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Chapter 1

Introduction

1.1 Scope of the paper

The property of long-range dependence (or long memory) refers to a phenomenon in
which the events that are arbitrarily distant still influence each other. Mathematical
description of long memory is in terms of the rate of decay of correlations. If the
correlations are not absolutely summable, we say that the process exhibits long-
range dependence. It requires skill and experience to construct a process with the
corresponding correlations decaying to zero slower than exponentially. Most well
known stationary processes, such as ARMA models, finite-state Markov chains and
Gaussian Ornstein-Uhlenbeck processes lead to exponentially decaying correlations.
However, the recent developments in the field of long-range dependence show that
the methods of the fractional calculus (integrals and derivatives od fractional order)
seem to be very promising mathematical tool in constructing processes with long
memory.

In the presented thesis, we use the methods of fractional calculus in order to con-
struct stochastic processes with long memory. We concentrate our efforts on gener-
alizing the standard α-stable Ornstein-Uhlenbeck process. However, since the intro-
duced models have α-stable finite-dimensional distributions, the correlation function
is not defined. Therefore, we describe the dependence structure of the examined
α-stable processes in the language of other measures of dependence appropriate for
models with infinite variance, i.e. covariation and correlation cascade. We find the
fundamental relationship between these two measures of dependence and detect the
property of long memory in the introduced models.

The paper is organized as follows: In Chapter 2 we introduce the definition of
long-range dependence for processes with finite second moment. We discuss the moti-
vations standing behind the introduced definition. We present the classical Gaussian
processes exhibiting long memory and introduce the fractional generalizations of the
Gaussian Ornstein-Uhlenbeck process.

In Chapter 3 we extend the definition of long-range dependence to the mod-
els with infinite variance. We discuss the properties of the measure of dependence
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called codifference. We also introduce the recently developed concept of correlation
cascade. We show that the correlation cascade is a proper mathematical tool for
exploring the dependence structure of infinitely divisible processes. We prove the
revised version of the classical Maruyama’s mixing theorem for infinitely divisible
processes. This result is presented in article [17]. As a consequence, we describe the
ergodic properties (ergodicity, weak mixing, mixing) of such processes in the lan-
guage of correlation cascade. We establish the relationship between both discussed
measures of dependence.

In Chapter 4 we introduce four fractional generalizations of the α-stable Ornstein-
Uhlenbeck process. We derive precise formulas for the asymptotic behaviour of their
codifferences. We verify the property of long memory in the examined models. We
define the continuous-time counterpart of FARIMA (fractional autoregressive in-
tegrated moving average) time series and prove that it has exactly the same de-
pendence structure as FARIMA. Most of the result of Chapter 4 are presented in
articles [16, 18,19].

In Chapter 5 we use the correlation cascade to examine the dependence structure
of the fractional models introduced in Chapter 4. We detect the property of long-
range dependence in the language of correlation cascade and show that the results are
analogous to the ones for codifference. Using the results from Chapter 3, we verify
the ergodic properties of the discussed processes by proving that they are mixing.

The last Chapter summarizes the results of the thesis and presents brief conclu-
sions.
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Chapter 2

Long-range dependence in finite

variance case

2.1 Foundations

The concept of long-range dependence (or long memory) dates back to a series of
papers by Mandelbrot et. al. [20–22] that explained and proposed the appropriate
mathematical model for the unusual behaviour of the water levels in the Nile river.
Since then this concept has become particulary important in a wide range of appli-
cations starting with hydrology, ending with network traffic and finance. The typical
way of defining long memory in the time domain is in terms of the rate of decay of
the correlation function [2, 7].

Definition 1. A stationary process {X(t), t ∈ R} with finite second moment is said
to have long memory if the following condition holds

∞∑

n=0

|Corr(n)| = ∞. (2.1)

Here

Corr(n) =
E[X(n)X(0)] − E[X(n)]E[X(0)]√

V ar[X(n)]
√

V ar[X(0)]

is the correlation function. Conversely, the process X(t) is said to have short memory
if the series (2.1) is convergent. Thus, the long-range dependence can be fully char-
acterized by the asymptotic behaviour of the correlation function (or equivalently
covariance function).

To understand, why the definition of long-range dependence is based on the lack
of summability of correlations, let us consider the following example. Let {X(n),
n = 0, 1, 2, ...} be a centered stationary stochastic process with finite variance σ2

and correlations ρn. For the partial sums S(n) = X(0) + ... + X(n − 1) we have

V ar[S(n)] = σ2

(
n + 2

n−1∑

i=1

(n − i)ρi

)
.
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When the correlations ρi are summable, the dominated convergence theorem yields

lim
n→∞

V ar[S(n)]

n
= σ2

(
1 + 2

∞∑

i=1

ρi

)
.

Thus, the variance of the partial sums decays linearly fast. Once the correlations stop
being summable, the variance of the partial sums can grow faster than linearly and
the actual rate of increase of V ar[S(n)] is related to the rate of decay of correlation.
For instance, if

ρn ∼ n−d as n → ∞,

where 0 < d < 1, then one can verify that

V ar[S(n)] ∼ const · n2−d as n → ∞.

As we can see, when the correlations stop being summable, a phase transition in
the behaviour of the variance of the partial sums occurs. The rate of increase of
V ar[S(n)] depends on the parameter d, which characterizes the asymptotic behaviour
of ρn. Thus, the lack of summability of correlations causes the phase transition in the
asymptotic dependence structure of the process and influences its memory structure.

Another reason for defining long-range dependence in terms of the non-summability
of correlations is the existence of a threshold that separates short and long memory
for Fractional Gaussian Noise (FGN). To define FGN, we need to recall the definition
of the Fractional Brownian Motion (FBM).

Definition. A centered Gaussian stochastic process {BH(t), t ≥ 0}, 0 < H ≤ 1,
with the covariance function Cov(BH(s), BH(t)) given by

Cov(BH(s), BH(t)) =
1

2
[t2H + s2H − |t − s|2H ] (2.2)

is called FBM.
BH(t) is a stationary-increment, H-self-similar stochastic process. It has found a
wide range of applications in modelling various real-life phenomena exhibiting self-
similar scaling properties. For H = 1/2 the FBM becomes the standard Brownian
Motion (or Wiener Process). FBM was first used by Mandelbrot and Van Ness [21]
to give a probabilistic model consistent with an unusual behaviour of water levels in
the Nile River observed by Hurst [10]. BH(t) has the following, very useful, integral
representation

BH(t) = cH ·
∫

R

[
(t − s)

H−1/2
+ − (−s)

H−1/2
+

]
dB(s), (2.3)

where (x)+ := max{x, 0}, cH is the normalizing constant dependent only on H and
B(t) is the standard Brownian motion. Since BH(t) has stationary increments, we
can introduce the following stationary sequence
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Definition. An increment process {bH(n), n = 0, 1, 2, ...} defined as

bH(n) = BH(n + 1) − BH(n) (2.4)

is called FGN.
FGN is a stationary and centered Gaussian stochastic process. An immediate con-
clusion from (2.2) is that for H 6= 1/2

ρn = Corr(bH(0), bH(n)) ∼ 2H(2H − 1)n−2(1−H). (2.5)

Let us observe that for H = 1/2 the FGN is an i.i.d sequence (this follows from the
fact that the increments of the Brownian motion are independent and stationary),
which implies that the process has no memory. Therefore, the case H = 1/2 is
considered the threshold that separates short and long memory for the FGN. The
correlation function ρn of an FGN with H > 1/2 decays slower than 1/n and in this
case bH(n) is viewed as long-range dependent. Note that for H > 1/2 the correlations
ρn are positive and fulfill condition (2.1). For H < 1/2 the correlations ρn decay
faster than 1/n and the process bH(n) is said to have short memory. Note that in
this case the correlations are negative and summable.

The above considerations clearly show that the lack of summability of correla-
tions strongly influences the asymptotic dependence structure of stationary processes.
Therefore, the definition of long memory in terms of the rate of decay of correlations
is justifiable and well-posed.

2.2 Gaussian fractional Ornstein-Uhlenbeck processes

The classical Gaussian Ornstein-Uhlenbeck (O-U) process {Y (t), t ∈ R} is one of the
most well known and explored stationary stochastic processes. It can be equivalently
defined in the three following ways:

(i) as the centered Gaussian process with the correlation function given by

Corr[Y (s), Y (t)] = exp{−λ|s − t|}, λ > 0,

(ii) as the Lamperti transformation [4] of the classical Brownian motion B(t), i.e.

Y (t) = e−λtB(e2λt),

Recall that the Lamperti transformation provides one-to-one correspondence
between self-similar and stationary processes.

(iii) as the stationary solution of the Langevin equation

dY (t)

dt
+ λY (t) = b(t), (2.6)

where b(t) is the Gaussian white noise, heuristically b(t) = dB(t)/dt.
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It is worth mentioning that the O-U process has the following, very useful, moving-
average integral representation

Y (t) =

∫ t

−∞
e−λ(t−s)dB(s). (2.7)

Since the correlation function of the O-U process decays exponentially, condition
(2.1) is not fulfilled. Thus, Y (t) is a short memory process. This is not surprising,
since Y (t) is Markovian. The exponential decay of correlation is typical for most well
known stationary processes. It is enough to say that all ARMA models, GARCH
time series and finite-state Markov chains lead to exponentially decaying correla-
tions. A process with correlations decaying slower than exponentially is, therefore,
unusual. It requires a lot of skill to construct a stationary process with the corre-
sponding correlations decaying to zero slower than exponentially. Therefore, it is
of great interest to develop an approach, which will let us construct processes with
non-summable correlations. A prominent example of such process is the FGN, de-
fined through the increments of the FBM (see (2.4)). Let us note that the FBM can
be viewed as the fractional generalization of the standard Brownian motion. Ad-
ditionally, such fractional generalization results in a transition from a process with
no memory (i.i.d sequence of increments of the Brownian motion) to a process with
long memory (FGN). Therefore, it promises well to check if a similar transition from
short to long memory process occurs, when considering fractional generalizations of
the O-U process.

The first fractional generalization of the O-U process Y (t) is obtained in the
following way. Since Y (t) can be defined as the Lamperti transformation of the
Brownian motion (see definition (ii)), the fractional O-U process of the first kind
{Y1(t), t ∈ R} is introduced as the Lamperti transformation of the FBM, i.e.

Y1(t) = e−tHBH(et), 0 < H ≤ 1. (2.8)

Y1(t) is a stationary, centered Gaussian process. For H = 1/2 it becomes the stan-
dard O-U process. The dependence structure of Y1(t) was studied by Cheridito
et.al [6]. The authors showed that the covariance function of Y1(t) satisfies

Cov(Y1(0), Y1(t)) ∼ cH · e−t(H∧(1−H))

as t → ∞. Here cH is the appropriate constant and (x∧ y) := min{x; y}. Therefore,
the correlations of Y1(t) also decay exponentially, which implies that the first con-
sidered fractional Ornstein-Uhlenbeck process does not have long-range dependence
property.

One can also consider the finite-memory part of BH(t) given by the following
Riemann-Liouville fractional integral (see [28])

B̃H(t) = Γ(H + 1/2)−1

∫ t

0
(t − s)H−1/2dB(s), t > 0, H > 0. (2.9)
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Here Γ(·) is the gamma function. The process B̃H(t) is called the finite-memory
FBM [14,23]. It is clearly H-self-similar, but unlike BH(t), it does not have station-
ary increments. The Lamperti transformation of B̃H(t) gives the second fractional
generalization of the O-U process

Y2(t) = e−tHB̃H(et), t ∈ R. (2.10)

However, as shown in [14], the correlations of Y2(t) also decay exponentially, thus
the process has short memory.

The next generalization {Y3(t), t ∈ R} is obtained by ’fractionalizing’ the Langevin
equation (2.6) in the following manner

(
d

dt
+ λ

)κ

Y3(t) = b(t), κ > 0 λ > 0. (2.11)

Here the operator
(

d
dt + λ

)κ
is the so-called modified Bessel derivative (see Sec.4.3

and [28] for more details). Note that for κ = 1 the above equation becomes the
standard Langevin equation and its stationary solution is the O-U process. To solve
equation (2.11), we apply the standard Fourier transform techniques. Hence, we
obtain

Y3(t) = Γ(κ)−1
∫ t

−∞
(t − s)κ−1e−λ(t−s)dB(s). (2.12)

For κ > 1/2 the stochastic integral is well defined in the sense of convergence in
probability and the process Y3(t) is properly defined. The covariance function of
Y3(t) satisfies

Cov(Y3(0), Y3(t)) =
1

Γ2(κ)

∫ ∞

0
sκ−1e−λs(s + t)κ−1e−λ(t+s)ds.

Thus, from the dominated convergence theorem, we immediately obtain that the
covariance function decays exponentially. As a consequence, we get that Y3(t) is also
a short memory process.

The last generalization {Y4(t), t ∈ R} is obtained by replacing the Gaussian

white noise b(t) in (2.6) with the fractional noise bH(t). Formally, bH(t) = dBH(t)
dt .

Thus, the process Y4(t) is defined as the stationary solution of the following fractional
Langevin equation

dY4(t)

dt
+ λY4(t) = bH(t). (2.13)

The above equation can be rewritten in the equivalent, perhaps more convenient,
form

dY4(t) = −λY4(t)dt + dBH(t).
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Obviously, for H = 1/2 it becomes the standard Langevin equation. As shown in [6],
the unique stationary solution of (2.13) has the form

Y4(t) =

∫ t

−∞
e−λ(t−s)dBH(s), (2.14)

where the stochastic integral is understood as the Riemann-Stieltjes integral. In [6],
the authors show that the covariance function of Y4(t) satisfies

Cov(Y4(0), Y4(t)) ∼ dHt−2(1−H)

as t → ∞. Here dH is the appropriate non-zero constant. Therefore, for H > 1/2
the correlations are not summable and the process has long memory. Note that the
asymptotic behaviour of the covariance function of Y4(t) is analogous to the behaviour
of the correlations of the FGN. We can, therefore, conclude that the long memory of
the increments of BH(t) transfers to the solution of the fractional Langevin equation
(2.13).

As we can see, only the last fractional generalization of the O-U process resulted in
a process with long memory, which confirms the fact that the faster than exponential
decay of correlations is ’unusual’. Let us note that the presented considerations
were limited only to the Gaussian distributions. In what follows, we extend our
investigations concerning the notion of long-range dependence to the more general
case of α-stable distributions.
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Chapter 3

Long-range dependence in infinite

variance case

3.1 Codifference

Historically, long-range dependence is measured in terms of summability of correla-
tions. This approach was introduced and discussed in details in the previous chap-
ter. However, the situation becomes more complicated, while considering processes
with infinite variance, in particular, processes with α-stable marginal distributions,
0 < α < 2 (see [11, 29]). In α-stable case, the correlations can no longer be cal-
culated and the definition of long memory has to be reformulated. Since there are
no correlations to look at, one has to look at the substitute measure of dependence.
The first thought that comes to mind, while searching for a measure of dependence
for α-stable distributions, is about codifference. It is defined in the following way:

Definition ( [29]). The codifference τX,Y of two jointly α-stable random variables
X and Y equals

τX,Y = lnEei(X−Y ) − lnEeiX − lnEe−iY . (3.1)

The codifference shares the following important properties:

• It is always well-defined, since the definition of τX,Y is based on the character-
istic functions of α-stable random variables X and Y .

• When α = 2, the codifference reduces to the covariance Cov(X, Y ).

• If the random variables X and Y are symmetric, then τX,Y = τY,X .

• If X and Y are independent, then τX,Y = 0. Conversely, if τX,Y = 0 and
0 < α < 1, then X and Y are independent. When 1 ≤ α < 2, τX,Y = 0 does
not imply that X and Y are independent (see [29]).
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• Let (X, Y ) and (X ′, Y ′) be two symmetric α-stable random vectors and let all
random variables X, X ′, Y, Y ′ have the same scale parameters. Then the
following inequality holds [29]: If

τX,Y ≤ τX′,Y ′ ,

then for every c > 0 we have

P{|X − Y | > c} ≥ P{|X ′ − Y ′| > c}.

The above inequality has the following interpretation: the random variables X ′

and Y ′ are less likely to differ than X and Y , thus they are more dependent.
Therefore, the larger τ , the ’greater’ the dependence.

The above properties confirm that the codifference is the appropriate mathemat-
ical tool for measuring the dependence between the α-stable random variables. In
what follows, we will be mostly interested in investigating the asymptotic behaviour
of the function

τ(t) := τY (0),Y (t), (3.2)

where {Y (t), t ∈ R} is a stationary α-stable process. It is worth noticing that τ(t)
tends to zero as t → ∞, if the process Y (t) is a symmetric α-stable moving average,
i.e., a process of the form

Y (t) =

∫

R

f(t − s)M(ds),

where M is a symmetric α-stable random measure with Lebesque control measure,
while f is measurable and α-integrable. Surprisingly, τ(t) carries enough informa-
tion to detect the chaotic properties (ergodicity, mixing) for the class of stationary
infinitely divisible processes (see next section and [26,27] for the details).

Now, as a straightforward extension of (2.1), we introduce the following definition
of long memory in the α-stable case

Definition 2. A stationary α-stable process {Y (t), t ∈ R} is said to have long
memory if the following condition holds

∞∑

n=0

|τ(n)| = ∞. (3.3)

The above definition indicates that long-range dependence in the α-stable case
will be measured in terms of the rate of decay of the codifference. Obviously, when
α = 2 the definitions (2.1) and (3.3) are equivalent.

In the literature one can also find the quantity parametrized by θ1, θ2 ∈ R, which
is closely related to the codifference τ(t). It is defined as [29]

I(θ1; θ2; t) = − lnE [exp{i(θ1Y (t) + θ2Y (0))}]
+ lnE [exp{iθ1Y (t)}] + lnE [exp{iθ2Y (0)}] . (3.4)
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We call it the generalized codifference, since τ(t) = −I(1;−1; t). The presence of
the parameters θ1 and θ2 in the definition of I(·) has the following advantage: con-
sider two stationary α-stable stochastic processes Y and Y ′. In order to show that
the two processes are different, we examine the asymptotic behaviour of the corre-
sponding measures of dependence IY (θ1; θ2; t) and IY ′(θ1; θ2; t). If the measures are
not asymptotically equivalent at least for one specific choice of θ1 and θ2, then the
processes Y and Y ′ must be different.

The generalized codifference I(·) (to be precise, the function asymptotically
equivalent to I(·)) was used in [13] for distinguishing between the asymptotic struc-
tures of the moving average, sub-Gaussian and real harmonizable processes. It was
also employed in [1] to explore the dependence structure of the fractional α-stable
noise.

Recall that in the Gaussian case the classical example of the long-memory process
was the FGN (2.4), defined as the increment process of the FBM. The extension of
the FBM to the α-stable case is called the fractional α-stable motion and defined as:

Definition Let 0 < α ≤ 2, 0 < H < 1, H 6= 1/α and a, b ∈ R, |a| + |b| > 0. Then
the process

Lα,H(t) =

∫ ∞

−∞

(
a
[
(t − s)

H−1/α
+ − (−s)

H−1/α
+

]

+b
[
(t − s)

H−1/α
− − (−s)

H−1/α
−

])
Lα(ds), t ∈ R, (3.5)

is called fractional α-stable motion.
Here x+ = max{x, 0}, x− = max{−x, 0} and Lα(s) is the standard symmetric α-
stable random measure on R with control measure as Lebesque measure, [11, 29].
Lα,H(t) is a H-self-similar, stationary-increment process [32]. For α = 2 it reduces
to the fractional Brownian motion.

Now, the fractional α-stable noise lα,H is a stationary sequence defined as the
increment process of Lα,H , i.e.

lα,H(n) = Lα,H(n + 1) − Lα,H(n), n = 0, 1, ... . (3.6)

For α = 2 the process lα,H reduces to the FGN. The following result was proved
in [1]

Theorem. ( [1]) The generalized codifference of lα,H satisfies

(i) If either 0 < α ≤ 1, 0 < H < 1 or 1 < α < 2, 1 − 1
α(α−1) < H < 1, H 6= 1/α

then
I(θ1; θ2, n) ∼ B(θ1; θ2)n

αH−α

as n → ∞.

(ii) If 1 < α < 2, 0 < H < 1 − 1
α(α−1)1 then

I(θ1; θ2, n) ∼ C(θ1; θ2)n
H−1/α−1
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as n → ∞.

Here B(θ1; θ2) and C(θ1; θ2) are the appropriate non-zero constants.

As a consequence, we get

Corollary 1. For H > 1/α the process lα,H has long memory in the sense of (3.3).

Note that for α = 2 the above result reduces to the one obtained for the FGN
(see (2.5)).

In the next chapter we investigate the dependence structure of the fractional α-
stable O-U processes and compare the results to the ones known from the Gaussian
case. But first, let us introduce the recently developed concept of correlation cascade
– an alternative measure of dependence for α-stable processes..

3.2 Correlation Cascade

3.2.1 Definition and basic properties

Let us consider an infinitely divisible (i.d.), [30], stochastic process {Y (t), t ∈ R}
with the following integral representation

Y (t) =

∫

X
K(t, x)N(dx). (3.7)

Here N is an independently scattered i.d. random measure on some measurable
space X with a control measure m, such that for every m-finite set A ⊆ X we have
(Lévy-Khinchin formula)

E exp[izN(A)] = exp
[
m(A)

{
izµ − 1

2
σ2z2 +

∫

R

(eizx − 1 − izx1(|x| < 1))Q(dx)
}]

.

The random measure N is fully determined by the control measure m, the Lévy
measure Q, the variance of the Gaussian part σ2 and the drift parameter µ ∈ R.
Additionally, the kernel K(t, x) is assumed to take only nonnegative values.

Since, in general, the second moment and thus the correlation function for the
process Y (t) may be infinite, the key problem is, how to describe mathematically
the underlying dependence structure of Y (t). In the recent paper by Eliazar and
Klafter [8], authors introduce a new concept of Correlation Cascade, which is a
promising tool for exploiting the properties of the Poissonian part of Y (t) and the
dependence structure of this stochastic process. They proceed in the following way:
First, let us define the Poissonian tail-rate function Λ of the Lévy measure Q as

Λ(l) =

∫

|x|>l
Q(dx), l > 0, (3.8)

Now, we introduce
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Definition 3. For t1, ..., tn ∈ R and l > 0 the function

Cl(t1, ..., tn) =

∫

X
Λ
( l

min{K(t1, x), ..., K(tn, x)}
)
m(dx), (3.9)

is called the Correlation Cascade.

As shown in [8], with the help of the function Cl(t1, ..., tn) one can determine the
distributional properties of the Poissonian part of Y (t) and describe the correlation-
like structure of the process. Recall that the i.d. random measure N in (3.7) admits
the following stochastic representation (Lévy-Ito formula)

N(B) = µ · m(B) + NG(B) +

∫

B

∫

|y|>1
yNP (dx × dy)

+

∫

B

∫

|y|≤1
y (NP (dx × dy) − mP (dx × dy)) , (3.10)

where NG(B) is a Gaussian random variable with mean zero and standard deviation
equal to σ · m(B), while NP is the Poisson point process with the control measure
mP = m × Q. Now, for l > 0, let us introduce the random variable

Πl(t) =

∫

X

∫

|y|>0
1{|yK(t,x)|>l}NP (dx × dy). (3.11)

Πl(t) has the following interpretation: it is the number of elements of the set
{yK(t, x) : (x, y) is the atom of the Poisson point process NP } whose absolute value
is greater than the level l. It is of great importance to know the relationship between
the random variables Πl(t) and the correlation cascade Cl(·). As shown in [8], the
following formulas, which explain the meaning of Cl(·), hold true

E[Πl(t)] = Cl(t),

Cov[Πl(t1), Πl(t2)] = Cl(t1, t2),

Corr[Πl(t1), Πl(t2)] =
Cl(t1, t2)√
Cl(t1)Cl(t2)

(3.12)

In what follows, we establish the relationship between Cl(t1, ..., tn) and the cor-
responding Lévy measure νt1,...,tn of the i.d. random vector (Y (t1), ..., Y (tn)). The
result will allow us to give a new meaning to the function Cl(t1, ..., tn) and to recog-
nize it as an appropriate instrument for characterizing the dependence structure of
Y (t). We prove the following result

Proposition 1. Let Y (t) be of the form (3.7) and let νt1,...,tn be the Lévy measure
of the i.d. random vector (Y (t1), ..., Y (tn)). Then, the corresponding function Cl(·)
given in (3.9) satisfies

Cl(t1, ..., tn) = νt1,...,tn ({(x1, ..., xn) : min{|x1|, ..., |xn|} > l}) . (3.13)
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Proof. Using the relationship between the measures Q and νt1,...,tn (see [25] for
details), we obtain

Cl(t1, ..., tn) =

∫

X
Λ
( l

min{K(t1, x), ..., K(tn, x)}
)
m(dx) =

=

∫

X

∫

R

1

(
|y| >

l

min{K(t1, x), ..., K(tn, x)}

)
Q(dy)m(dx) =

=

∫

X

∫

R

1 (min{|yK(t1, x)|, ..., |yK(tn, x)|} > l)Q(dy)m(dx) =

=

∫

Rn

1 (min{|x1|, ..., |xn|} > l) νt1,...,tn(dx1, ..., dxn) =

= νt1,...,tn ({(x1, ..., xn) : min{|x1|, ..., |xn|} > l}) . �

Since, for an i.d. vector Y = (Y (t1), ..., Y (tn)), the independence of the coordinates
Y (t1), ..., Y (tn) is equivalent to the fact that the Lévy measure of Y is concentrated
on the axes, the above result gives a new meaning to the function Cl. Namely,
Cl(t1, ..., tn) indicates, how much mass of the measure νt1,...,tn is concentrated be-
yond the axes and their l-surrounding (here by l-surrounding we mean the set
{(x1, ..., xn) : min{|x1|, ..., |xn|} ≤ l}). In other words, the function Cl(t1, ..., tn)
tells us, how dependent the coordinates of the vector (Y(t1), ...,Y(tn)) are.
Therefore, Cl(t1, ..., tn) can be considered an appropriate measure of dependence for
the Poissonian part of the i.d. process Y (t). In particular, the function Cl(t1, t2) can
serve as an analogue of the covariance and the function

rl(t1, t2) :=
Cl(t1, t2)√
Cl(t1)Cl(t2)

(3.14)

can play the role of the correlation coefficient.
Let us now consider the case, when the random measure N is α-stable. In such

setting, the Lévy measure Q in the Lévy-Khinchin representation has the form

Q(dx) =
c1

x1+α
1(0,∞)(x)dx +

c2

|x|1+α
1(−∞,0)(x)dx,

where c1 and c2 are the appropriate constants. Consequently, the tail function is
given by

Λ(l) = C · l−α

and for the correlation cascade we get

Cl(t1, ..., tn) = C · l−α

∫

X
min{K(t1, x), ..., K(tn, x)}αm(dx),

where C is the appropriate constant. From the last formula we get that the correlation-
like function rl(t1, t2) given by (3.14) does not depend on the parameter l. We have

r(t1, t2) := rl(t1, t2) =

∫
X min{K(t1, x), K(t2, x)}αm(dx)√∫

X K(t1, x)αm(dx)
∫
X K(t2, x)αm(dx)

. (3.15)
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The function r(t1, t2) plays the role of the correlation in the α-stable case and mea-
sures the dependence between the random variables Y (t1) and Y (t2). Now, let us
consider a stationary α-stable stochastic process {Y (t), t ∈ R}. Since Y (t) is sta-
tionary, r(τ, τ + t) does not depend on τ . Therefore, the function

r(t) := r(τ, τ + t) =

∫
X min{K(t, x), K(0, x)}αm(dx)∫

X K(0, x)αm(dx)
(3.16)

can be considered a correlation-like measure of dependence for stationary α-stable
process Y (t). The immediate consequence is the following, alternative to (3.3), defi-
nition of long memory in α-stable case

Definition 4. A stationary α-stable process {Y (t), t ∈ R} is said to have long
memory in terms of the correlation cascade if the following condition holds

∞∑

n=0

|r(n)| = ∞, (3.17)

where r(·) is given by (3.16).

Note that

r(t) =
Cl(0, t)

C · l−α
∫
X K(0, x)αm(dx)

,

thus, in order to verify the long memory property of Y (t), it is enough to examine
the asymptotic behaviour of Cl(0, t).

In the previous section, we discussed the dependence structure and the property
of long memory for the fractional α-stable noise lα,H (3.6) in terms of the codifference.
It is of great interest to verify if the process lα,H displays long-range dependence also
in the sense of (3.17). As shown in [8], the correlation-like function r(t) corresponding
to lα,H satisfies

r(t) ∼ tαH−α

as t → ∞. As a consequence, we obtain

Corollary 2. For H > 1/α the process lα,H(t) has long memory in the sense of
(3.17).

Note that this result is analogous to the one for codifference (compare with
Corrolary 1). However, the question arises, if the similar analogy can be observed
for the fractional O-U processes. This issue will be discussed in details in chapters 4
and 5.

Let us emphasize that the concept of long memory in the non-Gaussian world is
still not well-formulated and is a subject of many extensive research. Therefore, the
introduced definitions of long-range dependence and the obtained results should be
viewed as one possible approach to long memory for processes with infinite variance.

In the next section we describe the ergodic properties of i.d. processes in the
language of correlation cascade Cl(0, t). As a consequence, we obtain the relationship
between Cl(0, t) and the codifference τ(t).
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3.2.2 Ergodicity, weak mixing and mixing

In this section we prove the revised version of the classical Maruyama’s mixing the-
orem [24]. As a consequence, we describe the ergodic properties (ergodicity, weak
mixing, mixing) of i.d. processes in the language of correlation cascade. We use the
obtained results to establish the relationship between both previously introduced
measures of dependence – codifference and correlation cascade.

Be begin with recalling some basic facts from ergodic theory. Let {Y (t), t ∈ R}
be a stationary, i.d. stochastic process defined on the canonical space (RR,F , P ).
The process Y (t) is said to be
ergodic if

1

T

∫ T

0
P (A ∩ StB)dt −→ P (A)P (B) as T → ∞, (3.18)

weakly mixing if

1

T

∫ T

0
|P (A ∩ StB) − P (A)P (B)|dt −→ 0 as T → ∞, (3.19)

mixing if

P (A ∩ StB) −→ P (A)P (B) as t → ∞, (3.20)

for every A, B ∈ F , where (St) is a group of shift transformations on R
R.

The description of the mixing property for stationary i.d. processes in terms of
their Lévy characteristics dates back to the fundamental paper by Maruyama [24].
He proved the following result

Theorem. ( [24]) An i.d. stationary process Y (t) is mixing if and only if
(C1) the covariance function Cov(t) of its Gaussian part converges to 0 as t → ∞,
(C2) limt→∞ ν0t(|xy| > δ) = 0 for every δ > 0, and
(C3) limt→∞

∫
0<x2+y2≤1 xyν0t(dx, dy) = 0,

where ν0t is the Lévy measure of (Y (0), Y (t)).

The above result was crucial for further scientific research on the subject of
ergodic properties of stochastic processes, and has been extensively exploited by
many authors (see, eg. [9, 11, 26] ). In what follows, we show that condition (C2)
implies (C3), and therefore the necessary and sufficient conditions for an i.d. process
to be mixing can be reduced only to (C1) and (C2).

Lemma 1. Assume that limt→∞ ν0t(|xy| > δ) = 0 for every δ > 0. Then, we get

lim
t→∞

∫

0<x2+y2≤1

xyν0t(dx, dy) = 0.
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Proof. First, let us notice that the assumption in the lemma implies that

lim
t→∞

ν0t(|x| ∧ |y| > l) = 0 for every l > 0, (3.21)

where a ∧ b = min{a, b}. Indeed, putting δ = l2, we get

ν0t(|x| ∧ |y| > l) ≤ ν0t(|xy| > δ) −→ 0

as t → ∞.
Now, fix ǫ > 0, put Bδ = {x2 + y2 ≤ δ2} and Rδ = {δ2 < x2 + y2 ≤ 1}. Then,

we obtain
∫

0<x2+y2≤1

|xy|ν0t(dx, dy) =

∫

Bδ

|xy|ν0t(dx, dy) +

∫

Rδ

|xy|ν0t(dx, dy) =: I1 + I2.

We will estimate both terms I1 and I2 separately.
Taking advantage of stationarity of ν0t, we get for the first term

I1 ≤ 1

2

∫

Bδ

x2ν0t(dx, dy) +
1

2

∫

Bδ

y2ν0t(dx, dy) ≤

≤ 1

2

∫

{x≤δ2}

x2ν0t(dx, dy) +
1

2

∫

{y2≤δ2}

y2ν0t(dx, dy) =

∫

|x|≤δ

x2ν0(dx).

Thus, for some appropriately small δ0 we have

I1 =

∫

Bδ0

|xy|ν0t(dx, dy) ≤ ǫ/2. (3.22)

For the next term, put l0 = min{ δ0
2 , ǫ

8q}, with q = ν0(|x| > δ0
2 ) < ∞. Then, for

C = Rδ0 ∩ {|x| ∧ |y| > l0} we obtain

I2 =

∫

C

|xy|ν0t(dx, dy) +

∫

Rδ0
\C

|xy|ν0t(dx, dy) ≤ ν0t(C) +

∫

Rδ0
\C

ǫ

8q
ν0t(dx, dy) ≤

≤ ν0t(|x| ∧ |y| > l0) +
ǫ

8q
ν0t(Rδ0 \ C) ≤

≤ ν0t(|x| ∧ |y| > l0) +
ǫ

8q
ν0t

(
{|x| >

δ0

2
} ∪ {|y| >

δ0

2
}
)

≤

≤ ν0t(|x| ∧ |y| > l0) +
ǫ

8q
ν0t

(
|x| >

δ0

2

)
+

ǫ

8q
ν0t

(
|y| >

δ0

2

)
=

= ν0t(|x| ∧ |y| > l0) +
ǫ

4q
ν0

(
|x| >

δ0

2

)
= ν0t(|x| ∧ |y| > l0) +

ǫ

4
.
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Using (3.21), for large enough t we have ν0t(|x| ∧ |y| > l0) < ǫ
4 , and therefore

I2 =

∫

Rδ0

|xy|ν0t(dx, dy) <
ǫ

2
. (3.23)

Finally, combining (4.13) and (3.23), and letting ǫ ց 0, we obtain the desired result.
�

The above result allows us to formulate the following revised version of Maruyama’s
mixing theorem

Theorem 1. An i.d. stationary process Y (t) is mixing if and only if the following
two conditions hold
(C1) the covariance function Cov(t) of its Gaussian part converges to 0 as t → ∞,
and
(C2) limt→∞ ν0t(|xy| > δ) = 0 for every δ > 0,
where ν0t is the Lévy measure of (Y (0), Y (t).

Proof. Necessity follows directly from the Maruyama’s theorem. For sufficiency,
let us notice, that from Lemma 1 we see that condition (C2) implies (C3). Thus, the
process must be mixing. �

Remark. Condition (C2) says that the Lévy measure ν0t is asymptotically con-
centrated on the axes, which for an i.d distribution is equivalent to the asymptotic
independence of the Poissonian parts of Y (0) and Y (t). Therefore, conditions (C1)
and (C2) yield the asymptotic independence of Y (0) and Y (t), which, in view of
definition (3.20), is the natural interpretation of mixing property.

To express the mixing property in the language of the previously introduced (3.9)
correlation cascade Cl(·), we prove the following lemma

Lemma 2. Let Y (t) be an i.d. process and let ν0t be the corresponding Lévy measure
of (Y (0), Y (t)). Then, the following two conditions are equivalent
(i) limt→∞ ν0t(|xy| > δ) = 0 for every δ > 0,
(ii) limt→∞ ν0t(min{|x|, |y|} > δ) = 0 for every δ > 0.

Proof. (i)⇒(ii)
We have

ν0t(min{|x|, |y|} > δ) ≤ ν0t(|xy| > δ2) −→ 0

as t → ∞.
(ii)⇒(i)
Fix δ > 0 and ǫ > 0. Denote by ν0 the Lévy measure of Y (0). Then, there exist
n ∈ N, such that

ν0(|x| > n) <
ǫ

4
.

Taking advantage of stationarity of Y (t) we get

ν0t(|xy| > δ) ≤ ν0t(min{|x|, |y|} > δ/n) + ν0t(|x| > n ∨ |y| > n) ≤
≤ ν0t(min{|x|, |y|} > δ/n) + ν0(|x| > n) + Qt(|y| > n) =

= ν0t(min{|x|, |y|} > δ/n) + 2ν0(|x| > n) ≤ ǫ/2 + ǫ/2 = ǫ
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for appropriately large t. Thus, we obtain ν0t(|xy| > δ) −→ 0 as t → ∞. �

As a consequence, we have the following result

Corollary 3. An i.d. stationary process Y (t) is mixing if and only if the following
two conditions hold
(C1) the covariance function Cov(t) of its Gaussian part converges to 0 as t → ∞,
(C2) limt→∞ ν0t(min{|x|, |y|} > δ) = 0 for every δ > 0, where ν0t is the Lévy measure
of (Y (0), Y (t)).

Proof. Combination of Theorem 1 and Lemma 2 yields the desired result. �

In what follows, we describe the ergodic properties for the i.d stochastic processes
Y (t) of the form (3.7) in the language of the function Cl(·). From now on to the end
of the paper we assume for simplicity that the process Y (t) has no Gaussian part.

Let us prove the following theorem

Theorem 2. Let Y (t) be a stationary i.d. process of the form (3.7). Then Y (t) is
mixing iff the corresponding function Cl satisfies

lim
t→∞

Cl(0, t) = 0

for every l > 0.

Proof. From Proposition 1 we have that

Cl(0, t) = ν0t(min{|x|, |y|} > l).

Since the Gaussian part of Y (t) is equal to zero, so is its covariance function. Thus,
from Corollary 3 we obtain that Y (t) is mixing iff limt→∞ Cl(0, t) = 0 for every l > 0.
�

Example. Let us consider the α-stable moving-average process

Y (t) =

∫ t

−∞
f(t − x)Lα(dx).

Here f is assumed to be nonnegative, monotonically decreasing function and Lα(x)
is the standard symmetric α-stable random measure on R with control measure m.
In this case the function Cl has the form

Cl(0, t) = const · l−α

∫ ∞

t
|f(y)|αm(dy). (3.24)

Since f must be α-integrable with respect to the measure m, we get that limt→∞ Cl(0, t) =
0 for every l > 0. It implies that every α-stable moving average is mixing.

Recall that the function

τ(t) = log Eei(Y (t)−Y (0)) − log EeiY (t) − log Ee−iY (0),

called codifference (3.2), is an alternative measure of dependence for i.d. processes.
As shown in [26], it carries enough information to detect ergodic properties of Y (t).
The next result establishes the relationship between the asymptotic behaviour of τ(t)
and Cl(0, t).
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Theorem 3. Let Y (t) be a stationary i.d. process of the form (3.7). If the Lévy
measure ν0 of Y (0) has no atoms in 2πZ, then the following two conditions are
equivalent
(i) limt→∞ Cl(0, t) = 0 for every l > 0,
(ii) limt→∞ τ(t) = 0.

Proof. Theorem 2 yields the equivalence of (i) and mixing. From [26], Theorem
1, we get that condition (ii) is equivalent to mixing in case when the Lévy measure
ν0 of Y (0) has no atoms in 2πZ. Thus, conditions (i) and (ii) must be equivalent. �

In what follows, we show, how to modify the obtained results in order to charac-
terize ergodicity and weak mixing. Let us remind that for the class of i.d. stationary
processes these two properties are equivalent, [5].

As already discussed in [26], the Maruyama’s theorem and its revised version
(Theorem 1) carry over to the case of weak mixing if one replaces the convergence
on the whole set R to the convergence on a subset of density one. Let us remind that
a set D ⊂ R+ is of density one if limC→∞ λ(D ∩ [0, C])/C = 1. Here λ denotes the
Lebesque measure. Thus, the version of Theorem 1 for weak mixing has the form

Theorem 4. An i.d. stationary process Y (t) is weakly mixing (ergodic) if and only
if for some set D of density one the following two conditions hold
(C1) the covariance function Cov(t) of its Gaussian part converges to 0 as t →
∞, t ∈ D,
(C2) limt→∞,t∈D ν0t(|xy| > δ) = 0 for every δ > 0, where ν0t is the Lévy measure of
(Y (0), Y (t).

Since the intersection of finite number of sets of density one is still the set of
density one, we can repeat the arguments of Lemma 2 and Theorem 2 restricted to
a set of density one. Hence, we obtain

Theorem 5. Let Y (t) be a stationary i.d. process of the form (3.7) with no Gaussian
part. Then Y (t) is weakly mixing (ergodic) iff for some set D of density one, the
corresponding function Cl satisfies

lim
t→∞, t∈D

Cl(0, t) = 0

for every l > 0.

Since, for a nonnegative and bounded function f : R+ → R and for a set D of
density one, the condition

lim
t→∞, t∈D

f(t) = 0

is equivalent to the following one

lim
T→∞

1

T

∫ T

0
f(u)du = 0,

hence, we obtain the following corollary
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Corollary 4. Let Y (t) be a stationary i.d. process of the form (3.7) with no Gaussian
part. Then Y (t) is weakly mixing (ergodic) iff for some set D of density one, the
corresponding function Cl satisfies

lim
t→∞

1

T

∫ T

0
Cl(0, t)dt = 0

for every l > 0.

Thus, the above results give the description of ergodicity weak mixing and mixing
in the language of the function Cl. They indicate that correlation cascade is an
appropriate mathematical tool for detecting ergodic properties of i.d. processes.
Moreover, Theorem 3 yields the relationship between both measures of dependence
Cl(0, t) and τ(t).

21



Chapter 4

Codifference and the dependence

structure

In Section 2.2, we discussed the properties and the presence of long range depen-
dence in four fractional generalizations of the classical Gaussian O-U process. In
this chapter, we extend these investigations to the more general α-stable case. We
introduce five stationary α-stable models and study their dependence structure in
the language of codifference.

Through the analogy to the Gaussian case (see Section 2.2), the α-stable O-U
process {Z(t), t ∈ R} can be equivalently defined as:

(a) the Lamperti transformation of the symmetric α-stable Lévy motion Lα(t),
0 < α ≤ 2 (see [11])

Z(t) = e−λtLα(eαλt) (4.1)

(b) the stationary solution of the α-stable Langevin equation

dZ(t)

dt
+ λZ(t) = lα(t), (4.2)

where lα(t) is the α-stable noise, i.e. lα(t) = dLα(t)/dt.

The integral representation of Z(t) is given by

Z(t) =

∫ t

−∞
e−λ(t−s)dLα(s), (4.3)

which immediately implies that Z(t) is stationary and Markovian. Moreover, it has
α-stable marginal distributions and for α = 2 we recover the classical Gaussian O-U
process. As shown in [29], the codifference of Z(t) decays exponentially. This result
is analogous to the one for correlations in the Gaussian case, and indicates that the
α-stable O-U process has short memory in the sense of (3.3).

In what follows, we define four fractional generalizations of Z(t), explore their
dependence structure and answer the question of long memory in these models.
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4.1 Type I fractional α-stable Ornstein-Uhlenbeck process

In this section we define the first generalization {Z1(t), t ∈ R} of the standard O-U
process. Z1(t) is the α-stable extension of the Gaussian process Y1(t), see (2.8).

Definition 5. Let Lα,H(t), 0 < α ≤ 2, 0 < H < 1, be the fractional α-stable motion
(3.5). Then, the process defined as the following Lamperti transformation

Z1(t) = e−tHLα,H(et). (4.4)

is called Type I fractional α-stable Ornstein-Uhlenbeck process.

In the next three theorems we give precise formulas for the asymptotic behaviour
of the generalized codifference I(θ1; θ2; t) introduced in (3.4). Next, we show that
similarly to the Gaussian case the process Z1(t) has short memory. In our consider-
ations, we exclude the two case θ1θ2 = 0, since then, trivially, I(θ1; θ2; t) = 0.

In the proofs we frequently use the following property ( [29], page 122)

E

[
exp

{
iθ

∫

B
f(x)Lα(dx)

}]
= exp

{
−|θ|α

∫

B
|f(x)|αdx

}
(4.5)

with B ⊂ R and f ∈ Lα((B), dx). We also take advantage of the two key inequalities
[15]:
For r, s ∈ R

||r + s|α − |r|α − |s|α| ≤
{

2|r|α if 0 < α ≤ 1
(α + 1)|r|α + α|r||s|α−1 if 1 < α ≤ 2.

(4.6)

Theorem 6. Let 0 < α < 1 and 0 < H < 1. Then the generalized codifference of
Z1(t) satisfies

I(θ1; θ2; t) ∼ Aα(θ1; θ2)e
−tαH(1−H)

as t → ∞, where

Aα(θ1; θ2) =

∫ ∞

0

{
| − θ1asH−1/α + θ2a(H − 1/α)sH−1/α−1|α

−|θ1asH−1/α|α − |θ2a(H − 1/α)sH−1/α−1|α
}

ds

+

∫ ∞

0

{
| − θ1bs

H−1/α + θ2b(1/α − H)sH−1/α−1|α

−|θ1bs
H−1/α|α − |θ2b(1/α − H)sH−1/α−1|α

}
ds. (4.7)

PROOF: We have Z1(t) = e−tHLα,H(et) =
∫∞
−∞ f(s, t)Lα(ds) with

f(s, t) = e−tHa
[
(et − s)

H−1/α
+ − (−s)

H−1/α
+

]
+ e−tHb

[
(et − s)

H−1/α
− − (−s)

H−1/α
−

]
.
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Taking advantage of (3.4) and (4.5) we obtain

I(θ1; θ2; t) =

∫ ∞

−∞
{|θ1f(s, t) + θ2f(s, 0)|α − |θ1f(s, t)|α − |θ2f(s, 0)|α}ds

=

∫ 0

−∞
... ds +

∫ 1

0
... ds +

∫ et

1
... ds +

∫ ∞

et

... ds

=: I1(t) + I2(t) + I3(t) + I4(t). (4.8)

In what follows, we estimate every Ij(t), j = 1, ..., 4, separately.
Let us begin with I1(t). After some standard calculations and by the change of

variables s → −etHs, we get

I1(t) = etαH2

∫ ∞

0
{|p(s, t) + q(s, t)|α − |p(s, t)|α − |q(s, t)|α}ds,

where

p(s, t) = e−tHθ1a[(et(1−H) + s)H−1/α − sH−1/α] and (4.9)

q(s, t) = θ2a[(e−tH + s)H−1/α − sH−1/α]. (4.10)

For fixed s ∈ (0,∞) we see that

etHp(s, t) −→ −θ1asH−1/α =: p∞(s)

as t → ∞. Using the mean-value theorem

f(r + s) − f(r) = s

∫ 1

0
f ′(r + us)du, (4.11)

where f is accordingly smooth, and the dominated convergence theorem, we obtain

etHq(s, t) = θ2a(H−1/α)

∫ 1

0
(s+ue−tH)H−1/α−1du −→ θ2a(H−1/α)sH−1/α−1 =: q∞(s)

as t → ∞. Consequently, for fixed s ∈ (0,∞)

etαH{|p(s, t) + q(s, t)|α − |p(s, t)|α − |q(s, t)|α} −→
{|p∞(s) + q∞(s)|α − |p∞(s)|α − |q∞(s)|α} (4.12)

as t → ∞. To apply the dominated convergence theorem, we use inequality (4.6)
together with the mean-value theorem and get

sup
t>1

etαH ||p(s, t) + q(s, t)|α − |p(s, t)|α − |q(s, t)|α|

≤ sup
t>1

1(0,1)(s)e
tαH ||p(s, t) + q(s, t)|α − |p(s, t)|α − |q(s, t)|α|

+ sup
t>1

1[1,∞)(s)e
tαH ||p(s, t) + q(s, t)|α − |p(s, t)|α − |q(s, t)|α|

≤ sup
t>1

1(0,1)(s)e
tαH2|p(s, t)|α + sup

t>1
1[1,∞)(s)e

tαH2|q(s, t)|α

≤ 1(0,1)(s)c1s
Hα−1 + 1[1,∞)(s)c2s

Hα−1−α,
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which is integrable on (0,∞). Here c1 and c2 are the appropriate constants indepen-
dent of s and t. Thus, from the dominated convergence theorem we get

I1(t) ∼ etαH2
e−tαH

∫ ∞

0
{|p∞(s) + q∞(s)|α − |p∞(s)|α − |q∞(s)|α} ds (4.13)

as t → ∞.
We pass on to I2(t) =

∫ 1
0 {|v(s, t) + u(s)|α − |v(s, t)|α − |u(s)|α}ds, where

v(s, t) = e−tHθ1[a(et − s)H−1/α − bsH−1/α] and

u(s) = θ2[a(1 − s)H−1/α − bsH−1/α].

>From (4.6) we obtain |I2(t)| ≤ 2
∫ 1
0 |v(s, t)|α. Additionally, for fixed s ∈ (0, 1) we

have
etHv(s, t) −→ −θ1bs

H−1/α

as t → ∞, and

sup
t>1

etαH |v(s, t)|α ≤ d1(1 − s)Hα−1 + d2s
Hα−1,

which is integrable on (0, 1). Here d1 and d2 are the appropriate constants indepen-
dent of s and t. Thus, we obtain I2(t) = O(e−tαH), which implies

etαH(1−H)I2(t) −→ 0 as t → ∞

and the contribution of I2(t) is negligible.
We continue our estimations for I3(t). After the change of variables s → etHs,

we have

I3(t) = etαH2

∫ ∞

0
{|w(s, t) + z(s, t)|α − |w(s, t)|α − |z(s, t)|α}ds,

where

w(s, t) = e−tHθ1[a(et(1−H) − s)H−1/α − bsH−1/α] · 1(e−tH ,et(1−H))(s) (4.14)

and

z(s, t) = θ2b[(s − e−tH)H−1/α − sH−1/α] · 1(e−tH ,et(1−H))(s). (4.15)

In a similar manner as for I1(t), we get that for fixed s ∈ (0,∞)

etHw(s, t) −→ −θ1bs
H−1/α =: w∞(s)

and also
etHz(s, t) −→ θ2b(1/α − H)sH−1/α−1 =: z∞(s)

as t → ∞. Consequently,

etαH{|w(s, t)+z(s, t)|α−|w(s, t)|α−|z(s, t)|α} −→ {|w∞(s)+z∞(s)|α−|w∞(s)|α−|z∞(s)|α}
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as t → ∞. Using (4.6) we obtain the following estimate

sup
t> 2

H

etαH ||w(s, t) + z(s, t)|α − |w(s, t)|α − |z(s, t)|α|

≤ sup
t> 2

H

1(0,1)(s)e
tαH2|w(s, t)|α + sup

t> 2
H

1[1,∞)(s)e
tαH2|z(s, t)|α

≤ 1(0,1)(s)[e1(1 − s)Hα−1 + e2s
Hα−1] + 1[1,∞)(s)e3(s − 1/2)Hα−1−α,

which is integrable on (0,∞). Here e1, e2 and e3 are the appropriate constants
independent of s and t. Therefore, the dominated convergence theorem yields

I3(t) ∼ etαH2
e−tαH

∫ ∞

0
{|w∞(s) + z∞(s)|α − |w∞(s)|α − |z∞(s)|α} ds (4.16)

as t → ∞.
For I4(t), after the change of variables s → ets, we get

I4(t) = etαH

∫ ∞

1
{|g(s, t) + h(s, t)|α − |g(s, t)|α − |h(s, t)|α}ds,

with
g(s, t) = e−tHθ1b[(s − 1)H−1/α − sH−1/α]

and
h(s, t) = θ2b[(s − e−t)H−1/α − sH−1/α].

Form the mean-value theorem we get

h(s, t) = θ2b(1/α − H)e−t

∫ 1

0
(s − e−tu)H−1/α−1du,

therefore, for fixed s ∈ (1,∞) we have eth(s, t) −→ θ2b(1/α−H)sH−1/α−1 as t → ∞.
Additionally

sup
t>2

etα|h(s, t)|α ≤ |θ2b(1/α − H)|α(s − 1/2)Hα−1−α,

which is integrable on (1,∞). Since |I4(t)| ≤ 2etαH
∫∞
1 |h(s, t)|αds, we obtain I4(t) =

O(e−tα(1−H)), thus the contribution of I4(t), similarly to I2(t), is negligible. Finally,
putting together formulas (4.13) and (4.16), we get the desired result. �

We pass on to the case α = 1. We recall the fact that the case θ1θ2 = 0 is
excluded, since then I(θ1; θ2; t) = 0.

Theorem 7. Let α = 1 and 0 < H < 1. Then the generalized codifference of Z1(t)
satisfies

(i) If b = 0 and θ1θ2 > 0 then I(θ1; θ2; t) = 0,
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(ii) If a = 0 and θ1θ2 < 0 then

I(θ1; θ2; t) ∼ −2|b|
( |θ1|

H
e−tH · 1(0,1/2](H) + |θ2|e−t(1−H) · 1[1/2,1)(H)

)

as t → ∞.
Otherwise

I(θ1; θ2; t) ∼ A1(θ1; θ2)e
−tH(1−H)

as t → ∞, where A1 is given in (4.7).

PROOF: First, we determine, in which case the constant A1(θ1; θ2) = 0. From
(4.7) we get

A1(θ1; θ2) =

∫ ∞

0
... ds +

∫ ∞

0
... ds =: A11(θ1; θ2) + A12(θ1; θ2).

>From the triangle inequality we see that A1(θ1; θ2) = 0 ⇔ {A11(θ1; θ2) = 0 and A12(θ1; θ2) =
0}. Additionally, we have A11(θ1; θ2) = 0 ⇔ {a = 0 or θ1θ2 > 0} as well as
A12(θ1; θ2) = 0 ⇔ {b = 0 or θ1θ2 < 0}. Since the cases θ1θ2 = 0 or a = b = 0
are excluded, we obtain

A1(θ1; θ2) = 0 ⇔ {a = 0 and θ1θ2 < 0} or {b = 0 and θ1θ2 > 0}.

The case {b = 0 and θ1θ2 > 0} is trivial, since then it is easy to verify that for every
term in formula (4.8) we have Ij(t) = 0, i = 1, ..., 4. Thus, we obtain part (i) of the
theorem.

We pass on to the second possibility {a = 0 and θ1θ2 < 0}. In this case only I1(t)
and I3(t) from (4.8) disappear, therefore we need to find the asymptotic behaviour
of I2(t) and I4(t). Let us begin with I2(t). From the proof of Th.6 we get I2(t) =∫ 1
0 {|v(s, t) + u(s)| − |v(s, t)| − |u(s)|}ds, where v(s, t) = −e−tHθ1bs

H−1 and u(s) =
−θ2bs

H−1. First, we consider the case θ1 > 0 and θ2 < 0. Fix s ∈ (0, 1). Then for
large enough t we get

|v(s, t) + u(s)| − |v(s, t)| − |u(s)| = −2e−tH |b|θ1s
H−1,

which implies etH [|v(s, t)+u(s)|−|v(s, t)|−|u(s)|] −→ −2|b|θ1s
H−1 as t → ∞. Since

sup
t>1

etH ||v(s, t) + u(s)| − |v(s, t)| − |u(s)|| ≤ 2|bθ1|sH−1,

we get from the dominated convergence theorem I2(t) ∼ −2|b|θ1e
−tH

∫ 1
0 sH−1ds =

−2|b| θ1
H e−tH as t → ∞. Symmetrically, for θ1 < 0 and θ2 > 0 one can show that

I2(t) ∼ 2|b| θ1
H e−tH . Finally

I2(t) ∼ −2|b| |θ1|
H

e−tH (4.17)
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as t → ∞.
We continue with I4(t). From the proof of Th.6 we have

I4(t) = etH

∫ ∞

1
{|g(s, t) + h(s, t)| − |g(s, t)| − |h(s, t)|}ds,

with
g(s, t) = e−tHθ1b[(s − 1)H−1 − sH−1]

and
h(s, t) = θ2b[(s − e−t)H−1 − sH−1].

For fixed s ∈ (1,∞) we have etHg(s, t) −→ θ1b[(s − 1)H−1 − sH−1], and also
eth(s, t) −→ θ2b(1 − H)sH−2 as t → ∞, which implies that for large enough t
we get |g(s, t)| > |h(s, t)|. Let us then consider the case θ1 > 0 and θ2 < 0. For fixed
s ∈ (1,∞) and large t we obtain

|g(s, t) + h(s, t)| − |g(s, t)| − |h(s, t)| = 2θ2|b|[(s − e−t)H−1 − sH−1],

and consequently

et{|g(s, t) + h(s, t)| − |g(s, t)| − |h(s, t)|} −→ 2θ2|b|(1 − H)sH−2

as t → ∞. We also have from (4.6)

sup
t>2

et||g(s, t) + h(s, t)| − |g(s, t)| − |h(s, t)|| ≤ k1(s − 1/2)H−2,

which is integrable on (1,∞). Here k1 is the appropriate constant independent of
s and t. Thus, from the dominated convergence theorem we get I4(t) ∼ e−t(1−H) ·
2θ2|b|(1 − H)

∫∞
1 sH−2ds = e−t(1−H) · 2θ2|b| as t → ∞. For θ1 < 0 and θ2 > 0 one

shows in a similar manner that I4(t) ∼ −e−t(1−H) · 2θ2|b|. Finally

I4(t) ∼ −2|θ2b|e−t(1−H) (4.18)

as t → ∞.
Now, from (4.17) and (4.18) we get that for H < 1/2 we obtain I(θ1; θ2; t) ∼ I2(t),

for H > 1/2 we obtain I(θ1; θ2; t) ∼ I4(t) and for H = 1/2 we get I(θ1; θ2; t) ∼
I2(t) + I4(t) as t → ∞. Thus, we have proved part (ii) of the theorem.

In any other case, i.e. when A1(θ1; θ2) is a non-zero constant, the proof of The-
orem 6 applies and we get I(θ1; θ2; t) ∼ A1(θ1; θ2)e

−tH(1−H) as t → ∞. �

The next theorem determines the asymptotic dependence structure of Z1(t) when
the index of stability is such that 1 < α < 2.

Theorem 8. Let 1 < α < 2, 0 < H < 1 and H 6= 1/α. Then the generalized
codifference of Z1(t) satisfies
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(i) If 1 − 1
α < H < 1

α then

I(θ1; θ2; t) ∼ Aα(θ1; θ2)e
−tαH(1−H)

(ii) If H < 1 − 1
α then

I(θ1; θ2; t) ∼ Bα(θ1; θ2)e
−tH

(iii) If H > 1
α then

I(θ1; θ2; t) ∼ Dα(θ1; θ2)e
−t(1−H)

as t → ∞. The constant Aα is given in (4.7), whereas

Bα(θ1; θ2) =

∫ ∞

0
αθ1sgn{θ2}|θ2|α−1|a|α

∣∣∣(1 + s)H−1/α − sH−1/α
∣∣∣
α−1

sH−1/αds

−
∫ 1

0
αθ1bs

H−1/α
∣∣∣θ2[a(1 − s)H−1/α − bsH−1/α]

∣∣∣
α−1

×

sgn
{

θ2[a(1 − s)H−1/α − bsH−1/α]
}

ds

−
∫ ∞

1
αθ1sgn{θ2b}bsH−1/α

∣∣∣θ2b[(s − 1)H−1/α − sH−1/α]
∣∣∣
α−1

ds,

and

Dα(θ1; θ2) = |a|α
∫ ∞

0
α(H − 1/α)θ2|θ1|α−1sgn{θ1}sH−1/α−1|(s + 1)H−1/α − sH−1/α|α−1ds

+

∫ 1

0
α|θ1|α−1θ2b(1/α − H)sH−1/α−1|a(1 − s)H−1/α − bsH−1/α|α−1 ×

sgn{θ1[a(1 − s)H−1/α − bsH−1/α]}ds

+

∫ ∞

1
αθ2b(H − 1/α)sgn{θ1b}|θ1b|α−1|(s − 1)H−1/α − sH−1/α|α−1sH−1/α−1ds.

PROOF:
(i) Recall the decomposition in (4.8). We have I1(t) = etαH2 ∫∞

0 {|p(s, t)+ q(s, t)|α −
|p(s, t)|α−|q(s, t)|α}ds, where p(s, t) and q(s, t) are given in (4.9) and (4.10), respec-
tively. For fixed s ∈ (0,∞) we get that (4.12) holds, since H − 1/α < 0. To apply
the dominated convergence theorem, we use the second part of inequality (4.6) in
combination with the mean-value theorem and get

sup
t>1

etαH ||p(s, t) + q(s, t)|α − |p(s, t)|α − |q(s, t)|α|

≤ sup
t>1

1(0,1)(s)e
tαH ||p(s, t) + q(s, t)|α − |p(s, t)|α − |q(s, t)|α|

+ sup
t>1

1[1,∞)(s)e
tαH ||p(s, t) + q(s, t)|α − |p(s, t)|α − |q(s, t)|α|

≤ sup
t>1

1(0,1)(s)e
tαH(α + 1)|p(s, t)|α + sup

t>1
1(0,1)(s)e

tαHα|p(s, t)||q(s, t)|α−1

+ sup
t>1

1[1,∞)(s)e
tαH(α + 1)|q(s, t)|α + sup

t>1
1[1,∞)(s)e

tαHα|q(s, t)||p(s, t)|α−1

≤ 1(0,1)(s)c1s
Hα−1 + 1(0,1)(s)c2s

Hα−α + 1[1,∞)(s)c3s
Hα−1−α + 1[1,∞)(s)c4s

Hα−2,
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which is integrable on (0,∞), since Hα < 1 and Hα − α > −1. Here ci, i = 1, ..., 4,
are the appropriate constants independent of s and t. Therefore, we get

I1(t) ∼ etαH2
e−tαH

∫ ∞

0
{|p∞(s) + q∞(s)|α − |p∞(s)|α − |q∞(s)|α} ds (4.19)

as t → ∞.
Next, we estimate I2(t) =

∫ 1
0 {|v(s, t) + u(s)|α − |v(s, t)|α − |u(s)|α}ds, with

v(s, t) = e−tHθ1[a(et − s)H−1/α − bsH−1/α] and u(s) = θ2[a(1− s)H−1/α − bsH−1/α].
>From (4.6) we obtain

|I2(t)| ≤ (α + 1)

∫ 1

0
|v(s, t)|αds + α

∫ 1

0
|v(s, t)||u(s)|α−1ds.

Additionally, for fixed s ∈ (0, 1) we have etαH |v(s, t)|α −→ |bθ1|αsHα−1 and
etH |v(s, t)||u(s)|α−1 −→ |bθ1|sH−1/α|u(s)|α−1 as t → ∞. We also get

sup
t>1

etαH |v(s, t)|α ≤ d1(1 − s)Hα−1 + d2s
Hα−1

and
sup
t>1

etH |v(s, t)||u(s)|α−1 ≤ e1(1 − s)Hα−1 + e2s
Hα−1,

where d1, d2, e1 and e2 are the appropriate constants independent of s and t. Thus,
from the dominated convergence theorem we get I2(t) = O(e−tH+e−tαH) = O(e−tH),
t → ∞. Thus, since α(1 − H) < 1, the integral I2(t) decays faster than I1(t).

In case of I3(t) we can not use the dominated convergence theorem directly, we
need more delicate estimations. We have I3(t) = etαH2 ∫∞

0 {|w(s, t) + z(s, t)|α −
|w(s, t)|α − |z(s, t)|α}ds, where w(s, t) and z(s, t) are given in (4.14) and (4.15),
respectively. Set

G(s, t) := |w(s, t) + z(s, t)|α − |w(s, t)|α − |z(s, t)|α,

G∞(s) := |w∞(s) + z∞(s)|α − |w∞(s)|α − |z∞(s)|α

with w∞(s) = −θ1bs
H−1/α and z∞(s) = θ2b(1/α − H)sH−1/α−1. We will show that

∣∣∣
∫ ∞

0
[etαHG(s, t) − G∞(s)]ds

∣∣∣ −→ 0

as t → ∞. Fix ǫ > 0 and put
∫ ∞

0
[etαHG(s, t) − G∞(s)]ds =

=

e−tH∫

0

... ds +

e−tH+ǫ∫

e−tH

... ds +

et(1−H)−ǫ∫

e−tH+ǫ

... ds +

et(1−H)∫

et(1−H)−ǫ

... ds +

∞∫

et(1−H)

... ds

=: J1(t) + J2(t) + J3(t) + J4(t) + J5(t).
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Since G∞(s) is integrable on (0,∞), we obtain |J1(t)| −→ 0 and |J5(t)| −→ 0 as
t → ∞. For the second term we have from (4.6) that

|J2(t)| ≤
e−tH+ǫ∫

e−tH

|etαHG(s, t) − G∞(s)|ds ≤ (α + 1)

e−tH+ǫ∫

e−tH

etαH |w(s, t)|αds

+α

e−tH+ǫ∫

e−tH

etαH |w(s, t)||z(s, t)|α−1ds + (α + 1)

e−tH+ǫ∫

e−tH

|w∞(s)|αds

+α

e−tH+ǫ∫

e−tH

|w∞(s)||z∞(s)|α−1ds =: J21(t) + J22(t) + J23(t) + J24(t).

Additionally, since H − 1/α < 0, we have

J21(t) ≤ d1

e−tH+ǫ∫

e−tH

[(1 − s)Hα−1 + sHα−1]ds = − d1

Hα
[(1 − e−tH − ǫ)Hα − (1 − e−tH)Hα]

+
d1

Hα
[(e−tH + ǫ)Hα − (e−tH)Hα].

Next, since H − 1/α < 0, we get for s ∈ (e−tH , e−tH+ǫ)

|(s − e−tH)H−1/α − sH−1/α| ≤ (1/α − H)e−tH(s − e−tH)H−1/α−1,

and consequently

J22(t) ≤ d2

e−tH+ǫ∫

e−tH

[(1 − s)H−1/α + sH−1/α](s − e−tH)(H−1/α−1)(α−1)ds

≤ d3(1 − e−tH − ǫ)H−1/αǫHα−α+1/α−H+1 + d4ǫ
Hα−α+1.

Moreover,

J23(t) = d5[(e
−tH + ǫ)Hα − (e−tH)Hα],

J24(t) = d6[(e
−tH + ǫ)Hα−α+1 − (e−tH)Hα−α+1],

where di, i = 1, ..., 6 are the appropriate constants independent of t, s and ǫ. Using
the fact that 1 − 1

α < H < 1
α , we obtain limǫց0 limt→∞ J2i(t) = 0 for every

i = 1, ..., 4, which implies limǫց0 limt→∞ J2(t) = 0.
We pass on to J3(t). For fixed s ∈ (0,∞) we get from the proof of Theorem 6

etαHG(s, t)1(e−tH+ǫ,et(1−H)−ǫ)(s) −→ G∞(s)1(ǫ,∞)(s).
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as t → ∞. Additionally,

sup
t> 2

H

etαH |G(s, t)|1(e−tH+ǫ,et(1−H)−ǫ)(s)

≤ sup
t> 2

H

1(e−tH+ǫ,1)(s)e
tαH(α + 1)|w(s, t)|α + sup

t> 2
H

1(e−tH+ǫ,1)(s)e
tαHα|w(s, t)||z(s, t)|α−1

+ sup
t> 2

H

1[1,et(1−H)−ǫ)(s)e
tαH(α + 1)|z(s, t)|α + sup

t> 2
H

1[1,et(1−H)−ǫ)(s)e
tαHα|z(s, t)||w(s, t)|α−1

≤ 1(ǫ,1)(s)k1[(1 − s)Hα−1 + sHα−1] + 1(ǫ,1)(s)k2[(1 − s)H−1/α + sH−1/α]ǫ(H−1/α−1)(α−1)

+1[1,∞)(s)k3(s − 1/2)Hα−1−α + 1[1,∞)(s)k4(s − 1/2)H−1/α−1[ǫ(H−1/α)(α−1) + s(H−1/α)(α−1)],

which is integrable on (0,∞). Thus, from the dominated convergence theorem we
get J3(t) −→ 0 as t → ∞.
For J4(t) we have

|J4(t)| ≤
et(1−H)∫

et(1−H)−ǫ

|etαHG(s, t) − G∞(s)|ds ≤ (α + 1)

et(1−H)∫

et(1−H)−ǫ

etαH |z(s, t)|αds

+α

et(1−H)∫

et(1−H)−ǫ

etαH |z(s, t)||w(s, t)|α−1ds + (α + 1)

et(1−H)∫

et(1−H)−ǫ

|z∞(s)|αds

+α

et(1−H)∫

et(1−H)−ǫ

|z∞(s)||w∞(s)|α−1ds =: J41(t) + J42(t) + J43(t) + J44(t),

and one can show similarly, as for J2(t) that limǫց0 limt→∞ J4(t) = 0. Finally, we
have proved

lim
ǫց0

lim
t→∞

Ji(t) = 0

for i = 1, ..., 5. Thus,

∣∣∣
∫ ∞

0
[etαHG(s, t) − G∞(s)]ds

∣∣∣ −→ 0,

which implies for the term I3(t) in (4.8) that

I3(t) ∼ e−tαH(1−H)

∫ ∞

0
G∞(s)ds

as t → ∞.
For I4(t) = etαH

∫∞
1 {|g(s, t) + h(s, t)|α − |g(s, t)|α − |h(s, t)|α}ds, with g(s, t) =

e−tHθ1b[(s− 1)H−1/α − sH−1/α] and h(s, t) = θ2b[(s− e−t)H−1/α − sH−1/α], we have
from (4.6)

|I4(t)| ≤ (α + 1)etαH

∫ ∞

1
|h(s, t)|αds + αetαH

∫ ∞

1
|h(s, t)||g(s, t)|α−1ds.
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We also obtain from the proof of Theorem 6 that for fixed s ∈ (1,∞) we have
eth(s, t) −→ θ2b(1/α − H)sH−1/α−1 and similarly etHg(s, t) −→ θ1b[(s − 1)H−1/α −
sH−1/α] as t → ∞. Additionally

sup
t>2

etα|h(s, t)|α ≤ |θ2b(1/α − H)|α(s − 1/2)Hα−1−α

and

sup
t>2

et+tH(α−1)|h(s, t)||g(s, t)|α−1 ≤ k1(s−1/2)H−1/α−1[k2(s−1)(H−1/α)(α−1)+k3s
(H−1/α)(α−1)],

which is integrable on (1,∞). Here k1, k2 and k3 are the appropriate constants in-
dependent of s and t. Thus, I4(t) = O(e−t(1−H)) and, since αH < 1, its contribution
is negligible.

Finally, we have shown that I2(t) and I4(t) decay faster than I1(t) and I3(t).
Therefore, I(θ1; θ2; t) ∼ I1(t) + I3(t) as t → ∞, which completes the proof of part
(i).

(ii) For the first term in (4.8) we have

I1(t) = etαH2

∫ ∞

0
{|p(s, t) + q(s, t)|α − |p(s, t)|α − |q(s, t)|α}ds,

= etαH2

∫ 1

0
... ds + etαH2

∫ ∞

1
... ds =: I11(t) + I12(t).

We recall that p(s, t) = e−tHθ1a[(et(1−H)+s)H−1/α−sH−1/α] and q(s, t) = θ2a[(e−tH+
s)H−1/α − sH−1/α]. For I12(t) one shows similarly as in the part (i) of the proof that

I12(t) ∼ e−tαH(1−H)

∫ ∞

1
|p∞(s) + q∞(s)|α − |p∞(s)|α − |q∞(s)|αds,

as t → ∞. Here p∞(s) = −θ1asH−1/α and q∞(s) = θ2a(H − 1/α)sH−1/α−1. For
I11(t), after the change of variables s → e−tHs, we get

I11(t) =

∫ etH

0
{|p̃(s, t) + q̃(s)|α − |p̃(s, t)|α − |q̃(s)|α} ds,

where p̃(s, t) = e−tHθ1a[(et + s)H−1/α − sH−1/α] and q̃(s) = θ2a[(1 + s)H−1/α −
sH−1/α]. For fixed s ∈ (0,∞) we have that etH p̃(s, t)1(0,etH)(s) −→ −θ1asH−1/α as
t → ∞, and from the mean-value theorem we obtain

etH{|p̃(s, t) + q̃(s)|α − |q̃(s)|α}1(0,etH)(s)
−−−−→
t→∞

αθ1sgn{θ2}|θ2|α−1|a|α
∣∣∣(1 + s)H−1/α − sH−1/α

∣∣∣
α−1

sH−1/α =: H∞(s),
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since d
dx |x|α = α|x|α−1sgn{x} for x 6= 0. Putting H(s, t) := |p̃(s, t) + q̃(s)|α −

|p̃(s, t)|α − |q̃(s)|α and using inequality (4.6), we get

sup
t>1

etH |H(s, t)|1(0,etH)(s) ≤ sup
t>1

etH |H(s, t)|1(0,1](s) + sup
t>1

etH |H(s, t)|1(1,etH)(s)

≤ sup
t>1

(α + 1)etH |p̃(s, t)|α1(0,1](s) + sup
t>1

αetH |p̃(s, t)||q̃(s)|α−1
1(0,1](s)

+ sup
t>1

etH(α + 1)etH |p̃(s, t)|α1(1,etH)(s) + sup
t>1

etHαetH |p̃(s, t)||q̃(s)|α−1
1(1,etH)(s)

≤ l1s
Hα−1

1(0,1](s) + l2e
tH−tHαsHα−1

1(1,etH)(s) + l3s
Hα−α

1(1,∞)(s)

≤ l1s
Hα−1

1(0,1](s) + l2s
Hα−α

1(1,∞)(s) + l3s
Hα−α

1(1,∞)(s),

which is integrable on (0,∞). Here li, i = 1, 2, 3, are the appropriate constants
independent of s and t. Thus, the dominated convergence theorem yields I11(t) ∼
e−tH

∫∞
0 H∞(s)ds as t → ∞. Since α(1 − H) > 1, we see that I12(t) decays faster

than I11(t), and we finally obtain

I1(t) ∼ e−tH

∫ ∞

0
H∞(s)ds

as t → ∞.
Next, we have I2(t) =

∫ 1
0 {|v(s, t) + u(s)|α − |v(s, t)|α − |u(s)|α}ds, with v(s, t) =

e−tHθ1[a(et − s)H−1/α − bsH−1/α] and u(s) = θ2[a(1− s)H−1/α − bsH−1/α]. For fixed
s ∈ (0, 1) we obtain etHv(s, t) −→ −θ1bs

H−1/α as t → ∞, and from the mean value
theorem we get

etH{|u(s) + v(s, t)|α − |u(s)|α} −−−−→t→∞

−αθ1bs
H−1/α

∣∣∣θ2[a(1 − s)H−1/α − bsH−1/α]
∣∣∣
α−1

sgn
{

θ2[a(1 − s)H−1/α − bsH−1/α]
}

=: M∞(s).

Since for the appropriate constants m1 and m2 we get

sup
t>1

etH ||v(s, t) + u(s)|α − |v(s, t)|α − |u(s)|α|

≤ sup
t>1

etH(α + 1)|v(s, t)|α + sup
t>1

etHα|v(s, t)||u(s)|α−1 ≤ m1(1 − s)Hα−1 + m2s
Hα−1,

which is integrable on (0, 1), the dominated convergence theorem yields

I2(t) ∼ e−tH

∫ 1

0
M∞(s)ds.

For the next component we have I3(t) =
∫ et

1 {|d(s, t) + f(s)|α − |d(s, t)|α −
|f(s)|α}ds with d(s, t) = e−tHθ1[a(et − s)H−1/α − bsH−1/α] and f(s) = θ2b[(s −
1)H−1/α − sH−1/α]. For fixed s ∈ (1,∞) we get

etHd(s, t) −−−−→t→∞ −θ1bs
H−1/α
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and from the mean-value theorem

etH{|d(s, t) + f(s)|α − |f(s)|α} −−−−→t→∞

−αθ1bs
H−1/α

∣∣∣θ2b[(s − 1)H−1/α − sH−1/α]
∣∣∣
α−1

sgn{θ2b} =: N∞(s).

Note that N∞(s) is integrable on (1,∞). Set

N(s, t) := |d(s, t) + f(s)|α − |d(s, t)|α − |f(s)|α.

Then, we have

I3(t) =

∫ 2

1
N(s, t)ds +

∫ et

2
N(s, t)ds =: I31(t) + I32(t).

We will find the rate of convergence for every I3i, i = 1, 2, separately. For I31(t), fix
s ∈ (1, 2), then we get etHN(s, t) −→ N∞(s) as t → ∞. Additionally,

sup
t>2

etH |N(s, t)| ≤ sup
t>2

etH(α + 1)|d(s, t)|α + sup
t>2

etHα|d(s, t)||f(s)|α−1

≤ p1[(3 − s)Hα−1 + sHα−1] + p2[(3 − s)H−1/α + sH−1/α][(s − 1)(H−1/α)(α−1) + s(H−1/α)(α−1)],

which is integrable on (1, 2). Here p1 and p2 are the appropriate constants indepen-
dent of s and t. Hence,

I31(t) ∼ e−tH

∫ 2

1
N∞(s)ds.

For I32(t) we need more subtle estimations. In what follows we show that

∣∣∣
∫ ∞

2
[etHN(s, t)1(2,et)(s) − N∞(s)]ds

∣∣∣−−−−→t→∞ 0

Fix ǫ > 0 appropriately small and put

∞∫

2

[etHN(s, t)1(2,et)(s) − N∞(s)]ds

=

etH∫

2

... ds +

et−etH−ǫ∫

etH

... ds +

et−ǫ∫

et−etH−ǫ

... ds +

et∫

et−ǫ

... ds +

∞∫

et

... ds

=: J1(t) + J2(t) + J3(t) + J4(t) + J5(t).

Let us begin with J1(t). For fixed s ∈ (2,∞) we obtain

etHN(s, t)1(2,etH)(s)
−−−−→
t→∞ N∞(s).
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Additionally, we use the fact that s ∈ (2, etH), which implies that there exist t0 such
that for every t > t0 and every s ∈ (2, etH) we have et − s > s. Hence

sup
t>t0

etH |N(s, t)|1(2,etH)(s)

≤ sup
t>t0

etH(α + 1)|d(s, t)|α1(2,etH)(s) + sup
t>t0

etHα|d(s, t)||f(s)|α−1
1(2,etH)(s)

≤ sup
t>t0

q1e
tHe−tαHsHα−1

1(2,etH)(s) + sup
t>t0

q2s
H−1/α(s − 1)(H−1/α−1)(α−1)

1(2,etH)(s)

≤ q1s
Hα−α + q2s

H−1/α(s − 1)(H−1/α−1)(α−1),

which is integrable on (2,∞). Here q1 and q2 are the appropriate constants indepen-
dent of s and t. Hence, the dominated convergence theorem yields J1(t) −→ 0 as
t → ∞.
For the next component we have

|J2(t)| ≤
et−etH−ǫ∫

etH

etH |N(s, t)| ds +

et−etH−ǫ∫

etH

|N∞(s)| ds =: J21(t) + J22(t).

Since N∞(s) is integrable on (1,∞), we get J22(t) −→ 0 as t → ∞. Furthermore,

J21(t) ≤
∫ et−etH−ǫ

etH

etH(α + 1)|f(s)|αds +

∫ et−etH−ǫ

etH

etHα|f(s)||d(s, t)|α−1ds

≤ u1e
tH

∫ et−etH−ǫ

etH

(s − 1)Hα−1−αds

+u2e
tHe−tH(α−1)

∫ et−etH−ǫ

etH

(s − 1)H−1/α−1(et − s)(H−1/α)(α−1)ds

+u3e
tHe−tH(α−1)

∫ et−etH−ǫ

etH

(s − 1)H−1/α−1s(H−1/α)(α−1)ds −−−−→t→∞ 0,

where ui, i = 1, 2, 3, are the appropriate constants independent of s, t and ǫ. Hence,
|J2(t)| −→ 0 as t → ∞.
Next, for the third term we get

|J3(t)| ≤
et−ǫ∫

et−etH−ǫ

etH |N(s, t)| ds +

et−ǫ∫

et−etH−ǫ

|N∞(s)| ds =: J31(t) + J32(t).
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Since N∞(s) is integrable on (1,∞), we obtain J32(t) −→ 0 as t → ∞. Additionally,

J31(t) ≤
∫ et−ǫ

et−etH−ǫ
etH(α + 1)|f(s)|αds +

∫ et−ǫ

et−etH−ǫ
etHα|f(s)||d(s, t)|α−1ds

≤ w1e
tH

∫ et−ǫ

et−etH−ǫ
(s − 1)Hα−1−αds

+w2e
tHe−tH(α−1)

∫ et−ǫ

et−etH−ǫ
(s − 1)H−1/α−1ǫ(H−1/α)(α−1)ds

+w3e
tHe−tH(α−1)

∫ et−ǫ

et−etH−ǫ
(s − 1)H−1/α−1s(H−1/α)(α−1)ds −−−−→t→∞ 0,

where wi, i = 1, 2, 3, are the appropriate constants independent of s, t and ǫ. There-
fore, |J3(t)| −→ 0 as t → ∞.
For the fourth part we put

|J4(t)| ≤
et∫

et−ǫ

etH |N(s, t)| ds +

et∫

et−ǫ

|N∞(s)| ds =: J41(t) + J42(t).

Since N∞(s) is integrable on (1,∞), we get J42(t) −→ 0 as t → ∞. Further,

J41(t) ≤
∫ et

et−ǫ
etH(α + 1)|d(s, t)|αds +

∫ et

et−ǫ
etHα)|d(s, t)||f(s)|α−1ds

≤ z1e
tHe−tαH

∫ et

et−ǫ
[(et − s)Hα−1 + sHα−1]ds

+z2

∫ et

et−ǫ
[(et − s)H−1/α + sH−1/α](s − 1)(H−1/α−1)(α−1)ds ≤ z3ǫ

Hα + z4ǫ + z5ǫ
H−1/α+1,

where zi, i = 1, ..., 5, are the appropriate constants independent of s, t and ǫ. Thus,
we obtain

lim
ǫց0

lim
t→∞

|J4(t)| = 0.

The last component J5(t) =
∫∞
et N∞(s)ds −→ 0 as t → ∞, since N∞(s) is integrable

on (1,∞). Finally, combining the results for Ji(t), i = 1, ..., 5, we obtain

∣∣∣
∫ ∞

2
[etHN(s, t)1(2,et)(s) − N∞(s)]ds

∣∣∣−−−−→t→∞ 0.

Hence, I32(t) ∼ e−tH
∫∞
2 N∞(s)ds, which implies

I3(t) = I31(t) + I32(t) ∼ e−tH

∫ ∞

1
N∞(s)ds

as t → ∞.
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>From part (i) of the proof we have I4(t) = O(e−t(1−H)). Additionally, the
assumption α(1 − H) > 1 implies that H < 1/2. Thus, the contribution of I4(t) is
negligible.

Finally, putting together the results for Ij(t), j = 1, ..., 4, we get

I(θ1; θ2; t) ∼ e−tH

{∫ ∞

0
H∞(s)ds +

∫ 1

0
M∞(s)ds +

∫ ∞

1
N∞(s)ds

}

as t → ∞, which ends the proof of part (ii).

(iii) We begin with showing the following key inequality
Lemma
For r > 0, s > 0 and α ∈ (1, 2]

(a) |rα + sα − |r − s|α| = rα + sα − |r − s|α ≤ (α + 1)rsα−1. (4.20)

(b) |rα + sα − |r + s|α| = (r + s)α − rα − sα ≤ αrsα−1. (4.21)

Proof of the Lemma:
(a) Let r ≥ s. Define fs(r) := rα + sα − |r − s|α − (α + 1)rsα−1. We will show that
fs(r) ≤ 0. We have fs(0) = 0 and

f ′
s(r) = αrα−1 − α(r − s)α−1 − (α + 1)sα−1

≤ αsα−1 − (α + 1)sα−1 ≤ 0.

Thus fs(r) ≤ 0.
Let r < s. Using the mean-value theorem we get

rα + sα − (s − r)α ≤ rsα−1 + αr

∫ 1

0
[(s − r) + ru]α−1du

≤ rsα−1 + αrsα−1 = (α + 1)rsα−1,

which proves (4.20).
(b) We put hs(r) = rα + sα + αrsα−1 − (r + s)α.
Since hs(0) = 0 and h′

s(r) = αrα−1 + αsα−1 − α(r + s)α−1 ≥ 0,
we get hs(r) ≥ 0. �

Now, using the above result we determine the rate of convergence for every Ij(t),
j = 1, ..., 4, from (4.8).

For I1(t), after some standard calculations, we have

I1(t) = etαH |a|α
∫ ∞

0
{|p(s, t) + q(s, t)|α − |p(s, t)|α − |q(s, t)|α}ds

with p(s, t) = e−tHθ1[(s+1)H−1/α−sH−1/α] and q(s, t) = θ2[(s+e−t)H−1/α−sH−1/α].
For fixed s ∈ (0,∞) we get

etq(s, t) −−−−→t→∞ (H − 1/α)θ2s
H−1/α−1
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and

et+tH(α−1){|p(s, t) + q(s, t)|α − |p(s, t)|α} −−−−→t→∞

α(H − 1/α)θ2|θ1|α−1sgn{θ1}sH−1/α−1|(s + 1)H−1/α − sH−1/α|α−1 =: P∞(s).

Note that P∞(s) is integrable on (0,∞). To apply the dominated convergence theo-
rem, we need to use the inequalities derived in the previously proved lemma. There-
fore, we use the fact that the sign of p(s, t) and q(s, t) is determined only by θ1 and
θ2, respectively. First, for θ1 > 0 and θ2 > 0 we see that p(s, t) > 0 and q(s, t) > 0.
Thus, using (4.21) we obtain

sup
t>2

et+tH(α−1)||p(s, t) + q(s, t)|α − |p(s, t)|α − |q(s, t)|α|

≤ sup
t>2

et+tH(α−1)αq(s, t)p(s, t)α−1

≤ c1s
H−1/α−1[(s + 1)H−1/α − sH−1/α]α−1,

which is integrable on (0,∞). Here c1 is the appropriate constant independent of s
and t. Using (4.20) and (4.21) one can proceed with analogous estimations for any
other possible sign of θ1 and θ2. Therefore, we get

I1(t) ∼ e−t(1−H)|a|α
∫ ∞

0
P∞(s)ds

as t → ∞.
For the next term we have I2(t) =

∫ 1
0 {|v(s, t)+u(s)|α−|v(s, t)|α−|u(s)|α}ds, with

v(s, t) = e−tHθ1[a(et − s)H−1/α − bsH−1/α] and u(s) = θ2[a(1− s)H−1/α − bsH−1/α].
Additionally, for fixed s ∈ (0, 1), we obtain et/αv(s, t) −→ aθ1 as t → ∞, and by the
mean value theorem

et/α{|u(s) + v(s, t)|α − |u(s)|α} −−−−→t→∞

αaθ1|θ2|α−1|a(1 − s)H−1/α − bsH−1/α|α−1sgn{θ2[a(1 − s)H−1/α − bsH−1/α]}.
Note that the limit function is integrable on (0, 1). Now, applying the dominated
convergence theorem in a standard manner, we see that I2(t) = O(e−t/α), thus its
contribution is negligible, since H > 1/α and 1 < α ≤ 2 imply 1/α > 1−1/α > 1−H.

For the next component, after some standard calculations, we have I3(t) =
etαH

∫ 1
e−t{|w(s, t) + z(s, t)|α − |w(s, t)|α − |z(s, t)|α}ds, where

w(s, t) = θ1e
−tH [a(1 − s)H−1/α − bsH−1/α]

and
z(s, t) = θ2b[(s − e−t)H−1/α − sH−1/α].

For fixed s ∈ (0, 1), we get from the mean value theorem etz(s, t) −→ −θ2b(H −
1/α)sH−1/α−1 as t → ∞, and by using the mean value theorem again,

et+tH(α−1){|w(s, t) + z(s, t)|α − |w(s, t)|α} −−−−→t→∞

−α|θ1|α−1θ2b(H − 1/α)sH−1/α−1|a(1 − s)H−1/α − bsH−1/α|α−1 ×
sgn{θ1[a(1 − s)H−1/α − bsH−1/α]}
=: Q∞(s).

39



Note that Q∞(s) is integrable on (0, 1). Put Q(s, t) := |w(s, t)+z(s, t)|α−|w(s, t)|α−
|z(s, t)|α. In what follows, we will show that

∣∣∣∣
∫ 1

0
[et+tH(α−1)Q(s, t)1(e−t,1)(s) − Q∞(s)]ds

∣∣∣∣−−−−→t→∞ 0.

Fix ǫ > 0 appropriately small and set

∫ 1

0
[et+tH(α−1)Q(s, t)1(e−t,1)(s) − Q∞(s)]ds =

∫ e−t

0
... ds +

∫ e−t+ǫ

e−t

... ds +

∫ 1

e−t+ǫ
... ds

=: J1(t) + J2(t) + J3(t).

We immediately obtain
|J1(t)| −−−−→t→∞ 0,

since Q∞(s) is integrable on (0, 1). Next, we have

|J2(t)| ≤
∫ e−t+ǫ

e−t

et+tH(α−1)|Q(s, t)|ds +

∫ e−t+ǫ

e−t

|Q∞(s)|ds =: J21(t) + J22(t).

To find the appropriate upper bound for J21(t), we need to use inequalities (4.20)
and (4.21). Therefore, we have to determine the signs of w(s, t) and z(s, t), which in
turn depend on the parameters θ1, θ2, a and b.
The first case is θ1 > 0, θ2 > 0, a > 0 and b > 0. Then, we have z(s, t) ≤ 0 for
every s, and

w(s, t) ≥ 0 for s ≤ 1

1 + (b/a)1/α−H
,

w(s, t) ≤ 0 for s ≥ 1

1 + (b/a)1/α−H
.

Thus, using (4.20) and (4.21), we obtain

J21(t) =

∫ e−t+ǫ

e−t

et+tH(α−1)|Q(s, t)|ds

=

∫ e−t+ǫ

e−t

et+tH(α−1)|Q(s, t)|1�
0, 1

1+(b/a)1/α−H

�(s)ds

+

∫ e−t+ǫ

e−t

et+tH(α−1)|Q(s, t)|1�
1

1+(b/a)1/α−H
,1

�(s)ds

≤
∫ e−t+ǫ

e−t

et+tH(α−1)(α + 1)|z(s, t)||w(s, t)|α−1

+

∫ e−t+ǫ

e−t

et+tH(α−1)α|z(s, t)||w(s, t)|α−1ds

≤ d1

∫ e−t+ǫ

e−t

(s − e−t)H−1/α−1ds ≤ d2ǫ
H−1/α. (4.22)
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Here d1 and d2 are the appropriate constants independent of ǫ, s and t. For any
other possible signs of the parameters θ1, θ2, a and b, first we determine the sign of
w(s, t) and z(s, t), and next we proceed with the analogous estimations and find the
same upper bound J21(t) ≤ dǫH−1/α with the appropriate constant d.
For J22(t), we get

J22(t) ≤ d3

∫ e−t+ǫ

e−t

sH−1/α−1ds =
d3

H − 1/α
[(e−t + ǫ)H−1/α − (e−t)H−1/α],

where d3 is the appropriate constant independent of ǫ, s and t. Finally, we obtain

lim
ǫց0

lim
t→∞

J2i(t) = 0,

i = 1, 2, which implies that limǫց0 limt→∞ |J2(t)| = 0.
Now, we proceed with J3(t). For fixed s ∈ (0, 1) we have

et+tH(α−1)Q(s, t)1(e−t+ǫ,1)(s)
−−−−→
t→∞ Q∞(s)1(ǫ,1)(s).

To apply the dominated convergence theorem, we use the same method, as for J2(t),
and determine the sign of w(s, t) and z(s, t). First, for θ1 > 0, θ2 > 0, a > 0 and
b > 0 we have

sup
t>2

et+tH(α−1)|Q(s, t)|1(e−t+ǫ,1)(s)

≤ sup
t>2

et+tH(α−1)|Q(s, t)|1(e−t+ǫ,1)(s)1
�

0, 1

1+(b/a)1/α−H

�(s)
+ sup

t>2
et+tH(α−1)|Q(s, t)|1(e−t+ǫ,1)(s)1

�
1

1+(b/a)1/α−H
,1

�(s)

≤ sup
t>2

et+tH(α−1)
1(e−t+ǫ,1)(s)(α + 1)|z(s, t)||w(s, t)|α−1

+ sup
t>2

et+tH(α−1)
1(e−t+ǫ,1)(s)α|z(s, t)||w(s, t)|α−1

≤ d5 sup
t>2

1(e−t+ǫ,1)(s)(s − e−t)H−1/α−1 ≤ d5ǫ
H−1/α−1,

which is integrable on (ǫ, 1). Here d5 is the appropriate constant independent of ǫ, s
and t. We proceed with the analogous estimations for any other sign of the parame-
ters θ1, θ2, a and b. Thus, the dominated convergence theorem yields |J3(t)| −→ 0
as → ∞. Now, combining the results for every Ji(t), i = 1, 2, 3, we obtain

∣∣∣∣
∫ 1

0
[et+tH(α−1)Q(s, t)1(e−t,1)(s) − Q∞(s)]ds

∣∣∣∣−−−−→t→∞ 0

and consequently

I3(t) ∼ e−t(1−H)

∫ 1

0
Q∞(s)ds
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as t → ∞.
For the last term, after some standard calculations, we have I4(t) = etαH

∫∞
1 {|g(s, t)+

h(s, t)|α − |g(s, t)|α − |h(s, t)|α}ds with

g(s, t) = θ1be
−tH [(s − 1)H−1/α − sH−1/α]

and
h(s, t) = θ2b[(s − e−t)H−1/α − sH−1/α].

>From the mean-value theorem, we get for fixed s ∈ (1,∞)

eth(s, t) −−−−→t→∞ −θ2b(H − 1/α)sH−1/α−1

and

et+tH(α−1)[|g(s, t) + h(s, t)|α − |g(s, t)|α] −−−−→t→∞

αθ2b(H − 1/α)sgn{θ1b}|θ1b|α−1|(s − 1)H−1/α − sH−1/α|α−1sH−1/α−1 =: R∞(s).

Note that R∞(s) is integrable on (1,∞). Put R(s, t) := |g(s, t)+h(s, t)|α−|g(s, t)|α−
|h(s, t)|α. Now, applying the dominated convergence theorem in a standard manner,
we show that

et+tH(α−1)

∫ ∞

1
R(s, t)ds −−−−→t→∞

∫ ∞

1
R∞(s)ds,

which implies that

I4(t) ∼ e−t(1−H)

∫ ∞

1
R∞(s)ds.

as t → ∞.
Finally, combining the results for Ij(t), j = 1, ..., 4, we obtain

I(θ1; θ2; t) ∼ e−t(1−H)

{
|a|α

∫ ∞

0
P∞(s)ds +

∫ 1

0
Q∞(s)ds +

∫ ∞

1
R∞(s)ds

}

as t → ∞, which ends part (iii) of the theorem. �

The above theorems imply the following result, which is similar to the one for
the Gaussian O-U process Y1(t) discussed in Section 2.2

Corollary 5. The fractional O-U α-stable process Z1(t) does not have long memory
in the sense of (3.3).

PROOF: From Theorems 6, 7 and 8 we see that I(θ1; θ2; t) decays exponentially
as t → ∞. Since, for the codifference, we have τ(t) = −I(1;−1; t), thus

∞∑

t=0

|τ(t)| < ∞. �
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4.2 Type II fractional α-stable Ornstein-Uhlenbeck process

In this section we introduce the second generalization {Z2(t), t ∈ R} of the standard
O-U process. Z2(t) can be viewed as the α-stable extension of the Gaussian process
Y2(t), see formula (2.10).

First, we define the finite-memory fractional α-stable motion {L̃α,H(t), t ≥ 0} as
the following Riemann-Liouville fractional integral [28]

L̃α,H(t) =
1

Γ(H − 1/α + 1)

∫ t

0
(t − s)H−1/αdLα(s) , t ≥ 0 , (4.23)

where H > 0, α ∈ (0, 2], Γ(·) is the Gamma function and Lα(s) is the symmetric
α-stable random measure with the Lebesque measure as control measure. L̃α,H(t) is
the extension of (2.9) to the α-stable case. Observe that (t− s)H−1/α is α-integrable
on (0, t) for every t ≥ 0, thus L̃α,H(t) is a well-defined α-stable process. Additionally,
for H = 1/α we get the standard symmetric α-stable motion.

Since for every a > 0

L̃α,H(at) =
1

Γ(H − 1/α + 1)

∫ at

0
(at − s)H−1/αdLα(s)

d
=

d
=

1

Γ(H − 1/α + 1)

∫ t

0
aH−1/α+1/α(t − u)H−1/αdLα(u)=

= aHL̃α,H(t) ,

thus, L̃α,H(at) is H-self-similar, but unlike the fractional α-stable motion Lα,H(t)
defined in (3.5), it does not have stationary increments.

Lamperti transformation [4] provides one-to-one correspondence between self-
similar and stationary processes. The α-stable Ornstein-Uhlenbeck process can be
derived through the Lamperti transformation of the α-stable motion. Following the
same line, we define Type II fractional α-stable O-U process {Z2(t), t ∈ R} as the
Lamperti transformation of L̃α,H(t), namely

Definition 6. The process

Z2(t) = e−tHL̃α,H(et) (4.24)

=
e−tH

Γ(H − 1/α + 1)

∫ et

0
(et − s)H−1/αdLα(s) , t ∈ R .

is called Type II fractional α-stable Ornstein-Uhlenbeck process.

Note that for α = 2, the stationary process Z2(t) reduces to the Gaussian one
defined in (2.10).

The next three theorems give precise formulas for the asymptotic behaviour of
the generalized codifference I(θ1; θ2; t) corresponding to Z2(t). Next, we show that
similarly to the Gaussian case the process Z2(t) does not have long memory.
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Theorem 9. Let 0 < α < 1 and H > 0. Then the generalized codifference of Z2(t)
satisfies

I(θ1; θ2; t) ∼ −cα,H · |θ1|α · e−t

as t → ∞, where

cα,H =
1

(Γ(H − 1/α + 1))α
. (4.25)

PROOF: In the proof, we will take advantage of the following inequality

||a|α − |b|α| ≤ |a − b|α (4.26)

valid for 0 < α ≤ 1 and a, b ∈ R.
Formula (4.5) and some standard calculations give the following

I(θ1; θ2; t) = cα,H ·
(∫ 1

0
I1(t, s)ds +

∫ 1

0
I2(t, s)ds

)
, (4.27)

where

I1(t, s) = −|θ1|αe−tHα(et − s)Hα−1 ,

I2(t, s) =
∣∣∣θ1e

−tH(et − s)H−1/α + θ2(1 − s)H−1/α
∣∣∣
α
− |θ2|α(1 − s)Hα−1

and cα,H is given by (4.25).
Since for every s ∈ (0, 1)

et · I1(t, s) −→ −|θ1|α as t → ∞ (4.28)

and

sup
t>1

(et · |I1(t, s)|) ≤
{

|θ1|α if Hα − 1 > 0
|θ1|α(1 − s)Hα−1 if Hα − 1 < 0

which belongs to L1(0, 1), from (4.28) and the dominated convergence theorem we
get

∫ 1

0
I1(t, s)ds ∼ −|θ1|α · e−t as t → ∞ . (4.29)

Similarly, for every s ∈ (0, 1)

et · I2(t, s) −→ 0 as t → ∞

and from inequality (4.26)

sup
t>1

(et · |I2(t, s)|) ≤
{

|θ1|α if Hα − 1 > 0
|θ1|α(1 − s)Hα−1 if Hα − 1 < 0
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which also belongs to L1(0, 1). Therefore, the dominated convergence theorem im-
plies that

et ·
∫ 1

0
I2(t, s)ds −→ 0 as t → ∞ (4.30)

and finally from (4.29) and (4.30) we get

I(θ1; θ2; t) ∼ −cα,H · |θ1|α · e−t as t → ∞ ,

which completes the proof. �

Theorem 10. Let α = 1, H > 0. Then the generalized codifference of Z2(t) satisfies

(i) if θ1θ2 > 0 then I(θ1; θ2; t) = 0

(ii) if θ1θ2 < 0 then I(θ1; θ2; t) ∼ −2 · c1,H · |θ1| · e−t as t → ∞ ,

where c1,H is given in (4.25).

PROOF: For α = 1 formula (4.27) yields

I(θ1; θ2; t) = c1,H ·
(∫ 1

0
I1(t, s)ds +

∫ 1

0
I2(t, s)ds

)
,

where

I1(t, s) = −|θ1|e−tH(et − s)H−1 ,

I2(t, s) =
∣∣θ1e

−tH(et − s)H−1 + θ2(1 − s)H−1
∣∣− |θ2|(1 − s)H−1 .

(i) If θ1θ2 > 0 then clearly I1(t, s) + I2(t, s) = 0 and therefore I(θ1; θ2; t) = 0 .

(ii) For θ1θ2 < 0 we show in a similar manner as in Theorem 9 that

∫ 1

0
I1(t, s)ds ∼ −|θ1| · e−t as t → ∞ . (4.31)

Further, for every s ∈ (0, 1)

etI2(t, s) −→ −|θ1| as t → ∞.

Taking advantage of inequality (4.26) and the dominated convergence theorem
we conclude that

∫ 1

0
I2(t, s)ds ∼ −|θ1| · e−t as t → ∞ (4.32)

and finally from (4.31) and (4.32)

I(θ1; θ2; t) ∼ −2 · c1,H · |θ1| · e−t as t → ∞ .

�
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To prove the next theorem, we need the following lemma

Lemma 3. If 1 < α ≤ 2 then for every a ≥ 0, b ≥ 0 we have

(i) |a − b|α ≤ aα + bα

(ii) ||a − b|α − bα| ≤ aα + αabα−1

(iii) ||a + b|α − bα| ≤ aα + αabα−1

PROOF:

(i) We put fb(a) = |a − b|α − aα − bα.
- for a ≥ b we get fb(0) = 0 and f ′

b(a) = α(a − b)α−1 − αaα−1 ≤ 0
- for a < b we get fb(0) = 0 and f ′

b(a) = −α(b − a)α−1 − αaα−1 ≤ 0
which gives fb(a) ≤ 0. �

(ii) >From (i) we have
|a − b|α − bα ≤ aα ≤ aα + αabα−1.
We put gb(a) = |a − b|α − bα + aα + αabα−1.
- for a ≥ b we get gb(0) = 0 and
g′b(a) = α(a − b)α−1 + αaα−1 + αbα−1 ≥ 0
- for a < b we get gb(0) = 0 and
g′b(a) = −α(b − a)α−1 + αaα−1 + αbα−1 ≥ 0
which implies gb(a) ≥ 0. �

(iii) We put hb(a) = aα + bα + αabα−1 − |a + b|α.
Since hb(0) = 0 and h′

b(a) = αaα−1 + αbα−1 − α(a + b)α−1 ≥ 0,
we get hb(a) ≥ 0. �

Theorem 11. Let 1 < α < 2 and H > 0. Then the generalized codifference of Z2(t)
satisfies

I(θ1; θ2; t) ∼ cα,H · dα,H · θ1
|θ2|α
θ2

· e−t/α

as t → ∞, where

dα,H =
α

H(α − 1) + 1/α
,

and cα,H is given by (4.25).

PROOF: >From (4.27) and for 1 < α < 2

I(θ1; θ2; t) = cα,H ·
(∫ 1

0
I1(t, s)ds +

∫ 1

0
I2(t, s)ds

)
. (4.33)

For every s ∈ (0, 1) we have

et/α · I1(t, s) −→ 0 as t → ∞
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and following the same line as in Theorem 9, we obtain

et/α

∫ 1

0
I1(t, s)ds −→ 0 as t → ∞ . (4.34)

Further, for s ∈ (0, 1)

et/αI2(t, s) −→ α · θ1 ·
|θ2|α
θ2

· (1 − s)(H−1/α)(α−1) as t → ∞

and from Lemma 3 we get

sup
t>1

{et/α · |I2(t, s)|} ≤ sup
t>1

{ |θ1|α(1 − se−t)Hα−1 + α · |θ1||θ2|α−1

×(1 − se−t)H−1/α(1 − s)(H−1/α)(α−1) }

≤
{

|θ1|α + α · |θ1||θ2|α−1 if Hα − 1 > 0
(|θ1|α + α · |θ1||θ2|α−1)(1 − s)Hα−1 if Hα − 1 < 0

which belongs to L1(0, 1). Thus, the dominated convergence theorem yields

et/α ·
∫ 1

0
I2(t, s)ds −→ α · θ1 ·

|θ2|α
θ2

·
∫ 1

0
(1 − s)(H−1/α)(α−1)ds (4.35)

as t → ∞. Finally from (4.33), (4.34) and (4.35) we get

I(θ1; θ2; t) ∼ cα,H · α

H(α − 1) + 1/α
· θ1

|θ2|α
θ2

· e−t/α

as t → ∞, which completes the proof. �

The asymptotic behaviour of the generalized codifference investigated in the
above three theorems indicates that

Corollary 6. The fractional O-U process Z2(t) does not have long-memory property
in the sense of (3.3).

PROOF: >From Theorems 9, 10 and 11 we get that I(θ1; θ2; t) decays exponen-
tially. Thus

∞∑

n=0

|τ(n)| < ∞ ,

which proves the statement. �
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4.3 Type III fractional α-stable Ornstein-Uhlenbeck process

In this section we employ the techniques originating from the fractional calculus to
obtain in an elegant way the fractional α-stable O-U process, introduced in the recent
paper by M.S. Taqqu and R.L. Wolpert [31] (Sec. 4.2.2). They define fractional α-
stable O-U process in the following way: For 0 < α ≤ 2 let Lα(t) be the standard
symmetric α-stable random measure with Lebesque control measure. For λ > 0
construct a series of processes indexed by κ via the recursive recipe

X1(t)
def
=

√
2λ

∫ t

−∞
e−λ(t−s)Lα(ds),

...

Xκ(t)
def
=

∫ t

−∞
λe−λ(t−s)Xκ−1(s)ds,

which by the Fubini’s theorem for stochastic integrals gives

Xκ(t) =

√
2λ λκ−1

Γ(κ)

∫ t

−∞
(t − s)κ−1e−λ(t−s)Lα(ds). (4.36)

For arbitrary κ > 1− 1/α equation (4.36) is taken as the definition of the fractional
α-stable O-U process. Note that for κ = 1 we get the standard α-stable O-U process

Let us now recall the definition of the Bessel fractional derivative. Samko et
al. [28] introduce the modified Bessel operator Gκ

λ : R
R −→ R

R via its Fourier
transform as

Ĝκ
λf

def
=

1

(λ − iω)κ
f̂(ω), λ > 0, κ > 0,

from which we get that

(Gκ
λf)(t) =

1

Γ(κ)

∫ t

−∞
(t − s)κ−1e−λ(t−s)f(s)ds.

Here, we use the notation ĥ for the Fourier transform of the function h. One can
verify that for fixed λ we have Gκ

λGβ
λf = Gκ+β

λ f , so that the family of operators
{Gκ

λ}κ>0 forms a semigroup. The Bessel fractional derivative is now introduced as
the operator inverse to Gκ

λ, i.e.
(

λI +
d

dt

)κ

f
def
= (Gκ

λ)−1f,

where I is the identity operator.
Now, we can introduce

Definition 7. The stationary stochastic process {Z3(t), t ∈ R} defined as the solution
of the following fractional Langevin equation

(
λI +

d

dt

)κ

Z3(t) = lα(t). (4.37)

is called Type III fractional α-stable O-U process.
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Here λ > 0, κ > 0 and lα(t) is the symmetric α-stable noise, i.e. it has symmetric
α-stable marginal distributions, its probability distribution is translation invariant
and lα(s) and lα(t) are independent for s 6= t.
Note that for κ = 1, equation (4.37) becomes the standard α-stable Langevin equa-
tion and its stationary solution is the O-U process.

To solve equation (4.37), we apply the modified Bessel operator Gκ
λ to both sides

of the equation. Thus the solution Z3(t) has the form

Z3(t) =
1

Γ(κ)

∫ t

−∞
(t − s)κ−1e−λ(t−s)Lα(ds), (4.38)

where Lα(s) is the symmetric α-stable random measure with Lebesque control mea-
sure. Formally Lα(t) =

∫ t
0 lα(s)ds. For κ > 1 − 1/α the kernel in (4.38) belongs to

the Lebesque space Lα((−∞, t), ds) and the stochastic integral is well defined in the
sense of convergence in probability. We have

Proposition 2. Solution of the fractional Langevin equation (4.37) is equal (up to
a constant) to the fractional O-U α-stable process (4.36).

PROOF: Comparing formulas (4.36) with (4.38) gives the wanted result. �

Thus the standard techniques developed in fractional calculus allow us to obtain
the stochastic process Z3(t) in an elegant way. Let us note that for α = 2, Z3(t)
reduces to the short-memory Gaussian process Y3(t) defined by formula (2.12). In
the next three theorems we explore the asymptotic dependence structure of Z3(t)
and answer the question of the presence of long memory in this process.

Theorem 12. Let 0 < α < 1, κ > 0 and λ > 0. Then the generalized codifference
of Z3(t) satisfies

I(θ1; θ2; t) ∼ −cα,κ · |θ1|α · 1

λα
· tα(κ−1)e−λαt

as t → ∞, where

cα,κ =

(
1

Γ(κ)

)α

. (4.39)

PROOF: Formula (4.5) with some standard calculations yield

I(θ1; θ2; t) = cα,κ ·
(∫ ∞

0
I1(t, s)ds +

∫ ∞

0
I2(t, s)ds

)
, (4.40)

where

I1(t, s) = −|θ1|α(t + s)α(κ−1)e−λα(t+s),

I2(t, s) =
∣∣∣θ1(t + s)κ−1e−λ(t+s) + θ2s

κ−1e−λs
∣∣∣
α
− |θ2|αsα(κ−1)e−λαs

and cα,κ is given by (4.39).
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For every s ∈ (0,∞) we get

eλαt · t−α(κ−1)I1(t, s) −→ −|θ1|αe−λαs as t → ∞ (4.41)

and

sup
t>1

(|eλαt · t−α(κ−1)I1(t, s)|) ≤
{

|θ1|αe−λαs if − 1 < α(κ − 1) ≤ 0

|θ1|α(1 + s)α(κ−1)e−λαs if α(κ − 1) > 0

which belongs to L1((0,∞), ds). Thus from the dominated convergence theorem

∫ ∞

0
I1(t, s)ds ∼ −|θ1|α · e−λαt · tα(κ−1)

∫ ∞

0
e−λαsds (4.42)

= −|θ1|α · e−λαt · tα(κ−1) · 1

λα

as t → ∞.
Further, for every s ∈ (0,∞), eλαt · t−α(κ−1) · I2(t, s) −→ 0 as t → ∞, and since for
α ∈ (0, 1], ||a|α − |b|α| ≤ |a − b|α, a ∈ R, b ∈ R, we have that |I2(t, s)| ≤ |I1(t, s)|
and consequently

sup
t>1

(|eλαt · t−α(κ−1)I2(t, s)|) ≤
{

|θ1|αe−λαs if − 1 < α(κ − 1) ≤ 0

|θ1|α(1 + s)α(κ−1)e−λαs if α(κ − 1) > 0

which also belongs to L1((0,∞), ds). Therefore, from the dominated convergence
theorem we get

eλαt · t−α(κ−1) ·
∫ ∞

0
I2(t, s)ds −→ 0 as t → ∞ (4.43)

and finally from (4.42) and (4.43) we conclude

I(θ1; θ2; t) ∼ −cα,κ · |θ1|α · 1

λα
· tα(κ−1)e−λαt as t → ∞

�

Theorem 13. Let α = 1, κ > 0 and λ > 0. Then the generalized codifference of
Z3(t) satisfies

(i) if θ1θ2 > 0 then I(θ1; θ2; t) = 0

(ii) if θ1θ2 < 0 then

I(θ1; θ2; t) ∼ −2 · c1,κ · |θ1| ·
1

λ
· tκ−1e−λt

as t → ∞, where c1,κ is given by (4.39).
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PROOF: Equation (4.40) for α = 1 gives

I(θ1; θ2; t) = c1,κ ·
(∫ ∞

0
I1(t, s)ds +

∫ ∞

0
I2(t, s)ds

)
,

where

I1(t, s) = −|θ1|(t + s)κ−1e−λ(t+s),

I2(t, s) =
∣∣∣θ1(t + s)κ−1e−λ(t+s) + θ2s

κ−1e−λs
∣∣∣− |θ2|sκ−1e−λs

(i) If θ1θ2 > 0 then evidently I1(t, s)+I2(t, s) = 0 and therefore r(θ1; θ2; t) = 0 .

(ii) For θ1θ2 < 0 we have for every s ∈ (0,∞)

eλtt−(κ−1) (I1(t, s) + I2(t, s)) −→ −2|θ1|e−λs as t → ∞

and we show in a similar manner as in Theorem 12 that

I(θ1; θ2; t) ∼ −2 · c1,κ · |θ1| ·
1

λ
· tκ−1e−λt

as t → ∞. �

Theorem 14. Let 1 < α < 2, κ > 1 − 1/α and λ > 0. Then the generalized
codifference of Z3(t) satisfies

I(θ1; θ2; t) ∼ cα,κ · dα(λ; κ) · θ1 ·
|θ2|α
θ2

· tκ−1e−λt

as t → ∞, where

dα(λ; κ) = α · Γ ((κ − 1)(α − 1) + 1)

(λα)(κ−1)(α−1)+1
,

and cα,κ is given by (4.39).

PROOF: From (4.40) we have

I(θ1; θ2; t) = cα,κ ·
(∫ ∞

0
I1(t, s)ds +

∫ ∞

0
I2(t, s)ds

)
. (4.44)

For every s ∈ (0,∞) we get eλtt−(κ−1) · I1(t, s) −→ 0 as t → ∞ and since

sup
t>1

(|eλt · t−(κ−1)I1(t, s)|) ≤
{

c1 · |θ1|αe−λαs if κ − 1 ≤ 0
c2 · |θ1|αe−λs if κ − 1 > 0

(c1 and c2 are appropriate constants dependent only on parameters α, λ and κ), the
dominated convergence theorem yields

eλtt−(κ−1) ·
∫ ∞

0
I1(t, s)ds −→ 0 as t → ∞.
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Moreover, for s ∈ (0,∞)

eλtt−(κ−1) · I2(t, s) −→ α · θ1
|θ2|α
θ2

e−λαss(κ−1)(α−1)

as t → ∞. Taking advantage of the following inequalities
||a − b|α − bα| ≤ aα + αabα−1 and
||a + b|α − bα| ≤ aα + αabα−1

valid for a ≥ 0, b ≥ 0 and α ∈ (1, 2], we obtain

sup
t>1

(|eλt · t−(κ−1)I2(t, s)|) ≤

≤
{

c1 · |θ1|αe−λαs + α|θ1||θ2|α−1e−λαss(κ−1)(α−1) if κ − 1 ≤ 0

c2 · |θ1|αe−λs + α|θ1||θ2|α−1e−λαss(κ−1)(α−1)(1 + s)κ−1 if κ − 1 > 0

which belongs to L1((0,∞), ds). Thus, the dominated convergence theorem yields

eλtt−(κ−1) ·
∫ ∞

0
I2(t, s)ds −→ α · θ1

|θ2|α
θ2

∫ ∞

0
e−λαss(κ−1)(α−1)ds

as t → ∞. Since ∫ ∞

0
e−λαss(κ−1)(α−1)ds =

Γ ((κ − 1)(α − 1) + 1)

(λα)(κ−1)(α−1)+1

we receive the following

I(θ1; θ2; t) ∼ cα,κ · dα(λ; κ) · θ1 ·
|θ2|α
θ2

· tκ−1e−λt

as t → ∞ and the proof is completed. �

Corollary 7. The fractional O-U α-stable process Z3(t) does not have long-memory
property in the sense of (3.3).

PROOF: Theorems 12, 13 and 14 imply that the codifference τ(t) decays expo-
nentially. Therefore

∞∑

n=0

|τ(n)| < ∞ ,

and the statement holds. �

The above result shows that the lack of long memory observed in the Gaussian
case (2.12) occurs also in the more general α-stable case for arbitrary α ∈ (0, 2).

4.4 Langevin equation with fractional α-stable noise

The next generalization {Z4(t), t ∈ R} of the α-stable O-U process can be obtained
by replacing the α-stable noise lα(t) in Langevin equation (4.2) with the fractional α-

stable noise lα,H(t) =
dLα,H(t)

dt . Recall that Lα,H(t) is the fractional α-stable motion
(3.5). Thus, the Langevin equation with fractional α-stable noise takes the form

dZ4(t)

dt
+ λZ4(t) = lα,H(t). (4.45)
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Here, 0 < α < 2 and 0 < H < 1.
As shown in [15], the unique stationary solution of the fractional Langevin equa-

tion (4.45) exist for α < 1 and H > 1/α. The solution takes the form

Z4(t) = Lα,H(t) − λ

∫ t

−∞
e−λ(t−s)Lα,H(s)ds. (4.46)

The authors of [15] prove the following result

Theorem. ( [15]) The codifference of Z4(t) satisfies

τ(t) ∼ −k(α, H)tα(H−1) as t → ∞,

where

k(α, H) = λ−α(H − 1/α)α

{
|a|α

∫ ∞

1

(
|(x − 1)H−1/α−1 − xH−1/α−1|α

−|(x − 1)H−1/α−1|α − |xH−1/α−1|α
)
dx

+

∫ 1

0

(
|b(1 − x)H−1/α−1 − axH−1/α−1|α

−|b(1 − x)H−1/α−1|α − |axH−1/α−1|α
)
dx

+|b|α
∫ 0

−∞

(
|(1 − x)H−1/α−1 − (−x)H−1/α−1|α

−|(1 − x)H−1/α−1|α − |(−x)H−1/α−1|α
)
dx

}
.

The above theorem implies

Corollary 8. The fractional O-U α-stable process Z4(t) has long memory in the
sense of (3.3).

PROOF:The power-law behaviour of the codifference implies that series (3.3)
diverges. �

As we can see, long memory present in the noise lHα (t) (see Corollary 1) transfers
to the solution of fractional Langevin equation (4.45). Let us note that Z4(t) is
the first fractional α-stable O-U process, between all the considered processes Zi(t),
i = 1, 2, 3, 4, with long memory. This fact confirms the statement, that processes
exhibiting long-range dependence are rather ’unusual’.

4.5 Link to FARIMA time series

In this section we define the continuous-time counterpart of the long-memory time se-
ries called FARIMA (fractional autoregressive integrated moving average). We prove
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that the introduced stationary process has exactly the same dependence structure
as FARIMA, and therefore, it is also a long-memory process.

The FARIMA discrete-time processes have found widespread acceptance as the
mathematical models for various empirical time series with long memory ( [2, 7]
and references therein). We begin with recalling the definition. Let B be the shift
operator defined by BX(t) = X(t−1) and ∆ be the difference operator i.e. ∆X(t) =
X(t) − X(t − 1) = (I − B)X(t). The FARIMA model is the generalization of the
classical ARIMA(p, κ, q) model

Φ(B)∆κX(t) = Θ(B)ǫt, t ∈ N.

Here Φ and Θ are the polynomials of degree p and q respectively, ǫn are assumed to
be i.i.d symmetric α-stable random variables and κ is a non-negative integer. Now,
for FARIMA(p, κ, q) the parameter κ is allowed to take also fractional values, either
positive or negative. To avoid unnecessary complications, in our further discussion
we set p = q = 0. Then the model is described by

∆κX(t) = ǫt, (4.47)

and consequently X(t) = ∆−κǫt, where the operator ∆−κ = (1 − B)−κ for the
fractional parameter κ is formally interpreted via the Taylor expansion of the function
(1 − z)−κ =

∑∞
j=0 bj(−κ)zj . The coefficients in the series are

bj(−κ) =
Γ(j + κ)

Γ(κ)Γ(j + 1)
. (4.48)

Thus the formal definition of FARIMA(0, κ, 0) process is the following

X(t) = ∆−κǫt = (1 − B)−κǫt =
∞∑

j=0

bj(−κ)ǫt−j , t ∈ Z. (4.49)

X(t) is a stationary moving average and the necessary condition for the series (4.49)
to converge a.s. is −∞ < κ < 1 − 1/α. In the Gaussian case, i.e. when α = 2, the
rate of decay of the covariance function Cov(t) := E[X(t)X(0)]−E[X(t)]E[X(0)] for
FARIMA model is t2κ−1, [3], which shows that for κ ≥ 0 we have

∑∞
n=0 |Cov(n)| = ∞

and X(t) is a process with long-range dependence. Additionally, the spectral density
f(ω) (Fourier transform of Cov(t)) satisfies f(ω) ∼ c|ω|−2κ as ω → 0. For α < 2
the covariance doesn’t exist and one has to employ other measures of dependence,
appropriate for the stochastic processes with infinite second moment. In [12] authors
determine the asymptotic behaviour of the codifference τ(t) for FARIMA(p, κ, q).
They prove the following result

Theorem. ( [12]) Suppose X(t) =
∑∞

j=0 bj(−κ)ǫt−j is a FARIMA(0, κ, 0) process
with symmetric α−stable innovations ǫt, t ∈ Z. Suppose 0 < α ≤ 2 and κ is not an
integer.
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(a) If either (i) α ≤ 1 or (ii) α > 1 and (α − 1)(κ − 1) > −1, then

lim
t→∞

τ(t)

tα(κ−1)+1
=

1

[Γ(κ)]α

∫ ∞

0
g(x)dx,

where
g(x) = x(κ−1)α + (1 + x)(κ−1)α − (xκ−1 − (1 + x)κ−1)α.

(b) If α > 1 and (α − 1)(κ − 1) < −1, then

lim
t→∞

τ(t)

tκ−1
=

α

Γ(κ)

∞∑

j=0

bj(−κ)<α−1>.

As a consequence, we obtain the following conclusion

Corollary 9. For κ > 1− 2/α the FARIMA(0, κ, 0) process has long memory in the
sense of (3.3).

PROOF: The condition κ > 1 − 2/α is equivalent to α(κ − 1) + 1 > −1 and
therefore for α ≤ 1 we have

∑∞
t=0 |τ(t)| = ∞. For α ∈ (1, 2] κ > 1 − 2/α implies

(α − 1)(κ − 1) > −1, thus τ(t) ∼ ctα(κ−1)+1 and
∑∞

t=0 |τ(t)| = ∞. �

The arising question is, whether we can find a stationary α-stable process Z(t)
with continuous time t, which could be regarded as an appropriate counterpart of
FARIMA(0, κ, 0) in the sense of the dependence structure. First, we proceed to
the following heuristic considerations. From the Stirling’s Formula for the Gamma
function

Γ(z) ∼ e−zzz−1/2
√

2π, as z → ∞,

we get the asymptotic behaviour of the coefficients (4.48)

bj(−κ) =
Γ(j + κ)

Γ(κ)Γ(j + 1)
∼ jκ−1

Γ(κ)
as j → ∞.

Therefore, the process X(t) from (4.49) can be considered as an approximated sum
for stochastic integral

X(t) =
∞∑

j=0

bj(−κ)ǫt−j =
t∑

j=−∞

bt−j(−κ)ǫj =

=
t∑

j=−∞

∫ j

j−1
bt−j(−κ)1(j−1,j](s)Lα(ds) ≈

≈ 1

Γ(κ)

∫ t

−∞
(t − s)κ−1Lα(ds),

where Lα(s) is the symmetric α-stable random measure with Lebesque control mea-
sure. Thus, we have related the continuous-parameter moving average process

Z(t) :=
1

Γ(κ)

∫ t

−∞
(t − s)κ−1Lα(ds), t ∈ R, (4.50)
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to the FARIMA process.
On the other hand, the equation (4.47) can be replaced by its continuous-time

counterpart, namely

dκ

dtκ
Z(t) = lα(t), (4.51)

where the difference operator ∆ is replaced by the fractional derivative operator of
the Riemann-Liouville type dκ

dtκ (see [28]) and the sequence of i.i.d. variables ǫt is
replaced by the symmetric α-stable noise lα(t). Using the standard Fourier-Laplace
Transform techniques we get the following stationary solution of fractional differential
equation (4.51)

Z(t) :=
1

Γ(κ)

∫ t

−∞
(t − s)κ−1Lα(ds),

where Lα(s) is the symmetric α-stable random measure with Lebesque control mea-
sure. It is astonishing that the result is exactly the same as the one derived in (4.50),
which suggest that the process Z(t) can be regarded as the "proper" continuous-time
version of FARIMA(0, κ, 0). However, the main problem in this case is that the ker-
nel function in the representation (4.50) doesn’t belong to Lα(R, ds). Therefore Z(t)
is not well defined. Below we present three different ways how to avoid this difficulty.

4.5.1 Fractional Langevin equation

The first possibility is to replace the equation (4.51) by the introduced in Sec.4.3
fractional Langevin equation (4.37)

(
λI +

d

dt

)κ

Z3(t) = lα(t),

and let the parameter λ ց 0. Since the solution of the above equation is given by

Z3(t) =
1

Γ(κ)

∫ t

−∞
(t − s)κ−1e−λ(t−s)Lα(ds),

the kernel function belongs to Lα(R, ds) only for κ > 1 − 1/α. Let us remind
that for FARIMA processes exactly the opposite condition for κ is required, which
undoubtedly causes some difficulties while comparing the properties of Z3(t) and
FARIMA. However, if 1 ≤ α < 2 and κ > 1 − 1/α, then from the results in Section
4.3 we see that the codifference of the appropriately re-scaled Z3(t) satisfies

τ(t) ∼ e−λttκ−1

as t → ∞. Thus, for small values of λ the asymptotic dependence structure of Z3(t)
is similar, at least in some regions, to the dependence structure of FARIMA, (see
Theorem 4.5 (b)). For all these reasons, Z3(t) may only serve as a continuous-time
model related to FARIMA.
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4.5.2 Fractional α-stable noise

The second idea is to introduce an increment process of Z(t). We define formally

Ẑ(t) := Z(t + 1) − Z(t) =
1

Γ(κ)

∫

R

[(t + 1 − s)κ−1
+ − (t − s)κ−1

+ ]Lα(ds), (4.52)

where a+ = max{a, 0}. Now, we see that for κ ∈ (1 − 1/α, 2 − 1/α) the kernel
function in (4.52) is α-integrable, since it behaves like sκ−1 as s → 0 and like sκ−2 as
s → ∞. Thus, the definition of Ẑ(t) is correct. Let us emphasize that Ẑ(t) should
be considered as an approximation of the increments of the FARIMA(0, κ, 0) model,
and not as the process related directly to FARIMA. Putting κ− 1 = H − 1/α we see
that Ẑ(t) is a version of the well-known fractional α-stable noise lα,H(t) defined in
(3.6). The process lα,H(t) is a classical example of a long-memory α-stable process.
It is defined as the increment process of the H-self-similar fractional α-stable motion
Lα,H(t) (i.e. lα,H(t) = Lα,H(t + 1) − Lα,H(t)). Therefore, we come to conclusion

that the process Ẑ(t), which is regarded as an approximation of the increments
of FARIMA(0, κ, 0), is a version of lα,H(t). Thus, we obtain a link between two
significant long memory processes, namely the FARIMA model and the stationary
linear fractional stable noise, which confirms that in both cases the property of long-
range dependence has the same origin. Additionally, we see that lα,H(t) is related
directly to the increments of FARIMA and that the actual relationship between the
parameters of both models is

κ − 1 = H − 1/α.

4.5.3 Continuous-time FARIMA process

The third possibility is to perturb the solution Z(t) of the FARIMA-type equation
(4.51) in order to get rid of the possible divergence of the integral at the origin. Note
that in the first considered case, application of the fractional Langevin equation
allowed us to avoid divergence of the integral in −∞. Now, we introduce

Definition 8. Let ǫ > 0. Then the process

Z5(t) =
1

Γ(κ)

∫ t

−∞
(t − s + ǫ)κ−1Lα(ds), t ∈ R, (4.53)

is called the Continuous-time FARIMA process.

Z5(t) is a stationary moving average process. It is well defined for κ < 1 − 1/α,
which in contrast with first two studied cases, agrees exactly with the permissible
range of the parameter κ for FARIMA. Therefore in this case it is possible to compare
asymptotic properties of Z5(t) and FARIMA for the same κ. Thus, the primary task
is to determine the asymptotic behaviour of the codifference τ(t) for Z5(t). We prove
the following theorem
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Theorem 15. Let 0 < α ≤ 2 and −∞ < κ < 1− 1/α. Then the codifference τ(t) of
Z5(t) process satisfies

(a) If either (i) α ≤ 1 or (ii) α > 1 and (α − 1)(κ − 1) > −1, then

lim
t→∞

τ(t)

tα(κ−1)+1
=

1

[Γ(κ)]α

∫ ∞

0
g(x)dx,

where
g(x) = x(κ−1)α + (1 + x)(κ−1)α − (xκ−1 − (1 + x)κ−1)α.

(b) If α > 1 and (α − 1)(κ − 1) < −1, then

lim
t→∞

τ(t)

tκ−1
=

α

Γ(κ)

∫ ∞

0
h(x)dx,

where

h(x) =
(x + ǫ)(κ−1)(α−1)

[Γ(κ)]α−1
.

PROOF: We begin with part (a). Since

τ(t) = lnE[exp{i(Z5(t) − Z5(0))}]
− lnE[exp{iZ5(t)}] − lnE[exp{−iZ5(0)},

formula (4.5) with some standard calculations give

τ(t) =
1

[Γ(κ)]α

∫ ∞

0
[(x + ǫ)(κ−1)α + (t + x + ǫ)(κ−1)α (4.54)

−((x + ǫ)κ−1 − (t + x + ǫ)κ−1)α]dx.

After the change of variables x → tx we get

τ(t) =
tα(κ−1)+1

[Γ(κ)]α

∫ ∞

0
[|at(x)|α + |bt(x)|α − |at(x) − bt(x)|α]dx,

where at(x) = (x + ǫ/t)κ−1 and bt(x) = (1 + x + ǫ/t)κ−1. Thus for fixed x ∈ (0,∞)
we have

at(x) −→ xκ−1 as t → ∞ and

bt(x) −→ (1 + x)κ−1 as t → ∞.

To apply the dominated convergence theorem, we need the following inequality [15]:
For r, s ∈ R

||r + s|α − |r|α − |s|α| ≤
{

2|r|α if 0 < α ≤ 1
(α + 1)|r|α + α|r||s|α−1 if 1 < α ≤ 2.
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Using the above result we obtain

sup
t>1

||at(x)|α + |bt(x)|α − |at(x) − bt(x)|α| ≤

≤
{

2|1 + x|α(κ−1) if 0 < α ≤ 1

(α + 1)|1 + x|α(κ−1) + α|1 + x|κ−1|x|(α−1)(κ−1) if 1 < α ≤ 2,

which in both cases belongs to L1((0,∞), ds) (note that in the second case we as-
sumed (α − 1)(κ − 1) > −1). Thus the dominated convergence theorem yields

lim
t→∞

τ(t)

tα(κ−1)+1
=

1

[Γ(κ)]α

∫ ∞

0
g(x)dx,

where g(x) = x(κ−1)α + (1 + x)(κ−1)α − (xκ−1 − (1 + x)κ−1)α.
We pass on to part (b) of the theorem. >From (4.54) we get that

τ(t) =
1

[Γ(κ)]α

∫ ∞

0
[(p(x))α + (qt(x))α − (p(x) − qt(x))α]dx,

where p(x) = (x + ǫ)κ−1 and qt(x) = (t + x + ǫ)κ−1. Note that for fixed x ∈ (0,∞)
we have qt(x) ∼ tκ−1 as t → ∞. >From the first order mean-value theorem

f(r + s) − f(r) = s

∫ 1

0
f ′(r + us)du,

where f is an appropriately smooth function, we obtain

[p(x)]α − [p(x) − qt(x)]α = αqt(x)

∫ 1

0
[p(x) − uqt(x)]α−1du,

and consequently [p(x)]α − [p(x) − qt(x)]α ∼ αtκ−1[p(x)]α−1 as t → ∞. Moreover,
[qt(x)]α

tκ−1 −→ 0 as t → 0, since α > 1. Thus for fixed x ∈ (0,∞) we have

[p(x)]α + [qt(x)]α − [p(x) − qt(x)]α

tκ−1
−→ α[p(x)]α−1 = α(x + ǫ)(α−1)(κ−1)

as t → ∞. To apply the dominated convergence theorem, we need the following
inequality:
For r, s > 0 and α ∈ (1, 2]

rα + sα − |r − s|α ≤ (α + 1)rsα−1. (4.55)

Proof of the inequality:
(i) Let r ≥ s. Define fs(r) := rα + sα − |r − s|α − (α + 1)rsα−1. We will show that
fs(r) ≤ 0. We have fs(0) = 0 and

f ′
s(r) = αrα−1 − α(r − s)α−1 − (α + 1)sα−1 ≤

≤ αsα−1 − (α + 1)sα−1 ≤ 0.
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Thus fs(r) ≤ 0.
(ii) Let r < s. Using the mean-value theorem we get

rα + sα − (s − r)α ≤ rsα−1 + αr

∫ 1

0
[(s − r) + ru]α−1du ≤

≤ rsα−1 + αrsα−1 = (α + 1)rsα−1,

which proves (4.55).
Now, using the above result we obtain

sup
t>1

|[p(x)]α + [qt(x)]α − [p(x) − qt(x)]|α
tκ−1

≤ sup
t>1

(α + 1)qt(x)[p(x)]α−1

tκ−1
≤

≤ (α + 1)[p(x)]α−1 = (α + 1)(x + ǫ)(α−1)(κ−1),

which for (α − 1)(κ − 1) < −1 belongs to L1((0,∞), ds). Finally, the dominated
convergence theorem yields

lim
t→∞

τ(t)

tκ−1
=

α

Γ(κ)

∫ ∞

0
h(x)dx,

where

h(x) =
(x + ǫ)(κ−1)(α−1)

[Γ(κ)]α−1
.

�

We get the conclusion

Corollary. For κ > 1−2/α the process Z5(t) has long memory in the sense of (3.3).

PROOF: It’s enough to repeat the arguments from the proof of Corollary 9, since
the rate of convergence of τ(t) does not depend on ǫ. �

The above results for the codifference of Z5(t) are actually identical with the
ones for FARIMA (0, κ, 0) process. The rate of convergence of τ(t) in both cases
is exactly the same and does not depend on ǫ , which implies that both processes
have long-memory property for the same range of parameter κ. The parameter ǫ
only affects the constant in part (b) of the above theorem, whereas the constant in
part (a) is identical for both processes. For these reasons we may consider Z5(t) as
the "proper" continuous-time counterpart of FARIMA(0, κ, 0) in the sense
of the dependence structure. Since the FARIMA models, due to their long-memory
property, have found their widespread acceptance in modelling various empirical
time series, the introduced process Z5(t), thanks to his identical asymptotic depen-
dence structure and simplicity of the definition, can serve as a useful continuous-time
process in all those fields, where the FARIMA models were required.
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Chapter 5

Correlation Cascade and the

dependence structure

In the previous chapter we have investigated the dependence structure of the frac-
tional processes Zi(t), i = 1, ..., 5 in the language of the codifference. Now, we
concentrate on the alternative measure of dependence – correlation cascade Cl(·)
introduced in (3.9). In what follows, we derive the precise formulas for the asymp-
totic behaviour of Cl(0, t) corresponding to the discussed processes. We detect long
memory in the sense of definition (3.17) and, using the results from Section 3.2, we
show that the examined processes are mixing.

5.1 Type I fractional α-stable Ornstein-Uhlenbeck process

In this section we investigate the asymptotic behaviour of the correlation cascade
Cl(0, t) for the process Z1(t) defined by (4.4). We verify the presence of long memory
in this process and show that Z1(t)is mixing.

Theorem 16. Let 0 < α < 2, 0 < H < 1, a ≥ 0, b ≤ 0 and H − 1/α > 0. Then
the correlation cascade of Z1(t) satisfies

Cl(0, t) ∼ C · e−t
α(1−H)

α(1−H)+1 as t → ∞. (5.1)

Here C is the appropriate positive constant dependant only on the parameters α and
H.

PROOF: We have

Cl(0, t) =

∫ ∞

−∞
min{f(s, t) ; f(s, 0)}αds,

where

f(s, t) = e−tHa
[
(et − s)

H−1/α
+ − (−s)

H−1/α
+

]
+ e−tHb

[
(et − s)

H−1/α
− − (−s)

H−1/α
−

]
.
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Let us introduce the following decomposition

Cl(0, t) =

∫ ∞

−∞
min{f(s, t) ; f(s, 0)}αds (5.2)

=

∫ 0

−∞
... ds +

∫ 1

0
... ds +

∫ et

1
... ds +

∫ ∞

et

... ds =: I1(t) + I2(t) + I3(t) + I4(t).

In what follows, we estimate the rate of convergence of every Ij(t), j = 1, ... , 4,
separately.

Let us begin with I3(t). We have

I3(t) =

∫ et

1
min{e−tH [a(et − s)H−1/α − bsH−1/α] ; b[(s − 1)H−1/α − sH−1/α]}αds.

Set

k(t) := e
t

α(1−H)+1

(
a − b

(−b)(H − 1/α)

) 1
H−1/α−1

. (5.3)

Then, we have k(t) → ∞ and et

k(t) → ∞ as t → ∞. Additionally, for s ∈ (1, k(t)) we
have

e−tH [a(et − s)H−1/α − bsH−1/α] ≤ (a − b)e−t/α = (−b)(H − 1/α)k(t)H−1/α−1

≤ (−b)(H − 1/α)

∫ 1

0
(s − u)H−1/α−1du = b[(s − 1)H−1/α − sH−1/α].

Therefore, for s ∈ (1, k(t)) we obtain

min{e−tH [a(et − s)H−1/α − bsH−1/α] ; b[(s − 1)H−1/α − sH−1/α]}
= e−tH [a(et − s)H−1/α − bsH−1/α]. (5.4)

Next, we set

I3(t) =

∫ et

1
min{...}α ds =

∫ k(t)

1
min{...}α ds +

∫ et

k(t)
min{...}α ds =: I31(t) + I32(t).

For I31(t), using (5.4), we obtain

I31(t) =

∫ k(t)

1
e−tHα[a(et − s)H−1/α − bsH−1/α]αds,

and, after substituting s → k(t)s, we get

I31(t) = e−tHαk(t)Hα

∫ 1

1
k(t)

g(s, t)ds,

62



with

g(s, t) =

[
a

(
et

k(t)
− s

)H−1/α

− bsH−1/α

]α

.

Since for fixed s ∈ (0, 1) we have

g(s, t) ∼ aα

(
et

k(t)

)Hα−1

as t → ∞, the dominated convergence theorem yields

I31(t) ∼ c1e
−tk(t) ∼ c2e

−t
α(1−H)

α(1−H)+1 (5.5)

as t → ∞. Here c1 and c2 are the appropriate positive constants independent of t.
For I32(t) we have

I32(t) ≤ (−b)α

∫ ∞

k(t)
[sH−1/α − (s − 1)H−1/α]ds

= (−b)αk(t)Hα

∫ ∞

1
[sH−1/α − (s − 1/k(t))H−1/α]αds.

>From the mean-value theorem we obtain

sH−1/α − (s − 1/k(t))H−1/α = (H − 1/α)
1

k(t)

∫ 1

0
(s − u/k(t))H−1/α−1du.

Thus, for fixed s ∈ (1,∞) we get

[sH−1/α − (s − 1/k(t))H−1/α]α

k(t)−α
−→ (H − 1/α)αsHα−1−α

as t → ∞, which is integrable on (1,∞). Consequently, the dominated convergence
theorem yields

∫ ∞

1
[sH−1/α − (s − 1/k(t))H−1/α]αds ∼ c3k(t)−α

where c3 is the appropriate positive constant, and finally

I32(t) = O(k(t)Hα−α) = O

(
e
−t

α(1−H)
α(1−H)+1

)
.

Combining the above result with (5.5) we obtain

I3(t) ∼ c4e
−t

α(1−H)
α(1−H)+1 (5.6)

as t → ∞, where c4 is the appropriate positive constant independent of t.
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Recall the decomposition (5.2). We continue our estimations with I1(t). We have

I1(t) =

∫ 0

−∞
min{h(s, t) ; h(s, 0)}αds,

where
h(s, t) = ae−tH [(et − s)H−1/α − (−s)H−1/α].

After some standard calculations we obtain the decomposition

I1(t) =

∫ ∞

0
min{h(−s, t) ; h(−s, 0)}αds

=

∫ k(t)

0
min{...}α ds +

∫ ∞

k(t)
min{...}α ds =: I11(t) + I12(t),

where k(t) is given by (5.3). Additionally, we have

I11(t) ≤
∫ k(t)

0
aαe−tHα[(et + s)H−1/α − sH−1/α]αds,

I12(t) ≤
∫ ∞

k(t)
aα[(1 + s)H−1/α − sH−1/α]αds,

The two integrals on the right-hand sides of the above inequalities are O

(
e
−t

α(1−H)
α(1−H)+1

)

functions. The proof of this fact is analogous to the one carried out for I31(t) and
I32(t). Therefore, we immediately obtain

I1(t) = I11(t) + I12(t) = O

(
e
−t

α(1−H)
α(1−H)+1

)
(5.7)

as t → ∞.
For the term I2(t) in decomposition (5.2) we have

I2(t) ≤ e−tHα

∫ 1

0
[a(et − s)H−1/α − bsH−1/α]αds ≤ e−tHαaαet(Hα−1) = aαe−t.

Therefore, we obtain

I2(t) = O(e−t) (5.8)

as t → ∞. Thus, it decays faster than I3(t) and its contribution is negligible.
For the last term in decomposition (5.2) we get after some standard calculations

I4(t) ≤
∫ ∞

et

(−b)α[sH−1/α − (s − 1)H−1/α]αds

= (−b)αetHα

∫ ∞

1
[sH−1/α − (s − e−t)H−1/α]αds.
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For fixed s ∈ (1,∞) we have

sH−1/α − (s − e−t)H−1/α = (H − 1/α)e−t

∫ 1

0
(s − ue−t)H−1/α−1du.

Therefore, from the dominated convergence theorem, we obtain

∫ ∞

1
[sH−1/α − (s − e−t)H−1/α]αds ∼ c5e

−tα

as t → ∞. Here c5 is the appropriate positive constant. Consequently

I4(t) = O(e−tα(1−H)). (5.9)

as t → ∞. Since α(1 − H) + 1 > 1, we get that I4(t) decays faster than I3(t), thus,
its contribution is negligible.

Finally, comparing the results in (5.6) – (5.9), we obtain

Cl(0, t) ∼ C · e−t
α(1−H)

α(1−H)+1 as t → ∞,

where C is the appropriate positive constant dependant only on the parameters α
and H. �.

>From the above theorem we get the following conclusions

Corollary 10. The process Z1(t) does not have long memory in the sense of (3.17).

PROOF: Since the correlation cascade Cl(0, t) decays exponentially, the series
(3.17) converges. �

Corollary 11. The process Z1(t) is mixing.

PROOF: Since Cl(0, t) −→ 0 as t → ∞, from Theorem 2 we get that the process
must be mixing. �

5.2 Type II fractional α-stable Ornstein-Uhlenbeck process

In this section we examine the asymptotic properties of the correlation cascade
Cl(0, t) for the process Z2(t) defined by (4.24). We verify the presence of long memory
in this process and prove that Z2(t)is mixing.

Theorem 17. Let H > 0 and 0 < α < 2. Then the correlation cascade of Z2(t)
satisfies

Cl(0, t) ∼ e−t

(Γ(H − 1/α + 1))α
as t → ∞. (5.10)
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PROOF: We have

Cl(0, t) =
1

(Γ(H − 1/α + 1))α
×

∫ ∞

−∞
min{e−tH(et − s)H−1/α

1(0,et)(s) ; (1 − s)H−1/α
1(0,1)(s)}αds.

Consider first the case H − 1/α < 0. Then, we obtain

Cl(0, t) =
e−tHα

(Γ(H − 1/α + 1))α

∫ 1

0
(et − s)Hα−1ds.

Since for fixed s ∈ (0, 1) we have

(et − s)Hα−1

et(Hα−1)
−→ 1

as t → ∞, from the dominated convergence theorem we obtain

∫ 1

0
(et − s)Hα−1ds ∼ et(Hα−1).

Consequently,

Cl(0, t) ∼ e−t

(Γ(H − 1/α + 1))α
as t → ∞.

We pass to the second case H − 1/α > 0. For s ∈ (0, 1) we get

e−tH(et − s)H−1/α < (1 − s)H−1/α ⇐⇒ s <
e−

t
Hα−1 − 1

e−
tHα

Hα−1 − 1
.

Set

k(t) :=
e−

t
Hα−1 − 1

e−
tHα

Hα−1 − 1
.

Then, we obtain

Cl(0, t) =
1

(Γ(H − 1/α + 1))α

(∫ k(t)

0
e−tHα(et − s)Hα−1ds +

∫ 1

k(t)
(1 − s)Hα−1ds

)

=:
1

(Γ(H − 1/α + 1))α
(I1(t) + I2(t)) .

For the first term I1(t), after some standard calculations, we get

I1(t) = e−tHαk(t)

∫ 1

0
(et − k(t)s)Hα−1ds.

Since k(t) −→ 1 and for fixed s ∈ (0, 1)

(et − k(t)s)Hα−1

et(Hα−1)
−→ 1
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as t → ∞, the dominated convergence theorem yields

I1(t) ∼ e−t as t → ∞.

For the second term I2(t), we obtain

I2(t) =
(1 − k(t))Hα

Hα
∼ e−

tHα
Hα−1

Hα

as t → ∞. Thus, I2(t) decays faster than I1(t) and its contribution is negligible.
Finally, we get

Cl(0, t) ∼ e−t

(Γ(H − 1/α + 1))α
as t → ∞. �

We get the following conclusions

Corollary 12. The process Z2(t) does not have long memory in the sense of (3.17).

PROOF: The correlation cascade Cl(0, t) decays exponentially, thus the series
(3.17) converges. �

Corollary 13. The process Z2(t) is mixing.

PROOF: Since Cl(0, t) −→ 0 as t → ∞, from Theorem 2 we get that the process
is mixing. �

5.3 Type III fractional α-stable Ornstein-Uhlenbeck process

In this section we investigate the asymptotic behaviour of the correlation cascade
Cl(0, t) for the process Z3(t) defined by (4.38). We show that Z3(t) does not have
long memory in the sense of (3.17) and show that it is mixing.

Theorem 18. Let κ > 1 − 1/α and 0 < α < 2. Then the correlation cascade of
Z3(t) satisfies

Cl(0, t) ∼ (Γ(κ))−α

λα
tα(κ−1)e−λαt as t → ∞. (5.11)

PROOF: Consider first the case κ < 1. We have

Cl(0, t) = Γ(κ))−α

∫ ∞

−∞
min{e−λ(t−s)(t − s)κ−1

1{s<t} ; eλs(−s)κ−1
1{s<0}}αds

= Γ(κ))−α

∫ 0

−∞
e−λα(t−s)(t − s)α(κ−1)ds = Γ(κ))−αe−λαt

∫ ∞

0
e−λαs(t + s)α(κ−1)ds.

For fixed s ∈ (0,∞) we have

e−λαs(t + s)α(κ−1)

tα(κ−1)
−→ e−λαs as t → ∞.
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Additionally,
e−λαs(t + s)α(κ−1)

tα(κ−1)
≤ c1e

−λαs,

which is integrable on (0,∞). Here c1 is the appropriate positive constant. Thus,
from the dominated convergence theorem we get

Cl(0, t) ∼ Γ(κ))−αtα(κ−1)e−λαt

∫ ∞

0
e−λαsds =

Γ(κ))−α

λα
tα(κ−1)e−λαt

as t → ∞.
We pass to the case κ > 1. For s < 0 we have

e−λt(t − s)κ−1 < (−s)κ−1 ⇐⇒ s < − t

eλt/(κ−1) − 1
.

Set

k(t) := − t

eλt/(κ−1) − 1
.

Then, we have

Cl(0, t) = Γ(κ))−α

∫ ∞

−∞
min{e−λ(t−s)(t − s)κ−1

1{s<t} ; eλs(−s)κ−1
1{s<0}}αds

= Γ(κ))−α

(∫ k(t)

−∞
e−λα(t−s)(t − s)α(κ−1)ds +

∫ 0

k(t)
eλαs(−s)α(κ−1)ds

)

=: Γ(κ))−α (I1(t) + I2(t)) .

For the first term, after some standard calculations, we get

I1(t) = e−λαt

∫ ∞

0
h(s, t)ds,

where
h(s, t) = e−λα(k(t)+s)(t + k(t) + s)α(κ−1).

Additionally, for fixed s ∈ (0,∞), we obtain

h(s, t) ∼ tα(κ−1)e−λαs as t → ∞.

Consequently, from the dominated convergence theorem, we obtain

I1(t) ∼
1

λα
tα(κ−1)e−λαt

as t → ∞.
For the second term we get

I2(t) ≤ −k(t)(−k(t))α(κ−1) = (−k(t))α(κ−1)+1.
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Thus, I2(t) decays faster than I1(t) and its contribution is negligible. Finally, we
obtain

Cl(0, t) ∼ Γ(κ))−αI2(t) ∼
Γ(κ))−α

λα
tα(κ−1)e−λαt

as t → ∞. �

We get the following conclusions

Corollary 14. The process Z3(t) does not have long memory in the sense of (3.17).

PROOF: Since the correlation cascade Cl(0, t) decays exponentially, the series
(3.17) is convergent. �

Corollary 15. The process Z3(t) is mixing.

PROOF: Since Cl(0, t) −→ 0 as t → ∞, from Theorem 2 we obtain that the
process must be mixing. �

5.4 Continuous-time FARIMA process

Since the integral representation of the introduced in Section 4.4 process Z4(t) is
not known, we are unable to verify the bahaviour of the corresponding correlation
cascade. For this reason we pass to the continuous-time FARIMA process Z5(t)
defined by (4.53). In what follows, we show that the process has long memory in the
sense of (3.17) and prove that Z5(t)is mixing.

Theorem 19. Let κ < 1 − 1/α and 0 < α < 2. Then the correlation cascade of
Z5(t) satisfies

Cl(0, t) ∼ K · tα(κ−1)+1 as t → ∞. (5.12)

Here K is the appropriate positive constant dependant only on the parameters α and
κ.

PROOF: Since the function f(s) = (s+ǫ)κ−1
1{s>0} is non-increasing and positive,

we get from formula (3.24)

Cl(0, t) = c

∫ ∞

t
(s + ǫ)α(κ−1)ds,

where c is the appropriate positive constant. Therefore, we immediately obtain

Cl(0, t) ∼ K · tα(κ−1)+1 as t → ∞

for appropriate positive constant K. �

We get the following two corollaries

Corollary 16. For 1 − 2
α ≤ κ < 1 − 1

α the process Z5(t) has long memory in the
sense of (3.17).
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PROOF: Since the correlation cascade of Z5(t) satisfies Cl(0, t) ∼ K · tα(κ−1)+1

as t → ∞ , the series (3.17) is divergent for 1 − 2
α ≤ κ < 1 − 1

α . �

Corollary 17. The process Z5(t) is mixing.

PROOF: Since Cl(0, t) −→ 0 as t → ∞, from Theorem 2 we obtain that Z5(t)
must be mixing. �

Remark. Comparing the results for the asymptotic dependence structure of
the processes Zi(t), i = 1, 2, 3, 5, obtained in Chapters 4 and 5, we see that the two
alternative definitions of long memory given in (3.3) and (3.17) are equivalent for the
discussed stationary processes. Moreover, the presence of long-range dependence in
terms of the correlations in the Gaussian case transfers to the more general α-stable
case.
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Chapter 6

Conclusions

In the thesis we have obtained the following key results:
We have defined three new fractional generalizations of the standard α-stable

O-U process and investigated their asymptotic dependence structure in terms of the
generalized codifference. We have verified the presence of long-range dependence in
these models.

We have proposed the Langevine-type fractional differential equation with α-
stable noise, which is a continuous-time analogue of the FARIMA difference equa-
tion. We have shown that the process obtained as the solution of this differential
equation has long memory. Moreover, it has exactly the same asymptotic dependence
structure as FARIMA time series. Therefore, it can be regarded a continuous-time
counterpart of FARIMA process. As a consequence, we have obtained the important
relationship between the self-similarity index H, the index of stability α and the
fractional parameter κ.

We have significantly simplified the classical Maruyama’s mixing theorem for i.d.
processes by reducing the number of necessary and sufficient conditions to only two.
We have taken advantage of this result and proposed the description of ergodicity,
weak mixing and mixing for i.d. processes in terms of the measure of dependence
called correlation cascade. Next, using the techniques from ergodic theory, we have
derived the relationship between two alternative measures of dependence for i.d.
processes – correlation cascade and codifference.

We have used the correlation cascade to investigate the dependence structure
and the ergodic properties of the previously introduced fractional processes. We
have obtained the precise formulas for the asymptotic behaviour of the correlation
cascade and verified the presence of long memory in the considered models. We have
proved that the models are mixing. We have shown that both introduced definitions
of long memory for α-stable processes, are equivalent for the discussed stationary
fractional processes.
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[8] Eliazar I, Klafter J, Correlation cascades of Lévy-driven random processes. Phys-
ica A. To appear.

[9] Gross A, Some mixing conditions for stationary symmetric stable stochastic
processes. Stochastic Process. Appl. 51 (1994), 277-295.

[10] Hurst H, Long-term storage capacity of reservoirs, Transactions of the American
Society of Civil Engineers 116 (1951), 770-808.

[11] Janicki A, Weron A, Simulation and Chaotic Behaviour of α-Stable Stochastic
Processes, New York: Marcel Dekker (1994).

[12] Kokoszka P S, Taqqu M S, Fractional ARIMA with stable innovations, Stoch.
Proc. Appl. 60 (1995), 19-47.

72



[13] Lévy J B, Taqqu M S, A characterization of the asymptotic behavior of stationary
stable processes, In: Stable Processes and Related Topics, S. Cambanis, G.
Samorodnitsky and M.S. Taqqu, eds., Birkhäuser, Boston (1991), 181-198.

[14] Lim S C, Muniandy S V, Generalized Ornstein-Uhlenbeck processes and associ-
ated self-similar processes, J. Phys. A: Math. Gen. 36 (2003), 3961-3982.

[15] Maejima M, Yamamoto K, Long-memory stable Ornstein-Uhlenbeck processes,
Electron. J. Probab. 8 Paper no.19 (2003), 1-18.

[16] Magdziarz M, The dependence structure of the fractional Ornstein-Uhlenbeck
process, Prob. and Math. Stat. 25(1) (2005), 97-104.

[17] Magdziarz M, A note on Maruyama’s mixing theorem, Theory of Probability
and Its Applications, submitted (2006).

[18] Magdziarz M Short and long memory fractional Ornstein-Uhlenbeck alpha-stable
processes, Electron. J. Probab, submitted (2006).

[19] Magdziarz M, Weron A, Fractional Langevin equation with alpha-stable noise.A
link to fractional ARIMA time series, Studia Mathematica, submitted (2006).

[20] Mandelbrot B, Une classe de processus stochastiques homothetiques a soi: ap-
plication a loi climatologique de H.E. Hurst, Comptes Rendus Acad. Sci. Paris
240 (1965), 3274-3277.

[21] Mandelbrot B, Van Ness J, Fractional Brownian motions, fractional noises and
applications, SIAM Review 10 (1968), 422-437.

[22] Mandelbrot B, Wallis J, Noah, Joseph and operational hydrology, Water Re-
sources Research 4 (1968), 909-918.

[23] Marinucci D, Robinson P M, Alternative forms of fractional Brownian motion,
J. Stat. Plann. Inference 80 (1999), 111-122.

[24] Maruyama G, Infnitely divisible processes. Theory Probab. Appl. 15 (1970),
1-22.

[25] Rajput B S, Rosinski J, Spectral representations of infinitely divisible processes,
Probab. Theory Related Fields 82 (1989), 451-487.

[26] Rosinski J, Zak T, Simple conditions for mixing of infinitely divisible processes,
Stochastic Process. Appl. 61 (1996), 277-288.

[27] Rosinski J, Zak T, The equivalence of ergodicity and weak mixing for infinitely
divisible processes, J. Theor. Probab. 10 (1997), 73-86.

[28] Samko S G, Kilbas A A, Maritchev D I, Integrals and Derivatives of the Frac-
tional Order and Some of Their Applications, London: Gordon and Breach
Science Publishers (1993).

73



[29] Samorodnitsky G, Taqqu M S, Stable Non-Gaussian Random Processes: Sto-
chastic Models with Infinite Variance, New York: Chapman and Hall (1994).

[30] Sato K, Lévy Processes and Infinitely Divisible Distributions, Cambridge: Cam-
bridge University Press (1999).

[31] Taqqu M S, Wolpert R L, Fractional Ornstein-Uhlenbeck Lévy processes and
the Telecom process: Upstairs and downstairs, Signal Processing 85(8) (2005),
1523-1545.

[32] Weron A, Burnecki K, Mercik Sz, Weron K, Complete description of all self-
similar models driven by Levy stable noise Phys. Rev. E 71 (2005), 016113.

74


	Contents
	1. Introduction
	1.1 Scope of the paper

	2. Long-range dependence in finitevariance case
	2.1 Foundations
	2.2 Gaussian fractional Ornstein-Uhlenbeck processes

	3. Long-range dependence in infinitevariance case
	3.1 Codifference
	3.2 Correlation Cascade
	3.2.1 Definition and basic properties
	3.2.2 Ergodicity, weak mixing and mixing


	4. Codifference and the dependencestructure
	4.1 Type I fractional  α-stable Ornstein-Uhlenbeck process
	4.2 Type II fractional  α-stable Ornstein-Uhlenbeck process
	4.3 Type III fractional  α-stable Ornstein-Uhlenbeck process
	4.4 Langevin equation with fractional  α-stable noise
	4.5 Link to FARIMA time series
	4.5.1 Fractional Langevin equation
	4.5.2 Fractional α-stable noise
	4.5.3 Continuous-time FARIMA process


	5. Correlation Cascade and thedependence structure
	5.1 Type I fractional α-stable Ornstein-Uhlenbeck process
	5.2 Type II fractional α-stable Ornstein-Uhlenbeck process
	5.3 Type III fractional  α-stable Ornstein-Uhlenbeck process
	5.4 Continuous-time FARIMA process

	6. Conclusions
	Bibliography

