps or Don’t Cares, “Computing and Combinatorics, Lecture Notes in Computer Science”
2006, Volume 4112, p. 146-155.

Vieira G., Herrmann J., Lin E., Rescheduling manufacturing systems: a framework of strategies,
policies and methods, “Journal of Scheduling” 2003, no. 6, p. 39-62.

NOWA METODA NIWELACJI HARMONOGRAMU PROJEKTU

Streszczenie: W pracy rozważamy problem bilansowania zasobów w harmonogramu projektu.
Proponujemy nowy algorytm, oparty na dopasowywaniu wzorców. Wymagania dotyczące za-
sobów potrzebnych do wykonania zadania oraz wolne zasoby rozpatrujemy jako wzorce, które
należy dopasować w sytuacji modyfikacji harmonogramu. Prezentowany materiał składa się
z czterech części. W pierwszej części przedstawiamy matematyczne sformułowanie problemu
oraz przegląd literaturowy rozważanych zagadnień. W drugiej części opisujemy ideę algoryt-
mu (metody dopasowania wzorca zmodyfikowane tak, aby rozwiązać postawiony problem).

A new method of project schedule levelling

65

Opisane zostały dwie podprocedury składające się na algorytm. Pierwsza dotyczy budowy pro-
filu zasobów, druga to właściwa procedura dopasowywania. Metoda znajduje zastosowanie dla
harmonogramów z czasem reprezentowanym w sposób ciągły. W trzeciej części dowodzimy,
że złożoność obliczeniowa metody wynosi O(n2) w pesymistycznym przypadku. W ostatniej
części prezentujemy wnioski.

Słowa kluczowe: RCPSP, złożoność obliczeniowa, harmonogram z czasem ciągłym, bilan-
sowanie zasobów, szeregowanie.

