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Chapter 1

Introduction

1.1 Graphene - two-dimensional crystal

1.1.1 Introduction

Graphene is a one-atom thick planar structure of carbon atoms arranged

in a honeycomb crystal lattice. It plays an important role since it is a basis

for an understanding of the electronic properties of other allotropes of carbon.

Graphene can be rolled up along a given direction forming nanotubes, a 1D

material, or wrapped up into a ball creating fullerene, a 0D material. It is

worth to note that the Nobel Prize in Chemistry in 1996 was awarded jointly

to Robert F. Curl Jr., Sir Harold W. Kroto and Richard E. Smalley ”for their

discovery of fullerenes”. Graphite is a 3D anisotropic crystal, consisting of

graphene layers bonded by weak van der Waals forces. A separation between

graphene adjacent sheets, 0.335 nm is much larger than a distance between

neighboring carbon atoms in a honeycomb lattice, 0.142 nm.

A research on graphene has a long history. One of the first papers was writ-

ten by P. R. Wallace in 1946 at the National Research Council of Canada [1].

It regarded a band structure of graphite, including a single layer - graphene.

It was shown that graphene exhibits semi-metalic behavior with an unusual

low energy linear dispersion of quasi-particle energy as a function of wave

vector. This behavior is in close analogy to the dispersion of massless rela-

tivistic particles. A theory of the electronic properties of graphite was further

developed by Slonczewski, McClure and Weiss [2, 3]. Semenoff and Haldane

discussed an analogy of graphene to (2+1) dimensional quantum electrody-

namics (QED) [4,5]. Experimental attempts were performed to separate layers

in graphite through intercalation [6–9]. The electronic properties of graphite

intercalation compounds were studied by a number of groups [10–12]. Theory
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Figure 1.1: SEM images of thin graphite plates on the Si(001) substrate.

Reprinted from Ref. [27].

of optical absorption of graphene was developed [13] and compared with exper-

iment [8,13]. Effects of electron-electron interactions and collective excitations,

plasmons, were studied [15, 16]. Graphite monolayers were observed already

in 1962 by Boehm and collaborators [17]. Boehm obtained thin graphite frag-

ments of reduced graphite oxide identifying some of them as graphene (the

name graphene for monolayer was introduced later, in 1986 [18]). Ultrathin

graphitic films were also obtained by growth techniques [19–22]. Analysis of

their electronic properties was done by surface science techniques avoiding

measurements related to quality or continuity of samples. Carrier dynamics in

few-nm-thick graphite films was studied in the 90’s [23, 24]. Ohashi reported

resistivity changes by up to 8% with varying electric field for 20 nm thick

samples. Using bottom-up techniques, a group lead by Mullen created ”giant

hydrocarbons” [25,26].

In 1999, Ruoff developed a method called ”mechanical exfoliation” [27].

They used a tip of Atomic Force Microscope (ATM) to manipulate small pil-

lars patterned in the highly oriented pyrolytic graphite (HOPG) by plasma

etching, Fig. 1.1. HOPG is characterized by high atomic purity and smooth

surface. Carbon layers could be delaminated due to the weak van der Waals

forces between consecutive layers. This method was realized by Geim’s group

using scotch tape to exfoliate few carbon layers from graphite in 2004 showing

ambipolar electric field effect in thin graphene flakes [28], Fig. 1.2. The method

of identifying few layer graphene samples required a combination of optical mi-
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Figure 1.2: Electric field effect in thin graphene flakes. (A) Typical depen-

dences of FLG’s resistivity ρ on gate voltage for different temperatures (T=5,

70, and 300 K for top to bottom curves, respectively). (B) Example of changes

in the film’s conductivity σ = 1/ρ(Vg) obtained by inverting the 70 K curve

(dots). (C) Hall coefficient RH versus Vg for the same film; T=5 K. (D) Tem-

perature dependence of carrier concentration n0 in the mixed state for the film

in (A) (open circles), a thicker FLG film (squares), and multilayer graphene

(d ≃ 5 nm; solid circles). Red curves in (B) to (D) are the dependences

calculated from our model of a 2D semimetal illustrated by 0 insets in (C).

Reprinted from Ref. [28].
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Figure 1.3: Images of a thin graphitic flake in optical (Left) and scanning

electron (Right) microscopes. Few-layer graphene is clearly visible in SEM (in

the center) but not in optics. Reprinted from supporting materials to Ref. [28].

croscope (OM), scanning electron microscope (SEM) and AFM. Thin graphite

fragments, thinner than 50 nm, were completely invisible in OM but clearly

seen in high-resolution SEM on SiO2 substrate, Fig. 1.3. The added optical

path shifts the resulting interference colors from violet-blue for pure SiO2 sub-

strate to blue for samples with graphitic films. These color shifts are sensitive

to the number of graphene layers. A contrast is affected by the thickness of the

SiO2 substrate and the best is obtained for 300 nm thick substrate. A thickness

of the substrate was crucial because 5 % change can make graphene completely

invisible. After a first selection of thinnest fragments, AFM was used to iden-

tify fragments with thickness less than ∼ 1.5 nm because they were invisible
even via the interference shift, Fig. 1.4. While AFM could identify number of

graphene sheets in a sample (1, 2 or 3 layers), AFM tip destroyed it, e.g., by

scratching their surface. Thus, it was not possible to identify the number of

layers in the studied devices. Later, a group lead by Geim has shown a simple

method of distinguishing single layer graphene, even with respect to bilayer,

by using Raman spectroscopy [29]. Their samples were characterized by high

quality. The carrier mobility exceeded 10000 cm2/Vs, which was crucial for

the reported ballistic transport over submicron distances. It was shown that

in thin graphene flakes a resistivity can be changed by a factor of ∼100 using
a perpendicular electric field. It was also proven that independently of carrier

concentration graphene conductivity is always larger than a minimum value

corresponding to the quantum unit of the conductance [28,30]. The most sur-

prising in their experiment [28] was not the observation and the isolation of

graphene but its electronic properties [31]. Atomic planes remained continuous
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Figure 1.4: Single-layer graphene visualized by AFM. Narrow (≃100 nm)
graphene stripe next to a thicker area. Colors: dark brown corresponds to

SiO2 surface, bright orange ∼ 2nm, light brown ∼ 0.5nm - the high of a single
layer. Reprinted from supporting materials to Ref. [28].

and conductive under ambient conditions.

In next works, experiments on a single layer graphene were performed

[30,32]. Based on magneto-transport measurements, a single layer was shown

to indeed exhibit a linear energy dispersion. Integer quantum Hall effect

(IQHE) in graphene is distinctively different to that in conventional semi-

conductors with a parabolic dispersion. In graphene, Hall plateaus appear at

half-integer filling factors with Landau level dispersion proportional to a square

root of a magnetic field, Fig. 1.5. Additionally, a unit of the quantized conduc-

tance is four times larger than in conventional semiconductors. This is related

to four fold degeneracy in graphene (spin degeneracy and valley degeneracy).

In 2007, IQHE in graphene was demonstrated at room temperature [33, 34].

This was possible due to a high quality of samples and large cyclotron ener-

gies of “relativistic” electrons, and consequently a large separation between

neighboring lowest Landau levels, Fig. 1.6.

The relativistic nature of carriers in graphene is also interesting from scien-

tific point of view. Electrons move like they have zero rest mass with a velocity

300 times smaller than a speed of light [35]. Thus, one can probe quantum

electrodynamics (QED) without need of expensive accelerators. One of effects

characteristic for relativistic particles is Klein tunneling [36,37]. A relativistic

particle can travel through a high potential barrier, in some cases with 100%
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Figure 1.5: Hall conductivity σxy and longitudinal resistivity ρxx of graphene

as a function of their concentration at B = 14 T and T = 4 K. σxy = (4e2/h)ν

is calculated from the measured dependences of ρxy(Vg) and ρxy(Vg) as σxy =

ρxy/(ρ
2
xy + ρ2xx). The behaviour of 1/ρxy is similar but exhibits a discontinuity

at Vg ≃ 0, which is avoided by plotting σxy. Inset: σxy in ‘two-layer graphene’

where the quantization sequence is normal and occurs at integer ν. The latter

shows that the half-integer QHE is exclusive to ‘ideal’ graphene. Reprinted

from Ref. [30].
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Figure 1.6: Room-temperature QHE in graphene. (A) Optical micrograph of

one of the devices used in the measurements. The scale is given by the Hall

bar’s width of 2 µm. (B) σxy (red) and ρxx (blue) as a function of gate voltages

(Vg) in a magnetic field of 29 T. Positive values of Vg induce electrons, and

negative values of Vg induce holes, in concentrations n = (7.2·1010 cm−2V–1)Vg

(5, 6). (Inset) The LL quantization for Dirac fermions. (C) Hall resistance,

Rxy, for electrons (red) and holes (green) shows the accuracy of the observed

quantization at 45 T. Reprinted from Ref. [33].
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probability. It is related to the fact that a barrier for electrons is also a well

for holes, resulting in hole bound states inside it. Matching between electron

and hole wavefunctions increases a probability of tunneling through the bar-

rier [36]. It has an important consequence. Carriers can not be confined by

an electric field which is crucial for applications in electronic devices. Klein

tunneling in graphene was confirmed experimentally in 2009 [38,39].

The possibility of controlling a resistivity in a wide range, high mobility,

good quality of crystal and planar structure make graphene a material for

electronic applications [40–44]. Recent works on suspended graphene have

shown a mobility as large as 200000 cm2/Vs which is more than 100 times larger

than that of modern silicon transistors [45–48]. This mobility remains high

even in high electric fields. The mean-free path in a suspended sample after

annealing achieves 1 µm, which is comparable with a sample size. Additional,

suspended graphene absorbs only 2.3 % of incident white light making it a

material for transparent electrodes for touch screens and light panels [49].

Thus, graphene can be a competitor to the industrial transparent electrode

material, indium tin oxide (ITO) [50].

Some potential applications in quantum information processing were also

proposed. Graphene is built of carbon. 12C has zero nuclear spin and graphene

has weak spin-orbit coupling, hence it is expected that electron spin will have a

very long coherence time. Thus, it is an ideal material for spin qubits [51–53].

From more immediate applications, graphene can be used as gas sensors. It is

related to a maximum ratio of the surface area to a volume. In typical 3D ma-

terials, resistivity is not influenced by adsorption of a single molecules on their

surface. This is not true in graphene. Adsorption of molecules from surround-

ing atmosphere causes doping of graphene by electrons or holes depending on

the nature of the gas. This can be detected in resistivity measurements [54].

1.1.2 Fabrication methods

A method used by the Manchester group to obtain graphene is called a

mechanical exfoliation. It is based on the fact that graphite consists of parallel

graphene sheets, weakly bound by van der Waals forces. These forces can be

overcome with an adhesive tape. Novoselov and Geim successively removed

layers from a graphite flake by repeated peeling a dozen times [28]. Next,

graphite fragments were pressed down against a substrate leaving thin films

containing also a single layer. Due to an interference effect related to a special

thickness of SiO2 substrate (300 nm), it was possible to distinguish few and a
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single layer in a sample, indicated by darker and lighter shades of purple. A

mechanical exfoliation allows isolation of high-quality graphene samples with

sizes in the 10 µm range, which excludes it from a method used in an industry.

The efficient method of obtaining large graphene fragments with high-quality

is a challenge. Beyond significant progress in achieving graphene by different

methods, mechanical exfoliation remains the best in terms of electrical and

structural quality of the obtained graphene. It is related to high-quality of

starting single crystalline graphite source, HOPG. Below, we describe only

small part of presently developed methods which are most promising for a

mass production.

Chemical Vapor Decomposition

The alternative way of obtaining graphene is epitaxial growth of graphitic

layers on top of other crystals. It provides high-quality multilayer graphene

samples strongly interacting with their substrate. In 2009, a method of growing

few layer graphene films by using chemical vapour deposition (CVD) on thin

nickel layers was demonstrated [41, 55]. It was shown that the number of

graphene layers can be controlled by changing the nickel thickness or growth

time during a process. Transport measurements in high magnetic fields showed

the half-integer quantum Hall effect, characteristic for monolayer graphene [41].

Their samples revealed good optical, electrical and mechanical properties. A

sample size exceeds 1×1 cm2 with graphene domain’s size between 1 to 20 µm.

A size of graphene films is limited only by CVD chamber size. It was possible

to transfer samples to an arbitrary substrate, e.g by using dry-transfer process.

The main problem in this method is related to a wide range of graphene

layer thickness. However, it is very promising due to its high compatibility

with current CMOS technology. CVD growth process was also used to grow

graphene on cooper foils [56]. Obtained films contained only small percent

(<5%) of the area having more than a single layer. Samples revealed reasonable

quality but a method still requires an improved of growth technique. Li and

coworkers have shown an effect of different parameters on growth process [57].

They developed two-step CVD process to obtain large graphene domains with

high mobility. Material quality was significantly improved but an effect of

structural defects is still to be understood.



12 Introduction

Thermal decomposition of SiC

A sublimation process of Si from SiC compound in high temperatures pro-

vides a graphitization of carbon atoms on the surface. The samples are heated

in ultra high vacuum. By using this technique, Berger and de Heer produced

few layers graphene [58, 59]. Their samples were continues over several mm

revealing 2D electron gas properties and high mobility. An advantage of this

method is a possibility of pattern films into narrow ribbons or other shapes

by using conventional lithographic technique [60–62]. Additionaly, insulating

SiC substrates can be used so a transfer to other insulator is not required. On

the other hand, films were inhomogeneous in thickness with graphene mono-

layer grains typically 30-200 nm in diameter. An inhomogeneity influences

on electronic properties, which depend on the number of layers. Emtsev et

al. have improved this technique by using argon gas under high pressure [63].

A graphitization in an argon atmosphere enabled to increase a temperature

process producing much larger monolayer graphene domains and reducing a

number of defects. They obtained arrays of parallel terraces up to 3 µm wide

and more than 50 µm long. They measured carrier mobility and reported val-

ues only five times smaller than that for exfoliated graphene on substrates in

the limit of high doping. Graphene was also epitaxially growth by CVD on

SiC [64–66]. The advantage of this method is that CVD growth is less sen-

sitive to SiC surface defects. The high quality of graphene was confirmed by

several techniques [66]. Single-atomic-layer could be identified by high spatial

resolution ellipsometer. The annealing time and argon pressure are responsible

for the growth kinetics of graphene influence on the number graphene layers.

Material’s properties were studied by STM and TEM [64]. The first carbon

layer was about 2Å from the SiC surface as a result of a strong covalent bonds

between carbon layer and silicon atoms on the SiC surface. Creation of edge

dislocations in the graphene layers as a result of a bending of graphene planes

on atomic steps was observed [64]. The conductivity of graphene thin films

on SiC substrates was also measured [65]. It depended on the film’s thickness

and resided in 5− 6.4 · 106 S/m.

Reduction of graphite oxide (GO)

In this method, graphite is chemically modified to produce graphite ox-

ide (GO), by using the Hummer’s method [67]. GO is dispersed in some

solvent, e.g., water and can be chemically exfoliated. Graphene sheets are

obtained by a chemical, thermal or electrochemical reduction process of oxy-



1.1 Graphene - two-dimensional crystal 13

gen groups [68–71]. The level of oxidization determines electrical conductivity

and optical transparency [72]. During this process, a quality of samples is

significantly reduced due to a change from sp2 to sp3 hybridization for many

carbon atoms. It decreases a mobility of samples. On the other hand, films

reveal high flexibility and stiffness much better than that of other paper-like

materials [69]. The production technique is low cost and can be scaled up to

produce larger pieces of graphene.

1.1.3 Mechanical properties

Graphene is a two-dimensional crystal characterized by a high quality. It is

continuous on a macroscopic scale [73]. Surprisingly, it is stable under ambient

conditions. According to Peierls, Landau, and Mermin works, long range order

in 2D should be destroyed by thermal fluctuations [74–77]. Their analysis re-

garded truly 2D material without defects, but not a 2D system which is a part

of larger 3D structure. In this case, a stability of crystal can be supported

by a substrate or present disorder. On the other hand, in 2007 graphene

suspended above a substrate was demonstrated [45]. These graphene mem-

branes were stable under ambient conditions. It was shown by transmission

electron microscopy (TEM) that graphene has high quality lattice with occa-

sional point defects [78]. Stability was enabled through elastic deformations

in a third dimension related to interactions between bending and stretching

long-wavelength phonons. Above conclusions were explained by a nanobeam

electron diffraction patterns which changed with a tilt angle. Diffraction peaks

were sharp for normal incidence but broadened for different angles revealing

that graphene is not perfectly flat. Samples were estimated to exhibit rip-

ples with ∼1 nm hight and few nanometers length. It is expected that they
strongly influence electronic properties and can be created in a controllable

way by thermally generated strains [79].

Experiments on graphene membranes enable to estimate rigidity, elasticity

and thermal conductivity. Lee et al. and Bunch et al. performed experiments

and numerical simulations on graphene strength and elasticity [80, 81]. They

determined an intrinsic strength which is a maximum strength that can be

supported by the defect-free material. Obtained values correspond to largest

Young modulus ever measured, ∼1 TPa. Such high value is responsible for
graphene robustness and stiffness. It answers the question why large graphene

membranes, with up to 100 µm, do not scroll or fold [82]. Additionally, results

regarding elastic properties predict high tolerance on deformations well beyond
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a linear regime [80]. Graphene also reveals high thermal conductivity, predicted

by Mingo et al. [83] and measured by Balandin et al. [84]. The experiment

required unconventional technique for non-contact measurement, the confocal

micro-Raman spectroscopy. They heated a sample by different power laser with

488 nm laser light and observed a shift of Raman G peak with an excitation

power. Experimental data were fitted to the equation for thermal conductivity

of acoustic phonons because of a negligible electron contribution. A value in

room temperature exceeds 5300 W/mK, which is larger than that for carbon

nanotubes, 3000 W/mK.

1.2 Electronic band structure

1.2.1 Tight-Binding model

Graphene is a two-dimensional crystal built of carbon atoms. Each carbon

atom has four valence electrons. Bonds between adjacent atoms are formed

from three valence electrons on s, px and py atomic orbitals. These hybrid

orbitals are responsible for a structural stability of a graphene layer. The

fourth valence electron is on the pz orbital that is orthogonal to the graphene

plane. It is weakly bound and determines electronic properties of the system.

Single particle properties of graphene can be described by using the one orbital

tight-binding (TB) Hamiltonian [1].

A graphene lattice is a lattice with a basis, forming so called honeycomb

lattice, shown in Fig. 1.7. There are two atoms in a unit cell which form two

sublattices. Each sublattice is a triangular Bravais lattice, labeled as A and

B and distinguished by red and blue colors in Fig. 1.7. The distance between

nearest neighboring atoms in the structure is a = 1.42 Å. Primitive unit

vectors can be defined as a1,2 = a/2(±
√
3, 3). By using vectorsR = na1+ma2,

with n,m integers, positions of all atoms in the structure can be obtained.

Hamiltonian for a graphene lattice has a following form

H =
p2

2m
+
∑
R

(
V A (r−R) + V B (r−R− b)

)
, (1.1)

where V A (r−R) is atomic potential on site R of A-type atom and b = a(0, 1)

is a vector between two nearest neighboring atoms from the same unit cell. Due

to a translation symmetry of the system, and according to Bloch’s theorem, a
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Figure 1.7: (Color online) Graphene honeycomb lattice. There are two atoms

in a unit cell, A and B, distinguished by red and blue colors. Primitive unit

vectors are defined as a1,2 = a/2(±
√
3, 3). b = a(0, 1) is a vector between two

nearest neighboring atoms from the same unit cell.

wave function for an electron on a graphene lattice can be written as

Ψk (r) =
1√
Nc

∑
R

eikR(AϕA
z (r−R) +BϕB

z (r−R− b))

= AΨA
k (r) + BΨB

k (r) , (1.2)

where ϕA
z (r−R) are pz orbitals centered at a lattice site R, A and

B are expansion coefficients, and Nc is the number of unit cells. Or-

bitals corresponding to the nearest neighboring atoms are not orthogonal,

⟨ϕA
z (r−R′) |ϕB

z (r−R− b)⟩ ̸= 0, for |R′ − R− b| = a. For nonorthogo-

nal basis, a generalized eigenvalue problem has to be solved, with a matrix

of overlap integrals S. The basis functions can also be orthogonalized and a

matrix of overlap integrals becomes a unit matrix. The Schrödinger equation

for Hamiltonian given by Eq. 1.1 is written as

HΨk (r) = E(k)Ψk (r) . (1.3)

We project onto ΨA
k (r) and ΨB

k (r). When we neglect three center integrals

and leave only terms corresponding to neighboring atoms, the Schrodinger

equation can be written as(
ϵ− E(k)

tf ∗(k)

tf(k)

ϵ− E(k)

)(
A

B

)
= 0, (1.4)

where ϵ is an energy related to the presence of atomic potentials of all carbon
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atoms in the system and we define a hopping integral

t = ⟨ϕA
z (r−R) |

[
V A (r−R)

]
|ϕB

z (r−R′ − b)⟩ (1.5)

for |R−R′ − b| = a, and

f(k) =
∑
R′

eik(R
′−R), (1.6)

where a summation is over nearest neighbors of an atom on site R. A method

of finding the function f(k) is following. In Fig. 1.7 few unit cells are plotted.

We label a central unit cell in a position given by a vector R by 1. An A-type

atom from this cell, indicated by a red color, has three nearest neighboring

B-type atoms, indicated by blue colors. First one is in the same unit cell,

so we get exponential factor eik(R−R) = 1. A second one is in a unit cell

labeled as 2. This unit cell can be achieved by moving a unit cell in R by a

primitive vector a1, R′ = R + a1. It corresponds to an exponent eik(R
′−R) =

eika1 . Similarly, third nearest neighbor is in a unit cell labeled as 3, giving an

exponent eik(R
′−R) = eika2 . Finally, we can write Eq. 1.6 as

f(k) = 1 + eika1 + eika2 . (1.7)

In Schrodinger equation given by Eq. 1.4, we neglect constant diagonal term

ϵ, which just shift entire spectrum by a constant value. The solution can be

written as

E(k) = ±|t||f(k)|, (1.8)

with a hopping integral t = −2.5 eV. |f(k)| can be calculated using Eq. (1.7)
which gives

|f(k)| =
√
3 + 2 coska1 + 2 coska2 + 2 cosk(a2 − a1). (1.9)

Substituting a solution given by Eq. (1.8) into Eq. (1.4) we can obtain rela-

tions between coefficients A and B. For ”+”energies, an electron branch (a

conduction band), we get f(k)
|f(k)|B = A and substituting it into Eg. (1.2) an

eigenfunction can be written as

Ψc
k (r) =

1√
2Nc

∑
R

eikR(ϕA
z (r−R)− e−iθkϕB

z (r−R− b)), (1.10)

where we define exp iθk = f(k)
|f(k)| and we got an extra normalization factor

1√
2

from a condition |A|2 + |B|2 = 1. A minus sign comes from a definition of a

hopping integral, t = −2.5 eV. We note that one can positively define a hopping
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Figure 1.8: The band structure of graphene. The Fermi level is at E(k) = 0,

where the valence and the conduction band touch each other in six points.

These are corners of the first Brillouin zone, seen in a projection of the Brillouin

zone shown in the right upper corner inset. From these six points only two

are nonequivalent, indicated by K and K’. Other high symmetry points of

reciprocal space are also indicated.

integral t and then minus signs appear in off diagonal matrix elements of Eq.

(1.4), getting the same result. For ”−” energies, a hole branch (a valence
band), we get

Ψv
k (r) =

1√
2Nc

∑
R

eikR(ϕA
z (r−R) + e−iθkϕB

z (r−R− b)). (1.11)

We can emphasize two points of above eigenfunctions: (i) There is a phase

relation between two sublattices in a honeycomb lattice, θk. (ii) When going

from the valence band into the conduction band, a wave function accumulate

an extra phase π, eiπ = −1.

The energy spectrum E(k) of graphene given by Eq. (1.8) is shown in

Fig. 1.8. For the charge neutral system, each carbon atom gives one electron

on pz orbital. As a result, the Fermi level is at E(k) = 0. Signs ± in Eq.
(1.8) correspond to the electron and hole branches, respectively. We note

here that electron-hole symmetry is conserved but only for a solution in a

nearest neighbor’s approximation. From Fig. 1.8, it is seen that a valence

and conduction band touch each other in six points. These are corners of the
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first Brillouin zone, seen in a projection of the Brillouin zone shown in the

right upper corner inset. From these six points only two are nonequivalent,

indicated by K and K ′. The rest four corners can be obtain by a translation by

a reciprocal vectors. In the inset, also other high symmetry points of reciprocal

space are indicated, a Γ point in a center of a Brillouin zone and an M point.

We can look at a solution of Eq. (1.4) at a Γ point, which corresponds to

k = 0. For electron branch, one gets E(k = 0) = +3|t| and for hole branch
E(k = 0) = −3|t|. Thus, Γ point corresponds to energy levels far away from
the Fermi energy, E(k) = 0, which can be also seen in Fig. 1.8. Corresponding

wave functions for a Γ point are

Ψc
Γ =

1√
2

(
1

−1

)
(1.12)

for an electron branch (a conduction band) and

Ψv
Γ =

1√
2

(
1

1

)
(1.13)

for a hole branch (a valence band). These results are in agreement with an

intuition, giving an anti-symmetric (anti-bonding) wave function for a conduc-

tion band and a symmetric (bonding) wave function for a valence band. In

next subsection, we focus on low energy electronic properties which correspond

to states around K and K ′ points.

1.2.2 Effective mass approximation

Graphene band structure given by Eq. (1.8) can be expanded around K

and K′ points in a Taylor series. The function given by Eq. (1.7) can be

written as

f(K+ q) = 1 + ei(Ka1+qa1) + ei(Ka2+qa1), (1.14)

where q is some small vector. We restrict to linear terms in q in a Taylor

expansion and write Eq. (1.14) as

f(K+ q) = 1 + eiKa1(1 + iqa1) + eiKa2(1 + iqa2)

= 1 + eiKa1 + eiKa1iqa1 + eiKa2 + eiKa2iqa2

= f(K) + eiKa1iqa1 + eiKa2iqa2

= eiKa1iqa1 + eiKa2iqa2, (1.15)
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where we have used a fact that f(K) = 1+ eiKa1 + eiKa2 = 0. From six corner

points, we choose one, K = 2π
a
( 2
3
√
3
, 0). By using a definition of vectors a1,2,

a1,2 = a/2(±
√
3, 3) we get

Ka1 =
4π

3
√
3a

· (a
√
3/2) =

2π

3

Ka2 =
4π

3
√
3a

· (−a
√
3/2) = −2π

3
. (1.16)

One can easily check that

1 + ei
2π
3 + e−i 2π

3 = 0.

Substituting Eq. (1.16) into Eq. (1.15) one gets

f(K+ q) = ei
2π
3 iqa1 + e−i 2π

3 iqa2

= i

(
−1

2
+ i

√
3

2

)
a

(
qx

√
3

2
+

3

2
qy

)

+ i

(
−1

2
− i

√
3

2

)
a

(
−qx

√
3

2
+

3

2
qy

)
=

3

2
a (−qx − iqy) .

Eq. (1.4) around point K = 2π
a
( 2
3
√
3
, 0) for small q, can be written as(

0

−3
2
ta (qx − iqy)

−3
2
ta (qx + iqy)

0

)(
A

B

)
= EK (q)

(
A

B

)
, (1.17)

where we took into account fact that f ∗(K+ q) = −3
2
ta (qx − iqy). Eq. (1.17)

has a solution for energy eigenvalues

EK (q) = ±3

2
a|t||q| (1.18)

and corresponding wave functions

ΨK (q) =
1√
2

(
1

±e−iθq

)
(1.19)

with θq = arctan qx
qy
an angle in a reciprocal space and ± signs for a conduction

and valence band, respectively. Similar calculations can be done around point

K′ = 2π
a
(− 2

3
√
3
, 0). For small q one gets Eq. (1.4) for K′ as(
0

3
2
ta (qx + iqy)

3
2
ta (qx − iqy)

0

)(
A

B

)
= EK′ (q)

(
A

B

)
. (1.20)
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Eq. 1.20 has a solution for energy eigenvalues

EK′ (q) = ±3

2
a|t||q| (1.21)

and corresponding wave functions

ΨK′ (q) =
1√
2

(
1

∓eiθq

)
(1.22)

By introducing a Fermi velocity vF = 3ta
2h̄
, we can write Eq. (1.18) and Eq.

(1.21) as

E (q) = ±h̄vF |q|. (1.23)

This solution is identical to the solution of the Dirac Hamiltonian for rela-

tivistic massless fermions. Here, a speed of light is played by a Fermi velocity.

One can estimate vF ≃ 106 m/s which is 300 times smaller than a speed of

light. We look at the eigenfunctions given by Eq. (1.19) and Eq. (1.22).

They consist of two components, in an analogy to spinor wave functions for

fermions. Here, a role of spin is played by two sublattices, A and B. Rotations

within a spinor’s subspace can be described by Pauli matrices σ = (σx, σy, σz).

Thus, the eigenfunctions given by Eq. (1.19) and Eq. (1.22) are usually called

pseudospinors.

1.3 Graphene nanostructures

Considerable interest in graphene is related to potential electronic appli-

cations, e.g., as transistors, transparent electrodes or photodetectors. In the

case of, e.g., a transistor, a current need to be changed in a controllable way.

Graphene is a semiconductor with a zero-energy band gap. Additionally, as

a result of Klein paradox, it is difficult to confine particles by an electrostatic

gate. The problem of controlling a transfer of carriers can be solved by using

a spatial confinement. As a result of size quantization, an energy gap opens.

Semi-metallic graphene becomes a semiconducting nanostructure. Thus, a new

field associated with graphene nanostructures is developing. Among graphene

nanostructures, strips of graphene (ribbons) and graphene islands (quantum

dots) are of particular attention.

1.3.1 Fabrication methods

Graphene can be patterned into strips with different widths by use of e-

beam lithography and an etching mask, as proposed by P. Kim’s group [85,
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86]. One can start from high quality graphene sample obtained by mechanical

exfoliation. Next, graphene is deposited onto heavily p-doped Si substrates

covered by SiO2 layer. Strips of graphene can be covered by a protective etch

mask from a cubical-shaped molecule having one Si atom at each corner, with

corners being linked via oxygen atoms. This compound is called hydrogen

silsesquioxane (HSQ). The unprotected graphene is etched away by an oxygen

plasma. By using this technique, Kim’s group were able to perform transport

experiments on sample with a variety of widths, from 20–500 nm and lengths ∼
1 µm. They noted that transport properties strongly depend on both boundary

scattering and trapped charges in the substrate.

The other method of creating ribbons was proposed by Jia et al. They used

Joule heating and electron beam irradiation [87]. Samples were exposure to

electron irradiation for 20 min. and next heated by directional high electrical

current. The theoretical background of the need of these two steps was pointed

in Ref. [87–89]. During the heating, carbon atoms on sharp edges vaporize, so

they were able to create structures with smooth edges.

Li et al. chemically derived graphene nanoribbons (GNRs) with well de-

fined edges [90]. The width of ribbons varied from ∼ 10 to ∼ 50 nm with length
∼ 1 µm. Graphene nanostructures with irregular shapes were also reported.

They observed ribbons with 120o kink and zigzag edges. While above work re-

garded the thinnest ribbons with ∼10 nm width, Cai et al. proposed a method
of creating ribbons with width less than ∼1 nm [91]. They started from colli-
gated monomers, which define the width of the ribbon. These monomers were

deposited onto the clean substrate surfaces by sublimation from a sixfold evap-

orator. They used two-step annealed process with different temperatures for

straight and so called chevron-type ribbons. Many other chemical approaches

to create graphene quantum nanostrucuters with different shapes are also pro-

posed [92–96]. A relevant problem regards the dependence of the electronic

properties on chirality of the graphene nanoribbon. It is related to the an-

gle at which a ribbon is cut. GNRs, having different chiralities and widths,

were chemically synthesized by unzipping a carbon nanotube [97, 98]. By us-

ing STM the presence of 1D GNR edge states was confirmed. Jaskólski et al.

predicted general rules to the existence of edge states [99]. The comparison

of experimental results with the theoretical prediction based on the Hubbard

model and density functional theory (DFT) calculations provided an evidence

for the formation of spin-polarized edge states [98, 100–102]. It was shown

that electronic and magnetic properties can be tuned by changing the edge

chirality and the width [103]. Partially unzipped carbon nanotubes were also
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studied [104,105]. Topological defects similar to that at the interface between

two graphene layers were considered. An appearance of spatially localized

interface states was predicted [104].

McEuen et al. studied graphite quantum dots, with thickness from few to

tens of nanometers and lateral dimensions ∼1 µm [106]. They were placed onto
a Si wafer with a 200 nm thermally grown oxide and connected to electrodes.

Electrical transport measurements show Coulomb blockade phenomena. By

analyzing a period of Coulomb oscillations in gate voltage, they demonstrated

that the dot area extends into the graphite piece lying under the electrodes.

Graphene quantum dots were experimentally fabricated starting from graphene

sheet. Ponomarenko et al. produced structures with different sizes with oxy-

gen plasma etching and a protection mask obtained by using high-resolution

electron-beam lithography [107]. Their method allows to create quantum dots

even with 10 nm radius but not with well defined shape. Ensslin et al. stud-

ied a tunable graphene quantum dots fabricated based on reactive ion etching

(RIE) patterned graphene [108–112]. Close to the dot, ∼ 60 nm, wide graphene
nanoribbon were placed. Using Coulomb diamond measurements, the charg-

ing energy was estimated. Coulomb resonances were demonstrated. They were

also able to detect individual charging events [109]. They detect excited states

via direct transport experiments. A rich variety of excited state spectrum in

an external magnetic field was observed [113–116]. More regular structures

were also created [117,118]. Graphene QDs were supported on Ir(111) surface.

Diameter of quantum dots varies from 2–40 nm and reveals soft edges, which

was confirmed by a comparison with TB and DFT calculations.

Promising alternative to previously mentioned works is created graphene

nanostructures by cutting graphene into desired shapes. It was shown that few

layer [119] and single layer [120] graphene can be cut by using metallic particles.

The process was based on anisotropic etching of thermally activated nickel

particles. The cuts were directed along proper crystallographic orientation

with the width of cuts determined by a diameter of metal particles. By using

this technique, they were able to produce ribbons, equilateral triangles and

other graphene nanostructures.

1.3.2 The role of edges

Two types of edges in a honeycomb lattice are of particular interest due

to their stability: armchair and zigzag. They were experimentally observed

near single-step edges at the surface of exfoliated graphite by Scanning tun-
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neling microscopy (STM) and spectroscopy (STS) [121–125] and Raman spec-

troscopy [126–128]. Jia et al. have shown that zigzag and armchair edges are

characterized by different activation energy [87]. According to their molecular

dynamics calculations, 11 eV for zigzag and 6.7 eV for armchair, activation

energies were estimated. This enabled them to eliminate an armchair edge

with respect to zigzag one by applying higher bias voltages and consequently

increasing electrical current flowing through the sample, which heated the sam-

ple.

The dynamics of edges was also studied [129, 130]. The measurements

were performed in real time by side spherical aberration-corrected transmission

electron microscopy with sensitivity required to detect every carbon atom,

which remains stable for a sufficient amount of time. The most prominent edge

structure was of the zigzag type. Koskinen, Malola and Häkinen predicted, by

using DFT calculations, the stability of reconstructed ZZ57 edges [131]. The

variety of stable combinations of pentagons, heptagons or higher polygons was

observed [129,132].

Theoretical calculations predicted edge states in the vicinity of the Fermi

energy for structures with zigzag edges [100,133–145]. These edge states were

clearly identified experimentally [121–125]. They form a degenerate band in

graphene ribbons [100, 133–135, 137]. It was also shown by using Hubbard

model in a mean-field approximation that in graphene nanoribbons electrons

on edge states reveal ferromagnetic order within an edge and anitferromagnetic

order between opposite zigzag edges [134, 146, 147]. Son et al. have shown by

using first-principles calculations that magnetic properties can be controlled

by the external electric field applied across the ribbon [135]. The electric field

lifts the spin degeneracy by reducing the band gap for one spin channel and

widening of a gap for the other. In consequence, one can change antiferromag-

netic coupling between opposite edges into ferromagnetic one. In the following

years, graphene ribbons have been widely investigated [148–153].

The effect of edges was also studied in graphene quantum dots (GQD). It

was shown that the type of edges influences the optical properties [136,154,155].

In GQDs with zigzag edges, edge states can collapse to a degenerate shell on

the Fermi level [136, 138–141, 143–145]. The relation between the degener-

acy of the shell to the difference between the number of atoms correspond-

ing to two sublattices in the bipartite lattice was pointed [138, 139, 141, 145].

One of systems with the degenerate shell is triangular graphene quantum

dot (TGQD). Hence, the electronic properties of TGQDs were extensively

studied [95, 136, 138–141, 144, 145, 156–165]. For a half-filled degenerate shell,
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TGQDs were studied by Ezawa using the Heisenberg Hamiltonian [138], by

Fernandez-Rossier and Palacios [139] using mean-field Hubbard model, by

Wang, Meng and Kaxiras [141] using DFT. It was shown that the ground

state corresponds to fully spin polarized edges, with a finite magnetic moment

proportional to the shell degeneracy. In Section 4.1, we describe our results

regarding TGQDs obtained within exact diagonalization techniques [144,165].

1.3.3 Size quantization effects

As a result of spatial confinement of carriers in graphene nanostructures,

the discretization of the energy spectrum and an opening of the energy gap

are expected. In graphene ribbons, the gap opening was predicted by using

TB model or starting from Dirac Hamiltonian [133, 166, 167]. Ribbons with

armchair edges oscillates between insulating and metallic as the width changes.

An analytic scaling rules for the size of the band gaps were obtained as a

function of width, primarily in inverse proportion [100]. The experimental

observation of the opening of the energy gap for the narrowest ribbons was

pointed, with a scaling behavior in agreement with theoretical predictions [85,

86,90].

Ponomarenko et al. have shown that for GQDs with a diameter D < 100

nm, quantum confinement effects start playing a role [107]. They observed

Coulomb peak oscillations as a function of gate voltage with randomly var-

ied distances. These results were in agreement with a prediction for chaotic

Dirac billiards, expected behavior for Dirac fermions in an arbitrary shape

confinement [168]. An exponential decrease of the energy gap as a function

of the diameter for Dirac fermions was predicted theoretically by Recher and

Trauzettel [169].

In few nm GDQs with well-defined edges, high symmetry standing waves

by using STM were observed [117, 118, 170]. These observations are in good

agreement with TB and DFT calculations. Akola et al. have shown that a

structure of shells and super-shells in the energy spectrum of circular quantum

dots and TGQD is created [140, 142]. According to their calculations, TGQD

with the edge length at least ∼ 40nm is needed to observe clearly the first
super-shell oscillation. TB calculations predict an opening of the energy gap

for arbitrary shape GQDs. An exponential decrease of the energy gap with the

number of atoms is predicted [154, 155, 170]. This behavior is quantitatively

different for structures with zigzag and armchair edges, which is related to the

edge states present in systems with zigzag edges [155].



Chapter 2

Single particle properties of

graphene quantum dots

2.1 Size, shape and edge dependence of single

particle spectrum

2.1.1 Tight-Binding model

We start from writing TB Hamiltonian in a nearest neighbors approxima-

tion in a second quantization form. It can be written as

HTB = t
∑

<i,l>,σ

c†iσclσ, (2.1)

where c†iσ and ciσ are creation and annihilation operators on a lattice site i

and < i, l > indicates a summation over nearest neighbor site. A hopping

integral t is defined by Eq. (1.5) for A and B type neighbor atoms. This

Hamiltonian can be used to describe finite size systems by applying appropriate

boundary conditions on edges, e. g. putting a hopping integral to auxiliary

atoms connected to edge atoms (these with only two neighbors) t = 0. We

show a method of building a TB Hamiltonian matrix on an example of TGQD

consisting of N = 22 atoms. We linked indices j, from j = 0 to j = 21, to all

atomic pz orbitals, shown in Fig. 2.1. A wavefunction of the system is built

of a linear combination of these 22 orbitals, which determines a size of the TB

Hamiltonian matrix. Nonzero matrix elements for Hamiltonian given by Eq.

(2.1) corresponds to elements between pz orbitals from neighboring sites. All of

them equal to hopping integral t, which is a constant. Thus, t can be factored

out from a matrix. Matrix elements are “1”, when calculated between orbitals

corresponding to neighboring sites or “0”, in other case. Hamiltonian matrix
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Figure 2.1: Linking up indices j to all atomic pz orbitals for TGQD consisting

of N = 22 atoms.

is diagonalized numerically, and eigenvalues and eigenvectors in an ascending

order, with indices from “1” to “22”, are obtained.

In Fig. 2.2, TB energy spectra in the vicinity of the Fermi level, E = 0, for

graphene quantum dots with a similar number of atoms, N ∼ 100, but different

shapes and edges, are shown. All spectra are symmetric with respect to E = 0.

We note that this symmetry is broken, when hopping integrals to next-nearest

neighbors are included. Fig. 2.2(a) and (b) correspond to structures with

armchair edges, hexagonal and triangular shapes, respectively. As a result of

size quantization, an energy gap opens with a comparable magnitude in both

systems. Additionally, energy spectra look almost identical, in a sense of the

degeneracy of consecutive levels. Starting from the Fermi level, we observe

first double degenerate state, next two single and two degenerate levels in

both cases. Thus, one can conclude that the shape of graphene quantum dots

with armchair edges does not play an important role. In Fig. 2.2(c) and (d)

energy spectra for structures with zigzag edges are shown, with hexagonal and

triangular shapes, respectively. The energy gap in a hexagonal dot with zigzag

edges is smaller compared to the energy gap present in the armchair quantum

dot. On the other hand, in the triangular graphene quantum dot (TGQD)

with zigzag edges, a degenerate shell at the Fermi level appears (7 degenerate

states in this case). A detailed analysis of the energy spectra of TGQDs will

be presented in Section 2.2.
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Figure 2.2: TB energy spectra in the vicinity of the Fermi level, E = 0,

for graphene quantum dots with a similar number of atoms, N ∼ 100, but

different shapes and edges. Energy spectra for (a) hexagonal and (b) triangular

quantum dots with armchair edges, and for (c) hexagonal and (d) triangular

quantum dots with zigzag edges. Edge effects appear only in systems with

zigzag edges.
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In Fig. 2.3, electronic densities of the highest valence energy levels corre-

sponding to structures with the energy spectra shown in Fig. 2.2 are presented.

In all presented systems, these states are doubly degenerate, thus we plot a

sum of electronic densities of these two states. Thanks to that, electronic den-

sities preserve a symmetry of systems. We also note that identical electronic

densities are obtained for the lowest energy levels from the conduction band.

Eigenfunctions for a valence state Ψv with an energy Ev = −|E| and for a
conduction state Ψc with an energy Ev = |E| are identical on lattice sites
corresponding to sublattice A, and have opposite signs on lattice sites corre-

sponding to sublattice B. This fact was also seen in the case of eigenstates of

infinite graphene at Γ point, Eq. (1.12) and Eq. (1.13). Thus, electronic den-

sities defined as |Ψ|2 are identical in both cases. For the hexagonal structure
with armchair edges, Fig. 2.3(a), an electronic density spreads over the entire

structure. Starting from the center, alternating hexagons with an increasing

size characterized by higher and lower densities are seen. In the triangular

structure with armchair edges, Fig. 2.3(b), the electronic density is localized

in the center of the structure, avoiding corners. A large concentration of the

density with a triangular shape rotated by π
6
with respect to the corners is

observed. In Fig. 2.3(c), the electronic density of valence states for the hexag-

onal dot with zigzag edges is plotted. These states are strongly localized on

six edges. We note that observed edge effects are responsible for faster closing

of an energy gap with increasing size with respect to systems with armchair

edges. This statement can be confirmed by comparing energy gaps from Fig.

2.2(c) with (a) and (b). The energy gap as a function of size will be studied

in detail in Sec. 5.1. On the other hand, no edge effects are observed in Fig.

2.3(d), in TGQD with zigzag edges. Here, the electronic density of highest va-

lence states is localized in the center of the structure. However, in this system

a degenerate shell appears. In Sec. 2.3.1 we show that edge states in TGQD

collapse to this degenerate shell. We note that similar patterns of electronic

densities plotted in Fig. 2.3 were observed in larger structures for quantum

dots with all considered shapes.

In Fig. 2.4 the density of states (DOS) for GQD consisting of around 600

atoms with different shapes is plotted. Due to a similarity between energy spec-

tra from Fig. 2.2(a) and (b), for hexagonal and triangular dots with armchair

edges, only DOS for the first one is shown. In order to smooth the discrete en-

ergy spectra, we use a Gaussian function f(E) = exp (−(E − Ei)
2/Γ2) with a

broadening Γ = 0.024|t|. DOS for a system with armchair edges and N = 546

atoms vanishes close to the energy E=0, in analogy with infinite graphene (not
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Figure 2.3: Electronic densities of the highest valence energy levels correspond-

ing to structures with the energy spectra shown in Fig. 2.2. Only in hexagonal

structure with zigzag edges on (c), these states are edge states.

shown). Systems with zigzag edges have an additional contribution from edge

states, seen as peaks at E = 0 point. This peak is significantly higher for

TGQD, N = 622 atoms, comparing to the hexagonal dot, N = 600 atoms,

due to a collapse of edge states to the degenerate shell with the energy E=0.

Farther from the Fermi level, DOS looks similarly for quantum dots with all

shapes and is comparable to DOS for infinite graphene, with characteristic van

Hove singularities at E = ±t.

2.2 Triangular graphene quantum dots with

zigzag edges

2.2.1 Energy spectrum

In Sec. 2.1.1, we have shown that an energy spectrum of TGQDs is char-

acterized by the degenerate shell. We carry out a detail analysis of single

particle properties of these systems, but first we describe their atomic struc-

ture. Each TGQD can be characterized by the number of atoms on the

one edge Nedge. The total number of atoms in the structure is given by
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Figure 2.4: The density of states (DOS) for GQD consisting of around N = 600

atoms with different shapes. DOS for the system with armchair edges vanishes

close to the energy E = 0, in analogy with infinite graphene. Systems with

zigzag edges have an additional contribution from edge states, seen as a peak

at E = 0 point.

N = N2
edge + 4Nedge + 1. Additionally, a difference between the number of

atoms corresponding to each sublattice, A and B, changes with a size and can

be written as NA − NB = Nedge − 1, NA and NB is the number of A and B

type of atoms. This feature is crucial for the explanation of an origin of the

degeneracy in TB energy spectra which will be done in Sec. 2.2.2.

In Fig. 2.5 TB energy spectra of two TGQDs with different sizes are

shown. Fig. 2.5(a) corresponds to the structure consisting of N = 78 atoms

or Nedge = 7 and Fig. 2.5(b) to the structure consisting of N = 97 atoms or

Nedge = 8. There are Ndeg = 6 and Ndeg = 7 degenerate states on the Fermi

level, respectively. The number of degenerate states Ndeg in these structures

is related to the number edge atoms as Ndeg = Nedge − 1 = NA −NB. In next

subsection, we show that this is a general rule for all TGQDs. By increasing

the size of triangles, the degeneracy of a zero-energy shell increases.

We study the electronic densities corresponding to the degenerate zero-

energy levels. We focus on the structure with N = 97 atoms and the energy

spectrum shown in Fig. 2.5(b). There are Ndeg = 7 degenerate energy levels.

Due to a perfect degeneracy of these states, arbitrary linear combinations

of eigenfunctions giving seven linear independent vectors can be constructed.

Thus, in order to preserve a triangular symmetry of eigenstates, the degeneracy

is slightly removed by applying a very small random energy shift on each atomic
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Figure 2.5: TB energy spectra of TGQDs consisting of (a) N = 78 atoms

(Nedge = 7) and N = 97 atoms (Nedge = 8). There are (a) Ndeg = 6 and (b)

Ndeg = 7 degenerate states on the Fermi level.

site. Thanks to that, the seven-fold degeneracy is slightly removed into two

doubly degenerate and three non-degenerate states, with electronic densities

shown in Fig. 2.6(a-e). A radius of circles is proportional to the electronic

density on an atomic site. In the case of the double degenerate state, a sum

of electronic densities corresponding to these two states is plotted. For single

states, a scaling factor is two times larger than for doubly degenerate states.

Five of these states, Fig. 2.6(a-c), are strongly localized on edges. Last two

states, shown in Fig. 2.6(d) and (e), fill the center of the triangle and a center

of edges avoiding corners. While these two states contribute to the electronic

density of the center of the triangle, it is small in comparison to the electronic

density localized on edges. This is shown in Fig. 2.6(f), where the total charge

density of the zero-energy shell is plotted. Proportions between Fig. 2.6(a-e)

and Fig. 2.6(f) are not maintained. We note that all states are localized only

on A sublattice, indicated by red color.

2.2.2 Analytical solution to zero-energy states

The results, presented in this section, were published in a paper “Zero-

energy states in triangular and trapezoidal graphene structures”, by P. Potasz,

A. D. Güçlü, and P. Hawrylak, Ref. [145].

Our goal is to find zero-energy solutions to TB Hamiltonian given by Eq.

2.1. This corresponds to solving a singular eigenvalue problem and can be
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Figure 2.6: (a-e) Electronic densities of Ndeg = 7 degenerate energy levels with

E = 0 for structure consisting of N = 97 atoms. (a-c) Five states strongly

localized on edges. (d-e) Two states localized in the center of the triangle. (f)

The total charge density of the zero-energy shell. All states are localized only

on A sublattice, indicated by red color. A radius of black circles is proportional

to the electronic density on an atomic site.
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written as

HTBΨ = 0. (2.2)

In this case, there is no coupling between two sublattices, which can be seen

also from Eq. (1.4) for infinite graphene. A given row of a Hamiltonian matrix,

e. g. corresponding to i-th A-type orbital, contains only nonzero elements in

j-th columns, corresponding to neighboring B-type orbitals. Acting by the

Hamiltonian matrix on an arbitrary vector Ψ written in a basis of localized

ϕz orbitals, one gets a set of equations for searching expansion bn coefficients.

Each equation, for a given site i, e. g. A-type, is a sum of coefficients bj corre-

sponding to B-type nearest neighbors multiplied by matrix elements, equated

to zero. However, all matrix elements are equal due to a constant hopping

integral and can be eliminated from the equations. Thus, the equations for

searching expansion coefficients can be written as∑
<i,j>

bj = 0, (2.3)

The summation is over j-th nearest neighbors of the atom i, and we dropped a

summation over spins. In other words, the sum of coefficients around each site

must vanish. Eqs. (2.3) are independent for A-type and B-type atoms. Let

us first focus on the sublattice labeled by A, represented by red colors in Fig.

2.7, where TGQD with N = 33 atoms is plotted. For convenience, each atom

is labeled by two integer numbers n and m with 0 ≤ n,m ≤ Nedge + 1. We

added to the structure three auxiliary atoms, which will later help to introduce

boundary conditions. They are indicated by open circles in Fig. 2.7. We will

now show that coefficients bn,m for all atoms in the triangle can be expressed

as a linear combination of coefficients corresponding to atoms on one edge,

i.e., bn,0 from a bottom row of atoms in Fig. 2.7. When we take the first two

coefficients on the left from the bottom row, b0,0 and b1,0, we can obtain one

coefficient from the second row, b0,1. By using Eq. (2.3) it can be written as

b0,1 = −(b0,0 + b1,0). We can take also coefficients b1,0 and b2,0, and obtain

coefficient b1,1, which can be written as b1,1 = −(b1,0 + b2,0). In this way, we

can calculate all coefficients from the second row using coefficients from the

bottom row. They are just equal to the sum of two lower lying coefficients

with a minus sign. Having all coefficients from the second row, using the

same method, we can obtain all coefficients corresponding to atoms in the

third row. For the first coefficient on the left from the third row we obtain

b0,2 = −(b0,1 + b1,1) = (b0,0 + 2b1,0 + b2,0). The second coefficient on the left
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Figure 2.7: TGQD with Nedge = 4 atoms on the one edge. Under each A–type

atom are corresponding coefficients. Open circles indicate auxiliary A–type

atoms in the three corners, which will help to introduce three boundary condi-

tions. For zero-energy states all coefficients can be expressed as superpositions

of coefficients from the one edge (the lowest row of atoms in our case).

from the third row can be written as b1,2 = −(b1,1 + b2,1) = (b1,0 +2b2,0 + b3,0).

These coefficients are also expressed using coefficients from the bottom row.

In this way, all coefficients from the third row can be obtained. By going rows

one by one, we can obtain all coefficients in the structure regardless of the size

of the triangle. One can see that coefficients from a given row are expressed

by using similar formulas. Similar to the construction of Pascal triangle, these

coefficients can be written in a suitable form using binomial coefficients

bn,m = (−1)m
m∑
k=0

(
m

k

)
bn+k,0. (2.4)

Here, it is important to emphasize that the only unknown are the Nedge + 2

coefficients (bn,0’s) from the first, the bottom row; the rest are expressed as

their superpositions, as it is seen from Eq. (2.4). In addition, we must use

the boundary conditions: the wave function has to vanishes on three auxiliary

atoms in each corner, see Fig. 2.7. This gives three boundary conditions (b0,0 =

bNedge+1,0 = b0,Nedge+1 = 0), reducing the number of independent coefficients to

Nedge − 1. The number of linear independent coefficients corresponds to the

maximal number of created linear independent vectors - a dimension of linear

space.

The same analysis can be done for B-type atoms indicated by blue (dark

grey) circles. In this case, it is convenient to include some of boundary con-
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Figure 2.8: TGQD from Fig. 2.7. Above each B–type atom (indicated by blue

circles) are corresponding coefficients. We only left coefficients corresponding

to auxiliary B–type atoms from the bottom. For zero-energy states, a coeffi-

cient from lower left corner (b0,1) determines all other coefficients. Introducing

four boundary conditions from auxiliary atoms, we obtain only trivial solution.

ditions at the beginning as shown in Fig. 2.8, where we only keep coefficients

belonging to auxiliary atoms from the bottom edge. As a consequence, the

coefficient b0,1 determines all other coefficients in the triangle. Since there

are four auxiliary atoms (equivalently four boundary conditions) but only one

independent coefficient, we can not obtain any nontrivial solution. Hence,

zero-energy states can only consist of coefficients of one type of atoms – these

lying on the edges (A-type atoms). A general form for the eigenvectors for

zero-energy states in the triangle can be written as

ΨE=0 =

Nedge+1∑
n=0

Nedge+1−n∑
m=0

[
(−1)m

m∑
k=0

(
m

k

)
bn+k,0

]
ϕA
n,m, (2.5)

where Nedge is the number of atoms on the one edge and ϕA
n,m is pz orbital on A-

type site (n,m). In this expression the only Nedge−1 coefficients corresponding

to atoms from the first, the bottom row are independent. We can construct

Nedge − 1 linear independent eigenvectors, which span the subspace with zero-

energy states. Thus, the number of zero-energy states in the triangle is Ndeg =

Nedge − 1. This can be also related to the imbalance between the number of

atoms belonging to each sublattice, Ndeg = NA −NB.

Using the Eq. (2.5) we can then construct an orthonormal basis for zero-

energy states. First, we make a choice for the Ndeg independent coefficients



36 Single particle properties of graphene quantum dots

a

c
b

(a) (b)

Figure 2.9: (a) TGQD with all symmetry operations in a C3v symmetry group.

Three red lines correspond to three reflection planes and two black arrows cor-

respond to two rotations over 2π/3. (b) Character table of the C3v symmetry

group.

bn,0, from which we obtain Ndeg linear independent vectors, for instance by

choosing only one nonzero coefficient for all Ndeg collections, different one for

each eigenvector. Resulting eigenvectors can then be orthogonalized using

standard Gram-Schmidt process. The last step is the normalization Knorm of

the eigenvectors, using expression

Knorm =

Nedge+1∑
n=0

Nedge+1−n∑
m=0

∣∣∣∣∣
m∑
k=0

(
m

k

)
bn+k,0

∣∣∣∣∣
2

.

2.2.3 Classification of states with respect to irreducible

representations of C3v symmetry group

TGQDs are structures with well defined symmetry. They transform ac-

cording to symmetry operations of an equilateral triangle, which correspond

to the C3v symmetry group. There are six symmetry operations in the group,

shown in Fig. 2.9(a): identity Ê, three reflections σ̂a, σ̂b, σ̂c with respect to

planes going along secants of three triangle’s angles, and two rotations Ĉ1,2

over ±2π/3 with a rotational axis going through the center of the triangle. In

the Hilbert space, symmetry operators can be represented by unitary matrices.

These matrices are called matrix representations of operators. All these matri-

ces commute with a TB Hamiltonian matrix: [HTB, σν ] = [HTB, Ci] = 0, with

ν = a, b, c and i = 1, 2, where we used the same notation for operators in a ma-
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trix representation as for symmetry operations. Thus, it is possible to classify

energy states according to eigenvalues of symmetry operators. For example,

a matrix corresponding to a reflection operator can have two eigenvalues, +1

and −1. One can find eigenstates of TB Hamiltonian which change (an anti-

symmetric state) or not (a symmetric state) a sign of the eigenfunctions under

a reflection with respect to one of three reflection planes. We want to classify

states not with respect to a single operator but with respect to all symmetry

operators in a given group. In other words, one has to find a set of basis vec-

tors, which in a simple situation of non-degenerate states (we concentrate on a

degeneracy related to the symmetry of the system, not on an accidental degen-

eracy), do not mix with each other after transformation under all symmetry

operations. In this basis, all symmetry operators will be represented by block

diagonal matrices. In the case of 1×1 block, after acting on an arbitrary basis

vector, there will be no mixing with other basis vectors. In the case of n × n

block, there can be mixing only between n vectors. Such representations are

called reducible and blocks correspond to the so called irreducible representa-

tions and can not be reduced at the same time for all symmetry operators by

any transformation of the basis vectors.

In Fig. 2.9(b), a character table corresponding to the C3v symmetry group

is shown. Left column contains three irreducible representations labeled as A1,

A2, E. Top row corresponds to symmetry operators divided into three classes.

Elements of the table are characters of irreducible representations, which are

traces of matrices in this case. Characters corresponding to the identity opera-

tor Ê, which is always represented by the unit matrix, determine the dimension

of the irreducible representation. Thus, the irreducible representations A1, A2

are one dimensional while the irreducible representation E is two dimensional.

Characters for other symmetry operators describe how basis vectors behave

after transformation under symmetry operators. Elements from a given class

always behave in the same way. Basis vectors transforming according to A1

irreducible representation do not change, while these transforming according

to A2 irreducible representation change sign under three reflections. Thus,

basis vectors transforming according to A1 irreducible representation are fully

symmetric while these transforming according to A2 irreducible representation

are fully antisymmetric, what is schematically shown in Fig. 2.10(a) and (b),

respectively. In the case of 2D irreducible representation E situation is more

complicated because different linear combinations of two basis vectors can be

chosen. One of the choice is such that one basis vector changes sign, and the

second one does not, under reflection giving character (trace) of the represen-
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Figure 2.10: Basis vectors constructed as linear combinations of pz orbitals of

TGQD can be classified according to irreducible representations of the symme-

try group. (a) Vectors transforming according to A1 irreducible representation

do not change sign under three reflections (fully symmetric states). (b) Vec-

tors transforming according to A2 irreducible representation change sign under

three reflections (fully antisymmetric states). (c) Vectors transforming accord-

ing to E irreducible representation acquire extra phase e±2π/3 under rotations.

tation matrix equal to zero in agreement with the character table. On the

other hand, one can choose two basis vectors of irreducible representation E

such that they acquire extra phase e2π/3 under rotations, schematically shown

in Fig. 2.10(c).

We estimate the number of basis vectors transforming according to each

irreducible representation. It can be calculated using a following formula [171]

aΓ =
1

h

∑
i

χ(R̂i)χΓ(R̂i), (2.6)

where Γ = A1, A2, E, h = 6 is a number of elements in the group, χ(R̂i) and

χΓ(R̂i) are characters of the symmetry operator R̂i of reducible and irreducible
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representations, respectively. Characters of the reducible representation can

be easily evaluate: it is the number of orbitals which remain unchanged under

a given symmetry operation. For example, for a triangle from Fig. 2.9(a),

χ(C1,2) = 1 and χ(σa,b,c) = 4, and χ(E) = 22 as the number of atoms. Thus,

using Eq. (2.6) one can get

aA1 = 6

aA2 = 2

aE = 7.

We can now construct basis vectors for each irreducible representation. A

following formula for unnormalized basis vectors is used [171]

ΨΓ
n =

∑
i

DΓ(R̂i)R̂iϕj, (2.7)

where DΓ(R̂i) is a matrix of an operator R̂i for Γ irreducible representation.

Index j run over all 22 atomic orbitals but, e.g. for A1 subspace, only aA1 = 6

linear independent vectors will be obtained, thus n = 1, 2, ..., 6. We use indices

of pz orbitals from Fig. 2.1. We apply Eq. 2.7 first to ϕ0 and ϕ1 which for A1

representation gives

ΨA1
1 = 1 · Êϕ0 + 1 · σ̂aϕ0 + 1 · σ̂bϕ0 + 1 · σ̂cϕ0 + 1 · Ĉ1ϕ0 + 1 · Ĉ2ϕ0 = 6ϕ0

ΨA1
2 = 1 · Êϕ1 + 1 · σ̂aϕ1 + 1 · σ̂bϕ1 + 1 · σ̂cϕ1 + 1 · Ĉ1ϕ1 + 1 · Ĉ2ϕ1

= ϕ1 + ϕ8 + ϕ1 + ϕ15 + ϕ8 + ϕ15 = 2(ϕ1 + ϕ8 + ϕ15), (2.8)

where in Eq. (2.7) DA1(R̂i) = 1 for all symmetry operators according to the

character table shown in Fig. 2.9(b). With a help of Fig. 2.1, it is easy to

see that ΨA1
2 can be also obtained by starting from ϕ8 or ϕ15 orbitals. From

this we can conclude that all A1 basis vectors can be obtained using Eq. (2.7),

starting from ϕj for j = 0, 2, ..., 5, see Fig. 2.1. All these orbitals lie in one part

of a triangle and can not be transformed one into another by any symmetry

operations. We can write A1 basis vectors after normalization as

ΨA1
1 = ϕ0

ΨA1
2 =

1√
3
(ϕ1 + ϕ8 + ϕ15)

ΨA1
3 =

1√
3
(ϕ2 + ϕ9 + ϕ16)

ΨA1
4 =

1√
6
(ϕ3 + ϕ21 + ϕ14 + ϕ7 + ϕ10 + ϕ17)

ΨA1
5 =

1√
6
(ϕ4 + ϕ20 + ϕ13 + ϕ6 + ϕ11 + ϕ18)

ΨA1
6 =

1√
3
(ϕ5 + ϕ19 + ϕ12) .
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These states are fully symmetric which was schematically shown in Fig. 2.10(a)

In a similar way, one can construct basis vectors transforming according to

irreducible representation A2. We apply Eq. 2.7 first, e.g. to ϕ2 and ϕ4,

getting

ΨA2
1 = 1 · Êϕ2 − 1 · σ̂aϕ2 − 1 · σ̂bϕ2 − 1 · σ̂cϕ2 + 1 · Ĉ1ϕ2 + 1 · Ĉ2ϕ2

= ϕ2 − ϕ9 − ϕ2 − ϕ16 + ϕ9 + ϕ16 = 0

ΨA2
2 = 1 · Êϕ4 − 1 · σ̂aϕ4 − 1 · σ̂bϕ4 − 1 · σ̂cϕ4 + 1 · Ĉ1ϕ4 + 1 · Ĉ2ϕ4

= ϕ4 − ϕ20 − ϕ13 − ϕ6 + ϕ11 + ϕ18, (2.9)

where DA2(σν) = −1 and DA2(Ci) = 1 according to the character table shown

in Fig. 2.9(b). First vector vanishes identically. This gives a clue that starting

orbital can not lie on a line associated with one of reflection planes. We have

only aA2 = 2 basis vectors, and second one can be obtained starting from ϕ3.

We can write A2 basis vectors after normalization as

ΨA2
1 =

1√
6
(ϕ3 − ϕ21 − ϕ14 − ϕ7 + ϕ10 + ϕ17)

ΨA2
2 =

1√
6
(ϕ4 − ϕ20 − ϕ13 − ϕ6 + ϕ11 + ϕ18) .

These states are fully antisymmetric which was schematically shown in Fig.

2.10(b).

We construct basis vectors transforming according to irreducible represen-

tation E. In order to do this, we define irreducible representations for sym-

metry operators because only characters of these matrices are known, see Fig.

2.9(b). We choose following unitary matrices

DE(Ê) =

(
1 0

0 1

)
, DE(σ̂a) =

(
0 1

1 0

)
,

DE(σ̂b) =

(
0 e−2iπ/3

e2iπ/3 0

)
, DE(σ̂c) =

(
0 e2iπ/3

e−2iπ/3 0

)
,

DE(Ĉ1) =

(
e2iπ/3 0

0 e−2iπ/3

)
, DE(Ĉ2) =

(
e−2iπ/3 0

0 e2iπ/3

)
. (2.10)

We apply Eq. 2.7 first to ϕ1. We have four matrix elements in each matrix
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2.10, so we obtain four functions

11ΨE
1 = 11DE(Ê)Êϕ1 +

11 DE(σ̂a)σ̂aϕ1 +
11 DE(σ̂b)σ̂bϕ1

+ 11DE(σ̂c)σ̂cϕ1 +
11 DE(Ĉ1)Ĉ1ϕ1 +

11 DE(Ĉ2)Ĉ2ϕ1

= 1 · ϕ1 + 0 · ϕ1 + 0 · ϕ15 + 0 · ϕ8 + e−2iπ/3 · ϕ8 + e2iπ/3 · ϕ15

= ϕ1 + e−2iπ/3ϕ8 + e2iπ/3ϕ15

12ΨE
1 = 12DE(Ê)Êϕ1 +

12 DE(σ̂a)σ̂aϕ1 +
12 DE(σ̂b)σ̂bϕ1

+ 12DE(σ̂c)σ̂cϕ1 +
12 DE(Ĉ1)Ĉ1ϕ1 +

12 DE(Ĉ2)Ĉ2ϕ1

= 0 · ϕ1 + e−2iπ/3 · ϕ1 + 1 · ϕ15 + e2iπ/3 · ϕ8 + 0 · ϕ8 + 0 · ϕ15

= e−2iπ/3ϕ1 + e2iπ/3ϕ8 + ϕ15 = e−2iπ/3
(
ϕ1 + e−2iπ/3ϕ8 + e2iπ/3ϕ15

)
21ΨE

1 = 21DE(Ê)Êϕ1 +
21 DE(σ̂a)σ̂aϕ1 +

21 DE(σ̂b)σ̂bϕ1

+ 21DE(σ̂c)σ̂cϕ1 +
21 DE(Ĉ1)Ĉ1ϕ1 +

21 DE(Ĉ2)Ĉ2ϕ1

= 0 · ϕ1 + e2iπ/3 · ϕ1 + 1 · ϕ15 + e−2iπ/3 · ϕ8 + 0 · ϕ8 + 0 · ϕ15

= e2iπ/3ϕ1 + e−2iπ/3ϕ8 + ϕ15 = e2iπ/3
(
ϕ1 + e2iπ/3ϕ8 + e−2iπ/3ϕ15

)
22ΨE

1 = 22DE(Ê)Êϕ1 +
22 DE(σ̂a)σ̂aϕ1 +

22 DE(σ̂b)σ̂bϕ1

+ 22DE(σ̂c)σ̂cϕ1 +
22 DE(Ĉ1)Ĉ1ϕ1 +

22 DE(Ĉ2)Ĉ2ϕ1

= 1 · ϕ1 + 0 · ϕ1 + 0 · ϕ15 + 0 · ϕ8 + e2iπ/3 · ϕ8 + e−2iπ/3 · ϕ15

= ϕ1 + e2iπ/3ϕ8 + e−2iπ/3ϕ15.

It is clearly seen that 11ΨE
1 and

12ΨE
1 are linearly dependent. Similarly

21ΨE
1

and 22ΨE
1 are linearly dependent. Thus, two linear independent basis vectors

can be chosen as

ΨE
11 =

11 ΨE
1 = ϕ1 + e−2iπ/3ϕ8 + e2iπ/3ϕ15

ΨE
12 =

22 ΨE
1 = ϕ1 + e2iπ/3ϕ8 + e−2iπ/3ϕ15.

We see that orbitals in these vectors are obtained by starting from one and

rotating it over ±2π/3. Thus, all E basis vectors can be found starting from

orbitals ϕj for j = 1, 2, ..., 7, which lie in 1/3 of the triangle and can not be

transformed one into another by any of two rotations, see Fig. 2.1. These

vectors with appropriate normalization, with a help of Fig. 2.1, can be shortly

written as

ΨE
j1 =

1√
3

(
ϕj + e−2iπ/3ϕj+7 + e2iπ/3ϕj+14

)
ΨE

j2 =
1√
3

(
ϕj + e2iπ/3ϕj+7 + e−2iπ/3ϕj+14

)
,
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Figure 2.11: The scheme of a TB Hamiltonian matrix written in a basis of

vectors transforming according to irreducible representation of an equilateral

triangle. The matrix takes a block diagonal form.

for j = 1, 2, ..., 7. Having all basis vectors, a TB Hamiltonian matrix has

a block diagonal form, shown in Fig. 2.11. Three blocks corresponding to

each irreducible representation are visible. Matrix elements between basis

vectors transforming according to different irreducible representations vanish

identically. For example, for ⟨ΨA1
3 |HTB|ΨE

11⟩ one gets

⟨ΨA1
3 |HTB|ΨE

11⟩ =
1

3
(⟨ϕ2|HTB|ϕ1⟩+ e−2iπ/3⟨ϕ2|HTB|ϕ8⟩+ e2iπ/3⟨ϕ2|HTB|ϕ15⟩

+ ⟨ϕ9|HTB|ϕ1⟩+ e−2iπ/3⟨ϕ9|HTB|ϕ8⟩+ e2iπ/3⟨ϕ9|HTB|ϕ15⟩

+ ⟨ϕ16|HTB|ϕ1⟩+ e−2iπ/3⟨ϕ16|HTB|ϕ8⟩+ e2iπ/3⟨ϕ16|HTB|ϕ15⟩),

where due to the symmetry of the system

⟨ϕ2|HTB|ϕ1⟩ = ⟨ϕ9|HTB|ϕ8⟩ = ⟨ϕ16|HTB|ϕ15⟩,

⟨ϕ2|HTB|ϕ8⟩ = ⟨ϕ9|HTB|ϕ15⟩ = ⟨ϕ16|HTB|ϕ8⟩,

⟨ϕ2|HTB|ϕ15⟩ = ⟨ϕ9|HTB|ϕ1⟩ = ⟨ϕ16|HTB|ϕ1⟩, (2.11)

which was obtained with a help of Fig. 2.1. Finally, one gets

⟨ΨA1
3 |HTB|ΨE

11⟩ =
1

3
(⟨ϕ2|HTB|ϕ1⟩

(
1 + e−2iπ/3 + e2iπ/3

)
+ ⟨ϕ2|HTB|ϕ8⟩

(
1 + e−2iπ/3 + e2iπ/3

)
+ ⟨ϕ2|HTB|ϕ15⟩

(
1 + e−2iπ/3 + e2iπ/3

)
= 0,

for arbitrary matrix elements because 1 + e−2iπ/3 + e2iπ/3 = 0.

In Fig. 2.12(a) we show energy spectrum for the structure from Fig. 2.9(a)

with classified symmetries of eigenstates. There are Ndeg = 2 degenerate zero-

energy states. They transform according to E irreducible representation. The
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Figure 2.12: Energy spectra of TB Hamiltonian for TGQDs with (a) N =

22 and (b) N = 97 atoms. Each energy level transforms according to the

irreducible representation of C3v symmetry group.

highest (lowest) state of valence (conduction) band transforms according to A1

irreducible representation. In Fig. 2.12(b), we show energy spectrum for the

structure consisting of N = 97 atoms with Ndeg = 7 degenerate zero-energy

states. Here, zero-energy states characterize by different symmetries. There

are two states transforming according to A2 and E, and one transforming

according to A1 irreducible representation. Thus, it is clearly seen that the

zero-energy degeneracy is not related to the symmetry of the system. Such

degeneracy is called accidental. We note that for all studied structures a

number of states with a given symmetry in the degenerate shell, NΓ
deg, can be

evaluate using following expressions, for n− integer,

NA1
deg int

(
Ndeg+2

6

)
Ndeg ̸= 6n− 1

int
(

Ndeg−4

6

)
Ndeg = 6n− 1

NA2
deg int

(
Ndeg+5

6

)
Ndeg ̸= 6n− 4

int
(

Ndeg

6

)
Ndeg = 6n− 4

NE
deg int

(
Ndeg+1

3

)
Ndeg = 1, 2, ...

Additionally, in energy spectra shown in Fig. 2.12(a) and (b), the highest

(lowest) state of valence (conduction) band transforms according to A1 and E

irreducible representation, respectively. We note that for all studied structures

the symmetry of these states confirms a following rule

A1 for Nedge = 3n− 1

E for
Nedge = 3n

Nedge = 3n− 2
.
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for n− integer.

2.3 Triangular mesoscopic quantum rings

with zigzag edges

The results, presented in this section, were published in a paper “Electronic

and magnetic properties of triangular graphene quantum rings”, by P. Potasz,

A. D. Güçlü, O. Voznyy, J. A. Folk, and P. Hawrylak, Ref. [172].

We describe single particle properties of triangular graphene quantum rings

(TGQR) with zigzag edges. TGQR can be fabricated using carbon nanotubes

(CNT) as a mask in the etching process. One can place CNT over the graphene

sheet along a given crystallographic direction and cover atoms lying below,

e.g., along a zigzag direction. Three carbon nanotubes can be arranged in a

triangular shape, along three zigzag edges, shown on the left in Fig. 2.13. As

a result one expects to obtain a triangular structure with well defined zigzag

edges and a hole in the center, as shown on the right in Fig. 2.13. The full

TGQD consists of N2
out + 4Nout + 1 atoms, where Nout = Nedge. The small

removed triangle consists of N2
inn+4Ninn+1 atoms, where Ninn is the number

of edge atoms on one inner edge. The resulting TGQR has N = N2
out−N2

inn+

4(Nout − Ninn) atoms. Its width satisfies Nout − Ninn = 3(Nwidth + 1), where

Nwidth is the width counted in the number of benzene rings. The structure

shown on the right of Fig. 2.13 has Nwidth = 2. We note that while outer

edges are built of A-type of atoms, inner edges are built of B-type of atoms.

2.3.1 Energy spectrum

In the full triangle, the imbalance between the number of A type (NA) and

B type (NB) of atoms in bipartite honeycomb graphene lattice, proportional

to Nedge, leads to appearance of zero-energy states in the TB model in the

nearest neighbors approximation. The number of zero-energy states is Ndeg =

|NA − NB|, according to subsection 2.2.2. Removing a small triangle from
the center lowers the imbalance between two types of atoms in the structure,

leading to a decreased number of zero-energy states. The degeneracy of the

zero-energy shell in TGQRs can be defined as Ndeg = 3(Nwidth + 1). Thus,

the number of zero-energy states in TGQR’s only depends on the width of the

ring, and not the size.

In Fig. 2.14, we show the single particle spectra for TGQRs obtained by

diagonalizing TB Hamiltonian, Eq. (2.1). Figure 2.4.2(a) shows the energy
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Figure 2.13: Proposed experimental method for designing TGQR. Three CNTs

arranged in equilateral triangle along zigzag edges play the role of a mask. By

using etching methods one can obtain TGQR with well defined edges. The

circumference of CNT determines the width of TGQR. Red and blue colors

distinguish between two sublattices in the honeycomb graphene lattice.

spectrum for TGQR with Nwidth = 2 consisting of N = 171 atoms and shown

in Fig. 2.13. It has Nout = 11 and Ninn = 2 and the number of zero-energy

states is Ndeg = 9. Similarly, in Fig. 2.14(b) we show TB spectrum for TGQR

with Nwidth = 5, and consisting of 504 atoms. It has Nout = 21 and Ninn = 3,

giving Ndeg = 18, consistent with our formula Ndeg = 3(Nwidth + 1). We note

that the states of the zero-energy shell consist of orbitals belonging to one type

of atoms indicated by red color in Fig. 2.13, which was proved in subsection

2.2.2, and lie mostly on the outer edge. On the other hand, the other states

close to the Fermi level consist of orbitals belonging to both sublattices but

lie mostly on inner edge (not shown here). This fact has implications for the

magnetic properties of the system, described in the Section 4.2.

2.4 Hexagonal mesoscopic quantum rings

The results, presented in this section, were published in a paper “Spin and

electronic correlations in gated graphene quantum rings”, by P. Potasz, A. D.

Güçlü, and P. Hawrylak, Ref. [173].

We consider hexagonal mesoscopic quantum rings. Below, a method of

construction of hexagonal mesoscopic quantum rings is presented. The reason

of using this method becomes clear in next subsection. We first consider six

independent nanoribbons, then bring them together by turning on the hopping

between the connecting atoms. In Fig. 2.15 we show two sets of six graphene
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Figure 2.14: Single particle TB levels for TGQR with (a) Nwidth = 2, consisting

of 171 atoms and (b) Nwidth = 5, consisting of 504 atoms. The degeneracy at

the Fermi level (dashed line) is a function of the width Ndeg = 3(Nwidth + 1),

for (a) Ndeg = 9 and for (b) Ndeg = 18.

Figure 2.15: Construction of ring structures from six ribbon-like units. On the

left, there are six thinnest possible ribbons (one benzene ring thick denoted

as W = 1) arranged in a hexagonal ring structure. The length of each ribbon

is given by L = 4, the number of one type of atoms in one row. Each ribbon

consists of 16 atoms which gives a total of N = 96 atoms in a ring. On the

right, there are six ribbons with widthW = 2 (two benzene ring thick). Each of

them consists of 21 atoms giving a total of N = 126 atoms in a ring. We create

a thicker ring with a similar length L = 4 but a smaller antidot inside. Small

black arrows in the bottom enlargement indicate bonds and hopping integrals

between nearest neighbors in the TB model between neighboring ribbons.
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ribbons arranged in a hexagonal ring. On the left side, thinnest possible rib-

bons with one benzene ring width are shown, denoted as W = 1. Each of

them consists of 16 atoms. The length L = 4, is measured by the number of

one type of atoms in the upper row, so the final ring is built of N = 96 atoms.

Small black arrows in the bottom enlargement indicate bonds and hopping in-

tegrals between nearest neighbors in TB model between neighboring ribbons,

two arrows in the case of thinnest structures. The number of such connecting

atoms increases with increasing width as seen on the right hand side of Fig.

2.15. The thicker ribbon W = 2 has identical length to the one from the left

side L = 4. In this case there are three connecting atoms. Three small black

arrows in the bottom enlargement indicate three bonds. The final ring is built

of N = 126 atoms. By connecting neighboring ribbons with different lengths

and widths, we create rings with different single particle spectra.

2.4.1 Energy spectrum

In Fig. 2.16 we show the single particle energy levels near Fermi level

obtained by diagonalizing TB Hamiltonian, Eq. (2.1), for rings with length

L = 8 and different widths W . The thinnest ring W = 1 consists of N = 192

atoms. For this structure we observe nearly degenerate shells of energy levels

separated by gaps. Each shell consists of six levels: two single and two doubly

degenerate states. The first shell over the Fermi level is almost completely

degenerate, while in the second one the degeneracy is slightly removed. We

note that for rings with different lengths, the gap between the first and second

shell is always larger then the gap at the Fermi level. With increasing width

of the ring, the spectrum changes completely. For the rings with width W = 2

and N = 270 atoms, W = 3 and N = 336 atoms, and W = 5 and N = 432

atoms, shells are not visible. ForW = 4N = 390 atoms we observe appearance

of shells separated by gaps further from Fermi level but the splitting between

levels in these shells is much stronger in comparison to the thinnest ring. We

note that for W ≥ 2, although we do not observe a clear pattern of shells

around the Fermi level, single shells of six levels separated by gaps from the

rest of the spectrum appear far away from the Fermi energy in some cases.

In order to have a better understanding of the structure of the TB spectra,

in Fig. 2.17, we show the evolution of single particle energies from six inde-

pendent ribbons to a ring as the hopping t′ between the ribbons is increased.

To achieve this, we first diagonalize the TB Hamiltonian matrix for a single

ribbon. We then take six such ribbons and create Hamiltonian matrix in the
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Figure 2.16: Single particle spectrum near Fermi level for ring structures with

L = 8, different widths W and t′ = t (see Fig. 2.17). The shell structure is

clearly observed only for the thinnest ring W = 1. Dotted blue line indicates

the location of Fermi energy.

Figure 2.17: The evolution of the single particle spectrum from six independent

ribbons with L = 8 to a hexagonal ring structure spectrum. t′ indicate hopping

integrals between neighboring ribbons. a) For the thinnest ring W = 1 six

fold degeneracy is slightly removed, preserving a shell structure. For thicker

structures ((b) and (c),W = 2 andW = 3 respectively) the six fold degeneracy

is strongly lifted and shell structure is not observed.
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basis of the eigenvectors of six ribbons. Here, the matrix has diagonal form.

All energy levels are at least six fold degenerate. Next, using the six ribbons

basis, we write hopping integrals corresponding to connecting atoms between

neighboring ribbons indicated by small black arrows in Fig. 2.15. By slowly

turning on the hopping integrals and diagonalizing the Hamiltonian at every

step, we can observe the evolution of the spectrum from single particle states

of six independent ribbons to a ring.

The hopping integrals between connecting atoms of neighboring ribbons

are indicated by t′ in Fig. 2.17. For the thinnest ring, Fig. 2.17(a), each

ribbon consists of 32 atoms. There are only two connecting atoms between

neighboring ribbons, giving only two hopping integrals t′ between each two

ribbons in the nearest neighbors approximation. We see that their influence

is very small and six fold degenerate states evolve into shells with a very

small splitting between levels. We note that this splitting is a bit stronger for

higher energy levels but due to large gaps between consecutive levels of single

ribbon the shell structure is still clearly observed. For the thicker structures,

Fig. 2.17(b) and (c), the evolution of the spectrum has a more complicated

behavior. For a given ring each ribbon consists of different number of two types

of atoms giving rise to zero-energy edge-states [186]. With increasing width,

the number of zero-energy states increases as well as the number of connecting

atoms and equally the number of t′ hopping integrals (see enlargement in Fig.

2.15). This causes a stronger splitting of levels for thicker rings in comparison

to the thinnest one. Thus, the thicker ring’s spectrum close to the Fermi

level is due to the splitting of zero-energy states of independent ribbons. For

W = 2 (one zero-energy state) and W = 3 (two zero-energy states), each

ribbon consists of 45 and 56 atoms respectively, and the evolution of their

spectrum is similar. The degeneracy is strongly lifted and no shell structure is

observed.

In order to illuminate the influence of t′ hopping integrals on the thinnest

ring spectrum, in Fig. 2.18, we also show the electronic densities for the

first shell over the Fermi level for three different values of t′ (indicated in

Fig. 2.18(a)). For t′ = 0, there are six independent ribbons and first shell

is perfectly six fold degenerate. The electronic charge density in each ribbon

is larger on the two atoms with only one bond (see Fig.2.15) and gradually

decreases along the length. For t′ = 0.5t the total energy of the shell increases

and the degeneracy is slightly removed. Here, the highest peak of the electronic

charge density is moved towards the center of each ribbon in comparison to

t′ = 0 case. Increasing t′ to t causes increase of the total energy of the shell
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Figure 2.18: Energy levels and corresponding total electronic densities for the

first six states over the Fermi level for the thinnest structureW = 1 with L = 8

and N = 192 atoms, for i) t′ = 0, ii) t′ = 0.5t, iii) t′ = t. The three values of

t′ hopping integrals are indicated in Fig. 2.17(a).

and the highest peak of the electronic charge density is now perfectly in the

middle of each arm of the ring. Thus, both the electronic charge density and

the energy of levels change slightly during the gradual transition of ribbons

into a hexagonal ring structure.

We find degenerate shells near the Fermi energy only for the thinnest rings

W = 1. In Fig. 2.19 we show the low energy spectrum for two thinnest rings

with different lengths. We clearly see shells with six levels. The splitting of

levels of the first shell over the Fermi level is smaller for larger ring. For ring

structure with L = 4 the difference between the highest and the lowest energy

of levels forming the first shell is around 0.069t ≃ 0.17 eV. In comparison, for

ring with L = 8 this value is around 0.006t ≃ 0.015 eV. Thus, we conclude

that for smaller rings single particle energies can play important role in the

properties of many particle states while for the larger rings interactions are

expected to be more important.
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Figure 2.19: Single particle spectrum near Fermi level for the thinnest ring

structures W = 1 with length L = 8 and L = 4. The shell structure is clearly

observed. The splitting between levels in the first shell is smaller for larger

structure. Dotted blue line indicate the location of the Fermi energy.
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Chapter 3

Electron-electron interaction in

gated graphene nanostructures

3.1 Introduction

A problem of interacting particles moving in graphene nanostructures is

equivalent to interacting electrons moving in an external electrostatic poten-

tial. The confinement induces a discretization of the single particle energy

levels. A common way of solving this task is, first, to find allowed single parti-

cle energies, fill obtained energy levels by electrons, and turn on interactions.

An appropriate many-body Hamiltonian will be introduced in Sec. 3.2 with

the two-body Coulomb part described in Sec. 3.3. The ground state of such

system is determined by the competition between minimization of a kinetic

energy or interactions between electrons. In the case of the large energy level

spacing between single particle states, electrons occupy lowest single particle

energy levels. An excitation of an electron to the unoccupied state, despite

a possibility of decreasing of a Coulomb interaction, is still energetically ex-

pensive due to large cost of the kinetic energy. In such situation, the ground

state of the system of Nel interacting electrons can be described approximately

by using a many-body wave function constructed from single particle orbitals

corresponding to Nel filled lowest energy levels. The wave function has to

be antisymmetric with respect to exchange of two particle as a result of a

fermionic nature of electrons. This antisymmetry requirements is satisfied by

constructing a Slater determinant. The description of the system of interacting

particles by using a single Slater determinant of effective Hartree-Fock orbitals

corresponds to a mean-field approximation. It is described in Sec. 3.4.

When an energy spacing between single particle levels is comparable to the
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characteristic Coulomb interaction energy, electron-electron interactions play

an important role. In atoms, e.g. d-shell manganese (Mn, 4s2 3d5), valence

electrons occupy closely lying levels of the highest d-shell. Configurations of

electrons with different spins can be formed. In this case a number of elec-

trons, 5, is equal to the number of single particle levels and the total spin

of the ground state is governed by Hunds rules-the configuration correspond-

ing to electrons with parallel spins maximizes negative exchange interaction.

More interesting situation occurs, when a number of electrons is different than

a number of single particle levels. Electrons can fill energy levels in many

different ways creating configurations with a similar total kinetic energy. As

a consequence, electron-electron interactions can mix all these configurations

forming a strongly correlated ground state, with incompressible liquids of the

fractional quantum Hall effect as a good example [177, 178]. Solving a many-

body Hamiltonian in a basis built of many possible configurations occupying

single particle energy levels is called configuration interaction method. This

method is characterized by large computational cost. The number of possible

configurations exponentially increases with a number of electrons and energy

levels. Even small systems containing e.g., 10 electrons occupying 20 energy

levels corresponds to the dimension of Hilbert space around 105. Thus, one has

to restrict its applicability to the small size systems. A more detail analysis of

configuration interaction method will be presented in Section 3.5.

GQDs are systems consisting of few to few millions of atoms. In the case of

single orbital TB model it corresponds to systems with a number of electrons

well beyond the applicability of configuration interaction method. Alterna-

tive way of studying these systems is to combine mean-field and configuration

interaction methods. Here, electrons from the filled band separated by the

energy gap are described by a single Slater determinant of HF orbitals and the

rest of electrons, in a degenerate shell, are treated in the exact diagonalization

procedure. We describe this method in Section 3.6.

3.2 Many-body Hamiltonian

The Hamiltonian of interacting electrons in an effective potential Veff can

be written as

HMB =
∑
i

(
−∇2

i

2
+
∑
j

V j
eff (ri −Rj)

)
+

1

2

∑
i,j

1

κ|ri − rj|
, (3.1)
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where V j
eff (r−R) = V A (r−R) + V B (r− b−R) are potentials from single

particle Hamiltonian given by Eq. (1.1), and a second part is Coulomb in-

teraction term written in atomic units (a.u.), 1 a.u. = 27.211 eV, and κ is a

dielectric constant. We can introduce field operators,

Φ (r) =
∑
j

cjϕj (r)

Φ† (r) =
∑
j

c†jϕ
∗
j (r) , (3.2)

where the fermionic operator ciσ (c
†
iσ) annihilates (creates) an electron on i-th

pz orbital with spin σ. These operators satisfy anticommutation rules

{ciσ, cjσ} =
{
c†iσ, c

†
jσ

}
= 0;

{
ciσ′ , c†jσ

}
= δijδσσ′ , (3.3)

which guarantees the antisymmetry of a many-body state. Hamiltonian given

by Eq. (3.1) in terms of field operators can be written as

HMB =

∫
drΦ† (r)

(
−∇2

2
+
∑
j

V j
eff (r−Rj)

)
Φ (r)

+
1

2

∫ ∫
drdr′Φ† (r) Φ† (r′)

1

κ|r− r′|
Φ (r′) Φ (r) , (3.4)

Combining Eq. (3.4) and Eq. (3.2), Eq. (3.1) can be written in the second

quantization form as

H =
∑
i,σ

ϵiσc
†
iσciσ +

∑
i,l,σ

τilσc
†
iσclσ +

1

2

∑
i,j,k,l,
σσ′

⟨ij|V |kl⟩c†iσc
†
jσ′ckσ′clσ, (3.5)

with τilσ defined by Eq. (1.5). ⟨ij|V |kl⟩ are Coulomb matrix elements de-
scribed in detail in next subsection. The first term from Eq. (3.5) corresponds

to a site energy of pz orbitals which is a constant, ϵiσ = ϵ.

3.3 Two body scattering - Coulomb matrix el-

ements

Two-body Coulomb term from Eq. 3.5 is written as

1

2

∑
i,j,k,l,
σσ′

⟨ij|V |kl⟩c†iσc
†
jσ′ckσ′clσ, (3.6)

with Coulomb matrix elements defined as

⟨ij | V | kl⟩ =
∫ ∫

dr1dr2ϕ
∗
iσ (r1)ϕ

∗
jσ′ (r2)

1

ϵ | r2 − r1 |
ϕkσ′ (r2)ϕlσ (r1) , (3.7)
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where r1 and r2 are coordinates of the first and the second electron, respec-

tively, and σi is a spin of spin-orbital with spatial part ϕi. Above integral

contains four pz orbitals. Two electrons occupying orbitals on sites with in-

dices k and l interact with each other and can scatter to two orbitals on sites

with indices j and i. One can note here that for i = l and j = k, one gets

⟨ij|V |ji⟩, and this term corresponds to the classical Coulomb interaction be-
tween two electronic densities localized on sites i and j, |ϕi (r1) |2 and |ϕj (r2) |2,
respectively. On the other hand, for i = k and j = l, ⟨ij|V |ij⟩ corresponds to
the exchange term and does not vanish only when electrons on i and j orbitals

have the same spin, σ = σ′. It is related to an orthogonality of spin part of

wavefunctions in Eq. 3.7.

πz orbitals of carbon atoms in matrix elements given by Eq. 3.7 can be

approximated by Slater orbitals defined in Ref. [179]. They are given by a

function

ϕi (r1) =

(
ξ5

32π

) 1
2

z exp

(
−ξr1
2

)
, (3.8)

with ξ = 3.14 [179]. Coulomb matrix elements given by Eq. 3.7 were numeri-

cally calculated for orbitals localized on lattice sites of the honeycomb graphene

lattice [144, 173]. In numerical calculations, on-site, scattering, and exchange

terms up to the next-nearest neighbors, as well as all long-range direct terms

were obtained. In Table 3.1 we show selected Coulomb matrix elements for

dielectric constant κ = 1. Numbers 1, 2 and 3 indicate electron on-site, on

nearest-neighbor site and on next-nearest-neighbor site of a hexagonal lattice,

respectively.

3.4 Mean-Field HF approximation

We apply a mean-field approximation to Coulomb interaction term from

Eq. (3.5). A following ansatz is used

c†iσc
†
jσ′ckσ′clσ ≃

= c†iσ⟨cjσ′c†kσ′⟩clσ + ⟨c†iσclσ⟩c
†
jσ′ckσ′ − c†iσckσ′⟨c†jσ′clσ⟩δσσ′ − ⟨c†iσckσ′⟩c†jσ′clσδσσ′ ,

where ⟨c†iσclσ⟩ is an average of two operators with respect to the ground state
and will be defined later. First two terms correspond to the direct terms

and last two terms to the exchange terms. The exchange terms vanish for

distinguishable particles, e.g. particles with different spins. We can write a



3.4 Mean-Field HF approximation 57

⟨ij | V | kl⟩ E [eV ]

⟨11 | V | 11⟩ 16.522

⟨12 | V | 21⟩ 8.640

⟨13 | V | 31⟩ 5.333

⟨11 | V | 12⟩ 3.157

⟨12 | V | 31⟩ 1.735

⟨12 | V | 12⟩ 0.873

⟨11 | V | 22⟩ 0.873

⟨22 | V | 13⟩ 0.606

Table 3.1: Selected coulomb matrix elements between electrons on sites in

graphene honeycomb lattice for κ = 1. Numbers 1, 2 and 3 indicate electron

on-site, on nearest-neighbor site and on next-nearest-neighbor site of hexagonal

lattice, respectively.

Coulomb operator from Eq. (3.5) in a mean-field approximation as

VMF =
1

2

∑
i,j,k,l,
σσ′

⟨ij|V |kl⟩
(
⟨cjσ′c†kσ′⟩c†iσclσ + ⟨c†iσclσ⟩c

†
jσ′ckσ′

)

− 1

2

∑
i,j,k,l,
σσ′

⟨ij|V |kl⟩
(
⟨c†jσ′clσ⟩c†iσckσ′δσσ′ + ⟨c†iσckσ′⟩c†jσ′clσδσσ′

)
,(3.9)

where the first part corresponds to direct terms and the second part to ex-

change terms. Direct terms from Eq. (3.9) can be written as

1

2

∑
i,j,k,l,
σσ′

⟨ij|V |kl⟩
(
⟨cjσ′c†kσ′⟩c†iσclσ + ⟨c†iσclσ⟩c

†
jσ′ckσ′

)

=
1

2

∑
i,j,k,l,
σσ′

⟨ij|V |kl⟩⟨cjσ′c†kσ′⟩c†iσclσ +
1

2

∑
i,j,k,l,
σσ′

⟨ji|V |lk⟩⟨c†jσ′ckσ′⟩c†iσclσ

=
∑
i,j,k,l,
σσ′

⟨ij|V |kl⟩⟨cjσ′c†kσ′⟩c†iσclσ,

where in the second term from the second line we have changed indices iσ ↔
jσ′, lσ ↔ kσ′ and used a fact ⟨ji|V |lk⟩ = ⟨ij|V |kl⟩. In a similar way, one can
transform exchange terms from Eq. (3.9) getting

−1

2

∑
i,j,k,l,
σσ′

⟨ij|V |kl⟩
(
⟨c†jσ′clσ⟩c†iσckσ′δσσ′ + ⟨c†iσckσ′⟩c†jσ′clσδσσ′

)
= −

∑
i,j,k,l,
σσ′

⟨ij|V |lk⟩⟨c†jσ′ckσ′⟩c†iσclσδσσ′ ,
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where in the first term a change lσ ↔ kσ′ and in the second term a change

iσ ↔ jσ′ were performed. We used also fact ⟨ji|V |kl⟩ = ⟨ij|V |lk⟩. Eq. (3.9)
can be written as

VMF =
∑
i,j,k,l,
σσ′

(⟨ij|V |lk⟩ − ⟨ij|V |lk⟩δσσ′) ⟨c†jσ′ckσ′⟩c†iσclσ

Finally, Hamiltonian given by Eq. (3.5) can be written in a mean-field HF

approximation as

HMF =
∑
i,σ

ϵiσc
†
iσciσ +

∑
i,l,σ

τilσc
†
iσclσ

+
∑
i,j,k,l,
σσ′

(⟨ij|V |lk⟩ − ⟨ij|V |lk⟩δσσ′) ⟨c†jσ′ckσ′⟩c†iσclσ (3.10)

3.4.1 Hartree-Fock method - application to graphene

nanostructures

In a previous section, a general form of a many-body Hamiltonian in a

mean-field HF approximation, Eq. (3.10), without defining an average ⟨...⟩
was written. We use this expression for particular systems - graphene and

graphene nanostructures. Eq. (3.10) for graphene layer can be written as

Ho
MF =

∑
i,σ

ϵiσc
†
iσciσ +

∑
i,l,σ

τilσc
†
iσclσ +

∑
i,j,k,l,
σσ′

(⟨ij|V |lk⟩ − ⟨ij|V |lk⟩δσσ′) ρojkσ′

=
∑
i,l,σ

tilσc
†
iσclσ, (3.11)

with density matrix elements ρojkσ′ = ⟨...⟩GS calculated with respect to the

ground state (GS)-the fully occupied valence band. This is effectively a one-

body TB Hamiltonian given by Eq. 2.1 with experimentally measured hopping

integral til for graphene [1]. The density matrix can be defined as

ρojkσ′ =
∑
k

b∗Rj
(k)bRk

(k), (3.12)

where j and k are graphene lattice sites and a summation is over a full valence

band. bR’s are the coefficients of the pz orbitals and according to Eq. (1.11)

can be written as

bRj
=

1√
2Nc

eikRj , (3.13)

for A-type atoms and

bRj
=

1√
2Nc

eikRje−iθk , (3.14)
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for B-type atoms. Due to a translation invariance of the system, the density

matrix depends only on a relative positions |Rj −Rk|. On-site density matrix
elements for an arbitrary lattice site j are site and sublattice index independent,

ρojjσ′ =
1

2Nc

∑
k

e−ikReikR =
1

2Nc

∑
k

1 =
1

2
, (3.15)

where we took into account the fact that the number of occupied states, is

equal to the number of unit cells in the system 1. The nearest neighbors density

matrix elements for atoms from the same unit cell corresponds to Rk = Rj

and are calculated using

ρojkσ′ =
1

2Nc

∑
k

e−ikRjeikRke−iθk

=
1

2Nc

∑
k

e−iθk ≃ 0.262,

where the summation over occupied valence states is carried out numerically.

We note that we obtain the same value for two other nearest neighbors. Same

results can also be obtained by diagonalizing a sufficiently large graphene quan-

tum dot, and by computing the density matrix elements for two nearest neigh-

bors in the vicinity of the center of the structure. We have also calculated

next-nearest neighbors density matrix elements, getting negligibly small value.

We would like to use Hamiltonian in a mean-field approximation for

graphene nanostructures, but starting from single particle energy levels ob-

tained within TB model. In order to do this, we combine Eq. (3.10) and Eq.

(3.11) getting

HGQD
MF = HGQD

MF −Ho
MF +Ho

MF

=
∑
i,σ

ϵiσc
†
iσciσ +

∑
i,l,σ

tilσc
†
iσclσ

+
∑
i,l,σ

∑
j,k,σ′

(ρjkσ′ − ρojkσ′)(⟨ij|V |kl⟩ − ⟨ij|V |lk⟩δσ,σ′)c†iσclσ, (3.16)

where the subtracted component in a second term corresponds to mean-field

interactions included in effective tilσ hopping integrals, described by graphene

density matrix ρojkσ′ . The density matrix elements ρjkσ′ are calculated with

respect to the many-body ground state of graphene nanostructures. It can be

written as

ρjk =
∑
s

A∗s
j As

k, (3.17)

1The number of all energy levels is 2Nc (because of two atoms in a units cell), and only

half of them is occupied, which gives Nc.
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where indices s run over all occupied states and As
j are expansion coefficients

of eigenstates written in a basis of localized pz orbitals

c†s =
∑
i,σ

A∗s
i a†i .

The Hamiltonian given by Eq. (3.16) has to be solved self-consistently to

obtain Hartree-Fock quasi-particle orbitals.

3.4.2 Hubbard model - mean-field approximation

In order to derive a Hubbard model in a mean-field approximation, from

all scattering matrix elements ⟨ij|V |kl⟩, only onsite terms ⟨ii|V |ii⟩, are kept.
We note that Hubbard model is used to study quantum phase transitions in

solid state physics [174–176]. Eq. (3.16) for a Hubbard model can be written

as

HHubb =
∑
i,σ

ϵiσc
†
iσciσ +

∑
i,l,σ

tilσc
†
iσclσ + U

∑
iσ

(
⟨n̂iσ⟩ −

1

2

)
n̂iσ′

=
∑
i,σ

ϵiσc
†
iσciσ +

∑
i,l,σ

tilσc
†
iσclσ

+ U
∑
i

(
⟨n̂i↑⟩n̂i↓ + ⟨n̂i↓⟩n̂i↑ −

1

2
n̂i↓ −

1

2
n̂i↑

)
, (3.18)

with a particle operator n̂iσ = c†iσciσ, U = ⟨ii|V |ii⟩, and we took into account
fact that ρoiiσ = 1

2
according to Eq. (3.15). We choose the on-site interaction

U ∼ 2.75 eV according to Table 3.1 for the effective dielectric constant κ = 6

[180]. For a hopping integral between the nearest neighbors, t = −2.5 eV, the

ratio |U/t| = 1.1 resides in commonly used range (1.1-1.3) [181] and is close to

DFT results [101]. We note that the first term ϵiσ and last two terms from Eq.

3.18, −1
2
n̂i↓ and −1

2
n̂i↑ correspond to diagonal matrix elements and are equal

for all sites i. Thus, they just shift an entire spectrum by a constant value and

can be neglected. We can finally write the Hubbard model in the mean-field

approximation as

H = t
∑
⟨i,j⟩,σ

c†iσcjσ + U
∑
i

(ni↑ ⟨ni↓⟩+ ni↓ ⟨ni↑⟩) , (3.19)

where the first term is TB Hamiltonian in the nearest neighbor approximation,

Eq. 2.1. A mean-field value of a particle operator can be explicitly written,

e.g., for spin down, as

⟨n̂i↓⟩ =
∑
s

|Ai
s↓|2, (3.20)
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where index s run over all occupied states. Eq. (3.20) corresponds to the

average spin down density on site i. Hubbard Hamiltonian given by Eq. (3.19)

has to be solved in a self-consistent procedure. A solution is characterized by

a single-particle spectrum and the spin density Mi = (ni↑ − ni↓) /2 on each

atomic site i. A self-consistent procedure can be described in a following way.

Hamiltonian given by Eq. (3.19) consists of two blocks, for spin up and spin

down states. Additionally, spin up Hamiltonian depends on spin down densities

and vice versa. As a starting point, one can choose a simple TB Hamiltonian

given by Eq. (2.1). After diagonalizing it, eigenvalues and eigenvectors are

given. Obtained energy levels are filled by Ndn and Nup electrons, occupying

Ndn and Nup lowest eigenstates, respectively. Next, by using Eq. (3.20),

for each site, spin up and spin down densities can be calculated. According

to Eq. (3.19), calculated spin down densities correspond to diagonal matrix

elements of spin up Hamiltonian and calculated spin up densities correspond

to diagonal matrix elements of spin down Hamiltonian. After diagonalizing

separately spin down and spin up Hamiltonians, new energy levels for spin

down and spin up electrons are obtained. These new states are again filled

by Ndn and Nup electrons which occupy Ndn and Nup lowest energy levels,

respectively. New spin densities can be calculated and used in new spin up

and spin down Hamiltonians. A procedure is repeated till a convergence with

an appropriate accuracy is obtained.

3.5 Configuration interaction method

We start from writing a many-body Hamiltonian of interacting electrons

occupying energy levels as

HMB =
∑
s,σ

Esσa
†
sσasσ

+
1

2

∑
s,p,d,f,
σ,σ′

⟨sp | V | df⟩a†sσa
†
pσ′adσ′afσ. (3.21)

The first term, energies Esσ correspond to eigenvalues of TB Hamiltonian given

by Eq. (3.11). The second term from Hamiltonian given by Eq. (3.21) de-

scribes an interaction between quasi-particles occupying energy levels denoted

by s, p, d, f indices. The two-body quasi-particle scattering matrix elements

⟨sp | V | df⟩ are calculated from the two-body localized on-site Coulomb ma-
trix elements ⟨ij | V | kl⟩. Because Hamiltonian given by Eq. (3.21) does
not contain any spin interaction terms, total spin S and its projection onto
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Configurations

Figure 3.1: A scheme of possible distributions of spinless Nel = 3 particles

within Nst = 5 energy states. Black bars corresponds to energy levels and

black circuits to electrons. One can construct the total of Nconf = 10 distinct

configurations. They form a many-body basis in the configuration interaction

method.

z axis, Sz, are good quantum numbers. Hamiltonian matrix can be divided

into blocks corresponding to different S or Sz. Each block can be diagonalized

independently. In next subsection, we show a method of a construction of a

many-body basis for a given Sz for electrons occupying single particle orbitals.

3.5.1 Creation of many-body basis

For a given number of electrons we write a many-body vector consisting of

electrons distributed within single particle orbitals. It can be written as

|Ψ1⟩ =
∏
sσ

a†sσ|0⟩,

where |0⟩ is a vacuum state in the case of TB energy levels. The number of
operators in this product is equal to the number of electrons Nel. We show

a method of construction a complete set of basis vectors on an example of

Nel = 3 particles distributed within Nst = 5 states, for simplicity neglecting

spin degrees of freedom. It is schematically presented in Fig. 3.1. Black

bars corresponds to energy levels and black circuits to electrons. The first

configuration from Fig. 3.1 can be written as

|1⟩ = a†1a
†
2a

†
3|0⟩,

where numbers 1, 2.. label energy levels counted from the left to the right. We

note that in order to avoid double counting of the same configuration one has

to choose some convention of ordering creation operators in the many-body
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vectors. Our choice is that we always write ...a†ia
†
j...|0 > for i < j. We can

calculate a total number of possible configurations Nconf by using binomial

coefficient

Nconf =

(
Nst

Nel

)
.

Thus, one can construct Nconf linear independent vectors which span our

Hilbert space. For the case from Fig. 3.1, Nst = 5 and Nel = 3, we get

Nconf = 10.

We include spin degrees of freedom. A many-body vector is a product of

vectors for spin down and spin up configurations

|Ψ1⟩ =
∏
s

a†s↓|0⟩ ⊗
∏
p

a†p↑|0⟩ = ...a†s↓...a
†
p↑...|0⟩, (3.22)

with the number of creation operators in this product equal to the number of

electrons Nel = Ndn + Nup, and Ndn (Nup) defined as a number of electrons

with spin down (spin up). The total number of configurations is

Nconf = Ndn
conf ·N

up
conf ,

where Ndn
conf (N

up
conf ) is the number of configurations of electrons with spin

down (spin up). We introduce an operator corresponding to a projection of

total spin S onto z-axis. It is defined as

Ŝz =
∑
s

σa†sσasσ.

This operator commutes with Hamiltonian given by Eq. (3.21), [Ĥ, Ŝz] =

0. Additionally, many-body vectors given by Eq. (3.22) are eigenvectors of

this operator: each of them has a well defined projection of spin onto z-axis,

Sz = 1/2(Nup − Ndn). For a given number of particles, Nel, sets of vectors

for each Sz are constructed. These vectors span independent subspaces and

a Hamiltonian matrix can be written in a block diagonal form, e.g. for even

number of particles

Ĥ =



 Sz = 0

  Sz = 1


...


.
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One can also construct a Hamiltonian matrix in a block diagonal form for Ŝ2

operator, due to the fact that [Ĥ, Ŝ2] = 0. This operator is defined as

Ŝ2 =
Nel

2
+ Ŝ2

z −
∑
sp

a†s↑a
†
p↓ap↓as↑.

The problem is that eigenvectors of Ŝ2 operator are linear combinations of

eigenvectors of Ŝz operator. A finding of these eigenvectors requires some

additional transformations, thus it is not so simple as in the case of Ŝz operator

[182].

3.5.2 Construction of Hamiltonian matrix

In a many-body Hamiltonian given by Eq. (3.21) there are two operators.

We can write this Hamiltonian as

HMB = T̂ + V̂ (3.23)

with a single particle operator

T̂ =
∑
s,σ

Esσa
†
sσasσ (3.24)

and a two body operator

V̂ =
1

2

∑
s,p,d,f,
σ,σ′

⟨sp | V | df⟩a†sσa
†
pσ′adσ′afσ. (3.25)

We show a method of finding matrix elements of these operators in a given

many-body basis. We choose a system with 4 particles, e.g. two spin down

and two spin up electrons distributed within 3 single particle states for each

spin. It corresponds to the subspace with Sz = 0. One can create a total of

Nconf = 3 ∗ 3 = 9 configurations. They have a following form

|Ψ1⟩ = a†1↓a
†
2↓a

†
1↑a

†
2↑|0⟩,

|Ψ2⟩ = a†1↓a
†
2↓a

†
1↑a

†
3↑|0⟩,

|Ψ3⟩ = a†1↓a
†
2↓a

†
2↑a

†
3↑|0⟩,

|Ψ4⟩ = a†1↓a
†
3↓a

†
1↑a

†
2↑|0⟩,

|Ψ5⟩ = a†1↓a
†
3↓a

†
1↑a

†
3↑|0⟩,

|Ψ6⟩ = a†1↓a
†
3↓a

†
2↑a

†
3↑|0⟩,

|Ψ7⟩ = a†2↓a
†
3↓a

†
1↑a

†
2↑|0⟩,

|Ψ8⟩ = a†2↓a
†
3↓a

†
1↑a

†
3↑|0⟩,

|Ψ9⟩ = a†2↓a
†
3↓a

†
2↑a

†
3↑|0⟩.

(3.26)

We keep a convention that from the left to right we have creation operators

with increasing indices, first for spin down, and next for spin up operators.
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Single particle operator

From configurations given by Eq. 3.26, we take one vector for our example,

e.g., |Ψ8⟩. We act on this vector by a single particle operator given by Eq.
(3.24),

T̂ |Ψ8⟩ =
∑
s,σ

Esσa
†
sσasσa

†
2↓a

†
3↓a

†
1↑a

†
3↑|0⟩. (3.27)

The summation run over all possible energy levels, s = 1, 2, 3, σ =↓, ↑. Lets
choose first sσ = 1 ↓. We get

E1↓a
†
1↓a1↓a

†
2↓a

†
3↓a

†
1↑a

†
3↑|0⟩ = −E1↓a

†
1↓a

†
2↓a1↓a

†
3↓a

†
1↑a

†
3↑|0⟩ = E1↓a

†
1↓a

†
2↓a

†
3↓a1↓a

†
1↑a

†
3↑|0⟩

= −E1↓a
†
1↓a

†
2↓a

†
3↓a

†
1↑a1↓a

†
3↑|0⟩ = E1↓a

†
1↓a

†
2↓a

†
3↓a

†
1↑a

†
3↑a1↓|0⟩ = 0,

where in order to change the order of operators anticommutation relations

given by Eq. (3.3) were used. From this example one can see that the nonzero

terms appear only when annihilation operator from an operator matches to one

of creation operators in a vector. This can be seen by looking at e.g. sσ = 3 ↓
element,

E3↓a
†
3↓a3↓a

†
2↓a

†
3↓a

†
1↑a

†
3↑|0⟩ = −E3↓a

†
3↓a

†
2↓a3↓a

†
3↓a

†
1↑a

†
3↑|0⟩

= −E3↓a
†
3↓a

†
2↓

(
1− a†3↓a3↓

)
a†1↑a

†
3↑|0⟩

= −E3↓a
†
3↓a

†
2↓a

†
1↑a

†
3↑|0⟩ − E3↓a

†
3↓a

†
2↓a

†
3↓a3↓a

†
1↑a

†
3↑|0⟩

= −E3↓a
†
3↓a

†
2↓a

†
1↑a

†
3↑|0⟩ = E3↓a

†
2↓a

†
3↓a

†
1↑a

†
3↑|0⟩,

where in the last line we have changed the order of operators to obtain a vector

written in agreement with our convention. It is clearly seen that we get the

same vector |Ψ8⟩ as we started. We can write all nonzero terms for single
particle operator acting on this vector as

T̂ |Ψ8⟩ = (E2↓ + E3↓ + E1↑ + E3↑) |Ψ8⟩.

One can see that these energies correspond to occupied states by electrons

in this configuration. Basis vectors are orthonormalized, ⟨Ψi|Ψj⟩ = δij, thus

nonzero matrix elements after projecting only on bra vector ⟨Ψ8| are obtained.
Finally, it can be written as

⟨Ψ8|T̂ |Ψ8⟩ = E2↓ + E3↓ + E1↑ + E3↑,

which corresponds to diagonal terms. In this way, one can find nonzero matrix

elements for all configurations given by Eq. 3.26 for single particle operator.
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Two body operator

We present a method of finding nonzero matrix elements for Coulomb op-

erator given by Eq. (3.25). Before we do this, we write this operator in a more

suitable form. It can be written as

V̂ =
1

2

∑
s,p,d,f

⟨sp | V | df⟩a†sa†padaf , (3.28)

where we did not write a spin dependence apparently remembering that s ≡ sσ,

p ≡ pσ′, d ≡ dσ′, f ≡ fσ. We divide a summation into two parts, for d < f

and d > f . A term d = f can be neglected because it gives dσ′ = fσ, a term

in Eq. (3.28) with two identical annihilation operators. If one acted with it on

an arbitrary state, one would get always zero, which is a consequence of Pauli

principle: no more than one electron can occupy a state with given quantum

numbers. Eq. (3.28) is written as

V̂ =
1

2

∑
s,p,d<f

⟨sp | V | df⟩a†sa†padaf +
1

2

∑
s,p,d>f

⟨sp | V | df⟩a†sa†padaf

=
1

2

∑
s,p,d<f

⟨sp | V | df⟩a†sa†padaf −
1

2

∑
s,p,d>f

⟨sp | V | df⟩a†sa†pafad

=
1

2

∑
s,p,d<f

⟨sp | V | df⟩a†sa†padaf −
1

2

∑
s,p,d<f

⟨sp | V | fd⟩a†sa†padaf

=
1

2

∑
s,p,d<f

(⟨sp | V | df⟩ − ⟨sp | V | fd⟩) a†sa†padaf ,

where going from the first to the second line we used anticommutation rules

given by Eq. (3.3), and in the second term in the third line we have changed

indices d ↔ f . In a similar way, one can divide a summation over s and p into

s < p and s > p, and finally write two body Coulomb operator as

V̂ =
∑

s>p,d<f

(⟨sp | V | df⟩ − ⟨sp | V | fd⟩) a†sa†padaf . (3.29)

Writing explicitly a spin dependence, we can distinguish six possibilities of

terms in a summation in Eq. (3.29)

1o s ↓ p ↓ d ↓ f ↓ ⟨sp | V | df⟩ − ⟨sp | V | fd⟩
2o s ↑ p ↑ d ↑ f ↑ ⟨sp | V | df⟩ − ⟨sp | V | fd⟩
3o s ↑ p ↓ d ↓ f ↑ ⟨sp | V | df⟩
4o s ↑ p ↓ d ↑ f ↓ −⟨sp | V | fd⟩
5o s ↓ p ↑ d ↑ f ↓ ⟨sp | V | df⟩
6o s ↓ p ↑ d ↓ f ↑ −⟨sp | V | fd⟩.

(3.30)
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These six possibilities can be related to the arrangement of creation operators

in a many-body vector ...a†s↓...a
†
p↑...|0⟩. Here, sσ < pσ′ for arbitrary s and p.

We show that in order to satisfy a condition sσ > pσ′ and dσ′ < fσ only first

three terms survive. For example, the fourth term contains d ↑ and f ↓. In
this particular case d ↑< f ↓ but it is forbidden because in our convention spin
up operators are always for larger indices than spin down operators, d ↑> f ↓.
Thus, we can write Eq. (3.29) as

V̂ =
∑

s>p,d<f

(⟨sp | V | df⟩ − ⟨sp | V | fd⟩) a†sa†padaf = Ĥ↓↓ + Ĥ↑↑ + Ĥ↓↑,

where

Ĥ↓↓ =
∑

s>p,d<f

(⟨sp | V | df⟩ − ⟨sp | V | fd⟩) a†s↓a
†
p↓ad↓af↓ (3.31)

Ĥ↑↑ =
∑

s>p,d<f

(⟨sp | V | df⟩ − ⟨sp | V | fd⟩) a†s↑a
†
p↑ad↑af↑ (3.32)

Ĥ↓↑ =
∑
s,p,d,f

⟨sp | V | df⟩a†s↑a
†
p↓ad↓af↑. (3.33)

We note that in a last term conditions s ↑> p ↓ and d ↓> f ↑ are automatically
satisfied for arbitrary s and p or d and f . Thus, we have separated a Coulomb

term given by Eq. (3.25) into components describing scattering of two par-

ticles within a given spin subspace, Eq. (3.31) and (3.32), and a component

describing scattering of one particle within spin up and one within spin up

subspace, Eq. (3.33).

We show an effect of acting by these operators on our example vector. In

order to simplify a description we will not write matrix elements, which can

be easily added from Eq. (3.31-3.33). An operator Ĥ↓↓ act on a vector |Ψ8⟩
which is written as

Ĥ↓↓|Ψ8⟩ →
∑

s>p,d<f

a†s↓a
†
p↓ad↓af↓a

†
2↓a

†
3↓a

†
1↑a

†
3↑|0⟩. (3.34)

There are two spin down annihilation operators and two spin down creation

operators. Creation operators with spin up don’t play a role here. The only

choice to obtain nonvanishing terms is to take annihilation operators from

Hamiltonian identical to creation operators from a vector. In other case, we

can move annihilation operator to the right by using anticommutation relations

and act it on a vacuum, getting zero. Thus, we can have only d = 2 ↓ and
f = 3 ↓, due to a condition d < f . We can write (3.34) as

Ĥ↓↓|Ψ8⟩ →
∑
s>p

a†s↓a
†
p↓a2↓a3↓a

†
2↓a

†
3↓a

†
1↑a

†
3↑|0⟩. (3.35)



68 Electron-electron interaction in gated graphene nanostructures

By using anticommutation relations given by Eq. (3.3), Eq. (3.35) is reduced

to

Ĥ↓↓|Ψ8⟩ → −
∑
s>p

a†s↓a
†
p↓a

†
1↑a

†
3↑|0⟩. (3.36)

We can write above term for all s in a summation as

Ĥ↓↓|Ψ8⟩ → −a†2↓a
†
1↓a

†
1↑a

†
3↑|0⟩ − a†3↓a

†
1↓a

†
1↑a

†
3↑|0⟩ − a†3↓a

†
2↓a

†
1↑a

†
3↑|0⟩

= a†1↓a
†
2↓a

†
1↑a

†
3↑|0⟩+ a†1↓a

†
3↓a

†
1↑a

†
3↑|0⟩+ a†2↓a

†
3↓a

†
1↑a

†
3↑|0⟩, (3.37)

where in the second line the order of operators was changed to obtain vectors in

agreement with our convention. These new three vectors corresponds to some

configuration vectors from our basis, given by (3.26). They can be found by

comparing all creation operators in these vectors, one by one with all creation

operators in vectors from our basis. This is a very inefficient method and in

Section 3.5.3 a more effective way will be shown. We write all nonzero matrix

elements corresponding to these vectors

⟨Ψ2|Ĥ↓↓|Ψ8⟩ = ⟨21 | V | 23⟩ − ⟨21 | V | 32⟩

⟨Ψ5|Ĥ↓↓|Ψ8⟩ = ⟨31 | V | 23⟩ − ⟨31 | V | 32⟩

⟨Ψ8|Ĥ↓↓|Ψ8⟩ = ⟨32 | V | 23⟩ − ⟨32 | V | 32⟩,

with a help of Eq. 3.31.

In a similar way, we can find nonzero matrix elements of an operator Ĥ↑↑

given by Eq. (3.32). We focus on an operator Ĥ↓↑, Eq. (3.33). We write

Ĥ↓↑|Ψ8⟩ =
∑
s,p,d,f

⟨sp | V | df⟩a†s↑a
†
p↓ad↓af↑a

†
2↓a

†
3↓a

†
1↑a

†
3↑|0⟩. (3.38)

There are two annihilation operators, one for spin down state and one for spin

up. Based on previous results, we know that these operators must match with

creation operators in a configuration vector. These operators can correspond

to states d = 2, 3 for spin down and f = 1, 3 for spin up. From them, four

combinations can be created

d ↑= 2 ↑ f ↑= 1 ↑
d ↑= 2 ↑ f ↑= 3 ↑
d ↑= 3 ↑ f ↑= 1 ↑
d ↑= 3 ↑ f ↑= 3 ↑

(3.39)

We take the first combination, d ↑= 2 ↑, f ↑= 1 ↑. From Eq. (3.38) one gets∑
s,p

a†s↑a
†
p↓a2↓a1↑a

†
2↓a

†
3↓a

†
1↑a

†
3↑|0⟩

=
∑
s,p

a†s↑a
†
p↓a2↓a

†
2↓a

†
3↓a1↑a

†
1↑a

†
3↑|0⟩ =

∑
s,p

a†s↑a
†
p↓a

†
3↓a

†
3↑|0⟩.
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The summation over s and p run over all possible states but s and p indices have

to be different than indices in present creation operators. In the case, when one

has two creation operators corresponding to the same state, due to a Hermicity

of Coulomb operator, one can act with them as annihilation operators on bra

vector, getting zero. This is also a consequence of Pauli principle: it is not

possible to create two particles on a state with given quantum numbers. We

write all elements in a summation∑
s,p

a†s↑a
†
p↓a

†
3↓a

†
3↑|0⟩ = a†1↑a

†
1↓a

†
3↓a

†
3↑|0⟩+ a†1↑a

†
2↓a

†
3↓a

†
3↑|0⟩

+ a†2↑a
†
1↓a

†
3↓a

†
3↑|0⟩+ a†2↑a

†
2↓a

†
3↓a

†
3↑|0⟩

Again, to write vectors in our convention a change of order of operator is

required. We get∑
s,p

a†s↑a
†
p↓a

†
3↓a

†
3↑|0⟩ = a†1↓a

†
3↓a

†
1↑a

†
3↑|0⟩+ a†2↓a

†
3↓a

†
1↑a

†
3↑|0⟩

+ a†1↓a
†
3↓a

†
2↑a

†
3↑|0⟩+ a†2↓a

†
3↓a

†
2↑a

†
3↑|0⟩

In analogy to the case of operator Ĥ↓↓, these four new vectors give nonvanishing

terms only when projected onto identical configuration vectors, given by (3.26).

We write matrix elements for an operation (3.38) for d ↑= 2 ↑, f ↑= 1 ↑

⟨Ψ5|Ĥ↓↑|Ψ8⟩ = ⟨11 | V | 33⟩

⟨Ψ8|Ĥ↓↑|Ψ8⟩ = ⟨12 | V | 33⟩

⟨Ψ6|Ĥ↓↑|Ψ8⟩ = ⟨21 | V | 33⟩

⟨Ψ9|Ĥ↓↑|Ψ8⟩ = ⟨22 | V | 33⟩.

From each of four combinations given by (3.39), one gets four nonzero matrix

elements, getting a total of 16 nonzero matrix elements. We will not write

them here.

3.5.3 Diagonalization methods for large matrices

In configuration interaction method, a size of the Hilbert space exponen-

tially increases with a number of particles and a number of states. For example,

for a system with Nst = 10 and Nel = 5 one gets

Nconf =

(
10

5

)
=

10!

(10− 5)!5!
= 126 ≃ 102

but if one doubles the number of states and particles

Nconf =

(
20

10

)
=

20!

(20− 10)!10!
= 184756 ≃ 105,
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which is three orders of magnitude larger. Thus, this method has to be re-

stricted to calculations of small systems or an efficient way of calculation meth-

ods is required.

For large matrices, Nconf > 105, problems of storing matrix elements due

to a large memory space requirement appear. Additionally, a procedure of

diagonalization of matrix by regular methods using linear algebra packages,

e.g. Lapack subroutines, is not possible. The important fact is that only

few lowest eigenvalues are important from physical point of view. These ones

correspond to the ground state and low energy excited states. In order to find

these eigenvalues, iterative methods are required. In this Section, we present

an iterative method to find extremal eigenvalues of large matrices, Lanczos

method [183]. There is an important advantage of using this method. It is

based on a matrix-vector multiplication and in each consecutive iteration only

a product of this operation is required. The efficient way to overcome problems

with storing matrix elements is to calculate them “on the fly”, separately for

each iteration. Calculated matrix elements are multiplied by a appropriate

coefficients of a given vector and only a product of this operation, a vector,

is stored. Thus, instead of storing N2
conf matrix elements, one can only store

Nconf coefficients of a new vector. There are several ways of implementing

Lanczos method. We now present one of it.

Lanczos method [183]

Solving a Schrodinger equation is equivalent to a rotation of a matrix to

its diagonal form. It can be written as

U−1


H11 H12 H13 ...

H21 H22 H23 ...

H31 H32 H33 ...

... ... ...
. . .

U =


E1 0 0 ...

0 E2 0 ...

0 0 E3 ...

... ... ...
. . .

 ,

where U is a unitary matrix consisting of column eigenvectors vi of matrix H,

U = (v1,v2, ...,vn), and Ei are eigenvalues of matrix H. Instead of rotating

matrix H to a diagonal form, one can rotate it to tridiagonal form

W−1


H11 H12 H13 ...

H21 H22 H23 ...

H31 H32 H33 ...

... ... ...
. . .

W =


α1 β1 0 ...

β1 α2 β2 ...

0 β2 α3 ...

... ... ...
. . .

 , (3.40)

where W is a unitary matrix consisting of column vectors wi, W =

(w1,w2, ...,wn). By multiplying Eq. (3.40) by matrix W on the left one
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gets 
H11 H12 H13 ...

H21 H22 H23 ...

H31 H32 H33 ...

... ... ...
. . .

W = W


α1 β1 0 ...

β1 α2 β2 ...

0 β2 α3 ...

... ... ...
. . .

 , (3.41)

which can be written as
H11 H12 H13 ...

H21 H22 H23 ...

H31 H32 H33 ...

... ... ...
. . .

 (w1,w2, ...) = (w1,w2, ...)


α1 β1 0 ...

β1 α2 β2 ...

0 β2 α3 ...

... ... ...
. . .

 .(3.42)

By comparing two sides of Eq. (3.42), we can obtain a set of equations

Hw1 = w1α1 +w2β1

Hw2 = w1β1 +w2α2 +w3β2

Hw3 = w2β2 +w3α3 +w4β3

...

Hwk = wk−1βk−1 +wkαk +wk+1βk. (3.43)

We solve these equations iteratively, starting from randomly generated vector

w1. In the first equation from a set of Eq. (3.43) unknown quantities are α1,

β1, w2. Projecting this equation on w1 direction one gets

wT
1 Hw1 = α1, (3.44)

due to an orthogonality requirement, wT
i wj = δij. Thus α1 is just an expec-

tation value of a matrix H in a direction w1. Knowing α1, we can write

Hw1 − α1w1 = β1w2. (3.45)

An above equation corresponds to an orthogonalization procedure. Labeling

z2 = Hw1 and using a definition of α1, Eq. (3.44), Eq. (3.45) can be written

as

z2 − (wT
1 z2)w1 = β1w2, (3.46)

where we can see that from vector z2 a component in a w1 direction is sub-

tracted. This is a simple Gramm-Schmidt orthogonalization procedure. We

write Eq. (3.45) as

r = β1w2 (3.47)
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with

r = Hw1 − α1w1. (3.48)

A new vector w2 is just an unnormalized vector r

w2 =
r

||r||
,

with a norm

β1 = ||r|| = ||Hw1 − α1w1||.

We can go to the second equation of a set of Eq. (3.43). Here, unknown are

α2, β2, w3. Projecting this equation on w2 direction one gets

wT
2 Hw2 = α2, (3.49)

so α2 is an expectation value of matrix H in a direction w2. We can write the

second equation of a set of Eq. (3.43) as

r = w3β2

with

r = Hw2 −w1β1 −w2α2. (3.50)

This equation also is an orthogonalization procedure. Labeling z3 = Hw2 and

using a definition of α2, Eq. (3.49), and β1 from Eq. (3.47) after projecting

on w2, Eq. (3.50) can be written as

z3 − (wT
1 z3)w1 − (wT

2 z3)w2 = β2w3. (3.51)

Similarly to previous step,

β2 = ||r|| = ||Hw2 −w1β1 −w2α2||

and

w3 =
r

||r||
.

In the third and next equations from a set of Eq. (3.43), the same steps as

for the second equation is adopted. We shortly write entire procedure in few
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steps

0. k = 1, random wk generation of a vector

1. wk = wk/||wk|| normalization

2. Hwk = wk+1

3. αk = wT
kHwk finding α1

4. wk+1 = wk+1 − (wT
kwk+1)wk orthogonalization

5. βk = ||wk+1|| finding β1

6. wk+1 = wk+1/||wk+1|| normalization

7. Hwk+1 = wk+2

8. αk+1 = wT
k+1Hwk+1 finding αk+1

9. wk+2 = wk+2 − (wT
kwk+2)wk − (wT

k+1wk+2)wk+1 orthogonalization

10. βk+1 = ||wk+2|| finding βk+1

11. wk+2 = wk+2/||wk+2|| normalization

12. k = k + 1

13. go to 7

In practice, in a step nr 9 an orthogonalization to all previous vectors is per-

formed, which eliminates numerical errors. These lead to so called “Ghost

states”, which artificially increases a degeneracy of eigenvalues.

Methods of optimization of calculations

Finding matrix elements of a matrix with Nconf size require N2
conf opera-

tions. There are several ways to speed up this process. The important note

is only nonzero matrix elements are needed. In the Hamiltonian given by Eq.

(3.21), there are two terms, a single particle operator (3.24) and a two par-

ticle operator (3.25). By acting them on an arbitrary basis vector, only one

particle changes its state for an operator (3.24), or two particles change their

states for an operator (3.25). From this, we conclude that all matrix elements

between vectors which differ by more than two operators are zeros. These

findings are called Slater rules. Including them significantly improves the time

of calculations because of neglecting many zero matrix elements. However, in

our method it is not possible to implement this idea. In our case, we first

find values of nonzero matrix elements and next find a position of them in a

matrix. The procedure is as following.

With each configuration, two binary numbers can be associated, one for

spin down and one for spin up operators. When a configuration vector contains

a creation operator corresponding to a given state we put ”1”, in other case

”0”. Lets take our example vector, |Ψ8⟩ from vectors (3.26). It can be written
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as a binary number as

|Ψ8⟩ = a†2↓a
†
3↓a

†
1↑a

†
3↑|0⟩ = |011|101⟩, (3.52)

where 1’s correspond to occupied states and 0’s to empty states. We don’t have

a particle in the first spin down states and in the second spin up state, which

are written as 0’s in binary numbers. The length of binary number is equal to

the number of states in a system. These binary numbers can be written in a

decimal system

|011⟩ = 21 + 20 = 3 (3.53)

for spin down and

|101⟩ = 22 + 20 = 5 (3.54)

for spin up, where powers of ’2’ are counted from right to left starting from

power ’0’. In this way, one can associate binary numbers with all configuration

vectors (3.26)

Ψi spin down spin up

|Ψ1⟩ = a†1↓a
†
2↓a

†
1↑a

†
2↑|0⟩ = |110|110⟩ 6 6

|Ψ2⟩ = a†1↓a
†
2↓a

†
1↑a

†
3↑|0⟩ = |110|101⟩ 6 5

|Ψ3⟩ = a†1↓a
†
2↓a

†
2↑a

†
3↑|0⟩ = |110|011⟩ 6 3

|Ψ4⟩ = a†1↓a
†
3↓a

†
1↑a

†
2↑|0⟩ = |101|110⟩ 5 6

|Ψ5⟩ = a†1↓a
†
3↓a

†
1↑a

†
3↑|0⟩ = |101|101⟩ 5 5

|Ψ6⟩ = a†1↓a
†
3↓a

†
2↑a

†
3↑|0⟩ = |101|011⟩ 5 3

|Ψ7⟩ = a†2↓a
†
3↓a

†
1↑a

†
2↑|0⟩ = |011|110⟩ 3 6

|Ψ8⟩ = a†2↓a
†
3↓a

†
1↑a

†
3↑|0⟩ = |011|101⟩ 3 5

|Ψ9⟩ = a†2↓a
†
3↓a

†
2↑a

†
3↑|0⟩ = |011|011⟩ 3 3.

(3.55)

It is seen that these vectors are arranged in a suitable way. First, all vectors

with the same spin down part are written, with spin up part arranged according

to binary numbers in descending order. Next, for lower spin down binary

number, the same order of spin up binary numbers is kept.

We show an effect of acting on these vectors by Hamiltonian operator given

by Eq. (3.21). After acting by single particle operator, Eq. (3.24), the same

vector is returned, thus we will not consider this case here. Lets take first two

body operator given by Eq. (3.31). According to Eq. (3.37), we get new three

vectors

Ψi spin down spin up

a†1↓a
†
2↓a

†
1↑a

†
3↑|0⟩ = |110|101⟩ 6 5

a†1↓a
†
3↓a

†
1↑a

†
3↑|0⟩ = |101|101⟩ 5 5

a†2↓a
†
3↓a

†
1↑a

†
3↑|0⟩ = |011|101⟩ 3 5,

(3.56)
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where corresponding binary numbers were also written. We acted only on spin

down part, so spin up part remains unchanged. The idea is to find efficiently

ordering numbers i corresponding to these vectors. In Subsection 3.4.2 we

compared all creation operators of these vectors with basis vectors (3.26) one

by one. Now, we just have to compare corresponding binary numbers of vectors

(3.56) to basis vectors (3.55). Additionally, we don’t have to do this one by

one. All binary numbers are ordered and we can use bisection method. The

efficiency of bisection method is ∼ lnNconf , instead of ∼ Nconf in a regular

comparison.

The idea of the bisection method is following. The set of binary numbers

in descending order is given. Each binary number bin in a set corresponds to

some integer index i, which can be labeled as bin(i). The largest i is noted as

imax, the smallest imin. We try to find an index j of a binary number bin(j)

corresponding to our new vector. A set bin(i) is divided into two equal subsets,

⟨bin(imin), bin(k)⟩ and (bin(k), bin(imax)⟩, for k = (imax + imin)/2. Next step

is to check whether one of equalities bin(j) = bin(imin), bin(j) = bin(imax)

or bin(j) = bin(k) is satisfied. If yes, we can stop because index j is found.

If not, we choose a subset which contains bin(j) and divide it into new two

subsets. For example, if bin(j) is in the second subset, new subsets are defined

as ⟨bin(k), bin((k+ imax)/2)⟩ and (bin((k+ imax)/2), bin(imax)⟩. If an equality
bin(j) = bin((k+ imax)/2) is satisfied, we can stop because index j is found. If

not, a check which subset contains bin(j) is required. A procedure of a division

of sets into two subsets is repeated till an equality is satisfied. We can write

this procedure in few steps

0. read bin(i), define imin, imax

1. if bin(j) = bin(imin) stop

if bin(j) = bin(imax) stop

2. k = (imax + imin)/2

3. if bin(j) = bin(k) stop

4. if bin(j) ≤ bin(k) then imax = k

if bin(j) > bin(k) then imin = k

5. go to 1

In the case of operator given by Eq. (3.33), we act on both, spin down and

spin up parts changing a position of one particle for each of it. A procedure of

calculations is equivalent, independently for spin down and spin up subspaces.

A final vector is a product of new spin down and spin up vectors.

We would like to emphasize an importance of a division of a Coulomb
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part of the many-body Hamiltonian, Eq. (3.25), into three terms, Eq. (3.31),

Eq. (3.32) and Eq. (3.33). A bisection method for Eq. (3.25) requires ∼
Nconf lnNconf operations for all s, p, d, f indices which run over all ∼ Nst states

for ↓ and ↑ states giving the number of operations

Nop ∼ 22(Nst)
4Nconf lnNconf ,

when ’22’ comes from a summation over spins (σ and σ′). In our case, a

bisection method for terms (3.31) and (3.32) run only over N↓
conf (N

↑
conf )

configurations where N↓
conf ∼

√
Nconf which gives ∼ 2

√
Nconf ln

√
Nconf =√

Nconf lnNconf operations. The total number of operations is reduced to

Nop ∼ (Nst)
4Nconf lnNconf + (Nst)

4
√

Nconf lnNconf ,

where the first part corresponds to term (3.33) and the second part to terms

(3.31) and (3.32). The second part is negligibly small comparing to the first

one. Thus, a division of a Coulomb part of a many-body Hamiltonian, Eq.

(3.25), into three terms, Eq. (3.31), Eq. (3.32) and Eq. (3.33) approximately

four times reduces the time of calculations.

In our numerical programs, all spin down and spin up configurations with

corresponding binary numbers are stored. It is possible even for, e.g. N↓
el =

15 distributed within N↓
st = 30, giving N↓

conf ≃ 108 configurations. Each

of our spin configurations consists of 15 integer numbers. In order to store

them, it requires ∼ 1Gb of memory, which is not too much even for personal

computers. In this case, approximately a total of Nconf ≃ N↓
conf ∗N

↑
conf ≃ 1016

configurations is obtained. It is not presently possible to diagonalize so large

matrix, so we are within an available calculation range.

3.6 TB+HF+CI method

We would like to study the role of interaction effects in graphene nanos-

tructures. Solving the full many-body problem even for structures with tens

of atoms is not possible at present. Thus, we combine the mean-field HF ap-

proach with exact CI diagonalization method. We are interested in systems

with the degenerate shell, where electron-electron interactions play an impor-

tant role. Thus, we explain our methodology based on TGQD consisting of

N = 97 atoms with Ndeg = 7 degenerate states. The procedure is schemati-

cally shown in Fig. 3.2. In Fig. 3.2(a) it is clearly seen that the valence band

and the degenerate shell are separated by the energy gap. Thus, the closed
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Figure 3.2: (a) Single-particle nearest-neighbor TB energy levels. The zero-

energy shell on the Fermi level is perfectly degenerate. (b) Positively charged

system with an empty degenerate band after self-consistent Hartee-Fock (HF)

mean-field calculations described by a single Slater determinant (TB+HF

model). (c) Occupation of empty degenerate HF quasi-orbitals by electrons.

The inset pictures schematically show the excess charge corresponding to each

of the three model systems. The ground state and the total spin of the system

of interacting electrons can be calculated by using the configuration interac-

tion (CI) method. The charge neutrality corresponds to a half-filled degenerate

band (not shown).
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shell system of Nref = N−Ndeg interacting electrons is expected to be well de-

scribed in a mean-field approximation, using a single Slater determinant. This

corresponds to a charged system with Ndeg positive charges, as schematically

shown in Fig. 3.2(b). The Hamiltonian given by Eq. (3.16) is self-consistently

solved for Nref electrons. Obtained new orbitals for quasi-particles correspond

to a fully occupied valence band and completely empty degenerate states.

One can note that because of the mean-field interaction with the valence elec-

trons, a group of three states is now separated from the rest by a small gap

of ∼0.2 eV, Fig. 3.2(b). The three states correspond to HF quasiparticles
localized in the three corners of the triangle [144]. As will be shown in Sec.

4.1.3, this is related to the long-range interaction. We start filling degenerate

energy levels by adding extra electrons one by one, schematically shown in

Fig. 3.2(c). Next, we solve the many-body Hamiltonian corresponding to the

added electrons, given by Eq. (3.21). In our calculations, we neglect scattering

from/to the states from a fully occupied valence band. Moreover, because of

the large energy gap between the degenerate states and the conduction band,

we can neglect scatterings to the higher energy states. Our assumptions can

be confirmed by comparing the energy gaps and Coulomb interaction matrix

elements. For example, the system with degenerate states separated by energy

gaps ∆E ∼ 0.5 eV has the intra degenerate states interaction terms V ∼ 0.23

eV. The Coulomb matrix elements V scattering electrons from an arbitrary de-

generate state to the valence band and/or to the conduction band are V ∼ 0.2

eV. Hence, the effect of these scatterings is proportional to V 2/∆E ≪ 1, and

is weak. Thus, many body properties of electrons occupying the degenerate

states are primarily governed by interactions between electrons within these

states. These approximations allow us to treat the degenerate shell as an inde-

pendent system which significantly reduces the dimension of the Hilbert space.

The basis is constructed from vectors corresponding to all possible many-body

configurations of electrons distributed within the degenerate states. For a given

number of electrons, Nel, Hamiltonian given by Eq. (3.21) is diagonalized in

each subspaces with a given Sz.



Chapter 4

Magnetic properties of gated

graphene nanostructures

4.1 Triangular graphene quantum dots with

zigzag edges

The results, presented in Sections 4.1.1-4.1.3, were published in a paper

“Electronic properties of gated triangular graphene quantum dots: Magnetism,

correlations, and geometrical effects”, by P. Potasz, A. D. Güçlü, A. Wójs, and

P. Hawrylak, Ref. [165].

4.1.1 Analysis as a function of filling factor

In Fig. 4.1, we analyze the dependence of the low energy spectra on the

total spin S for [Fig. 4.1(a)] the charge neutral system, Nel = 7 electrons,

and [Fig. 4.1(b)] one added electron, i.e., Nel = 8 electrons. We see that

for the charge neutral TGQD with Nel = 7 electrons the ground state of

the system is maximally spin polarized, with S = 3.5, indicated by a circle.

There is only one possible configuration of all electrons with parallel spins that

corresponds to exactly one electron per one degenerate state. The energy of

this configuration is well separated from other states with lower total spin S,

which require at least one flipped spin among seven initially spin-polarized

electrons. An addition of one extra electron to the system with Nel = 7 spin

polarized electrons induces correlations as seen in Fig. 4.1(b), where the cost

of flipping one spin is very small. Moreover, for Nel = 8, the ground state is

completely depolarized with S = 0, indicated by a circle, but this ground state

is almost degenerate with states corresponding to the different total spin.
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Figure 4.1: The low-energy spectra for the different total spin S for (a) Nel = 7

electrons and (b) Nel = 8 electrons. For Nel = 7 electrons the ground state

corresponding to S = 3.5, indicated by a circle, is well separated from excited

states with different total spin S. For Nel = 8 electrons the ground state

corresponding to S = 0, indicated by a circle, is almost degenerate with excited

states with different total spin S.

The calculated many-body energy levels, including all spin states for differ-

ent numbers of electrons (shell filling), are shown in Fig. 4.2. For each electron

number, Nel, energies are measured from the ground-state energy and scaled

by the energy gap of the half-filled shell, corresponding to Nel = 7 electrons in

this case. The solid line shows the evolution of the energy gap as a function

of shell filling. The energy gaps for a neutral system , Nel = 7 , as well as for

Nel = 7 − 3 = 4 and Nel = 7 + 3 = 10 are found to be significantly larger in

comparison to the energy gaps for other electron numbers. In addition, close

to the half-filled degenerate shell, the reduction of the energy gap is accom-

panied by an increase of low energy density of states. This is a signature of

correlation effects, showing that they can play an important role at different

filling factors.

We now extract the total spin and energy gap for each electron number.

Figures 4.3(a) and (b) show the phase diagram, the total spin S and an exci-

tation gap as a function of the number of electrons occupying the degenerate

shell. The system reveals maximal spin polarization for almost all fillings,

with exceptions for Nel = 8, 9 electrons. However, the energy gaps are found

to strongly oscillate as a function of shell filling as a result of a combined ef-

fect of correlations and system’s geometry. We observe a competition between

fully spin polarized system that maximizes exchange energy and fully unpo-

larized system that maximizes the correlation energy. Only close to the charge



4.1 Triangular graphene quantum dots with zigzag edges 81

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.0

0.2

0.4

0.6

0.8

 

 

E/
E G

ap

Nel

Figure 4.2: The low-energy spectra of the many-body states as a function of

the number of electrons occupying the degenerate shell for the system with

Ndeg = 7 degenerate states. The energies are renormalized by the energy gap

corresponding to the half-filled shell, Nel = 7 electrons. The solid line shows

the evolution of the energy gap as a function of shell filling.

neutrality, for Nel = 8 and Nel = 9 electrons, are the correlations sufficiently

strong to overcome the large cost of the exchange energy related to flipping

spin. The excitation gap is significantly reduced and exhibits large density of

states at low energies, as shown in Fig. 4.1. Away from half-filling, we ob-

serve larger excitation gaps for Nel = 4 and Nel = 10 electrons. These fillings

correspond to subtracting/adding three electrons from/to the charge-neutral

system with Nel = 7 electrons. In Fig. 4.4 we show the corresponding spin

densities. Here, long range interactions dominate the physics and three spin

polarized [Fig. 4.4(a)] holes (Nel = 7 − 3 electrons) and [Fig. 4.4(b)] elec-

trons (Nel = 7 + 3 electrons) maximize their relative distance by occupying

three consecutive corners. Electron spin density is localized in each corner

while holes correspond to missing spin density localized in each corner. We

also note that this is not observed for Nel = 3 electrons filling the degenerate

shell (not shown here). The energies of HF orbitals of corner states correspond

to three higher energy levels [see Fig. 4.7(c)], with electronic densities shown

in Ref. [144]. Thus, Nel = 3 electrons occupy lower-energy degenerate levels

corresponding to sides instead of corners. On the other hand, when Nel = 7

electrons are added to the shell, self-energies of extra electrons renormalize

the energies of HF orbitals. The degenerate shell is again almost perfectly

flat similarly to levels obtained within the TB model. A kinetic energy does
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Figure 4.3: (color online) (a) The total spin as a function of the number of

electrons occupying the degenerate shell and (b) corresponding the energy

excitation gaps. Due to a presence of correlation effects for some fillings, the

magnitude of the energy gap is significantly reduced.
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Figure 4.4: (color online) The spin densities of the ground state for (a) Nel = 4

electrons and (b) Nel = 10 electrons that correspond to subtracting/adding

three electrons from/to the charge neutral system. The radius of circles is

proportional to a value of spin density on a given atom. A long range Coulomb

interaction repels (a) holes and (b) electrons to three corners, forming a spin-

polarized Wigner-like molecule.

not play a role allowing a formation of a spin-polarized Wigner-like molecule,

resulting from a long-range interactions and a triangular geometry. We note

that Wigner molecules were previously discussed in circular graphene quantum

dots with zigzag edges described in the effective mass approximation [184,185].

The rotational symmetry of quantum dot allowed for the construction of an

approximate correlated ground state corresponding to either a Wigner-crystal

or Laughlin-like state [184]. Later, a variational rotating-electron-molecule

(VREM) wave function was used [185]. Unfortunately, due to a lack of an

analytical form of a correlated wave function with a triangular symmetry, it is

not possible to do it here.

4.1.2 Analysis as a function of size

In a previous section, we have analyzed in detail the electronic properties

of a particular TGQD with N = 97 atoms as a function of the filling factor

ν = Nel/Ndeg, i.e., the number of electrons per number of degenerate levels.

In this section we address the important question of whether one can predict

the electronic properties of a TGQD as a function of size.

Figure 4.5 shows spin phase diagrams for triangles with odd number of

degenerate edge states Ndeg and increasing size. Clearly, the total spin de-

pends on the filling factor and size of the triangle. However, all charge-neutral

systems at ν = 1 are always maximally spin polarized and a complete depolar-

ization occurs for Ndeg ≤ 9 for structures with one extra electron added (such
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depolarization also occurs for even Ndeg, not shown). Similar results for small

size triangles were obtained in our previous work. [144] However, at Ndeg = 11

we do not observe depolarization for Ndeg +1 electrons but for Ndeg +3, where

a formation of Wigner-like molecule for a triangle with Ndeg = 7 was observed.

We will come back to this problem later. We now focus on the properties close

to the charge neutrality.

For the charge-neutral case, the ground state corresponds to only one con-

figuration |GS⟩ =
∏

i a
†
i,↓|0⟩ with maximum total Sz and occupation of all de-

generate shell levels i by electrons with parallel spin. Here |0⟩ is the HF ground
state of all valence electrons. Let us consider the stability of the spin polarized

state to single spin flips. We construct spin-flip excitations |kl⟩ = a†k,↑al,↓|GS⟩
from the spin-polarized degenerate shell. The spin-up electron interacts with a

spin-down ”hole” in a spin-polarized state and forms a collective excitation, an

exciton. An exciton spectrum is obtained by building an exciton Hamiltonian

in the space of electron-hole pair excitations and diagonalizing it numerically,

as was done, e.g., for quantum dots. [177] If the energy of the spin flip exci-

tation turns out to be negative in comparison with the spin-polarized ground

state, the exciton is bound and the spin-polarized state is unstable. The bind-

ing energy of a spin-flip exciton is a difference between the energy of the lowest

state with S = Smax
z −1 and the energy of the spin-polarized ground state with

S = Smax
z . An advantage of this approach is the ability to test the stability of

the spin polarized ground state for much larger TGQD sizes. Figure 4.6 shows

the exciton binding energy as a function of the size of TGQD, labeled by a

number of the degenerate states Ndeg. The largest system, with Ndeg = 20,

corresponds to a structure consisting of N = 526 atoms. The exciton binding

energies are always positive, i.e., the exciton does not form a bound state,

confirming a stable magnetization of the charge neutral system. The observed

ferromagnetic order was also found by other groups based on calculations for

small systems with different levels of approximations. [138, 139, 141, 144] The

above results confirm predictions based on Lieb’s theorem for a Hubbard model

on bipartite lattice relating total spin to the broken sublattice symmetry [186].

Unlike in Lieb’s theorem, in our calculations many-body interacting Hamilto-

nian contains direct long-range, exchange, and scattering terms. Moreover,

we include next-nearest-neighbor hopping integral in HF self-consistent calcu-

lations that slightly violates bipartite lattice property of the system, one of

cornerstones of Lieb’s arguments [186]. Nevertheless, the main result of the

spin-polarized ground state for the charge neutral TGQD seems to be consis-

tent with predictions of Lieb’s theorem and, hence, applicable to much larger
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Figure 4.5: Spin phase diagrams as a function of filling factor ν = Nel/Ndeg

for different size triangles characterized by the number of the degenerate edge

states Ndeg. Half-filled shell ν = 1 is always maximally spin polarized. The

complete spin depolarization occurs for one added electron to the charge-

neutral system for Ndeg ≤ 9. For Ndeg = 11 the depolarization effect moves to

a different filling.
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Figure 4.6: Size-dependent analysis based on exciton and trion binding ener-

gies. For the charge-neutral system, it is energetically unfavorable to form an

exciton, which is characterized by a positive binding energy. The formation of

a trion is desirable for small size systems. The phase transition occurs close

to Ndeg = 8, indicated by an arrow.

systems.

Having established the spin polarization of the charge-neutral TGQD we

now discuss the spin of charged TGQD. We start with a spin-polarized ground

state |GS⟩ of a charge-neutral TGQD with all electron spins down and add to it
a minority spin electron in any of the degenerate shell states i as |i⟩ = a†i,↑|GS⟩.
The total spin of these states is Smax

z − 1/2. We next study stability of such

states with one minority spin-up electron to spin-flip excitations by forming

three particle states |lki⟩ = a†l,↑ak,↓a
†
i,↑|GS⟩ with total spin Smax

z − 1/2 − 1.

Here there are two spin-up electrons and one hole with spin-down in the spin-

polarized ground state. The interaction between the two electrons and a hole

leads to the formation of trion states. We form a Hamiltonian matrix in the

space of three particle configurations and diagonalize it to obtain trion states.

If the energy of the lowest trion state with Smax
z − 1/2 − 1 is lower than the

energy of any of the charged TGQD states |i⟩ with Smax
z − 1/2, the minority

spin electron forms a bound state with the spin-flip exciton, a trion, and the

spin-polarized state of a charged TGQD is unstable. The trion binding energy,

shown in Fig. 4.6, is found to be negative for small systems with Ndeg ≤ 8 and

positive for all larger systems studied here. The binding of the trion, i.e., the

negative binding energy, is consistent with the complete spin depolarization

obtained using TB+HF+CI method for TGQD withNdeg ≤ 9 but not observed
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for Ndeg = 11 (and not observed for Ndeg = 10, not shown here), as shown in

Fig. 4.5. For small systems, a minority spin-up electron triggers spin-flip

excitations, which leads to the spin depolarization. With increasing size, the

effect of the correlations close to the charge neutrality vanishes. At a critical

size, around Ndeg = 8, indicated by an arrow in Fig. 4.6, a quantum phase

transition occurs [187], from minimum to maximum total spin.

However, the spin depolarization does not vanish but moves to different

filling factors. In Fig. 4.5 we observe that the minimum spin state for the

largest structure computed by the TB+HF+CI method with Ndeg = 11 occurs

for TGQD charged with additional three electrons. We recall that for TGQD

with Ndeg = 7 charged with three additional electrons a formation of a Wigner-

like spin polarized molecule was observed, shown in Fig. 4.4. In the following,

the differences in the behavior of these two systems, Ndeg = 7 and 11, will be

explained based on the analysis of the many-body spectrum of the Ndeg = 11

system.

Figure 4.7 shows the many-body energy spectra for different numbers of

electrons for Ndeg = 11 TGQD to be compared with Fig. 4.2 for the Ndeg = 7

structure. Energies are renormalized by the energy gap of a half-filled shell,

Nel = 11 electrons in this case. In contrast to the Ndeg = 7 structure, energy

levels corresponding to Nel = Ndeg + 1 electrons are sparse, whereas increased

low-energy densities of states appear for Nel = Ndeg + 2 and Nel = Ndeg + 3

electrons. In this structure, electrons are not as strongly confined as for smaller

systems. Therefore, for Nel = Ndeg + 3 electrons, geometrical effects that

lead to the formation of a Wigner-like molecule become less important. Here,

correlations dominate, which results in a large low-energy density of states.

4.1.3 Comparison of Hubbard, extended Hubbard and

full CI results

In this section, we study the role of different interaction terms included in

our calculations. The computational procedure is identical to that described

in Sec. 3.6. We start from the TB model but in self-consistent HF and CI

calculations we include only specific Coulomb matrix elements. We compare

results obtained with Hubbard model with only the on-site term, the extended

Hubbard model with on-site plus long range Coulomb interactions, and a model

with all direct and exchange terms calculated for up to next-nearest neighbors

using Slater orbitals, and all longer range direct Coulomb interaction terms

approximated as ⟨ij|V |ji⟩ = 1/(κ|ri − rj|), written in atomic units, 1 a.u.=
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Figure 4.7: The low-energy spectra of the many-body states as a function of

the number of electrons occupying the degenerate shell for the triangle with

Ndeg = 11 degenerate states. The energies are renormalized by the energy gap

corresponding to the half-filled shell, Nel = 11 electrons. The large density of

states related to the correlation effects observed in Fig. 4.2 around Ndeg + 1

electrons shifts to a different filling around Nedge + 3 electrons.

27.211 eV, where ri and rj are positions of i-th and j-th sites, respectively.

The comparison of HF energy levels for the structure withNdeg = 7 is shown

in Fig. 4.8. The on-site U -term slightly removes degeneracy of the perfectly

flat shell [Fig. 4.8(a)] and unveils the double valley degeneracy. On the other

hand, the direct long-range Coulomb interaction separates three corner states

from the rest with a higher energy [Fig. 4.8(b)], forcing the lifting of one of the

doubly degenerate subshells. Finally, the inclusion of exchange and scattering

terms causes stronger removal of the degeneracy and changes the order of the

four lower-lying states. However, the form of the HF orbitals is not affected

significantly (not shown here).

In Fig. 4.9 we study the influence of different interacting terms on CI

results. The phase diagrams obtained within (a) the Hubbard model and (b)

the extended Hubbard model show that all electronic phases are almost always

fully spin polarized. The ferromagnetic order for the charge-neutral system

is properly predicted. For TGQD charged with electrons, only inclusion of

all Coulomb matrix elements correctly predicts the effect of the correlations

leading to the complete depolarization for Nel = 8 and 9. We note that

the depolarizations at other filling factors are also observed in Hubbard (at

Nel = 2)) and extended Hubbard calculation (at Nel = 11)) results.
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Figure 4.8: Hartree-Fock energy levels corresponding to the degenerate shell

for calculations with (a) only the on-site term U (Hubbard model), (b) the on-

site term U + direct long-range interaction (extended Hubbard model), and

(c) all interactions. A separation of three corner states with higher energies is

related to direct long range Coulomb interaction terms.

A more detailed analysis can be done by looking at the energy excitation

gaps, which are shown in Fig. 4.10. For the charge-neutral system, all three

methods give comparable excitation gaps, in agreement with previous results.

[138,139,141,144] In the Hubbard model, the energy gap of the doped system

is reduced compared to the charge neutrality but without affecting magnetic

properties. The inclusion of a direct long-range interaction in Fig. 4.10(b)

induces oscillations of the energy gap. For Nel = Ndeg +1 electrons the energy

gap is significantly reduced but the effect is not sufficiently strong to depolarize

the system. Further away from half-filling, a large energy gap for models

with long-range interactions for Nel = Ndeg + 3 appears, corresponding to

the formation of a Wigner-like molecule of three spin-polarized electrons in

three different corners. The inclusion of exchange and scattering terms slightly

reduces the gap but without changing a main effect of Wigner-like molecule

formation.
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Figure 4.9: Spin phase diagrams obtained by use of the CI method with (a)

only the on-site term U (Hubbard model), (b) the on-site term U + direct

long range interaction (extended Hubbard model), and (c) all interactions.

The ferromagnetic order for the charge-neutral system is properly predicted

by all three methods. Correlations leading to the complete depolarization for

Nel = Ndeg +1 electrons and Nel = Ndeg +2 electrons are observed only within

a full interacting Hamiltonian.
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Figure 4.10: The excitation gaps corresponding to phase diagrams from Fig.

4.9 for many-body Hamiltonians with (a) only the on-site term U (Hubbard

model), (b) the on-site term U + direct long-range interaction (extended Hub-

bard model), and (c) all interactions. All three methods give qualitatively

similar excitation gaps for the charge neutral system. A large energy gap for

Nel = Ndeg + 3 electrons, which is related to geometrical properties of the

structure, can be obtained by inclusion of direct long-range interactions. This

gap is slightly reduced by inclusion of exchange and scattering terms.
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4.1.4 Edge reconstruction effects using DFT

The results, presented in this section, were published in a paper “Effect of

edge reconstruction and passivation on zero-energy states and magnetism in

triangular graphene quantum dots with zigzag edges”, by O. Voznyy, A. D.

Güçlü, P. Potasz, and P. Hawrylak, Ref. [188]

We would like to analyze the robustness of TGQD the magnetic proper-

ties versus edge reconstructions and passivation as a function of size. Calcu-

lations have been performed within DFT approach as implemented in the

SIESTA code. [189] We have used the generalized gradient approximation

(GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-

tional, [190] double-ζ plus polarization (DZP) orbital bases for all atoms (i.e.,

2s, 2p, and 2d orbitals for carbon, thus, both σ and π bonds are included on

equal footing), Troullier- Martins norm-conserving pseudopotentials to rep-

resent the cores, 300-Ry real-space mesh cutoff for charge density (with sym-

metrization sampling to further improve the convergence), and a supercell with

at least 20 Å of vacuum between the periodic images of the TGQDs. Geome-

tries were optimized until the forces on atoms below 40 meV/Å were reached,

and exactly the same geometries were used for the comparison of total energies

of the ferromagnetic (FM) and antiferromagnetic (AFM) configurations. Our

optimized C-C bond length for bulk graphene of 1.424 Å overestimates the

experimental value by ∼3%, typical for GGA.

We use the most feasible with current manufacturing technique reconstruc-

tions (ZZ and ZZ57) while our conclusions are expected to be general for

any configuration of pentagon-heptagon defects. We consider several possible

TGQD structures. The requirement of the ZZ57 reconstruction of the edge

leads to structures with the three rings at the corner, 5-7-5, 7-6-5, or 6-6-5

arrangements presented in Figs. 4.11(b)–(d) (for the sake of comparison of to-

tal energies, we investigate only those reconstructions conserving the amount

of atoms). Among reconstructed corners, only the structure in Fig. 4.11(b)

conserves the mirror symmetry of the TGQD; however, according to our cal-

culations, it is the least stable due to strong distortion of the corner cells.

Thus, in the remainder of this paper, we will be presenting results utilizing the

configuration shown in Fig. 4.11(c) for an even, and that in Fig. 4.11(d) for

an odd Nedge.

Passivation by hydrogen is an important requirement for the observation of

the band of nonbonding states. Our calculations show that, without hydrogen

passivation, the π bonds hybridize with the σ bonds on the edge, destroying
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Figure 4.11: Triangular graphene quantum-dot edge configurations consid-

ered in this Section: (a) Ideal zigzag edges ZZ, (b) ZZ57 reconstruction

with pentagon-heptagon-pentagon corner configuration, (c) ZZ57 reconstruc-

tion with heptagon-hexagon-pentagon corner, and (d) ZZ57 reconstruction

with hexagon-hexagon-pentagon corner.

the condition of the well-defined equivalent bonds on a bipartite lattice and

thus the zero-energy band itself. In Fig. 4.12(a), we address the stability of

hydrogen passivation for ZZ and ZZ57 edges on the example of a triangle with

N = 97 carbon atoms, with Nedge = 8. The number of passivating hydrogens

is NH = 3Nedge + 3 = 27. For hydrogen-passivated structures, ZZH is 0.3 eV

per hydrogen atom more stable than ZZ57H since, in the latter structure, the

angles between the σ bonds significantly deviate from the ideal 120o and the

total energy is affected by strain. In the absence of hydrogen, however, the

structure has to passivate the dangling σ bonds by itself, e.g. by reconstructing

the edge. Indeed, the ZZ57 reconstruction becomes 0.4 eV more stable. It is

important to note that hydrogen passivation is a favorable process for both

structures, even relative to the formation of H2 molecules, and not only atomic

hydrogen, i.e. formation of the H − H bond can not compensate the energy

loss due to breaking the C − H bond, Fig. 4.12(a)). The same conclusions

hold for larger TGQDs as well. Thus, the H-passivated edge, required for

magnetism, is easily achievable and we will present further only the results for

hydrogen-passivated structures omitting the index H (i.e., use ZZ instead of

ZZH). These results are also consistent with the ones for infinite edges in

graphene nanoribbons. In Fig. 4.12(b), we investigate the relative stability of

hydrogen-passivated ZZ and ZZ57 structures as a function of the linear size
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Figure 4.12: Relative total energies of hydrogen-passivated and nonpassivated

TGQDs with reconstructed and nonreconstructed edges for the case of Nedge =

8 (NH = 27). (b) Total energy difference between hydrogen-passivated ZZ57

and ZZ configurations as a function of the number of atoms on a side of the

triangle. Presented values are energy per hydrogen atom.

of the triangles. The largest TGQD that we have studied has N = 622 carbon

atoms with Nedge = 23. The fact that the energy per edge atom increases

with size signifies that the infinite limit has not yet been reached. Clearly,

the ZZ structure remains the ground state for the range of sizes studied here.

Nevertheless, since most of the current experimental techniques involve the

unpassivated edge, for which ZZ57 is more stable, its consequent hydrogenation

may propagate the reconstruction into the final structure, where it may be

locked due to high interconversion barrier.

In Sec. 2.2.2 we have proved that the number of zero-energy states equals

the difference between the number of A and B type of atoms in the struc-

ture, Ndeg = |NA −NB|. Additionally, these states are localized exclusively on
the sublattice to which the ZZ edges belong, see Fig. 2.6. Figure 4.13 com-

pares the DFT electronic spectra near the Fermi level for the ground states of

hydrogen-passivated unreconstructed ZZ) and reconstructed (ZZ57) TGQDs

with Nedge = 12. The degenerate band survives in a reconstructed (ZZ57)

TGQD. However, the dispersion of this band increases almost threefold due

to a reduction of the structure symmetry. Lifting of the band degeneracy be-

comes observed even in the nearest-neighbor TB model with equal hoppings

(not shown), and is more pronounced for the structures in Figs. 4.11(c) and

4.11(d), which additionally lift the reflection symmetry present in Fig. 4.11(b).
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For ZZ triangle the up- and down-spin edge states are split around the Fermi

level such that only up-spin states are filled. This is in agreement with our

previous TB+HF+CI results presented in Sec. 4.1. The calculated dispersion

of the up-spin states is 0.03 eV/state, see Fig. 4.13(a). On the other hand,

the ground state of the ZZ57 configuration is antiferromagnetic, i.e. there is

no splitting between the up- and down-spin states, see Fig. 4.13(b). We can

understand it in a following way. An introduction of the ZZ57 edge recon-

struction smears the distinction between sublattices. One can see from the

charge-density plot in Fig. 4.13(b) that degenerate states can now populate

both A and B sublattices even close to the center of the dot (see outlined

regions), contrary to ZZ triangle, see charge-density plot in Fig 4.13(a)). We

speculate that the resulting reduction in the peak charge density on each site

is responsible for the reduced on-site repulsion between spin-up and spin-down

electrons. Stronger dispersion and reduced up-down spin splitting favor kinetic

energy minimization versus exchange energy and destroy the ferromagnetism

in ZZ57. It should be noted that partial polarization can still be possible in

ZZ57. Particularly, we observed it for structures with symmetric corners [Fig.

4.11(b)], which exhibit smaller dispersion.

Our conclusions based on the analysis of the energy spectra are supported

by the total energy calculations depicted in Fig. 4.14. For the ZZ structure,

the gap ∆min shown in Fig. 4.13 is always positive and the total energy of

the FM configuration is lower than that of AFM (blue squares). For the ZZ57

configuration, on the contrary, the ground state clearly remains AFM for all

sizes with the exception of the case with Nedge = 4. Here, the band consists

of only Ndeg = 3 degenerate states and their dispersion can not overcome the

splitting between spin-up and spin-down states, resulting in FM configuration

being more stable. The total energy difference between the FM and AFM

configurations for ZZ remains almost constant (in the range 0.3–0.5 eV) for

the triangle sizes studied here, and reduces with size if divided by the number

of edge atoms. Such a small value, comparable to the numerical accuracy of the

method, makes it difficult to make reliable predictions regarding magnetization

of larger dots.

To investigate whether the magnetization of the edges would be preserved

on a mesoscale, we plot in Fig. 4.15 the evolution of the energy spectra with the

TGQD size. For this plot, we performed an additional calculation for the case

of N = 1761 carbon atoms with Nedge = 40. We did not perform the geometry

optimization for this case due to the high computational cost, however, based

on the results for smaller structures, we expect that this would have a minor
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Figure 4.13: Energy spectra of the ground states for (a) ZZ and (b) ZZ57

configurations for a hydrogen-passivated triangular dot with Nedge = 12. Spin-

up states are shown in black squares and spindown states are shown in red

circles. On the right-hand side, charge densities of the filled part of degenerate

bands are shown. Circular outlines show the population of only one sublattice

in the ZZ structure and both sublattices in ZZ57.
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effect on the spectrum. This allows us to notice the reduction of the splitting

∆max shown in Fig. 4.13 between the spin-up and spin-down states with the

growing size, which was not appreciated previously. Our GGA gap between

degenerate bands (∆min) and that between the valence and conduction bands

are larger than LDA gaps reported previously, as also observed for graphene

nanoribbons. Both gaps show sublinear behavior, complicating the extrapo-

lation to triangles of infinite size. This behavior, however, should change to

linear for larger structures where the effect of edges reduces, converging both

gaps to zero, as expected for Dirac fermions. An important difference from the

nearest-neighbor TB calculation is the growing dispersion of the zero-energy

bands. Combined with the reduction of the valence-conduction gap, this leads

to the overlap of the degenerate band with the valence band, even for finite

sizes, as indeed observed for the Nedge = 40 case (see Fig. 4.15), while in ZZ57

structures, it becomes visible already at Nedge = 23 (not shown). Nevertheless,

it does not affect the magnetization of the edges, as indeed confirmed by our

calculation for Nedge = 40, and can be compared to a magnetization of the in-

finitely long hydrogen-passivated nanoribbons, where the edge state overlaps

in energy with the valence band but, in k space, those bands do not actually

cross. Our results thus suggest that magnetization of the edges for infinitely

large triangles survives in the limit of the zero temperature.
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4.2 Triangular mesoscopic quantum rings

with zigzag edges

The results, presented in this section, were published in a paper “Electronic

and magnetic properties of triangular graphene quantum rings”, by P. Potasz,

A. D. Güçlü, O. Voznyy, J. A. Folk, and P. Hawrylak, Ref. [172].

4.2.1 Properties of the charge neutral system

In order to study magnetic properties of TGQRs, we use Hubbard model

with a Hamiltonian given by Eq. 3.19. We would like to check a validity

of this model, comparing with results obtained within DFT calculation. In

Fig. 4.16 we show spectra obtained (a) from Hubbard model in the mean-field

approximation and (b) using DFT implemented in SIESTA package [189] for

TGQR with Nwidth = 2, consisting of N = 171 atoms, Nout = 11 and Ninn = 2.

This corresponds to Ndeg = 9 degenerate zero-energy TB levels, shown in Fig.

2.14(a). Interactions open a spin dependent gap in the single-particle zero-

energy shell, resulting in maximum spin polarization of those states. The total

spin of the system is Stot = 9/2, in accordance with Lieb’s theorem [186]. In

Fig. 4.16(c) and 4.16(d) we show corresponding spin density. The net total

spin is mostly localized on the outer edge and vanishes as one moves to the

center, similar to the electronic densities of TGQD shown in Fig. 2.6(f). Good

agreement between results obtained from the mean-field Hubbard and DFT

calculations (Fig. 4.16) validates the applicability of the mean-field Hubbard

model and allows us to study efficiently structures consisting of larger number

of atoms.

In Fig. 4.17 we show the results of the Hubbard model for a larger struc-

ture with N = 315 atoms, Nout = 20 and Ninn = 11, with the same width

Nwidth = 2. The energy spectrum, Fig. 4.17(a) looks similar to that from Fig.

4.16(a) and the total spin is again Stot = 9/2. On the other hand, spin density

in Fig. 4.17(b) is different than in Fig. 4.16(c). Here, the outer edge is still

spin polarized, but the inner edge reveals opposite polarization. This fact can

be understood in the following way. Electrons with majority spin (spin up)

occupy degenerate levels of the zero-energy shell which are built exclusively

of orbitals localized on atoms belonging to the sublattice labeled as A. These

states are localized on the outer edge. Due to repulsive on-site interaction,

spin-up electrons repel minority spin electrons (spin down) to sublattice la-

beled as B. After self-consistent calculations, spin up and spin down densities
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Figure 4.16: (a) Energy spectra from (a) self-consistent mean-field Hubbard

model and (b) DFT calculations for TGQR with the width Nwidth = 2 and

N = 171 atoms. States up to the Fermi level (dashed line) are occupied. (c)

and (d) are corresponding spin densities. The radius of circles is proportional

to the value of spin density on a given atom. Proportions between size of

circles in (c) and (d) are not retained.
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Figure 4.17: (a) Self-consistent energy spectra and (b) corresponding spin

densities from mean-field Hubbard model for TGQR with the width Nwidth = 2

and N = 315 atoms. The radius of circles is proportional to the value of spin

density on a given atom.

are spatially separated occupying mostly sublattice A and sublattice B, re-

spectively. Local imbalance between the two sublattices occurs near edges,

resulting in local magnetic moments, seen in Fig. 4.17(b). As a result, we

observe that the outer and inner edges are oppositely spin polarized, similar

to graphene nanoribbons. However, the magnetic moments are not equal re-

sulting in local anti-ferrimagnetic state in contrast to the anti-ferromagnetic

state in graphene nanoribbons.

Magnetic moment of the inner edge is the highest close to the middle of the

edge and decreases toward the corners. This allows us to distinguish between

two types of regions in the structure: corners and edges. Due to triangu-

lar symmetry of the system, in further analysis we can focus on only one

corner and one edge. We define average magnetization in a given region as

< M >=
∑′

iMi/N
′, where summation is over sites in a given region and

N ′ is corresponding total number of atoms. In Fig. 4.18(a) we show average

magnetization in one corner and one edge as a function of the size of TGQR

for a given width, Nwidth = 2. Small structures (N < 200 atoms) reveal fi-

nite and comparable magnetic moments in both regions, consistent with Fig.

4.16(c), where most of the spin density is distributed on outer edges. There are

two effects related to increasing size: the length of the internal edge increases

increasing spin polarization opposite to the outer edge spin polarization (see

Fig. 4.17(b)) and increase of the overall number of atoms in the edge region.

The first effect leads to antiferrimagnetic coupling between opposite edges and

the second one to vanishing average magnetization, seen in Fig. 4.18(a). We

note here that although the average magnetization rapidly decreases with size,
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Figure 4.18: (a) Average magnetic moment as a function of size (N - number

of atoms) in corner and edge regions. Structures reveal stable ferromagnetic

order in corners, but a change from ferromagnetic to antiferromagnetic on

edges with increasing size. (b) Total spin in corner region as a function of

width. Linear dependence is due to increased number of zero-energy states.

it never approaches zero. On the other hand, average magnetization at the

corner is stable and nearly independent of the size. This fact is related to the

fixed number of atoms in the corner region.

According to Liebs theorem [186], the total spin of the system must be

S = 3(Nwidth+1)/2. Moreover, the spin density for smaller structures is equally

distributed along the outer edge (see Fig. 4.16(c)). Partitioning structure into

six approximately equal regions, three corners and three edges (see inset in

Fig. 4.18(a)), gives approximately equal total spin in each domain. In further

analysis we show that this is true for arbitrary size triangular rings. In Fig.

4.18(b), we present the total spin in one corner Sc =
∑′

iMi as a function of

the width of the ring. Summation is over all sites in one corner. We obtain

linear dependence Sc ∼ Nwidth, which for the best choice of cuts should be

described by relation Sc = (Nwidth + 1)/4, which is a one sixth of the total

spin S of the entire structure. In this ideal case, all six regions reveal equal

total spin Sc, independently of the size of the structure. We relate this fact

to the behavior in edge and corner regions. For sufficiently large structures,

magnetic moments on edge region are distributed on large number of atoms,

giving vanishing average magnetic moment but always finite total spin equal to

Sc = (Nwidth+1)/4. With increasing size, the length of the inner edge increases.

In order to satisfy relation Sc = (Nwidth+1)/4, magnetic moment on the outer

edge increases proportionally to oppositely polarized magnetic moment on the

inner edge, resulting in antiferromagnetic coupling between opposite edges. On
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the other hand, in corners, there is always a fixed number of atoms independent

of size, giving constant average magnetic moment and the total spin equal

to Sc = (Nwidth + 1)/4. We note that above conclusion were confirmed by

investigation of TGQR with width in the range 2 ≤ Nwidth ≤ 9 for structures

up to N = 1500 atoms. Thus, we can treat large TGQR as consisting of three

ferromagnetic corners connected by anti-ferrimagnetic ribbons, with ribbons

exhibiting finite total spin. This result can be useful in designing spintronic

devices. Choosing TQGR with proper width, one can obtain a system with

desired magnetic moment localized in the corners.

4.2.2 Analysis as a function of filling factor

In a previous Section, we have shown that the Hubbard model and DFT

calculations describe well properties of the charge neutral system. On the

other hand, in Sec. 4.1 was shown that gated TGQDs reveal effects related to

electronic correlations in partially filled zero-energy shell [144]. We expect a

similar behavior in TGQRs. Thus, in this Section, we use again a TB+HF+CI

method described in Sec. 3.6 to analysis the magnetic properties as a function

of the number electrons filling the degenerate shell.

We concentrate on the structure shown in Fig. 2.13, consisting of N = 171

atoms and characterized by Nwidth = 2, which correspond to Ndeg = 9 degen-

erate states. In Fig. 4.19(a) we show an example of a configuration related to

Nel = 10 electrons. This corresponds to a half-filled degenerate shell with all

spin down states of the shell filled and one additional spin up electron. For

maximal total spin S = 4 there are nine possible configurations corresponding

to the nine possible states of spin-up electron. An energy spectrum obtained

by diagonalizing full many-body Hamiltonian, Eq. 3.21, for total spin S = 4 is

shown in Fig. 4.19(c). We see that, by the comparison with total spin states

with S = 0, 1, .., 4, the ground state corresponding to configurations of the

type a (one of which is shown in Fig. 4.19(a)) is maximally spin polarized,

with the excitation gap in the S = 4 subspace of ∼ 40 meV. However, the

lowest energy excitations correspond to spin flip configurations with total spin

S = 3, one of which is shown Fig. 4.19(b). These configurations involve spin

flip excitations from the fully spin polarized electronic shell in the presence of

one additional spin up electron.

The energy Egap = 4 meV for Nel = 10, indicated by the arrow in Fig.

4.19(c), is shown in Fig. 4.20(a) together with the energy gap for all electron

numbers 1 < Nel < 18 and hence all filling factors. In Fig. 4.20(b), we show
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Figure 4.19: (a) and (b) Hartree-Fock energy levels for TGQR with Nwidth = 2

consisting of N = 171 atoms and filled by Nel = 10 electrons. The config-

uration represented by arrows in (a) corresponds to all occupied spin down

orbitals and one occupied spin up orbital. The configuration represented by

arrows in (b) is the configuration from (a) with one spin down flipped. (c) The

low-energy spectra for the different total spin S for Nel = 10 electrons. The

ground state has S = 4, indicated by a, with one of the configuration shown

in (a). The lowest energy excited state, indicated by b, is ∼ 4 meV higher in

energy, corresponds to spin-flip configurations with one of the configuration

shown in (b).
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Figure 4.20: (a) Energy spin gap between ground and first excited state. Black

long arrow corresponds to half-filled shell with Egap ∼ 28 meV. Significant

reduction in the spin flip energy gap for one additional electron, Egap ∼ 4 meV,

indicated by the small black arrow, is the signature of correlation effects. (b)

Total spin of the ground and first excited state as a function of the number

of electrons Nel. The small black arrow indicates excited state for Nel = 10

electrons with one of the configurations shown schematically with arrows in

Fig. 4.19(b).
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the total spin S of the ground and the first excited state as a function of

the number of electrons occupying the degenerate shell. For arbitrary filling,

except for Nel = 2, the ground state is maximally spin polarized. Moreover,

the first excited state has total spin consistent with spin flip excitation from

the maximally spin polarized ground state as discussed in detail for Nel = 10.

The signature of correlation effects is seen in the dependence of the excitation

gap on the shell filling, shown in Fig. 4.20(a). For the half-filling at Nel = 9,

indicated by an arrow, the excitations are spin flip excitations from the spin

polarized zero-energy shell. This energy gap, ∼ 28 meV, is significantly larger

in comparison with the energy gap of ∼ 4 meV for spin flips in the presence

of additional spin up electron. The correlations induced by additional spin

up electron lead to a much smaller spin-flip excitation gap. This is to be

compared with TGQDs where spin flip excitations have lower energy leading

to full depolarization of the ground state, what was shown in Sec. 4.1 [144].

4.3 Hexagonal mesoscopic quantum rings

The results, presented in this section, were published in a paper “Spin and

electronic correlations in gated graphene quantum rings”, by P. Potasz, A. D.

Güçlü, and P. Hawrylak, Ref. [173].

4.3.1 Analysis as a function of size

In this section, we study the ground and excited states as a function of the

number of additional interacting electrons in degenerate shells of hexagonal

quantum rings with different size L and W = 1. Figure 4.21 shows the low

energy spectra for the different total spin S of half filled first shell over the

Fermi energy for two thinnest rings with a) L = 4 and N = 96 atoms and b)

L = 8 and N = 192 atoms. For smaller ring the ground state has total spin

S = 1 with a very small gap to the first excited state with S = 0. The lowest

states with larger total spin have higher energies. For N = 192 atoms ring

the total spin of the ground state is maximal, S = 3. The lowest levels with

different total spin have slightly higher energies. This can be understood in

a following way. The splitting between levels is large for smaller structures,

which is seen in Fig. 2.19. For ring with L = 4 and N = 96 atoms this value,

0.17 eV, is comparable with electronic interaction terms, e. g. 0.34 eV for two

electrons occupying the lowest state. For ring with L = 8 and N = 192 atoms

the electron-electron interaction terms are 0.23 eV for interaction between two
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Figure 4.21: The low energy spectra for the different total spin S of half-filled

first shell over the Fermi energy for two thinnest rings W = 1 with (a) L = 4

and N = 96 atoms and (b) L = 8 and N = 192 atoms.

particles on the first state, which is much larger then single particle energy

difference 0.015 eV. From this, we clearly see that for ring with L = 4 it is

energetically favorable to occupy low energy states by electrons with opposite

spins. For ring with L = 8 all states have similar energies and due to exchange

interactions the lowest energy state is maximally spin polarized.

The behavior of magnetic properties of the ground state for half filled shell

as a function of size is shown in Fig. 4.22. In this case, the ground state spin

can be explained as a result of the competition between occupation of levels

with smallest single particle energies which favors opposite spin configurations,

and parallel spin configurations for which exchange interactions are maximized.

For rings with L ≥ 5 the ground state is maximally spin polarized. Here, the

splitting between levels is relatively small and the ground state is determined

by electronic interactions. Moreover, this splitting decreases with increasing

size and this is seen in the spin gap behavior (Fig. 4.22). The largest spin gap is

observed for ring with L = 6 and it decreases with increasing L. For small rings

the situation is more complicated. Here, the contributions from single particle

energies and interactions are comparable. As a consequence, we observe ground
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Figure 4.22: Upper: Total spin of the ground and first excited states for the

half-filling of the first shell in the thinnest ring structuresW = 1 with different

sizes. Lower: Corresponding energy spin gap between ground and first excited

states.

states with alternating total spin S = 1 and S = 0. For sufficiently large rings,

L > 5, we observe stabilization of the spin phase diagram. This is connected

to changes of the energy differences between levels in a shell - above a critical

size these values are so small that they don’t play a role anymore.

4.3.2 Analysis as a function of filling factor

In Fig. 4.23 we show the phase diagram for a ring with L = 8 and N =

192 atoms. Near the half-filling the ground state is maximally spin polarized

which is related to the dominant contribution from the short-ranged exchange

interaction terms, and the charge density is symmetrically distributed in the

entire ring (see Fig. 2.18). Adding or removing electrons causes irregularities

in the density distribution, and correlation effects start becoming important.

This results in an alternating spin between maximal polarization (e.g. 3, 4, 9

extra electrons) and complete depolarization (e.g. 2, 8, 10 extra electrons) of

the system.
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Figure 4.23: Upper: The spin phase diagram for electrons occupying the first

shell over the Fermi level of the ring structure with L = 8 and N = 192 atoms.

Lower: Corresponding energy spin gap between ground and first excited states.
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Chapter 5

Optical properties of graphene

nanostructures

The results, presented in this chapter, were published in a paper “Excitonic

absorption in gate-controlled graphene quantum dots”, by A. D. Güçlü, P.

Potasz, and P. Hawrylak, Ref. [155].

5.1 Size, shape and type of edge dependence

of the energy gap

The electronic properties of graphene quantum dots depend on the size,

shape, and the character of the edge. This was illustrated by comparing elec-

tronic properties of graphene quantum dots including (i) hexagonal dot with

armchair edges, (ii) triangular dot with armchair edges, (iii) hexagonal dot

with zigzag edges, and (iV) triangular dot with zigzag edges (see Fig. 2.2).

Due to similarity of energy spectra of structures with armchair edges, we can

neglect a triangular shape structure and focus on a hexagonal one. Thus,

we consider hexagonal dots with armchair and zigzag edges and triangular

dot with zigzag edges. The dependence of the energy gap on the number of

atoms N is plotted in Fig. 5.1. In the inset in the left down corner, the

energy spectrum for N = 114 hexagonal quantum dot with armchair edges

from Fig. 2.2(a) is redrawn. The double headed red arrow indicates the band

gap separating the occupied valence band states from the empty conduction

band states. In this case, the gap decays as the inverse of the square root of

number of atoms N, from hundred to million atom nanostructures. This is

expected for confined Dirac fermions with photon-like linear energy dispersion

Egap ∝ kmin ≃ 2π/∆x ∝ 1/
√
N as pointed out in Refs [140, 154, 155, 170].
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Figure 5.1: TB bandgap energy as a function of total number of atoms N for

a triangular zigzag quantum dot (dashed line with black squares), hexagonal

armchair quantum dot (dotted line with circles), and hexagonal zigzag quan-

tum dot (solid line with diamonds). The inset shows the TB energy spectrum

for the hexagonal armchair dot redrawn from Fig. 2.2(a).
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However, in contrast with the hexagonal geometry with armchair edges, the

energy gap of hexagonal structure with zigzag edges decreases rapidly as the

number of atoms increases. This is due to the zigzag edges leading to local-

ized states at the edge of the quantum dot what was shown in Fig. 2.3(c).

It is similar to whispering gallery modes of photons localized at the edge of

photonic microdisk [191]. In TGQD, as was shown in Sec. 2.2, in addition to

valence and conduction bands, the spectrum shows a shell of degenerate levels

at the Fermi level. According to results from Sec. 4.1, as the shell is half-filled

at charge neutrality, there is no unique way of defining the energy gap. Here

we define the band gap as the energy difference between the topmost valence

(above the degenerate shell) to the lowest conduction band state (below the

degenerate shell). Despite the presence of the zero-energy shell, the energy

gap in the triangular zigzag structure follows the power law Egap ∝ 1/
√
N .

We note that the energy gap changes from Egap ≃ 2.5 eV (green light) for a

quantum dot with N ≃ 100 atoms and a diameter ∼ 1 nm to Egap ≃ 30 meV

for a quantum dot with N ≃ 106 atoms and a diameter ∼ 100 nm.

5.2 Optical joint density of states

We compare the optical joint density of states calculated using dipole mo-

ments ⟨i|r|f⟩ connecting initial and final states with energies Ei and Ef , re-

spectively. We calculate it for the three structures of similar size with energy

spectra from Fig. 2.2(a), (c) and (d). The dipole transitions for the hexagonal

armchair structure with N = 114 shown in Fig. 5.2(a) are not particularly

different from those for the hexagonal zigzag structure shown in Fig. 5.2(b).

However, for the triangular zigzag structure we observe a group of dipole mo-

ments near E = 0 which is absent in the two other structures. Indeed, due to

the presence of the zero-energy band in the middle of the energy gap, several

different photon energies (shown using different colors online) corresponding

to transitions within the zero-energy band, into and out of the zero-energy

states, and valence to conduction band states are possible.
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Figure 5.2: Optical joint density of states for (a) hexagonal armchair structure

with N = 114 atoms, (b) hexagonal zigzag structure with N = 96 atoms,

and (c) triangular zigzag structure with N=97 atoms. Due to the presence

of zero-energy states in triangular zigzag structure, different classes of optical

transitions exist represented by different symbols (and colors online).
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5.3 Triangular graphene quantum dots with

zigzag edges

5.3.1 Excitons in graphene quantum dots

In order to take into account correlation and excitonic effects, we solve the

many-body Hamiltonian given by

H =
∑
s′σ

ϵs′σa
†
s′σas′σ +

∑
sσ

ϵsσh
†
sσhsσ

+
1

2

∑
s′,p′,d′,f ′,

σσ′

⟨s′p′|V |d′f ′⟩a†s′σa
†
p′σ′ad′σ′af ′σ +

1

2

∑
s,p,d,f,
σσ′

⟨sp|V |df⟩h†
sσh

†
pσ′hdσ′hfσ

+
∑

s′,p,d,f ′,
σσ′

(⟨ds′|Vee|f ′p⟩ − (1− δσσ′) ⟨ds′|Vee|pf ′⟩) a†sσh
†
pσ′hdσ′af ′σ, (5.1)

where indices (s, p, d, f) correspond to states below Fermi level, and

(s′, p′, d′, f ′) are above Fermi level. Operators h†
sσ(hsσ) create (annihilate) a

hole in the valence band of TB+HF quasi particles. Terms from the first line

corresponds to kinetic energies of electrons and holes. Terms from the sec-

ond line correspond to, the first term, interactions between electrons and, the

second term, interactions between holes. Terms from the third line describe,

the first term, attractive direct interaction and, the second term, repulsive

exchange interaction between an electron and a hole. Excitonic absorption

spectrum between the ground state |GS⟩ and final excited states |f⟩ can then
be calculated using

A (ω) =
∑
f

|⟨GS|P |f⟩δ(ω − (Ef − EGS)), (5.2)

where P =
∑

ss′ δσσ̄′⟨s|P |s′⟩hsσas′σ′ is the polarization operator. We now focus

on TGQD with N = 97, for which exact many-body calculations can be carried

out. For the charge neutral case, each state is singly occupied and all electrons

have parallel spin, what was shown in Sec. 4.1. We can classify allowed optical

transitions into four classes, as shown in Fig. 5.3(a): (i) from valence band

to zero-energy degenerate band (VZ transitions, blue color); (ii) from zero-

energy band to conduction band (ZC transitions, red color); (iii) from valence

band to conduction band (VC transitions, green color); and finally, (iv) within

zero-energy states (ZZ transitions, black color). As a consequence, there are

three different photon energy scales involved in the absorption spectrum. VC

transitions (green) occur above full bandgap (2.8 eV), VZ (blue) and ZC (red)

transitions occur starting at half band gap (1.4 eV), and ZZ (black) transitions
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Figure 5.3: (a) Possible optical transitions in TGQD consisting of N = 97

atoms. The colored arrows represent optical transitions from VC (green), VZ

(blue), ZC (red), and ZZ (black). (b)–(d) shows the effect of electron-electron

interactions on the VZ transitions within (c) Hartree-Fock approximation, and

including (d) correlations and excitonic effect obtained from exact configura-

tion interaction calculations.
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occur at tera-hertz energies. The energies corresponding to ZZ transitions

are controlled by the second-nearest-neighbor tunneling matrix element t′ and

by electron-electron interactions. Figures 5.3(b)–5.3(d) illustrates in detail

the effect of electron-electron and final-state (excitonic) interactions on the

absorption spectra. Figure 5.3(b) shows detailed VZ absorption spectrum for

noninteracting electrons. This spectrum corresponds to transitions from the

filled valence band to half filled shell of Ndeg = 7 zero-energy states. Half filling

implies that each state of the zero-energy band is optically allowed. According

to electronic densities of the degenerate states shown in Fig. 2.6, among the

Ndeg = 7 zero-energy states, there are two bulk-like states, 2.6(d) and (e),

which couple strongly to the valence band resulting in the main transition at

E = 1.41 eV. When the electron-electron interactions are turned on within

Hartree-Fock level, the photon energies corresponding to optical transitions

ω = (Ef +
∑

f )− (Ei+
∑

i) are renormalized by the difference in quasi particle

self-energies
∑

f −
∑

i. The absorption spectrum, shown in Fig. 5.3(c), is

renormalized with transition energies blue-shifted by 0.51 eV to E = 1.92 eV.

Finally, when final state interactions between all interacting quasi electron

and quasi hole states are taken into account, the excitonic spectrum is again

renormalized from the quasi particle spectrum, with transitions red shifted

from quasi particle transitions at E = 1.92 eV, down to E = 1.66 eV. As we

can see, electron-electron interactions play an important role in determining

energies and form of the absorption spectrum, with net blue-shift from the

noninteracting spectrum by 0.25 eV.

5.3.2 Charged excitons in interacting charged quantum

dots

We now turn to the analysis of the effect of carrier density on the optical

properties of graphene quantum dots. The finite carrier density, controlled by

either metallic gate or via doping (intercalation), has been shown to signifi-

cantly modify optical properties of graphene [13, 14, 192, 193]. For a quantum

dot, the metallic gate shown in Fig. 5.4(a), changes the number of electrons in

the degenerate shell from Ndeg = 7 to Ndeg +∆Ndeg. This is illustrated in Fig.

5.4(b) where four electrons were removed and three electrons remain. These

remaining electrons populate degenerate shell and their properties are entirely

controlled by their interaction. Alternatively, removal of electrons from charge

neutral shell corresponds to addition of holes. As is clear from Fig. 5.4(b),

such a removal of electrons allows intra-shell transitions ZZ, enhances VZ tran-
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Figure 5.4: (Color online) (a) Schematic representation of TGQD with N = 97

carbon atoms with four electrons moved to the metallic gate. (b) Correspond-

ing single particle TB configuration near the Fermi level. (c) Excitonic absorp-

tion spectrum in arbitrary units as a function of energy and charging ∆Ndeg.

For convenience, transitions are artificially broadened by 0.02 eV. Peaks be-

low 0.6 eV are due to ZZ transitions, peaks above 1.2 eV are due to VZ and

ZC transitions. Charge neutral case corresponds to ∆Ndeg = 0 (filling factors

νe = νh = 1/2).
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sitions by increasing the number of allowed final states and weakens the ZC

transitions by decreasing the number of occupied initial states. Figure 5.4(c)

illustrates the overall effects in the computed excitonic absorption spectra for

VZ, ZC, and ZZ transitions as a function of the number of additional electrons

Ndeg. At ∆Ndeg = −7 (hole-filling factor νh = 1), the shell is empty and VZ

transitions describe an exciton built of a hole in the valence band and an elec-

tron in the degenerate shell. The absorption spectrum has been described in

Figs. 5.3(b)–5.3(d) and is composed of one main excitonic peak at 1.66 eV.

There are no ZC transitions and no ZZ transitions in the tera-hertz range.

When we populate the shell with electrons, the VZ excitonic transition turns

into a band of red-shifted transitions corresponding to an exciton interact-

ing with additional electrons, in analogy to optical processes in the fractional

quantum Hall effect and charged semiconductor quantum dots. As the shell

filling increases, the number of available states decreases and the VZ transi-

tions are quenched while ZC and ZZ transitions are enhanced. These results

show that the absorption spectrum can be tuned by shell filling, which can

be experimentally controlled by applying a gate voltage. This is particularly

true for the ZZ transitions in the tera-hertz range, which can be turned off by

either emptying/filling the shell ∆Ndeg = ±7 or at half filling. At half filling,

electron exchange leads to spin polarization, with each state of the shell filled

by a spin polarized electron. Since photons do not flip electron spin, no intra-

shell transitions are allowed and the magnetic moment of graphene quantum

dot is directly reflected in the ZZ absorption spectrum.

5.3.3 Terahertz spectroscopy of degenerate shell

In Fig. 5.5, we study the transitions for ∆Ndeg = 0,±1 in detail. Figure

5.5(b) shows the lack of absorption for half-filled spin-polarized shell. The

right hand side illustrates the fact that photons pass through since they are

not able to induce electronic transitions and be absorbed. For ∆Ndeg = −1,

Fig. 5.5(c), one electron is removed creating a hole in the spin polarized shell.

Thus, the absorption spectrum corresponds to transitions from ground state

to optically allowed excited states of the hole. The absorption spectrum for an

additional electron, ∆Ndeg = +1, shown in Fig. 5.5(a), is dramatically differ-

ent. The addition (but not subtraction) of an electron depolarizes the spins of

all electrons present, with total spin of the ground state S = 0. The strongly

correlated ground state has many configurations, which effectively allow for

many transitions of the spin-up and spin-down electrons. This asymmetry in
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the terahertz absorption spectra allows for the optical detection of charge of

the quantum dot and correlated electron states in the degenerate electronic

shell.





Chapter 6

Conclusions

In this thesis, I present the theoretical results describing the electronic and

optical properties of graphene nanostructures. They are of significant interest

not only from a scientific point of view but also due to outstanding properties

with potential applications in nanoelectronics. We focus here on the analysis of

graphene quantum dots as a function of size, shape, type of edges and charging.

We started from a detailed description of single particle energy spectra by using

the tight-binding model in a nearest neighbors approximation. In chapter 2,

we have shown that as a result of size-quantization effects, the energy gap at

the Fermi level opens. The magnitude of the energy gap can be controlled

by the size of the dot but depends also on the type of edges in the system.

We noticed similar energy spectra for both hexagonal and triangular quantum

dots with armchair edges with a similar number of atoms, which suggests lack

of shape dependence on the electronic properties. On the other hand, zigzag

edges lead to an appearance of edge states in the vicinity of the Fermi energy.

In TGQDs the edge states collapse to the zero-energy shell separated by the

energy gap from the rest of the spectrum. We investigated TGQDs in detail

in Section 2.2. We have shown a relation between a degree of the zero-energy

degeneracy and a number of atoms belonging to each sublattice in a honeycomb

graphene lattice. We proved that the degeneracy is proportional to the number

of atoms on one edge of the triangle. We have derived an analytical solutions

for eigenstates with energy E=0 for arbitrary size systems by solving singular

eigenvalue problem of TB Hamiltonian. Next, we have classified energy levels

in TGQDs according to irreducible representations of the C3v symmetry group.

We also considered mesoscopic quantum rings with triangular and hexagonal

shapes. In TGQRs, the zero-energy degeneracy, opposite to TGQDs, is not

related to the size of the system, but is determined by the width of the ring.

On the other hand, in the thinnest hexagonal rings six-level degenerate shell
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appears in TB energy spectrum. We explained this behavior by analyzing the

evolution of the energy spectra from six independent ribbons to a ring, by

slowly turning on the hopping integral between neighboring ribbons.

The next step in our studies was the inclusion of electron-electron interac-

tions. In Chapter 3, we started from writing the many-body Hamiltonian

in the second quantization form. It consists of single particle and many-

body Coulomb terms. Coulomb matrix elements have been calculated by

using Slater pz orbitals localized on atomic sites of a honeycomb graphene

lattice. All direct and exchange terms, and all scattering terms up to next-

nearest neighbors were obtained. In Section 3.4, the many-body Hamiltonian

in Hartree-Fock mean-field (MF) approximation was presented. A convenient

form of HF Hamiltonian combined with TB Hamiltonian, suitable for graphene

nanostructures was derived. The mean-field Hubbard model, HF Hamiltonian

with an inclusion of only on-site interaction term, was also obtained. Next, we

went beyond MF approximation describing configuration interaction method.

We have shown a method of constructing of the many-body basis set built

of configurations of electrons distributed on single particle energy levels. A

Hamiltonian matrix was divided into blocks corresponding to different projec-

tion of spin onto z-axis. An example of calculations of matrix elements was

presented. This method is characterized by a large computational cost due to

an exponential increase of the size of the Hilbert. We have described Lanczos

method which allows to find extremal eigenvalues of large matrices with ma-

trix elements calculated ”on the fly”. This avoids a problem of storing matrix

elements in a memory. Additionally, we have presented a method of optimizing

calculations by dividing Hamiltonian into three parts corresponding to scat-

tering of two particles within spin up and spin down subspaces, and third term

with scattering of one spin up and one spin down particle. Finally, in Section

3.6 we presented a combination of TB, HF and CI methods, which allows us

to study magnetism and correlation effects in graphene nanostructures.

In Chapter 4 we investigated magnetic properties of graphene quantum dots

with zigzag edges. We have mostly focused on TGQDs due to the degeneracy

at the Fermi energy in a single particle TB energy spectrum. We performed

analysis as a function of the filling factor of the degenerate band of edge states

for different sizes. Through a full analysis of the many-body energy spectrum

of structures consisting of up to 200 atoms, we have confirmed the existence of

the spin polarized ground state in agreement with Lieb’s theorem. By study-

ing spin exciton binding energies, we also predicted stable magnetization for

structures with more than 500 atoms. The complete spin depolarization was
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observed for one electron added to the charge neutral TGQD up to a critical

size. Above a critical size the maximally spin polarized charged TGQD was

predicted using trion binding energy analysis. We have also shown that in

small systems, three electrons/holes added to the charge neutral TGQD form

the spin polarized Wigner-like molecule. We relate this fact to geometrical

effects and direct long-range interaction terms. For larger systems, geometry

becomes less important and for the same filling we observe a spin depolariza-

tion as a result of correlations. We have also compared fully interacting model

with Hubbard and extended Hubbard models. While qualitative agreement

for the charge neutral system was observed, the effect of correlations can be

described only with an inclusion of all direct long-range, exchange and scat-

tering interaction terms. The edge reconstruction and the stability of zigzag

edges were investigated using density functional ab initio methods. It was

shown that hydrogen passivation stabilizes zigzag edges and ab initio methods

do give maximally spin polarized passivated charge neutral triangles.

In Section 4.2, we described the magnetic properties and the role of correla-

tions in triangular graphene rings. The TGQR structures exhibit the magnetic

moment due to the presence of a degenerate band of states at the Fermi level.

We have shown by using a mean-field Hubbard model that the total magneti-

zation of the system is determined by the width of the structure. For TGQR

with a small inner hole, only the outer edges are spin polarized, similarly to

full triangle results. However, as the size of the hole is increased, the inner

edges become spin polarized as well, showing antiferrimagnetic configurations.

We show that TGQR with a large hole can be treated as a system consisting of

three spin polarized corners connected by antiferrimagnetic ribbons. Designing

structures with a given width enables us to obtain systems with arbitrary mag-

netic moment, opening the possibility of using TGQR in designing spintronic

devices. The robustness of the total spin formation to charging is assessed. In

charged graphene rings, correlation effects are found to play a role, affecting

the energy required to flip a spin for different filling factors. In Section 4.3, we

analyzed magnetic properties and electronic correlations in gated hexagonal

mesoscopic quantum rings with zigzag edges as a function of size and number

of added electrons. For the half-filling of the degenerate shell in sufficiently

large ring, maximal polarization of the ground state is predicted. Away from

the half filling, the correlation effects appear and the ground-state total spin

alternates between maximal polarization and complete depolarization.

In chapter 5 we have studied optical properties of graphene quantum dots as

a function of the size, shape and type of edges. For quantum dots with armchair
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edges, the energy gap changes from ∼ eV for few nanometer size systems to
∼ meV for micrometer size structures. In an infinite limit the energy gap
closes restoring the energy spectra of graphene. For quantum dots with zigzag

edges, edges states are present. They are responsible for a rapid decrease of the

energy gap in the hexagonal shape structure. On the other hand, in TGQDs

due to a collapse of edge states to the degenerate shell on the Fermi level,

the energy gap between the valence and the conduction band reveals similar

behavior to that for structures with armchair edges. Next, in our studies the

effect of electron-electron and electron-hole final state interactions in TGQDs

is included. The change of the carrier density, and equivalently population

of the degenerate shell, influence allowed optical transitions. Hence, by use

of a gate voltage, one can control optical transitions simultaneously in the

tera-Hertz, visible and UV spectral ranges.
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Ensslin, Appl. Phys. Lett. 93, 212102 (2008).

[110] S. Schnez, J. Güttinger, M. Huefner, C. Stampfer, K. Ensslin, and T.

Ihn, Phys. Rev. B 82, 165445 (2010).

[111] T. Ihn, J. Güttinger, F. Molitor, S. Schnez, E. Schurtenberger, A. Ja-

cobsen, S. Hellmüller, T. Frey, S. Dröscher, C. Stampfer, and K. Ensslin,
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