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SŁOWO WSTĘPNE

Spośród trzech stanów skupienia materii stan stały budzi najwięk­
sze zainteresowanie zarówno dzięki swemu bogactwu form i struktur w ja­
kich występuje, jak i różnorodności praktycznych zastosowań. Popular­
ność ta dotyczy w pierwszym rzędzie pierwiastków i związków nieorganicz­
nych, wśród których metale i materiały półprzewodzące zrobiły najwięk­
szą karierę. Od mniej więcej dwudziestu lat programem badań objęte zo­
stały również substancje stałe, zbudowane z obojętnych i słabo z sobą 
oddziałujących cząsteczek związków organicznych, stanowiące zatem kla­
syczny typ kryształu molekularnego. Istotnym czynnikiem, który odegrał 
stymulującą rolę w badaniach kryształów molekularnych, jest postęp w za- 
kresie badań rentgenograficznych. Doprowadził on do dużej perfekcji w 
umiejętności określania położeń atomow i oceny amplitudy ich ruchu ter­
micznego w strukturach, które w porównaniu do związków nieorganicznych 
są przecież bardziej złożone, a przy tym zbudowane głównie z lekkich a- 
tomów. Wyniki tych badań utorowały drogę nowoczesnemu i chyba najbar­
dziej interesującemu kierunkowi badań: powiązania fizycznych, makrosko­
powych własności kryształu z jego strukturą, a więc z rozmieszczeniem i 
ruchem cząsteczek w komórce elementarnej oraz z własnościami samych 
cząsteczek. Można bowiem uważać, że na przykład dwójłomność określonej 
płytki krystalicznej "rozumiemy" wówczas, ędy potrafimy wyrazić ją licz­
bowo za pomocą bardziej elementarnych pojęć, jakimi są główne składowe 
tensora polaryzowalności cząsteczki swobodnej i ich kierunki w cząstecz­
ce. Byłoby więc osiągnięciem pewnego ideału, gdybyśmy na podstawie zna­
jomości budowy cząsteczek, ich rozmieszczenia w komórce -elementarnej i 
sposobów ruchu potrafili przewidzieć wszystkie fizykochemiczne własnoś­
ci kryształu. Niekiedy okazuje się jednak - a tak jest w próbach inter­
pretacja własności optycznych - że te pojęcia nie wystarczają do uzyska­
nia zgodności między wynikami eksperymentu i przewidywaniami teoretycz­
nymi. Molekularną interpretację własności fizycznych komplikuje fakt,że 
dodatkowe oddziaływania między sąsiednimi cząsteczkami, wynikająca z o- 
becności pola magnetycznego czy elektrycznego, aczkolwiek słabe,są częs­
to nie do pominięcia.

Siły między cząsteczkami w krysztale molekularnym działają również 
wtedy, gdy znajduje się on poza wszelkim zewnętrznym polem; dzięki si­
łom przyciągania między cząsteczkami kryształ wykazuje znaczną spójność 
dzięki zaś siłom odpychania jest odporny na zmniejszenie objętości przy 
wzroście ciśnienia zewnętrznego. I właśnie drugim kamieniem milowym na 
drodze postępu w badaniach kryształów molekularnych jest lepsze zrozu­
mienie natury tych oddziaływań, znanych pod dość enigmatyczną nazwą "od­
działywań van der Waalsa" i znalezieniem dla nich mikroskopowego sposo­
bu opisu. Na podstawie teorii Londona sił^dyspensyjnych, D.E. Williams 
w Anglii i A.I. Kitajgorodski w ZSRR zaproponowali w latach sześćdzie­
siątych, by energię potencjalną kryształu wyrazić jako sumę oddziaływań 
między parami atomów, nie połączonych wiążaniem chemicznym. W języku po­
tocznym metoda ta jest nazywana skrótowo "oddziaływaniem atom-atom",zaś 
postać funkcji energii potencjalnej, wprowadzona przez Kitajgorodskiego 
oznaczana bywa przez "6-exp". Szeroki opis tej metody oraz jej wielo­
stronnych zastosowań znaleźć można w monografii Kitajgorodskiego pt.



4

"Kryształy molekularne", tłumaczonej również na język polski i wydanej 
przez Państwowe Wydawnictwo Naukowe w roku 1976. Na tym miejscu pragnie­
my jedynie zwrócic uwagę na dwa aspekty metody "atom-atom";

(i) Jest ona jednym z nielicznych przybliżeń, w których oceny ener­
gii oddziaływań dokonuje się dla cząsteczek przestrzennie rozciągłych, 
wykorzystując rzeczywiste położenia atomów w przestrzeni. Czynione w 
wielu innych teoriach uproszczenia idą niekiedy tak daleko, że cząstecz­
kę przybliża się do tworu punktowego.

(ii) Obliczona tym sposobem energia potencjalna może być bezpośred­
nio porównana z doświadczalną wartością ciepła sublimacji kryształu, co 
daje możność oceny poprawności użytych danych wyjściowych. Ważniejsze 
są jednak dalsze konsekwencje, wynikające z zastosowania metody atom- 
atom do badania dynamiki sieci. Można za jej pomocą obliczyć wielkość 
sił działających między cząsteczkami, co poprzez rozwiązanie równań ru­
chu prowadzi do znajomości typów i częstości ruchów periodycznych cząs­
teczek w krysztale.

Można uznać, iż powiązanie mierzalnych, makroskopowych własności 
fizycznych kryształu z jego strukturą, dynamiką i własnościami samych 
cząsteczek stanowi program działania dyscypliny, zwanej fizyką chemicz­
ną. Program ten obejmuje również i termodynamikę faz stałych, a więc o- 
pis mikroskopowego mechanizmu przemian fazowych, zjawisk nieuporządko- 
wania faz, a także i wpływu czynników zewnętrznych na własności fizycz­
ne określonej fazy. Dalszy, submikroskopowy podział materii prowadzi do 
problemu opisu własności cząsteczki za pomocą własności atomów i sposo­
bu ich powiązania, czym zajmuje się chemia teoretyczna. Wyjaśnienie 
własności samego atomu poprzez znajomość własności cząstek elementarnych 
i sposobu ich oddziaływań jest natomiast domeną fizyki.

Dalecy dziś jesteśmy od pełnej realizacji tak nakreślonego zakresu 
działania fizyki chemicznej. Tylko niektóre własności fizyczne kryszta­
łów molekularnych wyjaśniono na poziomie molekularnym w sposób bardziej 
zaawansowany. Do przedstawienia w niniejszej książce wybrano diamagne­
tyzm, własności optyczne oraz absorpcję promieniowania w kryształach w 
zakresie widma podczerwonego; w pewnym stopniu wybór ten podyktowany zo­
stał zainteresowaniami autora. Osobliwe miejsce wśród własności fizycz­
nych zajmuje rozszerzalność termiczna kryształów, bowiem cech^i ta nie 
ma odpowiednika na poziomie molekularnym. Poświęcono jej osobny roz­
dział ze względu na ważne znaczenie anharmonicznych cech dynamiki krysz­
tału, przejawiające się we wpływie temperatury na wszystkie inne włas­
ności kryształu. We wszystkich tych problemach symetria odgrywa niepo­
ślednią rolę; symetria w rozkładzie ładunku i materii musi się bowiem 
odzwierciedlać w symetrii własności makroskopowych. Z tego względu 
pierwsza część monografii, po omówieniu najczęściej spotykanych typów 
oddziaływań w kryształach molekularnych i własności tensorów drugiego 
rzędu, jest poświęcona przedstawieniu wpływu symetrii na postać wekto­
rów i tensorów, reprezentujących wielkości fizyczne. Ostatni wreszcie 
rozdział, przynoszący informacje o wpływie temperatury na niektóre włas­
ności kryształu, jest zaledwie szkicem zagadnienia. Rozdział ten jest 
najszerzej otwarty na pełniejszy opis i bardziej trafną interpretację; 
przyszłość też pokaże, które z przedstawionych tam pomysłów oprą się 
próbie czasu.

Monografia niniejsza jest kontynuacją inicjatywy, podjętej przed 
paru laty przez bratni Zakład Fizyki Chemicznej Instytutu Chemii Uniwer­
sytetu Jagiellońskiego, kierowany przez Panią Docent dr Janinę Janik. 
Wyniki wieloletnich badań tego zespołu w zakresie fizyki chemicznej or­
ganicznego' ciała stałego, przy współpracy z Zakładem Fizyki Ciała Sta­
łego Instytutu Fizyki UJ oraz Zakładu Badań Strukturalnych Instytutu 
Fizyki Jądrowej w Krakowie zostały opublikowane przez zespół autorów 
pod redakcją Janiny Janik w skrypcie pt. "Fizyka chemiczna", wydanym w 
roku 1980 przez Wydawnictwo Uniwersytetu Jagiellońskiego.

Zamysł napisania niniejszej monografii powstał w połowie lat sie­
demdziesiątych, po kilkuletnim doświadczeniu dydaktycznym, jakiego na­
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był autor w czasie prowadzenia wykładów pt. Fizykochemia organicznego 
ciała stałego dla słuchaczy studium doktoranckiego Politechniki Wrocław­
skiej. Pewną rolę w wyborze zagadnień, jak i sposobie ich przedstawie­
nia, odegrały również wykłady i seminaria, prowadzone przez kilka lat 
ze studentami Instytutu Elektrotechniki i Elektroteetnologii Politech­
niki Wrocławskiej. Największy jednak wpływ na zakres tematyki miała bez 
mała dwudziestoletnia praca autora i współpracowników w kierowanym prze­
zeń Zakładzie Fizyki Chemicznej, wchodzącym w skład Instytutu Chemii Or­
ganicznej i Fizycznej Politechniki Wrocławskiej. Sporo wyników badań 
członków tego zespołu znalazło odbicie w postaci szerszego lub węższego 
omówienia w tej pracy. Nie znalazły jednak właściwego odzwierciedlenia 
prace, dotyczące nowych osiągnięć w dziedzinie dynamiki sieci kryszta­
łów molekularnych. Do przedstawienia tej naukowo wysoce owocnej lecz 
trudnej metody autor nie czuje się dostatecznie przygotowany, ma jednak 
nadzie.ję, iż trud jej. monograficznego opracowania zostanie podjęty wz 
niedalekiej przyszłości przez jego ucznia i zarazem jednegó ze współ­
twórców tej teorii - profesora Tadeusza Lutego.

Spełniając na koniec miłą powinność,dziękuję szeregowi osób,, oez 
których pomocy, życzliwego komentarza lub takiejże krytyki zakończenie 
tej pracy byłoby o wiele trudniejsze. Inicjatorem zainteresowań orga­
nicznym ciałem stałym przez zespół wrocławskich fizykochemików był 
przed trzydziestu laty Profesor dr Kazimierz Gumiński, pierwszy w okre­
sie powojennym kierownik ówczesnej Katedry Chemii Fizycznej Uniwersyte­
tu i Politechniki we Wrocławiu. Wiele cennych uwag zawdzięczam mym 
współpracownikom i pierwszym Czytelnikom poszczególnych rozdziałów. Są 
nimi doktorzy: Magdalena Szostak, Bolesław Jakubowski, Włodzimierz Kus- 
to; magistrowie: Michał Dankowski i Krzysztof Rohleder. Szczególną 
wdzięczność winien jestem profesorowi Tadeuszowi Lutemu za jego naukową 
podporę i pomocj między innymi, dzięki niej zakończenie rozdziału szóste­
go uzyskało bardziej ogólną formę. Recenzje tej pracy opracowali Profe­
sorowie Jerzy Janik i Krzysztof Pigoń, zadając sobie trdd przebrnięcia 
przez gąszcz wzorów i danych liczbowych. Im też zawdzięczam sprostowa­
nie pewnych błędów i nieścisłości w tym tak jeszcze niedoskonałym dzie­
le. Na koniec, szczególne wyrazy podziękowania pragnę przekazać również 
mej Żonie, której nieustająca troska o byt codzienny i stworzenie ideal­
nych warunków domowych przyczyniły się w istotny sposób do pomyślnego 
zakończenia tej pracy.

Wrocław, w sierpniu 1981 r.

J.W. Rohleder





1. ODDZIAŁYWANIA MIĘDZYCZASIECZKOWE I KLASYFIKACJA CIAŁA STAŁEGO

1.1, Wstęp

Fizykochemia ciała stałego stanowi bardzo obszerną dziedzinę badań 
naukowych, których wyniki mają niezwykle ważne znaczenie w praktyce.Nie 
sposób wyobrazić sobie współczesną cywilizację bez metali, a od niedaw­
na niemożliwe byłoby jej istnienie bez półprzewodników. Również od daw­
na prowadzone są intensywne badania nad fizykochemicznymi własnościami 
związków nieorganicznych, z których wiele doczekało się technicznie waż­
nych zastosowań. Związki organiczne natomiast - jako ciała stałe - cie­
szą się stosunkowo nowym, bo sięgającym 20 lat, lecz stale rosnącym za­
interesowaniem. Wystarczy tu wspomnieć niezwykle szybko rozwijający się 
przemysł tworzyw sztucznych.

Na przeszkodzie powszechnemu zastosowaniu kryształów molekularnych 
stoją - pozornie - niezbyt korzystne ich własności mechaniczne i ter­
miczne, a mianowicie miękkość, znaczna kruchość i na ogół niska tempera­
tura topnienia. Taki pogląd można sobie wyrobić wówczas, gdy praktyczną 
przydatność kryształów molekularnych ocenia się z punktu widzenia ist­
niejących dziś i znanych zastosowań kryształów nieorganicznych,jonowych 
a zwłaszcza walencyjnych, których własności mechaniczne i termiczne 
przedstawiaj4 się o wiele korzystniej. Można jednak przypuszczać, iż ze 
względu na _ szczególne cechy struktury, przejawiające się przede 
wszystkim w na ogół niskiej symetrii i nikłości oddziaływań międzycząs- 
teczkowych, kryształy molekularne doczekają się w przyszłości zupełnie 
specyficznych, nie dających się dziś przewidzieć, a nie mniaj ważnych 
zastosowań. Przykładem całej klasy związków, nie mającej substytutu 
wśród związków nieorganicznych ze względu na osobliwe połączenie cech 
strukturalnych z niezwykłymi własnościami optycznymi, są ciekłe kryszta­
ły. Patrząc na zagadnienie z tego punktu widzenia, kryształy molekular­
ne trzeba uważać za materiał przyszłości.

Istnieją zatem dwa główne kierunki badań naukowych w fizykochemii 
organicznego ciała stałego: poznawczy i aplikacyjny. Pierwszy z nich po­
lega na dążeniu do zrozumienia makroskopowych własności kryształu, ta­
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kich jak współczynnik załamania światła czy też rozszerzalność termicz­
na, na podstawie opisu przestrzennego rozkładu cząsteczek w sieci krys­
talicznej oraz sposobu ich ruchu, czyli na podstawie mikroskopowych 
cech struktury. Własności kryształu są mierzalne, mogą być zatem znane 
z doświadczenia, Nie znamy natomiast własności samych cząste'czek,z któ­
rych jest zbudowany kryształ; mimo niewielkich sił oddziaływań nie nale­
ży oczekiwać, że własności cząsteczki umieszczonej w siatce krystalicz­
nej będą identyczne z własnościami cząsteczki swobodnej-, choć powinny 
być do nich zbliżone. Charakterystyczne różnice będą nas informować o 
wielkości i naturze oddziaływań międzycząsteczkowych. Istotne znaczenie 
mają tu relacje między makroskopowymi, fizycznymi własnościami kryszta­
łu a odpowiodnimi mikroskopowymi własnościami cząsteczek. Poznanie tych 
relacji, jak również wpływu na nie parametrów zewnętrznych, takich jak 
temperatura i ciśnienie, stanowi program działania dyscypliny zwanej fi­
zyką chemiczną. Realizacja takiego programu staje się szczególnie inte­
resująca w przypadku'kryształów molekularnych. Symetria cząsteczek jest 
z reguły znacznie niższa niż jonów lub atomów tworzących strukturę krysz­
tału nieorganicznego. Zarówno ten fakt, jak i słabe siły oddziaływań 
międzycząsteczkowych sprawiają, że również symetria kryształu molekular­
nego nie jest zbyt wysoka. Większość tych kryształów (aż 80%) krystali­
zuje- w układach jedno- i trójskośnych,a kryształy należące do układu re­
gularnego stanowią niezwykłą rzadkość. Dzięki temu, eksperyment z krysz­
tałem molekularnym staje się znacznie bogatszy, aczkolwiek jednocześnie 
jego opis i interpretacja strukturalna są zazwyczaj bardzo złożone.Nie­
mniej interesujące jest między innymi to, że w takich kryształach ist­
nieje pewna liczba "stopni swobody", dopuszczanych regułami symetrii. 
I tak, na przykład, orientację przekroju indykatrysy w płaszczyźnie 
(010) kryształu należącego do układu jednoskośnego determinuje jeden 
kąt, dowolny z punktu widzenia symetrii. Zadaniem fizyki chemicznej 
jest między innymi wyznaczenie tej orientacji na podstawie znajomości 
cząsteczek oraz struktury kryształu. Interesujący jest także wpływ na 
tę orientację parametrów zewnętrznych, na przykład ciśnienia i tempera­
tury.

Drugi kierunek, aplikacyjny, ma na celu modyfikację własności ciał, 
w kierunku własności pożądanych, poprzez modyfikację własności samych 
cząsteczek, a niekiedy - jeśli jest to możliwe - modyfikację struktury 
ciała stałego. Tak sformułowany cel jest obiektem zainteresowań inżynie­
rii materiałowej i bazuje, rzecz jasna, na wynikach badań podstawowych. 
Do inżynierii materiałowej możemy zaliczyć również poszukiwania zastoso­
wań organicznego ciała stałego, nowych i typowych dla tej klasy ciał. O 
ile dziś bliscy jesteśmy zrozumienia niektórych własności kryształów mo- 
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lekularnych, to inżynieria materiałowa stawia dopiero pierwsze kroki, 
lecz niewątpliwie będzie się silnie rozwijać w najbliższej przyszłości.

1.2. Klasyfikacja ciała stałego z punktu widzenia 
oddziaływań międzycząsteczkowych

Właściwie każda mierzalna wielkość fizyczna może stanowić kryte­
rium podziału substancji na co najmniej dwie klasy. Jeśli, na przykład, 
interesujemy się przewodnictwem elektrycznym materiałów, to możemy je 
podzielić na substancje przewodzące i dielektryki. Bardziej’ szczegółowy 
podział, wynikający z wpływu temperatury na przewodnictwo właściwe,obej­
muje klasę metali, kryształów jonowych, półprzewodników oraz dielektry­
ków. Z kolei badanie zachowania się.materiałów w polu magnetycznym po­
zwala wyróżnić klasy para-, dla- i ferr©magnetyków. Własności materia­
łów w polu elektrycznym są podstawą ich podziału na ferro-, ferri-, an- 
tyferro- i paraelektryki. Podziałów tego typu może więc być bardzo wie­
le, jednak dwie spośród własności fizycznych ciała stałego dają najogól­
niejszą podstawę podziału: energia sieciowa oraz symetria. Obecnie zaj- 
miemy się klasyfikacją z punktu widzenia energii oddziaływań elementów 
strukturalnych, przejawiającej się makroskopowo w postaci określonego 
ciepła sublimacji lub równoważnej mu liczbowo energii sieciowej, tj. 
zmianie energii wewnętrznej towarzyszącej procesowi tworzenia w tempera­
turze OKI mola substancji krystalicznej z 1 mola cząsteczek znajdują­
cych się w stanie gazowym. Opierający się na symetrii podział ciała sta­
łego przedstawimy w rozdz. J.

Schemat klasyfikacji ciała stałego z energetycznego punktu widze­
nia przedstawiono w tab. 1.1. Najwyższą energię sieciową mają kryształy 
o wiązaniach kowalencyjnych i kryształy jonowe; kryształy molekularne 
znajdują się na drugim biegunie tego podziału, metale zaś są usytuowane 
pośrodku.

1.3. Oddziaływania uniwersalne

Przejdziemy teraz do bardziej szczegółowego opisu charakteru od­
działywań między elementami strukturalnymi w sieci kryształu molekular- 
nego. Można.je dla wygody interpretacji podzielić na oddziaływani uni­
wersalne, o charakterze elektrostatycznym oraz na oddziaływania s >ecy- 
ficzne (oddziaływania elektrono-donoro-akceptorowc, wiązania woiorowe). 
Pierwsze z nich wynikają z sił elektrostatycznych działających między 
ładunkami elektrycznymi (jony) i trwałymi multipolami (cząsteczki) elek­
trycznymi oraz z sił elc-ktrodynamicznych, działających między indukowa­
nymi dipolami. J drugim przypadku siły wynikają z efektów kwantowych,



Tabela 1*1 q

Schemat klasyfikacji ciała stałego

Charakter głównych 
sił oddziaływania

Przykład ciała 
stałego, typ sieci

Energia sie­
ciowa, kJ/mol Charakterystyczne własności ciała stałego

Siły elektrostatyczne 
między jonami, bez-, 
kierunkowe

NaCl, regularny, 
BaFo, regularny, 

104 Struktur

-750 '
-1680

Sztywne, często kruche; izolatory elek­
tryczne w niskich temp., lecz mogą przewo­
dzić jonowo w temp, podwyższonych.

Wiązanie kowalencyj­
ne, przestrzennie 
skierowane

diament, regularny
SiC, regularny

1O> struktur

-710
-1200

Sztywne, bardzo twarde, zwykle wysoka 
temp, topnienia; w niskich temp, izolato­
ry lub półprzewodniki; duży współczynnik . 
załamania światła

Wiązania metaliczne, 
bezkierunkowe

Na, reguł.przestrz. 
centr.,Mg heksagon. 
najw.uńak.,W reguł. 

10? struktur

-110
-150
-850

Ciągliwe; duże przewodnictwo cieplne i 
elektryczne, duży współczynnik odbicia; 
własności podobne w stanie stałym i ciek­
łym

Siły Van der Waalsa, 
bezkierunkowe

Ar, reguł .-ściennie 
centr., H2 heksagon.

10> struktur
-7,5
-i

Niska temp, topnienia; ściśliwe; bardzo 
małe przewodnictwo cieplne i elektryczne, 
diamagnetyki

Wiązanie wodorowe, 
przestrzennie skie­
rowane

OHp (lód),heksagon. 
CgHj^COOH (kwas ben­
zoesowy), jednosk. - (20—40)

Podwyższona temp, topnienia, często poli­
morfizm; izolatory, niekiedy o zwiększo­
nym przewodnictwie elektrycznym, diamag­
netyki

Oddziaływania dono- 
ro-akceptorowe,prze- 
str z. .skier ow ane

Chloranil-dwumetylo- 
amina - (20-40)

Substancje barwne, niekiedy paramagnetyki 
charakterystyczne ułożenie cząsteczek w 
stosy; niekiedy bardzo wysokie (quasi-me- 
taliczne) przewodnictwo elektryczne
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polegających na wymianie elektronu lub 
protonu między sąsiednimi cząsteczkami.

Pojęcie momentu multipolowego wywodzi 
się z pojęcia potencjału,wytwarzanego przez 
układ ładunków w pewnej od niego,odległości. 
Przypuśćmy,że interesuje nas potencjał 
w punkcie A, oddalonym od cząsteczki H20 o 
wektor R o długości znacznie przewyższa­
jącej liniowe rozmiary cząsteczki (rys/f?)?? 
Potencjał ten możemy uważać za wytworzony 
przez elementy objętości dv, zawierające ła­
dunek dą s= p(r)«dv, gdzie p(r) jest gęstoś­
cią ładunku stałą wewnątrz elementu dv, ota­
czającego punkt r (r jest, oczywiście zmien­
ne). Łatwo dostrzec, że wypadkowy potencjał 
wynosi

P 
--------------------—---------------- dv, 
(R2 + r2 - 2rR cos <p J^^2

(1.1) 
przy czym całka rozciąga się na obszar nie 

v____ 1_
’A _ 4n e0

znikającej gęstości elektronowej p(r), a 

Rys. 1.1. Potencjał wytwa- 
rzany w punkcie A przez ła­

dunki cząsteczki wody

jest stałą dielektryczną
(bezwzględną przenikalnością dielektryczną próżni). Mianown-ik wyrażenia 
podcałkowego można rozwinąć w szereg [1], po czym wyrażenie określające 
VA przyjmie postać (zamiast p(r) piszemy p )

V. =  ----- f p dv + ------—- / p r cos ? dv +
A 4 w e0R J 4 neoR2 7

p
+ —f o r2 dv +

4 neoR3 J 2

+ —L— f pr3 coś? cos2<P- g) dv + _ ( }
4uJ 2

zwaną szeregiem multipolowym. Pierwszy z wyrazów jest proporcjonalny do 
/pdv = q, czyli do wypadkowego ładunku cząsteczki i przedstawia po­

tencjał wytworzony przez jon w pewnej od niego odległości.Jeśli element 
strukturalny nie jest jonem, to wyraz ten równy jest zeru, a o potencja­
le w punkcie A decyduje z kolei wyraz drugi. Jest on proporcjonalny 
do momentu dipolowego cząsteczki

p = f p r cos <p dv. (1.3)
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Następny składnik sumy ("1.2) jest proporcjonalny do momentu kwadrupolo- 
wego, itd.

Rys. 1.2. Kwadrupole w sieci odpowiadającej strukturze antracenu 
(schematyc znie)

Jeśli przyjmiemy punkt A we wnętrzu kryształu, to widzimy,że sku­
tek oddziaływań międzycząsteczkowych można opisać za pomocą potencjału 
V^, wytwarzanego przez periodyczny zbiór multipoli. Rząd tych multipo- 
li zależy od symetrii rozkładu ładunku w cząsteczce w konkretnym przy­
padku. Przy takim opisie mielibyśmy do czynienia z multipolami punktowy­
mi, rozmieszczonymi na przykład w węzłach sieci Bravais. Rysunek 1.2 
przedstawia schematycznie rozkład kwadrupoli odpowiadający strukturze 
kryształu antracenu.

Uwzględnienie oddziaływań wszystkich momentów multipolowych cząs­
teczki elektrycznie obojętnej, tj. zarówno statycznych jak i indukowa­
nych, przez oddziaływanie zmieniającego się w czasie rozkładu gęstości 
elektronowej w otoczeniu określonej cząsteczki, prowadzi do oddziaływań 
objętych zbiorczą nazwą sił Van der Waalsa. Podstawowa nieścisłość ta­
kiego opisu polega na tym, że cząsteczkę zastępujemy punktowym multipo- 
lem. Nie odpowiada to rzeczywistej strukturze kryształu, ani nie pozwa­
la na uwzględnienie przestrzennej orientacji multipoli.

Znacznie bardziej precyzyjny opis, oddziaływań między cząsteczkami 
w krysztale, sięgający głębiej w mikroskopową strukturę cząsteczki,wpro­
wadzony został przez Kitajgorodskiego [2] i prawie jednocześnie przez 
Williamsa [3]. Sposób ten polega na zastąpieniu oddziaływań cząsteczka- 
cząsteczka przez sumę oddziaływań atom-atom, przy czym oddziałujące ato­
my nie są bezpośrednio połączone wiązaniem chemicznym, lecz należą do 
dwóch różnych cząsteczek (rys. 1.3). Ogólna energia takich oddziaływań 
składa się z dwóch części. Pierwsza z nich, ujemna, jest energią przy-
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Rys. 1.3- Oddziaływania atom-atom (schematycznie)

ciągania i wynika z oddziaływań multipol-multipol oraz z tak zwanych 
londonowskich sił dyspersyjnych. Źródłem tych sił jest oddziaływanie di­
poli indukowanych w najbliższych sąsiadach określonego atomu, w którym 
wystąpiła chwilowa asymetria w rozkładzie gęstości elektronowej. W taki 
sposób oddziałują również atomy, które dla dłuższego przedziału czasu 
mają średnio symetrię kuli, a więc nie mające żadnego trwałego momentu 
multipolowego (na przykład atomy argonu). Drugim składnikiem, dodatnim, 
jest energia odpychania, wynikająca z nakładania się powłok elektrono­
wych przy zbliżeniu sąsiadujących ze sobą atomów, najczęściej przyjmuje 
się, że pierwszy udział jest proporcjonalny do r. .~®, a drugi do 
exp (-ar. Łącznie wyrażenie na energię potencjalną zwane jest poten- 
cjałem "6-exp" i ma postać

U(r. .) =---- + B exp<-ar. .). (1.4)ij _o ij
ij

W wyrażeniu (1.4) r^j jest odległością oddziałujących atomów i oraz 
j, zaś A,B,a są stałymi, najczęściej dobieranymi empirycznie dla o- 
kreślonej pary atomów, na przykład C...C, C...H. Zakłada się przy tym, 
iż atomy mają symetrię kulistą, a ica oddziaływanie nie wykazuje efek­
tów kierunkowych. Ponieważ kryształy zbudowane są z cząsteczek zgodnie 
z zasadą najgęstszego upakowania, wprowadzoną przez Kitajgorodskiego 
[2], sytuacja stykających się atomów odpowiada gęstemu ułożeniu kul w , 
przestrzeni. Okazuje się, że potencjał (1.4) ma w znacznym stopniu cha­
rakter uniwersalny, to znaczy stałe A,3,a dla oddziaływań na przykład 
C...H są takie same w strukturze naftalenu jak i propanu. Taki model od­
powiada cząsteczce przestrzennie rozciągłej, lecz składającej się z 
punktowych atomów. Stałe potencjału (1.4) dla atomów cząsteczek węglo­
wodorów ustalone zostały przez Kitajgorodskiego po zbadaniu wielu struk-

’u 
e

7 c.
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tur [2] i podane są w tab. 1.2.Dla przy­
kładu krzywa oddziaływań pary atomów 
C...H przedstawiona jest według danych 
tabeli 1.2 na rys. 1.4.

Znajomość potencjału oddziaływań 
atom-atom pozwala obliczyć energię sie­
ciową kryształu w O K, UQ, przez sumowa­
nie wyrazów r"6 i exp(-ar) dla wszyst­
kich niezwiążanych atomów, znajdujących 
się wewnątrz kuli o promieniu 20-30 nm. 
Uwzględnienie kilku tysięcy składników 
takiej sumy wymaga użycia maszyn cyfro­
wych. Podczas obliczeń korzysta się z 
położeń atomów, wyznaczonych dla okreś­
lonej struktury metodami rentgenografii 
strukturalnej. Szczególną rolę odgrywa 
położenie atomów wodoru, często peryfe­
ryjnych atomów cząsteczki, którego po- 
znanie wymaga wykonania neutronograficz­
nych badań struktury. Jeśli ich nie ma, 
możemy się oprzeć na dedukcji przy uży- 
;iu prostych metod geometrycznych i zna- 
omości długości i kierunku wiązań C-H.

Energia oddziaływań pary niezwiąza- 
jych walencyjnie atomów jest funkcją od­
ległości między nimi. Zbiór tych odleg­
łości w strukturze o zadanej symetrii 
zależy od geometrii komórki elementar­
nej, a więc od długości jej krawędzi a, 
b,c i kątów między nimi a,p,y oraz 
od geometrii rozkładu cząsteczek w ko-

Hys. 1.4. Energia potencjalna morce, a więc od kątów Eulera 0,4,4, 
oddziaływań C...H według para- opisujących orientację cząsteczki wzglę- meujcow uaDed.1 i •<_

dem a,b,c i od współrzędnych środka 
masy cząsteczki X,Y,Z. Zwykle zakłada się przy tym sztywność samej 
cząsteczki, tj. niezależność względnych położeń atomów związanych w 
cząsteczkę od drobnych zmian wymienionych parametrów. Energię potencjal­
ną sieci możemy traktować jak dwunastowymiarową powierzchnię

U = U(a,b,c,a,|3,Y»8»'P,4,^>^»z) >

posiadającą wiele minimów. Jedno z nich winno odpowiadać rzeczywistej 
strukturze kryształu, a energia w tym punkcie, jego energii sieciowej
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Tabela 1.2

Stałe potencjału (1.4) dla niektórych par atomów według [2]

Atomy A 
kJ/mol-X®

B 
kJ/mol

a

C...C 1498 17,6«104 5,58
C...H 644 17,6-104 4,12 '
H...H 238 17,6«104 4,86

Tabela 1.3

Eksperymentalne i obliczone wartości parametrów sieci a,b,c oraz ką­
tów Eulera orientacji Cząsteczki 6 , V, t w strukturze kryształu benze­

nu, według [2]

(i) Parametry komórki elementarnej

a b c Temperatura, K

Teoria 7,25 9,41 6,75 0
Eksperyment 
(ekstrapolacja) 7,27 9,43 6,71

(ii) Kąty Eulera

8 <p

0

Temperatura, K

Teoria 47,6 178,0 104,7 270
Eksperyment 47,5 178 107,5 270

(iii) Ciepło sublimacji

Teoria +49,10 kJ/mol
Eksperyment +4J,1±2,1 kJ/mol

UQ w O K. Wielkość
ekstrapolowaną do O

tę porównuje się z wartością ciepła sublimacji ~AHq 
K

AH0 = Uo + Ko’ (1.5)

gdzie Ko jest tak zwaną energią zerową drgań elementów strukturalnych 
w O K. Ko ma znaczny udział w kryształach o małych cząsteczkach,jak na 
przykład w kryształach He, Ne, H2; w krysztale lodu energia zerowa sta­
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nowi ciepła sublimacji [2]. Dla większych cząsteczek KQ można po­
minąć, ponieważ już dla COg udział KQ nie przekracza 2?i. .

W wyniku minimalizacji UQ dokonywanej drogą drobnych zmian wybra­
nych parametrów przy ustalonych wartościach pozostałych, na przykład 
zmian kątów Eulera, otrzymuje się następujące informacje:

(i) energię sieciową Uo w O K, której porównanie z doświadczalną 
wartością - ńHo służy zwykle jako kryterium wyboru właściwego minimum 
funkcji (1.5) oraz jego głębokości,

(ii) wartości parametrów komórki elementarnej a,b,c,a,|3,Y,
(iii) orientację cząsteczki względem krawędzi komórki elementarnej 

i położenia jej środka masy, co jest równoważne z rozwiązaniem struktu­
ry kryształu. Tą drogą można więc również uzyskać informacje o kryszta­
łach, których struktura nie jest znana.

Porównanie wyników obliczeń z danymi doświadczalnymi dla kryształu 
benzenu zamieszczono według [2] w tab. 'I.J.

Wadą opisu oddziaływań międzycząsteczkowych za pomocą potencjału 
atom-atom wydaje się być to, że nie jest on wystarczająco uniwersalny. 
0 ile można uzyskać bardzo dobre wyniki dla Kryształów węglowodorów, o 
tyle schemat ten zawodzi przy obecności w cząsteczce takićn atomów jak 
tlen, azot i inne. Szczególnie obecność wolnych par elektronowych w tych 
atomach sprawia, iż ich oddziaływania z otoczeniem zależą od indywidual­
nej geometrii tego otoczenia, a więc stałe A,B,a na przykład dla ato­
mu azotu przestają być uniwersalne. Ponadto oddziaływania międzycząs- 
teczkowe w niektórych kryształach nie mają wyłącznie charakteru sił van- 
der Waalsa. Pokazano na przykładzie kryształu chloru, że dynamiki sieci 
tego kryształu nie da się opisać w sposób zgodny z doświadczeniem jedy­
nie na podstawie potencjału (1.4). Trzeba uwzględnić oddziaływania wyni­
kające z przeniesienia ładunku (charge transfer) między sąsiednimi cząs­
teczkami, a nie mieszczące się w schemacie atom-atom [4J.

Obecnie uważa się, iż najlepszy opis oddziaływali w krysztale mole­
kularnym będzie można uzyskać na gruncie "czystej" elektrostatyki,przez 
bezpośrednie zastosowanie prawa Coulomba. Jeśli p (r^) przedstawia lo­
kalną gęstość elektronów w elemencie objętości av^, to potencjał w wy­
branym miejscu R można wyrazić w

V(R) = —1— 
4n e0

Aby obliczyć sumę (1.6) należy podzielić komórkę elementarną na dosta­
tecznie dużą liczbę elementów objętości, wewnątrz których gęstość elek­
tronów można uważać za stałą. Wobec małej zbieżności sumy (1.6, trzeba 

następujący sposob:

p(r-)AV.
(1.6)
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uwzględnić tak wielką liczbę wyrazów, że przekracza to możliwość pamię­
ci operacyjnej większości współczesnych maszyn cyfrowych» Również po­
trzebną tu szczegółową znajomość rozkładu gęstości elektronów pfrp 
posiadamy dziś w odniesieniu do kilku zaledwie kryształów. Z tych powr- 
dów metoda, streszczająca się równaniem (1.6), wymaga jeszcze dalszego 
opracowania.

1.4. Oddziaływania specyficzne

1.4.1. Wiązania wodorowe

Wiązanie wodorowe polega na oddziaływaniu między trzema nie połą­
czonymi wiązaniem chemicznym atomami, -X-H...Y-, z których środkowy 
jest atomem wodoru (deuteru), zaś skrajnymi atomami w typowych przypad­
kach są N lub 0. Taki układ nosi nazwę mostka wodorowego i może być 
liniowy lub zgięty. Klasycznym przykładem cieczy zasocjowanej za pomocą 
wiązań wodorowych jest woda. Wśród różnych możliwych sposobów asocjacji 
cząsteczek HgO układ liniowy jest następujący

H H H H
...0-H.. .0-H.. .0-H. .\-H...

Cechą charakterystyczną wiązania wodorowego jest to, że odległość skraj­
nych atomów r^ y jest mniejsza od sumy promieni van der Waalsa ato­
mów X,Y - (

rX. • .Y rX rY' (1*7)

Suma tych promieni w zwykłych oddziaływaniach van der Waalsa z reguły 
przekracza 3 nm, na przykład 2rQ = 3,06 nm, 2r^ = 3,16 nm £2]. Typowe 
wartości r^ y leżą natomiast w zakresie 2,7 do 2,9 nm (na przykład 
w ciekłej wodzie), a mogą być nawet krótsze od 2,5 nm. Własności fizyko­
chemiczne związku zasocjowanego różnią się dość znacznie od własności 
związku monomerycznego, jak to wykazano w tab. 1.4.

Para atomów -X-H, nie oddziaływająca z atomem Y, posiada dość do­
brze określoną częstość drgań v^ w podczerwieni. Inaczej mówiąc,"swo­
bodnemu" oscylatorowi -X-H odpowiada w podczerwieni pasmo absorpcyjne 
zwykle o małej szerokości, położone przy cm~\ Pasmo -absorpcyjne 
oscylatora "związanego" -X-H...Y- jest natomiast znacznie szersze i 
na ogół położone przy znacznie niższej częstości . Powodem tego
przesunięcia jest zmniejszenie stałej siłowej oscylatora -XH przez od­
działywanie z atomem Y. Efekt ten może sięgać nawet 1000 cm^ i jest
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T a b e 1 a 1.4

Fizykochemiczne własności wody oraz hipotetycznej cieczy 
złożonej z pojedynczych cząsteczek HgO

Własność cieczy Jednostka

........—" - -----
Wartość

Woda Ciecz hipotetyczna

Temperatura wrzenia °C +100 -80
Napięcie powierzchniowe N/m 72»1O“5 7-10“3
Ciepło parpwania kJ/mol 40,& 16,7
Ciepło topnienia kJ/mol 6,0 2,1

bardzo dobrze mierzalny-ze względu na dużą dokładność pomiarów spektro­
skopowych. Z tego względu' obniżenie częstości

Av = — vx...Y (1»8) i

uważane jest za jedno z podstawowych kryteriów tworzenia się wiązania 
wodorowego, a nawet może być miarą odległości atomów X...Y w kryszta­
łach [5].

Międzycząstedzkowe wiązanie wodorowe pojawia się w cieczach prawie 
zawsze, jeśli tylko cząsteczki substancji rozpuszczonej lub rozpuszczal­
nika zdolne są do jego utworzenia, a więc gdy jedna cząsteczka zawiera 
ugrupowania -XH, a druga atom Y. Ze względu na ruch termiczny cząstek 
czek w fazie ciekłej oraz niewielką energię wiązania wodorowego (20-40 
kJ/mol) zwykle mamy do czynienia z pewną równowagą chemiczną między 
liczbą swobodnych oscylatorów i związanych -X-H...Y, przy czym równowa* 
ga ta może być niekiedy bardzo skomplikowana. Jeśli jednak potrafimy ją 
rozszyfrować pod względem chemicznym, pomiar koncentracji uczestniczą­
cych w niej indywiduów chemiczny011 w różnych temperaturach pozwala do­
świadczalnie określić energię tworzenia układu -X-H...Y-. Energie te 
leżą w zakresie 20-40 kJ/mol |o,2 do 0,4 eV na cząsteczkę) i są trochę 
większe od przeciętnych oddziaływań van der Waalsa.

Inaczej jest w stanie stałym, gdzie o powstaniu wiązania wodorowe­
go między cząsteczkami decydują nie tylko oddziaływania między samym. cząs­
teczkami, lecz także stosunki przestrzenne i symetria, współdecydujące 
e wzajemnym ułożeniu cząsteczek w krysztale. Dobrym przykładem różnych 
sytuacji może być pięciochlorofenol



19

gdzie • oznaczają atomy chloru. W swobodnej cząsteczce wodór grupy hy­
droksylowej słabo oddziałuje z sąsiednim atomem chloru, co wystarcza do 
zahamowania rotacji grupy OH wokół wiązania C-O. Tym nie mniej, w roz­
tworze pięciochlorofenolu w niepolarnym rozpuszczalniku} na przykład w 
'CCl^, częstość drgań układu O-H...C1 jest trochę przesunięta w stronę

Rys. 1.5. Absorpcja oscylatora -OH w zakresie pierwszego nad-homi, 
v = 6868 cm"1; a) pasmo absorpcyjne, b) prawo Lamberta-Beera 

dla roztworów pięciochlorofenolu w CCI4 (zaczerp. z [6J) 



20

niższych częstości w porównaniu dc zwykle spotykanych częstości swobod­
nej grupy OH. Widmo absorpcyjne takiego roztworu pokazano na rys.
[ej. Wykonane zostało w zakresie tak zwanego pierwszego nadtonu o częs­
tości w przybliżeniu równej 2 v0H. Powstawanie nadtonów jest.charakte­
rystyczną cechą oscylatorów anharmonicznych. Na rysunku 1.5b pokazano, 
że roztwory pięciochlorofenolu w CGl^ ściśle spełniają prawo Beera, co 
dowodzi, że cząsteczki substancji rozpuszczonej nie ulegają asocjacji. 
Można to tłumaczyć w ten sposób, że atomy chloru w położeniu orto wzglę­
dem grupy -OH, mające stosunkowo dużą objętość, skutecznie "ekranują" 
grupę -OH przed zbliżeniami prowadzącymi do tworzenia wiązań wodorowych.

Jeżeli wykrystalizujemy pięciochlorofenol z takiego roztwory przez 
powolne odparowanie CCl^ w temperaturze pokojowej, to powstaną kryszta­
ły zbudowane z cząsteczek połączonych wiązaniem wodorowym, o czym wiado­
mo z badafi rentgenograficznych tego kryształu [7]. Grupy hydroksylowe 
tworzą zygzakowate łańcuchy o średnim kierunku równoległym do krystalo­
graficznej osi b, natomiast pierścienie aromatyczne dołączone są z bo­
ku i wykręcone naprzemiennie w taki sposób, by ułatwić wzajemne zbliże­
nie grup “OH. Fragment tej struktury pokazano schematycznie na rys. -1.6.

Rys. i.6. Fragment łańcucha cząsteczek pięciochlorofenolu w fazie II. 
Kółkami zaznaczono reszty pięciochlorofenolowe,0^01^- (schematycznie)

Kryształ składa się więc z szeregu "nici", których długość przy ideal­
nej strukturze odpowiada długości kryształu wzdłuż osi b. Widmo.absorp­
cyjne w podczerwieni w zakresie pierwszego nadtonu o częstości równej 
w przybliżeniu 2 Q jest, zgodnie z oczekiwaniem, o wiele silniej 
przesunięte w kierunku niższych częstości, a przy tym bardziej złożone 
(rys. i.7). Przesłonięcie spektralne w zakresie nadtonów jest w -przybli­
żaniu dwa razy większe od iv określonego definicją (1.8) i wynosi w 

—1 tym przypadku około 300 cm [6].
Nie jest to jednak jedyna możliwa faza krystaliczna tego związku. 

Okazuje się, że przy ogrzewaniu kryształów wyhodowanych z roztworu, w 
temperaturze GJ °C zachodzi w nich przemiana fazowa [6], w wyniku czego 
znika pasmo absorpcyjne pokazane na rys. 1.7» Pojawia się natomiast
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Rys. 1.7. Widmo absorpcyjne nadtonu OH...C w krysztale pięciochl.orofe- 
nolu fazy II (zaczerp. z [6J)

proste przejście absorpcyjne, odpowiadające obrazowi przedstawionemu na 
rys. 1.5, ó częstości zbliżonej do 2 ^0H<>#ci cząsteczek swobodnych w 
roztworze. Świadczy to o tym, że faza pięciochlorofenolu z międzycząs- 
teczkowym wiązaniem wodorowym przestaje być trwała pov;yżej 65 °C, a w 
jej miejsce powstaje faza o innej strukturze, zbudowana z monomerów.Fa­
za ta jest nieuporządkowana; cząsteczki pięciochlorofenolu zajmują w 
niej węzły o symetrii C£, choć same nie są centrosymetryczne. W takim 
razie postulat zgodności symetrii węzła z symetrią cząsteczki może być 
realizowany tylko statystycznie w ten sposób, że każda cząsteczka zajmu­
je w sposób przypadkowy jedno z sześciu możliwych położeń względem nor­
malnej do pierścienia [8]. Być może, iż w wyższych temperaturach niepo­
rządek ten ma charakter dynamiczny, tj. cząsteczki dokonują ’’przeskoków* 
o 60° dookoła normalnej do pierścienia benzenowego. Przykład ten wskazu­
ję, że możemy mieć fazy krystaliczne bez międzycząsteczkowego wiązania 
wodorowego, mimo iż cząsteczki mają atomy -XH i Y, zdolne do jego utwo­
rzenia.
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O

Rys. 1.8. Przykłady wiązań wodorowych w kryształach molekularnych:
a) "ogon-głowa" w p-nitrofenolu, b) dimery kwasu benzoesowego

Często tworzy się wiązanie wodorowe w krysztale w taki sposób, że 
cała cząsteczka znajduje się w łańcuchu głównym. Przykładem takiej sytu­
acji może być wiązanie "ogon-głowa" w krysztale p-nitrofenolu [9]»przed­
stawione schematycznie na rys. 1.8. Bardzo silne wiązania wodorowe wy­
stępują między cząsteczkami kwasów karboksylowych, w wyniku czego two­
rzą się dimery, a niekiedy układy pierścieniowe złożone z większej licz­
by jednostek. Przykładem może być kwas benzoesowy, którego cząsteczki w 
roztworze benzenowym są praktycznie całkowicie zasocjowane na dimery. W 
krysztale również nie ma cząsteczek monomerycznych, a struktura składa 
się z dimerów 00] , które można uważać za autonomiczne jednostki struk­
turalne (rys. 1.8).

Jednym z bardzo interesujących przykładów jest struktura kryształu 
gipsu, CaSO^PHgO, której rzut na płaszczyznę łupliwości przedstawiono 
na rys. 1.9 według danych strukturalnych [11]. Rzut ten został uprosz­
czony przez opuszczenie jonów Ca++. Struktura gipsu składa się z jonów 
Ca++ i SO^ , których symetria jest bardzo bliska symetrii kuli, oraz z 
cząsteczek wody, połączonych wiązaniami wodorowymi. Symetria tych cząs­
teczek, C2v, jest niższa od symetrii jonów i można oczekiwać, iż anizo­
tropia fizycznych własności kryształu gipsu będzie w pierwszym rzędzie 
wynikać z anizotropii cząsteczek wody i ich rozkładu w sieci krystalicz­
nej. Rzeczywiście widać, że na płaszczyźnie łupliwości (010) możemy wy­
różnić dwa prostopadłe do siebie kierunki, charakterystyczne ze względu 
na rozkład cząsteczek HgO. Okazuje się, iż kierunki te odpowiadają doś­
wiadczalnie wyznaczonym kierunkom głównym indykatrysy współczynnika za­
łamania światła na tej płaszczyźnie. Trzecia oś indykatrysy jest równo­
legła do krystalograficznej osi b, zgodnie z przewidywaniami zasady
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Neumanna (rozdz. 3). Własnościami optycznymi tego kryształu zajmiemy 
się bardziej szczegółowo w rozdz. 6.

Rys. 1.9. Rzut struktury kryształu gipsu na płaszczyznę (010) 
według danych strukturalnych [11] (jony Ca++ pominięto) 

(zaczerp. z [11])

Na koniec warto jeszcze wspomnieć o sytuacji protonu w układzie 
-X-H.. .Y-, którą można opisać za pomocą krzywej energii potencjalnej.Za­
sadnicze typy krzywych, wprowadzone przez Sobczyka w celu klasyfikacji 
wiązań wodorowych [12], przedstawiono na rys. 1.10. Najczęściej spotyka­
my się z przypadkiem pierwszym (a), tj. asymetryczną krzywą o dwóch mi­
nimach, odpowiadającą układowi -X-H...Y- przy dużych i średnich odleg­
łościach skrajnych atomów X,Y. Sytuację protonu można interpretować w 
taki sposób, że przebywa on w zasadzie w pobliżu jądra X, możliwe są 
jednak - choć mało prawdopodobne - przeskoki w kierunku jądra Y. Ich 
częstość zależy od wysokości bariery potencjalnej dzielącej oba położe­
nia i od temperatury, rządzącej obsadzeniem dyskretnych stanów oscyla­
cyjnych protonu. W drugim skrajnym przypadku (c), nastąpiło przejście
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Rys. 1.10. Klasyfikacja wiązań wodorowych za pośrednictwem typów 
krzywej energii potencjalnej

protonu z X do Y z utworzeniem jonowej struktury mostka -X"..,H-Y+~. 
Przypadki takie występują w bardzo krótkich (silnych) wiązaniach wodoro­
wych. Wreszcie w sytuacji b. krzywa energii potencjalnej jest symetrycz­
na, co odpowiada jednakowemu prawdopodobieństwu przebywania protonu wo-. 
kół każdego z atomów. Każdej z krzywych towarzyszy układ dyskretnych 
stanów energetycznych protonu.

1.4.2. Oddziaływania'donorowo-akceptorowe

Oddziaływania donorowo-akceptorowe są to oddziaływania między dwie­
ma cząsteczkami, z których jedna łatwo oddaje elektron (donor, D) zaś 
'druga chętnie go przyjmuje (akceptor, A). Stan równowagi w takim ukła­
dzie przedstawia równanie

A + A6- + D6+, (1.9)

przy czym a jest liczbą, 0 < & <1. Powyższy zapis ma charakter proba­
bilistyczny, wynikający z opisu tych oddziaływań za pomocą pojęć mecha­
niki kwantowej, nie jest bowiem możliwe, by ułamek elektronu mógł zos­
tać przeniesiony od jednej cząsteczki do drugiej. Niech będzie 
funkcją falową opisującą stan układu A + D, zaś 4 2 funkcją falową od­
powiadającą stanowi A- + D+. Stan podstawowy kompleksu, odpowiadający 
równowadze (1.9), opisuje funkcja, będąca kombinacją liniową i 4>2:

= a^ <pz| + a2 • (1.10)

Współczynniki a^ i a2 są miarą prawdopodobieństwa wystąpienia konfigu­
racji molekularnej (a^) lub jonowej (a2) w kompleksie w stanie podstawo­
wym, zatem
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2 2a^ + a2 = 1, oraz zwykle a^»a2. (1.11)

Spektralny skutek tych oddziaływań jest podobny, jak w wiązaniu wodoro­
wym: energia wiązania jednego elektronu donora ulega obniżeniu, w wyni­
ku czego kompleks donorowo-akceptorowy jest z reguły zabarwiony, mimo 
iż poszczególne składniki mogą być bezbarwne. Absorpcja występuje zatem 
w widzialnym zakresie widma, a częstość v-^, odpowiadającą maksimum 
pasma absorpcyjnego, dość dobrze przewiduje realcja [13]

hvDA = ID “ EA “ WDA’ । (1.12)

przy czym ID jest energią jonizacji cząsteczki donora, E^ energią 
przyłączenia elektronu do cząsteczki akceptora, zaś energią od­
działywań między jonem donora i jonem akceptora. Po pochłonięciu fotonu 
o energii hvDA kompleks przechodzi w stan wzbudzony, a równowaga (1. 
9) przesuwa się na stronę prawą. Funkcja falowa dla stanu wzbudzonego 
<|;e ma postać analogiczną do (1.10)

4e 3 i + bp^p’ (1.15)

przy czym spełniony jest warunek 
A '

b^ + b| = 1, ale zwykle ^«bg. (1.14)

Pełnemu przejściu elektronu, b = 1, odpowiada powstanie jonów, z któ­
rych każdy ma jeden elektron o niesparowanym spinie (jono-rodniki)t 
Świadczy o tym sygnał paramagnetycznego rezonansu elektronowego (EER) 
oraz przewodnictwo jonowe związku po jego rozpuszczeniu w (słabo) polar­
nym rozpuszczalniku. Energia oddziaływań DA wynosi od 20 do 40 kJ/mol, 
czyli O,2-0,4 eV/cząsteczkę.

Typowymi donorami elektronów są cząsteczki węglowodorów aromatycz­
nych, metylowych pochodnych benzenu i związków wielopierścieniowych o- 
raz amin aromatycznych. Akceptorami elektronów są cząsteczki chlorowców 
(zwłaszcza brom, jod), polinitrowych pochodnych benzenu (np. trójnitro- 
benzen),a zwłaszcza często stosowanych czterochlorobenzochinonu (chiora- 
ńil) oraz .czterocyjanoetylenu (TCNE).

Charakterystycznymi własnościami kompleksów donorowo-akceptorowych 
są: absorpcja promieniowania w zakresie bardziej długofalowym niż za­
kres absorpcji każdego ze składników oraz wysokie na ogół przewodnictwo 
elektronowe w stanie stałym, wynikające z równoległego ułożenia płasz­
czyzn pierścieni cząsteczek donora i.akceptora, jeśli są to cząsteczki 
pochodnych związków aromatycznych. Przeglądu elektrycznych własności 
kompleksów donorowo-akceptorowych dokonują w swej monografii Pigoń i 
współautorzy [14], przykład zaś typowej struktury kompleksu złożonego
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Eys. 1.11. Konfiguracja składników w kompleksie donor o-akcept orowynu 
ehińon—hydrochinon i ułożenie cząsteczek w krysztale (schematycznie)

z dwóch cząsteczek płaskich, chinonu i hydrochinonu, przedstawiony jest 
na rys. 1.11a. W krysztale tego związku, zwanego chinhydronem, ułożenie 
cząsteczek również jest równoległe. Powstają "sterty’' cząsteczek na 
przemian donora i akceptora’(rys. 1.11b) wzdłuż krystalograficznej osi 
b, stanowiącej jednocześnie kierunek najsilniejszego przewodnictwa elek­
trycznego kryształu. Odległość płaszczyzn pierścieni, 3,1 nm, jest nie­
co mniejsza od odległości w zwykłych oddziaływaniach van der Waalsa.
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2. TENSORY DRUGIEGO RZ^DU I ICH WŁASNOŚCI

W rozdziale niniejszym przedstawiono podstawowe własności tensorów 
'drugiego rzędu, którym odpowiada większość wielkości fizycznych kryszta­
łów anizotropowych. Nacisk położono w większym stopniu na interpretację 
sensu fizycznego i zastosowania podanych zależności, niż na ścisłość wy­
wodu lub dowodzenie przytoczonych twierdzeń. Szczegóły te może Czytel­
nik znaleźć w literaturze, zestawionej na końcu rozdziału [1-3].

I 2.1. Definicja tensora

Tensory mają liczne zastosowania w fizyce ciała stałego z tego 
względu, że wiele wielkości fizycznych wykazuje zależność od kierunku, 
w jakim je mierzymy, tj. ma cechę anizotropii. Anizotropia wielkości fi­
zycznych łączy się bezpośrednio z określoną symetrią samego ciała krys­
talicznego, ponieważ większość wielkości fizycznych zależy nie tylko od 
własności samych elementów strukturalnych (atomów, jonów, cząsteczek), 
z których jest zbudowany kryształ, lecz i od regularności ich rozmiesz­
czenia w sieci przestrzennej. Na przykład kryształ chlorku sodowego 
składa się z jonów Na+ i Cl- o symetrii kulistej, nadto'jony te roz­
mieszczone są w krysztale idealnym bardzo regularnie: zajmują węzły sie­
ci przestrzennej, zbudowanej z sześcianów. Tak wysoka symetria kryszta­
łu sprawia, że np. do opisu własności dielektrycznych kryształu wystar­
cza tylko jedna liczba: względna przenikalność dielektryczna. Inaczej 
rzecz się ma, na przykład, z kryształem benzenu. Wprawdzie cząsteczki 
benzenu o kształcie bardzo zbliżonym do regularnego sześcioboku mają 
jeszcze wysoką symetrię, jednak ich rozmieszczenie w sieci przestrzen­
nej jest o wiele mniej symetryczne, niż w chlorku sodowym. Powoduje to, 
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że względna przenikalność dielektryczna kryształu benzenu zależy od kie­
runku, w którym ją mierzymy, czego już nie można wyrazić jedną tylko 
liczbą.

Tensorem będziemy nazywali każdy liniowy operator T, wiążący ze so­
bą dwa wektory £ i £

P = T q- (2.1)

Według tej definicji każdemu wektorowi q odpowiada inny wektor p.Przy­
porządkowanie to jest liniowe, to znaczy, że dla dowolnych wektorów q,y

T(s q + tv) = sTq + tTy, (2.2)

przy czym s, t są liczbami.
Iloczyn Tq jest więc wektorem, jego składowe można rozpisać w na­

stępujący sposób:

= T11q1 + T12q2 + = T1jqj’

(Tą^ = ^2*1 + ^22^2 * = T.^, (2.3)

(Tq)5 = + T^2q2 + T^łj =

przy czym i, J = "1,2,5 oznaczają składowe tensora T.
W zapisie (2.3) zastosowaliśmy konwencję automatycznego sumowania 

po powtarzającym się wskaźniku, z opuszczeniem znaku 2 . Konwencję tę 
będziemy stosować w dalszym ciągu.

Związki między dwoma wektorami są bardzo częste w fizyce, na przy­
kład

D = eQeE, (2.4)

gdzie D jest wektorem indukcji elektrostatycznej, E wektorem natęże­
nia pola elektrycznego, eo stałą dielektryczną, zaś £ względną przeni- 
kalnością ośrodka. Zazwyczaj e. ma własności tensora. Podobnie w uogól­
nionym prawie Ohma

j = o • (2.5)

gdzie j jest gęstością prądu przewodzonego, a jest przewodnictwem 
właściwym materiału i też ma własności tensora.

Przyjrzyjmy się bliżej relacji (2.5). Założymy wpierw, że a_ nie za­
leży od kierunku krystalograficznego, tj. mamy do czynienia z materiałem 
izotropowym. W takim razie każda składowa j jest proporcjonalna do od­
powiedniej składowej E przy tym samym współczynniku proporcjonalności 
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jk = GEk’ k = ’1»2»5> wobec czego wektory j i E są do siebie równoleg* 
łe (rys. 2.1).

Rys. 2.1. Wektory E i j w materiale izotropowym (przypadek płaski)

W materiale anizotropowym przewodnictwo zależy od kierunku. W pew­
nym szczególnym układzie współrzędnych (układ osi głównych)
do którego najwygodniej jest odnosić opis przewodzenia prądu, będziemy 
mieć trzy stałe materiałowe o^, o^, o^, na ogół różne, zwane głównymi 
składowymi przewodnictwa elektrycznego. W tym przypadku winniśmy napi­
sać

jk = °k Ek’ k = 1,2,3. (2.6)

Jeśli óznaczają wektory jednostkowe, skierowane odpowiednio
wzdłuż każdej z osi głównych Xi( to wektor

_j = o E^ + o Eg e^ + o . E^ e^ (2.7)

nie jest równoległy do wektora E (rys. 2.2).
W ogólniejszym przypadku dowolnie zorientowanego i ortogonalnego 

układu współrzędnych x^, x2, x^ zależności (2.7) mają charakter związ­
ków liniowych postaci analogicznej do (2.3)

j^ = u^p Ei, k =1,2,3. v2.8)

W ten sposób widzimy, że opis przewodnictwa elektrycznego kryształu w 
przypadkowo dobranym nieładzie współrzędnych wymaga dziewięciu stałych 
materiałowych o^p, stanowiących składowe tensora przewodnictwa właści­
wego. Zobaczymy później, że nie wszystkie składowe są niezależne.
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Rys. 2.2. Wektory Ę i j w materiale anizotropowym (przypadek płaski)

Warto zauważyć, że anizotropia przewodnictwa materiału pociąga za 
sobą wystąpienie tzw. przepływów poprzecznych. Jeśli bowiem pole elek­
tryczne przyłożone jest na przykład w kierunku osi , czyli ĘfE^.O.O), 
to mamy Hie tylko j^ = O/|^Ez], lecz także j2 = a21®1 oraz jj = 
Tym samym istnieją niezerowe składowe wektora gęstości prądu w kierunku 
prostopadłym do kierunku przyłożonego pola.

Wielkości fizyczne o charakterze tensorowym, którymi będziemy się 
tu interesowali, należą do grupy tensorów o dziewięciu składowych, no­
szących nazwę tensorów drugiego rzędu. Inne wielkości fizyczne, na przy­
kład wektory o trzech składowych, możemy formalnie uważać za tensory 
pierwszego rzędu. W tej nomenklaturze stałym odpowiadają tensory rzędu 
zerowego. Znane są również tensory rzędu wyższego niż drugi,na przykład 
tensor współczynników piezoelektrycznych lub tensory opisujące własnoś­
ci sprężyste materiału.

Sens fizyczny poszczególnych składowych tensora drugiego rzędu mo­
żemy rozumieć w następujący sposób. Niech w przykładzie z przewodnic­
twem elektrycznym pole jest przyłożone w kierunku na przykład x2, nato­
miast gęstość prądu mierzona np. w kierunku osi x^, wówczas

jj = a7j^2' oraz aJ2 = ^/E2‘ (2.9)

Wyrażenie (2.9) podaje sposób pomiaru składowej o^2 i możemy je uwa­
żać za eksperymentalną interpretację tej składowej.

Przykłady różnych wielkości, których własności odpowiadają tenso­
rom drugiego rzędu, zestawione są w tab. 2.1.
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Tabela 2,1!

Przykłady tensorów drugiego rzędu.

Wektor 
przyłożony

3

Wielkość 
tensorowa

S

Wektor 
indukowany

₽

Związek

Natężenie pola 
elektrycznego

Właściwe przewod­
nictwo elektryczne

Gęstość natęże­
nia prądu j = o E = -o W >» *“ —*

Natężenie pola 
elektrycznego

PrzenikaIność 
dielektryczna

Indukcja elek­
trostatyczna D = £Q e E

Gradient 
temperatury

Właściwe przewod­
nictwo cieplne

Gęstość prądu 
cieplnego h = - k V T

Natężenie pola 
magnetycznego

Przenikalność 
magnetyczna

Indukcja 
magnetyczna B = Po E H

Natężenie pola 
elektrycznego

Polaryzowalność 
elementu strukt.

Moment 
dipolowy p = a e

2.2. Tensory symetryczne i antysymetryczne

Jak wiemy, iloczyn T q jest wektorem, możemy go więc skalarnie 
pomnożyć przez inny wektor y. Otrzymamy w ten sposób wielkość skalarną'
y T q, która zależy w sposób liniowy zarówno od składowych q, jak i y 

q T y; na ogół hę-(forma dwuliniowa). Możemy również utworzyć iloczyn 
dzie y T q / q T y. Na przykład, jeśli e^, e2, e^ 
nostkowymi równoległymi odpowiednio do osi 
gonalnego) układu współrzędnych, to

są wektorami ^®d-
Zj dowolnego (orto-

e-i I e2 = —2^1 “ T12

oraz

e2 “ = —i 2 ” ^21 *

Jeśli

Tik = Tki (2.1Oa)

lub ’

q T y = y T q (2.lOb)

dla dowolnych q, y, to T nazywa się tensorem symetrycznym. W przypada 
ku

T.„ = - T, (2.11a)
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lub

q T y = - y T q (2.11b)—■ —- w
tensor jest antysymetryczny.

Symetryczny tensor Tg ma postać

Au t12 t13\
Tg =1 T22 T2J j, (2.12)

\ 
czyli najwyżej sześć różnych składowych. Dla tensora antysymetrycznego 
natomiast mamy

Oznaczmy składowe T w następujący sposób: a

T12 = -T21 =

T13 = -TJ1 = T2>

T2J = -T32 = ”T1’

przy czym relacje między wskaźnikami odpowiadają porządkowi antycyklicz- 
nemu. Mamy wówczas

Ta • Q + + —2^3^1 " 'M?) +

+ ^(-T^ + T1q2) = Ta x q. (2.15)

T^T^ >jest wektorem równoważnym tensorowi Ta. Widzimy więc, że
tensorowi antysymetrycznemu można przypisać wektor.

Tensory można dodawać, a więc także rozkładać je na sumę dwu lub
więcej tensorów. Jeśli bowiem słuszna jest relacja

T £ = T-! q + T2 q,

to

2 (2.16)
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Na przykład dowolny, asymetryczny tensor T możemy jednoznacznie rozło 
żyć na sumę tensora symetrycznego Ts i antyaymetrycznego Ta. Mamy bo 
wiem ™
I i

* <».>U

brąz ,

Tki = <Vik - ^Ta^ik" (2.17)

Stąd

/T11 2 ^2 + T21^ 2 *T13 +

Tg =1 T22 | (T2J + T?2)

\ ®33y

(2.18)

oraz

W rachunku tensorowym wygodne 
Jeśli wektorom p i q przypiszemy

jest stosowanie zapisu macierzowego.
macierze jednokolumnowe

TW takim zapisie symbolowi (p) odpowiada macierz jednowierszowa (trans- 
ponowana)

m
(₽) = (Pq P2 Pj). (2.21)

Jeśli zastosujemy te oznaczenia, to możemy zapisać na przykład iloczyn 
skalarny wektorów w postaci p • ą lub (p)T(q).
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.Na zakończenie jeszcze.jedna uwaga. Wektory p = Tą i q mają kie-। 
runki różne. Kąt <₽ zawarty między nimi jest taki, że

q • pi <1 t q j
cos <₽ = -=—=ł~  ----------- . (2.22)

]p| |qrl |p[ |q|

2.3. Własności transformacyjne wektora i tensora

Przypuśćmy, że mamy zadany tensor T wiążący wektor p i ą w za­
leżność p = T-q. W ortogonalnym układzie współrzędnych skła­
dowe T mają~określone wartości T^. Wybieramy teraz nowy układ współ­
rzędnych x^,x^,Xj, też ortogonalny ji prawoskrętny. Jakie będą składowe 
wektora p' i q' w tym nowym układzie? Jak zmienią się składowe tensora 
rik? OdPowie^ 113 pytanie stanów^ treść zagadnienia, zwanego transfor­
macją składowych wektora lub tensora przy zmianie układu współrzędnych.

Ogólnie biorąc, zmiana układu współrzędnych może wyniknąć na skutek 
działania dwóch rożnych operacji:

1. Równoległego przesunięcia układu w taki sposób, że osie układu 
nowego są równoległe do odpowiednich osi układu starego, tj. x^, x^|| 
11*2» Ta^ie przekształcenie nie zmienia składowych wektorów, ponie­
waż wynoszą one pe^ = |p| cos <?, i = 1,2,3, czyli nie zależą od równo­
ległego przesunięcia układu współrzędnych. Operacja translacji może za­
mieniać jedynie współrzędne początku i końca wektora. W takim razie p = 
= p, ą* = q. Jeśli tensor w układzie xf oznaczymy przez t, to możemy 
napisać

pz = p = l3, = l3=$3» 

czyli

I = T. (2.23)

Składowe tensora również nie ulegają zmianie wskutek równoległego prze­
sunięcia układu współrzędnych.

2. Obrót układu współrzędnych wokół jego początku O. Obrót taki moż­
na opisać za pomocą macierzy ę, stanowiącej tabelę kosinusów kierunko­
wych nowych osi x/ względem układu osi starych, x^

x2 X3

A C11 c12 °13

*2 C21 c22 °23

X3 c3n c32 c33

(2.24)
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Na przykład, element c2>] tej macierzy jest kosinusem kąta zawartego 
między osiami x^ i x^. Macierz ę ma tę własność, że

(i ) det c = ±1, (2.25a)

przy czym znak (+) obowiązuje dla tak zwanego obrotu ’’właściwego", tzn. 
ńie zmieniającego skrętności układu współrzędnych, zaś (-) występuje 
wtedy, gdy skrętność ulega zmianie (np. układ prawoskrętny po transfor­
macji przechodzi w lewoskrętny). Ponadto

(ii ) ę“1 = ęT, (2.25b)

—I Tgdzie c oznacza macierz odwrotną, zaś ę jest macierzą przestawio­
ną (transponowaną).

Za pomocą macierzy ę możemy wyrazić wektory w nowym układzie 
współrzędnych w następujący sposób:

p' = o p oraz’ qz = ę q. (2.26)

Równania (2.26) przedstawiają prawo transformacji wektora. Transforma­
cja odwrotna ma postać następującą:

p = c p = C p oraz q = ę q . (2.2?)

Można łatwo dowieść, że transformacja typu (2.26) lub (2.27) ma tę włas­
ność, że nie zmienia długości wektora, tj. | P*| = | P | oraz | q'| = | q |

Przejdźmy obecnie do określenia związku między składowymi tensora
J w układzie x^ i tensora T w układzie x^, przy czym oba układy 
związane są relacją

x' = ę x, (2.28)

gdzie x' oznacza wektor o składowych x^ x^. Spełnione są następu­
jące równości:

p,-Tqz=Tęq=ęp=ęTq.

Widzimy stąd, że Tir spełniają związek ogólny

I ę = gj, (2.29)

z którego możemy otrzymać na przykład r w nowym układzie współrzęd­
nych
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Transformacja odwrotna ma postać

W zapisie wskaźnikowym natomiast

r., = c. T c'1', = c. c, T ik im mn nk im kn mn

Wszystkie trzy sposoby zapisu transformacji są, oczywiście, równoważne, 
a wybór określonego z nich pozostawiamy upodobaniom Czytelnika. Trans- 
formacja (2.30a) oraz (2.30b) ma tę własność, że nie zmienia‘śladu (ang. 
tracę) tensora

Tr t = Tr T, (2;31)|

czyli + r22 + = T11 + T22 + T^.
Korzystając z tej własności śladu wprowadzimy nową wielkość <T>, zwa­
ną wartością średnią wielkości fizycznej, przedstawionej tensorem T:

Tr r = Tr T = 3<T>. t^.32)

Takie wielkości mierzymy przeprowadzając eksperyment, w którym próbką 
jest drobnokrystaliczny i starannie wymieszany proszek lub pastylka 
sprasowana z proszku.

Należy zauważyć, że własności transformacyjne wielkości fizycznych 
stanowią bardzo ważną ich właściwość, związaną w istotny sposób z ich 
strukturą matematyczną. Z tego powodu zachowanie'się wielkości fizycz­
nej przy zmianie układu współrzędnych może stanowić podstawę jędnoznacz- 
nego jej zaklasyfikowania. I tak, wielkość fizyczna, która nie zależy od 
wyboru układu współrzędnych w sensie dotychczas dyskutowanym, jest ska­
larem. Wielkość, której składowe transformują się według prawa (2.26) 
jest wektorem. Wreszcie, jeśli składowe wielkości fizycznej transformu­
ją się według prawa (2.30), jest ona tensorem drugiego rzędu. Składowe 
tensorów wyższych rzędów podlegają bardziej złożonym prawom transforma­
cji - nie będziemy ich tu omawiać.

Wśród różnych układów współrzędnych istnieje zawsze ta­
ki układ Xj, w którym tensor T przyjmuje postać, przekątniową
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Taki układ, ma szczególne znaczenie i nosi nazwę osi głównych tensora 
lub osi własnych. Wielkości noszą.nazwę wartości głównych (wartoś- • 
ci własnych) tensora. Sposobami sprowadzania tensora do układu osi głów­
nych zajmiemy się w p. 2.7.

2.4. Pojęcie Swadryki

Rozważmy własności równania

(2.33)

Jeśli przyjmiemy, że Sij = Sji’ to po rozpisaniu otrzymamy

Sil30! + S22x2 + S53x5 + + + 2S25^ex5 = 1.

Równanie to przedstawia powierzchnię drugiego stopnia, zwaną.kwadsyką, 
o środku leżącym w początku układu współrzędnych. Powierzchnią taką mo­
że być elipsoida lub hiperboloida.

Oznaczmy przez r = wektor, łączący początek układu
współrzędnych z punktem leżącym na owej powierzchni. Równanie (2.55) mo­
żemy wówczas zapisać krócej w postaci macierzowej

£T S r = 1. (2.54)

Przypuśćmy teraz, że zmieniamy układ współrzędnych przez obrót wokół 0, 
tak że r' = c r, czyli r'T = rT p®. Jak zmienią się współczynniki kwa- 
dryki Jeśli w nowym układzie macierz tych współczynników oznaczy­
my przez g, to możemy napisać równość >

ml 
£ g c 1 r = 1. (2.55)

Ponieważ (2.55) opisuje tę samą kwadrykę co (2.54), musi być spełniona 
równość S = c^ R c, czyli

g = o S £ • (2.56)

Widzimy więc, że nowe współczynniki kwadryki otrzymuje się przez trans­
formację identyczną z (2.50), przekształcającą składowe tensora przy 
obrocie układu współrzędnych. W takim wypadku powierzchnia opisywana 
równaniem (2.53) jest geometrycznym obrazem tensora.

_-T p » T f r R T = r (
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Kwadryka, odpowiadająca tensorowi T, posiada również osie główne 
o kierunkach pokrywających się z osiami głównymi tensora. Każdy| 

przekrój płaszczyzną, przechodzącą przez dwie z tych osi, jest przekro­
jem głównym kwadryki (tensora). Równanie kwadryki zapisane w układzie 
Xi

+ S2^ + = 1 (2.37)

nie zawiera wyrazów mieszanych. Jeśli wszystkie są dodatnie, to po­
równanie ze standardową postacią równania elipsoidy

TRys. 2,3. Kwadryka jako geometryczny obraz równania r Sr = 1 
w układzie osi głównych (S^ > 0, i = 1,2,3)

Jeśli jeden z trzech współczynników kwadryki jest ujemny, to kwadryka 
ma kształt hiperboloidy jednopowłokowej (rys. 2.4); przy dwóch współ­
czynnikach ujemnych hiperboloida jest dwupowłokowa (rys. 2.5)• Przy 
wszystkich trzech współczynnikach ujemnych powierzchnia (2.37) jest u- 
rojoną elipsoidą.

Kwadryka jest więc powierzchnią, na której leżą końce wektorów r, 
spełniających równanie (2.34). Rysunek 2.6 przedstawia w układzie współ-
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Rzędnych X|Xg» zorientowanym przy­
padkowo względem osi głównych,prze­
krój główny kwadryki o współczynni­
kach

= 5,5? £>22 = 5? =

Przekrój ten opisany jest więc rów­
naniem

3,5 + 5x| - s 10

Rys. 2.5- Kwadryka przy , Sg < 0, 
Sz > 0, jest hiperboloidą dwupowło- 

kową

Rys. 2.4. Dla Sq, Sp > O, Sz < O, 
kwadryka jest hiperboloidą jedno- 

powłokową

2.5. Wartość wielkości fizycznej 
w zadanym kierunku

Sprecyzujmy obecnie pojęcie 
wartości wielkości fizycznej w 
zadanym kierunku, tzn. spróbujmy 
uzyskać odpowiedź na pytanie, ja- 
ka jest na przykład przenikał- 
ność dielektryczna kryształu w 
kierunku [011j?

Przypuśćmy, że związek

p = g q 

lub

pi = Tijqj

rozpatrujemy dla kryształu izotropowego. W takim przypadku

I = T • ,

czyli tensor T jest iloczynem jednej liczby T przez macierz jednost­
kową D . W konsekwencji wektory p i q są do siebie równoległe (rys.
.2.1), oraz

Tą=|p|/|q|. (2.40)

Wartość T w dowolnym kierunku q „uzyskujemy więc przez podzielenie 
długości wektora p przez długość q. Wynik ten możemy uogólnić w na­
stępujący sposób.



Rys. 2.6. Przekrój kwadryki o równaniu 5,5^ + 5^ “ * 1

W ogólnym przypadku kierunki p i q nie są jednakowe. Możemy jed­
nak posłużyć się poprzednią definicją, jeśli dokonamy rzutowania p na 
kierunek q (rys. 2.7). Wartością wielkości tensorowej w kierunku q 
będziemy nazywać iloraz długości rzutu wektora p na kierunek q przez 
długość wektora q

T = . (2.41)
q lal

Ponieważ p^^ = p • q/|q|, w zapisie macierzowym mamy (T jest syme­
tryczny)

q • P = (q)T(p) = (q)T(T)(q). 

o Po podzieleniu przez q uzyskujemy ogólny wynik

= (1)T(T)(1), (2.42)

gdzie 1 = q/ q jest wektorem jednostkowym o kierunku q. Wektor ten 
ma składowe które są kosinusami kierunkowymi q w układzie

Rozpisując (2.42) otrzymamy
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Rys. 2.7. Wartość wielkości fizycznej £ w kiarunku ą 
reprezentowana jest przez długość rzutu p na q ~

T12 T1?\ /1l\

\ T1 = (li Ig T21 T22 T23 H X2 j =

V31 T32 T33/ YW

= Tz|>]l^ + ^22^ + ^53^3 + ^IP^^ +

+ 2 + 2 ^2^2^ ‘ (2.43)

Wyrażenie to przyjmuje szczególnie prostą postać w układzie osi głów­
nych tensora T. Ponieważ w tym układzie = O ila i k, mamy

?! = (l)T(r)(l) = + T21| + r^. (2.44)

Równanie (2.42) lub (2.44) przedstawia nieskończony zbiór punktów 
tworzących powierzchnię, zwaną powierzchnią wielkości fizycznej T. Je - 
li wszystkie główne współczynniki takiego równania, czyli wszystkie t 
w (2.44) są dodatnie, to powierzchnia wielkości fizycznej jest elipsoi­
dą trójosiową. Przypadek taki dla względnej przenikalności dieletrycz- 
nej e, jest przedstawiony na rysunku 2.8a. Punkt P leżący na elipsoi­
dzie przedstawia wartość względnej przenikalności dielektrycznej w kie­
runku określonym wektorem r. Dla porównania przedstawiono na rysunku
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2.8b obraz kwadryki o osiach, od­
powiadających rys. 2.8a. Widzimy, 
że kolejność osi pod względem ich 
długości uległa zmianie, ponadto 
każdy punkt Q(Ł]X2Xj) kwadryki o 
współczynnikach 8^ spełnia rów­
nanie (2.57)• W tym przypadku o- 
bie powierzchnie są elipsoidami. 
Jeśli jednak choćby jeden ze współ« 
czynników równania (2.44) jest u- 
jemny, to wygląd tej powierzchni 
różni się zasadniczo od kwadryki. 
ha przykład na rysunku 2.9 przed­
stawiona jest powierzchnia współ­
czynnika rozszerzalności termicz­
nej kryształu, dla którego ,

> O, zaś < 0. Przekrój
X2Xj zawiera wartości ujemne. 
Ilościowy obraz przekroju (001) 
powierzchni 1 Tl dla 1^=0,625, 
T22 = “^>25 przedstawiony jest 
na rysunku 2.10, przy czym 1T = 
= (cos <P, sin $ , 0).

Hys. 2.8. Elipsoida względnej prze- 
nikalności dielektrycznej (a) dla 

> 0, i = 1,2,5 oraz (b) kwadry- 
ka względnej przenikalności dielek­

trycznej

2.6. Przekrój tensora płaszczyzną 
(010) w układzie jednoskośnym (me­

toda najmniejszych kwadratów)

Wyrażenie (2.42) jest bardzo 
przydatne w badaniu kształtu prze­

kroju tensora zadaną płaszczyzną krystalograficzną. Zagadnienie to jest 
ważne z doświadczalnego punktu widzenia, ponieważ zwykle mierzymy kilka­
naście do kilkudziesięciu punktów takiego przekroju, na przykład prze­
wodnictwa elektrycznego płytki krystalicznej w znanym kierunku,a następ­
nie chcemy uzyskać z tych danych optymalny obraz przewodnictwa elektrycz­
nego w owej płaszczyźnie, a ponadto optymalne wartości osi głównych te­
go przekroju. Jeśli skorzystamy z metody najmniejszych kwadratów,to war­
tości tych stałych możemy uzyskać z dokładnością większą od dokładności 
wyznaczenia poszczególnych punktów. Takie postępowanie jest szczególnie 
korzystne wówczas, gdy nie znamy z gój y kierunków osi głównych przekro­
ju, jak np. w płaszczyźnie (010) układu j a dno skośne go. Orientacja ta 
jest bardzo często spotykana z uwagi na duże rozpowszechnienie symetrii 
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jednoskośnej wśród kryształów moleku­
larnych (przeszło 60% związków orga­
nicznych krystalizuje w tym układzie). 
Dlatego zajmiemy się najpierw wyznacze­
niem równania przekroju, a następnie 
obliczeniem długości i orientacji osi 
głównych przy zastosowaniu rachunku 
wyrównawczego. Podane postępowanie mo­
że być oczywiście zastosowane i do in­
nego przekroju tensora.

Orientację elipsoidy wielkości w 
komórce elementarnej kryształu jedno- 
skośnego pokazano na rys. 2.11,zaś sam 
przekrój na rys. 2.12. Kąt 6 zawarty 

kryształumiędzy osią
jest 
niem

jedynym 
swobody

i osią a
przy tej symetrii 
orientacji osi 

x2

Bys. 2.9. Powierzchnia wsp' . 
czynnika rozszerzalności jl..' 
micznej i jej p’ .ek^oje a i 

a 2 > O, < 0

stop- 
tensora

Bys. 2.10. Przekrój powierza
ni wielkości fizycznej opis.:, ej 

ró'wnaniem T'<p; = 2; cos^ <P - 
- 1i sin2 <p

względem osi krystalograficznych. In­
nymi słowy, kąt ten musi być wyznaczo­
ny doświadczalnie, ponieważ na ogół 
ani nie wiemy na podstawie jakich da­
nych strukturalnych, ani za pomocą ja­
kiej metody można by go obliczyć.
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Mierzymy T w kierunku

względem osi głównych Z.. Wobec togo

Kf) = (cos ( cp - 0O) 0 sin (<p - 0Q))*

(
t^ 0 0 \ / cos ( q> - 0 ) \
0 Tg 0 I| 0 | =

0 0 \ sin (cp - ®Q) /

2 2= cos (<p - 80) + t^ Sin ( cp - 0O).

(2.4$)
Jest to równanie przekroju tensora na

Rys. 2.11. Orientacja elipsoidy 
wielkości w komórce elementar­
nej kryształu jednoskośnego

(010). Znanymi wielkościami są cp, T(q>), 
szukanymi t^, 9q. Za pomocą pros­
tych. przekształceń trygonometrycznych

1

Rys. 2.12. Orientacja elipsy przekroju elipsoidy wielkości 
na płaszczyźnie (OlO) kryształu jednoskośnego

2 22T(cp ) = cos ( cp - 0q) + Tj Sin ( cp - 8q) + t^ + t^ -

2 2- sin (<p - 8q) - Tj cos ( cp - 0O) =

a (^ + t^) + (-^ - t^) cos 2( cp - eQ) 
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można (2.45) doprowadzić do postaci

T(q>) = A + B cos 2 <P+ C sin 2<P, (2.46)
gdzie

(2.47)
"T5 C = -1-------2 sin 2 

2-----0
I ’ ' '

Równanie (2.46) jest dogodniejsze do prowadzenia dalszych obliczeń od 
(2.45), ponieważ jest liniowe względem szukanych wielkości A, B, C.

Przypuśćmy, że z doświadczenia znamy n par wielkości (^.Tt^)), 
i = 1,2,...,n. Jeśli dla uproszczenia oznaczymy = T^, to układ
równań typu (2.46) możemy napisać w postaci macierzowej *

(3) = (D(M), (2.48)

przy czym macierz« (T), (r) i (U) mają postać następującą:

(T) = (r)

2^
2^2

(2.49)

Macierze (T) i (r) są znane, poszukiwana jest macierz (M).
Różnice mięlzy wartościami zmierzonymi i obliczonymi 

dają macierz błędów (Z)
r - JM . a

(i) - (r) (M) = (Z),

czyli f

Zi^i-TiA« (2.50)

Zasada najmniejszych kwadratów wymaga, by suma kwadratów błędów osiąg­
nęła najmniejszą wartość, przy czym uzyskuje się to przez dobór odpo­
wiednich A,B,C. Mamy więc

Z± • ZŁ = Min.,
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Po wtóre, znajomość orientacji osi głównych tensora umożliwia w 
stosunkowo prosty sposób wpisanie elipsoidy wielkości fizycznej w komór­
kę elementarną kryształu. Przychodzi tu z pomocą, zasada Neumanna, prze­
widująca możliwe korelacje między symetrią i orientacją elipsoidy, odpo­
wiadającej makroskopowej wielkości fizycznej, a symetrią kryształu i 
orientacją osi krystalograficznych. Tą drogą możliwe jest uzyskanie dal­
szych korelacji między, na przykład, kierunkiem najlepszego przewodnic­
twa elektrycznego kryształu a rozkładem cząsteczek w komórce elementar­
nej. t

Po trzecie wreszcie, najprostszą postać wyrażenia na wartość wiel­
kości fizycznej w zadanym kierunku otrzymuje się właśnie w układzie osi 
głównych tensora (kwadryki).

Spośród różnych metod znajdywania kierunków i długości osi głów­
nych przedstawimy dalej dwie metody. Pierwsza z nich, metoda algebraicz­
na, opiera się na definicji wektorów własnych i wartości własnych macie­
rzy. W przypadku macierzy drugiego stopnia, wyłącznie nas tu interesują­
cych, prowadzi ona do równania trzeciego stopnia, mającego zawsze roz­
wiązania analityczne. Macierze stopnia wyższego niż drugi prowadzą do 
równań stopnia wyższego niż trzeci, nie zawsze łatwych do rozwiązania. 
Dlatego przedstawiono również drugą metodę znajdywania wektorów i war­
tości własnych, metodę kolejnych przybliżeń, dającą zawsze wyniki nume­
ryczne. Jest ona prostsza pod względem rachunkowym, choć niekiedy bar-' 
dziej pracochłonna.

2.7.1. Metoda algebraiczna

Zbiór współczynników kwadryki S^^ będziemy traktować jako ma­
cierz S. Iloczyn § u przy dowolnym wektorze u jest wektorem u', 
na ogół różnym od u. Jeśli zachodzi równoległość obu wektorów i/||u, 
to u jest jednym z wektorów własnych macierzy S. Ta równoległość za­
chodzi wówczas, gdy składowe u' są proporcjonalne do odpowiednich skłar 
dowych u, tj. równaniem wektorów własnych u i wartości własnych X ma­
cierzy S jest

S u = X u, 
czyli

(S - X U)u = 0. (2.54)

Symbol U oznacza macierz jednos:ową.
Rozpisanie (2.54) prowadzi do '.ustępującego układu trzech równań:

(S11 - X)Ul + S12u2 + S^u^ = 0 (2.55)
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+ ($22 ” ^'P^2 = O,
(2.55) 

S51u1 + S52u2 + (s55 " X>UJ = °!

gdzie są składowymi jednego z wektorów własnych u^, i =1,2,5. 

Aby zbiór równań jednorodnych (2.55) miał rozwiązania nletrywlalne ze 
względu na u, musi znikać wyznacznik tego układu

det (S - KU) = O. (2.56)

Eównanie (2.56) jest równaniem wiekowym trzeciego stopnia i określa 
trzy pierwiastki stanowiące trzy możliwe wartości
własne S. Jeśli są one liczbami rzeczywistymi, odpowiadają długościom 
trzech osi głównych kwadryki S.

Podstawiając kolejno do (2.54) możemy obliczyć odpowiadające 
im wektory’własne u* . Sens fizyczny jęst taki, że jego składo­
we określają kosinusy kierunkowe osi głównej (i)- względem układu współ­
rzędnych X]X2x,, w którym zadana jest kwadryka S. Wobec tego na wekto­
ry u'1) nakłada się warunek normalizacyjny

(u^)1' u^ = 1, i2.57)

przeprowadzający u^ w wektory jednostkowe e^

u^ = u^ • a'11.

2.7.2. Metoda kolejnych przybliżeń

Podstawą tej metody jest własność płaszczyzny n stycznej do kwa­
dryki- S w tym punkcie, w którym przebija ją dowolnie wybrany wektor ą 
(rys. 2.15). Pokażemy, że.wektor p spełniający relację

P = g • q

jest prostopadły do tej płaszczyzny. Wybierzemy wektor r || ą, którego 
koniec leży na powierzchni kwadtyki tak, że (r)^(S)(r) = 1 oraz q =k-r 
gdzie k jest stałą. Iloczyn skalarny r • p równy jest tej stałej k, 
mamy bowiem

r • p = (r)T (S) (ą) = k(r)T (S) (r) = k.

Wynik ten możemy porównać ze standardowym równaniem płaszczyzny

r • N = k\
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Rys. 2.1?. Własność płaszczyzny к 
stycznej do kwadryki w r |] q: jeśli 

P = S q, to p х Л “

gdzie r jest wektorem wykreś­
lanym z dowolnego punktu O i 
kończącym się na płaszczyźnie, 
zaś N jest wektorem wykreślo­
nym też z tego samego punktu O 
i normalnym do piej. Z porówna­
nia obu równań widać, że p mu­
si być prostopadły do * .Wynik 
ten słuszny jest w dowolnym u- 
kładzie współrzędnych.

Przypuśćmy teraz, że mamy 
zadany S w ogólnym układzie 
współrzędnych .Rysunek 2.14 
przedstawia przekrój tej kwa­
dryki w płaszczyźnie Wy-
bierzmy dowolny wektor u^ le­
żący w płaszczyźnie przekroju 
(nie koniecznie jednostkowy).
Wektor

u2 = s • Uq

będzie normalny do płaszczyzny 
stycznej w tym punkcie, w 

którym u,] przebije kwadrykę. 
Powtórne zastosowanie tej ope­
racji daje wektor

Uj = § • u2

normalny do która jest 
tym razem styczna do kwadryki

Rys. 2.14. Metoda kolejnych przybliżeń: m .
orientacja normalnej do л-j, Kg,«»« zblt w 3eJ przebicia przez

ża się do osi głównej wektor u2. Widać, że kierunki
wektorów u2........... u^ zbli­

żają się coraz bardziej do kierunku osi głównej Ł,. Normalizacja wekto- 
ra 3n 

prowadzi po n przybliżeniach do otrzymania wektora własnego e^.War­
tość własną, odpowiadającą można otrzymać z równania
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§ = £ = x(1) (2.58)

czyli
Ml ( t ^/2 f r—, p^/2= hf)T (f)[ • (2.59)

l J li )

Warto zauważyć, że kierunki un są zbieżne do kierunku najkrótszej osi 
kwadryki. Dla przyspieszenia tej zbieżności najlepiej wybrać wektor 
próbny u^ w takim kierunku, w którym jedna z trzech wartości Si;Ł jest 
najmniAjezn. Zwykle kilka kroków w metodzie przybliżeń doprowadza do 
znalezienia wektora z dokładnością do jednostki trzeciego miejs­
ca; dla uzyskania większej dokładności rachunek trzeba prowadzić dalej. 
Zbieżność przybliżeń jest o wiele wolniejsza, jeśli prócz istnie­
je jeszcze druga wartość =" S^. Jeśli nie potrafimy wybrać trafnie 
pierwszego przybliżenia, to rachunek trzeba prowadzić wówczas dłużej. 
W konsekwencji możemy otrzymać tą drogą tylko jeden z trzech wektorów 
własnych. Dla znalezienia e'2^ trzeba zastosować metodę kolejnych

”” —*1
przybliżeń do macierzy odwrotnej S według omówionych już zasad.Trze­
ci wektor własny oblicza się z iloczynu wektorowego

- e(^ x e^2)

Jeśli tensor jest zadany nie w postaci współczynników kwadryki, lecz 
składowych wielkości fizycznej, to wektor próbny u^ należy wybrać w 
tym kierunku, w którym składowa tensora na przekątni ma największą war­
tość.

2.8. Problemy i przykłady

2.8.1. Wyznaczenie przekroju tensora rozszerzalności termicznej 
kryształu ortorombowego

W celu wyznaczenia zależności współczynnika rozszerzalności ter­
micznej kryształu od kierunku, czyli ustalenia anizotropii rozszerzal­
ności termicznej sieci, stosuje się często jedną z metod rentgenogra- 
ficznych, na przykład metodę kołysanego kryształu lub metodę Weissen- 
berga. Aby uzyskać możliwie prosty obraz dyfrakcyjny, oś kołysania po­
winna być równoległa do jednej z osi krystalograficznych - na dyfrakto- 
gramie pojawiają się wówczas refleksy, odpowiadające węzłom określonej 
płaszczyzny sieci odwrotnej. Przyjmijmy, że w niniejszym przykładzie oś 
kołysania jest równoległa do osi a kryształu, zatem na kliszy fotogra­
ficznej pojawią się refleksy o wskaźnikach Millera (Oki), (1kl), (1kl), 
(2kl) etc., zgrupowane w warstwice (rys. 2.15). Dla naszych celów uży-
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Refleksy 
typu

Warstwica 
rzędu

1

O

-1

(Oki)

(1 kl)

I O I III

Rys, 2,15« Warstwie® refleksów w nętedsla kplyaan»ef> kryształu 
(»beiMtye®xŁe)

teczne są jedynie refleksy (Oki) 
warstwicy zerowej,ponieważ tyl­
ko dla nich można wyznaczyć z 
wystarczającą dokładnością zmia­
ny braggowskiego kąta rozprosze­
nia 6, spowodowane zmianą tem­
peratury. Dlatego w pracach 
tych używa się zwykle ekranów

Hys. 2.16. Kąty odzyska Bragga dla metalicznych, eliminujących re- 
dwóoh różnych temperatur fleksy innych warstwie,! na tej

samej kliszy wykonuje się dwa 
zdjęcia kryształu! w temperaturze t^ (najczęściej temperatura ciekłe­
go powietrza) i t? (najczęściej temperatura pokojowa). Fragment ta­
kiej kliszy przedstawiono na rys. 2.16. Obok dwóch refleksów i ś2 
narysowany jest ślad wiązie! pierwotnej, przesłonięty w środku cieniem
małego kryształka użytego jako próbka.

Korzystając z prawa źSraggów możemy napisać

2 d^^ sin 0 = n • X , 

gdzie d-^.j jest odległością dwóch sąsiednich płaszczyzn sieciowych o 
■wskaźnikach (hkl), 8 odpowiadającym tym płaszczyznom kątem odbłysku, 

X długością fali użytego promieniowania monochromatycznego, a n rzę­
dem dyfrakcji.. Zmiana temperatury powoduje zmianę d^, a to pociąga 
za sobą zmianę kąta 0

^dhkP sln ®1 + ^hkl ^sil1 = O = ÓJd^j,) sin 0/] + d*^ cos 6,] 5 8. 
Stąd

, . $ dhW) 5 0^(hkl) =  -----~-Ł—; S - —---- ■-------------. (2.60)
dhkl^2 ~ tą) tg - tn)



53

Widzimy zatem, iż w celu obliczenia współczynnika rozszerzalności w kie­
runku normalnym do płaszczyzny (hkl), trzeba znać kąt 6^ w temperatu­
rze niższej i jego zmianę przypadającą na 1 K. Łatwo też zauważyć, że w 
celu otrzymania możliwie dokładnych wyników należy wybrać refleksy o 
możliwie dużym kącie odbłysku (refleksy wysokokątowe). |

Mimo wszystko nie jest to metoda dokładna z następujących powodów;

(i) Buch termiczny sieci powoduje poszerzenie refleksów i ich roz­
mycie, co prowadzi do określonych błędów w ustaleniu ich położenia kąto­
wego.

(ii) Często nie znajdujemy wystarczającej liczby refleksów o dużym 
kącie odbłysku (2 6 > 80°), potrzebnej do wyznaczenia wybranego przekro­
ju tensora. Korzysta się wtedy również z refleksów niskokątowych,co pro­
wadzi jednak do większych błędów w wyznaczeniu a.

(iii) W celu uzyskania mierzalnej zmiany kątowego położenia reflek­
su potrzebna jest różnica temperatury t2 - t^ = 100 K, w wyniku czego 
współczynnik rozszerzalności podany relacją (2.60) należy traktować ja­
ko wartość średnią. Jeśli rozszerzalność sieci ma charakter nieliniowy, 
lub .między t^ i to zachodzi przemiana fazowa, zjawiska te są całkowi­
cie pominięte procedurą i nic o nich nie możemy się dowiedzieć.

Z tych powodów w pomiarach rozszerzalności liniowej kryształów sto­
suje się współcześnie w zakresie rentgenografii metodę dyfraktometrycz- 
ną Bonda [4,5j. Polega ona na bezpośrednim pomiarze kąta 9 z dwu syme­
trycznych i dokładnie mierzonych położeń odbijających kryształu, przy 
czym detektorem promieniowania rentgenowskiego jest licznik GeigeraTMtU- 
lera lub licznik scyntylacyjny. Jest to metoda o wiele dokładniejsza od 
fotograficznej i w warunkach sprzyjających pozwala mierzyć zmiany kąta 
dyfrakcji odpowiadające różnicy temperatur rzędu 0,01 K.

Do wielu celów znajomość średnich współczynników rozszerzalności 
zupełnie jednak wystarcza. Wracając do relacji (2.60) warto zauważyć,że 
przedstawienie kierunkowej zależności a za pośrednictwem wskaźników 
(hkl) płaszczyzn jest niewygodne. Można jednak bez trudu przejść od 
a(hkl) do a(q>), gdzie <p jest kątem zawartym między wybranym kierunkiem 
krystalograficznym a normalną do płaszczyzn (hkl). Sytuację geometrycz­
ną przedstawiono na rys. 2.1?. Widzimy, że dla interesującego nas zbio­
ru płaszczyzn (Oki)

Znajomość periodów sieci b i c oraz wskaźników kil pozwala obli­
czyć cp . Jako wyniki doświadczalne będziemy uważać pary liczbowe <p. o- 
raz a (<p. ) = a. . w układzie ortorombowym mamy ©0 = O (rys. 2.11) oraz
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Rys. 2.17. Orientacja normalnej do zbio­
ru odbijających płaszczyzn

a± = A + B cos 2^,

A _ ^2jj^ f
2

(2.61)
B = g22 ~ , 0 = 0,

2

gdzie a22Bb 1 “j?«0 są 
głównymi osiami badanego 
przekroju tensora. Ponieważ 
w zbiorze klisz fotograficz­
nych refleks (Oki) może wy­
stępować ri razy,przyjmie- 
my za a średnią arytme­
tyczną rA niezależnych po­
miarów

(2.62)

gdzie jest średnim błędem wartości średniej. Wagę statystyczną w^ 
definiujemy jako miarę dokładności proporcjonalną do liczby pomiarów i 
odwrotnie proporcjonalną do średniego błędu

wi = (2.65)

Poszczególne macierze, występujące w (2.51), mają obecnie postać

' W1 a1 ' ‘W1 cos 2qJ,: '

(w a ) =

ro
• • fi

, i r) -

w2 ^2 cos ^2

»

•
w aL n n J Lwn Wn cos 2’n .

Zbiór wyjściowych danych doświadczalnych otrzymany dla kryształu 1,8- 
dwunitronaftalenu z niezależnych pomiarów 42 refleksów i zgrupowany w 
10 punktach wyznaczających przekrój (Oki), zestawiono w tab. 2.2 [6]. 
Na podstawie tej nabeli możemy obliczyć liczbowe wartości elementów ma­
cierzy (w a ) i ( r) г
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Zatem

29,454 ■ '0,457 0,4370"
46,410 0,714 -0,5501
79,540 1,428 -0,4532
15,179 0,223 0,0171
10,838 • 10-6 K“1, (t) = 0,375 0,1310
9,057 I 0,253 0,1986

55,511 0,952 -0,8474
15,855 0,252 -0,1576
4,154 0,088 0,0159

_ 5,746 _ 0,088 -0,0825

m / 5,9796 -1,598l'
(irr (l?) = 1 | 9

\ -1,5981 1,5058

a na podstawie (2.51)

Tabela 2.2

Dane doświadczalne do przekroju (Oki) tensora a w 1,8-dwunitro- 
naftalenie [6]

i (Oki) (^ ± ^J-IO^K cos 2^ ri wi

1 020 67,4 i 18,3 1 8 0,437
2 011 65,0 i 8,4 -0,7705 6 0,714
5 021 55,7 ± 5,6 -0,5174 8 1,428
4 031 59,1 i 17,9 0,0768 4 0,223
5 041 28,9 ± 8,0 0,5492 5 0,375
6 081 35,8 i 15,8 0,7849 4 0,253
7 023 58,1 + 4,2 -0,8901 4 0,952
8 043 54,9 ± 11,9 -0,6255 5 0,252
9 010 47,2 ± 11,3 0,1805 1 0,088

10 012 65,5 i 11,5 -0,9575 1 0,088
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Stąd

a22 = -50’261 . .
x 10“° K“ .

«35 = 59,555

Po utworzeniu macierzy błędów według (2.50) znajdujemy, że =
= IPBą^lO“^2 E“2, ą błąd standardowy o = 5,8-10“® E“\ Wobec tego głów­
ne współczynniki rozszerzalności wynoszą

a =r 50,5 ± 5,8
x 10“6 E"1. 

a 35 = 59,5 ± 5,8

Postępując w analogiczny sposób z danymi dla drugiego przekroju tensora 
(hkO), czego szczegóły tu pomijamy, otrzymujemy

a^' = 117,7 ±.5,5
x 10“6 E“"1.

«22 = 49’° ± ^»5

Składową a22 wyznaczono dwukrotnie, z dwu niezależnych przekrojów ten­
sora. Widać, iż różnica między oboma wynikami mieści się w granicach 
błędu standardowego. W takim razie główne współczynniki rozszerzalności 
termicznej w krysztale 1,8-dwunitronaftalenu wynoszą

ai1 = 117,7 ± 5,5

a22= 49,6 + 5,8 x10“6E“\’ (2.64)

' =35 = 59,5 i 5,8

2.8.2. Orientacja płaszczyzny izotropii w krysztale

Płaszczyzną izotropii w krysztale jest płaszczyzna o takiej włas­
ności, że w każdym kierunku, leżącym na tej płaszczyźnie, wartość wiel­
kości fizycznej jeśt taka sama. Płytka wycięta z kryształii równolegle 
do tej płaszczyzny ma na przykład współczynnik załamania światła jedna­
kowy w każdym kierunku leżącym w płytce, a więc nie wykazuje zjawiska 
podwójnego załamania światła dla promienia padającego prostopadle. 0- 
rientację tej płaszczyzny można podawać za pomocą kosinusów kierunko­
wych wektora prostopadłego do niej; jest to kierunek charakterystyczny, 
zależy od symetrii kryształu oraz od względnej orientacji osi elipsoidy 
wielkości i osi krystalograficznych. W niektórych przypadkach ma on o- 
kreśloną nazwę: w odniesieniu do własności optycznych kryształu kierun-



57

Rys. 2.18. Orientacja normalnych Ni i Np do płaszczyzn izotropii 
w krysztale jednoslćośnym

ki normalne do przekrojów izotropowych tensora optycznej przenikalnbś- 
ci dielektrycznej noszą nazwę osi optycznych. W diamagnetykach również 
można mówić o osiach magnetycznych, zdefiniowanych w analogiczny spo­
sób (por. p. 5).

Rozważmy rozkład potrzebnych nam kierunków na przykładzie kryszta­
łu jednoskośnego, podany na rys. 2.18. Osie krystalograficzne a i c 
leżą w płaszczyźnie (010), oś b jest do nich prostopadła. cx jest 
osią prostopadłą do a i b tak, że abcx tworzy ortogonalny układ 
osi krystalograficznych. Jeśli c jest kierunkiem poślizgu w sieci 
przestrzennej, to układ osi ortogonalizujemy do axbc. Ola sprecyzowa­
nia sy+aacji- przyjmiemy, że wartości główne tensora spełniają rela­
cję

0 < t,] < tg < oraz II
T /W takim razie między i istniej; taki kierunek (1) =cos q>, 

0, sin q> j, że wartość r* w tym kierunk i równa jest t2 
p p

cos <p + Tj sin cp = t?. (2.65)

Warunek ten wyznacza położenie płaszczyzny izotropii Zauważmy, że 
istnieje jeszcze druga taka płaszczyzna n ,, położona symetrycznie 
względem . Po niewielkich przekształceniach trygonometrycznych otrzy­
mujemy z (2.65)

(\1/2Tp - Cr \
——------ j (2.66)
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Jeśli znamy wartości główne tensora, to z równości (2.66) możemy obli 
czyć kąt zawarty między wektorem 1 i t<|. U odniesieniu do osi krysta­
lograficznych abcx 1 ma orientację (1) = ^cos (cp — ®0)>0, sin 
( q> _ 0Q) j (rys. 2.18). Częściej jednak orientację płaszczyzn izotropii 
poda je się za pośrednictwem wektorów do nich, normalnych, _L
N2 ± Kosinusy kierunkowe i N2 wynosz^!

względem osi t^, Tg, t, (N-p^ ={“ cos $}’

(N2)T = { - sin ( <p+ 2V), O, cos ( <p+2V)},

względem osi abcx (N^ )T = sin (<p-®0), °» cos

(N2)T = sin (ą»-2V-90), 0, cos (cp+2V-80)}.

(2.67)
Jeśli kąt między i N2 oznaczymy przez 2V, to 2V = 180 - 2 <p 

oraz

• 2 2cos 2V = - cos 2<p = sin cp - cos’ <p =

<t> jest wartością średnią, zdefiniowaną przez (2.^1).

Korzystając z (2.68) możemy wyróżnić następujące przypadki:

(i) t^./ t2 Tj. Mamy wówczas dwa przekroje kołowe elipsoidy wiel­
kości, zatem dwa kierunki do nich prostopadłe i Ng.

(ii) (t^ + Tj) = t2< w tym przypadku 2V = 90, czyli N^J_ Bg.

(iii) T5 = Tg (2V = O), lub - t2 (2V = 180). Obrazem elip­
soidy wielkości jest wówczas elipsoida obrotowa wokół t^ lub t^,a każ­
da płaszczyzna prostopadła odpowiednio do lub t^ jest przekrojem 
izotropowym. W tej sytuacji mamy tylko jeden kierunek wyróżniony. Jego 
orientacją względem osi abo rządzi zasada Neumanna (por. p. 5).

(iv) = Tg = t^. Kryształ o tych własnościach jest izotropowy, 
wobec czego nie ma w przestrzeni kierunku wyróżnionego. Inaczej mówiąc, 
każdy kierunek jest prostopadły do przekroju izotropowego.

Jak już zauważyliśmy, izotropowe przekroje kryształów mają 
znaczenie zarówno z uwagi na prostotę warunków eksperymentu, jak i prak­
tyczne zastosowanie takich płytek. Okazuje się, że również struktura1 na 
interpretacja wyników takich pomiarów jest nie tylko możliwa, lecz i in­
teresująca, ponieważ prowadzi do poznania rozkładu charakterystycznych 
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kierunków molekularnych w tej płaszczyźnie. Wrócimy do bardziej szczegó­
łowego omówienia tych problemów w p. 5 i 6.

2.8. J. Wartości własne i osie główne tensora

Znaleźć kierunek i długość osi głównych tensora przewodnictwa elek­
trycznego pewnego materiału, przy czym składowe tensora są następujące 
(w om" m" ): = 25, ° 22 = 7, = 13, a12 = = O,

Ł °52 = *
W rozwiązaniu tego zadania zastosujemy metodę algebraiczną. W celu

znalezienia rozwiązań nietrywiałnych powinien być spełniony warunek (2. 
56), czyli

det (S^ - =
(25 -X)

0

O

O

(7 -' x)

-5 75

0

-5TJ
M5-x)

Stąd

oraz

(25 - x) {(.7 - x)(15 - x) - 27 p 0

X(1) = 25

Rozwiązaniem równania drugiego stopnia zawartego w klamrze są pozostałe 
wartości własne

x^2^ = 16, = 4.

Przejdziemy obecnie do obliczenia wektorów własnych.

25 u^} = 25

7 ’J,1) - 5-/? = 25

-5 7? 41)7 4^ =25 411-
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Rozwiązaniami tych równań są
ip' - dowolne, = O, up^ = 0.

Ponieważ powi ni en spełniać warunek normalizacyjny (2,56), przeto

(ę^b1 = (1, O, 0).

(ii) Wartości własnej = 16 odpowiada wektor własny u^2\ 

Układ równań liniowych ma obecnie postać

25 u^2) = 16 wj2\

7 42) - 5 42) = 16 42),

42) + 13 U^2) = 16 up\

Z pierwszego z nich wynika, że ujj2^ = 0. Pozostałe dwa są sobie równo­
ważne - możemy z nich otrzymać jedynie informację, że

u^/u^ = /5/5.

Obliczenie tych składowych umożliwia warunek normalizacyjny, który ma 
obecnie postać

(u^2b2 + (u^2))2 = 1, 

czyli

■w końcu otrzymujemy

(£(2J^ = (0, -j ,

(iii) Wartości własnej = 4 odpowiada wektor własny 
Po napisaniu równań liniowych widzimy, że u^ = O, zaś pozostałe dwa 
równania

5 up} - 5/5’ up] = o,

-3/7 up^ + 9 = o

mają rozwiązania upJ = 5/2, up} = 1/2. Zatem

(ę^P- (O,
2 ’ 2
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Znalezione trzy wektory własne tworzą razem macierz transformacji

/10 0

s = o 73/3 -1/2

\0 -1/2 7372

doprowadzającą zadany tensor S do postaci przekątniowej. W macierzy 
ę zamieniliśmy.wiersz drugi (e'2^)T z trzecim (e^bT ” tym celu, 

by wyznacznik tej macierzy był równy +1. Łatwo się przekonać, że

2.8.4. Relacja między składowymi tensora 
a odpowiadającymi im współczynnikami kwadryki

Tensorowi

(2.69)

w układzie osi głównych odpowiada równanie elipsoidy wielkości

(2.70)

Q tt II 1!

Obróćmy teraz układ współrzędnych o +30 wokół (układ 
macierz transformacji ę^), a następnie o kąt +45° (układ Xg 
macierz transformacji Cg) wokół nowej osi (rys. 2.19). Złożenie 
obu obrotów prowadzi do relacji między układem a Xg
(macierz transformacji ę)

72/2 0 -7272\ /7372 1/2 0

= = •51 - I 0 1 0 I [ -V2 7572 o
- - 72/2 0 T^/ \ 0 0 1

7S74. 7274 - 7^/2' /0,6124 0,3536 -0,7071

-1/2 7372 0 l= I -0,5000 0,8660 0

7674 7274 72/2 \ 0,6124 0,3536 0,7071

(2.?1)
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Rys. 2.19. Obroty osi układu współrzędnych

Widzimy, że łączny obrót jest iloczynem macierzy Cg^l (11316 ^7 zwrócić 
uwagę na kolejność czynników), i-ty wiersz macierzy ę podaje orienta­
cję osi x^ względem osi

Składowe tensora J w układzie x5 przyjmą wartości

1 = 55 (£)T
16,500

-5,674

-5,500

-5,674

7,000

-5,674

-5,500

-5,674

16,500

(2.72)

Oczywiście + T22 + = ^ + = 40.

Poszukajmy teraz osi głównych tensora T metodą kolejnych przybli­
żeń wiedząc, że muszą nimi być Jeżeli znamy ten wynik, to może­
my prześledzić rezultaty rachunku w sposób kontrolowany. Wśród składo­
wych przekątniowych £ mamy dwie wartości: = T7^. Spróbujmy więc
jako wektora próbnego uJ = (1, 0, -1). Mamy
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16,500

-3,674

-3,500

-3,674

7,000

-3,674

-3,500

-3,674

16,500

a więc już pierwsze przybliżenie
do dobrej orientacji jednej z osi głównych

po normalizacji do jedności prowadzi

= ( V272, O, --*/272).

Drugiej osi głównej należy szukać dla

1
1280,04

102,00

73,48

38,00

73,48

260,00

73,48

38,00

73,48

102,00

Największą składową 
czego wektor próbny 
razem rachunek jest 
ce:

przekątniową jest (T~= 260,00/1280,04, wobec( 2 ) / o A m
u^ winien być postaci = (0, 1, OJ. Tym

nieco dłuższy, a kolejne przybliżenia są następują-

przybliżenie I 11 III IV V
0 0,2624 0,3312 0,3480 0,35216

wektor 1 0,9286 0,8835 0,8705 0,86716
0 0,2624 0,3312 0,3480 0,35216

VI VII VIII e(2)

0,35320 0,35346 0,35355 V274
0,86632 0,86610 0,86603 — 7372
0,35320 0,35346 0,35355 7274

Trzeci wektor (e^ )T = 
cji e^ = e^1 x e^2\ 
tać

-1/2, Vg74) możemy otrzymać z rela-
Wynikająca stąd macierz transformacji ma pos-

Widzimy, że w uzyskanej macierzy osie i zostały zamienione w po­
równaniu do (2,71) (kwestia numeracji osi) oraz nastąpiła zmiana znaku 
osi (kwestia prawoskrętności układu),*Układy osi (2.73) i (2.71) 
są więc sobie równoważne. '



64

Przejdźmy obecnie do układu kwadryki. Tensorowi (2.69) odpowiada
kwadryka współczynnika

Transformacja macierzą c (2.?1) prowadzi do następujących współczynni- 
/ z” /ków S w układzie Ł|XgXj!

f = fi § (o)T = 1O"2
7,970

5,742

2,970

5,742

20,311

5,742

2,970

5,742

7,970
(2.75)

Poszukajmy obecnie osi głównych kwadryki (2.75) znowu wiedząc, że 
muszą nimi być X.. Tym razem należy wybrać wektor próbny w kierunku, 

1 (*1 ) Tktóry odpowiada najmniejszym składowym R^. Będzie to wektor ją' ') = 
= (1, O, -1)

/ 5,OOo\
Ug = = | O |, zatem (e^ = ( -/272, O, - V2?2),

\-5,000 /

zgodnie ze znanym już rezultatem. Postępowanie zmierzające do wyszuka­
nia dalszych wektorów własnych nie wymaga komentarzy.

2.8.5. Stożek zerowej rozszerzalności termicznej [3J

Współczynniki rozszerzalności termicznej kalcytu (krystalizuje w 
układzie trygonalnym) są następujące

= a22 = -S.SG^IO"6 K-1, “ = +24,91-10“6 K-1.

Obliczyć kierunek, w którym rozszerzalność termiczna wynosi zero. Czy 
kierunek taki jest tylko jeden?

Przypuśćmy, że zerowa rozszerzalność występuje w kierunku 1, od­
niesionym do układu osi głównych tensora a. Korzystając z (2.42) może­
my napisać
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Rys. 2.20. Stożek zerowej rozszerzal­
ności w kalcycie

0,4272.

Zatem zbiór kierunków,« których 
występuje efekt zerowej rozsze­
rzalności kryształu określają 
wektory jednostkowe

(1)T = 12 , 0,4272) oraz

(1)T = (l1t 12, -0,4272).

Składowe Izj, 12 wektorów speł­
niają warunek 

2 2i; + 1^ = 0,8175

poza tym są dowolne.Zbiory tych 
kierunków tworzą dwa stożki wo­
kół jako osi. Kątem wierz­
chołkowym każdego ze stożków 
jest (rys. 2.20)

2 <p = 2 arc cos 0,4272 = 2-64,75°.
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3. TRANSFORMACJA SYMETRII

Symetria jest jedną z najbardziej ogólnych cech materii, zarówno 
ożywionej jak i nieożywionej, równie powszechną jak masa czy temperatu­
ra. W dalszym ciągu ograniczymy się do zastosowania tego pojęcia do re­
gularnie zbudowanego ciała stałego, występującego przede wszystkim w po 
staci kryształów. Symetria jest tak ogólną podstawą kląsyfikacji ciała 
stałego, że podlegają jej wszelkie obiekty fizyczne, niezależnie od 
wszystkich innych kryteriów podziału, jakie - z różnych punktów widzenia 
można wprowadzić. Znane są więc przykłady substancji krystalizujących w 
układzie regularnym, jak na przykład urotropina i.jodek sodu, choć jed­
na jest kryształem molekularnym,a druga jonowym. Żelazo a, sód i niob 
są metalami, jednak pierwszy z nich- jest ferromagnetykiem, pozostałe są 
paramagnetykami. W niskich temperaturach sód jest zwykłym przewodnikiem 
a niob zyskuje własności nadprzewodzące w 9,2 K - mimo to wszystkie ma­
ją identycznie zbudowaną sieć przestrzenną (grupa przestrzenna Im3m), a 
więc jednakową symetrię kryształów.

Symetria nie byłaby jednak tak ważną, cechą ciała stałego, gdyby 
prócz budowy geometrycznej ciała nie obejmowała również jego własności 
fizycznych. Na przykład kryształ, o jednakowym rozkładzie atomów w 
trzech ortogonalnych kierunkach przestrzeni, ma również tę samą przeni- 
kalność dielektryczną w tych kierunkach, jak też takie samo przewodnic­
two cieplne i elektryczne. Przeciwnie, kryształ anizotropowy w sensie 
geometrycznym wykazuje również anizotropię swych własności fizycznych.

Związek symetrii geometrycznej ciała z Symetrią jego własności fi­
zycznych jest intuicyjnie oczywisty, mimo to został ostatecznie sformu­
łowany dopiero pod koniec XIX w. przez Franza Neumanna i nosi nazwę za­
sady Neumanna. Zanim ją omówimy, przypomnimy krótko podstawowe pojęcia, 
nie wdając się w szczegóły, które znaleźć można w monografiach poświęco­
nych teorii grup.

3.1. Symetria obiektu i wielkości fizycznej

Do podstawowych pojęć teorii grup, zajmującej się ścisłym opisem 
symetrii obiektów fizycznych lub funkcji matematycznych, należy pojęcie 
elementu symetrii i operacji symetrii. Elementami symetrii obiektu ma­
kroskopowego mogą być: centrum symetrii 1 (lub I), płaszczyzna zwiercia­
dlana m (lub a), n-krotna oś obrotu n '(lub C ) oraz inwersyjna oś 
obrotu n (lub Sn), przy czym możliwe wartości n są n = 1,2,5,4,6. 
Nie zajmujemy się obiektami posiadającymi 5-krotną oś obrotu, ponieważ 
symetrii takiej nie można pogodzić z symetrią translacyjną sieci prze­
strzennej kryształu. W oznaczeniach elementów symetrii na pierwszym 
miejscu wymieniono symbol międzynarodowy, zaś w nawiasie symbol według 
oznaczeń Schbnfliessa. Mówimy na przykład, że obiekt ma zwierciadlaną 
płaszczyznę symetrii, jeśli jego prawa połowa jest identyczna z odbi­
ciem lewej połowy w tej płaszczyźnie. Przez operację symetrii będziemy 
rozumieć takie przekształcenie (na przykład przez obrót o kąt 360/n), 
które doprowadza obiekt do położenia identycznego z wyjściowym.

Należy jednak zwrócić uwagę, iż pojęcie element symetrii nie jest 
identyczne z pojęciem operacja symetrii. Jeśli obiekt ma na przykład 
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czterokrotną oś symetrii C^, to możemy dokonywać następujących opera­
cji symetrii: C^, co oznacza obrót obiektu o kąty 360/4 = 90°, =
= C? • C? = cl, co oznacza wykonanie kolejno dwóch obrotów o 90° w tym

4 4 2’ " o 3 1 1 1 -1
samym kierunku lub jednego o kąt 180 , C4 ~ C4 ' C4 ’ C4 = ?4 , co ozna^. 
cza wykonanie trzech kolejnych obrotów o 90° każdy lub o 90° w kierun-

4- d *1 ‘I
ku przeciwnym, wreszcie C4 = C4 • ’ cą ’ C4 = G1 ” P° oblocie cia­
ła o 360° otrzymujemy pozycję wyjściową. Widzimy zatem, iż w tym przy­
kładzie jednemu elementowi symetrii odpowiadają cztery różne operacje 
symetrii, a ich zbiór tworzy grupę w sensie matematycznym. Wynik ten, 
mający znaczenie ogólne, możemy streścić w następujący sposób: każdemu 
elementowi symetrii odpowiada generowana przezeń grupa operacji syme­
trii.

Operacji symetrii odpowiada również przekształcenie (transformacja) 
układu współrzędnych. Jeśli kryształ ma na przykład trzykrotną oś syme­
trii, to możemy wybrać układ współrzędnych o początku leżącym na tej 
osi. Po obróceniu kryształu o 120° spostrzeżemy, że kryształ ma dokład­
nie taki sam rozkład ścian zewnętrznych względem tego układu, jak po­
przednio. Musi mieć również dokładnie taki sam rozkład elementów struk­
turalnych (atomy., jony, cząsteczki) w obu położeniach. Stwierdzenie to 
będzie prawdziwe również wtedy, gdy zamiast obrotu ciała dokonamy obro­
tu (ogólnie przekształcenia) układu współrzędnych w kierunku odwrotnym 
do obrotu ciała. Korzyść płynąca z zastąpienia operacji symetrii doko­
nywanych na obiekcie przez przekształcenie układu współrzędnych polega 
na tym, że każdej operacji symetrii możemy przyporządkować odpowiedni ą 
macierz przekształcenia (reprezentacja macierzowa), co znacznie ułatwia 
znalezienie wpływu operacji symetrii na określoną wielkość fizyczną.

Pełna symetria obiektu makroskopowego, na przykład określonego wie- 
lościanu, mieści się w pojęciu grupy punktowej symetrii. Jest to taki 
zbiór elementów symetrii, tworzący grupę, że przynajmniej jeden punkt 
w przestrzeni nie ulega przemieszczeniu pod wpływem wszystkićh operacji 
symetrii, odpowiadających elementom tego zbioru. Jeśli dla przykładu 
weźmiemy grupę punktową 222(D2), obejmującą operację tożsamości oraz 
trzy wzajemnie prostopadłe i przecinające się dwukrotne osie obrotu, to 
jedynym punktem nie ulegającym przemieszczeniu pod wpływem operacji te­
go zbioru jest miejsce przecięcia się trzech osi. Niekiedy punktów ta­
kich może być nieskończenie wiele, jak na przykład w grupie m2m (, 
zawierającej prócz elementu tożsamości dwie prostopadłe płaszczyzny 
zwierciadlane i oś dwukrotną, biegnącą wzdłuż prostej przecięcia się 
obu płaszczyzn. Zbiory elementów symetrii i inne podstawowe informacje 
o 32 krystalograficznych grupach punktowych są zebrane w 3.7.1.

W krysztale istnieje więc wiele kierunków symetrycznie równoważ­
nych, wynikających z działania operacji symetrii. Do naczelnych zasad 
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fizyki kryształów należy stwierdzenie wypowiedziane przez F. Neumanna, 
że kierunki symetrycznie równoważne są również fizycznie równoważne.In­
nymi słowy, pomiar dowolnej wielkości fizycznej w określonym kisrnnku 
musi dać ten sam wynik w każdym innym kierunku, symetrycznie równoważ­
nym. Zasadę tę możemy również wyrazić w języku teorii grup. Niech Gfc 
oznacza grupę punktową symetrii kryształu, zaś Gf grupę punktową syme­
trii wielkości fizycznej. G^ zawiera więc wszystkie elementy symetrii 
właściwe, na przykład kwadryce. Zasada Neumanna orzeka, że G^ musi być 
podgrupą Gf, czyli

G^ c , (3.1)

przy czym c jest znakiem inkluzji (zawierania).
Przy takim sformułowaniu związku między symetrią kryształu a syme­

trią własności fizycznej widać, że kwadryka podatności diamagnetycznej 
w krysztale należącym do układu tetragonalnego (czterokrotna oś syme­
trii) musi mieć symetrię elipsoidy obrotowej, co jest jej symetrią mini­
malną. Jest możliwe, że w pewnym krysztale tego układu kwadryka będzie 
mieć symetrię kuli,- nie może się jednak zdarzyć, by miała symetrię elip­
soidy trójosiowej. Ponadto słuszność zasady Neumanna ogranicza się do 
kryształów niemagnetycznych, ponieważ równoważność kierunków w kryszta­
łach magnetycznych nie jest związana wyłącznie z symetrią grupy punkto­
wej. Wreszcie symetria grupy punktowej G^ odnosi się do kryształu 
znajdującego się W próżni, bez obecności pola. Umieszczenie kryształu w 
polu oznacza z reguły pojawienie się efektów polaryzacyjnych o określo­
nym kierunku, co obniża efektywną symetrię kryształu. Wystąpienie tej 
dodatkowej asymetrii prowadzi do tak zwanych efektów drugiego (i wyższe­
go) rzędu, obejmujących zjawiska takie, jak dwójłomność kryształu izo­
tropowego, wymuszona obecnością pola elektrycznego(efekt Kerna), skręce­
nie płaszczyzny polaryzacji w polu magnetycznym (efekt Faradaya), polary­
zację elektryczną (pyroelektryczność) i magnetyczną (pyromagnetyzm) wy­
muszone obecnością gradientu temperatury i inne. Zasada Neumanna w sfor­
mułowaniu (3.1) nie obejmuje stanów kryształu spolaryzowanego przez 
działanie czynników zewnętrznych.

3.2. Generatory punktowych grup symetrii

Do opisania symetrii kryształów niemagnetycznych (z wyłączeniem 
kryształów ferri-, ferro- i antyferromagnetycznych) potrzebne są i wy­
starczą 32 grupy punktowe, stanowiące 32 możliwe klasy krystalograficz­
ne. Każda z tych grup punktowych obejmuje pewną liczbę elementów syme­
trii, wybranych spośród 10 elementów uznanych za pierwotne i stanowią­
cych zbiór generatorów grup punktowych.
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Tabela 3.1

Lista generatorów grup punktowych

Operacja 
symetrii

Rzut 
stereograficzny

Przekształcenie 
układ współrzęd­

nych

Macierz 
transformacji

1 2 3 4
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cd. tab.

Listę generatorów można sporządzić w rozmaity sposób, zależnie od 
tego, które z elementów symetrii uzna się za proste, a które za złożone 
w tym sensie, że można je przedstawić jako iloczyn dwóch (lub trzech) 
innych elementów. Wybór generatorów przedstawiony w tab. 3.1 obejmuje 
10 następujących elementów:

c^, i, c^, 4z), oy, a., c{z); S^z).

W pierwszej kolumnie tabeli podano oznaczenia elementów, w drugiej 
rzut stereograficzny, ilustrujący położenie punktu wyjściowego (krzy­
żyk) i punktów nowych (krzyżyk lub kółko), wytwarzanych przez wszystkie 
operacje symetrii generowane przez ten element. Położenia odnoszą się 
do układu współrzędnych zaznaczonego na pierwszym rysunku. W
trzeciej kolumnie podano rodzaj przekształcenia układu współrzędnych 
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zaś w czwartej macierze, odpowiadające tym przekształceniom. Każda z ma­
cierzy od do Ą1o odpowiada określonej operacji symetrii w potędze 
pierwszej. Jeśli interesuje nas operacja (CjZ )2, to odpowiadającą jej 
macierzą jest ^y2.

Przy posługiwaniu się tymi macierzami łatwo zauważyć, że 
czyli (a ) = (Cgy))•(!). Mimo to powinniśmy traktować jako nieza­
leżny element symetrii (generator), ponieważ istnieje grupa punktowa, 
zawierająca tylko ten element, a nie zawierająca ani I. Trzykrot­
na oś symetrii przechodzi przez punkt (000) i naroże L111J
sześcianu. Jej orientacja przedstawiona jest na rys. 3.1. Przekształca 
ona współrzędne według schematu x^=x^, reprezento­
wanego przez macierz Ąg. Symetryczną oś trzykrotną, przechodzącą przez 
naroże [lii] powinniśmy traktować jako złożony element symetrii (p. 3. 
7.3). S^ jest czterokrotną osią inwersyjną; operacja 4 polega na wy­
konaniu obrotu o 90°, a następnie odbiciu punktu w centrum inwersji, 
znajdującym się w .początku układu współrzędnych. Mimo że formalnie 4 = 
= 4*1 = 1 -4, nie można rozkładu punktów na rzucie stereograficznym 
4 zastąpić przez połączenie rzutów 4 i 1. Inne osie inwersyjne można 
potraktować jako złożone elementy symetrii, ponieważ 2Z = az, 3Z=3Z*1, 
gz = 5 z * 2z- Hównież 6z = 5z ’ 2z*

3.3. Wektory biegunowe i osiowe

Zgodnie z zasadą Neumanna wielkość fizyczna kryształu, należącego 
do jednej z 32 grup punktowych symetrii, musi być niezmiennicza wzglę­
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dem operacji symetrii, należących do tej grupy punktowej. Jeśli zatem 
wielkość wektorową oznaczymy przez p, a po transformacji układu współ­
rzędnych przez p\ to zasada Neumanna wymaga, by

p' = P (5.2)

lub, zgodnie z zasadą transformacji wektora (2.25)

4 P = P.
czyli

(^ - U) P = O. (5.5)

Ą jest jedną z macierzy (zależnie od i?teresującej nas
klasy krystalograficznej), podanych w tab. 5.1, zaś D jest macierzą jed­
nostkową. (5.5) jest więc ograniczeniem, nałożonym przez wymogi syme­
trii na postać wektora. Rozważmy kilka przypadków szczególnych.

(i) Przypuśćmy, że kryształ ma centrum symetrii. W tym przypadku

Oznacza to, że kryształ posiadający centrum symetrii nie może mieć włas­
ności, reprezentowanej przez wektor, na przykład momentu pyroelektrycz- 
nego lub momentu dipolowego. Oczywiście mamy tu na myśli własności spon­
taniczne, wynikające z własności elementów strukturalnych i ich rozmiesz­
czenia w komórce elementarnej. Jeśli zatem kryształ molekularny posiada 
CR, a jego cząsteczki są trwałymi dipolami, to rozkład cząsteczek w ko­
mórce elementarnej musi być taki, by doprowadzało to do zerowania momen­
tu dla całej komórki elementarnej. A zatem komórka elementarna nie mo­
że zawierać tylko jednej taiciej cząsteczki. Umieszczenie kryształu w po­
lu elektrycznym powoduje zmianę jego symetrii wypadkowej, ponieważ na­
stępuje polaryzacja cząsteczek. W wyniku tego moment dipolowy komórki 
elementarnej kryształu z CR może w pewnych kierunkach nie znikać.

(ii) Kryształ posiada dwukrotną oś symetrii \ J tym przypadku

czyli: ₽<] = P5 = 0, p2 * C .
Kryształ posiadający dwukrotną oś symetrii może nieć własność re­

prezentowaną przez wektor, jednak wektor ten musi być równoległy do tej 
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osi (o kierunku niekoniecznie równoległym do y). Taki sam wynik otrzy­
muje się dla zwykłej osi symetrii wyższych rzędów (p. 3.7.4). Występowa^ 
nie w krysztale osi inwersyjnej n o krotności n > 2 powoduje nato­
miast znikanie wielkości fizycznej reprezentowanej przez wektor bieguno­
wy, co można uzasadnić w następujący sposób. W zapisie macierzowym n = 
= n • 5, w związku z czym warunek (3.5) przechodzi w warunek równoważny

{= + $ } 2 =

Warunek ten dla n > 2 jest spełniony jedynie dla p = O. Oś inwersyj- 
na n = 2 jest identyczna z prostopadłą do niej płaszczyzną symetrii.

(iii) Wpływ płaszczyzny symetrii zilustrujemy za pomocą macierzy

^6- Mamy /0 o o\
{ą6 - dl} = | o o O ] ,

\0 O -2/

wobec czego p^ /0, p2 / O, p^ = O. Obecność płaszczyzny az powodu­
je, że znika składowa p^ wektora. Ogólniejszy wynik można sformułować 
następująco: w krysztale z płaszczyzną symetrii różne od zera mogą być 
tylko te wektory, które leżą w płaszczyźnie symetrii (p. 3.7.5).

Wektory, którymi zajmowaliśmy się dotychczas, należą do grupy tak 
zwanych wektorów biegunowych. Takie wielkości fizyczne jak siła F, wek­
tor falowy k czy natężenie pola elektrycznego wymagają dla ich okreś­
lenia podania długości, kierunku i jednego z dwóch zwrotów na prostej, 
na której leżą. Prócz nich można spotkać jeszcze inne wielkości wektoro­
we, którym przypisujemy również długość i kierunek, lecz zwrot dotyczy 
jednego z dwóch możliwych kierunków obrotu wokół prostej, wzdłuż której 
są umieszczone. Takim wielkościom odpowiadają wektory osiowe, a ich 
własności zilustrujemy zachowaniem się dipola w jednorodnym polu elek­
trycznym.

Jeśli dipol o momencie elektrycznym p znajduje się w jednorodnym 
polu elektrycznym o natężeniu E, to - jak wiadomo - działa nań para 
sił o momencie

M = p x Ę.

Sytuacja ta jest przedstawiona na rys. 3.2a w prawoskrętnym układzie 
współrzędnych przy czym dla uproszczenia założono, że p i E
leżą w płaszczyźnie XgXj; wektor M ma wówczas kierunek osi +x^. Doko­
najmy teraz inwersji układu osi współrzędnych, odpowiadającej operacji 
Ci, .wobec czego układ przejdzie w lewoskrętny (rys. 3.2b). Zgodnie z 
prawem transformacji wektorów biegunowych

p' = Ag p = -p, E* = E = -E,
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Rys. 3.2. Wpływ skrętności układu współrzędnych na wynik £ x E 

zatem

M' = (-p) x (-Ę) = M.

Widzimy, że wektor M nie zmienił zwrotu, jednak w układzie x^x^x^ 
ma zwrot -x^, co z punktu widzenia symetrii jest zwrotem "niewłaści­
wym". Jeśli bowiem zwrot M w XqXgXj (prawoskrętny) określa reguła śru­
by prawej, to zwrot w x^x^x^ (lewoskrętny) winien być określony re­
gułą śruby lewej.

Wnioskujemy stąd, że prawo transformacji wektora osiowego ma pos­
tać

pz = (det ^) A p. (3.4)

Dla macierzy od Ą,] do A^Q wyznacznik Ą jest równy +1, jeśli A nie 
zmienia skrętności układu, lub -1, jeśli układy x^ i mają skrętnoś- 
ci przeciwne. Wobec tego warunek niezmienniczości wektora osiowego 
względem transformacji symetrii ma postać

{(det Ą) - 4] j p = 0. • (3.5)

Wektorami osiowymi, oprócz M, są wszystkie wielkości, które można wyra­
zić jako iloczyn wektorowy dwóch wektorów biegunowych. Prócz tego osio­
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wy .jest również d« , tj. obrót o nieskończenie mały kąt, oraz wektor 
natężenia pola magnetycznego H. Ostatni wniosek odnośnie H wynika z 
postulatu niezmienności równań Maxwella względem transformacji Lorentza.

Przejdźmy do omówienia przypadków szczególnych w postaci krótkich 
stwierdzeń wynikających z (5.5), pozostawiając dowód tych relacji Czy­
telnikowi.

(i) Wielkość fizyczna reprezentowana wektorem osiowym może mieć w 
krysztale z centrum symetrii dowolną wartość, kierunek oraz zwrot, po­
nieważ

^(det Ąg) Ap “ ^1= 0«

(ii) Zwyczajna oś symetrii o dowolnej krotności nakłada na wektor 
osiowy takie same ograniczenia, jak na wektor biegunowy. Wynika to stąd, 
że podziałanie operacją C^ nie zmienia skrętności układu współrzęd­
nych. Występowanie w krysztale osi inwersyjnej n o krotności n > 2 
natomiast dopuszcza nie znikanie tylko niektórych składowych p.Na przy­
kład, dla operacji 4 (macierz k^) otrzymujemy

(1 “1 o\/P^ \ /p1 - P2\
1 1 0 I p2 l = I p1 + p2l = 0,

0 0 0 /

czyli p^ = pg = 0, Pj / 0. Nie znikającą składową p jest więc tylko 
składowa równoległa do osi

(5 ii) Jeżeli kryształ posiada płaszczyznę symetrii, to nie znika 
jedynie składowa wektora osiowego prostopadła do tej płaszczyzny (p. 
5.7.6).

5.4. Tensory biegunowe i osiowe

Przyjmowaliśmy dotąd milcząco, że w ogólnym związku

P=Tą (2.1)

oba wektory p i g są wektorami biegunowymi. Jeśli istotnie tak jest, 
to T nosi nazwę tensora biegunowego (polarnego), a zasada transforma­
cji jego składowych przy zmianie układu współrzędnych wyraża się znanym 
nam już prawem (2.28). T jest tensorem biegunowym również wtedy, gdy 
wiąże w zależność (2.1) dwa wektory osiowe. Wynika to z ogólnego postu­
latu niezmienniczośći prawa fizycznego (2.1) względem zmiany układu 
współrzędnych. Postulat ten prowadzi nas do bardzo ogólnych relacji mię- 
dzy
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dzy wielkościami występującymi w tym prawie. Możliwe sytuacje zestawio­
ne są-w poniższej tabelce.

i\j 1 2

P = • S • i 5 • a

1 biegunowy 
( + )

biegunowy 
( + )

"biegunowy
(+)

osiowy 
(-)

osiowy 
(-)

2 osiowy 
(-)

biegunowy 
( + )

osiowy 
(-)

osiowy 
(-)

biegunowy 
( + )

Widzimy zatem, że tensor T ma charakter biegunowy jeśli wiąże w 
zależność dwa wektory o tym samym charakterze; jeśli charakter tych wek­
torów jest różny, to T jest tensorem osiowym.

Podaliśmy kilka przykładów zależności typu 11 w rozdz. 2. Należy 
do nich związek (2.4) między wektorem indukcji elektrostatycznej D a 
natężeniem pola elektrycznego E lub (2.5) między gęstością prądu prze­
wodzonego j oraz E. Ponieważ oba wektory występujące w nich są biegu­
nowe, tensor ma również charakter biegunowy. Taki sam charakter ma ten­
sor w zależności typu 21, gdzie oba wektory mają charakter osiowy. Przy­
kładem może być związek między wektorem indukcji magnetycznej B a na­
tężeniem pola magnetycznego H

B = u H (3.6)

lub związek między wektorami momentu pędu J a prędkością kątową 
znany w dynamice bryły sztywnej

J = J • w. (3.7)

Zarówno tensor podatności magnetycznej w (3.6)> u, jak i moment bezwład­
ności w (3.7), I, mają charakter biegunowy. Biegunowy jest również ten­
sor g, przedstawiający obrót układu współrzędnych do x^XgXj
i wiążący z sobą dwa elementarne obroty da i d P o nieskończenie ma­
łe kąty obrotu odpowiednio w obu tych układach współrzędnych, tzn. d p 
jest obrotem w x^, da w a nadto x' = c x. Jest tak dlatego, że 
takie granicznie małe kąty obrotu możemy zdefiniować jako wektory osio­
we

d₽ = c da . (3.8)
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Istnieją jednak przypadki relacji między dwoma wektorami typu 12 
lub 22, w których jeden jest biegunowy, drugi osiowy..Do takiej relacji 
prowadzi na przykład zjawisko aktywności optycznej. Gdy płaska i spola-t 
ryzowana fala elektromagnetyczna przechodzi przez pewne kryształy, nie 
posiadające centrum symetrii, wówczas płaszczyzna polaryzacji promienio­
wania po wyjściu z takiego ośrodka ma inny kierunek, niż na wejściu.Zja­
wisko to występuje także wtedy, gdy wiązka promieniowania biegnie wzdłuż 
osi optycznej kryształu, a więc nie może być sprowadzone do zwykłej dwój- 
łomności. Padającej wiązce odpowiada wektor E, który jest biegunowy,po 
nieważ nie istnieje tu określony kierunek obrotu. Płaszczyzna polaryza­
cji ulega jednak obróceniu, przy czym możliwe są dwa kierunki obrotu: 
zgodnie lub przeciwnie do ruchu wskazówek na -tarczy zegara. Efekt ten 
opisuje zatem wektor osiowy. Tensor, opisujący aktywność optyczną, jest 
więc tensorem osiowym.

Przejdźmy do przedstawienia własności transformacyjnych tensorów, 
przy czym jako macierz transformacji interesować nas będą generatory |Ł 
i = 1,...,1O, zestawione w tab. 3.1. Jeśli prawdziwa jest relacja (2.1) 
to ogólnie prawdziwy będzie również związek

|i p = (|i T q = (|i | fi)|i q. (3.9)

Równość tę możemy zapisać w następujący sposób:

p' = 1 3'. (3.10)

Dla wektorów biegunowych mamy zgodnie z (3.3) |Ł p = p, oraz |Ł q = q, 
zatem tensor biegunowy transformuje się zgodnie z prawem

t = (|i £ I?) = £. (3.11)

Jeśli wektory mają charakter różny, na przykład p jest osiowy, czyli 
(det |i)|i P = P» zaś q jest biegunowy |Ł q = q, to otrzymujemy z 
(3.9)"

li P = (det |i)(|i S |i)|i q, 

ponieważ (det ±1. Stąd

I = (det |±)(|i T I?) = I- (3.12)

(3.12) przedstawia prawo transformacji tensora osiowego. Ma ono tę samą 
postać co (3.11), jeśli wyznacznik macierzy generatora jest równy +1.

Prawa (3.11) i (3.12) prowadzą do określonych związków między skła­
dowymi tensorów. Rozważmy te relacje dla ważniejszych typów generatorów 

=1••"=10*

/
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(i) Centrum symetrii I. Zastosowanie do tensora biegunowego trans­
formacji macierzą Ą2 prowadzi do wyniku

ą2 t ą2 = T, 
«

czyli obecność centrum symetrii w krysztale nie nakłada żadnych ograni­
czeń na składowe tensora biegunowego. Jest tak dlatego, że geometryczny 
obraz tego tensora - kwadryka - jest zawsze centr©symetryczny, wobec 
czego obecność (lub brak) tego elementu symetrii w krysztale -niczego no­
wego do symetrii kwadiyki nie wnosi. Sześć różnych i niezerowych skła­
dowych tensora symetrycznego odpowiada sześciu stopniom kwadryki w kry­
sztale trójskośnym: długości trzech osi głównych (3 wektory) oraz ich 
orientacji względem osi abcx (5 kąty).

Jeśli T jest tensorem osiowym, to det Ą2 = -1 i zgodnie z 
(3.12) otrzymujemy

-Ą2 - -2 = 2 = 2*

Wynik ten oznacza, iż tensor osiowy znika w krysztale posiadającym cen­
trum symetrii, tj. kryształ taki nie może na przykład powodować skręce­
nia płaszczyzny światła spolaryzowanego.

(ii) Dwukrotna oś symetrii równoległa do osi krystalograficznej b 
C<y). Dla tensora biegunowego otrzymujeńiy

/-1 O o\ /t^ T12 T^A /-1 o o\

Ąj i = O 1 O T21 T22 T23 0 1 0 =

\O 0 -y\^ T52 T33/ \ 0 0 ~V
/T11 "^12 T13\

= l-T21 T22 . -T^ j .

\T31 "®32 T33/

Widzimy, że
Tensor może 
składowe te

pod wpływem przekształcenia cztery składowe zmieniły znak, 
być niezmienniczy względem przekształcenia tylko wtedy, gdy

sztale posiadającym dwukrotną oś
będą równe zeru. Ogólną postacią tensora biegunowego w kry- 

symetrii jest zatem

O

T =
T11 
0

*31

t22
o

T13 
o (3.13)

T33
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Cztery różne i niezerowe składowe odpowiadają czterem stopniom swobody 
kwądryki w krysztale, należącym do układu jednoskośnego: długości trzech 
osi głównych (3 wektory) oraz orientację osi kwadryki leżących w płasz­
czyźnie ac (1 kąt, por. rys. 2.11). Ponieważ det = +1, ogranicze­
nia nałożone .przez C'|y) na składowe tensora osiowego są takie same, 

jak dla tensora biegunowego.

(iii) Płaszczyzna symetrii o^. Temu operatorowi odpowiada macierz 
Ar-, a transformacja prowadzi do następującego wyniku:
=3

(3.14)

Również i w tym przypadku znikają cztery składowe tensora i to te same, 
co poprzednio. Obecność w krysztale płaszczyzn symetrii a wymusza 
więc postać (3.13) tensora biegunówego. Łatwo się przekonać, że zastoso­
wanie dwukrotnej osi symetrii C^z^ lub płaszczyzny 0^ prowadzi do 

podobnego wyniku: cztery składowe tensora muszą się zerować, jednak in­
ne niż w (3.14). Przeprowadzenie odpowiednich rachunków pozostawiamy 
Czytelnikowi.

Prawo transformacji tensora osiowego łatwo otrzymać z (3.14). Po­
nieważ det k^ = -1, zatem znikają te składowe tensora osiowego TQ,któ­
re dla tensora biegunowego T^ były różne od zera. Ogólną postaćią 
w przypadku obecności a jest więc «y

(iv) Oś symetrii Cn rzędu n : 
ratora cj-1^ , określonego macierzą 

BO

2. Rozważmy wpierw działanie gene- 
Ąg, na składowe tensora biegunowe-

t12 t^A /o o n\

T22 T2, | p o o =

T52 T33/ V 1 C/

T23 T2l\

T33 T3-1 •

T'l3 T11/
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Wynikają stąd, następujące związki między Tik (=$kP!

T11 = T22 = T53 = A’

T12 = T25 = T51 = B*

Wobec tego w ogólnej postaci tensora biegunowego

(A B B\
B A B ]
B B A /

15.16)

(5.17)

występują tylko dwie składowe niezależne. Odpowiada to dwóm stopniom 
swobody kwadryki obrotowej wokół osi p11] . Niekonwencjonalna postać 
(3.17) bierze się stąd, że trzykrotna oś obrotu [11'1] nie pokrywa się 
ż żadną z osi współrzędnych. Możemy jednak (5.17) sprowadzić do postaci 
przekątniowej za pomocą odpowiednio dobranej transformacji (p. 5.7.7)1 
a wtedy fakt, że obrazem (5."17) jest kwadryka obrotowa, stanie się bez­
pośrednio dostrzegalny. Wyznacznik macierzy Ag równy jest +1, przeto 
(5.17) jest zarazem ogólną postacią tensora osiowego. Jest ogólną włas­
nością osi symetrii Cn, że operacje c“, m = 1,2,...,n-1 nie zmienia­
ją skrętności układu współrzędnych.

Relacje między składowymi T i ogólną postać kwadryki w krysztale 
posiadającym oś CQ przy n > 2 możemy otrzymać w bardziej bezpośred­
ni sposób, jeśli jako generator wybierzemy Ą^. Macierz ta odpowiada 
czterokrotnej osi symetrii o kierunku równoległym do W tym przypad­
ku mamy

/T22 “T21 T25\
=9 = =9 = l~^12 T11 -T15 j *

\T52 "T51 T55/

Stąd

Tu - Tgp = ^33 ~

Tzj2 = -T21 = ®21 ’ T12 = T21 =

^■15 = ^25 = ~T15’ ^13 = ®^1 =

T25 = T52 = °-

oraz
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Ogólna postać tensora Jest więc następująca:

(A O o\
O A Ol, (3.18)
O Ó B /

a jej obrazem Jest kwadryka obrotowa wokół 3^,

(v) Inwersyjna oś symetrii S^. Zastosowanie operacji symetrii Ą10 
do tensora biegunowego prowadzi do znanego Już nam wyniku (3.18). Do no­
wego rezultatu doprowadzi nas natomiast poddanie transformacji tensora 
osiowego za pomocą Ą,|0. Korzystając z (3.18) otrzymamy

Wynikają stąd następujące warunki dla składowych T..: lik

T11 = "^22’ T33 = °’

T13 “ T31 “ °’ T23 “ T32 = °’

Ogólną postacią tensora osiowego w tym przypadku będzie zatem

/T11 T12
So=(T12 ^11 °)’ (3.19)

\0 0 0/

Podsumowanie dyskusji wpływu symetrii na postać biegunowego tenso­
ra drugiego rzędu przedstawione zostało w tab. 3.2. Obok zbiorów genera­
torów wymienionych w wierszach, z których każdy odpowiada inna j klasie 
w określonym układzie krystalograficznym (p. 3.7.1), podano postać ten­
sora w ogólnym układzie współrzędnych Postać ta jest charakte­
rystyczna dla wszystkich klas określonego układu, a pewnym wyjątkiem od 
tej reguły mogą być klasy układu jednoskośnego, gdzie orientację osi 
dwukrotnej wybiera się najczęściej 2 II x2, lecz niekiedy 2llxj. Ma to 
wpływ na wybór tych czterech składowych, które muszą być równe zeru. W 
układach trygonalnych, tetragonalnych i heksagonalnych wspólna postać 
tensora zgodna jest z wymogami głównej osi symetrii, Cn|| lub Sn|| Xj, 
przy n > 2. W obrazie geometrycznym odpowiada jej kwadryka obrotowa 
wokół Xj, której symetria już z natury rzeczy obejmuje pozostałe ele­
menty symetrii. Nie ma takich cech ogólnych tensor osiowy. Ze 'względu 
na występowanie czynnika det = ±1 warunki zerowania się składowych
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Tabela 3.2

Postać tensora biegunowego w poszczególnych układach krystalograficznych
w ogólnym układzie współrzędnych

Układ 
krystalo­
graficzny

Generatory Postać 
tensora

Liczba 
nie żale żutych 
składników

Rodzaj 
kwadryki

Trój- 
skosny

ilf
r>

 lito 
ru

 -ST /T11 t12
T22 T23 

\
6

Elipsoida trójosiowa, 
brak korelacji z osiami 
krystalograficznymi

Jedno- 
skośny

ll>
 lite» 

IIJ
o 

ro
 u 

Ui
 

ut
> lip

 lip
Ul

 <T>

Au 0 Tu''

T22 0

\

4
Elipsoida trójosiowa, 
jedna z osi || (x^)

Rombowy

h’ =4

44- 45

4a’ 4?> 4ł

Au 0 0

T22 0 3
Elipsoida trójosiowa 
z osiami || , ||

Try- 
gonalny

ci?

*£.1X0-
 

Cll 
<111 

<«111

J>- 
N

A 
CII 

CII 
CII 

O
- 

KA 
C

U 
CU 

CII 
CII

/T11 0 0 \

T11 0 2
Elipsoida obrotowa 
wokół osi

Tetra- 
gonalny

4g> 4io’ 42’ 49;

4j’ 4g» 4j’ 4g> 4j’ 4io>

42’ 4?’ 4g
>

Heksa­
gonalny

lit
r*

 litr* 
llt

> 
Ul

 
Ul

 4?
lit

o litr
* lito

 
O

A 
-O

lit
r»

 litr» 
ll^

o 
-u

, CJ
, O 

lit
r»

 ||> 
IIJ

o 
PO

 4? O
 

lit
r»

 litr» 
lit

o 
Ul

 Ul r
o 

lit
o IIJo

 lito

Regularny
4ą> 4s’ 42’ 44’ 4si
4s’ 49’ 4io’ 4si

42’ 4g’ 4s

K 0 0 \
T11 . 0

\ ■
1 Kula



T z punktu widzenia wymogów symetrii są różne dla różnych klas krysta­
lograficznych w obrębie tego samego układu. Z tych powodów w tab. 5.2 
nie zamieszczono postaci tego typu tensorów.

Ogólne prawa transformacji wielkości fizycznych przy zmianie ukła­
du współrzędnych zestawione są w tab. 5.3.

Tabela 5.3

Prawa transformacji wielkości fizycznych

XjZgXj —4

Skalar b' = b' b = b'

Wektor biegunowy p' = g P I'd 11

11
0 e

I'd
*

Wektor osiowy p' = (det ę)ę p p = (det ę)ęT p'

Tensor biegunowy i = ę ? / lie
 

11
 

IIO
^.

 

H
fl 

IIQ

Tensor osiowy z = (det c)c T ęT T = (det c)ęT t ę

Przy omawianiu symetrii grup punktowych oraz własności wektorów 
biegunowych i osiowych, warto na zakończenie wspomnieć o symetrii nie­
których brył i wektorów, opierając się na dyskusji zamieszczonej w mono­
grafii Żełudiewa [1].

Nieruchomy cylinder posiadałoś obrotu nieskończonego rzędu, nie­
skończenie wiele płaszczyzn symetrii przechodzących przez tę oś i jedną 
płaszczyznę symetrii prostopadłą do osi. W takim razie grupę punktową 
symetrii cylindra nieruchomego możemy zapisać w postaci oo/mmij. Obrót 
cylindra wokół osi symetrii co likwiduje wszystkie równoległe do niej 
płaszczyzny symetrii, a więc jego grupą punktową będzie co/m. Jeszcze 
niższą symetrię ma cylinder skręcony wzdłuż pobocznicy oo2, ponieważ 
znikają wszystkie płaszczyzny symetrii.

Stożek nieruchomy ma symetrię oomm, natomiast stożek obracający 
się wokół osi ma symetrię oo.

W tej symbolice symetrię kuli możemy oznaczyć przez oo /00/ mmm, 
ponieważ każda średnica kuli ma symetrię cylindra, a jest ich nieskoń­
czenie wiele. Taką symetrię ma w fizyce wielkość skalarna. Jeśli skręci­
my kulę wzdłuż jednej z tych średnic, to symetria nowej kuli będzie rów­
na 00/co 2. Fizycznie twór taki odpowiada kuli wykonanej z ośrodka skrę­
cającego płaszczyznę polaryzacji światła, na przykład kula wykonana z 
roztworu cukru w wodzie. Poza tym taką symetrię ma tak zwana wielkość 
pseudo-skalarna, której odpowiada figura "lewoskrętna" lub "prawoskręt- 
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na", zależnie od zwrotu skręcenia średnicy. Znak skrętności zmienia się 
na przeciwny po odbiciu figury w zwierciadle.

Wektor polarny ma symetrię nieruchomego stożka, czyli co mm. Przy­
kładem takiej wielkości jest natężenie pola elektrycznego E, wektor po­
laryzacji kryształu P, dipolowy moment elektryczny p.

Wektor osiowy ma symetrię obracającego się cylindra, czyli oo/m. 
Do grupy takich wielkości należy, na przykład, wektor natężenia pola 
magnetycznego H, wektor indukcji magnetycznej B, namagnesowania I 
lub momentu magnetycznego M.

-------O-.------ ,---------e--------- -------- ----------- ---------------  
M A B A B A B ' N

——--------- $—♦--------------- o—,--------------------
AB AB AB N

Rys. 3.3. Rozkład atomów wzdłuż osi niepolarnej i polarnej

Ważnym pojęciem jest kierunek polarny w krysztale. Rozważmy prostą 
MN, na której rozmieszczone są atomy A i B w jednakowych odległoś­
ciach (rys. 3.3). Odległość od A do B jest taka sama niezależnie od 
tego, czy patrzymy wzdłuż kierunku MN czy też wzdłuż kierunku przeciwne­
go NM. Jeśli jednak atomy rozmieszczone są wzdłuż. MN periodycznie lecz 
w niejednakowych odstępach, to.odległość, AB widziana wzdłuż MN będzie 
inna, niż w kierunku NM. Kierunek MN jest więc w takim przypadku polar­
ny. Kierunki polarne w krysztale mają symetrię wektora polarnego oomm 
lub niższą, tj. symetria takiego wektora może być podgrupą oomm.

Możliwość wystąpienia kierunku polarnego w krysztale zależy od gru­
py punktowej, do której należy kryształ. Na przykład, obecność centrum 
symetrii w krysztale od razu wyklucza możliwość istnienia kierunku po­
larnego, ale nawet bez obecności centrum symetrii nie wszystkie kryszta­
ły mają własności polarne. Z' tego punktu widzenia 32 klasy krystalogra­
ficzne możemy podzielić na trzy następujące grupy:

(i) Klasy, którym odpowiadają kryształy o jednym tylko kierunku po­
larnym (oś unipolarna). Mają one elementy symetrii zawarte w grupie 
punktowej symetrii wektora polarnego, lub w jego podgrupie. Mamy 10 ta­
kich klas krystalograficznych, a mianowicie 1, 2, 3, 4, 6, m, mm2, 3m, 
4mm, 6mm. Użyte tu symbole klas objaśnione są w p. 3.7.^« Oznaczenia 
grup przestrzennych omawiane są w rozdz. -3.5. I tak w układzie trójskoś- 
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nym możemy mieć jedną tylko grupę przestrzenną całkowicie asymetryczną: 
pi. Jeśli cząsteczka w komórce elementarnej (Z = 1) ma moment dipolowy 
p / o, to komórka elementarna, a zatem i cały kryształ, będzie wykazy­
wać spontaniczną polaryzację £ / O o kierunku £ równoległym do p^. 
W układzie jednoskośnym jest więcej grup przestrzennych z kierunkiem po­
larnym. Różnią się one typem centrowania lub rodzajem płaszczyzny syme­
trii: P2, P2^, 02 (oś unipolarna równoległa do dwukrotnej osi symetrii) 
Pm, Pc, Cm, Cc (oś unipolarna leży w płaszczyźnie symetrii, lecz jej 
kierunek nie jest zdeterminowany przez orientację elementów symetrii 
kryształu). Najwięcej grup przestrzennych o osi unipolarnej, równoleg­
łej do osi z, można znaleźć w układzie ortorombowym. Są to grupy: mm?, 
Fmc2-p Pcc2, Pma2, Pca2/|, Pnc2, Pmn2^, Pba2, Pna2^, Pnn2, Cmm2, Cmc2^, 
Ccc2, Amm2, Abm2, Ama2, Aba2, FmniP, Fdd2, Imm2, Iba2, Ima2. W układzie 
tetragonalnym oś unipolarną, równoległą do z, wykazują kryształy nale­
żące do następujących grup przestrzennych:Pa, , P4g, P4j,I4, 14^,P4mm 
P4bm, P42nm, P4cc, P4nc, P42mc, P42bc, I4mm, I4cm, I4^md, 14^cd,,P42cm.

Nieznikający moment elektryczny mogą mieć wreszcie kryształy o na­
stępujących grupach przestrzennych układu trygonalnego i heksagonalnego 
P3, P31, P32, RJ, PJml, Pylm, PJcl, P31c, R3m, R3c, P6, P61f P62, P6,, 
P6^, P6mm, P6cc, P6^cm, PS^mc.

(ii) Klasy krystalograficzne, w których występuje centrum symetrii 
a więc krystalizujące w nich substancje nie mogą wykazywać różnego od 
zera dipolowego momentu elektrycznego pod nieobecność pola elektryczne­
go. Klas tych jest 11. 1, 2/m, mmm, 4/m, 4/mmm,.'3, 3/m, 6/m, 6/mmm, m5, 
m3m.

(iii) Pozostałe 11 klas - '222 , 4, 422 , 42m, 5/2, 6, 622, 62, 23, 
432, 43m - odpowiada kryształom o tak zwanych własnościach polarnoobo- 
jętnych. Ewentualne kierunki polarne są w nich związane relacjami syme­
trii, co daje ogólną kompensację bez wypadkowej osi unipolarnej.Na przy­
kład trzy kierunki polarne kwarcu, równoległe do trzech osi C2, tworzą 
układ z wypadkowym wektorem polarnym równym zeru.

Inny podział ciał, oparty na wprowadzeniu klas magnetycznych, nie 
ma zastosowania w stosunku do kryształów molekularnych. Są one bowiem w 
ogromnej większości, diamagnetykami, a tylko niektóre z nich mają włas­
ności paramagnetyczne. Czytelnika zainteresowanego własnościami klas 
magnetycznych odsyłamy do innych prac, na przykład [2j.

3.5. Symetria grup przestrzennych

Sieć przestrzenna jest podstawowym pojęciem w krystalografii. Po- 
wstaje ona przez powtarzanie podstawowych wektorów sieci a, b, £ (ozna-
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Tabela J.4

Typy komórek Bravaisa

Liczba 
i możliwe 

typy 
komórki

Typ 
komórki

Układ kry­
stalograficzny

P c I F Parametry 
sieci

1 : P Trójskośny
a / b / c 

a / p / у

2 : P i B 

(lub A)
Jednoskośny

•

•

ł a / b / c

a = Y = 90 / p

4 : P,I,C 
(lub A, lub
B) i F

Rombowy if 1 1 
>

•
1 • •

> • T
a / b / c

a - p = y " 90

1 : R Trygonalny
a = b = c

a = p = y / 90

1 : P Heksagonalny R ю 
n u u

 
ro

 o u 
%

.
K
O
 o

2 : P i I Tetragonalny
1

,y
a = b / c

a = p = y = 90

5 : P, I, F Regularny UJ t a = b = c

a = p = у = 90
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czanych często też przez a^, a2, a^), odpowiednio w trzech kierunkach 
przestrzeni. Wektory te mogą zawierać z sobą kąty « , ₽, Y dowolne, 
lecz przyjmujące niekiedy wartości 60, 90 lub 120°. Powstaje-w ten spo­
sób nieskończony zbiór punktów wyznaczony przez końce wektorów

r = n^ą^ + Ugag + n^, (3.20)

zwanych wektorami sieci (prostej). Jiiozby n^, ng, n$ są liczbami oał-i 
kowitymi lub zerem. Sieć przestrzenna jest więc tworem geometrycznym, 
zaś rzeczywistą strukturę kryształu (idealnego) obejmującą geometryczny 
zbiór położeń atomów, jonów lub cząśteczek, z których składa się krysz-i 
tał, możemy rozumieć jako periodyczną konstrukcję wpisaną w jedną z możr 
liwych sieci przestrzennych. Hównoległośoian, zbudowany na trzech nj.eko- 
planarnych wektorach ą^, odzwierciedla symetrię sieci przestrzennej i 
odpowiada komórce elementarnej w rzeczywistej strukturze kryształu. Bra­
vais wykazał, że można skonstruować tylko czternaście różnych typów rów- 
noległościanów, noszących nazwę komórek Bravais i zestawionych w tab.
3.4. Sieć przestrzenną możemy więc rozumieć także jako periodyczne po­
wtarzanie w trzech kierunkach jednej z czternastu komórek Bravaisa przy 
zachowaniu warunku ciasnego wypełniania przestrzeni} powstaje w ten spo­
sób czternaście typów sieci Bravaisa. Nie wystarczają one jednak do u- 
tworzenia wszystkich możliwych grup przestrzennych.

Prócz komórek prymitywnych, zawierających elementy strukturalne 
tylko w narożach komórki Bravaisa, istnieją również komórki złożone, za­
wierające te elementy w dodatkowych położeniach (środki ścian lub śro­
dek równoległościanu). Możliwe typy centrowania komórek Bravaisa zasta­
wione są w tab. 3.5. Tabela 3.4 przedstawiona została skrótowo, w tym 
sensie, że wszystkie trzy typy centrowania: A, B lub C umieszczone są 
w jednej kolumnis, w obu tabelach zastosowano najczęściej dziś używaną 
symbolikę, wprowadzoną przez Hermanna i Mauguina.

W sieci przestrzennej pojawia się nowy rodzaj symetrii, wynikający 
z definicji sieci - symetria translacyjna. Jeśli przez Tlr^) i T(r2) 
oznaczymy operację przesunięcia odpowiednio o wektor r^ lub tg, typu 
(3.20), to przesunięcie dla sumy wektorów możemy zapisać w następujący 
sposób:

T(£l + r2) = T^) T(r2) =T(r2) T^). (3.21)

Zbiór wszystkich operacji translacji tworzy więc nieskończoną grupę abe- 
lową ze względu na dodawanie. Operacja translacji przemienna jest rów­
nież z każdą inną operacją, na przykład z obrotem wokół osi Cn lub od­
biciem w płaszczyźnie symetrii a .
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Tabela 5.5

Typy centrowania komórek Bravaisa

Oznaczenie Opis Liczba węzłów 
w komórce

P prymitywna 1
I przestrzennie centrowana 2
C centrowane dwie ściany 

(001)
2

В centrowane dwie ściany 
(010)

2

A centrowane dwie ściany 
(100)

2

F centrowane wszystkie 
ściany

4

Rys. 3.4. Działanie płasz­
czyzny poślizgń typu c

Wzajemne powiązania elementów struktu­
ralnych w idealnej strukturze kryształu 
wskazują, że prócz znanych nam już relacji 
między nimi, polegających na odbiciu w'cen­
trum lub płaszczyźnie symetrii, przemiesz­
czeniu zwykłą lub inwersyjną osią obrotu, 
wreszcie operacją translacji, należy wyróż­
nić. jeszcze dwa nowe elementy symetrii. Są 
nimi płaszczyzna poślizgu oraz oś śrubowa. 
Te dwa elementy nie występują w grupach 
punktowych. Grupy przestrzenne powstają 
-więc przez spójne połączenie grup operacji 
symetrii, właściwych grupom punktowym, z 
symetrią translacyjną oraz dwoma dodatko­
wymi elementami symetrii. Różne sposoby po­
łączenia tych elementów (z wyłączeniem pię­

ciokrotnej osi obrotu) prowadzą do 230 możliwych grup przestrzennych.
Odbicie w płaszczyźnie poślizgu składa się z dwóch operacji, wyko­

nanych w dowolnej kolejności: odbicia punktu w płaszczyźnie zwierciadla­
nej oraz przesunięcia go o wektor (V2)ją (płaszczyzna typu a), (1/2)£ 
(płaszczyzna typu c) lub (1/2)(ą + b) (płaszczyzna typu n). Przykład 
działania płaszczyzny poślizgu c przedstawiony został na rys. 3.4; 
punkt' A zostaje przekształcony w punkt A* lub A" (A* i A" są trans- 
lacyjnie równoważne).

Oś śrubowa rzędu n jest elementem symetrii, stanowiącym połącze­
nie obrotu o kąt 360/n oraz przesunięcia o ułamek m/n periodu w kierun-
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Rys. 5.5. Prawoskrętna oś 
śrubowa 4-]

ku osi obrotu; n = 1,2,...,m-1. Zgodnie z 
tą nomenklaturą 2^ oznacza dwukrotną oś 
śrubową. Jej działanie polega, na obrocie 
punktu w położeniu-ogólnym o '180° i prze­
sunięciu go o 1/2 a, 1/2 b lub 1/2 c,za­
leżnie od kierunku psi. Trzykrotne osie 
śrubowe mogą być dwojakiego rodzaju: 5-f i 
5g. Jeśli pierwszą z'nich nazwiemy prawo- 
skrętną, to drugą - lewoskrętną. Cztero­
krotne osie śrubowe mogą być typu 4^ i 4$ 
(prawo- i lewoskrętna) oraz 42. Działanie 
4^ pokazane jest na rys. 5.5. Sześciokrot-+ 
nę osie śrubowe tworzą następujące pary o- 
si enanc jomerficznych: 6^ i 6^, 62 i 6^ 
ors(z Sj. Rysunek J.6 jest ilustracją moż­
liwych osi sześciokrotnych w rzucie wzdłuż 
osi. Cyfry w kółkach oznaczają wysokość 
punktu nad płaszczyzną rzutu w jednostkach 
1/6 c. 6 jest sześciokrotną osią inwersyj- 
ną o działaniu analogicznym do 4 (por. s. 
82). Rysunek 5-7 ilustruje działanie 
wszystkich możliwych w grupach przestrzen­
nych osi oraz ich symbole graficzne.

Występowanie płaszczyzn poślizgu oraz 
osi śrubowych w wielu grupach przestrzen­

operacji translacji T(r) istnieją równieżnych sprawia, iż oprócz
przesunięcia typu |P(m/n ę). Nie należą one jednak do grupy operacji 
translacji, o której była mowa na początku tego rozdziału.

Oznaczenia grup przestrzennych zawierają kilka symboli, z których 
pierwszy determinuje typ komórki elementarnej według klasyfikacji Bra- 
raisa: P, A, B, C, I, F (tab. 5.5) lub R. Dalsze symbole oznaczają ge­
neratory grupy przestrzennej, przy czym najpierw wymienia się oś głów­
ną, zwykle o najwyższej krotności, z podanie^ jej składowej translacyj- 
nej jeśli jest to oś śrubowa, następnie symbole pozostałych osi i płasz­
czyzn symetrii. Odstępstwo od tej zasady występuje tylko w trzech kla­
sach układu regularnego: T = 25, T^ = m5 oraz Og = m5m. W celu zazna­
czenia prostopadłości płaszczyzny symetrii do osi-używa się kreski skoś­
nej, na przykład P2,]/m oznacza grupę przestrzenną o komórce prymityw­
nej, dwukrotnej osi śrubowej i prostopadłej do niej zwierciadlanej 
płaszczyzny symetrii. Wykaz wszystkich możliwych 250 grup przestrzen­
nych można znaleźć w monografiach z zakresu rentgenografii struktural­
nej, ponadto w Międzynarodowych tabelach rentgenografii i krystalogra-
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Rys. 5.6. Możliwe osie sześciokrotne .

fii [5], gdzie podane są również wszystkie istotne informacje potrzebne 
do ustalenia rodzaju i położenia w przestrzeni wszystkich elementów sy­
metrii, właściwych określonej grupie przestrzennej.

■Dla przykładu jedna strona Tabel, obejmująca jedną z grup prze­
strzennych układu ortorombowego P2^2^2, przedstawiona jest w oryginal­
nej wersji na rys. 5.8. U góry z lewej strony umieszczony jest symbol 
grupy w skróconym brzmieniu, w środku symbol pełny (w tym przypadku ten 
sam). Z prawej strony podano symbol tak zwanej grupy ilorazowej (factor 
group), jaką otrzymuje się z grupy przestrzennej pp opuszczeniu wszyst­
kich operacji translacji. Tym samym płaszczyzny poślizgu przechodzą w 
płaszczyzny zwierciadlane, a osiom śrubowym odpowiadają zwykłe osie ob­
rotu. Znajomość grupy ilorazowej ma podstawowe znaczenie w ilościowej 
interpretacji własności fizycznej kryształu z punktu widzenia geometrycz-
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Rys. 3«7. Osie symetrii występujące w grupach przestrzennych
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(Space group) 

abbr.

(Space group) 

full symbol 

pa^s

Point group

222 orthorhombic

Origin at 112 in plane of 2^2^

Humber of positions, Coordinates of equivalent Conditions limit­
Wyckoff notation positions ing possible 

reflections
4 c 1 xyz, xyz; 1 + x, ~ y, ż; hkl:

1 1 - > No condi-
2 - x, ~ + y, z hOl: tions

hkO:,

hOO: h = 2n
OkO: k = 2n
001: No cond.

Special: as abo­
X.

ve, plus

2 b 2 о N
 

>l
-i 

О
 

N
l

d d > hkO: h+k = 2n
2 a 2 О

 о N
 R l-J

 
N

l

2 J

Symmetry of special projection

(001) pgg; a' = a, (100) pmg; b' = b (010) pgm; c' = c

b = b c = c a' = a

Rys. 5.8. Przykład informacji o grupie przestrzennej P2^2-i2 
(Międzynarodowe tabele rentgenografii i krystalografii)
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Rys. 3.9. Współistnienie elementów symetrii w P2^2^2

nego rozmieszczenia cząsteczek, o czym będzie mowa później. Pierwszy z 
rysunków ilustruje rozkład w komórce elementarnej punktów symetrycznie 
równoważnych, drugi - rozkład samych elementów symetrii.Układ osi współ­
rzędnych we wszystkich rysunkach tego typu obowiązuje taki sam, jak w 
rzucie stereograficznym (tab. 3.1), tj. oś x biegnie w stronę Czytel­
nika, oś y w prawo, oś z nad płaszczyznę rysunku. Z symbolu grupy 
widać, że komórka jest prymitywna. Dwie osie śrubowe równoległe są do x 
oraz y, natomiast oś dwukrotna jest równoległa,do osi z układu 
współrzędnych. Należy zwrócić uwagę na fakt, że nie wszystkie osie syme­
trii przecinają się w jednym punkcie, co zdarza się w wielu grupach 
przestrzennych. Oś śrubowa 2^ || x przechodzi przez punkty y = 1/4 (u- 
łamek periodu) lub y = 3/4 i z O, jeśli przy jej symbolu nie poda­
no żadnej liczby. Umieszczenie przy znaku graficznym osi ułamka np. 1/4 
oznaczałoby, że oś 2^ || x przechodzi na wysokości z = 1/4 nad płasz­
czyzną rysunku. Podobnie osie 2<]| y przechodzą przez punkty y = 1/4 
i y = 3/4 i z = O. Obie pary przecinają się w punktach (1/4, 1/4, O) 
(1/4, 3/4, O), (3/4, 1/4, 0) i (3/4, 3/4, 0). Oś 2 ||z przechodzi przez 
punkty (O, O), (1/2, 0), (0, 1/2) i (1/2, 1/2) płaszczyzny xy i nie 
przecina żadnej z osi śrubowych. Przestrzenny rozkład elementów syme­
trii w P2^2^2 przedstawiony jest na rys. 3.9.

Jeśli komórka elementarna w grupie przestrzennej P2^2^2 wypełniona 
jest elementami strukturalnymi całkowicie pozbawionymi symetrii (syme­
tria 1), to ich liczba nie może przekraczać cztery. Muszą ponadto zajmo­
wać położenia ogólne, gdyż tylko te położenia są całkowicie asymetrycz-
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ne. Przypiszagr środkowi elementu P współrzędne xyz; wskutek działa­
nia elementów symetrii środki pozostałych elementów Q, H, S zajmą po­
zycje

rys. 3.16. Współrzędne wszystkich punktów podane są na rys. 3.8 jako po­

' 2-1 I i x Q(^ + x, i- ż),

P(xyz) ' 2i II y K(| - 1
2 + 7» ż),

2 || z 8(1 - x, i-y, z).

Dla przykładu transformacja Q— za pomocą 2illx jest pokazana na

łożenia c z tym, że punkt S zastąpiono przez translacyjnie równoważ­
ny punkt S". Widzimy, że wychodząc z jednego punktu P w położeniu o- 
gólnym otrzymujemy trzy dodatkowe punkty przez zastosowanie operacji, sy­
metrii, odpowiadających grupie przestrzennej. Przekształcenia te omówi­
my bardziej, szczegółowo w następnym rozdziale.

Jeśli kryształ o grupie przestrzennej P2^2^2 jest zbudowany z cząs­
teczek, wykazujących dwukrotną oś obrotu (symetria 2), to komórka ele­
mentarna może zawierać tylko dwie takie cząsteczki. Zajmują one wówczas 
położenia szczególne b lub a i muszą być tak zorientowane, by ich 
oś dwukrotna pokrywała się z osią dwukrotną kryształu. Jest to ilustra­
cja znanej zasady, że cząsteczka zajmująca w krysztale punkt (węzeł) o 
określonej symetrii musi mieć przynajmniej symetrię tego węzła.

W niektórych grupach przestrzennych zdarza się, że komórka elemen­
tarna jest wypełniona przez dwa zbiory punktów. W obrębie każdego zbio­
ru położenia punktów są związane relacjami symetrii, obowiązującymi w 
danej ilorazowej grupie symetrii, jednak nie ma żadnych relacji między 
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położeniami punktu w jednym zbiorze? i. punktu w zbiorze drugim. Mówi się 
że oba zbiory są symetrycznie niezależne. Sytuacja ta ma ważne znacze­
nie w zastosowaniu modelu gazu zorientowanego do interpretacji własnoś­
ci fizycznych kryształów, o czym będzie mowa w następnych rozdziałach.

3.6. Położenia punktów symetrycznie równoważnych

Położenia atomów w sieci przestrzennej (komórce elementarnej) może­
my odnosić do ukośnokątnego (krystalograficznego) układu współrzędnych 
x, y, z. Najczęściej podajemy je wtedy jako współrzędne ułamkowe, tj. 
wyrażone w ułamkach periodu w kierunku trzech osi krystalograficznych 
a, b, c. Postępowanie takie nie jest jednak zbyt wygodne ani w licznych 
problemach numerycznych, ani przy wykonywaniu rzutu struktury na okreś­
loną płaszczyznę krystalograficzną. Z tego powodu najczęściej dokonuje 
się ortogonalizacji układu ukośnokątnego do kartezjańskiego i prawo- 
skrętnego układu współrzędnych Zagadnienie to przedstawimy
krótko dla trój- i jednoskośnego układu krystalograficznego.

Rys. 3.11. Ortogonalizacja trójskośnego układu współrzędnych

Grupy przestrzenne w układzie trójskośnym mogą być albo całkowicie 
asymetryczne (jeśli pominąć symetrię translacyjną), albo posiadać cen­
trum symetrii C^. W takim przypadku ortogonalizacji układu możemy do­
konać w zasadzie dowolnie. Jednak najczęściej stosowany sposób przedsta­
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wiony jest na rys. 3.11. Przyjmuję się mianowicie x1 |j x, x2 w płasz­
czyźnie xy, zaś X Xp x2. Jeśli e^, e2, e^ są wektorami jednost-' 
kowymi w układzie x^ a xyz jest prawoskrętny, to kryterium właściwe­
go wyboru x^ jest e^ę > 0. Oczywiście także e = e^ x e2. Dla do­
wolnego wektora B mamy następujący związek między współrzędnymi xyz 
i x1x2x?: (

R = xa + yb+zc = ^e^ + ■ (3.22)

Dwustronne pomnożenie kolejno przez e , e2, e^ i uporządkowanie wyra­
zów (szczegóły można znaleźć w monografii Jeffery'ego [4]) prowadzi do 
wyniku

Xq = xa + yb cosy + zc cos p ,

Xg = yb sin y + zcA, (3.2J)

Xj = z c B. 

gdzie

A = -------- (cos a - cos p cos y),
siny

B = —-— (sin2 a + sin2 P + sin2 y + 2 cos a cos p cos y - 2]^\ 
sin y

Na podstawie znajomości kątów a, p , y, zawartych między parami osi 
krystalograficznych układu trójskośnego oraz długości periodów a, b, c 
możemy więc zamienić współrzędne ukośnokątne punktu xyz, podawane zwy­
kle w pracach krystalograficznych, na ortogonalne współrzędne x1x2x^.

Ortogonalizację układu jednoskośnego trzeba wykonać ostrożniej.
Bzecz w tym, iż w grupach przestrzennych tego układu często pojawia się 
kierunek poślizgu, który jest kierunkiem symetrycznie ważnym. Należy 
więc tak wybrać nowe osie, by kierunek poślizgu nie uległ zmianie, jeś­
li tylko jest to możliwe.

Jeśli osią symetrii jest oś y, zaś kierunek poślizgu jest równo­
legły do a, to ortogonallzujemy układ do abcx (rys. 3.12). Orienta­
cja nowych osi x^ dana jest macierzą, wynikającą z zastosowania rela­
cji (3.23)

xa yb zc

*1 1 0 cos 8

*2 0 1 0 (3.24)

x3 0 0 sin p
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Rys. 3.12. Ortogonalizacja jednoskośnego układu współrzędnych 
przy kierunku poślizgu a

Przekształcenie układu współrzędnych ma wówczas postać

X] = xa + zc cos p, 

( *2 = yb, (3.25)

= zc sin p .

W drugim przypadku, gdy kierunek poślizgu jest równoległy do c (rys. 
J.15), ortogonalizacji do axbc odpowiada przekształcenie

Xq = xa sin P, 

x2 = yb, (3.26)

= xa cos p + zc.

W grupach przestrzennych z poślizgiem typu n, a więc w kierunku jed­
nych z przekątnych ścian komórki elementarnej, nie jest możliwa ortogo- 
nalizacja układu bez naruszenia kierunku poślizgu. Jest wówczas rzeczą 

•obojętną, czy wybierzemyukłhd a^bc, czy abcx - w każdym z tych ukła­
dów można jednak łatwo wyznaczyć nowy kierunek poślizgu.

Prócz układu osi makroskopowego - związanego z nieskończe­
nie rozciągłą siecią periodyczną punktów - potrzebujemy często ustale­
nia mikroskopowego Układu osi, związanego sztywno z cząsteczką. Tylko w
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Rys. 3.13. Ortogonalizacja jednoskośnego układu współrzędnych 
przy kierunku poślizgu £

takim przypadku, gdy cząsteczka ma dostatecznie wysoką symetrię, możli­
wy jest jednoznaczny wybór tych osi, oznaczanych najczęściej literami 
L, M, N i wybieranych w kierunku osi symetrii cząsteczki.

Jeśli więc cząsteczka jest płaska, lub istnieją co najmniej trzy 
atomy wyznaczające płaszczyznę (np. atomy pierścienia benzenu lub ato­
my cząsteczki wody), można znaleźć równanie średniej płaszczyzny prze­
chodzącej przez te atomy, a stąd i kierunek normalnej do niej N. Dla 
większej od trzech liczby atomów rachunek prowadzi się zwykle metodą 
najmniejszych kwadratów, ponieważ atomy nie leżą zazwyczaj ściśle na 
płaszczyźnie. Kwadraty odchyleń położeń atomów od średniej płaszczyzny 
wynikają z niewielkiego odchylenia cząsteczki od maksymalnej symetrii, 
co spowodowane jest zaburzającym wpływem otoczenia. Analityczna metoda 
obliczania optymalnej płaszczyzny przez zbiór atomów została podana 
przez Schomakera i innych [5], jej streszczenie można znaleźć w p. 3. 
7.2, a zastosowanie do wyznaczenia optymalnej płaszczyzny "przechodzącej 
przez atomy pierścienia benzenowego w p. 3.7.8. W tej płaszczyźnie wy­
bieramy średni kierunek jako długą oś cząsteczki, a w końcu M = N x L 
jako oś krótką.

•Taki wybór osi cząsteczki zwykle wystarcza, gdy interesujemy się 
interpretacją makroskopowej własności kryształu z punktu widzenia włas­
ności samych cząsteczek i ich rozkładu : w sieci przestrzennej (komórce 
elementarnej), a więc zagadnieniem statycznym. Nie wystarcza to jednak 
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w rozważaniach mających związek z dynamiką kryształu« W każdej tempera­
turze zachodzą ruchy cząsteczek - tak zwane drgania termiczne.Ruch cząs^ 
teczek można też pobudzić za pomocą fali elektromagnetycznej o odpowied­
nio niskiej częstości, lub za pomocą fali akustycznej. Do najczęściej 
występujących należą ruchy dwóch typów: translacyjne, polegające na rów­
noległym przesunięciu wszystkich atomów cząsteczki w określonym kierun­
ku oraz libraoyjne, polegające na niewielkich oscylacjach kątowych cząs­
teczki wokół określonych osi libracyjnych. Kierunki osi libracji otrzy­
muje się z rozwiązania równań ruchu. Okazuje się przy tym, że w wielu 
przypadkach kierunki tych osi dynamicznych odbiegają dość znacznie od 
kierunku osi symetrii, a niekiedy nawet nie przecinają się w jednym 
punkcie. Jest to jednak problem, którego przedstawienie wykracza poza 
ramy tej książki. Do naszych dalszych celów będziemy się posługiwać wy­
łącznie układem IMN.

Po tym wstępie możemy przystąpić ao przedstawienia problemu anali­
tycznego znajdowania położeń punktów symetrycznie równoważnych.

Rys. J.14. Generacja punktów przez oś symetrii

Rozważymy położenie zbioru punktów P^, P2,..., Pn, generowanych 
przez operacje osi śrubowej n-tego rzędu Przyjmijmy, że ta oś jest 
dowolnie zorientowana względem układu w którym będą podane po­
łożenia poszczególnych punktów za pośrednictwem wektorów R^, R2, Rq 
(rys. 3«z14). Wybierzmy pomocniczy układ w taki sposób, by
ż^ln^ Pozostałe osie i x2 mogą mieć położenia dowolne, lecz usta­
lone. Niech początki obu układów będą przesunięte o s, a wzajemną o- 
rientację osi x^ względem x^ niech opisuje macierz kosinusów kierun-
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kowych ę. Punktem wyjściowym jest P^., a jego położenie w podaje
r^. Punkt P2 ma zatem położenie

£g = Ą r^ + t',

gdzie Ą jest generatorem operacji n^, zaś t' składową translacyjną 
wzdłuż osi śrubowej.' Położenie m-tego punktu określa wektor r^

r^ = A(m"1) £< + (m - 1)t'. (3.27)

Ponieważ między wektorami w układzie primowym i nieprimowym zacho­
dzą związki

oraz

s + r, = Ł,, — “BI “Ul 

położenia kolejnych punktów w układzie otrzymujemy z następu­
jącego równania, kładąc kolejno m = 1,2,...,n:

= pT A^“^ g + gT - A^-j g s + (m-1)t. (3.28)

Oczywiście macierz Ą, podobnie jak składowa translacyjna t’, jest za­
dana w układzie x^. Wybierając jako Ą generator innej operacji syme­
trii, na przykład płaszczyzny zwierciadlanej, możemy z (3.28) otrzymać 
punkty, generowane również przez ten element symetrii. Warto zauważyć, 
iż występująca w (3.28) składowa translacyjna elementu symetrii odnosi 
się do układu nieprimowanego.

Rozważmy obecnie dwa proste przykłady. Inne zamieszczone są na koń­
cu rozdziału (p. 3.7.9).

(i) Dwukrotna oś śrubowa 2^, równoległa da x^. W tym przypadku 
wybieramy || 2^, a ponadto - dla wygody - || i Xg || Xg. c jest wów­
czas macierzą jednostkową, g = {] . Ze względu na wskaźnik składowe wek­
torów w x^ oznaczać będziemy przez (xyz). Aktualna sytuacja przedsta­
wiona jest na rys. 3.''5. Mamy zatem

zaś wektory sit mają składowe

sT = (O, s2, O), tT = (O, O, t?).
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Rys. 3.15. Generacja punktów osią śrubową 2^ || x^

Z (3.28) otrzymujemy

x2 = -X], y2 = - + 2s2, z2 = z^ + tj.

W kolejności

Sj = £4 + 2 t, 

czyli współrzędnymi punktu P^ są

x? = X,, y? = y^, Zj = z^ + 2tj.

Znalezienie współrzędnych dalszych punktów nie przedstawia nowych pro­
blemów .

(ii) Płaszczyzna, poślizgu typu (010)n, a więc prostopadła do x2
i x2 (ryś. 3.16). Wybieramy X] || i x^ |[ x^ tak, że ę = . W tym 
przypadku mamy
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yy

Rys. 3.16. Generacja punktów płaszczyzną po&lizgu n(010)

wobec tego

Rg = Ą B«| + ^ - ą} £ + t =

(1 \ / X] \ /6 \ / o \ / t^\

-1 I y^ I + 2| 1 s2 + O

1/yz^/ \ 0/ \o/ yW

Współrzędne punktu F2 wynoszą

x2 = + t^, y2 = -y^ + 2s2, z2 = z1 + tj

W dalszym ciągu

Rj = Ryj + 2t, 

czyli współrzędnymi punktu są

(3.30)

+ 2t1, y5 = y1t z3 = + 2tj.

Dalsze punkty otrzymujemy w analogiczny sposób.
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Tabela J.6

Elementy symetrii 32 krystalograficznych grup punktowych 
(klas krystalograficznych)

Układ 
krystalo­
graficzny

Symbol klasy
Elementy symetrii

Liczba 
elemen­
tów sy­
metrii

Generatory
między­
narodowy

SchBn- 
fliessa

1 2 3 4 5 6

Trój- 1 C1 C1 1 Ai

skośny i ci C1’Ci 2 =2

Jedno- 2. C2 2 =3
skośny m Cs C1’ ay 2 =5

2/m C2h oy 4 K\ 
<111

C
M 

dl

222 D2 C^C^,C^,C^ 4 ^5’=4

Rombowy mm2

mm tJ o £ $ C1’ °x’ °y’C2Z) 
^.Gi.C^ ,C^7\c^z\

4

di 
di di 

4- 
C
M 

di 
cii

°x> °y’ °z 8

3 C3 fcp ±c|z) 3 =7

Trygo- 
nalny

3 C3i Łp0!' 6

d7C
M 

C
II

32 D3 cn,3C', ±4z)
C^po;, ±C^Z)

6 lj>^7

3m C3v 6 ^4?

3m D3d tS<z) 12

dt"K\ 
diO

J
C

ii

4 C4 r r(z) + r(z) 
’ ”u4 4 =9

4 S4 c^c'2), ±s|2) 4 śio
4/"m C4h C-l.Ci.C^’, Oz,

+P(z) +q(Z) 
-C4 > -^4

8 i2^9

Tetra- 
gonalny

422 D4

ti—
 C

M
o

 

—
 C

M
'—

4- 
O

 
O 

O
* 

+1
 

M
 

~ 
N

—
 C

M s C
M—

C
M 

,o
 o

 
o

V- ' 
C

M 
V- 

o
 

o
 

o

8

.cii 
d?LA 

C
li 

C
l!4mm ' C4v 8

<.av ic'2)

42m D2d
. " +oiz)ov, ov, -S^

8 O
 

di 
d

4/mmm D4h

4^
-—

 <• 
N

 -
N

 Q 
O

—
 N

 
- 

H
’

* 
* 

Q
 -

ro
 X o

l+
 Q *

 rc—' 
C

O
 

X Q 
H

- M3
N

 Q 
—

 4
= 

o
* Q ro

*- 16 = 2 * = 3 *=9
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od. tab. J.6

1 2 5 4 5 6

6 c6 cd,clz\+clzj,+clz) e >4'1?
6 C5h c1t Oz, lc<z\±s(z) 

C1'C1"C2Z)’ °z>
6 ^6’1?

6/m C6h 12

<£7

<411 
C
U

<411

V
±c|z\±s|z) ,±c^z\is^z’

Heksa-

622 D6 C-pC^, 5C2, 50'2,

p 7 0

12 ^3^4,17

gonalny C6v c1>4z), 50;,
+c^z\ ±4z)

12 =4 ’=5 ’=7

6m2 D5h 0^ 5^, 50^, Oj, 
±c^z\ ±s<z)

12 n>
 

V>
-' 

cn

6/ mmm D6h 0-1» 0^50', 50'2, c<z> 
lc(z\ 0Z, 

is|2^

24 ^2 ’=5 ’=4»=7

25 T C1,5C2, t4C3 12 CO 
<41! 

<4H

m5 C1,Ci,5C2,5av
±4C3, ±4S3

24 C
O 

<41! 

<411

C
M 

<411

Begu- 
larny

452 0 c1,902,±405,±5C4 24 =8’=9

45m Td
US4

24 I1
!>

 

O
 ii>

 
co

m5m ‘ 011 cn,0^902,90, i4C3 
±4S3, 15C4, ±5S4

48 co 
<411 

<s?C
U 

<411

Objaśnienia;
C<x) - dwukrotna oś symetrii o kierunku określonej osi układu 
d współrzędnych (lub xyz),

GÓ,c'ó - dwukrotne osie symetrii o kierunkach niezgodnych z osiami.
42 (np. w układzie trygonalnym),. *

a - płaszczyzna symetrii prostopadła do określonej osi układu 
x współrzędnych,

a ,,a" - pionowe płaszczyzny symetrii, równoległe do głównej osi 
v v symetrii,

± - przy osiach o ’krotności wyższej niż 2 oznacza dwie możliwe
skcętności osi.

, Dwukrotną oś symetri w układzie jednoskośnym przyjęto za równoleg- 
łą;do osi b (y); konwencje w tym zakresie mogą byc inne. W klasach,za­
wierających osie symetrii o krotności wyższej od 2, oś o krotności naj­
wyższe.! jest zawsze równolesła do osi z.
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5.7. Problemy i przykłady

5.7.1. Krystalograficzne grupy punktowe 
Z punktu widzenia symetrii makroskopowej wielościanu (rozmieszcze­

nie ścian symetrycznie równoważnych, kąty między ścianami, rozmieszcze­
nie kierunków symetrycznie równoważnych itp.) każdy kryształ możemy za­
klasyfikować do jednej z 52 możliwych grup punktowych symetrii, znanych 
jako klasy krystalograficzne. Klasy te wraz z podaniem zbioru należą­
cych do nich elementów symetrii zebrane są w tab. 5.6. Ze względu na sy­
metrię charakterystyczną, klasy możemy zgrupować w siedem znanych ukła­
dów krystalograficznych. Zbiór elementów symetrii, w obrębie którego, 
można utworzyć wszystkie klasy obejmuje centrum symetrii Cit zwiercia­
dlaną płaszczyznę symetrii o, zwykłe osie obrotu C^, C2, C^, C^, Cg 
oraz osie inwersyjne S^, S2, S^, S^, Sg (lub równoważne im inne ele­
menty symetrii).

Podane w kolumnie 4 elementy symetrii są wszystkimi możliwymi w da­
nej klasie elementami. Na tej podstawie można łatwo wydedukować zbiór 
operacji symetrii stanowiący grupę algebraiczną, przez co tabela może 
być również przydatna w zagadnieniach, dotyczących teorii grup. Na przy­
kład grupie punktowej 422 odpowiada.według tabeli następujący zbiór ele­
mentów symetrii:

c., ci,x\ clz), C', c" +cjz\ -c£z\

Ponieważ (C^zb2 = C^z\ (C^zb^ = (C^zb~^ = -C^z\ możemy ten zbiór 

zapisać w oznaczeniach konwencjonalnych teorii grup

E, C4, C4, C2, C2x, C2y, C2, C2

spotykanych na przykład jako nagłówek tabeli charakterów grupy punkto­
wej 422. W celu uzmysłowienia sobie wzajemnego powiązania tych operacji 
i wydedukowania położeń punktów symetrycznie równoważnych celowe jest 
posłużenie się rzutem stereograficznym. Pominąwszy element identycznoś­
ci E, pierwszy trzy operacje powielają punkt w położeniu ogólnym (ozna­
czony krzyżykiem) w cztery punkty równoważne (rys. 5.17a). Dołączenie 
osi dwukrotnych i C2y powoduje podwojenie liczby punktów, przy 
czym pojawiają się one po drugiej stronie płaszczyzny rzutów (oznaczone 
kółkiem). Na rzucie (rys. 5.17b) widzimy, że z obecności pierwszych 
sześciu elementów symetrii wynika pojawienie się dalszych dwóch osi dwu­
krotnych C2 i C2, które nie mają kierunku zgodnego z żadną z osi współ­
rzędnych (rys. 5.17c). Łącznie możemy wydedukować 8 położeń punktów rów­
noważnych, zgodnie z rzędem grupy 422. Podobnie podany w tabeli zbiór 
elementów grupy punktowej 6m2



106

Rys. 3.17. Ewolucja rzutu 
stereograficznego grupy

punktowej 422

5^2» c^z\ -c^z\ s'z), -s'z)

możemy zapisać następująco;

E, Sg, s|, C5, C2, oz, 3^, 5<, 

ponieważ S2 = (C^z))2, s| = az, Sg = c|zJ 

są operacjami już występującymi w grupie. 
Przy dokonywaniu generacji punktów syme­
trycznie równoważnych za pomocą Sg widzimy 
(rys. 3.18a), że pojawia się tu element sy­
metrii o , Przez podziałanie następnie 
trzema dwukrotnymi osiami Cg, zawierający­
mi między sobą kąt 60° (rys. 3.18b) otrzymu­
jemy podwojenie punktów do ich ogólnej licz­
by 12. Jednocześnie widać, iż te operacje 
symetrii generują 3 płaszczyzny symetrii ty­
pu a'.

Liczba elementów symetrii w określonej 
klasie (grupie punktowej) podana jest w kol. 
5. Jest to jednocześnie liczba punktów syme­
trycznie równoważnych na rzucie stereogra- 
ficznym. W kolumnae 6 podane są generatory 
każdej grupy punktowej.

Problem 3.7.2. Poprowadzić płaszczyznę 
przez zadany zbiór punktów w taki sposób,by 
suma kwadratów odchyleń od płaszczyzny 0- 

siągnęła wartość najmniejszą.
Rozwiązanie tego problemu przedstawimy według pracy Schomakera i 

in. [5].
Niech a,], ag, a, oznaczają wektory sieci prostej, niekoniecznie 

ortogonalnej, zaś \ x^.2\ ^k^ S4 wsPÓi^zę<Łoyini ułamkowymi 
(O || < 1) jednego z zadanych punktów P^, k = 1,2........ n. Punkty 

Pq, Pg, ..., P^ leżą z pewnym rozrzutem na płaszczyźnie, którą chcemy 
wyznaczyć (rys. 3.19). Płaszczyzn^ tę określają cztery parametry; trzy 
składowe wektora jednostkowego m, prostopadłego do niej, oraz odleg­
łość d płaszczyzny od początku układu.

Położenie punktu Pg wyznacza wektor r^

£k = 4^ ^1 + xk2) —2 + xk3) -3*
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Jeśli przez , b2, b^ oznaczymy wektory 
sieci odwrotnej, to wektor normalny do płasz­
czyzny możemy zapisać w następujący sposób:

m = m^b^ + m^ + m^bj. (3.32)

Wtedy odległość punktu od płaszczyzny 
wyrazi się wzorem

r^ • m - d = m.^ - d.
i

Suma kwadratów tych odchyłek

S = (r£ • m - d)2 (3.33)
k

jest funkcją owych czterech parametrów i o- 
siąga wartość minimalną przy odpowiednim

Rys. 3.'18* Ewolucja rzutu doborze Sumowanie po k obejmuje wszys- 
stereograficznegp grupy

punktowej 6m2 tkie punkty zadane, przez które zamierzamy 
prowadzić płaszczyznę. Warunek
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gdzie n ^3 jest ogólną liczbą punktów, pozwala wyeliminować d, po­
nieważ

d = J X £k • a- (3^4)
n ‘ k

Ostatnie równanie możemy zapisać jeszcze prościej, jeśli wprowadzimy po­
jęcie środka zbioru n punktów (centroidu). Jeśli nie rozróżniamy wagi 
statystycznej, z jaką poszczególne punkty wchodzą do rachunku (a tak bę- 
dzienry czynić nadal), oraz masa wszystkich punktów jest jednakowa, to 
centroid jest po prostu geometrycznym środkiem zbioru. Gdyby punkty róż­
niły się masami, to centroid wypadnie w środku masy. Niech położenie te­
go punktu poda je wektor <r>

<£> = Z Z -k’ (3,55)
k

wtedy

d = <r>" • m (3.36)

oraz
S = (tek ’ fi}2» (3.37)

k

Obecnie widać, iż w wyrażeniu (3.37) potrzebne są względne położenia 
punktów, odniesione do położenia centroidu. Oznaczamy je wektorami

= r^ -<£> (3.38)

Zanim wprowadzimy (3.38) do (3.37) uwzględnimy jeszcze żądanie, by wek­
tor m (3.32), normalny do płaszczyzny, był wektorem jednostkowym

m • m = 1 = V 7 m.m.b.b. = mT g m. (3.39)
— d d A

1 j '

W ostatnim wyrażeniu wprowadziliśmy macierz g, której elementy są ilo­
czynami skalarnymi odpowiednich par wektorów sieci odwrotnej

®ij = Mj = Sji-

g jest więc macierzą symetryczną, a dla sieci ortogonalnej jest macie­
rzą przekątniową.

Warunek normalizacyjny (3.39) również trzeba wprowadzić do (3.37)« 
Uczynimy to za pomocą mnożnika Lagrange^a 2;, wobec czego S przejdzie 
w funkcję F parametrów nt], m2, m^
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p = 2 ’ ®’ 
k

2 T-Am g m. as ” (3.41)

Stąd mamy trzy warunki minimalizacji F

aP _ 
ant] k

m) - Ag1im1 = • <1 u o, ?

ap _ 
am2

y ■ 
k

m) - AS^-j = 0,

aP _ 
am^ k

m) - = 0.

Te trzy równąnia możemy zapisać macierzowe

B • m = Ag b, (3.42)= «a *"
gdzie B jest macierzą symetryczną o elementach

Bij = 
k

—1Jeżeli (3.42) podzielimy przez A i pomnożymy lewostronnie przez B , 
to otrzymamy następujące równanie:

(B“1 g)m = 4 £• (3.44)
— ss A

Widać stąd, iż poszukiwane wektory m są wektorami własnymi macierzy 
(B-1 g). Mamy trzy takie wektory m'1^ i odpowiadające im trzy wartoś­
ci własne ^/A^, i = 1,2,3. Rozwiązanie takiego problemu było już dys­
kutowane w związku z poszukiwaniem osi głównych tensora (por. roza*. 
2.7).

Interpretację A możemy znaleźć w następujący sposób. Połączenie 
(3.37)। (3.38) oraz (3.45) pozwala na macierzowy zapis S

S = mT B m. (3.4?)

TJeśli teraz pomnożymy obie strony (3.42) przez m , otrzymamy

A = S, (3.46)

Tponieważ m g m = 1. Widać stąd, iż każda z trzech wartości A^ jest 
równa pewnej wartości sumy kwadratów odchyłek punktów od wyznaczonej 
płaszczyzny. Poszczególne wartości własne spełniają warunek
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(5.4?)

i odpowiadają kolejno "najlepszej", "średniej" i "najgorszej" płaszczyź­
nie. Wszystkie płaszczyzny są do siebie- prostopadłe i przechodzą przez 
oentroid, tj. punkt; którego położenie zadane jest wektorem <r> W in­
teresującym nas zagadnieniu poszukiwania najlepszej płaszczyzny należy 
wybrać najmniejsze K, tj. . W takim wypadku rachunek kolejnych przy­
bliżeń w poszukiwaniu wektora m^ należy rozpocząć od przyjęcia na 
wektor próbny takiej kolumny macierzy (B-^ g), w której występują naj­
większe elementy. Dokładnej koplanarńości punktów odpowiada ='0.

Jeśli już znamy d oraz składowe wektora m, to możemy napisać 
równanie najlepszej płaszczyzny w układzie współrzędnych ukośnokątnych

mz|X^^ + mg^2) + m^x^^ = d. (5.48)

Przejście z równaniem płaszczyzny (5»48) do ortogonalnego układu osi 
nie nas-hnęczn specjalnych trudności. Trzeba w tym celu przeliczyć ukoś- 
nokątne i ułamkowe współrzędne x^^ do współrzędnych ortogonalnych 
ł wyrażonych w nm. Można to uczynić za pomocą macierzy h

(5.49)

spokrewnionej z (5.24) i wobec tego słusznej w tym zapisie przy ortogo- 
nalizacji układu jednoskośnego do abcx. Jeśli przez R(X]X2x^) oznaczy­
my położenie punktu w nm w układzie ortogonalnym, to ze związku

możemy obliczyć

gdzie

zatem

(5.50)

(5.5D
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X

4____ x 
sin3 x3’X (3)____  

a3

W końcu otrzymujemy
nux(1) + m x{2) + m x(3) - ^x + -2 x m1x + m2x + m^ - . x2

/nu nu otg p \
+ /------ 2-----------------------jx - d,

ya^ sin 3 a^ /
(3.52)

W drugiej części równania podane są szukane współczynniki równania 
płaszczyzny, d jest niezmiennikiem transformacji. Mamy zatem

nu m? m, nu otg 3n. = -1 , n? = — , n, = ------ 2-------- —!----------- (3.53)
a,, a2 a3 sin^ a1

tak, że równaniem płaszczyzny cząsteczki w układzie abcx jest

A n^ + ngx2 + n^Xj = d, (3.54)

a wektor
NT = (n-j, n?) (3.55)

jest wektorem jednostkowym i normalnym do tej płaszczyzny,~a zarazem do 
płaszczyzny cząsteczki.

W analogiczny sposób możemy wyznaczyć kierunek drugiej osi cząs­
teczki, na przykład M. Będzie to wektor leżący w płaszczyźnie (3.54) i 
jednocześnie prostopadły do "najgorszej” płaszczyzny, poprowadzonej 
przez zbiór punktów k = 1,2,...,n. Aby go znaleźć, trzeba wybrać w ma­
cierzy (B“”1 g)-”1 kolumnę o największych elementach i wykonać znany już 
rachunek od równania (3.44) począwszy. Postępowanie takie możemy zasto­
sować wtedy, gdy wyznacznik macierzy (g“1 g) jest różny od zera. Jeśli 
jednak det (B“^ g) 4 10-6, to rachunku prowadzić nie można, a M trze­
ba znaleźć inną metodą.

Rozsądna wydaje się w tym przypadku następująca propozycja. Posłu­
gując ^ię współrzędnymi ortogonalnymi obliczamy orientację kilku wekto­
rów o kierunku możliwie silnie zbliżonym do M i łączących odpo­
wiednie pary atomów w cząsteczce, a następnie obliczamy średni kierunek

s
^>=; z (5.56)



112

Tak znaleziony wektor <U> nie spełnia na ogół warunków ort©normalności 
wobec tego wprowadzamy doii poprawki 6^, na które nakładamy następujące 
warunki: Normalizujemy skorygowany wektor do jedności, żądamy ortogonal- 
ności do N oraz żądamy, by suma poprawek była równa zeru

3
Z*, (c2j + = 1’
J

3 s
J (o2j + ^)o3d = 0, (3.57)

2^ * o. 
u

c^j są kosinusami kierunkowymi M.
Jeśli zastosuje się przybliżenie

<c2j + 2 Jj + 2o2j (5.58)

to (3.57) jest układem trzech równań liniowych względem 5 .. BardziejU
szczegółowe omówienie tego problemu można znaleźć w przykładzie 3.7.8«

Trzecią oś cząsteczki L znajdujemy przez obliczenie iloczynu wek­
torowego

L = M x N. (3»59)

Rys. 3.20. Ograniczenia nakładane na wektor p przez płaszczyznę 
symetrii (110) ~
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Problem 3.7.3. Sieć odwrotna. Każdą strukturę kryształu idealnego 
można zbudować za pomocą periodycznego powtarzania w trzech kierunkach 
przestrzeni pewnej jednostki strukturalnej, zwanej komórką elementarną 
struktury. Komórka ta jest równoległościanem, zbudowanym na trzech wek­
torach a^, a2, a»» ule leżących w jednej płaszczyźnie. Pominąwszy sy­
metrię translacyjną, pozostałe elementy symetrii sieci zawarte są rów­
nież w grupie symetrii komórki elementarnej. Przy ciasnym i trójperio- 
dycznym zapełnieniu, przestrzeni komórkami elementarnymi ich naroża two­
rzą również trójperiodyczny zbiór punktów, zwany siecią prostą danej 
struktury. Tę samą sieć otrzymamy również jako zbiór końców wektora

r = n^ + n^ + n^aj, (3*60}

jeśli n^, n2, n^ przebiegać będą zbiór całkowitych liczb dodatnich, 
ujemnych i zer. Można zatem powiedzieć, że wektor r generuje sieć pro­
stą kryształu przy całkowitoliczbowych wartościach n^. Objętość komór­
ki elementarnej sieci prostej dana jest mieszanym iloczynem wektorów

\ = a<(ą2 x ą3). (3.61)

Pojęcie sieci prostej jest nieodzowne w geometrycznym opisie struk­
tury. Stanowi ona bowiem zgodny z symetrią struktury układ współrzęd­
nych, względem którego odnosimy położenia atomów; w tych rozważaniach 
pominiemy ruch termiczny i będziemy uważać atomy za nieruchome. Okazuje 
się, że zastosowanie pojęcia sieci prostej do przedstawienia niektórych 
zjawisk w kryształach prowadzi do zależności zbyt skomplikowanych, nie 
oddających przy tym istoty zagadnienia. Do tych zjawisk należą przede 
wszystkim problemy związane z rozchodzeniem się fal w kryształach i ich 
rozpraszaniem i to bez rozróżnienia czy mamy do czynienia z falą elek­
tromagnetyczną, falą sprężystą, czy też z falą sprzężoną z ruchem ta­
kiej cząstki jak elektron lub neutron. Podobnie jak dla geometrycznego 
opisu struktury naturalnym punktem odniesienia jest sieć prosta, tak ba­
zą naturalną do opisu wymienionych zjawisk jest sieć odwrotna. Pojęcie 
sieci odwrotnej przydatne jest więc w opisie zarówno dyfrakcji- promie­
niowania rentgenowskiego i neutronów, jak i zjawiska przewodzenia prądu 
elektrycznego i drgań cząsteczek w sieci krystalicznej. Sprecyzujemy 
pojęcie sieci odwrotnej, a następnie przedstawimy jej proste zastosowa­
nia.

Sieć odwrotną można zdefiniować za pomocą trzech wektorów b^, b2, 
bj, stanowiących jej bazę podobnie jak a^, ąg, a^ są bazą sieci pros­
tej. Wektory te definiujemy tak, by było

a. • b . = 6. •.-i -a ij (3.62)
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Korzystając z tej definicji oraz z wyrażenia na objętość komórki elemen-
t.arnej w 
liczenie

sieci prostej VQf można otrzymać wyrażenia, pozwalające na ob- 
długości b.. Na przykład dla i = j = 2 otrzymujemyU

-2 ° ~2 “ 1 x a^)

■ Stąd

-2 = i (a^ x a^). (3.63)

Widzimy, że wektor bg sieci odwrotnej o długości podanej przez (3.63) 
jest prostopadły do płaszczyzny a^a^ sieci prostej, a więc do płasz­
czyzny (010)« Łatwo się przekonać, że b^J. (100) oraz b^ .Ł (001). Za­
uważmy, że wskaźnik i przy b^ odpowiada blezerowemu wskaźnikowi Mil­
lera płaszczyzny, co nie jest przypadkowe. Wzory (3.63) są symetryczne 
względem obu baz, a więc, na przykład

“3 = (-1 X -2J (3.64)

Vb jest objętością komórki sieci odwrotnej i wyraża się wzorem analo­
gicznym do (3.61)

Vb = • (b2 x b3) (3.65)

Jeśli a^, ag, a^ są bazą sieci ortogonalnej, to również b^, bg,
bj stanowią bazę sieci ortogonalnej. W takim przypadku

b± = —
1 ai

(3.66)

oraz b^|| a^. W nie ortogonalnych układach współrzędnych do obliczenia 
b^ trzeba korzystać, z (3.64) lub wzorów trygonometrycznych, podawanych 
w podręcznikach rentgenografii i,krystalografii. W ogólnym przypadku 
nie ma także prostych relacji między kątami a^, a2, zawartymi mię­
dzy wektorami, a/,, a2, a^ a kątami zawartymi między wektorami b^.

Podobnie jak wektor sieci prostej r, można też zdefiniować wektor 
sieci odwrotnej H

H = h b^ + k bg + 1 bj (3.6?)

lub prościej

H = h^ + hgbg + b^bj. (3.63)

Również i tutaj h, k, 1 lub h^, hg, h^ stanowią trójkę liczb całkowi­
tych dodatnich, ujemnych, a niektóre (lub wszystkie) mogą też być zerem 
Można uważać, że,sieć odwrotna jest zdefiniowana przez trójperiodyczny 
zbiór punktów, stanowiących zakończenia wektorów (3.G8;.
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Nie przypadkowo w (5.67) użyto liter h, k, 1 oznaczających wskaź­
niki Millera płaszczyzny w sieci prostej (hkl). Wektor H(hkl) ma bo-i 
wiem dwie podstawowe własności

(i) Każdy wektor sieci odwrotnej H(hkl) jest prostopadły do ro­
dziny płaszczyzn równoległych o wskaźnikach (hkl) w sieci prostej.

(ii) Długość wektora H(hkl) jest równa odwrotności odległości 
między dwiema sąsiednimi płaszczyznami zbioru (hkl*)

|H(hkl)| = d/d(hkl). (5.69)

Dowody obu twierdzeń można znaleźć w podręcznikach rentgenografii. Nie 
będziemy ich tu przytaczali, zajmiemy się natomiast ich Zastosowaniami.

Bezpośrednie wykorzystanie (5.69) prowadzi do najszybszego sposobu 
obliczenia odległości między sąsiednimi płaszczyznami (hkl), bez potrze­
by uciekania się do zawiłej trygonometrii. Na przykład, dla sieci orto­
gonalnej o różnych wektorach bazy a^, a2, a^, otrzymujemy

.1 , „J/2 h2 k2l2
dhkl 4 . a2 a5

Przejdźmy obecnie do opisu dyfrakcji promieniowania rentgenowskie­
go w kryształach. Będziemy się interesować odbiciem fali monochromatycz­
nej o długości X od zbioru płaszczyzn o odstępach dbk1, spełniającym 
prawo Braggów

2 d^ sine = n\ 15.70)

przy caym 6 jest kątem połysku, zaś n = 1,2,... rzędem interferencji. 
Przyjmiemy dalej, jak to się często czyni, że hkl nie muszą być licz­
bami względem siebie pierwszymi, zatem n można pominąć. Zjawisko dy­
frakcji, odpowiadające prawu Braggów, można też interpretować jako spój­
ne i sprężyste rozpraszanie fotonów, zachodzące zatem bez zmiany długoś­
ci fali po rozproszeniu. Wprowadźmy dwa wektory s i s^ o długości

|sol = = v
przy czym sQ jest normalny do czoła fali padającej, s do czoła fali 
rozproszonej. Kąt między so i s wynosi 29

s„ • s = -X cos 2 6.

Wektor

s - s = G (5.72) 

I
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nosi nazwę wektora rozproszenia. Łatwo zobaczyć, że G jest normalny 
do zbioru płaszczyzn odbijających. Ponadto mamy

1/2 2(G • G) 7 = - sine.

Jeśli zastosuje się teraz warunek Braggów (3.70) z pominięciem n, to 
widać, że

|G| = = I H|,
dhkl

czyli
G = H. (3.73)

Otrzymujemy w ten sposób bardzo prosty i ważny warunek na pojawienie 
się odbicia (refleksu) wiązki promieniowania rentgenowskiego o długości 
fali X od zbioru płaszczyzn (hkl): wystąpi ono wtedy, gdy wektor roz­
proszenia równy będzie jakiemuś wektorowi sieci odwrotnej. Warunek ten 
jest ogólniejszy od prawa Braggów, zawiera bowiem explicite również kie­
runek wiązki rozproszonej.

Warto zauważyć, że definicje (3.71) używane są zwykle w dyfrakcji 
promieniowania rentgenowskiego. W fizyce ciała stałego korzysta się ra­
czej z definicji wektora falowego k:

k = 2 ns (3.74)

tak, że wektor rozproszenia £ jest równy

Q = k - k0. (3.75)

Wobec tego warunek (3.73) ma analogiczną postać:

Q=2nH. (3.76)“F
Pojęcie sieci odwrotnej oddaje również cenne usługi w reprezenta­

cji ruchu falowego w sieci krystalicznej. Zbiorowi równoległych do sie­
bie płaszczyzn określonej fazy drgania odpowiada jeden tylko wektor fa­
lowy k o długości 2 n/ 1 i kierunku normalnym do zbioru tych płasz­
czyzn, a zatem jeden punkt w sieci odwrotnej. Szczególnie interesująca 
jest reprezentacja fali stojącej w równoległościanie, wielkością odpo­
wiadającemu kryształowi makroskopowemu, ponieważ z jaj pomocą możemy o- 
pisać ruch termiczny elementów strukturalnych oraz fale sprężyste. Jak 
wiadomo, stan fali stojącej może się wytworzyć w strukturze periodycz­
nej wtedy, gdy płaszczyzny węzłów fali pokrywają się z jakimiś płasz­
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czyznami w sieci prostej. Warunek ten limituje dopuszczalne wartości 
długości fali ruchu falowego, a zatem X staje się wielkością nieciągłą.

Wybierzmy dla uproszczenia rozważań sieć ortogonalną o wektorach 
bazy a^, a2, a^ oraz równoległościan o krawędziach N^a^, N2a2, N^a^, 
przy czym N. są dużymi liczbami naturalnymi. Jeśli interesujemy się 
ciągami falowymi o wektorze k || a^, to warunek wytworzenia się stacjo­
narnej fali stojącej orzeka, że najmniejsza długość fali wyniesie 
Xmin/2 = a^j, czyli Xmin = 2a1. Odpowiada jej wektor falowy o długości 

k„ov = 2 = itb^.inax min i

Stan fali stojącej o największej długości fali spełnia warunek Xmav/2 = 
= N^a^, czyli

”»l-

Jeśli zatem normalna do płaszczyzny jednakowej fazy ruchu falowego rów­
noległa jest do kierunku krystalograficznego a^, to mogą się wytworzyć 
stany fali stojącej o wektorze falowym

k = — u b., (3.77)
" H1

gdzie 1 < n^ < . Tym możliwym stanom odpowiada w sieci odwrotnej
zbiór N/| punktów o położeniach (1/N^) ub^, (2/N^) nb^,..., 7tb^. Po­
nieważ są liczbami bardzo dużymi (rzędu 1O20), możliwe stany fali 
stojącej reprezentuje w rezultacie ąuasiciągły zbiór punktów.

Przykład 3.7.4. Posługując się tabelą generatorów 3.1 pokazać, że
c [111J jest złożonym elementem symetrii. ___

p I '1'1'1 I
Ha podstawie rys. 3.1 widzimy, że elementowi J odpowiada 

przekształcenie współrzędnych x^ = Xj, x^ = -Xq, x^ = -x2, czyli ma­
cierz §

/o 0 l\
B = I -1 o oj.

\ 0 -1 0/

Próbujmy rozłożyć B na iloczyn macierzy

gdzie x jest macierzą nieznaną. Mamy

x = B • A"1 = B • =
= = = O = =o
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Ponieważ 2 nie odpowiada żadnemu z generatorów, piszemy dalej

X = X • o y = I • Ą5-

Stąd

(01 0\ /1 0 o\
0 0 -1 0 -1 0 =

-1 0 0/ \0 0 1/

/0-1 o\
= 0 0 -1 = Ag • |2,

\-1 0 0/

zatem

= = =8 =2 =5 =8 = =8=3 =8'

Pili!Rozłożyliśmy więc operację B, odpowiadającą J , na trzy ope­
racje bardziej elementarne. Hie jest to jedyny sposób rozkładu £. Łat­
wo to dostrzec, jeśli napiszemy - jak poprzednio - B = ? Ag, lecz tym 
razem uważamy, że macierz X da się przedstawić jako iloczyn nieznanej 
operacji ¥ z powtórzoną operacją Ag. Mamy obecnie

? = n8’ 
czyli

Jako drugą możliwość rozkładu mamy więc

b = % (Ą8 Ag)«

Łatwo sprawdzić, że również

B = Ag Ag A^.

Ostatnie wyrażenie ma prostą interpretację geometryczną (por. rys. 3.1) 
powtórzenie operacji Ag jest równoznaczne z operacją )“jeżyli
ze zmianą skrętności osi Cj. Dalsze podziałanie CgZ' nie ^.mi en i a skręt- 
ności osi, a jedynie jej kierunek na symetryczny względem osi z (oś
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01lJ jest oczywiście dalej prawoskrętna w układzie współrzędnych

Przykład 3.7.5. Jakie ograniczenie nakłada na wektor biegunowy 
trzykrotna oś symetrii ?

Z tabeli 3.1 widzimy, że

Wynika stąd, że p^ = p2 = Pj* Wektor 
{l/TJ, 1/VT, W?1 } takie same jak 
osi obrotu.

p ma więc kosinusy kierunkowe
(Ś? J > czyli jest równoległy dp

Przykład 3.7.6. Jakie są ograniczenia nakładane na wektor bieguno­
wy przez płaszczyznę symetrii połowiącą kąt x^,x2 i równoległą do z^?

Płaszczyźnie takiej odpowiada macierz transformacji

₽1 = P2, 
= (P^ P1

Pj / 0. Płaszczyzna dopuszcza więc wektor 
p-), leżący na tej płaszczyźnie symetrii.

o postaci (P)T =

Przykład 3.7.7* Jakie ograniczenia nakłada na wektor osiowy płasz­
czyzna symetrii (110)?

Siad tej płaszczyzny na Przechodzi przez punkty [10CJ i
[O'IOj. Na rysunku 3.20 zaznaczono płaszczyznę równoległą'do niej i prze­
chodzącą przez początek układu. Transformacji punktu = -x2, x2 = 
= -X], odpowiada macierz



120

Hys. 3.21. Orientacja układów współrzędnych do przykładu 3.7.8

Zgodnie z (3.5)

Stąd p^ = p2, p3 = O. Wektor pT(p1t P^, O) jest prostopadły do (110).

Przykład 3.7.8. Mamy dany tensor (3.1?) o postaci

Należy go sprowadzić do układu osi głównych.
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W tym przypadku wiadomo, że jedną z osi głównych jest - x$ |] [111] , 
zaś pozostałymi osiami są ± Xg ±x^. Bczejścia od układu x2 x^ x^ 
do x^ x2 możemy dokonać za pomocą dwóch kolejnych obrotów (rys. 
3.21).

(i) Obrót o kąt 45° wokół x^. Relację między układami osi xi oraz 
x? przedstawia macierz

(10 0 \
0 1/7? j.
0 1/7? 1/7?y

(ii) Obrót o kąt ł taki, że cos <₽= 2/76’ wokół osi x2. Relację 
między układami osi x^ oraz x^ przedstawia macierz kosinusów kierunko­
wych ę2

zatem przejście od układu x^ do x^ wyznać za macierz ą

/2/76' -1/76’ -i/T^A

a = Śp * =1 = l 0 1/7? -1/7? .
\v№ i/7T 1/757

Macierz ta powinna sprowadzać I do postaci przekątniowej j, czyli po­
winniśmy mieć

S1 = L

przy czym w = (T^ 0 0/0 T2 0/0 0 ). Istotnie

/2/T61 -1/7? -1/7^ B b’\ / 2/7? 0 ■i/73‘\

1 0 1/7? -1/7? B A B (-1/761 1/7? 1/75 =
\1/7T 1/751 1/75,/ \B B A / \-V^ 1/731/

/a - B 0 0 \
X I 0 A - B 0 ) * (3.78)

0 0 A + 2B/

Z (3.78) widać, że obrazem tensora w krysztale, w którym występuje trzy, 
krotna oś symetrii o kierunku [111] jest kwadryka obrotowa wokół tej 
osi.



122

Przykład 3.7.9. Dane są współrzędne ułamkowe atomów węgla cząstecz­
ki antracenu w krysztale w dwóch temperaturach: 290 i 95 K» Znaleźó rów­
nanie płaszczyzny przechodzącej przez wszystkie atomy cząsteczki w obu 
temperaturach i orientację normalnej do tej płaszczyzny w układzie abcx.

Hys. 3.22. Numeracja atomów cząsteczki 
antracenu

Antracen krystalizuje w 
układzie jednoskośnym, grupa 
przestrzenna P2,q/a. Komórka e- 
lementama ma parametry, które 
są podane dla obu temperatur w 
tab. 3.7 i wypełniona jest 
dwiema cząsteczkami. Zajmują 
one położenie szczególne o sy­
metrii C. i dlatego podaje 
się położenia jedynie połowy 
wszystkich atomów węgla, zesta­
wione w tab. 3.8 i 3.9? dane 
zaczerpnięto z pracy Masona [3] 
Numerację atomów węgla i orien­
tację osi symetrii cząsteczki 
IM przedstawiono na rys. 3.22.

Obliczenia współrzędnych ortogonalnych dokonano na podstawie wzoru (3.
25) dla ortogonalizacji typu abcx.

T a b e la 3.7
Parametry komórki elementarnej antracenu (ai, p } według [6] 

i parametry sieci odwrotnej (bi} p”) w temperaturach 290 i 95 K

290 K 95 K

a1 8,562 ± 0,006 8,443 ± 0,006 5

a2 6,038 + 0,008 6,002 i 0,007

a3 11,184 ± 0,008 11,124 t 0,008

₽ 124,7 ± 0,1° 125,6 i o,i°

b1 0,142062 0,145666

b2 0,165618 0,166611

b5 0,108756 0,110559
3" 55,3° 54,4°
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Tabela 3.8
Współrzędne ułamkowe (e^} i ortogonalne (s^) atomów węgla 

cząsteczki antracenu w krysztale w temperaturze 290 K.
Dane wyjściowe zaczerpnięte z pracy Masona [6]

Atom Współrzędne ułamkowe Współrzędne ortogonalna,2

A 0,08728 0,02712 0,36562 -1,5805 0,1638 5,5618
B 0,11875 0,15775 0,28072 -0,7706 0,9525 2,5812
C 0,05864 0,08030 0,13816 -0,5776 0,4848 1,2704
D 0,08786 0,20936 0,04758 0,4506 1,2641 0,4356
E 0,03038 0,13067 -0,08990 0,8325 0,7890 -0,8266
F 0,06055 0,25943 -0,18346 1,6865 1,5664 -1,6869
G 0,00336 0,18060 -0,51659 2,0444 1,0905 -2,9100

Tabela 3.9
Współrzędne ułamkowe i ortogonalne (s^) atomów węgla

cząsteczki antracenu w krysztale w temperaturze 95 K.
Dane wyjściowe zaczerpnięte z pracy Masona £6]

Atom Współrzędne ułamkowe Współrzędne ortogonalne, 2

A 0,08617 0,02613 0,56813 -1,6563 0,1568 5,5297
B 0,11795 0,15850 0,28352 -0,8403 0,9515 2,5644
C 0,05886 0,07899 0,14027 -0,4114 0,4741 1,2687
D 0,08783 *0,20916 0,05076 0,4128 1,2554 0,4591
E -0,03011 -0,13488 0,08974 0,8355 0,8096 -0,8117
F -0,06123 -0,26634 0,18215 1,6965 1,5986 -1,6475
G -0,00391 -0,18761 0,31834 2,0944 1,1260 -2,8794

Wychodząc z współrzędnych ułamkowych obliczamy wpierw macierz B
i g według definicji (3.43) oraz 
jemy

/7,495585
102 B = 112,897612

\12,521582

/2,018161
102 g = I O

\0,879543

(3.40). W temperaturze 290 K otrzymu-

12,897612 12,521582\
58,579056 -8,261099) ,
-8,261099 75,156706/

0 0,879543\
2,742952 0 ) ‘

0 1,182787/
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Ponieważ wyznacznik macierzy В jest różny od zera, det (§) = 2,3912.
•10“6. możemy obliczyć 5“^

/1184,02 -448,64 -246,58\
10-2,g-1 = ( -448,64 170,02 93,43 ) ,

/-246,58 93ЛЗ 51,36/

oraz 1
/2172,66 -1230,59 749,74\

(B-1 g) = ( -823,25 466,35 -284,09 1 .

/-452,46 256,27 -156,13/

Wybieramy jako zerowe przybliżenie m kolumnę -И macierzy (B g) 0 naj-
większych elementach. Jest nią

(2172,бб\
-823,25 ).
-452,46/

Następnie obliczamy pierwsze przybliżenie

/ 5,394307\
= (B-1 g) p0 = -2,04'4026 -106.

V>123373/

Jeżeli podzielimy składowe p^ przez analogiczne składowe p0 to otrzy­
mamy

(2482,81\
2482,87 | .
2482,81/

Składowe te różnią się między sobą tak niewiele, że p^ możemy uznać 
za wystarczająco dobre przybliżenie m^\ a średnią wartość 2482,83 
jako wartość własną 1/^ • Stąd

= 4,027-Ю-4.

(1)W celu uzyskania wektora r ' musimy p^ poddać warunkowi normaliza­
cji (3.39)

f £1 = 61,018540-1010 = f

oraz

= 7,811436-Ю5,

czyli 
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mT = (6,9056, -2,616?, —1,4381).

Równanie płaszczyzny całej cząsteczki we współrzędnych ukośnokątnych ma 
więc następującą postać:

6,9056 - 2,616? - 1,4381 = 0.

Dla sprawdzenia tego równania policzmy odchyłki atomów węgla 
oraz ich kwadraty. Otrzymujemy

A B c D E P G

Oi’102 0,60 0,36 -0,39 -0,92 -0,28 0,31 0,59 2
a2.io4 0,355 0,126 0,149 0,854 0,081 0,097 0,350 £2

2 2 d? = 4,024«10~4 = S = A(1).

Widzimy, że zgodność obliczonych wartości jest zupełnie zadowalająca.
Możemy teraz podstawić mis a^ oraz p do (3-53), co po przelicze­

niu pozwala napisać równanie płaszczyzny cząsteczki we współrzędnych 
abcx

0,80654 X] - 0,43337 x2 + 0,40207 = O

w temperaturze 290 K. Jednocześnie widzimy, że

NT = (0,80654, -0,43337, 0,40207)

jest wektorem normalnym do tej płaszczyzny.
W celu znalezienia M nie możemy odwrócić macierzy (B“1 g) i po­

nownie skorzystać z rachunku kolejnych przybliżeń, ponieważ wyznacznik 
tej macierzy jest równy zeru. Wobec tego wybierzemy zbiór wektorów AG*, 
BP*, ..., w przybliżeniu równoległych do M (rys. 3,22). Na podstawie 
współrzędnych ortogonalnych w temperaturze 290 K (tab. 3.8), obliczamy 
ich kosinusy kierunkowe, zestawione w tab. 3.10. Średnie wartości odpo­
wiadają wektorowi

<pT> = (-0,32344, -0,89224, -0,31506).

Nałożenie warunków (3.57) z uwzględnieniem przybliżenia (3.58) prowadzi 
do równań liniowych

61 + + Ój = O,

-0,32344 61 - 0,89224 62 - 0,31506 6^ = 0.158-10“4 

0,80654 8^ - 0,43337 62 + 0,40207 6^ = 8,753-IG"4
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Tabela 3.10

Orientacje wektorów równoległych do osi M cząsteczki antracenu

Wektor
Kosinusy kierunkowe *

C21 °22 c23

AG' -0,32864 -0,88857 -0,32006

BP' -0^32415 -0,89148 -0,31651
ce' -0,31956 -0,89481 -0,31176

dd' -0,31936 -0,89595 -0,30873

Tabela 3.11

Orientacja osi IMN cząsteczki antracenu 
względem ortogonalnych osi kryształu abcx 

(sy temperaturze 290 K)

a b cx

L -0,49615 •-0,12644 0,85897
M -0,32143 -0,89230 -0,31701
N 0,80654 -0,43337 0,40207

Tabela 3.12
Orientacja osi IMN cząsteczki antracenu 

względem ortogonalnych osi kryształu abcx 
(w temperaturze 95 K)

a b cx

L -0,51135 -0,13030 0,84947
M -0,30191 -0,89822 -0,31952
K 0,80461 -0,41983 0,41995

których rozwiązaniem są poprawki kosinusów kierunkowych

61 = 201*10“5, = -6.10-5, 65 = -195-10-5.
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Po ich wprowadzeniu otrzymujemy

MT = (-0,32143, -0,89230, -0,31701).

Łatwo się przekonać, że warunki ortonormalności M są spełnione w gra­
nicach ±1.1O”5.

W końcu
LT = (-0,49615, -0,12644, 0,85897).

Pełna orientacja osi LMN cząsteczki antracenu w układzie abcx podana 
jest dla temperatury 290 K w tab. 3.11.

Wyniki te różnią się nieco od podanych przez Masona, co jest spowo­
dowane zapewne trochę inną procedurą aproksymacyjną. Najłatwiej okreś­
lić precyzję przybliżenia za pomocą normalnej N do płaszczyzny pierś­
cienia, determinującej równanie tej płaszczyzny. Dla atomu i leżącego 
dokładnie na płaszczyźnie N = O. Jako precyzję wyznaczenia równa­
nia płaszczyzny możemy zatem przyjąć błąd standardowy

( n V2

przy czym n jest liczbą atomów. Otrzymujemy 'dla temperatury 290 K

N, Mason o.%, = ±8,6.i0-^,

N, niniejsze obliczenia = ±1,5.10“$.

Na tej podstawie wyniki przytoczone w tab. 3.11 można uważać za trochę 
dokładniejsze.

Podobna procedura, zastosowana do współrzędnych atomów węgla cząs­
teczki antracenu dla temperatury 95 K, prowadzi do wyników zamieszczo­
nych w tab. 3.12. Z tych danych (dla obu temperatur) skorzystamy w 
rozdz. 9, w którym będzie mowa o wpływie temperatury na własności fi­
zyczne kryształów.

Przykład 3.7.10. Mając wektor

R^ = (-0,3776, 0,4848, 1,2704) £

opisujący położenie atomu węgla C w cząsteczce antracenu w abcz w 
temperaturze 290 K (tab. 3.8), znaleźć "idealne" położenie pozostałych 
atomów węgla pierścienia środkowego i porównać wyniki z położeniami rze­
czywistymi.
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labels 3.15

"Idealra" poZotenie aton6w wegla Arodkoaego piersclenia oz^steczkl antracenu

a Atom 1 m-1) 0-1)g = 2 Sn 
(strukt)

Zk-103
8

1 C
/l 
1 0
\O

0
1
0

o\
0
1/

/1 

0
\°

0 0^
1 0
0 1/

/-O,3776\ 
I 0,4648) 

\ 1,2704/

/-O,3776\ 
I 0,4848 I 
y1,2704/

/1 
/ 2

o\ /0,8275 -0,5212 -0,2088\ A0,8303\ /-0,8325\ -2,2

2 e'
V

1 ’
2

0 0,1742 6,59-19 -0,7870 j |-0,7786 -0,7890 I -10,4

\o 0 1/ V.5337 0,6149 0,5806/ \0,334$/ \ 0,3266/ -7,6

2
& 7o,4826 -0,8681 0,1162\ AO,4555\ /-O,45O6\ 4,9

3 d' 1 
“ 2

0 I -0,1727 -0,2244 -0,9591
( -1,2620 I I -1,2641 I -2,1

0 0 7 \0,8587 0,4428 -0,258^/ \-0,437^ \-0.4356/ 2,0

4 c' 1
\

0
3 -1
3, 0

o\ 
°

/O,31O1 
(-0,6939 

\0,6499

-0,6939
-0,6325
-0,3442

0,6499\
-0,3442)

-0,677^

/ O,3721\ 
I-0,4819 ] 

\-1,2731/

/ O,3776\ 
(-0,4848 • 

\-1,2704/

5,5
-2,9
2,7.

1
2

y? 0\ /0,4826 -0,1727 0,8586\ /0^8249\ /0,8325\ 7,6

5, E 1
" 2 0 -0,8681 -0,2244 0,4428 [ 0,7815 I 0,7890 7,5 *

0 0 7 \o, 1162 -0,9591 -0,258$/ >0,8369/ \-0,8266/ 10,3

2
/0,8275 0,1742 0,5337\ /0,4500\ /0,4506\ 0,6

6 D 1- 1
2 0 1 -0,5212 0,5919 0,6149 1,2649 1,2641 -0,8

0 0 1/ \-0,2088 -0,7870 0,5806/ \0,4349/ \0,4356/ 0,7

<ix,>= 2

<Ai2> = 3

<AXj> = 3

x 10“5 S
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Ponieważ środek cząsteczki (centroid) przypada w punkcie (0,0,0), 
mamy s = 0 i £ = 0; zatem (3.28) upraszcza się do wyrażenia

R = cT A^-^c Rd.
-»ni = = • “ — (

Kolejność atomów widoczna jest na rys, 3.22.
Wyniki obliczeń zebrane są w tab. 3.15« Jak widzimy, położenia 

idealne różnią się od rzeczywistych w granicach (2-3)’10”^ i. Podobny 
rachunek wykonany dla pierścieni skrajnych (t = 0, s / 0) wskazuje na 
średnie różnice około trzy razy większe. Można stąd wnosić, że anizotro­
pia sił działających na cząsteczkę w krysztale powoduje niewielkie od­
stępstwa od jej pełnej symetrii.

Przytoczony tü rachunek może być bardzo przydatny do określania 
położeń atomów wodoru, znanych z badań rentgenograficznych zwykle z ma­
łą dokładnością.
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4. MODEL GAZU ZORIENTOWANEGO

4.1. Opis modelu, zastosowania i ograniczenia

W molekularno-kinetycznym opisie własności zwykłego gazu przyjmu­
jemy, że składa się on z cząsteczek słabo oddziałujących z sobą, a jeś­
li zajmujemy się gazem idealnym, to oddziaływania te z definicji równe 
są zeru. Przyjmujemy też'zwykle, iż rozmiary cząsteczek w porównaniu z 
odległościami między nimi są znikomo małe, co odpowiada traktowaniu 
cząsteczek jako tworów punktowych.

W analogii do tego obrazu możemy opisać wiele własności kryształu 
molekularnego zakładając, że składa się on z cząsteczek zajmujących 
określbne położenia w przestrzeni, oraz że rozmiary cząsteczek są zni­
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komo małe w porównaniu z odległościami między cząsteczkami w krysztale. 
W pierwszym przybliżeniu możemy też zaniedbać oddziaływania między cząs­
teczkami. Różnica między zwykłym gazem a kryształem polega na tym, że w 
tym ostatnim przypadku cząsteczki tworzą określoną strukturę periodycz­
ną i przyjmują określoną orientację względem wybranego układu współrzęd­
nych, na przykład względem ortogonalizowanego układu osi krystalogra­
ficznych. Zależnie od własności samych cząsteczek możemy kryształ uwa­
żać za periodyczny zbiór zorientowanych w określony sposób dipoli punk­
towych lub elipsoid, odpowiadających jakiejś wybranej własności tensoro­
wej, przy czym objętość tych elipsoid jest bliska zeru.

Ta koncepcja stanowi treść modelu gazu zorientowanego i pozwala na­
pisać relacje między fizycznymi własnościami samych cząsteczek a włas­
nościami komórki elementarnej. Dalsze przejście, od komórki elementar­
nej do własności kryształu makroskopowego, wymaga już znajomości fizycz­
nych równań makroskopowych. Konsekwencją potraktowania kryształu moleku­
larnego jako gazu zorientowanego, przy podanych założeniach, będzie za­
tem spełnienie zasady addytywności: wiele własności ciała makroskopowe­
go będziemy mogli opisać za pomocą własności cząsteczek dodając je wed­
ług zasad odpowiadających matematycznemu charakterowi tych wielkości i 
stosując zasady symetrii, rządzące ułożeniem cząsteczek w określonej 
strukturze.

Model gazu zorientowanego może więc odnosić się do wielkości mole­
kularnych, dających się przedstawić za pomocą wektora lub tensora dru­
giego rzędu. Dyskutuje się obecnie nad następującymi problemami dotyczą­
cymi zastosowań tego modelu:

(i) Wyznaczenie wypadkowego elektrycznego momentu dipolowego w fa­
zie ferroelektrycznej kryształu. Dla zwykłego kryształu, tworzącego fa­
zę paraelektryczną w stanie niespolaryzowanym, suma momentów dipolowych 
cząsteczek na obszar całej komórki elementarnej równa jest zeru, ponie­
waż kryształ nie ma wypadkowego momentu dipolowego pod nieobecność po­
la. Inaczej jest w kryształach należących >do grupy ferroelektryków. W 
kryształach pyroelektrycznych, które są dielektrykami liniowymi o jed­
nej domenie ferroelektrycznej, istnieje polaryzacja spontaniczna: cały 
kryształ pod nieobecność pola elektrycznego ma dipolowy moment elek­
tryczny, tj. stanowi ogniwo elektrostatyczne. Dochodzi to stąd, że każ­
da cząsteczka takiego związku ma trwały moment dipolowy. Suma tych mo­
mentów nie znika.w pewnym kierunku, stanowiącym oś (uni)polarną dielek­
tryka. Kryształy wykazujące takie własności należą do jednej z dziesię­
ciu grup punktowych, wymienionych w rozda. 3.

(ii) Obliczanie dichroizmu, tj. anizotropii absorpcji promieniowa— 
nia spolaryzowanego w Krysztale molekularnym. Problem ten omówimy sze­
rzej w rozda. 7.
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(iii) Opis szeregu własności fizycznych, reprezentowanych tensorem 

drugiego rzędu, takich jak diamagnetyzm, optyczna'stała dielektryczna i 
inne. Niektóre z tych własności będą przedmiotem bardziej szczegółowych 
rozważań w następnych rozdziałach.

(iv) Opis wpływu temperatury na własności' fizyczne kryształów. Mi­
mo iż średnie własności kryształu, na przykład podatność diamagnetyczna 
proszku, praktycznie nie zależą od temperatury, podatność kryształu w 
określonym kierunku zmienia się wyraźnie wraz ze zmianą temperatury.Jeś­
li możemy uznać, że własności samych cząsteczek są stałe w tym sensie, 
że od temperatury- nie zależą, to obserwowana zależność temperaturowa 
dla kryształu świadczy o tym, że zmianie ulega przestrzenne rozmieszcze­
nie cząsteczek, a więc ich liczba w jednostce objętości ciała stałego i 
ich orientacja. Pomimo tego, iż efekty są niewielkie, ich badanie jest 
interesujące ponieważ świadczą one o anharmonizmie dynamiki sieci. Bar­
dziej szczegółową dyskusją tych zjawisk zajmiemy się w rozdz. 9.

Potraktowanie cząsteczek w modelu gazu zorientowanego jako tworów 
punktowych jest jednak uproszczeniem decydującym o niedoskonałości mode­
lu. Sprawia to, że model ten w niektórych zagadnieniach nie może być 
stosowany. Jeśli, na przykład, w jakimś problemie istotne znaczenie ma­
ją oddziaływania międzycząsteczkowe, a tak jest w opisie dynamiki sieci 
to model jest zupełnie nieprzydatny. Nie można więc przy jego użyciu o- 
trzymać częstości lub wektorów polaryzacji drgań sieci, ciepła właściwe 
go, własności sprężystych itp., ponieważ do opisu tych własności krysz­
tału potrzebne jest uwzględnienie przestrzennej rozciągłości cząsteczek 
i podanie matematycznego modelu oddziaływań między nimi.

4.2. Model gazu zorientowanego dla wielkości wektorowej

Przypuśćmy, że komórka elementarna interesującego nas kryształu za­
wiera Z cząsteczek, których położenia związane są operacjami symetrii 
reprezentowanymi przez macierze A^, Ąo, ..., Ąg. Schemat takiej struk­
tury w ortogonalizowanym układzie współrzędnych dla Z = 2 przedstawio­
ny jest na rys. 4.1, przy czym cząsteczki zastąpione są wektorami ilus­
trującymi na przykład momenty dipolowe, indukowane w nich przez obec­
ność zewnętrznego pola elektrycznego E lub przez wektor E padającej 
fali elektromagnetycznej. Rzut płaski tej sytuacji przedstawiony jest 
na rys. 4.2. Niech em oznacza wektor jednostkowy wybrany w kierunku 
wektora W, odpowiadającego wybranej przez nas własności cząsteczki m, 
zaś i, j, k są wektorami w trzech kierunkach kryształu, fizycznie ważo­
nych z punktu widzenia wielkości S. W najprostszym przypadku em może­
my wybrać równolegle do jednej z trzech osi momentu bezwładności cząs4- 
teczki L, M, N, zaś i, j, k mogą być odpowiednio równoległe do trzech
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Bys. 4.1. Bozkład wektorów w sieci przestrzennej, 
ilustrujący wektorową własność kryształu dla Z = 2

Bys. 4.2. Bzut płaski przestrzenne­
go rozkładu wektorów molekularnych

krystalograficznych osi a,b,cx. 
Udział m-tej cząsteczki we włas­
ności W w kierunku i jest 
proporcjonalny do iloczynu ska­
larnego ęm*i, a udział całej ko­
mórki elementarnej w tym kierun­
ku wynosi

Z

= B 2 
m

gdzie B jest współczynnikiem 
proporcjonalności. Jeśli komórka 
elementarna zawiera, na przykład, 
nie jeden lecz dwa zbiory cząste­
czek, przy czym cząsteczki jedne­

go zbioru nie są związane operacjami symetrii z cząsteczkami drugiego
zbioru, to w (4.1) należy napisać dwie uialogiczne, lecz niezależne od
siebie sumy. Odpowiednio dla kierunku j oraz k



Rys. 4.3. Płaski rzut rozkładu tensorów molekularnych, 
w komórce jednośkośnej

wd = B 2 (=m 1 (4’2)
m

Związki (4.1) do (4.3) przedstawiają model gazu zorientowanego dla wiel­
kości molekularnych, które można przedstawić jako wektor. Jeśli możemy 
zmierzyć W w trzech kierunkach i, _j, k, to możliwe jest wyznaczśnie 
orientacji e^ w przypadku, gdy nie jest ona znana.

4.3» Model gazu zorientowanego dla wielkości tensorowej

Przypuśćmy, że w określonej strukturze możemy przypisać każdej 
cząsteczce identyczny tensor molekularny t, zadany w układzie osi cząs­
teczki L, M, N. t ma więc postać przekątniową; jeśli wszystkie trzy 
składowe główne są dodatnie, to zbiór cząsteczek, tworzący strukturę, 
możemy zastąpić symetrycznym rozkładem elipsoid. Dla Z = 2 rozkład ta­
ki jest przedstawiony na rys. 4.3. Naszym zadaniem będzie obecnie znale­
zienie związku między tensorem cząsteczki t a tensorem kryształu I, 
który pozwoli na obliczenie pierwszego z nich na podstawie znanego z do-
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Świadczenia T. Związek ten znajdziemy najpierw dla kryształu należące­
go do układu jednoskośnego.

Niech oznaczają macierze orientacji osi LMN względem orto­
gonalnego układu współrzędnych kryształu ^ |( a, x2||b, x^ |[ cx, przy 
czym r = 1, 2, .... Z. c- jest zdefiniowane tak, że c. • = cos (t-,xj- 
Dla końcowego wyniku nie ma znaczenia czy pracujemy w układzie abc , 
czy też axbc, aczkolwiek z punktu widzenia symetrii poprawniejsza orto- 
gonalizacja jest taka, która nie narusza kierunku poślizgu, zadanego 
często symbolem grupy przestrzennej. Poszczególne macierze otrzy­
muje się, jak wiadomo, z pierwszej macierzy przez transformacje

= Ar (4.4)

gdzie są macierzami, odpowiadającymi kolejno wszystkim operacjom 
symetrii, należącym do grupy ilorazowej komórki elementarnej kryształu. 
W takim razie komórce elementarnej odpowiada tensor j, zadany w ukła­
dzie

Z
I = - i . (4.5)

W przyjętej przez nas konwencji układu osi ogólną postacią r
będzie

Należy teraz sprowadzić r do układu ośl głównych tensora makroskopowe­
go g, który ma, oczywiście, postać przekątnioivą. Jeśli przyjmiemy, że 
T2H (konwencje, jak zobaczymy w następnym rozdziale, mogą być też 
inne), tó osie i lezą w płaszczyźnie (010). Oznaczmy kąt między

a osią || a przez <p ; uważamy go za dodatni wtedy, gdy jest liczo­
ny od a do 'i^ w kierunku rozwartego kąta krystalograficznego B. Jeże­
li przyjmiemy więc <P > 0, to możemy napisać tabelę orientacji T, ozna­
czaną przez a

I
»n
"3

*1 x2 x3

cos e 0 sin (p
0 1 o

-sin <p 0 cos <p
(4.7)
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Macierz g odpowiada obrotowi układu współrzędnych wokół x2 o kąt <p 
zgodnie z ruchem wskazówek na tarczy zegara. Mamy obecnie

T = ą t aT. (4.8)

Podstawienie (4.5) do (4.8) prowadzi do poszukiwanego przez nas związku

(4.9)

Rozpisanie (4.9) prowadzi do następujących równań:

T1 = cos2 <p £ c^ tx + sin2 <₽ c2^ ■ti + 2 sin <P cos <₽ y c^c^t^
ii i

T2 = Ę ci2 ^i’ ,

1 (4.10)
T5 = sin2<P ^c^ tx + cos2 <₽ 2 Ci5 *i ~ 2 Sin ’ cos ’ E ci1ci5ti’ 

ii i

T15 = 0 = _ ’ti^) sin 003 ~ ^(sin2 'P - cos2 <P).

♦
Pierwsze trzy równania zawierają liniowe związki między a t^; 

kąt q> musimy znać z doświadczenia. Czwarte równanie nie zawiera dodat­
kowej informacji - jest to warunek zerowania się składowej tenso­
ra, który winien mieć postać przekątniową. Zwykle traktuje się go jako 
kryterium wewnętrznej spójności obliczonych t^ z wartością kąta ® ; 
warunek ten możemy zapisać krócej

tg 2<p =----------- -2— . (4.11)
T 55 " T11

Zastosowanie przedstawionego tu formalizmu do kryształu o symetrii 
innej niż jednoskośna, nie nastręcza szczególnych trudności. Dla układu 
trójskośnego związki (4.5) i (4.9) nie ulegają zmianie, jedynie w macie­
rzy (4.7) wszystkie elementy będą różne od zera. Przez to równania (4. 
10) ulegną pewnemu skomplikowaniu. Dla układu, ortorombowego wystarczy 
przyjąć cp = 0.

Równania (4.10) nasuwają wniosek, że poszukiwanymi wielkościami są 
przeważnie składowe J, które możemy otrzymać przez rozwiązanie układu 
trzech równań liniowych niejednorodnych. Macierz ę uważamy za znaną 
na podstawie danych strukturalnych. Dla cząsteczek dostatecznie syme­
trycznych, tj. posiadających co najmniej Symetrię grupy punktowej C2h,



136
I__ ■
[jako osie główne tensora t wybieramy najczęściej osie symetrii L, M, 
H, pokrywające się z osiami głównymi tensora momentu bezwładności cząs­
teczki. Poza przeałankami, wynikającymi z pełnego rozwiązania problemu 
dynamiki sieci kryształu, prowadzącego do numerycznego określenia orien­
tacji osi libracji cząsteczki w krysztale, nie ma obecnie lepszych me­
tod zdefiniowania osi głównych t. W tej sytuacji wyjątkową własnością 
jest diamagnetyzm cząsteczek. Dzięki zastosowaniu zasady addytywności 
podatności diamagnetycznej cząsteczki jako wielkości tensorowej, możemy 
w sprzyjających okolicznościach określić orientację osi głównych t w 
sposób niezależny. Będzie o tym mowa w rozdz. 5.

Potrzeba zdefiniowania osi głównych tensora t w sposób mniej czy 
więcej dowolny -występuje w badaniach fizycznych własności kryształów o 
symetrii wyższej niż trójskośny. Tylko w kryształach trójskośnych nie 
ma żadnych ustaleń, narzuconych wymogami symetrii. Tylko w tym jednym 
przypadku dysponujemy więc sześcioma informacjami, które możemy otrzy­
mać dla kryształu w sposób niezależny: długości trzech osi głównych ten­
sora makroskopowego i trzy kąty ich orientacji. Dane te pozwalają na o- 
trzymanie również w sposób niezależny, tj. nie wymagający żadnych zało­
żeń, analogicznych informacji dotyczących tensora molekularnego t.

Spotykane są również inne zastosowania relacji (4.9). Jeśli mamy 
kryształ o nieznanej strukturze, to na podstawie eksperymentalnego wy­
znaczenia T oraz § możemy uzyskać przybliżone wnioski o orientacji 
cząsteczki w komórce elementarnej. Informacje te stanowią dużą pomoc w 
^badaniach struktury metodami rentgenografii strukturalnej.

Postać związków (4.1) i (4.9) wskazuje, że model gazu zorientowa­
nego możemy traktować'jako szczególny wyraz zasady addytywności wielkoś­
ci fizycznychy mającej zastosowanie w badaniu struktur periodycznych.

5. DIAMAGNETYZM KRYSZTAŁÓW

5.1. Definicje wielkości podstawowych i podział magnetyków

Każde ciało umieszczone w polu magnetycznym o natężeniu H ulega 
polaryzacji magnetycznej, zwanej również namagnesowaniem. Efekt ten po­
lega na porządkującym działaniu pola, które jest wywierane na trwałe mo­
menty magnetyczne elementów strukturalnych, PjJ°\ jeśli takie istnieją 
oraz indukowaniu w tych elementach momentów - Wektor namagnesowa­
nia określa się jako (dipolowy) moment magnetyczny jednostki objętości 
ciała
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AV jest elementem objętości ciała, do którego odnoszą się obie sumy w 
(5.1). Jeśli substancja jest diamagnetykiem, to p^0^ = 0.

Dla para- i diamagnetyków przyjmuje się, że wektor namagnesowania 
jest proporcjonalny do pola H

I = * H, (5.2)

przy czym jest wielkością zwaną podatnością magnetyczną substancji. 
We wzorze (5.2) zarówno I, jak i H mają ten sam wymiar; w takim ra­
zie 4 jest wielkością bezwymiarową. W niektórych podręcznikach można 
spotkać inną definicję wektora namagnesowania:

I = % *H, (5.3)

gdzie |4,0 jest przenlkarnością magnetyczną próżni (w układzie SI □ 
= 4w .10-? Wb/Am). Przy tak napisanym związku I oraz H mają wymiary 
różne, a dla uzyskania zgodności (5.3) z definicją (5.1) trzeba prawą 
stronę (5.1) pomnożyć przez Również w (5.3) 4» nie ma wymiaru. Po­
datność magnetyczna 4> para- i diamagnetyków jest stałą materiałową, 
natomiast <|> ferromagnetyków zależy jeszcze od natężenia pola. Innymi 
używanymi wielkościami są: podatność jednostki masy, w , oraz podatność 
jednego mola substancji x . Związki między nimi są następujące:

U = & , 7= H.M = , (5.4)
p P

gdzie p jest gęstością substancji, a M masą cząsteczkową, u oraz 
X mają wymiar, zatem nie spełniają równania (5.2).

Podatność magnetyczna 4 jest ważną cechą substancji chemicznie i 
fizycznie jednorodnej i może być podstawą klasyfikacji. W podziale sub­
stancji na różne'typy magnetyczne bierze się pod uwagę wielkość i znak 
4 oraz siłę, działającą na próbkę ze strony pola magnetycznego.

Przypuśćmy, że umieściliśmy w polu magnetycznym próbkę substancji 
o objętości v. Jeśli pole jest jednorodne a substancja nie jest ferro- 
magnetykiem, to substancja ta ulega namagnesowaniu, lecz nie doznaje 
działania siły przesuwającej; środek masy próbki swobodnej nie przesu­
wa się samorzutnie w jednorodnym polu magnetycznym, nawet wtedy, gdy 
jest anizotropowa. Inaczej jest, gdy próbkę umieścimy w polu niejedno­
rodnym, przy czym ograniczmy się w rozważaniach do substancji izotropo­
wej. Niejednorodność pola określa gradient natężenia, na przykład 

skierowany w określonym punkcie prostopadle do linii pola prze­
chodzącej przez ten punkt. Na próbkę umieszczoną.w tym punkcie działa 
więc siła (przy zastosowaniu (5.3))

3H
F = v*H — (5.5)— dz
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o zwrocie zależnym od znaku, tp a kierunku zgodnym z 8H/8x. Na podsta— 
wie wielkości i znaku tej siły możemy przedstawić następujący schemat 
klasyfikacji ciał stałych [1,2].

1. Diamagnetyki. Są to substancje, odznaczające się podatnością V 
vjamną i małą, rzędu 10“6, niezależną od natężenia pola i praktycznie 
^niezależną równipż od temperatury T. Substancje te umieszczone w nie— 
jednorodnym polu magnetycznym doznają działania siły F ujemnej, skie­
rowanej przeciwnie do gradientu natężenia pola magnetycznego. Jeśli 
próbka ma swobodę ruchu, to przemieszcza się z obszaru o większym natę­
żeniu pola do obszarów o natężeniu mniejszym. Do klasy diamagnetyków na­
leży ogromna większość związków organicznych, wiele związków nieorga­
nicznych (H20, NaCl, CaS04 ...), a także niektóre metale (Cu, Pb).

2. Paramagnetyki. Te substancje charakteryzuje podatność dodat­
nia, o wielkości 10“S < <10-2*', niezależna od H. Paramagnetyki u-
mieszczone w niejednorodnym polu magnetycznym doznają działania siły do­
datniej, skierowanej zgodnie z gradientem natężenia pola: paramagnetyk 
jest wciągany do obszaru silniejszego pola.

Zależnie od zachowania się przy zmianie temperatury można wyróż­
nić dalsze podgrupy paramagnetyków:

(i) Paramagnetyki o charakterze dielektryków, pozbawione elektro­
nów przewodnictwa, dla których 1/^ jest liniową funkcją temperatury 
(spełniają prawo Curie lub Curie-Weissa). Należą do nich na przykład 
niektóre sole metali grupy żelaza (FeCO^), metali ziem rzadkich oraz 
związki organiczne, których cząsteczki mają elektrony o niesparcwanych 
spinach (wolne rodniki).

(ii) Paramagnetyki metaliczne (metale i półprzewodniki) o podatnoś­
ci małej (rzędu 10-6), związanej z istnieniem'elektronów przewodnictwa 
(paramagnetyzm Pauliego). Podatność tych materiałów słabo zależy od tem­
peratury (Na, Al).

(iii) Antyferromagnetyki, o podatności zbliżonej do zwykłych para­
magnetyków lecz z szczególną zależnością ł(T): w pewnej temperaturze 

zwanej temperaturą Neela, przechodzi przez maksimum (MnS, MnO).

3. Ferromagnetyki. Są to metale grupy żelaza (Fe, Ni, Co) oraz sze­
reg ich stopów, o podatności dodatniej i bardzo dużej (10^ do 10^),przy 
tym zależnej od temperatury (powyżej temperatury Curie, Tc, są zwykłymi 
paramagnetykami), natężenia pola H i od historii magnetycznej, termicz­
nej i mechanicznej próbki. Pewna grupa związków, zwanych ferrytami, wy­
dzielana jest jako osobna klasa magnetyków, zwanych ferrimagnetykami. 
Od ferromagnetyków odróżnia je bardziej złożona zależność <HT) powy­
żej temperatury Tc oraz charakterystyczne cechy strukturalne uporząd­
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kowania magnetycznego (przynajmniej jedna, z podsieci ma równoległe uło­
żenie spinów o kierunku przeciwnym niż w pozostałych podsieciach).

W powyższej klasyfikacji pominęliśmy diamagnetyki anomalne i tak 
zwane metamagnetyki, stanowiące grupy magnetyków o bardzo niewielu 
przedstawicielach. W dalszej części będziemy się zajmowali wyłącznie 
diamagnetykami, odsyłając Czytelnika zainteresowanego własnościami in­
nych grup do wykazu literatury, zamieszczonego na końcu'książki.

Wektor indukcji magnetycznej B określony jest związkiem

B=nb(H+p. (5.6)

Korzystając z (5.2) otrzymujemy

b = + p0 (pH = aod + «PiS = ul* (5.7)

p. jest przenikalnością magnetyczną materiału. Gdy porównamy (5.7) z 
analogicznym -równaniem, napisanym w układzie jednostek cgsM

widzimy,że

B = (1 + 4 n <p)H

^SI = *cgsM’

(5.8)

(5.9)

Relacja (5.9) może być wykorzystana do przeliczenia podatności w jed­
nostkach SI; większość prac z dziedziny magnetochemii opublikowana jest 
w układzie cgsM.

Warto zauważyć, że diamagnetyzmowi substancji towarzyszy na ogół 
niewielki udział paramagnetyzmu. Zgodnie z teorią Van Vlecka magnetyczr
ne własności cząsteczki wieloatomowej opisuje 
z dwóch członów [3(6]

wyrażenie, składające się

2
^cgsM = - — 2 <ri

|(°)MH|n)L2

En-Eo
(5.10)

n

Pierwszy z nich jest diamagnetyzmem, tzn. larmorowską precesją orbity 
elektronu w polu magnetycznym. Średni kwadrat promienia tej orbity wyno­
si <r^ N jest liczbą Atogadry, e i m ładunkiem i masą spoczynkową 
elektronu. Suma rozciąga się na wszystkie elektrony określonego atomu. 
W drugim członie (o|MH|n) jest elementem macierzowym składowej orbital­
nego rfomentu pędu w kierunku wektora H dla przejścia od stanu podsta­
wowego (indeks o) do wzbudzonego (n). E^ - EQ jest różnicą energii 
obu tych stanów. Ten dodatni człon wynika stąd, że obok precesji pod 
wpływem zewnętrznego pola magnetycznego zachodzi również polaryzacja 
powłok elektronowych. W wyniku tego pojawia się niewielki orbitalny mo­
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ment magnetyczny, skierowany zgodnie z H. W takim razie obok ujemnej 
podatności występującej zawsze, w układach wieloelektronowych po­
jawia się słaby udział paramagnetyczny 4'p» zwykle rzędu kilku procent, 
przy czym zarówno 4^ jak i 4*p nie zależą od temperatury. W doświad­
czeniu mierzy się zawsze sumę, tj.

4> , = 4>, + * . (5.11)dośw. d p

Ocena części paramagnetycznej potrzebna jest wówczas, gdy interesujemy 
się pnTówrmni Am wyników doświadczalnych z teorią. Ponieważ porównań ta­
kich czynić nie będziemy, potraktujemy wyniki doświadczalne diamagnetyz­
mu kryształów jak i cząsteczek jako podatności efektywne.

Dla diamagnetyków anizotropowych równanie (5.7) należy zastąpić 
przez

B = h0(fl + |)H. (5.12)

Stąd wynika, że

£ = 4 + i, (5.13)

gdzie i jest tensorem podatności materiału, liczonym na jednostkę obję­
tości, 'O macierzą jednostkową, a y tensorem przenikalności magnetycz­
nej ośrodka

/ 1 + 4^2

+ ^22 *23l’
\*31 *32 1 + ^33/

Można dowieść_[4], że 4; oraz u są tensorami symetrycznymi.
Zauważmy na koniec, że w sumie (5.7) udział członu 4)H, wynika­

jącego z namagnesowania materiału, jest 6koło 10“6 razy mniejszy niż
Wyn-ika stąd, iż B wewnątrz diamagnetyka tylko nieznacznie różni 

się od B w próżni.

5.2. Para sił w polu jednorodnym

Hozważmy teraz zachowanie się kryształu diamagnetycznego, zawieszo­
nego na cienkiej nici w jednorodnym polu magnetycznym H wzdłuż jedne­
go z kierunków głównych tensora na przykład w kierunku 4>2 (rys. 
5.1). Pozostałe podatności główne 4^ i znajdują się zatem w płasz- 

, czyżnie poziomej i niech będzie | > | 4^ |. Stan równowagi w polu H 
odpowiada takiemu ustawieniu kryształu, że H i 4>^ ± H.

Przypuśćmy, że naruszyliśmy tę równowagę przez obrót górnego zawie­
szenia nici o kąt ® (rys. 5.1). Wskutek sprężystości nici kryształ ob-
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róci się równi ag; w tym samym kierunku, jednak o kąt <₽ < a . W tym nowym 
położeniu działa nań ze strony pola para sił i F2> której moment za­
leżny jest od wartości magnetycznego momentu dipolowego p^ nabytego 
przez kryształ w polu

M = % Pm * S- (5.15)

Z kolei pm zależy od objętości kryształu v i jego namagnesowania I

p_ = V I = v 4 H. (5.16)Sm —

Jeżeli oznaczymy przez składową H w kierunku <l'i (rys. 5.2), to 
możemy napisać następujące wyrażenie na składową momentu pary sił M2, 
działającą wzdłuż kierunku zawieszenia:

M2 = MQ(Pj Ł| ■ P<| Hj) = % Hj Hyj - Hl Hj) =

= Ho V Hj(łj -
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“2 = %;

Ponieważ

ЕЦ = H sin ф, = Н cos ф

7ф= S Х-2 = s X, (5.17) 
Р м м

gdzie m jest masą próbki, М ma­
są cząsteczkową, а X podatnością 
jednego mola substancji, otrzymu­
jemy po podstawieniu

- Xq )H2 sin <? cos ф =

= - Pn ~ (Xz ~ XjH2 Sin 2<p. (5.18)
2 0 M ■ 5 1

Para sił jest więc zależna od różnicy podatności molowych kryształu w 
płaszczyźnie prostopadłej do kierunku zawieszenia. Bóżnica ta nieko- 
niecziiie musi dotyczyć podatności głównych, jeśli kierunek zawieszenia 
nie pokrywa się z żadnym kierunkiem głównym tensora X«

5.5. Metoda statyczna pomiaru anizotropii

Na kryształ anizotropowy, umieszczony w polu o natężeniu g, dzia­
ła zatem para sił M2, skierowana wzdłuż kierunku zawieszenia kryszta­
łu. Przy orientacji przedstawionej na rys. 5.1 mamy zgodnie z (5.18)

“2 = i m (x? “ *i)h2 sin 2’’
gdzie <P jest kątem zawartym między osią główną 4 a kierunkiem g.

.Temu momentowi przeciwstawia się moment pary sił, wynikający ze skręce­
nia nici sprężystej

Mg = k( a- aQ - ф), (5.19)

przy czym Mg znika dla e = 0, a wtedy a = aQ. Orientacja kryształu 
jest wówczas taka, że krótsza oś główna tensora podatności -skiero­
wana jest wzdłuż g, a d?0 jest kątem orientacji tej osi względem wy­
różnionego kierunku kryształu, na przykład względem normalnej do dobrze 
wykształconej ściany i odbijającej sygnał świetlny przy pomiarach kątów 
lub względem znanego kierunku krystalograficznego. Spełnienie warunku 
»=0 możemy sprawdzić za pomocą prostej obserwacji: kryształ zawieszo­
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ny nieruchomo Die zmienia swego położenia po włączeniu pola magnetyczne­
go. Pomiar aQ pozwala więc ustalić orientację względem wybranego] 
układu odniesienia.

W celu nzyskani a położenia kątowego 9 kryształu musimy obrócić 
górne zawieszenie nici o kąt a > <₽ , Jeżeli kryształ jest nieruchomy, toj 
oba momenty sił są sobie równe, M2 i Mg, a

1 u S (X, - Z-JE2 sin 2$ = k(a -a - ą>). (5.20)
2 0 M

Jeżeli się oznaczy

x? _ = A^ x, (Wo m H2)/(2 M k) = A, (5.2d)

to równość (5.20) przyjmie prostszą postać

a - a0 - <p = A x sin 2 (5*22)

Jeśli kryształ zawieszony jest na dostatecznie cienkiej nici (kwarcowej 
lub szklanej), to a - % znacznie przewyższa <p tak, że » ż lewej 
strony możemy pominąć. Względne przesunięcie kątowe górnego zawieszenia 
nici, a - ao, jest wówczas liniową funkcją sin 2 <p i tę zależność może­
my wykorzystać do dokładnego wyznaczenia A X. Stałą sprężystą nici, k, 
można znaleźć przez wykonanie pomiarów dla kryształu o znanej wielkości 
anizotropii, natomiast pozostałe parametry występujące w (5.22) są łat­
wo dostępne bezpośrednim pomiarom.

Powiększanie kąta skręcenia nici a, powoduje wzrost <₽ aż do wiel­
kości t₽max = n/4; kąt skręcenia wynosi wówczas a^. Takie położenie 
kryształu jest metastabilne i dalszy, niewielki już wzrost a powyżej 
kąta krytycznego powoduje gwałtowną reakcję kryształu, polegającą na 
szybkim obrocie wokół kierunku zawieszenia. Ponieważ sin 2$^^ = 1, 
mamy

a a - n/ą
A x = ------ 2---------- . (5.23)

1 A

Pomiar kąta krytycznego może więc również być wykorzystany do wyznacze­
nia A x [21].

Do wyznaczenia stałej sprężystej nici można użyć kryształu kalcytu, 
którego główne podatności, a tym samym i anizotropie są znane. Główne 
podatności tego kryształu wynoszą [9]

*1 = X2 = -56,3
= -W,5

’ .lO"6 cgsM.



Rys. 5.3. Orientacja osi tensora 
podatności magnetycznej w krysz­

tale kalcytu

Oś X jest równoległa do trzy­
krotnej osi symetrii naturalnego 
romboedru kalcytu, pozostałe leżą 
w płaszczyźnie prostopadłej do 
(rys. 5.3). Jeśli przez a = 103° 
oznaczymy kąt wierzchołkowy zawar­
ty między krawędziami ścian związać 
nych relacją C^, to kąt 4< zawarty 
między X ^ a symetralną kąta a 
można obliczyć z relacji

sin^ = (7373) tg «/2.

Jeśli zawiesimy kryształ wzdłuż 
dwusiecznej kąta rozwartego natu­
ralnego romboedru, to mierzona ani­
zotropia wynosi

A X = (^ - X?) sin2 * =

= 2.21.10“6 cgsM.

Anizotropia ta jest niewielka, a więc ten sposób zawieszenia jest przy­
datny do wyznaczenia stałej sprężystej bardzo cienkich nici, często u- 
żywanych w eksperymentach.

5.4. Metoda dynapiczna pomiaru anizotropii

Kryształ odchylony o niewielki kąt w stanie H = O będzie wykony­
wał po włączeniu pola oscylacje torsyjne wokół położenia równowagi.Rów­
nanie ruchu tych drgań ma postać

Ib e = - A k A X sin 2 e- ks, (5.24)

gdzie jest momentem bezwładności kryształu, a e oznacza przyspie­
szenie kątowe. Jeśli posługujemy się promieniem świetlnym, odbitym od 
powierzchni kryształu lub od małego zwierciadełka umieszczonego poza ob­
szarem pola, to do obserwacji ruchu wystarczą zupełnie małe amplitudy 
kątowe. W takim przybliżeniu sin 2e;S 2e, oraz

e +_— (2 A A X+ 1)ke= 0. (5.25)
Xb

Stąd otrzymujemy wyrażenie na częstość drgań kryształu w polu magnetycz- 
syt\, h
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w 2 _ H “
2A A X + 1 k. (5.26)

Jeśli wyłączymy pole, to dla H = 0 również A = Oj obserwujemy wów­
czas częstość drgań »0 <

“o = “-‘ (5.27)
xb

Połączenie wyrażeń (5.26) i (5.27) prowadzi do następującego rezultatu:

-
-5-- = 2A A X (5.28)

przy czym T jest okresem drgań próbki. Widzimy stąd, że pomiar okresu 
drgań próbki w polu. magnetycznym,!^, oraz przy wyłączonym polu, TQ, pozwala 
na obliczenie anizotropii podatności magnetycznej kryształu,A X.Potrzeb­
ną w A stałą sprężystą nici, k t można zmierzyć metodą opisaną w po­
przednim rozdziale, albo za pośrednictwem pomiaru okresu drgań pręcika 
(szklanego) o znanej geometrii (wzorzec), zawieszonego na tej samej ni- 
ći

(5.29)

Dla pręcika 
wie, moment

o masie m i całkowitej długości 1, zawieszonego w poło- 
bezwładności wyraża się znanym wzorem

t 1 m ,2I = — ml w 12

Posługując się metodą statyczną lub dynamiczną możemy więc zmie­
rzyć, na przykład, A = X^ -X1. W korzystnym przypadku, gdy próbka ma 
kształt prostopadłościanu, można takie pomiary powtórzyć jeszcze dla 
drugiego kierunku zawieszenia, otrzymując, na przykład A^ = x2 -X1# 
Pomiar trzeciej możliwej wartości anizotropii A^2 = X^ - X2 ói® przy­
nosi nowej informacji potrzebnej do obliczenia wartości głównych tenso­
ra podatności, pozwala jedynie na zmniejszenie błędów dwóch poprzednich 
pomiarów. Łatwo bowiem dostrzec, że dla układu równań

X — X ~ a»
X2-X1 = b, (5.30)

Xj - x2 = c>



146
wyznacznik: charakterystyczny A = | /-1 O 1/-1 1 O/O -1 1/ | = O. 
W takim razie pomiary anizotropii same nie wystarczą do wyznaczenia 
głównych podatności? trzeba dysponować dodatkową informacją niezależną, 
a tą jest średnia podatność proszkowa-substancji, <4> >. Pomiar<<p> omó­
wiony jest w następnym rozdziale.

Dowolny przekrój tensora X płaszczyzną prostopadłą do kierunku 
zawieszenia jest zawsze elipsą,-jeśli tylko wszystkie trzy osie główne 
tensora są ujemne, Jeśli 1^ oznacza wektor jednostkowy wzdłuż linii 
pola, a 12 wektor do nich prostopadły, to wektory te są zarazem osia- 

■mi głównymi eliptycznego przekroju tensora płaszczyzną horyzontalną. 
Mierzona anizotropia wynosi zatem

A X = 1^ X 14 - 1® 12- (5’31)

5„5. Metody pomiaru średniej podatności

Najbardziej rozpowszechniona metoda Guya służy do pomiaru średniej 
podatności jednostki objętości substancji. Polega ona na pomiarze siły, 
działającej na próbkę diamagnetyka (przesuwanie się próbki w kierunku 
mnie jazago natężenia pola) lub paramagnetyka (wciąganie próbki w obszar 
silniejszego pola) w niejednorodnym polu magnetycznym (rys. 5.4).Metoda 
zrównoważenia siły może być typu grawitacyjnego (waga, rys. 5.4a) lub 
elektromagnetycznego (wciąganie rdzenia ferromagnetycznego do wnętrza 
cewki, rys. 5.4b). Jeden koniec próbki'znajduje się w polu o natężeniu 
H, drugi jest poza obszarem pola (Ho = 0). Przyjmiemy, że próbka nie wy-

Rys. 5.4. Pomiar siły działającej na proszek lub ciecz 
w niejednorodnym polu magnetycznym

■ ■• i . ■ . ' . v 
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kazuje efektów anizotropowych. W przypadku ciał stałych można to osiąg­
nąć przez ich sproszkowanie, dokładne wymieszanie i sprasowanie w rurce 
szklanej w sposób 'standaryzowany. Jeśli tylko kryształ nie dzieli się 
przy proszkowaniu w uprzywilejowany sposób na blaszki lub pręciki (sku­

tek występowania płaszczyzn dobrej łupliwości), to bardzo duża liczba 
małych kryształków daje gwarancję, że każda orientacja jest jednakowo 
uprzywilejowana.

Na element objętości proszku działa wzdłuż osi z siła zależna od 
magnetycznego momentu tego elementu, dpm = I-dvf gdzie I jest jego ra­
ma gnesowaniem. Wobec tego mamy

dF, = u I dv — = n<<p>H(A.dz) = u A«U>H dH, ■ (5.32) 
z 0 dz 0 dz

gdzie A jest powierzchnią przekroju rUrki szklanej, w której znajduje 
się proszek. Całkowanie w zakresie od z^ do z2 (rys. 5«4) prowadzi do 
wyrażenia na siłę, działającą na całą próbkę

z2
F = [ u A«p>H dH = i - H2) (5.33)

z j o 2
Z1

lub, w przybliżeniu,

Znak minus oznacza, że dla substancji z dodatnią średnią podatnością si­
ła będzie działać w kierunku -z, zgodnie z zachowaniem się takiej sub­
stancji. W celu osiągnięcia dobrej dokładności pomiarów rurka powinna 
mieć długość około 15 cm i średnicę 2-5 cm, prawie równą szerokości 
szczeliny między nabiegunnikami magnesu. Dalsze zwiększenie dokładności

Tabela 5.1
Podatność 1 cm^ wody destylowanej w funkcji temperatury) [1]

t °c 1 10 30 70

<b «10^*cgsM 0,7189 0,720 0,722 0,724

można uzyskać dzięki wykonaniu pomiarów metodą porównawczą, stosując ja­
ko wzorzec, na przykład, wodę destylowaną. Pozwala to na wyeliminowanie 
błędów pochodzących z napełniani a rurki oraz wywołanych zmienną geome­
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trią ustawienia jej w polu magnetycznym. Podatność jednostki objętości 
wody w różnych temperaturach podana jest w tab. 5.1. W dokładniejszych 
pomiarach trzeba również zatroszczyć się o usunięcie powietrza z rurki 
przez wyparcie go azotem lub, lepiej, wodorem - w temperaturze pokojo­
wej podatność objętościowa powietrza wynosi 4O,029-10”6 cgsM. Szczegó­
ły wykonywania pomiarów można znaleźć w artykule 'przeglądowym Selwooda 
[8].

Metoda Guya jest w zasadzie prosta, odznacza się jednak pewnymi 
niedogodnościami. Główna z nich polega na tym, że mierzy się podatność 
jednostki objętości; w celu obliczenia podatności jednostki masy, naj­
częściej nas interesującej, trzeba znać relację między objętością i ma­
są substancji. Jest to problem banalny, gdy zajmujemy się cieczami,jed­
nak uzyskanie powtarzalnej i stałej gęstości proszku wymaga daleko po­
suniętej standaryzacji w przygotowaniu próbki. Niedogodności te nie wy­
stępują jeśli zastosuje się metodę Faradaya. Polega ona również na po­
miarze siły działającej na magnetyk w niejednorodnym polu magnetycznym, 
jednak zarówno poprzez dobór próbki o bardzo małych rozmiarach (kilka­
dziesiąt miligramów) jak i specjalnego kształtu nabiegunników iloczyn 
H(0B/01) jest stały tak, że siła nie ulega zmianie od punktu do punktu 
w próbce. Nie jest potrzebne wówczas całkowanie na objętość próbki,dzię­
ki czemu metoda Faradaya służy do bezpośredniego pomiaru podatności jed­
nostki masy substancji. Szczegółowy opis aparatury, pozwalającej na po­
miar podatności bardzo małych próbek (1 do 20 miligramów) w zakresie 
temperatur od 5 do 300 K, podany jest między innymi w pracy [lOj.J pra­
cy j podano również praktyczny sposób wyeliminowania sił elektrosta­
tycznych, wynikających z naelektryzowania próbki oraz usunięcia błędów, 
spowodowanych zanieczyszczeniami ferromagnetycznymi.

5.6. Zastosowanie modelu gazu zorientowanego do opisu diamagnetyzmu 
kryształów molekularnych

Widzieliśmy w rozdziale 5.1, że małe wartości podatności diamag- 
netyków powodują, iż pole wewnętrzne w krysztale jest praktycznie takie 
samo, jak przyłożone pole zewnętrzne. Oznacza to, iż oddziaływania mię- 
dzycząstecźkowe mają znikomy wpływ na relację między makroskopowymi 
własnościami kryształu i mikroskopowymi własnościami cząsteczki. Jest 
to sytuacja w zbiorze własności fizycznych nadzwyczaj rzadka i bardzo 
korzystna, ponieważ pozwala na bezpośrednia zastosowanie wyników rozwa­
żań, przedstawionych w poprzednim rozdziale. Prandehawienie związków, 
wynikających z modelu gazu zorientowanego, poprzedzimy jednak omówie­
niem oznaczeń, jakie są stosowane w opisie diamagnetyzmu kryształów.
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Oznaczenia X^ oraz opis ich orientacji w krysztale wprowadzili 

Krishnan, Guha i Banerjee [11]. Późniejsza modyfikacja, wprowadzona 
przez Lasheena [12], dotyczy jedynie innego oznaczenia kątów orientacji 
osi x^ i X2 w układzie jednoskośnym. Podajemy niżej konwencję z u- 
względnieniem tych zmian, dziś prawie powszechnie przyjętą.

1. Kryształy magnetycznie jednoosiowe. W takim przypadku potrzebne 
jest jedynie określenie podatności w kierunku wyróżnionej osi xu oraz 
prostopadle do-niej X± .

2. W kryształach, należących do układu ortorombowego, osie główne 
muszą być równoległe do trzech ortogonalnych osi krystalograficznych 

a, b, c. Oznacza się je przez Xa, X^, Xc.
3. W kryształach należących do układu jednoskośnego osie główne X 

oznacza się przez X-, X2, X-, przy czym z reguły X^ ||b, zaś X^ i X2 
leżą w płaszczyźnie (010). Jako wybiera.się oś krótszą od X2. Kąt 
zawarty między X^ a kierunkiem [10C] oznacza się przez 6 • niekiedy 
używa się również kąta zawartego między X^ i [001] i oznaczanego przez 
ł. Kąty te. liczone od pOO] lub [001] w kierunku rozwartego kąta jedno­
skośnego ß są dodatnie, na zewnątrz niego są ujemne. Przykład orienta­
cji z <|> < O podany jest na rys. 5-5.

Podatności cząsteczek oznaczamy przez
Przy powyższych oznaczeniach i 9 > O 

osi X względem abcx ma postać

K^||L, K2||M oraz Kj||K. 
macierz (4.7) orientacji

O
O
1

sin 6
-cos 6

O
(5.55)
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Równania modelu gazu zorientowanego (4.10) zyskują postać

cos2 6 JT c2, + sin2 6 £ c?j K± + 2 sin 6 cos 9 K± = ,

\
sin2 & c2^ Ki + cos2« JT c2- K± - 2 sin 6 cos 9 ^0^ c^ K± = x2»

Yc2 Ł = x3- (5.36)
lei 1 >

Zastosowanie (5.56) do różnych struktur kryształów molekularnych przed­
stawimy w następnym rozdziale.

5.7. Wyniki doświadczalne badania podatności kryształów i' cząsteczek

Przegląd poznanych magnetycznych własności kryształów, przede 
wszystkim molekularnych, zestawiony jest w tab. 5.4. Ze względu na roz­
miar tabeli z jednej, a pożyteczność zachowania ciągłości tekstu z dru­
giej strony, tabela zamieszczona została na końcu rozdziału. Przy ukła­
daniu tabeli nie podjęto szczególnych wysiłków, by uczynić ją kompletną 
Zwrócone jednak uwagę w kierunku wyszukania możliwie nowych danych 
strukturalnych, ponieważ■te dane rzutują w głównej mierze na wyniki u— 
zyskane dla cząsteczek. Przeliczono również od nowa kilkanaście przypad­
ków budzących wątpliwości.

W zestawieniu interesujące są w pierwszym rzędzie benzen, naftalen 
i antracen, stanowiące trójkę reprezentującą związki aromatyczne, oraz 
najprostsze ich pochodne. Te trzy związki aromatyczne są również w pew­
nym sensie wzorcami dla poszukiwań teoretycznych, zmierzających do wy­
jaśnienia przyczyn anizotropii cząsteczek. Więcej uwagi poświęcono na­
tomiast problemom, które wynikają pośrednio z badań magnetycznych włas­
ności kryształów i cząsteczek. W tym celu zestawiono podstawowe informa­
cje, potrzebne do przejścia od własności kryształu do własności cząs­
teczki, zgodnie z modelem gazu zorientowanego. Należą do nich parametry 
komórki elementarnej i symbol grupy przestrzennej, stanowiące metrykę 
identyfikacyjną fazy krystalicznej. Właśności kryształu opisują długoś­
ci osi x± i ich orientacja, podane według konwencji przyjętej w 5.6. 
Tabele kosinusów kierunkowych zaczerpnięto z oryginalnych prac struktu­
ralnych. Jednak nie wszyscy autorzy zamieszczają pełną orientację osi 
ŁMN. W takich przypadkach punktem wyjścia było równanie najlepszej 
płaszczyzny cząsteczki, definiujące kierunek osi N. Należy tu zauważyć 
że jeśli cząsteczka nie jest płaska, wybór trzech ortogonalnych osi wo- 
góle nie Jest jednoznaczny; podatności K^, K^, K^ mają wtedy znacze­
nie Umowne.



151

Najlepszą płaszczyznę prowadzi się z reguły przez atomy węgla 
szkieletu, jeśli wybór był inny, zaznaczono to w tabeli. Kierunki po­
zostałych osi poszukiwane! były w następujący sposób. Wybierano pary ato­
mów leżące na prostych o kierunkach zbliżonych na przykład do osi M i 
obliczano średnią wartość wektora jednostkowego <M>, Okazuje się naj­
częściej, że <M> nie jest dokładnie prostopadły do N. Jeśli oznaczy­
my

<M> • N = cos 5, (5.37)

to (5-90) jest małym kątem, z reguły ułamkiem 1°. Położenie osi<M> 
można wówczas skorygować przez obrót układu współrzędnych wokół osi L. 
Otrzymujemy

M = <M>cos (5 - 90) + N sin ( 5 - 90). (5*38)

Położenie trzeciej p8\ definiujemy za pomocą iloczynu wektorowego

L = M x N. (5.39)

Tą drogą otrzymujemy wprawdzie przybliżone, lecz wystarczające dokładne 
położenie osi L i M.

Niech jako przykład posłużą dane dla antracenu [59]. Na podstawie 
współrzędnych atomów w abcx otrzymujemy cztery wektory o średnim kie­
runku M (numeracja atomów podana w tabeli 5.2, No 28)

a \ * b c

-0,52365 -0,88355 -0,52009
-0,52416 -0,89149 -0,51650

CE -0,31957 -0,89482 -0,51171
DO -0,31936 -0,89592 -0,50876

Stąd otrzymujemy

<M> = (-0,52294, -0,89270, -0,51426),

<M> • N = -0,00485, 

oraz <
' 5 - 90 = 0,279°.

Poprawiony kierunek M ma kosinusy kierunkowe

M = (-0,5190 -0,8948 -0,3125),
7

a pełna tabela orientacji osi cząsteczki antracenu jest następująca:
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(-0,4951 -0,124? 0,8610\
-0,5190 -0,8948 -0,51251.
0,8094 -0,428? 0,4015/

Porównując elementy tej macierzy z oryginalną tabelą Masona, g^, widzi­
my, że różnice nie przekraczają 1%. Nie ma to praktycznie wpływu na war­
tość Kr, Ł., Łj jak to wskazuje poniższa tabela.

X, Lasheen [15] 
gy, Mason

X, Lasheen [15] 
Cg, przybliż.

KL %
-72,5 -75,4 -244,4

-72,5 -75,4 -244,4

W rzeczywistości jednak składowe tensora K zawsze obarczone są 
błędami, mającymi dwa główne źródła. Pierwszy rodzaj błędów, błędy eks­
perymentalne, powstają na skutek nie tylko określonej i ograniczonej 
dokładności pomiaru anizotropii kryształu, lecz także dokładności wyzna­
czenia parametrów takich jak masa próbki, stała elastyczna nici itp. 
Również strukturalna doskonałość kryształu może mieć duże znaczenie. 
Drugi rodzaj popełnianych błędów ma charakter czysto rachunkowy. Związ­
ki (5.56) możemy zapisać w prostszej postaci

(5.40)

przy czym elementy macierzy D są funkcjami c^ oraz 6. Rozwiązania 
układu (5.40) są wtedy dokładne, gdy wyznaczniki macierzy p jak i 
są dostatecznie duże. W macierzy D. i-ta kolumna zastąpiona została m =*
przez (&P X2, Xj) . Jeśli przypadkiem dwie kolumny det D lub det D^ 
są bliskie proporcjonalności, to - według znanego twierdzenia - wyznacz­
nik ma wartość bliską zeru. Wielkości błędów stąd płynących dyskutowane 
są szczegółowo w pracy Lasheena i Tadrosa dla kryształów, należących do 
układu ortorombowego [14]. Autorzy ci pokazują na przykład, że jeśli 

2 2 2
Xa : xb‘: xc = C11 : c12 : C1J’ "k0 a^adowe i wyznaczone będą 
z dużymi błędami.

Spora część wyników, zamieszczonych w tab. 5.4, została zaczerpnię­
ta z prac Krishnana i współpracowników. Dane te są niekiedy nieścisłe, 
a miejscami niekompletne - głównie z tego powodu, że dokładne rozwiąza­
nia struktur krystalicznych pojawiły się dopiero w latach, które nastą­
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piły po odkryciu przez Krishnana diamagnetyzmu kryształów molekularnych. 
Wyniki te trzeba było uzupełnić, a czasami dokonać pełnych przeliczeń, 
cytowanych w tabeli jako obliczenia własne autora książki, nowszym i ob­
fitym źródłem informacji o anizotropii kryształów są dwie prace Lashee- • 
na Wreszcie pewna część przytoczonych wyników uzyskana została
przez autora i współpracowników. Niewątpliwie lista poznanych związków 
będzie się powiększała, ponieważ zainteresowanie diamagnetyzmem nie 
słabnie i w naszych czasach.

Ogólną prawidłowością wśród cząsteczek związków aromatycznych jest 
fakt, że podatność w kierunku normalnej do płaszczyzny pierścieni 
znacznie przewyższa podatności w tej płaszczyźnie, Kr, oraz że te 
dwie podatności są na ogół bliskie sobie. W literaturze często podąje 
się jako miarę anizntropii cząsteczki wielkość wprowadzoną przez Lashee- 
na [i 2]:

AK = 1 (KL + Kjj) - K^. (5.41)

Jeśli jednak interesujemy się relacją między g lubńg i strukturą róż­
nych cząsteczek, nie zawsze możemy uzyskać z tych liczb przejrzyste 
wnioski. Jest bowiem rzeczą jasną, że średnia podatność cząsteczki, na 
przykład benzenu, będzie wzrastać przy wprowadzaniu podstawników do 
pierścienia. Ale czy anizotropia cząsteczki również wzrośnie po dokona­
niu określonego podstawienia? Wiadomo również, iż w szeregu benzen,naf­
talen, antracen rosną wszystkie trzy główne podatności cząsteczki, ale 
czy anizotropia również ulega zmianie? I czy można zrozumieć że grafit, 
który jest kryształem o strukturze warstwowej, powinien mieć w tym sze­
regu najsilniejszą anizotropię, skoro jego podatności molowe wzdłuż 
warstwy ,|| , i prostopadle do niej , wynoszą [1J

Xu = -O,5*1O“S cgsM,

X± = -21.0.10“6 cgsM,

a więc są liczbowo najmniejsze? Ze względu na dość znaczne przewodnic­
two elektryczne grafitu wzdłuż warstwy, podatność diamagnetyczna tego 
materiału ulega zmniejszeniu wskutek pewnego udziału dodatniego paramag­
netyzmu Pauliego, związanego z obecnością elektronów przewodnictwa. 
Elektronowe przewodnictwo właściwe grafitu w temperaturze pokojowej 
jest jednali o 10 rzędów mniejsze od przewodnictwa metali, zatem udział 
paramagnetyzmu ma charakter poprawki, którą w tych rozważaniach pominie­
my.

Wyraźne odpowiedzi na te pytania możemy uzyskać przez wprowadzenie 
zredukowanych podatności, k^, zdefiniowanych następująco:
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Tabela 5.2
Podatności molekularne bezwzględne, (w 10“° cgsM) i zredukowane, k^

-E1 -K2 -K3 -ki “k2 -k3

Benzen 34,8 52,4 97,4 0,655 0,588 1,777
Naftalen 56,1 54,0 168,9 0,605 0,581 1,816
Antracen 75,6 71,2 245,4 0,581 0,547 1,871
Grafit 0,5 0,5 21,0 0,068 0,068 2,864

Rys. 5.6. Zależność zredukowanych podatności ki od liczby pi er śdeni 
benzenowych w związkach aromatycznych skondensowanych

Ki
= —=----- , i = 1,2,5. (5.42)

5 2 Ki

Zatem ki są liczbami względnymi, których suma dla każdej cząsteczki 
jest taka sama i wynosi 5. Zostały one wprowadzone w pracy [46],ale nie 
znalazły odbicia w literaturze naukowej.

W celu zilustrowania przydatności k- w dyskusji relacji między 
różnymi cząsteczkami, zajmijmy się wpierw szeregiem: benzen, naftalen, 
antracen, grafit. W tabeli 5.2 zestawiono podatności oraz ki tych 
cząsteczek. Widoczne jest, iż podatności zredukowane w płaszczyźnie
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Tabela 5.5

Podatności molekularne bezwzględne; (w 10“6 cgsM) i zredukowane; k^

-«-1 -k2 ^5 -ki -k2 -k3

Benzen 54,8 52,2 97,4 0,655 0,588 1,777
Dwuchlorobenzen 78,5 50,5 120,2 0,944 0,606 1,449
Sześciochlorobenzen 150,9 151,6 179,9 0,888 0,892 1,220

Rys. 5.7« Zależność zredukowanych podatności k^ od liczby atomów 
chloru w chlorobenzenach

cząsteczki k^ i k2, systematycznie maleją, natomiast k^, normalna do 
płaszczyzny cząsteczki, systematycznie rośnie. Regularności te widoczne 
są jeszcze lepiej na rys. 5.6. Jasne jest,-że anizotropia cząsteczek w 
tym szeregu rośnie, a kx grafitu są wielkościami granicznymi,do któ­
rych zmierzają podatności cząsteczek w miarę wzrostu liczby pierścieni. 
Zrozumiałe jest również, że k^ i k2 mają wspólną granicę.

Drugim przykładem są chlorowcowe pochodne benzenu, zestawione w 
tab. 5.5. Jeśli przez n oznaczymy liczbę atomów chloru w cząsteczce, 
to mamy dwa związki graniczne: benzen (n = O) i sześciochlorobenzen 
(n = 6). Rysunek 5.7, sporządzony na podstawie tabeli 5.4 wskazuje, że 
istnieje liniowa zależność kp(n) i k;,(n). Nie ma prostego związku mię- 
dzy , k^ i n, ponieważ oś L dla cząsteczki benzenu wyznacza w przybli- 
żeniu kierunek wiązania C—H, a dla pozostałych dwóch cząsteczek C—Cl.

Te dwa przykłady wskazują, że wielkości kŁ mogą być użyteczne 
dla uzyskania korelacji w szeregu określonych związków chemicznych, po­
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nadto pozwalają ustalić względne anizotropie różnych cząsteczek» Tego 
typu korelacje mogą być również przydatne do przybliżonego określenia 
tensora K w tych przypadkach, w których nie mamy dostatecznych infor­
macji o krysztale.

Przejdziemy obecnie do przedstawienia uwag szczegółowych do niektó­
rych punktów tab. 5.4.

W grupie związków aromatycznych o jednym pierścieniu zasługuje na 
wyróżnienie ze względu na symetrię cząsteczek benzen i sześciochloroben- 
zen. W cząsteczce benzenu (No 1) taka sama relacja wynika z da­
nych dl« swaścl nnhlnrnbenzenn (No 12). Nowsze dane strukturalne wskazu­
ją wprawdzie na istnienie niewielkiej różnicy między tymi dwiema podat— 
nościami (No 12a), jednak mieści się ona w granicach błędu. Obie cząs­
teczki możemy więc uznać za magnetycznie jednoosiowe. Warto przy tym 
zwrócić uwagę na różni p wybraną grupę przestrzenną w obu strukturach 
sześciochlorobenzenu; ma to wpływ, na macierz g.

Badani a magnetochemiczne p-nitrofenolu zostały podjęte z tego powo­
du, że substancja ta występuje w dwóch odmianach fazowych, pozostają­
cych między sobą najprawdopodobniej w relacji monotropowej, tj. nie ma 
przejścia fazowego pod normalnym ciśnieniem. Obie odmiany wykazują róż­
ną wrażliwość fotochemiczną na światło [52]: odmiana a ulega zabarwie­
niu na czerwono pod wpływem promieniowania widzialnego, podczas gdy od­
miana fi jest całkowicie niewrażliwa na naświetlanie. Badania magneto­
chemiczne wykazały, że podatności cząsteczek w obu odmianach są dosta­
tecznie bliskie sobie, by można uznać ich magnetyczną równoważność.Nie­
wielkie różnice K^, widoczne po porównaniu No 10 z No 11 tab. 5.4 mogą 
pochodzić w części z błędów doświadczalnych, w części zaś mogą być wywo­
łane różną konfiguracją samych cząsteczek: w odmianie 3 kąt zawarty 
między płaszczyzną grupy nitrowej a płaszczyzną pierścienia benzenowego 
jest wyraźnie większy, niż w cząsteczce odmiany a .

Badania anizotropii diamagnetycznej roztworów stałych pięciochloro- 
fenolu w sześciochlorobenzenie [35] pomogły w ustaleniu ich struktury, 
która okazała się zbliżona do struktury kryształu sześciochlorobenzenu 
[74]. Przyczyniło się to do wyjaśnienia mechanizmu przemiany fazowej w 
pięciochlorofenolu. Zbadanie własności magnetycznych 2,5-dwumetylońafta- 
lenu również było przydatne w określeniu kierunkó-w niektórych momentów 
przejść absorpcyjnych w tym krysztale o nieznanej strukturze [75].

W grupie cząsteczek o trzech pierścieniach skondensowanych akrydy- 
na (No 50) jest prawdopodobnie pewnym wyjątkiem [12]: numeryczna war­
tość jest mniejsza niż Ky. Podobny wynik znaleziono jeszcze dla 
a-fenazyny (No 51). Mimo' że struktura antrachinonu znana jest w pięciu 
różnych temperaturach [62], w tab; 5.4 przedstawiono wyniki własności 
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magnetycznych tylko dla temperatury pokojowej (No 29 i 29a). Wpływ tem­
peratury na własności fizyczne omówimy bardziej szczegółowo w rozdziale 
10,

Obliczenia podatności magnetycznej cząsteczki kwasu barbiturowego 
(No 35) w pracy Lasheena El2] są błędne, ponieważ w ewidentny sposób 
pominięto obecność cząsteczek wody w tym krysztale. Obie cząsteczki są 
symetrycznie niezależne, zatem udział każdej z nich w podatności komór­
ki elementarnej musimy napisać osobno. Oznaczając przez KB cząsteczkę 
kwasu, a przez WI i WII cząsteczki wody, mamy zgodnie z modelem gazu 
zorientowanego w układzie osi abc

£(KB.2W) = X(KB) + £(WI) + X(WII) =

. <k)T K, c lk)
:wu sw =wii (5.43)

Tabela kosinusów kierunkowych osi 1,2,3 cząsteczek wody I jest typu 
(tab. 5.4, No 35a)

(5.44)

Stąd, po uwzględnieniu elementów symetrii grupy ilorazowej kryształu or- 
torombowego (mm), suma po k redukuje się do wyrażenia

K1 + fI K2
O(Wl) = K3

O

O

K^ + e-j-

O

(5.45)

O

O

Analogiczny 
teczek wody

wynik'otrzymamy dla cząsteczki IX. Udział podatności cząs- 
w podatności komórki elementarnej wynosi zatem numerycznie

X(wi) + x(m) =
O 

-25,4 
O

W obliczeniach skorzystaliśmy z dokładniejszych danych Yen-Chi-Pana i 
Hameki [59] podatności cząsteczek wody.
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Podatności molowe kryształu "bezwodnego", w którym cząsteczki kwa- 
su barbiturowego zachowują swe oryginalne orientacje, wynosi

/-47,0 0 0 \
X(KB) = 1 0 -65,2 o j .10-6 cgsM.

\ 0 0 -46,5y

Obliczone stąd podatności KL, Kjj są równe (tab. 5.4, No 35a) 
I

/-50,51 O O \
g = I o -45,15 O -10"6 cgsM.

\0 O -65, 20^ f

Wobec prawie izotropowego udziału cząsteczek wody w ogólnej podatności 
komórki elementarnej, sekwencja długości osi KL, K^, kwasu jest ta­
ka sama, jak w wynikach Lasheena. Podatności te są jednak znacznie 
mniejsze, niż to podano w pracy [12].

Na zakończenie warto jeszcze wspomnieć o zastosowaniach badań mag- 
netochemicznych do poznania struktury ciał o znaczeniu przemysłowym. 
Szczególnie często wykorzystywano metody magnetochemiczne w badaniach 
polimerów i reakcji polimeryzacji; przegląd uzyskanych w tej dziedzinie 
wyników można znaleźć w pracy Selwooda [^6]. Duże zainteresowanie budzi 
problem znalezienia orientacji cząsteczki w substancji zasadniczo bez­
postaciowej, jaką jest na ogół polimer. Problem ten może być rozwiązany 
źa pomocą pomiarów ani watropli podatności magnetycznej materiału ż jed­
nej strony, z drugiej wymaga określenia anizotropii monomeru lub moleku­
larnej jednostki strukturalnej polimeru, stanowiącej umowny "motyw po­
wtarzania". Bardzo pomocne jest użycie w takich badaniach substancji, mo­
delowych, a przykład tego typu badań można znaleźć w pracy Selwooda i 
Innych [77].

Interesujące wyniki przynoszą również magnetochemiczne badania fo­
lii uprzednio rozciągniętych, na przykład polistyrenu [78]. Zwykle fo­
lia wykonana z tego materiału ma własności bliskie własnościom materia­
łu izotropowego. Rozciągnięcie jej w temperaturze podwyższonej prowadzi 
do częściowego uporządkowania cząsteczek, przy czym anizotropia magne­
tyczna wywołana jest zasadniczo anizotropią pierścieni fenylowych. Stan 
ten można zamrozić przez szybkie ochłodzenie próbki. Nie tylko podatność 
magnetyczna takiej fólii wykazuje anizotropię; anizotropowe są również 
inne jej własności, na przykład mechaniczne lub optyczne. Dla folii ba­
danych w cytowanej pracy uzyskiwano podatności Xn = (-0,76±0,05)-10”6 
i X = (-0,6610,05)’10 “ cgąM, prsy czyn średnia podatności wynosiła 
<X>= 1/5 ( X u + 2 X±) = -0,71•10' “ egaM. U oznacza wielkość mierzoną 
równolegle do kierunku rozciągnięcia, a i wielkość mierzoną prostopad- 
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le do tego kierunku. Jeśli rozciągnięty uprzednio polistyren ogrzeje 
się do wyższej temperatury, to obserwuje się mniej lub więcej powolne 
przejście do stanu izotropowego, odpowiadające przejściu fazowemu typu 
porządek-nieporządek. :

Wielkość uzyskanej przez rozciągnięcie materiału anizotropii mag­
netycznej zależy w wysokim stopniu bd rodzaju użytego materiału. Poka­
zali to Weir i Seiwood [79] na przykładzie trzech rodzajów polimerów: 
polietylenu, polistyrenu i poli(2,5-dwuchlorostyrenu). Okazało się, że 
największe efekty występują w trzecim materiale, najmniejsze w pierw­
szym.

5.8. Zasada addytywności podatności cząsteczki w ujęciu tensorowym

Jak już o tym uprzednio wspomniano, model gazu zorientowanego w 
zastosowaniu do własności magnetycznych pozwala wydedukować tensor po­
datności cząsteczki K na podstawie pomiarów makroskopowego tensora 
X kryształu. Wspomniano również w rozdziale 4, że ścisłe rozwiązanie 
tego problemu jest możliwe jedynie dla kryształów trójskośnych, dla któ­
rych możemy uzyskać drogą doświadczeń sześć niezależnych informacji,- po­
trzebnych do wyznaczenia sześciu składowych g. W wyżej symetrycznych) 
układach krystalograficznych symetria redukuje liczbę nietrywialnych 
informacji, co algebraicznie prowadzi do redukcji liczby równań, jakia 
możemy napisać dla składowych g. W tej sytuacji dokonuje się m^aj lub 
więcej spekulatywnego wyboru kierunków osi głównych K, co wprawdzie po­
zwala na rozwiązanie równań^ ale niepotrzebnie usztywnia problem orien­
tacji g. Słuszność takiego’czy innego wyboru osi g a priori miałaby 
szanse weryfikacji, gdybyśmy dysponowali dobrą teorią, pozwalającą na 
obliczenie g na przykład metodami chemii kwantowej z danych bardziej 
podstawowych. Autor nie’czuje się powołany do przedstawienia w tej 
książce osiągnięć teoretycznych w zakresie magnetochemii cząsteczki, 
jest jednak przekonany, że w ciągu najbliższych kilku lat nie będzie 
jeszcze możliwe wykonanie obliczeń składowych K jakiejkolwiek cząs­
teczki wykazującej anizotropię. Nawet średnie wartości<K> , uzyskiwa­
ne różnymi metodami teoretycznymi dla najprostszych cząsteczek,są dość 
dalekie od zgodności z doświadczeniem.

W tej sytuacji interesująca jest propozycja Van den Bossche'a i 
Sobry'ego [80]. Van den Bossche i Sobry zakładają w swojej metodzie, że 
każdą cząsteczkę można podzielić na człon podstawowy, będący szkieletem 
cząsteczki i szereg połączonych z nim podstawników. Zakładają posa tym, 
że tensory K(m) odpowiadające szkieletowi i podstawnikom w przybliże­
niu nie zależą od tego, w jakim krysztale lub cząsteczce elementy te wy­
stępują, czyli zaniedbują oddziaływania magnetyczne nie tylko między 
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cząsteczkami, lecz także między szkieletem i podstawnikami. Przewidują 
jednak, że słuszne to będzie jedynie w przybliżeniu, ale że właśnie po­
równanie wyników tych obliczeń z tensorem 5 otrzymanym z poinfor- 
muje nas o oddziaływaniach magnetycznych w cząsteczce. Hipoteza addyLyw- 
ności podatności magnetycznej cząsteczki nie jest nowa - znanych jest 
wiele schematów, pozwalających przewidzieć własności całej cząsteczki 
na podstawie inkrementów podatności atomów lub wiązań. Nie przytaczamy 
ich tutaj, ponieważ wszystkie dotyczyły dotychczas wartości średniej 

<K>.
W nowej metodzie orientację składowych tensorów g(m) wybiera się 

w zasadzie dowolnie. Najczęściej jednak i bez szkody dla rozwiązania jat' 
ko osie szkieietn i podstawników można wybrać ich osie symetrii, ozna­
czane odpowiednio przez LMN i Nawet gdy cząsteczka jako całość
jest asymetryczna, jej fragmenty mają symetrię wystarczającą do uzasad­
nienia tego założenia. Oczywiście, osie podstawników nie pokrywają się 
z osiami głównymi szkieletu, jeśli podstawnik nie ma symetrii kulistej. 
Dodawanie składowych tensorów prowadzi się więc w jakimś układzie współ­
rzędnych, wspólnym dla wszystkich fragmentów cząsteczki; najczęściej 
jest to ortogonalizowany układ abcx komórki elementarnej. Uzyskany 
przez sumowanie tensor wypadkowy zawiera z reguły sześć niezerowych 
składowych, co pozwala na wyszukanie osi głównych K niezależnie od 
wszelkich założeń o symetrii cząsteczki. Opisywana metoda jest więc mo­
delem gazu zorientowanego w przybliżeniu tensorowym, w odniesieniu do 
jednej cząsteczki.

Cząsteczkę, którą można podzielić na szkielet i M-1 podstawników, 
opisuje w układzie współrzędnych abcx tensor K [.80]

M s(m) 
g(r,m) g(m) DT(r,m), (5-46)

M=1 r=1

gdzie D(r,m) jest macierzą transformacji do układu abcx r-tego pod- 
stawnika m-tego rodzaju. Przyjmujemy w tym zapisie, że podstawnik r 
może się powtórzyć s(m) razy.

Dla komórki elementarnej możemy napisać

X = § • |, (5.47)

przy czym x. a . oraz K. . (m) są równe odpowiednio X.- oraz E.(m) , »t2 J I»J2 - üwedług konwencji

(i4 dla i. _ i^,
Ł (5.46)

iq + ig + 1 dla i^ p io

Analogiczna. Konwencja obowiązuje wskaźnik j.
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Elementy macierzy B można zapisać w następujący sposób;

M S(m) 3
B . = ----- 1— V V V H R A. A, x +

i«) 1j.& ₽>-^ 9.ił2 L 3-i ,k 3O«!+ °j1, j2 m=1 r=1 p.gL-, 1 d ! *
k,l“

+
32

(r,m)l 
^11 J (5.49)

R jest macierzą transformacji podatności kryształu w układzie abcx 
do układu osi głównych X.

Ponieważ liczba niezależnych elementów X ni® przekracza 6, zaś 
liczba elementów K^^(m) może być duża, korzysta się z założenia, że 
K(m) jest charakterystyczny dla podstawnika i nie zależy od cząstecz­
ki, w skład której wchodzi, W celu wyznaczenia wszystkich g(m) trzeba 
wykonać badania dla kilku kryształów różnych substancji, których oząs- 
teczki zawierają takie same podstawniki.

Metoda Van den Bossche'a i Sobry'ego pozwala więc na wyznaczenie 
osi głównych tensora podatności cząsteczki w zasadzie dowolnej, a po­
nadto na skonstruowanie systematyki tensorów charakterystycznych dla 
szkieletów i podstawników. Tym samym możliwe jest oszacowanie anizotro^ 
pii magnetycznej nie badanych dotychczas związków.

Przykłady obliczenia tensorów rdzenia i podstawników na podstawie 
danych strukturalnych i podatności kryształu można znaleźć w pracy So­
bry'ego i Van den Bosche'a [31] oraz w pracy Mierzejewskiego [62]. Jed­
nym z bardziej interesujących przykładów jest 1,4-dwunitrobenzen (1,4- 
-DNB). Tensor cząsteczki, obliczony z danych dla kryształów nitropochod? 
nych benzenu [81] ma po diagonalizacji następujące składowe główne;

g(1,4-UO) = -41,59

Okazuje się przy tym, że położenia osi K^, K2, dość znacznie odbie­
gają od orientacji osi symetrii IMN cząsteczki, jak to wskazuje poniż­
sza tabela kątów, zawartych między odpowiednimi parami tych osi

L M N

K1 80,0 169,1 85,7
K2 10,1 80,1 91,6
K3 89,2 85,5 4,6

Jak widzimy, kierunki osi głównych g różnią się od kierunków LMN 
pierścienia benzenowego niekiedy aż o 10°. Związane jest to z faktem,
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że cząsteczka DHB -nie jest płaska - grupy nitrowe są wyraźnie wykręconej 
z płaszczyzny szkieletu węglowego, j

Prześledźmy trochę bardziej szczegółowo ten efekt oraz wyniki, do 
których prowadzi model gazu zorientowanego dla dwóch innych przykładów: 
1,5-dwunitronaftalenu (1,5-EBH) i 1,8-dwunitronaftalenu (1,8-I№I), opi- 
Isanych w pracy [82]. Zajmiemy się problemem odwrotnym, tj. obliczeniem 
tensora cząsteczki (lub kryształu) ha podstawie tensorów rdzenia i pod­
stawników; problem ten został przedstawiony w pracy [56].

Bys, 5.6» Tybór osi głównych molekularnego tensora podatności 
dla rdzenia naftalenowego (L№) i podstawników (uvw)

(i) 1,5-dbranitronaftalen
Hiech gj, oznacza tensor podatności rdzenia naftalenowego w ukła­

dzie osi IJ№ 56] (rys. 5»8)

/-54,50 \
Hj, = -52,81 -10"6 cgsM, (5-50)

\ -175,59/

zaś h^ tensor grupy nitrowej w układzie lokalnym uvw [56]

/5,84 -7,78 O,55\
^ = 1 1,76 -5,78 ] *1O"S cgSM. (5.51)

\ . -27,94/

Orientacje IŚCI i uvw względem układu krystalograficznego abcx okreś­
lają macierze



c(IMH) =
/0,2132

0,8867
\-0,4l02

-0,8982
0,343'1
0,2749

0,3845<
0,3098
0,8696/

(5.52j

oraz

ę(uvw) =
<-0,4799

-0,8535
<-0,2029

0,7904
-0,3202
-0,5223

0,3808^
-0,4111
0,8282/

< (5.53)

obliczone w [56] na podstawie danych strukturalnych [55]• Uwzględniając 
fakt, że cząsteczka ma centrum symetrii, mamy na podstawie modelu gazu 
zorientowanego

Hm = g(a®) c^(lMN)' + 2 g(uvw) h^ gT(uvw) (5.54^

w układzie abcx. Po dokonaniu obliczeń otrzymujemy tensor cząsteczki

/-86,87 6,84
gJ 6,82 -67,42

\ 60,30 7,72

Po sprowadzeniu do osi głównych

/-72,52
K = I -49,40

przy czym orientacja osi głównych K

/ 0,4282
gtŁjK^) =1 0,7717 

\-0,4703

60,3Ą
7,69 ] -10"6 cgsM. (5.55) 

-167,27/

otrzymujemy

| -10“6 cgsM, (5.56)

-199,6^/ 

w abcx określona jest macierzą

-0,8812 O,2O1O\
0,4722 0,4260 I . (5.57)

-0,0273 0,8821/

Wynik (5.56) oraz orientację K względem IMN podano w tab. 5.4 (Ho 26) 
obok innych danych strukturalnych kryształu. Widzimy, że również w tym 
przypadku osie różnią się położeniem o kilka stopni od WN z po­
wodu nieplanarności cząsteczki.

Dodawanie (5-54) przeprowadziliśmy po dokonaniu transformacji skła­
dowych tensorów do układu abcx. Możemy je wykonać także w innym ukła­
dzie współrzędnych, na przykład w układzie osi symetrii IMH pierścienia
naftalenowego. W tym celu należy sprowadzić hn 
ą taką, że np. ag^ = cos (M,w)

■ a

do układu IMN macierzą

-0,6658
-0,0364
0,7453

-0,0524
-0,9940
-0,0954

0,7443
-0,1025
0,6599.

(5.58)
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Mamy wósczas
T gjn = gr + 2 g . (5.59)

W układzie cal głównych

A72*51 A
K = | -49,42 j .10“® cgfiM. (5.60)

y -199,66/

Wynik -tan jest zupełnie zgodny z (5.56).
Zauważmy na koniec, że diagonalizacja w pełnej postaci (5.55) 

prowadzi, oczywiście, do wyznaczenia długości i orientacji osi głównych 
tensora molekularnego K. Gdybyśmy do zastosowali operacje syme­
trii właściwe grupie ilorazowej grupy przestrzennej K^/a kryształu i 
dodali do siebie tensory odpowiadające obu cząsteczkom w komórce elemen- 

kryształutarnej, otrzymamy zgodnie ze znanymi już regułami tensor 
w układzie abcx

X(abcx) =
-86,87

O
. 60,31

O 
-67,42

O

60,31\
O j »10"6 cgsM 

-167,27/
(5.61)

Diagonalizacja macierzą

głównych

a b cx

*1 -0,4719 0 0,881?

*2 0,881? 0 0,4719

X3 0 1 0

(5.62)

sprowadza &(abcx) do osi

-199,57
X = •10"° cgsM.-54,59

-67,42
(5-63)

Wynik ten jest zgodny z wartościami doświadczalnymi X, podanymi w tab. 
5.4, No 26.

(ii) 1,8-dwunitronaftalen
Korzystając z tensora podatności rdzenia naftalenowego (5.50) i 

grupy nitrowej (5.51) oraz z danych strukturalnych z tab. 5.4, No 27, 
możemy obliczyć, tensor podatności cząsteczki 1,8-DNN w układzie abc 
tego kryształu (układ ortorombowy)
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/-170,75 -20,42 ' 44,52\
^ = 8 -20,42 -59,33 28,12 J .10“6 cgsll. (5-64)

\ 44,52 28,12 -91,44/

Obie grupy nitrowe potraktowaliśmy jako niezależne, ponieważ nie ma re­
lacji symetrii między położeniami atomów K^OzjOg a zatem

Hm = g(IMN) Hj, gT(M№) + cfu^w^) ^(u^w,]) +

+ 5(u2V2w2) h^ gT(u2v2w2). (5.65)

Wartości własne i wektory własne (5.64) są następujące: 

/-81,55 \
K = i -42,76 j-10“6 cgsM, (5.66)

\ -197,41 /

(«0,4756 0,4908 -O,73OO\
0,0511 0,8459 0,5341 l . (5.67)
0,8782 0,2167 -0,426y

Główne podatności cząsteczki 1,8-DNN są trochę inne niż 1,5-DKW;najwięk­
sze różnice dotyczą podatności K^ i Kg, leżących w przybliżeniu w 
płaszczyźnie cząsteczki.

Układowe przekątniowe (5.64) stanowią bezpośrednio główne podatnoś­
ci X^ kryształu.

5.9. Osie magnetyczne kryształu

Podatność magnetyczną kryształu można opisać za pomocą symetryczne­
go tensora drugiego rzędu X, mającego trzy osie główne. Z wyjątkiem 
możliwych, lecz bardzo rzadkich przypadków wszystkie osie są ujemne, a 
ich orientacją względem krystalograficznego układu współrzędnych rządzą 
reguły symetrii, właściwe klasie symetrii do której kryształ należy. W 
dalszym ciągu będziemy uważać, że obrazem X jest elipsoida trójosiowa.

Analogicznie do sytuacji znanej w optyce, możemy w każdym kryszta­
le diamagnetycznym znaleźć przynajmniej jeden przekrój magnetycznie izo­
tropowy; normalna do tego przekroju definiuje pewien kierunek, który 
zwać będziemy osią magnetyczną tego kryształu.

Przypuśćmy, że mamy kryształ jednoskośny, w którym osie główne X 
zorientowane są w sposób podany na rys. 5*9- Pozatem niech będzie

|X-|| > |X3| > |X2| (5.68)
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Rys. 5«9- Przykład orientacji osi magnetycznych, 0Q 
(osi symetrycznej nie pokazano na rysunku) w krysztale jednoskośnym

oraz Xj||b. Orientację względem krystalograficznej osi a podaje 
kąt <1» uważany za dodatni, jeśli mieści się w obrębie jednoskośnego ką­
ta P . W tej sytuacji zawsze możemy znaleźć taki kierunek OP, leżący w 
płaszczyźnie (010), że podatność kryształu w tym k.ierunku równa jest 
Xj. OP określa więc orientację jednego z dwu przekrojów kołowych o zero­
wej anizotropii magnetycznej. Innymi słowy, kryształ zawieszony w polu 
magnetycznym wzdłuż 0Q ± OP, Xj, nie będzie wykazywał uprzywilejowanej 
orientacji. Kąt między normalnymi do obu takich przekrojów, czyli mię­
dzy osiami magnetycznymi, wynosi 2V; kąt ten jest równy 180 - 25, gdzie 
6 jest kątem determinującym zero anizotropii kryształu
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2 2A £ = cos 6 + sin 6 “

Rys. 5-10. Orientacja kierunków mag­
netycznych w krysztale 1,5-DM

- X3 = O.

Stąd otrzymujemy

€5.69)

sin V =
1/2

(5.70)

W przypadku pokazanym na rys. 5. 
7 płaszczyzną osi magnetycznych 
jest (010), ale nie zawsze musi 
tak być. Położenie tej płaszczyz­
ny determinuje nierówność (5.68)»

Warto zauważyć, że wyraże­
nie (5.70) różni się od znanego 
w optyce dla sin 2V; różnice te 
wynikają stąd, że współczynnik 
załamania światła nie jest wiel­
kością tensorową.

W myśl postępowania podobne» 
go jak w optyce, możemy diamagnetyki podzielić na trzy klasys magnetycz­
nie dwuosiowe (kryształy, należące do układu trójskośnego, jednoskośne- 
go i ortorombowego), jednoosiowe (układy: tetragonalny i heksagonalny) 
oraz magnetycznie izotropowe (układ regularny).

Istnienie przekroju magnetycznie izotropowego pokazano doświadczal­
nie - jak się wydaje poraź pierwszy - na przykładzie 1,5-dwunitronaftai­
łem (1,5—RNN, [56]). W tym krysztale (por. rozdz. 5-8 oraz ,tab. 5.4, 
No 26)

oraz
<p = 118,2°.

Płaszczyzną osi optycznych jest zatem (010). Płytkę wyciętą z kryształu 
zawieszamy w kierunku prostopadłym do osi b w sposób pokazany na rys. 
5.10. Kąt zawieszenia s/, mierzony względem krystalograficznej osi a, 
jest znany i dla każdego pomiaru inny. Ponieważ e 5 + 90 = s^, mierzona 
anizotropia wynosi

2 2AX^ = A cos + B sin ei cos + C sin ei, (5.71)

gdzie i = 1,2,...,n > 3, oraz
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Bys. 5.11. Bozkład anizotropii w płaszczyźnie (010) kryształu 1,5-BNN, 
wykazujący istnienie kierunków zerowej anizotropii L, i

A = (x^ - X5) cos2* + - Xj) sin2*

B = 2(3^ - Xg) sin * cos* > .

C = (X1 - Zj) sin2* + (X2 - X^) cos2 *

(5.72)

Wyniki Axi jako funkcja kąta zawieszenia przedstawione są na rys. 
5.11. Widzimy, że istnieją dwa kierunki i L2 o zerowej anizotropii 
magnetycznej. Kąt między osiami, odczytany z wykresu, wynosi
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2V = 35,1 ±0,5°,

podczas gdy według (5.70)

2V = 34,7 ±0,2°.

Orientację osi magnetycznych w układzie abcx podają wektory jednost­
kowe

M1 = (-0,1886, 0, 0,9820),

M2 = (-0,7136, 0, 0,7005).

T a b e la 5.4

Magnetyczne własności kryształów i cząsteczek oraz podstawowe 
informacje strukturalne o kryształach molekularnych 

(Podatności (kryształów i cząsteczek) podano w jednostkach układu cgsM. 
W celu otrzymania ich w jednostkach układu SI należy podatności podane 

w tabeli pomnożyć przez 4 u .10-6) 
M

BENZEN, C6H6, No 1

(i) Opis struktury [15]:

Ortorombowa
a = 7,46, b = 9,666, c = 7,033 S w 270 K.
Grupa przestrzenna Pbca, z = 4

(ii) Geometria cząsteczki [15]:

Cząsteczka jest płaska w granicach błędu doświadczalnego; swobodna 
ma symetrię Dgh, w krysztale 1, przy czym odchylenia od pełnej sy­
metrii są niewielkie. Istnieją przesłanki doświadczalne (m.in. 
spektroskopia UV) świadczące o tym, że w eksperymencie cząsteczka 
przejawia symetrię od C2h do Dg^ [16]

(iii) Podatności kryształu (w 10“® cgsM):

<x>

[17,18] -54,8

X a *b *c

-65,2 -37,9 -61,3 w 261 K

(iv) Orientacja osi IMN cząsteczki [19]:
a b c

L -0,27565 0,96081 0,02936
M -0,64868 -0,16339 0,74332
N 0,70939 0,22394 0,66830
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(v) Podatności cząsteczki (w 10-6 cgsM):

KL % %

[17]
[19]

-34,9 -34,9 -94,6
-34,8 -32,2 -97,4

X 
p-BENZOCHINON, CgH^Og, 0=/ \=0 .=> L No 2

(i) Opis struktury [20]:

Jednoskośna
a = 7,055, b = 6,795, c = 5,767 £, p = 101,47°
Grupa przestrzenna P2^/a, Z = 2

(ii) Geometria cząsteczki [20]s

Cząsteczka jest płaska w granicach błędów doświadczalnych (maksy­
malne odchylenia atomów od średniej płaszczyzny 0,007 S). Symetria 
cząsteczki swobodnej mmm, w krysztale 1.

(iii) Podatność kryształu (w 10“6 cgsM):

<X> X. X X 4. ----- — 1 -__ -■ 2_ ____ 2______________
[21] -40,0 -27,1 -67,1 -25,9 +31,2 (obs)'
[12] -38,4 -25,7 -65,3 -24,3 +30,7 (obs)

(iv) Macierz orientacji osi IMN cząsteczki [20] s 

ax b c

L 0,3120 0,8178 0,4835
M 0,4207 -0,5740 0,7025
N 0,8522 -0,0153 -0,5229

(v) Podatności cząsteczki (w 10~^ cgsM): 

KŁ Km%

[22] -24,3 -28,7 -67,1
[12] -23,0 -27,0 -65,2
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CZTEROCHLORO-p-EENZOCHINON, CcCl,,0o,' ’642’

(i) Opis struktury [2.?]:

Jednoskośna.
a = 8,708, b = 5,755, c = 8,605 S,
Grupa przestrzenna PR^/a, Z = 2

No 5

p = 105,85°

(ii) Geometria cząsteczki [25]:

Pierścień chinonowy jest płaski, lecz odchylenia podstawników od 
jego płaszczyzny są znaczące. Wynoszą one średnio 0,05 £, co odpo­
wiada zgięciu wiązania C-Cl o kąt 1,5°, a C=0 o kąt 2,1°.

(iii) Podatności kryształu (w 10“6 cgsM):

<X> X] X5 0

[24] - -95,9
[12] -107,12 -98,52

-116,2 -96,2
-121,72 -101,12

+90°
+90°

(iv) Macierz orientacji osi LMN 

ax b

cząsteczki [2?] : 

c

L 0,5590 0,8506
M 0,2604 -0,0064
N -0,8011 0,5569

-0,1599 
0,9655 
0,2197

(v) Podatność cząsteczki (w 10 cgsM):

kl Km Kr

[12] -84,4 -98,5 -158,5

CZTEROCHLOROHYDROCHINON, CgCl^(OH)2,

(i) Opis struktury [25]:

Jednoskośna.
a = 8,214, b = 4,845, c = 12,441 E,
Grupa przestrzenna PR^/c, Z = 2.

(ii) Geometria cząsteczki [25] :

No 4

P = 125,82°.

Cząsteczka jest płaska w granicach błędu doświadczalnego.
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(iii) Podatności kryształu (w 10 cgsM):

0

C
M 

XVXAXV

[12] -120,7 -103,5 -129,2 -129,4 +29,9 (obs)

(iv) Macierz orientacji osi IM cząsteczki [25]:

ax b c

L
M
N

0,982 -0,108 0,155
-0,201 -0,694 0,691
-0,035 0,710 0,703

(v) Podatności cząsteczki (w 10“6 cgsM):

KL KM %

02] -103,0 -114,3 -144,9

p~DWUCHLOROHENZEN, CgH4Cl2,

p-CHLOROBROMOBENZEN, CcH,.ClBr, ’64’

p-DWUBROMOBENZEN, C^H.Bro, ’6 4 2’

(i) Opis struktury [26,27,28]:

Struktury wszystkich trzech związków są jednossośne i izomorficz­
ne.
U1C1 a = 14,80, b = 5,78, c .- 3,99 E, ₽ = 113°,
CIBr a = 15,20, b = 5,86, c = 4,11 £, 3 = 113,2°,
BrBr a = 15,36, b = 5,75, c = 4,10 E, 3 = 112,63°.
Grupa przestrzenna PR^/a, Z = 2.

(ii) Geometria cząsteczki [26]:

Cząsteczki są płaskie, a symetrycznie podstawione mają centrum sy­
metrii. Pierścienie są w granicach błędu regularnymi sześciobokami.
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(iii) Podatności kryształu (w 10”6 cgsM):

<X> X2 X3 *

C1C1 [21] -85,4 -70,0 -106,2 -79,9 +86,9
[12] -82,93 -67,36 -103,76 -77,86 +87,4 (obs)

CIBr [12] -92,16 -77,3 -112,3 -86,9 +87,2 (obs)
BrBr [21] -100,1 -86,3 -118,5 -95,4 +87,0

[12] -101,4 -87,0 -120,7 -96,4 +87,1 (obs).

iv) Macierze orientacji osi LMN cząsteczki [1?]:

C1C1 BrBr

a b cx a b cx

L 0,7898 -0,6116 0,0474 0,8092 -0,5871 -0,0215
M 0,4417 0,6206 0,6478 0,4752 0,6328 0,6112
N 0,4255 0,4909 -0,7602 0,3527 0,4993 -0,7915

Średnia orientacja 
a b cx

L 0,7996 -0,5995 0,0367
M 0,4588 0,6267 0,6298
N 0,3908 0,4951 -0,7760

x)' Wartość wyznaczona pośrednio jako

(v) Podatności cząsteczek (w 10-6 cgsM):

KL % KN

[12] C1C1 -78,3 -50,3 -120,2
£12] CIBr -87,6 -59,9 -129,0
D2] BrBr -97,1 -70,5 -136,7

1,4—DWUMETOKSYBENZEN, CcH(OCH, ) o, ’ ’6432’

O-CHj

(i) Opis struktury [29] :

No 8

Ortoroiubowa.
a = 7,29, b = 6,30, c = 16,55
Grupa przestrzenna Pbca, Z = 4.

O-CH, ,, 5

średnia dwu pozostałych
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(ii) Geometria cząsteczki [29]:

Szkielet węglowy cząsteczki jest płaski i ma centrum symetrii, 

(iii) Podatności kryształu (w 10“® cgsM):

<x> xa xb xc

[13] -86,65 -104,510, 2 -86,3+0,3 -69,210,3

(iv) Orientacja osi LMN cząsteczki [29]:

a b c

L 0,0290 0,3635
№ 0,5499 -0,7836
N 0,8348 0,5038

0,9313
0,2887

-0,2228

(v) Podatności cząsteczki (w 10“® cgsM) [1}] :

KL KN

-65,610,4 -78,6+0,7 -115,8+0,5

L

m-D.^NITROBENZEN, CgH4(N02)2, L J M No 9

(i) Opis struktury [50]: ,

Ortorombowa.
a = 13,20, b = 13,97, c = 3,80 E.
Grupa przestrzenna Pbn2^, Z = 4.

(ii) Geometria cząsteczki [50]:

Atomy węgla i azotu leżą w jednej płaszczyźnie, lecz grupy -N02 
są z niej wykręcone wokół wiązań C-N o kąty 11,8 i 9,6°.

(iii) Podatności kryształu (w 10“® cgsM):

<x> *a Xb xc

£4] -68,9 -43,6 -57,5 -105,8
[15] -70,53 -45,112,3 -58,9+2,4 -107,514,6
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(iv) Orientacja osi IMN cząsteczki

a b c

L 0,5786 -0,7258 0,5744
M 0,8109 0,5596 -0,1713
N 0,0871 -0,4048 -0,9105

(v) Podatności cząsteczki (w 10-6 cgsM):

KL KM KN

[15] 50,0+6,9 -41,7±2,1 -119,8+6,7

a-p-NITHONENOL, Cg^NOj, 

(i) Opis struktury [5'1] :

No 10

Jednoskośna.
a = 11,66, b = 8,78, c = 6,098 S, ₽ = 107,55° (90 K).
Grupa przestrzenna K^/n, Z = 4.
Cząsteczki połączone są wiązaniem wodorowym 0-H...0 typu "ogon- 
głowa" w łańcuchy, o średnim kierunku zbliżonym do osi c kryszta­
łu.

(ii) Geometria cząsteczki [51]:

Pierścień benzenowy jest płaski w granicach +4-10“5 5; płaszczyz­
na grupy nitrowej tworzy z pierścieniem kąt 1,5°.

(iii) Podatności kryształu (w 10-<3 cgsM):

<x> x2 *5 e

[32] -65,66 -48,1 -88,2 -66,7 -40,0 (obs)

iv) Orientacja osi № pierścienia benzenowego, 90 K, obliczona z po­
łożeń atomów [51] :

a b c*

L -0,8417 -0,4426
k 0,0762 -0,6646
N 0,5346 -0,6020

0,5094
-0,7453 
0,5931
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(v) Podatności cząsteczki (w 10 cgsM):

[J2J -49,4 -44,6 -102,9

₽ -p-NITROEENOL, CgHjNO^, ^0H No 11

(i) Opis struktury [31] :

a = 15,405, b = 11,117, c = 5,785 5, ₽ = 107,10°.
Grupa przestrzenna PR^/a, Z = 4.
Cząsteczki połączone są wiązaniem wodorowym 0-H...0 typu "ogon- 
głowa" w łańcuchy, o średnim kierunku zbliżonym do osi a kryszta­
łu.

(ii) Geometria cząsteczki [31js

Pierścień benzenowy jest płaski w granicach ±2’10-^ E, płaszczyzna 
grupy nitrowej tworzy z pierścieniem kąt 7,2°.

(iii) Podatności kryształu (w 10~6 cgsM):

<X> X< X3 X, 9

M -65,66 -49,4 -97,2 -50,4 -5,2 (obi)

(iv) Orientacja osi WN pierścienia benzenowego, obliczona z położeń 
atomów [31] :

a b cx

L 0,92085 0,58822 0,05689
M -0,58482 0,88926 0,24725
N 0,06519 -0,24187 0,96825

Podatności cząsteczki (w 10“6 cgsM):

KL KN

D2] -49,9 -46,8 -100,5
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(i) Opis struktury (33] :

X.__ ^x
SZEŚCIOCHLOROBENZEN, CgClg \ =5

x-'V 'X
>L No 12

Jednoskośna.
a = 8,08, b = 3,87, c = 16,65 8, P = 117,0°.
Grupa przestrzenna P21/c, Z = k.

(ii) Geometria cząsteczki (331:

Cząsteczka jest płaska i ma kształt sześcioboku.

(iii) Podatności kryształu (w 10”® cgsM):

<X> X1 X2

E21] -145,6 -129,4 -136,2 -171,1
03] -147,5 -132,210,4 -137,9±0,4 -172,510,6

+52,6 (obs)
5,917,3 

(obs)
(iv) Orientacja osi IMN cząsteczki 02] :

______ a b cx

L(||C1C1') 0,9255 0,1988 0,3229
m 0,2590 0,2907 -0,9212
N 0,2691 -0,9575 -0,2202

(v) Podatności cząsteczki (w 10”® cgsM):

KL %

Di] -152,5±O,5 -152,310,3 -177,4±0,4

SZEŚCIOCHLOROBENZEN (Wersja II) No 12a

(i) Opis struktury Q>4]:

Jednoskośna.
a = 8,0476(8), b = 3,8363(5), c = 14,8208(29) £, p = 92,134(14)°.
Grupa przestrzenna P2,|/n, Z = 2.

(ii) Geometria cząsteczki [34]:

Szkielet węglowy jest prawie płaski; największe odstępstwo atomu 
węgla od najlepszej płaszczyzny wynosi 8-10”4 5. Trzy kolejne ato­
my chloru wychylone są z tej płaszczyzny naprzemiennie o 0,014, 
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0,020 i 0,015 S. Cząsteczka w krysztale ma prawie dokładnie syme­
trię 6/mmm.

(iii) Podatności kryształu (w 10“6 cgsM) [35]:

<X> Xl x2 X5 9

-147,5 [36] -132,2 -137,9 -172,3 93,6 (obs)

(iv) Orientacja osi ЫШ cząsteczki na podstawie współrzędnych atomów 
D9]:

a b cx

L (ЦС1С1') 0,89522 0,30800 -0,32204
M 0,25114 0,24826 0,93556
N 0,36811 -0,91842 0,14490

(v) Podatności cząsteczki (w 10“$ cgsM):

[19] -130,88 -131,59 -179,93

PIECIOCHLOROPENOL, CgHOCl, 

(i) Opis struktury [37]:

Jednoskośna.
a =29,11, b = 4,930, c = 12,091, ₽ = 95,63°.
Grupa przestrzenna C2/c, Z = 8.
Związek jest dimorficzny: w temperaturze.63 °C występuje przejście 
fazowe [38,39]. Podane wartości parametrów odnoszą się do odmiany 
niskotemperaturowej, w której cząsteczki powiązane są w łańcuchy 
wiązaniami wodorowymi typu ...0-H...0...

(ii) Geometria cząsteczki ^7]:

Pierścień benzenowy jest płaski w granicach błędu eksperymentalne­
go; odchylenia atomów od płaszczyzny średniej również nie są duże 
(por. CgClg, wersja II).

(iii) Podatności kryształu {w 10^ cgsM) [13]: 
X, X

-141,5 -125,4+0,7 -150,3+0,7 -148,910,3 +81,4+1,5 (obs)



(iv) Orientacja osi IW cząsteczki [57] s

ax b c

L 0,9814 0,0769 0,1758
M 0,1778 -0,7094 -0,6825
N 0,0651 0,7006 -0,7114

(v) Podatności cząsteczki (w 10"6 cgsM):

KL

D3J -125,5±0,6 -125,5±18,8 . -175,8±18,9

KWAS BENZOESOWY (DIMER), (C?H602)2,

(i) Opis struktury [40] :

Jednoskośna.
a = 5,52, b = 5,14, c = 21,90 S, ,0
Grupa przestrzenna P21/c, Z = 4.

(ii) Geometria cząsteczki [40] s

Cząsteczki kwasu benzoesowego są w krysztale całkowicie zasocjowa- 
ne do dimerów za pośrednictwem dwóch symetrycznych wiązań wodoro­
wych typu 0-H...0. Dimer jest płaski w granicach kilku setnych S.

(iii) Podatności kryształu (w 10”6 cgsM) [45]:

<X> X1 x2 x3 '•P

-70,45 [41,42] -50,8 -77,9 -82,7 -41,7

(iv) Orientacja osi IW cząsteczki [19]:

a b cx

L 0,2118 0,7189 0,6621
M -0,8229 -0,2542 0,5176
N 0,5276 -0,6546 0,5420

(v) Podatności cząsteczki (w 10”S cgsM):

KL- ii

[19] -106,0 -46,2 -59,1
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H0x ^0

KWAS ANTBANIŁOWY, CgH^NHgCOOH, l^J => M No 15

(i) Opis struktury [12] s

Ortorombowa.
a = 12,83, b = 10,77, c = 9,28 fi.
Grupa przestrzenna Pcn2, Z = 8 (komórka elementarna zawiera dwa 
zbiory cząsteczek, symetrycznie niezależne).

(ii) Geometria cząsteczki 02]:

Cząsteczka nie jest całkiem płaska; atomy węgla przesunięte są o 
0,015 fi na przemian w górę i w dół względem średniej płaszczyzny 
pierścienia. Cząsteczki zasocjowane są w pary; jedna zrnich jest 
obojętna, a druga jest jonem obojnaczym. Kąty między płaszczyzną 
grupy karbonylowej i pierścienia wynoszą 6,85° w cząsteczce A i 
2,3° w cząsteczce B.

(iii) Podatności kryształu (w 10“® cgsM) [12]s

(v) Podatności cząsteczki (w 10”® cgsM):

X xa Xb xc

-79,0 -112,5 -59,3 -65,3

(iv) Macierze orientacji osi IMN c z ąstec zki [12]:

Cząsteczka A Cząsteczka B
a b c a b c

0,3109 -0,2934 0,9038 L 10,2897 0,3713 0,8823
0,1865 0,9470 0,2624 M 0,2138 0,9295 -0,3014

-0,9304 0,0837 0,3568 N 0,9356 -0,1045 0,3388

%
02] -57,7 -58,8 -120,5
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M O
115JL6 C7

ACETANILID, CgH^HCOCH^, L <= 4hQ\-1-N/ No 16

^>2 H
(i) Opis struktury [44]:

Ortorombowa.
a = 19,640, b = 9,483, c = 7,979 S.
Grupa przestrzenna Pbca, Z = 8.

(ii) Geometria cząsteczki [44]:

Atomy cząsteczki leżą w dwu płaszczyznach, z których jedna obejmu­
je część anilinową a druga acetylowąj obie płaszczyzny tworzą kąt 
37,9°, W krysztale cząsteczki występują w formie amidowej, a nie 
imidolowej.

(iii) Podatności kryształu (w 10”6 cgsM):

<X> Xa xb Xb

[12] -72,2 -57,4 -66,4 -93,0

(iv) Macierz orientacji osi LMN cząsteczki [12]:

a b c

L (wzdłuż C4C1N) 0,9289 -0,1404 0,3428
M (równol. do C3C5) 0,3073 0,8211 -0,4811
N 0,2074 -0,5512 -0,8082

(v) Podatności cząsteczki (w 10“$ cgsM):

KL

[12J -55,8 -44,3 -116,6

p-NITROANILINA, CgH4 (N02)«NH2, No 17

(i) Opis struktury [45]:

Jednoskośna.
a = 12,336, b = 6,07, c = 8,592 £, P = 91,45°.
Grupa przestrzenna P2,]/n, Z = 4
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(ii) Geometria cząsteczki [45]:

Pierścień aromatyczny jest płaski. Grupa -NO2 wraz z atomem C 
tworzy płaszczyznę skręconą względem pierścienia o kąt 1,9°, podob­
nie grupa -NH2 wraz z atomem C tworzy płaszczyznę skręconą 
względem pierścienia o kąt 16°.

(iii) Podatności kryształu (w 10“^ cgsM):

<X> X1 x2 e

[12] —66,6 -50,0 -94,8 -54,9 -47,0 (obs)
[46] -66,28 -48,1±1,4 -97,1+2,8 -53,711,4 -47,2 (obs)

(iv) Macierz- orientacji osi IMN cząsteczki [45]:

ax b c

L 0,7501 -0,4334 -0,4994
M 0,0750 0,8030 -0,5915
N 0,6563 0,4077 0,6348

Podatności cząsteczki

KL

(w 10-6 cgsM):

%

[12] -52,0 -43,0 -104,8
[46] -50,1 -40,9 -107,8

IZATYNA, C^O^, 
(laktam kwasu izatynowego)

(i) Opis struktury [47]:

Jednoskośna.
a = 6,19, b = 14,46, c = 7,17 S,
Grupa przestrzenna PP^/c, Z = 4.

(ii) Geometria cząsteczki [47]s

Cząsteczka jest płaska w granicach

O
'V' L

No 18

8 = 94,82°.

błędu doświadczalnego.
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(iii) Podatności kryształu (w 10“6 cgsM):

<x> X1 X2 x; 6

[12] -81,15 -57,45 -123,85 -62,15 +21,5° ’

(iv) Macierz orientacji osi UIN cząsteczki [47]:

a D C

L 0,1814 -0,9815 0,06Tl
M 0,9095 0,1911 0,5694
N 0,3736 0,0123 -0,9261

(v) Podatności cząsteczki (w 10~^ cgsM):

[12] -62,0 -57,3 -124,2

I

KWAŚNY FTALAN SODU, CgH^COOH) (COONa),

K"’AŚNY PT ALAN POTASU, CgH4(COOK)(COOK), 

(i) Opis struktury [48]:

Struktura trzech kwaśnych ftalanów: sodu, amonu i potasu jest orto- 
rombowa. Istnieją związki między wielkościami ich komórek elementar 
nych, ale struktury nie są izomorficzne.

a b c Gr. przestrzenna Z

FtHNa 6,76 9,31 26,42 B2ab 8
FtHNH4 6,40 10,23 26,14 Pcab 8
FtHK 6,47 9,61 13,26 P2^2 4

(ii) Geometria cząsteczki [48]:

Pierścień benzenowy i oba atomy węgla grup karbonylowych cząstecz­
ki PtHNH^ leżą w płaszczyźnie. Płaszczyzny obu grup karbonylowych 
są nachylone względem niej o kąty odpowiednio 21 i 65°. Pierścień 
benzenowy nie jest regularnym sześciobokiem, ponieważ odległości 
C—C zmieniają się od 1,35 do 1,40 £.
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(iii) Podatności kryształów (w 10”6 cgsM) [12]:

<x> xa xb Xc

FtHNa -89,9 -115,4 -79,1 -75,1
FtHK -99,2 -124,95 -89,35 -83,25

(iv) Macierz orientacji osi IMN cząsteczki (jednakowa dla FtHNa i FtHK, 
[48]:

a b c

L 0,2382 0,4578 -0,8565
M 0,4873 -0,8192 -0,3024
N 0,8368 0,3390 0,4300

Podatności cząsteczki (w 10”® CgsM) [12]:

KL %
FtHNa -59,1 -76,5 -134,1
FtHK -66,4 -87,9 -143,3

NAFTALEN, C10H8’

(i) Opis struktury [49] :

Jednoskośna,
a = 8,235, b = 6,003, c = 8,658 A, p = 122,92°.
Grupa przestrzenna P2^/a, Z = 2.

(ii) Geometria cząsteczki [4-9]:

Cząsteczka jest płaska; odchylenia atomów 
czyzny nie przekraczają 0,007 S.

(iii) Podatności kryształu (w 10-6 cgsK):

C od średniej płasz-

[22] -56,0 -146,4 -76,6 +12,0
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(iv) Macierz orientacji osi IMN cząsteczki [49] :

a o c

L
M 
N

-0,4579 -0,2103 +0,8741
-0,3207 -0,8718 -0,3704
+0,8399 -0,4425 +0,3143

(v) Podatności cząsteczki (w 10-6 cgsM):

KL %

[22]
D9]

-56,1 -53,9 -169,0
-56,1 -54,0 -168,9

DWUFENYL, C12H10, / \ / Y>L No 22

'U'
(i) Opis struktury [50,51]; M

Jednośkośna.
a='84124, b = 5,635, c = 9,153 S, 3=95,1°.
Grupa przestrzenna P21/a, Z = 2.

(ii) Geometria cząsteczki Bo]:

Cała cząsteczka w krysztale jest płaska w granicach błędów doświad­
czalnych. Długość wiąząń C-C wskazuje, że sprzężenia między 
pierścieniami nie ma lub jest bardzo słabe.

(iii) Podatności kryształu (w 10“6 cgsM):

<X> X1 x2

[1H
[12]

-102,9
-104,4

-63,4 -146,5
-67,4 -144,9

-98,9
-100,9

+20,1
+22,4 (obs)

(iv) Macierz orientacji osi IMN cząsteczki [12] :

- a b cx

L 0,2966 -0,0256 0,9545
M 0,5355 -0,8233 -0,1881
N 0,7928 0,5669 -0,2243
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(v) Podatności cząsteczki (w 10 cgsM):

[12] -67,7 -61,7 -185,8

ACENAETEN, Cl0H6<CH2^’

(i) Opis struktury [52] :

No 25

Ortorombowa.
a = 8,290, b = 14,000, c = 7,225 S (15 °C).
Grupa przestrzenna Pcm2^, Z = 4 (w komórce elementarnej są dwa 
zbiory cząsteczek, symetrycznie niezależne).

(ii) Geometria cząsteczki [52]:

Cząsteczki są płaskie, o symetrii w krysztale m; płaszczyzna sy­
metrii przechodzi przez wiązanie wspólne dla obu pierścieni i nor­
malną N. Oś L obu typów cząsteczek jest równoległa do osi b 
kryształu.

(iii) Podatności kryształu (w 10“6 cgsM):

(v) Podatności cząsteczki (w 10 6 cgsM):

<X> *a xb ^c

[11] -111,8 -117,6 -72,1 -145,6
[12] -109,3 -114,9 -72,0 -141,1

(iv) Macierz orientacji osi IMN cząsteczki [52],:

a b c a b c

0 1 0 L 0 1 0
1 0 0 M 0,4772 0 0,8788
0 0 1 N 0,8788 0 -0,4772

[12] -72,0 -70,5 -185,5
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3-NAFTOL, C1OH7(OH),

(i) Opis struktury [53]:

No 24

Jednoskośna.
a = 8,185, b = 5,950, c = 36,29 8, ₽ = 119,87°.
Grupa przestrzenna la, Z = 8 (w komórce elementarnej są dwa 
zbiory cząsteczek, symetrycznie niezależne).

(ii) Geometria cząsteczki [53]:

Cząsteczka w krysztale jest asymetryczna; bliższe szczegóły doty­
czące jej kształtu nie są znane ze względu na małą dokładność w 
oznaczaniu położeń atomów.

(iii) Podatność kryształu (w 10-6 cgsM):

<X> xi x2 X3 *

[11] -97,0 -62,3 -148,3 -80,4 +9,4
[12] -97,0 -62,8 -148,1 -80,1 +11,1 (obs)

(iv) Macierz orientacji. osi IMN cząsteczki [12]:

a b cx a b cx

-0,4005 0,2430 0,8835 L -0,4190 -0,1616 0,8936
0,2913 -0,8918 0,3438 M 0,3860 0,8610 0,3305
0,8625 0,4269 0,2718 N -0,8188 0,4954 -0,2902

(v) Podatności cząsteczki (w 10"^3 cgsM):

KL %

[12] -63,9 -51,9 -175,2

OAS NAFTOESOWY, C^H^COOH,

(i) Opis struktur; [54]: 
Jednoskośna.
a = 31,12, b = 3,87, c = 6,92 X, 
Grupa przestrzenna P2^/a, Z = 4.

No 25
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(ii) Geometria cząsteczki [54]:

Pierścienie naftalenowe są płaskie (w granicach *0,04 £), z dwu a- 
tomów tlenu jeden jest nad płaszczyzną pierścienia, a drugi pod 
płaszczyzną pierścienia (odchylenia wynoszą około 0,20 S). Odpowia­
da to skręceniu płaszczyzny grupy karbon^lowej o kąt 11° względem 
płaszczyzny pierścienia.

(iii) Podatności kryształu (w 10~6 cgsM):

<X> X1

X

O
J 

X e

02] -107,52 -65,25 -85,05 -171,65 -9,95° (obs)

(iv) Macierz orientac ji osi IMN cząsteczki [54]:

ax b c

L 0,7646 0,2472 0,5952
M 0,6441 -0,3217 -0,6959
N 0,0238 0,9152 -0,4022

(v) Podatności cząsteczki (w 10“^ cgsM):

el %

02] -70,5 -58,95 -192,5

1,5-DWUNITRONAFTALEN, C10Hg(N02)2,

(i) Opis struktury [55]:

L No 26

Jednośkośna.
a = 7,76^0,02, b = 16,32+0,04, c = 3,70+0,01 X, ₽ = 101,8+0,2°.
Grupa przestrzenna P2,]/a, Z = 2.

(ii) Geometria cząsteczki [55] s

Cząsteczka ma centrum symetrii; obie grupy nitrowe są wykręcone z 
płaszczyzny pierścienia benzenowego o kąt 48,7°.
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(iii) Podatności kryształu (w 10-6 cgsM):

<X> X^ X2 S *

-102,2 |J6] -199,6 -54,6 -67,4 (10,1) 118,2+0,3

(iv) Orientacja osi IMK pierścienia: naftalenowego i osi uvw grupy ni­
trowej J56]:

1 M N U V W

a 0,2132 0,8867 -0,4102 -0,4799 -0,8535 -0,2029
b -0,8982 0,3431 0,2749: 0,7904 -0,3202 -0,5223
cx 0,3845 0,3098 0,8696 0,3808 -0,4111 0,8282

(v) Podatności cząsteczki (w 10”®

Ki k2
cgsM):

K3

[56] -72,52 -49,40

(vi) Orientacja osi głównych K

L M

-199,67

[56]:

N

Ł, -0,9599 -0,1391 0,2433
K2 -0,0953 0,9784 0,1834

1,8- DTOBITRONAFTALEN, ^oH^Og^

(i) Opis struktury [57]: 

Ortorombowa.
a = 11,352, b = 14,934, c = 5,376.
Grupa przestrzenna P2^2^2^, Z = 4.

(ii) Geometria cząsteczki [57]:

Cząsteczka jest asymetryczna i niepłaska. Obie grupy nitrowe są wy­
kręcone w tę samą stronę względem płaszczyzny pierścienia naftale­

,onowego o kąty 45,1 i 41,7
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(iii) Podatności kryształu (w 10-6 cgsM);

<x> Xa *b xc

D8J -107,2 -168,8 -54,8 -98,0
D9] -107,2 -170,8 -59,5 -91,4

(iv) Orientacja osi IMN pierścienia naftalenowego £57]:

a b c

L 0,1047 -0,9742 -0,1997
M 0,6567 -0,0851 0,7495
N -0,7468 -0,2097 0,6511

(v) Orientacja osi uvw grup nitrowych [57] :

"1 ’1 W1 u2 v2 w2

a -0,5618 -0,0097 -0,9520 0,1961 -0,0595 -0,9785
b 0,8885 0,2990 -0,5479 0,9715 0,1487 0,1855
c 0,2822 -0,9540 -0,0996 0,1546 -0,9866 0,0870

(i) Opis struktury [$9]s
M

Jednoskośna.
a = 8,562, b = 6,058, c = 11,184 8, ₽= 124,70° (290 K).
Grupa przestrzenna P2^/a, Z = 2.

(vi) Podatności cząsteczki (w -10“° cgsM)

K5

£19] -81,4 -42,8 -197,4

(vii) Orientacja osi głównych K 09]:

L M ,N

K1 0,9252 -0,5655 -0,1247
K2 -0,5825 -0,9005 -0,2077
E5 0,0541 -0,2584 0,9706

AC /D \E/F ^G
ANTBACEN, C^^o, J 1,^,1, I , =>L No 28
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(ii) Geometria cząsteczki [59]:

Cząsteczka jest płaska w granicach 0,004 S. W krysztale ma syme­
trię mmm,

(iii) Podatności kryształu (w 10”6 cgsM)s

<X> X1 x2 X5 4

[22] -150,1 -75,5 -211,8 -102,9 +8,0
[60] -154,2 -76,7 -217,0 -108,8 +8,0
[151 -150 -72,4±2,0 -212,9±2,0 -104,8X1,0 +9,45X1,10

(iv) Macierz orientacji osi MN cząsteczki (290 K)x^

a b cx

L 
M 
N

-0,49409 -0,12758 +0,86005
-0,51752 - -0,89444 -0,51490
+0,80955 -0,42867 +0,40149

(v) Podatności cząsteczki (w 10 cgsM)s

KL %

[22] -75,8 -62,6 -251,8
[19]
[60] 

.[15]

-72,5
-76,9
-72,4+2,0

-75,4
-76,6
-71,8+1,7

-244,4
-248,9 
-245,7X2,7

1t“ 
0

H
ANTBACHINON, C14HgO2, No 29

•
(i) Opis struktury [61] : 0

Jednoskośna.
a = 15,810, b = 5,942, c = 7,865 S, 0 = 102,72°.
Grupa przestrzenna P2/]/a, Z = 2.

(ii) Geometria cząsteczki [47]s

Cząsteczka jest płaska z dużą dokładnością.

X) Por. p. 5.7.8.
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(iii) Podatności kryształu (w 10-6 cgsM):

<X> X -i. X
VI

0

[12] -119,6

(iv) Macierz orientacji

-64,05 -106,25 -188,50

osi LMN cząsteczki [613 :

-37,65

a b cx

L 0,531 0,451 0,713
M 0,788 0,036 -0,615
N -0,305 0,889 -0,341

(v) Podatności cząsteczki (w 10-6 cgsM):

KL En

[12] -76,1 -64,5 -217,9

ANTJłACHINON (wersja II) No 29a

(i) Opis struktury [62]:

Jedno skośna.
a = 15,83 b = 3,97, c = 7,89 K,
Grupa przestrzenna P2^/a, Z = 2.

8 = 102,5° (293,8 K).

(ii) Podatności kryształu (w lO-® cgsM):

<x> x2 x3 9

-119,6 [12] -63,54 -106,76 -188,50 -43,87 (obi)

(iv) Orientacja osi LMN cząsteczki w 293,8 K, obliczona z położeń 
atomów [19]:

a b cx

L 0,52355 0,48701 0,69908
m -0,77927 -0,05797 0,62400
N 0,34441 -0,87147 0,34917

(v) Podatności cząsteczki (w 10-6 cgsM):'

KL

B91 -68,9 -63,5 -226,4
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AKRYDYNA III, C4,HQN, '3 9

(i) Opis struktury [63]:

No 30

Jednoskośna.
a = 11,375, b = 5,988, c = 13,647 £, P = 98,97°.
Grupa przestrzenna P2^/n, Z = 4.

lii) Geometria cząsteczki [63]:

Cząsteczka jest zgięta wzdłuż N-0'5; kąt między normalnymi do obu 
połówek wynosi 2,1°.

(iii) Podatności kryształu (w 10“6 cgsM):

Uwaga: Niewielkie odchylenie obu

<X> X2 x3 *

©2] -123,3 -61,33 -209,13 -99,13 -12

iiv) Macierz orientacji osi LMN cząsteczki 02]:

a b cx

L 0,4725 0,1562 -0,8674
M 0,4369 -0,8962 0,0766
N 0,7652 0,4151 0,4921

(v) Podatności cząsteczki (w 10-6 cgsM):

KL Km Kn

02] -61,4 -70,5 -238,0
09] -54,9 -69,0 -246,0

połówek cząsteczki od wspólnej płasz­
czyzny nie ma praktycznie wpływu na podatności główne cząsteczki.
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«-FENAZYNA, C12HgN2, 

i(i) Opis struktury [64]:

Jednoskośna.
a = 13,22, b = 5,061, c = 7,088 £, p =109,22°.
Grupa przestrzenna P2^/a, Z = 2.
Cząsteczki ułożona są w stosy wzdłuż [010] ; płaszczyzny cząsteczek 
w stosie są do siebie równoległe, a ich odstęp wynosi 3,49 5.Struk­
tura jest bardzo zbliżona do struktury antracenu.

(ii) Geometria cząsteczki [64]:

Cząsteczka jest płaska w granicach błędów eksperymentalnych, syme­
tria w stanie swobodnym' mmm, w krysztale 1.

(iii) Podatności kryształu (w 10“6 cgsM):

<X> X/] x2 x3 4-

[65] -117 -60,8+2 -150,0+2 . -140,2+2 -14,8

(iv) Orientacja osi IMN cząsteczki (dla cząsteczki przyjętej jako płas-
ka) [19]:

a b cx

L 0,4029 0,6979 0,5921
M -0,6852 -0,1989 0,7006
N 0,6064 -0,6886 0,3976

(v) Podatności cząsteczki (w 10"6 cgsM):

[65] -46,2 -61,8 -243,0
09] -47,6 -61,8 -241,6
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M

GLICYNA, CH2(NH2)«COOH, , ? L No 32
h2cv

(i) Opis struktury [66]: ^2

Jednoskośna.
a = 5,102, b = 11,97, c = 5,4575 S, p = 111,7.
Grupa przestrzenna P2^/n, Z = 4.

(ii) Geometria cząsteczki [66]:

Atomy węgla oraz tlenu leżą w przybliżeniu w jednej płaszczyźnie.

(iii) Podatności kryształu:

X2 S *

[13] -40,3 -37,67±O,O8 -39,37±O,O8 -43,87+0,13 +48,0±1,1
(obs)

(iv) Orientacja osi MN cząsteczki (uwzględniono atomy węgla i tlenu, 
[13]):

ax b c

L 0,8739 -0,2903 0,3899
M 0,4127 0,0195 -0,9105
N 0,2616 0,9550 0,1390

(v) Podatności cząsteczki (w do“^ cgsM):

[13] -36,92±O,1O -39,40+0,08 -44,68±0,15

0=C^ “ ^C=0

HN-^^NH 
H 
O

L

KWAS BARBITUROWY, DWUWODNY, C^NgOj-^O, ^2 No 33

(i) Opis struktury [67]:

Ortorombowa.
a = 12,74, b = 6,24, c = 8,89.
Grupa przestrzenna Pnma, Z = 4.
Cząsteczki wody i kwasu leżą na płaszczyznach zwierciadlanych (010) 
struktury, tworząc sieć połączoną wiązaniami wodorowymi. Normalne 
do płaszczyzn obu typów cząsteczek są równoległe do osi b krysz­
tału.
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(ii) Geometria cząsteczki [67]:

Cząsteczka kwasu barbiturowego jest w postaci trój-ketonowej i w 
krysztale ma (w granicach, błędu) symetrię mm.

(iii) Podatności kryształu (w 10-6 cgsM):

[12] -78,6 -73,1 -90,6 -72,2

(iv) Macierz orientacji osi I24N cząsteczki [67]:

a b c

L 0,7650 0 0,6439
M -0,6440 0 0,7651
N 0 1 0

(■v) Podatności cząsteczki (w 10“6 cgsM):

KL %

[12] -75,3 -70,0 -90,6

KWAS BśBBITUBOWY, DWUWODNY

(iii) Podatności kryształu (w 10

(wersja II) 

i“6 cgsM):

Z

0

|| HI .(No 33a

<X> x a *b xc

[12] -78,6 -73,1 -90,6 -72,2 l .

(iv) Macierz orientacji. osi IMN cząsteczki, kwasu barbiturowego po]:

a b c

<L> 0,7581 0 0,6522
<M> o,6522 0 -0,7581 - z

N' 0 1 0

(v) Macierze orientacji cząsteczek wody (osie 1, 2, 3) [19]:

a b c a b c

0,1642 0 -0,9864 1 -0,9540 0 0,2999
-0,9864 0 -0,1642 2 0,2999 0 0,9540

0 1
(cząsteczka I

0 
)

3 0 1 0
(cząsteczka II)
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(vi) Podatności cząsteczki wody (w 10-6 cgsM):

Kg

[68] -13,5±2,0 -12,111,6 -13,7±1,8
[69] -13,710,3 -12,110,05 -12,7+0,1

(vii) Podatności cząsteczki kwasu barbiturowego (w 10“6 cgsM):

KL %

[19] -50,51 -43,15 -65,2

IMID KWASU N-CHLOROBURSZTYNOWEGO, CĄOgNCl, No 34,35

UlID KWASU N-BROMOBURSZTYNOWEGO, CĄOgNBr, O
H2C ----

(i) Opis struktury [70]: L „ 'Q__
u

Kryształy 
Struktury

jednoskośne. 
izomorficzne.

0
V 

M

a b c Gr. przestrz. Z

Cl 6,43
Br 6,48

7,11 11,69
7,25 11,86

P212121 4
P21212 4

(ii) Geometria cząsteczek [70]: 1.

Cząsteczki. są płaskie w granicach błędu doświadczalnego

(iii) Macierz orientacji osi IMN cząsteczki imidu-Cl (tę samą przyjęto 
dla imidu-Br [70] );

(iv) Podatności kryształów (w 10“^ cgsM):

ab c

L
M
N

0,3569 0,2612 -0,8967
0,8062 0,3987 0,4370

-0,4732 0,8783 0,0675

<x> xa Xb xc

Cl
Br

[12] -64,38 -59,1 -72,6 -62,1
[1Ą_ -74,96 -69,3 -82,3 -72,3
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(ii) Geometria cząsteczki [71]:

(V) Podatności cząsteczek (w 10"6 cgsM):

KL

Cl 021 -64,50 -51,76 -76,96
Br [12] -76,05 -61,57 -87,31

KWAS PARABANOWY, C0(KH«C0)2, H Ko 56
(2) 0=C—

(i) Opis struktury [71]: L<=:(5) 0-Ć__ H/C=°

Jl A
Jednoskośna. u
a = 10,685, b = 8,194, c = 5,054 S, p = 92,75°.
Grupa przestrzenna PR^/n, Z = 4.

(iii) Podatności kryształu (w 10“6 cgsM):

Przez atomy można poprowadzić, dwie płaszczyzny, każda przechodzi 
przez 6 atomów (5 atomów pierścienia pięcioczłonowego i jeden z a- 
tomów tlenu).

(iv) Macierz orientac ji osi IMN cząsteczki [71] s

<x> x^ x2 x?

[12] -47,24 -2?,5 -55,8 -42,7 -76,6 (obs)

(v)

'a b cx

L 0,0547 0,5758 -0,8158
M -0,9904 0,1191 0,0176
N 0,1076 0,8094 0,5768

Podatności cząsteczki (w 10-6 cgsM):

KL 
.......... ..... . . — 
[12]............-28,6 -27,5 -49,9

i
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KWAŚNY d—WINIAN AMONU, C^H^Og(NH^) *H, 

KWAŚNY d—WINIAN POTASU, C^Og^K-H,

(i) Opis struktury {72]:

Bo 37, 3Ś

Struktury są ortorombowe i izomorficzne

a b c ।Gr. przestrz. z

NH4 7,648 11,066 7,843 £ P2^2^2^ 4
K 7,64 10,62

(ii) Geometria cząsteczki

7,75

[?2j:

pa^ 4

J 
8^

Jak we wszystkich dotychczas’-zbadanych strukturach wini anóji, rów­
nież w tych dwóch solach łańcuch węglowy i atomy tlenu każdej po­
łówki (-CHOH-COOH) cząsteczki kwasu są prawie płaskie. Potwierdza­
ją to parametry drgań termicznych: atomy tlenu grupy karboksylowej 
wykonują libracje wokół osi Cl-02 i C3-C4. i

(iii) Podatności kryształów (w 10“6 ogsM):

<x> Xa *b xc

nh4 021 -81,85 -77,23 -84,91 -83,42
K 021 -83,07 -78,46 -86,15 -84,61

(iv) Macierz orientacji osi IMN cząsteczki (ta sama dla winianu-NH^ i 
winianu-K P2j). Przyjęty układ IMN odniesiony jest do orientacji 
grup karboksylowych: ,L J) 01-02, L' II C4-05, M_L01-02 i w płaszczyź­
nie G1-01-02, M11C4-05 i w płaszczyźnie 04-05-06, N1L,M, NlL^

a b c a b 0 |

L 0,3773 0,8325 e,4O56 l' 0,7324 -0,1655 -0,6605
M 0,8684 -0,4702 0,1574 m' 0,6786 0,0988 0,7278
N 0,3218 •0,2929 -0,9005 n' 0,0551 0,9808 -0,1845

(v) Podatności połowy cząsteczki (w 10-6 cgsM):

KL %

NH4 02]
K [12]

-37,41 -38,57 -46,80
-38,31 -39,04 -47,26



H2ę—c
Cl^ ^NH2

CHLOROACETAMID, CHoCl-C0»NH-, M L No 39
2 2’

i .} Opis struktury [73] :

Chloroacetamid ma dwie znane odmiany 
polimorficzne; magnetyczne własności
zbadano dla tej odmiany, która krystalizuje z etanolu. 
Jednoskośna.
a = 10,26, b = 5,15, c = 7,41 fi, p = 98,82°.
Grupa przestrzenna P2^/c, Z = 4.

(ii) Geometria cząsteczki [73]:

W tej odmianie chloroacetamidu cząsteczki są prawie płaskie.

(iii) Podatności kryształu (w 10~° cgsM):

< X > X^ X 2 X P

[12] -51,27 -49,01 -53,74 -51,06 -55,5° (obsj

(iv) Orientacja osi IMN cząsteczki [73] :

a b cx

L ( II C=0)
M (X C=0) 
N

0,3516
0,8890
0,2788

-0,9190 -0,1780
0,3873 -0,2439

-0,0355 0,9597

(v) Podatności cząsteczki (w 10"6 cgsM):

KL

[12] -51,70 -48,74 -53,37
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6. WŁASNOŚCI OPTYCZNE

Przedmiotem naszego zainteresowania w niniejszym rozdziale będzie 
opis własności optycznych ośrodka anizotropowego, będącego dla- lub pa- 
ramagnetykiem i praktycznie nie przewodzącego prądu elektrycznego. Na­
szym celem będzie podjęcie próby wyjaśnienia makroskopowych własności 
kryształu poprzez własności cząsteczek i ich rozmieszczenie w komórce 
elementarnej - podobnie jak to uczyniliśmy przy omawianiu diamagnetyzmu. 
Wydaje się, że obie te własności bliskie są dziś zrozumienia z moleku­
larnego punktu widzenia. Poświęcimy też trochę uwagi metodom pomiaru 
dwójłomności, ponieważ wielkość ta budzi zainteresowanie ze względu na 
postęp w interpretacji teoretycznej wpływu temperatury na wielkość dwój- 
łomności. Dyskusję tego problemu odłożymy .jednak do rozdziału 9.

Czytelnikowi, zainteresowanemu jeszcze innymi problemami z dziedzi­
ny optyki, warto zarekomendować znakomite wykłady na poziomie akademic­
kim Crawforda [1] lub Feynmana [5]. (Zob. też £2J.) Bardziej zaawansowa­
ny wykład z optyki kryształów można znaleźć w monografiach Nye'a [4] o- 
raz Borna i Wolfa [5].

6.1. Pala elektromagnetyczna w ośrodku anizotropowym

Rozchodzenie się fali elektromagnetycznej w ośrodku materialnym o- 
pisują równania Maxwella

3D
rot H = j + — , (6.1)

at

rot E = - — , (6.2)
at

przy czym E i H oznaczają odpowiednio wektory natężenia pola elek­
trycznego i magnetycznego sprzężonych z ruchem fali, D jest wektorem 
indukcji elektrostatycznej, B wektorem indukcji magnetycznej, zaś j 
przedstawia gęstość prądu przewodzonego. Interesują nas wnioski, wynika­
jące z tych równań dla fali płaskiej danej związkiem

E = Eo exp w (t - r-2/v) J, (6.3)

Zakładamy przy tym, że fala rozchodzi się w ośrodku o następujących 
własnościach:

(i) ośrodek nie przewodzi prądu elektrycznego, zatem j = O, 
(ii) ośrodek jest dia- lub paramagnetykiem, zatem g = 1.

W równaniu fali (6.3) “ jest częstością kątową drgań wektora E, 
v jest prędkością fazową fali, zaś 1 wektorem normalnym do powierzch­
ni określonej fazy. Jeżeli z dowolnego punktu O wykreślimy wektor r, 
którego koniec leży na powierzchni określonej fazy n , a więc wyznacza 
położenie punktu I?(xyz) leżącego na tej powierzchni (rys. 6.1), to
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Rys. 6.1. Powierzchnia stałej fazy

r • 1 = const = ON

jest równaniem powierzchni n, a v określa szybkość jej przesuwania 
się w kierunku 1.

Przy tych założeniach równania Maxwella zyskują postać

„ 9D 0Hrot H = , rot Ę = - „ — (6.4)
at 0 at

przy czym jest przenikalnością magnetyczną próżni. Jeśli teraz sko­
rzystamy z (6.3) i rozpiszemy rot E, to w wyniku przecałkowania po cza­
sie drugiego z równań (6.4) otrzymamy

% H = - 1 x Ę ' (6.5)

ora z

H = Ho exp w (t - r-1/v)(6.6)

Szczegóły tego rachunku można znaleźć w monografii Nye'a [4]. Widzimy z 
(6.6), że dla dielektryka H ma również postać fali płaskiej. Kierunek 
drgań H określonej powierzchni k jest prostopadły do kierunku drgań 
E, a więc H, 1 i E tworzą trójkę prawoskrętną.

Jeżeli będziemy postępować podobnie z pierwszym z równań (6.4), to 
otrzymamy

D=-llxH, (6.7)

czyli -D, 1 i H tworzą również trójkę prawoskrętną. Wzajemną orienta­
cję wszystkich wektorów, opisujących stan fali elektromagnetycznej, 
przedstawia w sposób poglądowy rys. 6.2, zaczerpnięty z monografii Nye a.
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Rys. 6.2. Przestrzenne związki między wektorami, opisującymi stan fali 
elektromagnetycznej (zaczerpnięte z M)

Warto zauważyć, że w ośrodku anizotropowym D i E na ogół nie są równo­
ległe; kąt zawarty między nimi oznaczyliśmy przez 5, a jego wielkością 
i znaczeniem fizycznym zajmiemy się nieco dalej w tym rozdziale. Ponie­
waż założyliśmy p = 1, B jest, oczywiście, równoległy do H. Zazna­
czony na rysunku wektor Poyntinga( S, określa kierunek przepływu stru­
mienia energii, przenoszonej przez falę. Przepływ ten następuje z pręd­
kością u na ogół inną, niż prędkość fazowa v.

Najważniejszy dla nas wniosek, jaki wynika z równań Maxwella dla 
rozchodzenia się fali elektromagnetycznej w ośrodku anizotropowym,otrzy­
mamy przez połączenie równań (6.5) i (6.7). Ma on następującą postaćs

D - -------- 1-5 1 - (1 x ą). (6.8)
v

Rozpisanie (6.8) według tożsamości

A x (B x ę) = B(AC) - C(ĄB) 

prowadzi do równania

D=------ 1— {1(1 Ę) - A (6.9)
% k J

Do tej pory korzystaliśmy jedynie z równań Maxwella i kształtu fali 
(6.3); obecnie trzeba wprowadzić do (6.9) związek między wektorami D 
i Ę '

D = eo Ę, (6.10)

przy czym eQ oznacza bezwzględną przenikalność dielektryczną próżni, 
zaś e jest tensorem względnej przenikalności dielektrycznej ośrodka 
dla częstości optycznych, czyli tensorem tzw. optycznej przenikałnnAnj 
dielektrycznej. Najbardziej czytelną i dającą się łatwo interpretować 
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postać (6.9) otrzymamy wtedy, gdy napiszemy (6.10) w układzie osi głów­
nych tensora £; mamy mianowicie

Di=eoe1Ei (6.11)

oraz 
(eo ei —4^i + —4 Mi (6.12)

% v2 1 n0 v2

W celu zinterpretowania (6.12) wybierzmy sobie określony a zarazem pros­
ty kierunek 1. Niech, na przykład, 1 = (100), czyli 1 jest równo­
legły do osi X] tensora £. Kładąc kolejno i = 1,2,3 otrzymamy trzy 
równania dla składowych E

(% - —4^ + El = 0,
% V % 7

(% e2------4)E2 = °> (6.13)
^o v 

*0

Pierwsze z tych równań prowadzi do wniosku, że E^ = 0, logicznego z fi­
zycznego punktu widzenia: nie może istnieć składowa natężenia pola elek­
trycznego w kierunku prędkości fazowej, ponieważ fala elektromagnetycz­
na jest falą poprzeczną. Z pozostałych dwóch równań wynika natomiast,że

7k = <% % CkrV2’ E=2,5. (6.14)

Przy kierunku padania wzdłuż 1(1 0 0) możemy więc mieć w krysztale 
dwie fale, z których jedna ma kierunek drgań równoległy do e2, a druga 
Ej, a prędkości określone są związkiem (6.14). Analogiczny wynik otrzy­
mamy dla kierunku 1(0 1 0) lub 1(0'0 1). 

Jeśli zauważymy, że

(eo ^/2 = c> (6.15)

gdzie c jest prędkością światła w próżni, to związki typu (6.14) de­
terminują trzy główne współczynniki załamania światła kryształu

,c 2 2ei = (^-) = i^, i = 1,2,3. (6.16)

Powierzchnia zbudowana na tych współczynnikach jest elipsoidą wielkości 
i nosi nazwę indykatrysy. Równaniem tej powierzchni jest
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“1
(6.17)i

L3

Warto podkreślić, że współczynnik załamania światła nie ma własnoś« 
ci tensorowych, ponieważ iU],n2,nj nie transformują się przy zmianie 
układu współrzędnych zgodnie z Regułami właściwymi dla składowych tenso­
ra. Mimo to termin: współczynnik załamania światła w określonym kierun­
ku ma sens, a jego określeniem zajmiemy się w następnym rozdziale. Ten­
sorem jest natomiast e.

6.2. Indykatrysa

Przy końcu poprzedniego rozdziału wprowadziliśmy pojęcie indykatry- 
sy, tj. powierzchni rozpiętej na trzech głównych współczynnikach załama­
nia światła: np ng, n^. Współczynniki te odmierzamy na trzech osiach 
ortogonalnego układu współrzędnych ŁjZgZp zwanych osiami głównymi in-r 
dykatrysy. Są to zarazem osie główne tensora względnej przenikałnnAM 
dielektrycznej ośrodka £.

Współczynniki załamania światła są zawsze dodatnie i - z wyjątkiem 
szczególnych obszarów widma promieniowania elektromagnetycznego, gdzie 
występuje dyspersja anomalna - są również większe od jedności. W obsza­
rze dyspersji anomalnej, sprzężonej z silną absorpcją-promieniowania, 
współczynnik załamania światła może osiągnąć wartości mniejsze od jed­
ności. W tych przypadkach n przedstawia się często za pomocą liczb ze­
spolonych. Dla rozważań niniejszego rozdziału te obszary widma można 
jednak pominąć i uważać, że w ośrodku o najniższej symetrii (kryształ 
układu trójskośnego) indykatrysa ma kształt elipsoidy trójosiowej o dłu­
gości półosi większej od jedności. Elipsoidę taką przedstawiono na rys. 
6.3

Rys. 6.3. Indykatrysa o trzech osiach różnych
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Położenie dowolnego punktu PtŁ^ŁjKj) na powierzchni elipsoidy o- 
kreślają trzy współrzędne lub wektor wodzący r. Definiujemy
długość [r[ jako wartość współczynnika załamania światła w kierunku o- 
kreślonym wektorem jednostkowym l(cos <pq, cos <P2, cos <P^)

(6.18)

Na tej podstawie mamy

Nj. = r.

Korzystając z równania indykatrysy jako elipsoidy wielkości (6.1?)

możemy napisać ciąg równości

Stąd
1 = 1 _ y £i
r2 N^ n2

Równanie (6.19) określa wartość współczynnika załamania światła w kie­
runku 1, zadanym względem osi głównych indykatrysy. Widzimy, że (6.19) 
znacznie różni się od wyrażenia dla wartości wielkości tensorowej, 
omówionego w rozdz. 2

ti = 2 
i

(2.44)

Ze wzoru wynika, że n nie jest wielkością tensorową.
Każdy centralny przekrój indykatrysy ,3, (tj. przechodzący przez 

początek układu współrzędnych),jest na ogół elipsą. Długości półosi tej 
elipsy równe są współczynnikom załamania światła N/] i N2 (rys. 6.3), 
określającym prędkości fal o dwóch możliwych stanach polaryzacji fali 
przy zadanym kierunku 1:D |] i D || Ng. Promieniowanie o kierunku D 
pośrednim między i N2 nie może rozchodzić się vi krysztale: wiązka
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Rys. 6.4. Składowe wektora D fali, poruszającej się w kierunku 
normalnej do czoła 1

ulega rozszczepieniu na dwie wiązki o stanach polaryzacji || i 
^2U N2’ P01,uszaj4ce się w krysztale niezależnie od siebie.

Te własności przekroju indykatrysy można pokazać również analitycz­
nie. W tym celu zastosujemy równanie (6.12) do przekroju pokazanego w 
rzucie płaskim na rys. 6.4. Wektor 1 wybieramy w kiernnkn

T1 = (cos <P , sin <₽ , 0).

Przy tych założeniach równanie (6.12) dla i = 1,2 ma postać

I e0 ej_ “ „• g li (cos <P E^ + sin <₽ Eg) =

natomiast dla i = 3

o

Trzecie równanie od razu prowadzi do znanego już nam wyniku

(6.20)

(6.21)
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Jeśli do pierwszych, dwóch równań wprowadzimy oznaczenie

( eo % = G = = n2’ (6,22)

to otrzymamy po przegrupowaniu wyrazów dwa równania jednorodne ze wzglę­
du na E^

- G sin2 <?)E4 + G sin 9 cos ? E, = 0,
3 1 2 (6.2?)

o
G sin <P cos T E^ + ( gg - G cos T )E2 = 0«

Przyrównanie do zera wyznacznika charakterystycznego tego układu prowa­
dzi do wyrażenia

o 2
2 _ 1 cos <P + sin 9 jg 24)
G " № " e2 e1

Według (6.19), wyrażenie (6.24) przedstawia współczynnik załamania 
światła w kierunku AB, leżącym w linii przecięcia płaszczyzny jednako­
wej fazy płaszczyzną (rys. 6.4). Podstawienie (6.24) do którego­
kolwiek z równań (6.23) prowadzi do równości

Dyj Dg
----- — + -----= 0, 
sin <P cos <p

czyli
AO = OB.

Składowe wektora D wzdłuż linii AB są sobie równe, a ich zwroty są 
przeciwne; kierunek AB, pokrywający się z jedną z osi przekroju elip­
tycznego, determinuje więc jeden z możliwych kierunków drgań wektora D 
fali o normalnej wzdłuż 1. Drugi kierunek drgań, zgodnie z (6.21),rów­
noległy jest do Xj.

Spośród różnych przekrojów centralnych indykatrysy szczególne zna­
czenie mają jej przekroje kołowe. Zależnie od tego, czy indykatrysa 
jest elipsoidą trójosiową, elipsoidą obrotową, czy też kulą, ma odpo­
wiednio dwa takie przekroje, jeden lub nieskończenie wiele. Przekrój ko­
łowy determinuje położenie płaszczyzny optycznej izotropii w krysztale, 
tj. takiej płaszczyzny, w której w każdym kierunku na niej leżącym 
współczynnik załamania światła jest taki sam. Normalna do tej płaszczyz­
ny zwana jest osią optyczną kryształu. Biegnąca przez kryształ fala o 
normalnej 1 równoległej do osi optycznej nie ulega podwójnemu załama­
niu i przechodzi przez ośrodek bez zmiany kierunku przy dowolnym stanie 
polaryzacji. Te własności kryształów stanowią podstawę ich klasyfikacji 
na optycznie dwuosiowe, jednoosiowe i izotropowe, zależnie od symetrii.
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Rys. 6.5. Dopuszczalne stany polary­
zacji fali,przechodzącej przez płyt­
kę (001). a,x-i ,ni ,xj,nj oraz c le­

żą w jednej płaszczyźnie 71

Szczegóły tego podziału nie będą 
tu przedmiotem bliższych rozwa-' 
żań. Zainteresowanego nimi Czy­
telnika odsyłamy do literatury 
podanej we wstępie do tego roz­
działu oraz pracy [6]. Obecnie 
zajmiemy się trochę bardziej 
szczegółową analizą biegu wiązki 
promieniowania spolaryzowanego w 
krysztale anizotropowym. Problem 
ten ma ważne znaczenie dla fi­
zycznie poprawnej interpretacji 
absorpcji promieniowania, czym 
będziemy się zajmować w rozdz. 7.

Rozważmy własności płytki 
krystalicznej, przedstawionej na 
rys. 6.5. Przypuśćmy, że płytka 
wycięta jest z kryształu jedno- 
skośnego, jej płaszczyzna ma 
wskaźniki (001). Płytkę tę prze­
cina prostopadła płaszczyzna 
w której leżą główne współczynni­

ki załamania światła n^ i n^ oraz oś krystalograficzna c, zaś ślad 
jej przecięcia się z (001) jest równoległy do osi krystalograficznej a. 
Drugą płaszczyznę wybieramy tak, że przechodzi ona przez || b i 
normalną do płytki, Pozostałe osie układu odniesienia Ł] i x2 są 
odpowiednio śladami przecięcia i z (001). Kąt zawarty między 
Xb| i X] oznaczamy przez q> ; określa on orientację osi głównych indyka-
trysy w przekroju (010).

Przypuśćmy teraz, że na tę płytkę pada liniowo spolaryzowana, płas­
ka fala elektromagnetyczna. Jeśli 1 jest wektorem jednostkowym równo­
ległym do D i określającym jego orientację w układzie n^,n2,nj, to 
składowe tego wektora w powietrzu wynoszą

D(Dl1t Dl2, Dl?).

Takie same są składowe D w krysztale, ponieważ wektor indukcji elek­
trostatycznej nie doznaje nieciągłości przy przejściu przez granicę mię­
dzy dwoma ośrodkami. Składowe E w krysztale wynoszą natomiast

EtDl^/g^ , D12/eo e2, Dlj/e0 e^)
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i są oczywiście inne, niż w powietrzu. Wobec tego w krysztale oba wekto­
ry zawierają między sobą kąt 5 (rys. 6.6). Ten sam kąt zawarty jest 
między kierunkiem 'a kierunkiem promienia w krysztale. Z iloczynu 
skalarnego D«E otrzymujemy

Znajomość głównych współczynników załamania światła oraz orientacji D 
względem n^ pozwala więc obliczyć odchylenie wiązki promieniowania w 
krysztale. Na ogół interesują nas proste sytuacje geometryczne, przy 
czym z reguły będziemy zakładać prostopadłe padanie wiązki. Jeśli ponad­
to zażądamy, by w krysztale wiązka nie ulegała rozdwojeniu, to możemy 
mieć tylko dwie dopuszczalne orientacje wektora D dla każdej płytki 
anizotropowej. W odniesieniu do rys. 6.6 orientacje te są następujące:

(i) l(cos <P, O, -sin 9), czyli D J|oo,. Łatwo się przekonać przez 
obliczenie pochodnej (6.2$) dla podanego 1 i przyrównani a do zera, że 
maksymalne odchylenie wiązki nastąpi dla kąta cp = 45 0
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"r 2cos 5 = —— 
2

1/x4 + 1/n|

4 4 V2(1/4 + Vn*)
(6.26)

Jeśli przyjmiemy, dla przykładu, a, = 1,5; n^ = 2,0, to otrzymamy 5 = 
= 15,6°. W większości przypadków kąt ę nie przekracza kilku stopni.Od­
chylenie wiązki jest jednak znaczące, a zaniedbanie tego efektu w spek­
troskopii kryształów molekularnych prowadzi do wyraźnych rozbieżności 
między wynikami teorii i eksperymentu (por. rozdz. 7).

(ii) 1(0 1 0), czyli DII^. W tym przypadku

cos 5=1. I6.2?)

wniosek ten ma ogólne znaczenię: Jeśli wektor D fali elektromagnetycz­
nej padającej prostopadle do próbki jest równoległy do którejkolwiek z 
osi głównych indykątrysy, to odchylenie wiązki w krysztale nie występu­
je.

Odchylenie wiązki może 
być również obserwowane w pro­
stym doświadczeniu f9j (rys, 
6.7). Oświetlamy kryształ, na 
przykład w mikroskopie polary­
zacyjnym, wąską wiązką promie­
niowania spolaryzowanego wcho­
dzącego przez mały otworek 0 
wykonany w nieprzeźroczystej 
folii. W położeniu próbki 45° 
zauważymy dwa krążki świetlne 
jednakowej jasności o' i 0". 
Jeśli oznaczy się ich odstęp 
przez s, to widać że

Kys. §.7. Przesunięcie s punktu wyjś- tg ę = ^ , (6.28)
cia O promienia, przechodzącego przez %

płytkę dwójłomną
przy czym dQ jest rzeczywis­

tą grubością płytki. Obie wielkości w (6.28) są mierzalne, zatem 5 mo­
że być wyznaczony doświadczalnie. Zauważmy, że dla wiązki biegnącej we­
dług rysunku 6.6, długość drogi w krysztale wynosi nie dQ, lecz

cos 5
(6.29)
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6.5. Dwójłomność kryształów

Przez dwójłomność płytki krystalicznej rozumiemy różnicę dwóch eks­
tremalnych współczynników załamania tej płytki, leżących w jej płasz­
czyźnie. Jest to więc różnica między połową osi długiej i krótkiej elip­
sy, stanowiącej centralny przekrój indykatrysy płaszczyzną płytki. W 
najprostszym przypadku, gdy płytka wycięta jest prostopadle do jednej z 
osi głównych, nk , indykatrysy o osiach n^, n^, n^, dwójłomność B1( 
jest równa

Bij = ni “ nj' (6.50)

Dwójłomność tak zdefiniowana może być liczbą dodatnią lub ujemną. W do­
świadczeniu mierzymy jednak zawsze które jest liczbą dodatnią. Do 
rozstrzygnięcia znaku B.. służą osobne metody opisane w monografiach, 
zajmujących się zastosowaniem mikroskopu polaryzacyjnego do badania op­
tycznych własności kryształów, na przykład [7]. Z każdego kryształu mo­
żemy wycinać płytki, których dwójłomność będzie wzrastać od zera do pew­
nej maksymalnej wartości, określonej wielkościami ni$ n^, n^.

Dwójłomność jest wielkością fizyczną, którą zajmujemy się z dwóch 
wzajemnie od siebie zależnych powodów:

(i) Istnieją stosunkowo nieskomplikowane metody doświadczalne, po­
zwalające mierzyć różnice współczynników załamania światła z dokładnoś­
cią o wiele przewyższającą dokładność konwencjonalnych metod pomiaru sa­
mego współczynnika załamania.

(ii) Wskutek dużej czułości metod pomiaru B możliwe jest dokład­
niejsze rozpoznanie własności optycznych ośrodka, na przykład udziału 
dwójłomności kołowej w ogólnej eliptycznej dwójłomności badanej płytki. 
O dwójłomności kołowej mówimy wtedy, gdy promień padający w określonym 
kierunku i spolaryzowany kołowo lewoskrętnie rozchodzi się w krysztale 
z prędkością inną, niż promień padający w tym samym kierunku, lecz spo­
laryzowany kołowo prawoskrętnie. Co jednak ważniejsze, możliwe jest ba­
danie wpływu czynników zewnętrznych na własności optyczne, takich jak 
temperatura lub ciśnienie.

Wielkością pokrewną dwójłomności jest różnica dróg optycznych

rij = ni d - nd d = ^j d. ( (6.51)

Wiązka promieniowania padająca wzdłuż e(r i o wektorze E równoległym 
do kierunku porusza się z prędkością vi inną, niż analogiczna 
wiązka z E ]] e.. Jeśli obie wchodzą jednocześnie do kryształu, to z bie- U
giem czasu wytwarza się względne opóźnienie jednej względem dtugiej
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<1 d _ d ,” v1 c (ni ~ nj

- B. . d. c lj (6.52)

Z opóźnieniem związana jest 
różnica faz, z jaką obie wiąz­
ki opuszczają kryształ. Ponie­
waż fala płaska wytwarza w 
punkcie x różnicę faz 
(2 względem początku u-
kładu współrzędnych 0, mamy

® = 2it d(v- A.- = F Biid 
ki 13

gdzie XQ 
w próżni.

(6.55) 
jest długością fali 

Z tych definicji bę-

Kys. 6.8. Interferencyjna metoda po­
miaru dwójłomności płytki' (a) za po­
średnictwem pomiaru odległości prąż­

ków interferencyjnych (b)

dziemy korzystali w dalszym 
ciągu.

Najprościej, choć niezbyt 
dokładnie, można mierzyć B^^ 
metodą interferencyjną przed­
stawioną na rys. 6.8a.Na układ 
złożony z dwóch skrzyżowanych 
filtrów polaryzacyjnych, pola- 
ryzatora P, analizatora A o-
raz z płytki dwójłomnej

umieszczonej prostopadle do wiązki promieniowania i w położeniu 45'
n. ,n •
o1 3

względem kierunku głównego P, pada promieniowanie w przybliżeniu mono­
chromatyczne o długości fali k, dającej się zmieniać. W zakresie od­
powiednio dobranym do grubości próbki d i dwójłomności B^ dwie wiąz­
ki, opóźniane w różny sposób w płytce, będą z sobą interferować po spro­
wadzeniu ich przez A do jednakowego kierunku drgań. W wyniku interfe­
rencji natężenie wiązki I opuszczającej A jest periodyczną funkcją X 
(rys. 6.8b). Maksima w natężeniu wiązki występują dla tych długości fa­
li X, dla których różnica długości dróg optycznych nd. jest parzystą 
wiexokrotnością połowy długości fali

n.d - n-d = ©X, m = 1,2,... J- J
Stąd kolejnym maksimom odpowiadają liczby falowe v

v = , y___ __  ® (n. - n.)d
u

(6.54)
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Znajomość bezwzględnej wartości m, czyli rzędu interferencji, nie jest 
tu konieczna, ponieważ wykres v(m) jest linią prostą niezależnie od
tego, od jakiej wartości m zaczniemy. Warto jednak zwrócić uwagę, że 
obecność silnych pasm absorpcyjnych w krysztale w badanym przedziale 
liczb falowych może spowodować odstępstwo niektórych punktów od 
tej prostej, ponieważ współczynnik załamania światła n i współczynnik 
absorpcji k są wielkościami sprzężonymi.

Bys. 6.9. Kompensacyjna metoda 
zmniejszania dwojłomności płytki

tycznie na rys. 6.9. Badana płytka

Często się zdarza, że dwójłom- 
ność płytki jest zbyt mała lub zbyt 
duża aby można było wykonać bezpo­
średnie pomiary. W takim przypadku 
pomocne jest sklejenie badanej płyt­
ki z inną, dodatkową, w położeniu ad 
dytywnym lub substraktywnym.Pierwszy 
sposób opisany został przez Wardzyń- 
skiego [10] w związku z pomiarami ma­
łej dwójłomności, Indukowanej w kry­
ształach pod wpływem naprężeń me­
chanicznych. Drugi sposób, przedsta­
wiony w [11] , pokazany jest schema- 
o grubości dg jest sklejona z płyt­

ką pomocniczą o grubości dc, wyciętą na przykład z kalcytu. Skleja się
w taki sposób, by kierunki główne obu płytek pokrywały się z sobą,a nad-
to by kierunek szybszego promienia w jednym krysztale przypadał na kie­
runek wolniejszego promienia w drugim. Użycie kalcytu jako płytki pomoo- 
niczej ma tę zaletę, że współczynniki załamania światła tego kryształu 
słabo zależą od temperatury [12]

wb = 1,6544 + O,19«1O“5 t, (6.35)

= 1,4846 + 1.18-10“5 t,

dla długości fali X = 656,3 nm i temperatury t °C. Współczynniki za­
łamania płytki uzyskanej przez wykorzystanie naturalnych płaszczyzn łup- 
liwości kalcytu są. i

/2 .2 \“1/2
e; = 223^^3^) , (6.36)

\ et “t /

gdzie <p = 45,38° jest kątem między trzykrotną osią symetrii i płasz­
czyzną łupliwości kryształu. Wobec tego współczynnik załamania światła 
kalcytu w płaszczyźnie łupliwości wynosi

= 1,5638 + O,762»1O-5 t. (6.37)
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Dwójłomność układu złożonego z dwóch, płytek jest równa 

(“dc + n^) - ( e'dc + n^)
B = ---------------- ----------------------------, (6.38)

' dc + ds

Nawiasem mówiąc, grubość płytki kalcytu możemy tak dobrać, by dwójłom- 
ność układu zniknęła. Obie płytki sklejone zachowują się wówczas jak 
próbka materiału izotropowego. Kompensacja dwójłomności nastąpi przy 
grubości kalcytu d° równej

(6.39)

Znacznie doskonalszą, a 
jednocześnie ogólniejszą meto­
dę pomiaru dwójłomności krysz­
tałów opisał Terreault [13]. 
Polega ona na analizie stanu 
polaryzacji promieniowania roz­
praszanego przez tzw. centra 
rozpraszania, którymi mogą być 
albo naturalne niedoskonałości 
struktury kryształu o dymen- 
sjach atomowych, albo sztucz­
nie wytworzone niejednorodnoś­
ci powierzchni, na przykład 
przez jej zmatowienie. Metoda 
ta pozwala na pomiar ogólnej 
dwójłomności kryształu, składa­
jącej się z dwójłomności linio­
wej i kołowej. W celu lepszego 
jej zrozumienia przedstawimy 
wpierw reprezentację stanów po­
laryzacji promieniowania za po­
mocą kuli Poincare"go, opiera­
jąc ten opis na cytowanej już 
pracy Terreaulta.

Sys. 6.10. Ogólny stan polary­
zacji fali (a) i jego przedsta­
wienie za pomocą kuli Poincare 

(b) (oprać, wg [13],)
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Ogólny stan polaryzacji fali elektromagnetycznej przedstawia elip­
sa, opisywana w płaszczyźnie XI przez wektor D w kierunku przeciw­
nym (+) lub zgodnym (-) z ruchem wskazówek na tarczy, zegara dla obserwa­
tora, patrzącego w kierunku źródła światła (rys. 6.10a). Kierunkiem roz­
chodzenia się fali jest oś Z, prostopadła do płaszczyzny rysunku. Oś 
długa elipsy zawiera z X kąt 4> , a eliptyczność fali charakteryzuje 
parametr w taki, że tg w = b/a. Dla w = 0 mamy falę spolaryzowaną 
liniowo, dla w = 45° - kołowo.

Ten stan fali można przedstawić przez punkt P na powierzchni ku­
li o promieniu jednostkowym, zwanej kulą Poincare'go (rys. 6.10b). Kąt 
2 4» jest "długością geograficzną", a kąt 2 w "szerokością geograficz­
ną" punktu. Stany o polaryzacji liniowej przedstawiają punkty leżące na 
równiku (w = O); osiom X i Y odpowiadają dwa przeciwległe punkty rów­
nika. Każde dwa stany, reprezentowane na kuli dwoma punktami przeciwleg­
łymi, zwane są stanami ortogonalnymi. Pozostałym dwóm stanom skrajnym, 
w = ± n/4, odpowiada fala spolaryzowana kołowo lewo- i prawoskrętnie, 
przedstawiona biegunami odpowiednio L i R kuli. Pozostałym punktom na 
powierzchni kuli odpowiadają stany o polaryzacji eliptycznej (kombina­
cja polaryzacji kołowej i liniowej).

Orientację dowolnej płytki krystalicznej dwójłomnej możemy również 
przedstawić jednoznacznie dwoma punktami na kuli Poincare*go (z wyjąt­
kiem polaryzacji czysto kołowej), M i K. Fala spolaryzowana zgodnie ze 
stanem M (lub N) przechodzi przez płytkę bez zmian. Jeśli kryształ 
nie absorbuje promieniowania, to stany te są ortogonalne, a więc leżą 
na średnicy kuli MN (mówi się o płytce MN). Każda fala o innym stanie 
polaryzacji, na przykład P na rys. G.lla, ulega przez kryształ rozło­
żeniu na stany M i N.

Stan Q fali opuszczającej płytkę otrzymamy w ten sposób, że obra­
camy kulę wokół MN jako osi obrotu o?kąt a' równy różnicy fazy mię­
dzy stanem M i N; obrót kuli wykonuje się zgodnie z ruchem wskazówek 
na tarczy zegara,jeżeli dla obserwatora stojącego na zewnątrz bliższy 
jest ten stan na powierzchni kuli, któremu odpowiada szybszy promień w 
krysztale (tu M). Jeśli płytka ma tylko liniową dwójłomność, a między 
stanami X (kierunek drgań szybszego promienia) i Y (kierunek drgań 
wolniejszego promienia) występuje różnica faz 5', to osią obrotu jest 
XY, a stan wiązki opuszczającej kryształ reprezentuje punkt q'.’ w dru­
gim skrajnym przypadku, gdy płytka ma dwójłomność czysto kołową, obraca­
my kulę Poincare'go wokół osi LR o kąt 2p', przy czym p' jest różnicą 
faz wytwarzaną przez płytkę. Przepuszczone promieniowanie Q" ma tę sa­
mą eliptyczność co P, lecz oś dłuższa elipsy uległa obrotowi o kąt p ' 
Jak widzimy, promieniowanie przepuszczone przez płytkę o dwójłomności
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iRys. 6.11. Przedstawienie różnych typów 
dwójłomności płytki krystalicznej (a) i 
zasada addytywności (b)(oprać, wg 1? )

analizować jej własności wtedy, gdy stany

liniowej może być spolaryzowa­
ne liniowo lub eliptycznie - 
zależy to zarówno od stanu fa­
li na wejściu, jak i od włas­
ności samej płytki.

Ogólna dwójłomność (elip­
tyczna) płytki wynika z jedno­
czesnej obecności dwójłomnoś­
ci liniowej i kołowej. Jeśli 
płytka jest bardzo cienka, to 
wytwarzane przez nią różnice 
faz, wynoszące odpowiednir> a' 
5' i 2p', mogą być dodawane 
jako wektory, odpowiadające 
nieskończenie małym obrotom 
kuli Poincare 'go wokół odpo­
wiednich osi obrotu (rys. 6. 
11b). Dzieląc przez grubość 
płytki d, otrzymamy związek 
między różnicami faz na jed­
nostkę grubości płytki

Ą = 5'+ 2P. (6.40)

Ogólna dwójłomność płytki o 
grubości d będzie zatem rów­
na

X ( o 0^/2B = —2 J 62 + (2p) > ■,•

2" (6.41)
przy czym oznacza dłu­
gość fali promieniowania-w 
próżni. Zastosowanie kuli 
Poincare'go pozwala więc w 
prosty sposób przewidzieć 
stan polaryzacji promieniowa­
nia opuszczającego próbkę lub 
polaryzacji obu wiązek są zna­

ne. \
Przejdźmy teraz do rozważenia polaryzacji promieniowania, spowodo­

wanej przez rozpraszanie na niejednorodnościach struktury kryształu i 
na sztucznie wytworzonych centrach rozpraszania. W przeciwieństwie do 
gazu lub cieczy, oczywiście pozbawionych zawiesiny, idealny kryształ

i
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Rys. 6,12. .Metoda Verreaulta pomiaru dwójłomności (oprać, wg )

nie rozprasza promieniowania, jeśli pominiemy niesprężyste rozpraszanie 
typu Brillouina lub Hamana. Elastyczne rozpraszanie wiązki promieniowa­
nia zachodzi natomiast w krysztale rzeczywistym, przy czym zjawisko to 
występuje w obszarach próbki wykazujących jakieś odstępstwa od perio- 
dyczności, na przykład na obszarach niedoskonałej stechiometrii, na ob­
cych wtrętach, dyslokacjaah, czy też na domenach o naturze ferroelek­
trycznej lub magnetycznej. Jeśli liniowe rozmiary^ at takich centrów są 
mniejsze od długości fali, rozpraszanie sprężyste jest typu Rayleigha. 
Analiza stanu polaryzacji promieniowania rozpraszanego na takich cen­
trach prowadzi do uzyskania informacji o ich naturze, rozmiarach i roz­
kładzie przestrzennym. Nie będziemy tu dyskutowali szerzej tych zagad­
nień, odsyłając zainteresowanego Czytelnikfe do oryginalnej pracy Verre- 
aulta. Zajmiemy się natomiast drugim przypadkiem, gdy struktura kryszta­
łu jest możliwie doskonała, a centra rozpraszania mają rozmiary porówny­
walne z długością fali promieniowania. Centra takie można wytworzyć 
sztucznie, na przykład przez delikatne zmatowienie tej ściany kryśztału 
przez którą promieniowanie rozproszone opuszcza jego wnętrze. W takim 
przypadku eksperyment daje informacje o dwójłomności kryształu. Badana 
próbka ma kształt prostopadłościanu o śclanie czołowej prostopadłej do 
spolaryzowanej i monochromatycznej wiązki padającej, natomiast ód a™ 
obserwacyjna zeszlifowana jest tak, że zawiera niewielki kąt z wiązką 
padającą (ryju 6.12). Po zmniejszeniu niejednorodności powierzchni do 
rozmiarów»rzędu długości fali przez szlifowanie odpowiednio drobnoziar­
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nistym-proszkiem, kryształ umieszcza się w wiązce promieniowania w taki 
sposób, by cała powierzchnia matowa była równomiernie oświetlona (rys. 
6.12). Centra rozpraszające są analizatorami stanu fazowego wiązek, do­
chodzących do nich po przebyciu rosnącej drogi z w krysztale. Sytua­
cja jest tu analogiczna do klina wyciętego z materiału anizotropowego i 
umieszczonego między skrzyżowanymi nikolami w położeniu 45°. klin o ką­
cie ostrza a wytwarza wówczas układ prążków interferencyjnych, których 
odstęp A.^ związany jest następującą relacją z odstępem prążków A. w 
interesującej nas konfiguracji rozpraszania

A^. = A.’ ctg a. (6.42)

Zakładamy przy tym, że klin i kostka rozpraszająca są wycięte z tego sa­
mego materiału i w tej samej orientacji względem kierunku rozchodzenia 
się wiązki w krysztale. Obserwator patrzący na zmatowaną powierzchnię 
(ewentualnie przez mikroskop) z kierunku ® widzi układ prążków inter­
ferencyjnych (por. rys. 6.12). 8 jest kątem rozpraszania, zaś ozna­
cza azymut płaszczyzny drgań promienia biegnącego w krysztale względem 
płaszczyzny 71 (wiązka wychodząca z kryształu w ogóle nas nie interesu­
je). Najprostszą geometrią jest 8 = 90°: składowa E w płaszczyźnie 

jest wówczas równa zeru dla każdej wartości <|> . W tym szczególnym 
przypadku kierunek propagacji i kierunek drgań w wiązce rozproszonej le­
żą w płaszczyźnie prostopadłej do wiązki przechodzącej przez kryształ. 
Stany polaryzacji wiązki rozproszonej mogą więc być opisane dwoma orto­
gonalnymi stanami S i Sa, ujawnianymi przez analizator A umieszczony 
prostopadle do (rys. 6.12).

Ograniczając się do kryształu z liniową dwójłomnością oraz fali pa­
dającej spolaryzowanej liniowo i liniowych polaroidów, możemy opisać 
geometrię rozproszenia za pomocą rysunku 6.1?. Niech z będzie osią 
równoległą do kierunku propagacji fali w krysztale tak, że wiązka o sta­
nie polaryzacji Po wchodzi do płytki XX w punkcie z = O }por. rys. 
6.12). Rozkład stanów polaryzacyjnych wzdłuż 'z jest taki, że reprezen­
tujący je punkt P zatacza na kuli Poincare*go koło wokół X -w miarę 
wzrostu z. Rozkład natężeń w wiązce rozproszonej opisuje funkcja

I = k Io sin2 (^ PS),

gdzie PS jest dużym lukiem łączącym P(z) z S. Natężenie wiązki jest 
wobec tego periodyczną funkcją z, przy czym minima pojawiają się wtedy 
gdy P(z) pokrywa się z punktem E, a maksima, gdy P(z) przypada na F. 
Odstęp tych prążków wynosi w ogólnym przypadku

A-= 2 w|(6)2 + (2p)2]"1/2. '(6.45)
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Ciemne prążki położone są w miejs­
cach

J = 0,1,2,...
(6.44)

Rys. 6.15- Geometria rozpraszania 
promieniowania spolaryzowanego 

przez centra o małych rozmiarach 
(oprać, wg )

W przypadku takim jak na rysunku 
6.15, PQE = O, zatem pomiar poło­
żenia prążków, zm) oraz grubości 
płytki, d, pozwala na wyznaczenie 
liniowej dwójłomności, 5. Posługu­
jąc się płytką fcwierćfalową można 
wyznaczyć znak dwójłomności na 
podstawie kierunku przesunięcia 
układu prążków. Metoda ta może 
być zastosowana w zakresie dwój­
łomności

10-6 < ^ - ^ < 0,2

z względnym błędem nie przekraczającym 1 procent. Na przykład zmierzone 
przez Verreaulta dwójłomności kwarcu wynoszą

(n - n ć = (8,99±O,O5).10-3, 
e w

p£ = (18,76+0,05) c/mm, (6.45)

przy czym X = 652,8 nm, t = 27 °C.
Przypadki innych kątów obserwacji, stanów polaryzacji i orientacji 

wiązki padającej dyskutowane są szerzej w cytowanej pracy.
Metoda pomiaru dwójłomności liniowej, równoważna pod względem czu­

łości metodzie Terreaulta a jednocześnie prostsza w zastosowaniu, opisa­
na została w pracy £14]. Jest ona szczególnie przydatna do badania wpły­
wu temperatury na dwójłomność cienkich płytek krystalicznych, które jed­
nak muszą być pod względem optycznym bardzo dobrej jakości. Nie można 
użyć na przykład płytek łupanych, także płytki polerowane nie mają na 
ogół wymaganej gładkości powierzchni. Najbardziej odpowiednie są tu 
cienkie płytki o naturalnych ścianach, jakie dość często można otrzymać 
ze związków organicznych przez powolną ich sublimację. Przy użyciu mi­
kroskopu można badać płytki bardzo małych rozmiarów.

Metoda ta opiera się na zastosowaniu kompensatora ćwierćfalówkowe- 
go Senarmonta, a jej schemat przedstawiony jest na rys. 6.14. W przybli­
żeniu monochromatyczna i równoległa wiązka promieniowania lampy L, na 
przykład linia xampy rtęciowej izolowana przez filtr interferencyjny F, 
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polaryzowana jest liniowo przez polaryzator P. Płytka krystaliczna C 
znajduje się w położeniu 45° względem kierunku przepuszczania P. Ponie­
waż wiążka opuszczająca kryształ jest na ogół spolaryzowana eliptyczni^ 
ćwierćfalówka Q służy do sprowadzania stanu polaryzacji do liniowego.

L F P C Q A PC EM

Rys. 6.14. Kompensacyjna metoda pomiaru dwójłomności (zaczerp. z 04] )

Azymut kierunku drgań promienia, opuszczającego płytkę, mierzony 
jest kątem obrotu analizatora A, potrzebnym do wygaszenia wiązki.Wskaź­
nikiem wygaszenia jest fotokomórka PC, połączona z elektrometrem Eli. 
W celu uzyskania możliwie dużej dokładności pomiarów, różnica dróg w 
płytce ćwierćfalówkowej musi być dokładnie równa 1/4 długości fali uży­
tego promieniowania. Z tego powodu taką płytkę najlepiej przygotować we 
własnym zakresie, na przykład z kryształu gipsu.

Różnica dróg (6.31) może być przedstawiona w postaci

r = mX + k \ (6.46)

gdzie m jest liczbą całkowitą, zaś k ułamkiem O <k < 1. Powyższa 
metoda pozwala mierzyć składową różnicy dróg kx z dokładnością do 
11,5 nm. Składowa m X musi być wyznaczona osobno, na przykład za pomo­
cą mikroskopu interferencyjno-polaryzacyjnego. Ponieważ błąd w wyznacze­
niu różniey dróg optycznych jest bardzo mały, końcową dokładność znajo­
mości dwójłomności wyznacza błąd, jaki popełnia się w pomiarze grubości 
płytki.

6.4. Związek między własnościami optycznymi 
i polaryzowalnością cząsteczek

Własności cząsteczki w krysztale zależą od energii jej oddziaływań 
z sąsiadami, przy czym największy udział w tej energii mają cząsteczki 
najbliższe. To najbliższe otoczenie decyduje o różnicy między sytuacją 
cząsteczki w krysztale i w stanie swobodnym, a tym samym decyduje o róż­
nicy w odpowiadających jej parametrach. Z kolei własności optyczne, der- 
dukowane z oddziaływań między falą elektromagnetyczną a ciałem stałym, 
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zależne są od gęstości i symetrii rozkładu tzw. elektronów dyspersyj­
nych, do których należy grupa najsłabiej związanych z cząsteczką elektro­
nów. Te właśnie elektrony są najbardziej podatne na zaburzający wpływ 
otoczenia.

Może się również zdarzyć, że własności tej samej cząsteczki w 
dwóch różnych fazach krystalicznych, stanowiących na przykład dwie od­
miany polimorficzne tej samej substancji, okażą się różne. Jeśli się za» 
łoży, że konfiguracja samej cząsteczki i typ oddziaływań w obu odmia­
nach polimorficznych są takie same,, to chce się widzieć, że tak samo 
skierowane pole elektryczne o identycznym natężeniu wywołuje w obu cząs­
teczkach jednakowe efekty, a więc że polaryzowalność cząsteczki otrzyma­
na z obu struktur jest jednakowa. Występujące niekiedy w takich przypad­
kach różnice trzeba więc złożyć na karb albo niedoskonałej definicji 
stałych molekularnych, albo niedoskonałości teorii opisującej związek 
między makroskopowymi własnościami kryształu i mikroskopowymi własnoś­
ciami cząsteczki (model gazu zorientowanego). W praktyce dalecy jeszcze 
jesteśmy od idealnego rezultatu. Sytuację dodatkowo komplikuje fakt, że 
struktura nie jest czymś statycznym - cząsteczki znajdują się w stanie 
nieustannego ruchu termicznego o amplitudzie drgań anizotropowej i za­
leżnej od temperatury, co nie może być bez wpływu na ich - przynajmniej 
niektóre - własności.

Mikroskopowym odpowiednikiem współczynnika załamania światła jest 
polaryzowalność cząsteczki a . Polaryzowalność jest odpowiedzialna za 
optyczne własności ciała stałego w tym sensie, że gdybyśmy mogli mieć 
do czynienia z ośrodkiem zbudowanym z cząsteczek dla których a = O, to 
okazało by się, że współczynnik załamania światła tego ośrodka n = 1, 
w całym zakresie widma fal elektromagnetycznych, a więc tak, jak dla 
próżni.

Przez polaryzowalność rozumiemy podatność cząsteczki na wpływ pola 
elektrycznego. Wpływ tego pola mierzymy wielkością indukowanego w cząs­
teczce momentu dipolowego

Hi = 4 • £> (6.4?)

przy czym F oznacza natężenie pola w miejscu, gdzie znajduje się roz­
ważana cząsteczka, a więc we wnętrzu cieczy czy kryształu. Zwykle przyj­
muje się, że cząsteczka ma rozmiary zaniedbywalnie małe lub, inaczej mó­
wiąc, natężenie pola można uważać za stałe w całej objętości, zajmowa­
nej przez jedną cząsteczkę. F jest więc tzw. polem lokalnym. Można po­
wiedzieć, że cała trudność mikroskopowego opisu własności kryształu 
sprowadza się do trudności znalezienia właściwego wyrażenia na natęże­
nie pola lokalnego F. Warto również zauważyć, że związek (6.47)słuszny 
jest jrzy niezbyt dużych natężeniach pola F. Wbarćho silnych pdLarh zewnętrznych wybwars-
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nych na przykład przez'współczesne źródła promieniowania (masery i lase­
ry) występują zjawiska nieliniowe powodujące, że zależy również od 
wyższych potęg F.

Przejdziemy obecnie do przedstawienia dwóch poglądów na pole lokal­
ne lub, co jest równoważne, dwóch typów związków między n i a.

Punktem wyjścia w pierwszym z nich jest równanie Lorentza-Lorenza, 
uogólnione przez Rousseta na przypadek ośrodka anizotropowego [15]» Jed­
nak wobec daleko idących uproszczeń, składowym « nie zawsze można 
przypisać sens fizyczny. Innymi słowy, teoria ta prowadzi do polaryzo- 
walności cząsteczek, które należy traktować raczej jako wielkości ra­
chunkowe, a nie jako stałe molekularne. Obarczone są one niekiedy dużym 
błędem, lecz przydatne do interpretacji różnych efektówź Rozumowanie 
prowadzące do tych wyników jest, po krotce, następujące.

Przyjmiemy, jak to się zwykle czyni, iż F można zapisać jako su­
mę trzech udziałóws zewnętrznego (przyłożonego) pola o natężeniu 3, po­
la spowodowanego działaniem ładunków polaryzacyjnych pojawiających się 
na powierzchni kuli, otaczającej miejsce w krysztale, z którego usunię­
to rozważaną cząsteczkę E$ oraz pola, wynikającego z oddziaływań roz­
ważanej cząsteczki z wszystkimi ją otaczającymi Eo “O

F = E + E + E . (6.48)

Pole Ep obliczył po raz pierwszy Lorentz dla ośrodka izotropowego

E = —— P 
"₽ 3 e0

(6.49)

przy czym P jest wektorem polaryzacji dielektryka, zdefiniowanym jako 
elektryczny moment dipolowy jednostki objętości. Szczegóły rozważań,pro­
wadzące do (6.49), można znaleźć w podręczniku [2] lub w monografii [8], 
Jeśli pominie się Ę , co można uczynić dla ciała stałego o wysokiej sy­
metrii (symetria powoduje wyśredniowanie do zera wpływu cząsteczek ota­
czających kulistą wnękę) lub cieczy, czy gazu (podobne średniowanie spo­
wodowane jest przez ruch termiczny), to pole F możemy zapisać w posta­
ci

F = E + -1- P. (6.50)
3 e J o

Podstawienie (6.50) do (6.4?) i skorzystanie ze związku

P = e0(e - 1 )E

prowadzi po kilku przekształceniach do polaryzacji dielektryka P

P = Ną = N (i + -E ~ < a > Ę, (6.5D
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przy czym N jest liczbą cząsteczek w jednostce objętości. Stąd otrzy­
mujemy znane wyrażenie Clausiusa-Mossotti'ego na polaryzację 1 mola su> 
stancji

—Bo<«>, (6.52)
m e + 2 p 3 e0 0

gdzie M jest masą cząsteczkową substancji, p jej gęstością, <a> śred­
nią polaryzowalnością cząsteczek, zaś No liczbą Avogadra. Związek (6. 
51) stosuje się ściśle do gazów, których cząsteczki nie mają momentu di 
połowęgo. Hoże być również stosowany do cieczy i ciała stałego z tymi 
samymi ograniczeniami, ponieważ Pm nie zależy od stanu skupienia sub­
stancji.

Dotychczasowe wywody oparte były na równaniach elektrostatyki di­
elektryków. Następny krok polega na przejściu od polaryzacji molowej Pm 
do refrakcji molowej Ra, przez wprowadzenie relacji Maxwella

łt • £ = n2, (6.53)

co oznacza przejście od zakresu małych częstości (O do 100 kHz) do częs­
tości odpowiadających fali elektromagnetycznej (4-8) •lo'1* s"1 dla zakre­
su promieniowania widzialnego). Relacja Maxwella (przy p. -1) spełnio­
na jest jedynie dla takich substancji, których cząsteczki pozbawione są 
trwałego momentu dipolowego. Przy tych ograniczeniach otrzymujemy równa­
nie znane pod nazwą Lorentza-Lorenza

n2 — 1
n2 + 2

1 .
3 e o

M

p
N0<a>. (6.54-)

Ponieważ M/p = jest objętością jednego mola, zatem N0/Vm = N jest 
liczbą cząsteczek w jednostce objętości. Wobec tego

No 7
(6.55)

Vm Vk '

przy czym Z oznacza liczbę cząsteczek w komórce elementarnej o obję­
tości Vk. Jeśli średnią polaryzowalność komórki elementarnej oznaczymy 
przez < T >, to

<p> = Z <«> (6.56)
oraz

4^ = ^- — <a> = —^-<r 
n2 + 2 3 e0 Vk 3 e0 Vk (6.57)
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Uogólnienie Rousseta [15] polega na zastosowaniu (6.57) do ośrodka] 
anizotropowego w taki sposób, że piszemy to równanie osobno dla każdego
Z kierunków głównych indykatrysy

ni ~ 1 _ ii 1 r 
°? + 2 3je0 Vk (6.58)

Każdemu z kierunków głównych indykatrysy jest więc przyporządkowana jedf 
na z głównych składowych tensora polaryzowalności komórki elementarnej.!
Związek między r i ą otrzymamy przez zastosowanie modelu gazu zorien­
towanego dla wielkości'tensorowych (por. rozdz. 4).

(6.59)

gdzie § jest macierzą transformacji J? do układu osi głównych, c o-| 
pisuje orientację względem abcz osi głównych a, przyjmowanych naj­
częściej równolegle do osi symetrii cząsteczki IMN, a sumowanie rozcią-l 
ga się na wszystkie cząsteczki symetrycznie zależne. Jeśli w komórce e-> 
lementarnej istnieją np. dwa zbiory cząsteczek symetrycznie względem 
siebie niezależnych, to w (6.59) po-jawią się dwie niezależne od siebie 
sumy tego samego typu.

Równanie (6.58) oparte jest na założeniu, że pole lokalne ma pos­
tać

Pi = ~ (nf + 2)Eit (6.60)

którą można otrzymać z (6.51). Widzimy tu negatywny skutek zastosowa­
nych przybliżeń; pole (6.60) jest w rezultacie polem zależnym od czynni­
ków makroskopowych. Kierunki i długości składowych F zdeterminowane 
są przez kierunki i długości osi głównych e. Struktura mikroskopowa 
kryształu występuje jedynie w polaryzowalności komórki elementarnej 
(6.59), natomiast na pole lokalne ma wpływ bardzo pośredni.

Problem osi głównych- a przedstawia się podobnie jak w diamagne­
tyzmie. Dla cząsteczek dostatecznie symetrycznych, tj. należących do 
grupy punktowej o symetrii co najmniej C2h’ można przyjąć, że są nimi 
osie symetrii LMN. Dla cząsteczek mniej symetrycznych możemy poszukiwać 
osi głównych a przez zastosowanie zasady addytywności analogicznie, 
jak to uczynili Van den Bossche i Sobry na terenie diamagnetyzmu. O ile 
nam jednak wiadomo, systematycznych prób w tym kieruńku nie podjęto. 
Jeśli zaś nie uczynimy żadnego założenia odnośnie kierunku osi głównych 
to problem jest nie do rozwiązania na poziomie molekularnym z wyjątkiem 
kryształów należących do układu trójskośnego i to tylko w przypadku,gdy 
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komórka elementarna zawiera jedną cząsteczkę« Do problemu.tego jeszcze 
wrócimy«

Zastosowanie (6.58) i (6.59) do konkretnych struktur zilustrujemy 
przykładem kilku kryształów, dla których główne współczynniki załamania 
światła oraz ich orientacja są znane. W tabeli 6.1 zawarte są dane za- 
i

Tabela 6.1

Wartości doświadczalne współczynników załamania światła 
niektórych kryształów molekularnych dla X = 546 nm [16]

Kryształ “2 n5 -e
 u A
 

£ö oblicz.

Benzen 1,544 1,646 1,550 0 0
Naftalen 1,525 1,722 1,945 42,5 22,6
Antracen 1,556 1,786 1,959 26,9 27,1
Fenantren 1,548 1,920 1,724 27,0 26,7
Fluoren 1,578 1,919 1,665 0 0

czerpnięte z monografii Winchella [16]. W przyjętej tu konwencji nglJb 
zaś Ł] i Hj leżą w płaszczyźnie (010). Kąt między n^ i osią krysta­
lograficzną a oznaczamy przez <p. Zadanie polega na obliczeniu a o- 
raz kąta 9 , których dokładnych wartości nie znamy. Punktem wyjścia 
niech będzie tensor polaryzowalności cząsteczki swobodnej. ą'°)
możemy obliczyć korzystając z anizotropowych inkrementów atomowych poda­
nych przez Le Fevre'a [17] (tab. 6.2) oraz z zasady dodawania wielkości 
tensorowych. Kierunki wiązań C-C wystarczy wybrać takie, jak w regu­
larnym sześcioboku, zaś dla grupy -CH2 (fluoren) tak, jak dla tetra- 
edrycznego atomu węgla. Wyniki obliczeń i [18] podane są w
tab. 6.4 (cząsteczka swobodna).

W tym sformułowaniu zadanie możemy rozwiązać metodą kolejnych przy­
bliżeń. Obliczamy wpierw T ^°^(abcx) w przybliżeniu zerowym. Na przy­
kład dla naftalenu

, , V Al“?’ 0

r(°){abcx) = = 2| O c?. a:°) O |,
= = = 1 i /

r \c c a^0' O a°) /Vi5 i1 i 0 °i5ai /

V (6.615gdzie c^ określają orientację IMN w abc .
r'°\abcx) można sprowadzić do osi głównych przez transformację 

macierzą a
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Tabela 6.2

Inkrementy polaryzowalności atomów i wiązań według Le Fevre'a [17]. 
b^ - polaryzowalność wzdłuż wiązania, b^ - prostopadle do wiązania 

lecz w płaszczyźnie cząsteczki, bv - prostopadle do wiązania
i płaszczyzny cząsteczki

b-IO^, F-m2

bl bt bv

C-H o,71 0,71 0,71
c-c 1,10 0,30 0,30
C -0 ar ar 2,49 0,23 0,66
C-Cl 4,68 2,15 1,65

1-10"24 cm3 (cgsE) = IJUg-IO“40 farad x h2 (SI)'

przy czym <P 0 jest kątem zerowego przybliżenia. Możemy go otrzymać z 
relacji

To = i arc tg -------- . (6.63)
yn _ x33/

Jeśli teraz wprowadzimy oznaczenia

.2
"5------ = bin? + 2 1 3

1__
e o

o1 (6.64)

gdzie dla układu jednositośnego

Vk= a sin ₽ , (6.65)b c

to współczynniki 
mać ze związku

załamania światła zerowego przybliżenia możemy otrzy-

1 + 2b,V/2

ni = (.6.66)
1 - b.
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Tabela 6.3

Wyniki obliczeń polaryzowalności cząsteczki metodą kolejnych przybliżeń

Przybli­
żenie

a x 1040
n^ (obi.) n^ (dośw.) <P

A. Kryśztał naftalej1U

/21,8 \ 1,5085
(0) ( 19,6 ) 1,6602 22,24

\ 12,9/ 1,8710

/23,2 \ 1,5228 1,525
(D ( 20,1 1 1,722o 1,722 22,62

1,9484 1,945

/23,1 \ 1,5250
(2) ( 20,1 ) 1,7220 22,62

\ %9450

B. Kryś stał antracei1U

/31,1 \ 1,5224
(0) ( 26,7 ) 1,7262 27,68

\ 17’6/ 1,976?

/30,6 \ 1,5606 1,556
(1) ( 28,4 | 1,7860 1,786 27,12

\ 18,6/ 1,9526 1,959

/30,7 \ 1,5559
(2) ( 28,4 j 1,7860 27,14

1',959j

Punktem wyjścia do pierwszego przybliżenia są doświadczalne wartoś­
ci współczynników załamania światła i <p , z których obliczamy r ^(abc^t 

) oa stąd 4 'i q>| pierwszego przybliżenia. Dalsze postępowanie, które­
go niezmiennikami są g i n^ doświadczalne, prowadzi do wyników przed­
stawionych dla naftalenu i antracenu w tab. 6.3. Pozostałe wyniki z po­
minięciem tych szczegółów rachunkowych podane są w tab. 6.4. Widzimy,że 
otrzymane 4ym formalizmem polaryzowalności nie odbiegają zbytnio - poza 
jednym przypadkiem - od polaryzowalności cząsteczki swobodnej. Warto
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Tabela 6.4

Polaryzowalność niektórych cząsteczek w stanie swobodnym 
(według Inkrementów z tab. 6.2) oraz w krysztale

Cząsteczka Warunki
Polaryzowalność 

a x 10^ F • m2

aL a M “i

Benzen swobodna 12,5 12,5 8,2
w krysztale 12,5 11,8 9,3

Naftalen swobodna 21,8 19,6 12,9
w krysztale 24,4 20,5 11,7

Antracen swobodna 31,1 26,7 17,6
w krysztale 30,7 28,5 18,5

Fenantren swobodna 30,0 27,8 17,6
w krysztale 33,4 38,7 5,1

Fluoren swobodna 27,6 25,6 16,5
w krysztale 28,9 24,6 18,7

przy tym zwrócić uwagę, że użyte tu stanowią informację niezależ?
ną, bowiem inkrementy Le Fevre'a zostały otrzymane z badań efektu elek-s 
trooptycznego cząsteczek w roztworze. Odstępstwem w tab. 6.4 jest cząs­
teczka fenantrenu - podatność jest z pewnością za wysoka, «jj za 
niska. Wydaje się, iż efekt ten spowodowany jest momentem dipolowym tej 
cząsteczki; w każdym razie nie spełnia ona warunków dopuszczających sto­
sowalność równania Lorentza-Lorenza.

Jako dalszy przykład ilustrujący zastosowanie modelu gazu zoriento­
wanego przedyskutujemy własności kryształu gipsu CaSO^-PHgO. Nie jest 
to kryształ molekularny sensu stricto lecz można na tym przykładzie po­
kazać, jak anizotropia własności optycznych uwarunkowana jest bezpośred­
nio anizotropią polaryzowalności cząsteczek.

Struktura kryształu zbadana metodą dyfrakcji neutronów [I9] ma sy­
metrię grupy przestrzennej I 2/a. Jednoskośna komórka elementarna o pa­
rametrach a = 5,6810,008, b = 15,1810,009, c = 6,5210,008 S, ₽ = 
= 118,3810,55°, zawiera cztery jednostki chemiczne o składzie CaS04 • 
2H20. Jony Ca2+ i SO2" zajmują położenie szczególne o symetrii Cg. Wyda­
je się, iż jony SO2" nie mają symetrii T^, odpowiadającej im w stanie 
swobodnym. Odstępstwa od pełnej symetrii nie są jednak duże i możemy u- 
znać, że zarówno jony Ca2+ jak i SO2" mają symetrię wystarczającą, by 
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ich polaryzowalność uważać za izotropową. Cząsteczki wody mają oczywiś­
cie niższą symetrię. Atomy tlenu zajmują położenia ogólne o symetrii C^, 
natomiast szesnaście atomów wodoru należy do dwóch nierównoważnych zbio­
rów, o symetrii węzła również C^. Ta sytuacja dopuszcza wystąpienie nie­
wielkiej asymetrii cząsteczki polegającej na tym, że długości obu wią­
zań, 0-H^ i 0-H2 trochę się różnią.

Zasadnicza rola cząsteczek wody w anizotropii optycznej widoczna 
jest na pierwszy rzut oka z rys. 1.9, przedstawiającego rzut struktury 
na płaszczyznę (010). Naniesione linią przerywaną główne kierunki indy- 
katrysy A.B. i O.B., są odpowiednio równoległe i prostopadłe do kierun­
ków OH na tej płaszczyźnie [20]. Przyjmiemy więc w dalszym ciągu,że ten 
fakt stanowi główną przyczynę anizotropii optycznej kryształu i spróbu­
jemy obliczyć ą cząsteczki wody oraz oszacować izotropową sumę polary, 
zowalności aia jonów Ca2+ i SO2“ [20].

Kryształ jest optycznie dwuosiowy, dodatni. Współczynniki załama­
nia światła dla A = 589 nm mają następujące wartości [21] :

ng = 1,5299, = 1,5250, Up = 1,5207.

Oś n^ indykatrysy jest równoległa do osi b kryształu, zaś ng|| A.B. 
i np ]|O.B. Orientację tych osi względem a, b, c podają trzy wektory

Tabela 6.5
Molekularne (r) i optyczne (R) wektory jednostkowe w układzie
jednoskośnym a, b,, c [20] • ±, _j, k są wektorami jednostkowymi

w kierunku tych osi, odpowiednio

= 0,6262 i + 0,7782 d - 0,0038 k
41’ = 0,7908 i - 0,2288 d — 1,0567-k
J1)
-3 = -0,5376 i + 0,5676 d + 0,4184 k
r<1') 
£1 = -0,6262 i + 0,7782 d + 0,0038 k
r(1’) 
—2 = 0,7908 i + 0,2288 d + 1,0567 k
4” = 0,5376 i + 0,5676 d - 0,4184 k

Si = 0,8311 i - 0,2871 k

£2 = 0,7753 i + 1,0997 k

-3 = 1 d

jednostkowe R (tab. 6.5). W teg tabeli podane są również orientacje 
osi symetrii r^, r2, r^ cząsteczki wody. Z danych tych wynika, że 
£^-1 - 0,0443 oraz r^2 = 0,9724, czyli normalna do płaszczyzny cząs­
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teczki wody jest prawie równoległa do jednej z osi głównych indykatrysy, 
a prawie prostopadła do drugiej, leżącej w (010). Jony SO2- następują 
wzdłuż kierunków optycznych naprzemiennie, ćo eliminuje ich ewentualną 
słabą anizotropię.

Rachunek można wykonać metodą kolejnych przybliżeń. Niech punktem 
wyjścia będzie tensor polaryzowalności cząsteczki swobodnej ob­
liczony przez Liebmanna i Moskowitza [22] i podany w tab. 6.6. Otrzyma­
ny stąd tensor polaryzowalności komórki elementarnej w układzie odnie­
sienia optycznym r'(°)(R^RgRj), ma składowe w zerowym przybliżeniu

/1,730 \
r (R^R^) = 8 1,380 j x 10-40 P-m2,

\ 1,703/

ponieważ Z = 8. Jeśli teraz przez N^0^ oznaczymy udział (w zerowym 
przybliżeniu) podsieci wody we współczynnikach załamania światła n^, a 
przez izotropowy udział jonów, to w myśl powyższej hipotezy może­
my napisać

aJo) = ^ - n]°}. (6.67)

Tabela 6.6

Teoretyczne i eksperymentalne wartości polaryzowalności 
cząsteczki wody 
a x 10^ p.m2

«1 a 2 a j <a> Literatura

1,422 1,189 1,292 1,301 Arrighini i in., [23]
1,836 1,363 1,614 1,604 Liebmann, Moskowitz [22]

— - - 1,61 Landolt-Bbrnstein [21]
1,598 1,592 1,619 1,603 Rohleder [20]

, (k)Kolejne przybliżenie, k-te, uważać będziemy za dobre wtedy, gdy A £ ' 
okażą się liczbami jednakowymi dla i = 1,2,3. Korzystając z (6.64) i

P otrzymujemy

N^ = 1,2073, Ng0^ = 1,1676, N^oJ = 1,2031 

oraz
A^0) = 0,3266, = 0,3554, A^o) = 0,3176.
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Widzimy, że A nie ma stałej wartości, wobec czego'jako parametr następ 
nego przybliżenia kładziemy

<A<°>>= 0,3532.

Po powtórzeniu rachunku już w następnym przybliżeniu okazuje się, że 

A } = A^^ = 0,3319.

Uzyskane przez rozwiązanie układu równań liniowych polaryzowalności 
cząsteczki wody podane są w ostatnim wierszu tab. 6.6. Widzimy, że rów- 
jnież anizotropia cząsteczki wody jest bardzo niewielka, co uzasadnia 
słabą dwójłomność kryształu. Dla pozostałej części współczynnika zała­
mania światła < A > ' możemy napisać w przybliżeniu

2<A>^-n1z + <A>^ .
<n2>+ 2 " 3 e0 aiz’

gdzie
= (1 abc sln₽ J"1 = (123,65 S5)"1.

Stąd otrzymujemy
aiz = 6,85«10~40 F»m2.

Porównanie tego wyniku z dostępnymi w literaturze danymi prowadzi do 
następujących wniosków. Jeśli dla polaryzowalności Ca2+ wziąć wartość 
®Ca2+ 3 P*m2 obliczoną przez Borna i Heisenberga z poprawki
spektroskopowej w serii Rydberga-Ritza, zaś dla polaryzowalności SO2“ 
wartość a SO2“ = 4,23’IG-2^0 P«m2 otrzymaną przez BBttchera z pomiarów 
gęstości i współczynnika załamania światła roztworów siarczanu sodu 
[24], to otrzymamy łącznie

a. = 4,87*10"^° F-m2. iz ■ ,

Wartość ta zupełni e dobrze zgadza się z otrzymaną z A .
Dyskusja ta wskazuje, iż użycie formalizmu Rousseta do obliczenia 

polaryzowalności cząsteczek w fazie krystalicznej prowadzi do rozsąd­
nych wniosków przy próbie zastosowania go do interpretacji optycznych 
własności krysztąłów. Z innymi zastosowaniami spotkamy się jeszcze w 
rozdz. 9.

Nieco inny punkt widzenia na związek między n i a, oparty na poję­
ciu refrakcji molowej nie tylko kryształu lecz także cząsteczki, prezen­
tuje Lasheen i inni w dwóch publikacjach [25,26]. Zgodnie z (6.54) re­
frakcja molowa kryształu w jednym z kierunków głównych -indykatrysy 0- 
kreślona jest wyrażeniem
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n? - 1 M
Ei = S—7 f • (6.69)i

n£ + 2 P

Refrakcję molową jednej cząsteczki Określamy tak, by zachodził związek 

^Ei = Z 2>k. (6.70)

Zakładamy przy tym, że R i r spełniają modele gazu zorientowanego (6. 
59).

Wartości refrakcji molowej cząsteczki obliczone tą drogą pozbawio­
ne są przynajmniej jednej z dotychczasowych wad, a mianowicie nie zawie­
rają izotropowego czynnika 1/3, przenoszonego z (6.49) do (6.58). Dane 
uzyskane w obu pracach Lasheena zebrane są w tab. 6.7 z tym, że wartoś­
ci r dotyczą tylko jednej cząsteczki. W związku z tym oryginalne wyni­
ki Lasheena zostały skorygowane tak (poza jednym przypadkiem), by konse­
kwentnie spełniony był związek (6.70). Przy opracowaniu tabeli stosowa­
no następującą konwencję, wprowadzoną przez Lasheena:

(i) w kryształach ortorombowyoh R& ]|a, R^b, Ro]{ c,

(ii) w kryształach jednoskośnych R^ || b, R^, R2 leżą w (010).

Współczynniki załamania światła mierzone były [25] za pośrednictwem ob­
serwacji linii Beckego‘dla światła lampy sodowej Ap, w temperaturze po­
kojowej (21-25 °C). Podane w tabeli błędy n, R i r oszacowane zostały 
przez Lasheena. Warto zauważyć, iż niekiedy małe błędy w doświadczalnym 
wyznaczeniu n prowadzą do dużych błędów w wartościach r. Odnoszą się 
do tego te same uwagi, jak i do pomiarów podatności diamagnetycznej 
(rozdz. 5).

Związek między polaryzowalnością cząsteczki 1 jej refrakcją w tym 
samym kierunku jest następujący: \

(P-m2) = 3 e0 Vk | r± (m^.mol“^), (6.71)1

eQ = 8,8542«10“12 F-m-1.

Badania nąd optycznymi i magnetycznymi własnościami cząsteczek 
przeprowadzone przez Lasheena i współpracowników miały na celu głównie 
wykazanie pokrewieństwa między anizotropią polaryzowalności i podatnoś­
ci magnetycznej. Uzyskane przez tych autorów wnioski można streścić w 
następujący sposób.

1. Jeśli porówna się wyniki dla refrakcji cząsteczek z wartościami 
ich podatności magnetycznej to widać, że silnej anizotropii magnetycz-



Tabela 6.7

Strukturalne i optyczne stałe kryształów molekularnych. M - masa cząsteczkowa kg/kmol, p - gęstość 
kg/m^, V/Z - objętość jednej cząsteczki S-5, a,b,c - parametry komórki elementarnej £, 2 - liczba 
cząsteczek w komórce elementarnej, n^.,!^,^ - współczynniki załamania, światła wzdłuż głównych kie­
runków drgań, n .n^,^ - współczynniki załamania światła wzdłuż osi krystalograficznych, a,b,c - 
układ ortorombowy, n^.rig»^ - współczynniki załamania światła wzdłuż osi głównych tensora £ (por. 
tekst), R - refrakcja kryształu, r - refrakcja cząsteczek (dla otrzymania R i r w jednostkach u- 

kładu SI (m^/mol) należy liczb- -a tabeli pomnożyć przez 10"®)

Nazwa związku Wzór sumar. 
i dane makr.
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n* = 1,560 

Dy = 1,730 

nz = 1,760 
[16]

na = 1,508 

= 1,768

nc = 1,736

[25]
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N-ohlorobur- 
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p = 1650 
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^2^ [55] 
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Kwaśny d-wi- 
nian amonu

c4h406(nh4).h 
m = 167,07 

p = 1680 

V/Z = 165,94

[56]

a = 7,648

b = 11,066

c = 7,845

Z = 4

na = 1,534 1

n^ = 1,500 2

n0 = 1,510 2
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Antracen

C14H10
M = 178,2 

p = 1026

V/Z = 257,08

Z = 2

B. Kryszt 

^/a B7J 
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Dwufenyl

C12H10
M = 154,2 

p = 1224

V/Z = 221,4

Z x 2

^/a [58] 

a = 8,65 
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c = 9,15 

₽ = 95,1
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»L = 51,1

= 26,9
= 15,6
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M = 146,95 
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Antrachinon
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M = 208,20

P = 1438
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^6^^4^2 
M.= 245,89 

p = 1712 

V/Z = 207,4

Z = 2

КЦ/а [42] 

a = 8,708 
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c = 8,603 
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C6C14(OH)2

M = 247,90 

p = 2002

V/Z = 205,6
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p-Nitro- 
anilina

с6н4(ио2)-nh2

M = 138,-12

P = 1457

V/Z = 160,8

Z = 4

ргуп E*4] 

a = 12,556 

b = 6,07 

c = 8,592 

ß = 91,45

^=1,788(4) 

п2=1,525(2) 

п3=1,756(5) 
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Izatyna

C8h5°2N

M = 147,05

P = 1527

V/Z = 159,9

Z = 4
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Z = 4
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nej zawsze towarzyszy silna anizotropia optyczna. Anizotropię definiuje 
się liczbowo w następujący sposóhs

△ r = j (rL + rM) - rK, (6.72)

A K 3 1 (KL + Kjj) - Kjj. (6.73)

2. Dla- cząsteczek płaskich bezwzględna wartość podatności magnet 
tycznej jest największa w kierunku prostopadłym do płaszczyzny cząstecz­
ki, natomiast polaryzowalność jest w tym kierunku najmniejsza.

3« Jeśli wielkość anizotropii optycznej dowolnej cząsteczki podzie-i 
li się przez wielkość anizotropii optycznej cząsteczki, benzenu A r/Ar^, 
to uzyskany iloraz będzie mniejszy, niż analogiczny stosunek wielkości

> anizotropii magnetycznych A K/AK^. Jest tak dlatego, że oddalaływanie 
wzbudzonych dipoli optycznych jest silne, natomiast dipoli magnetycz­
nych bardzo słabe (zagadnienie pola lokalnego).

4. .Podstawniki w cząsteczkach aromatycznych na ogół zmniejszają a- 
nizotropię optyczną. Efekt ten zależy od ich rodzaju i pozycji w pierś­
cieniu. '

Zupełnie nowy pogląd na zagadnienie pola lokalnego i efektywną po­
laryzowalność cząsteczek został zaprezentowany w kilku pracach przez 
Dunmura, Cumminsa i Munna [49,52,53J.

Przyjmiemy za Dunmurem, że każdej komórce elementarnej kryształu 
przy Z = 1 odpowiada moment dipolowy £, wzbudzony polem E padają­
cej fali elektromagnetycznej. Kryształ możemy więc traktować‘jako trój- 
periodyczny zbiór jednakowych dipoli, umieszczonych w węzłach sieci Bra- 
vais. Węzły te generuje zakończenie wektora

r(l) = 1^ + l2ą2 + 1^, (6.74)

gdzie l^lgl^ jest trójką liczb całkowitych, dodatnich, ujemnych lub 
zer, zaś a-|, a2, a^ są krawędziami komórki elementarnej (rys. 6.15). 
Jeśli liczba cząsteczek w komórce elementarnej Z / 1, to będziemy uwa­
żać, że kryształ można przedstawić za pomocą zbioru przenikających się 
podsieci, numerowanych przez k = 1,2,...,Z, przy czym każda podsieć za­
wiera wyłącznie cząsteczki translacyjnie równoważne według (6.74). Wek­
tor polaryzacji każdej podsieci jest równy

4 = {6*75)
gdzie E(r) jest lokalnym natężeniem pola elektrycznego w węźle sieci 
określonym przez r, zaś V jest objętością prymitywnej (tj. zawierają­
cej 1 cząsteczkę) komórki elementarnej. jest tensorem efektywnej po-
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Rys. 6.15. Orientacja wektorów w sieci Bravais

laryzowalności cząsteczki w podsieci k. Podobnie jak w poprzednich 
sformułowaniach związków między ni®, również.i w tym ujęciu nie wpro­
wadza się parametrów, charakteryzujących przestrzenną rozciągłość cząs­
teczki. Należy uważać, że dipole wzbudzone (6.47) mają rozmiary punkto­
we. Pole elektryczne F(r) kryształu spolaryzowanego otrzymuje się jako 
sumę natężenia pola zewnętrznego oraz pola, wynikającego z sumowania 
pól wazystki nh dipoli umieszczonych w węzłach sieci Bravaisa. Ewald [50] 
i Born podali sposób obliczenia występującej tu tzw. sumy siecio­
wej i pokazali, że aby obliczyć pole makroskopowe wewnątrz kryształu 
nie trzeba uciekać się do modelu pustej wnęki, wyciętej w krysztale. Re­
zultatem tych rozważań jest wyrażenie na F(r),.które w zapisie podanym 
przez Dunmura ma w układzie jednostek SI postać

= E + — Pks (6.76)
% k'
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gdzie Lkk' jest tzw. tensorem Lorentza, którego składowe są bezwymiaro­
we i mogą być obliczone z parametrów sieci prostej i odwrotnej określo­
nego kryształu, a więc zależą od translacyjnych własności samej sieci. 
Ponieważ 1^» muszą być niezmiennicze względem operacji symetrii gru­
py punktowej komórki elementarnej, zachodzą następujące związki:

Łkk' = b'k> ^ = Łk'k'- ^-77)

Ponadto z definicji składowych L, które można znaleźć w oryginalnej 
pracy Dunmura {49] wynika, że

Tr(Łkk-) = (6.77a)

W interpretacji fizycznego sensu £ najważniejsza jest definicja 
(6.77a). Wskazuje ona, że tensor Lorentza zastępuje w (6.76) stosowany 
dotąd czynnik 1/5. Możemy więc powiedzieć, że tensor Lorentza cha­
rakteryzuje w sposób anizotropowy udział podsieci k w ogólnej polary­
zacji kryształu. Ogólna polaryzacja P kryształu jest właśnie trzecim 
potrzebnym nam równaniem

£ = £ Efc = €o * 2’ {6«78)
k

przy czym
X = * - 1 (6-79)

oznacza tensor podatności dielektrycznej. Równania (6.75), (6.76) i (6. 
78) stanowią bazę potrzebną do opisu optycznych własności kryształu. Z 
tych trzech równań możemy dojść do podstawowego związku w następujący 
sposób.

Obliczmy E z (6.78) i podstawmy do (6.76). Otrzymujemy

a następnie

Jeśli teraz wprowadzimy oznaczenia

to otrzymamy
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4 = 2 gk' V* 
k'

Równanie (6.81) jest podstawową zależnością, wiążącą natężenie pola lo­
kalnego, F^, z własnościami makroskopowymi kryształu zawartymi w bezwy-t 
miarowym tensorze oraz z bezwymiarowym tensorem polaryzowalności
cząsteczki ik* Ok możemy nazwać zredukowanym tensorem polaryzowalnoś»

■ci cząsteczki. Równanie to jest ogólne, ponieważ droga jaka doń prowa­
dzi, nie wymaga żadnych innych założeń, prócz przybliżenia dipoli punk» 
towych. Przybliżenie takie oznacza nie tylko to, że pole lokalne ma na­
tężenie stałe na obszarze całej cząsteczki. Dalszą konsekwencją jest 
również fakt, że nie jesteśmy w stanie uwzględnić różnej orientacji 
cząsteczek translacyjnie nierównoważnych, ponieważ nie ma sensu mówić o 
orientacji dipola punktowego.

Rozwiązanie (6.81) ma prostą postać i jest jednoznaczne tylko dla 
przypadku kryształów z jedną cząsteczką w komórce elementarnej. Mamy wów­
czas k.= k' = 1. Opuszczając zatem wskaźniki, możemy napisać

₽ = I“1 = (^ + Ł)’1. (6.82)

Rozwiązanie komplikuje się jednak już dla Z = 2. Układ równań' linio­
wych (6.81) ma wtedy postać

—1 = =11 li —1 —12 —2 —2’
(6'.83)

—2 = =21 li -1 + =22 ®2 -2*

(6.8J) nie ma bezpośrednich rozwiązań algebraicznych, ponieważ pola lo­
kalne F^ i F2, w dwóch różnych punktach podsieci, nie są na ogół nieza­
leżne od siebie. Przyjmiemy wobec tego [52], że

= (6.84)

gdzie g jest pewnym bezwymiarowym tensorem. Korzystając ponadto z 
własności analogicznych do L (równości (6.77)), możemy napisać

F^ = Mzj zj P F^ + 2 - 2 —1 *
(6.85)

S = g12 §2 S

Oba równania (6.85) muszą być spełnione dl:: każdego F^. Jeżeli wyelimi­
nujemy g, to otrzymujemy związek między i

Bą = =11 + =12^-2 ~ =11 =12* (6.86)
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Zastosowanie (6.86) zostało zilustrowane w pracy [52] przykładami 
kilku kryształów molekularnych jednoskośnych, o grupie przestrzennej 
P21/a i dwiema cząsteczkami w komórce elementarnej. Ponieważ otoczenie 
każdej z dwóch cząsteczek jest identyczne, każdej z nich odpowiada taki 
sam tensor zredukowanej polaryzowalności g. Można zatem napisać dodat­
kowy związek, wynikający z modelu gazu zorientowanego

£k = fk I lk’ (6.87)

pozwalający w zasadzie na jednoznaczne rozwiązanie (6.86). a^. jest mn- 
cierzą orientacji cząsteczki k, odnoszoną najczęściej do osi głównych 
§. Po poustawieniu (6.87), równanie (6.86) nie da się rozwiązać algebra­
icznie i g trzeba poszukiwać metodą kolejnych przybliżeń. Wyniki, za­
czerpnięte z pracy [52j, przedstawione są dla czterech kryształów w tab. 
6.8 i 6.9. Jako komentarz do tych danych niech posłuży tab. 6.10. Zgod-

Tabela 6.8

Składowe tensorów Lorentza w układzie osi głównych 
tensora przenikalności dielektrycznej [52]

Kryształ L 
XX Lyy

L11
L zz L_ xz L_ 

yy

bi2
L„„ ZZ

Naftalen 0,201 0,626 0,173 0,012 0,741 0,327 -0,068 -0,457
Antracen 0,140 0,821 0,039 -0,042 0,846 0,354 -0,200 -0,756
Fenantren 0,156 0,820 0,024 0,014 1,190 0,372 -0,562 0,366
Dwufenyl 0,108 0,925 -0,033 0,077 0,989 0,366 -0,355 0,828

nie z oczekiwaniami w miarę wzrostu liczby pierścieni benzenowych w 
cząsteczce rośnie regularnie jej średnia polaryzowalność a także i ani- 
zotropia (6.72), niezależnie od tego, czy zajmujemy się cząsteczką swo­
bodną, czy też w krysztale. O ile jednak polaryzowalności obliczone za 
pośrednictwem refrakcji dają wyniki dość bliskie wartościom dla cząs­
teczki swobodnej, o tyle nowy formalizm daje wartości wyraźnie za duże. 
Fenantren zdaje się stanowić w tabeli przykład z wyjątkowo hużymo odstęp­
stwami, lecz cząsteczka tego związku ma moment dipolowy, wobec czego 
nie stosuje się do poczynionych założeń.

Interesujący komentarz do problemu polaryzowalności,a zwłaszcza do 
równania (6.86), podany został przez Lutego [54]. Jeśli nie poczynimy 
żadnych założeń odnośnie związku między g^ i g2, czyli zrezygnujemy z 
(6.87) i będziemy poszukiwać tzw. rozwiązań ogólnych (6.86) metodą ko­
lejnych przybliżeń, to okaże się, że jest ich nieskończenie wiele.Rzecz
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Tabela 6.9

Tensory efektywnej polaryzowalności cząsteczek 
w kryształach [52] , a «1O40 P-m2

Porównanie średnich polaryzowalności,<a> , i anizotropii 
optycznej cząsteczek A a obliczonych różnymi metodami 

a .10W F-m2

Cząsteczka
<a > = 1/5 Tr A a = 1/2 \aTi + aM) -ajj

Swobodna 
(tab.
6.4)

W krysztale Swobodna 
(tab.
6.4)

W krysztale
(tab.
6.4)

(tab.
6.9)

(tab.
6.4)

(tab.
6.9)

Naftalen 18,1 18,9 24, 7,8 10,8 21,4
Antracen 25,1 25,9 56,6 11,3 11,1 37,8
Fenantren 25,1 25,7 40,0 11,5 31,0 57,9
Dwufenyl 22,9 50,4 12,5 34,9

w tym, że rozwiązanie ogólne g2J zależy od g, które przyjmiemy ja­
ko przybliżenie zerowe. Można więc powiedzieć, że (6.86) nie wykazuje 
zbieżności rozwiązań dla różnych g wybranych jako przybliżenie zerowe, 
co stanowi, oczywiście, wadę całej procedury. Z logicznego punktu widze­
nia najbardziej uzasadniony wybór P odpowiada tensorowi dla cząstecz­
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ki swobodnej. Procedura iteracyjna przypominałaby wóczas proces, pole­
gający na adaptacji cząsteczki do sieci przestrzennej w czasie wzrostu 
kryształu. Wyniki takich obliczeń (metoda iteracyjna) por»«^? 3ą w tab.
6.11 dla kryształu jodu, sześciochlorobenzenu i naftalenu [54/. Należy

Tabela 6.11
Tensory efektywnej polaryzowalnośoi cząsteczek [54] 

» -ic/*0 F«m2

Kryształ Metoda 
iteracyjna

Koncepcja 
suboząsteczek

Cząsteczka 
swobodna

C>5 0 ° \ /8,7 0 ° \ /8,0 • \
Jod 
(CmCa) 14,6 -7,9 I ( 17,7 5,3 ) 8,6. j

30,4/ 16,o/ \ 17,y

Sześcio- /l7,2 19,3 -7,4\ /14,1 -1,7 -6,7\ /17,1 \
chloro- 
benzen 16,0 -41,5 I 42,1 5,5 I ( 28,2 I
(payc) 25,6/ 37,y \ 28,2/

/41,0 8,7 20,4\ /24,5 3,9 -0,2\ /25,9 \
Naftalen 
(P2ya) ■ I 21,1 7,7 ) 19,0 3,8 ) I 19,6 1

17,6/ 13,4 / \ 11,5/

przy tym zwrócić uwagę, że jedna z głównych polaryzowalności tensora 
sześciochlorobenzenu (po sprowadzeniu go do osi głównych) jest ujemna. 
Taki wy-Jk nie ma sensu fizycznego i może pochodzić stąd, że na wejściu 
iteracji skorzystano z tensora obliczonego metodami teoretycznymi, a 
nie z danych doświadczalnych. Mimo wszystko taki wynik wskazuje również 
na fizyczne niedostatki teorii.

Chen, Hanson i Fox [55] oraz Luty [54] zwrócili uwagę, że niejedno­
znaczność rozwiązań (6.86) tkwi w samej metodzie, niezależnia od wyko­
rzystania równania (6.87) dla struktur o Z = 2. Przypatrzmy; się bli­
żej konstrukcji równania (6.7S). Dla Z = 2 ma ono postać

+ E2 = % £
przy czym 1/ i P2 oznaczają wektory polaryzacji obu prymitywnych pod­
sieci. Każdy z nich zależy od a tensor ten w układzie abcx ma 
sześć składowych niezależnych. Tymczasem makroskopowy tensor & ma tyl­
ko cztery składowe niezależne w tym układzie współrzędnych. Symetrię ta­
ką samą jak £ ma suma lecz każdy z tensorów £ ma symetrię
niższą. Sytuacja algebraiczna jest więc taka, że z czterech informacji 
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makroskopowych próbujemy uzyskać sześć informacji dla cząsteczki,, czego 
- oczywiście - nie da się zrobić bez przyjęcia dodatkowych założeń. Mo­
żemy krótko powiedzieć, że zbyt wysoka symetria kryształu stoi na prze­
szkodzie do poznania wszystkich potrzebnych nam składowych 3. Zadanie 
to dało by się rozwiązać, gdybyśmy mogli napisać jeszcze drugie równa­
nie, na przykład

Ei - £2 = ?

Inną próbę rozwiązania problemu poprzez obniżenie symetrii M w 
(6.86) podjął Luty w pracy [54]. Przyjmijmy, że każdą cząsteczkę możemy 
przedstawić jako zbiór dwu lub więcej części, tzw. subcząsteczek, roz­
kładając ją, na przykład, na rdzeń i podstawniki, a w najprostszym przy­
padku przepoławiając ją (np. cząsteczka jodu, naftalenu). Do każdej z 
"i" sub-cząsteczek możemy zastosować przybliżenie dipola punktowego,ten­
sor polaryzowalności i-tej sub-cząsteczki, wchodzącej w skład k-tej 
cząsteczki można zatem przedstawić,w postaci

Tensory M(g ) określone są równaniem (6.80), przy czym również tenso­
ry Lorentza muszą być obliczone osobno, dla każdej sub-cząsteczki. Obec­
nie symetria tensora Lorentza, a zatem również M jest mn-iejszn, ni ż w 
(6.80). Polaryzowalność całej cząsteczki jest sumą tensorów sub-cząste- 
czek

lk=2’&(i)- (6.89)
i

Zauważmy, że w tym przybliżeniu cząsteczkę traktujemy jako zbiór anizo­
tropowych sub-cząsteczek, a przez to uwzględniamy jej kształt. Lokalne 
pole elektryczne jest sumą pól rozciągających się na sub-cząsteczkach i 
jest wyśredniowane na obszar, zajmowany przez całą cząsteczkę.

Ilustracją tego przybliżenia są wyniki, przytoczone w tab. 6,11, 
kol. 3. Zupełnie niezłe przybliżenie do wielkości znanych dla cząstecz­
ki swobodnej wskazuje, że jest to chyba najlepsza z dotychczas zapropo­
nowanych koncepcji poznania własności cząsteczki w krysztale. Koncepcję 
tę możemy uważać za rozszerzenie zasady addytywności zaproponowanej na 
terenie magnetyzmu przez Van den Bossche'a i Sobry'ego (por. rozdz. 5) 
na przypadek, gdy wpływu pola lokalnego nie można pominąć.

Mimo, iż omówiony wyżej sposób opisu własności optycznych poprzez 
obliczenie lokalnych pól elektrycznych nie prowadzi do jednoznacznych 
rozwiązań na polaryzowalność cząsteczki w krysztale z przytoczonych po­
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wodów, uzyskane bardziej precyzyjne wnioski o wielkości pól lokalnych 
mają duże znaczenie dla lepszego zrozumienia własności kryształów mole­
kularnych. Aby to dostrzec, powróćmy jeszcze do podstawowych równań 
(6.75), (6.76) i (6.78). Podstawienie (6.75) do (6.76), jeśli skorzys­
ta sie dodatkowo z definicji (6.80), daje

4 = £ + fekk' lk' 4'- (6.90)
*

Uzyskane obecnie wyrażenie jest związkiem między lokalnym polem elek­
trycznym, Fk, ’’widzianym" aktualnie przez węzeł k, a zewnętrznym po­
lem elektrycznym. (6.90) możemy zapisać krócej w postaci

(6.91)

przy czym tensor pola lokalnego,-^, zależny jest od tensora Lorentza i 
polaryzowalności cząsteczki

=k = 2 4k' = S “ = i^kk'» (6.92)
k' P

gdzie £ i § są supermacierzami; ich elementy równe są odpowiednio ma­
cierzom ' i gk 6 .

Równanie

4 = (6.93)
k

można porównać z relacją, znaną z mikroskopowej teorii dielektrycznej, 

F(r) = f ^(r, P) Ę(P)d2 P, (6.94)

3
przy czym d<r = dx»dydz oznacza element objętości, a całkowanie roz­
ciąga się na całą przestrzeń. Relacja ta definiuje odwrotność nielokal­
nej funkcji dielektrycznej. Termin "nielokalna" odzwierciedla tu fakt.

—*1 1że e jest funkcją położenia zarówno określonego punktu r, jak i pun­
któw rj leżących w jego otoczeniu. Zatem e^Cr, r') jakby "czuje" rozk­
ład ładunków w otoczeniu r. Pamiętając o przyjętym przez nas przybliżę-» 
niu cząsteczki do dipola punktowego, co odpowiada przejściu z ciągłej 
reprezentacji r w (6.94) do reprezentacji wskaźnikowej w (6.95) widać, 
że macierze d^ mają sens odwrotności funkcji dielektrycznej. Stąd mamy 
związek

4 ikk' (6.95)
P

gdzie
e=ip'= (6.96) 



252

-1aielokąlny charakter funkcji dielektrycznej (e^. / 0 dla k / k') jest 
istotną cechą izolatorów, odróżniającą je od ciał przewodzących. Widać, 
Źe w ramach naszego prostego modelu kryształu molekularnego wynika ona 

- że sprzężenia dipol-dipol między podsieciami molekularnymi. Najważniej­
sze dalsze konsekwencje, jakie wynikają z tego sprzężenia, są następu­
jące:

(i) pojawienie się kolektywnego charakteru wzbudzeń elementarnych, 
tzw. ekscytonów. Inaczej mówiąc, ekscyton można traktować jako kwant po- 
la lokalnego w stanie wzbudzonym kryształu,

(ii) pole lokalne w określonym węźle k sieci jest wynikiem ekra­
nowania tego punktu przez otoczenie od pola zewnętrznego (widać to z 
(6.95)),

(iii) podatność dielektryczna kryształu x uie jest równa sumie 
polaryzowalności cząsteczek. Ścisły związek między tymi wielkościami 
jest następujący:

* = 2 ^2^ = 2 (6-97)
k . ' k' k,k''

W dużym uproszczeniu można powiedzieć, że nielokalna ftankr.ja dielek­
tryczna koreluje, dzięki sprzężeniu dipolowemu, odpowiedź cząsteczki k 
z odpowiedzią cząsteczki k'. Z faktu, że korelacja ta daje wynik nieze- 
rowy dla k k' wynika, że wszystkie cząsteczki uczestniczą w tych sa­
mych, zdelokalizowanych wzbudzeniach elementarnych.

Pełniejszą dyskusję roli funkcji dielektrycznej w dziedzinie krysz­
tałów molekularnych znaleźć można w pracach [56,57] .
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7. ABSORPCJA KRYSZTAŁÓW W PODCZERWIENI

Współczesna spektroskopia jest jedną z najsilniej rozwiniętych me­
tod eksperymentalnych, obejmującą.zarówno wiele różnorodnych problemów 
naukowych jak i zastosowań praktycznych. Obszar zastosowań jest bardzo 
rozległy nawet wówczas, gdy termin "spektroskopia"zzawęzimy do tak zwa­
nej spektroskopii optycznej, obejmującej zjawiska występujące w zakre­
sie długości fal promieniowania elektromagnetycznego od 200 nm do 1q6 
nm, tj. w zakresie liczb falowych od 50 000 cm“1 do 10 cm-1. Tymczasem 
do spektroskopii zalicza się dziś również obserwacje w zakresie mikro­
falowym, a więc i technikę magnetycznego rezonansu jądrowego i elektro­
nowego rezonansu paramagnetycznego, a ostatnio również spektroskopię 
MBssbauera czy też spektroskopię rentgenowską. Znakomite przedstawienie 
zastosowań szerokiego wachlarza metod spektroskopowych do badania ukła­
dów molekularnych można znaleźć w monografii [8]. Prócz zagadni nń kia- 
sycznej spektroskopii molekularnej opisano tam również zastosowania 
spektroskopii mttssbauerowskiej do określenia charakteru wiązań chemicz­
nych, a także spektroskopię korelacyjną, zajmującą się analizą kształtu 
pasm absorpcyjnych.

Na początek spróbujmy odpowiedzieć na pytanie na czym polega spek­
troskopia i co nam ta metoda daje? Najogólniej można powiedzieć,że spek­
troskopia klasyczna polega na badaniu wiązki promieniowania, najczęś­
ciej monochromatycznego, która przeszła przez warstwę materiału chemicz­
nie i fizycznie jednorodnego. Interesują nas przy tym takie cechy tej 
wiązki, jak jej natężenie 1 stan polaryzacji, a niekiedy również skład 
spektralny. Informacje, jakie z tych pomiarów potrafimy odczytać, doty­
czą przede wszystkim położenia na skali energii stanów wzbudzonych poje­
dynczych molekuł lub atomów, czy też uporządkowanego zbioru tych elemen­
tów jakim.jest kryształ. Dalej, możemy określić prawdopodobieństwo 
przejścia między stanem wzbudzonym i podstawowym, kierunek momentu 
przejścia absorpcyjnego w cząsteczce lub w krysztale. Badania te infor­
mują nas również o wielkości sił działających między określoną parą ato­
mów przy rozciąganiu wiązania chemicznego między nimi, a także o naturze 
i wielkości oddziaływań międzycząsteczkowych w fazie skondensowanej. Ba­
dania półprzewodników metodami spektroskopii służą, na przykład, do o­
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kreślenia dyskretnych poziomów energetycznych, pojawiających się w wyni­
ku wprowadzenia atomów domieszki do sieci macierzystej pierwiastka. Za­
stosowania analityczne metod spektroskopowych należy zaliczyć doicelów 
praktycznych; należą do nich jakościowe i ilościowe określenia składu 
mieszaniny, w tym również ważny problem określenia stopnia czystości 
substancji.

W niniejszym rozdziale będziemy się zajmować spektroskopią tylko w 
takim aspekcie, w jakim metoda ta jest użytecznym narzędziem hadanja 
struktury materii - w mniejszym stopniu samej cząsteczki, niż kryształu 
molekularnego. Będziemy rozważać tylko problemy związane z drganiami we­
wnętrznymi cząsteczki. Obszerne zestawienie literatury tego przedmiotu 
z lat 1965-1971 zawiera artykuł przeglądowy M.Szostak £16] . Poza tym po­
łożymy akcent na przedstawienie problemów bardziej charakterystycznych 
dla bliskiej podczerwieni, obejmującej występowanie tak zwanych nadto- 
nów i częstości kombinacyjnych. Powodów takiego wyboru jest kilka.

Przede wszystkim trzeba zauważyć, że ten zakres spektroskopii jest 
znakomicie przystosowany do badania ciała stałego. Absorpcja w zakresie 
nadtonów i częstości kombinacyjnych jest bowiem 100 do 1000 razy słab­
sza od absorpcji w zakresie przejść podstawowych, wobec czego bez trud­
ności można badać ęłytki o grubości 0,2 do 2 mm, łatwiejsze do uzyska­
nia z hodowanych różnymi metodami monokryształów. Uzyskane w ten sposób 
rezultaty są zwykle pod względem fotometrycznym o wiele dokładniejsi, 
niż w innych zakresach podczerwieni. Dalszą okolicznością sprzyjającą 
jest podjęcie fabrycznej budowy spektrofotometrów na zakres bliskiej 
podczerwieni (NIR, Carl Zeiss, Jena). Nie bez znaczenia jest również 
fakt, że obszar częstości podstawowych doczekał się licznych i znakomi­
tych opracowań monograficznych, z których wiele można znaleźć w spisie 
literatury podanym na końcu tego rozdziału. Znacznie słabiej natomiast 
reprezentowany jest w piśmiennictwie, zwłaszcza polskim, zakres blis­
kiej podczerwieni £16]. Problemy eksperymentalne, związane z przygotowa­
niem próbek, cechowaniem spektrofotometru pod względem skali fotome- 
trycznej lub długości fal, etc., są natomiast w spektroskopii wspólne. 
Wobec licznych opracowań (zob. np. [9]) nie będą tu poruszane.

7.1. Absorpcja w podczerwieni cząsteczki swobodnej'

Widmo absorpcyjne cząsteczki swobodnej, związane z przejściami mię­
dzy stanami rotacyjnymi i oscylacyjnymi, należącymi do podstawowego sta­
nu elektronowego, występuje w zakresie od 10 000 cm“^ do 100 cm“'1. Rów­
nanie SchrMingera, opisujące względny ruch atomów cząsteczki zależy je­
dynie od współrzędnych jąder atomów, natomiast współrzędne położenia 
elektronów występują w wyrażeniu na energię potencjalną. Uważamy zwykle, 
że konfiguracja elektronów w przejściu oscylacyjnym jest ustalona i od­
powiada stanowi podstawowemu.

Widmo absorpcyjne składa się z wielu mniej lub więcej rozdzielo­
nych pasm absorpcyjnych, określanych za pomocą dwóch wielkości

(i) częstości maksimum pasma, zdeterminowanej przez mechanikę ru­
chu atomów cząsteczki, zwłaszcza przez masy poruszających się atomów i 
współczynniki liniowych sił sprężystych działających między nimi,

(ii) natężenia pasma, zdeterminowanego przez elektryczne własności 
cząsteczki, zwłaszcza przez moment dipolowy, a niekiedy przez wielkość 
oddziaływania momentu elektrycznego i magnetycznego.
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Do opisu częstości drgań cząsteczki dwuatomowej można przyjąć w 
najprostszym przypadku model oscylatora harmonicznego. W modelu tym 
przyjmuje się, że na atom, wychylony z położenia równowagi o odcinek x 
działa liniowa siła sprężysta

E = - k x, (7.1)

gdzie k jest współczynnikiem siły sprężystej. Energia potencjalna 
przesuniętego atomu jest proporcjonalna do kwadratu przesunięcia

V = | k X2. (7.2)

Model ten opisuje tak zwane drgania podstawowe, zachodzące między sta­
nem, podstawowym a stanem wzbudzonym, przy czym energie obu stanów róż­
nią się o 1 kwant, równy energii drgań. Nie obejmuje jednak innych, ob­
serwowanych w doświadczeniu przejść spektralnych, dla których zmiany 
liczby kwantowej są większe od jedności (nadtony), lub w których wzbu­
dza się jednocześnie w cząsteczce więcej niż jedno drganie podstawowe 
(częstości kombinacyjne). Dla wyjaśnienia takich przejść trzeba przyjąć 
że energia potencjalna jest bardziej złożoną funkcją współrzędnych niż 
(7.2). Jeżeli rozwiniemy V w szereg względem małych przesunięć, 
atomów (k = 1,2,...), to możemy napisać

W rozwinięciu (7.3) możemy pominąć pierwszy człon, co odpowiada odpo­
wiedniemu położeniu zera na skali energii. Człon drugi obligatoryjnie 
równy jest zeru, ponieważ w stanie równowagi siła wypadkowa działająca 
na atomy jest równa zeru. Trzeci człop jest uogólnieniem (7.2), a czwar­
ty i następne opisują odstępstwo krzywej energii potencjalnej oscylato­
ra rzeczywistego od kształtu parabolicznego. Człony te są odpowiedzial­
ne za występowanie tak zwanej anharmoniczności mechanicznej, prowadzą­
cej do pojawienia się nadtonów i częstości kombinacyjnych. Bardziej zło­
żoną zależność (7.3) energii potencjalnej od współrzędnych możemy inter­
pretować również w ten sposób, że siły (7.1) nie mają charakteru ściśle 
liniowego.

Istnieje jeszcze drugi powód, dla którego cząsteczka rzeczywista 
zachowuje się odmiennie od prostego modelu oscylatora harmonicznego.Jak 
wiadomo, zupełnie ogólnym warunkiem dopuszczającym pojawienie się ab-
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sorpcyjnego przejścia dipolowego między stanami opisywanymi funkcjami 
falowymi . i ó-, jest nieznikanie całki

1 J

P. . = f dżtdydz (7.4)

przynajmniej dla jednej składowej M (6]. Jeśli ograniczymy się do 
przejść absorpcyjnych, to M jest operatorem momentu dipolowego cząs­
teczki. We współrzędnych, kartezjańskich

£ = 2 ek £k’ (7*5)
k

przy czym ek są ładunkami wszystkich naładowanych cząstek, z których 
jest zbudowana molekuła, a więc elektronów i jąder, zaś są wekto­
rami określającymi ich położenia. W przejściu oscylacyjnym M ulega 
zmianie, to znaczy średni w czasie moment dipolowy w stanie wzbudzonym 
jest inny, niż w stanie podstawowym. Jeśli wychylenia jąder z położenia 
równowagi są niewielkie, to M można rozwinąć w szereg Taylora wzglę­
dem współrzędnych. Rozwinięcia takie dokonuje się najczęściej względem 
tzw. współrzędnych normalnych 5, dla których energia potencjalna (7.2) 
jest formą kwadratową

Podstawienie (7.6) do wyrażenia (7.4), określającego prawdopodobieństwo 
przejścia między stanami i i łj, prowadzi do sumy pewnej liczby wyra­
zów, zależnej od tego, na którym miejscu zakończymy szereg (7.6).Pierw­
szy wyraz tej sumy, zawierający decyduje o natężeniu przejścia 
czysto rotacyjnego, natomiast dla przejść oscylacyjnych równy jest ze­
ru wobec ortogonalności funkcji falowych oscylatora harmonicznego. Dru­
gi wyraz rozwinięcia podstawiony do (7.4) określa natężenie przejścia 
oscylacyjnego w przybliżeniu oscylatora harmonicznego. Widzimy, że wa­
runkiem niezerowej absorpcji P. . O jest zmiana momentu dipolowego 
przynajmniej wzdłuż jednej ze współrzędnych normalnych. Są to przejścia 
tzw. podstawowe, występujące w zakresie od100 do 3500 cm-^. Człony 
trzeci i dalsze, świadczące o "elektrycznej" anharmoniczności oscylato­
ra, prowadzą do powstania nadtonów i częstości kombinacyjnych, i to w 
sposób niezależny od występowania anharmoniczności mechanicznej.
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Określenie natężenia przejścia absorpcyjnego według (7.4) wymaga 
znajomości funkcji falowych stanu podstawowego i stanów wzbudzonych, a 
ponadto takich trudno dostępnych szczegółów budowy cząsteczki, jak 
kształt krzywej energii potencjalnej wzdłuż każdej współrzędnej normal­
nej, potrzebnych do określenia współczynników rozwinięcia (7.6). W re­
zultacie procedura rachunkowa zmierzająca do obliczenia natężenia przej­
ścia jest niezwykle skomplikowana nawet dla cząsteczki swobodnej i może 
być zastosowana tylko w najprostszych przypadkach.

Istnieje o wiele prostszy sposób skorzystania z (7.4), polegający 
na zastosowaniu symetrii. Trzeba jednak od razu powiedzieć, że orzecze­
nia wynikające z zastosowania zasad symetrii upraszczają wynik, jaki mo­
żemy uzyskać na ^o wartości O lub 1 - ni» możemy otrzymać wartoś­
ci pośrednie^-. Hie wdając się tu w szczegóły zastosowania teorii grup w 
spektroskopii cząsteczki, które Czytelnik może znaleźć w licznych, po­
święconych tej sprawie monografiach (zob. p-5, 7J), zagadnienie można 
przedstawić następująco.

Przypuśćmy, żs interesuje nas cząsteczka o określonej konfiguracji 
jąder w stenie równowagi mechanicznej, tzn. gdy nie wykonuje żadnych 
drgań i gdy nie działają na nią żadne siły. Konfiguracja ta należy do 
określonej grupy punktowej, składającej się z operacji symetrii R^.Rg, 
..., takich, że konfiguracja równowagowa cząsteczki jest ich nie­
zmiennikiem. Również kwadraty modułów funkcji falowych, opisujących sua- 
ny energetyczne tej cząsteczki, muszą być niezmiennicze względem opera­
cji symetrii tej gńupy, ponieważ przedstawiają prawdopodobieństwa znale­
zienia elektronów w określonych elementach objętości w przestrzeni. W 
takim razie dla każdej funkcji falowej .4^, będącej rozwiązaniem równa­
nia SchrBdingera dla tej cząsteczki, winien być spełniony warunek

Rk^i *i) = ck(*i (7.7)

przy czym - jeśli jest unormowana i opisuje niezdegenerowany stan 
■cząsteczki - musi być

ck= 1. , (7.8)

Zatem w takim przypadku

(7.9)

dla wszystkich operacji grupy (k = 1,2,...h).
Wnioskujemy z tego wyniku, że dsiałanie każdej operacji symetrii 

na funkcję falową, opisującą niezdegene; cwany stan cząsteczki, można 
przedstawić liczbą +1 lub -1. Dla funkcji stanu zdegenerówanego wyni­
kiem działania R^. może być 2 (stan dwukrotnie zdegenerowany) lub 3
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(degeneracja trzykrotna), a nawet liczba urojona. Zbiór tych liczb, zwa­
nych charakterami} otrzymany kolejno dla wszystkich operacji R^ gruuy, 
nosi nazwę reprezentacji stanu« W zbiorze operacji symetrii, stanowią- 
cym grupę, znajduje się zawsze operacja tożsamościowa, oznaczana przez 
Ę. Jeśli wynikiem działania B na funkcję falową jest charakter +1, to 
odpowiednią reprezentację nazywa się jednowymiarową. Jeśli wynikiem 
jest 2, to reprezentacja nazywana jest dwuwymiarową. Jedna z reprezenta­
cji składa się w każdym przypadku z samych liczb +1 i nosi nazwę repre­
zentacji pełnosymetrycznej. Również wektorom i przeaunięciom, a także 
obrotom, odpowiadają odpowiednie reprezentacje. Jeśli-.dla przykładu ja-1 
ko operacje symetrii wybierzemy sobie trzy płaszczymy odbicia, prosto­
padłe odpowiednio do osi x,y,z, to zachowanie się, na przykład, skła-i 
dowej X wektora przesunięcia względem tych operacji możemy opisaó cha­
rakterami odpowiednio -1, +1, +1; zbiór tych liczb stanowi fragnent jed­
nej z reprezentacji grupy punktowej lub C2łl. Postępując według tej 
umowy można wszystkim trzem czynnikom w (7.4) przypisać reprezentacje. 
Warunek nieznikania całki'można wówczas przedstawić następująco:

*1^ ^k* ^j^ = 1 (7.10)|

dla każdego k = 1,2,,.,,h. K^R^) jest charakterem, stanowiącym licz-; 
bowy wynik działania operacji R^ na funkcję falową <|’i. Jedność z prał- 
wej strony dla każdego mk odpowiada zbiorowi charakterów reprezentacji 
pełnosymetrycznej, ponieważ prawdopodobieństwo przejścia musi być nie­
zmiennikiem operacji symetrii grupy. (7.4) zastąpiliśmy zatem wyraże­
niem (7.10), noszącym nazwę pierwotnej reguły wyboru. Określa ona stany 
do jakich możliwe jest przejście ze stanu podstawowego, na zasadzie sy­
metrii, a więc prowadzi do wyniku "zero-jedynkowego”. Wobec tego nie da- 
je żadnych informacji odnośnie natężenia takiego przejścia. Ponieważ 
stan podstawowy jest z reguły pełnosymetryczny, (7.10) prowadzi do wnios­
ku, że przejścia mogą następować do stanów, którym.odpowiada reprezenta­
cja taka sama, jak jednej ze składowych momentu dipolowego M.

Końcowe wyniki takich rozważań przedstawia się najczęściej w posta­
ci tabelarycznej. Niech jako przykład posłuży tab. 7.1, w której są 
przedstawione w sposób skrócony zbiory charakterów pogrupowane w repre­
zentacje nieprzywiedlne (nieredukowalne), tj. nie dające się przedsta­
wić jako bardziej elementarne, dla grupy punktowej D?h. Reprezentacje 
te symbolizują dopuszczalne typy symetrii drgań cząsteczek o symetrii 
D2h’ 113 P^y^ad benzenu podstawionego w położeniach para dwoma jednako­
wymi atomami chlorowca p-CgH^Zg. Zgodnie z rzędem grupy h = 8, możemy 
mieć osiem różnych reprezentacji A , A.,, ..., B, , według podanych w 
tabeli i ogólnie przyjętych oznaczeń. W tabeli podane są jedynie charak-
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Tabela 7.'1

Typy symetrii i- liczba drgań aktywnych w widmie podczerwieni 
oraz w widmie Hamana cząsteczki p-CgH^Zg

Typ 
symetrii

Główne 
elem. symetrii

Typ 
ruchu

Liczba drgań 
normalnych

Aktywność 
w widmie 
IR HamanaC2z C2x Pz

Ag 1 -1 1 — 6 na p
Au 1 -1 - , 2 / na -►na
B1u 1 -1 -1 Tz 3 $z na

•B2u -1 1 1 Tx 5 -X na
®3u -1 -1 1 Ty 5 % na
B1g -1 1 Ez 5 na. dp
B2g -1 -1 Ex 1 na dp
B3g -1 -1 -1 R„ 3 na dp

Objaśnienia:

A - drganie symetryczne względem głównych osi symetrii,
B - drganie antysymetryc.zne względem głównych osi symetrii, 
g - drganie symetryczne względem centrum symetrii, 
u - drganie antysymetryczne względem centrum symetrii, 
T - translacja wszystkich atomów cząsteczki w określonym kierunku, 
R - rotacja wszystkich atomów cząsteczki wokół określonej osi, 
p - drganie spolaryzowane, 
dp -drganie niespolaryzowane, 
na - drganie nieaktywne, 
e - wektor jednostkowy w kierunku momentu przejścia.

tery głównych elementów symetrii (generatorów). Można je uzupełnić bez 
■trudu do pełnego zbioru charakterów każdej reprezentacji. W tym celu 
trzeba uzupełnić wpierw zbiór operacji symetrii tej grupy

°2z’ C2x» Pz* C2y’ Px’ Py’ Ci‘ E*
E jest tu symbolem operacji tożsamością której odpowiada macierz jedno­
stkowa. Kolejność występowania operacji jest w zasadzie dowolna, ale 
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raz ustalona musi być dalej przestrzegana. Korzystając z zasad mnożenia 
operacji widzimy, na przykład, że = x(02z^'^C2x^ ’ lub x(C2xl '
, x(p ) = x(0^, itd. Wobec tego pełna reprezentacja odpowiadająca na 
przykład typowi drgania B2u, słbda się z charakterów

P(B2u) = (-4, 4, 1, -1, -1, 4, -4, 1).

Zbiorowi n atomów połączonych w cząsteczkę również odpowiada 
zbiór charakterów tworzący reprezentację. W odróżnieniu od reprezenta- 
cji nieprzywiedlnych, podanych w tab. 7.4, jest to reprezentacja rzędu 
Jn, a więc przywiedlna (redukowalna). Ścisłe zasady tworzenia reprezen­
tacji cząsteczek rffi można znaleźć w przytoczonej literaturze ([4-5]), a 
pokrótce przedstawiają' się one następująco.

Każdemu z atomów cząsteczki odpowiadają 3 stopnie swobody, zatem 
cząsteczka jako zbiór n atomów ma 3n stopni swobody ruchu. Z tej 
liczby 5 są translacyjnymi stopniami swobody cząsteczki jako całości, a 
3 (cząsteczka nie!ininwa) lub 2 (cząsteczka liniowa) odpowiadają obro­
tom cząsteczki jako całości; częstość takich ruchów wynosi zero. W re­
zultacie dla cząsteczki nieliniowej możemy mieć Jn - 6, a dla liniowej 
Jn - 5 wewnętrznych stopni swobody, którym odpowiadają drgania normal­
ne atomów o określonych częstościach. Jak konstruuje się charaktery 
wszystkich 3n rodzajów ruchu? Po. pierwsze, charakterem dla określone­
go elementu symetrii jest wartość śladu macierzy transformacji, odpowia­
dającej temu elementowi symetrii. A więc dla płaszczyzny symetrii (nie­
zależnie od jej orientacji) będzie to liczba +4, dla dwukrotnej osi sy­
metrii —4, a dla centrum symetrii -3. Po wtóre, udział w charakterach 
reprezentacji przywiedlnej mają tylko te atomy, które leżą na odpowied­
nich elementach symetrii, bowiem elementy macierzy transformacji dla in­
nych atomów nie leżą na przekątnej macierzy, a więc nie wnoszą udziału 
do charakteru. Patrząc na cząsteczkę p-CgH^X2 możemy łatwo dostrzec, 
że w płaszczyźnie symetrii Py leżą cztery atomy, zatem dla Py charak­
ter wyniesie X(Py) = 4. Na osi C2y oraz w centrum symetrii CL nie 
ma natomiast żadnego atomu, zatem ich charakterami będą X(C2y) = X(C^)= 
= O. Na każdy atom cząsteczki przypada dla operacji tożsamości E cha­
rakter 3, zatem łącznie będziemy mieć xi®) = J6. Pełny zbiór charakte­
rów reprezentacji P przedstawia się następująco: m ,

rm = (0, -4, 42, 0, 0, 4, 0, 36).
Udział jednego atomu w charakterach reprezentacji przywiedlnej dla ope­
racji symetrii, występujących w spektroskopii molekularnej, zestawiony 
jest w tab. 7.2. Mońemy teraz zastanowić się nad sposobem rozbicia Pm 
na reprezentacje nieprzywiedlne. Zadanie to może być rozwiązane ca pomo­
cą jednego z fundamentalnych twierdzeń teorii grup: liczba r-f^) re­
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prezentacji nieredukowalnych Rk, jaka zawiera się w danej reprezenta­
cji redukowalnej rm, wynosi

h
xjlV> k=1,2,...,h, (7.11)

3=1
Tabela 7.2

Udział w charakterach reprezentacji przywiedlnej cząsteczki 
jednego atomu, którego położenie jest niezmiennicze względem 

operacji symetrii R t2]

Operacje "właściwe" Operacje
R

"niewłaściwe" 

XRR *r
E = (C^ )k 3
(Cg)1 -1 a =• (Sd )1 1
(c5)1, (c3)2 0 i = (S2 )1 -3
(Cą)1, (C4)3 1 (s3)1, (s3)2 -2
(Ce)1, (c6)5 2 (Są)1, (Są)3 -1

(s€)\ (s6)5 0

Ogólnie

(Cn)k 1+2 cos (2Wk/n) (Sn)k -1+2 cos (2«k/n)

przy czym h jest rzędem grupy. Jeśli reprezentacje potraktujemy jako 
wektory kolumnowe h wymiarowe, to (7,11) nie jest niczym innym, jak 
1/h częścią wartości- iloczynu skalarnego wektora U i wektora r Q

•W = ■ (7.12)

(7.1 1) i (7.12) napisaliśmy w pewnym uproszczeniu: zakładamy, że wszyst­
kie charaktery są liczbami rzeczywistymi.

Korzystając z (7.12) spróbujmy obliczyć, ile możemy mieć sposobów 
ruchu o symetrii, na przykład, Bgu w 12-atomowej cząsteczce ó symetrii 
Dgj,. Otrzymujemy

n(B2u) =| (O - 4 + 12 + O + O + 4 + 0 + J6) = 6.

Ostatnim wreszcie zadaniem jest uzyskanie odpowiedzi na pytanie, 
do jakich reprezentacji należą ruchy, o częstości zerowej. Składowe wek­
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tora momentu przejścia M transformują się tak, jak współrzędne >x,y,z. 
Po dokonaniu niewielkich obliczeń okaże się, na przykład, że '

r(x) = (-I 1 1 -1 -1 1-1 1) = T(B2u).
Następnie, postępując w ten sposób, dochodzimy do wniosku, że r(y^ = 
= ir(B5u) oraz P(z) = r(B1u). Wyniki te oznaczają jednocześnie, że je­
dynie dozwolone przejścia absorpcyjne cząsteczki o symetrii D2h muszą 
należeć d.o jednej z tych trzech reprezentacji: B2u (kierunek momentu 
przejścia wzdłuż osi x cząsteczki), 35uHy 1 B1uH z (tab. 7.1).

Można pokazać ([2J), że reprezentacje odpowiadające ruchom rotacyj­
nym tworzy się tak, jak dla iloczynów współrzędnych. Dla obrotu,na przy­
kład, wokół osi y otrzymamy

*k<V = Xk(z) Xk(x) = Xk(BJg)

dla każdego k = 1,2,...,h.
Po odjęciu sześciu reprezentacji odpowiadających ruchom o częstoś­

ci zero znajdujemy w końcu, że liczba możliwych w podczerwieni przejść 
absorpcyjnych wynosi 15, w tym 5 częstości należy do reprezentacji X 
B2ullx’ 5 j®315 typu B5uH y oraz 5 B1u H z

r^ = -r(B^

Warto przypomnieć w tym miejscu, że zastosowana reguła wyboru, o- 
parta na pojęciu symetrii, pozwala wprawdzie przewidzieć liczbę drgań 
normalnych każdej cząsteczki i kierunki momentów przejścia w umownym u- 
kładzie współrzędnych (współrzędne symetrii), lecz nic nie mówi o ich 
częstościach i natężeniu, Może się więc okazać, że nie każde z dozwolo­
nych drgań normalnych uda nam się odszukać w widmie absorpcyjnym cząs­
teczki.

Nie będziemy się tu zajmowali szczegółowo problemem częstości oraz 
formy ruchu, pou którą rozumiemy zbiór przesunięć poszczególnych atomów 
należący do określonej współrzędnej normalnej i opisywany ogólnie przez 
określony typ symetrii. Zagadnienie to należy do dynamiki cząsteczki, a 
jego przedstawienie można znaleźć w wielu monografiach poświęconych 
spektroskopii cząsteczki swobodnej. Godna polecenia jest monografia Wil­
sona, L^ciusa i Crossa [2], a także monografia Willisa i Pryora p5] , w 
której w sposób nowoczesny przedstawiono dynamikę ruchu w zwartym zapi­
sie. Równania ruchów poszczególnych atomów prowadzą do typowego zagad­
nienia własnego w tym sensie, że jego rozwiązanie pozwala osiągnąć dwa 
cele jednocześnie. Pierwszym z nich jest wyznaczenie częstości własnych 
zbioru atomów, jakim jest cząsteczką, drugim - wyznaczenie odpowiadają­
cych im wektorów własnych, zawierających informację o kierunkach przesu- 

-'nięó atomów, uczestniczących w danym drganiu normalnym. Przykłady ta-
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Tabela 7.3
Typy drgań normalnych. (1/2 możliwych) pochodnych benzenu, 

para-CgH4-X2, według 07]

A. Drgania walencyjne

B. Drgania deformacyjne płaskie

!1g As B1g B3u B2u %
0 00 ey

C. Drgania deformacyjne niepłaskie

ey

kich rozwiązań dla cząsteczki o symetrii D^, zaczerpnięte z pracy 07] 
podane są w tab. 7«3» Realność uzyskanego zbioru częstości - w rozumie­
niu jego zgodności z doświadczeniem - zależy w pierwszym rzędzie od zna­
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jomości wielkości zmiany sił międzyatomowych, przypadających na jednost­
kę przesunięcia liniowego lub na jednostkę zmiany kąta między wiązania­
mi chemicznymi. Współczynniki te mają sens fizyczny analogiczny do 
współczynnika liniowej siły sprężystej w (7.1) i decydują również o 
zmianie momentu dipolowego w czasie przejścia optycznego (7.6) ,a więc 
mają zasadnicze znaczenie dla natężenia tego przejścia.

Jeśli spojrzeć na którykolwiek z "obrazków" w tab. 7.3, ilustrują-ł 
cych drgania normalne, to spostrzeżemy; że w ruchu uczestniczy pewna 
liczba atomów tworzących pary (oscylatory). Wychylenia atomów w obrębiej 
każdej pary mają określoną wartość i kierunek, zgodnie z podaną syme­
trią, oraz - zgodnie z definicją drgania normalnego - mają wszystkie tg 
samą częstość drgań. Paza drgań każdego z atomów nie ulega zatem zmia- I 
nie z biegiem czasu.

Być może, iż spektroskopia molekularna nie cieszyłaby się takim 
zainteresowaniem i wielostronnością zastosowań, gdyby prócz drgań nor­
malnych nie istniały jeszcze tak zwane częstości charakterystyczne. Mó­
wimy o nich wówczas, gdy cząsteczka zawiera jeden samotny oscylator, na 
przykład grupę -OH lub -HH2, który zatem nie może ulegać narzuconemu 
przez symetrię sprzężeniu z innymi identycznymi oscylatorami w cząstecz­
ce. Jeśli w dodatku występuje znaczna asymetria między masą każdego z 
atomów grupy i masą reszty cząsteczki, to z dobrym przybliżeniem można 

.uważać, że w drganiu charakterystycznym uczestniczą w zasadzie tylko 
dwa atomy. W konsekwencji częstość charakterystyczna oscylatora jest w 
znacznym stopniu niezależna od tego, w jakiej cząsteczce oscylator ten 
występuje. Dalej omówimy tę tezę dokładniej. Zgodnie z ogólnymi zasada­
mi dla oscylatora typu -XH mamy 3*2 - 3 = 3 drgania charakterystyczne; 
jedno z nich będzie odpowiadać periodycznej zmianie długości wiązania 
X-H, dwa pozostałe polegać będą na zginaniu tego wiązania (drgania de- 
formacyjne). Dla grupy takiej jak -NHg będziemy mieli 6 częstości cha­
rakterystycznych. W celu znalezienia ich symetrii można rozumować ana­
logicznie jak dla całej cząsteczki, lecz należy zastosować pojęcie lo­
kalnej grupy punktowej symetrii (C2v). Niektóre z częściej spotykanych 
częstości charakterystycznych podane są w tab. 7.4 (według [18]). Ist­
nieją również dzieła specjalistyczne, poświęcone spektroskopii określo­
nej grupy związków, na przykład ugrupowaniom amidowym [10] lub związkom 
koordynacyjnym [lii.

7.2. Spektroskopia nadtonów i częstości kombinacyjnych

Przejdziemy z kolei do określenia symetrii nadtonów, która w jakiś 
sposób winna wynikać ze znajomości symetrii jednokwantowych przejść pod-
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Tabela 7.4
Częściej spotykane częstości charakterystyczne oscylatorów dwu- 

i trójatomowych aktywne w podczerwieni, zaczerpnięte z 08]

Zakres liczb 
falowych 

-1 cm
Grupa

A Drgania walenc yjne

3550 - 3700 -OH1 J
2950 -(3600) —OH, -HH2)
3300 -3500
2670 - 2700 . -OD
2750 - 3300 -CH
“1620 - 1830 -C=0
1640 - 1?60 -cyj, -c=c
1480 - 1560 -JJ02

9C0 - 1300 -C-C-, —C-N-
10CO - 1400 -C-F
600 - 850 -C-Cl
500— 750 -C-Br

B. Drgania deformacyjne

1480 - 1640, 700 - 900 -EH
1300 - 1480, 600 - 900 -CH
1200 - 1450 -GH
1580 - 1650 -nh2
1340 - 1380, 850 - 920 -N°2

1)'Częstość grupy swobodnej.
2^W grupach uczestniczących w wią­

zaniu wodorowym występuje obniżenie tej 
częstości zależnie od energii wiązania.

atawowych. W dalszym ciągu będziemy się zajmować cząsteczką swobodną, a 
więc tak zwanym problemem drgań wewnętrznych.

Zasady symetrii wprowadził do przejść kombinacyjnych i nadtonów po 
raz pierwszy Tisza 09], a przejrzyste przedstawienie tego problemu moż­
na znaleźć na przykład w [2]. Zauważmy, że metody teorii grup są zupeł­
nie ogólne, a więc winny się stosować do poziomów czy przejść energe-



■tycznych nie tylko oscylatora harmonicznego, lecz także oscylatora an- 
harmonicznego. Wynika to z zasady superpozycji: Jeśli 4>v oznacza jed­
ną z pełnego zbioru funkcji falowych oscylatora harmonicznego, to kaidąj 
funkcję ty , opisującą oscylator anharmoniczny, można przedstawić w po^ 
taci liniowej kombinacji <1^

ty = 2^^' (7.1J)|

co uzasadnia stosowanie się również ty do tych samych zasad symetrii. Z 
kolei funkcję falową opisującą wzbudzony stan ?k elementarnego oscyla­
tora harmonicznego, któremu odpowiada współrzędna normalna możemy 
zapisać w następujący sposób [2]:

1 »2 
“ £ $k

^k» = N(vk)e ^^k’ ^k5’ (7.14)

przy czym N(vk) jest czynnikiem normalizacyjnym, zaś H(vk, 5k) wie­
lomianem Hermitte'a stopnia vk. Zmienna Sk odgrywa rolę pomocniczą

1/2 4S2
Śk = Vk Qk> tk = . (7.15)

n

zaś v jest liniową częstością drgań. Jak wiadomo ( [2]), wielomian 
Hermitte'a jest funkcją albo wyłącznie parzystych potęg Qk (dla vk 
parzystego), albo wyłącznie nieparzystych potęg Qk (dla vk' niepa­
rzystego). W szczególności

H(O, Sk) = 1, H(1, Sk) = 2 §k, H(2, §k) = 2^2 - 2.,

W takim razie funkcja falowa stanu podstawowego oscylatora

ty(O, 5k) = N(0) exp (- | §2), 

jest pełnosymetryczna, zaś funkcja jednokwantowego stanu wzbudzonego

ty(1, ?k) = Nd) exp (- j §2).Qk

transformuje się pod wpływem operacji symetrii tak, jak współrzędna Qk» 
Ten ważny wniosek można łatwo uogólnić na cząsteczkę, którą opisujemy 
zbiorem współrzędnych normalnych ^,...,Q^. Funkcję falową stanu pod­
stawowego możemy zapisać symbolicznie w następujący sposób:
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gdzie

G(tp...,5r) = exp (-|5k). (7.17)
k=1

Stan ten jest, oczywiście, również pełnosymetryczny, ponieważ (7.17) 
jest funkcją niezmienniczą względem wszystkich operacji symetrii danej 
grupy punktowej. Jeśli teraz jako stan wzbudzony wybierzemy stan dwu- 
kwantowy z ?k = 2, to funkcja tego stanu w symbolicznym zapisie będzie 
miała postać

♦ (O,...2,...O, = N(0,...2,^..0).G(€1t...5r).(242 _ 2).
(7.18)

Jest widoczne, że (7.18) odpowiada również reprezentacja pełnosymetrycz- 
na, ponieważ H(2,C^) nie ulega zmianie pod wpływem operacji symetrii. 
Jeśli cząsteczka ma w stanie podstawowym badaną już przez ńas symetrię
D^, to (7.18) wskazuje, że wszystkie parzyste nadtony będą zabronione, 
ponieważ odpowiada im pełnosymetryczna reprezentacja A . Dozwolone sąO 
natomiast nadtony nieparzystego stopnia, ponieważ

H {B(2n+1, ęk)J = h{h(1,§x)}, (7.19)

czyli wynik działania operacji R na wielomian Hermitte'a stopnia nie­
parzystego jest taki sam, jak na wielomian stopnia pierwszego. Przedsta" 
wioną tu reguła odnosi się do nadtonów, które odpowiadają niezdegenero* 
wanym stanom wzbudzonym cząsteczki.

Analogiczną regułę możemy podać dla przejść wzbudzonych typu, na 
przykład, 0, Vk / 0, którym odpowiadają częstości kombinacyjne. 
Wybierając konkretnie = 1, ?k = 1, możemy napisać funkcję falową 
dla stanu wzbudzonego‘następującej postaci:

(7.20)
W tym przypadku funkcja falowa transformuje się tak, jak iloczyn współ-
rzędnych. JŹśli zatem współrzędnej odpowiada reprezentacja 
współrzędnej Qk reprezentacja rk, to częstości kombinacyjnej 
dać będzie reprezentacja r e

rj’a 
odpowia-

re = ^j ® ^k* (7.21)

® oznacza tu iloczyn prosty obu reprezentacji. Działania te wykonujemy 
w ten sposób, że charakter fdla operacji R^ mnożymy przez charak­
ter reprezentacji Tk dla tej samej operacji; wynik jest charakterem 
reprezentacji T dla operacji R4

U 1



269

Xe(RŁ) = Kj^i^k^P’ 1 = (7.22)
W przypadku niezdegenerowanym zawsze mamy trzy dopuszczalne kierunki 
momentu przejścia, odpowiednio równoległe do osi x,y,z układu współ­
rzędnych, związanych sztywno z cząsteczki. Nadtony i częstości kombina­
cyjne możemy więc skrótowo zapisywać za pomocą trójki liczb (1 m n);dla 
przykładu (0 2 0) oznacza pierwszy nadton jakiejkolwiek częstości, któ­
rej odpowiada przejście o symetrii i moment przejścia równoległy 
do y. Dla takiej cząsteczki widzimy z (7.21), że, na przykład, częs­
tość kombinacyjna (1 1 O) jest dozwolona, ponieważ HB^) x r(B^u) = 
= r(B^u). Co więcej, łatwo dostrzec, że w widmie częstości kombinacyj­
nych może pojawić się udział przejść zabronionych jako przejścia jedno- 
kwantowe. Mamy, na przykład,

•
r (Ag). ® r(B1u) =r (B1u),

a więc takiemu przejściu towarzyszy wzbudzenie drgania pełnosymetryczne- 
go, zabronionego w podczerwieni jako przejście O—*■ 1.

Określenie symetrii nadtonu jest trochę bardziej skomplikowane,jeś­
li przejście podstawowe a zatem i Stan wzbudzony wykazują degenerację. 
W takim przypadku stanowi wzbudzonemu v > 1 odpowiada pewna reprezen­
tacja redukowalna. Jeśli częstość podstawowa jest podwójnie zdegenerowa- 
na, to charaktery reprezentacji, odpowiadającej przejściu O—»-v moż­
na obliczyć z wzoru [2]

XV(R) = |{x(R)Xv_1(R) + X(RV)}, (7.23)

przy czym v oznacza liczbę kwantową stanu wzbudzonego, R kolejno kaź- 
dą operację symetrii grupy punktowej, zaś Rv jest v-tą potęgą tej ope­
racji. Uważamy przy tym, że

^(B) = x(R), Xo(R) = 1 oraz X_k(R) = O. (7.24)
Przy zachowaniu tych samych oznaczeń charaktery reprezentacji, odpowia­
dającej nadtonowi trzykrotnie zdegenerowanej częstości podstawowej, ob­
liczamy z zależności

■XV(R) = — ^2X(R)XV_1 (R) + g ^X(R2) -fzCR)]2^ 2(H)'+ X(Bv)V 

X?.25) 

Zastosowanie tych wzorów wyjaśnimy na konkretnym przykładzie. Gru­
pa punktowa 'Dgk nie jest do tego celu odpowiednia, ponieważ wszystkie 
jej reprezentacje są jednowymiarowe, zatem częstości podstawowe i nadto­
ny nie wykazują degeneracji. Wybierzmy więc dla przykładu grupę D^, ós­
mego rzędu (h = 8), przedstawioną skrótowo w tab. 7.5.« Erócz jednowymia-
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Tabela 7.5

Reprezentacje nieprzywiedlne A,B,E oraz reprezentacje
nadtonów grupie punktowej D^

R E 2C4 CU 
o
II 

CU
4* 

o 2C2 2C2

Ad 1 1 d d d
a2 1 1 d- -d -d
Bd d -d d d -d
b2 1 -d d -d d
E 2 0 -2 0 0

W
 w 

? 
h)

Q
 O E

C2 Q
 W 

W
 * S CU

M o

R* E E E E E

(R) 2 0 0 0
(R2) 2 -2 2 2 2
(R3) 2 0 -2 0 0
(R4) 2 2 2 2 2•

2 3 -1 3 d *1 Azj + B^j + B2
3 4 0 —4 0 0 2E
4 5 d 5 d d 2A^ + A2 + B^ + B2

A^ t , B^ i B2 ■mamy jedną dwuwymiarową typu E.rowych reprezentacji
Zajmiemy się symetrią nadtonów V = O—= 2, O-—►-3 i O—>-4 częs­
tości podstawowej o takiej symetrii. Przed zastosowaniem wzoru (7.23) 
musimy wpierw znaleźć operacje, odpowiadające potęgom wszystkich opera- 

2 z a vcji grupy, a więc R , R-' i R .• Zadanie to nie nastręcza szczególnych 
trudności, .również znalezienie charakterów x'Rv) na podstawie X(R) 
nie wymaga komentarza. Po tych przygotowaniach można już obliczyć cha­
raktery reprezentacji XV(R). Widzimy, że dla przejścia O—►-v otrzymu­
je się reprezentację (v+d) wymiarową. Dokonując rozkładu według (7.d2) 
otrzymujemy, na przykład, że

T (2) = TtA^ + r(B1) + r(B2).

Sens fizyczny takiego rozkładu polega na tym, że zdegenerowany poziom 
wzbudzony nadtonu ulega rozszczepieniu na 3 poziomy wskutek drobnych 
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różnic energii, towarzyszących anharmoniczności. Rozszczepienie te jest 
jednak na ogół małe i rzadko kiedy udaje się dla przejścia O—»-2 zaob­
serwować trzy osobne częstości. Interesujący jest przy tym fakt, że an- 
harmonicżność znosi degenerację» wszystkie trzy składowe reprezentacje 
są jednowymiarowe. Podobne własności ma reprezentacja r (4), natomiast 
F(3) rozszczepia się na dwie reprezentacje dwuwymiarowe.

Symetrię częstości kombinacyjnych, niezależnie od tego, czy uczest­
niczą w nich poziomy energetyczne zdegeneręwane czy nie, można znaleźć 
według (7.12). Roszerzenie tej zasady dla trzech czynników można zapi­
sać w następujący sposób:

re = rj ® rk® ri- (7.26)

Przejdźmy obecnie do przedyskutowania energii i częstości drgań os­
cylatora. W przybliżeniu drgań harmonicznych energia całkowita oscylato­
ra wyraża się dobrze znanym wzorem

E(v) = h vQ(v + 1), (7.27)

przy czym t = 0,1,2,... jest liczbą kwantową. Ponieważ przejścia ener- 
getyczne mogą zachodzić tylko między sąsiednimi stanami energetycznymi, 
co odpowiada zmianie liczby kwantowej o ±1, możliwa do zaabsorbowania 
lub emisji energia wynosi

E(v + 1) - E(v) = h vo, (7.28)

niezależnie od początkowego stanu energetycznego. Widmo absorpcyjne ta­
kiego oscylatora składa się więc z jednej tylko linii, której odpowiada 
liczba falowa

v0 = vQ/c. (7.29)

Nawiasem mówiąc, rzadko mamy sposobność obserwować przejście absorpcyj­
ne 1—*~2, a tym bardziej 2—»-3, itd. Aby pojawiła się taka linia, pew- 
na liczba oscylatorów musi się znaleźć w stanie o energii E(1) = hc^ 
E(2) = hcV( , etc. Jeśli zażądamy, by przy liczbie falowej przejścia 
v= 1000 cm-1 tylio 10% oscylatorów miało energię E(1), to zgodnie z 
rozkładem statystycznym Maxwella stan ten może być osiągnięty w tempera­
turze blisko 1000 K - nie każdy oscylator "wytrzyma" taką temperaturę.

Jeśli w rozwinięciu energii potencjalnej (7-5) zachowamy również 
czwarty człon, rozwiązanie równania Schrttdingera przy takim potencjale 
prowadzi do wyrażenia na zbiór dozwolonych poziomów energetycznych oscy­
latora anharmonicznego

E(v) h v0(v +•£) - x h v0(v + ^)2. (7.30)
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Uwzględnienie członów rzędu wyższego niż czwarty prowadzi do pojawienia 
się dalszych wyrazów anharmonicznych w (7.30); pełniejsze rozwinięcie 
jest jednak raczej rzadko stosowane. W miejsce energii stanu energetycz­
nego E(v), wyrażonej w dżulach, wprowadza się zwykle w spektroskopii „■''I
wielkość G(v) = E(v)/hc, wyrażoną w cm i do niej proporcjonalną. 
Oznaczając vq/c przez we, możemy (7.30) napisać w postaci

G(v) = we(v + ^) - wexe(v + ^)2. (7.3D

jest wielkością rachunkową, odpowiadającą fikcyjnej liczbie falo­
wej przejścia 0—»-1 dla *e = O; xe_ jest liczbą bezwymiarową i nosi 
nazwę współczynnika, anharmoniczności. Wskaźnik e oznacza, że wielkoś­
ci odnosimy do minimum krzywej energii potencjalnej, a więc do położe­
nia równowagi re (rys. 7.1). xe i we możemy w zasadzie wyznaczyć z 
obserwowanych liczb falowych przejść O—»-1 i O—»-2'oscylatora.

W zapisie (7.32) różnica G(v+'l) - G(v) wyraża wprost liczbę falo­
wą linii odpowiadającej przejściu oscylatora między sąsiednimi stanami 
v, v+1.

G(v+1) - G(v) ='<is[l --2xe(v+1)J . (7.32)

Wzór (7.30) wskazuje, że poziomy energetyczne oscylatora anharmoniczne- 
go nie są równoodległe, lecz zagęszczają się w pobliżu pewnej wartości 
energii, oznaczanej względem minimum potencjału literą De i nazywanej 
energią wiązania cząsteczki (w określonym stanie elektronowym (rys.7.1)). 
Dq jest energią dysocjacji cząsteczki na swobodne atomy i różni się od 
D energią stanu podstawowego (v = O)

Dq = hc ^G(co) - G(O)J = De - hc G(0). (7.33)

Rozwiązanie równania SchrBdingera dla potencjału anharmonicznego 
prowadzi nie tylko do zmiany energii poziomów 'dozwolonych, lecz także 
do modyfikacji reguły wyboru. Oprócż przejść v—»-V±1, takich samych 
jak dla oscylatora, harmonicznego, możliwe są również przejścia v—>— 
v—*-'V±3» etc., prowadzące do nadtonów. Przy jednoczesnej zmianie dwóch 
lub więcej liczb kwantowych należących ao dwóch lub więcej-różnych 
współrzędnych normalnych, pojawiają się częstości kombinacyjne. Przejś­
ciu O—towarzyszy linia absorpcyjna o liczbie falowej

G(v) - G(0) = v'C--v) = v u. {i - xe(v + 1)}. (7.34)

Anharmoniczność powoduje, że częstość takiego przejścia jest mniejsza 
niż v u>e. Ponieważ zwykle spotykane współczynniki anharmoniczności 
mieszczą się w granicach
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0,01 < xe < 0,05 (7.35)

różnica ta wynosi kilka procent u>e» Częstości kombinacyjne, zwłaszcza 
jednokwantowe kombinacje częstości podstawowych, są znacznie mniej an- 
harmoniczne tak, że z zupełnie dobrym przybliżeniem możemy napisać

Przykład zbioru stanów energetycznych i liczb falowych v(0—»- v) odpo­
wiadających drganiom oscylatorów OH i OD, wchodzących odpowiednio w 
skład cząsteczek CH^OH i CH^OD, podany jest w tab. 7.6, według danych z 
С20]. Na podstawie tych informacji obliczono orazwe. Zgodnie z 
'(7.34)iloraz v'O-—*-v)/v winien być liniową funkcją v, co pokazane 
jest na rys. 7.2. Uzyskanie takiej zależności dla zbioru nadtonów obser­
wowanych doświadczalnie jest gwarancją, że częstości przypisane zostały 
prawidłowo. Z obu stałych we możemy obliczyć, że

ш (OH)
—-------  ^21 _ 1,370.

w (OD) 2810 u

Z drugiej strony częstość drgań prostego oscylatora, składającego się z 
dwóch atomów o skończonych masach m^ i mg, połączonych wiązaniem che- 
micznym o współczynniku liniowej siły sprężystej równym k, wynosi w л =
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Tabela 7.6

Zbiór stanów energetycznych i liczby falowych drgań oscylatorów OH i OD 
w cząsteczkach odpowiednio CH^OH i CH^OD [20], cm“^

G(V) CH,OH 3 CHZOD

G(0) 1904 1394
G{1) 5585 4113
G(2) 9095 6742
G(3) 12435 9279
G(4) 15604 11726
G(5) 18603 14083

xe 0,0221 0,0161

we 3851 2810

v(0—*-1) 3681 2719
v (0—-2) 7191 5348
v(0—-3) 10531 7875
v(0—4) 13700 10332
v(0—>-5) 16699 12689

gdzie

-1 -1 -2p = nL] + m2

jest masą zredukowaną układu. Przyjmując, że k 

(7.37)

jest takie samo dla
obu oscylatorów, otrzymujemy

ue<0H> _ /^odW2 _ 

"e*^ VW
1,374.

Zupełnie dobra zgodność obu liczb świadczy o tym, że w drganiu uczestni­
czą tylko atomy H lub D i atom 0, tj. resztę cząsteczki’(CE-} możemy 
pominąć. Przykład ten stanowi ilustrację dobrze izolowanej częstości 
charakterystyc zne j•

Krzywą energii potencjalnej podaną na rys. 7.1 można również przedr 
stawić analitycznie. Najczęściej używanym przybliżeniem tej krzywej 
jest funkcja Morse'a

V(r) = De j1 - exp [- a(r - re)]}2 (7.33)
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Rys. 7.2. Ilustracja linio.oj zależności v (0—*-v)/v od v dla 
kolejnych nadtonów v 'OH) i v(OD), według danych L20] 

zawierające trzy parametry: położenie równowagi oscylatora rg w mini­
mum energii potencjalnej, energię wiązania cząsteczki De i parametr a. 
Rozwiązanie równania SchrBdingera dla potencjału (7.33) prowadzi w przy­
bliżeniu małych amplitud do następującego wyrażenia na energię oscylato­
ra anharmonicznego [2'1] 

o 
и w^hc и 2

G(v)M = wjv + ^) - (v + 1) . (7.39)
M 2 4D 2

, e

Po porównaniu współczynników drugiego członu w (7.39) i (7.31) wi- 
azimy, że

•7.40) pozwala ocenić energię wiązania obu atomów, tworzących oscylator, 
z danych spektroskopowych: częstości harmonicznej w i współczynnika 
anharmonicznego xg. Korzystając z danych tabeli 7.z> możemy obliczyć, 
że

_ >
D (OH) = Da(CD) = 52'1 kJ/mol.
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Rzeczywista, średnia wartość energii wiązania OH w 0 K jest jednak tro­
chę mniejsza i wynosi [22j

^(OH) . = 458 kJ/mol.

Różnica ta nie jest przypadkowa. Wzór (7.40) prowadzi a reguły do zawy­
żonych wartości De, co świadczy o tym, że (7.58) jedynie w przybliże­
niu opisuje krzywą energii potencjalnej oscylatora anharmonicznego. Mi­
mo to przybliżenie takie jest często bardzo użyteczne, a potrzebną w 
nim stałą a można obliczyć również z danych spektroskopowych

2u 1/2
a = we c it(§H) . (7.41)

Podstawienie liczbowych wartości dla wiązania OH prowadzi do wyniku 

a(OH) = 2,181«108 om"1.

7>5• Bezodrzutowa spektroskopia wielofotonowa

Współczesne wprowadzenie lasera doprowadziło do licznych interesu­
jących eksperymentów nad absorpcją wielofotonową w obszarze optycznym.

a b

El

Rys. 7.5« »Schemat dwufotonowego przejścia w cząsteczce (a), 
i dwufotonowego przejścia bez odrzutu (b)

Mówimy o niej wtedy, gdy pochłonięciu ulegają dwa lub więcej fotonów o 
jednakowej energii równocześnie. Ten rodzaj absorpcji należy odróżnić 
od zwykłej absorpcji dwufotonowej, która polega na kolejnym pochłonię­
ciu dwóch kwantów energii. .Sytuację taką mamy przedstawioną na rys.7.5a. 
Po pochłonięciu kwantu układ przechodzi do stanu wzbudzone­
go o energii E^, skąd może przejść do Eg po pochłonięciu następnego 
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kwantu energii Ł “i2’ ^en ćlrugi proces "zastanie" obiekt kwanto­
wy w stanie wzbudzonym E/|. W tym paragrafie = 2^^ oznaczać bę- 
dzie częstość kątową przejścia absorpcyjnego, zaś di = h/2n; wQ1 nosi 
nazwę częstości rezonansowej« Dkła.d! może również przejść od razu ze sta­
nu podstawowego do stanu Eg i pochłonięcie dwóch fotonów, przy 
czym taka absorpcja może być badana^przy zastosowaniu zwykłej lampy rtę­
ciowej» Istotne jest to, że w zwykłej absorpcji multifotonowej istnieją 
wszystkie pośrednie poziomy energetyczne układu kwantowego potrzebne do 
zrealizowania wszystkich składowych przejść jednofotonowych» Natomiast 
w procesie bezodrzutowej absorpcji multifotonowej nie bierze udziału ża­
den pośredni rzeczywisty poziom energetyczny (rys. 7«3b). W celu wzbu­
dzenia takiej absorpcji potrzebne jest użycie'lasera strojonego, ponie­
waż częstość przejścia (E^ - E0)/a& tylko przypadkowo będzie odpowia­
dać częstości lasera atomowego. Powrót z E^ do stanu podstawowego od­
powiada emisji promieniowania o częstości E^/h, znacznie różniącej się 
od częstości wzbudzenia, co ułatwia rozpoznanie tej emisji oraz ilościo­
we jej zbadanie. Jednoczesna emisja dwóch jednakowych fotonów powoduje 
zniesienie odrzutu cząsteczki, dzięki czemu bardzo znacznemu podwyższe­
niu ulega zdolność rozdzielcza eksperymentu; poszerzenie Dopplera w zwy­
kłej absorpcji jest 100-1000 razy większe od naturalnej szerokości li­
nii absorpcyjnej.

Żeby móc zastosować ten sposób wzbudzania w spektroskopii wysokiej 
rozdzielczości trzeba dysponować laserem, którego wiązka ma szerokość 
spektralną co najwyżej taką, jak naturalna szerokość linii, to-jest co 
najwyżej 10 MHz. W tym celu laser musi pracować na pojedynczym modusie 
podłużnym. Jeśli tylko spektralna szerokość wiązki nie jest zbyt duża, 
to moc lasera może być niewielka, zwłaszcza w absorpcji rezonansowej. 
Między stanem podstawowym a rezonansowym przejścia zachodzą we wszyst­
kich cząsteczkach, co oznacza duże natężenie sygnału. Obliczono, że w 
takim przypadku do obserwacji absorpcji wystarcza wzbudzenie o mocy 
1 kW/cm2.

Bezodrzutowe przejścia absorpcyjne możliwe są, oczywiście,zarówno 
w obszarze nadfioletowym, Jak i w podczerwieni. Możliwość ich wystąpie­
nia nie zależy również od tego, czy interesująca nas cząsteczka jest w 
fazie gazowej, czy tez we wnętrzu kryształu. Doświadczenia, wykonane w 
ciągu ostatnich dziesięciu lat dotyczą jednak wyłącznie cząsteczki swo­
bodnej, aczkolwiek nie ulega wątpliwości, że ich wykonanie dla stanu 
krystalicznego byłoby nadzwyczaj interesujące. Dalszą dyskusję absorp­
cji bezodrzutowej oprzemy na znakomitym opracowaniu tego tematu przez 
Grynberga i Cagnaca [23], przy czym ograniczymy się do absorpcji dwufo­
tonowej.



278

Dopplerowakie poszerzenie linii absorpcyjnej spowodowane jest pręd­
kościami termicznymi obiektów absorbujących (atom, cząsteczka). Jeśli 
V jest prędkością obiektu, a k wektorem falowym padającej nań fali 
elektromagnetycznej, to przesunięcie Dopplera I-go rzędu wynosi k*V. 
Dla fali padającej z kierunku przeciwnego przesunięcie to wynosi -k»V. 
Ta bardzo ważna własność jest wykorzystana w absorpcji dwufotonowej. 
Przypuśćmy, że obiekt mikroskopowy znajduje się w polu stojącej fali 
elektromagnetycznej o częstości u 5 falę taką można otrzymać, na przy­
kład, przez odbicie światła lasera w lustrze. Jeśli obiekt zaabsorbuje 
jednocześnie po jednym kwancie z każdego ciągu falowego, to jego ener­
gia zmieni się o wielkość (rys. 7,5b)

E1 - Eq = ń(w + k-V) + ń(w - k«V) = 2ńw . (7.42)

Udział prędkości obiektu w zmianie energii znika. Oznacza to, że w 
przejściu rezonansowym cząsteczka absorbuje tę samą częstość, niezależ­
nie od swej prędkości. Szerokość linii rezonansowej w tych warunkach 
teoretycznie jest równa naturalnej szerokości linii. Eksperymentalnie 
efekt ter zauważyli po raz pierwszy Wasilenko i inni [24], zaś Cagnac i 
inni [25] opracowali teorię efektu i rozszerzyli ją na przejścia wielo- 
fotonowe.

Warunek (7.42) łatwo uogólnić do przejścia wielofotonowego. Hiech 
cząsteczka o prędkości V oddziałuje z kilkoma polami falowymi, przy 
czym każdemu z nich odpowiada jeden z wektorów falowych k^i Długości 
wszystkich są takie same, jedynie kierunki są różne. Przesunięcie 
Dopplera I-go rzędu dla każdej fali wynosi k^V. Jeśli doprowadzimy do 
spełnienia warunku

2 Ł = O, (7.45)

to jednoczesne pochłonięcie przez cząśteczkę n fotonów również odbę­
dzie się bez odrzutu.

Warunek (7.45) możemy interpretować jako zasadę zachowania pędu w 
zderzeniu cząsteczka-fotony, przy czym każdemu fotonowi towarzyszy pęd 
h k,.. Ponieważ w takim zderzeniu energia kinetyczna cząsteczki nie ule­
ga zmianie, energia wszystkich fotonów powoduje zmiant jej energii we­
wnętrznej

S1 " B0 = X h 0 ki- 

X

0 szeroko:ci linii w absorpcji bezodrzutowej decyduje jej szerokość na­
turalna, wynikająca z zasady niepewności Heisenberga, oraz efekt Dopplo-
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Rys. 7.4. Kształt linii absorpcyjnej 
w spektroskopii, bezodrzutowej (sche­
matycznie). To jest naturalną szero­
kością linii (kształt Lorentza), Ta 
są skrzydłami poszerzenia dopplerow- 
skiego (kształt Gaussa) 

ra 2-go rzędu. Jest on proporcjo­
nalny do (E1 - Eo) Y^/Sc^ i ze 
względu na małą wartość V/c jest 
niemierzalnie mały.

Linia rezonansowa w absorp­
cji dwufotonowej bez odrzutu win­
na mieć kształt krzywej Lorentza. 
Prócz takiej linii powinny rów­
nież wystąpić skrzydła o profilu 
gaussowskim (rys. 7.4), wynikają­
ce z poszerzenia Dopplera.Kształt 
skrzydła można przewidzieć nastę­
pującym rozumowaniem. Jeśli częs­
tość w lasera nie spełnia do­
kładnie warunku (7.42) lecz jest 
mu bliska, to na ogół nie wszyst­
kie cząsteczki mogą zaabsorbować 
dwa fotony o przeciwnych kierun­
kach propagacji. Mogą to uczynić 
tylko takie cząsteczki, dla któ­
rych różnica energii (E^ - EQ -

Rys. 7.5. Schemat jedno- i dwufotonowych procesów absorpcji
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- 2 ńu) równa jest przesunięciu Dopplera, ±2 k«V. Grupa takich cząste­
czek wyznaczona jest dla każdego u rozkładem MazweHa-Boltzmanna, stąd 
taki kształt skrzydeł linii rezonansowej. Ogólny kształt linii, z rys.
7.4 został przewidziany przez Wasilenkę £24] . Jeśli natężenie, i stan po­
laryzacji obu fal są takie same, to powierzchnia pod krzywą lorentzow- 
ską jest dwa razy większa od powierzchni części gaussowskiej. Przez od­
powiedni dobór stanu polaryzacji można niekiedy doprowadzić do zniknię­
cia tła gaussowskiego,

Prawdopodobieństwo przejścia dwufotonowego ze stanu podstawowego, 
Eq do stanu wzbudzonego Eg (rys. 7.5, można przedstawić sa pomocą ra­
chunku zaburzeń w następujący sposób:

P^lów) =

(7.45)

gdzie 6 w = o> - u)q jest różnicą między częstością lasera a częstością 
rezonansową tak, że 2 fi5 w jest energetycznym "rozstrojeniem” mi ędzy 
"nadajnikiem" a "odbiornikiem"; HQ i są hamiltonianami oddziaływa­
nia dipolowego cząsteczki z falą padającą i odbitą, hńwi = fiu - (Et - 
- EQ) jest energią rozstrojenia w przejściu jednofotonowym dla każdego 
ze stanów pośrednich "i", Tg jest szerokością spektralną stanu wzbudzo­
nego, zaś IL/fąów2 + $ r|) jest czynnikiem Lorentza, determinującym 
kształt krzywej.

Jeśli obie fale elektromagnetyczne, padająca i odbita, są identycz­
ne, tj. mają te-same natężenia i steny polaryzacji oraz są "dopasowane" 
do przejścia rezonansowego tak, że 6 w = O, to prawdopodobieństwo 
przejścia dwufotonowego upraszcza się do wyrażenia

(7.46)

Numeryczne obliczenie P^g (rez) wymaga sumowania po wszystkich sta­
nach pośrednich "i". Niekiedy można ograniczyć sumę tylko do jednego po­
ziomu E^, jeśli deficyt energii fiAu, jest znacznie mniejszy niż ir— 
ne i jeśli siły oscylatora fQ1 i f^„ nie są zbyt małe. W takim przy­
padku zastąpienie operatora H wyrażeniem szczegółowym prowadzi do wzo­
ru

Ro 7101 /P f ^12 „
- hc J W 01
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|<J^m2 - ajj^^lm^ - <ł|Jomo>| , (7.47)
o 2 —13gdzie r0 = e /4neomo = 2,8’10 cm jest klasycznym promieniem elek­

tronu, = 2 nc/(001 i X12 = 2itc/u),|2 są długościami fal dla przejść 
jednofotonowyćh, a f^ i f^2 ich siłami oscylatora. P oznaczą moc, a 
S przekrój wiązki lasera. Współczynniki Clebscha-Gordana <J1m-q|jm>, 
można obliczyć z liczb kwantowych Jim każdego z trzech poziomów O,
1, 2 oraz ze stanu polaryzacji q fali (ą = +1, O, -1). W najczęściej 
spotykanych przypadkach kwadrat iloczynu tych współczynników jest rzędu
0,1. Jeśli przyjmiemy, że A ai^/w^ s! 
AO1 a S 6000 S? r2 = 108 s-1, to 

tatu

3 0,1} f^ = f12 a 0,1} 
P/S = 1 W/mm2 prowadzi do rezul-

Pgf^rez) = 1 s"1.

Ponieważ w rezonansie uczestniczą wszystkie cząsteczki (a nie tylko gru­
pa o określonej prędkości), liczba wzbudzeń będzie dostatecznie duża, 
żeby można było dokonać pomiarów. Warto zwrócić uwagę, że możliwie sil­
na redukcja przekroju wiązki lasera (ogniskowanie) podwyższa sygnał.
Wprawdzie liczba cząsteczek objętych wiązką maleje proporcjonalnie do 8 
jednak Pq|' wzrasta proporcjonalnie do S“2.

Na zakończenie tego krótkiego opisu spektroskopii bezodrzutowej wy­
pada wspomnieć jeszcze o korzyściach, płynących z zastosowania tej meto­
dy. Zniknięcie odrzutu, towarzyszącego zwykłej absorpcji jedno- lub wie- 
lofotonowej odpowiada sytuacji takiej, jaką mielibyśmy obserwując pro­
ces absorpcji lub emisji cząsteczki bez zmiany jej prędkości. Prowadzi 
to, jak widzieliśmy, do pojawienia się bardzo wąskich linii absorpcyj­
nych lub emisyjnych, których częstości można wyznaczyć bardzo dokładnie. 
Tym samym możliwe jest z jednej strony dokładniejsze wyznaczenie różni­
cy energii dwóch poziomów energetycznych cząsteczką, co podwyższa do-* 
kładność określenia takich stałych fizycznych jak masy zredukowanej,czy 
momentu bezwładności cząsteczki. Z drugiej strony, możliwe staje się 
uzyskanie ważnych wniosków odnośnie wpływu składu izotopowego cząstecz­
ki, jej konformacji, a także wpływu oddziaływań międzycząsteczkowych na 
czasy życia w określonych stanach wzbudzonych lub na prawdopodobieństwo 
przejścia spektralnego. ®

Do zbadanych dotychczas cząsteczek należą (literatura uwzględnioria' 
do roku 1977)s

(i) W zakresie IR między dwoma stanami oscylacyjnymi bąka syme­
trycznego

CHjF [26,27] i NHj [28] ,
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(ii) W zakresie UV między dwoma stanami elektronowymi

CgHg (benzen) [293 »

7.4. Spektroskopia drgań wewnętrznych oząsteckki w krysztale

№ spektroskopii eząsteezki izolowanej zakłada się, iż mamy do czy­
nienia z mniej lub więcej symetrycznym zbiorem atomów, połączonych z so» 
bą wiązaniami chemicznymi. Przypisanie cząsteczki do określonej grupy 
punktowej symetrii pozwala - jak widzieliśmy - na ustalenie reguł wybo­
ru, tj. pozwala przewidzieć symetrię drgań dozwolonych w widmie w pod­
czerwieni, przy czym warunkiem dopuszczenia jest zmiana momentu dipolo­
wego cząsteczki pod wpływem zmi.enn.ego pola elektrycznego fali elektro- 
magnatyoanej.

W zasadzie niewiele zmienia się w tym obrazie, jeśli interesującą 
nas cząsteczkę umieścimy w krysztale, stanowiącym trójperiodyczną struk­
turę zbudowaną z identycznych cząsteczek. Ponieważ energia wiązania ato­
mów przewyższa o rząd wielkości energię oddziaływań międzycząsteczko­
wych, częstości drgań wewnętrznych w fazie stałej ulegają jedynie nie­
wielkim przesunięciom w porównaniu do cząsteczki swobodnej. Przesunię­
cia te wynikają z faktu, że kryształ stanowi ośrodek dielektryczny,trak­
towany w tym problemie zwykle jako ośrodek ciągły, o przenikaInnдм di­
elektrycznej różnej od jedności. Anizotropia przenikalności powoduje - 
jak widzieliśmy - anizotropię pola lokalnego, co w spektroskopii inter­
pretuje się jako zmianę symetrii cząsteczki w krysztale. Inaczej mówiąc 
uważa się, że efektywna symetria cząsteczki w sieci jest taka, jak sy­
metria węzła, który zajmuje cząsteczka w określonej strukturze. Uważa 
się też, najczęściej milcząco, że lokalna symetria węzła rozciąga się 
na obszar całej cząsteczki. Relacje między symetrią węzłaa symetrią 
cząsteczki swobodnej prowadzą do pewnej modyfikacji reguł wyboru, który­
mi zajmiemy się w tym paragrafie. Dalszą konsekwencją, wynikającą z ob­
niżenia symetrii cząsteczki w krysztale jest fakt, iż niekiedy przejś­
cia absorpcyjne zabronione dla cząsteczki swobodnej mogą być dopuszczo­
ne w widmie kryształu. Może się także zdarzyć, że pole krystaliczne zno­
si degenerację częstości dwu- lub trzykrotnie zdegenerowanej w cząstecz­
ce; efekty te noszą nazwę rozszczepienia statycznego.

Inny rodzaj rozszczepienia pojawia się w związku z tym, że w komór­
ce elementarnej zawartych jest Z cząsteczek, stanowiących układ Z 
sprzężonych z sobą oscylatorów o identycznych częstościach. Wzajemne od­
działywania tych oscylatorów prowadzą do rozszczepienia Każdej częstoś­
ci wewnętrznej na Z składowych,' z których jednak nie wszystkie muszą 
być obserwowalne. Ostatnia wreszcie -'i może najważniejsza~w zastosowa­
niach - ^©żnica między stanem krystalicznym a Stanem gazowym lub roz-
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cieńczónego roztworu polega ua tym, że wzbudzone w krysztale oscylatory 
stanowią układ dipoli, wykazujący wiele cech "gazu zorientowanego". 
Stany wzbudzone możemy więc wywołać i analizować za pomocą spolaryzowa­
nej fali elektromagnetycznej, eo rozszerza możliwość poznania własności 
poszczególnych oscylatorów. Zajmiemy się opisem tych zjawisk nieco bar­
dziej szczegółowo, poczynając od modyfikacji reguł wyboru.

Kcanslacyjna własność sieci przestrzennej nie jest cechą interesu­
jącą w spektroskopii drgań cząsteczki. Jeśli przyjmiemy, że górna gran-U 
ca widma częstości wewnętrznyohjwynosi ID4 om"1, to częstości takiej od­
powiada fala o długości A. = lÓ^' nm.’ Na tej długości mieści się lO^ko- 
mórek elementarnych o przeciętnym wymiarze krawędzi 1 lam. Wynikająca 
stąd różnica faz między sąsiednimi komórkami elementarnymi, wywołana 
zmiennym polem elektrycznym fali, jest rzędu 2nMo"^ rad = 0,4° 1 może 
być zaniedbana. Wobec tego w problemie częstości wewnętrznych ważna 
jest zawartość jedynie jednej komórki elementarnej. Upraszcza to znacz- 

1 nie reprezentację kryształu z punktu widzenia symetrii, wystarczy bo­
wiem analiza rozkładu materii wewnątrz komórki elementarnej, a ten speł­
nia wymogi grupy punktowej. Otrzymujemy• ją z symbolu grupy przestrzennej 
po odrzuceniu wszystkich operacji translacji. Płaszczyzny poślizgu za­
mieniamy więc na płaszczyzny zwierciadlane symetrii, osie śrubowe na o- 
sie zwykłe. Zbiór operacji symetrii uzyskany w ten sposób nosi nazwę 
grupy punktowej komórki elementarnej lub grupy iloczynowej; musi ona 
być podgrupą grupy przestrzennej.

Następnym ważnym pojęciem jest tak zwana symetria węzła czyli punk­
tu w komórce elementarnej, w którym przypada środek masy cząsteczki. 
Jeśli węzeł położony jest w dowolnym miejscu, czyli w położeniu ogólnym 
to odpowiada mu trywialna grupa punktowa C^, nie zawierająca żadnego e- 
lementu symetrii. Środek masy cząsteczki może jednak zajmować położenie 
szczególne, tj. może leżeć na jakimś elemencie symetrii, na przykład na 
osi lub płaszczyźnie symetrii kryształu, a nawet przypadać w punkcie 
przecięcia się tych elementów. Węzłowi odpowiada wówczas grupa symetrii 
’właściwa symetrii położenia szczególnego. Warto przypomnieć,że komórka 
elementarna może być obsadzona na kilka sposobów, co zależy między inny­
mi od symetrii węzła 1 symetrii cząsteczki. Węzła o symetrii nie mo­
że na ogół zajmować cząsteczka nie posiadająca centrum symetrii. Krysz­
tały benzenu, naftalenu, antracenu i innych związków zbudowane są zgod­
nie z taką zasadą, środek masy tych cząsteczek pokrywa się z centrum sy­
metrii kryształu. Istnieją jednak interesujące odstępstwa od tej zasady. 
Na przykład cząsteczki pięciochlorobenzenu [30] lub pięciochlorotiofeno- 
lu [31] nie mają centrum symetrii, a jednak w fazach wysokotemperaturo­
wych tych ciał zajmują położenia C^. Struktury takie mogą być realizowa­
ne w połączeniu z nieuporządkowaniem położeń cząsteczki.względem normal-
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nej do pierścienia benzenowego. Każdy podstawnik pierścienia zajmuje w 
strukturze jedno z sześciu możliwych położeń z prawdopodobieństwem 1/6, 
a centrum symetrii kryształu realizowane jest statystycznie.

Dopuszczalna symetria węzła i liczba obsadzeń Z przy zadanej gru­
pie punktowej komórki elementarnej może być odczytana z opisu grup prze­
strzennych, zamieszczonego w Międzynarodowych Tabelach Krystalografii 
(por. rozdz. 3). Podaje je również w zestawieniu tabelarycznym Halford 
[32]. Najwygodniej jednak korzystać z nomogramu, przedstawionego w tab. 
7.7 i zaczerpniętego z pracy Hyttera [33] z opuszczeniem grup punkto­
wych, zawierających pięciokrotną oś symetrii. Na przekątnej nomogramu 
umieszczonych jest 35 punktowych grup symetrii. W grupach oznaczonych 
gwiazdką obowiązuje zasada alternatywnego wyboru (obecność centrum sy­
metrii); częstości aktywne w podczerwieni nie mogą być aktywne w widmie 
Hamana i na odwrót. Liczby nad przekątną podają krotność obsadzeń komór­
ki elementarnej, przy czym symetrię węzła określa grupa punktowa w kie­
runku pionowym w dół. Symbole pod przekątną oznaczają tak zwane grupy 
wymienne, wprowadzone przez Kopelmana Sens fizyczny grupy wymien­
nej polega na tym, że jest to najprostsza grupa, zamieniająca symetrycz­
nie równoważne położenia węzłów o symetrii Cg. Jeśli więc przez Cg o- 
znaczymy grupę punktową symetrii węzła, a przez Gj grupę wymienną, to 
grupę punktową komórki elementarnej Gg- możemy zapisać w następujący 
sposób:

% = ' (7.48)
I 

przy czym » oznacza iloczyn prosty pbu grup.
Z nomogramu tabeli 7.7 możemy odczytać, na przykład, że komórka e- 

lementarna o symetrii grupy punktowej, D?h może być obsadzona na trzy 
sposoby, a mianowicie (informacje znajdujemy zawsze w miejscu przecię­
cia się określonego wiersza z określbną kolumną; jeśli w tym miejscu wy­
stępuje kropka to oznacza to, że postawionego zadania zrealizować nie 
można):

(i) możemy obsadzić tę komórkę dwiema identycznymi cząsteczkami w 
węzłach o symetrii C^, przy czym symetria tego obsadzenia będzie od­
powiadać symetrii grupy punktowej Cg,

(ii) w takiej samej komórce możemy mieć cztery cząsteczki w węz­
łach o symetrii 0$, przy czym ich rozkład będzie miał symetrię D2, 

(iii) w komórce elementarnej możemy mieć osiem cząsteczek syme­
trycznie nierównoeennych o'symetrii C^, a więc asymetrycznych.

Istnieje zatem ścisła, choć nie zawsze jednoznaczna, relacja mi ę- 
dzy punktowymi grupami symetrii cząsteczki, Gy, węzła, Ggr oraz komórki
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Tabela 7.7
Grupy węzła skończonych grup punktowych (według [55] ). Krotność węzła 

(m) podana jest po prawej stronie od przekątnej, a grupa'wymienna (G ) 
po stronie lewej. Gwiazdka s oznacza zasadę wzajemnego wykluczania się 
przejść Hamana i IH. Znak • oznacza, że żadna z grup wymiernych nie 
apełnia równania (7.48). Litera a wskazuje, że G-j. = dla G = c



286

elementarnej, G£, W najogólniejszym sformułowaniu Gg musi być z jed­
nej strony podgrupą G^, z drugiej podgrupą GK

(^ => Gs c (7.49)

Taki zapis oznacza w spektroskopii, że 'poszukujemy odpowiedniości mię­
dzy reprezentacjami grupy punktowej węzła i swobodnej cząsteczki, oraz 
między reprezentacjami węzła i komórki elementarnej. Tego typu korela­
cje między różnymi grupami symetrii mają znaczenie ogólniejsze i poda­
wane są w dziełach specjalistycznych z dziedziny teorii grup; przyto­
czone są również w monografii Wilsona, Deciusa i Grossa [2j. Niech*jako 
przykład posłuży kryształ o symetrii grupy punktowej komórki elementar-' 
nej D?h. Prżyjmiemy, że komórka jest obsadzona dwiema cząsteczkami, za­
tem symetria węzła będzie Cgy (tab. 7.7); niech symetria cząsteczki 
będzie wyższa, na przykład Dg^. Diagram korelacyjny, opracowany na pod­
stawie tabel korelacyjnych [2], przedstawiony -jest w tab. 7.8. Z diagra­
mu tego możemy odczytać następujące informacje!

(i) kierunkom spektroskopowych przejść w cząsteczce 
odpowiadają kierunki przejść spektroskopowych w krysztale 
równoległe do odpowiednich osi krystalograficznych a, b, 

Tx> Ty, Tz.
Ta’ Tb’ Tc

c..Zwróćmy
uwagę na fakt, że drganie typu E w cząsteczce swobodnej ma moment 
przejścia leżący w płaszczyźnie x,y, ale szczegółowy jego kierunek nie 
może być określony na podstawie zasad symetrii,

(ii) częstości typu , zabronione w cząsteczce, dopuszczone są 
przez symetrię węzła i mogą się pojawić w krysztale jako słabe przejś­
cia o symetrii B^u, tj. o polaryzacji wzdłuż osi a kryształu,

(iii) częstości typu są zabronione w cząsteczce i nie mogą 
też wystąpić wkrysztale. Podobnie rzecz się ma z częstościami typu B^ ,

(iv) częstości Bg dopuszczone są przez symetrię cząsteczki, rów­
nież węzła i będą się pojawiać w krysztale jako silne przejścia o syme- 
trii B3u,

(v) przejścia typu E zostaną rozszczepione przez symetrię węzła. 
Przy wystarczająco dużej zdolności rozdzielczej spektrofotometru przejś­
cia te pojawią się w widmie w podczerwieni jako dwa osobne maksima o 
symetrii B^u i B2u o różnych polaryzacjach. Jest to przypadek roz­
szczepienia statycznego.

Obecność większej liczby identycznych oscylatorów w cząsteczce lub 
w komórce elementarnej prowadzi nas do tak zwanego problemu sprzężonych 
oscylatorów, wynika on stąd, że jeśli częstości oscylatorów są identycz­
ne, to również fazy drgań nie mogą być dowolne; muszą spełniać określo­
ne reguły symetrii. Zagadnienie oscylatorów sprzężonych opisano szczegó­
łowo w znakomitej monografii Davydova prowadzi ono do zrozumienia 
problemu ekscytonów. Przedstawimy tu niektóre wyniki tej teorii.



28?

Tabela 7.8
Diagram korelacyjny między reprezentacjami grup punktowych D2d 

(cząsteczka), Cg^ (węzeł) i Dph (komórka elementarna)

Grupa punktowa 
cząsteczki swo­

bodnej

Grupa punktowa 
węzła

Grupa punktowa 
komórki elemen­

tarnej
D2d D2h

A1 '----- ----- ——AB

A2 —- ------- w
 

ro
 

« N
^/B26v\

 

« 
PA

• R 17» ------ -----O
 

bd
 > 

W
 

..i
 £ k

» 
Ć

 
O
T

o__ —----- ^’^-y ■
(T ,T ) E-Ł <7 B2u’Tb

B3u’^a

Rozważmy dla przypomnienia elementarny problem dwóch oscylatorów 
sprzężonych. Dla uproszczenia przyjmijmy, że masy obu oscylatorów są i- 
dentyczne nL| = m2 = m, a wobec identyczności stałych siłowych kq = 
= k2 = k, rówhież częstości drgań w stanie swobodnym są takie same

= w02 =“0’ ai 1 a2 °2“®czają współrzędne ruchu oscylato­
rów, to całkowitą energię układu można napisać w następujący sposób:

E = 1 a 1 mi2 ~ deUi + ~ ma o 
2 ' 2

+ - ka? + - ka?
2 2

+ Y a^ag, (7.50)

przy czym kropka oznacza różniczkowanie po czasie, zas Y®^ag d6317 e" 
nergią sprzężenia obu oscylatorów. Równania ruchu mają zatem postać

2 Y* Wq a^ + ~ = 0,
m

(7.5D.. 2 y )
a^ + o $2 = 0 •

Jeśli założymy rozwiązanie periodyczne typu

ik0 exp (iw t), (7.52)
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gdzie i jest jednostką urojoną, zaś a]£0 amplitudą ruchu, k = “l,2, 
to otrzymamy układ dwóch równań jednorodnych. Warunkiem istnienia nie- 
trywialnych rozwiązań dla amplitudy jest znikanie wyznacznika układu, 
czyli

(W2 - w2) (w2 -w2)- (J)2 = O.

8tąd otrzymujemy
2 2 Y= “o (częstość symetryczna),

(7.53) 
2 2 ' YWg = Wq + — (częstość antysymetryczna).

Przejdźmy do opisu widma częstości wewnętrznych kryształu..Klech 
wskaźniki a, 3 numerują cząsteczki, a n,m komórki elementarne.Jeś­
li ładunek elementarny oznaczymy przez ą, siłę oscylatora przez f 
(jest to współczynnik korekcyjny, bezwymiarowy i mniejszy od jedności, 
adjustujący prawdopodobieństwo przejścia do natężenia przejścia), to 
moment dipolowy cząsteczki w komórce n możemy zapisać następująco:

= ay?e a„_, , (7.54)—na ' —a not

przy czym e oznacza wektor jednostkowy w kierunku P, zaś a - jak 
dotąd - współrzędną drgań. Ponieważ mamy Z. cząsteczek w komórce ele­
mentarnej oraz N = komórek w krysztale, to całkowita energia
ZN drgających oscylatorów wyniesie

® + “o' 2 ,m₽ {^ńa *m 3 "
n, a n,a nya m, p

mp Jna,mp^-neJPńa^p^}’ (7.55)

gdzie Hnoinip jest odległością obu oddziałujących dipoli, a pnttjmg 
wektorem jednostkowym w kierunku R (rys. 7.6). Prim przy znaku sumy 
oznacza, że opuszczamy w niej wyrazy dla których n = m i a= p.

Przyjmijmy, że równanie ruchu o-tego oscylatora

••2 j K 1; o2f ( 
ana +u)O ana+ “ X. M (-«-3" 

m,p ńa,mp

’^aPnocmpO^ (7^6)

ma rozwiązanie w postaci fali biegnącej (komentarz przedstawimy póź­
niej)
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i(k r - wt)aa e2₽ (7.57)

gdzie k jest wektorem .falowym, zaś r

r = It] az] + Ng a2 + K5 S3» (7.58)

jest wektorem sieci prostej, której periodami są a.^, ą2, a^. Podstawie­
nie (7.57) do (7.56) prowadzi do zbioru liniowych równań jednorodnych, 
określającego zbiór wartości amplitud, aa

Z
- “2^a + °* (7.59)

r« B 't'en3orem» opisującym oddziaływania międzycząsteczkowe typu 
dipol-dipol, przy czym jego składowe są funkcją wektora falowego k

r«f ® = 2 -sr~exp [i(i» -WM»- 
m na,mp

p 2na,m|3^—a£nas,mp^ (7.60)

f a rozumieć będziemy jako wpływ otoczenia na cząsteczkę w węźle cc. 
Pnn?eważ wymiarem r jest s ( ra a można uważać za zmianę kwadratu 
częstości, wywołaną umieszczeniem oscylatora w ośrodku o przenikalnosci 
dielektrycznej e/ 1.
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Rys. 7.7. Schemat rozszczepienia poziomu energetycznego I w ) 
w sieci krystalicznej

Rozwiązanie układu równań jednorodnych (7-59) prowadzi do zbioru 
częstości własnych

w 2 = a)2(k), a = 1,2,...,Z, (7.61)

z których każda zależy od wektora falowego. Wektor falowy k przyjmuje 
N dyskretnych wartości

ks = ’ 3 = 1’2’5 ^.62)

a

tak, że każda z częstości włas­
nych jest w gruncie rzeczy ąuasi- 
ciągłym pasmem (rys. 7.7).

Rozważymy trocnę bardziej 
szczegółowo przypadek obsadzenia 
jednoskośnej komórki elementarnej 
Cgh czterema cząsteczkami (Z=4). 
Rozkład wektorów jednostkowych 
oddziałujących dipoli ea, przed­
stawiony jest na rys. 7.8. Przyj- 
miemy, że składowe tensora oddzia­
ływań p, spełniają następują­
ce warunki, wynikające z symetrii 
rozkładu wektorów:

r11 = r22-" r35 = r44 ~
r - r - r 12 - ^4 ~ - 2’

rl3 = r24 = r3’

r14 = r23 = r4'

(7.63)
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Przy -takich założeniach układ równań liniowych (7.59) może być rozwią­
zany, przy czym otrzymujemy następujące częstości własne:

+ rn + r2 + (J< + r4),

w| = wg +1^ + T - (T + r ),

= «0 + -J2 + (r? - P4),

. w4 = “0 + ri “ r2 “ ^3 ~ r4)

i wektory własne

^' = ₽1 teł + £2 + s? + £4)« ^£a = o,

£2' = B2(ę1 + ę2 - ę3 - 64), = 0,
(7.65)

£5' = Bjteł - £2 + ^5 “ £4)» II b.

£4' = B4te-i “ £2 " -5 + £4^ S£a -1- b-

bl b/

---------------------------- >— . ------- —-----------------------  a----------------------a
Rys. 7.9. Wypadkowe momenty przejścia spektroskopowego 

w komórce elementarnej

Dokonana analiza prowadzi do wniosku, że sprzężenie drgań czterech cząs­
teczek w komórce elementarnej prowadzi do rozszczepienia każdej częstoś­
ci na cztery składowe (dalsze rozszczepienia, wynikające z quasi-ciąg- 
łej struktury częstości, pomijamy), z których dwie nie wykazują zmiany 
wypadkowego momentu dipolowego i nie mogą być aktywne w IR. Dla pozosta­
łych dwóch składowych kierunek momentu przejścia jest odpotui edni o rów­
noległy lub prostopadły do krystalograficznej osi b (rys. 7.9).

Trochę inny wynik otrzymujemy z zastosowania teorii grup do anali­
zy tego przypadku. Komórka elementarna ma następujące elementy sy­
metrii:
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C2 II My), oh 1 b, I, E.

Wobec tego tabela charakterów ma następującą postać;

E c(b) 
C2 °h I Aktywność

IR R

kg 1 1 . 1 1 Ry

Au 1 -1 -1 Ty( II b) -

Bg 1 -1 -1 1 - My

Bu 1 -1 1 -1 Tx’TzUb; —

Jr 12 0 4 0

Rozkład, reprezentacji redukowałaśj łg według ) prowadzi do wyni­
ku

rE = 4Ag + 2AU + 2Bg + 4BU.

Po odjęciu typów akustycznych Au + 2BU otrzymujemy

4Ag + Au + 2Bg + 2Bu’

Wynik ten wskazuje na istnienie jednej częstości o polaryzacji róv7noleg- 
łej do osi b, lecz dwóch częstości o polaryzacji prostopadłej, nie­
zgodność z poprzednim wynikiem spowodowana jest prawdopodobnie zbytnim 
npms7.n7.fi niem założeń (7»6J), prowadzących do zerowania się dwóch momen­
tów przejścia w (7.65).

Prócz wzbudzeń kolektywnych typu optycznego, z którymi mamy do-czy­
nienia w spektroskopii, istnieją też inne wzbudzenia kolektywne, które 
są koherentnymi ruchami dużej liczby wzbudzeń elementarnych. Przykłada­
mi mogą być fale akustyczne, akusto-elektryczne i magneto-hydrodynamicz- 
ne różnych rypów. Ogól nis biorąc, dynamikę wzbudzeń elementarnych można 
podzielić na następujące przypadki

1. Wzbudzenia typu Bosego, tj. podlegające statystyce Bosego-Ein- 
steina:

fotony,
fonony podłużne i poprzeczne, 
librony,
fonony i rotony w nadciekłym helu (He II),

npms7.n7.fi
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fale spinowe w materiałach magnetycznych, 
ekscytony w półprzewodnikach i kryształach molekularnych.

2. Wzbudzenia typu Fermiego, tj. podlegające statystyce Eermiego- 
Diraca:

elektrony przewodnictwa i dziury w półprzewodnikach, 
ąuasi-cząstmi w normalnych metalach, w nadprzewodnikach i ciekłym 
He III, 
polarony w półprzewodnikach i kryształach molekularnych.

Z kolektywnymi wzbudzeniami mamy do czynienia w spektroskopii prze­
de wszystkim wówczas, gdy absorpcja materiału jest duża. Przy dużej gęs­
tości stanów wzbudzenia następuje kolektywizacja ich ruchu, co w języku 
teorii grup sprowadza się do konieczności opisu ruchu poprzez podanie 
modusów drgań ciała stałego. Owe modusy mają określone częstości i wek­
tory propagacji, których kierunki w krysztale zależą od symetrii sieci 
i - jak widzieliśmy - w znacznym stopniu mogą być przewidywane regułami 
wyboru.

7.3. Model gazu zorientowanego w spektroskopii

Poprzednio rozważaliśmy przypadek silnego sprzężenia drgań oscyla­
torów w komórce elementarnej, prowadzącego ao kolektywnego modusu drgań 
wszystkich cząsteczek w kryszuale pod postacią fali biegnącej (ekscyto- 
nu). Jeśli jednak absorpcja jest słaba, to stan wzbudzenia kryształu mo­
żemy traktować jako zbiór wzbudzeń elementarnych, oddziałujących słabo 
lub nie oddziałujących na siebie wzajemnie. Poszczególne akty absorpcji 
z wytworzeniem molekuł w stanie wzbudzonym następują wówczas niezależ­
nie i warunki fazowe nie odgrywają roli. Absorpcja uzależniona jest na­
tomiast od geometrycznych związków między kierunmami momentów przejścia 
w elemencie strukturalnym (atom, cząsteczka, komórka elementarna) a kie­
runkiem E padającej fali elektromagnetycznej. Tami obraz absorpcyjny 
przypomina zjawisko scyntylacji, a rozkład przestrzenny wzbudzonych di­
poli jest przykładem "gazu zorientowanego".

Model gazu zorientowanego, który tu opiszemy, polega na powiązaniu 
doświadczalnie zmierzonej absorpcji określonego typu oscylatorów w kry­
sztale molekularnym z przewidywaniami, Jakicn możemy oczekiwać na pod­
stawie znajomości struktury tego kryształu.

Aby porównanie to mogło mieć charakter ilościowy, pomiary natęże­
nia pasma absorpcyjnego muszą spełniać pewne warunki. Najważniejszymi z 
nich są:
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(i) Wiązka promieniowania spolaryzowanego musi padać na kryształ w 
taki sposób, by wektor E fali leżał w jednej z płaszczyzn optycznych 
kryształu. Płaszczyzną optyczną jest taka płaszczyzna, która przechodzi 
przez dwie osie główne indykatrysy. Przy innej orientacji wektora E na­
stępuje rozszczepienie wiązki w momencie wejścia do kryształu na dwa 
promienie, z których każdy porusza się w ciele stałym z inną prędkością 
i jest absorbowany w różny sposób. Wynik takiego pomiaru nie ma sensow­
nej interpretacji fizycznej (por. rozdz. 6.2). Ponadto będziemy rozwa­
żać wyłącznie przypadek prostopadłego padania wiązki na płytkę krysta­
liczną.

(ii) Część promieniowania ulega odbiciu na granicy faz powietrze/ 
kryształ. W celu wyeliminowania błędów pochodzących z odbicia najlepiej 
umieścić na drodze wiązki odniesienia możliwie cienką płytkę z tego sa­
mego materiału i w tej samej orientacji, co na drodze wiązki pomiarowej. 
Wyniki pozbawione błędów pochodzących z odbicia można również uzyskać 
przez wykonanie pomiarów natężenia pasma dla szeregu płytek o różnych 
gruoościach i zastosowanie prawa Lamberta (7.66).

(iii) Pomiar natężenia wiązki wchodzącej do kryształu Io oraz 
wiązki opuszczającej kryształ 1^, pozwala zgodnie z prawem Lamberta na 
obliczenie stałej absorpcji materiału к przy określonej częstości 
wiązki padającej

2.303
. k(v) =—----- log (1/b). (7.66)

d

Miarą integralnego natężenia pasma jest wyrażenie

V2
A^a^ = / k(v)dvs СК^Н(а), 17.67)

V1

gdzie Kmax jest stałą absorpcji w maksimńm pasma, H jego szerokością 
połówkową, zaś C pewną stałą, nie mającą znaczenia dla dalszych rozwa­
żań. Wskaźnik a oznacza, że mierzone wielkości są pozorne, ponieważ 
zawierają błędy eksperymentalne, wynikające ze skończonej szerokości 
spektralnej wiązki promieniowania, opuszczającej monochromator. W celu 
uzyskania "prawdziwej" wysokości pasma Кщах i jego szerokości 
trzeba zastosować jedną z procedur korekcyjnych, na przykład podaną 
przez Ramsay' a [37j .

Przytoczone dotąd uwagi dotyczyły eksperymentalnego problemu pomia­
ru natężenia pasma. Po y/ykonaniu pomiarów dla dwóch prostopadłych kie­
runków optycznych płytki i Xg i zastosowaniu procedur korekcyjnych 
możemy otrzymać wielkość, zwaną doświadczalnym dichroizmem pasma
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A(t?
R1/2 = TW * <7.68)

a2'

Liczba ta charakteryzuje anizotropię absorpcji określonego typu oscyla­
torów dla wybranych dwóch kierunków pomiaru.Jeśli znamy strukturę krysz­
tału i orientację indykatrysy, to kierunki te mogą być łatwo zorientowa­
ne względem kierunków krystalograficznych. takim przypadku możliwe 
jest obliczenie wielkości dichroizmu Przez zastosowanie modelu
gazu zorientowanego dla wielkości wektorowej (por. rozdz. 4.2).

Eys. 7.10. Orientacja optyczna płytki (001) w układzie jednoskośnym

W celu sprecyzowania sytuacji geometrycznej weźmy pod uwagę płytkę, 
przedstawioną na rys. 7.10. oznaczają główne współczynniki
załamania światła, a n^, ng, n^ niech będą współczynnikami załamania 
wzdłuż osi Xz], Xg, x^ układu współrzędnych. Przypuśćmy, że || x^, 
lecz Ng lezy w płaszczyźnie płytki. Z sytuacją taką spotkamy się, 
na przykład, w płaszczyźnie (001) układu jednoskośnego - w tej orienta­
cji, Xq || b. Aby napisać wyrażenie na dichroizm trzeba wziąć pod uwagę 
dwa następujące faktys

(i) Promień świetlny E || X, przebywa w krysztale drogę optyczną 
o innej długości niż promień E || Xg. Długość drogi optycznej wynosi

r i = di ni, (4.69) 
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gdzie di jest efektywną grubością kryształu. Według (6.29) mamy

di = dQ/cos ' (7-69)

przy czym dę jest geometryczną grubością płytki, zaś £ kątem zawar­
tym między wektorami D i Ę(k^ fali wewnątrz kryształu (rys. 6.7). Po­
prawka z tego wynikająca powinna się znaleźć w mianowniku dla zredukowa­
nia drogi optycznej do jednakowej wartości dla obu kierunków i

(ii) Orientacja wektora Ę(kj względem xŁ jest na ogół inna niż 
orientacja E w powietrzu (próżni).

Energia absorbowana :przez oscylator w j-tej cząsteczce w komórce 
elementarnej, któremu odpowiada wektor-momentu przejścia

gdzie m- jest J
na do

M. = M„-m_, (7.70)J J
wektorem jednostkowym w kierunku Ku, jest proporcjonal- U

2 2(M^-E^b = M^m^E^b . (7.7'1)
““ J u

Po tych przygotowaniach wyrażenie na dichroizm możemy zapisać w następu?.
jący sposób

Z 2
n2d2 Z ^j’^

=---------- 2-------------------  . (7.72)
' z .2

j
«Tę \

Należy teraz obliczyć długości drogi optycznej i- orientację E£ dla 
każdego z dwu możliwych kierunków pomiaru.

1. Dla E^ || mamy n^ = || , zatem według (6.25) '5 = O.
Wobec tego

. d^ n^ = dQ N.] (7.73)

oraz
Ę^k) || Ęz] ]| ^|.

2. Dla Eg II x2 współczynnik załamania światła OKreśla wyrażenie 
(6.24)

X = cos|jL + . (7.74)

N2 N3
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Ponadto

d2 =
% 

cos ę (7.75)

przy czym kąt Ą 
Orientację E^

jest określony przez (6.25). 
podaje poniższa tabelka:

O cos § ± sin 4
(7.?6)

Wybor znaku przy sin zależy
trysy. Wobec (7.76) otrzymujemy

od orientacji przekroju NgN^ indyka-

Podstawienie

5

tycn wyrażeń do

R(t) = “2
N^ cos €

j» XJ cos (Xj., E^kb =

cos im-, x?) i sin \ cos (m , x,). J — J p
(7.72) prowadzi do wyniku

Z 2
^cos (m^.x^)

j=1

sin £cos

(7.77)

(7.78)

= cos 5

Z
2

j=1

W tym wyrażeniu występuje zarówno orientacja optyczna indykatrysy jak i 
orientacja kierunków momentów przejścia m- względem przyjętego układu 
osi x(x2Xj. Najwygodniej jest wybrać taki układ wzdłuż kierunków op­
tycznych płytki jak to widać na rys. 7«'IO. Potrzebne w (7.78) kosinusy 
kierunkowe m można otrzymać z danych strukturalnych (orientacja m_. 
względem osi a, b, c) i orientacji kierunków optycznych za pomocą zwy­
kłych transformacji układu współrzędnych.

Zastosowanie (7.78) do obliczenia dichroizmu pasm absorpcyjnych 
ilustruje tab. 7.9. kąt ę wynosi od kilku sekund (duren)do 12°-10 (antra­
cen). Jak widzimy, poprawka zależna od kąta 5 ma niekiedy istotne zna­
czenie dla porównania wyników doświadczalnyen dicnroizmu ż obliczonymi, 
azczególnie wyraźnie jest to widoczne w przejściu k' benzamidu; przy 
zaniedbaniu dichroizm pasma ma kierunek odwrotny niż w eksperymencie.

Interesujący problem pojawia się wtedy, gdy jedynym elementem sy­
metrii cząsteczki jest płaszczyzna symetrii o pokrywająca się z 
płaszczyzną cząsteczki [39]. Grupa punktowa symetrii G{. zawiera wów-
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Wyniki pomiarów i obliczeń dichroizmu niektórych pasm absorpcyjnych 
w bliskiej podczerwieni

Kryśztał Przejście 
absorpcyjne

Typ 
symetrii

Częstość
-1 cm maz’

R(obl) 
Rb/a

S= 0

R(obl) 
Hb/a

p(dośw) 
b/a Literatura

haftalen GH 4
v(2) 

CH B2u 5995 6,94 4,80 4,51(28) 093

V(1) + v(3)
VCH + VCH B5u , 5985 0,17 0,45 0,47(6) D9J

p-Nitroani- 
lina x> 2 v aS vnh2 A1 6901 0,41 0,45 0,46(2) 093

Acetanilid 2 VCH a' 5980 0,69 Os69 0,70(2) 091

Benzamid 2 VCH a' 6050 0,91 1,28 1,18(1) 09]

Dureń v4 + 2 v5 E 5670 0,85 0,85 0,82(4) 09]

Kwas 
benzoesowy 2 VCH A' 6050 0,81 0,71 0,68(1) £40]

Antracen CH h 'CH B2u 5940 7,00 5,25 5,05(55) £40]

Dichroizm w układzie osi b oraz a' = £101].



299

czas tylmo dwie reprezentacje: A i A", czyli drgania cząsteczki mogą 
być aloo symetryczne, albo antysymetryczne względem tej płaszczyzny. W 
tym drugim przypadku moment przejścia jest oczywiście wektorem prosto­
padłym do oh, ale jaką wybrać reprezentację geometryczną dla A', sko­
ro o wektorze momentu przejścia wiemy tylko tyle, że leży w

Otóż okazuje się ([40]), że wyrażenie na dichroizm (7.78) pozosta- 
je słuszne również i dla takich pasm, jeśli zamiast kosińusów kierunko­
wych momentu przejścia podstawić kosinusy kątów zawartych między aa 
osiami układu lub - co jest równoważne - użyć orientacji normal­
nej n do

cos (oh>xi) = - sin (n,^). (7.79)

Przykłady drgań A', podane w tab. 7.9» zostały potraktowane w taki 
właśnie sposób.

Pomiary i obliczenia dichroizmu przedstawione wyżej, zdefiniowane 
zostały dla pojedynczych, dobrze izolowanych pasm absorpcyjnych, z jaki­
mi nie zawsze możemy mleć do czynienia. Luty, Szostak i Karwowska poka­
zali jednak na przykładzie tiomocznika i p-nitroaniliny ([41]), że poję­
cie dichroizmu można rozszerzyć na grupę pasm. W krysztale tiomocznika, 
o symetrii ortorombowej, obserwuje się w przedziale częstości 6000- 
7200 cm”1 pasmo absorpcyjne złożone z kilku nadtonów i częstości kombi­
nacyjnych grupy -NHg. Analiza wykonana metodami teorii grup wskazuje, 
że w tym obszarze spektralnym może wystąpić sześć przejść o symetrii A^ 
i cztery przejścia o symetrii B^. Natężenie integralne tego pasma zapi- 
szemy w postaci

= 6a^ cos2 (A^,i) + 4bz| cos2 (B^,!), (7.80)

gdzie i w krysztale o tej symetrii oznacza jedną z osi krystalogra­
ficznych a, b lub c, zaś a^ i b^ są współczynnikami, określającymi 
natężenia przejść odpowiednio typu A^ i

Dichroizm całej grupy dziesięciu pasm dla kierunków "i" oraz "j” będzie 
zatem równy

2 2n- 6ad cos (A^,i) + 4b,, cos (Bd,i)
51/i = --- ------------------------------ -------2 ~ • (7.81)

' J n± Sa^ cos (Azj,^) + 4bq cos (B-pj)

Obliczenie wymaga w tym przypadku znajomości a^ i b^. Wobec te­
go, iż mamy do czynienia z przejściami o różnej symetrii lecz tego same-
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Tabela 7.10

Dichroizm pasm złożonych w bliskiej podczerwieni [41]

Orientacja Dichroizm
Ai obliczony doświadczalny

1. Tiomocznik, kryształ jednoskośny, grupa -NHg 
(6000-7200 cm"1), 6A^ + 48^

a O 2418 0,3895
b 0,8691 -0,5428 Hb/c 1,70 ' 1,77*0,02
c -0,4313 -0,7441 Bc/’ 3,18 2,7810,06

2. p-Nitroanilina, kryształ jednoskośny, grupa -NHg 
(6400-7200 cm"1), 3^ + 2B1

3 -0,5516 0,4760 E x) 1,52±0,08
0.5560 0,8490 a /D

Ł' Dichroizm w układzie osi b oraz a' = [101]

go oscylatora autorzy [41] przyjmują, że a,] = b^. Uzyskane wyniki po­
miarów i obliczeń zestawione są w tab. 7.10.

Przytoczone w tym paragrafie wyniki wskazują, że zastosowanie mode­
lu gazu zorientowanego do interpretacji natężenia pasm absorpcyjnych w 
podczerwieni prowadzi do rozsądnej zgodności między dichroizmem zmierzo­
nym i obliczonym, model ten może oyć więc wykorzystany do potwierdzenia 
przypisań pasm absorpcyjnych przejściom o określonej symetrii, jak rów­
nież może oyć pomocny w uzyskaniu informacji o przybliżonej orientacji 
cząsteczki w krysztale o nieznanej strukturze.

7.6. Absorpcja w przekroju izotropowym
. l '

loprawny sposób wykonania pomiarów spektrofotometrycznych przy uży­
ciu płytki anizotropowej i promieniowania spolaryzowanego wymaga - jak 
widzieliśmy - zachowania oki-eślonych relacji między kierunkiem B fali 
a kierunkami optycznymi płytki. Takicn pomiarów dla każdej płytki może­
my wykonać tylko dwa, co ogranicza dokładność, z jaką można wyznaczyć 
dichroizm interesującego nas pasma. Oczywiście nie ma takich ograniczeń, 
jeśli płytka jest izotropowa, ponieważ w niej każda fala spolaryzowana,
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padająca prosuopadłe,muże się rozchodzić oez zmiany kierunku propagacji 
i stanu polaryzacji.

Otóż każdy kryształ ma co najmniej jeden przekrój optycznie izotro­
powy. Jeśli grupa punktowa komórki elementarnej zawiera jedną oś syme­
trii o krotności wyższej niż 2, kryształ jest jednoosiowy, a w płasz­
czyźnie prostopadłej do tej osi współczynnik załamania światła jest za­
wsze taki sam, niezależnie od kierunku. Kryształy nie mające osi syme­
trii o Krotności wyższej niż 2 są dwuosiowe; mamy wtedy dwa przekroje 
izotropowe, każdy prostopadły do odpowiedniej osi optycznej. Jeśli zaś 
w krysztale występuje więcej niż jedna oś o krotności wyższej od 2, to 
indykatrysa degeneruje się do kuli, dla której istnieje nieskończenie 
wiele przekrojów izotropowych, aprobujemy teraz znaleźć profil absorp­
cyjny jaki otrzymamy, gdy wektor E padającej normalnie fali będzie za­
wierać różny kąt 0 , z jakimś kierunkiem odniesienia w płytce. Zacznie- 
my od bliższego sprecyzowania położenia płaszczyzny izotropii dla przy­
padku o pośredniej symetrii, tj. kryształu, należącego do układu jedno- 
skośnego o grupie punktowej symetrii komórki elementarnej C3h. Przyj- 
miemy, że płaszczyzną optyczną jest (010). Ozj i Og są osiami optyczny­
mi i zawierają między sobą kąt 2V (r;?. 7.11). Kąt między 0^ i kry­
stalograficzną osią a oznaczmy przez 1; kąty 2V, i P leżą wszyst­
kie w (010). W tej płaszczyźnie leżą również kierunki 0^, Og, a, c, cx. 
Płaszczyzną prostopadłą do 0^ jest jest to właśnie jeden z dwu 
możliwych przekrojów izotropowych. Wybierzmy teraz pomocniczy układ 
współrzędnych, zdefiniowany w następujący sposób: || 0^ , x2 || b, X|
zgodnie z prawoskrętnością układu. Orientację w abc określa
macierz

(- sin © O - cos
ó 1 O j. (7.82)

cos <P O - sin

Dla cząsteczki przyjmujemy układ osi 1KN; e,. || 1, eg || M, || N, pokry­
wający się z jej osiami symetrii a jednocześnie z kierunkami przejść 
spektroskopowych; są wektorami jednostkowymi. Orientację LŁIH cząs­
teczki "k" w abcx, k = 1,2,...,Z, określa macierz

Elementy tej macierzy dla k = 1 podawane są w pracach strukturalnych, 
a dla k / 1, oraz ej1^ otrzymuje się z i ep przez trans-



Rys. 7.11. Orientacja płaszczyzny 
izotropii (n-i) względem (010) 

w układzie jednoSkośnym

formację macierzami A^., odpowiada­
jącymi elementom symetrii grupy 
punktowej komórki elementarnej. Je­
żeli potraktujemy wektory jak macie­
rze jednokolumnowe, to transforma­
cje te możemy zapisać w następujący 
sposób:

4k)=Ak41)' - <7.84)

Wprowadźmy oznaczenia (indeks T 
oznacza transpozycję)

= (- sin <p , 0, - cos <₽ ) jest za­
tem wektorem, którego składowymi są 
elementy pierwszego wiersza macie­
rzy g, zaś składowymi e.^1 = 
= <C21> c22’ s4 elementy dru­
giego wiersza macierzy C^. Trój­
kę kosinusów kierunkowych spektro­
skopowego momentu przejścia typu 

2(i/i ). = t.(0) = V (E-Mkb .
° j j k_ j —j

k=1

"i" względem osi przedstawia 
wektor

17.86)

Przypuśćmy teraz, że na płytkę wyciętą prostopadle do osi optycznej pa­
da w kierunku do niej normalnym, tj. wzdłuż x-, promieniowanie spolary­
zowane. Niech 6 będzie kątem zawartym między a E (rys. 7.11), czy­
li E = E(cos6 , sin 6, 0). Zgodnie z modelem gazu zorientowanego ab­
sorpcję płytki wyraża związek

(7.87)
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Tabela 7.11
Operacje symetrii i wektory e\ 1 dla kryształu jednoskośnego, 

grupa punktowa komorki elementarnej C?h

T -C ) oznacza przepuszczalność płytki w funkcji 0 dla oscylatorów "j" 
a wi^c L albo M, albo N. W wyrażeniu (7>87) pominięty został stały 
czynnik, nie mający znaczenia dla dalszej dyskusji.

Rozpiszmy (7.87) bardziej szczegółowo. Macierze operacji symetrii 
w C211 i wektory eP^ podane są w tab. 7.11, a wektory dla przejść 
o molekularnym momencie przejścia równoległym do osi L, M lub N i zwa­
nych krótko oscylatorami L, M lub N, w tab. 7.12. Korzystając z tych 
tabel możemy obliczyć, na przykład, że absorpcja w zakresie częstości 
wzbudzającej iscylatory L opisywana będzie funkcją

1^(0) = ^(c^^ sin <P + c^ cos Q)2- cos2 6 + 4 c^2 sin2 6 .

W ogólnym przypadku

T.(0) = 2(a. cos e + B . sin©)2 + 2(A. cos 9 - B. sin©)2, (7.88)
Jud d u

przy czym

\ A. = c^ sin? + c cos ® i 7.89)
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(przekrój )

Bj = Cj2*

Kształt figury geometrycznej opisywanej przez (7.88) przypomina "ósemkę'.' 
Bkstrema tej funkcji przypadają w badanej przez nas sytuacji geometrycz­
nej || b) w punktach 6^ = 0 oraz ©2 = 90° i mają wartości

T.(O) = 4A2 1.(90) = 4B2 (7.90)d d d J
Dokładne wartości ekstremów mogą być wyznaczone z szeregu pomiarów za 
pomocą metody najmniejszycn kwadratów. Znajomość ich prowadzi bezpośred­
nio do orientacji oscylatora j względem krawędzi komórki elementarnej 
a mianowicie

1 .(0) AA" /c.. c., \2
—---- = | —u I =1 -ad- sin ® cQS ' I . (7.91)
Tj(9°) V/ \cj2 cj2 /

l 
Postępując analogicznie w stosunku do drugiego przekroju izotropowego, 

J- ^bóry w krysztale jednoskośnym nie jest równoważny przekrojowi 
n., znajdujemy, że profil figury wyraża się również wzorem 17.88), jed­
nak znaczenie stałych A. i d

Aj = CSin 

przekrój «2)

Stosunek ekstremów wynosi w

T^tO) /Aj
T.(90) " \B. d \ d

Korzystając ze związków (7.9^) i (7.95) możemy napisać dwa równania 

a. m. + b. — — Pi
1 (7.94)

a2 m.1 + b2 m, = ± q,

z którycn - z dokładnością do znaku - można obliczyć szukaną orientację 
oscylatorów

B. jest teraz inne: J
(2V - *) - c^ cos (2V -0), (7.92)

Bj = C;j2.

tym przypadku

—sin (2V - 0) cos (2V - ir. ) > . (7.93) 
cj2 cj2 J

c ..

Trzecim równaniem jest warunek normalizacji kosinusów kieruhkowycn do 
jedności.
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Tabela 7.12

(k)Wektory Dj' ‘ w krysztale jednoskośnym, 
grupa punktowa komórki elementarnej C?J1

Oscylatory Ł

sin <P “ c15

- ®15

COS

sin

A

<₽/

\

cos <p

sin <p + C13 cos <p\

cos <p + °1J sin V
sin <p ♦ + cos Ą
cos + sin V

sin * " ®1J cos A
cos - °13 sin

Oscylatory M

sin c25 COS

cos <P - °23 sin 7

sin cp + C23 COS A
cos <p + °23 sin <p /

sin q> + c23 cos A
cos <p + C2J sin <p /

•c21 sin <P - c2j cos <r\
C22 I
c2z] cos 7 - c2j sin <Py
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cd. tab. 7.-12

Oscylatory N

md
—5

sin <₽ - c^ 

c32
COS<₽ - Cjj

cos q>

sin Q>

M2>
—2

sin + c?3 

cos <₽ + c^^

cos 4

sin <₽

M*)
—5

/ C31 
I -c52 
\"c51

sin <p

cos 4

c53

c33

cos <p

sin 4

MD
—5

sin <P- c^ 

cos <P - c^

cos <p 

sin <P.

Rozważmy przypadek kryształu jednoskośnego, w którym q>= 50°, 2V =
= 75°, zaś macierz C orientacji IMS ma składowe

0,5228
-0,8259
-0,4624

-0,74-11
0,0855

-0,6662

0,5887
0,5577

-0,5851,

Przy tych danych stałe A i B mają następujące wartości:

Oscylator L

Przekrój Przekrój n2

A1 0,6712 -0,1880

B1 -0,7411 -0,7411

Wykresy, ilustrujące przepuszczalność Tj(0) tego układu oscylatorów 
pokazane są na rys. 7.12, przy czym funkcje dla obu przekrojów znormali­
zowane są do tej samej przepuszczalności w maksimum. Punkcję I .(0j mo- 
żerny równi eż ”wyprostować”, ponieważ (7.88) można doprowadzić do posta­
ci

$ ( 9) = 4 (a^ + (B? - A2) sin2©]. (7.96)
J I J J J J
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Kys. 7.12. Eigura absorpcyjna w przekroju n* (krzywa 1) 
i w przekroju (krzywa 2) dla oscylatorów typu L

Rys. 7.13. Liniowa reprezentacja krzywej z rys. 7.12
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Widać stąd, że Т^(в) jest liniową funkcją sin26 (rys. 7.1J), co u- 
łatwia zastosowanie rachunku wyrównawczego w celu znalezienia dokład­
nych wartości A i B.
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8. ROZSZERZALNOŚĆ TERMICZNA KRYSZTAŁÓW MOLEKULARNYCH

Rozszerzalność termiczna jest jedną z najczęściej mierzonych włas­
ności materiałowych. Każde ciało stałe pod wpływem ogrzania doznaje 
przyrostu objętości, aczkolwiek - jak zobaczymy później - liniowa roz­
szerzalność może mieć w niektórych kierunkach wartości ujemne. Właści­
wie nie rozumiemy jeszcze dzisiaj zbyt dobrze, dlaczego materiały stałe 
rozszerzają się (jeśli przez "zrozumienie" będziemy uważać umiejętność 
podania interpretacji tego zjawiska na poziomie molekularnym). Pierwszą, 
rzucającą się w oczy różnicą między tensorem rozszerzalności termicznej 
a tensorami opisującymi inne własności fizyczne kryształu jest to, żę 
tensor rozszerzalności nie jest tensorem materiałowym. W przedstawień 
nych już przez nas własnościach materiałów takich, jak podatność.diamag- 
netyczna, czy optyczna przenikalność dielektryczna, tensorowi makrosko­
powemu odpowiadał zawsze jakiś tensor mikroskopowy, przypisywany cząs­
teczce. Można więc powiedzieć, że kryształ dlatego jest dia- czy para- 
magnetykiem, że jego cząsteczki mają własności dia- czy paramagnetycz­
ne. Otóż nie ma molekularnego odpowiednika wielkości makroskopowej[któ­
rą zwiemy współczynnikiem rozszerzalności termicznej. Cząsteczki uważa 
się najczęściej za twory sztywne, przynajmniej w zakresie niezbyt wyso­
kich temperatur. W wyższych temperaturach, gdy staje się możliwe wzbu­
dzenie drgań wewnętrznych cząsteczki wskutek wzrostu czynnika Boltzman- 
na , średnie w czasie' rozmiary cząsteczek mogą ulegać zmianom, co zapew­
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ne będzie mieć wpływ na makroskopową rozszerzalność ciała stałego. Po­
dobny efekt mógłby wystąpić również wtedy, gdybyśmy potrafili wytworzyć 
dostatecznie dużą gęstosc stanów wzbudzonych w obszarze drgań wewnętrz­
nych cząsteczki za pomocą wiązki promieniowania o dużym natężeniu;efekt 
taki, którego zbadanie mogłoby wiele wnieść do mechanizmu rozszerzalnoś­
ci kryształów, według naszej znajomości zagadnienia nie został jeszcze 
opisany.

W temperaturach nie przekraczających 400 K w większości przypadków 
nie występuje więc wzbudzenie rozciągających drgań wewnętrznych,a przy­
czyn rozszerzalności termicznej należy szukać w fizycznym charakterze 
otoczenia wybranej cząsteczki, innymi słowy można oczekiwać, że tensor 
rozszerzalności termicznej ma cnarakter dynamiczny, ff takim razie o 
własności fizycznej będzie decydować przede wszystkim przestrzenny roz­
kład potencjału oddziaływań międzycząśteczkowych, który możemy reprezen. 
tować pnwierzchnią energii potencjalnej. Powierzchnia taka zależna od - 
powiedzmy - sześciu parametrów komórki elementarnej i od temperatury, 
będzie bardzo skomplikowaną funkcją tych parametrów, zważywszy, że jej 
kształt powinien odzwierciedlać również anharmoniczne cechy drgań ter­
micznych cząsteczek. Wyda je się, że anharmoniczność drgań, prowadząca 
w rezultacie do wprawdzie niewielkich ale znaczącycn przemieszczeń li­
niowych i kątowych cząsteczki, jest koniecznie potrzeona w opisie roz­
szerzalności termicznej. Nie mamy jeszcze teorii anharmonicznej dynami­
ki sieci, wobec czego dla zrozumienia zachodzących zjawisk musimy posłu­
giwać się opisem mniej czy więcej fenomenologicznym. Czynione są dopie­
ro próby skonstruowania takiej teorii, przy czym na razie obejmują one 
własności kryształów o najprostszej budowie, przede wszystkim metali i 
kryształów jonowycn o sieci regularnej. W niektórych pracach dokonywane 
są próby objęcia teorią również regularnych kryształów molekularnych, o 
czym wspomnimy szerzej w tym rozdziale. Wpierw zajmiemy się jednak dys­
kusją zjawisk anharmoni a ynyaii dla pewnych modeli jednowymiarowych.

Do najnowszych opracowań monograficznych z zakresu rozszerzalności 
termicznej kryształów należą trzy pierwsze pozycje wykazu literatury 
[1-3J wraz z pozycją czwartą, przynoszącą wyniki prac przedstawionych 
na konferencji międzynarodowej [4J.

8.1. Proste modele efektów anharmonicznych

Zbadajmy ruch jakiegoś prostego oscylatora, którym może być wahad­
ło lub cząsteczka, wykonująca w sieci krystalicznej drgania libracyjne 
wokół jednej z osi symetrii. W pierwszym przypadku energia potencjalna 
opisywana jest funkcją

U = U (1 - sin 8 tg 6) = n (1 - e2 - i*04 - ...), (8.1)
o ° o

»przy czym 6 jest kątem zawartym między nicią wahadła odchylonego z po­
łożenia równowagi a kierunkiem pionu. W drugim przypadku energia poten­
cjalna może być zapisana w postaci

U = Uo(1 - cos© ) = U0(je2 - 94 + ...), (8.2)

która wskazuje, że w położeniu równowagi 6=0 energię potencjalną, 
przyjmujemy za równą zeru. Oba te przypadki mają jedną cechę wspólną: 
w energii potencjalnej występują jedynie parzyste potęgi wychylenia ką­
towego w rozwinięciu funkcji trygonometrycznych względem 6 = O, a więc 
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Krzywa energii potencjalnej jest w ohu przypadkach symetryczna. Jeśli 
wychylenia są małe, to w obu przypadkach można odrzucić potęgi 6 wyż­
sze niż 2, co nas prowadzi do problemu drgań oscylatora lub libratora 
harmonicznego. Załóżmy jednak, że amplitudy drgań są na tyle duże, że 
trzeba zachować jeszcze wyraz 6*; ruch w obu przypadkach będzie anhar- 
moniczny. Ze względu na niewielkie różnice w kształcie funkcji U(0) 
rozważymy dalej ruch z zastosowaniem funkcji (8.2).

Równanie Lagrange a

d 98 JE n
dt Ją Są

przy czym
E = T - U

oraz .
T = ^ie , (8.5)

gdzie I jest momentem bezwładności, a 8 prędkością kątową, prowadzi 
do równ»^a ruchu lioratora

i e + u ( e - 1 e3) = o O 6

lub
e +0) 2 0 - 7 w2 93 = O. (8.4)

o O °

2 
Iloraz UQ/I ma wymiar kwadratu częstości - oznaczyliśmy go przez wo. 
Przybliżonym rozwiązaniem (8.4) jest funkcja

0 = 0O sin wt + e 0Q sin 5 u)t, (8.5)

gdzie e jest małą liczbą, e«1. W dokładniejszym rozwiązaniu powinniś­
my uwzględnić również dalsze nieparzyste harmoniczne w (8.5), których 
częstości są równe (2n + 1)m. Udział ich jest jednak rzędu en, a więc 
szybko maleje ze wzrostem n, dlatego w dalszym rachunku zaniedbamy 
wszystkie człony z ek przy k> 1. Podstawienie (8.5) do (8.4) prowa­
dzi do równości trygonometrycznej, która musi być spełniona w dowolnej 
chwili t; warunkiem jest znikanie z osobna współczynników przy sin w.t 
i sin (5wt). Stąd mamy dwie równości

u2 0 - ui2 9 - w2 93 = 0, 
00 o 24 o o ’ \o.b;

-9 m2 e 9 + m2 e0 + —■ a2 C3 = 0.
y ooo 24 $ 0

Pierwsza z równości prowadzi do zależności częstości od amplitudy ruchu



512

✓i o *1/2 ✓! p<0 = ^(1 -j 9^) (8.7)

Ze wzrostem amplitudy częstość maleje, lecz zależność ta nie jest silna 
jak wskazuje poniższa tabelka

8$$^ 0 5 10 20 50 40

w, cm“1 100 100,0 99,8 99,2 98,5 97,0

Siemniej, w zakresie dużych amplitud ruchu nie ma jednej określonej 
częstości drgańj widmo amplitud w drganiach termicznych libratora trans­
formuje się na pasmo częstości, którego szerokość A w zależy od skraj­
nej amplitudy ruchu. Oznacza to poszerzenie linii absorpcyjnej w krysz­
tałach, w których taki ruch cząsteczek zachodzi.

Z drugiego równania, przyjmując w2 »w2, otrzymujemy 
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Dla 0O = 20°, e = 6*10“Z|’, zaś 80 = 40°, e = 2,5’10"^, a więc e jest 
rzeczywiście małą liczbą. Możemy e nazwać współczynnikiem anharmonicz- 
ności, określającym udział członów nieharmonicznych w funkcji energii 
potencjalnej (8.2). W rozwiązaniu (8.5) dla 8 udział częstości podsta­
wowej jest ©0, zaś drugiej harmonicznej e0Q.

Prócz anharmonizmu, towarzyszącego symetrycznej krzywej potencjal­
nej z parzystymi potęgami przesunięcia oscylatora, możemy mieć anharmo- 
niczność towarzyszącą asymetrycznej krzywej energii potencjalnej. Niech 
będzie

U(x) = ^cx2-~6cx^ (8.9)
2 2

oraz
T(x) = | m X2, (8.10)

gdzie c jest współczynnikiem liniowej*siły sprężystej, m masą a x 
prędkością oscylatora; 6 ma wymiar odwrotności długości, przy czymó-1 
jest wielkością dużo większą od amplitudy ruchu tak, że drugi człon 
(8.9) stanowi jedynie niewielką poprawkę w stosunku do pierwszego. Po­
równanie obu krzywych energii potencjalnej oscylatora anharmonicznego, 
tj. (8.2) i (8.9), przedstawione jest na rys. 8.1.

Zastosowanie równania Lagrange’a prowadzi do równania ruchu 

m x + c x - S c X2 = O,
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Rys. 8.1. Typy krzywych energii potencjalnej (schematycznie):
a) potencjał anharmoniczny symetryczny,
b) potencjał anharmoniczny asymetryczny

lub
x + Wq x - 6 wf x2 = 0, (8.11)

p
przy czym co = c/m jest kwadratem kątowej częstości drgań.

Rozwiązaniem tego równania jest funkcja

x(t) = A(coswt + ą cos 2 cut) + Xq, (8.12)

gdzie X] oraz q < 1 należy wy znaczyć. Łatwo dostrzec, że x^ jest 
średnim w czasie położeniem oscylatora. Mamy bowiem

<x(t)> = A<cos *ut> + qA<cos 2wt>+ Xj = (8.13)
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Ponieważ krzywa energii potencjalnej jest asymetryczna, czyli w punkcie 
-x0 działa siła większa niż w +xQ, to oscylator przesuwa się w kierun­
ku słabszej siły (+x)ze wzrostem amplitudy drgań» Jeśli zero na osi od­
ciętych wybierzemy w taki sposób, by dla oscylatora harmonicznego śred­
nie położenie przypadało w punkcie x = O (położenie równowagi), to x^ 
będzie oznaczać niewielkie przesunięcie oscylatora anharmonicznego 
względem położenia równowagi. Pomijając w X2 wyrazy zawierające x^ 
oraz ą (X2 wchodzi do (8.11) z małym współczynnikiem S), możemy napi­
sać

x2(.t) = A2 cos2 wt = — A2(1 + cos 2 wt). 
2

Po podstawieniu rozwiązania i przybliżenia do (8,11) otrzymamy
p 2

-w A(cos' wt + 4 ą cos 2 wt) + w0 A(cos wt +
o A 2 2+ ą cos 2 wt) +w Q X| - - 6wo A -

ą p p
----  5 w„ A cos 2 wt = 0. 

2--0

Przyrównując do zera współczynniki przy cos wt, przy cos 2 wt oraz 
wyrazy wolne, otrzymujemy

p 2- M A + W^ A = 0, 

czyli
w = wQ. (8.14)

Jak widzimy, w tym modelu anharmoniczności nie ma zależności częstości 
drgań od amplitudy.

Dwa pozostałe związki mają postać
p 2 1??-4 q w A + ą w^ A - S k = °’ 

czyli
q = - 1 ÓA. 

O
Ponadto

J 5 A2. (8.15)

Najbardziej interesujący jest tu wynik dla x^. Jak widzimy, przesunię­
cie oscylatora anharmonicznego względem położenia równowagi jest propor­
cjonalne do współczynnika 6, opisującego asymetrię funkcji energii po­
tencjalnej (8.9) oraz do kwadratu amplitudy drgań. Zauważmy, że średnia 
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energia oscylatora kT jest również proporcjonalna do kwadratu amplitu­
dy drgań. Wobec tego

<x> -A2 ~ kT. (8.16)

W tym wyniku zawiera się istotna część wyjaśnienia rozszerzalności ter­
micznej ciała stałego.

Związek między typem anharmoniczności (lub krzywej energii poten­
cjalnej) możemy uogólnić, korzystając z dyskusji tego zagadnienia za­
mieszczonej w monografii Kittela Łącząc (8.2) i (8.9), możemy napi­
sać wyrażenie na energię potencjalną oscylatora anharmonicznego w ogól­
niejszej postaci

V(x) = c X2 - g x^ - i X2*-, (8.1?)

przy czym w członie gxr będzie się przejawiać asymetria sił działają­
cych na oscylator przesunięty z położenia równowagi, zaś w członie £x^ 
wpływ dużej amplitudy drgań. Korzystając teraz ze statystyki Boltzmanna, 
możemy napisać wyrażenie na średnie przesunięcie oscylatora

7 x e-V(x)/M

<x>= ----. (8.18)
+00

-OD

Dla niezbyt dużych x wyrażenie podcałkowe można rozwinąć w szereg, za­
chowując tylko dwa pierwsze wyrazy rozwinięcia. Otrzymujemy

x g-c^/kP ^g^/kT . g

x e-cs^/M + + SĆjUm ±
( ' kr kT J

e-cx2/ki' L + + V
kT kT

Poszczególne całki możemy obliczyć za pomocą wzorów Poissona

i = / e-«x2 . M_V/2
2n J e • x ax - Lanki)

-co x '
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I2n+1 “ °’

Widzimy stąd od razu, że człon fx^ w (8.17)nie wnosi żadnego udziału 
do przesunięcia oscylatora. Innymi słowy, za rozszerzalność termiczną 
odpowiedzialna jest asymetria krzywej energii potencjalnej.

Rachunek dla członu gx^ przedstawia się następująco:

g T x4 . g-c^/kT = 3g-/^ M\5/2t
k32 ' 4 u \ c ] ’

+00 +00 o ,

/ f (“) ,
-00 -OD

CZyli Z Z
<*>= J 4M=I Ą<B>. (8.19)

* c * c

<E> jest średnią energią oscylatora w przybliżeniu harmonicznym. Przy­
bliżony wynik kwantowy dla <x> można otrzymać, podstawiając za<E> 
funkcję

=----------------------------------- ------- . [0,OJI
exp (H w/M?) - 1

Przy takiej postaci i8.20) można oczekiwać, że współczynnik rozszerzal­
ności termicznej a będzie szybko malał przy spadku temperatury poniżej 
temperatury charakterystycznej oscylatora i będzie dążył do zera dla 
temperatury zmierzającej do 0 E. Takie zachowanie się. zostało istotnie 
stwierdzone doświadczalnie.

Ba zakończenie możemy stwierdzić, że w rozszerzalności termicznej 
ciała stałego mają udział następujące dwa efekty:

(i) Istnieje związek między objętością ciała stałego a amplitudą 
drgań termicznych. Ze wzrostem temperatury amplituda tych drgań rośnie, 
także w przybliżeniu drgań harmonicznych. Efekt ten możemy zrozumieć 
tak, jakby "efektywna" (dynamiczna) objętość elementów strukturalnych 
zależała od temperatury.

(ii) inharmoniczność drgań cząsteczek powoduje, że zarówno ich po­
łożenia jak i względne orientacje ulegają pewnym niewielkim, lecz ciąg­
łym zmianom w miarę podwyższania temperatury, zakładamy przy tym, że w 
badanym zakresie temperatur faza krystaliczna jest termodynamicznie sta­
bilna, tj. nie występują przemiany fazowe. Wiadomo bowiem, iż w przejś­
ciu fazowym występuje zmiana symetrii makroskopowej, której towarzyszy 
o wiele większa i niekiedy nieciągła zmiana położeń i orientacji cząste­
czek w sieci krystalicznej.
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W następnym rozdziale zobaczymy, że analiza odkształceń wywołanych 
zmianą temperatury również prowadzi do dwojakiego rodzaju przeauni gć. 
cząsteczek w sieci: przemieszczeń liniowych i kątowych. Pomiar rozsze­
rzalności termicznej umożliwia ocenę wielkości tych prze minigA,

8.2. Makroskopowy opis deformacji

Dyskutowane w poprzednim rozdziale skutki anharmoni c.r.nnćci drgań 
termicznych cząsteczek są efektami anizotropowymi: przesunięcia 1 i ni owe 
środka masy cząsteczki zależą od kierunku krystalograficznego, w którym 
efekt ten mierzymy, przemieszczenia kątowe cząsteczek zależą nie tylko 
od sposobu wyboru osi libracji lecz i od jej orientacji w sieci krysta­
licznej. W rezultacie anizotropii tych efektów, makroskopowa deformacja 
ciała jest również anizotropowa: kula wycięta z materiału w określonej 
temperaturze przestaje być kulą po zmianie temperatury. Przedstawimy o- 
becnie opis tej deformacji wg Uye^a [61, mimo iż zawiera on pewną, dość 
istotną niekonsekwencję. Polega ona na tym, że zmiany rozmiarów i kształ­
tu kryształu traktuje się jako deformację ośrodka ciągłego. Tymczasem 
kryształ składa się z cząsteczek na ogół sztywnych, wypełniających prze­
strzeń ze współczynnikiem upakowania bliskim jedności. Widać tu nieprzy­
stosowanie makroskopowego opisu deformacji do mikroskopowej struktury 
kryształu. Pomimo iż nie w pełni konsekwentny, opis ten jest przydatny 
na przykład do geometrycznego przedstawienia skutków ogrzania kryształu 
lub przewidywania zmian wybranych kierunków w sieci krystalicznej pod 
wpływem temperatury.

Zmiana temperatury powoduje zmianę rozmiarów kryształu, tj. dowol­
ny punkt P wewnątrz kryształu przemieszcza się względem początku ukła- 
du współrzędnych w jakieś nowe położenie. W przypadku jednowymiarowym, 
którego odpowiednikiem jest ogrzewana struna, skutki wydłużenia przed­
stawione są na rys. 8.2. Będziemy się interesować losami nie jednego 
punktu, lec z oa.cinka PQ = ć x. Z rysunku widać, że zmiana temperatury 
wywołuje następujące skutki:

0 P Q 0 P Q'

| x*u f a x»

Strina nierozciagnięta Struna rozciągniętą

Rys. 8.2. Deformacja jednowymiarowa

(i) Początek odcinka przesuwa się z P do P*, przy czym OP*- OP = 
= u.
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(ii) Długość odcinka ulega zmianie o wielkość P'Q' - PQ =Au. 
Przyrost długości odcinka o długości jednostkowej jest miarą odkształce­
nia względnego A u/Ax. Ogól ni a odkształceniem nazywamy wielkość bezwy­
miarową

e = — . (8.21)
dx

Jeśli odkształcenie jest jednorodne, tzn. nie zależy od położenia z 
punktu, to przesunięcie dowolnego punktu

u = u0 + e»x (8.22)

jest liniową funkcją jego położenia.

W przypadku dwu- i trójwymiarowym zachodzą bardziej złożone przesu­
nięcia punktów, w wyniku którycn odcinki Ax ulegają nie tylko wydłuże­
niom, ale i obrotom. Bozważmy te skutki w płaszczyźnie (rys. 8.3).

Bys. 8.3. Deformacja w dwóch wymiarach

Po deformacji płaski element prostokątny o bokach i AXg przejdzie 
w równoległobok o bokach P'Q*. Względne przemieszczenie punktu może­
my rozłożyć na dwie składowe: przesunięcie Au^ wzdłuż osi x^ i prze­
sunięcie A wzdłuż osi ^2« Wówczas

du^ 
e11 = ----- dXq

jest składową odkształcenia, odpowiadającą względnemu wydłużeniu odcin­
ka A Ł], zaś
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e21
duP
—- = tg V “ 9

jest składową odkształcenia, odpowiadającą obrotowi A^' o kąt cp. W 
ostatniej równości zaniedbaliśmy w mianowniku Au^«^. Podobnie

jest miarą wydłużenia hx2, zaś

dulf
e12 = -----= tg ® = &

jest miarą obrotu elementu A x2 o kąt t. Obroty $ i 
ne i mają zwroty przeciwne. .Ogólnie,

e
Su^ 

s*k

są na ogół róż-

(8.25)

jest składową tensora odkształcenia względnego. Tensor ten jest 2-go 
rzędu i nie jest symetryczny. Wobec tego możemy go rozłożyć na tensor 
symetryczny £, opisujący czyste odkształcenie i tensor antysymetryczny 
w, opisujący czysty obrót

eik = 2 (eik + ®kP> 

“ik = 2 (eik " eki^*
(8.24)

Tensor ę jest symetryczny, zatem można go sprowadzić do układu osi 
głównych e2, znikają wtedy składowe ścinające. Sześcian o kra­
wędzi 1 zmieni długość tych krawędzi do 1(1 +6^)1, a przy tym prosto­
padłość krywędzi zostanie zachowana. Niezmienniczość kierunków osi głów­
nych jest ważną własnością tensora odkształcenia, ponieważ, jak zobaczy­
my później, wszystkie inne kierunki ulegają zmianie po odkształceniu. 
Wskutek zmiany długości osi głównych nastąpi zmiana objętości sześcianu

Av = Pd + e^Jd + e2)(1 + e?) - P =

= P(^ + e2 + e^) = P^, (8.25)

gdzie 3 jest średnim odkształceniem objętości materiału.
Kula o promieniu jednostkowym

x2 + x2 + x2 - 1-“-'I * d-2 —
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zmieni się pod. wpływem odkształcenia w elipsoidę o osiach

xi = xi^ + ei^’ • (8*26) 

przy czym x^ wybrane są wzdłuż osi głównych ę. Równanie tej elipsoi­
dy ma postać

(i + e^)2 (1 + e2)2 (1 + ej)2

Warto podkreślić, że (8.27) jest zawsze elipsoidą; nosi ona nazwę elip­
soidy odkształcenia. Kwadryka natomiast, przedstawiona równaniem

xT 5 x = ex x2 = 1 (8.28)
i

może być elipsoidą, lecz może również przedstawiać hiperboloidę, jeśli 
nie wszystkie są dodatnie.

W ogólnym przypadku odkształcenie, nie musi spełniać zasady Neuma- 
nna, ponieważ jest ono "odpowiedzią’' kryształu na działanie czynnika 
zewnętrznego. Symetria tej odpowiedzi zależy nie tylko od. symetrii 
kryształu, lecz również od symetrii tego czynnika. Jeśli rozważamy od­
kształcenie spowodowane przez zmianę temperatury Tg ■ w jedno­
rodnym polu temperaturowym, to symetria e zależy tylko od symetrii 
kryształu, zgodni a z zasadą Neumanna. W takim przypadku możemy zdefinio­
wać dla głównych kierunków główne współczynniki rozszerzalności termicz­
nej 

gdzie AT jest możliwie małą zmianą temperatury. Jeśli jest ona jedna­
kowa dla wszystkich punktów kryształu, to deformacja jest jednorodna, a 
jej związek z tensorem rozszerzalności termicznej a jest następujący:

e = a . AT. (8.30)

Jednym ze skutków rozszerzalności jest więc przesunięcie punktu opisywa­
ne przez (8.26) lub w ogólniejszym przypadku w przestrzeni przez (8.27), 
Drugim skutkiem jest deformacja postaci, określona współczynnikami ści­
nania. Wielkość tych współczynników obliczył Jakubowski [7] w układzie 
osi głównych ą

ó = |(ot^ -®22^2 cos2 $1 cos2 ^2 + ^1*1 ~ a33^2 cos2 $1 cos2 $3 + 

o ? 2 l1/2
+ («oo - a )^ cos^ Po cos 8 7 ) (8.31)



321

Przytoczony tu wynik obliczeń otrzymamy dalej na trochę innej drodze, 
wskazującej wyraźniej na powiązania obu skutków deformacji termicznej, 
W wyrażeniu (8.31) cos , cos ₽2, cos są kosinusami wybranego kie­
runku względem osi głównych , a2, a^. £ jest więc wektorem, któremu 
odpowiada antysymetryczny tensor

Wkładowe (8.32) spełniają relację 6ik = - &ki i zależą od wielkości 
anizotropii “

Rys. 8.4. Rozłożenie ogólnego przemieszczenia punktu (r) 
na składową podłużną i^) i poprzeczną (h)

Odkształcenia ścinania nie będziemy zatem obserwowali w kryształach o 
rozszerzalności izotropowej, gdy = »2 = a^; nie wystąpi również w 
krysztale anizotropowym w kierunku którejkolwiek z osi głównych.

Przejdźmy teraz do rozłożenia ogólnego skutku deformacji na przesu­
nięcie i obrót, przy czym rozważania będziemy prowadzić w układzie osi 
głównych e, tj. xi || e^. Wybierzmy w tym układzie wektor jednostkowy 
Itlpl^lj) w dowolnym kierunku.Po podgrzaniu ciała 1 zmieni długość i 
orientację} położenie punktu P' po deformacji opisuje wektor R (rys. 
8.4)
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R = 1 + r, (8.54)

przy czym
r = e 1 (8.55)

jest wektorem przemieszczenia P do P . Ogólna przemieszczenie r może­
my rozłożyć na składowe A |[ 1 i }± J_l, przy czym zachodzi związek (rys.
8.4) ;

r = A + (8.J6)

Długość A można obliczyć w następujący sposób«

|A | x 1 • r = 1(5 • 1) = l1 £ 1 = Ą, 

gdzie jest współczynnikiem rozszerzalności termicznej w kierunku 1 
(por. rozds. 2.5). Wobec tego

A = sx • 1. (8.57)

Widzimy, że przesunięci® punktu w zadanym kierunku 1, czyli przesunię­
cie radialna, jest wprost równe iloczynowi współczynnika rozszerzalnoś­
ci w tym kierunku przez przyrost temperatury

Ą = a1 » AT . 1. (8.58)

Wielkość przesunięcia punktu P' w kierunku prostopadłym do 1, czyli 
przesunięcie transwersalne, obliczymy z twierdzenia Pitagorasa

( W2 ( '^/2

IM=^r.r-k.Ą) 3 p “eif

Wektor przesunięcia transwersalnego wynosi zatem

3 {(1*1^ - E1J *® (8.59)
' ' 5

lub
( ? pW2

R= (?'l) -«p .AT.m, (8.40)

gdzie m jest wektorem jednostkowym, prostopadłym do 1. Jeśli rozpi- 
szemy (8.40) według składowych, otrzymamy rezultat

£•£= fc «i • A2 “

(\^=1 ) \ i / J

- te«212(1 -i2) - ad12 =

IT i < j >
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42 2,v,92iHk(*)2
l i < j J

|
identyczny z wynikiem JakubowskiegoH8.31). ę± oznaczają wektory jed­
nostkowe wzdłuż osi układu współrzędnych. Okładowymi wektora U są więc 
przesunięcia wzdłuż układu współrzędnych końca wektora 1. Ponieważ są 
to wielkości bardzo małe, możemy uważać je za bardzo małe kąty obrotów. 
Jeśli przez oznaczymy niewielki kąt obrotu wokół osi xi(to (8.0) 
możemy zapisać również w postaci

A = ± <*j - Vxj AT ±i> (s.^)

przy czym wskaźniki i, j, k zmieniają się w porządku cyklicznym. Hów- 
nania (8.41) i (8.38) są słuszne w układzie osi głównych tensora od­
kształcenia e.

Przypomnijmy w tym miejscu przykład kalcytu, dyskutowany przez Ja­
kubowskiego [7] i poruszany już przez nas w rozdz. 2 w związku ze stoż­
kiem zerowej rozszerzalności (przykład 2.3). Ponieważ dodatnią rozsze­
rzalność wykazuje kalcyt tylko w kierunku osi 0$, a prostopadle do niej 
ulega skurczeniu przy ogrzewaniu

a11 = “22 = ~5.56.10~6 K“1, = 24,91’10-6 K"1,

występuje w tym krysztale stożek zerowej rozszerzalności, którego two­
rząca zawiera kąt z osią równy 'cp = 64,75°. Co dzieje się z tym kie- " 
runkiem, jeśli zmienimy temperaturę? Odpowiedź na to pytanie możemy u- 
zyskać przez zastosowanie (8.41). Ponieważ 1(0, sin $, cos 5), zatem

= i30.47.10~6 • sin 64,75 • cos 64,75 K"1 = ±2,42"/K, ' c
^2 ” ^3 =

Przy zmianie więc temperatury o 1 K kierunek tworzącej obróci się o 
2,42 sekundy kątowe w płaszczyźnie x2x3» ^3« wokół osi .

Przykład wykresu biegunowego naprężeń ścinających przedstawiony 
jest na rys. 8.5 w płaszczyźnie (010) kryształu antracenu. Położenie a- 
tomów zaczerpnięto z [52], profil współczynnika rozszerzalności o- 
raz składową <P2 naprężeń obliczono na podstawie danych [?3J • Widzimy, 
że wielkość naprężenia zeruje się w kierunku osi głównych a, natomiast 
osiąga maksimum pod kątem 45° względem którejkolwiek z tych osi. Z taką 
sytuacją spotykamy się w każdym krysztale, co wynika z postaci (8.41).
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8.3. Doświadczalne metody pomiaru rozszerzalności termicznej

Używa się głównie czterech, metod pomiaru rozszerzalności termicz­
nej kryształów, możemy je krótko scharakteryzować w następujący sposób:

Rys. 8.5. Biegunowy wykres naprężeń ścinających na płaszczyźnie (010) 
antracenu (<P2) i profil współczynnika rozszerzalności (a^)

(i) Metoda dylatometrii kwarcowej polega na pomiarze wydłużenia 
próbki w kształcie pręcika. Wydłużenie próbki przenosi się na zewnątrz 
strefy ogrzewanej za pomocą pręcika kwarcowego i obserwuje położenie na 
nim znaczka za pomocą mikroskopu, Opis takich dylatometrów można zna­
leźć w f7-9] .

(ii) Metoda bezpośrednia posługuje się obserwacją przemieszczeń 
jednego z końców próbki w kształcie pręcika przy użyciu teleskopu op­
tycznego (bez użycia pręcika kwarcowego) 00,11] .

(iii) Metoda interferometryczna opiera się na pomiarze przesunię­
cia układu prążków interferencyjnych. Przesunięcie to wynika ze zmiany
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długości jednej z dróg optycznych wskutek zmiany temperatury próbki 
[12-15] •

(iv) Metoda rentgenograf iczna polega na pomiarze zależności kąta 
odbicia Bragga od temperatury dla zbioru płaszczyzn sieciowych o zna­
nych wskaźnikach (hkl). Obecnie coraz częściej jest stosowana zasada po­
miaru Bonda ([16,1?]), najbardziej precyzyjna z tej grupy metod.

Pierwsze trzy grupy metod można nazwać wspólnie metodami dylatome- 
trii makroskopowej, ponieważ wyniki uzyskane s ich pomocą dotyczą włas­
ności całej próbki. Metody rentgenograficzne natomiast wykorzystują tyl­
ko drobny fragment próbki, o 'bardzo małej objętości, dla uzyskania po­
trzebnych informacji. W pracach eksperymentalnych coraz częściej stwier­
dza się istnienie systematycznych różnic w wynikach współczynników roz­
szerzalności, mierzonych metodami obu. typów na tym samym - lub przynaj­
mniej pod względem chemicznym tym samym - materiale. Pochodzenie tych 
różnic nie jest jeszcze dziś całkiem jasne. Doświadczenia wykonane na 
kryształach związków nieorganicznych wskazują, że pewien udział w roz­
bieżności wyników ma obecność punktowych defektów strukturalnych (08- 
20]). Timmesfeld i Elliot uważają, że obecność defektów punktowych w 
kryształach prowadzi do następujących efektów: zmiana stałych sprężys­
tych sieci wokół defektu, zmiana anharmoniczności wokół defektu, zmiana 
częstości i prędkości normalnych modusów sieci w krysztale zdefektowa­
nym. Efekty te częściowo neutralizują się wzajemnie tak, że zmiana może 
być zarówno dodatnia, jak i ujemna. Dla przykładu1 NaCl-Cu+ autorzy ci 
obliczają wielkość naprężeń lokalnych wokół defektu. W kryształach mole­
kularnych dodatkowy wpływ może mieć częsta obecność zamrożonych naprę­
żeń, uwalnianych podczas powolnego ogrzewania (zob. też [21]).

Dla przykładu przedstawimy w tym rozdziale opis dwóch metod Inter- 
ferencyjnych oraz metody Bonda.

Pierwsza z metod, opisana przez Hollenoerga i Sharpea [14], pole­
ga na ilościowym potraktowaniu obrazu interferencyjnego,, wytwarzanego 
w promieniowaniu lasera przez dwa cienkie włókna nieprzeźroczyste. Jed­
no z nich złączone jest sztywno z badaną próbką, drugie może być przy­
łączone do próbki odniesienia lub unieruchomione. Zmiana uemperatury po­
woduje przesunięcie układu prążków interferencyjnych, wywołane zmianą 
odległości włókien przy ogrzewaniu badanej próbki. Powstawanie obrazu 
interferencyjnego przedstawione jest na rys. 8.6. Bozważmy obraz wytwa­
rzany przez jedną nić. Obraz taki pojawia się wtedy, gdy średnica włók­
na leży w zakresie 10 A-100 A, gdzie A jest długością fali promieniowa­
nia lasera. Interferencja powstaje w wyniku różnicy dróg promieni, do­
chodzących uo ekranu z punktów A i B

A = b sin a (8.42)
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Wiqzka

Hvs. 8.6. Schemat obrazu interferencyjnego, wytwarzanego przez 
jedną (góra) lub dwie (dół) cienkie nici (według D4]), 

lub związanej z nią różnicy faz

B = — b sin a. (8.4?)
1 A

Natężenie I wiązki wysyłanej pod kątem a

1=1^31^8/8") (8.44)



wynika z teorii dyfrakcji Fraunhofera. I osiąga minimum w tych, punk­
tach, dla których

p = • sina = n • w, n = ±1, ±2, ... (8.45)

Z równania (8.45) można obliczyć średnicę włókna b, jeśli zmierzymy ką­
towy odstęp prążków. Zauważmy, że warunek (8.45) jest identyczny z do­
brze znanym wyrażeniem ha sinus kąta ugięcia siatki dyfrakcyjnej, przy 
czym stałej siatki odpowiada tu grubość włókna b. W miarę zmniejasania 
b odległość prążków rośnie.

Analogiczny jest opis zjawiska interferencji w ważniejszym przypad­
ku dwóch włókien. Hóżnica faz wynosi tym razem 

13Y = — d sin a, 
X

a natężenie obrazu interferencyjnego dane jest wzorem 

1=4 IQ(sin2 p/p2) cos2 y,

(8.46)

(8.47)

przy czym p zdefiniowane jest dalej przez (8.43). Obecnie w obrazie wi- 
aoczne są nie tylko zmiany intensywności, spowodowane średnicą włókna, 
lecz występuje dodatkowa modulacja wywołana większym odstępem d mię­
dzy włóknami. Jeśli odniesiemy punkt obserwacyjny do jakiejś szczegól­
nej wartości a = aQ, to natężenie światła w układzie dwóch włókien bę­
dzie równe

o f n 1I=4L cos^i - d sin a k (8.48)

gdzie L| jest natężeniem dla przypadku jednego włókna. Funkcja (8.48) 
osiąga minimum w punktach

•Jd sin a = (m + i) w, m = O,±1,±2,... (8.49)

Ponieważ a0 i A są stałe w czasie eksperymentu, (8.49) przedstawia 
związek między odstępem włókien d, a rzędem interferencji. Zmianie te­
go odstępu Ad odpowiada liczba prążków Am taka, że

A m = ^- sin aQ • Ad. (8.50)

W referowanej pracy eksperymenty prowadzono do 1100 °C, używając włó- • 
kien z korundu o średnicy 21 (im, A= 0,6328 |jum (laser He-Ne). Obraz in­
terferencyjny rzutowano poprzez szczelinę i filtr interferencyjny na fo­
tokomórkę, co pozwalało na automatyczny zapis kolejnych zmian natężenia 
wiązki interferencyjnej w miarę wzrostu temperatury. Odległość fotoko­
mórki od próbki wynosiła 2 m, kąt a0 = 3 do 5°, zapis temperatury auto-
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Rys. 8.7. Schemat zastosowania interferometrii holograficznej 
do pomiaru .a (.według [15])

matyczny przy użyciu termopary Pt-PtRh. Porównanie tej metody z dobrej 
klasy dylatometrami kwarcowymi wskazuje, że różnice wyników obu metod 
są mniejsze.od 0,1%. Błąd względny metody interferencyjnej w 1000 °C 
oceniają autorzy na 2%.

Druga z metod, którą chcemy tu przedstawić z powodu możliwości do­
konywania pomiarów także na kryształach z powierzchnią rozpraszającą 
światło (próbki nieodpolerowane), jest zastosowaniem interferometrii ho­
lograficznej. Układ opisany w [15] pozwala na pomiary rozszerzalności 
termicznej małych próbek dowolnego kształtu. Pewną cechą szczególną u- 
kładu jest to/ że jest on niewrażliwy na wszystkie typy'przesunięć rów­
noległych i na jeden z możliwych obrotów. Obraz interferencyjny, wynika-
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gący z pozostałych dwóch obrotów i rosszeraalneści próbki ma prostą in­
terpretację i pozwala obliczyć a baz znajowaści przesunięć kątowych. 
Żądania odnośnie położenia próbki są tak niewielkie, że metodą tą mie­
rzono rozszerzalność próbek ferresa^nstyka, lewitujących w polu sagne- 
tycznym.

Istotne elementy aparatury zestawiona są na rys. 8.7. Światło odbi­
te od przeźroczystego klina jest promieniem odniesienia. Soczewki wklę­
słe i skupiając®, umieszczone w promieniu przedmiotowym, wytwarzają 
wiązkę o dużym przekroju, potrzebną'do oświetlenia przedmiotu. Wiązka 
ta skierowana jest na przedmiot za pomocą klina, pokrytego warstwą odbi­
jającą o 50-prócentowej przepuszczalności. S celu wskazania kierunku, z 
którego należy oglądać przedmiot, w biegu wiązki oświetlającej wstawio­
ny jest reflektor pryzmatyczny. Droga optyczna od klina 50% de pryzmatu 
rozdzielającego jest taka sama jak dla wiązki odniesienia. Pozwala to 
na użycie laserów prostej konstrukcji, ze słabą koherencją czasową.

Na rysunku 8.?b pokazano sposób oglądania hologramu. Dla spełnie­
nia warunku, by wszystkie części przedmiotu oglądane były z dokładnie 
tego samego kierunku, można zastosować układ telecentryczny. Składa się 
on z soczewki kolimacyjnej o dużej średnicy. Oko lub kamera fotograficz­
na znajdują .się w odległości ogniskowej, która winna być kilkakrotnie 
większa od odległości między soczewką a rekonstruowanym obrazem. Znale­
zienie właściwego kierunku i odległości obrazu od soczewki telecentrycz- 
nej ułatwia reflektor pryzmatyczny dający ostry sygnał świetlny, łatwo 
widoczny na białej kartce papieru.

W tej konfiguracji można zastosować zarówno laser heIowo-heonowy, 
jak i prosty impulsowy laser rubinowy. Jeżeli używa się lasera gazowego, 
to nie wolno zmieniać położenia próbki w czasie ekspozycji, aczkolwiek 
jego zmiana między dwiema ekspozycjami jest obojętna. Jeśli T^ i Tg 
oznaczają temperatury próbki w chwili pierwszej i drugiej ekspozycji, 
to AT = T^ - Tg jest różnicą temperatur, która musi być znana do obli­
czenia a według (8.55).

Na rysunku 8.8 przedstawiony jest schemat analityczny sytuacji. Oś 
z jest kierunkiem oświetlenia próbki i jednocześnie kierunkiem ogląda­
nia obrazu. Niech r oznacza wektor, określający położenie jakiegoś 
punktu na powierzchni próbki. V/ wyniKU przesunięcia całej próbki lub ob­
rotu (ruch ciała sztywnego) i efekuu rozszerzalności termicznej punkt 
z położenia r przesunie się do r . Niech 5 oznacza wielkość prze­
sunięcie., przy czym 8 = r" - r. Zmiana długości drogi optycznej f z 
wynosi

( ra = 2 ó • uz, (8.51)



Eys. 8.8. Przesunięcia składowe, uczestniczące w powstawaniu 
różnicy dróg optycznych (według £15])

przy czym uz jest wektorem jednostkowym w kierunku z. Ponieważ prze­
sunięcia są małe, ogólne przemieszczenie 6 jest sumą poszczególnych 
przesunięć: translacyjnego ó^, rotacyjnegd 8^ oraz wynikającego z 
rozszerzalności termicznej &€. Obrót próbki o mały kąt w, któremu od­
powiada wektor równoległy do chwilowej osi obrotu, powoduje przasunię- 
cie punktu o odcinek

8r = £ *

Izotropowa ekspansja próbki przy współczynniku rozszerzalności termicz­
nej a powoduje przesunięcie = a AT . r. Jeśli próbka rozszerza się 
anizotropowe, to tę część przemieszczenia możemy przedstawić za pomocą 
wyrażenia

6 = « « r » AT,

gdzie a jest tensorem rozszerzalności. Ogólne przemieszczenie punktu 
na powierzchni próbki będzie zatem równe

+ “ + “ £ AT. (8.52)

Wobec tego zmiana długości drogi optycznej według (8.51; i (8.52) wynie­
sie

rz = 2‘6z + x ~ y + - z AT;. (8.55)
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Jeśli rz jest całkowitoliczbową wielokrotnością długości fali światła 
lasera X, powstaje układ, prążków interferencyjnych, opisywany przez 
równanie

m A = 2( 62 + Wy x - o>x y + a z AT), (8.54)

gdzie m jest liczbą całkowitą. Zauważmy, że kąt obrotu' mz wokół osi 
z nie ma udziału w ?z. Zmienne xyz możemy traktować jako parametry 
swobodne, a wtedy (8.54) ma bardzo prostą interpretację geometryczną. 
Jest to bowiem zbiór płaszczyzn dla m = 0, 1, 2, ..., wzajemnie do sie* 
bie równoległych. Kosinusy kierunkowe normalnej do tego zbioru są pro­
porcjonalne do 0)^, wx i a AT. Wytworzony układ prążków interferencyj­
nych jest skutkiem przecięcia się tego zbioru płaszczyzn z powierzchnią 
próbki (rys. 8.9).

Jeśli » = 0, to zbiór płasz- 
czyzn jest prostopadły do osi z. Z 

//// \\\\V\^ liczby prążków i rozmiaru próbki w 
/ /////// \\\\\ \ v| kierunku osi możemy w prosty sposób
////////\\ \\\\V obliczyć a. Jeśli w 0, lecz A.T = ■

' / ////// X\\\\\\\ = °» t0 wszystkie płaszczyzny,a więc
i Prążki, staną się równoległe do o- 

////////ć^v\\\\\' si z» ri0zależnie od kształtu obiek- 
/ ///=—^ \ \ \\ tu. Rozszerzalność przejawia się
/więc w nachyleniu prążków incerferen- 

~ cyjnych względem osi z.
Wybierzmy trzy punkty s^y^z-p 

x2y2z2 i x373z3 ‘balcie» ż® l®żą na
Rys. 8.9. Układ prążków interfe- linii 1 niech
rencyjnych, powstających na po­
wierzchni' sześcianu (schematycz- X. - X, yd - yo z4 - zo

nie, według [15] ) P = —-----— = —--------  = —--------  .
“ X3 7 2 ” y? *2 " z5

Wstawienie współrzędnych tych punktów do (8.54) prowadzi do związku

a AT ^(z1 - z2) - p(z2 - Zj) j =

= (nb] - m2) - pinig - m^)}. (8.55)

Z tego wyrażenia możemy bezpośrednio obliczyć a. Prążki są na ogół bar­
dzo dobrej jakości, wobec czego możliwy jest pomiar przemieszczenia rzę­
du 0,1 ich odstępu. Liczba prążków wzrasta wraz z rozmiarem próbki, z 
wielkością współczynnika rozszerzalności i przyrostem temperatury. Tes­
ty wykonane z kostką Al o boku 5 cm wskazują, że otrzymane wyniki a 
mieszczą się w granicach 10% wartości literaturowych.
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Metoda Bonda ©plena się na zastosowaniu dyfraktometru rentgenowskie­
go do precyzyjnego pomiaru odległości między płaszczyznami sieciowymi 
kryształu. Jej zasadniczą ideą jest spostrzeżenie ([22]), że kąt odbi­
cia promieniowania rentgenowskiego od zbioru równoległych płaszczyzn 
sieciowych można mierzyć o wiele dokładniej, jeśli wykorzystać zamiast 
jednego dwa symetryczne położenia kryształu i $2> sp®iuiaj$ce waru­
nek Bragga. W tych położeniach kryształ odbija wiązkę promieniowania w 
jednym z dwu symetrycznych kierunków D-j lub D2, w których umieszcza 
się detektor D (rys. 8.10), Kąt dyfrakcji dany jest przez różnicę obu 
położeń detektora:

29= 180 - (<P2 - 9^).

Wyeliminowane zostają w tan sposób 
błędy, wynikając® z niepewności poło­
żenie. zera na skali kąta <₽ oraz błąd 
9, wynikający z przesunięcia płytki 
krystalicznej w stosunku do osi obro­
tu, jeśli nie przekracza ono 1 mm 
([16]). Ka pomiar 9 nie ma wpływu 
również absorpcja promieniowanie, rent­
genowskiego w krysztale. Dokładny po­
miar 6 wymaga jednak uwzględnienia 
poprawek, pochodzących z nachylenia 
krysżtału, z rozbieżności padającej 
wiązki promieniowania, z załamania

_ B zir. o u *. wiązki w krysztale, wreszcie z przesu-
nięcia maksimum krzywej odbicia spowo» 

dowanego czynnikiem Lorentza i czynnikiem polaryzacyjnym. Dokładne omó­
wienie tych poprawek i sposób ich obliczania można znaleźć w cytowanej 
pracy [16]. Współczesne konstrukcje dyfraktometrów pozwalają na odczyt 
kątów z dokładnością do jednej sekundy kątowej! można uważać, że mniej 
więcej z taką dokładnością możliwe jest zmierzenie kąta ©. Osiągnięcie 
takiej precyzji w pomiarze kątów w pobliżu O = 75° odpowiada dokład­
ności pomiaru odstępu między płaszczyznami sieciowymi 1 : 1 000 000.
Możliwe jest to z jednej strony po zastosowaniu odpowiednich korektur 
przy wyznaczaniu 6 z obserwowanej krzywej odbicia, z drugiej ma sens 
tylko w odniesieniu do kryształów, odznaczających się wysokim stopniem 
uporządkowania, a więc dobrym sprecyzowaniem stałej sieciowej (Si, Ge, 
NaUl). Osiągnięcie tak wysokiej precyzji w pomiarze d pozwala zauwa­
żyć zmiany Ad towarzyszące zmianie temperatury rzędu ułamka stopnia; 
w ten sposób mierzy się więc tzw. różniczkowe współczynniki rozszerzal­
ności.
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Sposób obliczania głównych, współczynników rozszerzalności z do­
świadczalnie zmierzonych zależności kąta dyfrakcji od temperatury 0(T) 
omówiono w rozdz. 2 (problem 2.1). Zmodyfikowane zastosowanie metody fo­
tograficznej w rentgenografioznych pomiarach rozszerzalności przedsta­
wione jest w [23] . Autor zaleca wykonanie w temperaturze pokojowej zdję­
cia obrotowego warstwicy zerowej w ustawieniu asymetrycznym (Stranmaniaj 
a następnie wskaźnikowaniu refleksów za pomocą zdjęcia Weissenberga.Po­
miary rozszerzalności wykonuje się w specjalnie zaadaptowanej kamerze 
Weissenberga, zapewniającej dobrą stabilizację temperatury próbki. Bóż­
nica temperatur między dwiema ekspozycjami jest rzędu 100 °C, zatem mie­
rzy się wartości średnie dla tego przedziału temperatur. W pracy [23] 
opisano też prooeduręs mającą na celu minimalizację błędów systematycz­
nych.

Inny schemat rachunkowy obliczania głównych współczynników rozsze­
rzalności mierzoiiy metodami dylatometrii rentgenowskiej, opisany jest w 
[24].

8.4. Wyniki pomiarów rozszerzalności termicznej kryształów

Zestawienie wyników pomiarów współczynnika rozszerzalności termicz­
nej kryształów molekularnych podane jest w tab. 8.1. Związki uszeregowa­
ne są według malejącej symetrii kryształów. Składowe.tensora podane są 
według konwencji podobnej do tej, jaka została przyjęta dla własności 
optycznych w rozdz. 6: w układzie ortorombowym «a, aD, ac odnoszą się 
do krystalograficznych osi a, b, c, zaś a,j, a 2, a, oznaczają składo­
we główne “ w układzie jednoskośnym. Składowa a 2 jest równoległa do 
osi symetrii b, co"stanowi różnicę w porównaniu do konwencji z rozdz. 
6. Orientację przekroju tensora w (010) określano przez podanie kąta 
między osią i osią a (jeśli jest on znany); a jest dodat­
ni, jeśli mieści się w obrębie jednoskośnego kąta p1. Wszystkie wartoś- 

—6 —1 ci a podane są w jednostkach 10 K . W niektórych przypadkach - za­
leżnie od informacji dostępnych w literaturze - w miejsce a podano 
współczynnik rozszerzalności objętościowej p . Parametry komórki elemen­
tarnej podane są w 5. Przedstawimy obecnie kilka uwag do danych za­
mieszczonych w tabeli.

Kryształ jodu (Nr 9) rozszerza się nieliniowo, ponieważ wszystkie 
trzy współczynniki zależą od temperatury. Zwraca uwagę duży współczyn­
nik tem; ^raturowy a - jest on o rząd większy od pozostałych dwóch 
współczynników- Ma to odzwierciedlenie w strukturze ([34] ): cząsteczka 
jodu tworzy kąt około 33° 2 osią c, co tłumaczy nie tylko tę anizotro­
pię, lecz także bardzo silną anizotropię własności sprężystych. Współ­
czynnik sztywności wzdłuż osi c wynosi bowiem f^ = 17,2-lt/1' dyn/cm,
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T a b e la 8.1

Rozszerzalność termiczna kryształów molekularnych, a jest współczyn­
nikiem rozszerzalności liniowej, p - rozszerzalności objętościowej. 
Tp (tp) oznacza temperaturę przemiany fazowej w °K (°U), Tf (tf) odpo­
wiednio temperaturę topnienia związku. Parametry komórki elementarnej 
podane są w angstrBmach. Orientację osi w kryształach układu jed- 
noskośnego podano za pośrednictwem kąta jest on dodatni, jeś­

li leży wewnątrz rozwartego kąta p.

Nr Związek Infomacje 
strukturalne

a - Ю6, K-1 Orientacja Metoda Litera­
tura

1 2 3 4 5 6 7
1 Metan 

(CH4)
Regularny P = 1080 [25]

2 Metan

T, К ŁW) - 1(2.2) , 105

2 +4
4 -8
8 -17

12 -14
(odczyt, z wykresu)

Próbka 
polikryst. Dylatom. [26]

3 Metan

99,99» CHą 
Tp = 20,4 К 
Obie fazy re­
guł. ścien­
nie contr., 
a = 5,904 S 
w 22 К

T, К a

22 180
25 191
30 223
40 * 269
60 382

— Rentg. [27]

4
Deutero- 
Metan 
lCD4)

Regularny 
Faza I 570,6

—

Rentg. 
w zakresie 
od 40 do 
60 К

[28]

5 Deutero-
Metan

T, К a

2 0,075
4 0,59
6 3,17

10 25,3
13 64,9
17 162

Dylatometr. 
zakres 
temp. 2 do 
17 К

[29]

6 Deutero- 
Metan

Tp = 22,2 К 
Tr< Tp - Га- 
za tetrago- 
nalna
Tp<T <27,1 
faza reguł, 
ściennie 
centrowana, 
T>27,1 - 
j.w.

T, К 8 «104, K-1

10 0,33
14 2,8
20 16,9
25 20,7
30 11,0
40 10,2
60 13,0

— Rentg. BO]
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od. tab. 8.1
"3 2 3 4 ' 5 - 6 ■■ 7 -

7 a-Azot

99 >99% mol. 
K2 
Regularny 
TB = 35.6 K 
<k7T liniowe 
względem I2

T, K a

2,15 0,26
3 0,70
5 3,88

10 43,6
15 133,5
20 176,5

Materiał 
polikryst. Dylatom.

8 Para- 
Wodór

98% odmiany 
para wodoru

T, K p xl04, K-1

11 15,9
12 21,8
13 27,8
13,8 33,1
(doki. ±10%)

Materiał 
policryst. [32]

9 Jod

Ortorombowy, 
p18
JJ2h 
a = 4,795 
b = 7.255 
c = 9,78 

w 293 K

aa = 88+0,228 * (T-83), 
ab =71,2+0,021 x (T-83), 
a0 = 13,4+0,010 x (T-83)

Rentg.przy 
różnicach 
temp. 30 K 
w zakr. 83 
do 293 K

[33,34]

10
Cztero- 
bromo- 
metan 
(CBr4)

Regularny
Tp=32O,O3 K

P(220 K) = 330
p(300 K) = 460 

Dla T > TB
p = Alg |1-T/Tj | + B 

A = 93-1O-6 K-1 
B = 362-10-6 K-1

Piknometr. 
dokład. 1% L35]

11 Ada­
mantan

Regularny 
Faza I

P= 470 [25]

12
Bicyklo 
[2.2.2] 
- oktan

Regularny 
Faza I ß = 440

Zakres 
temp, od
-19 do
+43 °C

[25]

13
Cyklo­
heksan 
(°6“i2>

FT3m
Z = 2, 
a = 8,7? 
w -40 ÖC

<a> = 600
1^)^ = +6,4.10~7 K-2 
3T P ’ nw -40 °C

Pomiary 
stałej 
dielek­
trycznej

[36]

14
Kwas 
kwadra­
towy

Faza tetra- 
gonalna, 
I4/m, trwała 
t > 100 °C

a II b = 60
a 1 b = 20

[37]'
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cd, tab. 8.1

1 2 5 4 -------------- s ....... S... — -

15
Kwas 
kwadra­
towy 
P2C4O4)

Paza pseudo- 
tetragonalna 
w temp. pok. 
P2i/ra 
a = 6,143(2) 
b = 5,285(2) 
o = 6,148(2) 
p =89,96(2)°

= 6.10-5 
dl

— s 63-10"4 £/k 
dT

Rozprasza­
nie neu­
tronów

D8J

16 Penta- 
erytryt

Tp = 457 К 
14, 2=2 dla 
T < Tp) re­
guł. dla

a-] (X 4) S 10
(nie zależy od T)

®3( || 4) a 125 
(zależy nieliniowo od I), 
- dla 105 « 1 < 458 K

Hantg.,za­
kres temp. 
105-^53 К

09]

17 Etylen 
(0^)

99,90S CgH4
103,97 К

T, K ₽ -104, K-'1

85 8
89 8,5
95 9
97 11
99 12

101 14
102 16
103 24
103,5 52

(odczyt, z wykresu)

Materia! 
polikryst.

Piezometr 
własnej 
konstruk­
cji

M

18
Pira- 
zyna 

(C4h4n2)

ГЛ 
1Л fA
V 

Ф
 

v V 
4- 

rA
 

I r 
W

C
M 

II 
II 

u 
d Д 

O
 

a a 
a

DylateBe- 
tria rent go L41]

19 Benzen 
(W

Ortorombowy 
a = 7,46 
b = 9,67 
o = 7,03 
w 270 К

$ я 
a 

o o* 
®

 

il 
II u

h>
 -i 

Ф
 OD 

C
D ЧЛ

 CD Parametry 
a,b,c z po* 
tencjałów 
atom-atom

£42]

20 Benzen Ortorombowy 
a,b,c - j.w.

R R 
ft 

о ст 
p 

II U 
II 

ru
 -i S 4

0

— Hantg. [43]

21

1,8-Dwu 
nitro- 
nafta- 
len 
(Pana I)

Ort»rombowy 
P212121, Z=4 
a = 11,352 
b = 14,954 
o = 5,576

ea = 117,7X1,4 
ab = 49,6+1,0 
40 « 59,511,2

— Rentg, 
miedzy 293
1 370 К
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od. tab. 8.1
1

■2 — 3 -------------------5------------- i 6 7

22
Tio- 
mecznik 

(CH^gS)

Ortoroabowy
Kaza IiP2+m*
Jaza V:
Pnaa

= Bi + 2 M 
A, -106 B, ■10t> 

X -2 1 -1 dag * dag 1 
a 293-188 K 0,54 225,6 

188-123 K 1,93 232,5 
b 293-213 K_0,21 40,6

213-173 K 0,51 40,7
173-123 K 0,09 23,7

e 293-213 K 0,33 95
213-193 KO 0
193-173 K 2,55 -61,5 
173-123 K -0,03 7,2

Dylatonetr 
kwarcowy [45]

23

j.nan- 
tren 

CC^Łjo)

Orb.ro.bwy 
PŁ,, Z . 2 
• - 8,57 
b > 6,11 
e - 9,47 
tp x 72 ®C

« 
J*

 »
« 

f
O

 O* 
8>

 O w 
M

II H 
N
 

N
 

II 
■

S ?
 

8

V
 

A

•d
 

*d

Nieelas­
tyczne roz­
praszanie 
neutronów

24
Deka- 
Iluer*- 
blfenyl 
(Wio’

Ortorombowy 
Pdd2, Z = 8 
a=13,60X0,03 
b=25,65tO,O5 
o- 6,22X0,01

= 66±3 
«2 = 116X4 
a j = 66X3 

w 236 K 
«1 = 3413 
«2 = 83X4 
a3 = 25X3 

w 128 K

Rentg. v 
zakresie 
temp. 77 
do 293 K, 

<a>

[47]

25
Nafta­
len 
«W

Jedno skośny 
P21/a, Z = 2 

1=8,218X0,005 
b=5,990X0,001 
0=8,640X0,0005 
B=122°55 -10' 

w +20 °C

<Ł] = 212,8X4,0 
a2 = 40,3X0,4 
aj = 5,110,1

łUp« = 
= 44°X1O'

Bentg. ^:a> 
dla zakre­
su temp.
-195 do 
+20 °U

M

26
Antra­
cen 
^14^0J

Jednoskośny
P2'|/a, Z = 2 
a = 8,56 
b » 6,035 
o = 11,167 
p = 124°42*

= 111,715,3 
a2 = 13,4X0,4 
a3 = 20,6X0,6

<an « = 
= 51°

Rentg. ,<a> 
dla zakre­
su temp.
-195 do 
+20 °C

[49]
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od. tab. 8.'I

1— 2 3 4 ......... ...9..... 6 7

27 Antra­
cen

a = 8,550 
b = 6,028 
c = 11,172 
g = 124°40' 
w ~29O K

R 
R 

R
W

 W 
-i 

II 
II 

II

2 S

= 0 = 42,4° Rentg. ,<a> 
T = 300 K [50.1

28 Antra­
cen

Kryształ I

Kryształ II

= 160x) 

ao = 22 

“5=
= 150x) 

a2 = 25 
«5 = 6

^yznaczone pośrednio

<“1 , a = 
= 55°

^,a3=
Dylatometr 
kwarcowy 

różniczk.
[51]

29 Antra­
cen

№ 8,562(6) 
b= 6,058(8)
c=11,184(8) 
0=124°42(6) '

w 290 K

o o o
 

oT 
4- 

r<x 
r<\ 

t<\ 

li 
II 

II 
V 

CM 
K\ 

ö 
3 a

•J“1 ,a = 
= 55,48

Rentg. ,<a> 
w zakresie 
95-290 K [52]

50 Antra­
cen

a= 6,5457(1) 
b= 6,0265(9) 
c=11,165O(5)
6=

=124°56'55(7)"

I = 295 K

an = 124,1
a2 = 54,0
«, = 55,6 w 215 K5

= 267,1
«2 = 39,5
Oj = 45,5 w 295 K

•$X|,a =
= 55,50

<0-1,8 =
= 28,65

Dyfrakt., 
(metoda 
Bonda), 
«różnicz­
kowy

[55]

51
Dwufe- 
nyl 

<°12H10)

Jednoskońnj 
PŁ/a, Z = 2 
a = 8,12 
b = 5,67 
o = 9,47 
g = 95°24' 

w temperat. 
pokojowej

= 500
a2 = 96
Oj = 50 w 257 K
an = 190
«2 = 42
«3 = 18 w 185,5 K
o^ = 120

a2 = 12
a3 = 10 w 148,5 K

<a-|,a = 
= -16°

-16°

-16°

Rentg. 
przy AT = 
= 40°; stan­
dard wewn.
e(NaCl)

[54]

52
Dwuben- 
zyl 
«14^^

Jednoskośny 
0^, Z = 2 

a = 12,770 
b = 6,110 
o = 7,720 
g = 116600 
w 287 K

R R 
R 

■ —
'o

j IV 
l +

II II 
II

S r
v I 

—
 V1

 k>J 
“O

 
00

0 »a = 
= 59° Rentg. ,<a> 

w zakresie 
od 8? do 
297 K

[55]
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od. tab. 8.1
------- 2 i___________________________ 4___________________ 5 5 7

35
Antra- 
chinon 

(°14H8°2)

Jednoskośny 
PŁ/a, Z = 2 
a = 15,83(4) 
b = 3,97(1 
o = 7,89(1) 
8 = 102.5° 
® 20,5 °C

R R 
R 

04
 f\J U II 

u 

1 ru V
I 

to
 vi 

cr
> 

cn
 0 

4? •Jot),a = 
a -1°

Bentg. ,<a> 
w zakresie 
od +20 do 
-170 °C

L5^

5*

Ssościo- 
ohloro- 
benzen 
«W

J.dnoskośny 
P2^/c, Z » 2 
a » 8,08 
b = 5,87 
o - 16,65 
$ = 117,0°

= 61,4io,5 
= 46,8t0,4

,a s
= 36,4°

Bentg. ,<a> 
w zakresie 
temp, od 
293 do 
425 K

[44]

35
p-Hitro- 
anilina 
'6^2°2^

Jedneskośny 
P2+/n. Z » 4 
a»12,336(8) 
ba 6,07(2) 
ca 8,592(5) 
8 = 91,45(5) 
w temp, 
pokoj. gaj

= 246,0
«2 = 15,2 
a3 = 14,5

^.a = 
= 32,2

Rentg. + 
djlatom. 
kwarc, w 
zakr. od 
290 do 
380 K

[57]

56
p-Bitro- 
anilina

R R 
p 

O
J hJ 

-T
 

H II 
u a

Vł
 04 <3^,8 = 

a 40°2'
Rentg. ,<a> 
w zakresie 
od 90 do 
293 K

[59]

37
Oztero- 
oyjan.- 
etylen 
W

Jednoakoónj 
Tf=292,0±0,2 K 

dalsze ano­
malie w za­
kresie 270 
do 285 K

a 108
«2 = 87
«, a 64
* w 295 K

(odczyt. z wykr.)

^<^,8 = 
= -21° Dyfraktom. 

(metoda 
Bonda)

[60]

58

Kwas 
aminO— 
ootowy 
(glicy­
na) 
CC^^Og)

P2<|/n, Z a 4 
a = 5,102 
b a 11,970 
0 = 5.457, 
8 a 111<>42

P2-1 , Z a 2 
a = 5,077 
b = 6,267 , 
8 a 113°12

Odmiana a 
77- 295- 555-

A 295__ 255____415_

aq 31,0 22,1 16,3
«2 55,9 92,9 123,9

7,6 0 0

Odmiana 8
a 0

«2 = 90,1 
a 6,2

II a 
“2II b 
“3 II °X

*1II « 
“2 ILb 
“31 a.b

Rentg. za­
kres temp, 
od 77 do 
415 K;wewn. 
standard 
(NaCl) ką­
tów roz­
praszania

[62]
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od. tab. 8.1
2 3 4 5 --------6--------7

38
P3l lub P32, 
Z = 3 ■ Ko­
mórka orto- 
Beksagonal- 
na: 
« = 7,037 
b = 12,189 
c = 5,48>

Odmiana y 
\T 77- 293-
«\ 293 415

24,5 52,0
a2 24,5 52,0 
«3 8,9 0

“1 II * 
“2 II b 
“3 II 0

39 Glicyna « *
KM

 IV n II 
u

-i \
J1

C
D IV

 KM

- 43,5
Bentg. ,<«> 
w zakresie 
temp.od 20 
do 100 °C

£61]

40

Siar­
czan 
trój- 
glicyny 
^“is- 

iOgHjS)

= 13,6+0,3254 
42 = 10,9-0,3104 
4j = 43,2+0,2104 

dla 75 <t ^105 °C

«1 II *x 
«2 H b 
aj || o

Pojemnoś­
ciowa, 
zdolność 
rozdz.
4Ł/1 = 
(1-3)10-7, 
temp. ok.
30 &C >tp

[63]

41

Kom­
pleks 
1-nety- 
lotymi- 
na:9-a*- 
tyl*- 
adenina

= 5,9 
“2 « 2,1 
“j = 2,5

<a=,c = 
= 8/1°

Bentg. ,<a> 
w zakresie 
od 22 do 
66 °C £64]

.42

Koa- 
plaks 
lii 
Mocznik-, 
kwas 
szczawio­
wy 
(ch4n2o-
•CgHjO^

Jodnoskośny 
02/c
<=13,0625(7 
b- 6,6437 2 
o= 6,8478(3 
p =92,474(6 
w 295(1) K

= -1(5) 
«2 = 29(6) 
“3 = 199(10)

“ A
 “ A

R V»
 p

—
 KAM

 04-A 
O

* °o
w

 °*
II 

n Dyiraktom.

£65]

43

KOŁ— 
pleks 
2:1 N- 
metylo- 
mocznik; 
Kwas 
szcza­
wiowy 

afiyi-co« 
•nhch/I • pj
•(C00H)2

Poniżaj 182 K
P2i/c, w 182 
przechodzi 
nieodwrac. w 
Prima
Jednoskośny 
a= 5,1429(3) 
0=10,5498(5) 
c=10,3102(5) 
5=101,910(5)° 
Z = 2

Ortorombowyi 
a=10,4220(2) 
b= 6,4274(1) 
c=16t1253(5)
Z = 4

a1 = 23(5) 
a2 = 24(5) 
«3 » 188(9)

= 14(5) 
ab = 274(14) 
a0 = 28(6)

,a = 
= 38,3° 
<aj,a = 
= 51,7°

Dyfraktom.

£66]
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Baś w kierunku osi a = 0,041 «Ю4 dyn/cm ([54]). Temperatura De­
bye'a dla jodu 0D = 106 К jest dostatecznie niska na to, by w funkcji 
a(T) nie pojawiały się człony z T2 i z wyższymi potęgami T.

Kwas kwadratowy H2C404 (Nr 14, 15) ma dwie odmiany polimorficz- 
ne. Poniżej temperatury przejścia tp = 100 °C, jest jednoskośny 
(PŁ/m), zaś powyżej niej symetria kryształu jest tetragonalna (I4/m). 

W odmianie jednoskośnej płaskie szkielety СД powiązane są wiązania­
mi wodorowymi z czterema sąsiadami w płaszczyźnie ac, zaś siły między- 
warstwowe mają głównie charakter sił van der Waalsa. Paza jednoskośna 
ma własności ferroelektryczne: uważa się ([57]), że własności ferroelek­
tryczne występują w warstwach ac i są spowodowane specyficznymi prze­
sunięciami atomów wodoru, uczestniczących w wiązaniu wodorowym. Poszcze­
gólne warstwy ac są ułożone wzdłuż b antyferroelektrycznie. Zwraca 
uwagę znacznie większy współczynnik rozszerzalności w fazie pseu- 
dotetragonalnej i mniejszy «a w porównaniu do fazy tetragonalnej. W 
samej temperaturze przemiany fazowej nie dzieje się nic szczególnego 
w funkcji a(T).

Znaczna anizotropia rozszerzalności termicznej w jednoskośnej od­
mianie kwasu kwadratowego nie jest czymś wyjątkowym. Bardzo często kie­
runek największego współczynnika rozszerzalności jest prostopadły do 
warstw, w których ułożone są cząsteczki zwłaszcza wtedy, gdy cząstecz­
ki tworzące warstwę połączone są wiązaniami wodorowymi. Dobrymi przy­
kładami uzasadniającymi tę tezę są poza kwasem kwadratowym pentaerytryt 
(Nr 16) i glicyna (Nr 58, 59). W 457 К tetragonalna komórka glicyny 
(14, Z = 2) przechodzi w komórkę regularną. Oś 4 w fazie tetragonalnej 
jest prostopadła do płaszczyzny wiązań wodorowych. W tej płaszczyźnie 
rozszerzalność jest mała, a praktycznie nie zależy od temperatury. 
Współczynnik rozszerzalności wzdłuż 4 - a^, jest 12 razy większy od 
i silnie (oraz nieliniowo) zależy od temperatury. Pod tym względem wyni­
ki [59] zgodne są z wcześniej znanymi własnościami pentaerytrytu ([67]). 
Z kolei glicyna ma trzy odmiany krystalograficzne: oc, p i y, Odmiana a 
krystalizuje w temperaturze pokojowej z obojętnego roztworu wodnsgo 
([69]). Odmianę P można otrzymać, dodając etanolu do nasyconego wodne­
go roztworu glicyny. Kryształy P nie są trwałe i w temperaturze pokojo­
wej łatwo przechodzą w a; w suchej atmosferze przejście to jest wol­
niejsze ([69]). Krystalizację odmiany у prowadzi się przez powolne o- 
chładzanie roztworu wodnego lekko zakwaszonego (СН^СООН) lub lekko al- 
kalizowanego (NH^OH) [70]. Struktury wszystkich trzech odmian są znane: 
a [68] , 3 [69] , Y [70]. Kryształki у są trwałe, a przy ogrzewaniu po­
wyżej 438 К przechodzą w odmianę a . Ogrzewaniu fazy * towarzyszy spa­
dek wartości współczynników rozszerzalności w płaszczyźnie (010), i 
ax (a^ maleje do zera), oraz silny wzrost a2 j[ b. Zarówno ten fakt, 
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jak i korelacja periodów odmian, a i 3 tłumaczą łatwość przejścia fazo­
wego 3—a. Korelacja między kierunkiem najsilniejszej rozszerzalności 
kryształu warstwowego a kierunkiem normalnym do warstwy nie musi być 
słuszna, jeśli wiązanie wodorowe wytwarza się również między warstwami. 
Przykładem takiej struktury jest kompleks mocznika z kwasem szczawiowym 
(Nr 42).

Najwięcej pomiarów rozszerzalności termicznej wykonano na kryszta­
le antracenu'(Nr 26, 27, 28, 29, 50). Przedstawimy nieco obszerniej wy­
niki tych badań i spróbujemy zaopatrzyć je komentarzem.

Wyniki przedstawione w trzech pracach - [49,50,52] - otrzymane zo­
stały metodą rentgenograficzną, za pomocą fotografowania zbioru reflek­
sów w temperaturze pokojowej i w temperaturze ciekłego azotu. W publika­
cji [49] autorzy piszą, że przy ochładzaniu kryształu do -195 °C szcze­
gólnie silnej zmianie ulegają: oś a (zmniejsza się prawie o 0,10 S) i 
kąt 3 (wzrasta o 55'). Te zmiany w antracenie są jednak dwa razy mniej­
sze niż w naftalenie (Nr 25), co jest widoczne z średnich współczynni­
ków rozszerzalności

<“>Naft = SG.I.IO-6 Z"1, <a>Anta = 48,6-10-6 K"\

Wniosku tego nie potwierdzają wyniki [52] , a już w wyraźnej sprzeczności 
są z nimi wyniki [50] .otrzymane w tym samym laboratorium. Warto zauwa­
żyć, iż we wszystkich trzech pracach współczynniki wyznaczane były dla 
dość sporego przedziału temperatury. Wartości uzyskane są więc z pewnoś­
cią mniejsze od współczynników różniczkowych w pobliżu temperatury poko­
jowej.

Jakubowski [51] wykonał pomiary rozszerzalności antracenu metodą 
dylatometfu kwarcowego na dwóch różnych próbkach; obie otrzymane były 
metodą Bridgmana. Próbka I była hodowana z fazy ciekłej o temperaturze 
tylko o kilka stopni wyższej, zaś próbka II W temperaturze znacznie wyż­
szej (550 °C) od temperatury topnienia antracenu (250 °C). Oba kryszta­
ły były zupełnie przezroczyste, aczkolwiek w bombie zawierającej krysz­
tał II stwierdzono ślady rozkładu substancji. Obserwacje w mikroskopie 
polaryzacyjnym, badania chromatograficzne i spektroskopowe nie wykazały 
żadnych zauważalnych różnic między nimi. Autor stwierdza, że różnice 
współczynników rozszerzalności dla obu kryształów są ni 7. roz­
bieżności między wynikami metody dylatometrycznej i metod rentgenogra- 
ficznych. Ponadto autor stwierdził istnienie interesującej korelacji 
między przekrojami tensora a i tensora ściśliwości j3 w płaszczyźnie 
(010). Na tej płaszczyźnie oba tensory mają jeden stopień swobody, to 
znaczy orientacja osi głównych i oraz ₽i p^ nie jest wymuszo­
na przez symetrię. Kierunek najsilniejszej rozszerzalności różni 
się tylko o 16° od kierunku największej ściśliwości 3 . Jeśli posłuży­
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my aię danymi z pracy [53], to okaże się, że korelacja ta wypadnie jesz­
cze lepiej: kierunki 13^ różnią się zaledwie o 1°.

Pomiary rozszerzalności antracenu [53] wykonano na krysztale hodo- 
wanymz roztworu w acetonie. Nie wykazywał rys ani spękań, nie posiadał 
również struktury mozaikowej. Analiza szerokości połówkowej refleksów 
wykonana za pomocą dyfraktometru Bonda potwierdziła wysoką jakość struk­
turalną kryształu. Osiągnięta precyzja pomiarów pozwala stwierdzić, iż 
_ zgodnie z oczekiwaniem - gęstość zmierzona metodą rentgenogcaficzną 
(1,2505 g/cm^) jest większa od maksymalnej gęstości zmierzonej metodą 
flotacyjną dla bardzo czystego antracenu (1,2490, [71]). Zmierzony w 
tej pracy współczynnik ma w temperaturze pokojowej wartość najwięk­
szą z dotychczas podawanych.

Pobieżny nawet rzut oka ńa wyniki rozszerzalności cieplnej kryszta­
łu antracenu wskazuje na istnienie bardzo dużej rozbieżności wartości 
liczbowych, na co zwracają uwagę również niektórzy autorzy ([51,53]). 
Jeśli uwzględnić wszystkie przytoczone w tabeli wyniki, to długości osi 
tensora rozszerzalności wyrażone w jednostkach 10“6 K-^ zawierają się w 

granicach

112 < 267

13 a2 40

6 oc, < 613

(1:2,4),

(1:3,1), 

(1:10,2).

Nie jest łatwo skomentować to zestawienie, ponieważ na razie tylko dla 
kryształu antracenu dysponujemy bogactwem wyników, uzyskanych różnymi 
metodami na niewątpliwie rozmaitym materiale. Trzeba się chyba zgodzić 
z autorami [53], że najpoważniejszym powodem rozbieżności jest niedosko­
nałość kryształów antracenu, jakimi zajmowano się w poszczególnych labo­
ratoriach. Słabość oddziaływań międzycząsteożkowycn w krysztale moleku-r 
larnym dopuszcza "do głosu" rozmaitość czynników zewnętrznych, przeszka­
dzających w realizacji struktury wysoce uporządkowanej w czasie wzrostu 
kryształu. Nie można też wykluczyć obecności w kryształach naprężeń 
mecnanicznych, wynikających z historii próbki, zwłaszcza gdy kryształ 
hodowany był ze stopu. Niezależnie od tego, zmiany temperatury w trak­
cie wykonywania pomiarów również prowadzą do dość sporych deformacji. 
Jak katwo się przekonać na podstawie równania (8.41), największe naprę­
żenia przy ogrzewaniu kryształu powstają zawsze prostopadle do kierunku, 
zawierającego kąt 45° z którąkolwiek z osi tensora a. Ich wielkość za­
leży od anizotropii rozszerzalności termicznej. Na przykład w krysztale 
antracenu w płaszczyźnie (010) maksymalne naprężenia ścinające prowadzą 
do deformacji o wielkości
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6^ = ± (a., - a^) = 1,1 ‘lO-4 rad/K = 23"/K.

Wielkość ta jest w przybliżeniu 10 razy większa od obliczonej dla kalcy- 
tu. Nie jest rzeczą obojętną, czy naprężenia termiczne likwidują już o- 
becne, statyczne, czy też się do nich dodają. Nie mamy też zbyt dobrego 
rozpoznani», jak dalece nieodwracalne zmiany zachodzą w próbce wskutek 
samego tylko jej ogrzewania, czy ochładzania. Wydaje się, że rozszerzal­
ność termiczna kryształu molekularnego jest w tej chwili własnością fi­
zyczną najbardziej czułą na stan fizyczny próbki, a zwłaszcza na jej u- 
porządkowanie bliskiego i dalekiego zasięgu.

W dwufenylu (Nr J1) kierunek najmniejszej rozszerzalności a po­
krywa się z Kierunkiem dłuższej osi cząsteczki, zaś kierunek najwięk­
szej rozszerzalności w płaszczyźnie (010) tworzy kąt prosty z dłuższą 
osią cząsteczki ([54] )• Taka orientacja osi cząsteczki INN względem osi 
a jest typowa dla związków aromatycznych, mających cząsteczki wydłużo­
ne w jednym kierunku» Potwierdzają to również własności kryształów naf­
talenu i antracenu.

Hys. 8.'i1., Zachowanie się w pobliżu tem­
peratury topnienia (tr = 80,1 °C) współ­
czynnika rozszerzalności objętościowej 
naftalenu. Krzywa 1: kryształ wysoce upo­
rządkowany, krzywa 2: kryształ z niedos- 
konałosciami struktury (scnematycznie,wg 

C?2])

Anomalią rozszerzalnoś­
ci w pobliżu punktu przemia­
ny fazowej pierwszego rodza­
ju, jaką jest topnienie ciał, 
zajmowali się między innymi 
Barteniew i inni [72]. Auto­
rzy ci pokazują na przykła­
dzie kryształu naftalenu, że 
w pobliżu temperatury topnie­
nia współczynnik rozszerzal­
ności rośnie gwałtownie,przy 
czym początek tego wzrostu 
jest znacznie przesunięty w 
kierunku niższych temperatur 
dla próbek, wykazującycn ja­
kieś odstępstwa od idealnoś- 
ci. Odstępstwami mogą być za­
równo defekty punktowe, jak 
i struktura mozaikowa. Przy­
kład wyników pokazany jest 
schematycznie na rys. 8.11.

Krzywa 1 przedstawia temperaturową funkcję współczynnika rozszerzalnoś­
ci objętościowej 8, dla kryształu hodowanego z małą szybkością z bar­
dzo czystej substancji; można sądzić, że struktura próbki jest wysoce
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c-Pomiary wzdFuź osi c

Rys. 8.12. Anomalia rozszerzalności -termicznej w przemianie iazoń.j 
Ii-go rodzaju w a-nitrotoluenie (reprodukcja z [73]).

Krzywa a) || kierunku I, b) II kierunku II, c) || kierunku III
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uporządkowana. Krzywa 2 odnosi się do próbki hodowanej z materiału o po- 
tkbnjm stopniu czjśtofci, jednak wyrastania kryształu tyła znacznie
sza. Niedoskonałość struktury (błędy orientacyjne, dyslokacje) powodują 
wzmożenie zjawisk poprzedzających topnienie ("pro-melting phenomena") i 
silniejszy wzrost ß(I). Podobne przyspieszenie zależności ß(I) wystę­
puje również dla próbki 1, jeśli ogrzewa się ją po raz drugi w zakresie 
temperatur bliskich tf. Autorzy tłumaczą ton fakt silniejszym rozwinię­
ciem struktury mozaikowej kryształu już raz ogrzewanego, a częściowo 
również dyfuzją domieszek w kierunku granic ziaren mozaiki.

Bardzo piękny przykład "trójwymiarowej” anomalii współczynnika roz­
szerzalności w przemianie fażowej Ii-go rodzaju opisuje Heberlein [75] . 
Badaną substancją jest nitrotoluen, zakres temperatur od 77 do 275 K„ 
Nitrotoluen ma dwie odmiany polimorfiozne, obie mogą być otrzymane ze 
stopu (nonotrepia ?) i obie mają długi okres trwałości w temperaturze 
pokojowej - [74]. W tej pracy opisano zachowanie się ortorombowej odmia­
ny a -nitrotoluenu, której kryształy były hodowane z roztworu w benzenie 
w temperaturze 26 °C. Zastosowano pojemnościową metodę pomiaru współ­
czynnika rozszerzalności, przy czym rozdzielczość pomiaru długości prób­
ki w warunkach sprzyjających wynosiła 1O“$ cm. Przyrosty temperatury, 
kontrolowane za pomocą platynowego termometru oporowego, wynosiły od 
0,4 do 0,04 K, zatem mierzoną wielkością był różniczkowy współczynnik 
rozszerzalności. Wyniki pomiarów reprodukowane są z cytowanej pracy na 
rys. 8.12 nie tyle w tym celu, by pokazać Czytelnikowi rozrzut wyników, 
lecz przędę wszystkim dla podkreślenia niezwykłej cierpliwości i. skru­
pulatności autora w dochodzeniu eksperymentalnego kształtu anomalii a. 
Przy tym - jak pisze autor publikacji - dla przejrzystości umieścił na 
rysunkach jedynie około połowy uzyskanych punktów pomiarowych. Autorowi 
tej książki znany jest jeszcze drugi przypadek równie skrupulatnego po­
traktowania pomiarów dylatometrycznych - przykłady podobnych krzywych 
można znaleźć w cytowanej już pracy [^1].

Liniowy współczynnik rozszerzalności «-nitrotoluenu wskazuje na 
istnienie’przemiany fazowej drugiego rodzaju. Uwidacznia się ona we 
wszystkich kierunkach krystalograficznych, a najsilniej wzdłuż osi c. 
Znaleziono, że przemiana występuje w temperaturze = 211,7 K.

Zacytujemy jeszcze dwa przykłady zastosowania dylatometrii do bada­
nia przemian fazowych oraz towarzyszących im zjawisk. Pierwszy dotyczy 
badań polimorfizmu w 1,8-dwunitronaftalenie ( [75])• ^wiązek ten mężna 
otrzymać w temperaturze pokojowej w postaci kryształów ortorombowych 
przez powolne odparowanie roztworu czystej substancji w benzenie lub 
BtOH. Wykresy względnych zmian długości próbki z temperaturą są repro­
dukowane z cytowanej pracy na rys. 8.15 dla trzech kierunków krystalo­
graficznych, oznaczonych pi?zez I, II, III i odpowiadających osiom krys-
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-►trc]

Rys. 8.1?. Dylatometria 1,8-dwunitronaftalenu (reprodukcja z [75])

talograficznym a, b, c. W czasie ogrzewania kryształu odmiany trwałej 
w temperaturze pokojowej i oznaczanej jako faza I pojawia się w tempera­
turze tp = 100-105 °C przejście do fazy II, któremu towarzyszy znaczna 
nieciągłość zmiany długości próbki,obserwowana we wszystkich, trzech 
orientacjach i największa w kierunku I.Nie jest jasne, czy przemianę 
tę można uważać za odwracalną, nieciągłość objętości w temperaturze 
tp jest bowiem dość znaczna, co powoduje, że po przejściu II—»-I faza 
I nie ma wszystkich cech uporządkowania kryształu w stanie wyjściowym. 
Świadczą o tym badania rentgenograficzne - zdjęcia kołysanego kryształu 
lub Weissenberga dla fazy I wykazują w obu przypadkach dość spore różni­
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ce w liczbie i natężeniu refleksów. Niektóre szczegóły krzywych dylato­
metrycznych (nachylenie i drobne odstępstwa od liniowości) pozwalają 
jednak odnaleźć cechy fazy I po odbyciu cyklu ogrzewania, przynajmniej 
w dwu kierunkach krystalograficznych (rys. 8.13a,b,c). Widać również,iż 
przemianie towarzyszy histereza o wielkości A t = 15-20 °G. Ogrzanie 
próbki do temperatury o kilkanaście °C niższej niż tf = 170-172 °G, po­
czątkującej mięknięcie próbki, pozwala ujawnić istnienie dwóch dalszych 
odmian fazowych 1,8-dwunitronaftalenu. Obserwowane zjawiska można wyjaś­
nić w następujący sposób ( [73): Ogrzewanie kryształu 1,8-dwunitronafta- 
lenu prowadzi w temperaturze 100-105 °0 do przemiany fazowej I—** II, 
dylatometrycznie odwracalnej, której towarzyszy znaczny wzrost objętoś­
ci kryształu i zmiana współczynników rozszerzalności (пр. dla
kierunku I). Wychodząc z monokryształu (k) w fazie I otrzymujemy poli- - 
kryształ (pk) w fazie II, zatem jest to przemiana typu к—>-pk. Ochła­
dzaniu towarzyszy odwrotna przemiana fazowa, która inicjowana jest w 
temperaturze niższej niż I-*- II (około 85 °G) i połączona jest ze 
zmniejszeniem długości próbki, i odwracalnym powrotem współczynników 
rozszerzalności do pierwotnych wartości. Występująca tu histereza roz­
szerzalności At = 15-20 °C, jest charakterystyczna dla przemian k—*-k. 
Przypadek z At 0 oznacza, że przemiana polega na procesie krystali­
zacji, który w przypadku II—*-I wymaga utworzenia zarodków nowej fazy 
(I) w ośrodku metastabilnym (II). Warunek termodynamiczny, wymagający 
by At było różne od zera w cieczy lub w fazie gazowej dla utworzenia 
centrów krystalizacji, z pewnością obowiązuje również matastabilną fazę 
stałą. Jeśli jednak ogrzejemy próbkę do wyższej temperatury, co naj­
mniej 150 °C, stworzone zostaną warunki dla przejścia II —— III przy o- 
chładzaniu. Polegają one na "zmięknięciu" sieci, potrzebnym - być może 
- dla poważniejszej zmiany orientacji cząsteczek. Przy dalszym ochładza­
niu faza III przechodzi spontanicznie w fazę IV około 60 °C, przy czym 
ten proces nie powoduje destrukcji sieci krystalicznej. faza IV jest 
kryształem, który można również hodować ze stopu, wykazuje dobrą prze­
zroczystość i stosunkowo długi "czas życia", ponieważ proces IV—>~I 
przebiega w temperaturze pokojowej bardzo powoli. Relacje między fazami 
od I do IV pokazane są według [75] na diagramie (rys. 8.14).

Kryształ tiomocznika GS=(NH2^2 ma odmian fazowych,przy czym 
wszystkie przejścia fazowe mają charakter przemian odwracalnych k-^k. 
Pazy I i III są ferroelektryczne, stąd duże zainteresowanie fizykoche­
micznymi własnościami tego związku. Analiza rentgenograficzna ([76,77]) 
dyfrakcja elektronów ([78,79]) i neutronów ([80]) doprowadziły'do szcze­
gółowego poznania struktury fazy I (ortorombowa, P2^ma) i V (ortorombo- 
wa, Pnma). Nie ma przyczyn by sądzić, że struktury faz pośrednich nale­
żą do innego układu krystalograficznego. Anomalie dielektryczne badane
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Rys. 8.14. Schematyczne przedstawienie relacji razowych 
w 1,8-dwunitronaftalenie (według [75])

były w £76] . Z pomiarów przenikalności dielektrycznej wzdłuż osi a wy­
konanych przez tych autorów wynikają następujące temperatury równowagi 
sąsiadujących z sobą fazs

Tp(IV/V) = 220 K, Tp(III/IV) = 179 K, Tp(II/III) = 176 K, 

2p(i/ii) =• 169 e.
Dylatometrią tiomocznika zajmowali się Futama E81] i Jakuboi®ki 

[45J. Wyniki uzyskane w tej ostatniej pracy prowadzą do następujących 
wniosków:

(i) Poszczególne fragmenty krzywych dylatometrycznych między punk­
tami nieciągłości, odpowiadające zakresowi egzystencji określonych faz, 
są nieliniowymi funkcjami temperatury. Można je opisać wielomianem dru­
giego stopnia

Al/1 = C + Bt + At2. 18.56)

Wobec tego współczynniki rozszerzalności w tych przedziałach nie są sta­
łe, lecz zależą liniowo od temperatury. Współczynniki temperaturowe a , 
wyznaczone metodą najmniejszych kwadratów, podane są w tab. 8.1, Nr 22.

(ii) Występowanie poszczególnych punktów przemian fazowych Tp za­
leży od kierunku krystalograficznego, w którym wyznacza się krzywą dyla­
tometryczną Al/1; na przykład wzdłuż osi a można zaobserwować tylko 
jeden punkt nieciągłości, zaś w kierunku c występują trzy takie punk­
ty. Odpowiadające im temperatury według [45] i [76] (anomalie przenikał-
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Tabela 8.2
Temperatury przemian fazowych Tp tiomocznika

Kierunek 
krystalo­
graficzny

T (IV/V)J. , Tp(III/IV) Tp(II/III) Tp(I/II) Litera­
tura

a 220 179 176 169 ■ C76J
a - 18516 - _x) £45]
b 213 18516 - &5]
c 213 18516 175 _x) [45]

Poza badanym zakresem temperatur.

ności dielektrycznej) podane są w tab. 8.2. Nie wiadomo w jakim stopniu 
występujące tu różnice można przypisać metodzie, a w jakim procedurze 
postępowania w czasie pomiarów.

(iii) Liniowa rozszerzalność termiczna jest związana z rozkładem 
sił międzycząsteczkowych w krysztale. Największy współczynnik obserwuje 
się w kierunku osi krystalograficznej a iw tym też kierunku występu­
ją najsłabsze oddziaływania między cząsteczkami tiomocznika. Odwrotnie, 
najmniejszy współczynnik rozszerzalności występuje w kierunku osi b, w 
którym oddziaływania NH...S, silniejsze od oddziaływań van der Waalsa, 
mają udział największy.

(iv) W przeciwieństwie do wyników, badań sprężystości tiomocznika, 
wykonanych przez Benoit i Chapelle £82], Jakubowski i Beolivet £83] wy­
kazali, że istnieje znakomita korelacja między rozszerzalnością termicz­
ną i ściśliwością tego kryształu: kierunki największej ściśliwości po­
krywają się z kierunkami najsilniejszej rozszerzalności zarówno w jprze- 
kroju ac, jak i be (£83]). Również typ przekroju obu tensorów w poda­
nych płaszczyznach jest taki sam.

Na zakończenie opiszemy sposób dwuwymiarowego przedstawiania tenso­
ra rozszerzalności termicznej, zaproponowany przez Weigla i innych £84]. 
Sposób ten pozwala bardzo poglądowo przedstawić ewolucję składowych ten­
sora wraz ze zmianą jakiegoś parametru, na przykład ciśnienia lub tempe­
ratury, i nie wiadomo dlaczego praca ta przeszła w Literaturze nie zau­
ważona. Korzystając z tej idei wprowadzimy dwuwymiarową reprezentację 
a w nieco inny, uproszczony sposób. Wyobraźmy sobie trójkąt równobocz­
ny o boku a (rys. 8.15). Położenie dowolnego punktu P na płaszczyź­
nie możemy podać za pośrednictwem trzech współrzędnych x^x^x^, które
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Rys. 8.15» Dwuwymiarowa reprezentacja tensora rozszerzalności 
termicznej (schematycznie, według [841)

są odcinkami PQŁ prostopadłymi do odpowiednich boków trójkąta. Dowo­
dzi się w elementarnej planimetrii, że suma X] + + x3 nie zależy
od położenia P i jest równa wysokości trójkąta. Wobec tego

+ x2 + x5 = h = (V5>2) a.

Jeśli wybierzemy h = 1, czyli a = 2/-/31, to współrzędne P spełniają 
warunek

X| + Xg + x5 = 1. (8.57)

Takim samym warunkiem możemy związać główne składowe ą, jeśli wprowa­
dzimy zredukowane główne współczynniki rozszerzalności

\ = l“i|/(2laiP» i = 1,2,3, (8.58)

przy czym są liczbami bezwymiarowymi i zawsze dodatnimi. Mamy wów­
czas 1

+ *2 + x3 = 1, (8.59)

a więc P na płaszczyźnie w układzie współrzędnych x1x2x^ reprezentu­
je tensor a. Przypuśćmy teraz, że «i zależą, na przykład, od tempera­
tury. Punkt reprezentujący funkcję ą(T) przesuwa się po pewnej trajek­
torii, która jest obrazem badanej zależności.

Dla każdego kryształu izotropowego punktem reprezentacyjnym jest 
C(j j j). Długość odcinka CP jest więc miarą asferyczności tensora;auto-
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Rys. 8.16. Reprezentacja a dwu­
fenylu i siarczanu trójglicyny w 

różnych temperaturach

rzy pracy [84] nazywają tę miarę 
wskaźnikiem asferyczności. Wprowa­
dzają ponadto prawo, zwane przez 
nich prawem zmian ciągłych symetrii 
tensora rozszerzalności termicznej. 
Wskaźnik asferyczności maleje w mia­
rę wzrostu temperatury dla struktur 
trójwymiarowych, nie przechodzących 
przez przemianę fazową. Prawo to o- 
znacza, że w miarę wzrostu tempera­
tury w obszarze termodynamicznej 
stabilności fazy krystalicznej 
punkt P zbliża się do punktu C. 
Zobaczymy za chwilę, że nie zawsze 
odnosi się to do kryształów moleku­
larnych. Zauważmy poza tym, że punk­

Rys. 8.17. Reprezentacja & trzech 
odmian glicyny

ty reprezentujące ewolucję ą(T) w 
kryształach o symetrii tetragonal- 
nej lub wyższej (ale niższej od ku­
listej), dla których jeden z prze­
krojów głównych a jest okręgiem, 
leżą zawsze na jednej z dwusiecz­
nych kątów trójkąta.

Ilustracją takiej reprezenta­
cji jest rys. 8.16 dla przypadku 
dwufenylu i siarczanu trójglicyny 
według danych,zawartych w tab. 8.1. 
Widzimy, że istotnie punkt repre­
zentujący tensor w temperaturze 
wyższej leży bliżej C, aczkolwiek 
w obu przypadkach zbiory punktów 
leżą na linii prostej, nie przecho­
dzącej przez U. Na rysunku 8.17 pokazana jest*reprezentacja wszystkich 
trzech odmian fazowych glicyny. Punkt 3, przedstawiający a dla najwyż­
szego zakresu temperatur, leży jednak najdalej od 0 zarówno dla odmia­
ny a, jak i y• Podobna niezgodność występuje też dla antracenu (rys. 
8.18). Rwa spośród punktów przedstawiają a antracenu dla dwóch róż­
nych temperatur. Układają się wprawdzie na linii prostej wraz z punktem 
C, jednak punkt dla temperatury wyższej położony jest dalej od C. Na 
rysunku 8.18 przedstawione są znane dotychczas pomiary ą antracenu. 
Mimo unormowania wartości a 1 do jedności, co powinno zmniejszyć roz-
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rzut wyników, rozproszenie punktów 
jest dość znaczne.

8.5. Rozważania strukturą!ne

Współczesne próby skonstruowa­
nia teorii zjawisk anharmonicznych, 
w szczególności powiązania rozsze­
rzalności termicznej z innymi 
wielkościami fizycznymi, dotyczą 
praktycznie wyłącznie ciał o syme­
trii układu regularnego, głównie 
metali ([85,87]} i związków nieor­
ganicznych (,[86]). W nielicznych

Rys. 8.18. Graficzna reprezentacja przypadkach czynione są pró-
w^ników pomiarów antracenu przez by objęcia teorią związków orga-
io:q^Y] * ęH ’215 K? ’ licznych, również krystalizujących

OL53J 219 K w klasie o najwyższej symetrii [88].
Nie brak wśród nich prac, posługu­

jących się bardzo zaawansowanymi metodami komputerowymi symulacji dyna­
miki sieci w celu znalezienia związku p-V-T, znanego pod nazwą równa­
nia stanu ciała stałego [87]. Pokazano również ([90]), że rozszerzal­
ność termiczną możemy pojmować jako odpowiedź sieci krystalicznej na 
ciśnienie wewnętrzne, wytwarzane przez gaz fononowy} interesujące jest, 
że opisy rozszerzalności termicznej za pomocą objętościowych efektów an- 
harmonicznych, lub za pomocą ciśnienia fononów, są dwiema równoważnymi 
sobie metodami, przynajmniej w niskich temperaturach. Mimo -intaraHyją- 
cych w tej dziedzinie osiągnięć nie ma - jak dotąd - interpretacji roz­
szerzalności kryształów mniej symetrycznych, do jakich należy ogromna 
większość kryształów molekularnych. Brak również jakichkolwiek powiązań 
ze strukturą kryształu, a więc prób mikroskopowej interpretacji ą. Uzu­
pełniając tę lukę przedstawimy w niniejszym rozdziale próbę zrozumienia 
rozszerzalności termicznej ze strukturalnego punktu widzenia.

Widzieliśmy w rozdziale 8.2, że z rozszerzalnością termiczną nieod­
łącznie związana jest deformacja sieci krystalicznej. Opis tej deforma­
cji musi - naszym zdaniem - uwzględnić pewną szczególną cechę ośrodka, 
jakim jest kryształ: przestrzeń zabudowana jest cząsteczkami, które nie 
tylko mają skończone rozmiary, ale są tworami sztywnymi. To ostatnie 
przybliżenie słuszne jest przynajmniej w odniesieniu do niektórych cząs­
teczek, w których nie występują ruchy libracyjne jej części (podstawni­
ków) o dużych amplitudach; drobne zmiany odległości między związanymi w 
cząsteczce atomami, wywołane wzrostem amplitudy drgań atomów z tempera­
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turą., możemy tu zaniedbać. Deformacja jest zatem guasi-ciągła: ciągłość 
dotyczy samej przestrzeni. W analogii dwuwymiarowej deformacja odbywa 
się tak, jak deformacja cienkiej warstwy, gumy, na której periodycznie 
rozłożone są równoległoboki, wycięte z materiału sztywnego. Po rozciąg­
nięciu (anizotropowym) gumy stwierdzimy, że odległości między środkami 
|"oząStećzek" uległy zwiększeniu, również icn wzajemne orientacje uległy 
Zmianie, jednak kształt i rozmiary samych równoległoboków pozostały nić 
zmienione. Sądzimy, że ten dwuwymiarowy model dobrze odzwierciedla skut­
ki, zachodzące w trójwymiarowej sieci przestrzennej pod wpływem ogrza­
nia kryształu.

Przyjmijmy więc, że zmiana temperatury kryształu sprowadza dwa e- 
fekty molekularne:

(i) efekt translacyjny, polegający na zmianie odległości między 
środkami sąsiednich cząsteczek,

(ii) efekt orientacyjny, polegający na zmianie względnego położe­
nia ośi IMN cząsteczek sąsiednich.

Zajmiemy się głównie drugim efektem, ponieważ pierwszy z nich wyda- 
je się dość oczywisty, a jego opis nie nastręcza trudności.Zwrócimy też 
uwagę na fakt, że średnie położenie libratora może ulegać zmianie rów­
nież wtedy, gdy jest to librator harmoniczny. W punkcie (b) przedyskutu­
jemy związek zmiany orientacji osi LIM cząsteczek z tensorem “, zaś w 
punkcie (c) zajmiemy się problemem krzywej energii potencjalnej dla li- 
bracji anharmonicznej.

(a) Zmiany orientacji osi IMN cząsteczek

Postawmy wpierw następujące pytanie. Przypuśćmy, że cząsteczkom 
dostatecznie symetrycznym przypiszemy w jakiejś strukturze ortogonalny 
układ osi MN, równoległych do osi symetrii. Czy istnieją jakieś prze­
słanki eksperymentalne, świadczące o tym, że przy zmiani a temperatury 
kryształu zmienia się orientacja LUN względem sztywnego układu współ­
rzędnych, na przykład abcx? Jeśli spojrzy się na ten problem od strony 
wyników badań rentgenograficznych, to w pracach zajmujących się opisem 
struktury tej samej fazy krystalicznej w dwóch różnych temperaturach 
spotkać można tabele kosinusów kierunkowych IMN różniące się wyraźnie, 
jeśli tylko różnica obu temperatur jest dostatecznie duża, wynik ten 
mógłby być jedynie wyrazem naszego sposobu interpretacji drgań termicz­
nych poszczególnych atomów, związanej z próbą ich uporządkowania, gdyby 
nie fakt, że wszystkie kierunkowe własności fizyczne kryształu równi eź 
zależą od temperatury. Jeśli uznamy, że cząsteczki są sztywne, to ni e 
sposób wyjaśnić te zmiany bez przyjęcia, że orientacja IMN ulega zmia­
nie.
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Rys. 8.19. Geometryczna interpretacja kątów Eulera (zaczerp. z [90])

Przypuśćmy więc, że orientacja LMN w temperaturze T^ dana jest 
macierzą ę(1), zaś w T2 macierzą g(2) i niech, będzie T2 > Naj­
bardziej bezpośrednim rozwiązaniem problemu orientacji cząsteczki jako 
ciała sztywnego i określeniem jej zmian z temperaturą jest podanie ką­
tów Eulera ®, X i ® dla i T2. Geometryczna interpretacja kątów 
Eulera, przedstawiona na rys. 8.19, polega na przejściu od układu współ­
rzędnych X|X2Xj (nieruchomy lub zewnętrzny układ współrzędnych) do 
M (ruchomy lub wewnętrzny układ współrzędnych, sztywno związany z 
cząsteczką) za pomocą następujących kolejnych obrotów:

(i) obrót wokół x^ o kąt ® —»- x^x^x^,

(ii) obrót wokół o kąt O : x^'x^x^ —- x^x'^N,

(iii) obrót wokół N o kąt X : x^x2 N —*-L M N.

Związki między <p , X i $ oraz kpsinusami kierunkowymi podane są według 
[90] w tab. 8.3. Według tej tabeli $ można obliczyć bezpośrednio z 

cp, na przykład z c^ i Cj2, zaś X z c^^ i c^. Wielkości
A ® A X At
AT ’ Al ’ AT

przedstawiają średnie zmiany kątów Eulera, przypadające na 1 K w prze­
dziale AT = T2 - T,|. Zwykle jednak bardziej nas interesują małe kąty



I a b 8 1 a 8.5 u> 
Ul 
cn

Związki między kosinusami kierunkowymi i kątami Eulera

a b cx

L /Ml °12 / cos X COS $ - sin X cos $ sin <₽; cos X sin tp + sin x cos Ś cos <p; sin X sin

Ml °21 c22 °25 J= 1 -sin X cos <₽ - cos X cos § sin <₽; -sin X sin <P + cos X cos 0 cos tp • cos X sin t

L ^51 °32 \sin d sin <₽ 5 -sin cos <P - cos 0

Prędkości kątowe

w£ = $ sin. X sin ® ® cos X

w,, i $cos X sin $ - $ sin X
M

W N = <p cos S + X
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obroków A 6L, -AO^, A®^ wokół osi IMN cząsteczki. Możemy je obli­
czyć z prędkości kątowych w^, o>M, Wjj, zamieszczonych według [90] w 
tab. 8.5, ponieważ zasada addytywności słuszna jest zarówno dla prędkoś­
ci kątowych jak i dla małych przesunięć kątowych. Wobec tego równość, 
na przykład

= <P cos X sin 6 - ^sin X,

jest równoważna równości

A eM = A <P cos X sin d - A t sin x.

Wobec tego otrzymujemy

AT
A <P
AT

sin X sin ® A d 
+ -----

A T
cos X ,

AeM 
AT

A <₽

AT
cos X sin d A 0

AT
sin x, (8.60)

=
AT

A <p
AT

cos 0 + A X
AT

Przedstawione tu rozwiązanie problemu nie jest całkiem jednoznaczne, bo­
wiem wartości ?, X i ® zależą trochę od wyboru elementów o^, z któ- 
rych są obliczane. Lepsza jest metoda polegająca na zastosowaniu, macie­
rzy obrotu, a następnie obliczeniu optymalnych (średnich) wartości 
trzech kątów obrotu z sześciu elementów macierzy ę. Rozumowanie, zmie­
rzające do otrzymania tych wyników, jest następujące.

Przypuśćmy, że układ LMN obrócił się nieco, tak, że położeniami no­
wych osi są L'M'N' (rys. 8.20a). Macierz obrotu ogólnego R możemy 
złożyć jako iloczyn trzech macierzy,; R^ obrotu wokół osi L, R£ wokół 
14 i R^ obrotu wokół N. Rozpatrzmy pierwszy z nich; orientację ukła- 
dów IMN i L'M'N przedstawiono na rys. 8.20b. Mamy

L M

L' 1 0 0

m' 0 cos A^ sin A..

n' 0 -sin A^ COS Aq

Wobec bardzo małych wartości AL możemy zastosować prz.yhl i żeni a cos A..= 
= 1, sin A^ = Ai, a wtedy otrzymamy
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Hys. 8.20. Obrót układu. IMN jako ciała sztywnego: 
a) ogólny, b) wokół osi L

Postępując analogicznie znajdziemy pozostałe macierze obrotu wokół osi M

oraz wokół N

(8.62)

(8.63)

Ogólną macierzą obrotu będzie zatem

@ = Rg R^ =
A, 5i (8.64)
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jeśli w rachunku zaniedbać 
my to uczynić (ze względu 
porządku czynników.

wyrazy rzędu wyższego, niż drugi. Jeśli może- 
na małość A^, to wynik (8.64) nie zależy od 

Jest widoczne, że R 
jest macierzą jednostkową 
cą "czysty" obrót

możemy rozłożyć na czężć symetryczną, która
= i częsc antysymetryczną A, przedstawiają-

R = I + A.

Wobec tego możemy teraz napisać
(8.65)

c(2) = g s(1) = (J + A)
skąd

△ = S(2) ę(1)T -i. ,
- - - = (0.66)

Po rozpisaniu iloczynu otrzymujemy

A1 = 2 «SSi^ c3i(2) - ^(1) c2i(2)}, 
i '

A2 = p c1i^2) “ c1i^) c3i'2^}> (8.6?)

A3 = i c2i^^ “ c2i(^ c1i<2)}.

W celu zilustrowania tycn obliczeń posłużmy się antracenem jako przykła­
dem [92]. Według danych Masona [52]

g(2,290 K)
/-0,49409 -0,-12738 +O,86OO3\

= ( -0,31753 -0,89444 -0,31490 1 ,
\+O,8O935 -0,42867 +0,4014^/

/-0,51171 -0,13109 +O,8491O\
g(1,95 K) = 1 -0,30351 -0,89699 -0,32140 I .

\+0,80376 -0,42218 +0,41920/

Kąty Eulera, obliczone 
wynoszą

odpowiednio z C31 i c32,' c13 1 c23 oraz z c33

/0 X

290 K 62,09218(2) 110,10988(42) 66,32864(0) (8.68)95 K 62,28889(22) 110,73268(14) 65,21591(0)
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Stąd
AT ĄX A§
Al AT AT

-3,63 -11,50 20,54 ”/K

a według (8.60)

A T- A (₽M A Tjj
— = -no,2, — = -18,2, — = -13,o "/K. (8.69;
AT AT AT

Widzimy więc, że cząsteczka antracenu obraca się w zakresie temperatur 
95 do 290 K średnio o kilkanaście sekund kątowych na każdy stopie.ń Kel- 
vina. Znak (+) oznacza, że dla danej osi obrót dokonuje się zgodnie z 
regułą śruby prawej.

Z (8.6?) otrzymujemy

Az] = -1O,3tO,1, Ag = -18,0310,07, A^ = -12,9810,09 "/K (8.70)

w zupełnie dobrej zgodności z (8.69). Zgodność ta wynika z równoważnoś­
ci (8.60) i (8.67) - w obu przypadkach wychodzimy z tej samej informa­
cji, tj. znajomości macierzy g w co najmniej dwóch temperaturach. Róż­
nice między tymi wzorami polegają na tym, że do otrzymania i8.67) zasto­
sowano metodę najmniejszych kwadratów, zatem (8.67) prowadzi na ogół d0 
wyników dokładniejszych, niż (8.60).

Strukturę naftalenu w dwóch temperaturach oznaczyli Kożin i Kitaj- 
gorodskij [91]. Tabele kosinusów kierunkowych g(2) i ęi1), obliczone z 
współrzędnych atomów, podane są w tab. 8.4. Z (8.67) otrzymujemy śred­
nie w przedziale 78-293 K przemieszczenie kątowe cząsteczki naftalenu

Az] = +32,6, A^ = +31,7, A^ = -7;0 ”/K. (8.71)

Przemieszczenia te dla osi L i M mają wartości przeszło dwukrotnie 
większe, niż w antracenie.

Tabela 8.4

Kosinusy kierunkowe osi LMN cząsteczki naftalenu, 
Obliczone z współrzędnych atomów [91J

a b cx

L 0,4320 0,2049 -0,8733
c(2,293 K) M 0,32^8 0,8726 0,3658

N 0,8420 '-0,4405 0,31>4
L 0,4620 0/1971 -0,8647

c(1,78 K) M 0,2925 0,8866 0,3583
N 0,8372 -0,4188 0,3518
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Tabela 8.5
Kosinusy kierunkowe i kąty Eulera cząsteczki antnachlncnn, 

obliczone z współrzędnych atomów [$6]

Kąty Eulera cząsteczki antrachinonu

a i b cx

L 0,52355 0,48701 0,69908
5(293,8) M -0,7792? -0,05797 0,62400

N 0,34441 -0,87147 0,34917

L 0,52644 0,46082 0,71449
ę(260,8X M -0,79034 -0,04453 0,61105

N 0,31340 -0,88637 0,34076

L 0,52623 0,45014 0,72143
p(2O1) M -0,79603 -0,03757 0,60409

N 0,29903 -0,8921? 0,33855

L 0,52843 0,44334 0,72402
g(161) M -0,79834 -0,03063 0,60143

N 0,28882 -0,89583 0,33775

L 0,52332 0,43493 0,73277
g(1O3) M -0,80621 -0,02577 0,59107

N 0,27596 -0,90009 0,33716

T, K <P X e

293,8 21,5643 48,2478 69,5634
260,8 19,4729 49,4620 70,0768
201 18,5296 50,0588 70,2114
161. 17,8694 50,2842 70,2602
103 17,0455 51,1095 70,2961

Dokładniejsze wyniki możemy otrzymać dla cząsteczki antrachinonu, 
ponieważ struktura tego kryształu wyznaczona została w pięciu temperatu­
rach [56]. Tabele kosinusów kierunkowych oraz kąty Eulera podane w tab. 
8.5 obliczone są z współrzędnych atomów przy następującej definicji osi 
TJIINł
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Rys. 8.21. Temperaturowe funkcje kątów Eulera w krysztale antrachinonu 
(według [92])

(i) N jest normalną do najlepszej płaszczyzny, poprowadzonej 
przez atomy C(1) do 0(8),

(ii) M jest średnim kierunkiem poprowadzonym przez cztery pary a- 
tomów, a następnie skorygowanym przez mały obrót do ścisłej ortogonal- 
ności z M według procedury, opisanej w rozdz. 5,

(iii) L = M - N.

W rezultacie ortogonalność wektorów L, M i N nie jest gorsza,niż 
±1*10“^, zaś błędy w kątach. Eulera nie większe, niż (3,10-Z|')°. Tempera­
turowe funkcje kątów Eulera w tym krysztale przedstawione są na rys. 8.21. 
W temperaturach niższych od 240 K funkcje są praktycznie liniowe, 
przy czym dwa z kątów maleją ze wzrostem temperatury, zaś $ rośnie. W 
temperaturze bliskiej 260 K zmiany kątów Eulera na 1 K zaczynają być du­
że, co wiąże się z jakimś - bliżej nie znanym - procesem w sieci krysz­
tału antrachinonu. Potwierdzenie tego zachowania się odnajdujemy rów­
nież na rys. 8.22, na którym przedstawione są zmiany kątowego położenia 
cząsteczek w funkcji temperatury, wykreślone według danych z tab.
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Rys. 8.22. Zmiany kątowego położenia cząsteczek antrachinonu A. 
w funkcji temperatury (według [92])

8.6. Na możliwość występowania osobliwości strukturalnej w tym zakresie 
temperatur zwracają uwagę również autorzy pracy strukturalnej [56] w 
związku z tym, że współczynnik rozszerzalności termicznej ujemny 
poniżej -10 °C, staje się dodatni w pobliżu 0 °C (por. Nr 55 w tab.8.1).

Nie ma takich anomalii w krysztale benzenu w temperaturach dosta­
tecznie niskich w porównaniu do temperatury topnienie. Tabele-kosinusów 
kierunkowych cząsteczki w zakresie 260 do 80 K podane w tab. 8.7 obli­
czono z temperaturowej zależności anizotropii diamagnetycznej [95] i 
znajomości struktury w temperaturze pokojowej [45]. Wobec wysokiej sy-



364

Tabela 8.6

Zmiany kątowego położenia cząsteczki antrachinonu A^ "/K, 
obliczone z tab. 8.5 i (8.67)

T, K A1 *2 A3

277 124,5 183,0 -53,7
231 35,5 40,7 -16,6
181 40,1 . 39,2 -0,21
132 55,9 32,2 -34,0

Tabela 8.7
Kosinusy kierunkowe cząsteczki benzenu w krysztale, obliczone 
w zakresie temperatur 260 do 80 K z temperaturowej zależności 
anizotropii diamagnetycznej 03 i danych strukturalnych w 

temperaturze pokojowej [43]

a b c

-0,28612 0,95819 0
c(260) -0,64426 -0,19238 0,74022

0,70927 0,21179 0,67237

-0,28768 0,95773 0
ę(24O) -0,64848 -0,19479- 0,73588

0,70478 0,21170 0,67711

-0,28902 0,95732 0
g(220) -0,65223 -0,19691 p,73200

0,70076 0,21156 0,68131

-0,29015 0,95698 0
2(200) -0,65550 -0,19874 0,72857

0,69723 0,21140 0,68497

-0,29109 0,95670 0
2(180) -0,65805 -0,20022 0,72587

0,69443 0,21129 0,68784

-0,29182 0,95647 0
2(160) -0,66064 -0,20156 0,72314

0,69166 0,21103 0,69071
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od. tab. 8.7

a b c

-0,29254 0,95651 0
£(140) -0,66252 -0,20255 0,72114

0,68964 0,21082 0,69279

-0,29266 0,95622 0
c(12O) -0,66596 -0,20521 0,71965

0,68812 0,21060 0,69456

-0,29277 0,95618 0
p(1OO) -0,66495 -0,20560 0,71860

0,68711 0,21059 0,69542

-0,29269 0,95621 0
£(80) -0,66550 -0,20570 0,71807

0,68662 0,21017 0,69598

metrii cząsteczki można przyjąć jeden z kątów Eulera X = O; sytuacja 
ta analizowana będzie dokładniej w rozdz. 9. Zauważmy, że X = O znacz­
nie upraszcza związki między kątami Eulera i kosinusami kierunkowymi do 
tabeli

/ cos V sin 9 O \
) = j —cos O sin <f cos © cos w sin & ]. (8.72)

\ sin $ sin <P -sin ® cos 4 cos

Zależność <P(T) i $(T') przedstawione są na rys. 8.25. Widzimy, że oba 
kąty silnie zależą od temperatury, jednak krzywe są gładkie i nie wyka­
zują żadnych osobliwości. Zmiany kątowego położenia cząsteczki (tab.
8.8) są liniowymi funkcjami temperatury (rys. 8.24). Zauważmy, że dla 
osi L zmiany te są wcale duże: w temperaturze około 17 K poniżej tem­
peratury topnienia orientacja cząsteczki zmienia się o więcej niż o 1 
minutę na 1 K.

Jeśli porówna się wartości A otrzymane dla szeregu: antracen, 
naftalen, benzen to okazuje się, że największe zmiany orientacji wystę­
pują w benzenie. Jest to prawdopodobnie związane z kształtem cząstecz­
ki, najbliższym kulistemu.
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Hys. 8.23. Funkcje 'temperaturowe kątów Eulera cząsteczki benzenu

8.5.2. Model sztywnej skrzynki

Argumenty i przykłady przytoczone w poprzednim punkcie zdają się 
wskazywać, iż kątowe zmiany orientacji cząsteczek w kryształach są rzę­
du od kilkunastu do kilkudziesięciu sekund kątowych, na 1 stopień Kelvi- 
na i stanowią naturalną konsekwencję deformacji kryształu wskutek ogrza­
nia. Wartości te, wynikające z badań struktury w funkcji temperatury 
traktować będziemy jako wartości doświadczalne. Zastanowimy się obecnie 
nad powiązaniem wielkości tych zmian z tensorem rozszerzalności termicz­
nej za pośrednictwem pewnego modelu, zwanego modelem "sztywnej skrzyn­
ki" ^2], BBM ("rigid box model").

Przypuśćmy, że mamy zadaną strukturę kryształu w O K. Każdą komór­
kę elementarną, zawierającą Z cząsteczek, możemy podzielić na Z rów-
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T(K)

Bys. 8.24. Zmiany kątowego położenia cząsteczki benzenu A ■ 
w funkcji temperatury 1

noległościanów o symetrii identycznej z symetrią komórki* lecz o krawę­
dziach dq, dg, dj, które są prostymi ułamkami periodów identyczności 
a, b, c tak, by spełniony był warunek

Z x 1| d2 dj = a b c. (8.73)

Elementarny równoległościan, zawierający tylko jedną cząsteczkę w jej 
oryginalnej orientacji przyjmowanej w strukturze, będziemy nazywać 
sztywną skrzynką: będziemy bowiem przyjmować dalej, że rozmiary i 
kształt t^j wyżynki nie zależą od temperatury w tym sensie,jak kształt 
i rozmiary samej cząsteczki od niej nie zależą. Temperatura powoduje je­
dynie powiększenie i deformację przestrzeni, jaką skrzynki mają do dys­
pozycji. W OK przylegają tio siebie ciasno, lecz w T > O K przestrzeń 
swobodna jest większa od d^dgdj. Wobec tego może zachodzić obrót skrzy­
nek o pewne niewielkie kąty przy czym jako osie obrotu przyjmierny 
kierunki równoległe do a, b, c komórki elementarnej, (rys. 8.25). Bio- 
rąc pod uwagę względne przesunięcia kątowe sąsiadujących z sobą skrzy­
nek, możemy rozróżnić dwie sytuacje:
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Tabela 8.8

Zmiany kątowego położenia cząsteczki benzenu A± ’*/K, 
obliczone z tab. 8.7 i (8.67)

T, K A1 Ó2 A5

250 66,2 -12,4 -11,5
230 59,0 -10,6 -9,8
2-I0 51,7 -8,9 -8,3
190 40,7 -7,5 -7,0
170 40,8 -5,7 -5,4
150 29,7 -4,0 -5,9
130 22,6 -2,4 -2,4
110 15,2 -0,9 -0,9
90 • 7,9 +0,8 +0,6

Rys. 8.25- Osie obrotu sztywnej skrzynki o symetrii jednoskośnej

(i) Obrót każdej skrzynki zachodzi kooperatywnie, z uwzględnieniem 
położeń skrzynek sąsiednich (rys. 8.26). Spełniona jest wówczas zasada 
ciasnego upakowania skrzynek, których środki maksymalnie zbliżają się 
do siebie na tyle, na ile pozwalają względy geometryczne. Oznaczmy w 
skrócie

2 • AT s Ą, (8.74)

przy czym niech A będzie dane w układzie abcx. Wtedy, na przykład 
dla płaskiego przekroju (001) struktury (rys. 8.26), dopuszczalny kąt 
obrotu skrzynek wynika z relacji
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Obrót kooperatywny

Ryg. 8.26. Kooperatywna zmiana orienta­
cji sztywnych skrzynek (schematycznie)

cos <₽5 = (1 + jT A O,)”1» 

czyli
<P5 = (2 jT A j)1/2.

(8.75) 
i, j, k oznaczają wersóry 
równoległe odpowiednio do osi 
a, b, c kryształu. Posługu­
jąc się danymi, na przykład 
dla antracenu, łatwo się prze­
konać, że model ten prowadzi 
do wartości <P^ w przybliże­
niu 100 razy większej od do­
świadczalnej A^. O wiele za 
wysokie wartości otrzymu­
je się też dla innych kierun­
ków tak, że model kooperatyw­
ny należy odrzucić.

(ii) Obrót każdej skrzyn­
ki zachodzi niezależnie od są­
siadów, niekooperatywnie (rys. 
8.27). Każda skrzynka zachowu­
je się indywidualnie w dostęp­
nej jej przestrzeni o wielkoś­
ci j » a(T)-b(T)«c(T), a je­

dynie zwroty przemieszczeń kątowych sąsiednich cząsteczek muszą być 
zgodne z wymogami symetrii. Przemieszczenia kątowe skrzynki są wówczas 
następujące:

ta) Na płaszczyźnie (100): jeśli spełniona jest nierówność 

d2(jT 4 j) < dj(kT | k), 

to "styki" limitujące wielkość przemieszczenia występować oędą wzdłuż 
osi c oraz 

dp m
’i = ± Sin ^2*^3^* (8.76)

W przypadku
dj(kT Ą k) < d2(jT A j)

styki pojawiają się wzdłuż osi b, a dopuszczalne przemieszczenie kąto­
we wynosi
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Hys. 8.27. Niekooperatywna zmiana orien­
tacji sztywnych skrzynek (schematycznie, 

według [92])

lub

= - ^ (A k/sin (^.d^) 

(8.77)
(b) Analogicznie na 

płaszczyźnie (010): .jeśli

^(i1 Ą 1) < d^T £ k), 

to styki występują wzdłuż c 
oraz

^2 = i T" (^.d^)

(8.78) 
Przy nierówności skierowanej 
przeciwnie

$2 = i (k^A k) sin ((Lpdj) 

(8.79) 
występują styki profilu 
skrzynki z osią a.

(c) Na płaszczyźnie 
(001)

dp T
<₽3 = i (j j)sin (d1,d2)

(8.80)

=ł 1 (iT Ą i) sin (ipdg) (8.81)

zależnie od tego czy spełniona jest nierówność (styki wzdłuż a) 

d^j1 £ < <L](iT i),

ozy też nierówność przeciwna (styki wzdłuż b).
Ponieważ model ma charakter statystyczny, nie jesteśmy w stanie 

przewidzieć, który ze znaków jest właściwy. Wobec tego musimy wpro­
wadzić dodatkową regułę: kierunek przemieszczeń kątowych musi być tak 
dobrany, by korelował z obserwowaną zmianą dwójłomności przy zmianie 
temperatury (na ogół podwyższeniu temperatury towarzyszy zmniejszenie 
dwójłomności, por. rozdz. 9).

Porównanie wyników doświadczalnych z uzyskanymi z modelu podane 
jest dla kilku przypadków w tab. 8.9. Widzimy, że mimo dużych uprosz­
czeń i pewnych niedomogów, RBM prawidłowo oddaje wielkość przemieszczeń
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Tabela 8.9
Zestawienie wyników obliczeń przemieszczeń kątowych 4^, ń^.

wokół osi symetrii M cząsteczki, w "/K (według [92])

al AM AU Uwagi

A . Cząsteczka £mtracenu

1 -10,3+0,1 -18,1010,07 -12,98+0,09 bezpośrednio z c(2) i c(1) dane
Masona (52]

2 -14,8 -14,0 -1,6 REMs [92], ®: Mason [52]

3 -6,1 -3,5 +0,5 RBM: [92], ®: Kożin [49]

4 -18,3 -11,8 +0,9 RBMs 02], a: Ryżenkow [50]

5 -10,2 -3,2 +2,3 RJMs [92], Jakubowski [51]

B Cząsteczka k:arbazolu

1 -9,8 0 0 oblicz, z dwójłomn.: Kusto [94]

2 -7,0 0 0 REM: [92] , a: Świątkiewicz [95]

J. Cząsteczka benzenu

1 +73,68 -13,67 -12,81 oblicz, z anizotrop. diamagn.
Hoarau [93]

2 +60,3 -15,2 -37,2 [92], ®: Cox [43]

kątowych cząsteczek w różnych kryształach. Wartość AM = = 0 dla
cząsteczki karbazolu ma charakter obligatoryjny. Wynika to stąd, że ■ 
płaszczyzna cząsteczki jest prostopadła do płaszczyzny symetrii kryszta­
łu i temperatura nie może mieć wpływu na tę sytuację.

Problem, który chcemy przedstawić obecnie, tematycznie należy w za­
sadzie do następnego rozdziału, ponieważ autorzy zajmują się w nim po­
wiązaniem diamagnetyzmu kryształu molekularnego z temperaturą. Jednak z 
uwagi na dyskutowaną w tym paragrafie rolę anharmonizmu drgań w prze­
mieszczeniach kątowych cząsteczki słuszniej jest przedstawić go na tym 
miejscu. W pracy [96] Charbonneau i Rivet pokazują, że z przemieszcze­
niami kątowymi cząsteczki należy się liczyć w pewnych sytuacjach rów­
nież wtedy, gdy z założenia libracje są harmoniczne, ale ich amplituda 
jest duża. Z takim przypadkiem spotykamy się w krysztale dwufenylu. 
\ Przyjmijmy zatem, że każda z osi symetrii LMN cząsteczki wykonuje 
drgania harmoniczne
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= e<m> cos (wt - <₽i), (8.82) 

gdzie jest amplitudą, a fazą początkową tycn ruchów. Średni 
kwadrat wychylenia równy jest z definicji odpowiedniej składowej tenso­
ra libracji L

<©?>= j<(e]m))2>= 18.83)

Ponieważ jest on różny od zera, średnie w czasie położenie osi IMS jest 
inne, niż osi L® M® N® cząsteczki w spoczynku. Jeśli wybierzemy wek­
tory jednostkowe wzdłuż tych osi, tj. e^ ]) L, e2 || M, e^ || N oraz 
e® || L®, e® || M®, e® || № i przypiszemy im postać macierzy kolumnowych, 
to oba układy można związać zależnością

£1=3« ' (8.84)

gdzie § jest macierzą obrotu ogólnego, analogiczną do R (8.64)

-02 _9|)V2

63 
e 2

~'e3
(1 - - ©I)"1/2

%
(8.85)

Różnica między (8.64) a (8.85) polega na tym, że w tej ostatniej macie- p
rzy zastosowano dokładniejsze przybliżenie cos = 1 - 6^/2. Jeśli 
więc g jest tensorem podatności magnetycznej obliczonym z X (T), czy­
li dla cząsteczki wykonującej librację, a g® tensorem cząsteczki w 
spoczynku, to związek między nimi polega na transformacji g z układu 
£i do g® w e® za pomocą macierzy a

g = § g® gT (8.86)

Rozpisanie (8.86) z pominięciem wyrazów proporcjonalnych do i
wprowadzenie wartości średnich prowadzi do układu równań

- < a^ > K® +

K2 =<a|1>K® +<a|2>K2 +<a|j>K®, (8.87)

tz   „2 > z- „2 — tz3E z.2 V®Kj _ < a^ > K,| + < aj2> K2 + < ajj .

W końcu, przez zastosowanie (8.85) i (8.85), otrzymujemy podstawowy 
związek



w
1C| — (1 — Dgg “ ^35 ^"1 + ^33^2 + ^22^’ 

^2 = ’^*35^'1 + " ^33^2 + L11E3’

K. = LggK® + L^K* + ('I - - Lgg)K*.

(8.88)

Na przykład, wyrażenie w drugim wierszu (8.88) obliczamy w następujący 
sposób:

к2 =<е|ж^ +<(i -a 2 -е|)ж* +<е|ж? =

= L^K® + (1 - - D^)K* + L^K*.

Znając К w układzie osi głównych oraz L możemy obliczyć K* cząs­
teczki w spoczynku. Wynik obliczeń powinien być taki sam, niezależnie 
od temperatury, dla jakiej wyznaczony został zbiór potrzebnych informa­
cji. Dane dla cząsteczki dwufenylu zestawione są w tab. 8.'i0 i 8.11. Wi­
dzimy, że cząsteczka wykonuje librację o stosunkowo dużej amplitudzie 
wokół osi L

<(0^)2^Й.= (Sl^)^2 = '14,8°,

co - zgodnie z (8.88) - powinno mieć wpływ na wartość Kg i K*. Istot­
nie, według danych z tab. 8.10 te wartości ulegają największym zmianom 
po uwzględnieniu L. Widzimy też, że K*, obliczone ze zbioru danych 
dla dwóch temperatur, mają wartości praktycznie takie same.

W zwykle spotykanych przypadkach tensor libracji cząsteczki ma 
uniejsze składowe, zatem różnice między К i KK są zaniedbywał nie małe.

(c) Problem krzywej energii potencjalnej

Zgodnie z zapowiedzią uczynioną we wstępie rozdz. 8.5 zajmiemy się 
obecnie próbą bliższego sprecyzowania związku między anharmonizmem 
drgań cząsteczki, potraktowanej jako sztywny librator, a jej średnim po­
łożeniem kątowym w sieci krystalicznej.

Pierwsze próby.zmierzające do rozwiązania problemu anharmonicznej 
libracji podjęte zostały w latach czterdziestych.' Jedną z pierwszych 
prac z tej dziedziny jest publikacja Hanus [97] , w której autorka roz­
wiązuje problem częstości własnych i funkcji własnych stanów energetycz­
nych bąka asymetrycznego, posługując się równaniem SchrBdingera. Zasto­
sowany operator energii kinetycznej ma postać
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Tabela 8.10

triówne podatności magnetyczne kryształu i cząsteczki Ki 
dwufenylu ([96])

X1 X2 X3 *

293 K -68,70 -100,10 -149,10 22°40'
80 K -68,10 -97,40 -152,10 21°4O'

*1 k2 E3

293 K -68,70 -66,10 -185,20
80 K -68,80 -63,10 -186,10

W
 

tu
 W K3

z danych 
w 293 E -68,40 -62,10 -187,50
z danych 
w 80 K -68,70 -62,90 -187,40

Tabela 8.11

Kosinusy kierunkowe osi liW cząsteczki dwufenylu i tensora libraeji [96]

Tensory libracji, (°)^

a b cx

L 0,2960 -0,0001 0,9552
293 K M 0,5160 -0,8415 -0,1599

N 0,8058 0,5402 -0,2491
L 0,2890' -0,0140 0,9573

80 £ M 0,5015 ' -0,8492 -0,1696
N 0,8157 0,5288 -0,2546

293 E 110 K 80 K

^1 109,2(2,8) 45,7(2,1) 33,2

l22 8,4(0,6) 2,5(0,4) 1,8

L33 11,5(0,5) 3,4(0,4) 2,5
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2

“ ^^2 §3

p
a2 

3S23Sj

1 X F 2 , 1
2 "

, 1 1 a
)£ £

(8.89)

gdzie Bi oznaczają główne momenty bezwładności,
są symetrycznymi parametrami Eulera i opisują chwilowe poło­
żenie układu ruchomego xyz (cząsteczka) względem układu od­

niesienia x0y0z09 rys. 8.28,
5 k = cosu^ sin(e/2^ dla k = "1,2,3, oraz
i ą = cos(e/2}

1 jest osią libracji, zaś
/, oznacza sumę trzech członów przy cyklicznej zmianie wśkaźni- 

1,2,3 kÓW’
3

Współrzędne Eulera spełniają 
warunek

4

i

(a nie = 0, jak podano w cyto­
wanej pracy).

Operator energii poten­
cjalnej ma postać

U = 2 2>ij&i5j. (8.90) 

i» j

przy czym y jest tensorem
Rys. 8.28. Orientacja ruchomego układu stałych siłowych liniowych sił 
współrzędnych xyz i osi libracji 1 . . . . , .
względem układu nieruchomego xoyozo sprężystych, działających ze 

strony otoczenia. Taka postać 
energii potencjalnej‘wynika z rozwinięcia energii potencjalnej U^). 
w szereg w pobliżu położenia równowagi z dokładnością do trzeciego czło­
nu (por. rozdz. 7.1). W tym przybliżeniu wyrażenie na energię potencjal­
ną ma więc postać .taką, jak dla oscylatora harmonicznego; z tej racji 
powyższe przybliżenie nosi nazwę modelui "pseudoharmonicznego".

Równanie Schrtłdingera z energią kinetyczną (8.89) i potencjalną 
(8.90) nie ma rozwiązań analitycznych. Rozwiązania można uzyskać metoda­
mi rachunku zaburzeń. W przybliżeniu zerowym operator T jest ograni - 
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czany do pierwszych dwóch członów w klamrze (8.89). Po transformacji do 
współrzędnych normalnych

= 2-/B? • £ ., j = 1,2,3, d d d
równanie BchrBdingera przybiera postać

k k sk k

gdzie ę k = n k = 1,2,3«

Jeśli przyjmie się rozwiązania postaci

* = .<P1(n1) • <P2tn2) •

to wartości własne będą .równe

przy czym n^ oznaczają liczby kwantowe. Energia librator„a jest sumą 
trzech członów o postaci analogicznej dla każdego z trzech stopni swo­
body, co jest naturalną konsekwencją multiplikatywnej postaci funkcji 
falowej.

Wpływ dalszych członów operatora T, zaniedbywanycn w przybliżeniu 
zerowym, można teraz potraktować jako zaburzenie. W dalszym rachunku są 
czynione następujące założenia ( [97])s

Etn^ngnj) = -fi
1,2,3

+ h
B1B3 

przy czym

(n^ + i)(n2 + i)

_ ę)1 ~ B3 Ig

(i) Drgania libracyjne wykonywane są przez cząsteczkę wokół głów­
nych osi bezwładności.

(ii) Wartości własne energii lioratora nie są zdegenerowane. Przy 
tych założeniach otrzymujemy w wyniku rachunku następujący zbiór stanów 
energetycznych libratora

\B2B3 “i

(8.93)12
1-
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W przeciwieństwie do (8.92) energii tej nie można przedstawić jako sumy 
trzech członów, odpowiadających oddzielnym libracjom wokół każdej z osi 
bezwładności, co znacznie utrudnia zastosowanie (8.93) do konkretnych 
obliczeń.

Inny przykład modelu pseudoharmonicznego podany został przez Vis- 
wanathana [J8J w celu wyjaśnienia wpływu temperatury na częstość i sze­
rokość linii przejść ramanowskich. Według tego autora główną przyczyną 
anharmoniozności jest anharmonizm mechaniczny, który prowadzi do wzajem­
nego Oddziaływania drgań normalnych. Do rozwiązania problemu stosuje 
autor metodę pola samouzgodnionego Hartree-Pocka, przy następującej po­
staci energii kinetycznej i potencjalnej

N
T = 2 2^1’ (8*94)

1=1

N
v = i 2 Mi+ Ti 2 2 2 “ijk^i^k’ ^-95) 

i=1 i j k

gdzie ń2, ...» Djj są współrzędnymi normalnymi kryształu przy N = 
= Jn - 6, a n jesu liczbą cząsteczek w krysztale, są stałymi an- 
harmoniczności. Rozwiązanie równani a SohrBdingera prowadzi do skompliko­
wanego wyrażenia na zbiór stanów energetycznych W'i\vi), którego przy­
taczać nie będziemy. Podamy natomiast wyrażenie na częstość linii spek­
tralnej, która w efekcie Ramana pierwszego rzędu polega na przejściu 
między stanem podstawowym W^^O) i pierwszym wzbudzonym W^tl)

a2
»(iJfl) _ (O) = h9< = hy. - -

1 1 24 yJ^
" 2 Am"2 Bm^vm+2^’ ^-96)

m m

przy czym

2y y 2 hv ‘m 1 i. m

B - + ^iim^mm^A + a iik a mmir
m yłYy^Y~-hv?' 4y^ Y-i / 4y. Yi Y hU

x x ‘m i 1 m m i k 'm k
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W wyrażeniu (8.96) hvf oznacza kwant przejścia dla i-tego drgania nor­
malnego w przybliżeniu anharmonicznym, natomiast hu jest energią w 
przejściu harmonicznym. Jak widać, energia przejścia zależy od stopnia 
wzbudzenia pozostałych drgań normalnych. Autor [98] przyjmuje dalej, że 
vm można utożsamiać z liczbą fononów w stanie kwantowym hvffl; średnia 
(wartość wynosi zgodnie ze statystyką Bosego-Einsteina

<Vi> = {ex₽ CM/“) " ’ (8.97)
co oznacza wprowadzenie temperatury do (8.96). Otrzymujemy

R ai2

■ S Bm {exp (hVM) - 4’1* 
m ;

Stąd zmiana częstości linii ramanowskiej ’Avp wynikająca z wpływu tem­
peratury, wyniesie

Av± = - ^sJerp (hVm/kT) - IV1. (8.98)

Widzimy, że w celu obliczenia zmiany częstości określonego i-tego drga­
nia normalnego w temperaturze T K musimy wykonać sumowanie po wszyst­
kich drganiach normalnych.

Dyskusja stałych anharmoniczności i ich powiązania z dynami-
ką sieci, przedstawiona w pracy [98], ma raczej charakter rozważań ja­
kościowych. Autor wskazuje jednak, gdzie leżą główne trudności w inter­
pretacji anharmonizmu drgań sieciowych - teoria, jak dotąd, nie daje 
możliwości obliczenia

W dalszym ciągu tej dyskusji pragniemy zająć uwagę Czytelnika pra­
cą Williamsa [99J, w której autor przedstawił praktyczne próby oszacowa­
nia stałej anharmoniczności i obliczeń rozszerzalności termicznej.W tej 
pracy stała, anharmoniczności określona została inaczej. Do tej de-fini- 
cji dochodzimy w następujący sposób. Niech cząsteczka wykonuje drgania 
libracyjne i translacyjne w zmiennym polu sąsiadów. Energię potencjalną 
oddziaływania atomów danej cząsteczki z atomami jej sąsiadów U(r) moż­
na rozwinąć w szereg Taylora w pobliżu położenia równowagi rg

U(r) = U(re) + PU'(re) + | P2 U"(re) + j p3 Uw(re) + ...

gdzie primy przy U oznaczają pochodne po r oraz 

p = r - re
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jest przesunięciem atomu z położenia równowagi, spowodowanym drganiem, i 
Jak zwykle U(rQ) = u'(re) = 0. Jeśli uwzględnimy, że średnia siła,dziaf 
łająca na atom znajdujący się w położeniu równowagi również równa jest:! 
zeru

<g> = 0 = <₽>u"(r ) + i<p2>u", (r ), 
dr e 2 e

to otrzymamy
<P> = k<P2>, (8.99)

gdzie
i ZLhd
2 U" (re) ’ , (8.100)

k jest stałą anharmoniczności, a (8.100) jest nową jej definicją- Po­
tencjał oddziaływania atom-atom, przyjęty przez Williamsa dany jest wy­
rażeniem 6-exp

U(r) = - A r"6 + B exp (-C r). (8.101)

W potencjale jedynie część opisująca energię odpychania jest dostatecz­
nie czuła na małe przesunięcia atomów z położenia równowagi; tylko ta 
część uwzględniona została w dalszym rachunku. Dalej, potencjał musi 
być funkcją temperatury oraz musi być anizotropowy, ponieważ wielkość 
przesunięcia atomów również zależy od kierunku. Williams przyjmuje, że 
od T zależy jedynie współczynnik B, natomiast C jest stałe. Wzrost 
B do B'(T) przy średnim wychyleniu z położenia równowagi < p >można za­
pisać następująco:

b' / r₽— = ------ ę----- I exp (C<p>). (8.102)
B \re +<P>/

Podstawienie B' do potencjału (6-exp) pozwala obliczyć minimum energii 
sieciowej w różnych temperaturach, a stąd zależność parametrów komórki 
elementarnej od temperatury. Potrzebny tu średni kwadrat amplitudy prze­
sunięcia atomu oblicza się z wzoru Cruickshanka dla sztywnej cząsteczki

<p 2> (1, rj = 1® I 1 + (1 x rx)T L(1 x £1). (8.103)

Iii są odpowiednio tensorami drgań translacyjnych i libracyjnych, 1 
jest wektorem jednostkowym w kierunku przesunięcia, zaś r^ łączy dany 
atom "i" ze środkiem libracji cząsteczki.

Wyniki obliczeń według tego formalizmu dość dobrze odpowiadają da­
nym doświadczalnym dla zestalonych gazów szlachetnych, natomiast znacz­
nie gorzej dla antracenu. Williams proponuje szereg poprawek, mających 
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na celu doprowadzenie do lepszej zgodności z doświadczeniem, których tu 
nie będziemy referowali.

Półempiryczne funkcje energii potencjalnej typu 6-exp lub podobne­
go, mają szereg ważnych zastosowań w fizykochemii organicznego ciała 
stałego, a między innymi pozwalają konstruować przybliżone profile ener- 
gii potencjalnej. Profile te nie tylko opisują, lecz także charakteryzuj 
Ją różne typy ruchów cząsteczki w krysztale, a ich przydatność do kry­
tycznej oceny ruchu za pośrednictwem analizy anizotropowych parametrów 
termicznych wykazali - Jak piszą po raz pierwszy - Shmueli i Goldberg 
pOOj. I tak, Jeśli libracja Jest bliska harmonicznej, otrzymuje się 
profil prawie paraboliczny; natomiast w większości zbadanych przypadków 
o dużej amplitudzie ruchu profil odpowiadał albo nieuporządkowaniu o- 
rientacyjnemu, albo ruchom silnie anharmonicznym. Według podstawowego 
założenia w proponowanej metodzie uważa się, że cząsteczka wykonuje li- 
brację przy nieruchomym otoczeniu, co Jest w gruncie rzeczy równoważne 
zaniedbaniu sprzężenia ruchu między cząsteczkami. Mimo drastyczności ta­
kiego założenia autorzy uzyskali zachęcające wyniki dla szerokości krzy­
wych potencjalnych i dla odpowiadającego im pierwiastka z średniego kwa­
dratu amplitudy drgań.

Metoda obliczeń polega na symulacji ruchu libracyjnego wokół wybra­
nej osi, która najczęściej Jest Jedną z osi symetrii. Wychodząc z poło­
żenia równowagi cząsteczki w strukturze, obraca się Jej szkielet w ma­
łych krokach, równych 0,5°, wokół tej osi i za każdym razem oblicza e- 
nergię potencjalną względem nieruchomego otoczenia przy użyciu funkcji 
energii potencjalnej (8.-104). Stosując tę metodę, autorzy 001] analizu­
ją profile energii potencjalnej libracji antrachinonu, dla którego 
struktura kryształu znana jest w pięciu temperaturach ( [56]). Celem tej 
pracy jest uzyskanie odpowiedzi na następujące pytania*

(i) czy można metodą klasyczną obliczyć amplitudę ruchu libracyjne- 
SO,

(ii) jak dokonać oszacowania udziału anharmonizmu w profilu ener­
gii potencjalnej,

(iii) jakie rezultaty można stąd otrzymać dla częstości libracji 
i jak przedstawia się porównanie z doświadczeniem?

Ponieważ w tym rozdziale jesteśmy zainteresowani znajomością odpo­
wiedzi na te pytania, zreferujemy pracę 001] nieco bardziej szczegóło­
wo.

Dla analitycznego opisu krzywej energii potencjalnej V(r), autorzy 
proponują czteroparametrową funkcję 6-exp

V(r) = a exp (-brj/r^ - c/r6. (8.-104)
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tabela 8.12
Parametry funkcji energii potencjalnej (8.104) według £1OOj. 

Dla r wyrażonego w £ energię otrzymamy w kJ/mol.

Atomy 
oddziałujące a b 0 d

H...H 9081 3,74 102,0 0
C...C 300264 3,60 2144,6 0
C...H 35570 3,67 467,74 0
0...0 1083000 0 1499,6 12
N...H 268360 3,64 1684 0
0...H 99166., .1,87 . 391 6
0...C 570350 1,80 1793 6
0...N 539190 1,82 1589,5 6
N...H 49368 3,69 414 0
N...C 283870 3,62 1901 0

Parametry tej funkcji a, -b, o, d podane są według [100] w tah. 8.12 
dla różnych par niezwiązanych z sobą atomów. Wartości energii potencjal­
nej każdego profilu oblicza się dla oddziałujących atomów, zawartych w 
sferze o promieniu r 7 £ i dla różnych kątów obrotu 9 cząsteczki, 
a następnie wygładza profil metodą najmniejszych kwadratów przy użyciu 
funkcji aproksymacyjnej V_(<p) O

Vs(cp) = a + b<P + c<₽2 + d<p* + (8.105)

Taka postać funkcji pozwala na oddzielną ocenę udziału członów harmo­
nicznych i - co jest bardziej interesujące - członów anharmonior.nyc.h

Va(<₽) = dq»5 + e<p4. (8.106)

Średni kwadrat amplitudy libracji oblicza się z wzoru

+oo /2 2<p exp (-co /kT)dcp
«P2>= ------------------------------  = , (8.107)

/p 
exp (—cq> /kT)d<₽

-co
a więc przyjmując rozkład harmonicznej części energii potencjalnej V = 
? c<p2, zgodny z klasyczną statystyką Maxwella-Boltzmanna. Wyraz ener-
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2 И 2gil potencjalnej V(q>) = сф = - (2c)<₽ decyduje o częstości drgań li- 

bratora, traktowanego jako obiekt sztywny

И % V2 vs = — (^) , (8.108)
2п I

gdzie I jest momentem bezwładności właściwym dla wybranej osi libra- 
cji. Łącząc (8.107) 2 (8.108) otrzymujemy dobrze znany związek, podany 
przez Cruickshanka [102]

o kT
«P > = —---------- . (8.109)

4n2 I vB

.Wyniki obliczeń dla cząsteczki antrachinonu w krysztale przedstawia tab. 
8.15. Przytoczymy w streszczeniu komentarz autorów do tych danych.

Kształt wygładzonych profilów energii potencjalnej determinowany 
jest w pobliżu minimum przede wszystkim członem kwadratowym w (8.105). 
Ze wzrostem temperatury c maleje, co odpowiada stopniowemu spłaszcze­
niu parabolicznej części krzywej. Takie zachowanie się c jest zgodne 
z przewidywaniami teorii pseudoharmonicznej [105], która przewiduje spa­
dek stałych siłowych oraz częstości ze wzrostem temperatury. Oczywiście 
vR w tabeli 8.15 przewidywania te spełnia, przy czym zależność tempera­
turowa jest zbliżona do obserwowanej przez Miyazaki i Ito [104] w wid­
mie Ramana tej substancji.

2 1/2Kątowa amplituda drgań <Ф > ' rośnie ze wzrostem temperatury 
dla wszystkich trzech osi libracji. Zależność ta jest silniejsza niż 
1/2T ' , jak to wynika z teorii pseudoharmonicznej. Stałe siłowe oraz am­

plituda drgań mają więc trochę zbyt wysokie wartości, co wynika po częś­
ci z ustalenia położeń cząsteczek w otoczeniu w przyjętym modelu rachun­
kowym, po części z średniej dokładności w wyznaczeniu strukturalnych pa­
rametrów termicznych (piszą o niej również autorzy [56]). Mogą wchodzić 
w grę również inne powody tej niezgodności. Po pienvsze, atomy tlenu wy­
konują niezależne oscylacje poza płaszczyznę cząsteczki; zaniedbanie 
ich podwyższa prawdopodobnie częstość cząsteczki, potraktowanej
jako sztywny librator. Po wtóre, powiększenie rozbieżności powoduje z 
pewnością ańharmoniczność rotacji, co jest szczególnie widoczne dla sil­
nie anharmonicznej rotacji wokół H.

Zauważmy w końcu, że minima wszystkich krzywych energii potencjal­
nej są przesunięte w porównaniu do rzeczywistej orientacji cząsteczek 
w strukturze o niewielkie kąty. Przesunięcia te, średniowane na cały za­
kres temperatury, wynoszą: dla rotacji wokół L -2,05(0,25)°, dla osi 
M +0,56(0,08)° i dla osi H -1,42(0,19)°. Nie są to dane szczególnie 
przydatne. Bardziej interesujące wnioski można by uzyskać ze znajomości 
przesunięcia mi.nimum krzywej w poszczególnych temperaturach, poniewa?.
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Tabela 8.13
—'I 2Cząsteczka antrachinonu w krysztale: współczynniki c(kJ«mol deg ), 

d(kJ*mol“'deg-^), e(kJ«mol“’deg“^) krzywych energii potencjalnej 
(8.105),<<P2>I/2 -pierwiastek z średniego kwadratu amplitudy drgań 
obliczony z (8.107), w1/2 - doświadczalna wartość pierwiastka śr. am­
plitudy drgań [56], w stopniach, A “ sz®£otość krzywej w stop­
niach na wysokości U = kT, częstość drgań sztywnego libratora 

(8.108) w cm-^

1. Rotacja wokół L, <₽ od -10° do +10° w krokach 0,5°

T c d x 105 «₽2>V2 u1/2 
“11 A<₽1/2

103 0,1255(12) -192 1,85 3,00 2,49 74
161 0,1113(4) -176 2,45 4,04 3,26 70
201 0,-1146(4) -184 2,70 4,23 3,64 71
260,5 0,1054(12) -180 3,20 4,52 4,32 68
293,5 0,0870(8) -167 3,74 5,41 4,81 61

2. Rotacja wokół M, <P od -1(3° do +1013 w krokach 0,5°

T c e * 105 <^>1/2 UV2 
'22 A $1/2 VR

103 0,4928(17) 259 0,93 0 1,31 93
161 0,4685(21) 251 1,20 0,97 1,68 91
201 0,4472(25) 238 1,37 1,60 1,92 89
260,5 0,4112(25) 230 1,62 0,85 2,26 85
293,5 0,3723(25) 222 1,81 1,16 2,51 81

3. Rotacja wokół U, <P od -6 do +5° w krokach 0,5°

T c <<₽ 2>V2 A <P1/2 VR

103 0,4815(42) 0,94 1,26 1,54 78
161 0,4915(50) 1,17 1,98 2,02 79
201 0,4723(54) 1,33 2,17 2,23 77
260,5 0,4392(46) 1,57 2,67 2,67 74
293,5 0,4254(54) 1,69 3,18 3,04 73

te wyniki moglibyśmy porównać z liczbami wynikającymi bezpośredni o ze 
struktury lub modelu sztywnej skrzynki. Tych szczegółów autorzy jednak 
nie podają.
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9. WPŁYW TEMPERATURY NA NIEKTÓRE. WŁASNOŚCI FIZYCZNE KRYSZTAŁÓW

Zgodnie a wynikami rozważań poprzedniego rozdziału wpływ temperatu­
ry na strukturę kryształu molekularnego, tworzącego w interesującym nas 
zakresie temperatur fazę termodynamicznie stabilną, można opisać za po­
mocą dwóch efektów mikroskopowych:

(i) Małe przesunięcie środka masy cząsteczki, przejawiające się ja­
ko zmiana gęstości kryształu,

(ii) Niewielka zmiana kątowej orientacji cząsteczki, prowadząca do 
zmiany wielkości fizycznej według modelu gazu zorientowanego.

Obecnie, spróbujemy rozważyć, jaki jest związek między wielkością 
tych przemieszczeń, a wielkością efektów obserwowanych w pomiarach fun­
kcji temperaturowych omawianych dotychczas wielkości fizycznych. Dys­
kusja, którą przedstawiamy w tym rozdziale, będzie bardziej szkicem za­
gadnienia, niż prezentacją ustalonych poglądów. Mamy bowiem jeszcze za 
mało informacji o wpływie temperatury na własności kryształów, a w do­
datku często okazują się one niekompletne, gdy chcemy skonfrontować z 
nimi wyniki obliczeń. Wydaje się, że jeszcze za wcześnie na dokonywanie 
uogólnień.

Dyskusję rozpoczniemy od przedstawienia wpływu temperatury na po­
datność diamagnetyczną kryształów.

9.1. Diamagnetyzm kryształów

Uzasadnialiśmy w rozdz. 5, że podatność diamagnetyczna jest włas­
nością stosunkowo łatwo poddającą się interpretacji mikroskopowej, a 
przyczyny tego są następujące:

(i) W diamagnetyzmie praktycznie nie istnieje problęm pola lokalne-- 
go, wobec czego relacje między podatnością kryształu, komórki elementar­
nej i cząsteczki mają charakter związków geometrycznych (model gazu zo­
rientowanego ).

(ii) Problem zmiany gęstości ciała stałego wraz ze zmianą tempera­
tury można pominąć, ponieważ efekty stąd- wynikające są niewielkie i wo­
bec niezbyt dużej dokładności metod eksperymentalnych nie są zauważalne 
(p. 9.2).
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Tabela 9.1

Główne podatności kryształów: X^ w temperaturze ciekłego azotu, 
w temperaturze pokojowej (wg 03)

X • 10® cgsM

Związek (X^ - (x2 - x2) (X^ — x^)

p-Dwubromobenzen 0,22(3) -0,60(3) 0,36(4)
p-Benzochinon 0,^2) -1,04(9) 0,70(16)
Naftalen 1,3(2) -1,60(12) 0,25(25)
Dwubenzyl 0,3(4) -2,1(5) 1,9(8)
Stilben 0,0(3) -1,9(2) 1,9(1)
Azobenzen 0,25(10) -0,40(7) 0,15(10)

W konsekwencji tych przesłanek średnia podatność proszkowa związku 
organie.znago nie powinna zależeć od temperatury. Słuszność tego wniosku 
potwierdzają wyniki pomiarów autorów francuskich [1,2]. Część tych wyni­
ków zamieszę-zono w tab. 9.1 według przyjętej w rozdz. 5 konwencji ozna­
czeń osi i ich orientacji. Widzimy przede wszystkim, że wpływ temperatu­
ry na główne podatności kryształu jest niewielki. Co więcej - funkcje 
Xi(T) mają charakter kompensacyjny. We wszystkich podanych w tabeli 
przypadkach i X^ są bardziej ujemne w temperaturze pokojowej, nato­
miast X 2 jest tardziej dodatnie. Właśnie kompensacyjny charakter tych 
zmian powoduje, że

(Xi - X±) = 3 (<x'> - < X>}= 0 (9.1)

i

w grani ę.aę.h błędów doświadczalnych. Xf są' podatnościami w temperaturze 
ciekłego azotu, a XŁ w temperaturze pokojowej. Hówność (9.1) będziemy 
dalej przyjmować jako fakt stwierdzony doświadczalnie.

Bardziej szczegółowo zbadano funkcję temperaturową podatności dia- 
magnetycznej kryształu benzenu [2]. Niektóre wyniki doświadczalne przed­
stawiono na rys. 9.1, a mianowicie

A12 X(T) = Xa(T) - Xb(T), oraz A X(T) = Xb(T) - XC(T).

Odczytując wartości liczbowe z tych wykresów i przyjmując [2]

<X>= -54,8(1) .10"® cgsM,

możemy obliczyć X , X , X„ w różnych temperaturach z układu równań a o c •
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Eys. 9-1» Zależność ani zotropii podatności diamagnetyczneJ kryształu 
benzenu od temperatury (oprać, wg KJ).Linie przerywane przedstawia­

ją wyniki obliczeń według modelu sztywnej skrzynki

xa + xb +xc = 5<X>

Xa “ = A12
X b " Xc = A 23

Wyniki podano w tab. 9.2. Okazuje się, że w krysztale benzenu xb prak­
tycznie nie zależy od temperatury, a zmiany X&(T) kompensowane są 
przeciwną zależnością Xc od temperatury.

Nie mamy informacji o strukturze tego kryształu w różnych tempera­
turach, z których moglibyśmy skorzystać, próbując wyjaśnić taki charak­
ter zależności Xi(T). Wobec tego postąpimy odwrotnie: z danych doświad­
czalnych obliczymy przemieszczenia kątowe cząsteczki benzenu, przy czym 
przyjmiemy następujące założenia upraszczające:

(i) Podatności cząsteczki nie zależą od temperatury.
(ii) Wobec, dużej symetrii cząsteczki, bliskiej DgJ1, można przyjąć, 

że podatności w jej płaszczyźnie są sobie równe Łj = K2, natomiast 
Ł] / K^. W szczególności przyjmiemy (tab. 5.2, Nr 1), że

= -K2 = 34,9, -Kj = 94,6‘IG“6 cgsM.

Najbardziej bezpośrednią metodą określania zmian orientacji Jest 
posłużenie się kątami Eulera (por. 8.5, także [31). W układzie ortorom- 
bowym mamy
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I a b e 1 a 9.2
Główne podatności diamagnetyczne kryształu benzenu.
Wartości doświadczalne wzięte z [2], wartości obli­

czone z modelu sztywnej skrzynki [3].
X * 106 ogaM

I “ $a 
dośw.

“ xa 
obi.

“ *b 
dośw.

- *b 
obi.

~X0 
dośw.

-Xc 
obi.

260 64,96 64,93 37,58 37,58 61,85 61,89
240 64,51 64,55 37,56 37,61 62,32 62,24
200 63,91 63,78 37,57 37,69 62,92 62,93
160 63,48 63,02 37,56 37,75 63,36 63,63
120 63,18 62,25 37,55 37,82 63,67 64,33

80 63,04 61,49 37,54 37,88 63,83 65,03

Xa = K^(c^ + ) + Kj c^ = Ł| + (Kj - ) c^,

Xb = ^1^c12 + c22^ + K3 °32 = + (Kj “ ^) cfg’

Xc =' + °23+ E3 °33 ~ + cf3•

(9.2)

Stąd możemy obliczyć orientację normalnej do pierścienia [c^j, |Cj2|, 
|°3j|, a porównanie z tabelą kosinusów kierunkowych (tab. 5.2, Nr 1) po­
zwala wybrać właściwe znaki. Orientacją cząsteczki wokół normalnej jest 
w tym modelu K dowolna, wobec czego dowolny jest również kąt Eniera 
X 4(rys. 8.19); dla uproszczenia możemy przyjąć X = O, a więc również

d X/dI = 0. Przy tych właśnie założąniach obliczono macierze c(T) o—
rientacji osi IMN cząsteczki benzenu w krysztale dla szeregu temperatur 
(tab. 8.7). Zachowanie się pozostałych dwóch kątów Eulera z temperaturą 
możemy z zupełnie dobrym przybliżeniem opisać wielomianem drugiego stop-
nia. Otrzymujemy po zastosowaniu metody najmniejszych

<P(T) = 106,87 + 3,O2«1O-^ T - '1,53-10“^

kwadratów

a stąd

t(T) = 46,'12 - 6,91 T + 5,06.10“^

T2,

T2,
(9.3)

— = 10,88 - 0,110 
dl

T,

= -24,8? + 0,365
"/K (9.4)

I.
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Podstawienie (9.4) do (8.60) prowadzi do obliczenia kątów obrotu 
wokół osi 1И cząsteczki benzenu. Otrzymujemy

= -24,87 + 0,365 I,

Д2 = 7,84-0,080^, ”/K (95)

= 7,54 - 0,075 I.

Zmiany kątowego położenia cząsteczki są więc również zależne od tempera­
tury (por. tab. 8.8). W 270 К zmiany te wynoszą

Д1 = 75,7,

д2 = -15,8, ”/K

д3 = -12,8.

Największe efekty występują wokół osi 1. Ze względu na brak danych do­
świadczalnych odnośnie wpływu temperatury na orientację cząsteczek, wy­
niki te możemy porównać tylko z przewidywaniami modelu sztywnej skrzyn­
ki. Przy obsadzeniu komórki elementarnej dwiema cząsteczkami Jako kra­
wędzie skrzynki trzeba wybrać

ac = a = 7,46,

bc = b/2 = 4,83,

c = c/2 = 3,515. U

Biorąc ponadto współczynniki rozszerzalności (tab. 8.1, Nr 20)

®a = 119, % = 106, ac = 221, x 10“6 K“1,

otrzymujemy alternatywne rozwiązania dla kątów obrotu sztywnej skrzynki

£ = |30,0| i + |21,5| j + |14,2| k,

Г = |35,2| i + [52,11 j + |37,9 | k.

Składowe £ i podane są w układzie współrzędnych abc. W tym samym 
układzie otrzymujemy z (9.5) i kątów Eulera

óE = -20,5 i + 70,2 j - 20,9 к ”/К. (9.6)

Porównanie wskazuje, że lepszą alternatywą jest 6'..Uwzględniając do­
bór znaków otrzymujemy zatem z modelu sztywnej skrzynki
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Tabela 9.3

Średnip zmiany kątów Eulera cząsteczki antrachinonu 
w funkcji temperatury, ”/K

Zakres 
temperatury 

К

A <₽
A T

Al 
A T

A 0
A T

103-161 51,1 -51,2 -2,2
161-201 59,4 -20,3 -4,4
201-261 56,8 -35,9 -8,1
261-294 228,2 -132,4 -56,0

Tabela 9.4

Temperaturowa zależność głównych podatności diamagnetycznych X^ i kąta 
orientacji 9 w krysztale antrachinonu (<X> = -119>60.10“6 cgsM).

X w jednostkach 10“6 cgsM. Obliczeń dokonano na podstawie modelu
sztywnej skrzynki

T, К - X1 -x2 “ X3 -0°

298,3 63,54 106,76 188,50 43,87
260,8 63,52 102,56 192,63 .41,93
201 63,51 101,03 194,26 40,84
161 63,50 100,01 195,29 40,01
103 63,49 98,81 196,50 38,83

6^ = -33,2 i + 52,1 j - 37,9 k. (9.7)

Znajomość składowych 5^ pozwala odtworzyć kąty Eulera w różnych tempe­
raturach, a stąd obliczyć Xa(T), Xb(T) oraz XC(T). Wyniki tych obli­
czeń podane są obok wyników doświadczalnych w tab. 9.2 i na rys. 9-1 
(linie przerywane). 'Wobec stałości współczynników rozszerzalności a^, 
zależność A^ X = Х^ -Х^ wypada, oczywiście, prostoliniowo. Poza tym 
użycie wartości w pobliżu O °C powoduje, że zarówno dla X^ j8^ i 
Aotrzymujemy wartości przesadnie duże. Lepszą zgodność uzyskalibyś­
my uwzględniając, że wraz z obniżeniem temperatury składowe a maleją; 
nie dysponujemy jednak bardziej szczegółowymi danymi.

Z sytuacją wręcz odwrotną spotykamy się w krysztale antrachinonu. 
7,пяту strukturę" tego kryształu w kilku temperaturach, jednak nie znamy
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Rys. 9.2. Główne podatności magnetyczne kryształu antracenu 
w funkcji temperatury

wyników pomiarów temperaturowej zależności podatności diamagnetycznej. 
Interesujące jest, że w tym krysztale zmiany kątów Eulera przypadające 
na 1 K, obliczone z tab. 8.5, są w pobliżu temperatury pokojowej bardzo 
duże (tab. 9.3). Korzystając z tabeli kosinusów kierunkowych (tab. 8.5) 
i wartości g (tab. 5.2, Nr 29a)

Łj = -68,9, K2 = -65,5, Kj = -226,4 « 10“6 cgsM, 

można obliczyć w funkcji temperatury oraz kąt 9, zawarty między 
X^ i osią krystalograficzną a. Wyniki przedstawione są w tab. 9.4 i 
na rys. 9.2. Funkcje temperaturowe 0.^(1) i 9(T) są przedstawione na 
rys. 9*3. Okazuje się, że w tym krysztale (układ jednoskośny) X^ prak­
tycznie nie zależy od temperatury, dlatego spadek X2 kompensuje się 
wzrostem X^. Wobec tego największe zmiany anizotropii możemy obserwo­
wać wtedy, gdy kryształ jest zawieszony wzdłuż . Na obu rysunkach wi­
dzimy, że poniżej 260 K zmiany są nieduże i liniowe. Przyspieszenie tych 
zmian powyżej 260 K komentowane już było w rozdz. 8.5 w związku z zacho­
waniem się kątów Eulera.

Przytoczone przykłady wskazują, że zmiany X^. przypadające na 1 K 
są rzędu 'HIO-0 cgsM, lub "1%. Można je wyjaśnić zmianami orientacji 
osi cząsteczki w tym sensie, że A^, jakie wynikają z x;(T) są
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Hys. 9.5. Zależność anizotropii magnetycznej i kąta orientacji x>|,a 
od temperatury w krysztale antrachinonu

bliskie wartościom A^, otrzymywanym z modelu sztywnej skrzynki. Model 
ten daje wyniki, niezależne, bowiem oparte na znajomości rozszerzalności 
termicznej kryształu. Istnieje też nadzieja, że nieliniowość funkcji 
temperaturowych A ^(T) będzie można wyjaśnić zależnością od temperatu­
ry współczynników rozszerzalności

Do tej pory dyskutowaliśmy wpływ temperatury na podatność diamagne- 
tyczną fazy krystalicznej termodynamicznie trwałej w pewnym zakresie 
temperatur, a w każdym razie takiej, której symetria nie ulega zmianie 
w tym przedziale temperatur. Podczas przemiany fazowej występuje na o- 
gół skokowa zmiana symetrii w temperaturze przejścia, charakterystycz­
nej dla przemian pierwszego rodzaju. W punkcie przemiany macierz orien­
tacji cząsteczek ę ulega stosunkowo bardzo dużym zmianom, wobec czego 
również główne podatności kryształu zmieniają się bardzo silnie. Oczy­
wiście, w kryształach zbudowanych z cząsteczek o wysokiej symetrii,któ­
rych anizotropia magnetyczna jest mała lub równa zeru, nie zaobserwuje­
my zmian A £. Z eksperymentów wykonanych z kryształami pięciochlorofe- 
nolu wynika [4], że w czasie ogrzewania kryształu (jednoskośny) anizo­
tropia magnetyczna maleje skokowo w pobliżu temperatury 65 °C, będącej



Rys. 9.4. Zmiany anizotropii magnetycznej towarzyszące przamiania 
fazowej w krysztale 1,8-dwunitr©naftalenu

temperaturą przejścia fazowego w tym związku. Jeszcze śiiniajaza efekty 
znaleziono w 1,8-dwunitr©naftalenie £5] (kryształ ortorombowy). Obserwa­
cje = Xb - Xc wskazują (rys. 9.4) [3], że po przejściu fazowym 
znak anizotropii ulega zmianie na przeciwny. Powrotowi do temperatury 
pokojowej towarzyszy znaczna histereza, a kryształ nigdy nie osiąga 
struktury stanu wyjściowego. Te zjawiska można uważać za nieodmiennie 
towarzyszące przemianie fazowej, połączonej ze znaczną zmianą objętości 
właściwej kryształu; duży skok objętości prowadzi z reguły do zniazcze- 
nia uporządkowania dalekiego zasięgu. Mimo znacznych i dobrze mierzal­
nych efektów takie przypadki nie są bardzo interesujące z teoretycznego 
punktu widzenia, ponieważ ich interpretacja na poziomie mikroskopowym 
jest praktycznie niedostępna.

9.2. Dwójłomność optyczna

Dwójłomność jest wielkością łatwiej dostępną pomiarowi i dokład­
niej mierzoną, niż anizotropia diamagnetyczna. Interpretacja wyników
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Rys. 9.5. Dwójłomność płytki (010) fluorenu w funkcji temperatury 
(wg [6])

doświadczen jest jednak znacznie trudniejsza ze względu na efekty, spo­
wodowane polem lokalnym i dyskutowane szerzej w rozdz. 6.

Jeśli zmianimy temperaturę, to zmienia się również dwójłomność 
płytki

Bik = ni - nk’

którą definiujemy najczęściej jako wielkość dodatnią. W zakresie tempe­
ratur, odpowiadającym termodynamicznej stabilności fazy krystalicznej, 
zmiany te są ciągłe i najczęściej liniowe. We wszystkich zbadanych do­
tychczas przypadkach współczynnik temperaturowy dB/df jest ujemny,tzn, 
przy wzroście temperatury dwójłomność maleje. Zauważmy przy tym, że naj­
częściej mierzymy w eksperymencie optycznym 'różnicę dróg optycznych P , 
a żądamy informacji o dwójłomności B, ponieważ ta właśnie wielkość pod­
dawana jest interpretacji mikroskopowej. Jeśli uwzględnimy podany już 
związek między tymi wielkościami (por. rozdz. 6)

r = B • d,’ (6.51)

gdzie d jest grubością płytki, to zróżniczkowanie 
peratury prowadzi do szukanej zależności

dB _ 1 dT _ ro a
dP d0 dl d0

(6.51) względem tem-

(9.8)
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Wielkości d0 i ro mierzone są w jakiejś temperaturze odniesienia, na 
przykład w temperaturze pokojowej, a j_ jest współczynnikiem rozszerzal­
ności termicznej w kierunku prostopadłym do powierzchni płytki. Przykła­
dem liniowej zależności jest dwójłomność B^fT) kryształu fluorenu, 
mierzona dla płytki (010) (rys. 9«5 [6]). Jeśli jednak występują w sie­
ci nawet niewielkie zmiany strukturalne, ale nie niszczące monokrysta- 
liczności próbki, połączone ze zmianą orientacji cząsteczek lub ich kon­
formacji, pojawiają się odstępstwa od liniowości B(T). Można je zauwa­
żyć, na przykład, na krzywej (rys. 9^6), ilustrującej zachowanie się

(T) płytki karbazolu [7J. temperaturze 118 °C (punkt C) rozpoczyna 
się przemiana fazowa, której występowanie w karbazolu stwierdzono rów­
nież za pomocą pomiarów kalorymetrycznych [8].

Rys. 9.6. Dwójłomność płytki (010) karbazolu w funkcji temperatury 
(wg [7])
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W dalszej dyskusji wpływu temperatury na własności optyczne krysz­
tałów oprzemy się na następujących relacjach:

(i) Będziemy korzystać ze związku między refrakcją molową kryszta­
łu i refrakcją komórki elementarnej. Napisany w układzie osi głównych R
ma on postać (por. rozdz. 6)

_2
R± = - • (6.69)

1 n2 + 2 P

Ri zastępuje główne polaryzowalności komórki elementarnej. Podając 
związek w tej postaci unikamy wprowadzenia niepewnych czynników w rodza­
ju (4/3) *.

(ii) Skorzystamy z modelu gazu zorientowanego

ą (k)T r ę T- 
= (6.59)

przy czym tutaj r zastępuje tensor a polaryzowalności cząsteczki.
Bądziemy badać wpływ zmian strukturalnych na nŁ zakładając, że składo-
we r nie zależą od temperatury.

Zróżniczkowanie (6.69) prowadzi do wyrażenia

n± dn± dR.
6 —-±--------j —i M = P —i + R.

(n? + 2p dT dT 1
dP 
dT

(9.9)

Widzimy, że w zależności n^T) mają udział dwa efekty:

(i) Zmiana kątowych położeń cząsteczek, występująca w dR^/dT.
(ii) Zależność gęstości kryształu od temperatury, którą możemy wy­

razić bezpośrednio:

— = - p ix, +a, +a,). (9.10)dT o i ć 2

Temperaturową funkcję dwójłomności z punktu widzenia zmian gęstości dys­
kutują również Bounds i Munn [9].

Równanie (9.9) napisane jest w układzie osi głównych indykatrysy. 
Z tego powodu celowe jest w nieortogonalnym ukiadzie osi krystalogra­
ficznych użycie macierzy orientacji b takiej, by

s = 2; ^(k)T = =(k)’ o.ni
k
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T a b e la 9.5
Macierze orientacji osi IM cząsteczki antracenu i kąty Eulera

względem osi indykatrysy R1’ H2’ E3

290 K

-0,9918
0,1112
0,0626

-0,0840 
0,4331

-0,9013

-0,1274
-0,8944
-0,4287y

XR = 188,105°, «Pfi = 3,974°, 

* = -59,64° ( n^.a)

% = 115,383°

95 E

(-0,9910 
0,1063 
0,0818

XR = 188,314°, *R 

5 = -57,28°

-0,0284 
0,4291

-0,9028

= 5,178°,

-0,1311
-0,8970
-0,4222

% = 114,972°

przy czym b|^ = cos (r^\ R-).
Przejdziemy, obecnie do omówienia kilku przykładów.

1. Dwójłomność antracenu

Zgodnie z konwencją wprowadzoną przez Lasheena przyjmiemy, że n^ 
i n2 leżą w (010) oraz n^ || b. Macierze orientacji osi LMN względem 
R^ dla obu temperatur (290 i 95 K) podane są w tab. 9.5. Dane struktu­
ralne potrzebne do obliczenia £ zaczerpnięte zostały z pracy Masona 
(rozdz. 8), dane optyczne z pracy Lasheena (tab. 6.7). Stąd dla współ­
czynników temperaturowych kątów Eulera, liczonych względem osi R^, 0- 
trzymujemy

A X R A <P R
----   = -3,86,  -  = -22,23,  -  = +7,59 "/K, 
AT-------------------- AT------------------------ AT

z\ $ 
----- = -43,57 "/K. 
A T

W dalszym ciągu wobec

Z = 2, a . + <•., +u 7 = 19,7’10-5 K“'*,
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Tabela 9»6

Porównanie wyników obliczeń temperaturowej funkcji dwójłomności 
kryształu antracenu z wartościami doświadczalnymi

JŁ » 105 
dT

dB3a/di dB12/dT dB15/dT dB23/dT

Soltzberg [10] -5,12 — — -
Kusto [11] -4,8 — - -
Obliczenia -2,5 -14,7 -4,2 -10,5

pQ = 1,026 g/cm^ oraz M = 178,2, 

otrzymujemy
A ł, An-> A n, c-
---- - = -26,87, —- = -12,16, —= -22,68 x 10“5 K.
AJ AT AT

Dwójłomność w płaszczyźnie łupliwości antracenu (001) wynosi

B5a = - na’
gdzie

na = (n^2 cos2 $ + n^2 sin2$ j"^2.

Porównanie wyników obliczeń z danymi doświadczalnymi przedstawione jest 
w tab.9»6.Okazuje się,że wynik obliczeń oddaje w prawidłowy sposób zarómo 
rząd wielkości, jak i kierunek zmian dwójłomności antracenu w płaszczyź­
nie (001). Hieco mniejsza wartość współczynnika temperaturowego w porów­
naniu do rezultatu eksperymentalnego .łączy się - przynajmniej częściowo 
- z tym faktem, że pochodne kątów Eulera maleją wraz z obniżeniem tempe­
ratury, wobec czego użyte w obliczeniach wartości średnie są mniejsze 
od "lokalnych" dla T ~300 K.

2. Dwójłomność antrachinonu

Problem wpływu temperatury na własności optyczne antrachinonu po­
stawimy nieco inaczej: na podstawie znajomości macierzy orientacji osi 
IMN cząsteczki w pięciu temperaturach (Lonsdale i in., tab. 8.5) oraz 
znajomości tensora refrakcji cząsteczki j (Łasheen i in., tab. 6.7), 
należy przewidzieć wpływ temperatury na główne współczynniki załamania 
światła.

Wyniki obliczeń uzyskane przez zastosowanie podanych już związków 
zestawione są w tab. 9.7, obok wartości dwójłomności, obliczonych dla
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Tabela 9.7

Zależność od. temperatury T (K) głównych, współczynników załamania 
światła n^ i dwójłomności • kryształu antrachinonu

T “i “2 n3

293,8 1,8552 1,7168 1,5012
260,8 1,8807 1,7233 1,4895
201 1,9015 1,7339 1,4896
161 1,9155 1,7412 1,4899

Z

103 1,9354 • 1,7515 1,4913

T . B13 B12 B23

293,8 0,3540 0,1384 0,2156
260,8 0,3912 0,1574 0,2338
201 0,4119 0,1676 0,2443
161 0,4256 0,1743 0,2513
103 0,4441 0,1839 0,2602

Bys. 9.7. Przewidywana zależność współczynników załamania światła 
antrachinonu od temperatury
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Rys. 9.8. Przewidywana zależność dwójłomności antrachinonu 
od temperatury

tych samych temperatur. Okazuje się, że najsilniej zależy od temperatu­
ry n^, następnie n2; w zakresie 100-260 K zależność ta ma charakter 
liniowy, n^ w tym zakresie jest stały, powyżej 260 K wzrasta (rys. 9.7). 
W związku z tym również dwójłomność kryształu w głównych płaszczyznach 
optycznych zmienia Się liniowo wraz z temperaturą (rys. 9.8); we wszyst­
kich trzech płaszczyznach B maleje wraz ze wzrostem temperatury, jak 
to wskazują średnie współczynniki temperaturowe

dl
= -18,8 ^2-5 —5 —1—= -23,4 x 10 K 1.

dl

Jak stąd widać, zmiany kątów Eulera, współczynników załamania światła 
oraz dwójłomności z temperaturą są w antrachinonie znacznie silniejsze, 
niż w krysztale antracenu. Zapewne jakieś znaczenie ma tu fakt, że an- 
trachinon jest substancją znacznie łatwiej sublimującą, niż antracen; 
winno się to przejawiać w silniejszym anharmonizmie dynamiki sieci 
kryształu antrachinonu. O ile nam wiadomo, pomiarów optycznycłi kryszta­
łu antrachinonu w różnych temperaturach dotychczas nie wykonano.
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5. Dwójłomność karbazolu

Do szczególnie interesujących i względnie łatwych do interpretacji 
struktur krystalicznych należą takie, w których płaszczyzna symetrii 
cząsteczki pokrywa się z płaszczyzną symetrii kryształu. Przykładem mo­
że być cytowany już karbazol, którego strukturę zbadali Kurahashi i in. 
p2] oraz fluoren, zbadany przez Burnsa i Iballa [12. Obie struktury 
są bardzo do siebie podobne. W karbazolu zwierciadlana płaszczyzna sy­
metrii kryształu (010) przechodzi przez atom U cząsteczki i jest 
prostopadła dó jej własnej płaszczyzny (rys. 9.9).Pominąwszy atom wodoru,

cząsteczka jest płaska w granicach io,O3S;dokładniej sza analiza wykazuje, 
że oba pierścienie benzenowe tworzą kąt 1,63°. Lekko skręcona konfonna- 
cja cząsteczki może być wynikiem oddziaływań między cząsteczkami otacza­
jącymi w krysztale. W ciele stałym nie ma wiązań wodorowych typu N-H.. 
...N, na co wskazuje zarówno duża odległość Ijj N = 3,89 S, jak i wy­
stępowanie przeszkód eterycznych. Rozkład cząsteczek w komórce elemen­
tarnej przedstawiony jest ńa rys. 9.10. Oba związki krystalizują-w tej 
samej grupie przestrzennej Pnma . Kąt zawarty między osią a i płasz­
czyzną cząsteczek ( e na rys. 9.1Q) wynosi w fluorenie 55,2°, zaś w kar­
bazolu 61,0°. Interesujące w obu tych strukturach jest to, że nakrywa­
nie się płaszczyzn symetrii cząsteczki i kryształu narzucone jest regu­
łami symetrii, wobec czego nie może ulegać zmianie przy ochłodzeniu lub 
ogrzaniu kryształu. Innymi słowy, w całym zakresie temperatur, w którym 
ani grupa przestrzenna, ani konformacja cząsteczki nie ulegają zmianie»,



Rys. 9.10. Schemat rozkładu cząsteczek karbazolu w komórce elementarnej 

średnie w czasie położenie normalnej N do płaszczyzny cząsteczki oraz 
osi K musi leżeć w (010). Oznacza to, że anharmonizm drgań cząsteczki 
wokół N oraz wokół M nie może prowadzić do zmiany kątowego położe­
nia cząsteczki; ten warunek może być spełniony wtedy, gdy odpowiednie 
krzywe energii potencjalnej są symetryczne. W takim razie w jednym kry­
sztale mamy dwa typy krzywych energii potencjalnej: asymetryczną dla li- 
bracji wokół osi L, przy czym temu ruchowi towarzyszy kątowe przemiesz­
czenie cząsteczki przy zmianie temperatury, oraz krzywe symetryczne dla 
pozostałych osi libracji. Z tymi ostatnimi ruchami nie może być związa­
na zmiana kątowego położenia cząsteczki. Kryształy te przedstawiają 
więc problem "jednoparametrowy" - od temperatury może zależeć tylko kąt 
e .

Zanalizujmy nieco bliżej wpływ temperatury na własności optyczne 
kryształu karbazolu; fluoren badany był nieco inną metodą w pracy [14]. 
Współczynniki rozszerzalności termicznej [15] i załamania światła karba­
zolu wynoszą

a = 122, a. = 55, a = 46 ' 10“6 K“1, 
a oc

na = 1,560, n, = 2,057, n = 1,726, ci U u

a parametry komórki elementarnej są następujące:

a = 7,772(5), b = 19,182(10), c = 5,725(5) fi 
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przy obsadzeniu komórki czterema cząsteczkami. Dla grupy Pnma wybie- 
rzemy jako operatóry symetrii następujące macierze:

= (1,0,0/0,1,0/0,0,1), A2 = (1,0,0/0,1,0/0,O,i),

= (1,O,0/0,1,0/0,0,1), = (i,0,0/0,1,0/0,0,1).

Jeśli przez h oznaczymy kosinus kąta zawartego między normalną N do 
płaszczyzny cząsteczki i krystalograficzną osią c, to dla karbazolu

h = cos (N,c) = 0,4818,

zaś macierz orientacji MN w abc przyjmie ogólną postać

-h

O
-(1-h>

I

(9.12)

Wobec tego dla refrakcji 
nik

Z 
c(k) _ c(k)T _ _ — — —

R komórki elementarnej otrzymujemy ogólny wy-

Z tych związków oraz dzięki znajomości możemy obliczyć w znany spo­
sób refrakcje cząsteczki r^, r^, r^. Zróżniczkowanie (9.1?) względem 
temperatury prowadzi do zależności

^a
— = 8 h(rM 
dl

^b 
dl

^c 
dl

O, . (9.14)

dh
-8 h(rM - r„) — . m w dl

W krysztale karbazolu (również fluorenu) sytuacja jest wyjątkowo ko­
rzystna: płytki hodowane z roztworu lub stanu pary rosną chętnie w 
płaszczyźnie (010). Właśnie w tej płaszczyźnie efekty wynikające z (9,14) 
sumują się , wobec czego dwójłomność płytki o takiej orientacji naj­
silniej zależy od temperatury. Pomiary wykonane w [7J prowadzą do wyni­
ku

■ ) —N dl
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—21 = (n, - n,) = -8,31 •lO-5 K” .
dT dT p

Obecnie w (9.14) mamy wszystkie informacje prócz dh/dT lub po 
podstawieniu otrzymujemy

(^Jb = “9’8 "/*•
Wynik ten zupełnie dobrze koreluje z przewidywaniami modelu sztywnej 
skrzynki

= -7.0 "/K.

Oczywiście, ze względu na szczególne położenie cząsteczki, jest także

am=^n = o.
Wyniki tu uzyskane zamieszczone zostały w tab. 8.9 (rozdz. 8).

Na zakończenie wróćmy jeszcze na chwilę do równania (9.8). Wbrew 
pozorom drugi człon tego równania jest również ważny, mimo małości aj_. 
I tak, na przykład, płytka (010) karbazolu o grubości dQ = 7,4*10Zf’ nm 
wykazuje w temperaturze pokojowej (20 °C) różnicę dróg o wielkości ro = 
= 12 284 nm. Współczynnik temperaturowy, mierzony metodą kompensacyjną 
(por. rozdz. 6.3), jest stały w zakresie temperatury 20 < T <156 °C 
i wynosi

(-----22 _ _5>48
\ dl yeksp

Ponieważ a |, = 55'IGT6 pierwszy człon (9.8) ma wartość -7,4*10-^K“^ 
a drugi -0,91 • 10^K-^ . Widzimy więc ha przykładzie karbazolu, że 
wpływ zmiany grubości płytki dochodzi do 12% ogólnej zmiany anizotropii 
optycznej płytki i nie powi ni en być zaniedbywany. Elekt ten ma,oczywiś­
cie, niewielkie znaczenie w mni ej dokładnych pomiarach anizotropii mag­
netycznej.
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