POLITECHNIKA WROCŁAWSKA INSTYTUT INŻYNIERII OCHRONY ŚRODOWISKA

Porcjowe grawitacyjne zagęszczanie osadów powstających w różnych układach oczyszczania wody

Sławomir Szerzyna

Promotor prof. dr hab. inż. Maria Świderska-Bróż

WROCŁAW 2012

Spis treści

Spis skrótów i oznaczeń	4
WSTĘP	6
1. Wprowadzenie	6
2. Odpady powstające w procesach oczyszczania wody	7
2.1. Skład i ilość powstających osadów	7
2.2. Procesy osadotwórcze	8
2.2.1. Koagulacja	8
2.2.2. Odżelazianie	9
2.2.3. Zmiękczanie wody	
2.2. Procesy powodujące powstawanie ścieków	11
2.2.1. Filtracja	11
2.3.2. Mikrocedzenie	11
2.2.3. Wymiana jonowa i procesy membranowe	
2.3. Właściwości osadów	
2.3.1. Rodzaje struktur obecnych w osadach	
2.3.2. Rodzaje wody osadowej	
2.4. Gospodarka osadami powstającymi podczas oczyszczania wody	14
2.4.1. Zagęszczanie osadu	
2.4.1.1. Zagęszczanie grawitacyjne	16
2.4.1.2. Zagęszczanie flotacyjne	19
2.4.1.3. Zagęszczanie mechaniczne	19
2.4.2. Odwadnianie osadu	
2.4.2.1. Odwadnianie w warunkach naturalnych	
2.5.2.2. Odwadnianie mechaniczne	21
2.4.3. Kondycjonowanie osadów	24
2.4.3.1. Kondycjonowanie metodami fizycznymi	24
2.4.3.2. Kondycjonowanie chemiczne	
2.4.4. Odzysk reagentów	
2.4.5. Zagospodarowanie wody osadowej	
2.4.6. Ostateczne usuwanie osadów	
2.5. Gospodarka osadami i popłuczynami powstającymi w ZOW w Polsce	
3. Cel i zakres pracy	

CZĘŚĆ BADAWCZA	35
1. Przedmiot i metodyka badań	35
1.1. Charakterystyka badanych osadów	35
1.1.1. Osady powstające w ZOW "Mokry Dwór"	35
1.1.2. Osady powstające w ZOW "Leśnica"	35
1.1.3. Osady powstające w ZOW "KOGENERACJA S.A."	36
1.2. Pomiary i dane eksperymentalne	37
1.2.1. Skład fizyczno-chemiczny osadów i wody nadosadowej	37
1.2.2. Porcjowe zagęszczanie grawitacyjne osadów	37
1.2.3. Reagenty kondycjonujące	38
OMÓWIENIE WYNIKÓW BADAŃ	39
1. Interpretacja wyników badań	39
2. Skład fizyczno-chemiczny osadów oraz przebieg i skuteczność ich zagęszczania	42
2.1. Osady pokoagulacyjne z ZOW "Mokry Dwór"	42
2.1.1. Skład fizyczno – chemiczny osadów	42
2.1.2. Zagęszczanie osadów bez kondycjonowania	43
2.1.2.1. Wpływ składu fizyczno-chemicznego osadów	43
2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś	ść i
2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś jakość wody nadosadowej	šć i 51
 2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś jakość wody nadosadowej 2.1.2.3. Wpływ wolnego mieszania 	šć i 51 57
 2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś jakość wody nadosadowej 2.1.2.3. Wpływ wolnego mieszania 2.1.3. Zagęszczanie osadów po kondycjonowaniu 	šć i 51 57 62
 2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś jakość wody nadosadowej 2.1.2.3. Wpływ wolnego mieszania 2.1.3. Zagęszczanie osadów po kondycjonowaniu 2.1.3.1. Wpływ korekty pH 	5ć i 51 57 62 62
 2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś jakość wody nadosadowej 2.1.2.3. Wpływ wolnego mieszania 2.1.3. Zagęszczanie osadów po kondycjonowaniu 2.1.3.1. Wpływ korekty pH 2.1.3.2. Wpływ kondycjonowania polielektrolitami 	šć i 51 62 62 70
 2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś jakość wody nadosadowej 2.1.2.3. Wpływ wolnego mieszania 2.1.3. Zagęszczanie osadów po kondycjonowaniu 2.1.3.1. Wpływ korekty pH 2.1.3.2. Wpływ kondycjonowania polielektrolitami I. Kondycjonowanie polielektrolitami kationowymi 	56 i 51 62 62 70 71
 2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś jakość wody nadosadowej 2.1.2.3. Wpływ wolnego mieszania	56 i 51 62 62 70 71 85
 2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś jakość wody nadosadowej 2.1.2.3. Wpływ wolnego mieszania	56 i 51 62 62 70 71 85 89
 2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś jakość wody nadosadowej 2.1.2.3. Wpływ wolnego mieszania	56 i 51 62 62 70 71 85 89 98
 2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś jakość wody nadosadowej	56 i 51 57 62 62 70 71 85 89 98 98
 2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś jakość wody nadosadowej	56 i 51 57 62 62 70 71 85 89 98 98 98
 2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś jakość wody nadosadowej	56 i 51 57 62 70 71 85 98 98 98 98 99
 2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś jakość wody nadosadowej	56 i 51 57 62 70 71 85 98 98 98 98 98 99 99 99
 2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś jakość wody nadosadowej	56 i 51 57 62 62 70 71 85 98 98 98 98 98 99 99 99 99 99 99
 2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętoś jakość wody nadosadowej	56 i 51 57 62 62 70 71 85 98 98 98 98 98 99 99 99 99 99 99 99 99

3.1.3.1. Wpływ alkalizacji	115
3.1.3.2. Wpływ kondycjonowania polielektrolitami	121
I. Kondycjonowanie polielektrolitami kationowymi	121
II. Kondycjonowanie polielektrolitami anionowymi	132
III. Kondycjonowanie dwoma polielektrolitami	136
4.1. Osady z ZOW "Kogeneracja S.A."	146
4.1.1. Skład fizyczno – chemiczny osadów	146
4.1.2. Zagęszczanie osadów bez kondycjonowania	147
4.1.2.1. Wpływ składu fizyczno-chemicznego osadów	147
4.1.2.2. Wpływ czasu wolnego mieszania osadów przed ich zagęszczaniem	154
4.1.3. Zagęszczanie osadów po kondycjonowaniu	157
4.1.3.1. Wpływ zakwaszenia	157
4.1.3.2. Wpływ kondycjonowania polielektrolitami	161
I. Kondycjonowanie polielektrolitami kationowymi	161
II. Kondycjonowanie polielektrolitami anionowymi	169
III. Kondycjonowanie dwoma polielektrolitami jednocześnie	173
5. Podsumowanie	177
5.1. Skład fizyczno-chemiczny osadów	177
5.2. Zagęszczanie osadów niekondycjonowanych chemicznie	178
5.2.1. Wpływ składu fizyczno-chemicznego	178
5.2.2. Wpływ czasu zagęszczania	184
5.2.3. Wpływ wolnego mieszania	186
5.2. Zagęszczanie osadów po kondycjonowaniu chemicznym	189
5.2.1. Wpływ korekty pH	189
5.2.2. Wpływ kondycjonowania polielektrolitami	194
5.2.2.1. Osady powstające w ZOW "Mokry Dwór"	195
5.2.2.2. Osady powstające w ZOW "Leśnica"	198
5.2.2.3. Osady powstające w ZOW "Kogeneracja S.A."	200
5.2.3. Wpływ kondycjonowania chemicznego osadów na wartość CSK_k	201
6. WNIOSKI	203
LITERATURA	206
ZAŁĄCZNIKI Błąd! Nie zdefiniowano z	zakładki.

Spis skrótów i oznaczeń

- Al stężenie glinu, gAl/m³
- $B barwa, gPt/m^3$
- C_i stężenie zawiesin w dowolnym czasie t, g smo/m³
- C_0 stężenie początkowe, g smo/m³
- Ca stężenie wapnia, gCa/m³, °tw
- Cl stężenie chlorków, gCl/m³
- CSK czas ssania kapilarnego, s
- CSK0 czas ssania kapilarnego osadu przed zagęszczaniem, s
- CSK_k czas ssania kapilarnego osadu po zagęszczaniu, s
- d średnica cząstek osadu,
- D_p dawka polielektrolitu, mg/g_{smo}
- Fe_{og} stężenie żelaza ogólnego, gFe/m³
- h₀ wysokość warstwy poziomu osadu w chwili rozpoczęcia procesu zagęszczania, cm
- h₁ wysokość warstwy poziomu osadu w chwili rozpoczęcia fazy komprymacji osadu, cm
- h2 wysokość warstwy poziomu osadu po zakończeniu komprymacji osadu, cm
- h_i wysokość warstwy poziomu osadu w dowolnej chwili t_i, cm
- H wysokość powierzchni rozdziału warstwy osadu i wody nadosadowej, cm
- K osad z ZOW "Kogeneracja S.A.",
- K_d stała doświadczalna,
- L osad z ZOW "Leśnica,
- M mętność, NTU
- MD-osad z ZOW "Mokry Dwór",
- Mg stężenie magnezu, gMg/m³, °tw
- Mn stężenie manganu, gMn/m³
- pH₀ pH przed zagęszczaniem,
- pH_k pH po zagęszczaniu,
- Q-wydajność zakładu oczyszczania wody, m³/d
- smo sucha masa osadu,
- sp sucha pozostałość, g/m³
- spr strata prażenia, g/m³
- ti czas opadania odpowiadający kolejnej wysokości hi, min
- tk czas fazy komprymacji (zagęszczania) osadu, min lub h

- twm-czas wolnego mieszania, min
- tw_{og} twardość ogólna, °tw
- t_s czas fazy sedymentacji cząstek osadu, min
- t_z wymagany czas zagęszczania ($t_z = t_s + t_k$), min lub h
- t_{zag} czas trwania procesu zagęszczania, min lub h
- Utl utlenialność, gO_2/m^3
- v_s prędkość opadania zawiesin, cm/min
- vi prędkość opadania zawiesin w chwili ti, cm/min
- V objętość, cm^3
- V_k objętość osadu zagęszczonego, cm³
- W-uwodnienie osadów, %
- W₀ uwodnienie początkowe osadów, %
- W_k uwodnienie osadów zagęszczonych, %
- Z zdolność osadów do zagęszczania
- zas F zasadowość wobec fenoloftaleiny, val/m³
- zas M zasadowość ogólna wody, val/m³
- Zawog stężenie zawiesin ogólnych, g/m³
- ZOW zakład oczyszczania wody,
- $\eta_z \text{stopień zagęszczenia osadu,}$
- η_v stopień zmniejszenia objętości osadu,
- μ lepkość kinematyczna,
- ς_o gęstość cząstek osadu,
- ς_c gęstość cieczy,

WSTĘP

1. Wprowadzenie

Woda należy do najbardziej rozpowszechnionych związków w przyrodzie i odgrywa podstawową rolę w życiu wszystkich organizmów, ale jest również niezbędna do rozwoju cywilizacji. Odpowiednia jej ilość i zadowalająca jakość są podstawowymi czynnikami dla naszego zdrowia, środowiska, społeczeństwa i gospodarki. Zdrowotna i biologiczna rola wody polega głównie na tworzeniu płynów ustrojowych, regulacji temperatury ciała, ciśnienia osmotycznego i odczynu (pH) oraz uczestniczy w wielu procesach przemiany materii. Dzięki wodzie możliwy jest transport wewnątrzustrojowy oraz wydalanie zbędnych produktów przemiany materii. W środowisku woda stanowi podstawę istnienia ekosystemów wodnych i od wody zależnych. Całkowita ilość wody na kuli ziemskiej szacowana jest na 1 386 milionów km³, z czego jedynie 2,5 % stanowią wody słodkie nadające się dla życia zwierząt i ludzi. Największa część (69,6 %) słodkiej wody zmagazynowana jest w lodowcach, a 30 % stanowią słodkie wody gruntowe. Zaledwie 0,4 % całej słodkiej wody zawarte jest w innych zbiornikach wodnych (rzeki, jeziora naturalne i sztuczne, bagna, mokradła, woda glebowa) i w atmosferze. Ilość ta jest podstawą gospodarki komunalnej i wielu gałęzi przemysłu oraz rolnictwa [33]

Z uwagi na tak małe zasoby wody słodkiej wymagane jest prowadzenie racjonalnej i kompleksowej gospodarki wodnej w skali krajowej jak i międzynarodowej. Wynikiem wieloletnich działań Wspólnot Europejskich, zmierzających do lepszej ochrony wód poprzez wprowadzenie wspólnej europejskiej polityki wodnej, opartej na przejrzystych, efektywnych i spójnych ramach legislacyjnych, było wprowadzenie Ramowej Dyrektywy Wodnej 2000/60/WE z dnia 23 października 2000 roku. Zobowiązała ona państwa członkowskie do racjonalnego wykorzystywania i ochrony zasobów wodnych w myśl zasad zrównoważonego rozwoju. Gospodarka wodna prowadzona zgodnie z zapisami Dyrektywy ma zapewnić:

- zaspokojenie zapotrzebowania na wodę ludności, rolnictwa i przemysłu,
- promowanie zrównoważonego korzystania z wód,
- ochronę wód i ekosystemów znajdujących się w dobrym stanie ekologicznym,
- poprawę jakości wód i stanu ekosystemów zdegradowanych działalnością człowieka,
- zmniejszyć zanieczyszczenie wód podziemnych,

- zmniejszyć skutki powodzi i suszy [15].

Dostosowanie polskiego prawa do wymogów Unii Europejskiej w zakresie gospodarki wodnej i eksploatacji zakładów oczyszczania wody spowodowało większe niż dotychczas zwrócenie uwagi na zagadnienia ilości, jakości i sposobu przeróbki osadów powstających podczas oczyszczania wody [1]. Jednocześnie wprowadzenie nowych, bardziej wymagających, przepisów dotyczących jakości wody kierowanej do odbiorców wymusiło zwiększenie skuteczności usuwania zanieczyszczeń z wody, a w konsekwencji spowodowało powstawanie większej ilości osadów przypadających na jednostkę objętości oczyszczonej wody. Zwiększenie skuteczności usuwania najdrobniejszych zawiesin, mikroorganizmów oraz związków organicznych spowodowało zmniejszenie podatności osadów na zagęszczanie i odwadnianie. Ich przeróbka stanowi więc jeden z istotniejszych problemów z zakładach wodociągowych. Od skuteczności odwadniania osadów zależą między innymi koszty transportu do miejsca zagospodarowania lub utylizacji [1].

2. Odpady powstające w procesach oczyszczania wody.

2.1. Skład i ilość powstających osadów

Rozporządzenie Ministra Zdrowia z dnia 20 kwietnia 2010 r. w sprawie jakości wody przeznaczonej do spożycia przez ludzi (Dz.U. 2010 nr 72 poz. 466), określa wymaganą jakość wody dostarczanej do odbiorców [47]. Aby spełnić te wymagania woda poddawana jest oczyszczaniu w Zakładach Oczyszczania Wody, podczas którego, w prawie wszystkich procesach jednostkowych powstają ścieki i osady. Osady powstające podczas oczyszczania wody stanowią mieszaninę wody osadowej i cząstek stałych. Podczas oczyszczania wody, w zależności od jej rodzaju i sposobu oczyszczania, mogą powstawać następujące osady: pokoagulacyjne, wodorotlenku żelaza (III) po procesie napowietrzania wody podziemnej, powstające podczas strąceniowych metod oczyszczania wody np. zmiękczania, wydzielone podczas sedymentacji wstępnej realizowanej w układach oczyszczania wody powierzchniowej oraz wydzielone ze ścieków. Do ścieków zalicza się popłuczyny powstające podczas płukania złóż filtracyjnych, adsorpcyjnych i jonitowych, membran oraz mikrosit, roztwory poregeneracyjne i koncentraty powstające w procesach membranowych oraz powstające podczas płukania urządzeń stosowanych w układach oczyszczania wody. Powstające popłuczyny i osady traktowane są jako odpady. Rozporządzenie Ministra Środowiska z dnia 27 września 2001 r. w sprawie katalogu odpadów (Dz.U. nr 112 poz. 1206) przyporządkowuje osady z instalacji i urządzeń służących zagospodarowaniu odpadów z oczyszczania wody do picia do 19 grupy i nadaje im odpowiednie kody [45]. Skład i ilość tych odpadów zależą od wielu czynników takich jak rodzaj oczyszczanej wody, rodzaj stosowanych procesów jednostkowych oczyszczania wody, stopień jej zanieczyszczenia i wymagany stopień oczyszczenia oraz od rodzaju i dawek stosowanych reagentów.

Dokładna ilość osadów i popłuczyn powstających w ZOW nie jest znana, a szacuje się ją na około 5% objętości oczyszczanej wody. Wg Kroczaka [29] ilość popłuczyn powstająca w

większości zakładów oczyszczających wody w Polsce stanowi od 0,03 do 18, 33 % wydajności ZOW, ale w większości przypadków nie przekracza 5 %.

2.2. Procesy osadotwórcze

2.2.1. Koagulacja

Celem tego procesu jest usunięcie z oczyszczanej wody substancji koloidalnych (organicznych i nieorganicznych) oraz zawiesin trudnoopadających. Jak podają Janik i Kuś [22] ilość wytwarzanych osadów pokoagulacyjnych wynosi $0,1 \div 5,0$ % dobowej wydajności zakładu oczyszczania wody i zmienia się istotnie w ciągu roku. Na ilość powstających osadów pokoagulacyjnych wpływa ilość oczyszczanej wody, jej jakość, w szczególności zawartość zawiesin, mętność, intensywność barwy oraz stosowane dawki koagulantów. Uwodnienie osadów zależy od sposobu i częstości ich odprowadzania z osadników a także od sezonowej zmienności ich składu fizyczno-chemicznego i zmienia się w przedziale od 98,5 do 99,9 % [22]. Według Sozańskiego [52] przy ciągłym odprowadzaniu osadów z osadników ich ilości są znaczące, natomiast przy usuwaniu okresowym ich objętość jest mniejsza wskutek zagęszczenia. Ilość osadów o uwodnieniu 97,6 \div 99,2 % usuwanych okresowo z osadników o przepływie poziomym zmienia się w zakresie od 1,0 do 3,0 % objętości oczyszczanej wody. Uwodnienie osadów usuwanych z dna osadników, bez ich całkowitego opróżniania wynosi 90,5 \div 96,5 % a ich ilość zmniejsza się do 0,2 \div 0,7 Q [52].

Do koagulacji stosowane są dwa rodzaje koagulantów, niezhydrolizowane wstępnie sole glinu i żelaza oraz wstępnie zhydrolizowane. Do koagulantów niezhrolizowanych należą:

- siarczan glinu $Al_2(SO_4)_3 \cdot 18H_20$,
- chlorek glinu AlCl₃,
- glinian sodowy Na₂Al₂O₄,
- siarczan żelaza (II) FeSO₄ · 7H₂0
- siarczan żelaza (III) Fe₂(SO₄)₃ · 9H₂0,
- chlorek żelaza (III) FeCl₃ · 6 H₂0,
- koagulanty mieszane [28].

Siarczan glinu stosowany jest głównie do usuwania zanieczyszczeń organicznych oraz koloidów powodujących mętność i barwę wody. Ze względu na powstawanie lekkich kłaczków nie jest zalecany do usuwania mikroorganizmów fitoplanktonowych. Koagulant ten jest wrażliwy na niską temperaturę oczyszczanej wody. Negatywny wpływ temperatury można zminimalizować zapewniając optymalną wartość pH [28]. Koagulanty żelazowe tworzą cięższe i lepiej sedymentujące kłaczki oraz są mniej wrażliwe na niską temperaturę oczyszczanej wody. Jony żelaza mogą tworzyć ze związkami organicznymi rozpuszczonymi w wodzie barwne kompleksy, dlatego nie powinny być stosowane do oczyszczania wód, w których występują znaczne ilości tych związków. Zaletą soli żelaza jest ich niższa cena niż koagulantów glinowych oraz możliwość stosowania koagulacji zanie-czyszczeń wody łącznie z dekarbonizacją wapnem.

Koagulanty wstępnie zhydrolizowane zawierają grupy hydroksylowe, które zwiększają ich zasadowość i są wstępnie spolimeryzowane. Do koagulantów tych należą chlorki i siarczany poliglinu i poliżelaza (III), spośród których najczęściej stosowane są chlorki poliglinu. Zaletą koagulantów wstępnie zhydrolizowanych jest mniejsze zużycie naturalnej zasadowości wody i mniejszy stopień obniżenia jej pH, w porównaniu do siarczanu glinu lub żelaza [42]. Do ich zalet należy również mniejsza wrażliwość na niską temperaturę wody, mniejsze wymagane dawki niż niezhydrolizowanych soli glinu oraz powstawanie kłaczków o lepszych właściwościach sedymentacyjnych [28].

Osady powstające w wyniku koagulacji zanieczyszczeń wody siarczanem żelaza (III) oraz wstępnie zhydrolizowanymi chlorkami poliglinu są bardziej podane na odwadnianie niż osady powstałe w wyniku koagulacji siarczanem glinu [57]. Komponentami osadów pokoagulacyjnych mogą być również takie substancje jak: pylisty węgiel aktywny, krzemionka aktywna, polielektrolity, jeżeli są one dawkowane do oczyszczanej wody jako substancje wspomagające [28].

Osady pokoagulacyjne charakteryzują się zmiennym uwodnieniem, które zależy od rodzaju osadnika i częstotliwości usuwania z niego osadu. W tabeli 1 zestawiono przykładowe uwodnienia osadów w zależności od rodzaju i sposobu eksploatacji osadnika.

Tab. 1. 112ykladowe uwodinema osadow pokoagulacyjnych [27]			
Rodzaj odpadu	Osady usuwane w sposób ciągły	Osady usuwane okresowo	Osady z klarow- ników
Uwodnienie, %	śr. 99,6	ok. 96 ÷ 99,5	96,0 ÷ 98,0

Tab. 1. Przykładowe uwodnienia osadów pokoagulacyjnych [27]

2.2.2. Odżelazianie

Proces ten polega na utlenieniu jonów żelaza Fe (II) do Fe (III) oraz usunięciu wytrąconego wodorotlenku żelaza Fe(OH)₃ w procesie sedymentacji i filtracji. Proces usuwania żelaza w występującego w połączeniach nieorganicznych w dużym uproszczeniu można przedstawić reakcjami:

$$Fe(HCO_{3})_{2} + 2H_{2}O \rightarrow Fe(OH)_{2} + 2CO_{2} + 2H_{2}O$$
$$Fe^{2+} + 0.25O_{2} + 2.5H_{2}O \rightarrow Fe(OH)_{3} + 2H^{+}$$

Sole żelaza obecne w wodzie łatwo ulegają hydrolizie do rozpuszczalnych wodorotlenków żelaza (II), a następnie utleniane są tlenem rozpuszczonym w wodzie i wytrącają się w postaci trudno rozpuszczalnego wodorotlenku żelaza (III). Wodorotlenki żelaza są głównymi składnikami osadów powstających podczas oczyszczania wód podziemnych, a ich ilość zależy w głównej mierze od stężenia żelaza, ilości oczyszczanej wody, stopnia utlenienia Fe (II) do Fe (III) oraz skuteczności sedymentacji i filtracji. Jeżeli w układzie oczyszczania wody stosowana jest tylko filtracja powstają popłuczyny, a w wyniku ich zagęszczania osady. W wodzie podziemnej mogą występować formy żelaza w połączeniu ze związkami organicznymi, które usuwane są w procesie koagulacji. Wytworzone w ten sposób osady są mieszaniną osadów pokoagulacyjnych i "żelazistych".

Z wód podziemnych poza związkami żelaza usuwane są zwykle związki manganu. W związku z tym w popłuczynach obecne są również cząsteczki MnO₂, które stanowią komponent osadów wydzielonych z popłuczyn. Zawartość manganu w osadach jest zdecydowanie mniejsza niż związków żelaza, dlatego odpady powstające w układach oczyszczania wody podziemnej traktowane są jako "żelaziste".

2.2.3. Zmiękczanie wody

Najczęściej stosowane są procesy strąceniowe, wykorzystywane do oczyszczania wód przeznaczonych do celów przemysłowych. Polegają one na wytrącaniu z wody trudno rozpuszczalnych związków wapnia i magnezu, wskutek dawkowania do oczyszczanej wody wodorotlenku wapnia, wodorotlenku sodu bądź węglanu lub fosforanów sodu. Wytrącone związki wapnia i magnezu usuwane są z wody w procesie sedymentacji i filtracji.

Dekarbonizacji wapnem, która jest stosowana głównie do usuwania twardości węglanowej, towarzyszy również usuwanie innych związków obecnych w wodzie. Jak podaje Dziubek [16] możliwe jest usunięcie koloidów i trudno opadających zawiesin, fosforanów, związków organicznych, metali ciężkich oraz zachodzi proces dezaktywacji wirusów i bakterii. Wszystkie usunięte związki (oprócz amoniaku) zostają komponentami wytworzonych osadów, wśród których dominuje CaCO₃. Komponentem osadów może być również wodorotlenek żelaza (III) jeżeli dekarbonizacji prowadzona jest łącznie koagulacją zanieczyszczeń wody koagulantami żelazowymi.

W wyniku zmiękczania wody metodami wapno-soda i ług-soda lub wodorotlenkiem sodu powstają osady, które są mieszaniną CaCO₃ i Mg(OH)₂. Zawartość tych komponentów zależy od dawek reagentów oraz stężeń jonów Ca²⁺ i Mg²⁺ w zmiękczanej wodzie. Zmiękczanie wo-

dy fosforanami sodu (Na₃PO₄, Na₂HPO₄, NaH₂PO₄) powoduje powstawanie osadów, których głównymi komponentami są trudno rozpuszczalne fosforany wapnia i magnezu.

2.2. Procesy powodujące powstawanie ścieków

W zakładach oczyszczania wody ścieki powstają przede wszystkim podczas płukania złóż filtracyjnych, mikrosit oraz podczas czyszczenia zbiorników i urządzeń. W układach oczyszczania, w których występuje wymiana jonowa powstają popłuczyny podczas spulchniania złóż jonowymiennych i ich płukania po regeneracji oraz zużyte czynniki regeneracyjne. Do ścieków zalicza się również koncentraty powstające w procesach membranowych oraz ścieki powstające podczas płukania membran. O objętości osadów wydzielonych z popłuczyn w czasie ich zagęszczania decyduje uwodnienie oraz stopień zagęszczenia popłuczyn.

2.2.1. Filtracja

Skład popłuczyn powstających podczas płukania złóż filtracyjnych zależy od rodzaju zanieczyszczeń zatrzymanych podczas cyklu filtracji. W popłuczynach powstających w układach oczyszczania wód podziemnych oraz infiltracyjnych obecne są głównie związki żelaza i manganu [8]. W układzie oczyszczania wody powierzchniowej, w którym stosowany jest proces koagulacji, popłuczyny zawierają głównie zawiesiny pokoagulacyjne. Popłuczyny powstające podczas płukania złóż adsorpcyjnych oraz złóż aktywnych biologicznie, oprócz usuniętych zanieczyszczeń zawierają znaczne ilości mikroorganizmów [28]. Ilość popłuczyn zależy od powierzchni płukanych złóż filtracyjnych, intensywności płukania i czasu jego trwania oraz długości cyklu filtracyjnego. Oczyszczanie popłuczyn polega przede wszystkim na ich zagęszczaniu w odstojnikach [8].

2.3.2. Mikrocedzenie

Proces mikrocedzenia stosowany jest głównie w celu usuwania z wód powierzchniowych mikroorganizmów fitoplanktonowych [17]. Realizowany jest na mikrositach. Ścieki powstają w wyniku płukania tych urządzeń i oprócz mikroorganizmów zawierają inne cząstki zatrzymane na przegrodzie filtracyjnej. Ścieki powstające podczas płukania mikrosit podobnie jak popłuczyny powstające podczas płukania złóż filtracyjnych mogą być zagęszczane grawitacyjnie.

2.2.3. Wymiana jonowa i procesy membranowe

Zastosowanie wymiany jonowej w układzie oczyszczania wody wiąże się z powstawaniem ścieków poregeneracyjnych oraz popłuczyn powstających podczas spulchniania i płukania złóż po ich regeneracji. Ilość i charakter chemiczny ścieków poregeneracyjnych zależy od rodzaju stosowanych jonitów, czynników regenerujących oraz wymienionych jonów. O ilości zużywanej wody do spulchniania jonitów przed regeneracją decyduje wymagana ekspansja złoża oraz czas spulchniania. Ilość wody zużywanej na płukanie złoża po regeneracji zależy od rodzaju jonitu [55].

Podczas oczyszczania wody w układach, w których stosowane są procesy membranowe, powstają koncentraty oraz ścieki z płukania membran. Koncentraty zawierają zatrzymane przez membranę zanieczyszczenia organiczne, nieorganiczne i mikrobiologiczne, a ich skład zależy od rodzaju procesu membranowego, wartości *cut off* membrany, stopnia zanieczyszczenia wody poddawanej oczyszczaniu, a także od rodzaju i zawartości reagentów chemicznych dawkowanych do wody przed procesem separacji membranowej.

2.3. Właściwości osadów

2.3.1. Rodzaje struktur obecnych w osadach

Właściwości i rodzaje struktury osadów powstających podczas oczyszczania wody zależą od [50]:

- udziału, rodzaju i stopnia rozproszenia fazy stałej,

- zawartości i rodzaju rozpuszczonych związków mineralnych i organicznych,

- wzajemnych relacji między nimi,

- specyficznych właściwości wody.

Elementy struktury osadów zależą od warunków ich powstawania i ich składu. Wyróżnia się struktury [50]:

 amorficzne, powstające głównie w osadach pokoagulacyjnych zawierających wodorotlenki glinu i żelaza (III),

- makrocząstek o bardzo różnym stopniu ich wewnętrznego uporządkowania,

- minerałów ilastych,

- krystaliczno-amorficzne w osadach zawierających głównie CaCO3 i Mg(OH)2,

- asocjacyjne, złożone z różnego rodzaju substancji powierzchniowo czynnych i emulsji.

W składzie struktury amorficznej (bezpostaciowej), występują głównie wodorotlenki glinu i żelaza powstałe w wyniku koagulacji zanieczyszczeń wody oraz związki żelaza (III) powstałe w procesie odżelaziania wody podziemnej. Struktury pokoagulacyjne utworzone przez wodorotlenki glinu i żelaza (III) są niejednorodne i niestabilne oraz ulegają ciągłym przemianom zwanym synerezą lub starzeniem. W procesach tych nie biorą udziału żadne siły zewnętrzne i polegają one na zmniejszeniu zdolności wiązania wody przez osad, postępującej krystalizacji oraz tworzeniu dodatkowych wiązań pomiędzy cząstkami struktury osadu. Można traktować synerezę jako naturalny proces odwadniania osadów postępujący w czasie [51].

Struktury makrocząstek zależą na ogół od ich kształtu (liniowe, łańcuchowe, trójwymiarowe), wielkości i stopnia polimeryzacji, wewnętrznej ruchliwości, określonej głównie możliwością obrotu wiązań C-C oraz rodzajem i intensywnością sił działających między nimi.

Minerały ilaste charakteryzują się budową warstwową, polarnością powierzchni oraz dużą zdolnością adsorpcyjną wody i wielu związków.

Struktury asocjacyjne występują w osadach zawierających emulgatory, czyli makrocząstki lub cząsteczki w kształcie długich łańcuchów, w których jeden koniec jest hydrofilowy, a drugi zakończony grupą lipofilową zwilżaną olejem. Dużą grupę emulgatorów stanowią substancje powierzchniowo czynne. Wywołują one zjawisko adsorpcji zorientowanej na granicy faz, które prowadzi do obniżenia napięcia powierzchniowego i utworzenia warstwy ochronnej, stabilizującej fazę rozproszoną. [52].

2.3.2. Rodzaje wody osadowej

Rodzaj procesu, w którym powstaje osad oraz rodzaj i dawki stosowanych chemikaliów i właściwości usuwanych z wody zanieczyszczeń współdecydują o uwodnieniu osadu. Zwiększa się ono wraz ze wzrostem zawartości substancji organicznych w osadzie i rozdrobnienia cząstek substancji stałych. Im mniejsze są cząstki stałe, tym większa jest powierzchnia przyciągania wody. Znaczący wpływ na zawartość wody zawiązanej mają także rozmiar, kształt i właściwości elektryczne cząstek i zmniejsza się ona wraz ze zmniejszającym się potencjałem elektrokinetycznym cząstek [51].

Ze względu na złożoną strukturę osadów wyróżnia się cztery rodzaje wód osadowych [58]:

 woda wolna otacza kłaczki osadu i nie jest związana żadnymi siłami z ciałami substancjami osadu. Stanowi największą część osadu i może być łatwo oddzielona podczas zagęszczania grawitacyjnego.

 - woda kapilarna zawarta w strukturze cząstek osadu i związana siłami kapilarnymi. Staje się wodą wolną w wyniku zniszczenia struktury osadu. Usuwana podczas mechanicznego odwadniania.

 woda powierzchniowa związana siłami adsorpcji lub absorpcji z powierzchnią cząstek osadu. Nie może być usunięta w procesach mechanicznych. - **woda związana chemicznie** z ciałami stałymi silnymi wiązaniami chemicznymi. Jej oddzielenie możliwe jest tylko w procesach termicznych [58].

Inną klasyfikację wód osadowych podają Kowal i Świderska-Bróż [28]:

 woda niezwiązana – wolna (grawitacyjna), wypełnia większe przestrzenie między cząstkami stałymi,

- woda związana w strukturze osadu, dzieląca się na:

- kapilarną (oporową) – wypełniającą kanaliki włoskowate,

- adhezyjną (błonkowatą),

 - adsorpcyjną (higroskopijną) – związaną z fazą stałą osadów siłami międzycząsteczkowymi,

- chemicznie związaną (konstrukcyjną, krystalizacyjną, sieciową, zeolityczną) - związaną najsilniej poprzez wbudowanie jej cząsteczek w sieć przestrzenną cząstek fazy stałej.

2.4. Gospodarka osadami powstającymi podczas oczyszczania wody

Gospodarka osadami, które powstają w zakładach oczyszczania wody, ma na celu zmniejszenie ich objętości w jak największym stopniu oraz zagospodarowanie wydzielonej wody osadowej i fazy stałej w sposób bezpieczny dla środowiska. Zmniejszenie objętości osadów uzyskuje się w wyniku rozdziału fazy stałej i ciekłej oraz usunięcia wydzielonej wody osadowej z układu. Oddzielenie wody od ciał stałych realizowane jest w trzech etapach: zagęszczane, odwadniane i suszenie, które różnią się skutecznością odwodnienia osadów (rys. 1), rodzajem stosowanych urządzeń i szybkością przebiegu procesu [2, 11].

Rys. 1. Zależność objętości osadu od jego uwodnienia [11]

W zależności od początkowego uwodnienia osady mogą być poddawane najpierw zagęszczaniu lub bezpośrednio odwadnianiu. Oprócz zmniejszenia objętości osadów, ważna jest również jakość wydzielonych z nich wód nadosadowych, zwłaszcza jeśli jest ona zawracana do układu oczyszczania wody lub odprowadzana do wód powierzchniowych albo ziemi. Gospodarka osadami powstającymi w zakładach oczyszczania wody realizowana jest najczę-

ściej według poniższego schematu:

2.4.1. Zagęszczanie osadu

Zazwyczaj pierwszym procesem przeróbki i unieszkodliwiania osadów jest ich zagęszczanie. Wskutek oddzielenia wody wolnej od fazy stałej osad zmniejsza swoją objętość, ale nie traci właściwości płynnych, co umożliwia łatwy transport zagęszczonego osadu do dalszych procesów odwadniania. Ze względu na rodzaj siły działającej na cząstki osadu wyróżnia się zagęszczanie grawitacyjne realizowane w sposób ciągły lub okresowy (porcjowy), flotacyjne i mechaniczne.

O przebiegu i efektach procesu decyduje wiele czynników:

- początkowe uwodnienie osadów,

- rodzaj osadu,

 - skład fizyczno-chemiczny zagęszczanych mediów, głównie zawartość substancji organicznych,

- czas zagęszczania,

- podatność cząstek osadu do sedymentacji i zagęszczania,

- sposób zagęszczania i rodzaj urządzeń zagęszczających,

- obciążenie zagęszczacza ładunkiem suchej masy,

- sposób kondycjonowania, rodzaj i dawka substancji wspomagających zagęszczanie [2].

Głównymi wskaźnikami skuteczności zagęszczania są stopień zagęszczenia osadu (η_z) wyrażony jako iloraz suchej masy osadu zagęszczonego do suchej masy osadu przed zagęszczaniem oraz stopień zmniejszenia objętości (η_v) będący ilorazem objętości wydzielonej wody osadowej do objętości osadu przed zagęszczaniem [2].

2.4.1.1. Zagęszczanie grawitacyjne

Zagęszczanie grawitacyjne zachodzi w wyniku sedymentacji cząstek osadu oraz ich komprymacji pod wpływem działania siły ciężkości. Opadanie cząstek osadu w fazie sedymentacji następuje na zasadzie różnicy ciężarów właściwych cieczy i ciał stałych, których ciężar właściwy zwykle wynosi 1,1 ÷ 1,3 g/cm³ [4]. Wg Bienia [4] teoria zagęszczania opiera się na teorii Kyncha, a jednym z parametrów oceny przebiegu procesu zagęszczania jest szybkość opadania zawiesin. Jej wartość, w pierwszej fazie zagęszczania (sedymentacji), można obliczyć korzystając z doświadczalnej krzywej zagęszczania grawitacyjnego według wzoru:

$$\mathbf{v}_{\mathrm{s}} = \frac{h_0 - h_1}{t_s}$$

w którym h_0 to wysokość warstwy poziomu osadu w chwili rozpoczęcia procesu zagęszczania, h_1 to wysokość tej warstwy w chwili rozpoczęcia fazy komprymacji osadu, a t_s to czas trwania fazy sedymentacji.

Prędkość ta jest nieznacznie mniejsza od obliczonej według wzoru Stokes'a określającego prędkość ruchu laminarnego pojedynczej cząstki kulistej. Z uwagi na złożony charakter se-

dymentacji cząstek powstających podczas oczyszczania wody, dokładne określenie prędkości ich sedymentacji można uzyskać na podstawie pomiarów szybkości sedymentacji w określonych warunkach. Modyfikację formuły Stokes'a w odniesieniu do fazy sedymentacji zaproponował Robinson [4]:

$$\mathbf{v}_{\rm s} = \frac{K_d d^2 (\boldsymbol{\varsigma}_0 - \boldsymbol{\varsigma}_c)}{\mu}$$

Faza komprymacji charakteryzuje się zanikającą prędkością opadania powierzchni granicznej fazy stałej i wody osadowej oraz zmiennym stężeniem substancji stałych. Z tego powodu, obliczenie tej prędkości jest bardziej skomplikowane. W oparciu o podstawowe twierdzenie Kynha, według którego prędkość opadania cząstek osadu jest funkcją stężenia zawiesin w najbliższym otoczeniu, został wyprowadzony wzór na stężenie cząstek stałych w dowolnym czasie t_i [4]:

$$\mathbf{C}_{\mathbf{i}} = \frac{C_0 \cdot h_0}{h_i + v_i \cdot t_i}$$

Zagęszczanie ciągłe realizowane jest w urządzeniach, w których następuje stały dopływ osadu przy jednoczesnym ciągłym odpływie wody osadowej i osadu zagęszczonego [2]. Przebieg procesu zagęszczania ciągłego zależy od wielu czynników, z których najważniejsze to:

- obciążenie hydrauliczne powierzchni zagęszczacza,

- pionowa prędkość przepływu wody osadowej.

Ponadto w analizie zagęszczania ciągłego należy uwzględnić takie czynniki jak: stężenie substancji stałych w osadzie doprowadzanym do urządzenia, stopień ściśliwości osadu oraz natężenie odpływu osadu zagęszczonego i jego uwodnienie [4].

Jak podaje Montgomery [38] obciążenie hydrauliczne zagęszczaczy przepływowych powinno wynosić od 1,2 do 2,4 m³/m²h oraz obciążenie ich powierzchni osadem może wynosić od kilku do kilkunastu tysięcy kg_{smo}/m²d [3]. Najczęściej stosowany jest czas zagęszczania wynoszący od kilku do 24 h i zależy on od rodzaju zagęszczanego osadu. Obecność mieszadeł w zagęszczaczu pozwala kilkakrotnie zmniejszyć czas zagęszczania [28].

Porcjowe zagęszczanie grawitacyjne osadów najczęściej realizowane jest w odstojnikach. Są to urządzenia nieprzepływowe o głębokości 2 ÷ 4 m, do których osad doprowadzany jest z góry. Zagęszczony osad usuwany jest okresowo z dna leja urządzenia, a woda osadowa odprowadzana jest kilkoma rurociągami umieszczonymi na różnych wysokościach (rys. 2).

Rys. 2. Schemat odstojnika [28]

Dno odstojnika powinno być wykonane w taki sposób, aby zapewniało spływanie zagęszczonego osadu do leja osadowego. W odstojniku, w przeciwieństwie do zagęszczaczy eksploatowanych w sposób ciągły, nie stosuje się zgarniaczy osadu i mieszadeł. Należy umożliwić doprowadzenie powietrza do leja osadowego, które wykorzystywane jest do mieszania osadu w przypadku konieczności całkowitego opróżnienia urządzenia [28]. Porcjowe zagęszczanie grawitacyjne może być również realizowane pod warstwą wody np. w stawach osadowych. Czas zagęszczania osadu pod wodą jest długi i wynosi 1 ÷ 3 miesięcy. Pojemność urządzeń do realizacji tego sposobu zagęszczania musi być większa o objętość jaką zajmuje zagęszczony osad. Ze względu na okresowe usuwanie zagęszczonego osadu z urządzeń do zagęszczania porcjowego, niezbędne są co najmniej dwa urządzenia pracujące na przemian [28].

Uwodnienie osadu po zagęszczaniu w odstojnikach zależy od gęstości substancji stałych zawartych w osadach, czasu zagęszczania oraz sposobu eksploatacji urządzeń. Według [11 i 13] najtrudniej zagęszczającymi się osadami są osady powstające w wyniku koagulacji solami glinu, a nieco lepiej zagęszczają się osady po koagulacji solami żelaza. Podatność na zagęszczanie grawitacyjne osadów pokoagulacyjnych zależy również od rodzaju zanieczyszczeń usuniętych z wody i wartości pH, przy której przebiegała koagulacja. Gorzej zagęszczają się osady powstające w wyniku oczyszczania wody barwnej niż mętnej [13]. Osady pokoagulacyjne charakteryzują się małą podatnością na zagęszczanie. Lepsze efekty zagęszczania stwierdzono dla osadów powstających podczas zmiękczania wody wapnem [28].

2.4.1.2. Zagęszczanie flotacyjne

Zagęszczanie flotacyjne polega na wynoszeniu na powierzchnię cieczy zawartych w niej ciał stałych lub ciekłych (np. oleje, tłuszcze) przez pęcherzyki gazu o średnicy 10 ÷ 100 µm. W procesie tym wykorzystywane jest zjawisko tworzenia się trwałych aglomeratów typu czynnik fazy rozproszonej – pęcherzyk gazu, o pozornym ciężarze właściwym mniejszym od ciężaru właściwego cieczy. Głównym warunkiem efektywnego przebiegu flotacji jest mała zwilżalność czynnika fazy rozproszonej przez ciecz. Ten sposób zagęszczania wykorzystywany jest głównie do zmniejszania objętości osadów powstających podczas oczyszczania wód silnie zeutrofizowanych zawierających glony oraz zagęszczania osadów ściekowych [59]. Zagęszczanie flotacyjne może być również stosowane do zagęszczania osadów zawierających duże ilości mikroorganizmów wodnych, a więc wydzielonych z popłuczyn powstających podczas czyszczenia mikrosit, a także osadów powstających podczas koagulacji siarczanem glinowym stosowanej do oczyszczania wód o dużej intensywności barwy i małej mętności [28]. W zależności od sposobu wprowadzania powietrza do osadu wyróżnia się flotację:

- mechaniczną – do osadu (komory flotacji) wprowadzane są pęcherzyki powietrza,

 - ciśnieniową – pęcherzyki powietrza wydzielają się (w komorze flotacji) z wody osadowej wcześniej nasyconej powietrzem w warunkach podwyższonego ciśnienia.

Flotacja ciśnieniowa charakteryzuje się większą skutecznością niż mechaniczna, gdyż cząstki osadu łatwiej łączą się z pęcherzykami gazu wydzielonymi z wody osadowej przesyconej powietrzem aniżeli przy wtłaczaniu pęcherzyków powietrza do osadu [53]. Proces ciśnieniowy polega na poddawaniu mieszaniny osadów i powietrza działaniu wysokiego ciśnienia, wskutek czego powietrze rozpuszcza się w wodzie osadowej. W wyniku nagłego obniżenia ciśnienia zmniejsza się rozpuszczalność powietrza i cały jego nadmiar wydziela się w postaci bardzo drobnych pęcherzyków, które porywają cząstki osadu zawarte w cieczy i unoszą je na powierzchnię [4].

2.4.1.3. Zagęszczanie mechaniczne

Proces zagęszczania mechanicznego zapewnia większy stopień zagęszczenia osadów niż zagęszczanie grawitacyjne, jednak jest rzadko stosowany w zakładach oczyszczania wody. Wadą stosowania zagęszczania mechanicznego jest zwiększenie zanieczyszczenia wydzielonej wody nadosadowej.

Zagęszczanie mechaniczne realizuje się wykorzystując następujące urządzenia:

- zagęszczacze sitowo-bębnowe,

- zagęszczacze sitowo-taśmowe,

- zagęszczacze śrubowe,

- wirówki zagęszczające.

Wykorzystanie zagęszczania mechanicznego wiąże się z koniecznością stosowania chemicznego kondycjonowania osadu przed zagęszczaniem oraz ze zwiększeniem kosztów eksploatacyjnych – zużycie energii elektrycznej. Kondycjonowanie chemiczne nie jest wymagane jedynie w przypadku stosowania wirówek.

Efektywność zagęszczania osadów w tym samym urządzeniu zależy od:

- rodzaju osadu i jego uwodnienia,
- sposobu kondycjonowania osadu,
- natężenia przepływu przez urządzenie,
- określonych parametrów ruchowych urządzenia [4].

2.4.2. Odwadnianie osadu

Proces odwadniania osadu jest drugim etapem oddzielania wody osadowej od ciał stałych. W wyniku odwadniania następuje zmniejszenie zawartości wody osadowej i osad traci właściwości płynne przyjmując postać ciała stałego. Taka postać ułatwia transport osadu do miejsca ostatecznego zagospodarowania. Minimalne uwodnienie osadu po odwadnianiu wynosi ok. 50%. W zależności od sposobu odwadniania i właściwości osadu zawartość suchej masy w odwodnionym osadzie może wahać się w zakresie od 12 do 50 % [2, 11].

Proces odwadniania może być realizowany w warunkach naturalnych lub sztucznych. Odwadnianie osadów powstających w zakładach oczyszczania wody najczęściej realizowane jest w warunkach naturalnych na poletkach lub lagunach osadowych. Odwadnianie mechaniczne stosowane jest rzadko. Polega na oddzieleniu wody osadowej w procesie filtracji lub wymuszonej i przyspieszonej sedymentacji.

2.4.2.1. Odwadnianie w warunkach naturalnych

Odwadnianie osadów w warunkach naturalnych zachodzi w wyniku procesów parowania i filtracji, a jego skuteczność zależy od [11]:

- rodzaju osadu,

- czasu odwadniania (skuteczność zwiększa się wraz z wydłużeniem czasu odwadniania),
- warunków klimatycznych,
- podatności osadów na odwadnianie,
- sposobu eksploatacji obiektów do odwadniania,
- sprawności hydraulicznej systemu drenażowego,

- sposobu doprowadzania wody osadowej.

Laguny osadowe

Odwadnianie osadów na lagunach osadowych jest powszechnie stosowaną i najtańszą metodą. Proces przebiega na skutek filtracji, parowania, transpiracji związanej z rozwojem roślin oraz wymrażania w okresie zimowym. Laguny wykonuje się jako zbiorniki ziemne o głębokości $1 \div 3$ m lub wykorzystuje się naturalne zagłębienia terenu bądź nieużytki rolne. Lokalizacja lagun musi spełnić warunek, iż poziom wód gruntowych znajduje się 1,5 m poniżej jej dna [27, 28]. Dno laguny musi być wyposażone w drenaż zapewniający odprowadzanie filtrującej wody osadowej, natomiast nadmiar wód nadosadowych powinien być odprowadzany przez odpowiednią instalację [28]. Uzyskanie właściwych warunków odwadniania osadów można uzyskać budując trzy laguny o takiej samej objętości, które eksploatowane są przemiennie: 1 rok – składowanie osadów, 1 rok – odwadnianie i suszenie osadów, 1 rok - usuwanie osadów i renowacja laguny. Dla osadów pokoagulacyjnych przy wysokości warstwy osadu $2 \div 3$ m uzyskuje się zmniejszenie ich uwodnienia do $90 \div 94$ %, a przy wysokości ok. 1 m do $80 \div 85$ % [3].

Poletka osadowe

Innymi obiektami stosowanymi do odwadniania osadów są poletka osadowe zbudowane z warstwy piasku $(0,15 \div 0,25 \text{ m})$ usypanej na warstwie żwiru (0,3 m), w którym umieszczony jest system drenażowy zbierający i odprowadzający wodę osadową [3]. Ze względu na sposób eksploatacji należy projektować co najmniej trzy poletka osadowe. Podczas gdy jedno poletko jest zalewane osadem, to w pozostałych osad jest odwadniany i suszony. Głównym parametrem decydującym o wymiarach tego typu obiektu jest wymagany czas odwadniania, który zależy od rodzaju osadu i warunków klimatycznych oraz wymaganego stopnia odwodnienia osadów. Zalecana wysokość zalewowa warstwy osadu wynosi $0,15 \div 0,30 \text{ m}$ [28].

Duży stopień odwodnienia osadów na poletkach uzyskuje się w okresie zimowym. Cykliczne zamrażanie i rozmrażanie osadu niszczy jego strukturę i zapewnia zwiększone uwalnianie wody osadowej. Zaleca się, aby poletka były sukcesywnie zalewane warstwą osadu o wyso-kości 8 cm po zmrożeniu każdej warstwy [35].

2.5.2.2. Odwadnianie mechaniczne

Większy stopień odwodnienia osadów niż w warunkach naturalnych można osiągnąć stosując odwadnianie mechaniczne. Metoda ta wymaga stosowania skutecznego zagęszczania wstęp-

nego odwadnianych osadów oraz czasami również ich kondycjonowania chemicznego. W trakcie odwadniania mechanicznego z osadu usuwana jest woda wolna oraz możliwe jest usunięcie wody kapilarnej i części wody adhezyjnej [52]. Odwadnianie mechaniczne charakteryzuje się większymi kosztami eksploatacyjnymi, a często również inwestycyjnymi w stosunku do odwadniania w warunkach naturalnych. Do zalet tej metody należą:

- małe zapotrzebowanie terenu,

- łatwość mechanizacji i automatyzacji,

- niezależność od warunków klimatycznych.

Odwadnianie mechaniczne realizowane jest przy użyciu trzech rodzajów urządzeń:

- filtry próżniowe,
- prasy filtracyjne,
- wirówki sedymentacyjne.

Filtry próżniowe

Oddzielenie wody osadowej od substancji stałych zawartych w osadzie następuje dzięki różnicy ciśnień po obu stronach przegrody filtracyjnej, którą może być bawełniana tkanina filtracyjna, tkanina z tworzywa sztucznego, gęsto tkana siatka stalowa lub sprężyny.

Osady poddawane odwadnianiu na filtrach próżniowych muszą być wstępnie zagęszczone.

Skuteczność odwadniania zależy od [28]:

- rodzaju i sposobu eksploatacji filtra,

- wartości podciśnienia,
- ściśliwości i oporu właściwego osadu,
- zawartości substancji stałych w osadzie,
- porowatości przegrody filtracyjnej,
- stanu technicznego przegrody filtracyjnej,

Optymalne uwodnienie osadów odwadnianych tą metodą wynosi 91 \div 93 % i nie powinno być mniejsze niż 80 % [11]. Właściwie dobrane i eksploatowane filtry próżniowe pozwalają na zmniejszenie uwodnienia osadów pokoagulacyjnych do 65 \div 85 %, a osadów po zmiękczaniu wody wapnem do 30 \div 60 % [38]. Największym problemem eksploatacyjnym podczas odwadniania osadów pokoagulacyjnych jest zaklejanie tkaniny filtracyjnej oraz efektywne zgarnianie cienkiej warstwy osadu [6].

Prasy filtracyjne

Podobnie jak w filtrach próżniowych oddzielenie wody osadowej od cząstek stałych zachodzi w wyniku zastosowania ciśnienia. Skuteczność odwadniania z wykorzystaniem pras filtracyjnych zależy od:

- ciśnienia,
- rodzaju przegrody filtracyjnej,
- zawartości substancji stałych w odwadnianym osadzie,
- właściwości filtracyjnych osadów,
- sposobu kondycjonowania osadów przed odwadnianiem [28].

Stosowanie pras filtracyjnych pozwala uzyskać uwodnienie odwodnionego osadu w zakresie 50 ÷ 60 %. Wysokie koszty eksploatacyjne tej metody odwadniania osadu spowodowały małą popularność tych urządzeń w zakładach oczyszczania wody.

Wirówki sedymentacyjne

Woda osadowa oddzielana jest od fazy stałej osadów w wyniku działania siły odśrodkowej powstającej podczas obrotu bębna wirówki oraz przenośnika śrubowego. Urządzenia te mają zastosowanie zarówno do mechanicznego zagęszczania jak i odwadniania osadów. Ich zaletą są małe wymiary, krótki czas rozruchu oraz nieskomplikowana obsługa. Podstawową wadą wirówek sedymentacyjnych jest ich mniejsza skuteczność niż uzyskiwana w wyniku zastosowania innych urządzeń do odwadniania mechanicznego [28].

O skuteczności odwadniania osadów z wykorzystaniem wirówek sedymentacyjnych decydują:

- obciążenie wirówki osadem,
- prędkość obrotowa wirnika,
- różnica prędkości obrotowej wirnika i ślimaka,
- wysokość warstwy osadu w wirówce,
- dawka reagenta kondycjonującego [2].

Montgomery [38] dokonał oceny skuteczności odwadniania osadów na filtrach próżniowych, różnych prasach filtracyjnych i wirówkach sedymentacyjnych. Wynika z niej, że najbardziej ekonomiczną metodą mechanicznego odwadniania osadów jest wykorzystanie do tego celu taśmowej prasy filtracyjnej. W tabeli 2 podano porównanie skuteczności różnych metod odwadniania osadów.

	Zawartość ciał stałych w od- wodnionym osadzie [%]	
Rodzaj urządzenia	osad po ko- agulacji siar- czanem glinu	osad po zmiękczaniu wody wapnem
Zagęszczanie grawitacyjne	2 ÷ 6	30
Laguny osadowe odwadniająco-suszące	20 ÷ 40	30 ÷ 50
Filtry próżniowe	20	45 ÷ 65
Prasy filtracyjne	30 ÷ 50	50
Wirówki	12 ÷ 16	35 ÷ 50

Tab. 2. Zawartości ciał stałych w osadach odwadnianych różnymi metodami [38]

2.4.3. Kondycjonowanie osadów

Kondycjonowanie osadów jest procesem mającym na celu zmianę ich struktury i właściwości w takim stopniu, aby zwiększyć efektywność ich zagęszczania/odwadniania. Zmiana struktury osadów doprowadza między innymi do znacznego osłabienia sił wiążących wodę z powierzchnią cząstek stałych i łatwiejszego usunięcia wody w procesach odwadniania [5]. Kondycjonowanie realizuje się metodami fizycznymi lub chemicznymi.

2.4.3.1. Kondycjonowanie metodami fizycznymi

Stosowane są trzy metody fizycznego kondycjonowania:

- wymrażanie,
- ogrzewanie,
- działanie pola magnetycznego i ultradźwiękowego.

Wymrażanie

Kondycjonowanie osadu przez wymrażanie polega na cyklicznym zamrażaniu i rozmrażaniu osadu, które powoduje nieodwracalne zniszczenie struktury żelowej osadu, a w konsekwencji zmniejsza się opór właściwy osadu oraz zwiększa się stopień wydzielania wody osadowej [63, 36, 34]. W wyniku wymrażania cząstki stałe osadu przyjmują postać granulatu przypominającego ziarna piasku [fot. 1.]. Podczas zamrażania woda zwiększa swoją objętość, powodując wzrost ciśnienia, a w konsekwencji następuje zwiększenie sił międzycząsteczkowych, które przyczyniają się do przesuwania cząstek stałych osadów od niezamrożonej wody [54]. Najlepsze efekty wymrażania uzyskuje się w wyniku powolnego zamrażania i rozmrażania osadu [49]. Martel [34] twierdzi, że czas, w którym osad pozostaje zamrożony nie ma wpływu na rozmiar powstającego granulatu, a jego odwadnianie mechaniczne jest łatwe i nie wymaga stosowania polielektrolitów.

Fot. 1. Osad pokoagulacyjny po wymrażaniu na tle papieru milimetrowego [34]

Skład chemiczny osadu nie ma wpływu na efekt wymrażania [52]. W procesie odwadniania osadów przez wymrażanie następuje zmniejszenie ich objętości o ok. 90 % oraz zmniejszenie uwodnienia z 95,9 do 52,5 % po 15 dobach trwania procesu [48]. Montgomery [38] uważa, że wymrażanie osadów pokoagulacyjnych o uwodnieniu 98 % w warunkach naturalnych na poletkach osadowych może zapewnić zmniejszenie ich uwodnienia do 80 %, a dalsze odwadniania mechaniczne pozwala uzyskać stężenie suchej masy \geq 30 %. Lepsze efekty wymrażania osadów niż na lagunach osadowych uzyskuje się na zdrenowanych poletkach osadowych, które zalewane są kolejną warstwą świeżego osadu o wysokości 2 \div 10 cm po wymrożeniu poprzedniej warstwy [28]. Wymrażanie w warunkach sztucznych realizuje się stosując urządzenia takie jak: zamrażarki przepływowe, krystalizatory sublimacyjne i chłodziarki warstwowe. Wymrażanie osadów w tych urządzeniach jest nieekonomiczne ze względu na duże zużycie energii elektrycznej wynoszące ok. 20 \div 30 kWh/m³ osadu [28, 52].

Ogrzewanie

Proces ten realizuje się w temperaturze $180 \div 220$ °C przy ciśnieniu ($13 \div 20$)· 10^5 Pa w czasie do 30 minut. Działanie obu czynników powoduje niszczenie struktury żelowej osadów i skuteczne uwalnianie wody osadowej [54]. Osad po ogrzewaniu może być od razu odwadniany mechanicznie. Ten sposób kondycjonowania osadów nie znalazł zastosowania w warunkach technicznych ze względu na mniejszą efektywność od wymrażania i większą energochłonność [38, 54].

Działanie pola magnetycznego i ultradźwięków

Metoda ta nie jest wykorzystywana na skalę techniczną. Przeprowadzone badania, dotyczące osadów ściekowych wykazały, że zastosowanie pola magnetycznego do kondycjonowania osadów surowych skracało czas ssania kapilarnego wraz z wydłużaniem czasu oddziaływania pola magnetycznego na osad i wpływało na obniżenie jego uwodnienia końcowego. Jednoczesne stosowanie ultradźwięków i pola magnetycznego pozwoliło na uzyskanie wyraźnie mniejszych wartości oporu właściwego filtracji niż przy użyciu polielektrolitu [18].

2.4.3.2. Kondycjonowanie chemiczne

Kondycjonowanie chemiczne polega na dawkowaniu do osadu reagentów nieorganicznych lub organicznych, które mają zapewnić zmianę struktury osadów. Modyfikacja struktury osadów polega głównie na destabilizacji koloidów, zmniejszeniu powierzchni właściwej i stopnia rozproszenia fazy stałej oraz zmniejszeniu sił powierzchniowych wiążących wodę. W konsekwencji kondycjonowania chemicznego powstają duże aglomeraty, które charakteryzują się większą wodoprzepuszczalnością i odpornością na ściskanie i ścinanie oraz zwiększa się ilość wody wolnej w osadzie [28]. Do chemicznego kondycjonowania osadów stosowane są reagenty nieorganiczne (sole glinu i żelaza, wapno oraz polimery nieorganiczne) lub organiczne (polielektrolity). Ważnym problemem kondycjonowania jest właściwy wybór reagenta oraz jego dawki, ponieważ kondycjonowanie powinno zapewnić również poprawę jakości wydzielonej wody nadosadowej. Jak wykazały badania przeprowadzone przez autora, nie wszystkie stosowane reagenty spełniły ten warunek.

Wapno stosuje się głównie do kondycjonowania osadów przed procesem odwadniania za pomocą pras filtracyjnych i filtrów próżniowych. Jego dawki są większe niż w przypadku stosowania do kondycjonowania polielektrolitów i wynoszą zazwyczaj od 20 do 30 % suchej masy osadu [3]. Poprawę skuteczności odwadniania osadów przy pomocy wapna można częściowo przypisywać zwiększaniu średnich rozmiarów cząstek osadu [57].

Polimery nieorganiczne

Głównymi składnikami polimerów nieorganicznych są sole glinu, żelaza oraz związki krzemu (krzemiany). Podstawową ich zaletą jest większa wydajność od tradycyjnie stosowanych soli Al i Fe oraz niższe koszty niż polimerów organicznych [56]. Masa cząsteczkowa polimerów nieorganicznych jest znacznie mniejsza niż polimerów organicznych. Jako reagenty kondycjonujące mogą być stosowane polimery przedstawione w tabeli 3.

Składnik	Nazwa	Skrót	Proporcje
AI + Fe + CI	chlorek poliglinowo-żelazowy	PAFC	[AI]/[Fe] > 7/3
Fe + Si + Cl	chlorek poliżelazowo-krzemowy	PFSiC	[Fe]/[Si] > 1,0
Si + Fe + Cl	chlorek polikrzemowo-żelazowy	PSiFC	[Fe]/[Si] < 1,0
Al + Si + Cl	chlorek poliglinowo-krzemowy	PASiC	[Al]/[Si] ≥ 5
Si + Al + SO ₄	siarczan polikrzemowo-glinowy	PSiAS	-
Al + Fe + Si + Cl	chlorek poliglinowo-żelazowo-krzemowy	PAFSi	-
AI + PAM*	poliakrylamid poliglinu	PACM	-
Fe + PAM	poliakrylamid poliżelazowy	PFCM	-
AI + PCh**	polichityna poliglinu	PAPCh	-

Tab. 3. Rodzaje polimerów nieorganicznych i mieszanych [56]

* poliakrylamid ** polichityna

Polimery organiczne

Polielektrolity organiczne to grupa związków otrzymywanych w wyniku polimeryzacji dużej liczby pojedynczych monomerów o niewysyconych wiązaniach z jedną grupą funkcyjną [4, 32]. Rodzaj grupy funkcyjnej (jonotwórczej) decyduje o charakterze jonowym związku. Po-lielektrolity dzieli się na:

 - kationowe (wielozasadowe) – zawierają rodniki zasadowe, produktami ich dysocjacji są polikation i anion. Najbardziej przydatne to: czwartorzędowe polimeryczne związki amoniowe, polimery sulfoniowe i fosfoniowe [40].

 - niejonowe (poliamfolity) – zawierają zarówno grupy kwasowe i zasadowe. Najczęściej stosowane to polialkohole, polietery, poliamidy, heterocykliczne polimery N-winylowe [38, 39, 40, 61].

 - anionowe (wielokwasowe) – zawierają rodniki kwasowe takie jak grupy karboksylowe lub grupy kwasów sulfonowych, charakteryzujące się ujemnym ładunkiem po procesie dysocjacji. Najczęściej używane to: polimery karboksylowe i sulfonowe [40].

Rodzaj stosowanego polielektrolitu do kondycjonowania osadów zależy od składu fizycznochemicznego kondycjonowanych mediów, a jego wybór powinien być poprzedzony badaniami technologicznymi dla konkretnego osadu [12, 25]. Polielektrolity dawkowane są najczęściej w ilościach $(1 \div 10) \cdot 10^{-3}$ g polimeru/g_{smo} [38], 0,05 ÷ 0,5 % smo [3]. Dawki aktywnej substancji polielektrolitów niejonowych i anionowych produkowanych w Polsce wynoszą 0,045 ÷ 0,25 % smo, a w przypadku polielektrolitów zagranicznych są mniejsze i mieszczą się w zakresie 0,02 ÷ 0,09 % smo [49]. Wraz ze wzrostem masy cząsteczkowej polielektrolitów maleje ich wymagana dawka, a polielektrolity o masie cząsteczkowej < 1 · 10⁶ są nieefektywne podczas kondycjonowania osadów pokoagulacyjnych [39]. Generalnie, do kondycjonowania osadów powstających podczas oczyszczania wody zalecane są polielektrolity o średniej masie cząsteczkowej [28]. Wg Sozańskiego [51], do wspomagania odwadniania osadów, w składzie których przeważają związki mineralne, zaleca się polielektrolity anionowe i niejonowe, natomiast do kondycjonowania osadów o znacznej zawartości związków organicznych najbardziej przydatne są polimery kationowe.

Mechanizm działania polielektrolitów organicznych polega głównie na adsorpcyjnej aktywności grup funkcyjnych, które dzięki wiązaniom wodorowym łączą się z powierzchnią fazy stałej osadu oraz na obniżeniu potencjału elektrokinetycznego cząstek i ich flokulacji [62]. Destabilizacyjne działanie polega na neutralizacji ładunku i tworzeniu mostków [38, 40]. Destabilizacja ładunku jest wynikiem działania ładunku polimeru na przeciwny ładunek cząstki koloidalnej, w wyniku czego działanie elektrostatycznych sił odpychających zanika i układ koloidalny ulega destabilizacji. Kłaczki powstające w wyniku związania polimeru przez koloidy mają luźną strukturę i dzięki temu łatwiej się odwadniają [40].

Mechanizm tworzenia mostków polega na powstawaniu połączeń pomiędzy polimerem a cząstkami koloidalnymi i powstawaniu dużych flokuł. Teoria ta zakłada, że polimer jest adsorbowany na powierzchni dwóch lub trzech cząstek osadu. Aby takie połączenie było możliwe muszą być spełnione poniższe warunki:

- adsorbowany polimer musi zapewnić wystarczający kontakt z innymi cząstkami, pomimo istnienia sił elektrostatycznego oddziaływania między nimi,
- adsorbowany polimer nie powinien pokrywać całej powierzchni cząstki, aby pozostała wolna powierzchnia umożliwiająca adsorpcję polimerów z innych cząstek [40].

Dodany do osadu polimer powinien zostać szybko wymieszany, ponieważ uważa się, że adsorpcja przebiega bardzo szybko. W przypadku niewystarczającego wymieszania osadu z polimerem może zajść ponowna stabilizacja układu koloidalnego w wyniku miejscowego przedawkowania polimeru [9, 40].

Dodawanie polimeru do osadu powoduje komprymację drobnych cząstek i zwiększenie wytrzymałości mechanicznej powstałych aglomeratów. Komprymacja drobnych cząstek osadu i powstanie dużych flokuł zwiększa udział wody w całej masie osadu, która jest łatwo z niego usuwana. Większa wytrzymałość mechaniczna sprawia, że osad może przeciwstawić się mechanicznemu oddziaływaniu podczas odwadniania [40]. Nie można również pomijać faktu, że polimery organiczne powodują także powstawanie aglomeratów wiążących wodę [66].

Liczne badania wykazały, że wymiar kłaczków, ich gęstość i struktura odgrywają ważną rolę w odwadnianiu osadów oraz, że kondycjonowanie polimerami prowadzi do zwiększania wymiaru kłaczków [62, 30, 60, 10, 43]. Jednakże Wen [60] zauważył, że wymiar kłaczków nie zawsze ma wpływ na efektywność odwadniania osadu, ponieważ nie znalazł korelacji pomiędzy ich wielkością i optymalną dawką polimeru ustaloną na postawie badań laboratoryjnych. Istnieją jednak wyniki badań świadczące o tym, że większa gęstość kłaczków związana jest z większymi dawkami polielektrolitów [14, 26]. Podczas kondycjonowania osadu polielektrolitami poza rodzajem polimeru bardzo ważne jest stosowanie właściwej (optymalnej) jego dawki. Optymalna dawka polimeru zapewnia zwykle minimalny ładunek powierzchniowy cząstek osadu (koloidów) oraz ich wymaganą aglomerację. Przedawkowanie substancji kondycjonującej zmniejsza skuteczność odwadniania osadów oraz zwiększa poziom zanieczyszczenia wydzielonej z nich wody nadosadowej [9].

Do kondycjonowania osadów zawierającą znaczną ilość substancji nieorganicznych najczęściej stosowane są polielektrolity anionowe i niejonowe. Polielektrolity kationowe, które tak jak produkty hydrolizy soli glinu i żelaza powodują destabilizację ujemnie naładowanych związków organicznych, stosowane są do kondycjonowania osadów (powstających podczas oczyszczania wód powierzchniowych) zawierających przeważającą ilość substancji organicznych. Najczęściej zalecane są polimery organiczne o średniej masie cząsteczkowej [28].

W ostatnich latach pojawiły się informacje literaturowe dotyczące intensyfikacji kondycjonowania osadów przy użyciu dwóch polielektrolitów jednocześnie. Yu i Somasundaran [64] twierdzą, że skuteczność aglomeracji cząstek osadów powstających podczas koagulacji zanieczyszczeń wody koagulantami glinowymi może być wyraźnie zwiększona w wyniku kondycjonowania tych osadów dwoma polielektrolitami jednocześnie. Ich zdaniem polielektrolit anionowy dodany jako pierwszy adsorbowany jest na cząsteczkach wodorotlenku glinu i ułatwia adsorpcję długich łańcuchów, dodanego następnie, polielektrolitu kationowego. Kondycjonowanie osadu jednym polielektrolitem zachodzi głównie na drodze neutralizacji ładunku, natomiast stosowanie dwóch polimerów prowadzi dodatkowo do powstania interakcji między nimi, a w konsekwencji wytworzone połączenia są silniejsze [65]. Kondycjonowanie dwoma polielektrolitami zapewnia zmniejszenie wymaganej dawki polielektrolitów oraz zwiększenie stopnia odwodnienia osadu. Jednak mechanizm działania dwóch polielektrolitów nie jest dotąd dokładnie wyjaśniony [31].

2.4.4. Odzysk reagentów

Możliwy jest odzysk koagulantów z osadów pokoagulacyjnych oraz CaO i CO₂ z osadów wapniowych, powstających podczas strąceniowych metod zmiękczania wody wapnem, a więc zawierających dużo CaCO₃. Nie opracowano metody odzyskiwania polielektrolitów stosowa-

nych w oczyszczaniu wody. Osady, z których odzyskiwane są reagenty powinny być świeże, odwodnione oraz niekiedy wysuszone termicznie [38, 13, 7].

Ze względu na wyższe ceny koagulantów glinowych niż żelazowych bardziej opłacalne jest odzyskiwanie tych pierwszych. Odzysk koagulantów glinowych z osadów pokoagulacyjnych jest uzasadniony wówczas, gdy zawartość Al(OH)₃ w osadzie pokoagulacyjnym jest duża (śr. 25 %) [3] i może być prowadzony z wykorzystaniem kwasów lub zasad. Zastosowanie w praktyce znalazła metoda polegająca na roztwarzania osadów glinowych w kwasie solnym lub siarkowym, w wyniku której powstają odpowiednio AlCl₃ i Al₂(SO₄). Osady zawierające substancje organiczne powinny być dodatkowo wyprażane w temp. < 1000°C aby zapewnić termiczną mineralizację tych substancji, a także powstanie łatwo rozpuszczającego się w środowisku kwaśnym (pH = 1,5 – 2,5) γAl₂O₃ [28].

Koagulanty odzyskane z osadów pokoagulacyjnych mogą zawierać zaadsorbowane zanieczyszczenia (np. metale ciężkie). Z tego względu bardziej uzasadnione jest stosowanie tych reagentów do oczyszczania ścieków niż wody.

Badania przeprowadzone przez Ishikawę i współpracowników [21] wykazały, że koagulant może być odzyskiwany wprost z osadu pokoagulacyjnego w wyniku ekstrakcji H_2SO_4 . Skuteczność odzyskanego w tym procesie siarczanu glinu w zmniejszaniu ChZT oraz stężenia azotu ogólnego i fosforu ogólnego w ściekach i odciekach ze składowiska odpadów była większa niż efektywność świeżego koagulantu $Al_2(SO_4)_3$. Ponadto odwadnianie wydzielonego osadu oraz właściwości ścieków oczyszczonych nie stwarzały żadnych problemów.

Odzysk wapna (CaO) z osadów powstających podczas dekarbonizacji lub koagulacji wapnem polega na rekalcynacji termicznej węglanu wapnia. Przebieg rekalcynacji opisuje równanie:

$$2CaCO_3 \xrightarrow{temp.} 2CaO + 2CO_2$$

Powstający w wyniku rekalcynacji tlenek wapnia nie jest czystym reagentem. Obecność zanieczyszczeń (głównie nieorganicznych) powoduje zmniejszenie aktywności chemicznej CaO. Z tego powodu odzyskany CaO wykorzystywany jest razem ze świeżym reagentem [28].

2.4.5. Zagospodarowanie wody osadowej

Wody osadowe (zwane inaczej nadosadowe) powstające w wyniku zagęszczania lub odwadniania osadów mogą być zagospodarowane w różny sposób. Najczęściej odprowadzane są do wód powierzchniowych lub do ziemi, kanalizacji, a tylko w uzasadnionych okolicznościach mogą być zawracane na początek układu technologicznego oczyszczania wody lub wykorzystywane na potrzeby własne ZOW. Zawracanie wód osadowych na początek układu technologicznego możliwe jest wówczas, gdy ich skład fizyczno-chemiczny oraz mikrobiologiczny nie spowoduje pogorszenia jakości oczyszczonej wody lub nie utrudni procesów jej oczyszczania [28].

W przypadku odprowadzania wód nadosadowych do wód powierzchniowych lub do ziemi muszą one spełniać warunki określone w rozporządzeniu Ministra Środowiska z dnia 28 stycznia 2009 r. [46]. Natomiast w przypadku, gdy wydzielone wody osadowe kierowane są do kanalizacji, ich jakość musi spełniać warunki określone w rozporządzeniu Ministra Budownictwa z dnia 14 lipca 2006 w sprawie sposobu realizacji obowiązków dostawców ścieków przemysłowych oraz warunków wprowadzania ścieków do urządzeń kanalizacyjnych [44].

2.4.6. Ostateczne usuwanie osadów

Skład chemiczny odwodnionych osadów oraz możliwości terenowe decydują o sposobie ostatecznego ich zagospodarowania. Najczęściej odwodnione osady są deponowane na składowiskach odpadów. Mogą być również wykorzystywane do rekultywacji terenów, zalądowywania naturalnych nierówności oraz w rolnictwie. Wykorzystanie odwodnionych osadów do rekultywacji i zalądowywania nierówności terenu oraz składowanie na składowiskach odpadów nie budzi wątpliwości. Rolnicze wykorzystanie osadów powstających w ZOW jest rzadko stosowane, ze względu na ich małe wartości nawozowe oraz duże stężenia glinu i żelaza, a także na możliwość występowania w nich metali ciężkich [28].

2.5. Gospodarka osadami i popłuczynami powstającymi w ZOW w Polsce

Według danych ankietowych przedstawionych przez Kroczaka [29] zebranych z 251 zakładów oczyszczania wody przeznaczonej do spożycia przez ludzi wynika, że podstawowym sposobem przeróbki popłuczyn jest ich zagęszczanie grawitacyjne w odstojnikach, a 21 % ZOW odprowadza popłuczyny bezpośrednio do kanalizacji. Popłuczyny z co piątego ZOW odprowadzane są do wód powierzchniowych lub do ziemi bez wcześniejszego zagęszczania (rys. 3).

Rys. 3. Sposoby zagospodarowania popłuczyn, % liczby ZOW [29]

Największa część wydzielonych wód nadosadowych odprowadzana jest do wód powierzchniowych (z 71 % ZOW), a z co czwartego zakładu usuwana jest do kanalizacji. Jedynie 2 % zakładów zawraca wody nadosadowe na początek układu technologicznego (rys. 4). Osady odwadniane są głównie w warunkach naturalnych lub w stanie uwodnionym wywożone są do oczyszczalni ścieków albo na składowisko odpadów komunalnych (odpowiednio z 36 % i 30 % liczby ZOW).

Rys. 4. Sposoby odprowadzania wód nadosadowych, % liczby ZOW [29]

Prawdopodobnie ze względów ekonomicznych tylko co 20 zakład oczyszczania wody stosuje odwadnianie mechaniczne (rys. 5).

Rys. 5. Sposoby zagospodarowania osadów, % liczby ZOW [29]

Osady po procesie odwadniania w przypadku zakładów oczyszczających 46 % sumarycznej objętości oczyszczanej wody deponowane są na składowiskach odpadów, a powstające w kolejnych zakładach oczyszczających 24 % wody składowane są na terenie tych zakładów. Z zakładów oczyszczających 25 % oczyszczanej wody osady wywożone są do oczyszczalni ścieków, w których są składowane lub dodawane do oczyszczanych ścieków. Pozostałe osady (z ZOW oczyszczających 4 % Σ Q) wykorzystywane są w przemyśle lub rolniczo (rys. 6).

Rys. 6. Sposoby zagospodarowania odwodnionych osadów, % całkowitej wydajności ZOW [29]

3. Cel i zakres pracy

Gospodarce osadowej w zakładach oczyszczania wody nie poświęca się dużej uwagi, o czym świadczy niewielka ilość publikacji na ten temat dostępnych w języku polskim. Zwiększenie wymagań dotyczących jakości wody dostarczanej odbiorcom, a w konsekwencji konieczność usuwania coraz większej ilości zanieczyszczeń i domieszek wody, skutkuje powstawaniem większej ilości osadów. Konieczność intensyfikacji zagęszczania osadów powstających podczas oczyszczania wody wynika ze znacznych objętości tych odpadów, niewystarczająco skutecznych metod ich unieszkodliwiania oraz konieczności ochrony komponentów środowiska, do których odprowadzane są wydzielone wody nadosadowe.

Celem pracy było ustalenie wpływu rodzaju i składu fizyczno-chemicznego osadu na przebieg i skuteczność jego porcjowego zagęszczania grawitacyjnego oraz określenie możliwości zwiększenia skuteczności tego procesu.

Zakres przeprowadzonych badań obejmował:

 określenie składu fizyczno-chemicznego osadów powstających podczas oczyszczania wód powierzchniowych w procesach koagulacji lub jednoczesnej dekarbonizacji i koagulacji oraz wód podziemnych,

 zbadanie przebiegu i skuteczności porcjowego zagęszczania grawitacyjnego osadów bez ich kondycjonowania,

 określenie wpływu zastosowania i czasu trwania wolnego mieszania na skuteczność zagęszczania osadów,

 określenie efektywności zagęszczania osadów poprzedzonego kondycjonowaniem chemicznym (korekta stężenia jonów wodorowych, dawkowanie polielektrolitów),

 ustalenie wpływu rodzaju i dawki polielektrolitu oraz sposobu kondycjonowania osadów na przebieg i skuteczność ich zagęszczania oraz jakość wydzielonych wód nadosadowych.

34

CZĘŚĆ BADAWCZA

1. Przedmiot i metodyka badań

1.1. Charakterystyka badanych osadów

Przedmiotem badań były osady powstające w trzech zakładach oczyszczania wody eksploatujących różne układy technologiczne oczyszczania wody.

1.1.1. Osady powstające w ZOW "Mokry Dwór"

W ZOW "Mokry Dwór" oczyszczaniu poddawana jest woda powierzchniowa ujmowana z rzeki Oławy. Osad powstaje w wyniku koagulacji zanieczyszczeń wody koagulantami glinowymi, a następnie sedymentacji zawiesin realizowanej w 12 trzypoziomowych osadnikach o przepływie poziomym. Dawka koagulantu jest zmienna i zależy od poziomu zanieczyszczenia ujmowanej wody powierzchniowej. Osady z osadników usuwane są hydraulicznie do kanalizacji. Próbki osadów przeznaczone do badań pobierane były z rurociągu odprowadzającego osad z osadnika, w czasie spustu osadu. W ZOW "Mokry Dwór" woda oczyszczana jest w układzie technologicznym przedstawionym poniżej [19].

- 1. koagulacja objętościowa
- 2. sedymentacja
- 3. filtracja pospieszna przez złoże piaskowe
- 4. ozonowanie
- 5. filtracja przez biologicznie aktywne złoże filtracyjne z granulowanego węgla aktywnego
- 6. alkalizacja i dezynfekcja

1.1.2. Osady powstające w ZOW "Leśnica"

W ZOW "Leśnica" oczyszczana jest woda podziemna, ujmowana z głębokości 128 \div 134 m. Wydajność zakładu wynosi ok. 1000 m³/d. Woda oczyszczana jest w układzie technologicznym przedstawionym na poniższym schemacie:

- 1. napowietrzanie otwarte
- 2. sedymentacja
- 3. filtracja pospieszna przez złoże piaskowe
- 4. dezynfekcja

W wyniku płukania złóż filtracyjnych powstają popłuczyny. Złoża płukane są jednocześnie powietrzem i wodą przez około 30 minut, średnio co dwa tygodnie. Popłuczyny odprowadzane są do sieci kanalizacyjnej [19]. Próbki osadów przeznaczone do badań wydzielane były z popłuczyn w wyniku ich wstępnego 24h zagęszczania i oddzielenia osadu od wody nadosadowej.

1.1.3. Osady powstające w ZOW "KOGENERACJA S.A."

W ZOW "Kogeneracja S.A." oczyszczana jest woda do celów energetycznych, w układie technologicznym przedstawionym na poniższym schemacie. Osady powstają w wyniku jednoczesnej dekarbonizacji i koagulacji zanieczyszczeń wody powierzchniowej, ujmowanej z rzeki Odry. Proces ten realizowany jest w reaktorze powolnym z wirową komorą reakcji o wydajności $40 \div 70 \text{ m}^3$ /h. W układzie oczyszczania znajdują się dwa reaktory pracujące na przemian. Wapno dawkowane jest w postaci mleka wapiennego o stężeniu 2,5 ÷ 3,0 % CaO, a jego dawka regulowana jest w sposób ciągły. Optymalna dawka mleka wapiennego powinna zapewnić spełnienie następujących warunków: zasF = 0,3 ÷ 0,5 mval/dm³ oraz 2zasF = zasM. Dawka koagulantu, którym jest siarczan żelaza (II), jest stała i wynosi 45 g FeSO₄x7H₂O/m³. Nadmiar osadu z reaktorów odprowadzany jest do odstojników [20]. Próbki osadów przezna-czone do badań pobierane były z części lejowej reaktora.

1. dekarbonizacja z koagulacją i sedymentacją

- 2. filtracja pospieszna przez złoże piaskowe
- 3. wymiana jonowa (dekationizacja i deanionizacja)

1.2. Pomiary i dane eksperymentalne

W badaniach określono wpływ składu fizyczno – chemicznego osadów, czasu zagęszczania, zastosowania wolnego mieszania i czasu jego trwania oraz kondycjonowania chemicznego osadów na ich porcjowe zagęszczanie grawitacyjne oraz na jakość wody nadosadowej.

1.2.1. Skład fizyczno-chemiczny osadów i wody nadosadowej

Wszystkie oznaczenia analityczne wykonano zgodnie z normami podanymi w tabeli 1.1.

Tab. 1.1. Normy badań analitycznych

Wskaźnik	Norma
Sucha pozostałość i uwodnienie	PN-EN 12880:2004
Substancje rozpuszczone	PN-EN 12880:2004
Pozostałość po prażeniu	PN-C-04958:1978
Zawiesiny ogólne	PN-72/C-04559/02
Barwa	PN-EN ISO 7887:2002
Mętność	PN-EN ISO 7027:2003
Zasadowość F i M	PN-EN ISO 9963-1:2001
рН	PN-90/C-04540.01
Twardość	PN-ISO 6059:1999
Wapń	PN-ISO 6058:1999
Magnez	PN-ISO 6059:1999
Żelazo ogólne	PN-ISO 6332:2001
Glin	PN-C-04605-02:1992

W próbkach osadów określano również czas ssania kapilarnego (CSK) zgodnie z normą PN-EN 14701-1:2007

1.2.2. Porcjowe zagęszczanie grawitacyjne osadów

Przed rozpoczęciem badań zagęszczania, próbki osadów dokładnie mieszano w celu zapewnienia równomiernego stężenia cząstek stałych w całej objętości badanej próbki. Zagęszczanie grawitacyjne osadów o znanym składzie i uwodnieniu początkowym realizowano w szklanych cylindrach o pojemności 1 dm³ i jednakowej wysokości (fot. 1). Określenie przebiegu zagęszczania osadów polegało na obserwacji i rejestracji w czasie położenia płaszczyzny rozdziału między strefą osadu i wody nadosadowej (fot 1). Po określonym czasie zagęszczania t_{zag} = t_z +30 min zlewarowywano ciecz nadosadową, w której oznaczano wybrane wskaźniki jakości wód nadosadowych, oraz objętość, uwodnienie i czas ssania kapilarnego osadu po zagęszczaniu i obliczano stopień jego zagęszczenia i zmniejszenia objętości.

Fot. 1. Cylindry z osadem podczas badań zagęszczania grawitacyjnego

W seriach badań, w których określano wpływ czasu zagęszczania osadu, wodę nadosadową oddzielano od osadu bezpośrednio po upływie założonego czasu zagęszczania i oznaczano wszystkie wskaźniki jakości wód nadosadowych oraz parametry procesu i osadu. Reagenty kondycjonujące dodawano w znanych ilościach do próbek osadu, których objętość uzupełniano następnie do objętości 1 dm³ i po dokładnym wymieszaniu rozpoczynano obserwację przemieszczania się płaszczyzny rozdziału faz. W niektórych seriach, przed zagęszczaniem, próbki osadu poddawane były wolnemu mieszaniu z prędkością mieszania 15 obr/min.

1.2.3. Reagenty kondycjonujące

Jako substancje kondycjonujące stosowano wapno, kwas siarkowy (VI) oraz polielektrolity. Wapno dawkowano w postaci mleka wapiennego o znanym stężeniu CaO, kwas siarkowy w postaci stężonej, co pozwoliło ograniczyć do minimum zmianę uwodnienia początkowego próbek osadów, do których dawkowano te reagenty. W badaniach określano przydatność polielektrolitów, których charakterystykę przedstawiono w tabeli 1.2. W tabeli tej podano symbole stosowanych polielektrolitów, ponieważ jeden z dystrybutorów nie wyraził zgody na upowszechnienie nazw handlowych produktów. Stężenia dawkowanych roztworów wodnych polielektrolitów wynosiły 0,25 %. W seriach, w których dodawano łącznie dwa polielektrolity do jednej próbki osadu, ilość każdego dodanego polielektrolitu była taka sama i stanowiła 0,5 D_p. Po dodaniu substancji kondycjonujących próbki osadu mieszano w celu ujednolicenia ich składu.

	Kemipol		Nalco				
Symbol	Charakter	Ciężar moleku- larny	Symbol	Charakter	Ciężar moleku- larny		
Kśr1	kationowy	średni	Kśr3	kationowy	średni		
Kśr2	kationowy	średni	Kśr4	kationowy	średni		
Kd1	kationowy	duży	Kśr5	kationowy	średni		
Ad1	anionowy	duży	Kd2	kationowy	duży		
			Kd3	kationowy	duży		
			Kd4	kationowy	duży		
			Kd5	kationowy	duży		
			Ad2	anionowy	duży		
			Abd	anionowy	hardzo duży		

Tab. 1.2. Charakterystyka stosowanych polielektrolitów [23, 24]

OMÓWIENIE WYNIKÓW BADAŃ

1. Interpretacja wyników badań

W pracy zamiast pełnego brzmienia określenia "porcjowe zagęszczanie grawitacyjne" używano skrótu "zagęszczanie", a wodę wydzieloną z osadów w wyniku ich zagęszczania określano jako "wodę nadosadową".

Wyniki pomiarów zmian wysokości strefy rozdziału faz zagęszczony osad – woda nadosadowa przedstawiano w tabelach i na wykresach, z których odczytywano czas sedymentacji zawiesin (cząstek osadu) oraz zagęszczania osadu. Tabele i wykresy przedstawiające przebieg procesu zagęszczania zamieszczono w załącznikach. Przebieg zmian wysokości strefy rozdziału wody nadosadowej i osadu przedstawiono na rysunku 1.1. W pierwszej fazie procesu następuje sedymentacja zawiesin i prędkość zmian wysokości strefy rozdziału jest stała (prosta AB). Od punktu B zaczyna się komprymacja (zagęszczanie) osadu. Odcinek krzywej BC obrazuje okres zmniejszającej się prędkości opadania powierzchni rozdziału faz. Zagęszczanie kończy się w punkcie C, po którym nie następuje dalsze obniżanie poziomu osadu. Na podstawie wyznaczonych krzywych zagęszczania określano czasy trwania faz sedymentacji (t_s) i komprymacji (t_k) osadu, a jako wymagany czas zagęszczania (t_z) osadów pokoagulacyjnych przyjmowano czas, po którym zanikała zmiana wysokości powierzchni rozdziału faz.

Rys. 1.1. Przebieg zmian wysokości strefy rozdziału wody nadosadowej i osadu podczas zagęszczania osadu w cylindrze o wysokości h₀ [4]

Za wskaźniki określające przebieg i skuteczność porcjowego zagęszczania grawitacyjnego badanych osadów przyjęto:

- stopień zagęszczenia:

$$\eta_z = \frac{Sm}{smo},$$

- stopień zmniejszenia objętości osadów:

$$\eta_V = \frac{V_0 - V_k}{V_o} \cdot 100\%$$
,

- zdolność osadu do zagęszczania (w fazie komprymacji):

$$Z=\frac{h_2}{h_1},$$

- prędkość sedymentacji zawiesin (w fazie sedymentacji):

$$v_s = \frac{h_0 - h_1}{t_s},$$

- czas fazy sedymentacji zawiesin (t_s), komprymacji wydzielonego osadu (t_k) oraz wymagany
czas zagęszczania (t_z):

$$t_z = t_s + t_k,$$

- wybrane wskaźniki jakości wody nadosadowej.

Z uwagi, iż wody nadosadowe wydzielone podczas grawitacyjnego porcjowego zagęszczania i odwadniania osadów najczęściej odprowadzane są do kanalizacji lub do wód powierzchniowych, jako kryterium ich jakości przyjęto dopuszczalne wartości badanych wskaźników zanieczyszczenia określone w rozporządzeniu Ministra Środowiska z dnia 28 stycznia 2009 r., zmieniającym rozporządzenie w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego. Dopuszczalne wartości badanych wskaźników zanieczyszczeń zestawiono w tabeli 1.3.

pH $6,5 \div 9,0$ Zawiesiny ogólne g/m^3 35Żelazo ogólne gFe/m^3 10Glin gAl/m^3 3

Tab. 1.3. Dopuszczalne wartości wybranych wskaźników zanieczyszczeń [46]

Wartości pozostałych badanych wskaźników jakości tych wód wykorzystano do określenia wpływu warunków prowadzenia procesu porcjowego grawitacyjnego zagęszczania osadów na jego skuteczność w aspekcie poziomu zanieczyszczenia wód nadosadowych.

2. Skład fizyczno-chemiczny osadów oraz przebieg i skuteczność ich zagęszczania

2.1. Osady pokoagulacyjne z ZOW "Mokry Dwór"

Osady będące przedmiotem badań powstają w wyniku sedymentacji zawiesin po koagulacji zanieczyszczeń usuwanych z wody powierzchniowej, ujmowanej z rzeki Oławy.

2.1.1. Skład fizyczno – chemiczny osadów

Badane próbki osadu (MDI – MDXIII) charakteryzowały się dużym uwodnieniem, które zmieniało się w zakresie $98,92 \div 99,77$ % i związaną z nim różną zawartością zawiesin poko-agulacyjnych, które stanowiły $80,05 \div 95,91$ % suchej pozostałości (tab. 2.1).

Tab. 2.1. Wartości wybranych wskaźników jakości próbek osadu pokoagulacyjnego z ZOW "Mokry Dwór"

Wskaźnik	Jednostka						Ro	dzaj prć	bki					
Workdzmik	ocuriosika	MDI	MDII	MDIII	MDIV	MDV	MDVI	MDVII	MDVIII	MDIX	MDX	MDXI	MDXII	MDXIII
pН		7,37	7,18	7,13	7,18	7,60	7,40	7,60	7,40	7,48	7,22	7,05	7,40	7,00
zas M	val/m ³	3,00	3,65	2,80	3,30	4,15	3,32	3,24	3,46	3,20	2,90	3,15	3,60	3,27
Sucha pozostałość	g/m³	6136	7766	2266	8324	7655	10458	4276	7504	3478	4512	10799	6472	6076
Pozostałość po prażeniu	g/m³ % smo	3864 62,97	5476 70,51	1516 66,90	5488 65,93	5412 70,70	7376 70,53	2662 62,25	5344 71,22	2422 69,64	3008 66,67	7038 65,17	4352 67,24	4234 69,68
Strata prażenia	g/m ³ % smo	2272 37,03	2290 29,49	750 33,10	2836 34,07	2243 29,30	3082 29,47	1614 37,75	2160 28,78	1056 30,36	1504 33,33	3761 34,83	2120 32,76	1842 30,32
Zawiesiny ogólne	g/m³ % smo	5784 94,26	7366 94,85	1814 80,05	7880 94,67	7141 93,29	9966 95,30	3790 88,63	7034 93,74	2972 85,45	4054 89,85	10357 95,91	6014 92,92	5626 92,59
Zawiesiny mineralne	g/m³	3646	5226	1246	5230	5046	7038	2340	5060	2046	2742	6734	4052	3926
Zawiesiny lotne	g/m³	2138	2140	568	2650	2095	2928	1450	1974	926	1312	3623	1962	1700
Substancje rozpuszczone	g/m³	352	400	452	444	514	492	486	470	506	458	442	458	450
Subst. rozp. mineralne	g/m³	218	250	270	258	366	338	322	284	376	266	304	300	308
Subst. rozp. lotne	g/m³	134	150	182	186	148	154	164	186	130	192	138	158	142
Uwodnienie	%	99,39	99,22	99,77	99,17	99,23	98,95	99,57	99,25	99,65	99,55	98,92	99,35	99,39
CSK ₀	S	17,9	22,6	20,3	25,1	15,1	32,4	23,0	18,8	22,6	39,2	64,7	34,2	34,4
Wapń	gCa/kg smo gCa/m³	57,6 353,4	78,4 608,9	68,5 155,2	59,6 496,1	55,5 424,9	39,9 417,3	115,8 495,2	127,2 954,5	158,7 552,0	60,0 270,7	65,8 710,6	34,3 222,0	34,2 207,8
Magnez	gMg/kg smo gMg/m ³	32,0 196,4	38,4 298,2	31,4 71,2	34,4 286,3	7,8 59,7	11,3 118,1	6,1 26,1	4,4 33,0	9,2 32,0	7,9 35,6	8,3 89,6	10,8 69,9	7,0 42,5
Glin	gAl/kg smo gAl/m ³	56,7 347,9	57,6 447,3	28,0 63,4	27,6 229,7	75,1 574,9	99,1 1036,4	91,6 391,7	117,2 879,5	113,5 394,8	98,9 446,2	86,7 936,3	91,3 590,9	92,5 562,0
Żelazo ogólne	gFe/kg smo gFe/m ³	12,4 76,1	9,6 76,6	6,5 14,7	7,4 61,6	144,6 1105,9	129,9 1358,5	128,4 549,0	108,0 810,4	110,0 382,6	176,4 795,9	172,4 1861,7	186,3 1205,7	195,8 1189,7

Głównymi komponentami substancji stałych były związki nieorganiczne (62,25 ÷ 71,22 % suchej masy). Badane próbki osadów zawierały zmienne ilości związków glinu, żelaza, wapnia i magnezu, a wartości pH i zasadowości ogólnej osadów mieściły się odpowiednio w

przedziałach 7,00 \div 7,60 oraz 2,80 \div 4,15 val/m³. Czas ssania kapilarnego wszystkich badanych próbek osadów był różny (15,1 \div 64,7), co świadczyło o ich różnej podatności na odwadnianie mechaniczne [41].

2.1.2. Zagęszczanie osadów bez kondycjonowania

Celem przeprowadzonych badań było określenie przebiegu i skuteczności zagęszczania grawitacyjnego osadów pokoagulacyjnych w zależności od ich składu fizyczno-chemicznego oraz czasu zagęszczania, a także czasu wolnego mieszania osadów przed zagęszczaniem.

2.1.2.1. Wpływ składu fizyczno-chemicznego osadów

W badaniach określono wpływ uwodnienia początkowego osadów oraz udziału ilościowego zawiesin ogólnych i substancji organicznych w suchej masie osadów, a także stężeń wapnia, magnezu, glinu i żelaza ogólnego na dynamikę rozdziału faz (t_s , t_k), wymagany czas zagęszczania (t_z), skuteczność zagęszczenia osadów (η_z) i zmniejszenia ich objętości (η_v), a także na podatność na zagęszczanie w fazie komprymacji (Z) oraz zmianę czasu ssania kapilarnego osadów po zagęszczaniu.

W celu określenia wpływu uwodnienia początkowego wykonano dwie serie badań. Przedmiotem badań w pierwszej serii były próbki osadów o niekorygowanym (rzeczywistym) uwodnieniu początkowym (MDI do MDXIII) i różniące się wartościami wskaźników ich składu. Natomiast w drugiej serii przeprowadzono badania dla próbek osadów o skorygowanym uwodnieniu początkowym, przygotowanych na bazie osadów MDI, MDIII i MDIV. Uwodnienie początkowe badanych próbek osadów zwiększano lub zmniejszano dodając lub usuwając z osadu "bazowego" część wydzielonej z niego wody nadosadowej.

Seria I

W tabeli 2.2 przedstawiono wyniki badań analitycznych próbek osadu po zagęszczaniu i wody nadosadowej, wartości CSK_k oraz wyznaczonych parametrów charakteryzujących przebieg i skuteczność procesu zagęszczania osadów.

Wyniki pomiarów rozdziału faz w czasie zagęszczania (t_{zag}) przedstawiono w tabeli TZ.1, a krzywe zagęszczania na rysunku KZ.1.

Pr	óbka	MDXI	MDVI	MDIV	MDII	MDV	MDVIII	MDXII	MDI	MDXIII	MDX	MDVII	MDIX	MDIII
W_0	%	98,92	98,95	99,17	99,22	99,23	99,25	99,35	99,39	99,39	99,55	99,57	99,65	99,77
							osad							
Vk	cm ³	340	310	330	380	275	335	300	340	180	225	260	180	85
W _k	%	97,12	96,81	97,69	97,97	97,73	97,95	97,97	98,44	96,95	98,25	98,55	98,42	97,92
CSK_k	S	144,8	37,8	77,1	51,3	20,3	116,5	82,5	77,8	121,4	126,3	84,3	60,5	81,2
η_z		2,67	3,04	2,78	2,60	2,95	2,73	3,12	2,56	5,00	3,89	3,37	4,51	9,04
η_{v}	%	66,0	69,0	67,0	62,0	72,5	66,5	70,0	66,0	82,0	77,5	74,0	82,0	91,5
ts	min	80	70	90	320	50	340	80	330	26	40	50	18	10
t _k	min	660	480	990	1120	490	1020	600	1170	454	600	600	402	310
tz	min	740	550	1080	1440	540	1360	680	1500	480	640	650	420	320
Z		0,50	0,48	0,60	0,60	0,45	0,50	0,45	0,50	0,41	0,40	0,42	0,37	0,33
Vs	cm/min	0,135	0,179	0,166	0,038	0,276	0,034	0,148	0,035	0,746	0,383	0,262	0,978	2,570
						woda	a nadosa	dowa						
pH_k		7,05	7,40	7,18	7,20	7,60	7,40	7,40	7,40	7,00	7,22	7,60	7,48	7,13
zasM	val/m ³	3,15	3,32	3,30	3,65	4,15	3,46	3,60	3,00	3,27	2,90	3,24	3,20	2,80
М	NTU	20,10	1,80	0,86	2,14	1,32	2,06	0,24	2,33	5,97	5,83	0,92	6,08	11,40
В	gPt/m ³	24,69	11,27	12,67	19,05	7,76	12,43	19,84	16,35	15,73	15,72	8,20	11,40	9,50
Utl	gO ₂ /m ³	13,60	4,42	5,74	8,40	3,70	6,62	10,10	9,90	10,30	6,94	4,60	6,52	8,70
AI	gAl/m ³	0,014	0,031	0,037	0,024	0,034	0,020	0,010	0,062	0,097	0,027	0,015	-	0,380
tw _{og}	°tw	15,1	18,3	18,4	15,1	18,7	19,1	16,9	13,6	17,5	16,3	18,0	17,7	17,8
Са	gCa/m ³ °tw	79,3 11,1	102,9 14,4	95,7 13,4	77,1 10,8	94,3 13,2	100,7 14,1	90,7 12,7	70,0 9,8	95,7 13,4	88,6 12,4	101,4 14,2	94,3 13,2	80,0 11,2
Mg	gMg/m ³ °tw	17,2 4,0	16,7 3,9	21,4 5,0	18,4 4,3	23,6 5,5	21,4 5,0	18,0 4,2	16,3 3,8	17,6 4,1	16,7 3,9	16,3 3,8	19,3 4,5	28,3 6,6
Zaw_{og}	g/m ³	26	6	2	4	6	6	2	6	10	10	2	10	14

Tabela 2.2. Wpływ uwodnienia początkowego na przebieg i skuteczność procesu zagęszczania.

Generalnie, wraz ze wzrostem początkowego uwodnienia osadów zwiększały się stopień ich zagęszczenia oraz zmniejszenia objętości (rys. 2.1). Uwodnienie początkowe osadu nie było jednak jedynym czynnikiem decydującym o efektywności zagęszczania osadów. Najmniejsze wartości η_z i η_v stwierdzono dla osadu MDI charakteryzującego się średnim uwodnieniem początkowym ($W_0 = 99,39$ %) i jednocześnie prawie największą, ze stwierdzonych, zawartości ą substancji organicznych w suchej masie (37,03 % smo). Również porównanie stopnia zagęszczenia osadów MDI i MDXIII o takim samym uwodnieniu początkowym ($W_0 = 99,39$ %) wskazuje, że czynnikiem współdecydującym o podatności osadów na zagęszczanie grawitacyjne była właśnie zawartość substancji organicznych w suchej masie. Dla osadu MDXIII – zawierającego mniej substancji organicznych (30,32 % smo) uzyskano bowiem większy stopień zagęszczenia ($\eta_z = 5,0$) niż dla osadu MDI ($\eta_z = 2,56$) (rys. 2.1). Wpływ udziału sub-

stancji organicznych w suchej masie osadów (przed zagęszczaniem) przedstawiono na rysunku 2.2.

Rys. 2.1. Wpływ początkowego uwodnienia na stopień zgęszczenia i zmniejszenia objętości osadu

Rys. 2.2. Wpływ zawartości substancji organicznych na stopień zagęszczenia i zmniejszenia objętości osadu

Największą wartość η_z (9,57) stwierdzono dla osadu MDIII o największym uwodnieniu początkowym (W₀ = 99,77 %), mimo że zawartość substancji organicznych w suchej masie tego osadu była większa niż w 7 innych badanych osadach (tab. 2.1). Należy jednak zaznaczyć, że w najlepiej zagęszczającym się osadzie MDIII stwierdzono najmniejsze stężenie glinu (tab. 2.1.), którego połączenia obecne w osadzie niekorzystnie wpływają na skuteczność jego zagęszczania. O negatywnej roli związków glinu obecnych w badanych osadach świadczą wyniki przedstawione na rysunku 2.3.

Rys. 2.3. Wpływ stężenia glinu na stopień zagęszczenia osadu

Z przedstawionej zależności wynika, że generalnie wraz ze wzrostem stężenia glinu w badanych osadach zmniejszał się stopień ich zagęszczenia. Również w tym przypadku nie można pominąć wpływu początkowego uwodnienia osadów oraz zawartości innych substancji w zagęszczanych osadach. Świadczą o tym lepsze efekty zagęszczania osadów MDVII, MDIX i MDX niż osadu MDI. Trzy pierwsze z wymienionych osadów charakteryzowały się większym uwodnieniem niż osad MDI (tab. 2.1). Na przebieg i skuteczność zagęszczania osadów korzystnie wpływało również zwiększone stężenie związków żelaza. Wskazuje na to porównanie wartości η_z , η_v , t_s i t_k dla osadów MDII oraz MDIX i MDX (tab. 2.2). Osad MDII mimo, że zawierał mniej zanieczyszczeń organicznych (% smo) oraz związków glinu był mniej podatny na zagęszczanie niż osady MDIX i MDX charakteryzujące się zdecydowanie większym stężeniem związków żelaza (tab. 2.1, rys. 2.4) i jednocześnie mniejszą zawartością suchej masy.

O małej podatności osadu MDII na zagęszczanie grawitacyjne mogła decydować również dużo większa zawartość zawiesin ogólnych w suchej masie. Zależność stopnia zagęszczenia osadów od zawartości zawiesin ogólnych ilustruje rysunek 2.5, z którego wynika, że generalnie wraz z jej wzrostem zmniejszała się skuteczność procesu zagęszczania. W tym przypadku o wartości η_z współdecydowała również zawartość substancji organicznych w suchej masie osadu. Osad MDXIII zawierał mniej związków organicznych niż osady MDX i MDXII, co prawdopodobnie spowodowało zwiększenie stopnia zagęszczenia osadu MDXIII.

Rys. 2.4. Wpływ stężenia żelaza ogólnego na stopień zagęszczenia osadu

Rys. 2.5. Wpływ zawartości zawiesin ogólnych na stopień zagęszczenia osadu

Nie stwierdzono jednoznacznego wpływu stężenia wapnia i magnezu w osadach na stopień ich zagęszczenia (rys. 2.6 i 2.7). Badane osady charakteryzowały się wartościami pH w przedziale $7,00 \div 7,60$, a więc związki wapnia i magnezu występowały głównie w formie rozpuszczonej i nie wpływały w istotny sposób na skuteczność i dynamikę procesu zagęszczania.

Rys. 2.6. Wpływ stężenia związków wapnia na stopień zagęszczenia osadu

Rys. 2.7. Wpływ stężenia związków magnezu na stopień zagęszczenia osadów

Wydzielone wody nadosadowe charakteryzowały się dobrą jakością (tab. 2.2). W żadnej z próbek nie stwierdzono przekroczenia dopuszczalnych wartości badanych wskaźników zanieczyszczenia określonych w rozporządzeniu Ministra Środowiska [46].

Seria II

Celem badań przeprowadzonych w tej serii było określenie wpływu uwodnienia początkowego osadów o zbliżonej zawartości związków glinu, żelaza, wapnia i magnezu oraz substancji organicznych w suchej masie osadów. Badania przeprowadzono dla 5 osadów o uwodnieniach początkowych wynoszących od 98,70 do 99,68 %. Próbki osadów przygotowano na bazie osadu najgorzej zagęszczającego się – MDI o $W_0 = 99,39$ %, usuwając lub dodając do tego osadu część wydzielonej z niego wody nadosadowej. Wyniki pomiarów wysokości powierzchni rozdziału wody nadosadowej i wydzielonego osadu przedstawiono w tabeli TZ.2 oraz na rysunku KZ.2.

Wartości badanych wskaźników jakości wody nadosadowej oraz wyznaczonych parametrów osadu po zagęszczaniu przedstawiono w tabeli 2.3.

Wyniki tej serii badań wykazały również, że wraz ze wzrostem początkowego uwodnienia osadów zwiększał się stopień ich zagęszczenia, a także skuteczność zmniejszenia ich objętości (rys. 2.8). W przypadku osadów o najmniejszym początkowym uwodnieniu ($W_0 = 98,70$ i 98,95 %), nie określono czasu i prędkości sedymentacji cząstek osadu, gdyż faza sedymentacji trwała dłużej niż 10 h i zakończyła się w godzinach nocnych. Wraz ze wzrostem uwodnienia początkowego pozostałych osadów skracał się czas fazy sedymentacji zawiesin, a w przypadku wszystkich osadów skracał się wymagany czas ich zagęszczania. Czas ssania kapilarnego osadów po zagęszczaniu nie zależał jednoznacznie od początkowego ani od końcowego uwodnienia tych osadów i wahał się w granicach 66,4 \div 88,7 s.

W ₀	%	98,70	98,95	99,39	99,54	99,68
			osad			
Vk	cm ³	620	500	340	260	170
W _k	%	98,57	98,52	98,44	98,24	98,22
CSK _k	S	66,4	77,4	77,8	88,7	74,0
η_z		1,10	1,41	2,56	3,83	5,56
η_v	%	38,0	50,0	66,0	74,0	83,0
t _s	min	-	-	330	60	30
t _k	min	-	-	1170	540	470
tz	min	1650	1620	1500	600	500
Z		-	-	0,50	0,47	0,38
Vs	cm/min	-	-	0,035	0,255	0,630
		woda r	nadosad	owa		
рН _к		7,40	7,40	7,40	7,40	7,40
zas M	val/m ³	3,00	3,00	3,00	3,00	3,00
М	NTU	1,97	2,21	2,33	4,10	20,30
В	gPt/m ³	15,97	16,41	16,35	16,55	17,67
Utl	gO_2/m^3	9,7	9,7	9,9	10,1	10,1
AI	gAl/m ³	0,054	0,054	0,062	0,086	0,099
Zaw _{og}	g/m ³	6	6	6	8	16

Tab. 2.3. Wpływ uwodnienia początkowego na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych (osady przygotowane na bazie osadu MDI)

Próbki wody nadosadowej różniły się stężeniem zawiesin ogólnych, glinu oraz mętnością, utlenialnością i intensywnością barwy. Najmniejsze wartości tych wskaźników stwierdzono w wodzie wydzielonej z osadu o najmniejszym uwodnieniu początkowym ($W_0 = 98,70$ %).

Rys. 2.8. Wpływ początkowego uwodnienia osadu na stopień jego zagęszczenia oraz zmniejszenia objętości

Wraz ze wzrostem początkowego uwodnienia osadu i w konsekwencji skracaniem się czasu fazy sedymentacji cząstek osadu i wymaganego czasu zagęszczania pogarszała się jakość wydzielonych wód nadosadowych (tab. 2.3 i rys. 2.9), ale w żadnej próbce nie stwierdzono jednak przekroczenia dopuszczalnych wartości wskaźników zanieczyszczenia.

Rys. 2.9. Wpływ początkowego uwodnienia osadów na wartości wybranych wskaźników jakości wody nadosadowej

2.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętość i jakość wody nadosadowej

W badaniach określono przebieg i efekty procesu zagęszczania osadów pokoagulacyjnych o różnym uwodnieniu początkowym, stosując czas zagęszczania do 72 godzin. Po kolejnych czasach zagęszczeniach (t_{zag}) określano objętość i jakość wód nadosadowych, wartości parametrów charakteryzujących wydzielone osady oraz obliczano wartości η_v i η_z .

Osad o W₀ = 99,77 % (MDIII)

Wyniki pomiarów zmian wysokości powierzchni rozdziału wody nadosadowej i osadu przedstawione są w tabeli TZ.1 oraz na rysunku KZ.1. Czas fazy sedymentacji cząstek osadu (t_s) i wymagany czas zagęszczania osadu (t_z) wynosiły odpowiednio 10 min i 320 min. Prędkość opadania zawiesin (v_s) była równa 2,57 cm/min (tab. 2.2).

Wyniki badań jakości wód nadosadowych oraz osadów przedstawiono w tabeli 2.4.

Tab. 2.4. Wpływ czasu zagęszczania na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych ($W_0 = 99,77 \%, t_{zag} do 72 h$)

t _{zag}	h	0,5	1	2	3	4	5	6	20	24	48	72
						osad						
V _k	cm ³	140	110	100	95	90	85	80	75	75	70	70
smo	g/m ³	12592	15606	17494	19474	19532	20306	21028	21468	22006	22818	22992
W _k	%	98,74	98,44	98,25	98,14	98,05	97,97	97,90	97,85	97,80	97,72	97,70
CSK _k	S	25,4	31,4	44,7	68,5	77,9	80,6	81,9	82,3	98,7	99,5	102,4
η _z		5,48	6,78	7,61	8,09	8,48	8,83	9,13	9,35	9,57	9,91	10,00
η_v	%	86,0	89,0	90,0	90,5	91,0	91,5	92,0	92,5	92,5	93,0	93,0
					woda r	nadosad	owa					
рН _к		7,13	7,13	7,13	7,13	7,13	7,13	7,13	7,13	7,13	7,13	7,13
zas M	val/m ³	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8
М	NTU	36,5	22,5	15,7	13,7	11,7	11,4	10,6	4,11	3,36	2,24	1,51
В	gPt/m ³	9,88	9,00	8,68	8,43	8,45	9,5	9,33	9,39	9,41	9,36	9,06
Utl	gO ₂ /m ³	14,3	14,3	10,3	9,5	9,1	8,7	8,7	6,5	6,3	5,98	5,7
AI	gAl/m ³	3,00	0,60	0,55	0,50	0,50	0,38	0,38	0,30	0,24	0,20	0,12
Zawog	g/m ³	36	28	16	14	12	12	10	6	6	4	2

Z przeprowadzonych badań wynika, że wydłużanie czasu zagęszczania poprawiało efekty procesu, zarówno z uwagi na jakość wody nadosadowej, jak i stopień zagęszczenia osadu (rys 2.10 i 2.11). Największy wzrost stopnia zagęszczenia oraz zmniejszenia objętości osadów stwierdzono do $t_{zag} = 6$ h (rys. 2.10), a dalsze wydłużanie czasu zagęszczania osadu nie wpływało istotnie na wartości tych parametrów. Najmniejsze uwodnienie i objętość osadu uzyskano po $t_{zag} = 72$ h, a wynosiły one odpowiednio: $W_k = 97,70$ % i $V_k = 70$ cm³.

Rys. 2.10. Wpływ czasu zagęszczania na stopień zagęszczenia i zmniejszenia objętości osadu Generalnie wydzielone wody nadosadowe charakteryzowały się dobrą jakością. Stężenie glinu, zawiesin ogólnych oraz mętność i utlenialność wody nadosadowej zmniejszały się wraz z wydłużaniem czasu zagęszczania osadu, natomiast nie stwierdzono takiej prawidłowości ze względu na barwę wody nadosadowej (rys 2.11 i tab. 2.4). Stwierdzono tylko przekroczenie dopuszczalnej zawartości zawiesin ogólnych w próbce wody nadosadowej wydzielonej po najkrótszym czasie zagęszczania.

Rys. 2.11. Wpływ czasu zagęszczania na zmianę wartości wskaźników jakości wody nadosadowej

Osad o $W_0 = 99,64 \%$ (MDIII')

Osad o $W_0 = 99,64$ % przygotowano na bazie osadu MDIII o $W_0 = 99,77$ %, odlewając z niego część wody nadosadowej.

Wyniki pomiarów zmian wysokości powierzchni rozdziału wody nadosadowej i osadu przedstawiono w tabeli TZ.3 oraz na rysunku KZ.3, z którego odczytano czas fazy sedymentacji cząstek osadu i wymagany czas zagęszczania osadu, a wynosiły one odpowiednio 30 min i 400 min. Prędkość opadania zawiesin (v_s) wynosiła 0,80 cm/min.

Wartości wybranych wskaźników jakości wody nadosadowej oraz parametrów osadu zagęszczanego przedstawione w tabeli 2.5 określono po 11 różnych czasach zagęszczania.

Wyniki badań wykonanych w tej serii potwierdziły prawidłowości stwierdzone dla osadu o $W_0 = 99,77$ %, zarówno z uwagi na jakość wody nadosadowej, jak i stopień zagęszczenia osadu. Wraz z wydłużaniem czasu zagęszczania zmniejszał się poziom zanieczyszczenia wody nadosadowej (utlenialność, mętność oraz stężenie glinu i zawiesin ogólnych) oraz podatność osadu na odwadnianie (wzrost wartości CSK_k). Podobnie jak w przypadku osadu o W_0 = 99,77 % nie stwierdzono jednoznacznego wpływu czasu zagęszczania na barwę wydzielonych wód nadosadowych (rys. 2.13). Uwalnianie wody międzycząsteczkowej przebiegało najintensywniej w czasie pierwszych sześciu godzin zagęszczania (rys. 2.12). Najmniejsze uwodnienie oraz objętość wydzielonego osadu uzyskano po czasie zagęszczania wynoszącym 72 h i wynosiły one odpowiednio: $W_k = 97,53$ % oraz $V_k = 140$ cm³.

t _{zag}	h	0,5	1	2	3	4	5	6	20	24	48	72
						osad						
V _k	cm ³	285	225	185	165	160	155	150	145	145	145	140
smo	g/m ³	12086	14832	17878	19330	20926	23064	23418	23682	23892	24040	24668
W _k	%	98,79	98,52	98,21	98,07	97,91	97,69	97,66	97,63	97,61	97,60	97,53
CSK _k	S	22,7	28,5	39,3	45,5	60,4	69,9	71,2	70,8	78,6	80,1	89,3
η_z		3,36	4,11	4,97	5,36	5,81	6,42	6,50	6,58	6,64	6,67	6,86
η_v	%	71,5	77,5	81,5	83,5	84,0	84,5	85,0	85,5	85,5	85,5	86,0
					woda r	nadosad	owa					
рН _к		7,14	7,14	7,14	7,14	7,14	7,14	7,14	7,14	7,14	7,14	7,14
zas M	val/m ³	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8
М	NTU	32,3	25	16,2	14,8	11,5	10,1	9,01	6,87	4,13	1,21	1,15
В	gPt/m ³	9,05	9,22	9,37	9,61	9,57	9,53	9,22	9,44	9,64	9,95	9,82
Utl	gO ₂ /m ³	11,34	10,1	8,5	7,5	7,5	7,3	6,9	6,5	6,3	5,9	5,6
AI	gAl/m ³	1,575	0,700	0,650	0,500	0,500	0,445	0,365	0,330	0,295	0,115	0,070
Zaw_{og}	g/m ³	28	24	16	14	12	12	10	6	4	2	2

Tab. 2.5. Wpływ czasu zagęszczania na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych ($W_0 = 99,64 \%, t_{zag} do 72 h$)

Wraz z wydłużaniem czasu zagęszczania poprawiała się jakość wydzielonych wód nadosadowych, a wartości wskaźników zanieczyszczeń były mniejsze od dopuszczalnych wartości zawartych w rozporządzeniu Ministra Środowiska [46].

Rys. 2.12. Wpływ czasu zagęszczania na stopień zagęszczenia i zmniejszenia objętości osadu

Rys. 2.13. Wpływ czasu zagęszczania na zmianę wskaźników jakości wydzielonych wód nadosadowych

Osad o W₀ = 99,17 % (MDIV)

Wyniki pomiarów zmian wysokości powierzchni rozdziału wody nadosadowej i osadu przedstawiono w tabeli TZ.1 i na rysunku KZ.1. Czas fazy sedymentacji cząstek osadu (t_s) z prędkością $v_s = 0,166$ cm/min wynosił 90 minut, natomiast wymagany czas zagęszczania osadu (t_z) był równy 1080 min.

Wraz z wydłużaniem czasu zagęszczania osadów zwiększały się wartości stopnia zagęszczenia i zmniejszenia objętości osadu (tab. 2.6). Istotne zmiany tych parametrów zaobserwowano do $t_{zag} = t_z = 18$ h (rys. 2.14). Najmniejszą wartość uwodnienia i objętości zagęszczonego osadu uzyskano po najdłuższym czasie zagęszczania ($W_k = 97,45$ % i $V_k = 320$ cm³). Wydłużanie czasu zagęszczania osadów powodowało zmniejszenie podatności osadów na uwalnianie wody międzycząsteczkowej, o czym świadczą wzrastające wartości czasu ssania kapilarnego.

t _{zag}	h	0,5	1	2	3	4	5	6	18	24	48	72
						osad						
V _k	cm ³	830	650	510	460	430	410	390	330	325	320	320
smo	g/m ³	8810	12112	14494	16604	17328	19172	20526	23094	24010	25178	25466
W _k	%	99,12	98,79	98,55	98,34	98,27	98,08	97,95	97,69	97,60	97,48	97,45
CSK _k	S	31,3	38,7	44,7	50,1	54,6	60,5	67,7	77,1	80,7	89,1	90,9
η_z		1,06	1,46	1,75	2,00	2,08	2,31	2,47	2,78	2,89	3,04	3,07
η_v	%	17,0	35,0	49,0	54,0	57,0	59,0	61,0	67,0	67,5	68,0	68,0
					woda ı	nadosac	lowa					
рН _к		7,18	7,18	7,18	7,18	7,18	7,18	7,18	7,18	7,18	7,18	7,18
zas M	val/m ³	3,3	3,3	3,3	3,3	3,3	3,3	3,3	3,3	3,3	3,3	3,3
М	NTU	3,23	1,69	1,43	1,08	1,03	1,02	1,00	0,86	0,85	0,70	0,73
В	gPt/m ³	12,97	12,93	12,89	12,85	12,44	12,4	12,32	12,67	12,28	11,51	11,60
Utl	gO ₂ /m ³	6,74	6,7	6,62	6,54	5,9	5,9	5,82	5,74	5,74	5,58	5,61
Al	gAl/m ³	0,080	0,060	0,057	0,053	0,053	0,053	0,047	0,037	0,035	0,035	0,035
Zaw _{og}	g/m ³	6	2	2	2	2	2	2	2	2	2	2

Tab. 2.6. Wpływ czasu zagęszczania na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych ($W_0 = 99,17$ %, t_{zag} do 72 h)

Wydzielone wody nadosadowe charakteryzowały się dobrą jakością. Wraz z wydłużaniem czasu zagęszczania zmniejszały się (chociaż w małym stopniu) wartości barwy, mętności, utlenialności i stężenia glinu. Czas zagęszczania nie wpływał na wartości pH i zas M, a stężenie zawiesin ogólnych było większe jedynie po $t_{zag} = 0,5$ h.

Rys. 2.14. Wpływ czasu zagęszczania na stopień zagęszczenia i zmniejszenia objętości osadu

Osad o W₀ = 99,03 % (MDIV')

Osad do tej serii badań przygotowano na bazie osadu o $W_0 = 99,17$ % (MDIV) usuwając z niego część wody nadosadowej.

W tabeli 2.7 przedstawiono wyniki analiz jakości wydzielonych wód nadosadowych oraz osadów po różnym czasie zagęszczania.

0	<i>i i</i>				<i>v ,</i>	/ 14		/			
t _{zag}	h	1	2	3	4	5	6	18	24	48	72
					osa	d					
V _k	cm ³	755	610	535	490	465	450	390	380	370	360
smo	g/m ³	12514	14338	17296	18118	19074	20016	23822	24094	24514	24788
W _k	%	98,75	98,57	98,27	98,19	98,09	98,00	97,62	97,59	97,55	97,52
CSK _k	S	34,2	38,9	42,3	46,9	51,3	55,7	58,7	62,3	66,8	69,4
η_z		1,29	1,47	1,78	1,87	1,97	2,06	2,45	2,48	2,53	2,56
η_v	%	24,5	39,0	46,5	51,0	53,5	55,0	61,0	62,0	63,0	64,0
				wo	da nado	osadowa	ı				
рН _к		7,18	7,18	7,18	7,18	7,18	7,18	7,18	7,18	7,18	7,18
zas M	val/m ³	3,3	3,3	3,3	3,3	3,3	3,3	3,3	3,3	3,3	3,3
М	NTU	1,83	1,25	1,15	1,11	1,07	0,91	0,81	0,75	0,75	0,78
В	gPt/m ³	11,58	11,18	10,89	10,89	10,83	10,83	10,62	10,59	10,55	10,11
Utl	gO ₂ /m ³	7,14	7,02	6,74	6,74	6,58	6,50	5,62	5,50	5,42	4,98
AI	gAl/m ³	0,093	0,074	0,059	0,045	0,039	0,039	0,038	0,037	0,034	0,033
Zaw _{og}	g/m ³	4	2	2	2	2	2	2	2	2	2

Tab. 2.7. Wpływ czasu zagęszczania na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych ($W_0 = 99,03$ %, t_{zag} do 72 h)

Wraz z wydłużaniem czasu zagęszczania osadu do 18 h wyraźnie zwiększał się stopień zagęszczenia oraz zmniejszenia objętości osadu, natomiast dalsze wydłużanie czasu zagęszczania nie powodowało istotnej poprawy skuteczności procesu, co ilustruje rysunek 2.15.

Wydłużenie czasu zagęszczania osadu miało również pozytywny wpływ na jakość wód nadosadowych, która poprawiała się wraz z wydłużaniem czasu zagęszczania osadów. We wszystkich badanych próbkach wody, bez względu na czas zagęszczania, stwierdzono stężenie zawiesin ogólnych ≤ 4 g/m³, stężenie glinu $\leq 0,093$ g/m³, a dla t_{zag} ≥ 6 h mętność wód nadosadowych była mniejsza od 1 NTU (tab. 2.7).

Wyniki pomiarów zmian wysokości powierzchni rozdziału wody nadosadowej i zagęszczanego osadu zestawiono w tabeli TZ.4 oraz przedstawiono na rysunku KZ.4. Odczytany z krzywej zagęszczania czas sedymentacji cząstek osadu wynosił 110 min, a wymagany czas zagęszczania osadów wynosił 1160 min, natomiast prędkość sedymentacji cząstek osadu była równa 0,114 cm/min.

Rys. 2.15. Wpływ czasu zagęszczania na stopień zagęszczenia i zmniejszenia objętości osadu

2.1.2.3. Wpływ wolnego mieszania

W tej serii badań określono przebieg i efekty zagęszczania trzech próbek osadów (MDI, MDIV, MDXII), poprzedzonego wolnym mieszaniem z prędkością 15 obr/min i trwającym, w zależności od próbki osadu, od 5 do 120 minut.

Osad o $W_0 = 99,39 \%$ (MDI)

Zastosowano 5 czasów wolnego mieszania, po upływie których próbki osadu poddano zagęszczaniu. W tabeli 2.12 zestawiono badane parametry procesu zagęszczania oraz wyniki analiz jakości wydzielonych wód nadosadowych i wartości parametrów osadu po zagęszczaniu.

Wyniki pomiarów zmian wysokości powierzchni rozdziału wody nadosadowej i zagęszczonego osadu zestawiono w tabeli TZ.5 oraz na krzywych zagęszczania na rysunku KZ.5. Zastosowanie wolnego mieszania skróciło czas sedymentacji cząstek osadu (rys. 2.16) oraz wymagany czas jego zagęszczania (rys. 2.17).

Wyniki badań przedstawione w tabeli 2.12 wykazały, że zastosowanie wolnego mieszania jak i wydłużenie jego trwania nieznacznie zwiększyło stopień zagęszczenia osadu, przy jednoczesnym pogorszeniu jakości wody nadosadowej i praktycznie braku istotnych zmian objętości osadu po zagęszczaniu. Zastosowanie wolnego mieszania zwiększyło zawartości w wodzie nadosadowej substancji powodujących mętność i barwę oraz stężenie glinu. Nie stwierdzono jednoznacznego wpływu czasu wolnego mieszania na wartości czasu ssania kapilarnego osadu oraz współczynnika Z.

ť	t _{wm}	0 min	5 min	15 min	30 min	60 min	90 min
			OS	ad			
V _k	cm ³	340	340	340	330	330	330
W _k	%	98,44	98,41	98,39	98,26	98,26	98,22
CSK _k	S	77,8	78,3	78,1	79,6	78,3	80,1
η_z		2,56	2,61	2,64	2,85	2,85	2,92
η_v	%	66,0	66,0	66,0	67,0	67,0	67,0
t _s	min	330	160	140	100	100	100
t _k	min	1170	1300	1300	1340	1300	1260
tz	min	1500	1460	1440	1440	1400	1360
Z		0,50	0,47	0,49	0,50	0,50	0,49
Vs	cm/min	0,035	0,063	0,077	0,115	0,115	0,112
			woda nac	losadowa	l		
pH_k		7,4	7,4	7,4	7,4	7,4	7,4
zas M	val/m ³	3,0	3,0	3,0	3,0	3,0	3,0
М	NTU	2,33	2,39	2,42	2,55	2,61	2,71
В	gPt/m ³	16,35	16,43	16,51	16,60	16,75	16,94
Utl	gO ₂ /m ³	9,9	10,9	10,9	10,9	10,9	11,1
AI	gAl/m ³	0,062	0,066	0,072	0,081	0,089	0,096
tw _{og}	°tw	13,6	13,6	13,6	13,6	13,6	13,6
Ca	gCa/m ³	70,0	70,0	70,0	70,0	70,0	70,0
Ca	°tw	9,8	9,8	9,8	9,8	9,8	9,8
Ма	gMg/m ³	16,3	16,3	16,3	16,3	16,3	16,3
wig	°tw	3,8	3,8	3,8	3,8	3,8	3,8
Zaw _{og}	g/m ³	6	6	6	8	8	8

Tab. 2.12. Wpływ czasu wolnego mieszania na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych ($W_0 = 99,39$ %, MDI)

Rys. 2.16. Wpływ czasu wolnego mieszania na czas sedymentacji cząstek osadów

Rys. 2.17. Wpływ czasu wolnego mieszania na wymagany czas zagęszczania osadów

Osad o W₀ = 99,17 % (MDIV)

Określono wpływ 6 czasów wolnego mieszania na przebieg porcjowego zagęszczania grawitacyjnego. Wyniki badań przedstawione w tabeli 2.13 wskazują, że wolne mieszanie próbek osadu przed ich zagęszczaniem wpłynęło na efekty tego procesu. Wyniki pomiarów wysokości powierzchni rozdziału wody nadosadowej i osadu przedstawiono w tabeli TZ.6 oraz na rysunku KZ.6.

Stwierdzono, że wolne mieszanie w czasie 15 \div 30 minut nieznacznie zmniejszyło stopień zagęszczenia osadów, a w przypadku wydłużenia czasu wolnego mieszania od 60 do 120 minut wartość η_z była większa od wartości tego parametru dla osadu, który nie był mieszany (rys. 2.18).

Wolne mieszanie miało nieznaczny wpływ na czas sedymentacji cząstek osadu (rys. 2.16). Wymagany czas zagęszczania próbek osadu po wolnym mieszaniu był jednakowy i wynosił 1410 minut, natomiast wartość t_z próbki osadu, której zagęszczanie nie było poprzedzone wolnym mieszaniem wynosił 1080 minut (rys. 2.17).

Wolne mieszanie miało różny wpływ na jakość wody nadosadowej wydzielonej z próbek osadu. Zapewniło zmniejszenie wartości barwy i utlenialności, lecz niestety spowodowało wzrost mętności wód nadosadowych oraz stężenia glinu.

Wartości współczynnika Z dla próbek osadu poddanych wolnemu mieszaniu w czasie $15 \div 90$ min były nieco mniejsze od wartości tego współczynnika dla osadu niemieszanego, co świadczy to o tym, że w przypadku osadu o $W_0 = 99,17$ %, wolne mieszanie nieznacznie zwiększało jego podatność na zagęszczanie w fazie komprymacji. Stwierdzono również nieznaczne

zmniejszenie podatności osadu na dalsze odwadnianie – małe wydłużenie czasu ssania kapilarnego osadu zagęszczonego (tab. 2.13).

1	t _{wm}	0 min	15 min	30 min	45 min	60 min	90 min	120 min
				osad				
V _k	cm ³	330	330	325	320	320	310	310
W _k	%	97,69	97,76	97,71	97,69	97,68	97,60	97,56
CSK _k	S	77,1	78,8	80,1	82,0	82,9	84,8	85,5
η_z		2,78	2,70	2,76	2,78	2,80	2,89	2,94
η_v	%	67,0	67,0	67,5	68,0	68,0	69,0	69,0
t _s	min	90	90	90	90	100	100	100
t _k	min	990	1320	1320	1320	1310	1310	1310
tz	min	1080	1410	1410	1410	1410	1410	1410
Z		0,60	0,58	0,56	0,54	0,56	0,58	0,60
Vs	cm/min	0,166	0,159	0,156	0,150	0,144	0,154	0,159
			woda	a nadosa	dowa			
pН		7,18	7,18	7,18	7,18	7,18	7,18	7,18
zas M	val/m ³	3,30	3,30	3,30	3,30	3,30	3,30	3,30
М	NTU	0,86	0,94	1,23	1,32	1,65	1,85	2,00
В	gPt/m ³	12,67	9,87	9,89	10,14	10,16	10,22	10,3
Utl	gO ₂ /m ³	5,74	4,54	4,74	4,76	4,88	4,93	4,98
AI	gAl/m ³	0,037	0,033	0,043	0,049	0,074	0,111	0,125
tw _{og}	°tw	18,4	18,4	18,4	18,4	18,4	18,4	18,4
Ca	gCa/m ³	95,7	95,7	95,7	95,7	95,7	95,7	95,7
Ca	°tw	13,4	13,4	13,4	13,4	13,4	13,4	13,4
Ma	gMg/m ³	21,4	21,4	21,4	21,4	21,4	21,4	21,4
ivig	°tw	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Zaw_{og}	g/m ³	2	2	2	2	2	2	2

Tab. 2.13. Wpływ czasu wolnego mieszania na na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych ($W_0 = 99,17$ %, MDIV)

Rys. 2.18. Wpływ wolnego mieszania na stopień zagęszczenia osadu

Osad o $W_0 = 99,35 \%$ (MDXII)

Zagęszczanie próbek osadu w czasie $t_{zag} = 1240$ minut poprzedzono wolnym mieszaniem (5, 15, 30 i 60 minut). Wyniki przedstawione w tabeli 2.14 wykazały, że wraz z wydłużaniem czasu wolnego mieszania wzrastała skuteczność zagęszczania, stopień zmniejszenia objętości osadu (rys. 2.19) oraz nieznacznie wydłużał się czas ssania kapilarnego. Stwierdzono skrócenie czasu sedymentacji cząstek osadu do 50 minut w próbce wolno mieszanej przez 60 minut (rys. 2.16), natomiast wolne mieszanie spowodowało znaczne (prawie dwukrotne) wydłużenie wymaganego czasu zagęszczania osadu (rys 2.17).

t	wm	0 min	5 min	15 min	30 min	60 min
			osad			
V _k	cm ³	300	295	290	290	285
W _k	%	97,97	97,97	97,95	97,92	97,89
CSK _k	S	82,5	82,3	83,1	84,3	86,7
η_z		3,12	3,12	3,15	3,20	3,25
η_v	%	70,0	70,5	71,0	71,0	71,5
t _s	min	80	70	70	70	50
t _k	min	600	1130	1130	1130	1110
tz	min	680	1200	1200	1200	1160
Z		0,45	0,40	0,44	0,43	0,42
Vs	cm/min	0,148	0,133	0,169	0,164	0,226
		woda	a nadosad	dowa		
рН _к		7,4	7,4	7,4	7,4	7,4
zas M	val/m ³	3,6	3,6	3,6	3,6	3,6
М	NTU	0,24	0,36	3,15	3,02	4,36
В	gPt/m ³	19,84	19,92	20,2	20,5	20,9
Utl	gO ₂ /m ³	10,1	10,1	10,2	10,2	10,3
AI	gAl/m ³	0,01	0,01	0,12	0,22	0,88
Fe _{og}	gFe/m ³	0,085	0,091	0,101	0,103	0,137
Zaw _{og}	g/m ³	2	8	12	12	14

Tab. 2.14. Wpływ czasu wolnego mieszania na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych ($W_0 = 99,35$ %, MDXII)

Zastosowanie wolnego mieszanie i wydłużanie czasu jego trwania spowodowało pogorszenie jakości wydzielonych wód nadosadowych ze względu na mętność, barwę, stężenie glinu, żelaza ogólnego oraz zawiesin ogólnych. Wyniki pomiarów wysokości powierzchni rozdziału wody nadosadowej i osadu zebrano w tabeli TZ.7 oraz na rysunku KZ.7,

Rys. 2.19. Wpływ czasu wolnego mieszania na stopień zagęszczenia i zmniejszenia objętości osadu

2.1.3. Zagęszczanie osadów po kondycjonowaniu

2.1.3.1. Wpływ korekty pH

Celem tej serii badań było określenie wpływu alkalizacji lub zakwaszenia osadów, przed ich zagęszczaniem, na dynamikę procesu zagęszczania i jego efekty oraz jakość wydzielonych wód nadosadowych. Badania przeprowadzono dla czterech osadów. Próbki osadów MDII i MDIV poddano alkalizacji, natomiast zakwaszano próbki osadów MDVII i MDIX. Wyniki pomiarów zmian wysokości powierzchni rozdziału wody nadosadowej i osadu zestawiono w tabelach TZ.8 ÷ TZ.11 i na rysunkach KZ.8 ÷ KZ.11.

Osad MDII

Analiza wyników badań zawartych w tabeli TZ.8 oraz przedstawionych na rysunku KZ.8 wskazuje, że zwiększenie wartości pH₀ próbek osadu MDII spowodowało skrócenie czasu fazy sedymentacji jego cząstek oraz wymaganego czasu zagęszczania. Najkrótszy czas fazy sedymentacji (180 min) stwierdzono dla próbki osadu o pH₀ = 7,95, a najkrótszy wymagany czas zagęszczania dla próbki osadu o pH₀ = 8,55 (tab. 2.15).

Alkalizacja osadu spowodowała wzrost rozpuszczalności wodorotlenku glinu, co w konsekwencji doprowadziło do zniszczenia struktur cząstek osadu. Z tego powodu, wraz ze wzrostem wartości pH₀ badanych próbek osadu pogarszały się efekty jego zagęszczania (rys. 2.20, tab. 2.15).

pH ₀		7,18	7,95	8,15	8,55	9,00	
osad							
V _k	cm ³	380	420	425	435	435	
W _k	%	97,97	98,21	98,26	98,32	98,33	
CSK _k	S	51,3	44,1	42,7	35,1	35,5	
η_z		2,60	2,29	2,23	2,15	2,14	
η_v	%	62,0	58,0	57,5	56,5	56,5	
t _s	min	320	180	200	220	240	
t _k	min	1120	1020	1000	890	930	
tz	min	1440	1200	1200	1110	1170	
Z		0,60	0,57	0,63	0,61	0,61	
Vs	cm/min	0,038	0,051	0,055	0,045	0,041	
		woda r	nadosad	owa			
рН _к		7,18	7,67	7,78	8,05	8,25	
zas M	val/m ³	3,65	2,90	2,80	2,35	1,65	
М	NTU	2,14	3,49	5,24	7,78	9,18	
В	gPt/m ³	19,05	22,41	25,51	35,67	52	
Utl	gO ₂ /m ³	8,4	12,1	13,3	15,1	20,3	
AI	gAl/m ³	0,024	0,38	0,82	1,14	1,51	
tw _{og}	°tw	15,1	13,4	13,1	8,1	7,3	
Ca	gCa/m ³	77,1	67,9	67,2	45,0	40,7	
Ca	°tw	10,8	9,5	9,4	6,3	5,7	
Mg	gMg/m ³	18,4	16,7	15,9	7,7	6,9	
	°tw	4,3	3,9	3,7	1,8	1,6	
Zaw _{og}	g/m ³	4	4	6	6	8	

Tab. 2.15. Wpływ korekty pH_0 na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych W_0 = 99,22 % (MDII)

Rys. 2.20. Wpływ alkalizacji osadu na stopień jego zagęszczenia i zmniejszenia objętości

Skutkiem alkalizacji osadu był wzrost stężenia glinu, zawiesin ogólnych w wydzielonych wodach nadosadowych, a także zawartości substancji powodujących barwę, mętność i utlenialność (tab. 2.15, rys. 2.21).

Rys. 2.21. Wpływ alkalizacji na zmianę wartości wskaźników jakości wydzielonych wód nadosadowych

Zwiększenie pH₀ próbki osadu do wartości równej 9,00 spowodowało wzrost stężenia glinu w wodzie nadosadowej z niej wydzielonej aż 62,9 razy w porównaniu do stężenia stwierdzonego w wodzie nadosadowej wydzielonej z próbki osadu o naturalnym odczynie (pH₀ = 7,18). Wartości mętności, barwy, utlenialności, stężenia glinu i zawiesin ogólnych zwiększały się wraz ze zwiększeniem wartości pH₀. Odwrotną i zgodną z oczekiwaniem prawidłowość stwierdzono w odniesieniu do zasadowości oraz stężeń wapnia i magnezu, których wartości zmniejszały się wraz z rosnącym stężeniem jonów OH⁻ w badanych próbkach wody nadosadowej. Czas ssania kapilarnego osadów po zagęszczaniu zmniejszał się wraz ze zwiększającym się ich pH, co było konsekwencją pogarszających się efektów zagęszczania oraz rosnącego W_k (tab. 2.15).

Osad MDIV (tab. TZ.9, rys. KZ.9)

Tak jak w przypadku osadu MDII, alkalizacja próbek osadu MDIV przed zagęszczaniem spowodowała zmniejszanie wartości η_z i η_v (rys. 2.22). Dla próbek osadu, o skorygowanej wartości pH₀, odwrotnie niż dla osadu MDII, stwierdzono wydłużenie czasu fazy sedymentacji oraz wymaganego czasu zagęszczania, który bez względu na wartość pH₀ był jednakowy (1440 minut) i o 360 min dłuższy niż dla osadu o pH naturalnym (tab. 2.16).

Mimo dłuższego czasu zagęszczania, wraz ze wzrostem pH_0 pogarszała się jakość wydzielonych wód nadosadowych ze względu na mętność, barwę, utlenialność oraz stężenie glinu i zawiesin ogólnych.

pH ₀		7,18	7,50	8,00	8,50	9,00	10,00	
osad								
V _k	cm ³	330	370	375	380	380	380	
W _k	%	97,69	97,91	97,94	98,01	98,02	98,04	
CSK _k	S	77,1	59,1	56,5	52,8	52,2	41,1	
η_z		2,78	2,52	2,48	2,40	2,39	2,36	
η_v	%	67,0	63,0	62,5	62,0	62,0	62,0	
t _s	min	90	100	100	110	120	150	
t _k	min	990	1340	1340	1330	1320	1290	
tz	min	1080	1440	1440	1440	1440	1440	
Z		0,60	0,56	0,56	0,58	0,60	0,59	
Vs	cm/min	0,166	0,111	0,114	0,105	0,104	0,080	
		wod	la nados	sadowa				
рН _к		7,18	7,46	7,95	8,13	8,43	9,4	
zas F	val/m ³	-	-	-	-	0,9	2,2	
zas M	val/m ³	3,3	3,55	2,73	2,3	1,63	3,6	
М	NTU	0,86	2,26	3,06	3,75	4,38	5,60	
В	gPt/m ³	12,67	14,78	17,72	19,52	20,13	21,24	
Utl	gO ₂ /m ³	5,74	7,78	7,98	8,74	9,18	9,62	
AI	gAl/m ³	0,037	0,19	0,30	1,05	1,58	11,26	
tw _{og}	°tw	18,4	17,1	14,8	12,0	11,0	14,1	
Ca	gCa/m ³	95,7	104,3	82,1	75,7	68,6	82,9	
Ca	°tw	13,4	14,6	11,5	10,6	9,6	11,6	
Mg	gMg/m ³	21,4	10,7	14,1	6,0	6,0	10,7	
	°tw	5,0	2,5	3,3	1,4	1,4	2,5	
Zaw _{og}	g/m ³	2	4	4	6	6	8	

Tab. 2.16. Wpływ korekty pH_0 na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych $W_0 = 99,17$ % (MDIV)

W przypadku wody nadosadowej wydzielonej z osadu o największej wartości pH_0 stwierdzono przekroczenie dopuszczalnej zawartości glinu i wartości pH w ściekach wprowadzanych do wód lub ziemi, zawartych w rozporządzeniu Ministra Środowiska (tab. 2.16) [46].

Rys. 2.22. Wpływ alkalizacji próbek osadu na stopień ich zagęszczenia i zmniejszenia objętości

Tak jak w przypadku poprzedniej serii badań, efektem alkalizacji próbek osadów przed ich zagęszczaniem do p $H_0 = 9,0$ (oprócz próbki osadu o p $H_0 = 7,5$) było zmniejszenie zasadowości oraz stężeń wapnia i magnezu w wydzielonych wodach nadosadowych. Natomiast dalsze zwiększenie p H_0 do wartości 10,00 spowodowało wzrost stężenia wapnia i głównie magnezu, a w konsekwencji zwiększenie zasadowości i twardości ogólnej wody nadosadowej (tab. 2.16).

Osad MDVII (tab. TZ.10, rys. KZ.10)

Próbki osadu przed zagęszczaniem zostały zakwaszone do wartości pH₀ zawartych w przedziale 7,0 ÷ 5,0. Jak wynika z rys. 2.23 zakwaszenie osadu także zmniejszyło skuteczność jego zagęszczania. Stwierdzono również wydłużenie czasu sedymentacji cząstek osadu przy jednoczesnym skróceniu wymaganego czasu zagęszczania w porównaniu do próbki osadu o nieskorygowanym odczynie. Czas ssania kapilarnego próbek osadów po t_{zag} skracał się wraz ze zmniejszającą się wartością pH₀, co wynikało z gorszych efektów ich odwadniania.

i jakość wyażielonych wod nadośadowych wiji – >>,57 /0 (MD VII)								
pH ₀		7,6	7,0	6,5	6,0	5,5	5,0	
osad								
V _k	cm ³	260	260	275	275	275	280	
W _k	%	98,55	98,57	98,67	98,69	98,72	98,77	
CSK _k	S	84,3	81,6	75,9	70,7	68,5	59,7	
η_z		3,37	3,33	3,09	3,05	2,98	2,86	
η_v	%	74,0	74,0	72,5	72,5	72,5	72,0	
t _s	min	50	80	140	170	170	130	
t _k	min	600	430	360	320	300	320	
tz	min	650	510	500	490	470	450	
Vs	cm/min	0,262	0,134	0,091	0,088	0,094	0,115	
		v	voda nado	osadowa				
рН _к		7,60	7,32	6,88	6,55	6,12	5,70	
zas M	val/m ³	3,24	3,16	2,70	1,96	1,28	0,70	
CO _{25gr}	gCO ₂ /m ³	0,00	0,00	9,02	26,40	45,80	69,10	
М	NTU	0,92	0,72	0,64	0,65	0,69	1,05	
В	gPt/m ³	8,20	6,05	5,10	4,55	3,97	4,83	
Utl	gO ₂ /m ³	4,60	4,25	3,85	3,44	3,16	3,56	
AI	gAl/m ³	0,015	0,015	0,015	0,015	0,015	0,019	
Fe	gFe/m ³	0,037	0,124	0,327	0,54	0,738	1,74	
tw _{og}	°tw	18,0	20,2	20,4	21,2	22,8	24,4	
Ca	gCa/m ³	101,4	104,3	112,9	124,3	135,7	145,7	
	°tw	14,2	14,6	15,8	17,4	19,0	20,4	
Mg	gMg/m ³	16,3	24,0	19,7	16,3	16,3	17,1	
	°tw	3,8	5,6	4,6	3,8	3,8	4,0	
Zaw _{og}	g/m ³	2,0	2,0	2,0	2,0	2,0	4,0	

Tab. 2.17. Wpływ korekty pH₀ na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych $W_0 = 99,57 \%$ (MDVII)

Wpływ zakwaszenia próbek osadu na jakość wydzielonych wód osadowych nie był jednoznaczny w odniesieniu do wszystkich badanych wskaźników i zależał od wartości pH_0 (tab. 2.17, rys. 2.24).

Rys. 2.23. Wpływ korekty pH₀ osadu na stopień jego zagęszczenia i zmniejszenia objętości

Wartości barwy i utlenialności wód nadosadowych wydzielonych ze wszystkich zakwaszanych próbek osadu, pomimo krótkiego czasu zagęszczania były mniejsze niż w wodzie wydzielonej z osadu o naturalnym odczynie (rys. 2.24). Zwiększenie stężenia jonów H⁺ w zagęszczanych osadach nie wpłynęło na zmianę stężenia glinu oraz, poza próbką o pH₀ = 5,0, nieznacznie zmniejszyło mętność próbek wody, co znalazło odzwierciedlenie w zawartości zawiesin ogólnych. Wraz z rosnącym zakwaszeniem próbek osadu zwiększała się rozpuszczalność związków żelaza, wapnia i magnezu tworzących cząstki osadu, co było przyczyną stwierdzonego wzrostu stężenia tych metali w wydzielonych wodach nadosadowych. Natomiast skutkiem jednoczesnego zmniejszenia twardości węglanowej i wzrostu stężenia jonów wodorowych była obecność w próbkach wody agresywnego dwutlenku węgla, którego stężenie zwiększało się wraz z malejącą wartością pH₀ zagęszczanych osadów. Wartości pH_k wód nadosadowych wydzielonych z próbek osadu o pH₀ = 5,5 oraz 5,0 były mniejsze od dopuszczalnych wartości w ściekach odprowadzanych do wód lub ziemi.

Rys. 2.24. Wpływ zakwaszenia próbek osadu na zmianę wartości wskaźników jakości wydzielonych z nich wód nadosadowych

Osad MDXI (tab. TZ.11, rys. KZ.11)

Zakwaszenie próbek osadu przed ich zagęszczaniem, tak jak w przypadku osadu MDVII, spowodowało pogorszenie efektów jego zagęszczania (rys. 2.25), a w konsekwencji skrócenie czasu ssania kapilarnego próbek osadu po zagęszczaniu (tab. 2.18). Stwierdzono skrócenie wymaganego czasu zagęszczania oraz czasu fazy sedymentacji cząstek osadu.

Rys. 2.25. Wpływ zakwaszenia osadu na stopień jego zagęszczenia i zmniejszenia objętości

Zakwaszenie osadu przed zagęszczaniem spowodowało zmniejszenie wartości mętności, barwy, utlenialności oraz stężenia zawiesin ogólnych w wodach nadosadowych wydzielonych z zakwaszonych próbek osadu (rys. 2.26). Natomiast stężenie żelaza ogólnego, wapnia i magnezu zwiększało się wraz ze stopniem zakwaszenia osadu, co było konsekwencją zwiększe-

nia rozpuszczalności związków tych metali (tab. 2.18).

				, in the second s	÷ ,		
pH₀		7,05	6,50	6,00	5,50	5,00	
osad							
V _k	cm ³	340	345	355	355	360	
W _k	%	97,12	97,17	97,26	97,28	97,33	
CSK _k	S	144,8	145,1	139,0	128,7	118,4	
η_z		2,67	2,62	2,54	2,52	2,47	
η_v	%	66,0	65,5	64,5	64,5	64,0	
t _s	min	80	50	40	40	40	
t _k	min	660	590	580	560	500	
tz	min	740	640	620	600	540	
Z		0,50	0,55	0,50	0,47	0,48	
Vs	cm/min	0,135	0,256	0,248	0,218	0,218	
		woda r	nadosad	owa			
рН _к		7,05	6,84	6,5	5,99	5,44	
zas M	val/m ³	3,15	2,5	1,73	1,00	0,55	
М	NTU	20,1	12,1	8,77	7,08	5,53	
В	gPt/m ³	24,69	17,86	15,64	12,9	14,57	
Utl	gO ₂ /m ³	13,6	12,38	10,06	8,14	7,98	
Al	gAl/m ³	0,014	0,018	0,017	0,017	0,016	
Fe	gFe/m ³	0,365	0,465	0,554	0,922	2,034	
tw _{og}	°tw	15,1	17,6	20,5	24,1	28,3	
Са	gCa/m ³	79,3	92,9	109,2	133,6	156,4	
	°tw	11,1	13,0	15,3	18,7	21,9	
Mg	gMg/m ³	17,1	19,7	22,3	23,1	27,4	
	°tw	4,0	4,6	5,2	5,4	6,4	
Zaw _{og}	g/m ³	26	10	8	6	6	

Tab. 2.18. Wpływ korekty pH_0 na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych $W_0 = 98,92$ % (MDXI)

Rys. 2.26. Wpływ zakwaszenia próbek osadu na jakość wydzielonych wód nadosadowych

 pH_k wód nadosadowych wydzielonych z dwóch próbek osadu o wartości $pH_0 = 5,50$ i 5,00 nie spełniało wymaganych warunków zawartych w rozporządzeniu Ministra Środowiska [46].

2.1.3.2. Wpływ kondycjonowania polielektrolitami

Celem tej serii badań było określenie wpływu kondycjonowania osadu polielektrolitami kationowymi i anionowymi, których dawki zmieniano w zakresie $0,1 \div 0,5 \text{ mg/g}_{smo}$. Osady wybrane do badań charakteryzowały się małą podatnością na zagęszczanie. Stosowano małe dawki polielektrolitu, ponieważ w badaniach wstępnych przeprowadzonych dla osadów MDI, MDII i MDV stwierdzono, że większe dawki niż 0,5 mg/g_{smo} znacząco pogarszały efekty zagęszczania oraz jakość wydzielonych wód nadosadowych. W tabeli 2.19 i na rysunku. 2.27 przedstawiono przykładowe wyniki badań uzyskane po kondycjonowaniu osadu MDI dawkami polielektrolitu większymi od 0,5 mg/g_{smo}.

Wyniki pomiarów rozdziału faz w czasie zagęszczania (t_{zag}) przedstawiono w tabelach TZ.12 ÷ TZ.29, a krzywe zagęszczania na rysunkach KZ.12 ÷ KZ.29.

		-	-					
Dp	mg/g _{smo}	0,0	0,6	0,7	0,8	0,9		
osad								
V _k	cm ³ 340 400 410 420 43							
W _k	%	98,44	98,81	98,88	98,94	99,02		
CSK _k	S	77,8	14,2	12,7	10,1	8,8		
η_z		2,56	1,95	1,84	1,74	1,61		
η_v	%	66,0	60,0	59,0	58,0	57,0		
t _s	min	330	4	4	4	4		
t _k	min	1170	126	146	166	196		
tz	min	1500	130	150	170	200		
Z		0,50	0,76	0,77	0,78	0,79		
Vs	cm/min	0,035	4,000	3,950	3,850	3,825		
woda nadosadowa								
М	NTU	2,33	3,87	4,31	5,54	7,89		
В	gPt/m ³	16,35	13,42	13,63	14,55	15,08		
Utl	gO ₂ /m ³	9,9	8,2	8,3	8,7	9,1		
AI	gAl/m ³	0,062	0,086	0,116	0,124	0,139		
Zaw _{og}	g/m ³	6	6	8	8	10		

Tab. 2.19. Wpływ dawki polielektrolitu Kd2 na badane parametry procesu, osadu oraz jakość wydzielonych wód nadosadowych (MDI, $W_0 = 99,39$ %)

Rys. 2.27. Wpływ dawki polielektrolitu Kd2 na stopień zagęszczenia osadu oraz stężenie glinu i mętność wydzielonych wód nadosadowych

I. Kondycjonowanie polielektrolitami kationowymi

Charakterystykę stosowanych polielektrolitów zamieszczono w tabeli 1.2.

Osad MDXI

W tej serii badań osad kondycjonowano czterema polielektrolitami kationowymi Kśr4, Kd2, Kd3 oraz Kśr5.

Kśr4 (tab. TZ.12, rys. KZ.12)

Z analizy wyników badań przedstawionych w tabeli 2.20 i na rysunku 2.28 wynika, że dwie dawki (0,1 i 0,2 mg/ g_{smo}) polielektrolitu zapewniły zwiększenie stopnia zagęszczenia i zmniejszenia objętości osadu po zagęszczaniu, natomiast pozostałe (większe) spowodowały skutek odwrotny.

Podatność osadu kondycjonowanego na zagęszczanie w fazie komprymacji w całym zakresie stosowanych dawek polielektrolitu była większa niż osadu niekondycjonowanego. Wraz ze wzrostem dawki polielektrolitu skracały się czas trwania fazy sedymentacji zawiesin, a także czas ssania kapilarnego próbek osadu po zagęszczaniu. Nie stwierdzono natomiast jednoznacznego wpływu stosowanych dawek polielektrolitu na wymagany czas zagęszczania osadu oraz prędkość opadania cząstek osadu.
v v	, v					/ 0						
Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5					
	osad											
V _k	cm ³	340	320	335	340	345	345					
W _k	%	97,12	97,01	97,07	97,13	97,15	97,17					
CSK _k	S	144,8	130	120,3	98,6	76,1	55,4					
η_z		2,67	2,77	2,71	2,66	2,64	2,62					
η_v	%	66,0	68,0	66,5	66,0	65,5	65,5					
t _s	min	80	40	30	28	28	22					
t _k	min	660	680	670	692	692	698					
tz	min	740	720	700	720	720	720					
Z		0,50	0,37	0,37	0,39	0,37	0,37					
Vs	cm/min	0,135	0,133	0,127	0,168	0,104	0,123					
		wo	da nado	sadowa	l							
М	NTU	20,1	23,7	18,2	17,5	13,3	13,0					
В	gPt/m ³	24,69	32,55	29,4	28,3	25,47	25,32					
Utl	gO ₂ /m ³	13,6	14,1	14,0	13,9	13,7	13,7					
AI	gAl/m ³	0,014	0,025	0,014	0,013	0,012	0,012					
Zaw _{og}	g/m ³	26	28	24	22	16	16					

Tab. 2.20. Wpływ dawki polielektrolitu Kśr4 na parametry procesu, osadu oraz jakość wydzielonych wód nadosadowych (MDXI, $W_0 = 98,92 \%$)

Rys. 2.28. Wpływ dawki polielektrolitu Kśr4 na stopień zagęszczenia i zmniejszenia objętości osadu

Kondycjonowanie osadu polielektrolitem Kśr4 miało również niejednoznaczny wpływ na jakość wydzielonych wód nadosadowych. Wszystkie stosowane dawki polielektrolitu spowodowały wzrost utlenialności i intensywności barwy wód nadosadowych. Natomiast wartości mętności i stężenia zawiesin ogólnych w zakresie dawek polielektrolitu równych $0,2 \div 0,5$ mg/g_{smo} oraz stężenia glinu w zakresie dawek $0,3 \div 0,5$ mg/g_{smo} były mniejsze od wartości tych wskaźników charakteryzujących wodę nadosadową wydzieloną z osadu surowego (tab. 2.20, rys. 2.29). Najgorszą jakością charakteryzowała się próbka wody nadosadowej wydzielonej z osadu, do którego dodano najmniejszą dawkę polielektrolitu.

Rys. 2.29. Wpływ dawki polielektrolitu Kśr4 na mętność i barwę wód nadosadowych

Kd2 (tab. TZ.13, rys. KZ.13)

Zwiększenie stopnia zagęszczenia i zmniejszenia objętości osadu po zagęszczaniu zapewniły dawki polielektrolitu wynoszące 0,1 i 0,2 mg/g_{smo}, natomiast zastosowanie większych dawek spowodowało pogorszenie efektów zagęszczania. Wraz ze wzrostem ilości polielektrolitu skracał się czas ssania kapilarnego próbek osadu po zagęszczaniu i dla wszystkich stosowanych dawek stwierdzono zwiększenie podatności próbek osadu na zagęszczanie w fazie komprymacji (tab. 2.21, rys. 2.30).

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5					
	osad											
V _k	cm ³	340	335	335	340	340	345					
W _k	%	97,12	96,98	96,98	97,14	97,14	97,22					
CSK _k	S	144,8	130,6	115,9	91,9	75,3	48,9					
η_z		2,67	2,80	2,80	2,65	2,65	2,57					
η_v	%	66,0	66,5	66,5	66,0	66,0	65,5					
t _s	min	80	40	40	30	28	50					
t _k	min	660	500	500	490	492	490					
tz	min	740	540	540	520	520	540					
Z		0,50	0,39	0,42	0,40	0,38	0,46					
Vs	cm/min	0,135	0,133	0,175	0,170	0,146	0,174					
		wo	da nado	sadowa	l							
М	NTU	20,1	13,1	12,3	10,1	7,4	6,33					
В	gPt/m ³	24,69	25,02	23,47	22,19	21,45	20,08					
Utl	gO ₂ /m ³	13,60	14,38	13,52	13,26	13,07	12,88					
AI	gAl/m ³	0,014	0,011	0,009	0,006	0,000	0,000					
Zaw _{og}	g/m ³	26	16	14	12	8	8					

Tab. 2.21. Wpływ dawki polielektrolitu Kd2 na parametry procesu, osadu i jakość wydzielonych wód nadosadowych (MDXI, $W_0 = 98,92$ %)

Kondycjonowane próbki osadu charakteryzowały się krótszym czasem fazy sedymentacji zawiesin oraz krótszym wymaganym czasem zagęszczania niż próbka osadu, do której nie dodano polielektrolitu.

Wartości badanych wskaźników jakości wydzielonych wód nadosadowych były mniejsze niż w wodzie wydzielonej z osadu niekondycjonowanego i zmniejszały się wraz ze wzrostem dawki polielektrolitu. Jedynie w przypadku zastosowania najmniejszej dawki polielektrolitu, stwierdzono niewielki wzrost barwy i utlenialności w porównaniu do wartości tych wskaźników oznaczonych w wodzie nadosadowej wydzielonej z osadu niekondycjonowanego (tab. 2.21, rys, 2.30).

Rys. 2.30. Wpływ dawki polielektrolitu Kd2 na stopień zagęszczenia osadu oraz barwę i mętność wód nadosadowych

Kd3 (tab. TZ.14, rys. KZ.14)

Zastosowanie polielektrolitu Kd3 o dużej masie cząsteczkowej spowodowało zmniejszenie stopnia zagęszczenia i zmniejszenia objętości osadu (tab. 2.22 i rys. 2.31). Stwierdzono skrócenie czasu sedymentacji cząstek osadu oraz wymaganego czasu jego zagęszczania, a także zwiększenie podatności próbek osadu na zagęszczanie w fazie komprymacji.

Wpływ dawki polielektrolitu na prędkość sedymentacji był niejednoznaczny. Wraz ze wzrostem dawki środka kondycjonującego skracał się czas ssania kapilarnego próbek osadu po zagęszczaniu, oraz poprawiała się jakość wydzielonych wód (rys. 2.31).

	, v					/ 0	
Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	d			
V _k	cm ³	340	345	345	350	350	350
W _k	%	97,12	97,16	97,18	97,26	97,27	97,3
CSK _k	S	144,8	121,7	107,7	99,5	84,0	70,3
η_z		2,67	2,63	2,61	2,54	2,53	2,50
η_v	%	66,0	65,5	65,5	65,0	65,0	65,0
t _s	min	80	40	40	30	24	50
t _k	min	660	700	680	670	716	690
tz	min	740	740	720	700	740	740
Z		0,50	0,41	0,41	0,43	0,37	0,42
Vs	cm/min	0,135	0,135	0,143	0,207	0,100	0,116
		wo	da nado	sadowa	l		
М	NTU	20,1	17,6	16,7	16,2	11,9	10,3
В	gPt/m ³	24,69	24,32	23,9	23,35	22,53	21,82
Utl	gO ₂ /m ³	13,6	13,02	12,88	12,88	12,42	12,24
AI	gAl/m ³	0,014	0,013	0,012	0,010	0,006	0,004
Zaw _{og}	g/m ³	26	22	18	16	12	10

Tab. 2.22. Wpływ dawki polielektrolitu Kd3 na parametry procesu, osadu oraz jakość wydzielonych wód nadosadowych (MDXI, $W_0 = 98,92$ %)

Rys. 2.31. Wpływ dawki polielektrolitu Kd3 na stopień zagęszczenia osadu oraz mętność i barwę wód nadosadowych

Kśr5 (tab. TZ.15, rys. KZ.15)

Analiza danych przedstawionych w tabeli 2.23 oraz na rysunku 2.32 wskazuje, że jedynie dawki polielektrolitu wynoszące $0,1 \div 0,3 \text{ mg/g}_{smo}$ zapewniły minimalne zwiększenie stopnia zagęszczenia próbek osadu nie wpływając jednocześnie na zmianę objętości osadu zagęsz-czonego, a większe dawki pogorszyły efekty zagęszczania. Skrócenie czasu sedymentacji cząstek osadu o 40 minut zapewniły dawki w zakresie $0,1 \div 0,3 \text{ mg/g}_{smo}$, a o 20 i 10 minut odpowiednio dawki 0,4 i $0,5 \text{ mg/g}_{smo}$.

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5					
	osad											
V _k	cm ³	340	340	340	340	345	350					
W _k	%	97,12	97,08	97,08	97,10	97,17	97,24					
CSK _k	S	144,8	124,3	111,1	100,8	89,3	67,8					
η_z		2,67	2,70	2,70	2,69	2,62	2,56					
η_v	%	66,0	66,0	66,0	66,0	65,5	65,0					
t _s	min	80	40	40	40	60	70					
t _k	min	660	640	560	540	540	530					
tz	min	740	680	600	580	600	600					
Z		0,50	0,40	0,40	0,39	0,41	0,47					
Vs	cm/min	0,135	0,133	0,130	0,120	0,140	0,147					
		wo	da nado	sadowa								
М	NTU	20,1	12,7	7,6	6,81	5,43	4,65					
В	gPt/m ³	24,69	24,25	23,88	23,38	22,94	22,24					
Utl	gO ₂ /m ³	13,60	13,58	13,02	12,78	12,58	12,46					
AI	gAl/m ³	0,014	0,012	0,010	0,009	0,008	0,007					
Zaw _{og}	g/m ³	26	16	10	8	6	4					

Tab. 2.23. Wpływ dawki polielektrolitu Kśr5 na parametry procesu, osadu oraz jakość wody nadosadowej (MDXI, $W_0 = 98,92 \%$)

Wszystkie dawki polielektrolitu zwiększyły podatność próbek osadu na zagęszczanie w fazie komprymacji oraz na dalsze odwadnianie w procesach mechanicznych.

Rys. 2.32. Wpływ dawki polielektrolitu Kśr5 na stopień zagęszczenia i zmniejszenia objętości oraz czas trwania fazy sedymentacji cząstek osadu

Kondycjonowanie osadu miało pozytywny wpływ na jakość wydzielonych wód nadosadowych. Wraz ze wzrostem dawki polielektrolitu wartości badanych wskaźników zmniejszały się oraz były mniejsze niż w wodzie wydzielonej z osadu niekondycjonowanego (tab. 2.23, rys. 2.33).

Rys. 2.33. Wpływ dawki polielektrolitu Kśr5 na wartości wskaźników jakości wydzielonych wód nadosadowych

Osad MDVIII

Do kondycjonowania osadu stosowano dwa polielektrolity o średniej masie cząsteczkowej (Kśr1 i Kśr2) oraz polielektrolit Kd1 – o dużej masie cząsteczkowej.

Kśr1 (tab. TZ.16, rys. KZ.16)

Zastosowane dawki polielektrolitu Kśr1 (o średniej masie cząsteczkowej) spowodowały zmniejszenie wartości η_z i η_v oraz podatności próbek osadu na zagęszczanie w fazie komprymacji (tab. 2.24, rys. 2.34).

procesu i o	sadu oraz ja	ikose wo	uy nauo	sauowej		$1, vv_0 = 2$	99,25 %				
Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5				
	osad										
V _k	cm ³	335	345	340	345	350	360				
W _k	%	97,95	98,06	98,11	98,14	98,20	98,28				
CSK _k	S	116,5	95,5	83,4	81,5	67,7	51,6				
η_z		2,73	2,59	2,52	2,48	2,40	2,29				
η_v	%	66,5	65,5	66,0	65,5	65,0	64,0				
t _s	min	340	140	80	40	28	16				
t _k	min	1020	620	660	560	512	224				
tz	min	1360	760	740	600	540	240				
Z		0,50	0,52	0,51	0,50	0,55	0,62				
Vs	cm/min	0,034	0,082	0,144	0,270	0,446	0,900				
		woda	a nados	adowa							
М	NTU	2,06	1,96	1,89	1,61	1,74	2,34				
В	gPt/m ³	12,43	12,22	11,97	11,49	11,45	12,03				
Utl	gO ₂ /m ³	6,62	6,52	6,34	6,04	5,97	6,45				
AI	gAl/m ³	0,020	0,020	0,018	0,018	0,020	0,024				
Zaw _{og}	g/m ³	6	6	6	6	6	6				

Tab. 2.24. Wpływ dawki polielektrolitu Kśr1 na badane parametry procesu i osadu oraz jakość wody nadosadowej (MDVIII, $W_0 = 99,25$

Rys. 2.34. Wpływ dawki polielektrolitu Kśr1 na stopień zagęszczenia, czas fazy sedymentacji i czas ssania kapilarnego osadu po zagęszczaniu

Wraz ze wzrostem dawki polielektrolitu zwiększała się wyraźnie prędkość opadania cząstek osadu, skracał się czas fazy sedymentacji zawiesin oraz wymagany czas zagęszczania osadu a także zmniejszały się wartości CSK_k próbek osadu po zagęszczaniu (tab. 2.24, rys. 2.34). Mętność, barwa i utlenialność wydzielonych wód nadosadowych zmniejszały się wraz ze wzrostem dawki polielektrolitu w zakresie od 0,1 do 0,4 mg/g_{smo}, natomiast zastosowanie dawki mg/g_{smo} spowodowało zwiększenie wartości tych wskaźników, które jednak były mniejsze niż w wodzie wydzielonej z osadu niekondycjonowanego. Nie stwierdzono jedno-znacznego wpływu dawki polielektrolitu na minimalne zmiany stężenia glinu oraz jego brak na stężenie zawiesin ogólnych (tab. 2.24).

Kd1 (tab. TZ.17, rys. KZ.17)

Z analizy danych zawartych w tabeli 2.25 wynika, wraz ze wzrostem dawki tego środka kondycjonującego zmniejszała się wartość η_z oraz znacznie skracał się czas fazy sedymentacji i wymagany czas zagęszczania osadu (tab. 2.25, rys. 2.35). Jedynie najmniejsza dawka 0,1 mg/g_{smo} zwiększyła podatność osadu na zagęszczanie w fazie komprymacji, zaś wpływ dawek większych był odwrotny. Wartości CSK_k zmniejszały się wraz ze zwiększającą się dawką polielektrolitu, a tym samym rosnącym uwodnieniem próbek osadu po zagęszczaniu.

Wpływ kondycjonowania osadu na jakość wód nadosadowych nie był jednoznaczny. W przypadku barwy i utlenialności najmniejsze ich wartości zapewniła dawka polielektrolitu wynosząca 0,2 mg/g_{smo}, natomiast najmniejsze wartości mętności i stężenia glinu dawka wynosząca 0,3 mg/ g_{smo} (tab. 2.25, rys. 2.35). Nie stwierdzono wpływu dawki polielektrolitu na stężenie zawiesin ogólnych.

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5					
	osad											
V _k	cm ³	335	335	335	340	345	360					
W _k	%	97,95	97,95	97,97	98,02	98,08	98,27					
CSK _k	S	116,5	79,7	70,8	62,1	49,9	31,0					
η_z		2,73	2,73	2,71	2,64	2,56	2,31					
η_v	%	66,5	66,5	66,5	66,0	65,5	64,0					
t _s	min	340	110	90	70	16	10					
t _k	min	1020	690	650	590	544	250					
tz	min	1360	800	740	660	560	260					
Z		0,50	0,47	0,55	0,54	0,51	0,61					
Vs	cm/min	0,034	0,091	0,148	0,181	0,675	1,410					
		wo	da nado	sadowa								
М	NTU	2,06	1,97	1,73	1,68	2,05	2,66					
В	gPt/m ³	12,43	12,08	11,67	11,82	11,94	12,23					
Utl	gO ₂ /m ³	6,62	6,14	5,80	5,92	6,25	6,42					
AI	gAl/m ³	0,020	0,020	0,017	0,015	0,020	0,024					
Zaw _{og}	g/m ³	6	6	6	6	6	6					

Tab. 2.25. Wpływ dawki polielektrolitu Kd1 na badane parametry procesu, osadu oraz jakość wody nadosadowej (MDVIII, W₀ = 99,25 %)

Rys. 2.35. Wpływ dawki polielektrolitu Kd1 na stopień zagęszczenia osadu oraz mętność i barwę wody nadosadowej

Kśr2 (tab. TZ.18, rys. KZ.18)

Analiza danych przedstawionych w tabeli 2.26 i na rysunku 2.36 wykazała, że kondycjonowanie osadu MDVIII tym polielektrolitem również pogorszyło efekty zagęszczania. Bez względu na dawkę środka kondycjonującego objętość osadu po zagęszczaniu była o 5 cm³ większa niż w przypadku osadu niekondycjonowanego. Stopień zagęszczenia osadu zmniejszył się z $\eta_z = 2,73$ (dla osadu niekondycjonowanego) od $\eta_z = 2,60$ (dla dawki 0,5 mg/g_{smo}). Stosowane dawki polielektrolitu skróciły czas sedymentacji cząstek osadu o 40 ÷ 50 minut, a wymagany czas zagęszczania aż o 560 ÷ 600 minut, jak również zwiększyły prędkość opadania cząstek osadu oraz spowodowały zmniejszenie podatności próbek osadu na zagęszczanie w fazie komprymacji. Wraz ze wzrostem dawki polielektrolitu skracał się czas ssania kapilarnego próbek osadu po zagęszczaniu (tab. 2.26).

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5					
	osad											
V _k	cm ³	335	340	340	340	340	340					
W _k	%	97,95	98,02	98,02	98,03	98,05	98,05					
CSK _k	S	116,5	88	76,9	56,0	45,8	37,4					
η_z		2,73	2,64	2,64	2,63	2,60	2,60					
η_v	%	66,5	66,0	66,0	66,0	66,0	66,0					
t _s	min	340	300	300	300	300	290					
t _k	min	1020	500	500	500	460	470					
tz	min	1360	800	800	800	760	760					
Z		0,50	0,65	0,61	0,63	0,66	0,55					
Vs	cm/min	0,034	0,055	0,051	0,052	0,055	0,045					
		WOO	da nado:	sadowa								
М	NTU	2,06	3,08	2,6	2,5	2,44	1,84					
В	gPt/m ³	12,43	11,62	11,52	11,41	11,45	11,48					
Utl	gO ₂ /m ³	6,62	6,42	6,19	6,04	6,10	6,16					
AI	gAl/m ³	0,020	0,037	0,028	0,026	0,025	0,016					
Zaw _{og}	g/m ³	6	8	6	6	6	4					

Tab. 2.26. Wpływ dawki polielektrolitu na Kśr2 na parametry procesu, osadu oraz jakość wydzielonych wód nadosadowych (MDVIII, $W_0 = 99,25 \%$)

Rys. 2.36. Wpływ dawki polielektrolitu Kśr2 na stopień zagęszczenia osadu oraz mętność i barwę wody nadosadowej

Wpływ dawki polielektrolitu na jakość wydzielonych wód nadosadowych był niejednoznaczny. Dawki polielektrolitu w zakresie $0,1 \div 0,4 \text{ mg/g}_{smo}$ spowodowały wzrost wartości mętności powyżej wartości oznaczonej dla wody nadosadowej wydzielonej z niekondycjonowanej próbki osadu (rys. 2.36). Najmniejsza dawka polielektrolitu (0,1 mg/g_{smo}) spowodowała również zwiększenie stężenia zawiesin ogólnych o 2 g/m³ i prawie dwukrotny glinu. Generalnie zmiany jakości były małe.

Osad MDVI (tab. TZ.19, rys. KZ.19)

Osad ten kondycjonowano polielektrolitem kationowym Kd4 o dużej masie cząsteczkowej. Z analizy danych przedstawionych w tabeli 2.27 oraz na rysunku 2.37 wynika, że dawki 0,1 i 0,2 mg/g_{smo} zapewniły zwiększenie stopnia zagęszczenia i zmniejszenia objętości próbek osadu, przy jednoczesnym wydłużeniu wymaganego czasu zagęszczania. Zastosowanie większych dawek polielektrolitu (do 0,5 mg/g_{smo}) spowodowało pogorszenie efektów zagęszczania i skrócenie wymaganego czasu zagęszczania osadu. Kondycjonowane próbki osadu charakteryzowały się większą prędkością sedymentacji i znacznie krótszym czasem trwania tej fazy procesu. Wraz ze wzrostem dawki polielektrolitu zwiększała się podatność próbek osadu po zagęszczaniu na dalsze zagęszczanie w procesach mechanicznych, a odwrotną zależność stwierdzono w odniesieniu do wartości parametru Z (tab. 2.27).

D _p	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	d			
V _k	cm ³	310	290	295	335	335	335
W _k	%	96,81	96,59	96,64	97,28	97,30	97,31
CSK _k	S	37,8	31,1	26,5	18,1	12,3	10,9
η_z		3,04	3,25	3,20	2,59	2,57	2,56
η_v	%	69,0	71,0	70,5	66,5	66,5	66,5
t _s	min	70	26	30	30	40	40
t _k	min	480	564	540	360	350	350
tz	min	550	590	570	390	390	390
Z		0,48	0,36	0,38	0,45	0,48	0,49
Vs	cm/min	0,179	0,285	0,263	0,300	0,268	0,275
		wo	da nado	sadowa	l		
М	NTU	1,80	0,83	0,65	0,63	0,61	0,60
В	gPt/m ³	11,27	9,11	9,02	8,99	8,93	8,91
Utl	gO ₂ /m ³	4,42	4,29	4,17	4,14	4,02	3,88
AI	gAl/m ³	0,031	0,013	0,013	0,012	0,011	0,010
Zaw _{og}	g/m ³	6	2	2	2	2	2

Tab. 2.27. Wpływ dawki polielektrolitu Kd4 na parametry procesu, osadu oraz jakość wód nadosadowych (MDVI, $W_0 = 98,95$ %)

Jakość wód nadosadowych wydzielonych z próbek osadu kondycjonowanego w niewielkim stopniu poprawiała się wraz ze wzrostem dawki polielektrolitu. W zakresie wszystkich zasto-

sowanych dawek stężenie zawiesin ogólnych było stałe i trzykrotnie mniejsze niż w przypadku próbek wody wydzielonej z osadu niekondycjonowanego (tab. 2.27, rys. 2.37).

Rys. 2.37. Wpływ dawki polielektrolitu Kd4 na stopień zagęszczenia osadu oraz barwę i utlenialność wydzielonych wód nadosadowych

Osad MDX

Do kondycjonowania osadu MDX stosowano dwa polielektrolity kationowe; Kśr3 o średniej masie cząsteczkowej oraz Kd5 o dużej masie cząsteczkowej.

Kśr3 (tab. TZ.20, rys. KZ.20)

Wyniki badań przedstawione w tabeli 2.28. i na rysunku 2.38 wskazują, że kondycjonowanie reagentem o średniej masie cząsteczkowej poprawiło stopień zagęszczenia osadu oraz jakość wydzielonej wody nadosadowej.

Wraz ze zwiększającą się dawką polielektrolitu stwierdzono skrócenie czasu fazy sedymentacji cząstek osadu, natomiast wymagany czas zagęszczania wydłużył się o 40 minut w przypadku dawek 0,1 i 0,2 mg/ g_{smo} oraz o 100 minut w przypadku pozostałych dawek polielektrolitu. Kondycjonowanie próbek osadu spowodowało zwiększenie ich podatności na zagęszczanie w fazie komprymacji oraz na dalsze odwadnianie w procesach mechanicznych.

Stwierdzono również pozytywny wpływ kondycjonowania próbek osadu na jakość wydzielonych z nich wód nadosadowych. Wraz ze wzrostem dawki polielektrolitu zmniejszały się wartości badanych wskaźników (tab. 2.28, rys. 2.38).

			<i>.</i>				
Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	d			
V _k	cm ³	225	220	220	220	220	220
W _k	%	98,25	98,17	98,15	98,14	98,16	98,17
CSK _k	S	126,3	86,7	84,3	83,1	82,5	78,5
η_z		3,89	4,07	4,11	4,13	4,09	4,07
η_v	%	77,5	78,0	78,0	78,0	78,0	78,0
ts	min	40	18	18	16	12	10
t _k	min	600	662	662	724	728	730
tz	min	640	680	680	740	740	740
Z		0,40	0,28	0,30	0,31	0,34	0,34
Vs	cm/min	0,383	0,537	0,523	0,530	0,523	0,513
		wo	da nado	sadowa	l		
М	NTU	5,83	3,15	2,16	1,58	1,30	1,25
В	gPt/m ³	15,72	11,29	11,01	10,79	10,66	10,22
Utl	gO_2/m^3	6,94	6,28	5,84	5,54	5,38	5,24
AI	gAl/m ³	0,027	0,009	0,000	0,000	0,000	0,000
Zaw _{og}	g/m ³	10	8	6	4	2	2

Tab. 2.28. Wpływ dawki polielektrolitu Kśr3 badane parametry procesu, osadu oraz jakość wody nadosadowej (MDX, W₀ = 99,55 %)

Rys. 2.38. Wpływ dawki polielektrolitu Kśr3 na stopień zagęszczenia osadu oraz mętność i utlenialność wody nadosadowej

Kd5 (tab. TZ.21, rys. KZ.21)

Zastosowanie polielektrolitu o dużej masie cząsteczkowej miało niejednoznaczny wpływ na skuteczność zagęszczania próbek osadu MDX. Dawki wynoszące 0,1 i 0,2 mg/g_{smo} zapewniły zwiększenie wartości η_z i η_v oraz skrócenie czasu fazy sedymentacji cząstek osadu z 40 do 24 minut, natomiast pozostałe dawki (0,3 ÷ 0,5 mg/g_{smo}) spowodowały pogorszenie efektów zagęszczania skracając jednocześnie czas sedymentacji zawiesin maksymalnie o 24 minuty (w przypadku największej dawki polielektrolitu). Wymagany czas zagęszczania skracał się wraz ze wzrostem dawki substancji kondycjonującej (tab. 2.29, rys. 2.39).

Stwierdzono zwiększenie podatności na zagęszczanie w fazie komprymacji dla próbek osadu kondycjonowanych dawkami $0,1 \div 0,3 \text{ mg/g}_{smo}$. Wraz ze wzrostem dawki polielektrolitu skracał się czas ssania kapilarnego osadu po zagęszczaniu.

	.			J <	/ 0						
Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5				
osad											
V _k	cm ³	225	220	220	235	240	240				
W _k	%	98,25	98,21	98,22	98,34	98,39	98,42				
CSK _k	S	126,3	79,5	77,6	68,1	67,9	59,2				
η_z		3,89	3,98	3,96	3,69	3,58	3,51				
η_v	%	77,5	78,0	78,0	76,5	76,0	76,0				
t _s	min	40	24	24	24	20	16				
t _k	min	600	476	436	426	410	404				
tz	min	640	500	460	450	430	420				
Z		0,40	0,35	0,35	0,39	0,42	0,41				
Vs	cm/min	0,383	0,546	0,554	0,575	0,740	0,913				
		wo	da nado	sadowa							
М	NTU	5,83	1,63	1,11	0,91	0,74	0,76				
В	gPt/m ³	15,72	10,97	10,54	10,32	9,98	10,75				
Utl	gO ₂ /m ³	6,94	6,68	6,20	6,20	5,98	6,18				
Zaw _{og}	g/m ³	10	4	2	2	2	2				

Tab. 2.29. Wpływ dawki polielektrolitu Kd5 na parametry procesu, osadu oraz jakość wody nadosadowej (MDX, $W_0 = 99,55 \%$)

Jakość wód nadosadowych wydzielonych z próbek osadu poddanych kondycjonowaniu była lepsza niż wody nadosadowej wydzielonej z osadu niekondycjonowanego, a największe zmniejszenie wartości badanych wskaźników zapewniła dawka polielektrolitu wynosząca 0,4 mg/ g_{smo} (tab. 2.29, rys. 2.39).

Rys. 2.39. Wpływ dawki polielektrolitu Kd5 na stopień zagęszczenia osadu oraz mętność i utlenialność wód nadosadowych

II. Kondycjonowanie polielektrolitami anionowymi

Osad MDVIII (tab. TZ.22, rys. KZ.22)

Osad MDVIII kondycjonowano polielektrolitem o dużej masie cząsteczkowej Ad1. Analiza wyników badań zawartych w tabeli 2.30 oraz na rysunku 2.40 wskazuje, że kondycjonowanie osadu polielektrolitem anionowym pogorszyło efekty zagęszczania. Niezależnie od wielkości dawki polielektrolitu objętość wszystkich próbek osadu po zagęszczaniu była taka sama i większa o 15 cm³, od objętości próbki osadu niekondycjonowanego.

Wraz ze wzrostem dawki polielektrolitu skracał się czas fazy sedymentacji i wymagany czas zagęszczania osadu oraz zwiększała się prędkość opadania jego cząstek, a także podatność próbek osadu do dalszego odwadniania w procesach mechanicznych. Zwiększenie podatności próbek osadu na zagęszczanie w fazie komprymacji zapewniła dawka polielektrolitu wyno-sząca 0,3 mg/g_{smo}.

Usauu Ula	$\frac{1}{3}$									
Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5			
osad										
V _k	cm ³	335	350	350	350	350	350			
W _k	%	97,95	98,15	98,17	98,17	98,17	98,18			
CSK _k	S	116,5	89,4	75,3	64,9	52,3	47,8			
η_z		2,73	2,47	2,44	2,44	2,44	2,43			
η_v	%	66,5	65,0	65,0	65,0	65,0	65,0			
t _s	min	340	270	190	130	130	120			
t _k	min	1020	550	590	650	650	660			
tz	min	1360	820	780	780	780	780			
Z		0,50	0,55	0,51	0,46	0,51	0,54			
Vs	cm/min	0,034	0,046	0,057	0,066	0,083	0,099			
		woo	da nado:	sadowa						
М	NTU	2,06	2,03	1,96	1,84	2,25	2,34			
В	gPt/m ³	12,43	11,39	11,31	11,29	11,48	11,77			
Utl	gO_2/m^3	6,62	6,55	6,50	6,50	6,58	6,60			
AI	gAl/m ³	0,020	0,019	0,017	0,016	0,018	0,019			
Zaw _{og}	g/m ³	6	6	4	4	6	6			

Tab. 2.30. Wpływ dawki polielektrolitu Ad1 na parametry procesu, osadu oraz jakość wody nadosadowej (MDVIII, $W_0 = 99.25$ %)

Kondycjonowanie osadu tylko w minimalnym stopniu wpłynęło na jakość wód nadosadowych, a wpływ wzrostu dawki polielektrolitu nie był jednoznaczny. Najlepszą jakość zapewniła dawka 0,3 mg/ g_{smo} (tab. 2.30. rys. 2.41).

Rys. 2.40. Wpływ dawki polielektrolitu Ad1 na stopień zagęszczenia i zmniejszenia objętości osadu

Rys. 2.41. Wpływ dawki polielektrolitu Ad1 na barwę, utlenialność, stężenie zawiesin ogólnych oraz mętność wód nadosadowych

Osad MDVI (tab. TZ.23, rys. KZ.23)

Zastosowanie polielektrolitu o dużej masie cząsteczkowej Ad2 do kondycjonowania osadu MDVI zapewniło wyraźne skrócenie czasu fazy sedymentacji cząstek osadu oraz skrócenie wymaganego czasu zagęszczania, czego skutkiem było zmniejszenie skuteczności procesu. Wraz ze wzrostem dawki polielektrolitu zmniejszały się wartości η_z i η_v i podatność osadu na zagęszczanie w fazie komprymacji, natomiast zwiększała się prędkość opadania cząstek osadu. Stwierdzono zwiększenie podatności próbek osadu po zagęszczaniu na dalsze odwadnianie w procesach mechanicznych wraz ze wzrostem dawki polielektrolitu oraz wartości ich uwodnienia (W_k) (tab. 2.31).

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5					
	osad											
V _k	cm ³	310	340	345	365	380	380					
W _k	%	96,81	97,08	97,16	97,30	97,43	97,46					
CSK _k	S	37,8	23,4	19,9	13,3	9,4	7,2					
η_z		3,04	2,78	2,70	2,57	2,45	2,42					
η_v	%	69,0	66,0	65,5	63,5	62,0	62,0					
t _s	min	70	16	14	10	8	6					
t _k	min	480	374	296	330	202	204					
tz	min	550	390	310	340	210	210					
Z		0,48	0,45	0,49	0,65	0,69	0,67					
Vs	cm/min	0,179	0,550	0,714	1,490	1,888	2,467					
		wo	da nado	sadowa	l							
М	NTU	1,80	1,40	1,15	1,08	2,42	3,81					
В	gPt/m ³	11,27	10,31	9,68	9,21	9,17	9,10					
Utl	gO ₂ /m ³	4,42	4,21	4,05	3,96	4,57	4,79					
AI	gAl/m ³	0,031	0,027	0,021	0,018	0,039	0,049					
Zaw _{og}	g/m ³	6	4	4	4	6	6					

Tab. 2.31. Wpływ dawki polielektrolitu Ad2 na parametry procesu, osadu oraz jakość wody nadosadowej (MDVI, $W_0 = 98,95$ %)

Wpływ dawki polielektrolitu na jakość wydzielonych wód nadosadowych nie był jednoznaczny. W zakresie dawek $0,1 \div 0,3 \text{ mg/g}_{smo}$ wartości mętności, barwy, utlenialności i stężenia glinu zmniejszały się wraz ze wzrostem dawki polielektrolitu, a wartość stężenia zawiesin ogólnych wynosiła 4 g/m³. Zwiększenie ilości dodanego polielektrolitu (0,4 i 0,5 mg/g_{smo}) spowodowało pogorszenie jakości próbek wody nadosadowej, a wartości mętności, utlenialności i stężenia glinu w tych próbkach były większe niż w wodzie wydzielonej z osadu niekondycjonowanego (tab. 2.31, rys. 2.42).

Rys. 2.42. wpływ dawki polielektrolitu Ad2 na wartości wybranych wskaźników jakości wód nadosadowych

Osad MDX (tab. TZ.24, rys. KZ.24)

Analiza wyników badań przedstawionych w tabeli 2.32 i na rysunku 2.43 wskazuje, że kondycjonowanie osadu MDX polielektrolitem o bardzo dużej masie cząsteczkowej Abd nie poprawiło efektów zagęszczania (tj. zwiększenia wartości η_z i η_v) powodując natomiast skrócenie czasu fazy sedymentacji cząstek osadu oraz wymaganego czasu zagęszczania. Wszystkie stosowane dawki polielektrolitu o ok. 10 % zmniejszyły wartość współczynnika Z, zwiększyły prędkość sedymentacji zawiesin oraz podatność próbek osadu na odwadnianie w procesach mechanicznych (tab. 2.32).

<u> </u>										
D _p	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5			
osad										
V _k	cm ³	225	250	250	255	260	265			
W _k	%	98,25	98,32	98,33	98,38	98,45	98,51			
CSK _k	S	126,3	77,0	55,4	37,1	23,0	13,8			
η_z		3,89	3,73	3,71	3,60	3,44	3,31			
η_v	%	77,5	75,0	75,0	74,5	74,0	73,5			
t _s	min	40	22	22	16	14	10			
t _k	min	600	378	358	354	286	250			
tz	min	640	400	380	370	300	260			
Z		0,40	0,36	0,36	0,37	0,36	0,35			
Vs	cm/min	0,383	0,495	0,486	0,656	0,671	0,860			
		wo	da nado	sadowa						
М	NTU	5,83	1,89	1,44	1,16	1,22	1,35			
В	gPt/m ³	15,72	11,09	11,07	11,04	11,21	11,43			
Utl	gO ₂ /m ³	6,94	6,3	6,16	6,08	6,34	6,52			
Zaw _{og}	g/m ³	10	2	2	2	2	2			

Tab. 2.32. Wpływ dawki polielektrolitu Abd na parametry procesu, osadu oraz jakość wody nadosadowej (MDX, $W_0 = 99,55$ %)

Rys. 2.43. Wpływ dawki polielektrolitu Abd na stopień zagęszczenia i zmniejszenia objętości osadu oraz czas ssania kapilarnego po zagęszczaniu

Kondycjonowanie tego osadu polielektrolitem anionowym miało pozytywny wpływ na jakość wydzielonych wód nadosadowych. Wszystkie dawki polielektrolitu zapewniły zmniejszenie barwy, mętności, utlenialności oraz stężenia zawiesin ogólnych z 10 g/m³ (próbka osadu bez kondycjonowania) do 2 g/m³. Najlepszą jakość wody nadosadowej zapewniła dawka polielektrolitu wynosząca 0,3 mg/g_{smo} (rys. 2.44).

Rys. 2.44. Wpływ dawki polielektrolitu Abd na wybrane wartości wskaźników jakości wód nadosadowych

III. Kondycjonowanie dwoma polielektrolitami jednocześnie

Wpływ kondycjonowania dwoma polielektrolitami jednocześnie określono dla osadu MDXII.

Polielektrolity kationowe o średniej masie cząsteczkowej Kśr3 + Kśr4 (tab. TZ.25, rys. KZ.25)

Wszystkie stosowane dawki polielektrolitów Kśr3 i Kśr4 zapewniły zwiększenie stopnia zagęszczenia i zmniejszenia objętości osadu oraz prędkości opadania cząstek osadu (tab. 2.33, rys. 2.45). Najmniejsze uwodnienie oraz objętość osadu po zagęszczaniu stwierdzono w próbce, do której dodano najmniej środków kondycjonujących. Kondycjonowanie osadu zapewniło skrócenie czasu sedymentacji zawiesin oraz wymaganego czasu zagęszczania osadu. Wraz ze wzrostem dawki polielektrolitów skracał się również czas ssania kapilarnego osadu po zagęszczaniu (rys. 2.45).

Wpływ kondycjonowania osadu na jakość wód nadosadowych był niejednoznaczny. Z uwagi na mętność i stężenie glinu wody nadosadowe wydzielone z osadu kondycjonowanego charakteryzowały się gorszą jakością niż woda nadosadowa wydzielona z osadu niekondycjonowanego. Taką samą prawidłowość stwierdzono w odniesieniu do stężenia zawiesin ogólnych dla próbek kondycjonowanych dawkami polielektrolitów wynoszącymi $0,1 \div 0,3 \text{ mg/g}_{smo}$. Barwa i utlenialność wód wydzielonych z osadu kondycjonowanego były praktycznie porównywalne ze stwierdzonymi dla wody wydzielonej z osadu niekondycjonowanego (tab. 2.33, rys. 2.46).

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5			
osad										
V _k	cm ³	cm ³ 300 260 265 280 280								
W _k	%	97,97	97,62	97,67	97,84	97,84	97,86			
CSK _k	S	82,5	77,7	66,5	53,9	44,4	36,7			
η_z		3,12	3,66	3,58	3,32	3,32	3,29			
η_v	%	70,0	74,0	73,5	72,0	72,0	72,0			
t _s	min	80	60	60	40	40	40			
t _k	min	600	600	500	520	520	520			
tz	min	680	660	560	560	560	560			
Z		0,45	0,44	0,45	0,41	0,47	0,44			
Vs	cm/min	0,148	0,233	0,233	0,270	0,348	0,308			
		wo	da nado	sadowa						
М	NTU	0,24	2,31	1,84	1,35	1,12	0,93			
В	gPt/m ³	19,84	19,81	19,73	19,63	19,61	19,53			
Utl	gO ₂ /m ³	10,10	10,06	9,94	9,87	9,86	9,79			
AI	gAl/m ³	0,010	0,033	0,029	0,021	0,018	0,015			
Zaw _{og}	g/m ³	2	4	4	4	2	2			

Tab. 2.33. Wpływ dawki polielektrolitów Kśr
3 i Kśr
4 na parametry procesu, osadu oraz jakość wody nadosadowej (MDXII,
 W_0 = 99,35 %)

Rys. 2.45. Wpływ dawki polielektrolitów Kśr3 i Kśr4 na stopień zagęszczenia oraz czas ssania kapilarnego osadu

Rys. 2.46. Wpływ dawki polielektrolitów Kśr3 i Kśr4 na mętność i stężenie glinu wydzielonych wód nadosadowych

Polielektrolity kationowe Kd2 + Kd3 (tab. TZ.26, rys. KZ.26)

Zastosowanie łącznie dwóch polielektrolitów kationowych Kd2 i Kd3 o dużej masie cząsteczkowej zapewniło skrócenie czasu sedymentacji cząstek osadu, które niezależnie od dawki polielektrolitów wynosiło 10 minut (rys. 2.53), a wymaganego czasu zagęszczania o 50 minut (w przypadku dawek 0,1 i 0,2 mg/g_{smo}) i o 90 minut (w przypadku pozostałych dawek polielektrolitów). Wszystkie dawki polielektrolitów zapewniły zwiększenie stopnia zagęszczenia i zmniejszenia objętości osadu (tab. 2.34, rys. 2.47).

D _p	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5			
osad										
V _k	cm ³	300	270	270	280	280	280			
W _k	%	97,97	97,71	97,74	97,82	97,83	97,85			
CSK _k	S	82,5	72,8	61,1	54,3	44,7	36,8			
η_z		3,12	3,52	3,48	3,35	3,34	3,31			
η_v	%	70,0	73,0	73,0	72,0	72,0	72,0			
t _s	min	80	70	70	70	70	70			
t _k	min	600	550	550	510	510	510			
tz	min	680	620	620	580	580	580			
Z		0,45	0,44	0,44	0,48	0,51	0,51			
Vs	cm/min	0,148	0,194	0,189	0,203	0,220	0,219			
		wo	da nado	sadowa	l					
М	NTU	0,24	2,86	2,10	1,47	1,34	1,21			
В	gPt/m ³	19,84	15,83	15,00	14,93	14,50	14,30			
Utl	gO ₂ /m ³	10,10	9,90	9,58	9,22	9,12	9,04			
AI	gAl/m ³	0,010	0,037	0,031	0,026	0,022	0,019			
Zaw _{og}	g/m ³	2	4	4	4	4	4			

Tab. 2.34. Wpływ dawki polielektrolitów Kd2 i Kd3 na parametry procesu, osadu oraz jakość wody nadosadowej (MDXII, W₀ = 99,35 %)

Największą wartość η_z stwierdzono w próbce osadu, do której dodano najmniej środków kondycjonujących, a wraz ze wzrostem ich dawki stopień zagęszczenia zmniejszał się. Kondycjonowanie osadu spowodowało przyspieszenie sedymentacji cząstek osadu oraz zwiększenie podatności próbek osadu po zagęszczaniu na dalsze odwadnianie w procesach mechanicznych (tab. 2.34).

Rys. 2.47. Wpływ dawki polielektrolitów Kd2 i Kd3 na stopień zagęszczenia i zmniejszenia objętości osadu

Rys. 2.48. Wpływ dawki polielektrolitów Kd2 i Kd3 na barwę i utlenialność wydzielonych wód nadosadowych

Kondycjonowanie osadu miało różny wpływ na jakość wydzielonych wód nadosadowych. Ze względu na mętność oraz stężenia glinu i zawiesin ogólnych jakość wód wydzielonych z próbek osadu poddanych kondycjonowaniu była gorsza niż próbki wody wydzielonej z osadu niekondycjonowanego. Odwrotną zależność stwierdzono z uwagi na intensywność barwy oraz utlenialność. Wartości mętności, barwy, utlenialności i stężenia glinu zmniejszały się wraz ze wzrostem dawki polielektrolitów (tab. 2.34, rys. 2.48).

Polielektrolity kationowe Kśr5 + Kd5 (tab. TZ.27, rys. KZ.27)

Zastosowanie do kondycjonowania osadu równocześnie polielektrolitów kationowych Kśr5 o średniej masie cząsteczkowej i Kd5 o dużej masie cząsteczkowej miało pozytywny wpływ na efekty zagęszczania osadu. Wszystkie stosowane dawki tych polielektrolitów zapewniły zwiększenie stopnia zagęszczenia i zmniejszenia objętości osadu (rys. 2.49) oraz skrócenie czasu sedymentacji zawiesin i wymaganego czasu zagęszczania osadu (tab. 2.35).

Tab. 2.35. Wpływ dawki polielektrolitów Kśr5 i Kd5 na parametry procesu, osadu oraz jakość wody nadosadowej (MDXII, W₀ = 99,35 %)

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5			
osad										
V _k	cm ³	cm ³ 300 260 270 270 270 29								
W _k	%	97,97	97,64	97,83	97,85	97,86	97,92			
CSK _k	S	82,5	73,8	66,1	58,9	50,1	41,9			
η_z		3,12	3,63	3,34	3,31	3,29	3,20			
η_v	%	70,0	74,0	73,0	73,0	73,0	71,0			
t _s	min	80	50	50	40	20	28			
t _k	min	600	470	450	440	420	412			
tz	min	680	520	500	480	440	440			
Z		0,45	0,41	0,41	0,44	0,48	0,48			
Vs	cm/min	0,148	0,254	0,238	0,308	0,705	0,486			
		wo	da nado	sadowa						
М	NTU	0,24	1,50	1,11	1,06	1,04	0,96			
В	gPt/m ³	19,84	18,33	17,86	17,70	17,54	17,41			
Utl	gO ₂ /m ³	10,10	9,92	9,66	9,50	9,18	9,10			
AI	gAl/m ³	0,010	0,027	0,023	0,020	0,016	0,014			
Zaw _{og}	g/m ³	2	4	4	4	4	2			

Rys. 2.49. Wpływ dawki polielektrolitów Kśr5 i Kd5 na stopień zagęszczenia i zmniejszenia objętości osadu

Dawki polielektrolitów wynoszące 0,1 i 0,2 mg/g_{smo} zwiększyły podatność próbek osadu na zagęszczanie w fazie komprymacji. Największą prędkość opadania zawiesin zapewniła dawka polielektrolitów wynosząca 0,4 mg/g_{smo}. Kondycjonowanie osadu zapewniło również zwiększenie podatności próbek osadu po zagęszczaniu na dalsze odwadnianie (tab. 2.35). Stwierdzono niejednoznaczny wpływ kondycjonowania osadu na jakość wydzielonych wód nadosadowych. Wartości barwy i utlenialności wód nadosadowych wydzielonych z próbek kondycjonowanego osadu były mniejsze niż wody nadosadowej wydzielonej z osadu surowego i w bardzo małym stopniu zmniejszały się wraz ze wzrostem dawki polielektrolitów.

Rys. 2.50. Wpływ dawki polielektrolitów Kśr5 i Kd5 na mętność i barwę wód nadosadowej Wody nadosadowe wydzielone z kondycjonowanych próbek osadu charakteryzowały się natomiast większą mętnością i zawartością glinu niż woda nadosadowa wydzielona z osadu niekondycjonowanego (tab. 2.35, rys. 2.50), co w zakresie dawek $0,1 \div 0,4$ mg/g_{smo} znalazło odzwierciedlenie w większym stężeniu zawiesin ogólnych (tab. 2.35).

Polielektrolity kationowe o dużej masie cząsteczkowej Kd1 + Kd4 (tab. TZ.28, rys. KZ.28)

Wpływ dawek polielektrolitów kationowych Kd1 i Kd4 na efektywność zagęszczania (η_z) nie był jednoznaczny. Dawki polielektrolitów wynoszące 0,1 i 0,2 mg/g_{smo} zapewniły jedynie nieznaczne zwiększenie stopnia zagęszczenia (o 7,1 % i 4,2 %) i zmniejszenia objętości osadu, lecz zaledwie o 20 i 10 cm³. Dawka 0,3 mg/g_{smo} nie zmieniła objętości osadu po zagęszczaniu i praktycznie nie zmniejszyła wartości η_z . Większe dawki polielektrolitów (0,4 i 0,5 mg/g_{smo}) spowodowały natomiast zmniejszenie stopnia zagęszczenia (odpowiednio o 5,8 i 6,7 %), jak i zmniejszenia objętości osadu (rys. 2.51). Wszystkie zastosowane dawki polielektrolitu spowodowały zwiększenie wartości współczynnika Z. Jedynie najmniejsza dawka polielektrolitów nie miała wpływu na czas trwania fazy sedymentacji cząstek osadu, natomiast pozostałe spowodowały jego skrócenie. Wszystkie próbki osadu po zagęszczaniu poprzedzonym kondycjonowaniem charakteryzowały się krótszym czasem ssania kapilarnego, który skracał się wraz ze wzrostem dawki polielektrolitów (tab. 2.36).

_ ma paran	na parametry process, osuda oraz jakość wody nadosudowej (mizra									
D _p	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5			
osad										
V _k	cm ³	300	280	290	300	310	310			
W _k	%	97,97	97,83	97,89	97,98	98,09	98,11			
CSK _k	S	82,5	73,0	60,0	48,4	37,7	28,8			
η_z		3,12	3,34	3,25	3,11	2,94	2,91			
η_v	%	70,0	72,0	71,0	70,0	69,0	69,0			
t _s	min	80	80	50	30	18	18			
t _k	min	600	440	450	470	482	462			
tz	min	680	520	500	500	500	480			
Z		0,45	0,49	0,52	0,51	0,53	0,53			
Vs	cm/min	0,148	0,179	0,302	0,470	0,778	0,767			
		wo	da nado	sadowa	l					
M	NTU	0,24	3,46	3,2	2,95	2,94	2,82			
В	gPt/m ³	19,84	17,18	16,83	16,80	16,75	16,73			
Utl	gO ₂ /m ³	10,10	9,90	9,74	9,64	9,58	9,54			
AI	gAl/m ³	0,010	0,062	0,059	0,041	0,036	0,033			
Zaw _{oq}	g/m ³	2	6	4	4	4	4			

Tab. 2.36. Wpływ dawki polielektrolitów Kd1 i Kd4
na parametry procesu, osadu oraz jakość wody nadosadowej (MDXII, $W_0 = 99,35$ %)

Rys. 2.51. Wpływ dawki polielektrolitów Kd1 i Kd4 na stopień zagęszczenia i zmniejszenia objętości osadu oraz czas trwania fazy sedymentacji zawiesin

Jakość wód nadosadowych wydzielonych z próbek osadu po kondycjonowaniu, ze względu na mętność oraz stężenia glinu i zawiesin ogólnych, była gorsza niż wody nadosadowej wy-

dzielonej z próbki niekondycjonowanej. Wartości wymienionych wskaźników jakości (oprócz stężenia zawiesin ogólnych) zmniejszały się jednak (chociaż bardzo nieznacznie) wraz ze wzrostem dawki polielektrolitów. Wartości barwy i utlenialności próbek wody wydzielonej z osadu kondycjonowanego były mniejsze niż oznaczone dla wody wydzielonej z osadu surowego (tab. 2.36, rys. 2.52).

Rys. 2.52. Wpływ dawki polielektrolitów Kd1 i Kd4 na mętność i barwę wód nadosadowych

Polielektrolity anionowe o dużej masie cząsteczkowej Ad1 + Ad2 (tab. TZ.29, rys. KZ.29)

Polielektrolity anionowe Ad1 + Ad2 zastosowane do kondycjonowania tego osadu nie poprawiły efektów zagęszczania osadu. Dawki 0,1 ÷ 0,3 mg/g_{smo} nie zmieniły objętości osadu po zagęszczaniu oraz nieznacznie zmniejszyły wartości stopnia zagęszczenia osadu. Większe dawki polielektrolitów zmniejszyły wartość η_v oraz wyraźnie η_z (rys. 2.53). Wszystkie dawki polielektrolitów zapewniły skrócenie czasu sedymentacji zawiesin i wymaganego czasu zagęszczania osadu oraz spowodowały zwiększenie podatności próbek osadu po zagęszczaniu na dalsze odwadnianie. Podatność na zagęszczanie w fazie komprymacji próbek osadu do których dodano polielektrolity w ilości 0,2 ÷ 0,5 mg/g_{smo} była mniejsza niż osadu niekondycjonowanego.

Stężenie zawiesin w wodach nadosadowych wydzielonych z kondycjonowanych próbek osadu było większe o 2 g/m³ od stężenia zawiesin w wodzie nadosadowej wydzielonej z osadu surowego. Kondycjonowanie osadu miało także negatywny wpływ na mętność i stężene glinu. Wartości tych wskaźników w wodach wydzielonych z kondycjonowanych próbek osadu były większe niż w próbce osadu niekondycjonowanego, ale w nieznacznym stopniu zmniejszały się wraz ze wzrostem dawki polielektrolitów. Stwierdzono natomiast pozytywny wpływ kondycjonowania osadu na barwę i utlenialność wód nadosadowych (tab. 2.37, rys. 2.53).

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5			
osad										
V _k	cm ³	cm ³ 300 300 300 300 310 3								
W _k	%	97,97	97,98	98,00	98,03	98,16	98,19			
CSK _k	S	82,5	69,7	56,5	43,6	30,1	20,1			
η_z		3,12	3,11	3,08	3,03	2,83	2,78			
η_v	%	70,0	70,0	70,0	70,0	69,0	69,0			
t _s	min	80	60	60	30	20	20			
t _k	min	600	580	520	490	480	480			
tz	min	680	640	580	520	500	500			
Z		0,45	0,45	0,49	0,49	0,53	0,51			
Vs	cm/min	0,148	0,187	0,218	0,447	0,695	0,665			
		wo	da nado	sadowa	l					
М	NTU	0,24	1,97	1,92	1,83	1,72	1,58			
В	gPt/m ³	19,84	14,86	14,61	14,55	14,49	14,47			
Utl	gO ₂ /m ³	10,1	9,78	9,58	9,51	9,42	9,30			
AI	gAl/m ³	0,010	0,031	0,028	0,025	0,021	0,018			
Zaw _{og}	g/m ³	2	4	4	4	4	4			

Tab. 2.37. Wpływ dawki polielektrolitów Ad1 i Ad2 na parametry procesu, osadu oraz jakość wody nadosadowej (MDXII, $W_0 = 99,35$ %)

3,50

Rys. 2.53. Wpływ dawki polielektrolitów Ad1 i Ad2 na stopień zagęszczenia osadu oraz mętność i barwę wód nadosadowych

3.1. Osady z ZOW "Leśnica"

Próbki osadów przeznaczone do badań uzyskano w wyniku 24 h zagęszczania popłuczyn, powstających podczas płukania złóż filtrów pospiesznych i oddzielenia osadu od wody nadosadowej.

3.1.1. Skład fizyczno – chemiczny osadów

Badane próbki osadów charakteryzowały się dużą zawartością zawiesin, które stanowiły 86,66 \div 93,27 % suchej pozostałości i bardzo dużym uwodnieniem, które zmieniało się w zakresie 99,39 \div 99,64 %. Głównymi komponentami suchej pozostałości pięciu próbek osadu były związki nieorganiczne (79,64 \div 92,83 %), a tylko w jednej próbce osadu (LI) ich zawartość była wyraźnie mniejsza (69,68 %) (tab. 3.1).

Wskaźnik	Jednostka	Rodzaj probki								
Wondzhin	ocuriosika	LI	LII	LIII	LIV	LV	LVI			
рН		7,00	7,40	8,51	8,12	7,55	7,80			
zas M	val/m ³	3,27	3,32	5,24	5,45	3,56	4,12			
Sucha pozo- stałość	g/m³	6076	3568	4752	4950	5382	4058			
Pozostałość po prażeniu	g/m ³ % smo	4234 69,68	3312 92,83	3914 82,37	4078 82,38	4286 79,64	3462 85,31			
Strata praże- nia	g/m ³ % smo	1842 30,32	256 7,17	838 17,63	872 17,62	1096 20,36	596 14,69			
Zawiesiny ogólne	g/m³ % smo	5626 92,59	3328 93,27	4118 86,66	4292 86,71	4750 88,26	3710 91,42			
Zawiesiny mineralne	g/m³	3926	3102	3436	3626	3826	3210			
Zawiesiny lotne	g/m³	1700	226	682	666	924	500			
Substancje rozpuszczone	g/m³	450	240	634	658	632	348			
Subst. rozp. mineralne	g/m³	308	210	478	452	460	252			
Subst. roz- p.lotne	g/m³	142	30	156	206	172	96			
Uwodnienie	%	99,39	99,64	99,53	99,50	99,46	99,59			
CSK₀	S	23,3	19,1	26,2	25,4	22,8	20,6			
Wapń	g/kg smo g/m³	55,99 340,20	61,13 218,11	63,78 303,08	62,84 311,06	61,74 332,28	62,57 253,91			
Magnez	g/kg smo g/m ³	9,78 59,42	9,61 34,29	14,97 71,14	19,56 96,82	10,28 55,33	16,37 66,43			
Żelazo ogólne	g/kg smo g/m³	381,2 2316,2	434,3 1549,6	506,4 2406,4	538,8 2667,1	452,1 2433,2	477,3 1936,9			
Mangan	g/kg smo g/m ³	121,4 737,6	227,4 811,4	107,6 511,3	47,9 237,1	153,7 827,2	187,4 760,5			

Tab. 3.1. Wartości wybranych wskaźników jakości próbek osadu z ZOW "Leśnica"

Badane próbki osadów zawierały zmienne ilości związków wapnia, magnezu, żelaza i manganu. Związki żelaza i manganu są głównymi zanieczyszczeniami usuwanymi z wód podziemnych podczas ich oczyszczania, stąd tak duże ich stężenia w badanych osadach. Wartości pH i zasadowości ogólnej mieściły się odpowiednio w przedziałach 7,00 \div 8,51 oraz 3,27 \div 5,45 val/m³. Czas ssania kapilarnego wszystkich próbek osadów był zbliżony (19,1 \div 26,2 s), co wskazywało na ich podobną podatność na odwadnianie mechaniczne [41].

3.1.2. Zagęszczanie osadów bez kondycjonowania

Celem przeprowadzonych badań było określenie przebiegu i skuteczności zagęszczania grawitacyjnego osadów w zależności od ich składu fizyczno-chemicznego oraz czasu zagęszczania, a także czasu wolnego mieszania osadów przed zagęszczaniem.

3.1.2.1. Wpływ składu fizyczno-chemicznego osadów

W badaniach określono wpływ uwodnienia początkowego osadów oraz udziału ilościowego substancji organicznych w suchej masie osadów, stężenia w nich zawiesin ogólnych, a także stężeń wapnia, magnezu, glinu i żelaza ogólnego w osadach na dynamikę rozdziału faz (t_s , t_k), wymagany czas zagęszczania, stopień zagęszczenia osadów (η_z) i zmniejszenia ich objętości (η_v), a także na podatność na zagęszczanie w fazie komprymacji (Z) oraz na zmianę czasu ssania kapilarnego osadów po zagęszczaniu.

W tabeli 3.2 przedstawiono wyniki badań analitycznych próbek osadu i wody nadosadowej, pomiaru CSK po zagęszczaniu oraz wartości wyznaczonych parametrów charakteryzujących przebieg i skuteczność procesu zagęszczania.

Wraz ze wzrostem początkowego uwodnienia osadów zwiększały się stopień zagęszczenia osadów i skuteczność zmniejszenia ich objętości (rys. 3.1).

Rys. 3.1. Wpływ początkowego uwodnienia na stopień zgęszczenia i zmniejszenia objętości osadu

Pró	bka	LI	LV	LIV	LIII	LVI	LII			
W ₀	%	99,39	99,46	99,50	99,53	99,59	99,64			
osad										
V _k	cm ³	180	110	100	100	80	55			
W _k	%	96,95	96,02	95,93	95,68	94,77	94,53			
CSK _k	S	81,7	44,9	48,8	51,1	53,3	57,7			
η_z		5,00	7,37	8,14	9,19	12,76	15,19			
η_v	%	82,0	89,0	90,0	90,0	92,0	94,5			
ts	min	16	24	26	16	14	10			
t _k	min	464	436	424	344	306	270			
tz	min	480	460	450	360	320	280			
Z		0,33	0,21	0,22	0,19	0,17	0,11			
Vs	cm/min	0,988	0,700	0,742	1,050	1,336	1,990			
		v	voda nad	osadowa	l					
рН _к		7,00	7,55	8,12	8,51	7,80	7,40			
zas M	val/m ³	3,27	3,56	5,45	5,25	4,12	3,32			
М	NTU	5,97	4,73	4,60	8,41	9,28	12,8			
В	gPt/m ³	15,73	9,62	13,25	25,42	11,74	7,08			
Utl	gO ₂ /m ³	10,3	1,74	1,86	1,95	2,07	1,62			
Mn	gMn/m ³	0,097	0,068	0,058	0,273	0,306	0,310			
Fe_{og}	gFe/m ³	0,190	1,250	2,84	6,46	6,88	7,53			
tw _{og}	°tw	17,5	19,1	21,6	20,2	20,7	18,9			
Са	gCa/m³ °tw	95,7 13,4	95,0 13,3	99,3 13,9	93,57 13,1	96,4 13,5	86,4 12,1			
Mg	gMg/m ³ °tw	17,5 4,1	24,8 5,8	33,0 7,7	30,43 7,1	30,8 7,2	29,1 6,8			
Zaw _{og}	g/m ³	8	6	6	10	12	14			

Tab. 3.2. Wpływ uwodnienia początkowego osadów na przebieg i skuteczność procesu ich zageszczania

Wyniki pomiarów rozdziału faz w czasie zagęszczania (t_{zag}) przedstawiono w tabeli TZ.1', a krzywe zagęszczania na rysunku KZ.1'.

Jak wynika z danych przedstawionych na rysunku 3.2. o efektywności zagęszczania osadów współdecydowała zawartość substancji organicznych w suchej masie osadów, z której wzrostem zmniejszała się podatność osadów na zagęszczanie grawitacyjne.

Najmniejszą wartość $\eta_z = 5,00$ stwierdzono dla osadu LI, który charakteryzował się najmniejszym uwodnieniem początkowym oraz największą zawartością substancji organicznych w suchej masie. Odwrotną prawidłowość stwierdzono dla osadu LII o największym uwodnieniu początkowym i najmniejszym udziale substancji organicznych w suchej masie. Spośród osadów, w których zawartość związków organicznych w suchej masie była niemal jednakowa (LIV i LIII), bardziej podatny na grawitacyjne zagęszczanie był osad LIII o większym początkowym uwodnieniu i mniejszym udziale zawiesin ogólnych w suchej masie (tab. 3.1).

Rys. 3.2. Wpływ zawartości substancji organicznych w suchej masie osadów na stopień ich zagęszczenia i zmniejszenia objętości

Wpływ stężenia zawiesin ogólnych w osadach na stopień ich zagęszczania zobrazowano na rysunku 3.3.

Rys. 3.3. Wpływ zawartości zawiesin ogólnych na stopień zagęszczenia osadu

Z przedstawionej zależności wynika, że stopień zagęszczenia osadów był odwrotnie proporcjonalny do stężenia w nich zawiesin ogólnych.

Nie stwierdzono jednoznacznego wpływu stężenia żelaza ogólnego, manganu i magnezu w badanych osadach na stopień ich zagęszczenia i zmniejszenia objętości (rys. 3.4, 3.5 i 3.6).

Rys. 3.4. Wpływ stężenia żelaza na stopień zagęszczenia i zmniejszenia objętości osadu

Rys. 3.5. Wpływ stężenia manganu na stopień zagęszczenia i zmniejszenia objętości osadu

Rys. 3.6. Wpływ stężenia magnezu na stopień zagęszczenia i zmniejszenia objętości osadu

Rys. 3.7. Wpływ stężenia wapnia na stopień zagęszczenia i zmniejszenia objętości osadu

Jedynie w przypadku wapnia, wzrost zawartości jego związków w suchej masie osadów powodował zmniejszenie wartości η_z i η_v (rys. 3.7). Należy jednak zaznaczyć, że zależność ta odzwierciedlała również znaczenie uwodnienia początkowego oraz zawartości substancji organicznych w badanych osadach na efekty ich zagęszczenia i zmniejszenia objętości.

Wraz ze wzrostem uwodnienia początkowego badanych osadów skracał się wymagany czas ich zagęszczania. Wpływ uwodnienia początkowego na czas trwania fazy sedymentacji cząstek osadu nie był jednoznaczny. Wraz ze wzrostem uwodnienia początkowego w zakresie 99,39 \div 99,50 % czas trwania tej fazy wydłużał się, a dla większych wartości W₀ (99,53 \div 99,64 %) stwierdzono odwrotną prawidłowość (rys. 3.8).

Rys. 3.8. Wpływ uwodnienia początkowego na czas fazy sedymentacji cząstek osadu i wymagany czas zagęszczania osadu

Stwierdzono również, że wraz ze zwiększającą się zawartością substancji organicznych w suchej masie osadu generalnie wydłużał się wymagany czas jego zagęszczania (rys. 3.9). Spośród dwóch osadów o prawie identycznej zawartości związków organicznych (LIV i LIII), krótszym wymaganym czasem zagęszczania charakteryzował się osad LIII, o czym współdecydowało jego większe uwodnienie początkowe.

Rys. 3.9. Wpływ zawartości substancji organicznych na czas fazy sedymentacji cząstek osadu i wymagany czas jego zagęszczania

Prędkość opadania cząstek osadu w fazie sedymentacji zależała od jego uwodnienia początkowego i stężenia zawiesin ogólnych w osadzie.

Rys. 3.10. Wpływ uwodnienia początkowego osadu na prędkość sedymentacji jego cząstek

Wraz ze wzrostem uwodnienia początkowego osadu wzrastała prędkość sedymentacji jego cząstek, natomiast odwrotną zależność stwierdzono w przypadku wpływu stężenia zawiesin

ogólnych. Wyjątkiem był osad LI o najmniejszym uwodnieniu początkowym i największym stężeniu zawiesin ogólnych oraz najmniej podatny na zagęszczanie, którego cząstki opadały z większą prędkością niż cząstki osadów LV i LIV (rys. 3.10 i 3.11).

Rys. 3.11. Wpływ stężenia zawiesin na prędkość sedymentacji cząstek osadów

Wydzielone wody nadosadowe charakteryzowały się różną jakością. Generalnie, jednak wraz ze wzrostem początkowego uwodnienia badanych próbek osadów pogarszała się jakość tych wód ze względu na mętność, stężenie żelaza, manganu i zawiesin ogólnych (tab. 3.2). We wszystkich próbkach wody nie stwierdzono przekroczenia dopuszczalnych wartości badanych wskaźników zanieczyszczenia zawartych w rozporządzeniu Ministra Środowiska.

Z porównania wartości parametru Z osadów pochodzących z ZOW "Mokry Dwór" i ZOW "Leśnica" wynika, że zdecydowanie większą podatnością na zagęszczanie w fazie komprymacji charakteryzowały się osady powstające w układzie oczyszczania wody podziemnej. Czas ssania kapilarnego zagęszczonych osadów zawierał się w przedziale 44,9 ÷ 81,7 s (tab. 3.2), co świadczy o ich różnej podatności na dalsze odwadnianie metodami mechanicznymi [41].

3.1.2.2. Wpływ czasu zagęszczania na stopień zagęszczenia osadów oraz objętość i jakość wody nadosadowej

W badaniach określono przebieg i efekty procesu zagęszczania osadów LV, LIV i LIII, stosując czas zagęszczania dłuższy od wymaganego (t_z) i wynoszący 24 godziny..

Wyniki pomiarów zmian wysokości powierzchni rozdziału wody nadosadowej i osadu przedstawione są w tabeli TZ.1' oraz na rysunku KZ.1'.

Osad o $W_0 = 99,46 \% (LV)$

Czas fazy sedymentacji cząstek osadu (t_s) i wymagany czas zagęszczania osadu (t_z) wynosiły odpowiednio 24 min i 460 min. Prędkość opadania zawiesin (v_s) była równa 0,700 cm/min (tab. 3.2). Wyniki badań jakości wód nadosadowych oraz osadów po różnych czasach zagęsz-czania przedstawiono w tabeli 3.3.

Czas	h	2,0	4,0	6,0	8,0	24,0					
osad											
V _k	cm ³	180	140	120	110	105					
smo	g/m ³	27612	32928	37192	39688	40724					
W _k	%	97,24	96,71	96,28	96,02	95,93					
CSK _k	S	31,6	37,7	41,3	44,2	46,8					
η_z		5,11	6,09	6,89	7,37	7,54					
η_v	%	82	86	88	89	89,5					
		woda	nadosado	owa							
pH₅		7,55	7,55	7,55	7,55	7,55					
zas M	val/m ³	3,56	3,56	3,56	3,56	3,56					
М	NTU	21,3	13,9	5,41	4,66	4,36					
В	gPt/m ³	9,92	9,87	9,71	9,60	9,56					
Utl	gO ₂ /m ³	2,17	2,02	1,75	1,72	1,69					
Mn	gMn/m ³	0,167	0,077	0,071	0,066	0,059					
Fe	gFe/m ³	6,72	3,53	1,31	1,22	1,11					
Zaw	g/m ³	12	8	6	6	6					

Tab. 3.3. Wpływ czasu zagęszczania na wartości badanych parametrów jakości wody nadosadowej i wydzielonego osadu ($W_0 = 99,46 \%, t_{zag} do 24 h$)

Rys. 3.12. Wpływ czasu zagęszczania na stopień zagęszczenia i zmniejszenia objętości osadu

Z przeprowadzonych badań wynika, że wydłużenie czasu zagęszczania osadu zwiększyło stopień jego zagęszczenia oraz miało pozytywny wpływ na jakość wydzielonych wód nadosadowych (tab. 3.3). Największy wzrost wartości η_z oraz η_v stwierdzono do $t_{zag} = 8h$, a wydłużenie czasu zagęszczania do 24 h zwiększyło wartość η_z jedynie o 2,31 % oraz o 0,56 % stopień zmniejszenia objętości (rys 3.12).

Stężenie żelaza, manganu, zawiesin ogólnych oraz wartości mętności, barwy i utlenialności wody nadosadowej zmniejszały się wraz z wydłużaniem czasu zagęszczania osadu (rys 3.13 i tab. 3.3).

Rys. 3.13. Wpływ czasu zagęszczania na zmianę wartości wskaźników jakości wody nadosadowej

Stwierdzono wpływ czasu zagęszczania osadu na czas ssania kapilarnego. Wraz z wydłużaniem czasu zagęszczania i wzrostem suchej masy próbek osadu po zagęszczaniu wydłużał się ich czas ssania kapilarnego (tab. 3.3).

Osad o $W_0 = 99,50 \%$ (LIV)

Faza sedymentacji cząstek osadu opadających z prędkością (v_s) równą 0,742 cm/min, trwała 26 minut, a wymagany czas zagęszczania osadu (t_z) wynosił 450 min (tab. 3.2).

Wartości badanych wskaźników jakości wody nadosadowej oraz parametrów osadu zagęszczanego przedstawione w tabeli 3.4 określono po 5 różnych czasach zagęszczania.

Tak jak w przypadku osadu o $W_0 = 99,46$ % stwierdzono, że wydłużenie czasu zagęszczania osadu w różnym stopniu poprawiało efekty procesu zarówno z uwagi na stopień zagęszczenia i zmniejszenia objętości osadu, jak i ze względu na jakość wydzielonej wody nadosadowej. Wartości η_z i η_v zwiększały się do $t_{zag} = 8$ h, a wydłużenie czasu zagęszczania do 24 h praktycznie nie miało już wpływu na efekty badanego procesu.
Czas	h	2,0	4,0	6,0	8,0	24,0			
osad									
V _k	cm ³	165	130	110	100	100			
smo	g/m ³	26908	32588	37590	40756	41282			
W _k	%	97,31	96,74	96,24	95,92	95,87			
CSK _k	S	38,3	44,5	47,7	49,1	49,5			
η_z		5,38	6,52	7,52	8,16	8,26			
η_v	%	83,5	87	89	90	90			
	woda nadosadowa								
pH _k		8,12	8,12	8,12	8,12	8,12			
zas M	val/m ³	5,45	5,45	5,45	5,45	5,45			
М	NTU	16,7	9,4	4,7	4,5	3,9			
В	gPt/m ³	15,15	14,74	13,46	13,17	12,79			
Utl	gO ₂ /m ³	2,31	2,17	1,99	1,85	1,84			
Mn	gMn/m ³	0,215	0,179	0,083	0,056	0,050			
Fe	gFe/m ³	8,03	5,16	3,68	2,81	2,75			
Zaw _{og}	g/m ³	14	10	6	6	6			

Tab. 3.4. Wpływ czasu zagęszczania na wartości badanych parametrów jakości wody nadosadowej i wydzielonego osadu ($W_0 = 99,50$ %, t_{zag} do 24 h)

Wartość η_z po $t_{zag} = 24$ h była jedynie o 1,47 % większa, a wartość η_v taka sama jak po $t_{zag} = 8$ h (rys. 3.14). Czas ssania kapilarnego próbek osadu po zagęszczaniu, tak jak w przypadku osadu LV, wydłużał się wraz ze wzrostem ich suchej masy i wydłużeniem czasu zagęszczania (tab. 3.4).

Rys. 3.14. Wpływ czasu zagęszczania na stopień zagęszczenia i zmniejszenia objętości osadu

O małym znaczeniu 3-krotnego wydłużenia t_{zag} (z 8 do 24 h) świadczą o tym również zmiany wartości badanych wskaźników jakości wód nadosadowych przedstawione na rysunku 3.15.

Rys. 3.15. Wpływ czasu zagęszczania na zmianę wartości wskaźników jakości wody nadosadowej

Osad o W₀ = 99,53 % (LIII)

Czas fazy sedymentacji cząstek osadu (t_s) wynosił 16 minut, a wymagany czas zagęszczania osadu (t_z) był równy 360 minut. Prędkość sedymentacji cząstek osadu (v_s) wynosiła 1,05 cm/min (tab. 3.2). W tabeli 3.5. przedstawione zostały wyniki badań jakości wód nadosadowych oraz osadów po poszczególnych czasach zagęszczania.

×						/			
Czas	h	2,0	4,0	6,0	8,0	24,0			
osad									
V _k	cm ³	140	110	100	100	100			
smo	g/m ³	28186	34912	43222	43614	44094			
W _k	%	97,18	96,51	95,69	95,64	95,59			
CSK _k	S	41,2	48,7	50,7	52,9	56,3			
η_z		6,00	7,43	9,17	9,28	9,38			
η_v	%	86	89	90	90	90			
	woda nadosadowa								
рН _к		8,51	8,51	8,51	8,51	8,51			
zas M	val/m ³	5,25	5,25	5,25	5,25	5,25			
М	NTU	54,6	35,3	8,41	8,33	7,89			
В	gPt/m ³	25,66	25,54	25,42	25,35	19,68			
Utl	gO ₂ /m ³	2,22	2,12	1,95	1,93	1,79			
Mn	gMn/m ³	0,407	0,277	0,273	0,269	0,259			
Fe _{og}	gFe/m ³	11,31	7,67	6,46	6,41	6,21			
Zaw _{og}	g/m ³	34	26	10	10	8			

Tab. 3.5. Wpływ czasu zagęszczania na wartości badanych parametrów jakości wody nadosadowej i wydzielonego osadu ($W_0 = 99,53 \%, t_{zag} do 24 h$)

Wyniki badań wykonanych w tej serii potwierdziły prawidłowości stwierdzone dla osadów o $W_0 = 99,46$ i 99,50 %, zarówno z uwagi na jakość wody nadosadowej, jak i stopień zagęsz-czenia osadu (tab. 3.5, rys 3.16). Wraz z wydłużaniem czasu zagęszczania zmniejszał się poziom zanieczyszczenia wody nadosadowej ze względu na wszystkie badane wskaźniki jej jakości oraz zmniejszała się podatność osadu na dalsze odwadnianie w procesach mechanicznych (wzrost wartości CSK_k) (tab. 3.5, rys. 3.17). Uwalnianie wody międzycząsteczkowej przebiegało najintensywniej w czasie pierwszych sześciu godzin zagęszczania (rys. 3.16). Wydłużenie t_{zag} do 8 h zwiększyło wartość η_z o 1,20 %, a wydłużenie t_{zag} o kolejne 16 h zwiększyło stopień zagęszczenia osadu tylko o dalsze 1,08 %. Objętość zagęszczonego osadu nie zmieniała się od czasu t_{zag} = 6 h i wynosiła V_k = 100 cm³ (tab. 3.5, rys 3.16).

Rys. 3.16. Wpływ czasu zagęszczania na stopień zagęszczenia i zmniejszenia objętości osadu

Rys. 3.17. Wpływ czasu zagęszczania na zmianę wartości wskaźników jakości wody nadosadowej

3.1.2.3. Wpływ czasu wolnego mieszania osadów przed ich zagęszczaniem

W tej serii badań określono przebieg i efekty zagęszczania dwóch osadów (LV, LVI), poprzedzonego wolnym mieszaniem z prędkością 15 obr/min i trwającym od 3 do 60 minut. Wyniki pomiarów zmian wysokości powierzchni rozdziału wody nadosadowej i osadu przedstawione zostały w tabelach TZ.2' i TZ.3', oraz na krzywych zagęszczania (rys. KZ.2' i KZ.3'. Natomiast wartości CSK_k , wyniki badań analitycznych próbek osadu po zagęszczaniu i wydzielonej wody nadosadowej oraz wartości wyznaczonych parametrów charakteryzujących przebieg i skuteczność procesu zagęszczania poprzedzonego wolnym mieszaniem przedstawiono w tabelach 3.6 i 3.7.

Osad o W₀ = 99,46 % (LV) (tab. TZ.2', rys. KZ.2')

Wpływ wolnego mieszania określono dla próbek osadu zagęszczanych w czasie $t_{zag} = 480 \div$ 520 minut, a znaczenie wolnego mieszania i czasu jego trwania obrazują dane przedstawione w tabeli 3.6.

t _{wm}	min	0	3	15	30	60				
	osad									
V _k	cm ³	110	115	115	120	120				
W _k	%	96,02	96,18	96,22	96,31	96,34				
CSK _k	S	44,9	42,7	42,3	40,9	40,3				
η_z		7,37	7,07	7,00	6,83	6,78				
η_v	%	89,0	88,5	88,5	88,0	88,0				
t _s	min	24	24	24	24	24				
t _k	min	436	426	436	446	466				
tz	min	460	450	460	470	490				
Z		0,21	0,22	0,22	0,22	0,22				
Vs	cm/min	0,700	0,692	0,688	0,679	0,675				
		woda	nadosad	owa						
рН _к		7,55	7,55	7,55	7,55	7,55				
zas M	val/m ³	3,56	3,56	3,56	3,56	3,56				
М	NTU	4,73	4,97	5,15	5,72	6,33				
В	gPt/m ³	9,62	9,62	9,66	9,73	9,77				
Utl	gO_2/m^3	1,74	1,76	1,81	1,98	2,00				
Mn	gMn/m ³	0,068	0,074	0,087	0,098	0,113				
Fe _{og}	gFe/m ³	1,25	1,27	1,33	1,41	1,44				
Zaw _{og}	g/m ³	6	6	6	8	8				

Tab. 3.6. Wpływ czasu wolnego mieszania na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych ($W_0 = 99,46\%$, LV)

Analiza wyników badań przedstawionych w powyższej tabeli oraz na rysunkach 3.18 i 3.19 wykazała, że zastosowanie wolnego mieszania jak i wydłużenie czasu jego trwania pogorszyło efekty zagęszczania osadu oraz jakość wydzielonych wód nadosadowych. Czas fazy sedymentacji cząstek osadu nie zmieniał się, natomiast nieznacznie zmniejszała się prędkość ich opadania wraz z wydłużaniem czasu wolnego mieszania. Wydłużanie czasu wolnego mieszania powodowało również zmniejszenie wartości η_z i η_v oraz zwiększenie wartości mętności, barwy, utlenialności, stężeń żelaza ogólnego i manganu w wodzie nadosadowej. Stężenie zawiesin ogólnych w wodzie nadosadowej wydzielonej z próbek osadu, które przed zagęszczaniem były wolno mieszane przez 30 i 60 minut, zwiększyło się o 2 g/m³. Próbki osadów po zagęszczaniu poprzedzonym wolnym mieszaniem charakteryzowały się nieznacznie krótszym czasem ssania kapilarnego, co związane było ze zwiększającym się uwodnieniem tych osadów (rys. 3.20).

Rys. 3.18. Wpływ wolnego mieszania oraz jego czasu na stopień zagęszczenia i zmniejszenia objętości osadów

Rys. 3.19. Wpływ wolnego mieszania oraz jego czasu na wartości wybranych wskaźników jakości wód nadosadowych

Wydłużanie czasu wolnego mieszania nie miało wpływu na podatność osadu na zagęszczanie w fazie komprymacji (tab. 3.6).

Rys. 3.20. Wpływ wolnego mieszania i jego czasu na wartości uwodnienia i czasu ssania kapilarnego osadu po zagęszczaniu

Osad o W₀ = 99,59 % (LVI) (tab. TZ.3', rys. KZ.3')

Wyniki przedstawione w tabeli 3.7 oraz na rysunku 3.21 wykazały, że tak, jak w przypadku osadu o $W_0 = 99,46$ % zastosowanie wolnego mieszania oraz wydłużanie czasu jego trwania spowodowało pogorszenie efektów procesu zagęszczania z uwagi na stopień zagęszczenia i zmniejszenia objętości osadów oraz z uwagi na jakość wydzielonych wód nadosadowych.

t _{wm}	min	0	3	15	30	60				
	osad									
V _k	cm ³	80	90	95	95	100				
W _k	%	94,77	94,92	95,04	95,09	95,17				
CSK _k	S	53,3	52,1	49,7	48,4	46,6				
η_z		12,76	12,39	12,10	11,98	11,78				
η_v	%	92,0	91,0	90,5	90,5	90,0				
t _s	min	14	14	14	14	14				
t _k	min	306	306	306	326	336				
tz	min	320	320	320	340	350				
Z		0,17	0,18	0,19	0,19	0,20				
Vs	cm/min	1,336	1,314	1,293	1,286	1,279				
		woda	nadosad	dowa						
pH_k		7,80	7,80	7,80	7,80	7,80				
zas M	val/m ³	4,12	4,12	4,12	4,12	4,12				
М	NTU	9,28	9,86	10,3	10,7	11,9				
В	gPt/m ³	11,74	11,80	11,83	11,88	11,91				
Utl	gO ₂ /m ³	2,07	2,10	2,10	2,12	2,15				
Mn	gMn/m ³	0,306	0,317	0,318	0,323	0,327				
Fe _{og}	gFe/m ³	6,88	6,96	6,98	7,02	7,12				
Zaw _{og}	g/m ³	12	12	12	14	14				

Tab. 3.7. Wpływ czasu wolnego mieszania na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych ($W_0 = 99,59$ %, LVI)

Zastosowanie wolnego mieszania nie miało wpływu na czas fazy sedymentacji cząstek osadu (tab. TZ.3' i rys. KZ.3'), ale spowodowało nieznaczne zmniejszenie prędkości ich opadania. Stwierdzono wydłużenie wymaganego czasu zagęszczania osadu o 20 i 30 minut dla najdłuż-szych czasów wolnego mieszania wynoszących odpowiednio 30 i 60 minut (tab. 3.7). Wraz z wydłużaniem czasu wolnego mieszania zwiększało się uwodnienie (W_k) i skracał się czas ssania kapilarnego osadów po zagęszczaniu (rys. 3.22).

Rys. 3.21. Wpływ czasu wolnego mieszania na stopień zagęszczenia i zmniejszenia objętości osadów

Rys. 3.22. Wpływ wolnego czasu mieszania na uwodnienie i czas ssania kapilarnego zagęszczonych próbek osadu

Tak jak w przypadku osadu LV o $W_0 = 99,46$ % stwierdzono również pogorszenie jakości wód nadosadowych wydzielonych z próbek osadu, których zagęszczanie poprzedzone było

wolnym mieszaniem. Najgorszą jakością charakteryzowała się woda nadosadowa wydzielona z próbki osadu, dla której stwierdzono najmniejszą wartość η_z (tab. 3.7).

3.1.3. Zagęszczanie osadów po kondycjonowaniu

3.1.3.1. Wpływ alkalizacji

Celem tej serii badań było określenie wpływu zwiększenia wartości pH₀ osadów, przed ich zagęszczaniem, na dynamikę i efekty procesu zagęszczania oraz jakość wydzielonych wód nadosadowych. Badania przeprowadzono dla osadów LI, LIV, LV. W tabelach TZ.4' \div TZ. 6' oraz na krzywych zagęszczania KZ.4' \div KZ.6' przedstawiono wyniki pomiarów wysokości powierzchni rozdziału osadu i wody nadosadowej. Z uwagi na maksymalną dopuszczalną wartość pH = 9,0 w ściekach wprowadzanych do wód lub do ziemi w tej serii badań próbki osadu alkalizowano do pH₀ = 9,5.

Osad o W₀ = 99,39 % (LI, tab. TZ.4', rys. KZ.4')

Alkalizacja próbek osadu przed zagęszczaniem, do p $H_0 = 8,02 \div 9,0$ spowodowała nieznaczne skrócenie czasu fazy sedymentacji cząstek osadu.

pH₀		7,00	7,60	8,02	8,51	9,00			
			osad						
V _k	cm ³	180	185	185	190	190			
W _k	%	96,95	96,99	97,01	97,07	97,08			
CSK _k	S	81,7	79,6	77,3	72,8	72,2			
η_z		5,00	4,93	4,90	4,80	4,79			
η_v	%	82,0	81,5	81,5	81,0	81,0			
t _s	min	16	16	14	14	14			
t _k	min	464	444	436	396	386			
tz	min	480	460	450	410	400			
Vs	cm/min	0,988	0,969	0,993	0,957	0,921			
woda nadosadowa									
рН _к		7,00	7,69	7,97	8,32	8,60			
zas M	val/m ³	3,27	3,14	2,92	2,61	2,31			
М	NTU	5,97	6,96	7,5	7,7	8,36			
В	gPt/m ³	15,73	20,7	23,7	26,33	28,99			
Utl	gO ₂ /m ³	10,30	11,22	12,3	12,78	13,46			
Mn	gMn/m ³	0,097	0,125	0,149	0,193	0,556			
Fe _{og}	gFe/m ³	0,190	0,187	0,185	0,198	0,207			
tw _{og}	°tw	17,5	17,1	16,4	15,2	13,5			
Ca	gCa/m ³	95,7	97,1	94,3	88,6	80,0			
Ca	°tw	13,4	13,6	13,2	12,4	11,2			
Ма	gMg/m ³	17,5	15,0	13,7	12,0	9,8			
ivig	°tw	4,1	3,5	3,2	2,8	2,3			
Zaw _{og}	g/m ³	8	8	8	8	10			

Tab. 3.8. Wpływ alkalizacji osadu na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych ($W_0 = 99,39$ %, LI)

Stwierdzono skrócenie wymaganego czasu zagęszczania alkalizowanych próbek osadu. Wraz ze wzrastająca wartością p H_0 zmniejszał się jednak stopień zagęszczenia i zmniejszenia objętości osadów (tab. 3.8, rys. 3.23).

Zwiększenie wartości pH próbek osadu przed ich zagęszczaniem miało negatywny wpływ na jakość wydzielonych wód nadosadowych. Stwierdzono wzrost wartości mętności, barwy, utlenialności oraz stężenia manganu wraz ze zmniejszającym się stężeniem jonów wodorowych.

Rys. 3.23. Wpływ alkalizacji osadu na stopień jego zagęszczenia i zmniejszenia objętości

Stężenie zawiesin ogólnych zwiększyło się o 2 g/m³ tylko w wodzie nadosadowej wydzielonej z osadu o największym pH₀. W badanym zakresie pH₀ stężenia żelaza ogólnego, tak jak i ich zmiany, byłby bardzo małe (rys. 3.24, tab. 3.8).

Rys. 3.24. Wpływ korekty pH₀ osadu na wartości wybranych wskaźników jakości wód nadosadowych

Wraz ze zwiększającą się dawką wapna i wartością pH_0 próbek osadu zmniejszały się zasadowość ogólna oraz stężenia wapnia i magnezu (tab. 3.8), co było efektem zachodzącego procesu dekarbonizacji wapnem.

Osad o W₀ = 99,46 % (LV, tab. TZ.5', rys. KZ.5')

Alkalizacja próbek osadu przed ich zagęszczaniem nie miała wpływu na czas fazy sedymentacji cząstek osadu, natomiast spowodowała skrócenie wymaganego czasu zagęszczania (tab. TZ,5', rys. KZ.5'). Jak wynika z danych zamieszczonych w tabeli 3.9 i na rysunku 3.25 wraz ze wzrostem wartości pH₀ badanych próbek osadu zmniejszały się stopień ich zagęszczenia oraz zmniejszenia objętości. W konsekwencji, podatność na dalsze odwadnianie próbek osadu, określona na podstawie wartości CSK_k, wzrastała wraz ze zwiększającą się wartością pH₀ (pogarszającą efekty zagęszczania) oraz uwodnienia końcowego. Skutkiem alkalizacji próbek osadu była również gorsza jakość wydzielonych wód nadosadowych z uwagi na mętność, utlenialność i zawiesin ogólnych (tab. 3.9, barwe, oraz stężenie manganu rys. 3.26).Największy wzrost stwierdzono w przypadku utlenialności (482,2 ÷ 889,7 %), natomiast najmniejszy w przypadku stężenia zawiesin ogólnych (33,3 ÷ 166,7 %).

Tab. 3.9. Wpływ alkalizacji osadu na badane parametry procesu oraz osadu
i jakość wydzielonych wód nadosadowych ($W_0 = 99,46$ %, LV)

 ₀Hq		7.55	8.00	8.50	9.00	9.50				
F0	1	- ,	osad	-,	-,	-,				
V _k	cm ³	110	115	120	120	125				
W _k	%	96,02	96,10	96,17	96,19	96,32				
CSK _k	S	44,9	43,7	42,2	41,6	39,5				
η _z		7,37	7,22	7,09	7,06	6,81				
η _v	%	89,0	88,5	88,0	88,0	87,5				
ts	min	24	24	24	24	24				
t _k	min	436	366	336	346	356				
tz	min	460	390	360	370	380				
Vs	cm/min	0,700	0,696	0,696	0,688	0,679				
	woda nadosadowa									
pН _к		7,55	7,89	8,37	8,82	9,14				
zas M	val/m ³	3,56	3,32	3,03	2,66	2,14				
М	NTU	4,73	6,75	7,93	8,79	15,54				
В	gPt/m ³	9,62	18,48	24,69	28,26	30,36				
Utl	gO ₂ /m ³	1,74	10,13	13,05	15,57	17,22				
Mn	gMn/m ³	0,068	0,114	0,140	0,212	0,589				
Fe _{og}	gFe/m ³	1,250	1,231	1,22	1,186	1,174				
tw _{og}	°tw	19,1	16,8	15,3	13,5	12,5				
Ca	gCa/m ³	95,0	86,4	80,7	74,3	68,6				
Ca	°tw	13,3	12,1	11,3	10,4	9,6				
Ма	gMg/m ³	24,8	20,1	17,1	13,3	12,4				
ivig	°tw	5,8	4,7	4,0	3,1	2,9				
Zaw _{og}	g/m ³	6	8	8	10	16				

Stężenie żelaza ogólnego w wodach nadosadowych zmniejszało się jedynie nieznacznie wraz ze zwiększającym się w nich stężeniem jonów OH⁻. Woda nadosadowa wydzielona z osadu o największym $pH_0 = 9,50$ charakteryzowała się wartością pH_k większą niż dopuszczalna w ściekach odprowadzanych do wód lub do ziemi.

Rys. 3.25. Wpływ alkalizacji osadu na stopień jego zagęszczenia i zmniejszenia objętości

Tak samo jak w przypadku poprzedniej serii badań, efektem alkalizacji próbek osadu przed ich zagęszczaniem było zmniejszenie zasadowości oraz stężeń wapnia i magnezu a w konsekwencji twardości ogólnej wód nadosadowych.

Rys. 3.26. Wpływ pH₀ na wartości wybranych wskaźników jakości wód nadosadowych

Osad o W₀ = 99,50 % (LIV) (tab. TZ.6', rys. KZ.6')

W tej serii badań pH₀ próbek osadu skorygowano w zakresie $8,50 \div 9,50$, a wyniki badań przedstawiono w tabelach 3.10 i TZ.6' oraz na rysunkach 3.27, 3.28 i KZ.6'.

Alkalizacja próbek osadu LIV przed ich zagęszczaniem nie miała wpływu na czas trwania fazy sedymentacji cząstek osadu i poza jedną próbką (pH₀ = 9,50) na wymagany czas zagęszczania osadów oraz spowodowała jedynie minimalne zmniejszenie prędkości opadania cząstek osadu. Na podstawie rysunku 3.27 i danych zamieszczonych w tabeli 3.10 stwierdzono, że wraz ze zwiększającą się wartością pH₀ zmniejszały się skuteczność zagęszczania (η_z) i zmniejszenia objętości osadu (η_v), a w konsekwencji rosła podatność próbek osadu na ich dalsze odwadnianie w procesach mechanicznych. Świadczy o tym zmniejszająca się wartość CSK_k (tab. 3.10).

Alkalizacja osadu miała również negatywny wpływ na jakość wydzielonych wód nadosadowych. Wraz ze wzrostem wartości p H_0 pogarszała się jakość tych wód ze względu na mętność, barwę, utlenialność oraz stężenie żelaza, manganu i zawiesin ogólnych (tab. 3.10, rys. 3.28).

pH₀		8,12	8,50	9,00	9,50			
		osa	d					
V _k	cm ³	100	110	115	120			
W _k	%	95,93	96,06	96,17	96,31			
CSK _k	S	48,8	39,6	37,3	32,8			
η_z		8,14	7,88	7,66	7,38			
η_v	%	90,0	89,0	88,5	88,0			
t _s	min	26	26	26	26			
t _k	min	424	424	424	414			
tz	min	450	450	450	440			
Vs	cm/min	0,742	0,738	0,738	0,738			
woda nadosadowa								
рН _к		8,12	8,41	8,87	9,22			
zas M	val/m ³	5,45	4,75	3,30	2,45			
М	NTU	4,60	7,44	8,91	10,40			
В	gPt/m ³	13,25	15,73	18,69	22,32			
Utl	gO ₂ /m ³	1,86	8,64	9,31	11,04			
Mn	gMn/m ³	0,058	0,093	0,114	0,126			
Fe _{og}	gFe/m ³	2,84	2,92	3,15	3,21			
tw _{og}	°tw	21,6	19,5	17,1	13,8			
Ca	gCa/m ³	99,3	90,7	82,6	70,7			
Ca	°tw	13,9	12,7	11,5	9,9			
Ma	gMg/m ³	33,0	29,1	24,0	16,7			
ivig	°tw	7,7	6,8	5,6	3,9			
Zaw _{og}	g/m ³	6	8	10	12			

Tab. 3.10. Wpływ korekty pH_0 na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych ($W_0 = 99,50$ %, LIV)

Stwierdzono, że wartości pH_k wody nadosadowej wydzielonej z próbki osadu o największym pH₀ = 9,5 była większa od wartości dopuszczalnej w ściekach odprowadzanych do wód lub do ziemi [46].

Rys. 3.27. Wpływ alkalizacji osadu na stopień jego zagęszczenia i zmniejszenia objętości

Największy wzrost stwierdzono w przypadku utlenialności, który wynosił 364,5 \div 493,5 %, a najmniejszy w przypadku stężenia żelaza (2,8 \div 13,0 %). Tak jak w przypadku osadów LI i LV alkalizacja próbek osadu zapewniła zmniejszenie twardości węglanowej wydzielonych wód nadosadowych. Najmniejsze wartości zasadowości ogólnej, stężenia wapnia i magnezu oraz twardości ogólnej stwierdzono w wodzie nadosadowej wydzielonej z osadu, którego pH₀ wynosiło 9,50.

Rys. 3.28. Wpływ korekty pH₀ na wartości wybranych wskaźników jakości wód nadosadowych

3.1.3.2. Wpływ kondycjonowania polielektrolitami

Celem tej serii badań było określenie wpływu kondycjonowania osadu polielektrolitami kationowymi i anionowymi, których dawki zmieniano w zakresie $0,1 \div 0,5 \text{ mg/g}_{smo}$. Do kondycjonowania osadów z ZOW "Leśnica" stosowano polielektrolity o różnej masie cząsteczkowej. Wyniki pomiarów rozdziału faz osad – woda nadosadowa w czasie zagęszczania (t_{zag}) przedstawiono w tabelach TZ.7' ÷ TZ.22', a krzywe zagęszczania na rysunkach KZ.7' ÷ KZ.22'.

I. Kondycjonowanie polielektrolitami kationowymi

Osad LIII

Kśr3 (tab. TZ.7', rys. KZ.7')

Analiza wyników badań przedstawionych w tabeli 3.11 oraz na rysunku 3.29 wykazała, że zastosowanie polielektrolitu Kśr3 do kondycjonowania osadu LIII pogorszyło efekty zagęszczania. Jedynie najmniejsza dawka zapewniła nieznaczne zwiększenie wartości η_z . Kondycjonowanie osadu zapewniło skrócenie czasu trwania fazy sedymentacji zawiesin oraz znaczne zwiększenie prędkości opadania cząstek osadu. Najkrótszy wymagany czas zagęszczania wynoszący 100 minut stwierdzono dla próbki osadu, do której dodano najwięcej polielektrolitu.

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5			
	osad									
V _k	cm ³	100	100	105	105	105	105			
W _k	%	95,68	95,67	95,77	95,79	95,8	95,82			
CSK _k	S	51,1	38,5	30,4	24,1	18,8	13,6			
η_z		9,19	9,21	9,00	8,96	8,94	8,89			
η_v	%	90,0	90,0	89,5	89,5	89,5	89,5			
t _s	min	16	12	2	2	2	2			
t _k	min	344	188	188	168	118	98			
tz	min	360	200	190	170	120	100			
Z		0,19	0,28	0,32	0,35	0,39	0,45			
Vs	cm/min	1,050	1,917	11,750	12,150	12,650	13,250			
		W	oda nad	losadowa	a					
рН _к		8,51	8,51	8,51	8,51	8,51	8,51			
zas M	val/m ³	5,25	5,25	5,25	5,25	5,25	5,25			
М	NTU	8,41	66,2	67,7	69,3	66,6	55,1			
В	gPt/m ³	25,42	33,88	38,13	41,57	50,61	42,03			
Utl	gO ₂ /m ³	1,95	2,33	2,67	2,81	3,47	3,23			
Mn	gMn/m ³	0,273	0,347	0,426	0,439	0,429	0,357			
Fe _{og}	gFe/m ³	6,46	13,30	13,81	14,50	13,96	11,16			
tw _{og}	°tw	20,2	20,2	20,2	20,2	20,2	20,2			
Zaw _{og}	g/m ³	10	44	44	44	44	38			

Tab. 3.11. Wpływ dawki polielektrolitu Kśr3 na parametry procesu, osadu oraz jakość wody nadosadowej (LIII, W₀ = 99,53 %)

Wszystkie stosowane dawki polielektrolitu spowodowały zmniejszenie podatności osadu na zagęszczanie w fazie komprymacji. Wraz ze wzrostem dawki substancji kondycjonującej stwierdzono natomiast wzrost podatności próbek osadu na dalsze odwadnianie (tab. 3.11).

Rys. 3.29. Wpływ dawki polielektrolitu Kśr3 na stopień zagęszczenia i zmniejszenia objętości osadu

Kondycjonowanie osadu polielektrolitem Kśr3 miało negatywny wpływ na jakość wydzielonych wód nadosadowych. Wartości mętności, barwy, utlenialności oraz stężeń żelaza ogólnego, manganu i zawiesin ogólnych, w wodach nadosadowych wydzielonych z próbek osadu po kondycjonowaniu były dużo większe niż w wodzie osadowej wydzielonej z osadu niekondycjonowanego (tab. 3.11, rys. 3.30).

Rys. 3.30. Wpływ dawki polielektrolitu Kśr3 na wartości mętności, barwy utlenialności i stężenia żelaza wód nadosadowych

Nie stwierdzono wpływu kondycjonowania osadu na wartość pH_k oraz zasadowość i twardość ogólną wód nadosadowych. Wszystkie stosowane dawki polielektrolitu spowodowały zwiększenie stężeń zawiesin ogólnych i żelaza ogólnego powyżej wartości dopuszczalnej w ściekach odprowadzanych do wód lub ziemi.

Kśr4 (tab. TZ.8', rys. KZ.8')

Kondycjonowanie osadu polielektrolitem Kśr4 nie miało wpływu na objętość osadu po zagęszczaniu. Dawki środka kondycjonującego wynoszące 0,1 i 0,2 mg/g_{smo} zapewniły nieznaczne zwiększenie wartości η_z , a pozostałe spowodowały odwrotny skutek (rys. 3.31). Stwierdzono wyraźne skrócenie czasu trwania fazy sedymentacji oraz zwiększenie prędkości opadania cząstek osadu. Wymagany czas zagęszczania kondycjonowanych próbek osadu również był zdecydowanie krótszy niż próbki niekondycjonowanej i skracał się wraz ze wzrostem dawki polielektrolitu. Wszystkie stosowane dawki substancji kondycjonującej zmniejszyły podatność osadu na zagęszczanie w fazie komprymacji (tab. 3.12).

procesu,	brocesu, osadu oraz jakość wody nadosadowej (Liii, $W_0 = 99,55\%$)								
Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5		
	osad								
V _k	cm ³	100	100	100	100	100	100		
W _k	%	95,68	95,64	95,66	95,69	95,70	95,71		
CSK _k	S	51,1	40,2	32,8	23,5	16,8	10,4		
η_z		9,19	9,28	9,23	9,17	9,15	9,13		
η_v	%	90,0	90,0	90,0	90,0	90,0	90,0		
t _s	min	16	6	2	2	2	2		
t _k	min	344	194	168	148	98	88		
tz	min	360	200	170	150	100	90		
Z		0,19	0,34	0,33	0,39	0,43	0,57		
Vs	cm/min	1,050	4,050	11,950	12,600	13,150	13,950		
		W	oda nad	losadowa	a				
М	NTU	8,41	31,9	50,9	70,2	71,1	73,0		
В	gPt/m ³	25,42	26,76	26,94	27,85	45,62	66,99		
Utl	gO ₂ /m ³	1,95	2,35	2,53	2,66	3,81	4,03		
Mn	gMn/m ³	0,273	0,312	0,368	0,455	0,476	0,483		
Fe _{og}	gFe/m ³	6,46	10,89	11,75	14,28	14,57	15,27		
Zaw _{og}	g/m ³	10	24	32	48	48	48		

Tab. 3.12. Wpływ dawki polielektrolitu Kśr4 na parametry procesu osadu oraz jakość wody padosadowej (LIII Wg – 99 53 %)

Wody nadosadowe wydzielone z próbek osadu kondycjonowanego charakteryzowały się zdecydowanie gorszą jakością niż woda nadosadowa wydzielona z osadu niekondycjonowanego. Wraz ze wzrostem dawki polielektrolitu wzrastały wartości badanych wskaźników jakości (tab. 3.12, rys. 3.31). Wody nadosadowe wydzielone z osadu, do którego dodano polielektrolit zawierały ponadnormatywne ilości żelaza ogólnego, a kondycjonowane dawkami $0.3 \div 0.5$ mg/g_{smo} również zawiesin ogólnych.

Rys. 3.31. Wpływ dawki polielektrolitu Kśr4 na stopień zagęszczenia oraz utlenialności i stężenie żelaza w wodzie nadosadowej

Kd2 (tab. TZ.9', rys. KZ.9')

Analiza wyników badań przedstawionych w tabeli 3.13 oraz na rysunku 3.32 wykazała, że wraz ze wzrostem dawki polielektrolitu Kd2 (o dużej masie cząsteczkowej) również zmniejszał się stopień zagęszczenia. Polielektrolit ten zapewnił wyraźne skrócenie czasu fazy sedymentacji cząstek osadu oraz zwiększenie prędkości sedymentacji zawiesin.

F = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000000000000000000000000000000000000	- J			·J (,					
D _p	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5			
	osad									
V _k	cm ³	100	105	115	120	120	120			
W _k	%	95,68	95,78	96,15	96,17	96,18	96,21			
CSK _k	S	51,1	39,9	30,8	24,2	19,4	15,9			
η_z		9,19	8,98	8,19	8,15	8,13	8,06			
η_v	%	90,0	89,5	88,5	88,0	88,0	88,0			
t _s	min	16	4	2	2	2	2			
t _k	min	344	206	178	148	118	98			
tz	min	360	210	180	150	120	100			
Z		0,19	0,30	0,32	0,36	0,39	0,43			
Vs	cm/min	1,050	5,650	11,150	11,400	11,850	12,300			
		W	oda nad	losadowa	a					
М	NTU	8,41	47,2	63,9	64,7	65,2	65,8			
В	gPt/m ³	25,42	28,59	29,97	32,06	33,60	50,08			
Utl	gO ₂ /m ³	1,95	2,36	2,42	2,81	2,51	3,55			
Mn	gMn/m ³	0,273	0,283	0,384	0,400	0,441	0,481			
Fe _{og}	gFe/m ³	6,46	11,87	13,60	13,78	14,24	14,31			
Zaw _{og}	g/m ³	10	38	44	44	44	44			

Tab. 3.13. Wpływ dawki polielektrolitu Kd2 na parametry procesu, osadu oraz jakość wody nadosadowej (LIII, W₀ = 99,53 %)

Wraz ze wzrostem dawki polielektrolitu skracał się również wymagany czas zagęszczania osadu oraz zmniejszała się podatność na zagęszczanie w fazie komprymacji. Odwrotną zależ-ność stwierdzono ze względu na podatność osadu na dalsze jego odwadnianie.

Kondycjonowanie osadu polielektrolitem Kd2 spowodowało wyraźne pogorszenie jakości wydzielonych wód nadosadowych. Wszystkie stosowane dawki polielektrolitu spowodowały przekroczenie dopuszczalnej wartości stężenia żelaza ogólnego i zawiesin ogólnych w ściekach odprowadzanych do wód i ziemi.

Rys. 3.32. Wpływ dawki polielektrolitu Kd2 na stopień zagęszczenia osadu oraz barwę, mętności i stężeni żelaza ogólnego w wodach nadosadowych

Kd3 (tab. TZ.10', rys. KZ.10')

Na podstawie wyników przedstawionych w tabeli 3.14 oraz na rysunku 3.33 stwierdzono, że wraz ze wzrostem dawki polielektrolitu Kd3 (o dużej masie cząsteczkowej) stopień zagęszczenia osadu zmniejszał się. Kondycjonowanie osadu tym polielektrolitem zapewniło wyraźne skrócenie czasu sedymentacji zawiesin i wymaganego czasu zagęszczania osadu oraz duże zwiększenie prędkości opadania cząstek osadu. Wraz ze wzrostem dawki polielektrolitu zmniejszała się podatność na zagęszczanie w fazie komprymacji, a odwrotną zależność stwierdzono ze względu na podatność na dalsze odwadnianie (tab. 3.14).

Kondycjonowanie osadu miało negatywny wpływ na jakość wydzielonych wód nadosadowych. Wraz ze wzrostem dawki polielektrolitu zwiększały się wartości wszystkich badanych wskaźników jakości.

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5		
	osad								
V _k	cm ³	100	105	110	110	110	110		
W _k	%	95,68	95,78	95,91	95,92	95,93	95,95		
CSK _k	S	51,1	42,3	33,7	26,7	20,1	15,4		
η_z		9,19	8,98	8,70	8,68	8,66	8,62		
η_v	%	90,0	89,5	89,0	89,0	89,0	89,0		
t _s	min	16	4	2	2	2	2		
t _k	min	344	216	168	168	118	98		
tz	min	360	220	170	170	120	100		
Z		0,19	0,25	0,33	0,34	0,36	0,45		
Vs	cm/min	1,050	5,150	11,250	11,400	11,750	12,750		
		W	oda nad	losadowa	a				
М	NTU	8,41	32,7	60,3	67,6	68,0	68,2		
В	gPt/m ³	25,42	26,17	26,21	30,86	31,83	38,63		
Utl	gO ₂ /m ³	1,95	2,45	2,49	2,54	2,58	2,70		
Mn	gMn/m ³	0,273	0,278	0,420	0,426	0,426	0,429		
Fe _{og}	gFe/m ³	6,46	8,19	12,08	13,47	13,66	13,74		
Zaw _{og}	g/m ³	10	26	40	42	42	42		

Tab. 3.14. Wpływ dawki polielektrolitu Kd3 na parametry procesu, osadu i jakość wody nadosadowej (LIII, $W_0 = 99,53 \%$)

Dodanie do osadu polielektrolitu w ilości $0,2 \div 0,5 \text{ mg/g}_{smo}$ spowodowało przekroczenie dopuszczalnych wartości stężeń żelaza ogólnego i zawiesin ogólnych w ściekach wprowadzanych do wód i ziemi.

Rys. 3.33. Wpływ dawki polielektrolitu Kd3 na stopień zagęszczenia osadu i prędkość sedymentacji jego cząstek

Rys. 3.34. Wpływ dawki polielektrolitu Kd3 na mętność, barwę i stężenie żelaza ogólnego w wodach nadosadowych

Kd1 (tab. TZ.11', rys. KZ.11')

Analiza wyników badań przedstawionych w tabeli 3.15 oraz na rysunku 3.35 wykazała, że dodanie polielektrolitu Kd1 (o dużej masie cząsteczkowej) do osadu przed zagęszczaniem zmniejszyło stopień zagęszczenia i zmniejszenia objętości osadu.

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	ad			
V _k	cm ³	100	110	115	125	125	130
W _k	%	95,68	96,07	96,29	96,56	96,56	96,93
CSK _k	S	51,1	42,2	31,7	23,5	14,1	8,9
η_z		9,19	8,36	7,89	7,32	7,32	6,53
η_v	%	90,0	89,0	88,5	87,5	87,5	87,0
t _s	min	16	2	2	2	2	4
t _k	min	344	158	128	68	48	46
tz	min	360	160	130	70	50	50
Z		0,19	0,29	0,38	0,46	0,59	0,85
Vs	cm/min	1,050	10,850	11,650	12,400	13,550	7,125
		W	oda nado	osadowa	l		
М	NTU	31,4	31,2	40,0	55,5	76,5	78,2
В	gPt/m ³	25,42	25,55	26,28	33,41	36,28	40,23
Utl	gO ₂ /m ³	1,95	2,05	2,62	2,81	2,96	3,04
Mn	gMn/m ³	0,273	0,159	0,229	0,308	0,503	0,581
Fe _{og}	gFe/m ³	6,46	7,22	8,82	12,05	15,93	16,08
Zaw _{og}	g/m ³	26	26	30	36	46	46

Tab. 3.15. Wpływ dawki polielektrolitu Kd1 na parametry procesu, osadu oraz jakość wody nadosadowej (LIII, $W_0 = 99,53 \%$)

Kondycjonowanie zapewniło wyraźne skrócenie czasu trwania fazy sedymentacji cząstek osadu oraz wymaganego czasu zagęszczania. Próbki osadu, do których dawkowano polielektrolit charakteryzowały się mniejszą podatnością na zagęszczanie w fazie komprymacji niż próbka niekondycjonowana. Wraz ze wzrostem dawki polielektrolitu zwiększała się natomiast podatność na dalsze odwadnianie.

Rys. 3.35. Wpływ dawki polielektrolitu Kd1 na stopień zagęszczenia osadu oraz mętność i barwę wody nadosadowej

Kondycjonowanie osadu miało także negatywny wpływ na jakość wód nadosadowych, który zwiększał się wraz ze wzrostem dawki polielektrolitu (tab.3.15, rys. 3.35). Jedynie dawki 0,1 i 0,2 mg/g_{smo} zapewniły zmniejszenie stężenia manganu poniżej wartości stwierdzonej dla wody nadosadowej wydzielonej z próbki niekondycjonowanej. W wodach nadosadowych wydzielonych z próbek osadu kondycjonowanych dawkami z zakresu 0,3 \div 0,5 mg/g_{smo} stwierdzono stężenia żelaza ogólnego i zawiesin ogólnych przekraczające dopuszczalne wartości w ściekach odprowadzanych do wód i ziemi (tab. 3.15).

Osad LII

Kśr5 (tab. TZ.12', rys. KZ.12')

Kondycjonowanie osadu polielektrolitem Kśr5 (o średniej masie cząsteczkowej) zapewniło wyraźne skrócenie czasu fazy sedymentacji zawiesin oraz wymaganego czasu zagęszczania osadu, ale jednocześnie pogorszyło efekty zagęszczania osadu. Wraz ze wzrostem dawki polielektrolitu zwiększała się prędkość sedymentacji cząstek osadu i zmniejszała się wartość η_z (tab. 3.16, rys. 3.36).

Jakość wód nadosadowych, wydzielonych z próbek osadu po kondycjonowaniu, z uwagi na mętność, barwę, utlenialność i stężenia manganu, żelaza i zawiesin ogólnych, była gorsza od wody wydzielonej z osadu surowego. Wartości wymienionych wskaźników zwiększały się wraz ze wzrostem dawki substancji kondycjonującej (tab. 3.16, rys. 3.36).

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	d			
V _k	cm ³	55	70	75	85	85	85
W _k	%	94,53	95,09	95,18	96,13	96,26	96,46
CSK _k	S	57,7	41,5	33,8	26,1	17,9	12,6
η_z		15,19	13,64	13,39	10,75	10,39	9,83
η_v	%	94,5	93	92,5	91,5	91,5	91,5
t _s	min	10	6	4	4	4	4
t _k	min	270	174	136	106	96	66
tz	min	280	180	140	110	100	70
Z		0,11	0,32	0,41	0,48	0,53	0,67
Vs	cm/min	1,990	4,533	6,950	7,050	7,175	7,400
		wo	da nado	sadowa			
рН _к		7,40	7,40	7,40	7,40	7,40	7,40
zas M	val/m ³	3,32	3,32	3,32	3,32	3,32	3,32
М	NTU	12,8	47,0	60,8	70,3	74,1	75,6
В	gPt/m ³	7,08	8,80	9,51	10,46	11,18	11,56
Utl	gO ₂ /m ³	1,62	2,24	2,25	2,27	2,30	2,36
Mn	gMn/m ³	0,310	0,355	0,666	0,884	0,892	0,921
Fe _{og}	gFe/m ³	7,53	9,46	11,97	13,65	14,60	14,95
tw _{og}	°tw	18,9	18,9	18,9	18,9	18,9	18,9
Zaw _{og}	g/m ³	14	24	32	34	36	36

Tab. 3.16. Wpływ dawki polielektrolitu Kśr5 na parametry procesu, osadu oraz jakość wody nadosadowej (LII, $W_0 = 99,64 \%$)

Rys. 3.36. Wpływ dawki polielektrolitu Kśr5 na stopień zagęszczenia osadu oraz barwę i stężenie żelaza ogólnego w wodach nadosadowych

Nie stwierdzono natomiast wpływu kondycjonowania osadu na wartości twardości i zasadowości ogólnej wód nadosadowych oraz stężenia w nich jonów wodorowych. Dawki wynoszące $0,2 \div 0,5 \text{ mg/g}_{smo}$ spowodowały zwiększenie stężenia żelaza ogólnego powyżej wartości dopuszczalnej w ściekach odprowadzanych do wód lub do ziemi, a stężenie zawiesin ogólnych większe niż dopuszczalne stwierdzono w wodach nadosadowych wydzielonych z próbek osadu do których dodano polielektrolit w ilości 0,4 i 0,5 mg/ g_{smo} (tab.3.16).

Kd5 (tab. TZ.13', rys. KZ.13')

Z analizy wyników badań przedstawionych w tabeli 3.17 i na rysunku 3.37 wynika, że kondycjonowanie osadu polielektrolitem o dużej masie cząsteczkowej (Kd5) również nie poprawiło efektów zagęszczania, ale skróciło wymagany czas zagęszczania oraz czas fazy sedymentacji cząstek osadu. Wraz ze wzrostem dawki polielektrolitu zmniejszały się podatność osadu na zagęszczanie w fazie komprymacji i wartość stopnia zagęszczenia osadu. Próbki osadu po zagęszczaniu charakteryzowały się większą podatnością na dalsze odwadnianie w procesach mechanicznych niż próbka osadu zagęszczanego bez kondycjonowania.

Tak samo jak w przypadku poprzednich polielektrolitów kondycjonowanie osadu pogorszyło jakość wydzielonych wód nadosadowych. Wraz ze wzrostem dawki środka kondycjonującego zwiększały się wartości wszystkich badanych wskaźników jakości.

Obuuu I Ju	mose wou	y maaoba	.uo ii ej (1	JII , 110-		\$)	
D _p	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	d			
V _k	cm ³	55	60	70	70	70	70
Ŵĸ	%	94,53	94,79	95,4	95,57	95,89	95,92
CSK _k	S	57,7	41,1	32,2	24,5	17,7	10,3
ηz		15,19	14,47	12,78	12,31	11,42	11,33
ην	%	94,5	94,0	93,0	93,0	93,0	93,0
t _s	min	10	10	4	4	4	4
t _k	min	270	140	96	76	56	56
tz	min	280	150	100	80	60	60
Z		0,11	0,36	0,54	0,62	0,81	0,88
Vs	cm/min	1,990	2,850	7,375	7,450	7,650	7,700
		wo	da nado	sadowa	1		
М	NTU	12,8	23,0	29,0	63,6	71,9	74,5
В	gPt/m ³	7,08	11,47	12,09	14,15	17,95	18,13
Utl	gO ₂ /m ³	1,62	2,24	2,26	2,29	2,34	2,43
Mn	gMn/m ³	0,310	0,340	0,360	0,870	0,990	1,070
Fe _{og}	gFe/m ³	7,53	9,13	10,36	16,38	17,99	18,13
Zaw _{og}	g/m ³	14	18	20	34	36	36

Tab. 3.17. Wpływ dawki polielektrolitu Kd5 na parametry procesu, osadu i jakość wody nadosadowej (LII, $W_0 = 99.64 \%$)

Ponadnormatywne stężenia żelaza ogólnego stwierdzono w wodach nadosadowych wydzielonych z próbek osadu, do których dodano polielektrolit w ilości $0,2 \div 0,5 \text{ mg/g}_{smo}$ (tab.3.17). Z uwagi na stężenie zawiesin ogólnych przekroczenie dopuszczalnej wartości stwierdzono w przypadku próbek kondycjonowanych dawkami 0,4 i 0,5 mg/g_{smo} polielektrolitu (tab.3.17).

Rys. 3.37. Wpływ dawki polielektrolitu Kd5 na stopień zagęszczenia osadu oraz barwę i stężenie żelaza ogólnego w wodach nadosadowych

Kd4 (tab. TZ.14', rys. KZ.14')

Efektem zastosowania polielektrolitu Kd4 o dużej masie cząsteczkowej do kondycjonowania osadu było wyraźne skrócenie czasu fazy sedymentacji i wymaganego czasu zagęszczania osadu oraz zwiększenie prędkości sedymentacji zawiesin.

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	d			
V _k	cm ³	55	60	65	65	65	65
W _k	%	94,53	94,76	94,93	94,95	94,95	94,97
CSK _k	S	57,7	43,7	34,6	26,8	17,5	11,9
η_z		15,19	14,56	14,08	14,03	14,03	13,97
η_v	%	94,5	94,0	93,5	93,5	93,5	93,5
t _s	min	10	4	4	4	4	4
t _k	min	270	136	86	46	10	8
tz	min	280	140	90	50	14	12
Z		0,11	0,44	0,60	0,70	0,83	0,90
Vs	cm/min	1,990	7,325	7,550	7,625	7,725	7,775
		wo	da nado	sadowa	l		
М	NTU	12,8	35,1	42,7	53,5	73,9 [×]	78,7 ^y
В	gPt/m ³	7,08	11,97	12,49	13,03	13,19	13,31
Utl	gO ₂ /m ³	1,62	2,36	2,35	2,24	2,28	2,36
Mn	gMn/m ³	0,310	0,404	0,485	0,522	0,866	1,022
Fe _{og}	gFe/m ³	7,53	7,98	8,67	10,64	13,11	15,17
Zawog	a/m ³	14	26	30	36	40	44

Tab. 3.18. Wpływ dawki polielektrolitu Kd4 na parametry procesu, osadu oraz jakość wody nadosadowej (LII, $W_0 = 99,64$ %)

(x) wszystkie parametry i wskaźniki oznaczono po $t_{zag} = t_z + 26 \text{ minut}$, (y) po $t_{zag} = t_z + 28 \text{ minut}$.

Wraz ze wzrostem dawki substancji kondycjonującej zmniejszała się wartość η_z (rys. 3.38) oraz podatność osadu do zagęszczania w fazie komprymacji. Podatność na dalsze odwadnianie próbek osadu, do których dodano polielektrolit, była większa niż próbki niekondycjonowanej i zwiększała się wraz ze wzrostem dawki polielektrolitu (tab. 3.18).

Jakość wód nadosadowych wydzielonych z próbek osadu kondycjonowanego, ze względu na wszystkie badane wskaźniki, była zdecydowanie gorsza niż wody wydzielonej z osadu surowego i pogarszała się wraz ze wzrostem dawki polielektrolitu. Wpływ dawki polielektrolitu ze względu na utlenialność wód nadosadowych był niejednoznaczny. (tab. 3.18, rys. 3.38). Dawki polielektrolitu wynoszące $0,3 \div 0,5 \text{ mg/g}_{smo}$ spowodowały zwiększenie wartości stężenia żelaza ogólnego i zawiesin ogólnych powyżej dopuszczalnych wartości tych wskaźników w ściekach wprowadzanych do wód lub ziemi.

Rys. 3.38. Wpływ dawki polielektrolitu Kd4 na stopień zagęszczenia osadu i barwę oraz stężenie żelaza ogólnego w wodach nadosadowych

II. Kondycjonowanie polielektrolitami anionowymi

OSAD LII

Ad1 (tab. TZ.15', rys. KZ.15')

Z analizy wyników badań przedstawionych w tabeli 3.19 oraz na rysunku 3.39 wynika, że zastosowanie anionowego polielektrolitu Ad1 o dużej masie cząsteczkowej do kondycjonowania osadu zdecydowanie pogorszyło efekty jego zagęszczania ze względu na stopień zagęszczenia jak i zmniejszenia objętości osadu. Polielektrolit ten, tak jak wszystkie wcześniej omówione, spowodował skrócenie czasu trwania fazy sedymentacji zawiesin oraz wymaganego czasu zagęszczania. Wraz ze wzrostem dawki substancji kondycjonującej wzrastała prędkość opadania cząstek osadu oraz zmniejszała się podatność próbek osadu na zagęszczanie w fazie komprymacji, a odwrotną zależność stwierdzono w odniesieniu do podatności próbek osadu po zagęszczaniu na dalsze odwadnianie.

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	d			
V _k	cm ³	55	70	75	90	90	90
W _k	%	94,53	95,31	95,46	96,34	96,36	96,39
CSK _k	S	57,7	39,8	30,3	16,8	10,4	6,8
η_z		15,19	13,03	12,61	10,17	10,11	10,03
η_v	%	94,5	93,0	92,5	91,0	91,0	91,0
t _s	min	10	4	4	4	4	4
t _k	min	270	136	126	96	86	86
tz	min	280	140	130	100	90	90
Z		0,11	0,43	0,46	0,74	0,79	0,84
Vs	cm/min	1,990	7,200	7,225	7,425	7,475	7,525
		wo	da nado	sadowa			
рН _к		7,40	7,40	7,40	7,40	7,40	7,40
zas M	val/m ³	3,32	3,32	3,32	3,32	3,32	3,32
М	NTU	12,8	21,7	34,8	36,7	87,7	90,2
В	gPt/m ³	7,08	10,15	11,09	12,96	14,61	15,23
Utl	gO ₂ /m ³	1,62	2,33	2,41	2,50	2,89	2,96
Mn	gMn/m ³	0,310	0,394	0,492	0,500	1,209	1,222
Fe _{og}	gFe/m ³	7,53	8,54	9,68	9,92	15,81	16,51
tw _{og}	°tw	18,9	18,9	18,9	18,9	18,9	18,9
Zaw _{og}	g/m ³	14	16	20	22	48	50

Tab. 3.19. Wpływ dawki polielektrolitu Ad1 na parametry procesu, osadu oraz jakość wody nadosadowej (LII, $W_0 = 99,64 \%$)

Rys. 3.39. Wpływ dawki polielektrolitu Ad1 na stopień zagęszczenia osadu oraz barwę i stężenie żelaza ogólnego wody nadosadowej

Kondycjonowanie osadu miało negatywny wpływ na jakość wydzielonych wód nadosadowych. Wraz ze wzrostem dawki polielektrolitu zwiększały się wartości mętności, barwy, utlenialności oraz stężeń manganu, żelaza ogólnego i zawiesin ogólnych. W przypadku wód nadosadowych wydzielonych z próbek osadu, do których dodano polielektrolit w ilości 0,4 i 0,5 mg/ g_{smo} stwierdzono wzrost stężenia żelaza ogólnego i zawiesin ogólnych powyżej dopuszczalnych wartości tych wskaźników w ściekach wprowadzanych do wód i ziemi (tab. 3.19, rys. 3.39).

Abd (tab. TZ.16', rys. KZ.16')

Efektywność zagęszczania osadu (η_z) kondycjonowanego polielektrolitem o bardzo dużej masie cząsteczkowej (Abd) malała wraz ze wzrostem jego dawki (rys. 3.40). Polielektrolit ten skrócił wymagany czas zagęszczania osadu oraz czas trwania fazy sedymentacji zawiesin. Wszystkie próbki osadu po zagęszczaniu poprzedzonym kondycjonowaniem charakteryzowały się większą podatnością na dalsze odwadnianie (tab. 3.20).

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	d			
V _k	cm ³	55	70	85	85	85	85
W _k	%	94,53	95,23	95,78	95,80	95,81	95,84
CSK _k	S	57,7	40,6	31,2	20,8	13,1	9,6
η_z		15,19	13,25	11,72	11,67	11,64	11,56
η_v	%	94,5	93,0	91,5	91,5	91,5	91,5
t _s	min	10	4	4	4	4	4
t _k	min	270	126	86	76	36	36
tz	min	280	130	90	80	40	40
Z		0,11	0,15	0,47	0,50	0,57	0,67
Vs	cm/min	1,990	5,050	7,075	7,100	7,250	7,400
		wo	da nado	sadowa			
М	NTU	12,8	38,2	52,5	69,5	74,3	79,7
В	gPt/m ³	7,08	8,04	8,43	9,30	11,25	14,84
Utl	gO ₂ /m ³	1,62	2,09	2,21	2,27	2,29	2,36
Mn	gMn/m ³	0,310	0,370	0,510	0,860	0,930	1,150
Fe _{og}	gFe/m ³	7,53	8,77	9,36	12,15	13,42	15,01
Zawoo	a/m ³	14	24	32	38	42	46

Tab. 3.20. Wpływ dawki polielektrolitu Abd na parametry procesu, osadu oraz jakość wody nadosadowej (LII, $W_0 = 99,64 \%$)

Kondycjonowanie osadu zwiększyło poziom zanieczyszczenia wód nadosadowych. Wraz ze wzrostem dawki polielektrolitu zwiększały się wartości wszystkich badanych wskaźników jakości tych wód. Dawki z zakresu $0,3 \div 0,5 \text{ mg/g}_{smo}$ spowodowały zwiększenie stężeń żelaza i zawiesin ogólnych powyżej dopuszczalnych ich wartości w ściekach wprowadzanych do wód lub ziemi.

Rys. 3.40. Wpływ dawki polielektrolitu Abd na stopień zagęszczenia osadu oraz barwę i stężenie żelaza ogólnego w wodach nadosadowych

Ad2 (tab. TZ.17', rys. KZ.17')

Analiza wyników badań zawartych w tabeli 3.21 oraz na rysunku 3.41 wykazała, że zastosowanie polielektrolitu o dużej masie cząsteczkowej (Ad2) do kondycjonowania osadu LII również pogorszyło skuteczność jego zagęszczania ze względu na stopień zagęszczenia i zmniejszenia objętości osadu. Wraz ze wzrostem dawki polielektrolitu skracał się wymagany czas zagęszczania osadu oraz zwiększała się prędkość opadania zawiesin. Czas trwania fazy sedymentacji cząstek osadu wszystkich próbek kondycjonowanych wynosił 4 minuty i był 2,5krotnie krótszy niż cząstek osadu niekondycjonowanego. Wraz ze wzrostem dawki polielektrolitu zmniejszały się podatność osadów na zagęszczanie w fazie komprymacji oraz wartości CSK_k próbek osadu po zagęszczaniu (tab. 3.21).

Jakość wydzielonych wód nadosadowych z próbek osadu kondycjonowanego była zdecydowanie gorsza niż wody nadosadowej wydzielonej z osadu niekondycjonowanego. Wartości wszystkich wskaźników jakości tych wód zwiększały się wraz ze wzrostem dawki polielektrolitu, a stężenia żelaza ogólnego i zawiesin ogólnych większe od dopuszczalnych w ściekach wprowadzanych do wód stwierdzono dla dawek polielektrolitu $\geq 0,2 \text{ mg/g}_{\text{smo}}$ (tab. 3.21, rys. 3.41).

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	d			
V _k	cm ³	55	65	75	75	75	75
W _k	%	94,53	94,81	95,03	95,04	95,06	95,09
CSK _k	S	57,7	42,2	30,3	19,2	12,9	7,1
η_z		15,19	14,42	13,81	13,78	13,72	13,64
η_v	%	94,5	93,5	92,5	92,5	92,5	92,5
t _s	min	10	4	4	4	4	4
t _k	min	270	146	86	66	36	26
tz	min	280	150	90	70	40	30
Z		0,11	0,35	0,48	0,63	0,69	0,79
Vs	cm/min	1,990	7,025	7,150	7,350	7,500	7,600
		wo	da nado	sadowa	l		
М	NTU	12,8	45,2	52,4	59,9	76,6	78,5
В	gPt/m ³	7,08	9,46	10,31	10,50	11,34	12,31
Utl	gO ₂ /m ³	1,62	2,55	2,59	2,66	2,74	2,76
Mn	gMn/m ³	0,310	0,357	0,459	0,676	0,900	0,875
Fe _{og}	gFe/m ³	7,53	9,36	11,21	11,46	14,26	14,59
Zaw _{og}	g/m ³	14	30	36	38	44	44

Tab. 3.21. Wpływ dawki polielektrolitu Ad2 na parametry procesu, osadu oraz jakość wody nadosadowej (LII, $W_0 = 99,64 \%$)

Rys. 3.41. Wpływ dawki polielektrolitu Ad2 na stopień zagęszczenia osadu oraz stężenie żelaza ogólnego i barwę wody nadosadowej

III. Kondycjonowanie dwoma polielektrolitami

Polielektrolity kationowe o średniej masie cząsteczkowej - Kśr3 + Kśr4 (tab. TZ.18', rys. KZ.18')

W tej serii badań kondycjonowano osad LI, dla którego uzyskano najmniejszy stopień zagęszczenia ($\eta_z = 5,00$) Z analizy wyników badań przedstawionych w tabeli 3.22 oraz na rysunku 3.42 wynika, że zastosowanie dwóch polielektrolitów kationowych do kondycjonowania osadu spowodowało pogorszenie efektów zagęszczania z uwagi na stopień zagęszczenia i zmniejszenia objętości osadu. Efektem aglomerującego działania polielektrolitu było natomiast wyraźne skrócenie czasu trwania fazy sedymentacji zawiesin oraz wymaganego czasu zagęszczania osadu. Wraz ze wzrostem dawki substancji kondycjonujących zmniejszała się podatność próbek osadu na zagęszczanie w fazie komprymacji, a odwrotną prawidłowość stwierdzono w odniesieniu do podatności osadu na dalsze odwadnianie (tab. 3.22).

na paran	na parametry procesu, osadu oraz jakość wody nadosadowej (L1, w										
D _p	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5				
			osa	d							
V _k	cm ³	180	200	220	220	240	260				
W _k	%	96,95	97,35	97,55	97,57	97,96	98,18				
CSK _k	S	81,7	63,2	37,8	31,1	18,4	9,7				
η_z		5,00	4,34	4,02	3,98	3,34	2,98				
η_v	%	82,0	80,0	78,0	78,0	76,0	74,0				
t _s	min	16	6	4	4	4	4				
t _k	min	464	214	166	136	116	106				
tz	min	480	220	170	140	120	110				
Z		0,33	0,35	0,39	0,44	0,55	0,70				
Vs	cm/min	0,988	2,500	3,750	4,300	4,775	5,300				
		wo	da nado	sadowa	l						
М	NTU	5,97	3,42	3,09	2,99	2,90	2,74				
В	gPt/m ³	15,73	15,09	14,72	14,26	13,99	13,26				
Utl	gO_2/m^3	10,3	6,10	5,46	5,38	5,34	5,26				
Mn	gMn/m ³	0,097	0,033	0,024	0,019	0,015	0,013				
Fe _{og}	gFe/m ³	0,190	0,173	0,168	0,162	0,159	0,132				
Zaw _{og}	g/m ³	8	6	6	6	6	6				

Tab. 3.22. Wpływ dawki polielektrolitów Kśr3 i Kśr4 na parametry procesu, osadu oraz jakość wody nadosadowej (LI, W₀ = 99,39 %)

Jednoczesne kondycjonowanie osadu tymi polielektrolitami kationowymi miało pozytywny wpływ na jakość wydzielonych wód nadosadowych. Wraz ze wzrostem dawki tych reagentów zmniejszały się wartości mętności, barwy i utlenialności oraz stężenia manganu i żelaza ogólnego (tab. 3.22, rys. 3.43). Stężenie zawiesin ogólnych w wodach nadosadowych wydzielonych z kondycjonowanych próbek osadu było takie samo (bez względu na D_p) i o 2 g/m³ mniejsze niż w próbce wody wydzielonej z osadu niekondycjonowanego.

Rys. 3.42. Wpływ dawki polielektrolitów Kśr3 i Kśr4 na stopień zagęszczenia i zmniejszenia objętości osadu

Rys. 3.43. Wpływ dawki polielektrolitów Kśr3 i Kśr4 na barwę, mętności i utlenialność wód nadosadowych

Polielektrolity kationowe o dużej masie cząsteczkowej - Kd2 + Kd3 (tab. TZ.19', rys. KZ.19')

Kondycjonowanie osadu jednocześnie tymi dwoma polielektrolitami nie zapewniło poprawy efektów zagęszczania. Wraz ze wzrostem dawki środków koncycjonujących zmniejszały się wartości η_z i η_v (rys. 3.44). Stwierdzono wyraźne zwiększenie prędkości opadania zawiesin oraz skrócenie wymaganego czasu zagęszczania. Podatność próbek osadu na zagęszczanie w fazie komprymacji zmniejszała się wraz ze wzrostem dawki polielektrolitów. Odwrotną zależność stwierdzono ze względu na podatność osadu na dalsze odwadnianie (tab. 3.23).

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	d			
V _k	cm ³	180	210	230	255	265	275
W _k	%	96,95	97,27	97,44	97,61	97,71	97,85
CSK _k	S	81,7	45,4	30,2	20,6	13,6	6,9
η_z		5,00	4,48	4,20	3,92	3,75	3,52
η_v	%	82,0	79,0	77,0	74,5	73,5	72,5
t _s	min	16	4	4	2	2	2
t _k	min	464	226	176	138	118	148
tz	min	480	230	180	140	120	150
Z		0,33	0,31	0,40	0,39	0,50	0,61
Vs	cm/min	0,988	2,900	3,650	6,200	8,000	9,300
		wo	da nado	sadowa	l		
М	NTU	5,97	1,53	0,9	0,8	0,85	0,91
В	gPt/m ³	15,73	15,34	14,74	14,56	14,37	14,36
Utl	gO ₂ /m ³	10,3	5,54	5,26	5,14	5,11	5,09
Mn	gMn/m ³	0,097	0,018	0,010	0,008	0,010	0,012
Fe _{og}	gFe/m ³	0,190	0,067	0,048	0,042	0,054	0,055
Zaw _{og}	g/m ³	8	4	2	2	2	2

Tab. 3.23. Wpływ dawki polielektrolitów Kd2 i Kd3 na parametry procesu, osadu oraz jakość wody nadosadowej (LI, W₀ = 99,39 %)

Rys. 2.44. Wpływ dawki polielektrolitów Kd2 i Kd3 na stopień zagęszczenia i zmniejszenia objętości osadu

Kondycjonowanie osadu korzystnie natomiast wpłynęło na jakość wydzielonych wód nadosadowych. Wartości badanych wskaźników jakości tych wód były mniejsze niż stwierdzone w wodzie wydzielonej z osadu niekondycjonowanego. Dawka polielektrolitów wynosząca 0,3 mg/g_{smo} zapewniła najlepszą jakość ze względu na mętność oraz stężenia manganu i żelaza ogólnego. Znaczące zmniejszenie barwy i utlenialności zapewniły dawki 0,1 – 0,2 mg/g_{smo}, zaś wpływ większych ilości reagentów kondycjonujących był jedynie minimalny (rys. 3.45). Natomiast dawki z zakresu $0,2 \div 0,5 \text{ mg/g}_{smo}$ zapewniły zmniejszenie stężenia zawiesin ogólnych z 8 do 2 g/m³.

Rys. 3.45. Wpływ dawki polielektrolitów Kd2 i Kd3 na mętność, utlenialność i barwę wód nadosadowych

Polielektrolity o średniej i dużej masie cząsteczkowej - Kśr5 + Kd5 (tab. TZ.20', rys. KZ.20')

Analiza wyników badań przedstawionych w tabeli 3.24 oraz na rysunku 3.46 wykazała, że kondycjonowanie osadu polielektrolitami Kśr5 i Kd5 zmniejszyło o $9,6 \div 25,6$ % stopień zagęszczenia oraz zwiększyło objętość osadu po zagęszczaniu o $20 \div 65$ cm³.

Rys. 3.46. Wpływ dawki polielektrolitów Kśr5 i Kd5 na stopień zagęszczenia i zmniejszenia objętości osadu

Stwierdzono skrócenie czasu trwania fazy sedymentacji zawiesin oraz skrócenie wymaganego czasu zagęszczania osadu (tab. 3.24). Wraz ze wzrostem dawki polielektrolitów oraz wartości W_k zwiększała się podatność osadu na dalsze odwadnianie, a wpływ dawki na wartości współczynnika Z nie był jednoznaczny. Wody nadosadowe wydzielone z próbek osadu kondycjonowanego charakteryzowały się lepszą jakością niż woda nadosadowa wydzielona z osadu niekondycjonowanego, a najlepszą jakość zapewniła dawka polielektrolitów równa 0,2 mg/g_{smo} (tab. 3.24, rys. 3.47).

D _p	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	d			
V _k	cm ³	180	200	220	230	240	245
W _k	%	96,95	97,24	97,47	97,58	97,66	97,73
CSK _k	S	81,7	46,2	31,8	23,1	15,4	9,1
η_z		5,00	4,52	4,15	3,97	3,84	3,72
η_v	%	82,0	80,0	78,0	77,0	76,0	75,5
t _s	min	16	4	4	2	2	2
t _k	min	464	276	216	188	148	168
tz	min	480	280	220	190	150	170
Z		0,33	0,27	0,35	0,31	0,39	0,42
Vs	cm/min	0,988	2,375	3,325	4,600	6,500	7,000
		wo	da nado	sadowa	l		
М	NTU	5,97	1,24	0,67	0,87	1,04	1,56
В	gPt/m ³	15,73	14,78	13,95	13,99	14,09	14,26
Utl	gO ₂ /m ³	10,30	6,42	5,94	6,04	6,38	6,60
Mn	gMn/m ³	0,097	0,022	0,012	0,014	0,016	0,020
Fe _{og}	gFe/m ³	0,190	0,031	0,018	0,021	0,027	0,035
Zaw _{og}	g/m ³	8	4	2	2	4	4

Tab. 2.24. Wpływ dawki polielektrolitów Kśr5 i Kd5 na parametry procesu, osadu oraz jakość wody nadosadowej (LI, W₀ = 99,39 %)

Rys. 3.47. Wpływ dawki polielektrolitów Kśr5 i Kd5 na jakość wód nadosadowych

Polielektrolity o dużej masie cząsteczkowej - Kd1 + Kd4 (tab. TZ.21', rys. KZ.21')

Zastosowanie do kondycjonowania osadu polielektrolitów Kd1 i Kd4 skutkowało również zmniejszeniem wartości η_z i η_v (rys. 3.48). Czas trwania fazy sedymentacji i wymagany czas zagęszczania osadu próbek kondycjonowanych polielektrolitami były zdecydowanie krótsze niż osadu niekondycjonowanego, co spowodowane było aglomerującym działaniem polielektrolitów.

na paran	lett j proe	cou, obu	uu orun	junose n	ouy nuu	iobuuo ii e	J (<u></u> ,
Dp	mg/g _{smo}	0	0,1	0,2	0,3	0,4	0,5
			osa	d			
V _k	cm ³	180	210	225	245	255	260
W _k	%	96,95	97,32	97,46	97,67	97,79	97,89
CSK _k	S	81,7	57,7	37,3	27,2	19,1	11,8
η_z		5,00	4,39	4,16	3,82	3,62	3,46
η_v	%	82,0	79,0	77,5	75,5	74,5	74,0
t _s	min	16	4	4	2	2	2
t _k	min	464	266	186	138	128	108
tz	min	480	270	190	140	130	110
Z		0,33	0,31	0,40	0,44	0,61	0,68
Vs	cm/min	0,988	2,850	3,850	7,550	9,850	10,450
		WC	oda nado	osadowa	a		
М	NTU	5,97	2,58	1,75	1,54	1,41	1,33
В	gPt/m ³	15,73	15,29	14,56	14,23	13,91	13,81
Utl	gO ₂ /m ³	10,3	6,62	6,06	6,02	5,94	5,88
Mn	gMn/m ³	0,097	0,035	0,026	0,022	0,015	0,011
Fe _{og}	gFe/m ³	0,190	0,168	0,163	0,155	0,149	0,144
Zaw _{og}	g/m ³	8	6	4	4	4	4

Tab. 3.25. Wpływ dawki polielektrolitów Kd1 i Kd4 na parametry procesu, osadu oraz jakość wody nadosadowej (LI, W₀ = 99,39 %)

Rys. 3.48. Wpływ dawki polielektrolitów Kd1 i Kd4 na stopień zagęszczenia i zmniejszenia objętości osadu

Wraz ze wzrostem dawki środków kondycjonujących wzrastała prędkość opadania zawiesin i zmniejszały się podatność osadu na zagęszczanie w fazie komprymacji oraz wartości CSK_k osadu po procesie (tab. 3.25).

Kondycjonowanie osadu było korzystne z uwagi na jakość wody nadosadowej. Bez względu na dawkę polielektrolitu wartości badanych wskaźników jakości wydzielonych wód osadowych były mniejsze niż w przypadku osadu niekondycjonowanego (tab. 3.25, rys. 3.49). Wartości tych wskaźników (oprócz stężenia zawiesin ogólnych) zmniejszały się (chociaż w bardzo małym stopniu) wraz ze wzrostem dawki polielektrolitów. Najlepszą jakość wody nadosadowej zapewniła największa ilość dodanego środka kondycjonującego.

Rys. 3.49. Wpływ dawki polielektrolitów Kd1 i Kd4 na jakość wydzielonych wód nadosadowych

Polielektrolity anionowe o dużej masie cząsteczkowej - Ad1 + Ad2 (tab. TZ.22', rys. KZ.22')

Zastosowanie dwóch polielektrolitów anionowych do kondycjonowania osadu znacząco pogorszyło efekty jego zagęszczania. Wraz ze wzrostem dawki polielektrolitów zmniejszały się stopień zagęszczenia i zmniejszenia objętości osadu (rys. 3.50). Polielektrolity te, tak jak omówione wcześniej zapewniły, wyraźne skrócenie czasu trwania fazy sedymentacji zawiesin i wymaganego czasu zagęszczania osadu oraz zwiększyły prędkość opadania cząstek osadu. Podatność na zagęszczanie w fazie komprymacji próbek osadu kondycjonowanego była mniejsza niż próbki osadu niekondycjonowanego. Czas ssania kapilarnego próbek osadu po zagęszczaniu poprzedzonym kondycjonowaniem skracał się wraz ze wzrostem dawki polielektrolitu oraz zmniejszającym się stopniem zagęszczenia osadu (tab. 3.26).
Stwierdzono pozytywny wpływ kondycjonowania osadu na jakość wód nadosadowych. Wartości oznaczanych wskaźników jakości tych wód, zmniejszały się (chociaż nieznacznie) wraz ze wzrostem dawki polielektrolitów. Jedynie stężenie zawiesin ogólnych w próbkach wody wydzielonej z osadów, do których dodano polielektrolity w ilości $0,3 \div 0,5 \text{ mg/g}_{smo}$ było stałe (tab.3.26, rys. 3.51).

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	d			
V _k	cm ³	180	210	220	220	255	265
W _k	%	96,95	97,30	97,40	97,44	97,74	97,93
CSK _k	S	81,7	60,3	48,3	35,5	21,8	10,2
η_z		5,00	4,43	4,26	4,20	3,70	3,39
η_v	%	82,0	79,0	78,0	78,0	74,5	73,5
ts	min	16	4	4	4	2	2
t _k	min	464	246	216	186	128	118
tz	min	480	250	220	190	130	120
Z		0,33	0,28	0,34	0,40	0,45	0,52
Vs	cm/min	0,988	2,300	3,175	3,825	7,550	8,500
		wo	da nado	sadowa			
М	NTU	5,97	2,23	1,13	1,00	0,97	0,86
В	gPt/m ³	15,73	15,39	15,03	14,90	14,83	14,73
Utl	gO ₂ /m ³	10,3	6,5	6,44	6,28	6,12	6,06
Mn	gMn/m ³	0,097	0,034	0,024	0,018	0,014	0,011
Fe _{og}	gFe/m ³	0,190	0,080	0,050	0,047	0,043	0,041
Zaw _{og}	g/m ³	8	6	4	2	2	2

Tab. 3.26. Wpływ dawki polielektrolitów Ad1 i Ad2 na parametry procesu, osadu oraz jakość wody nadosadowej (LI, W₀ = 99,39 %)

Rys. 3.50. Wpływ dawki polielektrolitów Ad1 i Ad2 na stopień zagęszczenia i zmniejszenia objętości osadu

Rys. 3.51. Wpływ dawki polielektrolitów Ad1 i Ad2 na jakość wód nadosadowych

4.1. Osady z ZOW "Kogeneracja S.A."

Osady będące przedmiotem badań powstały w wyniku jednoczesnej dekarbonizacji i koagulacji siarczanem żelaza (II) zanieczyszczeń wody powierzchniowej, ujmowanej z rzeki Odry.

4.1.1. Skład fizyczno – chemiczny osadów

Badane próbki osadów charakteryzowały się bardzo dużym uwodnieniem, zmieniającym się w zakresie 98,73 \div 99,53 % i dużą zawartością zawiesin, które stanowiły 90,40 \div 95,81 % suchej pozostałości. Głównymi komponentami substancji stałych były związki nieorganiczne (70,40 \div 82,69 %) (tab. 4.1).

Wskaźnik	lednostka		Rodzaj probki						
WSRdzilik	Jeunosika	KI	KII	KIII	KIV				
pН		10,30	10,20	9,90	9,14				
zas F	val/dm ³	0,31	0,27	0,23	0,10				
zas M	val/dm ³	0,71	0,60	0,47	0,41				
Sucha pozo- stałość	g/m³	4656	5164	6278	12654				
Pozostałość po prażeniu	g/m ³ % smo	3278 70,40	4270 82,69	4712 75,06	9612 75,96				
Strata praże- nia	g/m ³ % smo	1378 29,60	894 17,31	1566 24,94	3042 24,04				
Zawiesiny ogólne	g/m ³ % smo	4200 90,40	4696 90,93	5886 93,44	12124 95,81				
Zawiesiny mineralne	g/m³	2942	3928	4414	9186				
Zawiesiny lotne	g/m ³	1258	768	1472	2938				
Substancje rozpuszczone	g/m³	456	468	392	530				
Subst. rozp. mineralne	g/m³	336	342	298	426				
Subst. roz- p.lotne	g/m ³	120	126	94	104				
Uwodnienie	%	99,53	99,48	99,37	98,73				
CSK ₀	S	24,1	29,7	32,1	35,5				
Wapń	g/kg smo g/m³	342,1 1592,8	321,5 1660,2	298,5 1874,0	386,2 4887,0				
Magnez	g/kg smo g/m ³	42,2 196,5	34,9 180,2	21,3 133,7	28,6 361,9				
Żelazo ogólne	g/kg smo g/m³	38,4 178,8	41,8 215,9	25,7 161,3	28,7 363,2				
Glin	g/kg smo g/m ³	7,84 36,50	12,62 65,17	18,41 115,58	13,42 169,82				

Tab. 4.1. Wartości wybranych wskaźników jakości próbek osadu z ZOW "Kogeneracja S.A."

Próbki osadów różniły się zawartością związków wapnia, magnezu, glinu i żelaza, a ich czas ssania kapilarnego był krótki, co świadczy o dużej podatności do odwadniania mechanicznego. Cechą charakterystyczną tych osadów były duże wartości pH₀ (9,14 \div 10,30) oraz stężeń związków wapnia, będące wynikiem stosowanego sposobu oczyszczania wody.

4.1.2. Zagęszczanie osadów bez kondycjonowania

Celem przeprowadzonych badań było określenie przebiegu i skuteczności zagęszczania osadów w zależności od ich składu fizyczno-chemicznego oraz wpływu czasu wolnego mieszania osadów przed zagęszczaniem.

4.1.2.1. Wpływ składu fizyczno-chemicznego osadów

W badaniach określono wpływ uwodnienia początkowego osadów oraz udziału ilościowego substancji organicznych w suchej masie osadów, stężenia w nich zawiesin ogólnych, a także stężeń wapnia, magnezu, glinu i żelaza ogólnego na dynamikę rozdziału faz (t_s , t_k), wymagany czas zagęszczania (t_z), stopień zagęszczenia osadów (η_z) i zmniejszenia ich objętości (η_v), a także na podatność na zagęszczanie w fazie komprymacji (Z) oraz na zmianę czasu ssania kapilarnego osadów po zagęszczaniu.

Wyniki badań analitycznych próbek osadu i wody nadosadowej, pomiaru CSK po zagęszczaniu oraz wartości wyznaczonych parametrów charakteryzujących przebieg i skuteczność procesu zagęszczania przedstawiono w tabeli 4.2.

i skuttezhost pi ocesu ien zagyszezama							
Pró	bka	KI	KII	KIII	KIV		
W ₀	%	99,53	99,48	99,37	98,73		
		osad					
V _k	cm ³	35	90	100	140		
W _k	%	94,29	95,53	95,93	94,43		
CSK _k	S	144,3	119,7	108,3	136,1		
η_z		12,15	8,60	6,46	4,39		
ην	%	96,5	91,0	90,0	86,0		
ts	min	4	4	6	8		
t _k	min	86	166	194	262		
tz	min	90	170	200	270		
Z		0,18	0,21	0,32	0,34		
Vs	cm/min	6,800	5,075	3,950	2,550		
	woo	la nadosa	adowa				
рН _к		10,3	10,2	9,9	9,14		
zas F	val/m ³	0,25	0,27	0,27	0,1		
zas M	val/m ³	0,65	0,6	0,5	0,41		
М	NTU	26,3	15,3	3,06	5,04		
В	gPt/m ³	32,66	4,47	5,00	11,18		
Utl	gO ₂ /m ³	13,68	2,38	3,26	5,47		
Fe _{og}	gFe/m ³	1,870	0,070	0,02	0,12		
tw _{og}	°tw	9,2	9,5	7,6	9,2		
Са	gCa/m ³ °tw	42,13 5,9	57,1 8,0	46,4 6,5	42,9 6,0		
Mg	gMg/m ³ °tw	14,1 3,3	6,4 1,5	4,7 1,1	13,7 3,2		
Zawog	g/m ³	22	12	6	6		

Tab. 4.2. Wpływ uwodnienia początkowego osadów na przebieg i skuteczność procesu ich zageszczania

Wyniki pomiarów rozdziału faz w czasie zagęszczania (t_{zag}) przedstawiono w tabeli TZ.1", a krzywe zagęszczania na rysunku KZ.1".

Tak jak w przypadku osadów pochodzących z ZOW "Mokry Dwór" i "Leśnica" wraz ze zwiększającym się początkowym uwodnieniem próbek osadów zwiększał się stopień ich zagęszczenia oraz zmniejszenia objętości (rys. 4.1).

Rys. 4.1. Wpływ początkowego uwodnienia na stopień zgęszczenia i zmniejszenia objętości osadu

Wartość pH₀ próbek osadów miała taki sam wpływ na stopień zagęszczenia i zmniejszenia objętości osadów, jak wartość uwodnienia początkowego. Wraz ze wzrostem stężenia jonów OH⁻ w badanych próbkach osadów stopień zagęszczenia i zmniejszenia objętości zwiększały się (rys 4.2).

Rys. 4.2. Wpływ pH₀ na stopień zagęszczenia i zmniejszenia objętości osadów

Parametrem współdecydującym o efektywności zagęszczania próbek osadów było stężenie zawiesin ogólnych, których zwiększająca się zawartość powodowała zmniejszanie wartości η_z oraz η_v (rys. 4.3).

Rys. 4.3. Wpływ stężenia zawiesin na stopień zagęszczenia i zmniejszenia objętości osadu

Negatywny wpływ na efekty zagęszczania miały związki wapnia (rys. 4.4) oraz glinu (rys. 4.5) obecne w badanych próbkach osadów. W obu przypadkach stwierdzono zmniejszanie stopnia zagęszczenia osadu wraz ze zwiększającymi się stężeniami tych związków.

Rys. 4.4. Wpływ stężenia wapnia na stopień zagęszczenia i zmniejszenia objętości osadu

Rys. 4.5. Wpływ stężenia glinu na stopień zagęszczenia i zmniejszenia objętości osadu

Nie stwierdzono natomiast jednoznacznego wpływu zawartości substancji organicznych w badanych próbkach osadów na skuteczność ich zagęszczania (rys. 4.6). Największą podatnością na zagęszczanie charakteryzowała się próbka osadu KI o największej zawartości substancji organicznych lecz o największym uwodnieniu i najmniejszym stężeniu zawiesin ogólnych oraz związków wapnia i glinu. Natomiast najmniej podatna na zagęszczanie była próbka osadu o średniej zawartości substancji organicznych (KIV, 24,04 % smo) i najmniejszym W₀.

Rys. 4.6. Wpływ zawartości substancji organicznych w suchej masie osadu na stopień jego zagęszczenia i zmniejszenia objętości

Wpływ stężenia magnezu i żelaza w badanych próbkach osadów na stopień ich zagęszczenia również nie był jednoznaczny. Generalnie wraz ze zwiększającym się stężeniem związków magnezu zwiększała się podatność osadu na zagęszczanie. Wyjątkiem była próbka KIV, charakteryzująca się największym stężeniem magnezu i jednocześnie najmniejszym uwodnieniem początkowym oraz wartością pH₀, dla której uzyskano najmniejszą wartość η_z (rys. 4.7, tab. 4.2).

Rys. 4.7. Wpływ stężenia magnezu na stopień zagęszczenia i zmniejszenia objętości osadu

Natomiast wraz ze zwiększającym się stężeniem żelaza ogólnego w badanych próbkach osadów zmniejszała się skuteczność ich zagęszczenia. Jedynie stopień zagęszczenia osadu KIII zawierającego najmniej żelaza ogólnego był mniejszy ($\eta_z = 6,46$) niż uzyskany dla osadów KI i KII, które charakteryzowały się większym uwodnieniem początkowym, wartością pH₀ i wyraźnie mniejszą zawartością związków żelaza (rys. 4.8, tab. 4.2).

Rys. 4.8. Wpływ stężenia żelaza na stopień zagęszczenia i zmniejszenia objętości osadu

Czas sedymentacji cząstek osadów z ZOW "Kogeneracja S.A.", w porównaniu do czasu sedymentacji cząstek osadów powstających w ZOW "Mokry Dwór" i "Leśnica", był zdecydowanie krótszy. Próbki osadów KI – KIV charakteryzowały się również dużo krótszym wymaganym czasem zagęszczania (tab. 2.2, 3.2, 4.2). Zarówno uwodnienie początkowe jak i wartość pH₀ osadów decydowały o podatności osadów na zagęszczanie w fazie komprymacji i o dynamice rozdziału faz zagęszczanych mediów. Wraz ze zwiększającymi się wartościami W₀ i pH₀ skracały się wymagany czas zagęszczania oraz trwania fazy komprymacji osadu (rys. 4.9), a zwiększały się prędkość sedymentacji cząstek osadów oraz ich podatność na zagęszczanie w fazie komprymacji (rys. 4.10).

Rys. 4.9. Wpływ uwodnienia na czas fazy komprymacji i wymagany czas zagęszczania osadu

Rys. 4.10. Wpływ pH₀ na prędkość sedymentacji i podatność osadu na zagęszczanie w fazie komprymacji

Czas ssania kapilarnego próbek osadu po zagęszczaniu był stosunkowo długi i odwrotnie proporcjonalny do uwodnienia (W_k) tych osadów (rys. 4.11).

Rys. 4.11. Wpływ uwodnienia zagęszczonych próbek osadu na ich czas ssania kapilarnego

Wydzielone wody nadosadowe charakteryzowały się różną jakością, która generalnie poprawiała się wraz ze zmniejszającym się uwodnieniem początkowym oraz dłuższym wymaganym czasem zagęszczania (t_z) (tab. 4.2). Najlepszą jakością ze względu na mętność i stężenie żelaza ogólnego charakteryzowała się woda wydzielona z osadu KIII, natomiast największe wartości mętności, barwy, utlenialności oraz zawartości żelaza ogólnego i zawiesin ogólnych stwierdzono w wodzie nadosadowej wydzielonej z osadu o największym uwodnieniu początkowym oraz charakteryzującego się największym stopniem zagęszczenia (rys. 4.12, tab. 4.2).

Rys. 4.12. Wpływ uwodnienia początkowego na jakość wydzielonych wód nadosadowych

Wartości pH_k wszystkich wydzielonych wód nadosadowych były większe niż dopuszczalne wartości tego parametru w ściekach wprowadzanych do wód lub do ziemi.

4.1.2.2. Wpływ czasu wolnego mieszania osadów przed ich zagęszczaniem

Zagęszczanie dwóch próbek osadów (KII i KIV), poprzedzono wolnym mieszaniem z prędkością 15 obr/min i trwającym od 3 do 60 minut. Wyniki pomiarów zmian wysokości powierzchni rozdziału wody nadosadowej i osadu przedstawione zostały w tabelach TZ.2" i TZ.3", oraz na krzywych zagęszczania (rys. KZ.2" i KZ.3"). Wartości wyznaczonych parametrów charakteryzujących przebieg i skuteczność procesu zagęszczania badanego w czasie t_{zag} = $t_z + 30$ min, wyniki badań analitycznych próbek osadu po zagęszczaniu i wydzielonej wody nadosadowej oraz wartości CSK_k przedstawiono w tabelach 4.3 i 4.4.

Osad o W₀ = 99,48 % (KII) (tab. TZ.2", rys. KZ.2")

Znaczenie wolnego mieszania i czasu jego trwania obrazują dane przedstawione w tabeli 4.3.

t _{wm}	min	0	3	15	30	60
			osad			
V _k	cm ³	90	90	95	95	100
W _k	%	95,53	95,55	95,62	95,64	95,74
CSK _k	S	119,7	118,8	116,9	114,3	112,4
η_z		8,60	8,56	8,42	8,38	8,19
η_v	%	91,0	91,0	90,5	90,5	90,0
t _s	min	4	4	4	4	4
t _k	min	166	186	196	226	236
tz	min	170	190	200	230	240
Z		0,21	0,21	0,22	0,22	0,23
Vs	cm/min	5,075	5,075	5,050	5,025	4,975
		woda r	nadosad	owa		
рН _к		10,2	10,2	10,2	10,2	10,2
zas F	val/m ³	0,27	0,27	0,27	0,27	0,27
zas M	val/m ³	0,6	0,6	0,6	0,6	0,6
М	NTU	15,3	15,7	16,4	16,7	17,5
В	gPt/m ³	4,47	4,61	4,69	4,77	4,81
Utl	gO ₂ /m ³	2,38	2,45	2,61	2,69	2,83
Fe_{og}	gFe/m ³	0,070	0,074	0,081	0,088	0,098
tw _{og}	°tw	9,5	9,5	9,5	9,5	9,5
Co	gCa/m ³	57,1	57,1	57,1	57,1	57,1
Ca	°tw	8,0	8,0	8,0	8,0	8,0
Ma	gMg/m ³	6,4	6,4	6,4	6,4	6,4
ivig	°tw	1,5	1,5	1,5	1,5	1,5
Zaw _{og}	g/m ³	12	12	14	14	16

Tab. 4.3. Wpływ czasu wolnego mieszania na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych ($W_0 = 99,48$ %, KII)

Analiza wyników badań przedstawionych w powyższej tabeli oraz na rysunkach 4.13 i 4.14 wskazuje, że zastosowanie wolnego mieszania próbek osadu przed ich zagęszczaniem pogorszyło efekty ich zagęszczania oraz jakość wydzielonych wód nadosadowych. Wolne mieszanie nie zmieniło czasu sedymentacji cząstek osadu, ale wraz z czasem jego trwania nieznacznie zmniejszały się prędkość opadania zawiesin oraz wartości η_z i η_v (rys. 4.13), a wydłużał się wymagany czas zagęszczania osadu (tab. 4.3).

Rys. 4.13. Wpływ czasu wolnego mieszania na stopień zagęszczenia i zmniejszenia objętości osadu

Poprzedzenie zagęszczania osadu wolnym mieszaniem spowodowało niewielki wzrost barwy, mętności i utlenialności oraz stężeń żelaza ogólnego i zawiesin ogólnych w wydzielonych wodach nadosadowych. Wartości wymienionych wskaźników zwiększały się wraz z czasem trwania wolnego mieszania (tab. 4.3, rys 4.14). Zarówno zastosowanie wolnego mieszania, jak i czas jego trwania nie zmieniały twardości węglanowej i ogólnej próbek wody nadosadowej (tab. 4.3).

Rys. 4.14. Wpływ czasu wolnego mieszania na wartości badanych wskaźników jakości wód nadosadowych

Wartości pH_k wydzielonych wód nadosadowych przekraczały dopuszczalną wartość w ściekach odprowadzanych do wód lub ziemi określoną w rozporządzeniu Ministra Środowiska. Czas ssania kapilarnego zagęszczonych próbek osadu skracał się wraz z wydłużaniem czasu wolnego mieszania, co spowodowane było wzrostem ich uwodnienia końcowego (tab. 4.3).

Osad o W₀ = 98,73 % (KIV) (tab. TZ.3", rys. KZ.3")

Wyniki badań przedstawione w tabeli 4.4 oraz na rysunku 4.15 wykazały, że zastosowanie wolnego mieszania oraz wydłużenie czasu jego trwania, tak jak w przypadku osadu KII, spowodowało pogorszenie efektów zagęszczania z uwagi na stopień zagęszczenia osadu oraz jakość wydzielonych wód nadosadowych, a nie zmieniły czasu sedymentacji cząstek osadu.

Tab. 4.4.	Wpływ c	zasu wolnego) mieszania	na badane	parametry	procesu	oraz osadu
i jakość v	wvdzielon	vch wód nad	osadowych	$(W_0 = 98.7)$	3 %. KIV)		

I Junose v	' j uzicion j	cn wou	nuuobuu	on yen (70,10
t _{wm}	min	0	3	15	30	60
			osad			
V _k	cm ³	140	140	140	140	150
W _k	%	94,43	94,46	94,49	94,51	94,63
CSK _k	S	136,1	134,8	134,2	133,5	130,7
η_z		4,39	4,36	4,34	4,32	4,23
η_v	%	86,0	86,0	86,0	86,0	85,0
t _s	min	8	8	8	8	8
t _k	min	262	272	272	282	282
tz	min	270	280	280	290	290
Z		0,34	0,35	0,35	0,35	0,36
Vs	cm/min	2,550	2,550	2,538	2,525	2,525
		woda r	nadosad	owa		
рН _к		9,14	9,14	9,14	9,14	9,14
zas F	val/m ³	0,1	0,1	0,1	0,1	0,1
zas M	val/m ³	0,41	0,41	0,41	0,41	0,41
М	NTU	5,04	5,18	5,29	5,64	6,12
В	gPt/m ³	11,18	11,21	11,32	11,54	11,68
Utl	gO ₂ /m ³	5,47	5,55	5,72	5,89	6,03
Fe _{og}	gFe/m ³	0,12	0,12	0,13	0,14	0,16
Zaw _{og}	g/m ³	6	6	6	6	6

Wydłużenie wymaganego czasu zagęszczania o 10 min oraz o 20 min (w porównaniu do próbki bez wolnego mieszania) stwierdzono odpowiednio dla $t_{wm} = 3$ i 15 min oraz $t_{wm} = 30$ i 60 min. Zwiększenie objętości osadu po zagęszczaniu (o 10 cm³) spowodowało jedynie 60-cio minutowe wolne mieszanie.

Wydłużanie czasu wolnego mieszania powodowało nieznaczne pogorszenie jakości wydzielonych wód nadosadowych ze względu na ich mętność, barwę, utlenialność i stężenie żelaza ogólnego.

Rys. 4.15. Wpływ czasu wolnego mieszania na stopień zagęszczenia osadu oraz wymagany czas zagęszczania

Nie stwierdzono wpływu wolnego mieszania na stężenie zawiesin ogólnych, które było jednakowe we wszystkich badanych próbkach (tab. 4.4). Czas ssania kapilarnego zagęszczonych próbek osadu skracał się wraz z wydłużaniem czasu ich wolnego mieszania przed zagęszczaniem, co było spowodowane zwiększającym się uwodnieniem (W_k) tych próbek (tab. 4.4).

4.1.3. Zagęszczanie osadów po kondycjonowaniu

4.1.3.1. Wpływ zakwaszenia

Celem tej serii badań było określenie wpływu zakwaszenia osadów KI i KIII przed ich zagęszczaniem na dynamikę i efekty procesu zagęszczania oraz jakość wydzielonych wód nadosadowych. Wyniki pomiarów zmian wysokości powierzchni rozdziału wody nadosadowej i osadu zestawiono w tabelach TZ.4" i TZ.5" i na rysunkach KZ.4" i KZ.5".

Osad o W₀ = 99,53 % (KI) (tab. TZ.4", rys. KZ.4")

Wartości badanych wskaźników jakości wody nadosadowej, parametrów procesu oraz osadu zagęszczonego przedstawione zostały w tabeli 4.5. Z danych tych wynika, że wraz ze zwiększającym się stężeniem jonów wodorowych w osadach przed zagęszczaniem zmniejszały się wartości η_z i η_v (rys. 4.16). Zakwaszenie próbek osadu spowodowało wydłużenie wymaganego czasu ich zagęszczania, zmniejszenie prędkości sedymentacji cząstek osadu oraz w przypadku trzech próbek (o wartości pH₀ = 8,0 ÷ 9,0) także wydłużenie czasu sedymentacji cząstek osadu. Stwierdzono również skrócenie czasu ssania kapilarnego wraz ze zmniejszającą się wartością p H_0 , co było spowodowane zmniejszającą się skutecznością zagęszczania (tab.

4.5).

I Jakose v	vyuzielony	ch wou	nauosau	owych (vv ₀ = 99,	55 %, K	1)			
pH₀		10,3	10,0	9,5	9,0	8,5	8,0			
			osa	d						
V _k	cm ³	35	40	45	50	55	60			
W _k	%	94,29	94,42	94,58	94,73	94,86	95,04			
CSK _k	S	144,3	142,8	141,1	139,7	136,6	133,2			
η_z		12,15	11,87	11,53	11,21	10,94	10,55			
η_v	%	96,5	96,0	95,5	95,0	94,5	94,0			
t _s	min	4	4	4	6	6	8			
t _k	min	86	96	116	124	164	172			
tz	min	90	100	120	130	170	180			
Vs	cm/min	6,800	6,550	5,750	4,233	3,967	2,900			
	woda nadosadowa									
рН _к		10,3	10,1	9,7	9,3	8,7	8,3			
zas F	val/m ³	0,25	0,22	0,19	0,14	0,11	0,04			
zas M	val/m ³	0,65	0,70	0,77	0,82	0,90	1,10			
М	NTU	26,3	27,4	29,1	31,7	32,8	33,7			
В	gPt/m ³	32,66	33,80	34,12	34,87	35,48	35,88			
Fe _{og}	gFe/m ³	1,87	1,92	2,04	2,19	2,53	3,11			
Utl	gO ₂ /m ³	13,68	14,03	14,62	14,87	15,11	15,45			
tw _{og}	°tw	9,2	9,3	9,6	10,0	10,3	10,6			
Ca	gCa/m ³	42,1	42,8	44,3	46,4	47,8	49,2			
Ca	°tw	5,9	6,0	6,2	6,5	6,7	6,9			
Ma	gMg/m ³	14,1	14,1	14,5	15,0	15,4	15,8			
ivig	°tw	3,3	3,3	3,4	3,5	3,6	3,7			
Zawog	g/m ³	22	24	26	30	32	34			

Tab. 4.5. Wpływ zakwaszenia próbek osadu na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych ($W_0 = 99,53$ %, KI)

Rys. 4.16. Wpływ zakwaszenia próbek osadu na stopień ich zagęszczenia i zmniejszenia objętości

Zakwaszenie próbek osadu przed ich zagęszczaniem negatywnie wpłynęło na jakość wydzielonych wód nadosadowych, która pogarszała się wraz ze zmniejszającą się wartością pH₀ (rys. 4.17). Największe wartości mętności, barwy, utlenialności, stężenia żelaza ogólnego i zawiesin ogólnych stwierdzono w przypadku wody nadosadowej wydzielonej z osadu o najmniejszej wartości pH₀. Próbki wody nadosadowej wydzielone z osadów o pH₀ = 9,0 do 10,3 charakteryzowały się wartością pH_k większą niż dopuszczalna maksymalna wartość tego parametru określona w rozporządzeniu Ministra Środowiska (tab. 4.5).

Rys. 4.17. Wpływ zakwaszenia próbek osadu na jakość wydzielonych wód nadosadowych

Osad o W₀ = 99,37 % (KIII) (tab. TZ.5", rys. KZ.5")

W tabeli 4.6 przedstawiono wyniki badań analitycznych próbek osadu po t_{zag}, jakości wody nadosadowej, czasu ssania kapilarnego osadów po zagęszczaniu oraz wartości wyznaczonych parametrów charakteryzujących przebieg i skuteczność procesu zagęszczania. Z przedstawionych danych wynika, że zakwaszenie próbek osadu przed ich zagęszczaniem miało negatywny wpływ na efektywność procesu. Wraz ze zmniejszającą się wartością pH₀ próbek osadu zmniejszały się wartości η_z i η_v (tab. 4.6, rys. 4.18).

Zakwaszenie próbek osadu spowodowało również wydłużenie wymaganego czasu ich zagęszczania oraz zmniejszenie prędkości opadania cząstek osadu, a w przypadku próbek o pH₀ = $8,5 \div 7,5$ także wydłużenie czasu fazy sedymentacji cząstek osadu (tab. 4.6).

Czas ssania kapilarnego zagęszczonych próbek osadu skracał się wraz ze zmniejszającą się wartością pH₀, a w rezultacie ze wzrostem ich uwodnienia po zagęszczaniu.

Tak jak w przypadku osadu KI, wraz z rosnącym stężeniem jonów wodorowych w próbkach osadu zwiększały się wartości badanych wskaźników jakości wydzielonych wód nadosado-

wych (rys. 4.19). Przekroczenie największej dopuszczalnej wartości pH stwierdzono w wodach nadosadowych wydzielonych z osadów o pH₀ = 9,9; 9,5 i 9,0.

pH₀		9,9	9,5	9,0	8,5	8,0	7,5			
			osa	d						
V _k	cm ³	100	100	105	105	105	110			
W _k	%	95,93	95,97	96,04	96,07	96,11	96,28			
CSK _k	S	108,3	106,8	103,4	102,8	102,1	99,4			
η_z		6,46	6,40	6,29	6,24	6,17	5,90			
η_v	%	90,0	90,0	89,5	89,5	89,5	89,0			
t _s	min	6	6	6	8	8	10			
t _k	min	194	204	234	272	272	310			
tz	min	200	210	240	280	280	320			
Z		0,32	0,25	0,23	0,26	0,22	0,26			
Vs	cm/min	3,950	3,783	3,500	2,725	2,450	2,100			
	woda nadosadowa									
рН _к		9,9	9,6	9,2	8,7	8,3	7,8			
zas F	val/m ³	0,27	0,25	0,19	0,13	0,03	0,00			
zas M	val/m ³	0,5	0,54	0,61	0,69	0,8	0,87			
М	NTU	3,06	3,94	4,81	6,22	7,69	9,82			
В	gPt/m ³	5,00	5,08	5,24	5,47	5,73	6,21			
Utl	gO ₂ /m ³	3,26	3,42	3,60	3,77	3,95	4,10			
Fe _{og}	gFe/m ³	0,02	0,07	0,19	0,32	0,83	1,61			
tw _{og}	°tw	7,6	7,9	8,3	8,6	9,1	9,7			
C2	gCa/m ³	46,4	47,8	50,0	51,4	53,6	56,4			
Ca	°tw	6,5	6,7	7,0	7,2	7,5	7,9			
Ма	gMg/m ³	4,7	5,1	5,6	6,0	6,8	7,7			
ivig	°tw	1,1	1,2	1,3	1,4	1,6	1,8			
Zaw _{og}	g/m ³	6	6	8	10	12	16			

Tab. 4.6. Wpływ zakwaszenia próbek osadu na badane parametry procesu oraz osadu i jakość wydzielonych wód nadosadowych ($W_0 = 99,37 \%$, KIII)

Rys. 4.18. Wpływ zakwaszenia próbek osadu na stopień ich zagęszczenia i zmniejszenia objętości

Rys. 4.19. Wpływ zakwaszenia próbek osadu na jakość wydzielonych wód nadosadowych

Zakwaszenie próbek osadów KI i KIII przed zagęszczaniem spowodowało zwiększenie rozpuszczalności Fe(OH)₃, CaCO₃ i MgCO₃ obecnych w cząstkach stałych osadów. W konsekwencji stwierdzono zwiększenie stężenia żelaza ogólnego, wapnia i magnezu oraz zasadowości M wydzielonych wód nadosadowych (tab. 4.5 i 4.6).

4.1.3.2. Wpływ kondycjonowania polielektrolitami

Celem tej serii badań było określenie wpływu kondycjonowania osadu polielektrolitami kationowymi i anionowymi, których dawki zmieniano w zakresie 0,1 ÷ 0,5 mg/g_{smo}. Przeprowadzone badania wstępne wykazały, że tak jak w przypadku osadu z ZOW "Mokry Dwór" zastosowanie większych dawek substancji kondycjonujące powodowało znaczne pogorszenie efektów zagęszczania i jakości wydzielonych wód nadosadowych. Do kondycjonowania osadów z ZOW "Kogeneracja S.A." wybrano polielektrolity, które zapewniły poprawę efektów zagęszczania osadów z ZOW "Mokry Dwór". Wyniki pomiarów rozdziału faz osad – woda nadosadowa w czasie zagęszczania przedstawiono w tabelach TZ.6" ÷ TZ.16", a krzywe zagęszczania na rysunkach KZ.6' ÷ KZ.16".

I. Kondycjonowanie polielektrolitami kationowymi

Osad KII

Kśr3 (tab. TZ.6", rys. KZ.6")

Analiza wyników badań przedstawionych w tabeli 4.7 oraz na rysunku 4.20 wykazała, że zastosowanie kationowego polielektrolitu Kśr3 o średniej masie cząsteczkowej do kondycjonowania osadu KII pogorszyło efekty zagęszczania. Wraz ze wzrostem dawki substancji kondycjonującej wartości η_z i η_v zmniejszały się. Kondycjonowanie osadu zapewniło skrócenie czasu trwania fazy sedymentacji zawiesin z 4 do 2 minut oraz znaczne zwiększenie prędkości opadania cząstek osadu.

procesu,	obudu or u	Junose	nouj ne	aobaao	, cj (mi		,,
D _p	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	ad			
V _k	cm ³	90	95	95	100	100	100
W _k	%	95,53	95,88	95,93	96,01	96,04	96,06
CSK _k	S	119,7	105,1	91,7	77,6	60,8	42,5
η_z		8,60	7,92	7,83	7,67	7,62	7,58
η_v	%	91,0	90,5	90,5	90,0	90,0	90,0
t _s	min	4	2	2	2	2	2
t _k	min	166	148	128	118	108	98
tz	min	170	150	130	120	110	100
Z		0,21	0,20	0,21	0,23	0,24	0,24
Vs	cm/min	5,075	9,500	9,650	9,850	10,100	10,250
		wo	oda nade	osadowa	a		
М	NTU	15,3	1,01	1,00	0,98	0,99	1,01
В	gPt/m ³	4,47	4,43	4,40	4,40	4,31	4,36
Utl	gO ₂ /m ³	2,38	2,31	2,28	2,27	2,22	2,26
Fe _{og}	gFe/m ³	0,070	0,016	0,015	0,012	0,014	0,017
Zaw _{og}	g/m ³	12	2	2	2	2	2

Tab. 4.7. Wpływ dawki polielektrolitu Kśr3 na parametry procesu, osadu oraz jakość wody nadosadowej (KII, $W_0 = 99,48$ %)

Najkrótszy wymagany czas zagęszczania wynoszący 100 minut stwierdzono w próbce osadu, do której dodano najwięcej polielektrolitu.

Rys. 4.20. Wpływ dawki polielektrolitu Kśr3 na stopień zagęszczenia i zmniejszenia objętości osadu

Kondycjonowanie osadu zapewniło poprawę jakości wydzielonych wód nadosadowych, głównie z uwagi na mętność i stężenie zawiesin ogólnych (tab. 4.7).

Kśr4 (tab. TZ.7", rys. KZ.7")

Z wyników badań przedstawionych w tabeli 4.8 wynika, że kondycjonowanie osadu polielektrolitem Kśr4 o średniej masie cząsteczkowej również zmniejszyło skuteczność zagęszczania. Wraz ze wzrostem dawki środka kondycjonującego wartości stopnia zagęszczenia i zmniejszenia objętości osadu zmniejszały się (rys. 4.21). Stwierdzono zwiększenie prędkości sedymentacji zawiesin oraz skrócenie czasu trwania fazy ich sedymentacji.

F	0.0000000000000000000000000000000000000			aosaao	· •J (====;		,,
Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	d			
V _k	cm ³	90	95	95	100	105	105
W _k	%	95,53	95,96	95,97	96,08	96,19	96,21
CSK _k	S	119,7	100,6	92,1	79,2	64,4	43,9
η_z		8,60	7,77	7,75	7,54	7,33	7,29
η_v	%	91,0	90,5	90,5	90,0	89,5	89,5
t _s	min	4	2	2	2	2	2
t _k	min	166	158	158	148	128	118
tz	min	170	160	160	150	130	120
Z		0,21	0,19	0,20	0,22	0,23	0,24
Vs	cm/min	5,075	9,150	9,250	9,400	9,500	9,600
		wo	da nado	sadowa	l		
М	NTU	15,3	1,07	1,19	1,41	1,73	1,81
В	gPt/m ³	4,47	4,52	4,55	4,59	4,68	4,95
Utl	gO ₂ /m ³	2,38	2,40	2,43	2,49	2,58	2,69
Fe _{og}	gFe/m ³	0,070	0,026	0,029	0,035	0,046	0,053
Zaw _{og}	g/m ³	12	2	2	2	4	4

Tab. 4.8. Wpływ dawki polielektrolitu Kśr
4 na parametry procesu, osadu oraz jakość wody nadosadowej (KII,
 W_0 = 99,48 %)

Rys. 4.21. Wpływ dawki polielektrolitu Kśr4 na stopień zagęszczenia i zmniejszenia objętości osadu

Wymagany czas zagęszczania kondycjonowanych próbek osadu był krótszy niż osadu surowego. Wraz ze wzrostem dawki polielektrolitu zwiększała się podatność próbek osadu na dalsze odwadnianie w procesach mechanicznych, natomiast nie stwierdzono takiej prawidłowości w odniesieniu do podatności próbek osadu na zagęszczanie w fazie komprymacji.

Wpływ kondycjonowania osadu na jakość wód nadosadowych był różny i korzystny tylko z uwagi na mętność i stężenie żelaza ogólnego oraz zawiesin ogólnych (tab. 4.8, rys. 4.22). Wartości pozostałych badanych wskaźników jakości wód nadosadowych wydzielonych z kondycjonowanych próbek osadu były większe niż dla próbki osadu surowego (tab. 4.8).

Rys. 4.22. Wpływ dawki polielektrolitu Kśr4 na mętność i stężenie zawiesin ogólnych w wodach nadosadowych

Kd3 (tab. TZ.8", rys. KZ.8")

Efektem kondycjonowania osadu KII polielektrolitem kationowym Kd3 o dużej masie cząsteczkowej było zmniejszenie stopnia zagęszczenia i zmniejszenia objętości osadu (rys. 4.23). Wraz ze wzrostem dawki polielektrolitu skracał się wymagany czas zagęszczania osadu oraz zwiększała prędkość sedymentacji zawiesin, która była jednak mniejsza niż w przypadku próbek osadu kondycjonowanych polielektrolitami Kśr3 i Kśr4 mającymi mniejszą masę cząsteczkową.

W zakresie dawek polielektrolitu wynoszących $0,1 \div 0,4 \text{ mg/g}_{\text{smo}}$ stwierdzono zwiększenie podatności osadu na zagęszczanie w fazie komprymacji. Podatność na dalsze odwadnianie w procesach mechanicznych rosła wraz ze zwiększającą się dawką substancji kondycjonującej.

Wpływ kondycjonowania osadu na jakość wydzielonych wód nadosadowych był niejednoznaczny. Wartości barwy i utlenialności w wodach nadosadowych wydzielonych z próbek osadu kondycjonowanego były większe niż w wodzie wydzielonej z osadu surowego.

1	0.0000000000000000000000000000000000000	-]				0 1	, ,
D _p	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5
			osa	d			
V _k	cm ³	90	100	100	105	110	115
Ŵĸ	%	95,53	96,07	96,09	96,16	96,28	96,37
CSK _k	S	119,7	97,7	79,6	55,1	46,8	35,6
ηz		8,60	7,56	7,52	7,38	7,15	6,98
ην	%	91,0	90,0	90,0	89,5	89,0	88,5
ts	min	4	2	2	2	2	2
t _k	min	166	158	148	108	88	78
tz	min	170	160	150	110	90	80
Z		0,21	0,17	0,17	0,18	0,20	0,21
Vs	cm/min	5,075	7,250	7,350	7,600	7,700	7,850
		wo	da nado	sadowa	1		
М	NTU	15,3	1,24	1,44	1,58	1,99	2,34
В	gPt/m ³	4,47	4,55	4,63	4,67	4,78	4,81
Utl	gO ₂ /m ³	2,38	2,45	2,48	2,54	2,55	2,60
Fe _{og}	gFe/m ³	0,070	0,028	0,031	0,038	0,043	0,049
Zaw _{og}	g/m ³	12	2	2	2	4	4

Tab. 4.9. Wpływ dawki polielektrolitu Kd3 na parametry procesu, osadu oraz jakość wody nadosadowei (KII. W₀ = 99.48 %)

Odwrotną zależność stwierdzono natomiast w odniesieniu do mętności oraz stężeń żelaza ogólnego i zawiesin ogólnych. Wraz ze wzrostem dawki substancji kondycjonującej wartości wszystkich badanych wskaźników nieznacznie zwiększały się. Najlepszą jakością charakteryzowała się woda nadosadowa wydzielona z próbki osadu, do której dodano najmniej polielektrolitu (tab. 4.9).

Rys. 4.23. Wpływ dawki polielektrolitu Kd3 na stopień zagęszczenia i zmniejszenia objętości osadu

Osad KIV

Kśr5 (tab. TZ.9", rys. KZ.9")

Z analizy wyników badań przedstawionych w tabeli 4.10 oraz na rysunku 4.24 wynika, że kondycjonowanie osadu polielektrolitem kationowym o średniej masie cząsteczkowej Kśr5 spowodowało zmniejszenie wartości stopnia zagęszczenia i zmniejszenia objętości osadu.

Tob / 10	0 Wnhw	dawki nali	ialaktralitu	Kér5 no	noromo	1111
1 a. 4.1	o. wpryw	uawki pul	icickii olitu	1515 114	i par ame	u y
	and a are	a toboló a	nadri madaa	adama; (TZIV W	_ 00 /

procesu,	procesu, osadu oraz jakość wody nadosadowej (KIV, W ₀ = 98,73%)							
Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5	
			osa	d				
V _k	cm ³	140	145	150	155	160	170	
W _k	%	94,43	94,51	94,57	94,67	94,84	95,13	
CSK _k	S	136,1	121,5	106,3	95,3	82,9	69,3	
η_z		4,39	4,32	4,28	4,20	4,06	3,83	
η_v	%	86,0	85,5	85,0	84,5	84,0	83,0	
t _s	min	8	2	2	2	2	2	
t _k	min	262	228	168	138	138	118	
tz	min	270	230	170	140	140	120	
Z		0,34	0,22	0,23	0,24	0,25	0,26	
Vs	cm/min	2,550	6,050	6,250	6,300	6,400	6,250	
		wo	da nado	sadowa				
М	NTU	5,04	1,81	1,47	1,36	1,19	1,83	
В	gPt/m ³	11,18	5,70	5,58	5,51	5,43	5,68	
Utl	gO ₂ /m ³	5,47	3,44	3,35	3,29	3,22	3,51	
Fe _{og}	gFe/m ³	0,12	0,069	0,065	0,058	0,054	0,075	
Zaw _{og}	g/m ³	6	4	2	2	2	4	

Rys. 4.24. Wpływ dawki polielektrolitu Kśr5 na stopień zagęszczenia osadu oraz mętność i utlenialność wydzielonych wód nadosadowych

Wartości η_z i η_v zmniejszały się wraz ze wzrostem dawki polielektrolitu. Kondycjonowanie zapewniło skrócenie czasu sedymentacji cząstek osadu o 6 minut (bez względu na dawkę polielektrolitu), skrócenie wymaganego czasu zagęszczania osadu oraz zwiększenie jego podatności na zagęszczanie w fazie komprymacji. Wraz ze wzrastającą dawką substancji kondycjonującej zwiększała się podatność osadu na dalsze odwadnianie w procesach mechanicznych (zmniejszenie wartości CSK_k).

Wartości wszystkich badanych wskaźników jakości wód nadosadowych wydzielonych z próbek osadu, do których dodano polielektrolit były mniejsze niż wody nadosadowej wydzielonej z osadu niekondycjonowanego, a najlepszą jakość zapewniła dawka polielektrolitu wynosząca 0,4 mg/ g_{smo} (tab. 4.10, rys. 4.24).

Kd1 (tab. TZ.10", rys. KZ.10")

Z danych przedstawionych w tabeli 4.11 oraz na rysunku 4.25 wynika, że kondycjonowanie osadu polielektrolitem kationowym Kd1 o dużej masie cząsteczkowej spowodowało pogorszenie efektów zagęszczania z uwagi na stopień zagęszczenia, jak i zmniejszenia objętości osadu. Bez względu na dawkę polielektrolitu stwierdzono skrócenie czasu sedymentacji zawiesin (do 2 minut) i wymaganego czasu zagęszczania osadu, a także zwiększenie podatności na zagęszczanie w fazie komprymacji. Wraz ze wzrostem dawki polielektrolitu zwiększały się prędkość opadania zawiesin oraz podatność osadu na dalsze odwadnianie.

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5		
	osad								
V _k	cm ³	140	145	145	150	150	155		
W _k	%	94,43	94,5	94,52	94,59	94,60	94,68		
CSK _k	S	136,1	119,1	103,6	80,1	60,4	38,2		
η_z		4,39	4,33	4,31	4,26	4,25	4,19		
η_v	%	86,0	85,5	85,5	85,0	85,0	84,5		
t _s	min	8	2	2	2	2	2		
t _k	min	262	258	198	168	158	148		
tz	min	270	260	200	170	160	150		
Z		0,34	0,22	0,22	0,23	0,23	0,25		
Vs	cm/min	2,550	5,950	6,150	6,250	6,350	6,400		
		wo	da nado	sadowa	l				
М	NTU	5,04	2,33	1,95	1,74	1,66	1,61		
В	gPt/m ³	11,18	6,90	6,74	6,58	6,46	6,39		
Utl	gO ₂ /m ³	5,47	3,84	3,75	3,70	3,56	3,48		
Fe _{og}	gFe/m ³	0,12	0,085	0,074	0,068	0,059	0,054		
Zaw _{og}	g/m ³	6	4	4	4	4	2		

Tab. 4.11. Wpływ dawki polielektrolitu Kd1 na parametry procesu, osadu oraz jakość wody nadosadowej (KIV, $W_0 = 98,73$ %)

Dawkowanie polielektrolitu Kd1 miało pozytywny wpływ na jakość wydzielonych wód nadosadowych, który nieznacznie zwiększał się wraz ze wzrostem dawki substancji kondycjonującej. Najlepszą jakością charakteryzowała się woda wydzielona z osadu kondycjonowanego największą dawką polielektrolitu (tab. 4.11, rys. 4.25).

Rys. 4. 25. Wpływ dawki polielektrolitu Kd1 na stopień zagęszczenia osadu oraz mętność i utlenialność wydzielonych wód nadosadowych

II. Kondycjonowanie polielektrolitami anionowymi

Osad KIV

Ad1 (tab. TZ.11", rys. KZ.11")

Kondycjonowanie osadu KIV polielektrolitem anionowym o dużej masie cząsteczkowej (Ad1) nie zapewniło poprawy efektów zagęszczania. Tylko najmniejsza dawka środka kondycjonującego nie zwiększyła objętości osadu po zagęszczaniu. Wraz ze wzrostem dawki polielektrolitu wartości η_z zmniejszały się (maksymalnie o 4,1 %), natomiast zwiększała się prędkość sedymentacji cząstek osadu (rys. 4.26). Bez względu na dawkę substancji kondycjonującej stwierdzono skrócenie czasu fazy sedymentacji zawiesin z 8 minut (dla próbki niekondycjonowanej) do 2 minut, a wymagany czas zagęszczania osadu skracał się wraz ze wzrostem dawki polielektrolitu. Kondycjonowanie zapewniło zwiększenie podatności próbek osadu na zagęszczanie w fazie komprymacji oraz na dalsze ich odwadnianie mechaniczne (tab. 4.12). Stwierdzono pozytywny wpływ kondycjonowania próbek osadu polielektrolitem anionowym na jakość wydzielonych wód nadosadowych. Wraz ze zwiększającą się dawką substancji kondycjonującej wartości wszystkich badanych wskaźników nieznacznie zmniejszały się.

procesu,	procesu, osadu oraz jakość wody nadosadowej (KIV, W ₀ = 98,73 %)							
D _p	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5	
			osa	d				
V _k	cm ³	140	140	145	145	150	150	
W _k	%	94,43	94,46	94,53	94,55	94,62	94,65	
CSK _k	S	136,1	121,2	104,5	83,7	61,2	46,7	
η_z		4,39	4,36	4,31	4,29	4,24	4,21	
η_v	%	86,0	86,0	85,5	85,5	85,0	85,0	
t _s	min	8	2	2	2	2	2	
t _k	min	262	258	248	228	188	168	
tz	min	270	260	250	230	190	170	
Z		0,34	0,20	0,22	0,22	0,24	0,24	
Vs	cm/min	2,550	5,750	5,950	6,100	6,400	6,500	
		wo	da nado	sadowa	l			
М	NTU	5,04	2,14	1,92	1,77	1,54	1,33	
В	gPt/m ³	11,18	6,82	6,71	6,65	6,42	6,34	
Utl	gO ₂ /m ³	5,47	3,76	3,59	3,51	3,44	3,35	
Fe _{og}	gFe/m ³	0,12	0,072	0,059	0,055	0,049	0,045	
Zaw _{og}	g/m ³	6	4	4	4	2	2	

Tab. 4.12. Wpływ dawki polielektrolitu Ad1 na parametry

Najlepszą jakością z uwagi na mętność, barwę, utlenialność i stężenie żelaza ogólnego charakteryzowała się woda nadosadowa wydzielona z próbki osadu, kondycjonowanego największą dawką polielektrolitu, natomiast najlepszą jakość ze względu na stężenie zawiesin ogólnych zapewniły dawki wynoszące 0,4 i 0,5 mg/g_{smo} (tab. 4.12).

Rys. 4.26. Wpływ dawki polielektrolitu Ad1 na stopień zagęszczenia oraz prędkość sedymentacji cząstek osadu

Osad KIII

Abd (tab. TZ.12", rys. KZ.12")

Z analizy danych zawartych w tabeli 4.13 wynika, że zastosowanie polielektrolitu anionowego o bardzo dużej masie cząsteczkowej (Abd) spowodowało pogorszenie efektów zagęszczania z uwagi na stopień zagęszczenia, jak i zmniejszenia objętości osadu.

-									
Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5		
	osad								
V _k	cm ³	100	105	110	110	115	115		
W _k	%	95,93	96,06	96,21	96,23	96,35	96,37		
CSK _k	S	108,3	90,3	78,4	55,9	40,3	26,7		
η_z		6,46	6,25	6,02	5,98	5,79	5,76		
η_v	%	90,0	89,5	89,0	89,0	88,5	88,5		
t _s	min	6	2	2	2	2	2		
t _k	min	194	188	178	168	148	148		
tz	min	200	190	180	170	150	150		
Z		0,32	0,18	0,19	0,19	0,21	0,21		
Vs	cm/min	3,950	7,500	7,600	7,750	7,850	8,100		
		wo	da nadc	sadowa	1				
M	NTU	3,06	2,95	2,82	2,77	2,59	2,46		
В	gPt/m ³	5,00	4,67	4,59	4,55	4,43	4,48		
Utl	gO ₂ /m ³	3,26	3,12	3,07	3,05	2,95	3,03		
Fe _{og}	gFe/m ³	0,02	0,018	0,016	0,015	0,011	0,009		
Zawog	g/m ³	6	4	4	4	2	2		

Tab. 4.13. Wpływ da	wki polielektrolitu Abd na parametry
procesu, osadu oraz	jakość wody nadosadowej (KIII, W ₀ = 99,37 %)

Wartości η_z i η_v zmniejszały się wraz ze wzrostem dawki polielektrolitu (rys. 4.27). Wszystkie stosowane dawki substancji kondycjonującej zapewniły skrócenie czasu trwania fazy sedymentacji zawiesin oraz wymaganego czasu zagęszczania próbek osadu, a także zwiększyły ich podatność na zagęszczanie w fazie komprymacji.

Wraz ze wzrostem dawki polielektrolitu zwiększała się również podatność osadu na dalsze odwadnianie w procesach mechanicznych.

Wpływ kondycjonowania osadu na jakość wydzielonych wód nadosadowych był korzystny, ale mały (rys. 4.28, tab. 4.13).

Rys. 4.28. Wpływ dawki polielektrolitu Abd na mętność i utlenialność wydzielonych wód nadosadowych

Ad2 (tab. TZ.13", rys. KZ.13")

Kondycjonowanie próbek osadu KIII polielektrolitem anionowym o dużej masie cząsteczkowej (Ad2) nie zapewniło poprawy efektów procesu zagęszczania. Wraz ze wzrostem dawki substancji kondycjonującej zmniejszała się wartość η_z , skracał się wymagany czas zagęszczania osadu oraz zwiększała się prędkość sedymentacji zawiesin. Bez względu na dawkę substancji kondycjonującej czas trwania sedydymentacji cząstek osadu był jednakowy i o 4 minuty krótszy niż stwierdzony dla osadu niekondycjonowanego. Podatność na zagęszczanie w fazie komprymacji próbek osadu, do których dawkowano polielektrolit była większa niż w przypadku osadu niekondycjonowanego, ale zmniejszała się nieznacznie wraz ze wzrostem dawki. Odwrotną zależność stwierdzono ze względu na podatność na dalsze odwadnianie (zmniejszenie wartości CSK_k) (tab. 4.14, rys. 4.29).

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5		
	osad								
V _k	cm ³	100	110	110	115	115	120		
W _k	%	95,93	96,19	96,22	96,38	96,39	96,51		
CSK _k	S	108,3	88,2	70,5	52,8	36,3	22,4		
η_z		6,46	6,05	6,00	5,75	5,73	5,54		
η_v	%	90,0	89,0	89,0	88,5	88,5	88,0		
t _s	min	6	2	2	2	2	2		
t _k	min	194	168	158	138	118	98		
tz	min	200	170	160	140	120	100		
Z		0,32	0,18	0,18	0,19	0,20	0,22		
Vs	cm/min	3,950	7,050	7,150	7,350	7,600	7,800		
		wo	da nado	sadowa	l				
М	NTU	3,06	2,97	2,91	2,83	2,71	2,58		
В	gPt/m ³	5,00	4,83	4,78	4,75	4,70	4,81		
Utl	gO ₂ /m ³	3,26	3,22	3,17	3,13	3,05	3,11		
Fe _{og}	gFe/m ³	0,020	0,018	0,015	0,013	0,012	0,010		
Zaw _{og}	g/m ³	6	4	4	4	4	2		

Tab. 4.14. Wpływ dawki polielektrolitu Ad2 na parametry procesu, osadu oraz jakość wody nadosadowej (KIII, W₀ = 99,37 %)

Jakość wód nadosadowych wydzielonych z próbek osadu kondycjonowanego była lepsza niż jakość wody wydzielonej z osadu niekondycjonowanego. Nie stwierdzono jednak istotnego wpływu dawki polielektrolitu na wartości badanych wskaźników jakości wód nadosadowych (tab. 4.14).

Rys. 4.29. Wpływ dawki polielektrolitu Ad2 na stopień zagęszczenia oraz czas ssania kapilarnego osadu

III. Kondycjonowanie dwoma polielektrolitami jednocześnie

Osad KIV

Polielektrolity kationowe o średnich masach cząsteczkowych - Kśr3 + Kśr4 (tab. TZ.14", rys. KZ.14")

Z analizy wyników badań (tab. 4.15, rys. 4.30) wynika, że zastosowanie dwóch polielektrolitów kationowych do kondycjonowania próbek osadu miało negatywny wpływ na skuteczność zagęszczania.

Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5		
	osad								
V _k	cm ³	140	140	145	150	155	155		
W _k	%	94,43	94,46	94,57	94,67	94,84	95,13		
CSK _k	S	136,1	122,9	104,2	85,9	61,5	43,7		
η_z		4,39	4,36	4,28	4,20	4,06	3,83		
η_v	%	86,0	86,0	85,5	85,0	84,5	84,5		
t _s	min	8	6	4	2	2	2		
t _k	min	262	244	226	208	178	148		
tz	min	270	250	230	210	180	150		
Z		0,34	0,25	0,23	0,20	0,22	0,22		
Vs	cm/min	2,550	2,567	3,250	4,850	5,200	5,450		
		wo	da nado	sadowa					
М	NTU	5,04	3,74	3,51	3,29	2,96	2,75		
В	gPt/m ³	11,18	6,90	6,77	6,53	6,41	6,35		
Utl	gO ₂ /m ³	5,47	4,27	4,13	4,06	3,92	3,88		
Fe _{og}	gFe/m ³	0,12	0,085	0,077	0,072	0,063	0,058		
Zaw _{og}	g/m ³	6	4	4	4	4	4		

Tab. 4.15. Wpływ dawki polielektrolitów Kśr3 i Kśr4 na parametry procesu, osadu oraz jakość wody nadosadowej (KIV, $W_0 = 98,73$ %)

Wartości η_z i η_v kondycjonowanych próbek osadu były mniejsze niż próbki, do której nie dodano substancji kondycjonującej i tylko najmniejsza dawka substancji kondycjonujących nie spowodowała zwiększenia objętości osadu po zagęszczaniu. Stwierdzono skrócenie czasu trwania fazy sedymentacji oraz wymaganego czasu zagęszczania. Wszystkie dawki polielektrolitów zapewniły zwiększenie podatności próbek osadu na zagęszczanie w fazie komprymacji oraz na ich dalsze odwadnianie w procesach mechanicznych (zmniejszenie wartości Z i CSK_k).

Kondycjonowanie polielektrolitami zapewniło poprawę jakości wydzielonych wód nadosadowych. Wraz ze wzrostem dawki substancji kondycjonujących wartości mętności, barwy, utlenialności oraz stężenia żelaza ogólnego zmniejszały się jednak tylko nieznacznie. Stężenie zawiesin ogólnych w wodach nadosadowych wydzielonych z kondycjonowanych próbek osadu było jednakowe i o 2 g/m³ mniejsze niż w wodzie nadosadowej wydzielonej z osadu niekondycjonowanego (tab. 4.15, rys. 4.30).

Rys. 4.30. Wpływ dawki polielektrolitów Kśr3 i Kśr4 na stopień zagęszczenia osadu oraz mętność i utlenialność wód nadosadowych

Polielektrolity kationowe o średniej i dużej masie cząsteczkowej - Kśr5 + Kd1 (tab. TZ.15", rys. KZ.15")

Zastosowanie polielektrolitów kationowych Kśr5 i Kd1 do kondycjonowania próbek osadu KIV spowodowało pogorszenie efektywności zagęszczania. Jedynie najmniejsza dawka polielektrolitów nie zwiększyła objętości osadu po zagęszczaniu (w porównaniu do próbki niekondycjonowanej) oraz praktycznie nie zmniejszyła stopnia jego zagęszczenia. Wraz ze wzrostem dawki substancji kondycjonujących wartości η_z i η_v zmniejszały się oraz zwiększała się prędkość sedymentacji zawiesin i skracał się wymagany czas zagęszczania osadu (rys. 4.31). Podatność na dalsze odwadnianie próbek osadu w procesach mechanicznych zwiększała się wraz ze wzrastającą dawką polielektrolitów oraz zwiększającym się ich uwodnieniem po zagęszczaniu. Wszystkie stosowane dawki substancji kondycjonujących zapewniły zwiększenie podatności próbek osadu na zagęszczanie w fazie komprymacji (tab. 4.16).

	<u> </u>	, , , , , , , , , , , , , , , , , , , ,					j (=== + j		
Dp	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5		
	osad								
V _k	cm ³	140	140	145	145	150	155		
W _k	%	94,43	94,44	94,52	94,55	94,67	94,78		
CSK _k	S	136,1	124,2	108,6	93,8	75,7	57,3		
η_z		4,39	4,38	4,31	4,29	4,20	4,11		
η_v	%	86,0	86,0	85,5	85,5	85,0	84,5		
t _s	min	8	4	2	2	2	2		
t _k	min	262	246	208	188	158	118		
tz	min	270	250	210	190	160	120		
Z		0,34	0,27	0,21	0,21	0,25	0,27		
Vs	cm/min	2,550	4,200	5,650	5,750	6,900	7,400		
		wo	da nado	sadowa	l				
М	NTU	5,04	3,61	3,55	3,47	3,33	3,28		
В	gPt/m ³	11,18	4,08	3,97	3,83	3,75	3,68		
Utl	gO ₂ /m ³	5,47	4,23	4,16	4,06	3,98	3,91		
Fe _{og}	gFe/m ³	0,12	0,081	0,074	0,069	0,062	0,055		
Zaw _{og}	g/m ³	6	4	4	4	4	4		

Tab. 4.16. Wpływ dawki polielektroli	itów kationowych Kśr5 i Kd1
na parametry procesu, osadu oraz ja	akość wody nadosadowej (KIV, W ₀ = 98,73 %)

Rys. 4.31. Wpływ dawki polielektrolitów kationowych Kśr5 i Kd1 na stopień zagęszczenia osadu oraz mętność i utlenialność wód nadosadowych

Wody nadosadowe wydzielone z kondycjonowanych próbek osadu charakteryzowały się lepszą jakością niż woda nadosadowa wydzielona z osadu surowego, a wpływ wzrostu dawek polielektrolitów na wartości wszystkich oznaczanych wskaźników jakości był bardzo mały (tab. 4.16, rys. 4.31).

Osad KIII

Polielektrolity anionowe Abd (bardzo duża masa cząsteczkowa) + Ad2 (duża masa cząsteczkowa) (tab. TZ.16", rys. KZ.16")

Wyniki badań przedstawione w tabeli 4.17 i na rysunku 4.32 wskazują, że zastosowanie polielektrolitów anionowych do kondycjonowania próbek osadu KIII spowodowało również pogorszenie efektów zagęszczania zarówno z uwagi na stopień zagęszczenia osadu, jak i zmniejszenia jego objętości. Wraz ze wzrostem dawki substancji kondycjonujących wartości η_z i η_v zmniejszały się (rys. 4.32), natomiast zwiększała się prędkość sedymentacji zawiesin oraz skracał się wymagany czas zagęszczania osadu. Czas trwania fazy sedymentacji zawiesin w przypadku wszystkich kondycjonowanych próbkek osadu był jednakowy i wynosił 2 minuty. Czas ssania kapilarnego osadów po zageszczaniu skracał się wraz ze wzrostem dawki substancji kondycjonujących. Wszystkie dawki polielektrolitów zapewniły zwiększenie podatności osadów na zagęszczanie w fazie komprymacji (tab. 4.17).

D _p	mg/g _{smo}	0,0	0,1	0,2	0,3	0,4	0,5	
osad								
V _k	cm ³	100	110	115	115	120	120	
W _k	%	95,93	96,21	96,36	96,39	96,49	96,52	
CSK _k	S	108,3	87,5	68,2	53,9	34,1	20,1	
η_z		6,46	6,02	5,78	5,73	5,57	5,52	
η_v	%	90,0	89,0	88,5	88,5	88,0	88,0	
t _s	min	6	2	2	2	2	2	
t _k	min	194	158	138	128	108	88	
tz	min	200	160	140	130	110	90	
Z		0,32	0,20	0,22	0,24	0,25	0,26	
Vs	cm/min	3,950	8,300	8,450	8,950	9,000	9,150	
		wo	da nado	sadowa	l			
М	NTU	3,06	3,02	2,94	2,88	2,83	2,76	
В	gPt/m ³	5,00	4,95	4,90	4,87	4,81	4,77	
Utl	gO ₂ /m ³	3,26	3,22	3,19	3,14	3,07	2,99	
Fe _{og}	gFe/m ³	0,020	0,018	0,016	0,013	0,013	0,010	
Zawog	g/m ³	6	4	4	4	4	4	

Tab. 4.17. Wpływ dawki polielektrolitów Abd i Ad2 na parametry procesu, osadu oraz jakość wody nadosadowej (KIII, W₀ = 99,37 %)

Rys. 4.32. Wpływ dawki polielektrolitów anionowych Abd i Ad2 na stopień zagęszczenia osadu oraz mętność i utlenialność wód nadosadowych

Kondycjonowanie próbek osadu KIII dwoma polielektrolitami anionowymi, tak samo jak osadu KIV dwoma polielektrolitami kationowymi, zapewniło poprawę jakości wydzielonych wód nadosadowych. Zwiększenie dawek polielektrolitów nie wpływało na wartości pozostałych badanych wskaźników jakości tych wód (tab. 4.17, rys. 4.32).

5. Podsumowanie

W badaniach określono wartości wybranych wskaźników składu fizyczno-chemicznego próbek osadów powstających w trzech różnych układach oczyszczania wody oraz ich wpływ na przebieg i skuteczność grawitacyjnego zagęszczania tych osadów. Zbadano również wpływ czasu zagęszczania, wolnego mieszania osadów (przed zagęszczaniem) i kondycjonowania chemicznego na zmniejszenie ich uwodnienia i objętości oraz na jakość wydzielonych wód nadosadowych.

5.1. Skład fizyczno-chemiczny osadów

Badane osady charakteryzowały się dużym uwodnieniem, różną zawartością zawiesin i różnymi wartościami innych badanych wskaźników składu fizyczno-chemicznego (tab. 5.1). Głównymi komponentami substancji stałych wszystkich osadów były związki nieorganiczne ($62,25 \div 92,83 \%$ smo). Największą zawartością substancji organicznych ($29,30 \div 37,75 \%$ smo) charakteryzowały się osady powstające podczas oczyszczania wody powierzchniowej w ZOW "Mokry Dwór". Najmniej tych substancji (poza próbką LI) zawierały osady wydzielone z popłuczyn z ZOW "Leśnica" ($7,17 \div 20,36 \%$ smo).

		ZOW "Mokry Dwór"	ZOW "Leśnica"	ZOW "Kogeneracja S.A."		
Uwodnienie	%	98,92 ÷ 99,77	99,39 ÷ 99,64	98,73 ÷ 99,53		
Sucha pozostałość	g/m ³	2266 ÷ 10799	3568 ÷6076	4656 ÷ 12654		
Pozostałość po	g/m ³	1516 ÷ 7376	3312 ÷ 4286	3278 ÷ 9612		
prażeniu	% smo	62,25 ÷ 71,22	69,68 ÷ 92,83	70,40 ÷ 82,69		
Strata prożania	g/m ³	750 ÷ 3761	256 ÷ 1842	894 ÷ 3042		
Strata prazenia	% smo	28,78 ÷ 37,75	7,17 ÷ 30,32	17,31 ÷ 29,60		
	g/m ³	1814 ÷ 10357	3328 ÷ 5626	4200 ÷ 12124		
Zawiesiny ogoine	% smo	80,05 ÷ 95,91	86,66 ÷ 93,27	90,40 ÷ 95,81		
Substancje rozpuszczone	g/m ³	352 ÷ 514	240 ÷ 658	392 ÷ 530		
CSK₀	S	15,1 ÷ 64,7	19,1 ÷ 26,2	24,1 ÷ 35,5		
рН		7,00 ÷ 7,60	7,00 ÷ 8,51	9,14 ÷ 10,30		
Wapń	gCa/kg smo	34,2 ÷ 158,7	55,99 ÷ 63,78	298,5 ÷ 386,2		
Magnez	gMg/kg smo	4,4 ÷ 38,4	9,61 ÷ 19,56	21,3 ÷ 42,2		
Glin	gAl/kg smo	27,6 ÷ 117,2	-	7,84 ÷ 18,41		
Żelazo ogólne	gFe/kg smo	6,5 ÷ 195,8	381,2 ÷ 538,8	25,7 ÷ 41,8		
Mangan	gMn/kg smo	-	47,9 ÷ 227,4	-		

Tab. 5.1. Porównanie zakresów wartości wybranych wskaźników składu fizyczno-chemicznego badanych osadów

Cechą charakterystyczną osadów powstających w układzie oczyszczania wody powierzchniowej w ZOW "Mokry Dwór" było duże stężenie glinu, wynikające z zastosowania soli glinu do koagulacji zanieczyszczeń wody. Największą zawartość żelaza ogólnego stwierdzono w osadach powstających w ZOW "Leśnica", w którym oczyszczana jest woda podziemna. Osady z ZOW "Kogeneracja S.A." charakteryzowały się natomiast największą zawartością związków wapnia i magnezu oraz wartością pH₀, co było konsekwencją stosowania wapna do dekarbonizacji wody (tab. 5.1). Najkrótszym czasem ssania kapilarnego charakteryzował się osad z ZOW "Leśnica" (tab.5.1).

5.2. Zagęszczanie osadów niekondycjonowanych chemicznie

5.2.1. Wpływ składu fizyczno-chemicznego

Dynamika rozdziału faz badanych próbek osadów, ich podatność na porcjowe zagęszczanie grawitacyjne, a tym samym na zmniejszenie uwodnienia i objętości były różne dla badanych rodzajów osadów (tab. 5.2).

Najmniej podatne na zagęszczanie grawitacyjne (uwalnianie wody wolnej) były próbki osadu pokoagulacyjnego z ZOW "Mokry Dwór". Świadczą o tym najdłuższe czasy trwania faz procesu zagęszczania oraz najmniejsze wartości stopni zagęszczenia (η_z) i zmniejszenia objętości (η_y). Próbki tego osadu zawierały najwięcej związków glinu oraz substancji organicznych.

Rodzaj osadu	ZOW "Mokry Dwór"	ZOW "Leśnica"	ZOW "Kogeneracja S.A."
W _k -W ₀ [%]	0,95 ÷ 2,44	2,44 ÷ 5,11	3,44 ÷ 5,24
η_z	2,60 ÷ 9,04	5,00 ÷ 15,19	4,39 ÷ 12,15
η _v [%]	62,0 ÷ 91,5	82,0 ÷ 94,5	86,0 ÷ 96,5
t _s [min]	10 ÷ 340	10 ÷ 26	4 ÷ 8
t _k [min]	310 ÷ 1170	270 ÷ 464	86 ÷ 262
t _z [min]	320 ÷ 1500	280 ÷ 480	90 ÷ 270
Z	0,33 ÷ 0,60	0,11 ÷ 0,33	0,18 ÷ 0,34
v _s [cm/min]	0,034 ÷ 2,570	0,700 ÷ 1,990	2,550 ÷ 6,800

Tab. 5.2. Porównanie skuteczności i parametrów procesu zagęszczania osadów

Zdecydowanie szybciej i skuteczniej zagęszczały się próbki pozostałych dwóch rodzajów osadów, charakteryzujące się większą zawartością substancji nieorganicznych. Bez względu na rodzaj osadu (MD, L, K), o wartościach parametrów badanego procesu i jego skuteczności w znaczącym stopniu decydowała zawartość ciał stałych w próbkach osadów przed zagęszczaniem, z której wzrostem generalnie zmniejszały się skuteczność ich zagęszczenia (η_z) i zmniejszenia objętości (rys. 5.1 i 5.2).

Rys. 5.1. Wpływ W₀ na stopień zagęszczenia osadów

Rys. 5.2. Wpływ W_0 na stopień zmniejszenia objętości osadów

Taką samą prawidłowość stwierdzono w odniesieniu do podatności próbek osadów na zagęszczanie w fazie komprymacji (rys. 5.3). Największe wartości parametru Z stwierdzono dla najgorzej zagęszczających się próbek osadu po koagulacji koagulantami glinowymi (MD), a zdecydowanie mniejsze i porównywalne (dla zbliżonych wartości W_0) w przypadku pozostałych badanych osadów.

Rys. 5.3. Wpływ W₀ na wartości parametru Z

Dla osadów z ZOW "Kogeneracja S.A." i "Leśnica" wraz z rosnącym ich uwodnieniem początkowym skracał się również czas trwania fazy komprymacji (t_k), który był jednak ok. 2krotnie dłuższy dla próbek osadu zawierającego zdecydowanie mniej związków wapnia w suchej masie i powstającego w układzie oczyszczania wody podziemnej. Dla próbek osadu pokoagulacyjnego (MD) nie stwierdzono zależności między wartościami W₀ i t_k i pomimo znacznie dłuższych wymaganych czasów zagęszczania, zmniejszenie uwodnienia próbek tego osadu było zdecydowanie mniejsze niż w przypadku dwóch pozostałych osadów (L i K) (rys. 5.4).

Rys. 5.4. Porównanie zakresów zmniejszenia uwodnienia osadów oraz wymaganego czasu ich zagęszczania

Uwodnienie początkowe było bardzo istotnym, lecz nie jedynym czynnikiem decydującym o przebiegu i skuteczności procesu zagęszczania. Poza wspomnianym znaczeniem zawartości substancji organicznych (hydrofilowych komponentów wiążących wodę) w suchej masie osadów, o efektach zagęszczania próbek osadów współdecydowały także rodzaj, stężenie i forma występowania (rozpuszczalność) substancji nieorganicznych. O roli składu chemicznego osadów świadczy porównanie czasów trwania faz komprymacji i wymaganego czasu zagęszczania, wartości η_z i η_v oraz zmniejszenia uwodnienia (W_0 - W_k , %) próbek osadów o takim samym lub bardzo zbliżonym uwodnieniu początkowym, lecz powstających w różnych układach oczyszczania wody i różniących się zawartością substancji organicznych, wapnia, magnezu, żelaza i glinu oraz wartością pH₀ (rys. 5.5).

Rys. 5.5. Porównanie czasów t_k i t_z oraz efektów procesu dla próbek osadów powstających w różnych układach oczyszczania wody (przy założeniu, że wartości uzyskane dla osadu z ZOW "Mokry Dwór" = 1,0); a) $W_0 = 99,39 \%$ i 99,37 %, b) $W_0 = 99,53 \%$ i 99,55 %

Najbardziej podatne na uwalnianie wody wolnej były próbki osadu charakteryzującego się największym stężeniem jonów OH⁻ i powstające w procesie koagulacji i dekarbonizacji, natomiast najtrudniej zagęszczały się próbki osadu pokoagulacyjnego powstającego w ZOW "Mokry Dwór". O najkrótszym wymaganym czasie zagęszczania i najlepszych efektach procesu w przypadku próbek osadów KI i KIII decydowały istotnie większe zawartości trudno rozpuszczalnego CaCO₃ (o strukturze drobnokrystalicznej) w suchej pozostałości niż w próbkach osadu MDI i MDX oraz LI i LIII zawierających mniej wapnia, który z uwagi na mniejsze stężenie jonów OH⁻ (tab. 5.1) występował w połączeniach rozpuszczalnych w wodzie. Najmniejszą podatność na zagęszczanie grawitacyjne osadów pokoagulacyjnych z ZOW "Mokry Dwór" można wyjaśnić dużą zawartością w suchej masie substancji organicznych (wiążących wodę i zmniejszających gęstość osadu) i wodorotlenku glinu o amorficznej strukturze i mniejszej gęstości niż CaCO₃ oraz Fe(OH)₃. Większa podatność na zagęszczanie próbek osadu powstającego podczas oczyszczania wody podziemnej (L) niż wody powierzchniowej (MD) wynikała zarówno z mniejszej zawartości substancji organicznych, jak i z większego udziału amorficznego i charakteryzującego się większą gęstością wodorotlenku żelaza (III) w suchej masie osadu [37]. Malejącą zgodnie z szeregiem K>L>MD gęstość cząstek stałych tych osadów potwierdzają zmniejszające się w takiej samej kolejności wartości prędkości sedymentacji zawiesin (tab. 5.2). Jedynie w przypadku osadu MDIII (o największym $W_0 = 99,77$ %), prędkość sedymentacji zawiesin była tylko nieznacznie większa niż określona dla próbki osadu KIV (tab. 2.2 i 4.2).

O wpływie składu chemicznego próbek tego samego rodzaju osadu świadczy także porównanie parametrów i efektów zagęszczania próbek osadu MDI i MDXIII (tab. 5.3) o praktycznie takiej samej zawartości substancji stałych i wynoszącej odpowiednio 6136 g/m³ i 6076 g/m³ (tab. 2.1).

osadu pokoaguacyjnego wiDTT wiDAIII													
Próbka osadu	t _s min	t _z Z		ηz	η _ν %	W ₀ - W _k %	v _s cm/min						
MDI	330	1500	0,50	2,56	66,0	0,95	0,035						
MDXIII	26	480	0.41	5.00	82.0	2.44	0.746						

 Tab. 5.3. Parametry i skuteczność procesu grawitacyjnego zagęszczania próbek

 osadu pokoagulacyjnego MDI i MDXIII

Z danych przedstawionych w powyższej tabeli wynika jednoznacznie, że bardziej podatny na uwalnianie wody wolnej był osad MDXIII, który zawierał nie tylko więcej substancji nieorganicznych, ale również charakteryzował się prawie 16-krotnie większym udziałem związków żelaza niż związków glinu w suchej masie (tab. 2.1). Ilorazy zawartości żelaza do glinu w tych próbkach osadu pokoagulacyjnego wynosiły: MDI – 0,219, MDXIII – 2,12, co (z uwagi na większą gęstość Fe(OH)₃ niż Al(OH)₃) skutkowało znacznym skróceniem czasu sedymentacji zawiesin oraz większą prędkością ich opadania.

Wartości wskaźników jakości wód nadosadowych wydzielonych z próbek trzech rodzajów osadów zmieniały się w dużym zakresie (tab. 5.4.).

ZOW "Mokry Dwór" ZOW "Leśnica" ZOW "Kogeneracja S.A." Wskaźnik Jednostka NTU 0,24 ÷ 20,10 3,06 ÷ 26,30 Μ 4,73 ÷ 12,8 gPt/m³ В 7,76 ÷ 24,69 7,08 ÷ 25,42 4,47 ÷ 32,66 Utl gO₂/m³ 3,70 ÷ 13,60 1,62 ÷ 10,30 2,38 ÷ 13,68 gFe/m³ 0,19 ÷ 7,53 0,02 ÷ 1,87 Feog Zaw_{og} g/m³ 2 ÷ 26 6 ÷ 14 6 ÷ 22

Tab. 5.4. Porównanie zakresów wartości wybranych wskaźników jakości wód nadosadowych

Dla próbek osadu pokoagulacyjnego (MD) nie stwierdzono jednoznacznego wpływu ich składu fizyczno-chemicznego oraz wymaganego czasu zagęszczania na jakość wydzielonych wód nadosadowych (tab. 2.2). W przypadku wód wydzielonych z pozostałych osadów (L i K), mętność oraz stężenie zawiesin ogólnych i żelaza ogólnego zwiększały się wraz ze skracającym się wymaganym czasem zagęszczania osadów (rys. 3.13, 3.15, 3.17, tab. 4.2). Skutkiem znacznego (> 26 %) skrócenia wymaganego czasu zagęszczania osadu z ZOW "Leśnica" był także wyraźny wzrost stężenia manganu w wodzie nadosadowej (tab. 4.2). Wartości pozostałych badanych wskaźników jakości wód nadosadowych wydzielonych z osadów K i L nie korelowały z wymaganym czasem zagęszczania próbek tych osadów.

Niekorzystny wpływ zmniejszenia wartości t_z na poziom zanieczyszczenia wód nadosadowych był wyraźny dla próbek osadu o skorygowanej zawartości takich samych substancji stałych (rys. 2.8).

Bez względu na rodzaj i skład fizyczno-chemiczny zagęszczanych osadów jakość wydzielonych z nich wód nadosadowych spełniała wymagania określone dla ścieków odprowadzanych do wód lub do ziemi.

5.2.2. Wpływ czasu zagęszczania

Zarówno dla próbek osadu pokoagulacyjnego (MDIII, MDIII', MDIV i MDIV'), jak i wydzielonego z wody podziemnej (LIII, LIV, LV) wraz z wydłużaniem czasu ich zagęszczania zwiększały się wartości stopnia ich zagęszczenia i zmniejszenia objętości (rys. 5.6 a i b) i zmniejszał się poziom zanieczyszczenia wydzielonych wód nadosadowych (rys. 2.11, 2.13, 3.13, 3.15, 3.17, tab. $2.4 \div 2.7$, $3.3 \div 3.5$). Największy wzrost wartości η_z i η_v zapewnił czas zagęszczania zbliżony do t_z , a dalsze jego wydłużanie jedynie nieznacznie poprawiało efekty procesu. Z uwagi na powyższe, stosowanie czasu zagęszczania wyraźnie dłuższego od wymaganego dla określonego osadu nie jest uzasadnione ze względu na konieczność zwiększenia objętości urządzeń do zagęszczania.

Rys. 5.6 Wpływ czasu zagęszczania na stopień zagęszczenia i zmniejszenia objętości osadów a) z ZOW "Mokry Dwór", b) z ZOW "Leśnica"

5.2.3. Wpływ wolnego mieszania

Osad pokoagulacyjny z ZOW "Mokry Dwór"

Wpływ wolnego mieszania oraz czasu jego trwania na przebieg i efekty zagęszczania próbek osadu pokoagulacyjnego MDI, MDIV i MDXII (o małej podatności na uwalnianie wody wolnej) nie był jednoznaczny. Wymagany czas zagęszczania osadów MDIV i MDXII po wolnym mieszaniu był wyraźnie dłuższy, a jego skrócenie (max o 9,3 %) stwierdzono dla osadu MDI najmniej podatnego na zagęszczanie grawitacyjne (rys. 2.17). W przypadku osadów MDI i MDXII efektem zastosowania wolnego mieszania i wydłużania czasu jego trwania było małe zwiększenie stopnia ich zagęszczenia, które w przypadku osadu MDIV stwierdzono stosując wolne mieszanie trwające aż $60 \div 120$ minut (rys. 5.7). Wolne mieszanie również tylko w niewielkim stopniu zmniejszyło objętość osadów po zagęszczaniu (tab. 2.12 ÷ 2.14).

Rys. 5.7. Wpływ czasu wolnego mieszania na stopień zagęszczenia osadów

Wpływ wolnego mieszania osadów na poziom zanieczyszczenia wydzielonych z nich wód nadosadowych również nie był jednoznaczny i generalnie niekorzystny. Wszystkie próbki wody nadosadowej wydzielone z osadów, których zagęszczanie poprzedzono wolnym mieszaniem charakteryzowały się większą mętnością i stężeniem glinu niż woda wydzielona z osadu surowego. Taką samą prawidłowość stwierdzono w odniesieniu do stężenia zawiesin ogólnych oraz barwy i utlenialności wód nadosadowych wydzielonych z osadów MDI i MDXII. Jedynie w przypadku osadu MDIV wolne mieszanie zapewniło zmniejszenie barwy i utlenialności wód nadosadowych wydzielonych. W przypadku wszystkich próbek osadu pokoagulacyjnego, wraz z wydłużeniem czasu wolnego mieszania zwiększały się wartości barwy, mętności, utlenialności oraz stężenia glinu i zawiesin ogólnych (tab. 2.12 ÷ 2.14). Nie stwierdzono wpływu wolnego mieszania oraz czasu jego trwania na wartości pH i zas. M wód nadosadowych.

Porównanie wpływu czasu zagęszczania oraz wolnego mieszania osadu MDIV przed omawianym procesem (tab. 2.6 i 2.13) wykazało, że taki sam stopień zagęszczenia ($\eta_z = 2,89$) zapewniły wydłużenie czasu zagęszczania do 24 h, bądź zastosowanie 90 min wolnego mieszania. Biorąc pod uwagę sumę t_z i t_{wm} = 1500 min oraz jakość wydzielonej wody nadosadowej korzystniejsze było wydłużenie czasu zagęszczania osadu, natomiast ze względu na zmniejszenie objętości osadu (η_v) lepszym rozwiązaniem było zastosowanie wolnego mieszania.

Osad wydzielony z wody podziemnej

Wolne mieszanie próbek osadu z ZOW "Leśnica" miało negatywny wpływ zarówno na stopień ich zagęszczenia i zmniejszenia objętości, jak i na jakość wydzielonych wód nadosadowych, który zwiększał się wraz z czasem trwania wolnego mieszania (tab. 3.6 i 3.7). Znaczenie zastosowania wolnego mieszania i czasu jego trwania na wymagany czas zagęszczania nie było jednoznaczne. Czas wolnego mieszania ≤ 15 min nie zmienił, bądź nieznacznie zmniejszył wartość t_z (rys. 5.8), a jego wydłużenie do 30 i 60 min spowodowało małe (< 10 %) wydłużenie wymaganego czasu zagęszczania badanych próbek osadu (LV i LVI). Nie stwierdzono wpływu wolnego mieszania na czas trwania fazy sedymentacji zawiesin, których prędkość opadania nieznacznie się zmniejszała wraz z czasem wolnego mieszania.

Tak jak w przypadku osadu pokoagulacyjnego z ZOW "Mokry Dwór", wolne mieszanie próbek osadu LV i LVI przed ich zagęszczaniem nie zmieniło jedynie wartości pH i zas. M wydzielonych z nich wód nadosadowych, natomiast zwiększyło (chociaż w małym stopniu wartości pozostałych badanych wskaźników ich jakości (rys. 3.19, tab. 3.6 i 3.7).

Rys. 5.8. Wpływ czasu wolnego mieszania na stopień zagęszczenia i wymagany czas zagęszczania osadów

Osad powstający w ZOW "Kogeneracja S.A."

Zastosowanie wolnego mieszania próbek osadu powstającego podczas oczyszczania wody z rzeki Odry w procesie koagulacji siarczanem żelaza (II) prowadzonym łącznie z dekarbonizacją (KII i KIV), tak jak i osadu wydzielonego z wody podziemnej, było niekorzystne. Wolne mieszanie i wydłużenie jego czasu zmniejszyły wartości η_z i wydłużyły wymagany czas zagęszczania (rys. 5.9).

Rys. 5.9. Wpływ czasu wolnego mieszania na stopień zagęszczenia i wymagany czas zagęszczania osadów

Nie stwierdzono wpływu wolnego mieszania na czas trwania fazy sedymentacji cząstek tych osadów oraz brak lub bardzo mały wpływ na zmniejszenie objętości osadu po zagęszczaniu

(tab. 4.3 i 4.4). Wolne mieszanie spowodowało pogorszenie jakości wód nadosadowych wydzielonych z zagęszczanych próbek osadu, a wraz z jego wydłużaniem zwiększały się wartości mętności, barwy, utlenialności i stężenia żelaza ogólnego. Stężenie zawiesin ogólnych w wodzie nadosadowej wydzielonej z osadu KII zwiększyło się w próbkach mieszanych przez 15 do 60 minut, natomiast nie stwierdzono zmiany wartości tego wskaźnika w wodzie nadosadowej wydzielonej z osadu KIV (tab. 4.3 i 4.4, rys. 4.14). Wolne mieszanie nie zmieniło wartości pH oraz zas M i twardości ogólnej wód nadosadowych.

Podsumowując, zastosowanie wolnego mieszania przed zagęszczaniem grawitacyjnym próbek osadów wydzielonych z wody podziemnej oraz z wody powierzchniowej oczyszczanej w jednocześnie zachodzącym procesie koagulacji i dekarbonizacji było zdecydowanie niekorzystne. Zastosowane natomiast do wspomagania zagęszczania osadu pokoagulacyjnego z ZOW "Mokry Dwór", jedynie w bardzo małym stopniu zwiększyło stopień jego zagęszczenia oraz, tak jak w przypadku pozostałych rodzajów osadów, spowodowało pogorszenie jakości wydzielonych wód nadosadowych.

5.2. Zagęszczanie osadów po kondycjonowaniu chemicznym

5.2.1. Wpływ korekty pH

Osad pokoagulacyjny ZOW "Mokry Dwór"

Alkalizacja dwóch próbek osadu pokoagulacyjnego (MDII i MDIV) niekorzystnie wpłynęła na stopień ich zagęszczenia i zmniejszenia objętości, a także na jakość wydzielonych wód nadosadowych.

Rys. 5.10. Wpływ pH₀ na czas fazy sedymentacji i wymagany czas zagęszczania osadów

Wpływ wzrostu stężenia jonów OH⁻ na czas sedymentacji cząstek stałych i wymagany czas zagęszczania badanych próbek osadu był odmienny. Skrócenie czasu trwania faz procesu odwadniania stwierdzono dla gorzej zagęszczającego się osadu MDII, a wydłużenie tych parametrów procesu dla osadu MDIV (tab. 2.16 i 2.17, rys. 5.10).

Przyspieszenie rozdziału faz osadu MDII mogło być spowodowane z jednej strony mniejszą zawartością substancji organicznych, a z drugiej większym udziałem w jego suchej masie połączeń wapnia i żelaza, których rozpuszczalność zmniejszała się ze wzrostem stopnia alkalizacji – do pH₀ = 9,0. Natomiast trudny jest do wyjaśnienia fakt, iż nie stwierdzono niekorzystnego wpływu związków glinu, których dwukrotnie więcej stwierdzono w próbce MDII. Wraz ze zwiększającą się wartością pH₀ zmniejszały się wartości η_z i η_v (rys. 2.20 i 2.22) osadów MDII i MDIV, a zmniejszenie uwodnienia (W₀ – W_k) było nieznacznie większe dla osadu MDIV (rys. 5.11) charakteryzującego się mniejszą zawartością glinu.

Rys. 5.11. Wpływ alkalizacji na zmniejszenie uwodnienia

Wzrost stężenia jonów OH⁻ zwiększający rozpuszczalność wodorotlenku glinu (Al(OH)₃ + OH⁻ →Al(OH)₄⁻) powodował niszczenie struktur cząstek osadu i uwalnianie komponentów zawiesin pokoagulacyjnych do wody. Wynikiem zachodzących zjawisk było zwiększenie poziomu zanieczyszczenia wód nadosadowych, wzrost mętności, intensywności barwy, utlenialności oraz stężenia glinu i zawiesin ogólnych. Wraz z postępującą alkalizacją wartości wymienionych wskaźników jakości wody zwiększały się, natomiast zas. M, twardość ogólna oraz stężenie wapnia i magnezu malały, co było efektem procesu dekarbonizacji wapnem. W wodzie wydzielonej z próbki osadu MDIV o pH₀ = 10,0 stwierdzono stężenie glinu = 11,26 gAl/m³ oraz pH_k = 9,4, a więc wartości większe niż dopuszczalne w ściekach odprowadzanych do wód lub do ziemi.

Zakwaszenie próbek osadu pokoagulacyjnego, tak jak ich alkalizacja, spowodowało zmniejszenie skuteczności procesu zagęszczania (rys. 2.23, 2.25). Stwierdzono jednak pozytywny wpływ zakwaszenia na wymagany czas zagęszczania, który skracał się wraz ze wzrostem stężenia jonów H⁺. Czas trwania fazy sedymentacji czastek osadu MDVII po zakwaszeniu był dłuższy niż dla osadu surowego, natomiast odwrotną zależność stwierdzono w przypadku osadu o mniejszym uwodnieniu początkowym i mniejszym udziale związków organicznych w suchej masie (MDXI) (tab. 2.17 i 2.18). O wydłużeniu czasu sedymentacji cząstek osadu MDVII współdecydowała prawdopodobnie prawie dwukrotnie większa zawartość związków wapnia i zwiększająca się ich rozpuszczalność wraz ze wzrostem stężenia jonów wodorowych. Wpływ zakwaszenia na jakość wód nadosadowych był różny; korzystny w odniesieniu do utlenialności, barwy i mętności, natomiast niekorzystny ze względu na stężenie żelaza ogólnego, wapnia i magnezu (tab. 2.17 i 2.18, rys. 2.24 i 2.26). Powyższe spowodowane było zmniejszającą rozpuszczalnością substancji organicznych w środowisku kwaśnym, natomiast wzrostem rozpuszczalności związków żelaza, wapnia i magnezu. Nie stwierdzono wpływu kondycjonowania osadu kwasem siarkowym na stężenie jonów glinu, a różnice w ich zawartości były bardzo małe i praktycznie mieszczące się w granicach błędu analizy. Negatywnym skutkiem korekty pH próbek osadu jest również niebezpieczeństwo nadmiernego zakwaszenie wód nadosadowych do pH < 6,5.

Osad z ZOW "Leśnica"

Alkalizacja próbek osadu wydzielonego z wody podziemnej (LI, LIV, LV), tak jak w przypadku próbek osadu pokoagulacyjnego z ZOW "Mokry Dwór" spowodowała, chociaż mniejsze (4,2 ÷ 5,9 %), zmniejszenie stopnia ich zagęszczenia i zmniejszenia objętości oraz zwiększyła poziom zanieczyszczenia wód nadosadowych. Ten niekorzystny wpływ alkalizacji zwiększał się wraz ze wzrostem pH i skuteczności zagęszczenia (η_z i η_v) próbek osadu niekondycjonowanego, a także ze stężeniem jonów OH⁻ w osadach kondycjonowanych wapnem (tab. 3.8 ÷ 3.10, rys 3.23 ÷ 2.28) i był największy w przypadku próbki LIV (rys. 5.12).

Wpływ kondycjonowania wapnem na dynamikę rozdziału faz badanych próbek był różny. Alkalizacja nie zmieniła czasu sedymentacji zawiesin obecnych w próbkach LIV i LV i tylko nieznacznie (o 2 minuty) skróciła go w przypadku próbki LI. Porównanie skrócenia wymaganego czasu zagęszczania próbek o pH₀ = 9,0 (rys. 5.12) również świadczy o niejednoznacznym wpływie kondycjonowania próbek osadu na wartość tego parametru. Z uwagi na brak pełnej analizy składu fizyczno-chemicznego zagęszczanych próbek wyjaśnienie różnego wpływu alkalizacji na przebieg i skuteczność badanego procesu jest trudne. Przyczyną największego zmniejszenia stopnia zagęszczenia osadu LIV mogła być najmniejsza zawartość manganu, a tym samym drobnokrystalicznego o dużej gęstości MnO₂ [37]. Ponadto, ta próbka osadu zawierała około dwukrotnie więcej magnezu niż pozostałe (tab. 3.1), a twardość magnezowa w zakresie pH do 10,5 utrudnia wytrącanie CaCO₃ charakteryzującego się dużą podatnością na zagęszczanie grawitacyjne.

Rys. 5.12. Porównanie zmniejszenia stopnia zagęszczenia i skrócenia wymaganego czasu zagęszczania próbek osadu; dla p $H_0 = 9,0$

Jakość wód nadosadowych wydzielonych ze wszystkich kondycjonowanych próbek, ze względu na mętność, barwę, utlenialność i stężenie manganu i w mniejszym stopniu również zawiesin ogólnych, była gorsza niż wód wydzielonych z osadów surowych (tab. $3.8 \div 3.10$, rys. 3.24, 3.26, 3.28). Najmniejszy wzrost stwierdzono w przypadku żelaza ogólnego, którego stężenie w wodzie wydzielonej z próbki LV było nawet nieznacznie mniejsze niż z osadu surowego. Efektem zastosowania do kondycjonowania próbek osadu wapna było zmniejszenie zas. M wód nadosadowych oraz zawartości w nich wapnia, a także magnezu, który do wartości pH₀ = 9,5 współstrącał się z węglanem wapnia [28]. Wadą kondycjonowania osadów alkaliami jest również niebezpieczeństwo wzrostu pH wody nadosadowej do wartości większej niż dopuszczalna, co stwierdzono dla próbek osadu KIV i KV alkalizowanych do pH₀ = 9,5.

Osad z ZOW "Kogeneracja S.A."

Zakwaszenie próbek osadu (KI i KIII) przed ich zagęszczaniem było niekorzystne. Wraz ze wzrostem stężenia jonów H⁺ zmniejszały się wartości stopnia zagęszczenia i zmniejszenia

Rys. 5.13. Wpływ zakwaszenia osadu na stopień zagęszczenia i wymagany czas zagęszczania osadów

Zakwaszenie spowodowało wzrost rozpuszczalności nieorganicznych komponentów zawiesin (głównie $CaCO_3$ i $Fe(OH)_3$) i ich deaglomerację, czego odzwierciedleniem było zmniejszenie prędkości opadania zawiesin oraz wydłużenie czasu ich sedymentacji (rys. 5.14), a także wzrost poziomu zanieczyszczenia wód nadosadowych (rys. 4.17, 4.19).

Rys. 5.14. Wpływ zakwaszenia próbek osadu na prędkość sedymentacji zawiesin i czas ich opadania

Negatywny wpływ wzrostu stężenia jonów wodorowych (zgodnie z oczekiwaniem), był większy w przypadku próbki osadu KI (tab. 5.5), która przed zakwaszeniem była bardziej podatna na zagęszczanie grawitacyjne.

Próbka osa-	Zmniejszenie, %										
du	ηz	ην	W ₀ - W _k								
KI	13,17	2,59	14,31								
KIII	4,49	0,55	5,23								

Tab. 5.5. Porównanie zmniejszenia wartości η_z , η_v oraz odwodnienia próbek KI i KIII (%) w wyniku zakwaszenia do pH₀ = 8,0

Wartości badanych wskaźników jakości wody nadosadowej (poza zas. F) zwiększały się wraz ze stopniem zakwaszenia próbek osadu (tab. 4.6 i 4.7, rys. 4.17 i 4.19). Zaletą zakwaszenia próbek osadu przed ich zagęszczaniem do pH₀ = 8,5 było zmniejszenie wartości pH wody nadosadowej do maksymalnej dopuszczalnej w ściekach odprowadzanych do wód lub do ziemi.

Analiza wyników badań wykazała, że bez względu na rodzaj osadu (MD, L, K) zmiany wartości pH (zakwaszenie/alkalizacja) próbek tych osadów zmniejszyły stopień ich zagęszczenia oraz zmniejszenia objętości. Ten niekorzystny wpływ korekty pH osadów był większy w przypadku tych próbek, które (przed kondycjonowaniem) charakteryzowały się większą podatnością na uwalnianie wody wolnej (z wyjątkiem alkalizacji osadów pokoagulacyjnych z ZOW "Mokry Dwór"). Wpływ zwiększenia lub zmniejszenia wartości pH w zagęszczanych mediach na dynamikę rozdziału faz był różny, a współdecydował o tym ich skład fizycznochemiczny. Omawiany sposób kondycjonowania chemicznego w większości próbek wód nadosadowych spowodował wzrost wartości badanych wskaźników zanieczyszczenia, a jedynie alkalizacja wapnem zapewniła zmniejszenie stężeń wapnia i magnezu.

5.2.2. Wpływ kondycjonowania polielektrolitami

W przypadku niektórych polielektrolitów stosowanych do kondycjonowania osadu powstającego podczas koagulacji zanieczyszczeń wody powierzchniowej solami glinu (MD) stwierdzono zakłócenie procesu sedymentacji. W pierwszych minutach sedymentacji (nawet do 28 minut) zwiększała się prędkość opadania zawiesin, po czym przez kilka kolejnych minut była stała lub zmniejszała się nieznacznie. Zjawisko to mogło być spowodowane powstawaniem flokuł znacznie różniących się gęstością oraz objętością i ich wzajemnym oddziaływaniem na siebie podczas sedymentacji. Wyraźnym przykładem tego zjawiska jest sedymentacja cząstek osadu po jednoczesnym kondycjonowaniu osadu MDXII polielektrolitami Kd2 i Kd3 (tab. TZ.30, rys. KZ.30). Zaburzenia w procesie sedymentacji miały miejsce w przypadku stosowania wszystkich dawek polielektrolitów kationowych o dużej masie cząsteczkowej Kd2, K6, Kd5 oraz wszystkich dawek polielektrolitów kationowych o średniej i dużej masie cząsteczkowej dawkowanych jednocześnie (Kśr3 i Kśr4), (Kd2 i Kd3) oraz (Kśr5 i Kd5). Zjawiska tego nie stwierdzono w przypadku próbek kondycjonowanych polielektrolitami kationowymi o średniej masie cząsteczkowej (Kśr2, Kśr3 i Kśr5) oraz polielektrolitem anionowym o dużej masie cząsteczkowej (Ad1). W przypadku pozostałych stosowanych polimerów organicznych, zaburzenia sedymentacji zawiesin stwierdzono tylko dla niektórych dawek substancji kondycjonujących. Stwierdzone zakłócenie przebiegu sedymentacji cząstek osadu pokoagulacyjnego z ZOW "Mokry Dwór" nie pozwoliło na wyznaczenie właściwych wartości t_s, t_k, v_s i Z.

5.2.2.1. Osady powstające w ZOW "Mokry Dwór"

Kondycjonowaniu poddano próbki osadu charakteryzujące się małą podatnością na zagęszczanie grawitacyjne (MDVI, MDVIII, MDX, MDXI i MDXII). Wpływ kondycjonowania próbek osadu pokoagulacyjnego (MD) na stopień jego zagęszczenia i zmniejszenia objętości zależał zarówno od próbki osadu, jak i charakteru jonowego, masy cząsteczkowej polielektrolitu oraz jego dawki i sposobu dawkowania.

Kondycjonowanie polielektrolitami kationowymi

W przypadku próbki osadu MDX wszystkie dawki polielektrolitu kationowego o średniej masie cząsteczkowej (Kśr3) zapewniły zwiększenie skuteczności zagęszczenia i zmniejszenia objętości osadu, a także jego podatności na zagęszczanie w fazie komprymacji (tab. 2.28, rys. 2.38). Natomiast skutek kondycjonowania próbki osadu MDVIII, również polielektrolitami kationowymi o średniej masie cząsteczkowej (Kśr1, Kśr2) był odwrotny (tab. 2.24 i 2.26, rys. 2.34, 2.36). Mały wzrost wartości η_z i η_v próbki osadu MDXI zapewniły jedynie małe ilości polielektrolitów Kśr4 oraz Kśr5 wynoszące odpowiednio 0,1 i 0,2 mg/g_{smo} oraz 0,1 ÷ 0,3 mg/g_{smo}, a wszystkie dawki tych substancji kondycjonujących zmniejszyły (chociaż w różnym stopniu) wartość parametru Z (tab. 2.20, 2.23, rys. 2.28, 2.32).

Również w przypadku stosowania polielektrolitów kationowych o dużej masie cząsteczkowej ich wpływ na wartości η_z i η_v oraz podatność na zagęszczanie osadu w fazie komprymacji był różny. Polielektrolit Kd1 ($D_p = 0,1 \div 0,5 \text{ mg/g}_{smo}$) zmniejszył stopień zagęszczenia osadu (η_z i η_v), a zwiększenie podatności próbki osadu MDVIII zapewniła jedynie jego dawka wynosząca 0,1 mg/g_{smo} (tab. 2.25, rys. 2.35). Polielektrolity o dużej masie cząsteczkowej (Kd2, Kd4 i Kd5) dawkowane jedynie w ilości $\leq 0,2 \text{ mg/g}_{smo}$ odpowiednio do próbek osadu MDXI (tab. 2.21, rys. 2.30), MDVI (tab. 2.27, rys. 2.37) i MDX (tab. 2.29, rys. 2.39) zwiększyły stopień ich zagęszczenia i zmniejszenia objętości. Natomiast kondycjonowanie próbki MDXI polie-

lektrolitem Kd3 (tab. 2.22, rys. 2.31), bez względu na jego dawkę, spowodowało zmniejszenie wartości η_z i η_v mimo jednoczesnego zwiększenia podatności osadu na zagęszczanie w fazie komprymacji.

Poprawę efektów porcjowego zagęszczania grawitacyjnego (wzrost η_z i η_v) próbki osadu MDXII (tab. 2.33, 2.34 i 2.35, rys. 2.45, 2.47 i 2.49) zapewniły wszystkie dawki dodawanych jednocześnie dwóch polielektrolitów kationowych; o średniej masie cząsteczkowej (Kśr3 i Kśr4), o dużej masie cząsteczkowej (Kd2 i Kd3) oraz o różnych masach cząsteczkowych (Kśr5 i Kd5). W przypadku łącznego dawkowania polielektrolitów kationowych o dużej masie cząsteczkowej (Kd1 i Kd4) nie stwierdzono zwiększenia skuteczności odwodnienia tej próbki dla dawek $\geq 0,3$ mg/g_{smo}, które spowodowały odwrotny skutek (tab. 2.36, rys. 2.51). Zmiany wartości η_z i η_v (%) przedstawione na rysunku 5.15 wskazują ponadto, że korzystny wpływ kondycjonowania osadu dwoma polielektrolitami kationowymi dawkowanymi jednocześnie zależał od rodzaju stosowanych polimerów organicznych i zmniejszał się wraz z rosnącą ich łączną dawką.

Rys. 5.15. Wpływ rodzaju i dawki polielektrolitów dawkowanych łącznie na zwiększenie (+) lub zmniejszenie (-) wartości a) η_z i b) η_v (MDXII)

Kondycjonowanie polielektrolitami anionowymi

Kondycjonowanie próbek osadu pokoagulacyjnego polielektrolitami anionowymi o dużej lub bardzo dużej masie cząsteczkowej, a także dwoma polielektrolitami anionowymi (Ad1 i Ad2) dawkowanymi łącznie nie wspomagało procesu porcjowego zagęszczania grawitacyjnego próbek osadu MDVIII (tab. 2.30, rys. 2.40), MDVI (tab. 2.31, rys. 2.42), MDX (tab. 2.32, rys. 2.43) i MDXII (tab. 2.37, rys. 2.53). Wszystkie anionowe polimery zwiększyły, chociaż w

różnym stopniu, uwodnienie końcowe tych próbek po zagęszczaniu oraz ich objętość (rys. 5.16).

Rys. 5.16. Zwiększenie końcowego uwodnienia i objętości próbek osadu kondycjonowanego polielektrolitami anionowymi ($D_p = 0,1 \div 0,5 \text{ mg/g}_{smo}$)

Zmniejszenie skuteczności było różne w odniesieniu do poszczególnych próbek osadu oraz rodzaju testowanych substancji kondycjonujących. Największy wzrost wartości W_k i V_k spowodował polielektrolit Ad2 stosowany do kondycjonowania próbki MDVI o najmniejszym uwodnieniu początkowym ($W_0 = 98,95$ %). Spośród badanych polielektrolitów tylko polimer o bardzo dużej masie cząsteczkowej (Abd) poprawił podatność próbki osadu MDX na zagęszczanie w fazie komprymacji (tab. 2.32), a pozostałe reagenty miały odwrotny wpływ na tę właściwość kondycjonowanych próbek osadu pokoagulacyjnego. Stwierdzona większa podatność polielektrolitów kationowych, głównie o średniej masie cząsteczkowej i dawkowanych łącznie, niż anionowych do kondycjonowania osadów zawierających znaczne ilości substancji organicznych potwierdza informacje podawane w literaturze przedmiotu [28, 38, 52, 64].

Efektem aglomerującego działania wszystkich testowanych polielektrolitów, bez względu na ich charakter jonowy, masę cząsteczkową, dawkę i sposób dawkowania (oddzielnie/łącznie) było zwiększenie prędkości opadania zawiesin i skrócenie czasu ich sedymentacji. Wspomaganie polielektrolitami porcjowego zagęszczania grawitacyjnego zdecydowanej większości próbek osadu skróciło również wymagany czas zagęszczania. Jedynie w przypadku dawek polielektrolitów Kśr3 i Kd4 zapewniających zwiększenie wartości η_z i η_v czas ten uległ wydłużeniu (tab. 2.27, 2.28). Wpływ kondycjonowania polielektrolitami próbek osadów na jakość wydzielonych z nich wód nadosadowych był różny i dotyczył głównie mętności oraz stężenia glinu i zawiesin ogólnych. Z uwagi na powyższe wskaźniki jakość wody nadosadowej, jednoznacznie niekorzystne było kondycjonowanie dwoma polielektrolitami dawkowanymi jednocześnie do osadu MDXII. Praktycznie wszystkie stosowane dawki polimerów kationowych, a także i anionowych spowodowały wzrost wartości tych wskaźników jakości wody nadosadowej (tab. 2.33 ÷ 2.37, rys. 2.46, 2.48, 2.50, 2.52, 2.53). Zwiększenie mętności i stężenia glinu stwierdzono również w wodzie wydzielonej z próbki osadu MDVIII kondycjonowanej największymi dawkami (0,5 mg/g_{smo}) polielektrolitów kationowych Kśr1 (tab. 2.24) oraz Kd1 (tab. 2.25, rys. 2.35), a wzrost mętności w przypadku stosowania dawek polielektrolitu anionowego Ad1 \geq 0,4 mg/g_{smo} (tab. 2.30, rys. 2.41). Wzrost M i stężenia glinu spowodowały dawki polielektrolitu Kśr2 wynoszące $0,1 \div 0,4$ mg/g_{smo} (tab. 2.26, rys. 2.36). Zwiększenie utlenialności i intensywności barwy, mogące świadczyć o pozostawaniu w wodzie rozpuszczonej organicznej substancji kondycjonującej, stwierdzono tylko dla wszystkich dawek polielektrolitu Kśr4 dawkowanego do próbki osadu MDXI (tab. 2.20, rys. 2.29). Pozostałe wody nadosadowe wydzielone z próbek MDXI i MDX, bez względu na rodzaj polielektrolitu i jego dawkę, charakteryzowały się mniejszym stopniem zanieczyszczenia niż wydzielone z tych osadów niekondycjonowanych. Taką samą prawidłowość stwierdzono dla próbek wody nadosadowej wydzielonej z próbki osadu MDVI kondycjonowanej polielektrolitem kationowym Kd4 oraz anionowym Ad2, lecz dawkowanym w ilości $\leq 0.3 \text{ mg/g}_{\text{smo}}$ (tab. 2.27 i 2.31, rys. 2.37 i 2.42). Bez względu na omówione zmiany wartości badanych wskaźników jakości wody nadosadowej, wszystkie próbki wody wydzielone z kondycjonowanych polielektrolitami próbek osadu spełniały wymagania stawiane ściekom odprowadzanym do wód lub do ziemi [46].

Z uwagi na powyższe, możliwość skrócenia wymaganego czasu procesu zagęszczania grawitacyjnego oraz zwiększenia jego skuteczności, kondycjonowanie polielektrolitami może być uzasadnione szczególnie w przypadku stosowania jednocześnie dwóch polielektrolitów kationowych. Rodzaj polimerów kondycjonujących oraz ich dawka optymalna powinny był ustalone doświadczalnie.

5.2.2.2. Osady powstające w ZOW "Leśnica"

Wszystkie polielektrolity stosowane do kondycjonowania trzech próbek osadu wydzielonego z wody podziemnej, bez względu na ich charakter jonowy, masę cząsteczkową, dawkę i sposób dawkowania zapewniły skrócenie wymaganego czasu zagęszczania, sedymentacji zawiesin i zwiększenie prędkości ich opadania. Wzrost dawki polielektrolitów we wszystkich przypadkach przyspieszał rozdział faz.

Kondycjonowanie chemiczne próbek tego osadu miało generalnie negatywny wpływ na efekty ich zagęszczania (tab. 5.7). Jedynie najmniejsza dawka polielektrolitu o średniej masie cząsteczkowej Kśr3 oraz dawki 0,1 i 0,2 mg/g_{smo} polimeru Kśr4, stosowane do kondycjonowania próbki osadu charakteryzującego się średnią podatnością na zagęszczanie, zapewniły nieznaczne zwiększenie wartości η_z i nie zmieniły objętości osadu po procesie zagęszczania (tab. 3.11, 3.12). Wzrostu objętości osadu nie spowodowały również pozostałe dawki (0,3 ÷ 0,5 mg/g_{smo}) polielektrolitu Kśr4 (tab. 3.12). W pozostałych przypadkach niekorzystny wpływ kondycjonowania polielektrolitami dawkowanymi oddzielnie i łącznie intensyfikował się wraz ze wzrostem dawek polielektrolitów (tab. 3.11 ÷ 3.21).

Dawkowanie polielektrolitów kationowych i anionowych do próbek LII i LIII spowodowało zwiększenie poziomu zanieczyszczenia wydzielonych wód nadosadowych. Stwierdzono przekroczenia dopuszczalnych wartości stężenia żelaza ogólnego i zawiesin ogólnych w ściekach odprowadzanych od wód lub do ziemi w przypadku wszystkich testowanych polielektrolitów i ich dawek przedstawionych w tabeli 5.7.

Tab. 5.7. Dawki polielektrolitów (mg/g_{smo}) powodujące ponadnormatywne zanieczyszczenie wód nadosadowych z uwagi na stężenie zawiesin ogólnych i żelaza ogólnego

Osad			L	.11	LIII								
Polielektrolit	Kśr5	Kd4	Kd5	Ad1	Ad2	Abd	Kśr3	Kśr4	Kd1	Kd2	Kd3		
Zaw _{og}	≥ 0,2	≥ 0,3	≥ 0,2	≥ 0,4	≥ 0,2	≥ 0,3	≥ 0,1	≥ 0,3	≥ 0,3	≥ 0,1	≥ 0,2		
Fe _{og}	≥ 0,4	≥ 0,3	≥ 0,4	≥ 0,4	≥ 0,2	≥ 0,3	≥ 0,1	≥ 0,1	≥ 0,3	≥ 0,1	≥ 0,2		

Kondycjonowanie jednocześnie dwoma polielektrolitami próbek osadu LI zapewniło poprawę jakości wydzielonych wód nadosadowych ze względu na mętność, barwę, utlenialność oraz stężenia manganu, żelaza ogólnego oraz zawiesin ogólnych (tab. 3.22 ÷ 3.26, rys. 3.43, 3.45, 3.47, 3.49, 3.51).

Z uwagi na niekorzystny wpływ dawkowania polielektrolitów na efekty zagęszczania oraz znaczne pogorszenie jakości wydzielonych wód nadosadowych, kondycjonowanie osadu powstającego podczas oczyszczania wody podziemnej pojedynczym polimerem jest nieuzasadnione. W przypadku konieczności skrócenia wymaganego czasu zagęszczania, korzystniejsze jest stosowanie do kondycjonowania dwóch polielektrolitów dawkowanych jednocześnie, ponieważ taki sposób ich dawkowania do próbek osadu LI nie spowodował wzrostu zanieczyszczenia wód nadosadowych. Należy jednak pamiętać o zmniejszeniu stopnia zagęszczenia i zwiększeniu objętości osadu po zagęszczaniu.

5.2.2.3. Osady powstające w ZOW "Kogeneracja S.A."

Kondycjonowanie próbek tego osadu polielektrolitami bez względu na charakter jonowy substancji kondycjonującej, jej masę cząsteczkową oraz dawkę i sposób dawkowania (łącznie/oddzielnie) nie poprawiło efektów zagęszczania. Wszystkie stosowane polielektrolity i ich dawki $(0,1 \div 0.5 \text{ mg/g}_{smo})$ zmniejszyły stopień zagęszczenia próbek osadu. Zwiększenia objętości osadu po zagęszczaniu nie spowodowało tylko kondycjonowanie osadu o najmniejszej podatności na zagęszczanie grawitacyjne (KIV) najmniejszymi dawkami polielektrolitu anionowego (Ad1) oraz polielektrolitów kationowych dawkowanych łącznie (Kśr3 i Kśr4 oraz Kśr5 i Kd1). Negatywny wpływ wszystkich polielektrolitów na skuteczność odwadniania próbek osadu zwiększał się wraz ze wzrostem dawki substancji kondycjonującej (tab. 4.7 ÷ 4.17, rys. 4.20, 4.21, $4.23 \div 4.27$, $4.29 \div 4.32$). Wszystkie testowane polielektrolity skróciły czas fazy sedymentacji zawiesin, zwiększyły prędkość ich opadania oraz skróciły wymagany czas zagęszczania, a przyspieszenie rozdziału faz zwiększało się wraz z dawką polielektrolitu. Porównanie zmniejszenia stopnia zagęszczenia próbek osadu KIV (rys. 5.15) wskazuje, że bardziej przydatne były polielektrolity kationowe i anionowe o dużej masie cząsteczkowej. Odwrotną prawidłowość, w odniesieniu do polielektrolitów kationowych, stwierdzono natomiast dla próbek osadu KII (rys. 5.15).

Rys. 5.15. Wpływ rodzaju polielektrolitów i sposobu ich dawkowania na zmniejszenie stopnia zagęszczenia oraz skrócenie wymaganego czasu procesu

Powyższe wskazuje, że o wpływie polielektrolitów na zmniejszenie stopnia zagęszczenia oraz skrócenia wymaganego czasu zagęszczania próbek osadów współdecydowały zarówno ich rodzaj (charakter jonowy, masa cząsteczkowa), jak i dawka oraz sposób dawkowania (łącznie czy oddzielnie), a także skład fizyczno-chemiczny zagęszczanego medium (rys. 5.15). Kondycjonowanie polielektrolitami było natomiast korzystne z uwagi na mniejszy poziom zanieczyszczenia wód nadosadowych wydzielonych z próbek osadu KIII i KIV. W przypadku

osadu KII polielektrolity kationowe o średniej masie cząsteczkowej nie poprawiły jakości

wód nadosadowych z uwagi na barwę i utlenialność. Zwiększenie wartości tych wskaźników było wprawdzie bardzo małe, ale mogło świadczyć o pozostaniu w wodzie części organicznych substancji kondycjonujących. Ze względu na to, że jakość wód wydzielonych z niekondycjonowanych próbek tego osadu spełniała wymagania stawiane ściekom odprowadzanym do wód lub do ziemi oraz niekorzystny wpływ polielektrolitów na stopień zagęszczenia, kondycjonowanie polielektrolitami osadu powstającego w ZOW "Kogeneracja S.A." może być uzasadnione jedynie w przypadku konieczności skrócenia wymaganego czasu zagęszczania.

5.2.3. Wpływ kondycjonowania chemicznego osadów na wartość CSK_k

Bez względu na rodzaj osadu, jego skład fizyczno-chemiczny a także rodzaj substancji kondycjonującej, kondycjonowanie chemiczne miało pozytywny wpływ na podatność osadu na odwadnianie mechaniczne. Skrócenie czasu ssania kapilarnego osadu po zagęszczaniu wynikało ze zmiany struktury osadu i zwiększało wraz ze wzrostem dawki substancji kondycjonujących (rys. 5.16, 5.17, 5.18). Największe zmniejszenie wartości CSK_k zapewniały polielektrolity. Wpływ dawkowania polielektrolitów na skrócenie czasu ssania kapilarnego największy był w przypadku wspomagania zagęszczania próbek osadów wydzielonych z wody podziemnej, a w przypadku pozostałych osadów był porównywalny (rys. 5.16).

Rys. 5.16. Wpływ dawki polielektrolitu na zmniejszenie CSK_k

Alkalizacja próbek osadu przed ich zagęszczaniem również spowodowała zwiększenie podatności na odwadnianie, ale w mniejszym stopniu niż kondycjonowanie polielektrolitami. Większe zmniejszenie wartości CSK_k stwierdzono w przypadku próbek osadu pokoagulacyjnego z ZOW "Mokry Dwór" (rys. 5.17). Najmniejszy wpływ na wartość czasu ssania kapilarnego zagęszczonych próbek osadu miało ich zakwaszenie, a w szczególności zakwaszenie próbek osadu powstającego podczas jednoczesnej dekarbonizacji i koagulacji (rys. 5.18).

Rys. 5.17. Wpływ alkalizacji próbek osadu na zmniejszenie CSK_k

Rys. 5.18. Wpływ zakwaszenia na zmniejszenie CSK_k

Bez względu na rodzaj osadu, czas ssania kapilarnego próbek osadów po zagęszczaniu, które poprzedzone było wolnym mieszaniem zależał od efektów zagęszczania. Niewielkie skrócenie czasu ssania kapilarnego stwierdzono w przypadku próbek osadu z ZOW "Leśnica" i ZOW "Kogeneracja S.A.", których wolne mieszanie pogorszyło skuteczność zagęszczania. Odwrotną zależność stwierdzono w przypadku próbek osadu pokoagulacyjnego z ZOW "Mokry Dwór".

6. WNIOSKI

1) Skuteczność porcjowego zagęszczania grawitacyjnego osadów zależała od ich rodzaju, uwodnienia początkowego oraz składu chemicznego. Najmniejszą podatnością na porcjowe zagęszczanie grawitacyjne charakteryzowały się osady pokoagulacyjne powstające w układzie oczyszczania wody powierzchniowej w ZOW "Mokry Dwór", zawierające najwięcej substancji organicznych. Najlepiej zagęszczały się osady, powstające podczas oczyszczania wody z rzeki Odry w procesie jednoczesnej dekarbonizacji wapnem i koagulacji siarczanem żelaza (II).

2) Zagęszczanie próbek osadów pokoagulacyjnego i powstającego podczas oczyszczania wody podziemnej w czasie dłuższym niż wymagany czas zagęszczania tylko nieznacznie zwiększyło stopień ich zagęszczenia i poprawiło jakość wydzielonych wód nadosadowych. Czterokrotne wydłużenie czasu zagęszczania ($t_{zag} = 4t_z$) osadów z ZOW "Mokry Dwór" i ZOW "Leśnica" spowodowało zaledwie maksymalny wzrost wartości η_z odpowiednio o 10,43 % i 2,29 %.

3) Wolne mieszanie próbek osadów z ZOW "Leśnica" i ZOW "Kogeneracja S.A." przed ich zagęszczaniem było niekorzystne, zarówno z uwagi na stopień zagęszczenia (η_z) i zmniejszenia objętości (η_v), jak i zanieczyszczenie wydzielonych wód nadosadowych. Zastosowanie odpowiednio długiego czasu wolnego mieszania próbek osadu pokoagulacyjnego (z ZOW "Mokry Dwór") zwiększyło skuteczność ich zagęszczania, powodując niestety wzrost stopnia zanieczyszczenia wód nadosadowych.

4) Chemiczne kondycjonowanie próbek osadów powstających w różnych układach oczyszczania wody zmieniło przebieg i efekty ich porcjowego zagęszczania grawitacyjnego, jakość wydzielonych z nich wód nadosadowych oraz podatność osadów po zagęszczaniu na ich dalsze odwadnianie.

5) Zmiana stężenia jonów wodorowych w zagęszczanych osadach zwiększyła ich uwodnienie i objętość po zagęszczaniu oraz wartości badanych wskaźników jakości wód nadosadowych poza twardością (węglanową i ogólną), której zmniejszenie zapewniła alkalizacja osadów. Dodatkowo, negatywnym skutkiem zbyt dużego stopnia zakwaszenia lub alkalizacji zagęszczanych mediów były wartości pH wody nadosadowej niedopuszczalne w ściekach odprowadzanych do wód lub do ziemi.

6) Testowane polielektrolity, bez względu na ich charakter jonowy, masę cząsteczkową oraz sposób ich dawkowania powodując aglomerację cząstek stałych osadów skróciły wyma-

gany czas zagęszczania próbek osadów (poza próbką MDXI – Kśr3), a głównie fazy sedymentacji zawiesin.

7) Wpływ polielektrolitów na skuteczność zagęszczania osadów był różny i zależał głównie od rodzaju osadu. Polimery organiczne kationowe i anionowe zmniejszyły stopień zagęszczenia oraz zmniejszenia objętości wszystkich próbek osadu powstającego w ZOW "Kogeneracja S.A." oraz zdecydowanej większości próbek osadu (poza próbką LIII kondycjonowaną najmniejszymi dawkami polielektrolitów Kśr3 i Kśr4) powstającego podczas oczyszczania wody podziemnej. W przypadku osadu pokoagulacyjnego (z ZOW "Mokry Dwór") zwiększenie skuteczności (wzrost wartości η_z i η_v) zapewniło kondycjonowanie dwoma polielektrolitów kationowymi dodawanymi jednocześnie do osadu oraz dawkowanie niektórych polielektrolitów kationowych w ilości 0,2 (0,3) mg/g_{smo}.

8) O jakości próbek wody nadosadowej wydzielonej z osadów kondycjonowanych polielektrolitami współdecydowały rodzaj, dawka i sposób dawkowania substancji kondycjonujących, a także rodzaj zagęszczanego osadu. W przypadku osadu z ZOW "Leśnica" tylko jednoczesne dawkowanie dwóch polielektrolitów kationowych lub anionowych zmniejszyło stopień zanieczyszczenia próbek wody nadosadowej, a w pozostałych przypadkach stwierdzono wzrost stężenia żelaza ogólnego i zawiesin ogólnych do stężeń większych niż dopuszczalne w ściekach wprowadzanych do wód lub do ziemi. Natomiast kondycjonowanie próbek osadu powstającego podczas oczyszczania wody powierzchniowej do celów energetycznych (w ZOW "Kogeneracja S.A.") zmniejszyło wartości wskaźników jakości wody nadosadowej. Jedynie nieznaczne zwiększenie barwy i utlenialności spowodowały polielektrolity kationowe (Kśr4 oraz Kd3) dawkowane do próbki osadu KII. Poprawę jakości wody nadosadowej wydzielonej z próbek osadu pokoagulacyjnego (z ZOW "Mokry Dwór") zapewniły polielektrolity kationowe i anionowe lecz oddzielnie dawkowane do osadu i głównie w ilości ≤ 0,4 mg/g_{smo}.

9) Bardziej przydatne do kondycjonowania badanych osadów były polielektrolity kationowe niż anionowe. Dawki polielektrolitów, które zapewniały zwiększenie stopnia zagęszczenia badanych osadów były różne.

10) Wpływ wolnego mieszania na czas ssania kapilarnego próbek osadu po zagęszczaniu był minimalny, a wartość CSK_k zależała od efektów procesu zagęszczania. Bez względu na rodzaj osadu, kondycjonowanie chemiczne (alkalizacja, zakwaszenie, dawkowanie polielektrolitów) skracało czas ssania kapilarnego próbek osadu po zagęszczaniu, a tym samym zwiększało ich podatność na dalsze odwadnianie w procesach mechanicznych. Największe zmniejszenie wartości CSK_k zapewniło dawkowanie polielektrolitów, a najmniejsze zakwa-

204

szenie próbek osadu. Wraz ze wzrostem dawki wszystkich substancji kondycjonujących zwiększał podatność próbek osadów po zagęszczaniu na dalsze odwadnianie.

LITERATURA

[1] Balcerzak W., Rybicki S. M., Kaszowski J., Odwadnianie osadów powstających w procesach oczyszczania wody powierzchniowej na przykładzie wodociągu Raba, *Ochrona Środowiska*, 2007/3, s. 65.

[2] Bartoszewski K., Kempa E., Szpadt R., Systemy oczyszczania ścieków. Podstawy technologiczne i projektowe, Wyd. PWr., Wrocław 1981.

[3] Bartoszewski K., Zagospodarowanie ścieków i odpadów z odnowy wód, *Odnowa wody*. *Podstawy teoretyczne procesów, Wyd. II*, red. A. L. Kowal, Wyd. PWr., Wrocław 1996.

[4] Bień J., Osady ściekowe – teoria i praktyka, Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2002.

[5] Bień J., Stępniak L., Wolny L., Ultradźwięki w dezynfekcji wody i preparowaniu osadów ściekowych przed ich odwadnianiem, Monografie nr 37, Wydawnictwo Politechniki Często-chowskiej, Częstochowa 1995.

[6] Bishop M. M., Cornwell D. A., Rolan A. T., Bailey T. L., Mechanical dewatering of alum solids and acidified solids: An evaluation, *JAWWA*, 1991/9, s. 50.

[7] Bishop M. M., Rolan A. T., Bailey T. L., Cornwell D. A., Testing of alum recovery for solids reduction and reuse, *JAWWA* 1991/9, s.76.

[8] Chlipalski J., Denczew S., Wody popłuczne a kanalizacja miejska, *Gaz, Woda i Technika Sanitarna*, 1997/3, s. 92.

[9] Christensen J. R., Sorensen P. B., Christensen G. L., Hansen J. A., Mechanisms for overdosing in sludge conditioning. *J. Environ. Eng.*, 1993/119, s. 159.

[10] Chu C.P., Lee D.J., Moisture distribution in sludge: effects of polymer conditioning, *J. Environ. Eng.*, 1999/125, s. 340.

[11] Cywiński B. i inni, Oczyszczanie ścieków miejskich, Przeróbka i unieszkodliwianie osadów, Arkady, Warszawa 1972.

[12] Dentel S. K. i inni, Fundamental methods for optimizing residuals dewatering, *Chemical Water and Wastewater Treatment V*, 8th Gothenburg Symposium, Praga 7-9.09.1988.

[13] Doe P. W., Water treatment plant waste management, *Water Quality and treatment*, MCGraw-Hill Inc., New York 1990, s. 16.

[14] Dulin B.E., Knocke W.R., The impact of incorporated organic matter on the dewatering characteristics of aluminium hydroxide sludges, *JAWWA*, 1989/5, s. 74.

[15] DYREKTYWA 2000/60/WE PARLAMENTU EUROPEJSKIEGO I RADY z dnia 23 października 2000 r. ustanawiająca ramy wspólnotowego działania w dziedzinie polityki wodnej (Dz. U. UE L z dnia 22 grudnia 2000 r.).

[16] Dziubek A. M., Maćkiewicz J., Koagulacja, *Odnowa wody. Podstawy teoretyczne procesów, Wyd. II*, red. A. L. Kowal, Wyd. PWr., Wrocław 1996.

[17] Grochowiecka W., Świderska-Bróż M., Wolska M., Skuteczność mikrocedzenia w usuwaniu fitoplanktonu oraz wybranych zanieczyszczeń chemicznych z wody powierzchniowej, *Ochrona Środowiska*, 2009/2, s. 25.

[18] Hałubek P., Kwiecień P., Laska J., Badania skuteczności oddziaływania pola elektromagnetycznego na procesy odwadniania osadów ściekowych, GWiTS 1996/1.

[19] Informacje zebrane w MPWiK we Wrocławiu.

[20] Informacje zebrane w Zespole Elektrociepłowni Wrocławskich KOGENERACJA S.A.

[21] Ishikawa S., Ueda N., Okumura Y., Iida Y., Baba K., Recovery of coagulant from water supply plant sludge and its effect on clarification, *Springer*, 2007/9, s. 167.

[22] Janik M., Kuś K., Analiza możliwości poprawy parametrów transportu hydraulicznego osadów z oczyszczania wody, *Ochrona Środowiska*, 2011/3, s. 53.

[23] Karty charakterystyk polielektrolitów Kemipol.

[24] Karty charakterystyk polielektrolitów Lanco.

[25] Kayode T. O., Gregory J., A New technique for monitoring alum sludge conditioning, *Water Research*, 1988/1, s. 85.

[26] Knocke W.R., Dishman C.M., Miller G.F., Measurement of chemical sludge floc density and implications related to sludge dewatering, *Water Environ. Res.*, 1993/6, s. 735.

[27] Kowal A. L., Maćkiewicz J., Świderska-Bróż M., Podstawy projektowe systemów oczyszczania wód, wyd. III, Oficyna Wydawnicza PWr, Wrocław 1998.

[28] Kowal A. L., Świderska-Bróż M., *Oczyszczanie wody*, Wydawnictwo Naukowe PWN, Warszawa 2009.

[29] Kroczak T., Gospodarka ściekowo-osadowa w zakładach oczyszczania wody podziemnej w Polsce, materiały konferencyjne I Konferencji Naukowej Doktorantów Zagadnienia Interdyscyplinarne w Inżynierii Ochrony Środowiska, Oficyna Wydawnicza PWr., Wrocław 2005, s. 163.

[30] Langer S.J., Klute R., Hahn H.H., Mechanisms of floc formation in sludge conditioning with polymers, *Water Sci. Technol.*, 1994/8, s. 129.

[31] Lee C. H., Liu J. C., Enhanced sludge dewatering by dual polyelecrolytes conditioning, *Water Research*, 2000/18, s. 4430.

[32] Maćkiewicz J., Flokulacja w procesach koagulacji i filtracji wód, PWN, Warszawa 1987.

[33] Majewski W., Woda. Jakim celom służy i jak ją wykorzystywać?, Polska Akademia Nauk, Warszawa 2008. [34] Martel C. J., Affleck R., Yushak M., Operational parameters for mechanical freezing of alum sludge, *Water Research*, 1998/9, s. 2646.

[35] Martel C. J., Diener C. J., A pilot-scale study of alum sludge dewatering in a freezing bed, *JAWWA*, 1991/12, s. 51.

[36] Martel C. J., Freezing Out Sludge, Civil Engineering, 1991/11, s. 64.

[37] Minczewski J., Marczenko Z., Chemia analityczna 1. Podstawy teoretyczne i analiza jakościowa, *Wydawnictwo Naukowe PWN*, Warszawa 2001.

[38] Montgomery J. M., *Water Treatment Principles and Design*, A Wiley-Interscience Publication, New York 1985.

[39] Novak J. T., Bandak N. The effect of shear on the dewatering of water treatment residuals, *JAWWA*, 1994/11, s. 84.

[40] Oczyszczanie ścieków i uzdatnianie wody. Poradnik, wyd. Emira Kemi AB Szwecja, Gdańsk 1995.

[41] Piotrowska-Cyplik A., Czarnecki Z., Determination of the capillary suction time (CST) as a method for estimation of optimal dose of flocculants supporting dewatering of municipal sewage sludge, *Journal of Research and Applications in Agricultural Engineering*, Poznań 2005/1, s. 21.

[42] Rak M., Świderska-Bróż M., "Porównanie skuteczności siarczanu glinu i koagulantu PAC w oczyszczaniu wód", *Ochrona Środowiska*, 1999/4, s. 21.

[43] Rattanakawin C., Hogg R., Aggregate size distributions in flocculation, *Colloids Surf. A: Physicochem. Eng. Aspects*, 2001/177, s. 87.

[44] Rozporządzenie Ministra Budownictwa z dnia 14 lipca 2006 r. w sprawie sposobu realizacji obowiązków dostawców ścieków przemysłowych oraz warunków wprowadzania ścieków do urządzeń kanalizacyjnych (Dz.U. 2006 nr 136 poz. 964).

[45] Rozporządzenie Ministra Środowiska z dnia 27 września 2001 r. w sprawie katalogu odpadów (Dz.U. 2001 nr 112 poz. 1206).

[46] Rozporządzenie Ministra Środowiska z dnia 28 stycznia 2009 r., zmieniające rozporządzenie w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego (Dz.U. 2009 nr 27 poz. 169).

[47] Rozporządzenie Ministra Zdrowia z dnia dnia 20 kwietnia 2010 r. zmieniające rozporządzenie w sprawie jakości wody przeznaczonej do spożycia przez ludzi (Dz.U. 2010 nr 72 poz. 466). [48] Sałbut J., Badania nad wymrażaniem osadów pokoagulacyjnych, *Gaz, Woda i Technika Sanitarna*, 1975/11, s. 339.

[49] Sałbut J., Opracowanie wytycznych technologicznych projektowania procesów i urządzeń unieszkodliwiania osadów pokoagulacyjnych ze stacji uzdatniania wody, Zakład Użytkowania Wód Instytutu Kształtowania Środowiska, Warszawa 1980.

[50] Sozański M. M., Grochowski K., Urbaniak A., Struktura osadów pochodzących z oczyszczania wody i ścieków, *Mat. IX Ogólnopolskiej Konferencji Naukowo-Technicznej nt: Problemy gospodarki wodno-ściekowej w regionach rolniczo-przemysłowych*, Rajgród, 1997/6, s. 54.

[51] Sozański M. M., Wpływ wybranych właściwości fizycznych i chemicznych uwodnionych osadów pokoagulacyjnych na ich parametry reologiczne, Inst. Inż. Ochr. Środ. PWr., Wrocław 1975, praca doktorska.

[52] Sozański M. M. i inni, Technologia usuwania i unieszkodliwiania osadów z uzdatniania wody, Wyd. Politechniki Poznańskiej, Poznań 1999.

[53] Suschka J., Flotacja w technologii oczyszczania ścieków, Nowa technika w inżynierii sanitarnej. Wodociągi i kanalizacja, Arkady, Warszawa 1981.

[54] Szwabowska E., Projektowanie procesów odwadniania osadów ściekowych, Wyd. Politechniki Śląskiej, Gliwice 1986.

[55] Świderska-Bróż M., Usuwanie substancji rozpuszczonych w procesach wymiany jonowej, *Odnowa wody. Podstawy teoretyczne Procesów*, Wyd. II, red. A. L. Kowal, Wyd. PWr., Wrocław 1996.

[56] Tang H. X. i inni, Composite inorganic polymer flocculants, *Chemical Water and Wastewater Treatment V*, 8th Gothenburg Symposium, Praga, 7-9.09.1998.

[57] Thompson P. L., Paulsen W. L., Dewaterability of alum and ferric coagulation sludges, *JAWWA*, 1998/4, s. 164.

[58] Turchiuli C., Fargues C., Influence of structural properties of alum and ferric flocs on sludge dewaterability, *Chemical Engineering Journal*, 2004/103, s. 123.

[59] Wąsowski J., Kulesza M., Zastosowanie flotacji ciśnieniowej do usprawnienia koagulacji wody z Zalewu Zegrzyńskiego, *Ochrona Środowiska*, 1999/4, s. 57.

[60] Wen H.J., Liu C.I., Lee D.J., Size and density of flocculated sludge flocs, *J. Environ. Sci. Health* A32, 1997/4, s. 1125.

[61] Winnicki T., Polimery czynne w inżynierii ochrony środowiska, Arkady, Warszawa 1978.

[62] Wu C.C., Huang C., Lee D.J., Effects of polymer dosage on alum sludge dewatering characteristics and physical properties, *Colloids Surf. A: Physicochem. Eng. Aspects*, 1997/122, s. 89.

[63] Vesilind P., Martel C., Freezing of Water and Wastewater Sludges, *J. Environ. Engl.*, 1990/5, s. 854.

[64] Yu X., Somasundaran P., Enhanced flocculation with double flocculants. *J. Colloid Surface*, 1993/81, s. 17.

[65] Yu X., Somasundaran P., Role of polymer conformation in interparticle-bridging dominated flocculation, *J. Colloid Interface Sc*, 1996/177, s. 283.

[66] Young E. F., Water treatment plant sludge disposal practices in the United Kingdom, *JAWWA*, 1968/6, s. 717.

ZAŁĄCZNIKI

Iat	, I L	/• I•	<u>יין יי</u>	<i>y</i> C	asu	Lugy	SLUL	ama	na v	' y 30B	USC]	pom		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ULU	Liait	i iaz	uiu	obuu		J 1 02	шуп	1 770		
98. M	V ₀ = ,92%	W 98,	/ ₀ = 95%	W 99,1	0= 7%	W 99,2	0= 22%	W 99,	/ ₀ = 23%	W ₀ 99,2) = 25%	99,	0= 35%	W 99,3	0= 39%	W 99,	/ ₀ = 39%	W 99,	'0= 55%	99,	/ ₀ = 57%	W 99,	/0= 65%	W 99,7)= '7%
t	h	t	h	t min	h	t min	h	t	h	t min	h	t	h	t min	h	t	h	t t	h	t	h	t	h	t min	h
0	33,2	0	33,2	0	33,2	0	33,2	0	33,2	0	33,2	0	33,2	0	33,2	0	33,2	0	33,2	0	33,2	0	33,2	0	33,2
4	33,0 32.8	4	32,6 32,3	2	32,9 32,7	2	33,1 33.1	2	32,9 32.5	4	33,2 33.1	4	32,7 32,4	2	33,0 32,9	4	30,1 28.6	4	31,5 30,7	4	32,8 32.6	4	29,3 27,4	2	28,1 22.9
8	32,7	8	32,0	6	32,5	6	33,0	6	32,0	8	33,0	8	32,1	6	32,9	16	21,0	8	29,8	8	32,1	8	25,4	6	17,8
10 12	32,5 32,4	10 12	31,6 31,2	8 10	32,2 31.9	8 10	33,0 32,9	8 10	31,4 30.8	10 12	33,0 32,9	10 12	31,8 31,5	8 10	32,8 32,8	18 20	19,6 18,2	10 12	29,0 28.2	10 12	31,5 30,9	10 12	23,5 21.5	8 10	12,6 7.5
14	32,2	14	30,8	12	31,7	12	32,9	12	30,2	14	32,8	14	31,2	12	32,8	22	16,7	14	27,4	14	30,4	14	19,6	12	6,3
16 18	32,0	16 18	30,4 29.9	14 16	31,4 31.1	14 16	32,8 32,8	14 16	29,5 28.9	16 18	32,8	16 18	30,9 30,6	14 16	32,8	24 26	15,3 13.8	16 18	26,6 25.9	16 18	29,8 29.1	16 18	17,6 15.6	14 16	5,8 5,5
20	31,2	20	29,5	18	30,7	18	32,7	18	28,3	20	32,6	20	30,3	18	32,6	28	13,4	20	25,1	20	28,4	20	15,0	18	5,3
22	30,8 30,4	22 24	29,0 28.6	20	30,3 29.9	20 22	32,7	20 22	27,6	22	32,6	22 24	30,0	20	32,6	30 40	13,0	22 24	24,4	22 24	27,8	22	14,3	20 22	5,1 4 9
26	30,1	26	28,2	24	29,5	24	32,5	24	26,4	26	32,5	26	29,4	24	32,4	50	10,9	26	23,0	26	26,6	26	13,4	24	4,7
28	29,8	28	27,8	26 28	29,1	26 28	32,5	26 28	25,9	28	32,4	28	29,1	26 28	32,4	60 70	10,2	28	22,2	28	26,0	28	13,1	26 28	4,6
40	27,9	40	25,6	30	28,3	30	32,3	30	24,8	40	32,0	40	20,0	30	32,3	80	9,4	40	17,9	40	22,6	40	11,7	30	4,4
50 60	26,5	50 60	23,9	40 50	26,6	40	31,9	40 50	21,9	50 60	31,6	50 60	25,9	40	31,9	90 100	9,0	50 60	16,5	50 60	20,1	50 60	10,6	40	3,9
70	23,2	70	20,7	60	24,9	60	31,1	60	18,2	70	30,9	70	22,9	60	31,8	110	8,5	70	14,8	70	18,0	70	9,4	60	3,0
80	22,4	80	19,6	70	21,5	70	30,7	70	17,4	80	30,6	80	21,4	70	31,1	120	8,3	80	14,2	80	17,4	80	9,0	70	3,4
100	20,6	100	18,1	90	18,3	90	29,9	100	15,4	100	29,9	100	19,9	90	30,8	140	7,9	100	13,7	100	16,1	100	8,4	90	3,3
110	20,0	110	17,4	100	17,7	100	29,5	120	14,4	110	29,5	110	19,3	100	30,1	150	7,7	110	12,8	110	15,7	110	8,1	100	3,3
130	19,4	120	16,9	120	16,9	120	29,1	240	12,9	130	29,2	120	18,1	120	29,7	170	7,6	120	12,4	120	15,3	120	7,9	120	3,2
140	18,6	140	15,9	130	16,5	140	27,9	260	11,1	140	28,5	140	17,6	140	28,6	180	7,4	140	11,8	140	14,6	140	7,6	130	3,2
160	18,2	150	15,5	140	15,9	160	27,1 26,4	280 300	10,8	160	28,1 27,8	150	17,1	160	27,8	200	7,3	150	11,6	150	14,3	150	7,4	140	3,1 3,1
220	16,2	170	14,8	160	15,6	200	25,7	320	10,1	180	27,1	170	16,2	200	26,3	210	7,1	180	11,0	170	13,8	170	7,1	160	3,1
240 260	15,8 15,4	180 190	14,4 14,1	170	15,3 15,1	220	25,0 24,2	340 360	9,9 9,7	200	26,4 25,7	180 190	15,8 15,4	220	25,6 24,8	220	7,0 6,9	200	10,7	180 190	13,6 13,4	180 190	7,0 6,9	170	3,0
280	15,1	200	13,8	190	14,9	260	23,4	380	9,5	240	25,0	200	15,1	260	24,2	240	6,9	240	10,1	200	13,2	200	6,8	190	3,0
300 320	14,8 14,5	210 220	13,5 13,2	200 220	14,7 14,4	280 300	22,7 21,9	400 420	9,4 9,3	260 280	24,3 23,6	220 240	14,5 14,0	280 290	23,5 23,1	250 260	6,8 6,8	260 280	9,9 9,7	220 240	12,8 12,5	210 220	6,7 6,6	200 210	2,9 2,9
340	14,2	230	13,0	240	14,2	310	21,5	440	9,2	300	22,9	260	13,6	300	22,8	270	6,7	300	9,5	260	12,3	230	6,5	220	2,9
360 380	13,9 13.7	240 270	12,8 12,4	260 270	14,0 13.8	320 330	21,1 20.8	460 480	9,1 9.0	320 340	22,3 21.6	280 300	13,1 12.7	310 320	22,4 22.1	280 290	6,7 6.6	320 340	9,3 9.1	280 300	11,9 11.7	240 250	6,5 6,4	230 240	2,8
400	13,5	280	12,3	280	13,7	340	20,6	500	8,9	360	21,1	320	12,4	330	21,8	300	6,6	360	8,9	320	11,4	260	6,4	250	2,8
420 440	13,3 13.1	290 300	12,1 12.0	290 300	13,6 13.5	350 360	20,4	520 540	8,9 8.8	380 400	20,6	340 360	12,1 11.9	340 350	21,6 21,4	310 320	6,5 6.5	380 400	8,7 8.5	340 360	11,2 11.0	270 280	6,3 6.3	260 270	2,7
460	12,9	310	11,8	310	13,4	370	19,9	550	8,8	420	19,7	380	11,7	360	21,2	330	6,4	420	8,3	380	10,8	290	6,2	280	2,7
480 500	12,7 12,5	320 330	11,7 11.6	320 330	13,3 13,2	380 390	19,6 19,4	560 570	8,8 8.8	440 460	19,3 18.8	400 420	11,5 11.3	370 380	21,0 20.8	340 350	6,4 6.3	440 460	8,1 8.0	400 420	10,6 10,4	300 310	6,2 6,1	290 300	2,6
520	12,3	340	11,5	340	13,1	400	19,2		0,0	480	18,4	440	11,1	390	20,6	360	6,3	480	7,9	440	10,2	320	6,1	310	2,6
540 560	12,1 11 9	350 360	11,4	350 360	13,0 12.9	420 450	18,7			500 520	18,0	460 480	10,9	400	20,4	370 380	6,2	500 520	7,8	460 480	10,0 9.8	330 340	6,0	320	2,5
580	11,7	370	11,2	370	12,8	480	17,6			540	17,2	500	10,6	440	19,7	390	6,1	540	7,6	500	9,6	350	6,0	340	2,5
600 620	11,6 11.5	380 390	11,1 11.0	380 390	12,7 12.6	510 540	17,1 16.7	<u> </u>		1280 1300	11,1 11 1	520 540	10,4 10.3	460 480	19,4 19.1	400 410	6,1 6.0	560 580	7,5 74	510 520	9,5 9.4	360 370	5,9 5,9	350 360	2,5
640	11,4	400	10,9	400	12,5	570	16,4			1320	11,0	560	10,2	500	18,8	420	6,0	600	7,3	530	9,3	380	5,9	370	2,5
660 680	11,3 11 3	410 420	10,8 10.7	1060	11,1 11.0	600 1350	16,2 12.8	<u> </u>		1340 1360	11,0 10 9	580 600	10,1 10.0	520 540	18,5 18.2	430 440	5,9	620 640	7,3 72	540 550	9,2 9.1	390 400	5,8 5,8	380 390	2,5
700	11,2	430	10,6	1100	11,0	1380	12,7			1380	10,9	620	9,9	560	17,9	450	5,8	660	7,2	560	9,0	410	5,8	1180	2,3
720	11,2	440	10,6	1120	11,0	1410	12,7	<u> </u>		1390	10,9	640 660	9,8 9.8	580 600	17,6	460	5,8	670	7,2	570 580	8,9 8.8	420	5,7	1200	2,3
760	11,1	460	10,5	1160	11,0	1470	12,6					680	9,7	620	17,0	480	5,7			590	8,7	440	5,7	1420	2,3
770	11,1	470	10,4	1180	11,0		<u> </u>					690	9,7	1340	11,7	490	5,7			600	8,7	450	5,7	1440	2,3
L		490	10,4	1440	10,6		L	L			L_	710	9,7 9,7	1380	11,5	510	5,7			620	8,6	L		2860	2,3 2,1
		500	10,3	1460	10,6									1400	11,4					630	8,5			2880	2,1
<u> </u>	1	520	10,2	2880	10,4		-			-				1420	11,3					650	o,5 8,4			4300	2,1 2,1
		530	10,1	2900	10,4									1460	11,2					660	8,4			4320	2,1
<u> </u>	1	540 550	10,1	4320	10,4		-			-				1480	11,1					680	o,4 8,4			4340	∠,1
		560	10,0											1510	11,0										
<u> </u>		570 580	10,0											1520	11,0		<u> </u>								

Tab. TZ. 1. Wpływ czasu zagęszczania na wysokość powierzchni rozdziału faz dla osadów o różnym W₀

Rys. KZ. 1. Krzywe zagęszczania osadów o różnym W₀ z ZOW "Mokry Dwór"

W ₀ ,	99.68	99.54	99.39	98.95	98.7	W ₀ ,	99.68	99.54	99.39	98.95	98.7
t,	,	,		,	h,	t,		,		,	h,
min	h, cm	h, cm	h, cm	h, cm	cm	min	h, cm	h, cm	h, cm	h, cm	cm
0	33,2	33,2	33,2	33,2	33,2	350	6,2	9,9	21,4	29,5	31,4
2	32,0	32,8	33,0	33,1	33,1	360	6,2	9,8	21,2	29,4	31,3
4	29,5	32,5	32,9	33,1	33,1	370	6,1	9,7	21,0	29,2	31,2
6	26,9	31,9	32,9	33,0	33,1	380	6,1	9,6	20,8	29,0	31,1
8	24,0	31,3	32,8	33,0	33,1	390	6,0	9,5	20,6	28,8	31,0
10	21,9	30,6	32,8	33,0	33,0	400	6,0	9,5	20,4	28,6	30,9
12	20,5	29,7	32,8	33,0	33,0	420	5,9	9,3	20,0	28,2	30,7
14	19,3	29,0	32,8	33,0	33,0	440	5,8	9,2	19,7	27,8	30,5
16	18,3	28,3	32,7	33,0	33,0	460	5,7	9,1	19,4	27,5	30,3
18	17,6	27,6	32,6	33,0	33,0	480	5,6	9,0	19,1	27,2	30,1
20	16,9	26,8	32,6	33,0	33,0	500	5,5	8,9	18,8	26,8	29,9
22	16,2	26,2	32,5	33,0	33,0	520	5,5	8,7	18,5	26,4	29,7
24	15,6	25,5	32,4	33,0	33,0	540		8,6	18,2	26,0	29,5
26	15,1	24,9	32,4	33,0	33,0	560		8,5	17,9	25,6	29,3
28	14,6	24,3	32,3	32,9	33,0	580		8,5	17,6	25,2	29,1
30	14,3	23,8	32,3	32,9	33,0	600		8,4	17,3	24,8	28,9
40	12,7	21,1	31,9	32,9	33,0	620		8,4	17,0	24,5	28,7
50	11,7	19,2	31,8	32,8	32,9	1340			11,7	17,6	21,5
60	11,0	17,9	31,4	32,7	32,9	1360			11,6	17,5	21,4
70	10,5	16,9	31,1	32,6	32,8	1380			11,5	17,4	21,3
80	10,0	16,2	30,8	32,5	32,8	1400			11,4	17,3	21,2
90	9,7	15,5	30,4	32,4	32,8	1420			11,3	17,2	21,1
100	9,3	15,0	30,1	32,3	32,8	1440			11,2	17,1	21,0
110	9,1	14,5	29,7	32,2	32,8	1460			11,1	17,0	20,9
120	8,9	14,2	29,3	32,1	32,8	1480			11,1	16,9	20,8
140	8,4	13,5	28,6	31,9	32,6	1500			11,0	16,8	20,8
160	8,1	12,9	27,8	31,7	32,5	1520			11,0	16,7	20,7
180	7,8	12,4	27,1	31,5	32,4	1530			11,0	16,7	20,7
200	7,6	12,0	26,3	31,3	32,3	1550				16,6	20,6
220	7,4	11,6	25,6	31,1	32,1	1570				16,6	20,6
240	7,2	11,2	24,8	30,9	32,0	1590				16,5	20,5
260	7,0	10,8	24,2	30,6	31,9	1600				16,5	20,5
280	6,8	10,6	23,5	30,4	31,8	1610				16,5	20,5
290	6,7	10,5	23,1	30,2	31,8	1620				16,4	20,4
300	6,6	10,4	22,8	30,3	31,7	1630				16,4	20,4
310	6,5	10,3	22,4	30,1	31,7	1640				16,4	20,4
320	6,4	10,2	22,1	30,0	31,6	1650				16,4	20,3
330	6,3	10,1	21,8	29,8	31,6	1660					20,3
340	6,3	10,0	21,6	29,7	31,5	1680					20,3

Tab. TZ. 2. Wpływ uwodnienia początkowego na wysokość powierzchni rozdziału faz (osad przygotowany na bazie osadu MDI)

Rys. KZ. 2. Krzywe zagęszczania osadów o różnym W₀ (osad przygotowany na bazie osadu MDI)

t,	h,	t,	h,
min	cm	min	cm
0	33,2	180	5,3
2	31,2	190	5,2
4	28,7	200	5,2
6	25,5	210	5,2
8	22,6	220	5,1
10	19,7	230	5,1
12	17,0	240	5,1
14	15,0	250	5,0
16	13,5	260	5,0
18	12,6	270	5,0
20	11,9	280	4,9
22	11,3	290	4,9
24	10,6	300	4,9
26	10,0	310	4,8
28	9,6	320	4,8
30	9,2	330	4,8
40	8,2	340	4,7
50	7,6	350	4,7
60	7,2	360	4,7
70	6,9	370	4,7
80	6,7	380	4,7
90	6,5	390	4,7
100	6,3	400	4,7
110	6,1	410	4,7
120	5,9	420	4,7
130	5,7	430	4,7
140	5,6	1200	4,5
150	5,5	1440	4,5
160	5,4	2880	4,5
170	5,3	4320	4,3

Tab. TZ. 3. Wyniki pomiarów wysokości powierzchni rozdziału faz w procesiezagęszczania osadu o $W_0 = 99,64 \%$

Rys. KZ. 3. Krzywa zagęszczania osadu o W₀ = 99,64 %

t,	h,	t,	h,
min	cm	min	cm
0	33,2	150	18,6
2	33,2	160	18,2
4	33,1	170	17,9
6	33,1	180	17,6
8	33,0	190	17,3
10	32,9	200	17,0
12	32,8	210	16,7
14	32,8	220	16,4
16	32,7	230	16,2
18	32,5	240	16,0
20	32,3	250	15,8
22	32,1	260	15,7
24	31,9	270	15,6
26	31,6	280	15,5
28	31,3	290	15,4
30	31,0	300	15,3
40	29,4	310	15,2
50	27,5	320	15,1
60	25,0	330	15,0
70	24,0	340	14,9
80	23,0	350	14,8
90	22,2	360	14,7
100	21,4	1080	12,8
110	20,7	1440	12,4
120	20,1	2880	12,1
130	19,5	4320	11,8
140	19,0		

Tab. TZ. 4. Wyniki pomiarów wysokości powierzchni rozdziału faz w procesie zagęszczania osadu o $W_0 = 99,03$ %

Rys. KZ. 4. Krzywa zagęszczania osadu o W₀ = 99,03 %

		1	81			v	,,	ì	<u> </u>							
t miesz	0 min	t miesz	5 min	15 min	30 min	60 min	90 min		t miesz	0 min	t miesz	5 min	15 min	30 min	60 min	90 min
+	b h	+	5 min	ншт Ь	h	h	h		+	b h	+	5 mm	h	нин Б	нин Б	h
ι min	cm	ر min	cm	cm	cm	cm	cm		ر min	cm	ں min	cm	cm	cm	cm	cm
0	33.2	0	33.2	33.2	33.2	33.2	33.2		300	22.8	300	18.8	17.8	16.0	15.8	15.7
2	33.0	2	32.9	32.9	32.9	32.9	33.1		310	22.4	310	18.7	17.7	15.8	15.6	15.5
4	32.9	4	32.8	32.8	32.8	32.8	33.0		320	22.1	320	18.5	17.5	15.7	15.4	15.3
6	32,9	6	32,8	32,8	32,7	32,7	32,9		330	21,8	330	18,2	17,3	15,5	15,2	15,1
8	32,8	8	32,8	32,8	32,6	32,6	32,8		340	21,6	340	18,0	17,1	15,4	15,1	14,9
10	32,8	10	32,7	32,7	32,5	32,5	32,6		350	21,4	350	17,8	17,0	15,2	14,9	14,7
12	32,8	12	32,6	32,6	32,3	32,3	32,4		360	21,2	360	17,6	16,8	15,1	14,8	14,6
14	32,8	14	32,5	32,5	32,1	32,0	32,2		370	21,0	370	17,3	16,6	14,9	14,6	14,4
16	32,7	16	32,4	32,3	31,9	31,9	32,0		380	20,8	380	17,0	16,4	14,8	14,5	14,3
18	32,6	18	32,3	32,2	31,8	31,7	31,8		390	20,6	390	16,8	16,2	14,7	14,3	14,1
20	32,6	20	32,2	32,1	31,7	31,5	31,6		400	20,4	400	16,6	16,1	14,6	14,1	14,0
22	32,5	22	32,1	32,0	31,4	31,3	31,3		420	20,0	420	16,3	15,7	14,4	13,9	13,9
24	32,4	24	32,0	31,9	31,1	31,0	31,0		440	19,7	440	16,0	15,4	14,3	13,7	13,7
26	32,4	26	31,9	31,8	31,0	30,8	30,9		460	19,4	460	15,8	15,2	14,1	13,5	13,5
28	32,3	28	31,8	31,6	30,8	30,5	30,6		480	19,1	480	15,6	15,0	14,0	13,3	13,3
30	32,3	30	31,7	31,5	30,5	30,3	30,2		500	18,8	500	15,4	14,8	13,8	13,1	13,1
40	31,9	40	31,0	30,8	29,3	29,2	29,0		520	18,5	520	15,2	14,7	13,6	13,0	13,0
50	31,8	50	30,4	29,9	27,8	27,7	27,7		540	18,2	540	15,0	14,5	13,5	12,9	12,8
60	31,4	60	29,3	29,0	26,3	26,4	26,4		560	17,9	560	14,8	14,4	13,3	12,8	12,7
70	31,1	70	28,4	28,1	24,9	24,9	25,2		580	17,6	580	14,6	14,2	13,2	12,7	12,6
80	30,8	80	27,5	27,2	23,8	23,8	24,0		600	17,3	600	14,4	14,1	13,0	12,6	12,5
90	30,4	90	26,7	26,1	22,6	22,7	23,0		1340	11,7	1340	11,5	11,4	11,2	11,0	10,9
100	30,1	100	26,1	25,2	21,7	21,7	22,0		1360	11,6	1360	11,4	11,3	11,2	11,0	10,8
110	29,7	110	25,5	24,2	21,1	21,1	21,4		1380	11,5	1380	11,4	11,3	11,1	10,9	10,8
120	29,3	120	25,0	23,6	20,6	20,6	20,9		1400	11,4	1390	11,3	11,2	11,1	10,9	10,8
140	28,6	140	24,0	22,4	19,8	19,9	20,1		1420	11,3	1400	11,3	11,2	11,0	10,8	
160	27,8	160	23,2	21,6	19,2	19,2	19,4		1440	11,2	1410	11,2	11,1	11,0	10,8	
180	27,1	180	22,4	20,8	18,6	18,6	18,8		1460	11,2	1420	11,2	11,1	10,9	10,8	
200	26,3	200	21,8	20,2	18,0	18,1	18,3		1480	11,1	1430	11,1	11,1	10,9	10,8	
220	25,6	220	21,0	19,6	17,6	17,5	17,7		1500	11,0	1440	11,1	11,0	10,8		
240	24,8	240	20,5	19,1	17,1	17,0	17,2		1520	11,0	1450	11,1	11,0	10,8		
260	24,2	260	19,9	18,6	16,7	16,6	16,7		1530	11,0	1460	11,0	11,0	10,8		
280	23,5	280	19,3	18,2	16,3	16,2	16,2				1470	11,0	11,0	10,8		
290	23,1	290	19,1	18,0	16,1	16,0	15,9				1490	11,0				

Tab. TZ. 5. Wpływ czasu wolnego mieszania na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,39$ % (MDI)

Rys. KZ. 5. Wpływ czasu wolnego mieszania na przebieg zagęszczania osadu o $W_0 = 99,39$ % (MDI)

u 0 (1 u)	II pro	Cecore E	ageon	e Barrina	obaa	. 0	,,	11 /0	(11)	1211)								_
t miesz	0 min	t miesz	15 min	30 min	45 min	60 min	90 min	120 min		t miesz	0 min	t miesz	15 min	30 min	45 min	60 min	90 min	120 min
t, min	h, cm	t, min	h, cm	h, cm	h, cm	h, cm	h, cm	h, cm		t, min	h, cm	t, min	h, cm	h, cm	h, cm	h, cm	h, cm	h, cm
0	33,2	0	33,2	33,2	33,2	33,2	33,2	33,2		150	15,9	150	16,1	16,4	16,6	16,6	15,7	15,3
2	32,9	2	33,1	33,1	33,1	33,1	33,1	33,1		160	15,6	160	15,9	16,1	16,3	16,3	15,4	15,0
4	32,7	4	32,9	32,9	32,9	32,9	32,9	33,0		170	15,3	170	15,6	15,8	16,0	16,1	15,1	14,8
6	32,5	6	32,8	32,8	32,8	32,7	32,8	32,8		180	15,1	180	15,3	15,6	15,8	15,9	14,8	14,6
8	32,2	8	32,7	32,7	32,7	32,3	32,6	32,4		190	14,9	190	15,1	15,3	15,6	15,7	14,6	14,4
10	31,9	10	32,4	32,3	32,3	31,9	32,3	31,9		200	14,7	200	14,9	15,1	15,3	15,5	14,4	14,2
12	31,7	12	32,0	31,9	31,9	31,5	31,9	31,5		220	14,4	220	14,5	14,8	14,9	15,1	14,0	13,8
14	31,4	14	31,7	31,6	31,4	31,0	31,5	31,0		240	14,2	240	14,1	14,4	14,6	14,8	13,6	13,6
16	31,1	16	31,2	31,1	31,0	30,6	31,0	30,5		260	14,0	260	13,7	14,1	14,3	14,5	13,4	13,4
18	30,7	18	30,8	30,7	30,6	30,2	30,5	30,0		270	13,8	270	13,5	14,0	14,2	14,4	13,3	13,3
20	30,3	20	30,2	30,2	30,1	29,9	30,1	29,4		280	13,7	280	13,3	13,9	14,1	14,2	13,2	13,2
22	29,9	22	29,7	29,7	29,7	29,4	29,5	29,0		290	13,6	290	13,2	13,8	14,0	14,1	13,1	13,1
24	29,5	24	29,2	29,2	29,3	29,1	29,1	28,5		300	13,5	300	13,1	13,7	13,9	14,0	13,0	13,0
26	29,1	26	28,7	28,7	28,9	28,6	28,5	28,0		310	13,4	1020	11,6	11,5	11,7	11,7	11,3	11,3
28	28,7	28	28,3	28,3	28,5	28,3	28,2	27,5		320	13,3	1040	11,6	11,5	11,6	11,6	11,2	11,2
30	28,3	30	27,8	27,8	28,1	27,8	27,7	27,1		330	13,2	1060	11,5	11,4	11,6	11,6	11,2	11,2
40	26,6	40	25,7	25,7	26,1	26,0	25,4	24,9		340	13,1	1080	11,5	11,4	11,5	11,5	11,1	11,1
50	24,9	50	23,9	24,0	24,4	24,3	23,5	22,8		350	13,0	1100	11,4	11,3	11,5	11,5	11,1	11,1
60	23,2	60	22,3	22,6	22,9	22,8	21,9	21,4		360	12,9	1120	11,4	11,3	11,4	11,4	11,0	11,0
70	21,5	70	21,1	21,3	21,7	21,6	20,5	20,2		370	12,8	1290	11,2	11,0	10,8	10,8	10,5	10,5
80	19,8	80	20,0	20,3	20,6	20,7	19,5	19,2		380	12,7	1320	11,2	11,0	10,8	10,8	10,5	10,5
90	18,3	90	18,9	19,2	19,7	19,7	18,6	18,3		390	12,6	1350	11,1	10,9	10,7	10,7	10,4	10,4
100	17,7	100	18,1	18,4	18,9	18,8	17,8	17,3		400	12,5	1380	11,1	10,9	10,7	10,7	10,4	10,4
110	17,3	110	17,4	17,7	18,0	17,9	17,0	16,8		1060	11,1	1410	11,0	10,8	10,6	10,6	10,3	10,3
120	16,9	120	16,9	17,2	17,5	17,5	16,6	16,4		1080	11,0	1420	11,0	10,8	10,6	10,6	10,3	10,3
130	16,5	130	16,7	16,9	17,1	17,2	16,3	16,0		1100	11,0	1430	11,0	10,8	10,6	10,6	10,3	10,3
140	16,2	140	16,4	16,6	16,8	16,9	16,0	15,6		1110	11,0	1440	11,0	10,8	10,6	10,6	10,3	10,3

Tab. TZ. 6. Wpływ czasu wolnego mieszania na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,17$ % (MDIV)

Rys. KZ. 6. Wpływ czasu wolnego mieszania na przebieg zagęszczania osadu o $W_0 = 99,17$ % (MDIV)

t miesz	0 min	t miesz	5 min	15 min	30 min	60 min	t miesz	0 min	t miesz	5 min	15 min	30 min	60 min
t, min	h, cm	t, min	h, cm	h, cm	h, cm	h, cm	t, min	h, cm	t, min	h, cm	h, cm	h, cm	h, cm
0	33,2	0	33,2	33,2	33,2	33,2	190	15,4	340	13,2	12,9	13,0	12,0
4	32,7	4	33,0	33,0	33,0	32,8	200	15,1	360	12,9	12,7	12,7	11,7
6	32,4	6	32,9	32,9	32,9	32,4	220	14,5	380	12,6	12,4	12,4	11,4
8	32,1	8	32,8	32,8	32,8	32,0	240	14,0	400	12,3	12,2	12,1	11,1
10	31,8	10	32,7	32,7	32,7	31,5	260	13,6	420	12,1	11,9	11,8	10,9
12	31,5	12	32,6	32,6	32,6	30,9	280	13,1	440	11,9	11,7	11,6	10,6
14	31,2	14	32,5	32,5	32,5	30,4	300	12,7	460	11,7	11,5	11,4	10,4
16	30,9	16	32,4	32,3	32,4	29,8	320	12,4	480	11,5	11,4	11,2	10,3
18	30,6	18	32,3	31,8	32,2	29,3	340	12,1	500	11,4	11,3	11,1	10,2
20	30,3	20	32,2	31,2	31,8	28,7	360	11,9	520	11,3	11,2	11,0	10,2
22	30,0	22	32,1	30,5	31,2	28,2	380	11,7	540	11,2	11,1	10,9	10,1
24	29,7	24	32,0	29,9	30,5	27,6	400	11,5	560	11,1	11,0	10,8	10,1
26	29,4	26	31,8	29,4	29,9	27,0	420	11,3	580	11,0	10,9	10,7	10,0
28	29,1	28	31,7	28,8	29,3	26,5	440	11,1	600	10,9	10,8	10,6	10,0
30	28,8	30	31,4	28,3	28,7	26,0	460	10,9	620	10,8	10,7	10,5	9,9
40	27,4	40	29,2	26,0	26,4	23,7	480	10,7	640	10,7	10,7	10,5	9,9
50	25,9	50	27,0	24,1	24,7	21,9	500	10,6	660	10,6	10,6	10,4	9,8
60	24,4	60	25,1	22,6	23,0	20,5	520	10,4	680	10,6	10,6	10,4	9,8
70	22,9	70	23,9	21,4	21,7	19,6	540	10,3	700	10,5	10,5	10,3	9,7
80	21,4	90	21,9	19,8	20,1	18,2	560	10,2	710	10,5	10,5	10,3	9,7
90	20,6	120	19,8	18,1	18,2	16,8	580	10,1	1140	9,9	9,6	9,6	9,3
100	19,9	150	18,3	16,8	17,0	15,9	600	10,0	1160	9,9	9,6	9,6	9,2
110	19,3	180	17,2	15,9	16,0	15,1	620	9,9	1190	9,8	9,5	9,5	9,2
120	18,7	200	16,5	15,3	15,5	14,6	640	9,8	1200	9,7	9,4	9,4	
130	18,1	220	16,1	14,9	15,0	14,1	660	9,8	1220	9,7	9,4	9,4	
140	17,6	240	15,6	14,4	14,6	13,7	680	9,7	1230	9,7	9,4	9,4	
150	17,1	260	15,1	14,1	14,1	13,3	690	9,7					
160	16,7	280	14,6	13,7	13,7	13,0	700	9,7					
170	16,2	300	14,1	13,4	13,6	12,6	710	9,7					
180	15,8	320	13,6	13,2	13,3	12,4							

Tab. TZ. 7. Wpływ czasu wolnego mieszania na wysokość powierzchni rozdziału faz (osad, woda nadosa-
dowa) w procesie zagęszczania osadu o $W_0 = 99,35$ % (MDXII)

Rys. KZ.7. Wpływ czasu wolnego mieszania na przebieg zagęszczania osadu o $W_0 = 99,35$ % (MDXII)

pH₀	7,18		7,95	8,15	8,55	9,00
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h[cm]
0	33,2	0	33,2	33,2	33,2	33,2
2	33,1	2	33,1	33,1	33,1	33,1
4	33,1	4	33.0	32,9	33.0	33,0
6	33.0	6	32.9	32.8	32.9	33.0
8	33.0	8	32.8	32.7	32.8	32.9
10	32.0	10	32.7	32.6	32.7	32.8
10	22,9	10	32,7	22,0	32,1	22,0
14	22,9	14	32,0	22,4	32,0	22,0
14	32,0	14	32,3	32,3	32,3	32,7
10	32,8	10	32,4	32,1	32,4	32,0
18	32,7	18	32,3	32,0	32,3	32,6
20	32,7	20	32,2	31,8	32,2	32,5
22	32,6	22	32,1	31,7	32,1	32,4
24	32,5	24	32,0	31,6	32,0	32,4
26	32,5	26	31,9	31,4	31,9	32,3
28	32,4	28	31,8	31,3	31,8	32,2
30	32,3	30	31,7	31,1	31,7	32,2
40	31,9	40	31,2	30,4	31,3	31,8
50	31.5	50	30.7	29.7	30.8	31,4
60	31.1	60	30.2	29.0	30.4	31.0
70	30.7	70	29.7	28.4	29.9	30.6
80	30.3	80	29.2	27.8	29.4	30.2
90	20.0	00	28.6	27,0	28.0	20.8
100	29,9	100	20,0	21,2	20,9	29,0
110	29,5	110	20,1	20,0	20,0	29,4
110	29,1	110	27,0	20,0	20,0	29,0
120	28,7	120	27,1	25,5	27,6	28,5
140	27,9	140	26,1	24,5	26,7	27,6
160	27,1	160	25,0	23,7	25,8	26,7
180	26,4	180	24,1	23,0	24,9	25,9
200	25,7	200	23,3	22,2	24,1	25,0
220	25,0	220	22,6	21,6	23,3	24,2
240	24,2	240	21,9	21,1	22,6	23,4
260	23,4	260	21,3	20,6	22,0	22,7
280	22,7	280	20,8	20,2	21,4	22,0
300	21,9	300	20,3	19,8	20,9	21,4
310	21,5	310	20,0	19,6	20,6	21,1
320	21,1	320	19,8	19,4	20,4	20,9
330	20.8	330	19.6	19.3	20.1	20.6
340	20.6	340	19.4	19.1	19.9	20.4
350	20.4	350	19.2	19.0	19.7	20.2
360	20.1	1050	14.1	14.2	14.3	14.5
370	19.9	1080	14.0	14 1	14.3	14.4
380	19.6	1110	13.9	14.1	14.2	14.3
300	10,0	11/0	13.9	14.0	14.2	1/ 3
400	10.2	1170	12.0	14,0	14,2	1/ 2
400	107	1200	12.7	14,0		14,2
420	10,7	1200	13,7	13,9		14,∠
450	10,1	1220	13,7	13,9		
480	17,6	1230	13,7	13,9		
510	17,1					
540	16,7					
570	16,4					
600	16,2					
1350	12,8					
1380	12,7					
1410	12,7					
1440	12,6					
1470	12,6					

Tab. TZ. 8. Wpływ korekty pH na wysokość powierzchni rozdziału faz(osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,22 \%$ (MDII)

Rys. KZ. 8. Wpływ korekty pH na przebieg zagęszczania osadu o $W_0 = 99,22$ % (MDII)

<u>`</u>			<u></u>	8		
pH_0	7,18	7,50	8,00	8,50	9,00	10,00
t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]	h[cm]
0	33,2	33,2	33,2	33,2	33,2	33,2
2	32,9	33,0	33,1	33,1	33,0	33,0
4	32,7	32,8	32,9	32,9	32,9	32,8
6	32,5	32,6	32,7	32,7	32,7	32,6
8	32,2	32,4	32,5	32,5	32,5	32,4
10	31,9	32,2	32,3	32,2	32,3	32,2
12	31,7	32,0	32,0	32,0	32,0	32,0
14	31,4	31,8	31,8	31,8	31,8	31,8
16	31,1	31,6	31,6	31,5	31,6	31,6
18	30,7	31,4	31,4	31,3	31,4	31,4
20	30,3	31,1	31,1	31,1	31,2	31,2
22	29,9	30,9	30,9	30,9	31,0	31,0
24	29,5	30,7	30,7	30,6	30,8	30,8
26	29,1	30,4	30,5	30,4	30,5	30,6
28	28,7	30,2	30,3	30,2	30,3	30,4
30	28,3	30,0	30,0	30,0	30,1	30,2
40	26,6	28,9	28,9	29,0	29,1	29,4
50	24,9	27,6	27,7	28,0	28,1	28,7
60	23,2	26,5	26,5	26,9	27,0	27,9
70	21,5	25,4	25,4	25,9	25,9	27,2
80	19,8	24,3	24,3	24,8	24,9	26,4
90	18,3	23,2	23,1	23,8	23,9	25,6
100	17,7	22,1	21,8	22,7	22,8	24,9
110	17,3	21,4	21,0	21,6	21,7	24,1
120	16,9	20,9	20,4	21,0	20,7	23,4
130	16,5	20,5	20,0	20,4	20,1	22,6
140	16,2	20,1	19,7	19,9	19,6	21,9
150	15,9	19,7	19,5	19,4	19,1	21,2
160	15,6	19,4	19,3	19,0	18,7	20,6
120	15,3	19,1	19,0	10,0	10,3	20,1
100	1/ 0	18.6	10,0	18.0	17.7	19,7
200	14,5	18.3	18.3	17.8	17.5	10,4
200	14,7	17.9	17.9	17.0	17,5	18.6
240	14,4	17,5	17,5	17,4	16.7	18.1
260	14.0	17,5	17,5	16.6	16.3	17.7
270	13.8	17,1	17,1	16,5	16,3	17.5
280	13.7	16.8	16.8	16.4	16.1	17,0
290	13.6	16,0	16,0	16,3	16.0	17,0
300	13.5	16,6	16,5	16,0	15.9	16.9
310	13.4	16.5	16.4	16.1	15.8	16.8
320	13.3	16.4	16.3	16.0	15.7	16.7
330	13.2	16.3	16.2	15.9	15.6	16.6
340	13.1	16,2	16,1	15.8	15,5	16.5
350	13.0	16,1	16.0	15.7	15,4	16,4
360	12,9	16,0	15,9	15,6	15,3	16,3
370	12,8	15,9	15,8	15,5	15,2	16,2
380	12,7	15,8	15,7	15,4	15,1	16,1
390	12,6	15,7	15,6	15,3	15,0	16,0
400	12,5	15,6	15,5	15,2	14,9	15,9
1060	11,1	13,3	13,3	13,2	13,2	13,4
1080	11,0	13,1	13,1	13,2	13,2	13,3
1100	11,0	13,0	13,0	13,1	13,1	13,2
1110	11,0	12,9	12,9	13,1	13,1	13,2
1120		12,9	12,9	13,1	13,0	13,1
1140		12,8	12,8	13,0	13,0	13,1
1160		12,7	12,7	13,0	12,9	13,0
1180		12,6	12,7	12,9	12,9	13,0
1420		12,2	12,4	12,6	12,6	12,6
1440		12,1	12,3	12,5	12,5	12,5
1460		12,1	12,3	12,5	12,5	12,5
1470		12,1	12,3	12,5	12,5	12,5

Tab. TZ. 9. Wpływ korekty pH na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,17$ % (MDIV)

Rys. KZ.9. Wpływ korekty pH na przebieg zagęszczania osadu o $W_0 = 99,17$ % (MDIV)

pH₀	7,6		7,0	6,5	6,0	5,5	5,0
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h[cm]	h[cm]
0	33,2	0	33,2	33,2	33,2	33,2	33,2
4	32,8	2	33,0	33,0	33,1	33,1	33,1
6	32,6	4	32,8	32,9	32,9	33,0	32,9
8	32,1	6	32,5	32,7	32,8	32,8	32,7
10	31,5	8	32,3	32,6	32,6	32,7	32,5
12	30,9	10	32,0	32,4	32,5	32,6	32,3
14	30,4	12	31,8	32,3	32,3	32,4	32,1
16	29,8	14	31,5	32,1	32,2	32,3	32,0
18	29,1	16	31,3	32,0	32,0	32,2	31,8
20	20,4	10	31,0	31,0	31,9	32,0	31,0
24	27,0	20	30,8	31,7	31,7	31,9	31,4
26	26.6	24	30.3	31.4	31.4	31.6	31.0
28	26.0	26	30.0	31.2	31.2	31.4	30.8
30	25,5	28	29,7	31,0	31,1	31,3	30,5
40	22,6	30	29,4	30,8	30,9	31,1	30,3
50	20,1	40	28,1	29,7	30,0	30,1	29,1
60	18,9	50	26,5	28,7	29,1	29,1	27,8
70	18,0	60	25,2	27,7	28,2	28,1	26,5
80	17,4	70	23,8	26,7	27,2	27,1	25,3
90	16,7	80	22,5	25,8	26,3	26,1	24,0
100	16,1	90	21,7	24,9	25,4	25,0	22,8
110	15,7	100	20,8	24,0	24,5	24,0	21,6
120	10,3	120	∠0,0 10.2	23,1	23,0 22.7	23,0 22.0	∠0,5 10.2
140	14,9	120	18.7	22,2	22,7	22,0	18.2
150	14.3	140	18.1	20.4	20.9	20.0	17.4
160	14.0	150	17.6	19.6	20.0	19.1	16.6
170	13,8	160	17,1	18,8	19,1	18,2	15,9
180	13,6	170	16,6	18,0	18,2	17,3	15,3
190	13,4	180	16,1	17,3	17,4	16,5	14,8
200	13,2	190	15,6	16,7	16,7	15,9	14,4
220	12,8	200	15,2	16,2	16,0	15,4	14,0
240	12,5	210	14,8	15,7	15,5	15,0	13,6
260	12,3	220	14,4	15,3	15,1	14,6	13,3
280	11,9	230	14,1	14,9	14,7	14,2	12,9
320	11,7	240	13,0	14,0	14,3	13,0	12,0
340	11,4	260	13,3	14,5	13.6	13,5	12,3
360	11.0	270	12.9	13.7	13.3	12,7	11.8
380	10,8	280	12,6	13,4	12,9	12,4	11,5
400	10,6	290	12,4	13,1	12,6	12,1	11,3
420	10,4	300	12,1	12,8	12,3	11,8	11,0
440	10,2	310	11,9	12,5	12,0	11,5	10,8
460	10,0	320	11,6	12,2	11,8	11,2	10,6
480	9,8	330	11,4	11,9	11,5	10,9	10,4
500	9,6	340	11,1	11,6	11,3	10,7	10,2
510	9,5	350	10,9	11,3	11,0	10,4	10,0
520	9,4 Q 2	300	10,7	10.7	10,8	10,2	9,9 Q 7
540	9,3	380	10,5	10.4	10,5	99	9.6
550	9.1	390	10,3	10.4	10.0	9.7	9.5
560	9,0	400	9,9	9,9	9,8	9.6	9,4
570	8,9	410	9,7	9,7	9,6	9,4	9,3
580	8,8	420	9,5	9,5	9,4	9,3	9,3
590	8,7	430	9,3	9,4	9,3	9,2	9,2
600	8,7	440	9,1	9,3	9,2	9,1	9,2
610	8,6	450	8,9	9,2	9,1	9,0	9,1
620	8,6	460	8,8	9,1	9,1	9,0	9,1
630	8,5	470	8,7	9,1	9,0	8,9	9,1
640 650	8,5	480	8,7	9,0	9,0	8,9	9,1
060	0,4 	490 500	0,0 8.6	9,0 8 0	0,9 80	0,9 8 0	
670	84	510	8.5	8.9	8.9	0,9	
680	8.4	520	8.5	8.9	8.9		
	-,.	530	8,5	8,9	-,-		
		540	8.5	- ,-			

Tab. TZ. 10. Wpływ korekty pH na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,57$ % (MDVII)

Rys. KZ.10. Wpływ korekty pH na przebieg zagęszczania osadu o $W_0 = 99,57$ % (MDVII)

pH₀	7,05	pH₀	6,50	6,00	5,50	5,00
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	0	33,2	33,2	33,2	33,2
4	33,0	4	32,6	32,6	32,7	32,6
6	32,8	6	32,3	32,4	32,3	32,2
8	32,7	8	31,9	32,0	31,9	31,8
10	32,5	10	31,5	31,5	31,5	31,4
12	32,4	12	31,0	31,0	31,0	30,9
14	32,2	14	30,5	30,5	30,6	30,5
16	32,0	16	30,0	30,0	30,2	30,1
18	31,6	18	29,4	29,4	29,8	29,7
20	31,2	20	28,8	28,8	29,3	29,2
22	30,8	22	28,2	28,2	28,9	28,8
24	30,4	24	27,6	27,7	28,4	28,4
26	30,1	26	26,9	27,2	28,0	28,0
28	29,8	28	26,3	26,7	27,5	27,5
30	29,4	30	25,7	26,2	27,0	27,0
40	27,9	40	22,9	23,3	24,5	24,5
50	26,5	50	20,4	21,7	22,5	22,6
60	25,2	60	19,2	19,9	20,8	20,8
70	23,7	70	18,1	18,6	19,3	19,4
80	22,4	80	17,0	17,5	18,2	18,2
90	21,4	90	16,3	16,8	17,5	17,3
100	20,6	100	15,9	16,3	16,9	16,7
110	20,0	110	15,4	15,9	16,4	16,2
120	19,4	120	15,1	15,5	16,0	15,8
130	19,0	130	14,8	15,2	15,6	15,4
140	18,6	140	14,5	14,8	15,3	15,1
150	18,2	150	14,2	14,5	15,0	14,8
160	17,8	160	13,9	14,3	14,7	14,5
220	16,2	220	13,2	13,2	13,4	13,3
240	15,8	240	13,0	13,0	13,2	13,0
260	15,4	260	12,8	12,9	13,1	12,9
280	15,1	280	12,6	12,8	13,0	12,8
300	14,8	300	12,5	12,7	12,9	12,7
320	14,5	320	12,4	12,6	12,8	12,6
340	14,2	340	12,3	12,5	12,7	12,5
360	13,9	360	12,2	12,4	12,6	12,4
380	13,7	380	12,1	12,3	12,5	12,3
400	13,5	400	12,0	12,2	12,4	12,2
420	13,3	420	11,9	12,2	12,3	12,1
440	13,1	440	11,9	12,1	12,2	12,1
460	12,9	460	11,8	12,1	12,1	12,0
480	12,7	480	11,8	12,0	12,0	12,0
500	12,5	500	11,7	12,0	11,9	11,9
520	12,3	520	11,/	11,9	11,9	11,9
540	12,1	04U	11,7	11,9	11,8	11,8
500	11,9	550	11,0	11,9	11,0	11,0
600	11,7	570	11,0	11,0	11,0	11,0
620	11,0	520	11,0	11,0	11,7	11,0
640	11,5 11 4	500	11,5 11 E	11,0	11,7	
660	11,4	090	11,5 11 E	11,/	11,7	
690	11,3	610	11,5 11 4	11,/	11,0	
700	11,3	620	11,4	11,7	11,0	
700	11.2	620	11,4	11,0	11,0	
740	11,2	640	11.4	11,0	0,11	
760	11,1	650	11.0	11,0		
700	11,1	000	11.0	11,0		
- 110	11,1	670	11.3			
		680	11,3			
		600				
		700				
		720				
		740				
		760				
		770			-	
L				1		

Tab. TZ. 11. Wpływ korekty pH na wysokość powierzchni rozdziału faz(osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 98,92$ % (MDXI)

Rys. KZ.11. Wpływ korekty pH na przebieg zagęszczania osadu o $W_0 = 98,92$ % (MDXI)

					0		
Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	0	33,2	33,2	33,2	33,2	33,2
4	33,0	4	32,4	32,8	32,8	32,8	32,9
6	32,8	6	32,0	32,7	32,6	32,6	32,7
8	32,7	8	31,5	32,5	32,4	32,5	32,5
10	32,5	10	30,9	32,3	32,2	32,3	32,4
12	32,4	12	30,3	32,1	32,0	32,2	32,2
14	32,2	14	29,8	31,8	31,8	32,0	32,0
16	32,0	16	29,3	31,5	31,5	31,8	31,8
18	31,6	18	28,7	31,1	31,0	31,6	31,5
20	31,2	20	28,2	30,8	30,5	31,4	31,0
22	30,8	22	27,7	30,5	30,0	31,2	30,5
24	30,4	24	27,2	30,2	29,4	31,0	30,1
20	30,1	20	26,7	29,7	29,0	30,7	29,7
20	29,8	20	20,2	29,1	20,0	30,3	29,3
40	29,4	40	23,7	20,5	26,1	28.4	20,9
40 50	26.5	40 50	23,2	20,1	20,0	20,4	21,2
60	20,0	00	20.0	24,4	23,1	25.5	20,7
70	23.7	70	18.8	21.6	20,7 22 A	23,5	24,4
80	22.4	80	18.0	20.5	21 1	22.8	21.9
90	21.4	90	17.4	19.8	20.4	21.6	20.9
100	20.6	100	16.9	19,1	19.7	20.8	20.1
110	20.0	110	16.5	18.6	19,2	20.2	19.6
120	19.4	130	15.8	17.6	18.2	19.0	18.5
130	19,0	140	15,6	17,3	17,8	18,6	18,1
140	18,6	150	15,3	16,9	17,4	18,2	17,7
150	18,2	160	15,0	16,6	17,1	17,8	17,3
160	17,8	170	14,8	16,3	16,8	17,4	17,0
220	16,2	180	14,6	16,1	16,5	17,1	16,7
240	15,8	220	13,9	15,2	15,6	16,1	15,8
260	15,4	240	13,6	14,8	15,2	15,6	15,3
280	15,1	260	13,4	14,4	14,9	15,2	15,0
300	14,8	280	13,2	14,2	14,6	14,9	14,7
320	14,5	300	13,0	14,0	14,3	14,6	14,4
340	14,2	320	12,8	13,7	14,1	14,4	14,2
360	13,9	340	12,6	13,5	13,9	14,2	14,0
380	13,7	360	12,5	13,3	13,7	14,0	13,8
400	13,5	380	12,3	13,0	13,4	13,7	13,6
420	13,3	400	12,2	12,8	13,2	13,5	13,4
440	13,1	420	12,0	12,0	13,0	13,3	13,2
400	12,9	440	11,9	12,4	12,0	12.0	12.0
500	12,7	400	11,7	12,2	12,0	12,9	12,0
520	12,3	500	11.5	11 9	12,4	12,7	12,0
540	12,3	520	11 3	11 7	12,3	12,3	12,4
560	11.9	540	11.2	11.6	12,1	12,5	12.0
580	11.7	560	11.1	11.4	11.8	12.0	11.8
600	11.6	580	11.0	11.3	11.7	11.9	11.7
620	11.5	600	10,9	11,2	11,6	11.8	11.6
640	11,4	620	10,8	11,1	11,5	11,7	11,5
660	11,3	640	10,7	11,0	11,4	11,6	11,5
680	11,3	660	10,6	10,9	11,3	11,5	11,5
700	11,2	680	10,5	10,9	11,2	11,4	11,4
720	11,2	700	10,5	10,8	11,2	11,4	11,4
740	11,1	720	10,4	10,8	11,1	11,3	11,3
760	11,1	730	10,4	10,8	11,1	11,3	11,3
770	11,1	740	10,4		11,1	11,3	11,3
		750	10,4		11,1	11,3	11,3

Tab. TZ. 12. Wpływ dawki polielektrolitu Kśr4 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 98,92$ % (MDXI)

Rys. KZ.12. Wpływ dawki polielektrolitu Kśr4 na przebieg zagęszczania osadu o W₀ = 98,92 % (MDXI)

<u>`</u>			,		0		
Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]				
0	33,2	0	33,2	33,2	33,2	33,2	33,2
4	33,0	4	32,8	32,8	32,7	32,7	32,7
6	32,8	6	32,6	32,5	32,5	32,5	32,4
8	32,7	8	32,4	32,3	32,3	32,3	32,1
10	32,5	10	32,2	32,1	32,1	32,0	31,8
12	32,4	12	32,0	31,9	31,9	31,7	31,5
14	32,2	14	31,0	31,0	31,0	31,0	31,3
18	31.6	18	31.4	31.0	31.0	31.0	30.7
20	31.2	20	31.1	30.6	30.5	30.7	30.4
22	30,8	22	30,9	30,0	30,0	30,4	30,1
24	30,4	24	30,6	29,6	29,6	30,0	29,8
26	30,1	26	30,2	29,1	29,1	29,5	29,5
28	29,8	28	29,8	28,6	28,6	29,1	29,1
30	29,4	30	29,4	28,2	28,1	28,8	28,8
40	27,9	40	27,0	26,2	26,0	26,5	26,5
50	26,5	50	25,1	24,3	24,3	24,5	24,5
60	25,2	60	23,4	22,8	22,7	22,9	22,9
70	23,7	70	21,9	21,5	21,0	21,2	21,2
80	22,4	80	20,6	20,1	19,9	20,1	20,1
90	21,4	110	18.2	18.0	10,4	10,0	10,5
110	20,0	120	17.8	17.6	17.3	17,0	17,0
120	19.4	130	17.4	17.2	17.0	16.8	16.8
130	19.0	140	17.0	16.8	16.6	16.4	16.3
140	18,6	150	16,6	16,4	16,2	16,0	15,9
150	18,2	160	16,3	16,1	15,9	15,7	15,6
160	17,8	170	16,0	15,8	15,6	15,4	15,3
220	16,2	180	15,7	15,5	15,3	15,1	15,0
240	15,8	190	15,5	15,3	15,1	14,9	14,8
260	15,4	220	15,0	14,7	14,5	14,4	14,3
280	15,1	240	14,5	14,3	14,2	14,0	14,0
300	14,8	260	14,0	13,9	13,8	13,7	13,7
320	14,5	200	13,5	13,5	13,4	13,4	13,4
360	14,2	320	12.7	12.7	12.7	12.8	12.0
380	13,5	340	12,7	12,7	12,7	12,0	12,3
400	13.5	360	12.0	12.0	12.2	12.3	12,1
420	13,3	380	11,7	11,7	11,9	12,0	12,2
440	13,1	400	11,5	11,5	11,7	11,8	12,0
460	12,9	420	11,3	11,3	11,5	11,6	11,8
480	12,7	440	11,2	11,2	11,3	11,4	11,6
500	12,5	460	11,1	11,1	11,2	11,3	11,5
520	12,3	480	11,1	11,1	11,2	11,2	11,5
540	12,1	500	11,0	11,0	11,2	11,2	11,4
560	11,9	520	11,0	11,0	11,1	11,1	11,4
580	11,/	540	10,9	10,9	11,1	11,1	11,3
620	11,0	560	10,9	10,9	11,1	11,1	11,3
640	11,0	570	10,9	10,9			11,3
660	11.3	570	10,9	10,3			11,5
680	11.3						
700	11.2						
720	11,2						
740	11,1						
760	11,1						
770	11,1						

Tab. TZ. 13. Wpływ dawki polielektrolitu Kd2 na wysokość powierzchni rozdziału faz(osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 98,92$ % (MDXI)

Rys. KZ.13. Wpływ dawki polielektrolitu Kd2 na przebieg zagęszczania osadu o W₀ = 98,92 % (MDXI)

ì.					8		
Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]				
0	33,2	0	33,2	33,2	33,2	33,2	33,2
4	33,0	4	32,9	32,8	32,7	32,9	32,9
6	32,8	6	32,7	32,7	32,4	32,7	32,7
8	32,7	8	32,6	32,6	32,1	32,6	32,6
10	32,5	10	32,5	32,4	31,6	32,4	32,4
12	32,4	12	32,3	32,3	31,1	32,3	32,2
14	32,2	14	32,0	32,1	30,6	32,1	32,1
16	32,0	16	31,8	32,0	30,1	31,9	31,9
18	31,6	18	31,5	31,8	29,7	31,7	31,7
20	31,2	20	31,3	31,6	29,2	31,5	31,5
22	30,8	22	31,0	31,4	28,8	31,2	31,3
24	30,4	24	30,6	31,2	28,3	30,8	31,1
26	30,1	26	30,3	30,8	27,9	30,5	31,0
28	29,8	28	29,9	30,3	27,5	30,2	30,8
30	29,4	30	29,5	29,8	27,0	29,9	30,6
40	27,9	40	27,8	27,5	24,8	28,5	29,4
50	26,5	50	26,5	25,8	22,9	27,3	27,4
60	25,2	60	25,2	24,4	21,3	26,3	25,8
70	23,7	70	23,8	22,8	20,0	25,1	24,2
80	22,4	80	22,7	21,7	19,1	24,1	22,6
90	21,4	90	21,7	20,9	18,6	23,1	21,6
100	20,6	100	20,7	20,1	18,1	22,1	20,7
110	20,0	110	20,1	19,6	17,7	21,3	20,1
120	19,4	120	19,6	19,1	17,3	20,7	19,6
130	19,0	160	17,9	17,5	16,1	18,6	17,8
140	18,6	180	17,3	16,9	15,7	17,9	17,1
150	18,2	200	16,7	16,4	15,3	17,3	16,6
160	17,8	220	16,2	16,0	15,0	16,7	16,1
220	16,2	240	15,8	15,6	14,7	16,3	15,8
240	15,8	260	15,4	15,2	14,5	15,8	15,4
260	15,4	280	15,1	14,9	14,3	15,4	15,0
280	15,1	300	14,8	14,7	14,1	15,1	14,8
300	14,8	320	14,6	14,5	13,9	14,8	14,6
320	14,5	340	14,4	14,3	13,7	14,5	14,4
340	14,2	360	14,2	14,1	13,5	14,2	14,2
360	13,9	380	14,0	13,9	13,3	14,0	14,0
380	13,7	400	13,8	13,7	13,1	13,7	13,7
400	13,5	420	13,6	13,5	12,9	13,5	13,5
420	13,3	440	13,4	13,3	12,7	13,2	13,2
440	13,1	460	13,2	13,1	12,5	13,0	13,0
460	12,9	480	13,0	12,9	12,4	12,8	12,8
480	12,7	500	12,8	12,7	12,3	12,6	12,6
500	12,5	520	12,6	12,5	12,2	12,5	12,5
520	12,3	540	12,4	12,3	12,1	12,4	12,4
540	12,1	560	12,2	12,1	12,0	12,3	12,3
560	11,9	580	12,1	12,0	11,9	12,2	12,2
580	11,7	600	12,0	11,9	11,8	12,1	12,1
600	11,6	620	11,9	11,8	11,7	12,0	12,0
620	11,5	640	11,8	11,7	11,7	11,9	11,9
640	11,4	660	11,7	11,6	11,6	11,8	11,8
660	11,3	680	11,6	11,5	11,6	11,7	11,7
680	11,3	700	11,5	11,4	11,5	11,7	11,7
700	11,2	720	11,4	11,3	11,5	11,6	11,6
720	11,2	730	11,4	11,3	11,5	11,6	11,6
740	11,1	740	11,3	11,3		11,5	11,5
760	11,1	750	11,3	11,3		11,5	11,5
770	11,1	760	11,3			11,5	11,5
		770	11,3			11,5	11,5

Tab. TZ. 14. Wpływ dawki polielektrolitu Kd3 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 98,92$ % (MDXI)

Rys. KZ.14. Wpływ dawki polielektrolitu Kd3 na przebieg zagęszczania osadu o W₀ = 98,92 % (MDXI)

<u>`</u>			,		0		
Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]				
0	33,2	0	33,2	33,2	33,2	33,2	33,2
4	33,0	4	32,7	32,8	32,8	32,8	32,8
6	32,8	6	32,4	32,7	32,6	32,5	32,5
8	32,7	8	32,1	32,5	32,4	32,3	32,3
10	32,5	10	31,7	32,3	32,2	32,1	32,0
12	32,4	12	31,3	32,1	32,0	31,9	31,8
14	32,2	14	30,8	32,0	31,8	31,7	31,6
16	32,0	16	30,2	31,8	31,5	31,4	31,3
18	31,6	18	29,7	31,6	31,3	31,2	31,1
20	31,2	20	29,2	31,4	31,1	31,0	30,8
22	30,0	22	20,0	21.0	30,9	30,7	30,5
24	30,4	24	20,3	30.8	30,7	30,5	30,3
20	20.8	20	27,5	30,0	30,3	20.0	29.7
30	29.4	30	27,3	30.4	30.0	29.7	29.5
40	27.9	40	25.1	28.0	28.4	27.6	28.1
50	26.5	50	23.4	26.2	27.4	25.7	26.4
60	25.2	60	21.8	24.6	25.8	23.9	24.4
70	23,7	70	20,6	23,4	24,0	22,5	22,8
80	22,4	80	19,5	22,1	22,4	21,3	21,6
90	21,4	90	18,9	21,1	21,3	20,4	20,7
100	20,6	100	18,3	20,2	20,4	19,5	19,7
110	20,0	110	17,8	19,5	19,7	18,8	19,0
120	19,4	120	17,4	18,9	19,0	18,1	18,3
130	19,0	130	17,0	18,4	18,4	17,6	17,7
140	18,6	140	16,7	18,0	17,9	17,2	17,3
150	18,2	150	16,3	17,5	17,5	16,8	16,9
160	17,8	160	16,1	17,1	17,1	16,4	16,5
220	16,2	170	15,8	16,7	16,7	16,1	16,1
240	15,8	180	15,6	16,5	16,4	15,8	15,8
260	15,4	210	15,0	15,0	15,4	10,1	10,1
200	14.9	240	14,4	14.0	14,0	14,4	14,4
320	14,0	360	12.0	14,0	13,0	13,7	13,7
340	14.2	380	12,3	12.8	12.7	12.9	12.9
360	13.9	400	12,7	12,0	12,7	12,3	12,0
380	13.7	420	12.3	12.2	12.3	12.5	12,5
400	13.5	440	12.1	12.0	12.0	12.3	12.4
420	13,3	460	12,0	11,8	11,8	12,2	12,2
440	13,1	480	11,9	11,7	11,6	12,0	12,1
460	12,9	500	11,8	11,6	11,5	11,8	11,9
480	12,7	520	11,7	11,5	11,4	11,7	11,8
500	12,5	540	11,6	11,4	11,3	11,6	11,7
520	12,3	560	11,5	11,3	11,3	11,5	11,6
540	12,1	580	11,5	11,3	11,2	11,5	11,6
560	11,9	600	11,4	11,2	11,2	11,4	11,5
580	11,7	610	11,4	11,2	11,2	11,4	11,5
600	11,6	620	11,3	11,2		11,4	11,5
620	11,5	630	11,3	11,2		11,4	11,5
660	11,4	640	11,3				
000	11,3	000	11.2				
700	11,3	670	11,2				
720	11.2	680	11.2				
740	11 1	690	11 1				
760	11.1	700	11.1				
770	11.1	710	11.1				

Tab. TZ. 15. Wpływ dawki polielektrolitu Kśr5 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 98,92$ % (MDXI)

Rys. KZ.15. Wpływ dawki polielektrolitu Kśr5 na przebieg zagęszczania osadu o W₀ = 98,92 % (MDXI)

D _p	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	0	33,2	33,2	33,2	33,2	33,2
4	33,2	4	32,9	32,9	32,4	32,2	28,8
6	33,1	6	32,8	32,6	32,1	31,7	25,5
8	33,0	8	32,7	32,3	31,7	31,2	24,2
10	33,0	10	32,5	32,1	31,3	30,1	22,4
12	32,9	12	32,3	31,9	30,9	28,5	21,0
14	32,8	14	32,2	31,6	30,5	27,1	19,8
16	32,8	16	32,0	31,4	30,1	26,0	18,8
18	32,7	18	31,8	31,2	29,7	24,8	18,1
20	32,6	20	31,7	30,9	29,3	23,8	17,5
22	32,6	22	31,5	30,7	28,8	22,9	17,0
24	32,5	24	31,4	30,4	28,0	22,1	16,6
26	32,5	26	31,2	30,1	27,3	21,4	16,2
20	32,4	20	31,1	29,9	20,0	20,7	15,9
30	32,3	30	30,9	29,7	20,0	20,2	14.4
40 50	31.6	40 50	20.4	26,4	20,4	16.0	14,4
60	31.0	60	28.6	20,0	10.2	16.0	13,9
70	30 9	70	20,0	23,0	18.1	15.4	13,5
80	30.6	80	27.0	21.7	17.2	14.9	13.0
90	30.2	90	26.2	20.6	16.5	14.5	12.8
100	29.9	100	25.2	19.6	16.0	14.1	12.6
110	29.5	110	24.2	18.7	15.5	13.8	12.5
120	29.2	120	23.3	18.1	15.1	13.6	12,4
130	28,8	130	22,5	17,5	14,8	13,4	12,3
140	28,5	140	21,7	17,1	14,5	13,3	12,2
150	28,1	150	21,0	16,6	14,3	13,2	12,2
160	27,8	160	20,3	16,2	14,1	13,0	12,1
180	27,1	170	19,7	15,9	13,9	12,9	12,1
200	26,4	180	19,2	15,6	13,7	12,8	12,0
220	25,7	190	18,8	15,4	13,6	12,7	12,0
240	25,0	200	18,4	15,1	13,4	12,6	11,9
260	24,3	220	17,6	14,7	13,2	12,5	11,8
280	23,6	240	16,9	14,3	13,0	12,4	11,7
300	22,9	260	16,5	14,0	12,8	12,3	11,7
320	22,3	270	16,3	13,8	12,7	12,3	11,7
340	21,6	280	16,1	13,7	12,6	12,2	
360	21,1	300	15,6	13,5	12,5	12,2	
380	20,0	320	15,2	13,3	12,4	12,1	
400	20,1	340	14,9	13,1	12,4	12,1	
420	19,7	300	14,7	12,9	12,3	12,0	
440	18.2	400	14,4	12,0	12,2	12,0	-
480	18.4	420	14.0	12,1	12,2	11 0	
500	18.0	440	13.8	12,0	12.1	11.8	
520	17.6	460	13.6	12.4	11.9	11.7	
540	17.2	480	13.4	12.3	11.8	11.6	
1280	11,1	500	13,2	12,2	11,7	11,5	
1300	11,1	520	13,0	12,1	11,6	11,5	
1320	11,0	540	12,8	12,0	11,5	11,4	
1340	11,0	560	12,6	11,9	11,4	11,4	
1360	10,9	570	12,5	11,9	11,3	11,4	
1380	10,9	580	12,4	11,8	11,3		
1390	10,9	600	12,2	11,7	11,2		
		620	12,0	11,6	11,2		
		630	11,9	11,6	11,2		
L		640	11,8	11,5			
		660	11,7	11,4			
		680	11,6	11,3			
		700	11,5	11,2			
		740	11,4	11,1		ļ	ļ
		760	11.0	11.0			-
		770	11.2	11.0			
		780	11.2	11,0			
		790	11.2	-		L	L
			· · · ,				

Tab. TZ. 16. Wpływ dawki polielektrolitu Kśr1 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,25$ % (MDVIII)

Rys. KZ.16. Wpływ dawki polielektrolitu Kśr1 na przebieg zagęszczania osadu o W₀ = 99,25 % (MDVIII)

Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	0	33,2	33,2	33,2	33,2	33,2
4	33,2	4	32,9	32,7	32,6	32,0	25,8
6	33,1	6	32,7	32,4	32,3	30,8	22,9
8	33,0	8	32,5	32,1	32,0	28,7	20,7
10	33,0	10	32,4	31,9	31,7	20,8	19,1
14	32,9	12	32,3	31.0	31,4	23.6	17.2
16	32.8	16	31.9	31.1	30.8	22.4	16.4
18	32,7	18	31,7	30,8	30,5	21,4	16,0
20	32,6	20	31,5	30,6	30,2	20,6	15,5
22	32,6	22	31,4	30,4	29,9	19,9	15,2
24	32,5	24	31,2	30,1	29,5	19,3	14,9
26	32,5	26	31,1	29,8	29,2	18,7	14,6
28	32,4	28	30,9	29,6	28,9	18,3	14,4
30	32,3	30	30,7	29,4	28,6	17,9	14,2
40	32,0	40	30,0	27,9	26,6	16,4	13,6
50	31,6	50	29,2	25,7	24,1	15,4	13,2
50	30.0	0U 70	∠ŏ,3 27 4	∠3,8 22.2	22,1	14,7	12,9
80	30,9	70 QA	25.3	10.0	20,5 18.2	13.6	12,1
۵0 ۵0	30,0	100	20,0	19,9	17.5	12.2	12.4
100	29.9	120	27,3	17 7	16.3	12.9	12,3
110	29.5	140	20.8	16.7	15.5	12.7	12.1
120	29,2	150	20,2	16,3	15,2	12,6	12,0
130	28,8	160	19,6	15,9	14,9	12,5	12,0
140	28,5	170	19,1	15,6	14,7	12,5	11,9
150	28,1	180	18,6	15,3	14,4	12,4	11,9
160	27,8	190	18,2	15,1	14,2	12,4	11,9
180	27,1	200	17,8	14,8	14,0	12,3	11,9
200	26,4	220	17,1	14,4	13,7	12,2	11,8
220	25,7	240	16,4	14,1	13,4	12,1	11,8
240	25,0	260	16,0	13,8	13,2	12,1	11,7
280	24,3	200	15,0	13,0	12.0	12,0	11,7
300	22.9	300	15.2	13,5	12,9	12,0	11,7
320	22.3	320	14.9	13.2	12,8	11.9	
340	21.6	340	14.6	13.0	12,7	11.9	
360	21,1	360	14,4	12,8	12,6	11,8	
380	20,6	380	14,2	12,7	12,5	11,8	
400	20,1	400	14,0	12,6	12,4	11,7	
420	19,7	420	13,8	12,5	12,3	11,7	
440	19,3	440	13,6	12,4	12,2	11,6	
460	18,8	460	13,4	12,3	12,1	11,6	
480	18,4	480	13,2	12,2	12,0	11,5	
500	18,0	500	13,0	12,1	11,9	11,5	
520	17.2	520	12,0	11 0	11,0	11,4	
1280	11.1	560	12.4	11.8	11.6	11.3	
1300	11.1	580	12.2	11.7	11.5	11.3	
1320	11.0	590	12,1	11.6	11,4	11.3	
1340	11,0	600	12,0	11,6	11,4		
1360	10,9	620	11,8	11,5	11,3		
1380	10,9	640	11,7	11,4	11,2		
1390	10,9	660	11,6	11,3	11,1		
		680	11,5	11,2	11,1		
		690 700	11,4	11,1	11,1		
		700	11,4	11,1			ļ
		740	11.0	10.0			
<u> </u>		760	11 1	10.9			
		770	11.0	10.9			
		780	11.0	10.9	1	1	
		800	10,9				
		820	<u>10,</u> 9				
		830	10,9				

Tab. TZ. 17. Wpływ dawki polielektrolitu Kd1 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,25$ % (MDVIII)

t_{zag} [min]

Rys. KZ.17. Wpływ dawki polielektrolitu Kd1 na przebieg zagęszczania osadu o W₀ = 99,25 % (MDVIII)

(Obuu)	nouu n	aaobaa	0114)11	process	e nagęsi	Chaina	obudu o		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(1122 1 1)		
Dp	0,0		0,1	0,2	0,3	0,4	0,5		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33.2	0	33.2	33.2	33.2	33.2	33.2	560	12.6	13.1	13.0	12.4	12.4
4	33.2	4	33.1	33.1	33.1	33.1	33.1	580	12,0	12.8	12.7	12,4	12,4
6	33.1	6	33.0	33.0	33.0	32.9	33.0	600	12,1	12,5	12,1	12.0	12.0
8	33.0	8	32.9	32.9	32.9	32.8	32.9	620	12.0	12.2	12.3	11.8	11.8
10	33.0	10	32.8	32.8	32.8	32.7	32.8	640	11.8	12,0	12,0	11.6	11.6
12	32.9	12	32.7	32.7	32.7	32.6	32.7	660	11.6	11.8	11.9	11.5	11.5
14	32.8	14	32.7	32.6	32.6	32.5	32.5	680	11.5	11.6	11.7	11.4	11.4
16	32,8	16	32,6	32,5	32,5	32,4	32,4	700	11,4	11,5	11,5	11,3	11,3
18	32,7	18	32,5	32,4	32,4	32,2	32,3	720	11,3	11,4	11,4	11,2	11,2
20	32,6	20	32,4	32,4	32,3	32,1	32,2	740	11,2	11,3	11,3	11,1	11,1
22	32,6	22	32,3	32,3	32,2	32,0	32,1	760	11,2	11,2	11,2	11,0	11,0
24	32,5	24	32,2	32,2	32,1	31,9	32,0	780	11,1	11,1	11,1	11,0	11,0
26	32,5	26	32,2	32,1	32,0	31,8	31,9	790	11,1	11,1	11,1	11,0	11,0
28	32,4	28	32,1	32,0	31,9	31,7	31,8	800	11,0	11,0	11,0		
30	32,3	30	32,0	31,9	31,8	31,5	31,6	810	11,0	11,0	11,0		
40	32,0	40	31,6	31,3	31,2	31,0	31,0	820	11,0	11,0	11,0		
50	31,6	50	31,2	30,8	30,7	30,5	30,5	830	11,0	11,0	11,0		
60	31,3	60	30,7	30,3	30,2	29,9	29,8						
70	30,9	70	29,3	29,8	29,6	29,3	29,2						
80	30,6	80	28,3	29,3	29,1	28,8	28,6						
90	30,2	90	27,5	28,9	28,6	28,3	28,0						
100	29,9	100	26,7	28,3	28,1	27,7	27,3						
110	29,5	110	26,0	27,8	27,5	27,0	26,5						
120	29,2	120	25,5	27,2	26,9	26,4	25,8						
130	28,8	130	25,0	26,7	26,3	25,8	25,1						
140	28,5	140	24,4	26,1	25,7	25,1	24,4						
150	28,1	150	23,9	25,5	25,1	24,5	23,8						
160	27,8	160	23,4	24,9	24,5	23,9	23,1						
180	27,1	170	22,9	24,4	23,9	23,3	22,5						
200	26,4	180	22,4	23,8	23,3	22,7	21,9						
220	25,7	190	22,0	23,3	22,7	22,1	21,3						
240	25,0	200	21,5	22,8	22,1	21,6	20,8						
260	24,3	210	21,0	22,3	21,7	21,1	20,3						
280	23,6	220	20,5	21,8	21,2	20,6	19,8						
300	22,9	230	20,0	21,5	20,7	20,1	19,4						
320	22,3	240	19,5	21,0	20,3	19,0	19,0						
340	21,0	250	19,0	20,5	19,0	19,1	19.2						
380	20.6	200	18.0	20,0	19,5	18.1	17.8						
400	20,0	280	17.6	19,5	18.4	17.6	17,0						
420	10.7	200	17,0	18.5	18.0	17,0	17,4						
420	10,7	200	16.8	18.0	17.6	16.7	16.6						
460	18.8	320	16.4	17.5	17,0	16.3	16.2						ł
480	18.4	340	16.0	17,0	16.8	15.9	15.8						
500	18.0	360	15.6	16.5	16.4	15.5	15.4						
520	17.6	380	15.2	16.1	16.0	15.1	15.1						<u> </u>
540	17.2	400	14.9	15.7	15.6	14.7	14.8						t
1280	11.1	420	14.6	15.3	15.2	14.4	14.5						<u> </u>
1300	11.1	440	14.3	14.9	14.8	14.1	14.2			1		1	<u> </u>
1320	11.0	460	14.0	14.6	14,5	13.8	13.9			1		1	<u> </u>
1340	11.0	480	13,7	14.3	14,2	13.5	13.6						
1360	10,9	500	13,4	14.0	13,9	13.2	13.3						
1380	10,9	520	13,1	13,7	13,6	12,9	13,0						
1390	10,9	540	12,8	13,4	13,3	12,6	12,7						

Tab. TZ. 18. Wpływ dawki polielektrolitu Kśr2 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,25$ % (MDVIII)

t_{zag} [min]

Rys. KZ.18. Wpływ dawki polielektrolitu Kśr2 na przebieg zagęszczania osadu o W₀ = 99,25 % (MDVIII)

Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	0	33,2	33,2	33,2	33,2	33,2
4	32,6	4	32,7	32,6	32,6	32,5	32,5
6	32,3	6	32,4	32,3	32,3	32,2	32,1
8	32,0	8	32,0	32,0	31,9	31,8	31,5
10	31,6	10	31,5	31,6	31,2	31,3	31,2
12	31,2	12	30,7	31,2	30,5	30,9	30,7
14	30,0	14	29,0	20.0	29,0	20,5	20.2
18	29.9	18	28.4	29,2	28,1	29.3	29,3
20	29.5	20	27.7	28.6	27.4	28.7	28.6
22	29,0	22	27,0	27,9	26,8	28,1	27,8
24	28,6	24	26,4	27,2	26,1	27,5	27,0
26	28,2	26	25,8	26,5	25,5	26,9	26,3
28	27,8	28	25,3	25,9	24,9	26,2	25,6
30	27,4	30	24,8	25,3	24,2	25,4	25,0
40	25,6	40	22,6	22,6	21,6	22,5	22,2
50	23,9	50	20,9	20,5	19,8	20,5	20,1
60	22,3	60	19,4	19,0	18,4	18,9	18,4
/0	20,7	/0	18,1	17,9	17,4	17,8	17,4
00	19,0	00	16.7	17,1	16.0	16.4	16,4
90 100	10,0 18.1	100	16.1	10,4	15.0	15.2	15,7
110	17.4	110	15.7	15.3	15.0	14.9	14.6
120	16.9	130	14.7	14.4	14.1	14.0	13.7
130	16,4	150	14,1	13,8	13,5	13,4	13,1
140	15,9	170	13,6	13,3	13,1	13,0	12,7
150	15,5	190	13,1	12,8	12,7	12,6	12,3
160	15,1	210	12,8	12,5	12,4	12,3	12,0
170	14,8	230	12,4	12,1	12,1	12,0	11,8
180	14,4	250	12,1	11,8	11,8	11,7	11,6
190	14,1	270	11,9	11,6	11,6	11,5	11,4
200	13,8	300	11,5	11,3	11,3	11,3	11,3
210	13,5	320	11,4	11,1	11,2	11,2	11,2
220	13,2	360	11,2	10.0	11,1	11,1	11,1
230	12.8	370	11.1	10,9	11.0	11,0	11,0
270	12,0	390	10.9	10,3	10.9	10.9	10.9
280	12.3	400	10,8	10,6	10,9	10,9	10,9
290	12,1	410	10,7	10,5	10,9	10,9	10,9
300	12,0	420	10,6	10,4	10,9	10,9	10,9
310	11,8	430	10,5	10,3			
320	11,7	440	10,4	10,3			
330	11,6	450	10,3	10,2			
340	11,5	460	10,2	10,2			
350	11,4	470	10,1	10,1			
300	11,3	480	10,0	10,1			
380	11,∠ 11.1	500	9,9 9,8	10,0			
390	11.0	510	9.7	9.9			
400	10.9	520	9.7	9.9			
410	10.8	530	9,6	9,8			
420	10,7	540	9,6	9,8			
430	10,6	550	9,6	9,7			
440	10,6	560	9,5	9,7			-
450	10,5	570	9,5	9,6			
460	10,5	580	9,5	9,6			
470	10,4	590	9,4	9,6			
480	10,4	600	9,4	9,6			
490	10,3	620	9,4				
510	10,3	020	9,4				
520	10.2						
530	10.1						
540	10,1			1			
550	10,0						
570	10,0						
580	10.0						

Tab. TZ. 19. Wpływ dawki polielektrolitu Kd4 na wysokość powierzchni rozdziału faz(osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 98,95$ % (MDVI)

Rys. KZ.19. Wpływ dawki polielektrolitu Kd4 na przebieg zagęszczania osadu o W₀ = 98,95 % (MDVI)

Dp	0,0		0,1	0,2	0,3	0,4	1,4
t [min]	h [cm]	t [min]	h [cm]				
0	33,2	0	33,2	33,2	33,2	33,2	33,2
4	31,5	4	30,3	31,0	30,8	31,6	31,6
6	30,7	6	28,2	29,2	28,9	30,2	30,3
8	29,8	8	26,5	27,5	27,1	28,4	28,7
10	29,0	10	25,0	26,0	25,6	26,7	26,8
12	28,2	12	23,7	24,6	24,1	25,0	25,3
14	27,4	14	22,6	23,4	22,9	23,5	24,0
16	26,6	16	21,6	22,3	21,7	22,2	22,7
18	25,9	18	20,6	21,3	20,8	21,1	21,7
20	25,1	20	19,8	20,4	20,0	20,3	20,8
22	24,4	22	19,1	19,7	19,3	19,5	20,0
24	23,7	24	18,5	19,0	18,7	18,9	19,4
26	23,0	26	18,0	18,5	18,2	18,4	18,8
28	22,2	28	17,5	18,0	17,7	17,9	18,3
30	21,5	30	17,1	17,5	17,3	17,5	17,8
40	17,9	40	15,5	15,9	15,8	15,9	16,2
50	16,5	50	14,4	14,7	14,7	14,7	14,9
60	15,6	60	13,7	13,9	13,9	13,9	14,1
70	14,8	70	13,1	13,3	13,3	13,3	13,4
80	14,2	80	12,5	12,7	12,7	12,7	12,8
90	13,7	90	12,1	12,3	12,3	12,3	12,3
100	13,2	100	11,7	11,9	11,9	11,9	11,9
110	12,8	110	11,4	11,5	11,5	11,5	11,5
120	12,4	120	11,1	11,2	11,2	11,2	11,2
130	12,1	130	10,8	10,9	10,9	10,9	10,9
140	11,8	140	10,6	10,7	10,7	10,7	10,7
150	11,6	160	10,1	10,3	10,3	10,3	10,3
160	11,4	180	9,8	9,9	10,0	10,0	10,0
180	11,0	200	9,5	9,6	9,7	9,7	9,7
200	10,7	240	9,0	9,1	9,2	9,2	9,2
220	10,4	260	8,8	8,9	9,0	9,0	9,0
240	10,1	320	8,3	8,4	8,6	8,6	8,6
260	9,9	340	8,2	8,3	8,5	8,5	8,5
280	9,7	360	8,1	8,2	8,4	8,4	8,4
300	9,5	380	8,0	8,1	8,3	8,3	8,3
320	9,3	400	7,9	8,0	8,2	8,2	8,2
340	9,1	420	7,8	7,9	8,1	8,1	8,1
360	8,9	440	7,7	7,8	8,0	8,0	8,0
380	8,7	460	7,6	7,7	7,9	7,9	7,9
400	8,5	480	7,5	7,6	7,8	7,8	7,8
420	8,3	500	7,4	7,5	7,7	7,7	7,7
440	8,1	520	7,3	7,4	7,6	7,6	7,6
460	8,0	540	7,2	7,3	7,5	7,5	7,5
480	7,9	560	7,1	7,2	7,4	7,4	7,4
500	7,8	580	7,0	7,1	7,3	7,3	7,3
520	7,7	600	6,9	7,0	7,2	7,2	7,2
540	7,6	620	6,9	6,9	7,1	7,1	7,1
560	7,5	640	6,8	6,8	7,0	7,0	7,0
580	7,4	660	6,8	6,8	7,0	7,0	7,0
600	7,3	680	6,7	6,7	6,9	6,9	6,9
620	7,3	700	6,7	6,7	6,9	6,9	6,9
640	7,2	710	6,7	6,7	6,8	6,8	6,8
660	7,2	730			6,8	6,8	6,8
670	7,2	740			6,7	6,7	6,7
		750			6,7	6,7	6,7
		760			6,7	6,7	6,7
		770			6,7	6,7	6,7

Tab. TZ. 20. Wpływ dawki polielektrolitu Kśr3 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,55$ % (MDX)

Rys. KZ.20. Wpływ dawki polielektrolitu Kśr3 na przebieg zagęszczania osadu o W₀ = 99,55 % (MDX)

(Ubuu, I	oua nau	usauo ma	, w proce	sie zagęs		Usauu U	N ₀ = 77,5
Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
(ininj	22.2	0	22.0	22.2	22.2	22.2	22.2
0	33,Z	0	33,Z	33,2	33,Z	33,Z	33,2
4	31,5	2	32,4	32,6	32,4	32,3	32,1
6	30,7	4	31,6	31,8	31,5	31,4	30,7
8	29,8	6	30,5	30,7	30,1	29,8	27,8
10	29,0	8	29,2	29,4	28,3	26,8	24,8
12	28.2	10	27.8	28.1	26.7	24.8	22.5
14	27.4	12	26.5	26.7	25.4	23.0	20.9
16	26.6	14	25,0	25.2	24.1	21.4	10.7
10	20,0	14	20,1	25,2	24,1	21,4	19,7
18	25,9	16	23,8	23,8	23,0	20,3	18,6
20	25,1	18	22,7	22,5	21,9	19,2	17,8
22	24,4	20	21,7	21,5	21,0	18,4	17,0
24	23,7	22	20,8	20,6	20,2	17,7	16,4
26	23,0	24	20,1	19,9	19,4	17,1	15,8
28	22.2	26	19.5	19.3	187	16.5	15.3
30	21.5	28	19.0	18.7	18.1	16,0	14.8
30	17.0	20	19,0	10,7	17.6	10,0	14,0
40	17,9	30	18,5	18,2	17,6	15,6	14,4
50	16,5	40	16,6	16,1	15,5	13,9	13,0
60	15,6	50	15,3	14,8	14,2	12,8	12,0
70	14,8	60	14,4	13,8	13,2	11,9	11,3
80	14,2	70	13,6	12,9	12,4	11,3	10,7
90	13.7	80	13.0	12.3	11.8	10.8	10.3
100	13.2	90	12.5	11.8	11 /	10.4	9,0 9 0
110	12.0	100	12,0	11.0	11,4	10,4	0.7
110	12,0	100	147	11,4	10.7	10,1	9,1
120	12,4	110	11,7	11,0	10,7	9,9	9,5
130	12,1	120	11,4	10,7	10,4	9,7	9,3
140	11,8	130	11,1	10,5	10,2	9,5	9,1
150	11,6	140	10,8	10,3	10,0	9,3	9,0
160	11,4	150	10,6	10,1	9,8	9,2	8,9
180	11.0	160	10 4	99	96	91	88
200	10.7	170	10,1	0,0	9,5	9,0	8.7
200	10,7	170	10,2	5,7	3,3	3,0	0,7
220	10,4	180	10,0	9,6	9,4	8,9	8,6
240	10,1	190	9,8	9,4	9,3	8,8	8,6
260	9,9	200	9,7	9,2	9,2	8,7	8,5
280	9,7	210	9,6	9,1	9,1	8,7	8,5
300	9,5	220	9,5	9,0	9,0	8,6	8,4
320	9.3	230	9.4	8.9	8.9	8.6	8.4
340	9.1	240	9.3	8.8	8.8	8.5	8.3
360	8.0	250	0.2	9.7	9.7	9,6	9.3
300	0,9	230	9,2	0,7	0,7	0,5	0,3
380	8,7	260	9,1	8,0	8,7	8,4	8,3
400	8,5	270	9,0	8,5	8,6	8,4	8,2
420	8,3	280	8,9	8,4	8,5	8,3	8,2
440	8,1	290	8,8	8,3	8,5	8,3	8,2
460	8,0	300	8,7	8,2	8,4	8,2	8,1
480	7.9	310	8.6	8.1	8.3	8.2	8.1
500	7.8	320	8.5	8.0	8.3	8.1	8.1
520	77	330	84	70	8.2	8,1 8,1	80
520	7.6	240	0,4	7.0	0,2	0,1	0,0
540	1,0	340	0,3	7,0	0,2	0,0	0,0
560	7,5	350	8,2	1,1	8,1	8,0	8,0
580	7,4	360	8,1	7,6	8,0	8,0	7,9
600	7,3	370	8,0	7,5	8,0	7,9	7,9
620	7,3	380	7,9	7,4	7,9	7,9	7,9
640	7,2	390	7,8	7,3	7,9	7.9	7.8
660	7.2	400	7,7	7.3	7.8	7.8	7.8
670	7.2	410	7.6	7.2	7.8	7.8	7.8
010	ے, ن	400	7,0	70	7.0	70	7,0
		420	7,0	1,2	7,0	1,0	1,1
		430	7,4	7,1	7,0	1,1	1,1
		440	7,3	7,1	7,6	7,7	7,7
		450	7,3	7,1	7,5	7,7	7,7
		460	7,2	7,0	7,5	7,7	
		470	7,2	7,0	7,5		
		480	7.1	7.0	7.5		
		/00	71	70	.,5		
		+30 E00	7,1	7,0			
		500	7,0				
		520	7,0			ļ	ļ
		530	7,0				

Tab. TZ. 21. Wpływ dawki polielektrolitu Kd5 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,55$ % (MDX)

Rys. KZ.21. Wpływ dawki polielektrolitu Kd5 na przebieg zagęszczania osadu o W₀ = 99,55 % (MDX)

Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	0	33,2	33,2	33,2	33,2	33,2
4	33,2	4	33,0	33,0	33,0	32,9	32,9
6	33,1	6	32,9	32,9	32,9	32,8	32,8
8	33,0	8	32,8	32,8	32,8	32,7	32,6
10	33,0	10	32,7	32,7	32,7	32,5	32,4
12	32,9	12	32,6	32,6	32,6	32,4	32,2
14	32,8	14	32,5	32,5	32,5	32,2	32,0
16	32,8	16	32,4	32,4	32,4	32,1	31,8
18	32,7	18	32,3	32,3	32,2	32,0	31,6
20	32,6	20	32,2	32,2	32,1	31,9	31,4
22	32,6	22	32,1	32,1	32,0	31,7	31,3
24	32,5	24	32,0	32,0	31,8	31,6	31,1
26	32,5	26	31,9	31,9	31,7	31,4	30,9
28	32,4	28	31,8	31,8	31,6	31,3	30,7
30	32,3	30	31,7	31,6	31,4	31,1	30,5
40	32,0	40	31,4	31,1	30,9	30,4	29,6
50	31,6	50	31,0	30,5	30,2	29,7	28,7
60	31,3	60	30,5	30,0	29,6	28,8	27,8
70	30,9	70	30,1	29,5	28,9	27,9	26,9
80	30,6	80	29,7	28,9	28,2	26,9	25,8
90	30,2	90	29,2	28,3	27,5	25,8	24,8
100	29,9	100	28,8	27,8	26,8	24,9	23,9
110	29,5	110	28,3	27,2	26,1	24,1	23,0
120	29,2	120	27,8	26,5	25,3	23,2	22,1
130	28,8	130	27,4	25,9	24,6	22,4	21,3
140	28,5	190	24,5	22,3	20,8	18,9	18,0
150	20,1	200	24,0	21,7	20,2	10,0	17,0
100	27,0	220	23,1	20,8	19,3	17,7	16,9
200	27,1	230	22,0	20,3	10,9	17,4	16.4
200	20,4	240	22,1	19,9	10,0	16.0	16.2
240	25,7	250	21,7	10,0	17.8	16.7	16.0
240	24.3	200	21,3	19,1	17,0	16.4	15.8
280	23.6	280	20,0	18.4	17.3	16.2	15,6
300	22.9	300	19.7	17.9	16.8	15.8	15.3
320	22.3	310	19.4	17.6	16.6	15.6	15.1
340	21.6	320	19,1	17.4	16.4	15.5	15.0
360	21.1	330	18.8	17.1	16.2	15.3	14.8
380	20.6	360	17.9	16.4	15.7	14.9	14.5
400	20.1	380	17.4	16.1	15.4	14.7	14.3
420	19.7	400	16.9	15.8	15.1	14.5	14.1
440	19,3	420	16,4	15,5	14,8	14,3	13,9
460	18,8	440	16,0	15,2	14,5	14,0	13,7
480	18,4	460	15,5	14,9	14,3	13,8	13,5
500	18,0	480	15,1	14,6	14,1	13,6	13,3
520	17,6	500	14,7	14,3	13,9	13,4	13,1
540	17,2	520	14,2	14,0	13,7	13,3	13,0
1280	11,1	540	13,8	13,7	13,5	13,1	12,8
1300	11,1	560	13,5	13,4	13,3	13,0	12,7
1320	11,0	580	13,2	13,1	13,1	12,8	12,5
1340	11,0	600	13,0	12,9	12,9	12,7	12,4
1360	10,9	620	12,8	12,7	12,7	12,5	12,2
1380	10,9	640	12,6	12,5	12,5	12,4	12,1
1390	10,9	660	12,4	12,3	12,3	12,2	12,0
l		680	12,2	12,1	12,1	12,1	11,9
<u> </u>		700	12,0	11,9	11,9	11,9	11,8
		740	11,9	11,7	11,7	11,8	11,7
		740	11,8	11,6	11,0	11,6	11,0
<u> </u>		700	11,/	11,5 11 4	11,5 11 4	11,5 11 4	11,5
<u> </u>		200	11,0	11,4	11,4	11,4	11,4
l		810	11,5	11,4	11,4	11,4	11,4
		820	11.0	11,4	11,4	11,4	11,4
		840	11.4				
		850	11.4				
L	1	000	11,4				

Tab. TZ. 22. Wpływ dawki polielektrolitu Ad1 na wysokość powierzchni rozdziału faz(osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,25 \%$ (MDVIII)

t_{zag} [min]

Rys. KZ.22. Wpływ dawki polielektrolitu Ad1 na przebieg zagęszczania osadu o W₀ = 99,25 % (MDVIII)

(0544, 1	ouu nuu			bie zagęs	eceuma .	Journa of the second se	· () = > 0,9
Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33.2	0	33.2	33.2	33.2	33.2	33.2
0	33,Z	0	33,2	33,2	33,2	33,Z	33,Z
4	32,6	4	31,7	31,4	24,3	22,1	20,3
6	32,3	6	31,1	30,5	21,6	19,7	18,4
8	32.0	8	30.1	28.2	20.0	18.1	17.3
10	31.6	10	28.2	26.3	18.3	17.2	16.5
10	51,0	10	20,2	20,3	10,5	17,2	10,5
12	31,2	12	26,8	24,6	17,9	16,4	15,9
14	30,8	14	25,6	23,2	17,2	16,0	15,5
16	30.4	16	24.4	22.0	16.7	15.6	15.1
18	20.0	18	23.4	21.1	16.2	15.3	1/ 8
10	20,0	10	20,4	21,1	10,2	15,5	14,0
20	29,5	20	22,5	20,2	15,8	15,0	14,6
22	29,0	22	21,7	19,4	15,5	14,7	14,4
24	28.6	24	21.1	18.8	15.2	14.5	14.2
26	28.2	26	20 5	18.3	15.0	14.4	14 1
20	20,2	20	20,0	10,0	10,0	14,4	14,1
28	27,8	28	19,9	17,8	14,8	14,3	14,0
30	27,4	30	19,4	17,4	14,6	14,2	13,9
40	25.6	40	17.5	15.9	13.9	13.7	13.5
50	23.0	50	16.3	1/ 0	13.5	13 /	13.3
	20,9		10,0	14,3	10,0	40.0	10,0
60	22,3	60	15,5	14,2	13,2	13,2	13,2
70	20,7	70	14,8	13,7	12,9	13,0	13,1
80	19.6	100	13.6	12.8	12.6	12.7	12.7
90	18.8	210	11 0	11.6	12.2	12 /	12 /
30	10,0	210	11,3	11,0	12,2	12,4	12,4
100	18,1	240	11,7	11,5	12,1	12,4	12,4
110	17,4	260	11,5	11,4	12,1		
120	16.9	310	11.4	11.3	12.0		
130	16.4	340	11.3	11.3	11.0		
130	10,4	340	11,5	11,5	11,9		
140	15,9	360	11,2		11,9		
150	15,5	370	11,2		11,9		
160	15.1	390	11.1				
170	14.9	400	11.1				
170	14,0	400	11,1				
180	14,4	410	11,1				
190	14,1	420	11,1				
200	13.8						
210	12.5						
210	13,5						
230	13,0						
240	12,8						
270	12.4						
280	12,1						
200	12,3	-					
290	12,1						
300	12,0						
310	11.8						
010	11,0						
320	11,7						
340	11,5						
350	11,4						
360	11.3				1		
270	11.0						
370	11,2						
380	11,1						
390	11,0						
400	10.9						
410	10.0						
410	10,0						
420	10,7						
430	10,6						
440	10.6						
450	10,0			-		-	
400	10,5						
460	10,5						
470	10,4						
480	10.4				1		
400	10,4						
490	10,3						
500	10,3						
510	10.2						
520	10.2			1	1	1	1
520	10,2						
530	10,1						
540	10,1						
550	10.0						
570	10.0						
570	10,0						
580	10,0			1		1	

Tab. TZ. 23. Wpływ dawki polielektrolitu Ad2 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 98,95$ % (MDVI)

Rys. KZ.23. Wpływ dawki polielektrolitu Ad2 na przebieg zagęszczania osadu o W₀ = 98,95 % (MDVI)

Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33.2	0	33.2	33.2	33.2	33.2	33.2
4	31.5	4	31.7	31.5	31.3	31.2	30.9
6	30.7	6	30.7	30.6	30.3	30.2	29.0
8	29.8	8	29.5	29.7	28.9	28.7	26.9
10	29.0	10	28,0	28.8	20,0	27.1	24.6
12	28.2	12	27.1	27.8	25.5	25.3	22.7
14	27.4	14	26.1	26.8	24.1	23.8	21.1
16	26.6	16	25.1	25.7	22.7	22.4	19.8
18	25,9	18	24,1	24,6	21,6	21,2	18,7
20	25,1	20	23,2	23,5	20,5	20,1	17,6
22	24,4	22	22,3	22,5	19,6	19,2	16,8
24	23,7	24	21,6	21,7	18,9	18,4	16,1
26	23,0	26	20,9	20,9	18,1	17,6	15,5
28	22,2	28	20,3	20,2	17,5	17,0	15,0
30	21,5	30	19,7	19,5	16,9	16,4	14,6
40	17,9	40	17,5	17,1	14,8	14,3	12,9
50	16,5	50	16,0	15,4	13,4	12,9	11,8
60	15,6	60	14,9	14,2	12,4	11,9	11,1
70	14,8	70	14,0	13,3	11,7	11,4	10,7
80	14,2	80	13,3	12,6	11,3	10,9	10,3
90	13,7	90	12,7	12,0	10,8	10,5	10,0
100	13,2	100	12,2	11,5	10,5	10,2	9,7
110	12,8	110	11,8	11,1	10,2	10,0	9,6
120	12,4	120	11,5	10,8	10,0	9,7	9,4
130	12,1	130	11,2	10,5	9,8	9,6	9,3
140	11,8	140	10,9	10,3	9,6	9,4	9,2
150	11,6	160	10,4	9,9	9,3	9,2	9,1
160	11,4	180	10,0	9,5	9,1	9,0	9,0
180	11,0	200	9,7	9,3	9,0	8,9	8,9
200	10,7	220	9,4	9,1	8,9	8,8	8,9
220	10,4	240	9,2	8,9	8,8	8,8	8,8
240	10,1	250	9,1	8,8	8,8	8,7	8,8
260	9,9	260	9,0	8,7	8,7	8,7	8,7
280	9,7	270	8,9	8,7	8,7	8,6	8,7
300	9,5	280	8,8	8,6	8,6	8,6	8,7
320	9,3	290	8,7	8,6	8,6	8,6	8,7
340	9,1	300	8,6	8,5	8,6	8,5	
360	8,9	310	8,6	8,5	8,5	8,5	
380	8,7	320	8,5	8,4	8,5	8,5	
400	8,5	330	8,5	8,4	8,5	8,5	
420	8,3	340	8,4	8,3	8,4		
440	8,1	350	8,4	8,3	8,4		
460	8,U	300	8,3	8,2	8,4 8 2		
480	7,9	3/0	0,3	0,2	0,3		
500	/,ð 77	300	0,2	0,1	0,3		
520	1,1	390	0,2	0,1	0,3		
560	7,0	400	0,1 8.1	0,1 8.1	0,0		
580	7,5	420	8 1	0,1			
600	7.2	420	0,1 Q 1				
620	73	430	0,1				
6/0	7.0						
660	72						
670	72						ļ
010	,∠, י		1	1	1	1	

Tab. TZ. 24. Wpływ dawki polielektrolitu Abd na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,55$ % (MDX)

Rys. KZ.24. Wpływ dawki polielektrolitu Abd na przebieg zagęszczania osadu o W₀ = 99,55 % (MDX)

Do	0.0		0.1	0.2	0.3	0.4	0.5
Dp (forial	0,0	1.1	0,1	0, <u>_</u>	0,0	0, 1 h []	0,0
t [min]	n [cm]	t [min]	n [cm]	n [cm]	n [cm]	n [cm]	n [cm]
0	33,2	0	33,2	33,2	33,2	33,2	33,2
4	32,7	4	32,6	32,6	32,2	32,1	32,2
6	32,4	6	32,4	32,3	31,8	31,6	31,7
8	32,1	8	32,0	31,9	31,4	31,1	31,2
10	31,8	10	31,6	31,5	30,9	30,5	30,7
12	31,5	12	31,2	31,1	30,5	29,9	30,2
14	31,2	14	30,7	30,7	30,1	29,1	29,5
16	30,9	16	30,1	30,1	29,6	28,0	28,7
18	30,6	18	29,4	29,6	29,0	27,0	27,9
20	30,3	20	20,7	20,7	20,4	20,0	27,1
24	29.7	24	20,0	20,0	27,7	24.3	20,3
26	29.4	26	26.9	26.8	26.5	23.5	25.0
28	29,1	28	26.3	26,0	25.9	22.8	24.3
30	28.8	30	25.6	25.4	25.2	22.1	23.7
40	27.4	40	22.8	22.8	22.4	19.3	20.9
50	25.9	50	20.8	20.8	20,1	17,4	18.8
60	24,4	60	19,2	19,2	18,2	16,1	17,1
70	22,9	70	18,1	18,1	17,0	15,1	16,0
80	21,4	80	17,2	17,1	15,9	14,3	15,0
90	20,6	90	16,5	<u>16,</u> 3	15,1	13,7	14,3
100	19,9	100	15,9	15,6	14,5	13,2	13,8
110	19,3	110	15,4	15,0	13,9	12,8	13,3
120	18,7	120	14,9	14,5	13,5	12,5	12,9
130	18,1	160	13,5	13,1	12,3	11,6	11,8
140	17,6	200	12,5	12,1	11,5	11,0	11,2
150	17,1	240	11,8	11,4	11,1	10,7	10,8
160	16,7	260	11,4	11,1	10,9	10,5	10,6
170	16,2	280	11,1	10,8	10,7	10,4	10,4
180	15,8	300	10,8	10,4	10,5	10,3	10,2
200	15,4	320	10,5	0.9	10,3	10,1	10,1
200	14.5	360	10,3	9,0	99	10,0 a a	10,0 q q
240	14.0	380	99	9.4	9.8	9.8	9.8
260	13.6	400	9.8	9.2	9,7	9,7	9.7
280	13.1	420	9.6	9,1	9.6	9.6	9.6
300	12.7	440	9.5	9.0	9.5	9.5	9.5
320	12,4	460	9,4	8,9	9,4	9,4	9,4
340	12,1	480	9,3	8,8	9,3	9,3	9,3
360	11,9	500	9,2	8,8	9,3	9,3	9,3
380	11,7	520	9,1	8,7	9,2	9,2	9,2
400	11,5	540	9,0	8,7	9,2	9,2	9,2
420	11,3	560	8,9	8,6	9,1	9,1	9,1
440	11,1	570	8,8	8,6	9,1	9,1	9,1
460	10,9	580	8,8	8,6	9,1	9,1	9,1
480	10,7	590	8,7	8,6	9,1	9,1	9,1
500	10,6	600	8,7				
520	10,4	610	8,6				
540	10,3	020	0,0 0 F				
580	10,2	640	0,0 8.5				
600	10,1	650	85				
620	9.9	660	8.4				
640	9.8	670	84				
660	9.8	680	8.4				
680	9,7	690	8.4				
690	9,7		-,.				
700	9,7						
710	9,7						

Tab. TZ. 25. Wpływ dawki polielektrolitów Kśr3+Kśr4 na wysokość powierzchni rozdziału faz(osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,35$ % (MDXII)

Rys. KZ.25. Wpływ dawki polielektrolitów Kśr3+Kśr4 na przebieg zagęszczania osadu o W₀ = 99,35 % (MDXII)

D.	0.0		01	0.2	03	0.4	0.5
Dp	0,0		0,1	0,2	0,5	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	0	33,2	33,2	33,2	33,2	33,2
4	32,7	4	32,8	32,7	32,7	32,6	32,6
6	32,4	6	32,6	32,5	32,5	32,3	32,3
8	32,1	8	32,4	32,3	32,2	32,0	32,0
10	31,8	10	32,2	32,0	31,9	31,6	31,7
12	31,5	12	31,5	31,7	31,7	31,3	31,4
14	31,2	14	30,8	31,4	31,4	30,9	31,1
16	30,9	16	30,1	31,0	31,1	30,5	30,8
18	30,6	18	29,5	30,4	30,8	29,9	30,4
20	30,3	20	28,9	29,7	30,5	29,2	30,0
22	30,0	22	28,4	29,0	29,7	28,4	29,3
24	29,7	24	27,8	28,4	28,8	27,6	28,4
26	29,4	26	27,3	27,7	28,0	26,9	27,6
28	29,1	28	26,9	27,2	27,3	26,2	26,8
30	28,8	30	26,4	26,7	26,7	25,6	26,1
40	27,4	40	24,4	24,6	24,2	23,0	23,4
50	25,9	50	22,3	22,9	22,1	20,8	21,1
60	24,4	60	20,8	21,4	20,4	19,1	19,4
70	22,9	70	<u>19,</u> 6	20,0	19,0	17,8	17,9
80	21,4	90	18,1	18,2	17,2	16,1	16,1
90	20,6	140	15,5	15,2	14,4	13,6	13,6
100	19,9	160	14,8	14,5	13,8	13,0	13,0
110	19,3	180	14,2	13,9	13,2	12,5	12,5
120	18,7	200	13,8	13,5	12,9	12,2	12,2
130	18,1	220	13,4	13,1	12,5	11,9	11,9
140	17,6	240	13,0	12,7	12,2	11,6	11,6
150	17,1	280	12,4	12,1	11,6	11,2	11,2
160	16,7	300	11,9	11,5	11,1	10,9	10,9
170	16,2	320	11,5	11,0	10,7	10,6	10,6
180	15,8	340	11,1	10,6	10,3	10,3	10,3
190	15,4	360	10,7	10,2	10,1	10,1	10,1
200	15,1	380	10,3	9,9	9,9	9,9	9,9
220	14,5	400	10,0	9,7	9,8	9,8	9,8
240	14,0	420	9,7	9,5	9,7	9,7	9,7
260	13,6	440	9,6	9,4	9,6	9,6	9,6
280	13,1	460	9,4	9,3	9,5	9,5	9,5
300	12,7	480	9,3	9,2	9,4	9,4	9,4
320	12,4	500	9,2	9,1	9,3	9,3	9,3
340	12,1	520	9,1	9,0	9,3	9,3	9,3
360	11,9	540	9,0	9,0	9,2	9,2	9,2
380	11,7	560	9,0	8,9	9,2	9,2	9,2
400	11,5	580	8,9	8,9	9,1	9,1	9,1
420	11,3	590	8,9	8,8	9,1	9,1	9,1
440	11,1	600	8,8	8,8	9,1	9,1	9,1
460	10,9	610	8,8	8,8	9,1	9,1	9,1
480	10,7	620	8,7	8,7			
500	10,6	630	8,7	8,7			
520	10,4	640	8,7	8,7			
540	10,3	650	8,7	8,7			
560	10,2						
580	10,1						
600	10,0						
620	9,9						
640	9,8						
660	9,8						
680	9,7						
690	9,7						
700	9,7						
710	9,7			1			

Tab. TZ. 26. Wpływ dawki polielektrolitów Kd2+Kd3 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,35$ % (MDXII)

Rys. KZ.26. Wpływ dawki polielektrolitów Kd2+Kd3 na przebieg zagęszczania osadu o W₀ = 99,35 % (MDXII)

Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33.2	0	33.2	33.2	33.2	33.2	33.2
4	32.7	4	32.5	32.4	32.2	31.1	31.6
6	32,4	6	32,2	32,0	31,7	29,9	30,9
8	32,1	8	31,8	31,6	31,2	27,9	30,1
10	31,8	10	31,4	31,2	30,7	25,9	29,3
12	31,5	12	30,9	30,8	30,2	24,0	28,2
14	31,2	14	30,3	30,4	29,7	22,5	26,8
16	30,9	16	29,6	30,0	29,1	21,2	25,5
18	30,6	18	28,9	29,6	28,3	20,1	24,2
20	30,3	20	28,1	29,2	27,5	19,1	23,1
22	30,0	22	27,3	28,7	26,8	18,3	22,1
24	29,7	24	26,6	28,3	26,0	17,6	21,2
20	29,4	20	25,9	27,7	25,3	16,9	20,4
20	29,1	20	20,0	27,0	24,0	16,3	19,0
40	20,0	40	24,0	20,3	20.9	14 1	16.6
50	25.9	50	20.5	21.3	18.8	13.1	15.2
60	24.4	60	19.1	19.6	17.2	12.4	14.2
70	22.9	70	17.9	18.1	16.1	11.9	13.5
80	21,4	80	17,1	17,0	15,2	11,4	13,0
90	20,6	90	16,3	16,1	14,5	11,1	12,6
100	19,9	120	14,9	14,3	13,2	10,6	11,7
110	19,3	140	14,1	13,4	12,6	10,3	11,4
120	18,7	160	13,5	12,8	12,1	10,1	11,1
130	18,1	180	13,0	12,4	11,7	10,0	10,9
140	17,6	200	12,6	12,0	11,4	9,9	10,7
150	17,1	220	12,2	11,6	11,1	9,8	10,5
160	16,7	240	11,8	11,2	10,8	9,7	10,3
170	16,2	260	11,4	10,8	10,5	9,6	10,1
100	15,8 15.4	200	10.6	10,4	10,2	9,5	9,9 0.2
200	15 1	320	10,0	9.8	9.8	9,5	9,0
220	14.5	340	9.8	9,5	9.7	9,4	9.7
240	14.0	360	9.5	9,3	9.6	9,3	9.6
260	13,6	380	9,2	9,2	9,5	9,3	9,6
280	13,1	400	9,0	9,1	9,4	9,2	9,5
300	12,7	420	8,9	9,0	9,4	9,2	9,5
320	12,4	440	8,8	9,0	9,3	9,1	9,4
340	12,1	450	8,7	8,9	9,3	9,1	9,4
360	11,9	460	8,7	8,9	9,2	9,1	9,4
380	11,7	470	8,6	8,8	9,2	9,1	9,4
400	11,5	480	8,6	8,8	9,1		
420	11,3	490	8,5	8,8	9,1		
440	11,1	500	8,5 0 F	ŏ,/	9,1		
400	10,9	510	0,0 8 4	0,1 87	9,1		
500	10,7	520	8.4	87			
520	10,0	540	84	0,1			
540	10.3	550	8.4				
560	10,2		-,.				
580	10,1			1		1	
600	10,0	<u> </u>					
620	9,9						
640	9,8						
660	9,8						
680	9,7						
690	9,7						
700	9,7						
/10	9,7			1		I	

Tab. TZ. 27. Wpływ dawki polielektrolitów Kśr5+Kd5 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,35 \%$ (MDXII)

Rys. KZ.27. Wpływ dawki polielektrolitów Kśr5+Kd5 na przebieg zagęszczania osadu o W₀ = 99,35 % (MDXII)

	0.0		0.1	0.2	0.2	0.4	0.5
Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33.2	0	33.2	33.2	33.2	33.2	33.2
4	32.7	4	32.7	32.4	32.0	30.9	31.2
6	32.4	6	32.5	32.0	31.4	28.1	28.8
8	32.1	8	32.2	31.6	30.6	25.8	26.4
10	31.8	10	32.0	30.9	29.0	24.0	24.4
12	31.5	12	31.7	30.2	27.6	22.6	22.9
14	31.2	14	31.5	29.3	26.3	21.1	21.5
16	30.9	16	31.2	28.3	25.0	20.1	20.4
18	30.6	18	30.9	27.4	23.8	19.2	19.4
20	30.3	20	30.6	26.5	22.8	18.4	18.6
22	30.0	22	30.2	25.7	21.9	17.7	17.9
24	29.7	24	29.8	25.0	21.1	17.2	17.4
26	29.4	26	29.3	24.2	20.4	16.7	16.9
28	29,4	28	28.8	23.5	19.8	16.3	16.4
30	28.8	30	28.2	20,0	10,0	15.9	16.0
40	20,0	40	25.8	20.1	17.0	14.6	14.7
50	25.9	50	23,0	18.1	15.6	13.7	13.8
60	24.4	60	21.7	16.7	14.7	13,7	13,0
70	22 0	70	20.2	15.7	14.0	12.7	12 7
80	21.4	80	18.9	14.9	13.4	12,1	12,1
00	20.6	<u>q</u> 0	18.0	14.3	13,4	12.4	12.4
100	10.0	140	14.0	12 0	11 0	11 7	11 5
110	10.2	140	14,5	12,3	11,5	11,7	11,3
120	19,3	190	14,1	12,0	11.0	11,0	11,3
120	10,7	200	12.0	11.0	11,4	11,4	11,2
140	17.6	200	13,0	11,4	11,2	11,3	11,1
140	17,0	220	12,0	11,2	11,1	11,2	11,1
150	16.7	240	12,2	10.9	10.9	11,1	10.0
170	16.2	200	11,0	10,0	10,0	10.0	10,9
120	16.0	200	11,4	10,0	10,7	10,9	10,0
100	15,0	300	10.7	10,4	10,5	10,0	10,7
200	15,4	320	10,7	10,2	10,4	10,7	10,0
200	14.5	340	10,4	10,0	10,3	10,6	10,0
220	14,5	200	10,1	9,9	10,2	10,0	10,5
240	14,0	300	9,0	9,0	10,2	10,5	10,5
200	12.1	400	9,0	9,7	10,1	10,5	10,4
200	10,1	420	9,4	9,7	10,1	10,4	10,4
300	12,7	440	9,3	9,0	10,0	10,4	10,3
320	12,4	400	9,2	9,0	0.0	10,3	10,3
340	12,1	400	9,2	9,5	9,9	10,3	10,2
300	11,9	490	9,1	9,0	3,9	10,3	10,2
380	11,/	500	9,1	9,4	9,0 0,0	10,2	10,2
400	11,0	510	9,1	9,4	9,0	10,2	10,2
420	11,3	520	9,0	9,4	9,0	10,2	
440	10.0	530	9,0	9,4	9,0	10,2	
400	10,9	550	9,0				
40U	10,7	550	9,0				
520	10,0						
520	10,4						
540	10,3						
500	10,2						
600	10,1						
620	0,0		-		-	-	
640	3,9						
660	9,0						
690	9,0						
080	9,1						
700	9,1						
700	9,7						
/10	9,1			1			1

Tab. TZ. 28. Wpływ dawki polielektrolitów Kd1+Kd4 na wysokość powierzchni rozdziału faz(osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,35 \%$ (MDXII)

Rys. KZ.28. Wpływ dawki polielektrolitów Kd1+Kd4 na przebieg zagęszczania osadu o W₀ = 99,35 % (MDXII)

(02002) D.	0.0		01	0.2	03	0.4	0.5
Dp	0,0		0,1	0,2	0,5	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	0	33,2	33,2	33,2	33,2	33,2
4	32,7	4	32,6	32,4	31,8	31,1	31,1
6	32,4	6	32,3	32,1	31,0	29,7	30,0
8	32,1	8	32,0	31,7	30,3	27,7	28,7
10	31,8	10	31,7	31,4	29,5	25,9	26,8
12	31,5	12	31,4	31,0	28,3	24,1	25,1
14	31,2	14	31,1	30,6	27,0	22,6	23,5
16	30,9	16	30,8	30,2	25,8	21,3	22,1
18	30,6	18	30,5	29,8	24,7	20,2	20,9
20	30,3	20	30,2	29,3	23,6	19,3	19,9
22	30,0	22	29,9	20,9	22,8	10,0	19,1
24	29,7	24	29,5	20,4	21,9	17,0	10,3
20	29,4	20	29,1	27,9	21,1	16.7	17.1
20	29,1	20	20,7	27,4	20,4	16.2	16.7
40	20,0	40	20,2	20,0	17.3	1/ 8	15,1
50	25.0	50	23,0	21 0	15.0	13.8	14.1
60	23,3	60	22.0	20.1	14.9	13.2	13.4
70	22.9	80	19.6	17.5	13.7	12.4	12.5
80	21.4	90	18,7	16.7	13.3	12,4	12,0
90	20.6	100	17.9	15.9	12.9	12.0	12.1
100	19.9	110	17.1	15.3	12.6	11.8	11.9
110	19.3	120	16.5	14.8	12.4	11.7	11.7
120	18,7	130	16,0	14,3	12,2	11,6	11,6
130	18,1	140	15,5	13,9	12,0	11,5	11,5
140	17,6	150	15,1	13,5	11,8	11,4	11,4
150	17,1	160	14,8	13,2	11,7	11,4	11,4
160	16,7	170	14,5	13,0	11,6	11,3	11,4
170	16,2	180	14,2	12,8	11,5	11,3	11,3
180	15,8	270	12,3	11,4	11,1	11,0	11,0
190	15,4	360	11,3	10,7	10,8	10,8	10,8
200	15,1	380	11,0	10,6	10,5	10,6	10,6
220	14,5	400	10,8	10,5	10,3	10,5	10,5
240	14,0	420	10,7	10,4	10,1	10,4	10,4
260	13,6	440	10,6	10,3	10,1	10,4	10,4
280	13,1	460	10,5	10,3	10,0	10,3	10,3
300	12,7	480	10,4	10,2	10,0	10,3	10,3
320	12,4	500	10,4	10,2	9,9	10,2	10,2
340	12,1	510	10,3	10,1	9,9	10,2	10,2
360	11,9	520	10,3	10,1	9,8	10,2	10,2
380	11,7	530	10,2	10,0	9,8	10,2	10,2
400	11,5	040 550	10,2	10,0	9,8		
420	11,3	560	10,1	9,9	9,0		
440	10.0	500	10,1	9,9 0.0			
480	10,9	580	10,1	9,9 9,8			
500	10,7	500	10,0	0,0 0,2			
520	10.0	600	10,0	9,0			
540	10.3	610	9.9	9.8			
560	10,0	620	9.9	0,0			
580	10.1	630	9,9				
600	10.0	640	9.8				
620	9.9	650	9.8				
640	9.8	660	9.8				
660	9,8	670	9.8				
680	9,7		-,-				
690	9,7		-	1	-	-	
700	9,7						
710	9,7						

Tab. TZ. 29. Wpływ dawki polielektrolitów Ad1+Ad2 na wysokość powierzchni rozdziału faz(osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,35 \%$ (MDXII)

Rys. KZ.29. Wpływ dawki polielektrolitów Ad1+Ad2 na przebieg zagęszczania osadu o W₀ = 99,35 % (MDXII)

i usau	u wyuz	actone	50 L 0.	auon	0 I UZII	ym 🗤	$(\mathbf{L}\mathbf{O})$	· ,,DC3	mea)		
$W_0 = 9$	9,39 %	$W_0 = 9$	9,46 %	$W_0 = 9$	9,50 %	$W_0 = 9$	9,53 %	$W_0 = 9$	9,59 %	$W_0 = 9$	9,64 %
t [min]	l h [cm]	L t[min]	V b [cm]	L t[min]	h [cm]	L t[min]	lli h [cm]	L' t [min]	VI b[cm]	t [min]	ll b [cm]
t (minj	33.2	t (minj O	33.2	t[min] ∩	33.2	t [min] ∩	33.2	t (minj O	33.2	t (minj O	33.2
2	31.2	2	31.8	2	31.7	2	31.1	2	30.4	2	29.2
4	29.2	4	30.4	4	30.2	4	29.0	4	27.6	4	25.2
6	27,2	6	29	6	28,7	6	26,9	6	24,8	6	21,2
8	25,2	8	27,6	8	27,1	8	24,8	8	22,0	8	17,2
10	23,2	10	26,2	10	25,7	10	22,7	10	19,2	10	13,3
12	21,2	12	24,8	12	24,2	12	20,6	12	16,7	12	10,2
14	19,2	14	23,4	14	22,8	14	18,5	14	14,5	14	7,9
16	17,4	16	22	16	21,2	16	16,4	16	12,7	16	6,5
18	16,4	18	20,6	18	19,7	18	14,7	18	11,2	18	5,5
20	15,6	20	19,2	20	18,2	20	13,2	20	9,8	20	4,9
22	14,9	22	17,8	22	16,7	22	11,9	22	8,5	22	4,3
24	14,3	24	16,4	24	15,3	24	10,8	24	7,4	24	4,0
20	13,0	20	14.3	20	12.8	20	9,9	20	5.8	20	3,7
30	13.0	30	13.4	30	11.8	30	87	30	5.3	30	3.3
40	11.8	40	10.5	40	8.9	40	72	40	44	40	2.9
50	10.9	50	9.1	50	7.6	50	6.3	50	4.0	50	2.7
60	10,2	60	8,2	60	6,8	60	5,8	60	3,7	60	2,5
70	9,7	70	7,5	70	6,4	70	5,5	70	3,5	70	2,3
80	9,4	80	6,9	80	6,0	80	5,2	80	3,4	80	2,2
90	9,0	90	6,5	90	5,8	90	4,9	90	3,3	90	2,1
100	8,7	100	6,2	100	5,6	100	4,7	100	3,3	100	2,1
110	8,5	110	5,9	110	5,4	110	4,5	110	3,2	110	2,0
120	8,3	120	5,7	120	5,2	120	4,3	120	3,2	120	2,0
130	8,1	130	5,5	130	5,0	130	4,2	130	3,1	130	1,9
140	7,9	140	5,3	140	4,8	140	4,1	140	3,1	140	1,9
150	7,7	150	5,1	150	4,0	150	4,0	150	3,0	150	1,9
170	7,0	170	5,0 4.8	170	4,5	170	3,9	170	2.0	170	1,0
180	7.4	180	4,0	180	4.3	180	3.7	180	2,5	180	1,0
190	7,4	190	4.6	240	3.9	190	3.6	190	2,9	190	1,0
200	7,2	200	4,5	300	3,6	200	3,5	200	2,8	200	1,7
210	7,1	210	4,4	360	3,4	220	3,5	210	2,8	210	1,7
220	7,0	220	4,4	370	3,4	240	3,4	220	2,8	220	1,6
230	6,9	230	4,3	380	3,4	260	3,4	230	2,7	230	1,6
240	6,9	240	4,3	390	3,3	280	3,3	240	2,7	240	1,6
250	6,8	250	4,2	400	3,3	300	3,3	250	2,7	250	1,5
260	6,8	260	4,2	410	3,3	320	3,2	260	2,6	260	1,5
270	6,7	270	4,1	420	3,2	340	3,2	270	2,6	270	1,5
280	0,/ 6.6	280	4,1	430	3,2	360	3,1 24	280	2,6	280	1,4
290	0,0	290	4,0	440	১,∠ ২ 1	300	,। ৫ ব	290	2,5	290	1,4
310	65	310	3.0	430	31	420	31	310	2,5	310	1,4
320	6.5	320	3.9	480	3.1	470	3.1	320	2.4	510	·,-•
330	6.4	330	3.9	490	3.1	480	3.1	330	2.4		
340	6,4	340	3,8	1440	3,1	490	3,1	340	2,4		
350	6,3	350	3,8		,	1440	3,1	350	2,4		
360	6,3	360	3,8								
370	6,2	370	3,7								
380	6,2	380	3,7								
390	6,1	390	3,7								
400	6,1	400	3,6								
410	6,0	410	3,6								
420	6,0	420	3,6								
430	5,9	430	3,5								
440	5,9	440	3,5								
460	5.8	460	3.4								
470	5.8	470	34								
480	5,7	480	34								
490	5.7	490	3.4								
500	5,7	1440	3,2		1		1				
510	5,7		,								

Tab. TZ. 1'. Wyniki pomiarów wysokości powierzchni rozdziału wody nadosadowej i osadu wydzielonego z osadów o różnym W_0 (ZOW "Leśnica")

Rys. KZ. 1'. Krzywe zagęszczania osadów o różnym W₀ z ZOW "Leśnica"

uo (ru) (r	pi occore i	ugębnenu	ina obaa	a 0 110 -	///////////////////////////////////////
t _{wm}	0 min	3 min	15 min	30 min	60 min
t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33.2	33.2	33.2	33.2	33.2
2	31.8	31.8	31.8	31.9	31.9
4	30.4	30.4	30.5	30.5	30.5
6	29.0	29.1	29.2	29.1	29.2
8	27.6	27.7	27.8	27.8	27.8
10	26.2	26.3	26.3	26.4	26.5
12	24.8	24.9	24.9	25.1	25.1
14	23.4	23.5	23.6	23,7	23,7
16	22.0	22,0	20,0	20,1	22,7
18	20.6	20.8	20.9	20.9	21.0
20	19.2	19.4	19.5	19.5	19.6
22	17.8	18.0	18,1	18.2	18.3
24	16.4	16.6	16.7	16.9	17.0
26	15.3	15.6	15,7	16,0	16.2
28	14.3	14.7	14.9	15,0	15.5
30	13.4	13.9	14.2	14.5	14.9
40	10,1	10,0	11.9	12.4	12.7
50	9.1	97	10.5	10.9	11 4
60	82	89	9.6	99	10.4
70	7.5	8.3	8.7	9.2	9.6
80	6.9	7.8	8.2	86	9.0
90	6.5	7.4	7.8	8.2	85
100	6.2	7.0	7.4	7 9	81
110	5.9	67	7 1	7.6	7.8
120	5,5	6.4	6.8	73	7,0
120	5.5	61	6.6	7,0	7.2
140	53	59	63	67	69
150	5.1	5.7	61	6.5	67
160	5.0	5.6	5.9	6,3	6.5
170	4.8	5.4	5.7	6.1	6.3
180	4,0	53	5.5	59	6.1
190	4.6	5.1	5.3	5.7	5.9
200	4.5	5.0	5.2	5.6	5.8
210	4.4	4.8	5.1	5.5	5.7
220	4.4	4.7	5.0	5.4	5.6
230	4.3	4.6	4.9	5.3	5.5
240	4.3	4.5	4.8	5.2	5.4
250	4.2	4.5	4.7	5.1	5.3
260	4.2	4.4	4.6	5.0	5.2
270	4.1	4.4	4.5	4.9	5.1
280	4.1	4.3	4.4	4.8	5.0
290	4.0	4.3	4.4	4.7	4.9
300	4.0	4.2	4.3	4.6	4.8
310	3,9	4,2	4,3	4,5	4,7
320	3,9	4,1	4,2	4,4	4,6
330	3,9	4,1	4,2	4,3	4,5
340	3,8	4,0	4,1	4,3	4,4
350	3,8	4,0	4,1	4,2	4,4
360	3,8	3,9	4,0	4,2	4,3
370	3,7	3,9	4,0	4,2	4,3
380	3,7	3,9	3,9	4,1	4,2
390	3,7	3,8	3,9	4,1	4,2
400	3,6	3,8	3,8	4,1	4,1
410	3,6	3,8	3,8	4,0	4,1
420	3,6	3,7	3,8	4,0	4,1
430	3,5	3,7	3,7	4,0	4,0
440	3,5	3,7	3,7	3,9	4,0
450	3,5	3,6	3,7	3,9	4,0
460	3,4	3,6	3,6	3,9	3,9
470	3,4	3,6	3,6	3,8	3,9
480	3,4	3,6	3,6	3,8	3,9
490	3,4	,-	3.6	3.8	3.8
500				3.8	3,8
510		1		1-	3,8
520					3.8

Tab. TZ. 2'. Wpływ czasu wolnego mieszania na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,46$ % (LV)

Rys. KZ. 2'. Wpływ czasu wolnego mieszania na przebieg zagęszczania osadu o $W_0 = 99,46$ % (LV)

t _{wm}	0 min	3 min	15 min	30 min	60 min
t [min]	h [cm]				
0	33,2	33,2	33,2	33,2	33,2
2	30,4	30,6	30,6	30,6	30,7
4	27,6	27,9	27,9	28,0	28,1
6	24,8	25,2	25,3	25,4	25,5
8	22,0	22,5	22,6	22,7	22,9
10	19,2	19,8	20,0	20,1	20,3
12	16,7	17,2	17,5	17,6	17,8
14	14,5	14,8	15,1	15,2	15,3
16	12,7	13,1	13,4	13,5	13,8
18	11,2	11,6	11,9	12,0	12,5
20	9,8	10,2	10,5	10,6	11,3
22	8,5	8,9	9,2	9,3	10,2
24	7,4	7,8	8,2	8,3	9,3
26	6,5	7,1	7,4	7,5	8,5
28	5,8	6,5	6,8	6,9	7,8
30	5,3	5,9	6,4	6,5	7,4
40	4,4	5,0	5,5	5,6	6,5
50	4,0	4,6	5,0	5,1	6,0
60	3,7	4,3	4,6	4,7	5,6
70	3,5	4,1	4,3	4,5	5,2
80	3,4	3,9	4,1	4,3	4,9
90	3,3	3,8	4,0	4,1	4,6
100	3,3	3,7	3,9	4,0	4,4
110	3,2	3,6	3,8	3,9	4,3
120	3,2	3,5	3,7	3,8	4,2
130	3,1	3,4	3,6	3,8	4,1
140	3,1	3,4	3,6	3,7	4,0
150	3,0	3,3	3,5	3,7	4,0
160	3,0	3,3	3,5	3,6	3,9
170	2,9	3,2	3,4	3,6	3,9
180	2,9	3,2	3,4	3,5	3,8
190	2,9	3,2	3,4	3,5	3,8
200	2,8	3,1	3,3	3,4	3,7
210	2,8	3,1	3,3	3,4	3,7
220	2,8	3,1	3,2	3,3	3,6
230	2,7	3,0	3,2	3,3	3,6
240	2,7	3,0	3,2	3,3	3,5
250	2,7	3,0	3,1	3,2	3,5
260	2,6	2,9	3,1	3,2	3,4
270	2,6	2,9	3,1	3,2	3,4
280	2,6	2,9	3,1	3,1	3,4
290	2,5	2,8	3,0	3,1	3,3
300	2,5	2,8	3,0	3,1	3,3
310	2,5	2,8	3,0	3,0	3,3
320	2,4	2,7	2,9	3,0	3,2
330	2,4	2,7	2,9	3,0	3,2
340	2,4	2,7	2,9	2,9	3,2
350	2,4	2,7	2,9	2,9	3,1
360				2,9	3,1
370				2,9	3,1
380					3,1

Tab. TZ. 3'. Wpływ czasu wolnego mieszania na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,59 \%$ (LVI)

Rys. KZ. 3'. Wpływ czasu wolnego mieszania na przebieg zagęszczania osadu o $W_0 = 99,59$ % (LVI)

ρHo	7.00	7.60	8.02	8.51	9.00
t [min]	h [cm]				
0	33.2	33.2	33.2	33.2	33.2
2	31.2	31.2	31.3	31.5	31.6
4	29.2	29.2	29.3	29.6	29.7
6	27.2	27.1	27,2	27.6	27.8
8	25.2	25.0	25.1	25.5	25.9
10	23.2	23.1	23.2	23.5	24.0
12	21.2	21.0	21.2	21.6	22.1
14	19.2	19.2	19.3	19.8	20.3
16	17.4	17.7	17.9	18.5	18.7
18	16.4	16.9	17,0	17.6	17.8
20	15.6	16,0	16.3	16.7	16.9
22	14.9	15.4	15.5	16.0	16.1
24	14.3	14.8	14.8	15.3	15.4
26	13.8	14.3	14.3	14.7	14.7
28	13.4	13.9	13.9	14.2	14.2
30	13.0	13.5	13.5	13.7	13.7
40	11.8	12.1	12.1	12.3	12.3
50	10.9	11.2	11.2	11.3	11.3
60	10.2	10.6	10.6	10.6	10.6
70	9.7	10.0	10.0	10.0	10.0
80	9,4	9.6	9.6	9.6	9.6
90	9.0	9.3	9.2	9.2	9.2
100	8,7	9.0	8.9	8.9	8.9
110	8.5	8.8	8.7	8.7	8.7
120	8.3	8.6	8.5	8.5	8.5
130	8.1	8.4	8.3	8.3	8.3
140	7.9	8.2	8.1	8.1	8.1
150	7.7	8.0	7.9	7.9	7.9
160	7.6	7.8	7.7	7.8	7.8
170	7.5	7.7	7.6	7.7	7.7
180	7.4	7.6	7.5	7.6	7.6
190	7,3	7,5	7,4	7,5	7,5
200	7,2	7,4	7,3	7,4	7,4
210	7,1	7,3	7,2	7,3	7,3
220	7,0	7,2	7,1	7,2	7,2
230	6,9	7,1	7,0	7,1	7,1
240	6,9	7,0	6,9	7,0	7,0
250	6,8	6,9	6,9	6,9	6,9
260	6,8	6,9	6,8	6,8	6,8
270	6,7	6,8	6,8	6,8	6,7
280	6,7	6,8	6,7	6,7	6,6
290	6,6	6,7	6,7	6,7	6,6
300	6,6	6,7	6,6	6,6	6,5
310	6,5	6,6	6,6	6,6	6,5
320	6,5	6,6	6,5	6,5	6,4
330	6,4	6,5	6,5	6,5	6,4
340	6,4	6,5	6,4	6,4	6,3
350	6,3	6,4	6,4	6,4	6,3
360	6,3	6,4	6,3	6,3	6,3
370	6,2	6,3	6,3	6,3	6,2
380	6,2	6,3	6,2	6,2	6,2
390	6,1	6,2	6,2	6,2	6,2
400	6,1	6,2	6,1	6,2	6,1
410	6,0	6,1	6,1	6,1	6,1
420	6,0	6,1	6,0	6,1	6,1
430	5,9	6,0	6,0	6,1	6,1
440	5,9	6,0	6,0	6,1	
450	5,8	6,0	5,9		
460	5,8	5,9	5,9		
470	5,8	5,9	5,9		
480	5,7	5,9	5,9		
490	5,7	5,9			
500	5,7				
510	5,7				

Tab. TZ. 4'. Wpływ korekty pH na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,39$ % (LI)

Rys. KZ. 4'. Wpływ korekty pH na przebieg zagęszczania osadu o $W_0 = 99,39$ % (LI)

CESIC La	igęszczai	na usau	$u v w_0 -$	- 77,40 /	O(LV)
pH_0	7,55	8,00	8,50	9,00	9,50
t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
	33.2	33.2	33.2	33.2	33.2
2	21.0	21.9	21.9	21.9	21.0
<u> </u>	20.4	20.4	20.4	20.4	20.5
4	30,4	30,4	30,4	30,4	30,5
0	29,0	29,0	29,0	29,0	29,1
8	27,6	27,6	27,6	27,6	27,7
10	26,2	26,2	26,2	26,3	26,3
12	24,8	24,8	24,8	24,9	24,9
14	23,4	23,4	23,4	23,5	23,5
16	22,0	22,0	22,0	22,1	22,1
18	20,6	20,7	20,6	20,7	20,8
20	19,2	19,3	19,2	19,3	19,5
22	17,8	17,9	17,9	18,0	18,2
24	16,4	16,5	16,6	16,7	16,9
26	15,3	15,4	15,6	15,8	16,0
28	14,3	14,5	14,7	15,0	15,3
30	13,4	13,7	13,9	14,2	14,6
40	10.5	10.8	11.0	11.2	11.9
50	9.1	8.9	9.2	9.6	10.2
60	82	8.0	8.2	8.6	91
70	7.5	73	7.4	7.8	83
80	6.0	67	6.8	7.2	77
00	6.5	6.6	6.4	67	7.2
100	6.2	6.2	6.1	6.2	6.9
110	0,Z 5.0	0,3	50	6.0	0,0
110	5,9	5,9	5,8	6,0	6,5
120	5,7	5,7	5,6	5,8	6,2
130	5,5	5,5	5,5	5,6	6,0
140	5,3	5,3	5,4	5,4	5,8
150	5,1	5,1	5,3	5,3	5,6
160	5,0	4,9	5,2	5,2	5,4
170	4,8	4,8	5,1	5,1	5,3
180	4,7	4,7	5,0	5,0	5,2
190	4,6	4,6	4,9	4,9	5,1
200	4,5	4,5	4,8	4,8	5,0
210	4,4	4,4	4,7	4,7	4,9
220	4,4	4,3	4,6	4,6	4,8
230	4,3	4,3	4,5	4,5	4,7
240	4,3	4,2	4,4	4,5	4,6
250	4,2	4,2	4,3	4,4	4,5
260	4.2	4.1	4.3	4.4	4.5
270	4.1	4.1	4.2	4.3	4.4
280	4,1	4.0	4,2	4.3	4.4
290	4.0	4.0	4.2	4.2	4.3
300	4.0	3.9	4 1	4.2	43
310	30	3.0	Δ 1	<u> </u>	43
320	30	30	<u> </u>	<u> </u>	4.2
320	30	3.9	30	<u> </u>	,∠
240	2,9	20	2,9	20	7,Z
340	3,0	3,0	3,9	3,9	4,∠ / 1
300	ა, ბ	ა, ర	3,9	3,9	4,1
360	3,8	3,7	3,8	3,9	4,1
370	3,7	3,7	3,8	3,8	4,1
380	3,7	3,7	3,8	3,8	4,0
390	3,7	3,6	3,8	3,8	4,0
400	3,6	3,6		3,8	4,0
410	3,6	3,6			4,0
420	3,6	3,6			
430	3,5				
440	3,5				
450	3,5				
460	3,4				
470	3.4			1	
480	3.4	-	-	1	
490	3.4				
	-, ·				

Tab. TZ. 5'. Wpływ korekty pH na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,46 \%$ (LV)

Rys. KZ. 5'. Wpływ korekty pH na przebieg zagęszczania osadu o $W_0 = 99,46$ % (LV)

pH₀	8,12	8,50	9,00	9,50
t [min]	h [cm]	h [cm]	h [cm]	h [cm]
0	33.2	33.2	33.2	33.2
2	31.7	31.8	31.8	31.9
4	30.2	30.4	30.4	30.5
6	28.7	28.9	29.0	29.2
8	27.1	27.4	27.5	27.7
10	25.7	26.0	26.1	26.2
12	24.2	24.5	24.6	24.7
14	22.8	23.0	23.2	23.1
16	21.2	21.5	21.6	21.5
18	19.7	19.9	20.0	19.9
20	18.2	18.4	18.5	18.4
22	16.7	16.9	17.0	17.0
24	15.3	15.5	15.5	15.5
26	13,9	14,0	14,0	14,0
28	12,8	13,0	12,9	13,0
30	11,8	12,0	12,1	12,3
40	8,9	9,7	10,3	10,5
50	7,6	8,5	9,0	9,3
60	6,8	7,6	8,1	8,5
70	6,4	7,0	7,6	7,9
80	6,0	6,6	7,2	7,4
90	5,8	6,3	6,8	6,9
100	5,6	6,0	6,5	6,6
110	5,4	5,8	6,2	6,4
120	5,2	5,6	5,9	6,2
130	5,0	5,4	5,7	6,0
140	4,8	5,2	5,5	5,8
150	4,6	5,1	5,3	5,7
160	4,5	5,0	5,2	5,6
170	4,4	4,9	5,1	5,5
180	4,3	4,8	5,0	5,4
240	3,9	4,4	4,7	5,0
300	3,6	4,1	4,4	4,7
360	3,4	3,8	4,1	4,4
370	3,4	3,8	4,0	4,3
380	3,4	3,7	3,9	4,2
390	3,3	3,7	3,9	4,2
400	3,3	3,6	3,8	4,1
410	3,3	3,6	3,8	4,1
420	3,2	3,5	3,7	3,9
430	3,2	3,5	3,7	3,9
440	3,2	3,5	3,7	3,8
450	3,1	3,4	3,6	3,8
470	3,1	3,4	3,6	3,8
480	3,1	3,4	3,6	3,8

Tab. TZ. 6'. Wpływ korekty pH na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,50$ % (LIV)

Rys. KZ. 6'. Wpływ korekty pH na przebieg zagęszczania osadu o $W_0 = 99,50$ % (LIV)

w procesie zagęszczania osadu o $W_0 = 99,53$ % (LIII)							
Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]				
0	33,2	0	33,2	33,2	33,2	33,2	33,2
2	31,1	2	30,5	9,7	8,9	7,9	6,7
4	29,0	4	28,2	7,9	7,3	6,3	5,3
6	26,9	6	24,5	7,1	6,6	5,7	4,8
8	24,8	8	19,7	6,7	6,2	5,2	4,4
10	22,7	10	14,7	6,4	5,9	4,9	4,2
12	20,6	12	10,2	6,1	5,6	4,6	4,0
14	18,5	14	8,8	5,8	5,3	4,4	3,8
16	16,4	16	8,2	5,7	5,2	4,3	3,7
18	14,7	18	7,8	5,5	5,0	4,1	3,6
20	13,2	20	7,5	5,4	4,9	4,0	3,6
22	11,9	30	6,6	4,9	4,4	3,7	3,3
24	10,8	40	6,0	4,5	4,1	3,5	3,2
26	9,9	50	5,4	4,2	4,0	3,4	3,2
28	9,2	60	5,0	4,0	3,8	3,4	3,2
30	8,7	70	4,7	3,8	3,7	3,3	3,1
40	7,2	80	4,5	3,7	3,6	3,3	3,1
50	6,3	90	4,3	3,6	3,5	3,2	3,1
60	5,8	100	4,1	3,5	3,5	3,2	3,0
70	5,5	110	3,9	3,5	3,4	3,2	3,0
80	5,2	120	3,7	3,4	3,4	3,1	3,0
90	4,9	130	3,5	3,4	3,3	3,1	3,0
100	4,7	140	3,4	3,3	3,3	3,1	
110	4,5	150	3,3	3,3	3,2	3,1	
120	4,3	160	3,2	3,2	3,2		
130	4,2	170	3,2	3,2	3,1		
140	4,1	180	3,1	3,2	3,1		
150	4,0	190	3,1	3,1	3,1		
160	3,9	200	3,0	3,1	3,1		
170	3,8	210	3,0	3,1			
180	3,7	220	3,0	3,1			
190	3,6	230	3,0				
200	3,5						
220	3,5						
240	3,4						
260	3,4						
280	3,3						
300	3,3						
320	3,2						
340	3,2						
360	3,1						
370	3,1						
390	3.1		1	1	1	1	1

Tab. TZ.7'. Wpływ dawki polielektrolitu Kśr3 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w przecie rozdziału faz (osad, w da nadosadowa)

Rys. KZ.7'. Wpływ dawki polielektrolitu Kśr3 na przebieg zagęszczania osadu o $W_0 = 99,53\%$ (LIII)

w procesie zagęszczania osadu o $W_0 = 99,53$ % (LIII)							
Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]				
0	33,2	0	33,2	33,2	33,2	33,2	33,2
2	31,1	2	25,0	9,3	8,0	6,9	5,3
4	29,0	4	16,4	7,5	6,7	5,5	4,4
6	26,9	6	8,9	6,8	5,9	4,9	4,0
8	24,8	8	8,1	6,3	5,5	4,4	3,8
10	22,7	10	7,6	5,9	5,2	4,1	3,6
12	20,6	12	7,2	5,7	5,0	4,0	3,5
14	18,5	14	6,9	5,4	4,8	3,8	3,4
16	16,4	16	6,6	5,3	4,6	3,7	3,4
18	14,7	18	6,4	5,1	4,5	3,6	3,3
20	13,2	20	6,3	5,0	4,3	3,5	3,3
22	11,9	30	5,6	4,5	4,0	3,3	3,2
24	10,8	40	5,0	4,1	3,8	3,2	3,2
26	9,9	50	4,7	3,9	3,7	3,2	3,2
28	9,2	60	4,3	3,7	3,6	3,2	3,1
30	8,7	70	4,0	3,6	3,5	3,1	3,1
40	7,2	80	3,8	3,5	3,4	3,1	3,1
50	6,3	90	3,7	3,5	3,4	3,1	3,0
60	5,8	100	3,6	3,4	3,3	3,0	3,0
70	5,5	110	3,5	3,4	3,3	3,0	3,0
80	5,2	120	3,4	3,3	3,3	3,0	3,0
90	4,9	130	3,3	3,3	3,2	3,0	
100	4,7	140	3,3	3,2	3,2		
110	4,5	150	3,2	3,2	3,1		
120	4,3	160	3,2	3,2	3,1		
130	4,2	170	3,1	3,1	3,1		
140	4,1	180	3,1	3,1	3,1		
150	4,0	190	3,1	3,1			
160	3,9	200	3,0	3,1			
170	3,8	210	3,0				
180	3,7	220	3,0				
190	3,6	230	3,0				
200	3,5						
220	3,5						
240	3,4						
260	3,4						
280	3,3						
300	3,3						
320	3,2						
340	3,2						
360	3,1						
370	3,1						
390	1 31		1	1	1	1	1

Tab. TZ.8'. Wpływ dawki polielektrolitu Kśr4 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zageszczania osadu o Wo – 99 53 % (LIII)

Rys. KZ.8'. Wpływ dawki polielektrolitu Kśr4 na przebieg zagęszczania osadu o $W_0 = 99,53\%$ (LIII)

w procesie zagęszczania osadu o $W_0 = 99,53$ % (LIII)							
Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]				
0	33,2	0	33,2	33,2	33,2	33,2	33,2
2	31,1	2	20,0	10,9	10,4	9,5	8,6
4	29,0	4	10,6	8,9	8,5	7,6	6,9
6	26,9	6	9,1	8,0	7,6	6,8	6,1
8	24,8	8	8,4	7,4	7,0	6,2	5,6
10	22,7	10	8,0	7,0	6,6	5,9	5,2
12	20,6	12	7,6	6,7	6,3	5,6	5,0
14	18,5	14	7,3	6,4	6,0	5,3	4,8
16	16,4	16	7,0	6,2	5,8	5,1	4,6
18	14,7	18	6,8	6,0	5,6	5,0	4,5
20	13,2	20	6,6	5,8	5,4	4,8	4,4
22	11,9	30	6,0	5,2	4,9	4,4	4,1
24	10,8	40	5,4	4,8	4,5	4,2	4,0
26	9,9	50	5,0	4,5	4,3	4,1	3,9
28	9,2	60	4,6	4,3	4,1	4,0	3,9
30	8,7	70	4,4	4,1	4,0	3,9	3,8
40	7,2	80	4,2	4,0	4,0	3,9	3,8
50	6,3	90	4,0	3,9	3,9	3,8	3,8
60	5,8	100	3,9	3,9	3,9	3,8	3,7
70	5,5	110	3,8	3,8	3,9	3,8	3,7
80	5,2	120	3,7	3,8	3,8	3,7	3,7
90	4,9	130	3,6	3,7	3,8	3,7	3,7
100	4,7	140	3,6	3,7	3,8	3,7	
110	4,5	150	3,5	3,6	3,7	3,7	
120	4,3	160	3,5	3,6	3,7		
130	4,2	170	3,5	3,6	3,7		
140	4,1	180	3,4	3,5	3,7		
150	4,0	190	3,4	3,5			
160	3,9	200	3,4	3,5			
170	3,8	210	3,3	3,5			
180	3,7	220	3,3				
190	3,6	230	3,3				
200	3,5	240	3,3				
220	3,5						
240	3,4						
260	3,4						
280	3,3						
300	3,3						
320	3,2						
340	3,2						
360	3,1						
370	3,1						
390	3,1						

Tab. TZ.9'. Wpływ dawki polielektrolitu Kd2 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa)

Rys. KZ.9'. Wpływ dawki polielektrolitu Kd2 na przebieg zagęszczania osadu o W₀ = 99,53% (LIII)

w procesie zagęszczania osadu o o $W_0 = 99,53$ % (LIII)								
Dp	0,0		0,1	0,2	0,3	0,4	0,5	
t [min]	h [cm]	t [min]	h [cm]					
0	33,2	0	33,2	33,2	33,2	33,2	33,2	
2	31,1	2	19,8	10,7	10,4	9,7	7,7	
4	29,0	4	12,6	8,4	8,2	7,6	6,1	
6	26,9	6	9,5	7,5	7,3	6,6	5,4	
8	24,8	8	8,6	7,0	6,8	6,0	5,0	
10	22,7	10	8,1	6,6	6,4	5,6	4,6	
12	20,6	12	7,6	6,2	6,0	5,3	4,4	
14	18,5	14	7,3	6,0	5,8	5,1	4,3	
16	16,4	16	7,0	5,8	5,6	5,0	4,2	
18	14,7	18	6,8	5,6	5,4	4,8	4,1	
20	13,2	20	6,6	5,4	5,3	4,6	4,0	
22	11,9	30	5,9	4,9	4,7	4,2	3,8	
24	10,8	40	5,3	4,5	4,4	4,0	3,8	
26	9,9	50	4,8	4,2	4,2	3,9	3,7	
28	9,2	60	4,6	4,1	4,1	3,8	3,7	
30	8,7	70	4,3	4,0	4,0	3,7	3,6	
40	7,2	80	4,1	3,9	3,9	3,7	3,6	
50	6,3	90	4,0	3,9	3,8	3,6	3,6	
60	5,8	100	3,9	3,8	3,8	3,6	3,5	
70	5,5	110	3,8	3,8	3,7	3,6	3,5	
80	5,2	120	3,7	3,7	3,7	3,5	3,5	
90	4,9	130	3,7	3,7	3,7	3,5	3,5	
100	4,7	140	3,6	3,6	3,6	3,5		
110	4,5	150	3,6	3,6	3,6	3,5		
120	4,3	160	3,5	3,6	3,6			
130	4,2	170	3,5	3,5	3,5			
140	4,1	180	3,5	3,5	3,5			
150	4,0	190	3,4	3,5	3,5			
160	3,9	200	3,4	3,5	3,5			
170	3,8	210	3,4					
180	3,7	220	3,3					
190	3,6	230	3,3					
200	3,5	240	3,3					
220	3,5	250	3,3					
240	3,4							
260	3,4							
280	3,3							
300	3,3							
320	3,2							
340	3,2							
360	3,1							
370	3,1							
390	3,1							

Tab. TZ.10'. Wpływ dawki polielektrolitu Kd3 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa)

Rys. KZ.10'. Wpływ dawki polielektrolitu Kd3 na przebieg zagęszczania osadu o W₀ = 99,53% (LIII)

w proc	esie zag	gęszcza	nia osa	du o W	₀ = 99,5	53 % (L	JIII)
Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	0	33,2	33,2	33,2	33,2	33,2
2	31,1	2	11,5	9,9	8,4	6,1	17,5
4	29,0	4	8,7	7,9	6,7	5,0	4,7
6	26,9	6	7,7	7,0	5,9	4,5	4,5
8	24,8	8	7,1	6,5	5,5	4,4	4,4
10	22,7	10	6,7	6,1	5,2	4,3	4,3
12	20,6	12	6,4	5,8	5,0	4,2	4,3
14	18,5	14	6,1	5,6	4,8	4,2	4,3
16	16,4	16	5,9	5,4	4,6	4,1	4,2
18	14,7	18	5,7	5,2	4,5	4,1	4,2
20	13,2	20	5,5	5,0	4,4	4,1	4,2
22	11,9	30	4,9	4,5	4,2	4,0	4,1
24	10,8	40	4,5	4,2	4,1	4,0	4,1
26	9,9	50	4,2	4,0	4,0	3,9	4,0
28	9,2	60	4,0	3,9	4,0	3,9	4,0
30	8,7	70	3,8	3,8	3,9	3,9	4,0
40	7,2	80	3,7	3,7	3,9	3,9	4,0
50	6,3	90	3,6	3,7	3,9		
60	5,8	100	3,6	3,6	3,9		
70	5,5	110	3,5	3,6			
80	5,2	120	3,5	3,6			
90	4,9	130	3,4	3,5			
100	4,7	140	3,4	3,5			
110	4,5	150	3,4	3,5			
120	4,3	160	3,3	3,5			
130	4,2	170	3,3				
140	4,1	180	3,3				
150	4,0	190	3,3				
160	3,9						
170	3,8						
180	3,7						
190	3,6						
200	3,5						
220	3,5						
240	3,4						
260	3,4						
280	3,3						
300	3,3						
320	3,2	L					
340	3,2						
360	3,1						
370	3,1						
390	1 3 1		1	1	1	1	1

Tab. TZ.11'. Wpływ dawki polielektrolitu Kd1na wysokość powierzchni rozdziału faz (osad, woda nadosadowa)

Rys. KZ.11'. Wpływ dawki polielektrolitu Kd1 na przebieg zagęszczania osadu o W₀ = 99,53% (LIII)

w proc	w procesie zagęszczania osadu o $W_0 = 99,64 \%$ (L11)								
Dp	0,0		0,1	0,2	0,3	0,4	0,5		
t [min]	h [cm]	t [min]	h [cm]						
0	33,2	0	33,2	33,2	33,2	33,2	33,2		
2	29,2	2	24,1	19,2	19,0	18,7	18,4		
4	25,2	4	15,0	5,4	5,0	4,5	3,6		
6	21,2	6	6,0	4,6	4,4	3,9	3,2		
8	17,2	8	4,9	4,2	4,0	3,5	2,9		
10	13,3	10	4,5	3,9	3,7	3,3	2,8		
12	10,2	12	4,2	3,7	3,5	3,1	2,7		
14	7,9	14	4,0	3,5	3,3	3,0	2,6		
16	6,5	16	3,8	3,3	3,2	2,9	2,6		
18	5,5	18	3,7	3,2	3,1	2,8	2,6		
20	4,9	20	3,6	3,1	3,0	2,8	2,6		
22	4,3	30	3,1	2,9	2,8	2,8	2,6		
24	4,0	40	2,9	2,8	2,8	2,7	2,5		
26	3,7	50	2,8	2,7	2,7	2,7	2,5		
28	3,5	60	2,7	2,6	2,7	2,6	2,5		
30	3,3	70	2,6	2,6	2,6	2,6	2,4		
40	2,9	80	2,5	2,5	2,6	2,5	2,4		
50	2,7	90	2,4	2,5	2,5	2,5	2,4		
60	2,5	100	2,3	2,4	2,5	2,4	2,4		
70	2,3	110	2,3	2,4	2,4	2,4			
80	2,2	120	2,2	2,3	2,4	2,4			
90	2,1	130	2,2	2,3	2,4	2,4			
100	2,1	140	2,1	2,2	2,4				
110	2,0	150	2,1	2,2					
120	2,0	160	2,0	2,2					
130	1,9	170	2,0	2,2					
140	1,9	180	1,9						
150	1,9	190	1,9						
160	1,8	200	1,9						
1/0	1,8	210	1,9						
100	1,0								
200	1,1								
200	1,7								
220	1,7								
230	1,0	<u> </u>							
240	1,0								
250	1.5								
260	1.5								
270	1,5								
280	1,4	Ì							
290	1,4	Ì			1				
300	1,4	İ							
310	1.4				İ		l		

Tab. TZ.12'. Wpływ dawki polielektrolitu Kśr5 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,64 \%$ (LII)

t_{zag} [min]

Rys. KZ.12'. Wpływ dawki polielektrolitu Kśr5 na przebieg zagęszczania osadu o W₀ = 99,64% (LII)

w proc	w procesie zagęszczania osadu o $W_0 = 99,64 \%$ (LII)								
Dp	0,0		0,1	0,2	0,3	0,4	0,5		
t [min]	h [cm]	t [min]	h [cm]						
0	33,2	0	33,2	33,2	33,2	33,2	33,2		
2	29,2	2	28,2	18,4	18,2	17,8	17,7		
4	25,2	4	23,2	3,7	3,4	2,6	2,4		
6	21,2	6	16,4	3,2	3,0	2,4	2,3		
8	17,2	8	10,2	2,9	2,8	2,3	2,3		
10	13,3	10	4,7	2,7	2,6	2,3	2,2		
12	10,2	12	4,2	2,6	2,5	2,2	2,2		
14	7,9	14	4,0	2,5	2,5	2,2	2,2		
16	6,5	16	3,8	2,4	2,4	2,2	2,2		
18	5,5	18	3,6	2,4	2,4	2,2	2,2		
20	4,9	20	3,5	2,3	2,4	2,2	2,2		
22	4,3	22	3,4	2,3	2,4	2,2	2,2		
24	4,0	30	3,0	2,2	2,3	2,2	2,2		
26	3,7	60	2,2	2,2	2,2	2,1	2,1		
28	3,5	70	2,1	2,1	2,2	2,1	2,1		
30	3,3	80	2,0	2,1	2,1	2,1	2,1		
40	2,9	90	2,0	2,1	2,1	2,1	2,1		
50	2,7	100	1,9	2,0	2,1				
60	2,5	110	1,9	2,0	2,1				
70	2,3	120	1,8	2,0	,				
80	2,2	130	1,8	2,0					
90	2,1	140	1,8						
100	2,1	150	1,7						
110	2,0	160	1,7						
120	2,0	170	1,7						
130	1,9	180	1,7						
140	1,9								
150	1,9								
160	1,8								
170	1,8								
180	1,8								
190	1,7								
200	1,7								
210	1,7								
220	1,6								
230	1,6								
240	1,6								
250	1,5								
260	1,5								
270	1,5								
280	1,4								
290	1,4								
300	1,4								
310	1.4								

Tab. TZ.13'. Wpływ dawki polielektrolitu Kd5 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zageszczania osadu o $W_0 = 99,64 \%$ (LII)

Rys. KZ.13'. Wpływ dawki polielektrolitu Kd5 na przebieg zagęszczania osadu o W₀ = 99,64% (LII)

w proc	w procesie zagęszczania osadu o $W_0 = 99,64 \%$ (LII)								
Dp	0,0		0,1	0,2	0,3	0,4	0,5		
t [min]	h [cm]	t [min]	h [cm]						
0	33,2	0	33,2	33,2	33,2	33,2	33,2		
2	29,2	2	18,5	18,0	17,8	17,6	17,5		
4	25,2	4	3,9	3,0	2,7	2,3	2,1		
6	21,2	6	3,4	2,7	2,4	2,1	2,0		
8	17,2	8	3,2	2,5	2,3	2,0	2,0		
10	13,3	10	3,0	2,3	2,2	2,0	2,0		
12	10,2	12	2,9	2,3	2,2	2,0	1,9		
14	7,9	14	2,8	2,2	2,1	1,9	1,9		
16	6,5	16	2,7	2,2	2,1	1,9	1,9		
18	5,5	18	2,6	2,1	2,1	1,9	1,9		
20	4,9	20	2,5	2,1	2,1	1,9	1,9		
22	4,3	30	2,3	2,1	2,0	1,9	1,9		
24	4,0	40	2,2	2,0	2,0	1,9	1,9		
26	3,7	50	2,1	2,0	1,9				
28	3,5	60	2,1	1,9	1,9				
30	3,3	70	2,0	1,9	1,9				
40	2,9	80	2,0	1,9	1,9				
50	2,7	90	1,9	1,8					
60	2,5	100	1,9	1,8					
70	2,3	110	1,8	1,8					
80	2,2	120	1,8	1,8					
90	2,1	130	1,8						
100	2,1	140	1,7						
110	2,0	150	1,7						
120	2,0	160	1,7						
130	1,9	170	1,7						
140	1,9								
150	1,9								
160	1,8								
170	1,8								
180	1,8								
190	1,7								
200	1,7								
210	1,7								
220	1,6								
230	1,6								
240	1,6								
250	1,5								
260	1,5								
270	1,5								
280	1,4								
290	1,4								
300	1,4								
310	1.4		1	1	1	1	1		

Tab. TZ.14'. Wpływ dawki polielektrolitu Kd4 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zageszczania osadu o $W_0 = 99,64 \%$ (LII)

Rys. KZ.34'. Wpływ dawki polielektrolitu Kd4 na przebieg zagęszczania osadu o W₀ = 99,64% (LII)

w proc	w procesie zagęszczania osadu o o $W_0 = 99,64$ % (LII)							
Dp	0,0		0,1	0,2	0,3	0,4	0,5	
t [min]	h [cm]	t [min]	h [cm]					
0	33,2	0	33,2	33,2	33,2	33,2	33,2	
2	29,2	2	18,7	18,6	18,2	18,1	18,0	
4	25,2	4	4,4	4,3	3,5	3,3	3,1	
6	21,2	6	3,9	3,8	3,3	3,1	3,0	
8	17,2	8	3,6	3,5	3,1	3,0	3,0	
10	13,3	10	3,4	3,3	3,1	3,0	3,0	
12	10,2	12	3,2	3,2	3,0	3,0	2,9	
14	7,9	14	3,0	3,1	3,0	2,9	2,9	
16	6,5	16	2,9	3,0	2,9	2,9	2,9	
18	5,5	18	2,9	2,9	2,9	2,9	2,9	
20	4,9	20	2,8	2,8	2,9	2,9	2,9	
22	4,3	30	2,6	2,7	2,9	2,8	2,8	
24	4,0	40	2,5	2,6	2,8	2,8	2,8	
26	3,7	50	2,4	2,5	2,8	2,8	2,8	
28	3,5	60	2,3	2,5	2,8	2,7	2,7	
30	3,3	70	2,3	2,4	2,7	2,7	2,7	
40	2,9	80	2,2	2,4	2,7	2,7	2,7	
50	2,7	90	2,2	2,3	2,7	2,6	2,6	
60	2,5	100	2,1	2,3	2,6	2,6	2,6	
70	2,3	110	2,1	2,2	2,6	2,6	2,6	
80	2,2	120	2,0	2,2	2,6	2,6	2,6	
90	2,1	130	2,0	2,1	2,6			
100	2,1	140	1,9	2,1				
110	2,0	150	1,9	2,1				
120	2,0	160	1,9	2,1				
130	1,9	170	1,9					
140	1,9							
150	1,9							
160	1,8							
170	1,8							
180	1,8							
190	1,7							
200	1,7							
210	1,7							
220	1,6							
230	1,6							
240	1,6							
250	1,5							
260	1,5							
270	1,5							
280	1,4							
290	1,4							
300	1,4							
310	1,4							

Tab. TZ.15'. Wpływ dawki polielektrolitu Ad1 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w przecesia zagoszczenia osadu o o W = 90 64 % (1 H)

Rys. KZ.15'. Wpływ dawki polielektrolitu Ad1na przebieg zagęszczania osadu o W₀ = 99,64% (LII)

w proc	w procesie zagęszczania osadu o $W_0 = 99,64 \%$ (LII)								
Dp	0,0		0,1	0,2	0,3	0,4	0,5		
t [min]	h [cm]	t [min]	h [cm]						
0	33,2	0	33,2	33,2	33,2	33,2	33,2		
2	29,2	2	23,0	19,0	18,9	18,6	18,3		
4	25,2	4	13,0	4,9	4,8	4,2	3,6		
6	21,2	6	4,9	4,3	4,2	3,6	3,1		
8	17,2	8	4,5	3,9	3,8	3,3	2,9		
10	13,3	10	4,2	3,7	3,6	3,1	2,8		
12	10,2	12	4,0	3,5	3,4	2,9	2,7		
14	7,9	14	3,8	3,3	3,2	2,8	2,6		
16	6,5	20	3,3	2,9	2,9	2,6	2,5		
18	5,5	30	2,9	2,7	2,8	2,5	2,5		
20	4,9	40	2,6	2,6	2,7	2,4	2,4		
22	4,3	50	2,4	2,5	2,6	2,4	2,4		
24	4,0	60	2,3	2,4	2,5	2,4	2,4		
26	3,7	70	2,2	2,4	2,5	2,4	2,4		
28	3,5	80	2,1	2,4	2,4				
30	3,3	90	2,1	2,3	2,4				
40	2,9	100	2,0	2,3	2,4				
50	2,7	110	2,0	2,3	2,4				
60	2,5	120	2,0	2,3					
70	2,3	130	1,9						
80	2,2	140	1,9						
90	2,1	150	1,9						
100	2,1	160	1,9						
110	2,0								
120	2,0								
130	1,9								
140	1,9								
160	1,9								
170	1,0								
180	1,0								
190	1,0								
200	1,7								
210	1,7								
220	1.6								
230	1.6								
240	1,6								
250	1,5								
260	1,5								
270	1,5								
280	1,4								
290	1,4								
300	1,4								
310	14								

Tab. TZ.16'. Wpływ dawki polielektrolitu Abd na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zageszczania osadu o $W_0 = 99,64 \%$ (LII)

Rys. KZ.16'. Wpływ dawki polielektrolitu Abd na przebieg zagęszczania osadu o W₀ = 99,64% (LII)

w proc	esie zag	gęszcza	nia osa	du o W	₀ = 99,6	04 % (L	Ш)
Dp	0,0		0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	0	33,2	33,2	33,2	33,2	33,2
2	29,2	2	19,2	18,7	18,3	18,1	17,8
4	25,2	4	5,1	4,6	3,8	3,2	2,8
6	21,2	6	4,5	4,1	3,4	2,9	2,6
8	17,2	8	4,1	3,7	3,1	2,7	2,5
10	13,3	10	3,9	3,5	2,9	2,6	2,4
12	10,2	12	3,7	3,3	2,8	2,5	2,4
14	7,9	14	3,5	3,2	2,7	2,4	2,4
16	6,5	16	3,4	3,1	2,7	2,4	2,3
18	5,5	18	3,3	3,0	2,6	2,4	2,3
20	4,9	20	3,2	2,9	2,6	2,3	2,3
22	4,3	30	2,8	2,6	2,4	2,3	2,2
24	4,0	40	2,6	2,5	2,3	2,2	2,2
26	3,7	50	2,4	2,4	2,3	2,2	2,2
28	3,5	60	2,3	2,4	2,3	2,2	2,2
30	3,3	70	2,2	2,3	2,2	2,2	
40	2,9	80	2,1	2,3	2,2		
50	2,7	90	2,1	2,2	2,2		
60	2,5	100	2,0	2,2	2,2		
70	2,3	110	2,0	2,2			
80	2,2	120	1,9	2,2			
90	2,1	130	1,9				
100	2,1	140	1,9				
110	2,0	150	1,8				
120	2,0	160	1,8				
130	1,9	170	1,8				
140	1,9	180	1,8				
150	1,9						
160	1,8						
170	1,8						
180	1,8						
190	1,7						
200	1,7						
210	1,7						
220	1,6						
230	1,6						
240	1,6						
250	1,5						
260	1,5						
270	1,5						
280	1,4						
290	1,4						
300	1,4						
310	1.4						

Tab. TZ.17'. Wpływ dawki polielektrolitu Ad2 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagoszczapia osadu o W. = 99.64 % (LU)

Rys. KZ.17'. Wpływ dawki polielektrolitu Ad2 na przebieg zagęszczania osadu o W₀ = 99,64% (LII)

nauosa	uuwa) v	v proce	sie Lage	çszczan	la Usau	
Dp	0,0	0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
	22.2	22.0	22.0			22.0
0	33,2	33,Z	33,Z	33,2	33,Z	33,Z
2	31,2	28,0	25,6	24,6	23,5	22,5
4	29,2	22,8	18,2	16,0	14,1	12,0
6	27,2	18,2	15,2	13,6	12,3	10,8
8	25,2	16,4	13,6	12,2	11,3	10,2
10	23,2	15,0	12,5	11,3	10,6	9,9
12	21,2	13,9	11,7	10,6	10,1	9,6
14	19,3	13,1	11,1	10,1	9,7	9,4
16	17,4	12,4	10,6	9,7	9,4	9,3
18	16,4	11,9	10,2	9,4	9,2	9,2
20	15,6	11,4	9,9	9,2	9,0	9,1
22	14.9	11.0	9.6	8.9	8.9	9.0
24	14.3	10.7	9.4	8.7	8.8	9.0
26	13.8	10.4	9.2	8.6	8.7	8.9
28	13.4	10.1	9.0	85	8.6	89
30	13.0	0.0	8.8	8.4	8.5	8.8
40	11.0	3,3	0,0	0,4	0,0	0,0
40	11,0	9,0	0,3	0,0	0,2	0,0
50	10,9	8,4	8,0	7,7	8,1	8,7
60	10,2	8,0	7,8	7,5	8,0	8,7
70	9,7	7,7	7,6	7,4	7,9	8,6
80	9,4	7,5	7,5	7,4	7,9	8,6
90	9,0	7,3	7,4	7,3	7,8	8,5
100	8,7	7,1	7,4	7,3	7,8	8,5
110	8,5	7,0	7,4	7,2	7,8	8,4
120	8.3	6.9	7.3	7.2	7.7	8.4
130	8.1	6.9	7.3	7.2	7.7	8.4
140	79	6.8	7.2	7 1	77	84
150	77	6.8	7.2	7,1	77	0,4
160	7,1	6.7	7.2	7,1	1,1	
100	7,0	0,7	7,2	7,1		
170	7,5	0,7	7,1	7,1		
180	7,4	6,6	7,1			
190	7,3	6,6	7,1			
200	7,2	6,5	7,1			
210	7,1	6,5				
220	7,0	6,4				
230	6,9	6,4				
240	6,9	6,4				
250	6,8	6,4				
260	6,8					
270	6.7					
280	6.7					
290	6,6					
300	6.6	<u></u>				
310	6.5	<u></u>				
220	6.5		-		-	
320	6.4					
330	0,4					
340	0,4					
350	6,3					
360	6,3					
370	6,2					
380	6,2					
390	6,1					
400	6,1					
410	6,0					
420	6.0					
430	5,9					
440	59					
450	5.8					
400	5,0					
400	5,0					
470	5,8		L		L	
480	5,7					
490	5,7					
500	5,7					
510	5,7					

Tab. TZ.18'. Wpływ dawki polielektrolitów Kśr3+Kśr4 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,39$ % (LI)

Rys. KZ.18'. Wpływ dawki polielektrolitów Kśr3+Kśr4 na przebieg zagęszczania osadu o W₀ = 99,39% (LI)

nadosa	dowa)	w proc	esie zag	gęszczai	nia osao	du o W _e	₀ = 99,3
Dn	0.0		0.1	0.2	0.3	0.4	0.5
t [min]	h [cm]	t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	0	33,2	33,2	33,2	33,2	33,2
2	31,2	2	27,2	26,1	20,8	17,2	14,6
4	29,2	4	21,6	18,6	15,3	13,3	12,0
6	27,2	6	17,6	15,8	13,2	11,7	11,1
8	25,2	8	15,7	14,1	12,0	10,9	10,6
10	23,2	10	14,3	13,0	11,2	10,4	10,2
12	21,2	12	13,4	12,2	10,7	10,1	10,0
14	19,3	14	12,7	11,6	10,3	9,9	9,9
16	17,4	16	12,0	11,1	10,0	9,7	9,8
18	16,4	18	11,6	10,6	9,7	9,6	9,7
20	15,6	20	11,2	10,3	9,5	9,5	9,6
22	14,9	22	10,8	10,0	9,4	9,4	9,6
24	14,3	24	10,5	9,7	9,3	9,3	9,5
26	13,8	26	10,2	9,5	9,2	9,2	9,5
28	13,4	28	9,9	9,4	9,1	9,2	9,5
30	13,0	30	9,7	9,3	9,0	9,1	9,4
40	11,8	40	8,9	8,7	8,8	9,0	9,4
50	10,9	50	8,4	8,3	8,7	8,9	9,3
60	10,2	60	8,0	8,1	8,6	8,9	9,3
70	9,7	70	7,8	8,0	8,5	8,8	9,2
80	9,4	80	7,6	7,9	8,4	8,8	9,2
90	9,0	90	7,4	7,8	8,4	8,7	9,1
100	8,7	100	7,3	7,7	8,4	8,7	9,1
110	8,5	110	7,2	7,7	8,3	8,7	9,1
120	8.3	120	7.2	7.6	8.3	8.6	9.0
130	8.1	130	7.1	7.6	8.3	8.6	9.0
140	7.9	140	7.1	7.6	8.2	8.6	9.0
150	7.7	150	7.0	7.5	8.2	8.6	8.9
160	7.6	160	7.0	7.5	8.2	0,0	8.9
170	7.5	170	6.9	7.5	8.2		8.9
180	7.4	180	6,9	7.4			8.9
190	7.3	190	6,9	7.4			0,0
200	7.2	200	6.8	7.4			
210	7.1	210	6.8	7.4			
220	7.0	220	6.8	.,.			
230	6,9	230	6.7				
240	6.9	240	6.7				
250	6.8	250	6.7				
260	6.8	260	6.7				
270	6.7	200	0,1				
280	6.7						
290	6.6						
300	6.6						
310	6.5						
320	6.5						
330	6.4		1	1	1	1	
340	6.4		1	1	1	1	
350	6.3						
360	6.3		1	1	1	1	
370	6.2		1	1	1	1	
380	6.2		1	1	1	1	
390	6.1		1	1	1	1	
400	6.1		1	1	1	1	
410	6.0						
420	6.0		1	1	1	1	
430	5.9						
440	5.9						
450	5.8						
460	5.8						
470	5.8						
480	57						
490	57						
500	57						
510	57						
010	0,1				1		

Tab. TZ.19'. Wpływ dawki polielektrolitów Kd2+Kd3 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,39$ % (LI)

Rys. KZ.19'. Wpływ dawki polielektrolitów Kd2 i Kd3 na przebieg zagęszczania osadu o W₀ = 99,39% (LI)

osadu o $W_0 = 99,39 \%$ (LI) 0.3 D 0.0 0.1 0.2 0.4 0.5 t [min] h [cm] t [min] h [cm] h [cm] h [cm] h [cm] 0 33,2 0 33,2 33,2 33,2 33,2 33,2 26,5 24,0 20,2 2 31,2 2 28,4 19,2 4 23,7 19,9 17,6 15,2 14.4 29,2 4 6 27,2 6 20,2 16,7 15,1 13,1 12,5 8 25,2 8 17,7 15,0 13,5 11,9 11,4 10 23,2 10 16,0 13,8 12,5 11,2 10,8 12 21,2 12,9 12 14,9 11,7 10,6 10,3 14 14,0 12,2 11,2 10,2 19,3 14 10,0 16 17,4 16 13,3 11,6 10,7 9,9 9,7 18 16,4 18 12,7 11,1 10,4 9,6 9,5 20 22 12,2 11,8 10,8 10,0 9,7 20 22 9,4 9,2 15,6 9,3 14,9 10,5 9.2 24 26 14,3 24 11,5 10,2 9,5 9,1 9,1 13,8 26 11,1 9,9 9,4 9,0 9,0 28 13,4 28 10,8 9,7 9,2 8,9 8,9 30 40 13,0 10,6 30 9,5 9,1 8,8 8,8 40 11,8 9,6 8,8 8,6 8,5 8,7 50 10,9 50 9,0 8,4 8,3 8,3 8,6 60 10,2 60 8,5 8,0 8,1 8,2 8,5 70 9,7 70 8,1 7,8 8,0 8,1 8,4 7,7 7,6 80 9,4 9,0 80 7,9 7,8 7,8 8,1 8,4 90 7,6 90 8,0 8.3 100 8,7 100 7,5 7,5 7,8 8,0 8,3 110 8,5 110 7,4 7,5 7,7 8,0 8.2 120 8,3 7,2 7,4 7,7 120 7,9 8,2 130 8,1 130 7,1 7,4 7,6 7,9 8,2 7,9 7,6 7,9 140 140 7,0 7,3 8,1 150 7,7 150 7,0 7,3 7,6 7,8 8,1 7,2 7,2 160 160 6,9 7,5 7,8 7,6 8.1 7,5 7,5 7.8 170 6,9 170 8.0 180 7,4 180 6,8 7,2 7,5 7,8 8,0 190 7,3 190 7,1 7,4 8,0 6,8 200 7,2 7,1 7,4 200 6,7 8,0 210 210 220 7,1 7,0 7,4 7,4 7,1 7,0 6,7 220 6.6 230 6,9 230 6,6 7,0 240 6,9 240 6,6 7,0 250 250 7,0 6.8 6.5 260 6,8 260 6,5 270 280 6,7 270 6,5 6,7 280 6,4 290 6,6 290 6,4 300 300 6,6 6,4 310 6,5 310 6,4 320 6,5 330 340 350 6,4 6,4 6,3 360 6,3 370 6,2 380 6,2 390 6,1 400 6.1 410 6,0 420 6,0 430 5,9 440 5,9 5,8 450 460 5,8 5,8 5,7 470 480 490 5,7 500 5,7 510 5,7

Tab. TZ.20'. Wpływ dawki polielektrolitów Kśr5+Kd5 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99.39$ % (LI)

Rys. KZ.20'. Wpływ dawki polielektrolitów Kśr5+Kd5 na przebieg zagęszczania osadu o W₀ = 99,39% (LI)

osadu e	$0 W_0 =$	99,39 %	% (LI)				
Dn	0.0		0.1	0.2	0.3	0.4	0.5
t [min]	h [cm]	t [min]	h [cm]				
0	33,2	0	33,2	33,2	33,2	33,2	33,2
2	31.2	2	27.8	25.0	18.1	13.5	12.3
4	29.2	4	21.8	17.8	13.7	11 1	10.4
6	27.2	6	17.9	15.0	12.0	10.3	9.8
8	25.2	8	15.0	13.4	11 1	9.7	0,0
10	23,2	10	14.6	12.4	10.4	9,7	3,5
10	23,2	10	14,0	14.7	10,4	9,5	9,3
14	21,2	14	13,0	11,7	10,0	9,3	9,2
14	19,3	14	12,0	11,1	9,7	9,2	9,1
10	17,4	10	12,2	10,7	9,4	9,1	9,1
18	16,4	18	11,7	10,3	9,2	9,0	9,0
20	15,6	20	11,3	10,0	9,1	8,9	9,0
22	14,9	22	10,9	9,7	9,0	8,9	8,9
24	14,3	24	10,6	9,5	8,9	8,8	8,9
26	13,8	26	10,4	9,3	8,8	8,8	8,8
28	13,4	28	10,1	9,1	8,7	8,7	8,8
30	13,0	30	9,9	8,9	8,6	8,7	8,8
40	11,8	40	9,0	8,4	8,5	8,6	8,7
50	10,9	50	8,5	8,1	8,4	8,6	8,7
60	10,2	60	8,2	7,9	8,3	8,5	8,6
70	9,7	70	7,9	7,8	8,3	8,5	8,6
80	9,4	80	7,7	7,7	8,2	8,4	8,5
90	9,0	90	7,6	7,7	8,2	8,4	8,5
100	8.7	100	7.5	7.6	8.1	8.4	8.5
110	8.5	110	7.4	7.6	8.0	8.3	8.4
120	8.3	120	7.4	7.5	8.0	8.3	8.4
130	81	130	7.3	7.5	8.0	8.2	84
140	79	140	73	74	79	8.2	84
150	77	150	7.2	74	79	8.2	0,1
160	7.6	160	7.2	73	7.0	8.2	
170	7.5	170	71	73	7.0	0,2	
190	7,5	190	7,1	7,3	7,5		
100	7.4	100	7,1	7,5			
200	7,3	200	7,0	7.2			
200	7.4	200	7,0	7.2			
210	7,1	210	0,9	7.2			
220	7,0	220	0,9	1,2			
230	0,9	230	0,9				
240	6,9	240	0,0				
250	6,8	250	6,8				
260	6,8	260	6,8				
270	6,7	270	6,7				
280	6,7	280	6,7				
290	6,6	290	6,7				
300	6,6	300	6,7				
310	6,5						
320	6,5	ļ					
330	6,4	ļ					
340	6,4	ļ					
350	6,3	I					
360	6,3						
370	6,2						
380	6,2						
390	6,1						
400	6,1						
410	6,0						
420	6,0						
430	5,9						
440	5,9						
450	5.8						
460	5.8						
470	5.8						
480	5.7						
490	5.7	1					1
500	57						
510	5.7						

Tab. TZ.21'. Wpływ dawki polielektrolitów Kd1+Kd4 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,39 \%$ (LI)

Rys. KZ.21'. Wpływ dawki polielektrolitów Kd1+Kd4 na przebieg zagęszczania osadu o W₀ = 99,39% (LI)

osadu o W₀ = 99,39 % (LI) D 0.0 0.1 0.2 0.3 0.4 0.5 t Imini h Icmi h Icmi h Icmi h Icmi h Icmi 0 33,2 33,2 33,2 33,2 33,2 33,2 t [min] h [cm] 0 33,2 27,4 25,3 18,1 2 31,2 2 28,6 16,2 4 20,5 17,9 13,9 12,8 29,2 4 24,0 16,9 6 27,2 6 20,3 15,1 12,2 11.4 8 25,2 8 17,7 15,1 13,4 11,2 10,7 10 23,2 10 16,0 13,8 12,3 10,6 10,3 12 21,2 12,9 12 14,8 11,5 9,9 9,9 14 14,0 12,2 10,9 19,3 14 9,6 9,7 16 17,4 16 13,3 11,7 10,4 9,4 9,6 18 16,4 18 12,7 11,2 10,0 9,3 9,5 20 22 12,2 11,8 10,8 9,2 9,1 20 22 9,4 15,6 9,7 14,9 10,5 9,5 9,3 24 26 14,3 24 11,4 10,2 9,2 9,0 9,2 13,8 26 11,1 9,9 9,0 8,9 9,1 28 13,4 28 10,8 9,7 8,9 8,8 9,1 30 40 13,0 10,5 8,7 30 9,5 8,7 9,0 40 11,8 9,5 8,8 8,2 8,6 8,9 7,9 7,7 50 10,9 50 8,9 8,4 8,5 8,8 60 10,2 60 8,5 8,0 8,5 8,8 70 9,7 70 8,1 7,7 7,6 8,4 8,7 7,6 7,5 7,5 7,5 80 9,4 9,0 80 7,9 7,7 8,4 8,7 90 90 8,4 8,6 100 8,7 100 7,5 7,5 7,4 8,3 8,6 110 8,5 110 7,4 7,4 7,4 8,3 8.6 120 8,3 7,3 7,4 7,4 120 8,3 8.5 7,3 7,3 130 8,1 130 7,2 7,3 8,2 8,5 7,9 140 140 7,1 7,3 8,2 8,5 8,2 8,2 150 7,7 150 7,1 7,3 7,3 8,5 7,2 7,2 7,2 7,2 160 160 7,6 7.0 7,5 7,0 170 170 180 7,4 180 6,9 7,2 7,2 190 7,3 190 6,9 7,1 7,1 200 7,2 7,1 7,1 200 6,8 210 210 220 7,1 7,0 7,1 7,1 6,8 7,1 7,0 220 6,7 230 6,9 230 6,7 7,0 240 6,9 240 6,7 7,0 7,0 250 250 6,8 6.6 260 6,8 260 6,6 270 280 6,7 270 6,6 6,7 280 6,6 290 6,6 300 6,6 310 6,5 320 6,5 330 340 350 6,4 6,4 6,3 360 6,3 370 6,2 380 6,2 390 6,1 400 6.1 410 6,0 420 6,0 430 5,9 440 5,9 5,8 450 460 5,8 <u>5,8</u> 5,7 470 480 490 5,7 500 5,7 510 5,7

Tab. TZ.22'. Wpływ dawki polielektrolitów Ad1+Ad2 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99.39 \%$ (LI)

Rys. KZ.22'. Wpływ dawki polielektrolitów Ad1+Ad2 na przebieg zagęszczania osadu o W₀ = 99,39% (LI)

Tab. TZ. 1". Wyniki pomiarów wysokości powierzchni rozdziału wody nadosadowej i osadu wydzielonego z osadów o różnym W_0 (ZOW "Kogeneracja S.A.")

$W_0 =$	99,53%	99,48%	99,37%	98,73%
t [min]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	33,2	33,2	33,2
2	18,5	22,8	25,0	28,0
4	6,0	12,9	17,2	22,9
6	4,3	9,1	9,5	17,8
8	3,5	7,4	8,2	12,8
10	3,0	6,5	7,1	11,3
12	2,6	6,0	6,5	10,5
14	2,2	5,4	6,0	9,9
16	1,9	5,1	5,6	9,5
18	1,7	4,9	5,3	9,2
20	1,6	4,7	5,1	8,9
30	1,5	4,1	4,6	8,1
40	1,4	3,7	4,4	7,4
50	1,3	3,5	4,3	6,8
60	1,3	3,4	4,2	6,5
70	1,2	3,3	4,1	6,2
80	1,2	3,2	4,0	6,0
90	1,1	3,1	3,9	5,8
100	1,1	3,1	3,8	5,7
110	1,1	3,0	3,7	5,5
120	1,1	3,0	3,6	5,4
130		2,9	3,5	5,3
140		2,9	3,4	5,2
150		2,8	3,3	5,2
160		2,8	3,2	5,1
170		2,7	3,2	5,0
180		2,7	3,1	5,0
190		2,7	3,1	4,9
200		2,7	3,0	4,9
210			3,0	4,8
220			3,0	4,7
230			3,0	4,6
240				4,6
250				4,5
260				4,5
270				4,4
280				4,4
290				4,4
300				4,4

Rys. KZ. 1". Krzywe zagęszczania osadów o różnym W₀ z ZOW "Kogeneracja S.A,"

procesie :	zagęszcz	ania osa	$\mathbf{d}\mathbf{u} \mathbf{o} \mathbf{W}_{0}$	= 99,48	<u>% (KII)</u>
t _{wm} [min]	0	3	15	30	60
t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	33,2	33,2	33,2	33,2
2	22,8	22,9	22,9	23,0	23,1
4	12,9	12,9	13,0	13,1	13,3
6	9,1	9,2	9,3	9,4	9,9
8	7,4	7,5	7,6	7,8	8,3
10	6,5	6,6	6,7	6,9	7,3
12	6,0	6,1	6,2	6,4	6,7
14	5,4	5,5	5,8	6,0	6,2
16	5,1	5,2	5,4	5,6	5,8
18	4,9	5,0	5,1	5,3	5,5
20	4,7	4,8	4,9	5,1	5,3
30	4,1	4,3	4,5	4,8	4,8
40	3,7	3,9	4,2	4,6	4,6
50	3,5	3,7	4,0	4,4	4,4
60	3,4	3,6	3,8	4,2	4,3
70	3,3	3,5	3,7	4,1	4,2
80	3,2	3,4	3,6	4,0	4,1
90	3,1	3,3	3,5	3,9	4,0
100	3,1	3,2	3,4	3,8	3,9
110	3,0	3,1	3,3	3,7	3,8
120	3,0	3,1	3,2	3,6	3,7
130	2,9	3,0	3,2	3,5	3,6
140	2,9	3,0	3,1	3,4	3,6
150	2,8	2,9	3,1	3,3	3,5
160	2,8	2,9	3,0	3,3	3,4
170	2,7	2,8	3,0	3,2	3,4
180	2,7	2,8	2,9	3,2	3,3
190	2,7	2,7	2,9	3,1	3,3
200	2,7	2,7	2,8	3,1	3,2
210		2,7	2,8	3,0	3,2
220		2,7	2,8	3,0	3,1
230			2,8	2,9	3,1
240				2,9	3,0
250				2,9	3,0
260				2,9	3,0
270					3,0

Tab. TZ. 2". Wpływ czasu wolnego mieszania na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zageszczania osadu o W. – 99 48 % (KII)

Rys. KZ. 2". Wpływ czasu wolnego mieszania na przebieg zagęszczania osadu o $W_0 = 99,48$ % (KII)

$zagęszczania osadu o vv_0 = 98,75 \% (KIV)$								
t _{wm} [min]	0	3	15	30	60			
t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]			
0	33,2	33,2	33,2	33,2	33,2			
2	28,0	27,9	28,0	28,1	28,1			
4	22,9	22,9	23,0	23,0	23,0			
6	17,8	17,8	17,9	18,0	18,0			
8	12,8	12,8	12,9	13,0	13,0			
10	11,3	11,4	11,4	11,5	11,5			
12	10,5	10,6	10,6	10,7	10,7			
14	9,9	10,0	10,0	10,1	10,1			
16	9,5	9,6	9,6	9,7	9,7			
18	9,2	9,3	9,3	9,4	9,4			
20	8,9	8,9	9,0	9,1	9,1			
30	8,1	8,1	8,2	8,2	8,3			
40	7,4	7,4	7,5	7,5	7,6			
50	6,8	6,8	6,9	6,9	7,1			
60	6,5	6,5	6,6	6,6	6,7			
70	6,2	6,2	6,3	6,3	6,4			
80	6,0	6,0	6,1	6,1	6,2			
90	5,8	5,9	6,0	6,0	6,1			
100	5,7	5,8	5,9	5,9	6,0			
110	5,5	5,7	5,8	5,8	5,9			
120	5,4	5,6	5,7	5,7	5,8			
130	5,3	5,5	5,6	5,6	5,7			
140	5,2	5,4	5,5	5,5	5,6			
150	5,2	5,3	5,4	5,4	5,5			
160	5,1	5,2	5,3	5,3	5,4			
170	5,0	5,1	5,2	5,2	5,3			
180	5,0	5,0	5,1	5,1	5,3			
190	4,9	5,0	5,0	5,0	5,2			
200	4,9	4,9	4,9	5,0	5,2			
210	4,8	4,9	4,9	4,9	5,1			
220	4,7	4,8	4,8	4,9	5,1			
230	4,6	4,8	4,8	4,8	5,0			
240	4,6	4,7	4,7	4,8	5,0			
250	4,5	4,7	4,7	4,7	4,9			
260	4,5	4,6	4,6	4,7	4,9			
270	4,4	4,6	4,6	4,6	4,8			
280	4,4	4,5	4,5	4,6	4,8			
290	4,4	4,5	4,5	4,5	4,7			
300	4,4	4,5	4,5	4,5	4,7			
310		4,5	4,5	4,5	4,7			
320				4,5	4,7			

Tab. TZ. 3". Wpływ czasu wolnego mieszania na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zageszczania osadu o $W_0 = 98,73 \%$ (KIV)

Rys. KZ. 3". Wpływ czasu wolnego mieszania na przebieg zagęszczania osadu o $W_0 = 98,73$ % (KIV)

pH₀	10,3	10,0	9,5	9,0	8,5	8,0
t [min]	h [cm]					
0	33,2	33,2	33,2	33,2	33,2	33,2
2	18,5	19,1	21,3	24,4	25,1	27,0
4	6,0	7,0	10,2	15,8	17,1	21,0
6	4,3	5,2	6,4	7,8	9,4	15,1
8	3,5	4,5	5,5	6,4	7,2	9,8
10	3,0	3,9	4,8	5,7	6,1	7,4
12	2,6	3,4	4,3	5,1	5,5	6,6
14	2,2	3,0	3,9	4,6	5,0	5,9
16	1,9	2,8	3,6	4,1	4,6	5,3
18	1,7	2,6	3,4	3,7	4,2	4,9
20	1,6	2,4	3,2	3,4	3,9	4,7
30	1,5	1,9	2,6	2,8	3,1	4,0
40	1,4	1,7	2,3	2,5	2,9	3,5
50	1,3	1,6	2,1	2,4	2,7	3,2
60	1,3	1,5	1,9	2,3	2,6	3,0
70	1,2	1,5	1,8	2,2	2,5	2,8
80	1,2	1,4	1,7	2,1	2,4	2,7
90	1,1	1,4	1,7	2,0	2,4	2,6
100	1,1	1,3	1,6	1,9	2,3	2,5
110	1,1	1,3	1,6	1,9	2,2	2,5
120	1,1	1,3	1,5	1,8	2,2	2,4
130		1,3	1,5	1,7	2,1	2,4
140			1,5	1,7	2,1	2,3
150			1,5	1,7	2,0	2,3
160				1,7	2,0	2,2
170					1,9	2,2
180					1,9	2,1
190					1,9	2,1
200					1,9	2,1
210						2,1

Tab. TZ. 4". Wpływ korekty pH na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,53$ % (KI)

Rys. KZ. 4". Wpływ korekty pH na przebieg zagęszczania osadu o W₀ = 99,53 % (KI)

pH₀	9,9	9,5	9	8,5	8	7,5
t [min]	h [cm]					
0	33,2	33,2	33,2	33,2	33,2	33,2
2	25,0	25,5	26,1	27,5	28,1	28,9
4	17,2	17,8	19,1	22,0	23,1	24,7
6	9,5	10,5	12,2	16,6	18,3	20,5
8	8,2	8,8	10,0	11,4	13,6	16,3
10	7,1	7,7	8,7	9,3	10,9	12,2
12	6,5	7,0	7,9	8,1	9,6	10,7
14	6,0	6,5	7,3	7,3	8,7	9,7
16	5,6	6,1	6,7	6,8	8,0	9,1
18	5,3	5,8	6,2	6,3	7,5	8,6
20	5,1	5,5	5,8	6,0	7,0	8,2
30	4,6	4,9	5,1	5,4	5,9	7,2
40	4,4	4,5	4,8	5,1	5,3	6,5
50	4,3	4,3	4,6	4,9	5,0	5,9
60	4,2	4,1	4,4	4,8	4,8	5,5
70	4,1	4,0	4,3	4,7	4,6	5,1
80	4,0	3,9	4,2	4,6	4,5	4,9
90	3,9	3,8	4,1	4,5	4,4	4,7
100	3,8	3,7	4,0	4,4	4,3	4,6
110	3,7	3,6	3,9	4,3	4,2	4,5
120	3,6	3,5	3,8	4,2	4,1	4,4
130	3,5	3,4	3,8	4,1	4,0	4,4
140	3,4	3,4	3,7	4,0	3,9	4,3
150	3,3	3,3	3,7	3,9	3,9	4,3
160	3,2	3,3	3,6	3,8	3,8	4,2
170	3,2	3,2	3,6	3,8	3,8	4,2
180	3,1	3,2	3,5	3,7	3,7	4,1
190	3,1	3,1	3,5	3,7	3,7	4,1
200	3,0	3,1	3,4	3,6	3,6	4,0
210	3,0	3,0	3,4	3,6	3,6	4,0
220	3,0	3,0	3,3	3,5	3,5	3,9
230	3,0	3,0	3,3	3,5	3,5	3,9
240		3,0	3,2	3,4	3,4	3,8
250			3,2	3,4	3,4	3,8
260			3,2	3,3	3,3	3,7
270			3,2	3,3	3,3	3,7
280				3,2	3,2	3,6
290				3,2	3,2	3,6
300				3,2	3,2	3,5
310				3,2	3,2	3,5
320						3,4
330						3,4
340						3,4
350						3,4

Tab. TZ. 5". Wpływ korekty pH na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,37$ % (KIII)

Rys. KZ. 5". Wpływ korekty pH na przebieg zagęszczania osadu o $W_0 = 99,37$ % (KIII)

w procesie zagęszczania osadu o $W_0 = 99,48 \%$ (KII)							
Dp	0,0	0,1	0,2	0,3	0,4	0,5	
t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]	
0	33,2	33,2	33,2	33,2	33,2	33,2	
2	22,8	14,2	13,9	13,5	13,0	12,7	
4	12,9	8,8	8,6	8,0	7,0	6,8	
6	9,1	7,4	7,2	7,0	6,1	6,0	
8	7,4	6,9	6,7	6,5	5,5	5,4	
10	6,5	6,5	6,3	6,1	5,1	5,0	
12	6,0	6,1	5,9	5,7	4,7	4,7	
14	5,4	5,8	5,7	5,4	4,5	4,4	
16	5,1	5,5	5,4	5,2	4,4	4,2	
18	4,9	5,3	5,2	5,0	4,3	4,1	
20	4,7	5,1	5,0	4,8	4,2	4,0	
30	4,1	4,7	4,5	4,3	3,8	3,7	
40	3,7	4,3	4,2	4,0	3,6	3,6	
50	3,5	4,1	3,9	3,8	3,5	3,5	
60	3,4	3,8	3,6	3,7	3,4	3,4	
70	3,3	3,6	3,4	3,6	3,3	3,3	
80	3,2	3,4	3,2	3,4	3,3	3,2	
90	3,1	3,3	3,1	3,3	3,2	3,2	
100	3,1	3,2	3,1	3,2	3,2	3,1	
110	3,0	3,1	3,0	3,2	3,1	3,1	
120	3,0	3,1	3,0	3,1	3,1	3,1	
130	2,9	3,0	2,9	3,1	3,1	3,1	
140	2,9	3,0	2,9	3,1	3,1		
150	2,8	2,9	2,9	3,1			
160	2,8	2,9	2,9				
170	2,7	2,9					
180	2,7	2,9					
190	2,7						
200	2,7						

Tab. TZ.6". Wpływ dawki polielektrolitu Kśr3 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,48 \%$ (KII)

Rys. KZ.6'. Wpływ dawki polielektrolitu Kśr3 na przebieg zagęszczania osadu o $W_0 = 99,48$ % (KII)

w procesie zagęszczania osadu o $W_0 = 99,48$ % (KII)						
Dp	0,0	0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	33,2	33,2	33,2	33,2	33,2
2	22,8	14,9	14,7	14,4	14,2	14,0
4	12,9	9,9	9,6	9,1	8,8	8,5
6	9,1	8,8	8,6	8,3	8,1	7,5
8	7,4	8,0	7,8	7,6	7,5	6,8
10	6,5	7,4	7,2	7,0	6,9	6,2
12	6,0	6,9	6,7	6,6	6,5	5,9
14	5,4	6,5	6,4	6,3	6,1	5,7
16	5,1	6,2	6,1	6,0	5,9	5,5
18	4,9	6,0	5,9	5,8	5,7	5,3
20	4,7	5,8	5,7	5,6	5,5	5,2
30	4,1	5,2	5,0	4,9	4,9	4,7
40	3,7	4,7	4,5	4,4	4,3	4,0
50	3,5	4,3	4,1	4,0	3,9	3,7
60	3,4	4,0	3,9	3,8	3,7	3,6
70	3,3	3,8	3,7	3,7	3,6	3,6
80	3,2	3,6	3,5	3,6	3,6	3,5
90	3,1	3,5	3,4	3,5	3,5	3,5
100	3,1	3,4	3,3	3,4	3,5	3,4
110	3,0	3,3	3,2	3,3	3,4	3,4
120	3,0	3,2	3,1	3,3	3,4	3,3
130	2,9	3,1	3,1	3,2	3,3	3,3
140	2,9	3,0	3,0	3,2	3,3	3,3
150	2,8	3,0	3,0	3,1	3,3	3,3
160	2,8	2,9	2,9	3,1	3,3	
170	2,7	2,9	2,9	3,1		
180	2,7	2,9	2,9	3,1		
190	2,7	2,9	2,9			
200	2,7					

Tab. TZ.7". Wpływ dawki polielektrolitu Kśr4 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,48 \%$ (KII)

Rys. KZ.7". Wpływ dawki polielektrolitu Kśr4 na przebieg zagęszczania osadu o $W_0 = 99,48$ % (KII)

w procesie zagęszczania osadu o $W_0 = 99,48 \%$ (KII)						
Dp	0,0	0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	33,2	33,2	33,2	33,2	33,2
2	22,8	18,7	18,5	18,0	17,8	17,5
4	12,9	10,1	9,8	9,4	9,3	9,0
6	9,1	8,4	8,1	7,6	7,4	7,2
8	7,4	7,2	6,9	6,2	6,1	5,9
10	6,5	6,4	6,2	5,5	5,3	5,2
12	6,0	5,9	5,7	5,0	4,9	4,8
14	5,4	5,6	5,3	4,7	4,6	4,5
16	5,1	5,4	5,0	4,5	4,3	4,3
18	4,9	5,2	4,8	4,3	4,2	4,2
20	4,7	5,0	4,6	4,0	4,1	4,1
30	4,1	4,5	4,2	3,8	3,9	4,0
40	3,7	4,2	4,0	3,7	3,8	3,9
50	3,5	4,0	3,8	3,6	3,7	3,9
60	3,4	3,8	3,7	3,6	3,7	3,8
70	3,3	3,6	3,6	3,5	3,6	3,8
80	3,2	3,5	3,5	3,5	3,6	3,7
90	3,1	3,5	3,4	3,4	3,5	3,7
100	3,1	3,4	3,4	3,4	3,5	3,7
110	3,0	3,4	3,3	3,3	3,5	3,7
120	3,0	3,3	3,3	3,3	3,5	
130	2,9	3,3	3,2	3,3		
140	2,9	3,2	3,2	3,3		
150	2,8	3,2	3,1			
160	2,8	3,1	3,1			
170	2,7	3,1	3,1			
180	2,7	3,1	3,1			
190	2,7	3,1				
200	2,7					

Tab. TZ.8". Wpływ dawki polielektrolitu Kd3 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 99,48$ % (KII)

Rys. KZ.8". Wpływ dawki polielektrolitu Kd3 na przebieg zagęszczania osadu o $W_0 = 99,48$ % (KII)

w procesie zagęszczania osadu o $W_0 = 98,/3 \%$ (KIV)						(V)
Dp	0,0	0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	33,2	33,2	33,2	33,2	33,2
2	28,0	21,1	20,7	20,6	20,4	20,7
4	22,9	12,3	11,6	11,4	11,3	11,6
6	17,8	10,1	9,6	9,3	9,1	9,4
8	12,8	9,2	8,8	8,6	8,5	8,7
10	11,3	8,6	8,1	7,9	7,9	8,0
12	10,5	8,2	7,6	7,3	7,3	7,5
14	9,9	8,0	7,2	7,0	7,1	7,2
16	9,5	7,8	6,9	6,7	6,9	7,0
18	9,2	7,6	6,7	6,5	6,7	6,8
20	8,9	7,4	6,5	6,3	6,5	6,7
30	8,1	6,8	6,0	6,0	6,1	6,3
40	7,4	6,4	5,9	5,8	5,9	6,1
50	6,8	6,1	5,8	5,6	5,7	5,9
60	6,5	5,9	5,7	5,5	5,6	5,8
70	6,2	5,8	5,5	5,4	5,5	5,7
80	6,0	5,7	5,4	5,3	5,4	5,6
90	5,8	5,6	5,3	5,2	5,4	5,6
100	5,7	5,5	5,2	5,1	5,3	5,5
110	5,5	5,4	5,1	5,1	5,3	5,5
120	5,4	5,3	5,1	5,0	5,2	5,4
130	5,3	5,2	5,0	5,0	5,2	5,4
140	5,2	5,1	5,0	4,9	5,1	5,4
150	5,2	5,0	4,9	4,9	5,1	5,4
160	5,1	5,0	4,9	4,9	5,1	
170	5,0	4,9	4,8	4,9	5,1	
180	5,0	4,9	4,8			
190	4,9	4,8	4,8			
200	4,9	4,8	4,8			
210	4,8	4,7				
220	4,7	4,7				
230	4,6	4,6				
240	4,6	4,6				
250	4,5	4,6				
260	4,5	4,6				
270	4,4					
280	4,4					
290	4,4					
300	4,4					

Tab. TZ.9". Wpływ dawki polielektrolitu Kśr5 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 98,73 \%$ (KIV)

Rys. KZ.9". Wpływ dawki polielektrolitu Kśr5 na przebieg zagęszczania osadu o $W_0 = 98,73$ % (KIV)

w proce	w procesie zagęszczania osadu o $W_0 = 98,73$ % (KIV)						
Dp	0,0	0,1	0,2	0,3	0,4	0,5	
t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]	
0	33,2	33,2	33,2	33,2	33,2	33,2	
2	28,0	21,3	20,9	20,7	20,5	20,4	
4	22,9	12,5	11,8	11,5	11,7	11,7	
6	17,8	10,2	9,9	9,4	9,5	9,7	
8	12,8	9,2	8,7	8,5	8,6	8,7	
10	11,3	8,8	8,2	7,8	7,9	8,2	
12	10,5	8,5	7,9	7,4	7,5	7,8	
14	9,9	8,3	7,6	7,1	7,2	7,4	
16	9,5	8,1	7,4	6,8	6,9	7,1	
18	9,2	7,9	7,2	6,6	6,7	6,8	
20	8,9	7,7	7,0	6,4	6,5	6,6	
30	8,1	7,0	6,3	5,8	5,8	5,8	
40	7,4	6,7	6,0	5,6	5,6	5,7	
50	6,8	6,4	5,8	5,5	5,5	5,6	
60	6,5	6,2	5,6	5,4	5,4	5,5	
70	6,2	6,0	5,4	5,3	5,3	5,4	
80	6,0	5,9	5,3	5,3	5,2	5,4	
90	5,8	5,8	5,2	5,2	5,2	5,3	
100	5,7	5,7	5,1	5,2	5,1	5,3	
110	5,5	5,6	5,1	5,1	5,1	5,2	
120	5,4	5,5	5,0	5,1	5,0	5,2	
130	5,3	5,4	5,0	5,0	5,0	5,1	
140	5,2	5,3	4,9	5,0	4,9	5,1	
150	5,2	5,2	4,9	4,9	4,9	5,0	
160	5,1	5,1	4,8	4,9	4,8	5,0	
170	5,0	5,1	4,8	4,8	4,8	5,0	
180	5,0	5,0	4,7	4,8	4,8	5,0	
190	4,9	5,0	4,7	4,8	4,8		
200	4,9	4,9	4,6	4,8			
210	4,8	4,9	4,6				
220	4,7	4,8	4,6				
230	4,6	4,8	4,6				
240	4,6	4,7					
250	4,5	4,7					
260	4,5	4,6					
270	4,4	4,6					
280	4,4	4,6					
290	4,4	4,6					
300	4.4						

Tab. TZ.10". Wpływ dawki polielektrolitu Kd1 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zageszczania osadu o $W_0 = 98.73 \%$ (KIV)

Rys. KZ.10". Wpływ dawki polielektrolitu Kd1 na przebieg zagęszczania osadu o W₀ = 98,73 % (KIV)

w procesie zagęszczania osadu o $W_0 = 98,73$ % (KIV)						
Dp	0,0	0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	33,2	33,2	33,2	33,2	33,2
2	28,0	21,7	21,3	21,0	20,4	20,2
4	22,9	12,3	12,1	12,0	11,6	11,4
6	17,8	10,6	10,0	9,8	9,4	9,2
8	12,8	9,9	9,1	8,9	8,1	7,8
10	11,3	9,4	8,6	8,2	7,6	7,3
12	10,5	9,0	8,2	7,6	7,2	6,9
14	9,9	8,7	7,9	7,2	6,9	6,5
16	9,5	8,4	7,6	6,8	6,6	6,3
18	9,2	8,1	7,4	6,6	6,4	6,1
20	8,9	7,9	7,2	6,4	6,2	6,0
30	8,1	7,2	6,7	6,1	5,9	5,7
40	7,4	6,8	6,4	5,8	5,7	5,6
50	6,8	6,5	6,2	5,7	5,6	5,5
60	6,5	6,3	6,0	5,6	5,5	5,4
70	6,2	6,1	5,8	5,5	5,4	5,4
80	6,0	5,9	5,7	5,4	5,3	5,3
90	5,8	5,7	5,6	5,3	5,3	5,2
100	5,7	5,6	5,5	5,3	5,2	5,2
110	5,5	5,5	5,4	5,2	5,2	5,1
120	5,4	5,4	5,3	5,2	5,2	5,1
130	5,3	5,3	5,2	5,1	5,1	5,0
140	5,2	5,2	5,2	5,1	5,1	5,0
150	5,2	5,2	5,1	5,0	5,0	4,9
160	5,1	5,1	5,1	5,0	5,0	4,9
170	5,0	5,0	5,0	4,9	4,9	4,8
180	5,0	5,0	5,0	4,9	4,9	
190	4,9	4,9	4,9	4,8	4,8	
200	4,9	4,8	4,9	4,8		
210	4,8	4,8	4,8	4,7		
220	4,7	4,7	4,8	4,7		
230	4,6	4,7	4,7	4,6		
240	4,6	4,6	4,7			
250	4,5	4,6	4,6			
260	4,5	4,5				
270	4,4	4,5				
280	4,4	4,4				
290	4,4					
300	4,4					

Tab. TZ.11". Wpływ dawki polielektrolitu Ad1 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zageszczania osadu o Wo – 98 73 % (KIV)

Rys. KZ.11". Wpływ dawki polielektrolitu Ad1 na przebieg zagęszczania osadu o W₀ = 98,73 % (KIV)

w procesie zagęszczania osadu o $W_0 = 99,37$ % (KIII)						
Dp	0,0	0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	33,2	33,2	33,2	33,2	33,2
2	25,0	18,2	18,0	17,7	17,5	17,0
4	17,2	13,0	12,7	12,5	12,2	11,8
6	9,5	8,9	8,6	8,4	8,2	7,9
8	8,2	7,5	7,3	7,0	6,8	6,6
10	7,1	6,6	6,5	6,3	6,2	6,1
12	6,5	6,2	6,1	6,0	5,8	5,7
14	6,0	5,9	5,8	5,7	5,5	5,4
16	5,6	5,7	5,6	5,4	5,3	5,2
18	5,3	5,5	5,4	5,2	5,2	5,1
20	5,1	5,4	5,3	5,1	5,1	5,0
30	4,6	5,0	4,8	4,7	4,8	4,7
40	4,4	4,7	4,6	4,5	4,6	4,5
50	4,3	4,5	4,4	4,3	4,4	4,3
60	4,2	4,3	4,3	4,2	4,3	4,2
70	4,1	4,1	4,2	4,1	4,2	4,1
80	4,0	4,0	4,1	4,0	4,1	4,0
90	3,9	3,9	4,0	3,9	4,0	3,9
100	3,8	3,8	3,9	3,8	3,9	3,9
110	3,7	3,7	3,8	3,7	3,8	3,8
120	3,6	3,6	3,7	3,7	3,8	3,8
130	3,5	3,5	3,7	3,6	3,7	3,7
140	3,4	3,5	3,6	3,6	3,7	3,7
150	3,3	3,4	3,6	3,5	3,6	3,6
160	3,2	3,4	3,5	3,5	3,6	3,6
170	3,2	3,3	3,5	3,4	3,6	3,6
180	3,1	3,3	3,4	3,4	3,6	3,6
190	3,1	3,2	3,4	3,4		
200	3,0	3,2	3,4	3,4		
210	3,0	3,2	3,4			
220	3,0	3,2				
230	3,0					

Tab. TZ.12". Wpływ dawki polielektrolitu Abd na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagoszczapia osadu o W. – 99 37 % (KIII)

Rys. KZ.12". Wpływ dawki polielektrolitu Abd na przebieg zagęszczania osadu o $W_0 = 99,37$ % (KIII)

w procesie zagęszczania osadu o $W_0 = 99,37$ % (KIII)						
Dp	0,0	0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	33,2	33,2	33,2	33,2	33,2
2	25,0	19,1	18,9	18,5	18,0	17,6
4	17,2	10,0	9,9	9,6	9,1	8,8
6	9,5	8,3	8,2	7,9	7,5	7,3
8	8,2	7,2	6,9	6,7	6,3	6,1
10	7,1	6,6	6,2	6,0	5,7	5,6
12	6,5	6,2	5,8	5,6	5,4	5,2
14	6,0	5,9	5,5	5,3	5,2	4,9
16	5,6	5,7	5,3	5,1	5,0	4,7
18	5,3	5,5	5,2	5,0	4,8	4,6
20	5,1	5,3	5,0	4,8	4,7	4,4
30	4,6	4,8	4,6	4,5	4,4	4,2
40	4,4	4,6	4,4	4,4	4,2	4,1
50	4,3	4,4	4,2	4,3	4,1	4,1
60	4,2	4,2	4,1	4,1	4,0	4,0
70	4,1	4,1	4,0	4,0	3,9	4,0
80	4,0	4,0	3,9	3,9	3,7	3,9
90	3,9	3,9	3,8	3,9	3,8	3,9
100	3,8	3,8	3,7	3,8	3,7	3,8
110	3,7	3,7	3,7	3,8	3,7	3,8
120	3,6	3,7	3,6	3,7	3,6	3,8
130	3,5	3,6	3,6	3,7	3,6	3,8
140	3,4	3,6	3,5	3,6	3,6	
150	3,3	3,5	3,5	3,6	3,6	
160	3,2	3,5	3,4	3,6		
170	3,2	3,4	3,4	3,6		
180	3,1	3,4	3,4			
190	3,1	3,4	3,4			
200	3,0	3,4				
210	3,0					
220	3,0					
230	3.0					

Tab. TZ.13". Wpływ dawki polielektrolitu Ad2 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zageszczania osadu o $W_0 = 99,37$ % (KIII)

Rys. KZ.13". Wpływ dawki polielektrolitu Ad2 na przebieg zagęszczania osadu o W₀ = 99,37 % (KIII)

Dp	0,0	0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]					
0	33,2	33,2	33,2	33,2	33,2	33,2
2	28,0	27,1	26,5	23,5	22,8	22,3
4	22,9	21,3	20,2	17,9	17,1	16,5
6	17,8	15,5	14,6	13,2	12,4	12,0
8	12,8	12,1	11,4	11,0	10,8	10,6
10	11,3	10,7	10,2	9,9	9,7	9,4
12	10,5	9,9	9,5	9,2	8,8	8,4
14	9,9	9,4	8,9	8,7	8,2	7,7
16	9,5	9,0	8,5	8,3	7,8	7,2
18	9,2	8,7	8,2	7,9	7,5	6,8
20	8,9	8,5	8,0	7,6	7,3	6,5
30	8,1	7,6	7,0	6,6	6,4	5,9
40	7,4	7,1	6,6	6,3	6,1	5,7
50	6,8	6,7	6,3	6,1	5,9	5,6
60	6,5	6,4	6,0	5,9	5,7	5,5
70	6,2	6,2	5,8	5,7	5,6	5,4
80	6,0	6,0	5,6	5,6	5,5	5,4
90	5,8	5,8	5,5	5,5	5,5	5,3
100	5,7	5,6	5,4	5,4	5,4	5,3
110	5,5	5,4	5,3	5,3	5,4	5,2
120	5,4	5,3	5,2	5,3	5,3	5,2
130	5,3	5,2	5,1	5,2	5,3	5,1
140	5,2	5,1	5,1	5,2	5,2	5,1
150	5,2	5,0	5,0	5,1	5,2	5,0
160	5,1	4,9	5,0	5,1	5,1	5,0
170	5,0	4,8	4,9	5,0	5,1	5,0
180	5,0	4,8	4,9	5,0	5,0	5,0
190	4,9	4,7	4,8	4,9	5,0	
200	4,9	4,7	4,8	4,9	5,0	
210	4,8	4,6	4,7	4,8	5,0	
220	4,7	4,6	4,7	4,8		
230	4,6	4,5	4,6	4,8		
240	4,6	4,5	4,6	4,8		
250	4,5	4,4	4,6			
260	4,5	4,4	4,6			
270	4,4	4,4				
280	4,4	4,4				
290	4,4					
300	4,4					

Tab. TZ.14". Wpływ dawki polielektrolitów Kśr3+Kśr4 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o $W_0 = 98,73$ % (KIV)

Rys. KZ.14". Wpływ dawki polielektrolitów Kśr3 i Kśr4 na przebieg zagęszczania osadu o W₀ = 98,73 % (KIV)

Dp	0,0	0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]					
0	33,2	33,2	33,2	33,2	33,2	33,2
2	28,0	24,7	21,9	21,7	19,4	18,4
4	22,9	16,4	16,3	16,1	13,1	12,0
6	17,8	11,9	11,7	11,4	10,2	9,6
8	12,8	10,7	10,6	10,4	9,1	8,5
10	11,3	9,9	9,8	9,6	8,4	7,7
12	10,5	9,3	8,9	8,8	7,9	7,1
14	9,9	8,8	8,2	8,2	7,5	6,7
16	9,5	8,3	7,7	7,7	7,2	6,4
18	9,2	8,0	7,3	7,3	7,0	6,2
20	8,9	7,8	7,0	6,9	6,7	6,0
30	8,1	6,9	6,1	5,9	5,9	5,6
40	7,4	6,5	5,8	5,7	5,6	5,5
50	6,8	6,2	5,6	5,5	5,5	5,4
60	6,5	5,9	5,5	5,4	5,4	5,3
70	6,2	5,7	5,4	5,3	5,3	5,3
80	6,0	5,5	5,3	5,2	5,2	5,2
90	5,8	5,4	5,2	5,1	5,2	5,2
100	5,7	5,3	5,2	5,1	5,1	5,1
110	5,5	5,2	5,1	5,0	5,1	5,1
120	5,4	5,1	5,1	5,0	5,0	5,0
130	5,3	5,0	5,0	4,9	5,0	5,0
140	5,2	5,0	5,0	4,9	4,9	5,0
150	5,2	4,9	4,9	4,8	4,9	5,0
160	5,1	4,9	4,9	4,8	4,8	
170	5,0	4,8	4,8	4,7	4,8	
180	5,0	4,8	4,8	4,7	4,8	
190	4,9	4,7	4,7	4,6	4,8	
200	4,9	4,7	4,7	4,6		
210	4,8	4,6	4,6	4,6		
220	4,7	4,6	4,6	4,6		
230	4,6	4,5	4,6			
240	4,6	4,5	4,6			
250	4,5	4,4				
260	4,5	4,4				
270	4,4	4,4				
280	4,4	4,4				
290	4,4					
300	4,4					

Tab. TZ.15". Wpływ dawki polielektrolitów Kśr5+Kd1 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zagęszczania osadu o W₀ = 98,73 % (KIV)

Rys. KZ.15". Wpływ dawki polielektrolitów Kśr5+Kd1 na przebieg zagęszczania osadu o W₀ = 98,73 % (KIV)

w procesie zagęszczania osadu o $W_0 = 99,37$ % (KIII)						
Dp	0,0	0,1	0,2	0,3	0,4	0,5
t [min]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]	h [cm]
0	33,2	33,2	33,2	33,2	33,2	33,2
2	25,0	16,6	16,3	15,3	15,2	14,9
4	17,2	9,3	8,8	8,1	7,9	7,7
6	9,5	8,1	7,6	6,9	6,8	6,5
8	8,2	7,3	6,8	6,1	5,9	5,6
10	7,1	6,8	6,2	5,6	5,4	5,2
12	6,5	6,4	5,8	5,2	5,1	4,9
14	6,0	6,2	5,4	5,0	4,9	4,7
16	5,6	5,9	5,1	4,8	4,8	4,6
18	5,3	5,7	4,9	4,7	4,7	4,5
20	5,1	5,5	4,7	4,6	4,6	4,4
30	4,6	4,9	4,3	4,2	4,3	4,1
40	4,4	4,5	4,2	4,1	4,2	4,1
50	4,3	4,2	4,1	4,0	4,1	4,0
60	4,2	4,1	4,0	4,0	4,1	4,0
70	4,1	4,0	4,0	3,9	4,0	3,9
80	4,0	3,9	3,9	3,9	4,0	3,9
90	3,9	3,8	3,9	3,8	3,9	3,8
100	3,8	3,7	3,8	3,8	3,9	
110	3,7	3,7	3,8	3,7	3,8	
120	3,6	3,6	3,7	3,7		
130	3,5	3,6	3,7	3,6		
140	3,4	3,5	3,6			
150	3,3	3,5				
160	3,2	3,4				
170	3,2					
180	3,1					
190	3,1					
200	3,0					
210	3,0					
220	3,0					
230	3,0					

Tab. TZ.16". Wpływ dawki polielektrolitów Ad1+Ad2 na wysokość powierzchni rozdziału faz (osad, woda nadosadowa) w procesie zageszczania osadu o $W_0 = 99.37$ % (KIII)

Rys. KZ.16". Wpływ dawki polielektrolitów Ad1+Ad2 na przebieg zagęszczania osadu o W₀ = 99,37 % (KIII)

Szanownej Pani Profesor Marii Świderskiej-Bróż składam serdeczne podziękowania za trud włożony w merytoryczne ukierunkowanie mojej pracy, czas poświęcony przy jej realizacji, cenne wskazówki oraz wyrozumiałość i cierpliwość