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SLOWO WSTEPNE

Spoéréd trzech standédw skupienia materii stan staiy budzi najwigk-
'8ze zainteresowanie zardéwno dzigki swemu bogactwu form i struktur w ja-—
kich wystepuje, Jjak i réznorodnosci |praktycznych zastosowain. Popular-—
noéé¢ ta dotyczy w pierwszym rzedzie pierwiastkéw i zwigzkéw nieorganicz-
nych, wéréd ktdérych metale i materiaty péiprzewodzace zrobity najwiek-
szg kariere, O0d mniej wiecej dwudziestu lat programem badan objete zo-
staty réwniez substancje staie, zbudowane z obojetnych i stabo z soba
oddziatujgcych czasteczek zwiazkdédw organicznych, stanowiace zatem kla-
syczny typ krysztaiu molekularnego. Istobnym czynnikiem, ktéry odegrax
stymulujaca role w badaniach krysztaiédw molekularnych, jest postep w ze-
kresie badan rentgenograficznych. Doprowadzii on do duzej perfekcji w
unie jetnosci okreslania poxzozen atomdéw i oceny amplitudy ich ruchu ter-
micznego w strukturach, ktére w pordwnaniu do zwigzkédw nieorganicznych
sa przeciez bardziej ztozone, a przy tym zbudowane gléwnie z lekkich a-
tomow, Wyniki tych badan utorowaly droge nowoczesnemu i chyba najbar-
dziej interesujgcemu kierunkowi badan: powigzania fizycznych, makrosko-
powych wlasnosci krysztaiu z jego strukbturg, a wiec z rozmieszczeniem i
ruchem czasteczek w komérce elementarnej oraz z wiasnoSciami samych
czgsteczek, Mozna bowiem uwazaé, ze na przykiad dwdjiomnosé okreslonej
prytki krystalicznej "rozumiemy" woéwczas, gdy potrafimy wyrazié ja licz-
bowo za pomoca bardziej elementarnych poje¢, jakimi sa gtdwne skitadowe
tensora polaryzowalnosci czasteczki swobodnej i ich kierunki w czastecze
ce. Bytoby wigc osiggnigciem pewnego ideaiu, gdybysmy na podstawie zna-
jomosci budowy czasteczek, ich rozmieszczenia w komérce -elementarnej i
sposobéw ruchu potrafili przewidzieé wszystkie fizykochemiczne wiasnos-—

~ . ¢l krysztatu. Niekiedy okazuje si¢ jednak - a tak jest w prébach inter-

pretacj’ wiasnosci optycznych - ze te pojecia nie wystarczaja do uzyska-
nia zgodnodci migdzy wynikami 'eksperymentu i przewidywaniami teoretycz=—
nymi. Molekularng interpretacj¢ wiasnosci fizycznych komplikuje fakt,ze
dodatkowe oddziatywania mig¢dzy sgsiednimi czgsteczkami, wynikajace z o-
becnoéci pola magnetycznego czy elektrycznego, aczkolwiek siabe,sa czes-
to nie do pominigcia. e

Sity miedzy czasteczkami w krysztale molekularnym dziataja réwniez
wtedy, gdy znajduje sig¢ on poza wszelkim zewnegbrznym polem; dzigki si-
Zom przyciggenia miedzy czasteczkami krysztal wykazuje znaczna spdjnosé
dzieki zas silom odpychania jest odporny na zmnie jszenie objetoéci prazy
wzroscie cisnienia zewngtrznego. I wiasnie drugim kamieniem milowym na
drodze postepu w badaniach krysztaiédw molekularnych jest lepsze zrozu-
mienie natury tych oddziatywan, znanych pod doéé enigmatyczna nazwa "od=
dziatywan van der Waalsa" i znalezieniem dla nich mikroskopowego Sposo-—
bu opisu. Na podstawie teorii Londona sitvdyspersyjnych, D.E. Williams
w Anglii i A.I. Kitajgorodski w ZSRR zaproponowali w latach szeéédzie-—
sigtych, by emergie potencjalng krysztaiu wyrazié¢ jako sume oddziakywan
migdzy parami atomdw, nie poigczonych wigzaniem chemicznym., W jezyku po-
tocznym metoda ta jest nazywana skrotowo "oddziatrywaniem atom-atom",zas
postac funkcji energii potencjalnej, wprowadzona przez Kitajgorodskiego
oznaczana bywa przez "6-exp". Szeroki opis tej metody oraz jej wielo-
stronnych zastosowan znalezé mozna w monografii Kitajgorodskiego pt.
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"Krysztaty molekularne", tlumaczonéj réwniez na jezyk polski i wydane]
przez Panstwowe Wzdawnictwo Naukowe w roku 1976. Na tym miejscu pragnie-
my jedynie zwrédcic uwage na dwa aspekty metody "atom-atom":

(i) Jest ona jednym z nielicznych przyblizen, w ktérych oceny ener-
glii oddzialywan dokonuje si¢ dla czgsteczek przestrzennie rozciggiych,
wykorzystujac rzeczywiste poxozenia atoméw w przestrzeni. Czynione w
wielu innych teoriach uproszczenia idg niekiedy tak daleko, ze czastecz-
ke przybliza sie¢ do tworu punktowego.

(ii) Obliczona tym sposobem energia potencjalna moze byé bezpodred-
nio pordéwnans z dogwiadczalng wartoscig ciepia sublimacji krysztaiu, co
daje moznoé¢ oceny poprawnosci uzybych danych wyjsciowych. Wazniejsze
s3 jednak dalsze konsekwencje, wynikajgce z zastosowania metody atom-
atom do badania dynamiki sieci. Mozna za /jej pomoca obliczyé wielkosé
sil dziatajacych mi¢dzy czgsteczkami, co zoprzez rozwigzanie réwnan ru-
chu prowadzi do znajomogci typdw i czestoscl ruchéw periodycznych czgs-—
teczek w krysztale.

Mozna uznaé, iz powigzanie mierzalnych, makroskopowych wiasnosci
fizycznych krysz%alu z jego strukturgy, dynamiksg i wktasnosciami samych
czasteczek stanowi program dziatania dyscypliny, zwanej fizyka chemicz-—
ng, Program ten obejmuje réwniez i termodynamike faz staiych, a wigc o-
pis mikroskopowego mechanizmu przemian fazowych, zjawisk nieuporzgdko-
wania faz, a takze i wpiywu czynnikéw zewngbtrznych na wiasnosci fizycz-—
ne okreslonej fazy. Dalszy, submikroskopowy podziakr materii prowadzi do
problemu opisu wlasno$ci czgsteczki za pomocy wiasnosci atoméw i sSposo-
bu ich powigzania, czym zajmuje si¢ chemia teoretyczna. Wyjasnienie
wiasnosci samego abtomu poprzez znajomosé wiasnosci czastek elementarnych
i sposobu ich oddziaiywan jest natomiast domeng fizyki.

Dalecy dzis Jjestesmy od peinej realizacji tak nakreSlonego zakresu
dziatania fizyki chemicznej. Tylko niektére wiasnosci fizyczne kryszta-
16w molekularnych wyjasniono na poziomie molekularnym w sposéb bardziegj
zaawansowany. Do przedstawienia w niniejszej ksigzce wybrano diamagne-—
tyzm, wtasnosci optyczne oraz absorpcj¢ promieniowania w krysztatach w
zakresie widma podczerwonegoj; w pewnym stopniu wybdér ten podyktowany zo-
stat zainteresowaniami autora. Osobliwe miejsce wérdd wiasnosci fizycz—
nych zajmuje rozszerzalnos¢ termiczna krysztatédw, bowiem cecha ta nie
ma odpowiednika na poziomie molekularnym. Poswigcono jej osobny roz—
dziar ze wzgledu na wazne znaczenie anharmonicznych cech dynamiki krysz
tatu, przejawiajace si¢ we wpiywie temperatury na wszystkie inne wias-
noéci krysztatu. We wszystkich tych problemach symetria odgrywa niepo-
slednig role; symetria w rozkiadzie xadunku i materii musi si¢ bowiem
v odzwierciedlaé w symetrii wiasnosci makroskopowych. Z tego wzgledu
pierwsza czgs¢ monografii, po oméwieniu najczesciej spotykanych typodw
oddziatywan w krysztatach molekularnych i wtasno$ci tensordéw drugiego
rzedu, jest poswigcona przedstawieniu wpkywu symetrii na postaé wekto-—
row i tensorodw, reprezentujacych wielkosci fizyczne. Ostatni wreszcie
rozdziat, przynoszgcy informacje o wpiywie temperatury na niektére wias-
- noéci krysztatu, jest zaledwie szkicem zagadnienia. Rozdzial ten jest
najszerzej otwarty na peiniejszy opis i bardziej trafng interpretacje;
przysztosc tez pokaze, ktore z przedstawionych tam pomysitdéw opra sie
prébie czasu.

¢ Monografia niniejsza jest kontynuacja inicjatywy, podjetej przed
paru laty przez bratni Zaktad Fizyki Chemicznej Instytutu Chemii Uniwer-
sytetu Jagiellonskiego, kierowany przez Panig Docent dr Janine Janik.
Wyniki wieloletnich badan tego zespoiu w zakresie fizyki chemicznej or-—
ganicznego ciata statego, przy wspdéipracy z Zaktadem Fizyki Ciata Sta-
2ego Instybtutu Fizyki UJ oraz Zakiadu Badan Strukturalnych Instytutu
Fizyki Jadrowej w Krakowie zostaty opublikowane przez zespdél autorodw
pod redakcjg Janiny Janik w skrypcie pt. "PFizyka chemiczna", wydanym w
roku 1980 przez Wydawnictwo Uniwersytetu Jagiellohskiego.

Zamyst napisania niniejszej monografii powstat w potowie lat sie-—
demdziesigtych, po kilkuletnim doswiadczeniu dydaktycznym, jakiego na-



byxz autor w czasie prowadzenia wykiaddéw pt. Fizykochemia organicznego
ciata statego dla siuchaczy studium dokbtoranckiego Politechniki WrocZaw-
skiej. Pewng role w wyborze zagadnien, jak i sposobie ich przedstawie-
nia, odegraty réwniez wyklady i seminaria, prowadzone przez kilka lat
ze studentami Instytutu Elektrotechniki i Elektrotechnologii Politech-
niki Wroctawskiej. Najwigkszy jednak wpiyw na zakres tematyki miala bez
mata dwudziestoletnia praca autora i wspdéipracownikéw w kierowanym prze-
zen Zakxadzie Fizyki Chemicznej, wchodzgcym w skzad Instytutu Chemii Or-
ganicznej i Fizycznej Politechniki Wrociawskiej. Sporo wynikoéw badan
cztonkéw tego zespoiu znalazro odbicie w postaci szerszego lub wezszego
omdwienia w tej pracy. Nie znalaziy jednak wkasciwego odzwierciedlenia
prace, dotyczace nowych osiggnigeé w dziedzinie dynamiki sieci kryszta—
16w molekularnych. Do przedstawienia tej naukowo wysoce owocnej lecz
trudnej metody autor nie czuje si¢ dostatecznie przygotowany, ma jednak
nadzieje, iz trud jej. monograficznego opracowania zostanie podjety w,
niedalekiej przysztosci przez jego ucznia i zarazem jednegb ze wspoi-
twéreéw tej teorii - proferora Tadeusza Lutego.

Speiniajac na koniec mita powinnoéé, dziekuje szeregowi osdéb, bez
ktérych pomocy, zyczliwego komentarza lub takiejze krytyki zakonczenie
tej pracy bytoby o wiele trudniejsze. Inicjatorem zainteresowan orga-
nicznym ciatem stalym przez zespor wroctawskich fizykochemikéw by
przed trzydziestu laty Profesor dr Kazimierz Guminski, pierwszy w okre-
Sie powojennym kierownik -éwczesnej Katedry Chemii Fizycznej Uniwersyte-—
tu i Politechniki we Wrociawiu. Wiele cemnych uwag zawdzigczam mym
wspotpracownikom i pierwszym Czytelnikom poszczegdlnych rozdziazow. Sa
nimi doktorzy: Magdalena Szostak, Bolestaw Jakubowski, Wiodzimierz Kus—
to3 magistrowie: Michat Dankowski i Krzysztof Rohleder. Szczegdlna
wdzigcznos¢é winien jestem profesorowi Tadeuszowi Lutemu za jego naukowa
podpore i pomocj miedzy innymi dzigki niej zakonczenie rozdziaiu szdste-
go uzyskaro bardziej ogdélna forme¢. Recenzje tej pracy opracowali Profe-
sorowie Jerzy Janik i Krzysztof Pigon, zadajac sobie trud przebrniecia .
przez gaszcz wzoréw i danych liczbowych. Im tez zawdzieczam sprostowa-—
nie pewnych bxedow i niescisiosci w tym tak jeszcze niedoskonaiym dzie-
le. Na koniec, szczegélne wyrazy podzigkowania pragng przekazaé réwniez
mej Zonie, ktorej nieustajaca troska o byt codzienny i stworzenie ideal-
nych warunkéw domowych przyczynity si¢ w istotny sposéb do pomydlnego
zakonczenia tej pracy. -

Wroctaw, w sierpniu 1981 x,

J.W. Rohleder






1. ODDZIAEYWANIA MIEDZYCZASTECZKOWE I KLASYFIKACJA CIAXA STAEEGO

Aokl ﬁst

Fizykochemia ciala statego stanowi bardzo obszerna dziedzing badan
navkowych, ktérych wyniki majg niezwykle wazne znaczenie w praktyce.Nie
8pos6éb wyobrazié¢ sobie wspdiczesng cywilizacje bez metali, a od niedaw-
na niemozliwe byioby jeJj istnienie bez pdiprzewodnikéw. Réwniez od daw-
na prowadzone sg intensywne badania nad fizykochemicznymi wiasnosciami
zwiazkéw nieorganicznych, z ktéiych wiele doczekato si¢ technicznie waz-
nych zastosowan, Zwigzki organiczne natomiast - jako ciata state - cie-
8zg Si¢ stosunkowo nowym, bo siggajgcym 20 lat, lecz stale rosnacym za-
interesowaniem. Wystarczy tu wspomnieé niezwykle szybko rozw1aaaqcy sie

przemyst tworzyw sztucznych,
] Na przeszkodzie powszechnemu zastosowaniu krysztazéw molekularnych
stojg — pozornie - niézbyt korzystne ich wiasnosci mechaniczne i ter-—
miczne, a mianowicie migkkosé, znaczna kruchosé i na ogd: niska tempera=
tura topnienia, Taki poglad mozna sobie wyrobié wéwczas, gdy praktyczna
przydatnosé krysztatrdédw molekularnych ocenia sie z punktu widzenia ist-
niejacych dzi§ i znanych zastosowan krysztazdédw nieorganicznych, jonowych
a zwtaszcza walencyjnych, ktérych wiasnoéci mechaniczne i termiczne
przedstawiajé si¢ o wiele korzystniej. Mozna jednak przypuszczaé, iz ze
wzgledu na _ szczegblne cechy struktury, przejawiajgce sie przede
. wezystkim w ma ogbdxr niskiej symetrii i nikZosci oddziaiywan miedzyczas-—
teczkowych, krysztaly molekularne doczekajg sig¢ w przysziosci zupeinie
speeyficznych, nie dajacych sig¢ dzis$ przewidzieé, a nie mniej waznych
zastosowan., Przykradem caZej klasy zwiazkéw nie majacej substytutu
wéroéd zwiagzkéw nieorganicznych ze wzgledu na osobliwe potaczenie cech
~ strukturalnych z niezwykiymi wiasnosciami optycznymi, sa ciekie kryszta-
2y. Patrzgc na zagadnienie z tego punktu widzenia, krysztaly molekular-
ne trzeba uwazaé za materiax przysziosci.

Istnleaq zatem dwa gtoéwne kierunki badan naukowych w fizykochemii
6:ganicznego ciata stalego: poznawezy i aplikacygjny. Pierwszy z nich po-
lega na dazeniu do zrozumienia makroskopowych wkasnoéci krysztaitu, ta-
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kich jak wspéiczynnik zalamania Swiatia czy tez rozszerzalnosé termicz-
na, na podstawie opisu przestrzennego rozkiadu czgsteczek w sieci krys-—
talicznej oraz sposobu ich ruchu, czyli na podstawie mikroskopowych
cech struktury. Wkiasnosci krysztatu sa mierzalne, moga byé zatem znane
z doéwiadczenia, Nie znamy natomiast wiZasnosci samych czagsteczek,z ktod—
rych jest zbudowany krysztai; mimo niewielkich sit oddziaiywan nie nale-
2y oczekiwaé, ze wiasnosci czgsteczki umieSzczonej w siatce krystalicz-—
nej beda identyczne z wiasnosciami czasteczki swobodnej, chod powimny
by¢é do nich zblizone. Charakterystyczne réznice beda nas informowaé o
wielkosci i naturze oddziaiywan miedzyczasteczkowych. Istotne znaczenie
maja tu relacje miedzy makroskopowymi, fizycznymi wiasnosciami kryszta-
Iu a odpowiednimi mikroskopowymi wiasno$ciami czasteczek. Poznanie tych
relacji, jak réwniez wpiywu na nie parametrdéw zewnetrznych, takich jak
temperatura i cisnienie, stanowi program dziatania dyscypliny zwanej fi-
zyka chemiczng., Realizacja takiego programu staje si¢ szczegbdlnie inte—
resujaca w przypadku krysztaiéw molekularnych. Symetria czasteczek jest
z reguly znacznie nizsza niz jondéw lub atoméw tworzgcych strukture krysz-
tatu nieorganicznego. Zaréwno ten fakt, jak i stabe sity oddziaiywan
niedzyczasteczkowych sprawiaja, Ze réwniez symetria krysztaiu molekular-
nego nie jest zbyt wysoka. Wigkszos$¢ tych krysztaiéw (az 80%) krystali-
zuje- w ukzadach jedno- i trdjskosnych,a krysztaty nalezgce do ukadu re-
gularnego stanowia niezwyklg rzadkos¢., Dzigki temu, eksperyment z krysz-
tatem molekularnym staje si¢ znacznie bogatszy, aczkolwiek jednoczesnie
Jego opis i interpretacja strukturalna sg zazwyczaj bardzo zloZone.ﬁie-
mniej interesujace jest miedzy innymi. to, ze w takich krysztatach ist-
nieje pewna liczba "stopni swobody', dopuszczanych regutami symetrii.
I tak, na przykizad, orientacje¢ przekroju indykatrysj w piaszczyznie
(010) krysztaiu nalezacego do uktadu jednoskodnego determinuje jeden
kat, dowolny z punktu widzenia symetrii., Zadaniem fizyki chemicznej
Jest migdzy innymi wyznaczenie tej orientacji na podstawie znajomosci
czqsteczqk oraz struktury krysztatu. Interesujacy jest takze wpiyw na
te¢ orientacj¢ parametrédw zewngtrznych, na przykiad cisnienia i tempera-
tury. ;

Drugi kierunek, aplikacyjny, ma na celu modyfikacje wiasnoéci cial,
w kierunku wtasnosci pozadanych, poprzez modyfikacje¢ wiasnosci samych
czgsteczek, a hiekiedy - jesli jest to mozliwe — modyfikacje struktury
. ciata statego. Tak sformutowany cel jest obiektem zainteresowan inzynie-
rii materiatowej i bazuje, rzecz jasna, na wynikach badan podstawowych.
Do inzynierii materialowej mozemy zaliczyé réwniez poszukiwania zastoso-
wan organicznego ciata statego, nowych i typowych dla tej klasy ciaxz. O
ile dzié bliscy jestedmy zrozumienia niektérych wiasnoéci krysztaiéw mo-



lekularnych, to inzynieria materiaiowa stawia dopiero pierwsze kroki,
lecz niewatpliwie bedzie sig¢ silnie rozwija¢ w najblizszej przysziosci.

1.2, Klagyfikacja ciata statego z punktu widzenia
oddziatywan mig¢dzyczasteczkowych

Wiasciwie kazda mierzalna wielko$¢ fizyczna moze stanowié kryte—
rium podziatu substancji na co najmniej dwie klasy. Jesli, na przykiad,
interesujemy si¢ przewodnictwem elektrycznym materiaizoéw, to mozemy je
podzieli¢ na substancje przewodzgce i dielektryki., Bardziej szczegbdlowy
podziat, wynikajacy z wpiywu temperatury na przewodnictwo wiasciwe,obej-
muje klase metali, Mrysztaiéw jonowych, pdéiprzewodnikéw oraz dielektry—
kow., 2 kolei badanie zachowania sig¢ materiatdéw w polu magnetycznym po-—
zwala wyroznic¢ klasy para-, dia- i ferromagnetykéw. Wiasnosci materia-
Xow w polu elektrycznym sa podstawa ich podziaiu na ferro-, ferri-, an-
tyferro—- i paraelektryki. Podziazéw tego typu moze wiec byé bardzo wie-
le, jednak dwie sposrod wiasnosci fizycznych ciaza stazege daja najogdl-
niejsza podstaw¢ podziaiu: energia sieciowa oraz symetria. Obecnie zaj-
miemy si¢ klasyfikacja z punktu widzenia energii oddzialywan elementéw
strukturalnych, przejawiajacej si¢ makroskopowo w postaci okreslonego
ciepta sublimacji lub réwnowaznej mu liczbowo energii sieciowej, tj.
zuianie energil wewngtrznej towarzyszace] procesowi tworzenia w tempera-
turze O K 1 mola substancji krystalicznej z 1 mola czasteczek znajdujg-
cyclr si¢ w stanie gazowym. Opierajgcy si¢ na symetrii podzial ciata sta-
tego przedstawimy w rozdz. 3.

Schemat klasyfikacji ciata stalego z energetycznego punktu widze-
nia przedstawiono w tab. 1.1. Najwyiszyg energie¢ sieciowsg majo krysztaly
0 wigzaniach kowalencyjnych i krysztaiy jonowe; krysztaty molekularne
znajduja si¢ na drugim bicgunie btego podziaiu, metale zas$ sa usytuowane
posrodku.

1.5. Oddziatywania uniwersalne

Przejdzieny teraz do bardziej szczegokowe o opisu charakteru od-
‘dzialywan miedzy elementami strukturalnymi w sieci krysztalu molelilar-
‘nego. Mozna je dla wygody interpretacji podzielié na oddzia}ywani': uni-
wersalne, o charakterze elektrostatycznym oraz na oddziaiywania s iccy-

- ficzne (oddzialywania elektrono-donoro-akceptorows:, wiazania woiorowue).
- Pierwsze z nich wynikaja z sii elektrostatycznych c¢ziatajacycn migduy
Yadunkami elektrycznymi (jony) i trwatymi multipolami (czqéteczki) elek=
trycznymi oraz z sit elektrodynamicznych, dziakajacych migdzy indukowp-
nymi dipolami. i drugim przypadku sity wynikaja z efektow iwwantowyen,



Prasbue-l a =4%4

Schemat klasyfikacji cilala stazego

Charakter giédwnych
8i%r oddzialywania

Przyktad ciala
statego, typ sieci

Energia sie-
ciowa, kd/mol

Charakterystyczne wiasnoéci ciala statego

Sity elektrostatyczne
migdzy jonami, bez-,
kierunkowe

Wigzanie kowalencyj-
ne, przestrzennie
skierowane

Wigzania metaliczne,
bezkierunkowe

Sity Van der Waalsa,
bezkierunkowe

Wiazanie wodorowe,
przestrzennie skie-
rowane

Oddziatywania dono-
ro-agkceptorowe,prze=
strz. :skierowane

NaCl, regularny,
BaF»5, regularny
344 structur

diament, regularny
SiC, _regularny
103 struictur

Na, regul.przestrz.

centr.,Mg heksagon.

najw.ugak.,w regul.
10”7 struktur

Ar, regul.fciennie
centr., _Hp heksagon.
10° struktur

OH» (16d),heksagon.
CsﬁscCOOH (kwas ben-
zoeSowy), Jjednosk.

Chloranil-dwumetylo—-
amina 7

=750
=1680

=710
=1200

=110
=150
=850

=7+5
-i
- (20-40)

- (20-40)

Sztywne, czg¢sto kruche; izolatory elek-
tryczne w niskich temp., lecz moga przewo-
dzié jonowo w temp. podwyzszonych.

Sztywne, bardzo twarde, zwykle wysoka
temp. topnienia; w niskich temp. izolato-
ry lub péiprzewodnikiy duzy wspéiczynnik
zatamania swiatia

Ciggliwe; duze przewodnictwo cieplne i
elektryczne, duzy wspbéiczynnik odbiciaj
wiasnosci podobne w stanie staiym i ciek-
iym

Niska temp. topnienia; Scisliwe; bardzo
maze przewodnictwo cieplne i elektryczne,
diamagnetyki

Podwyzszona temp, topnienia, czesto poli-
morfizm; izolatory, niekiedy o zwigkszo-
nym przewodnictwie elektrycznym, diamag-
netyki

Substancje barwne, niekiedy paramagnetyki
charakterystyczne utozenie czasteczek w
stosy; niekiedy bardzo wysckie (quasi-me-

taliczne) przewodnictwo elekbtryczne

ol
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polegajacych na wymianie elektronu lub :
protonu migdzy sgsiednimi czasteczkami. L
Pojecie momentu multipolowego wywodzi A
sie Zz pojecia potencjaiu,wytwarzanego przez ‘*
uktad tadunkéw w-pewnej od niego,odlegodci. \
Przypuéémy, ze interesuje nas potencjax A \
w punkcie A, oddalonym od czasteczki H20! (5} \
wektor R o diugosci znacznie przewyzsza-
“Jacej liniowe rozmiary czasteczki (rys.d1.1),
Potencjat ten mozemy uwazaé za wytworzony
przez elementy objetosci dv, zawierajgce ta=-
dunek dq = p(z)-dv, gazie o(r) jest gestos-
cig }adunku statg wewngtrz elementu dv, ota-
czajgcego punkt r (r jest, oczywiscie zmienm
ne). Latwo dostrzec, Ze wypadkowy potencjai
wynosi

1o
=
In

Pix)
VA = 1 /‘ - &v’ 2
4T g 2 2 1/2
0 (R= + = - 2rR cos ¢ ) Rys. 1.1. Potencjat wytwa-
(1.1) rzany w punkcie A przez Xa
S dunki czgsteczki wody

przy czym calka rozcigga sig¢ na obszar nie

znikajacej gestosci elektronowej P(x), a €, dJest staia dielektryczng
.(bezwzgledna przenikalnoscia dielektryezng prézni). Mianownik wyrazenia
podcatkowego mozna rozwinaé w szereg [1], po czym wyrazenie okreslajace
U przyjmie postaé (zamiast p(r) piszemy p )

fpd.v

Vi

/prcosmdv+

Ll-nsR eR2

2 ;
- /pr2§cos¢-’ldv+
ll-neoR3 ; 2

2
/' pr3 cos ¢ (5 ;OS P=i5]) dvar o (1.2)

4ns R“'

* zwang szeregiem multipolowym. Pierwszy z wy:cazéw Jest proporcjonalny do

f pdv = g, czyli do wypadkowego ladunku czasteczki i przedstawia po-
‘tenc jat wytworzony przez jon w pewnej od niego odlegosci.Jesli element
strukturalny nie jest jonem, to wyraz ten réwny jest zéru‘, a o potencja-
le. w punkcie A decyduje z kolei wyraz drugi. Jest on proporcjonalny
do momentu dipolowego czasteczki ;

=f p T cos 9 dv. - (1.3)
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Nastepny skiadnik sumy (1.2) jest proporcjonalny do momentu kwadrupolo-
wego, itd.

x % z
o o -~
| I | |
{//: : /f//i ; &/
Eooe e
e
// | // |
X 1 Z—1 ! x
el N Ly 1
, AN e T e
L oz Yz
P L 4//

Rys. 1.2. Kwadrupole w sieci odpowiada?acej strukturze antracenu
(schematycznie

Jesli przyjmiemy punkt A we wnetrzu krysztatu, to widzimy,ze sku-
tek oddziarywan miedzyczasteczkowych mozna opisaé za pomoca potenc jaiu
VA’ wytwarzanego przez periodyczny zbidér multipoli. Rzad tych multipo-—
1i zalezy od symetrii rozkiadu radunku w czgsteczce w konkretnym przy-
padku. Przy takim opisie mielibysmy do czynienia z multipolami punktowy-
mi, rozmieszczonymi na przykiad w we¢zach sieci Bravais. Rysunek 1.2
preedstawia schematycznie rozkiad kwadrupoli odpowiadajacy strukturze
kpysztaiu entracenu.

Uwzglednienie oddzialywaﬁ wszystkich momentéw multipolowych czas-—
teczki elektrycznie obojetnej, tj. zaréwno statycznych jak i indukowa-
nych, przez oddziatywanie zmieniajacego sig¢ w czasie rozkiadu gestosci
elektronowej w otoczeniu okreslonej czgsteczki, prowadzi do oddzialywan

fvtobjétych zblorczg nazwg sixz van der Waalsa. Podstawowa niesécisosé ta-

'lkiego opisu polega na tym, ze czgsteczke¢ zastepujemy punktowym multipo-—
. lem. Nie odpowiada to rieczywistej strukturze krysztat*u, ani nie pozwa-
“1a na uwzglednienie przestrzennej orientacji multipoli.

Znacznie bardziej precyzyJjny opis, oddziatywan miedzy czasteczkami
w krysztale, siegajacy gi¢biej w mikroskopowa struktur¢ czasteczki,wpro-
wadzony zostal przez Kitajgorodskiego [2] i prawie jednoczesnie przez
Williamsa [3]. Spos6b ten polega na zastapieniu oddziatywan czasteczka—
czgsteczka przez sume oddziatywan atom-atom, przy czym oddziatujace ato-
my nie sg bezposrednio pokzaczone wigzaniem chemicznym, lecz naleza do
dwéch réznych czasteczek (rys. 1.3). Ogdlna energia takich oddziarywan
sktada sie z dwéch czeéci. Pierwsza z nich, ujemna, jest energig przy-
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Rys. 1.3. Oddziatywania atom-atom (sSchematycznie)

ciggania i wynika z oddziaiywan multipol-multipol oraz z tak zwanych
londonowskich sit dyspersyjnych. Zrédiem tych sit jest oddziatywanie di-
poli indukowanych w najblizszych sasiadach okre$lonego atomu, w ktorym
wystapita chwilowa asymetria w rozktadzie gestosci elektronowej. W taki
sposob oddziatuja roéwniez atomy, ktére dla diuzszego przedziazu czasu
maja srednio symetri¢ kuli, a wigc nie majgce zadnego trwatego momentu
multipolowego  (na przykizad atomy argonu). Drugim sktadnikiem, dodatnim,
jest energia odpychania, wynikajaca z nakiadania si¢ powzok elektrono-
wych przy zblizeniu sasiadujacych ze soba atoméw. Najczgsciej przyjmuje
sig¢, ze pierwszy udziat jest proporcjonélny do rij , a drugi do

exp (-ar..). Lacznie wyrazenie na energie potencjalna zwane jest poten-
i

cjatem "6-exp" i ma postac

A
U(rlJ) = - ’I‘T + B eXpPl=—o I‘i ). (404)

ij

J
W wyrazeniu (1.4)' T jest odlegloscia oddziaizujgcych atoméw i oraz
Jy za& 4,3,x S staiymi, najczgsciej dobieranymi empirycznie dla o-
kreslonej pary atouow, na przykiad C...C, C...H. Zakzada sie¢ przy tym,
i atomy maji symetrig kulista, a icn oddzialywanie nie wykazuje efek-
téw'kierunkowych. Poniewaz krysztaily ibudowane sg z czgsteczek zgodnie

z zasada najgestszego upakowania, wprowadzona przez Kitajgorodskiego
[2],\sytuacja stykajacych sie atoméow odpowiada gestemu uiozeniu kul w
przestrzeni. Okazuje sig, 2ze potencjaxr (1.4) ma w znacznym stopniu cha-
rakter uniwersalny, to znaczy state A,B3,a dla oddzialywan na przykiad
Ceo.d sg takie same w strukturze naftalenu jak i propanu. Taki model od-
powiada czgsteczce przestrzennie rozciagiej, lecz skiadajacej siec z
punktowych'atomév. State potencjaiu (1.4) dla atoméw czasteczek weglo—
wodorow ustalone zostni; przez Kitajgorodskienso po zbadaniu wielu struk-

]

Pal, Wroct,

|
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Rys. 1.4. Energia potencjalna
oddziatywan C...H wediug para-
metréw tabeli 1.2

tur [2] i podane sa w tab. 1.2.Dla przye
ktadu krzywa oddziatywan pary atomoéw
C...H przedstawiona jest wediug danych
tabeli 1.2 na rys. 1.4. :
Znajomosé potencjaiu oddziatywan
atom-atom pozwala obliczyCé energie sie-
ciowa krysztatu w O K, U , przez sumowa-
nie wyrazéw 3 exp(-ar) dla wszyst-
kich niezwigzanych atoméw, znajdujacych
sie wewngtrz kuli o promieniu 20-30 nm.
Uwzglednienie kilku tysigcy skiadnikéw
takiej sumy wymaga uzycia maszyn cyfro-
wych, Podczas obliczen korzysta si¢ z
potozen atomdw, wyznaczonych dla okres—
lonej strukbury metodami rentgénografii
strukturalnej. Szciegélna role odgrywa
potozenie atombéw wodoru, czgsto peryfe-
ryjnych atoméw czasteczki, ktorego po-
znanie wymaga wykonania neutronograficz-
nych badan struktury. Jeéli ich nie ma,
mozemy si¢ oprze¢ na dedukcji przy uzy-
riu prostych metod geometrycznych i zna-
omosci drugosci i kierunku wigzan C-H.
Energia oddziaiywan pary niezwigza-
iych walencyjnie atoméw jest funkcja od-
legtosci miedzy nimi. Zbidr tych odleg-
Xosci w strukbturze o zadanej symetrii
zalezy od geometrii komoérki elementar-
nej, a wiec od drugoéci jej krawedzi a,
b,c i kgtéw miedzy nimi «o,B,y oraz
od geometrii rozkiadu czgsteczek w ko-
mérce, a wiec od katéow Eulera 6,9,d¢,
opisujgcych orientacje czgsteczki wzgle-
dem a,b,c i od wspbdirzednych $rodka

masy qzqsteézki X,Y,7Z, Zwykle zakiada sig¢ przy tym sztywno$é samej
czasteczki, tj. niezaleznos$é¢ wzglednych poXozeh atoméw zwigzanych w
czgsteczke od drobnych zmian wymienionych parametréw. Energi¢ potencjal-
ng siecli mozemy traktowaé¢ jak dwunastowymiarowsg powierzchnig

U = U(a,b,C,as,Y18,0,¢,%X,Y,Z),

posiadajaca wiele miniméw, Jedno z nich winno odpowiadaé rzeczywistej
strukturze krysztatu, a energia w tym punkcie, jego energii sieciowej
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: Deavbie dia sl ioe
State pofencjalu (1.4) dla niektérych par atoméw wediug [2]

-

A R o
Atomy
kJ3/mol-88 | xJ/mo1 |27
Giilg 1498 17,6-10" | 3,58
@il g 17,610 | 4,12
His B 238 17,6:10% | 4,86

Tabela 1.3

Eksperymentalne i obliczone wartos$ci parametréw sieci a,b,c oraz kg-
t6w Eulera orientacji ézasteczki 6,9, T w strukturze krysztaiu benze-
nu, wedtug »[2]

(i) Parametry komérki elementarnej

a b c Temperatura, K
Teoria | %25, 9,41 6,75 0
et B o 0
(ii) Katy Eulera
() ® (b : Temperatura, K
Teoria 47,6 178,0  104,7 270
Eksperyment 47,3 178 107,5 270

(1ii) CiepZo sublimatji

Teoria +49,10 kd/mol
Eksperyment  +43,1%2,1 kJ/mol

U, w O K, Wielkos¢ t¢ pordwnuje sig¢ z wartoscig ciepia sublimac ji =0H
ekstrapolowang do O K

- =8l s ot Ko (1.5)

gdzie Ko Jjest tak zwang energia zerowg drgan elementéw strukturalnych
w O K. Ko ma znaczny udziatr w krysztatach o matych czasteczkach,jak na
przyktad w krysztatach He, Ne, Ha; w krysztale lodu energia zerowa sta-
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nowi 31% ciepa sublimacji [2]. Dla wigkszych czasteczek KO mozna po-
ningé, poniewaz juz dla CO, udziat K  mnie przekracza 2. .

W wyniku minimalizacji U0 dokonywanej drogg drobnych zmian wybra-
nych parametréw przy ustalonych wartosciach pozostarych, na przykiad
zmian kgtéw Eulera, otrzymuje si¢ nastepujace informac je:

(i) energie sieciowg Uo w O K, ktéorej pordwnanie z doswiadczalng
wartoscig - AHO stuzy zwykle Jjako kryterium wyboru wiasciwego minimum
funkcji (1.5) oraz jego giebokosci,

(ii) wartosci parametréw komérki elementarnej a,b,c,o,B,Y,

(iii) orientacje¢ czasteczki wzgledem krawedzi Komérki elementafnej
i potozenia jej Srodka masy, co jest réwnowazne z rozwiazaniem struktu-
ry krysztdiu., Ta drogg mozna wigc rowniez uzyskac informacje o kryszta-
tach, ktoérych struktura nie jest znana.

Porownanie wynikow obliczen z danyﬁi doswiadczalnymi dla krysztaiu
benzenu zamieszczono wedtug [2] w tab. “1.3.

Wada opisu oddziaiywan mig¢dzyczgsteczkowych za pomoca potencjaiu
atom-atom wydaje sig¢ by¢ to, zZe nie jest on wystarczajgco uniwersalny.
0 ile mozna uzyskac¢ bardzo dobre wyniki dla. krysztaiow weglowodordw, o
+tyle schemat ten zawodzi przy obecnosci w czgsteczce takicn atomow jak
tlen, azot i inne. Szczegdlnie obecno$é wolnych par elektronowych w tych
atomach spraﬁia, iz ich oddziatywania z otoczeniem zaleza od indywidual-
nej geometrii tego otoczenia, a wigc state A,B,x na przykiad dla ato-
mu azotu przestajg by¢ uniwersalne. Ponadto oddzia*ywania mi¢dzyczgs—
teczkowe w niektorych krysztatach nie maja wytacznie charakteru six van
der Waalsa. Pokazano na przyktadzie krysztaiu chloru, ze dynamiki sieci
tego krysztalu nie da sig¢ opisaé w sposob zgodny z do$wiadczeniem jedy-
nie na podstawie potencjaiu (1.4). Trzeba uwzgledni¢ oddziakywania wyni-
kajace z przeniesienia adunku (charge transfer)4miedzy_sqsiednimi czgs-
teczkami, a nie mieszczgce si¢ w Schemacie atom-atom [4]1.

Obecnie uwaza sig, iz najlepszy opis oddziaiywan w krysztale mole-
kularnym bedzie mozna uzyska¢ na gruncie "czystej" elektrostatyki,przez
bezposrednie zastosowanie prawa Coulomba. Jesli p(gi) przedstawia lo-
kalng gestosé elektrondéw w elemencie objetosci AV, to potencjatr w wy-
branym miejscu R mozna wyrazi¢ w nastepujacy sSposob: i

1 olzglavy

V(R) = : - (1.6)
dney s IEi_'—R-[ )

Aby'obliczyé sume‘(1.6) nalezy podzieli¢ komérke elementarha na dosta-
tecznie'dqu liczbe elementéw objetosci, wewnatrz ktorych gestosé elek-

tronéw mozna uwazaé za stata. Wobec matej zbieznosci sumy (1.6, trzeba
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uwzglednié tak wielka liczbe wyrazdw, ze przekracza to mozliwoéé pamié—
ci operacyjnej wieckszosci wspdiczesnych maszyn cyfrowych, Réwnﬁe& po-
trzebng tu szczegdlowa znajomosé rozkiadu gestosci elektrondw p(ri)
posiadamy dzis w odniesieniu do kilku zaledwie krysztatoéow., Z tych powr
doéw metoda, streszczajaca sig réwnaniem (1 6), wymaga jeszcze dalszego
opracowania.

1.4, Oddziatywania specyficzne
14,1, Wigzania wodorowe

Wigzanie wodorowe polega na oddziaizywaniu mig¢dzy trzema nie poxag-—
czonymi wigzaniem chemicznym atomami, -X-H,,.Y=-, z ktérych srodkowy
jest atomem wodoru (deuteru), zad skrajnymi abtomami w typowych przypad=—
kach sg N 1lub O, Taki ukad nosi nazw¢ mostka wodorowego i moze byé
liniowy lub zgiety. Klasycznym przykiadem cieczy zasocjowane] za pomoca
wigzaﬁ\wodorowych jest woda. Waréd réznych mozliwych sposobdéw asocjacji
czasteczek H2O uktad liniowy jest nastepujacy

o

nooo H.-QO H...O-—H...O—H...

Cecha charakterystyczng wigzania wodorowego jest to, Ze odlegios¢ skraj-
nych atoméw Ty Y’ Jjest mniejsza od sumy promieni van der Waalsa ato-
méw  X,Y > (i

...y <:i:'X + Ty, {4.7)

Suma tych promieni w zwykiych oddziakywaniach van der Waalsa' z reguly
przekracza 3 nm, na przykiad ZrO = 35,06 nm, 2rN = 3,16 nm [2]. Typowe
warbtosci Y. ..Y lezg natomiast w zakresie 2,7 do 2,9 nm (na przyklad
w ciekej wodzie), a moga byé nawet krdétsze od 2,5 nm, Wiasnosci fizyko-
chemiczne zwigzku zasocjowanego roéznig sie dosé znacznie od wiasnoéci

. zZwigzku monomerycznego, jak to wykazano w tab. 1.4.

Para atomow -X-H, nie oddziatywajgca z atomem Y, posiada dodé do-
brze okreslong czestosé drgan Vyg W podczerwieni., Inaczej méwigc,"swo-
bodnemu' oscylatorowi -X-H odpowiada w podczerwieni pasmo absorpcyjne
zwykle o matej szerokosci, Dpoiozone prazy Ve cm-q. Pasmo absorpcyjne
oscylatora "zwigzaunego" ~-X-H.,..Y- 'jest natomiast znaczniz szersze s
na ogbét porozone przy znacznie nizszej czestosci \’X...Y; Powodem tego
przesunigcia jest zmniejszenie statej sitowej oscylatora -—XH przez od-
dzialywanié z atomen Y, Efekt ten moze siegaé nawet 1000 cm/I i jest
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Fizykochemiczne wiasnoscli wody oraz hipotetycznej cieczy

Tab e;l"a '1:i

ztozons j z'pojedynczych czasteczek H20

\

. Wartosé
Wiasmosé cieczy Jednostka
: Woda Ciecz hipotetyczna
i Temperstursa wrzenia % +100 =80
Napiecie pewierzchniowe N/m '72-’!0"'3 '-7-10"5
Ciepio parewania  kd/mol 40,6 16,7
Ciepzo topnienia kJ/mol 6,0 2,1

bardzo dobrze nierzalny -ze wzgledu na duzg dokZadnosé pomiaréw spelctro-
skopowysh., Z tego Izgledu obnizenie ezgstoéci

Ay = Vzp = V%, .Y

(1e 8)

uwazane Jelt z8 Jedno z podstawowych kryteridéw tworzenia sie wiqzania
wodorowego, a nawet mo%e byé miarg odlegtosci atoméw X...Y w kryszta—

Zach [5].

Micdzyczastedzkowe wiazanie wodorowe pojawia sie w cieczach prawie
zawsze, jesli tylko czgsteczki substancji rozpuszczonej lub rozpuszczal:
nika zdolme sg do jego utworzenia, a wiec gdy jedna czasteczka zawiera .
ugrupowania -XH, a druga atom Y. Ze wzgledu na ruch termiczny czaste«
czek w fazie ciekiej oraz niewielks energi¢ wigkania wodorowego'(20—40
kJ/mol) zwykle mamy do czynienia z pewna réwnowags chemiczna miedzy

liczba swobodnych oscylatoréw i zwigzanych

=X-H...Y, przy czym réwnowa-

ga ta moze byé niekiedy bardzo skomplikowana. Jesli jednsk potrafimy ja
rozszyfrowaé pod wzgledem chemicznym, pomiar koncentracji uczestniczg-—
eych w niej indywidudw chemicznyeh w rdznych temperaturach pozwala do-
éwiadczalnie okresli¢ emergi¢ tworzenia ukadu
lezg w zakvesie 20-40 kJ/mol [0,2 do 0,4 eV na czasteczke) i sa troche
wieksze od przecietnych oddziatywan van der Waalsa.
Inacze]j jest w stanie stalym, gdzie o powstaniu wiazania wodorowe-—
go migdzy czgsteczkami decydujg 'nie tylko oddziatywania misdzy samymi czgs--
teczkami, lecz takze stosunki przestrzenne i symetria, wspbtdecydujace
© wzajemnym utozeniu ezgsteczek w krysztale. Dobrym przykiadem réznych
sybuacji moze byé pigciochlorofenol '

~X-H, . oY=, Energie te

:



19

. gdzie ® oznaczaja atomy chloru., W swobodnej czgsteczce wodér grupy hy-
droksylowej stabo oddziatuje z sgsiednim atomem chloru, co wystarcza do
zghamowania rotacji grupy OH wokéx ﬁigzania C-0, Tym nie mniej, w roz-
tworze pigciochlorofenolu w niepolarnym rozpuszezalnilku, na przykiad w
‘C014, czgstosé drgan uktadu O-H...Cl Jjest troche przesunieta w strong

03 f
ge c=Q15,mfl
23 f [=300cm
02
\ .
01
6700 * 6300 7100
——S[cm]
0.400
El
0200 //
: " li=100
/ (AT
0 0.04 008 Q12 016

—>cm/|

Rys. 1.5, Absogpcja oscylétora ~OH w zakresie pierwszego nadtonu,
v= 6868 cn~!: a) pasmo absorpcyjne, b) prawo Lamberta-Beera
dla rozbtworéw pigciochlorofenclu w CCly (zaczerp. z [6])
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nizszych czestosci w pordwnaniu do zwykle spotykanych czestosci swobad-
nej grupy OH. Widmo absorpcyjne takiego roztworu pokazano na rys. 1.5a
[6} Wykonane zosbaio w zakresie tak zwanego pilerwszego nadtonu © CZEe8~
tosci w przyblizeniu réwnej 2 vgy. Powstawanie nadtondéw jest charakte~
rystyczna cecha oscylatoréw anharmonlrznych Na rysunku 1.5b pokazano,
#e roztwory pieciochlorofenclu w CCl4 scisle speiniajg prawo Beera, co
dowodzi, Ze czasteczki substancji rozpuszczonej nie ulegaja asocjacii.
Mozna to ttumaczyé w ten sSposéb, Ze atomy chloru w poiozeniu orto wzgle-
dem grupy =OH, majace stosunkowo duzg obaetoéé, skutecznie "ekranujg® -
grupe =OH przed zblizeniami prowadzacyni do tworzenia wigzan wodorowych.
: Jezeli wykrastalizuﬁemy pi@ciochlorbfenol z Gakisgo roztworu przez
powolne odparowanie CCl4 w tewmperaturze pokojowej, to powstang kryszta-—
1y zbudowame z czasteczek poXaczonych wiazaniem wodorowym, o czym wiado-
mo 2z badar rembgensgrafisznych tego krysstaiu [7]. Grupy hydroksylowe
tworza zygzaknwabe ratcuchy o srednim kierunku réwnolegiym do krystalo-—
graficznej osi' b, natomiast plerscienie aromatyczne dnlgczoné,sq z bo-
ku i wykrecons ﬂﬂpﬁzemiennie w taki sposéb, by uratwié wzajemneAzbliZe-
nie grup =0H, Fragment tej strukbtury pokazano schemabyczaie na rys. 1.6.

R
sanE

Rys. 1.6. Fragment ancucha czasteczek pigciochlorofenolu w fazie 7 LIS
Koikami 2az1NACZ0N0 reszty pieciochlorofenolowe, b6015 (schematycznie)

Krysztal skiada sie wiec z szeregu "nici", ktoérych dlugoéc przy ideal-
nej strukturze odpowiada diugosci krysztaiu wzdtuz osi b, Widmo, absorp-
cyjne w podczerwieni w zakresie pierwszego nadtonu o czgstosci réwneg
w przyblizeniu 2 VoH, . jest, zgodnie 2z oczekiwaniem, o wiele silniej
przesunigte w klerunku nlzszych czestosci, a przy tym bardziej zZozone
(rys. 1.7)}. Przesuniecie spektralne w zakresie nadtonéw jest w przybli~
zeniu dwa razy wicksze od Av okreslonego definicja (1.8) i wynosi w
tym przypadku okoto 300 e 61,

 Nie jest to jednakvjédyna mozliwa faza krystaliczna tGego zwigzku.
Okazuje sig¢, Zze przy ogrzewaniu krysztakiw wyhodowanych z roztworu, w
temperaturze 63 OC zachodzi w nich przeunisna fazowa [6], w wyniku czego
znika pasmo absorpcyjne pokazane na I'yS. ’l.,‘7_o Pojawia sie¢ natomiast



1100 Tl
ga 42?6H°=6660cm*
T 7
|
/]
1000 L
il
I85z)
! i
UEared]
| |
| |
I
/ |
0900 / -t
: pH=145ct
|
il
! |
[ |
l2?15§f,’0=6§35c !
0.800 S ; '
|
/ \ |
./l \‘ | ° %9 {
H:17.‘3rm;\‘ : 12'7%.?5830 cm?
/ t
/ N
0.700 ¢ N R
5400 6600 6800 7000
—= [cm™]

Rys. 1.7. Widmo absorpcyjne nadtonu OH...C w %ﬁgﬁztale pieciochlorofe~

nolu fazy II (zaczerp. z
proste przejécie absorpcyjne, odpowiadajace obrazowi przedstawionemu na
iys. 1.5,'0 czestosci zZblizonej do EV”OH...Cl czasteczek swobodnych w
roztworze. Swiadczy to o tym, Ze faza pig¢ciochlorofenolu z migdzyczas-—
teczkbwym wigzaniem wodorowym przestaje by¢ trwata powyzej 63 °C, aw
jej miejsce powstaje faza o innej strukturze, zbudowana z monomerdw.Fa-
za ta jest nieuporzadkowana; czasbteczki pieciochlorofenolu zajmuja w
niej wezty o symetrii C&, cho¢ same nie sg centrosymetryczné. W takim
razie postulat zgodnosci symetrii wezia z symetria czasteczki moze byé
realizowany tylko statystycznie w ten sposob, ze kazda czasteczka zajmu-
je w sposéb przypadkowy jedno z Szesciu mozliwych potozen wzgledem nor-—
malnej do pierécienia [8]. Byé moze, iz w wyzszych temperaturach niepo-
rzadek ten ma charakter dynamiczny, btj. czasteczki dokonu;jg “przeskokéw”
o 60° dookota normalnej do pierscienia benzenowego. Przykiad ten wskazu-
je, ze mozemy mieé fazy krystaliczne bez miedzyczasbeczkowego wigzania
wodorowego, mimo iz czasteczki majg atomy -XH i Y, zdoine do jego utwo-

rzenia.
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Rys. 1.8. Przyktady wigzan wodorowych w krysztatach molekularnych:
a) "ogon-gtowa" w p-nitrofenolu, b) dimery kwasu benzoesowego

Czesto tworzy sie wigzanie wodorowe w krysztale w taki sposdb, zZe
cata czgsteczka znajduje sie w Zancuchu giéwnym. Przyktadem takiej sytu-
acji moze byt wigzanie "ogon-giowa" w krysztale p-nitrofemolu [9],przed-
stawione schematycznie na rys. 1.8. Bardzo silne wigzania wodorowe wy-—
stepuja miedzy czasteczkami kwaséw karboksylowych, w wyniku czego two-
rza sie dimery, a niekiedy uklady pierscieniowe zioZone .z wigkszej licz-
by Jjednostek. Przyktadem moze byé kwas benzoesowy, ktérego czasteczki w
roztworze benzenowym sa praktycznie caikowicie zasocjowane na dimery. W
krysztale réwniez nie ma czasteczek monomerycznych, a struktura skiada
sie z dimerdéw [10], ktére mozna uwazaé za autonomiczne jednostki struk-—
turalne (rys. 1.8). :

Jednym z bardzo interesujacych przykiadéw jest struktura krysztaiu
gipsu, CaSO4~2H20, ktérej rzut na ptaszczyzng tupliwosci przedstawiono
na rys. 1.9 wedtug danych strukturalnych [11]. Rzut ten zostal uprosz-
¢zony przez opuszczenie jonow catt. Struktura gipsu sktada sie z jonédw
Ca™ i 80,77, ktérych symetria jest bardzo bliska symetrii kuli, oraz z
czgsteczek wody, poraczonych wigzaniami wodorowymi, Symetria tych czas-—
teczek, C,., Jjest nizsza od symetrii jondéw i mozna oczekiwaé, iz anizo-
tropia fizycznych wiasnosci krysztatu gipsu bedzie w pierwszym rzedzie
. wynikaé¢ z anizotropii czasteczek wody i ich rozkiadu w sieci krystalicz-
nej. Rzeczywiscie widaé, ze na piaszczysnie upliwoéci (010) mozemy wy—
réznié¢ dwa prostopadie do siebie kierunki, charakterystyczne ze wzgledu
na rozktad czgsteczek H20. Okazuje sig¢, iz kierunki te odpowiadaja dos-
wiadczalnie wyznaczonym kierunkom gtdéwnym indykatrysy wspdiczynnika za-
tamania $wiatZa na tej ptaszczyznie, Trzecia o0$ indykatrysy jest réwno-
legta do krystalograficznej osi b, zgodnie z przewidywaniami zasady
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Neumamna (rozdz. 3). WiasnoSciami opbtycznymi tego krysztalu zajmiemy
sie bardzie]j szczegbtowo w rozdz. 6.

Rys. 1.9. Rzut strukbury krysztaiu SU na piaszczyzne (010)
wediug danych strukturalnych [11fi jony Catt pominieto)
: (zaczerp. z [11 S’

Na koniec warto jeszcze wspomnieé¢ o sytuacji protonu w uktadzie
~X=Hq oY=, ktéra mozna opisa¢ za pomocg krzywej energii potencjalnej.Za-
sadnicze typy krzywych, wprowadzone przez Sobczyka w celu klasyfikacji
wigzan wodorowych [12], przedstawiono na rys. 1.10. Najczesciej spotyka~
ny sie z j;)_rzypadkiem pierwszym (a), tj. asymetryczng krzywa o dwdch mi-
nimach, odpowiadajgcg uktadowi =X-H...Y= przy duzych i Srednich odleg-
Zosciach skrajnych atoméw X,Y. Sybuacje protonu mozna interpretowaé w
taki sposéb, ze przebywa on w zasadzie w poblizu jadra X, mozliwé sa
jednak - choé¢ mazo prawdopodobne - przeskoki w kierunku jadra Y. Ich
czestosé zalezy od wysokoéci bariery potencjalnej dzielgcej oba pooze-
nia i od temperatury, rzadzgce] obsadzeniem dyskretnych stanbéw oscyla-
¢cyjnych protonu. W drugim skrajnym @rzypadku (c), nastapito przejscie
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X=HesY Yo HS Yot XoeH =Y T

Rys. 1.10. Klasyfikacja wiazan wodorowych za posrednictwem typdw
krzywej energii potencjalnej

~ protonu z X do Y z ubworzeniem jonowej struktury mostka SXT L JH=Y T,
Przypadki takie wystepuja w bardzo kroétkich (silnych) wigzaniach wodoro-
wych. Wreszcie w sytuacji b. krzywa energii potencjalnej jest symetrycz-
na, co odpowiada ;jed.na;kowemu prawdopodobienstwu przebywania protonu wo=.
ko6t kazdego z atoméw. Kazdej z krzywych:towarzyszy ukitad dyskretnych
stanbéw energetycznych protonu.

.'

1.4.2., Oddziatywania donorowo-akceptorowe

Oddziatywania donorowo-akceptorowe s8a to oddziatywania migdzy dwie-
ma czasteczkami, z ktérych jedna tatwo oddaje elektron (donor, D) zas
‘druga chétnie go przyjmuje (akceptor, A). Stan réwnowagi w takim ukia-
dzie przedstawia rdéwnanie

\

5} 5

AanD e ks et _ (1.9)

przy czym % Jjest liczba, O < & < 1. Powyzszy zapis ma charakter proba-
bilistyczny, wynikajacy z opisu tych oddziatywan za pomoca pojeé mecha-
niki kwantowej, nie jest bowiem mozliwe, by utamek elektronu mogt zos—
taé przeniesiony od jednej czasteczki do drugiej. Niech $ 4 bedzie
funkeja falowa opisujaca stan uktadu A + D, zaé ¢ > funkcjag falowg od-
powiadajaca stanowi A™ + pt, stan podstawowy komple'tsu, odpowiadajacy
réwnowadze (1.9), opisuje funkcja, bedaca kombinacja liniowa by idoe

q,p = a4 ¢q + a5 ¢o. (1.10)

Wspbdiczynniki aq ia, s3 miara prawdopodobienstwa wystgpienia konfigu-
racji molekularnej (a,) lub jonowej (32.) w kompleksie w stanie podstawo-
wyn, zatem : :



25

aﬁ + ag = 1, oraz zwykle aq >>ay. {@na19)

Spektralny skutek tych oddziaiywan jest podobny, jak w wigzaniu wodoro-
wym: energia wigzania jednego elektronu donora ulega obnizeniu, w wyni-
ku czego kompleks donorowo—akceptorowy Jjest z reguty zabarwiony, mimo
iz poszczegdbdlne skradniki moga byé bezbarwne. Absorpcja wystepuje zatem
w widzialnyh zgkresie widma, a czestosé VDAl odpowiadajaca maksimum
pasma absorpcyjnego, doéé¢ dobrze przewiduje realcja [13]

hvp, = Ip = By = Wp,, - o (de)
przy czym ID Jest energig jonizacji czgsteczki dongra, EA energia
przytaczenia elektronu do czgsteczki akceptora, zas WDA energig od-
dziatywan miedzy jonem donora i jonem akceptora., Po pochXonieciu fotonu
0 energii thA kompleks przechodzi w stan wzbudzony, a réwnowaga (1.
9) przesuwa si¢ na sStron¢ prawa. Funkcja falowa dla stanu wzbudzone go
¢, ma posta¢ analogiczng do (1410)

b = Dyig + by, ; (1.13)
przy czym speiniony jest warunek
bf + b5 = 1, ale zuykle b, <<b,. (1.14)

Petnemu przejsciu elektronu, & = 1, odpowiada powstanie jonbéw, z ktbd-—
rych kazdy ma jeden elektron o niesparowanym spinie (jono-rodniki).
éwiadczy 0 tym sygnat paramagnetycznego rezonansu elektronewego (EER)
oraz przewodnictwo jonowe zwiazku po jego rozpuszczeniu w (stabo) polar-
nym rozpuszczalniku, Energia oddziatrywan DA wynosi od 20 do 40 kd/mol,
czyli 0,2-0,4 eV/czasteczke.

Typowymi donorami elektronéw sg czgsteczki weglowddoréw aromatycz—
nych, metylowych pochodnych benzenu i zwigzkéw wielopiericieniowych o-—
raz amin aromatycznych. Akceptorami elektrondéw sa czasteczki chlorowcoédw
(zwtaszcza brom, jod), polinitrowych pochodnych benzenu (np. trdjnitro-
benzen ),a zwtaszcza czesto stosowanych czterochlorobenzochinonu (chlora-
nil) oraz czberocyjanoetylenu (TCNE).

Charakterystycznymi wiasnosciami komplekséw donorowo-—akceptorowych
sg: absorpcja promieniowania w zakresie bardziej diugofalowym niz  za—
kres absorpcji kazdego ze skZadnikow oraz wysokie na ogbdt przewodnictwo
elektronowe w stanie statym, wynikajace z roéwnolegiego utozenia ptasz—
czyzn pierscieni czqstecZek donora i.akceptora, jesli sz to czasteczki
pochodnych zwiazkoéw aromatycznych. Przegladu elektrycznych wkasnosci
kompleksow donorowo-akceptorowych dokonuja w swej monografii Pigoh i
wspérautorzy - [14], przykiad zaé typowej struktury kompleksu zXozonego
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Rys. 1.11. Konfiguracja skiadnikéw w kompleksie : donoro—akceptd.fow?m:
chinon-hydrochinon i uteZzenie czasteczek w krysztale (schematycznie

z dwéch czgsteczek piaskich, chinonw 1 hydrochinonu, przedstawiony jest
na rys. 1.11a, W krysztale tego zwigzku, zZwanego chinhydrenem, ulozZenie
czasteczek réwniez jest Ir'éwgoleg]:e. Powstaja "sterty" czagsteczek na
przemian donora i akceptora (rys. 1.11b) wadiuz krystalograficznej osi
b, stanowigcej jednoczesnie kierunek najsilniejszego przewodnictwa elek-
trycmgo krysztaiu. Odlegtosé pieszczyzn pierscieni, 3,1 mnm, jest nie-
co mniejsza od odlegtoéci w zwykiych oddziaiywaniach van der Waalsa.
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2. TENSORY DRUGIEGO RZEDU I ICH WEASNOSCI

W rozdziale niniejszym przedstawiono podstawowe wiasnosci tensoroéw
drugiego rzedu, ktérym odpowiada wigkszos¢ wielkosci fizycznych kryszba-
Xéw anizotropowych. Nacisk pozozono w wiekszym stopniu na interpretacgje
sensu fizycznego i zastosowania podanych zaleznosci, niz na Sciszosé
wodu lub dowodzenie przytoczonych twierdzen. Szczegdiry te moze Czytel-
nik znaleZ¢é w literaturze, zestawionej na koncu rozdziatu [1-3].

{

{ 2.1. Definicja tensora

Tensofy maja liczne zastosowania w fizyce ciaxza statego z tego :
wzgledu, ze wiele wielkoéci fizycznych wykazuje zalezno$¢ od kierunku,
w jakim je mierzymy, tj. ma cechg¢ anizotropii. Anizotropia wielkoéci f£i-

. zycznych %gczy sig bezposrednio z okreslonsg symetria samego ciata krys—

talicznego, poniewaz wigkszos¢ wielkosci fizyecznych zalezy nie tylko od
wkasnoSci samych elementdéw strukbturalnych (atoméﬁ, jondéw, czasteczek),
z ktérych jest zbudowany krysztat, lecz i od regularnoéci ich rozmiesz-—
czenia w sieci przestrzennej. Na przyktad krysztait chlorku sodowego
sktada si¢ z jonoéw Nai'3 €0 symetrii kulistej, nadto “jony te roz-
mieszczone S§ w krysztale idealnym bardzo regularnie: zajmuja wezly sie-
ci przestrzennej, zbudowanej z szedcianéw, Tak wysoka symetria kryszta-
tu sprawia, ze np. do opisu wiasno$ci dielektrycznych krysztatu wystar—
cza tylko jedna liczba: wzgledna przenikalnosé dielektryczna. Inaczej
rzecz sig ha, na przyktad, z krysztalem benzenu. Wﬁrawdzie czasteczki
benzenu o ksztakcie bardzo zblizonym do regularnego szeécioboku maja
Jjeszcze wysoka symetrie, jednak ich rozmieszczenie w sieci przestrzehr
nej jest o wiele mniej symetryczne, niz w chlorku sodowym. Powoduje to,
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ze wzgledna przenikalnos¢ dielektryczna krysztatu benzenu zalezy od kie-
runku, w ktorym ja mlerzymy, czego juz nie mozna wyrazi¢ jedna tylko
liczbag,

Tensorem bedziemy nazywali kazdy liniowy operator T, wigzgcy ze So-
ba dwa wektory p i g =

p==Lg. : (2.1)

=

Wedtug tej definicji kazdemu wektorowi g odpowiada inny wektor D. Przy
porzadkowanie to jest liniowe, to znaczy, ze dla dowolnych wektordw 9,V

=

v, (2.2)

i
w
[fe}
+
of
s
1l
HH

q+t

przy czym S, t sg liczbanmi.
Iloczyn T4 jest wigc wekborem, jego sktadowe mozna rozpisaé w na-

stepujacy sposob:

I

(Ta)q = Tqq9q + Typdp + Ty395 = 7595,

(TQ)Z = qu(b] T T22Q2 + T23Q5 = T2jqj’ (255)
(Tq)3 = T31q1 + T52q2 + T35q5 = Tquj’

przy czym Tij' i, j = 1,2,5 oznaczaja sktadowe tensora I.

W zapisie (2.3) zastosowalismy konwencj¢ automatycznego Sumowania
po powtarzajgcym sie wskazniku, z opuszczeniem znaku 2 Konwencje te
bedziemy stosowaé w dalszym ciggu.

Zwigzki miedzy dwoma wektorami sa bardzo czeste w fizyce, na przy-—
ktad

_D_ = 1‘2, (2-4)

o

€o
gdzie D jest wektorem indulkeji elektrostétycznej, E wektorem nateze-
nia pola elektrycznego, €, stala dielektryczng, zas & wzgledna przeni-
kalnoscia osrodka. Zazwyczaj £ ma wiasnosci tensora. Podobnie w uogol-
nionym prawie Ohma : 7

_J; = B, . (235))

la

gdzie J -Jjest gestoscia pradu przewodzonego, & Jest przewodnictwen
wlaéciw?ﬁ materiatu i tez ma wktasno$Sci tensora. 7
Przyjrzyjmy si¢ blizej relacji (2.5). Zatozymy wpierw, 2ze g nie za-
lezy od kierunku krystalograficznego, tj. mamy do czynienia z materiaem
izotropowym. W takim razie kazda skZzadowa J Jest proporcjonalna do od-—
powiedniej sktadowej E przy tym samym wspglczynniku proporcjonalnosci
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jk = ijk, k = 1,2,3, wobec czego wektory Jj i E sg do siebie réwnoleg-
e ey s 2RI

===l

|
I
|
I
|
|
I
I
l
|

|
|
I
1
E4 JF 6E, X4

Rys. 2.1. Wektory E i j w materiale izotropowym (przypadek pkaski)

W materiale anizotropowym przewodnictwo zalezy od kierunku. W pew-
nym szczegdlnym uktadzie wspéirzednych Xy, X5, X3 (uktad osi giéwnych)
do ktérego najwygodniej jest odnosi¢ opis przewodzenia pradu, be¢dziemy
mie¢ trzy staie materiaiowe 0., 32’ 05, na 0gét rézne, zwane gtoéwnymi
sktadowymi przewodnictwa elektrycuznego. W tym przypadku winnismy napi-
saé

de =0 B,k =525, (2.6)

Jesli g(i) bznaczajg wektory jednostkowe, skierowane odpowiednio
wzd¥uz kazdej z osi giéwnych X;, Go wektor
J=9 B 2(1) + 0. By 2(2) G E3 g(j) (2.7)

1

nie jest réwnolegty do wektora E (rys. 2.2).

W ogdlniejszym przypadku dowolnie zorientowanego i ortogonalnego
uktadu wspoéirzednych Xy Xy Xz zalezno$ci (2.7) maja charakter zwigz-
kéw liniowych postaci analogicznej do (2.3)

Jp = 0py By, k= 1,2,5. (2.8)

W ten sposob widzimy, ze opis przewodnictva elektrycznego krysztaiu w
przypadkowo dobranym ukiadzie wspoirze¢dnyeh wymaga dziewig¢ciu stakych
materiazowych (;kl’ stanowigcych skladoﬁe tensora przewodnictwa wiasci-
wego. Zobaczymy pdiniej, Ze nie wszystkie sktadowe sz niezalezne.
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" Rys. 2.2. Wektory E i j w materiale anizotropowym (przypadek praski)

: Warto zauwazyé, Ze anizotropia przewodnictwa materialu pociaga za
soba wystapienie tzw. przepiywéw poprzecznych. Jesli bowiem pole elek-
tryczne przytozone jest na przykiad w kierunku osi x4, czyli E(Eq,0,0L
to mamy nie tylko dq = 011E4, lecz takze 32 = °21E1 oraz 33 = 031E1.
Tym samym istnieja niezerowe skladowe wektora gestosci pradu w kierunku
prostopadiym do kierumku przylozonego pola.

Wwielkosci fizyczne o charakterze tensorowym, ktérymi bedziemy sie
tu interesowali, naleza do grupy tensordéw o dziewieciu skladowych, no-
-iBzacych nazwe tensoréw drugiego rzedu. Inne wielkoéci fizyczne, na przy-
kZad wektgry'o trzech sktadowych, mozemy formélnie uwazaé za tensory :
pierwszego rzedu. W tej nomenklaturze staiym odpowiadaja tensory rzgdu
zerowego. Znane s réwniez tensory rzgdu wyzszego niz drugi,na przyktad
‘tensor vwipéiczynnikéw piezoelektrycznych lub tensory opisujace wiasnos—
¢l spre¢iyste materiazu. 3

Sens fizyczny poszczegdlnych skradowych tehsora'drugiegb rzedu mo-
Zemy rozumied w nastepujgcy sposob. Niech w przykladzie z przewodnic-—
twem elektrycznym pole jest przytozone w kierunku ma przykiad X5, nato-
miast gestosé pradu mierzona np. w kierunku qgi X3, wowezas

Wyrazenig (2.9) podaje sposéb pomiaru skladowej 052- i mozemy je uwa-:
%aé za eksperymentalna interpretacje tej skxadowej.

Przyktady réznych wielkosci, ktérych wiasnoséci odpowiadaja tenso-
rom drugiego rzedu, zestawione sa w tab. Bl ®



Przyktady tensordéw drugiego razedu .

pomnozyé przez
yIag, ktéra za

Wektor | Wielkosé Wektor

przytozony tensorowa . indukowany Zwigzek

a d P
Natesenie pola| Wiasciwe przewod- | Gestosc nateze- % . G vV
elektrycznego | nictwo elektryczue| nia pradu Jsg 2=~ X
Natezenie pola| Przenikalnosé Indukcja elek= |p _ ¢ ¢ {
elektrycznego dlelektryczna trogtatyczna = RO =
Gradient Wiasciwe przewod- | Gestost pradu |, _ _ Ly o
temperatury nictwo cieplne cieplnego =" =-
Natezenie pola| Przenikalnosé Indukcja Bl °
magnetycznego | magnetyczna magnetyczna 2=k B2
Nacezehie pola| Polaryzowalnosé Moment S E
elektrycznego elemgntu strukt. dipolowy S5l D=

2.2. Tensory symetryczne i antysymetryczne
Jek wiemy, iloczyn I q Jjest wektorem, mozemy go wigc skalarnie

inny wektor v. Otrzymamy w ten sposéb wielkosé akalarn@
lezy w sposdb liniowy zardéwno od skZadowych 9, Jak i v

(rorma dwuliniowa). MoZemy réwniez utworzyé iloczyn g T V3 na ogdi bg—

dzle v T q # q

gonalnego) ukZa

oraz

Jesli

lub '

T v. Na przykiad, jesli e,, &5, €z B5a wektorami ”ad--
210 20 &3

nostkowymi rbwnolegzymt odpowiednio do osi x4, Xy, X dowolneps (ortoe
du wspbirzednych, to
e Lo = (Lol =l
Sofe = 1T sl = Tog
e (2.10a)
afv=3Ta .

dla dowolnych a4 ¥, to T hazywa sie tensorem symetrycznym. W przypad}

ku

Ty = = Ty (2.11a)
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tensor jest antysymetryczny.
Symetryczny temnsor T_ ma postaé

.—ﬁ
99 Tip TIg3
T Lopiel oo (2.12)
T3z

czyli najwyzej szeéé roéznych skiadowych. Dla tensora antysymetryczne go
natomiast mamy

Tog =t =0 cayli L, =0,
oraz
0 Lo 0
Eﬂ =| T5q | 0 iz (2.13)
AER Tz Tzp O

Oznaczmy sktadowe T_ w nastgpujacy sposodb:

[l

Tip=rglog = =L1s,

3= =T31 = Ty, (2.14)

—T52 = —'J.‘,],

T25 =
przy czym relacje mig¢dzy wskaznikami odpowiadagja porzadkowi antycyklicz-—
nemu. Mamy wowczas

Eé Sa = 91(—T5q2.+ T2q3) + QZ(Tiqﬂ = quz) +

+ 23(—T2q1 + Tqq5) = T, x 4. (2.15)

Ta(Tﬂ’TZ’Ti) jest wektorem réwnowaznym tensorowi Eé' Widzimy wigc, ze
Tensorowi antysymetrycznemu mozna przypisaé¢ wektor.

Tensory mozna dodawa¢, a wige takze rozkiadaé Jje na sumg dwu lub
wigce] tensordéw. Jesli bowiem stuszna jest relacja

113
lo

= iR 4,
to

1]
=i
(s
+
=
n
~
.
%
<

(143
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ﬁa ﬁrzyklad dowolny, asymetryczny temsor T mozemy jednoinﬂcznie rozt
Zyé na sum¢ tensora symetrycznego TB ol antyaymatrycznego Ta. Mamy bo+
wiem !

Tye = (Tgdyp + (Tgdyy
: |
braz
. : e _
Tki = (Ts)ik = (Ta)ik' (2o17)
Stad
45 beia) '
T4 3 T2t o) 5 (Tgie D)
g = Tao 3 (Thy + ) (2.18)
*33
: \01‘82
6 2 (Tip = Thq) = (Tay = D)
Al Tavele Woien3 b o
T = 0 1 (1 - 15, | (2.19)
0

W rachunku tensorowym wygodne jest stosowanie zapisu macierzowego.
Je$li wektorom P i q przypiszemy macierze Jednokolumnowe

Pq Q4
(p) ={ pp ), (@) =f{ay |,

"3 : 3
to relacje (2.1) mozemy zapisa¢ w postaci
R\ i i Tas N /0

Boil =il Togne Lo Doailias ) (2.20)
Pz/ \Iz1 T2 T33/\% :
W takim zapisie symbolowi (p)T odpowiada macierz jednowierszowa (trans-
ponowana)
(2)% = (pq 2 03). (2.21)

Jesli zastosujemy te oznaczenia, to mozemy zapisaé na przyktad iloczyn
skalarny wektoréw w postaci p - @ 1lub (p)T(q).

@
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Na zakohczenie jeszcze jedna uwaga. Wektory pP= Tq i q maja kie-l
runki rézne. Kat ¢ =zawarty miedzy nimi Jjest taki, “ze
-p| alaq
CO8 P = —=p = — (2.22
- el gl ¥l el E

2.3. Wiasnosci transfbrmaLyjne wektora i tensora

Przypuéémy, Ze mamy zadany tensor T wigzacy wektox P i q w za-r
leznosé P= T-q. W ortogonalnym uklhdzi: wapdzrzednych Xy Xp,X3 skta-
dowe T maaq . okreslone wartoéci T, . Wybieramy teraz nowy uklad wepol-
rzednych x1 x?,xs, tez ortogonalny prawoskretnya'Jakie bedg skadowe :
wektora p) i q W tym nowym ukiadzie? Jak zmienig sig sktadowe tensora
rik? Odpowiedz na to pytanie stanow; treéé zagadnienia, zwanego transfor-
macja skiadowych wektora Ilub tensora przy zmianie ukZadu wspéirzednych.

Ogblnie biorac, zmiana ukiadu wspbéirzednych moze wyniknaé na skutek

‘dziaania dwéeh rozaych operacji:

1. Réwnoleglego przesunigcia uktadu w taki sposéb, Ze osie uktadu
nowego sa réwnolegie do odpowiednicﬁ osi ukzadu starego, tj. xﬂ|x1 xé”
»”xa, 5”x5. Takie przeksztalcenie nie zmienia skladowych wektoréw, ponie-
waz Wynoszg one pey = |p| cos @iy 1= 1,2,3, czyli nie zalezg od réwno-
leglego przesuniecia uktadu wspéirzednych. Operac ja translacai mo%e za-
mieniaé Jjedynie wspbirzedne poczgtku i konca wektora. W takim razie g' =

=P 2’ = g. Jesli tensor w ukladzie x{ oznaczymy przez T, to mozemy
napisaé . 5

czyli

Dol (2.23)
Sktadowe tensora réwnies nie ulegaja zmianie wskutek réwnoleglego prze-
suniecia ukiadu wspélrgednych.

2. Obrét uktadu wspbdirzednych wokéxr jego poczatku O. Obrét taki moz-
na opisa¢ za pomoca macierzy ¢, sStanowiacej tabele kosinuséw kierunko-
wych nowych osi x{ wzgledem uktadu osi starych, X

=

Sqa a2 %13
(2.24)
Coq+ #9224 " Co3

G2t Cani Bap

e b,
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Na przyklad element Coq tej macierzy jestAkosinusem-kqta zawartego
miedzy osiami x; i x;. Macierz ¢ ma te¢ wiasnosé, ze

(1)  det c = H1, (2.25a)

przy'czym znak (+) obowiazuje dla tqk zwanego obrotu "wiasciwego", tzn.
nie zmieniajacego skretnosci ukladu wspbéirzednych, zas (-) wystepuje
wtedy, gdy skretnoéé ulega zmianie (np. uklad prawoskretny po transfor-
mac ji przechodzi w lewoskretny). Eoﬁadto

(1) o7 = ¢, (2.25b)

x Jest macierzg przéstawio-

gdzie -g'1 oznacza macierz odwrotng, zas c
na (transponowanq).
Za pomoca macierzy ¢ mozemy wyrazié wektory w nowym uktadzie

wapbirzednych w nastepujacy sposoédb:

p = ¢ p oraz’ e’ =¢c q. (2.26)

Réwnania (2.26) przedstawiaja préwo transformac ji wektora. Transforma-
cja odwrotna ma posta¢ nastepujaca:

D= 9'1 g' = gT p° oraz q-= o g'. (2.27)

Mozna tatwo dowiesé, Ze transformaéja typu (2.26) lub (2.27) ma t¢ wkas-
‘nosé, ze nie zmienia dtugoéci wektora, tj. Ig'ﬂ =| 2[ oraz lg'l = lgl-

Przejdzmy obecnie do okreélenia zwiazku migdzy skladowymi tensora
T w ukiadzie x{ i tensora T w ukladzie X;, pray czym oba uklady
zwigzane sa relacja

’

Tovaic vy (2.28)

{[e]

gdzie x° oznacza wektor o sktadowych x{.xé xé. Speinione sa nastepu-
jace réwnoscis

.

p:—:zg’zv_

it
{{{¢]

g cp=cla;
Widzimy stad, ze T i T speiniajq zwiazek ogolny
Tici=ol (2.29)

z ktérego mozemy otrzymaé na przjklad T w nowym ukiadzie wspéirzed-
nych :

e =i Loy ; (2.30a)
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Transformacja odwrotna ma postaé
T = gT T gl ‘ ' (2.30b)!

Peiny~zapis transformacji (2.30a) przedstawia sie nastepujgco:

a9 o TigNe /o o O iqg Tao B9\ /Bqq €q Cag

z :
¥oq Foo (Tosipmlicoq Cap Saal doq (Too ToxikiBqp ii0an 050 )

Tx1 T2 T3z/ 31 C32 33 WUs1 Tzo T3z/\eqz 23 C33

W zapisie wskaznikowym natomiast

dy
Tik = cimencnk = cimcknwmn'
Wszystkie trzy sposoby zapisu transformacji sa, oczywiscie, réwnowazne,
a wybdér okresglonego z nich pozostawiamy upodobaniom Czytelnika. Trans-
formacja (2.30a) oraz (2.30b) ma te wiasnoéé, ze nie zmienia éladu (ang.

trace) tensora
|

] : (2:31)]

Tr ¢ = Ir

-3

ezyli Tqq + Top + 153 =Tyq + T22 + T33
Korzystajac z teJ wiasnodci &ladu wprowadzimy nowa wielkosé <T>, zwa-
ng wartoscig érednig wielkosci fizycznej, przedstawionej tensorem T: -

Bl = T s 5T (2.52)

Takie wielkosci mierzymy . przeprowadzajac eksperyment, W ktérym prébka
Jest drobnokrystaliczny i starannie wymieszany proszek lub pastylka
sprasowana z proszku.

Nalezy zauwazyé, ze wiasnoéci transformacyjne wielkoici fizycznych
stanowig bardzo wazng ich wtasciwos¢, zwigzang w istotny sposdéb z ich
struktura matematyczng. Z tego powodu zachowanie sie¢ wielkosci fizycz-
nej przy zmianie ukadu wspbéirzednych moze stanowié podstawe Jjednoznac z-
nego Jjej zaklasyfikowania. I tak, wielko&¢ Ffizyczna, ktéra nie zalezy od
wyboru ukladu wspbirzednych w sensie dotychczas dyskubowanym, jest ska-
larem. Wielkoét, ktérej skiadowe transformuja sie wediug prawa (2.26)
Jest wektorem. Wreszcie, jesli skladowe wielkosci fizycznej transformu-
Ja sie wediug praﬁa (2.30), jest ona tensorem drugiego rzedu. Sktadows
tensoréw wyzszych rzeddéw podlegaja bard21ea zXozonym prawom transforma=-
cji -~ nie bedziemy ich tu omawiaé. =

Wéréd réznych uktadéw wspbdirzednych xﬁ xé istnieje zawsze ta-
ki uktad X1 Xé X, w ktbérym tensor T przyjmuje postac przekatniowa
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Sk ) T 00
Transf
1 1y I = = (¢} T o f
21 22 23 2
X X X j—v-xq o XB .
T31 T32 'l‘35 (0} (0]

Taki uktad ma szczegblne znaczenie i nosi nazwe osi glédwnych tensora
1ub o081 wtasnych. Wielkoéci T; DN0Szg.nazwe wartoéci gtéwnych (wartos-
e wtasnych) tensora. Sposobami sprowadzania tensora do ukZadu o0si gtoéw-
nych zajmiemy si¢ w p. 2.7. i

2.4, Pojec;e Ewad;yki
Rozwazmy‘wlasnoéci réwnanié
Siaxix;d (2.33)
Jesli przyjmiemy, 2ze Sij = sji’ to |po rozpisaniu otrzymamy
Sqqx%'+ 822x§'+ Saaxg + Zquxﬂxé + 25133ﬁ13 + 2323:ix5 =

Réwnanie to przedstawia powierzchni¢ drugiego stopnia, zwang.kwadryka,
o srodku lezgcym w poczgtku ukladu wspélrzednych. Powierzchnla taka mo-
ze byé elipsoida lub hiperboloida.

Oznaczmy przez rT (quzx wektor, 1aczgcy poczatek ukladu
wspéirzednych z punktem lesgcym na owej powierzchni. Réwnanie (2.33) mo-
zemy woéwczas zapisaé krécej w postaci macierzoweJ

T

rfsr=1. (2.34)

lia

Przypuéémi teraz, ze zmieniamy ukizad wspélriednych przez obrét wokéxr O,
tak ze r' Sicor, czyli "> & o gm gm. Jak zmienig si¢ Wspéiczynniki kwe:
dryki Jesll W nowym ukzadzie macierz tych wspélczynnikéw 0Znaczy-

mny przez R o mozemy napisaé Téwnosé 4

s Tpeh o {chc}_g:’i. . (2.35)
Poniewas (2.35) opisuje t¢ sama kwadryke co (2.34), musi byé speiniona

réwnosc S=c¢ R S, czyli

R=c§c. , (2.36)

Ine

Widzimy wigc, Ze nowe wspéiczynniki kwadryki otrzymuje sie przez trans—
qumacje identycznq 2z (2.30), przeksztalcaach sktadowe tensora przy

obrocie uktadu wspolrzednych. W takim wypadku ‘powierzchnia opisywana
réownaniem (2.33) jest geometrycznym obrazem tensora.



38
Kwadryka, odpowiadajaca tensorowi T, posiada réwniez osie gitéwne

x1x§x3 o kierunkach pokrywajacych sie z-oaiami gléwnymi tensora. Kazdy |
przekréj piaszczyzna, przechodzgcq przez dwie z tych osi, jest przekro-

Jem giéwnym kwadryki (tensora). Réwnanie kwadryki zapisane w ukizadzie

X, _
84%; + 8,15 1+ 8;X5 = 1 (2.39)

nie zawiera wyrazéw mieszanych. Jesli wszystkie Si sgq dodatnie, to po-
:6wnanie ze standardowa postacia réwnania elipsoidy

el (2.38)

a a
) : é 5
wskazuje, Ze kwadryka jest elipsoida, ktérej pbdiosie maja diugosé (rys.
2.3) '

a, = 8;/2, (2.39)

X3

Rys. 2.3. Kwadryka jako geometryczny obraz réwnania £T§g =
w uktadzie osi giéwnych (Si PO DS

Jesli jeden z trzechlwspélczynnikéw kwadryki jest'ujemny, to kwadryka
ma ksztatt hiperboloidy jednopowiokowej (rys. 2.4); przy dwéch wspoi-
czynnikach ujemnych hiperboloida jest dwupowkokowa (rys. 2.5). Prazy
wszystkich trzech wspéiczymmikach ujemnych powierzchnia (2.37) Jjest u-
rojona elipsoidg.

Kwadryka jest wigc powierzchnig, na ktoérej leza konce wekbtoréw r,
spetniajacych réwnanie (2.54). Rysunek 2.6 przedstawia w ukladzie wspbi-
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; ;zednych XX5, zorientowanym przy-
padkowo wzgledem osi giéwnych,prze=
kr6j gtéwny kwadryki o wspéiczynmi-
kach :

Bqq = 2497 Bpo= OF Bgp = o6. |

Przekréj ten opisany jest wigc réw-
naniem

3,5 25 + 52 - 6xyx; = 1. %

X2

X

Rys. 2 .4, Dla 81 §I> 0, 8
k!adryka Jest hiper oloid& edno-
powtokowa

2.5, Wartos¢ wielkoéci fizycznej
w zadanym kierunku

Sprecyzujny obecnie pojecie
wartosci wielkoéci fizyczned w
zadanym kierunku, tzn. sprébujmy
‘uzyskaé¢ odpowiedZ na pytanie, ja-
ka jest na przyklad przenikal=-
'noéé'dielektryczna krysztaiu w '
kierunku [011]?

Przypusémy, Ze zwiazek s

p=14
Rys. 2.5. Kwadryka przy 84, Sp. < 0, 1lub
83 > 0, Jest hiperboloida dwupowlo-
kowg p; = Tijqj

rozpatrujemy Qla krysztatu izotropowego. W takim przypadku
=Ml

czyli tensor T jest iloczynem jednej liczby T przez macierz jednost-
kowa 1 . W konsekwencgi wektory P i q s3 do siebie réwnolegie (rys.
2.1), oraz

T, = |pl/lal- (2.40)

Wartosé T w dowolnym kierunku gq _uzyskujemy wiec przez podzielenie
diugoéci wektora p przez diugosé q. Wynik ten mozemy uogblnié w na-
stepujacy sposoéb.
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Rys. 2,6. Przekréj kwadryki o réwnaniu ~3,5x§ + 535 - 6xyx, = 1

W ogélnym przypadku kierunki pi a4 nie sg Jednakowe. Mozemy Jjed-
nak postuzyé aig poprzednie definiojq, Jeé11 dokonamy rzutowania D na
kierunek q (rys. 2.7). Wartoécig wielkosci tensorowej w kierunku q
bedziens nazywaé iloraz dlugoéci rzutu wektora P na kierunek: q przez
diugosé wektora g /

p :
Tq = 'I——u'gl_ ° (204‘1)
laf
Poniewaz ho) P1q = q/]qj, w zapisie macierzowym mamy (T Jest syme-

tryczny)

a-p= (0% = (@%m(a).

2

Pq podzieleniu przez q~ uzyskujemy ogélny wynik

= (1)), (2.42)

gdzie 1 = q/ q Jest wektorem jednostkowym o kierunku gq. Wektor ten
ma skladowe 11,12,13, ktére sq kosinusami kierunkowymi q w ukladzie
xﬁx?x . Rozpisujgc (2.42) otrzymamy
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X3

X2

X4

Rys. 2.7. Wartos¢ wielkosci fizycznej p w kierunku gq
reprezentowana jest przez diugosé rzutu p na q —

T T2 T43\ /14

SN T s L

=
I

S31E Eaoilzs) 0ls

2 2 2
T11lf + Tpl5 + Tygly + 2 Tiolqly +
+ 2 Tyzlgky + 2 Tozloly. (2.43)

Wyrazenie to przyjmuje szczegbdlnie prosta postaé w ukadzie osi giow-
nych tensora I. Poniewaz W tym ukkaizie T =0 ila i # k, mamy

T 2 2 2
1= (l? ()(1) = 5417 + T15 + T513. . (2.44)

i

Rownanie (2.42) lub (2.44) przedstawia nieskonczony zbidér punktéw
tworzacych powierzchni¢, zwana powierzchnig wielkosci fizycznej T. Je: -
1i wszystkie gléwne wspétczynniki takiego réwnania, czyli WSzystkir o
W (2.44) sg dodatnie, to powierzchnia wielkosci fizycznej jest elipsoi-

dgq trojosiowa., Przypadek taki dla wzgle¢dnej przenikalnoséci dieletrycz-
nej e, jest przedstawiony na rysunku 2.8a. Punkt P lezacy na elipsoi-
dzie przedstawia warto$é¢ wzglednej przenikalnosci dielektrycznej w kie-

runku okreslonym wektorem r. Dla poréwnania przedstawiono na rysunku

{
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2.8b obraz kwadryki o osiach, od-
powiadajgcych rys. 2.8a. Widzimy,
ze kole jnos¢ osi pod wzgledem ich
diugosci ulegta zmianie, ponadto
kazdy punkt Q(X1X2X3) kwadryki o
wsepbéiczynnikach S; speinia réw-
nanie (2,37). W tym przypadku o-
bie powierzchnie sg elipsoidami.
Jesli Jjednak choéby jeden ze wspdi-
czynnikéw réwnania (2,44) jest u-
jemny, to wyglad tej powierzchni
r6ézni sie zasadniczo od kwadryki.
Na przykiad na rysunku 2.9 przed-
gtawiona jest powierzchnia wspdi-
czynnika rozszerzalnos$ci termicz-—
nej krysztaiu, dla ktérego % g
oy > 0, zas oy < 0. Przekrdj
)CZX3 zawiera wartosci ujemne,
Iloéciowy obraz przekroju (001)
powierzchni ;T £ 1 dla T,;,4=0,625
T22 = =0,25 przedstawiony jest
na rysunku 2,10, przy czym ';T =
= (cos @, 8in @, 0).

¢ : : 2.6. Przekrdj tensora piaszczyzna
U220, Fhipeolia aglsane) BU2C  (010) w uktadsie jecuoskofnyn (ma-
ELE RO SR 02 N5 ToraZ ?b) kwadry- toda najmniejszych kwadratdéw)
i:a wzglednej przemikalmosci dielek-
trycznej Wyrazenie (2.42) jest bardzo
przydatne w badaniu kszbaltu prze-
kroju tensora zadang pitaszczyzng krystalograficznag. Zagadnienie to jest
wazne z doéwiadczalnego punktu widzenia, poniewaz zwykle mierzymy kilka-
nascie do kilkudziesig¢ciu punktédw tskiego przekroju, na przykitad prze-
wodnictwa elektrycznego piytki krystaliczne] w znanym kierunku,a nastegp-
nie chcemy uzjskaé z tych danych optymalny obraz przewodnictwa elektrycz-
nego w owej plaszciyénie, a ponadto optymalne wariosci osi giéwnych te~
go przekroju. Jesli skorzystamy z metody najmniejszych kwadratoéow,to war-
tosci tych, staiych mozemy uzyskacé z dokiadnoscig wigksza od dokladnosci
wyznaczenia poszczegdlnych punktéw., Tekie postepowanie jest szczegdlnie
korzystne wowczas, gdy nie znamy z géry kierunkédw osi gidwnych przekro-
Ju, Jjak np. w piaszczyinie (010) uktadu ;=dnoskosnego. Oriéhtacja ta
Jest hardzo czg¢sto spotykana z uwagi na duZe rozpowszechnienie symetrii
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Jjednoskosnej wsrdd krysztaréw moleku-
larnych (przeszlo'60% zwiazkbéw orga-
nicznych krystalizuje w tym ukiadzie).
Dlatego zajmiemy si¢ najpierw wyznacze-
niem réwnania przekroju, a nastepnie
obliczeniem diugosci i orientacji osi
gréwnych przy zastosowaniu rachunku
wyréwnawczego. Podane poste¢powanie mo-
ze byé oczywiscie zastosowane i do in-
nego przekrogju tensora, :
Orientacj¢ elipsoidy wielkosci w
komérce elementarnej krysztaiu jedno-
skosnego pokazano na rys. 2.711,zas sam
‘przekréj na rys. 2.12. Kat 8 zawarty -
migdzy osig X,1 i osig a krysztaiu
jest jedynym przy tej symetrii = stop-
niem swobody orientacji osi ‘tensora

/

1,01
08T
06 F
=N
X3 L3

Rys. 2.9. Powierzchnia wsp: i—
czynnika rozszersalnosci 1o .-
miczne; L jej p».ekroje xq,
;12>O,\oc5<0 :

wzgledem osi krystalograficznych. In-—
nymi siowy, kat ten musi byé wyznaczo-
ny doswiadczalnie, poniewas na ogok

ani nie wiemy na podstawie jakich da-
nych strukturalnych, ani zs pompca ja-

Rys. 2.10. Przekr:j powierzc .-
ni wielkosci fizycznej opisi: 2]
rownaniem T!¢@, = 27 cosc @ -
- Jin2<p

kiej metody mozne by ge oblicazyé.
i) J




cos (9~ 6]
Mierzymy T w kierunku 1 (0] '
SEEC)

sin (q) 0)/

wzgledem osi giodwnych Xi' Wobec tego

T(?) = (cos (9= 8.) O 8in (¢ - 8,))*

T4 O 0 cos (g~ 6,)
» 0 '!.'2 O O =
0 0 Ty sin (o9 - 80)

2

= T, cos” (¢ - 90) + T3 8in° (@ = 90).

(2.45)
Jest to réwnanie przekroju tensora na
(010). Znanymi wielkosciami sz ¢, T{p),

Rys. 2.11. Orientacja elipsoidy Szukanymi T4, 75, 8,. Za pomoc pros-

wielkosci w komérce elementar- tych przeksztalcen trygonometrycznych
nej krysztaiu  jednoskosnego ¥

Rys. 2.12. Orientac ja eligs przekroju ellpsoldy wielkosci
na ptaszczyznie (O o§ krysztaiu jednoskosnego

2T (p )

) cos® (o - éo) + T3 sin® (p=8,) + 7q + T3 =

T sin2 {p = Oo)'- T3 cos2 (0 eo) =

(7 + ‘53) + (g —15) cos 2(9 - 6)



45
mozna (2.45) doprowadzié do postaci

T(p) = A + B cos 29+ C gin 29, (2.46)
gdzie
Tl S i Tl T
T LR saiBr = Ll cos 2 o0?
= (2.47)

Rownanie (2.46) jest dogodniejsze do prowadzenia daiszych obliczen od
(2.45), poniewaz jest liniowe wzgledem szukanych wielkosci A, B, C.

Przypusémy, %e z doswiadczenia znamy n par wielkosci (@i,T(Qi)),
i=1,2,,00,n. JeSli dla uproszczenia oznaczymy T(¢&) = Ti’ to uklad
réwnan typu (2.,46) mozemy napisa¢ w postaci macierzowej .

(3) = (T') (M), (2.48)

przy czym macierze (T), (T') i (M) maja postaé nastepujacas:

B T, 7 1 cos 2¢1 sin 29,
T2 1 cos 2@2 sin 2¢2
(T) = o ’ (F) = ETS
L) 3 o - ?
| Tn,_ 1 cos 2¢n SinscOn
A
(M) = B J. (2.,49)
(65

Macierze (T) i (r) sa znane, poszukiwana jest macierz (M).
Réznice mi¢igzy wartosciami zmierzonymi Ti i obliczonymi Pijmj'
dajg macierz biedéw (Z)
(T) - (1) (M) = (2),
czyli : §
zZ; = ?i =T M- , _(2.50")
Zasada najmniejszych kwadratédw wymaga, by suma kwadratéw biedéw osiag-

ne¢ta najmniejsza wartoéé, przy czym uzyskuje si¢ to przez dobér odpo~
wiednich A;B,C. Mamy wiec

Zy - %, = Min.,
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Po wtore, znajoﬁoéé orientacji osi gtéwnych tensora umoZl%wia W :
stosunkowo prosty sposéb wpisanie elipsoidy wielkosci fizycznej w komor-
ke elementarng krysztaiu. Przychodzi tu z pomocg zagada Neumanna, prze-
widujaca mozliwe korelacje miedzy symetrig i orientacja elipsoidy, odpo-
wiadajacej makroskopowej wielkosci fizycznej, a symetria krysztaiu i
orientacja osi krystalograficznych. Ta droga mozliwe jest uzyskanie ngr
szych korelacji miedzy, na przykiad, kierunkiem najlepszego przewodnic-
twa elektrycznego krysztalu a rozktadem czasteczek w komérce elementar-
nej. |

Po trzecie wreszcie, najprostsza postaé¢ wyrazenia na wartosé wiel-
kosci fizycznej w zadanym kierunku otrzymuje 'si¢ wiasnie w ukiadzie osi
gtéwnych tensora (kwadryki).

Sposréd réznych metod znajdywania klerunkéw i dlugoéci osi gtéw-
nych przedstawimy dalej dwie metody. Pierwsza z nich, metoda algebrai?zf
na, opiera sie na definicji wektoréw wiasnych i wartosci wiasnych macie-
rzy. W przypadku macierzy drugiego stopnia, wyiacznie nas tu interesuja-

_cych, prowadzi ona do réwnania trzeciego stopnia, majacego zawsze roz-
wigzania analityczne. Macierzelstopnié wyzszego niz drugl prowadzag do
réwnan stopnia wyzszego niz trzeci, nie zawsze atwych do rozwiazania,.
Dlatego przedstawiono réwniez druga metode znajdywania wektorow i war-
tosci wiasnych, metode kolejnych przyblizen, dajaca zewsze wyniki nume=—
ryczne. Jest ona prostsza pod wzgledem rachunkowym, choé¢ niekiedy bare
dziej pracochionna. :

2,7.1. Metoda algebraiczna

Zbidr wspbiczynnikéw kwadryki Sij bedziemy traktowaé jako maj
cierz S. Iloczyn S u przy dowolnym wektorze u Jjest wektorem S
na ogél-réznym od ﬁ. Jesli zachodzi réwnoleglosé obu wektoréw 1 ju,
to u Jjest jednym z wektoréw wiasnych macierzy 8. Ta réwnolegZoi¢ za-
chodzi wéwczas, gdy skiadowe g' 88 proporcjonalne do odpowiednich skke-

dowych u, tj. réwnaniem wektoréw wiasnych L wartoéci wiasnych A ma~
cierzy S Jest

-_S-l1.=.}‘31
czyli

(8 - »Tu = 0. (2.54)

Symbol 1 oznacza macierz jednos' :ows.
Rozpisanie (2,54) prowadzi do rastepujacego uktadu trzech réwnan:

(S'l'l - ?\)u,] + 812u2 + S,]-ju.\3 =0 ({2855



)

0,

1]

S5quq + (322 - Nvuz + 823u3

a0 (2.55)
831u1 + S3au2 + {533 - )ua_ : :

0,

gdzie u, sa sktadowymi jednego z wektoréw wiasnych g(i), i=1,2,35.
Aby zbiér réwnah jednorodnych (2.55) mial rozwigsania nletrywialne ze
wzgledu na u, musi anlkaé wyznacznik tego ukladu

det (8 —A7) = 0. (2.56)

Réwnanie (2.56) jest réwnaniem wiekdwym trzeciego stopnia i okresla
trzy pierwiastki A 1 5 at2 J X(B), gtanowiace trzy mosliwe wartosci
-wilasne 8. Je$li sq ome liczbami rzeczywhetymi, odpowiadaja diugoéciom
trzech osi gibédwnych kwadryki S,

Podstawiajac kole?no k(i do (2,54) mozemy obliczyé odpowiadajace
im wektory'wlasnb u i . Sens fizyczny u i jest taki, zZe jego skilado-
we okreslaja kosinusy kisrunkowe osi gtéwnej (i)/ wzgledem ukladu wspdi-
rz@dnych XXz, w ktérym zadana jest kwadryka S. Wobec tego na wekto-

naklada sie warunek normalizacyany

wlihyt 43 _ q - (2.57)

przeproﬁadzajqcy g(i) w wekbtory Jjednostkowe gci)

(1)

utl=u

(1)

5L

(1)

2.7.2. Metoda kolejnych przyblizen

Podstawa tej metody jest wiasnoéé piaszezyzny n stycznej do kwa-
dryki. S w tym punkcie, W ktérym przebija ja dowolnie wybrany wektor q
(rys. 2.13). Pokazemy, Ze.wektor ©p speiniajacy relacje

p=2 g

jest prostopadly do tej piaszczyzny. Wybierzemy wektor il a 4, ktérego
koniec lezy na powierzchni kwadbyki tak, ze r) (S)(r) =4 oraz g =k.r
'gdzié k jest stata. Iloczyh skalarny r - P rowny Jjest tej btaleg k,
many bowiem

r-p= (0% (8) (@) = kx)F (8) (x) = k.

Wynik ten mozemy pordwnaé ze standardowym réwnaniem piaszczyzny



gdzie T . Jjest wektorem wykres-
lanym z dowolnego punktu O i}
konczacym si¢ na ptaszezyznie,

zaé N Jest wektorem wykreslo-
nym tez z tego samego punktu O

i normalnym do piej. Z poréwns-
nia obu réwnah widaé, ze p mu-

Rys. 2.13. Wiasnosé piaszczyzny &

gl byé prostopadiy do T Wynik
ten stuszny jest w dowolnym u-
kZadzie wspdirzednych.
Przypusémy teraz, ze mamy
zadany S W ogblnym ukiadzie
‘wspélrzed.nych x, .Rysunek 2.4

stycznej do kwadryki w r || g3 jeéli ~ przedstawia przekréj tej kwa-

p=84g, to p %~

X4 Y, k]

dryki w piaszezyiznie xX,. Wy-
bierzmy dowolny wektor uq le-
 Zacy w piaszczyznie przekroju
j (nie koniecznie jednostkowy).
Wektor

B o Ly

bgdzie normalny do piaszczyzny
™4 stycznej w tym punkcie, w
ktérym 1wy przebije kwadryke.

BN

Xy Powbtoérne zastosowanie tej ope-
racji daje wektor

By

normalny do Toy ktora jest
tym razem styczna do kwadryki

Rys. 2.14. Metoda kolejnych przyblizen: R AT
orientacja normalnej dgn%i, 52,?.. zbly " Punkeie jej przebicia przez

-za s8l¢ do osi gidéwnej

wektor u,. Wida¢, ze kierunki
wektorow Wy Bpseee, Uy zbli=

zaja sig coraz bardziej do kierunku osi giéwnej X1 Normalizacja wekto-

ray,n

prowadzi po n przyblizeniach

tos¢ wiasna, odpowiadajaca e 1

-I—J.n e

|4a]

do otrzymania wektora wiasnego e (1) . War-
mozna otrzyma¢ z réwnania

En
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selM =z 1)), (2.58)
czyli :
1/2 1/2
@D {(f,.l' (f)} ={Z fg} : (2.59)
i

Warto zauwazyé %e kierunki u, sa zbiezne do kierunku najkrétsze]j osi
kwadryki. Dla przyspieszenia tej zbieznodci najlepiej wybraé wektoxr
prébny g W takim kierunku, w ktérym jedna z trzech wartosci Sii Jest
najmniejsza. Zwykle kilka krokéw w metodzie przyblizen doprowadza do
znalezienia wektora 9(1 z doktadnoscia do jednostki trzeciego miejs—
ca; dla uzyskania wickszej dokladnoici rachunek trzeba prowadzié dalej.
Zbieznoéé przyblizen jest o wiele wolniejsza, jesli précz S;3 istnie-
Je Jjeszcze druga wartosé Sjj E’Sii. Jesli nie potrafimy wybraé trafnie
plerwszego przyblizenia, to rachunek trzeba prowadzié wéwczas diuzej.
W konsekwenc ji mozemy otrzymaé ta droga tylko jeden z trzech wektordw
wiasnych. Dla znalezienia e trzeba zastosowaé metode kolejnych
przyblizen do macierzy odwrotnej §'1 wediug oméwionych juz zasad.Trze-
ci wektor wiasny oblicza si¢ z iloczynu wektorowego

Sl s ey

Jesli tensor jest zadany nie w postaci wspéiczynnikéw kwadryki, lecz
sktadowych wielkosci fizycznej, to wektor prébny u, nalezy wybraé w
tym kierunku, w ktérym skiadowa tensora na przekgtni ma najwigksza war-
tOéé ° : 3

2.8, Problemy i przykiady

2.8.1. Wyznaczenie przekroju tensora rozszerzalnoéci termicznej
krysztatu ortorombowego

W celu wyznaczenia zaleznos$ci wspdiczynnika rozszerzalnosci ter-
micznej krysztaiu od kierunku, czyli ustalenia anizotropii rozszerzal-
nosci termicznej sieci, stosuje sig¢ czgsto jedna z metod rentgenogra-—
ficznych, na przykiad metode kolysanego krysztaiu lub metode Weissen-
berga. Aby uzyska¢ mozliwie prosty obraz dyfrakcyjny, os kolysania po-
winna byé réwnolegia do jednej z osi krystalograficznych - na dyfrakto-
gramie pojawiaja sie wéwczas refleksy, odpowiadajace weztom okreélone]
ptaszczyzny sieci odwrotnej. Przyjmijmy, Ze w niniejszym przykiadzie o$
kotysania jest réwnolegia do osi a krysztaiu, zatem na kliszy fotogra-
ficznej pojawia sie refleksy o wskaznikach Millera (Okl), (ikl), (1x1),
(2Kl) etc., zgrupowane w warstwice (rys. 2.15). Dla naszych celéw usy-
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Refleksy Warstwica
typu rzedu
(1 k1) it e | e DR e
Bl e
(1kl) il e [l
| ' )
Rys. 2. 15. Waratwice ren.ehabu w motodzie kplysunego krjsztalu
{schenatycsnie)
teczne sa jedynie refleksy (OkL
; \ warstwicy zerowej,poniewaz tyl—
' ;: ;) | ko dla nich mezns wyznaczyé z
] | | / wysterczajaca dokiadnodeig zmia-
| Lt e s ey ay braggowskiego kgba wozprosze-
[ ! uia @, spowodowane zmiang tem-
I+-<—~~—2fe+d"z;', F '"_"'J; peratury. Dlatego w pracach

e , : tych uzywa si¢ zwykle ekrané_w'

Rys., 2.16. Eaty ndiiysku Bragge dla metaliczunych, eliminujacych re-

dwéeh rofnyeh henperstur fleksy innych warstwic,i na tej
pame] kliszy wykonuje sig¢ dwa

adjgeia krysztalu: w temperaturze t, (najczeseiej temperatura ciekie— -

go powietrza) i t2 (pajezgficiej temperatura pokojowa). Fragment. ta=-

kiej kliszy przedstawiouno na rys. 2.16. Obek dwéch reflekséw s, i 8,

narysowany Jjest Slad wiazki pierwotnej, przesioniety w érodku cieniem

- matego kryszbaika uiytego jako probka.

Korzystajac z prewa Araggéw moiemy napisaé

?"dhkl 8in® = n - ),

pdzle dh.kl Jest odlegtosecin dwdch sgsiednich praszezyzn sieciowych o
wskaznikach (hkl), € odpewiadajgcym tym praszczyznom katem odblysku,

A diugoseig fali uzytego promieniowania monochromatycznego, a >n rzg-—
dem dgfrékcji., Zmiana temperatury powoduje zmiane dhkl’ a to pocigga
za poby zmlane kgta @

Ndhkl)A 8in 8, + dppq 8(sin B) = 0 & A(dhkl) sin 84 + dp o cos 6, 58,
S8tad

- 8dpg) )
(hkl) = el £
S : : (2.60)
me (B2 = B9)  tg &1, - 6y) :
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Widzimy'zatems i% w celu obliczenia wspdiczynnika rozszerzalnosci w kie~ -
ranu normaluyn 4o piaszczyzny (nkl), trzeba znaé kat 8,4 w temperatu-
rze nizswej 1 jege zmiane przypadajaca na 1 K. Latwo tei zauwazyé, ze w
celu otrzymania mozliwie dokladnych}wynikéw nalezy wybraé refleksy o
mozliwie duzym kacie odbiysku (refleksy wysokokatowe). |

Mimo wszystko nie jest to metoda dokiadna z nastepujacych powodows:

(1) Ruchltermiczny sleci powoduje poszerzenie refleksédw i ich roz-

mycie, co prowadzi do okreslonych biedéw w ustaleniu ich polozenia kato-
WeEo. - :
(1i) Czesto nie znajdujemy wystarczajacej liczby reflekséw o duzym
kacie odbkysku (28 >=800), potrzebnej do wyznaczenia wybranego przekro-
Ju tensora. Korzysta si¢ wtedy réwniez z reflekséw niskokatowych,co pro-
wadzi jednak do wigkszych bledéw w wyznaczeniu «. :

(1ii) W celu uzyskania mierzalanej zmiany katowego polozenia reflek-
su potrzebna jest réznica temperatury U, - t4 = 100 K, w wyniku czego
wepdiczynnik rozszerzalnosci podany relacja (2.60) nalezy traktowaé ja-
ko wertodé érednia. Jehsli rozszerzalnosé sieci ma charakter nieliniowy,
lub mi@dzy 64 i ta zachodzi przemiana fazowa, zjawiska te 8§ calkowi-=
cie pominiete procedura i nic 0 nich nie moZemy sig dowiedzieé.

Z tych powoddéw w pemiarach rozszerzalnosci liniowej krysztaiow sto-
suje sié wspdiczesnie w zakresie rentgenografii metod¢ dyfraktometrycz-
ng Bonda [4,5]. Polega ona na bezpoérednim pomiarze kata € z dwu syme-—
trycznych i dokZadnie mierzonych potozen odbijajacych krysztatu, przy
czym detektorem promieniowania rentgenowskiego jest licznik Geigera-liil~
lera lub licznik scyntylscyjiny. Jest to metoda o wiele dokzadniejsza od
fotograficznej i w warunkach sprzyjajacych pozwala mierzyé zmisny kata
dyfrake ji odp?wiadajqce réznicy temperatur rzedu 0,01 K.

Do wielu celdw znajomosé srednich wspdiczynnikéw rozszerzalnosci
zupetnie jednak wystarcza, Wracajac do relacji (2.60) warto zauwazy¢,ze

. przedstawienie kierunkowej zaleznosci a 2za poérednictwem wskaznikoéw

(hkl) paszczyzn jest niewygodne. Mozna jednak bez trudu przejst od
a(bkl) do a(¢q), gdzie ¢ Jest katem zawartym migdzy wybranym kierunkiem
krystalogfaficznym a normalna do ptaszczyzn (hkl). Sytuacje¢ geometrycz-
na przedstawiono na rys. 2.17. Widzimy, ze dla interesujacego nas zbio-
ru piaszczyzn (Okl) :

tg ¢ =

o o

1.
k

Znajomosé periodéw sieci b i c oraz wskaznikéw k i 1 pozwala obii-
czyé ¢ . Jako wyniki doswiadczalne bedziemy uwazué pary liczbowe Qe i0=
razs C o= a.. W ukiadzie ortorombowym mamy 6 = O (rys. 2.11) oraz



A + B cos Zopi,

- a5 +'¢.!ﬁ

- 9 |
nll« (c) 2 (2.61) j

a -a :
Bl mee-e b i aic ',

\ gdzie a22J|b 4 a33]|-o 83
giéwnymi osiami badanego

f & przekroju tensora. Poniewaz
| 5 w zbiorze klisz fotograficz-
} ¢ nych refleks (Okl) moze Wy-
__{ by N N b stepowa¢ r; razy,przyjumie-

i my za &, érednig arytme-
tyczna Iy niezaleznych po-

Rys. 2.17. Orientacja normalnej do zbio- .
ru odbijajacych piaszczyzn miaréw

£ +
a; =<0, >t o, (2.62)

gdzie ‘oi jest érednim bXedem wartosci Sredniej. Wage statystyczna Wy

definiujemy jako miare dokadnosci proporcgjonalng do liczby pomiardw i
odwrotnie proporcjonalna do éredniego bedu

H

wi = f ° (2‘63)
i

Poszczegblne macierze, wystepujace w (2.51), maja obecnie postaé

BIR [Wq Wq cos 29, ]
Ay ay W, W, cos 29, ;
(wa) = Y 3 \T) = 7 : 9 (M):().
. s B
SV an | Lwn W, cos 2([)1__l ]

Zbidr wyjsciowych danych doéwiadczalnych otrzymany dla krysztaiu 1,8-
dwunitronaftalenu z niezaleznych pomiaréw 42 reflekséw i zgrupowany !
10 punktach wyznaczajacych przekrédj (Okl), zestawiono w tab. 2.2 [6].
Na podstawie te;j tabeli mozemy obliczyé liczbowe wartoici elementéw ma—
cierzy (wa) i (1) <



[ 29,454 ]
46,410
79,540
13,179 |
10,838 - 10
9,057
55,311
13,835
4,154

| 5,746

(wa) =

Zatem

a na podstawie (2.51)

35,9796

mT @) = (: ;
_‘115981

54,898
)-10‘6
4,637

Dane doéwiadczalne do przekroju (Okl) tensora a w 1,8-dwunitro-

(0,437  0,4370
0,714 =0,5501
1,428 =0,4532
0,223 0,0171
0,375 0,310 1|
0,253 0,1986
0,952 -0,8474
0,252 =0,1576
0,088 0,0159

| 0,088 -0,0825 |
',1’598'1 ;

1,5058 )’
1 |

3 (%2 * %35)

1 (ahy = @zz)
oRia2 55

Tabela

naftalenie [6]

1| (ok1) | (o % 0;)010%/K| cos 2¢; | Ty | cwy
7 020 67,4 * 18,3 1 8 0,437
2 011 65,0 * 8,4 -0,7705 | 6 0,714
3 021 55,7 Az 5,6 . =0,3174 8 1)428
4 | 031 59,1759 0,0768' | 4 | 0,223
5 o041 28,9 * 8,0 0,3492 | 3 0,375
6 081 35,8 £ 15,8 0,7849 | 4 | 0,253
7 023 58,1 t 4,2 -0,8901 | 4 | 0,952
8 043 54,9 £ 11,9 -0,6255| 3 0,252
9 010 47,2 11,3 0,1803 | 1 0,088
10 | 012 65,3 * 11,3 -0,9373 | 1 0,088

55|

2.2



56

Stad

Gop = 50,261

X 10_6 Kownes
a33 = 59,535

Po utworzeniu macierzy biedéw wedlug (2.50) znajdujemy, zZe 22 Zi =
= 1284+107 12 k™2, g blad standardowy o= 3,8:10™° K, Wobec tego gow-
ne wspéiczynniki rozszerzalnosci wynosza -

(122 = 50,5 '.!'. 5,8 1
x 107° k7',
3,8

1+

o 33 = 59,5

Postepujac w analogiczny sposdéb z danymi. dla drugiego przekroju tensora
(hk0), czego szczegdly tu pomijamy, otrzymujemy

aqq-= 17,7 £.5,3
x 1070 &1,
a22 = 49,0 t 3'5 !

Skiadows «,, Wyznaczono dwukrotnie, z dwu niezaleznych przekrojéw ten-
sora. Wida¢, iz rdéznica mie¢dzy oboma wynikemi miedci si¢ w granicach

- bXedu standardowego. W takim rézie giéwne wspdlczynniki rozszerzalnosci
termicznej w krysztale 1,8—dwunitronafﬁalenu wynosza

(1/!/] = 117’7 2 5’3
& s a9ie ket xRS KT (2.64)
\ (‘1,33 = 59,5 i 5'8 :

2.8,2. Grientacja piaszczyzny izotropii w krysztale

Piastzyzna izotropii w krysztale jest ptaszczyzna o takiej wias-
nosci, ze w kazdym kierunku, lezacym na tej ptaszczyznie, wartosé wiel-
kosei fizycznej jesSt taka sama. Plytka wycieta z krysztatu réwnolegle
do tej ptaszczyzny ma na przyktad wspbéiczymmik zatamania Swiatia jedna-
kowy w-kazdym kierunku lezacym w piytce, a wig¢c nie wykazuje zjawiska
podwédjnego zatamania swiatia dla promienia padajacego prostopadle. O-
rientacje tej ptaszczyzny mozna podawa¢ za pomoci kosinuséw kierunko-
wych wektora prostopadiego do niej; jest to kierunek charakbtérystyczny,
zalezy od symetrii krysztaiu oraz od wzglednej orientacji osi elipsoidy
wielkosci i osi krystalograficznych, W niektorych przypadkach ma on o-
kreslong nazwe: W odniesieniu do wzasno$ci optycznych krysztaiu kierun-

N
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(010)

T

Rys. 2.18. Orientacja normalnych Nq i Eg do ptaszczyzn izotropii
w krysztale jednoskosnym

ki normalne do przekrojéw izotropowych tensora optycznej przenikalnbé—
ci dielektrycznej nosza nazwg¢ osi optycznych. W diamagnetykach réwniez
mozna méwié o osiach magnetycznych, zdefiniowanych w analogiczny Spo-
86b (por. pe. 5).

Rozwazmy rozklad potrzebnych nam kierunkéw na przykiedzie kryszta-
Iu jednoskoénego, podany na rys. 2.18. Osie krystalograficzne a i ¢
_leza w ptaszczyznie (010), o8 b Jest do nich prostopadia. X  jest
osia prostopadia do a i b tak, zZe abe® tworzy ortogonalny uklad
osi krystalograficznych. Jesli c¢ Jest kierunkiem poslizgu W sieci
przésﬁrzennej, to uklad osi ortogonalizujemy do a*bc. Dla sprecyzowa=
nia syiaacji- przyjmiemy, ze wartosci giéwne tensora T speiniaja rela-
cje

(0] <‘i:1 < 1:2 <5 13, oraz 12 “b,

W takim razie miedzy T4 i 7 istniej: taki kierunel (;)T = {cos Py
0, sin w}, Ze wartos¢ T° w tym kierun' réwna jest T,

2 cos? gitit, sinf O = T, (2.65)
Warunek ten-wyznaczé poXozenie piaszczyzny izotropii m,. Zauwazmy, 2ze

istniejé jeszcze druga taka ptaszczyznz 7.,, polozona symetrycznie
wzgledem Tq. Po niewielkich przeksztaziceniach trygonometrycznych otrzy.

- mujemy z (2.65)

4/.2

- g

3

; T
cos ¢ = s (2.66)
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Jeéli znamy wartosci giéwne tensora, to z réwnosci (2.66) mozemy obli-
czyé kat zawarty miedzy. wektorem 1 i Tq. W odniesieniu do osi krysta- .
lograficznych abc® 1 ma orientacje @)* {GOS,(‘P =100 O? sin
(o=~ © )} (rys. 2.18). Czeécie]j Jjednak orientacje ptaszczyzn 1zotr0pii

podaje si¢ za poérednictwem wektoréw do nich normalnych, Ny L mg,
N, L m,. Kosinusy kierunkowe ' N i _112 Wynoszas
wzgledem osi Ty, Ty, Ty (_lg,‘)T = {- sin 9, 0, cos ‘?},
(Eg)T = {- sin ( o+ 2V), 0, cos ( ¢+2Y)},

wzgledem osi abe™ (E,I)T = {- sin (q:-eo), 0, cos (cp-Go)},

(N,)% = {- sin (p:27-8,), O, cos (q>+2V—9°)}.
; (2.67)
Jesli kat miedzy N4 i N, oznaczymy przez 2V, to 2V = 180 = 2 ¢

oraz
cos 2V = = cos'2<p = gin® 9 - cos” 9 =
T 5 T =T <T>= T
) S 2 (2.68)
T’] - "55 ‘T.'1 - "C3

<T> Jjest wartoécia Srednia, zdefiniowana przez (2.31).
Korzystajac z (2.68) mozemy wyrdznié nastepujace przypadki:

(1) 11.# o # Tz e Mamy wéwczas dwa przekroje koXowe elipsoidy wiel-
kosci, zatem dwa kierunki do nich prostopadie Nq i N
(ii) 2 (g + 15) T, W tym przypadku 2V = 90, ezyli Nyl N.

] (1id) Tz = T, (2v = 0), 1lub T = s (2V = 180). Obrazem elip-
soidy wielkosci jest wowezas elipsoida obrotowa wokék Tq 1lub 1:3,a kaz-
da ptaszczyzna prostopadla odpowiednio do %4 lub 13 Jest przekrojem
izotropowym. W tej sytuacji mamy tylko Jeden kierunek wyrdzniony. Jego
orientacja wzgledem osi abc rzadzi zasada Neumanna (por. p. 3).

(iv) T =T = T Krysztat o tych wiasnosciach jest 1zotr6powy,
wobec czego nie ma w przestrzeni klerunku wyréznionego. Inaczej méwiac,
kazdy kierunek jest prostopadly do przek:coau izotropowego.

Jak juz zauwazylismy, izotropewe przekroje krysztakéw majg wazne
znaczenie zaréwno z uwagi na prostote warunkéw eksperymentu, jak i prak-
tyczne zastosowanie takich piytek, Okazuje sig¢, Ze roéwniez strukturalna
interpretacja wynikéw takich pomiaréw Jest nie tylko mozliwa, lecz i in-
teresujqqa, poniewaz prowadzi do poznania rozkladu charakterystycznych
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kierunkéw molekularnych w tej pzaszczyznie. Wréeimy do bardziej szczegd-
iowego oméwienia tych probleméw w p. 5 i 6.

2.8.3. Wartosci wtasne i osie gléwne tensora

Znalez¢ kierunek i diugoéc osi gtéwnych tensora przewodnictwa elek-
Srycznego Rewnego materiaiu, przy czym skiadowe tensora sa nastepujace
lwiomS emic )sio ) = 25, too5 = 7, 033 = 13, 0yp = 093 = oy = azq = O,
G o heRe :

W rozwigzaniu tego zadania zastosujemy metode algebraiczng. W celu
znalezienia rozwigzan nietrywisdnych powinien byé speiniony warunek (2.
56), czyli

(25 =) 5 o
det (S35 - A& 4) = 0 (2 =n)s in2f3 1= O
0 =2WB (=3)
Stad
(25 - 1 {2 = 0013 = 2 - 27)= 0
oraz

R

Rozwigzaniem réwnania drugiego stopnia zawartego w klamrze s pozostale
wartosci wkasne

{2) _ 46, )

Przejdziemy obecnie do obliczenia wektoréw wiasnych.
(i) Wartosci wkasnej x(q) = 25 odpowiada wektor wkasny u
ki, ze
25 g o \/u{M ul
7 373 |l | 25 uf
0 33 13 uéq) ué

1)
)
1)

tPo rozpisaniu otrzymujemy trzy réwnania liniowe:

« 25 W) < 25 (1),

7 uéq) - 39/3 uéq) =125 uéq),
o ) R (1)
53 u +A3ug = 25wt
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Rozwigzaniami tych réwnan sg

u#q) - dowolne, uéq) = (o) uéq) = 0.

Poniewaz u(1) powinien speiniaé warunek normalizacyjny (2.56), przeto

elfhT = (a0l o)

2)
(ii) Wartosci wtasnej A(E) = 16 odpowiada wektor wiasny g( .

UkZzad réwnan liniowych ma obecnie postaé 3 ‘
(2) (2)’

251].] =16u1

=6 nie!
7u - 343 u =16 w3,
=33 uéz) + 13 ué ) = 16 uéz).

Z pierwszego z nich wynika, ze u%e) 0. Pozostale dwa sg sobie réwno-
wazne - mozemy z nich otrzymaé jedynie informacje, ze

uéz)/u(z) V3/3.

Obliczenie tych skladowych umozliwia warunek normalizacyjny, ktory ma
obecnie postaé

(ué_z))2 + (uéa))2 =1,

czyli

‘W koncu otrzymujemy

(9(2))1‘ = (O, "';' ’ ﬂ o

(1ii) Wartosci wiasnej x(g) 4 odpowiada wektor wiasny u(a)
Po napisaniu réwnan liniowych widzimy, ze u1 = 0, zaé pozostate dwa
réwnania

3 u£3),- 34/3 u§5) =g,
o

maja rozwiazania uéB) = 3/2,’ uéa) = 1/2. Fatem

(9_(5})T = e W6k

1
2)5)-
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Znalezione trzy wektory wiasne tworza razem macierz transformacji
1 0 (0]
o =ile0 /5 1 =1/2
0l =/2 " 512

doprowadzajaca zadany‘tensor g do postaci przekatniowej. W macilerzy
¢ zamienilismy, wiersz drugi (2_2 )T z trzecim (9‘3 )T w tym celu,
by wyznacznik tej macierzy by réwny +1. Latwo si¢ przekonaé, Ze

bs 0.0
c 8 (t__:)"r = OF i 0R)e
: 0w 0!

2.8.4. Relacja miédzy sktadowymi. tensora
a odpowiadajacym: im wspbdiczynnikami kwadryki

Tensorowi
165 O 0
o R S ) (2.69)
QS0 I 20

w ukladzie osi giéwnych odpowiadﬁ réwnanie elipsoidy wielkoéci

X2
%*%*ﬁ,ﬁ:"' (2.70)
Obréémy teraz uktad wspbirzednych o +30° woké: X (ukZad x1 xg x;
macierz transformacji c1), a nastepnie o kat +45° (ukzad x1 Xy Xz,
macierz transformacji ¢, ) wokél nowej osi x2 (rys. 2. 19) Zloﬁenie
obu obrotéw prowadzi do relacai miedzy uktadem x1 xé 13 a Xq Xé x
(macierz transformacji c)

v2/2
¢=gre | O

- 4272

0 -+272\ [V3/2 1/2
1
0

e/ V24 -#"/2) 0,6124 0,356 =0,7071'

0
/2 372 0 |=
2 0 0 1

e
N

Sl a2 YD -0,5000 0,8660 0. of "2
Vor4  V2/a +2/2 0,6124 0,35%6 0,707
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" Rys. 2.19. Obroty osi ukiadu wspdirzednych

Widzimy, Ze tgczny obrét jest iloczynem macierzy €o°8q (nalezy zwroécié
uwage na kolejnosé czynnikéw). i-ty wiersz macierzy c bodaje orienta-
cje osi xi wzgledem osi x4x2X3.

Skiadowe tensora T w ukladzie x{ przyjma wartosci

'16,500 -3,674 -3,500\
T=cx ()t = 3,67 2,000 -3,674 ). (2.72)
"'3,500 =3,674 161500

Oczywiscie Tqq + Tpp + T3 = Ty + T, + T3 = 40.

Poszukajmy teraz osi giownych tensora g metoda kolejnych przybli-
zen wiedzgc, ze musza nimi byé 1112X5. Jezeli znamy ten wynik,»to moze-
my przesledzié rezultaty rachunku w sposéb kontrolowany. Wirdéd skiado-
wych przekatniowych T mamy dwie wartosci: Thq = T55. Sprébujmy wigc

jako wektora prdébnego Eﬁ = {1, 0, =1). Llamy



63

16,500  -3,674 =3,500 1 20
lEe)T =| =3,674 . 7,000 ' -3,674 o |= o,
-3,500 =3,674 16,500 e -20

a wige juz pierwsze przyblizenie po normalizacji do jednosci prowadzi
do dobrej orientacji jednej z osi gkéwnych

(RB S ey e

Drugiej osi giéwnej nalesy szukaé dla g'ﬂ

102,00 73,48 38,00
= 1
pelo i vasiag’ (560,00 L 75,480,
T 1280, 04
38,00 73,48 102,00
Najwigkszg sktadowa przekatniowa jest (T"I)22 = 260500/1280,04, wobec
czego wektor probny 5 winien byé postaci (u e )T = e O sR Ty

razem rachunek jest nieco. diuzszy, a kolejne przyblizenia sj nastepuja-
ce:

przyblizenie I 11 III Iv v
0 0,2624 0,332 0,3480 0,35216
wektor 1 0,9286 0,883 0,8705 0,86716
Q = 09,2624 . 0,3312.  0,3480. ' 0,35216

VI VII VIII &2
0,35320 0,35346 0,35355  Vo/4
0,86632 0,86610 0,86603 — /3/2
¢ 35320 0,35346 0,35355  V2/4

Trzeci wektor (e(a))T = (Vé/4, -1/2, +/6/4) mozemy otrzymaé z rela-
cji e A e(q) (2). Wynikajaca stad macierz transformacji ma pos—
taé

vere  AEm  Afeyu

: LR G V3/2 -1/2 |. (2.73)
-vz72 2/ E/a

Widzimy, ze w uzyskanej gacierzy osie X, i X5 zostaty zamienione w po-
réwnaniu do (2,71) (kwestia numeracji osi) oraz nastapita zmiana znaku
osi X, (kwestia prawoskretnosci ukiadu), ﬁﬂklady osi (2.725) i (2.721)

88 wiec sobie réwnowazne. :



Prze jdZmy obecnie do uktadu kwadryki. Tensorowi (2.69) odpowiada
kwadryka wspdiczynnika :

AT G 6,250 0 0
Blaifiro o a4, onii=aoe | o0 iasi000 0l e uga)
0 0b ey 0 ;0 5,000

Transformacaa macierza c (2.%1) prowadzi do nastepujacych wspdiczynni-
kéw S5 w ukladzie x1xéx
/7,970 5,742 2,970
ces(e)f =102 (5,m2 20,3511 5,2 ) . (2.95)
2,970 5,742 7,970

L]
1

Poszukajmy obecnie osi gidédwnych kwadryki (2.75) znowu wiedzac, ze
muszg nimi byé Xi. Tym razem nalezy wybraé¢ wektor probny w kierunku,
ktéry odpowiada najmniejszym skiadowym Rii' Bedzie to wektor @ (1) T =

_‘(1 0, -1)

5,000
w=Bu= | 0 ) zaven (")7" - (422, 0, -v7F2),
-5,000

zgodnie ze znanym juz rezultatem. Postgpowanie zmierzajgace do wyszuka-—
nia dalszych wektoréw wiasnych nie wymaga komentarzy.

2.84.5. Stozek zerowéj rozszerzalnosci termicznej [3]

WspdXczynniki rozszerzalnoéci termicznej kalcytu (krystallzuae w
ukladzie trygonalnym) sa nastepujace [3]:

xqq = Gpp = ‘5"6"'0—6 st %33 = +24,97+10

=il
Obliczyé kierunek, w ktérym rozszerzalnosé termiczna wynosi zero. Czy
kierunek taki jest tylko jeden? :

Przypuéémy, %e zerowa rozszerzalnosé¢ wystepuje w kierunku 1l, od-
niesionym do ukZadu osi giéwnych tensera «. Korzystajac z (2.42) moze-
my napisaé ; 2

Sqq e 9 o
g Ta, - : =
@ = 0= (;) = 1= (142515) 0 T4 0 1, 4=
: o] 0 % 1y

e, 2 : 2
ay4(15 + 12) + a5513 = Oyq + (a53 - a11)15.

[}
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X Stad
g 1/2
I\ %
i e T U1 = 0,4272.
5 a - @
23 %1

Zatem zbiér kierunkéw,w ktérych
wystepuje efekt zerowej rozsze-
rzalnosci kiysztalu okreslaja
wektory jednostkowe

|—

@?T = (14, 1,, 0,4272) oraz

W o i)

Sktadowe 1, l2 wektordow spei-
niaja warunek

15 + 12 = 0,8175

poza tym sa dowolne.Zbiory tych
kierunlkéw tworza dwa stozki wo-
ko1 a35 Jjako osi. Katem wierz-

Rys. 2.20. Stozek zerowej rozszerzal- Chotkowym kazdego ze stozkéw
nosci w kaleycie Jjest (rys. 2.20)

29 = 2 arc cos 0,4272 = 2-64,75°,
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3. TRANSFORMACJA SYMETRIT

Symetria jest jedna z najbardziej ogdlnych cech materii, zardéwno
ozywionej jak i nieozywionej, réwnie powszechna jak masa czy temperatu-
ra, W dalszym ciggu ograniczymy si¢ do zastosowania tego pojecia do re-
gularnie zbudowanego ciala statego, wystegpujacego przede wszystkim w po
staci krysztaiéw. Symetria jest tak ogdlna podstawa klgsyfikacji ciata
statego, Ze podlegaja jej wszelkie obiekty fizyczne, niezaleznie od
wszystkich innych kryteriéw podziaiu, jakie - z réznych punktdw widzenia
mozna wprowadzié. Znane sq wigc przykrady substancji krystalizujacych w
ukladzie regularnym, Jjak na przykiad urotropina i jodek sodu, choé jed-
na jest krysztalem molekularnym,a druga jonowym. Zelazo @, séd i niob
sq metalami, jednak pierwszy z nich jest ferromagnetykiem, pozostae sa’
paramagnetykami. W niskich temperaturach séd Jjest zwykiym przewodnikiem
a niob zyskuje wiasnosci nadprzewodzgce w 9,2 K — mimo to wszystkie ma-
Jja identycznie zbudowana sieé przestrzenna (grupa przestrzenna Im3m), a
wiec Jjednakowa Symetrie krysztatéw. 3 -

Symetria nie byaby jednak tak wazng cecha ciata statego, gdyby
précz budowy geometrycznej ciata nie obejmowata réwniez jego wiasnoéci
fizycznych. Na przykiad krysztail, o jednakowym rozkiadzie atomébéw w
trzech ortogonalnych kierunkach przestrzeni, ma réwniez t¢ sama przeni-
kalnoéé dielektryczna w tych kierunkach, jak tez takie samo przewodnice~
two cieplne i elektryczne. Przeciwnie, krysztal anizotropowy w Sensie
geometrycznym wykazuje roéwniez anizotropie¢ swych wiasnos$ci fizycznych.

Zwigzek symetrii geometrycznej ciaia z Symetria jego wiasnosci fi-
zycznych jest intuicyjnie oczywisty, mimo to zostai ostatecznie sformu-
Xowany dopiero pod koniec XIX w. przez Franza Neumamna i nosi nazwg za-
sady Neumanna. Zanim jg oméwimy, przypomnimy krétko podstawowe pojecia,
nie wdajgc si¢ w szczegdly, ktoére znalezé mozna w monografiach poswiegco-
nych teorii grup. :

3.1. Symetria obiektu i wielkoéci fizycznej

Do podstawowych poje¢ teorii grup, zajmujacej si¢ Scisiym opisem
symetrii obiektéw fizycznych lub funkcji matematycznych, nalezy pojecie
elementu symetrii i operacji symetrii. Elementami symetrii obiektu ma-
kroskopowego moga hyé: centrum symetrii 1 (lub I), pitaszczyzna zwiercia-
dlana m (lub o), n-krotna o obrotu n {lub Cn) oraz inwersyjna os
obrotu . (lub Sn), przy czym mozliwe wartosci n sa n = 1,2,3,4,6.
Nie zajmujemy si¢ obiektami posiadajacymi 5-krotna o$ obrotu, poniewaz
symetrii takiej nie moZna pogodzié¢ z symetria translacyjna sieci prze-
strzennej krysztatu. W oznaczeniach elementéw symetrii na piérwszym'
miejscu wymieniono symbol migdzynarodowy, za$ w nawiasie symbol wediug
oznaczen SchBnfliessa., Méwimy na przyktad, ze obiekt ma zwierciadlang
plaszczyzne symetrii, jesli jego prawa poiowa jest identyczna z odbi-
ciem lewej poZowy w tej plasZczyZnie; Przez operacje symetrii bedziemy
rozumieé¢ takie przeksztalcenie (na przyklad'przezrcbrét o kat %60/n),
ktoére doprowadza obiekt do poozenia identyczneéo z wyJjSciowym,

' Nalezy jednak zwrécié uwagg, iz pojicie element symetrii nie jest
identyczne z pojeciem operacja symetrii. Jesli obiekt ma na przykad
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czterokrotna o$ symetrii 04, to mozemy dokonywaé nastepujacych opera—
cji symetrii: C,, co oznacza obrét obiektu o katy 360/4 = 90°, ez =
= C4 ° Cl = Cz, co oznacza wykonanie kolejno dwéeh obrotow o 90° w tym
samyn kierunku lub jednego o kat 180%, C2 = Cj « Cp + Cj = C', co oznas
cza wykonanie trzech kolejnych obrotéw o 90o kazdy lub o 90° w kierun-—
ku przeciwnym, wreszcie Cz = 04 . 01 . C4 . 04 = C4 = po obrocie cia-
Xa o 3600 obtrzymujemy pozycjé¢ wyjéciQWQ. Widzimy zatem, iz w tym przy-
kladzie jednemu elementowi symetrii odpowiadaja cztery rézne operacje
gymetrii, a ich zbidr tworzy gfupe w sensie matematycznym. Wynik ten,
majécy znaczenie ogdlne, mozemy strescié w nastepujacy sposdéb: kazdemu
elementowi symetrii odpowiada generowana przezen grupa operacji syme~-
trii.

Operacji symetrii odpowiada réwnie# przeksztalcenie (transformacja)
uktadu wspdéirzednych. Jeéli krysztal ma na przykiad trzykrotng o syme-
trii, to moZemy wybraé¢ uktad wspdirzednych o poczatku lezgcym na tej
osi., Po obréceniu krysztaiu o 120° spostrzezemy, Ze krysztai ma deokzad-
nie taki sam rozkad &cian zewnetrznych wzgledem tego uktadu, jak po~ .
przednio. Musi mie¢ réwniez dokiadnie taki sam rozkiad elementéw struk-
turalnych (atomy, jony, czasteczki) w obu poXozeniach. Stwierdzenie to
bedzie prawdziwe réwniez wtedy, gdy zamiast obrotu ciata dokonamy obro-
tu (ogblnie przeksztaicenia) ukZadu wépélrzednych w kierunku odwrotnym
do obrotu-ciata. Korzysé plyhaca z zastgpienia operacji symetrii doko-
nywanych na obiekcie przez przeksztaicenie ukiadu wspdirzednych ﬁBlega
na tym, ze kazdej operacji symetrii mozemy przyporzadkowa¢ odpowiednig
macierz przeksztalcenia (reprezentacja macierzowa), co znacznie ukatwia
znalezienie wpiywu operacji symetrii na okreslong wielkos$¢ fizyczng.

Peina symetria obiektu makroskopowego, na przykiad okreslonego wie-
loscianu, miesci si¢ w pojeciu grupy punktowej symetrii. Jest to taki
zbidér elementéw symetrii, tworzacy grupe, ze przynajmniej jeden punkt
w przestrzeni nie ulega przemieszczeniu pod wpiywem wszystkich operacji
symetrii, odpowiadajacych elementom tego zbioru. Jesli dla przykZadu
wesmiemy grup¢ punkbowg 222(D2), obejmujaca operacj¢ tozsamodci oraz
trzy wzajemnie prostopadie i przecinajace si¢ dwukrotne osie obrotu, o
Jedynym punktem nie ulegajacym przemieszczeniﬁ pod wpiywem operacji te=—
go zbioru jest mie jsce przecigcia sig¢ trzech osi. Niekiedy punktéw ta-
kich moze by¢ nieskonczenie wiele, jak na przykiad w grupie m2m (c2v)'
zawierajacej procz elementu tozsamos$ci dwie prostopadie piaszczyzny
zwierciadlane i o$ dwukrotng, biegngca wzdiuz prostej przecigcia sig
obu pzaszczyzn. Zbiory elementéw symetrii i inne podstawowe informacje
0 32 krystalograficznych grupach punktowych sg zebrane w 3.7.1.

W krysztale istnieje wiec wiele kierunkéw symetrycznie réwnowaz=—
nych, wynikajacych z dzialania operacji symetrii. Do naczelnych zasad
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Pizyki krysztatow nalezy stwierdzenie wypowiedziane przez F. Neumanna,
%e kierunki symetrycznie roéwnowazne sa roéwniez fizycznie roéwnowazne.In-
nymi siowy, pomiar dowolnej wielkoséci fizycznej w okre$lonym kierunku
musi da¢ ten sam wynik w kazdym innym kierunku, symetrycznie réwnowaz-
nym. Zasade te mozemy réwniez wyrazié¢ w jezyku teorii grup. Niech Gk
oznacza grup¢ punktowa symetrii krysztaitu, zas Gf grup¢ punktowq syme-
trii wielkosci fizycznej. Gf zawlera wigc wszystkie elementy symetrii
wtasciwe, na przykiad kwadryce. Zasada Neumanna orzeka, 2ze Gk musi byé
podgrupa Gf, czyli
Gk c Go, (26T

przy czym c Jjest znakiem inkluzji (zawierania).

Przy takim sformutowaniu zwiazku miedzy symetria krysztalu a syme-
.trig wiasnosci fizycznej wida¢, ze kwadryka podatnosci diamagnetycznej
w krysztale nalezgacym do ukiadu tetragonalnego (czterokrotna o syme-
trii) musi mie¢ symetrie elipsoidy obrotowej, co jest jej symetrig mini-
malng. Jest mozliwe, Ze w pewnym krysztale tego uktadu kwadryka bedzie
mie¢ symetrie kuli, nie moze sig¢ jednak zdarzyé, by miala symetrie elip-
soidy tréjosiowej. Ponadto siusznoé¢ zasady Neumanna ogranicza sig¢ do
krysztatéw niemagnetycznych, poniewaz réwnowaznoéé kierunkéw w kryszta-
tach magnetycznych nie jest zwigzana wylacznie z symetria grupy punkto-
wej. Wreszcie symetria grupy punktowej Gk odnosi si¢ do krysztaiu
znajdujacego si¢ w proézni, bez obecnosci pola. Umieszczenie krysztalu w
polu oznacza z reguly pojawienie si¢ efektéw polaryzacyjnych o okreslo-
nym kierunku, co obniZa efektywna symetrig krysztatu. Wystapienie tej
dodatkowej asymetrii prowadzi do tak zwanych efektéw drugiego (i wyzsze-
g0) razedu, obejmujacych zjawiska takie, jak dwéjiomnosé krysztaiu izo- :
tropowego, wymuszona obecnoscia pola elektrycznego (efekt Kerra), skrece-
nie ptaszczyzny polaryzacji w polu magnetycznym (efekt Faradaya), polary-
zacje elektryczng (pyroelektrycznosé) i magnetyczny (pyromegnetyzm) wy-—
muszone obecnoscig gradientu temperatury i inne. Zasada Neumanna w sfor-.
antowaniu (3.1) nie obejmuje stanéw krysztatu spolaryzowanege przez
dziatanie czynnikéw zewnetrznych.

3.2, Generatory punktowych grup symetrii

Do opisania symetrii krysztatow niemagnetycznych (z wylaczeniem
krysztaléw.ferri-, ferro- i antyferromagnetycznych) potrzebne sa i wy-
starcza 52 grupy punktowe, stanowigce %2 mozliwe klasy krystalograficz-
ne. Kazda 2z tych grup punktowych obejmuje pewna liczb¢ elementéw syme-
trii, wybranych sposréd 10‘elément6w uznanych za piervotne i stanowiag-
cych zbidér generatordw grup punktowych.
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Taibriet il a i 354d

liacierz

Operac ja Rzut Przeksztalcenie
symetrii stereograficzny uktad wspdirzed-— transformac ji
nych
i 2 2 I
: 1 0
Cq ) 4,4 = 1 0
0 0 1
Ill" .
FER
=1 0 C
T () 45 = |0 1o
(0] (0] =1
=1 0 0\
(y) & ,
c;’’ (2) dzi= (000 4.0
0 0 =1
) =1 0 G
(z ) =
c;” (2) 4, =| 0 1 0
0 (¢} 1
P o
o (m) ! 4= (0. -1 0O
2) C 1
?‘Z (m) —AG - C 1 (@]
; () ) =1
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cde tab. 3.1

1 . 3 T
14
i 0\
(z) g e e R
G5 a2 o5l 293730
SR '1/
Giid o
¢y 3) Tl
: oo
: Gt e
ci?) (4) L2l oo
OFt O
o Q im0
5,2 (4) Aol 0t
ok 1

Liste¢ generatordéw mozna sporzadzié¢ w rozmaity sposéb, zaleznie od
tego, ktére z elementéw symetrii uzna si¢ za proste, a ktdére za zlozone
w tym sensie, 2Ze mozna je przedstawié¢ jako ilcczyn dwédch (lub trzech)
innych elementéw. Wybdr generatordéw przedstawiony w tab. 3.1 obejmuje
10 nastepujacych elementow: g

o, Céy)’ CéZ), o, 9, C§Z)» C§ﬁ11]’ cl(\Lz); SAZ)'

t

W pierwszej kolumnie tabeli podano oznaczeuwia elementéw, w drugiej

rzut stereograficzny, ilustrujacy po}oZem‘.e punktu wyjsciowego (krzy-
2zyk) i punktow nowych (krazyzyk lub kélkb), wytwarzanych przez wszystkie
operacje symetrii generowane przez ten element. Polozenia odnoszg sie
do ukadu wspoéirzgdnych x1x2x3, zaznaczonego pa pierwszym rysunku. W
trzeciej kolum.flie podano rodzaj przeksztaicenia ukladu wspoéirzednych
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zas w czwartej macierze, odpowiadajace tym przeksztalceniom., Kazda z ma-
cierzy od A4 do A’IO odpowiada okreslonej ogeracal symetrii w potedze

pierwszej. Jesli interesuje nas operacja (C , to odpowiadajaca Jjej
macierzg jest §7

X3
C3[1111
\ /
C3!1111 ; ‘ JI A\
\.\‘ ; 2 >
U X
N
A8 [ AN
B A N
Do 7 N
[ RS X4
| st
) —
J X4
Rys. 3.1. Osie symetrii CZ,B'M:I i 03[111] szebcianu
Przy postugiwaniu si¢ tymi macierzami Zxatwo zauwazyé, e A 3 52

czyli igy) = (gzy))-(;). Mimo to powinnismy 55 traktowaé ;jak.o nieza—
lezny element symetrii (genmerator), poniewaz istnie?e grupa punktowa,
zawierajaca t'ylko ten element, a nie zawierajgca C
na 08 symetrii C;q przechodzi przez punkt (OOO) i naroze [111]
szeécianu. Jej orientacja przedstawiona jest na rys. 3.1. Przeksztakca
ona wspbéirzedne wediug schematu X, = X, X, = X5 x;' = x,, reprezento-
wanego przez macierz éB‘ Symetryczng oé trzykrotna, przechodzgciy przez
naroze [171] powinnismy traktowaé jako ztozony element symetrii (p. 3.
P SL(I- z) jest czterokrotnq osia inwersyjna; operacja I polega na wy-
konaniu obrotu o 90 , a nastepnie odbiciu punktu w centrum inwersal,
znaadu;]qcym sie w poczatku ukiadu wspbéirzednych. Mimo Ze formalnie 4 =

S 4, nie mozna rozktadu punlctow na rzucie stereograficznym
4 zastqpié przez pokaczenie rzutow 4 i 1. Inne osie inwersyJjne mozna
potraktowaé jako ztozone elementy symetrii, poniewaz 2Z = 0, 3z=52o1,
Gz = 32, . 22. Rowniez 6Z = 5z 7" : :

%,%. Wektory biegunowe i osiowe
_~

Zgodnie z zasadg Neumanna wielko$¢é fizyczna kryszbtaiu, nalezicego
do jednej z 32 grup punktowych symetrii, musi byc niezmiennicza wzgle-—

v) ani I. Trzykrot-

i
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dem operacji symetrii, nalezacych do tej grupy punktowej. Jesli zatem
wielkosé wektorowa oznaczymy przez p, & po transformacji uktadu wspoi-
r.gdnych przez p', to zasada Newnanna wymaga, by

P =0p (5+2)
lub, zgodnie z zasadg transformacji wektora (2.25)
£p=p,
czyli
{4 -2}p=o0. (3.3)

A Jest jedng z macierzy §1""’§1O (zaleznie od i:teresujacej nas
klasy krystalograficzrej), podanych w tab. 3.1, za$ 1 jest macierza jed-
nostkowa. (3.3) jest wi¢c ograniczeniem, nalozonym przez wymogi syme-
trii na postaé wekbtora. Rozwazmy kilka przypadkéw szczegdlnych.

(i) Przypusémy, ze krysztal ma centrum symetrii. W tym przypadku

oo
{§2 -'ﬂ} ok 0l 2o foraze per0)
: 0 0 =2

Oznacza to, ze krysztat posiadajicy centrum symetrii nie moze mieé¢ wias-
nosci, reprezentowanej przez wektor, na przyklad momentu pyroelektrycz-
nego lub momentu dipolowego. Oczywiscie mamy tu na mysli wiasnosci spon-
taniczne, wynikajgce z wiasnosci elementow strukturalnych i ich rozmiesz-
czenia w komdrce elementarnej. Jes$li zatem krysztal molekularny posiada
Ci’ a Jjego czgsteczki sg trwailymi dipolami, to rozkiad czasteczek w ko-
moérce elementarnej musi byé taki, by doprowadzato to Jo zerowania momen-
tu dla calej komorki elementarnej. A zatem komérka elementarna nie .no-
ze zawierac¢ tylko Jjednej takiej czasteczki. Umieszczenielkrysztalu W po-
lu eléktrycznym powoduje zmiang jego symetrii wypadkowej, poniewaz na-—
stepuje polaryzacja czasteczek., W wyniku tego ‘moment dipolowy komérki
elementarnej krysztaiu z Ci moze W pewnych kierun&gcn nie znikac.

(ii) Krysztal posiada dwukrotng of symetrii Céb . W tym- przypadku

czyli: pg = B = 0, p, #C.
Krysztal posiadajacy dwukrotng os symetrii moze nieé wiasnosé re-
prezentowang przez wektor, Jjednait wektor ten musi bHy¢ rownclegiy do tej
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osi (o kierunku niekoniecznie réwnolegiym do y). Taki sam wynik ptrzy-
muje sie dla zwykej osi symetrii wyzszych rzedéw (po 3.7.4). Wystepowat
nie w krysztale osi inwersyjnej 1 o krotnosci n > 2 powoduje nato-

miast znikanie wielkosci fizycznej reprezentowanej przez wektor bieguno-
Wy, Co mozna uzasadnié w nastepujacy sposéb, W zapisie macierzowym n=
y W zwiazku z czym warunek (3.5) przechodzi w warunek réwnowézhy

{g+ﬂ}2=

Warunek ten dla n > 2 Jest spelniony Jjedynie dla b= 0. 08 inweréyj—
na n= 2 jest identyczna z prostopadlq do niej ‘ptaszczyzng symetrii.
(iii) Wpiyw piaszczyzny symebtrii zilustrujemy za pomoca macierzy

{{ Y]

3, A D

‘Ag. Mamy 6o 0
- {1_:‘;6 —ﬂ} = Q 0 (0] v
o 0 =2

wobec czego D4 # 0, Po 03 Py = 0. Obecnosé piaszczyzny cz powodu-
Je, ze znika skladowa P3 wektora. Ogélniejszy wynik mozna sformulowaé
nastepujaco: w krysztale z piaszczyzng symetrii rézne od zera moga byé
tylko te wektory, ktére leza w ptaszczyznie symetrii (pe 3.7.5).

Wektory, ktérymi zajmowalismy si¢ dotychczas, naleza do grupy tak
zwanych wektoréw biegunowych., Takie wielkosci fizyczne jak sita F, wek-
tor falowy k czy natezenie pola elektrycznego wymagaja dla ich okres-
lenia podania d¥ugosci, kierunku i jednego z dwéch zwrotdéw na prostej,
na ktérej leza. Précz nich mozna spotkaé jeszcze inne wielkosci wekbtoro-
we, ktérym przypisujemy réwniez diugosé i kierunek, lecz zwrot dotycay
jednego 2z dwéch mozliwych kierunkéw obrotu wokéx prostej, wzdiuz ktoérej
sa umisszczone. Takim wielko$ciom odpowiadaja wektory osiowe, a ich
wtasnosci zilustrujemy zachowaniem si¢ dipola w jednorodnym polu elek-
trycznym,

Jesli dipol o momencie elektrycznym p 2znajduje sig w‘jednorodnym
polu elektrycznym o nate¢zeniu E, to = jak_wiadomo ~ dziala nan para
sit o momencie

M=pxE.

Sythacja ta jest przedstawiona na rys. 3.2a w prawoskretnym ukiadzie
wspoéirzednych XXXz, Przy czym dla uproszczenia zatozono, Ze P ik
lezg w plaszczyznle x2x3, wektor M ma woéwczas klerunek 0si +x4. Doko-
najmy teraz inwersji ukladu osi wspéirzednych, odpow1adagqcea operac ji
i,.wobec czego uktad przejdzie w lewoskretny (rys. 3.2b). 2Zgodnie z

prawen tra;sformacji wektoréw biegunowych
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im

Io

1z

Xy

X;

Rys. 3.2. Wpiyw skretnosci ukladu wspoéirzednych na wynik p x E

zatem

M= (-p) x (-E) = M.
Widzimy, Ze Yektor M nie zmieni} zwrotu, jednak w ukladzie x{xéxé
ma zwrot =-x4, co z punktu widzenia symetrii jest zwrotenm "niewlasci-
wym". Jesli bowiem zwrot M w XXXz (prawoskretny) okreélg reguta Sru-
by prawej, to zwrot M w x{xéxg (lewoskretny) winien byé okreslony re-
guta Sruby lewej. i §

Wnioskujemy stqd, ze prawo transformacji wektora osiowego ma pos-—
tat

p’ = (det A) A p. (3.4)

Dla macierzy od 4, do §1O wyznacznik A Jjest rowny +1, jesli 4 nie
zmienia skretnoéci ukadu, lub -1, jesli ukiady X il x{ maja skregtnos
ci przeciwne. Wobec tego warunek niezmienniczosci wektora osiowego

wzg}@dem transformacji»symetrii ma posﬁaé

» |

{(aet 2) 4 -4} p = 0. : L ieeh)

Wektorami osiowymi, oprécz M, s wszystkie wielkosci, ktoére mozna wyra-
zi¢ Jjako iloczyn wektorowy dwéch wektordéw biegunowych. Procz tego osio-
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wy Jjest réwniez da, tj. obrét o nieskonczenie maly kat, oraz wektor
natezenia pola magnetycznego H. Ostatni wniosek odnosénie H wynika z
postulatu niezmiennoéci réwnan Maxwella wzgledem transformacji Lorentza.

Przejdzmy do oméwienia przypadkéw szczegbdlnych w postaci krétkich
stwierdzen wynikajacych z (3.5), pozostawiajac dowdd tych relacji Czy-
telnikowi.

(i) Wielkosé fizyczna reprezentowana wektorem osiowym moZe mieé w
krysztale z centrum symetrii dowolng wartoéé, kierunek oraz zwrot, po-

niewaz i
{last 8;) 25 - 1} = 0.

(ii) Zwyczajna o$ symetrii o dowolne;j krotnosci naklada na wektor
osiowy takie same ograniczenia, jak na wekbtor biegunowy. Wynika to stad,
%e podziatanie operac;ja Cg nie zmienia skretnosci ukiadu wspbirzed—
nych., Wystepowanie w krysztale osi inwersyjnej n o krotnoéci n > 2
natomiast dopuszcza nie znikanie tylko niektoérych skladowych p.Na przy-
ktad, dla operacji 4 (macierz A1O) otrzymuaemy

bt OV iy = B
{o-2}p=-|1 1 ofle|=|p+ ) =0
0 0 o/ D, ¥3 0

czyli Pq = 2 10} Pz # 0. Nie znikajgca skzadowa P Jest wigc tylko
sktadowa réwnolegia do osi S4 5

(1ii) Jezeli krysztal posiada plaszczyzng symetrii, to nie znika
Jedynie skXadowa wekﬁora osiowego prostopadia do tej plaszczyzny (p.
58 750)%

3.4. Tensory biegunowe i osiowe
Przy jmowalismy dotad milczgco, Ze w ogdlnym zwigzku
p=lg : (2.1)

oba wektory P i g sa wektorami biegunowymi. Jesli istotnie tak jest,
to T nosi nazwg tensora biegunowego (polarnego), a zasada transforma-
cji jego skiadowych przy zmianie uktadu wspéirzednych wyraza si¢ znanym
nam juz prawem (2,28). T jest tensorem biegunowym réwniez whedy, gdy
wigze w zaleznos¢ (2.1) dwa wektory osiowe., Wynika to z ogbélnego postu-
latu niezmienniczoéci prawa fizycznego (2.1) wzgledem zmiany uktadu

- wepéirzednych. Postulat ten prowadzi nas do bardzo ogdlnych relacji mig-
dazy
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dﬁy wielkosciami wystepujacymi w tym prawie. Mozliwe sytuacje zestawio-
ne sa w ponizszej tabelce.

:\3 ' 1 : 2

B a0

1 biegunowy bieguﬁowy »Zbiegunowy osiowy osiowy
(+) (+) (+) (=) (=)

2 osiowy bieéunowy osiowy oéiowy biégunowy

(=) (+) (=) (=) (+)

Widzimy zatem, Ze temsor T ma charakter biegunowy jesli wigze w
zaleznosé dwa wektory o tym samym charakterze; jesli charakter tych wek-
toréw jest rézmny, to T Jjest tensorem osiowym. ‘

Podalismy kilka przykiadéw zaleznosci typu 11 w rozdz. 2. Nalezy
do nich zwiazek (2.4) migdzy wekbtorem indukeji elektrostatycznej Diia
natezeniem pola elektrycznego E 1lub (2,5) miedzy gestoscia pr&du prze-
wodzonego J oraz BE. Ponlewaz oba wektory wystepujace w nich sa biegu-
nowe, tensor ma réwniez charakter biegunowy. Taki sam charakter ma ten—
sor w zalezno&ci typu 21, gdzie oba wektory maja charakter osiowy. Prazy-
ktadém moze by¢ zwiazek miedzy wektorem indukcji magnetycznej B a na-

tezeniem pola magnetycznego H
§=%§E (3.6)

lub zwigzek miedzy wektorami momentu pedu J a predkoscia katowg Wy
znany w dynamice bryiy sztywnej

J=1:u. : (3.7)

Zaréwno tensor podatnoécl magnetycznej w (3.6), 4, Jak i moment bezwtad-
nosci w (3 7), I, maja charakter biegunowy. Biegunowy jest réwniez ten—
‘soz g, przedstawiajacy obrét uktadu wspdirzednych x1x2x do Xﬂxz 5

i wigazacy z soba dwa elementarne obroty d& i dB o nieskoﬁczenie ma—
e katy obrotu odpowiednio w obu tych uktadach wspbdirzednych, tzn. d B
jest obrotem w x;, 4¢ W X;, a nadto x’ = c X. Jest tak dlatego, Ze
takie granicznie maze katy obrotu mozemy zdefiniowaé¢ jako wektory osio-
we - ,

= g_d_a_. (508)

2
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Istnieja jednak przypa&ki relacji miedzy dwoma wektorami tjpu 12
lub 22, w ktérych jeden jest biegunowy, drugi osiowy..Do tekiej relacji
prowadzi na przykiad zjawisko akbywnosci optycznej. Gdy ptaska i spola—
ryzowana fala elektromagnetyczna przechodzi przez pewne krysztaiy, nie
posiadajace centrum symetrii, wowczas plaszczyzna polaryzacji promienio-
wania po wyjéciu z takiego osrodka ma inny kierunek, niz na wejsciu.Zja-
wisko to wystepuje btakze wtedy, gdy wigzka promieniowania biegnie wzdiuz
osi optycznej krysztaiu, a wigc nie moze byé sprowadzone do zwykiej dwdj-
romnoéci. Padajacej wiazce odpowiada wektor E, ktéry jest biegunowy,po
niewaz nie istnieje tu okreélony kierunek obrotu. Praszczyzna poléryza—
¢ji ulega jednak obréceniu, przy czym mozliwe sa dwa kierunki obrotu:

zgodnie lub przeciwnie do rushu wskazéwek na tarczy zegara. Efekt ten
opisuje zatem wektor osiowy. Tensor, opisujacy aktywnosé optyczna, Jjest
wiec tensorem osiowym,

Prze jdémy do przedstawienia wkasnosci transformacygnych tensordw,
przy czym jako macierz transformacji interesowa¢ nas beda generatory A
i=1,..0,710, zestawione w tab. 3.1. Je&li prawdziwa jest relacja (2.1)
to ogélnie prawdziwy bedzie réwniez zwigzek

>

L2= 14 L ey = ;T EDY g (3.9 .

Réwnosé te mozemy zapisaé w nastepujacy sposdb:

P s a. (3.10)
Dla wektoréw biegunowych mamy zgodnie z (3.3) 4; D= D, oraz'él 4=4,
zatem tensor biegunowy transformuje si¢ zgodnie z prawem
Uy :
z= (4 T 43) =1, .(3.'1’1)

Jesli wektbry maja charakter rézny, na przyktad p Jest osiowy, czyli
(det éi)éi P =D zag g Jest biegunowy A; ¢ = g, to otrzymujemy z
(3.9) 7

. T
4; p = (det 4,0 (A, T 4304, g,
poniewaz (det él) = 1. Stad
T = (det A;)(4; T A7) = I. (3.12)

(3.42) przedstawia prawo transformacji tensora osiowego. Ma ono t¢ samg

postaé .co (3.11), jesli wyznacznik macierzy generatora jest réwny +1.
Prawa (5.11) i (3.12) prowadza do okreslonych zwigzkéw miedzy skia-

dowymi tensoréw. Rozwazmy te relacje dla wazniejszych typow generatorow

49410
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(1) Centrum symetrii I. Zastosowanie do tensora biegunowego Trans-
' formac ji macierzg éz prowadzi do wyniku
\

T
I d5=1,

cz;li obecnos¢ centrum symetrii w krysztale nie naktada Zadnych ograni-
czen na skiadowe tensora biegunowego. Jest tak dlatego, Ze geometryczny
obraz tego tensora - kwadryka - jest zawsze centrosymetryczny, wobec
czego obecnosé (lub brak) tego elementu symetrii w krysztale ‘niczego no-
wego do symetrii kwadbyki nie wnosi. Sze$¢ réznych i nlezerowych skia-
dowych tensora symetrycznego odpowiada szeSciu stopniom kwadryki w kry-
sztale tréjskoénym: drugosci trzech osi gréwnych (3 wektory) oraz ich
orientacji wzgledem osi abe® (3 katy).

Jesli I jest tensorem osiowym, to det A = =1 i zgodnie z
(3,12) otrzymujemy
24, T45=1, czyli I=0.

Wynik ten oznacza, iz tensor osiowy znika w krysztale posiadajacym cen-
trum symetrii, tj. krysztat taki nie moZe na przykiad powodowaé skrece-—
nia ptaszczyzny Swiatla spolaryzowanego.

~ (ii) Dwukrotna o$ symetrii réwnolegta do osi krystalograficznej b
Céy).'Dla tensora biegunowego otrzymujeiy

\Nb
[[=]
[
1
o
4y
o
=]

n
1
=)
n
n
=]
N
N
(@]
O
1]

T4e T Tq3
Tol ook
31 st A Das

]

Widzimy, %e pod wpiywem przeksztalcenia cztery sktadowe zmienity znak,
Tensor moze byé niezmienniczy wzgledem przeksztalcenia tylko wtedy,vgdy
sktadowe te beda réwne zeru. Ogolna postacig tensora biegunowego w kry-
sztale posiadajacym dwukrotng os symetrii Céy), jest zatem

D=0 ) X (55
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Cztery rézne i niezerowe skiadowe odpowiadajg czterem stopniom swobody
kwadryki w Krysztalé, nalezacym do ukladu jednoskosnego: diugosci trzech
osi gtéwnych (3 wektory) oraz oriemtacj¢ osi kwadryki lezacych w piasz-
ézyénie ac (1 kat, por. rys. 2.11). Poniewaz det é} = +1, ogranicze-
nia natozone .przez Céy na skladowe tensora osiowego sg takie same,
jak dla tensora biegunowego.

(iii) Piaszczyzna symetrii o . Temu operatorowi odpowiada macierz
45, a transformacja prowadzi do nastepujacego wynikus

S el e
(3.14)

Ul
A5

“Tog  Top Ty |

T3 Tzp T3z

L
=5

Réwniez i w tym przypadku znikajg cztery sktadowe tensora i to te same,
co poprzednio. Obecnos¢ w krysztale piaszczyzn symetrii o = wymusza
wige postaé (3.13) tensora biegundwego. Latwo sig¢ przekonaz, ze zastoso-
wanie dwukrotnej osi symetrii Cé lub pZaszczyzny o, prowadzi do
podobnego wyniku: czbery skladowe tensora musza sieg zerowaé, Jjednak in-
ne niz w (3.14). Przeprowadzenie odpowiednich rachunkéw pozostawiamy
Czytelnikowi. :

Prawo transformacji tensora osiowego tatwo otrzymaé z (3.14). Po-
niewaz det §5 = =1, zatem znikaja te skiadowe tensora osiowego go,kté-
re dla tensora biegunowego gb byty rézne od zera. Ogbdlna postaéig 20

w przypadku obecnosci Uy Jjest wiegc
0% T, O
I =|Tq © Ta; . (&515)
‘ 0 'I‘32 0

(iv) 0% symetrii C, Trzedu n > 2. Rozwazmy wpierw dziatanie gene-

ratora 03 , okre$lonego macierza éB' na sktadowe tensora biegunowe-
8o :
O 1 0\ [Ty Typ Ty\ [0 1
m
A Mol (00 il L B ie e ) 0)-=
AR O0ER0) T31 T32 T33 O G
CEvi e By
) T’IZ T'I’l

a2
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Wynikaja stad nastepujace zwiazlkl miedzy T (=Tki):

iy

" Tgq = Txp =
=T

=A,
33 (3.16)

i 21 B.

T12 = o3

Wobec tego w ogdlnej postaci tensora biegunowego

AES B SE
foe a8 AR (5.17)
B Bi A

wystepuja tylko dwie skiadowe niezalezne. Odpowiada to dwém stopniom.
swobody kwadryki obrotowej woké: osi [111] . Niekonwencjonalna postaé
(3.17) bierze si¢ stad, ze trzykrotna oé obrotu [111] nie pokrywa sig

z %adna z osi wspdirzednych. Mozemy jednak (3.17) sprowadzié¢ do postaci
przekatniowej za pomoca odpowiednio dobranej transformacji (p.A3.7.7),
a wtedy fakt, Ze obrazem (3.17) jest kwadryka obrotowa, stanie sig¢ bez-
posrednio dostrzegalny. Wyznacznik macierzy §8 réwny jest +1, przeto
(3.17) Jjest zarazem ogdlna postacia tensora osiowego. Jest ogdlna wias-
ﬁoéciq osi symetrii Cn, zZe operacje Cg, m=1,2,.0.,0~1 nie zmienia-
ja skretnosci uktadu wspdirzednych.

Relacje miedzy skiadowymi T i ogélna postaé kwadryki w krysztale
posiadajacym o0& Cn przy n > 2 mozemy ofrzymaé w bardziej bezposred-
ni sposéb, jesli jeko generator wybierzemy ég' Macierz ta odpowiada
czterokrotnej osi symetrii o kierunku réwnolegiym do X3 W tym przypad-
ku mamy

Too ooy Do
5 .
g T oo s lalion  Tar o )
T2 o s
Stad
T11 = T22 =AY T55 SRS
T12 = —T21 = T21, czyli »T12 = T21 = (0}
: T15 = T23 = _T137 czyli T13 = T51 = (0
oraz

T25 = T52 = 0.
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Ogélna'postaé tensora jest wiec nastepujacas

ALTREQ R
I H ol Vo) i (3.,18)
OISO IR }

a JjeJj obrazem jest kwadryka obrotowa wokoéz xg.

(v) Inwersyjna os symetrii S4. Zastosowanie operacji symetrii A1
do tensora biegunowego prowadzi do zmanego juz nam wyniku (3.18). Do no-
wego rezultatu doprowadzi nas natomiast poddanie transformacji tensora
osiowego za pomoce A, 4. Korzystajac z (3.18) otrzymamy

; T T Iy
(det A40)dq0 Bodp ={ T2 -T4q Tq3 |= I,

Wynikajea stad nastepujace warunki dla skXadowych Tik:

e 2ilaans Baa=00,

T13 = T31 =0 T23 - T32 =802
Ogdlng postacig tensora osiowego w tym przypadku bedzie zatem

e P _
T,={ T2 =44 O], (3.19)
0 (ke o)

Podsumowanie dyskusai wpiywu symetrii na postaé biegunowego tenso-
ra drugiego rzegdu przedstawione zogtato w tab. 3.2, Obok zbioréw genera~
toréw wymienionych w wierszach, z ktoérych kazdy odpowiada innej klasie
w: okreslonym uktadzie krystalograficznym (p. 3.7.1), podano postaé ten~
gora W ogdlnym ukitadzie wapélrzednych' xaxzxz. Postaé ta jest charakte-
rystyczna dla wszystkich klas cokreSlonego uktadu, a pewnym wyjatkiem od
tej reguty moga byé klasy ukiadu jednoskoénego, gdzie orientacje osi
dwukrotnej wybiera si¢ najczeéciej 2l x5, lecz niekiedy 2Ilx;. Ma o
wplyw na wybdr tych czterech sktadowych, ktdére musza byé réwne zeru. W
ukZadach trygonalnych, tetragonalnych i heksagonalnych wspdlna postaé
' tensora zgodna jest z wymogami giéwnej osi symetrii, C ||x lub: Snllx A
przy n > 2. W obrazie geometrycznym odpowiada jej kwadryka -obrotowa
wokéz X3 ktérej symetria juz z natury rzeczy obejmuje pozostale ele-
menty symetrii, Nie ma takich cech ogdlnych tensor osiowy. Ze wzgledu
na wystepowanie czynnika det A= i1 warunki zerowania si¢ skiadowych



Tabela 3.2

Postaé tensora biegunowego w poszczegdlnych uktadach krystalograficznych
w ogblnym ukladzie wspdirzednych XT3

Ukzad Liczba
krystalo- Generatory ontes niezaleinych kﬁgg;;gi
graficzny skZadnik
=0 A 11 Tq2 T’D Elipsoida tréjosiowa,
siog;y z a el 6 brak korelacji z osiami
=2 T” krystalograficznymi
4; (4,) 0o T
SR e e 11 13 Elipsoida tréjosiowa,
skoény @ | 45 (8g) ! T O] | & Jedna z osi || x, (x;)
| f2 43 33 S
As, A m 04 O
o=t 11 Elipsoida tréjosiowa
Rombowy 445 45 T O 3 z osiami- [|xq, |, ||x5
45, 45, 4 T33
Ao Ap, Ao /e @)
Try- Sl =aia =l il . Elipsoida obrotowa
gonalny 43 405 4, 4y Lygfs O 2 woko6Z osi X
425 45, 45 T35
L 495 4102 421 4
etra-— . . <
gonalny é}’ ég’ §5' §9' é}’ 4403 : i
: 45, 45, 4y
4y A9i Ag, Aos B, 4,855
Heksa- A =
gonalny 43, 4, 45 Ay, A5y Ao
43, A, 403 Ay 43, 4,4,
440 A3 4y Ay Ag; e
Regularny | 4g, 455 440, 4g; vy o) - 1 Kula
4o, 49, 45 : Ta4
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T =z punktu widzenia wymogéw symetrii sa rézne dla réznych klas ki'ysta-
-.'l-.ograficznych w obregbie tego samego ukladu. Z tych powodéw w tab, 3.2
nie zamieszczo’n_b postaci tego typu tiensordw.

Ogélne prawa transformac ji wie]lkoéci fizycznych przy zmlanie ukla-
du wspéirzednych zestawione sa w tal?; 363 '

qoa bileilias 905

Prawa transformacji wielkoéci fizycznych

2% T 5 | ixel e
Skalar b’ = b b=b""
Wektor biegunowy B' =¢p p= gT 2
Wektor osiowy g' = (det ¢le p 2 = (det g)_(_;T 2'
Tensor blegunowy| ¢ = ¢ T gT I= gT T 'g‘
Tensor osi.owy' T = (det g)__q T gT T = (det _g_)gT te

Przy omawianiu symetrii grup punktowych oraz wiasnofci wektoréw
biegunowych i osiowych, warto na zakonczenie wspomnieé o symetrii nie=-
ktérych brytr i wekbtordw, oplerajac si¢ na dyskus;ji zamieszczonej w mono=
grafii Zetudiewa [1].

: Nieruchomy cylinder posiada’oé obrotu nieskonczonego rzedu, nie—
skox’l_czenié wiele ptaszczyzn symetril przechodzacych 'przez te 08 1 jedna
plaszczyzne symetrii pnostopadia do osi. W takim razie grupe punktows
symetrii cylindra nieruchomego moZemy zapisaé w postaci oo/mmp. Obrét
cylindra wokét osi symetrii oo likwiduje wszystkie réwnolegie do niej
ptaszczyzny symetrii, a wiec jego grupa punktowa bedzjie oo/m. Jeszcze
nizszg symetri¢ ma cylinder skrecony wzdiuz pobocznicy o2, poniewaz
znikajga wszystkie ptaszczyzny symetrii,

Stozek nieruchomy ma symetri¢ ocomnm, natomiast stozek ohracajacy
sie wokéi osi ma symetrie oo . :

W tej symbolice symetrie kuli moZemy oznaczyé przez oo /co/ mmm,
poniewaz kazda Srednica kuli ma symetrie cylindra, a jest ich nieskoi-
czenie wiele., Taka 'symetrie ma w fizyce wielkoéé skalarna. Jesli skreci-
ny kule wzdtuz jednej z Gych srednic, to symetria nowej kuli bedzie réw-
na /w2, Fizycznie twér taki cdpowiada kuli wykonsnej z oérodka skre-
cajacego ptaszczyzne polaryzacji éwiatta, na przykiad kula wykonana z
roztworu cukru w wodzie. Poza tym taka symetrie¢ ma tak zwana wielkosé
‘pseudo—ska'lai'na. ktorej odpowiada figura "lewoskretna™ lub "prawoskret-
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na", zaleznie od zwrobu skrecenia &rednicy. Znak skretnosci zmienia sig
na przeciwny po odbiciu figury w zwierciadle.

Wektor polarny ma symetri¢ nieruchomego stozka, czyli o mm, Przy=-
k¥adem takiej wielkoSci jest nateZenie pola elektrycznego E, wektor po-
laryzacji'krysztalu £, dipolowy moment elektryczny D.

Wektor osiowy ma symetrie obracajgacego si¢ cylindra, czyli oo/m.
Do grupy tekich wielkosci nalesy, na przykiad, wektor natezenia pola
magnetycznego H, wektor indukcji magnetycznej B, naﬁagnesowania L
lub momentu magnetycznego M.

MR G B A B A B S
e 5D AB N

Rys. 3.3. Rozkiad atoméw wzdiuz osi niepolarnej i polarnej

Waznym pojeciem jest kierunek polarny w krysztale. Rozwazmy prosta
MN, na ktérej rozmieszczone sj atomy A i B w jednakowych odlegtos-
ciach (rys. 3.3). Odlegiosé¢ od A do B, jest taka sama niezaleznie od
tego, czy patrzymy wzdiuz kierunku MN czy tez wzdiuz kierunku przeciwne?
go NM,. JeSli jednak atomy rozmieszczone sg wzdiuz MN periodycznie lecz
w niejednakowych odstegpach, to.odlegtoéé AB widziana wzdiuz MN bedzie
inna, niz w kierunku NM. Kierunek MN jest wigc w takim przypadku polar—
ny. Kierunki polarne w krysztale ﬁéjq symetri¢ wekbtora polarnego oomm
lub nizsza, tj. symetria takiego wektora moze byé podgrupa oomm.

Mozliwos¢ wystapienia kierunku polarnego w krysztale zalezy od gru=
Py punktowej, do ktoérej mnalezy krysztax. Na przykiad, obecnosé centrum
symetrii w krysztale od razu wyklucza mozliwoé¢ istnienia kierunku po-
larnego, ale nawet bez obecnosci centrum symetrii nie wszystkie kryszta-
1y maja wiasnosSci polarne. Z tego punkbtu widzenia 32 klasy krystalogra-
ficzne moZemy podzieli¢ na trzy nastepujace grupy:

(i) Klasy, ktérym odpowiadaja krysztaly o jednym tylko kierunku po-
larnym (o$ unipolarna). Maja one elementy symetrii zawsrte w grupie
punktowej symetrii wektora polarnego, lub w jego podgrupie. Mamy 10 ta-
kich klas krystalograficznych, a mianowicie 1, 2, 3, 4, 6, m,'mm2, sm,
4mm, 6mm, Uzyte tu symbole klas objasnione sa w p. 3.7.7%. Oznaczenia
grup przestrzennych omawiane sa w rozdz. 3.5. I tak w uktadzie trdjskos-

1
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nym mozemy mie¢ jedna tylko grupe przestrzenna catkowicie asymebtryczng:
P1. Jesli czasteczka w komérce elementarmej (Z = 1) ma moment dipolowy
D # 0, to komdérka elementarna, a zatem i caly'krysztal, bedzie wykazy-
waé spontaniczng polaryzacje P # O o kierunku P réwnolegiym do Py
W ukladzie jednoskoénym jest wigcej grup przestrzennych z kierunkiem po-
lafnym. R6zniq si¢ one typem centrowania lub rodzajem piaszczyzny syme-
trii: P2, P24, C2 (o$ unipolarna réwnolegta do dwukrotnej osi symetrii)
Pm, Pc, Cm, Cc (08 unipolarna lezy w ptaszczyznie symetrii, lecz jej
kierunek nie jest zdeterminowany przez orientacj¢ elementéw symetrii
krysztaiu). Najwiecej grup przestrzennych o osi unipolarnej, réwnoleg-
tej do osi =z, mozna znalezé w uktadzie ortorombowym. S4 to -grupy: mm2,
Pme2,, Pcc2, Pma2, Pca2,, Pnc2, Pmn2,, Pba2, Pna2;, Pan2; Cmm2, Cme2,,
Ccc2, Amm2, Abm2, Ama2, Abaz Fmm2, Fdd2, Imm2, Iba2, Ima2. W uktadzie
tetragonalnym o$ unipolarng, réwnolegia do 2z, wykazuja krysztaly nale~
zace do nastepujacych grup przestrzennych:Pu, p41, 942, Pl+3,I4, T4, Phmm,
P4bm, P1+2nm, P4ce, Pinc, P42mc, P42bc, I4mm, I4cm, Ilt-,'md, I41cd, .Pli-zcm.

Nieznikajacy moment elektryczny moga mieé¢ wreszcie kryszbtaly o na-
stepujacych grupach przestrzennych ukladu trygonalnego i heksagonalnego
P3, P34, P35, R3, Poml, iP5limy Pocd, P3lc, Rim, R3c, PG, Py, 6., P65,
P64, Pémm, Pécec, P65cm, P63mc.

(ii) Klasy krystalograficzne, w ktérych wystepuje centrum symetrii
a wiec krystalizujgce w nich substancje nie mogé wykazywaé rbdznego od
zera dipolowego momentu elektrycznego pod nieobecnosé pola elekbryczne-
go. Klas tych jest 11, 1, 2/m, mmm, 4/m, 4/mmn,”3, 3/m, 6/m, 6/mmm, m3,
m3m.

(iii) Pozostate 11 klas - ‘222, ¥, 422, 42m, %/2, 6, 622, 62, 23,
432, EBm ~ odpowiada krysztaiom o tak zwanych wiasnosciach polarnoobo-
Jetnych. Ewentualne kierunki polarne sa w nich zwlazane relacjami syme-—
trii, co daje ogdlna kompensacje bez wypadkowej osi unipolarnea.Na pPrzy-
-k%ad trzy kierunki polarne kwarcu, réwnolegie do trzech osi 2, tworza,
ukiad z wypadkowym wektorem polarnym réwnym zeru.

( Inny podziat ciak, oparty na wprowadzeniu klas magnetycznych, nie
ma zastosowania w stosunku do krysztaiéw molekularnych. Sa one bowiem w
ogromnaj'wiekszoéci.diamagnetykami, a8 tylko niektére z nich maja wias-
nosci paramagnetyézne. Czytelnika zainteresowanego wiasnosciami klas
magnetycznych odsytamy do innych prac, na przyktad [2].

2+5. Symetria grup przestrzennych

Sieé przestrzenna jest podstawowym pojeciem w krystalografii. Po- 3
wstaje ona przez powbtarzanie podstawowych wektoréw sieci a, b, ¢ (ozna--
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Typy komérek Bravaisa

Tabela 3.4

Liczba Typ
i mozliwe komérki P c Parametry
tygy Uktad kry- sieci
komérki stalograficzny
a#Zb#ec
1: P Tréjskoény !
o #B #y
2P SR ‘~ a#Zb#c
Jednoskosny ‘b
(udb 4) o =y =90#8
4 : P,I,C 5y, <, afb#c
(1ub 4, 'lub|  Rombowy
B) i F = B=y =90
ai="bi=lc
13 R Trygonalny c e
=D sl
qlis s Heksagonalny ' a=8=90
(| Yo=120
A ai=SbE£RC
2l ISR Tetragonalny E 5 -
oh= =Y =
"= A= a=Db=c
BESEP TSP Regularny 1 ;
1 o=f8=y= 90
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.czanych czgsto tez przez ‘gﬂ, &5 35), ogpowiednio w trzech kierunksach
przestrzeni., Wektory te moga zawieraé z sobg katy & ,. B; ¥ -dowolne,

lecz przyjmujace niekiedy wartosci §0, 90 lub 120°. Powstaje-w ten 8po-
s6b nieskonczony zbiér punictéw wyznéczong przez koice wektordw

I = Di@q * Ry + Nz8s, 0ec0)
zwanych wektorami sieci (prostej). Liczby nq, Do, nzi'sa liczbami cai-—
kowitymi lub zerem., Sieé przestrzemna jest wiec tworem geometrycznym,
 zad rzeczywista strukbture krysztaiu (idealnego) obejmujgca geometryczny
zbibér poiozen atoméw, jondw lub-czasteczek, z ktérych skiada sie krysz-
tal, mozemy rozumieé¢ jako periodyczng konstrukeje wpisana'w Jedng z moZ-
liwych sieci przestrzennych. Réwnolegtosdcian, zbudowany na trzech njiekor

planarnych wektorach 8y odzwierciedla symetri¢ sieci przestrzennej i
odpowiada komdérce elementarnmej w rzeczywistej strukturze krysztatu, Bra-
vais wykazak, Ze mozna skonstruowaé¢ tylko czternascie rdinych typéw réw-
nolegtoécianéw, noszacych nazwe¢ komérek Bravais i zestawioﬁycg w tab,
3,4, Sieé przestrzenng mozemy wiec rozumieé takze jako periodyczne po-
wbtarzanie w trzech kierunkach jednej z czternastu komérek Bravaisa pray
zachowaniu warunku ciasnego wypeiniania przestrzenis powstaje W ten 8po-
s6b czternascie typéw sieci Bravaisa. Nie wystarczaja one jednak do u-
tworzenia wszystkich mozliwych grup przestrzennych.

Précz komérek prymitywnych,; zawierajacych elementy strukturalne
tylko‘w narozach komérki Bravaisa, istnieja réwniez kombérki zioZone, ze-
wierajsce te elementy w dodatkowych poZzozeniach (&rodki Scian lub Aro-
dek réwnolegtoscianu). Mozliwe typy centrowania komérek Bravaisa zasta-
wione 83 w tab. 3.5. Tabela 3.4 przedstawlona zostala skrétowo, w tym
sensie;<§€’wszystkievtrzy typy centrowania: A, B lub C umieszczone 83
w jednej kolumnie. W obu tabelach zastosowano najczeéciej dzi# uzywana
symbolike, wprowadzona przez Hermanna i Mauguina.

W sieci przestrzenne] pojawié si¢ nowy rodzaj symetrii, wynikajacy
- 2 definicji sieci - symetria translacyjna. Jesli przez T(gq) i T(ge)
oznaczymy operacj¢ przesunigcia odpowiednio o wektor x, lub Ios typu
(3.,20), to przesuniecie dla sumy wekbtoréw mozemy zapisaé¢ w nastepujacy
s8posdbs

Tz + zp) = Tlzq) Tlzp) = TAzp) Tlzg)e (3.21)

Zbibér wszystkich operacji translacji tworzy wige nieskoﬁczonqﬁérupe abe-
lowa ze wzgledu na dodawanie, Operacja translacji przemiemna jest roéw=-
nies z kazda inngwoperacja, na przyklad z obrotem wokél osi C, 1lub od-
biciem w piaszczyinie symetrii o. /
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Tabela 3-5
Typy centrowania komérek Bravaisa

Oznaczenie Opis Li;zﬁgmgsgiéw
P prymitywna 1
1 przestrzennie centrowana
c ' centrowane dwie Sciany 2
(001)

B centrowane dwie Sciany 2
(010)

A centrowane dwie Sciany 2
(100)

F centrowane wszystkie 4
Sciany

Wzajemne powilazania elemerntéw strukbu-
‘ralnych w idealnej strukturze krysztaiu
wskazuja, %e précz znanych nam juz relacji
miedzy nimi, polegajgacych na odbiciu w' cen-

['r————“—*A trum lub ptaszczyzpie symetrii, przemiesz-

%= I czeniu zwykiza lub inwersyjna osig obrotu,
A. BEREE J : wreszcie operacja translacji, naleZy wyroz-
% } nié. jeszcze dwa nowe elementy symetrii. Sg

ol . nimi ptaszczyzna poslizgu oraz o$ Srubowa.
Te dwa elementy nie wystepuja w grupach
punktowych, Grupy przestrzenne poWstajar
wiec przez spdjne poigczenie grup operacji
symetrii, wiasciwych grupom punktowym, z
Rys. 3.4. Dziatanie plasz- symetrig translacyjna oraz dwoma dodatko-
czyzny poslizgh typu ¢ wymi elementami symetrii. RbZzne sposoby po-
Xaczenia tych eleméntéw (z wykaczeniem pie-

ciokrotnej osi obrotu) prowadzg do 230 mozliwych grup'przestrzenqych.

Odbicie w ptaszczyznie poslizgu skiada si¢ z dwéch operacji, wyko-
nanych w dowolnej kolejnoéci: odbicia punktu w plaszezyznie zwierciadla-
nej oraz przesunigcia go o wektor (1/2)a (plaskczyzna typu a), (1/2)c
(ptaszezyzna typu c¢) lub (1/2)(a + b) ({ptaszeczyzna typu n). Praykiad
dzialania ptaszczyzny poslizgu c przedstawiony z0stal na Tys. 3.4
punkt’ A zostaje przeksztaicony w punkt A° lub A" (A® i A" sg trans-
lacyjnie réwnowazne),

05 srubowa rzgdu n Jjest elementem symetrii, stanowigcym pozacze-—
nie obrotu o kat 360/n oxag,przesuniecia 0 utamek m/n periodu w kierun-
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ku osi obrotu; n = 1,25ee0,m=1. Zgodnie z
tq nomenklaturg 2, oznacza dwukrotng oé
érubowa., Jej dziatanie polege na obrocie
punktu w poiozeniu-ogdlnym o 180° 1 prze~
sunigciu go © 1/2 a, 1/2 b 1lub 1/2 c,za~
leznie od kierunku osi. Trzykrotme osie
grubowe moga byé dwojskiego rodzajus 341
35+ Jesli plerwsza z nich nazwiemy prawo-
skretng, to druga -~ lewoskretng. Cztero-
krotne osie &rubowe moga byé typu 41 i
(prawo~- i lewoskretna) oraz 4,. Dziaanie
4,] pokazane jest na rys. 3.5. Szesciokrot+
ng osie &rubowe tworzg nastepujace pary o=
si enanc;]omarficznych. 61 3 65, 62 i 64
orsz 63. ‘Rysunek 3.6 jest ilustracja moz-
liwych osi szeéciokrotnych w rzucie wzdius
osi. Cyfry w kékach oznaczaja wysokosé
punktu nad ptaszczyzng rzutu w jednostkach
1/6 ¢c. 6 jest szebciokrotna osia invéergyé-
na o dziataniu anglogicznym do 4 (por. s.
82), Rysunek 3.7 ilustruje dziateanie
wszystkich moZliwych w grupach przestrzen-—
Bya,. 3. 5. Prawo skretna 08 nych osi oraz ich: symbole graficzne.

Srubowa 44 Wystepowanie plaszczyzn poslizgu oraz

osi Srubowych w wielu grupach przestrzen=-

nych sprawia, iz oprécz operacji tramslacji T(r) istniejq réwniez
przeésuriecia typu {(m/n cJ. Nie nalezg one jednak do grupy operacji
translacji, o ktérej byta mowa na poczatku tego rozdziaiu.

Oznaczenia grup przestrzennych zawieraja kilka symboli, z ktérych
pierwszy determinuje typ komérki elementarnej wediug klasyfikacji Bra-
vaisa: P, A, B, C, I, F (tab. 3.5) lub R. Dalsze symbole oznaczaja ge-
neratory grupy przestrzennej, érzy czym najpierw wymienia sig o giow=-
na, zwykle o najwyzszej krotnosci, z podaniem jej skladowej translacyj-
nej jeéli jest to oé Srubowa, nastepnie symbole pozostaiych osi 1 piasz
czyzn symetrii. Odstepstwo od tej zasadj wystepuje tylko w trzech kla-
sach uktadu regularnego: T = 23, T, = m3 oraz Op = mdm. W celu zazna-
czenia prostopadtosci piaszczyzny Symetrii do osi.uzywa sie kreski skos
nej, na przyktad P21/m oznacza grup¢ przestrzenng o komé:__:ce prymityw=-
nej, dwukrotnej osi Srubowej i prostopadiej do niej zwierciadlane]
ptaszczyzny symetrii. Wykaz wszystkich mozliwych 250 grup przestrzen—
nych mozna znalezé w monografiach z zakresu rentgenografili struktural-
nej, ponadto w Migdzynarodowych tabelach rentgenografii i krystalogra-
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Rys. 3.6. Mozliwe osie szesciokrotne .

f£ii [3], /edzie podane sa réwniez wszystkie istotne informacje potrzebne
do ustalenia rodzaju i poiozenia w przestrzeni wszystkich elementdéw sy-—
metrii, wtasciwych okreélonej grupie przestrzennej. '

Dla przykkédu jbdna strona Tabel, obejmujgca jedna z grup prze-
strzennych ukiadu ortorombowego P24212, przedstawiona jest w oryginal-
nej wersji na rys. 3.8. U gbéry z lewej strony umieszczony jest symbol
grupy w skréconym brimieniu, w $rodku-symbol peiny (w tym przypadku ten
sam). Z prawej strony podano‘symﬁol tak zwanej grupy ilorazowej (factor
group), jaka otrzymuje sie 2 grupy przestrzennej pp opuszczeniu Wszyst-
kich operacji translacji. Tym samym pZaszczyzny poslizgu przechodza w
piaszczyzny zwierciadlane, a osiom Srubowym odpowiadajs zwykie osie ob-
rotu. Znajomosé grupy ilorazowej ma podstawowe znaczenie w ilosciowej
interpretacji wtasnosSci fizycznej krysztaiu z punkbu widzenia geometrycz-

N
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| (Space group) (Space group) Point group
abbr. full symbol
P21212 P21212 222 orthorhombic
+0S’ Raok +0 1 o 1
10« 3 ; O« T :
P 5 -
. R .
0- - f 3 ]
.g ;
) ! s
+0 ; +0 &

0+ 0+ L L

Origin at 112 in plane of 2121

Conditions limit-

Coordinates of equivalent
ing possible

positions

Number of positions,

‘Wyckoff notation reflections
4 ¢ 1 Xyz, Xyz3 % + X, % ~- Y, Z3 hkl:
1 % o Okl: | N condi-
S-% 3+Y 2 hOl: | tions
hkO:
h00: h = 2n
0kO: k = 2n
001l: No cond,
Special: as abo-~
ve, plus
2 b 2 houlas g
2 f ; hkOs h+k = 2n
2 a 2 QO 7 25 z

Symmetry of special projection
(100) pmgy b" = b  (010) pem; ¢’

]
o

(001) pgg; a” = a,

d ’

b'.='b G =hC a = a

Rys. 3.8. Przykad informacji o grupie przestrzennej P29242
(Migdzynarodowe tabele bentgenografii i krystalografii)

/
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Rys. 3.9. Wspoiistnienie elementéw symetrii w P2,2,2

nego rozmieszczenia czasteczek, o czym bedzie mowa pdzniej. Pierwszy z
rysunkéw ilustruje rozkiad w komorce elementarne] punktéw symetrycznie
réwnowaznych, drugi - rozklad samych elementéw symetrii.Ukiad osi wspoi-
pzednych we wszystkich rysunkach tego typu obowigzuje taki sam, jak w
rzucie stereogréficznym (tabe 3.1), tj. 06 =x biegnie w strone Czytel-
nika, o8 y w prawo, o5 2z nad plaszczyzn¢ rysunku. Z symbolu grupy
widaé, ze komérka jest prymitywna. Dwie osie Arubowe réwnolegie sa do x
oraz Yy, natomiast od dwukrotna Jjest réwnolegta do osi .z uktadu
wspbirzednych., Nalezy zwrbci¢ uwage na fakt, Ze nie wszystkie osie syme-
trii przecinaja si¢ w jednym punkcie, co zdarza sig¢ w wielu grupach
przestrzennych. O5 srubowa 2| x przechodzi przez punkty y= 1/4 (u-
tamek periodu) lub y = 3/4 i 2z = 0, jesli przy jej symbolu nie poda-
no zadnej liczby. Umieszczenie przy znaku graficznym osi utamka np. 1/4
oznaczatoby, ze o5 24| x przechedzi na wysokosci 2z = 1/4 nad piasz-
czyzng rysunku. Podobnie osie 2.y przechodza przez punkty y = 1/4
i y=3/4 1 z=0.Obie pary praccinaja sie w punktach (1/4, 1/4, 0)
(1/4, 3/4, 0), (3/4, 1/4, 0) i (3/4, 3/4, 0). 05 2|z przechodzi przez
punkty (0, 0), (1/2, 2), (0, 1/2) i (1/2, 1/2) piaszczyzny xy i nie
przecina zadnej z osi érubowych. Przestrzenny rozktad elementéw syme-
trii w P242,2 przedstawiony jest na rys. 3¢9

Jesli komérka elementarna w grupie przestrzennej P21212 wypeiniona
jest elementami strukturalnymi calkowicie pozbawionymi symetrii (syme-
tria 1), to ich liczba nie moZe przekraczaé cztery. Musza ponadto zajmo-
waé potozenia ogbdlne, gdyz tylko te potozenia sg caltkowicie asymetrycz-
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Rys. 3.10. Transformacje wspdirzednych osia Srubowa 290 =

ne. Przypiszmy Srodkowi elementu P wspélrzgdne xXyz3 wskutek dziaza-
nia elementéw symetrii Srodki pozostaXych elementéw Q, R, S zajma po-
zycje

2.l Q(% + X, % -3, 2),

1 1
P(xyz) 24 )ly R(E X m Rl z),
2 llz S(1 —.x, e Vis %)

Dla przykiadu transformacja Q-——Q  za pomoca 241l x Jest pokazana na

rys. 3.16. Wspbéirzegdne wszystkich punktéw podane sg na rys. 3.8 jako po-
Zozenia c¢ 2z tym, Ze punkt S 2zastgpiono przez translacyjnie réwnowaz-
ny punkt 8%, Widzimy, zZe wychpdzac z jednego punktu P w poozeniu o-
gbélnym otrzymujemy trzy dodatkowe punkty przez zastosowanie operacii: sy-
metrii, odpowiadajgcych grupie przestrzennej. Przeksztaicenia te ombéwi-
my bardziej szczegbdlowo w nastepnym rozdziale. :

Jesli krysztat o grupie przestrzennej P21212 jest zbudowany z czgs-
teczek, wykazujacych dwukrotna o$ obrotu (symetria 2), to komérka ele—
mentarna moze zawieraé¢ tylko dwie takie czasteczki. Zajmuja one wéwczas
polozenia szczegéblne b lub a i musza byé tak zorientowanme, by ich
04 dwukrotna pokrywala si¢ z osia dwukrotng krysztaiu. Jest to ilustra-
cja znanej zasédy, ze czasteczka zajmujaca w krysztale punkt (wezel) o
okreslonej symetrii musi mieé przynajmniej symetrie tego wezia.

W niektérych grupach przestrzennych zdarza sig, Ze komérka elemen-
tarnn‘jes% wypeiniona przez dwa zbiory punktéw. W obrebie kazdego zbio=-
ru poloZenia punktéw sa zwiazane relacjaml symetrii, -obowiazujacymi w
danej ilorazowej grupie symetrii, jednak nie ma zadnych relacji miedzy
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potozeniami punktu w jednym zbiorz9 i punktu w zbiorze drugim. Méwi sie
ze oba zbiory sa symetrycznie niezalezne. Sytuacja ta ma wazne znacze=
nie ﬁ zastosowaniu modelu gazu zorientowanego do interpretacji wiasnos-
ci fizycznych krysztatédw, o czym bedzie mowa w nastepnych rozdziatach.

3.6, Polozenia punktédw symetrycznie réwnowaznych

Potozenia atoméw w sieci przestrzennej (komérce elementarnej)vmoze-
ny odnosié do ukosnokatnego (krystalograficznego) ukitadu wspdirzednych
X, ¥, Z. Najezesciej podajemy je wtedy jako wspdirzedne ukamkowe, tj.
wyrazone w utamkach periodu w kierunku trzech osi krystalograficznych
a, b, c. Post¢powanie takie nie jest jednak zbyt wygodne ani w licznych
problemach numerycznych, ani przy wykonywaniu rzutu struktury na okres-
lona ptaszczyzng krystalograficzna. Z tego powodu najczgsciej dokonuje
sig¢ ortogonalizacji ukiadu ukosnokatnego do kartezjanskiego i prawo-
skretnego uktadu wspéirzednych XXXz Zagadnienie to przedstawimy
krétko dla tréj- i jednoskosnego uktadu krystalograficznego.

X3

e

Rys. 3.11. Ortogonalizacja trdjskosnego uktadu wspbdirzednych

Grupy przestrzenne w ukladzie trojskosnym moga byé albo catkowicie
asymetryczne (jeéli pominaé symetrig¢ translacyjna), albo posiadaé cen-
trum symetrii C . W takim przypadku ortogonalizacji ukladu moZemy do-
konaé w zasadzie dowolnle. Jednak najczesciej stosowany sposob przedsta-
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wiony jest mna rys. 3.11. Przyjmuje si¢ mianowicie x,lll X, Xy W piasz—
czyznie Xy, zas x;.L Xy Xpe Jesii eq, &y 83 82 wektorami Jednost—
kowyni w uktadzie X, a3 Xz jest prawoskretny, to kryterium wtasciwe-
go wyboru X3 Jest _9_3-2’ > 0. Oczywiscie takze 83 = 89 X &5 Dla do-
wolnego wektora R mamy nastepujacy zwigzek miedzy wspbirzednymi xyz
Sk Moy :

g:xg+y2+zg=x1§1+x29_‘2+x335. 1 Fe22)
Dwustronne pomnozenie kolejno przez €1 &p» 35 1 uporzgdkowanie wyra-
zow (szczegély mozna znalesé w monografii Jeffery ‘ego [4]) prowadzi do
wyniku

X, = xa + yb cosy + zZc cos B,

X, = yb sin y + zcA, (3.23)
Xz =2 ¢ B.
gdzie
A= si:w (cos ¢ — cos B cos y),
B = si: > (sin‘?a + éinZB + sina'y + 2 cosa cosB cosy -~ 2)1/2. ‘

Na podstawie znajomosci katéw o, B, Yy, zawartych miedzy parami osi
krystalograficznych ukadu tréjskosnego oraz diugosci periodéw a, b, c

mozemy wiec zamienié wspdirzedre ukoénokatne punktu =xyz, podawane zwy-—

kle w pracach krystalograficznyh, na ortogonalne wspbirzedne x1x2x3.

. Ortogonalizacje ukiadu jednoskosénego trzeba wykonaé ostrozniej.
Rzecz w tym, iz w grupach przestrzennych tego ukzadu czesto pojawia sie
kierunek poélizgu, ktéry jest kierunkiem symetrycznie waznym. Nalezy
wiec tak wybraé nowe osie, by kierunek pos$lizgu nie ulegl zmianie, jes-
1i tylko jest to mozliwe. : :

Jesli osig symetrii jest o8 y, zas kierunek poslizgu jest réwno—
legty do a, to ortogomalizujemy uktad do abe® (rys. 3.12). Orienta-
cja nowych osi x5 dana jest macierza, wynikajaca z zastosowania rela-
cji (3.23)

5 | xa yb pAd
g [
X 0 cos B ‘
X5 0 1 (0] (3.24)

x5 A (0] (¢} sin B
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X3,

a jednoskoénego ukladu wspéirzednych

Ryse Jed2, Ortogonalizaci
przy kierunku poslizgu a

Przeksztalcenie uktadu wspélrzednych ma wéwezas postaé

X = Xa + zc cos B,

x5 = b, (3.25)

X3 = z¢c sin B.

W drugim przypadku, gdy kierunek poslizgu jest réwnolegiy do c (rys.
3413), ortogonalizacji do a*be odpowiada przeksztalcenie
x4 = xa 8in g,

xa = ybl (3-26)

x3=xacosB + ZC.

W grupach przestrzennych z pos$lizgiem typu n, a wigc w kierunku jed—
nych z pr‘zékatnych écian komérki elementarnej, nie jest mozliwa ortogo-.
nalizacja ukZadu bez naruszenia kierunku poélizgu. Jest wéwczas rzeczg
*obojetng, czy wybierzemy.ukiad a*be, czy  abc® - w kazdym z tych ukla-
déw mozna jednak tatwo wyznaczyé nowy kierunek poslizgu. :
P.‘céc‘,z\ ukzadu osi XX X3 makroskopowego = zwigzanego z nieskoﬂcze-
nie rozciggia siecia periodyczng punktéw - potrzebujemy czesto ustale-
nia mikroskopowego ukXadu osi, zwigzanego sztywno z czasteczka., Tylko w



Rys. 3.13. Ortogonalizacga Jednoskoénego ukzadu wspélrzednych
przy. kierunku poslizgu ¢

takim przypadku, gdy czasteczka ma dostabtecznie wysoks symetrie, mozli-
wy jest jednoznaczny wybor tych osi, oznaczanych najezegsciej literami
L, M, N i wybieranych w kierunku osi symetrii czgsteczki.

Jeéli wiegc czagsteczka jest ptaska, lub istnieja co najmniej trzy
atomy wyznaczajace ptaszczyzne (np. atomy piericienia benzenu lub ato-
my czasteczki wody), mozna znalesé réwnanie $redniej paszczyzny prze-
chodzacej przez te atomy, a stad i kierunek normalnej do niej N. Dla
wigkszej od trzech liczby atomédw rachunek prowadzi sig zwykle metodq'
najmniejszych kwadfatéﬁ, poniewaz atomy nie leza zazwyczaj Scisle na
ptaszczyznie., Kwadraty odchylen poxozen atoméw od Sredniej piaszczyzny
wynikaja .z niewielkiego odchylenia czgsteczki od maksymalnej symetrii,
co spowodowane Jjest zaburzajacym wplywem otoczenia, Analityczna metoda
obiiczania optymalnej ptaszcayzny przez zbidér atoméw zostata podana
przez Schomakera i innych [5], jej streszczenie mozna znalezé w pi. 3.
7.2, a zastosowanie do wyznaczenia optymalnej piaszczyzny przechodzacej
przez atomy pierécienia benzenowego w p. 3.7.8. W tej ptaszczyinie wy-—
bieramy Sredni kierunek jako diugg o$ czasteczki, a w koicu M = N x L
Jako 0$ krétks..

Maki wybér osi czasteczki zwykle wystarcza, gdy inberesujemy sig
interpretac ja makroskopowej witasnos$ci krysztaiu z punktu widzenia wtas-
noéci samych czgsteczek i ich rozkiadu' w sieci przestrzennej (komorce
elementarnej), a wigc zagadnieniem statycznym. Nie wystarcza to jednak
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“w rozwazaniach majacych zwlazek z dynamika krysztaiu., W kazdej tempera—
turze zachodzg ruchy czgsteczek = tak zwane drganlia termiczne.Ruch czgs=
teczek mozna tez pobudzié za pomoca fali elektromagnetycznej o odpowled=
nio niskiej czestosci, lub za pomocg fali akustycznej. Do najczescie]
wystepujacych nalezg ruchy dwéch typéw: tramslacyjne, polegajace na réw-
nolegtym przesunigciu wszystkich atoméw czgsteczki w okreslonym kierun—
ku oraz'libracyjne, polegajace nd niewilelkich oscylacjach katowych czgs-
teczkl wokdtr okreslonych osi libracyjnych. Kierunki osi libracji otrzy-
muje si¢ z rozwigzania réwnain ruchu. Okazuje sie pray tym, Ze w wielu
przypadkach kierunki tych osi dynamicznych odbiegaja dosé znacznie od
kierunku osi symetrii, a niekiedy nawet nie przecinaaq 8le w jednym
punkcie. Jest to jednak problem, ktérego przedstawienie wykracza poza
ramy tej ksigzki. Do paszych dalszych celéw bedziemy sie pqslugiwaé Wy=-
Zgcznie uktadem IMN,

Po tym'wstepie mozemy przystapi¢ do przedstawienia problemu anali-
tycznego znajdowania poxozen punktéw symetrycznie réwnowaznych. ‘

X4

Rys. 3.14. Generacja punkbtéw przez o$ symetrii

Rozwazymy potozenie zbioru punktow Pqs Pz,..., Pn’ generowanych
przez operacje osi Srubowej n-tego rzedu n . Przyjmijmy, Ze ta 0é jest
dowolnie zorientowana wzgledem ukiadu Xﬁxéxé, w ktérym beda podane po-
lozenia poszczegdlnych punktéw za posrednictwem wektordw Ry 32, gn
(rys. 3e14). Wybierzmy pomocniczy ukzad xﬁxzx w taki sposéb, by
5][nm Pozostale osie xh i x2 moga mieé polozenia dowolne, lecz usta-=
lone. Niech poczatki obu uk;adéw beda przesuni¢te o s, a wzajemna o-

rientacje osi xq wzgledem x4 niech opisuje macierz kosinuséw,kierun—



100

kowych ¢. Punktem wydjsciowym jest P1, & jego poitozenie w xi podaje
;_1 Punkt P2 ma zatem potozenie

. . 4

gdzie A joest genmeratorem operacji D4, zas & * sktadowg translacyjng
wzdiuz osi srubowej. PotoZenie m=tego punktu okresla wektor Eu'x

’ 9 (m—1) L4 *
o= A g+ (m= 18" (3.27)
-Poniewaz miedzy wektorami w uktadzie primowym i nieprimowym zacho-
dzg zwigzki
Dp=8E, L =¢ct
oraz
8 + £m = Em’

poioZenia Bm kolejnych punktéw w ukkadzie X3 otrzymujemy z nastg¢pu-

;iqcego réwnania, k}.adqc kolejuno m = 1,2,.0.,0°
Ry = _c_;T'A_(m'ﬂ g__:‘lj,] + gT { - é‘m"1'} ¢ 8 + (m-1)%. (3.28)

Oczywiscie maciersz é, podobnie jak sktadowa translacyjna 3', Jjest za=-
dana w ukitadzie x{. Wybierajac jako A generator innej operacji syme-
trii, na przyktad ptaszczyzny zwierciadlanej, mozemy z (3.28) otrzymaé
punkty, generowane réwniez przez ten element symetrii. Warto zauwazy¢,
iz wystepujgca w (3.28) skladowa tramslacyjna elementu symetrii odnosi
si¢ do ukZadu Xy, nieprimowanego.

Rozwazmy obecnie dwa proste przykiady. Inne zamieszczone 83§ na konh-
cu rozdziatu (p. 3.7.9).

(i) Dwukrotne of Srubowa 2,, réwnolegia do. X;. W tym przypadku
wybieramy :1:3 Il 24, a ponadto - dla wygody - x1j| e 2 s x2 ||~r2 ¢ jest wow-
czas macierza jednostkowg, c = 1. Ze wzgledu na wskaznik skladowe wek—
boréw w x; oznaczaé bedmemy przez (xyz). Akbtualna sytuacja przedsta-
wiona jest na rys. 3.15. Mamy zatem )

-1 1
A= =1 ’ '('ﬂ‘é)"—,a 1 )

1/. Z o

zas wektory s i t maja sktadowe

f= {ocas, 000 800050, t3).
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RysS. 3.15. Generacja punktéw osig Srubowg 21||x3

7 (3,28) otrzymujemy

32=é54+{‘ﬂ—§}§_+£=
=1 X4 1 (10} 0
= =1 Jq |+ 2 1 85] +10 |
a4 Zq 0o/ \O t;

zatem wspdéirzedne punktu P2 Wynosza

o = = Jq + 28y,

x2=_x1’ 22= 21 +‘t3.

¥

"~ W kolejnosci

czyli wspéirzednymi punktu P, s3

Xz = X1» I3 = Yq» z3 = 24 + 2t3;
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(3+29)

Znalezienie wspdirzednych dalszych punktéw nie przedstawia nowych pro-

bleméw .

(ii) Praszczyzna poslizgu typu (010)n, a wiec prostopadia do x5

i xé (rys. 3,16). Wybieramy Xﬁllxq i le]xé tak, ze ¢ =4.

przypadku mamy

W tym
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-

X

ET = (0, Soy 0), &= (tqv o, ‘b3),

wobec tego.
By = ARg + {ﬁ o é}»g + &t =
1 x4 (] 0 t1
= -1 i+ 2 1 s5] #[ O | (3.30)
1 2z 0/ \0 t3

Wspbéirzedne punktu P, wynosza
X, = x4 + 64, Jo = =¥4 +7232, Zy = 24 *+ t;.

W dalszym ciggu
Ry = Bq + 28,

czyli wspdéirzednymi punktu P3 E
33 =X + 2t1, y5 = Y1 z3‘= Zq + 2t3.

Dalsze punkty otrzymujemy w analogiczny sposocb.



Tabela BisD

Elementy symetrii 32 krystalograficznych grup punktowych

(klas krystalograficznych)

ﬁkla a Symbol klasy L;,.czba
elemen=
mggalo_ niedzy— Schbn- Elementy symetrii tow sy- Generatory
graficzny | narodowy fliessa Y metrii
1 2 o) 4 5 6
. s (e 1|
skoény 1 C Cq2Cy 2 4>
2 c c,,cly) 2 A
Jedno~- R 2 a2 =3
skosny m Cyq Cqy 9y 45
2/m th C,I,Ci,C:(ay), dy 4 _Azréa
222 5 °1’°éx)’céy)'céz) 45,4,
(z)
Rombowy e Coy s Oy 9435 Ayrhs
L) Doy c,],ci,céx 'céy)'céZ)' 4ord34,
Oyr Oys Oy 8
c c,, *ciz) A
3 3 Qs 3 5 =7
3 +olz) 44 (2)
e 3 Cyy €1:C4, _05( ; S5 6 bp)ho
nalny 22 D3 01,30, *C5* 2 4347
%n el | o et 6 A5,4o
5n B | gnchacs s re s El ae byhsoho
4 I 4
' 2 e gclets sale) 410
4/m Cun C1’°i'cé2)' 959 45,89
(z) +qlz)
"‘04 5 —Slf fa
422 | Dy oy, 8 loial ol 8 344 ]
Tetra- Cé,clé, tclgz)
gonalny () 2
4mm = C,W 01,02 3 G:i:, (Iy, g Al-,é?
U-\.,, GV’ th_Z)
I - alX) oY) o(2)
42m Doy |':04583%7,6372,05 8 As,440
PSR Pl ()
Ovv va("s4
x) oLy A
4/mmm Dy €44C540577,C5 16 As0hs4,
C.SQZ)'Cé’CE' S
Uyroz’ G‘;-c";’
+(2)  +s(2)
T Sy
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od. tab. 3.6

lq—do osi b ;z ; konwencje w tym zakresie moga by
wierajgcych osie

1 2 3 e 5 6
6 CG C,‘,Céz) +C(z) +c(z) 6 éu'é’]
g 03h c']) Oge :C(Z) (Z) 6 éG’é?
6/m U R ’, oy 12 Apsdyrdo
fo 18] Galkicso ndiagls)
622 D cq,c£2), 303, 3Ch, 12 Az A 40
¥olz)  +ol(2)
Heksa- bt JRAR GG )
e Cey | C1s08), 3oy, 301, 12| Apgdy
ro®), wolz)
ém2 D3y, Cq» 3C3y 30y, 9g 12 43,46,40
(2) (z)
20i®!, anl
ofmmn | D | ©4,04,30553,08) 2 | dotybusty
Ecvticvs tC( )1 T
éz)’ tcéz), _Séz)
23 T Cq,3C,, t4Cy 12 Ay,hg
m3 Th quci:302y3dva 24 éayéqrég
-
- ey, t4s,
egu= +
S 432 0 C4,9C,, 2405, ¥5C, 24 §§,§9
43m : 34 €123C5,60,, *4Cy 24 A
138,
_nﬁm oh C1 1Ci1902»9°1 mc} 48 éztégvéé
tus;, 130, 138,
Objasnienia:z

c x) _ dwukrotna 0é symetrii o kierunku okresSlonej osi ukladu
wspdirzednych XX {(lub xyz),

cé,cg - dwukrotne osie symetrii o kierunkach niezgodnych z osiami
. XX %5 (np. w uktadzie trygonalnym),
Oy - ptaszczyzna symetrii prostopadta do okreslonej osi uktadu
wspdéirzednych,
cv,c;‘- pionowe plaszczyzny symetrii, réwnolegle do glownea osi
symetrii

1+
|

przy osiach o‘krotnoéci wyzszej niz 2 oznacza dwie mozliwe

skretnosci osi.

Dwukrotna o$ symetri w: uktadzie Jednoskosnym grzyjeto za roéwnoleg-
inne. W klasach,za-

symetrii o krotnosci wyzszej od 2, o$ o krotnosci naj-

uyZSze1 jest zawsze rdéwnolegia do osi z.
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%.7. Problemy i prayktady

3e7e1¢ Krystalograficzne grupy punktowe

Z punktu widzenia symetrii mekroskopowej wieloscianu (rozmieszcze-—

nie Scian symetrycznie véwnowaznych, katy miedzy ésclanami, rozmieszcze~
\nie kierunkéw symetrycznie roéwnowaznych itp.) kazdy krysztal mozemy za=—
klasyfikowaé¢ do jednej =z 32 mozliwych grup punktowych symetril, znanych
jako klasy krystalograficzne, Klagy te wraz z podaniem zbioru nalezZg-
cych do nich elementéw symetrii zebrane =a w tab. 3.6. Ze wzgledu na sy-
metri¢ charakterystyczng, klasy mozemy zgrupowaé w giedem znenych ukiZa-
dow krystalograficznych. Zbidr elementéw symetrii, w obrebie ktibrego.
mozna utworzyé wszystkie klasy obejmuje centrum symetrii Ci’ zwiercia-
dlang ptaszczyzng¢ symetrii o, zwykle osie obrotu C1, 02, 03, 04, C6
oraz osie inwersyjne 8, S, 3, ) Ss (lub réwnowazne im inne ele-
menty symetrii). '

Podane w kolumnie 4 elementy symetril sg wszystkimi mozliwymi w da=-
nej klasie elementami. Na tej podstawie mozna katwo wydedukowaé zbidr
operacji symetrii stanowigcy grup¢ algebraiczng, przez co tabela moZe
by¢ rowniez przydatna w zagadnieniach, dotyczacych teorii grup. Na przy-
ktad grupie punktowej 422 odpowiadalwedlug tabeli nastepujacy zbidér ele-
mentoéw symetrii:

&y 65, of7), o), of, o, woi®), —of?).
Poniewaz (cff))a - cé“, (CAZ)P = (cf@h)71 = -C}f’, mozeny ten zbibdr
zapisa¢ w oznaczeniach konwencjonalnych teorii grup

Opaen ;

2
5 oy (e e K )

L

E, C c

4 2x?

'spotykanych na przykiad jako nagiéwek tabeli charakterédw grupy punkto-
we§ 422. W celu uzmysiowienia sobie wzajemne go powigzania tych operacji
i wydedukowaniza pozozen punktow symetryczn;e réwnowaznych celowe jest
postuzenie si¢ rzutem stereograficznym. Pomingwszy element identycznob-—
ci E, plerwszy trzy operacje powielaja punkt w poozeniu oéélnym (ozna-
czony krzyzykiem) w cztery punkty réwnowazne (rys. 3.17a). Dotaczenie
osi dwukrotnych sz icC powoduje podmodehie liczby punktéw, przy
czym pojawiajga si¢ one po drugiej stronie ptaszczyzny rzqtéw (oznaczone
kérkiem). Na rzucie (rys. 3.17b) widzimy, Ze z obecnoéci pierwszych
szeéciu elementéw symetrii wynika pojawienie sie dalszych dwéch osi dwue-
krotnych cé i CZ,,ktére nie maja kierunku zgodnego z. zadna z osi wspdl~
rzednych (rys. 3.17c). Lacznie mozemy wydedukowaé 8 polozer punktéw réw-
nowaznych, zéodnié z rzegdem grupy 422. Podobnie podany w tabeli zbidr '
elementéw grupy punktowej 6m2
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gy 0 350, oh, izl calfl plal gl

mozemy zapisaé nastepujaco:

R, 5 V80 B on e B0, A

Z 2 v

poniewas 82 (C(z))a, 83 G Sg Céz)
83 operacaaml Juz wystepuaqcymi W grupie.
Przy dokonywaniu generacji punktdéw sSyme—
trycznie rdéwnowaznych za pomoca 86 widzimy
(rys. 3.18a), ze pojawia sie¢ tu element sy-
metrii g, . Przez podziatanie nastepnie
trzema dwukrotnyml OBi&ml Ca’ zawierajgacy-
ni miedzy soba kat 60° (rys. 3.18b) otrzymu-~
Jjemy podwojenie punktow do ich ogdlnej licz-
by 12. Jednoczeénie widaé, iz te operacje
symetril generuja 3 ptaszczyzny symetrii ty-
pu o_.

Liczba elementdéw symetrii w okreslonej
klasie (grupie punktuwej) podana jest w kol.
5. Jest to jednoczesnie liczba punktéw syme-
' v trycznie rbéwnowaznych na rzucie Stereogra-
: ficznym. W kolumnie 6 .podane sa gemeratory

kazdej grupy punktowej.

‘.U
i

(]

%

zs' $17. EWoluoa it Problem 3.?:2, Popr?wadzié'?laszc%yzne
ereograficznego grupy przez zadany zbidér punktoéw w taki sposob,by
punktowoj: 422 suma kwadratéw odchylen od piaszczyzny o-
siggneta wartodé najmmiejsza.
Rozwigzanie tego problemu przedstawimy wediug pracy Schomakera i
[>3.
Niech a1y 2o 8 oznaczaaa wnktory sieci prostej, niekoniecznie
ortogonalnej, zas xk_" xk xk sq wspoirzednymi utamkowymi
(0 < Ixﬁi)lsg 1) Jednego z zadanych punktow Py k= 1,2,...,n. Punkty
Pq, PZ’ wisiely Pk leza z pewnym rozrzutem na piaszczyznie, ktoéra chcenmy
wyznaczyé (rys. 3.19). Plaégczyzné te okreslajg cztery parametry: tray
sk*adowe wektora jednostkbweéo m, prostopadiego do niej, oraz odleg-—
208¢ d ptaszczyzny od poczatku uktadu.
 Poxozenie punktu P, wyznacza weltbor I

2) a, + x(a) 8- (3.31)

L = (1) aq + yﬁ
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Jeslli przez by b2, b5 oznaczyny wektory
sieci odwrotnej, to wekbtor normalny do ptasz-
czyzyy mozemy zapisa¢ w nastepujacy sposébs:

n = mbq + mpby + myby. (3.32)

Wtedy odlegtosé punktu Pk od ptaszczyzny
wyrazi si¢ wzorem

Suma kwadratédw tych odchyiek

Bz > (rp sm =82 (359)
k

Jest funkcja owych czterech parametréw i o-

: siaga wartos¢ minimalng przy odpowiednim

Rys. 3.18. Ewolucja rzutu : :

s%ereograficznegg grupy ich doborze. Sumowanie po k obejmuje wszys-
punktowej 6m2 tkie punkty zadane, przez ktére zamierzamy

prowadzié piaszczyzne. Warunek

as Uy
— = E ry m=nd=0
ad k _k i 9

x(2)

<
Rys. 3.19. Najlepsza ptaszczyzna przez punkty P1. P2, ooy Pk
\
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gdzie n >3 Jjest ogdlng liczbg punktdw, pozwala wyeliminowaé d, po-
niewas
: 1 iy
o ; Ly ° B. | (3.34)

bstatnie réwnanie moZemy zaplsaé jeszcze prosciej, jesli wprowadzimy po-
.jgeie srodka zbloru n punktoéw (centroidu). Jesli nie rozrézniamy wagi
statystycznej, z jaka poszczegdlne punkty wchodzg do rachunku (a tak be-
dziemy czynié nadal), oraz masa wszystkich punktéw jest jednakowa, to
ecentroid jest po prostu geometrycznym Srodkiem zbioru. Gdyby punkby réie
nity sig masami, t0 centroid wypadnie w érodku masy. Niech poiozenie te-
go punktu podaje wektor <i>

<Ep>= ;'—1 Z Iy (3.35)
k
wtedy
d=<z¥ o m (3.36)
oraz
= Z {(aﬁ--<£>m) . g}?. (3.37)
k

: bbecnie widaé, i% w wyrazeniu (3.37) potrzebne s3 wzgle¢dne polozenia
punktdéw, odniesione do porozenla centroidu. Oznaczamy je wektorami Ek

O = 1 -<r> (3.38)

Zanim wprowadzimy (3.38) do (3.37) uwzglednimy jeszcze zadanie, by wek-
tor m (3.32), normalny do ptaszczyzny, byz wekbtorem jednostkowym

o Z Z 1R323b; = ' g b (3.39)

W ostatnim wyraZeniu wprowadzilismy mecierz g, ktérej elementy sg ilo-
czynami skalarnymi odpowiednich par wektoroéw sieci odwrotne]

815 = Diby = Bjin (3040)

£ Jest wiec macierzg symetryczng, a dla sieci ortogonalnej jest macie-
rzq przekgtniowa.

Warunek normalizacyjﬁy (3.39) réwniez trzeba wprowadzié do (3.37).
Uczynimy to za pomocq mnoznika Lagrange'a A, wobec czego S przejdzie
w funkcje F parametréw my, m,, m
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L Z U + m? - Ax" g m. (3.41)
£ g

Stad mamy trzy warunki minimalizacji F

oh kZUl(;”(y_ﬁ * m) - Agyymy = 0,

3y
bl & ST R o g S
i = Z t{k (Hk E) kozjmj = 0,
2 k
HE e B D e )
. %pk (U * m) - Aggymy = O.
Te trzy réwngnia mozemy zapisaé macierzowo
Bem= Agm, (3.42)
o -
gizie B Jest macierza symetryczna o elementach
B, = Slaltlgll (3.43)
k

Jezeli (3.42) podzielimy przez A 1 pomnozymy lewostronnie przez §'1,
to otrzymamy nastepujace roédwnanie:

]

>i=

(" gm =3 m. (3044)

Widaé stad, iz poszukiwane wektory m sg wektorami wtasnymi macierzy
(2f1 g). Mamy trzy takie wektory m i odpowiadajace im trzy wartos—
ci wiasne 1/Ai, i= 1,2,%. Rozwigzanle takiego problemu byXo juz dys-—
kutowane w zwigzku z poszukiwaniem osi gidéwnych tensora (por. rozaz.
2.7).

- Interpretacje A mozemy znalezé w nastepujacy sposéb. Poiaczenie

(32.37)y (3.38) oraz (3.43) pozwala na macierzowy zapis S

B m. N3 0A5)

Jesli teraz pomnozymy obie strony (3.42) przez g?, otrzymamy

A= S, (3.46)

poniewaz g? gn =1, Widaé stad, iz kazda z trzech wartosci Ay Jest
réwna pewnej wartosci sumy kwadratéw odchytek punktéw od wyznaczonej
ptaszczyzny. Poszczegbdlne wartosci wiasne speiniaja warunek
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M<<h S Az : (3.47)

i odpowiadaja kolejno "najlepszej", "éredniej" i "najgorszej" piaszczyi-
nie, Wszystkie ptaszczyzny 88 do siebie prostopadie 1 przechodzg przez
centroid, tj. punkt; ktérego potozenie zadane Jest wektorem<zr> W in-
teresujacym nas zagadnieniu poszukiwania najlepszej ptaszczyzny nalezy
wybra¢ najmniejsze A, tj. Aq. W takim wypadku rachunek kolejnych przy-
blizen w poszukiwaniu wektora m' nalezy rozpoczaé od przyjecia na
wektor prébny takiej kolumny macierzy (B ol g), w ktérej wystepuja naj-
wigksze elementy. Doktadne Jj koplanarnoéci pu.ukbéw odpowiada A = 0l
Jesli juz znamy d oraz sktadowe wektora m, to moZemy napisaé
réwnanie najlepszej ptaszczyzny w ukiadzie wspdirzednych ukosnokabtnych

m,lx(.") + max(z) + m3x(3) = d. (5.48)

Przejécie z réwnaniem piaszczyzny (3.48) do ortogonalnego uktadu osi
nie nastrecza specjalnych trudnoéci, Trzeba w tym celu przeliczyé ukos-
nokatne i utamkowe wspéirzedne x(i) do wspéirzednych ortogonalnych

; Xy wyrazonych w nm. Mozna to uczynié za pomocg macierzy h

a4 0 a4 cos B
as 0 (3.49)

0 az sin B

g’

0
0
-spokrewnionej z (3.24) i wobec tego siusznej w tym zapisie przy ortogo-

nalizacji ukiadu jednoskosnego do abeX. Jesli przez g(x1x2x3) 0ZNaczy-
my potozenie punktu w nm w ukladzie ortogonalnym, to ze zwiazku

R=h2x
Sishald
mozemy obliczyé
PoliE (3.50)
gdzie
BT _ctg B
2 2
plsfiod o ve ; (3.51)
85
: 1
0 0 a; sing
zatem
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X = a_a xz,
(B 1
x -gﬁﬁi%'
W koncu otrzymujemy
o m,
nyx ¥ (@) 4 nx(3) 7;317,;1 + é_g. x5
m ct
+< T gB)%:d. (3.52)
a3 sin B aq

W drugiej cz¢éci réwnania podane sg szukene wspérezymniki réwnania
piaszczyzny, d Jjest niezmiennikiem transformacji. Mamy zatem

m m cte B
n==t, n,=-2, ny=—2 i (3.53)
a4 a, a3 sin@ a4
tak, Ze réwnaniem plaszczyzny czasteczki w ukiadzie abe® Jjest
et DXq + DX, + DzXz = d, (3.54)
a wekbor
ET = (n1, D.2, n3) ‘ (3655)

jest wektorem jednostkowym i normalnym do tej paszczyzny,”a zarazem do
ptaszczyzny czasteczki.

W analogiczny sposbéb mozemy wyznaczyé kierunek drugiej osi czgs-
teczli, na przykiad M. Bedzie to wekbor lezacy w piaszczyznie (3.54) i
jednoczeénie prostopadiy do "najgorszej" piaszczyzny, poprowadzonej %
przez zbiér punktéw k = 1,2,...,n. Aby go znalezé, trzeba wybraé w ma-
cierzy (2"1 g)"al kolumn¢ o najwigkszych elementach i wykonaé znany juz
rachunek od Téwnania (3.44) poczawszy. Postgpowanie takie mozemy zasto-
sowaé wtedy, gdy wyznacznik macierzy (__13"'1 5) jest rézny od zera, Jesli
jednak det (g- g) $210'6, to rachunku prowadzi¢ nie mozna, a M trze-
ba znalezé imnna mg%odq.

Rozsadna wydaje sie w tym przypadku nast¢pugaca propozycja. Posiu-
gujac Si¢ wspodirzednymi ortogonalnymi obliczamy orientacje kilku wekto-
~ nbw L; © kierunku mozliwie silnie zbliZonym do M i Xgczacych odpo-
wiednic pary atoméw w czasteczce, a nastepnie obliczamy $redni kierunek

D, i (3.56)

o

0 |-

<u>=
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Tak znaleziony wektor <u> nie speinia na ogdt warunkéw ortonormalnoéci
wobec tego wprowadsamy don poprawki 8, na ktére naktadamy nastepujace
warunki: Normalizujemy skorygowany wektor do jedno$ci, #adamy ortogonals
noSci do N oraz 2gdamy, by suma poprawek byia rdéwna zeru

3 ; (CEJ' + 63)033 = 0, (3.57)
25,- =10
3 dJd

S8 kosinusami kierunkowymi M.
' Jesli zastosuge si¢ prayblisenie

REER
(ng "!' EJ) -—‘023' + 262{1 53'1

cej
(3.58)

to (3.57) Jjest ukadem trzech réwnan liniowych wzgledem 63. Bardziej
szczegdlowe omdwienie tego problemu moZna znalezé w prayktadzie 3.7.8.
Trzecia oS czasteczki L =znajdujemy przes obliczenie iloczynu wek—

torowego
;:Lﬁxg. : (3459)
-Niw
» B ;
|
7
l &7
| 7
7
“ s
o
ST “TR 6
> |
> |
p o
b |
7 |
5 Pi"__.____f
vx:

Rys. 3.20. Ograniczenia nakladanc na wektor p przez plaszczyzny
symetrii (110) = 3
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Problem 3.,7.3. Sieé odwrotna, Kazdg strukture krysztazu idealnego
mozna zbudowaé za pomocg periodyczuego powbtarzania w trzech kierunkach
przestrzenl pewnej jednostlki strukturalne}, zwane] kombrks elementarng
' gtruktury. Komérka ta jest réwnolegkobcilanem, zbudowanym na trzech welk-
torach &4, 8, 83 nie lezgeych w JedneJ ptaszezyznie, Pominawszy By
metrie translacyjnq, pozostale elementy symetril siecl zawarte sg réw-
nies w grupie symetrii komérki elementarmej. Pray clasnym i tréjperio-
dycznym zapeinieniu przestrzend komoérkani elementarnyni Lch naroza two-
rzg réwniez tréjperiodyczny zbldér punktéw, zwany slecls prosts dane)
gtruktury. Te samg sieé otrzymamy réwniez jake zbibr kohcdw wekbora

I = Dq8q + o8, + N385, (3.60)
jesli nq, Ny, Ny przebiegaé beds zbidér calkowitych liczb dodatnich,
ujemnych i zer, MoZns zatem powledzieé, Ze wektor r gemeruje sieé pro-

stq krysztatu przy caikowitoliczbowych wartosciach n . Objetosé kombr~
ki elementarnej sieci prostej dana jest mieszanym iloczynem wektoréw 34

Vg = 897 (85 X 85). (3.61)

Pojecie sieci prostej jest nieodzowne w geometrycznym opisie struk-
tury. Sténowi ona bowiem zgodny z symetrigq struktury ukiad wepbirzed-
nych, wzgledem ktérego odnosimy poiozenia atoméw; w tych rozwazaniach
pominiemy ruch termiczny i bedziemy uwazaé atomy za nieruchome. Okazuje
sie, ze zastosowanie pojgcia siecli prostej do przedstawienia niektérych
zjawisk w krysztatach prowadzi do zaleznofci zbyt skomplikowanych, nie
‘oddajqcych przy tym istoty zagadnienia. Do tych zjawisk nalezg p'rzede'
wszystkim problemy zwiazane z rozchodzeniem si¢ fal w krysztaiach i ich
rozpragzaniem i to bez rozrdiznienia czy mamy do czynienia z falg elek=
tromagnetyczna, falg sprezysta, czy tez z falg sprzezong z ruchem ta-
kiej czastki jak elektron lub neutron. Podobnie jek dla geometrycznego
opisu struktury naturalnym punktem odniesienia jest sieé prosta, tak ba-
za naturalng do opisu wymienionych zjawisk jest sieé odwrotpa. Pojecie
sieci odwrotnej przydatne jest wigc w opisie zaréwno dyfrakeji- promie-
niowania rentgenowskiego i neutronéw, jek i zjawiska przewodzenia pradu
elektrycznego i drgen czgsteczek w sieci krystalicznej. Sprecyzujemy
pojecie sieci odwrotnej, a nastepnie przedstawimy jej proste zz;stoso'wa-
nia, :
Sieé odwrotng mozna zdefiniowat za pomocg trzech wektoréw by, b, ;
33, stanowigcych ,je_j baz¢ podobnie jak a4, 25, 2z sf bazg siecl pros-
tej. Wektory te definiujemy tak, by byZo

8y * ij 8:5° (3.62)
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Korzystajac z tej definicji oraz z wyrazenia na objetosé komérki elemen-
tarnej w sieci proste] Va, mozZna otrzymaé wyrazenia, pozwalajgce na ob-
liczenie diugosci bj. Na przykiad dla i = J = 2 »trzymujemy

1 E
_a_2.22=’1=-ﬁ32(55};§,l).

- Btad
Il
_122 = V—a" (_3_5 X §_1)- (3.63)

Widzimy, ze wektor b, sieci odwrotnej o diugosci podanej przez (3.63)
Jjest prostopadly do paszczyzny 84183 sieci prostej, a wigc do pitasz-
czyzny (010). Zatwo sig przekonaé, ze b, L (100) oraz by L (001). Za-
uwazmy, %e wskaznik 1 pray Qi odpowlada niezerowemu wskaznikowi Mil-
lera ptaszczyzny, co nie jest przypadkowe. Wzory (3.63) sa symetryczne
wzgleden obu baz, a wig¢c, na przykiad :

1
_8_3 = i.; (21 X 22)- (3.64)

Vb' Jest obJjetoscig komérki sieci odwrotnej i wyraza si¢ wzorem analo-
gicznym do (3.61)

Vb = _b_o] Y, (_122 X 23)- (3-65)

A Jesli a4, a5 a3 sa baza sieci ortogonalnej, to réwniez by, bs,
_'9_3 stanowia baze sieci o::jtogonalnej. W takim przypadku

'bi = — (3-66)

oraz gi” 8;- W nie ortogonalnych uktadach wspoirzednych do obliczenia
b; trzeba korzysta¢.z (3.64) lub wzordéw trygonometrycznych, podawanych
w podrecznikach rentgenografii i’,krystalografii. W ogdlnym przypadku
nie ma takze prostych relacji miedzy katami ®qs Loy Oy zawartymi mie-—
dzy wektorami, 84y 8p» 53 a katami Bi, zawartymi mig¢dzy wektorami _Igi.

Podobnie jak wekbtor sieti prostej =, mozna tez zdefiniowaé wektor
sieci odwrotnej H '

g.—;hg,‘+k22+123 (3.67)
lub prosciej
H = hyby + hyb, + hzbs. (3.68)

Réwniez i tutaj h, k, 1 lub h,], h2, h3 stanowig tréojke liczb catkowi-
tych dodatnich, ujemnych, a niektoére (lub wszystkie) moga tez byé zerem
Mozna uwazaé, ze,sie¢ odwrotna jest zdefiniowana przez tréjperiodyczny
zbidér punktéw, stanowiagcych zakorczenia wekborow {3.68).
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Nie przypadkowo w (3.67) uzyto liter h, k, 1 oznaczajacych wskaz-
niki Millera ptaszczyzny w sieci prostej (hkl), Wektor H(hkl) ‘ma bo-
wiem dwie podstawowe wiasmosci : :

(i) Kazdy wektor sieci odwrotnej H(hkl) jest prostopadty do ro-
dziny paszczyzn réwnolegiych o wskaznikach (hkl) w: sieci prostej. -

(ii) DIugoéé wektora H(hkl) Jest réwna odwratnodci odlegtodci
miedzy dwiema sgsiednimi piaszczyznami zbioru (hkl:) :

|_H_(hk1)|= "/d(hkl)o' (3.69)

Dowody obu twierdzeh mozns znalezé w podrecznikach rentgenografii. Nie
bedziemy ich tu przytaczali, zajmiemy si¢ natomiast lch zastosowaniami.

Bezposrednie wykorzystanie (3.69) prowadzi do mjazybszego sposobu
obliczenia odlegioéci migdzy sasiednimi piaszczyznami (hkl), bez potrze-
by uciekania si¢ do zawitej trygoixometrii. Na przyklad, dla sieci orto-
gonalnej o réznych wektorach bazy 29 8o 33, otrzymujemy

Sliwipii. 5
Aomenis LG L
Qpyey H 8y a3

Przejdzmy obecnie do opisu dyfrakcji promieniowania rentgenowskie-—
g0 w kryszbtatach., Bedziemy si¢ interesowaé odbiciem fali monochromatycz-
nej oAdlugoéci A od zbioru piaszczyzn o odstepach dhkl’ speiniajgcym
prawo Braggoéw

2 4y 8in g = nh {3.70)

przy caym 68 jest kqt?m poiysku, zas n = 1,2,... rzedem interferencji.
Przyjmiemy dalej, jak to sig¢ czesto czyni, %e hkl nie muszg byé licz-—
bami wzgledem siebie pierwszymi, zatem n mozZna pominaé. Zjawisko dy-
frakecji, odpowiadajgce prawu Braggdéw, moZna tez interpretowaé jako spdj-
ne 1 spresyste rozpraszanie fotonéw, zachkodzace zatem bez zmiany diugos-
ci fali po rozproszeniu, Wprowadimy dwa wektory s i 8, © dZzugosci

ll
[Soli === (3.71)
przy czym s, Jjest normalny do czola fali padajacej, g do czoia fali
rozpros,zozgej. Kat miedzy ‘8, i s wynosi 286
N
B, * 8= 1-2 cos 2 6.
_ Wektor

=G (3.72)

B -5,
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nosi nazwe wektora rozproszenia. Latwo zobaczyt, 2e° G Jest normalny
do zbiloru pXaszczyzn odbijajqcych..Ponadto mamny

Y22
= —~ sin 8.
7,8

6l

(G G)

Je4li zastosuje sie teraz warunek Braggdw (3,70) z pominieciem =n, to
widaé, ze :

|| = — = |&l,

T dga
czyli
G = H. (3.73)

Otrzymujemy w ten sposéb bardzo prosty i wazny warunek na pojawienie
sig¢ odbicia (reflekéu) wiazki promieniowania rentgenowskiego o diugosci
fali A od zbioru paszczyzn (hkl): wystgpi ono whedy, edy wektor roz-
proszenia réwny bedzie jakiemu$ wektorowi sieci odwrotnej. Warunek ten
Jest ogblniejszy od prawa Braggéw{ zawiera bowiem explicite réwniez kie-
runek wiazki rozproszonej.

Warto zauwazyé, ze definicje (3.71) uzywane sa zwykle w dyfrakcji
promieniowsnis rentgenowskiego. W fizyce claZa statego korzysta sig ra-
czej z definicji wektora falowego Kk: :
k=2 s (3:74)

tak, %e wektor rozproszenia @ jest réwny

Q=ki=k . (3.75)

— -0

Wobec tego warunek (3.73) ma analogiczna postaé:

Q= 2=nH. (3.76)

-

Pojecie sieci odwrotrej oddaje réwniez cenne usiugi w reprezenta-
cji ruchu falowego w sieci krystalicznej. Zbiorowi réwnolegiych do sie-
bie ptaszczyzn okre$lonej fazy drgania odpowiada jeden tylko wektor fa-—
lowy k o diugosci 2w/ A i kierunku normalnym do zbioru tych ptasz-
czyzn, a zatem jeden punkt w sieci odwrotnej. Szczegdlnie interesujaca
Jjest reprezentacja fali stojacej w rownolegioécianie, wielkoicia odpo-
wiadajacemu krysztatowi makroskopowemu, poniewaz z jej pomoca moZemy o-
pisa¢ ruch termiczny elementéw strukturalnych oraz fale sprezyste, Jak
wiadomo, stan fali stojacej moze sig wytworzyé w strukturze periodycz-—
nej wtedy, gdy plaschyzny wezzbw fali pokrywajia si¢ z jakimis piasz-

/

/
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czyznami w sieci prostej. Warunek ten limituje dopuszczalne wartosci
' dtugobci fali ruchu falowego, a zatem A staje si¢ wielkoscig nieciagia.
Wybierzmy dla uproszczenia rozwazan sie¢ ortogonalng o wektorach
bazy a4, 85 8z oraz réwnolegtoécian o krawegdziach Nja,, Noa,, N3g3,
przy czym Ni sg duzymi liczbami naturalnymi. Jesli inberesujemy sig
ciggami falowymi o wektorze Kk || a4, to warunek wybworzenia sie stacjo-
narnej fali stojacej orzeka, ze najmniejsza d¥ugos¢ fali wyniesie
Npin/2 = 8¢y €2yli A, = 284. Odpowiada jej wektor falowy o drugoéci

%ax =2 TI/Xmin = nb,l.

Stan fali stojacej o najwigkszej diugosci fali speinia warunek Kmax/a =
= Nqaq, czyli

: 1

ol = Dy
1

Jeéli zatem normalna do ptaszczyzny jednakowej fazy ruchu falowego roéw=-
nolegta jest do kierunku krystalograficznego a4, to moga sie wytworzyé
stany fali stojacej o wektorze falowym

k= 21 T Dq, (3:77)
N
gdzie 1 < LIRS Ng. Tym mozliwyn stanom odpowiada w sieci odwrotnej
zbiér N, punktéw o porozeniach (1/84) Th,, (2/N4) mbgyeee, Tbqe PO=
niewaz N; sg liczbami bardzo duzymi (rzedu 4020), mozliwe stany fali
stojacej reprezentuje w rezultacie quasiciggly zbidér punktéw.

¥ Trzyklad 3.7.4, Postugujac sie tabela generatorédw 3.1 pokazaé, ze
C§h11 jest ztozonym elementem symetrii. A }
Na podstawie rys. 3.1 widzimy, Ze elementowi ngﬂq odpowiada
przeksz;alcenie wspéirzednych X = 3 X5 = =Xq, xg = =X,, czyli ma-
cierz B

087 @4hed
B=(-1 o0 of.
: o -1 0

Prébujmy roztozy¢é B na iloczyn macierzy

B=x - Ag,
= =0

gdzie Xx Jjest macierzag nieznang., Mamy

x=B -4 =8B"
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Poniewaz X nie odpowlada zadnemu 2 generatoréw, piszemy dalej

I=1-27=1"45

; =

|

Stad
(o) 465 ek oy A ol o)

a_(:g.ég: 0 “jlo " o) =
o) M ol o
(o)t P D)
=0 0 =1)=4g 4,

om0

zatem

{{157]
]

4g 4o 45 4g = 4g'45 Lg-
- : . [171]

RozZozylismy wiec operacje B, odpowiadajaca C3 , na trzy ope-
racje bardziej elementarne., Nie jest to jedyny sposéb rozkiadu B. Lat-
wo to dostrzec, jesli napiszemy - jek poprzednio - B = g é8’ lecz tym
razem uwazamy, ze macierz X da sieg przedstawié jako iloczyn nieznanej
operacji ¥ z powtérzona operacja Ag. Mamy obecnie

czyli

-Jako druga mozliwos¢ rozkiadu mamy wige
B= (45 4,) (45 4g)-
Zatwo sprawdzié, Ze réwniez

B= o do due

I(lnb
I&b

Ustatnie wyrazenie ma prosta interpretacje¢ geometryczna (por. rys. 3.1)
powtdrzenie -operac ji 4g Jest réwnoznaczne z operac?a ﬁcghW{])'1,czyli
ze zmianq skretnosci osi Cz. Dalsze podzialanie Céz nie zmienia skret-
nosci osi, a jedynie jej kierunek na symetryczny wzgledem osi z (o0$



119

Bﬁﬂ] jest oczywiscie dalej prawoskretna w ukladzie wspdirzednych
=
Przyktad 3.7.5. Jakie ograniczenie naklada na wekbtor biegunowy

trzykrotna oé symetrii 0511
Z tabeli 3.1 widzimy, ZzZe

é& - = (0} =1 Aales
1 0 -1
wobec tego
< =Pq + Do
{ag-0}p=(=2 + 250
Pq end P5

wige kosinusy kierunkowe
, czyli jest réwnolegty do

Wynika stad, ze py = Py = Pze Wektor
‘{1/J?, 1/+/%, ﬁ/_'} takie same jak 5

0si obrotu.

mna
[m

Przyktad 3.7.6. Jakie sq ograniczenia nakXadane na wektor bieguno=—
Wy przez ptaszczyzng¢ sSymetrii polowiaca kgt Xq9%5 i réwnolegig do x3?

Praszczyznie takiej odpowiada macierz transformacji

(O ] 0
A=(1 o o].
(o) O} e |
Poniewaz
Sl PNy Pa ¥ P
{é {]}2 = Po SJSiliiPy = Py =0,
0 0 (o) Pz 0

Pq = pa,' 3 # 0., Ptaszczyzna dopuszcza wig¢e wekbor o postaci (B)T =
= (pq Pq p3), lezacy na tej ptaszczyinie symetrii.

Przyktad 3.7.7. Jakie ograniczenia nakiada na wektor osiowy ptasz-—
czyzna symetrii (110)7?

Slad tej piaszczyzny na I, przechodzi przez punkty [10C] i
[010]. Na rysunku 3.20 zaznaczono ptaszczyzng rownoleglq ‘do niej i prze-
chodzaca przeu poczatek ukiadu, Transformacji punlibu xﬂ X5, xé =
= =Xq, 3 = X3 odpowiada macierz .
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X3 X;
/ X3
7 /’/
v
/
7 /4
AN
A
LA
Sk
v
A
7

45° /5\005'1(2/1—6')
[ 2

7
v %
7

N

\

\

X
X5, X2,

Rys. 3.21., Orientacja ukladoéw wspoéirzednych do przyktadu 3,7.8

0O -1 O
N (0 (0] |55
0 (eFiEewy
Zgodnie z (3.5)
=m0\ & Do P4 = P\’
i (0L glaie) Po|=|-Pq *+ Po] =0

(0] Qe Pz, 2p5

T

8tad pq = py, Py = 0. Wektor p (pq, pq, O) Jest prostopadry do (110).

Przyklad 3.7.8. Mamy dany tensor (3.17) o postaci

A BB
f=fB a0 By,
BB 4

Nalezy go sprowadzi¢ do ukadu osi gtéwnych.
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W tym przypadku wiadomo, Ze jedna z 08i gtbébwnych jest - xé i1l ,
zas pozosta%ymi osiami B8 xq.L xé J.XB. Erzejécia od ukadu xé X5 x
do xq X5 X 3 mozemy dokonaé¢ za pomoca dwéch kole jnych obrotéw (rys.
3.21). -

(1) Obrét o kat 45° wokér x,;. Relacje miedzy ukladami osi x; oraz
x; przedstawia macierz g,

7] (0] 0
g =0 2 42 .
0. AP AR

(ii) Obrét o kat @ taki, ze cos o= 2/+/6 wokék osi x% Relacje
miedzy uktadami o0si x1 oraz xi przedstawia macierz kosinuséw kierunko-

wych Co
2H/6 0 =1/
g 2 = (0] 1 0 ’
\17¥/3 0 2/F

zatem prze jécie od ukadu x; do X; Wyznacza macierz a
2HE -ANE -1/E

a=¢6,+2,={0 R VA B
AEE AP A

Macierz ta powinna sprowadza¢ T do postaci przekgtniowej %, czyli po-
winnismy miedé

przy czym g = (v, O 0/0 7, 0/0 0 73). Istotnie

2/4/68 A6 -A4E\[a B B\ /[ 2/F 0 143
0 12 “AAZ|B 4 Bli-1A6 142 143
13 AAE AAF) B B A/ \-1/E a2 A5

N = R 0 0
=1 -0 A -B 0 . (3.78)
5 0 0 A + 2B :

Z (3.78):widaé, %e obrazem tensora w krysztale, w ktérym wystepuje trzy.
krotna of symetrii o kierunku [111] jest kwadryka obrotowa wokédx tej
osi,



a2

Przyktad 3.7.9. Dane sa wapélriedne utamkowe atomébébw wegla czqs#ecz-
ki antracenu w krysztale w dwéch temperaturach: 290 i 95 K. Znalei¢ réw-
nanie plaszczyzny przechadzace]j przez wszystkie atomy czasteczki w obu
temperaturach i orientacje normalmnej do tej piaszczyzny w uktadzie abe™,

Antracen:krystalizuje w
uktadzie jednoskosSnym, grupa
przestrzenna P2,/a. Komérka e-
lementarna ma parametry, ktdére
83 podane dla obu temperatur w
tab. 3.7 .1 wypelniona jest
dwiema czgsteczkami. Zajmujg
one poiozenie szczegblne o Sy-—
metril Ci i dlatego podaje
si¢ porozenia jedynie poowy
wszystkich atoméw wegla, zesta-
wione w tab. 3.8 i 3.9; dane
M zaczerpnigto z pracy Masona [s]

Numerac je¢ atoméw wegla i orien-
Rys. 3,22, Numeracja atoméw czasteczki tacje osi symetrii czasteczki
, . antracenu IMN przedstawiono na rys. 3.22.
Obliczenia wspbirzednych ortogonalnych dokonano na podstawie wzoru (3.
25) dla ortogonalizacji typu abc™.

B D &

Tabela D 7

Paraﬁetry komérki elementarnej antracemu (aj, B ) wediug [6]
i paremetry sieci odwrotnej (b;, p™) w temperaturach 290 i $5 K

290 K : 95 K

a; | 8,562 £ 0,006 | 8,443 + 0,006 &
a, | 6,038 * 0,008 6,002 t 0,007
a5 | 11,184  0,008| 11,124 * 0,008
8 aziyg 0,12 125560 0112

b, | 0,142062 0,145665
b, | 0,165618 0,166611
b | 0,108756 0,110559
=

55,3° | su,4°
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I abie 1 aiti5.8
Wspbéirzedne utamkowe (x(i’) i ortogonalne (xi).atoméw wegla
czgsteczki antracenu w krysztale w temperaturze 290 K.
Dane wyjéciowe zaczerpniete z pracy Mascna [6]
Atom Wspéirzedne utamkowe Wsp6Zrzedne ortogonalne,g
A 0,08728 0,02712 ' 0,36562 | -1,5805 0,1638  3,3618
B 0,11875 0,15775 0,28072 =0,7706 0,9525 - 2,5812
c 0,05864 0,08030  0,13816 | -0,3776 0,4848  1,2704
D 0,08786 0,20936 0,04738 0,4506 1,2641 0,4356
B 0,032038 0,13067 -0,08990 0,8%325 0,7890 =0,8266
F 0,06055 0,25943 =0,18346 1,6865 1,5664 -1,6869
G 0,00536 0,18060 =0,31659 2,0444 ° 14,0905 =2,9100
Tabela 3.9

Wspdirzedne ulamkowe (x‘i)) i ortogonalne (xi) atoméw wegla
czasteczki antracenu w kryszbtale w températurze 95 K.
Dane wyjsciowe zaczerpnigte z pracy Masona [6]

Atom Wspbdirzedne ulamkowe Wspbirzedne ortogonalne, i
A 0,08617 0,02613 0,36813 -1,6563 0,1568 35,3297
B 0,11793 0,15850 0,28352 -0,8403 0,9513  2,5644
@ 0,05886 0,07899  0,14027 =0,4114  0,4741 1,2687
D 0,08783 '0,20916 0,05076 0,4128 1,2554 0,4591
E -0,03011 =0,13488 0,08974 0,835% 0,809 -0,8117
F | -0,06123 -0,26634 0,18215 1,6965 1,5986 - -1,6475
G ~0,00391 0,318%4 2,0944 -2,8794

-0,18761

1,1260

Wychodzgac z wspéirzednych uramkowych obliczamy wpierw macierz B
i g wedtug definicji (3.43) oraz (3.40). W temperaturze 290 K otrzymu-

Jemy

7,495585 12,897612  12,521582
10° B = (12,897612  38,579036  -8,261093 | ,
12,521582  -8,261099  75,15670¢
2,018161 0,879542
Akt o 2,742952 il <
~ \0,879543 1,182787
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Poniewaz wyznacznik macierzy B Jest réiny od zera, det (B) = 2,3912-
-40'6, mozemy obliczyé §’1 ‘

1184,02  -448,64  =246,58

1072 g7 = [ -448,64 170,02 93,43 | ,
=246 ,58 93,45 51 s36

oxraz
2172,66  =1230,59 749,%h
(571 g) ={ 823,25 466,35 -284,09) .
= -452,46 256,27 =156,13

=1 q
Wybieramy jako zerowe przyblizemie m kolumn¢ macierzy (B~ g) o naj-
wigkszych elementach., Jest nia

2172,66
oo = | 823,25 | .
=452,46

Naste¢pnie obliczamy pierwsze przybliZenie

‘ 5,394307
oq = (B g) po = | =2,044026 -10°.
-1,123373

Jezeli podzielimy skadowe P, brzez analogiczne skladowe Po Ito otrazy-
many s

2482 ,81
2482,87 | .
2482,81

Skladowe te rbéznia sie miedzy soﬁg tak niewiele, ze p, mozemy uznalé
za wystarczajaco dobre przybliZzenie m 1)’ a érednia wartosé 2482,83
jako wartosé wiasna 1/A1), stad

(
A 2 4 007-107%.
W celu uzyskania wektora 2(1) musimy p, podda¢ warunkowi normaliza-

cdi (3.39)
9% g o, = 61,018540:10'° = £
oraz

£Y/2 _ 9 811436-107,

czyli
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o' = (6,9056, -2,6167, -1,4381).

Réwnanie ptaszczyzny calej czasteczki we wspdirzednych ukosnokatnych ma
wigc nastepujaca postaé:

6,9056 x_('” - 2,6167 x(3) - 1,4381 ey e

Dla sprawdzenia tego réwnania policzmy odchyiki CHY atombéw wegla
oraz ich kwadraty. Otrzymujemy

A B C oD E F G

0;+10° . 0,60 0,36 0,39 0,92 -0,28 0,31 0,5 &
410 0,355 0,126 '0,149 0,854 0,081 0,097 0,350 g2

2 3 62 = 4,040 = 5 2 A1),

 Widzimy, Ze zgodnoéé obliczonych wartosci jest zupeinie zadowalajaca.

Mozemy teraz podstawié m;, 8; Oraz g8 do (3.53), co po przeiicze-.
niu pozwala napisa¢ réwnanie ptaszczyzny czasteczkl we wspoéirzednych
abe™

0,80654 x4 = 0,43337 x5 + 0,40207 Xz = 0
w temperaturze 290 K. Jednoczesnie widzimy, 2Ze
N = (0,80654, =0,43337, 0,40207)

Jjest wektorem normalnym do tej plaszczyzny.

W celu znalezienia M nie mozemy odwrécié¢ macierzy (2'1 g) i po-
nownie skorzystaé z rachunku kolejhych przyblizen, poniewaz wygnacznik
tej macierzy jest réwny zeru. Wobec tego wybilerzemy zbidér wekboxrdw Ag',
BF’, ..., W przyblizeniu réwnolegtych do M (rys. 3.22). Na podstawie
wspbirzednych ortogonalnych w temperaturze 290 K (tab. 3.8),  obliczamy
ich kosinusy kierunkowe, zestawione w tab. 3.10. Srednie wartosci odpo-

- wiadajg wektorowi

<p'>= (-0,32344, -0,89224, -0,31506).

Natozenie warunkéw (3.57) z uwzglednieniem przyblizenia (3.58) prowadzi
do réwnan liniowych ;

51 ; + é& + 63

~0,32344 b4 = 0,89224 &, - 0,31506 65 = 0,158+10™*

o,

0,80654 64 = 0,43337 6, + 0,40207 &5 = 8,753-107"
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Tabela 3.10

Orientacje wektoréw réwnolegtych do osi M czasteczki antracenu

Kosinusy kierunkowe ‘
Wektor -
|58 852 23
AG°  |-0,32864 | -0,88857 | -0,32006
BF’ -0,32415 | -0,89148 | -0,31651
CE® -0,31956 | =0,89481 | -0,31176
o’ }-0,31936 | -0,89593 | -0,30873
Tabela

3,11

Orientacja osi IMN czasteczki aptracenu
wzgledem ortogonalnych osi krysztaiu abe®

{w temperaturze 290 K)

a b =
~0,49615 |--0,12644 | 0,85897
M | -0,32143 | -0,89230 | -0,31701
N 0,80654 | -0,43337 0, 40207

T abela

Orientacja osi IMN czasteczki antracenu
wzgledem ortogonalnych osi krysztaiu abe™
(w temperaturze 95 K)

a b cX
-0,51135 | -0,13030 | 0,84947
~0,30191 | -0,89822 | -0,31952

N | 0,80461 | -0,41983 | 0,41995

ktorych rozwiazaniem sa poprawki kosinuséw kierunkowych

&, = 20141072, &, = —6:1072, 8, = ~195:1072,

1
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Po ich wprowadzeniu otrzymujemy
= ("0’32143! -0’89230’ -09;170'])-

tatwo si¢ przekonaé, Ze warunki ortonormalnosci M sa speinione w gra-
nicach #1.1072
W koncu

= (=0,49615, -0,12644, 0,85897).

Pelna orientacja osi IMN :szasteczki anbtracenu w uktadzie abc> podana
jest dla temperatury 290 K w tab. 3.11.

Wyniki te r6znia sie nieco od podanych przez Masonza, co jest SpoOwWO=
dowane zapewne troche¢ inng procedura aproksymacyjna. Najlatwiej okres—
li¢ precyzj¢ przybliZenia za pomoca normalnej N do ptaszczyzny piers—
cienia, determinujacej réwnanie tej ptaszczyzny. Dla atomu i lezacego
doktadnie na piaszczyznie 'gi- N = 0. Jako precyzje wyznaczenia réwna-
nia praszczyzny mozemy zatem przyjaé biad standardowy

n 1/2
o = __f_;:L_;:__ 2 (3.61)

przy czym n jest liczbg atoméw. Otrzymujemy dla temperatury 290 K
N, Mason Oy = +8,6.102,

N, niniejsze obliczenia oy = i1,5-1o;3.

Na tej podstawie wyniki przytoczone w tab. 3.11 mozna uwazaé za troche
doktadniejsze.

Podobna procedura, zastosowana do wspérrzednych atoméw wegla czas—
teczki antracenu dla temperatury 95 K, prowadzi do wynikoéw Zamieszczo=
nych w tab, 3.12. Z tych danych (dla obu temperatur) skorzystamy w
rozdz. 9, w ktérym bedzie mowa o wplywie temperatury na wiasnosci fi-
zyczne krysztaiodw,

Przykrad 3,7.10. Majac wektor

: g‘},‘ = (-0,3776, 0,4848, 1,2704) R
opisujacy poozenie atomu wggla C w czgsteczce anbracenu w aber w
temperaturze 290 K (tab. 3.8), znalezé "idealne" polozenie pozostaiych
atoméw wegla pierécienia srodkowego i poréwnaé wyniki z potozeniami rze-
czywistyni,
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Tabela 3.13
"Idealre" pozotenie atoméw wegla Srodkowego pierscienia ozgsteczki antracenu
(m=1) T, (m=1) RABO S
A% cia'®Ygiap DR, = £+10
= i 4 s S REs =5 (strulkt) £
o [EES e FEUo) 0:" 0! -0,3776 -0,3776
1| ¢ Ol 4RO 1.0 0,4848) | [ 0,4848
07071 0 o 1 1,2704, 1,2704,
R 0,8275. -0,5212 -0,2088 8303\ | /0,8325\ | -2,2
2| = ||347 % o 0,742  0,5919 -0,7870 { |{-0,7786 | | | -0,7890 | [=10,4
0 0 1 ,5337  0,6149 0, 5806, 0,83 0,8266/ -7,6
- L 32. i %,fg' o\ | 70,4826 -0,8681 0,116 , 8555 , 4506 4,9
Zi s 2‘2--,/37 -% o || (0,727 -0,2284 -0,9591 |[f 1,2620 | | [ -1,2641 -2,1
0 0 1 0,8587  0,4428 0,258 ~0,437 -0, 4356, 2,0
A 0,5101 -0,6939  0,6499\ |/ 0,3721 0,35776\ | 5,5
4| c° 0o -1 0 -0,6939 -0,6325 . -0,3442) || -0,4819 -0,4848 |.| -2,9
003 0,6499 -0,3442 ~0,677 \-1,2731 152704 )
= % 343 0 0,4826 -0,1727  0,8586\ | /0,8249) 0,8325 7,6
1 1 i
5,1 B = E.,lj‘ L (o) -0,8681 -0,2244  0,4428 0,7815 0,7890 745
0 (O] 0,162 -0,9591 -0,2582/ | \[0,836 =0,8266/ | 10,3
o 13 0 0,8275°  0,1742 0,5337 0,4500 14508 0,6
s -%ﬁ‘ ' -;- 0 -0,5212  0,5919  0,6149 2649 1,264 -0,8
0 0 1 ~0,2088 -0,7870 ' 0,5806 0, 4349 0,435 0,7
<Ax,]> =
<bx>= 3. x 1072 8
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Poniewas &rodek czasteczki (centroid) przypada w punkeie (0,0,0),
mamy =0 i t = 03 zatem (3.28) upraszcza si¢ do wyraZemia

_ .1, (n=1)
B o de e By

Kolejnosé atoméw widoczna jest na rys. 3.22.

Wyniki obliczen zebrane sa w tab. 3,13, Jak widzimy, polozenla
idealne roznig sig¢ od rzeczywistych w granicach (2=3)¢10 R Podobny
rachunek wykonany dla pierécieni skrajnych (= 0, 8 # 0} wskazuje na
srednie réznice okolo trzy razy wicksze. Mozma stad wnosié, Ze anizotro--
pia sit dziakajacych na czasteczke w krysztale pewoduje niewielkie od-
stepstwa od Jjej peinej symetrii. : -

Przytoczony tu rachunek moze byé bardzo przydatny do okreslania
potozen atoméw wodoru, znanych z badan rentgenograficznych zwykle z ma-
X3 doktadnoscia.
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4., MODEL- GAZU ZORIENTOWANEGO

4.1, Opis modelu, zastosowania i ograniczenia
; ( i

W molekularno-kinetycznym opisie wkasnosci zwyklego gazu przyjmu-
jemy, ze sklada sig oﬂ z czasteczek stabo oddziatujacych z soba, a jes-—
1li zajmujemy sig gazem idealnym, to oddziatywania te z definicji réwne
83 zeru. Przyjmujemy tez’ zwykle, iz rozmiary czasteczek w poréwnaniu %
odlegtoéciami miedzy niml sg znikomo mate, co odpow1ada traktowaniu
czasteczek aako twordéw punktowych.

W analogii do tego obrazu mozemy opisaé¢ wiele witasnoici krysztatu
_molekularnego zaktadajac, 2Ze sk*ada si¢ on z czasteczek zajmujgcych
okresélbne potozenia w przestrzeni, oraz e rozmiary czasteczek 83 zni-
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komo mate w poréwnaniu z odlegtoéciami migdzy czasteczkami w krys%tale.
W pierwszym przybliZeniu mozemy tez zaniedbaé¢ oddziatywania migdzy czas-
teczkami. Résnica miedzy zwykilym gazem a krysztalem polega na tym, ze w
tym ostatnim przypadku czasteczki tworza okreélona strukture periodycz-
na i przyjmuja okreslons orientacje wzgledem wybranego uktadu wspoirzed-
nych, na przyktad wzgledem ortogonalizowanego ukiadu osi krystalogra-
ficznych, Zaleznie od witasnoéci samych czasteczek mozemy krysztal uwa-—
zaé za periodyczny zbidér zorientowanych w okreslony sposéb dipoli punk=
towych lub elipsoid, odpowiadajacych jakiej$ wybranej wiasnosci tensoro-
wej, przy czym objetoéé tych elipsoid jest bliska zeru,

‘Ta koncepeja stanowi tresé modelu gazu zorientowanego i pozwala na-
pisaé relacje migdzy fizycznymi wiasnoéciami samych czasteczek a wias-—
nosciami komérki elementarnej. Dalsze przejscie, od komérki elementar--
nej 'do wiasnoéci krysztatu makroskopowego, wymaga juz znajomosci fizycz-

nych réwnan makroskopowych, Konsekwencja potraktowania krysztatu moleku-
~ larnego jako gazu zorientowanego, przy podanych zatozeniach, bedzie za-
tem speinienie zasady addytywnosci: wiele wiasnosci ciata makroskopowe-
go bedziemy mogli opisaé za pomoca wkasnosci czasteczek dodajac je wed-
tug zasad odpowiadajgcych matematycznemu charakterowi tych wielkoéci i
stosujac zasady symetrii, rzadzace utozeniem czgsteczek w okreslonej
strukturze . V

Model gazu zorientowanego moze wigc odnosié sie do wielkosci mole-
kularnych, dajacych si¢ przedstawié za pomocg wektora lub tensora dru-
glego rzedu. Byskubtuje sig¢ obecnie nad nastepujacymi problemami dotycza-
cymi zastosowan tego modelu:

(1) Wyznaczenie wypadkowego elektrycznego momentu dipolowego w fa—
zie ferroelektrycznej krysztaiu. Dla zwykiego krysztatu, tworzacego fa-
z¢ paraelektryczna w stanie niespolaryzowanym, suma momentéw dipolowych
czgsteczek na obszar caiej komérki elementarnej réwna jest zeru, ponie-
waz krysztal nie ma wypadkowego momentu dipolowego pod nieobecnosé po-—
la. Inaczej jest w krysztaiach nalezacych do grupy ferroelektrykow., W
krysztatach pyroelektrycznych, ktoére .sg dielektrykami liniowymi o Jed-
nej domenie ferroelektrycznej, istnieje polaryzacja spontaniczna: caty
krysztat pod nieobecnosé pola elektrycznego ma dipolowy moment elek-
tryczny, tj. stenowi ogniwo elektrostatyczne. Pochodzi to stad, ze las-
da czasteczka takiego zwigzku ma trwaly moment dipolowy. Suma tych mo-
mentéw nie znika.w pewnym kierunku, stanowigcyn o$ (uni)polarna dielek-
tryka. Krysztakty wykazujch takie wrasnoéci nalezg do jednej z dziesis-
ciu grup punktowych, wymienionych w rozdz. 3. ;

(ii) Obliczanie dichroizmu, tj. anizotropii absorpe ji promieniowa-
nia spolaryzowanego w krysztale molekularnyh. Problem ten omdwimy sze-—
rzej W rozdz. 7. '
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(iii) Opis szeregu wiasnoéci fizycznych, reprezentowanych tensorem
drugiego rzedu, takich' jak diamagnetyzm, optyczna’stala dielektryczna i
inne, Niektére z tych wiasnosci beda przedmiotem bardziej szczegélowych
rozwazan w nastepnych rozdziatach.

(iv) Opis wpiywu temperatury na wkiasnodcit fizyczne krysztatéw., Mi-
mo iz Arednie wiasnosci krysztaiu, ma przykitad podatnosé diamagnetyczna
proszku, praktycznie nie zaleza od temperatury, podatnosé krysztaiu w
okreslonym kierunku zmienia sie wyraznie wraz ze zmiang temperatury.Jeé-
1i moZemy uznaé; %ze wiasnoSci samych czgsteczek sg state w tym semsie,
%e od temperatury nie zaleza, to obserwowana zaleznosé temperaturowa:
dla krysztatu Swiadezy o tym, Ze zmianie ulega przestrzenne rozmieszcze-
nie czasteczek, a wigc ich liczba w jédnostce’objetoéci_ciaia-stalego i
ich orientacja. Pomimo tego, iz efekty sa niewielkie, ich badanie jest
interesujace poniewaz éwiadcza one o anharmonizmie dynamiki sieci, Bar-
dziej szczegbdtowa dyskusja tych zjawisk zajmiemy si¢ w rozdz. 9.

Potraktowanie czgsteczek w modelu gazu zorientowanego jako tworébw
punktowych jest jednak uproszczeniem decydujscym o niedoskonalosci mode-
lu. Sprawia to, ze model ten w niektérych zagadnieniach nie moze byé
stosowany. Jesli, na przyktad, w jakim§ problemie istotne znaczenie ma-
ja oddziatywania miedzyczasteczkowe, a tak jest w opisie dynamiki sieci
to model jest zupelnie nieprzydatny. Nie mozna wieé przy jego uzyciu o-
trzymaé czestosci lub wekbtoréw polaryzacji drgan sieci, ciepia wkasciwe
go, wiasnosSci sprezystych itp., poniewaz do opisu tych wiasno$ci krysz-
taiu potrzebne jest uwzglednienie przestrzennej rozcigglosci czasteczek
i podanie matematycznego modelu oddziaiywan miedzy nimi.

4,2, Model gazu zorientowanego dla wielkosSci wekborowej

Przypusémy, ze komérka elementarna inteéesujacego nas krysztaiu ze-
wiera Z czasteczek, ktérych poiozenia zwiazane sa operacjami symetrii
reprezentowanymi przez macierze 4,, éz, «eos Ay, Schemat takiej struk-
tury w ortogonalizowanym ukladzie wspéirzednych dla 2Z = 2 przedstawio-
ny jest na rys. 4.1, pray czym.czqsteczki zastgpione sg wektorami ilus-—
trujacymi na przykiad momenty dipolowe, indukowene w nich przez obec-
noéé zewngtrznego pola elektrycznego E lub przez wektor E padajacej
fali elelktromagnetycznej. Rzut piaski tej sytuacji przedstawiony Jjest
pa rys. 4.2. Niech e, oznacza wektor jednostkowy wybrany w kierunku
wektora W, odpowiadajacego wybranej przez nas wiasnoéci czisteczki m,
zaz i, J, k sa wekbtorami w btrzech kierunkach krysztatu, fizycznie waz~
nych z’pﬁnktu widzenia wielkosci W. W najprostszym przypadku €n MO Ze=
ny wybraé¢ roéwnolegle do jednej z trzech osi momentu bezwiadnoici czasi

teczki L, M, N, zaé i, j, k moga by¢ odpowiednio réwnolegie do trzech
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Rys. 4.1, Rozklad wektoréw w sieci przestrzennej,
ilusf:ru;]qcy wektorowa wiasnoséé krysztaiu dla Z = 2

krjstalograficznych osi a,b,cx.
/ / Udzial m-tej czasteczki we wias-
nogei W w kierunku i Jest

\ \ proporcjonalny do iloczynu ska-
/ :

larnego _gm-_i_, a udziax catej ko-

/ moérki elementarnej w tym kierun—
b - : ku wynosi ‘
/ / (A 'f / 4
/ W, = B Z eyl =
{\ . \ G 4.1)
Ak € - B (A Ty
T Z Sm 2472
e _
[000] ch 5 sk
gdzie B Jjest wspbdiczynnikiem
s proporcjonalnoéci, Jedli komérka'
\\\ elementarna zawiera, na przykad,

Rys. 4.2. Rzut piaski przestrzenne- nie jeden lecz dwa zbiory czaste-
go rozkiadu wektorow molekularnych czek, przy czym czasteczki jedne-
go zbioru nie sa zwigzane operacjami symetrii z czasteczkami drugiego
zbieru, to w (4.1) nalezy napisa¢ dwie .nalogiczne, lecz niezalezne od
siebie sumy. Odpowiednio 'dla kierunku Jj oraz k :



133

Rys. 4.3. Ptaski rzut rozkiadu tensordéw molekularnych
w komérce jednoskosnej

Wy=B > (& &q)ds (4:2)

m

=B > (4, &)k - (43)
5 _

a8
I

Zwigzki (4.1) do (4.3) przedstawiajq model gazu zorientowanego dla wiel-
kosci molekularnych, ktére mozna przedstawié jake wektor. Jesli mozemy
zmierzyé W w.trzéch kierunkach i, j, k, to mozliwe jest wyznaczenie
orientacji eq W przypadku, gdy nie jest ona znana, ;

4,3, Model gazu zorientowanego dla wielkosci tensorowej

Przypuéémy, Ze w okreslonej strukturze mozemy przypisaé kazdej

. czasteczce identyczny tensor molekularny g, zadany w ukadzie osi‘czqs-
teczki L, M, N. & ma wigec postaé przekatniowa; jesli wszystkie trzy
sktadowe gléwné 83 dodatnie, to zbidr czasteczek, tworzacy strukture,
mozehw zastgpié symetrycznym rozkiadem elipsoid. Dla Z = 2 rozkiad ta-
ki jest przedstawiony na rys. 4.3. Naszym zadaniem bgdzie obecnie znale-
zienie zwiazku miedzy tensorem czgsteczki £ a tensorem krysztaiu g,

ktoéry pozwoli na obliczenie pierwszego z nich na podstawie znanego z do-
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Swiadczenia T. Zwigzek ten znajdziemy najpierw dla krysztaiu nalezace-
go do uktadu %ednoskoénego.

'~ Niech c r) oznaczaja macierze orientacji osi IMN wzgledem orto-
gonalnego uktadu wspéirzednych krysztaiu x| @ % || by xallcx, przy
czym r =1, 2, ..., Z, ¢- jest zdefiniowane tak, ze Cjj = cos ,xf.
Dla koncowego wyniku nie ma znaczenia czy pracujemy w ukladzie abc s
czy tez axbc, aczkolwiek z punktu widzenia symetrii poprawniejsza orto-
gonalizacja jest taka, ktéra nie narusza kierunku poslizgu, zadanego
czgsto symbolem grupy przestrzennej. Poszczegbdlne macierze g.r otrzy-
muje sig, jak wiadomo, z pierwszej macierzy ¢ przez transformacje

(r)=A (1) AT

c! Asoielsa i (4.4)

gdzie ér e maéierzami, odpowiadajgcymi kolejno wszystkim operac jom
symetrii, nalezacym do grupy ilorazowej komérki elementarnej krysztaku.
W takim raz{é komérce elementarnej odpowiada tensor ¥, zadany W ukia-
dzie XHXQXB

YA

s (4.5)
Y=

W przyjetej przez nas konwencji ukladu osi x4x2x3 0ogdlng postacia T
bedzie

(] I (4.6)
3R iy

Nalezy teraz sprowadzié X do ukadu oSi gtownych tensora makrosiopowe-
go T, ktory ma, oczywiscie, postaé przekatniows., Jesli przyjmiemy, ze
2||x2 (konwencje, jak zobaczymy w nastepnym rozdziale, moga byc tez

inne), to osie T, i T- leZg w piaszczyznie (010). Oznaczmy kat miedzy
'1‘1 a osisa x1[]a przez 9 5 uwazamy go za dodatni wtedy, gdy Jest liczo-
ny od: a do 11 w lcierunku rozwartego kagta kryntalograflcznero Be Jeze-
1i przyjmiemy wig¢c @ > O, to mozemy napisaé tabele¢ orientacji T, ozna-
czang przez a i

i coc @ 0] sin ¢
T, 0 1 ) (4.7)
T5 -sin ¢ O cos 0 '
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Macierz a odpowiada obrotowi uktadu wspoirzednych woldk X, 0 kat ¢
zgodnie z ruchem wskazowek na tarczy zegara., Mamy obecnie

a

it . ' (4.8)

{{[v]
Ia
1l

Podstawienie (4.5) do (4.8) prowadzi do poszukiwanego przez nas zwigzku

E{ > o g}gT- v (4.9)

2:

N

S

Rozpisanie {4.9) prowadzi do ngstepujacych réwnan:

®

1. 2 2 02 s Sl
T,I = cosSi0® Z ¢4 ti + sin~ @ Z 013 ti + 2 sin @ cos @ Z ci1015ti,
i i i

> of5 b5, : )
I

(4.10)

a2 2 2 2 : 1)
sin- ¢ Zci’l ti + cos” @ Z i3 ti - 2 sin @ cos @ Z °i1°i5ti’
i i i

n
1}

AN
it

T13 =0= (% 5= 11) sin ¢ cos ¢ - ‘53(sin2 ® —,cos2 ?).

Pierwsze trzy réwnania zawierajy liniowe zwigzki migdzy Ti'a ti;
kat o musimy znaé z dodwiadczenia. Czwarte rdéwnanie nie zawiera dodat—
kowej_infoypacji ~‘jest to warunek zerowania sig sktadowe] ‘I‘13 ﬁenso—
ra, ktory winien mieé postaé przekatniowg. Zwykle traktuje sige go jzko
- kryterium wewn¢trznej spdjnoéci obliczonych ti z wartoscia kagts © 3
warunek ten mozemy zapisaé kroce]

? b Al (4.11)
BsseE ting

tg 20= -

ZasSosowanie przedstawionego tu formalizmu do krysztaiu o symetrii
innej niZz jednoskosna, nie nastrecza szczegdlnych trudnodci. Dla ukiadu
tréjskoénego znigqzki (4.5) 1 (4.9) nie ulegaja zmianie, jedynic w macie-
rzy (4.7) wszystkie elementy beda rézne od zera. Przez to réunania (4,
10) ulepny pewnemu Skomplikowaniu. Dla uk¥adu ortorombowego wystarcsy
przyjaé ¢ = C.

Réwnania (4.10) nasuwaja wnlosek, ze poszukiwanymi wielkoéciami si
przewaznie sklacdowe &, ktére mozemy obrzyma¢ przez rozwiazarie wkladu
trzech réwnah liniowych niejednorodnych. Macierz ¢ uwazamy za znana
na podstawie danych strukturalnych. Dla czasteczek dostatecznie syme-
trycznych, tj. posiadajacych co najmniej symetrie grupy punktowéj Cgh,



436
e
gako o8ie glowne tensora & wybieramy mnajczesciej osie symetrii L, M,

h pokrywajace si¢ z osiami gitéwnymi tensora momentu bezwiadnosSci czgs-—
teczki, Poza przeslankami wynikajacymi z peinego rozwigzania problemu
Hynamiki sieci kryszbtaiu, prowadzacego do numerycznego okreslenia orien-
Gacjl esi libracji czasteczki w krysztale, nie ma obecnie lepszych me-

od zdefiniowania osi giéwnych t. W tej sytuacji wyjatkowa wiasnoscig
Jest diamagnetyzm czasteczek, Dzigki zastosowaniu zasady addytywnosci
podatnoéci diamagnetycznej czasteczki jeko wielkosci tensorowej, moZemy
w sprzyjajacych okolicznosciach okresli¢ orientacje osi giéwnych &t w
‘sposéb niezalezny. Bedzie o tym mowa W rozdz. 5.

: Potrzeba zdefiniowania osi gléﬁnych tensora &t w sposob mniej czy
wiecej dowolny wystepuje w badaniach fizycznych wkasnosci krysztakow o
éymetrii wyzszej niz trojskosny. Tylko w krysztatach trdjskodnych nie
ma %adnych ustalen, narzuconych wymogami symetrii. Tylko w tym jednym
przypadku dysponujemy wigc szeécioma informacjami, ktore mozemy otrzy-
paé dla krysztaiu w Sposéb niezalezny: diugosci trzech osi gidéwnych ten-
sora makroskopowego i trzy kabty ich orientacji. Dane te pozwalaja na o=-
trzymanie réwniez w sposdh niezalezny, tj. nie wymagajacy Zadnych zato-
Behy analogicznyeh informacji dotyczacych tensora molekularnego t.
) Spotykane sg réwniez inne zastosowania relacji (4.9). Jeéli mamy

krysztal o nieznanej strukturze, to na podstawie eksperymentalnego wy-
zngezenia T oraz a mozemy uzyskaé przyblizone wnioski o orientacji
ﬁzqsteczki w kombérce elemenbtarne;j, Informacje te stanowig duza pomoc w
!badaniach strukbury metodami rentgenografii strukturalnej.

Postaé zwigzkéw (4.,1) i (4.9) wskazuje, Ze model gazu zorientowa-

nego mozemy traktowaé jako szézegdlny wyraz zasady addybywnosci wielkos-
¢l fizycznychy majacej zastosowanie w badaniu struktur periodycznych.

A
5, DIAMAGNETYZM KRYSZTAZOW

5.1, Definicje wielkoéci podstawowych i podziak magnetykédw

Kazde ciaXo umieszczone w polu magnetycznym o natezeniu H ulega
polaryzacji magnetycznej, zwanej réwniec# namagnesowaniem. Efekt ten po-
lega na porzgdkujacym dziataniu pola, ktére jest wywierane na trwaie mo-
menty magnetyczne elementoéw strukturalnych, Do 0)5 Jeéli takie istnieja
oraz indukowaniu w tych elementach momentéw Dn. B Wektor namagnesowa-
nia okresla sig jako (dipolowy) moment magnetyczny jednostki obaetoéci

ciaza ( )
0
P
£= -t § (55
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AV jest elementem objetosci ciaza, do ktérego odnosza sie obie sumy w
(541). Jesli substancja jest diamagnetykiem, to 3 p °’ = Q.

Dla para- i diamagnetykéw przyjmuje si¢, ze wektor namagnesowania
jest proporcjonalny do pola H
I=¢8H, (5.2)

przy czym ¢ jest wielkoScia zwang podatnoscig magnetyczng substancji.
We wzorze (5.2) zaréwno I, jek 1 H maja ten sam wymiar; w takim ra-
zie ¢ jest wielkoscia bezwymiarows., W niektérych podrecznikach moina
spotkaé inna definicje wektora namagnesowanias

= oy ¢ H, : (5.3)

gdzie Ko jest przenikalnoécifg magnetyczna prézni (w ukZadzie SI B, =
= 4% «10° = Wb/Am). Przy tak napisanym zwigzku I oraz H maja wymiary
rézne, a dla uzyskania zgodnosSci (5.3) z defini¢ja (5.1) trzeba prawa
strone (5.1) pomnozyé przez . Réwniez w (5.3) ¢ nie ma wymiaru. Po-
datnosé magnetyczna ¢ para- i diamagnetykéw jest stata materialows,
natomiast & ferromagnetykéw zmalezy jeszcze od natefenia pola. Innymi
‘uzywanymi wielkoiciami sa: podatnosé jednostki masy, ® , oraz podatnesé
jednego' mola substancji X . Zwiazki miedzy nimi s§ nastegpujgce:

* = (] % i‘: NH = 4{%, (5.4)

gizie ¢ jest gestoscia substancji, a M masa czgsteczkowg. % oraz
% majg wymiar, zatem nie speiniaja réwnania (5.2).

Pocatnosé magnetyczna ¢ Jjest wazna cecha substancji chemicznie i
fizycznie aednorod.nea i moze byé podstawg klasyfikacji. W podziale sub—
stancji na rézne typy magnetyczne bierze sie pod uwage wielkosé i znak
¢ oraz site, dziatajaca na prdébke ze strony pola magnetycznego.

Przypubémy, ze umieicilismy w polu magnetycznym prébke substancji
o objetosci v. Jesli pole jest jednorodne a substancja nie jest ferro-
magnetykiem, to substancja ta ulega namagnesowaniu, lecz nie doznaje
dziatania sity przesuwajacej; Srodek masy prébki 'swobod.nej nie przesu-
wa si¢ samorzutnie w jednorodnym polu magnetycznym, nawet wtedy, gdy
jest anizotropowa. Inaczej jest, gdy prébke umiescimy w polu niejedno-
rodnym, przy €zym ogré.niczmy sie w rozwazaniach do substancji izotropo-
wej. Niejednorodnosé pola okresla gradient natezenia, na przykiad =
ag/a:E, skierowany w okre$lonym punkcie prostopadle do linii pola prze-
chodzacej przez ten punkt. Na probke umieszczona w tym punkcie dziaia
wiec siza (przy zastosowaniu (5.3))

g 3H
F = V¢H'é"‘

(5.5)
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o zwrocie zaleznym od znaku ¢ a kierunkv zgodnym z 8H/8x. Na podsta-
wie wielkoéci i znsku tej sity mozemy przedstawié nastepujacy schemat
klasyfikacji ciat staxych [1,2]. :

1, Diemagnetyki. Sa to substancje, odznaczajace sie podatnoécia ¥
ujemng i matg, rzedu 10'6, niezalezna od natesenia pola i praktycznie
niezalezna réwniez od temperatury T. Substancje te umieszczone w nieps
Jednorodnyrm polu magnetycznym doznaja dziatenia sity E ujemej, skie~
rowane]j przeciwnie do gradientu natezenia pola magnetycz?ego. Jesli
prébka ma swobode ruchu, o przemieszcza sig z obszaru o wickszym nate=
Zeniu pola do obszaréw o natezeniu mniejszym. Do klasy diamagnetykéw ne-
lezy ogromna wigkszosé zwigzkédw organiczﬁych, wiele zwigzkéw nieorga-
nicznych (H,0, FaCl, CaSO, vos), & Gtakze niektére metale (Cu, Pb).

2. Paramagnetyki. Te substancje charakteryzuje podatnosé ¢ dodat-
nia, o wielkosci 1072 < ¢ <10™%, niezalesna od H. Paramagnebyki u-
nieszczone w niejednorodnym polu magnetycznym doznajq dziakania sity do=
datniej, skierowane; zgodnie z gradientem nabtezenia pola:s paramagnetyk
Jest weiggany do obszaru silniejszego pola.

Zaleznie od zachowania si¢ ¢ przy zmianie temperatury mozna Wyrdze
nié dalsze podgrupy paramagnetykows

(1} Paramagnetyki o charakterze dielektrykéw, pozbawione elektro-
néw przewodnictwa, dla ktérych /¢ Jjest liniowa funkeja temperatury
(speiniaja prawo Curie lub Curie-Weissa). Naleza do nich na przykad
niektére sole metali grupy zelaza (FeCOB); metali ziem rzadkich oraz
zwigzkl organiczune, ktérych czgsteczki majg elektrony o niesparowanych
spinach (wolne rodniki). _

(ii) Paramagnetyki metaliczne (metale i pdiprzewodniki) o podatnoé-
ci matej (rzedu 10'6), zwigzanej z istniéniem elektrondéw przewodnictwa
(paramagnétyzm Pauliego). Podatnpsé¢ tych materiatéw siabo zalezy od tem-
peratury (Na, Al).

(1ii) Antyferromagnetyki, o podatnosci zblizonej do zwykiych para—
magnetykéw lecz z 8zczegblna zaleznoscig ¢ (T): w pewnej temperaturze
TN’ zwanej temperatura Néela, ¢ przechodzi przez maksimum (MnS, MnO). -

3. Ferromagnetyki. Sa to metale grupy zelaza (Fe, Ni, Co) oraz sze-
reg ich stopéw, o podatnosci dodatniej i bardzo duzej (103 do 404),przy
tym zaleznej od temperatury (powyzej temperatury Curie, TC, 88 zZwykiymi
paramagnetykami), nate¢zenia pola E i od historii magnetyczne j, termicze
nej i mechanicznej probki. Pewna grupa zwigzkéw, zwanych ferrybami, wy—
dzielana jest jako osobna klasa mégnetykéw, zwanych ferrimagnetykami.
0d ferromagnetykéw odréznia je bardziej zlozona zaleznos¢ ¢ (1) powy-
zeJ temperatury Tc oraz charakterystyczne cechy strukturalre uporzad-



159

kowania magnetycznego (przynajmniej jedna z podsieci ma réwnolegie uto-
Zemie spinéw o kierunku przeciwnym niZz w pozostaiych podsieciach).

W powyzszej klasyfikacji pominelismy diamagnetyki anomalne i tak
zwane metamagnetyki, stanowigce grupy magnetykéw o bardzo niswielu
przedstawicielach, W dalszej czesci bedziemy sig¢ zajmowali wylacznie
diamagnetykami, odsyiajac Czytelnika zainteresewanego wiasnoscianmi in-
nych grup do wykezu literatury, zamieszczonego na koincu:rksigzki.,

Wektor indukeji magnetycznej B okresSlony jest zwigzkiem

-B. = p’o(g + ;'.:.')°‘ (506)
Korzystajac z (5.2) otrzymujemy

B= p°§+p°¢_§= ol + ¢)E = p, wE. (5.7)

p  Jest przenikalnoécia magnetyczna materiaiu. Gdy poréwnamy (5.7) z
analogicznym réwnaniem, napisanym w uktadzie jednostek cgsM

B= (1+4n X : (5.8)

widzimy',Ze )
‘kSI = 4% ¢CgSM" (5.9)

Relacja (5.9) moze byé wykorzystana do przeliczenia podatnosci w jed=-
nostkach SI; wickszoéé prac z dziedziny magnetochemii opublikowana jest
w uktadzie cgsM, :

Warto zauwazyé, %e diamagnetyzmowi substancji towarzyszy na ogdx
niewiellri udziat paramagnetyzmu. Zgodnie z teorig Van Vlecka magnetycz-
ne wresnosci czasteczki wieloatomowej opisuje wyrazenie, sktadajace sie
z dwoch czionbdw [3{6]

M
2542 N Z I(°] Hln)L (5.10)

(pchM =

Pierwszy z nich jest diamagnetyzmem, tzn. larmorowska precesjg orbity
elektronu w polu magnetycznym. Sredni kwadrat promienia tej orbity wyno-
si <r§_>, N Jest 1iczpq Avogadry, € i m Zadunkiem i masg spoczynkowd
elektronu. Suma rozcigga sic na wasystkie elektrony okreSlonego atomu.
W drugim czlonie (o jMHln) jest elementem macierzowym skiadowej orbital-
nego momentu pedu w kierunku wektora H dla prze;jécia od stanu podsta~
wowego (indeks o) do! wzbudzonego (n). E, Jjest réznica emergii
obu tych stanéw. Ten dodatni czion wym.ka stqd, %e obok preees;j:l. pod
wptywem zewnetrznego pola magnetycznego zachodzi réwniez polaryzaecja

’powlok elektronowych, W wyniku tego pojawia sig niewielki orbitalny mo-
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mert magnetyczny, skierowany zgodnie z H. W takim razie obok ujemnej
podatnoéci ¢d, wystepujace] zawsze, w ukiadach wieloelektronowych po-
jawia sie siaby udziat paramagnetyczny Q’p’ zwykle rzedu kilku procent,
przy czym zardwno ¢d jak i tbp nie zaleza od temperatury. W dodwiad-
czeniu mierzy sie zawsze sumg, tj.

Piosw, = Pa * ¢p. (5.11)

Ocena czgsci paramagnetycznej potrzébna jest woéwczas, gdy interesujemy
si¢ poréwnaniem wynikéw dodwiadczalnych z teoria. Poniewaz pordéwnan ta-
kich czynié nie bedziemy, potraktujenfy wyniki doéwiadczalne diamagnetyz-
mu krysztatéw jak i czasteczek jako podatnosci efektywne.

Dla diamagnetbykéw anizotropowych réwnanie (5.7) nalezy zastapic
przez

B

Ho(g + g)go (5012)

Stad wynika, ze

e

e

+ 9, (5.13)

gdzie ¢ jest temsorem podatno$ci materiaiu, liczonym na jednostke obje-
tosei, '1=] macierza jednostkowa, a i tensorem przenikalnosci magnetycz—
nej osrodka

¥31 ¢32 1+ 53

Mozna dowiesé¢ [4], ze g oraz U sa tensorami symetrycznymi.

Zauwazmy na koniec, ze w sumie (5.7) udziat czionu B, ¢H, wynika-
Jacego z namagnesowania materiatu, jest ©koo '10"6 razy mniejszy niz
uol_i_. Wynika stad, iz B wewngtrz diamagnetyka tylko nieznacznle rézni
si¢ od B w prézni,

5.2. Para siz w polu jednorodnym

Rozwazmy teraz zachowanie si¢ krysztaiu dismagnetycznego, zawieszo-
nego na cienkiej nici w jednorodnym polu magnetycznym H wzdiuz jedne—
g0 z kierunkéw gibéwnych tensora ¢, na przykiad w kierunku b, (rys.

* 5.1). PozostaZe podatnoici gtéwne 4‘1 1 ¢3 znajduja sie zatem w ptasz-
czyinie poziomej i niech bedzie ld)‘ll = |¢ 3]. Stan réwnowagi w polu H
odpowiada takiemu ustawieniu krysztaiu, Ze ¢5” Hi cl»,] Al HY

Przypuéémy, Ze naruszylismy t¢ réwnowage przez obrét gérnego zawie-
szenia nici o kgt o (rys. 5.1). Wskutek sprezystosci nici krysztai ob-
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Rys. 5.1. Krysztat w polu magnetycznym wychylony o kat ¢ wzgledem
polozenia réwnowagi mechanicznej

réci sie réwniez w tym samym kierunku, jednak o kat ¢ < &, W tym nowym .
potozeniu dziata nah ze strony pola para siit g,] al 22, ktérej moment za-
lezny jest od wartosci magnetycznego momentu dipolowego ‘nabytego
przez krysztatr w polu 3

P

M= Ho Pp ¥ H. : (5.15)

Z kolei

Pn zalezy od objetosci krysztaiu v 1 jego namagnesowania I
i

5 Py= W I vy (5.16)

Jezeli oznaczymy przez Hi sktradowa H w kierunku d’i (rys. 5.2), to
mozemy napisaé nastepujace wyraZzenie na skladowa momentu pary sil M2,
dziatajaca wzdiuz kierunku zawieszenia: /

l§2 p0§p3 Hy -4 H3) = Hy v‘(qs -H3 H; - ‘b,l H, HB) =

Mo V H,' H3(¢3 = ¢1)-
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Poniewaz

H cos ¢

_H,|=Hsin'@, H3

v¢ =

o I8

x£=28y (5.17)
= :

n
M
gdzie m ‘jest masa prébki, M ma-
8q czgsteczkowa, a X podatnoscia
jednego mola substancji, otrzymu-

: i jemy po podstawieniu °
Rys. 5.2. Sktadowe natezenia pola | i ool

na kierunki gléwneq_g_
M, = “o:'; (x3 = x,l)HZ’sino cos ¢ =
] J B (xz = % )E® sin 29 (5.18)
Sag sty P mdili :

Para sil jest wigc zalezna od réznicy podatnosci molowych krysztaiu w
jple.szczyﬁnie prostopadiej do kierunku zawieszenia. Réznica ta nieko-
niecznie musi dotyczyé podatnosci gkéwnych, jesli kierunek zawieszenia
‘nie pokrywa si¢ z zadnym kierunkiem giéwnym tensora X.

5.3.>Metoda statyczna pomiaru anizotropii

Na krysztai anizotropowy, umieszczony w polu o natezeniu H, dzia-
P 2:} zatem para sik llz,'skierowana wzdiuz kierunku zawieszenia. kryszta-
|zu, Przy orientacji przedstawionej na rys. 5.1 mamy zgodnie z (5.18)

My =2, B (x5 = x4)E® sin 29,
2 H . .
gizie @ jest katem zawartym miedzy osia giéwna 1%z 8 kierunkiem H.
Temu momentowi przeciwstawia si¢ moment pary sit, wynikajacy ze skrece-
nia nici sprezyste]

mé = k.( o - 'oco. -9), = (5519)

przy -czym llé znika dla @ = O, a wtedy o = %o Orientac ja krysztaiu
jest woéwezas taka, Ze krétsza of gidéwna tensora podatnosci X 3' sskiero~
wana jest wzdiuz H, a dﬁ‘o Jest kgtem orientacji tej osi wzgledem wy-
réznionego kierunku krysztaiu, na przykiad wzgledem normalnej do dobrze
wyksztatcone Aciany i odbljajacej sygnail &wietlny przy pomiarach katéw
|1lub wagledem znsnego kierunku krystalograficznego. Speinienie warunku

' @= 0 mozemy, sprawdzié 'za pomocg prostej obserwacji: krysztai zawieszo-
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ny‘nieruchomo nie zmienia swego potozZenia po wigczeniu pola magnetyczheh
‘go. Pomiar @, pozwala wigce ustalié or;entacje X3 wzgledem wybranego
ukladu odniesienia.

W celu uzyskania potozenia katowego ¢ kryszbalu musimy obrdcié
gérne zawieszenie nici o kat « > @f Jezeli kryszbal jest niéruchomy,tq
oba momenty sil sa sobie réwne, M, = ué, a wiec

L, B (05 = xq)E sin 20 K(x —; - 0). (5.20)

Jezeli si¢ oznacay 5 :
sy, (R n B2 N E) (5.21),

to réwnosé (5.20) ﬁrzyjmie prostsza postad
.a—u°-<p=‘AA31 ¥ 8in 2 (5.22)

Jesli krysztal zawieszony jest na dostatecznie cienkiej nici (kwarcowej
lub szklanej), to @ - & znacznie przewyzsza ¢ tak, Z%e @ z lewe]
strony moZemy pominaé. Wzgledne przesunigcie katowe gérnego zawieszenia
pici, %=, jest wéwczaé liniowg funkejga sin 2 ¢ i te zaleznosé moZe-
ny wykorzystaé do doktadnego wyznaczenia A X, Stalg sprezysia anici, k,
moZna znale4é przez wykonanie pomiaréw dla kryszbaiu o znane;j wielkosei
anizotropii, natomiast pozostaie parametry wystepujace w (5.22) sa tat-
wo dostepne bezpoiredmim pomiarom.

Powigkszanie kagta skrecenia nici @, powoduje wzrost ¢ az do wiels
kosci @ = T /43 kat skrecenia wynosi wowczas ® e Takie poiozenie
kryszbatu jest metastabilne i dalszy, niewielki juz wzrost o« powyzej
kata krytycznego powoduje gwalbtowna reskeje krysztaiu, polegajaca na
s8zybkim obrocie wokét kierunku zawleszenia. Poniewaz sin ammax =1,
many

O T
By X = -A° L 2 (5.23)

Pomiar kgta krytycznego moze wigc réwniez byé wykorzystany do wyznacze-
nia A x [21].

Do wyznaczenia statej sprezystej nici mozna uzyé krysztaiu kaleytu,
ktérego giéwne podatnoéci, a tym Samym i anizotropie sa znane. GXdwne
podatnosci tego krysztatu wynosza [9]

=36,3

Xqa =X
1 2 =
+10 cgsM.

X3 . =40,5
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05 X 3 jest réwnolegia do trgy—
krotnej osi symetrii naturalnego
romboedru kalcybu, pozostate leza
W piaszczyinie prostopadtej do Cé
(rys. 5.3). Jeéli przez o = 103
oznaczymy kat wierzcholkowy zawar-
ty miedzy krawedziami scian zwigzae-
nych relacja 05, to kat ¢ zawarty
miedzy x'5 a symetralng kata «
mozna obliczyé z relacji

gind = (/3/3) tge/2.

Jesli zawiesimy krysztatr wzdiuz
dwusieczne j kata rozwartego natu-
ralnego romboedru, to mierzona ani-
Rys. 5.3. Orientacja osi tensora zotropia wynosi

podatnosci magnetycznej w krysz-—
nale ealioyty A %= (X -X3) sin® ¢ =

= 2,21.10™° ocgaM.

Anizotropia ta jest niewielka, a wiec ten sposob zawieszenia Jest przy-
datny do wyznaczenia statej sprezystej bardzo cienkich nici, czgsto u-
}Zywanych w eksperymentach. i

5.4, Metoda dynamiczna pomiaru anizotropii

. Krysztal odchylony o niewielki kat w stanie H = O’ bedzie wykony--
wat po wkigczeniu pola oscylacje torsyjne woké: potozenia rownowagi.Row-
nanie ruchu tych drgan ma postaé

I, 8=-Aka Xxsin2e-ke = - (5.24)

gdzie Ib jest momentem bezwtadno$ci krysztaiu, a E oznacza przyspie-
szenie katowe., Jesli posiugujemy Sig promieniem Swietlnym, odbitym od
powierzchni krysztaiu lub od matego zwierciadetka umieszczonego poza ob-
szarem pola, to do obserwacji ruchu wystarcza zupeinie maze amplitudy
katowe., W takim-przyblizeniu s8Sin 2¢ = 2g, oraz

il A X+ 1)ke= 0. (5425)
Ib o

Stad otrzymujemy wyrazenie na czestosé drgan krysztaiu w polu magnetycz-
n'yl:‘\r w H
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A X i
5 5 —2—A_E_+—1 i (5.26)
b
Jdesli wylgczymy pole, to dla H = O réwniez A = O3 obserwujemy wéw-
czas czgstosé drgan w, <oy

“’g 7 -k— ® (5.27)
In

OF: soct il D o) A X (5.28),

przy czym T Jest okresem drgan prébki, Widzimy stad, Ze pomiar okresu
drgan probki w pdlu magnetyeznym, Ty, Omz Przy wylgczonym polu, T, pozwala
na obliczenie anizotropii podatnosci magnetycznej krysztatu, A X.Potrzeb-
ngw A stalq sprezystg nici, k, mozna zmierzyé metodg opisanq W po-—
przednim rozdziale, albo za poérednictwem pomiaru okresu drgaﬁ precika
{szklanego) o znanej geometrli (wzorzec), zawieszone go na tej same;j ni-
¢i

=2 "4—%5 = L e (5029)

o

Dla precika o masie m i calkowite] dtugoéeci 1, zawieszonego W poto-
wie, moment bezwladnoSci wyraza si¢ znanym wzorem »

I =lm12.

gD

Postugujac si¢ metoda statyczng lub dynamiczng mozemy wiec zmie—
rzyé, na przyktad, A31 =X 3 =X 4. W korzystnym przypadku, gdy prébka ma
ksztait prostopadloéc:.anu, mozna takie pomiary powtérzyé aeszcze dla
drugiego kierunku zawieszenia, otrzymujac, na przyklad A2’l = 2 -X.
Pomiar trzeciej mozliwej wartosSci amizotropii A: 30 = )'(3 - X5 nie przy=-
nosi nowej informacji potrzebnej do obliczenia wartosci gtéwnych tenso-
ra podatnoici, pozwala jedynie na zmniejszenie bteddéw dwéch poprzednich
pomi ardw, -Latwo bowiem dostrzec, ze dla ukladu réwnan

X3 ’x1 = a,
X2 =3 X-'; = b9 (5030)
x3 - x2 = C,
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wyznacznik charakterystyczny A =[|/=1 0 /=1 1 (oyAe) iy [ A s

W takim razie pomiary anizotropii same nie wystarcza do wyznaczenia
gléwnych podatnoéciy trzeba dysponowaé dodatkowa informacjq niezalezna,
a tg jest érednia podatnosé proszkowa -substancji,<¢>. Pomiar<¢ > omb-
wiony jest w nastepnym rozdziale.

Dowolny przekroj temsora E ptaszczyzng prostopadiy do kierunku
zawieszenia jest zawsze elipsa, jesli tylko wszystkie trzy osie gidwne
tensora 8g vjemne, Jesli 11 oznacza wektor jedmostkowy wzdiuz linii
pola, a 12 wektor do nich prostopadiy, to wektory te sa zarazem osia-
\mi giéwnyni eliptycznego przekroju tensora piaszczyzng heryzontalng.
Mierzona anizotropia wynosi zatem

s
Ax‘12=-1-".'11?§;1"-2__7§;-_2' (5-31)

: 5.5, Metody pomiaru Sredniej podatnosci

Najbardziej rozpowszechniona metoda Guya siuzy do pomiaru Sredniej
podatnoéeci jednostki objetosci substancji. Polega oma na pomiarze sity,
dziatajacej na probke diamagnetyka (przesuwanie sig prébki w kierunku
mnie jszego natefenia pola) lub paramagnetyka (weiaganie prébki w obszar
silniejszego pola) w niejednorodnym polu magnetycznym {rys. 5.4).Metoda
zréwnowazenia sity moze byé typu grawitacyjnego (waga, rys. 5.4a) lub
elektromagnetycznego (wcigganie rdzenia ferromagnetycznego do wnetrza
cewki, rys. 5.4b). Jeden koniec probki’znajduje sig¢ w polu o nat@zeniu
H, drugi jest poza obszarem pola (H0 = 0). Przyjniemy, Ze probka nie wy-

£

Rys. 5 4, Pomlar sity dziazajgcej na proszek lub ciecz
W nie jednorodnym polu magnetycznym
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kazuje efektéw anizotropowych, W przypadku ciai statych mozna to osiag-
naé przez ich sproszkowanie, dokradne wymieszanie i spramowanie w rurce
szklanejhw sposéb ‘standaryzowany. Jesli tylko krysztar nie dzieli sie¢
przy proszkowaniu w uprzywilejowany sposéb na blaszki lub preciki (sku-
tek wystepowania plaszczyzn dobre;j %upliwosci), o bardzo duza liczba
matych krysztatkéw daje gwarancje, ze kazda orientacaa Jest jednekowo
uprzywile jowana,
Na element objetosci proszku dziata wzdtuz osi z sila zglezna od

magnetycznego momentu tego elementu, dpm = I.dv, gdzie I Jjest jego na-
magnesowaniem, Wobec tego mamy

aF, = p I av & = p<¢>A(A-az) E. -y A<eHE aE, ' (5.32)
dz dz

gdzie A jest powierzchnig przekroju rurki szklanej, w ktérej znajduje
si¢ proszek. Caikowanie w zakresie od 1z, do z, (rys. 5.4) prowadzi do
wyrazenia na site, dziatajaca na caia probke

Z
. o
F,= [ AA<¢>H aH = -'21 b A<¢>(E2 - B2) (5.33)
Z,] )
‘lub, w przyblizeniu, ; ; :
F, = = & qu<¢>52. (5.34)
2

Znak mi:us oznacza, ze dla Substancji z dodatnia Srednig podatnoscia si-
ta bedzie dziataé w kierunku =z, zgodnie z zachowaniem sig¢ takiej sub-
Stancji. W celu osiagnigcia dobrej doktadno$ci pomiaréw rurka powinna
mieé diugosé okoXo 15 em i Srednice 2-3 cm, prawie réwnag szerokosci
szczeliny migdzy nabiegunnikami magnesu. Dalsze zwigkszenie doktadnosci

T aibze flia 10541
Podatnosé 1 cm? wody destylowanej w funkeji temperaturj 1]

+ ¢ 1 10" 30 70

% - ¢

cgsM 0,7189 | 0,720 | 0,722 9,724

mozna uzyskaé‘dzieki wykonaniu pomiaréw metods pordwnawcza, stosujac je-
ko wzorzec, na przykiad, wode destylowana. Pozwala to na wyeliminowanie
biedéw pochodzacych z napeiniania rurki oraz wywolanych zmienna geome-
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trig ustawienia jej w polu magnetycznym. Podatno$é jednostki objetoéci
wody w roéznych temperaturach podana jest w tab. 5.1. W dokladniejszych
pomiarach trzeba réwniez zatroszczyé sig o usunigcie powietrza z rurki
przez wyparcie go azotem lub, lepiej, wodorem -~ w temperaturze pokojo-
weJ podatnoéé objetoéciowa powietrza wynosi -1-0,029-'10"6 cgsli. Szczegb—
1y wykonywania pomiardw mozna znalezé w‘artykule'przeglqdowym Selwooda
[s].

Metoda Guya jest w zasadzie prosta, odznacza sSi¢ jednak pewnymi
niedogodnoéciami., Giéwna z nich polega na tym, Ze mierzy si¢ podatnosé
Jjednostki objetoscis w celu obliczenia podatnosci jedmostki masy, naj—
czehciej nas interesujacej, trzeba znaé¢ relacje miedzy objetoscia i ma-
83 substancji. Jest to problem banalny, gdy zajmujemy si¢ cieczanmi, jed-
nak uzyskanie powtarzalnej i stalej gestosSci proszku wymaga daleko po-
sunigtej standaryzacji w przygotowaniu prébki. Niedogodnoéci te nie wy-
stepuja jesli zastosuje sie metode Faradaya. Polega ona réwniez na po-
miarze sily dziatajacej na magnetyk w niejednorodnym polu magnetycznym,
Jednsk zaréwno poprzez dobor prébki o bardzo matych rozmiarach (kilka—
dziesigt miligraméw) jak i specjalnego kszbtattu nabiegunnikéw iloczyn
H(®H/81l) jest staty tak, ze sita nie ulega zmianie od punktu do punktu
w prébee. Nie jest potrzebne wéwczas caikowanie na objetosé proébki,dzie-
ki czemu metoda Faradaya situzy do bezposredniego pomiaru podatnoéci jed=
nostki masy substancji. Szczegdlowy opis aparatury, pozwalajacej na po-
miar podatnosci bardzo maiych pidébek (1 do 20 miligramdéw) w zakresie
temperatur od 5 do 300 K, podany jest migdzy innymi w pracy [10].d pra-
cy fej podano réwniez praktyczny sposdb wyeliminowania sit elektrosta-
tycznych, wynikajacych z naelekfiryzowania prébki oraz usunigcia bkeddw,
spowodowanych zanieczyszczeniami ferromagnetycznymi.

5.6. Zastosowanie modelu gazu zorientowanego do opisu diamagnetyzmu
krysztatéw molekularnych

Widzielismy w rozdziale 5.1, Ze mate wartosci podatnoéci diamag-
netykéw powoduja, iz pole wewnetrzne w krysztale jest praktycznie takie
samo, Jjak przyiozone pole zewnetrzne. Oznacza to, iz oddzialywania mie—
dzyczasteczkowe méjq znikomy wplyﬁ-na relacj¢ migdzy makroskopowymi
wiasnosciami krysztaiu i mikroskopowymi wiasnoéciami czasteezki. Jest
to sytuacja w zbiorze wiasnoSci fizycznych nadzwyczaj rzadka i bardzo
korzystna, poniewaz pozwala na bezposrednie zastosowanie wynikéw rozwa—
zah, przedstawionych w poprzednim rozdziale. Przedstawienie zwiazkoéw,
wynikajacych z modelu gazu zorientowanego, poprzedzimy jednak omdwie—
niem oznaczen, jakie s3 stosowane w opisie diamagnetyzmu krysztatodw.
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Ozpaczenia X; oraz opis ich orientacji w krysztale wprowadzili
Krishnan, Guha i Banerjee [11]. Pézniejsza modyfikacja, wprowadzona
przez Lasheena [12], dotyczy jedynie innego oznaczenia katdéw orientacji
osi Xq 1% w ukiadzie jednoskosnym. Podajemy nizej konwencje z u-—
wzglednieniem tych zmian, dzi§ prawie powszechnie przyjeta.

1. Krysztaly magnetycznie jednoosiowe. W takim przypadku potrzebne
Jest jedynie okreslenie podatnoéci w kierunku wyréznionej osi X oraz
prostopadle do-niej X, .
2. W krysztatach, nalezgcych do ukladu ortorombowego, osie gidwne
muszg byé réwnolegie do trzech brtogonalhych osi krystalograficznych
b, c. Oznacza si¢ je przez X, Xu, Xg-

; a : Y >
3. W krysztatach nalezacych do uktadu jednoskoénego osie giéwne X

oznacza Sig przez X, x2, x5, przy czym z reguly )(3 Ib, zas X1 ol xa—
leza w ptaszczyinie (010). Jako X, wybiera sie oé krétsza od X5. Kat
zawarty migdzy X, & kierunkiem [10C] oznacza sie¢ przez © ; niekiedy
uzywa sie‘réwniez kgta zawartego miedzy Xq i [001] i oznaczanego przez
¢. Kaby te, liczone od [100] lub [001] w kierunku rozwartego kata jedno-
skoénero B sa dodatnie, na zewnabtrz niego sa ujemne. Przyktad orienta-
cjiz ¢ <O podany jest na rys. 5.5.

cx c x5" b

X
a'

(001)

%y

Rys. 5.5. Przykad orientacji kierunkéw giéwnych X
w krysztale jednoskosnym =

Yodatnoéci czasteczek' oznaczamy przez E; 1Ly Ey||M oraz K3” .

Trzy-powyzszych oznsczeniach i © > 0 mnacierz (4.7) orientacji
osi X wagledem abc™ ma postaé

S, e

cosEe O sin @
al= sin © O —cos 8 ). (5655
C 4 C
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Réwnania modelu gazu zorientowanego {4,10) ‘zyskuja postac

cos® 8 Zc% K; + sin29 Z c% Ei +2 sin © cos © Zci,] ci3 K; = Xq»

\

sin® 8 2 K, + cos® @ 02~ K, - 2 sin @ cos © Clg e N
i1 S ey I T

Zciz K, = Xz (5.36)

Zastosowanie (5.36) do réznych struktur k;ysztaléw molekularnych przed—
stawimy w nastepnym rozdziale. :

Xps

5.7. Wyniki doéwiadczalne badania podatnoéci krysztaiow i czasteczek

Przeglad poznanych magnetycznych wiasnosci krysztatow, przede
wszystkim molekularnych, zestawiony jest w tab. 5.4. Ze wzgledu na roz-
miar tabeli z jednej, a pozytecznoéé zachowania ciggkosci tekstu z dru=-
giej strony, tabela zemieszczona zostata na koncu rozdziatu. Przy ukia-~
daniu tabeli nie podjeto szczegbdlnych wysitkéw, by uczynié jg kompletna
Zwrbcone jednak uwage w kierunku wyszukania mozliwie nowych danych
Strukturalnych, poniewaz . te. dane rzutuja w giéwnej mierze na wyniki u-
zyskane dla czgsteczek. Przeliczono réwniez od nowa kilkanascie przypad-
kéw ‘budzacych watpliwosci.

W zestawieniu interesujace sg w pierwszym rzedz1e benzen, naftalen
i antracen, stanowigce trojke‘reprezentuﬁch zwliazki aromatyczne, oraz
najprostszé'ich pochodne, Te trzy zwiazki aromatyczne sa réwniez w pew=—
nym sensie wzorcami dla poszukiwan bteoretycznych, zmierzajacych do wy-
jaénienia przyczyn anizotropil czasteczek. Wigcej uwagi poswigcono na- - .
tomiast problemom, ktére wynikaja posrednio z badan magnetycznych wias-—
nosci krysztatbédw i czasteczek., W tym celu zestawiono podstawowe informa-
cje, potrzebne do przejécia od wiasnosci kryszbtaiu o wkasnosci czgs—
teczki, zgodnie z modelem gazu zorientowanego. Naleza do nich parametry
komérki elementarnej i symbol grupy przestrzennej, stanowiace ﬁetrykg
identyfikacyjna fazy krystalicznej. Wiasnosci kryszbtatu opisuja diugos-
ci oéi X; i ich orientacja, podane wediug konwencji przyjetej w 5.6.
Tabele kosinuséw kierunkowych zaczerpnig¢to z oryginalnych prac struktu-
ralnych, Jednak nie wszyscy autorzy zamieszczaja peing orientacje osi
IMN, W takich przypadkach punktem wyjscia byio réwnanie najlepszej
plaszczyzny czqsteczki, definiujace kierunek osi N. Nalezy tu zauwazyc
ze jesli cagsteczka nie jest piaska, wybér trzech ortogonalnych osi wo-
gble nie jest jednoznaczny; podatnodci KL’ KM KN maaq wtedy znacze-—
nie umowne.
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Najlepsza ptaszczyzn¢ prowadzi sie¢ z reguly przez atomy wegla
szkieletu, jesli wybér byk imny, zaznaczono to w tabeli. Kierunki po-
zostalych osi poszukiwane: byity w nastepujacy spsséb. Wybierano pary ato-
méw lezace na prostych o kierunkach zblizonych na przykiad do osi M 1
obliczano srednia wartosé wekbtora jednostkowego <M>, Gkazuje sig¢ naj-—
czedeiej, ze <M> nie jest dokZadnie prostopadiy do N. Jesdli oznaczy-
mny

<M>+¢ N = cos §, (5437)

to (6 = 90) Jjest maiym kgtem, z reguly utamkiem 1°, Polozenie osi <M>
mozna wéwezas skorygowaé przez obrét ukladu wspéirzednych woké: osi L.
Otrzymujemny

M =<M>cos (6-90) + N sin (&~ 90). (5.38)

Polozenie trzeciej @ﬁh definiujemy za pomocag iloczynu wektorowego

L=MxN, (5.359)

Ta droga otrzymujen;j;" $wprawdzie przyblizone, lecz wystarczajace dokiadne
polozenie osi L i M. =

Niech jako przykiad posiuzg dane dla antracemu [5¢]. Na podstawie
wspbtrzednych atoméw w abc® otrzymujemy cztery wektory o érednim kie—
runku M (numeracja atoméw podsna W tabeli 5.2, No 28)

a b c

W03

AGY . -0,32865 -0,88855 =-0,32009
Bf  -0,32416 -0,89149  -0,3165C
CE -0,31957 -0,8%482 =0,31171
DO -0,319%36 -0,89592 -0,30876

Stad otrzymujemy
<M>= (-0,32294, -0,85270, -0,31426),

<M>+ N = -0,00485,
oraz i {
& - 90 = 0,275°.

Poprawiony kierunekk M ma kosinusy kierunkowe
M= (-0,319C -0,8%48 =0,3123),
'l

a pelna tabela orientacji osi czasteczki antracenu jest nastepujaca:
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/=0,4931  -0,1247  0,8610
gp =|-0:3190 -0,8988 0,312 .
0,8094 =0,4287  0,4015/

Poréwnujac elementy tej macierzy z oryginalng tabelq Masona, Syo widzi-
my, %e réznice nie przekraczaja 1%. Nie ma to praktycznie wpiywu na war-
tosé Kr» Eys Ey Jjak to wskazuje ponizsza tabela.

Ky, By By
X, Lasheen [133} 72,3 =73,4 =244 .4
Sy Mason
% Dashsen [133} 72,3 T34 -2u4,h
-‘—-’p’ przybliz, ;

W rzeczywistosci jednak sktadowe tensora E zawsze obarczone sS§
btedami, majgeymi dwa gléwne zrbédra, Pierwszy rodzaj biedéw, biedy eks-
perymentalne, powstaa& na skutek nie tylko okreslonej i ograniczonej
doktadnoéci pomiaru anizotropii krysztaiu, lecz takze doktadnoSci wyzna-
eczenia parametréw takich jak masa probki, stata elastyczna nici itp.
Réwniez strulcburalna doskonaoéé krysztalu moze mieé duze znaczenie,
Drugi i'odza;j popeinianych beddéw ma charakter czysto rachunkowy. Zwigz-
ki (5.36) mozemy zapisaé w prostszej postaci

T X1
2 Kll = x2 =9 (5.4‘0)
En/ \%3 ’

przy czym elementy macierzy D sa funkcjami ¢y, oraz 8. Rozwigzania
uktadu (5.40) sa wtedy dokladne, gdy wyznaczniki macierzy D jak i D;
s8q doatatecznie dué'.e W macierzy D i-ta kolumna zastgpiona zostala
przez (75.1, Xoy X ) . Jesli przypadld.em dwie kolumny det D lub det D
sg bliskie proporc;jonalnoéci, to = wediug znanego twierdzenia - WyZznacz-
nik ma wartosé bliska zeru. WielkoSci bieddw stad piynacych dyskutowane
8a szczegbtowo w pracy Lasheena i Tadrosa dla krysztaidéw, nalezacych do
uktadu ortorombowego [14]. Autorzy ci pokazuja na przyktad, ze Jjesli

Xq 3 Xp-% Xg = cﬁ,] 3 0?12 = c%, to skXadowe KM i K’N wyznaczone beda

z duzymi bi¢dami.

Spora czgéé wynikéw, zamieszezonych w tab, 5.4, zostata zaczerpnie-
ta z prac Krishnana i wspéipracownikiw. Dane te sg niekiedy nieécisie,
a miejscami niekompletne - gZdéwnie z tego powodu, ze dokladne rozwigza-
nia strukbur krystalicznych pojawily si¢ dopiero w latach, ktére nasta-—
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pity po odkryciu przez Krishnana dlamagnetyzmu krysztaléw molekularnych.
Wyniki te trzeba bylo uzupeinié, a czasami dokonaé peknych przeliczen,
cytowanych w tabeli jako obliczenia wkasne aubora ksigzki. Nowszym i ob-
fitym Zrédiem informacji o anizotropii krysztatdéw 87 dwie prace. Lasheea '
na [12,13]. Wreszcie pewna czgéé przytoczonych wynikéw uzyskana zostala
przez autora i wspdéipracownikéw. Niewgtpliwie lista poznanych zwilazlkéw '
bedzie si¢ powigkszata, poniewaz zainteresowanie diamagnetyzmem nie
stabnie i w naszych czasach.

Ogblna prawidtowoscig wirdd czasteczek zwigzkéw aromabycznyeh jest
fakt, ze podatnosé KN w kierunku normalnej d piaszczyzny pierscieni
znacznie przewyzsza podatnogci w tej paszezyinie, Kry Ky, oraz ze te
dwie podatnosci sg na ogdi bliskie sobie. W literaturze czesto podaje
sie jako miare anizotropii czasteczki wielkos&¢é wprowadzong przez Lashee
na [12]: g -

= 2 (&, + By) - Ey. (5441)

Jesli jednak interesujemy si¢ relacja migdzy K lubiag i struktura réz=
nych czasteczek, nie zawsze mozemy uzyskaé z tych liczb prze jrzyste
wnioski., Jest bowiem rzecza jasna, Ze Srednia podatnosé czgsteczki, na
przyktad benzenu, bedzie wzrastaé przy wprowadzaniu podstawnikéw do
piericienia. Ale czy anizotropia czasteczki réwniez wzrosnie po dokona-
niu okreélonego podstawienia? Wiadomo réwniez, iz w sSzeregu benzen,naf-
talen, antracen rosna wszystkie trzy gtéwne podatnosci czgsteczki, ale
czy anizotropia réwniez ulega zmianie? I czy mozna zrozumie¢ ze grafit,
ktory jest kryszbtaiem o strukturze warstwowej, powinien mieé w tym sze-
regu najsilniejsza anizotropig, skoro jego podatnoéci molowe wzdiu
warstwy °, i prostopadle do niej X, , wynosza [1]

Xy= =0,5°107° cgal,

-21,0410~° cesl,

X1

a wiec s liczbowo najmniejsze? Ze wzgledu na do$é znaczne przewodnic-—
two elektryczne grafitu wzdiuz warstwy, podatnoié diamagnetyczna tego
materiaiu ulega zmnie jszeniu wskutek pewnego udziaiu dodatniego paramag-
netyzmu Pauliego, zwigzanego 2z obecnoécia elektronéw przewodnictwa.
Elektronowe przewodnictwo wiasciwe grafitu w temperaturze pokojowej
jest jednak o 10 rzeddw mniejsze od przewodnictwa metali, zatem udziax
paramagnetyzmu ma charakter poprawki, ktora w tych rozwazaniach pominie-
my.

Wyrazne odpowiecdzi na te pytania mozemy uzysxaé przez wprowadzenie
zredukowanych podatn0001 X, 1 zdefiniowanych nastgpujaco:
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Tabela
Podatnodci molekularne bezwzglgdue , Ki (w 10’6 cgsM) i zredukowane , ki
e 5 =k x5 =k
Benzen 34,8 32,4 97,4 0,635 0,588 NS77T
Naftalen 561l 54,0 168,9 0,603 Q,581- 1,816
Antracen | 75,6 7352 243 ,4 0,581 0,547 1,871
Grafit 0,5 0,5 21,0 0,068 0,068 2,864
FenElin e ; g e
- Pxdatho,
sci
zreduko-
wan2
L
R e =
TR e K
|
§ Foe e — e
|
04— e b —
=y
05 5 i =
‘ 1 Ky o
: k= k, grafit
4 1 D 3 Liczba pierscieni benzenowych
Bz N An

RyB. 5.6. Zalezno$¢ zredukowanych podatnosci ki od liczby plerécieni
benzenowych w zwigzkach aromatycznych skondensowanych

Kooaiemoemdaon

i =l 2t
i K
- i
D

(5.42)

-

Zatem ki 84 liczbami wzglednymi, ktérych suma dla kazdej czasteczki
Jest taka sama i wynosi 3. Zostaly one wprowadzone w pracy [46],ale nie
znalazly odbicia w literaturze naukowej. SR
W celu zilustrowania przydatnosci ki w dyskus ji relacji miedzy
réznymi czgsteczkami, zajnijmy si¢ wpierw sSzeregiem: benzen, naftalen,
antracen, grafit. W tabeli 5.2 zestawiono podatnosci Ki oraz ki tych
czasteczek., Widoczne jest, iz podatnosci zredukowane w piaszczyznie
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Tabela Die D

Podatnosci molekularne bezwzgledné’ Ki (w 10'6'cEsM) i zredukowane, ki

—K,I -KE_ -K3 -kﬁ -k2 —k3
Benzen B8 32,0 | a7 0,635 |0,588 | 1,777 |
Dwuchlorobenzen 7843 505212052 0,944 | 0,606 | 1,449
Szesciochlorobenzen | 130,9 | 131,6 { 179,9 0,888 | 0,892 | 1,220
: 2.o|
Podatnosci = K
zredukowane Bl L
1'5 \\\
—
| |
pai it
=] __k_g_____l———-—-'"//
Qe —— o
0,5
0.0 1 2 3 . 5 ®

Liczba atomow chloru

Rys. 5.7. Zaleznos¢ zredukowanych podatnosci kj od liczby atoméw
chloru w chlorobenzenach -

czgsteczki k1 il k2, systematycznie maleja, natomiast k3, normalna do

plaszezyzny czasteczki, systematycznie rosnie. Regularno$ci te widoczne
sg jeszcze lepiej na rys. 5.6. Jasne jest,  ze anizotropia czasteczek w

tym szeregu rosnie, a k; egrafitu sa wielkoSciami granicznymi,do kt6-
rych zmierzaja podatnoéci czgsteczek w miare wzrostu liczby piersécieni.
Zrozumiate jest réwniez, ze ky ik, maja wsbélna granice.

Drugim przyktadem 8 chlorowcowe pochodne benzenu, zestawione w
‘tab, 5.3. Jeéli przez n . oznaczymy liczbe atoméw chloru w czasteczce,
to mamy dwa zwiqzkilgraniczne: benzen (n = 0) i szeisciochlorobenzen
(n = 6). Rysunek 5.7, sporzadzony na podstawiec tabeli 5.4 wskazuje, Ze
istnieje liniowa zaleznosé kg(n) k. ka(n). Nie ma prostego zwigzku mig-
dzy ~k1 i n, poniewaz o L dla czasteczki benzenu wyznacza w przybli-
zeniu kierunek wigzania C-H, a dla pozostatych dwéch czasteczek C-Cl.

Te dwa przykiady wskazuja, ze wielkosci ki mogq‘byé:uﬁwteczne
dla hzyskania korelecji w szeregu okreslonych zwigzldéw chemicznych, po-
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nadto pozwalaja ustali¢ wzgledne anizotropie réznych czasteczek. Tego
typu korelacje moga byé réwniez przydatne do przyblizonego okreslenia
tensora K w tych przypadkach, w ktérych nie mamy doata’becznych infor-
macji o h-ysztale.

: Prze jdziemy obecnie do przedstawienia uwag szeczegdrowych do niekbod-
rych punktéw tabe 5.4, ;

W grupie zwiazkéw aromatycznych o jednym pierscieniu zastuguje na
wyrdznienie ze wzgledu na symetrie czasteczek benzen i szeSciochloroben-
zen, W ciqsteczce benzenu (No 1) Ky, = Ky3 taka sama relacja wynika z da-
nych dla szesciochlorobenzénu (No 12). Nowsze dane strukturalne wskazu-
ja wprawdzie na istnienie niewielkiej réznicy migdzy tymi dwiema podat-
noficiami (No 12a), jednak miedci si¢ ona w granieach biedu. Obie czgs-
teczki moZemy wiee uznaé za magnetycznie jednoosiowe. Warto przy tym
zwrbeié uwage na réznie wybrana grupe przestrzenna w obu strukturach
szesciochlorcbenzenu; ma Lo wpiyw na macierz ¢.

Badania magnetochemiczne p-nitrofenolu zostaty podjete z tego powo-
du, %e substancja ta wystepuje w dwéch odmianach fazowych, pozostaja—
eych miedzy soba najprawdopodobniej w relacji monotropowej, tj. nie ma
przejécia fazowego pod normalnym cisnieniem. Obie odmiany wykazujg rdz—-
ne wrazliwosé fotochemiczna na Swiatto [32]: odmiana o ulega zabarwie-
niu na czerwono pod wpiywem prbmieniowania widzialnego, podczas gdy od-
miana B Jest calkowicie niewrazliwa na nadwietlanie, Badania magneto-
chemiczne wykazaly, %Ze podatnoéci czasteczek w obu odmianach sg dosta-
tecznie bliskie sobie, by mozna uznaé ich magnetyczng réwnowaznosé JNie—
w;elkie réznice Ki, widoczne po pordéwnaniu No 10 z No 11 tab. 5.4 moga
pochodzié w czehci z btedédw doswiadczalnych, w czeSci zaé moga byé wywo-
tane rézna konfiguracja samych czasteczek: w odmianie B kgt zawarty :
miedzy piaszczyzna grupy nitrowej a ptaszczyzng pierscienia benzénowego
jest wyraznie wigkszy, niZ w czasteczce odmiany o ,

Badania anizotropii diamagnetycznej roztwordw statych pieciochloro-
fenolu w szeiciochlorobenzenie [35] pomogiy w ustaleniu ich struktury,
kkéra okazata sig¢ zblizona do strukbury krysztatu szesciochlorobenzenu
[74]. Przyczynio si¢ to do wyjasdnienia mechanizmu przemiany fazowej w
pieciochlorofenolu, Zbadanie wtasno$ci magnetbycznych 2,3-—dwu.metyloﬁé.fta-
lenu réwniez byto przydatne w okreSleniu kierunkéw niektérych momentéw
prze ji¢ absorpeyjnych w tym krysztale o nieznanej strukturze [75].

W grupie czasteczek o trzech piericieniach skondensowanych akiydy-
na (No 30) jest prawdopodobnie pewnym wyjatkiem [12]: mumeryczna war-
‘tosé K; Jest mniejsza niz Ky. Podobny wynik' znaleziono jeszcze dla
t-fenazyny (No 31). Mimo ze strukbtura antrachinonu znana jest w pieciu
rédznych temperaturach [62], w tab. 5.4 przedstawiono wyniki wiasnosci
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_magnetycznych tylko dla temperatury pokojowej (No 29 i 29a). Wpiyw tem—
peratury na wiasnoéci fizyczne oméwimy bardziej szczegbiowo w rozdziale
10,

Obliczenia podatnofci magnetycznej czasteczki kwasu barbiturowego
(No 33) w pracy Lasheena [12] sa biedne, poniewaz w ewidentny sposéb
pominieto obecnoié czasteczek wody w tym krysztale. Obie czgsteczki sa
symetrycznie niezalezne, zatem udziat kazdej z nich w podatnoSci komor—
ki elementarnej musimy napisaé osobno. Oznaczajac przez KB czasteczke
kwasu, a przez WI i WII czasteczki wody, mamy zgodnie z modelem gaiu
zorientowanege w ukzadzie osi abc

X (KB.2W) = X (KB) + X(WI) + X(WII) =
e

S lin e

Ie=il

-;:l—-‘-

i

k)T k
Z ~~le) Ey °w(11) i
=1

I
=i

4

k
Z °w11 T &y %wx:f) . (5.43)
=1

I

Tabela kosinusow klerunkowych 08115255 czqsteczek wody I gjest typu
(tab. 5.4, No 33a)

e 0 fI
Syr=\fx ©O -1} (5o44)
O e G "

{
Stad, po uwzgléednieniu elementéw symetrii grupy ilorazowej krysztaiu or
torombowego (mmm), Suma po k redukuje sig do wyrazenis

2

/2
%] K.+ £ K, O 0
(WI) = 0 Ky 0 i (5.45)
2 2
0 9 £f1 Ky + e7 Ky

Analogiczny wynik' otrzymamy dla cz’eisteczki II. Udziat podatnosci czas-
teczek wody w podatnosci komérki elementarnej wynosi zatem numerycznie

=25,7 0] 0
X(4I) + x(WII) = [ © 2254 o | 1078 cgsit.

0 0 L2590

W ob.lic::eniach skorzystaliémy z dokladniejszych danych Yen-Chi-Pana i
Hameki [5¢] podatnosci czasteczek wody.



| Podatnoéci molowe krysztatu "bezwodnego", W ktoérym czasteczki kwa-
u ba.rbiturowego zachowuja swe oryginalpe orientacje, wynosi
p

[/ =47,0 0 0
k&) ={ o 652 0 107 cgai.
0 0 -46,3

| ' :
T)bliczone stad podatnosci Kp, Ky, Ky sa réwne (tab. 5.4, No 33a)

50,51 0 0
k= o = 3,5 0 }-107® cean.
0 0 | -65,20 /

Wobec prawie izotropowego udzialu czgsteczek wody w ogbdlnej podatnosci
komérki elementarnej, sekwencja diugos$ci osi Ky, Ky, Ky kwasu jest ta-
ka sama, jak w wynikach Lasheena. Podatnosci te sg jednak znacznie

mnie jsze, niz to podano w pracy [12].

Na zakonczenie warto jeszcze wspomnieé o zastosowaniach badan mag—
netochemic'znth do poznania strukbury ciat o znaczeniu przemysiowym.
BSzczegbdlnie czesto wykorzystywano metody magnetochemiczne w badaniach
polimeréw i reakcji polimeryzacji; przeglad uzyskanych w tej dziedzinie
wynikéw mozna znalesé w pracy Selwooda [76]. Duze zainteresowanie budzi
problem znalezienia orientacji czagsteczki w substancji zasadniczo bez-
postaciowej, jakg jest na ogbé: polimer. Problem ten moZe byé rozwiazany
_ha pomoca pomiaréw anizotropii podatnosci magnetycznej materiaiu z jed-
he;i strony, z drugiej wymaga okreslenia anizotropii monomeru lub moleku-
larnej jednostki strukbturalnej polimeru, stanowiacej umowny "motyw po-
wbarzania", Bardzo pomocne jest uzycie w tekich badaniach substancji mo- '
('iel.owych, a przykzad tego typu badan mpzna znalezé w pracy Selwooda i
fnn.vch [771.

Interesujace wyniki przynoszg rdéwniez magnetochemiczne badania fo-
J.ii uprzednio rozciagnietych, na przykiad polistyrenu [_’78] Zwykle fo-
lia wykonana z tego materialu ma wiasnosci bliskie wiasnoiciom maberia-
tu :lzotropowego. Rozciggniccie jej w Temperaturze podwyzszonej prowadzi
do ozeéciowego uporzgdkowania czasbeczek, przy czym anizotropla magne—
tyczna wywotana jest zasadniczo zmizotropia pierscieni fenylowych. Stan
ten mozna zamrozié przez szybkie ochiodzenie proébki. Nie tylko podatnoié
magnetyczna takiej folii wykazuje anizotropie; anizotropowe sa réwniez
" ipne jej wiasnosci, na przyktad mechaniczne Iub optyczne. Dla folii ba=-
danych w oytowanej pracy uzysiiwamo podatmoSci Xy = (-0,761*0,03)-'10'6
i XJ__ = (-0.66-*-‘-0.03')-10'6 cgsll, przy czym £rednia podatnoici wynosila
X=X 2 ) = -0,71:107° cgell. Il ozmacza wielkoié mierzong
réwnolegle do kierunku rozcisgnigcia, a I wielkosé mierzonz prostopad-
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le do tego kieru.nku. Jesli rozeiggniety uprzedﬁo polistyren ogrz_e}jé
sié do wyzszej temperéhu-;y, to obserwuje si¢ mmiej lub wiecej powolne
prze jscie do stanu izotropowego, od.powiada;iqw‘e przejécin fa_zovienm "typu'
porzgdek-nieporzadek. 1

Wielkosé uzyskane] przez rozeiagniecie materiatu amtzotropii mnag-
metycznej zaledy w wysokim stopniu !od rodzaju uzytego materiazu. Poka—
zali to Weir i Selwood [79] na przykiadzie trzech rodzajéw polimeréw:
polietylenu, polistyrenu i poli(2,5-dwuchlorostyrenu). OkazaZo sig, Ze
najwieksze efekty wystepuja w tr'zecim materidle, najmniejsze w plerw—
szym.

5.8. Zasada addytywnosci podatno'ék:i czgsteczkl w ujeciu tenéorouym

. dak juz o tym uprzednio wspomniano, model gazu zorienbowanego w
zastosowaniu do wkasnoéci magnetycznych pozwala wydedukowaé tensor pO=
datnosci czasteczki K mna podstawie pomiardéw makroskopowego ‘tensora
¥ krysztatu. Wspomniano réwniez w rozdziale 4, %e &ciste rozwiazenie
tego problemu jest mozliwe jedynie dla krysztalow twdjskosnych, dla kt
rych mozemy uzyskaé droga dodwiadczen szeéé nlezalesnych informascji, po
t:c-zebnych do wyznaczenia szesciu skladowych K. ‘W wyzej symetrycznych) .
uktadach krystalograficznyeh symetria redukuje liczbe nietrywialnych ‘1
4informacji, co algebraicznle prowadzl do reduke]jl liczby réwnafh, jakie
mozemy napisaé dla skladowych E. W tej Bytu.ac;]i dokonuje sig¢ mniej lub
‘wiecej spekulatywnego wyboru kierunkéw osi gtéwnych K, co wprawdzie po— :
zwala na rozwiazanie réwnan, ale niepobrzebnie uszbtywnia problem orien-;
tacji K. Stusznosé takiego czy innego wyboru osi E a priori miakaby
sSzanse weryfikacai, gdybyémy dysponowali dobra teor:.q, pozwalgjacq na
obliczenie K na przyktad metodami chemii kwantowej z danych bardziej
podstawow;ych. Autor nie‘'czuje si¢ powotany do przedstawienia w tej
ksigZzce osiagniet teoretycznych w zakresie magnetochemii czqsteczki, :
Jest jednak przekonany, Ze w ciggu majblizszych kilku lat nie bedzie
jeszcze mozliwe wykonamie obliczeh sktadowych K Jakiejkolwiek czas-
teczki wykazujgcej anizotropi¢. Nawet Srednie wartodei<K> , uzyskiwa-—
ne réznymi metodami teoretycznymi dla najprostszych czastecmek,sa dodé
dalekie od zgodnoéci z dodwiadczeniem,

W teJ sybtuacji. interesujgca jest propozycja Van den Bossche fa 1
Sobry ego [B0]. Van den Bossche i Sobry zakadaja w swojej metodzie, %Ze
kazdg czgsteczke mozna podzieli¢ na czion podstawowy, bedacy szkieletem
czasteczki i szereg potaczonych z nim podstawnikéw., Zaktadaja posa tym,
Ze tensory K(m) odpowiadajgce szkieletowi i podstawnikom w przybliZe-—
niu nie zalezi od tego, W jakim krysztale lub czasteczce elementy te wy-.
stepuja, czyli zaniedbuja oddziaiywania magnetyczne nie tylko miedzy
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czasteczkami, lecz taksze miedzy szkieletem i podstawnikami, Przewiduja
Jednak, ze siuszne to bedzie jedynie w przyblizeniu, ale ze wiasnie po-
réwnanie wynikéw tych obliczeh z tensorem K obrzymanym z X poinfor-
muje nas o oddziatrywaniach magnetycznych w czasteczce. Hipoteza addytyw-
nosci podatnodci magnetycznej czasteczki nie jest nowa =~ znanych jest
wiele schematéw, pozwalajacych przewidzieé wiasnoéci catej czasteczki
na podstawie inkrementéw podatnosci atoméw lub wiazan., Nie przytaczamy
ich tutaj, poniewa? wszystkie dotyczyily dotychczas wartosci sredniej
<K>, :

W nowej metodzie orientacje sktadowych tensoréw g(m) wybiera sig¢
w zasadzie dowolnie. Bajczeéciej jednak i bez szkody dla rozwigzania jak
ko osie szkieletu i podstawnikéw mozna wybraé¢ ich osie symetrii, ozna-
czane odpowiednio przez IMN i W VW Nawet gdy czasteczka jako catosé
jest asymetryczna, jej fragmenty maaq symetrig wystarczajgca do uzasad-
nienia tego zalozenia. Oczywiscie, osie podstawnikéw nie pokrywaja sSi¢
z oSiami gtéwnymi szkieletu, jesli podstawnik nie ma symetrii kulistej.
Dodawanie skiadowych tensordéw prowadzi si¢ wigc w jakim$ uktadzie wSpdi=
rzednych, wspélnym dla wszystkich fragmentow czgsteczkij najezgscie]
Jest to ortogonalizowany ukiad abe™ komérki elementarmej. Uzyskany
przez sumowanie bensor wypadkowy zawiera z regulty sSzes¢ niezerowych
skladowych, co pozwala na wyszukanie osi gtdéwnych E niezaleznie od
wszelkich zatozen o symetrii czgsteczki., Opisywana metoda jest wigc mo-~
delem gazu zorientowanego w przyblizeniu tensorowym, w odniesieniu do
Jjednej czgsteczki. :

Czasteczke, ktéra mozna podzieli¢ na szkielet i M-1 podstawnikow,
opisuje w uktadzie wspéirzednych abe™ tensor E [80]

M s(m)
E=> > Dlzm) Em) I (z,m), (5.46)
M=1 I‘.—:" ;

gdzie Q(r,m) Jjest macierzg transformacji do ukadu abe™ r-tego pod=—
stawnika m-tego rodzaju. Przyjmujemy w tym zapisie, Ze podstawnik =
moze Sig powtdrzyé s(m) razy.

Dla komérki elementarnej mozemy napisaé

X - BTy (5.47)
przy czym X1~ ,in oraz KJ1,32(m) S rovme odpowiednio X oraz Ka‘m)
wediug konuencgl

at dlig S s =
sha 1 e (5.48)
11 + i, + 1 dla iy # i,

Analogiczna xouwencjua obowigzuje wskaznik j.
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Elementy macierzy B mozna zapisaé w nastepujgcy sposéb:
M S{m) 3

1 (x, m) (x m)
Biisi= R A D D2
i »d L 'l
e a1,azm=qr-41% D1 dp kg [ 3
(r,m) pl{r,m) : :
+ p{m) pfr8 o (5.49)

R Jest macierza transformacji podatnoéci kryszbtaiu w uktadzie abe™
do ukadu osi gtéwnych X,

‘Poniewaz liczba nie;ale:'anych elementéw X nie przekracza 6, zas
liczba elementéw Ki‘(m) moze byé duza, korzysta sig z zaloZenia, Ze
K(m) Jest charakterystyczny dla podstawnika i nie zalezy od czastecz-
ii, w skiad ktérej wchodzi. W celu wyznaczenia wszystkich K(m) trzeba
wykonaé¢ badania dla kilku krysztaiéw réznych substancji, ktéiych ozqs-
teczki zawieraja takie same podstawnikl.

Metoda Van den Bossche ‘a i Sobry ego pozwala wiec na wyznaczenie
o8i gtéwnych tensora podatnosci czasteczki w zasadzie dowolnej, a po-
nadto na skonstruowanie systematyki tensordéw charakterystyczunych dla
szkieletéw i podstawnikéw. Tym samym mozliwe Jest oszacowenie anizeotro=
pii magnetycznej nie badanych dotycheczas zwigzkéw.

Przyklady obliczenia tensoréw rdzenia i podstawnikéw na podstawie
danych strukturalnych i podetnodci krysztaiu mozna znalesé w pracy So-
bry‘ego i Van den Bosche‘a [31] oraz w pracy Mierzejewskiego [82]. Jed-
nym z bardziej imteresujacych przykiadéw jest 1,4-dwunitrobenzen (1,4-
~INB). Tensor czasteczki, obliczony z danych dla krysztatéw nitropochod-
nych benzenu [81] ma po diagonalizacji nastepujace skadowe gtbéwne:

“56’57
K(1,4-DNB) = -41,59 107 cgan.
126,86

Okazuje sig przy tym, Ze porozenia os8i K1, Kz, K5 do&é znacznie odbie-
gaja od orientacji osi symetrii IMN czasteczki, jek to wskazuje poniz-
sza tabela katéw, zawartych miedzy odpowiednimi parami tych osi

: I L )} N

80,0 169,1 85,7
%S 0,40 80, od6
K, | 83,2 8,5 46

Jak widzimy, kierunki osi gléwn,ych Ié réznig si¢ od kierunkéw ILMN
pierécienia benzenowego nieckiedy az o 10°. Zwigzane Jest to z faktem,
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%e czasteczka DNB nie jest piaska - | BTUpy nitrowe sz w;yratnie wykreconq!
z piaszczyzny szkieletu weglowego. |-
PrzeSledimy troche bardzie] szczagélowo ten efekt oraz wyniki, do

ktérych prowadzi model gazu zorientpwanego dla dwéch innyeh przykzadéws|

1,5-dwunitronaftalenu (1,5-DFN) i 1 Pa-dwunitronafbalenu (1,8-DNN), opi~
laamch w pracy [82]. Zajmiemy sig ppoblemem odwrotnym, tJj. obliczeniem
tensora czgsteczki (lub krysztaiu) na podstawie tensoréw rdzenia i pod-

stawnikéws problem ften zostai przedstawiony w pracy [56].
) * Wa 0,

W,

5‘8. Irbér osi giéwnych molekularnego tensora podatnodci
e rdzenia naftalenowego (IMN) i podstawnikéw (uvw)

(i) 4,5-dwunitronaftalen
| Riech & oznacza tensor podatnoéci rdzenia naftalenowego w ukla-
azie osi LN [56] (rys. 5.8)

"54’50
E, = 52,81 -107° cgalt, (5.50)
~173,59 »

za8 b tensor grupy nitrowej w ukladzie lokalnym uvw [56]

5,84 “'7978 0133 : :
b = . 1,76 =5,78 | +107C cgsl. (5.51)
S aon ol :

Orientacje IMN i uvw wzgledem uktadu krystalograficznego abeX okres
laja macierze



- 0,2132 | -0,8982  0,3845 .
‘e(IMm) = 0,8867 = 0,3431 0,3098 ), (5.52]
=0,4102 0,2749  0,8696

orag , i
=0,4799 I 0,7904 0,3808

-0,8535 | -0,3202 0,411 |, (5.53)
-0,2029 | -0,5223 0,8282 ; i

i

g(uvw)

obliczone w [56] na podstawie danych strukturalnych [55] . Uwzgledniajqo
fakt, Ze czgsteczka ma centrum ayme ii, mamy na podstawie modelu gazu
zorientowanego '

gm = ¢(IMN) H, gT(LMN)§+_2 ¢ (uvw) b, gT(uvv) (5.541

w ukladzie abe*. Po dokonaniu obliczeh otrzymﬁjemy tensor czasteczki
-86,87 6,84 60,31 ‘
B =| 6,82 -67,42 7,69 | +107° ogaM. (5.55)

60,30 7,7?§ =167,27
Po . sprowadzeniu gm do osi sléwnych qtrzymujemy

~72,52 5 _
K = ~49,40 ) 1078 cgan, (5.56)
-199,67 :

przy czym ofientacja osi gléwnych E w abe® okreélona Jjest macierzg

\ 0,4282 -0,8812 0,2010
g(K1K2K5) = 0,7717 0,4722 0,4260 | . : (5.57)
: =0,4703 —Q,0273 0,8821 :

Wynik (5.56) oraz orientacje 5 wzslédem IMN podano w tab. 5.4 (No 26)
obok innych danych strukturalnych krysztaiu. Widzimy, Ze réwniez w tym|
przypadku osie K1K2K rbéznig sie potozeniem o kilka stopni od IMN z po-
wodu nieplanarnosci czqsteczki.

Dodawanie (5.54) przeprowadziliémy po dokonaniu transformacji skia-
dowych tensoréw do ukiadu abeX, Mozemy je wykonaé takze w innym ukla-
. dzie wspélrzednych, na przykiad w ukiadzie osi symetrii IMN pierscienia
naftalenowego. W tym celu nalezy sprowadzié 'gn do ukladu IMN macisrzg

a taka, ze np. 853 = cos (M,w)

-0,6658 =0,0524  0,7443\
- a =|-0,0364 -0,9940 -0,1025 ] . (5.58)
0,7453 -0,0954  0,6599
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Hamy wémczas
En=H+238D, a’. (5.59)

¥ ukladzie osi gidwnych

-72951 i
49,42 10~ cgeM. (5.60)

-199,66

=
{l

Wynik ten Jest zupeinie zgoduy z (.5|.§6).

Zauwasmy pa koniec, Ze diagomalizacjs H w peinej postaci (5.55)
prowadzi, oczywiscie, do wyznaczenia diugosci i orientacji osi giéwnych
tensora molekularnege K. Gdybysmy do Hm zestosowall operacje syme-
trii wtasciwe grupie 1lorazowea grupy przestrzemnnej P2,/a krysztaiu i
dodali do siebie temsory odpowiadajgce obu czasteczkom w kombérce elemen-
tarnej, otrzymemy zgodule ze znanymi Juz regutami tensor ;C krysztalu
w uktadzie abe™

-86,87 0 60,31
x(abe®) ={ 0 67,82 0 |-107° cgsu. (5.61)
60,31 Q =167,27 :
Diagonalizacja macierzg
I a b ex
% -0,4719 0  0,8817
X2 0,8817 0 : 0,4719 (5.62)
x'3 0 1 0
sprowadza é(abcx) do osi gtéwnych
=199,57
X = 54,59 10~° cgall. (5.63)

-67,42

Wynik ten jest zgodny z wartosciaml doédwiadczalnymi g, podanymi w tab.
5.4, No 26.

(ii) 1,8-dwunitronaftalen

Korzystajac z tensora podatnosci rdzenia naftalenowego (5.50) i
grupy nitrowej (5.51) oraz z danych strukturalnych z tab. 5.4, No 27,
mozemy obliczyé temsor podatnosci czasteczki 1,8-DNN w ukiadzie abe
tego krysztaiu (ukiad ortorombowy)
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“170,75 =20,42 ' 44,52

H =| -20,42 -59,33 28,12 107 cgam. (5.64)
44,52 28,12 -91,44

Obie grupy nitrowe potraktowalismy Jjako niezalezne, poniewaz nie ma re-
lacji symetrii miedzy polozeniami atoméw N10102 a N20304;; zatem

H '= c(IMN) H, __qT(IMN) + e(wvqwq) by gT(u.,v,,w,‘) +
+ gluyvowy) By gT(u2v2w2). ‘ (5.65)
Warfoéci wiasne i wektory wiasme (5.64) sa nastepujace:

=81 135 3
0']0-6

=42 ,76 cgsM, (5.66)

=
L]

=197,41

~0,4756 0,4908  =0,7300
c(EEE;) =| 0,051 0,8439 0,531).  (5.67)
0,8782 0,2167 -0,4264 |

Giéwne podatnoéci czasteczki 1,8-DNN sa trochg inne nii 1,5=DNN§ na jwigk-
sze rdéznice dotycza podatnobci E, 1 K2,' lezacych w przyblizeniu w
piaszczyznie czasteczki.

sktadowe przekatniowe (5.64) stanowia bezposrednio gléwne podatnos-
ci xii krysztatu.

5.9. Osie magnetyczne krysztaiu

Podatnosé magnetyczna krysztalu moina opisaé za pomoca symetryczne-
go tensora drugiego rzedu X, majacego trzy osie gtébwne. Z wyjatkiem
mozliwych, lecz bardzo rzadkich przypadkéw wszystkie osie sa ujemne, a
ich orientacja wzgledem krystalograficznego ukadu wspéirzednych rzdsy
reguly symetrii, wiasciwe klasie symetrii do ktérej krysztal nalezy. W
dalszym ciggu bedziemy uwazaé, Ze obrazem X Jjest elipsoida tréJjosiowa,

Analogicznie do sytuacji znanej w optyce, moZemy w kazdym kryszta-
le diamagnetycznym znalezé przynajuniej jeden przekibdj magnetycznie izo-
tropowy; normalna do tego przekroju definiuje pewien kierunek, ktéry
zwaé bedziemy osia magnetyczna tego krysztaiu.

Przypuéémy, Ze mamy krysztal jednoskosny, w ktérym osie giéwme X
zorientowane sa w sposdéb podany na rys. 5.9. Pozatem niech bedzie

Xl > %51 > | %] C (5.e8)
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Rys. 5.9. Przykiad orientacji osi magnetycznych, 0Q
(osi symetrycznej nie pokazano na rysunku) w krysztale jednoskosnym

oraz Xgllb- Orientacje X, wzgledem krystalograficznej osi a podaje
kat ¢ uwazany za dodatni, jesli mieéci sie w obrebie jednoskosnego ka- -
ta B . W tej sybuacji zawsze mozemy znalezé taki kierunek OP, lezacy w
ptaszczyznie (010), Ze podatnosé krysztaiu w tym kierunku réwna jest
x3.‘0P okreéla wigc orientacje¢ jednego z dwu przekrojéw kolowych o zero-
wej anizotropii magnetycznej. Innymi skowy, krysztal zawieszony w polu
magnetycznym wzdiuz 0qQ L oP, x3, nie bedzie wykazywat uprzywilejowanej
orientacji. Kat miedzy normalnymi do obu takich przekrojéw, czyli mie—
dzy osiami magnetycznymi, wynosi 2V; kat ten jest réwny 180 - 25, gdzie
6 jest katem determinujacym zero anizotropii krysztaiu
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A %= X4 0826 +y, sin° 6 -

- X; = {0); ‘ (I5069)

Stqd obtrzymujemy

/ 1/2
- X
sin V = (-yl——“> s il5.70)

)(2--)(,I

W przypadku pokazanym na rys. 5.
7 ptaszczyzng osi magnetycznych
: | | Jest (010), ale nie zawsze musi
DXy : L %y tak byé. Polozenie tej piaszczyze
- ny determinuje nieréwnosé (5.68).

Warto zauwazyé, e wyraze-
nie (5.70) rézni sie od Znane go
w ophyce dla s8in 2vs réznice te
; wynikaja stad, %Ze wspbdiczynnik
Rys. 5.10. Orientac ja xierunkbw mag- zalamania Swiatia nie jest wiel-

netycznych w krysztale 4 ,S-DHN ‘ koécig tensorows.
| W mysl postepowania podobns-
go jak w optyce, mozZemy diamagnebyki podzielié na trzy klasy: magnetycze
nie dwuosiowe (krysztaly, nalezgce do ukladu tréjskosnego, jednoskosne-
go i ortorombowego), Jjednoosiowe (uklady tetragonalny i heksagonalnw)
oraz magnetycznie izotropowe (ukiad regularny).

Istnienie przekroju magnetycznie izotropowego pokazano doéwiadczalr
nie - ga% si¢ wydaje po raz pilerwszy - na przykiadzie 1,5—dwun1trona£tar
lenu (1,5-DNN, [56]). W tym krysztale (por. rozdz. 5.8 oraz tab. 5.4,
No 26) ;

“19916 : é
67,4 -107° cgart
"‘5‘%6

=
]

oraz e :
¢ = 118,2°,

Plagzczyzna osi optycznych jest zatem (010). Piytke wycieta z krysztaiu
zawieszamy w kierunku prostopadiym do osi b w sposéb pokazany na rys.
5.10. Kat zawlieszenia ei, mierzony wzgledem krystalograficznej osi a,
.Jest znany i dla kazdego pomiaru inny. Poniewas : e{ + 90 = e, mierzona
anizotropia wynosi

AX; = A cos2

€; + B sin e cos g; + C sin® €41 ‘ (5-71{

gdzde Hi=1 2Nt n =5 ofan
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Rys. 5.11. Rozklad anizotropii w plaszezyznie (010) krysztalu 1,5=DNN,
wykazujacy istnienie kierunkow zerowej anizotropii I.1 i L2

A:(x,]-x3) cos ¢_+(X2-X5) sin® ¢ )
B=2(X) =X;) sin ¢ cos¢ 3 (5.72)
C= (X -Xa) Bin2¢ + (X5 -xi) cosz(b

Wyniki Axi jeko funkcja }:qta_ zawleszenia €y przedstawione s3 na rys.
5.,11. Widzimy, ze istnieja dwa kierunki IhiL, o zerowej anizotropii
magnetycznej. Kat miedzy osiami, odczytany z wykresu, wynosi
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2V = 35,1 *0,5°,

podczas gdy wediug (5.70)

2V = 34,7 +0,2°,

Orientacje osi magnetycznych w ukkadzie abe® podaja wektory jednost-
kowe

4, = (-0,1886, 0, 0,9820),

Mg ("017']36’ 91 097005)-

Tabela 5.4

Magnetyczne wlasnosci krysztatéw i czgsteczek oraz po&stawowe
informacje strukturalne o krysztatach molekularnych

(Podatnosci (krysztatéw i czasteczek) podano w jednostkach uktadu cgsM.
W celu otrzymania ich w jednostkach ukladu SI nalezy podatnoéci podane
W tﬁPeli pomnosyé przez 41:-10'6§

EENZEN, CgH, éﬁl. No 1

(i) Opis struktury [15]:

Ortorombowa '
a= 7,46, b=9,666, ¢ = 7,033 8 w 270 K.
Grupa przestrzenna Pbca, 2z = 4

(ii) Geomstria czasteczki [15]:

Czasteczka jest ptaska w granicach biedu doéﬁiadczalnego; swobodna
ma Symetrig D6h’ w krysztale W, przy czym odchylenia od peinej sy-
metrii sa niewielkie. Istnieja przesianki doswiadczalne (m.in.
spektroskopia UV) s$wiadczace o tym, %e w eksperymencie czasteczka .
przejawia symetrig¢ od C,y, do Dgp [16]

=5

(iii) Podatnoseci krysztatu (w 107" cgsM):

<K= Xa xb Xc

[17,78] -54,8 =-65,2 =37,9 -61,3 w 261K
(iv) Orientacja osi IMN czasteczki [19]:

a b c
L -0,27565 0,96081  -0,02936
M -0,64868 -0,16339 -0, 74332

N 0, 70939 0,22394 0,66830
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(v) Podatnosci czasteczki (w 10°° cgsM):s

K Ky Ky
N7 =34,9 =34,9 =94,6

[19} _34,8 ‘3292 '97:1"‘

M
p-BENZOCHINON, C6H402’ O=<f§>=0 =1L

(1) Opis strukbury [20]:

Jednoskosna
Gi= 7,0557 b= 6,795, ‘o= 5,767 &, B = 01,47
Grupa przestrzenna P21/a, Zi=22

(ii) Geometria czasteczki [20]:

No 2

Czasteczka jest ptaska w granicach biedéw doéwiadczalnych (maksy-—
malne odchylenia atoméw od $redniej ptaszczyzny 0,007 2. Symetria

czgsteczki swobodnej mmm, w krysztale 7.

(iii) Podatnosé krysztaiu (w 1070 cgsM):

e s Y
[21] Sheae =2 -67,1 -25,9  +31,2 (obs)’
(121 -38,4  =23,7 =65,3  =24,3  +30,7 (obs)

(iv) Macierz orientacji osi IMN czasteczki [20]:

a* b c

L 0,3%20 0,8178 0,4835
M 0,4207 -0,5740 0, 7025
N 0,8522 -0,0153 -0,5229

(v) Podatnosci czasteczki (w 107 cgsii):

K, Ky Ky
"[R2] 24,3 =28,7 67,1

[12] "23,0 "2790 "65’2



' s C: cl
CZTEROCHLORO-p-BENZOCHINON, C.C1,0,, :I:::I: = M

(i) Opis struktury [27]:

Jednoskoéna. : o
a = 8,708, b=5,755, ¢ = 8,603 &, p = 105,85°
Grupa przestrzenna P21/a, 2 =2 2

(ii) Geometria czgsteczki [23]:
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No 3

Pierscien chinonowy jest piaski, lecz odchylenia podstawnikéw od
Jego ptaszczyzny sa znaczgce. Wynosza one &rednio 0,05 R, co odpo-

wiada zgi¢ciu wiazania C-Cl o kat 1,5°, a C=0 o kat 2,1°.

(111) Podatnoéci krysztatu (w 1070 cgslt):
<> X L Xz €]

Ba -93,9 -116,2  -96,2  +90°
123 =107,d2 =98 52 "Cbqimo oMol Ao 4962

(iv) Macierz orientacji osi LMN czasteczki [23]:

ax b c
L 0,5390 0,8306 -0,1399
M 0,2604 -0,0064 0,9655
N -0,8011 0,5569 0,2197

(v) Podatnoéé czasteczki (w 10~ cgsh):

K Ky Ky

[nz] =84,4 -98,5 -1%8,5
OH
Cl Cl
CZTEROCHLOROHYDROCHINON, G.Cl, (OH),, =M
Cl Cl
5 : OH
(i) Opis struktury [25]: i
L

Jednoskoéna.
a=8,214, b=4,843, c=12,441 8, p-=123,82°.
Grupe przestrzenna F2./c, Z = 2.

(ii) Geometria czgsteczki [25]:

Czgsteczka jest ptaska w granicach bXedu doséwiadczalnego.

No 4
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(iii) Podatnosci krysztalu (w 107 cgsM):

<x> Xq X5 X3 9
[2] -120,7 -103,5 -129,2 -129,4 +29,9 (obs)
(iv) Macierz orientacji osi IMN czasteczki [25]: 3
ax b c
L 0,982  -0,108 0,155
M -0,201  -0,694 0,691
N =0,035 0,710 0,703
(v) Podatnosci czasteczki (w 40‘6 cgshl):
S Ky Ky
2] -103,0 =-114,3 —14—4,9
M
p~DWUCHLOROEENZEN, CgH,CL,, 01~<<?i>»01 =L No 5
p~CHLOROBROMOBENZEN , 06H4ClBr, Cl~«<::>>Br No 6
p-DWUBROMOBENZEN , CGH4Br2, Br-O—Br No 7

(i) Opis struktury [26,27,28]:

Struktury wszystkich trzech zwiazkéw sa jednosxkoéne i izomorficz-
ne.

¢l - a = 14,80, b=5,78, o=3,99 8 B =113°,
ClEr. ai= 45,20, ¢b = 5,86, ¢ = 4,11 R, p = 113,2°
BrBr &= 15,36, b & 5,75, c=4%,10 8, p = 112,63°.
Grupa przestrzenna P21/a, Z = 2.

(ii) Geometria czasteczki [26]:

Czasteczki sa plaskie, a symetrycznie podstawione majg centrum sy-
metrii. Pierscienie sg w granicach biedu regularnymi szeéciobokami.
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(iii) Podatnoséci krysaztazu (w 108 cgsM):
<x> Xq X5 [ %3 b
cic1 [21] -85,4 = =70,0 —106,2 | =799 +88,9 :
ikl -82,95 -67,36 -103,76 -77,86 +87,4 (obs)
ClBr [2] =92, -77,3  -112,3 86,9  +87,2 (obs)
Erivi[odil¢ iSion,1t Tase,z . Mes soed e
[12] =101 ,4 -87,0 -120,7 ~96, 4 +87,1 (obs).

(iv) Macierze orientacji osi IMN czgsteczki [17]:
ClCl BrBr

a b o | a b o=

L 10,7898 -0,6116 Q,0474 0,8092 -0,5871 -0,021%

M 00,4417 0,6206 0,6478 0,4752 0,6328 0,6112
N 0,4255 0,4909 =-0,7602 0,3527 0,4993 -0,7915
Srednia orientac ja
a b cx
L 0,7996  -0,5995 0,0367
M 0,4588 0,6267 0,6298
N 0,3908 0,4951 =0, 7760

(v) Podatnoéci czasteczek (w 10° cgshl)s:

% K Ky

[1g] cici -78,3 -50,3 ~120,2
("2l ciBr -87,6 =59,9 =129,0
[1Z] BrBr -97,1 =70,5 -136,7

0—CH :
Z
1, 4-DVIMETOKSYBENZEN, CgH, (OCH;),, © - No 8
=
(i) Opis struktury [29]: b—c,
Ortorombowa. ; U i

a=%7,29, b =6,30, c= 16,55 K.
Grupa przestrzenna Pbca, Z = 4,

x) Wartosé wyznaczona poérednio jako érednia dwu pozostaiych
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(ii) Geometria czasteczki [2¢]:
Szkielet weglowy czasteczki jest ptaski i ma centrum symetrii.

(iii) Podatnos$ci krysztaiu (w 107 cgsM):

<x> a Xp X

(2] -86,65 -104,5%0,2 -86,3i0,3_ -69,2%0,3

(iv) Orientacja osi IMN czasteczki [29]:

a b @
5 0,0290 0,3%635 0,9313
M 0,5499 -0,7836 0,2887
N 0,8348 0,5038 -0,2228
(v) Podatnosci czasteczki (w 1072 cgsM) [13]:

e Ky Ky

-65,6%0,4 -78,610,7 -115,8%0,5
L
0N NO,

m~D{UNITROBENZEN, CgH, (NO,),, =N No 9

(1) Opis struktury [50]: .

Ortorombowa.
a=13,20, b=13,97, c = 3,80 £.
Grupa przestrzemna Pbn2,, 2 = 4.

(ii) Geometria czagsteczki [30]:

Atomy wegla i azotu leza w jednej ptaszczyznie, lecz grupy -N02
58 z niej wykrgcone wokdér wigzan C-N o katy 11,8 i 9,60;

(iii) Podatnosci krysztatu (w 10™C cgsM):

<X> X Xy X

a Cc

P4 -68,9 =43,6 =57,3 -105,8
[.;]3] -20,53 "4511-:293 -5819-':2,4 "107)5i4’6
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(iv) Orientacja osi IMN czasteczki [13]:

a b (s
L 0,5786 -0,7238 0, 3744
M 0,8109 0,5596 -0,1713 |
N 0,0871 ~0,4048 -0,9103

(v) Podatnoéci czasteczki (w 10~ cgsli):

Er Ky Ky
[1z] 50,0+6,9 -41,7£2,1 -119,8%6,7
o ~p-NITROFENOL, CoHoNO, 0N OOH == No 10
: (i

(i) Opis struktury B'I]:

Jednoskosna.

a=1,66, b = 8,78, ¢c = 6,008 &, B=107,53° (90 K).

Grupa przestrzemna P2,/n, 7 = 4.

Czasteczki poXaczone sg wigzaniem wodorowym O-H...O typu "ogon-
giowa" w tancuchy, o Srednim kierunku zblizonym do osi ¢ kryszta-
Zu,

(ii) Geome,tria czasteczki [31]:

Pierscien benzenowy jest ptaski w granicach 14.10'3 2; piaszczyz—
na grupy nitrowej tworzy z pieréicieniem kat 1,50.

(iii) Podatnoéci krysztaiu (w 1078 cgsil) s

(5]

<x> X1 Xo X3

2] -65,66 48,1 -88,2 -66,7 -40,0 (obs)

(iv) Orientacja osi IMN pierscienia benzenowego, 90 K, obliczona z po- »
¥ozen atoméw [31]:

a b et
i -0,8417 -0,4426 0,3094
" N 0,0762 -0,6646 -0, 7433

N 0,5346 -0,6020 0,5931



176
(v) Podatnoéci czasteczki (w ’IO'6 cgsM):

K

) K K

N
[32] 49,4 44,6 -102,9
B ~p-NITROFENOL, CgHoNO, OZN—O-OH =T No 11

(i) Opis struktury [41]: o

ay= 15805, b = 19,419, 0 = 3,785 R,/:8 = 107,10°,

Grupa przestrzenna PE,I/a, 7 L 4,

Czasteczki poiaczone sa wiazaniem wodorowym O-H...0 typu “ogon-
gtowa" w ahcuchy, o $rednim kierunku zblizonym do osi a kryszta~
tu, :

(ii) Geometria czasteczki [31]:

Pierscien benzenowy jest ptaski w granicach +2.4072 R, praszczyzna
grupy nitrowej tworzy z pierscieniem kat '7,20.

(iii) Podatnosci krysztaiu (w 1072 cgaM):

<X> X4 X5 )(3

<] -65,66 -49,4 -97,2 -50,4 =5,2 (obl)

(iv) Orientac;a osi LMN pierscienia benzenowego, obliczona z pokozen
atoméw [31]: ' :

a b cx
TS 0,92083 0,38822 0,03689
M -0,38482 0,88926 0,24725
N 0,06319 -0,24187 0,96825

(v) Podatnoéci czasteczki (w 1070 cgsh):

K

N LS

[3’2] "49’9 "4698 -1w’3

K
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X x
SZESCIOCHLOROBENZEN, CCle x—<: T No 12 -
X X .4
(1) Opis struktury [33]: / )
M
Jednoskosna.

a=8,08, b= 3,87, c=16,658%, B =117,0°
Grupa przestrzenna B2a/c, ' 4 = 2,

(ii) Geometria czasteczki [3%]: -
Czasteczka jest piaska i ma ksztalt szescioboku.

(1ii) Podatnoci krysztatu (w 1070 cgalt)s

<X> X x2 : x5 | ¢

1 -~wu5,6 -129,4 ~136,2 -171,1 +52,6 (obs)

bzl  -w7,5 -132,2%0,4 -137,9%0,4 -172,5%0,6 5.91?.% )

obs

(iv) Orientacja osi LMN czasteczki [12]:

a b : c*
L (llcicr’)  0,9253 . 0,1988 0,3229
M 0,2590 0,2907 -0,9212
N 0,2691 -0,9375  -0,2202

(v) Podatnosci czasteczki (w 10"6 cgsi):

K, Ky Ky
(2] -132,3%0,3 ~132,3%0,3 177,440, 4
SZESCIOCHLOROBENZEN (Wersja II) No 12a

(i) Opis struktury [4]:

Jednoskoéna. !
a = 8,0476(8), b = 3,8363(5), c = 14,8208(29) &, B = 92,134(14)°.
Grupa przestrzenna P21/n, Z = 2. :

(ii) Geometria czasteczki [54]:

Szkielet weglowy jest prawie paski; najwigksze odstepstwo atomu
wggla od najlepszej pilaszczyzny wynosi 8-10-4 2. Trzy kolejne ato-
my chloru wychylone sa z tej plaszczyzny naprzemiennie o 0,014,
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0,020 i 0,015 R.'Czqsteczka W krysztale ma prawlie dokladnie syme=-
trie 6/mmm. %

!

(iii) Podatnosci krysztaiu (w 1076 cgsM) [35]:

<x> X4 Xo X3z B

—147,5 [36] @ -132,2 = -137,9 | =172,3 = 93,6 (obs)

(iv) Orientacja osi IMN czasteczki na podstawie wspbdirzednych atoméw

[19]:

a b c*
L (Bcic1’)  0,89522 0,30800  -0,32204
M 0,25114. 0,24826 0,93556
N 0,36811 -0,91842 0, 14490
(v) Podatnoéci czasteczki (w 107 cgsM):
Ky Ky Ky

f9] =120,88 -131,59 =179,95

X X

PIECIOCHLOROFENOL, 0650015, x Q OH —1L No 13

(i) Opis struktury [37]: X U =
M
Jednoskoéna.

a =291, b=4,930, c=12,09%, B = 95,63°

Grupa przestrzemna C2/c, Z = 8. V

Zwiazek jest dimorficzmy: w temperaturze, 63 %c wystepuje przejscie
fazowe [}8,59]. Podane wartosci parametrdéw odnoszg sie¢ do odmiany
niskotemperaturowej, W ktorej czasteczki powiazane sg w iancuchy
wigzaniami wodorowymi typu ...0-H,..0...

(ii) Geometria czasteczki [37]:

Pierscien benzenowy jest piaski w granicach biedu eksperymentalne-
g0; odchylenia atoméw od pXaszczyzny Sredniej réwniez nie s duze
(por. CgCly, wersja II).

(1ii) Podatnosci krysztaiu (w 102 cgsli) s
<X> X E x5 X . (&

i 5

=141,5 -125,4%0,7 -150,3%0,7 -148,9%0,3 = +81,4%1,5 (obs)
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(iv) Orientacja osi IMN czasteczki [37]:

ar b c
T 0,9814 0,0769 0,1758
M 0,1778 ~0,7094 ~0,6823
N 0,0651 0,7006  =0,7114
(v) Podatnoéci czasteczki (w 1078 cgsM)s
£ Ky Ex
3] f125,510,6 -125,3%%*18,8 . =173,8%18,9
: No 14
. 204+ HO
KWAS BENZOESOWY (DIMER), (C7H602)2, c\‘OH 0F —<C::> =L
(i) Opis struktury [40]: M

Jednoskosna.
a=55, b=51%4, c=21,9% %, g=97°
Grupa przestrzenna P21/c,' Z = 4,

(ii) Geometria czasteczki [40]:

Czasteczki kwasu benzoesowego 53 w krysztale catkowicie zasocjowa-

ne do dimerdéw za posdrednictwem dwéch symetrycznych wiazan wodoro-—

wych typu O-H...O. Dimer jest ptaski w granicach kilku setnych Ris
(11i) Podatnosci krysztatu (w 107° cgaM) [43]:

=70,45 [41,42] =50,8 =77,9 -82,7 -41,7

(iv) Orientacja osi IMN czasteczki [19]:

a b oo
L = O,2j18 0,7189 0,6621
u £0,8229 = -0,2342 0,5176
N 00,5276 -0,6546 0,5420

L
{v) Podatnosci czasteczki (w 10‘6 cgsh):

KL' KM KN

[g] -106,0 -46,2 -59,1
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HO.

il

EWAS ANTRANILOWY , CGH4NHZCOOH, = M . No 15

~

(i) Opis struktury 12]:

Ortorombows.
a=12,85 b=10,77, c=9,28 8,
Grupa przestrzemna Pcn2, Z = 8 (komérka elementarna zawiera dwa

zbiory czasteczek, symetrycznie niezalezne).

(ii) Geometria czasteczki [12]:

Czgsteczka nie jest calkiem ptaska; atomy wegla przesunigte 83 o
0,015 2 na przemian w gére i w d6r wzgledem Sredniej piaszczyzny.
pierscienia. Czasteczki zasocjowsne sa W parys; Jjedma zrnich jest
obojetna, a druga jest jonem obojnaczym. Katy miedzy plaszczyzng
grupy karbonylowej i piersScienia wynosza 6,85° W czgsteczce A i
2,30 w czasteczce B.

{iii) Podatnosci kryszbaltu {w 107° cgsu) [12]:

<X> xa Xb Xc

'79!0 -1“2r5 -5913 "'65$5

{iv) Macierze orientacji osi IMN czasteczki [12]:

Czasteczka A Czasteczka B
a b Le \ ; a b ©

0,3109 -0,293% = 0,9038 L -0,2897  0,3713 0,8823
0,1865 0,9470 0,2624 M 0,2138  0,9295 -0,3014
-0,9304  0,0837 0,3568 N 0,9356 -0,1045  0,3388

{v) Podatno&ci czasteczki (w 10~ cgshi):

A

s Ky Ky

1

[z21 57,7 -58,8 -120,5




ACETANILID, CyHsNHCOCH;,

(i) Opis struktury [44]:

Ortorombowa.
ai="1976405 "bi= Ol AB3 ic =
Grupa przestrzenna Pbca, Z

7,979 8.
= 8.

(ii) Geometria czgsteczki [44]:

CH3
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No 16

Atomy czasteczki lezga w dwu paszczyznach, z ktérych jedna obejmu-
Jje czesc anilinowg a druga acetylowq, obie ptaszczyzny tworza kab
37, 9 + W krysztale czgsteczki wystepuja w formie amidowej, a nie

imidolowej.

(iii) Podatnosci kvysztatu (w 1070 cgall):

<X> )(.al % X

Bzl - 72,2 57,4 66,4 95,0

(iv) Macierz orientacji osi IMN czasteczki [12]:

a : b (63
L (wzduz C4CIN) 0,9289  -0,1404 0,3428
M {réwnol. do C3C5) 0,3073 0,8211  -0,4811
N , 0,207% -0,5512  -0,8082

(v) Podatnosci czastecski (w 108 cgsh):
&y Ky Ky

M2l ' -55,8 44 .3 -116,6

p-NITROANILINA, C.H,(NO,).NH,, —O_NHQ =L

(i) Opis struktury [&5]:

Jednoskosna.

a=12,33, b=6,07, c=8,5928, B=91,45°

Grupa przestrzenna Paq/n, Z =4

No ‘17
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(ii) Geometria czgsteczki [45]:

Pierscien aromatyczny jest piaski. Grupa ~N02 wraz é atomem C
tworzy piaszczyzne skrecona wzgledem pierscienia o kat 1,90, podoh»I
nie grupa -NH2 wraz z atomem C <tworzy piaszczyzne skfeconq
wzgledem pierécienia o kat 16°.

(iii) Podatnosci krysztatu (w 10~° cgall):

<X> Xq X2 )(3 2]

[12] "'66’6 -5010 "9438 "5479 -47,0 (ObS)
[46] -66,28 -48,1%1,4 -97,112,8 - -53,7%1,4 47,2 (obs)

(iv) Macierz orientacji osi IMN czasteczki [45]:

SR b c
L 0,7501 =0,4334 -0,4994
M 0,0730 0,8030 -0,5915
N 0,6563 0,4077 0,6348

(v) Podatnoéci czasteczki (w 10~° cgsh)s

K Ky Ky
[z} -52,0 43,0 -104,8
[46] -50,1 -40,9 -107,8
e N
\ : o : — M

IZATINA, CgHoOoN, e No 18
(laktam kwasu izatynowego) i

0

V1

(1) Opis struktury [47]:

Jednoskosna.
a=6,19, b=14,46, c=7,17 &, pB= 94,82°,
Grupa przestrzenna P21/c, Z =4,

(11) Geometria czasteczki [47]:

Czasteczka jest ptaska w granicach biedu doéwiadczalnego.
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(iii) Podatnosci krysztaiu (w 10~° cgsM):

; : €
<x> X4 X, Xy

[2] -81,15 =57, 45 -123%,85 -62,15 491 5%

(iv) Macierz orientacji osi IMN czagsteczki [47]:

a : b o

L 0,1814 -0,9815 0,06™M

M 0,9095 0,1911 0, 35694

N 0,37%6 10,0125 =0,9261
- .

(v) Podatnoéci czasteczki (w 10™° cgsM):

KL Ky Ly
izl 62,0 -57,3 ~124,2
} A No 19,20
J / =il
KWASNY FTALAN SODU, C.H,(COOH)(COONa),
K¥ASNY FTALAN POTASU, CgH,, (COOH) (CO0K ), X0 —C%o O//c' —OH
(i) Opis struktury [4€]: y

Struktura trzech kwasnych ftalandéw: sodu, amonu i potasu jest orto-
rombowa. Istnieja zwiqzki mig¢dzy wielkosciami ich komérek elementars
nych, ale struktury nie sy izomorficzne.

a b c Gr. przestrzenna Z
FtHNa 6,76 9,31 26,42 B2ab 8
FtHNH4 6,40 10,23 = 26,14 Pcab 8
FtHK 6,47 9,61 13,26 P21212 S

(ii) Geometria czasteczki [48]:

Pierscien benzenowy i oba atomy wegla grup karbonylowych czastecz-
ki FtHNH4 lezg w ptaszczyznie. Plaszczyzny obu grup karbonylowych
53 nachylone wzgledem niej o katy odpowiednio 21 i 650. Pierscien
benzenowy nie jest regularnym szeéciobokiem, poniewaz odlegiosci
C-C zmieniaja si¢ od 1,35 do 1,40 R. ;
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(iii) Podatnoéci krysztaiéw (w 10~° cgsM) [M2]:
<Xx> Xa Xb Xc
FtHNa -89,9 =115,4 =791 =75,1
FEHK =992 -124,95 -89,35 -83,25
(iv) Macierz orientacji osi IMN czasteczki (jednakowavdla‘FtHNa i FtHK,
4] s
a { b c
L 0,2382 Q,4578 -0,8565
M 0,4873 -0,8192 -0,3024
N 0,8368 0,3390 0,4300

(v) Podatnoéci czasteczki (w 108 cgsM) [12]:

K Ky Ky
FtINa -59,1 = -76,5 =134,1
FtHK 66,4 =87,9 ~143,3
NAFTALEN, CqoHg, CO =7, No 21
.
(i) Opis struktury [49]: M

Jednoskosna,
a=8,235, b=6,0035, c=8,658 8, g =122,92°.
Grupa przestrzenna P21/a, Z = 2.

(ii) Geometria czasteczki [u49]:

Czasteczka jest ptaskaj; odchylenia atoméw C od sredniej ptasz-
czyzny nie przekraczaja 0,007 2. %

(iii) Podatnosci krysztatu (w 10~° cgshi): :
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(iv) Macierz orientacji osi IMN czasteczki [49]:

a b o
L -0,4379 -0,2103 +0,8741
M -0,3207 -0,8718 =0, 3704
N +0,8399 -0, 4425 +0,3143

(v) Podatnokci czasteczki (w 10~° cgsM):

i Ky Ky
2] =56, =53,9 -169,0
[19] ~56,1 =54,0 -168,9
DWUFENYL, CqoHjos O_OjL _No 22
(i) Opis struktury [50,51]: g

Jednoskosna.
a='8,12,, b=5,63, =958 B-=957°.
Grupa przestrzemna FP2,/a, Z = 2. '

(ii) Geometria czasteczki [50]:

Cata czasteczka w krysztale jest piaska w granicach biedéw doswiad-
czalnych. Diugoséé wiazphA C-C wskazuje, ze sprz¢zenia miedzy
pierécieniami nie ma lub jest bardzo stabe.

(1ii) Podatnosci krysztaiu (w 1070 cgsM):

<X=> Xq Xo Kook v
n1 =102,9 = =63,4 -146,5 -98,9 +20,1
[2] -104,4  -67,4  -144,9  -100,9  +22,4 (obs)

(iv) Macierz orientacji osi IMN czasteczki [12]:

ik a b c*
L 0,2966 =0,0256 : 0,9545
M 0,5355 -0,8233 -0,1881

N 0,7928 0,5669 -0,2243
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(v) Podatnoéci czasteczki (w 1070 cgsM):
K, Ky Ky

f2] 67,7 61,7 -183,8

H,C CH,

ACENAFTEN , C1OH6(CH2 )-2’ No 23

(vi) Opis struktury [52]:

Ortorombowa.

a= 8,290, b=14,000, c= 7,225 8 (15 ).

Grupa przestrzemna Pem2,, Z = 4 (w komérce elementarnej sa dwa
zbiory czasteczek, symetrycznie niezalezne).

(ii) Geometria czasteczki [52]:

Czasteczki sg ptaskie, o symetrii w krysztale mj; ptaszczyzna sy-
metrii przechodzi przez wiazanie wspdlne dla obu pierscieni i nor-~
malng N. O L obu typbéw czasteczek jest réwnolegia do osi b
krysztaiu. -

(iii) Podatnosci krysztaiu (w 1078 cgsM):

<X> Xa Xp Xe
[n1l -111,8 -117,6 =72, -145,6
[12] -109,3 -114,9 - =72,0 =141,1

(iv) Macierz orientacji osi IMN czasteczki [52]:

a b city ia b c

0 1 0 L 0 1 0

1 0 0 M -0,4772 0 0,8788
0 1 N 0,8788 (0] -0,4772

(v) Podatnosci czasteczki (w 4072 cgsM):

o Ky Ey
[1 2] -72 ’0 "7015 =1 85;5
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. u
R _on
B -NAFTOL, CyqH,(OH), T @’O No 24

(1) Opis struktury [53]:

Jednoskosna.

a=8,185, b=5,95, ¢ = 36,29 &, B = 119,87°.

Grupa przestrzenna Ia, Z = 8 (w komérce elementarnej sg dwa
zbiory czasteczek, symetrycznie niezalezne).

, (ii) Geometria czasteczki [53]:

Czagsteczka w krysztale jest asymetryczna; blizsze szczegdly doty-—
czace jej ksztattu nie sa znane ze wzgledu na matg dokladnosé w
oznaczaniu poiozen atomow.

(iii) Podatnosé krysztaiu (w 1078 cgsi) s

<x> % X5 X5 ¢

n1l -97,0 -62,3 -148,3 -80,4 +9,4
nz] -97,0 -62,8 -148,1 -80,1 +11,1 (obs)

(iv) Macierz orientacji osi IMN czasteczki [12]:

a b c* a b c*
L0.4005 | 0,2430. " 0,8835 . L) -0,4190 =0,1616  0,8936
0,2913 -0,8918 0,3438 M 0,3%860 0,8610 0,3305
0,8625 0,4269 0,2718 N -0,8188 0,4954 -0,2902

(v) Podatnosci czasteczki (w 'lO'6 cgsM):

By Ky Ky
UEJ '63)9 '51’9 -175)2
NP
K7AS NAFTOESOWY, CqoH,COOH, L § No 25

(1) Opis struktury [54]:
Jednoskosna.
A= A2 b= Zap. wei-doiga R pi g 00
Grupa przestrzenna P21/a, P
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(ii) Geometria czasteczki [54]:

Piericienie naftalenowe sa ptaskie (w granicach 0,04 R), z awu a-
toméw tlenu jeden jest nad piaszczyzng pierscienia, a drugi pod
ptaszczyzna pierscienia (odchylenia wynoez‘-s;' okozo 0,20 Ry Odpowia=
da to skreceniu piaszczyzny grupy karbonylowej o kat 112 wzgledem
pilaszczyzny pierscienia.

(1ii) Podatnosci krysztatu (w 10~° ogaM):

<x> X4 Xo X 6

n2] -107,32 ~ -65,25 -85,05 -171,65 -9,95° (obs)

(iv) Macierz orientacji osi IMN czasteczki [54]:

a* b V c
L 0,7645 0,2472 0,5952
‘M 0,6441 =0,3217 -0,6939
N 0,0238 0,9152 =0,4022

(v) Podatnosci czasteczki (w 10~° cgsM)s

K, Ky Ky
(2] =70,5 =58,95 =192,5
M{}‘ No,
1,5-DNUNITRONAFTALEN, C10H (NO,),, 0 No 26

; ; 0,1
{i) Opis struktury [55]:

Jednoskosna. : :
a = 7,76%0,02, b = 16,32%0,04, ¢ = 3,70%0,01 &, B = 101,8+0,2°.
Grupa przestrzemna P2,/a, 2 = 2. i

(1i) Geometria czasteczki [55]:

Czasteczka ma centrum symetrii; obie grupy nitrowe sa wykrecone z
ptaszczyzny pierscienia benzenowego o kat 48,70.
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(iii) Podatnoéci krysztaiu (w 10 - cgsM):
<X> X, X, _ Xs ¢
-102!2 [56] '199)6 "'5‘4"6E '67’4 (i0,1) 118,2'!.0,3
i |
{(iv) Orientacja osi IMN pierécienia naftalenowego i osi uww grupy ni-
trowe;j 56l
L M N u v w
a 0,2132 0,8867 -0,4102! -0,4799 -0,8535 =0,2029
b =0,8982 00,3431 - 04,2749, 0,7904 -0,3202 -0,5225
c* 0,%845 0,3098 0,8696 0,3808 =0,4111 0,8282

(v) Podatnosci czasteczki (w 108 cgém):
Eq K LKy )

[5e] =72,52 =49,40 =199,67

(vi) Orientacja osi giéwnych E [56]:

L M N -

K =0,9599 =0,1391 0,2433
K,  -0,0953 0,9784 0,1834
: O,N  NO, ' :
: 2 Neo 27
1,8-DWUNITRONAFTALEN, C, H (NO,), [j:j =
(i) Opis struktury [57]: k g
Ortorombowa.

=1 1252, b = 14,934, c = 5,376.
Grupa przestrzenna P212121, Z =4,
(ii) Geometria czasteczki [57]:

\

é'zqateczka jest asymetryczna i1 niepZaska. Obie grupy nitrowe sg wy-
krecone w te samg strong wzgledem plaszczyzny piersécienia naftale-
nowego o katy 45,1 i 41,7°
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(111) Podatnoéci krysztatu (w 107 cgalt):

<X> Xa Xp Xe
el -107,2 | =lea; s i ch s -98,0
M9l  -107,2  -170,8  ~59,3  =91,4
(iv) Orthentacja osi IMN pierscienia naftalenowego [57]:
a b c
L - 0,047  -0,9742  -0,1997
M 0,6567 .  -0,0831 0, 7495

| =0, 7468 -0,2097 0,6311

(v) Orientacja osi uvw grup nitrowych [57]:

u,] Vq W1 112 V2 W2
'a  -0,3618 -0,0097 -0,9320 0,1961  -0,0595 -0,9783
b 0,8885 0,2990 -0,3479 0,9713 0,1487 0,1855
‘ (i 0,2822 =0,9540 =0,0996 0,1346 -0,9866 0,0870
:,(v;t) Podatnoéci czasteczki (w 1078 cgsM):
K 5 K5
pg -84 42,8 -197,4
(vii) Orientacja osi giéwnych K [19]:
L M N
Eq 0,9232 =0,3635 =0,1247
K2 =0,3825 =0,9003% =0,2077
K3 0,0341 =0,23584 0,9706
i tie Pwm Toe 3
ANTRACEN, C4q,H,, i sl | , =L No 28
(1) Opis struktury [59]: !
M

Jednoskoséna.

a=8,562, b=6,038, c=11,184 8, p=124,70° (290 x).

Grupa przestrzenna P2,l/a, Z =2,
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(ii) Geometria czasteczki [59]:

‘Czasteczka jest piaska w granicach 0,00fl- 2.w krysztale ma syme-
trie mmm. 5 :

(iii) Podatnosci krysztaim (w 10~° cgsM)s

<x> X4 X5 X3 $
k2] -130,1 75,5 -211,8 =102,9 +8,0
(60l -134,2 76,7 =217,0 =108,8 +8,0
[M13] =130 -72,4t2,0 -212,9%2,0 -104,8%1,0 ' +9,45%1,10

(iv) Macierz orientacji osi IMN czasteczki (290 K)x)

a b : o
I -0,49409 -0,12738 +0,86003
M -0,31752 - -0,89444 -0,31490
N +0,80935 -0,42867 +0,40149

(v) Podatnogci czqstedzki (w 10~° cgeM):

RS Ky Ky
f22] -75,8 -62,6 -251,8
[9] =72,3 =734 =244 4
(60] =76,9 =76,6 ~248,9
[13] -72’4i290 "71)8:1 ’7 “24'5,71-217 3
: M
T
0
: I
ANTRACHINON, C.,HgOs, R @:j No 29
(i) Opis struktury [61]: g —g- ‘
Jednoskoéna.

a = 95,810, b =3,0L2, ci- 7,865 R, = 102,729,
Grupa przestrzenna qu/a, Z = 2.

(ii) Geometria czqéteczki a7]:

Czasteczka jest ptaska z duza doktadnoscig.

x) Por. p. 3.7.8.
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(iii) Podatnosci krysztatu (w 10~ cgsM):

= Xq X5 x3 e

[12] -119,6 ~64,05 -106,25 -188,50 =37,65

A\

(iv) Macierz orientacji osi IMN czasteczki [61] :

a b c*
L 0,531 0,451 03715
M 0,788 0,036 -0,615
N =0,305 0,889 =0,341

(v) Podatnosci czasteczki (w 10~ cgsM):

K Ky Ky
[12] ~76,1 -64,5 -217,9
ANTRACHINON (wersja II) : No 29a

(1) Opis struktury [62]:

Jednoskosna.
a=158 b=3,97, c=7,8 R, B=102,5° (293,8 K).
Grupa przestrzemna P2,/a, Z = 2,

(ii) Podatmoici krysztatu (w 10™° cgsM):

<X> X1 X2‘ X3 (¢}

-119,6 [12] =63, 54 -106;76 . -188,50 -43,87 (obl)

(iv) Orientacja osi IMN czasteczki w 293,8 K, obliczona 2z polozen
atoméw [19]: ;

a b X g
i 0,52355 0,48701 0,69908
M -0,77927 -0,05797 0,62400
LIS 0, 34441 -0,87147 0,34917

(v) Podatnosci czasteczki (w 1078 cgsM):

i Ky Ky

(9] 68,9 -63,5 -226,4
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N
AKRYDYNA III, CqzHCN, L < m No 30

(i) Opis struktury B3] ¢

Jednoskosna.
ai =i A4l,375,5 b =F5;988 il c =/ 13,647 R, g1 96,970,
Grupa przestrzenna P21/n, Z =4,

(ii) Geometria czgsteczki [63]:

Czgsteczka jest zgigta wzdiuz N-C5; kat miedzy normalnymi do obu
poéwek wynosi 2,1°.

(iii) Podatnosci krysztaiu (w 10™C cgaM):

<X> X4 X, X5 ¢

B2l 125 3 -61,33 ~209,13 -99,13 -2

\iv) Macierz orientacji osi IMN czasteczki [12]:

a b c*
L 0,4725 0,1562 -0,8674
M 0,4369 -0,8962 0,0766
N 0,7652 0,4151 0,4921

(v) Podatnosci czasteczki (w 10'6 cgsM)s

K, Ky Ky
[z] 61,4 -70,5 -238,0
(9] -54,9 -69,0 -246,0

Uwaga: Niewielkie odchylenie obu poldéwek czasteczki od wspolnej ptasz—
czyzny nie ma praktycznie wpiywu na podatnosci gldéwne czasteczki.
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: : : N
o~FENAZYNA, Cj HoN,, (I D =L No 31
_ ; i |

:(1) Opis struktury [64]: v

Jednoskoéna. '

a= 13,22, b=5,061, c= 7,b88 2, 8 =109,22°.

Grupa przestrzenna P2;/a, Z = 2.

Czgstecski nZozone sg w stosy wzduz [010] 5 plaszczym czqsteczek:
w stosie sg do siebie réwnoleglie, a ich odstep wynosi 3,49 £ .strux-

tura jest bardzo zbliZona do struktury antracenu.
i .
(11) Geometria czasteczki [64]: '

Czasteczka Jes‘b plaska w granicach bXedéw eksperymentalnych syme-
tria w stanie swobodnym’ mmm, w krysztale T ‘

(1ii) Podatnosci krysztatu (w 10'6 cgsM):

5] -117 60,852 | 150,012 . ~40;2%2.' " wAnE
(iv) Orientacja osi IMN czasteczki (dla czqsteczki przyjete] ;]a.ko plas-
ka) [19]: i
a b | cx
L 0,4029 0,6979 0,5921 °
M -0,6852  -0,1989 0,7006
N 0,6064 -0,6886 0,3976

(v) Podatnosci czasteczki (w 1076 cgsM):

Ky, Ky Ky

- 1651 -46,2 -61,8 =-243,0 2
[a9] 47,6 -61,8 -241,6 '
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N, F

L o 50

M
HO ﬂ P
GLICYNA, CH,(NH,)+COOH, ; E

H
‘ 2"Nym
(i) Opis struktury [66]: 2

Jednoskosna.
a=5102, b=11,97, c=5,4575 8, g =111,7.
Grupa przestrzemna P2,/n, Z = 4.

{ii) Geometria czgstéczki [66] :
Atomy wegla oraz tlenmu leza w przyblizeniu w jednej plaszczyﬁnie.

(iii) Podatnosci krysztaiu:

<\X > X,l : X2 X3 ¢
E‘BJ —4093 -37’67t0908 -39137t0.08 _43)87:0913 : +48,0i’| ,1
| ~ ~ (obs)

(iv) Orientacja osi IMN czasteczki (uwzgledniono atomy wegla i tlenu,
[13])s

ax b (=
L 0,8739  -0,2903 0,3899
M 0,4127 0,0195 -0,9105
N 0,2616 0,9550 0,1390

(v) Podatvoseci czasteczki (w 10'6 cgsM)s

& Ky e
KL -36,92£0,10 -39,40%0,08 -44,6810,15
KWAS BARBITUROWY, DWUWODNY, C4H4N203-2H20, 1{2 No 33
: : Cary
: 0=C~~"7C=0
(i) Opis struktury [67]: | T

; H'N\c _~NH
Ortorombowa. : 8
a=12,74, b=6,24, ¢ = 8,80% Sy
Grupa przestrzenna Pnma, Z = 4. L {

. Czgsteczki wody i kwasu leZg na piaszczyznach zwierciadlanych (Oﬂd
struktury, tworzac sie¢ polgczong wigzaniami wodorowymi. Normalne
do ptaszczyzn obu typéw czasteczek sg réwnolegie do osi b krysz-
tatu.
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(1i) Geometria czasteczki [67]:

Czgsteczka kwasu barbiturowego jest w postaci troj-ketonowej i w
krysztale ma (w granicach biedu) symetrie mm.

(i1i) Podatnoéci krysztatu (w 10™° cgsM):

<X >

X
a

X

b

X
c

[1 2] -78 ) 6 -75 ’ 1

=90,

6

72,2

(iv) Macierz orientacji osi IMN czasteczki [67]:

a b c
L 0, 7650 (0} 0,6439
M =0,6440 0 0,7651
N 0 4l 0

(v) Podatnoéci czasteczki (w 10~° cgsM):

5 Ky Ky
f2] =75,3 -70,0 -90,6
KWAS BARBITUROWY, DWUWODNY (wersja II)
(i11) Podatnosci krysztalu (w 10~ ogsM):
. X X Xl
[12] =78,6 =73,1 -90,6 =72,2

Z HY (No 33a

e

(iv) Macierz orientacji osi IMN czasteczki kwasu barbiturowego [19]:

a b c
<L> 0,7581 0 0,6522
<M> 0,6522 0 =0, 7581
,N' 0 1 0

(v) Macierze orientacji czasteczek wody (osie 1, 2, 3) [19]:

a b c a b c
0,1642 0  --0,9864 1 -0,9540 0  0,2999
-0,9864, - 0 -0,1642 2 0,2999 0 0,9540
' 3

(0] 1
(czasteczka I)

1 (0]
(czgsteczka IT)
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=5

(vi) Podatnoéci czasteczki wody (w 10" cgsM):
Ky < K,

(e8] -13,5%2,0 -12,11,6 -13,7%1,8

B9l  -13,7%0,3 ~12,0%0j05 = —12,7%0,1

(vii) Podatnosci czasteczki kwasu barbiturowego (w 10™° cgaM):

e i Ky
09l =50, 51 ~43,15 -65,2
IMID KWASU N~-CHLOROBURSZTYNOWEGO, Cuﬁ402NCl’ ; No 34,35
IMID KWASU N-BROMOBURSZTYNOWEGO, C4H492NBI, ﬂ
HS GO
2) SRS
(1) Opis struktury [70]: L. = H2\0—-C Pk
‘ il
Krysztaty jednoskosne. 3
Struktury izomorficzne. M
a b c Gr, przestrz. 27
\
Cl wieyad . 2,49° 4169 P2,2,24 4
Br 6,48 7,25 11,86 P2,242 4

(ii) Geometria czgsteczek [70]: i
Czasteczkl sg ptaskie w granicach bzedti doswiadczalnego.

(1ii) Macierz orientacji osi IMN czgsteczki imidu-Cl (te¢ sama przyjeto
\ dla imidu-Br [70]):

a b c
L 0,3569 0,2612 -0,8967
M 0,8062 . 0,3987 0,4370
N =0,4732 0,8783 0,0675

(iv) Podatnosci krysztaiéw (w 10™° cgsM):

<K> Xa Xb X.c

c1e = 2 64,38 =59,1 =72,6 62,1
Br [2] -74,96 -69,5 -82,3  -72,3
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(v) Podatnosci czasteczek (w cgaM):
) Ky
cL [2] -64,50 -76,96
Br [2] -76,03 -87,31
EKWAS PARABANOWY, CO(NH'(::'O)z, ?
(2) 0=C—N._
(1) Opis struktury [71]: <:(3 ) 0=C—N /c=
i
: i

Jednoskosna.

: M
a = 10,685, b = 8,194, ¢ = 5,054 &, g = 92,73°.

Grupa przestrzenna P24/n,

(ii) Geometria czasteczki [71]:

2 =4,

0 (1)

No 36 -

Przez atomy mozna poprowad%ié, dwie ptaszczyzny, kazda przechodzi
przez 6 atoméw (5 atoméw piersScienia pigcioczionowego i jeden z a-

toméw tlenu).

(1ii) Podatnoéci krysztatu (w 1078 cgsM):

<x>

!

X2 : X5

¢

[2] - =47,24

-35,8  =42,7

(iv) Macierz orientacji osi IMN czgsteczki [71]:

L 0,0547" -0,8158
M ~0,9904 0,0176
N 0,1076 0,5768

(v) Podatnosci czasteczki (w 107° cgsM)s

K

Ky

[2] -28,6

=49,9

' 76,6 (obs)



KWASNY d-WINIAN AMONU, B, 0 (NE, ) -H,

KWASNY a-WINIAN POTASU, C,H,O-KeH,

(i) Opis struktury [72]:

Struktury sg ortorombowe i izo‘}norﬂczne

a b c

Gr. przesirz.

L

NH, 7,648 11,066 7,843 R |
K 7,64 10,62 7,75

(1i) Geometria czasteczki [72]:

c
/
B2;220 8%

P2g212, 4

Jak we wszystkich dotychczas:zbadeanysh strukturach winianép, réw-
niez w tych dwéch solach aiouch weglowy i atomy tlenu kazdej po-
k6wki (-CHOH-COOH) czasteczki kwasu 8q prawie piaskie. Potwierdza-~
Jg to parametry drgan termicznych: atomy tlenu grupy karbaksylowe;j
wykonujg libracje wokéZ osi 01—02 i C3-C4.

(i11) Podatmoéci krysztatéw (w 10‘5 ogaM):

<x> Xqo Xy X
N, [2] 81,85 -77,25  -84,91  -83,42
K p2] -83,07 -86,15  -84,61

=78,46

|

(iv) Macierz or:l(entac;ji osi IMN czasteczki (ta sama dla winianu-NHu' i

winiamu-K [12]).

Przyjety ukiad IMN odniesiony jest do orientacji

grup. karboksvlowych' LJlC'I-O2 L Il c4-05, M ] C1-02 i w plaszezyi-
nie g1_01_02 M7IC4-D5 i w ptaszczyznie C4-05-06, NiL,M, NIL; M

a b (4 a b (]
L. 0,3773 0,8325 0,405 L' 0,7324  -0,1655 =-0,6605
- M 0,8684  -0,4702 0,1574 M~ 0,6786 0,0988 0,7278
F 0,318 '0,2929 -0,9005 N’ 0,055 0,9808 = -0,1845

(v) Podatnoéci potowy czasteczki (w 1078 cgsM):

T Ay Ky
NE, [2] 37,47  -38,57, 46,80
Ko M2l 2850 39,04 ¢ . 4h9.06

\
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CHLOROACETAMID, CHZCl-CO-NHZ, M L
N
‘1) Opis struktury [73]: Hag-———047
Chloroacetamid ma dwie zmane odmiany Cl// \\NH2

polimorficzne; magnetyczne wiasnosci

zbadano dla tej odmiany, ktéra krystalizuje z etanolu.
Jednoskosna.

a=10,26, b=25,15, ¢ =.7,41 8, 3= 98,82°,

Grupa przestrzenna P21/c, Z =4,

(ii) Geometria czasteczki [/3]:

W tej odmianie chloroacetamidu czasteczki sa prawie plaskie.‘

)

(iii) Podatnosci krysztaiu (w 107° cgsli):

<x> Xq XZ x5 b

[zl =5i1,27 =49,01 =53,74 -51,06 -55,5° (obs)

(iv) Orientacja osi IMN czasteczki [V/3] :

a b cX
L (11 c=0) 0,3516 -0,9190 -0,1780
M (L C=0) 0,8890 0,3873 -0,2439
N 0,2788 =0,0355 0,9597

(v) Podatnoéci czasteczki (w 1070 cgsll):

K, - Ky Ky
[M2] S mel Aol eesiag
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6. WEASNOSCI OPTYCZNE

Przedmiotem naszego zainteresowania w niniejszym rozdziesle bedzie
opis wiasnosci optycznych osrodka anizotropowego, bedacego dia- lub pa-
ramagnetykiem 1 praktycznie nie przewodzacego pradu elektrycznego., Na-
8zym celem bedzie podjgcie préby wyjasnienia makroskopowych wiasnodci
krysztatu poprzez wiasnoSci czgsteczek i ich rozmieszczenie w komérce
elementarnej — podobnie jak to uczynilismy przy omawianiu diamagnetyzmu.
Wydaje sig¢, Ze obie te wasnoSci bliskie sg dzis$ zrozumienia 2z moleku-
larnego punktu widzenia. Poswigcimy teZ troche uwagi metodom pomiaru
dwéjtomnosci, poniewaz wielkos¢ ta budzi zainteresowanie ze wzgledu na
postep w interpretacji teoretycznej wpiywu temperatury na wielkos¢ dwédj
Xomnosci. Dyskusje tego problemu odXozymy jednak do rozdzialu 9.

Czytelnikowi, zainteresowanemu jeszcze innymi problemami z dziedzi-
ny optyki, warto zarekomendowaé¢ znakomite wykladg na poziomie akademic-
kim Crawforda [1] lub Feynmana [3]. (Zob. tez [2].) Bardziej zaawansowa-
ny wykiad z optykl krysztatédw mozna znalezé w monografiach Nye a [4] ' o-
raz Borna i Wolfa [5].

6.1. Fala elektromagnetyczna w osrodku anizotropowym

Rozchodzenie si¢ fali elektromagnetycznej w oérodku materialnym o-
pisuja réwnania Maxwella

8D

rot H= j+—=, (641)
= rat
3B

rot E I A — (6-2)
Bt

przy czym E i H oznaczaja odpowiednio wektory natezenia pola elek-
trycznego i magnetycznego sprzg¢zonych z ruchem fali, D Jest wektorem
indukcji elektrostatycznej, B wektorem indukcji magnetycznej, zas j
przedstawia gestosé pradu przewodzonego. Interesuja nas wnioski, wanka-
Jace z tych réwnan dla fali piaskiej danej zwiazkiem

E = B, exp {iw(t - z-1/v) }. (6.3)

ZakYadamy przy tym, Ze fala rozchodzi sig¢ w osérodku o nastepujacych
wlasnosciachs

(i) osérodek nie przewodzi pradu elektrycznego, zatem J = O,
(ii) oérodek jest dia- lub paramagnetykiem, zatem p 2 1.

W réwnaniu fali (6.3) w Jest czestoscia katowa drgan wektora E,
v Jest predkoscia fazowa fali, za$ 1 wekbtorem normalnym do powierzch-
ni okreslonej fazy. Jezeli z dowolnego punktu O wykre$limy wektor =,
ktorego koniec lezy na powierzchni okreslonej fazy m, a wige wyznacza
potozenie punktu P(xyz) lezicego na tej powierzchni (rys. 6.1), to
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Pixyz)

Jest réwnaniem powierzchni n, a ‘v okresla szybkosé jej przesuwania
si¢ w kierunku 1.
Przy tych zalozeniach réwnania Maxwella zyskuja postaé

8H
rot H'= 2 s TrotEi= - ohaesiy (6.4)
3t 3t

przy czym M Jest przenikalnoscia magnetyczna prézni. Jesli teraz sko-
rzystamy z (6.3) i rozpiszemy xrot E, to w wyniku przecalkowania PO czZan
8ie drugiego z réwnan (6.4) otrzymamy

1 ;

uog=;_1_.x_12 (6.5)
oraz
H=H, exp {i o (t - ;-yv)}.- (6.6)

Szczegbty tego rachunku mozna znalezé w monografii Nye‘a [4]. Widzimy z
(6.6), ze dla dielektryka H ma réwniez postaé fali ptaskiej. Kierunek
drgan H okre$lonej powierzchni w jest prostopadty do kierunku drgan
E, awiec H, 1 1 E tworza tréjke prawoskretna.

Jezeli bedziemy postepowaé podobnie z pierwszym z réwnan (6.4), to
otrzymamy

d |

l xg.’ (6-7)

D= -

czyli =D, 1 i H tworza réwniez tréjke prawoskretna. Wzajemna orienta-
cje wszystkich wektoréw, opisujacych stan fali elektromagnetycznej,
przedstawia w sposéb pogladowy rys. 6.2, zaczerpni¢ty z monografii Nye a,

\
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\\ o
N / u

Rys. 6.2, Przestrzenne zwigzki miedzy wektorami, opisu?acymi stan fali
elektromagnetycznej (zaczerpniete z [4]) -

Warto zauwazyé, ze w osrodku anizotropowym D i E na ogbi nie sa réwno-
legie; kat zawarty miedzy nimi oznaczylismy przez &, a jego wielkoscig
i znaczeniem fizycznym zajmiemy si¢ nieco dalej w tym rozdziale. Ponie-
waz zatozylidmy p =1, B Jjest, oczywiscie, réwnolegly do H. Zazna-
czony na rysunku wektor Poyntinga, S, okresla kierunek przepiywu stru-
mienia energii, przenoszonej przez fal¢. Przeplyw ten nastepuje z pred-
koscia u na ogét inng, niz predkosé fazowa V.
: Najwaznie jszy dla nas wniosek, jaki wynika z réwnan Maxwella dia
rozchodzenia si¢ fali elektromagnetycznej w osrodku anizotropowyn, obrzye
mamy przez potaczenie réwnai (6.5) i (6.7). Ma on nastepujaca postaé:

51 * (1x E). (6.8)
Ho V

Rozpisanie (6.8) wedlug tozsamoéci

éx(ﬁxg)zg(c

) = C(AB)

prowadzi do réwnania

D--—5 {118 -} 6.9)

oy
Do tej pory korzystaliémy jedynie z rdéwnan Maxwella i ksztatrtu fali
(6.3)5 obecnie trzeba wprowadzié do (6.9) zwiazek migdzy wektorami D
I

D= € B : (6.10)
przy czym €, oznacza bezwzgledna przenikalnos¢ dielektryczna prézni,
zas g Jjest tensorem wzglednej przenikalnosci dielektrycznej osrodka
dla czg¢stoéci optycznych, czyli tensorem tzw. optycznej przenikalnosgci
dielektrycznej. Najbardziej czytelna i dajaca sie latwo interpretowaé .
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pagtac (5.9) otrzymamy wtedy, gdy napiszemy (6.10) w ukladzie osi giéw-
nych tensora €3 mamy mianowicie

Di = €, €q Ey (6.11)
oraz
! 1

(eo €y =

l]
ve

)Ei +

1, (1 E) = 0. (6.12)
Ho v2 Mo i '

W celu zinterpretowania (6.12) wybierzmy sobie okreslony a zarazem pros-
ty kierunek 1. Niech, na przykiad, 1 = (1 0 0), czyli 1 Jest réwno-
legty do osi X1 .tensora E. Kiadac kolejno i = 1,2,3 otrzymamy trzy
réwnania dla sktadowych E

1 1
(e g4 = JE, + ——E, =0
Ol i, 92 1 u, ¥2 1 ’
1 : :
(e, € = vz)Ea = 0, (6.13)
()
1
(eo 65- )JE; = O.
21%:5
ROV

Pierwszg z tych réwnan prowadzi do wniosku, ze E1 =0 lqgicznego z fi-
zycznego punktu widzenia: nie moze istnieé¢ skladowa natezenia pola elek-
trycznego w kierunku predkosci fazowej, poniewaz fala elektromagnetycz-—
na jest falg poprzeczna. Z pozostaiych dwoéch réwnan wynika natomiast,ze

=1/2

Ve a(Ea i) iz 2,5, (6.14)

Przy kierunku padania wzdiuz 1(1 O O) mozemy wiecc mieé w krysztale
dwie fale, z ktérych jedna ma kierunek drgan réwnolegly do €5, a druga
E3s & predkosci okresSlone sa zwigzkiem (6.14). Analogiczny wynik otrzy-
mamy dla kierunku 1(0 1 0) lub 1(00 1).

Jeéli zauwazymy, ze

/2 _

(e Bo) c, (6.15)

gdzie ¢ jest predkoécia éwiatia w prézni, to zwiazki typu (6.74) de-
terminujg trzy giéwne wspdiczynniki zatamania swiatia krysztatu
; - .
e = (=) = - 0,250 (6.16)
i -
Powierzchnia zbudowana na tych wspdéiczynnikach jest elipsoida wielkoéci
i nosi nazw¢ indykatrysy. Réwnaniem tej powierzchni jest
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5N N e
nEndnbo
¥ ¥a

= 1. (617)

Warto podkreslié, ze wspbiczynnik zatamania $wiatla nie ma wiasnoée
ci tensorowych, poniewaz Dqyhy,03 ‘nie transformujg si¢ przy zmianie
uk?adu wspéirzednych zgodnie z megutami wasciwymi dla skzadowych tenso-
ra, Mimo to termin: wspbéiczynnik zatamania Swiatla w okreslonym kierun-—
ku ma sens, a jego okrefleniem zajmiemy si¢ w nastepnym rozdziale. Ten-
sorem jest natomiast E.

6.2. Indykatrysa

- Przy koncu poprzedﬁiego rozdzialu wprowadzilismy pojecie'indykatry
sy, tj. powierzchni rozpietej na trzech giéwnyeh wspbdiczynnikach zalama-
nia swiatia: nq, Dy, Dz. Wspbiezynniki te odmierzamy na trzech osiach.
ortogonalnego uktadu wspdirzednych X4X213, zwanych osiami gléwnymi in-
dykatrysy. Sa to zarazem osie gibéwne tensora wzglednej przenikalnosci
dielektrycznej osrodka E. :

WspoXczynniki zatamania swiatla sg zawsze dodatnie i - z wyjatkiem
szczegbdlnych obszardéw widma promieniowania elektromagnetycznego, gdzie
wystepuje dyspersja anomalna - sg rowniez wigksze od jednosci. W obsza-
rze dyspersji anomalnej, sprz¢zone;j z sSilng absorpcja promieniowania,
wspbdiczynnik zatamania &wiata moze osiggnaé wartosci mniejsze od'jed-
noséci. W tych przypadkach n przedstawia sie czesto za pomoca liczb ze-
spolonych. Dla rozwazan niniejszego rozdziatu te obszary widma mozna
jednak pomingé i uwazaé, Ze w osrodku o najnizszej symetrii (krysztal
ukzadu tréjskoénego) indykatrysa ma ‘ksztakt elipsoidy trdjosiowej o diu-
gosci potosi wiekszej od jednosci. Elipsoide taka przedstawiono na rys.
6.3. ha.< N2 < g » 3

ny<N, <n,

Rys. 6.5. Indykatrysa o trzech osiach rdéznych
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Potozenie dowolnego punktu P(X5X2X3) na powierzchni elipsoidy o-
kreslajqa trzy wspdirzedne x1x2x3 lub wektor wodzgcy xr. Definiujemy
diugosé [;[ Jako wartoéé wspdiczynnika zalamania Swiatia w kierunku o-
kreslonym wektorem jednostkowym l(cos 94, cO8 @5, cOS wB)

N, = . (6.,18)
Na tej podstawie mamy
X, = lale g
Korzystajgc z réwnania indykatrysy jako elipsoidy wielkosdci (6.17)
Al cae s

-2-+—2+ =1
By . B2

ub

mozemy napisaé cigg réwnosci

, 2 : 2
Sl
Fou 0y i e 1eiBy
Stad .2
4 g i
S o
T Ni i oy
ezyli '
J 1? =172
ntlez) o B

Réwnanie (6.19) okresla wartosé wspbdiczynnika zatamania éwiatla w kie-
runku 1, zadanym wzgle¢dem osi giéwnych indykatrysy. Widzimy, ze (6.19)
znacznie rézni sie¢ od wyrazenia dla wartosci T; wielkosci tensorowej,
ombéwionego w rozdz. 2

AD \
Tl = Z Ti li-, (2-44)
i S

Ze wzoru wynika, ze n nie Jjest wielkosécia tensorowa.

Kazdy centralny przekrdj indykatrysy ,3, (tj. przechodzacy przez
poczatek uktadu wspéirzednych),jest na ogbd: elipsa. Diugosci pdiosi tej
elipsy réwne s3 wspéiczynnikom zatamania swiatia Nj i N, (rys. 6.3),
okreélajacym predkosci fal o dwéch mozliwych stanach polaryzacji fali
przy zadanym kierunku 1:D|Ng 1 QliNé.;Promieniowanie o kierunku D
posrednim miedzy N1 i N2 nie moze rozchodzié si¢ w krysztale: wiagzka
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Rys. 6.4. Sktadowe wektora D fali, porusiagaceg sie w kierunku

normalnej do czola

ulega rozszczepieniu na dwie wigzki o stanach polaryzacai D,]” N,] I

D2|| NZ' poruszajgce sie w ln:-ysztale niezaleznie od siebie.

Te wiasnosci przekroju indykatrysy moszna pokazaé réwnies analitycz-
nie. W tym celu zastosujemy réwnanie (6.12) do przekroju pokazanego ‘w

rzucie pJaskim na rys. 6.4. Wektor 1° wybieramy w kierunku

;T = (cos®, sin®, 0).

Pi'zy ‘tych zalozeniach réwnanie (6.12) dla i = >1_,2 mé postaé

(e et 12)Ei+ “1éli(cos¢ By + 8in ¢ E;) = O,
v s

Q&
H‘0 0

natomiast dla i = 3
. 1 =
(80_53‘— 'u—;z)E3 =505
(o)

.Trzecie réwnanie od razu prowadzi do znanego juz nam wyniku

<

(6026)‘“

(6.21)
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Jesli do pierwszych dwéch réwnan wprowadzimy'oznaczenie

=1 >

2) =G = 02/V2 =N (6.22)

(€ u, v

to otrzymamy po przegrupowaniu wyrazéw dwa réwnania jednorodne ze wzgle-
du na Ei

(g4 = G sin® ?)E; + G sin ¢ cos 9 E, = O,

(6.23)

Gsin® cos 9 E; + (g =G cos? ¢)E2 0.

Przyrbéwnanie do zera wyznacznika charakterystycznego tego ukladu prowa-
dzi do wyrazenia

At aacosT ® o Bine @ (6.24)
Go I e, &1

Wedtug (6.19), wyrazenie (6.24) przedstawia wspdiczynnik zatamania
dwiatla w kierunku AB, lezacym w linii przecigcia piaszcezyzny jednako-
wej fazy piaszczyzna X X, (rys. 6.4). Podstawienie (6.24} do ktoérego-
kolwiek z réwnah (6.23) prowadzi do réwnosci
D D
_:l_+.—_2—=o,
sin® cos ¢
czyli
AO = OB.

Sktadowe wektora D wzdiuz linii AB sg sobie réwne, a ich zwroty sa
przeciwne; kierunek AB, pokrywajacy si¢ z jedna z osi przekroju elip-
tycznego, determinuje wigc jeden z mozliwych kierunkéw drgan wektora D.
fali o normalnej wzdiuz 1. Drugi kierunek drgan, zgodnie z (6,.21),réw-
nolegty Jjest do Xé. : '

Spoéréd réznych przekrojoéw centralnych indykatrysy szczegdlne zna-
czenie maja jej przekroje koiowe. Zaleznie od tego, czy indykatrysa
Jest elipsoidg trdjosiowa, elipsoida obrotowa, czy tez kula, ma odpo-
wiednio dwa takie przekroje, jeden lub nieskohczenie wiele. Przekréj ko-
Zowy determinuje potozenie plaszczyzny optycznej izotropii w krysztale,
tj. takiej ptaszczyzny, w ktérej w kazdym kierunku na niej lezgcym
wspbiczynnik zatamania Swiatta jest taki sam. Normalna do tej piaszczyz-
ny zwana jest osia optyczna krysztatu. Biegnaca przez krysztair fala o
normalnej 1 réwnolegtej do osi optycznej nie ulega podwdjnemu zaitama-
niu i przechodzi przez osrodek bez zmiany kierunku przy dowolnym stanie
polaryzacji. Te wiasnosci krysztaiow stanowiag podstawe ich klasyfikacji
na optycznie dwuosiowe, jednoosiowe i izotropowe, zaleznie od symetrii.

\
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4_,/’// Szczegbly tego podziatu nie beda
‘\‘-__1 tu przedmiotem blizszych rozwa--

telnika odsytamy do literatury
podanej we wstepie do tego roz-—
dziatu oraz pracy [6]. Obecnie
zajmiemy si¢ trochg¢ bardziej
szczegdiowa analiza biegu wiazki .
promieniowania spolaryzowanego w
krysztale anizotropowym. Problem
ten ma wazne znaczenie dla fi-
zycznie poprawnej interpretacji
absorpcji promieniowania, czym
bedziemy si¢ zajmowaé w rozdz. 7
Rozwazmy wtasnosci piytki
krystalicznej, przedstawionej na
rys. 6.5. Przypusémy, zZe piytka
wycigta jest z krysztaiu jedno-

skosnego, jej pilaszczyzna ma

Rys. 6.5. Dopuszczalne stany polary- ol : A
zac ji fali,przechodzgcej przez pilyt- wskazniki (001). Piytke te prze

ke (001). a,xq,n1,%3,03 oraz ¢ le- cina prostopadta ptaszczyzna 40
Zg W jednej praszezyznie T4 w ktérej leza glédwne wspdiczynni-
ki zalamania &wiatia n, i ny oraz oé‘krystalograficzna ¢, zas$ slad
jej przeciecia sie z (001) jest roéwnolegiy do osi krystalograficznej a.
Druga ptaszczyzng no wybieramy tak, ze przechodzi ona przez n2|§b ik
normalng do pxytki, X3. Pozostaie osie ukladu odniesienia X i X, 83
odpowiecnio $ladami przeciecia ng i T, % (001). Kat zawarty miedzy
ng i x; oznaczamy przez ¢ ; okresla on orientacje osi giéwnych indyka-
trysy w przekroju (010).
Przypusémy teraz, Ze na te¢ prytke pada liniowo spolaryzowana, pias-
ka fala elektromagnetyczna. Jesli 1 Jjest wektorem jednostkowym réwno-—
-léglym do D i okreSlajgcym jego orientacje w uktadzie D050z, to
sktadowe tegb wektora w powietrzu wynosza

|
| : m, : - Zan. Zainteresowanego nimi Czy-
|
|
|
|

D(Dlq, D1y, Dlz).

Takie same sg sk¥adowe D w krysztale, poniewaz wekbor indukeji elek—
trostatycznej nie doznaje nieciagtos$ci przy przejéciu przez granice mig-
dzy dwoma osrodkami. Sktadowe E w krysztale wynosza natomiast

E_(Dl/l/so 51, Dl?_/eo 82’ D15/80 85)
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(001)

Im

D /5]
54
|

4

Rys. 6.6. Orientacja wektoréw D i E fali, przechodzacej przez
plytke (OO’I') !

i sg oczywiécie inne, niz w powietrzu. Wobec tego w krysztale oba wekto-
ry zawiera;jg miedzy soba kat £ (rys. 6.6). Ten sam kat zawarty jest

niedzy kierurkiem. -x5 -8 kier_:‘u.nkiem promienia w krysztale. Z iloczynu
skalarnego DeE otrzymujemy

DiE ; (1{/€, &5)
cos&:lDI IE!= - > 175
{2 (ll/g‘—g Ei)}
i
zatem ; Z (li/ni)

(6.25)

cos & = %
/2
{ E ( i/nf)Q}

i

Znajomosé giéwnych wspdiczynnikéw zalamania swiatia oraz orientacji D
wzgleq;em n pozwala wiec obliczyé odchylenie wigzki promieniowania w
krysztale. Na ogbéZ interesuja nas proste sytuacje geometryczne, pray
czym 2z reguty bedziemy zektadaé prostopadte padanie wiazki. Jesli ponad-
to zazadamy, by w krysztale wigzka nie ulegata rozdwojeniu, to mozemy
mie¢ tylko dwie dopuszczalne orientacje wekbora D dla kazdej piytki
anizotropowej. W odniesieniu do rys. 6.6 orientacje te sa nastigpujace:

(i) 1(cos 9, 0, -sin 9), czyli D llzq. Latwo si¢. przekonaé¢ przez
obliczenie pochodnej (6.25) dla podanego 1 i przyrdéwnanie do zera, ze
maksymalne odchylenie wiazki nastapi dla kgta o = 450
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2 2
1/n5 + 1/n
cos & = Y& EhiE s (6.26)

e 1/2
(1/nf + 1/53)

Jesli przyjmiemy, dla przykiadu, ng = JsER ny = 2,0, to otrzymamy & =

= 15,6° W wigkszoéci przypadkéw kat £ nie przekracza kilku stopni 0d-~
chylenie wigzki jest jednak znaczace, a zaniedbanie tego efektu w 'spek-—
troskopii krysztatéw molekularnych prowadzi do wyraznych rozbieznosci
miedzy wynikami teorii i eksperymentu (por. rozdz. 7).

(ii) 2(0 1 0), eczyli Dl x,. W tym przypadku
cos &= 1. (6.27)

Wniosek ten ma ogbélne znaczenie: Jesli wektor D fali elektromagnetycz
nej padajacej prostopadle do prébki jest réwnolegiy do ktérejkolwier z
osi gléwb:/ch indykatrysy, to odchylenie wigzki w krysztale nie wystepu=—
el

- Odehylenie wiazki moze

A byé¢ réwnies obserwowane w pro-
stym doswiadczeniu [9] (rys,

oS ™o ;
: 6.7). Obwietlamy krysztal, na
¢ przyktad w mikroskopie polary-
5 zacy jnym, waska wiazka promie-
’ do

niowania spolaryzowanego wcho-
dzacego przez maly otworek O
g wykonany w nieprzezroczystej

folii. W poozeniu prébki 45°
zauwazymy dwa kraszki éwietlne -

0 | jednakowej jasmosci 0° i 0".
Jesli oznaczy sie ich odstep
A przez s, to widaé ze
Rys. 6.7. Przesuniecie s punktu wyjs- Gee = = 3 (6.28)
cia Q" promienia, przechodzacego przez do

piytke dwodjlomna
przy czym d jest rzeczywis-

ta grubosécig piytki. Obie wielkoéci w (6.28) sa mlerzalne, zatem & mo-
Ze by¢ wyznaczony doéwiadczalnie. Zauwazmy, ze dla wiazki biegnacej we-
dtug rysunku 6.6, diugosé drogi w krysztale wynosi nie do, lecz

da

o, (6.29)
cos & !

d =
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6.3. Dwdjtomnosé krysztaidw

Przez dwdjlomnosé piytki krystaliczne; rozumiemy réznice dwéch eks-
tremalnych wspdéiczynnikéw zatamania tej piytki, lezacych w jej piasz-
czyznie. Jest to wigc réznica miedzy polbwa 08i diugiej i krétkiej elip-
.8y, Stanowigcej centralny przekrdj indykatrysy piaszczyzng piytki., W
najprostszym przypadku, gdy piytka wycieta jest prostopadle do Jjednej z
0si gkéwnych n, , indykatrysy o osiach ny, nj, Dy dwé jZomnosé Bij
jest rbéwna

s u |
Bij = n; - nj. (6.30)

Dwéjromnosé tak zdefiniowana moze byé liczbg dodatnia lub ujemna. W do-
swiadczeniu mierzymy jednak zawsze Bij’ ktére jést liczba dodatnia. De
rozstrzygnigecia znaku Bi' stuza osobne metody opisane w monografiach,
zajmujacych sig¢ zastosowaniem mikroskopu polaryzacyjnego do badania op-
tycznych wtasnosci krysztatéw, na przykiad [7]. Z kazdego krysztatu mo-
zemy wycinaé¢ piytki, ktérych dwdjtomnosé bedzie wzrastaé od zera do pews
nej maksymalnej wartosci, okreslonej wielkosciami Dy, Dy Dye
Dwéjtomnosé jest wielkoscig fizyczna, ktéra zajmujemy sie z dwdch

wzajemnie od siebie zaleznych powodow:

(i) Istnieja stosunkowo nieskomplikowane metody doéwiadczalne, po-
zwalajace mierzyCé rédzuice wspodiczynnikéw zatamania éwiatla z doktadnos-—
cia o wiele przewyzszajaca dokiadnosé konwencjonalnych metod pomiaru sa-
mego wspoéiczynnika zalamania.

(ii) Wskutek duzej czutoici metod pomiaru B mozliwe jest dokZad-
niejsze rozpoznanie wiasnosci optycznych osrodka, na przyktad udziazu !
dwojtomnosci kotowej w ogdlnej eliptycznej dwdjiomnosSci badanej prytki.
0 dwéjtomnosci kolowej méwimy whedy, gdy promien padajacy w okreslonym
kierunku i spolaryzowany kolowo lewoskretnie rozchodzi sie¢ w krysztale
z predkoécig inng, niz promien padajacy w tym samym kierunku, lecz Spo-
laryzowany kotowo prawoskre¢tnie. Co jednak wazniejsze, mozliwe jest ba-
danie wpiywu czynnikéw zewnetrznych na wiasnosci optyczne, takich Jak
temperatura lub clénienle.

Wielkoscia pokrewnq dwéjlomnoéci Jjest réznica drog optycéhych

Tyj=mn;4- ny d = B, d. | (6.31)

Wiazka promicniowania padajaca wzdiuz €, 1 o wektorze E réwnolegkym

do kierunku €, Dporusza si¢ z predkoscig vy inng, niz analogiczna

wigzka z E]}ej. Jesli obie wchodza jednoczesnie do kryszbatu, to z bie-
giem czasu wytwarza si¢ wzgledne opéznienie jednej wzgledem drugiej
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A otd o
'r=____—_._(n _n_)=
Vl VJ- (6} G J
Sille 6,52
;"’c ij o ( .3 )

Z opbznieniem zwigzana jest
réznica faz, z jaka obie wiaz-
ki opuszczajg krysztal. Ponie-
waz fala ptaska wytwarza w
punkcie x rdznice faz

(2 nx)/ N wzgledem poczatku u-
k¥adu wspoirzednych O, mamy

1 4 27
o= 21\2d(-}€ -—}g) = 7\—; Bijd
(6.33)
gdzie A, dJest dtugoscia fali
b : w prézri. Z tych definicji be-
pai 4 5 . - d..ziemy korzystali w dalszym
ciagu.
/’\ Najprosciej, choé niezbyt
/W\/\___ dokladnie, mozna mierzyé Bij
metodg interferencyjna przed-—
stawiong na rys. 6.8a.Na uktad

. zXozony z dwéch skrzyzowanych
Rys. 6.8. Interferencyjna metoda po- . . =
miaru dwojtomnoici prytki: (a) za po- filtréw polaryzacyjnych, pola
Srednictwen pomiaru odlegiosci praz-— ryzatora P, analizatora A o-

kéw interferencyjnych (b) raz z piybki dwéjtomnej n,,n.
umieszczonej prostopadle do wigzki promieniowania i w pgloZeniu 450
wzgledem kierunku gtéwnego P, pada promieniowanie w przyblizeniu mono-
chromatyczne o dtugosci fali A, dajace] si¢ zmieniaé. W zakresie M od
powiednio dobranym do gruboici prébki d i dwéjrommosci B, ; dwie wiaz
ki, opdézniane w rézny sposéb w piytce, beda z soba interferowaé po spro-
wadzeniu ich przez A do jednakowego kierunku drgan. W wyniku interfe-
rencji natezenie wigzki I opuszczajacej A Jjest periodyczng funkcja A
(rys. 6.8b). Maksima w natezeniu wigzki wystepuja dla tych drugodci fa-
1i A, dIla ktorych réznica diugosci drég optycznych nd. jest parzysta
wieiokrotnoscig porowy diugosci fali

nid—njdzm)\, e 28

Stad kole jnym maksimom odpowiadaja liczby falowe Vm

~

Vo = _(H;_Ili_@_ g (6.34)
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Znajomos¢ bezwzglednej wartosci m, czyli rzedu interferencji, nie jest
tu konieczna, poniewaz wykres 3 (m) Jest linia prosta niezaleznie od
tego, od jakiej wartosci m zaczniemy. Warto jednak zwrécié uwage, ze
obecnosé siln&ch pasm absorpcyjnych w krysztale w badanym przedziale
liczb falowych moZe spowodowaé odstepstwo niektérych punkbéw Y od
tej prostej, poniewaz wspéiczynnik zatamania Swiatia n i wspédiczynnik
absorpcji k 83 wielkosciami sprzezonymi.

Czesto si¢ zdarza, ze dwdjiom—
no$é pirytki jest zbyt mata lub zbyt
, duza aby mozna byio wykonaé¢ bezpo-
srednie pomiary. W takim prazypadku
pomocne jest sklejenie badanej plyt-;
ki z inng, dodatkowa, w potoZeniu ad
dytywnym lub substrakbywnym.Pierwszy
sposéb opisany zostat przez Wardzyh-
skiego [10] w zwiazku z pomiarami ma-
tej dwdjromnosci, indukowanej w kry-

Rys. 6.9. Kom gensacyjng metoda  Sztaiach pod wplywem naprezen me-—

zmnie jszania dwojtomnosci piytki  chanicznych. Drugi sposéb, przedsta-—
: : wiony w [11], pokazany jest schema-
tycznie na rys. 6.9. Badana piytka o lgruboéci d.s jest sklejona z piyt-
kg pomocnicza o grubosci 4., wycieta na przyklad z kalcytu. Skleja sige
w taki sposbéb, by kierunki gléwne obu piytek po]cr:ywaly si¢ z sobg,a nad
to by kierunek szybszego promienia w jednym krysztale przypadal na kie-—
runek wolniejszego promienia w drugim. Uzycie kalcytu jako piytki pomoe- -
niczej ma te zalete, ze wspotczynniki zatamania Swiatla tego krysztazu
stabo zaleza od temperatury [12]

L \/

wy = 1,6544 + 0,19-107 t, - (6.35)
e, = 1,4846 + 1,18+1077 ,
dla diugosci fali = 656,3 nm i temperatury +t °C. Wspbiczynniki za-

tamania pzytki uzyskanea przez wykorzystanie naturalnych piaszczyzn Iup-
liwoéci kalcytu sg. “’t i et

2 o=l
e = cos2 Q. B:.n2 P i : (6.36)

€% Vs

gdzie © = 45, 38° Jest katem miedzy trzykrotna osig symetrii i ptasz-
czyzng kupliwosci krysztatu. Wobec tego wspdiczynnik zatamania Swiatia
kalcytu w pllszczyz‘nie lupl:.wpsc:. wynosi

£f = 1,5638 + 0,762:107 t. (6.37)
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ﬁﬁgﬁlomnoéé Bu uktadu ztozonego z dwéch piytek jest rédwna

(gt tn gl e =Rt esq g in s di)
B Cl oSy el i 9 : (6.38)
dc + dS

awiasem méwige, grubosé prytki kaleytu mozemy tak dobraé, by dwbjiom-
ﬂoéé uktadu zniknera. Obie ptytki sklejone zachowuja sie wéwczas Jak
prébka materiatu izotropowego. Kompensacja dwédjiomnodci nastapi przy
grubokei kaleytu dJ réwnej

4y = ——=% a_. (6.39)

Znacznie doskonalsza, a
a Jednoczesnie ogbdlniejsza meto-
de pomiaru dwéjtomnosci krysz-—
tatéw opisal Verreault [1%].
Polega ona na analizie stanu
polaryzac ji promieniowania roz
praszenego przez tzw. centra

N i >§ rozpraszania, ktérymi moga byé
: albo naturalne niedoskonaXosci
struktury krysztaiu o dymen-
b sjach atomowych, albo sztucz-~
a nie wytworzone niejednorodnoS-

ci powierzchni, na prazykiad
przez JjeJj zmatowienie. Metoda
ta pozwala na pomiar ogdélnej
dwéjzomnosci krysztaitu, sklada
Jacej sig z dwdjtomnokci linio
wej i kolowej. W celu lepszego
Jed zrozumienia przedstawimy
wpierw reprezentacje standw po-
laryzac ji promieniowania za po-
moca kuli Poincare ‘go, opiera-
Jjac ten opis na cytowanej juz
pracy Verreaulta. ;

Rys. 6.10. Ogdélny stan polary-

zacji fali (a) i jego przedste

wienie za pomocg kuli Poincare
(b) (oprac. wg [13L).
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0gbélny stan polaryzacji fali elektromagnetyczne] przedstawia elip-
sa, opisywana w ptaszczyznie XY przez wektor D w kierunku przeciw-
nym (+) lub zgodnym (=) z ruchem wskazéwek na tarczy zegara dla obserwa-
tora, patrzacego w kierunku zrédia swiatta (rys. 6.10a). Kierunkiem roz-
chodzenia si¢ fali jest o$ 7, prostopadia do ptaszczyzny rysunku. 05
diuga elipsy zawiera z X kgt ¢, a eliptycznosé fali charakteryzuje
parametr w taki, z2e tg w = b/a. Dla ®» = 0 mamy fal¢ spolaryzowang
liniowo, dla w = 45° — kokowo.

Ten stan fali mozZna przedstawié przez punkt P na powierzchni ku-
1i o promieniu jednostkowym, zwanej kula Poincare ‘go (rys. 6.10b). Kat
2 ¢ jest "diugoscia geograficzng", a kat 2w "szerokoscia geograficz-
ng" punktu. Stany o polaryzacji liniowej przedstawiajg punkty leZace na
- péwniku (w = 0); osiom X i Y odpowiadaja dwa przeciwlegle punkty réw-
nika, Kazde dwa stany, reprezentowane na kuli dwoma punktami przeciwleg-
iymi, zwane sg stamami ortogonalnymi. Pozostaiym dwém stanom skrajnym,
w = £ n/4, odpowiada fala spolaryzowana koiowo lewo- i prawoskretnie,
przedstawiona biegunami odpowiednio L i R kuli, Pozostalym punktom na
powierzchni kuli odpowiadajg stany o pola.ryzacal eliptyczne (komb:.na-
cja polaryzacji koxowej i liniowej).

Orientacje dowolnej piytki krystalicznej dwéjiomnej mozemy réwniez
przedstawié jednoznacznie dwoma punktami na kuli Poincare ‘go (z wygjat-
kiem polaryzacji czysto koiowej), M i N. Fala Spolaryzowana zgodnie ze
stanem M (lub N) przechodzi przez piytke bez zmian. Jesli krysztak
nie ébsorbu,je promieniowania, to stany te sq ortogonalne, a wigc lezg
na $rednicy kuli MN (méwi sig o piytce MN). Kazda fala o innym stanie
. polaryzacji, na przykiad P na rys. 6.11a, ulega przez krysztat rozio-
zeniu na stany M i N. o

Stan Q fali opuszczajacej piytke otrzymam;y w ten sposéb ze obra=
camy kule woké:x MN jako osi obrotu orkat A réwny rdznicy fazy mig-
dzy stanem M i Nj obrdét kuli wykonuje si¢ zgodnie z ruchem wskazdwek
na tarczy zegara,jezeli dla obserwatora stojacego na zewngbtrz blizZszy
jest ten stan na powierzchni kuli, ktéremu odpowiada szybszy promieh w
krysztale (tu M). Jeéli piytka ma tylko liniows dwdéjtomnosé, a miedzy
stanami X (kierunek drgan szybszego promienia) i Y (kierunek drgan
wolnie jszego promienia) wystepuje réznica faz &, to osia obrotu jest
XY, a stan wigzki opuszczajacej krysztat reprezentuje punkt Q. w dru-
gim skrajnym przypadku, gdy piytka ma dwdjiomnosé czysto koiowa, obraca-
my kule¢ Poincare 'go ‘wok6x osi IR o kat 29'. przy czym p' jest rbdznica
faz wytwarzang przez plytke. Przepuszczone promieniowanie 'Q" ma t¢ sa-
mg eliptycznos¢ co P, lecz o0$ diuzsza elipsy ulegla obrotowi o kgt p ¢
Jak widzimy, promieniowanie przepuszczone przez piytke o dwdjlommosdci



IRys. 6.11. Przedstawienie réznych ty
dwdjromnosci piytki krystalicznej (a

i

zasada addytywnosci (b)(oprac. wg 13 )
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liniowej moze byé spolaryzowa-
ne liniowo lub eliptycznie -
zalezy to zardéwno od stanu fa-
1li na wejéciu, jak i od wizas-
nosci samej prytki,

Ogblna dwdjiomnosé (elip-
tyczna) piytki wynika z jedno-
czesnej obecnosci dwéjiomnos-
ci liniowej i kolowej. Jesli
piytka jest bardzo cienka, to
wytwarzane przez nia rdzZnice
faz, wynoszgce odpowiednio A’
6° i 2p°, moga byé dodawane
Jako wektory, odpowiadajace
nieskonczenie matym obrotom
kuli Poincare ‘go woké: odpo-
wiednich osi obrotu (rys. 6.
11b). Dzielac przez grubosé
piytki d, otrzymamy zwiazek
miedzy réznicami faz na jed-—
nostke¢ grubosci piytki

é_ = él-i- 20P. (6.40)

Ogbdlna dwdjromnosé piytki o
grubosci d bedzie zatem roéw-
na

B = :3 {52 + (29)2}?/2;
e (6.41)

przy czym KO oznacza diu-
gos$¢ fali promieniowania-w
prézni., Zastosowanie kuli
Poincare ‘go pozwala wiec w
prosty sposéb przewidzied
stan polaryzacji promieniowa-
nia opuszczajacego probke lub

analizowaé Jjej witasnosci wtedy, gdy stany polaryzacji obu wigzek sg zna-

ne'.

\

Przejdzmy teraz do rozwazenia polaryzacji promieniowania, spowodo-—

wanej przez rozpraszanie na niejednorodmos$ciach struktuvy krysztatu i
na sztucznie wytworzonych centrach rozpraszania. W przeciwienstwie do
gazu lub cieczy, oczywiscie pozbawionych zawiesiny, idealny krysztaxz
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5| e
T .

Rys. 6.12, Metoda Verreaulta pomiaru dwbjtomnoéci (oprac, wg [13])

nie rozprasza promieniowania, jesli pominiemy niesprezyste rozpraszanie
typu Brilicuina lub Ramana. Elastyczne rozpraszanie wiagzki promieniowé-
nia zachodzi natomiast w krysztale rzeczywistym, przy czym zjawisko to
wystepuje w obszarach prébki wykazujacych jakied odstepstwa od perio-
dycznoscl, na przyktad na obszarach niedoakonalej stechiometrii, na ob-
eych wtrgtach, dyslokacjaeh, czy tez na domenach o nabturze ferroelek—
trycznej lub magnetycznej. Jesli liniowe rozmiary, a, takich centréw sa
mniejsze od diugosci fali, rozpraszanie sprezyste jest typu Rayleighal
Analiza stanu polaryzacjl promieniowania rozpraszanego na takich cen-—
trach prowadzi do uzyskenia informacji o ich naturze, rozmiarach i roz-
ktadzie przestrzennym. Nie bedziemy tu dyskutowali szerzej tych zagad=
nien, odsyiajac zainteregowanego Czytelnikh do oryginalnej pracy Verre-
aulta. Zajmiemy si¢ natomiast drugim przypadkiem, gdy struktura kryszta-
&u jeat mosliwie doskonaia, a cenbtra rozpraszania maja rozmiary poréwny-
walne 2z dtugoscia fali promieniowania. Centra tak;e mozna wytworzyé
sztucznie, na przykiad przez delikatne zmatowienie teJ Sciany krysztaiu
przez ktéra promieniowanie rozproszone opuszcza jego wnetrze. W takim
przypadku eksperyment daje informacje o dwdjromnosdei krysztaiu. Badana
probka ma ksztalt prostopadloscianu o Acianie czolowej prostopadiej do
spolaryzowanej i monoéhromatycznej wigzki padajacej, natomiast sciana

- obserwacyjna zeszlifowana jest tak, Ze zawiera niewielki kat z wigzka
padajacq (rys. 6.12). Po zmniejszeniu niejednorodnoici powierzchni do
rozmiardéwirzedu diugosci fali przez szlifowanie odpowiednio drobnoziar-
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nistym: proszkiem, krysztal umieszcza si¢ w wiazce promieniowania w tai&:i,
8posdb, by cala powierzchnia matowa byka réwnomiernie oséwietlona (ryé.

6.,12). Centra rozpraszajace sa analizatorami stanu fazowego wigzek, do-
chodzgacych do nich po przebyciu rosnacej drogi =z w krysztale. Sytua-

cja jest tu analogiczna do klina wycigetego z maberiaiu anizotropowego i
umieszezonego migdzy skrzyzowanymi nikolami w poozeniu 45°, Klin o kg-
cie ostrza a wybtwarza wéwczas uklad prazkéw interferencyjaych, ktdérych
odstep /\k zwigzany Jjest nastepujaca relacja z odstepem prazkéw /A w

interesujgcej nas konfiguracji rozpraszania

/\-k =/\- ctg a. (6042)

Zgktadamy przy tym, Ze klin i kostka rozpraszajaca s wycigte z tego sa-
mego materiaiu i w tej same] orientacji wzgledem kierunku rozchodzenia
sie¢ wigzki w krysztale., Obserwator patrzacy na zmatowang powierzchnie
(ewentualnie przez mikroskop) z kierunku © widzi uklad prazkéw inter-
ferencyjnych (por. rys. 6.12). ® Jest katem rozpraszania, zad ¢ ozna-
cza azymut ptaszczyzny drgan promienia biegnacego w krysztale wzgledem
ptaszczyzny T, (wigzka wychodzgca z krysztatu w ogdle nas nie intereswu
je). Najprostsza geometria jest 6 = 90°: skiadowa E @ ptaszczyZnie
™, jest wéwczas réwna zeru dla kazdej wartosci ¢ . W tym szczegdlnym
przypadku kierunek propagacji i kierunek drgah w wisgzce rozproszone] le-
%9 W ptaszczyznie prostopadiej do wiazki przechodzgcej przez krysztak.
Stany polaryzacji wiazki rozproszonej moga wigc byé opisane dwoma orto-
gonalnymi stanami fjiat Sa' wjawnianymi przez analizator A umieszczony
prostopadle do %, (rys. 6.12).

Ograniczajac si¢ do krysztaiu z liniowsg dwdjlomnoscia oraz fali pa
dajacej spolaryzowanej liniowo i liniowych polaroidéw, moZemy opisaé
‘geometri¢ rozproszenia za pomoca rysunku 6.13. Niech 2z bedzie osig
réwnolegta do kierunku propagacji fali w krysztale tak, ¢e wigzka o sta
nie polaryzacji P, wchodzi do piytki XY w punkcie z =0 31‘301'. rys.
6.12). Rozktad stanbéw polaryzacyjnych wzdiuz ‘z Jest taki, %6 reprezexn
tujacy je punkt P zatacza na kuli Poincare ‘go koo wokéxr X -w miare
wzrostu z. RozkZad nateZer w wigzce rozproszonej opisuje funkcja

. I=kI, sin® (3 PS),
gizie PS Jjest duzym kukiem zgczacym P(z) z S, Natezenie wiazki jest
wobec tego periodyczna funkcja 2z, przy czym minima pojawiaja sie wt;edy
gdy P(z) pokrywa si¢ z punktem E, a maksima, gdy ‘P(z) przypada na F,
Odstep tych prazkéw wynosi w ogdlnym przypadku : ;
Wiase
A= %": 2 u{(a)a + (2p_)2}_ .  6.43)

r
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Ciemne prazki poZzozone sa w mlegs-
cach

z; = (? + g—;)/\, Jr=U O AR
(6o44)

W przypadku takim jak na rysunku
6eil5l POE = 0, zatem pomiar poio-
Zzenia prazkow, Z;) oraz grubosci
plytki, d, pozwala na wyznaczenie
liniowej dwéjiomnosci, 8. Postugu-
jac sie ptytka éwieréfalowa mozna
wyznaczyé znak dwdjiomnosci na
podstawie kierunku przesuniegcia
uktadu prazkéw. Metoda ta moze

byé zastosowana w zakresie dwdj-

Rys. 6.1%. Geometria rozpraszania

promieniowania spolaryzowanego tomnosci
przez centra o maktych rozmlarach. -6
(oprac. wg [13]) 1070 < ny - ny <0,2

z wzglednym biedem nie przekraczajacym 1 procent., Na przykiad zmierzone
przez Verreaulta dwéjiomnosci kwarcu wynosza

X 52
(n =n )t (8 990, 05) 10
€
pt = (18,76%0,05) c/mm, ; (6.45)

przy czym A = 632,8 nm, t = 27 08

Przypadki innych katéw obserwacji, standw polaryzacji i orientacji
wigzki padajacej dyskutowane sSg szerzej w cytowanej pracy.

Metoda pomiaru dwéjiomnosci liniowej, réwnowazna pod wzgledem czu-—
Zoséci metodzie Verreaulta a jednoczesnie prostsza w zastiosowaniu, opisa=~
na zostata w pracy [14]. Jest ona szczegblnie przydatna do badania wpiy-
wu temperatury na dwbjiomnos$¢ cienkich pX¥ytek krystalicznych, ktére jed-
nak musza byé pod wzgledem optycznym bardzo dobrej jakosci. Nie mozna
uzyé na przyktad ptytek tupanych, takze piytki polerowane nie maja na
0g6t wymaganej gtadkosci powierzchni. Najbardziej odpowiednie sa tu
cienkie piytki o naturalnych &cianach, jekie doéé czesto moéhg otrzymaé
ze zwiazkow organicznych przez powolnag ich sublimacje¢. Przy uzyciu mi-
kroskopu mozna badaé p¥ytki bardzo malyeh rozmiardw,

Metoda ta opiera si¢ na zastosowaniu kompensatora éwieréfaldwkowe-—
g0 Senarmonta, a jej schemat przedstawiony jest na rys. 6.14. W przybli=-
zeniu monochromatyczna i réwnolegia wiazka promieniowania lampy L, na

przyktad linia iampy rteciowej izolowana przez filtr interferencyjny 1y
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polaryzowana jest liniowo przez polaryzator P, Piytka krystaliczna (¢

znajduje sie w poZozeniu 45° wzgledem kierunku przepuszczania P. Ponie-
waz wigzka opuszczajgca krysztat jest na ogbdt spolaryzowana eliptycznie,
éwieréfaléwka Q siuzy do sprowadzania stanu polaryzacji do liniowego.

A HHEH

L F P c a A PC EM

Rys. 6.14. Kompensacyjna metoda pomiaru dwéjtomnosci (zaczerp. z [14])

Azymut kierunku drgen promienia, opuszczajacego plytke, mierzony
Jest katem obrotu analizatora A, potrzebnym do wygaszenia wiazki.Wskaz
nikiem wygaszenia jest fotokomérka PC, poiaczona z elektrometrem EM,
W celu uzyskania mozliwie duzej dokkadno$ci pomiaréw, réznica drég w
piytce éwieréfaldwkowej musi byé doktadnie réwna 1/4 diugosci fali uzy-
tego promieniowania, Z tego powodu takg piytke najlepiej przygotowaé we
wiasnym zakresie, na przykiad z krysztaiu gipsu.

Réznica drég (6.31) moze byé przedstawiona w postaci

T =nA+ k) (6-4‘6)

gdzie m Jjest liczba catkowity, zas§ k ukamkiem O < k < 1. Powyzsza
metoda pozwala mierzy¢ sktadowg réznicy drég kA 2z dokladnoicia do
1,5 nm. Skiadowa m A musi byé wyznaczona osSobno, na przyktad za pomo-=
cg mikroskopu interferencyjno-polaryzacyjnego. Poniéwaz btad w wyznacze-
‘niu rézniey drbdg optycznych jest bardzo matry, kohcowa dokiadnosé znajo-—
mo$ci dwédjiomnosci wyznacza btad, jaki popeinia sie w pomiarze grubosci
piytki.

. 6.4, Zwigzek miedzy wiasnosciami optycznjmi
; i polaryzowalnoécia czasteczek

Wiasnosci czgsteczki w krysztale zaleza od energii jej oddziatywan
z sSgsiadami, przy czym najwigkszy udzial w tej emergii maja czgsteczki
najblizsze. To najblizsze otoczenie decyduje o réznicy miedzy sytuacja
czasteczki w krysztale i w stanie swobodnym, a tym samym decyduje o rdz-
nicy w odpowiadajacych jej parametrach. Z kolei wiasnosci optyczne, der
dukowane z oddziatywan mie¢dzy fala elektromagnetyczng a ciaiem staiym,
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zalezne sg od gestosSci i symetrii rozkladu tzw. elektrondéw dyspersyj-
nych,’do ktérych nalezy grupa majsiabiej zwiazanych z czasteczka elektro-
néw. Te wiadnie elektrony sa najbardziej podatne na zaburzajacy wpiyw
otoczenia,

Moze sig¢ réwniez zdarzyé, ze wkasnoseci tej samej czgsteczki w
dwéch réznyeh fazach krystalicznych, stanowigcych na przyktad dwie ode
" miany polimorficzne tej samej éubstancji, okaza si¢ rbdzne. JesSli si¢ za-
Xo0zy, zZe konfiguracja samej czgsteczki i typ oddziaiywan w obu odmia-
nach polimorficznych sg takie same, to chce sie widzieé, Ze tak samo
skierowane pole elektryczne o identycznym natezeniu wywolujevw obu czas-
teczkach jednakowe efekty, a wigec Ze polaryzowalnosé czasteczki otrzyma-
na z obu struktur jesﬁ jed.nékowa° Wystepujace niekiedy w talkich przypads
kach réznice trzeba wiec zlozyé na karb albo niedoskonatej definicji
stalych molekularnych, albo niedoskonatosci teorii opisujace; zwigzek
mig¢dzy makroskopowymi wiasnosciami krysztaiu 1 mikroskopowymi wiasnog=—
ciaml czasteczki (model gazu zorientowanego). W praktyce dalecy jeszcze
jesteémy od idealnego rezultatu. Sytuacje dodatkowo komplikuje fakt, Ze
struktura nie jest czyms statycznym - czasteczki znajduja sie w sfanie
nieustannego ruchu termicznego o amplitudzie drgan anizotropowej i za-
ieZnej od temperatury, co nie moze hy¢ bez wpiywu na ich = przynajmniej
niektére - wiasnoéci. /

Mikroskopowym odpowiednikiem wspbiczynnika zatamania Swiatia jest
polaryzowalnos¢ czgsteczki « . Polaryzowalnosé jest odpowiedzialna za
optyczne wiasnosci ciata statego w tym sensie, ze gdybysmy mogli mieé
do czynienia z osrodkiem zbudowanym z czasteczek dla ktérych a = 0, to
okazato by sig, ze wspéiczynnik zalamania éwiatZa tego osrodka n = 1,
w catym zakresie widma fal elektromagnetycznych, a wigc tak, jak dla
prézni. \

Przez polaryzowalnosé rozumiemy podatnoéé czasteczki na wpiyw pola
elektrycznego. Wptyw tego pola mierzymy wielkoscia indukowanego w czas—
teczce momentu dipolowego By

s, (6e47)

(133

B T

przy czym F oznacza natgzenie pola w miejscu, gdzie zna jduje sierroz—
wazana czgsteczka, a wigc we wnetrzu cieczy cay kryszfalu. Zwykle przyj=
muje sig, Ze czgsteczka ma rozmiary zaniedbywalnie mae lub, inaczej mé-
wigc, natezenie pola mozna uwazaé za state w catej objetosci, zajmowa-
nej przez jedna czasteczke. F jest wiec tzw. polem lokalnym. Mozna po-
wiedzieé, 2ze caia trudnosé mikroskopowego opisu wiasnosci krysztaiu
sprowadza sig¢ do trudnosci znalezienia wZasciwego wyrazenia na nateze-
nie pola lokalnego F. Warto réwniez zauwazyé, ze zwigzek (6.47)s2uszny
Jest ' przy niezbyt duzych natezeniach pola F. W bardzo ‘silnych palach zewnstrznydh wytwerze-
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nych na przykiad przez wspéiczesne Zrédia promieniowania (masery i lases
ry) wystepuja zjawiska nieliniowe powodujace, Ze &y zaleZy réwn:;ez od
wyzszych poteg F. ; : ,

Prze jdziemy obecnie do przedstawienia dwéch pogladéw na pole loka]é-
ne lub, co jest réwnowazne, dwéch typéw zwigzkdéw miedzy n i a.

Punktem wyjécia w pierwszym z nich jest réwnanie Imrentz-a-.—Lorenza,e
uogdlnione przez Rousseta na przypadek osrodke anizotropowego [15]. Jed-
nak wobec daleko idacych uproszczez’i, skladowym % nle zawsze moina ‘
przypisa¢ sens fizyczny. Innyml slowy, teoria ta j;mowad.zi do polaryzo-
~walnoéci czgsteczek, ktore nalezy t;?aktowaé raczej Jjako wielkosci ra=—
chunkowe, & nie jako stale molekularne, Obarczone 34 ome niekiedy duzym
" biedem, lecz przydatne do interpretacji réinych efelkbdéwi Rozumowanie
prowadzace do tych wynikéw jest, po krédtee s nastepujace.

Przyjmiemy, jek to si¢ zwykle czyni, iz I moZna zapisaé¢ jako su~
m¢ trzech udziaXéw: zewnegtrznego (przyiozonego) pola o natezeniu E, po-
la spowodowanego dziataniem Zadunkdéw polaryzacyjnych pojawiajacych sie |
na powierzchni kuli, otaczajacej miejsce w kryszbale, z ktbérego usunie—
to rozwazang czgsteczke E_ oraz pola, wynikajacego z ,oddz;alywaﬁ roz-

' wazane] czasteczki z wszystkimi ja otaczajacymi Es

F=58 +8 + E

=p = (6.48)

Pole E_ obliczyl po raz pierwszy Lorentz dla oérodka izotropowego

E, =

518 ®, (6.49)
0

przy czym P jest wektorem polaryzacji dielektryka, zdefiniowanym jako
elektryczny moment dipolowy jednostki objetosci. Szczegbdiy rozwazan,pro-
wadzace do (6.49), mozna znalezé w podreczniku [2] lub w monografii [8],
Jesli pominie sieg _E_B, co mozna uczynié¢ dla ciata statego o wysokilej sy-
metrii (symetria powoduje wyéredniowanie do zera wplywu czasteczek ota—
czajacych kulista wneke) lub cieczy, czy gazu (podobne éredniowanie spo-
wodowane jest przez ruch termiczny), to pole F mozemy zapisaé w posta-
ci :

E=E P. | (6.50)

- 3 &

Podstawienie (6.50) do (6.47) i skorzystanie ze zwiazku

P= eo(_e - '])E
prowadzi po kilku przeksztaiceniach do polaryzacji dielektryka P
_E:N_LL=N(1+ 651) <a> E, (6.51)
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‘,ﬁi'zy czym N Jest liczbé czgsteczek w jednostce objetosci. Stad otrzy-
;nuJemy gnene wyrazenie Clausiusa-Mossotti‘ego na polaryzacje 1 mola sub-
stanc Ji

Pm =

ee AN o1 N°<a>, (6.52)
E kv it S £ . :
gdzie M jest masa czgsteczkowa substancji, p jej gestoscig, <g> bred
nig polaryzowalnoscig czgsteczek, z:as No liczbg Avogadra. Zwigzek (6.
51) stosuje sie &cisle do gazéw, ktbrych czgsteczkl nie majg momentu di
‘polowego. Moze byt réwniei stoaowan%y do cieczy i ciaza statego z tymi
samymi ograniczeniami, poniewas Pm; nie zalezy.od stanu skupienia sub-
stancji. :

-Dotychezasowe wywody oparte byly na réwnaniach elektrbstatyki di-
elekbrykéw, Nastqph;y krok polega na przejsciu od 'polaryzac;ji- molowe j Pm
do refrakcji molowej B‘n' przez wprowadzenie relacji Maxzwella

&&= (6.53)
‘co oznacza przejsécle od zakresu malych czgstosci (O do 100 kHz) do czes
tosci odpowiadajaeych fali elektromagnetyeznej (4-8)+10'% s~ dla zakre
su promieniowania widzialnego). Relacja Maxwella (przy p ~1) speinio-
na jest jedymie dla takich substancji, ktérych czasteczki pozbawione sa
trwatego momentu dipolowego. Przy tych ograniczeniach otrzymujemy réwns
nie znane pod nazwq Lorentza-Lorenza

Bl e seeell e > (6654)

Poniewaz M/p = V. jest objetoscia jednego mola, zatem I\IO/Vm = N jest

m
liczbg czasteczek w jednostce objetosci. Wobec tego
- .
2-5=-2, (6.55)
Ve Vi

przy czym 7 ozmacza liczbe czasteczek w komérce elementarnej o obje-
toscl Vy. Jesli érednia polaryzowalnosé komérki elementarnej oznaczymy
przez <I' >, to

A <Pp>=2<g> (6.56)
oraz :
n2-1= s T e B e (6.57)
2+2 3, VW el T
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: : Uogblnienie Rousseta A[’15"] polega na zasteosowaniu (6.57) do oéradka{
:a.nizotropowego w taki sposéb, ze piszemy to réwnanie oSobno dla kazdego
z kierunkéw gléwnych indykatrysy i

) l

sl
- = _Ir' 6.8

n12+2 3{e vl {6:08]

KaZdemu z kierunkéw giéwnych inquatrysy Jest wiec przyporzadkowana Je
na z gtbébwnych skradowych tensora poiaryzowalnoéoi komérki elementarnej,
Zwigzek miedzy [ i & otrzymamy przez zastosowanie modelu gazu zorien-
towanego dla wielkosci  tensorowych Tpor. T0zdz. 4).

% : = :
I=-g Zg.‘m £ ol gt  (6.59)

| =1

gdzie a Jest macierzq transformacji I do ukZadu osi Qéwnych, c o-l
pisuje orientac;}e wzgledem abe* osi gtéwnych &,. przyjmowanych na:]-

' czesciej réwnolegle do osi symetrii czgsteczki IMN, a sumowanie 'rozcig-f
ga si¢ na wszystkie czasteczki symetrycznie zalezne. Jesli w komérce e-'F
lementarnej istnieja np. dwa zbiory czgsteczek symetrycznie wzgledem
siebie niezalesnych, to w (6.59) pojawia si¢ dwie niezalezne od siebie
sumy tego samego typu.

Réwnanie (6.58) oparte jest na zatozeniu, %e pole lokalne ma pos-—
taé ; ’

4. =2
Fl = 3 (ni + 2)Ei" (5.60)

ktéra mozna otrzymaé z (6,51)., Widzimy tu negatywny skutek zastosowa-
nych przyblizen; pole (6.60) jest w rezultacie polem zaleinym od czynni-
kéw makroskopowych. Kierunki i diugosci sktadowych F zdeterminowane
53 przez Kierunki i dtugosci osi giéwnych E. Struktura mi]a:oakopowa
krysztatu wystepuje jedynie w polaryzowalunosci komérki elementarnej
(6.59), natomiast na pole lokalne ma wpiyw bardzo posredni.

Problem osi gitéwnych- a przedstawia si¢ podobnie jak w diamagne=.
" tyzmie. Dla czgsteczek dostatecznie symetryczn;zéh, tj. nalezacych do
grupy punktowej o symetrii co najmniej C?_h’ mozna przyjat, ze sg nimi
osie symetr IMN, Dla czasteczek mniej symetrycznych mozemy poszukiwac
osi gtéwnycn a przez zastosowanie zasady addytywnoéci analogicznie,
Jak to uczynili Van den Bossche i Sobry na terenie diamagnetyzmu, O ile
nam ;ed.nak wiadomo, systematycznych préob w tym kierurnku nie podjeto.
Jesli zas nie uczynimy zadnego zatozenia odnoénie kierunku osi gtéwnych
to problem jest nie do rozwiazania na poziomie molelmlarnym z wyjgtkiem
krysztatéw nalezacych do ukladu troéjskosnego i to tylko w przypadku, g.dy
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komérka elementarns zewiera jedna czgsteczke. Do problemu. tego jeszcze
SRR , : :
Zastosowanie (6.58) 1 (6.59) do konk.retnych struktur zilustrujemy
przyktradem kilku kiryszbaiédw, dla kbtoérych giéwne wspdiezynniki zalamania
Iéwiatla oraz ich orientacja sa znane. W tabeli 6.1 zawarte sg dane za-

Tabela 6.1

Wartosci doswiadezalne wspoOiozynnikéw zalamania swiatla
niektérych krysztaiédw molekularnych dla A = 546 nm [16]

Krysztat et o5 B3 [ rEd B8] @ohiaagt
Benzen 1,544 | 1,646 | 1,550 0 0
Raftalen 1,525 | 1,722 | 1,945 42,3 22,6
Antracen 1,556 | 1,786 | 1,959 26,9 27,1
Fenantren | 1,548 | 1,920 | 1,724 27,0 26,7

Fluoren 1,578 | 1,919 | 1,663 0 0

czerpnicte z monografii Winchella [16]. W przyjetej tu konwencji n2|| b
. zad nq i ny lezg w ptaszczyinie (010). Kat miedzy n, i osig krysta-
lograficzng a oznaczamy przez ¢ . Zadanie polega na obliczeniu a o0-
raz kgta ¢ , ktérych dokiadnych wartosci nie znamy. Punktem wyjscia
miech bedzie tensor polaryzowalnoéci g‘°) czgsteczki swobodnej. a(o
mozemy obliczyé korzystajac z anizotropowych inkrementéw at omowych poda-
nych przez Le Fevre a [17] (tab. 6.2) oraz z zasady dodawania wielkodci
tensorow;'ch. Kierunki wigzan C-C wystarczy wybraé takie, jak w regu-
larnym szescioboku, zaé dla grupy. -CH, (fluoren) tak, jak dla tetra-
edrycznego atomu wegla., Wyniki obliczen G %y 1 %y [18] podane sq w
tab. 6.4 (czasteczka swobodna).

. W tym sformutowaniu zadanie mozemy ro};wiqzaé metoda kole jnych przy-
blizen. Obliczamy wpierw T (o) (abe®) w przyblizeniu zerowym. Na przy-
ktad dla naftalenu

‘ y ~ of a:{o) o cl’{éibazg.O)
7(0) (gpe¥) = Zg(r)fl‘%(o) g(r) L o °§2a§,0) o :
y r : i}cl'] (o) 0 C; ‘alO)
(6.61)

‘gdzie Cix okreslaja orientacje IMN w abc®,

1 (°)(abcx) - :mozna sprowadmé do osi giéwnych przez transformacje
macierza a
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: Ta b e lal 6.2
Inkrementy polaryzowalnosci atoméw i wiazan wedug Le Févre’a il
bl - polaryzowalno$é wzdiuz wiazania, bt - prostopadle do wigzania
lecz w p;aszczyznie czasteczki, bv - prostopadle do wiazania
i ptaszczyzny czgsteczki

b-1090, Fom® %)
by by b,
C-H o,7¢ o7 | 0,71
c-C 1,170 | 0,30 | 0,30
Car—Car 2,49 | 0,23 | 0,66
c-c1 | 4,68 | 2,15 | 1,65

#) 1.1072% on? (cgsE) = 1,1119:10~° farad x b® (SI)

cos ¢, O sin ¢,
0 1 C il : (6.62)

-sin.wo 0 éos ¢°

ligo
]

przy czym @ Jjest katem zerowego przyblizenia. MozZemy go otrzymaé z
relacji

212
AT < 1
4 i cpo = jé arc ‘bg ° L0> o -(6.65)
T
Jes$li teraz wprowadzimy oznaczenia
2
n; -1
; i bi = _.1"_ .:.I_. in’ (6.64)
need 2 b :
gdzie dla ukladu jednoskosnego
V.=abecsing, (6.65)

to wspdiczynniki zatamania Swiatla zerowego przyblizenia moZemy otrzy-—

maé ze zwiagzku
15 o0
njsl—— = 3 : (.6.66)
1 - bi
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Wyniki obliczen polaryzowalnoéci czasteczki metoda kolejnych przybli

Tabela

o £ 1040 ;
P::ggii- = - 5’ ny (obl.) | n; (dodw.)| ~ ¢
om g . :
A, Krysztat naftalenu
21,8 1,5085
(0) 19,6 1,660, 22,24
- 12,9 1,871,
ol 30 1,522 1,525
(1) 20,1 1,722, s 22,62
13,2 1,948, 1,945
23,1 1,525,
(2) 20,1 1,722, 22,62
13,3 1,945,
B. Krysztal antracenu
31,1 ' 1,522,
(0). 26,7 1,726, 27,68
17,6 1,9764
30)6 115606 19556‘ i
(1) 28,4 1,786, 1,786 27,12
18,6 1,952¢ 1,959
30,7 1,555
(2) 28,4 1,786, 27,14
18,4 1,959

6-3‘
et

Punktem wyjécia do pierwszego przyblizZenia sa doswiadczalne wartos-
ci wspélc;ynnikéw zatamania Swiatia i 9., 2 ktoérych obliczamyl“q)(abéq
a stad %31 i ¢ pierwszego przyblizenia. Dalsze postepowanie, ktére-
go niezmiennikami sg ¢ i n; doswiadczalne, prowadzi do wynikéw przed-—
stawionych dla naftalenu i antracenu w tab. 6.3. Pozostate wyniki z po-
minig¢ciem tych szczegdéiéw rachunkowych podane sa w tab. 6.4. Widzimy,ze
otrzymane'%ym formalizmem polaryzowalnosci nie odbiegaja zbytnio - poza
Jedmym przypadkiem - od polaryzowalnoici czgsteczlki swobodnej. Warto
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Tabela 6.4

Polaryzowalnoié niektérych czasteczek w stanie swobodnym
(wediug inkrementéw z tab. 6.2) oraz w krysztale

S Polaryzowalnosé
Czasteczka Warunki | -« x 10% F . @2
5 “u %y

Benzen swobodna 1255 12,5 8,2
- W krysztale| 12,5 11,8 9,3
Naftalen swobodna 21,8 19,6 12,9
w -}n.ijzta!.e 24,4 20,5 a7
Antracen swobodna 31,1 26,7 736
W krysztgle 20,7 28,5 18,5
Fenantren swobodna 50,0 27,8 17,6
; w krysztale| 33,4 38,7 5,1
Fluoren swobodna 27,6 25,6 16,5
; w krysztale| 28,9 24,6 18,7

przy tym zwrécié uwage, ze uzyte tu g(°) stanowig informacjé niezaleb-
ng, bowiem inkrementy Le Févre ‘a zostaty otrzymane z badain efekbtu elek-n
trooptycznego czasteczek w roztworze. Odstepstwem w tab. 6.4 jest czgs—
teczka fenantrenu - podatnoéé %o jest z pewnoscig za wysoka, & N Za
niska. Wydaje sie, iz efekt ten spowodowany jest momentem dipolowym tej
czasteczki; w kazdym razie nie speinia ona warunkéw dopuszczajgcych sto-v
sowalnosé réwnania Lorentza-Lorenza. ;

Jeko dalszy przyklad ilustrujacy zastosowanie modelu gazu zoriento-
wanego przedyskutujemy wlasnoéci_krysztalu gipsu CaSO4-2H20. Nie jest .
to krysztail molekularny sensu stricto lecz mozna na tym przykladzie po-
kazaé, jak anizotropia wtasnosci optycznych uwarunkowana jest bezpoired-
nio anizotropia polaryzowalnoéci czasteczek. e

Struktura krysztaiu zbadana metods dyfrakcji neutrondéw [ﬁg] ma 8y-
metrie grupy przestrzennej I 2/a. Jednoskosna komérka elementarna o pa-
remetrach a = 5,680,008, b = 15,18%0,009, c = 6,520,008 &, g =
= 118,38i0,33°, zawiera czbtery jednostki chemiczne o sktadzie CaSO4 °
2H50. Jony ca®t i soﬁ‘ zajmuja potozenie szczegbdlne o symetrii Cy. Wyda=-
je sie, iz jony soﬁ' nie majq symetrii Td, odpowiadajgcej im w stanie
swobodnym. Odstepstwa od peinej symetril nie sg jednak duze i -moZemy u-
znaé, ze zardwno jony ca®t Jak i SO4 maja symetrie wystarczajaca, by



232

ich polaryzowalno$¢ uwazaé za izotropowa. Czgsteczki wody maja oczywis—
cie nizszg Bymetrie. Atomy tlenu zajmuja potozenia ogdlne o symetrii Cqe
natomiast szesnascie atoméw wodoru nalezy do dwéch nierdwnowaznych zbio-
réw, o sSymetrii wezia pé%vhiez C4. Ta sytuacja dopuszcza wystq.piehie nie-
wielkie] asymetrii czasteczki polegajacej na tym, ze diugosci obu wig-
zan, O-H; i O-H2 troche sie rdéznia,

Zasadnicza rola czasteczek wody w anizotropii optycznej widoczna
Jjest na pierwszy rzut oka z rys. 1.9, przedstawiajgcego rzut strukbury
na ptaszczyzne (010). Naniesione linia przerywana gidwne kierunki indy—
katrysy A.B. i 0.B., 83 odpowiednio réwnolegte i prostopadle do kierun-
kéw OH na tej paszczyznie [20]. Przyjmiemy wiec w dalszym ciagu,ze ten
fakt stanowi gidéwng przyczyng anizotropii optycznej krysztaiu i sprébu-—
jemy obliczyé « czasteczki wody oraz oszacowaé izotropowa sum¢ polary.

zowalnosei o, jonéw cast i so4 [20].
Krysztatr jest optycznie dwuosiowy, dodatni. Wspdiczynniki zalama-

nia Swiatia dla A = 589 nm maja nastepujace wartosci 21} :
ng = 1,5299, 1y =1,5230, =n, = 1,5207.

05 n, indykatrysy jest réownolegta do osi b krysztaiu, zaé n u A.B.
3 np ”O B. Orientacje¢ tych osi wzgledem a, b, ¢ podaja tray wek‘bory

Tabela 6.5

Molekularne (r) i optyczne (R) wektory jednostkowe w ukZadzie
jednoskoénym a, b, ¢ [20]. i, J, k sa wektorami jednostkowymi

w kierunku tych osi, odpowiednio

r{!) = o0,6262 1 + 0,7782 j - 0,0038 K
e = 0,7908 i - 0,2288 § .- 1,0567 k
(1) = =0,5376 i + 0,5676 j + 0,484 k
("') = -0,6262 i + 0,7782 § + 0,0038 k
("" = 0,7908 i + 0,2288 j + 1,0567 k i
;_("') = 0,5376 i + 0,5676 j - O,4184 k
Ry = 0,851 i - 0,287 k e
R~ 0,775 i +1,0997 k
Bs = 9

Jednostkowe R (tab, 6.5). W tejy tabeli podane s3 réwniez orientacje
0sl symetrii :c,]', Toy Ty czasteczki wody. Z danych tych wynika, ze
;_231 = 0,044% oraz rzge 0,9724, czyli normalna do piaszczyzny Czas—
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teczki wody jest prawie réwnolegia do jednej z osi préwnych indyketirysy,
a prawie prostopadta do drugiej, lezacej w (010). Jony SO&' nastepuia
wzdiuz kierunkédw optycznych naprzemiennie, ¢o eliminuje ich ewenbtuaina
stabg anizotropie.

Rachunek mozna wykonaé¢ metodg kolejnych przybliZer., Niech punktem
wyjécia bedzie tensor polaryzowalnosci czgsteczki swobodnej %(o), ob=-
liczony przez Liebmanna i Moskowitza [22] i podany w bab. 6.6: Otréyma—
ny stad tensor polaryzowalnoici komdérki elementarmej w ukladzie odnie-
sienia optycznym Tf(o)(RquRa), ma sktadowe w zerowym przyblizZeniu

1,730
T (0)(R1R2R3) e 1,380 «10~%0 Fon?,
1,703

poniewaz Z = 8, Jesli teraz przez Néo) .oznaczymy udziat (w zerowym
przyblizeniu) podsieci wody we wspélczynnikach zatamania swiatla n;, a
przez’AT.o izotropowy udzial jondéw, to w mySl powyzszej hipotezy moze-
my napisaé :

a{®) = n - wlod, (6.67)
' Tabela 6.6

Teoretyczne i eksperymentalne wartosci polaryzowalnosci
SEYE czasteczki wody
40 e

7

a x 10

oo

%q % 5 o 3' <o> * Literatura

1,422 | 1,189 | 1,292 | 1,301 | Arrighini i in., [23]
1,8%6 | 1,363 | 1,614 | 1,604 | Liebmann, Moskowitz [22]
= = = 1,61 Landolt-BBrnstein [21]

1,598 | 1,592 | 1,619 | 1,603 | Rohleder [2C]

Kolejne przyblizenie, k-te, uwazaé bedziemy za dobre wtedy, gdy A gk)‘
o%aza si¢ liczbami jednekowymi dla i = 1,2,3. Korzystajac z (6.64) i
i (o) otrzymujemy

N'&Q) = 4220755 Nf(ao.) 451676, NZ(O) 1,203’]‘

oraz

ai°) = 0,3266, 1100 = 0,3554, A3(°) 0,3176.

it
1}
1]
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Widzimy, %e A nie ma statej wartoici, wobec czego jako parametr nastep-
' mego przybliZenia ktadziemy f

<alo}>_ o, 3332,
Po powbérzeniu rachunku Jjuz w nastepnym przybliZeniu okazuje sie, Ze
A,Y]) =,-1ﬂé1) = Aéll) = 093519.

. L(llzv.yskane ‘przez rozwigzanie ukiadu réwnan liniowych polai'yzowalnoéci
czgsteczki wody podane 8§ w ostatnim wierszu tab. 6.6. Widzimy, Ze réw-
nieZ anizotropia czgsteczki wody jest bardzo niewielka, co uzasadmia .
staba dwdjtomnosé sztatu., Dla pozostaze]j czesci wspdieczynnika zata-
Enania gwiatza <A>{1) nosemy napisa¢ w prayblizeniu

2<ax¥Men; & NG

= N Ell
<n2> + 2 e, 1 iz

gdzie
Ny = (3 abe sinp)™! = (123,65 82)1.
Stad obtrzymujemy
s, = 6,85-107*0 Fen?,

Poréwnanie tego wyniku z dostepnymi w literaturze danymi prowadzi do
nastepujacych wnioskéw. Jesli dla polaryzowalnosci ca=t wziaé wartosé
CBGg2+ = 0,63°10 F-m2 obliczong przez Borna i Heisenberga z poprawki
spektroskopowej w serii Rydberga-Ritza, zaé dla polaryzowalnosci SOE"
wartosé o S0°~ = 4,23-10"4.0 F-m2 otrzymang przez BBttchera z pomiaréw -
gestoéci i wspbéiczynnika zatamania Swiatla roztworéw siarczanu sodu

[24], to otrzymamy Zacznie

9 a ehO D
O, 7 487:107% Fon®.

Wartosé ta zupeinie dobrze zgadza sSi¢ z otrzymang z A .

Dyskusja ta wskazuje, iz uzycie formalizmu Rousseta do obliczenia
polaryzowalnosci czasteczek w fazie krystalicznej prowadzi do Tozsad-
nych wnioskéw przy prdbie zastosowania go do interpretacji optycznych
wiasnosci krysztatéw. Z innymi zastosowaniami spotkamy sig jeszéze w
102d%. 9. : , g

Nieco inny punkt widzenia na zwigzek migdzy n i o, oparty na poje-
ciu refrakecji molowej nie tylko kryszbtaiu lecz takze czasteczki, prezen-
tuje Lasheen i inni w dwéch publikacjach [25,26]. Zgodnie z (6.54) re—
frakeja molowa krysztatu w jednym z kierunkéw gkéwnych indykatrysy o-
kreflona jest wyrazeniem ;
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2

e | :
R = I 3 ; ,606 |
1 T—n1+'2 s : (6.69))|

l' <

Refrakcj¢ molows jednej czgsteczki &kreélamy tak, by zachodzit zwiazek
PRIER IO ' - (6.70)

Zaktadamy przy tym, 26 R i r sPezniaja modele gazu zorientowanego (6,

59).

Wartosci refrakcji molowe] czqsteezki obliczons tg drogq pozbawio-
ne s§ przynajmniej jednej z dotychczasowych wad, a mianowicie nie zawie-
raja izotropowego czynnika 1/3, przgnoszonego z (6.49) do (6.58). Dane
uzyskane w obu pracach Lasheena zebrane»sq‘w tab, 6.7 z tym, %e wartos-
ci r dotycza tylko jednej czasteczki. W zwigzku z tym oryginalne wyni-
ki Lasheena zostaly skorygowane tak (poza jednym przypadkiem), by konse-
kwentnie speiniony byi zwiazek (6.70). Przy opracowaniu tabeli stosowa-
no nastepujgca konwencj¢, wprowadzong przez Lasheena: j

(1) w krysztatach ortorombowych R, 1|2y Byl bs By || cs
(ii) w krysztalach jednoskoénych R31|b, Ry, By 1leza w (010).

Wspéiezynniki zalamania Awiatla mierzome byty [25] za posrednictwem ob-
serwacji linii Beckego®dla &wiatia lampy sodoweg %D, w temperaturze po-
kojowej (21-25 °Q). Podane w tabeli biedy n, R i r oszacowane zostaly
przez Lasheena. Warto zauwazyé, iz niekiedy mate bredy w doswiadczalnym
wyznaczeniu n prowadza do dusych biedéw w wartosciach r. Odnosza sie
do tego te same uwagi, jak i do pomiaréw podatnosci diamagnetycznej
(rozdz. 5).

Zwigzek miedzy polaryzowalnoscia czgsteczki i jej refrakcja w tym
samym kierunku jest nastepujacys ; A

@; (Bn®) = 36, T fr; (@emol™), (6.71)

e, = 5;8542-10'12 Fem™,

Badania nad optycznymi i magnetycznymi wiasnosciami czasteczek
przeprowadzone przez Lasheena i wapblpracownikéw miaty mna celu giéwnie
wykazanie pokrewienstwa miedzy anizotropig polaryzowalnoéci i podatnos—
ci magnetycznej. Uzyskane przez tych autoréw wnioski mozna strebcié w
nagtepujacy sposodb.

1. Jesli poréwna si¢ wyniki dla refrakcji czasteczek z wartosciami
ich podatnoséci magnetycznej to widgé, %e silnej anizotropii magnetycz=—



M avbie’ 1ia= 6.7

strukturalne i optyczne staze krysztaléw molekularnych° M - masa czasteczkowa kg/kmol, p - gestosdé

kg/mB, V/Z - objetoéé jednej czasteczki 2 a,b,e - parametry komérki elementarnej R,

‘czgsteczek w komérce elementarnej, ng,n.,n, - wspbdtezynniki zalsmanis Swiatla wzdiuz gtbéwnych kie=

“runkéw drgan, n a0y, = wspéZczynniki zalamania Swiatta wzdiung osi krystalograficznych, a,b,c =

uktad ortorombowy, nq, 1.12,11.3 -~ wspdiczynniki zsamania SwiatZs wrdiuz ozl gibwnych tensora € (por.

tekst), R - refrakcja krysztaiu, r - refrakcja czgsteczek (dla otrzymania Rir w Jednostkach u-
kadu SI (m;/mol) nalezy liczby ¢ Sabeil pomnozyé przez ﬁ0'6)

% - liczba

. g Dané struk— | WSpéczynniki zalamania Refrakeja.
Nazwa zwiazku | ;%5° 2 Tl e nA Swiatia -
- % s : {(Na Ap) krysztaiu czasteczki
4 2 3 4 5 & 7
A: Krysztaizy ortorombowe
- (c6 5)5Ctl; | Pme2q [27] | my= 1,52%1 | m, = 1,509 | B, = 73,9 | zg = 28,2
benzen M = 306,14 a= 17,47 n, = 1,8670 | my = 1,843 | By =109,9 | Ty = 28,9
p = 1237 b =19,66 .= 1,8725'| ' = d,800 LR 2 10,5 |~ = 16,7
V/Z = 410,8 | ¢ =11,19 [el [25] [25] [25]
Z = 4
CioHg(CHy), | Pom2y [28] | o= 1,4065 | n, = 1,489 | B, = 37,4 2. = 11,7
M = 154,21 a = 8,290 = 1,4678 oy = 1,642 By = 46,8 Ty = 12,0
Acenaften !
o = 1190 b= 14,000 |y =1,6201 | n =1,39 |R, = 31,1 D= 5,1
V/% = 209,6 | ¢ = 7,225 [29] [25] [25] [25]
/ 7R

oce



C6H‘.*f388§33 B2ab [30] /n = 1,485 n, = 1,476 | R, = 70,6 v = 2,4
M = 188,13 a= 6,7 n, = 1,661 n, = 1,665 | Ry = 92,8 Ty = 11,8
Kwasny f£ta-
lan sodu | p= 1504 b= 9,3 n, '= 1,668 n, = 1,678 | R, = 94,4 oy = 28,1
V/Z = 207,8 c = 26,42 - [e] (23] f25] [25}
% =8
ch%gggg;- P2,ab [31] n_= 1,498 n, = 1,494 Ré = 37,6 n - s
Kwagny fha- | M = 204,22 a= 6,46 n, = 1,659 ny = 1,632 | Ry = 46,1 zy o
S e p= 1579 b= 9,60 n, =1,665 | n,=1,674 | R, = 48,5 Iy = 8,3
V/Z = 214,7 c = 13,85 6] [25] 25] [25]
7 o= 4
CeH, (NO,)., Pbn2, [32] n = 1,432 n,.= 1,746 | R, = 42,8 m Mol
i = = = C= Ri = 8 = 10,6
S M = 168,05 a = 13,20 n, = 1,765 n, = 1,841 b = 46, rN.[ :
benzen = 1593 b = 13,97 n = 1,850 n i=,482 1 B = 30,1 Ip = 7,0
W= lpssen e = 5480 [1e] [25] [25] [25]
Z =4
CgHENECOCH; Pbea [53] n=1,595 | = 1,748 | "R =455 o= 5,8
M = 135,04 a = 19,640 o = 1,620 ny = 1,612 | By = 38,9 Ty = 5,5
Acetanilid p = 1206 b= 9,483 o, - 1,755 n, = 1,524 | R, = 34,3 Ty =536
V/% = 185,8 e = 7,979 [1e] [25] [25] [25]
Z =78

Lg2
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= 3 L 5 3 7
CgH,, (NH,) - Pon2 [34] n = 1,560 |n, =1,508 | B, =28,8 |x =5,
"(CO0H) }a- 12,83 | a0=1,720 |m,=1,78 | B = 40,0 [ny=5,2
e R bi=io,7y) 4 =470 ‘lin-=d,736 | B = 5858 Ap. 500
p = 1420 c= 9,28 (6] 23] [25] (25]
V/Z = 160,3 |2 =8 :
C4H,0-NC1 P24242; [35)| n, = 1,668%0,003 R_=30,9%0,2 | r;=7,4%0,3
M = 133,54 a= 6,41 n, = 1,616£0,003 - Ry=28,3%0,2 | ry=8,1%0,4
Inid kwasu
N-chlorobur- | p = 1650 b= 7,11 n, = 1,661%0,004 R,=29,9%0,3 | =6,8%0,2
sztynowego : :
o V/2 = 133,2 | c = 11,69 [26] [es] [26]
Z =4
|
C,H, O, NEr P2,2/24-[35] | n, = 1,706£0,003 R,=32,8%0,2 | r;=7,9%0,2
M = 178,00 a= 6,48 n, = 1,641%0,002 Ry =30,4%0,2 | 1,=8,5%0,4
Imid kwasu
N-bromobur- p = 2109 b= 7,25 n; = 1,681%0,003 B.=31,940,2 | n=7,4%0;1
sztynowego ; :
V& = 129,300 i =B [26] - [2e] [26]
Z = 4 3
~ C4H,00 (VH,)-H | P292;24 [3€]| n, = 1,534 1 R.=30,9(1) |m;=7,4(1)
M = 167,07 a= 7,648 | my =1,5002 R,=29,2(2) rM=8‘,0(1A)
Tradng owss G dee0 b= 11,066 | n, = 1,510 2 R=29,7(2) |zg=7,1(2)
: V/Z = 165,94 |c = 7,843 [26] [26] [26]
Z =,' 4

8¢



Ra=31 o4 2

CgHyOg (K) +B P2,2,24[36] n,=4,566(2) £1=7,5 5
; M = 188,18 a= 7,64 m=1,554(2) | B=29,9 3 | z=8,01 _
ﬂv:ingog;gi- " p = 1954 1o . 10,62 nc=1,§44(2) R,=30,4 2 | mg=7,3 1
V/Z = 457,20 | 6 = 7,75 [26] [26] [26]
Z =4 '
B, Krysztaly Jjednoskoine
i P2y/a BT | ny= 1,55 | oy = 1,959 | Ry = 84,4 | = 42,3
M= 178,2 a = 8,561 n, = 1,786 | my= 1,485 | R, = 49,8 | ny = 42,5
Antracen o = 1026 b=6,035 |m,=1,95 | n;=1,857 |Bs=76,7 | my=20,8
V/Z = 237,08 | ¢ = 9,163 6] ~[25] 251 [25]
=2 B = 124,70
it P2,/a [38] | n_=1,561 | ny=1,945 | R, = 60,6 | = 31,1
M = 154,2 a = 8,63 =1,658 | ny=1,550 |R,=140,1 | ry = 26,9
Dwufenyl p = 1224 b = 5,63 n, = 1,945 | ng = 1,661 Ry —idsie o= 56
' V/Z = 2214 | ¢ = 9,15 Me] [25] [25]) [25]
Zi=2 B = 95,1
CeCle P2,/c [39] n =1,7%8 | R = 63,1 | = 31,4
M = 284,74 a= 8,08 n, = 1,701 | B, = 60,7 | zy = 31,4
Szeécio- < i
Elenitenren |npis 5 b= 3,87 n; = 1,601 | B; = 55,7 | mg = 26,1
V/Z = 232,0 c = 16,65 251 [25] [25]
Z=2 B = 117,0

6ge -



g > 3 Z 5 6 7
CgH,CL, P2,/a [40] N 950 lEe - zots e g2
M = 146,95 a = 14,80 n, = 1,528 R2 = 29,6 v = 20,3
ggg:ghloro- o = 1526 b= 5,78 ny = 1,679 . R; = 36,4 T = 13,2
. V/Z = 157,41 | ¢ = 3,99 [25] [25] (23]
Za=E2 B = 113
C’ILI-HSOE Pzﬂ/a [l.{.’]] ‘= 1,506 111:1 ,875(3) R1=6_6,0(4) g I'L=58(1O)
M = 208,20 . | a = 15,810 n, = 1,698 n,=1,717(3) |B5=57,0(4) | 7,;=29(8)
Antrachinon | P = 1438 b= 3,942 |, =1,816 | ng=1,486(2) | Rs=41,6(3) | rp=16,50(2)
V/Z = 239,14 |c= 7,865 (6] [e] [26] [26]
% B =.102,72
CGClll-OZ ]_321/3-‘ [42] n,‘z’] ,522(2) R_1=43 »8(3) I‘L?ZG(B)
Czterochlo- M = 245,89 a = 8,708 n,=1,621(3) |R5=50,5(4) | ry=25,2(8)
ro~-p-benzo- ' y s
chinon p = 1712 D= 5:_’1755 n3=1’589(2) R3=48,4(3) rN=20(1)
(chloranil) V% = 207,48 | o = 8,603 26] 26l [26]
- Z=2 B = 105,85
C.CL,(0H), | P2q/c [43] n=1,676(3) |R1=46,6(3) | £;=22,8(22)
M= 247,90 | a= 8,214 n=1,625(2) |R=43,8(2) | 7,=26(2)
Czterochlo= ' (
rohydro- o= 2002 b= 4,843 ny=1,630(3) | Rp=44,4(4) | my=20(1)
chinon ¢ x 5 g
V/Z = 205,6 | ¢ = 12,441 [2&] [2¢e]. [e]
7 = 2 B = 123,82

S
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Clly (WO, ) “NH, | P2q/n [44] ng=1,788(4) | R4=40,6(4) | z;, = 9,6
M = 138,12 a = 12,3%6 n,=1,525(2) | R=29,5(2) | my = 10,6
p-Nitro- p = 1437 b= 6,07 n;=1,756(3) | B5=39,4(3) | 7y = 7,1
V/z = 160,8 cli=8 8,502 f26] [267] [26]
Z =4 B = 91,45
CgHs0,N P2,/c [45] | m=1,460(5) | n4=1,886(5) | Ry=44,3(5) | m=10(2)
M = 147,05 a= 6,19 n=1,80(3) | my=1,453(2) | R=26,0(2) | 5=11,0(7)
Izatyna 0= 1527 b = 14,46 n,=1,90(3) | n5=1,782(4) | R,;=40,5(4) | my= 6,6(1)
V/Z = 159,9 c= 7,17 [e]l [2e] [e6] [26]
T i B = 94,82
CsHO0,N,, P2, [6] ng = 1,447 | ng=1,447(2) Rq=3e,4g2) rL=13,og1)
*(CHz)5 | &= 13,3 n, = 1,695 | n=1,687(4) | B=52,0(5) | 5,=12,4(20)
| Peofilina M = 198,28 b = 15,3 | 3= 45755 n3='1,64’l(3) }33-_-.49,2(4) I= 9,1(8)
(monohydrat) | =  _ quc4 o= 45 [16] 26l e6] f26].
V/Z = 225,8 | g = 99,5 :
Z =4
CoHg0, P24/c 7] ny=1,556(1) | B4=32,32(9) | r;=8(2)
M = 124,06 a= 7,672 n,=1,463(1) | Ry=27,69(9) | m=8(2)
Jiogametys | b= 123 b= 7,212 n5=1,535(1) | B5=31,30(9) | 7=6,3(0)
V/Z = 165,1 c = 13,92 [26] [26] [26]
Z =4 B = 120,98

e



o 5 6 7
CO(NH:CO), [ P2q/n [38] 1,=1,441(2) |B4=17,6(1) | = = 6(2)
M= 114,03 | a = 10,685 n,21,554(3) | R=21,3(2) | zy = 4,4(1)
= p= 1713 b= 8,194 2,=1,479(2} | 2;=18,9(1) | zg = #(2)
. V/Z = 110,5 | ¢ = 5,054 6] 6] 24l
B= 92,75 :

Z =4

ewe
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nej zawsze towarzyszy silna amizotropia optyczna. Anizotropi¢ definiuje
sie¢ liczbowo w nastepujacy sposdh:

<4AI' = ‘:;‘ (rL + rm) = rn‘, ‘ (6.72)
. AK.-:%.(KL?-KM)-KN. " le.B)

2. Dla. czgsteczek plaskich bezwzgledna warteosé podatnosci magnes
tyczuej jest najwicksza w kierunku prostopadiym do piaszczyzny czastecze
ki, natomiast polaryzowalnosé jest w tym kierunku najmniejsza.

3. Jesli wielkoéé anizotropii opbycznej dowolnej czasteczki podzie-
1i si¢ przez wielko&é anizotropil optycznej czasteczki. benzenu A r/Arb,
to uzyskany iloraz bedzie mniejszy, niZz analogiczny stosunek wielkodci
anizotropii magnetyeznych A K/AKb. Jest tak diatego, Ze oddzialywanie
‘wzbudzonych dipoli optycznych jest silne, natomiast dipoli magnetycz—
nych bardzo stabe (zagadnienie pola lokalnego).

4, Podstawniki w czgsteczkach aromatycznych na ogdt zmniejszaja a—
nizotropi¢ optyczna. Efekt ten zalezy od ich rodzaju i pozycji w pieré-
cleniu. :

Zupeinie nowy poglad na zagadnienie pola lokalnego i efekbywna po-
laryzowalnoéé czgsteczek zostal zeprezentowany w kilku pracach przez
Durmura, Cumminsa i Munna [49,52,53].

Przyj'miemg za Dunmurem, %e kazdej komérce elementarne;j krysztaiu
przy Z = 1 odpowiada moment dipolowy u, wzbudzony polem E pada;j'ri-
cej fali elektromagnetycznej. Krysztatr mozemy wigc traktowaé jako trédj-
periodyczny zbiér jednakowych dipoli, umieszczonych w weztach sieci Bra-
vais, Wezly te generuje zakoﬁgzenie wektora

(1) = Liag + 185 + 1z85, (6.74)

gdzie 1,112].5 jest troéjka liczb catkowitych, dodatnich, ujemnych lub
zer, zas 84, 8o 8; sa krawedziami komérki elementarnej (rys. 6.15).

- Jesli liczba czgsteczek w komérce elementarnej Z # 1, to bedziemy uwa-
zaé, ze krysztal mozna przedstawié za pomoca zbioru praemikajacych sie
podsieci, numerowanych przez k = 1,2,...,%, przy czym kazda podsieé za-
wiera wyiacznle czgsteczki translacyjnie réwnowazne wedlug (6.74). Wek=-
. tor polaryzacji kazdej podsieci jest réwny

Be =2 By ‘ {6.75)

gdzie F(r) Jjest lokalnym natezeniem pola elektrycznego w wezle sieci
okreslonym przez @, zaé V jest objetoicia prymitywnej (tj. zawleraja-
cej 1 czasteczke) komérki elementarnej. gk Jest tensorem efektywnej po-
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@

9

|

E(r)
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X2

B
e

0 X
Rys. 6.15. Orientacja wektoréw w sieci Bravais

laryzowalnoéci czasteczki w podsieci k., Podobnie jak w poprzednich

" sformutowaniach zwigzkéw miedzy n i o, réwniez.i w tym ujeciu nie wpro=.
wadza si¢ parametréw, charakteryzujacych przestrzenng rozciagldéé cz3s—
teczki., Nalezy uwazaé, ze dipole wzbudzone (6.47) maja rozmiary punkto-
we. Pole elektryczne F(r) krysztatu spolaryzowanego otrzymuje si¢ jako
sume natezenia pola zewnetrznego oraz pola, wynikajacego z sumowania
pbl wszystkich dipoli umieszczonych w weztach sieci Bravaisa. Ewald [50]
" i Born [51] podali sposéb obliczenia wystepujacej tu tzw, sumy siecio-—
wej i pokazali, ze aby obliczy¢ pole makroskopowe wewnatrz krysztaiu
nie trzeba uciekaé sig¢ do modelu pustej wneki, wycigtej w krysztale. Re~
zultatem tych rozwazan jest wyrazenie na F(r),.ktére w zapisie podanym.
przez Dunmura ma w ukadzie jednostek SI postac

Be=E+— 3 D B (6.76)
(65,51 s
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gdzie Ly .° jest tzw, tensorem Lorentza, ktbérego sktadowe sSa bezwymiaro-
we i moga byé obliczone z parametréw sieci prostej i odwrotnej okreslo-
nego krysztaiu, a wigc zaleza od translacyjnych wiasnosci samej sieci.
Poniewaz Ly, ° muszg byé niezmiennicze wzgle¢dem operacji symetrii gru-—
py punktowej komérki elementarnej, zachodzg nastepujace zwigazkis

e’ = e Lo = Doexe’ (6.77)

-Ponadto z definicji sktadowych L, ktére mozna znalezé w oryginalnej
pracy Dunmura [49] wynika, Ze -

T2 (L o) = 1. (6.77a)

W interpretacji fizycznego sensu L najwazniejsza jest definicja
(6.77a). Wskazuje ona, 2¢ tensor Lorentza zastgpuje w (6.76) stosowany
dotad czymmik 1/3. Mozemy wigc powiedzieé, Ze tensor Lorentza %kk cha=
rakteryzuje w sposéb anizotropowy udziat podsieci k w ogbélnej polary-
zacji krysztatu. Ogdélna polaryzacja 2 krysztatu jest wiasnie trzecim
potrzebnym nam réwnaniem

2 B = & % E, (6.78)

przy czym

x=£t-1 (6.79)

oznacza tensor podatnosci dielektrycznej. Réwnania (6.75), (6.76) i (6.
78) stanowia baz¢ potrzebna do opisu optycznych wiasnosci krysztaiu. Z
tych trzech réwnahn mozemy dojéé¢ do podstawowego zwiazku w nastepujacy
sposdb.

Obliczmy E 2z (6.78) i podstawmy do (6.76). Otrzymujemy

E=-:—;¢'1£ -421,,:1,(-121{,1,1{’

()

- 1
et Z Qi o Z;"kk L ” Eyere

E:ov k

a nastepnie

=

Jééli teraz wprowadzimy oznaczenia
Mo = X+ Lt
B = —= ¢
=k " ey 2k

(6.80)

to otrzymamy
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Be= 2 Mo B Byl : (6.81)
k

Réwnanie (6.81) jest podstawowa zaleznoscia, wigzaca natezenie pola lo-
kalnego, Fk, z wiasnosciami mekroskopowymi krysztaiu zawartymi w bezwy-
miarowym tensorze Mkk oraz z bezwymiarowym tensorem polaryzowalnesci
czgsteczki Qk. B, mozZemy nazwaé zredukowanym tensorem polaryzowalnos-
‘ei czgsteczki. Réwnanle to jest ogblne, poniewaz droga jaka doi prowa—
dzi, nie wymaga zadnych innych zaXozen, précz przybliZenia dipoli punké
towych. PrzybliZenie takie oznacza nie tylko to, Ze pole lokalre ma na-
tezenie stale na obszarze carej czasteczki. Dalsza konsekwencja jest
réwniez fakt, ze nie jestesmy w stanie uwzglednié rdznej oriéntacji
czasteczek translacyjnie nierdéwnowaznych, poniewaz nie ma sensu méwié o
~ orientac ji dipola punktowego.

Rozwigzanie (6.81) ma prosta postaé i jest jednoznaczne tylko dla
przypadku krysztaléw z jedna czgsteczky w komérce elementmmne;. Mamy Wowe
czas k = = 1. Opuszczajac zatem wskaznikl, mozemy napisaé
=1

-y x4+ ‘ (6.82)

Rozwigzanie komplikuje si¢ Jednak juz dla 2Z = 2, Ukzad réwnan linio-
wych (6.81) ma wtedy postaé

Eqo= Mgq Bq 8y + Mgy By By 0
(6.83)

Myq Bq Eq + Uy B B

o-

|
0
I

(6.83) nie ma'bezposredhlch rozwiazan algebraicznych, poniewaz pola lo=_
kalne F1 2t FE’ w dwéeh roznych punktach podsieci, nie Sa na ogbd: nieza-
lezne od siebie. Przyjmiemy wobec tego [52], ze

s (6.84)

gdzie § jest pewnym bezwymiarowym tensorem, Korzystajac ponadto z
wiasnosci M analogicznych do L (réwnosci (6.77)), moZemy napisaé

Ly sl i s Mo B0 Fy,
(6.85)

J'L,

g8y 5l By 2q + Uy 239-—1“

Oba rdéwnania (6.85) muszg byc spelnlone dls kaziego Fq. Jezeli wyelimie
nujemy 4y to otrzymujemy zwiazek miedzy gq i B

By = Mg + 11512{251 = g™ Yio: (6.86)
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Zastosowanie (6.86) zostato zilustrowane w pracy [52] przyktadami
kilku kryszbteiiéw molekularnych jednoskoénych, o grupie przestrzenne j
P21/a i dwiema czgsteczkami w kombérce elementarnej. Poniewas otoczenie
kazdej z dwéch czasteczek jest identyczne, kazdej z nich odpowiada taki
gsam tensor zredukowane; polaryzowalnosci B. MoZna zatem napisaé dodat-
kowy zwigzek, wynikajacy:z modelu gazu zorientowanego o

B =g Ba, (6.87)

pozwalajacy w zasadzie na jednoznaczne rozwigzanie (6.86). 8, Jest ma-
cierzg orientacji czasteczki k, odnoszong najczesciej do osl giéwnych

g. Po poustawieniu (6.87), réwnanie (6.86) nie da sie rozwiqzaé‘algebra.
icznle i g trzeba poszukiwaé metody kole jnych przyblized., Wyniki, Z8- |
czerpnigte z pracy [52], przedatawions s8g dla czterech krysztatéw w tab.
6.8 1 6.9. Jako komentarz do tych danych niech posituzy tab., 6,10. Zgod-

Tabela 6.8

Sktadowe tensortw Lorentza w ukladzie osi giéwnych
tensora przenikalnosci dielektrycznej [52]

Ly B2

Krysztal :
: Lz I‘yy Loz I"xz Lex Lyy Loz f'Tr‘,'xz :

Naftalen |0,201 | 0,626 | 0,173 | 0,012 | 0,741 | 0,327 | 0,068 | ~0,457
Antracen |0,140 | 0,821 0,039 | =0,042 | 0,846 | 0,354 | =0,200 | -0,756
Fenantren|0,156 { 0,820 0,024 0,014 | 1,190 | 0,372 | =0,562 0,366
Dwufenyl {0,108 | 0,925 |-0,033 | 0,077 | 0,989 | 0,366 | -0,355 | ©,828

nie z ocze£¢waniami W miare wazrostu liczby pilerscieni benzenowych w
czgsteczce rosnie regularnle Jjed érednia polaryzowalnosé a takze i ani-
zotropia (6.72), niezaleznie od tego, czy zajmujemy sie czasteczka swo-
bodna, czy tez w krysztale. O ile jednak polabyzowalnosci obliczone za
posSrednictwen refrakcji daja wyniki doié bliskie wartosciom dla czgs—
teczki swobodnej, o tyle nowy formalizm daje wartosci wyraznie za duze.
Fenantren zdaje si¢ stanowié w tabeli prazykiad z wyjatkowo &uzymo odst gpe
Stwami, lecz czgsteczka tego zwigzku ma moment dipolowy, wobec czego
nie stosuje sie do poczynionych zatozer.

Interesujacy komentarz do problemu polaryzowalnosci,a zwkaszcza do
réwnania (6.86), podany zostal przez Lutego [54]. Jesli nie poczynimy
zadnych zatozen odnosSnie zwiagzku miedzy E1 i 22’ czyli zrezygnujemy z
(6.87) 1 bedziemy poszukiwaé tzw, rozwigzan ogdlnych (6.86) metoda ko-—
léjnych przyblizen, to okaze sie, ze jest ich nieskonczenie wiele.Rzecz

~
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Tabela

Tensory efektywnej polaryzowalnosSci czasteczek

w krysztatach [52], « +10%0 Fem®
Czasteczka w ukladzie osi IMN w uktadzie osi wasnych
42,2 =5,2 7 45,0
Naftalen 19,1  =2,4 18,1
44,8 10,1
70, i35 15,6 73,4
Antracen 24,75 =5,0 22,9
14,6 1,4
96,8 25980 =94 97,8
Fenantren 19,3 5,1 20,8
4,0, 1,4
63,6 1 1,6 = 6,2 64,7
Dwufenyl 19,3 0,0 19,2
8,6 79

6-9

IEasbielill at w610

Pordwnanie $rednich polaryzowalnoéci,<a>, i anizotropil
optycznej czasteczek, A o ,obliczonych réznymi metodami

« .10 Fon?

<a>= 1/3 Tr A o= /2 jag +°‘M) —oc_NT

Czasteczka Swobodna W krysztale Swobodna W krysztale
(tab, (tab, (tabe (tab. (tab. (tab.

6.4) 6.4) 6.9) 6.4) _6.4) 6.9)

Naftalen 18,1 18,9 24,4 758 10,8 21,4
Antracen 2D 25,9 26,6 Pting) 11,1 37,8
Fenantren 25,1 25,7 40,0 1452 31,0 SISe)
Dwufenyl 22,9 30,4 12,5 34,9

w tym, ze rozwigzanie ogdlne {-E’I’ EZ} zalezy od g, ktore przyjmiemy ja=
ko przyblizZenie zerowe, Mozpna wig¢c powiedzieé, ze (6.86) nie wykazuje

zbieznogci rozwiazan dla réznych B wybranych jako przybliZenie zerowe,
co stanowi, oczywiscie, wadg¢ catej procedury. Z logicznego punktu widze-
nia najbardziej uzasadniony wybor g_ odpowiada tensorowi dla czastecz-
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ki swobodnej. Procedura iteracyjna przypominataby wbczas prdces; pole-
gajacy na adaptacji czasteczki do sieci przestrzennej w czasie wzrostu |
krysztatu. Wyniki takich obliczen (metoda iteracyjna) podane sa w tab.
6,11 dla krysztatu jodu, szedciochlorobenzenu-i naftalenu [54]. Nalezy

Tabela 6.1
Tensory efektywne] polaryzowalnoécl czqsteczek 54]

@ 10
Metoda Koncepc ja Czasteczka

Krysztai iteracyjna subczasteczek swobodna

Zio 0 GE Nl /8.9 D 0 8,0 .
each) 14,6 =7,9 U7 55 8,0, .
, . 30,4 : 16,0 17,7,
Szescio- 4725 049,30 =74 Al T =67 17,1
glelzllggz- 16,0 -41,5 42,1 5,5 28,2
(P24/c) 25,6 57,3 28,2
e 41,0 8,7 20,4 24,3 3,9 =0,2 23,9
(F2,/) S 19,0 3,8 19,6
; 17,6 13,4 11,5

przy tym zwrécié uwage, Ze jedna z giéwnych polaryzowalnosci tensora
szesciochlorobenzenu (po sprowadzeniu go do osi gkréwnych) jest ujemna.
Taki wy:ik nie ma sensu fizycznego i moze pochodzié stad, ze na wejsciu
iteracji skorzystano z tensora obliczonego metodami teoretycznymi, a
nie z danych doswiadczalnych. Mimo wszystko taki wynik wskazuje réwniez
na fizyczne niedostatki teorii.

Chen, Hanson i Fox [55] oraz Luty [54] zwrécili uwage, ze niejedno-
znacznosé rozwigzan (6.86) tkwi w samej metodzie, niezalesnie od wyko=
rzystania réwnania (6.87) dla strukbtur o Z = 2. Przypatrzmy; sie bli-
Zej konstrukcji réwnania (6.78). Dla Z = 2' ma ono postaé

Deio = B XN

przy czym PH i P2 oznaczaja welkktory polaryzacji obu prymitywnych pod-
. sieci. Kazdy z nich zalezy od B, a tensor ten w uktadzie abc® ma
szes¢ skradowych niezaleznych. Tymczasem makroskopowy tensor X ma tyl
ko cztery.skladowe niezalezue w tym uktadzie wspdirzednych. Symetri¢ ta=-
kg sama jak X ma suma B,I +° Ba, lecz kazdy z tensoréw P ma symetrie
nizszg. bytuacja algebraiczna jest wiec teka, ze z czterech informacji
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makroskopowych prébujemy uzyskaé szes¢ informacji dla czasteczki, czego
L'oezywiScie - nie da sie zrobié bez przyjecia dodatkowych zatozen. Mo-
&emg.krétko powiedzieé, Ze zbyt wysoka symetria kryssztaiu stoi na prze-
szkodzie do poznania wszystkich potrzebnycn nam skiadowych g. Zadanie

‘to dalo by sie¢ rozwigzaé, gdybyémy mogli napisaé jeszcze drugie réwna-

nie, na przykiad

P1-£2=?

: Inng prébe rozwigzania problemu poprzez obniZenie symetrii M w

(6.86) podjat Luty w pracy [54]. Przyjmijmy, ze kazda czasteeczke mozemy
przedstawi¢ jako zbidér dwu lub wilecej czeSci, tzw, Subczasteczek, roz-
ktadajac ja, na przykiad, na rdzed i podstawniki, a w najprostszym przy-
padku przepotawiajgc ja (mp. czasteczka jodu, naftalenu). Do kazdej z
"i" sub-czgsteczek moZemy zastosowaé przyblizenie dipola punktowego,ten-
8or polaryzowalnosci i-tej sub-czasteczki, wchodzacej w skXad k-teJ
czasteczki mozna zatem przedstawié w postaci

5 o -1
B(%) = {2 (s )} . (6.88)
e ;

/

’

Tensory g(?? ) okreslone sg réwnaniem (6.80), przy czym réwniez tenso-
ry Lorentza musza byé obliczone osobno dla kazdej sub-czasteczki. Obec-—
nie symetria tensora Lorentza, a zatem réwniez M Jest mniejsza, niz w
(6.80). Polaryzowalnosé catej czasteczki jest suma tensoréw sub-czaste-
czek ‘

B = > B (6.89)
i

Zauwazmy, ze W tym przybliZeniu czasteczke trakbtujémy jako zbidr anizo-
tropowych sub-czgsteczek, a przez to uwzgledniamy jej ksztalp. Lokalne
pole elektryczne jest sumg pbél rozciggajacych sie na sub-czasteczkach i
Jest wysredniowane na obszar, zajmowany przez cata czasteczke,

Ilustracja tego przyblizenia sa wyniki, przytoczone w tab., 6,11,
kol., 3. Zupeinie nieze przybliZzenie do wielkosci znanych dla czastecz-—
ki swobodnej wskazuje, ze jest to chyba najlepsza z dotychczas zapropo-
nowanych koncepcji poznania wiasnosci czasteczki w krysztale. Koncepcje
te mozemy uwazaé za rozszerzenie zasady addytywnoici zaproponowanej na
terenie magnetyzmu przez Van den Bossche ‘a i Sobry ego (por. rozdz. 5)
na przypadek, gdy wpiywu pola lokalnego nie mozna pomingé. i

Mimo, iz oméwiony wyzeJj Sposob opisu wiasnoéci opbtycznych poprzez
obliczenie lokalnych pél elektrycznych nie prowadzi do jednoznacznych
Tozwigzan na polaryzowalnosé czasteczki w krysztale z przytoczonych po-
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wodéw, uzyskane bardziej precyzyjne wnioski o wielkosei Poél lokalnych:
maja duze znaczenie dla lepszego zrozumienia wkasnodci krysztatéw mole-
kularnych. Aby to dostrzec, powrdéémy jeszcze do podstawowych réwnai
(6475), (6.76) 1 (6.78). Podstawignie (6.75) do (6. 76), jedli skorzys-
ta sie dodatkowo z definicji (6.80), daje

=Bt 3 b By B e
k

b

Uzyskane obecnie wyrasenie jest zwiazkiem miedzy lokalnym polem elek-—
tryczoym, B Py, "widzianym" aktualnie przez wezer k, a zewnetrznym DO-
lem elektrycznym. (6.90) moZemy zapisaé krécej w postaci

B = & E, _ (6.91)

przy czym tensor pola lokalnego,ng, zalezny jest od tensora Lorentza 1
polaryzowalnosci czasteczki

& = 3 G = 3 (1-L 8, (6.92)
k’ k :

gdzie ; i £=3 S8 supermacierzamij ich elementy réwne 83 odpowiednio ma-
cierzom &k.k' i gk&kk .
Réwnanie
=1
Bo= > (Iopfiy 3 (6.93)
i 3

mozna poréwnaé z relacja, znana z mikroskopowej teorii dielektrycznej,
Ex) = [ e, £) Bz £, (6.94)

przy czym ,dB_I; = dx-dy-dz oznacza element objetosci, a catkowanie roz-
cigga sig na catq przestrzen. Relacja ta definiuje odwrotnoié mielokal-
nej funkcji dielektrycznej. Termin "nielokalna" odzwierciedla tu fakt,
26 €7 jest funkcja potozenia zardwno okreélonégo punktu r, jak i pun=
ktéw rj lezacych w jego otoczeniu., Zatem e~ (r, S ) jakby "czuje" rozk-
tad radunkéw w otoczenin r. Pamigtajac o przyjetym przez nas przyblize-—.
niu czgsteczki do dipola punktowego, co odpowiada przejéciu z ciggte]
reprezentacji r w (6.94) do reprezentacji wskaznikowej w (6.93) widaé,
Ze macierze =dkk majgq sens odwrotnosci funkcji dielektrycznej. Stad mamy
zZWwigzek

B =3 S B (6.95)

gdzie ;
ene= (1- L Bigle. (6.96)
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Nielokelny chavekber funkeji dlelektryczmej (epi, # O dla k # k*) jest
istotng cechg izolatoréw, odrdzniajacyg Je od ciaxl przewodzacych., Widaé,
w ramach naszego prostego modelu krysztatu molekularnego wynika ona
- %zo sprzezenia dipol-dipol miedzy podsieciami molekularnymi. Najwazniej=
Fm dalsze konsekwencje, jakle wynikaja z tego sprzgZenia, sg nastepu-
Jace: ‘ :
| (1) pojawienie sie kolektywnego charskteru wzbudzeh elementarnych,
bzw. ékseytondw, Inaczej méwigc, ekscybon moZna traktowaé jako kwant po-
:‘la lokalnego w stanie wzbudzonym krysztélu,
‘ (ii) pole lokalne w okreflonym weile k sieci jest wynikiem ekra-—
rdwax_zia ‘tego punktu przez otoczenie od pola zewnetrznego (widaé to z
(6.95)), :
(1ii) Podatnosé dielektryczna krysztaku x nie jest réwna sumie
polaryzowalnosci ezgsteczek. écisly zwigzek miedzy tymi wielkodciami
Jjest nastepujacys

: 2= % Ek_‘%ﬁ') =N (B e (6.97)

Kk

W duzym uproszczeniu mozna powledzieé, #e nielokalna funkcja dielek-
’tryczna koreluje, dzigki sprzeZeniu dipolowemu, odpowiedz czasteczki k
z odpowisdzia czgsteczki k°, Z fakbu, Ze korelacja ta daje wynik nieze-
‘rowy dla k £ k* ‘wynika, Ze wszystkie czgsteczki uczestniczg w tych sa-
mych, zdelokalizoﬁanyoh wzbudzeniach elementarnych. ;
Peiniejsza dyskusje¢ rolli funkcji dielektrycznej w dziedzinie krysze
‘taiédw molekularnych znalezé mozna w pracach [56,57].

LITERATURA

[1] CRAWFORD F.S.Jr, Fale, t, III, Berkeley Physics Course, tiumaczenie
polskie, PWN, Warszawa 1972,

[2] PURCELL E,M,, Eleltrycznosé i magnetyzm, t. II, Berkeley Fhysics
’ * Course, tiumaczenie polskie, PWN, Warszawa "9‘71.

[3] FEYNMAN R.P,, LEIGHTON R.B,, SANDS M., Feynmana wyklady z fizyki,
To 1;° 02, 2, L LB CZ, é, tIumaczenie polskie,PWN,Warszawa 1974,

[4] NYE J.F., Physical Properties of Crystals, Clarendon Press,Oxford
1957, ttumaczenie polskie, PWN, Warszawa 1962,

[5] BORN M., WOLF E,, Principles of Optics, IVth Edition, Pergamon
lﬁrelscs, %;grd 1968, tiumaczenie rosyjskie, Izdatielstwo Nauka,
oskva .

[6] CHOJNACKI J,, Krystalografia fizyczna i chemiczna, wyd. II, PWN,
Warszawa "970.

[7] HARTSHORNE N,W., STUART A,, Crystals and the Polarizing Microscope,
IVth Edition, E,Arnold and Co., London 1970. :



253
[ 8] Fizyka chemiczna, skrygt pod red, Janiny M. Janik, Uniwersytet Ja-
giellonski, Krakéw 1980.
[ 9] ROHLEDER J.W., IUTY T., Mol.Cryst,Liq.Cryst., 5, 145 (1968).

[10] WARDZYSSKI W., Acta Phys.Polon., A39, 21 (1971), Proc. Roy. Soc.;
A260, 370 11961). v 822, 21 | : y :

[11] ROHLEDER J.W., KUCHARSKA M., Rocz.Chem., 47 389 (1973). .

[12] International Critical Tables, New York 1930, 7, 24.

[13] VERREAUIT R,, Z.Kristallogr., 136, 350 (1952).

[14] KUSTO W., ROHLEDER J.W., Mol.Cryst.Liq.Cryst., 51, 215 (1979).

[15] ROUSSET W,. La diffusion de la lumiére par les molecules rigides,
Paris 1947, i ;

[16] WINCHELL A.N., Tzie Optical Properties of Orgenic Compounds,Acade=
mic Press, 2nd Edition, New York 1954. :

[17] IE FEVRE R.J.W., Advances in Physical Organic Chemistry, Academic
Press, Vol. III, London 1965. :

[18] KUSTO W.J., ROHLEDER J.W., Mol.Cryst.Liq.Cryst., 51, 215 (1979).
[19] ATOJI M., RUNDLE R.E., J.Chem.Phys., 29, 1306 (1958). :
[20] ROHLEDER J.W., Rocz.Chem., 46, 2089 (1972).

[21] LANDOLT-BORNSTEIN , Zsehlenwerte und Funktionen, Bd 2, 8 Teil, 1962,

[22] LIEBMANN S.P., MOSKOWITZ J.W., J.Chem.Phys., 54, 3622 (1971).

[23] ARIE;‘S%%II G.P., GUIDOTTI C,, SALVETTI O,, J.Chem.Phys.; 52, 1037

[247] Gmelins Handbuch der Anorganischem Chemie, 8 Aufl,, System No 28
Teil A Lief., 2, 1957, S. 3863 System No 9 Lief. 2 1960, s. 639.

[25] LASHEEN M.A., ABDEEN A,M., Acta Cryst., A28, 245 (1972).

[26] LASHEEN M,A,, IBRAHIM I.H., Acta Cryst., 431, 136 (1975).

[27] FARAG M.S., Acta Cryst., 7, 117 (1954).

[28] EHRLICH H.W.W., Acta Cryst., 10, 699 (1957).

[29] GROTH P., Chemische Kristallographie, Engelmann, Leipzig 1919;
[30] OKAYA Y., PEPINSKY R., Acta Cryst., 10, 324 (1957).°

[31] OKAYA Y., Acta Cryst., 19, 879 (19653.

[32] TROTTER J., Acta Cryst., 14, 244, 1135 (1961).

[33] BROWN C.J., CORBRIDGE D.E.C., Acta Cryst., 7, 711 (1954).

[34] BROWN C.J., Proc.Roy.Soc., A302, 185 (1968).

[35] BROWN R.N., Acta Cryst., 14, 711 (1961).

[36] VAN DOMMEL A,J,, BIJVOET J.M., Acta Cryst., 11, 61 (1958).
[37] CRUICKSHANK D,W.J., Acta Cryst., 9, 915 (1956).

[38] HARGREAVES A., HASAN RIZVI H., Acta Cryst., 15, 365 (1962).
[39] TULINSKY A,, WHITE J.C., Acta Cryst., 11, 7 (1958).

0] CROATTO U., BEZZI S., BUA E., Acta Cryst., 5, 825 (1952).

1] MURTY B.V.R., Z.Kristallogr., 113, 445 (1960).

2] cHU 8.S.C., JEFFREY G.A., SAKURAI T., Acta Cryst., 15, 661 (1962).
[13] SAKURAL T., Acta Cryst., 15, 443 (1962).



254

[44] TRUEBLOOD K.N,, GOLDISH E,, DONOHUE J., Acta Cryst.,18,1009 (1961)
[45] GOLDSCEMIDF G.H,, LLEWELLYN ¥.J., Acta Cryst., B, 294 (1950).
[46] SUTOR D.J., Acta Cryst., 11, 83 (1958).

[47] BROWN G.M., NORMENT H,G., LEVY H.A., Acta Cryst.,10, 806 (1957).
[48] DAVIES D.R., BLUM J.J., Acta Cryst., 8, 129 (1955).

[49] DUNMUR A.D,, Molec.Physics, 23, 109 (1972).
[50] EWALD P.P., Ann.Phys., 64, 253 (1921).
{51] BORN M,, BRADBURN M., Proc.Cambiidge phil.Soc., 39, 104 (1943).

[52] cumgg%r;.G., DUNMUR D.A., MUNN R.W., Chem.Phys. Letters, 22, 519
[53] cmugggsli.e.., DUNMUR D.A., MUNN R.W., Chem.Phys. Letters, 36, 199

[54] LUTY T., Chem.Phys.Letters, 44, 335 (1976).

[55] CHEN F.P,, HANSON D.M., FOX D., Chem,Phys.Letters, 30, 337 (1975).
[56] MUNN R.W., IUTY T,., Chem.Phys., 38, 413 (1979).

[57] IUTY T., MUNN R.W., Chem:Phys., 43, 295 (1979).

7. ABSORPCJS& KRYSZTAEOW W PODCZERWIENI

Wspbdiczesna spektroskopia jest jedna z najsilniej rozwinigtych me-
‘God eksperymentalnych, obejmujaca.zaréwno wiele réznorodnych pro lemow
nauvkowych jak i zastosowan praktycznych. Obszar zastosowan jest bardmo
rozlegly nawet wéweczas, gdy termin "spektroskopia'zzawezimy do tak zwa-
neJ spektroskopii optycznej, obejmujacej zjawiska wystepujace w zakre-
sie diugosci fal promieniowania elektromagnetyc%nego od 200 nm do 106
nm, tj. w zakresie liczb falowych od 50 000 em~"' do 10 cm~'. Tymczasem
do spektroskopii zalicza sig¢ dzi$ roéwniez obserwacje w zakresie mikro-
falowym, a wigc i technik¢ magnetyczmego rezonansu jadrowego i elektro-
nowego rezonansu paramagnetycznego, ‘a ostatnio rowniez spektroskopie
MBssbauera czy tez spektroskopi¢ rentgenowska. Znakomite przedstawienie
zagtosowan szerokiego wachlarza metod spektroskopowych do badania ukia-
déw molekularnych mozna znalezé¢ w monografii [8]. Précz zagadnien kla-
s8ycznej spekbroskopil molekularnej opisano tam réwniez zastosowania
spektroskopii mBssbauerowskiej do ckreslenia charakteru wigzan chemicz-
nych, a takze spektroskopi¢ korelacyjna, zajmujaca sie analiza ksztaitu
pasm absorpcyjnych.

Na poczgtek sprébujmy odpowiedzie¢ na pytanie na czym polega sSpek=-
troskopia i co nam ta metoda daje? Najogbdlniej mozna powiedziel,ze Spek-
‘troskopia klasyczna polega na badanmiu wigzki promieniowania, najczgé-
ciej monochromatycznego, ktora przeszia przez warstwe materialu chemicz-
nie 1 fizycznie jednorodnego. Interesuja nas przy tym takie cechy tej
wiazki, jak jeJj natezenie i stan polaryzacji, a niekiedy réwniez sktad
spektralny. Informacje, jakie z tych pomiaréw potrafimy odeczytaé, doty-
czg przede wszystkim polozenia na skali energii standéw wzbudzonych poje-
dynczych molekut lub atoméw, czy tez uporzadkowanego zbioru tych elemen-
tow jakim, ' jest krysztai. Dalej, mozemy okre$lié prawdopodobienstwo
przejécia migdzy stanem wzbudzonym i podstawowym, kierunek momentu
prze jscia absorpcyjnego w czasteczce lub w krysztale. Badania te infor-
muja nas réwniez o wielkosSci sit dziatajacych migdzy okreslona para ato-
méw przy rozciggenin wigzania chemicznego miedzy nimi, a takze o naturze
i wielkosSci oddziatywan miedzyczasteczkowych w fazie skondensowanej, Ba-
dania poéiprzewodnikow metodami spektroskopii sktuza, na przyktad, do o-
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kreslenia dyskrebnych pozioméw energetycznych, pojawiajacych gie w wyni-
ku wprowadzenia atoméw domieszki do sieci macierzystej pierwiastka. Za-
stosowania analityczne metod spektroskopowych nalezy zaliczyé dorceldw
praktycznych; naleza do nich jakosciowe i ilosciowe okreélenia skiadu
mieszaniny, w tym réwniez wazny problem okreslenia stopnia czystosci
substancji.

W niniejszym rozdziale bedziemy sig zajmowaé spektroskopia tylko w
takim aspekcie, w jakim metoda ta jest uzybtecznym narzedziem badania
strukbtury materii — w mniejszym stopniu samej czgsteczki, niz krysztaiu
molekularnego. Bedziemy rozwazaé tylko problemy zwigzane z drganiami we-
wnetrznymi czgsteczki. Obszerne zestawienie literatury tego przedmiotu
z lat 1965~1971 zawiera artykut przegladowy M.Szostak [16]. Poza tym po-
tozymy akcent na przedstawienie probleméw bardziej charakterystycznych
dla bliskiej podczerwieni, obejmujacej wystepowanie tak zwanych nadbto-
néw i czestesci kombinacyjnych. Powodow takiego wyboru jest kilka,

Przede wszystkim trzeba zauwazyé, ze ten zakres spektroskopii jest
znakomicie przystosowany do badania ciata stalego. Absorpcja w zakresie
nadtonéw i czgstosci kombinacyjnych Jjest bowiem 100 do 1000 razy sitab-
sza od absorpcji w zakresie przejs¢ podstawowych, wobec czego bez trud-
nosci mozna badaé piytki o grubosci 0,2 do 2 mm, %atwiejsze do uzyska-
nia z hodowanych roznymi metodami monokrysztalédw. Uzyskane w ten sposoéb
rezultaty sa zwykle pod wzgledem fotometryczuym o wiele dokiadniejsze,
niz w innych zakresach podczerwieni. Dalszg okolicznoscig sgrzyjajgca
jest podjecie fabrycznej budowy spektrofotometréw na zakres bliskiej
podczerwieni (NIR, Carl Zeiss, Jena). Nie bez znaczenia jest réwniez
fakt, ze obszar czgstosci podstawowych doczekai sig¢ licznyech i znakomi-
tych opracowan monograficznych, z ktérych wiele mozna znalezé w spisie
literatury podanym na koncu tego rozdzialu. Znacznie siabiej natomiast
reprezentowany jest w pismiennictwie, zwktaszcza polskim, zakres blis-
kiej podczerwieni [16]. Problemy eksperymentalne, zwigzane z przygotows-
niem prébek, cechowaniem spektrofotometru pod wzgledem skali fofome-
trycznej Iub dtugosci fal, etc., 88 natomiast w spektroskopii wspodlne.
Wobec licznych opracowan zzob. np. [9]) nie beda tu poruszane.

7.1, Absorpcja w podczerwieni czasteczki swobodnej

Widmo absorpcyjne czasteczki swobodnej, zwigzane z przejéciami mie-
dzy stanami rotacyjnymi i oscylacyjnymi, naleZzacymi do podstawowego sta-
nu elektronowego, wystepuje w zakresie od 10 000 ecm™ ' do 100 cm'q. Réw=
nanie SchrBdingera, opisujace wzgledny ruch atombéw czasteczki zalezy je-
dynie od wspéirzednych jader atoméw, natomiast wspdirzedne porozenia
elektronéw wystepuja w wyrazeniu na energi¢ potencjalna. Uwazamy zwykle,
ze konfiguracja elektronéw w przejéciu oscylacyjnym jest ustalona i od-
powiada stanowi podstawowemu.

Widmo absorpcyjne sktada sie¢ z wielu mniej lub wiecej rozdzielo-
nych pasm absorpcyjnych, okreslanych za pomocg dwoch wielkosci

(i) czestosci maksimum pasma, zdeterminowanej przez mechanike¢ ru-
chu atoméw czgsteczki, zwiaszcza przez masy poruszajacych sie atoméw i
wspoéiczynniki liniowych sit sprezystych aziatajacych miedzy nimi,

(ii) nabezenia pasma, zdeterminowanego przez elelcbryczne wiasnosci
czasteczki, zwiaszcza przez moment dipolowy, a niekiedy przez wielkosé
oddziatywania momentu elektrycznego i magnetycznego.
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Do opisu czegstosci drgan czasteczki dwuabtomowej mozna przyjqé w
nagprostszym przypadku model oscylatora harmonicznego. W modelu tym
przyjmuje sig, Ze na atom, wychylony z potozZenia réwnowagi o odcinek x
dzliata liniowa sita sprezysta

F=-kx, (7.1)

gdzie k Jjest waspdiczynnikiem sity sprezystej. Energia potencjalna
przesunig¢tego atomu jest proporcjonalna do kwadratu przesuniegcia

Vi -g- k 2. (7.2)

Model ten opisuje tak zwane drgania podstawowe, zachodzgce migdzy sta-
nem. podstawowym a stanem wzbudzonym, przy czym energie obu standéw rdz-
nig si¢ o 1 kwant, réwny energii drgah. Nie obejmuje jednak imnych, ob-
serwowanych w dodwiadczeniu przejsé spektralnych, dla ktérych zmiany
liczby kwantowej sa wigksze od jednoéci (nadtony), lub w ktérych wzbu-
dza si¢ jednoczesnie w czagsteczce wigcej niz jedno drganie podstawowe
(czestosci kombinacyjne). Dla wyjaénienia takich przejé¢ trzeba przyjaé
%e energia potencjalna jest bardziej zXozona funkcjg wspdirzednych niz
(7.2). Jezeli rozwiniemy V w szereg wzgledem matych przesunigé, Qe s
atoméw (k = 1,2,...), o mozemy napisaé

/ 2
vy . ﬂ>q+1~. _..a._v_)q“
. Z(aqkok 21 > oqy, 89y /)~ *

k k,1
o Z (-—33!——> Qdyqy + ee- - (2.3)

W rozwinieciu (7.3) mozemy pominad pierwézy czton, co odpowiada odpo-
wiedniemu potozeniu zera na skali energii. Czion drugi obligatoryjnie
- réwny jest zeru, poniewaz w stanie réwnowagi sita wypadkowa 'dziatajaca
na atomy jest réwna zeru. Trzeci czion jest uogdlnieniem (7.2), a czwar-
ty i nastepne opisuja odstepstwo krzywej energii potencjalnej oscylato-
ra rzeczywistego od kszvaitu parabolicznegd. Cziony te 83 odpowiedzial-
ne za wystepowanie tak zwanej anharmonicznoéci mechanicznej, prowadzg-—
cej do pojawienia sig¢ nadtonéw i czestodci kombinacyjnych. Bardziej zio-
zona zaleznos¢ (7.3) energii potencjalnej od wspéirzednych mozemy inter—
pretowaé réwniez w ten sposéb, ze sity (7.1) nie maja charakteru &cisle
liniowego. '

Istnieje jeszcze drugi powéd, dla ktérego czasteczka rzeczywista
zachowuje si¢ odmiennie od prostego modelu oscylatora harmonicznego.Jdak
wiadomo, zupeinie ogdlnym warunkiem dopﬁszczajacym pojawienie sie¢ ab-
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|sorpeydnego przejécia dipolowego miedzy stanami opisywanymi funkejami
falowymi ¢, i ¢j, jest nieznikanie catki

Pij= f 0 U ¢ ax-dy-az (7.4)

przynajmniej dla jednej skladowej M {6]. Jesli ograniczymy sig do

przejs¢ absorpecyjnych, to M jest operatorem momentu dipolowego czgs-—
teczki. We wspdirzednych kartezjanskich

M= %' ey Ty (7.5)

przy czym e, 83 tadunkami wszystkich naladowanych czqsi';el;, z ktérych
jest zbudowana molekuta, a wigc elektronéw i jader, za$ T, sa wekto-
rami okreslajacymi ich potozenia, W przejsciu oscylacyjnym M ulega
zmianie, to znaczy &redni w czasie moment dipolowy w stanie wzbudzonym
jest imny, niZz w stanie podstawowym. Jesli wychylenia jgder z poozenia
réwnowagl sa niewielkie, to M mozna rozwingé w szereg Taylora wzgle-
dem wspoéirzednych, Rozwinieci/a takie dokonuje sie najczeéciej wzgledem
tzw. wspdirzednych normalnych &, dla ktérych energia potencjalna (7 2)
jest formg kwadratowa

l_ﬁ:'n_do+z<agl)€ +-—Z >1fm+

1 3

+3 (glag >§1§m§1+ 550 (7.6)
Podstawienie (7.6) do wyrazenia (7.4), okreslajacego prawdopodobienstwo
prze jécia miedzy stanami ¢ i i ¢j, prowadzi do sumy pewnej liczby wyra-
zéw, zaleznej od tego, na ktérym mie jscu zakonczymy szereg (7.6).Pierw-
szy wyraz tej sumy, zawierajgcy g_o, decyduje o natezeniu przejscia
czysto rotacyjnego, natoméast dla przejsé oscylacyjnych rowny jest ze-
ru wobec ortogonalnoSci funkcji falowych oscylatora harmonicznego. Dru-
gi wyraz rozwiniecia podstawiony do (7.4) okredla natezenie przejécia
oscylacyjnego w przyblizeniu oscylatora harmonicznego. Widzimy, zZe wa=—
runkiem niezerowej absorpcji Pj_j # 0 Jjest zmiana momentu dipolowego
przynajmniej wzdiuz jednej ze wspdirzednych normalnych. Sa to przejécia
tzw, podstawowe, wystepujace w zakresie od 100 do 3500 cm™ . CzZony
trzeci i dalsze, Swiadczace o "elektrycznej" anharmoniczno$ci oscylato-
ra, 'prowadzq do powstania nadtondéw i czgstosci kombinacyjnych, i to'w
sposdb niezalezny od wystepowania anharmoniczno$ci mechanicznej.
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Okreslenie natezenia przejécia absorpeyjnego wediug (7.4) wymaga
znajomoSei funkeji falowych stanu podstawowego i stanéw wzbudzonych, a
ponadto tekich trudno dostepnych szczegbiéw budowy czqstepzki, Jak
ksztatt krzywej energii potencjalnej wzdiuz kazdej wspdirzednej normal-
nej, potrzebmnych do okreslenia wspélezymmikéw rozwinigcia (7.6). W me- |
zultacie procedura rachunkowa zmierzajaca do obliczenia natezenia przej-
Sscia Jest niezwykle skomplikowana nawet dls czasteczki swoqunej i moze
byé zastosowana tylke w najprostezych przypadkach.

‘ Istniejs o wisle prostszy sposéb skorzystania = (7.4), polegajacy
na zastosowaniu symetrii, Trzsba chnak od razu powiedzieé, Ze orzecze-
nia wynikajace 'z zastosowania zasad. symetril upraszezaja wynik, jaki no~-
Zemy uzyska¢ na P;., do warbos gol O lub 1 - nig moZemy otrzymsd wartos—
el posredniclk. Nie wdajqe si¢ tu w sxczegbdiy zastosowania teorii grup w
apektroskopil ezgsteczki, ktdre Czytelnik moZe znaleszé w licdznych, po-
éwigconysh tej sprawie monografiach (zob. [1-5, 7]), zagadnienie mozna
przedstawié nastapujaco. ! £

~ Przypusémy, 2u interesuje nas czasteczka o okredlonej konfiguracji
‘Jader w stenie réwnowagl mechanicznej, tzn. gdy ndie w:ﬂ.c&::ﬁaje zadnych
drgan 1 gdy nle dzisZajg na nig Zadne sily, Konfiguracja ta nalszy do
okreslonej grupy pun:shbowej, sktadajacej sie z operacji symetrii R1 ’RZ'
veoy Rh tekich, Ze konfigurscja réwnowagowa czgsteczki jest ich nie-
zmiennikiem, Réwnlez keadrabty moduxdw funkeji falowych, opisujacych sta=
ny en.er.g;etyczne te] vzgateczki, muszy byé niezmiemnicze wzgledem opera-
cji symetrii tej gupy, poniewas przedstawiaja prawdopodobienstwa znale~
rienia elektrondéw w okreslonych elementach objetosci w przestrzeni, W
takim razie dla kazdej funkcji falowej .¢i, bedacej rozwigzaniem rdwna-
 nia Schrdingera dla tej czasteczkil, winien byé speiniony warunek

R (7 ¢3) = e (6F ¢5), (7.7
przy czym - jesli o i Jjest unormowana i opisuje niezdegenerowany stan
‘czgsteczki - - musi byé

S = A : (7:,8)

Zgtem w takim przypadku g
Be v, = %4, , (7.9)

J‘ua wszystkich operacji grupy (k = 1,2,...h).

Wnioskujemy z tego wyniku, 2e dziatanie kazdej operacji- symetr:.i
na funkeje falowa, opisujaca niezdegens:owany stan czasteczki, mozna
przedstawié liczba +1 lub =1, Dla funkecjii sbanu zdegenerdwanego wyni-
kiem dziakania ARki‘é moze byé 2 (stan dwukroinie zdegenerowany) lub 3
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(degeneracja trzykrotna), a nawet liczba urojema. Zbiér tyéﬁrliééb, ZWa:
ﬁych charaktergmii otrzymany kolejno dla wszystkich operac;ji Bk‘grupy,
nosi nazwg reprezentacji stanu. W zbiorze operacji symetrii, stsnowis
cym grupe, znajduje sig zawsze operacja toisamoSciowa, oznaczana przez
E. Jeéli wynikiem dzistania E na funkeje falowa jest charakter +1, to
odpowiednia reprezentacj¢ nazywa she¢ jednowymiarowa., Jesli wynikiem
jest 2, to reprezentacja nazywana jest dwuwymiarowa. Jedna z representaL
cji 5klada.§ie w kazdym przypadku z samych liezb +1 i nosi nazwe repra-
zentacji petnosymetrycznej, Rowniez wektorom i przesunieciom, a takze
obrotom, odpowiadajg odpowiednie reprezentacje. Jesli:dla przykladu ja—
ko operacje symetrii wybierzemy sobie trzy ptaszczyny odbicia, prosto-
padie odpowiednio do osi X,y,z, to zachowanie 8ig¢, na przykiad, skia-
dowej x wekbora przesunigcia wzgledem tych operacji mozemy opisaé cham
rakterami odpowiednio =1, +1, +1; zbidér tych liczb stamowi fragment Jed?
nej z reprezentacji grupy punktong D2h lub cah' Postepujqp wediug tej
umowy mozna wszystkim trzem czynnikom w (7.4) przypisaé reprezentacje.
Warunek nieznikania calki 'mozna wéwezas prmedstawié nastepujaco:

X3 (By) xu(Rk) Xj(Be) = 1 : (7.10)|

dka kazdego k = 1,2,4005h0 Xy (Rk) Jjest charakterem, stanowigcym licz-|
bowy wynik dziatania operacji ‘B, pa funkeje falowq ¢jf Jednoéé. zApna#
wej strony dla kazdego «k odpowiada zbiorowi charakteréw reprezentacji
peinosymetrycznej, poniewaz prawdopodobienstwo przejscia musi byé nie-.’
zmisnnik;em operacji symetrii grupy. (7.4) zastapilismy zatem wyraze-—
niem (7, 10); noszacym nazwe pierwotnej reguly wyboru. Okresla ona atany-
do jakich mozliwe jest przejécie ze stamu podsbtawowego, na zasadzie 8y-
metrii, a'wiee>prowadzi do wyniku "zero-jedynkowegp". Wobec tego nie ds-
je zadnych informacji odnoénie natezenia takiego przejécia., Poniewas
stan podstawowy jest z reguly peinosymetryczny, (7.10) prowadzi do wnios-
ku, Ze‘przejécia moga nastgpowaé do stambw, ktérym odpowiada reprezentas.
cja taka sama, jak jednej ze skiadowych momentu dipolowego M.

Koncowe wyniki takich rozwazan przedstawia sig najczeSciej w posta-
ci tabelarycznej. Niech jako przykléd‘posluzy tab., 7.1, w ktérej sa
przedstawione w sposéb skrocony zbiory charakterédw pogrupowane w repre=—
zentacje nieprzywiedlne (nieredukowalne), tj. nie dajace sig¢ przedsta-
wi¢ jako bardziej elementarne, dla grupy punkbtowej D2h' Reprezentac je
te symbolizuja dopuszczalne typy symetrii drgan czagsteczek o symebrii
Dy s DA przyktad benzenu podstawionego w poxozeniach para dwoma jednako-
wymi atomami chlorowca p—C6 XZ' Zgodnie z rzedem grupy h = 8, mozemy
mieé osiem réznych reprezentacji A Au, 500 B3 , wedXug podanych w
tabeli i ogdlnie przyjetych oznaczen. W tabeli podane sa jedynie charak-
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Typy symetrii i- liczba drgan akbtywnych w widmie podczerwieni
oraz w widmie Ramana cza,steczki p-0634X2

Typ Giobwne Typ Liczba drgai Akbywnosé
symetrii | elem. symetrii | ruchu normalnych w widmie
c c P IR Ramana
2% 2x z
Ag 1 4] - 6 na | p
Au 1 1 =1 - ) 2 / na |-fna
B1u 1 =1 .—1 TZ 5 e, | na
Baou -1 1 1 e 5 e, | na
B3u =1 -1 1 Ty ? & za
qu 1 =1 1 R, 2 na P
B28 =1 1 =1 Ry 1 na | dp
= - -1 R d;
BBg 1 1 v 3 na D
Objasnienia: = =
' r
0
PN 2
o 2 E—y  ukkad wspdirzednych
Z

o/’&\\?/’A\»

- drganie symetryczne wzgledem gibéwnych osi symebrii,

- drganie antysymetryczne wzgledem gioéwnych osi symetrii,

= drganie symetryczne wzgledem centrum symetrii,

- drganie antysymetryczne wzgledem centrum symetrii,

- trahslacja wséystkich atoméw czgsteczki w okreslonym kierunku,
rotacja wszystkich atoméw czqsteczﬁi wokéx okreélonej osi,

- drganie spolaryzowane,

= drganie niespolaryzowane,

| - drganie nieaktywne,

- wektor Jednostkowy w kierunku mpmentu przejscia.

|¢Dg'§-'d!‘d¥5ﬂmwb
1

tery giéwnych elementéw symetrii (generatoréw). Mozna je uzupeinié bez
‘trudu do peinego zbioru charakterdw kazdej reprezentacji. W tym celu
trzeba uzupeinié wpierw zbiéf operacji symetrii tej grupy

Gres sz’ Pys Coys Byy Py G4y Ee

E Jest tu symbolem operacai tozsamosci ktérea odpowiada macierz jedno-
stkewa. Kolejnosé wyst@powania operacji jest w zasadzie dowolna, ale
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raz ustalona musi byé dalej przestrzegana, Koriysvajac z zasad mnozenia
operacji widzimy, na przykiad, ze X(czy) = x(sz) ”M@2x)’ 1lub X(eaxl'

-XG%J = x(ci), itd. Wobec tego pekna reprezentacja odpowiadajaca na
przyktad typowi drgania BZu' stada sie z charakteréw

r(Bzu) s LR e A e I s Dl

Zbiorowi n atoméw porgczonych w czgsteczke rowniez odpowiada
zbioér charakterdw tworzgcy reprezentacje. W odrédznieniu od reprezenta- =
¢ji nieprzywiedlnych, podanych w tab. 7.1, jest to reprezemntacja rzedu
3n, a wiec przywiedlna (redukowalna). Sciste zasady tworzenia reprezen-
tacji czasteczek T mozna znalezé w przytoczonej literaturze ([1-5]), a
pokrétce przedstawiajg si¢ one nastepujaco.

Kazdemu z atoméw czgsteczki odpowiadaja 3 stopnie swobody, zatem
czasteczka jako zbidr o gboméw ma 3n stopni swobody ruchu. Z tej
liczby 3 sSg translacyjnymi stopniami swobody czasteczki jako catosci, a

- 3 (czasteczka nieliniowa) lub 2 (czgsteczka liniowa) odpowiadaja obro-
tom ciasteczki jako caxoScl; czestosé takich ruchédw wynosi zero. W re-
zultécie dla czasteczki nieliniowej mozemy mie¢ 3n - 6, a dla liniowej
3n - 5 wewngtrznych stopni swobody, ktérym odpowiadaja drgania normal-.
ne atoméw o okreélonych czestosciach, Jak konstruuje si¢ charaktery
wszystkich 3n rodzajow ruchu? Po. pierwsze, charakterem dla okreslone-—
go elementu symetrii jest wartos¢ sladu macierzy transformacji, odpowis
dajgcej'temu elementowi symetrii. A wiec dla plaszczyzny symetrii (nié—
zaleznie od jej orientacji) bedzié to liczba +1, dla dwukrotnej osi sy-
‘metrii -1, a dla centrum symetrii -3, Po wtoére, udziat w charakterach

" repreézentacji przywiedlnej maja tylko te atomy, ktére lezg na odpowied-

nich elementach symetrii, bowiem elementy macierzy transformacji dla in=
nych atoméw nie leza na przekagtnej macierzy, a wig¢c nie wnoszg udziaiu
do charakteru. Patrzgc na czgsteczke p—06H4X2 mozemy ratwo dostrzec,

ze W piaszczyzinie symetrii P_ lezag cztery atqmy, zatem dla Py charak-

tqr wyniesie x(P_) = 4. Na osi 02 oraz w centrum symetrii Ci nie :
ma natomiast Zadnego atomu, zatem ich charakterami beda x(czy) = X(ci)=
= 0, Na kazdy atom czasteczki przypada dla operacji tozsamosci E « cha=-
rakter 3, zatem %acznie bedziemy mieé x(E) = 36. Peiny zbidr charakte—
réw reprezentacji Pm przedstawia sig néstepujqc?= '

Pp = (0, =4, 12, 0, O, 4, O, 36).

Udziat jednego atomu w charakterach reprezentacji przywiedlnej dla ope-
racji symetrii, wystepujacych w spektroskopii molekularnej, zestawiony
jest w tab, 7.2. Mogiemy teraz zastanowié sig mnad sposobem Tozbicia I,
na reprezentacje nieprzywiedlne., Zadanie to moze by rozwigzane za pomo-
Fg jednego z fundamentalnych twierdzen teorii grup: liczba n(Ik) re—
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prezentacji nleredukowalnych rk, Jaka zawiera sig w danej reprezenta-
¢ji redukowalnej T m? wynosi

n(I‘k) = % qul XJ(PK) xj(rm)y k= 1)2,0-G’h1 3 (7.11)

Pravbse liia e

Udziat w charakterach reprezentacji prgyﬁiedlnej czasteczki I‘m
‘ jednego atomu, ktérego potozenie jest niezmiennicze wzgledem
operacji symetrii R. [2]

‘Operacje "wiasciwe" Operacje "niewasciwe" g
R XR R XR
ey = g =. (8" 1
{ 1 : 1
k FCB)1’ (03)3 0 i= :SZ) . -3
&3 Fc4)1, (C )5 1 F83)1, (85)3 -2
(06) 5 (06) 2 FS4) 5 FS4) =1
syt ? o

Ogdélnie

(cn)k 1 + 2 cos. (2% x/n) (sn)k =1 +2 cos (2%3/n)

przy czym h Jjest rzeden grupy. Jesli reprezentacje potraktujemy jako
wektory kolumnowe h wymiarowe, to (7,11) nie jest niczym innym, jai
1/h -czescia wartoéci-iloézynu skalarnego wektora Eﬁ 1 wektora Em

L : :
n(l) = 2 T v 1 (712)

(7.47) L (7.12) napisalis$my w pewnym uprosSzczenius zakladamy,ée'ﬁszysﬁ;
kie charakbtery sa liczbami rzeczywistymi,

Korzystajac z (7.12) sprébujmy obliczyé, ile mozemy mieé Sposobow
ruchu o symetrii, na przykiad, B2u w 12-atomowea 0zqsteczce 0 symetrii
D2h‘ Otrzymujemy

ngBZu)=-’81;o-4+12+0+0+4+0+36)=

Ostatnim wreszcie zadanienm jest uzyskanie odpowiedzi na pybanie,
do jekich reprezentacji nalezg ruchy o czéstodci zerowej. Skiadowe weli—
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tora momentu przejécia M transformuja si¢ tak, jak wspoéirzedne «X,¥,z.
Po dekonaniu niewielkich obliczen okaze sie, na przykkad, ze e

rix)= (=111-119-11)=T(8,).

Nastepnie, postepujac w ten sposdb, dochedzimy do wniosku, ze P(yg =
= \I(B u) oraz I(z) = P(B1u). Wyniki te oznaczaja jedmoczednie, Ze je-
dynie dozwolone przejScia absorpeyjne czasteczki o symetrii D2h misSza.
nalezeé do jednej z tych trzech veprezentacji: B2u (kierunek momentu
prze jécia wzdiuz osi x czasteczki), BBully ; Bqﬁllz (GabietiZ:4)%

Mozna pokazaé ([2]), ze reprezentacje odpowiadajace ruchom rotacyj-
pyn tworzy sie tak, jak dla iloczyndéw wapéirzgdnych. Dla obrotu,na przy-
kléd, wokéx o0Si ¥ btrzymamy

xk(Ry) = Xk(m) Xk(x) = xk(BEg)

dla kazdego ‘k = 1,2,..0,h.

Po odjeciu szesciu reprezentacji odpowiadajgcych ruchom o czestoé—
¢i mero znajdujemy w koncu, Ze liczba mozliwych w podczerwieni przejéé
absorpeyjnych wynosi 13, w tym 5 czestoéci nalezy do reprezentacji
B2u§|x, 5 jest typu BBu[ly oraz 3 sq typu Bqujlz !

I, =50 (By) +50(B; ) + 3T (B ).

¥

Warto przypomnieé w Tym miejscu, Ze zastosowana regula wyboru, o-
parta na pojeciu symetrii, pozwala wprawdzie przewidzieé liczbe drgaﬁ
normalnych kazdej cz,steczki i kierunki momentdéw przejscia w umownym u- :

. ktadzie wspéirzednych (wspbirzedne symetrii), lecz nic nie méwi o ich
czestosciach i natezeniu, Moze sig¢ wigc okazaé, ze nie kazde z dozwolo-
nych drgahn normalnych uda nam si¢ odszukaé¢ w widmie absorpcyjnym cz2gs=
tecziki,

Nie bedziemy si¢ tu zajmowali Szczegbdiowo problemem czestosci oraz
formy ruchu, poc ktéra rozumiemy zbidr przesunigé poszczegblnych atomdw
nalezacy do okreslonej wapélrzgdnej‘normalnej i opisywany ogbéinie przez
okreslony typ symetrii. Zagadnienie to nalezy do dynamiki czasteezki, a
jego przedstawienie mozna znalezé¢ w wielu monografiach poswigconych
spektroskopii czagteczlii swobodnej. Godna polecenia jest monografia Wil=

. sona, Leciusa i Crossa [2], a takie monografia Willi%a i Pryora [13], w
ktoérej w sposob ncwoczesny przedstawiono: dynamike ruchu w zwartym zapi-
sie, Rownania ruchdéw poszczegdlnych atoméw prowadza do typowego zagad-
nienia witasnego w Lym Sensie, e jego rozwigzanie pozwala osiaggngé dwa
cele.jéﬁnoczeénie. Pierwszym z nich jest wyznaczenie czestosgci wlasnyéh

. zbioru atomdéw, jakim jest czasteczka, drugim - wyznaczenie odpowiadaja-—
‘cych’im wektorow wiasnych, zawierajacych informacj¢ o kierunkach przesu-
-nied a%oméw, uczestniczgcych' w danym drganiu normalnym. Przykiady ta-
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Tabela Fless

Typy drgan normalnych (1/2 mozliwych) pochodnych benzenu,
para-C.H,-X,, wediug [17]

A. Drgania walencyjne

e 3 e

Ag : Ag B‘|g B2u B2u BBu
Kierunek zmian momentu dipolowego ‘
0 215i(0) (0] ey ey ey
B. Drgania deformacyjne pZaskie
B4 g Ag B’] g BBu B 2u BBu
(0] 0 0 e‘,?7 ey » ey

C., Drgania deformacyjne nieptaskie

syl :::f oy

=

! Pagis ) Bog B0 Biu u Biu
N

(0] : 0 0 e, e 0) e

kich rozwiggan dla czgsteczki o symetrii D, , zaczerpnigte z pracy [7]
podane sg w tab., 7.3. Realnosé uzyskanego zbioru czestoici = w rozu.mie-
niu jego zgodnosSci z dodwiadczeniem -~ zalezy w pierwszym rze¢dzie od zna-
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jomosci wielkoSci zmiemy six miedzyatohowych, przypédajqcth na JednbﬁtL
ke przesuniecia liniowego lub ne jedmostke zmiany kaba migdzy wigzania=
mi chemicznymi. Wspbéiczynniki te maja sens fizyczny analogiczny do
wspélczynnika liniowej sity sprezystej w (7.1) i decyduja réwniez o _
zmianie momentu dipolowego w czasie przejdcia optycznego (7.6) ,a wieo
maja zasadnicze znaczenie dla nabeZenia tego przejsicia.

Jesli spojrzeé na ktérykolwiek z “obrazkéw” w tab, 7.3, ilustruja-
cych drgania normalne, to spostrzeiemy; Ze w ruthu uczestniczy pewna

liczba atoméw tworzgcych pary (oscylatory). Wychylenia atoméw w obrebiq
kazdej pary maja okreslong wartosé i kierumek, zgodnie z podang syme-
tria, oraz - zgodnie z definicjg drgania normalnego - majq wszystkie te
.gamg czestosé drgan., Faza drgan kazdego z atoméw nie ulega zatem zmia-— !
' nie z bilegiem czasu.

Byé moze, iz spektroskopia molekularna nie eieszylaby gie¢ takim
zainteresowaniem i w1elostronnoécig zastosowah, gdyby précz drgah nor-
malnych nie istnialy jeszcze tak zwane ozgstosci charakterystyczne, Mé-
wimy o nich wéwczas, gdy czasteczka zawiera jeden samotny oscylator, na
przykiad grupe =0H lub -NHe, ktéry zatem nie moze ulegaé narzuconemu
przez symetrie sprzezeniu z innymi identycznymi oscylatorami w czastecz=
ce. Jesli w dodatku wystepuje znaczna asymetria miedzy masg kazdego
atoméw grupy 1 masg reszty czasteczki, to z dobrym przybliZeniem mozna
uwazaé, ze 'w drganiu charakterystycznym uczestnicza w zasadzie tylko
dwa atomy. W konsekwencji czgstosé charakterystyczna oscylatora jest w
znacznym stopniu niezalezna od tego, w jekiej czasteczce oscylator ten
wystepuje. Dalej ombébwimy te teze dokladniej. Zgodnie z ogdlnymi zasada-—
mi dla oscylatora typu —XH mamy 32 = 3 = 3 drgania charakterystyczne;
jedno z nich bedzie odpowiadaé periodycznej zmianie dtugoici wigzania
X-H, dwa pozostate polegaé bedg ma zginaniu tego wigzania (drgania de-
formacyjne). Dla grupy takiej Jjak —Nﬁa bedziemy mieli 6 czéstosci cha-
rakberystycznych, W celu znalezienia ich symetrii moizna rozumowaé ana-
logicznie jak dla calej czasteczki, lecz nalezy zastosowaé pojgcie lo=
kalnej grupy punktowej symetrii icav). Niektore z czebciej spotykanych
czestosci charakterystycznych podane sg w tabe 7.4 {wediug [18] ). Ist-
nieja réwniez dziela specjalistyczne, podwigcome spektroskopii okreslo-
nej grupy zwiazkéw, ma przykiad ugrupowaniom amidowym o] lub zwigzkom
koordynacyjnym [11].

7.2. Spektroskopia nadtondéw i czestosci kombinacyjnych

Prze jdziemy z kolei do okre$lenia symetrii nadtonéw, ktéra w aaklé
8posoéb winna wynikaé ze znajomoéc1 symetrii jednokwantowych przejsc podr

/
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Czgseiej spotykane czgstodcl charakterystyczme oscylatoréw dwu-
i tréjatomowych ekbywne w podczerwieni, zaczerpnigte z [18]

Tabela

czestosedi zalesnie od energii wigzania,

Zgkres liczb
falowych Grupa
em
A Drgania waleneyjne
3550 ~ 3700 o1}
2950 ~(3600) -OH, -NE2)
3300 = 3500 -8H,
| 2670 -'2700 ~0D
2750 - 3300 ~CH
1620 = 1830 =0=0
1640 ~ 1760 ~C=N, -C=C
1480 - 1560 KO,
900 - 1300 =C=C~, —C-N=-
10Ct) = 1400 ~C—F
600 - 850 -C~C1
5(J. - 750 ~C=Br
B, Drgania deformacyjne
1480 -~ 1640, 700 = 900 ~NH
1300 - 1480, 600 = 900 ~CH
1200 ~ 1450 ~CH
1580 - 1650 -NH,
1340 - 1380, 830 = 920 =NO,

_“Cies’coéé grupy swobodne].

’w grupach uezestniczacych w wig=
zaniu wodorowym wystepuje obnizenie tej

74

#stawowych, W dalszym ciggu bedziemy sie zajmowad czqstecqu swobodng, a
wige tek zwanym problemem drgah welmetrznych.
' Zasady symetrii wprowadzil do prz:jsé kombinacyjnych i nadtonéw po
raz pierwszy Tisza [19], .8 przejrzyste przedstawienie tego problemu moz=
na znalezé na przykiad w [2] Zauwazmy, %o metody teorii grup sa zupel-
nie ogélne, a wige winny si¢ stosowad do pezioméw czy przejsé energe—
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tycznych nie tylko oscylatora harmonicznego, lecz takze oscylatora an:
harmonicznego. Wynika to z zasady superpozyecji: Jesli 4’ oznacza jed=
na z peinego zbioru funkeji falowych oscylatora harmonicznego, to ka.fdaq
Punkecje ¢ , opisujgca oscylator anharmonicz.ny, mozna przedstawié w pofi-
taci liniowej kombinacji 4'

Z 8, §yr (7.43)]

co uzasadnia stosowanie sig¢ réwniez ¥ do tych samych zasad symetrii. Z
kelei funkcje falowa opisujaca wzbudzony stan Vi elementarnego oscylal-
' tora harmonicznego, ktéremu odpowiada wspdirzgdna normalna Q’k' mozemny
 zapisaé w nastepujacy sposéb [2]s

-382 ‘
‘¢(vk, ék) = N(Vk)e . E(Vk, “;k).. (7.14):

przy czym N(vk) jest czynnikiem normalizacyjnym, zas H(vk, §k) wie=
~ lomianem Hermitte ‘a stopnia Ve Zmienna Ek odgrywa rolé¢ pomocnicza

1/2 =2

5 #B=V
gk =Yy Q’k' Yk = 4_'1'1——JL ) : (Z<05)
zas V. Jest liniows czgstoscia drgan. Jak wiadomo ([21), wielomian
Hermitte ‘a Jest funkcja albo wyZgcznie parzystych poteg Qk (dla Vi
parzystego), albo wyiacznie nieparzystych poteg Qk (dla vy niepa-
rzystego) W szczegdlnosbci

mp, =) =, A e ) =2z, T2,k ) aia gl e,

W takim razie funkcja falowa stanu podstawowego oscylatora

(0, &) = N(0) exp (-%éi),

Jest peinosgmetryczna, zaé funkecja jednokwantowego stanu wzbudzonego

i 12y
¢(11 gk) = N(']) exp ("' > gk).Qk
transformuje sig pod wpiywem operacji symetrii tak, jak wspéirzedna Q,k-
Ten wazny wniosek mozna fatwo uogélnié na czasteczke, ktora opisujemy
zbiorem wspoirzednich normalnych Q’l’ ""Qr' Funkcje falowg stanu pod-
Stawowego mozemy zapisaé symbolicznie w nastepujacy sSposodb:

W0, 6050, TE. e N S NG S Co)e Gleni i F (7.16)
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gdzie
. 2
GlEyyeeesBp) =0 > (=229, (7.17)
; =1 3

Stan ten jest, oczywiscie, réwniez peinosymetryczny, poniewaz (7.17)
Jest funkejg niezmienniczg wzgledem wszystkich operacji symetrii danej
grupy punktowej. Jesli teraz jeko stan wzbudzony wWybierzemy stan dwu-
kwantowy z Vi = 2, to funkcja tego stanu w symbolicznym zapisie bedzie
miata postaé

W10, 000250000, Eqp0e ) = H(0,00.2,000)G(Eq 00 B )s(252 ~ 2).

(7.18)
Jest widoczne, ze (7.18) odpowiada rdéwnies reprezentacja peinosymetrycz-
na, poniewaz H(2, 'Ek) nie ulega zmisnie pod wplywem operacji s?metril.
Jesli czasteczka ma w stanie podstawowym badana ju’ przez nas symetrie
'Dah' to (7.18) wskazuje, Ze wszystkie parzyste nadbtony beda zabronione,
poniewaz odpowiada im pelnosymetryczna reprezentacja Ag. Dozwolone sa
natomiast nadtony nieparzystego stopnia, poniewaz

R{H (2041, ;k)} H(1 ‘31;’} (7.19)

ezyli wynik dziatania operacji R na wielomian Hermitte ‘a stopnia nie-
prygystego jest taki sam, Jjak na wielomi'an stopnia pierwszego., Przedsta=
wiona tu reguta odnosi si¢ do nadtonéw, ktdére odpowiadaja niezdegenerow
‘wanym stanom wzbudzonym czgsteczki,

Analogiczng regulé mozemy podaé dla przej$¢ wzbudzonych typu, na
przyktad, ’vd’ # 0, v, # 0, ktérym odpowiadaja czestosSci kombinacyjnes -
Wybierajgc konkretnie vd- =1, V=1, mozemy napisaé funkcj¢ falowa
dla stanu wzbudzonego “nastepujacej postacis

4) (0,-..1,...1,...3.‘,...Q;.) = N(O,o.o',‘,oo."’.odoo)’G(gqgooch)'Q-'Qk'

(7.20)
W tym przypadku funkcja falowa trans:f.’ormu;]e sie tak, jak iloczyn wspbx-
rzednych, Josli zatem wspdirzedne j Q;] odpowiada reprezentacja I';]' a
wspéirzedne . Qk reprezentacja I‘k, to czestosci kombinacy,]ne;j odpowia=
daé bedzie reprezentacja I'

I'e= I‘J@P ° (7.21)

.f® oznacza tu iloczyn prosty obu reprezentacji. Dziatania te wykonujemy
w ten sposbb, ze charakter .'PJ dla operacji R; mnozymy przez charak-
ter reprezentac ji I‘k dla tej samej operacji; wynik jest charakterem '
reprezentacji Te dla operacji Ri
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Xe(Ry) = x;5(R;)-2% (By), 4= 1s2»-->-}h- (7.22)

W przypadku niezdegenerowanym zawsze mamy trzy dopuszczalne kierunki
momentu przejscia, pdpowiednio réwnolegte do osi x,y,i uktadu wspéi-
rzgdnych, zwigzanych szbtywno z czgsteczkd. Nadtony i czgstoéci kombina-
cyjne mozemy wiec skrétowo zapisywaé za pomoca tréjki liczb (1 m n)jdla
przyktadu (O 2 O) oznacza pierwszy nadton jakiejkolwiek czgstosci, kto-
rej odpowiada przejécie o symetrii B3u i moment przejécia réwnolegly
do Y. Dla takiej czasteczki widzimy z (7.21), ze, na przyktad, czes-
to4é kombinacyjna (1 1 O) jest dozwolona, poniewaz I'(By,) * I‘( ) =
= P(B,Iu). Co wigcej, zatwo dostrzec, ze w widmie czestosci kombmacya--
n;ych moze pojawié sie udziat przeji¢ zabronionych jako przejécia jedno-
kwantowe, Mamy, na przyktad,

T (Agl® I'{Byy) =T (Byy),

a wige takiemu przejéciu towarzyszy wzbudzenie drgania pelnosymetryczne-
g0, zabronlonego w podczerwieni jako przejscie O-—- 1, :

Okreslenie symetrii nadtonu jest troche bardziej skomplikowane, jeé-
1i przejécie podstawowe a zatem i sStan wzbudzony wykazuja degeneracje.
W takim przypadku stanowi wzbudzonemu v > 41 odpowiada pewna reprezen=—
tacja redukowalna, Jesli czestosé podstawowa jest podwdjnie zdegenerowa=
na, to charaktery reprezentacji, odpowiadajgcej przejéciu O—-vV moz-
na obliczyé z wzoru [2]

xy®) = 3x I,y 8) + 2@}, (7.23)

przy czym <V oznacza liczbe kwantowg .stanu wzbudzonego, R kolejno kaze
da operacj¢ symetrii grupy punktowej, zas RY Jest v+ta potega tej ope=
racji. Uwazamy przy tym, ze

x,](R) Xx(R), X,(R)=1 oraz x_,(R) = 0. (7.24)

Przy zachowaniu tych samych oznaczen charaktery reprezentacji, odpowia-
dajacej nadtonowi trzykrotnie zdegenerowanej czestosci podstawowej, ob-
liczamy z zaleznoSci :

’“v(R) 3 (ZX(R)X SEE —{ @) - [x®] } A x(R"9

Zastosowanie tych wzordw wyjasnimy na konkretnym przykiadzie. Gru-
pa punktowa ‘D nie jest do tego celu odpowiednia, poniewaz wszystkie
Jed reprezentacae 83 Jjednowymiarowe, zatem czestosci podstawowe i nadto-
ny nie wykazuja degeneracji. Wybierzmy wigc dla przykiadu grupg Dq, : o=
mego rzedu (h = 8), przedstawiona skrbétowo w tab. 7.5. Précz jednowymia=
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T‘a bela 75

Reprezentacje nieprzywiedlne A,B,E oraz reprezentacje
nadtonéw Xyr W grupie punktowe]j D4

P 2 ; "
R B 20, 08 =C, ioa 2cy
A, i 1 1 1
A, 4 i 1. -1 -1
B, 1 e 1 1 -1
B, 1 1 -1 : 1
E YA o) -2 0 ' 0
R? Eoc] E E E
3 (4 1]
R4 : El c, c; cs
R E E E E B
(R) 2 0 =2 0 0
(E2) 2 -2 2 2 2
[R2) l2.i0 o 0 0
iyt 2 2 2
2 3 =1 _ 3 1 1- A1 + 31 + B2
3 4 0 =Lt 0 0 2ZE
4 SGas 5 1,01 24 ¥ A +By + B,

rowych reprezentacji Aq, 29 B1 al, 32 mamy jedna dwuwymiarowa typu E.
Zajmiemy si¢ symetria nadtonéw V=0-—»v=2, 0—310—4 cz¢s-
toéci podstawowej o takiea symetrli. Przed zastosowaniem wzoru (7.23)
musimy wpierw znalezé pperacae, odpowiadajace potegom wszystkich opera-
cji grupy, a wige Rz, R” i R"., Zadanie to nie nastrecza szczegdlnych
trudnoéci, réwniez znalezienie charakterodw X (RY) na podstawie X(R)
nie wymaga komentarza. FPo tych przygotowaniach mozna juz obliczy¢ cha-

raktery reprezentacji X, (R), Widzimy, Ze dla przejécia C—=v otrzymu— 2

je sie reprezentacje (v+1) wymiarowg. Dokonujac rozkiadu wediug (? 12)

otrzymujemy, na przyktad, ze : i

I {2) = T (Ag) + I(B;) + T(B,).

Sens fizyczny -tekiego rozkiadu polega na tym, zZe zdegenerowany poziom
wzbudzony nadtonu ulega rozszczepieniu na 3 poziomy wskutek drobnych
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réznic energili, towarzyszacych anhar}gonicznoéci. Rozs'zczepienie te jest
Jednak na ogdi make i rzadko kie\dy udaje sie dla przea'écia O~—=2 zaob-
serwowaé ‘trzy osobme czestosci. Inberesujacy jest przy tym fakt, Ze an-
harmonicznosé znosi degeneracjes wszystkie trzy sktadowe reprezentac je
sq jednowymiarowe. Podobne wtasnosci ma reprezentacja T (4), natoriast
IP(3) romzszczepia sig¢ na dwie reprezentacje dwuwymiarowe., _

Symetri¢ czestosci kombinacyjnych, niezaleznie od tego, cazy uczest-
nicza w nich poziomy energetyczne zdegenerowane czy nie, mozna znalesé
wedtug (7.12). Roszerzenie téj zasady dla trzech czynnikéw mozna zapi;
saé w nastepujacy sposoébs

r,=POROm, (7.26)

Prze jdzmy obecnie do przedyskutowania emergii i czestosci drgan oss
cylatora, W przyblizeniu d.rgan harmonicznych energia catkowita oscylato-
ra wyraza si¢ dobrze znanym wzorem

E(v) = h v (v +3), (7.27)

przy czym V = 0,1,2,... Jest liczba kwantowa. Ponlewas przejécia ener-
getyczne moga zachodzié tylko miedzy sgsiednimi stanami energetycznymi,
co odpowiada zmianie liczby kwantowej o X1, mozliwa do zaabsorbowania

lub emisji energia wynosi

E(v+1) -E(v) =hv,, (7.28)

niezaleznie od poczatkowego stanu energetycznego., Widmo absorpeyjne ta=—
kiego oscylatora skiada si¢ wiec z jednej tylko linii, ktoérej odpowiada
liczba falowa

Y, = v /c. (7.29)

Nawiasem méwigc, rzadko mamy sposobnosé obserwowaé przejécie absorpeyj-
ne 1—= 2, a tym bardziej 2——3, itd. Aby pojawila si¢ taka linia, pewe
;na liczba oscylatoréw musi si¢ znalezé w stanie o energii E(1) = g- hcﬁo
E(2) = g hc'ﬁo, etc., Jesli zazadamy, by przy liczbie falowej przejécia
V= 1000 em~1 tylko 10% oscylatoréw miazo energie E(1), to zgodnie z
rozktadem statystycznym Maxwella stan ten moze byé osiagniety w tempera=
turze blisko 1000 K - nie kazdy oscylator "wytrzyma" taka temperatureg.
Jeéli w rozwinieciu energii potencjalnej (7.3) zachowamy réwniez
czwarty cziomn, rozwigzanie réwnania Schrbdingera przy ‘takim potencjale
prowadzi do wyrazenia na zbidér dozwolonych pozioméw energetycznych oscy-
latora anharmonicznego

E(v) = h "o(v + %) -xh vo(v + %)2. : (7.30)



272

Uwzglednienie cziondw rzedu wyzszego niz czwarty prowadzi do pojawienia
sie dalszych wyrazdéw anharmonicznych w (7.30); peiniejsze rozwiniecie
jest jednak raczej rzadko stosowane., W miejsce energii stanu energetycz-
nego E(v), wyrazonej w dsulach, wprowadza sieg zwykie w spektroskopii
wielkosé G(v) = E(v)/hc, wyrazona w em i do niej proporcjonalng.
Oznaczajac vo/c przez ., moZemy (7.30) napisaé w postaci

1 6(v) =0 (v + ) - oz (v + D7 (7.31)

"’e jest wielkoécia raéhunkowa, odpowiadajgca :Ejkcyjnej liczbie falo=-

wej przejécia O0——1 dla Xo = (0} X _ Jest liczba bezwymiarowa i nosi
nazwe wspélczymu.ka, an.harmonicznoéci. Wsekaznik e oznacza, ze wielkos-—
ci odnosimy do minimum krzywej energii potencjalnej, a wieé do pozoze-—
nia réwnowagi rg (rysie 7)) X, 1 wg mozemy w zasadzie wyznaczyé z
obserwowanych liczb falowych przegéé 0——1 i 0——2 ‘oscylatora.

W zapisie (7.32) péznica G(v+1) = G(v) wyraza wprost liczbe falee-
wa linii odpowiadajacej przejéciu oscylatora miedzy sgsiednimi stanami

v, v+,
' G(v41) = G(v) =w [1 ~-2x (v+1]] . (7.32)

Wzér (7.30) wskazuje, Ze poziomy energetyczne oscylatora anharmoniczne-
go nie sg réwnoodlegle, lecz zageszczaja sie w poblizu pewnej wartosci
emrgii, oznaczanej wzgledem minimum potencjaiu litera De i nagywanej
energia wigzania czasteczki (w okre$lonym stanie elektronowym (rys.7.1))
‘D jest emergia dysocjacji ¢zasteczki na swobodne atomy i rézni sie od

0

Do energia stanu podstawowego (v 0)

D = ke {&(e) - 6(0]} = D, - ne &(0). (7.33)

(o]

Rozwiazanie réwnania SchrBdingera dla potencjatu anharmonicznego
prowadzi nie tylko do zmiany energii pozioméw dozwolonych, lecz takze
do modyfikacji reguty wyboru. Oprécz przejé¢ v-——vil, takich samych
Jak dla oscylatora-harmonicznego, mozliwe Sg réwniez przejécia v ——viZ,
v——vi3, etc., prowadzgce do nadtondéw. Przy jednoczesnej zmianie dwoch
lub wiecej liczb kwantowych nalezgcych do dwéch lub wigcej-rdéznych
wspotrzednych noi'maln,ych, pojawiaja si¢ czgstosci kombinacyjne.. Przejé—
ciu O—»v towarzyszy linia absorpcyjna o liczbie falowej

G(v) = 6(0) = ¥(o—v) = va_ {1 -x,(v+ 1} (7.34)

Anharmonicznosé powoduje, ze czestosé takiego przejécia jest mniejsza
niz v 0. Poniewaz zwykle spotykane wspoiczynnili anharmonicznosci
mieszczg Si¢ w granicach
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0,01 < x, < 0,05 ' (7.35)

réznica ta wynosi kilka procent .. Czestobci kombinacyjne, zwlaszcza
jednokwantowe kombinacje czgstosci podstawowych,, 84 znacznie mniej an-
, harmoniczne tak, Ze z zupeinie dobrym przyblizeniem mozemy napisaé

ol = {1 42 £0[3) ¢ .,  (7.36)

ulr)

Rys. 7 A% Krzywa energii potencjalnej i stany energetyczne
oscylatora anharmonicznego

Przyklad zbioru stanéw energetycznych i liczb falowych ©V (O—-- v) odpo-
wiadajgeych drgamom oscylatoréw OH i OD, wchodzgcych odpow:.ed.n:.o w
sklad czasteczek CH3OH d; CHEOD, podany jest w tab. 7.6, wedtug danych z
[20]7. Na podstawie tych informacji obliczono x, oraz® , Zgodnie z
{7.34)iloraz V{0 —=v)/v winien byé¢ liniowa funkcja v, co pokazane
jest na rys. 7.2. Uzyskanieé takiej zalezno$ci dla zbioru nadtondéw obser-
 wowanych doéwiadczalnie jest gwarancja, Ze czestosci przypisane zostaly

prawidtowo. Z obu statych w, mozemy obliczyé, ze

: wG(OH): 2851 _ 4 370,
me(OD) 2810

Z drugiej strony czestosé drgan prostego oscylatora, skiadajacego sSig z '
dwoch atombéw o skonczonych masach m, i m,, potaczonych wigzaniem che-
miczm'mqyawSpélczynnjku liniowej sity sprezystej réwnym k, wynosiw =
=. (k/'p'} ’ :
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Tabela 7.6

Zbidér stanbw energetycznych i liczby falowych drgah oscylato§6w OH i OD
w czgsteczkach odpowiednio CHgOH i CH3OD [20], em™

Gm CH0H CH,0D
G(0) 1904 1394
G(1) 5585 4113
G(2) 9095 6742
G(3) 12435 9279
G(4) 15604 11726
G(5) 18603 14083
T 0,0221 0,0161
o, 3851 2810
V(0—1) 3681 2719
V(0—=2) 7191 5348
V(0—3) 10531 7875
V(0 —=4) 13700 10332
V{0—=5) 16699 12689

gdzie
D m§1 + m2 (7.37)

jest masa zredukowang uktadu. Przyjmujac, ze k jest takie samo dla
obu oscylatoréw, otrzymujemy }

me(OH) i “OD 1/2 (}i&)1/2 1,37
we(0D) ~ \koy i o

Zupeinie dobra zgodnos¢ obu liczb éwiadezy o tym, Ze w drgeniu uczestni-
czg tylko atomy H lub D i atom O, tj. reszte czqsteczkl“’”H-} moZemy
poming¢. Przyktad ten stanow1 ilustracj¢ dobrze izolowanej czestoscl
charakterystycznej.

Krzywa energii potencjalnej podana na rys. 7.1 mozna réwniez przed-
stawié analitycznie. Najczegsciej uzywanym przybllﬁenlem tej krzywej
jest funkcja Morse ‘a

Viz) = D, {1'— exp [— a{r - re)]}2 (7.38)
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Rys. 7.2. Ilustracja liniouej zaleinosci Vio—v)/v od v dla
kole jnych nadtonéw v (OH) i ¥ (0D), wedlug danych [20]

zawierajace trzy parametry: poozenie réwnowagi oscylatora r, w mini-
mum energii potencjalnej, energi¢ wigzania czgsteczki De i parametr a.
Romwiazanie réwnania SchrBdingera dla potencjatu (7.33) prowadzi w praye
blizeniu matych amplitud do nastgpujacego wyrazenia na energig oscylato-
' ra anharmonicznego [21]

2
w ~he 2
Gluly = o (v +2) - =— (v+ ). (7.39)
€ 2 4De 2 ;

Po pordwnaniu wspodcezynnikéw drugiego cztonu w (7.39) i (7.31) wi-
dzimy, Ze

D = . (704‘0)

17.40) pozwala ocenié energig wigzania obu atomébw, btworzicych oscylator,
z danych spektrosckopowych: czystodci harmonicznej W, i wspétezyunika
anharmnonicznego X o Korzystajse z danych tabeli 7.1 mozemy obliczyé,
Ze :

D_{OHn} = D_(CD) = 521 kJ/mol.
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Rzeczywista, Srednia wartosé energii wiazania OH \ﬁ 0 X jési: ;]ed.nak L o=
che miejsza i wynosi [22]

Do (0H) gy, = 458 kJI/mol.

Réznica ta nie jest przypadkowa. Wzér (7.40) prowadzi = reguty do zawy-
zonych wartoSci D, co &wiadezy o tym, ze (7.38) Jedynie w przyblize—
- niu opisuje krzywg energil potencjalnej oscylators anharmomicznego. Mi-
mo to przybliienié takie Jjest czesbto bardzo uiybteczune, a potrzebng w

nim statqa a mozna obliczyé réwnies z danyeh spektroskopowych

/e
a=u o 1:(]25‘:) : (7.44)

Podstawien.:te liczbowych wartoéci dla wigzania OH prowadzi do wyniku
a(0H) = 2,181:10% em™1,

7'.3. Bezodrzutowa spektroskopia wiclofotonowa

Wspbiezesne wprowadzenie lasera ddprowadzilo do licznych interesu-
Jacych eksperymentéw nad absorpcja wielofobonows w obszarze optycznym.

a b
Rog

E

1

A
Eellicia o
A
ﬂ“’01
EO 5 A EO

Rys. 7.3. Schemat dwufotonowego przejécia w cza?

i dwufotonowego przejscia bez odrzutu 'é

eczce (a),
)

Méwimy o niej wtedy, gdy pochXonigciu ulegaja dwa lub wi¢cej fobtondéw o
Jednakowej energii rdéwnoczesnie. Ten rodzaj absorpcji nalezy odrdznid
od zwykZej absorpcji dwufotonowej, ktéra polega na kolejnym pochionie-
ciu dwéch kwantdw energii, Situacje taka mamy przedstawions na rys.7.3a.
Po pochlonigciu kwantu ‘hwm uklad przechodzi do stanu wzbudzone—
20 0 energii E'I’ skad moze pruzejsé do E‘2 po pochlonigeiu nast¢pneso
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kwantu energii 4 Wqos Jesli ten drugl proces "zastanie® obiekt kwanto-
wy w stanie wzbudzonym Eq. W tym pgragrafie Wi = 21tvik oznaczaé be=
dzie czestosé katows przejscis 8bso} cyjpego, za8 4 = h/2n; w W nosi
pazwe czestosci rezonansowej. Ukiad|moZe réwnieZ przejsé od razu ze stas’
nu podstawowego do atanu E2 przezlpocgloniecie dwéch fobondéw, przy
czym taka absorpcja moze byé badanal pray zestosowaniu gwykiej lampy rte-
ciowej. Istotune jest to, ze w zwykie] ebsorpcji multifotonowej istnieja
wszystkie poérednie poziomy emergetyczne ukladu kwantowego potrzebne do
grealizowania wszystkich skiadowych przeJ&é jednofotonowych. Natomiast
w procesie bezodrzubowej absorpcji multlﬂotonowea nie bierze udzialu za-
den posredni rzeczywisty poziom energetyczny (rys. 7.3b). W celu wzbu-
dzenia takie]j absorpcji potrzebne jest uzycie lasera strojonego, ponie-
waz czestosé przejscia (E1 - Eo)/aﬁ tylko przypadkowo bedzie odpowia-
daé czestodcl lasera atomowego. Pow;ét z E; do stanu podstawowego od-
powlada emisji promieniowania o czgstosci E,/%, znacznie réznigcej sie
od czestoéci wzbudzenia, co utatwia rozpoznanie tej emisji oraz iloscio-
we jej zbadanie., Jedmoczesna emisja dwéch jednskowych fotondw powoduje
sniesienie odrzubu czasteszki, dzigki czemu bardzo znacznemu podwyzsze—
niu ulegé zdolnoéé rozdzielcza eksperymentuj poszerzenie Dopplera w zwy-
kxej ébsorpcji Jest 100-1000 razy wigksze od naturalnej szerokosci li-
nii gbsorpcyjneg.

Zeby méc zastosowaé ten sposéb wzbudzania w gpektroskopii wysokie j
1ozdzielczosci trzeba dysponowaé laserem, ktdérego wigzka ma szerokosé
gpektralna co najwyzej taka, jak naturalna szerokodé 1linii, to:-jest co
najwyzej 10 MHz. W tym celu laser musi pracowaé na pojedynczym modusie °
podtuznym. Jesli tylko spektralna szerokosé wigzki nie jest zbyt duZa,'
to moc lasera moze byé niewielka, zwiaszcza w absorpcji rezonansowej.
Miedzy stanem podstawowym a rezonansowym przejscia zachodza e wszyst-
kich czgsteczkach, co oznacza duze nabegzenie sygnaiu, Obllczono, ze w
takim przypadku do obserwacji absorpcji wystarcza wzbudzenie o mocy
1 kil/en”,

; Bezodrzutowe przejscia absorpcyjne mozliwe sg, oczywiscie,zardwno
w obszarze nadfioletowym, jak i w podczerwieni. Mozliwo$é ich wystapie-—
nia nie zalezy roéwniez od tego, czy interesujaca nas czasteczka jest w
fazie gazowej, czy tez we wngtrazu krysztalu. Doéwiadczenia, wykonane w
clqgu ostatnich dziesigciu lat dotycza jedmak wqucznle czgsteczki sSwo-
bodnej, aczkolwiek nie ulega watpliwoéci, Ze ich wykonanie dla stanu
krystalidznego byXoby nadzwyczaj interesujace. Dalszg dyskusje absorp-
cji bezodrzutowej oprzemy na znakomitym opracowaniu tego tematu przez
Grynberga i Cagnaca [23], przy czyﬁ ograniczymy si¢ do absorpcji dwufo—
tonowej. :
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; Dopp.erowskie poszerzenie linii absorpcyjnej spowodowane jest pred-
kosSciami termicznymi obiektéw absorbujacych (atom, czasteczka). Jesli
¥V Jjest predkoscia obiektu, a k wektorem f£alowym padajacej man fali
elektromagnetycznej, to przesuniecie Dopplera 1-go rzedu wynosi k-V,
Dla fali padajacej z kierunku przeciwnego przesunigcie to wynosi -k.V.
Ta bardzo wazna wiasnosé jest wykorzystana w absorpeji dwufotonowe j.
Przypﬁéémy, ze obiekt mikroskopowy znajduje si¢ w polu stojacej Ffali
elektromagnetycznej o czestosci w ; fale taks mozna otrzymaé, na przy-
kXad, przez odbicie Swiatta lasera w lustrze. Jesli obiekt zaabsorbuje
jednoczeénie po jednym kwancie z kazdego ciggu falowego, to jego ener-
gia zmieni sie o wielkoéé (rys. 7.3b)

Eq; - Ey = Blow + kV) + A(w - k¥V) = 2h0. (7.42)

Ucdziat pre¢dkosci obiektu w zmianie energii znika. Oznacza to, Ze w
przejsciu rezonansowym czgsteczka absorbuje t¢ sama czestosé, niezalez-
nie od swej predkosgci, Szerokosé linii rezonansowej w tych warunkach
teoretyczrie jest rdéwna naturalnej szerokosci linii. Fksperymentalnie
efelkc ter zauwazyli po raz pierwszy Wasilenko i inni [24], zaé Cagnac i .
inni [25] opracowali teorig efektu i rozszerzyli ja na przejscia wielo-
fotonowe,

Warunek {7.42) tatwo uogdinié do przejscia wielofotonowego. Niech
czgsteczka o prediceéci ¥ 6ddzialuje z kilkoma polami falowymi, przy
czym kazdemu z nich odpowiada jeden z wektorow falowych k +« Diugosci
wszystkich Ei sy takie same, jedynie Jkierunki 83 roZne. Przesuniecle
Dopplera 1-go rzedu dla kazdej fali wynosi giz. Je£li doprowadzimy do
speinienia warunku ‘

Z k =0, : (7.43)

—
to jednoczesne pochloﬁigcie przez czasteczkg n fotondw roéwniez odbe-—
dzie si¢ bez odrzutu.

Warunck (7.47) mozemy interpretowaé jako zasad¢ zachowania pedu w
- zderzeniu czgstec zka~fotony, przy czym kazdemu fotonowi towarzyszy ped
f k.. Ponicwes w takim zderzeniu energia kinetyczna czasteczki nie nle-
ga Emianio, erergia wszystkich fotonéw powoduje zmian, jej enercii we-
wngtrzne j *

Z tiok., (7.44)

0 sze“ohoici 1iinii w zbscrpeji bezodrzubowe; decyduje gje; szerokodé na-
turalina, wynikajgca z zasady niepewnosci Heisenberga, oraz “efelh Dopplec-
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Rys. 7.4. Esztait linii absorpcyjnej
w spektroskopii. bezodrzutowej (sche-
matycznie). Iy jest naturalna szero-
kosciag linii (ksztalt Lorentza), Iy
sg skrzydtami.poszerzenia dopplerow=-
skiego (ksztait Gaussa)
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Ta 2-go rzgdu, Jest on proporcjo-
nalny do (E1 - Eo) V2/2c2 i ze
wzgledu na malg wartose V/c jest
niemierzalnie maiy, :
Linia rezonansowa w absorp-
cji dwufotonowej bez odrzutu wine
na mieé ksztait krzywej Lorentza.
Précz takiej linii powinny row-
niez wystapié skrzydia o profilu
gaussowskim (rys., 7.4), wynikaja=
ce z poszerzénia Dopplera.Ksztalt
akrzydié mozna przewidzieé naste=-
pujacym rozumowaniem. Jesli czgs-
tosé w lasera nie spelnia do-
kXadnie warunku (7.42) lecz jest
mu bliska, to na ogdél nie wszyst- .
kie czasteczki moga zaabsorbowad
dwa fotony o przeciwnych kierun—
kach propagacji. Moga to uczynié
tylko takie czgsteczki, dla kto-
rych réznica energii (E,l - EO_-

Y brrrrssl
EZ fl qu A Zﬁd-w P IIITIIS ﬁ rz
Ll
fr2
E4
A
e e il
hesg, ‘{
fos He (laser)
E l
° Procesy Proces
jednofotonowe dwufotonowy

Ryse 7.5. Schemat jedno- i dwufotonowych procesdéw absorpcji
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- 2 hw) réwna jest przesunigciu Dopplera, 2 keV. Grupa takich czgste-
czek wyznaczona jest.dla kazdego m  rozkiadem Maxwella-Boltzmamna, stad
taki kszbalt skrzydet 1linii rezonansowej. Ogélny ksztait linii z rys.
7.4 zostar przewidziany przez Wasilenmke [24]. Jeéli natezenie i stan po-
laryzacji obu fal sg takie same, to powierzchnia pod krzywg lorentzow-—
ska jest dwa razy wieksza od powierzchni czesci gaussowskiej. Przez od-
powiedni dobdér stanu polaryzacji mozna niekiedy doprewadzié do znilmie-
cia tta gaussowskiego.

Prawdopodobiedstwo prze;]écia dwufotonowego ze stanu podstawowego,
Ey do stanu wzbudzonego Ey (rys. 7.5, mozna przedstawié za pomoca ra-
chunku zaburzen w nastepujacy sSposodb:

2
2Bl (su) = | 3 L <an, [1><i|m|0> + <2 [B| > <i[g,]0 *

1 Awy

18

e (7.45)
Lo w" + % I‘2
gizie S w = w - wg jest réznica miedzy czestoécia lasera a czestodcia
rezonansowa tak, ze 2 id w Jjest energetycznym “rozstrojeniem" miedzy
"nadajnikien” a "odbiornikiem"s Ha i Hb 83 hamiltonianami oddziatywa—
fia dipolowego chstec;ki z fala padajacg i odbita, ﬁAmi = fw - (Ei -
EO) Jjest emergia rozstrojenia w przejsSciu jednofotonowym dla kazdego
ze standw _yoéredr-ich WIS I‘2 jest szerokoscig spektralng stanu wzbudzo-
’nec'o, zas T./(46 i + % I’g) Jest czynnikiem Lorentza, determinujacym
ksztaxt krzywed. e
Jesli obie fale eloktromagmetyczne, padajgca i odbita, sgq identycz-
ne, tj. maja te same nalg¢zenia i steny polaryzacji oraz Sy “dopasowane"
do przejécia rezonansowego tak, ze & w = 0, to prawdopodobiernstwo
prze jScia dwufotonowego upraszcza si:g do wyrazenia

lj‘z)(rez, = I Z

25
<”|'1| i><i|H|O 45 (7.46)

1

2

Numeryczne obliczenie & 0‘5) (rez) wymaga sumowania po wszystkich sta-
rach posrednich "i", Niekiedy mozna ograniczyé sume tylko do jednego po-
ziomu E,, jesli deficyt emergii hAw, jest znacznie mniejszy niz in-
ne i jesli silty oscylatora foq 1 £, nie sg zbyt make., W tekim przy-
padku zastapienie operatora H wyrazeniem szezegdiowym prowadzi do wzoe
g}

A

45 Bod N2 Lo
plalioey o LS olol 12 _) e
02 Pg B s 5 w(} 01 *42
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- q|Tmy> <J4Tmy - q|J0m0>12,' (7.47)

gdzie rg = 92/41;eom02 = 2,8°10'15»cm Jest klasycznym promieniem elek-
tromu, Agq = 2n8chgq 1 A4y = 2mc/w,, 84 diugosciami fal dla przejss
Jednofotonowy¢h, a £01 i f12 ich sizami escylatora., P oznaczg moc, a|
S przekrdj wiszki lasera. Wspéiczymniki Clebscha-Gordana <Jim-q|Jm>,
mozna obliczyé z liczb kwéantowych J 1 m kaZdego z trzech pozioméw O,
1, 2 oraz ze stanu polaryzacji q fali (g = +1, O, =1), W najezescie]
spotykanych przypadkach kwadrat iloozynu tych wspblezynnikéw jest rzedu
0,1. Jesli przy;]mien:y, %e 080',]/;0 o1 2 A“”l/“'lz = 0,13 AV PR 0,13
Agn 2 12 Z 6000 3; I'; = 10" 877, to P/S = 1 W/mu~ prowadzi do rezul-
tatu
Pég)(rez) = 1_5'1.

Poniewaz w rezonansie uczestnicza wezystkie ezgsteczki (a nie tylko gru-
pa o okredlonej prediosci), liczba wzbudzen bedzie dostatecznie duza,
2eby mozna bylo dokonaé pomiaréw. Warto zwrécié uwage, Ze mozliwie sil-
na reduke ja przekroju wiqzki lasera (ogniskowanie) podwyisza sygnal.
Wprawdzie liczba czasteczek obdetych'wigzkg male je proporcjonalnie do S
Jednak Pog wzrasta proporcjonalnie do 8

Na zakonidzenie tego krétkiego opisu spektroskopii bezodrzutowe] wy-
pada wapomnieé Jeszeze o korzyAciach, piyngeych z zastosowania tej meto-
dy. Znikniecie odrzutu, towarzyszasego zwykle]j absorpcji Jjedno- lub wie-
lofotonowe;j odpowiada sytuacjl takiej, jaka mielibysmy obserwujac pro-—
ces absorpe¢ji lub emisji czasteczki bez zmiany jej predkosci. Prowadzi
to, Jjak widzielidmy, do pojawienia sig¢ bardzo waskich linii absorpcya-
nych 1lub emisyjnych, ktérych czestosSci moina wyznaczyé bardzo dokzadiie.
Fym samym mozliwe jest z jednej strony doktadniejsze wyznaczenie rézni-
cy energii dwéch pozioméw energetycznych czgsteczkj, co podwyzsza do=
ktadnosé okreélenia takich stazych fizycznych jak masy zredukowanej,czy
momentu bezwladnosci czasteczki. Z druglej strony, mozliwe staje sig¢
uzyskanie waznych wnioskéw odnosnie wpiywu skladu izotopowego czastecz—
ki, jeJ konformacji, a takze wpiywu oddzialywan migdzyczasteczkowyeh na
czasy Zycia w okreslonych stanach wzbudzonych lub na prawdopodobieﬁstwo
prze jScia spektralmego. b

Do zbadanych dotychczas czasteczek naleza (literatura uwzglgdnioﬂaf
do roku 1977):

(i) W zakresie IR miedzy dwoma stanami oscylacyjnymi bgka syme-
Jbrycznego '

CH,F [26,27] i NH; [28],



282
(11) W zekresie UV miedsy dwoma stanami elektronowymi

CgHy ;benz_en) f29] .

7ok Spektroskopia drgail wewngbtrznych ozgstecski w krysztale

; ¥ spektroskopil ezgsteezkl izolowanej zekiada sie, iZ mamy da cazy-
pienia % mniej lub wigce] symetryczuym zbiorem atoméw, poigezonych z so-
ba wigsaniami chemicznymi. Przypisanie ezasteczki do okreélonej grupy
punktowe] symetrii pozwala — jsk widzieliémy - na ustalenie regut wybo-
T, tj. poswala przewidzieé symetrli¢ drgai dozwolonych w widmie w pod-
ezerwieni, prszy czym warunkiem depuszczenia jest zmiana mementu dipolo-
wego czastecski pod'-piyuem zmiennege pola elektrycznego fali elektro-
magnatyeane j.

. W zesadzie niewiele zmienia si¢ w tym obrazie, jesli interesujacs
nas cggsteczke uhieécimy w krysztéle, stanowlgeym tréjperiodyczng struk-
ture zbudowang z identycznych czasteczek. Poniewa’ energia wigzania atoe
méw przewyzsza o rzgd wielkosci energie¢ eddzialywah micdzyczasteczko-
wych, czestosci drgan wewngbrznych w fazie state] ulegaja jedynie nie—~
wielkim przesunigciom w poréwnaniu do ezgsteczki swobodnej. Przesunie-
cla te wynikajq z faktu, Ze krysztal stanpwi odrodek dielektryeczny , trak-
towany w tym problemie zwykle jako osrocdek siggily, o przenikalnodci di-
elektryczne] rbznej od jednobci. Anizotropia przemikalnosci powoduje -
Jak wildzieliémy -~ esnizotropi¢ pola lokalnego, ¢o w Spektroskopii inter-
pretuje sie¢ Jakd zmiang symetrii czgsteczki w krysztale, Inaczej méwigc
uwaza sig¢, zZe erektywha-symetria czgsteczki w sieci jest taka, jak sy-
metria wezza, ktéry zajmuje czasteczka w bkreélonéj strukturze., Uwaza
si¢ tes, najozesScie]j milezgco, %e lokalna symetria wezla rozcigga sig
na obszar calej czgsteczki. Relacje mi¢dzy symetrig wezia a symetrisa
czasteczki swobodnej prowadza do pewnej modyfikacji regul wyboru, kbdéry-
ni zajmiemy si¢ w tym paragrafie. Dalszg konbekwéncja, wynikajgcg z ob-
nizenia symetrii czasteczki w krysztale jest fakt, iz niekiedy przejsé-
cia absorpcyjne zabronione dla czgsteczki swobodnej moga byé dopuszezo-
ne w widmie kryszbatu. Moze si¢ takze zdarzyé, Ze pole krystaliczne zno-
sl degeneracje czegstosci dwu— lub trzykrotnie zdegenerowansj w czqstécz—
cey efekby te noszg nazwe rozszczepienia statycznego. '

Inny rodzaj rozszczepienia pojawia sie¢ w zwiazku z tym, 2e w komdén .
e elemenvarnej zawartych jest Z czgsteczek, stanowigcych uktad 2
sprzgzonych z soba oscylatoréw o identycznych czestosciach. Wzajemne od-
dziaxywania tych oscylaboréw prowadza do rozszczepienia kazdej czestos—
¢l wewnetrznej na Z sktadowych, 2z ktdérych Jednak nie wszystkie muszg
byé obserwowalne. Osbtatnia wreszcie —-i moze najwaznie jsza w zastosowa-
niach = ;éZnica mied§y stanem_krystalicznym a stanem gazowym lub Toz—
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oiéﬁczomgo roztworu polega ma tym, Ze wzbudzone w nysztzaie oscylatory
stanowia ukiad dipoli, wykazujasy - wiele sech "gazu zoriem:owanego"
Stany wzbudzone mozemy wi¢c wywoiaé 1 snalizowadé zs pomocs Spolaryzowa-
¥ej fali elektromagnetyczne], 6o rozszerza mofliwosé posnania wiasnosci
poszczegdlnych oseylatoréw. Zajmiemy si¢ opisem tych zjewisk nieco bar-—
dziej szczegbiowo, poczynajac od modf,yfik:aeax regul wyboru.

Ffranslacyjna wisesnos¢ siecl przestrzennsj nie jest cecha imberesu-—
jaca w spektroskopii drgah ozgsteczki, Jedli przyjmiemy, se gbérna grani~
¢a widma ozéstosel wewnetrznyon w;ynosi 104 om 1. ) czestosel takig;l od=
powiada fala o diugosel A= 107! nn. Na tej dlugoéci miesoi sie: '10‘7’r’ko-
mérek elementarnyeh o praecietnym wymiarze krswedzd 1 m. Wynikajaca
stad rbéznice faz miedzy sgsliednimi kombricami elementarn;ymi, wywoana
zmiennym polem elertrycznyn f£ali, Jest rzedu an)o’io =3 rad = 0,4° 1 mose
byé zaniedbans. Wobee tego w pProbi emie czegstosci wewnegtrznych wazna
jest zswartosé jedynie Jjedne]) komérki elementarmej. Upraszcza to znscz—
nie reprezentacj¢ kryszvaiu z punktu widzenia symetril, wystarczy bo-
wiem snaliza rozkiadu materii wewngtrz komérki elementarnsj, a ten spei-
pia wymogl grupy punktowej., Otrzymujeny®jq z symbolu grupy przestrzennsj
po odrzuceniu wszystkich operacji tramslacji. Praszezyzny poélizgu za-
mieniamy wiec na piaszczyzny zwierc;adlane symetrii, esie &rubowe na o-—
sie zwykie. ‘Zbibr operacii symetrii uzyskany w ten sposob nosi nazwe
grupy punktowe] Komérki elementarné;] lub grupy iloczynowejs musi ona
byé pedgrupa grupy przestrzemne;.

Nastepnym wazpym pojeciem jest tax zwana symetria wezla czyli pung-
tu w komérece elementarmej, w ktdrym przypada drodek masy czgsteczki.
Jesli wezek poZozony Jjest w dowolnym miejscu, czyli w pozoZeniu ogdlnym
to odpowiada mu trywialna grupa punktowa 01, nie zawierajgca Zadnego e-
lementu symetrii, Srodek masy czgsteczki mozZe jedmak zajmowaé polozenie
szezegblne, tj. moZe lezeé na jakimé elemencie symebrii, na przykiad na
osi lub piaszczyznie symetrii kryszbaiu, a nawet przypadaé w punkcie
przec:.ecia sie tych elementéw. Weziowi odpowiada wéweczas grupa symetrii
Wrasciwa symetrii poXozenia szczegdlnego. Warto przypomnieé ze komérka
elementarna moze byé obsadzona na kilke sposobéw, co.zalezy miedzy inny-
. mi od symetrii wezia i symetrii czasteczki. Wezta o symetrii C; nie mo-
_Ze na ogbi zajmowaé czasteczka nie posiadajaca centrum symebtrii. Krysz-
taty benzenu, naftalenu, antracenu i innych zwigzkéw zbudowane sa zgod-—
nie z taka zasada, Srodek masy tyéh czasteczek pokrywa si¢ z centrum sy-
metrii krysztaiu. Istnieja jednmak interesujace odstepstwa od tej zasady,
Na przyktad czasteczki pigciochiorobenzenu [30] lub pigciochlorotiofeno-

lu [31] nie maja centrum symetrii, a jednak w fazach wysokotemperaturo-
wych tych ciak zajmuja poozenia C;. Struktury takie moga byé realizowa-
ne w potaczeniu z nieuporzgdkowaniem poZoZen czgsteczki wzgledem normal-

)

.
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nej do plerscienia benzenowego. Kazdy podstawnik pierscienia zajmuje w
strulkturze Jedno 2z szeéciu mozliwych potozen z prawdopodobieﬁsbwem 1/6,
a centrum symetrii kryszitaiu realizowans jest statya*ycznie. :
Dopuszczalna symetria wezla i liczba obsadzen 2 pray zadane] gru-
pile punktowej komérki elementarnej moze byé odczytana % episu grup prze-
jtrzennych zamieszczonego w Miedzynarodowych Tabelaeh Krystalogratil
por. rozdz. 3). Podaje je réwnieZ w zestawieniu tabelaryeznym Halford
§32]. Fajwygodnie] Jednsak korzystaé¢ z nomogramu, przedstawionego w tab.
7.7 1 zeczerpnig¢tego % pracy Ryttera [53] z opuszezeniem grup punichbo-
wych, sawierajgcych pieciokrotng o pymebtrii. Na przekstne] nomogramu
umieszczonych jest 35 punktowych grup symetrii. W grupach oznaczonych
gwiazdka obowigzuje zasada alternabywnego wyboru'(ebecnosé ecentrun sy-
metrii): ezestosoi aktywne w podozerwieni mie mogh byé akbtywne w widmie
Remana i ns odwrét. Liegby nad przekgtng podajs krotnosé obsadzern komdr-
ki elementarnej, przy czym symewr.tq wezza okrefls grups punktowa w kle-—
runku pionowym w dék. Symbole pod przekqtnq oznaczajg tak zwane grupy
wymienne, wprowadzom przez Kopelmans _[54-] o 8ens fizyezny grupy wymien-
nej polega mna tym, %e jest to na;]grobtsza grupa, samleniajaca symetrycz-
nie réwnowaine polosenia wesléw .o ayinetrii Cge Jesli wige przez Cg o-
znacsymy 8rupe punktowa symetrii wezia, a przez GI grupe wymienng, to
grupe punktowa komérii elementarnse j GK mozemy zapisaé w nastepujacy
gposdbs

G-% % ‘ (7.48)

Przy Czym X. OZNACZa iloczyn prosty pbu &grup. '

Z nomogramu tabeli 7 7 mozemy odczytaé na przykiad, ze kombérka e-
lementarna o symetrii grupy pu.nktowe;}, Dan' moze byé obsadzona na trzy
sposoby, & mianowicie (informac je zna;]du;lemy zZgwWsze W miejscu przecie-
ela si¢ okreflonego wiersza z okreélbna kolum‘nq; Jeslii w tym mie jscu wy-
stepuje kropka to oznacza 0, Ze postaw:l,onego ‘zadania zrealizowaé nie
mozna ) s e

&

(1) mozemy obsadzié te komérke dwiems identycznymi czasteczkami w
wezach o symetrii 02‘1, przy czym symetria tego obsadzenia bedzie od- .
powiadaé symetrii grupy punktowej 02,

(ii) w takiej samej koméree mozemy mieé eztery czasteczki w wez-
Zach o symetrii CS, przy czym ich rozkiad bedzie mial symetrif D?_,,w
.. (4i1) w komérce elementarnej mozemy mieé osiem czgsteczek syme—
trycznie nieréwnosennych o symetrii C45 @& wige asymetrycznych.

Istnieje zatem Scisia, ‘choé nie zawsze Jednoznaczna, relacja mie-
dzy punktowymi grupami symetrii czgsteczki, GM, wezza, GS’“’ oraz komdérki
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. Pabela 7.7
Grupy wezia skonezomych grup punktowyeh (wediug [33]). Krotnost wezia
(m) podana jest po prawej stronie od przekatnej, a grupa wymienna (G )
PO stronie lewej. Gwiazdka = oznacza zasade wzajemnego wykluczania si ie
przejbé Ramena i IR, Znak o/ oznacza, e %adna z grup wyndewnseh . nis
‘spetnia réwnania (7.48). Litera a wskazu;je, Ze = G dla Gg = C
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elementarnej, GK* W najogbdlniejszym sformuiowaniu GS nusi byé z Jed-
nej strony podgrupsg, Gy, 2z druglej poderupq Gy

Gy> 65 € Gp. ; e ile-49)

Taki zapis oznacza w spektroskopli, Ze ‘poszukujemy odpowiednioéci mieg—
‘dzy reprezentacjami grupy punkbowej wezla 1 swobodnej czasteczkl, oraz
migdzy reprezentacjami wezta i komérki elementarnej. Tego typu korela-
cje migdzy roéznymi grupami symetrii majg znaczenie ogblniejsze i poda-
wane 88 w dzietach specjalistycznych z dziedziny teorii grup; przybo<
czone s3 réwniez w monografii Wilsona, Deciusa i Crossa [2]. Niech® jako
przyktad posiuzy krysztat o symetrii grupy punktowej komérki elementar-
nej D2h‘ Przyjmiemy, Ze komdérka jest obsadzona dwiema czgsteczkami, ze-
tem symetria wezta bedzie Coy (Tab. 7. 7)3 niech symetria czasteczki
bgdzie wyzsza, na przykiad D2d‘ Diagram xorelacyany, opracowany na pod
stawie tabel korelacyjnych [2], przedstawiony jest w tab. 7. 8. Z diagra
mu tego mozemy odczytaé nastepujace informacje:

(i) kierunkom spektroskopowych przejéé w czasteczce Tx, Ty’ TZ,
odpowiadajg kierunki przejéé¢ spektroskopowych w krysztale T, , Ty, T
réwnolegite do odpowiednich osi krystalograficznych &, b, ¢. Zwréémy
uwage na fakt, zZe drganie typu E w czasteczce swobodnej ma moment
przejscia lezgcy w piaszczyznie x,y, ale szpzegélowy Jjego kierunek nie
moze byé okreslony na podstawie zasad symetrii,

(ii) czestosci typu A4, zabronione w czasteczce, dopuszczone sg
przez symetri¢ wezia i moga sie pojawié w krysztale jeko siabe prze jé-
cia o symetrii B}u' tj. 0 polaryzacji wzdiuz osi | a krysztalu,

(iii) czegstosci typu A2 sa zabronione w czasteczce i nie moga
tez wystapi¢ w krysztale. Podobnie rzecz si¢ ma z czegstosciami typu By,

(iv) czestosei 32 dopuszczone s3 przez symetrig¢ czasteczki, Téw-
niez wezta i beda si¢ pojawiaé w krysztale jako silne przejScia o syme-
trii BEu, "

(v) przejscia typu E zostana rozszczepione przez symetri¢ wezia.
Przy wystarczajaco duzej zdoilnosci rozdzielczej spektrorotometru przejé
bia te pojawig si¢ w widmie w podczerwieni jako dwa osobne maksima o
symetrii 51u B2u o roéznych polaryzacjach. Jest to przypadek roZJ
szczeplenia statycznego.

o?

Obecnos¢ wigkszej liczby identycznych oscylatoréw w czasteczee lub
w komérce elementarnej prowadzi nas do tak zwanego problemu sprzezonych
oscylatorow. Wynika on stad, ze jesli czestosci oscylatordw sa identycaz
ne, to réwniez fazy drgan nie moga by¢ dowolne; musza Spekniaé okreélo-
ne reguty symetrii. Zagadnienie oscylatoréw sprzezonych opisano szcézegd-
towo w znakomitej monografii Davydova [55]; prowadzi ono do zrozumienia
problemu ekscytonéw. Przedstawimy tu niektére wyniki tej teorii.

\



Diagram korelasyjny miedzy reprezentacjami grup punktowych D,
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Tabela 78

24

? (czqsteeaka), Coy (wezel) i D, (komérka elementarna)

S

Grupa punktowa Grupa punktowa Grupa punk:towa
czasteczkl swo— wenta komérki elemen-
bodnej : tarne j
Daa G2y Dor

pl e e
e B
1
s \\’4 / i
V - 28
S B B
3
/ i g
/ Au
BB, BT
/ 2y s
7 ) Bl — Bouw'Tp
B3u,‘ra

Rozwazmy dla przypomnienia elementarny problem dwéch oscylatoréw
sprzezonych. Dla uproszczenia przyjmljuy, %e masy obu oscylatordw sg i-

dentyczne
= ko=

1111

m, = m, & wobec identycznosci stazyeh siXowych ky =
k, réwniez czestosci drgan w stanie swobodnym sq takie same

Woq = w02 =g Jesli a4 i 85 oznaczeajg wspdirzedne ruchu osecylato-
réw, to caitkowitq energi¢ ukiadu moZna napisa¢ w nastepujgcy sposédb:

1
(S hile
déq

e i)

ma2 + -é- ka,] + E ka2 +Ya/.32,

(7.50)

przy czyﬁ kropka oznacza rézniezkowanie po c_:zésie, zas Y 348, Jest e-—
nergia sprze¢zenia obu oscylatoréw. Rownania ruchu maja zatem postaé

= &) Y
84 +woa,|+-n-laz=0,
'é2+wga2+la1=0.

m

Jesli zazozymy rozwiazanie periodyczne typu

kT ke

exp (iwt),

(7.51)

(7.52)
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gdzie 1 jest jednostka urojona, zas 8, amplituda ruchw, ik =24 027
to otrzymamy uktad dwédch réwnan Jednorodnych, Warunkiem istnienia nie-
trywialnych rozwiazan dla amplitudy ;est znikanie wyznacznika ukXadu,
czyli

2
g - o?) (05 - 0?).- (@) = 0.

Stad otrzymujemy

(.),21 =(ug - % (czegstosé symetryézna), ;
: v : (7.53)
wg = wg + 5 (czestose antysymetryczna).

Przejdzmy do opisu widma czestosci iwewnetrznych krysztaiu. Niech
wskazniki o, B numerujq czgsteczki, a n,m komérki elementarne.Jes—
1i Xadunek elementarny oznaczymy przez q, sit¢ oscylatora przez £
(aest to wspélczynnik korekcyjny, bezwymisrowy i mniejszy od jedmoseci,
adjustujacy prawdopodobienstwo prze jécia do natezenia przejécia), -to
moment dipolowy czasteczki w komérce n mozemy zapisaé nastepujaces:

Bro = 9V e 8y, (7.54)

przy czym e oznacza wekbor jednostkowy W kierunku P, za8 a - jak
dotad - wspbdirzedngq drgan. Poniewaz memy 2. czgsteczek w kombérce sle-
mentarns j oraz N = N’lNzN} komérek w krysztale, to caikowita energia
ZN drgajacych oscylatoréw wyniesie

8= Za ) vzalatzm"'z ZRna mﬁ{gfuxsz"
n, n

= 3(Eng Pog,np) EngP i, i (7.55)

gdzie Rno(,mB A;}e;st odlegtoécig obq oddziatujacych dipoli, a Pno,mp

wektorem jednostkowym w kierunku R (rys. 7.6). Prim przy znaku sumy

oznacza, ze opuszczamy W niej wyrazy dla ktérych n=m i o= B.
Przyjmijmy, Ze réwnanie ruchu o-tego oscylatora

2
- 2 1 QR
a,, * g gn“+EZR3 amB{g eg i(gﬁﬂnu,ms)"
© © m,B ne,mnp :
e bnmpls =0 (7.56)
ma rozw:.qzanie w postaci fali biegngce] (komen‘barz przedstawimy POz~
niej) .
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@
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Rys. 7.6. Oznaczenia wektordw w sieci prostej

ap, = 2, S%P {i.(_lg_ r - wt)}, G
gdzie -k Jest wektorem falowym, zas X
=N a4 +N;a +N; a5, (7.58)

jest wektorem sieci prostej, ktérej periodami sa 24y 85y 23. Podstawie-
nie (7.57) do (7:56) prowadzi do zbioru liniowych réwnai jednorodnych,
okreélajacego zbi6ér wartosci amplitud, a,

7
g - Flag+ DT, pag=0. (7.59)
B

I‘a 8 jest tensorem, opisujacym oddzialywania migdzyczastecziowe typu
dipol~dipol, przy czym jego sktadowe sa funkcja wektora falowego k

Pkl = T {i(-!m = EnJE}[éuize-
it} no, mp

= 3(25 Pon,mp) (8 o Lo, mp)] : (7.60)

I'y o rozumieé¢ bedziemy jako wpiyw otoczenia na czgsteczk¢ w wezle O,
Poniewaz wyniarem I' jest s_2, Ty o MmOZna uwazaé za zmian¢ kwadratw
czestosci, wywoieng umieszczeniem oscylatora w osrodku o przenikalnosci
dielektrycznej € # 1. \
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/_._.'_ﬁ-r{]
A G.= 1
i ?
‘/' N
Tl [ ]6’:2
5 ¢ e
X \\\E ]6=3
N
N =
\:. 6=4

Rys. 7.7. Schemat roiszczepienia poziomu emnergetycznego | “’o)
w sieci k:r:yst_:alicznej

Rozwigzanie ukladu réwnah jedmorodnych (7.59) prowadzi do zbioru
e czestosci wiasnych

Qn

w2 =02k), ©=1,2,...,%, (7.61)

z ktérych kazda zalezy od wektora falowego. Wektor falowy k przyjmuje
N dyskretnych wartosci

N.®
n 2T S
Ros ey si=t 25 (7.62)
S as y as ] b as 9 949 : >
c* tak, ze kazda z czestosci wias-

nych jest w gruncie rzeczy quasi-
‘ciggtym pasmem (rys. 7.7).
Si ST Rozwazymy troche bardzie]
; ]L_ szczegbdiowo przypadek obsadzenia
%, | jednoskosnej komérki elementarneg
Coy, czberema czasteczkami {Z=4) .
l | | Rozklad weltoréw jednostkowych
oddziatujacych dipoli e o« przed-
| =* | stawlony jest na rys. 7.8. Przyj-
miemy, ze skladowe tensora oddzia-
I ‘e iywan T, B speiniajg nastepuja—
i ce warunki, wynikajgce z symetrii
/ rozktadu wektordw:

a ig) = TPhy'= T = =
Rys. 7.8. Rozktad molekularnych {d 22 35 e 1
wektoréw momentu przejscia w ko- Lo = I‘34 =Ty,
mérce elementarne] (7.63})
F15 = qu_ = I"a,

P’l4 = P23 = Pq_'
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Przy takich zatozeniach wkted réwnan linfowych (7.59) moze byé rozwia-
zany, przy cazym otrzymujemy nastepujgce czestosci wiasne:

22 o
oA e (B )
e WS T + T, - (Iy +T,)
=Yg higtito 2 tudy (7.64)
2 ke
w§=w0+1"1 -, + (ry - B),
Qe s ns e min (T; - T,)
T o | 2 Bl
i wektory wiasne
.§1'=B1.(§.1+22+§3+§4)’ Z£a=_os
Brcl= Bolog + o5 —exi=lon)y DEa =10,
(7.65)

8y = Byleq ~ep -85 + &), >B, L.
b ) b A
£,
€,
e i
= €4 €1\ &4 €0 €,

o i B

a a

Rys. 7.9. Wypadkowe momenty przejsdcia spektroskopowego
w komérce elementarne]

Dokonana analiza prowadzi do wniosku, Ze sprzegzenie drgan czterech czas-
teczek w komérce elementarnej prowadzi do rozszczepienia kazdej czestos-
ci na cztery skiadowe (dalsze rozszczepienia, wynikajace z qu381-ciqg-~
e struktury czestosel, pomlaamy), z ktérych dwie nie wykazuaq zmiany
wypadkowego momentu dipolowego i nie moga byé aktywne w IR. Dla pozosta-.
tych dwéch skradowych kierunek momentu przejécia jest odpowiednio réw-—
nolegty lub prostopadty do krystalograficznej osi b (rys. Z.9).

Troch¢ inny wynik otrzymujemy z zastosowania teorii grup do anali-
zy tego przypadku., Komérka elementarna C2h ma nastepujace elementy s;-‘
metriis :

]
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Wobec tego tabela charakterdéw ma nastepujaca postaé:

B Céb) Oy I Aktywnosé
IR R
i< 1 1 - R
Aol y
A, 1 1 -1 -1 Ty( I b) -
1 -1 =1 1 - R o F
B, | RysRy
B, i f1 1 -1 TX,TZ(J_b) -
! i)
b e 0 4 0

Rozktad reprezentacji redukowalnej PR wedtug (7.11) prowadzi do wyni-
1 :

?R= 4Ag+ 24, + 2Bg+ 4B, .

Po odjeciu typéw akustycznych A + 2B, otrzymujemy
4A8 + Au + ?#g + 2Bu'

Wynik ten wskazuje na istnienie jednej czgstoéci o polaryzacji réwnoleg-
tej do osi b, lecz dwéch vczestoéci'o polaryzacji prostopadiej. Hie-
zgodnoé¢ z poprzednim wynikiem spowodowana jest prawdopodobnie zbytnim
uproszezeniem zatozeh (7.63), prowadzgcych do zerowania sig¢ dwoch momen-
to6w prze jécia w (7.65). :

: Prbcz wzbudzehn kolektywnych typu optycznego, z ktérymi mamy do.czy=-
nienia w spektroskopii, istnieja tez imne wzbudzenia kolektywne, ktore
sg koherentnymi ruchami duzej liczby wzbudzen élementarnych. Przykrada-
mi moga byé fale akustyczne, akusto-elektryczne i magneto-~hydrodynamicz-
ne réznych typéw. Ogdlnie biorac, dynamike wzbudzen elementarnych mozna

podzieli¢ na nastepujace przypadki [361: : : S

1, Wzbudzenia typu Bosego, tj. podlegajace statystyce Bosego-Ein-
steina:

fotony,

fonony podiuzne i poprzeczne,

librony, ’

fonony i rotony w nadciekiym helu (He II), 5


npms7.n7.fi
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fale spinowe w materiaiach magnetyqznych,
ekscytony w poérprzewodnikach i kryszbtalach molekularnych.

2. Wzbudzenia typu Fermiego, tj. podlegajsce statystyce Fermiego-
Diracas

elekbtrony przewodnictwa i dziury w péiprzewodnikach,

quasi-czastxi w normalnych metalach, w nadprzewodnikach i ciekiym

He III,
polarony w posprzewodnikach i krysztatrach molekularnych.

7 kolektywnymi wzbudzeniami mamy do czynienia w spektroskopii prze-
de wszystkim wowczas, gdy absorpeja materiaiu jest duza. Przy duzej ges-
tosci stanow wzbudzenia nastegpugje kolekbtywizac ja ich ruchu, co w jezyku
teorii grup sprowadza Si¢ do koniecznosci opisu ruchu poprzez podanie
moduséw. drgan ciata statego. Owe modusy maja okreslone czestosci i wek-
tory propagacji, ktérych kierunki w krysztale zaleza odlsymetrii sieci
i - jak widzielismy -~ w znacznym stopniu moga by¢ przewidywune reguiami
wyboxru.

.7.5, Model gazu zorientowanego w spextroskopii

Poprzednio rozwazalismy przypadek silnego sprzgzenia drgan oscyla-
tordéw w komérce elementarney, prowadzgcego do kolektywnego modusu drgan
wszystkich czasteczek w kryszvale pod posvacia fali biegnacej (ekscyto-
nu), Jesli jednak absorpcja jest staba, to stan wzbudzenia krysztatu mo-
zemy. traktowac jako zbidr wzbudzen elementarnych, oddziazujacych siabo
lub nie oddziaXujacych na siebie wzajemnie. Poszczegbélne akty absorpcji
z wybtworzeniem moleku* w stanie wzbudzonym nastepuja wowczas niezalez—
nie i warunki fazowe nie odgrywaja roli. Absorpcja uzalezniona jest na-
tomiast od geometrycznych zwigzkédw miedzy kierunkami momentow prze jscia
w elemencie strukbturalnym (atom, czasteczka, komdérka elementarna) a kie-
runkiem E padajacej rali elektromagnetycznej. Taxi obraz absorpcyjny
przypomina ‘zjuwisko scyntylacji, a rozktad przestrzenny wzbudzonych di-
poli jest przykiadem "gazu zorientowanego".

Model gazu zorientowanego, ktéry btu opiszemy, polega na powigzaniu
dogwiadezalnie zmierzonej absorpcji okreslonego typu oscylatorodw w kry-
sztale molekularnym z przewidywaniami, jakich mozemy oczekiwa¢ na pod-—
stawie znajomoéci-struktury'tego krysztaiu.

Aby pordwnanie to mogro mie¢ charakter ilosciowy, pomiary nateze-
nia pasma absorpcyjnego musza Speinia¢ pewne warunki. Najwazniejszymi z
nich sg:
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(1) Wigzka promieniowania spolaryzowanego musi padaé ma krysztaz w
taki sposéb, by wektor E fali lezat w jednej z piaszczyzn optycznych
krysztatu. Plaszczyzna optyczng jest taka plaszczyzna, ktéra przechodzi
przez dwie osie gtéwne indykatrysy. Przy innej orientacji wektora E na-
stepuje rozszczepienie wigzki w momencie wejscia do krysztaiu na dwa
promienie, z ktérych kazdy porusza si¢ w ciele staiym z inng predkosdcig
i jest absorbowany w rézny sposéb. Wynik takiego pomiaru nie ma sensow-
nej interpretacji fizycznej (por. rozdz. 6.2). Ponadto bedziemy rozwa-
za¢ wytacznie przypadek prostopadtego padania wigzki na ptrytke krysta-
liczna. 2
(ii) Czesé promieniowania ulega odbiciu na granicy faz powietrze/
krysztat. W celu wyeliminowania bZedéw pochodzacych z odbicia najlepiej
umiescié na drodze wigzki odniesienia mozliwie cienkg piytke z tego sa—
mego materiaiu i w tej samej oriemtacji, co na drodze wigzki pomiarowe j.
Wyniki pozbawione bxzeddédw pochodzgcych z odbicia mozna réwniez uzyskaé
przez wykonanie pomiardw natezenia pasma dla szeregu piytek o rdznych
gruboéciach i zastosowanie prawa Lamberta (7.66).

(iii) Pomiar natezenia wigzki wchodzgcej do krysztatu Io oraz
wigzki opuszczajgce] krysztaxt It’ pozwala zgodnie z prawem Lamberta na
obliczenie statej absorpcji materiaiu k przy okreslonej czestosci
wigzki padajacej :

,> k(v)

2,30
= 25 log (I /I.). (7.66)

Miara integralnego natezenia pasma jest wyrazenie

Y5

Rt e oy = ¢ o el (7.67)
V/] s

gdzie Kmax jest staty absorpcji w maksimim pasma, H Jego szerokoscia
poibéwkowa, zas C pewna stata, nie majaca znaczenia dla dalszych rozwa-
zan, Wskaznik a oznacza, ze mierzone wielkoSci sa pozorne, poniewaz
zawieraja biedy eksperymentalne, wynikajace ze skonczonej szerokosei
spektralnej wigzki promieniowania, opuszczajacej monochromator. W celu
uzyskania "prawdziwej" wysokoéci pasma Ké:; i jego ézerokoéci H‘t),
trzeba zastosowac jedny z procedur korekcyjnych, na przykiad podana
przez Ramsay a [37]-

Przytoczone dot@d uwagl dotyczyly eksperymentalnego problemu pomia-
ru natezenia pasma. Po wykonaniu pomiaréw dla dwoéch prostopadiych kie-
runkéw pptycznych piytki X i X5 i zastosowaniu procedur korekcyjnych
mozemy otrzymaé wielkos$¢, zwang doéwiadczalnym dichroizmem pasma
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G A
\ = 2
Riyoe e (7.68)

Iiczba ta charakteryzuje anizotropi¢ absorpcji okreslonego typu oscyla-
toréw dla wybranych dwéech kierunkéw pomiaru.Jesli znemy strukture krysz-
tatu i orientacje indykatrysy, to kierunki te moga byé¢ Zatwo zorientowa-
ne wzgledem kierunkéw krystalograficznych., W takim przypadku mozliwe
jest obliczenie wielkosci dichroizmu R172 przez zastosowanie modelu
gazu zorientowanego dla wielkos$ci wektorowej (por. rozdz., 4.2).

Ty
R,
/)
. / |
i
Pt
/ I//
X.,A /Ns J
7
. L2 ny T8
\\\\\ // n, Xl \
s e ieas
"'(P Nz
N1 nq
-

X4
Rys. 7.10. Orientacja optyczna piytki (001) w uktadzie jednoskosnym

W celu.sprecyzowania sytuacji geometrycznej wezmy pod uwage piytke,
przedstawiong na rys. 7.10. Nq, Nz,N3 oznaczajq gioéwne wspodiczynniki
zalamania swiatia, a n4, N5y Ny niech beda wspdiczynnikami zalamania
wzdiuz oSl X4, X5, X3 ukiadu wspoirzednych. Przypusémy, ze N1[| X,
lecz N2 nie lezy w ptaszczyinie piytki. Z sytuacja takg spotkamy sieg,
na przyktad, w ptaszczyznie (001) ukiadu jednoskosnego — w tej orienta-
cgi. = || b. Apy napisaé¢ wyrazenie na dichroizm trzeba wziaé pod uwage
dwa nastepujace fakty:

. (1) Promien $wietlny E || x, przebywa w krysztale drogg¢ optyczna
o innej diugosci niz promien £ | X5 Diugosé drogi optycznej wynosi

T i = di ni, ‘4-69)
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gdzie d. Jjest etektywna grﬁboéciq krysztatu, Wediug (6.29) mamy
1 1 :
= dy/cos E., ; (7.69)

przy czym dO jest geometr70znq grubosécia piytki, zad E katem zawar-
tym miedzy wektorami D i E falli wewngtrz krysztalu {rysS. 6.7). Po=
prawka z tego wynikajqca powmnna,sie znalezé w mianowniku dla zredukowa-
nia drogi optycznej do jednakoWej‘wartoéci dla obu kierunkéw x4 i X,

(ii) Orientacja wektora E(k) wzgledem x; jest na ogdi inna niz
orientacja E w powietrzu (proézni).

Energia absorbowana iprzez oscylator w j-tej czasteczce W komorce
elementarnej, ktéremu odpowiada wektor .momentu przejscia

MJ‘ = MO.EJ (7-70) :

‘ J
gdzie gj jest wektorem jednostkowym w kierunku Mj, Jjest proporcjonalé

" na do ; 57
2 o)
() 2 (k) S
.o = .o 2 a
Po ‘tych przygotowaniach wyrazenle na dichroizm mozemy zapisaé w nastepu-

jacy sposbb v
7

nyd, Z i 'E(k')
rit) _ J : (7.72)

n,d, ;§j (g ,E(ki

Nalezy teraz obliczyé diugosci drogi optycznej i- orientacj¢ Eik) dla
kazdego z dwu mozliwych kierunkéw pomiaru. ‘

1. Dla B4 || %x; mamy n4 = Ky || =, zatem wediug (GRR5)EEIC =10
Wobec tego

e

oraz
k i
s e

2, Dla §2|| X5 ‘wspéiczynnik zatamania Swiatla okresla wyrazenie
(6.24)
2 2
- gos” % . sin i : \ (774 )

1
) 2 2
ns N2 N3
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Ponadto

ds =5 % ) (7.75) .

cos &

przy czym kat & Jest okreslony przez (6.25).
Orientacj¢ Eé podaje ponizsza tabelka:

X/l X2 X.3
(k)
E5 0

(7.76)

cCosEc i giniz

Wybor znaku przy sin & zalezy od orientacji przekroju .‘hlzn5 indyka-
trysy. Wobec (7.76) otrzyaujemy
‘ (k z ()
) E oS ey
(EJ-_@_ cos (mj, x.) cos (x,, BY™') =
J

1]

(7.77)
= cos& cos tm sy ¥5) £ sin ¢ cos (mJ, XBJ'
Podstawienie tycn wyrazen do (7.72) prowadzi do wyniku
Z
Z‘cos2 (mj,x,l>
nit) _ o> J=1
72 5 N, (7.78)

Z
Z}: {cosécos (mj,xe) + sin &cos (mj,xz) &
J=

W tym wyrazeniu wystepuje zardwno orientacja optyczna indykatrysy jak i
orientac ja kierunkéw momentéw przejscia oy wzgledem przyje¢tego uxktadu
osi X XXz Najwygodniej jest wybraé taki uklad wzdiuz kierunkédw op-
tycznych prytki jak to widaé na rys. 7.10. Potrzebne w (7.78) kosinusy
kierunkowe EJ mozna otrzyma¢ z danych strukturalnych (orientac ja gj
wzgledem osi a, b, ¢) i orientacji kierunkéw optycznych za pomoca zwy—
kIych transformacji ukiadu wspoirzednych.

Zastosowanie (7.78) do obliczenia dichroizmu pasm absorpcyjnych
ilustruje tab. 7.9. Kat £ wynosi od kilku sekund (duren)do 12°10 {antra-
cen). Jak widzimy, popravwka zalezna od kata £ ma niekiedy istobné zna-
czenie dla pordwnania wynikéw doswiadczalnych dichroizmu z obliczonymi.
Szezegdlnie wyraznie jest to widoczne w przejsciu A° benzamidu; prazy
zaniedbaniu - dichroizm pasma ma kierunek odwrotny niz w eksperyuwencie,

Inveresu;icy problem pojawia si¢ wtedy, -dy jedynyn elementen sy-—
metrii czgsteczki jest piaszczyzna symetrii © i pokrywajgca si¢ z
pilaszczyzna czasbteczki [39]. Grupa punkbtowa symetrii Gm zawiera wow—




Tabela

Wyniki bomiarbw i obliczef dichroizmu niektérych pasm absorpcyjnych
w bliskiej podczerwieni :
s Czestosd {obl) (obl) (doéw)

: Prze jscie Typ 5 R R ;
Krysztak absorpcyjue | symetrii vmax’ . 2/80 b/a /& Literafu.ra
Naftalen "ézﬁ) + V((,g) Bou 5995 6,94 4,80 4,51(28) (391

vl sl s 5965 0,7 | 0,45 |o,a7(6 | [39]

N {iz :

pldireant 2 v§§2 A 6901 0,41 0,45 -| 0,46(2) [39]
Acetanilid 2 vy a’ 5980 0,69 0,69 | 0,70(2) 91
Benzamid 2 voy A’ 6030 0,91 1,28 | 1,18(1) (391
Duren vy +2vg E 5670 0,85 0,85 | 0,82(4) [39]
KWaS s 3
B : 2 voy A 6030 0,81 0,71 0,68§1) [40]
Antracen vl olele]l s 5940 72000 | 5,25 o] 5,05(55) | o]

%) Dichroizm w ukiadzie osi b oraz a’ = [101].

7.9

86¢
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czas tylko dwie reprezenmtacje: 4 i A", czyli drgania czusteczki moga
byé albo symetryczne, albo antysymetryczne wsgledem tej plaszczyzny. W
tym drugim przypadku moment prze jicia jest .oczywiécie wektorem prosto-
padiym do Ops ale jaka wybraé reprezentacje geometryczna dla A', sko—
ro o wektorze momentu przejécia wiemy tylko tyle, Ze lezy w oh?

0t6% okazuje sie ([40]), Ze wyrazenie na dichroizm (7.78) pozosta-
je stuszne réwniez i dla takich pasm, jeéli zamiast kosinuséw kierunko-
wych momentu przejscia podstawié kosinusy katéw zawartych miedzy o, a
osiami ukiadu X; lub - co jest rownowazne - uzyé orientacji normal-
nej n do O,

cos (0y,%;) = = sin (n.xi)-v (7.79)

Przykiady drgen A°, podane w tab. 7.9, zostaly potraktowane w taki
wiasénie sposdb.

Pomiary i obliczenia dichroizmu przedstawione wyzej, zdefiniowane
zostaty dla pojedynczych, dobrze izolowanych pasm absorpeyjnych, z jaki-
ni nie zawsze mozemy mieé do czynienia. Luty, Szosték i Karwowska poka-
zali jednak na przykladzie tiomocznika i p-nitroaniliny ([41]), Ze poje-
cie dichroizmu mozna rozszerzy¢ na grup¢ pasm. W krysztale tiomocznika,
o symetril ortorombowej, obserwuje sig¢ w przedziale czestosci 6000~ -
7200 cm"l pasmo absorpcyJjne ziozone z kiliku nadbtondéw i czestodci kombi--
nacyjnych grupy 'NHZ‘ Analiza wykonana metodami teorii grup wskezuje,
ze w tym obszarze spektralnym moze wystapié szesé przejsé o symetrii 44
i cztery przejécia o symetrii B’l‘ Natezenie inbegralne tego pasma zapi-
szemy w postaci

I, = 634 cos® (A4,1) + 4D, cos® (gq,i), (7.80)

gdzie 1 w krysztale o tej symetrii oznacza jedna z osi krystalogra-
ficznych a, b lub c, zad ag i b’l 88 wspbéiczynnikami, okreélaagcymi
nate¢zenia przejsé odpowiednio typu A4 1 By

ou dp
-~ —_— b ~ °
- <a Q)Aq : . (a Bq

Dichroizm catej grupy dziesigciu pasm dla kierunkéw "i" oraz "j" bedzie
zatem réwny

By 6a, cos?® (44,1) + 4b, cos? (Bq,4)
n; 6ay cos® (é,l,g) + 4b, cos® (§1,§.) :

Ri/j (‘7.81‘)

Obliczenie Ri /3 wymaga (W tym przypadku znajomosci a; i b'l' Wobec te-
g0, 1z mamy do czynienia z przejsciami o réznej symetrii lecz tego same-
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Tabela 710

Dichroizm pasm ztozonych w bliskiej podczerwieni [41]

Orientac ja Dichroizm
A4 B4 obliczony doswiadczalny

. Tiomocznik, krysztat jednoskosny, grupa -NH
(6000-7200 cm™'), 64, + 4B,

a 0.2418  0,3893
b 0,8691 -0,5428 Ry, 1,70 | 1,77%0,02
o o leis Ol R Y 3,18 2,78%0,06

2, p~Nitroanilina, krysztal jednoskosny, grupa -NH2
(6400-7200 cu™ ), 34, + 2B

a’  -0,5516°  0,4760 ) o
0?5560 0:8490 Ra /b 1’51 1)52_0,06

S : 3
“/ Dichroizm w uktadzie osi b oraz a = [101]

go oscylatora autorzy [4i] przyjmuja, ze a; = by. Uzyskane wynilci po—
miaréw i obliczer. zestawione sa w tab. 7.10.

Przytoczene w tym paragratrie wyniki wskazuja, ze zastosowanie mode-
lu gazu zorientowanego do interpretacji nate¢zenia pasm absorpcyjnych w
podczerwieni prowadzi do rozsgdnej zgodnosci miedzy dichroizmem zmierzo-
nym i obliczonym. model ten moze by¢ wigc wykorzystany do potwierdzenia
przypisan pasm absorpcyjnych przejsciom o okreslonej symetrii, jak réw-—
niez moze py¢ pomocuy w uzyskaniu intormacji o przyblizonej orientacji .
czgsteczki w krysztale o nieznanej strukturze.

7.6. Absorpcja w przekroju izotropowym

‘}oprawny sposéb wykonania pomiaréw spektrofotometrycznych przy usy-
ciu piytki anizotropowe] i promieniowania sSpoliaryzowanego wymaga — Jjak
widzielismy - zachowania okie$lonych relacji miedzy kisrunkiem E fali
a kierunkami optycznymi pxytki. Takich pomiaréw dla kazdej piytki moze-
my wykona¢ tylko dwa, co ogranicza dokradno$¢, z jaka mozna wyznaczyé
dichroizm interesujacego nas pasma. Oczywiscie nie ma takich ograniczen,
Jesli piytka jest izotropowa, poniewaz w niej kazda fala spolaryzowana,
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padajaca prosvopadle,mnvze si¢ rozchodzic¢ pez zmiany kierunku propagacji
i stanu polaryzacji.

0téz kazdy kiysztar ma co najmniej jeden przekrdj optycznie izotro-
powy. Jesli grupa punktowa komérki elemenvarnej zawiera jedna oé syme—
trii o krovnosci wyzszej niz 2, krysztai jest jednoosiowy, a w piasz-
czyznie prostopadlej do tej osi wspéiczynnik zatamania swiatia jest za-
. wsze taki sam, niezaleznie od kierunku. Krysztaty nie majace osi syme-
trii o krotnosci wyZzszej niz 2 sa dwuosiowej mamy wtedy dwa przekroje
izotropowe, kazdy prostopadily do odpowiedniej osSi optycznej. Jedli zas
w krysztale wystepuje wiecej niz jedna o8 o krotnoSci wyzszej od 2, to
indykatrysa degeneruje sig do kuli, dla ktorej istnieje nieskoriczenie
wiele przekrojow izotropowych. Sprobujeny teraz znalezé profil absorp-—
cyjny Jjaki otrzymsmy, gdy wektor E padajacej normalnie fali bgdzie za-
wieraé rozny kat €, z jakimé kierunkiem odniesienia w piytce. Zacznie-
my od blizszego sprecyzowania polozenia praszczyzny izotropii dia prazy-
padku o poérednie] symetrii, tj. krysztaiu, nalezacego Go ukradu jedno-
skoénego o grupie punktowej symetrii komérki elementarnej Cope Frzyj-
miemy, ze ptaszczyzna optyczng jest (010). O, i O, sg osiami optyczny-
ni i zawieraja miedzy soba kat 2V (rp:. 7.11). Kat aigdzy O Dicpn
stalograficzng osia a oznaczmy przez °; katy 2V, ® I £ leza wszyste-
kie w (010). W tej ptaszczyinie leza rowniez kierunki 045 Oy, &, c, c
Piraszczyzng prostopadia do 0O, Jest i; Jjest to wiasnie Jjeden z dwu
mozliwych przekrojow izotropowych. Wybierzuy teraz pomocniczy ulciad
wspbéirzednych, zdefiniowany w nastepujacy Sposob: Xz Il 4, x2‘“ By X
zgodnie z prawoskretnoscia ukladuf Orientac j¢ e abc® okresla
mnacierz 3

—s8inp® O =cos &
el g QiE ) (7.82)
cos @ o) - 3in ©

Dla czasteczki przyjmujemy uktad osi LiN: e. ” < o ” M, (< || ¥, pokry-
wajacy si¢ z jej osiami symetrii a jednoczesnie z kierunkami przejeé
spektroskopowych; e. sa wekbtorami jednostkowymi, Orientacje Il czgs—

il o
teczki "k" w abc™, k= 1,2,...,%, okreéla macisrz g(l‘)

: /eaq Cap Cq >

k)il : (7.83

Oev o Coo O] )
Gol o2

Blementy tej macierzy dla Xk = 1 podawane sa w pracach strukturalaych,

a dia k £ 1, Q(K} oraz egk) otrzymuje si¢ 2z 9(4) i e51) przes bramee
= =i = =i



formac j¢ macierzami Ay odpowiada~
Jacymi elementom symetrii grupy
punktowej komérki elementarnej. Je-
2zell potraktujemy wektory jak macie-
rze jednokolumnowe, to transforma-
cje te mozemy zapisaé w nastepujacy
sposébs

(o) e (1)
&4 "ﬁk-e-;i. R (7.84)
Wprowadzmy oznaczenia (indeks T
oznacza transpozycje)

& o T
B Jiclsih U (G es)
_% 25(k)'T
& 25 = (= sine, 0, - cos ) jest za-

tem wektorem, ktérego skiadowymi sa
elementy pierwszego wiersza macie-—

rzy .?’ zas sktadowymi gék)T =

= (Cpqy Coos coz) sa elem?ﬁ7y dru-

glego wiersza macierazy ¢4, Troj-
; k¢ kosinuséw kierunkowych sSpektro-
Rys. 7.11. Orientacja piaszczyzny SKOPOWego momentu przejscia typu

izotropii (m4) wzgledem (010) "i" wzgledem osi X; przedstawia
W uktadzie jednoskosnym Selcton

Pt 'Els_k)

D) d x.efk) |, (7.86)
(k)

&3°84

Przypusémy teraz, ze na’plytke wycieta prostopadle do osi optycznej pa-
da w kierunku do niej normalnym, tj. wzdiuz xs, promieniowanie spolary-
zowane. Niech © bedzie kgtem zawartym miedzy xgaE (rys. 7.11), czy-
1 QT = E(cos®, sin®, 0). Zgodnie z modelem gazu zorientowanego ab-
sorpcje¢ piytki wyraza zwiyzek

7 i
2
(I/Io)j = Ti(e) = g _(E.Qz(jk')} i (7.87)
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Tabela il
Operacgje symetrii i wektory gkk) dla krysztaiu jednoskoénego,
grupa punktowa komgrki elementarne j 02h
k=l 2 o) 4
1 0 (0} -1 0 (0] -1 (0} (0] 0 (0}
by 420 T w0 ) -1 0
1 -1 -1
+C/l,l —C,l/' —U/l/l +U,l1
(k)

&4 HioH> et o w2
oas 27 B G
+C5q =Co —Coq +Co

(k)

(2 952 855 =22 =Gop
+Co3 %23 ~Cox 2025
+051 —031 —051 +03q

(k)

Lo *C32 052 32 —°32

*Cs3 =33 733 +°35/

Tjkf} oznacza przepuszczalnosé piytki w funkcji © dla oscylatordw "j"

a Wik‘C

czymik, nie majacy znaczenia dla dalszej dyskusji.
Rozpiszmy (7.87) bardziej szczegbdiowo. Macierze operacji symetrii
gék) podane sa w tab. 7.11, a wektory D; dla przejsé
o molekularnym momencie przejScia réwnolegiym do osi L, M lub N i zwa-
nych krétko oscylatorami L, M lub N, w tab. 7.12. Korzystajac z tych
tabel mozemy obliczyé, na przykiad, ze absorpcja w zakresie czgstosci

W CZh i wektory

wzbudzajgcej rsc

ylatory L

cpisywana bedzie funkcja

T,(8) = 4(cqq sin @ + ¢4z coS 0)2. cos® @ + 4 cqs sin® 6,

W ogdlnym przypa

f 2
U0) = 3 Bi: 3
TJ\ ) 2(1;\;| cos O + j sin 6 )% + 2(AJ

przy czym

\

dku

J

] .= anainP . s ®
A 031 in + CJ5 co

J

cos 9 - B. sin_3)2,

I, albo M, albo N, W wyrazeniu (7.87) pominigty zostai staiy

(7.88)

{7.89)




504
(przekrdj T4

Bj = cj2'
Ksztalt figury geometrycznej opisywanej przez l(’7.88) przypomina "osemke”
bkstrema tej funkcji przycadaja w badanej przez nas sytuac ji geometrycz-
nej (::2 || b) w punktach 81 = O oraz 92 = 90° i majg wartosci

T S
TJ.(O) = 445, Tj(90) = 4BJ.. (7.90)

Dokladne wartoéci ekstreméw moga byé wyznaczone z sSzeregu pomiardw za
pomocg metody najmniejszych kwadratéw. Znajomos¢ ich prowadzi bezpoéred-
nio do orientacji oscylatora j wzgledem krawedzi komérki elementarne j

a mianowicie

o 2
T.(0) AL\~ C5 i

ST (_-1) = (—-ﬂ sin @ + i cos ) 3 (7.91)
Ll e

Postepujac analogicznie w stosunku do drugiego przekroju izotropowego,
W Ik 02, ktéry w krysztale jednoskosnym nie jest réwnowazny przekrojowi
Ty znajdujeny, ze profil rigury wyraza si¢ réwniez wzorem (7.88), jed-—

nak znaczenie staiych AJ. i B,j Jjest teraz inme:

AJ. = ¢y sin (2V - @) - c43 cOS (2V -9}, (7.92)

\przekré; n )

Stosunek ekstreméw wynosi w tym przypadku

T.(0) AN e 2 2
- =<‘—41> ={—ﬂl sin (2V - ¢) - —d2 cos (2V -4 } . (7.93)
Tj(90) Bj c‘_j2 cj2

Korzystajac ze zwiqzkéw (7.91) i (7.93) mozemy napisaé dwa réwnania

a + b, m, =% p,
L (7.94)
azm]+b2m3=iq, i

z ktérycn - z dokradnoscia do znaku - wozna obliczyé szukang orientacje
oscylatordow ' !

m, = —4% ‘ (7.95)

Trzecin réwnaniem jest warunek normalizacji kosinuséw kierunkowych do
Jjednogci.
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Tabela 7.2

Wektory _1_)..'(]:) w krysztale jednoskosnym,
grupa punktowa komérki elementernej Con

Oscylatory L

1) "(“”l'l sin ¢ -~ 013 cos @
2 = 012 ;
+Cq4 cog8 9 = 0,13 8in @
: c 8in 9 + ¢ cos @
=1 T 12
\=Cqq COS P + 015 8in @
Caq 8in ¢ + ¢, cOs @
D(B) - _0‘1’1 £ 13
=9 (= 12
~Cqq COS @ 4+ Cq3 sin @
-C gin ® - c,; cos ¢
D('-q') - -011 G 13
=1 T 12
\ ©44 ©0s ® - 43 sin @
O_scxlator;z M
-C sin ¢ - ¢ cos @)\ -
Dm) o c21 23
-2 T 22 :
Cyq cO8 ? - oz sin @
G c 8in 9+ ¢c cos ¢
D(z) . c2’I 23
=2 ° 22
~c5q COS @+ Co3 sin @,
Coqy 8in P+ c cos ¢
=2 22 )
-02,1 cos O + 023 sin ¢
-C 8in 0 - ¢ cos ¢
D(L” & _021 23
=20 22
C,q COS P - 023 sin ¢
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Oscylatory N

(1)
D3

(2}
D%’ =

(3)
Do

1
//TT-T-‘\\
6 o 0
W OW N
TR

(4) _
ol

_931
= 032
031

sin @

cos @

sin @

cos ¢

sin @

cos ¢

-+

2

Sin ¢ -

cos @

cd. tab., 7.12

cos @

sin @

S e

cos ¢

sin ¢

SNl

cos @

sin @

DR

cos @

sin @

Rozwazmy przypadek krysztaiu jednoskosnego, w ktérym o= 500, 2V =
= '75°, zas macierz (C orientacji IMN ma skzadowe

0,3228
-0,8259
-0, 4624

i

-0,7411
0,0833

~0,6662

0,5887

0,5577 ) -
-0

;5851

Przy tych danych state A i B maja nastepujdce wartosci:

Oscylatoxr L

Przekrog m, Przekrdj m >
Aq 0,6712 -0,1880
B, -0,7411 -0,7411

Wykresy, ilustrujace przepuszczalnos¢ T.(6)

tego uktadu oscylatoréw

pokazane S8 na rys. 7.12, przy czym funkcje dla obu przekrojow znormali-
zowane sg do tej samej przepuszczalnoéci w maksimum. Funkcje Tj(e) mo=
zemy roéwnies “wyprostowaé", poniewaz (7.88) mozna doprowadzi¢ do posta-

= ;

g 2 2
T5(9) = 4 {Aj + (B

- A?) sin°e (7.96)
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A X llb

Rys. 7.12. Figura absorpcyjna w przekroju mq (krzywa 1)
i w przekroju =%, (krzywa 2) dla oscylatorow typu L.

T, (8)

55
53
51

49

47

45

02 04 06 08 1.0 <n28

Rys. 7.13. Liniowa reprezentacja krzywej z rys. 7.12
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~ Widaé stad, ze Tj(e) Jest liniowg funkcja sinze' (rys. 7.13),'_00 -
ratwia zastosowanié rachunku wyrdéwnawczego w celu znelezilenia dokzad-
nych wartosci A i B. /
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8. ROZSZERZALNOSC TERMICZNA KRYSZTALOW MOLEKULARNY CH

-

‘Rozszerzalnos¢ termiczna jest jedna z najczesciej mierzonych wias-—
nosci materialowych. Kazde ciaio stale pod wpiywem ogrzania doznaje
przyrostu objetoscl, aczkolwiek ~ jak zobaczymy pbZniej - liniowa roz-
szerzalnosé moze mieé¢ w niektérych kierunkach wartosci ujemne., Wrasci-
wie nie rozumiemy jeszcze dzisiaj zbyt dobrze, dlaczego materialy stale
rozszerzaja sig (Jjesli przez "zrozumienie" bedziemy uwazaé umiejetnosé
podania interpretacji tego zjawiska na poziomie molekularnym). Pierwszg,
rzucajaca si¢ w oczy réznica miedzy tensorem rozszerzalnosci termiczne j
a tensorami opisujgcymi inne wiasnosci fizyczne krysztaiu jest te, ze
tensor rozszerzalnosci nie jest tensorem materiatowym. W przedstawiow
nych juz przez nas wiasnosciach materiatéw takich, jak podatnoséé diamag-
netyczna, czy optyczna przenikalnos¢ dielektryczna, tensorowi makrosko-
powemu odpowiadal zawsze Jjakis tensor mikroskopowy, przypisywany czis-—
teczce. Mozna wigc powiedzieé, 2ze krysztal dlatego jest dia- czy para—
magnetykiem, ze Jjego czasteczki majg wiasnoSci dia- czy paramagnetycz-
ne. Ot6z nie ma molekularnégo odpowiednika wielko$ci makroskopowej,kté—
ra zwiemy wspéiczynnikiem rozszerzalnodci termicznej. Czasteczki uwaza
8i¢ najezesciej za twory sztywne, przynajmniej w zakresie niezbyt wyso-
kich temperatur. W wyzszych temperaturach, gdy staje si¢ mozliwe wzbu—
dzenie drgan wewngtrznych czasteczki wskutek wzrostu czynnika Boltzman-
na , érednie w czasile rozmiary czgsteczek mogg ulegaé zmianom, CO zZapew-
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ne bedzie mieé wpiyw na makroskopowa rozszerzalncoéé ciata staiego. Po-
dobny efekt mbgiby wystgiié réwniez wtedy, gdybysmy potrafili wytworzyé
dostatecznie duza gestosé stanéw wzbudzonych w obszarze drgan wewnetrz-—
nyeh czgsteczki za pomoca wigzki promieniowania o duzym nateZeniujefekt
taki, ktérego zbadanie mogtoby wiele wnieé¢ do mechanizmu rozszerzalnos-
ci krysztaidéw, wediug naszej znajomoScl zagadnienia nie zostal jeszcze
opisany. 4

W temperaturach nie przekraczajacych 400 K w wigkszosci przypadkoéw
nie wystepuje wiec wzbudzenie rozciagajacych drgan wewnetrznych,a przy-
czyn rozszerzalnosci termicznej naleiy szukaé w rizycznym charakterze
otoczenia wybranej czasteczki. Innymi siowy mozna oczekiwaé, Ze tensor
rozszerzalnosci termicznej ma charakter dynamiczny. W takim razie o
wtasnosci fizycznej bedzie decydowaé przede wszystkim przestrzenny roz-—
klad potencjatu oddzialywan miedzyczasteczkowych, kbtéry moZemy reprezen-
towaé powlerzchnig energii potencjalnej. Powierzchnia tGaka zalezna od -
powiedzmy - szeéciu parametrédw komérki elementarnej i od temperatury,
bedzie bardzo skomplikowana funkcjg tych parametréw, zwazywszy, ze jej
kszbalt powinien odzwierciedlaé¢ rdéwniez annarmoniczne cechy drgad ter-
micznych czasteczek. Wydaje sie, #e anharmonicznos¢ drgar, prowadzaca
w rezultacie do wprawdzie niewielkich ale znaczgcych przemieszczen li-
niowych i katowych czasteczki, jest koniecznie potrzebna w opisie roz-
sgerzalnosci termicznej. Nie mamy jeszcze teorii anharmonicznej dynami-
ki sieci, wobec czego dla zrozumienia zachodzgcych zjawisk musimy posiu-
giwa¢ sie opisem mniej czy wigcej fenomenologicznym. Czynione sg dopie-

. To préby skonstruowania takiej teoril, przy czym na razie obejmija one
wiasnosci krysztalidédw o najprostszej budowie, przede wszystkim metali i
krysztaléw jonowycn o sieci regularnej. W niektérych pracach dokonywans
sa préby objecia teoria réwniez regularnych krysztaiédw molekularnych, o
czym wspomnimy szerzej w tym rozdziale. Wpierw zajmiemy si¢ jednak dys-
kusjg zjawisk anharmonicznych dla pewnych modeli jednewymiarowych.

Do najnowszych opracowafl monograficznych z zakresu rozszerzalnoscil
termicznej kryszbaléw nalezg trzy plerwsze pozycje wykazu literatury
[1=3] wraz z pozycja czwartg, przynoszgcq wyniki prac przedstawionych
na konferencji miedzynarodowej [4].

8.1. Proste modele efektéw anharmonicznych

Zbadajmy ruch jakiego$ prostego oscylatora, ktérym moze byé wahad-
%o lub czgsteczka, wykonujgca w sieci krystalicznej drgania libracyjne
woké: jednej z osi’symetrii. W pierwszym przypadku energia petencjalna
‘episywana jest funkcja

U=7U,(1-8sin6 tg 8) = U (1 -92_%’9“_ Sy (8.1)

Pprzy czym O jest kgtem zawartym migdzy nicig wahadia odchylonego z po-
.Xo%enia réwnowagi a kierunkiem pionu., W drugim przypadku energia poten-
cjalna moze by¢ zapisana w postaci it

dipie A gk Lo (8.2)

U=1’J’o('l--cos6)=U.:,.(2 Sk

ktéra wskazuje, Ze w potozeniu réwnowagi © = O energig¢ potencjalng.
przyjmujemy za réwng zeru. Oba te przypadki maja jedng ceche wspélni:
w energii potencjalnej wystepujga jedynie parzyste potegli wychylenia kg-
‘towego w rozwinieciu funkcji trygonometrycznych wzgledem 8 = O, a wigc
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krzywa energli potencjalnej Jjest w obu przypadkach symetryczna. Jesli
wychylenia 8§ male, to w obu przypadkach mozna odrzucié potegl © wyz-
sze niz 2, co nas prowadzi do problenm drgan oscylatora lub libratora
parmonicznego. Zaléimy jednak, ze amplitudy drgan sq na tyle duge,, e
trzeba zachowaé jeszcze wyraz ©°3 ruch w obu przypadkach bedzie anhar-
moniczny. Ze wzgledu na niewielkie x6znice w ksztaicie funkcji U(8)
rozwazymy dalej ruch z zastosowaniem funkeji (8.2).

Réwnanie Lagrange a

4 2E_2E_,
; 7 e em— 9
dt aq @q
przy czym
E=T -0
oraz 1 i
=5 162 (8.3)

gdzie I Jest momentem bezwkadnosci, a © predkoscia katowa, prowadzi
do réwnania ruchu libratora

8 A
I6 +U°(9-68)_0
lub
= 2 A= A
6+w°®-6w°9 = 0 (8+4)

Iloraz Uo/ I ma wymiar kwadratu czgstesci - oznaczylismy go przez mg.
Przyblizonym rozwiazaniem (8.4) jest funkcja

& = 8, sin wt + €6 sin 3 wt, (8.5)

gdzie € jest maig liczbg, e<<1. W dokladniejszym rozwigzaniu powinnis-
ny uwzglednié réwniez dalsze nieparzyste harmoniczne w (8.5), ktérych
czestosci sg réwne (2n + 1)w. Udzial ich jest jednak rzedu e®, a wiec
szybko maleje ze wzrostem n, dlatego w dalszym rachunku zaniedbamy
wszystkie cziony z ek przy k > 1. Podstawienie (8.5) do (8.4) prowa-
dzi do réwnosci trygonometrycznej, ktéra musi byé speiniona w dowolnej
chwili t; warunkiem jest znikanie 2z osobna wspotezynuikéw przy sin w’b
i sin (3wt). Stad mamy dwie réwnosci ;
2 8, - u® 0, ~ %w%@B 0,

{8.6)
-9 w EGO +w§ EGO +é‘z m%Cg_ (0)5

Pierwsza z réwnosci prowadzi do zalezno$ci czegstosci od amplitudy ruchu
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1/2 ; ;
©=0,1-263) " 2w, (1-0d). (8.7)

Ze werostem amplitudy czestosé maleje, lecz zaleZnost ta nie jest silna
Jak wskaszuje ponizsza btabelka

e£°) 0 5 10 56, 20 40

wyem™ 100 100,0 99,8 99,2 98,3 97,0

Niemniej, w zakresie dusych amplitud ruchu nie ma Jednej okreslonej
ozestosel drgah; widmo amplitud w drganiach termicznych libratora transe
formuje sie na pasmo czegstodci, kbbérego sserokosé A w zalezy od skraj-
ned amplitudy ruchu, Oznacza to poszerzenie linii absorpcyjnej w krysz-
tatach, w ktérych taki ruch czgstecsek zachodzi.

Z drugiego réwnania, przyjmujgc w2 = wg, obrzymujemy
92
€= ;rg—é = (8.8)

Dla 8, = 20°, c—610"4, zag O =40 8_2510"3, a wiee € jest
rzoczywiécie matg liczbf. Mozemy e nazwac wapbrezynnikiem anharmonicz—
neéci, okreslajacym udziak czionéw nieharmonicznych w funkcji energli
potencjalnej (8.2). W rozwigzaniu (8.5) dla © udziat czgstosci podsta-
wowej jest © , zas drugiej harmonicgznsj €8,

. Précz anharmonizmu, towarzyszgcego symetryczmnej krzywej potencjal-
.nej z parzystymi potiggami przesuniecia 6scylatora, mozemy mieé¢ anharmo-
nicznos¢ towarmyszacq asymetrycznej krzywej energii potencjalne j. Niech
bedzie

el s ' (8.9)
$ ; 2 %) y
4 oraz -
s % n %2, (8,10)

gdzie c¢ jes]*: wepbiczynnikiem liniowe;j' sity sprezystej, m masd a X
predkoscig oscylatora.) & ma wymiar odwrotnosci diugosci, przy czym & )
jest wielkoécig duzo wigkszg od amplitudy ruchu tak, ze drugi czion
(8.9) standwi jedynie niewielksq poprawk¢ w stosunku do pierwszego. Po-
Péwnanie obu krzywych energii potencjalnej oscylatora anharmonicznego,
tj. (8.2) 1 (8.9), przedstawione jest na rys. 8.1.

‘Zastosowanie réwnania Lagrange’a prowadzi do réwnania ruchu

nE¥+cx-6cx =



lub

przy czym w?

2158
[
\

anharmon.
/
\

Rys. 8.1. Tys)
a

X
y krzywych energii potencjalnej (schematycznie):
potencjal anharmoniczny symetryczny,
b) pocencjat anharmoniczny asymetIryczny
§+ux§x—6w§x2=0,
o =

c/m Jgest kwadratem katowej czesbtosci drgan.
Rozwigzaniem tego réwnania jest tfunkcja

(8.11)
x(t) = A(coswt + g cos 2 wt) + x4, (8.12)
gdzie Xy oraz g < mnalezy wyznaczyC. Latwo dostrzec, ze X9 Jjest
srednim w czasie pozozeniem oscylatora. Mamy bowiem
<x(t)>= A<cos wt>+ qA<cos 2w t>+ X = x.

(8.13)
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Poniewaz krzywa energii potencjalnej jest asymetryczna, czyli w punkcie
=X, dziata sita wieksza niz w +X,, TO oscylator przesuwa sie w kierun-
ku siabszej sily (+x)gze wzrostem amplitudy drgan., Jesli zero na osi od-
cietych wybierzemy w taki sposéb, by dla oscylabora harmonicznego Sréd-
nie potozenie przypadato w punkcie x = O (poiozenie réwnowagi), to Xq
bedzie oznaczaé niewielkie przesunigcie sscylatora anharmonicznego
wzgledem polozenia réwnowagi. Pomijajac w x? wyrazy zawierajqce X
oraz g (x? wohodzi do (8.11) z maiym wspbiczymnikiem 8 ), moZzemy napi--
saé

z?(t) = A° cos2 wt = % A2(1 + co8 2 wt).
Po podstawieniu rozwigzania i przybliZenia do (8,11) otrzymamy
-(n2 A(cos ' wt + 4 q cos 2 wt) + wg A(cos wt +
+ q cos 2 Wt) +w§x1--;-'6w§A2-
245 w2 4% oos 2 wt = 0,
2 ° :

Przyréwoujge do zera wspbiczymniki przy cos wt, przy cos 2 wt oraz
wyrazy wolne, otrzymujemy

czyli
[ (e (8.14)

Jak widzimy, w tym modelu anharmonicznoéci nie ma zaleznosci czestosci
drgah od amplitudy.
Dwa pozostate zwigzki maja postaé

2 2 ae o
=4 qw A+q_woA—56w°!A_O,
czyli ;
= = = O5A.,
e
Ponadto !
%, =% 542, : (8.15)

Najbardziej interesujacy Jjest tu wynik dla Xq. Jak widzimy, przesunig-
cie oscylatora anharmonicznego wzgledem potozenia réwnowagi jest propor-
cjonalne do wepdiczymnika &, opisujscego asymetrie funkeji energii po-
tencjalnej (8.9) oraz do kwadratu amplitudy drgan. Zauwazmy, ze Srednia
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energia oscylatora kI jest réwniez proporc;jBnalna do kwadratu ampl:!.'&u-
dy drgan. Wobec tego :

<x>~ 4% ~ D, (8.16)

W tyn wyniku zawiera si¢ istotna czesé wyjasnienia rozszerzalnosci ter;
nicznej ciata stazego.

Zwigzek miedzy typenm anharmonicznesci (Lub krzywej energii poten-
cjalne]j) mozemy uogbélnié, korzystajac = dyskusji tego zagadnienia za-
nieszczone] w monografii Kittela [5]. Laczge (8.2) i (8.9), mozemy napi-
saé wyrazenie na energle potencjalng oscylatora anharmonicznego w ogdl-
nie;]aze;j postaci

VFx) =c % - g 2 - e x“, (8.17)

przy czym w czionie ng bedzie si¢ przejawiaé asymetria sit dziataja-
cych na oscylator przesunigty z poiozenia réwnowagi, zas w czionie fx"’
wpiyw duzej amplitudy drgan. Korzystajac teraz ze statystyki Boltmanna,
mozemy napisaé wyrazenie na srednie przesunigcie oscylatora

400
[ oxatimge

<x>= =@ : (8.18)
+00 r
/ o VIX)/KE oo
=~

Dla hiezbyt duzych =x wyrazenie podcalkowe mozna rozwingé w sSzereg, Za-
chowujac tylko dwa pierwsze wyrazy rozwinigcia. Otrzymujemy

+00 +0
F oottt [ R {ega:5/m : 'efxq'/kir}dx z
-0

=00

{113

+0 i
f xe"cxelkT {(_’I +£)(1 +fi)}dx§
e ‘ : Jote kT

n

+00 ;

4
/ e%f/ﬂ{x+£_+_fé}u
“—o0 KT 'lﬂ :
Poszczegdlne caiki mozemy obliczyé za pomoca wzordw. Polssona

R ek on = 4)(en = 3ha3e {5 Y2
e T e s s (R

I
sl 2
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Ion4q = O-

Widzimy stad od razu, %e czion £xt W (8.17)nie wnosi zadnego udziaiu
do przesuniecia oscylatora. Innymi sZowy, za rozszerzalnosé termiczng
odpowiedzialna jest asymetria krzywej energil potemcjalnej.

Rachunek dla czZonu gx3 przedstawia si¢ nastgpujaco:

+00 S 5/2
Ly o—CX /KT o _ 3T (g
kT _ 4xr \o©

+00 1/2
[ eV g s / S i F‘() ;
—00 =00

czyli

B ANY

2

3 g 3
X>= = = kT =
<x> =

18<E>. (8.19)
(¢

<BE> jest Srednig energig oscylatora w przyblizeniu harmonicznym., Przy-
blizony wynik kwantowy dla <x> mozna otrzyma¢, podstawiajac za<BE >
funke je

hw

<E>= . (8.20)
exp (# w/kT) - 1

Przy takiej postaci (8.20) mozna oczekiwal, ze wspbiczymnik rozszerzal-—
nosci termicznej @ bedzie szybko malal przy spadku temperatury ponizej
temperatury charakterystycznej oscylatora i bedzie dazytr do zera dla
temperatury zmierzajacej do O K. Takie zachowanie sig zostato istotnie
stwierdzone doswiadczalnie.

Na zakoriczenie mozemy stwierdzié, ze w rozszerzalnosci termiczneg
ciala stalego majg udziax mastepujace dwa efekcy.

(1) Istnieje zwigzek migdzy objetoScia ciata statego a amplituda
drgan termicznych. Ze wzrostem temperatury amplituda tych drgan rosnie,
takze w przyblizeniu drgan harmonicznych. kitekt ten mozemy zrozumieé
tek, jakby "etrektywna" (dynamiczna) objetos¢ elementédw strukturalnych
zalezata od temperatury.

(ii) Anharmonicznos¢ drgan czasteczek powoduje, ze zardéwno ich po-
- Yozenia jak i wzgledne orientacje ulegaja pewnym niewielkim, lecz ciag—
iym zmianom w miare¢ podwyzszania temperatury. sakiadamy przy tym, Ze w
badanym zekresie temperatur faza krystaliczna jest termodynamicznie sta-
bilna, tj. nle wystepuja przemiany fazowe. Wiadomo bowiem, iZz w przejé-—
ciu fazowym wystepuje zmiana symetrii makroskopowej, ktdérej towarzyszy
o wiele wigksza i niekiedy nieciggta zmiana poZozen i orientacji czaste-
czek w sieci krystaliczmnej.
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W nastepnym rozdziale zobaczymy, Ze amaliza odksztalcen wywotanych
mang temperatury réwniez prowadzi do dwojakiego rodzaju przesunie¢
czasteczek w siecl: przemieszczen liniowych i katowych. Pomiar rozsze—
rzalnosci termicznej umozliwia oceng wielkoici tych przesunigé,

8.2. Makroskopowy opis deformacji

Dyskutowane w poprzednim rozdziale skutki anharmonicznosci drgan
termicznych czgsteczek s erektami anizotropowymi: przesuniecia liniowe
4rodka masy czgsteczki zalezf od kierunku krystalograficznego, w ktérym
efekt ten mierzymy, przemieszczenia katowe czgsteczek zaleza nie btylke
od sposobu wyboru osi libracji lecz i od jej orientacji w sieci krysta-
licznej. W rezultacie anizotropii tych efektoéw, makroskopowa detformacja
ciata jest réwniez anizotropowa: kula wycieta z materialu w okreslone j
temperaturze przestaje by¢ kula po zmianie temperatury. Przedstawimy o- .
beonie opis tej deformacji wg Nye 'a [6], mimo i% zawiera on pewng, dosé
istotna niekonsekwencje. Polega ona na Gym, e zmiany rozmiaréw i ksztal-
tu krysztatu traktuje .sie jako ‘de:f.‘ormac;je oérodka ciggtego., Tymczasem
krysztat skiada si¢ z czgsteczek na ogét sztywnych, wypeiniajacych prze-
strzen ze wspdiczynnikiem upakowania bliskim jednosci. Widaé tu nieprzy-
stosowanie makroskopowego opisu deformacji do mikroskopowej struktury
‘krysztatu. Pomimo iz nie w peini konsekwentny, opis ten jest przydatny
na przyktad do geometrycznego przedstawienia skutkéw ogrzania krysztaiu
lub przewidywania zmian wybranych kierunkéw w sieci k:rystaliczneg pod
wplywem temperatury.

Zmiana temperatury powoduje zmiane rozmiaréw krysztaiu, tj. dowol-
ny punkt P wewnatrz krysztalu przemieszcza sie wzgledem poczatku ukla-
du wspoirzednych w jekies nowe potoZenie. W przypadku jednowymiarowym,
ktérego odpowiednikiem jest ogrzewana struna, skutki wydluzenia przed-
stawione sa na rys., 8.2, Bedziemy si¢ interesowa¢ losami nie jednego
punktu, lecz odcinka PQ =4 x. Z rysunku widaé, #e zmiana temperatury
wywoluje nastepujace skutki:

0 P Q 0 P Q
UL X SHIEVARX X+U SUAKEAUIE S
Struna  nierozciagnieta Struna rozciggnieta

Rys. 8.2. Deformacja Jjednowymiarowa

(i) Poczavek odcinka przesuwa sie¢ z P do P', przy czym OP’- OP =

il
=
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 (41) Dzugoé¢ odcinka ulega zmianie o wielkosé P'Q° - PQ =Au.
Przyrost dtugosci odcinka o diugosci jednostkowej jest miarg odksztaice-
nia wzglednego Au/Ax. Ogolnie odkszbarceniem nazywamy wielkos¢ bezwy-—
miarowsg i :

o o Gl e (8.21)

Jesli odksztalcenie jest jedmorodne, tzn. nie zalezy od polozenia 'x
punktu, to przesuniecie dowolnego punkbu ’

U= u +e-x : (8.22)

jest liniowg funkeja jego potozenia.

'] przypadku dwu- i trojwymiarowym zachodzg bardziej ztoZone przesu-
niecia punktéw, w wyniku ktérych odeinki Ax ulegaja nie tylko wydiuze-
niom, ale i obrotom. Rozwazmy te skutki w pzassczyinie xyx, (rys. 8.3 )

Xa
AUy Q; /’_/
Aus 2t Syt /
/
AT T e /
y q,
— AUy

Q;

AXy

e ; X1
Rys. 8.3. Deformacja w dwéch wymiarach

Po deformacji ptaski element prostokatny o bokach Ax,I i Ax, przejdzie
w réwnolegtobok o bokach P°Q°. Wzgledne przemieszczenie punktu Q’l moZe-
my roziozyé na dwie sktadowe: przesunigcie Au.,I wzdiuz osi x; 1 prze
sunigcie A u2 wzdiuz osi x,. "Wéwezas

du
1

jest skradowa odksztalcenia, odpowiadajaca wzglednemu wydiuzeniu odein-
ka Ax;, zaé :

Sad =
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AT o
8pq = =tg 9= @

jest sktadowdq odksztalcenia, odpowiadajgca obrotowi Axy” okat 0. W
ostatniej réwnosci zaniedbalismy w mianowniku Au, << Ax;. Podobnie

s 1

- du2

e
22
dx, . ‘

jest miarg wydiuzenia Axa, zas
r au'l j
e12=—u—1=1;g'9°‘_-'e :
dx
jest miarg obrotu elementu Ax, © kat O. Obroty ® i \‘}sa na ogét rés-
ne i maja zwroty przeciwne, Ogélnie
aui :
Pqi= : (8.23)
. . 9%y 4
jest skiadows tensora odksztaicenia wzglednego. Tensor ten jest 2-go
rzedu i nie jest symetryczny. Wobec tego mozemy go roztozyé na tensor
symetryczny &, opisujacy czyste odksztaicenie i tensor antysymetryczny
w, opisuaacy czysty obxot

= =

€ i1 _(e:Lk + eki)'

| (8.24)
wik = 5 (O = exy)e

Tensor E jest symetryczny; zatem mozna go sprow‘adzié' do uktadu osi

giownych 13 €y €33 znikaja wtedy skiadowe Scinajace. Szescian o kra-
wedzi 1 2zmieni diugosé tych krawedzi do 1(1 + si):, a przy tym prosto- -
padtosé krywedzi zostanie zachowana. Niezmienniczos¢ kierunkéw osi gidw-
nych jest wazng wiasnoscia tensora odksztaicenia, poniewaz, jak zobaczy-
my pbzniej, wszystkie inne kierunki ulegaja zmianie po odksztatceniu.

Wskutek zmiany dlugoéci osi giéwnych nastgpl zmiana objetosci szeécianu

AV

(1 + )01 +,)(1 + e;) - 1002

13

‘ 15.(5.,| + ey teg) B l-3§, .(8.25)
gdzie B Jjest srednim odksztaiceniem obj@tdéci materialu.
Kula o promieniu jednostkowym

2 2 20
x,|+x2+x3 1
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zmieni si¢ pod wpiywem odksztalcenia w elipsoide o osiach
x; = xi_“ + ei), . §8.26)

przy czym xj'_ wybrane sa wzdiuz osi gibéwnych e. Réwnanie tej elipsoi-
dy ma postacé e
' Sise2 2 -2
Sic X
| + 2 + 2 S (8.27)
(14612 (146,05 11450

Warto podkreslié¢, ze (8.27) jest zawsze elipsoida; nosi ona nazwe elip-
soidy odksztatcenia. Kwadryka natomiast, przedstawiona rdéwnaniem

I_CT._G.J_E= 2&1 x§=1 (8.28)
- .

moze byé elipsoida, lecz moze réwniez przedstawiaé hiperboloide, jesli
nie wezystkie e; 83 dodatnie.

W ogélnym przypadku odksztaicenie nie musi speiniaé zasady Neuma-
nna, poniewaz jest ono "odpowiedzig" kryszbtaiu na dziaianie czynnika
gzewnetrznego. Symetria tej odpowiedzi zalezy nie tylko od symetrii
krysztalu, lecz rdéwniez od symetrii tego czynnika. Jesli rozwazamy od-
ksztaXcenie spowodowane przez zmiang¢ temperatury 'l‘2 - 'J:‘,l =AT w Jedno
rodnym polu temperaturowym, to symetria € =zalezy tylko od symetrii
krysztatu, zgodnie z zasadg Neumanna. W takim przypadku mozemy zdefinio
waé dla giédwnych kierunkéw gidéwne wspdiczynniki rozszerzalnosci termicz

nej :

: X, - x
o = = L1, - (8.29)
X AT
gizie 4T Jjest mozliwie mats zmiana temperatury. Jesli jest omna ,jédna-
kowa dla wszystkich punktéw krysztaiu, to deformacja jest jednorodna, a
jej zwigzek z tensorem rozszerzalnosci termicznej & Jest nastepujacy:

€= o & AT (8430)

Jednym ze skutkéw rozszerzalnosci jest wiec przesunigcie punktu opisywa
ne przez (8.26) lub w ogbélniejszym przypadku w przestrzeni przez (8.27),
Drugim skutkiem jest derormacja postaci, okres$lona wspoiczynnikami Sci-
nania. Wielkoéé tych wspdiczynnikéw obliczyi Jakubowski [7] w uktadazie
osi gibéwnych &

5 = {("‘11 -.0122)2 c032 B,‘ cos2 Bp + ("‘11 - a33)2 0032 B4 COSZ 133 +

+ (o

22 —q.53)2 cos® PN cos® 8}} s (8.31)
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Przytoczony tu wynik obliczen otrzymamy dalej na troche inme Jj drodze,
wskazujacej wyrainiej na powiazania obu skubkéw deformacii termicznej.
W wyrazeniu (8.31) cos B4, cos B,, cos B 88 kosinusami wybranego kie-
runku wzgledem osi gidéwnych o, Eoy&ize O 6 Jest wigc wektorem, ktéremu
odpowiada antysymetryczuy tensor

\

12 13
g = 621 0 623 g (8.32)
531 532 0
Skradowe (8.32) speiniaja relacje 6 e 6ki i zalezg od wielkosci
anizotropii &
8y = .(mii - (xk.k) cos Bi cos 'ch' (8433)

X24

|=
S

|20
[

-

Rys. 8.4. Rozikozenie ogdlnego eremieszczenia unktu (xz)
na sktadowa podiuzna \ ) i poprzeczna ]{

Odksztatcenia Scinania nie bedziehy zatem obserwowali w krysztatach o
rozszerzalnosci izotropowej, gdy oy =0, = oc3; nie ivystapi réwniez w
krysztale anizotropowym w kierunku ktoérejkolwiek z osi giéwnych.

! Prze jdzmy teraz do roztozenia ogbdlnego skutku deformacji na przesu-
nigcie i obrét, przy czym rozwazania bedziemy prowadzié¢ w ukladzie osi
gléwnych' €, BJ. x; || & i Wybierzmy w tym ukladzie wektor Jed.nostkowy
1(11, 2,l ) w dowolnym kierunku.Po podgrzaniu ciata 1 zmieni dlugoéé AL
orientacae; potozenie punktu P  po deformacji opisuje wektor R (rys.
8.4)
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R=1+r (8.34)

przy czym
(8635)

:_L‘_:

ne
=

;joat wektorem przemieszczenia P do P°. Ogbélne przemieszczenie r moze-
my roztozyé na skiadowe A || 1 i p | 1, przy czym zachodzi zwigzek (rysu
8.4)

I =A + M . (8.36)
Dzugosé A mozna obliczyé w nastepujacy sposob:

1A1=1or=1(.5~1) - £,

gdzie el ;jost 'spélczynnikiem rozszerzalnesci termic zne,j w kierunku 1
"(por. .rozds. 2.5). Hebec tego

Neal o, : (8.37)

Widzimy, %e przesuniecie punkbtu w sadanym kisrumku 1, czyli przesunig-
¢ie radialne, Jest wprost réwne iloszynowl wspbdlczymnika rozszerzalnot-
oi w tym kierunkn przez przyrost temperatury

A=oy o AP 1. | (8.38)

Wielkosé przesuniecia punktu P’ w kierunku prostepadiym do 1, czyli
przesuniecie transwersalne, obliczymy z btwierdzenia Pitagorasa

S 1/2 1/2
i | ={£~; —z\-zs} - {ten)? - ef}/ :

Woktor przesuniecia transwersalnego wynosi zatem
; ; /2 A :
.llg-_{(g.l)Z - l} m (8+,39)

L

lub 1/2
B = {(oé.;)z -‘cclz_} «ATem, (8.40)

A

gdzie m  jest wekbtorem jednostkowym, prostopadiym do 1. Jesli rozpi-
szemy (8.40) wediug sktadowych, otrzymamy rezultat

Z]
Bk = {Z oy 1y 8)° - (Zoci.lf}a} T -
: = 1
Ly {;uf 121 - 12) - 2g Zai o 12 1§}(A4HZ L
el v . =
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={Z > (@ = a)? 27 12}~ (4z)2
i< gy
I

identyczny z wynikiem Jakubowskiego (8.31). 8; oznaczaja wektory jed-
nostkowe wzdiuz osi ukiadu wspélrzet}.nych. tkladowymi wektora K sa wiec
przesunigcia wzdtuz ukladu wspéirsednych korica wektora 1. Poniewaz sa
to wielkosci bardzo maie, mozemy uwazaé je za bardzo make katy obrotéw.
' Jesli przez @, oznaczymy niewielki kat obrotu woké: osi x, ,to (8 40)
mozemy zapisaé réwniez w postaci

9= ( 3 o%knj 1L AT e, '  (8.41)

przy czym wskasniki i, j, k zmienia;]q 8ie w perzadku cyklicznym. Réw—
nania (8.41) i (8.38) sa siuszne w ukladsie osi giéwnych tensora od~
ksztatcenia E.

Przypomnijmy w tym miejscu przy]ﬂ:ad kalcytu, dyskutowany przez Ja-
kubowskiego [7] i peruszany juz przez nas w rosdz. 2 w zwiazku ze stos-
kiem zerowej rozszerzalnosci (przykiad 2.3). Poniewas dodatnia rozsze-
rzalnoéé wykazuje kaleyt tylke w kierynku osi C3, & prostopadle do niej
ulega skurczeniu przy ogrzewaniu

0y = %pp = =5,56+107° K77, o5 = 24,91+107 &7,

wystepuje w tym krysztale stozek zerowej rozszerzalnosci, ktérego two-
. rzaca zawiera kat z osig C3 réwxgy 9= 64,75°. Co dzieje sie z tym kie-
runkiem, jesli zmienimy temperature¢? Odpowieds na to pytanie mozemy u-
zyskaé przez zastosowanie (8.41). Poniewaz 1(0, sin 3, cosd), zaten

u«l
ﬂ2=U5=O-

+30,4741070 « sin 64,75 « cos 64,75 E~1 = *+2,42" /K, .

Przy zmianie wigc temperatury o 1 K kierunek tworzacej obréci sie o
2,42 sekundy katowe w piaszczyznie XXz, tj. wokdér osi X4 ‘
Przyktad wykresu biegunowego naprezen Scinajgcych przedstawiony
jest na rys. 8.5 w piaszczyZnie {010) krysztatiu antracenu. Pozozenie a-
toméw zaczerpnigto z [52], profil wspdxczynnika rozszerzalnosci @, o-
raz sktadowg @ 2 naprezen obliczono na podstawie danych [53]. Widzimy,
ze wielkos¢ naprezenia zeruje sig w kierunku osi giéwnych o, natomiast
osigga maksimum pod katem 45° wzgledem kboére jkolwiek z tych osi. Z takg
sytuacjq spotykamy si¢ w kazdym krysztale, co wynika z postaci (8.41).
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8.3, Doswiadczalne metody pomiaru rozszerzalnosci termiczne]

Uzywa si¢ gtdéwnie czterech mebod pomiaru rozszerzalnodci termicz—
nej krysztatéw. mozemy je krétko scharakteryzowaé¢ w nastepujacy sposdb:

X3 ‘F/// \\\\
< \
ds /
—
: ! )
e |
[ ‘I
/ |
‘7’
\ /
7
>
\ e A
\ - TR S ~
Wiy e
\ Y xT
\{ \/(‘PZ
Q
¢ 2
\\ ’/
o /

Rys. 8.5. Biegunowy wykres naprezen scinajacych na piaszczyiznie (010)
antracenu (@J i profil wspdiczynuika rozszerzalnosci (ozl )

(1) metoda dylatometrii kwarcowej polega na pomiarze wydiuzenia -
prébki w kszbtalcie precika, Wydluzenie prébki przenosi si¢ na zewnatrz
strefy ogrzewanej za pomoca precika kwarcowego i obserwuje poXozenie na
nim znaczka za pomocag ‘mik_t'oskopu. Opis takich dylatometréw mozra zna—
lezé¢ w [7-9].

(1i) metoda bezposrednia posiuguje sig¢ obserwacja przemieszczeil
Jjednego z koncéw probki w kszbtaicie precika przy uzyciu teleskopu op-
tycznego (bez uzycia precika kwarcowego) [10,11]. v -

(1iii) Metoda interferometryczna opiera sig¢ na pomiarze przesuni¢—
cia uk?adu pragzkéw interferencyjnych. Przesunig¢cie to wynika ze zmiany
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drugosci jednej z drég optyczuych wskutek zmiany temperatury prébki
[2-15].

(iv) Metoda rentgenegraficzna polega na pomiarze zaleznoSci kata
odbicia Bragga od temperatury dla zbioru piaszczyzn sieciowych o zna-
nych wskaZnikach (bkl). Obecnie coraz ozgsciej jest stosowana zasada Po-
miaru Benda ([16,17]), najbardziej precyzyjna z tej grupy metod.

Pierwsze trzy grupy metod mozna nazwaC wspblnie metodami dylatome-
- trii makroskopowej, poniewaz wyniki uszyskane % ich pomoca detyczg wias=—

noéci caxej probki. Metody rentgenograficzne natomiast wykorzystuja tyl-

ko drobuny tragment prébki, o bardzo makej objetosci, dla uzyskania po-
trzebnych informacji. W pracach ekai)eryﬁxentalnych coraz czesScie]j stwier-
dza sie istnienie systematycznych réinic w wynikach wspétczymnikéw roz—
szerzalnosci, mierzonych metodami obu, typéw na tym samym - lub przyna j-
mniej pod wzgledem chemicznym tym samym — materiale. Pochodzenie tych
réznic nie jest jeszcze dzis calkiem jasne. Doswiadczenia wykonane na
krysztatach zwigzkéw ,;,nieorganiczngch’ wskazujg, Ze pewien udziat w roz-
pieznosci wynikéw ma obecnosé punktowych defektéw strukburalnych ([18-
20]). Timmesteld i Elliot uwazaja, ze obecnosé defektodw punktowych w
krysztatach prowadzi do nastepujacych efektéw: zmiana statych sprezys-
tych sieci Woké defektu, zmiana anharmonicznoéci wokéz defektu, zmiana
czestosci i predkosci normalnych moduséw sieci w krysztale zdéfe]d:ovqa-
nyn. Etekty Te czgsciowo neutralizujs si¢ wzajemnie tak, Ze zmiana moze
by¢ zardwno dodatnia, jak i ujemna. Dla przykiadu ' NaCleCut autorzy ci
obliczajg wielkos¢ naprezen lokalnych woké: defektu. W krysztalach mole-
kularnych dodatkowy wpiyw moze mie¢ czgsta obecnosé zamrozonych nspre-
zZen, uwalnianych podczas powolnego ogrzewania (zob. tez [21]).

Dla przykradu przedstawimy w tym rozdziale opis dwéch metod inter-—
ferencyjnych oraz metody Bonda.

Pierwsza z metod, opisana przez Hollenberga i Sharpe a [14], pole-
ga na ilosciowym potraktowaniu obrazu interrerencyjnego, wytwarzanego
w promieniowaniu lasera przez dwa cienkie widékna nieprzezroczyste. Jed-
no z nich ztgczone jest sztywno z badana prébky, drugie moze byé przy-
Zaczone do probki odniesienia lub unieruchomione, Zmiana vemperatury po-
woduje przesuniecie ukZadu prazkow interrerencyjnych, wywolane zmiang
odlegtosci wibkien przy ogrzewaniu badanej prébki. Powstawanie obrazu
interferencyjnego przedstawione jest na rys. 8.6. Rozwazmy obraz wytwa-
rzany przez Jjedna nic¢. Obraz taki pojawia si¢ wtedy, gdy érednica widk-
na lezy w zakresie 10 A=100 A, gdzie A jest diugoécia fali promieniowa-
nia lasera. Interferencja powstaje w wyniku réznicy drég promieni, do-—
chodzgcych auo ekranu z punktéw A i B : e

! L = Db sin a (8.42)
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B

Wiazka >
promieniowa—>—
nia lasera ;

e —

=t

~@ 00> 080r -

t

Rys. 8.6. Schemat obrazu interferencyjnego, wytwarzane%o rzZez
jedna (gbra) lub dwie (d6k) cienkie nici (wediug [4]’)’.

lub zwiazenej z nia réznicy faz
g = -;{ b sin a. ¢ (8e45)

/
Natezenie I wiazki wysyianej pod kgtem

I = I,(sin”B/8%) (8.44)
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wynika z beorii dyfrakeji Fraunhofera. I osigga minimum w tych punk-
tach, dla ktéryCh

n
ﬁ:—xgosina:n-u, N =Rl (8.45)

7 réwnania (8.45) mozna obliczyé srednice wibkna b, jesli zmierzymy ka-
towy odstep prazkéw. Zauwazmy, Ze warunek (8.45) jest identyczny z do-
brze znanym wyrazeniem na sinus kabta uglecia siatki dyfrakcyjnej, prIy
czym statej slatki edpowiada tu grubost widkna b. W miarg zunie jszania
b odlegtost prazkéw roénie.

Analogiczny jest opis zjawiska interferencji w waznie jszym przypad-
ku dwoch widkien. Rbéinica faz wynosi tym razem

m
Y =;dainoc, (8.,46)

a natezenie o'brazu mterfei:epeyjnego dane jest wzorem
I=4 Io(sin2 8/32) cos?‘ Y, (8.47)'

przy czynm B zdefiniowane jest dalej przez (8.43). Obecnie w obrazie wi-
doczne s8g& nie tylko zmiany intensywnosci, spowodowsne Srednicg widkna,
lecz wystepuje dedatkowa modulacja wywolana wigkszym odstepem d mig-
dzy wiéknami. Jesll odniesiemy punkt obserwacyjny do jakiejs szczegbl-
Vnaj wartosci o = Oy to natezenie Awiatla w ukladzie dwéch wiébkien be-
dzie réwne

T
=4I, cosa{x d sin Oﬁo}, (8.48)

gdzie I,] jest natezeniem dla przypadku jednego wzdkna, Funkcaa \8 48)
0s8igga minimum w punktach

+d sin oc°= (m+%) T e 00 (8.49)

Poniewaz o i A sa stale w czasie eksperymentu, (8.49) przedstawia
zwigzek miedzy odstepem widékien d, a rzedem interferencji. Zmianie te-
go odstepu Ad odpowiada liczba prazkéw Am taka, Ze

y d
Am=xsin o, * Ad. ..(8.50)

W referowanej pracy eksperymenty prowadzono do 1100 °C, uzywajac wié-—
kien z korundu o grednicy 21 fm, A= 0,6328 pu (laser He-Ne). Obraz in-
terrerencyjny rzutowano poprzez szczeling i filtr interferencyjny na fo-
tokomérke, co pozwalato na automatyczny zapis kolejnych zmian natezenia
wigzki interferencyjnej w miare¢ wzrostu temperatury. Odlegiosé¢ fotoko-—
mérki od prébki wynosiia 2 m, kat o 0 = 3 do 5°, zapis temperatury auto-
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a Pryzmat rozdzielajacy
[Dfzearoce) Laser He - Ne
lub Rubinowy
! Przedmiot Refl.
pryzmat .
i Filtr szary
/\ Y 0%/ Kiin
Y] o
Soczewka
kolimacyjna

Obraz holograficzny
10 x 12¢cm

Oko lub
kamera fotograf.

Rys. 8.7. Schemat zastosowania interferometrii holograficznej
do pomiaru .o {(wediug [15])

matyczny przy uzyciu termopary Pt-PtRh. Poréwnanie tej metody z dobrej
klasy dylatometrami kwarcowymi wskazuje, ze réznice wynikoéw obu metod
sq mniejsze od 0,1%. Btad wzgledny metody interterencyjnej w 1000 e,
oceniaja autorzy na 2%. ;

Druga z metod, ktoérg chcemy tu przedstawié z powodu mozliwosci do-
konywania pomiaréw takze na krysztatach z powierzchnig rozpraszajaca
Swiatzo (probki nieodpolerowanre), jest zastosowaniem interrerometrii ho-
lograficznej. Uktad opisany w [15] pozwala na pomiary xozszerzalno$ci
termicznej matych prébek dowolnego ksztaivu. Pewna cecha szczégélnq u-
ktadu jest to, ze jest on niewrazliwy na wszystkie typy przesunieé réw-
nolegiych i na jeden z mozliwych obrotéw. Obraz interferencyjny, wynika-
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jacy z pozestaiych dwéoh obrotéw i rozszersalmesei prébicd ma prostq in-
terpretacje i pozwala oblicsyé « bez znajomesci przesunigé katowych.
7adsnia ednosnie polozenia prébki 84 tak niewislkie, %é metodg ta mie-
rzono rozszerzalnosé prébek ferremagnstyka, lewitujacych w polu magne-
tycenym. :
Istotne elementy aparatu:.'y seaéawiom 88 B& IysS. 8.7. éwiatlo odbi~
te od przezrocz.ystego klina jast promieniom odniesienia, Socgewki wikle-
sie i skupiajace, umieszczone w promieniu prasdmlotowym, wytwarszaja
wiazke o duzym:przekroju, potrzebn3 de eswietlenia przedmietu, Wisska
ta skierowana jest na prsedmiot za pomecq klima, pokrybtego warstwa odbi~
jajaca o 50-~procentows] przepuszczalnosci. ¥ celu wskazania ‘kisrunku, =z
ktorego nalezy oglq,daé przedmiot, w blegu wigzki oéwietln;jaood watawlo~
ny Jjest retlektor pryzmatyczny. Droga optyczna od kiina 50% q,n pa.-yznatg
rozdzielajacego jest taka sama jak dla wigzki odniesienia. Pezwala to
na uzycie laseréw prostej konstrukcji, ze stabg koherencjg csasows.

Na rysunku 8,7b pokazane sposéb ogladania hologramu. Dla épelnie-
nia waruniu, by wszystkie czgsci przedmiotu oglgdane byly =z dokzadnie:
tego samego kierunku, moZna zestosowaé ukiad telecentryczny. Sktada sie
on z soczewki kolimacyjnej o duzej éredmicy. Oko lub kamera fobograficz-
na znajduja .sie w edlegtoici ogniskowej, ktéra winna byé kilkakrotnie
meksza od odlegXoéci miedzy soczewka a rekonstruowanym obrazem., Znale-—
zienie wiadciwego kierunku i odlegiesci obrazu od soczewki telecentrycz— !
nej utatwia retlektor pryzmatyczn;y_ dajgcy ostry sygnaz swietlny, Zatwo
widoczny na biatej kartce papieru. '

W tej kontiguracji mozna zastosowaé zaréwno laser helowo-neonowy,
jak i prosty impulsowy laser rubinowy. Jezeli uzywa sig¢ lasera gazowego,
to nie wolno zmieniaé poiozenia prébki w czasie ekspozycjl, aczkolwiek
jego zmiana miedzy dwiema ekspozycjami jest obojetna. Jesli 'l‘1 3 T2
oznaczaja Gemperatury prébki w chwili pierwszej i drugiej ekspozycji,
to AT =T, - T2 jest roéznica temperatur, ktéra musi byé znana do obli-
czenia & wediug (8.55).

Na rysunxu 8.8 przedstawiony jest schemat amalityczny sytuacji. 08
z jest kierunkiem oéwietlenia prébki i jednoczesnie kierunkiem oglada—
nia obrazu. Niech T oznacza wektor, okreslajacy potozenie jakiegos
punktu na powierzchni prébki., W wyniku przesunig¢cia cakej prébki lub ob-
rotu (ruch ciata sztywnego) i efektu rozszeraalnosci termicznej punkt
z poiozenia xr przesunie si¢ do _:r.'_' . Niech: & oznacza wielkosé prze—
‘sunigcia, przy czym ‘& = r” - . Zmiana dlugoéc; drogi optycznej T e
wynosi ' :

: Tl —ioubl s (8.51)
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kierunek oswictlenia i
ogladania  obrazu

Rys. 8.8, Przcsuniecia skladowo uczestniczgce w powstawaniu
réznicy drég optycznych (wedlug [51)

przy czym u, jest wektorem jednostkowym w kierunku z. Poniewaz prze-
'sunigcia sq male, ogdlne przemieszozenie 8 jest sumg poszczegblnych
_fprzosunieéz translacyjnego gt, rotacyjnegd 6, oraz wynikajgcego z
rozsgerzalnosci termiczne] ge. Obrét prébki o mary kat o, ktéremu od-
powiada wektor réwnolegly do chwilowej osi obrotu, powoduje przesunie-
cie punktu o odcinek

=£" We

8-
Izotropowa ekspamsja prébki przy wspbdiczynniku rozszerzalnoéci termicz—
nej @ powoduje przesunigcie ge =o AT - r, Jesli probka rozszerzs sie
anizotropowo, to t¢ czgs¢ przemieszczenia mozemy przedstawié za pomocg
wyrazenia

%:g.E.AT’

gdzie & jest tensorem rozszerzalnosci. Ogdlne przemieszczenie punxtu
na powierzchni proébki bedzie zatem réwne

8=6 +5,+8 =5

8, =8, +xx W+ ar A, (8.52)

Wobec tego zmiana diugosci drogi optycznej wediug (8.51) i (8.52) wynie-
‘8ie

Ty 321929, x =0, 3+ «2dly, (8.53)
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Jesli T, Jest cazkowitoliczbowg wielokrotnoscia diugosci tali Awiatza,
lasera A, powstaje ukZad prazkéw interterencyjnych, opisywany przez

réwnanie

mA= 2(§, +w, X -0, J + &z AT), (3_54)‘

J
gizie m jest liczba caikowita. Zauwazmy, Ze kat obreotu . 7; woké: osi
7z nie ma udziaiu w Pz. Zmienne xyz mozemy traktowaé jake parametry ‘
swobodne, a wtedy (8.54) ma bardzo prostg interpretacje geometryczns..
Jest to bowiem zbiér praszczyzn dla m = 0, 1, 2, ...; wzajemnie de u‘;
bie réwnolegiych. Kosinusy kierunkowe normalnej do tego zbioru sg pre-
porcjonalne do w_, w i ® AT, Wytworzony ukiad prazkéw interferencyj-
nych jest skutkiem przecigcia sie tego zbioru plaszczyzn z powierzchnig
prébki (rys. 8.9).
Jdesli w = 0, to zbiér pilasz-

czyzn jest prostopadiy do osi z. Z
liczby prazkéw i rogmiaru prébki w
kierunku osi moZemy w prosty speséb
obliczy¢ o, Jesli w# O, lecz AT = :
= 0, to wszystkie ptaszczyzny,a wigc
i praski, stana si¢ réwnolegle do o-
si =z, niezaleznie od ksztaitu obiek-
tu. Rozszerzalnosé przejawia sie .
wiec w nachyleniu prazkdéw inverferen=—
cyJjnych wzgledem osi z.

Wybierzmy trzy punkty X74%9>
X5¥02%0 i x3375z3 takie, Ze lezZg na
Jednej 1linii progtej i niech

Rys. 8.9. UkZad prazkow interfe-
rencyjnych, paowstajacych na po-
wierzchnit szescianu (schematycz- . X =% Iy =Ty By =8
nie, wedtug [15]) : b= 2.1 2.3 2,

o mids dp = T3 85 2By

Wstawienie wspbéirzednych tych punktéw do (8.54) prowadzi do zwigzku.

o AT {(21 - z5) - p(z, - 23)}=

A : 4
= E {(mtl - ma) = P\ma = mB)}o (80b5)

Z tego wyrazenia mozemy bezpoérednio obliczyé o. Prazki sg na ogdl bar-
dzo dobrej jakosci, wobec czego mozliwy jest pomiar przemieszczenia rzg-
du 0,1 ich odst¢pu. Liczba prazkéw wzrasta wraz z rozmiarem prébki, z
wielkoécia wspoiczynnika rozszerzalnosci i przyrostem temperatury. Tes-
ty wykonaue z kostka AL o boku 5 cm wskazuja, %ze otrzymane wyniki o
mieszcza sie w granicach 10% wartosci literaturowych.,



Metoda Benda epiera sie na zastosowaniu dyfrakbometru rentgenowskie-
go do precyzyJjnsgo pomiaru edlegiosci miedzy piaszczyznami sisciowymi
krysztatu. Jej zasadniczg ideq jest spostrzefenie ([22]), %Ze kgt odbi-
cia promieniowania renbgenowskisge od zbisrm réwnolegiych plaszczyzn
sieciowych moina mierzyé o wiele dekladnie]; Jesli wykorzystaé zamiast
jednsgo dwa symetryczne poZozonia k:gi';ysztalu Q,, i °2’ speinlajgce waru-
nek Bragga. W tych poiezeniach krysstal odblja wigzke promieniowania w
Jednym z dwu symetryczanych kiernnkéw Dy lub D,, w ktéxych unieszeza
sle detekter D (rys. 8.10)., EKat dyfrekoji dany jest prrez réznice obu
poioser detekbora: : .

26‘-‘-‘ 180 o ((pz T ¢1)o

= Wyeliminowane gostaja w ten spoadh
H & btedy, wynikajace z miepewnosci pozo-
zenia zera na skall kata ¢ oraz bigd
~ 8, wynikajacy = przesuniecia piytki
\ krystalicznej w stosunku de osi obro-
tu, jesll nie przekracza ono 1 mm
([16}). Na pomiar © nie ma wplywu
.réwniez absorpcja promieniowania rent-
genowskiego w krysztale. Doktadny po-
miar © wymaga jednak uwzglednienia
poprawek, pochodzgcyech z nachylenia
T krysi&tatu, z rozbleznosci padajace]
B wiazki promieniewania, = zatamania
wigzkl w krysztale, wreszcle z przesu-
nigeia maksimum krzywej odbicia spowo-
dowanego czynnikiem Lorentza i czymnikiem polaryzacyjnym. Dokiadne oméb-
wienie tych poprawek i sposéb ich obliczania mozna znaleié w cytowanej.
pracy [16]. Wapbdiczesne konstrukeje dyfraktometréw pozwalaja na odezyt
katéw z dokradnoscig do jednsj sekuady kqtowe;j% moZna uwazaé, ze mniej
wiecej z taka dokladnoscig mozliwe jest zmierzenie kata © . Osiggnigcie
takiej precyzji w pomiarze katéw w poblizu © = 75° odpowiada doktad—
I::w:‘:aci pomiaru odstepu miedzy ptaszczyznami sieciowymi 1': 41 000 000.
Mozliwe jest to z jednej strony po zastosowaniu odpowiednich korektur
przy wyznaczaniu © 2z obserwowanej krzywej odbicia, z drugiej ma sens-
tylko w odniesieniu do krysztaiéw, odznaczajacych si¢ wysokim stopniem
uporzadkowania, a wigc dobrym sprecyzowaniem statej sieciowej (Si; Ge,
NaCl). Osiagniecie tak wysokiej precyzji w pomiarze d pozwala zauwa-
zyé zmiany A d ‘towarzyszace zmianie temperatury rzedu utamka stopniaj
w ten sposdb mierzy sie wiec tzw. rézniczkowe wspdiczynniki rozszerzal--
nosci. '

Rys. 8.10, Schemat metody Bonda
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Sposéb obliczania giéwnych wspéiczynnikéw rozszerzalnosci z do-
gwiadezalnie zmierzonych zaleznosci kata dyfrakcji od temperatury © (T)
ombwiono w r0zdz. 2 (problem 2.1). Zmodyfikowane zastosowanie metody fo-
tograficznej w rentgenegraficznych pomiarach rozszerzalnosci przedsta—
wione jest w [21]. Autor zaleca wykonanie w temperaturze pokojowej zdje-
cia obrotiowego warstwicy zerowej w ustawleniu asymetrycznym (Straumanis;
a nastepnie wskaZnikeowaniu reflekséw za pomocy zdjecia Weissenberga.Po—
piary rozszerzalnodci wykonuje sie w specjalnie zaadaptowane j kamerze
Weissenberga, zapewniajacej dobrg stabilizacj¢ temperatury prébki. Réz-
pica temperatur migdzy dwiema ekspozycgjami jest rzedu 100 oc, zatem mie-
rzy sie wartosci Srednie dla tego przedziaiu temperatur. W pracy [23]
opisano tez procedurg, majgacgy na celu minimalizacje biedéw systematycz-—
nych. |

Inny schemat rachunkowy obliczania goéwnych wspdiczynnikédw rozsze-—
rzalnosci mierzouy metodami dylatometrii rentgenowskiej, opisany jest w

[e4]. .
8.4, Wyniki pomiaréw rozszerzalunoSci termicznej krysztatow

Zestawienie wynikoéw pomiaréw wspbdiczynnika rozszerzalnoéci termicz-
nej krysztaiéw molekularnych podane jest w tab., 8.1. Zwigzki uszeregowa-
ne sa wedtug malejacej sSymetrii krysztakow. Skiadowe.tensora podane sg
wedtug konwencji podobnej do tej, jaka zostata przyjeta dla wiasnoéci
optycznych w rozdz. 6: w ukitadzie ortorombowym %9 %, @, odnosza sig
do krystalograficznych osi a, b, ¢, zas T a5 oznaczaja skiado-
 we gibwne & w ukiadzie jednoskosnym. Skiadowa ®, Jjest réwnolegia do
0si symetrii b, co stanowi réznice¢ w pordwnaniu do konwencji z rozdz.
6. Orientacje przekroju tensora w (010) okreslano przez podanie kata
miedzy osia o, 1 osia a (Jjesli jest on znany); Yo, a Jjest dodat-
ni, jesli miesci sig w obrgbie jednoskoénego kata Bl Wszystkie wartos-
ci o podane sa w jednostkach fome el niektorych przypadkach - za-
1e2n§e od informacji dostepnych w literaturze - w miejsce o« podano
wspétczynnik rozszerzalnosci objetosciowej B . Parametry komérki elemen-
tarnej podane S8 w . Przedstawimy obecnie kilka uwag do danych za-
mieszczonych w tabelil.

Krysztat jodu (Nr 9) rozszerza sig¢ nieliniowo, poniewaz wszystkie
trzy wspbdiczynniki zalezg od temperatury. Zwraca uwage duzy wspdiczyn-—
nik tem =raturowy QL Jjest on o rzad wiekszy od pozostaiych dwéch
wspotczynnikéw. Ma to odzwierciedlenie w strukturze ([34]): czasteczka
Jjodu tworzy kat okoZo 33° z osia ¢, co tiumaczy nie tylko t¢ anizotro-
pi¢, lecz takze bardzo silng aniZzotropi¢ wiasnosci sprezystych. Wspdi-—
czymnik sztywnosci wzdiuz osi ¢ wynosi bowiem £, = 17,2-104 dyn/cm,
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Tabela 8.1

Rozszerzalnoé¢ termiczna krysztaiédw molekularnych. o jest wspdiczyn-—

nikiem rozszerzalnosci liniowej, B - rozszerzalnosci objetosciowej.

T _ (t._) oznacza temperature przemiany fazowej w %k ('oc), T (tf) odpo-

wiednio temperature¢ topnienia zwigzku. Parametry komérki elementarnej

podane sa w angstrBmach. Orientacj¢ osi &, w krysztatach uktadu jed-

noskosénego podano za posrednictwem kata X aq,a; jest on dodatni, jes-
1li lezy wewngtrz rozwartego kata 3.

Nr |Zwiggex | foformacde @ x 108, g7 Orientacja | Metoas | Titera-
1 2 ] [ L] 6 i
1 |Metan Regularny B = 1080 [25]
p g LT = 1(2,2) | 405
RS TS
2 +4 Prébka
2 |Metan g .73 polikryst. Dylatom. [26]
12 -4
(odezyt. z wykresu)
99,99% TSR o
TP’= 20?241: e
22 180
Obie £
3 | Metan Sul? TR gg 331 Sl Rentg. 271
\ nie centr. ﬂ 40 . 263
a= 5ﬁ904 60 382
Deutero- | Regularny Rentg;
4 | Metan Faza I 370,6 w zakresie | ' [28]
\CDy) e od 40 do :
5 60 K
T, K o
latometr.
5 Deutero- i 8’235 lzyalcros [29]
Metan 26 3:,]7 temp. 2 do
10 253 7EK
13 64,9
17 162
T, = 22,2 K T, E B ~10%, k71
P - ta- -
za tetrago- 10 0,33
6 [ Deutero i‘;lfg <27,1 2 12’8 Rentg 0]
] S .
Metan faza regul. 25 20,7
Sciennie 30 11,0
centrowana, 3 40 10,2
§>27,1 = 60 13,0
W
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od. tab. 8.1
2 2 U D [ 7
99 99% mol. DK o
Ragularny 2,15 0,26 Mat
@ -Azot = 35,6 K 3 0,70 glenind laton. 1
¢ a?m owe 5 3,88 polikryst, | ¥ 1]
wzgledam 72 10 43,6
15 133,5
20 176,5
o, K g x40, &1
98% odmiany i = i
Para- ar c) Materiax
8 | Woaér BATETVOdoiu 12 21,8 polikryst, [32]
; 13 27,8 ;
13,8 33,1
(dokz. *10%) -
Ortorombowy, o, = 88+0,228 x (T-83), Rentg.przy
: £ i 9 réznicach
50 D, ap = 71,240,021 x (T-83), temp. 30 K | [33,34]
2190 a = 4,795 @, = 13,440,010 x (T-83) w zakr. 83
b= 7 %55 dO 293 K ;
cC =
w 295 K
B (220 K) = 330
Cztero- (%82 Kl 1360 e
bromo- ometr.
10 | netan -320 0,05 & p = dlg |18/ T | e dokzed. 1% | (P71
(CBry) A= 931076 K
: at61=
Bi= 1562105 K
7 Ada- Regularny B= 470 [25]
mantan Faza I
Bicyklo Reg—u.lar Zakres
q2 203 w B = 440 temp, od
- okten | T828 I 19 do [25]
+43 OC
F43m <o>= 600 Pomiary
Cyklo- i > Sy ‘
13 | beksan | Z = g;p @%) = +6,4:1077 K2 stazedy [6]
I(CGH'IZ) W —40 °C w —40 °c trycznej
Faza tetra- S
Kwas ol b= 60 !
gonalna
4 | kwadra- | Pp/n " tigara @ | b= 20 (7]
oy % > 400 °C
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) | ede Pab. 8.1
2 2 & 2 [ y SRITSE
Fa:a pseudo~ o 5 j
tetragonalna ~ Re10™ :
Kwas w temg? pok. ar - 6:10™ &/x Rosprassa—
g5l TRATe | RRUR ) db . mie peu- 8]
HZCZO4) b = 5;285§2i e &z trontw
; c = 6,148(2
B =89,96(2)
T, = 457 K ®q(L %) = 10
16 | Pemta- %Rr e J18 (16 aa ool ) Rentg, , sa- o
< reo- SR () 4) 2 o8 temp.
oTytryt | gu1. Rla (znleﬂyjnleliniowo 0d 1), 105-458
T>Tp . dla 105 T < 458 K
o, K g x10*, £~
gg | g 5 Pis 17
: 8 ZOmeTY
17 Etylen 99,96% 02E4 93 9' MateriaZ wiasnej [40]
(Czﬁq‘) Tfu 103,97 K 97 11 polikryst. kongtruk- >
) : 99 12 eji
; 101 14
102 16 :
103 24
103,5 32
(odcsyt. z wykresu)
vl wg = =14(3)
[t &, = 111(5) Dylatore- 7
18 | zyna %y [a1]
(Cq_ﬂq_Nz) x, = 246(3) tria rentg, EIEi
w 293 K
grtoronbowy @, = 73,6 i’uba:m:ry :
= O
19 ?gnﬁez)] i 9:67 ¥y = 198,5 ST t;m':jaléE [42]
66! | ¢ = 7,03 %, = 249,6 \ atom-aton
§ w 270 K
Ga = 119
20 | Benzen 2’;’;??_'_"’3‘:3_ @, = 106 e Rentg. [42]
“O = 221 i
: Orterombowy = 117,741 ,4
1,8-Dwu “ 751, \
| altro- | F21292q:. =4 @y = 49,6%1,0 e Renbg. 4>
21 | nafta- a = 11,352 59,5412 nigdsy 293 447
len b = 14,934 %o = 22 13701: =
(Faga I) | ¢ = 5,37 :
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- od. tab, 8.1
2 2 L3 2 6 7
Tio- Ortorombowy e Bi: foéi; ,106 Dylatometr
22 | pyoznik | Fasa IiP2qma e kwarcowy [45]
(CH,N.8) | Fasza V3 i e nAe g
Prma a 293-188 K 0,54 225,6
188-123 K 1,93 232,5
b 293-213 K 0,21 40,6
213-173 K 0,51 40,7
173-123 K 0,09 23,7
e 293-213 K 0,33 95
213-193 K O 0
493-173 K 2,55 61,
173425 K 0,03 7,2
Orterombewy ¥y = 34
Fenan— P24, 2= 2 5o Nieelas-
tren ; = g.zz % = Sy tyczne roze
= «©, = praszanie.
23 |(Cq5840) | o = 9,47 “° = 54' ? neutrondw (el
v, =72°% L
D o =
% = 180, & > 'P
&y = 663
oh “2 = 11614 S
o oromb : entg. w
fluers~ | Fdd2, Z :'g 3% 6623 znlcrgsie
24 | yitenyl u13,60§0,03 w 236 K temp, 77 &7
(© ) b=25,6520,05 @, = 34t3 do 293 K,
12510} | o= 6,22%0,01 1 <a>
d2 = 8314
az = 25%3
w128 K
JednoskoAny = 212,8%4,0 0qy8 = Rentg. <o >
Butbh | Toy/8 5 =2 o 40,3%0, :41""10' ala zeirs-
25 | len 2=8,218%0,005 . 2 3 5'1;0'1 = 23‘19?3. (s8]
(OdoHe)! | =g da o %3 s ¥2070¢
p=122055£107
i w +20 °C
g;dx/makzoﬁnyz oy = 111,7%3,3 g, = Rentg. <a>
: 2, Z = SHE10 a zakre-
% Antra- a : 5,56 @ = 13.410#* =51 su temp. [#9]
(a.n ) b= 6,035 a; = 20,6%0,6 -195 do
14840 | ¢ = 11,16 ‘ +20 0C
g = 12k%42-
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od. tab. 8.1
A 2 5 4 2 6 VA
a= 8,5 g = 191 <ch1,a = v
b= 6,028 = 42,40
Antra- ’ ax, = 40 H Rentg. ,<a.>
27 | cen g = 1;&322. “2 &1 T = 300 K (501
W ~290 K 3
Erysstaz I ®, = 160%) $%q,8 =
wy = 22 =
; Xals 7X) Dylatometx
Antra- x) : s
28 sztatr II a, = 150 a= kwarcowy 1
o i a; = 25 *0ie Tézniczk. g
o= 6
%) Wyznaczone posrednio
&= 8,562(6) gqi=152,0 Y&q,8 = Rentg. ,<o>
b= 6,038(8 S 8o <
2g) (i Ankra- c=11:184t83 &5 = 31,0 =120,48 g;g’é‘geém 52]
p=124%42(6) % &= 1250
w 290 K
: = 8 1 124,1 =
b &1308s 92 SRy e | B,
Antra— | ©=11,1650(3 2t ’ ey i egoda
20 | cen B= ; ® 3=t 33,6:m 215 K uggzigéz- (53]
=124°36 53 (7)" o) = 267,1 Yaq,8 = kowy
T =293 K @y = 39,3 = 28,63
: % %z = 45,3 w 293 K
Jednoskoény %, = 300 Saq,8 =
P2,/a, Z = 2 @, = 96 = -16°
a= g,g; o;'3 = 30 w257 K RentgA.T
Dwufe- b 3 _1e° TZy =
31 | oyl c = 947 & =190 48 00 mtan | 541
Cagiao) | p= 9524 T SN
w temperat. @z = 18w 185,5 K :
poko jowe] oy = 120 -16°
ll2 = 12
ay = 10 w 148,5 K
J;dnoskoény @y = 70 Loq08 =
G2, %Z=2 o, = =30 = 39° Rentg. ,<o.>
Dwuben-— 2h? 2 B
32 | =zyl a = 12,770 @z = 250 wdzggrgsie 5]
(€148 | = 8,110 r10%) e
c = 7,320' o
3 B = 116°00 2
w 287 K
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4} e 3 .
I cd.
Jednoskofny 2 6 So 8b:
P2,/8, Z = 2 &qpm o0, Yo, .8 = %
b o Rl Bomulaos0 stk
(C448500)| © = 780 K 3umladse HlenbEsn s
1wPe%2)| 82 408" % fakroste
R 8 od +20
w 20,5 “C —173 Ocdo el
Szedcio- Jednvskosny
34 |onloxo-. P2q/e, 7 =2 o, = 61,4%
benzen a= 8,08 1 1420,5 Lo ,8 = Rentg. ,<o>
(06(;16) Bin 3:87 wy = 46,8%0, 4 s Vt' zakresie
o = 16,65 i et [44]
= 119,0° e
Jednesk
| = énéséé?“
8
35 p‘;ﬁ:::- 5:07&)) @q = 246,0 % Rentg. +
'36”61‘202) c= 8,592(5) &, = 13,2 0,8 = dylatom,
B = 91,45(5) = = 32,2 kwarc. w
w temp. B 14,5 zakr, od [57]
pokoj. [58] 290 do
380 K
itr £ ’
3 |Balitna ! Jepe %oq,8 = :
2= 75 = 40%° Rentg. <o>
= 2 . sie 9]
oxtero- | Trn295.0%0.2 %, = 108 258
lisp | oydsae- Semee o ik
etylen | malie w i PHgh = -21°
) | kesie 2 %z = 64 Pycrakfom,
Y g6 285 x70 o 293 K (metoda [60
(edezyt. = wykr.) Bonda) ]
Odmiana o
T 77- 293
P2 3 355-
Pay/m, 2= 4 | &\ 293 33 M5 i gy
2 : 1;,2573 %q 31,0 22,1 16,3 :‘?.57; g:p.
. ’
. g = 111o%2 «p 55,9 92,9 123,9 ulls standard
was o J 21l ® (NaCl) ka-
P 32 1050 00 |agy o= Aiuizoar
38 octowy 3 “ o Pl‘lﬂ:::;a
leltor- | 2oy, za 2 O m i mae it
1 %, = 0 :
(C,EN0,)| & 2 2,977 1 % a [62]
15012° @y = 90,1 -
g = 113°12 R Al
‘3 2 “.3_[_ a,b
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cd. tab. 8.1

) £ L3 & 2 6 Z
Odmiana vy
P34 lub P33, T 7= 293~
Z= 3. Ko=-
38 mérika erte- A A1
heksagonal- % 24,5 52,0 o ]l &
&= 7,037 % 245 52,0 @p || P
b = 12,189 ® 8,9 (0] c
c = 5:‘83 5 L u} ”
€ = 263,4 Loy = Rentg. ,<a>
39 | Glicyna %y = 52,1 = 43,5 e [61]
%z = 18,7 do 100 °C
«, = 13,6+0,325% oy || a¥ P:Jomé-
= o | ol e
trdj- @y = 45,2+0, 2 c rozds.
40 3 3 |l [63]
cyny o, 1=
%;‘15' dala 75 <t <105 °C (123307,
s0.N,8) tong. ok,
Bni 30 °C >tp
Ki c = Rentg. ,<&>.
J'.'.;. :1 : 2'2 ::?.;o w zaks'zo.sie
-mety— 2 Y > od 22 deo
41 1ot13— @y = 2,5 66 °C [64]
na:9-me- 5
tyle-
adenina
Kom~— [P
1;. g;/d.:nkohv %y = -1(5) :3; & Dytrakton.
UL =13,0625(7 ap = RI(S) S
oosniks | be 6,6437 ai %3 = 199(10) Tyl =
42 | Srozawio-| = 5'8478(3) = 1(2|6b [65]
wy B =92,474(6 %, : |
©EN0: |y 295(1) K
*C2H0,) e
Kom- Ponizej 182 K
pleks P29/c, w 182 -
2:1 N- przechodzi
' metylo- | nieodwrac. w
Wraiid | dndnoacchny 23(5) X Dyfraict
was O oiny xq = %q,8 = om.
szcza- a= 5,1#-29}3) a1 = 24(5) % 5;'3,
wiowy b=10,5498(5 : 2 = ’
43 |2[HN-CO- | c=10,3102(5 . @5 = 188(9) Laz,a = [66]
+NHOH; | - BZ=:0;.910(5) = 51,7°
L CO0m) 54| (9 S s : 1S i
Ortorombowx:
a=10,4220(2) oy = 14(5)
b= 6,4274(1) o = 274{14)
¢=16,1253(5) o, = 28(6)
Z=4 3
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gas w kierunku osi a f5 = 0,041“104 dyn/cm ([34]). Temperatura De-
bye a dla jodu 6p = 106 K jest dostatecznie niska na to, by w funkcji
@(T) nie pejawialy si¢ cziony z T2 i z wyzszymi potegami T.

Ewas kwadratowy H,C,0, (Nr 14, 15) ma dwie odmiany polimorticz—
ne. PoniZej temperatury przejicia 6, 2 100 °C, jest jednoskosny
(P21/"' zaé powyze] niej symetria krysztaiu jest tetragonalna (I4/m).
W odmianie Jednoskoénej pitaskie szkielety €40, peowigzane sg wigzania-
ni wodorowymi z czterema sgsiadami w piassczyinie ac, zas sily miedzy-
warstwowe maja giéwnie charakter siit van der Waalsa. Faza jednoskosna
ma wiasnosci ferreelektryczne: uwaza sie ([37]), Ze wiasnoici ferroelek-
$ryczne wystepuja w warstwach ac i sq spowodewans specyticznymi prze-
sunieciami atoméw wodoru, uczestniczgcych w wiazaniu wodorowym. Poszcze-
gblne warstwy ac s§ ulozone wzdiluz b antyferroelektrycznie. Zwraca
uwage znacznie wigkszy wspéiczynnik rqzszerzalnoéci o W fazie pseu-
dotetragonalnej i mpie;jszy @, W poréwnaniu do fazy tetragomalnej. W
samej temperaturze przemiany fazewej nie dzieje si¢ nic szczegdlnego
w tunkeji «(T).

Znaczna anizotropia rozszerzalnosci termicznej w jednoskoénej od-
mienie kwasu kwadratowego nie jest czym$ wyjatkowym. Bardzo czesto kie—
runek najwigkszego wspdiczynnika rozszerzalnosci jest prostopadiy do
warstw, w ktérych ulozone sa czasteczki zwiaszcza wtedy, gdy czastecz—
ki tworzgce warstwe poiaczone s§ wigzaniami wodorowymi. Dobrymi przy-
ktadami uzasadniajgcymi t¢ tez¢ 88§ poza kwasem kwadratowym pentaeryfryt
(Nr 16) i glicyna (Nr 38, 39). W 457 K tetragonalna komérka glicyny
(I, Z = 2) przechodzi w komérke regularng., Os 4 w tazie tetragonalnej
jest prostopadta do piasszczyzny wiazain wodorowych. W tej piaszczyznie
rozszerzalnosé Jest mala, a %q praEtycznie nie zalezy od temperatury.
Wspéiczynnik rozszerzalnosci wzdiuz 4 - %zy Jest 12 razy wigkszy od o,
i silnie (oraz nieliniowo) zalezy od temperatury. Pod tym wzgledem wyni
ki [39] zgodne sa z wczesnie]j znanymi wiasnosciami pentaerytrytu ( [67]).
Z kolei glicyna ma trzy odmiany krystalograficzne: oo, 8 i y. Odmiana o
krystalizuje w temperaturze pokojowej z oboj¢tnego roztworu wodnego
([69}). Odmiang B mozna otrzymaé, dodajac etanolu do nasyconego wodne—
go roztworu glicyny. Krysztaly B nie sa trwale i w temperaturze pokojo-
wej atwo pi'zechodzq w a3 w suchej atmosferze przejscie to jest wol-
niejsze ([69] ). Krystalizacje odmiany Y prowadzi sig¢ przez powolne o-
chtadzanie roztworu wodnego lekko zakwaszonego (CH5COOH) lub lekko al-—
kalizowanego (NH,OH) [70] . Struktury wszystkich trzech odmian s3 znane:
o [e8], 8 [69], Y [70]. Krysztalki Y sa trwate, a przy ogrzewaniu po-
wyzej 458 K przechodzg w odmiang¢ o . Ogrzewaniu fazy < towarzyszy spa-
dek wartoéci wspélczynnikéw rozszerzalnosci w piaszczyznie (010), o4 i
s (Oc3 maieje do zera), oraz silny wzrost ¢s5 Il b Zaréwno ten frakt,
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jak i korelacja periodéw odmian o i B tiumacza tatwos$é przejécia fazo=
wego B-—= o. Korelacja migedzy kierunkiem najsilniejszej rozszerzalnosci
krysztalu warstwowego a kierunkiem normalnym do warstwy nie musi byé
stuszna, jesli wigzanie wodorowe wytwarza si¢ réwniez miedzy warstwami.
Przyktadem takiej struktury jest kompleks mocznika z kwasem sSzcCzewiowym
(Nxr 42),

' Najwigcej pomiaréw rozszerzalnosci termicznej wykonano na kryszta-
le antracenu (Nr 26, 27, 28, 29, 30). Przedstawimy nieco obszerniej wy-
niki tych badan i sprébujemy zaopatrzyé je komentarzem.

Wyniki przedstawione w trzech pracach - [49,50,52] - otrzymane zo-
staty metoda rentgenograficzng, za pomocg fotografowania zbioru reflek-
sébw w temperaturze pokojowej i w temperaturze ciekiego azotu. W publika-
cJgi [49] autorzy piszay, Ze przy ochtadzaniu krysztaitu do =195 °C szcze-
gélnie silnej zmianie ulegaja: oé a (zmniejsza sie prawie o 0,10 R) i
kat B (wzrasta o 53°). Te zmiany w antracenie sa Jjednak dwa razy mniej-
sze niz w naftalenie (Nr 25), co jest widoczne z $rednich wspdiczynni-
kéw rozszerzalnosci

<o>

=1
2 Ant

<a’>Naft = 8671]'10-6 K r = 48,6'10—6 .K.—’l.

Wniosku tego nie potwierdzaja wyniki [52], a juz w wyraznej sprzemnogci
s3 z nimi wyniki [50], otrzymane W tym samym laboratorium. Warto zauwa-
zy¢, iz we wszystkich trzech pracach wspbdiczynniki wyznaczane byty dla
dos¢ sporego przedziaiu temperatury. Wartoéci uzyskane sg wigc z pewnose
‘cig mniejsze od wspdiczynnikéw rédzniczkowych w poblizu temperatury poko-
Jjowej.

Jakubowski [51] wykonal pomiary rozszerzalnoici antracenu metoda
dylatometru kwarcowego na dwéch réznych proédbkach; obie otrzymane byiy
metoda Bridgmana, Probka I byta hodowana z fazy ciekiej o temperaturze
tylko o kilka stopni wyzszej, zas proébka II w' temperaturze znacznie wyz-
szej (350 °c) od temperatury topnienia antracenu (230 °C¢). Oba kryszta-
i1y byiy zupeilnie przezroczyste, aczkolwiek w bombie zawierajacej krysz-—
tat IT stwierdzono $lady rozktadu substancji. Obserwacje w mikroskopie
polaryzacyjnym, badania chromatograficzne i spektroskopowe nie wykazaiy
%Zadnych zauwazalnych réznic migdzy nimi. Autor stwierdza, ze réznice
wspotczynnikéw rozszerzalnosci dla obu krysztailéw sa mniejsze, niz roz-
bieznosci miedzy wynikami metody dylatometrycznej i metod rentgenogra-
ficznych. Ponadto autor stwierdzir istnienie interesujacej korelacji
miedzy przekrojami tensora & i vensora scisliwosci B w ptaszczyinie
(010). Na tej piaszczyznie oba tensory maja jeden stopieh swobody, to
znaczy orientacja osi giéwnych Sl @5 oraz B1 i B3 nie jest wymuszo-
na przez symetri¢. Kierunek najsiluiecjszej rozszerzalnosci o4 rézni
sie tylko o 16° od kierunku najwickszej scisliwosci 8 4. Jesli posiuzy-



243

ny si¢ damymi z pracy [55] , to okaze sig, Ze korelacja ta wypadnie jesz-
cze lepiejs kierunki o, i B, roznig si¢ zaledwie o 1°.

Pomiary rozszerzalnosci antracemi [53] wykenano na krysztale hodo-
wanym .z roztworu w acetonie. Nie wykazywai rys ani spekan, nie posiada
réwniez -struktury mozaikowej. Analiza szerokoici poiéwkowej rerlekséw
wykonana za DOMOCH dyfraktometru Bonda potwierdzila wysoka jakosé struke
turalng krysztaiu. Osiggnie¢ta precyzja pomiaréw pozwala stwierdzié, iz
- zgodnie z oczekiwaniem - gestosé zmierzona metoda rentgenograticzna
(1,2505 g/cm ) Jjest wieksza od maksymalne] gestosSci zmierzonej metoda
flotacyjna dla bardzo czystego antracemu (1,2490, [71]). Zmierzony w
tej pracy wspéiczymnik o, ma w temperaturze pokojowej wartosé najwieck-
gzg z dotychczas podawanych.

Pobiezny nawet rzut oka na wyniki rozszerzalnosci cieplnej krysztae-
ju antracenu wskazuje na istnienie bardzo duzej rozbieznosci wartosci
liczbowych, na co zwracaja uwage réwniez niektérzy autorzy ([51,53]).
Jesli uwzglednié wszystkie przytoczone w tabeli wyn:i.k1 to diugosci osi
tensora rozszerzalnosci wyrazone w jednostkach 108 iy zawieraja sig¢ w

granicach

12 < 0‘1 < 267 (1:2,4),
12 < (!2 < 40 (Qissidh)s
6< 0(«3 < 6 (@sa0r2)%

Nie jest tatwo skomentowal to zestawienie, poniewaz na razie tylko dla
krysztatu antracenu dysponujemy bogactwem wynikéw, uzyskanych réznymi
metodami na niewatpliwie rozmaitym materiale. Trzeba si¢ chyba zgodzié
z autorami [5%], ze najpowazniejszym powodem rozbieznosci jest niedosko-
natosc k_rysztéléw antracenu, jakimi zajmowano sig¢ w poszczegdlnych labo-
patoriach. Stabos¢ oddzialywan migdzyczgsteczkowych w krysztale molekur
larnym dopuszcza '"do grosu' rozmaitos¢ czynnikéw zewnetrznych, przeszka-
dzajgecych w realizacji struktury wysoce uporzadkowanej w czasie wzrostu
krysztain. Nie mozna tez wykluczyc obecnosci w krysztatach naprezen
mechanicznych, wynikajacych z historii proébki, zW&aszcza gdy krysztax
hodowany byi ze stopu. Niezaleznie od tego, zmiany temperatury w trak-
cie wykonywania pomiardéw réwniez prowadza do dosé sporych deformacji.
Jak ratwo sie przekonaé na podstawie réwnania (8.41), najwigksze napre-—
zenia przy ogrzewaniu krysztaiu powstaja zawsze prostopadle do kierunku,
zawlerajacego kat 45 z ktéragkolwiek z osi tensora «. Ich wielkosé za-—
lezy od amizotropii rozszerzalnoéci termicznej. Na przyklad w krysztale
antracenu w piaszczyznie (010) maksymalne naprezenia sScinajgce prowadza
do deformacji o wielkoséci
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ol (o —az) = 1,1+107* raa/k = 23"/K.

=

Wielkos¢ ta jest w przyblizeniu 10 razy wieksza od obliczonej dla kalcye-
tu. Nie jest rzeczy obojetna, czy naprezenia termiczne likwidujq juz o-
becne, statyczne, czy tez si¢ do nich dodajg. Nie mamy tez zbyt dobrego
rozpoznania, jak dalece nieodwracalne zmiany zachodza w prébce wskutek
samego tylko jej ogrzewania, czy ochtadzania. Wydaje si¢, Ze rozszerzal-
noé¢ termiczna krysztaiu molekularnego jest w tej chwili wiasmoscig f£i-
zyczna najbardziej czuty na stan fizyczny prébki, a zwiaszcza na jej u-
porzadkowanie bliskiego i dalekiego zasiegu.

W dwurenylu (Nr 31) kierunek najmniejszej rozszerzalnosSci o 3 DPo-
krywa si¢ z kierunkiem diusszej osi czagsbteczki, zas kierunek najwigk-—
szej rozszerzalnoSci w praszczyinie (010) tworzy kat prosty z diuzsza
osia czgsteczki ([54]). Taka orientacja osi czasteczki IMN wzgledem osi
& Jest typowa dla zwigzkéw aromatycznych, majgcych czgsteczki wydiuzo-
ne w Jjednym kierunku; Potwierdzaja to réwniez wiasnosci krysztalow naf-
talenu i antracenu.

Anomaliq rozszerzalnos-

p_103 | ci w poblizu punktu przemia-

I ny fazowe] pierwszego rodza-

' | ju, jakg jest topnienie ciai
| zajmowali sie miedzy innymi

| Barteniew i immni [72]. Auto-
rzy ci pokazujg na przykia=

l dzie krysztailu nattalenu, ze

| w poblizu temperatury topnie-

| nia wspdéiczymnik rozszerzal-
: noégi rosnie gwaltownie,przy

| czym poczgsek tego wzrostu

| Jjest znacznie przesunigty w
kierunku nizszych temperatur

A 76 78 801y dla prébek, wykazujacych ja-

kied odstepstwa od idealnos-
Rys. 8,11, Zachowanie si¢ w poblizu tem- : ot
peratury topuienia (ty = 80,1 °C) wspdi- ,Ci' Odsvepstwani mogg by za
czynnika rozszerzalnosci onaetoéolowea réwno detrekty punktowe, Jjak

naftalenu. Krzywa 1: krysztaiz wysoce upo- . i %

rzadkowany, krzywa 23 krysztal z niedos- 1 Suruktura mozaikowa. Przy

konatosciami struktfiylgscnematycznle ,2Wwg kXad wynikéw pokazany jest
2

schematycznie na rys. 8.11.
Krzywa 1 przedstawia temperaturowa funkcje wspdiczymnika rozszerzalnos-—
ci objetosciowej B, dla krysztaiu hodowanego z mata szybkoscia z bar-
dzo.czystej substancji; wozna sadzic¢, ze struktura prébki jest wysoce
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Rys. 8.12. Anomalia rozszerzalnosci termicznej w przemianie fazow. j
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rodzaju w g-nitrotoluenie (reprodukcja z [73]).
|| kierunku I, b) || kierunku II, c) || kierunku III
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uporzadkowana., Krzywa 2 edmosi sig¢ de prébki hodowanej z materialu o 13@-
bdxmn stopniu czdbofel, - jedrak 147&0& Wrasbani& kryszbaln hyta znacznie- —wigts

sza. Niedeskonalest struktury (btedy erientacyjne, dyslokacje) powoduja
wzmoZenie %jawisk poprzedszajgcych fiépnionie ("pro-melting phenomena™) i
silniejszy wzrost B(T). Podobne przyspieszenie zaleznosci B(T) wyste—
puje réwniei dla prébki 1, jesli os#uwn 8i¢ ja pe raz drugi w zokresie
temperatur bliskish b, Autersy btiumaczg ten fakt silniejszym rozwinie-
cien struktury mesaikewe] kryssbaiu juz raz ogrzewanego, & czesciowo
réwniez dyfuzjq demieszek w kierumku granic ziaren mozaiki.

Bardzb pigkny przykiad "txéjwyniarewe " anomalii wspéiczymnika roz-
szerzalnosci w przemisnie fazowe] II-go rodzaju opisuje Heberlein [73].
Badang si:bata’nch Jest ni‘brotoluon,} zekres temperatur ed 77 de 273 K.
Nitrotoluen ma dwie odmisny polimewficzne, oble mogi byé otrzymane ze
stopu (momotrepia ?) i oblie majg diugl okres trwalosci w temperaturze
poko;jdwo;j - [74] W te] pracy opisano gachowanie sig ortorombowej odmia~
ny &-nitreteluenu, ktére] kryszbtaly byZy hodowane z roztworu w benzenie
w temperaturze 26 ¢, Zastosowano podennoéciowq metode pomiaru wspdi-—
esymnika rossgerzalmeici, przy czym rozdsielczesé pomiaru diugesci proéb-
ki w warunkach sprzyjajacych wynesita 10"9 cm, Przyresty temperatury,
kentrolowane £a pemocq platynowego termometbru eporowego, wynosily od
0,4 do 0,04 K, zatem mierzona wielkoécig byt réimiozkowy wspéiczynnik
rozszerzalnofci., Wyniki pemiaréw reprodukowane s8g z cytowanej pracy na
rys. 8,12 nie tyle w tym celu, by pokazaé Crytelnikowi rozrzut wynikdw,
lecz przede wszystkim dla podkreslenia niezwykrej cierpliwosci i skru-
-pulabtnodci autora w dechedzeniu eksperymentalnego ksztaitu snomalii &.
Przy tym - jak pisze autor publikacji - dla przejrzystosci umieécil na
rysunkach jedynie ekoio poiowy uzyskanych punktéw pomiarowych. Autorowi
%ej ksigski znany jest jeszcze drugi przypadek réwnie skrupulatnego po-
‘brekbowania pomiaréw dylatometryczuych - przy]dady poedebnych hzmch
mozna znalesé w cytowamej juz pracy [51].

Liniowy wepbéiczynnik rozszerzalnosci a-nitrotoluenu wskazuje na
istnienie przemiany fazowej drugiego rodzaju. Uwidacznia sig¢ ona we
wszystkich kierunkach krystalograficznych, & najsilniej wzdiuz osi c.
Znaleziono, Ze przemiana wystepuje w temperaturze T_ = 211,7 K.

: Zacytujemy Jjeszcze dwa przykiady zastosowania dylatometrii do bada-
nia przemian fazowych oraz towarzyszgcych im zjawisk. Pierwszy dotjciy
badar polimorfizmu w 1,8-dwunitronaftalenie ([75]). Zwiazek ten mezna
obrzymaé w temperaturze pokojowej w postaci krysztaiodw ortorombowych
przez powolne odparowanie roztweru czystej substancji w benzenie lub
EtOH, Wykresy wzglednych zmien diugeéci prébki z temperaturgq sg repro-
dukowane % cybowanej pracy na rys. 8,13 dla trzech kierunkéw krystalo-
graficznych, oznaczonych przez I, II, III i odpowiadajacych osiomn krys-
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Rys. 8,13, Dylatometria 1,8~-dwunitronaftalenu (reprodukcja z [75])

talograficznym a, b, c. W czasie ogrzewania krysztatu odmiany trwakej
w temperaturze pokojowej i oznaczanej jako faza I pojawia si¢ w tempera=-
turze t_ = 100-105 % przejécie do fazy II, ktbéremu towarzyszy znaczna
nieciggto$¢ zmiany diugosci prébki,obserwowana we wszystkich trzech
orientacjach i najwigksza w kierunku I.Nie jest jasne, czy przemiane

te mozna uwazaé za odwracalng, nieciagkosé objetosci w temperaturze
tp jest bowiem doéé‘znaczna, co powoduje, Ze po przejSciu II-——I faza
I nie mwa wszystkich cech uporzadkowania krysztaiu w stanie wyjsciowym.
S'wiadczq o0 tym badania rentGgenograficzne — zdjecia kolysanego krysztaiu
lub Weissenberga dla fazy I ‘wykazujq w obu przypadkach doéé spore rézni-

)
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‘ce w liczbie i natgZeniu retlekséw. Niektére szczegdéiry krzywych dylato-
metrycznych (nachylenie i drobne odstepstwa od liniowoscl) pozwalaja
Jednak odnalezé cechy fazy I po odbyciu cyklu ogrzewania, przynajmniej
w dwu kierunkach krystalograticznych (rys. 8.13a,b,c). Widaé réwniez,is
przemisnie towarzyszy histereza o wielkosci At = 15-20 oes Ogrzanie
prébii do temperatury o kilkanascie °C nizszej niz %, = 170-172 °C, po-
szabkujacej miekniecie prébki, pozwala ujawnié istnienie dwéch dalszych
odmian fazowych 1,8-dwunitronaftalenu. Obserwowane zjawiska mozna wyJjas-
ni¢ w nastepujacy sposéb ([75]): Ogrzewanie krysztaiu 1,8-dwunitronafta-
lenu prowadzi w temperaturze 100-105 °¢ do przemiany fazowej I —1II,
dylatometrycznie odwracalnej, ktdérej towarzyszy znaczny wzrost objetos—
ci krysztatu i zmiana wspdiczynnikéw rozszerzalnosci (np. @rp> % dla
kierunku I). Wychodzgc z monokrysztaiu (k) w fazie I otrzymujemy poli-
krysztal (pk) w fazle II, zatem jest to przemiama typu Xk —— pk. Ocha-
dzaniu towarzyszy odwrotna przemiana fazowa, ktéra inicjowana jest w
temperaturze nizszej niz I —— II (okoZo 85 °C) i potaczona Jjest ze
zmnie jszeniem diugoéci prébki, i odwracalnym powrotem v;spélczynnn‘kéw
rozszerzalnosci do pierwotnych wartosci. Wystepujgca tu histereza roz-
szerzalunosci At = 15-20 °C', Jjest charakterystyczna dla przemian k—k.
Przypadek z At # O oznacza, %e przemiana polega na 'procesie krystali-
zac ji, ktéry w przypadku II—-1 wymaga utworzenia zarodkéw nowej fazy
(I) w oérodku metastabilnym (II). Warunek termodynsmiczny, wymagajacy
by At byko rézne od zera w cieczy lub w fazie gazowsj dla utworzenia
centréw krystalizacji, z pewnoscig obowiazuje réwniez metastabilna faze
statg. Jesli jednmak ogrzejemy prébke do wyzszej temperatury, co naj-
mniej 150 °C, stworzone zostana warunki dla przejscia IT St JULIE ey (o
chiadzaniu, Polegaja one na “gmieknieciu" sieci, potrzebnym - byé moze
- dla powazniejszej zmiany orientacji czgsteczek, Przy dalszym ochiadza-
niu faza III przechodzi spontanicznie w fazg¢ IV okoXo 60 °C’, przy czym
ten proces nie powoduje destrukcji sieci kryatalicznej. Faza IV jest
krysztaiem, ktéry mozna rdéwniez hodowac¢ ze stopu, wykazuje dobra prze-
zroczystosc i stosunkowo dtugi "czas zycia', poniewaz proces IV ——1I
przebiega w temperaturze pokojowej bardzo powoli. Relacje migdzy tfazami
od I do IV pokazane sa wediug [75] na diagramie (rys. 8.14).

Krysztaz tiomocznika CS= (1\1H2)2 ma piec¢ odmian fazowych,przy czym
wszystkie przejScia fazowe maja charakbter przemian odwracainych k-—k.
Fagy I i III sa ferroelektryczne, stad duze zainteresowanie fizykoche-
micznymi wkasno$ciami tego zwigzku., Analiza rentgenogratficzmna ([75,77])
dyfrakcja elektronéw ([78,79]) i neutronéw ([8U], doprowadzity do szcze-
gbtowego poznania striktury fazy I (ortorombowa, PZ,lma) i V (ortorombo-
wa, Poma)., Nie ma przyczyn by sadzié, ze struktury faz posrednich nale-
zg do inmnego ukiadu krystalograiicznego. Anomalie dielektryczne badane
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Rys. 8.14. Schematyczne przedstawienie relacj :L fazowych
w 1,8-dwunitronaftalenie (wediug [75])

byty W [76] . 4 pomiaréw przenikalnosci dielektrycznej wzdiuz osi a wy-
konanych przez bych autoréw wynikaja nastegpujace temperatury réwnowagl
sgsiadujacych z soba fazs

il

TP(IV/V) = 220K TP\III/IV) 179 K, TP(II/III) =176 K

169 K.

i

'TP_(I/II)

Dylatometria tiomocznika zajmowali si¢ Fubtama [81] i Jakubowski
[45]. Wyniki uzyskane w tej ostatniej pracy prowadza do nastgpujacych
wnioskéws

(1) Poszczegdlne fragmenty krzywych dyletometrycznych migdzy punk—
tami nieciaglosci, odpowliadajgce zakresowi egzystencji okreslonych faz,
sq nieliniowymi funkcjami temperatury. Mozna je opisa¢ wielomianem dru-—
glego stopnia : :

A1/l = C .+ Bt + At2, . (8.56)

Wobec' tego wspdiczymniki rozszerzalmnosci w tych przedziatach nie sg Stu-
e, lecz zalezq liniowo od temperatury. Wspéiczynniki temperaturoéve oo
wyznaczone wetoda najmnie jszych kwadratéw, podane sg w tab. 8.1, Nr 22.

(ii) Wystepowanie poszczegbdlnych punktoéw przemian fazowych . Tp za~

lezy od kierunku krystalograficznego, w ktorym wyznacza si¢ krzywa dyla-
tometryczna Al/l; na przykiad wzdiuz osi a mozna zaobserwowac tylko

jeden punkt nieciggiosci, zasé w kierunku c¢ wystepujs trzy takie punk-— :

ty. Odpowiadajace im temperatury wediug [45] i [/o] ‘anomalie ﬁrzem‘.kal_-
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Temperatury przemian fazowych T tiomocznika

P

Kierunek 1 Tatara-
‘| krystalo- | T (IV/v) | T (III/IV) | T _(II/III) | T _(I/IL) A
graficzny P P P - P

a 220 179 176 169 . [76]

3 1856 =l ) [45]
b 213 - 185%6' - = (5]
5 213 18516 w3 =) 5]

\

X) Poza badanym zakresem temperatur.

nodci dielektrycznej) podane sg w tab. 8.2. Nie wiadomo w jakim stopniu
wystepujace tu réznice moimna przypisaé metodzie, a w jakim procedurze
postepowania w czasie pomiaréw.

(iii) Liniowa rozszerzalnosé terniczna Jest zwigqzana z rozkiadem
sit miedzyczgsteczkowych w krysztale. Najwigkszy wspéiczynnik obserwuje
8ie¢ w kierunku osi krystalograficznej a i w tym bez kierunku wystepu-
Jja najstabsze oddzialywania miedzy czgsteczkami tiomocznika., Odwrotnie,
najunie jszy wspéiczynnik rozszerzalnosci wystepuje w kierunku osi b, w
' ktérym oddziatywania NH...S, silniejsze od oddziazywan van der Waalsa,
najg udziat najwigkszy. : ,

(iv) W przeciwiehstwie do wynikéw badah sprezystodci tiomocznika,
wykonanych przéz Benoit i Chapelle [82], Jakubowski i Ecplivet [83] wy-
kazali, ze istnieje znskomita korelacja miedzy rozszerzalnoscia btermicz-
ng i Acisliwoécia tego kryszbtaius kierunki najwigkszej Scisliwoéci po-
krywaja si¢ z kierunkami najsilniejszej rozszerzalnosci zardéwno w prze-
kroju ac, jak i be ([83]). Réwniez typ przekroju obu tensoréw w poda-
nych praszczyznach jest taki sam.

Na zakonczenie opiszemy sposéb dwuwymiarowego przedstawiénia ‘tenso=
ra rozszerzalnofci termicznej, zaproponowany przez Weigla i innych [B4].
Sposéb ten pozwala bardzo pogladowo przedstawié ewolucje skiadowych ten-
sora wraz ze zmiang jakiego$ parametru, na przykiad ciénienia lub ‘tempe-~
ratury, i nie wiadomo dlaczego praca ta przeszia w literaturze nie zau-
wazona. Korzystajgc z tej idei wprowadzimy dwuwyniarows reprezentacgje
& w nieco inny, uproszczony sposéb. Wyobrazmy sobie tréjkat réwnobocz-
ny o boku a (rys. 8.15). PoXozenie dowolnego punktu P na plaszczyz-
nie mozemy podaé za posrednictwem trzech wspdirzednych XXXz, ktore
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1 a, : 2

Rys. 8.15. Dwuwymiarowa reprezentacja tensora rozszerzalmofci
termicznej (schematycznie, wediug [84])

sg odcinkami PQ; prostopadiymi do odpowiednich bokéw tré;jkqta. Dowo-
dzi sie w elementarnej planimetril, Ze suma )+ X+ x3 nie zalezy
od potozenia P i jest rdéwna wysokesel trdjkata. Wobec tego

X + %y + X3 = h= (¥/3/2) a.

Jesli wybierzemy h = 1, czyli a
warunek

2/93', to wspbirzedne P spezniaja

x4 +x2+x3=1. (8.57)

Takim samym warunkiem mozemy zwigzaé gtdwne skiadowe %, Jjesli wprowa-
dzimy zredukowsne giéwne wspéiczynniki rozszerzalnoéci

Ay e/ 2], 4= 142,53, (8.58)

przy czym A, 8§ liczbami bezwymiarowymi i zawsze dodatnimi. Mamy wow-
czas | :

5 Aq 2 7"2 + A; =1, \ (8459) :
awigc P na plaszczyﬁnie w ukradzie wspdirzednych XXX reprezentu- -
Je tensor &. Przypusémy teraz, ze Oti zalezq, na przykiad, od temperas-
tury. Punkt reprezentujacy fumkcje g('.t') przesuwa sie po pewnej trajek-
torii, ktéra jest obrazem badanej zalezmo&ci.

Dla kazdego krysztaiu ilzotropowego punktem reprezentacyjnym jest

c(" ] 1). Diugosé odcinka CP jest wiec miarg asferycznosSci tensorasauto-
555 -
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rzy pracy [84] nazywaja t¢ miare
wskaznikiem asferycznosci. Wprowa-
dzaja ponadto prawo, zwane przez
nich prawem zmian ciggiych symetrii
tensora rozszerzalnosSci termicznej.
Wskaznik asferycznosci maleje w mia-
r¢ wzrostu temperatury dla struktur
tréjwymiarowych, nie przechodzacych
przez przemiang fazowg. Prawo to o-
znacza, ze W miar¢ wzrostu tempera-
tury w obszarze termodynamicznej
stabilnoéci tazy krystalicznej
punkt P 2zbliza si¢ do punktu C.
Zobaczymy za chwile, ze nie zawsze
Rys. 8.16. Reprezentacja & dwu- odnosi sig¢ to do krysztaiéw moleku-
larnych. Zauwazmy poza tym, Ze punke-

75EC
TGS {105°C

C

1485 257 [K]
DWUFENYL “*“? 10

fenylu i siarczanu trojglicyny w

réznych temperaturach
ty reprezentujace ewolucje g(T) w
krysztatach o symetrii tetragonal-
nej lub wyzszej (ale nizszej od ku-
listej), dla ktérych jeden z prze-—
krojéw giéwnych « jest okregiem,
leza zawsze na jednej 2z dwusiecz-—
nych katéw troédjkata.

llustracjg takiej reprezenta-
cji jest rys. 8.16 dla przypadku
dwufenylu i siarczanu tréjglicyny
wediug danych,zawartych w tab. 8.7,
Widzimy, ze istotnie punkt repre- //
zentujacy tensor w temperaturze
wyzszej lezy blizej C, aczkolwiek :
W obu przypadkach zbiory punktoéw Rys. 8'17'°§;£§;zgfgz;g; g trzech
lezg na linii prostej, nie przecho-
dzacej przez C. Na rysunku 8.17 pokazana jest’reprezentacja wszystkich
trzech odmian'fazowych glicyny. Punkt 3, przedstawiajgcy & dla najwyz-
8zego zakresu temperatur, lezy jednak najdalej od C zarbwno dla odmia-
ny «, jak i y . Podobna niezgodno$é wystepuje tez dla aﬁtracenu (rys.
8.18). Dwa spoéréd punktéw przedstawiaja & antracenu dla dwéch réz-
nych temperatur. Uktadajg si¢ wprawdzie na linii prostej wraz z punktem
C, Jjednak punkt dla temperatury wyzszej potozony jest dalej od C. Na
rysunku 8,18 przedstawione sa znane dotychczas pomiary o antracenu.
Mimo unormowania wartobci a,; do jednosci, co powinno zmnie jszyé roz-

:
S
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rzut wynikéw, rozproszenie punktéw
~Jdest do&¢ znaczne.

8.5, Rozwazania strukbturalne

Wspbiczesne préby skonstruowa=
nia teorii zjawisk anharmonicznych,
W szczegbélnosci powiazania rozsze-—
rzalnosci termicznej z innymi
°C wielkosciami fizycznymi, dotycza
i prakbycznie wyktacznie cial 0 syme-
e trii ukradu regularnege, giéwnie

Z ® e NS metali ([85,87]) i swigzkéw nieor-
T ganiczanych ([86]). W nielicznych
Rys. 8.18. Graficzna reprezentacja %ylko przypadkach czyniox;s 88 proé-

wynikoéw pomia.row.__@ antracenu rgjez by objecia teoria zwigzkéw orga-
1"5%1{‘5’2] aztoorgvzv. 8 E,:% ’ 2:33;’ * nicznych, réwniez krystalizujgeych
] o&}%’?@ K w klasie o najwyzszej symetrii [88].
Nie brak wsréd nich prac, postugu-
jacych sig bardzo zaawansowanymi metodami komputerowymi symulacji dyna-
miki sieci w celu znalezienia gzwigazku p-V-T, znanego pod nazwg réwna-»
nia stanu ciata statego [87]. Pokazano réwniez ([90]), Ze rozszerzal-
nosé termiczng mozemy pojmowaé jako odpowieds sieci krystalicznej na
ciénienie wewngtrzne, wytwarzane przez gaz fononowy; inberesujgce jest,
ze opisy rozszerzalnosci termicznej za pomocg objetosciowych efektéw an-
harmonicznych, lub za pomocs cifnienia fononéw, sa dwiema réwnowasnymi
sobie metodami, przynajmniej w niskich temperaturach. Mimo interesuja-
cych w Gej dziedzinie osiggnigé nie ma - jak dotad - interpretacji roz-
gzerzalnosci krysztakow mniej symetrycznych, do jakich nalezy ogrouma
wiekszos¢ krysztaiow molekularnych. Brak réwniez jakichkolwiek powiazan
ze struktura krysztatu, a wigc préb mikroskopowej interpretacji . Uzu-
peiniajgc t¢ luke przedstawimy w niniejszym rozdziale pr§be zrozumienia
rozszerzalnoéci termicznej ze strukturalnego punkbtu widzenia.

Widzieliémy w rozdziale 8.2, ze z rozszerzalnoscig termiczng nieod-
Yacznie zwigzana jest deformacja sieci krystalicznej. Opis tej rdeforma—
cji musi - naszym zdaniem - uwzglednié pewna szczegbdlna cechg osrodka,
Jakim jest krysztal: przestrzen zabudowana jest czasteczkami, ktére nie
tylko maja skonczone rozmiary, ale sa tworami sztywnymi. To ostatnie
przyblizenie stuszne jest przynajmniej w odniesieniu do niektdérych czgs=
teczek, w ktérych nie wystepuja ruchy libracyjne jej czgsci (podstawni-
kéw) o duzych amplitudachj drobne zmiany odlegtosci niedzy zWigzanymi w-
czasteczce atomami, wywoiane wzrostem amplitudy drgad atoméw z tempera—
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_Eﬁi&, mozemy tu zaniedba¢. Deformacja jest zatem quasi-ciggta: ciagtosé
detyczy samej przestrzeni. W analogii dwuwymiarowej deformacja odbywa
sle tak, jak deformacja cienkiej warstwy gumy, na ktdrej periodycznie
roztozone sg réwnolegloboki, wycigte z materiaiu sztywnego. Po rozciag-
‘nigciu (anizotropowym) gumy stwierdzimy, %e odlegkosci miedzy srodkemi
Meszasteczek” ulegty zwigkszeniu, réwniez ich wzajemne orientacje ulegky
gmianie, jednak kszbtelt i rozmiary samych réwnolegiobokéw pozostaly. nie
zmienione, Sgdzimy, Ze ten dwuwymiarowy model dobrze odzwierciedla skut-
ki, sachodzgce w tréjwymiarowej sieci przestrzennej pod wplywem ogrza-
nia krysztaiu.

Przyjmijmy wiec, Ze zmiama temperatury krysztaiu sprowadza dwa e-—
fekty molekularne: : '

(i) efekt translacyjny, polegajacy na zmianie odlegtoéci miedzy
&rodkami sqsiednich czgsteczek,

(ii) efekt erientacyjny, polegajacy na zmianie wzglednego poZoze-—
nia osi IMN czasteczek sasiednich.

Zajmiemy si¢ giéwnie drugim efektem, poniewaz pierwszy z nich wyda-
Je sig¢ des¢ eczywisty, a jego opis nie nastrecza trudmosci.Zwrécimy tez
uwage na fakt, Ze Srednie pooZenie libratora moze ulegaé¢ zmianie réw-
niez wtedy, gdy jest to librator harmoniczny., W punkcie (b) przedyskutu-
Jemy zwigzek zmiany orientacji'osi IMN czasteczek z tensorem oy zas w
punkcie (c) zajmiemy sie¢ problemem krzywej energii potencjaluej dla 1li-
- bracji anharmonicznej.

(a) Zmiany orientacji osi IMN czasteczek

Postawmy wplerw nastepujace pytanie. Przypuslmy, ze czasteczkom
dostatecznie symetrycznym przypiszemy w jakiejsé strukturze ortogonalny
uktad osi IMN, réwnolegiych do osi symetrii. Czy istnieja jakies$ prze-
stanki 6ksperymentalne, Swiadczace o tym, ze przy zmianie temperatury
krysztatu zmienia si¢ orientacja LMN wzgledem sztywnego ukiadu wspdi-—
rzgdnych, na przyktad abc*? Jedli spojrzy si¢ na ten problem od sStrony
wynikéw badari rentgenograficznych, to w pracach zajmujacych sie opisem
struktury tej samej fazy krystalicznej w dwéch réznych temperaturach
spotkaé mozna tabele kosinuséw kierunkowych IMN réznigce sig wyraznie,
Jesli tylko réznica obu temperatur jest dostatecznie duza. Wynik ten
mégtby by¢ jedynie wyrazem naszego sSposobu interpretacji drgan termicz—
.nych poszczegdlnych atoméw, zwiazanej z proéba ich uporzadkowania, gdyby
nie fakt, ze wszistkie kierunkowe wtasnosSci fizyczne krysztatu réwniez
zalezg od temperatury. Jesli uznamy, Ze czasteczki sj sztywne, to nie
sposdb wyjasnié te zmiany bez przyjecia, ze orientacja IMN ulega zmia-
nie.
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Rys. 8.19. Geometryczna interpretacja katéw Eulera (zaczerp. z [90])

Przypuéémy wiec, Ze orientacja IMN w temperaturze T, dana jest
macierzg g(’l), zad w T2 macierzg g(a) 1 niech bedzie T2>T,|. Naj-
pardziej bezposrednim rozwigzaniem problemu orientacji czasteczki jako
ciata sztywnego i okresleniem jej zmian z temperaturg jest podanie kag-
téw Bulera ©, X 1 ® dla T, i T,. Geometryczna interpretacja katéw
Eulera, przedstawiona na rys. 8.19, polega na przejéciu od uktadu wspdi-
rz¢dnych XXXz (nieruchomy lub zewngtrzny ukiad wspbirzednych) do
IUN (ruchomy lub wewnegtrzny ukiad wspéirzednych, sztywno zwigzany z
czgsteczka) za pomoca nastepujacych kolejnych obrotéw:

{i) obrét wokédk X; o0 ket ®: xxx, ——-— x,;xéxB,
(11) obrét wokér xi o kat 9 : xixix; — XN,

(iii) obrét wokéx N o kat X : xjx3 N ——1L M N.

Zwiazki miedzy ¢, X i U oraz kosinusami kierunkowymi podane sa wediug
[90] w tab. 8.3. Wediug tej tabeli Y mozna obliczyé bezposdrednio z c
9, na przykiad z 34 i 359 zas X z 3 i Coze Wielkosci

A @ A x A9 f

AW Y RMY R

333

przedstawiaja Srednie zmiény katéw Eulera, przypadajace na 1 K w prze-
dziale AT = T2 - T,]. Zwykle jednak bardziej nas interesuja maie katy



Zwigzki miedzy kosinusami kierunkowymi i kgtami Eulera

cos X cos ® - gin X cos ¥ sin ®3 cos X sin ¢+ sin X cos 9 cos u)§

&

-Sin X cos ® - cos X cosV sin ®3 =sin X sin® + cos X cos O cos 0

sin 9 sin ¢ H -sin ¥ cos ® 3

Predkosci katowe

®sin X sin 9 + 9 cos X

L
Wy ®cos X sin © < Pgin X
Wy = ®cos O + X

e -1 a 83

sin ¥ sin 9\

cos X sin®

cos §'

95€
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obrotéw A6, A6y, A6y wokdr osi IMN czasteczki., Mozemy je obli-—

 czyé o predkoéci katowych Wrs Wy Oy, 2zamieszczonych wediug [O0] w

~ tab. 8.3, poniewaz zasada addytywnosci skuszna jest zaréwno dla predkos-
ci katowych jak i dla maiych przesunieé katowych. Wobec tego rownosé

pa przyktad

wy = dcos X sin ¥ - dgin X,
jest réwnowazna roéwnosci
AOy = b®cos Xsin ¥ - A 8sin y.

Wobec tego otrzymujemy

AOL AQ A9
DS S sin ® + — cosx ,
AN AT AT
AB AQ AD
M
——— = —— cos X 8in & - — gsin 8.60
AT AT AT 400 )
A6 Ao A
J:-—cosﬂ +---)£ 5
AT AT AT

Przedstawione tu rozwigzanie problemu nie jest cazkiem Jednoznaczne, bo-
wiem wartosci ©, X i ® zaleza troche od wyboru elementdw Cips 2 kb6
rych sa obliczane. Lepsza jest metoda polegajaca na zastosowaniu macie—
rzy obrotu, a nastepnie obliczeniu optymalnych (érednich) wartosci
trzech katéw obrotu z szesciu elementédw macierzy ¢. Rozumowanie, zmie-
rzajace do obtrzymania tych wynikéw, jest nastepujace.

Przypusémy, ze uktad IMN obroécil si¢ nieco, tak, Ze poozeniami no-
wych osi sa L'M'N" (rys. 8.20a). Macierz obrotu ogélnego R mozemy
ztozyé ;jvako iloczyn trzech macierzys R, obrotu wokér osi L: R, wok6t
MEERES l=23, obll'oi,:u"wokél N. Rozpatrzmy pierwszy z nich; orientacje ukia-
déw IMN i LM N przedsvawiono na rys. 8.20b. Mamy

.
¥

l L M =N
e e Sl 0
7 ) cos Ay sina, '
N 0 =-sind, cos A,

Wobec bardzo maych wartosci &i mozemy zastosowaé przyblizenie cos A=
=1, sin A; = 4;, a wtedy otrzymamy
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R, =(0 1 aq) .

. (8.61)

b,

L

Rys. 8.20. Obrét ukzadu LMN jako ciala sztywnego:
a) ogbdlny, b) wokd: osi L

Postepujac analogicznie znajdziemy pozostate macierze obrotu wokdr osi M

744 (0] -4,

11ed
n
I
(@)
-
(@)

’ (8.62)
A2 (0} 1
oraz woké: N
Roi= [Coe a0 al. (8.63)
Q (0] 1
Ogbdlna macierza obrotu bedzie zatem
A Y
, ! Bl
ey Sl (Bre)
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jesli w rachunku zaniedbaé wyrazy rzedu Wyzszego, nis drugi. Jesli moze-
'my to uczynic (ze wzgledu na marogé 4;), to wynik (8.64) nie zalezy od
porzadku czynnilkow. '

Jest widoczne, ze R ‘mozemy rozkozyé na czese symetryczna, ktéra

jest macierza jednostkowa I i czesé antysymetryczng A, przedstawia jg-
cg "czysty" obrét

i}>]

=£+

e

H (8.65)

Wobec tego mozemy teraz napisac

1}
=

c(2) c) = (T + 2 ¢(1),

skad

A=icla) el o no (8.66)

Po rbzpisaniu iloczynu otrzymujemy

1
A1 = E Z{CZl(ﬂ) 031(2) - cai(q) 02]'_(2)}1
al,

>
1}
=

2{631‘1) 011(2) = c'|i(1) CBi(e)}’ (8.67)
= :
A5 = % Z;{mli,m) cys(2) = 021‘1) c,]i.(Z)}.

W celu zilustrowania tych obliczeh Posiuzmy si¢ antracenem jako przykta-
‘dem [92]. Wedkug danych Masona [52]

=0,49409 -0,12738  +0,86003

(2,290 K) = { -0,31753  -0,89444 —0,31490 ,
+0,80935  -0,42867  +0,40149
-0,51171  -0,13109  +0,84910

(1,95 K) =|-0,50351 -0,89699 -0,32140 | .

+0,80376  -0,42218  +0,41920

Katy Eulera, obliczone odpowiednio z C3q Al 309 13 i Cpz Oraz z 33
Wynosza

el a0l e
4 290 K 62,09218(2) | 110,10988(42) | 66,32864(0) (8.68)
95 K 62,28889(22)| 110,73268(14) | 65,21591(0)
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Stad
AR A% nAe
AT AT AT

=7 BFEAY L5020 5l /I

a wedtug (8.60)
2 AQ
A

APy
=8=1052, _A-CE = -18,2,

=

il = -13,0 "/K. (8.69)
ARE

=]

Widzimy wiec, Ze czgsteczka antracenu obraca sig¢ w zakresie temperatur
95 do 290 K $rednio o kilkanascie sekund katowych na kazdy stopien Kel-
vina, Znak (+) oznacza, ze dla danej osi obrét dokonuje sig zgodnie z
reguta Sruby prawej.

Z (8.67) otrzymujemy

Aq = =10,3%0,1, A, 4 -18,0310,07, 85 = =12,98%0,09 "/K (8.70)
w zupeinie dobrej zgodnoséci z (8.69). Zgodnosé ta wynika z rdéwnowaznos-—
ci (8.60) i (8.67) — w obu przypadkach wychodzimy z tej samej informa-
cji, tj. znajomosci macierzy ¢ w co najmniej dwéch temperaturach. Réz-—
nice miedzy tymi'wzorami polegaja na tym, ze do otrzymania (8.67) zasto-
sowano metod¢ najmniejszych kwadratow, zatem (8.67) prowadzi na ogdi do
wynikéw dokladniejszych, niz (8.60).

Strukvure naftalenu w dwéch temperaturach oznaczyli Kozin i Kitaj-
gorodskij [91]. Tabele kosinuséw kierunkowych c(2) i ¢(1), obliczone z
wspoirzednych atoméw, podane sg w tab. 8.4. Z (8,67, otrzymujemy éred-—
nie w przedziaie 78-293 K przemieszczenie katowe czgsteczki naftalenu

A, = +32,6, A2 = k50 70 A3 = =7;0 "/K. (8.71)
Przemieszczenia te dla osi L i M majg wartosci przeszio dwukrotnie
wigksze, niz w antracenie.

Tabela 8.4

Kosinus& kierunkowe osi IMN czgsteczki naftalenu,
obliczone z wspdirzednych atoméw [91]

a b cx
L 0,4320 | 0,2049 | -0,8753
c(2,295 k) | M 0,3258, | 0,8726 | 0,3638
~ N 0,8420 H#=0,4405 | 0,314
L 0,4620 | 0,1971 | -0,8647
(1,78 K) | M 0,2005 | 0,8866 | 0,550

0,8%72 | -0,4188 0,551§
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Tabela 8.5
Kosinusy kierunkowe i kgty Eulera czgsteczki antrachinonu,

obliczone z wspdirzednych atoméw [56]

a | b cX
|

L  0,52355 | 0,48701 | 0,69908

c(293,8) | M -0,77927 | -0,05797 | 0,62400

: N o,34441 | -0,87147 | 0,34917

o 0,52644 | 0,46082 | 0,71449

g(260,8)\ | M -0,79034 | -0,04453 | 0,61105
N  0,31340 | -0,88637 | 0,34076 |

L  0,52623 | 0,45014 | 0,72143

c(201) M -0,79605 | -0,03757 | 0,60409

; N 0,29905 | -0,89217 | 0,33855

L  0,52843 | O0,44334 | 0,72402

c(161) M -0,79834 | -0,03063 | 0,60143
; N 0,28882 | -0,89583 | 0,33775 |

L 0,52332 0,43493 | 0,73277

¢(103) M -0,80621 | -0,02577 | 0,59107

7 N 0,27596 1 -0,90009 | 0,33716

Katy BEulera czgsteczki antrachinonu

T, K ® X 8

293,8 | 21,5643 | 48,2478 | 69,5634
260,8 | 19,4729 | 49,4620 | 70,0768
201 18,5296 | 50,0588 | 70,2114
161, 17,8694 | 50,2842 | 70,2602
103 17,0455 | 51,1095 | 70,2961

o

Dokiadnie jsze wyniki mozemy otrzyma¢ dla czagsteczki -antrachinonu,
poniewaz strukbura tego krysztatu wyznaczona zostata w pieciu temperatu-
rach [56]. Tabele kosinuséw kierunkowych oraz katy Eulera podane w tab.
8.5 obliczone sa z wspdirzednych atoméw przy nastepujacej defimicji osi
IMNs
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Rys. 8.21. Temperaturowe funkcje kaqtéw Bulera w krysztale antrachinonu
(wedzug [92])

(i) N jest normalna do najlepszej praszczyzny, poprowadzone j
przez atomy C(1) do C(8), :

(ii) M Jjest srednim kierunkiem poprowadzonym przez cztery pary a-
toméw, a nastepnie skorygowanym przez maly obrét do sScisiej ortogonal-
nosci z M wediug procedury, opisanej w rozdz. 5,

(1ii) L = M x N.

W rezultacie ortogonalnoéé wektoréw L, M i N nie jest gorsza,niz
+1.10™2, za biedy w katach Eulera nie wigksze, niz (3:1071)°. Tempera-
turowe funkcje katéw Eulera w tym krysztale przedstawione sg na rySe 8621,
W temperaturach nizszych od 240 K funkcje sg praktycznie liniowe,
przy czym dwa z katéw maleja ze wzrostem temperatury, zaé f® rosnie, W
temperaturze bliskiej 260 K zmiany katéw Eulera na 1 K zaczynaja byé du-
ze, €O wiaze sie z Jakim§ - bliz’r.e;j nie znanym - procesem w sieci krysz-
tazu antrachinonu. Potwierdzenie tego zachowania sig odnajdujemy rdéw-—
niez na rys. 8.22, na ktérym przedstawione sa zmiany kgtowego porozenia
czgsteczek Ai’ w funkcji temperabury, wykreslone wediug danych z tab.
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Rys. 8.22. Zmiany katowego poiozZenia czasteczek antrachinonu Ai
w funkcji temperatury (wediug [92])

8.6. Na moZzliwos¢ wystepowania osobliwosci  strukturalnej w tym zekresie
temperatur zwracaja uwagé réwniez autorzy pracy strukbturalnej ]_'56] W
zwigzku z tym, Ze wspbdiczynnik rozszerzalnosci termicznej oz, ujemny
ponizej =10 °C, staje si¢ dodatni w poblizu O °C (por. Nr 33 w tab.8.1)
Nie ma takich anomalii w krysztale benzenu w'temperaturaéh dosta-—
tecznie niskich w pordéwnaniu do temperatury topnienie. Tabele-kosinusow
kierunkowych czasteczki w zakresie 260 do 80 K podane w tab. 8.7 obli-
czono z temperaturowej zaleznogci anizotropii diamagnetycznej [93] i
znajomoéci struktury w temperaturze pokojowej [43]. Wobec wysokiej sy—-
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‘Tabela

Zmiany kgtowego polozenia czgsteczki antrachinonu Ay MRS
obliczone z tab. 8.5 i (8.67)

Kosinusy kierunkowe czgsteczki benzenu w krysztale, obliczone
w zakresie temperatur 260 do 80 K z temperaturowej zaleznosci
anizotropii diamagnetycznej [93] i danych strukburalnych w

T, K A1 '1\2 A3

277 124‘95 18390 '5317
231 35’5 40:7 —1696
181 40,1 | 39,2 | =0,21
132 35,9 32’2 "34,0

Tabela

temperaturze pokojowej [43]

a b c

-0,28612 | 0,95819 0
'__c_=(260) =0, 64426 =0,19258 0, 74022
0,70927 | 0,21179 | 0,67237

-0,28768 | 0,95773 0
c(240) | -0,64848 | -0,19479 | 0,73588
0,70478 | 0,21170 | 0,67711

-0,28902 | 0,95732 0
c(220) | -0,65225 | -0,19691 | P,73200
X 0, 70076 0,21156 0,68131

"Os290_15 0,95698 0
¢(200) | -0,65550 | -0,19874 | 0,72857
‘ 0,69723 | 0,21140 | 0,68497

-0,29109 | 0,95670 0
¢(180) | -0,65805 | -0,20022 | 0,72587
o, 6941_1-3 0,21129 0,68784

-0,29182 | 0,95647 0
3(160) -0, 66064 -0,20156 0,72314
~ 0,69166 0,21103 | 0,69071

8.6

8-7
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cd. tab. 8.7

a '»b c

~0,29234 0,95631 0
¢(140) | -0,66252 | -0,20253 | 0,72114
0,68964 0,21082 | 0,69279

-0,29266 | 0,95622 0
¢(120) | -0,66396 | -0,20321 | 0,71963
0,68812 | 0,21060 | 0,69436

-0,29277 | 0,95618 | o
¢(100) | -0,66495 | -0,20360 | 0,71860
‘ 0,68711 | 0,21039 | 0,69542

-0,29269 | 0,95621 0
c(80) | -0,66550 | -0,20370 | 0,71807
0,68662 | 0,21017 | 0,69598

metrii czgsteczki mozna przyjaé jeden z katéw Eulera X = Oj sytuac ja
ta analizowana bgdzie doktradnie;j w rozdz. 9. Zauwazmy, ze: X = O znacze
nie upraszcza zwigzki miedzy katami Eulera i kosinusami kieruncowymi do
tabeli

cos @ sin ¢ (0]
c(¢,9) =|~cos ¥ sin ¢ cos P cos ® sin 9], (8.72)
sin ¥ sin¢® -sin ¥ cos ¢ cos ¢

Zaleznos¢ ¢©(T) i ¥(T) przedstawione sq na rys. 8.2%. Widzimy, ze oba
katy .silnie zaleza od temperatury, jednak krzywe sj giadkie i nie wyka-
zuja zadnych osobliwosci. Zmiany kgtowego poozenia czasteczki (tab.
8.8) sg liniowymi funkcjami temperatury (rys. 8.24). Zauwazmy, ze dla
osi L zmiany te s weale duze: w temperaturze okoio 17 K ponizej tem—
peratury topnienia orientacja czasteczki zmienia sig¢ o wigcej niz o 1
minute na 1 K.

Jesli pordwna sie wartosci Ai otrzymane dla szerfegu: antracen,
naftalen, benzen to okazuje sig¢, ze najwigksze zmiany orientacji wyste-
puja w benzenie. Jest to prawdopodobnie zwiazane z kszbalbem czastecz—
ki, najblizszym kulistemu.
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Rys. 8.23. Funkcje temperaturowe katéw Eulera czasteczki benzenu
8.5.2. Model sztywnej skrzynki

Argumenty i przyktady przytoczone w poprzednim pu.nkqie zdaja sie
wskazyﬁaé, iz katowe zmiany orientacji czgsteczek w krysztatach sa rzg-
du od kilkunastu do kilkudziesieciu sekund katowych na 1 stopien Kelvi-
na i stanowig naturalng konsekwenc;ie deformac ji krysztatu wskutek ogrza-
nia,. Wartosci te, wynikajace z badan struktury w funkcji temperatury
traktowaé¢ bedziemy jako wartosci doéwiadczalne. Z4astanowimy sig¢ obecnie
nad powigzaniem wielkosci tych zmian z tensorem rozszerzalnosci termicz-
nej za posrednictwem pewnego modelu, zwanego modelem "sztywnej skrzyn-
ki" [D2], RMM ("rigid box model"). ;

Przypusémy, ze mamy zadang si:rukbure krysztatu w O K. Kazda kombr-
ke 'elementarnq, zawierajgca Z czgsteczek, mozemy podzielié na &/ row-
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Rys. 8.24. Zmiany kgtowego poiozenia czgsteczki benzem 4y
w funkcji temperatury

nolegtoécianéw o symetril identycznej z symetrig komoérki, lecz o krawe-
dziach dq, d2, d3, ktére sa prostymi ulamkami periodédw identycznosci
a, b, ¢ tak, by speiniony byt warunek

Z xd; 4, d;=abe. : (8.73)

Elementarny réwnolegrosclan, zawierajacy tylko jedna czasteczke w jej
oryginalnej orientacji przyjmowanej w strukturze, bedziemy nazywaé
sztywng skrzynka: bedziemy bowiem przyjmowaé dalej, ze rozmiary i
ksztatt tej c.rzynki nie zaleza od temperatury w tym sensie, jak ksztailt
i rozmiary samej czasteczki od niej nie zaleza. Temperatura powoduje je-
dynie powigkszenie i deformacje przestrieni, jaka skrzynki majg do dys-—
pozycji. W O K przylegaja to siebie ciasno, lecz w T > O K przestrzen
swobodna jest wigksza od d1d2d3. Wobec: tego moze zachodzié obrot skrzy=-
nek o pewne niewielkie katy ®;, DPrzy czym jako osie obrotu przyjmiemy
kierunki réwnolegte do a, b, ¢ komérki elementarnej (rys. 8.25). Bio-
rgc pod uwage wzgledne przesunigcia kagtowe sqs:.adu;)qcych z sobg bkrzy-
nek, mozemy rozréznic¢ dwie sybtuacje:
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Tabela 8.8

Zmiany katowego polozenia czgsteczki benzemu 4, /K,
obliczone z tab., 8.7 1 (8.67)

oKy 4 A
250 66,2 | =12,4 | =-11,3
230 59,0 | -10,6 -9,8
210 51,7 -8,9 -8,3
"90 4'0’7 "7,3 "790
170 | 40,8 | =5,7 | =5,4
150 29’7 _4':0 ‘319
150 | 225615 =240 |2y
110 | 15,2 | -0,9 | =0,9
90 759 +0,8 +0,6

Rys. 8.25. Osie obrotu sztywnej skrzynki o symetrii jednoskoénej

(i) Obrét kazdej skrzynki zachodzi kooperatywnie, z uwzglednieniem
pokozen skrzynek sasiednich (rys. 8.26). Speiniona jest wéwczas zasada
ciasnego upakowania skrzynek, ktorych srodki maksymalnie zbliZzaja sieg
do siebie na tyle, na ile pozwalajq\wzgledy geometryczne. Oznaczmy w

skrécie

o e AR = 4,

(8.74)

przy czym nicch 4 bedzie dane w ukladzie abc™, Wtedy, na przykiad
dla ptaskiego przekroju (001) struktury (rys. 8.26), dopuszczalny kat
obrotu skrzynek wynika z relacji



e
(8,75)
i, J, k oznaczaja wersory
réw;olegle odpowiednio do osi
a, b, ¢ krysztatu. Positugu-
Jjac si¢ danymi, na przykiad
dla antracenu, iatwo si¢ prze-
konaé¢, ze model ten prowadzi
do wartosci ¢z W przyblize—
niu 100 razy wigkszej od do-
swiadczalne j AB' 0 wiele za
wysokie wartosci @, otrzymu-
je sie tez dla imnych kierun—
kéw tak, ze model kooperatyw—
ny nalezy odrzucié.
(ii) Obrét kazdej skrzyn-
ki zachodzi niezaleZnie od sg-
Obrot kooperatywny /8iadbéw, niekooperatywnie (xrys.
: 8.27). Kazda skrzynka zachowu-
Je si¢ indywidualnie w dostep-
Rys. 8.26. Kooperatywna zmiana orienta- nej gej przestrzeni o wielkoé-
cji sztywnych skrzynek ‘schematycznie) ci z x a(T)<b(T):c(T), a Je-
dynie zwcoty przemieszczen katowych sgsiednich czgsteczek musza byé
zgodne z wymogami symetrii, Przemieszczenia katowe skrzynki sa wdwczas
nastepujgce:

d2(1+A2)

(a) Na piaszczyznie (100): jesli speiniona jest nieréwnosé
D i
ol Al gtk d k),

to ﬂstyki" limitujgace wielko$SC przemieszczenia wystepowaé beda wzdluz
osi c¢ oraz

d
2 I 3 S
e i 53 fg A 2) sin ‘d2'd3)' (8.76)
W przypadku
: T R
G A k) <dp(3 4 3)

styki pojawiaj@ si¢ wzdXuz osi b, a dopuszczalne przemieszczenie kato-
we wynosi
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a
A 35- K'A k Ysin (dy,d5)

(8.77)
(b) Analogicznie na
ptaszozyznie (010): Jesli

ai ik
4" a0 <a" 4K,

to styki wystepuja wzdiuz c
- oraz

9, =t _(_i_Tg Lsin (4,d5)
(8.78)
Przy nierdéwnosci skierowanej

przeciwnie

e

o

I ——d2(1+A2)
&
£ af (k"a E)sin (d4,d5)
(8.79)
; wystepuja styki profilu

- A : skrzynki z osig a.
Obrét  niekooperatywny

=
[ \® RN
i

(¢) Na paszczyinie

Rys. 8.27. Niekooperatywna zmiana orien- (001)
tacji sztywnych skrzynek (schematycznie, d2

wedzug [92]) 05 = E; (3 A Dsin (d4,4,)

lub‘ (8.80)

‘Pé £ t ;15 (i-.T é i) sin (d1 )dz) (8.81)
zaleznie od tego czy speiniona jest nierdwnosé (styki wzdiuz a)
&' 4 3) <@t a4,

czy tez nieréwnosé przeciwna (styki wzdiuz b).

Poniewaz model ma charakter statystyczny, nie jestesmy w stanie
przewidzieé, ktéry ze znakédw ¢i Jest wtasciwy. Wobec tego musimy wpro-
wadzi¢ dodatkows reguie: kieruneck przemieszczen kgtowych musi byé tak
dobrany, by korelowal z obserwowana zmiana dwbjlomnoéci przy zmianie
temperatury (na ogbi podwstzéniu femperatury towarzyszy zmniejszenie
dwéjromnosci, por. rozdz. 9).

Pordwnanie wynikéw doéwiadczalnych z uzyskenymi z modelu podane
Jest dla kilku przypadkéw w tab. 8.9. Widzimy, ze mimo duzych uprosz—
czen i pewnych niedomogdw, RBM prawidZowo oddaje wielkoéé przemieszczen
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Tabela 8,9

Zestawienie wyﬁikéw ‘obliczenh przemieszezen katowych 41‘, AM’ AN

wokét osl symetrii IMN oczasteczki, w "/K (wediug [92])

e R

AL AM AN Uwagi
A, Czqstéczka antracenn
1 -10,3%0,1| =18,1010,07| -12,98%10,09 | bezpoérednio z ¢(2) 1 c(1) dene|
: Masona [52] = ==
-14.,8 =14,0 -1,6 REM: [92], %: Mason [52]
-6,1 Seeh vl 0.5 REM: [92], %: Kozin [49]
-18,3 -11,8 +0,9 REM: [92], %: Rysenkow [50]
-10,2 =3,2 +2,3 RBM: [92], @: Jakubowski [51] .
B. Czasteczka karbazolu
1 =9,8 0 | 0 oblicz. z dwéjiomn.: Kusto [94]
2 =7,0 0 ; 0 REM: [92], %: Swigtkiewicz [95]
C. Czagsteczka benzenu
1 +73,68 | -13,67 -12,81 oblicz. z anizotrop. diamagn.
: : Hoarau [9%] :
2 +60,3 =i5,2 =37,2 RBM: [92], %: Cox [43]

katowych czasteczek w rdznych krysztatach. Wartosé Ay =4y =0 dla
czasteczki karbazolu ma charakbter obligatoryjny. Wynika to stad, Ze
ptaszczyzna czgsteczkl jest prostopadta do ptaszczyzny symetrii kryszta-
tu i temperatura nie moze mieé wpiywu na t¢ sytuacje.

: Problem, ktéry chcemy przedstawié obecnie, tematycznie nalezy w za-
sadzie do nastepnego rozdzialu,- poniewaz autorzy zajmuja si¢ w nim po-
wigzaniem diamagnetyzmu krysztaiu molekularnego z temperaturg. Jednsk z
uwagl na dyskutowang w tym paragrafie rol¢ anharmonizmu drgah w prze-
nieszczeniach katowych czgsteczki siuszniej jest przedstawié¢ go na tym
miejscu. W pracy [96] Charbonneau i Rivet pokazuja, ze z przemieszcze-
niami katowymi czasteczki nalezy sig¢ liczyé w pewnych sytuacjach réw-
nieZ wtedy, gdy z zalozZenia libracje sq harmoniczne, ale ich amplituda
Jest duza, Z takim przypadkiem spotykamy si¢ w krysztale dwufenylu.

\ Przyjmijmy zatem, ze kaZda z osi symetrii IMN czasteczki wykonuje
drgania harmoniczne : :
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Gi = @ém) cos ‘wt -94), ‘ © (8.82)

gdzie 6:{“) Jjest amplitudg, a 9y fazg poczatkowa tych ruchéw. Sredni
kwadrat wychylenia réwny jest z defimicji odpowiednie] skiadowej tenso-
ra libracji L 3
; a5 1 (m)y2_ _
<6i>— 2<(9j_. N I—‘ii- (8.83%)
Poniewaz jest on rézny od zera, Arednie w czasie polozenie osi IMN jest
inne, niz o_tsi LENE N> czfsteczkl w spoczynku. JesSli wybierzemy wek-
tory Jjednostkowe wzdiuz tych osi, tj. el Ly &> || M, &3 H N oraz
of Il L%, oF | u¥, _e_!; Il ¥ i przypiszemy im postaé macierzy kolumnowych,
to oba uktady mozna zwiazaé zaleznoscia

e =2 - ¢l i * (8.84)

g

gdzie a Jest macierzg obrotu ogblnego, analogiczng do R (8.64)

/ a8 o/ ;
‘1 -62 -83) -9 ..92
s - 05 s _65)1/2 6. . (8.85)
- Qs
o ® (1 -5 -63)"

Réznica migdzy (8.64) a (8.85) polega na tym, Ze w tej ostatniej macie-
rzy zastosowano’ciokladniéjsze przyblizenie cos Gi =1 = 8?/2. Jesli
wiec K jest temsorem podatnosci magnetycznej obliczonym z X (T), cay-

. 1i dla cZQsteozki wykonujgcej libracje, a - __lgx tensorem czagsteczki w

Spoczynku, to zwigzek mig¢dzy nimi polega na transformac ji K 2z uvkiadu

& do gx W g_? za pomocg macierzy a

e el (8.86)

= -

Rozpisanie (8.86) z pominieciem wyrazdw propoi'cjonaln;ych do aia;j i
wprowadzenie wartesci éredmich prowadzi do ukradu réwnan

2 €3 2 3£ 2 =

K4 =<a’|’l>K’I +<a,12>K.2 +<a,|3>K3,

K, =<a2>kE soad k= s o2 o xE (8.87)
Peceas a2 225 2 23 ) s
e 3 =Tt 3 2 =

K3 "<331>K’| +<a32> K2 +<a§5>K3.

W koncu, przez zastosowanie (8.85) i (8.83), otrzymujemy podstawowy
zwigzek
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Ky = (1 = Iy = L)l o+ Lpgks + Lok,

L%K%f #(1=L,4 = 53)11’5; LK, (8.88)

n
i

o = 3 Pt = 3
K3 = Ly kY + LgqK5 + (1 = Lyq L22)K5.
Né przykiad wyrazenie w drugim wierszu (8.88) obliczamy w nastepujacy
sposobs

MG e Ala 2 302 e
K, _<®5>K,‘ i< =67 03)>K2 +<0 4 >K5 =

= LBBK;IIE + (1 = Ly, - LBB)K:'; - L,mK;‘.

Znajac K w uktadzie osi giéwnych oraz L mozemy obliczyé K cZas—
teczki w spoczynku. Wynik obliczen pow:.nien by¢ taki sam, niezaleznie
od temperatury, dla jakiej wyznaczony zostat zbiér potrzebnych informa-
¢ji. Dane dla czgsteczki dwufenylu zestawione sg w tab. 8.710 i 8.11., Wi-~
dzimy, Ze czqsteczka wykonu,je libracj¢ o stosunkowo duzej ampl:.tudzie
wokét osi L :
<lenmleslis Jnio iy, Ve i 8

co - zgodnie z (8.88) - powinno mieé wptyw na wartosé K’Z'E i K’;. Istot-
. nie, wediug danych z tab. 8.10 te wartosci ulegaja najwigkszym zmianom
po uwzglednieniu L. Widzimy tez, ze K;_E, obliczone ze zbioru danych
dla dwéch temperatur, majg wartosci praktycznie takie same.

W zwykle spotyxanych przypadkach tensor libracji czasteczki ma
miejsze sktadowe, zatem rbéznice miedzy Ki }éx 88 zdniedbywalnie maze.

(c) Problem krzywej energii potencjalnej

Zgodnie z zapowiedzig uczyniong we wste¢pie rozdz. 8.5 zajmiemy sie
obecnie préba blizszego sprecyzowania zwifzku migdzy anharmonizmem
drgan czasteczki, potraktowanej jako sztywny librator, a jej Srednim po-
rozeniem katowym w sieci krystalicznej. '

Pierwsze préby .zmierzajgce do rozwigzania problemu anharmoniczne j
libracji podjete zostaily w latach czterdziestych.' Jedna z pierwszych
prac z tej dziedziny jest publikacja Hanus [97], w ktérej autorka roz-—
wigzuje problem czegstosci wiasnych i funkcji wtasnych stanéw energetycz-
nych "bq.ka agymetrycznego, postugujgc si¢ rownaniem SchrBdingera. Zasto-
sowany operator cnergii kinetycznej ma postac

2 62 1 : 82
o Ll B {1_ 2 0 s e
B P iy a"l e o ety
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GXowne podatnosci magnetyczne kryszbtaiu X5

dwufenylu ([96])

Tabela

X4 X

293 K
80 K

-68,70
-68,10

=100,10
_97,4’0

~149,10
=152,10

K

2

293 K
80 K

-68,70
-68,80

-66,10
-63,10

-183,20
-186,10

3=
s

' z danych
293 K

danych
80 K

anN =

-68,40

-68,70

-62,10

=62,90

-187,50

187,40

Tabela

i czgsteczki Ki

8.10

8,11

Kosinusy kierunkowe osi IMN czgsteczki dwufenylu i tensora librac;ii [96]

a b cx

L 0,2960 | ~0,0001 | 0,9552

P93 K (M  0,5160 | -0,8415 | =0,1599

N 0,8038 0,5402 | -0,2491

IL 0,2890°| -0,0140 0,9573

80K |M 0,5015| -0,8492 | -0,1696

N 0,8157 0,5288 | -0,2346
Tensory libracji, (0)2

29% K 0K 80 K

Lyq [ 109,2(2,8) | 45,7(2,1) | 33,2

L, 8,4(0,6) [ 2,5(0,4) | 1,8

L53 ,11’5(0’5) 3,4(0,4) 2,5
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e 1 1 2 1 ! 2
i i 2 e dope 20100 S
+[ B1§4+(Bg 3:;)52 (BE El_) 3]6 2
; a2 e 3
- e RS S (8.8
3,75,2@5 %%, 08, St S ; 9)

gdzie Bi oznaczajg giéwne momenty bezwiadnosci, /

£y 88 symetrycznymi parametrami FEulera i opisuja chwilowe poZo-
zenie uktadu ruchomego xyz (czasteczka) wzgledem uktadu od-
-niesienia XV o%or TYS. 8.28,

£ = cosu, sinE /2, dla k = 1,2,3, oraz
g 4 = cos(e/2)
1l Jjest osig libracji, zas
oznacza sum¢ trzech cziondéw przy cyklicznej zmianie wskaznj-

1,2, kow,
2 1
8"Y= { .
T % |
Wspoirzedne Eulera speiniaja
Zo 1:4% wgrunek
z 4
i
| ' Z Sy =1
€ i
LE 5 (a nie = 0, jak podano w cyto-
R wanej pracy).
: Vo Operator energii poten-
1B : cjalnej ma postaé
X5 , : i,J

przy cZym u Jjest tensorem
Rys. 8.28. Orientacja ruchomego ukiadu staiych sitowych liniowych sik
T eteracmmons "L, 1 sedyatyoh, Gaislajecyon se
strony otoczenia. Taka postaé
energii potencjalnej wynika z rozwinigcia energii potencjalnej U(Ei)‘
W szereg W poblizu poXozenia réwnowagi z dokzadno$cia do trzeciego czio-
~ mu (por. rozdz. 7.1). W tym przyblizZeniu wyrazenie na energig potencjal-
ng ma wigc postaé taka, jek dla oscylatora harmonicznego; z tej racji
powyzsze przyblizenie nosi nazwe modelul ""pseudoharmonic znego" .
Rownanie SchrbBdingera z energia kinetyczna (8.89) i potencjalna
(8.90) nie ma rozwiézax’l analitycznych. Rozwigzania mozna uzyskaé metoda-
ni rachunku zaburzen. W przyblizeniu zerowym operator T jest ograni-
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czany do pierwszych dwéch czionéw w klamrze (8.89). Po tramsformacji do
wspdirzednych normalnych

n'=2'Bj'§a" d = 1,243,

d
réwnanie SchrBdingera przybiera postaé
2 3= ¢ aibi 2
ﬁz __2-2vck = +52,\kck¢=w, (8.91)
k k k

gdzie Ck= ;“kj'ﬂj, K=‘1’2’3°

Jdesli przyjmie si¢ rozwiazania postaci

to wartosci wiasnme beda xéwne

. u
E°=n n1 + _)]/uﬂﬂ (n, + %)]lggg + (1:1.3 i %)1/-22 3 (8292)
B4 & By :

przy czym n, oznaczajg liczby kwantowe. Energia libratora jest sumg
trzech cziondéw o postaci amalogicznej dla kazdego z trzech stopni swo-
body, co jest naturalng konsekwencja multiplikatywnej postaci funkcji
falowej.

WpXyw dalszych czionéw operatora T, zaniedbywanych w przyblizeniu
zerowym, mozna teraz potraktowaé jako zaburzenie. W dalszym rachunku sq
czynione nastepujace zatozenia ([97]):

(i) Drgania libracyjne wykonywane s& przez czasteczke wokdl giow-
nych osi bezwtadnoici.

(ii) Wartosci wiasne energii libratora nie sa zdegenerowane. Przy
tych Zatozeniach otrzymujemy w wyniku rachunku nastepujacy zbidér standw
energetycznych libratora

' 2 Bidc Rl
E(njnynz) =& > {\n,,+-)w1-fg[“ (n1+—) -2(—%;—2“—2 .
152,3 ' 23 1
Bii- B 0
B ——d- (nq +-)(n2 +—) 2 -1] ) (8.93)
BB 4 By ,
3 1
przy czym 1/2



377

W przeciwienstwie do (8,92) energii tej nie moZna przedstawié jako sumy
trzech czzonéw, odpowiadajacych odd.zielnyn' libracjom wokéz kazdej z osil
bezwlad.neéci, co znacznie utrudnia zastosowanie (8 93) do konkretnych
obliczen.

Inny przyklad modelu pseudoharmonicznego podany zostat przez Vis-
wanathana [D8] w celu wyjaénienia wplywu temperatury na czestosé i sze-
rokos¢ linii przejéé ramanowskich., Wedtug tego autora gtéwng przyczyna
anharmonicznosci jest anharmonizm mechaniczny, ktéry prowedzi do wzajem~
hego 6ddziatywania drgan normalnych. Dp rozwigzania problemu stosuje
autor metode pola samouzgodnionego Hartree-Focka, przy nastepujqce;] po=’
' stao:l energii kinetycznej i potenc;jalnej

N
%g o ; (8.94)
N
%gaini'*%; ;;“ijk“inj"k’ (8.95)

gizie N4, My, <eoy My 88 wspéhzednymi normalnymi krysztaiu przy N =

=3%n -6, a n jest liczba oczgsteczek w krysztale. o 1jc B8 staiymi an-

harmonicznoéci. Rozwigzanie réwnania Schr¥dingera rowadzi do skompliko-

wanago'yvyraZenia na zbiér standw energetycznych W. (vi), ktbérego przy-

. taczaé. nie bedziemy. Podamy natomiast wyrazenmie na czéstosé 1linii ‘spek-
tralnej, ktéra w efekcie Ramana pierwszego rzedu polega na przejéciu

‘ migdzy stanem podstawowym w! (1) (0) i plerwszym wzbudzonym wid (1)

o2

(i) (1) BERON 2810
j w'i1) - W (0) = h\)i = h)’i - .é% -3—h-v—- iy
A it

- Dy - > Bilv, + 3, (8.96)
n m

przy czym
@2
iim

* 2y Y i hvy
%3k ®mmic
9
‘Wi Y]: Ym h\)k

o o . Qs O
Bm = ( mmi ~iii 4 il mmm )+
4Yi Ym h\)i q'Ym Yi hvm

g
d2me e

Yonees
il B i



378

W iyratenin (8,96) hvj'_ oznacza kwant przejécia dla i-tego drgania nor-
malnego W przybliZeniu anharnoniczm, natomiast hv .Jest energig w
przejéciu harmonicznym. Jak widaé¢, emergia przejécia zalezy od stopnia
wzbudzenia pozostaiych drgah normalmych. Autor [98] przyjmuje dalej, ze
Vyp moZna utoZsamiaé z liczbg fonondéw w stanie kwantowym hv; srednia
rartoéé Vp Wymosi zgodnie ze statystyka Bosego-Einsteina

<vy>= {ex'p (Byy/) - '1}"", (8.97)

c0 oznacza wprowadzenie tenperatu.ry do (8.96). Otrzymujemy

aly, - ) = Té%; s+ 3 Bl =
m

= Z {ezp (hvm/k‘l‘) - ’l} =1

Sted zmiana czgstosci linii ramanowskiej -A Vi’ wyniksajaca z wpiywu tem-
peratury, wyniesie

Avi = --:—l ZBmf{exp (hvm/kT) - 1}—1. (8.98)

Widzimy, Ze w celu obliczenia zmiany czestoSci okreslonego i-tego drga-
nia normalnego w temperaturze T K musimy wykonaé sumowanie po wszyst-—
kich drganiach normalnych.

Dyskusja statych anharmonicznoéci “i;]k i ich powigzania z dynami-
kg sieci, przedstawiona w pracy [98] » ma raczej charakter rozwazan ja-
kosciowych. Autor wskazuje jednak, gdzie ieéa gtéwne trudnodci w inter—
pretacji amharmonizmu drgan sieciowych - teoria, jak dotad, nie daje
mozliwoéci obliczenia o 14k

W dalszym chagu tej dyskusji pragniemy zajaé uwage Czytelnika pra-
cq Williamsa [99], w ktérej autor przedstawil i)raktyczne proby oszacowa-
nia statej anharmonicznosci i obliczeh rozszerzalnodci termicznej.W tej
pracy stala anharmonicznoSci okreslona zostata inacgej. Do tej defini-
cji dochodzimy w nastepujacy sposéb. Niech czasteczka wykonuje drgania
libracyjne i tramslacyjne w zmiennym polu sasiadéw. Enmergie potencjalna
oddzialywania atoméw danej czasteczki z atomami jej sasiadéw U(r) mos-
na rozwingé w szereg Taylora w poblizu poloZenia réwnowagi oo

U(r) = U(z,) + pU'(re) + % p2 U"(re) o -;— p2 g (2) + oo,

gdzie primy przy U oznaczaja pochodne po I oraz

p=r-re
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Jest przesunigciem atomu z potozenia réwnowagi, spowodowanym drganié;j
Jak zwykle U(r ) =T (r ) = 0. Jesli uwzglednimy, %e Arednia siZa dziaL

tajaca na atom znaadujacy sie w potozeniu réwnowagi réwniez réwna jest
zeru

du 2 1
<5r_> =0 =<9>U (x-e) + §<p =T (2y)y
to otrzymamy
<p>= k<p®> (8.99)
zie
gd : 1 U"l (re)
k= -- — 5 (8.100)
erimE(r)s ;

k Jjest stata anharmonicznosci, a (8.100) jest nowa jej definicja. Po-
tencjal oddziaiywania atom-atom, przyjety przez Williamsa dany jest wy—
razeniem 6-eXp

i3

U(r) = -Ar + Bexp (-C r). - (8.101)

W potencjale jedynie czgsé opisujaca enmergie odpychania jest dostatecz—
nie czuta na malte przesunigcia atoméw z polozenia réwnowagi; tylko ta
cz¢s¢ uwzgledniona zostata w dalszym rachunku. Dalej, potencjal musi
byé'funkch temperatury oraz musi byé anizotropowy, poniewaz wielkosé
przesunigcia atoméw réwnies zalezy od kierunku, Williams przyjmuje, Ze
od T =zalezy jedynie wspbiezynnik B, natomiast C Jest stale. Wzrost
B do B'(T) przy érednim wychyleniu z polozenia réwnowagi <p>mozna za-
pisaé nastepujacos

BI r 7
B Iy +<p>

Podstawienie B do potencjatu (6-exp) pozwala obliczyé¢ minimum energii
sieciowej w réznych temperaturach, a stad zaleznosé parametrdédw komébrii

elementarnej od temperatury. Potrzebny- tu Sredni kwadrat amplitudy prze-
sunig¢cia atomu oblicza si¢ z wzoru Cruickshanka dla sztywnej czasteczki

<p2> (1, 2 =28 21+ @t LL xpy). (8.103)

I L s3q odpowiednio tensorami drgai tramslacyjnych i libracygjnych, 1
Jest wektorem jednostkowym w kierunku przesuniecia, zas I Xgczy dany
atom "i" ze Srodkiem libracji czasteczki.

Wyniki obliczen wedtug tego formalizmu doéé dobrze odpowiadaja da—
nym doswiadczalnym dla zestalonych gazéw szlachetnych, natomiast znacz-
nie gorzej dla antracenu. Williams proponuje szereg poprawek, majgacych
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ma celu doprowadzenie do lepszej zgodnodci z dodwiadezeniem, ktdérych tu
nie bedziemy referowali.

PéZenpiryczne funkeje emergli potemcjalmej typu 6-exp lub podobne-
g0, majy szereg wainych zastesowah w fizykechemii organicznego ciala
stazego, a migdzy innymi pozwaladd‘#onstruowaé przybliZone profile emer-
gii botennjalnej. Profile te nie tylko opisuja, lécz takZe charakteryszu-
Ja »bézne typy ruchdéw czasteczkl w kryssztale, a ich przydatnoéé do kry-
tycznej oceny ruchu za posrednictwem analizy anizotropowych parametroéw
termiczuych wykazali - jak pisza po raz pierwszy - Shmueli i Goldberg
[100}. I tak, jesli libracja jest bliska harmoniecznej, otrzymuje sieg
profile prévie parabolicznys natomiast w wiekszosci zbadanych przypadkédw
o duzej amplitudzie ruchu prefil odpowiadal albo nieuporzadkewsniu o-
rientacyjnemu, albo ruchom silnie amharmoniczmym. Wediug podstawowego
zatozenia w proponowanej metodwzie uwaza sig, zé czasteczka wykonuje li-
bracje¢ przy nieruchomym otoczeniu, co jest w gruncie rzeczy réwnowazme
zaniedbaniu sprzezenia ruchu miedzy czgsteczkami, Mimeo drastycznodei ta-
kiego zatozenia autorzy uzyskali zachecajace wyniki dla szerokodci krzy-
wych potencjalnych i1 dla odpowiadajacego im pierwiastka z sredniego kwa--
dratu amplitudy drgan. :

Metoda obliczen polega na symulacji ruchu libracyjnego wokdé: wybra-
nej osi, ktdra najczesSciej Jjest jedng z osi symetrii. Wychodzac z polo-
zenia réwnowagi czgsbeczki w strukbturze, obraca sie jej szkielet w ma-

. 2ych krokach, réwnych 0,50, wokéx tej osi i za kazdym razem oblicza e-
nergie¢ potencjalng wzgledem nieruchomego otoczenia przy uzyciu fumke ji
energii potencjalnej (8.104). Stosujac te metode, autorzy [101] amalizu-
Ja profile emergii potemcjalmej libracji amtrachinonu, dla ktérego
struktura krysztaiu znana jest w pigciu temperaturach ([56]). Celem tej
pracy Jest uzyskanie odpowiedzi na nastepujace pytania:

(1) ozy mbzna'metadq klasyczng obliczyé amplitude ruchu libracyjne-

80,

(ii) Jjak. dokonaé oszacowania udziatu anharmonizmu w profilu ener—
gli potencjalnej,

(11i) jakie rezulbaty mozna stad otrzymaé dla czestosci 1librac ji
i jek przedstawia si¢ pordwnanie z doswiadczeniem?

Poniewaz w tym rozdziale jestesmy zainteresowani znajomoécia odpo-
wiedzi na te pytania, zreferujemy prace [101] nieco bardziej szczegbzo-—

WO, :
Dla analitycznego opisu krzywej energii potencjalnej V(r), autorzy
proponuja czteroparametrowq funkcje 6-exp

V(r) = 'a exp (=br)/rd - c/z®. (8.104)
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Tabela 8.12

Parametry funkeji emergii potenc;}al'm;j (8.104) wedlug FOOJ.
Dla »r wyraionege w i qersie obrsymary w kJ/meol.

|
e e
H.lo o 9081 | 3,74 | 102,0 | O
Cy.dc 300264 | 3,60 2144,6 | ©
CeooH 35570 | 3,67 487,74 | - ©
0.5.0 1083000 /| 0  |1499,6 | 12
N...N | 268360 | 3,64 |1e84 °
0.0 H 99168, 1,87 | 391 6
0.0.C 570350 | 1,80 '|1793 6
0...K 539190 | 1,82 |[1589,5 6
N E 49368 | 3,69 | 414 0
N...c | 283870 | 3,62 |1901 0

' Parametry tej fumkeji &, b, o, d pedane s§ wediug [100] w teb. 8.12
dla réznych par niezwigzanych z sobg ateméw. Wartesci energii poteéncjal-
n8j kazdego profilu oblicza 8i¢ dla oddziaiujacyeh atoméw, zawartyeh w
gferze o promieniu r <7 £ i dla réinych katéw obrotu ¢ osgstesski,

a nastepnie wygtadza profil metodg u;]nnie:js:ych kwadratiéw przy uzyeiu
funke ji aproksymacyjnej Vg (o)

2

Vs(tv) = a + b® + co< + d¢5 + eq‘*. (8.105) .

Taka postaé funkeji pozwala na oddzielng ocene udziaiu czlonéw harmo-
- nieznych i - co jest bardziej interesujqce — czionéw amharmonicznych

T (0) = 4 + eo®. ' (8.106)

Sredni kwadrat amplitudy libracji oblicza sie s wzoru

i‘ f 02 exp (=co/KT)d9
| <925 _ =0 = & (84107)
T +00 EeCE—? %
S e (co/xm)ae
=00

g'a wige przyjmujac rozktad harmonicznej czesSch emergii potemcjalmej V =
=, co~, zgodny z klasyczng statystyka Maxwella-Boltzmanna. Wyraz ener—

B S A o AT g | TR w—_—w—
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gii potencjalnej V(o) = c 02 = 1 (2¢)0? decyduje o czestosci drgan li-
bratora, traktowanego jako obiekt sztywny

/2

VR = — (8."08)

1 (2"
7 SR
gdzie II jest momentem bezwiadnoéci wiasciwym dla wybranej osi libra-
cji. Lgczac (8,.107) z (8.108) otrzymujemy dobrze znany zwiazek, podany
przez Cruickshanka [102]

kT

=8> LT
4me I Vg

(8.109)

Wyniki obliczen dla czgsteczki antrachinonu w krysztale przedstawia tab.
8.13. Przytoczymy w streszczeniu komentarz autoréw do tych danych.

Ksztalt wygtadzonych profiléw emergii potencjalmej determinowany
Jest w poblizu minimum przede wszystkim czionem kwadratowym w (8.105).
Ze wzrostem temperatury c¢ maleje, co odpowiada stopniowemu sptaszcze-
niu parabolicznej czgsci krazywej. Takie zachowanie sie ¢ jest zZgodne
z przewidywaniami teorii pseudoharmonicznej [103], ktéra przewiduje spa-
dek staiych sitowych oraz czestosci ze wzrostem temperatuf:'y. Oczywiscie
.\’R w tabeli 8.13 przewidywania te speinia, przy czym zaleznos¢ tempera-
turowa jest zblizona do obserwowanej przez Miyazaki i Ito [104] w wid-
mie Ramana tej substancji. :

Katowa amplituda drgan <g2>1/2 rosénie ze wzrostem temperatury
dla wszystkich trzech osi libracji. Baleznos$é ta jest silniejsza niz
T1/ 2, Jak to wynika z teorii pseudoharmonicznej. Stale sitowe oraz am-—
plituda drgahn maja wige troch¢ zbyt wysokie wartosci, co wynika po czes-
ci z ustalenia potozen czgsteczek w otoczeniu w przyjetym modelu rachun-
kowym, po czesSci z Sredniej aokadnosci w wyznaczeniu strukturalnych pa-
rametréw termicznych (pisza o niej réwnies autorzy [56]). Moga wchodzié
w gre réwniez inne powody tej niezgodnoséci. Po plerwsze, atomy tlenu wy-
konuja niezalezne oscylacje poza piaszczyzng czgsteczkiy zaniedbanie
ich podwyzsza prawdopodobnie czestosé Waq czasteczki, potraktowane j
Jjako sztywny librator. Po wtére, powigkszenie rozbieznosci powoduje z
pewnoscig anharmonicznoéé rotacji, co jest szczegbdlnie widoczme dla sil-
nie anharmonicznej rotacji wokéxz N.

Zauwazmy w koncu, ze minima wszystkich krzywych energii potencjal-
nej sa przesunig¢te w pordéwnaniu do rzeczywistej orientacji czasteczek
w strukturze o niewielkie katy. Przesunig¢cia te, Sredniowane na caly zZa~
kres temperatury, wynosza: dla rotacji wokér L -2,05(0,25)°, dla osi
M +0,36(0,08)° i dla osi N -1,42(0,19)°. Nie sa to dane szczegdlnie
przydatne. Bardziej interesujace wnioski mozna by uzyskaé ze znajomosci
przesunig¢cia minimum krzywej w poszczegbdlnych temperaturach, poniewaz
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Tabela

583

8,13

‘Czasteczka antrachinonu w krysztale: wspbéozymniki c(kJ -mol"qdeg"z),

d(]:J-mol"’I deg_a) , € (kJ-mol'qdeg—q')
(8.105), <02> 12 _-piermiastek z 4redniego kwadratu amplitudy drgash

obliczony z (8.107), w /2

krzywych energii

potencjalnej

- doéwiadczalna wartosé pierwiastka &r. am—
plitudy drgan [56], w stopniach, & ®q/2 = szerokosé krzywej w stop-
niach na wysokosci U = kT, \33— czgstosé drgan sztywnego libratora
(8.108) w em™

1. Rotacja wokét L, ® od =10° do +10° w krokach 0,5°

i ¢ 8 02 gt S 14E A s Vg
103 0,1255(12) 192 1,85 3,00 2,49 74
161 0,1113(4) =176 . 2,45 4,04 3,26 70
201 (_),‘1146(4) =184 2,70 4,23 3,64 71
260,5 0,1054(12) =180 3,20 4,52 4432 68
295,5 0,0870(8) =167 3,74 5,41 4,81 &1
2. Rotacja wokéx M, ¢ od -10° do +10° w krokach 0,5°

m c e x 105 <D 2>1/2 w_é‘éz A (01/2 \)R
103 0,4928(17) 259 0,93 0 1,31 93
161 0,4685(21) 251 1,20 0,97 1,68 21
201 0,4472(25) 238 1,57 1,60 1,92 89
260,5 0,4112(25) 230 1,62 0,85 2,26 85
293,5 0,3723(25) 222 41581 A6 2,51 81
Je Roﬁacja wokér N, ¢ od -6 do +5° w krokach 0,5°

uy c <O ‘2>’l/2 m;ga A q)’l/2 VR
103 0,4815(42) 0,94 1,26 1,54 78
161 0,4915(50) 117 1,581 141202 79
201 0,4723(54) 1,33 22027 77
260,5 0,4392(46) 1,57 2,67 2,67 74
293,5 0,4254(54) 1,69 3,18 3,04 73

te wyniki moglibysmy poréwnaé¢ z liczbami wynikajacymi bezpoérednio ze
- struktury lub modelu sztywnej skrzynki. Tych szczegdiéw autorzy jednak
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9. WELYW TEMPERATURY NA NIEKTCRE WEASNOSCI FIZYCZNE KRYSZTAEOW

Zgodnie z wynikamil rozwazai poprzedniego rozmdziatu wpiyw btemperatu-
ry na strukture krysztaiu molekularnego, tworzacego w interesujacym nas
zakresie temperatur faze¢ termodynamicznie stabilng, mozna opisaé za po-
mocy dwéch efektdw mikroskopowychs

(1) Mae przesunigcie Srodka masy czasteczki, przejawiajace sie ja-
ko zmiana gestosci kryszbtaiu,

(ii) Niewielka zmiana katowej orientacji czasteczki, prowadzgca do
zmiany wielkosci fizycznej wediug modelu gdzu zorientowanego.

Obecnie. sprébujemy rozwazyé, jaki jest zwigzek migdzy wielkoscig

Gych przemieszczen, a wielkoscia efektédw obserwowanych w pomiarach fun-
kcjli temperaturowych omawianych dotychczas wielkosci Fizycznych. Dys—
kusja, ktorq przedstawiamy w Gtym rozdziale, bedzie bardziej szkicem za-
gadnienia, niZ prezentacja ustalonych pogladéw. Mamy bowiem jeszcze za
mato informacji o wpiywie temperatury na wiasnodci krysztaiéw, a w do-
datku czegsto okazuja sie¢ one niekompletne, gdy chcemy skonfrontowaé z
nimi wyniki obliczen. Wydaje sig, Ze jeszcze za wczesnie na dokonywanie
uogdlnien. | ;

Dzskusje rozpoczniemy od przedstawienia wpiywu temperatury na po-
datnosc diamagnetyczna krysztaiéw.

9.1. Diamagnetyzm krysztatéw

Uzasadnialismy w rozdz. 5, ze podatnos¢ diamagnetyczna jest witas-—
noscig stosunkowo tatwo poddajaca si¢ interpretacji mikroskopowej, a
przyczyny tego sa nastepujace: )

(i) W diamagnetyzmie praktycznie nie istnieje problem pola Lokalne~
go, wobec czego relacje migdzy podatnosciag krysztaiu, komérki elementar-
nej i czasteczkl maja charakter zwigzkéw geometrycznych (model gazu zo~
rientowanego) .

(ii) Problem zmiany gestodci ciala stalego wraz ze zmiana tempera-
tury mozna pomingé, poniewaz efekty stad wynikajace sa niewielkie i wo-
bec niezbyt duzej doktadnosci metod eksperymentalnych nie sa zauwazalne
(pe 9.2).
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Tabela 9.1

Gléwne podatnosci krysztaiéws: Xi w temperaturze cieklego azotu,

X; W tenperaturze pokojowej (wg [11)

X « 10° cgaM

Zwiqzek (X,; - X1) (Xé = xa) (xj‘ = x})
p-Dwubromobenzen | 0,22(3) . =0,60(3) 0,36(4)

p-Benzochinon 0,36(12) =1,04(9) 0,70(16)

Naftalen 1,3(2) -1,60(12) | 0,25(25)
Dwubanzyl 0,3(“‘) "2,1 (5) 1’9(8)
Stilben 0,0(3) =1,9(2) 1,9(1)

Azobenzen 0,25(10) ~0,40(7) 0,15(10)

W konsekwencji tych przesiamek Asrednia podatnosé proszkowa zwigzku
organicznego nie powimma zaleze¢ od btemperatury. Siusznosé tego wniosku
potwierdzaja wyniki pomiaréw autoréw framcuskich [1,2]. Czeéé tych wyni-
kéw zamieszczono w tab. 9.1 wedtug przyjetej w rozdz. 5 konwencji ozna-
" czeh osi i ich orienbacji. Widzimy przede wszystkim, Ze wplyw temperatu-
ry na giéwne podatnosci krysztatu jest niewielki. Co wigcej = funke je
jxi(m) majg charakter kompensacyjny. We wszystkich podanych w tabeli
przypadkach Xq i )c3 88 bardziej ujemne w temperaturze pokojowej, nato-
miast X 2 jest bardziej dodatnie. Wtasnie kompensacyjny charakter tych
zmian powoduje, ze

(: = %3) = 33<x™> =< =0 (9.1)
;’Xl X3 {x X>}‘

w granicach biedéw doswiadezalnych. X:.: sq’podatnoéciami w temperaturze
ciektego azotu, a X; W temperaturze pokojowej. Réwnosé¢ (9.1) bedziemy
dalej przyjmowaé jako fakt stwierdzony doéwiadczalnie.

‘.Bérd.ziej szczegbdiowo zbadano funkcje¢ temperaturowa podatnosci dia-
magnetycznej krysztatu benzenu [2]. Niektére wyniki doswiadczalne przed-
stawiono na rys. 9.1, a mianowicie

312 X(T) = xa(T) b Xb.(T)y oraz A 23 X(T) — xbgT) = XC(T)'
Odezytujac wartosci liczbowe z tych wykreséw i przyjmujac [2]

<X >= —54,8(1)-107° cgsl,

XoaiXn X

mozemy obliczyé w réznych temperaturach z ukladu réwnan
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Rys. 9.1. Zalezno&¢ anizotropii podatnosci diamagnetycznej krysztaiu
benzenu od temperatury (oprac. wg [2]).Linie przerywane przedstawta-—
Ja& wyniki obliczen wediug modelu sztywnej skrzynki

Yl Xy X = s>
o= = o
Xp = X = A23
Wyniki podano w tab. 9.2. Okazuje sig, ze w krysztale benzenu Xp prak-
tycznie nie zalezy od temperatury, a zmiany xa(T) kompensowane sSg
przeciwng zaleznoscig X e od temperatury. >
Nie mamy informacji o strukturze tego krysztaiu w réznych tempera-
turach, z ktérych moglibysmy skorzystaé, prébujac wyjasnié taki charak-
ter zaleznosci xi(T). Wobec tego postapimy odwrotnie: z danych doswiad-

czalnych obliczymy przemieszczenia katowe czgsteczki benzenu, przy czym
przyjmiemy nastepujgce zatoZenia upraszczajace:

(i) Podatnoéci czasteczki K.i nie zalezg od temperatury.

{ii) Wobee duzej symetrii czgsteczki, bliskiej D, , mozna przyjal,
%e podatnosci w jej piaszczyznie s8a sobie réwne K= K,, natomiast
) # K3. W szczegbdlnosci przyjmiemy (tab. 5.2, Nr 1), Ze

;= K, = 34,9, K= 94,6100 cgall.

Najbardziej bezposrednig ‘metoda okreslania zmian orientacji Ki Jjest
postuzenie sie katami Bulera (por. 8.5, takze [3]). W ukadzie ortorom-

bowym mamy
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Tabela 9.2

Gtéwne podatnosci diamagnebyczme kryszbtaiu benzenu.
- Wartoécl doswiadezalne wzigte z [2], wartosci ebli-
czone ¥ modelu szbywnej skrzynki [3].

X x ’IC)6 ogaM

= %3 = Xa = Xp = Xp “Xe .| TX¢
dosw. obl. dosw. obl. dodw. obl.

260 | 64,967 | 64,93 37,58 | 37,58 61,85 61,89
240 | 64,51 | 64,55 | 37,56 | 37,61 | 62,32 | 62,24
200 | 63,91 | 63,78 | 37,57 | 37,69 | 62,92 | 62,93
160 | 63,48 | 63,02 | 37,56 | 37,75 | 63,36 | 63,63
120 | 63,18 | 62,25 | 37,55 | 37,82 | 63,67 | 64,33
80 | 63,04 | 61,49 | 37,54 | 37,88 | 63,83 | 65,03

Xg = Eqlody + 031) + Ky o2y = &y + (K5 - Ky) o2,

Xy = K,l(c,?2 + cga) + K3 °§2 = K4 + (K3 - K,,) °§2’ (9.2)
: ! 2 2 28y : 2

Xe = K’l_(c'IZ» + 023) -+ K3 35 = Ey + .(K:3 - K) C33e |

Stad mozemy obliczyé orientacje normalmej do pierscienia 1931 B l°32|’
'|033|, ‘a poréwnanie z tabelg kosinusbw kierunkowych (tab. 5.2, Nr 1) po- '
zwala wybraé wXasciwe znaki. Orientacja czgsteczki woké: normalnej jest
w tym modelu 5' dowolna, wobec czego dowolny jest réwniez kat Eulera

X s (rys. 8.19)3 dla uproszczenia moZemy pz‘zyjéé X = 0, a wiec réwniez
d X/dT = 0. Przy tych wiasnie zatozeniach obliczono macierze c(T) o-
rientacji osi IMN czgsteczki benzenu w krysztale dla szeregu temperatur
(tab. 8.7). Zachowanie sig¢ pozostatych dwéch kaqtéw Eulera z temperatura
moZemy z zupeinie dobrym przyblizeniem opisaé¢ wielomianem drugiego stop-
nia. Obtrzymujemy po zastosowaniu metody najmniejszych kwadratéw

®(T) = 106,87 + 3,02+1073 T = 4,53+10~5 12, —a
. : 9.3
8(T) = 46,12 - 6,91:10™° T + 5,06-10~2 1°,
a stad
%” = 10,88 - 0,410 T,
"/K (9.4)

Blg,
]

-24,87 + 0,365 T.
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Podstawienie (9.4) do (8.60) prowadzi do obliczenia ]:q,tbw obrotu Ai
wokol osl IMN czgsteczki bemzemn. Otrzymujemy

4 = 24,87 + 0,365 T,
8= 7,84 -0,0807T, /K o a5
A5 = 7154"‘ 0)075 T,

Zmiany ketowego poioZenia czasteczki sa wigc réwniez zmalezne od tempera= :
tury (por. tab. 8.8). W 270 K zmiany te wynoszg

A, = 73,7,

A, = 13,8, "/K
TS

B = -12,8.

Najwigksze efekty wystepuja wokél osi L. Ze wezgledu na brak danyoh de-
gwiadczalnych odnoénie wpiywu temperatury na orientacje czasteczek, wy-
niki te mozemy poréwnaé tylko z przewidywaniami modelu sztywnej skrzyn-—
ki. Przy obsadzeniu komdérki elementvarmej dwiema ozgsteczkami dako kra-
wedzie skrzynki trzeba wybraé

ac = = 7,46,
bc = b/2 = 4-,83,‘
c/2 =" 3,515,

- Q
]

Biorac ponadtb wspbéiczynniki rozszerzalnosci (tab. 8.1, Nr 20)

-1
Bl w119 o= 06, L m 2T, A0

’
otrzymujemy alternatywne rozwigzania dla katéw obrotu sztywne] akraynki
(o)

|30,0] 1 + |21,5] 2 + |14,2] k,

1"

él

133,2] 4 + [52,1] § + [37,9] k.

Skxadowe & i 5; podane sg w ukladzie wspéirzednych abc. W tyn sanyn
ukzadzie otrzymujemy z (9 5) i katéw Eulera

8y = -20,51 + 70,2 § -20,9k "/K. (9.6)

bér znakéw otrzymujemy zatem z modelu sztywnej skrzynki

Poréwnanie wskazuje, Ze lepszg alterngtywa jest & '._Uwzgled.nia,jqc do-
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Tabela 9.3

Srednie zmiany katéw Eulera czgsteczki antrachinonu
w funkecji temperatury, "/K

Zakres Ao Ax A%
LompOXaVIrY ) AT AT
103-161 51,9 | 51,2 | -2,2
161-201 59,4 | =20,3 | =4,4
201-261 56,8 | -35,9 | -8,1
261-294 | 228,2 |-132,4 | -56,0

Tabela 9.4

Temperaturowa zaleznosé giéwnych podatnosci diamagnetycznych X; i kata
orientacji © w krysztale antrachinonu (<X>= -1'19,60-10'6 cgaM).
X W Jjednostkach 10~° cgsM. Obliczeh dokonano na podstawie modelu
sztywnej skrzynki

T, K | -xq - X2 -xz | -8°

298,3 | 63,54 | 106,76 | 188,50 | 43,87
260,8 | 63,52 | 102,56 | 192,63 | 41,93
201 63,51 | 101,03 | 194,26 | 40,84
161 63,50 | 100,01 | 195,29 | 40,01
103 63,49 98,81 | 196,50 | 38,83

by = 33,2 1.+ 52,1 § - 37,9 k. (9.7)

Znajomosé skiadowych 5__uI pozwala odtworzyé katy Eulera w réznych tempe-
raturach, a stad obliczy¢ xa(T), X (T) oraz x_c(T). Wyniki tych obli-
czeh podane sa obok wynikéw doswiadezalnych w tab. Y.2 i ma rys. 9.1
(1inie przerywane). !iobec staosci wspdiczynnikéw rozszerzalmnosci ® .y
zaleznosé Aik K= x x wypada, oczywiscie, prostoliniowo. Poza tym
uzycie wartosci x5 w pobl:l.zu 0 % powoduje, ze zardwno dla Xy Jak i
By otrzymujemy wartosci przesadnie duze. Lepsza zgodnosé uzyskalibys-
my uwzgledniajgc, Ze wraz z obnizeniem temperatury skladowe % maleja;
nie dysponujemy jednak bardziej szczegéiowymi danymi.

Z sytuacja wrecz odwroing spotykamy si¢ w krysztale -antrachinonu.
Znany strukturg tego krysztaiu w kilku temperaturach, ' Jjednak nie znamy
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Rys. 9.2. Giéwne podatnosSci magnetyczne krysztaiu anbracenu
w funkcji temperatury

wynikéw pomiaréw temperaturowej zaleznosci podatnosci diamagnetyczne j.
Interesujgce jest, ze w tym krysztale zmiany katéw Eulera przypadajace
na 1 K, obliczone z tab. 8.5, 88 w poblizu temperatury pokojowej bardzo
duze (tab. 9.3). Korzystajac z tabeli kosinuséw kierunkowych (tab. 8.5)
i wartosci K (tab. 5.2, Nr 29a)

K,

mozna obliczyé Xy W funke ji temperatury oraz kat €, zawarty miedzy
Xq 1 osig krystalograficzng a. Wyniki przedstawione sa w tab. 9.4 i
na rys. 9.2. Funkcje temperaturowe Aik(T) i ©(T) sa przedstawione na
rys. 9.3. Okazuje sig, ze w tym krysztale (ukiad jednoskosny) X, prak-
tycznie nie zalezy od temperatury, dlatego spadek )(2 kompensugje 'sig¢
wzrostem x5. Wobec tego najwigksze zmiany anizotropii mozemy obserwo—
waé¢ wtedy, gdy krysztail jest zawieszony wzdiuz Xq. Na obu rysunkach wi-
dzimy, 2Ze ponizej 260 K zmiany s3 nieduze i liniowe., Przyspieszenie tych
zmian powyzej 260 K komentowane juz byio w rozdz. 8.5 w zwigzku z zacho-
waniem si¢ katéw Eulera.

Przytoczoneﬂprzyklady wskazuja, Ze zmiany Ky przypadajace na 1 K
S§  rzedu 1107 cgsM, lub 1%. Mozna je wyJjasni¢ zmianami oric.ntbac i
osi Ki czasteczki w tyn sensie, ze 4, Jakie wynikaja z XL(T) sa

il

—68,9, K2 = —63,5, K3 = -226'4. x 10—6 chM,
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Rys. 9.3. Zaleznos¢ anizotropii magnetycznej i kata oriemtacji Xq,a
od temperatury w krysztale antrachinonu

bliskie wartosciom A, otrzymywanym z modelu sztywnej skrzynki. Model
ten daje wyniki niezalezne, bowiem oparte na znajomosci rozszerzalnosci
fermicznej krysztatu. Istnieje tez nadzieja, Ze nieliniowoéé Funkeji
temperaturowych Aj}T) bedzie mozna wyjasnié zaleznoScig od temperatu-
ry wspéiozynnikéw rozszerzalnosci %, .
Do tej pory dyskutowalismy wpiyw temperatury na podatnos¢ diamagne-
tyczna fazy krystaliczne]j termodynamicznie trwatej w pewnym zakresie
témperatur, a w kazdym razie takiej, ktbérej symetria nie ulega zmianie
w tym‘przedzialé temperatur. Podczas przemiany fazowej wystepuje na o-
.gbr skokowa zmiana symetrii w temperaturze przejscia, charakterystycz—
nej dla przemian pierwszego rodzaju. W punkcie przemiany macierz orien-
tacji czasteczek ¢ ulega stosunkowo bardzo duzym zmianom, wobec czego
réwniez gtéwne podatmosdci krysztaru zmieniajg si¢ bardzo silnie. Oczy;
wiscie, w krysztatach zbudowanych z czasteczek o wysokiej symetrii,kté-
rych anizotropia magnetyczna jest maza lub réwna zeru, nie zaobserwuje-
my zmian A X . Z eksperymentéw wykonanych z krysztatami pi@cgochlorbfe-
nolu wynika [4], ze w czasie ogrzewania krysztaluv(jédnoskoény) anizo-
tropia magnetyczna maleje skokowo w poblizu temperatury 63 °C, bedacej
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Rys. 9.4. Zmiany anizotropii magne towarzyszace przemianie
v fazowej w krysztale 1 8—dwunitronaftalenn

temperaturs przejscia fazowego w tym zwigzku. Jeszcze Silniejsze efekbty
znaleziono w 1,8-dwunitronaftalenie [5] (krysztal ortorombowy). Obserwa-
cje 8,3 = Xy, - X, wskazuja (rys. 9.4) [3], ze po przejéciu fazowym
znak anizotropii ulega zmianie na przeciwny. Powrotowi do temperatury
pokojowej towarzyszy znaczna histereza, a kryéztal nigdy nie osigga
struktury stanu wyjsciowego. Te zjawiska mozna uwazaé za nieodmiennie
towarzyszgce przemianie fazowej, poiaczonej ze znaczng zmianag objetosci
‘wiasciwej krysztaiuj duzy skok objetosci prowadzi z reguly do zniszcze—
nia uporzgdkowania dalekiego zasiegu. Mimo znacznych i dobrze mierzal- :
nych efektédw takie przypadki nie sq bardzo interesujace z teoretycznegol
punktu widzenia, poniewaz ich interpretacaa na poziomie mikroskopowym
Jest praktycznie niedostepna. \

9.2. Dwéjromnosé optyczna

Dwé jromnos¢ jest wielkoicia tatwiej dostepna pomiarowi i dokiad—
niej mierzong, niz anizotropia diamagnetyczna. Interpretacja wynikéw
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Rys. 9.5. Dwojtomnosé plytki((01%%]§luorenu w funke ji temperatuxry
wg :

doswiadczen jest jednak znacznie trudniejsza ze wzgledu na efekty, spo-
wodowane polem lokalnym i dyskutowane szerzej w rozdz. 6.

Je$li zmienimy temperature, to zmienia si¢ réwniez dwédjromnosé
. piytki ]

Bip = 0y = Iy,

ktéra definiujemy najczesciej jako wielkos¢ dodatnig. W zakresie tempe-
ratur, odpowiadajacym termodynamicznej stabilnosci fazy krystalicznej,
zmiany te sa ciggie i najczesciej liniowe., We wszystkich zbadanych do-
tychezas przypadkach wspbéiczymnik temperaturowy dB/dT" jest ujemny,btzn.
przy wzroscic temperatury dwbéjiomnos¢ male je. Zauwazmy przy tym, Ze naj-
czeéciej mierzymy w eksperymencie optycznym 'réznice drég optycznych I'
a zgdamy informacji o dwdjromnosSci B, poniewaz ta wiasnie wielko$é pod-
dawana jest interpretacji mikroskopowej. Jesli uwzglednimy podany juz
zwigzek miedzy tymi wielkoéciami (por. rozdz. 6)

r=38.4d, (6.31)

¢dzie d Jest grubosciag piytki, to zrbdzniczkowanie (6.31) wzgledem tem-
peratury prowadzi do szukamej zaleznosci

a8 _ 1 4 o, - (9.8)

=]

SRR A g L
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Wielkoéci do i o mierzone 58 w jakiejs temperaturze odniesienia, mna
przykiad w temperaturze pokojowej, @ | Jjest wspdiczynnikiem rozszerszal-
nosci termicznej w kierunku prostopadiym do powierzchni piytki. Przykie-
dem liniowej zaleznodci jest dwédjiomnosé 331 (T) krysztaiu fluorenu,
mierzona dla piytki (010) (rys. 9.5 [6]). Jesli jednsk wystepujs w sie-
ci nawet niewielkie zmiany strukturalne, ale nie niszczgce monokrysta-
licznosci proébki, poiaczone ze zmiang orienmtacji czasteczek lub ich kon-
formacji, pojawiaja si¢ odstepstwa ed liniowosci B(T). Mozna je zauwa-
#yé, na przykiad, na krzywej (rys. 9.6), ilustrujacéj sachowanie sie
331 (T) piytki karbazolu [7]. W temperaturze 118 °C (punkt C) rozpoczyna
si¢ przemiana fazowa, ksérej wystepowanie w karbazolu stwierdzono réw-
niez za pomocq pomiaréw kalorymetryozmych [8].

B3 T

. !

L]

A
0165 \,

s
B
L)
0160 \
C
D

01553 .

0 50 100 1500 ey

Rys. 9.6. Dwojtomnosé prytki ((()10)[kﬁrbazolu w funkec ji temperatury
wg [7])
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W dalszej dyskusji wpiywu temperatury na wiasnosci optyczne krysz—
tatéw oprzemy si¢ na nastepujacych relacjach:

(1) Bedziemy korzystaé ze zwigzku migdzy refrakcja molowa kryszta-—
Zu i refrakcja komérki elementarnej. Napisany w ukiadzie osi giéwnych R
ma on postaé (por. rozdz. 6)

2
=1
Ro= e % o (6.69)

Ri zastepuje giéwne polaryzowalnosci komorki elementarnej. Podajac
zwigzek w tej postaci‘unikamy wprowadzenia niepewnych czymnikéw w rodza-

Ju (4/3) .
(ii) Skorzystamy z modelu gazu zorientowanego

L
paia t S e g ol g, (6.59)
k

przy czym tutaj r zastegpuje tensor o polaryzowalnosci czgsteczki.

Badziemy bada¢ wpiyw zmian strukturalnych na n, zaktadajac, ze skxado-
we r nie zalezi od temperatury .

Zrébézniczkowanie (6.69) prowadzi do wyrazenia

i dng s ap
—-M = p b R s L] e
(n§+2)2 ar T iw (99)_

Widzimy, ze w zaleZnosci ni(T) majg udziax dwa efekty:

(i) Zmiana kgtowych poZozen czasteczek, wystepujaca w dRi/dT.
(ii) Zaleznoéé gestoéci krysztatu od temperatury, ktéra mozemy wy—
razié¢ bezposrednio: :
- dp ;
o DA e S (9.10)
am ope 2 3 =
Temperaturowa runkcje dwdjiomnosci z punktu widzenia zmian ggstosci dys-
kutuja réwniez Bounds i Munn [9].
Réwnanie (9.9) napisane jest w ukladzie osi giéwnych iundykatrysy.
Z tego powodu celowe jest w nieortogonalnym ukiradzie osi krystalogra-
ficznych uzycie macierzy orientacji b takiej, by

B 30 pE gl L e
k :

o’
{
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Tabela 9.5

. Macierze oriemntacji osi IMN czgsteczkil antracenu i katy Eulera
wzgledem os8i indykatrysy R1, RZ’ 33

290 K

-0,9918 -0,0840 -0,1274
b=( 0,912 0,4331 ~0,8944
*0,0626 -0,9013 -0,4287

XR = 188,4050, QR = 3,}9740, ﬁR = ’]15,3830

® = -59,64° (4 ng,a)-
95 K
=0,9910 =0,0284 =0,1311
b= 0,1063 0,4291 - -0,8970
0,0818 =0,9028 =0,4222
Xp 50188,5140, @ = 54780, | Bo & 40000
3 = -57,28°

przy czym bég) = cos (r{k), R.)s
Przejdziemy. obecnie do omgwienia kilku przykiadoéw.

‘1. Dwdjiomnosé antracenu

Zgodnie z' konwencjg wprowadzong przez Lasheena przyjmiemy, Ze n4
in, lezaw (010) oraz n, || b. Macierze orientacji osi IMN wzgledem
Ri dla obu temperatur (290 i 95 K) podane sa w tab. 9.5. Dane struktu-
ralne potrzebne do obliczenia b zaczerpnigte zostaly z pracy Masona
(rozdz. 8), dane optyczne z pracy Lasheena (tab. 6.7). Stad dla wspdéi-
czynnikéw temperaturowych katéw Eulera, liczonych wzgledem osi Ry, O-
trzymujemy

AXR A<PR AS'R

—= = -3,86, —===-22,23, —— = 47,59 "/K,
A AT

AP

43,57 "/K.
Al

W dalszym ciggu wobec

i

{54
=5

s iy = N9y 701072 kT,



Tabela 9.6

Poréwnanie -wynikéw obliczen temperaturowej funkcji dwdjiomnosci
krysztalu antracenu z wartosciami doswiadczalnymi

dB % 105
4aT
dB}a/dm dB12/dT dB13/dT d325/dm
Soltzberg [10] -5,12 - - ) -
Kusto [11] -4,8 - = &
Obliczenia - =2,5 -14,7 -4,2 =10,5

= 1,026 g/en’ oraz M = 178,2,

otrzymujemy
7;5 = =26,87, Z—— = =12,16, = =22,68 X 10 © K.

dy AT
Dwéjromnosé w piaszcezyinie Zupliwosci antracenu (001) wynosi

B3§ s gy

gdzie
-/2,

(IH cos® B + n2 gin® 3 )
Poréwnanie wynikéw obliczen z danymi doswiadczalnymi przedstawione jest
w tab.9.6.0kazuje sie,ze wynik obliczen oddaje w prawidtowy Sposéb zaréwno
rzgd wielkoéci, jak i kierunek zmian dwdjtomnosci antracenu w praszczyz-
nie (001). Nieco mniejsza wartosé wspdiczymnika temperaturowego w pordw-
naniu do rezultatu eksperymentalnego .zaczy sie¢ - przynajmniej czgsSciowo
- z tym faktem, Ze pochodne katéw Eulera malejg wraz z obnizeniem tempe--
ratury, wobec czego uzyte w obliczeniach wartosci érednie sa mniejsze
od "lokalnych" dla T -~ 300 K.

2. Dwbéjiomnosé antrachinonu

‘Problem wpiywu temperatury na wktasnoéci optyczne antrachinonu po-
stawimy nieco inaczej: na podstawie znajomosci macierzy orientacji osi
IMN czagsteczki w pieciu temperaturach (Lonsdale i in., tab. 8.5) oraz
znajomoscli tensora retrakcji czasteczki r (Lasheen i in., tab. 6. 755
nalezy przewidzieé wpiyw temperatury na glowne wspoiczynniki zalamanla
swiatza.

Wyniki obliczen uzyskane przez zastosowanie podanychwjuz zwigzkow
zestawione sg w tab. 9.7, obok wartoSci dwojiommnosci, obliczonych dla



MTabela

ZaleZnosé od temperatury T (K) giéwnych wspdiezynnikéw zalamania
" Sdwiatia ny i dwéjiomnosci By -krysztaiu antrachinonu

iy n4 ; n, :n.3
293,8 | 1,8552 - |1,7168 | 1,5012 |
| 260,8 | 1,8807 |1,7233 |1,4895
201 1,9015 |1,7339 | 1,4896
161 1,9155 | 1,7412 | 1,4899
103 1,9354 | 1,7515 | 1,4913
T. B3 Bia Baz
293,8 | 0,3540 |0,1384 |'0,2156
260,8 | 0,3912 |0,1574 | 0,2338
201 0,4119 |0,1676 | 0,2443
161 0,4256 |0,1743 | 0,2513
103 0,4441 ]0,1839 | 0,2602
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Rys. 9.7. Przewidywana zaleznoé$¢ wspéiczynnikéw zalamania swiatia
. antrachinonu od temperatury :

401|

9.7
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Rys. 9.8. Przewidywana zalezno$¢ dwdjlomnosci antrachinonu
od temperatury

tych samych temperatur. Okazuje si¢, ze najsilniej zalezy od btemperatu-
Ty 14, nastepnie n,; W zakresie 100-260 K zaleznoé¢ ta ma charakter
liniowy. nz W tym zakresie jest statry, powyzej 260 K wzrasta (rys. 9.7).
W zwigzku z tym réwniez dwéjromnos¢ krysztaiu w gioéwnych praszczyznach
optycznych zmienia si¢ liniowo wraz z temperaturg (rys. 9.8); we wszyst-
kich trzech ptaszczyznach B maleje wraz ze wzrostem temperatury, jak
to wskazujg $rednie wspdiczynniki temperaturowe

dB dB dB :
D s =le e pian a0 L oo R oRD el
ar ar ar

Jalkt stad wida¢, zmiany katbédw Bulera, wspdzczynnikdéw zatamania dwiatia
oraz dwdjromnosci z temperatura sa w antrachinonie znacznie silniejsze,
niz w krysztale antracenu., Zapewne jakie$ znaczenie ma tu fakt, ze an-
trachinon jest substancja znracznie tatwiej éublimujch, niz antracen;
winno sie¢ to przejawia¢ w silniejszym anharmonizmie dynamiki sieci :
krysztaiu antrachinonu. O ile nam wiadomo, pomiardéw optycznych kryszta-
Zu antrachinonu w réznych temperaturach dotychczas nie wykonano.
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5.‘Dwéj;omnoéé karbazolu

Do szczegbdlnie interesujacych i wzglednie Zatwych do interpretacji
struktur krystalicznych nalezg takie, w ktérych pitaszczyzna symetrii
czgsteczki pokrywa si¢ z ptaszczyzng symetrii krysztaiu., Przykladem mo-—
ze by¢ cybowany juz karbazol, ktdrego strukbture zbadali Kurahashi i in.
[12] oraz fluoren, zbadany przez Burnsa i Iballa [13]. Obie strukbtury
83 bardzo do siebie podobne. W karbazolu zwierciadlana ptaszczyzna 8y—
metrii krysztaiu (010) przechodzi przez atom N czgsteczki i jest
prostopadia dé jej wiasnej pzaszczyzny (rys. 9.9).Pominqwézy atom wodoru,

Rys. 9.9. Relacga miedzy praszczyznami symetrii czgsteczki
i krysztaiu karbazolu, schematycznie

czasteczka jest paska w granicach %0,038;dok*adniejsza analiza wykazuje,
%e oba pierscienie benzenowe tworza kat 1,630. Lekko skre¢cona konforma—
eja czasteczki moze byé wynikiem oddziaiywan miedzy czesteczkami obacze-
Jacymi w krysztale. W ciele staiym nie ma wigzan wodorowych typu N-H..
«e N, na co wskazuje zardéwno duza odleglosc lN N 3,89 R Jjak i wy-
stepowanie przeszkdédd sterycznych. Rozklad czqsteczek w komérce elemen-
tarnej przedstawiony jest na rys. 9.10. Oba zwigzki krystalizuaq w tej
samej grupie przestrzennej Pnma. Kat zawarty miedzy osig a i piasz—
czyzna czasteczek ( 8 na rys. 9.10) wynpsi w fluorenie 55,2°, zas w kar-
bazolu 61,00. Interesujace w obu tych strukturach jest to, ze nakrywa-
nie sie¢ ptaszczyzn symetrii czasteczki i krysztaiu narzucone jest regu-
tami symetrii, wobec czégo nie moze ulegaé¢ zmianie przy ochtodzeniu lub
ogrzaniu krysztaiu. Innymi siowy, w caiym zakresie temperatur, w ktérym
épi grupa przestrzenna, ani konformacja czasteczki nie ulegaja zmianie,
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Rys. 9.10, Schemat rozkiadu czasteczek karbazolu w komérce elementarnej

érednie w czasie poiozenie hormalnej N do blaszczyzny czgsteczki oraz
o8i H musi lezeé w (010). Oznacza to, Ze anharmonizm drgan czgsteczki
wokér N oraz wokér M mnie moze prowadzié do zmiany katowego potoze-—
nia ‘czysteczklj ten\yarunek moze byé speiniony wtedy, gdy odpowiednie
krzywe energii potencjalnej sa symetryczne, W takim razie w jednym kry-—
sztale mémy dwa typy krzywych enmergii potencjalnej: asymetrycznag dla li-
bracji wokéil osi L, przy czym temu ruchowi towarzyszy katowe przemiesze-
czenie czasteczki przy zmianie temperatury, oraz krzywe symetryczne dla
pozostatych osi libracji. Z tymi ostatnimi ruchami nie moze byé zwigza-—
na zmiana kgtowego potozenia czasteczki. Krysztaty te przedstawiaja
wiec problem "jednoparametrowy” - od temperabury moze zaleze¢ tylko kat
8. :

Zanalizujmy nieco blizej wpiyw btemperatury na wkiasnosci optyczne
krysztatu karbazolu; fluoren badany byt nieco inng metoda w pracy Ci4l.
Wepbtczymniki rozszerzalnosci térmicznej {15] i zatamania $wiatia karba-
zolu wynosza :

aic ooy W Si%h, wicie W MOCK

n, = 1,560, nb'= 25057, n, = 457265

a parametry komérki elementarnej sa nastepujace

a = 7,772(5),  "bi=19,482(10), " ©="5,725(5) R
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przy obsadzeniu komérki czterema‘ézqsteczkami. Dla grupy Pnma wybie-
rzemy jako Qperatﬁry symétrii nastepujace macierze:

(1,0,0/0,1.0/0,0,%,

]
n

Aq = (1,0,0/0,1,0/0,0,1), A,

(150,070, 1,0/040,80, | " &) = (100/010/001)

—3
Jesli przez h oznaczymy kosinus kata zawartego miedzy normalnq N do
piaszczyzny czasteczki i krystalograficzng osig c, to dla karbazolu
h = cos (N,c) = 0,4818,
zas maclerz '3‘1) orientacji IMN w abc przyjmie ogbélna postaé
0 -h -(1-n?)V )
(At g i 0 4 (9.12)
0 —(1—h2)1/2 h :

o

Wobec tego dla refrakcji R komérki elementarnej otrzymujemy ogdlny wy-
nik
M

d )

k LI
;§? c = 4 . Ty o
= : :

2 i

rM$1—hA) + ryh

(9.13)
7 tych zwiazkéw oraz dzigki znajomosci n; mozemy obliczyé w znany spo-
s6b refrakcje czasteczki ry, Iy, Iy. Zrézniczkowanie (9.13) wzgledem
temperatury prowadzi do zaleznosci

2 2
rohS + rNgﬂ—h )

HO

dr dh
a
——=8h(r —I‘)‘—'
ar e e T
Ry, :
=D 0 (9.14)
ar
e dh
ar

-8 h(rM rN) mat s :
W krysztale karbazolu (réwniez fluorenu) sytuacja jest wyjatkowo ko-
rzyétna: ptytki hodowane z roztworu lub stanu pary rosna chetnie w
ptaszczysnie (010). Wiaénie w tej piaszczyznie efekty wynikajace z (% 14)
sumujg sie s wobec czego dwbjromnosé piytki o takiej orientacji nagj-
silniej zalezy od temperatury. Pomiary wykoname w [7] prowadza do wyni-
T =
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- n,‘) = —8,31 040-5 K-1

Obecnie w (9.14) mamy wszystkie informacje précz dh/dT 1lub Aps po
podstawleniu otrzymujemy

(Ag)g = =9,8 "/K.

Wynik ten zupeinie dobrze koreluje z przewidywaniami modelu sztywne j
skrzynki

(Ap gy = =7,0 /K.

Oczywiscie, ze wzgledu na szczegbdlne polozenie czqsteczici, Jjest takze
AM =NN = 0.

Wyniki tu uzyskane zamieszczone zostaly w tab. 8.9 (rozdz. 8).

Na zakonczenie wréémy jeszcze na chwile do réwnania (9.8). Wbrew
pozorom drugl czion tego réwnania jest réwniez wazny, mimo maZodci e Hlie
I tak, na przykiad, piytka (010) karbazolu o gruboéci d, = 7,4 10* nm
wykazuje w temperaturze pokojowej (20 °C) réznice drég o wielkoécl Fo

= 12 284 nm, Wspbiczynnik temperaturowy, mierzony metoda kompensacyanq.
(por. rozdz. 6.3), jest staly w zakresie temperatury 20 <T <156 °C

i wynosi
ar
el = =5,48 nm.K~1,
dT /Jeksp
Poniewaz « | = 55_-'19_, K"1 pierwszy czlon{(9 8) ma wartosé =7,4. ’IO"5K‘,'l
a drugi --0,91-’10"5K"1 o Widzimy wigc na przykiadzie karbazolu, %8
wplyw zmiany gruboéci piytki dochodzi do 12% ogdlnej zmiany anizotropii
optycznej ptytki i nie powinien by¢é zaniedbywany. Efekt ten na,0CZywis—
cie, niewielkie znaczenie w mniej dokiadnych pomiarach anizotropii mag-
netycznej.
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