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PREFACE.

WHEN the Syndics of the University Press did me the unexpected

honour of proposing to reprint such of my scientific papers as I should
select, they advised me to lean, in doubtful cases, rather to the side of
comprehension than to that of exclusion. The selection has given me
considerable anxiety, for (even after the numerous polemical items had, of
course, been set aside) the doubtful cases formed a large majority.

Since I took my degree the greater part of my time has been spent
in teaching and its necessary concomitants. The rest, except in so far as
it was devoted to the preparation of text-books, has been occupied rather
with fresh mathematical or experimental inquiries than in fully “writing out”
the results of earlier ones. Thus the present collection presents a very
irregular aspect :—a few only of the papers giving anything like full details,
while the remainder are often of the most fragmentary character, being in
many cases no more than very condernged abstracts.

Among the more detailedypapers.are the earlier of those in which
quaternions are employed. These were written while I was endeavouring
to familiarise myself with the fiew calculus, and were, in great part, worked
out before I had any communication with Sir W. R. Hamilton except
through his Lectures ( 1853) ; a fascinating book, which, by great good fortune,
I had taken with me on a vacation tour as a companion for wet days.
When I made Hamilton’s acquaintance a year or two later, through
Dr Andrews, I submitted to him some of the more formidable difficulties
which I had met in the study of his great work, and the hints I thus
obtained were of much use to me in finally preparing these papers for
publication. As they received a cordial imprimatur from Hamilton, with
a notice™ recommending them to the attention of students of the subject,
I had no hesitation in deciding to reprint them in the present collection.

* Elements of Quaternions, 1866; p. 755 (foot-note).
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But I feel that this explanation of their second appearance is called for,
as their contents are mainly, as it were, a translation of other men’s
investigations into a vastly superior (though at the time they were written
an all-but-unknown) language, not an incursion into unexplored regions of
physics. And, when I wrote them, my practical acquaintance with the
extraordinary resources and flexibility of the new language was still very
limited.

I have not reprinted any papers which are not exclusively my own.
Those in which I was associated with Dr Andrews have already been
reprinted in his Izfe (Macmillan, 1889). But the titles of all such joint
productions, along with slight indications of the nature of their contents,
will be given in a supplementary list, containing references to nearly all
but the most ephemeral of my scientific articles.

Several of the papers in the present collection have already been in
part reprinted in text-books, such as my Quaternions, Properties of Matter,
&c. On the other hand, some of these books (especially Dynamics of a
Particle, which I wrote in conjunction with the late Mr W. J. Steele)
contain a considerable amount of original work which was not laid before any
scientific Society. No part of that has been reproduced in this collection,
mainly because the books containing it have already passed through several
editions. I was much inclined, however, to make some extracts from the
last named work, such as for instance my proof (the first, I believe, which
was given) of Hamilton’s Theorem of Hodographic Isochronism, and some
similar investigations. These would have taken the first place in the present
volume, for the order of the various articles has been determined, as a rule,
by their dates. The sole exception is in the cases where there is a series
of articles on one subject, such as that which deals with Awnots. The earliest
(reprinted) paper of such a series is inserted at its proper place, and the
others (each provided with its special date) follow immediately in their
own relative order.

In preparing the collection for press I have simply rectified obvious slips
or exaggerations, and printers’ errors. Of these by far the most serious have
evidently been caused by careless replacement of types which had fallen
out during printing. On the other hand, all material alterations, however
slight, have been indicated by the use of square brackets, [contaiming the
date of the change]. Under the head of obvious slips I include some of the
choice expressions current in Cambridge in my undergraduate days:—such as
“welocity” for “speed,” the ‘“equation to a curve,” the “center of a circle,”
and the doubly-dyed *center of grawity.” The [ _ notation for factorials,
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much in vogue in those days, has been replaced by the ! ; and the very
useful “solidus” has been called in where required.

Several of the more condensed Abstracts have been reprinted although
they contain, as bare statements without detail of processes, results which
have not yet been tested by subsequent verification :—one or two even
contain speculations which have been shown by myself to be inaccurate as
they at present stand. But these take up little space; and No. XIV,
for instance, which is one of the latter and less defensible class, shows
how 1 was led to make the protracted experimental inquiries which are
described in detail in Nos. XXVIII, XXIX, and XLVIII. It has, on this
account, still a very special interest for myself:—and there seems to be
no doubt that it contains at least the germs of an important truth, which
I have not as yet succeeded in putting in an unexceptionable form.

My special thanks are due to the Council of the Royal Society of
Edinburgh, and to Sir John Murray of the Challenger Expedition, not
alone for permission to reprint the papers which form the bulk of the
present collection but for the loan of the large number of wood-blocks
employed in their illustration.

Also to Drs C. G. Knott and W. Peddie, former and present Official
Assistants to the Professor of Natural Philosophy in Edinburgh University,
both adepts in Quaternions as well as in Physics, for the assistance which
they have given me in the reading of the proof-sheets.

P 1ALL

CoLLEGE, EDINBURGH,
July 1st, 1898.






1L

III.

IV,

Vi

VIL

CONTENTS.

PAGE
Quaternion investigations connected with Fresnel's wave-surfoce 1
Quarterly Mathematical Journal, 1859,

Note on the Cartesian equatioﬁ of the wawve-surface . : : 20
Quarterly Journal of Pure and Applied Mathematics, 1859.

Quaternion investigations conmected with electro-dynamics and

magnetism 22
Quarterly Journal of Mathematics, 1860.
Quaternion investigation of the potential of « closed circuit . 33

Quarterly Journal of Mathematics, 1860,

Note on a modification of the apparatus employed for omne of
Ampere's fundamental experiments in electrodynamics . ] 35

Proceedings of the Royal Society of Edinburgh, 1861.

Formule connected with small continuous displacements of the
particles of a medium . : : : : ; : : 37

Proceedings of the Royal Society of Edinburgh, 1862.

Note on a quaternion transformation : / . . . 43
Proceedings of the Royal Society of Edinburgh, 1863.



VIIIL.

IX.

XT.

XIL

XIII.

XIV.

b8

XVL

XVIL

XVIII.

CONTENTS,

On the low of frequency of error.
Transactions of the Royal Society of Edinburgh, Vol. xxiv,, 1865,

On the application of Hamilton's characteristic function to
special cases of constraint : ; ¢
Transactions of the Royal Society of Edinburgh, Vol. xxiv., 1865.

Note on the reality of the roots of the symbolical cubic
which expresses the properties of a self-conjugate linear
and wvector function . : : '

Proceedings of the Royal Society of Edmburgh 1867.

Note on a celebrated geometrical problem .
Proceedings of the Royal Society of Edinburgh, 1867.

Note on the hodograph :
Proceedings of the Royal Society of Edmburgh 1867.

Physical proof that the geometric mean of any number of
positive quantities 1s less than the arithmetic mean .

Proceedings of the Royal Society of Edinburgh, 1868.

On the dissipation of energy ;
Proceedings of the Royal Society of Edinburgh, 1868,

On the rotation of a rigid body about a fiwed point
Transactions of the Royal Society of Edinburgh, Vol. xxv., 1868.

Note on electrolytic polarization . .
Proceedings of the Royal Society of Edznburgh 1869,

On the steady motion of amn wncompressible fluid wn two
dvmensions . ; - . : ;
Proceedings of the Royal Society of Edinburgh, 1870,

On the most general motion of an incompressible fluid
Proceedings of the Royal Society of Edinburgh, 1870.

PAGE

47

54

74

76

78

83

84

86

128

132

134




XIX.

XX.

XXI.

XXII,

XXTIT.

XXIV.

XXV,

XXVL

XXVIL

XXVIIIL

XXIX.

XXX.

CONTENTS.

On Green's and other allied theorems . 7 )
Transactions of the Royal Society of Edinburgh, Vol. xxvi,, 1870.

Note on linear partial differential equations
Proceedings of the Royal Society of Edinburgh, 1870.

Note on linear differential equations in quaternions
Proceedings of the Royal Society of Edinburgh, 1870.

On some quaternion integrals. Parts 1. and I1.
Proceedings of the Royal Society of Edinburgh, 1870.

Address to Section A of the British Association
British Association Report, Edinburgh, 1871.

Note on a singular property of the retina .
Proceedings of the Royal Society of Edinburgh, 1872.

On orthogonal isothermal surfaces. Part I

Transactions of the Royal Society of Edinburgh, read 1866; revised
and improved, 1872.

Note on the strain-function :
Proceedings of the Royal Society of Edinburgh, 187"

On a question of arrangement and probabilities
Proceedings of the Royal Society of Edinburgh, 1873.

Thermo-electricity

Abstract of the Rede Lecture delivered in the Senate House, Cam-
bridge, 1873. Nature, Vol. vIIiL

Furst approximation to a thermo-electric diagram

Transactions of the Royal Society of Edinburgh, Vol. xxvir., 1873.
(Plates I, II, IIL.)

Note on the transformation of double and triple integrals.
Proceedings of the Royal Society of Edinburgh, 1873.

x1

PAGE

136

151

153

159

164

174

176

194

199

206

218

234



xii

XXXI.

XXXII.
XXXIIL

XXXIV.

XXXV,

XXXVI.

XXXVIL

XXXVIIL

XXXIX.

XL.

CONTENTS.

Note on the various possible expressions for the force
exerted by an element of one lLinear conductor on am
element of amother .

Proceedings of the Royal Society of Edinburgh, 1873.

On a singular theorem gien by Abel
Proceedings of the Royal Society of Edinburgh, 1874.

On a fundamental principle in statics ¢
Proceedings of the Royal Society of Edinburgh, 1874.

On the application of Sir W. Thomson's dead-beat arrange-
ment to chemical balances . ; : e

Proceedings of the Royal Society of Edinburgh, 1875,

On the linear differential equation of the second order
Proceedings of the Royal Society of Edinburgh, 1876.

On a possible wnfluence of magnetism on the absorption
of light, and some correlated subjects .
Proceedings of the Royal Society of Edinburgh, 1876.

Force

Evening Lecture at British Association (Glasgow Meeting).
Nature, 1876.

Some elementary properties of closed plane curves
Messenger of Mathematics, New Series, No. 69. 1876.

On Knots .

Transactions of the Royal Society of Edinburgh, 1876-7.
Revised 1877. (Plates IV, V.)

On Knots. Part 11,

Transactions of the Royal Society of Edinburgh, Vol. xxxii.,
1884. (Plate VI.)

PAGE

237

245

247

249

250

255

256

270

273

318




XLI.

XLIL

XLIII

XLIV.

XLV.

XLVL

XLVIL

XLVIII.

XLIX.

LI

CONTENTS.

On Knots. Part I11.

Transactions of the Royal Society of Edinburgh, 1885. (Plates
VII, VIII, IX.)

Note on the effect of heat on infusible tmpalpable powders
Proceedings of the Royal Society of Edinburgh, 1877.

Note on an wlentaity . .
Proceedings of the Royal Society of Ed]nburgh 1877.

Note on wvector conditions of integrability .
Proceedings of the Royal Society of HEdinburgh, 1877.

Note on a geometrical theorem . :
Proceedings of the Royal Society of Edinburgh, 1878.

Note on the surface of a body in terms of a wvolume
wntegral .

Proceedlngs of the Royal Society of Edmburgh 1878.

Note on the strength of the currents 'regu‘ired to work a
telephone ;

Proceedings of the Royal Society of Edinburgh, 1878.

Thermal and electric conductivity

Transactions of the Royal Society of Edinburgh, Vol. xxviiL.
1878.

Note on electrolytic conduction . . A
Proceedings of the Royal Society of Edinburgh, 1878.

Note on o mode of producing sounds of very great intensity
Proceedings of the Royal Society of Edinburgh, 1878.

Obituary notice of James Clerk-Mazwell .
Proceedings of the Royal Society of Edinburgh, 1879.

X111

PAGE

335

348

349

3562

357

360

361

363

393

394

396



Xiv

LIIL

LIIIL.

LIV.

LV.

LVL

LVII.

LVIIL

LIX.

LX.

CONTENTS.

Mathematical notes

Proceedings of the Royal Society of Edinburgh, 1880.

Note on the theory of the 15 puzle .

Proceedings of the Royal Society of Edinburgh, 1880.

Note on a theorem in geometry of position

. .

Transactions of the Royal Society of Edinburgh, 1880. (Plate X.)

On Minding's theorem

Transactions of the Royal Society of Edinburgh, 1880.

A rotatory polarization spectroscope of great dispersion

Nature, Vol. xxi1., 1880.

Note on a singular problem in kinetics.

Proceedings of the Royal Society of Edinburgh, 1881.

On marage

Transactions of the Royal Society of Edinburgh, Vol. xxx., 1881.

(Plate XI.)

Solar chemistry .
Nature, Vol. xx1v., 1881.

The pressure errors of the Challenger thermometers

Challenger Narrative, Vol. 11, Appendix A.

1881.

(Plate XII.)

.

PAGE

402

406

408

412

423

425

427

454

457




17

QUATERNION INVESTIGATIONS CONNECTED WITH
FRESNEL'S WAVE-SURFACE.

[Quarterly Journal of Mathematics, May, 1859.]

1. TrouGH the following investigation of various equations and properties of
Fresnel's Wave-Surface is my own, I must premise that I owe much besides the
Caleulus employed to Sir W. R. Hamilton. I was induced to attack the question
by a passage in his Lectures (p. 687) which, he has since informed me, referred
principally to the [;, «] equation (28) of which he had long been in possession,
and at which I had recently arrived independently. The application to this question
of the separable symbol of operation of his VIIth Lecture, and the very elegant
symbolical equation of the wave (39) deduced by its use, were recently communicated
by him to the Royal Irish Academy.

Much of the work might have been considerably shortened, such for instance as
that in Art. [12], where the system of equations giving the wave by its tangent
plane is changed to another giving it by points. But these original methods have
been preserved, partly from a fear of unconsciously borrowing from MS. investigations
which Sir W. R. Hamilton has lately communicated to me, and partly because, as
they stand, they introduce a good many equations whose interpretation is not without
interest. 1 have not carried the inquiry in any case farther than the immediate
interpretation of the various equations. Particulars, such as the directions of vibration
at the cusps and along the ridges, for instance, can be easily deduced without
analysis from the general results. I reserve for another occasion simple quaternion
solutions of some interesting problems connected with the passage of light through
doubly-refracting media.

As to the Calculus of Quaternions in general, I must remark, though I have
only very recently taken it up, that it appears to me to possess in a marvellous
T 1
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degree the attributes of simplicity and suggestiveness. The treatment of the wave-
surface is perhaps not a question in which its superiority over Cartesian methods is
at once so marked, as it is in all cases where no direction in space is regarded as
preeminent. Still it is worthy of notice that the three directions of the axes of
elasticity may be at once reduced to ftwo reference lines (the wave, or the ray, axes)
and a still farther reduction obtained by the introduction of a certain linear and
~ vector operation. Kquations (») and those in 17, 23, and 24 below, belonging to the
Ellipsoids, Fresnel’s Surface of Elasticity, and the Wave, are striking instances of such
simplification.

A few quaternion results, which will be useful in the subsequent transformations,
may first be noticed.

2. If the vector semiaxes of an ellipsoid be ai, bj, ck (where ¢, j, k are the
quaternion rectangular vector units), its equation is

(Sip)y | (Sje) | (Skp)* _
S s e = et e R e (a),

which is in fact the same as the Cartesian equation

But Sir W. R. Hamilton (Quaternions, p. 467) has shown that it may also be

presented in the form
T(p+pr)=x—1,

wher il a+c (a®— bﬂ) V(b = ¢) ;
= & ag “/(w : :\) {/(ae b) . ¢(bf. ¢ } """""""""""""" (8),
& oval (Er-+c){ a,. ey k}

supposing @>b>c. ¢ and x are thus vectors perpendicular to the planes of the circular
sections of (a).

It is easy to show by actual substitution that with the above values of o, «,

we have identically
(Sio)* (bJp)”‘ (Skp)* _ 1" (sp + pre)
e ¢ (x® = 22y

If we have a reciprocal ellipsoid, whose vector semiaxes are i/a, j/b, k/c, its equation

is one of the following :

. 1‘2
a* (Sip) + b* (Sjp) + ¢* (Skpy = * (S“P +,g: ) Pl e Ran sty s (9),

where the first equality is an identity, and ¢, «" are what ¢ x become when in (B),
1/a, 1/b, 1/c are put for a, b, ¢ respectively.




L] CONNECTED WITH FRESNEL'S WAVE-SURFACE. 3

If we differentiate (y), we get

Sip Sip” | SjpSje” | Sko Skp” _ 8 (op T.Efl(.i‘ﬂ)]
aﬂ bﬂ cs (x:' %, LB)"' , (G)
_ S(p" +p'%) (pt + xp)
# (2 — ) J

which also is an identity, whatever be p and p’.

A similar expression may of course be derived from (8). And they may be

4

verified by actual substitution of the values of ¢ &, or ¢, &’

It is easy from equations (B) to show that
T+ T =1 (a* + ¢,
k' — i = ac,

21Tk = 4 (a® — ¢),
T(—x)= % ;
T. Vuc = ;;? \.r!({[,ﬂ o bn) v(bg L 02),

formulae which we shall afterwards employ to interpret certain quaternion expressions.

3. Another very useful form of the equations of these ellipsoids is found thus.
Let @ be any vector, and let

0 or ¢ = — aiSi6 — bjSj6 — ckSko.

Then evidently — @=g% =—a%%i0 — bS8 — ciSko
i e o v 3
8= ¢-10=— " isif — &, and so on.|

And we see that (a) and (8) take the very simple forms

| cpml e T¢’"P=1} ............... ().
i Too1 or Tgp | o1f v

These functions are possessed of the following general and useful property, 6 and
Y being any two vectors:

8.09 = 8.¢m0¢m =809 =S . P01 ..o S
rq

m

if m +n=p+q, where m, n, p, and ¢ may be any real quantities whatever.
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Hence, for example, .0y =S.0¢=S.0¢=24. 5\_& =&c. Another such property is
S.000 = Si68j0Ske | a™ b™ ¢™

map
a ot o
a? b? ¢¥
In this notation —¢~* is Sir W, R. Hamilton’s linear and vector function (Quaternions,
p. 480).
4. If f(p)=0 be the scalar equation of a surface, containing as an arbitrary
constant a vector a which satisfies the equation

at=—1,

it 18 required to find the envelope of f(p)=0 éubject to the variation of a.

Let Svda =0
be the derived equation of f(p)=0, supposing a alone to vary, then we have also
Sade = 0,

and as da is indeterminate these two equations give

| s e I R R e R ).

This vector equation is equivalent to fwo scalar equations, and these, combined with
f(p)=0 and a*+1=0, will theoretically be sufficient to eliminate the three indeter-
minate scalars involved in @, and so to give F(p)=0, the required equation of the
envelope. This corresponds in ordinary Geometry of Three Dimensions to the finding
the envelope of a series of surfaces whose common equation involves two arbitrary
constants; since a, with the condition T« =1, contains only two indeterminates.

5. Assuming then, in a biaxal crystal, the existence of three mutually perpen-
dicular axes of elasticity (Griffin’s T'ract, pp. 3, 4), take 4, j, £ in their directions,
and let a particle of ether be displaced in the direction of =, where

We have therefore =) e L e e (3).

The force of restitution called into play is

£ (%8iw + bYSjw + CShT) = — 1B ©everrririrerinriinanns (4),

and the resolved part of this perpendicular to = must be, on Fresnel's hypothesis,
. perpendicular to the wave-front or || a.
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Hence w1 (a*VieSie + b*VjwSje + ¢ VieSks) | a,

or @ iwSiwa + BjwSiwa + FheShwa=0.......coone.iirriererns ),

or, by (e), 8. (Vwa + wak’) (wi + £'w) =0,

or D RN R ey S (6),

or, by (3) or (5), Bl O i (6.

These cones of the second order (6) and (6') are cut by (3) in two common
generating lines; and, if & be one of these, the form of the equations shows that
wa is the other. Hence, Jor any given wave-front there are two directions of wibra-
tion perpendicular to each other.

6. By (6) S. wi/war’=0.

Hence a, «, and =/w are coplanar, and as = +a it is equally inclined to Via
and Vi'a,

For if I’ K’, and A be the projections of ¢, «’, @ on the unit-sphere, BC the
great circle whose pole is A (AI'C’ and AK'B being arcs of great circles), we are

to find for the projections of the values of @ on the sphere points P and P’, such
that if I'P be produced till @:If’}), Q may lie in AK’. Hence, evidently, CP=PB
or ("P'=P'B, which proves the above, since the projections of Via and Vk'a on the
sphere are points b and ¢ in BC, 90° distant from C and B respectively.

7. Or thus Swa =0,
S.oV.a'or=0;
. therefore aw=V.aV.a'wx' (Where x is a scalar)
=V.aV.aViwx'

=—ViewK —aS.aViwk';
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therefore Sk —2)w = (V' + aSia) Sk'm + (¢ + aSk'a) St w.
Operate by Si' and we obtain
(z + SdaSk'a) Si'w = {*a* — (Sd'a)*} Sk'=w
=T1"Vi'a Sk'w.
Hence, by symmetry,
Sx’ﬁ_r TV = Si'w

St Sk’ &

Siw  Skw
TViat TVea ="

T Vk'a,

or

g v R0, e
8. = (gpza t Fiva) = ©
and as Swa =0,

sl (UVia & URR Y roiscnevnsivinsavsssrvnnsiniotios (7).

The planes of polarization, therefore (whose normals on Fresnel’s hypothesis are o
and wa respectively), bisect the angles contained by planes passing through the normal
to the wave-front and the optic axes (¢, «').

8. The force of restitution (4) resolved along the direction of displacement is
te™ {a® (Sim)* + b (§jw)* + ¢ (Skw)?],
or —tw [0 (Siw)* + ...} = tow®
Hence the normal velocity of propagation is
0= {8 (G + .o} = (= O T (Vo + w) = T, Sty
But I"(w+wk)=({—k) o'+ 48/ Sk'=

B s v
_-_(‘_x)+(T¥S).V¢’an'abY(7)'

But ("= 8. ViaVka=— V2. ViaVi'a= (8. /k'a);
therefore e+ o)== —=PF2(T+8). ViaVittu.ooovviiiinnninnnn, 9).

Hence, if v? »’ be the squares of the velocities of the two waves whose vibrations
are perpendicular to a,
n=vt=4"— )2 T. ViaVia
- L . L
o sin Jasin &'
Or, the difference of the squares of the velocities of the two waves varies as the product
of the sines of the angles between the normal to the wave-front and the optic axes (¢, «').
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9. For the tangent plane to the wave-surface of Fresnel, we have therefore
Sop=—v=—(k"=)"T(Vw+wx)=—Tw (10)]
w=U(UVia + UVk'a) (D }-
P=—1 @)
From (10) and (7) we might eliminate o, and so reduce the determination of the

required equation to an application of the method of 4. But, as this process would
lead to results of considerable complexity, it is advisable to take a different course.

10. It is easy to form directly the equation of the reciprocal of the wave-
surface, or the surface of normal slowness.

For the length of the perpendicular from the origin on the tangent plane to
Fresnel’s wave is, by (10), (8),

(k2= ) T (Vo + wK’).

Therefore, if p be the vector of the point in the surface of normal slowness which
corresponds to the tangent plane (10) to the wave,

srasleleill o ee e s S NI 1),
QITP == e T L m L BTR) seiiiisieons onniiadiiasiias (12),
or, by (9), i‘an._1 =(k2= ) = (=K PF2(T+8). ViaViaj.
Hence (K== —kPpF2(T+8). VipVkp

(or, by an obvious transformation,)
=S =) pP+(TVip F ITVEPP . cvveevriiiniiinnnns (13).

We shall leave this result in the meantime, in order to obtain the equation of
this surface in a form independent of the (¢, #') transformation.

11. By the help of 3, it is evident that, since by (3) wa is a vector, (5) may
be written thus
S.@ma=0 ccociiiiiiiiiiiin (14).

Hence the equations for determining that of the surface of normal slowness may be
written, remembering (10), (11), and (12),

Swp =0
R i (15),
To =1

from which it is required to eliminate . This we might now proceed to. do, but it
seems preferable to form for the wave-surface itself the equations corresponding to (15),
and we shall thus perform the elimination for both surfaces at once.
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12. With the present notation the equations, of the tangeint plane to the wave,
and the conditions, are

Sap =—T=w (10)

Swa =0 (3) ’
D.mewsel (Bl or ML (16).
B e g oy
it o
Hence if a=da, = =dw,
Sdw =-8z'a
S.a’gw=—Sw'g_q-—-S.m"ng» :
Selat =0
therefore «S.waVew = — o' Saw
=—wal. o'wa — wal.w'aw - (V.aVeeSo'a =) wSawSw'a
But, by (10), So'p = ft'}g S='wm,
and, by (1), S&'=m = 0.
Hence, by (1), # being a scalar,
ow = Saw — {wa + Vaw} S.wap — aSwpSaw ..cooovvnnnnnnn.. (17)
Operate by S.wa Om~ 8. wrap {mad— W) ©iiiiiiinirnncnmonsansrnisnmnnernss (18).
Hence, generally, Somggr=0 L L TN B0 R (19).
Attending to (19), and operating on (17) by S.w and S.a,
z = TwSaw
plilnficn Sﬁp} .................................... (20).
And (17) becomes - »Tw = Tj‘r; oL TSI R TR AN D S (21).
Operating on (21) by S.p, S.pa, and S.wp separately, we obtain
10 s Rt SNSRI e Do (22),
Soamran S UR s s vy s b s SR (23),
Simitp =0 sisiae R s claiaanies waaihvatien (24)

From (22) and (23)
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Operate by S.a

yI's = I"Vaw.
............... S.=
ySwp=—y S;E (by (20))=— I*=mSam;
therefore y=1"w,
and Tw=TVaw;
therefore Telp=TalVow,
or T o I o el (25).

Put now for simplicity

therefore w =0l J .................................... (26).

and o=l

And our system of equations, freed from differentials, becomes,

from (22), R
24 e I
(24), T N U R GRS G (27).
(26), e

(26) and (25), ko b

A glance at (27) and (15) shows that the equation of the Wave-Surface differs
from that of the surface of normal slowness merely by the substitution of (7) for (), &c,
or of 1/a, 1/b, 1/¢ for a, b, ¢ respectively; and hence, by (13), one form of the equation
of the Wave-Surface is

(=P ={8U—=k)pl*+ (TVip F TVep)l..ovivriiniiiiiinnn (28).

13. We may obtain another form, which corresponds to the ordinary Cartesian
equation, in the following manner :

By (27) L8 T R R e (29),
where » is a scalar,
= pSap — wp’.
Operate by S.e uw® = (S&T}p)“ — @’p?
= V*ap.
But by (29) w=p*Tawp

=up’e* =u by (27).
Hence, =1 and

T : 9
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Operate by S.¢
Siw = Sip Sap — p*Siw.

e e
But ‘*'=a;‘ by (£);

therefore (1 7 52) S = Sio 8,
and similarly with j and £.
Multiplying by Sip, Sjp, and Skp respectively, and remembering that

SipSiw + SjpSjw + Skp Ske =— Spw = 0
by (27), we have

a* (Sip)? % b* (Sjp) 7 ¢t (Skp)* 0
a’+p’ bﬂ+p¥ cs+P2 e
which in Cartesian coordinates is, at once,
aat b c2®
d’ — 0 -+ syg + 3

R 4
(where 7* =a? + 3* + 2°) the well-known form.

It is evident that from (15) we might have deduced for the surface of normal
slowness an auxiliary equation similar to (30), viz

and thence found for the equation of that surface

A L S i SR R S (31").

1' &4 a“p’ =y b’p"‘ 1% c-.;Pn i

14. It may be interesting to effect the elimination of @ between (30) and the
first equation in (27) without employing directly 4, j, & or ¢ x For this purpose
operate on (30) by S.p and S.p successively, and we obtain

So (p — pSpp + Fp) =0
Sm(g— pp* +ppH)=0}.

Also Swp =0
Hence S.p (p—pSpp +pp*) (p— pp* +pp*) = 0,
or S.ppp —p*S . ppp — SppS . ppp + p*S . ppp — p°p*S . PP =0 ..o (32),

which, by the formule in 3, is easily reduced to Fresnel's original form
(@ + 4 + 2°) (a%2® -+ b + ¢22%) — @ (b* + %) & — b (¢® + @) i — ¢ (a* + b°) 2 + @b = 0,
if we put Sip=—a, &c. and note that

S’pﬁﬁ=(a+b)(b+c)(c+a).
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15. Fresnel's construction of the Wave by points.

By (27) S.owp = 0.
This is equivalent to
Se'@ =0
So'w=0
Se’p =0

Now these are the equations we should find if we were to make Tw a maximum
~ or minimum under the two conditions 7@ =1 and Swp =0, p being supposed constant,
te. to find the greatest and least radii vectores of a diametral section of the ellipsoid
To=1 made by the plane Swp=0. Combining this with the two last equations of .
(27) we see that if the ellipsoid, whose semiawes are a, b, ¢, be constructed, and if
through its centre perpendiculars be drawn to each diametral section, and their lengths
be made equal to the semiawes of the section, the locus of their ewtremities is the Wave.

And it is obvious from (15) that the surface of normal slowness may be constructed
in the same manner from the ellipsoid 7w =1 whose semiaxes are 1/a, 1/b, 1/c.

16. These ellipsoids are reciprocal. This is easily seen thus: T@=1; therefore
S@w’ =0, and hence the normal » =a&. Operate by Sw

Sov=1=aS0e =c0*=—;
therefore S e s R i (B SRa HT ().
Hence for the reciprocal surface
T=0;
whence T=0;
and therefore a’=w'=—1,
or Te=1.

17. Fresnel's surface of elasticity is constructed by taking on each vector from
the origin a portion proportional to the square root of the resolved part of the force
of restitution corresponding to a given displacement parallel to the vector.

If then p be a vector of this surface, evidently

Tp=T.Up,
or T*p =Tp,
or finally Ll s b oionpiansaisnesss spsibas s (v).

Comparing this with Tw=1, it is clear that condirectional radii of the surface
of elasticity and of this ellipsoid are reciprocal in length, which gives one means of
constructing the former.

2—2
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It is known also to be the locus of the foot of the perpendicular from the centre
on the tangent plane to the other ellipsoid Tw=1. In fact by () v in the latter

8 —@;

therefore vi=(—w)'=p of the required locus,
or pl=—w;

therefore (") =-o,

and T(p~") =1 as before.

The locus of the foot of the perpendicular from the centre on the tangent plane
to Tw=1 may similarly be shown to have the equation T (p~)=1, and to have with
Tw =1 condirectional radii of reciprocal lengths,

18. It may be proper to give the interpretations of some of the equations
noticed incidentally in these processes,

(14) for instance shows that @ - ma or that ma - = ; that is, the force of restitution
Jor either direction of displacement in a plane front s perpendicular to the other
direction ; or, interpreting it directly, the force of restitution, the direction of displace-
ment, and the normal to the front are coplanar; which latter is, however, only another
way of expressing the condition from which (14) or (5) was obtained.

(19) shows that the ray, the normal to the front, and the direction of wvibration
are coplanar, or, the direction of wibration s the projection of the ray on the wave-front.
(23) throws the force of restitution into the same plane.

(20) shows that the part of the force of restitution which s perpendicular to the
wave-front is the product of the wave-velocity, and the projection of the ray-velocity on
the wave-front.

This is included in the two following which are given at once by (22) and (25).
The direction of ray-propagation is perpendicular to the force of restitution.
That force is proportional to the product of the ray-, and wave-, velocities.

19. The form (28) of the equation of the wave is well adapted for the exhibition
of the cusps and ridges on which conical refraction depends.

If we suppose for instance
o S i R e RN I N (33),

(28) gives at once
i =y =B e = f i e e e e (34),

or, the wave surface intersects the cone (33) in two coincident curves on each of the
parallel planes (34), which latter therefore touch the wave along those curves. That
the curves are circles will be seen by putting (33) in the form

(F =) 0P == (BRD ) = (BN srovrvorsevmmormmmbonssibininiaty (33"),
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whence, by (34),
e T s (U 1 e R S SRR S e (34,

the equations of two spheres passing through the centre of the wave, on which also
lie the curves in question.

Taking the lower sign,
t+K\ pitx
T(p = T) =T _'_2 3

e 0.
2

~8(—=x)(t+K)=r—"¢,

. 0 . . . L K
and therefore the vector of its centre is + - , and its radius is 7' _j;—— Also, as

the plane (34) (lower sign) passes through the other extremity of the diameter drawn
from the centre of the wave. Hence diameter of circular ridge on wave

=TV.(t+ ) U(t—-x)
B Vew, o
T T(G—-x) {
_V(@ =)y —¢)

= b e (35).

by 2}

Also (33") may be put in the form
S+r)p8(t—rk)p=—(k—2)p,
showing that the cyclic normals of the internal cone are ¢+« and ¢—« These are
also evidently sides of the cone. And it is to be noticed that ¢—«|/¢ one of the
optic axes or lines of single wave-velocity.
The angle of the cone in the plane of ¢, « is evidently

cosT . (=S U(=x) U@+ x)}

= o r = 2
= b :
=COo8 . \/‘j{b—z-(m H

which may be verified by noting that the optic axis of length b is the cyclic
normal and terminates in the circular ridge. Hence, angle of cone in plane of ¢ « is

V(e =) /(b= ¢*)
B by (35),

tan—'.

which agrees with the above.

20. If in (28) we suppose p to coincide in direction with ¢ or x we find only
one value of Tp. U, and Uk are therefore the lines of single ray-velocity. It is
sufﬁcien_t to consider one of them. Let therefore

po=als
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Then (k2 — )2 =2a® {S% L ™ U;}

= % {(¢* — Sw)* = V)

=—a*(* — 28wk + ),

R’ = : i .
or r= {7 (taking the positive sign),
K-
and therefore =T x) Us=bU. {by 2}.

To study the nature of the surface near the extremity of this vector put
p=p;+ @.
Substituting in (28), and keeping only terms which contain the first power of 7=
(thus supposing 7w to be indefinitely small), we have easily
(=S +)Srw—8km FIVikTVir=0 ..coeevvvinvnvnnnnns (36),

which is evidently the equation of a cone of the second order.

For the sides of this cone, which lie in the plane of ¢ «, we see at once that
Ve is one, and corresponds to the upper sign. Assume for the other w:+ ¢Vie and

we find
27V ik

T G-«

The angle of the cone (in ¢, «) is therefore

o=

cos 1. S.U (V) U |:e Ve {sz% -+ 1}:|

= cos™!, {:—S. U{ 2 Vin + IH

T (v — k)

el

—ac
= ¢os™1, W) {by, 2}

Equation (36) being written for a moment

it is required to find the equation of the complementary cone, or that whose sides
are perpendicular to the tangent planes to the former.

(36°) may be written
S8z + S = fw?;

therefore S’ (888w + uStw — we*) = 0.
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Hence zw= 898w + Siw —w* or 888w —:Viw is a side of the new cone, as it is
obviously perpendicular to = and to .

Therefore 28w = S8 Séw ;
S
or Sbw=a ;_b% :
Siew :
so that ¢V5w=m<3sTsum),

therefore by (36')
SwwSw (¢ — &) + 2888} — 0*S%8 =0,

which, if we notice that

gk LA —K)
B
i b
and - O= RV
it is not difficult to reduce to
StwS {(#+ £2) ¢ — 268} 0 — T3 (1= ) =0 cevivviniiininnnnnns (37),

of which + and (24 &%)¢ -2« are the cyclic normals. These lines. are eviden'tly
perpendicular to the tangents at the cusp to the circle and ellipse in the section
of the wave by the plane of (i, «), since

S.eeVie=0,
] 3 [
and S {:. Vie — 2¢ T%} (e + &) e =20} =0.

21. The process in 20 gives the four cusps on the wave, but that in 19 gives
only two of the circular ridges. The others however are easily found by the con-
sideration that the ellipsoid equation, and analogously that of the wave-surface, retains
its form if the tensors of « and « be interchanged but their versors preserved.

22. To find surfaces whose intersections with the wave touch the lines of vibration.

Let p’ be the tangential vector to such a curve of intersection, then
pll=ll@ by (26).
But Spw =0 by (27);
therefore Spg’ =0,

whose integral is evidently
TE = 0,

a set of ellipsoids concentric with, similar and similarly situated to, Tw =1, that from
which the index-surface was constructed.
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22. To find surfaces whose intersections with the wave cut the lines of wvibration
at right angles.

Here evidently

P wa.
But Swoap=0;
therefore Spp’' =0,
or <15 PR AR S R SN R e (38).

This is the equation of a set of spheres about the origin as centre, and we shall find
presently that their curves of intersection with the wave are spherical conics.

23. As before
o = pSwp — wp* (30),
or (¢* + p*) @ = pSwp.
Operate by S.p(¢*+ p*)* and we have at once
T g iy B S R R e S RN S R (39),

the symbolical equation of the wave-surface, already referred to.

24. This may be put in the following forms:
S +p)tp(@+p)tp=1,

or T +p)tp=w(-1),
2
or p*Sp gﬂ_—ps p=1,
that is p~2Sp g ;—f_’: ;# p=1,
whence Sp j’f L (40),
P +p
and ﬁnally T el i i e L A R B (41)
V(¢ +p?) :

If we seek the intersection of the wave with the concentric sphere (38), we find at
once, by (39),
Sp (= () p=1,

a central surface of the second order, generally an hyperboloid, or
Sp(C—¢* - 1)~ p=—p?,

the equation of a cone of the second order.
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25. Writing (39) in the form

Sper=d . ahaan st bt s IR S (42),

we have o= (¢ +p*)p,
or T o o L N SR R S e (43).
Differentiating, S (pa’ + p'o) =0,
and P =(¢*+p*) o’ + 208pp’;
therefore o= oo — Balaa )l i i caneaias (44),
and So (p’ — 208pp’) + Sp'e =0,
or PO e RO T ) v s s han s s s Sk e (43),
and if » be the reciprocal of the vector perpendicular on the tangent plane, let

o a5 g 5 AP e SR S SR (46) ;
we have 2Spy =z =1 — p*c* = Vpo;
therefore i U e SRR T S S e G S S (47).
Hence Sve = O}
and S.vpo=0

which show, first that ¢ is in the tangent plane, and second that it is coplanar with
v and p; o is therefore the direction of wvibration, or

ollw; therefore ¢ = ¢ﬂ-4_:—_.},-._;pi| ¢'= || =,

whence (40) becomes Smp =0, (22), which shows that the equation of the wave is an
eapression of the fact that the ray s perpendicular to the force of restitution. This
remark is due, I believe, to Sir W. R. Hamilton.

26. It may be noticed in passing that from (15) we should evidently find for
the index-surface

whence, as before, IS o R e R (49),
the symbolical equation of the latter, which differs from that of the wave merely by
the change of ¢ into ¢=2 or of a, b, ¢ into 1/a, 1/b, 1/c.
Also from (3) and (14) we might at once deduce by a similar process
T T e A e S R e (50),
which in the ordinary notation is the well-known equation

i me n 9l
2 ‘3+b‘2__2 T
a=—v v c v
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27. Equation (46) is convenient for the investigation of the directions of the lines
of curvature at any point of the wave,

Differentiating, we obtain
v + a'v=0c"—p'o®— 2pSoc’.
But for a line of curvature (Quat. p. 598)
S.pw' =0.

Operating then by S.p'», we have
S.p (o —pa*) (¢’ — p'o* — 2pSaa’) =0,

or 0=28.p'co’ —28.p'cpSaa’ — a*S. p'pa’
=80pS.poa’ —28¢5'S . p'ap — a°S . p'po’
=8.0(pS.p'ac’ —24'S.p'ap—aS.p'pa’)
=80 (p'S.pac’ —a'S. p'ap).

(For p'S.pac’ =pS.coc’p’+ aS.d'pp' + &’'S. pap’);
therefore 0=_S8ap'S.pod’ + Sea’S. pap’=8.p'oa’Vpo.
Let (¢*+ p*)'o =1, and substitute for ¢' from (44),

0=2=Sap'S. pa (¢*+ p*) (p' — 2a8pp")
+ 87 (p' = 20Spp’) S . pap’.
But p’ +»: therefore p =wac+yVpo
=g + y6 suppose.
Hence Spl = Sad = 0.
Let (¢*+ p*)"'@=p; and therefore Sou=S0r. Hence

0 = 2*To*S0r — y*1°6801 — aylal6 {Tﬂ SOu — T .G'o"rl>
Also p'=alalc + yToUS.
Hence if B8 be the angle at which the line of curvature crosses o (the line of vibration)
y76
tan oTo"
And with this the above equation gives
% S6u — % Sor
0=1-—tan?B —tan B o ’
2 tan 8 270TaS0r

S . —tan’B~ 10*S0u — T0*Scr

_ 28.(¢*+p* “tUq (¢* + p*) tUVpa

(" +p) AU Vot — (g2 + o) 3UgJs oo Gyl
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which cannot = 0 unless
S0r=8.par=8.p(d*+p*) ' p(¢*+p*)?p=0,

or, by 3, 1 1 1 I Stp Sjp Skp = 0,
BT E N L
g G kp 4 p
s 1 gl
@+ (O +p) (@+p)
or e ey, | Sip Sjp Skp = 0.
a b
ak b= et

Hence the lines of curvature do not generally coincide with those of vibration.

Queen’s College, Belfast, April 2nd, 1859.

19
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I1.

NOTE ON THE CARTESIAN EQUATION OF THE
WAVE-SURFACE.

[Quarterly Jowrnal of Mathematics, August, 1859.]

THE equation of the wave-surface

a‘z?
Ly T I (1)},
where e g N ORI e O ) SR (2)
may be written thus:
ot
m SOOI | PR SRl SRR (L (3) }.
where PRl T i el o Ty NN N R S (4)

I am not aware that this transformation has been given before. I was led to it by
a quaternion process, not however so simple as the obvious algebraic verification.

Of course the corresponding equations of the index-surface, or the reciprocal of (1)
with respect to

SR Pl Gl e eren s b ad el (5)
may be written
a° ’
T 0 =0 i ininnesicssipsenas (1)}1
where Pt b Bl e s e (2)
or T g SR ) e SRR B oA I R (- ')
e

2
where i g FL A L RS (&)
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These equivalencies give a very simple proof of the following theorem, due, I believe,
to Pliicker.

“The wave-surface is its own reciprocal with respect to an ellipsoid whose semiaxes

are A/(be), v/(ca), and +/(ab).”

The equation of this ellipsoid is

o + +ab L s ehetncerabis sy v e On sk e e RS e (6).
Tangent planes to (6) from § =, ¢ have for their plane of contact

Ex &z

bc+ ca,+ab | LS el e e el (7),

and the reciprocal of (7) with respect to (5) is the point
k= -5% , 7' =&c.

Hence the reciprocal with respect to (5) of the reciprocal of (1) with respect to (6)

has the equation
a?bﬂcﬂf’ﬁ

a@* — (b*c*E” + &)

which is (3") or the index-surface, proving the theorem in question.

+ &e. =0,

It is evident that the circles of contact on the wave correspond in this process
to the conical cusps; and indeed (6) cannot pass through a cusp unless (substituting
in (6) the coordinates of the cusp)

e N A 2 |
be ?—c " ab *—¢ !

or b—a)(b—c)=0,
which can happen only in uncrystallized bodies or uniaxal crystals.

The transformation (3) shows at once that the index-surface may be changed into
the wave by a process of linear deformation (i.e. of compression or extension in different
degrees parallel to the three axes), that in fact by which the ellipsoid

Doa® Lo Falis®ml vt et s eaaans (8)
i ¥
is changed to bc+ +ab e e T (6),
namely, by putting «/bc for =, &ec.

Hence it is evident that the index-surface is its own reciprocal with respect to the
ellipsoid (8).

The above is only one of a host of easily assignable transformations of (1).

Queen’s College, Belfast, May 2Tth, 1859.
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I11.

QUATERNION INVESTIGATIONS CONNECTED WITH ELECTRO-
DYNAMICS AND MAGNETISM.

[Quarterly Jouwrnal of Mathematics, January, 1860.]

1. THE following pages are intended to show, in the particular cases of the
mutual action of galvanic currents, and of the forces exerted by permanent magnets
on each other, the superiority of the Calculus of Quaternions over the ordinary
analytical processes of Geometry of Three Dimensions. I have followed therefore very
closely the method already employed for the action of currents, based as it is on the
seemingly legitimate "assumption that the action between two elements of currents is
in the line joining them.

I intend to give, on another occasion, some more general quaternion investigations,
in which no such assumption is made.

A comparison between the processes employed in this paper and those of Ampére
(Théorie des Phénomeénes Electrodynamiques, &c., many of which are well given by Murphy
in his Electricity) will at once show how much is gained in simplicity and directness
by the use of Quaternions.

The same gain in simplicity will be noticed in the investigations of the mutual
effects of permanent magnets, where the resultant forces and couples are at once
introduced in their most natural and direct forms.

Somewhat of the conciseness of the method is lost by the necessity of going
out of the way to prove results in Quaternions, a step which would not be requisite
if the Calculus were more generally known.
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2. Ampére’s experimental laws may be stated as follows:

I. Equal and opposite currents in the same conductor produce equal and opposite
effects on other conductors, whence it follows that an element of one current has no
effect on an element of another which lies in the plane bisecting the former at right
angles.

II. The effect of a conductor bent or twisted in any manner is equivalent to
that of a straight one, provided that the two are traversed by equal currents, and
the former nearly coincides with the latter.

III. No closed circuit can set in motion an element of a cireular conductor
about an axis through the centre of the circle and perpendicular to its plane.

IV. In similar systems traversed by equal currents the forces are equal.
To these we add the assumption already referred to (1), and two others, viz

that the effect of any element of a current on another is directly as the product
of the quantities of the currents, and of the lengths of the elements.

3. Let there be two closed currents whose quantities are a and a,; let o, o
be elements of these, @ being the vector joining their middle points. Then the effect
of @ on & must, when resolved along «, be a complete differential with respect to
a (i.e. with respect to the three independent variables involved in a), since the
total resolved effect of the closed circuit of which o is an element is zero by IIL

Also by I, II, the effect is a function of T, Saa/, Saa;, and Sz'a;, since these
are sufficient to resolve a' and & into elements parallel and perpendicular to each
other and to . Hence the mutual effect

= aa, Uaf (Ta, Saa’, Saz;, Saa,),
and resolved effect = aa, f SUxUa.

Also, that action and reaction may be equal in absolute magnitude, f must be
symmetrical in Sad’ and Sax,. Again o (as differential of a) can enter only to the

Jirst power, and must appear in each term of f.
Hence f=ASda, + BSaa'Saa,.

But, by IV, this must be independent of the dimensions of the system. Hence A
is of —2 and B of —4 dimensions in ZTa. Under these circumstances,

,jl,_ ({ASax,Sele, + BSaa’ (Saay)

o

1s to be a complete differential, with respect to a, if da=a". Let 4 = C/Ta? where C is
a constant depending on the units employed. Then

4 (s7) = 7 S
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Y
or B=§—
ol o o
and the resolved effect

y 5 ((Saa, Saa
‘);jld{ ;:3)2}_0 IT l'n( uQSa_a]-l-a-Sﬂ.aSﬂa;)

Saul

= Caa,

(S Vad' Vaa, + 4 Saa'Saa,).
The factor in brackets is evidently proportional in the ordinary notation to

(sin @ sin &' cos @ — 4 cos @ cos €').

4. Thus the whole force is

Caa,o d {(Saul_)Q} Caa,a 3 {(Saa')’}’

2 Saa, Ta? 2 Sad’ Ta?
as we should expect, dya being =a,. (This may easily be transformed into
_ 2Caa,Ua 3
dd, (T
g Bt

which is the Quaternion expression for Ampére’s well-known form.)

5. The whole effect on e of the closed circuit, of which & is an element, is

: O'aa,1 (Saa,)
therefore f rv { }
& C’f.-,a1 (et Setar, Vad'
by J A W}
between proper limits. As the integrated part is the same at both limits, the effect is
Caa, Va,8, where B= f I;,E: = fd_Ua

and depends on the form of the closed circuit.

5. This vector B8, which is of great importance in the whole theory of the
effects of closed or indefinitely extended circuits, corresponds to the line which is
called by Ampere “directrice de Uaction électrodynamique.” It has a definite value at
each point of space, independent of the existence of any other current.

Consider the circuit a polygon whose sides are indefinitely small; join its angular
points with any assumed point, erect at the latter, perpendicular to the plane of
each elementary triangle so formed, a vector whose length is w/r, where  is the
vertical angle of the triangle and r the length of one of the containing sides; the
sum of such vectors is the “directrice” at the assumed point.
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6. The jform of the result of (5) shows at once that if the element a, be
turned about its middle point, the direction of the resultant action s confined to the
plane whose normal is B.

Suppose that the element a, is forced to remain perpendicular to some given
vector 8, we have Se,d =0,

and the whole action in its plane of motion is proportional to 7'V .8Va,B.

But V.SVCElB:—alegS-
Hence the action is evidently constant for all possible positions of a,; or

The effect of an y system of closed currents on an element of a conductor which
is restricted to a gwen plane s (en that plane) independent of the direction of the
element. [The force-component in the plane is V.8 Va8 =—8"a,885. 1897.]

7. Let the closed current be plane and wvery small. Let e (where Te=1) be
its normal, and let 4 be the vector of any point within it (as the centre of gravity
of its area); the middle point of & being the origin of vectors.

Let a=rv+p; therefore a'=p/,

Vad _ (V(y+p)p

and B=)Tw =) Ty+py

=g [Va+op 1+ 277

to a sufficient approximation.
Now (between limits) [Vpp'=24¢,
where A4 is the area of the closed circuit.
Also generally (see Art. (13))
[Voyp'Syp =% (SypVop + vV [Vpp')
= (between limits) AyVeye.

Hence for this case B= f'l‘ (2€+3'}T:;Yf)
e X ( 37375)

8. 1If, instead of one small plane closed current, there be a series of such, of
equal area, disposed regularly in a tubular form, let be the distance between two
consecutive currents measured along the axis of the tube; then, putting ¢ =ze, we
have for the whole effect of such a set of currents on a,

OAaaz %SW)
o (w* Ty

O’Aaa, Vaﬁ

% Ty (between proper limits).
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If the axis of the tubular arrangement be a closed curve this will evidently vanish,
Hence a closed solenoid exerts no influence on an element of a conductor. The same
is evidently true if the solenoid be indefinite in both directions.

If the axis extend to infinity in one direction, and #, be the vector of the other
extremity, the effect
_Cdaa, Vayy,
2 ey’
and is therefore perpendicular to the element and to the line joining it with the ewxtremity
of the solenoid. It 1is evidently inversely as To? and directly as the sine of the angle
contained between the direction of the element and that of the line joining the latter
with the extremity of the solenotd. It is also inversely as wx, and therefore directly as
the nwmber of currents in unit of the awis of the solenoid.

9. To find the effect of the whole circuit, whose element is a,, on the extremity
of the solenoid, we must change the sign of the above and put a, =1+,"; therefore

CAaay, [Voy'y,

2z T ‘Yos ?

an integral of the species considered in (5), whose value is easily assigned in par-
ticular cases,

effect = —

10. Suppose the conductor to be straight, and indefinitely extended in bhoth
directions.

Let h&¢ be the vector perpendicular to it from the extremity of the solenoid, and
let the conductor be |5, where Tt¢=Tn=1.

Therefore v =h&+yn (where y is a scalar),
Vyiyo= hy, Vg,
. g . . V e
and the integral in (9) is hV?}é’f_ o + J’)g W n&.
The whole effect is therefore C—Aaa’V nt,

and is thus perpendicular to the plane passing through the conductor and the eatremity
of the solenoid, and varies inversely as the distance of the latter from the conductor.

This is exactly the observed effect of an indefinite straight conductor on a
magnetic pole, or particle of free magnetism.

11. Suppose the conductor to be circular, and the pole nearly in its axis. [This
is mot a proper subject for Quaternions. 1890.]

Let EPD (fig. 1) be the conductor, AB its axis, and C the pole; BC perpen-
dicular to AB, and small in comparison with AE=h the radius of the circle.
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Let AB be ¢, BC=0bk, AP=h(jz+ky)
where x} = {cos] EZ P= {cf)s} 6.
oy sin sin |
Then CP =y=c,1+ bk — h (juo+ ky).
E
P
G 80
4 &
Fig. 1.

l; b ¢
A i -—T
l'ld the effect 0 0 of T . ?

=3 fﬁ" {(h = by) i + c@j + c.ykj
(62 + b+ h* — 2bhy)}

where the integral extends to the whole circuit.

3
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1. Suppose in particular C to be one pole of a small magnet or solenoid C(C’
whose length is 2/, and whose middle point is at G and distant ¢ from the centre of the

-
conductor. Let CGB=A. Then evidently
ca=c+ lcos A,
b=1IsinA.
Also the effect on C' becomes, if ¢+ b*+ 4= 4%

h y A 3hb 15 h2by?
18 (= by)i+ oy + ayt) {1+—AT5'+?" 2 1RO

awh? (. 3%  3c,bk
= T (2‘3 = A = —j‘é'—
J ke 2n!
since for the whole circuit [0y =2m gm ?ﬂ_ 2’
fg*ym-i—l = 0’
[ozy"=o.

2 A

A%
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If we suppose the centre of the magnet fixed, the vector axis of the couple
produced by the action of the current on € is

IV (icos A + I sin A)f—?,?%

mh*l sin A 5. 3{32 > 15 k*b*  3e,b cos A
TR 472 AT A'smA |-

If A, &c. be now developed in powers of I, this at once becomes

mhlsin A . () 6cl cos A ¥ 15¢0 cos? A 31*
@+ ? P R I £ Ty ©
_3Psin®A 15 KPsin® A (c-!-lcosA)lcosA(l_{:@cosA
c+ h? s (c+ e ¢+ h ¢+ h? )}

Putting —! for / and changing the sign of the whole to get that for pole €'; we
have for the vector axis of the complete couple

4arh?l sin A 1 3 (4" —h*)(4—55in°A)
@+’ T3 (c*+ b2y
which is almost exactly proportional to sinA if 2¢c=7% and I be small

+ &c.} :

On this depends Gaugain’s modification of the tangent galvanometer. (Bravais—
Ann. de Chimie, XXXv1IL 309.)

12. As before, the effect of an indefinite solenoid on o, is

bt B0y
0 T e

Now suppose «, to be an element of a small plane circuit, § the vector of the centre
of gravity of its area, the pole of the solenoid being origin.
Let y=8+p, then o =p"
_Cdaa, (V.(3+p) ¢/
2 T +p)
_ CAAaa, (E 388’861)
a1 R

where A4, and ¢ are for the new circuit, what 4 and e were for the former (7).

Whole effect therefore

Let the new circuit also belong to an indefinite solenoid, and let &, be the vector
joining the poles of the two solenoids, Then the mutual effect is

CAAaa, [ & 388588
2wy f(TS:" G _TE"_)

_Uddga, & U
= 2am T8 @GV
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which is exactly the mutual effect of two magnetic poles. Two finite solenoids then
act on each other exactly as two magnets, and the pole of an indefinite solenoid acts as

2 particle of free magnetism.

13. The mutual attraction of two indefinitely small plane closed circuits, whose
Normals are e and e, may evidently be deduced by twice differentiating the expression

US . . - . -
T8 for the mutual action of the poles of two indefinite solenoids, making d8 in one

differentiation le and in the other [e,.

But it may otherwise be calculated directly by a process which will also give us the
couple impressed on one of the circuits by the other, supposing for simplicity the first to
be circular.

In fig. 2 let A and B be the centres of gravity of the areas of A and B,
€ and ¢ vectors normal to their planes, ¢ any vector radius of B, AB=g.

Then whole effect on o', by (7),
A ; 3(ﬁ+ﬂ')8(8+0)5}
“T@E+ar " ° { e
L {Fore(14 8880 SVe0e BBy, SVeRhee, o Peicli
xﬂ‘_ﬁa{v‘”(” Tﬁz)J’ 8 (1 2’;6*)+ 78 78
But, between proper limits, (@ being now any constant vector)
[Va'nSbo=—A,V.nV0e,
for generally [Va'nSo =—4%(VyaS0a + V.9V .0 [Vad).
Hence after a reduction or two we find the whole force exerted by 4 on the
centre of gravity of the area of B,
o (s 4 9559) . i+t
This, as already observed, may be at once found by twice differentiating UB/TS".
In the same way the vector moment due to 4, about the centre of gravity of B,
A ; 3VG"BSBE)
ccme.a(Va'€+ —Te )

A 3 VBe SBe
o _Tﬁ-"l (Veel + —-Té"z—)
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These expressions for the whole force of one small magnet on the centre of
gravity of another, and the couple about the latter, seem to be the simplest that
can be given. It is easy to deduce from them the ordinary forms. For instance, the
whole resultant couple on the second magnet

T (V P 3V§e1;319e)

oC

T8 ’

may easily be shown to coincide with that given by Ellis (Camb. Math. Journal, 1v. 95),
though it seems to lose in simplicity and capability of interpretation by such modifi-
cations.

18 The above formule show that the whole force exerted by one small magnet
M on the centre of gravity of another m, consists of four terms which are in order,

1st. In the line joining the magnets and proportional to the cosine of their mutual
inclination.

2nd. In the same line and proportional to five times the product of the cosines
of their respective inclinations to this line.

3rd and 4th. Parallel to {E} and proportional to the cosine of the inclination of
{mj to the joining line.

All these forces are in addition inversely as the fourth power of the distance
between the magnets.

For the couples about the centre of gravity of m we have—

1st. A couple whose awis s perpendicular to each magnet and which is as the
sine of their mutual inclination.

2nd. A couple whose awis s perpendicular to m and to the line joining the
magnets, and whose moment is as three times the product of the sine of the inclination
of m, and the cosine of the inclination of M, to the joining line.

In addition these couples vary inversely as the third power of the distance
between the magnets.

These results afford a good example of what has been called the internal nature
of the methods and results of Quaternions, reducing as they do at once the forces
and couples to others independent of any lines of reference, other than those neces-
sarily belonging to the system under consideration.

To show their ready applicability, I take a Theorem due to Gauss.

If two small magnets be at right angles to each other, the moment of rotation
of the first 1is approximately twice as great when the awis of the second passes
through the centre of the first, as when the awis of the first passes through the centre
of the second.

e gl g i
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In the first case ellB+e;

therefore moment = g T (e, — 3ee;) = _43° Teel
In the second allB+e;

therefore moment = ﬁ l-?:-é Tee;. Hence the theorem.

14. Again we may easily reproduce the results of (13), if for the two small
circuits we suppose two small magnets perpendicular to their planes to be substi-
tuted. B is then the vector joining the middle points of these magnets, and by
changing the tensors we may take 2¢ and 2 as the vector lengths of the magnets.

Hence evidently the mutual effect
G U
#fi(B+e=e)= B —ca)+ B =c+e)= B+ et

which is easily reducible to
w '?__‘S_BESBEI
mﬁ {‘B( o Te

if smaller terms be omitted.

) + ¢, 8B8e + eSﬁ’el} as before,

If we operate with V.e on the two first terms of the unreduced expression,
and take the difference between the result and the same with the sign of e changed,
we have the whole vector axis of the couple on the magnet 2e,.

3VeB8Be
T,B“ (V et i T8 ) as before.

15. A theorem which Ampere used for a time as onme of his fundamental
experiments, is—A circular conductor cannot set in rotation about its axts another
conductor of any form whose extremities are in that awis.

Let @, be an element of the circular conductor,

By (5) the whole force on &, is
8.“9‘1 Via f

between proper limits. And whole moment, about axis, of force on a, ¢ San,
(Saa,)?
b

But at the extremities Saa, =0, since they lie in the axis. Hence there is no
force tending to rotate the element a, about the axis, and consequently a; exerts
none to turn the moveable conductor,

between limits.




32 QUATERNION INVESTIGATIONS, ETC. [III.

16. We might apply the foregoing formule with great ease to other cases
treated by Ampére, De Montferrand, &c—or to two finite circular conductors as in
Weber’s Dynamometer—but in general the only difficulty is in the integration, which
even in some of the simplest cases involves Elliptic Integrals, &e., &c.

17. Quaternions give a simple method of deducing the well-known property of
the magnetic curves.

Let A, A’ (fig. 3) be two magnetic poles, whose vector distance =2« is bisected
in 0, Q@ an indefinitely small magnet whose length is 2p’, where p=OP. Then
evidently, taking moments,

Vipta)p _  V(e—a)p
Te+af L T-af

o\l

’

Q

7 A’
Fig. 3.
Operate by S. Vap,
Sap’ (p + a)* — Sa (p+ ) Sp’ (p + ) A

1 {same with — a},

T(p+ay
or S.aV(—-P! )U(p+a)=¢[same with — a}
gra ’
i.e. S.adU(p+a)=+8.adU (p— a),

S.a{U(p+a)+ U(p— a)} =const.,

or cos Oj‘iP + cos OA’P = const.,

the property referred to.

Queen’s College, Belfast, October 31st, 1859.
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IV.

QUATERNION INVESTIGATION OF THE POTENTIAL OF A
CLOSED CIRCUIT.

[Quarterly Journal of Mathematics, Oct. 1860.]

" LET F(y) be the potential of any system upon a unit particle at the extremity
0 .
et e 1)

18 the equation of a level surface.

Let the differential of (1) be
D . i s 2),

then » is a vector normal to (1), and is therefore the direction of the force.

But, passing to a proximate level surface, we have

S. vy = 80,

Make 87 = gy, then K -l = 80,

oC

or R R
Ty Toy'

Hence » expresses the force in magnitude also.

N(_)W by Art. 7 of my Paper on Quaternion Investigations connected with Electro-
f%yﬂw_mws (p- 25 above), we have for the vector force exerted by a small plane closed
eireutt on a particle of free magnetism the expression

A 7 3‘78'}'6)
- W (€+ T“J"’ )
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omitting the factors depending on the quantity of the current and the strength of
magnetism of the particle.

Hence the potential, by (2) and (1),
1 3SydySye

4 [ L (St B
o Ty (Sed'y + T )

ASey
x s 78,

area of circuit projected perpendicular to
o ’

Ty

o solid angle subtended by circuit.

The constant is omitted in the integration as the potential must evidently vanish for
infinite values of T'.

By means of Ampére’s idea of breaking up a finite circuit into an indefinite
number of indefinitely small ones, it is evident that the above result may be at once
extended to the case of such a finite closed circuit.

Queen’s College, Belfast, February 22, 1860.
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NOTE ON A MODIFICATION OF THE APPARATUS EMPLOYED
FOR ONE OF AMPERE'S FUNDAMENTAL EXPERIMENTS IN

ELECTRODYNAMICS.

[Proceedings of the Royal Society of Edinburgh, Feb. 18, 1861.]

My attention was recalled by Principal Forbes's note (read to the Royal Society
on January 7th), to his request that I should at leisure try to repeat Ampére’s
experiment for the mutual repulsion of two parts of the same straight conductor, by
means of an apparatus which he had procured for the Natural Philosophy Collection
in  the University, Some days later I ftried the experiment, but found that, on
account of the narrowness of the troughs of mercury, it was impossible to prevent
the capillary forces from driving the floating wire to the sides of the vessel. I there-
fore constructed an apparatus in which the troughs were two inches wide, the arms of
the float being also at that distance apart. Making the experiment according to
Ampére’s method with this arrangement, I found one small Grove’s cell sufficient to
" produce a steady motion of the float from the poles of the pile; in fact, the only
difficulty in repeating the experiment lies in obtaining a perfectly clean mercurial surface.

Two objections have been raised against Ampere’s interpretation of this experiment,
one of which is intimately connected with the subject of Principal Forbes’s note. This
1s the difficulty of ascertaining exactly what takes place where a voltaic current passes
from one conducting body to another of different material. It is known that thermal
and thermo-electric effects generally accompany such a passage. To get rid of this
source of uncertainty, I have repeated Ampere’s experiment in a form which excludes
% entirely. In this form of the experiment the polar conductors and the float form

one continuous metallic mass with the mercury in the troughs; the float being formed
5—2
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of glass tube filled with mercury, with its extremities slightly curved downwards so
as to dip all but entirely under the surface of the fluid; and the wires from the battery
being plunged into the upturned outward extremities of two glass tubes, which are
pushed through the ends of the troughs so as to project an inch or two inwards
under the surface of the mercury. A little practice is requisite to success in filling
the float and immersing it in the troughs without admitting a bubble of air. This
float, being heavier than the ordinary copper wire, plunges deeper in the fluid, and
encounters more resistance to its motion, but, with two small Grove's cells only,
Ampére’s result was easily reproduced, even when the extremities of the float rested
in contact with those of the polar tubes before the circuit was completed. It is
obvious that here no thermo-electric effects can be produced in the mercury, and I
have satisfied myself that the motion commences before the passage of the current
can have sensibly heated the fluid in the tubes.

The other class of objections to Ampere’s conclusion from this experiment, depending
on the spreading of the current in the mercury of the troughs, is of course not met
by this modification. 1 have made several experiments with a view to obviate this
also, but my time has been so much occupied that I have not been able as yet to
put them in a form suitable for communication to this Society.
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FORMULZE ICONNECTED WITH SMALL CONTINUOUS DISPLACE-
MENTS OF THE PARTICLES OF A MEDIUM.

[Proceedings of the Royal Society of Edinburgh, April 4, 1862.]

ALTHOUGH most of the results deduced in this Note have been long known,
I venture to offer it to the Society on account of the extreme simplicity of the
analysis employed, and the consequent insight it affords us into the connection of
various formulm. I intend on a future occasion to give large further developments
especially bearing on physics. I employ the calculus of quaternions throughout, but
Where some unusual expressions occur, I have given them in their common Cartesian

form, as well as in the quaternion one.

L If p i) uvibsivnisonsotsas beshah s ishshuisieaiievioss (1)
be the equation of one of a system of surfaces, and if the differential of (1) be
e h LR B e e e S P (2),

Y 18 a wvector perpendicular to the surface, and 1ts length s inversely proportional to
the normal distance between two consecutive surfaces. In fact (2) shows that » is
Perpendicular to dp, which is any tangent vector, thus proving the first assertion.
Also, since in passing to a proximate surface we may write

S. I’SP = 80!
we see that Fp+v180)= ¢+ 8C.

This proves the latter assertion.

It is evident from the above that if (1) be an equipotential, or an isothermal,
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surface, — v represents in direction and magnitude the force at any point, or the
vector-gradient of temperature. And we see at once that if

vn%_g%w‘% .................................... ®),
giving Vi=— ;;: - EC;Z - cj% .................................... (3,
then R e RN R R L R (4).

This is due to Sir W. R. Hamilton (Lectures on Quaternions, p. 611).

From this it follows that the effect of the wector operator ¥V, upon any scalar
Junction of the wector of a point, is to produce the vector which represents in magnitude
and direction the most rapid change in the value of the function.

Let us next consider the effect of V upon a vector as

o G S I G o E e e s s g o e e SR (5).
£
We have at once Vo =-— (g; + %3 HE g-; -4 (g —g—y T e el (6),

and in this semi-Cartesian form it is easy to see that—

If o represent a small vector displacement of a point situated at the extremity of
the vector p (drawn from the origin)

S .Vo represents the consequent cubical compression of the group of points in the
vicinity of that considered, and

V .Vo represents twice the vector aais of rotation of the same group of points.

Similarly S oV (fd%*"’{%* ;'g;) B nd i s Mo e ),

or s equivalent to total differentiation in virtue of our having passed jfrom one end
to the other of the vector o.

The interpretation of V.oV is also easy enough, but it is not required for the
present investigation. :

2. Suppose we fix our attention upon a group of points which originally filled
a small sphere about the extremity of p as centre, whose equation referred to that
point is
YA e e e S S R e (8).
After displacement p becomes p + o, and by (7) p + ® becomes p+w+o—(S.wV)o.
Hence the vector of the new surface which encloses the group of points (drawn from

the extremity of p +a), is
g Wil LS WV v e simand s s wiiine e epumit v epmbnaks o (9).

T P ————
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Hence o is a homogeneous linear and vector function of @,; or
w = P,

in Sir W. R. Hamilton’s notation, and therefore by (8)

the equation of the new surface, which 1is evidently a central surface of the second
order, and therefore, of course, an ellipsoid (Cauchy— Ewercises, vol. 11.),

We may solve (9) with great ease by approximation, if we remember that 7o is
very small, and therefore that in the small term we may put e, for w—ie omit

Squares of small quantities; thus,
SR e A L L (11).

; Or if we choose we may obtain the exact solution very easily. Operating on (9)
with 8.4, S.4, S.& we get
Siw, = Sw (i + VE), &ec. = &e.
Hence  wS.(i+VE) (j+Vn) (k+ V¢ = V. (j + V) (b + V&) Siw, + &e.

From this we may easily verify the former expression by omitting products of & ¢, &

Thus w(-1-h)= [15 (1+h) - j:] Siw, + &c. + &e.,
where i dg | dn d_C
de  dy dz
L ., do
Or ® = — (iSiw; + &e.) + (8. o) -+ &e.
=y (. V)i, 88 heforeuis ciisimidiiiiidiciin i, (11).

Thus it appears that the equation of the ellipsoid may be written
T i+ (SoV)olma. .. iviiiaiiinniinn. (10).

3. The differential of this equation is
S {w 4 (SwV) o} {do + (SdwV) o} =0,
whence, omitting the second order of small quantities, the normal vector is

o + (SwV) o + VSwa.

To find the axes we must therefore express that the normal is parallel to w, or

po=(SwV)a + R TE i v i o o b (12),

where P is an undetermined scalar.
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The most obvious method of solving this equation is to operate in succession by
S.%, S.j and S.%k We thus obtain,

pSiw = SwVSic + SiVSwa,
&e. = &e. |

Or, remembering (5), S.w (ps’ +VE+ %‘) =0,
&e. =0,
p is therefore a root of the equation

; do . do do
S.(pi+vE+57) (1) +vq+@) (pk+ VE+5) =0,

or, as it may evidently be written,

d¢  df  dn dE d¢
PG e a5 de

dE  dn dp dng dE
dé d; dn d¢ d¢

E‘z+£§:g’ d—z+d_y' P+2a-;

A value of p having been found from (13), the direction of the corresponding axis
is given by
0|V (pi+ve+d—") (pj+Vn+d—") : (14)
| V. - B o L

3a. As a very simple example of distortion, suppose p to represent the position
of each particle with regard to a centre attracting according to Newton’s law,
and let o the vector of distortion be a small constant multiple of the vector force.

Then
m .
5= C (the potential).
Hence o = Q;gi, where g is very small,

+9m(p + @)

Ttay As Tw is exceed-

. when p becomes p+o, p+ o becomes p+wo
ingly small, this may be written
pt+w+ _‘&((&‘g}m_) :

Tps 1_3T§;

B L i,
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Hence w, = + g"_ms {\ o+ 3p 'gf"—p), and an originally spherical surface Tw =¢ (8) becomes
p P
after distortion approximately

7 m Sﬂ} p\ll‘ o
F ‘{(!J] _g'rp;} (wl oo 3,0 "Tpl.:"jl'jt =ty

a spheroid of revolution whose axis is p, as indeed is evident.

4. In this latter case we see at once that VVe =0, and it is easy to show
that in general, if the small displacement of each point of « medium is in the direction
of, and proportional to, the attraction exerted at that point by any system of masses,
the displacement is effected without rotation. For if Fp=C be the potential surface,
we have Sodp a complete differential—i.e., in Cartesian co-ordinates Edz + ndy + &dz

18 a differential of three independent variables. Hence the vector axis of rotation

Ll d ; "
i (&g—d_g) + &c., vanishes by the vanishing of each of its constituents, or ¥Vg = 0.

Conversely, iof there be mo rotation the displacements are in the direction of, and
Proportional to, the normal vectors to a series of surfaces.

For 0=V.dpV Vo = (SdpV) o — VSadp.

. Now, of the two terms on the right, the first is a complete differential, since
1t may be written —Dg, o (see (7)), and therefore the remaining term must be so.

Thus, in a distorted system, there is no compression if
SVa=0,

and no rotation if VVo=0; and evidently merely transference if o=a, a constant
vector, which is one case of Vo = 0.

_ In the lmportant case of o= ¢VFp there is evidently no rotation, since Vo =¢V2k)p
18 evidently a scalar. In this case, then, there are only translation and compression,
and the latter is at each point proportional to the density of a distribution of matter,
which would give the potential Fp. For if » be such density, we have at once
ViFp = darpr (see (3)). This suggests a host of physical analogies which we cannot
enter upon at present,

5. Keeping still to the meaning of o as the vector of displacement, as we have
Seen that Vo=s44 where s is the condensation of the particles near the extremity
of p, and , the doubled vector axis of rotation of the group—we may apply the vector
Operation a second time. Thus,

Ve =Vs+ Vi

Now, our former resulls enable as o assign meanings to these expressions. Vs

is the normal-vector to any of the surfaces of equal condensation. The scalar and
T. 6
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vector parts of V. represent the compression, and the doubled-axis of the rotation,
consequent on the displacement of each point through a space represented by « Also
it is easy to see that Vs is a pure vector. Hence

S.VVVe=0.

If therefore there be two similar media, and the particles of ome be shightly dis-
placed in a continuous manner—the particles of the other being displaced through wvectors

proportional to the rotations at each point in the first mass—this displacement takes
place without condensation.

And, as VVVs=0, we have the other result, that if the particles of the second
medium be displaced through wvectors representing the direction and rate of most rapid
change of compression in the first, such displacement will take place without rotation.
But this is merely another way of stating the first proposition in 4.—(Compare
Thomson, “On a Mechanical Representation of Electric, Magnetic, and Galvanic Forces”—
Cambridge and Dublin Mathematical Journal, vol. 11.; and Maxwell, “On Physical Lines
of Force "—Philosophical Magazine, 1861—62.)
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Yil
NOTE ON A QUATERNION TRANSFORMATION.

[Proceedings of the Royal Society of Edinburgh, April 6, 1863.]

THE following paper gives an idea of the nature of the physical applications of
Quaternions to which I referred in a previous note [VIL above], but which other
avocations have, as yet, prevented me from developing into a form and bulk suitable
for publication in the Society’s Transactions. The equations I now give form the
basis of the investigations in question, which I hope to present to the Society in

detail on some future occasion,

L If the vector of any point be denoted by
P=18 Y +hz oo (1),
there are many interesting and important transformations depending upon the effects

of the quaternion operator

Upon various functions of p. When the function of p is a scalar, the effect of V is
o give the vector of most rapid increase. Its effect on a vector function is indicated

briefly in my former note.

_ 2. 1 shall commence with one or two very simple examples, which are not only
Interesting, but, as we shall see, very useful in subsequent transformations.

S (z &i‘i_ . &,c_) e SRR SR e G (3),
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il w+jy+ks _ p '

VIp= (i 5 eV T B Dol vsonibbnssons 4),

p (zdm+&c)(ﬁ+y + 2°%) @+t Tp Up (4)

V(o =a (o NTp=n (o™ iciscirnmsissvssssnseavss (5),

i np
Voo e b i iitiesiannsansssanrsnnssaresinsnasns X
and, of course, (Toy (Tpyr (5),
1 U,
whence v I'TP = —TLPS =— i’;% ....................................... (6),
and, of course v B v Tp =1 (6)"
! ; Tp e i o ;
Also, Vo==3=TpVUp+VTp.Up=TpVUp-1,
2

therefore T A RS I RIS S e L e .
T P Tp (7)

3. By the help of the above results, of which (6) is especially useful (though
obvious on other grounds), and (4) and (7) very remarkable, we may easily find the
effect of V upon more complex functions,

Thus VSap=—V (a@ + 80.) = = @ucecerriveariiiisniiacnssicnniinnns (8),
VVap=—VVpa==V (pa—8ap)=8aa—a=20 ...c.oo0crvrurrnnen. 9).
Vap _ 20 30Vap _ 20p*+3pVap _ap®—3pSap
Hence Tp ~Tp~ Tp - onill i ol R e (10).
Vap p*Sado — 3SapSpdp _ Sabp  3SapSpdp Sap
Hence & SpV ﬁ = TP'" —— “T’ag v ‘——T};n———‘ ==39 T;Os ......... (11).

This is the principal transformation alluded to in the ftitle of this note. By (6)
it can be put in the sometimes more convenient form
Vap

lS . SPV Tp 3

1
= B8V v (12).

And it is worthy of remark that, as may easily be seen, S may be put for ¥V in the
left-hand member of the equation. [This follows at once from K (ap)=pa. 1897.]

We have also

VV.Bpy=V {BSyp— pSBy + vSBp} = —vB +38By — By =8By ..000vvvn (13).

Hence, if ¢ be any self-conjugate linear and vector function of the form
Pp =2V . B+ MPocserscirinasrarivsrasnsssonsvassivsisovon (14),
then Vgp=S8By —3m=scalar ......ccccereriiieiiiiiiiiiiinnnn (14).

Hence, an integral of
Vo= tcalar constant; 18°6 = §pi..ccvivviiciiiormanssnemisss (15).




VIL ] NOTE ON A QUATERNION TRANSFORMATION. 45

If the constant value of Vo contain a vector part, there will be a term of the
form Veo in the expression for o, which will then express a distortion accompanied
by rotation.

Also, a solution of Vg=a (where ¢ and a are quaternions) is ¢ =S8 + Vep + ¢p.

It may be remarked also, as of considerable importance in physical applications,
that, by (8) and (9), V(S+4V)ap=0, but I cannot enter at present into details on
this point, '

4. In this brief note, I shall not give any more of these transformations, which
really present no difficulty; but I shall show the ready applicability to physical questions
of one or two of those already obtained, a property of great importance, as it may
N0W be asserted that the next grand extensions of mathematical physies will, in all
likelihood, be furnished by quaternions.

Thus, if ¢ be the vector-displacement of that point of a homogeneous elastic solid
Whose vector is p, we have, p being the consequent pressure produced,

- TS TR s R S (16),
Wwhence S8pVie = — 88pVp = 8p, a complete differential..................... (16).
Also, generally, p=kSVa,
and if the solid be incompressible
o <o Gy Sy S s o (R an

Thomson has shown (Camb. and Dub. Math. Journal, 11. p. 62), that. the forces
Produced by given distributions of matter, electricity, magnetism, or galvamc cflrrents,
can be represented at every point by displacements of such a solid pr‘oc_iuclbl? by
external forces, It may be useful to give his analysis, with some additions, in a
quaternion form, to show the insight gained by the simplicity of the present method.

4 1l FRRRD
Thus, if Scdp =8 ;P’ we may write each equal to — S8pV 5 This gives
1

the vector-force exerted by one particle of matter or free electricity on another. This
Value of & evidently satisfies (16) and (17).

Again, if S.80Vo =55, cither is equal to
p

Vo
e S . SpV Tp_f b}’ (11)'

Here particular case is o.,___%ﬁg, which [IIL above, § 12] is the vector-force
P

exerted by an element a of a current upon a particle of magnetism at p.
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2—(

Also, by (10), V ;::f A ke Tsf S‘IP, and the same paper shows that this is the
vector-force exerted by a small plane current at the origin (its plane being perpen-
dicular to &) upon a magnetic particle, or pole of a solenoid, at p. This expression,
being a pure vector, denotes an elementary rotation caused by the distortion of the
solid, and it is evident that the above value of ¢ satisfies the equations (16), (17),
and the distortion is therefore producible by external forces. Thus the effect of an
element of a current on a magnetic particle is expressed directly by the displacement,
while that of a small closed current or magnet is represented by the vector-axis of
the rotation caused by the displacement.

Again, let S8 V5‘0=5@P

g ’ P Tps 2

It is evident that o satisfies (16), and that the right-hand side of the above equation
may be written

Veap

Hence a particular case is Va-=——1-;,;f , and this satisfies (17) also. Hence the

corresponding displacement is producible by external forces, and Vo is the rotation
axis of the element at p, and is seen as before to represent the vector-force exerted
on a particle of magnetism at p by an element a of a current at the origin.

It is interesting to observe that a particular value of o in this case is
a
=_1V L
a 1V SalUp Tp’

as may easily be proved by substitution.

ey Sa
Again, if Sépa = — SE': ,
have evidentl Wy
we have evidently o= Tp

Now, as ?%f is the potential of a small magnet a, at the origin, on a particle
of free magnetism at p, o is the resultant magnetic force—and represents also a possible
distortion of the elastic solid by external forces, since Vo =Vi¢ =0, and thus (16)* and

(17) are both satisfied.
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VIIL.
ON THE LAW OF FREQUENCY OF ERROR.

[Transactions of the Royal Society of Edinburgh, Vol. XX1v.
Read 3rd January, 1865.]

.1 Ir has always appeared to me that the difficulties which present themselves
0 Investigations concerning the Frequency of Error, and the deduction of the most
Probable result from g large number of observations by the Method of Least Squares
(Which is ap immediate consequence of the ordinary “Law of Error”), are difficulties
of reasoning, or logic, rather than of analysis. Hence I conceive that the elaborate
analytical investigations of Laplace, Poisson, and others, do not in anywise present
the question in its intrinsic simplicity. They seem to me to be necessitated by the
Unatural point of view from which their authors have contemplated the question. It
1s, undoubtedly, a difficult one; but this is a strong reason for abstaining from the use
?f Unnecessarily elaborate analysis, which, however beautiful in itself, does harm when
1t masks the real nature of the difficulty it is employed to overcome. I believe that,
80 far at least as mathematics is concerned, the subject ought to be found extremely

Stmple, if e only approach it in a natural manner.

2. Tt occurred to me lately, while I was writing an elementary article on the
Th‘?ory of Probabilities, that such a natural process might possibly be obtained by
king as the basis one of the common problems in probabilities, viz.:—Zo find the
relative probabilities of different combinations of mutually exclusive simple events wn the
Course of o large number of trials.
3. In fact, this is really the basis of Laplace’s investigation, an elegant, but very

t"I’Olljt)lesf:'rne Piece of analysis. With the view, apparently, of attaining the utmost
Possible generality, he considers an error to be made up of an infinite number of
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contributions, each from a separate source. But he assumes at starting, that these
separate contributions are as likely to be of one magnitude as another, which is, to
say the least, questionable; as it seems to be inconsistent with the result finally arrived
at. For instance, by far the larger part of the probability of a given finite error is
thus made to depend upon a great number of infinite positive contributions, combined
with a proper allowance of infinite negative ones. Now, though it is not a harsh
assumption to suppose that finite effects should be, in certain cases, the results of
additive and subtractive operations with infinite quantities, it does appear unlikely in
the extreme, that finite effects should be due to such operations in a far greater measure
than to operations with finite quantities. It is true that Laplace subsequently shows
that the same law will be arrived at by assuming any law of probability for the
contributions to the error from each separate cause, provided positive and negative errors
of equal amount are equally likely; but it is the complexity, not the sufficiency, of his
processes, which I think requires attention.

4. Gauss’ investigation is founded on the assumption, that the arithmetical mean,
of the results deduced from equally trustworthy observations, is the most probable value
of the quantity sought. So far as I can see, Ellis* has satisfactorily shown that this,
however apparently natural, is not justifiable as an @& prior: assumption. In fact, it
would seem that we have no right to assume that, because errors of equal magnitude
and opposite signs are equally likely, their sum will vanish in a large number of trials,
any more than that the sum of their third or fifth powers will vanish. Why the first
powers should be chosen, appears to arise from the extreme simplicity of the requisite
operations; yet, though complexity of calculations is undesirable, it must be submitted
to, if mnecessary for the evolution of truth. The principle of the arithmetical mean has
been adopted, among a multitude of others equally likely, just as we might suppose
a calculator to insist on gravity varying as the direct distance instead of its inverse
square, on the ground that the problem of Three Bodies would then become as simple
and its solution as exact, as they are now complicated, and at best only approximate.
“La nature ne sest pas embarrassée des difficultés d'analyse, elle n'a évité que la
complication des moyens,” in the words of Fresnel.

5. It is with some hesitation that I communicate the present paper to the Society ;
for 1 have not devoted much time to the study of the Theory of Probabilities; and
I know well how easy it is to fall into the gravest errors of reasoning on such a subject,
from the fact that I’Alembert, Ivory, and many others, have published investigations
and proofs (sometimes in its most elementary parts), which are now seen to be entirely
fallacious.

6. I proceed to show how I think the principle, above (§ 2) enunciated, may be
applied. The most direct method would be, of course, to assume any one set of causes
of error whatever, and to determine what will, in the long run, be the chance of each
separate amount of error as due to their joint action. Supposing this to be determined,
let us try to combine the probabilities of error from any indefinite number of sets of

* Cambridge Phil, Trans,, vii p. 205.
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Possible causes; and, if this process should lead to a definite law of error, such will
be the law to which, by an inverse application of the Theory of Probabilities, we should
€xpect each separate observation to be subject. But this process, which is analogous
to that of Laplace, though not identical with it, cannot easily be carried out, for it
eSS:entially involves in its first steps the assumption of a law of error which it is the
object of the investigation to determine. We must try a less direct method.

7. We shall, therefore, investigate what must be, in the long run, the chance
of any combination whatever of independent events, and consider the deviation of this
combination Jrom the most probable combination as the Error, and the ratio of its
probability to that of the most probable combination, as the function which expresses the
Law of Error. If we find, as we proceed, that the law thus arrived at, is (in jform
at .le&St) totally independent of the number, variety, &c., of the several simultaneously
acting causes, we shall thus have a very strong argument in favour of the correctness
of the process; whose real difficulty, be it remembered, is logical and not mathematical.
The mathematical processes to be employed below are, of course, known, and will be
found in most treatises on Algebra; but, for the present application, it will be
¢onvenient to put them in a form slightly different from the usual one.

8. Taking the simplest case, let us suppose a bag to contain white and black
balls, whose numbers are as p:q, where p+¢g=1The chance of drawing a white,
and B black, balls in n(=a+B) drawings, replacing before each drawing, and dis-

regarding the order in which they appear, is

This is o maximum, when «: 8 :: p: ¢; which, when n is indefinitely great, can
always be exactly attained. This maximum value is

n!
pnlgn!
Al .
The ratio of these two numbers is

P_gﬁ_giﬁ e il L S R R (3).
EDW, according to the principle above assumed, we must treat a—pn, the deviation
rom the mogt probable result, as measuring the error in some observation, while the
Xpression (3) measures the probability of it, as compared with that of the most
Probable resuls, To introduce the ordinary notation, let @ be the error, and y the
(Indeﬁnitely small) probability of that error; then, 4 and m being constants,

o _Pn = UL seasntsnanscasncsssssssacsannrarsasnsrrnss (4‘),
While 5 may be expressed as the product of (3) into 4, that is, by (4),

pn!lgn! e el L L ;
& pn+m!gn-—?rw!p TR Epo )
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When n is a large number, the value of this is easily found from Stirling’s Theorem,
viz.,

1.2.3...n=n!=V2gnrtien (1 + i+&c.),
12n

where the inverse powers of n may be neglected if » is large. For (5) thus becomes

(et e
(_Pn + ma)Prtmeth (gn — ma)r-me+h

y=4

ma P M q—mz iy
i
n qn

Hence,
ma ma
log y—log A = — (pn+ ma + %) log (1+ﬁ)—(qn—nm+-&)log(l —EE)

me mad miat
-—(pn-f-ma:-i—ﬂ;) {P—n e 2p—,7;£;+ sﬁ— &C}

mae  mia? m’m’;
=+ |~ T S g b}

B/ RO LR 1 b (R A e e
s “ﬂ(p‘*g)me(;;»-aa)—m;s(p*;s)ﬂ“&"-

% (D e

The first term of this expression is finite when ma is of the order n}; and in this
case the other terms in the first line are infinitely small, being of the orders
n~4, n, &ec. respectively. The latter remark applies to the second line of the ex-
pression, which depends upon the } in the exponents. When ma is of an order
higher than =¥, it is obvious from the undeveloped form that the expression must
be infinitely large, and negative. Hence, generally, we may neglect all but the first

term, and we have therefore
il

Y= Ae pan

which is the ordinary expression.

9. This shows that, as is well known, the chance of a result differing # from the
most probable combination is, in this very simple case, represented by a number propor-
tional to e-** times that of the most probable event. But if we now consider, not one
but, any number of causes conspiring to produce the observed result, we find that the
law is still precisely the same in form, and this whether the most probable event be the
same as regards each cause or mot. And it is this fact which appears completely to
justify the proposed method of regarding the question.
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10. For, if the various causes all tend to produce the same most probable event, s
Probability will be, by (6),

U 0T [ P R e S e (M),
while that of a result, whose error is @, will be
YUY aYs voe Yy R~ Brtrat ot S g Q=M i (8)

(where M = iy + o+ pts + ... + o),
Wwhich is the same form as (6).

If the most probable result, as depending on the several sets of causes, be different
for each, the formula (6) becomes, for any one cause,

where 4 .iél the I(.émall.)l chanée of the most probable result, which is, of course, z=1.

The chance of any particular value of #, as due to the simultaneous action of all

the causes, is now o
yom il oo e BRI B BN s (10),

Which may, of course, be put in the form
g @ MEDP i miiacsisissosiisivoni (11),
Where the most probable result is now

PO I o i 1.4 LAl B 1.
#I+}fq+ B

while i A,e_(l“1712+"'+#“7"2)+mm

]

(where, as before, M = gy + po+ «oo + )
is itg probability.

If we take this as our point of departure for the error @, we must write @ for
=T, and we have
Y= ﬂe"Mﬂ .......................................... (12).
for the form of the law of error, which is precisely that of (6) deduced from the simplest
tonceivable case,

. 11, Another remarkable confirmation of the validity of the process suggested above,
I8 to be found in the fact that not only are the curves expressed by equations such as
(6) and (9) compounded, by multiplication of corresponding ordinates, into another of the
Same class, whatever be the positions of their axes of symmetry, but that the same
Principle holds good in three, four, &ec., dimensions also.

Thus, any number of hills on the plane of 2y, represented by equations such as
P ey (L L b S SRR s Meet (13),

give, by multiplication of their corresponding ordinates, another hill of the same general

form, the yalues only of the constants being changed. ;
—2
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[Many curious geometrical results may be derived from this construction. One of
the most singular is the fact that the projection on 2y of the line of intersection of any
two surfaces whose equations are of the form (13) is a circle, and that another such
surface (viz., that whose ordinates are mean proportionals between those of the former)
can be described, passing through the curve of double curvature of which this circle is
the projection. But, besides being foreign to our subject, these theorems follow at once
from well-known properties of circles.]

12. Returning to equation (12), it is obvious that @ and M must be connected,
since we have to satisfy the condition that the probability that the error lies between
infinite positive and negative limits is certainty. Hence, as we may write

for the chance that the error lies between # and « +8z; we must have

a fjwe B 0o I SR 1o YL (15).

-]

4o i
But we know that f e Vdy=wm,

—o

which reduces (15) at once to the form

the required relation.

13. It is obvious from (12) that large errors have less probability when M is
large; that is when A is small, if we put

1

M=F.

Hence h becomes an indication of the comparative accuracy of the process whose errors
we are testing, and it is thus desirable to retain it in the expression for the law
of error.

By (16). we have sa=h—1—@,
and therefore, by (14), we obtain
L
Rt Sz,
hN : i

for the chance that the error lies between # and z+ &», the usual expression.

14. Tt only remains that we give an idea of the accuracy with which this law of
error is approximated to, in cases such as we have assumed as the basis of our reasoning,
"even in a very small number of trials. For this purpose we take the case of 20 tosses
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of a coin, Here the most probable result is, of course, 10 heads and 10 tails, and the
chances of the various possible combinations are the terms of the expansion of

1 1 20

(ez» 23 E) )
If we erect these as ordinates at successive distances, each equal to unit, along a line,
We may graphically represent their relative values by a curve drawn, liberd manu, through
their extremities. The area of this curve will evidently approximate to unity, which is the

exact value of the sum of the areas of the rectangles of unit breadth, each of which
18 bisected by one of the ordinates laid down from the expansion.

To find the corresponding curve of error, notice that the maximum ordinate is
20.19...11 1 _ 184756
1.2...10 " 2% 1048576 o

Taking this as the value of 7 j_ we have for (12) the expression
™

Y= 5675

: The following table shows a few of the values of y from this formula, compared

with the corresponding terms in the binomial: it is sufficient for our purpose, as it

would not be worth while to take the trouble of calculating the areas of the curve of
€Iror corresponding respectively to the rectangles above mentioned.

@ y from (17) y from Binomial Difference
0 01762 01762 00000
1 01598 0:1602 — 00004
2 01193 01201 - 00008
3 00733 00739 — 00006
4 0:0370 00369 + 00001
5 0:0154 00148 + 00006
6 00053 00046 + 00007

15. Nothing is better calculated to show the general soundness of the method we
have adopted in this paper, than the fact of the excessive closeness of the above
approximation : the case having been specially chosen as one in which we could hardly

ave expected more than a rude resemblance to the law of error.
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IX.

ON THE APPLICATION OF HAMILTON'S CHARACTERISTIC
FUNCTION TO SPECIAL CASES OF CONSTRAINT.

[Transactions of the Royal Society of Edinburgh, Vol. XXIv.
Read 20th March, 1865.]

1. ONE of the grandest steps which has ever been made in Dynamical Science
is contained in two papers, “On a General Method in Dynamics,” contributed to the
Philosophical Tramsactions for 1834 and 1835 by Sir W. R. Hamilton. It is there
shown that the complete solution of any kinetical problem, involving the action of a
given conservative system of forces, and constraint depending upon the reaction of
smooth guiding curves or surfaces, also given, is reducible to the determination of a
single quantity called the Characteristic Function of the motion. This quantity is to
be found from a partial differential equation of the first order, and second degree;
and it has been shown that, from any complete integral of this equation, all the
circumstances of the motion may be deduced by differentiation. So far as I can
discover, this method has not been applied to inverse problems, of the nature of the
Brachistochrone for instance, where the object aimed at is essentially the determina-
tion of the constraint requisite to produce a given result. It is easy to see, however,
that a large class of such questions may be treated successfully by a process perfectly
analogous to that of Hamilton; though the characteristic function in such cases is
not the same function (of the quantities determining the motion) as that of the

Method of Varying Action.

2. It is unnecessary to enter into any great detail with reference to the present
subject; because any one who is familiar with Hamilton’s beautiful investigations
will have no difficulty in applying them, with the requisite slight modifications, to
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the subject of this paper. I shall therefore content myself with a brief explanation
*_Jf the application of the method to the problem of the Brachistochrone, and a mere
indication of some other curious problems which are easily solved in a similar manner.

3. The problem of the Brachistochrone for a single particle is, in its simplest
form, as follows :—

Find the form of the (smooth) constraining curve along which a particle will pass,
under the action of a given conservative system of forces, from one given point to
another in the least possible time, the initial speed being given.

The problem may easily be complicated by supposing, for instance, the terminal
points not to be definitely assigned, but to lie each on a given surface: still farther,
by supposing the initial speed to depend, according to some given law, upon the
coordinates of the initial point, and so forth.. But such complications introduce
analytical difficulties of the quasi-arithmetical kind merely, not of a physical nature;
and we leave them to those who are curious in such matters.

4. In symbols, if = be the time of passing from @, Yo, % to @ Y, 2, we must

have
%42 (s
e
o, Yo, %0 U
& minimum : subject to the sole condition

»=2(H-V)

where H is the whole energy, and V the potential of the system of forces on unit
Mmass at the point a, y, 2

Hence, taking the variation,
dds dsdv
81' =f(7 i s ) *

vﬂ
B dsdds = dudde + dyddy + dzddz;
o v =8 (H — V)= Xbz+ Y8y + Z82 + 8H,

if X, ¥, Z be the component forces on unit mass at , ¥, 2. Thus we have

1oy  dys  d5g) ﬁé‘]
37“[@(53“&3“@5’) o [
da
dt

—f{sx [d(;;)+ ‘%‘] +&c.};

Where the whole, integrated or not, is to be taken between the given limits.
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If the limits and the initial speed be fixed, the first part of the expression for
or disappears; and, that the integral may vanish, we must have

do
dt Xdt :
d(;;)+—g,!—=0 ....................................... (A),

with similar equations in y and 2z This is simply the ordinary result given in
treatises on kinetics.

But if we consider the effect of the alteration of -the limits, or of the initial
energy, we have

or 1 de or 1 dx
BTrd (@ @
&e. Rl | yerd W S s (1).
and or 5“0z dg

8‘_&'=— %;!’osfo;s-'

5. Hence, if 7 could be found as a function of =z, ¥, 2, @, %, 2, and H, it
is obvious that its partial differential coefficients with respect to these quantities
would give the motion completely.

But, neglecting altogether the initial limit, we see that

(G + 8-+ G )

6. It can be easily shown, by a process similar to that employed for Varying
Action*®, that, if any integral of this equation can be found, its partial differential
coefficients with respect to @, y, z are respectively equal to the corresponding speed-
components of the velocity, in a curve which is a brachistochrone for the given forces,
each divided by the square of the speed.

A complete integral of (2) must of course contain, besides H, two arbitrary con-
stants a, 8. If, then, 7 be a complete integral, the equations of the brachistochrone
are easily shown to be

dr dr
%=Q, ——33 ....................................... (3);

where @ and 23 are two new arbitrary constants.

Also we have the relatioﬁ

dr dt ds
d__H=_ 'tj—s'_—"— F ....................................... (‘t).

* Thomson and Tait's Natural Philosophy, § 323, or Tait and Steele's Dynamics of a Particle (2nd edition),
8§ 252, 253.
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7. Before proceeding farther with the theory, we may apply the results already
obtained to one or two well-known problems; commencing with the original case
proposed by Bernoulli.

8. To find the brachistochrone, when gravity is the only wmpressed force, and the
particle has the speed due to a fall from a given horizontal plane.

Taking the axis of y. vertically downwards, we have

V==gy.
Also, we may write H=ga.
Hence (%)2 + C—g)g + (j—:)q = E(—;Ty')-

This equation is obviously satisfied by
(@I‘) _ I (f_i_*) W (d'f)" e T S

da dz dy) ~29(a+y)
(d'r) dax
dz)  dt da
B s =t =
(dz dt
dz M ¢ s ; :
Hence a5 = o that is the path ds in a vertical plane. We may take this as the

plane of zy. Hence our equation becomes

(i_;)g + (g_;)g =3 (.:: +y)

We may now write QI= é_
. odf & s L e SN (5),
G-
dy) 29\a+y O
where b is an arbitrary constant.
- i} 1
By (5) we have, at once, \/29’7 T ,v’ﬁb e fdy (-I,Tf-f;' P e (6).
Hence the equation of the brachistochrone is (by § 6)
dr
. const.
i g dy .
or C = - 5‘2 + b—gJ l—j L]
a+y b
that is, changing the constant, and effecting the integration,
b 2 2(a+y)
Ci=—a—-Jb-a+y)(@+y+g s — 5 -
8
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If the limits and the initial speed be fixed, the first part of the expression for
8t disappears; and, that the integral may vanish, we must have

dz
dt | Xdt ,
d(?)*"éﬁ SN ol B ool it AT (A),

with similar equations in y and 2z This is simply the ordinary result given in
treatises on kinetics.

But if we consider the effect of the alteration of -the limits, or of the initial
energy, we have

b_lde b (lde
Sz v dt’ 8wy (172 dt)o’
&e. (- TR | e FURE b (1).
and or. -F'”'z ds
8H — Ty Uor 70 U

5. Hence, if 7 could be found as a function of =, v, 2, @, ¥, 2, and H, it
is obvious that its partial differential coefficients with respect to these quantities
would give the motion completely.

But, neglecting altogether the initial limit, we see that

() + 6+ (- + 4+ 8

6. It can be easily shown, by a process similar to that employed for Varying
Action*®, that, if any integral of this equation can be found, its partial differential
coefficients with respect to «, y, z are respectively equal to the corresponding speed-
components of the velocity, in a curve which is a brachistochrone for the given forces,
each divided by the square of the speed.

A complete integral of (2) must of course contain, besides H, two arbitrary con-
stants «, B. If then, 7 be a complete integral, the equations of the brachistochrone
are easily shown to be

dr dr
o a, B 45 S, sidetian S Sl o i) (3);

where @ and 43 are two new arbitrary constants.

Also we have the relatioﬁ

dr dt ds
e - s [ T (4),

* Thomson and Tait's Natural Philosophy, § 823, or Tait and Steele's Dynamics of a Particle (2nd edition),
§8 252, 253.
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7. Before proceeding farther with the theory, we may apply the results already
obtained to one or two well-known problems; commencing with the original case
proposed by Bernoulli.

8. To find the brachistochrone, when gravity s the only vmpressed jforce, and the
particle has the speed due to a fall from a given horizontal plane.

Taking the axis of y vertically downwards, we have

V==gy.
Also, we may write H=gqga.
e @+ &)+ @) w5

This equation is obviously satisfied by

T\ o dr\ _ g0 aacl Eo iy
@ =% (@t ) were
(d'r) da
£5New) sl da
B‘“ A hl bk
(@)
dz _ M : = - ke this as the
Hence =, that is the path is in a vertical plane. We may take this a

plane of @y. Hence our equation becomes

(372)2 . (%) ~3 (c: +y)

g ol . @
g LT J ......
(E&) "2 (_Ty b)
where b is an arbitrary constant.
i FETT
By (5) we have, at once, J29'F=V%+fd?f TR e e e (%)
Hence the equation of the brachistochrone is (by § 6)
i—%:COHBtr.
; d
or C=-—£+ln —
B &
at+y b
that is, changing the constant, and effecting the integration,
) b re, 1 2(65___-':_3_)
O=—o-V(b-a+y)(@+y+g7e™" —F
8
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the common equation of the Cycloid, the speed at any point being that due to a fall
from the base.

In this case we have evidently

LA V0 X SR, i dy
dH )¢ gda 2.{2}[

1 1
@rora/ avy b

o ER T ol
“VipVary 5T

The above (at first sight apparently too limited) assumptions

dr dr
— = ﬂ'{ 5 E,é

dae =0

and the consequent reduction of the question to a plane problem, may seem to require
some justification. This is easily supplied, thus: in the equation

T\t sdr\?  (dT\?
(@) *+ (&) + @) -7
the direction-cosines of the tangent to the brachistochrone, at the point @, y, 2, are

by (1),
kg el e liinded
P " Bay . T T

At the adjacent point z + &z, y + 8y, 2+ 8z, where we have, of course,

el
I iR
dr d*r d*r d*r
b vl £1b g,_cE:+d_w_éa$+dmdysy+da:dzaz
the value o ecomes — T+ oF

b ol e v dr e
_d_x+ﬁ(dmdm’ dy dedy ' dz dadz
e F+3F

But in the above problem F is a function of y only, and we must therefore have
5
n_n’

which shows that the curve is in a plane parallel to the axis of y.
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9. To find the Brachistochrone when the force is central, and proportional to a
power of the distance; the speed being also proportional to a power of the distance,
that s, being the speed from infinity if the force is attractive, from the centre if it is
repulsive.

Here =2(H-=-V)= -;

and the central force at distance » is evidently

AETR
de - o
Thus (2) becomes (g)? + (j;)g o (gy:- ?E

or, changing to polar co-ordinates,

((;E'_r)e 1 (d’r)" 1 ((3_1‘)2_3:1‘
dr) Y7 \dg) * rein g d¢) '
It is obvious that we must take % =0,

which shows that the path is in a plane passing through the centre of force. The
above equation will then be satisfied by

dr dr _ fr" o

#=" & Npg &

Hence we have T=al + f dr _—%,
pnts T
=a6+—2a— \/'r 3 l—cos—ly%r+0
n+ 2 pat ?'“:J‘

And the equation of the brachistochrone is

i 9 :;.-n+s_ S = ”/;ﬂ
a‘“&+z%&@ e ﬂ4

r 2
2
,u-ﬂls
ﬂ+2 = ﬂ+8\/1 “aa
co8™ ‘\/ =3
I _?1+2 sk’
¢ 2
ﬂ+2 2
or r? =Jua see @-2),

8§—2
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while the equation of the free path is

(f)ﬂ_g = cos " ; 2 (6 + B).

(17

The above integration fails in the case of n=-—2; that is, when the force is
repulsive and directly as the distance, the speed vanishing at the centre of force. But

in this case
T=ﬂ.6+,\/1 —a®log Cr,
I

and the equation of the brachistochrone is

A=0- 1u__logCr,

___a‘J
M

the logarithmic spiral. Eliminating » between these equations, we see that the time
is proportional to the polar angle.

Since a definite form has been assigned to the expression for the speed in
this problem, it is obvious that H is given, and therefore that there is no %

: dr
The assumption i 0

is easily justified, in the case of any equation of the form

(i':) i (3—3) e (%,) il

if F be a function of r only. For

dr d’r
& (d¢) o +d6dqb 84:2 o3,

dr dr dr rdd dr 7 sin dé
v dr = dt’ rdl o dt > rsin0de 5 e T

3¢) = 7 \dr drdp * 2 d0 d0dp T 7 eint 0 dg dg? ~ F \dg) =

That is, unless ¥ contains ¢, g; is necessarily a constant, 8 suppose.

Hence

But, in the present case, if we give this constant any value but zero, we introduce
a problem much more general than that proposed, for the expression for the reciprocal
of the square of the speed becomes

54 B

u risin?@’
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10. As an example of a tortuous curve we take the following:

Determine the form of the brachistochrone when the speed at any point of space s
proportional to the distance from a given line.

Taking the line as the axis of z, our equation obviously becomes
dr\*  rdr\* | rdr\? a
@) + (&) + &) a5
dr

Hence =%

and, substituting this, and changing to polar co-ordinates in a plane parallel to @y,

@)+ (@) =5

dr
Hence we may take =P
and there remains Ja}‘ B2 — a%®,
Integrating, we have
JGJ _ﬁﬂ— 2
r=az+ B0 -Jat - B B log . 5 o | +Jar = B = atrt.

By equating to constants the partial differential coefficients of = with respect to «
and B, we obtain the two equations of the brachistochrone

ar’

Jo -+ Jo-B—ar
and 10 = 9+J—__10g [J“"' 48’ /__—-—as]

The former of these is the equation of a sphere, as may be seen at once by
putting it in the form

A=z-

a(z—8) =o' =B - Ja* - B* — a¥r”.

The remaining equation, by altering the value of 23, may be reduced to the form

2 Jax i ( ‘JCT_‘_E’@_”) + e_f\'_’f‘;_f_'ﬂ.n(ﬂ-—ﬁ))

which is at once recognised as a cylinder, whose base is one of Cotes’ Spirals.

Also, if we remark that, by (1),

da Ldr_r B _py
T v e o
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do

1"-——
we see that COS Yfp = === = — = const.
v a
where 4 is the inclination of the element 786 to the corresponding element &8s of

the brachistochrone. That is, the brachistochrone cuts all circles on the above sphere,
whose planes are parallel to zy, at a constant angle. (Lozodrome.)

11. It is easily seen that r=0C
is the equation of an Isochronous surface.
d_T) (‘E) gy
Also, since (da: - (dz’
’ 65, BN e,
dt dt dt

the brachistochrone cuts all such surfaces at right angles.

And the normal distance between two consecutive isochronous surfaces is propor-
tional to the speed in the brachistochrone of which it forms an element. For, of

course,

8s = vér.

12. Generally, pufting T= (%}2 i (%)2 S (d_D = E-(TI— Phe o ot (1),
we have 2(H - V)=%,
sk ) e (‘%’) S 2_%5 ‘f%_ ................................. ),
with similar expressions for ¥ and Z.

Also, by (1), we have T-T%, & | :
3, (;% ¥ _f@;dt [ ....................................... 9).
Hence j:a' = % (,Elc cdl—;)

=%{%(§§)_@%%‘fg ................................. (10).

e il

_ 1 (drdr, dir dr divr dr] _ 1 dT
‘@{ﬁdﬁdydmdy*dzdmd_z}‘m% """""""" an,

which is the ordinary form of the equation of the brachistochrone, (A) in § 4.
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AT _, (dr d (dry drd d?);ﬁf’:(fk)}
dt " |de dt (dm) dy dt (dy dz dt \dz
ek tf_@ﬂ:{ U if{@}
“T\do do Tdy dy Tz do

o

Also

The above value of % becomes therefore

dz_ 1 dT 1dr (dr d@+d7d@ dr d@’z} ................. (13)
dtt 2T de ~ Tdz \dz da " dy dy Y& A f

which (8) reduces to the form

dz 2 dr dr sl 1AX
=Xty iXy +I’dy+2d} ....................... (14)

dz

And we have, of course, similar expressions for fl% and a8

13.  We may thus easily prove the fundamental property of brachistochrones given
in most treatises on dynamies,

The pressure on the curve, due to the motion, is equal to that due to the impressed
Jorces.

For (14) may be written
@=—X+ 2@@3 {Xd‘x+ Ydy+Z§£z}

d dit dt
7 dz (- da dy dz}
-—X+2&;J1X +Yds+zds
de / -, da dy dz}
=Jf~2{}:-E (Xa§+}’ds+zd3)
da dJ L : H
Now X — -k Y= > ds is the component of the impressed forces along ds. Hence
de ( v de . dy  ,de
v kde-"Y%-I-Z )’

dy [  da dy _de (o da Y.dy Zdz
_dE(X&,E"" ds"'zd) “ ds(xds"'" st ds)

are the rectangular components of the component of the impressed force perpendicular
to the path.

But, if R be the force of constraint, A, g, v its direction-cosines, we have by
ordinary kinetics

ﬁ_;"”_x R\, &o.
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da d

Hence Rx=2 {X — gzr (X L lT g +Z@z_>} , &c., &e.,
s g

ds d. ds

and therefore the whole pressure is double that due to the impressed forces.

From the above follows also the well-known theorem, that the osculating plane of
the brachistochrone contains, at each point, the resultant of the impressed forces. For it
has been shown that this resultant coincides in direction with the centrifugal force,
and the latter of course lies in the osculating plane.

14.  Another, and perhaps simpler proof of the theorem above is furnished directly
by (10). Thus, squaring and adding the three equations of that form, after substituting
in them from (11), we have

(@) + @) + (@) - (@) + (&) + (@)}
R 0 L WL
T dt (dede dy dy " dz dz

+g () (@) + @)+ @)}

S )+ (D) - (220 1. () =)

T4T \de dy dz) | @ dt dt) " T\ dt
[by (12) and (7)] = 454 {(%) ¥ (‘ﬁ) & (Cfl—?)} = X4 72+ 22, by (8).

Hence the whole acceleration is equal to the resultant of the impressed forces; and
therefore the component of the acceleration, normal to the curve, must be equal to
that of the resultant of the impressed forces; from which the theorem follows at once
if we can show independently that the resultant of the impressed forces lies in the
osculating plane. This is easily done as follows. We have

8t dr
8&=@ (E«" &C., by (9)
&  (dr\ oz
Hence &x = T 3 (dh?v) T 8T, &c.
Now, by (8) and (11), & (3—;) &c., are proportional to the direction-cosines of the resultant

force, which therefore lies in the common plane of two consecutive elements of the curve.

15. The equation of the surfaces which are orthogonal to the path is
r=0;

and that of equipotential surfaces V=0C.
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That these may coincide we must have

T=¢(V),
where ¢ is any function whatever.
S+ (D sair
If we write V=(VZEH=T)¢(V)AV =Y (V) ceccvrivrnirecinrnesinns (15),
shis becomes (‘g{)ﬂ & (%g)g+ (%')2 i o detie o TR (16).

A complete primitive of this equation is, of course,
Y =le+ my+nz —p,
where p is any function of I, m, n, and
P+m*4+n*=1

The general primitive, equated to a constant, is therefore obviously the equation of a
series of surfaces such that the normal distance between any two consecutive members
of the series is everywhere the same. It is evident from (15) that the surfaces thus
found are identical with the isochronous and equipotential surfaces, when these coincide.
The equations of their orthogonal trajectory, that is, of the free path which is also a

brachistochrone, are therefore,
dyr ay d¥’
S o ox (E’E)ax-i-(d )8 +(dz)

D O D DE-@D

Hence ox = 8C (dU) &e.,

s an.

and, therefore,

=30 {(72) b+ (g o+ () 2+ 20 (&)

But, substituting the values of 8z, &c., from (17), this becomes
oo (22) () () () ) () o0 ()
and the first part vanishes, by (16).

8“.3 TN 3”(1
oy o8
which show that when the path is simultaneously a free path and a brachistochrone,
it is necessarily rectilinear.
T

Hence

9
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This might have been inferred at once, from the theorem of § 13, which shows
that if the free path be a brachistochrone, there can be no pressure due to the
motion, 7., no curvature. But the above investigation is given as containing curious
additional information. It shows, for instance, that if the force be the same at all
points of each of a series of equipotential surfaces, the lines of force are rectilinear.
Also, that if the flux of heat be constant per unit of area over each one of a series of
isothermal surfaces, though not necessarily the same for all, the propagation of heat
takes place in straight lines. And, as particular cases of these theorems, if the force
or the flux of heat be the same throughout a given space, the attraction, or the
flux, therein takes place in parallel lines.

16. Hamilton’s equation for the determination of the Characteristic Function
(4) in the case of the free motion of a single particle is

(%)’ b (‘fi*;)"’ + (Eff) N O PRl 55 (18).

The comparison of this with (2) suggests a useful transformation. Introducing in
that equation a factor %, an undetermined function of «, y, z, we have

G j—;)’ +(0 %)’ +(o fg) 2.39’_ ghy sty (19).

If we make P e Bt e b sunling (20),

and E(T;i—v) SUVE % L et SO e (1),
(19) becomes ( ?E%T)) (dﬂff")j : kd‘f’("’\ el e ees e (22)

Here it is obvious, by (18), that ¢(7) is the action in a free path coinciding with
the brachistochrone, and that 2 (H,— V) is the square of the speed in this path.

- Hence the curious result that, if = be the time through any arc of a given
brachistochrone, the same path will be described freely under the action of forces whose
potential is V,, where

2 (8, - V) = 5 5 s,

¢’ being any function whatever ; and ¢ (t) representing the action in the free path.

17. The simplest supposition we can make is that ¢'(r) is constant. In this
case the speed in the free path is inversely proportional to that in the brachis-
tochrone at the same point; and the action in the one is proportional to the time
in the other. In fact, as Professor W. Thomson has pointed out to me, in this
case the investigation may be made with extreme simplicity, thus—
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In the brachistochrone we have
f ds s
— & minimum.
v
Putting » = ;1}-, and - considering v as the speed in the same path due to another
(easily determinable) potential; we must have
f vds a minimum.

This is the ordinary condition of Least Action, and belongs, therefore, to a free path.

Hence, since the cycloid is the brachistochrone for gravity, and since in it »*= 29y,

it will be a free path if »*= L that is for a system of force where the potential

29y
is found from
1
Hl — Vl = @ .
. . dV]’. T dV1 Yo 1
This gives s e 0, - E; =— igy

In other words, a cycloid may be described freely under the action of a force
towards, and inversely as the square of the distance from, the base; and the speed
at any point will be the reciprocal of that in the same cycloid when it is the
common brachistochrone.

This result is easily verified by a direct process.

18. But we have, by § 16, an infinite number of other systems of forces under
which this cycloid will be described freely.

For by § 8 we have, putting a =0, since the base is now the axis of ,
= @ , B %
\/297=%+fdy,\/§-5
@ y g
=VE_«/5003—1‘\/§+\/5«/6—3'+0.

Hence, whatever be ¢, the cycloid is a free path for the system

{¢’ (%} — /b cos™ \/% + ¢\/§ “/5-;_3,' i O)F

29y

'1)2=2(_H1—V1)=

19. The converse of the proposition in § 16 is also curious. Taking Hamilton’s
equation (18), we have, 5

(¢ (A)p { (‘%) b (‘%)2 + (%‘;)} ol G = VY3 GO i inoin o (23).
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Comparing this with (2), we see that 7=¢ (4) is the brachistochronic expression
for the time in a path which is a free path for potential V. The requisite potential
is now found from

-2(}111—__1,1) T4 A UL T e S o) (24).

Hence, if A be the action in a given free path, the same path will be a brachisto-
chrone for forces whose potential is V,, determined by (24), V being the potential in the

Jfree path.
Thus, the parabola (2 =A)P=4da(y—a)
is the free path for v*=2gy. And the action is given by

1 2
Sl —(y—a)
‘\@-S}A x\fa-f-s(y a)t,

Hence this parabola is the brachistochrone for
SRS L
29y {¢" (A)}*
In the simplest case ¢’(4)=1, and we have

LB LER
s dy — 4gy”

2(H:—‘ Vl)=

dz

Hence, by § 17, the parabola is a brachistochrone when a cycloid is the free path.

20. Again, if #=2 (:-f i ) .......................................... (25),

where H and p are essentially positive, the free path is an ellipse of which the
origin (the centre of force) is a focus.

This ellipse is the brachistochrone for the potential V;, and whole energy H,,

where
2 acss
Q(H,—V,)_Q(cr H)’
Cr
or Ifl:HI_;i’_(m.

. This corresponds to a central force

iy, 1 € na Ol
dr "4 (u—Hr) " 4(u— Hry
e O
4 (p— Hr)
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The speed at any point is \/ 2 (u— Hr)

In the ellipse, we know by ordinary kinetics that

- (2_1
wiifiely

Comparing this with the above formula (25) we have

Rl
1]

Hence the speed in the free ellipse is

u=\/:‘_;‘\/2“;" .................................... (26).

That in the same ellipse, when it is a brachistochrone, is, as above,

_«/_____07—_«/9?\/_ ks
"V eu—-Hr) V u V 2a-r
But if we refer it to the other focus of the ellipse we have

=20 —1r.

Hence v, = Ca ,\/ B A s sy (2.

69

Comparing (26) and (27), we have the singular result that a planet moving
Sreely about a centre of force in the focus of its elliptic orbit is describing a brachis-
tochrone (for the same law of speed as regards position) about the other focus. The
reason of this remarkable property, as well as of the connected one that while the
time in an elliptic orbit is (of course) measured by the area described about one focus,
the action 1s measured by that described about the other*, is easily traced to the fact

that the rectangle under the perpendiculars from the foci on any tangent is constant.

21. It follows from Hamilton’s investigations, that in the free ellipse we have
(’u' -H ) dr

where a depends upon the excentricity of the ellipse by the formula

2
=gz 1-¢)

* Tait, Proc. R.S.E., March, 1865, or Tait and Steele’s Dynamics of a Particle (2nd edition), § 258.
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The theorem may therefore be generalized as follows:—The free ellipse will be a
brachistochrone, if the speed be given by

1
2(4- )@@y

where ¢’ is any function, and A4 is the integral last written. By differentiation with
respect to », we get the law of central force requisite.

=2 (H,- V)=

But results of this nature may be deduced to any desired extent, without more
trouble than the requisite integrations involve,

22. The examples immediately preceding are but particular cases of the following
general theorem, which is easily seen to be involved in the results of §§ 16, 19.
If we have two curves, P and @, of which P s a free path, and @ a brachisto-
chrone, for a given conservative system of forces; P will be a brachistochrone for a
system of forces for which Q s a free path:—and the action and time in any arc of
either, when it 1is described. freely, are functions of the time and action respectively, in
the same are, when it 18 a brachistochrone,

23. It is easy to see, that there exists a very singular analogy between the
processes we have just given, and those suggested by certain problems in optics.

Assuming, for an instant, the exploded corpuscular theory of Light, Varying
Action is at once applicable to the determination of the path of a corpuscle. On the
other hand, if we assume, as our fundamental hypothesis, that light takes the least
possible time to pass from one point of its path to another, the foregoing investiga-
tions would be directly applicable to find the path in a medium whose refractive
index (on which the speed depends), at any point, is a given function of the co-
ordinates; in other words, in a heterogeneous singly refracting medium.

In the beautiful investigations of Hamilton, on the Theory of Systems of Rays
(Trans. RI.A., 1824—32), the path of a ray is assumed to be a straight line in
any one medium. Here the speed depends only upon the direction of the ray, as
in homogeneous doubly refracting media, and the problem has no analogy with the
conservative case which is treated above.

24. As an instance of an optical problem I take the following, due I believe to
Maxwell*. If the refractive index of a medium be such a function of the distance
Srom a given pownt that the path of any ome ray 1is a circle, the path of every other
ray s a circle; and all rays diverging from any one point converge accurately in
another. Or, in another form, find the relation between the speed and the distance
from the centre of force that the brachistochrone may always be a circle.

* Cambridge and Dublin Math. Journal, 1x., p. 9.
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The symmetry shows that our investigations need involve only two dimensions.
Taking the centre of force as pole, the equation of a circle is

r* 4+ 2ar cos (6 — Q) = p* — a*, =1 suppose.
Hence A =0-cos™ M
Zar

This is obviously the equation before written (3), in the form
d

i
e a.
Hence T=af - fdu cos™ s o
2ar

But, if v be the speed (the reciprocal of the refractive index in the optical problem),
dry? 1 dT)-a_l :
(dr) 72 (@ Tt

dr L@ 4§ b=t b 4
Heioe dr i?’_ﬁ__d—?‘fdam ’ 2ar =_fda1~;\/{‘i'a’r’—?(b’—v'“)“}'

But v is not a function of a so that we get by differentiation with respect to

that quantity
a

9 g b2+ 12 &
\/1 a  rajdar?— (- )}’

vl

This is easily reduced to ot = f Lo g S & il

d(a*+b°) 4p?

The condition, that » is a function of r and absolute constants only, thus leads
at once to two conclusions: b is an absolute constant; and so is 2pa, for which we
may write ¢. a is therefore inversely as the diameter of the circle; and

b 4 2
T

V=

From the form of the equation of the path it is obvious that —b® is the rect-
angle under the segments of any chord drawn through the centre of force.

Hence, in the optical problem, if a ray leave, in any direction, a point distant

r from the origin, it will pass through another point in the prolongation of r, distant

b : . : 5 (TR
. from the origin; and, in the kinetic problem, there is an infinite number of

brachistochrones (circles all, and the time being the same for all) when two points
thus related are taken as the initial and final points,
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25. Such examples might be multiplied indefinitely. For instance, if the refractive
index of a medium be inversely proportional to the square root of the distance from
a given point, the path is a parabola about the point as focus; that every ray may
be a cardioid whose cusp is at the point, the square of the refractive index must
be inversely as the cube of the distance: and so on.

26. The processes of § 4 may of course be applied to innumerable problems
besides the determination of the form and properties of brachistochrones, but I shall
content myself with an example or two. Thus, if we take

(I>=ff(w) ds

as the characteristic function, we have

d®  f(v) de {@3_'{;
s e, &e., and di= S () dt.

Of this, besides the cases f(v)=wv, and f (v)=%, which we have already considered,
the most curious is that where

v

f(”)-‘-gi

that is, when the space average of the kinetic energy s a mindmum. In this case,

(387 () =

dd
and m= 8.
Again, if we take ®= fF @, 9, 2)f(v)ds
dP Ffde .d__(I) =fF d
- S &ec., and JH ' (v) dt.
stant
Hence, if F (=, y, z)=c———*{j;b($n ;
we have j% =Ct,

so that there is an infinite number of values of the characteristic function, besides
that of Hamilton, which give the time through any arc of the orbit by their dif-
ferential coefficients with respect to H.

27. Enough of this; I conclude with the remark that various investigations in
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Statics supply us with excellent examples in our subject*. Take the common catenary,
for instance, its equation is found by the conditions

fyds: minimum, and fds = constant,
the axis of y being directed vertically upwards.
This gives 8 f (y +a)ds =0,
Hence the catenary is the free path of a particle whose speed is given by

v=C(y+a);

that is, if the force be in the direction of, and proportional to, the ordinate, and
repulsive from the axis of 2 In the same way we see that the catenary is the
brachistochrone if the speed be inversely as the distance from the axis; that is, if
the force be attractive, and inversely as the cube of the distance from the axis,

* Compare Thomson and Tait’s Natural Philosophy, §§ 581, 582,
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X.

NOTE ON THE REALITY OF THE ROOTS OF THE SYMBOLICAL
CUBIC WHICH EXPRESSES THE PROPERTIES OF A SELF-
CONJUGATE LINEAR AND VECTOR FUNCTION.

[Proceedings of the Royal Society of Edinburgh, February 18, 1867.]

HamiztoN has shown that if ¢p=3aSB8p+ Ap,
where a and B are given vectors, and 4 a given scalar, we have
(¢ — mug? + mup—m) p =0,
where m, m,, m, are scalars depending only on ¢.

When the function ¢ is its own conjugate, i.e. When
Sppa =Sadp,
p and o being any vectors whatever, the vectors for which
(p—9)p=0, or dpllp, or Vpgp =0,

form in general a real and definite rectangular system. This, of course, may in
particular cases degrade into one definite vector, and any pair of others perpendicular
to it; and cases may occur in which the equation is satisfied for every vector.

Suppose the roots of m,=m +mg + mg*+g*=0 to be real and different, then

Pps =9:pll
¢ps=gsp: - where p;, ps, ps are definite vectors.

¢Pa =GapPs
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Hence 9:9:5p1ps = Sp, bp:
= Sp1¢pe, or =Sp,d°py,
because ¢ is its own conjugate.

But %o = gs°ps,
o = 9’p1,
and therefore 9192512 = 9:°Sp1 p2 = 9:°8p1 P2 3
which, as g, and g, are by hypothesis different, requires
Sp,p. = 0.
Similarly Spaps=0, Spyp=0.

If two roots be equal, as g,, g;, we still have, by the above pror:)f, Spip. =0, and
Spips=0. But there is nothing farther to determine p, and p,;, which are therefore
any vectors perpendicular to p,.

If all three roots be equal, every real vector satisfies the equation
(¢=9) p=0.
Next, as to the reality of the three roots when the function is self-conjugate.
Suppose g, +hy/—1 to be a root, and let p,+oy4/—1 be the correspo_nii_ng value
of p, where g, and h, are real numbers, p, and o, real vectors, and /=1 the old
imaginary of algebra.
Then ¢ (po+ o/ = 1) =(gs + ha/ = 1) (pa+ 02/ = 1),
and this divides itself, as in algebra, into the two equations
bp2 = gaps = hao,
bay = hyp, + G205

Operating on these by Sa, Sp, respectively, and subtracting the results, remembering our
condition as to the nature of ¢

So‘, ¢P-z = Spg ¢0'2,
we have hy (0 + ps*) = 0.

But, as o, and p, are both real vectors, the sum of their squares cannot vanish.
Hence h, vanishes, and with it the impossible part of the root.

. 10—2
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AL

NOTE ON A CELEBRATED GEOMETRICAL PROBLEM.

[Proceedings of the Royal Society of Edinburgh, April 29, 1867.]

THE following problem, originally proposed by Fermat to Torricelli, To find the
point the sum of whose distances from three given points is the least possible, seems
to have given considerable trouble to the older mathematicians, and even in modern
times (see Gregory's Ewamples, p. 126) to have been solved in a very tedious manner.
Simpler solutions have since been given (e.g. Cambridge and Dublin Mathematical
Jowrnal, vir p. 92), but none, to my knowledge, so direct as that indicated by
Quaternions. The object of this note is to show the simplicity of the quaternion
method.

If a, B be the vectors of two of the given points, the origin being the third,
and if p be the vector of the required point, we must have (by the conditions of
the problem)

To+T(a—p)+ T (B —p) a minimum.
Hence S[Up—U(a=p)—U(B—p)ldp=0,
for all values of Udp. Hence the versor sum in square brackets must vanish identically.
The immediate interpretation is, that lines parallel to p, p—a, p— B, form an equilateral
triangle. The required point is therefore in the same plane as the three given points;
and their distances, two and two, subtend equal angles at it, which is the well-known
solution.

Equally simple is the quaternion solution of the same problem if more points than
three be given. Let their vectors, to any origin, be %, B, v, &c., and let p be the vector
of the sought point. We have

2.7 (a— p) = minimum,
from which, as above, A P L T R B ML Y G (1).
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Hence, of unit forces act at the required point, in the lines joining it with the
given points, these forces are in equilibriwm. Or, in another form, a closed equilateral
gauche polygon may be drawn whose sides are parallel to the lines joining the sought
point with the given ones. This opens up some very curious geometrical speculations,
which I have not time to pursue.

That there is but one point whose vector satisfies equation (1) may easily be proved
by quaternions, but even more easily by the following reasoning. Consider the system of
unit-forces, just mentioned, at any two points, one of which satisfies the problem. It is
obvious that, if these forces be referred to the line joining the two points, each will be
less inclined to it at one than at the other; so that, as at one they produce equi-
librium, at the other they must have a finite component in the direction of this line.

The quaternion investigation at once suggests the following kinematical solution of
the problem. Suppose an inextensible string to be passed through a small movable ring,
then through small rings at two of the fixed points, then again through the movable
ring, and so on—one end of the string being fixed to the movable ring when the
number of given points is odd, and to the first fixed ring when the number is even,
When the string is drawn tight, .e. when the sum of the lengths joining each fixed
ring to the movable one is a minimum, the movable ring will evidently be in the
position of the required point. Also, since the tension of the cord is the same through-
out, the movable ring is kept in equilibrium by a set of equal forces in the directions
of the lines joining it with the given points, which is the condition above found.

This kinematical process, equally with the quaternion one, whose form directly
suggests it, gives easily the solution of the more general problem,—To find a point
such that m times its distance from A, together with » times its distance from B,
&c., may be a minimum.
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X1II.

NOTE ON THE HODOGRAPH.

[Proceedings of the Royal Society of Edinburgh, December 16, 18617.]

THE object of the present Note is to show, by a few examples (of which, however,
the last is the only one of any real importance), how easily the geometrical ideas
supplied by Hamilton’s beautiful invention of the Hodograph enable us to dispense
with analytical processes in the establishment of some of the fundamental propositions
connected with the motion of a single particle, besides many others which are merely
curious; and also how they help us to understand the full bearing of some of the
analytical methods. Some of the simplest of such geometrical investigations are given
in Tait and Steele’s Dynamics of a Particle, and will not be reproduced here; though
a few of the results will be assumed,—as, for instance, that when the acceleration is
directed to a fixed point, and varies inversely as the square of the distance from it,
the hodograph is a circle, and the path a conic section, of which the point is a focus.

1. If the figure represent an ellipse and its auxiliary circle,
it is known that the circle may be considered as the hodograph
corresponding to planetary motion in the ellipse, but turned through
a right angle. In fact, if YPZ be a tangent to the ellipse at P,
SY’ is proportional to the speed at P, and perpendicular to it
in direction. The actual speed bears to SY’ the ratio of u to ha,
in the usual notation.

Hence the tangent at Y’ is perpendicular to SP (the direction of acceleration),
and thus we have an immediate proof that SP is parallel to ¥Y’CZ But by this
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means we also get at once, and without analysis, the two well-known and peculiar
first integrals, in the form

b I
T = k » ?;’ e h ( r + e) ]
which cannot be directly deduced from the equations of acceleration

R TR o
i it

[The equation of the orbit is, of course,
e T
=zy—yb=7% (r + ex),
from which we see that W= pa(1—e).)

2. The only central orbits whose hodographs also are described as central orbits,
are those in which the acceleration varies directly as the distance from the centre.

Let S be the centre, P any point in the path, p the corresponding point in the
hodograph, p" that in the hodograph of the hodograph. Then Sp’
is parallel to the tangent at p, which again is parallel to SP. Hence /
PSp’ is a straight line. Also, since p belongs (by hypothesis) to a P

central orbit, the tangent at p’ is parallel to Sp, e, to the tangent

at P. Hence the locus of p’ is similar to that of P, and therefore

Sp’ is proportional to SP. But Sp’ represents the acceleration at P. 7
Hence the proposition.

3. If II be the acceleration in a central orbit, I’ that required ? 5
for the description of the hodograph as a central orbit; A, 4, the /
moments of momentum, and 7, ', the radii vectores in the two orbits, P /pr

’ h"z /
[Il' = T v

In the figure above let S¥== and Sy=w" be the perpendiculars from S on
the tangents at P and p, p and p’ the radii of curvature at P and p, then

2
T o
: hp
Also the speed at p is II= o
But, since we have O=7". 7—‘, gl
P o

(as we see by expressing it in terms of the angular velocity of Sp), if Sp’ be called
7", we have
H’ = ‘!‘" . £ i) 1& L

w

|

o
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Hence, as ar'=h =r' =1l
I h v hoh?* h* —
=, =—- —— = Y,
P I LR T

Or, more simply, if v be the speed in the orbit, we have, by expressing the
centrifugal force in terms of the normal component of the acceleration,

ren®
P r
Hence ;f == 11 » >
P ¥
2
[This is the well-known formula L= o= 3
= dr
SURRESN Y Gapew
Thus HH =w—zp . ;_’B‘-}’_Fﬁ )
because from re’ =r'w=h
we have at once " = ww'pp

4. Again, if the hodograph be a circle described with uniform angular velocity
about a point in its circumference, the path is the cycloidal brachistochrone.

For, if AP be the cycloid described by the point P of the circle SP rolling
uniformly on the line AS, the speed at P is proportional to
SP, and the direction of motion is perpendicular to SP. Hence
the hodograph (turned through a right angle in its own plane)
may be represented by the circle SP, described with uniform
A angular velocity about the point S. That the motion is due
to constant acceleration perpendicular to A4S is obvious from
the fact that, if Pp be drawn perpendicular to 4S8, SP? o« Pp.

5 Pl

5. If the orbit be central, and be a circle deseribed about a point in its
circumference, the hodograph is a parabola described about the focus with angular

velocity proportional to the radius vector.

For, if 8 be the centre of force, P the point in its circular orbit, p the corre-

sponding point of the hodograph: g¢p, the tangent to the
1 hodograph at p, must be parallel to SP; and, therefore, if
e SQg be the tangent at S, the triangle pSq (being similar to
Q PSQ) is isosceles. Thus the locus of p is a parabola. Also
the angular velocity of Sp, being the same as that of P@Q), is
double that of SP, and is, therefore, inversely as SP%. But
the length of Sp is inversely as the perpendicular from S
upon PQ), e, inversely as SP2.
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6. A point describes a logarithmic spiral with uniform angular velocity about
the pole—find the acceleration.

Since the angular velocity of SP and the inclination of this line to the tangent
are each constant, the linear velocity of P is as SP.
Take a length PT, equal to nSP, to represent it. Then
the hodograph, the locus of p, where Sp is parallel, and
equal, to P7, is evidently another logarithmic spiral similar
to the former, and deseribed with the same uniform
angular velocity. Hence pt¢, the acceleration required, is
equal to eSp, and makes with Sp an angle equal to SPT.
Hence, if Pu be drawn parallel and equal to p#, and wv
parallel to PT, the whole acceleration Pu may be resolved into Pv and vu; and Pou
is an isosceles triangle, whose base angles are each equal to the angle of the spiral.
Hence Pv and vu bear constant ratios to Pu, or to SP or PT.

The acceleration, therefore, is composed of a central attractive part proportional
to the distance, and a tangential retarding part proportional to the velocity.

And, if the resolved part of P’s motion parallel to any line in the plane of the
spiral be considered, it is obvious that in it also the acceleration will consist of two
parts—one directed towards a point in the line (the projection of the pole of the
spiral), and proportional to the distance from it, the other proportional to the speed,
but retarding the motion.

Hence a particle which, unresisted, would have a simple harmonic motion, has,
when subject to resistance proportional to its speed, a motion represented by the
resolved part of the spiral motion just described.

If a be the angle of the spiral, @ the angular velocity of SP, we have evidently

PT.sina=SP.w, so that w=nsina.

i e PT” il (4] e m_’ v = m?
Hence Po=Pu=pl="5p = o Pl=_3_SP=n . SP,
and v =2Pv.cosa= 23.—-(&? PTI'=k.PT (suppose).
sin a

2
Thus the central force at unit distance is n’=£ﬁ, and the coefficient of resistance

e : 2 2 . ’
The time of oscillation is evidently -5; but, if there had been no resistance,

. g : : : 2
the properties of simple harmonic motion show that it would have been g; so that
. T
it is increased by the resistance in the ratio coseca: 1, or n: n"-—z.

T. il
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The rate of diminution of SP is evidently

PToonn=2"%9p _"gp.
sin o 2

that is, SP diminishes in geometrical progression as time increases, the rate being 3
per unit of time per unit of length. By an ordinary result of arithmetic (compound

interest payable every instant) the diminution of log SP in unit of time is g

This process of solution is only applicable to resisted harmonic vibrations when

n is greater than g When % is not greater than 3 the auxiliary curve can no

longer be a logarithmic spiral, for the moving particle never describes more than a
finite angle about the pole. A curve, derived from an equilateral hyperbola, by a
process somewhat resembling that by which the logarithmic spiral is deduced from a
circle, must be introduced; and then the geometrical method ceases to be simpler
than the analytical one, so that it is useless to pursue the investigation farther, at
least from this point of view.
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XIIIL.

PHYSICAL PROOF THAT THE GEOMETRIC MEAN OF ANY
NUMBER OF POSITIVE QUANTITIES IS LESS THAN THE
ARITHMETIC MEAN.

[Proceedings of the Royal Society of Edinburgh, 16 February, 1868.]

Ir a number of equal masses of the same material be given, at different tem-
peratures, and enclosed in an envelope impervious to heat, they will finally assume a
common temperature; which is the arithmetic mean of the initial temperatures, if the
material be one whose specific heat does not vary with temperature.

But they may be brought to a common temperature by means of reversible thermo-
dynamic engines employed to obtain the utmost amount of work from the initial
unequal distribution. This question was first investigated by Thomson (Phil. Mag.
1853, “On the Restoration of Energy from an unequally heated Space”), and the
application of his method to the present problem shows that the final common
temperature of the masses, when as much work as possible has been obtained from
them, is the geometric mean of the initial temperatures; but this investigation intro-
duces the condition that the temperatures must be measured from the absolute zero.

Obviously the whole energy restored is proportional to the excess of the arithmetic
over the geometric mean.

-+

Far more complex analytical theorems may easily be proved by means of the
above process; for instance, if ¢, #,..., ¢;, ¢, ... D& any positive quantities, we have

i)
Gty + coto + ... e
SRR SRR A L R R
a+e+... )
1192
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XIV.

ON THE DISSIPATION OF ENERGY.

[Proceedings of the Royal Society of Edinburgh, 16 February, 1868.]

THE paper contains some curious applications of the principle of dissipation to the
conduction of heat, the connection of heat and electricity, thermo-electric currents, the
electric convection of heat, &c. But in this abstract we confine ourselves to one very
simple case of the conduction of heat, as the hypothesis on which it is investigated
is fundamentally assumed in all the other applications.

If an infinite plate be kept permanently heated in layers, each of equal tempe-
rature throughout—the temperature rising gradually from one side to the other—the
hypothesis is made that the temperatures of any three contiguous layers (of equal
thickness) so adjust themselves that the least possible energy can be restored from
the system of three. From this it immediately follows that if 2, be the thickness
of the plate, ¢, and t, the (absolute) temperatures of its sides; and if the specific heat
be the same for all temperatures between f, and #,: the temperature ¢ at a distance

« from the side at ¢, will be
. t = ¢, 108 tilto

But if % be the conductivity of the substance, at temperature ¢, we have for
the flux of heat

dt
f=k£xkt.

This must be the same throughout the plate, because there is equilibrium of
temperature, and therefore

1
kmt—.
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The only published experiments, so far as I am aware, by which this result can
be tested, are the very valuable series by Forbes (Z'rams. Roy. Soc. Edin., 1864), which
are, unfortunately, confined to iron. They agree uncommonly well with the above
theoretical result, as the following short table shows:—

¢ k ket
290°C. 00164 476
330° 00130 424
400° 00110 4:40
440° 0-0105 458
476° 00100 476
561° 00090 504

No account has, in this abstract, been taken of the alteration of specific heat
with temperature, which is as yet only approximately known, but which is applied
in the paper to account completely for the increase of /&t with temperature. As to
the increase of kt at the low temperature of 290°C., it may be remarked that the
first two or three numbers in Forbes' table are (as he points out) probably much
less accurate than those which follow them, on account of the temperature at which
they were obtained, which was but little above that of the atmosphere.
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aY,

ON THE ROTATION OF A RIGID BODY ABOUT A FIXED
POINT.

[Transactions of the Royal Society of Edinburgh, Vol. XXv. Received October 13th,
Read December 21st, 1868.]

ALTHOUGH it is very improbable that there remains to be discovered any new, and
at the same time simple, fact connected with a question which has been elaborately
treated by many of the greatest mathematicians of this and the preceding century,
the employment of a new mathematical method may enable us to present some of
their results in a more intelligible form, and with far less expenditure of analytical
power than has hitherto been deemed necessary; and it may give us such an insight
into the question, that we shall be able easily to discover the mutual relations among
the various processes which have been already employed; so far, at least, as these
differ in principle, and not merely in the peculiar co-ordinates assumed for the purpose
of simplifying the equations. Such a method is that of Quaternions, which seems to
be expressly fitted for the symmetrical evolution of truths which are usually obtained
by the ordinary Cartesian methods only after great labour of calculation, and by modes
of attack so indirect, and at first sight so purposeless, as to bewilder all but a very
small class of readers, Quaternions afford so clear a view of the nature of the question
they are applied to, that even the student, if he have some little knowledge of them,
can often see why a transformation is made, whose object he would have been unable
to discover had the problem been masked in the unnecessarily artificial difficulties of
Cartesian geometry, or the outrageously repulsive formule of spherical trigonometry.

By far the most elegant and most easily intelligible representations of the motion
of a solid body yet discovered, are due to Poinsot. With the following extract from
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his splendid work, Théorie Nouvelle de la Rotation des Corps (Liouville’s Journal, 1851),
I most cordially agree,—though it appears to me that, when he does condescend to use
analytical methods, he is by no means so happy as others have been, who, trusting
to mathematical analysis alone, had not the benefit of his beautiful geometrical re-
presentations. But in perusing the extract, let the reader bear in mind that a quaternion
equation is quite as suggestively intelligible, to those who understand it, as any
geometrical diagram can possibly be. In fact, I might almost say, that it is more
readily intelligible than diagrams usually are; for, in reading a work illustrated by
figures, we have generally to go through a laborious explanation of what the figure
is intended to represent before we can make use of it for further developments. On
the other hand, a purely quaternion formula draws, as it were, its own figure in the
reader’s mind, and saves him at least the trouble just mentioned. In this way every
one has his figures drawn so as best to suit himself, and is not perplexed by having
to pick up the principles on which they have been drawn for him by another, very
probably of a different mode of thought. Still, such words as the following, when
properly applied, not to quaternions but, to ordinary so-called analysis, must always
convey a much-needed warning:—“Gardons-nous de croire qu'une science soit faite quand
on l'a réduite & des formules analytiques. Rien ne nous dispense d’étudier les choses
en elles-mémes, et de nous bien rendre compte des idées qui font l'objet de nos
spéculations. N’oublions point que les résultats de nos calculs ont presque toujours
besoin d’étre vérifiés, dun autre coté, par quelque raisonnement simple, ou par l'ex-
périence. Que si le calcul seul peut quelquefois nous offrir une vérité nouvelle, il ne
faut pas croire que, sur ce point méme, lesprit nait plus rien & faire: mais, au
contraire, il faut songer que, cette vérité étant indépendante des méthodes ou des artifices
qui ont pu nous y conduire, il existe certainement quelque démonstration simple qui
pourrait la porter & Dévidence: ce qui doit étre le grand objet et le dernier résultat
de la science mathématique.” . . . . . “Ce n'est quune apparente fécondité de cette
méthode de pur calcul qu'on appelle assez improprement l'analyse. Car si les théorémes
sont déjd connus on découvre bien vite les transformations & faire pour que les
équations y répondent; mais quand on n'a aucune idée de ces théorémes, on ne
transforme gueére qu'au hasard, et le plus souvent on n'arrive & rien. La vraie
analyse est dans l'examen attentif du probléme & résoudre, et dans ces premiers
raisonnements qu’on fait pour le mettre en équations. Transformer ensuite ces équations,
c’est-a-dire les combiner ensemble, ou en poser d’autres évidentes que l'on combine avec
elles, n'est au fond que de la synthése; & moins que l'idée de chaque transformation ne
nous soit donnée par quelque vue nouvelle de l'esprit, ou quelque nouveau raisonnement,
ce qui nous fait rentrer dans la véritable analyse. Hors de cette voie lumineuse, il n’y
a donc plus d’analyse, mais une obscure synthése de formules algébriques que l'on pose,
pour ainsi dire, I'une sur l'autre, et sans trop prévoir ce que pourra donner cette
combinaison. Voila les idées nettes qulil faut attacher aux mots: et c'est au fond ce
que tout le monde parait sentir, puisqu’on dit trés-bien une heureuse transformation, et
quon ne dit point un hewreuz raisonnement, ni une heureuse analyse.”

I was led to the following investigations by a desire to simplify, if possible, by
a symmetrical process, the usual modes of treating the rotation of a rigid body. The
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methods ordinarily employed are essentially unsymmetrical, e.g. the determination, by
means of three angles, of the position of the body at a given time, when its angular
velocities about its principal axes are given, or can be found. It was not till after
my investigations were nearly completed, and the chief fundamental equations had been
communicated to the British Association at Norwich, that I became aware of the
existence of Professor Cayley’s admirable Second Report on Theoretical Dynamics*, which
contains an immense amount of valuable information, especially bearing on the present
subject. From this I found that the notion of attaining symmetry, by seeking the
single rotation which would bring the body from some initial position to its actual
position at a given time, which had been suggested to me by Hamilton’st beautiful
results, is due to Euler; and I also found that, by the help of certain formule due
to Rodrigues, Cayley has completely solved the question in the Cambridge Mathematical
Journal, vol. 111. (1843)}. Comparative symmetry, however, is only attained by means of
a brilliant display of analytical power at a great expense of time and bewilderment
to the ordinary reader. In the Philosophical Magazine, 1848, 11, Cayley has translated
some of his formule into quaternions, and has thus arrived, though by a very circuitous
route, at the fundamental kinematical equation of the present paper (§ 7 below). He
does not give it in its simplest form, and he remarks that he has “not ascertained
whether it leads to any results of importance.” Under these circumstances, I have had
no hesitation in laying this paper before the Society; for although many of its more
important results have been otherwise obtained, few, with the exception of those due
to Hamilton (which will be given in their turn), have hitherto been arrived at so
easily or in such simple forms.

As symmetry has been the particular object which I have had in view, by far the
greater part of the investigation bears upon the determination of the quaternion, by
which the transition can at one step be effected from any initial position to the actual
position of the body at a given time; and a good many results have been retained,
which are of more interest as properties of quaternions, than as regards their connection
with the physical question. In the kinematical part of the paper, to which I proceed
as a necessary preliminary, I have exhibited, for facility of comparison with other works
on the subject, the values of this quaternion in terms of the various sets of co-ordinates
usually employed. This, I need hardly say, does not lead to very simple or elegant
results; but the fault is due, not to quaternions, but to the unnaturalness and want
of symmetry of these common methods of attacking the problem. On the other hand,
nothing can be neater than the set of formul® which are suggested directly by
quaternions.

* Report on the Progress of the Solution of certain Special Problems of Dynamics.—Brit. dss. Report, 1862.
t Proc. R. I. 4., 1846. See also §§ 1 and 4 below.
+ See also Cambridge and Dublin Math. Journal, vol. 1. (1846).
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§ 1—14. Kinematics of a Rigid System with one Point fized.

1. If e represent the instantaneous axis of a rigid body, its length being employed
to denote the angular velocity about it; then, & being the vector of any point of the
body, drawn from a point in the axis as origin, we obviously have (using Newton’s
convenient notation)

This formula was long ago given by Hamilton.

2. Bvery infinitely small displacement of a Rigid System, one point of which s
Siwed, takes place about an instantaneous awis.

Let @, @, be the vectors of any two points of the system, referred to the fixed
point as origin; then, whatever displacements may occur, we must have (on account

of the rigidity of the system)
Tw = const., T'w, =const,, Sww, = const.
Hence, differentiating with respect to ¢,
Swir =0, Sodr,=0, St + 8w =0 0ccvirierirsennnnennnn (2).
The first shows that @ = Vew,
where ¢ is some vector. With this the third gives
8.w (Vew, —4r,)=0,
which must be true for all values of =. Hence we have also
@, = Vew,.
This is consistent with the second of equations (2), so that the existence of the
instantaneous axis is proved. From the fact of its existence follows at once the
representation of the motion, in every case, by the rolling of a cone fixed in the rigid

system upon another cone fixed in space. The case of finite displacements will be
treated farther on (§ 5 below).

3. To find the instantaneous awis, when the vectors, and vector-velocities, of any two
points of the system are given.
Here we have to find e from the two equations
& = Vew, = Vew,.
They give by inspection Vird, = — eSom = eSwa,
s o i
= (117 = 'é’ﬁ"l)

1. 12

or, more symmetrically, €
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4. If q be any quaternion, the operator

g¢- g

turns the wvector, quaternion, or system, to which it is applied, about the awxis of q
through double the angle of q.

This was one of Hamilton’s early* discoveries in his new calculus, but it was
independently obtained by Cayley (only a month or two later)t by the help of the
formule of Rodrigues already referred to. Conversely, when its truth has been
established by an independent process, these formule may be at once derived from
it: not only far more simply, but even in a somewhat improved form.

The quaternion ¢ may obviously be considered as a mere versor, since its tensor
does not appear in the operator ¢( )¢, and a glance at the annexed figure proves,

7-".'
7’ g

=t

?"g" ?’7‘9’

by the multiplication of versor arcs, the theorem above stated. (See Tait’s Quaternions,
§ 353, or Hamilton’s Lectures, § 282, and Elements, § 308 (9).)

5. In quaternions we have, of course, whatever be ¢ and r,
(gr)=r7"q"
Hence g.r( Yrt.gt=qr( . )@y,

which shows how to combine any two rotations into a single one.

6. Given the initial and final positions of any two vectors of a rigid system,
drawn from the fiwed point; to find the quaternion operator by which the rotation
can be effected. Let them be a, B, 2,, B, and let ¢ be the required quaternion,
then

g =, gBY =By,

or qum o GO m v iR G e e e (3).
Hence S(a—a)qg=0, 8(B=FB)g=0,

or V|| V(a—a) (B =5

as we might at once have seen by the geometry of the question.

Hence g=a+yV(a—a)(B—PB)

* Proc. R. I. 4., November 11, 1844. t+ Phil. Mag., Feb, 1845,
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By the help of this, the first of equations (3) becomes
O=a(a- al)"'y{v(a" @) (B-B).a—a V(a—a)(B- B
or T 0=z¥yS(a+a)(B-B)

[The second of equations (3) merely gives us a condition which is equivalent to
this, because :

S(a+a)(B—B)=-8(@a—a)(B+8)
or SaB = Sa,3,.]
Thus, finally, g=y{=S@+a)(B=B)+V(a—a)(B—-RB)}
=—y[(B-Bla+au(B—p)]

where, as was to be expected, the tensor is left indeterminate.

7. Given the instantaneous awis in terms of the time, it is required to find the
. single rotation which will bring the body from any initial position to its position at a
given time.

If « be the initial vector of a point of the body, = the value of the same at
time ¢, and ¢ the required quaternion, we have

Differentiating with respect to ¢, this gives
& =gag~ —gag~* 4g,
=4q".qaq" —qag™". 497",
=2V.(Vgq™. qag™).
But o= Vew="V.eqaq™".
Hence, as qag~ may be any vector whatever in the displaced body, we must
have

This is the fundamental kinematical relation already referred to. Cayley's*
quaternion form of it (which will be understood by the help of § 13 below) is

e dA d
x(ﬁp+3q+kr)=2—(§:\+ aj—:,
where A=1+n+ju+ kv

8. The result of § 7 may be stated in even a simpler form than (5), for we
have always, whatever quaternion ¢ may be,

* Phil. Mag., Sept. 1848.
12—2
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and, therefore, if we suppose the tensor of ¢, which may have any value whatever,
to be a constant (unity, for instance), we may write (5) in the form

L PO PO TN B T S 1T R (6).
An immediate consequence, which will be of use to us later, is
Gyl e S, e R S T (7).

9. It may appear to some that the demonstration of § 7, founded on the
differentiation of quaternions, is not very convincing. For such it is easy to put it
in an expanded form in which no process of differentiation of a jfunction of a
quaternion is alluded to—though in principle it is the same proof,

Let ¢ become g+ in the indefinitely short interval 7. Then the change of
position of the extremity of
@ =qag~’
may be expressed either as
Vew.r or as (¢+7)a(q+r)"—qag™
Hence
V. equgTt=(g+r)alg+r) = gag™,
=¢[A+g7na@d+g'r)—a]g,

= ET(i“-%q*—‘ﬂ A+g'nNa@+K.q')=A+g?r)(1+K.q n)al g

=.1T1‘2£T_1?‘){(1 +q )V (Vg ir.a) g™

But » is the change of ¢ in time 7, and we may therefore write

-

=g

Substituting, expanding, and neglecting small quantities of the orders 72 and
upwards, we have

V.eqag'=2qV (Vg '¢.a)q™?
=q(Vgig.a—aVqg) g™
=q(Ve' g qag™ — g (V' P g™
= Viq . qaq™ - qaqg™. V4q™
=2V (Vig. q297)
the same equation as in § 7.
9% [Inserted Dec. 19th, 1868.] A geometrical investigation may also easily be

given, if for no other purpose than to serve as an instance of the justice of my
introductory remarks on diagrams as compared with quaternion equations.
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Let @, @ be the poles, on the unit-sphere, of the versor angles BQE', BQ'E’,
whose bounding arcs intersect in E'; and let P, P’ be the poles of these bounding

arcs, A the pole of Q@B [A coincides with the projection of O, the centre of the
sphere]l. Then evidently AP (=¢) and AP (=¢) are the versor arcs, corresponding
to the above versor angles, Obviously the point £’ is deduced from a point e on
the other side of the sphere [whose projection coincides with that of £'], by a

rotation about @ through double of BQE’, or about @ through double of BQE'.
Hence we have obviously

OF = qOeq~ =q Oeq'™

Thus a rigid body may pass from the position ¢ ( )¢~ to the position ¢’ ( )¢,
whatever be ¢ and ¢/, by a rotation about OE’. Also, by ¢ ( )¢, @ remains fixed;
but by ¢ ( )¢~ it moves to R, where ZQE'R=22QE'Q =22 POP.

Hence if OF'=— Ue=(Ue)™, the versor arc PP’ may be expressed by either of
the equal quantities

2PF

(Ue) = =q'q
But the actual rotation about e is 2PP’, because @ moves to R. Hence if we put

q’=g+§8t+&c-}
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we have Tedt=2PPF,
&tTe

Tedt
and thus 1+ gg™ 8t + &c. = (Ue) = =cos StzTE + Uesin =5

€
=1+ E ot o &e.
Hence, as in (6), when &t is indefinitely small
2¢q ' =e.

10. To empress q in terms of the usual angles v, 6, ¢.
Here the vectors 4, j, k in the original position of the body correspond to 0A,

<7

c

A

OB, OC, respectively, at time t. The transposition is effected by—first, a rotation
about k; second, a rotation @ about the new position of the line originally coinciding
with j: third, a rotation ¢ about the final position of the line at first coinciding
with .

Let 7, j, k be taken as the initial directions of the three vectors which at time ¢
terminate at A, B, ' respectively.

The rotation 4 about % has the operator

GO
k() kT
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This converts j into 7, where
v ¥ T
n=k"jk "=jcosy —isin y

The body next rotates about % through an angle 6. This has the operator

[ _e
7 ()n "
It converts % into

OC’=§=7}$L°1}‘%=(eosg+'qsing)k(cosg—qsin g)

=k cos 0+ sin @ (¢ cos ¥ + j sin ).
The body now turns through the angle ¢ about ¢, the operator being
& i
50"
Hence

Dl
g=t ke
=(cos§+§'aing) (cosg+nsing) (cos%’+kain»"§)
=(cos%+§'sin g) [cosgcoa %’Hccosg sin g+singwsg (j cos y—isin ) +sin g sing (i cos Y +j sin 1,15)]

=(oosg+§sin¢) [coafcosf— isin = gin w-{-j sin g ccos—"‘.'-|—;'cccmg sin g:l

2 Gt Tt 85in2 2
=cosgmagcosg+singﬁngaingsinEcos\b—ain%’singcosgsinﬂsinw—singcoagsingcwﬂ
+£(—coa%si:ngsingﬁ-singeﬂsgmsgain&nm\b-singsingcosgcosl?-}-singcoagaingsinﬂsin‘\b)
+j(coagsmgcosgq-singcosgcoagsjnBsinw—aingsingsin‘—écosﬂ—aingcosgsingsinacomp)
+k (eosg cosgaing-ksingcosgcoagcos E+singsingsin§'psin63iu ‘p+singsingcosgsin f cos ‘,r;)
=cos?—;—£cosg+isin¢;fsing+jcos?%¥faing+ksin¢—;-£wﬂg‘

which is, of course, essentially unsymmetrical.

11. To find the usual equations connecting ¥, 0, ¢ with the angular velocities about
three rectangular awes fized in the body.

Having the value of ¢ in last section in terms of the three angles, it may be useful
to employ it, in conjunction with equation (6) of § 8, partly as a verification O'f that
equation. Of course, this is an exceedingly roundabout process, and does not in the
least resemble the simple one which is immediately suggested by quaternions.
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We have 2§ = eq = {0,04 + 0,0B + 0,00} ¢,
whence 201G =g {0,04 + 0,0B+»,0C} ¢,
or 24 = q (1w, + jo, + ka,).

This breaks up into the four (equivalent to three independent) equations

dit cos¢+’4' ——mlsinqﬁ;\;rsing—-mgcos‘b;\#sing-—masind);‘#cosg
E?E(Sm Bmg)— mlcosqb;\bcosg—mgsm“'b':l‘bcosg-}-wscosé—;"&—sing
%(coe 5 sm - mlsin¢—;$c085+w,cos"b;“veosg—w,sinqb;\ksing
C%( d’:‘kcosg)=-—mlcosd’;\bsing+m,sin¢;1p51ng+wscos¢;‘pcosg.

From the second and third eliminate ¢ —+, and we get by inspection
0 . § [
cos§.9=(m131n¢+w2cos¢)cos§,
or 0 = w, sin ¢ + w, cos O B T e e o (8).

Similarly, by eliminating @ between the same two equations,

sin g(cﬁ-—'tfr)=wssing+w1 coscﬁcosg— W, sinq&cosg.
And from the first and last of the group of four

0 [ (2
cos_(qf,.g.qp)_mscosi—mlcoszﬁsm 2+m,sm¢sm 3

These last two equations give

¢+ yrcos = wg.uunnnnnn ST N S B, P, T (9).
$ c08 0 + 4 = (—, cos ¢ + w, sin ¢) sin 0 + w, cos 6.

From the last two we have
1;} Bin 0 ==, coB ¢+ 0 B s coiarosrsvarnadsdonns (10).

(8), (9), (10) are the forms in which the equations are usually given.

12. The essential want of symmetry, in the system of three angles usually employed,

has led me to try various other systems. None of them, however, were quite symmetrical,

and I therefore introduce only one of them here.

Suppose the position of the body to be determined by the angles ¥, 6, ¢, through
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which it has been made to turn about three rectangular axes which are fixed in it;
and which may be considered as

% ch:xdt, ~1£ o, dt, % w,dt respectively;

®,, @, @; having values in general different from ®,, w,, @;, but easily deducible from
them.

C

J

The essential difference between this process and the ordinary one (just treated),
consists in using rotations about each of the three axes fixed in the body, instead of
one about one axis, followed by another about a second, and then a final rotation about
the first axis instead of the third.

We have first a rotation 4+ about 7, next @ about the new position of j, and finally
¢ about the final position of .

Lok . :
t"( )¢ 7 is the operator due to the rotation about .

It converts j into n =4 cos ¥ + ksiny,
and % into k cos Yr —j sin yn.
Next, the operator due to the rotation 6 is
¢ el
7()n "

and this converts % cos yr —j sin ¢+ into
¢=1sin @+ (k cosy —jsin)cos 6.

Thus q =;‘§.,,vgr £= (cosg+ {sing—') (cosg+nsing) (cos%+£sin %) :

T. 13



98 ON THE ROTATION OF A RIGID BODY ABOUT A FIXED POINT. [xv.

Substituting the above values of ¢ and %, multiplying out and arranging, we find
finally

o

Q=COS§COSEGOSE—Sin%SSingSiBg
+1 I::cos g cos gsin %’+ sin g singcos %)
+j(cosgsingcoszg—sin%’cosgsing)
+k(cos%’ singsinqusin gcosgcos%’.).

The expressions for w,, @,, w, in terms of ¢, 6, Y and their differential co-
efficients are not very simple, and can scarcely be of any use.

We see by the equation of § 11 that

-, =28.,1¢7"g.
If we put g=w+w+jy+ ke
this gives —w, = 2 (2w — wi + yi — zy)

from which the required expression may be obtained.

I have not examined the question, but I fancy that to deduce the constituents
of the above value of ¢ by means of spherical trigonometry would not be very
easy.

13. To deduce expressions for the direction-cosines of a set of rectangular axes in
any position in terms of rational functions of three quantities only.

Let @, B, ¢ be unit-vectors in the directions of these axes. Let ¢ be, as in
§ 7, the requisite quaternion operator for turning the co-ordinate axes into the
position of this rectangular system. Then

g=w+at+yj+ 2k
where, as in § 8§, we may write
l=w+a*+y*'+ 2%
Then we have ; ¢ =w—an - yj — 2k,
and therefore
a=qiqg™ = (wi — & — yk + zj) (w — @i — yj — zk)
=W+ a— P—2)i+ 2 (wz + ay)j+ 2@z —wy)k,

where the coefficients of 4, j, k are the direction-cosines of a as required. A similar
process gives by inspection those of 8 and .
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As given by Oayley, after Rodrigues, they have a slightly different and
somewhat less simple form—to which, however, they are easily reduced by putting
e (SE
The geometrical interpretation of either set is obvious from the nature of quaternions.
For (taking Cayley’s notation) if 6 be the angle of rotation: cosf, cosg, cosk,

the direction-cosines of the axis, we have

g=w+m‘i+yj+zk=cos§+ sing(z'cosf+jcosg+kcosk),

2
so that w=cosg
2
wzsingcosf
2
0
y=sinzcos g

z—singcosz‘
= 2 L.

From these we pass at once to Rodrigues’ subsidiary formule,

.u:—l—-sec‘Eg
s 2
x [0}
7\.—1—0 —ta.nﬁcosf
&ec. = &e

14. In the system of three angles, corresponding to that usually employed in

¢ 4

13—2
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astronomy—viz., @ the longitude of node, ¢ the inclination of orbit, = the angle from
node in plane of orbit—to find the quaternion operator.

Here we relapse into the essential asymmetry of the method of § 10. First,
a rotation € about j; second, a rotation ¢ about the new position of k; third, a
rotation T about the final position of what was originally j. The connection of this
process with that of § 10 is sufficiently obvious.

0 0
Here j~ () j ~ is the operator for 6, and converts k into

@1=q=(cosg+jsin g)k(cosg—jsin g)
=148in 0 + k cos 6.

Next, the operator for ¢ is

and converts j into

O—B=§'={cos%’+sin%(£sin0+kcos€)}j{cosg—sin%’(isinﬂ-i-kcos6)}

=—18in ¢ cos f + j cos ¢ + k sin ¢ sin 6.

Hence we have
R AL
q = g‘ll' ﬂw ‘?w

. e i el
=[cos%+ain%(—iain¢cos9+jcos¢+ksin¢uinﬂ}:| 3coa§+alng(asmﬂ+kcosﬂ)} (ws‘z-f-_;.- sin §)

. IS A o E ]
=|:c05;;+sm' ;—(-isin¢cos9+jcos¢+ksin¢smﬂ]:| (cosgcos§+eBlngHln§+3008g31n§+kamgcos§)
= T+0 i Pk et I A g [ O-7 . ¢
= 08 —5—co8 5 +isin ——sin g +jsin - c032+kcos g sing.

As a verification, we have by § 11

0A = qig™
= (2%~ y? ~2) i +2 (wz +2y) j + 2 (22~ wy)
=|:cos[3+7)cos‘3§—cos{8—--r] sinﬂg:liﬂoarsin ¢j+|:lﬁn(ﬂ—r}sinsg—ain{9+r)cos’ g]k
=(cos 6 cos 7 cos ¢ — 8in 0 8in 1) i +co8 7 8in ¢j + (— sin 6 cos 7 cos ¢ — cos @ sin 7) k.

The coefficients of 4, j, k, in this are the usual expressions for three of the
direction-cosines. The other six may be obtained by the same process.
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To express the angular velocities about 0d4, OB, OC in terms of the three
angles 6, ¢, 7, we have at once

—w, =28 .1g7¢
= 2 (x — wis + yz — 2y)
=—fcosTsing—sin .

And the others can be found in a similar manner.

§§ 15—60. Kinetics of a Rigid Body with one Point Fized.

15. Having premised these kinematical theorems, we pass to the consideration
of the motion of a rigid mass. It was of course at once obvious to Hamilton
(Proc. R. 1. A. 1847), that if = be (as in § 7) the vector of the portion m of the
mass referred to the fixed point, B the vector-force acting at m, Lagrange’s general
equation of motion takes in quaternions the form

3. Vo (mé —B)=0,

or, if we put v=3.V=B
so that 4~ denotes the vector-couple acting on the body,
2.mVEE = i, (11).

This is our sole dynamical equation.

16. Integrating once with respect to ¢, we have, putting

where, if we please, we may omit the V, as wa is necessarily a vector.

Now, by the kinematical relation in § 1, if ¢ be the vector instantaneous axis,
we may write (13) as
BN A T T s e R e (14')

17. From these equations Hamilton has deduced, in an extremely simple oy
many known results of great interest. For instance, if v vanish, d.e, if there be no
applied forces, v is a constant vector, and (operating on (14) or (13) by S.e)

Sey=32.m(Vem)P=2ma®==h%.......ccccoviirnriinnrnnnns (15),
a constant, by the principle of conservation of energy.
Of these equations Sm(Vew) =—h*

denotes obviously an ellipsoid fixed in the body, and such that ¢ is a radius-vector



102 ON THE ROTATION OF A RIGID BODY ABOUT A FIXED POINT. [XV.

of it. The tangent plane to it at the extremity of e is easily seen to be the fixed

plane
Sey = — k2,

Hence we have at once Poinsot’s beautiful construction of the motion, by the rolling
of the central ellipsoid on the invariable plane. But this, although extremely elegant,
is not well adapted to assist us in the determination of the position of the body
in space after a given time.

18. In most of the investigations which follow, we shall use the form (14) as
given by Hamilton; and we shall omit for the present the consideration of whether
v 18 a constant vector or not.

19. Let a be the initial position of =, ¢ the quaternion by which the body
can be at one step transferred from its initial position to its position at time ¢£. Then

w = qog !
and Hamilton’s equation (14) becomes
2 .mgag? V. eqag =1,
or 2 .mgq {aS . agleq — g reqa} g = 1.
Let dp=TimlaSepaawadolinwalan it e (16),

where ¢ is a self-conjugate linear and vector function, whose constituent vectors are
fixed in the body in its initial position. Then the previous equation may be written

(g e g =1,

or ¢(q7"eq) =q"vq-
For simplicity let us write
SO an
e
Then Hamilton’s dynamical equation becomes simply
R G W N P I (18)

20. It is easy to see what the new vectors n and { represent. For we may write

(17) in the form

Py 1

regeg } ............................................. ary,
v=q8"

from which it is obvious that # is that vector in the initial position of the body
which, at time #, becomes the instantaneous axis in the moving body. When no forces
act, ¢ is constant, and ¢ is the initial position of the vector which, at time ¢, is
perpendicular to the invariable plane.
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21. The complete solution of the problem is contained in equations (7), (17),
(18)*  Writing them again we have, attending to (17), while introducing 7 instead
of e into (7),

IR e i T A S S (M),
o e e S o ey S SR el (17),
T R ICSCENRNET o, FRRRES DN JCR SR (18)
We have only to eliminate ¢ and #, and we get
i e o S S (19),

in which ¢ is now the only unknown; s, if variable, being supposed known in terms
of ¢ and ¢ It is hardly conceivable that any simpler, or more easily interpretable,
equation for ¢ can be presented until symbols are devised far more comprehensive
in their meaning than any we yet have.

22. Before entering into considerations as to the integration of this equation, we
may investigate some other consequences of the group of equations in §21. Thus, for
instance, differentiating (17), we have

74 +9¢ = ¢ + ¢,
and, eliminating ¢ by means of (7)

vqm + 27g = qn¢ + 2qt,

whence E=Von+q9;
which gives, in the case when no forces act, the forms

BN i e R SR (20),
and (as {=g¢), L R S S (21).

To each of these the term ¢—'yg, or ¢~'v¢, must be added on the right, if forces act.

23. It is now desirable to examine the formation of the function ¢. By its

definition (16) we have
¢p =2 . m(aSap — a’p)

= — 2 . maVap.
Hence — Sppp == . m(TVap),
* To these it is unnecesslary to add
T'q=constant,

as this constancy of Tq is proved by the form of (7). For, had Tq been variable, there must have been

a quaternion in place of the vector » In fact,

& (rgr=95 .aKq=(Ta)* $1=0.
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so that —Spgpp is the moment of inertia of the body about the vector p, multiplied
by the square of the tensor of p. Thus the equation

Spdp = — I,

evidently belongs to an ellipsoid, of which the radii-vectores are inversely as the square
roots of the moments of inertia about them*; so that, if %, j» k be taken as unit
vectors in the directions of its axes respectively, we have

Sigi =— A,
Sjgj ==B, } ... AL e e (22),
Skk =— C,

4, B, C, being the principal moments of inertia. Consequently
¢p = — {AuSip + BjSjp + CloSkp} ....ocevvvraeeerrivivvinnnnn, (23).
Thus the equation (21) for n breaks up, if we put
n= 1w, + jo, + ke,

into the three following scalar equations

Ao, + (C — B) w,w,=0,

Ba, + (4 - C) 0,0, =0,

Ca; + (B — 4) ww