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Abstract. A simple extension of the well-known sequential sum-quota sampling scheme is 

proposed. The modification facilitates the simultaneous examination of several sampling 

units between checks of the cost limit. This may speed up the data gathering process while 

some degree of control over the variable sample cost is still retained. It is proposed to 

estimate the population total of the studied characteristic under such a sampling scheme 

using empirical estimates of inclusion probabilities evaluated in a simulation study. It 

appears that at least in some situations the empirical Horvitz-Thompson estimator is 

approximately unbiased. 
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1. Introduction 

The costs of carrying out the sample survey are usually divided into two 

broad categories, namely: fixed costs and variable costs (Groves, 1989, 

pp. 51). Fixed costs do not depend on the particular sample which is actually 

drawn while variable costs do depend on it. Variable costs arise due to 

various circumstances associated with the survey, such as the geographical 

localization of sample units, the extent of effort needed to gather the data 

from individual units or the effect of interviewer training, and they are 

generally harder to control. As an example let us consider the situation 

where the population under study consists of 100 units u1, ..., u100 such that 

per unit cost of gathering information is equal to 5 for u1, ..., u10, and it is 

equal to 2 for the remaining units. If the sample of ten elements is drawn 

from such a population using simple random sampling without replacement 

(SRSWOR), then the expected cost of examining all sample units is propor-

tional to the average of per-unit cost in the whole population and so it equals 

10 · 2.3 = 23. However, a much less lucky sample containing units u1, ..., u10 
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yields the total cost of 50, which is over two times greater than the expected 

cost. Obviously, such an extreme event is unlikely. However, even the 

theoretical possibility of a dramatic increase in the cost may render the 

analysis based on the assumption of equal inclusion probabilities questiona-

ble when the institution carrying out the survey does not have the capacity 

to handle such unexpected costs and would be forced to modify the sample 

or cancel the survey completely.  

The well known sum-quota sampling scheme (Pathak, 1976; Kremers, 

1985, 1986; Lehmann, Cassella, 1998) is dedicated to controlling the survey 

cost in unfavorable situations as described above. The scheme does not rely 

on the requirement of fixed sample size. Instead it is attempted to keep the 

total sample cost constrained. This is achieved by sequentially drawing 

individual units one by one to the sample with equal probabilities until the 

total cost of the sample reaches some predefined limit. Hence the total cost 

of the sample is guaranteed not to exceed the fixed budget of the survey. 

A significant drawback of the sum-quota procedure manifests itself when 

per-unit sampling costs are not known in advance. Then the procedure 

requires examining all units sequentially and to test if the cost limit has not 

been breached before every examination. This practically prevents the sim-

ultaneous examination of more than one unit. Hence the survey may become 

very time-consuming and its organization (e.g. division of field work) prob-

lematic. In this paper a modification of the sum-quota sampling scheme is 

considered. It makes possible the simultaneous examination of more than 

one population unit while still maintaining some control over the total cost 

of the sample. 

2. Sum-quota sampling scheme and its extension 

Let the finite population of size N be represented by a set of unit indices 

U = {1, ..., N}. Let c1, ..., cN represent individual per-unit costs of examining 

individual population units. Let some pre-determined maximum cost limit 

L be given. The original sum-quota sampling procedure of Pathak (1976) is 

carried out by drawing units randomly until for some – say M-th – unit the 

total cost of M units already drawn is greater or equals L. The M-th unit is 

discarded and preceding M-1 units form a sample. The joint cost of the 

sample is guaranteed not to exceed L. The sample size is random, and inclu-

sion probabilities may in general vary, so the sample is non-simple. The 

inclusions of any two distinct units in the sample are not necessarily inde-
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pendent events. Let us now propose the following extension of this original 

procedure: 

 K-sets of units are sequentially drawn from U using simple random 

sampling without replacement. 

 Each drawn k-set is removed from the population so that i-th k-set is 

drawn from among just N–k (i-1) units (i = 1, 2, ...). If N-k (i-1) < k for some i, 

then the whole population is taken as a sample (a trivial special case). 

 The procedure stops when the cumulative cost of all the elements in 

all drawn k-sets exceeds L. 

 The last k-set for which the limit L is exceeded is included in the 

sample. 

Denote the sample obtained this way by s. The proposed procedure dif-

fers from Pathak‟s algorithm in two ways. Firstly, it allows for the simulta-

neous examination of k units so that testing if the cost limit is breached may 

be done less frequently. Secondly, the last k-set for which the cost limit is 

breached is included in the sample, which eliminates the need to assess the 

cost of examining all units in the current k-set before they are sampled. The 

proposed procedure differs from the k-finite populations sampling scheme 

considered by Kremers, Robson (1987) because all the units within the k-set 

are examined and any particular unit may be drawn within many k-sets 

(sampling within k-sets is not independent). 

As a result of the introduced modifications the guarantee not to exceed 

the cost limit exactly is lost. However some control over the random total 

cost of the sample s given by: 

i

i s

C c


  

is retained. Let c(1), ..., c(N) be a sequence of individual costs sorted in de-

creasing order. The maximum excess LC   of sample cost over the limit 

L may be computed as:

 
max ( )

1,...,

i

i k

c


    

Moreover, since C is not lower than L, and consequently C  [L, L + max], 

the variance of C is not greater than:  

2

max
max ( ) .

4
V C
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When the population is large and its distribution not extremely skewed, both 

max and Vmax(C) may be reasonably small in comparison to the expected 

cost. It may also be possible to estimate both on the basis of external 

knowledge of the survey subject, and to set the limit L in such a way that 

sufficient funds are available to examine any possible sample. The first-

order inclusion probabilities defined as: 

( ) ( )i

s i

P i s P s


    

for i = 1, ..., N and characterizing the proposed procedure may vary. Their 

exact calculation from the definition is prevented by the combinatorial 

explosion effect even for rather modest sample sizes. The following exam-

ple presents their estimates for a certain specific situation. 

Example 1. Let N = 40 and ci = i for i = 1, ..., 40. Thus, per unit costs 

are distributed quite uniformly on the (1, 40) interval. Let L = 80. A total of 

100000 samples were drawn independently using both sum-quota procedure 

and the modified sum-quota algorithm with k = 2. The observed frequencies 

of each population unit appearing in the sample that may be treated as esti-

mates for first-order inclusion probabilities are shown in Figure 1. Some-

what surprisingly, inclusion probabilities for a modified scheme differ very 

modestly from each other and even tend to grow with increasing per-unit 

cost. This is in contrast with the original sum-quota sampling scheme where 

they clearly decrease when the per-unit cost increases. Let us also define a 

vector of sample membership indicators I = [I1, ..., IN] in such a way that  

0 for

1 for
i

i s
I

i s


 


 

for i = 1, ..., N. Its observed correlation matrix for the original scheme as 

well as for the modified scheme with k = 2 are shown in Figure 2. It appears 

that population units which are relatively cheap to examine corresponding 

sample membership indicators are positively correlated while for relatively 

expensive units correlation tends to be negative. This effect manifests for 

both schemes, and the correlation appears to be rather weak. 

In general for both schemes the sample size may vary. However its ex-

pectation which is equal to the sum of all first order inclusion probabilities 

is clearly greater for the modified scheme. This is not surprising since the 

modified scheme allows for drawing between one and k extra units above 

the cost limit L. Distributions of sample size are compared in the following 

example involving real data. 
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Fig. 1. First order inclusion probabilities characterizing sum-quota sampling 

and modified sum-quota sampling scheme with k = 2 for the same cost limit 

Source: author‟s own work. 

 

Fig. 2. Correlations cij = cor(Ii,Ij) between sample membership indicators for sum-quota 

sampling and modified sum-quota sampling scheme with k = 2 for the same cost limit 

Source: author‟s own work. 
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Example 2. Consider the data obtained in the agricultural census      

carried out in 1996 by the Polish Central Statistical Office (GUS). The data 

describes a population of 695 farms in the Gręboszów borough. Assume that 

the cost for obtaining data from any individual farm is roughly proportional 

to its area (this might be justified in the case of a survey involving the as-

sessment of geo-botanic assets, veterinary inspection of the cattle or some 

specialized examination of crops). The histogram of the farm area in the 

whole population is shown in Figure 3. The farm area exhibits a strong 

positive skew with a mean equal to 734.05 and a median equal to 651. De-

note G = c1 +...+ cN. A total of 10000 samples were drawn for L = 0.1 · G 

using original sum quota sampling scheme and a modified sum-quota sam-

pling with k = 2. The distribution of sample cost relative to G computed as 

λ = C/G is shown in Figure 4. 

 

Fig. 3. Distribution of farm area 

Source: author‟s own study. 

As expected, the observed values of λ for the original sum-quota sam-

pling scheme never exceed the desired value 0.1 corresponding to the limit L, 

while for the modified scheme they always do. However, absolute devia-

tions (in plus or in minus) from L never exceed 10% and in most cases they 

do not exceed 5% (for original scheme 99.83% of absolute deviations did 

not exceed 5%, for the modified scheme 98.12% of absolute deviations did 

not exceed 5%). The maximum possible deviation of max = 57163 corre-

sponding to λ = 0.1120 was never observed for the modified scheme. Hence 

one might conclude that both sampling schemes provide a reasonable degree 

of control over sampling costs. 
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Fig. 4. Distribution of sample cost under sum-quota sampling and modified sum-quota 

sampling scheme with k = 2 for the same cost limit 

Source: author‟s own study. 

3. Estimation based on empirical inclusion probabilities 

Let y1, ..., yN be fixed values of some population characteristic of inte-

rest. If first-order inclusion probabilities were known, one would easily 

estimate the population total t = y1+ ... + yN without design bias using the 

well-known Horvitz-Thompson statistic: 

ˆ .i
HT

i s i

y
t



  

When unknown, these probabilities may be estimated from a simulation 

experiment involving massive numbers of independently drawn sample 

replications s1, ..., sH. Let Xi represent the number of times i-th unit is   
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included in H sample replications. It was shown by Fattorini (2006) that the 

statistic: 

1
ˆ

1

i
i

X

H






 

is a consistent estimator for i. It may be used to form an empirical Horvitz-

-Thompson estimator for t in the form: 

ˆ
ˆ

i
EHT

i s i

y
t



 . 

The above statistic always takes finite values since 0ˆ i  for i = 1, ..., N 

and it is asymptotically unbiased for the population total t (in terms of H 

growing to infinity for all inclusion probability estimates).  

4. Simulation study 

To shed some light on the properties of EHTt̂ , a simulation study was 

carried out using the population from Example 2. A total of 180000 samples 

were drawn using modified sum-quota sampling scheme with k = 2, and 

L = λG with λ = 0.1, 0.2, 0.3, 0.4. For each sample simulation, experiments 

were independently executed for r = 100, 200, ... ,500 replications. Hence, 

4 · 5 · 180000 = 36 · 10
5
 sample replications were drawn in the whole study. 

Relative bias and relative root mean square error of empirical Horvitz-

-Thompson estimates for the variable representing total farm sales are 

shown in Figure 5. 

The observed relative bias seems to behave in a very irregular way with 

no systematic tendency. This is because bias values are very small in com-

parison to the limited accuracy of this simulation study. The absolute value 

of the observed relative bias was never greater than 5 · 10
–4

, which means 

that the bias was extremely small in comparison to the estimated parameter. 

The mean square error (MSE) of estimates decreases slowly when number 

H of the sample replications grows, and seems to stabilize around some 

positive value, dependent on the cost limit L. By itself, the cost limit seems 

to influence the MSE more strongly (the greater the cost limit, the lower the 

MSE). The share of squared bias in the MSE never exceeded 3.5 · 10
–5

, 

which indicates that the bias was negligible in comparison to the MSE. 
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Fig. 5. Relative bias and relative root mean square error for empirical Horvitz-Thompson 

estimator under modified sum-quota sampling scheme with k = 2 

Source: author‟s own study. 

5. Conclusions 

The proposed simple modification of the sum-quota sampling scheme 

facilitates a simultaneous examination of several units and may lead to a 

serious speeding-up of the data gathering process when individual per-unit 

costs of data acquisition are not known in advance. On the other hand, some 

degree of control over the total variable cost of the survey is still retained. 

The proposed method for estimating the finite population total through the 

Horvitz-Thompson formula using Fattorini‟s empirical estimates of inclu-

sion probabilities seems to provide an approximate design-unbiasedness at 

least in some situations, apart from asymptotic considerations. 
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