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SLOWO WSTEPNE

Sposrdd trzech stanéw skupienia materii stan staly budzi najwigksze zaintere-
sowanie zarowno dzigki swemu bogactwu form i struktur, w jakich wystepuje, jak i
roznorodnosci praktycznych zastosowan. Dotyczy to w pierwszym rzedzie pier-
wiastkow oraz zwigzkéw nieorganicznych, wsrdéd ktérych metale i materialy
potprzewodnikowe zrobily wrecz zawrotna karierg. Znacznie mlodsze jest zaintere-
sowanie organicznym cialem stalym, szerszy program badan krysztaléw molekular-
nych w Polsce zapoczatkowano bowiem 30 lat temu. Znalazlo to réwniez pewne
odbicie w programach nauczania w wyzszych uczelniach w kraju, zwlaszcza na
wydzialach chemicznych. _

Istotnym czynnikiem, ktéry odegral stymulujaca role w badaniach krysztatow
molekularnych, jest znaczny postep, jaki si¢ dokonal w zakresie badan rentge-
nograficznych. Doprowadzil on do duzej perfekcji w okreslaniu polozen atomow i
oceny amplitudy ich ruchu termicznego w strukturach, ktére w poréwnaniu ze
zwiazkami nieorganicznymi sa znacznie bardziej ztozone, a przy tym zbudowane
sa glownie z lekkich atomow. Wyniki tych badan utorowaly droge nowoczesnemu
i chyba najbardziej pasjonujacemu kierunkowi badan: powiazania fizycznych,
makroskopowych wlasciwosci krysztalu z jego struktura 1 dynamika oraz z
wlasciwosciami samych czasteczek. Mozna uwazaé, ze na przyklad dwoédjtomnosé
okreslonej ptytki krystalicznej ,,rozumiemy” wowczas, gdy potrafimy powiazaé ja
ilo§ciowo z bardziej elementarnymi wielkosciami, jakimi sa skladowe tensora
polaryzowalnosci czasteczek i potozenia atomoéw w sieci przestrzennej. Byloby wiec
osiagnigciem pewnego ideatu, gdybySmy na podstawie znajomosci budowy czaste-
czek, ich utozenia i sposobu ruchu w komorce elementarnej potrafili przewidzieé
wszystkie fizykochemiczne wlasciwosci krysztatu. Niekiedy okazuje si¢ jednak — a
tak jest w probach interpretacji wlasciwosci optycznych — Ze te pojecia nie
wystarczaja do uzyskania zgodno$ci miedzy wynikami eksperymentu i przewidy-
wan- teoretycznych. Opis wihasciwosci fizycznych komplikuje fakt, ze dodatkowe
oddzialywania miedzy sasiednimi czasteczkami, wynikajgce z obecnosci pola mag-
netycznego czy elektrycznego, sa niekiedy nie do pominigcia.

Sity miedzy czasteczkami w krysztale dziataja oczywiscie rowniez wtedy, gdy
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znajduje si¢ on poza zasiggiem pola zewnetrznego; dzigki silom przyciagania
krysztat wykazuje znaczna spojnos¢, dzigki zas sitom odpychania odporny jest na
dziatanie sit zewnetrznych. I wilasnie drugim kamieniem milowym na drodze
postepu w badaniach krysztaléw molekularnych jest lepsze zrozumienie natury
tych oddzialywan (znanych do niedawna pod dos¢ enigmatyczna nazwa ,,oddzialy-
wan van der Waalsa”) i znalezienie dla nich sformulowania matematycznego.
Korzystajac z teorii sit dyspersyjnych Londona, D. E. Williams w Angli i A. L
Kitajgorodski w ZSRR zaproponowali w latach sze$¢dziesiatych, by energi¢ poten-
cjalna krysztalu wyrazi¢ jako sume oddziatywan migdzy atomami, nie polaczonymi
wiazaniem chemicznym. W jezyku potocznym metoda ta zwana jest skrotowo
,,oddzialywaniem atom-—atom”; szczegélowy opis metody oraz jej wielostronnych
zastosowan znalezé mozna w monografii Kitajgorodskiego ,,Krysztaty molekular-
ne”, ttumaczonej réwniez na jezyk polski i wydanej w roku 1976 przez Panstwowe
Wydawnictwo Naukowe.

Mozna uwazad, iz zaidani¢ powiazania mierzalnych, makroskopowych wlasci-
wosci krysztalu z jego struktura i dynamikg wchodzi w program dzialania
dyscypliny zwanej fizyka chemiczng. Program taki winien obejmowaé rowniez i
. termodynamike faz statych, a wigc opis makroskopowego mechanizmu przemian
fazowych, zjawisk i przyczyn nieuporzadkowania faz a takze i wplywu na nie
czynnikéw zewnetrznych, takich jak ci$nienie i temperatura. Dalszy, sumbikrosko-
powy podzial materii prowadzi do problemu opisu wlasciwosci czasteczki za
pomoca wlasciwoséci atomow i sposobu ich powiazania, czym zajmuje si¢ chemia
teoretyczna. Wyjasnienie wiasciwos$ci samego atomu poprzez znajomos¢ czastek
elementarnych i sposobu ich oddzialywan jest natomiast domena fizyki.

Dalecy dzi$ jesteSmy od pelnej realizacji tak zakre$lonego programu dzialania
fizyki chemicznej. Tylko niektore wlasciwosci krysztalow wyjasniono na poziomie
molekularnym w sposob bardziej zaawansowany. Do przedstawienia w niniejszej
ksiazce wybrano diamagnetyzm, wlasciwosci optyczne oraz absorpcj¢ promienio-
wania w podczerwieni. Taki wybor podyktowany tez zostal w pewnym stopniu
wlasnymi zainteresowaniami autora. Nieco inne miejsce wsrod wilasciwosci fizy-
cznych zajmuje rozszerzalno$¢ termiczna, cecha ta bowiem nie ma odpowiednika
na poziomie molekularnym. Poswigcono jej osobny rozdzial ze wzgledu na wazne
znaczenie anharmonicznych cech dynamiki krysztalu, przejawiajacych si¢ we wply-
wie temperatury na wszystkie inne wla$ciwosci fizyczne. W kazdym z tych proble-
mow symetria odgrywa nieposlednia rolg: symetria rozmieszczenia materii i tadun-
ku musi si¢ bowiem odzwierciedla¢ w symetrii makroskopowych wiasciwosci ciala.
Z tego wzgledu pierwsza cze$¢ monografii, po oméwieniu najczesciej spotykanych
typow oddziatywan w krysztatach molekularnych i wlasciwosci tensoréw drugiego
rzedu, jest poswiecona przedstawieniu wplywu symetrii na posta¢ wektorow i
tensorow, reprezentujacych wielkosci fizyczne.

Monografia niniejsza jest kontynuacja inicjatywy, podjetej przed laty przez
Zaklad Fizyki Chemicznej Instytutu Chemii w Uniwersytecie Jagiellonskim,
kierowany przez prof. dr Janine Janik. Wyniki wieloletnich badan tego zespotu w
zakresie fizyki chemicznej organicznego ciala stalego, przy wspotpracy z Zakladem



Fizyki Ciala Stalego Instytutu Fizyki UJ oraz z Zakladem Badan Strukturalnych
Instytutu Fizyki Jadrowej w Krakowie, zostaty opublikowane przez zesp6t auto-
row w skrypcie pt. ,Fizyka chemiczna” pod redakcja Janiny Janik, wydanym w
roku 1980 przez Wydawnictwo Uniwersytetu Jagiellonskiego, oraz w ksiazce pod
tym samym tytutem, wydanej w roku 1989 przez PWN.

Zamysl napisania niniejszej monografii powstal w potowie lat siedemdziesia-
tych, po paru latach wykladow i seminariow prowadzonych dla stuchaczy wyz-
szych lat studiow na Wydziale Chemicznym i Elektrycznym Politechniki Wroctaw-
skiej. Znacznie jednak silniejszy wplyw na jej powstanie i zakres tematyki miala
bez mata dwudziestoletnia praca autora i wspoOlpracownikéw w kierowanym
przezen Zakladzie Fizyki Chemicznej, wchodzacym w skiad Instytutu Chemii
Organicznej 1 Fizycznej Politechniki Wroctawskiej. Sporo wynikéw badan czion-
koéw tego zespoltu znalazlo odbicie w postaci szerszego lub wezszego ich omowie-
nia w drugiej czeSci ksiazki. Pierwsza wersja pracy wydana zostala w postaci
skryptu w r. 1983 przez Wydawnictwo Politechniki Wroctawskiej. Zaréwno kryty-
czna i zywa uwaga stuchaczy, jak 1 dalsze studia autora sprawily, ze niniejsza
ksiazka dos¢ znacznie odbiega od wersji skryptu i jest — autor zywi taka nadzieje
— jego wersja udoskonalona. Poszukiwanie $cislejszego wyrazu dla roli symetrii w
zwiazkach miedzy mikro- 1 makroskopowym sposobem opisu wiasciwosci kryszta-
tu spowodowato, ze rozdzial 4 zostal napisany od nowa i znacznie rozszerzony.
Zmianie ulegla tez zawarto$¢ rozdzialéw 5-8 z uwagi na inne omoéwienie wptywu
temperatury na whasciwosci fizyczne. ‘

Spetniajac wreszcie mila powinnos¢, pragne podziegkowaé wielu osobom, bez
ktérych pomocy, zyczliwego komentarza lub takiejze krytyki przygétowanie tej
ksiazki bytloby o wiele trudniejsze. Inicjatorem zainteresowan organicznym cialem
stalym we wroclawskim zespole fizykochemik6éw byt przed ponad trzydziestu laty
profesor Kazimierz Guminski, pierwszy w okresie powojennym kierownik éwczes-
nej Katedry Chemii Fizycznej Uniwersytetu i Politechniki we Wroclawiu. Wiele
cennych uwag zawdzigczam mym Wspolpracownikom i Uczniom, a zarazem
pierwszym Czytelnikom poszczegélnych rozdziatow. Sa nimii: prof. dr Tadeusz
Luty, dr hab. Magdalena Szostak, doc. dr hab. Bolestaw Jakubowski, dr Wiodzi-
mierz Kusto, mgr Michal Dankowski 1 mgr Krzysztof Rohleder. Szczegdlng
wdzigcznos$¢ winien jestem mym Kolegom'i Przyjaciolom: profesorowi Krzysztofo-
wi Pigoniowi i profesorowi Tadeuszowi Lutemu. Pierwszemu — za wielokrotne
podtrzymywanie ducha i zachecanie do kontynuacji pracy. Drugiemu — za
naukowa podpore i pomoc, dzigki ktérej migdzy innymi zakonczenie rozdziatow
szostego 1 Osmego zyskalo bardziej ogdlna forme. Recenzje wersji skryptowe)
opracowali profesorowie Jerzy Janik i Krzysztof Pigon, a ksiazkowej — profesor
Krzysztof Pigon, zadajac sobie trud przebrniecia przez gaszcz wzordéw i danych
liczbowych. To im zawdzigczam sprostowanie wielu bleddéw i nieécisto$ci maszyno-
pisu. Rowniez dzigki ich sugestiom spora liczba probleméw numerycznych przesu-
nigta zostala do osobnych punktow (problemy i przyklady), przez co zasadniczy
nurt wyktadu zyskat na przejrzystosci. Cenna i zawsze zywa pomoc w wykonywa-
niu rysunkéw okazywala mi mgr Lidia Rzeczkowska. Sprawne wydanie dzieta



zawdzieczam zyczliwosci Panstwowego Wydawnictwa Naukowego w osobach
Pani Redaktor mgr Zofii Dobkowskiej i dr Malgorzaty Galusowej. Dzigki uwadze
i dociekliwosci Pani dr Galusowej udalo si¢ wyprostowa¢ szereg niepozadanych
zawiloéci tekstu. Na koniec pragne wyrazy wdziecznosci przekazaé mej Zonie,
ktorej cierpliwo$é i nieustajaca troska o byt codzienny przyczynity si¢ w istotny
sposdb do pomysinego zakorczenia tej pracy.

J. W. Rohleder

Wroclaw, w pazdzierniku 1985 r.
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WYKAZ

A-B
AxB
A®B

a, b, c
a, a,, a;

by, by, b;

ﬁﬁww

Soon

SYMBOLI

integralne natezenie pasma absorpcyjnego

macierz, odpowiadajaca i-tej operacji symetrii

iloczyn skalarny dwéch wektorow

iloczyn wektorowy dwoch wektorow

iloczyn prosty dwoch macierzy kolumnowych

macierz orientacji osi gléwnych tensora w ukos$nokatnym
ukladzie wspotrzednych

krawedzie komorki elementarnej

wektory bazy sieci prostej

wektory bazy sieci odwrotnej

wektor indukcji magnetycznej

dwodjtomnos¢ optyczna plytki

predkos¢ $wiatla w prozni

macierz transformacji, wiazaca z soba dwa ortogonalne uktady
wspotrzednych

‘transponowana macierz ¢

wektor indukcji elektrostatycznej

energia wiazania czasteczki dwuatomowej

grubos¢ (ptytki)

tensor lokalnego pola elektrycznego w krysztale
wyznacznik macierzy A

odleglos¢ dwoch sasiednich plaszczyzn w zbiorze o zadanych
wskaznikach Millera (hkl)

element objetosci

energia catkowita

wektor nateZenia pola elektrycznego

trojka wersoréw w ortogonalnym ukladzie wspoéirzednych
tensor odksztalcenia wzglednego (ogdlny)

wektor lokalnego natgzenia pola elektrycznego w krysztale
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G, — grupa symetrii krysztatu

G, — grupa punktowa symetrii wielkosci fizycznej

G, — grupa punktowa symetrii wezla

G, — grupa wymienna

H — wektor natgzenia pola magnetycznego

H (hkl) — wektor sieci odwrotnej

H(E) — wielomian Hermitte’a

h — rzad grupy

h — stala Plancka

I — natgzenie wiazki promieniowania

1 — wektor namagnesowania

i,j, k — trojka wersorow w ukosnokatnym ukladzie wspodlrzednych

j — wektor gestosci pradu elektrycznego

K — tensor podatno$ci magnetycznej czasteczki

k(v) — wspolczynnik absorpcji (w funkcji czestosci)

k; — zredukowane podatnosci magnetyczne czasteczki

L — tensor Lorentza

LMN — osie symetrii czasteczki

l — wektor jednostkowy o zadanym kierunku

M — masa molowa

M — wektor spektroskopowego momentu przejscia

M — $rednia warto$¢ M

N — wektor jednostkowy, normalny do okreslonej plaszczyzny

Ny — liczba Avogadra

N, — wspolczynnik refrakcji w kierunku I

n; — glowne wspolczynniki refrakcji

P — wektor polaryzacji krysztatu

P, — moment magnetyczny krysztatu

P — moment dipolowy czasteczki

q — tadunek

P, q — wektory, wystepujace w ogoélnym zwiazku z tensorem

Ipl, 14l — bezwzgledne wartosci wektoréow p, ¢

Po — trwaly moment magnetyczny

¥ — indukowany moment magnetyczny

R, r -~ wektory potozenia punktu (atomu)

R, — refrakcja molowa substancji

Ry; — dichroizm pasma absorpcyjnego dla kierunkéw pomiaru i
oraz j

r — refrakcja molowa czasteczki

Sij — wspolczynniki kwadryki

S, So — wektory rozpraszania (jednostkowe)

T — temperatura bezwzgledna (kelwiny)

T;, ty : — temperatura topnienia (kelwiny, °C)

s Ty — temperatura przemiany fazowej (kelwiny, °C)

T — energia kinetyczna
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ogdlny tensor drugiego rzedu

temperatura (°C)

skladowe tensora

tensor antysymetryczny

tensor biegunowy

tensor osiowy

tensor symetryczny

slad tensora

mikroskopowy, ortogonalny i prawoskretny uktad wspotrzed-
nych, zwigzany z czasteczka

energia potencjalna pary i, j nie zwigzanych atomow, ktorych
odlegto$¢ wynosi r;;

objetosé

potencjal w punkcie 4

liczba kwantowa

waga statystyczna pomiaru i

uktad trzech atoméw, potaczonych wiazaniem wodorowym
ogblny, makroskopowy, ortogonalny i prawoskretny uktad
wspélrzednych

uktad osi wlasnych tensora

wspotczynnik anharmonicznosci

liczba czasteczek w komorce elementarnej

wspoélrzedne srodka masy czasteczki

wektor o dlugosci réwnej zeru

macierz o wszystkich elementach réwnych zeru

macierz jednostkowa

tensor rozszerzalnosci termicznej krysztatu

tensor polaryzowalnosci czasteczki

katy miedzy osiami krystalograficznymi

zredukowany tensor polaryzowalno$ci czasteczki

tensor polaryzowalnosci komorki elementarnej

réznica drog optycznych w plytce

jedna z reprezentacji w grupie punktowe] symetrii
wspotczynnik Griineisena

podatno$¢ magnetyczna krysztalu utworzonego z 1 mola cza-
steczek

tensor podatnosci dielektrycznej krysztalu

charakter, odpowiadajacy operacji R,

anizotropia magnetyczna probki

tensor wzglednej przenikalnosci dielektrycznej materiatu
tensor odksztalcenia wzglednego (czgs¢ symetryczna)
bezwzgledna przenikalnos$¢ dielektryczna prozni

kat na plaszczyznie

katy Eulera

podatno$é jednostki masy materiatu
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kat zawarty migedzy wektorami D i E fali elektromagnetycznej
warto$¢ wlasna tensora (macierzy)

wektor radialnego przemieszczenia punktu

wektor transwersalnego przemieszczenia punktu

wzgledna przenikalno$¢ magnetyczna materiatu

bezwzgledna przenikalno$¢ magnetyczna prozni

czesto$¢ drgan

liczba falowa, okreslajaca polozenie maksimum pasma- (ab-
SOrpcyjnego)

czgstos¢ katowa

tensor odksztalcenia wzglednego (czg$¢ antysymetryczna)
podatno$¢ magnetyczna materialu (bezwymiarowa)
elektryczne przewodnictwo wlasciwe materiatu



1. ODDZIALYWANIA
MIEDZYCZASTECZKOWE
I KLASYFIKACJA CIALA STALEGO

Fizykochemia ciala stalego stanowi obszerna dziedzing badan naukowych,
ktérych wyniki maja niezwykle wazne i roZnorodne zastosowania w praktyce.
Podobnie jak cywilizacja dnia wczorajszego nie moglaby powsta¢ bez metali, tak
nie sposOb wyobrazi¢ sobie cywilizacji dnia dzisiejszego bez poéiprzewodnikow.
Prowadzone od dawna i szeroko zakrojone badania wlasciwosci zwiazkOw nie-
organicznych nie tylko przyczynily si¢ bezposrednio do wielorakich ich zastoso-
wan, lecz takze byly Zrédlem nowych i zaskakujacych odkryé (dyfrakcji promieni
rentgenowskich i elektronow, luminescencji, potprzewodnictwa, efektu M&ssbauera,
akcji laserowej). Zwiazki organiczne — jako ciato stale — ciesza si¢ stale rosnacym
zainteresowaniem. Wzrasta takze ich liczba w produkcji przemystowej, o czym
$wiadezy chocby tylko szybko rozwijajacy sie przemyst tworzyw sztucznych.

Na przeszkodzie bezposredniemu zastosowaniu krysztalow molekularnych stoja
— pozornie — niezbyt korzystne ich wlasciwosci mechaniczne i termiczne, a
mianowicie migkko$¢, znaczna krucho$¢ i na ogdt niska temperatura topnienia.
Taki poglad mozna sobie wyrobi¢ wowczas, gdy praktyczna przydatno$é kryszta-
16w molekularnych ocenia si¢ z punktu widzenia istniejacych dzi§ i znanych
zastosowan krysztaldéw nieorganicznych — jonowych, a zwlaszcza kowalencyjnych
— ktorych wlasciwosci mechaniczne i termiczne przedstawiaja sie o wiele korzyst-
niej. Mozna jednak przypuszczaé, iz ze wzgledu na szczegdlne cechy struktury,
przejawiajace sie przede wszystkim w na ogot niskiej symetrii i niklosci oddziaty-
wan migdzyczasteczkowych, krysztaly molekularne doczekaja sie zupelnie nowych,
dzi$ nie dajacych si¢ nawet przewidzie¢, a nie mniej waznych zastosowan. Przykla-
dem calej klasy zwiazkéw, nie majacej substytutu wérdéd zwiazkow nieorgani-
cznych, sa ciekte krysztaly. Patrzac na zagadnienie z tego punktu widzenia,
krysztaly molekularne trzeba uwaza¢ za material przyszlosci.

Istnieja dwa gléwne kierunki badan naukowych w fizykochemii organicznego
ciala stalego: poznawczy i aplikacyjny. Pierwszy z nich polega na dazeniu do
zrozumienia makroskopowych wiasciwosci krysztatu, takich jak wspotezynnik
refrakcji czy tez rozszerzalnosé termiczna, na podstawie opisu przestrzennego
rozktadu czasteczek w sieci krystalicznej oraz sposobu ich ruchu, czyli na podsta-
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wie mikroskopowych cech struktury. Wiasciwosci krysztalu sa mierzalne, moga
by¢ zatem znane z doswiadczenia. Nie znamy natomiast wlasciwosci samych
czasteczek, z ktérych jest zbudowany krysztal; mimo niewielkich sit oddzialywan
nie nalezy oczekiwac, ze wlasciwo$ci czasteczki umieszczonej w sieci krystalicznej
beda identyczne z wlasciwosciami czasteczki swobodnej, cho¢ powinny by¢ do niej
zblizone. Charakterystyczne réznice beda nas informowac o wielkosci i naturze
oddzialywan miedzyczasteczkowych. Istotne znaczenie maja tu relacje miedzy
makroskopowymi, fizycznymi wladciwo$ciami krysztatu a odpowiednimi mikrosko-
powymi wlasciwosciami czasteczek. Poznanie tych relacji oraz wplywu na nie
takich parametrow zewnetrznych, jak temperatura i ci$nienie, stanowi program
badan dyscypliny zwanej fizyka chemiczng. Realizacja tego programu staje si¢
szczegblnie interesujaca w przypadku krysztaléw molekularnych. Symetria czaste-
czek jest z reguly znacznie nizsza niz symetria jonow lub atoméw tworzacych
strukture krysztalu nieorganicznego. Zarowno ten fakt, jak i nikloé¢ sit oddziaty-
wan miedzyczasteczkowych sprawiaja, ze rOwniez symetria krysztalu molekularne-
go nie jest wysoka. Wiekszoé¢ tych krysztalow (az 80°/,) ma symetri¢ ukladu
jedno- 1 trdjskosnego, a krysztaly nalezace do ukladu regularnego stanowia
niezwykla rzadkos¢. Dzigki temu eksperyment z krysztalem molekularnym staje si¢
znacznie bogatszy, aczkolwiek jednocze$nie jego interpretacja strukturalna jest
bardzo zloZzona. Nie mniej interesujace jest to, ze w takich krysztatach istnieje
pewna liczba ,,stopni swobody”, tj. parametrdéw, ktorych wartosci nie sa zdetermi-
nowane dzialaniem regul symetrii. Na przyklad orientacj¢ przekroju indykatrysy w
plaszczyznie (010) krysztalu jednoskosnego opisuje jeden kat, dowolny z punktu
widzenia zasad symetrii. Do zadan fizyki chemicznej nalezy réwniez rozpoznanie,
ktore z czynnikéw mikroskopowych determinuja aktualne wartosci swobodnych
parametrow i jaki jest wplyw na nie czynnikéw zewnetrznych.

Drugi kierunek, aplikacyjny, ma na celu poszukiwanie nowych zastosowan
organicznego ciala stalego. Do programu badan stosowanych nalezy réwniez
wlaczy¢ modyfikowanie whasciwosci cial poprzez modyfikacje samych czasteczek, a
takze — jesli jest to mozliwe — rowniez struktury ciala stalego, na przykltad przez
wybor i stabilizacje okreslonej odmiany fazowej. Tak sformulowany cel i zakres
badan jest obiektem zainteresowan inzynierii materialowej i opiera sie, rzecz jasna,
na wynikach badan podstawowych. O ile dzi$ bliscy jestesmy zrozumienia niekto-
rych wiasciwosci krysztalow molekularnych, o tyle inzynieria materialowa stawia
obecnie dopiero pierwsze kroki. Nie ulega jednak watpliwosci, ze dyscyplina ta
bed~zie miala istotne znaczenie dla rozwoju techniki dnia jutrzejszego.

1.1. Klasyfikacja ciala stalego z punktu widzenia
oddzialywan miedzyczasteczkowych

Wiasciwie kazda mierzalna wielko$¢ fizyczna moze stanowi¢ kryterium podzia-
lu substancji na co najmniej dwie klasy. Jesli, na przyklad, wybierzemy przewod-

nictwo elektryczne, to mozemy podzieli¢ materialy na substancje przewodzace i
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dielektryki. Bardziej szczegbélowy podzial, uwzgledniajacy wplyw temperatury na
przewodnictwo wilasciwe, obejmowac bedzie klase metali, krysztaldw jonowych,
polprzewodnikéw oraz dielektrykéw. Z kolei zachowanie si¢ materiatdéw w polu
magnetycznym pozwala wyrdzni¢ klasy para-, dia- i ferromagnetykoéw. Wiasciwos-
ci materialow w polu elektrycznym sa podstawa ich podziatu na ferro- i paraelek-
tryki. Wprawdzie podzialow tego typu moze by¢ wiele, jednak dwie sposrdd
wlasciwosci fizycznych ciata stalego daja najogdlniesza podstawe podziatu; sa to:
energia sieciowa oraz symetria. Obecnie zajmiemy si¢ klasyfikacja ciala stalego z
punktu widzenia energii oddzialywan miedzy elementami strukturalnymi, z jakich
ono si¢ sktada. Energia ta przejawia si¢ mikroskopowo w postaci okreslonego
ciepta sublimacji lub réwnowaznej mu liczbowo energii sieciowej, tj. zmianie
energili wewngtrznej towarzyszacej procesowi tworzenia w temperaturze 0 K

Tabela I.1

Schemat klasyfikacji ciala stalego

Energic L.

Charakter gltéwnych Przyklad ciata \:;;%:t Charakterystyczne wlasciwosci
sit oddziatywania stalego, typ sieci kJ -mol~ ! ciata stalego

Sity elektrostat. NaCl, reg.; —750 sztywne, czesto kruche; izolatory elektr.
miedzy jonami, bez- | BaF,, reg. (10* w niskich temp., mozliwe przewodn. jono-
kierunkowe struktur) — 1680 we w temp. podwyzszonej

Wigzania kowalencyj- | diament, reg.; —-710 sztywne, bardzo twarde, zwykle wysoka
ne, przestrz. skicro- | SiC, reg. (103 temp. topn.; w niskich temp. izolatory lub
wane struktur) —1200 pélprzewodniki; duzy wspdlcz. refrakcji

Wigzania metaliczne, | Na, reg. przestrz. ciggliwe; duze przewodn. cieplne i elektr.;
bezkierunkowe centr.; -~ 110 duzy wspdlcz. odbicia; wlasciwosci po-

Mg, heksagon. o dobne w stanic stalym i cieklym
najg. ulozeniu

atomow; —150

W, reg. -850

Sity van der Waalsa, | Ar, reg. $c. centr.; -715 niska temp. topn.; $cisliwe; bardzo male
bezkierunkowe H,, heksagon. przewodn. cieplne i elektr., diamagnetyki

(10% struktur) —1

Wigzania wodorowe, | H,O (l6d), heksa- podwyzszona temp. topn.; czesto polimor-

przestrz. skierowane | gon.; fzm; izolatory niekiedy o zwigkszonym
kwas benzoes., —(20-40) | przewodn. clektr., diamagnetyki
jednosk.

Oddzialywania dono- | chloranil-dimety- substancje barwne; niekiedy paramagnet.;
rowo-akceptorowe, | loamina —(20-40) | charakter. ulozenie czast. w stosy; niekie-
przestrz. skierowanc dy bardzo duze (quasi-metal) przewodn.
’ elektr.




okreslonej substancji krystalicznej z jednego mola czasteczek, znajdujacych sie w
stanie gazowym. Oparty na symetrii podzial ciala statego przedstawimy w rozdz. 3.

Schemat klasyfikacji ciala stalego z energetycznego punktu widzenia przedsta-
wiono w tab. 1.1. Najwyzsza energi¢ sieciowa maja krysztaly o wiazaniach
kowalencyjnych i krysztaly jonowe; krysztaly molekularne znajduja si¢ na drugim
biegunie tego podzialu, metale za$ sa usytuowane posrodku.

1.2. Oddzialywania uniwersalne

Przejdziemy teraz do bardziej szczegdlowego opisu charakteru oddzialywan
miedzy elementami strukturalnymi w sieci krysztalu molekularnego. Mozna je dla
ulatwienia interpretacji podzieli¢ na oddzialywania uniwersalne, wystepujace w
kazdym krysztale molekularnym, oraz na oddzialywania specyficzne (oddziatywania
elektronodonorowo-akceptorowe, wiazania wodorowe). Zrodlem oddzialywan uni-
wersalnych sa sily elektrostatyczne, dzialajace migdzy ladunkami elektrycznymi
(jonami) i trwalymi multipolami elektrycznymi (czasteczkami), oraz sity elektrody-
namiczne, dzialajace migdzy indukowanymi dipolami. W drugim przypadku sity
wynikaja z efektow kwantowych, polegajacych na wymianie elektronu lub protonu
miedzy sasiednimi czasteczkami.

Pojecie momentu multipolowego wywodzi si¢ z pojgcia potencjatu, wytwarza-
nego przez ukiad ladunkow w pewnej od niego odleglodci. Przypu$émy, ze
interesuje nas potencjal ¥V, w punkcie A, oddalonym od czasteczki H,O o wektor
R, o dlugosci znacznie wigkszej od lhiniowych rozmiaréw czasteczki (rys. 1.1).
Potencjal ten mozemy uwaza¢ za wytworzony przez tadunek dg = g(r)-dv zawarty
w elemencie objetosci dv, przy czym o(r) jest gestoscig tadunku stala wewnatrz
elementu dv, otaczajacego koniec wektora r (r jest, oczywiscie, zmienne). Sumujac
udzialy wszystkich elementow objetosci o nie znikajacej gestosci elektronowej,
otrzymamy

1 o(r)
= d 1.1
V= ey J(R2+r2—2rR cosg) 2" (L1)

Rys. 1.1. Potencjal wytworzony w punkcie A przez zbiér tadunkow cza-
steczki wody
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przy czym g, jest bezwzgledna przenikalnoscia dielektryczng prézni. Mianownik
wyrazenia podcalkowego mozna rozwinaé w szereg [1], po czym wyrazenie
okreslajace V, przyjmie postaé [zamiast o(r) piszemy ¢]

1 \
Vy= d » dv+
47 4o R JQ v+47t80 R? JQ' St

1 3cos?p—1
: 2
PTE J"r 2

dv+

1 508 @ (Scos? ¢ —3)
dv+ ... 1.2
+4n80R4 JQV 2 2 (L2

zwang szeregiem multipolowym. Pierwszy czton jest proporcjonalny do [edv = g,
czyli do wypadkowego tadunku czasteczki; przedstawia wigc potencjal wytworzony
przez jon w pewnej od niego odlegtosci. Jesli element strukturalny nie jest jonem,
to czlon ten rowny jest zeru, a o potencjale w punkcie A decyduje nastepny
sktadnik sumy. Jest on proporcjonalny do momentu dipolowego czasteczki

p=forcospdy (1.3)

Nastepny skladnik sumy po prawej stronie rown. (1.2) jest proporcjonalny do
momentu kwadrupolowego itd.

Jeshi punkt A jest punktem lezacym we wnetrzu krysztatu, to skutek oddzialy-
wan miedzyczgsteczkowych mozna opisa¢ za pomocq potencjalu V,, wytwarzanego
przez periodyczny zbior multipoli. Rzad tych multipoli zalezy od symetrii rozktadu
fadunku w czasteczce w konkretnym przypadku. Przy takim opisie mielibysmy do
czynienia z multipolami punktowymi, rozmieszczonymi w wezltach sieci Bravais’go.
Na rysunku 1.2 przedstawiono schematycznie rozklad kwadrupoli, odpowiadajacy
komorce elementarnej krysztalu antracenu.

Uwzglednienie oddzialywan wszystkich momentéw multipdlowych czasteczki
elektrycznie obojetnej, tj. zaréwno statycznych [objetych rown. (1.2)], jak i induko-
wanych przez oddzialywanie zmieniajacego si¢ w czasie rozktadu gestosci elektro-
nowej w otoczeniu wybranej czasteczki, prowadzi do oddzialywan objetych zbior-
cza nazwa sit van der Waalsa. Podstawowa niesScistos¢ takiego opisu polega na tym,
e czqsteczke zastepujemy punktowym multipolem. Pomijamy w ten sposob prze-
strzenng rozciaglos¢ czasteczki, co nie odpowiada rzeczywistej strukturze krysztatu
i nie uwzglednia aktualnej orientacji czasteczki w przestrzeni.

b : VY
A : A
7,
A )
4 ,
v Rys. 1.2. Schemat rozktadu kwadrupoli w komoérce elementar-
% 4 nej antracenu :
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Znacznie bardziej precyzyjny opis oddzialywan miedzy czasteczkami w kryszta-
le, siegajacy glebiej w mikroskopowa strukture czasteczki, wprowadzony zostal
przez Kitajgorodskiego [2] i prawie jednoczesnie przez Williamsa [3]. Sposob ten
polega na zastapieniu oddzialywan czasteczka—czasteczka przez sume¢ oddzialywan
atom-atom, przy czym oddziatlujace atomy nie sa bezposrednio polaczone wigza-
niem chemicznym, lecz naleza do dwoéch réznych czasteczek (rys. 1.3). Ogdlna
energia takich oddzialywan skiada si¢ z dwoch czescei. Pierwsza z nich, ujemna, jest
energig przyciagania pary atoméw; wynika ona z oddziatywan multipol-multipol
oraz z tak zwanych londonowskich sit dyspersyjnych. Zrédlem tych sit jest

. oddzialywanie dipoli indukowanych w najblizszych sasiadach okre§lonego atomu,

QO

%3
A
1

2.5,

e/"16|

S .
o T o—

d5
\

o]

N/
Wope
o

o
\
o

Rys. 1.3. Oddzialywania atom-atom (schematycznie)

w ktérych wystapita chwilowa asymetria w rozkladzie gestosci elektronowej. W
taki sposob oddziatuja rowniez atomy, ktore dla dluzszego przedziatu czasu maja
srednio symetrie kuli, a wiec nie maja zadnego trwalego momentu mulitipolowego
(np. atomy argonu). Drugim skiadnikiem, dodatnim, jest energia odpychania,
wynikajaca z nakladania sie¢ powlok elektronowych przy zblizeniu sasiadujacych z
soba atomow. Najczesciej przyjmuje sig, ze pierwszy udzial jest proporcjonalny do
r;®, a drugi do exp[—ar;;]. taczne wyrazenie na energi¢ potencjalna zwane jest
potencjalem ,,6-exp” 1 ma postac

Ury) = —%+Bexp[—ar,-j] (1.4)
ij

W funkcji (1.4) r;; jest odlegtoscia oddziatujacych atomow i-tego oraz j-tego, za$ A,
B, o sa stalymi potencjatu, najczedciej dobieranymi empirycznie dla okreslonej pary
atomow, np. C---C, C---H. Zaklada si¢ przy tym, ze oddziatywanie nie wykazuje
efektow kierunkowych. Poniewaz krysztaly molekularne zbudowane sg zgodnie z
zasada najgestszego ulozenia atomoédw (czasteczek), wprowadzona przez Kitajgo-
rodskiego [2], sytuacja stykajacych sie atoméw odpowiada gestemu ulozeniu kul
w przestrzeni. Okazuje si¢, ze potencjal zdefiniowany wedtug (1.4) ma w znacznym
stopniu charakter uniwersalny, to znaczy stale 4, B, a dla oddzialywan na
przyktad C---H sg takie same w strukturze naftalenu jak i propanu. Taki model
odpowiada czasteczce przestrzennie rozciaglej, lecz skladajacej si¢ z punktowych
atomow. Stale potencjatu dla atoméw czasteczek weglowodoréow ustalone zostaty
przez Kitajgorodskiego po zbadaniu wielu struktur [2] i podane sag w tab. 1.2. Dla
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przykladu krzywa energii potencjalnej oddzialywan pary atoméw C---H, obliczo-
na na podstawie danych z tab. 1.2, przedstawiona jest na rys. 14.

Znajomos$¢ potencjalu oddzialywan atom-atom pozwala obliczyé energie sieciowq
krysztalu w temp. 0 K, U, przez sumowanie wyrazéow Ar~® 1 Bexp[—ar] dla
wszystkich nie zwigzanych z sobaq atomow, znajdujacych sie wewnatrz kuli o
promieniu 2--3 nm. Uwzglednienie kilku tysiecy takich sktadnikéw wymaga uzycia
maszyn cyfrowych. Podczas obliczen korzysta si¢ z potozen atomoéw, wyznaczo-

Tabela 1.2

Stale potencjalu [funkcja (1.4)] dla niektorych par atoméw
(wedlug [2])

At A-10%, B-107°, o,
omy kI-mol™ ' nm®| kJ-mol™' | nm™!
G e 1,498 1,76 358
C--H 0,644 1,76 41,2
H---H 0,238 1,76 48,6
1000
800
600
T
g 400
=
200
0
-200 /
/ Rys. 1.4. Krzywa energii potencjalnej oddzialtywan C---H obliczona
na podstawie rown.: )

030 040 050
r, nm

UC--H)y= —644-10"*/r+1,76-10°exp(—41,2r)
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nych dla okreslonej struktury metodami rentgenografii strukturalnej. Szczegdlna
role odgrywa polozenie atoméw wodoru, czgsto peryferyjnych atomoéw czasteczki i
majacych spory udzial w energii oddziatywania ze wzgledu na male wartosci r;;.
Obliczenie r;; atomow wodoru wymaga wykonania neutronograficznych badan
struktury, pozwalajacych dokladnie okresli¢ wspoirzedne tych atomoéw. Jesli takich
badan nie ma, to przy znajomosci $redniej dlugosci wigzania C—H mozemy sig
oprze¢ na prostej dedukcji geometryczne;j.

Energia oddzialywan par nie zwiazanych walencyjnie atomoéw jest funkcja
odlegtosci miedzy nimi. Zbiér tych odleglosci w strukturze o zadanej symetrii
zalezy od geometrii komoérki elementarnej, a wigc od diugosci jej krawedzi a, b, ¢ 1
katow miedzy nimi «, f, y, oraz od geometrii rozkladu czasteczek w komorcé, a
wiec od wspolrzednych érodka masy czasteczki, X, Y, Z i katow Eulera, opisuja-
cych orientacje czasteczki wzgledem a, b, c. Zwykle zaklada si¢ przy tym sztywnosé
samej czasteczki, tj. niezalezno$¢ wzglednych potozen atoméw zwigzanych w
czasteczke od drobnych zmian wymienionych parametréw. Energie¢ potencjalng
sieci moZzemy traktowac jak dwunastowymiarowa powierzchni¢

U=U(a’ b9cﬁa,ﬂ’ y’ X? Y,Z’ (p7 S’X)

posiadajaca wiele minimow. Jedno z nich odpowiada rzeczywistej strukturze
krysztalu, a energia w tym punkcie — jego energii sieciowej, Uy, w temp. 0 K.
Wielko$¢ te porownuje si¢ z wartoscia ciepta sublimacji, —4H,, ekstrapolowana
do temp. 0 K

—AH():U()"KO (15)

gdzie K, jest tak zwana energia zerowa drgan elementow strukturalnych w temp.
0 K. K, ma znaczny udzial w cieple sublimacji krysztalow o matych czasteczkach,
np. krysztaléw He, Ne, H,; w krysztale lodu energia zerowa stanowi 31°%/, ciepta
sublimacji [2]. W przypadku wigkszych czasteczek udzial K, mozna pominac,
poniewaz juz dla CO, nie przekracza on 2%,.

W wyniku minimalizacji U,, dokonywanej za posrednictwem drobnych zmian
wybranych parametrow przy ustalonych warto§ciach pozostalych, otrzymuje si¢
nastepujace informacje:

1. Energie sieciowa U, w temp. 0 K, ktorej poréwnanie z doswiadczalng
wartoscia —A4H, sluzy zwykle jako kryterium wyboru wlasciwego minimum
funkcji (1.4) oraz wiasciwego doboru wartosci statych potencjatowych;

2. Wartosci parametréw komorki elementarnej a, b, ¢, «, f, 7;

3. Orientacje czasteczki wzgledem krawedzi komoérki elementarnej i potozenie
jej srodka masy, co jest rOwnoznaczne z rozwiazaniem struktury krysztalu. W ten
spos6b mozna wiec uzyska¢ informacje o krysztatach, ktérych struktura nie jest
znana.

Porownanie wynikoéw obliczen z danymi dos$wiadczalnymi dla krysztatu benze-
nu zamieszczono w tab. 1.3 (wediug [2]). '

Wada opisu oddzialywan migdzyczasteczkowych za pomoca ‘potencjatu (1.4)
jest to, Ze nie jest on wystarczajaco uniwersalny. O ile mozna uzyskaé bardzo
dobre wyniki dla krysztalow weglowodorow, o tyle schemat obliczen zawodzi przy
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Tabela 1.3

Eksperymentalne i obliczone warto$ci parametrow sieci a, b, ¢ oraz katéw Eulera orientacji czasteczki
9, 1, @ w strukturze krysztalu benzenu (wedlug [2])

Parametry komérki elem. *, nm| Katy Eulera ** Cieplo sublimacji ***,
. -1
a b c 9 ¥ @ kJ -mol
Obliczone 0,725 0,941 0,675 | 47,6 | 178,0(104,7 +49,10
Doswiadczalne 0,727 0,943 0,671 473 | 178 |107,5 +43,1+2,1

*  Obliczenia przeprowadzono dla temp. 0 K, wartosci doswiadczalne ekstrapolowano do temp. 0 K.
** Dla temp. 270 K.
¥ Warto§é obliczona dla temp. 0 K, dos$wiadezalna —dla temp. 278,6 K.

obecnosci w czasteczce atomow takich jak tlen, azot. Pewien postep w tej
dziedzinie przyniosty badania w nowym i szybko rozwijajacym sie kierunku,
zwanym dynamika sieci. Ta gataz fizyki chemicznej zajmuje si¢ badaniem czestoscel,
amplitud 1 kierunku ruchu czasteczek w sieci krystalicznej w polu potencjalu
wytworzonego przez otoczenie. Pozwala to opisaé i uporzadkowa¢ widma Ramana
krysztalow 1 widma w dalekiej podczerwieni. Okazuje sig¢, ze mozna poprawic
uniwersalno$¢ opisu oddziatywan miedzy réznymi atomami, jesli powigkszy sie
liczbe parametréw w funkcji energii potencjalnej. Przykladem czteroparametrowej
funkcji jest [4]

A C
V{(r) =r—Dexp[—Br:|—r—6 (1.6

Nowsze dane dla stalych potencjalu A, B, C, D, zaczerpni¢te z pracy [4] i
przeliczone na jednostki uktadu SI, zawiera tab. 14.

Tabela 14

Stale potencjalu [funkcja (1.6)] oddzialywan par nie zwigzanych
atomow (wedlug [4]) . :

A, B, C-10%,
LTy kJ-mol ' nmP|{ nm~*! }kJ-mol~!-nm® 8
H---H 9090 374 1,021 0
G G 300550 36,0 21,466 0
C--*H 35600 36,7 4,682 0
0--0 1,084-10°° 0 15,01 12
N---N 268620 36,4 16,86 0
O---H 9,926-10"2 18,7 391 6
0O:---C 0,57090 18,0 17,95 6
O---N 0,5397 18,2 1591 6
N---H 49415 36,9 4,15 0
N---C 284140 36,2 19,02 0
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Badania dynamiki sieci krysztaldw molekularnych prowadza jednak réwniez
do wniosku, ze oddzialywania miedzyczqsteczkowe, przynajmniej w niektorych krysz-
talach, nie majq wylacznie charakteru sil van der Waalsa. Na przykladzie krysztatu
chloru wykazano, ze dynamiki steci nie mozna opisa¢ zgodnie z doswiadczeniem
jedynie na podstawie potencjatu (1.4) czy (1.6). Trzeba uwzgledni¢ oddzialywanie
wynikajace z przeniesienia fadunku migdzy sasiednimi czasteczkami, nie mieszczace
si¢ w schemacie oddzialywan atom-atom [5].

Obecnie przypuszcza sie, iz najlepszy opis oddziatywan w krysztale molekular-
nym mozna bedzie uzyskac na gruncie ,,czystej” elektrostatyki, przez bezposrednie
zastosowanie prawa Coulomba. Jesli ¢(r;) przedstawia lokalna gestosé elektronow
w elemencie objgtosci 4v;, to potencjal w wybranym miejscu R mozna wyrazi¢ —
zgodnie z prawem Coulomba — w nastgpujacy sposéb: :

1 0 (r;) Ay,

V(R) = —
&) 4me, T [, —R|

(1.7)

Aby obliczy¢ sume w rown. (1.7), nalezy podzieli¢ komérke elementarng na
dostatecznie male elementy objetosci, tak by gestos¢ elektronowa wewnatrz kazde-
go z nich mozna bylo uwazaé za stala. Wobec stabej zbieznosci sumy z réwn.
(1.7) trzeba uwzgledni¢ tak wielka liczbe sktadnikow, ze przekracza to mozliwosé
pamieci operacyjnej wiekszosci wspdlczesnych maszyn cyfrowych. Z tych powodéw
metoda ta wymaga jeszcze dalszego opracowania.

1.3. Oddzialywania specyficzne

1.3.1. Wiazanie wodorowe

Wigzanie wodorowe polega na oddzialywaniu miedzy trzema atomami,
—X—H:-Y—, z ktorych tylko dwa polaczone sa wiazaniem chemicznym. Srod-
kowy atom jest atomem wodoru (deuteru), skrajnymi za§ atomami w typowych
przypadkach sa N lub O. Taki ukiad nosi nazwe mostka wodorowego i moze by¢
zgiety. Klasycznym przykladem cieczy zasocjowanej za pomoca wigzan wodoro-
wych jest woda. Wérod réznych sposobdw asocjacji mozliwe jest tworzenie agrega-
tow liniowych

lub cyklicznych
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Cecha charakterystyczna wiazania wodorowego jest to, ze odleglos¢ skrajnych
atoméow X ---Y jest mniejsza od sumy promieni van der Waalsa atomow X i Y.

Py 5 P By (1.8)

Suma tych promieni w zwyklych oddzialywaniach van der Waalsa z reguty
przekracza 0,3 nm, na przykiad 2r, = 0,306 nm, 2r = 0,316 nm [2]. Typowe
wartosci ry., leza natomiast w zakresie od 0,27 do 0,29 nm, a moga by¢ nawet
mniejsze od 0,25 nm. Wlasciwosci fizykochemiczne zwiazku zasocjowanego mogq
do$¢ znacznie rézni¢ sie od wihasciwosci zwiazku monomerycznego, czego dobit-
nym przykladem jest woda (tab. 1.5).

Tabela 1.5

Fizykochemiczne wlasciwosci wody oraz hipotetycznej cieczy ziezonej z poje-
dynczych czasteczek H,O

: = Warto$¢
Wielkosé Jednostka
GHASAKIETySEyeai woda ciecz hipotetyczna
Temperatura wrzenia °C +100 —-80
Napigcie powierzchniowe N-m™' 0,072 0,007
Cieplo parowania kJ-mol™! 40,6 16,7
Cieplo topnienia kJ-mol™! 6,0 © 2,1

Dopdki para atomdéw —X—H nie oddzialuje z atomem Y, dopdty posiada
do$¢ dobrze okreslong czestosé drgan vy, w podczerwieni. Inaczej mowiac, ,,swo-
bodnemu” oscylatorowi —X—H odpowiada w podczerwieni pasmo absorpcyjne
zwykle o matej szerokosci, potozone przy ¥y, cm™~!. Pasmo absorpcyjne oscylatora
;zwigzanego” —X-—H -+ Y jest natomiast znacznie szersze 1 na ogot potozone przy
znacznie nizszej czestosci Vy,,.y. Powodem tego przesunigcia jest zmniejszenie stalej
sitowej oscylatora —XH przez oddzialywanie z atomem Y. Efekt ten sigga od
kilku cm~! do paru tysiecy cm™'. Obnizenie czestosci

AV = Ty =Ty (1.9)

uwazane jest za jedno z podstawowych kryteriow tworzenia si¢ wiazania wodoro-
wego, a nawet moze by¢ podstawa oceny odleglosci skrajnych atomow X---Y w
krysztale [6].

Miedzyczasteczkowe wiazanie wodorowe pojawia si¢ w cieczach prawie zawsze,
jesli tylko czasteczki substancji rozpuszczonej lub rozpuszczalnika zdolne sa do
jego utworzenia, a wigc gdy jedna czasteczka zawiera ugrupowanie —XH, a druga
odpowiedni atom Y. Ze wzgledu na ruch termiczny czasteczek w fazie cieklej oraz
niewielka energie wiazania wodorowego zwykle mamy do czynienia z pewna
rownowaga chemiczng miedzy liczba swobodnych oscylatoréw —XH i zwigzanych
—X—H---Y, przy czym réwnowaga ta moze by¢ niekiedy bardzo skomplikowana.
Jesli jednak potrafimy ja rozszyfrowaé pod wzgledem chemicznym, pomiar stezen
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uczestniczacych w niej indywiddéw chemicznych w réznych temperaturach pozwala
doswiadczalnie okresli¢ energi¢ tworzenia ukladu —X—H Y. Energie te leza w
zakresie 2040 kJ-mol™* (od 0,2 do 0,4 eV na czasteczke) i sa troche wigksze od
przeci¢gtnych oddzialywan van der Waalsa.

Inaczej jest w stanie stalym, gdzie o powstawaniu wigzania wodorowego
miedzy czasteczkami decyduja nie tylko oddzialywania, lecz takze stosunki prze-
strzenne 1 symetria, okreSlajace wzajemne utozenie czasteczek w krysztale. Dobrym
przyktadem roznych sytuacji moze by¢ pentachlorofenol, ktorego forme zasocjowa-
na (krysztal) przedstawia schemat

W swobodnej czasteczce wodor grupy hydroksylowej stabo oddzialuje z sasiednim
atomem chloru, co nie stanowi typowego wiazania wodorowego, ale wystarcza do
zahamowania rotacji grupy —OH -woko6t wiazania C—O. W konsekwencji czg-
sto§¢ drgan ukladu O—H---Cl w roztworze pentachlorofenolu w niepolarnym
rozpuszczalniku, np. w CCly, jest troche przesunigeta w strone nizszych czgstosci w
poréwnaniu ze zwykle spotykanymi czestosciami swobodnej grupy OH. Widmo
absorpcyjne takiego roztworu pokazano na rys. 1.5a [7]. Wykonane zostalo w
zakresie tak zwanego nadtonu o czestoSci w przyblizeniu rownej 2¥,,. Powstanie
nadtondw jest cecha charakterystyczna oscylatorow anharmonicznych (por. p. 7.2).
Na rysunku 1.5b pokazano, ze roztwory pentachlorofenolu w CCl, $cisle spetniaja
prawo Beera, co dowodzi, Ze czasteczki substancji rozpuszczonej nie ulegaja
asocjacji w roztworze. Mozna to tlumaczyé w ten sposdb, ze atomy chloru w
potozeniu orto wzgledem grupy —OH, majace stosunkowo duza objeto$é, skute-
cznie ,ekranuja” grupg hydroksylowa przed zblizeniami prowadzacyml do tworze-
nia miedzyczasteczkowych wigzan wodorowych.

Jezeli wykrystalizujemy pentachlorofenol z takiego roztworu przez powolne
odparowanie CCl, w temperaturze pokojowej, to powstana krysztaty zbudowane z
czasteczek polaczonych wigzaniem wodorowym, o czym wiadomo z badan rentge-
nograficznych tego krysztatu [8]. Grupy hydroksylowe tworza zygzakowate tanicu-
chy o S$rednim kierunku rownoleglym do krystalograficznej osi b, natomiast
pierScienie aromatyczne dolaczone sa -z boku i wykrecone z plaszczyzny

--OH---OH - - naprzemiennie w taki sposob, by ulatwi¢ wzajemne zblizenie grup
OH. Fragment tej struktury pokazano schematycznie na rys. 1.6. Krysztat sktada
sic wiec z rownolegtych do siebie ,nici”, ktorych dltugo$é przy idealnej strukturze
rowna jest dtugosci krysztalu wzdtuz osi b. Widmo absorpcyjne w podczerwieni w
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Rys. 1.5. Absorpcja oscylatora —OH w zakresie pierwszego nadtonu (Vv = 6868 cm™'): a) pasmo
absorpcyjne ¢ = 0,15(3) mol-17%, I = 3,00 cm, b) zaleznoéé¢ absorbancji od stezenia pentachlorofenolu
w roztworach w CCl,, [ = 1,00 cm, ¥ = 6870 cm™! (wedtug [7])

zakresie pierwszego nadtonu o czestosci rownej w przyblizeniu 27, jest, zgodnie
z oczekiwaniem, o wiele silniej przesunigte w kierunku nizszych czestoéci, a przy
tym bardziej ztozone (rys. 1.7). Przesunigcie spektralne w zakresie nadtondéw jest w
przyblizeniu dwa razy wigksze od 4V okreslonego definicja (1.9) i wynosi w tym
przypadku okoto 300 cm~! [7].

Nie jest to jednak jedyna mozliwa faza krystaliczna tego zwiazku. Okazuje sig,
ze przy ogrzewaniu krysztaléw wyhodowanych z roztworu, w temp. 63° C zachodzi
w nich przemiana fazowa [7], w wyniku czego znika pasmo pokazane na rys. 1.7.
Pojawia si¢ natomiast proste przejScie absorpcyjne, odpowiadajace obrazowi

0 0 0
YN VN N
< H\ // H\ // H\

- < H < H < H
~g” o~ b

Rys. 1.6. Fragment lafcucha czasteczek w fazie II pentachlorofenolu (temp. pokojowa). Kétkami
zaznaczono reszty pentachlorofenylowe, —C4Cls
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przedstawionemu na rys. 1.5 i charakterystyczne dla monomeréw w roztworze.
Swiadezy to o tym, ze faza pentachlorofenolu z miedzyczasteczkowym wiazaniem
wodorowym przestaje by¢ trwala w temp. wyzszej niz 63°C, a zamiast niej
powstaje faza o innej strukturze, zbudowana z izolowanych czasteczek. Faza ta
jest nieuporzadkowana: czasteczki zajmuja w niej wezly o symetrii C;, choé same
nie sa centrosymetryczne. W takim przypadku postulat zgodnosci symetrii wezta =
symetriq czqsteczki moze byé realizowany tylko statystycznie w taki sposob, ze
kazda z nich zajmuje w sposdéb przypadkowy jedno z szeSciu mozliwych potozen
wzgledem normalnej do pierscienia [9]. By¢ moze, iz w wyzszych temperaturach
nieporzadek ten ma charakter dynamiczny, tj. czagsteczki dokonuja ,,przeskokow” o
60° dookota normalnej do pierscienia benzenowego. Przyklad ten wskazuje, ze
mozemy miec¢ fazy krystaliczne bez wiagzania wodorowego, mimo iz czasteczki
maja atomy —XH 1 Y zdolne do jego utworzenia.

Czesto tworzy sie wigzanie wodorowe w krysztale w taki sposob, ze cala
czasteczka znajduje sie w tancuchu gtownym. Przykladem takiej sytuacji moze by¢
wigzanie ,ogon-gtowa” w krysztale p-nitrofenolu [10], przedstawione schematy-
cznie na rys. 1.8. Bardzo silne wigzania wodorowe wystepuja migdzy czasteczkami
kwasow karboksylowych, w wyniku czego tworza si¢ dimery, a niekiedy uklady
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Rys. 1.7. Widmo absorpcyjne nadtonu OH:-O w krysztale pentachlorofenolu w fazie II (wedlug [7])
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pierécieniowe zfozone z wiekszej liczby jednostek. Przykladem jest kwas benzoeso-
wy, ktorego czasteczki w roztworze benzenowym sa praktycznie zasocjowane w
dimery. W krysztale réwniez nie ma czasteczek monomerycznych i struktura
sktada sie z dimeréw [11], ktdore mozna uwazaé za autonomiczne jednostki
strukturaine (rys. 1.8b). =

a)

0 H---0 H---0 H
/ / /
0 0 0

) anYe
g c
‘ \ /
O—H:++ 0 :

Rys. 1.8. Przyklady wiazai wodorowych w krysztalach molekularnych: .a) ,,ogon-glowa” w -p-nitrofeno-
lu, b) dimery kwasu benzoesowego :

Jednym z bardzo interesujacych przykladéw jest struktura krysztalu gipsu
CaSO,-2H,0, ktorej rzut na plaszczyzng tupliwosci przedstawiono na rys. 1.9
wedlug danych strukturalnych z pracy [12]. Rzut ten zostal uproszczony przez
opuszczenie jondw Ca?* . Krysztal gipsu sklada si¢ z jonéw Ca>* i SOZ ™, ktorych
symetria jest bliska kuli, oraz z czasteczek wody, potaczonych wiazaniami wodoro-
wymi. Symetria tych czasteczek, C,,, jest nizsza od symetrii jondw i mozna
oczekiwad, 1z anjzotropia fizycznych wiasciwosci krysztatu uwarunkowana bedzie
przede wszystkim anizotropia dipoli wody i ich rozkladu w sieci krystaliczne;.

O atom siarki

o atom tlenu

e atom wodoru

Cr

Rys. 1.9. Rzut struktury krysztatu gipsu na. ptaszczyzne (010) (jony Ca®* pominieto). Wida¢ zwiazek
miedzy utozeniem dipoli H,O a gléwnymi kierunkami optycznymi O.B. i A.B. (wedlug [137)
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Rzeczywiscie, na plaszczyznie tupliwosci (010) mozemy wyrdzni¢ dwie prostopadie
do siebie linie, charakterystyczne ze wzgledu na rozklad czasteczek H,O (4.B. i
0.B. na rys. 1.9). Okazuje sie, ze linie te odpowiadaja” doswiadczalnie wyznaczo-
nym osiom gloéwnym elipsoidy wspélczynnika refrakcji na tej -plaszczyznie [13].
Trzecia o$ tej elipsoidy jest rownoleglta do krystalograficznej osi b, zgodnie z
przewidywaniami zasady Neumanna. Wlasciwosciami optycznymi tego krysztatu
zajmiemy si¢ bardziej szczegélowo w rozdz. 6.

Na koniec warto jeszcze wspomnie¢ o sytuacji protonu w ukladzie
—X—H-Y—, ktéra mozna opisa¢ za pomoca krzywej energii potencjalnej.
Zasadnicze typy krzywych, wprowadzone przez Sobczyka w celu klasyfikacji
wigzan wodorowych [14], przedstawiono na rys. 1.10. Najczesciej spotykamy si¢ z
przypadkiem (a), tj. z asymetryczna krzywa o dwoch minimach. Odpowiada ona
uktadowi X—H---Y przy duzych i $rednich odleglosciach skrajnych atoméw X, Y.

a) b) c)

ulr)

X—H:eeY XeerHeeeY XTere H—Y* r

Rys. 1.10. Typy krzywych energii potencjalnej wiazan wodorowych: a) proton przebywa w minimum po
lewej stronie, b) proton polozony jest symetrycznie, ¢) proton przebywa w minimum po prawej stronie
(struktura jonowa)

Te sytuacje protonu mozna interpretowaé w taki sposdb, ze przebywa on w
zasadzie w poblizu jadra X; mozliwe s3 — cho¢ malo prawdopodobne —
przeskoki w kierunku jadra Y. Ich czesto$¢ zalezy od wysokosci bariery potencjatu
dzielacej oba polozenia i od temperatury, rzadzacej obsadzeniem dyskretnych
stanéw oscylacyjnych protonu. W drugim skrajnym przypadku, (c), nastapito
przejécie protonu od X do Y z utworzeniem struktury jonowej mostka,
X~ ---H—Y"*. Przypadki takie wystepuja w bardzo krotkich (silnych) wiazaniach
wodorowych. Wreszcie w sytuacji (b) krzywa energii potencjalnej jest symetryczna,
co odpowiada jednakowemu prawdopodobienstwu. przebywania protonu wokot
kazdego z jader. Kazdemu ze stanéw przedstawionych krzywymi towarzyszy uklad
dyskretnych standéw energetycznych protonu.

1.3.2. Oddzialywania donorowo-akceptorowe

Oddzialywania donorowo-akceptorowe sq to oddzialywania miedzy dwiema czq-
steczkami, z ktérych jedna oddaje elektron (donor, D), druga za$ go przyjmuje
(akceptor, A). Stan rownowagi w takim ukladzie przedstawia réwnanie

A+D 2 A% 1D (1.10)
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przy czym o jest ulamkiem, 0 < é < 1. Powyzszy zapis ma charakter probabilisty-
czny, wynikajacy z opisu tych oddzialywan za pomoca poje¢ ‘mechaniki kwanto-
wej. Nie jest bowiem mozliwe, by utamek elektronu moégh zosta¢ przeniesiony od
jednej czasteczki do drugiej. Niech i/, bedzie funkcja falowa opisujaca stan ukladu
A+D, ¥, za$ funkcja falowa odpowiadajaca stanowi A~ +D™. Stan podstawowy
kompleksu, przedstawiony rown. (1.10), opisuje funkcja bedaca kombinacja liniowa

Yol oy,
Y, =a Y +ar iy, (1.11)

Wspdlczynniki a, i a, sa miara prawdopodobienstwa wystapienia w stanie podsta-
wowym kompleksu konfiguracji, odpowiednio, molekularnej (a,) 1 jonowej (a,);
zatem

at+ai =1 (1.12)

przy czym a; > a,.

Spektralny skutek tych oddzialywan jest podobny do skutku wigzania wodoro-
wego: energia wigzania jednego elektronu donora ulega obnizeniu, w wyniku
czego kompleks donorowo-akceptorowy jest z reguly zabarwiony, mimo iz po-
szczegolne skladniki moga by¢ bezbarwne. Absorpcja wystepuje czgsto w widzial-
nym zakresie widma, a czestos$é vp,, odpowiadajaca maksimum pasma absorpcyj-
nego, jest dos¢ dobrze opisywana wyrazeniem [15]

hvps = Ip—Ey— Wy, (1.13)

w ktoérym I, jest energia jonizacji czasteczki donora, E, — energia przylaczenia
elektronu do czasteczki akceptora, W,, — energia oddzialywan miedzy jonem
donora i jonem akceptora. Po pochlonieciu fotonu o energii hv,, kompleks przecho-
dzi w stan wzbudzony, a rOwnowaga opisana rownaniem (1.10) przesuwa si¢ na

strong prawa. Funkcja falowa dla stanu wzbudzonego, ., ma posta¢ analogiczng
do rown. (1.11)

Yo=byYi+by, (1.14) .

przy czym spelniony jest warunek
b?+b% =1 (1.15)

ale zwykle b; <b,.

Pelnemu przejiciu elektronu, = 1, odpowiada powstanie jonéw, z ktorych
kazdy ma jeden elektron o niesparowanym spinie (jonorodniki). Swiadczy o tym
sygnal paramagnetycznego rezonansu elektronowego oraz przewodnictwo jonowe
zwigzku po jego rozpuszczeniu w (stabo) polarnym rozpuszczalniku. Energia
oddzialywania D-A wynosi od 20 do 40 kJ-mol™! (0,2-0,4 eV na czasteczke).

Typowymi donorami elektronéw sa czasteczki weglowodoréw aromatycznych,
metylowych pochodnych benzenu i zwiazkéw wielopierscieniowych - oraz - amin
aromatycznych. Akceptorami elektrondw sa czasteczki chlorowcow (zwlaszcza
brom, jod), polinitrowych pochodnych benzenu (np. trinitrobenzen), a zwlaszcza
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czesto stosowanych tetrachlorobenzochinonu (chloranilu) oraz tetracyjanoetylenu
(TCNE). '
Charakterystycznymi wlasciwosciami komplekséw donorowo-akceptorowych
sa: absorpcja promieniowania w zakresie bardziej dtugofalowym niz zakres ab-
sorpcji kazdego ze skladnikow oraz duZe na ogdl przewodnictwo elektronowe w
stanie staltym. Wynika ono z charakterystycznego ustawienia czgsteczek w stosy —
czgsto naprzemiennie, jesli sa to kompleksy pochodnych benzenu. Przegladu
elektrycznych wiasciwosci komplekséw donorowo-akceptorowych dokonali w swej
monografii Pigon 1 wspotautorzy [16]. Przyktad typowej struktury kompleksu
ztozonego z dwoch czasteczek plaskich, chinonu i hydrochinonu, przedstawiony
jest na rys. 1.11. W krysztale tego zwiazku, zwanego chinhydronem, ulozenie

H . b
0 ™,

0
_::10,31 nm

_0

H
A D

Rys. 1.11. Konfiguracja czasteczki typowego kompleksu donorowo-akceptorowego chinon-hydrochinon
i.ulozenie czasteczek w krysztale (schematycznie)

czasteczek roéwniez jest rownolegle. Powstaja stosy czasteczek, na przemian donora
i akceptora, wzdluz krystalograficznej osi b, stanowiacej kierunek najlepszego
przewodnictwa elektrycznego krysztatu. Odleglos¢ plaszczyzn pierscieni, 0,31 nm,
jest nieco mniejsza od przecietnej w zwyklych oddzialywaniach van der Waalsa.
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2. TENSORY DRUGIEGO RZEDU
I ICH WEASCIWOSCI

Wiele wlasciwosci fizycznych krysztalu anizotropowego zalezy od kierunku
pomiaru w sposéb charakterystyczny dla wielkosci reprezentowanych tensorami.
Wsrod nich najczesciej spotykane sa tensory drugiego rzedu i wylacznie nimi
zajmiemy si¢ w dalszym ciagu. Nacisk polozymy bardziej na interpretacje sensu
fizycznego 1 zastosowanie podanych zalezno$ci niz na Scistosé¢ wywodu. Szczegoty
te moze Czytelnik znalez¢ w literaturze, zestawionej na koncu rozdziatu [1-3].

2.1. Definicja tensora

Tensory maja liczne zastosowania w fizyce ciata stalego z tego wzgledu, ze
wiele wielkosci fizycznych wykazuje zaleznos¢ od kierunku, w ktérym je mierzymy,
tj. ma ceche anizotropii. Anizotropia wielkosci fizycznych taczy si¢ bezposrednio z
symetria samego ciala krystalicznego, poniewaz wlasciwosci materii zalezq nie tylko
od wlasciwosci samych elementow strukturalnych (atoméw, jondw, czasteczek), z
ktorych jest zbudowana, lecz takze od regularnoSci ich rozmieszczenia w sieci
przestrzennej. Na przyklad krysztat chlorku sodu sklada si¢ z jonéow Na*™ i CI™ o
symetrii kulistej, ktore w krysztale idealnym rozmieszczone sa bardzo regularnie:
zajmujq wezly sieci przestrzennej, zbudowanej z szesciané6w. Tak wysoka symetria
krysztalu sprawia, ze na przyktad wlasciwosci dielektryczne w kazdym kierunku sa
takie same, wobec czego do ich opisu wystarczy podac tylko jedna liczbe. Inaczej
rzecz si¢ ma, na przyktad, z krysztalem benzenu. Wprawdzie czasteczki henzenu o
ksztalcie bardzo zblizonym do szesciobocznej tafli majg jeszcze wysoka symetrig,
jednak ich rozmieszczenie w sieci przestrzennej jest o wiele mniej symetryczne niz
jonow w sieci chlorku sodu. Jest to uwarunkowane wystepowaniem sil dzialaja-
cych migdzy elementami strukturalnymi i powoduje, ze wzglgdna przenikalno$é
dielektryczna krysztalu benzenu zalezy od kierunku, w ktoérym ja mierzymy;
przenikalno$ci tej nie mozna juz wyrazi¢ jedna tylko liczba.

Tensorem nazywaé bedziemy kazdy liniowy operator T, wiqZzacy z sobq dwa
wektory p i q w zaleznosé¢

p=T-q (2.1)
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Wedlug tej definicji kazdemu wektorowi ¢ odpowiada inny wektor p, przy czym
przyporzadkowanie to ma dwie podstawowe cechy.

1. Stuszne jest w kazdym ortogonalnym ukladzie wspolrzednych. W okreslo-
nym ukladzie x, x, x; wektory p i ¢ maja okreslone sktadowe, rowniez skladowe T
maja okreslone wartos$ci. Jesli zmienimy uktad odniesienia na nowy, xi x5 X3, to na
0gOl zmienia sie sktadowe wszystkich trzech elementéw w rown. (2.1), ale réwnosé
zostanie dalej zachowana. W tym sensie rownanie (2.1) jest niezmiennicze wzgle-
dem wyboru ukladu wspdlrzednych pod warunkiem, ze przeksztalcenie x; x; x3 W
X} x5 x5 nie zmienia metryki ukladu. Zachowaniem sic wektoréw i tensoréw przy
zmianie ukladu wspdlrzednych zajmiemy si¢ dalej w tym rozdziale.

2. Przyporzadkowanie (2.1) jest liniowe, to znaczy, ze dla dowolnych wektorow
g, v 1 dowolnych liczb s, ¢ stuszna jest relacja

T(sq+tv) =sTq+tTv (2.2)

Iloczyn Tq jest wigc wektorem. Aby znalez¢ jego skladowe, oznaczmy przez e,
e,, ey trzy wersory w ukladzie x; x, x3, rownoleglte, odpowiednio, do osi tego
‘uktadu. Iloczyn, np. Te,, jest rO6wniez wektorem, a jego skladowymi sa (Te,)q,
(Te,),, (Te,);. Pomnozenie tego wektora skalarnie przez jakikolwiek wersor, np.
e;, wybiera sposrod tych trzech tylko jedna skladowa: (Te,);. Wynik takiego
mnozenia jest wiec liczba, ktora oznaczymy przez T,

e;(Tey) =(Tey), = Ty,

Przy zmianie porzadku wersoréw otrzymamy analogicznie

e;Te, =T,
Ogodlnie, zwiazek

eTe =T, (2.3)
bedziemy uwazali za definicje skiadowych tensora T w ukladzie wspotrzednych
Xi X5 X5

Wréémy teraz do problemu przedstawienia wektora Tq. W ukladzie x; x, x3
wektor ¢ mozemy zapisa¢ w postaci

g=q,e,+gre;tqs¢€;
Wobec tego oraz na podstawie rown. (2.2)

Tq=q,Te, +q,Te;+q3Te;

Poniewaz
eTe=T; eTe=T; eTeg=T;

zatem

Te=Tie,+ e+ Ty e5 .
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oraz
Tqg=q:(Ti1 &+ Ty e,+ T3y €3) +
+q2(Ti2e+ Thoey+ Ty 63)+
+q3(Tize;+ Thse+ Tz e3) =
=(T1191+ 1292+ Ti3qs) e, +
HL1q1+Th2q2+ Thsgs) e+
HT1 91+ 292+ Th343) € (24)
Przy uzyciu wskaznikow rozpisanie wektora Tq na skladowe ma krotsza postac
Tq=(T;q) e, +(Tz;9) e2+(T3;9) €3 =
=T;q;¢€ (2.5)

W zapisie- rown. (2.5) zastosowaliSmy dwukrotnie konwencje automatycznego
sumowania po powtarzajacym sie wskazniku, z opuszczeniem znaku Y.

Wykonanie mnozenia wektora przez tensor, jak tez i roznych przeksztalcen
wektora lub tensora do nowego ukladu wspotrzednych, staje sie znacznie bardziej
przejrzyste, jesli zastosujemy operacje znane w rachunku macierzowym. W celu
ich zastosowania przypiszemy tensorowi macierz

iy Tix Ths
T= 15y Ty Tis (2.6)
LGy Tsa Tss

wektory zas traktowac bedziemy jak macierze jednokolumnowe

91
4=\ 4 27
VE]
Symbolowi ¢" odpowiada macierz jednowierszowa (transponowana)
q" = (4192 95) (2.8)

W powyzszym zapisie iloczyn Tq réwnowazny jest mnozeniu dwoch macierzy

Ty Ty Tis q1
Tg=| Ty T3, Tys q: (2.9)
Ty Ti, Tis qs

Za pomoca tej symboliki mozna przedstawié w prostej postaci réwniez inne
dzialania na wektorach i tensorach. Na przykiad iloczyn skalarny S wektorow p i
g ma postaé '

S:pT'qqu-p (2.10)
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W mysl definicji (2.1) wynik mnoZenia wektora q przez tensor T jest zawsze jakim$ -
nowym wektorem p. Sktadowe tego wektora podaje rown. (2.4) lub (2.9). Zwréémy
uwage na fakt, ze kierunki p i q sa na ogot rozne. Kat zawarty miedzy nimi
mozemy obliczy¢ z definicji iloczynu skalarnego (2.10); korzystajac z niej, mamy

9 p_ 4" Tq
lgllpl ~ lqllpl

gdzie symbole |gq| 1 |p| oznaczaja dlugosci obu wektoréw. Pewne szczegodlne
sytuacje, w ktorych wektory p i g sa do siebie réwnoleglte, maja duze znaczenie
zarowno walgebrze tensordw, jak i w fizyce krysztalow; zajmiemy si¢ nimi w p.
27.

Zwigzki miedzy dwoma wektorami typu (2.1) sa bardzo czeste w fizyce, na
przyktad

COos @ = (2.11)

D=808E

gdzie D jest wektorem indukgji elektrostatycznej, E — wektorem nateZenia pola
elektrycznego, &, — bezwzgledna przenikalnoscia dielektryczna prézni, € za$
wzgledng przenikalno$cia osrodka. Zazwyczaj € ma wlasciwosci tensora. Podobnie
w uogélnionym prawie Ohma

j=oE

gdzie j jest gestoscia pradu przewodzonego, ¢ jest przewodnictwem wiasciwym
materialu i tez ma wlasciwosci tensora.

Przyjrzyjmy sie blizej tej ostatniej relacji. Zaldézmy wpierw, ze ¢ nie zalezy od
kierunku krystalograficznego, tj. mamy do czynienia z materialem izotropowym.
W takim razie kazda sktadowa j jest proporcjonalna do odpowiedniej skladowej E
z tym samym wspolczynnikiem proporcjonalnosci, j, = oE,, k=1, 2, 3, wobec
czego wektory j 1 E sa do siebie rownolegle (rys. 2.1).

W materiale anizotropowym przewodnictwo zalezy od kierunku. W pewnym
szczegblnym ukladzie wspdtrzednych X, X, X5 (uklad osi gtownych), do ktérego
najwygodniej jest odnosi¢ opis przewodzenia pradu, bedziemy mieé trzy stale
materialowe o4, 0,, 03, na ogot rozne, zwane gtdéwnymi sktadowymi przewodnic-

X
OE; fP————— e :j=OE %
: i=0iE1ey+0,E,e,
| O r—————
I I
I |
' :
I -
E | O 6,=3:2
I
I | 7t !
i | | |
1 1 L 1
E, oL, X E, a.E, X
Rys. 2.1. Wektory E i j w materiale izotropo- Rys. 2.2. Wektory E i j w materiale anizotropo-
wym (przypadek plaski) wym (przypadek ptaski)
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twa elektrycznego. W takim przypadku winni$my napisac’
je=oE. k=123
Jesli e¢; oznaczaja wersory w ukladzie X,; X, X5, to wektor
j=01E e, +0,E;e,+03Ez €5

nie jest rownolegly do wektora E (rys. 2.2). W ogdlniejszym przypadku dowolnie
zorientowanego i ortogonalnego ukladu x; x, x; zaleznosci j(E) maja charakter
zwiazkow liniowych o postaci analogicznej do rown. (2.4)

Jk =0 E, k=1,2,3

Widzimy, Zze opis przewodnictwa elektrycznego krysztalu w przypadkowo dobra-
nym ukladzie wspodtrzednych wymaga dziewieciu statych materialowych gy, stano-
wigcych skladowe tensora przewodnictwa wilasciwego. Zobaczymy p6zniej, ze nie
wszystkie sa niezaleZne. ‘

Warto zauwazy¢, ze anizotropia przewodnictwa materialu pociaga za sobg
wystapienie tzw. przeplywow poprzecznych. Jesli bowiem pole elektryczne przylo-
zone jest na przyktad w kierunku osi x,, czyli E(E,, 0, 0), to mamy nie tylko j,
=0, E,, lecz takze j, =0, E, oraz j; =03, E;. Tym samym istniejg niezerowe
skladowe wektora gestosci pradu w kierunkach prostopadtych do kierunku przyto-
zonego pola.

Wielkosci fizyczne o charakterze tensorowym, ktorymi bedziemy sie¢ intereso-
wali w tej ksiazce, naleza do grupy tensoréw o dziewigciu sktadowych, noszacych
nazwe tensorow drugiego rzedu. Wektory o trzech skladowych mozemy formalnie
uwazaé za tensory pierwszego rzedu. W tej nomenklaturze wielkosciom stalym
odpowiadaja tensory rzedu zerowego. Znane sa roéwniez tensory rzedu wyzszego
niz drugi, na przyklad tensor wspodlczynnikéw piezoelektrycznych lub tensory
opisujace wilasciwosci sprgzyste materiatu.

Tabela 2.1
Przyklady tensoréow drugiego rzedu

Wektor Wielko$c Wektor ;
. . Zwiazek
przytozony q tensorowa T indukowany p

Natezenie pola wlasciwe przewodnictwo | gesto$¢ natezenia
elektrycznego elektryczne pradu j=o6E= —olV
Natezenie pola przenik alnos¢ indukcja
elektrycznego dielektryczna elektrostatyczna D =gy ¢E
Gradient wlha$ciwe przewodnictwo | gesto§é pradu
temperatury cieplne cieplnego h=—-kVT
Nategzenie pola przenikalno$é indukcja
magnetycznego magnetyczna magnetyczna B = uopH
Nate¢zenie pola polaryzowalno$é moment
elektrycznego elementu strukturalnego | dipolowy p=0aE
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Sens fizyczny poszczegblnych sktadowych tensora drugiego rzedu mozemy
rozumie¢ W nastgpujacy sposob. Niech w przykladzie z przewodnictwem elektry-
cznym pole jest przylozone w kierunku x,, natomiast gesto$¢ pradu mierzona jest
w kierunku osi x;; wowczas

js=03E, oraz o3, =js/Ez

Wyrazenie to podaje sposdb pomiaru skladowe) o5, i mozemy je uwazaé za
eksperymentalna interpretacj¢ tej skladowej. Ogolniejsza definicje wartosci wielkos-
ci tensorowej w zadanym kierunku podamy w p. 2.5.

Przyklady réznych wielkosdci, ktorym odpowiadaja tensory drugiego rzedu,
zestawione-sa w tab. 2.1.

2.2. Tensory symetryczne i antysymetryczne

Jak wynika z poprzedniego paragrafu, iloczyn skalarny e -(Te;) jest z definicji
rowny skladowej T;; tensora T. Skladowa ta jest na ogoél rozna od T; = e;Te;.
Moga zajs¢ dwie sytuacje szczegolne, stanowiace podstawe klasyfikacji tensoréw
drugiego rzedu na symetryczne i antysymetryczne. Mianowicie, jezeli

7;j = 7}:‘ (212
wowczas rowniez
qTv = vTgq
dla dowolnych ¢, v i tensor T jest symetryczny. W przypadku gdy
T, = —T, (2.13)
lub
qTv = —vTyq
T jest tensorem antysymetrycznym.
Symetryczny tensor ma postaé
Iy Th, Tis
T,=] T, Tox Tos _(2‘14)
Tis Tps Tas

czyli ma najwyzej sze$¢ roéznych skladowych. Dla tensora antysymetrycznego
natomiast mamy

Li=—-T; cyli T;=0

oraz _
U Ty T 0 T, Ts
T.=| T 0 T, {=} -7, 0 T, (215)
Ty Ty O ~Tis ~Tps 0
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Interesujace jest, ze tensor antysymetryczny drugiego rzedu mozna zastqpi¢ wekto-
rem. Jest tak dlatego, ze — jak zobaczymy pdzniej — tensory te opisuja obrot
ciala sztywnego. Trzy niezerowe skladowe T, zawieraja bowiem wszystkie trzy
informacje potrzebne do zdefiniowania takiego obrotu: wielkos¢ (kata obrotu),
kierunek (osi obrotu) i zwrot. Aby te rOwnowazno$¢ zobaczy¢, oznaczmy sktadowe
T, w nastgpujacy sposob: '

Niy,=-T)y=-T7
Tis=—-Ty= T, (2.16)
T23 = = T32 = = Ti
przy czym relacje migdzy wskaznikami odpowiadaja porzadkowi antycyklicznemu.
Mamy woéwczas
T. 9=, (-Thq:+Thgs)+ex(Trq, — Ty gs)+es(— T2 g, + T q2)
WyraZenia w nawiasach sa niczym innym, jak sktadowymi iloczynu wektorowego,
w ktérym jednym z czynnik6w jest wektor T, o skladowych (2.16). Zatem
T..q=T xq . 2.17)
Tensory mozna dodawa¢, a wigc takze rozklada¢ je na sume dwu lub wiecej
skladnikéw. Jesli bowiem stuszna jest relacja
‘Tqg=T;q+T,q
to takze
T=T,+T, (2.18)
W szczego6lnosci dowolny asymetryczny tensor T mozemy jednoznacznie rozlozyé na
tensor symetryczny T, i antysymetryczny T,. Mamy bowiem
T = (D + (T

oraz (2.19)
T = (D — (T

Stad
Ti1 3(Ti2+ Tyy) 3(Ths+ Toy)
T, = T, 3(Tha+Tiy) (2.20)
T33
oraz

| 04T T (T - T
T, = 0 (Ts—T5) (221)
0
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2.3. Wlasciwosci transformacyjne wektora i tensora

Przypus¢my, ze mamy zadany tensor T wiazacy wektory p 1 ¢ w zalezno$é
p=Tq. W ortogonalnym ukladzie wspolrzednych x, x,x; skltadowe T maja
okreslone wartodci T,. Wybieramy teraz nowy uklad wspélrzednych xi x), x5, tez
ortogonalny 1 prawoskretny. Jakie beda sktadowe wektordéw p’ i ¢ w tym nowym
ukladzie? Jak zmienig si¢ sktadowe tensora, T;;? Odpowiedz na to pytanie stanowi
tres¢ zagadnienia, zwanego transformacja sktadowych wektora lub tensora przy
zmianie uktadu wspoéirzednych.

Ogolnie biorac, zmiana ukladu wspélrzednych moze wyniknaé na skutek
dzialania dwdch réznych operacii:

1. Réwnoleglego przesunigcia ukiadu wspoéirzednych. Przy takim przesunieciu
osie uktadu nowego sa rownolegle do odpowiednich osi uktadu starego, tj. x,||x},
X5l x5, x3l||x5. Przy takiej operacji zmieniaja si¢ wspéirzedne kofica i poczatku -
wektora p, ale kazda z jego skladowych, p-e = |plcosq;, i =1, 2, 3, nie ulega
zmianie. W takim razie

p=p q9=9q (222

Jesu tensor w uktadzie x; oznaczymy przez t, to mozemy napisaé¢ p’ = tq, ale
takze p = Tq. Stad, wobec (2.22)

=1 (2.23)

Sktadowe tensora rowniez nie ulegajq zmianie wskutek réwnoleglego przesuniecia
ukladu wspdtrzednych.

2. Obrot ukladu wspolrzednych wokot jego poczatku 0. Obroét taki mozna
opisac za pomoca macierzy ¢, stanowiacej tabele kosinusow kierunkowych nowych
osi x; wzgledem ukladu osi starych, x;

X3 Ci1 C12 €13 (2.24)
'

X2 Ca1 Caz Ca3

’

X3 C31 C32 C33

Na przyktad element c,, tej macierzy jest kosinusem kata zawartego miedzy
osiami x5 1 x;. Macierz ¢ ma te wilasciwosé, ze

detc = +1 (2.25)

przy czym znak (+4) obowiagzuje dla tak zwanego obrotu ,wlasciwego™, tj. nie
zmieniajacego skretnosci ukladu, znak (—) wystepuje zas wtedy, gdy skretnosé
ulega zmianie na przeciwng. Ponadto dla macierzy ¢ stuszny jest zwigzek

¢ t=pl (2.26)

1

w ktérym ¢”' oznacza macierz odwrotna, a ¢’ jest macierza przestawiona

(transponowana).
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Za pomoca macierzy ¢ mozemy wyrazi¢ wektory w nowym ukladzie wspol-
rzednych w nastepujacy sposob

p=c¢cp oraz ¢ =cq (2.27)

Réwnanie (2.27) przedstawia prawo transformacji wektora. Transformacja odwrotna
ma posta¢ nastgpujaca
p=c'p=cTp oraz q=c"q
Mozna latwo dowies¢, ze transformacja (2.27) (takze odwrotna) ma te wlasciwosé, ze
nie zmienia dlugosci wektora, tj. |p’| = |p| oraz |¢'| = |q|.
Przejdzmy obecnie do okreélenia zwiazku miedzy skladowymi tensora t w

ukiadzie x; i tensora T w ukladzie x;, przy czym oba uklady zwigzane sa
zaleznoscia

X' =cx (2.28)

x' oraz x oznaczaja odpowwdmo wektory o skladowych x| x2x3 I Xy X5 X3.
Spelnione sa nastgpujace rownosci

p'=cp=cTq
oraz
p =19 = tcq
Wynika stad, ze T i t spelniaja ogdlny zwiazek
w =cT (2.29)
z ktérego mozemy otrzymac, na przyktad, t w nowym ukladzie wspdlrzednych

t=cTc” (2.30)

Transformacja odwrotna ma postaé
T=c"1c
W zapisie wskaznikowym rown. (2.30) przedstawia si¢ nastgpujaco:
Tik = Cim Tran Cok = Cim Cin Tonn

a pelne rozwinigcie ma postac

Tyr Ti2 T13 C11 Ci12 Ci13 Ty Tis Tis C11 C21 C31
Ty1 Tz2 T23 | = | €31 €22 Ca23 Ly Ty Ths Ciz C2z C32
T31 T32 133 C31 C32 C33 T3, T, Txs C13 C23 C33

Transformacja (2.30) nie zmienia Sladu tensora, czyli T, +7,,+733 = T+ Th»
+ T35 lub

Tre=TrT (2.31)
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Korzystajac z tej wlasciwosci $ladu mozemy wprowadzi¢ nowa wielkos¢ (T,
zwang $rednia wartoscia wielkosci fizycznej T

Tre=TrT =3<(T) (2.32)

Takie wielkosci mierzymy przeprowadzajac eksperyment, w ktorym probka jest
drobnokrystaliczny i starannie wymieszany proszek badanej substancji lub pastyl-
ka sprasowana z proszku.

Wiasciwosci transformacyjne wielkoséci fizycznych stanowia wazna ich ceche,
zwiazana w istotny sposob z ich struktura matematyczna. Zachowanie si¢ wielkos-
¢i fizycznej przy zmianie ukladu wspolrzednych moze stanowi¢ podstawe jedno-
znacznego jej zaklasyflkkowania. Wielko§¢ fizyczna, ktéra nie zalezy od wyboru
ukladu wspolrzednych w sensie dotychczas dyskutowanym, jest skalarem. Wiel-
kos¢, ktorej sktadowe transformuja si¢ wedlug prawa (2.27), jest wektorem. Wresz-
cie, jesli sktadowe wielkosci fizycznej transformuja si¢ wedlug prawa (2.30), jest ona
tensorem drugiego rzedu. Sktadowe tensoréw wyzszych rzedéw podlegaja bardziej
zZlozonym prawom transformacji — nie bedziemy ich tu omawiac.

- Wsréd réznych ukladéw wspolrzednych x| x5 x4 istnieje zawsze taki szczegdlny
uktad X, X, X5, w ktorym tensor T przyjmuje postaé diagonalng

T, T, Tis 7,0 0
T, Th, Tos By | © 7, 0
I3, Ty, Tas 0 0 73

Taki ukiad nosi nazwe ukladu osi gtdéwnych (osi wlasnych) tensora, 7; sa za$ jego
wartosciami gléwnymi (wlasnymi). Sposobami sprowadzania tensora do ukfadu osi
glownych zajmiemy sie w p. 2.7.

2.4. Pojecie kwadryki

Rozwazmy wlasciwosci rownania

Siyxixj=1 (2.33)

Jesli przyjmiemy, ze S;; = Sj;, to po rozpisaniu otrzymamy

Sll xf+S22X%+S33 X§+2S12X1 x2+2513 X1 X3+2S23 Xy X3 = 1

Rownanie to przedstawia powierzchni¢ drugiego stopnia, zwana kwadryka, o
srodku symetrii lezacym w poczatku ukladu wspoélrzgdnych. Powierzchnia taka
moze by¢ elipsoida lub hiperboloida.

Oznaczmy przez r(x; x, x3) wektor laczacy poczatek ukladu wspoétrzednych z
dowolnym punktem tej powierzchni. Réwnanie (2.33) mozemy wowczas zapisac
krécej w postaci

PTSr = 1 (2.34)

Przypusémy teraz, ze zmientamy uklad wspoétrzednych przez obrét wokot 0 tak, ze
¥ =cr, czyli ¥" =¢"cT. Jak zmienia si¢ wspolczynniki kwadryki S;;? Jesli w
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nowym ukladzie macierz tych wspoélczynnikéw oznaczymy przez R, to mozemy
napisa¢ réwnosé
FTRY =" {c"Re}r=1 (2.35)
Poniewaz réwn. (2.35) opisuje’ t¢ sama kwadryke co rown. (2.34), musi byé
spetniona réownosé S = ¢T Re, czyli
R =cSc” (2.36)
Wynika z tego, ze nowe wspolczynniki kwadryki otrzymuje si¢ przez transformacje
~ identyczng z (2.30), opisujaca przeksztalcenia skladowych tensora przy obrocie
ukladu wspolrzgdnych. Wobec tego powierzchnia opisywana réwn. (2.33) moze by¢
uznana za geometryczny obraz tensora S.
Kwadryka posiada rowniez osie gtowne, a ich kierunki pokrywaja si¢ z osiami
gtownymi X; X, X; tensora. Kazdy przekroj plaszczyzna, przechodzaca przez dwie

z tych osi, jest przekrojem glownym kwadryki (tensora). ROwnanie kwadryki
zapisane w ukladzie osi glownych

S X3+8,X2+8,X2=1 (2.37)
nie zawiera wyrazéw mieszanych. Jesli wszystkie S; sa dodatnie, to poréwnanie ze
standardowa postacia réwnania elipsoidy

X X X3
ik WEGsar S Buin QY | 2.38
Z a3 e (.35}
wskazuje, ze kwadryka jest elipsoida o dlugosciach pélosi (rys. 2.3)
g =87 1? (2.39)

X3

Rys. 2.3. Kwadryka jest geometryczng reprezentacja
rownania #TSr = 1; uklad osi gtéwnych, S; >0

Jesli jeden z trzech wspolczynnikéw jest ujemny, to kwadryka ma ksztatt hiperbo-
loidy jednopowlokowej (rys. 2.4); przy dwéch wspélczynnikach ujemnych hiperbo-
loida jest dwupowlokowa (rys. 2.5). Przy wszystkich trzech wspétczynnikach
ujemnych powierzchnia (2.37) jest urojona elipsoida.

43



Kwadryka jest wiec powierzchniq wyznaczong przez konce wektorow v, ktore
spelniajq rown. (2.34). Na rysunku 2.6 przedstawiono w ukladzie wspolrzednych
X X,, zorientowanym przypadkowo wzgledem osi glownych, przekrdj glowny
kwadryki o wspdlczynnikach

S11=3,5 52225 Slzz_é
X3
X3
X X2
X, X
Rys. 24. Dla S, S, >0, S; <0 kwadryka jest Rys. 25. Dla §,, S, <0, S3 > 0 kwadryka jes
hiperboloidg jednopowlokowa hiperboloida dwupowlokowa
X,
0,8

-
(-

Rys. 2.6. Przekroj kwadryki o réwnaniu 3,5x7 4 5x3—6x, x, = |

Przekréj ten opisuje réwnanie

3,5x7+5x3—6x,x, =1

2.5. Wartos¢ wielkosci fizycznej w zadanym kierunku

Sprecyzujemy obecnie pojecie wartosct wielko$ci tensorowej w okreslonym
kierunku, tzn. sprobujemy uzyska¢ odpowiedZ na pytanie, jaka jest na przyktad
przenikalno$¢ dielektryczna krysztatu w kierunku [011]? Pytanie to mozna row-
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niez odwrocié: mierzymy szereg wartosci T, w roznych kierunkach, okreslonych
wektorem jednostkowym L Jak z tego zbioru danych otrzymac¢ T? Odpowiedzia na
to ,,odwrocone” pytanie zajmiemy si¢ w nastepnym paragrafie.

Przypusémy, ze zwiazek

p="Tq
lub
p; = Tya;
rozpatrujemy dla krysztatu izotropowego. W takim przypadku
T=T-1

czyli tensor T jest iloczynem jednej liczby T przez macierz jednostkowa 1. w
konsekwencji wektory p i ¢ sa do siebie rownolegte, wobec czego mozemy napisac

T, = Ipl/lql (2.40)

Warto$¢ T w dowolnym kierunku ¢q uzyskujemy wigc przez podzielenie dtugosci
wektora p przez dlugos¢ q. Oczywiscie wynik tego dzielenia w kazdym kierunku
bedzie taki sam.

W ogolnym przypadku p nie jest rownolegly do q. Mozemy jednak zachowac
stuszno$é¢ definicji (2.40) pod warunkiem, ze przez warto$¢ w liczniku rozumiec
bedziemy skltadowa wektora p w kierunku g, czyli p, (rys. 2.7). Definicja (2.40)
przyjmie wtedy ogolniejsza postaé

— Pyl

(2.41)
lql

q

Rys. 2.7. Warto$¢ wielkosci fizycznej p = Tq w kierunku ¢

reprezentowana jest przez diugos¢ rzutu p na ¢
X

Poniewaz py, = p" - q/lql = q" - p/lql, jako wynik ogoélny otrzymujemy
T,=I1"Ti (2.42)
gdzie I = g/|q| jest wektorem jednostkowym o kierunku q. Wektor ten ma sktado-

we [, I,, I3, ktore sa kosinusami kierunkowymi g w ukladzie x; x, x3. Rozpisujac
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rown. (242) otrzymamy
Ty Ti, Tis L
T=(ULL)| T Ty T L |=
Iy T, Tis I3
=T B4+ T B+ T B+2T, L L4+ 2T5 1 3+2Ths L s (2.43)
Wyrazenie to przyjmuje szczegdlnie prosta postaé¢ w ukladzie osi gtdéwnych tensora
T. Poniewaz w tym ukladzie 7, = 0 dla i # k, mamy
T=I"d=1,B+1,B+7;1} (2.44)
Réwnanie (242) lub (2.44) przedstawia nieskoniczony zbior punktéw tworza-
cych powierzchnie, zwang powierzchniq wielko$ci fizycznej T. Jezeli wszystkie
wspétczynniki tego rownania, czyli wszystkie 7; w rown. (2.44) sa dodatnie, to
powierzchnia wielkosci fizycznej jest elipsoida tréjosiowa. Przypadek taki dla

wzglednej przenikalno$ci dielektrycznej, ¢, przedstawiony jest na rys. 2.8a. Punkt P
lezacy na elipsoidzie przedstawia warto$¢ ¢ w kierunku okre§lonym wektorem [

a) %

€3

€2

&

X

Rys. 2.8. a) Elipsoida wzglednej przenikalnosci dielektrycznej: (X 2/:31)+(X /e2)+(X2/e2) = 1; b) kwadry-
ka wzglednej przenikalnosci dielektrycznej: 7 Sr = 1

.XZ

oy

X X3

Rys. 2.9. Powierzchnia wspodlczynnika rozszerzalnosci termicznej i jej przekroje: a;q, a5, >0, 33 <0
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Dla poréwnania przedstawiono na rys. 2.8b obraz kwadryki o osiach odpowiada-
jacych rys. 2.8a. Widzimy, Ze kolejnos¢ osi pod wzgledem ich diugosci ulegla
zmianie; przy tym kazdy punkt Q(X; X, X3) kwadryki o wspdlczynnikach §;
spelnia réwn. (2.37). W tym przypadku obie powierzchnie sa elipsoidami. Jesli-
jednak chocéby jeden z wspolczynnikéw réwn. (2.44) jest ujemny, to wyglad
powierzchni wielkosci rézni si¢ zasadniczo od kwadryki. Na przyktad na rys. 2.9

X,
0,81

0,61

041

Rys. 2.10. Przekrdj powierzchni wielkosci fizycznej opisywany roéwnaniem:
T(¢p) = 0,625 cos? ¢ —0,250sin2 ¢

przedstawiona jest powierzchnia wspotczynnika rozszerzalno$ci termicznej kryszta-
tu, dla ktérego a,,, a,, > 0, za$ az; < 0. Przekroj X, X5 zawiera wartosci ujemne.
Tlosciowy obraz przekroju (001) powierzchni I Tl dla T;; = 0,625, T,, = —0,25
przedstawiony jest na rys. 2.10, przy czym I ma skladowe (cos ¢, sin ¢, 0).

2.6. Przekrdj tensora plaszczyzng (010)
w ukladzie jednosko$nym
(metoda najmniejszych kwadratow)

Wyrazenie (2.42) jest bardzo przydatne w badaniu ksztaltu przekroju tensora
zadana plaszczyzng krystalograficzna. Zagadnienie to jest wazne z doswiadczalne-
go punktu widzenia, poniewaz czgsto mierzymy kilka do kilkudziesigciu punktow
takiego przekroju, na przyktad przewodnictwa elektrycznego okreslonej plytki
krystalicznej w znanych kierunkach, a nastepnie chcemy uzyska¢ z tych danych
syntetyczny obraz przewodnictwa elektrycznego w owej plaszczyznie, z mozliwie
wiarygodnymi wartos$ciami osi glownych tego przekroju. Jest to typowe zagadnie-
nie na zastosowanie metody najmniejszych kwadratéw, ktora pozwala na wyzna-
czenie wartosci tych stalych z okreslona doktadnoscia. Taka metoda jest szczegdl-
nie uzyteczna wéwczas, gdy nie znamy z gory kierunkdéw osi gléwnych przekroju,
jak np. w plaszczyznie (010) ukladu jednoskosnego. Zajmiemy si¢ wpierw znalezie-
niem réwnania przekroju, a nastepnie obliczeniem dlugosci i orientacji osi glow-
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nych przy zastosowaniu rachunku wyrdéwnawczego. Podane postepowanie moze
by¢, oczywiscie, zastosowane i do innego przekroju tensora.

-Orientacje elipsoidy wielkoéci w komoérce elementarnej krysztalu jednoskos$ne-
go pokazano na rys. 2.11, sam przekrdj za$ na rys. 2.12. Kat 6,, zawarty miedzy

X3
X3
£ Tigp)
X
9@
8 (]
b
x||a
c
Rys. 2.11. Orientacja elipsoidy wielkosct w jed- Rys. 2.12. Rozkiad waznych kierunkéw w pla-
nosko$nej komorce elementarnej szczyznie (010) jednosko$nej komoérki elementar-

nej

osia X, 1 osia a krysztalu, jest jedynym przy tej symetrii stopniem swobody
orientacji przekroju wzgledem osi krystalograficznych. Innymi stowy, kat ten musi
by¢ wyznaczony doswiadczalnie, poniewaz na ogdét nie wiemy, z jakich danych
strukturalnych ani za pomoca jakiej metody mozna by go obliczy¢.

Mierzymy T w kierunku

“cos (@ —8)
I 0
sin (¢ —6)

wzgledem osi glownych. Wobec tego

7, 0 0
T(¢) = (cos(p—0;) 0 sin(p—0p))| 0 7, O
0 0 14
cos(p—0,)
0 =1, 08 (p—0) +158in? (¢ —6,) ' (2.45)
sin (¢ —0,)

Jest to roOwnanie przekroju tensora ptaszczyzna (010). Znanymi wielkosciami sa ¢,
T(p), szukanymi t,, 75, 0,. Za pomoca prostych przeksztalcen trygonometry-
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cznych
2T (@) =1, c08% (9 —0o) + 138102 (@ — )+ 7, + 75—
—1y8in? (@ —05) — 15 cos? (p— ) =
= (1, +173)+(1; —73) cos2(p—B,)
réwn. (2.45) mozna doprowadzi¢ do postaci
T(p) =A+Bcos2p+ C.sin 20 (2.46)
gdzie

A=E;:—T—3 B=11;T3cos290 C=

<

Ty~ T3

sin 20, (2.47)

Rownanie (2.46) jest prostsze do prowadzenia dalszych obliczen od rown. (2.45),
poniewaz jest liniowe wzgledem szukanych wielkosci 4, B, C.
Przypus¢my, ze z doswiadczema znamy n par wielkosci ¢;, T(p;) (i

=1, 2, ..., n). Jesli dla uproszczenia oznaczymy T(¢p;) = T;, to uklad réwnan typu
(246) mozemy zapisa¢ w postaci macierzowej
T=IM (2.48)
przy czym macierze T, I' i M maja posta¢ nastepujaca:
T, 1 cos2¢p, sin2q, 4
T T2 T 1 cos:2go2 sin2¢, M=l 5 (249)
i : . C
T, 1 cos2¢, sin2e,

Macierze T i I sa znane, poszukiwana jest macierz M.
Wskutek popetnionych btedow wartosci T, réznia si¢ od I';; M;; zbidr réznic
rowny jest macierzy bledéw Z

T-TM =2 (2.50)
czyli
Zi=T—TI'yM,
Zasada najmniejszych kwadratéw wymaga, by suma kwadratéw bledéw osiagneta

najmniejszq warto$¢, przy czym uzyskuje si¢ to przez dobér odpowiednich wartos-
ci parametréw A, B, C. Zadamy wiec, by

Zi 'Zi — Mln
co mozna osiagnaé¢ pod warunkiem, Ze

0Z;

Z.
' OM,

=Zi'rik=0
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Po uwzglednieniu réwn. (2.50) otrzymujemy
(’];_Fiij)Fik =0
(Fki)T I = (rki)T Fij Mj

I"T=TTTM
czyli
M=ITDH'(I"'1) (2.51)

I'TT jest macierza zawsze kwadratowag — w tym przypadku 3 x 3. ROwnanie (2.51)
prowadzi do obliczenia optymalnych wartosci 4, B, C, a nastgpnie 7, 73, 0,.
W opisywanej sytuacji znamy orientacj¢ plaszczyzny przekroju, co ulatwia
znalezienie gtéwnych wartosci 7, 1 73 tensora w tej plaszczyznie. W ogollniejszej
‘orientacji probki mozemy nic o orientacji osi tensora nie wiedzie¢; trzeba wtedy
postuzy¢ sie ogdlniejszym zwigzkiem (2.43). Warto réwniez wprowadzi¢ do tych
obliczen wagi statystyczne w; kazdego pomiaru. Daje to mozliwo$¢ uwzglednienia
w rachunku mniej dokladnych pomiaréw z mniejszym udzialem niz pomiarow
dokladniejszych. Sposéb obliczenia konkretnych wartosci w; zalezy od przyjgtej
definicji w;, — a co za tym idzie — od zastosowanej doswiadczalnej metody
pomiaru rozwazanej wielkosci fizycznej. Jesli nie ma potrzeby rozrézniania pomia-
row ze wzgledu na ich dokladnos$¢, mozna w koncowych wzorach potozyé w; = 1.
Po wprowadzeniu w;, r-te roGwnanie ma wartos¢ T w kierunku I ma postaé

W 0T T = w, ()2 Ty 4, (192 Tao v, () Tos +
2w, I T+ 2w, QI T3+ 2w, 9 19 T, (2.52)
Ogoblnie w zapisie macierzowym
T=IM

przy czym macierze T, I' i M obecnie zdefiniowane sa w nastgpujacy sposob

Tiy

wy 1) T,

T — Wz.Tz M T33
d 2T»

w, T, \ 2T

2T,

112 12 132 1 Dl 1) 11
wy (I ) Wl(l(?.)) Wl(l(3)) Wy 1(1)1(21) wi (D15 w,y l(z)l(s)

202 282 2)\2 2) 12 2) 12
w (1§ ) Wz(l(z ) Wz(l(s ) Wy 1(12) 1(22) W2‘l(1)l(3) Wy 1(2)1(3)

r— (2.53)

w02 (9w, (97w, K1 w1 w1
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przy czym musi by¢ n = 6. Znany. juz rachunek prowadzi do réwnania (2.51), skad
otrzymujemy skladowe tensora w ogolnym ukiladzie wspdlrzednych, tj. takim, do
ktdérego -odnoszone byly pomiary. Wyznaczenie wartosci 1 kierunkéw osi glownych
stanowi w tym przypadku osobny problem, o ktorym bedzie mowa dalej.

2.7. Osie gléwne tensora

Wyznaczenie wartosci i osi gldownych tensora, zadanego w postaci ogodlnej, jest
waznym problemem analitycznym z kilku powodoéw. Po pierwsze, czgsto interesuje
nas odpowiedz na pytanie, w jakim kierunku wielko$¢ fizyczna materiatu anizotro-
powego osiaga warto$¢ ekstremalna? Jak duze sa te wartosci, lub inaczej, jak duza
jest anizotropia krysztalu? Jaka jest orientacja przekroju izotropowego, tj. pla-
szczyzny, w ktérej wielkosé tensorowa ma te samg warto$¢ w dowolnym kierunku?
Odpowiedzi na te pytania maja znaczenie praktyczne, poniewaz pozwalajag wybraé
sposOb wyciecia z krysztalu plytki o najsilniejszej anizotropii lub, przeciwnie,
plytki izotropowej. Zaréwno jeden jak i drugi rodzaj plytek znajduje zastosowanie
w praktyce. Na przyklad w badaniach z dziedziny optyki krysztalow plytka
wycigta w taki sposob, Ze w jej plaszczyznie leza najbardziej rdzniace sie wspol-
czynniki refrakcji wytwarza maksymalna réznice faz obu promieni i moze stuzy¢
jako ptytka opdzniajaca. Plytka wycigta w drugiej orientacji moze byé uzyta
natomiast jako okienko lub element konstrukcyjny kuwety w aparaturze spektre-
fotometryczne;j. g

Po wtore, znajomo$é orientacji osi gléwnych tensora utatwia wpisanie elipsoidy
wielkosci fizycznej w komorke elementarng krysztalu. Dodatkowym wymogiem
jest tu zasada Neumanna, przewidujaca mozliwe korelacje miedzy symetria i
orientacja elipsoidy wielkosci a symetrig krysztalu i orientacja osi krystalografi-
cznych. Ta droga mozliwe jest uzyskanie dalszych korelacji miedzy, na przykiad,
kierunkiem najlepszego -przewodnictwa elektrycznego a rozkladem czasteczek w
komoérce elementarnej krysztatu.

Sposérod réznych metod znajdowania wartosci wlasnych 1 wektorow wilasnych
przedstawimy dalej dwie metody. Pierwsza z nich, algebraiczna, opiera si¢ na
definicji wektoréow wilasnych i wartosci wlasnych macierzy. Dla macierzy drugiego
‘stopnia, wylacznie nas tu interesujacych, prowadzi ona do roéwnania trzeciego
stopnia, majacego zawsze rozwiazania analityczne. Macierze stopnia wyzszego niz
drugi prowadza do réwnan wyzszych stopni, nie zawsze latwych do rozwigzania.
Dlatego przedstawimy roéwniez metod¢ znajdywania wektorow i wartosci wlasnych
za pomoca kolejnych przyblizeni, dajaca zawsze wyniki numeryczne — takze i w
przypadku macierzy wyzszych stopni. Jest ona prostsza pod wzgledem rachunko-
wym od metody algebraicznej, cho¢ niekiedy bardzo czasochlonna.

2.7.1. Metoda algebraiczna

Zbior wspoélczynnikow S;; kwadryki bedziemy traktowaé jako macierz S.
Roéwnie dobrze mogliby$Smy zajaé si¢ skladowymi 7,,, tensora, traktujac ich zbior
rowniez jako macierz. Iloczyn Su przy dowolnym wektorze u jest wektorem u', na
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0got roznym od w. Jesli zachodzi rownoleglosé obu wektorow, w'||u, to u jest jednym
z wektoréw wlasnych macierzy S. Ta rownoleglos¢ zachodzi wtedy, gdy skladowe o'
sa proporcjonalne do odpowiednich sktadowych u, tj. rownaniem wektoréw wias-
nych u 1 wartosci wlasnych A macierzy S jest

Su=Au
czyli
S-ADHu=0 (2.54)

Symbol 1 oznacza macierz jednostkowa.
Rozpisanie rown. (2.54) prowadzi do nast¢pujacego ukladu trzech réwnan

(S1i—Au;+S1uy +S3u; =0
Saruy +(S2—Aus+8Sy3u3 =0
Sayuy+ 83Uy +(S33—Auz =0
w ktorych u; sa skladowymi jednego z wektorow wlasnych u®, i =1, 2, 3. Aby

zbior tych réwnan jednorodnych mial nietrywialne rozwiazanie ze wzgledu na u,
musi znika¢ wyznacznik tego ukiadu

det(S—i1l)=0 (2.55)

Réwnanie (2.55) jest rownaniem wiekowym trzeciego stopnia i okresla trzy pier-
wiastki 4,, 4,, 15, stanowiace trzy mozliwe wartosci wiasne S. Jesli sa one liczbami
rzeczywistymi, odpowiadaja dlugosciom trzech osi gldéwnych kwadryki S.

Podstawiajac kolejno 4; do rown. (2.54), mozemy obliczy¢ odpowiadajace im
wektory whasne u?”. Sens fizyczny wektora u® jest taki, ze jego skladowe okreslaja
kosinusy kierunkowe osi gtownej (i) wzgledem ukladu wspdtrzednych x; x, x3, w
ktérym zadana jest kwadryka S. Wobec tego na u naklada si¢ warunek normali-
zacyjny

(u(i))T u® =1
przeprowadzajacy je w wektory jednostkowe ¢,

u) =y e (2.56)

2.7.2. Metoda kolejnych przyblizen

Podstawa tej metody jest wlasciwos$¢ plaszczyzny n stycznej do kwadryki S w
tym punkcie, w ktérym przebija ja dowolnie wybrany wektor q (rys. 2.13).
Pokazemy [2], ze wektor p spelniajacy relacje

p=354

jest prostopadly do tej plaszczyzny. W tym celu wybierzmy wektor r|| g, ktérego
koniec lezy na powierzchni kwadryki, tak Zze r'Sr = 1; przy tym q = k-r, gdzie k
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= 4 Rys. 2.13. Wektor p = Sq jest prostopadly do pla-
N szczyzny m stycznej w tym punkcie do kwadryki S,
< w ktérym q ja przebija

N X

jest stala. gtalej tej rowny jest iloczyn skalarny r"-p, mamy bowiem
rTp=rTSq=kr"Sr =k
Wynik ten mozemy poréwnacé ze standardowym rownaniem plaszczyzny
T N=k
w ktorym r jest wektorem wykreslonym z dowolnego punktu O i konczacym sie
na plaszczyznie, N jest za§ wektorem wykreslonym tez z O i normalnym do niej. Z

poréwnania obu rownan wynika, ze p musi by¢ prostopadly do n. Wynik ten
stuszny jest w dowolnym ukiadzie wspoéirzednych.

X2

X

Rys. 2.14. Metoda kolejnych przyblizen: kierunek
kolejnych normalnych do =, n,, 73, ... zbliza si¢ do
osi glownej X, przekroju

Przypus¢my teraz, ze mamy zadane S w ogdlnym ukladzie wspétrzednych x;.
Na rysunku 2.14 przedstawiono przekrdj tej kwadryki w plaszczyznie x; x,.
Wybierzmy dowolny wektor u;, lezacy w plaszczyznie przekroju (niekoniecznie
jednostkowy). Wektor

u2 =S'u1

bedzie normalny do plaszczyzny =, stycznej w tym punkcie, w ktorym u, przebije
kwadryke. Powtorne zastosowanie tej operacji daje wektor

u3 =S'u2
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normalny do =m,, ktora jest tym razem styczna do kwadryki w punkcie jej
przebicia przez wektor u,. Widaé, ze kierunki wektorow u,, u,, ..., u, zblizajq sie
coraz bardziej do kierunku osi gléwnej X,. Normalizacja po n przyblizeniach
prowadzi do wektora wlasnego e,. Warto$¢ wlasna 4, mozna otrzymacé z réwna-
nia

Sel = f = }’1 el
a stad

=(fT O ="

Warto zauwazy¢, ze kierunki u, sq zbiezne do kierunku najkrotszej osi kwadryki. Dla
przyspieszenia tej zbieznosci najlepiej wybra¢ wektor probny u, w takim kierunku,
ktéry odpowiada wartosci najmniejszej sposrod S;;. Zbieznos¢ przyblizen jest o
wiele wolniejsza, jesli procz S;; istnieje jeszcze druga warto$¢ S;; = S;. W konsek-
wencji mozemy otrzymacé w ten sposob tylko jeden z trzech wektorow wlasnych.
Dla znalezienia e, trzeba zastosowa¢ metode kolejnych przyblizen do macierzy
odwrotnej, S™!, wedlug omoéwionych juz zasad. Trzeci wektor oblicza si¢ z

iloczynu wektorowego
e3 — el X 62

Jesli tensor zadany jest nie w postaci wspdtczynnikow kwadryki, lecz sktadowych
wielko$ci fizycznej, to wektor probny nalezy wybra¢ w tym kierunku, w ktérym
skladowa tensora na przekatnej ma najwigksza wartosc.

2.8. Problemy i przyklady

ProBLEM 2.8.1
Wyznaczenie przekroju tensora rozszerzalnosci termicznej krysztalu ortorom-
bowego

W celu wyznaczenia zalezno$ci wspdtczynnika rozszerzalnoéci termicznej krysz-
tatu od kierunku, czyli ustalenia anizotropii rozszerzalnosci termicznej sieci, stosuje
sie czesto jedng z metod rentgenograficznych, na przykiad metode kolysanego
krysztalu lub metode Weissenberga. Aby uzyska¢ mozliwie prosty obraz dyfrakcyj-
ny, o$ kotysania powinna by¢ rownolegla do jednej z osi krystalograficznych — na

refleksy ’ rzad
typu : warstwicy
(1 k1) [ A [ (I I |

okt | 1L W Termon1 o

(Tkt) | I | T 01 n =

Rys. 2.15. Warstwice refleksdéw, charakterystyczne dla metody kotysanego krysztalu
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dyfraktogramie pojawiaja si¢ wowczas refleksy, odpowiadajace weztom okreslonej
plaszczyzny sieci odwrotnej. Przyjmijmy, ze w niniejszym przyktadzie o$ kolysania
jest rownolegla do osi a krysztalu, na kliszy fotograficznej pojawia si¢ zatem
refleksy o wskaznikach Millera (0kl), (1kl), (1kl), (2k]) itd., zgrupowane w warstwice
(rys. 2.15). Do naszych celow uzyteczne s3 jedynie refleksy (Okl) warstwicy zerowej,
poniewaz tylko dla nich mozna wyznaczy¢é z wystarczajaca dokladnoscia zmiany
braggowskiego kata rozproszenia, spowodowane zmiana temperatury. W pracach
tych uzywa sie ekranow metalicznych, eliminujacych refleksy innych warstwic, i na
tej samej kliszy wykonuje si¢ dwa zdjecia: w temperaturze ¢, (najczesciej tempera-
tura cieklego azotu) i t, (najcze$ciej temperatura pokojowa). Fragment takiej kliszy
przedstawiono na rys. 2.16. Obok dwoch reflekséow s; i s, narysowany jest §lad
wiazki pierwotnej, przestonigty w srodku cieniem malego krysztatku, uzytego jako
probka.

26 :

Zidse) - Rys. 2.16. Katy odblysku Bragga dla dwoch réz-

nych temperatur

Korzystajac z prawa Braggéw mozemy napisac
‘2dhkl Sln0 = nl

gdzie dy,; jest odlegloscia dwoch sasiednich plaszczyzn sieciowych o wskaznikach
(hkl), 8 — odpowiadajacym tym ptaszczyznom katem odbtysku, A — dlugoscia fali
uzytego promieniowania monochromatycznego, a n — rzedem dyfrakcji. Przyrost
temperatury powoduje zmiane dy;, a to pociaga za soba zmiane kata 6

O(dp)sin b, +d,,, 6(sinf) = 0 = 6 (dyy,) sin 8, +d,,, cos 6, 66
Stad |
0(dw)  _ — a0
dpa(t,—1) — (t2—t,)tgh,

Z réwnania .tego wynika ze w celu obliczenia wspolczynnika rozszerzalnosci w
kierunku normalnym do plaszczyzny (hkl) trzeba znaé kat 6, w temperaturze
nizszej i jego zmiang przypadajaca na 1 K. Latwo tez zauwazy¢, ze w celu
otrzymania dokladniejszych wynik6w nalezy wybraé refleksy o duzym kacie
odblysku (refleksy wysokokatowe).

Mimo wszystko nie jest to metoda dokladna z nastepujacych powodow:

1. Ruch termiczny sieci powoduje poszerzenie reflekséw i ich rozmycie, co
prowadzi do okreslonych bledéw w ustaleniu ich polozenia.

2. Czgsto nie znajdujemy wystarczajaco duzej liczby reflekséw o duzym kacie
odbltysku (26 > 80°), potrzebnej do wyznaczenia wybranego przekroju tensora. -

o (hkl) = (2.57)
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Korzysta si¢ wtedy rowniez z refleksoOw niskokatowych, dla ktorych blad wyzna-
czenia o jest wigkszy.

3. W celu uzyskania mierzalnej zmiany polozenia refleksOw potrzebna jest
roznica temperatur rzedu 100 K, w wyniku czego wspolczynnik rozszerzalnosci
podany relacja (2.57) nalezy traktowac¢ jako wartos¢ srednia w zakresie temperatur
t,~t,. Jesli w tym zakresie rozszerzalno$¢ sieci ma charakter nieliniowy, to niczego
nie mozemy si¢ o tym dowiedzieC.

W nowszych pomiarach rentgenograficznych rozszerzalnosci liniowej korzysta
si¢ z metody Bonda [4, 5]. Polega ona na bezposrednim pomiarze kata dyfrakcji 0 z
dwu symetrycznych i dajacych si¢ dokladnie ustali¢ polozen odbijajacych kryszta-
tu. Detektorem natezenia wiazki odbitej jest licznik Geigera-Miillera lub licznik
scyntylacyjny. W sprzyjajacych warunkach pozwala to zredukowac bledy w pomiarach
0 do wielkosci rzedu sekundy katowej, co umozliwia pomiar zmiany odleglosci
miedzy plaszczyznami sieciowymi odpowiadajacej zmianie temperatury o 0,01 K.

Wracajac do relacjt (2.57) warto zauwazy¢, ze przedstawianie kierunkowe;j
zaleznosci o za posrednictwem wskaznikow (hkl) jest bardzo niewygodne. Mozna
jednak bez trudu przejs¢ od o(hkl) do a(p), gdzie ¢ jest katem zawartym miedzy
wybranym kierunkiem krystalograficznym a normalna do ptaszczyzn (hkl) (rys.
2.17). Dla zbioru (Okl)

; bl
g (p - c k
c
ale)
c/t g o
@
- - Rys. 2.17. Wspdlczynnik rozszerzalnosci termicznej
L blk N b mierzony jest w kierunku normalnym do zbioru
N oKD odbijajacych plaszczyzn

Znajomos$¢ periodow sieci b i ¢ oraz wskaznikéw (0kl) pozwala obliczy¢ ¢. Jako
wyniki dod$wiadczalne bedziemy uwazaé pary liczbowe ¢; oraz a(gp)=o;. W
ukiadzie ortorombowym mamy 6, = 0 (rys. 2.11) oraz

o; = A+ Bcos2¢p;

A=ﬂ%@ B=°‘22_;°‘_£ C=0 (2.58)
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Symetria krysztalu powoduje, ze refleks (0kl) moze wystepowaé r; razy; jako o;
przyjmiemy Sredniq arytmetyczng r; niezaleznych pomiarow

o = <o yto; (2.59)

gdzie o, jest $rednim bledem wartosci $redniej. Wage statystyczna w; definiujemy

jako miare dokladnosci, proporcjonalna do liczby pomiaréw i odwrotnie propor-
cjonalng do $redniego biedu

7

Wi ==

O;

(2.60)

Poszczegbdlne macierze, wystgpujace w rown. (2.51), maja obecnie postaé

Wy oy W Wy cos 2¢,
W, o A w, w,cos2 A
W= 20, = '2 2 () M= (
: : B_
\ W, a,, W, w,cos2,
Tabela 2.2
Dane do$wiadczalne dla przekroju (0kl) tensora o w 1,8-dinitronafta-
lenie [6]
i (OkD (i +0,)- 105 K! cos2p; | w;
1] 020 | 674+183 ! 8| 0437
2 01l 65.0+84 —0,7705 6 0,714
3 021 55,7+5,6 —-0,3174 8 1,428
4 031 59,1+179 0,0768 |4 0,223
5 041 28,9+8,0 0,3492 |3 0,375
6 081 358+15,8 0,7849 |4 0,253
7 023 58,1+4,2 —0,8901 4 0,952
8 043 549+11,9 —0,6255 3 0,252
9 010 47,2+11,3 0,1803 |1 0,088
10 012 65,3+11,3 —0,9373 1 0,088

Zbior wyjsciowych danych doswiadczalnych otrzymany dla krysztatu 1,8-dinitro-
naftalenu z niezaleznych pomiaréw 42 reflekséw i zgrupowany w 10 punktach
przekroju (Okl) zestawiono w tab. 2.2 [6]. Na podstawie tej tabeli mozemy obliczy¢
liczbowe wartosci elementéw macierzy a i I’

(29.454) (0437  0,4370
46,410 0714 —0.5501

79,540 1,428 —0.4532

13.179 0223 00171

10838 . oo 0375 01310

wa= | gp57| 107°K T= 10253 01986
55311 0952 —0.8474

13,835 0252 —0.1576

4154 0,088 00159

L 5746 0,088 —0,0825
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Zatem

— < 3,9796 —1,5981)

—-1,5981  1,5058

a na podstawie réwn. (2.51)
M= ( 54,898 -IO_GK_I - %(a22+a33)
—4,637 %(0‘22—“33)

0y, = 50,261-1076 K1
o33 = 59,535-10"6 K !

Stad

Po utworzeniu macierzy bledow wedlug rown. (2.50) znajdujemy, ze ) Z7
= 1284-10"'2K "2, odchylenie standardowe za$ ¢ = 3,8-107° K~ !, Wobec tego
gléwne wspolczynniki rozszerzalno$ci wynosza

0y, =(50,34+3,8)- 10" K!

o33 =(59,5+3,8)-10" K™!
Postepujac w analogiczny sposob z danymi dla drugiego przekroju tensora (hk0),
czego szczegOly tu pomijamy, otrzymujemy

oy, = (117,7453)-10" ¢ K~ !

oy, =(49,043,5)-107° K™!

Oba wyniki «,,, otrzymane z dwu niezaleznych przekrojow, mieszcza si¢ w
granicach bledoéw standardowych. Laczac oba przekroje otrzymamy

oty =(117,7+53)-10"6 K1
%y, =(49,6+38)-107° K™! (2.61)
o33 =(59,5+3,8) 1076 K™}

ProBLEM 2.8.2
Plaszczyzna izotropii w krysztale

Plaszczyzna izotropii w krysztale ma te wlasciwo$é, ze okreSlona wielkos¢
fizyczna ma taka sama warto$¢ w kazdym kierunku, lezacym w tej ptaszczyznie.
Plytka wycieta z krysztalu réwnolegle do plaszczyzny izotropii ma na przyklad
wspolczynnik refrakcji jednakowy w kazdym kierunku lezacym w plytce, a wigc
nie wykazuje zjawiska podwojnego zatlamania $wiatta dla promienia padajacego
prostopadle. Oczywiscie, potozenie takiej ptaszczyzny zalezy od tego, jaka konkret-
nie wlasciwos¢ krysztatu nas interesuje: plaszczyzna izotropii optycznej nie bedzie
na ogoé! identyczna z piaszczyzna izotropowa pod wzgledem rozszerzalnosci termi-
cznej.
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Orientacj¢ plaszczyzny izotropii mozna podawaé¢ za pomoca kosinuséw kierun-
kowych wektora prostopadlego do niej; jest to kierunek charakterystyczny, zalezy
od symetrii krysztalu oraz od wzglednej orientacji osi glownych elipsoidy wielkos-
ci. W niektdrych przypadkach ma on okreslona nazwe: w odniesieniu do wiasciwos-
ci optycznych kierunki normalne do przekrojéw -izotropowych noszq nazwe 0si
optycznych. W diamagnetykach réwniez mozna mowi¢ o osiach magnetycznych,
zdefiniowanych w analogiczny sposdb (por. p. 5.9).

Rys. 2.18. Normalne N; i N, do dwoch plaszczyzn izotropii w krysztale jednoskosnym

Rozwazmy rozklad potrzebnych nam kierunkéw na przykladzie krysztalu
jednosko$nego, podany na rys. 2.18. Osie krystalograficzne a i ¢ leza w plaszczy-
znie (010), o$ b jest do nich prostopadia. O§ c* jest osia prostopadia do a i b tak,
ze abc* tworzy ortogonalny uktad osi krystalograficznych. Jesli ¢ jest kierunkiem
poslizgu w sieci przestrzennej, to uklad ortogonalizujemy do a* bc. Dla sprecyzo-
wania sytuacji przyjmiemy, ze glowne wartoéci tensora t spelniaja relacjg

_ 0<ty <1,<73 oOraz t,|b
W takim razie miedzy t, i 75 istnieje taki kierunek 1" = (cos ¢, 0, sin @), ze wartos¢
T w tym kierunku réwna jest t,
7,c08? @+138in? @ =1, (2.62)

Warunek ten wyznacza poloZenie plaszczyzny izotropii 7. Zauwazmy, Ze istnieje
jeszcze druga taka plaszczyzna, polozona symetrycznie wzgledem t,. Po niewiel-
kich przeksztalceniach otrzymujemy z réwn. (2.62)

. \1/2
cos @ = <” “) (2.63)

Tl _T3

Jesli znamy wartosci gléwne tensora, to z réwn. (2.63) mozemy obliczyé kat
zawarty miedzy ! i X,;. W odniesieniu do osi krystalograficznych abc* | ma
orientacje 1" = {cos(p—0y), 0, sin(p—0,)} (rys. 2.18). Czesciej jednak orientacje
plaszczyzn izotropii podaje si¢ za posrednictwem wektor6w do nich normalnych,
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N, i N,. Kosinusy kierunkowe tych wektoré6w wynosza

wzgledem osi X; X, X; Ni = {—sing 0 cos o}

N} = {—sin(@+2V) 0 cos(p+2V)}
wzgledem osi abc* NT = {—sin(p—0,) 0 cos(p—0,))]

NY = {—sin(@+2V—10,) 0 cos(p+2V—0,)} (2.64)

przy czym 2V oznacza kat migdzy N, i N,. Poniewaz 2V = 180—2¢, mamy
cos 2V = —cos 2¢ = sin®> p—cos? ¢ =
_ (t1+13)— 21, -3 {T)—12 (2.65)
T1—13 T1—7;

(1) jest warto$cia $rednia, zdefiniowana przez (2.32).

Korzystajac z rown. (2.65), mozemy wyrozni¢ nastgpujace przypadki:

1. 7, #71, #15. Mamy wowczas dwa przekroje kolowe elipsoidy wielkosci,
zatem dwa kierunki do nich prostopadte N; i N,.

2. 3(t +13) =1,. W tym przypadku 2V =90°, czyli N, L N,. Oba przekroje
sa do siebie prostopadie i zorientowane pod katem 45° wzgledem X, X;.

3.15=1, 2V =0) lub 1, =1, (2V = 180). Obrazem elipsoidy wielkosci jest
elipsoida obrotowa woko6t X, lub X5, a kazda plaszczyzna prostopadia do jednej
z tych osi jest przekrojem izotropowym. W tej sytuacji mamy tylko jeden kierunek
wyrozniony; jego orientacja wzgledem abc rzadzi zasada Neumanna (por. p. 3.1).

4. 1, =1, =15. Krysztal o tych wlasciwosciach jest izotropowy, wobec czego
nie ma w przestrzeni kierunku wyréznionego. Inaczej mowiac, kazdy kierunek jest
prostopadly do przekroju izotropowego.

Jak juz zauwazyli$my, izotropowe przekroje krysztaldow maja wazne znaczenie
zaréwno z uwagi na prostote warunkow eksperymentu, jak i praktyczne zastoso-
wania takich plytek. Okazuje si¢, Ze rOwniez strukturalna interpretacja wynikow
takich pomiar6w jest nie tylko mozliwa, lecz i interesujaca, poniewaz prowadzi do
poznania rozkladu charakterystycznych kierunkéw molekularnych w takiej pla-
szczyznie. Wréocimy do bardziej szczegbélowego omodwienia tych problemow w
rozdz. 51 6.

Przyktap 2.8.3
Wartosci wlasne 1 osie wlasne tensora

Znalez¢ kierunki osi gtownych i wartoéci gléwne tensora przewodnictwa elek-
trycznego pewnego materiatu, przy czym skladowe tensora sa nastgpujace
[Q ' 'm™ '] 64, =25,0,,=7,033=13,0,;, =03 =03, =031 =0, 053 =03, =

-3./3.

W rozwigzaniu tego zadania zastosujemy metode algebraiczna. W celu znale-
zienia rozwigzan nietrywialnych powinien by¢ spelniony warunek (2.55), czyli

25-2) 0 0
0 —3.3(13-%

60



Stad .
5-H(T-AH(13-21)-27} =0
oraz

Ay =25

Rozwiazaniem rownania drugiego stopnia zawartego w klamrze sa pozostale
wartosci wlasne

},2=16 A‘.3=4

Przejdziemy obecnie do obliczenia wektoréow wlasnych.
a) Wartosci wlasnej A; = 25 odpowiada wektor wlasny u®) taki, ze

25 0 0 ult ;
0 7 =3/3](u |=25
0 -3./3 13 ug)

Po rozpisaniu otrzymujemy trzy réwnania jednorodne

25ui : = 25ul"

TuP —3 /3u = 25441
-3/3uP+  13uf = 25u%
Rozwiazaniami tych rownan sg _
u{" dowolne W =0 uP =0
Ze wzgledu na warunek normalizacyjny otrzymujemy
el =(100

b) Wartosci wlasnej A, = 16 odpowiada wektor u®. Uklad ré6wnan ma obecnie
" postaé

2514(12) — 16u‘12’
TuP -3 . /3uP = 16uP

—3./3u@P+ 13uP = 16u

Z pierwszego wynika, ze u{® = 0. Pozostale dwa sa sobie rownowazne — mozemy
z nich otrzymac¢ jedynie informacje, ze

P = —/3/3

Obliczenie tych sktadowych umozliwia nam warunek normalizacyjny
W) + W) =1

czyli .

SPP+ ) =1
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Stad otrzymujemy

1.3
7= (0 ‘57)

¢) Wartosci wlasnej A; =4 odpowiada wektor wiasny u®. Po napisaniu
réwnan jednorodnych widzimy, ze u{® = 0, pozostate za$§ dwa réwnania

3uP -3 /3uP =0
33+ 9uP =0

maja rozwiazania u$) = \/3/2, u = 1/2. Zatem

e§=<olé 1)

2 2

Znalezione trzy wektory wlasne tworza razem macierz transformacji

1 0 0
e=|0.32 12
0 —1/2 /32

doprowadzajaca zadany tensor ¢ do postaci diagonalnej. W macierzy e zamienilis-
my wiersz drugi z trzecim dla zachowania skre¢tnosci ukladu wspélrzednych.
Yatwo si¢ przekonaé, ze

250 0O
coc’"=] 04 O
0016

Przykiap 284
Relacja migdzy skladowymi tensora i wspolczynnikami kwadryki

Tensorowi
16 0 0
T= 04 O
00 20
w ukladzie osi gléwnych odpowiada réownanie elipsoidy wielkosci
Xz X3 X3
RN
16* 4% 20

11 1" 1

Obro¢my teraz uktad wspélrzednych o +30° wokot X5 (uktad xi x5 x5, macierz
transformacji ¢,), a nastepnie o kat +45° (uklad xj x; x5, macierz transformacji ¢,)
wokot nowej osi x; (rys. 2.19). Zlozenie obu obrotéw prowadzi do relacji miedzy
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ukladem X, X, X5 a x} x5 x3 (macierz transformacji c)

J220 =22\ (32 12 0

c=c,e;=| 0 1 0 ~1/2 J320 |=
J220 /22 0 0 1
J6/4 218 — /22 0,6124 0,3536 —0,7071
=122 o = | —0,5000 08660 0 (2.66)
NN NG 0,6124 03536  0,7071

Wynika z tego, ze lgczny obrét jest iloczynem macierzy ¢, ¢, (nalezy zwroci¢ uwage
na kolejnos¢ czynnikéw). Wiersz i macierzy ¢ podaje orientacje osi x; w ukladzie
X, X, X;.

X
<:'4 x5
|
. |
\ I
; |
i
\/ |
I .
\‘ : ,//////// x3
="\
//' X2
7
AN\
X1 //
Ve
»;17, / Rys. 2.19. Obroty ukladu wspbirzednych: X, X, X,

= X{ X4 X5 = X4 X XS

Skiadowe t w ukladzie x; przyjma wartoscl

16,500 —3,674 —3,500
T=ctc"=| —3,674 7,000 —3,674
—3,500 —3,674 16,500

Oczywiscie Ty, + T+ T3z =1, +1,+ 713 = 40.

Poszukajmy teraz osi gléwnych tensora T metoda kolejnych przyblizen wie-
dzac, ze musza nimi byé X, X, X;. Poniewaz znamy ten wynik, mozemy z
latwoscia przesledzi¢ procedure. Zauwazmy, ze T,; = Tz;. Sprobujmy wiec jako
wektora probnego u] =(1 0 —1). Mamy

16,500 —3,674 —3,500 1 20
wl =] —3,674 7,000 —3,674 0 = 0
—3,500 —3,674 16,500 —] -20
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a wiec juz pierwsze przyblizenie prowadzi do dobrej orientacji jednej z osi
gléwnych

el =(/2/2 0 —/2/2)
Drugiej osi nalezy szuka¢ dla T™!

. 102,03 73,50 38,01
T !'=———1] 73,50 260,07 73,50
1 Ed 3 3
280,04 38,01 73,50 102,03
Najwieksza skladowa na przekatnej jest (T~ ?!),, = 260,07/1280,04, wobec czego

nastepny wektor probny powinien byé postaci #2 = (0 1 0). Tym razem rachunek
jest nieco dluzszy — wektor 6smego przyblizenia ul = (0,35355 0,86603 0,35355)

— el (ﬁ/4 \/5/2 \/5/4). Po obliczeniu trzeciego wektora z iloczynu wektorowego
otrzymujemy macierz transformacji

JU2 24 Je4
c= 0 J32 —-12 (2.67)
~J22 J24 Je/4

W poréwnaniu z réwn. (2.66) nastapila zamiana osi X; i X5 oraz zmiana znaku
kosinusow kierunkowych X,; wobec tego obie macierze sa rownowazne.
Przejdzmy obecnie do wspolczynnikow kwadryki S, odpowiadajacej tensorowi

/16 0 0 6250 0 0
S = 0 1/4 O =10"%] 0 25000 O (2.68)
0 0 1/20 0 0 5,000

Transformacja macierza ¢ [rown. (2.66)] prowadzi do wspdlczynnikéw S w ukla-
dzie x| x} xj3

7,970 5,742 2,970
R =cSc” =1072| 5,742 20311 5,742 (2.69)
2970 5,742 7970

Poszukiwanie wektorow wilasnych tej macierzy trzeba zaczaé od kierunku
(10—1), odpowiadajacego najmniejszym skladowym T;;. Dalsze postepowanie nie
wymaga komentarzy.

Przykiap 2.8.5
Stozek zerowej rozszerzalnosci termicznej w kalcycie

Wspdlczynniki rozszerzalnosci termicznej kalcytu (krystalizuje w ukiadzie try-
gonalnym) sa nastgpujace [3]:

all =Wy = —5,56'10—6K_1 K33 = +24,91 '10_6K_1

Znalez¢ kierunek, w ktoérym rozszerzalno$¢ termiczna wynosi zero.
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Przypusémy, ze zerowa rozszerzalno$¢ kalcytu wystepuje w kierunku I, odnie-
sionym do ukladu osi gtownych a. Wedlug réwn. (242) mamy

a,=0=lel=(lllzl3) 0 X1 0 12 =
0 0 o | \J

=ay; (F+B)+ass 5 =0y + (033 —0q,)

—a. o \/2
I, = <——A—> =0,4272
o

33~ %g1

Stad

Zatem zbior kierunkéw, w ktdrych wystepuje efekt zerowej rozszerzalnosci termi-
cznej okreslaja wektory jednostkowe

I =(1,1,04272) oraz I = (I, 1, —04272)

Rys. 2.20. Stozek zerowej rozszerzalnosci termicznej w kalcycie

Skladowe I, I, wektora | musza speinia¢ warunek
B+1%=08175

poza tym sa dowolne. Zbiory tych kierunkéw tworza wigc dwa stozki wokoét oss
jako osi (rys. 2.20). Katem wierzcholkowym kazdego ze stozkow jest

2¢ = 2arccos(0,4272) = 2-64,75°
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3. TRANSFORMACIJE SYMETRII

Symetria jest jedng z najbardziej ogblnych cech materii, zardbwno ozywionej jak
i nieozywionej, rOwnie powszechna jak masa czy temperatura. W rozdziale niniej-
szym ograniczymy si¢ do zastosowania tego poje¢cia do regularnie zbudowanego
ciala stalego, wystepujacego w postaci krysztalow, WspominaliSmy juz w rozdz. 1,
iz symetria moze by¢ rowniez podstawa podziatu krystalicznego ciata stalego na
rozne grupy. Jednak w odrdznieniu od innych cech fizycznych symetria jest
kryterium tak ogoélnym, ze podlegaja mu wszelkie obiekty fizyczne, niezaleznie od
wszystkich innych kryteridéw podziatlu, jakie z réznych punktéw widzenia mozna
wprowadzi¢. Jest tak dlatego, ze précz geometrii budowy cial symetria obejmuje
rowniez ich wiasciwoéci fizyczne.

Krysztal o identycznym nastgpstwie atomoéw w kazdym z trzech wzajemnie
ortogonalnych kierunkéw w przestrzeni ma réowniez w kazdym z tych kierunkow
taka sama warto$¢ przewodnictwa elektrycznego, czy tez przenikalnosci dielektry-
cznej. Przeciwnie, jeSli rozktad materii w kazdym kierunku jest inny, to réwniez
przewodnictwo jak i przenikalnos¢ dielektryczna wykazuja anizotropie.

Zwiazek -miedzy symetria zewngtrznej, naturalnej postaci krysztalu i symetrig
jego wiasciwosci fizycznych, intuicyjnie oczywisty, zostal sformutowany dopiero
pod koniec XIX w. przez Franza Neumanna. Zanim go przedstawimy, przypomni-
my krotko-podstawowe pojecia, nie wdajac si¢ w szczegdly, ktore mozna znalezé w
specjalistycznych monografiach po$wieconych teorii grup.

3.1. Symetria obiektu i wielkosci fizycznej

Do podstawowych poje¢ teorii grup, zajmujacej si¢ opisem symetrii obiektow
fizycznych lub funkcji matematycznych, nalezy pojecie elementu symetrii i operacji
symetrii. Elementami symetrii obiektu makroskopowego moga by¢: centrum syme-
trii 1 (lub i), plaszczyzna zwierciadlana m (lub o), n-krotna o$ symetrii n<(lub C,)
oraz inwersyjna o$ symetrii  (lub S,), przy czym mozliwe warto$ci nsa n =1, 2. 3,
4, 6. Nie zajmujemy si¢ 5-krotng osig symetrii, poniewaz nie mozna jej pogodzi¢ z
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symetria translacyjng sieci przestrzennej krysztalu makroskopowego. W oznacze-
niach elementow symetrii na pierwszym miejscu wymieniono symbol miedzynaro-
dowy, w nawiasie za§ symbol wedlug oznaczen Schoenfliesa.

Pojecie elementu’.symetrii nie jest identyczne z pojeciem operacji symetrii. Przez
operacje symetrii bedziemy rozumie¢ takie przeksztalcenie, ktére doprowadza obiekt
do polozenia identycznego z wyjsciowym. JeShi obiekt ma na przyklad czterokrotna
o$ symetrii C,, to mozemy dokonywaé nastepujacych operacji symetrii: C} (obrot
obiektu o kat 360/4 = 90°), C; = C;-C} = C! (wykonanie kolejno dwoch obrotow
0 90° w tym samym kierunku lub jednego o kat 180°), C3 = Ci-Ci-Ci=C;!
(wykonanie trzech kolejnych obrotow o 90° kazdy lub o 90° w kierunku przeciw-
nym), wreszcie C3 = C1-C4-Cl-Cl = C,, co jest operacja tozsamosci (obrot ciala
o 360°). Widzimy zatem, iz w tym przykladzie jednemu elementowi symetrii
odpowiadaja cztery rozne operacje symetrii, a zbidr ich tworzy grupe w sensie
matematycznym. Wynik ten mozemy uogoélni¢ w nastepujacy sposob: kazdemu
elementowi symetrii odpowiada generowana przezen grupa operacji symetrii.

Operacji symetrii, dokonywanej na obiekcie fizycznym, réwnowazne jest
przeksztalcenie (transformacja) ukladu wspdirzednych, w ktérym opisujemy poto-
zenie obiektu. Przypus¢my, ze krysztal w formie naturalnego wielo$cianu ma
trzykrotna o$ symetrii rownoleglta do osi z uktadu xyz, ktérego poczatek umie-
szczamy w $rodku krysztalu. W tym ukladzie wspoélrzednych mozemy opisaé
polozenie $cian ograniczajacych krysztal, a takze potozenie elementow struktural-
nych (atomy, jony, czasteczki) tworzacych jego strukture. Po obrocie krysztatu o
120° spostrzezemy, ze krysztal ma dokladnie taki sam rozklad §cian zewngtrznych
wzgledem tego ukladu jak poprzednio. Musi mieé¢ rowniez taki sam rozklad
elementow strukturalnych w obu polozeniach. Wynik tych obserwacji bedzie
dokladnie taki sam, jesli obrot wielo$cianu zastapimy obrotem uktadu wspotrzed-
nych xyz wokdl osi z o kat 120° w kierunku przeciwnym do poprzedniego. Nato-
miast korzy$é¢ ptynaca z zastapienia operacji fizycznej, dokonywanej na obiekcie
fizycznym, przez operacje matematyczng, dokonywang na ukladzie wspoirzednych
polega na tym, Ze tej ostatniej mozemy przypisaé macierz wyrazajaca ten obrot
ilosciowo. Przyjmiemy, iz kazde] operacji symetrii mozna przypisa¢ macierz
przeksztalcajaca uklad wspolrzednych w sposob, ktéry dokladnie tej operacji
odpowiada.

Pelna symetria obiektu makroskopowego (okreslonego wieloscianu) miesci si¢
w pojeciu punktowej grupy symetrii. Jest to taki zbiér operacji symetrii, ze przynaj-
mniej jeden punkt w przestrzeni nie ulega przemieszczeniu po wykonaniu wszystkich
operacji tworzqcy,ch'ten zbiér. Jesh dla przykladu wezmiemy grupe punktowa 222
(D,), obejmujaca operacj¢ tozsamosci oraz trzy wzajemnie prostopadie i przecina-
jace sie dwukrotne osie symetrii, to jedynym punktem nie ulegajacym przemie-
szczeniu pod wplywem operacji tego zbioru jest miejsce przeciecia si¢ trzech osi.
Niekiedy punktow takich moze by¢ nieskonczenie wiele, jak na przyklad w grupie
m2m (C,,), zawierajacej procz elementu tozsamosci dwie prostopadle ptaszczyzny
zwierciadlane i 0§ dwukrotna, biegnaca wzdluz prostej przecigcia si¢ obu pla-
szczyzn. Zbiory elementéw symetrii i inne podstawowe informacje o 32 krysta-
lograficznych grupach punktowych zebrane sg. w problemie 3.7.1 (p. 3.7).
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Symetria krysztalu powoduje, Ze istnieje w nim pewna liczba kierunkow
symetrycznie rownowaznych. Do naczelnych zasad fizyki krysztatow nalezy stwier-
dzenie wypowiedziane przez F. Neumanna, ze kierunki symetrycznie rOwnowazne
sa réwniez fizycznie rownowazne. Innymi stowy, pomiar dowolnej wielkosci fizy-
cznej w okreSlonym kierunku musi da¢ ten sam wynik w kazdym innym kierunku
symetrycznie rownowaznym. Zasade t¢ mozemy wyrazi¢ rowniez w jezyku teoril
grup. Niech G, oznacza grupe punktowa symetrii krysztatu (jako ciala makrosko-
powego), G; za$ grupe punktowa symetrii wielkosci fizycznej. G, zawiera wszystkie
elementy symetrii wiasciwe, na przyktad, kwadryce. Zasada Neumanna orzeka, ze
G, musi by¢ podgrupa G;, czyli

G, =G, (3.1

przy czym < jest znakiem inkluzji (zawierania).

Z takiego sformulowania zwigzku miedzy symetria krysztatu a symetrlq wiel-
kosci fizycznej wynika, ze kwadryka podatnosci diamagnetycznej w krysztale
nalezacym do uktadu tetragonalnego (czterokrotna o$§ symetrii) musi mie¢ symetri¢
. elipsoidy obrotowej, co jest jej symetria minimalna. Jest mozliwe, ze w pewnym
- krysztale tego uktadu bedzie mie¢ symetrie kuli, ale nie moze sie zdarzyé, by miala
symetri¢ elipsoidy trojosiowej. Stusznosé¢ zasady Neumanna ogranicza si¢ do
krysztalow niemagnetycznych, poniewaz réwnowaznos$é kierunkéw w krysztatach
magnetycznych nie jest zwiazana wylacznie z symetria grupy punktowej. Ponadto
symetria grupy punktowej G, odnosi si¢ do krysztatu znajdujacego sie w prozni,
bez obecnosci pola. Umieszczenie krysztalu w polu oznacza pojawienie si¢ efektow
polaryzacyjnych w okreslonym kierunku, co obniza efektywna symetri¢ krysztatu.
Wystapienie tej dodatkowej asymetrii prowadzi do tak zwanych efektéw drugiego
i wyzszych rzedow, obejmujacych zjawiska takie, jak dwodjlomnosé krysztatu
izotropowego wymuszona obecno$cia pola elektrycznego (efekt Kerra), skrecenie
plaszczyzny polaryzacji w polu magnetycznym (efekt Faradaya), polaryzacje elek-
tryczna (pyroelektrycznos$c) i magnetyczna (pyromagnetyzm) wymuszone obecnos-
cia gradientu temperatury i inne. Zasada Neumanna w sformutowaniu (3.1) nie
obejmuje standw krysztalu spolaryzowanego dzialaniem czynnikéw zewngtrznych.

3.2. Generatory punktowych grup symetrii

Do opisania symetrii krysztalow niemagnetycznych (z wylaczeniem krysztalow
ferri-, ferro- i antyferromagnetycznych) potrzebne sa i wystarczaja 32 grupy
punktowe, stanowigce 32 mozliwe klasy krystalograficzne. Kazda z tych grup
punktowych obejmuje pewna liczbe elementéw symetrii; wybranych sposrdéd 10
elementow uznanych za pierwotne i stanowiacych liste generatorow grup punkto-
wych.

Liste generator6w mozna sporzadzi¢ w rozmaity sposéb, zaleznie od tego,
ktore z elementdéw symetrii uzna si¢ za proste a ktore za zlozone — w tym sensie,
ze mozna je przedstawi¢ jako iloczyn dwoch (lub wigcej) innych elementéw. Wybédr
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Tabela 3.1

Lista generatorow grup punktowych

Operacja Rzut Przeksztalcenie Macierz
symetrii stereograficzny uktadu wspoéhz. transformacii
x4 i X4

1 : 100
(€) 5 E 4 A=1010
[ ..
, X2 001
X1 {1//
X3 X3
o : -1 0 O
- P A
1 () s A, = 0-1 0
T S 0 0 -1
13 :
X
-10 O
2 (CY) A,=| 01 0
' 00 —1
X3 |1 %3
] -1 00
| ~T0
2 (€9 x5 | e A, = 0-10
= x3)1%3
E 1 00
m (o) 5 | As={0—-10
/ *e 0 01
5
X3 10 0
m (o2) Ac={01 o0
X 00 —1
N a1
,17’/ :Xa :
Xy x. ’XI
& -1 130
(2)
3 (CY) e, i X A=l -1/ -3 0
T 0 0 1
/ X2
Xq (i
X3]1%2
: 010
3 (Cyy | 2 Ag=[001
X /;/‘"—_—_}{‘ 100
=
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Tabela 3.1 cd.

Operacja Rzut Przeksztalcenie Macierz
symetrii stereograficzny ukladu wspotrz. transformacji
x3[1x3
: Xé . 010
4 (C8) - As=|-100
el 001
/ X
X:
1 X3
) 0-1 0
4 (s9) ;N I Ap=|1 0 0
xL///’ | X2 0 0 —1
%3 }xg '

generatoréw podany w tab. 3.1 obejmuje 10 nastepujacych elementéw symetrii:
Cl: i, C(Zy)’ C(ZZ)’ ay, O-za C(32)7 C[3111]9 Cftz)a sz)

W pierwszej kolumnie tabeli podano oznaczenia elementéw, w drugiej rzut stereo-
graficzny, ilustrujacy potozenie punktu wyjsciowego (krzyzyk) i punktéw symetry-
cznie rownowaznych (krzyzyk lub koétko), wytwarzanych przez wszystkie operacje
symetrii, generowane przez ten element.. Polozenia odnosza si¢ do ukladu wspot-
rzednych x; x, x3, zaznaczonego na rysunku w drugiej kolumnie tablicy. W
trzeciej kolumnie podano przeksztalcenie ukladu wspdirzednych, w czwartej za$
macierze tych przeksztalcen. Kazda z macierzy odpowiada okre$lonej operacji
symetrii. w potedze - pierwszej. Niektdre z operacji umieszczonych w tabeli moga
by¢, formalnie- biorac, zlozone z innych operacji tej tabeli, np. A5 = A;-A,. Mimo
to warto zachowa¢ Ay jako osobny generator, poniewaz istnieje grupa punktowa
zawierajaca plaszczyzng symetrii, a nie zawierajaca osi dwukrotnej ani centrum
symetrii. Trzykrotna o§ symetrii CY'!). przechodzi przez punkt [000] i naroze
[1117] szescianu (rys. 3.1). Przeksztalca ona wspdirzedne wedtug schematu x} = x,,

X3

N /;51111
s

SN

/
e
N/
N\

W

e

o Xy

x Rys. 3.1. Osie symetrii C#*1 i C§'MJ szescianu
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X5 = X3, X3 =X;, reprezentowanego macierzag Ag. Symetrycznie polozona o$
trzykrotna, przechodzaca przez naroze [111], powinni$émy traktowaé jako zlozony
element symetrii (przyktad 3.7.4). O$ S9 jest czerokrotna osig inwersyjna; operacja
4 polega na wykonaniu obrotu o 90°, a nastepnie odbiciu punktu w centrum
inwersji, znajdujacym si¢ w poczatku uktadu wspoirzednych. Mimo ze formalnie 4
= 4-1, nie mozna rozkladu punktéw na rzucie stereograficznym 4 zastapi¢ przez
polaczenie rzutéw 4 i 1. Pozostate osie inwersyjne mozna zastapi¢ juz wprowadzo-
nymi generatorami, poniewaz 2, =g,, 3, =3,-1, 6, = 3,-2,; rowniez 6, =3.-2,.

3.3. Wektory biegunowe i osiowe

Zgodnie z zasadqa Neumanna wielkos¢ fizyczna krysztalu, nalezqcego do jednej z
32 grup punktowych symetrii, musi by¢ niezmiennicza wzgledem wszystkich operacji
symetrii, nalezqcych do tej grupy punktowej. Jesli zatem wektor p po transformacji
uktadu wspolrzegdnych oznaczymy przez p’, to zasada Neumanna wymaga, by

pP=r (3.2

Korzystajac z prawa transformacji wektoréw (2.27), warunek (3.2) mozemy zapisac
W nastgpujacy sposob:
Ap=p
czyh
{A-1L)p=0 (3.3)

_gdzie 1 jest macierza jednostkowa. Roéwnanie (3.3) wyraza ogolne ograniczenie,
nakladane na sktadowe wektora przez wymogi symetrii. Warunek ten dotyczy w
réwnym stopniu czasteczki jak i komorki elementarnej oraz krysztalu, co mozna
wyrazi¢ w postaci trzech nastgpujacych stwierdzen:

1. Kazdy wektor, reprezentujacy okreslona wilasciwos¢ fizyczna czasteczki w
krysztale, musi by¢ niezmienniczy wzgledem wszystkich operacji symetrii A,;,
nalezacych do grupy symetrii wezla, w ktdérym ta czasteczka jest umieszczona.

2. Kazdy wektor, reprezentujacy okreslona wlasciwosé fizyczna komorki ele-
mentarnej, musi by¢ niezmienniczy wzgledem wszystkich operacji symetrii A,,
nalezacych do grupy symetrii komérki elementarne;.

3. Kazdy wektor, reprezentujacy okre$lona wlasciwos$¢ fizycznag krysztatu, musi
by¢ niezmienniczy wzgledem wszystkich operacji symetrii A, nalezacych do grupy
przestrzennej krysztatu.

Pojecia grup symetrii, uzyte w tych stwierdzeniach, zdefiniowane beda w
~ nastepnym rozdziale (p.:4.2). Fizyczny sens warunku (3.3) zilustrujemy obecnie
kilku przykladami. _

a) Przypusémy, ze czasteczka umieszczona jest w wezle o symetrii i. W takim
przypadku

100
A, -1} =-2{010 zatem p=20
001
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Wynik ten wskazuje ze czgsteczka, kiéra zajmuje wezel o symetrii i, nie moze mie¢
wlasciwosci reprezentowanej wektorem, w szczegblnosci nie moze mie¢ trwalego
momentu dipolowego. Inaczej mowiac, czasteczki, ktére maja trwaly moment
dipolowy, nie moga zajmowa¢ w krysztale potozen szczegélnych o symetrii i
Moga natomiast zajmowaé potozenia ogélne. Symetria takich polozen jest A,
wobec czego (A;—11 =0 oraz p#0. W polozeniu ogdlnym wszystkie trzy
sktadowe kazdego wektora, w tym rowniez trwalego momentu dipolowego, moga
byé rézne od zera. '

Przypusémy teraz, ze komorka elementarna, wypetniona czasteczkami dipolo-
wymi zajmujacymi potoZenia ogdlne, ma centrum symetrii w punkcie [111], jak to
ma miejsce w wielu grupach przestrzennych. Poniewaz Z # 1 jest zawsze parzyste
(mozliwo$¢ obsadzenia komorki elementarnej jedna czasteczka istnieje tylko w
ukladzie trojskosnym), kazdej czasteczce o momencie p; odpowiada inna o mo-
mencie p; = —p; tak, ze suma momentéw na obszar calej komorki znika, ) p; = 0.

Przypu$émy dalej, Ze centra symetrii umieszczone sa nie w punkcie [1141], lecz
w punkcie [000] i wszystkich innych punktach, translacyjnie réwnowaznych. -
Wybierzmy sobie jaka$ komorke elementarna i przypusémy, Ze ma ona jako cato$é
réozny od zera moment dipolowy Pj; niech polozenie jej srodka okresla wektor r,.
W idealnej strukturze zawsze mozna znalezé symetryczna wzgledem punktu [000]
komorke elementarna w polozeniu —rg, przy czym jej moment dipolowy musi
wynosi¢ — P,. Wniosek ten mozna pogodzi¢ z translacyjna symetria sieci tylko
_wtedy, gdy P, =0.

Wynika z tego, ze dla wlasciwosci czasteczki, komorki elementarnej i krysztatu
decydujace znaczenie ma symetria rozkiadu materii w tych obiektach.

b) Czasteczka umieszczona jest w wezle, ktorego grupa punktowa symetrii
obejmuje dwukrotna o$ symetrit CY’. W tym przypadku

100
A,-1l=-2{000
001

Dla wektora wynikaig stad ograniczenia

pi=p3=0 p2#0

Czasteczka umieszczona w takim wezle moze mie¢ wlasciwos¢ reprezentowana
przez wektor pod warunkiem, ze jest on rownoleglty do osi dwukrotnej CY’. Taki
" sam warunek otrzymuje si¢ dla zwyklej osi symetrii rzedu n > 2 (przyklad 3.7.5).
Rozwazania analogiczne, jak w punkcie a, doprowadzaja nas do wniosku, Ze
krysztal posiadajacy n-krotng os symetrii moze mie¢ wlasciwosé wektorowq nieznika-
jaca tylko w kierunku tej osi.

c) Wplyw plaszczyzny symetrii na posta¢ wektora p mozemy zilustrowac za
pomoca macierzy Aq, odpowiadajacej plaszczyznie prostopadiej do osi z. Mamy

000
Ag—11=-2{000
\0 01
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Wynikaja stad warunki
D1 #* 0 P2 # 0 D3 = 0

Obecnos¢ tej ptaszczyzny powoduje, ze znika skladowa p; do niej prostopadtia.
Ogolniejszy wynik mozna sformulowaé nastepujaco: przy obecnosci plaszczyzny
symetrii rozne od zera mogq byé tylko takie wektory, ktore lezq w tej plaszczyznie
(przykiad 3.7.6).

Mowiac do tej pory o wektorach mieliSmy na uwadze spontaniczne, tj. trwale
wlasciwosci czasteczek. Nalezy do nich trwaly moment dipolowy, jak tez kierunki
tzw. spektroskopowych momentow przejs¢ absorpcyjnych, ktore wynikaja ze spek-
troskopowych regut wyboru (por. rozdz. 7). Wiasciwosci wektorowe, indukowane w
czgsteczkach pod wplywem przyloZonego pola elektrycznego czy magnetycznego, nie
sq objete regulq (3.3), poniewaz spolaryzowany krysztal nie stosuje si¢ do zasady
Neumanna. Poza tym dotychczas zajmowalismy sie wielkosciami reprezentowany-
mi przez tak zwane wektory biegunowe. Naleza do nich takie wielkosci fizyczne, jak
sita F, wektor falowy k czy nateZenie pola elektrycznego E, do okreslenia ktorych
nalezy podaé dlugo$¢, kierunek i jeden z dwu zwrotéw na prostej, na ktorej leza.
Précz nich wystepuja w fizyce jeszcze inne wielkoséci wektorowe, ktoérym przypisu-
jemy rowniez diugos¢ i kierunek, lecz zwrot dotyczy jednego z dwu mozliwych
kierunkéw obrotu wokot prostej, wzdiuz ktorej sa umieszczone. Takim wielkos-
ciom odpowiadaja wektory osiowe, a ich wlasciwosci zilustrujemy zachowaniem si¢
dipola w jednorodnym polu elektrycznym. '

Jesli dipol o momencie elektrycznym p znajduje si¢ w jednorodnym polu
elektrycznym o natezeniu E, to — jak wiadomo — dziala nan para sit 0 momencie

M=pxE

gdzie krzyzyk oznacza iloczyn wektorowy. Wszystkie trzy wektory przedstawione
sa na rys. 3.2a w prawoskretnym ukladzie wspohrzednych x, x, x3. Dla uproszcze-
nia zalozono, ze p i E leza w plaszczyznie x,x; — wektor M ma woéwczas
kierunek osi + x;. Dokonajmy teraz inwersji ukladu wspotrzednych, odpowiadaja-
cej operacji C;. Sytuacja w ukladzie x| x}, x5, lewoskretnym, jest odbiciem rys. 3.2a
w punkcie [000] (rys. 3.2b); iloczyn wektorowy stosuje si¢ do reguly sruby lewe;.
W ukladzie x) x) x5 mamy zatem

p/XEI =M/

X

Rys. 3.2. Wplyw skretnosci ukladu wspoirzednych na wynik p x E
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Jesli do kazdego z wektorow zastosujemy znane prawo transformacji

p,:Az'pz“p E/:A2'E=_E Fﬂf’/:.(%z'ﬁ“‘/;:'_M

to otrzymamy

y sl N
(—pyx{=Ej = —-M

niezgodnie z postulatem niezmienniczodci postaci prawa fizycznego przy zmianie
uktadu wspélrzednych. Postulat ten moze byc¢ jednak zachowany, jesli przyjmiemy,
ze w prawie transformacji wektora osiowego winien wystapi¢ czynnik sygnalizuja-
cy zmiane skretnosci ukladu wspdirzednych. Czynnikiem takim jest wyznacznik
macierzy A,, wiazacej uklad primowany z nieprimowanym. Wnioskujemy stad, ze
prawo transformacji wektora osiowego winno byé zapisane w postaci

M’ = (det A) AM (3.4)

Wobec rownania (3.4) warunek niezmienniczosci wektora osiowego winien mieé
postac

{(detA)A-1' M =0 (3.5)

Wektorami osiowymi, procz M, sa wszystkie wielkosci, ktore mozna wyrazic¢ jako
iloczyn wektorowy dwéch wektordw biegunowych. Dalej, osiowy jest rowniez
wektor do, wyrazajacy obrot o nieskonczenie maly kat wokot okreslonej osi, oraz
wektor natezenia pola magnetycznego H. Ostatni wniosek odnosnie H wynika z
postulatu niezmienniczosci réwnan Maxwella wzgledem transformacji Lorentza.

Przypadki szczegdlne warunku (3.5) przedstawimy w postaci krotkich stwier-
dzen. '

a) Wielkosé fizyczna, reprezentowana wektorem osiowym, moze mie¢ w punkcie o
symetrii C; dowolng warto$é, kierunek i zwrot, poniewaz

{(detA)) A, —1} = 0

b) Zwyczajna o$ symetrii o dowolnej krotnosci naklada na wektor osiowy takie
same ‘ograniczenia, jak na wektor biegunowy. Wynika to stad, Zze podzialanie
operacja C'™ nie zmienia skretnosci uktadu wspotrzednych. Natomiast o$ inwersyj-
na 71 o krotnosci n > 2 dopuszcza nieznikanie tylko niektorych skladowych M. Na
przyktad dla operacji 4 (macierz A,;,) otrzymujemy

1 -10 M1 MI—MZ
(—A,,-I'M=—[1 10 M, |=| M+M, |=0
0 00 M, 0

czyli My = M, =0, M3 # 0. Nie znika tylko sktadowa réwnolegta do osi SP.
c) Plaszczyzna symetrii dopuszcza nieznikanie tylko takiej skladowej wektora
osiowego, ktora jest do niej prostopadla (przyklad 3.7.7).

75



3.4. Tensory biegunowe i osiowe

PrzyjmowaliSmy dotad milczaco, ze w ogodlnym zwiazku (2.1)
p=Tq

oba wektory p i ¢ sa wektorami biegunowymi. Jesli istotnie tak jest, to T nosi
nazwe tensora biegunowego (poldrnego), a zasada transformacji jego skladowych
przy zmianie ukladu wspoirzednych wyraza si¢ znanym nam juz prawem (2.29). T
jest tensorem’ biegunowym réwniez wtedy, gdy wiaze w zaleznos¢ (2.1) dwa
wektory osiowe. Wynika to z ogdlnego postulatu niezmienniczoéci prawa fizyczne--
go (2.1) wzgledem zmiany ukladu wspoétrzednych. Postulat ten prowadzi nas do
~ bardzo ogdlnych relacji miedzy wielkosciami wystepujacymi w tym prawie. Mozli-
we sytuacje zestawione sa W nastepujacej tabelce:

i j=1 =2
p= T 9 = r - q
1 biegunowy biegunowy biegunowy -  osiowy osiowy
(+) (+) (+) (-) (-)
2 osiowy biegunowy osiowy osiowy biegunowy
(=) (+) (-) (-) (+)

Z tabeli wynika, ze tensor T ma charakter biegunowy, jesli wiqze w zaleznosc
dwa wektory o tym samym charakterze; jeSli charakter tych wektorow jest roziny, to
T jest tensorem osiowym.

Kilka zaleznoéci typu 11 (i =1, j = 1) podaliémy w rozdz. 2. Nalezy do nich
zwiazek miedzy wektorem indukcji elektrostatycznej D a natgzeniem pola elektry-
cznego E lub miedzy gestoscia pradu przewodzonego j oraz E. Poniewaz oba
wektory wystepujace w nich sa biegunowe, tensor ma rowniez charakter bieguno-
wy. Przykladem zaleznosci typu 21 moze by¢ zwiazek migdzy wektorem indukcji
magnetycznej B a natezeniem pola magnetycznego H

B = popH (3.6)

lub zwiazek miedzy momentem. pedu J a predkoscia katowa w, znany w dynamice
bryly sztywnej

J=1o 3.7
Zaréwno tensor wzglednej podatnosci magnetycznej w rown. (3.6), jak i moment
bezwtadnosci w réown. (3.7) maja charakter tensor6w biegunowych. Biegunowy jest
réwniez tensor ¢, wiazacy dwa elementarne obroty: da (W x; X, x;) oraz df (w
X1 X3 X3)

a4 = esdn (3.8)
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przy czym oba uklady wspotrzednych zwiazane sa z soba zaleznoscia (2.28): x’
= ¢x. Jest tak dlatego, ze takie granicznie male katy obrotu mozna zdefiniowad
jako wektory osiowe. .

Istnieja rowniez przypadki relacji miedzy dwoma wektorami typu 12 lub 22, w
ktorych jeden jest biegunowy, drugi osiowy. Do takiego zwiazku prowadzi, na
przyklad, analiza zjawiska aktywnosci optycznej. Gdy ptaska i liniowo spolaryzo-
wana fala elektromagnetyczna przechodzi przez pewne krysztaty, nie posiadajace.
centrum symetrii, woéwczas kierunek E promieniowania po wyjsciu z takiego
osrodka jest inny niz na wejSciu. Zjawisko to wystepuje réwniez wtedy, gdy
wigzka promieniowania biegnie wzdiuz osi optycznej krysztalu, a wigc nie moze
by¢ sprowadzone do zwykiej dwojlomnosci. Wiazce padajacej odpowiada wektor
E, ktéry jest biegunowy. Plaszczyzna polaryzacji ulega skreceniu, przy czym
mozliwe sa dwa zwroty tego skrecenia: zgodnie lub przeciwnie do ruchu wskazo-
wek zegara. Efekt ten opisuje zatem wektor osiowy. Tensor opisujacy aktywnosé
optyczng musi wiec byC tensorem osiowym.

Przejdziemy obecnie do przedstawienia prawa niezmienniczosci tensorow, przy
czym jako macierze stosowaé bedziemy generatory od A; do A;,. Wobec relacji
(2.1) stuszny bedzie réwniez zwigzek

Aip=(ATAT YA q=(A;TANA q (39
dlai=1, 2,..., 10. Rowno$¢ t¢ mozemy zapisa¢ w nastgpujacy sposéb
pl == tql

Dla wektoréw biegunowych mamy zgodnie z réown. (3.3) A;p=p oraz A;q = q,
niezmienniczo$¢ tensora biegunowego okre§la zatem warunek _
t=(ATA) =T (3.10)
Jesli wektory majg charakter rézny, na przyklad p jest osiowy, czyli (det A)A;p
= p, a q jest biegunowy, A; g = ¢, to z rown. (3.9) otrzymujemy
A;p =(detA)(A; TA)) A q
poniewaz (det A;,) = +1. Stad
1= (detA)(A; TAD) =T (3.11)
Rownanie (3.11) przedstawia prawo niezmienniczosci tensora osiowego. Ma ono t¢
sama postac co rown. (3.10), jesli wyznacznik macierzy generatora jest rowny + 1.
Prawa (3.10) i (3.11) prowadza do okreslonych zwiazkow miedzy sktadowymi
tensorow. Rozwazymy je dla wazniejszych typow generatorow.

1. Centrum symetrii i. Zastosowanie do tensora biegunowego transformacji
macierza A, prowadzi do wyniku

czyli centrum symetrii nie naklada zadnych ograniczen na skladowe tensora bieguno-
wego. Jest tak dlatego, ze geometryczny obraz tensora — kwadryka — jest zawsze
centrosymetryczny. Dodatkowa obecno$¢ tego elementu niczego nowego nie wnosi
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do symetrii kwadryki. Sze$¢ réznych i niezerowych skltadowych tensora symetry-
cznego odpowiada dokiadnie szesciu stopniom swobody kwadryki: dowolnej
dlugosci trzech osi gtownych i dowolnej ich orientacji (3 katy).

Jesli T jest tensorem osiowym, to, poniewaz (detA,) = —1, otrzymujemy z
rown. (3.11) '

A, TAT =T czyli T=0

Wynik ten oznacza, ze tensor osiowy znika w centrum symetrii. Czgsteczka
umieszczona w takim wezle nie moze powodowaé na przyktad skrecenia plaszczy-
zny polaryzacji $wiatla a symetria translacyjna powoduje, Ze nie ma tej wiasciwosci
rowniez krysztal.

2. Dwukrotna of symetrii, C%’. Dla tensora biegunowego otrzymujemy

A3TA§= O 1 O 7-'21 T22 7-‘23 O ] 0 =
00 -1 Gy Ty T 00 —1

’Tll _712 T‘I3

Gy =T T

Pod wptywem przeksztalcenia cztery skladowe zmienity znak. Tensor moze by¢
niezmienniczy wzgledem przeksztatcenia tylko wtedy, gdy sktadowe te beda rowne
zeru. Ogolng postaciq tensora biegunowego w wezle o symetrii CY jest zatem

T, 0 Tis
T=| 0 T, 0 (3.12)
Ty, 0 T3

Taka sama posta¢ bedzie mial tez tensor krysztalu posiadajacego dwukrotng o$
symetrii, rownolegla do b. Cztery rézne i niezerowe skladowe odpowiadajq czterem
stopniom swobody kwadryki w takim krysztale: dlugosci trzech osi gtownych (3
wektory) oraz orientacji osi kwadryki w plaszczyznie (010) (1 kat, por. rys. 2.11).
Poniewaz detA; = +1, ograniczenia natozone przez CY na sktadowe tensora
osiowego sa takie same. -

3. Ptaszezyzna symetrii o,. Temu operatorowi odpowiada macierz As, a
transformacja prowadzi do wyniku :

Til _T12 7—'13

As TAL = _T21 Tzz "Tza

Iy —T3; Tis
identycznego z poprzednim. Obecno$¢ plaszczyzny symetrii ¢, nie wprowadza
nowych zmian do postaci (3.12). Mozna zatem stwierdzi¢, ze postac tensora (3.12)

jest charakterystyczna dla grupy punktowej symetrii C,, pod warunkiem, ze
dwukrotna of symetrii jest rOwnolegta do y. Latwo sie przekonac, Zze zastosowanie
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CY lub o, (lub obu }acznie) prowadzi do analogicznego wyniku: musza sie
zerowaé cztery skladowe tensora, jednak inne niz w (3.12).

Prawo niezmienniczos$ci tensora osiowego latwo otrzymaé z (3.12). Poniewaz
~det A; = — 1, zerowanie si¢ sktadowych ma wilasciwos$é inwersji: znikaja te sktado-
we tensora osiowego T, ktore dla tensora biegunowego T, byly rézne od zera.
Ogoblna postacia T, przy obecnosci o, jest wigc

0 T,0
T,=| %, 0 Ty (3.13)
0 T3, 0

Nie jest prawda jednak, Zze (3.13) jest postacia charakterystyczna dla grupy
punktowej C,,. Ze wzgledu na obecno$¢ w tej grupie centrum inwersji znikaé
musza wszystkie skltadowe T,.

4. O$ symetrii C, rzedu n > 2. Rozwazmy wpierw dziatanie generatora CY 11,
okreslonego macierza Ag, na skiadowe tensora biegunowego

010 Iy i, Ti; | (001
AgTAgz 001 7}1 ’]"22 T23 100 =
100/ 7 T, Ty | \NO 10

T, T3 Ty
= T32 T33 T31
T, Tis Ty

Wynikaja stad nastepujace zwiazki miedzy T, (= Tp)
51 =T, =T =4
Ti,=T3=T,=8B

Wobec tegb w ogdlnej postaci tensora biegunowego

ABB
T=| BAB (3.14)
B B A

wystepuja tylko dwie skladowe niezalezne. Odpowiada to dwoém stopniom swobo-
dy kwadryki obrotowej wokot osi [111]. Niekonwencjonalna postaé (3.14) bierze
si¢ stad, ze trzykrotna o§ obrotu [111] nie pokrywa si¢ z. zadna z osi wspoOirzed-
nych. Mozemy jednak sprowadzi¢ (3.14) do postaci diagonalnej za pomoca odpo- -
wiednio dobranej transformacji (przyklad 3.7.7), a wtedy symetria obrotowa (3.14)
stanie si¢ bezpo$rednio widoczna. Wyznacznik macierzy Ag réwny jest + 1, przeto
(3.14) jest zarazem ogolna postacia tensora osiowego.

Symetri¢ obrotowa kwadryki mozemy otrzymac bardziej bezposrednio, wybie-
rajac jako operacje symetrii Ay; macierz ta odpowiada czterokrotnej osi symetrii o
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kierunku rownoleglym do x;. Mamy
L, - Ty T
Ao TA; = — T3y Ty —Tis
L, —T; Tis

Stad
Th1=T,=4 T3 =B
Tio=-Th=Ty cyi T,=T,=0
Tia=Ts=—-Ts3 cyli T3=T;=0
oraz
I3 =T, =0
Ogoblna posta¢ tensora jest wigc nastgpujgca
400
T=]10A40 (3.15)
0 0B

5. Inwersyjna of symetrii S,. Zastosowanie generatora A,, do tensora bieguno-
wego prowadzi do znanego juz wyniku (3.15). Do nowego rezultatu prowadzi
natomiast poddanie transformacji tensora osiowego. Korzystajac z tego, ze A;, =
—1-Ay = —A, oraz detA,, = —1, otrzymujemy

(det A1) Ao TAT, = —A, TAY
a stad warunki na zerowanie T,
By = == lgy ;=0
T,;=T54 =0 T3=T,=0

Ogolna postacia tensora osiowego w tym przypadku bedzie zatem

T, T, 0
T,=| T -1, 0 (3.16)
0 0 O

Podsumowanie analizy wplywu geometrii na postal tensora biegunowego
drugiego rzedu przedstawione jest w tab. 3.2. Obok zbioréw generatorow wymie-
nionych w wierszach, z ktérych kazdy odpowiada innej klasie krystalograficznej
(problem 3.7.1), podano posta¢ tensora w ogélnym ukladzie wspdtrzednych
X1 X, X3. Postaé ta jest charakterystyczna dla wszystkich klas okreslonego ukladu;
pewnym wyjatkiem od tej reguly sa klasy ukladu jednoskos$nego, gdzie orientacje
osi dwukrotnej wybiera sie najcze$ciej 2||x,, lecz niekiedy 2||x;. Ma to wplyw na
wskazniki tych czterech sktadowych, ktéore musza by¢ rowne zeru. W ukladach
trygonalnym, tetragonalnym i heksagonalnym wspdlna postac tensora zgodna jest
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Tabela 3.2

Postaé tensora biegunowego w poszczegdlnych ukladach krystalograficznych w ogélnym ukladzie wspél-
rzednych, x, x, x; '

Hidad Postaé LfCZba Rodzaj
krysta- Generatory S niezal. kwadrvki
logr. sklad. yia
Troéj- A, T Tho Tl3— 6 elipsoida tréjosiowa;
sko$ny A, Tis Tis brak korelacji z osiami
T krystalograficznymi
Jedno- A; (Ay) ~T1 10 T, N 4 elipsoida trojosiowa;
skos$ny As (Ag) Ty 0 jedna z osi || x, (x3)
A, +A, L T,
Rombowy| A;+A, _T, 10 0 ] 3 elipsoida trojosiowa
A +As T O z osiami || x;
A+ A3 +A, L T,
Try- Aq; A+ A, —T, 100 ] 2 elipsoida obrotowa
gonalny | A;+A;; As+A, T, 0 wokél osi xj
A; + Ak L T |
Tetra- Ag; Ajg; Ay +Ayg;
gonalny | As;+Ag; As+Ag; As+A,;
A, +A 3t A,
Heksa- Ag+A;; Ag+HAq; A, +AL+A;
gonalny | A;+A,+As; Ay+As+A;
As+Ag+A;; A, +A+HAL+A,
Regu- As+Ag; Ay +HAL+Ag; T,,0 O 1 kula
larny Ag+Ag; Ag+A T 0
A, +Az+A, T,

z polozeniem gléwnej osi symetrii: C,||x; lub S,|[x; przy #>2. W obrazie
geometrycznym kwadryka jest obrotowa wokoél x3, a jej symetria juz z natury
rzeczy obejmuje pozostale elementy symetrii. Nie ma takich cech ogélnych tensor
osiowy. Ze wzgledu na wystgpowanie czynnika (det A) = +1 w prawie niezmienni-
czo$ci, warunki zerowania si¢ skladowych T sa rézne dla roznych klas krystalogra-
ficznych w obrebie tego samego ukladu. Z tych powoddéw nie zamieszczono w tab.
3.2 standardowych postaci tensoréw osiowych.

Ogdlne prawa transformacji wielkosci fizycznych przy zmianie uktadu wspot-
rzednych zestawione sag w tab. 3.3.
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Tabela 3.3

Prawa transformacji wielkosci fizycznych

Wielko$¢ fizyczna

Xy Xy X3 = X X5 X3

x| X5 X3 = X; X3 X3

Macierz transformacji

Skalar

Wektor biegunowy
Wektor osiowy
Tensor biegunowy
Tensor osiowy

c
§=s
p=cp
p = (detc)cp
t=cTcT
t = (detc)eTe”

cl(=ch
s=5s
p=c’p
p =(detc)e’ p’
T=c"rc
T = (dete)e” ¢

Przy omawianiu symetrii grup punktowych oraz wiasciwosci wektorow biegu-
nowych i osiowych warto na zakonczenie wspomnie¢ o symetrii niektérych bryl i
wektorow, opierajac si¢ na dyskusji zamieszczonej w monografii Zetudiewa [1].

Nieruchomy cylinder posiada 0§ obrotu nieskonczonego rzedu, nieskonczenie
wiele plaszczyzn symetrii przechodzacych przez te o$ i jedna plaszczyzne symetrii
prostopadia do osi. Grupe punktowa symetrii nieruchomego cylindra mozemy
zapisa¢ w postaci co/mmm. Obrot cylindra wokoél osi symetrii oo likwiduje
wszystkie rownolegle do niej ptaszczyzny symetrii, a wiec jego grupa punktowa
bedzie co/m. Jeszcze nizsza symetrie ma cylinder skrecony wzdluz pobocznicy: c02,
poniewaz znikaja wszystkie ptaszczyzny symetrii.

Stozek nieruchomy ma symetri¢ comm, natomiast obracajacy si¢ wok6t osi —
symetrig cc.

W tej symbolice symetrie kuli mozemy oznaczyé przez oo/co/mmm, poniewaz
kazda $rednica kuli ma symetri¢ cylindra, a jest ich nieskonczenie wiele. Taka
symetrie ma w fizyce wielkos$¢ skalarna. Jesli skrecimy kule wzdluz jednej z tych
$§rednic, to symetria nowej kuli bedzie rowna oo/c02. Fizycznie twor taki odpowia-
da kuli wykonanej z oérodka skrecajacego plaszczyzng polaryzacji $wiatla, np. z
roztworu cukru w wodzie. Ponadto taksg symetrie ma tak zwana wielko$¢ pseudo-
skalarna, ktorej odpowiada figura ,,prawoskretna” lub ,lewoskretna”, zaleznie od
zwrotu skrecenia $rednicy. Znak skretno$ci zmienia si¢ na przeciwny po odbiciu
figury w zwierciadle.

Wektor polarny ma symetrie nieruchomego stozka, czyli comm. Przykladem takiej
wielkosci jest natezenie pola elektrycznego E, wektor polaryzacji krysztalu P,
dipolowy moment elektryczny p.

Wektor osiowy ma symetrie obracajgcego sie cylindra, czyli co/m. Do grupy
takich wielkosci nalezy, na przyklad, wektor natezenia pola magnetycznego H,
namagnesowania I lub momentu magnetycznego M.

Waznym pojeciem jest kierunek polarny w krysztale. Rozwazmy prosta M N, na
ktorej rozmieszczone sa atomy A i B w jednakowych odleglosciach od siebie (rys.
3.3). Odleglos¢ od A do B jest taka sama niezaleznie od tego, czy patrzymy wzdiuz
kierunku MN czy tez wzdiuz kierunku przeciwnego, NM. Jesli jednak atomy
rozmieszczone sa wzdluz M’'N’ periodycznie, lecz w niejednakowych odstepach, to
odleglosé¢ AB widziana wzdluz M’'N’ bedzie inna niz w kierunku N'M’. Kierunek
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M'N’ jest wiec polarny. Kierunki polarne w krysztale majq symetrie wektora
polarnego comm lub nizszq, tj. grupa punktowa symetrii takiego wektora moze by¢
podgrupa oomm.

Rys. 3.3. Rozklad atomoéw wzdiuz kierunku niepolarnego i polarnego

Mozliwos¢ wystapienia kierunku polarnego w krysztale zalezy od grupy punk-
towej, do ktorej nalezy krysztal. Na przykiad obecnos¢ centrum symetrii od razu
wyklucza mozliwo$¢ istnienia kierunku polarnego, ale nawet bez obecno$ci cen-
trum symetrii krysztal moze nie mie¢ wlasciwosci polarnych. Latwo dostrzec, ze
istnienie plaszczyzny symetrii lub osi dwukrotnej, prostopadiej do M'N’, jest nie
do pogodzenia z takim rozkladem atomoéw. Biorac pod uwage mozliwos¢ wysta-
pienia kierunku polarnego, mozemy podzieli¢ 32 klasy krystalograficzne na trzy
nastepujace grupy (uzyte tu symbole klas objasnione sa w problemie 3.7.1,
natomiast wyjasnienie symboli grup przestrzennych znalezé mozna w p. 3.5):

1. Klasy, ktorym odpowiadaja krysztaly o jednym tylko kierunku polarnym (o$
unipolarna). Maja one elementy symetrii zawarte w grupie punktowej symetrii
wektora polarnego lub w jego podgrupie. Mamy 10 takich klas krystalografi-
cznych, a mianowicie 1, 2, 3, 4, 6, m, mm2, 3m, 4mm, 6mm. I tak w ukladzie
trojskosnym mozemy mie¢ jedng tylko grupe przestrzenna, ktora jest catkowicie
asymetryczna: Pl. Je$li czasteczka w komorce elementarnej (Z = 1) ma moment
dipolowy p; # 0, to komoérka elementarna, a zatem i caly krysztat, bedzie wykazy-
wac spontaniczng polaryzacje P # 0 o kierunku P rownoleglym do p;. W ukiadzie
jednosko$nym jest wigcej grup przestrzennych z kierunkiem polarnym. Réznia sie
one typem centrowania lub rodzajem plaszczyzny symetrii: P2, P2,, C2 (o$
unipolarna réwnolegla do dwukrotnej osi symetrii), Pm, Pc, Cm, Cc (0$ unipolarna
lezy w plaszczyznie symetrii, lecz jej kierunek nie jest zdeterminowany przez
orientacj¢ elementéw symetrii krysztatu). Najwigcej grup przestrzennych o osi
unipolarnej, rownoleglej do osi z, mozna znalez¢ w uktadzie ortorombowym; sa to
grupy: mm2, Pmc2,, Pcc2, Pma2, Pcal2,, Pnc2, Pmn2,, Pba2y»Pna2,, Pnn2, Cmm2,
Cmc2,, Ccc2, Amm2, Abm2, Ama2, Aba2, Fmm2, Fdd2, Imm2, Iba2, Ima2. W
ukladzie tetragonalnym o$ unipolarna, rownolegla do z, wykazuja krysztaly nale-
zace do nastepujacych grup przestrzennych: P4, P4,, P4,, P4,, I4, 14,, P4mm,
Pabm, P4,nm, Pdcc, P4nc, P4, mec, P4,bc, I4mm, Idcm, 14, md, 14, cd, P4,cm.

Nieznikajacy moment elektryczny moga mie¢ wreszcie krysztaly o nastepuja-
cych grupach przestrzennych ukladu trygonalnego i heksagonalnego: P;, P3,,
P3,, R3, P3ml, P31m, P3cl, P31lc, R3m, R3¢, P6, P6,, P6,, P65, P6,, Pémm, P6cc,
P65 cm, P6;mc.

2. Klasy krystalograficzne, w ktorych wystepuje centrum symetrii, a wiec

83



krystalizujace w nich substancje nie moga wykazywac réznego od zera dipolowego
momentu elektrycznego pod nieobecno$é pola. Klas tych jest 11:1, 2/m, mmm, 4/m,
4/mmm, 3, 3/m, 6/m, 6/mmm, m3, m3m.

3. Pozostalych 11 klas: 222, 4, 422, 42m, 3/2, 6, 622, 62, 23, 432, 43m —
odpowiada krysztalom o tak zwanych wilasciwosciach polarno-obojetnych. Ewen-
tualnie wystepujace w nich kierunki polarne sa symetrycznie zaleZzne, co daje
ogblna kompensacje bez wypadkowej osi unipolarnej. Na przyklad trzy kierunki
polarne kwarcu, réwnoleglte do trzech osi C,, tworza uklad z wypadkowym
wektorem polarnym réwnym zeru.

Inny podzial cial, oparty na wprowadzeniu klas magnetycznych, nie ma
zastosowania w dziedzinie krysztaléw molekularnych. Sa one bowiem w ogromnej
wiekszoséci diamagnetykami, a tylko nieliczne z nich maja wlasciwosci paramagne-
tyczne. Czytelnika zainteresowanego wlasciwosciami klas magnetycznych odsytamy
do innych dziel, np. [2].

3.5. Symetria grup przestrzennych

Sie¢ przestrzenna jest podstawowym pojeciem w krystalografii. Powstaje ona
przez powtarzanie podstawowych wektorow sieci a, b, ¢ (oznaczanych czesto tez
przez a,, 4a,, a,), odpowiednio w trzech kierunkach przestrzeni. Wektory te moga
zawiera¢ miedzy soba katy dowolne w przedziale (90°, 180°), lecz przyjmuja
niekiedy wartosci 60°, 90° lub 120°. Powstaje w ten sposob nieskonczony zbidr
punktow wyznaczony przez zakonczenie wektorow

r=n;a,+n,a,+n;a; (3.17)

zwanych wektorami sieci (prostej); n,, n,, ny sa liczbami catkowitymi dodatnimi,
ujemnymi lub zerem. Sieé przestrzenna jest wiec tworem geometrycznym; wypel-
nienie jej materia stanowi to, co nazywamy struktura. Réwnolegto$cian zbudowa-
ny na trzech wektorach a;, z ktorych tylko dwa moga leze¢ w jednej ptaszczyZnie,
odzwierciedla symetrie sieci przestrzennej i odpowiada komorce elementarnej w
rzeczywistej strukturze krysztatu. Bravais wykazal, ze mozna skonstruowac nie
wiecej niz 14 rdéznych typow rownolegloSciandw, noszacych nazwe komorek
Bravais’go i zestawionych w tab. 3.4. Sie¢ przestrzenna mozemy wigc rozumiec
takze jako periodyczne powtarzanie w trzech kierunkach jednej z czternastu
komérek Bravais’go przy zachowaniu warunku ciasnego wypelnienia przestrzeni;
powstaje w ten sposob czternascie typdéw sieci Bravais'go. Nie wystarczaja one
jednak do utworzenia wszystkich mozliwych grup przestrzennych.

Procz komorek prymitywnych, tj. zawierajacych elementy strukturalne tylko w
narozach komorki Bravais'go, istnieja jeszcze komorki ztoZzone, zawierajace te
elementy w dodatkowych potozeniach: w srodkach scian lub w $rodku réwnoleg-
to$cianu. Mozliwe typy centrowania komorek Bravais'go podane sg w tab. 3.5.
Tabela 3.4 przedstawiona zostala skrétowo w tym sensie, ze wszystkie trzy typy
centrowania $cian zebrane sa w jednej kolumnie. W obu tabelach zastosowano
symbolike Hermanna i Mauguina.
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Tabela 34

Typy komoérek Bravais’go

]
1

X

I._Jitczba Ukdad Typ komorki Parametry
1 typy P
Komérki krystalogr. p C I s1ecl
7 . a# b #C
1:pP trojskosny . aEBAY
“F0 B jednoskosn, Rathate
(b 4) | ? ¥ a=y=90°#B
4:p, 1, C Ny L LS
(lub A4, —— a#£b+#c
lub B) ° y a=f=y=90°
iF
1:R ! 6 amb=c
4 trygonalny \’ o=f=y+#90°
0 a=b#c
1:P heksagonalny o =f=90°
. y = 120°
i : b
. ! a=b#c
2Pil tetragonalny i i_’_ € =B =y=90
i | |
3P, I F regularny i el I a=b=c

@
[ A

Wzajemne powiazania elementéw symetrii w idealnej strukturze krysztalu
wskazuja, ze procz znanych nam juz operacji, polegajacych na prostej translacji,
odbiciu w centrum lub zwierciadlanej plaszczyznie symetrii, przemieszczeniu zwy-
" kla lub inwersyjna osig obrotu, nalezy wyrdzni¢c dwa nowe elementy symetrii. Sa
nimi plaszczyzny polizgu oraz o$ srubowa. Te dwa elementy nie wystepuja w
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Tabela 35

Typy centrowania komorek Bravais'go

Oznaczenie Opis Liczba w?zlow
w komoérce
P prymitywna 1
I przestrzennie centrowana 2
C centrowane dwie Sciany (001) 2
B centrowane dwie $ciany (010) 2
A centrowane dwie Sciany (100) 2
F centrowane wszystkie $ciany 4

grupach punktowych. Grupy przestrzenne powstajq przez spojne polgczenie sieci
Bravais’go z mozliwymi typami centrowania, z operacjami grup punktowych i z
dwoma dodatkowymi elementami symetrii. Rozne sposoby polaczenia tych elemen-
tow (z wylaczeniem pieciokrotnej osi obrotu) prowadza do 230 mozliwych grup
przestrzennych.

Odbicie w plaszczyznie poslizgu sklada si¢ z dwoch operacji, wykonanych w
dowolnej kolejnosci: odbicia punktu w plaszczyznie zwierciadlanej oraz przesunig-
cia go o wektor a/2 (ptaszczyzna typu a), ¢/2 (plaszczyzna typu ¢) lub (a+b)/2
(ptaszczyzna typu n). Przyklad dzialania ptaszczyzny poslizgu typu ¢ przedstawio-
ny zostat na rys. 3.4; punkt A zostaje przeksztalcony w punkt A’ lub 4" (4" 1 A"
sa translacyjnie rownowazne).

Os Srubowa rzedu n jest elementem symetrii stanowiacym polaczenie obrotu o
kat 360°/n oraz przesunigcie o utamek m/n periodu w kierunku osi obrotu; m =1,
2,...,n—1. Zgodnie z tg nomenklatura 2, oznacza dwukrotna o$ srubowa. Jej
dzialanie polega na obrocie punktu w potozeniu ogélnym o 180° i przesunigciu go
o +3a, +1b lub +1¢ zaleznie od kierunku osi. Trzykrotne osie Srubowe moga
byé dwojakiego rodzaju: 3; i 3,. Jesli pierwsza z nich nazwiemy prawoskretnag, to
druga jest lewoskretna. Czterokrotne osie sSrubowe moga by¢ typu 4, i 4; (prawo-
i lewoskretna) oraz 4,. Dzialanie osi 4, pokazane jest na rys. 3.5. Sze$ciokrotne
osie $rubowe tworza nastepujace pary osi enancjomorficznych: 6; 1 65, 6, 1 64,
oraz 65. Rysunek 3.6 jest ilustracja mozliwych osi szeSciokrotnych; potozenia
punktéw odpowiadaja rzutowi wzdluz osi. Cyfry w koétkach oznaczaja wysokos¢

————eA
c|
2
A o—|-——-1-1
S
2 |

| .A”
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punktu nad plaszczyzna w jednostkach Lc. Szesciokrotna o$ inwersyjna, 6, ma
dzialanie analogiczne do 4. Rysunek 3.7 zawiera zestawienie wszystkich mozliwych
w grupach przestrzennych osi Srubowych oraz ich symbole graficzne.

©,

62

66

Rys. 3.5. Prawoskretna o$ Srubowa 4,

©
(D) )
@ (&)
®
6,
©
(&) @
2 ()
©
8
©
@Q (0

2]

Rys. 3.6. Mozliwe szeSciokrotne osie $rubowe

65
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Wystepowanie ptaszczyzn poslizgu oraz osi Srubowych sprawia, iz procz opera-
i . ; s m . _
cji translacji T'(r) istniejg rowniez przemieszczenia typu T (; a,-). Nie naleza one

jednak do translacji prymitywnych, objetych wektorem (3.17).
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Rys. 3.7. Osie symetrii wystgpujace w grupach przestrzennych

Oznaczenia grup przestrzennych zawieraja kilka symboli, z ktorych pierwszy
determinuje typ komorki elementarnej wedtug klasyfikacji Bravais’go: P, 4, B, C, I
lub F (tab. 3.5), oraz R. Dalsze symbole oznaczajga generatory grupy przestrzennej,
przy czym najpierw wymienia si¢ o$ giéwna, zwykle o najwyzszej krotnosci, z
podaniem jej skladowej translacyjnej, jesli jest to o§ srubowa. Pozniej nastgpuja
symbole pozostatych osi i plaszczyzn symetrii. Odstepstwo od tych zasad wystepu-
je tylko w trzech klasach uktadu regularnego: T = 23, T, = m3 oraz O, = m3m. W
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(Space group) (Space group) Point group

abbr. full symbol
P2,2,2 P2,2.2 222 orthorhombic
sl
S L,
O+ R O+ |
P =
+0O Q +O N
& o ]
Origin at 112 in plane of 2,2,
Number of positions, Coordinates of equivalent po- Conditions limiting possible
Wyckoff notation sitions reflections
4 ¢ 1 xyz, XVZ; 1+% 35—y, Z;
-x 3+p 7 hkl:
%5 No conditions
hkO:
h00: h=2n
0k0: k =2n
00/: No cond.

Special: as above, plus

0 } hkO: h+k =2n

1
2z

h 2 04z
2 a 2 00 2z

[NE e
NNy

Symmetry of special projection

(001) pgg; a' = a, (100) pmg; b'=b (010) pgm; ¢’ =¢
b'=b ¢ =c ad =u

Rys. 3.8. Przykiad informacji o grupie przestrzennej P2,2,2 (Migdzynarodowe Tabele Rentgenografii)

celu zaznaczenia prostopadlosci plaszczyzny symetrii do osi uzywa sie kreski
skos$nej. Na przyktad P2,/m oznacza grupe przestrzenna o komoérce prymitywnej,
dwukrotnej osi Srubowej i prostopadiej do niej zwierciadlanej (m) plaszczyzny
symetrii. Wykaz wszystkich mozliwych grup przestrzennych znalezé mozna w mo-
nografiach z zakresu rentgenografi strukturalnej, a ponadto w Miedzynarodowych
Tabelach Rentgenografii [3]. Podane sa tam réwniez wszystkie istotne informacje
potrzebne do ustalenia rodzaju i potozenia w przestrzeni wszystkich elementéw
symetrii, wlasciwych okreslonej grupie przestrzennej.

Dla przyktadu jedna® strona Tabel, opisujaca jedna z grup przestrzennych
uktadu ortorombowego, P2,2,2, przedstawiona jest w oryginalnej wersji na rys.
3.8. U géry w $rodku umieszczony jest petny symbol grupy przestrzennej, a z lewej
strony symbol skrécony (w tym przypadku ten sam). Z prawej strony podany jest
symbol grupy punktowej odpowiadajacej klasie krystalograficznej. Otrzymuje si¢
go z pierwszego po opuszczeniu wszystkich operacji translacji, zamianie plaszczyzn
poslizgu na ptaszczyzny zwierciadlane oraz osi Srubowych na zwykle osie obrotu.
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Pierwszy z rysunkéw ilustruje rozklad w komorce elementarnej punktéw symetry-
cznie réwnowaznych, drugi — rozklad samych elementéw symetrii. Ukltad osi
wspdlrzednych obowiazuje taki sam, jak w rzucie stereograficznym (tab. 3.1). Z
symbolu grupy wynika, ze komoérka jest prymitywna. Osie srubowe réwnolegle sa
do x i y, natomiast 0§ dwukrotna jest rownolegta do osi z uktadu wspdlrzednych.
Nalezy zwréci¢ uwage na fakt, Ze nie wszystkie osie symetrii przecinaja sie w
jednym punkcie, co zdarza si¢ w wielu grupach przestrzennych. O$ $rubowa 2, || x
przechodzi przez punkty y =% (ulamek periodu) lub y =2 i z =0, jesli przy jej
symbolu nie podano zadnej liczby. Umieszczenie przy znaku graficznym osi
ulamka, np. i, oznaczaloby, ze 0§ 2,||x przechodzi na wysokoéci z =2¢ nad
plaszczyzna rysunku. Podobnie osie 2,||y przechodza przez punkty x =% lub x
=21z = 0. Obie pary przecinaja sic w punktach [+107], [£20], [2£0]i [220]. O$
2|z przechodzi przez punkt [00] lub [30], lub [04], lub [31] plaszczyzny xy i nie
przecina zadnej z osi Srubowych. Przestrzenny rozkiad elementéw symetrii w
grupie P2,2,2 przedstawiony jest na rys. 3.9.

$ $
I s o e ol
/
e e et G S
¢ Poe ! i
| ! | :
: ! } I
| } | i
| | 1 {
| I ' I
i 8 ! L
e i s
_5'-}" '_/(: ''''' '7'{_’ - s
|- ——ﬁ/_i_._ A ——§ Rys. 39. Elementy symetrii w grupie przestrzennej
3 s P2,2,2

Jesli komorka elementarna w grupie przestrzennej P2,2,2 wypelniona jest
czasteczkami catkowicie pozbawionymi symetrii (symetria 1), to ich liczba musi
wynosi¢ cztery. Musza ponadto zajmowac potozenia ogélne, gdyz tylko te poloze-
nia sa calkowicie asymetryczne. Przypiszmy jakiemu$ atomowi czasteczki P wspot-
rzedne xyz; wskutek dzialania operacji symetrii identyczne atomy zajma w pozo-
stalych czasteczkach polozenia

21”x"’Q(%+X,%—y,2)
P(xyz)4 211ly »R(G—x, 3+, 2)
21z =>S(1—x,1—y, 2)

Dla przykladu transformacja P —Q pokazana jest na rys. 3.10. Wspdirzedne
punktéw P, Q, R, S podane sa na rys. 3.8 jako polozenia ¢ z tym, ze punkt S
zastapiono translacyjnie rownowaznym.

W grupie przestrzennej P2,2,2 krysztal moze by¢ tez zbudowany z czasteczek
posiadajacych dwukrotng 0§ symetrii (symetria 2). W takim przypadku komoérka
elementarna zawiera tylko dwie czasteczki, poniewaz istnieja tylko dwa potozenia
szczegoOlne o tej symetrii, oznaczone przez a i b na rys. 3.8. Czasteczki musza by¢
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przy tym tak zorientcwane, by ich 0§ dwukrotna pokrywata si¢ z makroskopowa
osig symetrii. Jest to ilustracja znanej zasady, ze czasteczka, zajmujaca w krysztale
okreslony punkt (wezel) o okre$lonej symetrii, musi mie¢ przynajmniej symetri¢
tego wezla.

JANR I |

Rys. 3.10. Transformacja wspotrzednych osia 2,||x

Czasami zdarza sie, ze komoérka elementarna wypelniona jest dwoma zbiorami
identycznych czasteczek. W obrebie kazdego zbioru polozenia atomow zwigzane sa
relacjami symetrii, jednak nie ma zadnego zwiazku miedzy polozeniem atomu w
jednym zbiorze i atomu w zbiorze drugim. Moéwi sig, ze oba zbiory sg symetry-
cznie niezalezne. Sytuacja taka ma znaczenie przy stosowaniu modelu gazu
zorientowanego w interpretacji wlasciwosdci fizycznych krysztatow, o czym bedzie
mowa w nastepnym rozdziale. '

3.6. Polozenia punktéw symetrycznie réwnowaznych

Polozenia atoméw w sieci przestrzennej (komorce elementarnej) winniSmy w
ogolnym przypadku odnosi¢ do ukosnokatnego (krystalograficznego) ukladu
wspolrzednych. Najczegsciej podajemy je wtedy jako wspolrzedne utamkowe, tj.
wyrazone w ulamkach periodu w kierunku trzech osi krystalograficznych a, b, c.
Postgpowanie takie nie jest jednak zbyt wygodne w licznych problemach numery-
cznych ani przy wykonywaniu rzutu struktury na okreslona plaszczyzne. Z tego
powodu najczesciej dokonuje si¢ ortogonalizacji uktadu uko$nokatnego do kartez-
janskiego i prawoskretnego ukladu wspolrzednych x; x, x;. Przedstawimy to
zagadnienie dla troj- i jednosko$nego ukladu krystalograficznego.

Grupy przestrzenne w ukladzie trojskosnym moga by¢ albo catkowicie asyme-
tryczne (jesli pomina¢ symetri¢ translacyjng), albo posiada¢ centrum symetrii. W
takim przypadku ortogonalizacji ukladu mozemy dokona¢ w zasadzie dowolnie.
Jednak najczgsciej stosowany sposob przedstawiony jest na rys. 3.11. Przyjmuje si¢
mianowicie x,|[x, x, w plaszczyznie xy oraz x; Lx;, x,. JeS$li e;, e,, e; sa
wersorami w ukladzie x; a xyz jest prawoskretny, to kryterium wilasciwego wyboru
X3 jest ey ¢ > 0. Oczywiscie, jest takze e; = e; xe,. Dla dowolnego wektora R
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mamy nastepujacy zwiazek miedzy jego wspolrzegdnymi w obu uktadach (zaklada-
my, ze poczatkiem wektora jest punkt [000], wspolny w obu ukiadach)

R=xa+yb+zc=x,¢,+x,€e,+x5€5"

X3

e 7

8 Rys. 3.11. Ortogonalizacja ukladu tréjskosnego
M

Dwustronne pomnozenie kolejno przez e;, e,, e¢; 1 uporzadkowanie wyrazéw

(szczegoly tego rachunku mozna znalezé w monografii Jeffery’ego [4]) prowadzi do
wyniku

x; = xa+ ybcosy+zccos f
X, = ybsiny+zcA (3.18)

x3 = zcB

gdzie

. .
A = ——(cosa—cos ffcosy)
siny

r . . :
B = ——(sin®a+sin? f+sin? y + 2cos a cos f cos y — 2)1/?
siny

Na podstawie znajomos$ci o, f, y, a, b, ¢ mozemy zamieni¢ ukos$nokatne i
ulamkowe wspoirzedne xyz na wspolrzedne ortogonalne x, x, x5.

Y, X2

b

Ae;

e, a X, X

e;3

Rys. 3.12. Ortogonalizacja abc* X3
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Ortogonalizacje ukladu jednoskosnego trzeba wykonaé ostrozniej. Rzecz w
tym, 1z w grupach przestrzennych tego ukladu czgsto pojawia si¢ kierunek
po$lizgu, ktory jest kierunkiem symetrycznie waznym. Nalezy wiec tak wybraé
nowe osie, by kierunek poslizgu nie ulegt zmianie, jesli tylko jest to mozliwe.

Jesli osia symetrii jest y, a kierunek poslizgu jest rownolegly do a, to ortogona-
lizujemy uklad do abc* (rys. 3.12). Orientacja nowych osi x; dana jest macierza,
wynikajaca z zastosowania rown. (3.18) przy a =y = 90°

xa yb zc
Xy 1 0 Ccos ﬁ (3193)
Xy 0 1 0
X3 0 0 sin 8

Przeksztalcenie ukladu wspolrzednych ma wowczas postac
Xy = xa+zccosf
X, =yb (3.19b)

X3 = zcsin f

X2, Y

e;

€3 8 &

c Xy

Rys. 3.13. Ortogonalizacja a* bc
X3, 2

W drugim przypadku, gdy kierunek poslizgu jest rownolegly do c¢ (rys. 3.13),
ortogonalizacji do a* bc odpowiada przeksztatcenie

X, = xasin f

X, = yb (3.20)

X3 = xacos fi+zc
W grupach przestrzennych z poélizgiem typu n, a wiec w kierunku jednej z
przekatnych $cian komorki elementarnej, nie jest mozliwa ortogonalizacja ukladu
bez naruszenia kierunku poslizgu. Jest wowczas rzecza obojetna, czy wybierzemy
uktad a*bc, czy abc* — w kazdym z nich moZna jednak latwo odnalezé nowy
kierunek poslizgu.

Na zakonczenie zajmijmy si¢ problemem analitycznego znajdywania potozen
punktéw symetrycznie rOwnowaznych, generowanych przez operacje symetrii ma-

93



jace skltadowa translacyjng, tj. os srubowa n-tego rzedu i plaszczyzne poslizgu.
Ogodlne rozwiazania tego problemu maja zastosowanie i do zwyklych osi obrotu, i
zwyktych plaszczyzn zwierciadlanych i moga by¢ przydatne w tych przypadkach,
kiedy trzeba znaleZ¢ polozenia atoméw wodoru lub ,jidealne” wspotrzedne innych
atomow czasteczki.

Rozwazmy wpierw polozenia punktéw P,, P,, P;, ..., generowanych przez
kolejne operacje osi symetrii n,, (rys. 3.14). Punkty te leza na obwodzie kola o
srodku w ', za$ o$ n,,, prostopadia do tego okregu, moze by¢ dowolnie zoriento-
wana wzgledem uktadu wspdlrzednych x; x, x;. Wybierzmy teraz pomocniczy i
zwiazany z n,, uktad xj x, x5 w taki sposob, ze x5||n,,; pozostale osic moga mieé
kierunki dowolne, lecz ustalone. Polozenia punktow P; zadane sg w x; X, X3
wektorami R;, w xij x, xj za$ wektorami r;. Wzajemna orientacje obu ukladow,
ktorych poczatki przesunigte sa o s, podaje macierz c.

X

Rys. 3.14. Generacja punktow przez of symetrii

Jeshi punkt wyjsciowy, P;, ma poloZenie ry, to pozycje P, okresla wektor r, (W
ogo6lnosci obrét mozemy stowarzyszyé z translacja)

vy = Ar;+t

gdzie A jest generatorem operacji n, o skltadowej translacyjnej t'. Potozenie m-tego
punktu okresla wektor r;,

v, =AY +(m—-1)¢ (3.21)
Poniewaz migdzy wektorami w x; 1 x; wystepuja zwiazki
Iy = CFpy r =ct
a ponadto spelniona jest réwnosé

s+r, =R,
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potozenia kolejnych punktow w x; otrzymujemy z nastepujacego réwnania, ktadac
kolejno m=1, 2,...,n

R, =cTA™ VeR, +e™ (1-A™ Dles+(m—1)t (3.22)

Oczywiscie macierz A, podobnie jak skladowa translacyjna t, jest zadana w
ukiadzie x;. Wybierajac jako A generator innej operacji symetrii, na przyklad
plaszczyzny zwierciadlanej (wtedy ¢ = 0), mozemy z rown. (3.22) otrzymac wspot-
rzedne punktow generowanych rowniez przez ten element symetrii. Warto zauwa-
zy¢, iz wystepujaca w rown. (3.22) skladowa translacyjna odnosi si¢ do ukladu x;
(nieprimowanego).

Rozwazmy obecnie dwa proste przyklady. Inne zamieszczone sa w nastepnym
paragrafie.

/ / Rys. 3.15. Generacja punktow przez o§ Srubowa
. < 2,11%,

1. Dwukrotna o$ $rubowa 2,, rownolegta do x;. W tym przypadku wybieramy
x3]]2; a ponadto (dla wygody) x[|x; 1 x5{|x,. ¢ jest wOwczas macierza jednostko-
wa, ¢ = 1. Dla uproszczenia oznaczeti skladowe wektoréw w x; oznaczaé¢ bedziemy
przez xyz. Aktualna sytuacja przedstawiona jest na rys. 3.15. Mamy

—1 1
A= -1 1-A)=2{ 1
1 0

wektory s 1 t maja za$ skladowe
s =(0 s, 0) tT =(0 0 t;)
Z rownania (3.22) otrzymujemy

R, =AR;+{1-A}s+t =

=1 x\ /1 0 0
= =1 2 1 s, |+{ 0
1/ \z 0/ \0 I3
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wspolrzedne P, wynosza zatem
Xy = —X y2=—y1+2s, Z; =2zt
W kolejnosci
R; =R, +2t
czyli wspotrzgdnymi punktu P, sa
X3 = Xy V3= z3 =2z,+213

Znalezienie wspolrzednych dalszych punktéw nie przedstawia nowych probleméw.

Rys. 3.16. Generacja punktéw przez plaszczyzne poslizgu n (010)

2. Plaszczyzna poslizgu (010) typu n, a wigc prostopadta do x, i x5 (rys. 3.16).
Wybteramy x, ||x; i xs||x; tak, ze ¢ = 1. W tym przypadku mamy

1 0

A= =1 1-A) =2 1
1 0

sT=(0s, 0) tT =(t; 01t3)
wobec tego

R,=AR, +{1-Als+t=

1 X1 0 0 t
= -1 V1 +2 1 Sy + 0
1 Z 0 0 t3

Wspoirzedne punktu P, wynosza

x2=x1+t1 y2=_y1+252 22=21+t3
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W dalszym ciagu
R; =R, +2t
czyli wspélrzgdﬂymi punktu P; sa
X3 = Xy +2t4 V3 =) Z3 =21+ 213

Dalsze punkty otrzymujemy w analogiczny sposob.

3.7. Problemy i przyklady

ProBLEM 3.7.1
Krystalograficzne grupy punktowe

Z punktu widzenia symetrii makroskopowej wielo$cianu, obejmujacej rozmie-
szczenie $cian symetrycznie rownowaznych, katow migdzy Scianami, kierunkow
symetrycznie rownowaznych itp., kazdy krysztal mozemy zaklasyfikowaé do jednej z
32 mozliwych grup punktowych symetrii, znanych jako klasy krystalograficzne. Klasy
te wraz z ich zbiorami elementéw symetrii zebrane sa w tab. 3.6. Ze wzgledu na
symetri¢ charakterystyczna klasy mozemy zgrupowaé¢ w siedem znanych ukladéw
krystalograficznych. Zbiér elementdéw symetrii potrzebnych do utworzenia wszyst-
kich klas obejmuje centrum symetrii C;, zwierciadlana plaszczyzng symetrii o,
zwykle osie obrotu C,, C,, C;, C,, C¢ oraz osie inwersyjne S;, S,, S3, S4, S¢ (lub
rownowazne im inne elementy symetrii).

Podane w kolumnie 4 elementy symetrii sa wszystkimi mozliwymi w danej
klasie elementami. Na tej podstawie mozna latwo wydedukowaé zbidr operacji
symetrii stanowiacy grupe algebraiczna, przez co tabela moze by¢ rowniez przydat-
na w zagadnieniach dotyczacych innych aspektdéw teorii grup. Na przyklad grupie
punktowej 422 odpowiada wedlug tabeli nastepujacy zbior elementéw symetrii:

Cl’ C(Zx)’ C(2y)5 C(ZZ): ’27 ,2{5 +C(42), _ng)

Poniewaz (C@)? = CY, (C¥)® =(CY)~! = —C¥, mozemy ten zbidér zapisa¢ w
konwencjonalnych oznaczeniach teorii grup

E, C4s CZ, C2’ C2x’ CZy.* ,29 C,2/

spotykanych, na przyklad, jako naglowek w tabeli charakterow grupy punktowej
422. W celu uzmystowienia sobie wzajemnego powigzania tych operacji i wydedu-
kowania polozen punktéw symetrycznie rownowaznych celowe jest postuzenie sig
rzutem stereograficznym. Pominawszy element identycznosci E, pierwsze trzy
operacje powielaja punkt w potozeniu ogélnym (oznaczony krzyzykiem) w cztery
punkty réwnowazne (rys. 3.17a). Dotaczenie osi dwukrotnych C,, i C,, powoduje
podwojenie liczby punktow, przy czym pojawiaja si¢ one po drugiej stronie
plaszczyzny rzutéw (oznaczone kotkiem). Na rzucie 3.17b widzimy, ze z obecnosci
pierwszych szesciu elementéw symetrii wynika pojawienie si¢ dalszych dwoch .osi
dwukrotnych, C; i Cj, ktore nie maja kierunku zgodnego z zadna z osi wspoirzed-
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Tabela 3.6
Elementy symetrii 32 krystalograficznych grup punktowych (krystalograficznych klas)

Uklad Symbol Klasy Liczba
krysta- mig- Schoen- Elementy symetrii elem. | Generatory
logr. dzynar. fliesa sym.
Tréj- 1 ¢, |c 1 A,
skosny T C; @, G 2 A,
)
Feae 2 c, |, C8 2 A,
skosén n C Cy, o, 2 As
¥ 2/m Cs |Ci Gy €Y, o, 4 Ay, A
sim 222 D, |Cy, Y, Yy, Cy 4 |As A
bow mm2 Cy, C,, o,, a,, C¥ 4 A, A
Y mmm Daw | Cus Ciw €3, CF, T\, 0, 5y, 0, § | Ay Ay A
3 C, Cpy £CYP 3 A,
3 Cs; Cy, G, £CY, £59 6 A, A
T 9 3i 1s is —%3 ., 193 2y 7
e 32 D, |cC., 3¢, +Cf 6 |As A
I 3m Cs | Ci, 30, £C9 6 | As A,
3m Dy, | Cy, G, 3Ch, 301, +CY, 59 12 A,, A, A,
4 Co |CiCp, £C§ 4 A
3 s, |c, c®, +s@ 4 Ao
4/m Can ¢y, G, €%, 0., £C§, +£59 8 Aj, Ay
Terago- 422 D, Gy CF, €, €9, €y Ty £ % 8 A, A,
nalny 4mm C,, c,, €9, oy, o, or, o1, +CP 8 As, Ag
2m D,y Cy. €Y, €Y €9 o) ol +59 8 Az, Ay
4/mmm Dy, C,, C, C¥, CY, ¥, ¢;, €34, a,, 16 Az, Aj, Ay
oy, 0., 0., o/, +CP, +5§
6 Ce |G CP, +CP, +C¥ 6 |As A,
6 Ca Ci, 0., £CP, £5¢ 6 Ag, A
6/m Cen ¢y, G, CY, g.; €9, 5%, 12 Ay, Ay, Ay
+C¥, +8¢
?aelk““g"' 622 Ds | Ci. C§, 3Cy, 3Cy, +C§, +CY 12 | A, A, A,
" 6mm Coo | Cy, C§, 30, 307, +C§, +CP 12 | A, As, A,
6m2 D3, C,, 3Cs, 3d,, 0, +C§, £5& 12 As, Ag, A,
6/mmm Dy Cis. Ciw 3CL, 3CY. €5, 30k 3ol 24 Ay, Az, Ay,
+CY, 0., +59, +CP, £59 A,
23 T |C,, 3C,, +4C, 12 | A, Ag
m3 T, |C,;Ci, 3Cy, 36, £4C;, +485, 24 | A,, A,, Ag
Regu- 432 0 C,, 9C,, +4C;, +3C, 24 | Ag, A
larny 43m T C,, 3C,, 6g,, +£4C;, +3S, 24 Ag, Ajo
m3m Oy Cy, C;, 9C,, 90, +4C;, 455, £3C,, 43 A, Ag, Ay
+38,
Objasnicnia:
cy — dwukrotna of symectrii o kierinku okreslonej osi ukladu wspotrzednych x, x; x5 (lub xyz):
Cy, C3 — dwukrotne osic symetrii o kicrunkich niczgodnych z osiumi x; x;x3 (np. w ukfadzic trygonalnym);
[ - plaszczyzna symetrii prostopadla do okreslonej osi:
a,., o) — pionowe pliszezyzny symetrii, rownolegle do gléwnej osi symetrii;
+ — przy osiuch o krotnosci wy7szej ni7 2 oznacza dwie mozliwe skretnosci osi.

Dwukrotna 0§ symetrii w ukladzic jednosko$nym przyjeto za réwnolegly do o 1 b (¥); konwencje w tym zakresic moga by¢ innc.
W klusach zawierajycych osic o krotnodci wy7szej niz 2 0§ o krotnosci najwyszej jest zawsze réwnolegla do osi z.



nych (rys. 3.17¢). tacznie mozemy wigc wydedukowaé 8 polozen punktow réwno-
waznych, zgodnie z rzegdem grupy 422, Podobnie podany w tabeli zbior elementdéw
grupy punktowej 6m2

Cla 3C(2, 30-1,:’ o, C(32), '—C(.’,Z), S(g)a _S(GZ)

() O &

Rys. 3.17. Ewolucja rzutu stereograficznego grupy punktowej 422

mozna zapisa¢ nastgpujaco:
E, S¢, S2, Cs, C3, 0, 3C), 30,

poniewaz S2 =(C9)%, S} =0, S¢=CP sa operacjami juz wystepujacymi w
grupie. Przy dokonywaniu generacji punktow za pomoca S¢ widzimy (rys. 3.18a),
ze pojawia si¢ element ¢,. Przez podzialanie nastgpnie trzema osiami C), zawiera-
jacymi miedzy soba kat 60° (rys. 3.18b), otrzymujemy podwojenie punktdéw do ich
ogolnej liczby 12. Jednoczes$nie z rysunku wynika, iz te operacje symetrii generuja
3 plaszczyzny symetrii typu o,,.

Rys. 3.18. Ewolucja rzutu stereograficznego grupy punktowej 6m2

Liczba elementéw symetrii w okreSlonej grupie punktowej podana jest w
kolumnie 5 tab. 3.6. Jest to jednocze$nie liczba punktdéw symetrycznie rownowa-
znych na rzucie stereograficznym. W kolumnie 6 podane sa generatory kazdej
grupy punktowe;.

ProBLEM 3.7.2
»Najlepsza” plaszczyzna

Przez zadany zbiér punktdéw poprowadzi¢ plaszczyzne w taki sposob, by suma
kwadratow odchylen tych punktéw od ptaszczyzny byla najmniejsza.
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Postawienie tego zadania ma, oczywiscie, sens wtedy, gdy skad$ wiemy, Ze
okreslona grupa atoméw winna w przyblizeniu leze¢ w jednej plaszczyZznie — na
przyklad atomy wegla pierscienia benzenowego w krysztale. Nie ma natomiast
sensu wilaczanie do tej grupy atomoéw takich, o ktorych wiadomo, ze na niej nie
leza — na przykiad atomy wodoru grupy metylowej w metylobenzenie. Rozwiaza-
nie tego problemu przedstawimy wedtlug pracy Schomakera i in. [5].

Niech a,, a,, a; przedstawiaja wektory sieci prostej, niekoniecznie ortogonal-
nej, a x{, x{?, x{> niech beda wspotrzednymi utamkowymi, 0 < |x{| < 1, jednego
z zadanych punktéw P, k=1, 2, ..., n. Punkty P,, P,,..., P, leza z pewnym
rozrzutem na plaszczyznie, ktora chcemy wyznaczy¢ (rys. 3.19). Plaszczyzneg te
okreslaja cztery parametry: trzy skladowe wektora jednostkowego m, prostopadle-
go do nigj, oraz odleglo$¢ 4 od poczatku ukladu.

X2

Rys. 3.19. Najlepsza ptaszczyzna przez punkty P,
Py, o, Py

s

Polozenie punktu P, wyznacza wektor r,
re =x{a, +x? a,+ x> a, (3.23)

Jesli przez by, b,, b; oznaczymy parametry sieci odwrotnej (por. problem 3.7.3), to
wektor normalny do plaszczyzny mozemy zapisa¢ w nastepujacy sposob (por.
problem 3.7.3):

m = ml b1+m2 b2+WI3 b3 . (324)
Wtedy odleglosé punktu P, od ptaszczyzny wyrazi si¢ wzorem

iom—d =Y xPm—d

Suma kwadratéw tych odchylen
S =Y (ry m—d? (3.25)
k

jest funkcja owych czterech parametrow i osiaga wartoé¢ minimalna przy odpo-
wiednim ich doborze. Sumowanie po k obejmuje wszystkie zadane punkty, przez
ktore zamierzamy poprowadzi¢ plaszczyzne. Warunek

oS

a=zk:(r[-m)—nd=0
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gdzie n >3 jest ogolna liczba punktéw, pozwala wyeliminowaé d, poniewaz

1
d= —Z rl-m (3.26)
Ry

Ostatnie roOwnanie mozemy zapisaé jeszcze prosciej, jesli wprowadzimy pojecie
geometrycznego srodka zbioru n punktow (centroidu). Uwazaé bedziemy, Zze zbidr
zawiera punkty odpowiadajace jednakowym atomom czasteczki, na przyklad
atomom wegla. Niech polozenie centroidu oznacza wektor <{r). Jesli nie wprowa-
dzamy wagi statystycznej, z jaka poszczegdlne punkty wchodza do rachunku, to
wektor (r) zdefiniowany jest natgpujaco: ‘

1
ry = sz‘, ¥
Wtedy
d= )T m
oraz '
S =Y — &) m)? (3.27)
k

W wyrazeniu (3.27) wystepuja wzgledne polozenia punktéw, odniesione do potoze-
nia centroidu. Oznaczmy je przez U,
Uk = "k—‘ <r> (328)

Zanim wprowadzimy U, do wyrazenia (3.27), uwzglednimy jeszcze zadanie, by
wektor m, normalny do plaszczyzny, byl wektorem jednostkowym

mm=1=3%>mmbb;=m" gm (3.29)
ij

W ostatnim wierszu wprowadzili$my macierz g, ktérej elementy sa iloczynami
skalarnymi odpowiednich par wektorow sieci odwrotnej
gij=bbj=g; (3.30)

g jest wigc macierza symetryczna, a dla sieci ortogonalnej jest macierza diagonal-
ng.

Warunek normalizacyjny (3.29) roéwniez trzeba wprowadzi¢ do wyrazenia (3.27).
Uczynimy to za pomoca mnoznika Lagrange’a A, wobec czego S przejdzie w
funkcje F parametrow my, m,, ms

F=Y(Ul-m>—2m"gm (3.31)
k
Mamy obecnie trzy warunki minimalizacji funkcji F:
% ~ S UL (UF-m)~1gy my = 0
a—amliz— = Zk: UP(UL-m)—Ag,;m; =0
5653 = S UP (UF m)—g3ym; = 0
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Te trzy réwnania mozna zapisa¢ macierzowo
B-m= jg;n (3.32

gdzie B jest macierza symetryczna o elementach

B, =Y UPUY (3.33)

k

Jezeli réwnanie (3.32) podzielimy przez 1 i pomnozymy lewostronnie przez B™, to
otrzymamy nastepujace rownanie:

B lgym= % m (3.39)
Wynika z niego, iz poszukiwane wektory m sa wektorami wlasnymi macierzy
(B~'g). Mamy trzy takie wektory m” i odpowiadajace im trzy wartosci wlasne
1/2;, i =1, 2, 3. Rozwiazanie takiego problemu byto juz dyskutowane w zwiazku z
poszukiwaniem osi gtownych tensora (por. p. 2.7).

Interpretacje 4 mozemy znalezl w nastgpujacy sposéb. Polaczenie réwnan
(3.27), (3.28) oraz (3.33) prowadzi do

S=m"Bm (3.35)

Jesli teraz pomnozymy obie strony réwn. (3.32) przez m’, to po poréwnaniu z
réwn. (3.35) otrzymamy

A=S (3.36)

Widzimy, iz kazda z trzech wartosci A; jest rbwna pewnej wartosci sumy kwadra-
téw odchylen punktow od wyznaczonej ptaszczyzny. Poszczegdlne wartosci wiasne
spetniaja warunek

)Ll «/12 $ 13

i odpowiadaja kolejno ,najlepszej”, ,S$redniej” i ,najgorszej” ptaszczyznie. Wszyst-
kie ptaszczyzny sa do siebie prostopadie i przechodza przez centroid. W interesuja-
cym nas zagadnieniu najlepszej ptaszczyzny nalezy wybraé najmniejsze 4, tj. 4.
Wobec tego rachunek kolejnych przyblizen w poszukiwaniu wektora m" nalezy
rozpocza¢ od przyjecia na wektor prébny takiej kolumny macierzy (B™'g), w
ktorej wystepuja najwieksze elementy. Dokladnej koplanarnosci punktow odpo-
wiada 4, =0.

Jesli juz znamy d oraz skladowe wektora m, to mozemy napisa¢ réwnanie
najlepszej ptaszczyzny w ukladzie wspotrzednych uko$nokatnych

my x4 m, x2+my x =d (3.37)

W celu przejscia do ortogonalnego uktadu osi trzeba przeliczy¢ ukosnokatne i
ulamkowe wspotrzedne x na wspélrzgdne ortogonalne x;, wyrazone w jakichs
jednostkach dtugosci. Przy ortogonalizacji, na przykiad, abc* mozna to uczynic za
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pomoca macierzy h, spokrewnionej z macierza (3.19a)

0a, O (3.38)

fa, 0 ascosf
h=(
.0 0 azsinf

Jesli przez R(x, x, x3) oznaczymy potozenie punktu w ukladzie ortogonalnym, to
ze zwiazku

R = hr
mozemy obliczyé
r=h"'R
gdzie
1 ct
1y _cteb
a; ay
1
h™'= 0 — 0
s
1
assin f§
W koficu otrzymujemy
my ct
my x4+ m, x4 my x® = ﬁxl +ﬂx2+( T gﬂ>x3 =d (3.39)
a, a, assin f§ a,

Druga czg$¢ rdwnania zawiera szukane wspotczynniki réwnania plaszczyzny, d jest
niezmiennikiem transformacji. Mamy zatem

net o m=l —mlzgﬁ (3:40)
Rownaniem plaszczyzny czasteczki w ukladzie abc* jest wiec
Ny Xy +ny X, +h3x3 =d (341)
a wektor
NT = (ny, n,, ns) (342

jest wektorem jednostkowym 1 normalnym do tej plaszczyzny, a zarazem do
plaszczyzny czasteczki.

W analogiczny sposdéb mozemy wyznaczy¢ kierunek drugiej osi czasteczki, np.
M. Bedzie to wektor lezacy w plaszczyznie (3.41) i jednoczesnie prostopadly do
»najgorszej” plaszczyzny poprowadzonej przez zbior punktdéw. Aby go znalezé,
trzeba wybra¢ w macierzy (B™'g)”' kolumne o najwiekszych elementach i wyko-
na¢ znany juz rachunek od réwn. (3.34) poczawszy. Postegpowanie takie mozemy
- zastosowa¢ wtedy, gdy wyznacznik macierzy (B™'g) jest rozny od zera. Jesli

103



jednak det(B~'g) < 107° (co si¢ czesto zdarza, gdy punkty sa dostatecznie bliskie
plaszczyzny), to rachunku prowadzi¢ nie mozna, a M trzeba znalez¢ inna metoda.

Rozsadna wydaje sie w tej sytuacji nastgpujaca propozycja. Postugujac sie
wspétrzednymi ortogonalnymi, obliczamy orientacje kilku wektoréw g; o kierunku
mozliwie zblizonym do M i lgczacych odpowiednie pary atomdéw w czasteczce, a
.nastepnie obliczamy S$redni kierunek

W= n | (3.43)

Tak znaleziony wektor (u) nie spetnia na ogét warunkéw ortonormalnosci, wobec
tego wprowadzamy poprawki &;, na ktore nakladamy nastepujace warunki: nor-
malizujemy skorygowany wektor do jednosci, zadamy Scislej ortogonalnosci do N
oraz zadamy, by suma poprawek byla réwna zeru

3
Z (62j+5j)2 =1
j=1
3
Y (caj+6)cs;=0 (3.44)
J

j
cy; sa kosinusami kierunkowymi M.
Jesdli zastosuje si¢ przyblizenie

(c2;+6)* = c3;+2¢,,6; (3.45)
J J J J 77

to uktad (3.44) jest ukladem trzech réwnan liniowych wzgledem ¢;. Bardziej
szczegOtowe omowienie tego problemu mozna znalezé w przykiadzie 3.7.9.
Trzecia o$ czasteczki znajdujemy z iloczynu wektorowego

L=MxN

ProsrLeEM 3.7.3
Sie¢ odwrotna

- Kazda strukture krysztatu idealnego mozna zbudowaé przez wypelnienie mate-
rig sieci skonstruowanej za pomoca periodycznego powtarzania w trzech kierun-
kach przestrzeni pewnej jednostki strukturalnej, zwanej komorka elementarna.
Komorka ta jest rownolegloscianem zbudowanym na trzech wektorach a,, a,, a;,
nie lezacych w jednej plaszczyznie. Przy ciasnym zapetnieniu przestrzeni komorka-
mi elementarnymi ich naroza tworza tréjperiodyczny zbidr punktéw, zwany siecia
prosta danej struktury. Te sama sie¢ otrzymamy réwniez jako zbior koncow
wektora

r = nl a1+n2 a2+n3 a3
jezeli ny, n,, ny przebiega¢ beda zbidr catkowitych liczb dodatnich, ujemnych i zer.

Mozna zatem powiedzie¢, ze wowczas wektor r generuje sie¢ prostq krysztalu.
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Objetos¢ komorki elementarnej sieci prostej dana jest iloczynem mieszanym
wektorow a

Vo= a,(ay xa3) - (3496

Pojecie sieci prostej jest nieodzowne w geometrycznym opisie struktury. Stano-
wi ona bowiem zgodny z symetria struktury ukiad wspéirzednych, do ktérego
odnosimy polozenia atomow. W dalszych rozwazaniach pominiemy ruch termi-
czny, tj. bedziemy uwaza¢ atomy za nieruchome.

Okazuje sig, ze zastosowanie pojecia sieci prostej do przedstawienia niektorych
zjawisk w krysztatach prowadzi do zaleznosci zbyt skomplikowanych, nie oddaja-
cych przy tym istoty zagadnienia. Do tych zjawisk naleza przede wszystkim
problemy zwigzane z rozchodzeniem si¢ fal w krysztalach i ich rozpraszaniem.
Podobnie jak dla geometrycznego opisu struktury naturalnym punktem odniesie-
nia jest sie¢ prosta, tak naturalng baza dla opisu zjawisk fizycznych jest sie¢
odwrotna. Pojecie sieci odwrotnej przydatne jest w analizie zjawisk falowych
niezaleznie od tego, czy mamy do czynienia z fala elektromagnetyczna, fala
sprezysta, czy tez z fala sprzgzona z ruchem w krysztale takiej czastki, jak elektron
lub neutron. Moze by¢ wigc zastosowane zarowno w opisie dyfrakcji promieniowa-
nia rentgenowskiego, jak i dyfrakcji elektrondéw i neutrondw; potrzebne jest w
badaniach zjawiska przewodzenia pradu elektrycznego, jak i termicznych ruchow
czasteczek. Sprecyzujemy obecnie pojecie sieci odwrotnej, a nastgpnie przedstawi-
my jej proste zastosowania.

Sie¢ odwrotna mozna zdefiniowa¢ za pomoca trzech wektorow, b,, b,, bs,
stanowiacych jej baz¢. Wektory te definiujemy tak, by bylo

a-b, =0, (3.47)

gdzie §;; jest symbolem Kroneckera. Korzystajac z tej definicji oraz z wyraZenia na
objetos¢ komorki elementarnej (3.46), mozna otrzymaé wyrazenia pozwalajace na
obliczenie b;. Na przyklad dla i =j =2 otrzymujemy

1
a,'b, =1 =T/—a2(a3 X ay)

a

Stad

b, = i(a3 X ay) (3.48)

Va
Wektor b, sieci odwrotnej, o dlugosci podanej przez réwn. (3.48), jest prostopadly
do plaszczyzny a,, a; sieci prostej, a wigc do plaszczyzny (010). Latwo sig
przekonaé, ze b; L(100) oraz b; 1(001). Zauwazmy, ze wskaznik ,i” przy b;
odpowiada niezerowemu wskaznikowi Millera w symbolu plaszczyzny, co nie jest
przypadkowe. Wzory (3.46) i (3.48) sa symetryczne wzgiedem obu baz, a wigc na

przyklad

1
a; = '17(1’1 xb,)
b
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gdzie V} jest objetoscia komorki sieci odwrotnej
Vo = by (b xb3) (3.49)

Jesli a,, a,, a; sa baza sieci ortogonélnej, to rowniez b, b,, b; stanowia baze
sieci ortogonalnej. W takim przypadku

1
o =T
oraz b; 1 ;. W nieortogonalnych ukladach wspdlrzednych do obliczenia b; trzeba
korzystaé¢ z definicji lub wzoréw trygonometrycznych, podawanych w podreczni-
kach rentgenografii i krystalografi. W najogélniejszym przypadku nie ma takze
prostych relacji miedzy katami f;, f,, f3 sieci prostej 1 katami ¥, p%, B%,
zawartymi miedzy wektorami b;.

Podobnie jak wektor w sieci prostej r mozna tez zdefiniowaé wektor H w sieci

odwrotnej

lub prosciej

H="hy b +hyb,+h3bs (3.51)

Réwniez i tutaj h, k, [ lub hy, h,, hy stanowig trojke liczb catkowitych dodatnich,
ujemnych a niektore (lub wszystkie) moga tez by¢ zerami. Mozna uwazaé, ze sied
odwrotna jest zdefiniowana przez trdjperiodyczny zbiér punktdéw stanowiacych
zakonczenie wektorow (3.51).

Nieprzypadkowo uzyto w réwn. (3.50) liter h, k, | oznaczajacych wskazniki
Millera plaszczyzny w sieci prostej. Wektor H (hkl) ma bowiem dwie podstawowe
wlasciwosci

1. Kazdy wektor sieci odwrotnej H (hkl) jest prostopadly do rodziny ptaszczyzn
rownolegtych o wskaznikach (hkl) w sieci proste;j.

2. Dlugosé wektora H(hkl) jest rowna odwrotnosci odleglosci miedzy dwiema
sasiednimi plaszczyznami zbioru (hkl)

1
|H (hkl)) = —— (3.52)

hkl

W ten sposob nieskonczony zbior nieskonczonych plaszczyzn w sieci prostej, (hkl),
(2h, 2k, 21), (—5h, —Sk, —5I), ... reprezentowany jest w sieci odwrotnej tylko jed-
nym punktem. Dowody obu twierdzen mozna znalezé w podrecznikach rentge-
nografii. Nie bedziemy ich tu przytaczali, zajmiemy si¢ natomiast prostymi zasto-
sowaniami.

Bezposrednie wykorzystanie rown. (3.52) prowadzi do przejrzystego i najszyb-
szego obliczenia odlegtosci miedzy dwiema sasiednimi plaszczyznami rodziny (hkl),
bez potrzeby uciekania sie do zawilej trygonometrii. Wystarczy w tym celu
policzy¢ iloczyn skalarny H:H, ktory réwny jest kwadratowi odwrotnosci szuka-
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nego odstepu. Na przyklad w sieci ortorombowe;j
1 W2 k2 2\U2
———— H s 1/2 = (—+— - .
dir (HH) a a§+a§

PrzejdZzmy obecnie do opisu dyfrakcji promieniowania rentgenowskiego na
krysztalach. Bedziemy si¢ interesowac odbiciem fali monochromatycznej o dtugoéci
A od zbioru plaszczyzn o odstgpach d, (rys. 3.20), spelniajacym prawo Braggéw

) Zdhk, Sln9 = nl (3.53)

(s—s5)=6

dhkl 0

Rys. 3.20. Zwigzek migdzy wektorami s,, s i G w konfiguracji odbicia wiazki monochromatycznego
promieniowania rentgenowskiego

przy czym 0 jest katem odblysku, za§ n =1, 2, ... rzedem interferencji. Przyjmiemy
dalej, jak to si¢ czesto czyni, ze hkl nie musza byé liczbami wzgledem siebie
pierwszymi, w réwn. (3.53) mozna zatem n pominaé. Zjawisko dyfrakcji odpowia-
dajace prawu Braggéw mozna tez interpretowaé jako spdjne i sprezyste rozprasza-
nie fotonéw, zachodzace bez zmiany diugosci fali po rozproszeniu. Wprowadzmy
dwa wektory s i s, o diugosci

1
=|f == 3.54
5ol =18l = (354

przy czym s, jest normalny do czola fali padajacej, s do czota fali rozproszone;.
Kat miedzy nimi wynosi 20 (rys. 3.20), zatem

1
So° S =/1—2c0529

Wektor
s—5 =G (3.55)

nosi nazwe wektora rozproszenia. Latwo Zobaczyc’, ze G jest normalny do zbioru
plaszczyzn odbijajacych (rys. 3.20). Ponadto

1
G G =s*+5s5—2ss, = F(l —cos 20) = 4sin? /A%

a zatem
(G-G)Y? = 2sin /A
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Jesli zastosujemy teraz warunek Braggoéw (3.53) z pominigciem n, to otrzymamy

1
e LI
=

czyli
G=H (3.56)

Otrzymujemy w ten sposdb bardzo prosty i przejrzysty warunek na pojawienie sie
refleksu wiazki promieniowania rentgenowskiego o dlugosci fali A od zbioru
ptaszczyzn (hkl): wystapi on wtedy, gdy wektor rozproszenia rowny bedzie jakiemu-
kolwiek wektorowi sieci odwrotnej. Warunek ten jest ogOlniejszy od prawa Brag-
gow, zawiera bowiem explicite réwniez kierunek wiazki rozproszonej.

S S
\L/)j H (201 / Rys. 3.21. Przekroj kuli Ewalda plaszczyzna
[ W / sieci odwrotnej b, b,, ilustrujacy warunek
odbicia

- Opisywana sytuacja moze by¢ rozwinigta za pomoca pojecia noszacego nazwe
kuli Ewalda (rys. 3.21). Na plaszczyznie sieci odwrotnej b;, b, narysowano okrag o

1
promieniu |r¥| =57 =|s| = |sy| ze $rodkiem w O, czyli przekrdj kuli Ewalda ta

plaszczyzna. Warunek odbicia spelniaja tylko te zbiory plaszczyzn, dla ktérych
reprezentujgce je w sieci odwrotnej punkty znajda si¢ na powierzchni kuli. Tylko
bowiem dla takich wezléw spelniony jest warunek

s—so=H

Na rysunku 3.21 znalazl si¢ na powierzchni kuli wezel (20)) i tylko ten zbidr
plaszczyzn moze si¢ znalez¢ w pozycji odbijajacej, jesli nic wigcej si¢ nie zdarzy, tj.
jesli fala jest monochromatyczna a plaszczyzna sieci odwrotnej by, b, jest nieru-
choma wzgledem kuli Ewalda. Przy odrobinie innej orientacji plaszczyzny sieci
odwrotnej wzgledem kuli Ewalda w ogdle zaden z wezlow nie znalazilby si¢ na
powierzchni kuli, czyli w pozycji odbijajacej. Sytuacja zmienia si¢ jednak, gdy
zaczniemy obracaé plaszczyzne sieci odwrotnej wokol punktu O (poczatek) przy
nieruchomej kuli, co odpowiada obrotowi krysztalu woko6t prostej przechodzacej
przez O i1 normalnej do plaszczyzny rysunku. Na powierzchni kuli moga teraz
znalezé sie wezty (10), (11D, (12)), ..., oznaczone czarnymi kétkami na rys. 3.21.
Widoczne sa réwniez ograniczenia zbioru reflekséw: na powierzchni kuli nie moze
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znalez¢ sie Zzaden wezel sieci odwrotnej, ktorego odlegloé¢ od poczatku -jest
wieksza od $rednicy kuli Ewalda. Rozwiniecie tego rozumowania pozwala tatwo
zrozumie¢ strukture zbioru refleksow, powstajacych przy obracaniu czy kolysaniu
krysztalu. Réwnie prosto mozna interpretowaé wyniki zastosowania metody Laue-
go, jesii uzmystowimy sobie, Ze cigglemu widmu promieniowania w pewnym
zakresie diugosci fal odpowiadaé bedzie w sieci odwrotnej warstwa kulista w
pewnym przedziale $rednic.

Warto zauwazyé, ze definicje (3.54) uzywane sa zwykle w dyfrakcji promienio-
wania rentgenowskiego. W fizyce ciala statego korzysta si¢ raczej z definicji
wektora falowego k

k =2ns (3.57)
tak Ze wektor rozproszenia Q jest rowny
0 =k—k, (3.58)
Wobec tego warunek (3.56) ma analogiczng postacd
' Q= 2nH (3.59)

Pojecie sieci odwrotnej oddaje réwniez cenne ustugi w reprezentacji ruchu
falowego w sieci krystalicznej. Do najczeéciej spotykanych zastosowan nalezy
przedstawienie standéw fali stojacej w roéwnolegloscianie o skonczonej objetosci,
ktory rozmiarami odpowiada wielkosci krysztalu. Jak wiadomo, stan fali stojacej
moze si¢ wytworzyC w strukturze periodycznej wtedy, gdy ptaszczyzny weziow fali
pokrywaja sie z jakimi$ ptaszczyznami sieci prostej, przy czym plaszczyzny weziow

(100)

Rys. 3.22. Dwa (z wielu mozliwych) stany fali stojacej
w sieci prostej (ortogonalnej) przy wektorze falowym
Il a,

=a1

NN
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musza sie tez wytworzy¢ na zewnegtrznych $cianach krysztalu. Warunek ten
limituje dopuszczalne wartosci dlugosci fali ruchu falowego, 1 staje si¢ zatem
wielko$cia nieciagla. Dwa mozliwe (sposrdd bardzo wielu) ciagi falowe przedsta-
wione sa na rys. 3.22.

Wybierzmy dla uproszczenia rozwazan sie¢ ortogonalna o wektorach bazy a,,
a,, ay oraz rownolegloscian o krawedziach N, a,, N, a,, N3 as, przy czym N; sa
duzymi liczbami naturalnymi. Jesli interesujemy si¢ ciggami falowymi o wektorze
k||a,, to warunek wytworzenia si¢ stacjonarnej fali stojacej orzeka, Ze najmniejsza
dtugo$¢ fali moze wynosi¢ A../2 =a,, czyli 1., = 2a,. Odpowiada jej wektor
falowy o dlugosci

m

kmax = 2n/j‘min = nbl

Z drugiej strony, stan fali stojacej o najwigkszej dlugosci fali spelnia warunek
Ama/2 = Ny aq, czyli

Jesli zatem rozwazamy ruch falowy taki, ze normalna do plaszczyzny jednakowej
fazy jest rownolegta do kierunku krystalograficznego a,, to moga si¢ wytworzy¢
stany fali stojacej o wektorze falowym

n
k = NIT nh, (3.60)

gdzie 1 €< n; < N,. Tym mozliwym stanom odpowiada w sieci odwrotnej zbidr
punktow o potozeniach nb,/N,, 2rb,/N,, ..., nb;. Reprezentacja w sieci odwrot-
nej dwodch ciagéw falowych z rys. 3.22 jest przedstawiona na rys. 3.23. Poniewaz

010}
2xb,
wb,
1 « . .
3 Km ‘m 100} Rys. 3.23. Reprezentacja w sieci odwrotnej fal
0,0 b, 2zth, : stojacych z rys. 3.22

'N; sa liczbami bardzo duzymi (rzedu 10%°), wszystkie mozliwe stany fali stojacej .
reprezentuje w rezultacie quasi-ciagly zbiér punktow. Tym sposobem opisuje si¢
fale sprezyste w krysztatach i ruch termiczny atomow.
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PprzyktaDp 3.7.4
Analiza elementow symetrii

Postugujac si¢ tabela generatoréw 3.1 wykazaé, ze C41! jest ztozonym elemen-
tem symetrii.

Z rysunku 3.1 wynika, ze elementowi C{{!! odpowiada przeksztalcenie wspot-

rzednych xj = x5, x> = —X;, X3 = —X,, czyli macierz B
0 01
B= (——1 00
0-10

Prébujemy roztozyé B na iloczyn X-Ag, gdzie X jest macierza nieznana. Mamy

0 01) /00T 01 0
X=B-A8‘1=B-A§=(—l 0oo0){1o0)={ 00 -1
0-10/\ot1o/ \-10 o

Poniewaz X nie odpowiada Zadnemu z generatoréw, piszemy dalej

X=Y o, =Y A,
Stad
01 O 1 00 0 -1 0
Y=X-AT=< 00 -1 (0 —-10 =( 0 0 -1 ])=A4-A,
-10 0 0 01 -1 0 0

zatem

B=A8A2A5A8 =A8A3A8

Nie jest to jedyny sposdb rozkiadu B. Latwo to dostrzec, jesli napiszemy, jak
poprzednio, B = XAg, lecz tym razem uwaza¢ bedziemy, ze macierz X da si¢
przedstawi¢ w postaci iloczynu nieznanej operacji Y z powtdérzong operacja Ag.
Mamy obecnie X = YAy, czyli

1
Y=XA8T=( —1  |=A5A,
1

Jako druga mozliwo$¢ rozkladu mamy wigc

B = (A3 A4)(As As)
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Przykrap 3.7.5
Wplyw symetrii na posta¢ wektora

Jakie ograniczenie naklada na wektor biegunowy trzykrotna o$ symetrii C§'111?

Poniewaz
-1 1 0
Ag—1= 0 -1 1
1 0 -1
wobec tego
—D1+Dp;
As—1ip=| —pytps |=0
D1 — D3,

Wynika stad, ze p;, = p, = p;. Wektor p ma wiec kosinusy kierunkowe {1/\/5,
1/\5, 1/\/5} takie same, jak CY''Y czyli jest réwnolegty do osi symetrii.

Przykiap 3.7.6
Wplyw symetrii na posta¢ wektora

Jakie sa ograniczenia nakladane na wektor biegunowy przez plaszczyzne
symetrii potowiaca kat x,, x, i rownolegla do x;?

Plaszczyznie takiej odpowiada macierz transformacji

010
A={100
001
Réwnosé
—1 10 P1 —p1+D2
A-1ip=| 1 -10])|{p]=| pi—p|=0
0 00/ \ps 0

narzuca warunki p; = p,, p3 # 0. Plaszczyzna symetrii dopuszcza wiec wektor p”
=(p1 D1 p3), lezacy na tej plaszczyznie.

Przyk:aDp 3.7.7
Wpltyw symetrii na posta¢ wektora

Jakie ograniczenia naklada na wektor osiowy plaszczyzna symetrii (110)?

Slad tej ptaszczyzny na x; x, przechodzi przez punkty [100] i [010]. Na
rysunku 3.24 zaznaczono plaszczyzne rownolegla do niej i przechodzaca przez
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poczatek ukladu. Transformacji punktu xj = —x,, x3, = —x;, x5 = x3 odpowiada
macierz '

0-10
A=} -1 00
0 01

I
I
E (o),
I P
LS
L A
b Ps
N / ! X,
' l
/- |
/’/ Pl p
Rys. 3.24. Ograniczenia nakladane na wektor p przez
X plaszczyzng symetrii (110)

Zgodnie z warunkiem niezmienniczoséci (3.5) mamy

I -1 0 'I’1 P1— D2
— ) -k 10 p2 |=| —p1tp, |=0
0 02 D3 2[73

Stad p; = p,, p3 = 0. Wektor p” = (p; p; 0) jest prostopadly do (110).

Przykirap 3.7.8
Osie glowne tensora

Mamy dany tensor
ABB
"T=| B AB
BB A
Nalezy go sprowadzi¢ do ukladu osi gtdéwnych.

W tym przypadku wiadomo, ze jedna z osi gtéwnych jest x3||[111], pozostaty-
mi sa xj L x5 1x5. Przejscie od ukladu x; x, x; do x} x) x5 moze byé dokonane
za pomoca dwoch kolejnych przeksztalcen (rys. 8.25):

1. Obrét o kat 45° wokoét x,, ktéremu odpowiada macierz ¢,

1 0 0
e =012 -1./2
012 12
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X3 x5 Rys. 3.25. Schemat transformacji x;x,x;

/fxl = XY x5 x5 = x| xh x5
3

cos™(2/V8)
45°

cos™(2/VB)

/ 45° ¥
4
i "
X1 Xy \ X3, X3

%
2. Obrot wokot osi x5 o kat ¢ taki, ze cosp = 2/w/8- Zwiazek miedzy x| 1 x;

przedstawia macierz ¢,
2./6 0 —1/./3
0 1 0

1//3 0 2//6

Zatem przejScie od ukladu x; do x; okresla macierz a taka, Ze

26 —1//6 —1/./6
a=¢,'c; = 0 1/\/5 —1/\/5
Y3 US31S3

Macierz ta powinna sprowadzi¢ T do postaci diagonalnej. Istotnie

26 —1/6 —J6\[aBB|[ 2J/6 0 1.3
aTa™=| o 12 -2 ||BAaB || -1/ 12 3=
/3 U3 u3 /LB B AN /6 ~1//2 13
A-B 0 0o
=l 0 4-B 0 (3.61)
0 0 A+2B

CZ=

Wynik tej transformacji dowodzi, Zze obrazem tensora w krysztale, w ktorym
wystepuje trojkrotna o$ obrotu o kierunku [1117, jest kwadryka obrotowa wokot
tej osi.
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Przvkrap 3.7.9
Rownanie - plaszczyzny czasteczki antracenu

Dane sa wspolrzedne utamkowe atomow wegla czasteczki antracenu w kryszta-
le w dwéch temperaturach: 290 1 95 K. Znalez¢ réwnanie plaszczyzny przechodza-
cej przez te atomy w obu temperaturach oraz orientacj¢ normalnej do tych
ptaszczyzn w ukladzie abc*.

Antracen krystalizuje w ukladzie jednoskosnym, grupa przestrzenna P2,/a.
Komoérka elementarna ma parametry podane dla obu temperatur w tab. 3.7 1 jest
wypetniona dwiema czasteczkami. Zajmuja one potozenia szczegdlne o symetrii C;,
wobec czego wystarczy podac polozenia polowy atomoéw (tab. 3.8 i 3.9). Wspol-
rzedne ortogonalne obliczone zostaly z wspolrzednych ulamkowych, zaczerpnig-
tych z pracy Masona [6]. Numeracj¢ atomoéw wegla i orientacj¢ osi symetrii
przedstawiono na rys. 3.26. Rozwigzanie problemu zaczniemy od znalezienia
normalnej N do plaszczyzny czasteczki, nastepnie poszukamy orientacji pozosta-

tych osi symetrii, L i M.
Tabela 3.7
Parametry sieci prostej antracenu (q;, ) [6] i sieci odwrotnej
(b, B*)
Temperatura
Parametr
290 K 95 K
a,, nm 0,8562 £+ 0,0006 0,8443 40,0006
a, nm 0,6038 +0,0008 0,6002 + 0,0007
¢y, nm 1,1184 +0,0008 1,1124 40,0008
f, stopien 124,7+0,1 125,6+0,1
by, nm™! 1,4206 1,4567
by, nm™! 1,6562 1,6661
by, nm™! 1,0876 1,1056
p*, stopien 55,3 544

Tabela 3.8

Wspélrzedne ulamkowe i ortogonalne atoméw wegla czasteczki antracetu w krysztale w

temp. 290 K (na podstawie danych z pracy [6])

Atom Wspotrzedne utamkowe Wspdirzedne ortogonalne, nm
A 0,08728 0,02712 0,36562 —0,15805 0,01638 0,33618
B 0,11875 0,15775 0,28072 —-0,07706 0,09525 0,25812
C 0,05864 0,08030 0,13816 —0,03776 0,04848 0,12704
D 0,08786 0,20936 0,04738 0,04506 0,12641 0,04356
E 0,03038 0,13067 —0,08990 0,08325 0,07890 —0,08266
F 0,06055 0,25943 —0,18346 0,16865 0,15663 —0,16869
G 0,00336 0,18060 —0,31659 0,20444 0,10905 —0,29100
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Tabela 3.9

Wspblrzedne ulamkowe i ortogonalne atoméw wegla czasteczki antracenu w krysztale w
temp. 95 K (na podstawie danych z pracy [6])

Atom Wspolrzedne ulamkowe Wspolrzedne ortogonalne, nm
A 0,08617 0,02613 0,36813 —0,16563 0,01568 0,33297
B 0,11793 0,15850 0,28352 —0,08403 0,09513 0,25644
C 0,05886 0,07899 0,14027 —-0,04114 0,04741 0,12687
D 0,08783 0,20916 0,05076 0,04128 0,12554 0,04591
E —0,03011 —0,13488 0,08974 0,08353 0,08096 —0,08117
F —0,06123 —0,26634 0,18215 0,16965 0,15986 —0,16475
G -0,00391 -0,18761 0,31834 0,20944 0,11260 —0,28794

Rys. 3.26. Szkielet weglowy czasteczki antracenu z ozna-
czeniem atomow i osi symetrii LMN

Wychodzac z wspolrzednych ulamkowych obliczamy wpierw macierze B i1 g
wedlug definicji (3.33) oraz (3.30). W temperaturze 290 K otrzymujemy (ze wzglgdu
na malg warto$¢ wyznacznikéw rachunek trzeba prowadzi¢ z dokladnoscia do
szostego miejsca)

7,495585 12,897612 12,521582
10’°B = 12,8397612 38,579036 —8,261099
12,521582 —8,261099 75,156706

2018161 0 0879543
g = 0 2742932 0
0879543 0  1,182787

Poniewaz det (B) = 2,3912-107 ¢ jest rézny od zera, mozemy obliczy¢ B!
1184,02 —448,64 — 246,58
1072B° ! = 170,02 93,43

51,36
oraz

217266 —123059 74974
B 'g)=| —82325 46635 —28409
—45246 25627 —15613
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Szukajac wektoréw wiasnych macierzy (B™!g), wybieramy jako zerowe przyblize-
nie kolumne o najwiekszych elementach. Jest nia

217266
0o =1 —82325
—45246
Nastepnie obliczamy pierwsze przyblizenie
5,39431
0. =B 1g)g, = | —2,04403 ]-10'°
—-1,12337 7
Jezeli podzielimy sktadowe ¢, przez analogiczne skladowe g,, to otrzymamy
248281
248287
248281

Skladowe te réznig si¢ migdzy soba tak niewiele, ze @, mozemy uznaé za
wystarczajaco dobre przyblizenie m), a $rednia wartos¢ 248 283 jako warto$é
wlasna 1/A'M. Stad

AN =4,027-10"° nm?

Liczba ta przedstawia sume¢ kwadratow odchylen atomow od plaszczyzny. Po
znormalizowaniu g, :

ol go;, = 61,018540-10%° = f S =17811436-10'°
otrzymujemy wektor m
m” = (0,69056 —0,26167 —0,14381)
tak Ze réwnanie ptaszczyzny calej czasteczki we wspotrzednych uko$nokatnych ma
postaé .
0,69056xV —0,26167x? —0,14381x» = 0

Dla sprawdzenia tego réwnania policzmy odchylenia atoméw wegla oraz ich
kwadraty. Otrzymujemy

A B C D E F G
5-10° 060 036 —-039 —092 —028 031 059 nm
6?-105 0355 0126 0149 0854 0081 0097 0350 nm?

2% 67 =4,024-1076 = § = A®

Zgodno$¢ obu wartoéci AV jest zupelnie zadowalajaca.
Podstawienie m,;, a; oraz f§ do réwn. (3.40) pozwala napisa¢ réwnanie plaszczy-
zny czasteczki (w temp. 290 K) we wspdirzednych ortogonalnych

0,80654x, —0,43337x, +0,40207x; = 0
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Wektor
NT =(0,80654 —0,43337 0,40207)

jest normalny do tej plaszczyzny.

W celu znalezienia drugiego wektora wlasnego, M, nie mozemy odwrdcié
macierzy (B~ ' g) i ponownie skorzystaé z rachunku kolejnych przyblizen, poniewaz
wyznacznik tej macierzy jest roOwny zeru. Wobec tego wybieramy zbior wektoréw
AG', BF', ..., w przyblizeniu roéwnoleglych do M, i obliczamy sredni kierunek

W'y =(—0,3234 —0,8922 —0,3151)

Korekta do Scistej ortonormalnosci z N poprzez nalozenie warunkéw (3.44) [z
uwzglednieniem przyblizenia (3.45)] prowadzi do poprawek

8, =201-10"° 8,=—6-1073 83 = —195-1073

Po ich wprowadzeniu otrzymujemy
MT =(-0,32143 —0,89230 —0,31701)
W koncu
L™ =(—049615 —0,12644 0,85897)

Pelna orientacja osi LMN czasteczki antracenu w ukladzie abc* podana jest dla
temp. 290 K w tab. 3.10.

Tabela 3.10

Orientacja osi LM N czasteczki antracenu wzgle-
dem ortogonalnych osi krysztalu abc* (temp.

290 K)
Os a b- c*
L —0,49615 -0,12644 0,85897
M | —032143 —0,89230 -0,31701
N 0,80654 —0,43337 0,40207

Wyniki te rdznig si¢ nieco od podanych przez Masona, co jest spowodowane
zapewne trochg inna procedura aproksymacyjna. Najlatwiej okresli¢ precyzje
przyblizenia za pomoca normalnej N, poniewaz dla atomu ,,i” lezacego dokladnie
na plaszczyznie R;- N = 0. Jako precyzj¢ wyznaczenia rownania plaszczyzny moze-
my zatem przyja¢ blad standardowy

> (R-N?) o

T (3.62)

On =
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przy czym n jest liczba atomow. Otrzymujemy dla temp. 290 K

N (Mason) oy = +8,6-107%

N (niniejsze obliczenia) oy=+15-10"%
Na tej podstawie wyniki przytoczone w tab. 3.10 moZna uwazal za trochg
dokladniejsze.

Podobna procedura, zastosowana do danych krysztalu dla temp. 95 K, prowa-
dzi do wynikoéw zamieszczonych w tab. 3.11.

Tabela 3.11

Orientacja osi LMN czasteczki antracenu wzgle-
dem ortogonalnych osi krysztalu abc* (temp.

95 K)
(01 a b c*
L -0,51135 —0,13030 0,84947
M —0,30191 —0,89822 -0,31952
N 0,80461 —0,41983 0,41995

Przykiap 3.7.10
Symetryczne polozenia atomow

Majac wektor
RT = (0,03776 0,04848 0,12704) nm

opisujacy polozenie atomu wegla C w czasteczce antracenu w abc* w temp. 290 K
(tab. 3.8), znalez¢ ,,idealne” polozenia pozostalych atoméw wegla pierscienia $rod-
kowego i poréwnaé¢ wyniki z poloZeniami rzeczywistymi.

Poniewaz $rodek czasteczki (centroid) przypada w punkcie [000], w rown.
(3.22) mamy s=0 it = 0. Zatem

T =1
Rm=c A(m )CRI

Macierz ¢ odpowiada operacji C?, kolejno$é atoméw widoczna jest na rys. 3.26.

Wyniki obliczen zebrane sa w tab. 3.12. Jak wynika z danych zawartych w
tabeli, polozenia idealne réznig si¢ od rzeczywistych w granicach 1:1073 nm.
Podobny rachunek wykonany dla pierscieni skrajnych (t = 0, s # 0) wskazuje na
rdznice okolo trzy razy wigksze. Mozna stad wnosié, ze anizotropia sit w krysztale,
dziatajacych na czasteczke, powoduje niewielkie odstepstwa do jej pelnej symetrii.

Przytoczony tu rachunek moze by¢ bardzo przydatny do okre$lania potozen
atomoéw wodoru, znanych z badan rentgenograficznych zwykle z mala doktadnos-
cig.
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Tabela 3.12

wldealne” (R,) i rzeczywiste (R,) poloZzenia atoméw wegla Srodkowego pierscienia czasteczki antracenu

— B 104
m| Atom Am—D cTA™ De=D Dsz_R”" R, el
10 nm _ nm
100 100 —3,776 3,776 L
1| ¢ 010 010 4,848 4,848 -
001 00 1 12,704 12,704 ~
1 -3f30 08275 —0,5212 —0,2088 —8,303 -8325\| —22
2| E 1fA 4 o 01742 05919 —0,7870 ~7,786 —-7890 |{~104
0 0 05337 0,6149 05806 8,342 8266 /| ~76
-+ -+ 30 04826 —08681  0,1162 — 4,555 —4506\| 49
3| D 1A —4 0 —0,1727 —02244 —0,9591 —12,620 JI| —12641 || —2.1
0 0 1 08587 04428 —0,2582 — 4376 4,356 20
-1 00 03101 —0,6939  0,6499 5981 3,776 55
4| C 0 —-10 —~0,6939 —0,6325 —0,3442 —43819 4848 || —29
0 01t 06499 —0,3442 —0,6776 /| \ 12,731 —12,704 2,7
-1 130 04826 —0,1727 08586 8,249 8,325 7.6
s| E -5 /8 =t U 08681 —02244 04428 7,815 7,890 75
0 0 1 01162 —09591 —0,2582 —8,369 —-8,266/ | 103
1 1
1 130 08275 0,1742 0,5337 4,500 4,506 0,6
6| D 43 4 0 —05212 05919 0,6149 12,649 12,641 || —08
0 0 1 —0,2088 ~—0,7870 0,5806 4,349 4356 07
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4. MODEL GAZU ZORIENTOWANEGO

4.1. Opis modelu, zastosowania i ograniczenia

W molekularno-kinetycznym opisie wlasciwosci zwyklego gazu przyjmujemy,
ze sklada si¢ on z czasteczek slabo oddzialujacych z soba, a jesli zajmujemy si¢
gazem idealnym, to oddzialywania te z definicji rowne sa zeru. Przyjmujemy tez
zwykle, iz rozmiary czasteczek w pordéwnaniu z odlegltoéciami miedzy nimi sa
znikomo male, co odpowiada traktowaniu czasteczek jako tworéw punktowych.

W analogii do tego obrazu mozemy opisa¢ wiele wlasciwosci krysztatu moleku-
larnego zakladajac, ze sklada si¢ on z czasteczek zajmujacych okreslone potozenia
w przestrzeni oraz ze rozmiary czasteczek sa male w porownaniu z odlegtos$ciami
migdzy nimi w krysztale. W pierwszym przyblizeniu mozemy tez zaniedbaé¢ oddzia-
lywania migdzy czasteczkami. Réznica migdzy zwyklym gazem a krysztalem
polega¢ wigc bedzie w pierwszym rzedzie na tym, ze w tym ostatnim przypadku
czasteczki tworza okreslong strukture periodyczna, w ktorej zajmuja okreslone
polozenia i maja okre$lone orientacje wzglgdem wybranego ukladu odniesienia.
Zaleznie od interesujacego nas problemu mozemy kazdej czasteczce przypisac
wektor lub tensor, a wtedy rzeczywistq strukture krysztalu mozna zastqpié zbiorem
wektorow lub tensorow o takiej samej periodycznosci i symetrii, jak jego sieé
molekularna.

Ta koncepcja stanowi istot¢ modelu gazu zorientowanego i pozwala napisac
relacje miedzy fizycznymi wiasciwosciami samych czasteczek a wlasciwosciami
komérki elementarnej. Dalsze przejscie, od komorki elementarnej do wiasciwosci
krysztalu makroskopowego, zalezy juz od wlasciwosci fizycznej, jaka zamierzamy
interpretowac. Jesli jest nig taka wlasciwo$¢ materiatowa, jak podatno$é magnety-
czna krysztalu diamagnetycznego, to mikroskopowym odpowiednikiem tensora
podatnosci krysztatu jest tensor podatnosci czasteczki. W takim przypadku utozsa-
mia si¢ wlasciwosci komorki elementarnej z wlasciwosciami krysztatu, zadajac przy
tym, najczesciej, by slady tensoré4w mikro- i makroskopowego byly identyczne
(zgodnie z zasada niezmienniczosci sladu tensora wzgledem przesunigcia lub
obrotu ukladu wspotrzednych). Podobnie moglibysmy sformulowaé problem w
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odniesieniu do przenikalnosci dielektrycznej krysztatu, gdyby mikroskopowym jej
odpowiednikiem byl tensor podatnosci dielektrycznej czasteczki. Tak jednak nie
jest. Jak wiadomo, statyczna (przenikalno$¢ dielektryczna) i dynamiczng (wspot-
‘czynnik refrakcji) wiasciwos¢ osrodka przezroczystego zwyklo si¢ uzasadniac
polaryzowalnoscia obiektéw mikroskopowych (atoméw, jonow, czasteczek), z kto-
rych zbudowany jest krysztal. Przejscie od tensora polaryzowalnosci komorki
elementarnej, ktoéry mozemy otrzymaé przez zastosowanie modelu gazu zoriento-
wanego, do tensora przenikalnoéci dielektrycznej wymaga znajomo$ci réownan
makroskopowych, ktore wiaza obie te wielkoéci migdzy soba. Poréwnanie polary-
zowalnosci czasteczek, otrzymanej z pomiaréw wspolczynnika refrakcji, z polary-
zowalno$ciami wynikajacymi z innych obserwacji, na przyklad efektu Kerra,
wypada wiec lepiej lub gorzej w zaleznosci nie tylko od precyzji pomiardw i lepszej
czy gorszej stosowalnosci modelu gazu zorientowanego, lecz takze od naszego
zrozumienia zwigzku miedzy polaryzowalnoscia komorki elementarnej a wspot-
czynnikiem refrakcji krysztalu. I wreszcie mozliwe sa takie przypadki, a znakomi-
tym przykiadem jest rozszerzalno$¢ termiczna, ze wilasciwo$¢ krysztalu nie ma
odpowiednika mikroskopowego. Wlasciwym bowiem sposobem wytlumaczenia
zjawiska rozszerzalnosci jest — jak si¢ wydaje — ruch termiczny elementow
strukturalnych, a w szczeg6lnoéci pewne jego cechy, takie jak anharmonicznos¢.

Model gazu zorientowanego moze odnosi¢ si¢ do wielkosci molekularnych,
dajacych sie przedstawi¢ jako wektor lub tensor drugiego rzgdu. Konsekwencja
potraktowania krysztatu jako zbioru zorientowanych wektoréw lub kwadryk, przy
podanych zalozeniach, bedzie addytywnos¢: wiele wlasciwosci cial makroskopo-
wych mozna opisa¢ za pomoca wiasciwosci czasteczek, dodajac je wedlug zasad
odpowiadajacych matematycznemu charakterowi reprezentujacych je wielkosci.
Dla przykladu mozna zaproponowa¢ nastgpujace. obszary zastosowan tego mode-
lu:

1. Wyznaczenie wypadkowego elektrycznego momentu dipolowego krysztatu w
fazie ferroelektrycznej. W zwyklym krysztale, tworzacym faz¢ paraelektryczna w
stanie niespolaryzowanym, suma momentow dipolowych czasteczek w komorce
elementarnej roOwna jest zeru, poniewaz krysztal nie ma wypadkowego momentu
dipolowego pod nieobecnos$¢ pola. Inaczej jest w krysztatach nalezacych do grupy
ferroelektrykéw. W krysztatach pyroelektrycznych, ktore sg dielektrykami liniowy-
mi o jednej domenie ferroelektrycznej, istnieje polaryzacja spontaniczna: caly
krysztal pod nieobecno$¢ pola ma dipolowy moment elektryczny, tj. stanowi
elektrostatyczne ogniwo elektryczne. Pochodzi to stad, ze kazda czasteczka takiego
zwiazku ma trwaly moment dipolowy. Suma tych momentéw nie znika w pewnym
kierunku, stanowiacym o$ (uni)polarna dielektryka. Krysztaly wykazujace takie
wlasciwosci naleza do jednej z dziesieciu grup punktowych, wymienionych w
rozdz. 3.

2. Obliczanie dichroizmu, tj. anizotropii absorpcji promieniowania spolaryzo-
wanego w krysztale molekularnym. W zakresie spektralnym, odpowiadajacym
obszarowi tzw. drgan wewnetrznych czasteczki, kazdemu przejsciu absorpcyjnemu
mozemy przypisaé¢ wektor wzbudzonego momentu dipolowego, zwigzany w prosty
sposdb z elementami symetrii czasteczki. Absorpcje catego krysztalu mozna opisac
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za pomoca sumowania wzbudzen poszczegdlnych czasteczek, tworzacych prze-
strzenny gaz zorientowany. Problemem tym zajmiemy si¢ szerzej w rozdz. 7.

3. Wyjasnienie i opis szeregu makroskopowych wiasciwosci fizycznych, repre-
zentowanych tensorem drugiego rzedu, takich jak diamagnetyzm, optyczna przeni-
kalno$¢ dielektryczna i inne, na podstawie fizycznych wlasciwosci samych czaste-
czek. Niektore z tych zagadnien beda przedmiotem bardziej szczegdélowych rozwa-
Zzan w nastepnych rozdzialach.

4. Opis wplywu temperatury na wilasciwosdci fizyczne krysztaléw. Mimo iz
srednie wlasciwosci- krysztatu, na przyklad podatno$¢ diamagnetyczna proszku,
praktycznie nie zaleza od temperatury, podatno$¢ krysztatu w okreslonym kierun-
ku zmienia si¢ wyraznie wraz ze zmiang temperatury. JeSli mozemy uznad, Ze
wlasciwosci samych czasteczek sa niezmienne w tym sensie, ze od temperatury nie
zaleza, to obserwowana zalezno$é temperaturowa dla krysztatu $wiadczy o tym, ze
zmianie ulega przestrzenne rozmieszczenie czasteczek, a wigc ich liczba w jednostce
objetosci 1 ich orientacja. Efekty te sa wprawdzie niewielkie, ale maja znaczenie
fundamentalne, $wiadcza bowiem o anharmonicznosci dynamiki sieci.

5. Wiele krysztalow ma t¢ wlasciwosé, ze w pewnej temperaturze (lub w
pewnym zakresie temperatur) ulega ,katastrofie strukturalnej”, zwanej przemiang
fazowa. Zjawiska takie sa bardzo pospolite wérdd krysztaldw molekularnych, a
liczba odkrywanych przykladéw rosnie lawinowo. Przyczynia si¢ do tego w
niemalym stopniu fakt, iz coraz wigcej uwagi i inwencji poswigca sie¢ starannemu
oczyszczeniu substancji przed przystapieniem do badan. Znane sa bowiem przykla-
dy, gdy niewielka domieszka obcego zwiazku (mniej niz 1°/, mol), wbudowujaca
si¢ substytucyjnie w sie¢ macierzystego krysztalu molekularnego, powoduje zna-
czne zmniejszenie szybkosci przemiany fazowej, a nieco wicksze jej stezenie catko-
wicie blokuje przemiang i stabilizuje na okres rzedu miesiecy metastabilna faze
krystaliczna [1]. Badania zjawiska polimorfizmu, a zwlaszcza kinetyki przemian
fazowych, powinny wigc by¢ poprzedzone starannym rozpoznaniem stopnia czy-
stosci substancji.

Liczne wiasciwosci fazy wysokotemperaturowej sa inne niz fazy niskotempera-
turowej. W temperaturze przemiany fazowej niektére z nich ulegaja skokowym
zmianom. Do najbardziej elementarnych wlasciwosci krysztatu naleza: funkcje
termodynamiczne, okre$lajace ich trwato$é, oraz symetria. Nie mamy dzi§ jeszcze
pewnosci co do tego, ktora z tych wlasciwosci winna by¢ uwazana za ,bardziej
- plerwotna”, tj. ktdéra jest przyczyna, a ktora skutkiem. Byé moze fakt, ze w
okres§lonej temperaturze faza krystaliczna przestaje by¢ termodynamicznie trwala,
zmusza czasteczki do zajmowania nowych polozen i przyjmowania nowych orien-
tacji, co okresla odmienna symetric nowej fazy. Mozna jednak na role tych
czynnikOéw spojrze¢ odwrotnie: to swoista i anharmoniczna dynamika sieci oraz
przekroczenie pewnych krytycznych amplitud ruchu doprowadzaja czgsteczki do
nowych polozen i orientacji, co pocigga za soba zmiane funkcji termodynami-
cznych. . '
Niezaleznie od tego, ktory z tych dwoch punktéw widzenia jest stuszniejszy,
badania relacji migdzy zmiang wielkosci fizycznej w przemianie fazowej a struktu-
ra krysztalu naleza do niezwykle interesujacych, poniewaz informuja nas o mole-
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kularnym mechanizmie obserwowanych zjawisk makroskopowych. Ilosciowe po-
wigzanie tych dwu czynnikéw mozliwe jest wowczas, gdy przemianie fazowej
towarzyszy niezbyt drastyczna zmiana objetosci krysztalu i symetrii. W takich
przypadkach termodynamicznie sasiadujgce z soba fazy sa krystaliczne, wobec czego
probka zachowuje mechaniczna spdjnosé. Pozwala to na zastosowanie modelu
gazu zorientowanego do opisu procesoOw molekularnych pod warunkiem, ze kon-
formacja samej czasteczki nie ulegla zmianie.

Na koniec wypada krotko wspomnie¢ o ograniczeniach w stosowalnosm mode-
lu gazu zorientowanego do opisu fizycznych wiasciwosci krysztaléw. W modelu
tym interesuja nas w zasadzie dwa parametry: potozenie Srodka masy czasteczki
oraz orientacja w przestrzeni zwiazanego z nig ukladu wspoélrzednych. Te dwa
zbiory danych sa wystarczajace do napisania relacji migdzy wielko$cia przypisywa-
na komorce elementarnej a jej odpowiednikiem molekularnym. Pomijamy w tych
rozwazaniach przestrzenng rozciqglos¢ czasteczki, co juz stanowi przyblizenie i
ogranicza stosowalno$¢ modelu. Na przyklad, nie bedziemy w stanie opisaé
wlasciwosci sprezystych ani tez dynamiki ruchu czasteczek, poniewaz w tych
zagadnieniach istotng role odgrywaja wlasnie skonczone rozmiary czasteczek i
natura oddzialywan miedzy nimi.

Mimo iz z punktu widzenia zasady addytywno$ci pragnqhbysmy zaniedbac
oddzialywania miedzyczasteczkowe w krysztale molekularnym, przeciez nie moze-
my calkowicie o nich zapomnie¢. Wprawdzie w krysztalach molekularnych sa one
znacznie stabsze niz w krysztalach jonowych, jednak decyduja o spdjnosci calego
krysztatu, a maja tez czesto znaczacy wplyw na konformacje czasteczki w ciele
stalym. Jesli wigc moéwimy — jak w opisie diamagnetyzmu - ze oddzialywania
miedzy wzbudzonymi dipolami magnetycznymi mozna pominaé, to pozwala nam
to na skorzystanie z zasady addytywnos$ci, w my$l ktérej podatnos¢ magnetyczna
komorki elementarnej réwna jest sumie podatnosci wypelniajacych ja czasteczek.
Nie znaczy to jednak, ze tym samym pomijamy wszelkie inne oddziatywania,
niemagnetyczne. Posredni wplyw tych innych oddzialywan przejawi sie w tym, ze
tensor podatnosci magnetycznej czqgsteczki w krysztale bedzie troche inny niz tej
samej czqsteczki w stanie swobodnym. Moze mie¢ na to wplyw drobna zmiana
konformacji czasteczki, na przyklad zahamowanie rotacji grup metylowych, lub
planarno$¢ czasteczki w stanie swobodnym nieptaskiej, wywolana presja pola
molekularnego, czy wreszcie przesuniecie tadunku spowodowane polaryzacja ota-
czajacych czasteczek. Gdy znamy szczegoly struktury krysztatlu i wiemy co$ o
naturze wystepujacych w nim oddzialywan miedzyczasteczkowych, potrafimy zwy-
kle skonstruowa¢ rozsadny model czasteczki, pozwalajacy zrozumieé, dlaczego, na
przyktad, podatnos¢ jakiego$ krysztalu w kierunku krystalograficznym a jest dwa
razy wigksza niz w kierunku c. Jesli jednak — jak w przypadku interpretacji
wspolczynnika refrakcji — oddzialywania miedzy wzbudzonymi dipolami elektry-
cznymi sg silne, to zasada addytywnosci bedzie jedynie przyblizeniem, od ktérego
rzeczywisty moment dipolowy komorki elementarnej bedzie mniej lub bardziej
odbiegal. W takich sytuacjach molekularna interpretacja makroskopowej wielkosci
fizycznej jest bardzo ziozona, jeSli nie wrecz niemozliwa.

Czynnikiem ograniczajacym stosowalno$¢ modelu jest rowniez termiczny ruch
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czasteczek. Amplituda drgan translacyjnych, nawet z uwzglednieniem anharmoni-
cznosci, nie ma bezposredniego wplywu na wielko$é sktadowych wektora czy
tensora drugiego rzedu z uwagi na ich niezmienniczo$¢ wzgledem przesuniecia
ukladu wspotrzednych. Wystepujacy wplyw posredni poprzez zmiane gestosci ciata
stalego nie jest trudny do uwzglgdnienia i dyskutowany bedzie w rozdz. 6.
Natomiast wigkszo$¢ obserwowanych eksperymentalnie temperaturowych zale-
zno$ci wielkosci fizycznych, mierzonych w okreslonym kierunku, przypisa¢ mozna
anharmoniczno$ci ruchéw libracyjnych. W niektorych strukturach, np. w bifenylu,
amplituda libracji jest na tyle duza, Zze przyjecie stacjonarnej orientacji czasteczek
prowadzi do wyraznych rozbieznosci w interpretacji wynikéw doswiadczalnych
(por. p. 8.5). Ogélnie jednak anharmoniczno$¢ ruchdéw libracyjnych powoduje
zalezno§¢ od temperatury $redniej orientacji czasteczki w komorce elementarne;.
Prowadzi to w konsekwencji do wplywu temperatury na wszystkie wlasciwosci
fizyczne krysztaldéw, ktére od tej orientacji zaleza. Pewne koncepcje opisu tych
zalezno$ci przedstawimy w punktach 4.5 i 8.5.

4.2. Rola symetrii

Istotna cecha modelu gazu zorientowanego jest to, ze zbiér molekularnych
odpowiednikéw badanej wielkosci fizycznej, a wiec wektoréw dla wielkosci wekto-
rowej lub kwadryk dla wielko$ci tensorowej, tworzy sie¢ periodyczna. Sieé ta jest
izomorficzna ze struktura krysztalu i zawiera dokladnie te same elementy symetrii,
co grupa przestrzenna krysztatu. Przykladem takiej reprezentagji jest rys. 4.1, na
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Rys. 4.1. Obraz reprezentacji tensorowej komorki elementarnej przy obsadzeniu dwiema czasteczkami
w polozeniach szczegdlnych (C,): a) schematycznie, b) kwadryki w komorce elementarnej
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ktorym dwie czasteczki w komorce elementarnej zastapione zostaty przez trojosio-
we elipsoidy podatnosci diamagnetycznej. Zajmujga one, tak jak i1 czasteczki,
potozenia szczegdlne: jedna z osi glownych elipsoidy pokrywa si¢ z makroskopowa
osig symetrii (0§ b krysztalu), orientacja za$ pozostalych dwdch osi ma w plaszezy-
znie xz jeden stopien swobody (kat ¢). Orientacja osi elipsoidy 2 wynika z
zastosowania do elipsoidy 1 operacji symetrii, zawartych w grupie wymiennej
komorki elementarnej. Anizotropia komorki elementarnej wynika wigc z dwoch
powodow: z anizotropii samej czasteczki oraz z usytuowania jej w przestrzeni. W
celu uscislenia poje¢ wprowadzimy obecnie definicje grup symetrii, waznych w
opisie fizycznych wilasciwosci krysztalow.

1. Grupa przestrzenna, G,, obejmuje wszystkie operacje symetrii, ktore przeksz-
talcaja w sieci krystalicznej dowolny punkt, prosta lub ptaszczyzne w analogiczny
(odpowiednio) punkt, prosta lub plaszczyzng. Analogicznos¢ dwoch punktow,
prostych lub plaszczyzn oznacza ich symetryczng rownowazno$é: dwa analogiczne
twory maja identyczne otoczenia w przestrzeni. Grupa przestrzenna opisuje wigc
symetrie rozmieszczenia materii w okreslonej strukturze.

2. Grupa komérki elementarnej, G., zawiera wszystkie operacje symetrii grupy
przestrzennej po wylaczeniu translacji prymitywnych, tj. przedstawionych wekto-
rem t

t= ny al +l12 a2+n3a3

gdzie a,, a,, a; sa krawedziami komoérki elementarnej (ktéra nie musi byc
prymitywna), n; sa za$ liczbami catkowitymi. Grupa komorki elementarnej moze,
ale nie musi, by¢ grupag punktowa, poniewaz: (1) moze zawiera¢ osie Srubowe lub
ptaszczyzny poslizgu, ktére maja nieprymitywna skladowa translacji; (2) nie
wszystkie elementy tej grupy musza sie przecina¢ w jednym punkcie. Grupa
symetrii komorki elementarnej ma najwieksze znaczenie w opisie symetrii fizy-
cznych wlasciwosci krysztatow.

Ze wzgledu na translacyjna symetrie sieci kazdy wektor lub tensor, przedsta-
wiajacy jaka$ wielko$¢ fizyczna nieskonczenie duzego krysztatu, musi miec identy-
czne skiadowe w kazdym punkcie translacyjnie réwnowaznym. Innymi stowy,
wihasciwosci fizyczne nieskoniczonego krysztalu sa niezmiennicze wzgledem prostych
translacji sieciowych, opisywanych wektorem t. Okreélenie ,nieskonczenie duZy
krysztal”, uzyte w powyzszym stwierdzeniu, pozwala omina¢ szczegdlne sytuacje,
wystepujace na granicy faz krysztat/préznia. Na przyklad, natezenie pola elektry-
cznego wewnatrz spolaryzowanego krysztatu roézni si¢ znacznie od pola wystepujg-
cego w punktach bliskich jego powierzchni.

3. Grupa wezla, G, jest zawsze grupa punktowa, poniewaz zbior operacji, z
ktorych sie skitada, nie zmienia w przestrzeni poloZenia co najmniej jednego
punktu — wezta. Jest ona podgrupa jednoczesnie grupy przestrzennej i grupy
komorki elementarnej. Jednak kazda rzeczywista czasteczka ma skonczona obje-
to$¢, wobec czego pojecie symetrii wezta nalezy odnosié do polozenia jej srodka
masy. Przyjmuje sie najczeSciej — choé¢ z pewnym przyblizeniem — Ze cala
czasteczka w danej strukturze ma symetrie grupy G,.

4. Grupe wymienng, G,, mozna zdefiniowaé dla okreslonego punktu sieci,

w
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najczesciej wezta. Obejmuje ona wszystkie operacje grupy komorki elementarnej z
wylaczeniem operacji zawartych w G, 1 z dodaniem operacji identyczno$ci. Grupa
wymienna zawiera wigc wszystkie operacje, ktorych trzeba uzy¢, aby wygenerowaé
polozenia wszystkich symetrycznie réwnowaznych czasteczek, mieszczacych sie w
komorce elementarnej idealnego krysztalu. Najczesciej G,, rOwniez nie jest grupa
punktowa.

Dla zilustrowania powyzszych definicji wybierzmy do analizy jedna z grup
przestrzennych ukladu ortorombowego, np. Pbca. Symbol ten wskazuje, ze sie¢
przestrzenna ma trzy rodzaje plaszczyzn poslizgu; dwa rodzaje ptaszczyzn prosto-
padlych do plaszczyzny rzutu zaznaczone sa kreska przerywana na rys. 4.2,
Prowadza one do operacji symetrii, ktore mozna przedstawi¢ symbolicznie w
nastepujacy sposob:

f 11m f 11 ( 1ol
lo'_\-lzzoj lo'yIO?_z; 01507}
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Rys. 4.2. Rozklad elementow symetrii komorki elementarnej w grupie przestrzennej Pbca (wedtug [37)

Kazda z tych formul, wedlug symboliki wprowadzonej przez Seitza [2], sklada sie
z dwoch czesci. Pierwsza jest operacja grupy punktowe] (w tym przypadku
odbiciem w plaszczyznie zwierciadlanej), druga za$ wektorem translacji, ktorego
skladowe podane sa w ulamkach periodow sieci przestrzennej. Biorac pod uwage,
na przyklad, pierwszy z symboli, mozemy w prosty sposob okresli¢ nowe polozenie
x'x'z" punktu xyz, poddanego dzialaniu ptaszczyzny "poslizgu, prostopadiej do
krystalograficznej osi x||a

%! —100 % 2 '
z' 001 z 0
Wynik ten otrzymany zostal wedlug definicji, okreslajacej dziatanie operacji {A[z!

na wektorze r, ktéra ma nastepujaca postaé [4]:
¥ ={Alt)'r=Ar+1 4.1

Definicja (4.1) jest szczegblnym przypadkiem prawa mnozenia elementéw grupy. W
symbolice Seitza prawo to wyraza si¢ wzorem

Ayt 1Ay, = 1Ay Ay A T+ 4.2)
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Procz plaszczyzn poslizgu trzech typdéw 1 nieskonczonej grupy prymitywnych
translacji, grupa przestrzenna obejmuje jeszcze dwa nastgpujace elementy: element
identyczno$ci, {E|000}, oraz centrum symetrii, {C;|000}, przy czym oba maja
skladowsa translagyjna réwna zeru. Dokonujac asocjacji centrum symetrii z kazda
z trzech plaszczyzn poslizgu zgodnie z ogdlna definicja (4.2), otrzymamy zbior
trzech osi srubowych. Na przyklad

{Ci1000} - {0,]03%} = {0,]033] - |C;[000} = {C,,]|0%3]

Nie powinien dziwi¢ nas fakt, ze o§ Srubowa 2,[|y ma nie jedna, lecz dwie
niezerowe skladowe translacyjne. Warto§¢ y =3b wynika bowiem z definigji,
natomiast sktadowa z =1c¢ zwigzana jest z faktem, ze o$ symetrii przebija pia-
szczyzne xz w punkcie [01], a nie w punkcie [00]. W wyniku tego punkt Z
przeksztalca sig,w punkt z’ taki, ze

2 =2G-2)+z=41—

W sumie G, skiada si¢ z o$miu elementow
f f (s L1 f L
\E| 000} 1C;1000] 0x|220] g 2
f 1nl { 11 { 11 f 1nly
10z|707} Cax 770} lCZyIOZZ} 1C2.17 03]

Zauwazmy obecnie, ze komoérke elementarna Pbca mozna wypelni¢ materia na
dwa rozne sposoby.

a) Komoérka moze zawieraé czasteczki calkowicie asymetryczne, ktore wowczas
muszg zajmowac polozenia ogélne, tj. rOwniez asymetryczne. W takim przypadku
grupa wezla jest trywialna, poniewaz zawiera tylko element tozsamosci, {E|000}.
Grupa wymienna staje si¢ identyczna z grupa komorki elementarnej. Prowadzi to
do obsadzenia komorki elementarnej o§mioma czasteczkami, ktérych polozenia
zZwigzane sa operacjami grupy wymienne;j.

b) W drugim przypadku komorka elementarna wypelniona jest czasteczkami
posiadajacymi centra symetrii. Moga one zajmowaé wezly o symetrii C; (przypa-
dek benzenu). Grupa symetrii wezla jest wowczas rzedu drugiego 1 zawiera
nastepujace elementy: ‘

G, > (E[000!, {C;/000!

W tym przypadku grupa wymienna jest czwartego rzedu, co prowadzi do obsadze-
nia komorki czterema czasteczkami w polozeniach- szczegdlnych, C;. Cztery ele-
menty grupy G, mozna wybraé z 30, 3C, i E na szereg rdéznych sposobow.
Najlepszy zbior zawiera¢ bedzie osie $rubowe, poniewaz te operacje nie zmieniaja
skretnoséci uktadu wspélrzednych [5]

G, {E[000}, {Cy,]330}, {C5,1033], (Cy|303) (4.3)
Z tych wynikow skorzystamy dalej w przykladzie 4.6.2 na koncu tego rozdziatu.

Zastosowanie zasad symetrii do badania fizycznych wlasciwosci krysztalow
streScic mozna w postaci nastepujacych czterech zasad.
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1. Symetria translacyjna sieci przestrzennej powoduje, ze do opisu fizycznych
wlasciwosci krysztatu wystarczy wzigé pod uwage tylko jedng komorke elementarng.

2. Obliczajac wktad, wnoszony do makroskopowej wielkosci fizycznej przez
kazda czasteczke zawarta w komorce elementarnej, mozina pomingé skladowe
translacyjne operacji grupy wymiennej. Jesli w krysztale istnieje kilka symetrycznie
niezaleznych podsieci, to. sumowanie trzeba rozciagnaé¢ na kazda z podsieci
osobno, a wyniki nastepnie dodac.

3. Oznaczmy ogolnie przez w molekularny (mikroskopowy) odpowiednik wiel-
kosci fizycznej krysztatu opisywanej wektorem W, a przez t odpowiednik wielkosci
- opisywanej tensorem T. Sume w (lub t) dla wszystkich czgsteczek zawartych w
komorce elementarnej utoZsamiaé bedziemy z wielkosciq makroskopowg W (lub T).
Skladowe W (lub T) nie zawsze musza by¢ wielkosciami bezposrednio dostepnymi
w eksperymencie.

4. Wielkosci molekularne, w lub t, przypisywane sg czasteczce umieszczonej w
wezle okre$lonej sieci — muszq zatem byé niezmiennicze wzgledem wszystkich
operacji symetrii grupy wezla, G,. Na ogdl symetria wlasna w lub t jest wyzsza od
symetrii G,.

Czwarty postulat jest w skali molekularnej odpowiednikiem zasady Neumanna,
obowiazujacej mierzalne, makroskopowe wlasciwosci fizyczne krysztatow. Oczy-
wiscie, przestrzenny rozklad atoméw tworzacych czasteczke musi by¢ zgodny z
symetriqa wezla, w ktdrym przypada $rodek jej masy w krysztale idealnie uporzad-
kowanym. Przyjmujemy, iz ta zgodno$¢ z symetria wezta jest prawda rowniez w
odniesieniu do kazdego wektora lub tensora, opisujacego dowolna wielkosé fizy-
czng czasteczki. W szczegdlnosci czasteczka, ktérej srodek masy spoczywa w
centrum symetrii krysztatlu, nie moze mie¢ trwalego momentu dipolowego. W
obecnosci pola elektrycznego sytuacja jest inna: krysztal ulega polaryzacji, przez
co jego symetria zmienia si¢ w sposdb, ktory prowadzi do utraty centrum symetrii.
W tej nowej sytuacji czasteczka moze mie¢ niezerowy wzbudzony moment dipolowy.

4.3. Model gazu zorientowanego dla wielkosci wektorowej

Przypus$émy, ze komorka elementarna interesujacego nas krysztatu zawiera Z
czasteczek, ktorych polozenia zwigzane sq wzajemnie operacjami grupy wymiennej.
Niech operacjom tym odpowiadaja macierze A;, A,,..., A;. Schemat takiej
struktury w ortogonalizowanym ukladzie wspolrzgdnych dla Z = 2 przedstawiony
jest na rys. 4.3. Czasteczki zastapione s3 wektorami ilustrujacymi, na przyklad,
momenty dipolowe wzbudzone przyloZzonym statycznym polem elektrycznym lub
polem padajacej fali elektromagnetycznej. Rzut plaski tej sieci przedstawiony jest
na rys. 44. Wybierzmy wektor jednostkowy e, w kierunku dipola m (kierunek w),
natomiast i, j, k niech oznaczajg wektory jednostkowe, rownolegte odpowiednio do
osi x;, X,, x5 ortogonalnego ukladu wspolrzednych, zwiazanego z krysztalem. W
tym makroskopowym ukladzie dokonywa¢ bedziemy sumowania wielkosci mikro-
skopowych.

Zwréémy w tym miejscu uwage, ze wybor zaréwno wektora e,,, jak i wektorow
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i, j, k zalezny jest od rozpatrywanego problemu i nie moze by¢ zupetnie dowolny.
Jesli interesuje nas, na przykiad, problem absorpcji promieniowania w krysztale, to
e,, winien by¢ rownolegty do jednego z mozliwych momentoéw przejscia absorpcyj-
nego w czasteczce. Zbior takich kierunkéw okreslaja reguly wyboru na podstawie
symetrii czasteczki, o czym bedzie mowa w rodz. 7. W innych zagadnieniach
wektor ¢, moze by¢ wybrany inaczej. OczywiScie moze zdarzy¢ si¢ tak, ze nie
mamy zadnych fizycznych przestanek do zdefiniowania e¢,. Mozna wowczas wy-
bra¢ ¢, w kierunku osi symetrii L, M lub N czasteczki, a nawet przyjaé¢ dlan
kierunek dowolny. Poréwnanie wynikoéw eksperymentu z obliczeniami, opartymi
na modelu gazu zorientowanego pozwala na ogdl rozpoznaé, czy wybdr ¢, byl
sensowny.
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27 il Rys. 44. Plaski rzut rozkladu di-
* poli z rys.. .4'3’ reprezentgwanych
wektorami jednostkowymi ¢;, ¢,
Rys. 43. Chwilowy rozklad dipoli wzbudzonych w (schematycznie). Wektory jednost-
krysztale, ktdrego komoérka elementarna obsadzona jest kowe i, k sa réwnolegle do kie-
dwiema czasteczkami w polozeniach ogélnych (schema- runkéw optycznie waznych (por.
tycznie). Moment wypadkowy nie znika wzdluz osi b rozdz. 6)

Podobnie jest z definicja wektorow i, j, k, odpowiadajacych wielkosci makro-
skopowej. WinniSmy je zawsze wybra¢ w takich kierunkach, w jakich pomiar
wielkoéci makroskopowej ma sens. W pierwszym rzedzie wyboér ten zalezny jest od
symetrii ukladu krystalograficznego, do ktérego nalezy krysztal. Jesli wigc w
dalszym ciagu mamy na mys$li absorpcje promieniowania elektromagnetycznego, to
kierunki i, j, k musza leze¢ w gtownych plaszczyznach optycznych probki. Tylko
bowiem dla tak zdefiniowanych i, j, k obserwacja absorpcji promieniowania moze
byé¢ $cisle interpretowana z punktu widzenia zasad optyki. Szerzej ten problem
omoéwiony jest w p. 6.2

Po tych uwagach mozemy przystapi¢ do sumowania udzialéw molekularnych
w wielko$ci makroskopowej W Pomiar W w kierunku i daje nam wartos¢ W,
natomiast udzial m-tej czqsteczki w wielkosci mierzonej jest proporcjonalny do
iloczynu skalarnego e, -i. Wkiad wszystkich czasteczek, zawartych w komorce
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elementarnej, wynosi wigc w tym kierunku
z z
W,=B Y e,i=B) (A,e) i (4.4)
m=1 m=1
B jest wspolczynnikiem proporcjonalnosci, nieistotnym, jesli zalezy nam jedynie na

porownywaniu wynikow pomiaréw w dwoéch roznych kierunkach. W pozostatych
kierunkach, j oraz k, mamy analogicznie

W;=B) (Ane)j
W.=B) (A,e) k

Jesli komorka elementarna zawiera nie jeden, lecz dwa zbiory czasteczek symetry-
cznie od siebie niezaleznych, to w rown. (4.4) nalezy napisa¢ dwie osobne sumy

Z/2 Z/2
W,=B!Y (Anc) i+ Y (A,¢€) i) (4.5)
m=1 n=1

¢ 1 ¢’ oznaczaja wektory jednostkowe czasteczek odpowiednio jednego i drugiego
zbioru.

Zwiazek (4.4) lub (4.5) wyraza model gazu zorientowanego w odniesieniu do
wielko$ci molekularnych, ktére mozna zdefiniowaé jako wektory. Jesli dla jakiego$
krysztalu mozemy wykona¢ pomiary wielkosci W w trzech kierunkach wzajemnie
prostopadtych, to w zasadzie mozliwe jest wyznaczenie orientacji e; — W naszym
przykladzie orientacji absorbujacego oscylatora.

4.4. Model gazu zorientowanego dla wielkosci tensorowej

Z kolei przyjmiemy, ze w okreslonej strukturze kazdej czgsteczce mozemy
przypisaé identyczny tensor molekularny t, zadany w ukladzie osi czasteczki
uy U usy. Jeslh wszystkie trzy gléwne skladowe t sa dodatnie, to zbidr czgsteczek
tworzqcy strukture mozna zastqpi¢ zbiorem elipsoid. Przyklad takiej reprezentacji
dla Z = 2 pokazany jest na rys. 4.5. Naszym zadaniem bedzie obecnie znalezienie
relacji miedzy tensorem czasteczki t a tensorem krysztalu T. W sprzyjajacych
warunkach relacja taka pozwala na obliczenie t na podstawie znanego z do$wiad-
czenia tensora makroskopowego T. Zwiazek ten znajdziemy na razie dla krysztatu
o symetrii nie nizszej niz ukladu jednoskos$nego.

Sumowanie poszczegdlnych tensoréw t wykonywac bedziemy w ortogonalnym
ukladzie wspolrzgdnych x; x, x5, wybranym rownolegle do kierunkéw ortogonali-
zowanego ukladu osi krystalograficznych abc* lub a* be. Dla koncowego wyniku
nie ma znaczenia, w ktérym z dwu ukladéw pracujemy, jednak z punktu widzenia
symetrii poprawniejsza jest taka ortogonalizacja, ktéra nie narusza kierunku
poslizgu, zawartego czesto w symbolu grupy przestrzennej. W krysztalach o
symetril wyzszej od symetrii uktadu jednoskosnego ortogonalizacja nie jest, oczy-
widcie, potrzebna. Ukltad x; x, x; nazywaé bedziemy krystalograficznym ukladem
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wspélrzednych. Zwr6émy uwage na to, ze nie jest on na ogoél ukladem osi
wlasnych tensora T, ktore oznaczaé bedziemy przez X, X, X;. Jesli mimo to
decydujemy si¢ na wykonanie operacji sumowania w takim posrednim ukladzie
wspoélrzednych, to czynimy tak ze wzgledu na operacje symetrii A, A,, ..., A;
grupy wymiennej: sa one stuszne nie w ukladzie X, X, X3, lecz w x; x;, x3.

Rys. 4.5. Rozklad kwadryk w polozeniach szczegdlnych (C;) komérki elementarnej uktadu jednoskosne-
go [6]

Réwniez wybor osi molekularnych u, u, u; wymaga pewnej ostroznosci. Tensor
molekularny musi by¢ niezmienniczy wzgledem wszystkich operacji symetrii grupy
wezla, G,. Jesli ma on wysoka symetrie, np. C,,, to wybor u; u, u, jest jednozna-
czny: osie molekularne muszq pokrywaé sie z osiami symetrii grupy wezla, co
redukuje liczbe niezerowych sktadowych t do trzech skladowych gtownych. Jesli
jednak symetria G, jest niska, to mozemy nie mie¢ wystarczajacych przestanek do
wyboru osi u; u,u;, a nadto liczba skladowych t moze nawet w ogéle nie ulec
redukcji. Moze sie wowczas zdarzyé, ze tensor molekularny zawiera¢ bedzie sze$¢
sktadowych, natomiast makroskopowa symetria krysztatu z pewno$cia obnizy nam
liczbe dostepnych w doswiadczeniu parametréw do co najwyzej czterech. W takiej
sytuacji liczba rownan, jakie mozemy napisaé, jest mniejsza od liczby niewiado-
mych, wobec czego w Scisty. sposdb problemu rozwigza¢ nie mozna. Przyblizone
rozwiazanie mozna osiagna¢ na dwa sposoby:

a) Jesli czasteczka ma w stanie swobodnym jakie$ osie lub plaszczyzny symetrii,
to mozna niekiedy uznaé, ze zachowuje je réwniez w krysztale, mimo iz nie
wynika to z symetrii wezla. Zalozenie to mozna uznaé za stuszne wtedy, gdy nie
podnosimy symetrii zbyt radykalnie i gdy mozemy uznaé czasteczkg za sztywng.
Przykladem moze byé czasteczka benzenu, ktérej z powodu wzglednej sztywnosci
mozna przypisa¢ w krysztale symetrie co najmniej C,,, mimo iz zajmuje wezet o
symetrii C;. Jesli czasteczka nie jest dostatecznie sztywna lub ma wyrazna asyme-
trie, to w celu oszacowania t, mozna probowaé skorzysta¢ z zasady dodawania
tensorow submolekularnych (por. p. 5.8).
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b) Zjawiskiem wystgpujacym do$¢ czesto wérdd krysztatdéw molekularnych jest
ich polimorfizm. Jesli na podstawie znajomosci struktury dwu lub wiecej odmian
polimorficznych mozna uznaé, ze konformacja czasteczki jest w nich taka sama, to
pomiar whasciwosci fizycznych krysztaléw tych odmian, réznigcych sie jedynie
symetria, pomaga na ogé! w rozwiazaniu problemu.

Po tych uwagach mozemy przystapié do bardziej szczegblowego omoéwienia
zagadnienia. Niech ¢” oznacza macierz orientacji osi u,u,u; r-tej czasteczki
wzgledem x; x,x3; r=1,2,...,Z. Macierz ¢ zdefiniowana jest tak, ze ¢;
= cos (4;, x;). Poszczegblne macierze ¢ otrzymuje si¢ z pierwszej, ¢V, ktora
znamy ze struktury, przez dzialanie operacjami symetrii grupy wymiennej

T = A, VT 4.6)

przy czym ¢”7 oznacza macierz ¢ transponowang, A, odpowiadaja za$ kolejno
wszystkim operacjom grupy wymiennej G,,. Transponowanie macierzy ¢ po obu
stronach rownosci wynika z faktu, ze osie molekularne u; u, u; musza wystepowac
we wzorze (4.6) jako wektory kolumnowe. Udzial r-tej czasteczki w tensorze r,
odpowiadajacym komorce elementarnej, wynosi ¢®7 te®, dla calej komoérki otrzy-
mamy zatem

1 z

T(xy X, x3) == 3. ¢ te® @7

VA r=1
Wynik dodawania udzialéw Z tensoréw molekularnych, (4.7), oznaczony dla
lepszej przejrzystosci dalszych przeksztatcen przez t, podzielony zostal przez liczbe
czasteczek w komorce elementarnej, Z. Odpowiada to zwyczajowo zachowaniu
§ladéw obu tensoréw tak, by

Trt=Trt

Tensor t zadany jest w krystalograficznym ukladzie wspotrzednych x; x, x5 i —
jak pokazaliSmy w rozdz. 3 — w krysztalach o symetrii wyzszej od trojskosnej ma
zawsze jakie§ skladowe rowne zeru. Ktore z nich ulegaja zerowaniu, mozemy
zobaczyé bezposrednio, podstawiajac ¢ z rown. (4.6) do réwn. (4.7). Otrzymamy

1
Z,

I M’N

T(Xy X5 X3) = A {cDT eV AT

1
Jesli udzial pierwszej czasteczki oznaczymy przez 1V
D = M7 gtV (4.8)
to rown. (4.7) mozemy zapisa¢c w postaci
1
-t(xl x2 X3) — zz A,. T(l) A,T (4.9)
Wplyw operacji A, na postaé t(x; x, x;) ilustruje przyktad 4.6.1.
Jesli zatem pomiary wykonujemy w uktadzie wspolrzgdnych x; x, x5, to roéw-

nania opisujace zwiazki migdzy t krysztatu i t czasteczki maja, w najogdlniejszym

133



przypadku uktadu tréjskosnego, nastgpujaca postac:

—ZZZ e ety (4.10)

W ukladzie jednoskosnym, ktoérego symetria ingeruje poprzez macierze A,, powo-
dujac znikanie czterech skladowych t(x; x, x;), mamy

Ty = _ZZZ e el ty
Ty, =~ZZZCE'£C§3 tik

X
" (4.11)
T33 = —ZZZCQC;&) Lik
r ik

Ton = Z Z Z Csrm) C;&) lk

przy czym wskazniki m, n zaleza od polozenia elementu symetrii (plaszczyzny lub
osi dwukrotnej). W ukladach ortogonalnych z,, znika, a w ukladach o wyzszej
symetrii na ogét 7., = 1,, (jesli o$ o krotnosci wyzszej od 2 jest rownolegla do x;).

Alternatywnym rozwiazaniem jest napisanie rown. (4.9) w ukiadzie osi wias-
nych X; X, X5 tensora T. Niech potozenie X, X, X; wzgledem x, x, x5 okresla
macierz a taka, ze a; = cos(X;, x,). Stuszny jest zwiagzek

T =at(x; x,x;)a” 4.12)

przy czym dla i # k znikaja wszystkie T,. W celu znalezienia zwiazkéw miedzy
sktadowymi T i t rozwazmy okre$lona konfiguracje w ukladzie jednoskos$nym.
Niech X,||x, bedzie dwukrotna osia symetrii; wtedy X; 1 X, leza w plaszczyznie
osi x; x3, ale nie sa do nich réwnoleglte. Oznaczmy kat miedzy X, i x; prze ¢;
uwazamy go za dodatni wtedy, gdy jest liczony od x; do X; w obrebie rozwartego
kata krystalograficznego  (konwencje moga tu by¢ inne, por. na przyklad p. 5.6).
Macierz a ma wowczas postaé

I X1 X2 X3

X, cosgp 0 sing
X, 0 1 0
Xy |—sing 0 coso
a zwigzek (4.12) przedstawia cztery nastepujace rownania:
T, =1, €082 @+7338in2 @+ 27,5 Sin @ cos @
T, =t
o . (4.13)
Ty = 1,1 8in? @ +135c082 @ — 21,3 sin g cos @

T3 =0 = (133 —711)8in @ c0s @ — 1,3 (sin” @ —cos? )
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Ostatnie rownanie mozemy zapisa¢ rOwniez w postaci

tg 20 = EETE (4.14)
Ti17 733
Z pomiarow T;, T,, Ty 1 ¢ mozemy wyznaczy¢ cztery sktadowe 1, a mianowicie
Ti1s T2z, T33 1 Ty3.

Z dotychczasowych rozwazan wynika jasno, ze nie tylko w tej szczegolnej, lecz
i w kazdej innej orientacji mamy dla krysztatu ukladu jednoskosnego do dyspozycji
cztery réwnania, z ktérych mozemy wyznaczyé cztery skladowe molekularne. Jesli
teraz grupa symetrii wezla obejmuje grupe punktowa C,,, to problem znalezienia
sktadowych molekularnych moze by¢ rozwiazany jednoznacznie. Przynizszej syme-
trii wezta liczba sktadowych t jest wieksza niz T, wobec czego liczba réwnan jest
za mala.

Z jednoznaczna sytuacja spotykamy sie jedynie w przypadku krysztatow
nalezacych do uktadu trdjskosnego. W tym ukladzie grupy przestrzenne sa albo
asymetryczne, albo zawieraja centrum symetrii. W obu przypadkach wszystkie
(sze$¢) skladowe tensora makroskopowego (3 skladowe giéwne oraz 3 katy
okreslajace potozenie osi gtownych wzgledem x, x, x;) sa, przynajmniej w zasadzie,
dostepne pomiarowi. Niska symetria wezta nie powoduje redukgji liczby roznych
od zera sktadowych molekularnych, wobec czego mozemy dysponowac szeScioma
rownaniami. Inna sprawa, ze wyciecie odpowiednich probek i rozpoznanie ich
orientacji krystalograficznej jest praca zmudna 1 czasochtonna — bardziej szczegd-
lowa analiza tego najogdlniejszego przypadku nie bedziemy si¢ zajmowali.

45. Wplyw temperatury na wielkoSci tensorowe

RozpatrywaliSmy dotad struktury, w ktorych elementy mikroskopowe zajmuja
okreslone potozenia i przyjmuja okre$lone orientacje wzgledem jakiego$ ustalone-
go ukladu wspoéirzednych. Przyjmowaliémy zatem milczaco, ze owe elementy
strukturalne sa nieruchome.

W rzeczywistosci w kazdej strukturze pojawia sie¢ ruch termiczny atomow w
temperaturze wyzszej od (0 K. Jesli wszystkie atomy czasteczki powigzane sq miedzy
soba dostatecznie sztywno, to ruch termiczny atomoéw mozna rozpatrywaé w
kategoriach ruchu czasteczki jako calosci (przyblizenie ciata sztywnego). W naj-
prostszym przypadku, gdy sztywne i centrosymetryczne czasteczki obsadzaja w
krysztale centrosymetryczne wezly, chaotyczny ruch termiczny mozemy podzielié
na dwa typy: oscylacje translacyjne, czyli translacje, polegajace na periodycznym
przemieszczaniu si¢ w okre$lonym kierunku wszystkich atoméw réwnolegle do
siebie, oraz oscylacje katowe, czyli libracje, polegajace na periodycznej zmianie
orientacji calej czasteczki wzgledem nieruchomego ukladu wspéirzednych. Przy
braku w krysztale centrum symetrii ruch czgsteczek nie moze byé zlozony w
prosty sposéb z tych dwéch typdéw, poniewaz sa one sprzgzone. W takim przypad-
ku rzeczywiste przemieszczenia atomow odbywaja sie po spirali, tj. niewielkiemu
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przesunieciu towarzyszy maly obrot wokol okreslonej osi, ktora jest na og
z osi gléwnych momentu bezwladnosci czasteczki.

Niezaleznie od wymogoéw symetrii, w kazdym krysztale ruch termiczny ma
pewne cechy wspdlne. Mozna wyrdznié trzy takie cechy:

1. Czgstos¢ oscylacji jest rozmaita i zmienia si¢ w sposdb przypadkowy od
jednej czasteczki do drugiej. W okreslonej temperaturze krysztalowi odpowiada
quasi-ciggle widmo czestosci ruchu translacyjnego i libracyjnego. Wraz z podwyz-
szeniem temperatury widmo to poszerza sie od strony wysokich czesto$ci.

2. Amplituda ruchu termicznego jest réwniez roézna dla réznych czasteczek i
przypadkowa w malym przedziale czasu. Jednak dla przedziatu czasu dostatecznie
dlugiego w porownaniu z okresem drgan istnieje pojecie sredniego kwadratu
amplitudy drgan, jednakowego dla wszystkich czasteczek. Sredni kwadrat amplitudy
wigze si¢ z energia kinetyczna ruchu termicznego poprzez zasade ekwipartycji
energii.

3. Translacje i libracje sa ruchami anharmonicznymi, tj. takimi, dla ktorych
krzywa energii potencjalnej rézni sig¢ troche od paraboli drugiego stopnia (por. p.
8.1). Ta cecha jest dla naszych obecnych rozwazan najwazniejsza. Anharmonicznosé
powoduje bowiem zaréwno przemieszczanie sie Srodka masy czqsteczki, jak tez i
male zmiany orientacji zwigzanego z niq ukladu wspdtrzednych. Oba efekty towarzy-
sza zmianie temperatury i prowadza bezposrednio do rozszerzalnosci termicznej
krysztatu 1 zwigzanej z nia zmiany jego gestosci. W konsekwencji efekty te
odpowiedzialne s3 za zalezno$¢ od temperatury wszystkich wielkosci- fizycznych,
ktore zaleza od polozenia i orientacji czasteczek. Zwiazkami anharmoniczno$ci z
rozszerzalnoscia termiczng zajmiemy sie w rozdz. 8, w ktorym poruszony bedzie
roéwniez problem krzywej energii potencjalnej. Obecnie rozwazymy wplyw malej
zmiany orientacji czasteczek nafizykochemiczne wiasciwosci krysztalu. Rozwiazanie
tego zagadnienia réwnowazne bedzie wprowadzeniu temperatury do modelu gazu
zorientowanego. Towarzyszace zmianie temperatury male zmiany gestosci kryszta-
lu sa latwe do opisu i oméwione zostana podzniej (por. rozdz. 6).

Postawmy wpierw nastgpujace pytanie. Przypusémy, ze kazdej czasteczce w
okreslonej strukturze przypisaliSmy sztywno z nia zwiazany uklad wspolrzednych
uy u,uz. Czy istniejg przestanki doswiadczalne $wiadczace o tym, ze przy zmianie
temperatury zmienia si¢ orientacja u, u,u; wzgledem makroskopowego ukladu
odniesienia, na przyklad abc*, uwazanego za niezmienny?

Odpowiedzi na to pytanie dostarczaja nam wyniki rentgenograficznych badan
struktury krysztalu, wykonanych w kilku temperaturach. Jesli macierz orientacji
uuus wzgledem abc* oznaczymy przez ¢, to z badan rentgenograficznych
wynika, ze dla fazy krystalicznej termodynamicznie trwalej w pewnym zakresie
temperatur, ¢ jest ciagla funkcja temperatury. Ten wynik moglby by¢ uwazany
jedynie za formalny skutek mnaszego sposobu interpretacji drgan termicznych
poszczegdlnych atoméw, uwarunkowany przyjetym sposobem ich porzadkowania.
Okazuje si¢ jednak, ze ze znajomosci ¢ w dwdch réinych temperaturach mozemy
wydedukowaé tensor obrotu calej czqsteczki, potraktowanej jako cialo sztywne.
Zanim to uczynimy, przyjrzymy si¢ wpierw, jaka posta¢ ma taki tensor.

Przypu$¢my, ze molekularny ukiad wspolrzednych, u, u,u;, ma jakas ogblnag
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orientacj¢ wzgledem ukladu makroskopowego, x; x, x;. Pod wplywem niewielkiej
Zmiany temperatury (albo ci$nienia) osie u, u,u; obrocily sie nieco, tak ze ich

nowymi polozeniami sa uj uyuy (rys. 4.6a). Macierz ogdlnego obrotu R mozemy
a) %

b) s

u

il V1 ;

X2 4
x

uz
osi u,y

Rys. 4.6. Obrét ukiadu wspolrzegdnych u; u, us, zastepujacy obrét ciala sztywnego: a) ogélny, b) wokét

zlozy¢ jako iloczyn trzech macierzy: R; obrotu wokot u;, R, obrotu wokoét u, i Ry

obrotu wokol u;. Rozpatrzmy pierwszy z nich; wzgledna orientacje u, u,u; i
kierunkowych

uy uhuy przedstawiono na rys. 4.6b. Oba uklady zwigzane sa tabela kosinusow

! U Us
u) 1 0 0
u, | 0 cosd; sind,
uy | 0

—sinAd; cos4,

13

w ktoérej 4, oznacza maly kat obrotu wokot u;. )Nobec matej wartoséci 4; mozemy
zastosowacé przyblizenie cos4; = 1, sind; = 4

, a wtedy otrzymamy

1 0 0
R1= (0 1 Al
O _Al

4.15)
1
Postepujac analogicznie, znajdujemy pozostale macierze obrotu woko6t u,
3 1 0 —Az
R, = ( 01 0 4.16)
4, 0 1
oraz wokot u,

1 450
R; = (—As 10
0 01

Ogo6lna macierza obrotu bedzie zatem

4.17)
1 4, —4,

R=R1R2R3 = _A3 1 Al (4.18)
Az "—Al 1
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przy zaniedbaniu w rachunku wyrazéw rzedu wyzszego niz pierwszy. Jesli ze
wzgledu na malg wartos¢ 4; mozemy to uczyni¢, to wynik (4.18) nie zalezy od
porzadku czynnikow.,

Jest widoczne, ze R mozemy rozlozyé na czesé symetryczng, ktora jest macierzg
jednostkowa, 1. i czes¢ antysymetryczng A, przedstawiajacg czysty” obrot

R=1+A (4.19)
Majac obecnie tensor obrotu A, mozemy napisa¢ zwigzek miedzy macierza orien-

tacji u, u,us w temperaturze T;, c(1), oraz macierza c¢(2) orientacji u; u,u; W
temperaturze T,

c(2)=Re(l) =(1+A)c(l)
skad v
A=c(2)c()T-1 (4.20)
Piszac tak uwazamy, Ze jedynym p(')\fv()dem zmiany ¢(1) do ¢(2) jest obrét ukladu
wspolrzednych u; u, us.
Zwiazek (4.20), zapisany przy uzyciu wskaznikdw, przyjmuje postac trzech
rownan

LD @) (b o2
Z Caiy
(D) ol — o) @ »
Z & — ! (4.21)

Ag = ;Z A 2 ot (2
pozwalajacych obliczy¢ $rednie katy obrotu czasteczki wokol osi, odpowiednio,
uy U, uy, w zakresie temperatur od T, (nizsza) do T, (wyzsza).

Jak duze sa te zmiany orientacji? Aby odpowiedzie¢ na to pytanie, postuzmy
si¢ badanym juz przykladem antracenu [7]. Staranna analize strukturalna tego
krysztatu w temperaturze T, = 290 i T, =95 K wykonal Mason [8]. Jako uktad
Uy U, us przyjmiemy osie symetrii LMN czasteczki (tab. 5.2, nr 29): elementy
macierzy ¢(2) 1 ¢(1) maja wowczas nastgpujace wartosci liczbowe:

—0,49409 —0,12738 +0,86003
220K: ¢e(2)= ( —0,31752 —0,89444 —0,31490 )
+0,80935 —0,42867 +0,40149,

(4.22)
—0,51171 —0,13109 +0,84910
95K: c(l) = ( —0,30351 —0,89699 —0,32140)
+0,80376 —0,42218 +0,41920,
Korzystajac z rownan (4.21), otrzymujemy [10”°rad-K ']
A, = 4,98+0,06 A, = 8,78+0,03 Ay = 6294004  (4.23)
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Wyrazy diagonalne sa rzedu 4; = 1-10"°rad-K ™!, a wiec znacznie mniejsze od
warto$ci (4.23). Te wlasciwosci macierzy A wskazuja, iz — istotnie — opisuje ona
obrot czasteczki jako sztywnej calosci przy zmianie temperatury od T; do T.
Srednie przemieszczenia czqsteczki antracenu na 1 K sq wprawdzie niewielkie —
rzedu kilkunastu sekund kqtowych — ale znaczace.

To samo zagadnienie mozemy réwniez rozwigzaé postugujac si¢ katami Eulera
— tymi samymi, ktorych uzywa si¢ w mechanice do opisu ruchu obrotowego bryly
sztywnej. Droga prowadzaca do wyniku (4.23) jest moze troche diuzsza, lecz
bardziej bezposrednia i przedstawia si¢ nastepujaco.

Katy Eulera ¢, 9 i 7 okreslaja orientacj¢ u, u,us (ruchomy lub wewnetrzny
uktad wspolrzednych) wzgledem uktadu x,; x, x5 (nieruchomy lub zewnetrzny uklad
wspotrzednych) (rys. 4.7). PrzejScie od x; x,x3 do uju,us (LMN) okreSlaja trzy
nastepujace obroty:

1. Obrot x; x, wokol x3 o kat ¢: x; x, x5 = xi x5 x5
2. Obroét x5 x3 wokét xj o kat & x| x5 x5 = x] x5us (4.24)

3. Obrét xy x5 wokotl uy o kat y: xi xhus = uuyus

X3

X T T SIS

Rys. 4.7. Geometryczna interpretacja katow Eule-
ra (wedlug [9])

Oczywiscie, miedzy kosinusami kierunkowymi u, u,u; 1 katami Eulera muszg
istnie¢ zwiazki; sg one zebrane w tab. 4.1 wedlug [9]. Wybierajac trzy odpowied-
nie, ale w zasadzie dowolne elementy macierzy ¢ mozemy obliczy¢ katy Eulera w
obu temperaturach. Na przyklad, 39 mozna obliczy¢ bezposrednio z ¢33, ¢ z ¢35 i
€325 7 288 Z ¢;3 1 Cp3. Dla czasteczki antracenu otrzymujemy nastepujace wyniki:
@ 9 ‘]
200K 62,09218(2)  66,32864(0) 110,10988(42) (4.25)
95 K 62,28889(22)  65,21591(0) 110,73268(14)
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Tabela 4.1

Zwiazki miedzy kosinusami kierunkowymi i katami Eulera

a b c* )
uy [ ¢y €2 Cyz ) COs ¥ COs @ —sin x cos 3sin @ cos ysin @ +sinycos 3cos@ sinysin g
s | €1 €22 €23 J= | —sinycos@—cosycos3sing —sinysing-+cosycosIcosp cosysing
Uz \C3; C33 C33 sin 9sin ¢ —sinJcos ¢ cos 3

Liczby w nawiasach oznaczaja w jednostkach piatego miejsca bledy, jakie towarzy-
sza obliczaniu katow Eulera z réznych elementéw macierzy (4.22). Z danych (4.25)
mozna obliczyé zmiany tych katéw przypadajace na 1 K [1073rad-K 1]

Ao 49 Ay
— =3433 — = —19,421 — =10,870 4.26) -
AT 7 AT ’ AT (426

Liczby powyzsze nie przedstawiaja, oczywiscie, katow obrotu czasteczki wokot
u;u,uy. Te ostatnie mozemy otrzymaé z (4.26) przez zastosowanie znanych z
mechaniki wzoréw [97], wiazacych predkosci katowe ¢, 9, j, wyrazone przez katy
Eulera, i predkosci katowe 4,, 4,, 4;, wyrazone przez obrét wokot, odpowiednio,
u, U, u3. Kropk. aad literami oznaczaja rézniczkowanie po czasie. Opuszczajac w
-tych wzorach czas i zastepujac nieskoficzenie male przyrosty zmianami skonczony-
mi, otrzymamy nastgpujace zwiazki na przemieszczenia katowe, wyrazone przez
oba typy zmiennych

4, =(d)sin y; sin §; +(49) cos x4
A, = (4¢) cos y, sin $; —(49)sin y, 4.27)
43 = (d¢)cos 31 +(4x)

Wskaznik ,,1” po prawej stronie oznacza warto$¢ katéw Eulera w temperaturze T; .
Z (4.26) i (4.27) otrzymujemy w konicu [10™°rad-K ']

Al =5,02 Az =8,75 A3 =6,31

Poréwnanie z (4.23) wskazuje na bardzo bliskie siebie wartosci obu wynikéw.
Warto zauwazyé, iz pierwsza metoda, wyrazajaca si¢ ukladem réwnan (4.21), jest
bardziej dokladna, poniewaz prowadzi do wartosci usrednionych z wykorzysta-
niem wszystkich elementéw macierzy c(1) i ¢(2).

Strukture naftalenu w dwoéch temperaturach oznaczyli Kozyn i Kitajgorodski
[10]. Macierze kosinuséw kierunkowych ¢(2) i ¢(1), obliczone z podanych w tej
pracy wspblrzednych atoméw, podane sa w tab. 4.2. Srednie katy obrotu czastecz-
ki naftalenu w zakresie temperatur od T; = 78 do T, = 293 K, obliczone wedlug
réwnan (4.21), wynosza w tych samych jednostkach [10‘5rad-K_1] '

4, = —1581+0,61 4, = —15,36+0,05 A =3,404029 (4.28)
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Tabela 4.2

Kosinusy kierunkowe osi u, v/, u; czasteczki naftalenu, obliczone
ze wspolrzednych atomow, podanych w pracy [10]

c a b - c*
u, 0,4320 0,2049 -0,8783
c(2) (293 K) u, | 03258 0,8726 0,3638
Uy 0,8420 —0,4405 0,3114
u; 0,4620 0,1971 —0,8647
¢(l) (78 K) Uy 0,2925 0,8866 0,3583
Uy 0,8372 —0,4188 0,3518

W obu tych przykiadach otrzymujemy wyniki $rednie dla stosunkowo duzego
przedzialu temperatury. Nie mozemy z nich wnioskowac, na przyklad, w jaki
sposob 4; zaleza od temperatury.

Tabela 43

Kosinusy kierunkowe osi u;u,u, i katy Eulera czasteczki antrachinonu, obliczone ze wspélrzednych
atoméw, podanycH W pracy [11]

c a b c* 0] X 3

uy 0,52355 0,48701 0,69908

¢ (2938 K) | u, —0,77927 —0,05797 0,62400 21,5643 48,2478 69,5634
U 0,34441 -0,87147 0,34917
u, 0,52644 0,46082 0,71449

c (260,8 K) | u, —0,79034 —0,04453 0,61105 19,4729 49,4620 70,0768
Uy 0,31340 —0,88637 0,34076
uy 0,52623 0,45014 0,72143

¢ (201 K) U, —0,79603 —0,03757 0,60409 18,5296 50,0588 70,2114
Uy 0,29903 —~0,89217 0,33855
U, 0,52843 0,44334 0,72402

¢ (161 K) U, —0,79834 —0,03063 0,60143 17,8694 50,2842 70,2602
Uy 0,28882 —-0,89583 0,33775
u; 0,52332 0,43493 0,73277

¢ (103 K) u, —0,80621 —0,02577 0,59107 17,0455 51,1095 70,2961
Uy 0,27596 —0,90009 0,33716

Bardziej szczegétowych danych dostarcza przyklad antrachinonu, ktorego
struktura wyznaczona zostala w pigciu temperaturach [11]. Tabele kosinuséw
kierunkowych oraz katy Eulera, podane w tab. 4.3, obliczone zostaly z podanych
‘W cytowanej pracy wspolrzednych atomow przy nastepujacej definicji osi uy u,us:

1. u3 jest normalna do najlepszej plaszczyzny, poprowadzonej przez atomy od
C(1) do C(8) czasteczki antrachinonu;

2. u, jest Srednim kierunkiem poprowadzonym przez cztery pary odpowiednich
atoméw, a nastepnie skorygowanym przez maly obrot do $cistej ortogonalnosci z
u; wedlug procedury opisanej w p. 5.7;
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3. u, =u, xu;. v

W rezultacie ortogonalno$é wektorow u, u, uy nie jest gorsza niz +1-107°, a
bledy w katach Eulera nie wieksze niz +3-10~* stopnia. Temperaturowe funkcje
katéw Eulera przedstawione sa na rys. 4.8. W temperaturach nizszych od 240 K
funkcje te sa praktycznie liniowe, przy czym dwa z katow maleja ze wzrostem
temperatury, a ¢ rosnie. W temperaturze bliskiej 260 K zmiany katéow Eulera
przypadajace na 1 K zaczynaja by¢ duze, co wskazuje na lacznosé z jakim§ —
blizej nie rozpoznanym — procesem w sieci krystalicznej. Potwierdzenie tego
zachowania si¢ odnajdujemy réwniez na rys. 4.9, na ktéorym przedstawione sa

.

70° . o — e Y

s N\,
69° \ \
soj N

X \\o
N
48° A

X
. /)

L ]
190 //
¢ /
()
18° 5 _
L
170 ./ Rys. 4.8. Funkcje temperaturowe katow Eulera cza-
100 150 200 250 300 steczki antrachinonu w krysztale
7, K
40
\.
20 \‘\ od
23
0 .\'\ //AT
= ; .
'v§ -20 2 [ x-‘\
b

-100
150 200 250 7, K

Rys. 49. Zmiany katowego polozenia czasteczki antrachinonu, 4;, w funkcji temperatury
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zmiany katowego potozenia czasteczki, 4;, w funkcji temperatury, wykreslone z
danych zawartych w tab. 4.4. Na mozliwo$¢ wystepowania osobliwosci struktural-
nej w tym zakresie temperatur zwracaja uwage rowniez autorzy pracy [11] w
zwigzku z tym, Zze wspolczynnik rozszerzalnosci termicznej o, ujemny w temp.
nizszej od 263 K, staje si¢ dodatni w poblizu temp. 273 K (por. nr 33 w tab. 8.1).
Przyktad antrachinonu dowodzi, ze w szerszym zakresie temperatur 4; sa na ogol
funkcja temperatury, niekoniecznie liniowa.

Tabela 44
Przemieszczenia katowe czasteczki antrachinonu
Przemieszczenie katowe, 1072 rad Przcicszczente katows,
Zakres " ? ) 107° rad-K ™!
temperatury, K
4, 4, , AJAT | A4,JAT | 4,4T

293,8-260,8 —19,9+0,1 —29,28+£0,09 | +8,6+03 —-60,3 —88,7 +26,0
260,8-201 -10,29+0,03 | —11,794+0,03 | +4,82+0,06 —17,2 —19,7 +8,1
201-161 —7,78240,004 | —7,599+0,001 | +(4+3)-1072 —194 —19,0 +0,1
161-103 ~10,08+0,05 | —9,06+0,05 +9,5540,05 —174 —15,6 +16,5

Struktura krysztalu benzenu badana byla w trzech temperaturach: rentgeno-
graficznie w temp. 270 K przez Coxa i innych [12] oraz neutronograficznie w
temp. 218 i 138 K przez Bacona i innych [13]. W tabeli 4.5 zamieszczone s3
kosinusy kierunkowe osi u, u, us czasteczki, odpowiadajace osiom symetrii LMN
(dla definicji por. nr 1 w tab. 5.2). Dane zamieszczone w tej tabeli obliczone zostaly
ze wspotrzednych podanych w cytowanych pracach metoda juz opisana. Warunki
ortonormalnoséci macierzy ¢ spetnione sa z bledami nie przekraczajacymi 1-107%.

Tabela 4.5
Kosinusy kierunkowe osi 11, u, u; czasteczki benzenu, obliczone

ze wspblrzednych atomoéw, podanych w pracy [12] (270 K) i
pracy [13] (218 i 138 K)

c 3 a b ¢

™ —0,2770 0,9604 —0,0307

¢ (270 K) u, ~0,6510 —~0,1641 0,7411
Uy 0,7067 0,2252 0,6707

u, —0,2970 0,9546 —0,0200

¢ (218 K) U, —0,6425 —0,1844 0,7436
Uy 0,7063 0,2337 0,6682

U, -0,3209 0,9466 —0,0315

¢ (138 K) U, —0,6537 —0,1973 0,7306
: Uy 0,6854 '0,2551 0,6821
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Przemieszczenia katowe czasteczki benzenu, 4;, obliczone wedlug réwn. (4.21)
zawiera tab. 4.6, przy czym wyrazy diagonalne tensora A sa nie mniejsze niz
—0,7-10"5rad-K~!. Zagadkowe jest, Zze dwa z przemieszczen maja wigksze
wartosci w zakresie nizszych temperatur, przy czym jedno z nich (4,) zmienia
znak.

Tabela 4.6

Przemieszczenia katowe czasteczki benzenu [1075 rad-K~!]

Zakres

temperatury, K Al T 4,/4T 4,/4T
270-218 5,92+0,17] 15,93+0,06 | 42,10+ 0,03
218-138 —24,6610,14] 33,0440,10 | 10,63+0,32

Przytoczone przyklady wskazuja, ze wplyw temperatury na zmiane orientacji osi
uy u, Uy czqsteczki moina opisac¢ za pomocq antysymetrycznego tensora A, wigzacego
z soba macierze orientacji tych osi w dwoch temperaturach

c2=1+Ac() (4.29)

Zwiazek ten moze postuzy¢ do oceny zalezno$ci od temperatury wszystkich
wielkosci tensorowych, ktére zaleza od orientacji czasteczki w komorce elementar-
nej. Przyjmujac — jak dotad — Ze c¢(2) jest macierza zadang w temperaturze T,
wyzszej od T,, ktorej odpowiada macierz ¢(1), mozemy e¢(1) z réwn. (4.29)
podstawi¢ do rown. (4.8). Otrzymamy

c()=(1-A)c(®

poniewaz A7 = — A ze wzgledu na antysymetryczno$¢ tego tensora. Otrzymujemy
dalej dla pierwszej czasteczki

()M = e +[c(V]T A} t (2" —Ac(2)"] =
=[c(2]tc(2)' - [T tAc ()" + [c(2M]T Ate (2P —[c(2'V]T AtAc (2!

W tej réwnosci t jest tensorem molekularnym w ukladzie u, u,u;. Komentujac
ostatnie rozwinigcie po prawej stronie, mozna zauwazy¢, ze pierwszy czlon jest
udzialem pierwszej czasteczki w temperaturze T,, t(2)'"), ostatni czton mozna za$
pominac ze wzgledu na malg wartos¢ elementéw A. Dla calej komérki elementar-
nej otrzymamy zatem

t()—(2) = i A, [c(QD]T (At—tA) e (DD A, (4.30)

r=1

Tym razem nie ma powodu, by dzieli¢ prawa strong przez liczbe czasteczek w
komorce elementarnej, poniewaz Tr A = 0. Ze wzgledu na wystgpowanie po prawej
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stronie réwn. (4.30) operacji symetrii grupy wymiennej obie strony tej rownosci sa
tensorami o tej samej liczbie niezerowych skladowych. Réwnanie to wyraza
srednia zmiang wielkosci tensorowej w okreslonym przedziale temperatur. Oparte
jest na zalozeniu, ze jedynym powodem tej zmiany jest obrét molekularnych osi
Uy Uy Us.

Zastosowaniem rown. (4.30) do badania wplywu temperatury na wielko$ci
fizyczne zajmiemy sie w nastepnych rozdziatach. '

Stosujac analogiczne rozumowanie, mozna tez opisa¢ wplyw temperatury na
wielkosci fizyczne reprezentowane wektorami. Nie bedziemy si¢ jednak zajmowali
szczegblowo tym problemem, pozostawiajac go do rozwiazania zainteresowanemu
Czytelnikowi.

4.6. Problemy i przyklady

Przykrap 4.6.1
Wplyw symetrii na posta¢ tensora w krysztale jednosko$nym

Przypu$émy, ze krysztal nalezacy do ukladu jednosko$nego, ma komorke
elementarng o symetrii (z pominigciem elementéw translacji) C,,, przy czym o$
symetrii C, jest rownolegla do x,; symetria wezla jest E. Ktore skladowe t beda
mialy wartosci niezerowe?

Grupa wymienna sklada sie z czterech operacji

EaciaCszah
ktérym odpowiadaja macierze

_ 100 -1 0 0 1 0 o
A;={010 A, = 0 -1 0 A;={0 -1 0
001 0 0 -1 0 0 -1

-100

Ay = 01o0

001

Przedstawmy tensor (4.8) symbolicznie w postaci

+ + +
r‘”—>(+ +
+ + +

Poniewaz operacje A, nie zmieniaja wskaznikéw skladowych ¥, lecz tylko ich
znaki, wynik dzialania A, mozemy zapisa¢ réwniez symbolicznie w taki sam
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sposob. Mamy zatem

[+ o+ 4+ ] + 4+ +
A, WAT =] + + + A, tPAT =) + + +
|+ + 4] |+ + +
= S
A;tPAT =] - + + A, tVAD = - + +
1=+ +_ | — + +_
Sumowanie prowadzi do
+ 0 0
T(xyx,%3) =4} 0 + +
0 + +

Szczegotowa postac czterech niezerowych skladowych, 7,4, 75,2, 733, T3, podaja
réwnania (4.11).

ProBLEM 4.6.2
Relacja miedzy liczba skladowych tensora mikro- i makroskopowego w krysztale
benzenu

Jak powiedzieliSmy w p. 4.2, krysztalowi benzenu odpowiada grupa przestrzen-
na o symbolu Pbca, nalezaca do ukladu ortorombowego. Czasteczki majg symetrig
C; i zajmuja wezly o takiej samej grupie punktowej, grupa wezla sklada si¢ zatem
z dwoch elementow

G, > {E|000}, {C;|000}

Nie powoduje to redukgji liczby elementéow tensora molekularnego t, ich liczba
wynosi zatem 6.

Grupa wymienna jest czwartego rzedu i zawiera, na przyklad, nastgpujace
operacje symetrii (4.3):

{ { 11 m i1y 10y
G, 2 {E|000], {C,,|330], 1C2,1073), 1C2,1303]

Opuszczajac skladowe translacyjne, mozemy je przedstawi¢ za pomoca nastgpuja-
cych macierzy:

100 1 0 0 -10 0
A,=[010 A, =0 -1 0 A; = 01 0
001 0 0 -1 00 —1
-1 00
A, = 0 —10

0 01
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Poniewaz zadna z nich nie miesza porzadku wskaznikéw skladowych tensora 'V

+ o+ +
W =WtV ) + + +
+ + +

udzia%y‘ czterech czasteczek w tensorze makroskopowym mozemy przedstawi¢ w
postaci symbolicznej

Po dodaniu otrzymujemy tensor makroskopowy w postaci diagonalnej

+ 0 0
r(xl XZ X3) = 4 0 + O
0 0 +

ktora odpowiada trzem roznym i dostepnym dos$wiadczalnie wartosciom gtownym
1. Jest to zgodne z faktem, ze do opisu kazdej wielkosci tensorowej, reprezentowa-
nej tensorem drugiego rzedu, wystarczy i potrzeba zna¢ w krysztale ortorombo-
wym jedynie wartosci glowne. Stad w rown. (4.11) 7, = 0.

Trzy réwnaria nie wystarczaja, oczywiscie, do wyznaczenia szesciu sktadowych
molekularnych. Mozemy jednak podwyzszy¢ symetrie czasteczki w krysztale tak,
by liczb¢ skladowych niezerowych zredukowac do trzech. Z punktu widzenia
symetrii nie jest to zabieg niedozwolony, poniewaZz symetria wezla, G,, okresla
jedynie minimalna symetri¢ czasteczki w tym wezle; efektywna symetria czasteczki
moze by¢ wyzsza. Postepowanie takie jest jednak spekulacja, ktorej uzasadnieniem
moze by¢ symetria rozktadu atoméw, wynikajaca z rentgenowskiej analizy struktu-
ralnej. Wnioski plynace z takich rozwazan moga by¢ niekiedy interesujace (por.
problem 5.11.2, dotyczacy diamagnetyzmu czasteczki heksachlorobenzenu).

Zauwazmy na koniec, ze nic nie stoi na przeszkodzie, by pomiaréw wielkosci
makroskopowej t wykonaé¢ wigcej niz- 3. Nie beda to, oczywiscie, informacje
niezalezne. Mozemy je jednak wykorzysta¢ w celu zwickszenia dokladnosci w
obliczeniu wartosci glownych metoda najmniejszych kwadratow. Dyskusje taka
przedstawiliémy w rozdz. 2 (por. problem 2.8.1).
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5. DIAMAGNETYZM KRYSZTALOW

Badania wlasciwosci diamagnetycznych cial stalych rozpoczeto na sersza skalg
dopiero od r. 1933, gdy Krishnan odkryl anizotropie podatnosci krysztalow i
opisal metody pomiaru tej wielkosci. Wkroétce stalo sie jasne, ze wyniki tych
doswiadczen moga by¢ pomocne w okreslaniu struktur szczegoélnie krysztalow
molekularnych, poniewaz w tych substancjach diamagnetyzm krysztalu w szczegol-
nie prosty sposéb moze by¢ zlozony z diamagnetyzmu czasteczek. Dodatkowym
argumentem byl wczesnie odkryty fakt, ze krysztal molekularny jest praktycznie
przezroczysty dla pola magnetycznego. Jest tak dlatego, ze indukowane w poszcze-
gblnych czasteczkach w obecnosci pola magnetyczne momenty dipolowe maja w
diamagnetykach nadzwyczaj male wartosci i ich oddzialywanie mozna zwykle
pomina¢. Dzigki temu z pomiaréw podatnosci krysztalow mozemy wprost wydeduko-
waé podatnosci czqsteczek, a jesli mozemy je okresli¢ w inny sposob, to badania
wladciwosci krysztaldow prowadza do oceny orientacji samych czasteczek w struk-
turze krystalicznej. Ulatwialo to znakomicie rozwiazanie struktury, badanej meto-
dami rentgenograficznymi.

Wspblczesnie sytuacja w dziedzinie badan strukturalnych ulegla radykalnej
zmianie. Wobec znacznego rozwoju metod instrumentalnych aktualnie budowane
dyfraktometry, wspolpracujace z maszynami cyfrowymi, stanowia tak skuteczne
narzedzie badan, ze nikt dzi$ nie szuka pomocy w metodach diamagnetycznych.
Niemniej jednak podatnosci czasteczek, dedukowane z badan krysztalow, stanowia
w dalszym ciagu wazny zbidr informacji, potrzebny przynajmniej w trzech kierun-
kach badan:

1. Obliczenia ab initio podatnosci magnetycznej czasteczek. Obecnie istniejace
teorie dalekie sg jeszcze od doskonato$ci, skoro nie thumacza ilosciowo anizotropii
czasteczki, a nawet teoretyczny wynik dla $redniej podatnosci niekiedy znacznie
odbiega od wartosci znanych z doswiadczenia.

2. Metody magnetyczne sg bardzo skutecznym narzedziem wykrywania prze-
mian fazowych w krysztatlach molekularnych i badania ich mechanizmu. Wynika
to z faktu, ze podatno$¢ krysztalu w okreslonym kierunku bezposrednio zalezy od
orientacji czasteczek. Wobec tego nawet niewielkie zmiany orientacji, spowodowa-
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ne zmiana temperatury, pociagaja za soba znaczne zmiany podatnosci krysztatu.
Obserwowany efekt jest jeszcze wiekszy, gdy mierzong wielkoscig jest nie podat-
no$é, lecz anizotropia krysztalu: poniewaz $rednia podatnos¢ praktycznie nie
zalezy od temperatury, spadkowi tej wielkosci w okreslonym kierunku towarzyszy
czesto jej wzrost w kierunku do niego prostopadlym. Warto tez zauwazyc, ze
pomiary zmian podatno$ci mozna wykonaé dla kazdego krysztalu anizotropowe-
go, podczas gdy dielektryczne metody badania przemian fazowych zawodza dla
substancji zbudowanych z czasteczek niepolarnych.

3. Szczegblna role odgrywa pole magnetyczne w grupie substancji zwanych
ciektymi krysztalami. W fazach ciektych, lecz wykazujacych anizotropi¢ optyczna,
pole dziala porzadkujaco na ustawienie czasteczek. Zrozumienie 1 Scisty opis
- wlasciwosci zwyklych faz krystalicznych z pewno$cia ma znaczenie dla lepszego
poznania wiasciwosci cieklych krysztalow i rozszerzenia ich nadzwyczaj interesuja-
cych zastosowan.

W niniejszym rozdziale analizowaé¢ bedziemy wlasciwosSci magnetyczne klasy
substancji, ktora obejmuje ciata stale nie przewodzace pradu elektrycznego. Skon-
centrujemy uwage glownie na cialach zbudowanych z czasteczek majacych zam- '
knicte powloki elektronowe, a wigc nie wykazujacych trwalego momentu magnety-
cznego. Ta klasa substancji, noszaca nazwe diamagnetykow, obejmuje bardzo wiele
zwiazkéw zaréwno organicznych, jak 1 nieorganicznych. Spora czegsé dyskusji w
tym rozdziale moze byé odniesiona réwniez do substancji, ktorych elementy
strukturalne majg nieparzysta liczbe elektronow, a wigc jeden z nich jest niesparo-
wany; takie materialy okre$la si¢ nazwa paramagnetykOow. Paramagnetyzm jest
cechq substancji raczej rzadko spotykang, podczas gdy diamagnetyzm jest uniwersal-
nq cechq materii. Substancja moze by¢ wiec jednoczesnie dia- i paramagnetykiem,
ale jesli wystepuje paramagnetyzm, to jest on na tyle silny, ze calkowicie przystania
wlasciwosci diamagnetyczne. Obie te klasy substancji tacznie stanowia grupe tzw.
materialéw stabo magnetycznych.

Celem naszym bedzie przedstawienie metod doswiadczalnych uzywanych w
pomiarach anizotropii a nastgpnie opisanie, jak z wlasciwosci krysztalu mozna
otrzymaé informacje o wiasciwosciach czasteczki przy zalozeniu, ze struktura
krysztalu jest znana. Innymi stowy, bedziemy si¢ zajmowal w tym rozdziale
strukturalng interpretacja diamagnetyzmu krysztatow. Opis makroskopowej wias-
ciwosci fizycznej ciala statego za pomoca wiasciwos$ci pojedynczych czasteczek jest
jednym z gléwnych zadan wspolczesnej fizyki chemicznej. Bardziej klasyczne
przedstawienie magnetycznych wilasciwosci materii moze Czytelnik znalezé w
monografiach [1-8].

5.1. Definicje wielkosci podstawowych

Kazde ciato, umieszczone w zewnetrznym 1 jednorodnym polu magnetycznym,
staje si¢ spolaryzowane magnetycznie. Efekt ten, zwany namagnesowaniem, wywota-
ny jest wptywem pola magnetycznego na atomy i czasteczki, z ktorych zbudowane
jest ciato. Zaleznie od charakteru tych elementéw strukturalnych mechanizm
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namagnesowania moze by¢ dwojakiego rodzaju. Jesli maja one trwaly moment
magnetyczny, p'©, to zewnetrzne pole H powoduje uporzadkowanie tych momen-
téw zgodnie z kierunkiem H. Istnienie trwalego momentu magnetycznego moze
by¢ spowodowane obecnoscia w czasteczce atomu, ktory taki moment posiada, np.
Fe?* w FeCOj,, lub moze by¢ zwigzane z obecno$cia niesparowanego elektronu w
ukladach o nieparzystej liczbie elektrondéw. Taki uklad elektrondéw, charakterysty-
czny dla czasteczek zwiazkow, zwanych wolnymi rodnikami, spotykany jest na
przyklad w tlenku azotu, NO, lub difenylopikrylohydrazylu. Jesli czasteczki nie
maja trwalego momentu magnetycznego, to substancja z nich zbudowana jest
diamagnetykiem. Ale we wszystkich czasteczkach, niezaleznie od wykazywanego
przez nie trwalego momentd, przyloZone pole indukuje moment magnetyczny, pv,
ktorego wielko$¢ jest propercjonalna do H, a kierunek (w czasteczce izotropowe;j)
jest przeciwny do H.

Rys. 5.1. Prad pierScienia wzbudzony w czasteczce benzenu przez zewngtrzne pole magnetyczne i
kierunek indukowanego momentu magnetycznego, p'”

Efekt ten mozna zilustrowac prostym modelem elektrodynamicznym czasteczki
benzenu, opisanym przez Pople’a [9] i przedstawionym na rys. 5.1. Przypusémy, ze
wektor H jest prostopadly do plaszczyzny pierécienia. Szes¢ ruchomych elektro-
néw n wykonuje wowczas larmorowska precesje wokot kierunku H z czestoscia
katowa w = upeH/(2m), co jest rbwnowazne przeplywowi ,pradu pier§cienia” o
natgzeniu i,; e oraz m oznaczaja odpowiednio tadunek i mase elektronu, u, jest
bezwzgledna przenikalno$cia magnetyczna prézni

o =4n 107" Wb-A"l.m™! (5.1)

Prad pierscienia wywoluje z kolei pojawienie si¢ wtornego pola magnetycznego,
H’, ktorego linie wewnatrz obszaru pierscienia skierowane sg przeciwnie do linii
pola przytozonego. Indukowany moment magnetyczny, liczbowo réwny iloczynowi
natgzenia pradu i powierzchni S objetej konturem, wynosi

, 3
P =1i,8 = (6e) (%)(naz) =S Hoe*a’ H/m (5.2)
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Przyjeto tutaj, ze kontur jest okregiem o promieniu a. Jak wiec wida¢, pole
magnetyczne wewnatrz pierScienia jest odrobing stabsze, a na peryferiach pierscie-
nia odrobine silniejsze od pola przylozonego. Tym efektem wyjasnit Pople fakt
znany z pomiarOw czesto$ci rezonansowej w magnetycznym rezonansie jadrowym
protondéw czasteczki benzenu. Polega on na tym, Ze czestos¢ rezonansowq dla tych
protonéw obserwuje si¢ przy warto$ciach H nieco mniejszych niz dla protonéow
czasteczki etylenu, przyjetej za wzorzec. Przesunigcie chemiczne, obliczone przez
Pople’a, wynosi + 1,7 ppm, co doskonale zgadza si¢ z wielkoscia obserwowana,
+1,4 ppm.

Koncentracja zaréwno trwatych jak i indukowanych momentow magnetycznych,
liczona na jednostke objetosci, okresla wielko$¢ zwang wektorem namagnesowania
substancji, ITA-m™']

Y0+ 30

I = YT (5.3)

AV oznacza element objetosci ciala, w obrebie ktorego liczona jest suma wektoro-
wa. Namagnesowanie jest zatem rowne liczhowo momentowi magnetycznemu jednost-
ki objetosci. Zalezy ono od wielko$ci przylozonego pola: dla substancji dia- i
paramagnetycznych, dla niezbyt silnych pol, spelniona jest zaleznos¢

I=yH (54)

przy czym y jest stala materialowa niezalezna od natezenia pola, zwana podatnos-
cig magnetyczna substancji. Najczesciej t¢ wlasnie wielkos¢ wyznacza si¢ ekspery-
mentalnie. W réwnaniu (5.4) zarowno I jak i H maja ten sam wymiar, ktérym jest
— zgodnie z réown. (5.3) — A-m™L.

W czestym uzyciu sg rowniez inne podatnosci magnetyczne: jednostki masy, x,
i jednego mola, ¥

x = y/o X =x"M=yM/o (5.5)

0 jest gestoscig substancji [kg-m~™>], a M — masa molowa [kg-mol~!]. Podat-
nosci » i y maja wymiary: [m®-kg~ '] i [m®-mol~!], nie spetniaja zatem rown.
(5.4).

Podatno$¢ magnetyczna jest wielko$cia fizyczna, ktora moze byé uzyta jako
podstawa klasyfikacji substancji chemicznie i fizycznie jednorodnych. W takim
podziale znaczenie maja zarowno wielkos¢, jak i znak podatnosci. Uprzedzajac
nieco przedstawienie metod pomiaru podatnoséci (p. 5.5), wspomnimy obecnie
krotko o samej zasadzie. Polega ona na pomiarze wielkosci i kierunku sity, jaka
dziata na probke sproszkowanej substancji po umieszczeniu jej w niejednorodnym
polu magnetycznym. W trzech zasadniczych klasach magnetykéw moze byé ona
mala i dodatnia (paramagnetyk), mata i ujemna (diamagnetyk), wreszcie bardzo
duza i dodatnia (ferromagnetyk). Na tej podstawie zaproponowano nastepujaca,
rozwinigta pozniej, klasyfikacje substancji pod wzgledem magnetycznym [1].

1. Diamagnetyki. Jest to obszerna klasa substancji o podatnosci malej i uje-
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mnej, rzedu 107 ¢, niezaleznej od H i praktycznie niezaleznej rowniez od tempera-
tury. Niezalezno$¢ od temperatury dotyczy sredniej podatnosci, tj. takiej, jaka
mierzy si¢ dla drobno sproszkowanej i starannie wymieszanej probki. Jak zobaczy-
my dalej, w krysztatlach anizotropowych podatnos¢ w okreslonym kierunku moze
nawet znacznie zaleze¢ od temperatury, co ma wazne znaczenie eksperymentalne.
Przy podatnoéci ujemnej swobodna w przestrzeni czastka diamagnetyka przesuwa
sie od miejsc o wiekszym natezeniu pola do miejsc o natgzeniu mniejszym. Do tej
klasy substancji nalezy ogromna wigkszo$¢ czystych zwiazkéw organicznych i
nieorganicznych w stanie gazowym, cieklym lub stalym, np. woda, benzen, chlorek
sodu, antracen, nicktore metale, jak np. olow, miedz

2. Paramagnetyki. Te substancje maja podatno$¢ dodatnia, rzedu 1076-10"%, i
sa wciggane w obszar pola magnetycznego o wigkszym natezeniu. Zaleznie od
zachowania si¢ podatno$ci przy zmianie temperatury wprowadza si¢ jeszcze dalszy
podzial paramagnetykéw:

a) Dielektryki paramagnetyczne. Sa to ciala nie przewodzace pradu elektryczne-
go, a odwrotnos¢ ich podatnosci, 1/, jest liniowa funkcja temperatury zgodnie z
prawem Curie Jub Curie-Weissa. Ta klasa substancji obejmuje niektoére sole metali
z grupy zelaza (np. FeCOs), a takze pierwiastkéw ziem rzadkich. Nalezg do niej
rowniez zwiazki organiczne, posiadajace niesparowane spiny (wolne rodniki).

b) Metale paramagnetyczne maja mata podatnoéé (10~ %), zwiazana z istnieniem
w nich elektrondw przewodnictwa (paramagnetyzm Pauliego). Podatnos¢ tych
metali, np. Na, Al, bardzo stabo zalezy od temperatury.

¢) Antyferromagnetyki podatno$¢ maja zblizona do zwyklych paramagnetykow,
ale wplyw temperatury wykazuje bardzo interesujace cechy osobliwe. W pewnej
temperaturze, zwanej temperatura Neela,  przechodzi przez maksimum (MnS,
MnO).

3. Ferromagnetyki. Ta klasa cial obejmuje metale grupy zelaza (Fe, Ni, Co) i
niektore ich stopy. Podatnosé jest bardzo duza (10°-10%) i zalezy od temperatury
(powyzej temperatury Curie, T, staja si¢ zwyklymi paramagnetykami), od natg¢ze-
nia pola magnetycznego i od magnetycznej, termicznej i mechaniczne] historii
probki. Sposrod ferromagnetykow wyodrebnia sie zwykle ferryty, tworzace mala
grupe ferrimagnetykow. Roznig sie one od ferromagnetykow bardziej zlozonym
typem zaleznosci y (T) powyzej T. i charakterystycznymi cechami strukturalnymi
uporzadkowania magnetycznego (uporzadkowane spiny w przynajmniej jednej z
podsieci maja zwrot przeciwny do zwrotu spindw w pozostalych podsieciach, tez
uporzadkowanych).

W powyzszej klasyfikacji pomineli$my diamagnetyki anomalne i tak zwane
metamagnetyki, stanowiace grupy o bardzo niewielu przedstawicielach. W dalszej
czesci bedziemy si¢ zajmowali wylacznie diamagnetykami, odsylajac Czytelnika
zainteresowanego wlasciwosciami innych grup do wykazu literatury, zamieszczone-
go na koncu rozdziatu.

Wektor indukcji magnetycznej B okre§lony jest zwiazkiem

B = po(H+1) (5.6)
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Korzystajac z zaleznosci (5.4), otrzymujemy
B=p H+poYyH = po(1+y)H = pouH (5.7)

[ jest przenikalnosScig magnetycznqg materiatu.

Warto zauwazy¢, ze diamagnetyzmowi substancji towarzyszy zawsze niewielki na
0g6t udzial paramagnetyzmu. Zgodnie z teorig Van Vlecka magnetyczne wlasciwos-
ci czasteczki wieloatomowej opisuje wyrazenie, skladajace si¢ z dwoch czlonow
[3, 6]

Ne? & |<0|Mp|n))?

s T N 1 I, T 538
¥ Ho om i;1 i+ f,uo'l E_E, (5.3)

Pierwszy z nich opisuje diamagnetyzm, wywolany larmorowska precesja orbity
elektronu w polu magnetycznym. Sredni kwadrat promienia tej orbity wynosi
&, N jest liczba Avogadra, e i m oznaczaja za$ ladunek i masg spoczynkowsg
elektronu. Suma rozciaga si¢ na wszystkie elektrony czasteczki. W drugim czlonie
O|Mg|n> jest elementem macierzowym skladowej orbitalnej momentu pedu w
kierunku wektora H dla przejScia od stanu podstawowego (indeks O, energia E.)
do wzbudzonego (indeks n, energia E,). Jak wiadomo, kat miedzy wektorem
momentu magnetycznego elektronu i kierunkiem H moze przyjmowac tylko
okre§lone wartosci, przy czym kazdej orientacji odpowiada troche inna energia.
Tak wiec aktualna warto$¢ rzutu momentu na kierunek H rzadzona jest czynni-
kiem temperaturowym (w przyblizeniu czynnikiem Boltzmanna), ale wobec duzej
liczby elektrondéw zalezno$¢ od temperatury Sredniego rzutu jest staba. Niemniej
jednak najnizszym energiom odpowiada dodatnia wartos¢ rzutu, co réwnowazne
jest pewnemu udzialowi paramagnetyzmu. Sumujac mozna stwierdzié, ze obok
ujemnej podatnosci ¥,, wystepujacej zawsze, w uktadach wieloelektronowych
pojawia si¢ staby udzial paramagnetyczny y,, zwykle rzedu kilku procent, przy
czym zaré6wno Y, jak i ¢, praktycznie nie zaleza od temperatury. W doswiadczeniu
mierzy Sie zawsze sumg

l//dos‘w = l//d + l»[,p (59)

Ocena czeSci paramagnetycznej potrzebna jest wtedy, gdy interesujemy si¢ pordéw-
naniem doswiadczenia z wynikiem teorii w zakresie bezwzglednych wartosci
podatnosci. Poniewaz pordéwnan takich czyni¢ nie bgdziemy, potraktujemy wyniki
doswiadczalne diamagnetyzmu krysztalow jako podatnosci efektywne.

Wyrazenie Van Vlecka (5.8) mozemy odnies¢ rowniez do czasteczki w krysztale.
Ale wtedy <(r?) oraz E, i E, oznaczaé beda troche co innego niz dla czasteczki
swobodnej. Roznice te spowodowane begda istnieniem oddzialywan miedzyczastecz-
kowych wystepujacych takze wtedy, gdy oddzialywania wzbudzonych dipoli mag-
netycznych mozna pomina¢. Rozwazania te prowadza do wniosku, ze podatnosé
czqsteczki w krysztale moze sig roznié, choé niewiele, od podatnosci magnetycznej
czqsteczki swobodnej.

Zwiazki miedzy wektorami magnetycznymi pisalismy dotad dla cial izotropo-
wych. Rozszerzenie ich na takie ciala, ktérych wlasciwosci magnetyczne zaleza od
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kierunku w przestrzeni, nie przedstawia szczegdlnych trudnosci. W takim przypad-
ku stale materialowe sa tensorami, a relacja (5.7) przechodzi w

B=u,(1+V)H (5.10)
Stad mamy
p=1+vy (5.11)

gdzie V jest tensorem podatnosci magnetycznej krysztalu, p — tensorem wzglednej
przenikalnosci magnetycznej krysztalu, 1 oznacza za§ macierz jednostkowa.
Wszystkie tensory sa rzedu drugiego. W postaci rozwinigtej

L+yy Yo Y13
n= Yor 1+Y,, ¥ (5.12)
Y3 Wiy 14iss

Z rownan termodynamiki, opisujacych energie namagnesowanego ciata, wynika, ze
V1 p sa tensorami symetrycznymi, a wiec

Wijleﬁ (5.13)
Nie bedziemy przytaczali dowodu tego twierdzenia, ktory Czytelnik moze znalezé
w monografii Nye’a [4]. Poswiecimy natomiast troche uwagi problemowi tzw.
pola wewnetrznego w diamagnetyku.

Jak wynika z relacji (5.7), indukcja magnetyczna we wngtrzu materialu rézni sie
od indukcji w prozni wyrazeniem po ¥ H. Réznica ta spowodowana jest obecnoscia
pola wtornego, H' = Y H, wytwarzanego przez indukowane molekularne momenty
magnetyczne (5.2). Sprobujmy oceni¢ wielko$¢ tego pola. Biorac zndéw czasteczke
benzenu jako przyklad, mozemy napisa¢ wyrazenie na H' w odlegtosci r od srodka
czasteczki
P 1 3uge?a?
e e = eae 5.14

3 2ml )
Czynnik % pochodzi z $redniowania na wszystkie kierunki [9]. Przyjmujac r
=r(CC)+r(CH) = 0,25 nm oraz a = r(CC) = 0,14 nm, z réwn. (5.14) otrzymuje-
my

H!

— =2-10"3 5.15

- (5.15)

Podobny wynik otrzymamy korzystajac bezposrednio z podatnosci krysztatu
benzenu

HI

— = =8-107°

= W)

Obie liczby sa zblizone i wskazuja, ze pole wytworzone przez dipol indukowany ma
na peryferiach czasteczki natezenie okolo 10° razy mniejsze od natezenia pola
przylozonego. Wynik ten stuszny jest ogélnie, poniewaz absolutne podatnosci

155



materiatéw diamagnetycznych sa rzedu 107°. W wielu problemach mozemy wiec
zaniedbac¢ obecno$¢ pola wtornego. Innymi slowy mozemy uznac, ze diamagnetyk
jest praktycznie zupelnie przezroczysty dla pola magnetycznego. Sytuacja ta jest
krancowo odmienna od tej, jaka spotykamy w elektrostatyce lub optyce dielektry-
kow, gdzie generowane wewnatrz materiatu pole molekularne moze mie¢ wielko$¢
zblizona do pola przylozonego.

Tensor podatnosci magnetycznej,  lub y, moze byé przedstawiony jako tréjwy-
miarowa powierzchnia w ksztalcie elipsoidy. Powierzchnie t¢ mozna rozpia¢ na
ortogonalnym i prawoskretnym ukladzie wspodtrzednych X, X, X5 w taki sposob,
ze kazdy z kierunkoéw X; pokrywa sie z kierunkiem jednej z trzech osi elipsoidy.
Kierunki X; zwane sa wowczas osiami giownymi lub osiami wlasnymi y, a trzy
warto$ci wzdtuz tych osi, x;, x2 1 ¥3, odcinane powierzchnia, zwane sa wartosciami
glownymi lub wartosciami wltasnymi y. W krysztale diamagnetyka wszystkie wartosci
wlasne sq ujemne; nie znamy przypadku o jednej lub wigcej wartosci y; dodatnich.

Rys. 5.2. Podatnosé¢ magnetyczna w kierunku wektora jed-
nostkowego ¢

W tym szczeg6lnym uktadzie wspolrzednych tensor ¢ ma posta¢ diagonalna, tj.
=1 0 0/0 x5 0/0 0 x3). Kazdy punkt polozony na elipsoidzie okresla wartosé
podatnosci w kierunku wektora jednostkowego g, skierowanego od O do P (rys. 5.2).
Zgodnie z rownaniem (2.42) mamy

Yo =07 X0 = X101+ 1203+ 13 03 (5.16)
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5.2. Para sil w jednorodnym polu magnetycznym

Rozwazmy obecnie zachowanie si¢ krysztatu diamagnetyka, zawieszonego na
cienkiej 1 sprezystej nici w jednorodnym polu magnetycznym. Niech kierunek
zawieszenia bedzie rownolegly do jednej z osi glownych tensora podatnosci, np. do
osi ¥, (rys. 5.3). Pozostale dwie osie, ¥, 1 Y3, leza woéwczas w plaszczyznie
poziomej. Przyjmiemy dalej, ze || > [y3|. Kierunek osi algebraicznie krotszej, /5,
mozemy poznaé z obserwacji zachowania si¢ probki w polu magnetycznym: jesli
przy nieruchomym krysztale wlaczymy pole i krysztal pozostanie dalej nierucho-
my, to kierunek krotszej z dwu osi jest rownolegly do kierunku linii pola. Stan
rownowagi mechanicznej w polu magnetycznym osiagamy zatem wtedy, gdy ys||H
oraz Y, 1L H. )

o

LR

Rys. 5.3. Para sit w jednorodnym polu magnety-
cznym

Przypusémy teraz, ze zaburzamy te¢ rownowage przez obrot gérnego zawiesze-
nia nici o znany kat o (rys. 5.3). Dzieki elastycznosci zawieszenia krysztal obroci
sie rOwniez w tym samym kierunku, lecz o kat ¢, mniejszy od . W nowym
potozeniu réwnowagi dziala na krysztal para sil, F, i F,, starajaca si¢ przywrocic¢
krysztal do poprzedniej orientacji. Moment pary sil, M, zalezy od wielkosci
wzbudzonego w krysztale momentu magnetycznego P, i od natgzenia pola H

M=yu,P, xH (5.17)

Korzystajac z zaleznosci (5.4) i definicji wektora namagnesowania, mozemy napi-
sa¢ wyrazenie na moment magnetyczny probki o objetosci V

P =V-I=VyH (5.18)
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Przy wybranym przez nas kierunku zawieszenia krysztalu wystarczy znac tylko
skladowa M, momentu, dzialajaca w tym kierunku. Oznaczajac przez H; skladowe
H wzdluz gtownych kierunkoéw y; (rys. 5.4), mamy

M, = po(PyH =Py H3) = puo V(s —) Hy Hy

Rys. 5.4. Skladowe natg¢zenia pola wzdluz kierunkéw

gtéwnych
Poniewaz
H, =Hsing Hy; = Hcos g
oraz
m @ m
V = —Y— = -
Y o "

gdzie m/M jest liczba moli czasteczek substancji zawartej w probce; otrzymujemy

M, = $ o (ts = 1) H sin 20 (519
W tym prostym przypadku moment pary sil dzialajgcych na probke jest wigc
proporcjonalny do roznicy glownych podatnosci, lezacych w plaszczyznie prostopad-
tej do kierunku zawieszenia. Ta ro6znica zwana jest anizotropia krysztalu w
okreSlonym przekroju. GdybySmy zawiesili krysztal wzdluz innej osi glownej
tensora, na przyktad wzdluz y;, to otrzymalibySmy skladowa M; momentu pary
sil proporcjonalna do wielkosci (y, — x;), okreslajacej anizotropie innego przekroju
krysztatu. Bardziej ogélny przypadek, w ktérym zadna z osi glownych V¥ nie jest
rownolegla do kierunku zawieszenia, dyskutowany bedzie w nastgpnym punkcie.
Wyrazenie na moment sily, dzialajacej na krysztal w jednorodnym polu
magnetycznym, podal po raz pierwszy Krishnan [10, 117]. Krishnan roéwniez opisal
kilka metod pomiaru anizotropii, ktérymi zajmiemy sie w dalszej kolejnosci.

5.3. Statyczne metody pomiaru anizotropii
W stanie rOwnowagi mechanicznej moment pary sil, dzialajacych na krysztal
umieszczony w jednorodnym polu magnetycznym, réwnowazony jest przez

przeciwnie skierowany moment M), wytwarzany przez skrecenie sprezystego za-
wieszenia (nici). W zakresie odksztalcen sprezystych moment M5 jest proporcjonal-
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ny do kata skrecenia, o — ¢. Ogolniej
M, =k(a—oay— @) (5.20)

przy czym o jest katem, o ktory zostato obrocone gérne zawieszenie nici, a ¢ jest
katem, o ktory obrdcit sie krysztal w polu magnetycznym o natgzeniu H. Dla ¢
=0 rowniez M5 =0, a stad a« =«a,. o, jest zatem poczatkiem odczytu katow
skrecenia. Indykatorem katowego potozenia krysztatu jest zwykle male zwiercia-
detko, umieszczone poza zasiggiem pola magnetycznego 1 odbijajace promien
$wietlny w kierunku podzialki milimetrowe;j.
Przyréwnujac oba momenty otrzymujemy
1

m .
o~ (X3 —x1) H*sin2¢ = k(e —ao— )
270 M

Jesli oznaczymy
Bt =dn g (5.21)
oraz

(o mH?)/(2Mk) = A

to otrzymamy

a—ag—@ = A-A3; x-sin2¢ (5.22)

Jesli krysztal zostanie zawieszony na bardzo cienkim widknie kwarcowym, to (x
—ua) jest znacznie wigksze od . W tych warunkach mozna zaniedba¢ ¢ po lewej
stronie rown. (5.22), wobec czego wzgledny kat skrecenia zawieszenia, (a— o),
stanie si¢ liniowa funkcja sin2¢. Z kilku obserwacji katow ¢ dla rosnacych
wartosci o mozna otrzymac A;; x z dobra dokladnoscia zwlaszcza wtedy, gdy
skorzystamy z rachunku wyrdéwnawczego dla linii prostej [12].

Inny sposéb pomiaru anizotropii opisany zostal przez Krishnana [11]. Powigk-
szaniu kata o towarzyszy wzrost ¢ az do pewnej wartosci krytycznej, ktéra wynosi
45° czyli ¢, = n/4. Takie polozenie krysztalu jest metastabilne — kazdy, naj-
mniejszy nawet wzrost o wyzwala szybkie wirowanie krysztalu wokoét kierunku
zawieszenia. Dla ¢, kat o przyjmuje warto$¢ krytyczna, a,,, a nadto sin2¢,,,
= 1. Wobec tego z rown. (5.22) otrzymujemy

1
A31 =Z(°‘kr_°‘o”‘7t/4) (5.23)

Korzystajac z jednej z tych metod mozna okresli¢ anizotropi¢ krysztalu pod
warunkiem, ze znamy stala sprezystosci nici, k. Mozna ja wyznaczy¢ w ekspery-
mencie z krysztalem, np. kalcytem, ktorego gtowne podatnosci i kierunki ich osi sa
znane, Kalcyt ma tréjkrotna o§ symetrii, co znacznie ulatwia rozpoznanie glow-
nych kierunkéw. O$ ta przechodzi przez naroze, w ktérym spotykaja sie trzy
krawedzie pod tym samym katem rozwartym & = 103° (rys. 5.5). Jedna z gléwnych
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podatnosci, y3, musi by¢ rownolegia do tego kierunku, a prostopadly do niego
przekr6j musi by¢ izotropowy. Wartosci podatnosci wynosza [13]

Y1 =1 = —456-1071? X3 = —509-107!2 m*-mol~!

Rys. 5.5. Glowne osie podatnos$ci magnetycznej w krysztale kal-
cytu

W najprostszym przypadku mozna zawiesi¢ plytke wzdluz dwusiecznej plaskiego
kata &. Jesli kat zawarty miedzy tym kierunkiem a osia trojkrotna oznaczymy

przez y, to siny = (\/3/3) tg (¢/2). Anizotropia mierzona przy tej orientacji wynosi

Ay = (x;—x3)-sin?y = 27,8-107 12 m* -mol !

5.4. Dynamiczna metoda pomiaru anizotropii

Krysztal zawieszony miedzy biegunami magnesu na cienkiej nici moze wykony-
wacé oscylacje katowe, jesli zostanie wyprowadzony z polozenia rownowagi przez
obrot o maly kat ¢ wokol zawieszenia i pozostawiony swobodnie. Przy zaniedba-
niv tlumienia réwnanie ruchu takiego oscylatora ma postaé taka sama jak
wahadta torsyjnego

I§ = —AkAysin 2e — ke (5.24)

W tym réwnaniu I, jest momentem bezwladnos$ci krysztatu, a & = d?¢/dt? oznacza
przyspieszenie katowe. Pierwszy wyraz po prawej stronie jest momentem sily
wywolanym przez pole magnetyczne, drugi wynika z reakcji sprezystej zawieszenia.
Korzystajac z przyblizenia malych katow, sin 2¢ = 2¢, roéwn. (5.24) mozemy napisac
W postaci

k
é‘+1—(1+2AA)()e =0 (5.25)

b
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Latwo sprawdzié, Zze rozwigzaniem takiego rownania jest funkcja

e =¢gosin(wgyt) (5.26)
w ktorej g, oznacza katowa amplitude ruchu, t — czas. Czestosé katowa drgan,
wy, okresla czynnik staly w rown. (5.25)

k
wh = 7 (1+244) (5.27)
b

Réwnanie (5.27) okre$la czesto$¢ drgan w polu magnetycznym. Pod nieobecno$é
pola A =0, a czegstos¢ katowa jest mniejsza 1 wynosi

k
w3 =— (5.28)
Ib
Laczac réwnania (5.27) i (5.28), otrzymujemy
/ L
CAT0 0 ggay (5.29)
Wo Ty

Pomiary okreséw drgan Ty (w polu magnetycznym) i T, (z polem wylaczonym)
prowadzq wigc bezposrednio do wyznaczenia wielko$ci anizotropii krysztalu.

W eksperymencie dynamicznym potrzebna jest réwniez znajomos$¢é statej spre-
zystosci nici. Mozna ja wyznaczyé na podstawie pomiaru okresu drgan T, ciala o
prostej geometrii, zastgpujacego krysztal. Na przykiad, pret w ksztalcie cylindra o
dlugosci | i masie m, zawieszony w polowie dlugosci, ma moment bezwladnosci

1 2
1 r — 12 ml
a odpowiednia czesto$¢ wahan wynika z wzoru

_47t2_k

2
S S

«w

Pomiary anizotropii wykonuje si¢ zwykle w celu wyznaczenia gléwnych podat-
noéci krysztalu. W rozwazanych dotad prostych sytuacjach pomiary mozemy
wykona¢ w trzech réznych kierunkach zawieszenia, kolejno réwnoleglych do
kazdego z gléwnych kierunkéw y. Uzyskane stad wielkosci anizotropii prowadza
do nastepujacego zbioru rownan liniowych:

X3—X1=4a
X2—X1=0Db
X3—X2=C¢C

w ktorych a, b, ¢ sa liczbami znanymi z pomiaréw. Latwo jednak dostrzec, ze
tylko dwie z tych trzech informacji sa niezalezne, poniewaz wyznacznik charakte-
rystyczny tego ukladu znika. Dla znalezienia poszczegblnych y; potrzebujemy
nowej, niezaleznej informacji, ktora najcze$ciej jest srednia podatno$é proszkowa
(x> badanej substancji. Metode¢ jej pomiaru oméwimy w nastepnym punkcie.
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Czesto si¢ zdarza, ze nie potrafimy na pierwszy rzut oka odgadna¢ kierunkow
osi giownych w interesujacej nas probce. Jest tak w szczegblnosci wtedy, gdy
probka ma ksztalt nieregularny i pozbawiona jest plaszczyzn lupliwosci, ktore
zawsze ulatwiaja rozpoznanie orientacji krystalograficznej. Dowolnie wybrany
kierunek zawieszenia moze nie odpowiadaé zadnej z osi glownych yx. Przekroj
tensora prostopadle do kierunku zawieszenia jest jednak zawsze elipsq. W szczegdl-
nosci, gdy przez przypadek kierunek ten pokrywa si¢ z osig magnetyczng krysztatu
(definicja — por. p. 5.9), to przekrdj w plaszczyznie prostopadlej degeneruje si¢ do
okregu. Dla sprecyzowania opisu wybierzmy laboratoryjny uklad wspoirzednych
xyz w taki sposob, ze 0§ z jest rownolegla do kierunku zawieszenia i skierowana .
jest w gdre, x jest rownolegla do linii H, ktére biegna poziomo, y kompletuje zas
prawoskretny uklad wspdlrzgdnych. Ponadto niech I, m 1 n beda wektorami
jednostkowymi uktadu wspélrzednych zwiazanego z probka i wybranego w taki
sposob, ze nljz, a rownoleglos¢ I||x oraz m||y zachodzi tylko wtedy, gdy orientacja
probki po wiaczeniu pola nie ulega zmianie. Spelnienie tego warunku oznacza, ze |
determinuje kierunek krotszej osi elipsy badanego przekroju, m za$ kierunek jej osi
dtuzszej. Mierzona w takim przekroju anizotropia wynosi

Ay = 1T yl—m" ym (5.30)

Pierwszy z cztonow prawej strony rown. (5.30) przedstawia warto$é y w kierunku I,
drugi w kierunku m. Oczywiscie, musimy zna¢ orientacje I, m, n wzgledem
krystalograficznego ukladu wspdlrzednych a, a,a;. Mozna to osiggnaé przez
pomiar periodéw identycznosci krysztatu lub obserwacje w mikroskopie polaryza-
cyjnym, jesli wlasciwosci optyczne krysztalu sa rozpoznane.

Rozwiazanie uktadu zlozonego z dwoch rownan (5.30), napisanych dla dwoch
réznych kierunkow zawieszenia, oraz trzeciego, wynikajacego z definicji $redniej
podatnosci, prowadzi i w tym ogolniejszym przypadku do wyznaczenia gtownych
podatnosci krysztalu. Wykonanie wigkszej liczby pomiarow dla szerszego zakresu
roznych kierunkow zawieszenia pozwala obliczy¢ y; z wieksza dokladnoscia przez
zastosowanie metody najmniejszych kwadratow, ale nowych informacji nie dostar-
cza.

5.5. Srednia podatno$¢ substancji

Srednia podatno$¢ substancji jest wielkoscia czesto uzywana dla jej scharakte-
ryzowania, a réwniez latwo dostepna w drodze bezposredniego pomiaru. Definiuje
sie ja jako jedna trzecia $ladu tensora podatnosci, tj.

G>=3Try=%40x11+ 222+ Xa3) (5.31)

Wyb6r takiej definicji podyktowany jest faktem, Ze $lad kazdego tensora drugiego
rzedu jest niezmiennikiem kazdej transformacji ukltadu wspélrzednych, ktéra pozo-
stawia go ortogonalnym i prawoskretnym. Taka tez podatno$é bedzie mial pro-
szek, zlozony z drobnych krysztatkow substancji, starannie wymieszanych w taki
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sposob, by kazdy kierunek krysztalu reprezentowany byl w proszku jednakowo
czgsto.

Najbardziej rozpowszechniona a zarazem dokladna metoda pomiaru $redniej
podatnosci magnetycznej opisana zostata przez Gouya [14] (rys. 5.6). Mozna ja
rownie dobrze stosowaé do badania substancji izotropowych, polikrystalicznych, a
takze anizotropowych. Obszerniejszy niz w tym punkcie przeglad metod pomiaru
> znalezé mozna, na przykiad, w doskonalej monografii Batesa [15].
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Rys. 5.6. Sita dzialajaca na probke proszku diamagnetycznego w polu niejednorodnym

W metodzie Gouya korzysta si¢ z sily, dzialajacej na probke magnetyka w
niejednorodnym polu magnetycznym. Sproszkowana substancja zawarta jest w
ampulce szklanej, o jednolitym przekroju wzdtuz catej dtugosci. Zawiesza si¢ ja na
jednym z ramion wagi i wstawia w obszar pola w taki sposéb, by dolny koniec
probki znalazt si¢ w obszarze najwickszego natezenia pola, natomiast gorny
powinien przypada¢ na obszar znacznie mniejszego natgzenia pola. Jesli prébka
jest diamagnetykiem i nie wykazuje efektéw anizotropowych, to w tych warunkach
dziala na nig sila skierowana pionowo do gory, przez co jej efektywny ciezar
maleje. Réznicg t¢ mozemy mierzy¢ uzywajac odwaznikow albo stosujac elektrody-
namiczna metode rownowazenia (rys. 5.6b). Zwiazek migdzy podatno$cia materiatu
a wielkoscia sity wynika z nastepujacego rozumowania.

Sita dzialajaca na element objetosci proszku, dV = Adz, zalezy od wielkosci
indukowanego przez pole momentu magnetycznego, P = IdV. A jest powierzchnig
przekroju poprzecznego ampulki, a I — namagnesowaniem substancji. Sita dziala-
jaca na element objetosci skierowana jest zatem wzdluz osi z i wynosi

dH dH
az z
=uoA Y >HIH
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Calkujac migdzy poczatkiem (natezenie pola H) i koncem probki (nat¢zenie pola
H,), otrzymamy sil¢ dzialajaca na cala probke
Hyg

; 1
F.= | noA W HIH =504 W>(HG—H?) (5.32)
H

lub w przyblizeniu (jesli H, mozna zaniedbac)
F.= —3u A H? (5.33)

Znak minus wynika z tego faktu, Zze sita dzialajaca na probke o ujemnej $redniej
podatnosci skierowana jest zgodnie z kierunkiem osi z. Dla osiagnigcia dobrej
doktadnosci wysoko$é probki nie powinna by¢ mniejsza niz 15 cm, $rednica
ampulki winna za$§ by¢ tylko troch¢ mniejsza od odlegtoéci miedzy nabiegunnika-
mi magnesu. Dokladnos$¢ wynikow mozna zwigkszy¢, wykonujac pomiary poréw-
nawcze, zwykle w odniesieniu do czystej wody, umieszczonej w tej samej ampulce i
w tym samym miejscu pola. Takim postgpowaniem eliminuje si¢ bledy zwiazane ze
zmiennymi warunkami eksperymentu. Podatnos¢ wody w réznych temperaturach
podana jest w tab. 5.1. W dokladniejszych pomiarach trzeba réwniez zadbaé o
zastapienie powietrza zawartego w ampulce azotem lub wodorem. Powietrze,
dzieki obecnosci tlenu, wykazuje mata dodatnia podatnos¢, ktéra w temperaturze
pokojowej wynosi 0,36-107'? m*®-mol ™.

Tabela 5.1
Podatnos¢ wody destylowanej w funkcji temperatury [1]

5 € 1 10 30 70

—y-108 9,034 9,05 9,07 9,10

Metoda Gouya, w zasadzie prosta i doktadna, ma jednak t¢ niedogodnosc, iz z
jej pomoca mierzy sie objetoSciowa podatno$¢ substancji. Tymczasem zwykle
potrzebujemy wielkosci podatnosci odniesionej do jednostki masy. Przeliczenie
jednej z tych wielkosci na druga jest bardzo proste, jesli zajmujemy si¢ badaniem
cieczy lub gazow; nie jest to takie latwe z proszkiem, ktorego gesto$¢ zalezy od
sposobu sprasowania w rurce. Trudnosci te znikaja w metodzie Faradaya, w ktorej
uzywa sie nabiegunnikOw magnesu o takim ksztalcie, by iloczyn H (0H/0z) byt
staly w kierunku zawieszenia probki. Dzigki temu sila dzialajaca na elementy
objeto$ci w dwodch réznych punktach pola jest taka sama i nie jest potrzebne
catkowanie na calg objeto$¢ probki. W metodzie Faradaya otrzymujemy wigc
bezposrednio podatno$¢ jednostki masy substancji. Dalsza jej zaleta jest fakt, iz
pomiary mozemy wykonywac ze znacznie mniejszymi probkami, bez ograniczenia
dokladnosci. Szczegdly aparaturowe tej metody i opis jej zastosowania do badania
probek o masie nie wigkszej niz 20 miligraméw w zakresie temperatur od 5 do 300
K znalezé mozna w pracy Morrisa [16]. Podana jest tam réwniez metoda
eliminowania bledéw wynikajacych z obecnosci tadunku elektrostatycznego w
$wiezo sproszkowanej probce nieprzewodzacego materiatu. Opis innych jeszcze
metod znalezé mozna réwniez w monografi Batesa [15].
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3.6. Zastosowanie modelu gazu zorientowanego do opisu
podatnosci krysztalow i czasteczek

W punkcie 5.1 wykazali§my, ze male wartosci podatnosci diamagnetykow
powoduja, iz pole wewnetrzne w krysztale jest praktycznie takie samo, jak pole
przytozone. Taka sytuacja jest nadzwyczaj rzadka wsrod roznych fizycznych
wlasciwosci krysztalow, a jednoczesnie bardzo korzystna. Badajac relacje miedzy
wlhasciwoscia krysztatu i czasteczki, mozemy w tej sytuaql zastosowac bezposred-
nio relacje (4.9) lub (4.11).

Tensor podatnos$ci krysztalu utworzonego z jednego mola czasteczek oznaczad
bedziemy przez y, tensor czasteczki za$ przez K. Uwazad tez bedziemy, ze $lady
obu tensoréw sa sobie rowne

Try=TrK

Sumowania udziatéw poszczegédinych czasteczek dokonywac begdziemy w makro-
skopowym ukladzie wspolrzednych x; x, x3, o osiach réwnoleglych do ortogonal-
nego uktadu osi krystalograficznych. W ukladach o symetrii nie nizszej niz ukiadu
ortorombowego mozna bezposrednio postugiwaé si¢ ukladem abc, oznaczanym
czegsto przez a, a,a;. W ukladzie jednosko$nym trzeba dokonaé wpierw ortogona-
lizacji do a* be lub abc*, wybierajac taka wersje ortogonalizacji, ktoéra nie narusza
kierunku poslizgu réownoleglego do osi, odpowiednio, ¢ lub a. Jesli kierunkiem
poslizgu jest przekatna komorki elementarnej, a takze w ukladzie trojsko$nym,
ortogonalizacja moze by¢ dokonana dowolnie.

Oznaczenia wartosci wlasnych, x;, x,, x3 1 0osi wiasnych X, X, X3 oraz opis ich
orientacji wzgledem x; x, x3 zostaly wprowadzone po raz pierwszy przez Krishna-
na i wspolpracownikow [10]. Pozniejsza modyfikacja, dokonana przez Lasheena
[17], dotyczy jedynie innego oznaczenia y; w ukladzie jednosko$nym. Podajemy
nizej konwencje z uwzglednieniem tych zmian, dzi§ powszechnie przyjeta.

1. W krysztalach posiadajgcych o$ symetrii o krotnosci wyzszej niz 2 powierzch-
nia reprezentujqca wszystkie wlasciwosci fizyczne o tensorach rzedu drugiego ma
symetrig obrotowgq, przy czym o$ obrotu pokrywa si¢ z kierunkiem tej osi (zasada
Naumanna). Dlatego tylko dwie wartosci sa potrzebne do opisu wihasciwosci
magnetycznych krysztatu: y, 1 x,, odpowiednio réwnolegle i prostopadle do osi
symetrii. Jedna z osi glownych, zwykle X;, jest rownolegta do osi symetrii,
pozostatle moga by¢ wybrane dowolnie. Poniewaz y, i x, moga mie¢ warto$ci
dowolne, przypadkowi temu odpowiadaja dwa stopnie swobody.

2. W krysztalach ortorombowych powierzchnia reprezentujqca y jest elipsoidg
tréjosiowq, ktorej osie pokrywajq si¢ z a, b, c. Osie wlasne y maja wigc kierunki
ustalone w przestrzeni, a trzy rozne wartosci wilasne, oznaczane przez x,, xp> Yo
mogg mie¢ wartosci dowolne. Odpowiada to trzem stopniom swobody.

3. W krysztalach nalezgcych do ukladu jednoskos$nego wartosci wlasne ozna-
Cza Si¢ Przez ¥i, X2, X3, przy czym tradycyjnie wybiera sie y5||b; wtedy y, i y, leza
w plaszczyznie (010). Kat zawarty migdzy X, i kierunkiem [100] oznaczany jest
przez . Niekiedy uzywa si¢ kata zawartego migdzy X, i [001], oznaczajac go
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przez . Katy 6 i  uwazane sa za dodatnie, jesli znajduja si¢ wewnatrz kata f§; na
zewnatrz niego sa ujemne. Przykiad orientacji z ¢ < 0 przedstawiony jest na rys.
5.7. W drugiej, nowszej konwencji X, oraz y, przyjmuje si¢ za réwnolegle do osi
b, a orientacje X, i X3 w ptaszczyznie (010) opisuje si¢ podobnie jak poprzednio.
Elipsoida reprezentujqca y ma w ukladzie jednoskosnym cztery stopnie swobody: trzy
wartosci wlasne i kgt orientacji w plaszczyznie (010).

C:*:

/lsub

L

(001)
Zi %2

Rys. 5.7. Przykiad orientacji kierunkow glownych y w krysztale jednosko$nym

4. W uktadzie trojskosnym nie ma ograniczen natozonych przez symetrig¢ na
warto$ci wlasne ani na orientacje osi wlasnych y. W tym przypadku elipsoida ma
maksymalng liczbe szeSciu stopni swobody.

Jak widzimy, wybor makroskopowego ukladu wspolrzednych xq x,x; 1 osi
wlasnych tensora, X, X, X3, jest jednoznaczny i1 opiera si¢ na symetrii krysztatu
oraz na wybranej konwencji oznaczeri. Podobnie jest z wyborem mikroskopowego
ukladu wspolrzednych dla wyrazenia tensora K: jest on zdeterminowany symetria
grupy wezla, G,. Jesli obejmuje ona tylko centrum symetrii lub jest asymetryczna,
to wybdr u,u,u; jest dowolny, a w takim ukladzie K ma maksymalna liczbg
szesciu niezerowych sktadowych, odpowiadajaca szesciu stopniom swobody. Wyz-
sza symetria G, precyzuje w przestrzeni kierunki niektorych osi uktadu wspotrzed-
nych i jednocze$nie redukuje liczbe stopni swobody K, podobnie jak czyni to
grupa wymienna z tensorem makroskopowym.

Ogolny zwiazek, taczacy podatno$¢ magnetyczng krysztalu z podatnosciami
czasteczki, mozna zapisa¢ w postaci analogicznej do réwn. (4.9)

1 V4
11 x,x3) == 3 T Ke® (5.34)
=1

Z
Tensor krysztalu, y(x; x, x3), zdefiniowany jest w ukladzie krystalograficznym, w
ktérym dzialaja operacje symetrii grupy wymiennej, okre§lone macierzami A,.
Liczba tych operacji wynosi Z i dokladnie odpowiada liczbie czasteczek zawartych
w komorce elementarnej. Tensor mikroskopowy zdefiniowany jest w ukladzie
uy U, U3, w ktérym dziataja operacje symetrii grupy wezla. Determinuja one liczbe
niezerowych sktadowych K. Kazda z macierzy orientacji ¢ otrzymuje sie z ¢
przez dziatanie operacjg A, [p. rown. (4.8)]:

T = A, eDT
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Oznaczajac zatem
T Kigh) = K* (5.35)

mozemy rown. (5.34) zapisaé w postaci zawierajacej explicite operacje A,
1
x (X1 X5 %3) = EZ A K*A] (5.36)

Tensor K* nie jest niczym innym, jak tylko tensorem czasteczki 1, wyrazonym w
uktadzie makroskopowym.

Przykiady zastosowania tych zwiazkow do konkretnych struktur, a mianowicie
dla benzenu (problem 5.11.1j i heksachlorobenzenu (problem 5.11.2) przedstawione
sq przy koncu tego rozdziatu.

5.7. Wyniki doswiadczalne badan podatnosci krysztalow i czgsteczek

Przeglad poznanych magnetycznych wiasciwosci krysztatow, przede wszystkim
molekularnych, zestawiony jest w tab. 5.2. Przy ukladaniu tabeli nie podjeto
szczegc')lnych" staran, by uczyni¢ ja kompletna. Zwrocono raczej uwage na wyszu-
kanie nowszych danych strukturalnych, poniewaz dane te rzutuja w zasadniczy
sposob na wyniki uzyskane dla czasteczek. Przeliczonych zostato od nowa kilka-
nascie przypadkow budzacych watpliwosci.

W zestawieniu interesujace sa w pierwszym rzedzie benzen, naftalen i antracen,
reprezentujace zwiazki aromatyczne. Te trzy zwiazki sa roOwniez w pewnym sensie
wzorcami dla poszukiwan teoretycznych, zmierzajacych do wyjas$nienia przyczyn
anizotropii czasteczek.

Przy sporzadzaniu tabeli koncentrowano rowniez uwage na problemach, ktoére
wynikaja z badaf magnetycznych wlasciwosci krysztatow i czasteczek. W tym celu
wlaczone zostaly do tabeli podstawowe informacje, potrzebne do przejScia od
wlasciwosci krysztalu do whasciwosci czasteczki, zgodnie z modelem gazu zoriento-
wanego. Nalezag do nich parametry komoérki elementarnej i symbol grupy prze-
strzennej, stanowiace metryke identyfikacyjna okreslonej fazy krystalicznej. Wiasci-
wosci krysztalu opisujq wartosci wlasne y; i orientacja osi wlasnych, podane wedlug
konwencji przyjetej w p. 5.6. Tabele kosinuséw kierunkowych zaczerpnieto z prac
opisujacych struktury krysztatow. Jednak nie wszyscy autorzy podaja orientacje
osi czasteczki w sposob jednolity, odpowiadajacy orientacji uktadu trzech osi
symetrii czasteczki LMN wzgledem ortogonalnego uktadu osi krystalograficznych.
W takich przypadkach punktem wyjscia bylo rownanie najlepszej plaszczyzny
czasteczki, definiujace kierunek osi N. Dla plaskich czasteczek jest to kierunek
zadany najbardziej dokladnie. Jesli czasteczka nie jest ptaska, wybor trzech
ortogonalnych osi moze nie by¢ jednoznaczny; w takim przypadku podatnosci K,
Ky 1 Ky maja znaczenie umowne.

Najlepsza plaszczyzn¢ prowadzono z reguly przez atomy wegla szkieletu; jesli
wybdr byl inny, zaznaczono to w tabeli. Kierunki pozostatych osi poszukiwane
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Tabela 52

Magnetyczne wlasciwosci krysztalow i czasteczek oraz podstawowe informacje o krysztalach molekular-
przez 10. Podatnosci molowe y lub K podane sa w jednostkach m* - mol~!; dla otrzymania ich w jednost-

czone s3 w nawiasach katowych

; Opis Geometria
L, Heaa. Py struktury czgsteczki
1 2 3 4
1 Benzen, C;Hy ortorombowa cz. plaska:
Pbca, Z =4 swobodna — sym.
L a=0,746 6/mmm, w kryszt. 1
b = 0,9666 (odchyl. od pelnej sym.
¢'=0,7033 niewielkie). W ekspery-
J} y (270 K) [18] mencie cz. przsjawia
sym. od .2/m do 6/mmm
[19]
2 1,4-Benzochinon, C;H,O, jednoskoéna cz. plaska (odchyl. ato-
P2.ja, Z=2 moéw +0,0007 nm):
o o L a = 0,7055 swobodna — sym.
b =0,6795 mmm, w kryszt. T [23]
¢ =0,5767 :
@M B = 101,47°
[23]
3 Tetrachloro-p-benzochinon, C4Cl,O, jednoskosna pierScien chinon. pta-
0 P2/, Z =2 ski — $r. odchyl. pod-
cl cl a=0,8708 stawnikow 0,005 nm,
b = 0,5755 co odpowiada zgigciu
= ¢ = 0,8603 C—Cl o kat 1,5°, a
al cl B = 105,85° C=0 o kat 2,1°
{25]
0
L.
4 Tetrachlorohydrochinon, C,Cl,(OH), jednoskos$na cz. plaska
P2,jc,Z=2
& a=108214
b =0,4843
cl c c=1,2441
— M B =12382°
[27]
cl c
OH
o
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nych. Parametry sieci podano w nanometrach; dla otrzymania ich w A nalezy dane z tabeli pomnoiyé
kach ukladu cgsM (cm®-mol~!) nalezy dane z tabeli pomnozyé przez 10°/4m. Srednie wartoSci umiesz-

Podatno$é krysztatu x 10'? Macieg:q;zi:znktiac{i ols(;LMN | czqs'tl;'z:;t n:éélolz
5 6 i
O~~~ | a b ¢ [221| —K, —Ky —Ky
689 819 476 770 [20] (261 K) | —2756,5 96081 —2966 438 438 1189 [20]
689 819 476 770 [21] (261 K) | —6486,8 —1633,9 74332 437 405 1224 [22]

7093,9 22394 6683,0

—0 =X X2 —X3 ¥ a* b c [23] —Kp —Ky —Ky
503 340 843 325 +31,2° [11] 3120 8178 4835 305 361 - 843 [24]
482 323 820 305 +30,7° [17] 4207 —5740 7025 289 339 819 [17]

8522 —153 —5229

x> —x1 —X% —xs 0 a* b 4 £25] —-K;, —Ky =Ky [17]
— 1180 1460 1209 +90° [26] 5390 8306 —1399 : 1061 1238 1740
1346 1238 1530 1271 +90° [17] 2604 —64 9655

—8011 5569 2197

=13 iy ~H =¥ ¥ D7 a* b ¢ [27] —Kp, —Ky —Ky [17]

1517 1301 1624 1626 +29,9° 9820 —1080 1550 1294 1436 1821
—2010 —6940 6910
—350 7100 7030
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tab. 5.2 cd.

1 2 3 4
5 | 1,4-Dichlorobenzen, CcH,Cl, Jednoskosna cz. plaska, reg. szeScio-
P2ja, Z=2 bok; sym. podstawiona
x@_x i T a=1,480 ma sym. 1 [28]
b =0,578
¢ =0,399
&M B=113°
[28]
6 | 1,4-Chlorobromobenzen, C,H,CIBr jednoskosna cz. plaska, reg. szescio-
P2ja, Z=2 bok; sym. podstawiona
X—@x —e L a=1,520 ma sym. 1 [28]
b =10,586
c=0411
3 M B =113.2°
[29]
7 1,4-Dibromobenzen, C¢H,Br, jednoskosna cz. plaska, reg. szescio-
P2fa, Z=2 bok; sym. podstawiona
X—@X — | a=1,536 ma sym. 1 [28]
' b =10,575
¢ =0410
@M B =112,63°
[30]
8 | 1,4-Dimetoksybenzen, C,H,(OCH,), ortorombowa pierscien benzenowy
HaC Pbca, Z =4 plaski: sym. T [31]
0 a=0,729
b = 0,630
¢ = 1,655
= M [31]
0
“CH,
I
9 | 1-3-Dinitrobenzen, C4H,(NO,), ortorombowa atomy C i N leza w
L Pbn2,, Z=4 jednej plaszczyznie,
ﬁ a=1320 grupy NO, sg z niej
0,N NO, b= 1,397 wykrecone o katy 11,8°
—u ¢ = 0,380 i9,6°
[33]
10 | a-p-Nitrofenol, C;H,(OH)NO,) jednoskos$na pierscien benzenowy
P2,/n, Z=4 plaski (£0,0004 nm),
OZN—©—OH e | a= 1,166 pt. NO, tworzy z nim
b= 02878 kat 1,5°
¢ = 0,6098
gM B = 107,53°
[34]
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5 6 Z
= = Sy s ¥ a b 1171 =K —Ky —Ky [17]
1073 880 1334 1004 +486,9° [11] 7898 —6116 474 984 632 1510
1042 846 1304 976 +874° [17] 4417 6206 6478
4255 4909 —7602
D 1 1~ ¥ D71 @ b ¢ [T | -K, —Ky —Ky [I7]
1158 971 1411 1092 +87,2° 8092 —5871 213 1101 753 1621
4752 6328 6112
3527 4993 —7915
=K%} = % s ¥ a b c* {17 ~-K, ~Ky —Ky [17]
1258 1084 1489 1199 +87,0° [11] 7995 —5994 131 1220 886 1718
1274 1093 1517 1211 +87,1° [17] 4585 6267 6295
3891 4951 —7759
(orient. usredn.)
0 ~t W % [32] a b ¢ [31] —-K, —Ky —Ky [32]
1089 1313+2 1084+4 870+4 290 3635 9313 824+5 988+91455+6
5499 —7836 2887
8348 5038 —2228
X ke — s —Xe a b ¢ [32] -K, —Ky —Ky [32]
866 548 720 1330 [26] 5786 —7238 3744 628+ 87 524426 1505+ 84
886 567+29 740430 1351458 [32] 8109 5596 —1713
871 —4048 —9103
>~ —x2 —x 0 [35] a b c* [34] —K, —Ky —Ky [33]
825 604 1033 838 —40° —8417 —4426 3094 621 560 1293
762 —6646 —7433
5346 —6020 5931
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tab. 5.2 cd.

1 2 3 4
11 | B-p-Nitrofenol, C¢H (OH)YNO,) jednoskosna pierécien benzenowy
: P2,/a, Z=14 plaski (£0,0002 nm),
a = 1,5403 pl. NO, tworzy z nim
OZN@OH =t b=1,1117 kat 7,2°
¢ =0,3785
Ly B = 107,10°
341
12 Heksachlorobenzén, CCl, jednoskosna cz. plaska o ksztalcie
. s PCfc, Z=2 szescioboku [36]
' a = 0,808
X X b =0,387
' M ¢ = 1,665
B=1170°
X X [36]
X
b
13 | Heksachlorobenzen (wersja II) P2/n, Z=2 szkielet C jest plaski
a = 0,80476(8) (£0,00008 nm), 3 ko-
b = 0,38363(5) lejne atomy Cl sa wy-
¢ = 1,48208(29) chyl. o (14, 20,
B = 92,134(14)° 15)-10"* nm. Sym. w
[37] kryszt. bliska 6/mmm
(371
14 | Pentachlorofenol C,Cl;OH jednoskosna pierscien benzenowy
C2fc, Z=28 plaski (por. poz. 13)
Bk a=2911 [39]
X X b = 0,4930
¢ = 1,209
=M p =93,63°
X X (dane dla odmiany
nisko-temp. [39]).
X Kr. jest dimorficzny,
@ , 1, = 63°C [40, 41]
15 | Kwas benzoesowy (dimer) (C¢H;COOH), | jednoskosna cz. w kryszt. sa catko-
0.+ HO P2,fc, Z=4 wicie zasocj. w centro-
V] \ a=10,552 symetr. dimery, pofa-
L= C\ //C b=0,514 czone 2 wiazaniami
OH---0" c=2,190 typu OH---O [42]
l} B=97°
e [42]
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—8229-2342 5176
5276 —6546 5420

5 6 7
- 1 —x —xs 8 [35] a b c*  [34] —K;, —Ky =Ky [35]
825 621 1221 633 —5° 9208,3 - 38822 -368,9 627 588 1260
—3848,2 - 8892,6 24725
631,9 —2418,7 9682,5
> =% X2 Az Y a b c* [17] —-K; —K, —Ky[32]
- 1830 1626 1712 2150 +53°[11] 9253 1988 3229 1663 1663 2229
1854 1661 1733 2168 6° [32] 2590 2907 —9212
. 2691 —9375 . 2202
- =t —x2 —¥x 0 [13,38] a b c* [22] —K, =K, —Kyl[22]
1854 1661 1733 2165 93,6° 8952,2 3080,0 —3220,4 1645 1654 2261
25114 2482,6 93556
3681,1 —91842 1449,0
- ~u —t —% ¥ [B2A] b c 391 —K; —Ky —Ky[32]
1778 1576 1889 - 1871 814° 9814 - 769 1758 1577 1575 2184
1778 —=7094  —6823
- 651 7006 —7114
=X~ —X2 —Xs ¥ [43-45] a b c* [22] —-K; —Ky —Ky[22]
885 638 1039 979 —42° 2118 7189 6621 689 588 - 1378
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tab. 5.2 cd.

@ —u

_— C—OH
MO Q% /

0 O

! 2 3 4
16 | Kwas antranilowy, C;H,NH,COOH orterombowa pierScien benzenowy
Pen2, Z =38 pofatldowany (40,0015
HO\ /O a= 1,283 nm), €z. zasocj. W pary
& b = 1,077 A+ B: cz. obojetna +
H,N ¢=0928 jon obojnaczy [17]
—— (dwa zbiory cz. syme-
trycznie niezalezne)
[17]
b
17 | Acetanilid, CCH;NHCOCH, ortorombowa, cz. wystepuje w formie
0 Pbca, Z =8 amidowej, atomy leza
5 “ a = 1,9640 w 2 plaszezyznach
o b = 0,9483 [46]
' 7N ?
e T CH; ¢ =0,7979
32 b [46]
b
18 | p-Nitroanilina, C{H,(NO,)}NH,) jednoskosna pierscien benzenowy
P2./n, Z=4 plaski, podstawniki
a = 1,2336 wykrecone z pl. pierscie-
OzN@NHZ =L b = 0,607 nia (NO,: 1,9°, NH,:
¢ =0,8592 16°) [47]
@ § f = 91,45°
[47]
19 | Izatypa CgH,O,N jednoskosna cz. plaska w granicach
L P2 fe, Z=4 . bledu dosw. [49]
ﬁ a = 0,619
b= 1,446
c=0,717
— M f=94.82°
HN C 0 (49
\C/
I
0
20 | Wodoroftalan sodu, ortorombowa wszystkie atomy C leza
CH,(COOH)COONa) Blab, Z =8 w plaszczyznie, pl. grup
P a= 0,676 karbonylowych tworza
ﬁ b =0931 z nia katy 21° i 65°
c=2,642 [50]
[50]
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6

7

KX — X — s

—x  [7]

993 1414 745 820

czasteczka A [17]

a b ¢

'“KL "‘KM _KN [17]

3109—-2934 9038
1865 9470 2624
—9304 837 3568

czasteczka B [17]
a b c

—2897 3713 8823
2138 9295--3014
9356—1045 3388

725 739 1514

—$A4> ke —H —X 7]

a b ¢ [17]

—K, —Ky —K,[7}

907 721 834 1169

9289 —1404 3428
3073 8211 4811
2074 —5512 —8082

701 557 1465

-0 T T

~x3 0

a* b ¢ [47]

—K, —Ky —Ky

837 628 1191
833 604 1220

690 —47° [17]
675 —47° [48]

7501 —4334 —499%4

730 8030 —5915
6563 4077 6348

653 540
630 514

1317 [17]
1355 [48]

- 0 [17]

=K, =Ky =Ky [17]

> A — X2 P b ct[49]

1020 722 1556 781 +22° 1814 —9815 611 779 720 1561
9095 1911 3694
3736 123 —9261

= ~X 1 % [17] i b ¢ [50] -K, K, —-Ky [17]

1450 994 994 1130

2382 4578 —8565
4873 —8192 —3024
8368 3390 4300

743 961 1685
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tab. 5.2 cd.

1

2

5

4

21

| Wodoroftalan potasu,

C(H,(COOH)COOK)

1"

ortorombowa
P2,2.2, Z=4
a = 0,647

b = 0,961

c= 1,326

[50]

wszystkie atomy C leza
w- plaszczyznie [50]

22

Naftalen, C,,Hg

00 ~

Ju

jednoskosna
P2.ja, Z =2
a = 0,8235

b = 0,6003

¢ = 0,8658

B =12292°
[51]

cz. plaska
{+0,0007 nm) [51]

23

Bifenyl, (C4Hs),

=>L

jednoskosna
P2./Ja, Z=2
a=08124

b = 0,5635
¢=09153
f=951°
[52, 53]

cz. plaska w granicach
bledu dosw. [52]

24

Acenaften C,,H(CH,), v

HzC—CHZ

Jw

ortorombowa _
Pem2, Z=4 . "

a = 0,8290

b = 1,4000

¢ = 0,7225

(15°C, dwa zbiory
cz. symetrycznie nie-
zalezne) [54]

cz. plaska, w kryszt.
ma sym. m [54]

25

B-Naftol, C,,H,OH

°H=>L

jednoskos$na

Ia, Z=28
a=0,8185

b = 0,5950

¢ = 3,629

B =11987°

(dwa zbiory cz. sy-
metrycznie nieza-
lezne) [55]

cz. w krysztale jest
asymetryczna [55]
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5 6 7
~y ~t —% ~x [17] a b ¢ [50] —K;, —Ky —Ky [17]
1570 1123 1046 1246 2382 4578 —8565 834 1104 1801
4873 —8192 —3024
8368 3390 4300
x> ~x X2 —¥s ¥ [24] a b c* [51] —K, —Ky —Ky
1169 704 1840 962 +12° —4379 —2103 8741 705 677 2124 [24]
—3207 —8718 —3704 705 678 2122 [22]
8399 —4425 3143 ‘
— et ¥ a b [I7] —K, —Ky =Ky [17]
1293 797 1841 1243 +20° [10] 2966 —256 9545 851 775 2310
1312 847 1821 1268 +22° [17] 5355 --8233 —1881
7928 5669 —2243
= X X X czasteczka A [54] —K, —Ky —Ky [17]
a b ¢ ;
1404 1478 906 1830 [10] 905 886 2331
1374 1444 905 1773 [17] 0 10000 0
10000 0 0
0 0 10000
czasteczka B [54]
a b ¢
0 10000 0
4772 0 8788
8788 0 —4772
x> X X2 Xz ¥ czasteczka 4 [17] —-K, =K, —Ky [17]
‘ a b _.c*F
1219 783 1864 1010 +9.4°[10] 803 652 2202
1219 789 1861 1006 +11° [17] —4005 2430 8835
2913 —8918 3438
8625 4269 2718
czasteczka B [17]
a b c*
—4190 —1616 8936
3860 8610 3305
—8188 4954 —2902

[177]




tab. 5.2 cd.

1 2 3 4
26 | Kwas naftoesowy, C,,H,COOH jednoskosna pier§cien naftaleno-
0] OH P2,ja, Z=4 wy plaski (£0,004 nm)
o a=3112 [56]
b = 0,387
" ¢ = 0,692
f=922°
f56]
b
27 | 1,5-Dinitronaftalen, C,,Hg(NO,), jednoskos$na Cz. ma centrum Sym.;
P2./a, Z=2 pt. grup nitrowych
NO, a=0,776 tworza z pierscieniem
b=1,632 kat 48,7° [57]
¢ = 0,370
=1L p=101,8°
[57]
0,N
Ju
28 | 1,8-Dinitronaftalen, C;,H¢NO,), ortorombowa cz. jest asym. i nie-
" P2,2,2,,Z=4 plaska; grupy nitrowe
fal NBe a=1,1352 obrécone wzgledem
b =1,4934 pierscienia w te sama
) ¢ = 0,5376 strong o katy 45,1° i
O@ ==t [59] 41,7° [59]
fu
29 | Antracen, C,,H;, jednoskosna cz. plaska
B D £ P2,/a, Z =12 (40,0004 nm), ma
A ¢ £ o a = 0,8562 sym. mmm [60]
==L b = 0,6038
G’ 7 £! - c! - A c= 1,1184
oo 8 B = 124,70°
@M (290 K) [60]
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5 6 7
> =% —x2 —x3 0 [17] a* b c [56] —K; —K, —Ky [17]
1349 820 1069 2157 —10° 7646 2472 5952 886 741 2419
6441 —3217 —6939
238 9152 —4022
—a> = —%2 —x3 ¢ [58] pierscien naftalenowy [58] —-K, —K, —K; [58]
1347 2503 686 847 118° ? ‘ 911 621 2509
2132 —8982 3845 orient. osi gt. K [58]
8867 3431 3098 L M N
—4102 2749 8696
grupa nitrowa [58] K, —9599-1391 2433
. b o* K, —953 9784 1834
K, —2636 1528—9524
—4799 7904 3808
—8535 —3202 —4111
—2029 —5223 8282
-1 =da — X —Xe pierscien naftalenowy [59] —K, K, —-K; [22]
a b ¢
1347 2121 689 1232 [12} 1023 538 2481
1347 2146 745 1148 [22] L 1047 —9742 —1997 orient. osi gt. K [22]
M 6567 —831 7495 L M N
N —7468 —2097 6311
grupa nitrowa 1 [59] K, 9232 —3635 —1247
” b e K, —3825 —9003 —2077
K, 341 —2384 9706
u —3618 8885 2822
v —97 2990 —9540
—9320 —3479 —996
grupa nitrowa 2 [59]
a b c
u 1961 9713 1346
v —595 1487 —9866
—9783 1855 870
=0y =¥ =¥ =¥s ¥ a b o* —K, —Ky —Ky
1635 949 2662 1293 +8° [24] | —4940,9 —12738 +8600,3 952 787 3164 [24]
1686 964 2727 1367 +8° [61] | —31752 —89444 —31490 908 922 3071 [22]
1634 910 2675 1317 +9,4° [32] | +8093,5 —4286,7 +4014,9 966 962 3128 [61]
(290 K, por. przykiad 3.7.9) 910 902 3088 [32]
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tab. 5.2 cd.

1 2

3

4

30 | Antrachinon, C,,HgO,
0

Qo0 ~

b

jednoskosna
P2,/a, Z =2
a=1,5810

b =0,3942

¢ = 0,7865

B =102,72°
(621

cz. ptaska w granicach
bledu dosw. [49]

31 Antrachinon (wersja II)

jednoskosna
P2,/a, Z=2
a=1,583

b = 0,397
¢c= 0,789

B = 102,5°
[63]

(por. poz. 30)

32 | Akrydyna III, C;;HN

N
L0 =
x

&A4

jednoskosna
P2,/n, Z =4
a=1,1375

b = 0,5988

¢ = 1,3647

B =98,97°
[64]

cz. zgieta wzdluz
N—C3;

kat miedzy normal-
nymi do obu poltéwek
wynosi 2,1° [64]

33 | a-Fenazyna C,,HgN,

O~

b

jednoskosna
P2,ja, Z=2
a=1,322

b =0,5061

¢ = 0,7088

B =109,22°
[651

cz. plaska w granicach
bledu dosw.; sym.
swob.. mmm, w kryszt.
T [65]

34 Glicyna, CH,(NH,)COOH
HO 0
S5
| —

H,C
\\‘NHZ

b

jednoskosna
P2,/n, Z =4
a =0,5102
b=1,197

¢ = 0,54575
B=1117°
{671

atomy C i O leza w
jednej plaszczyznie

[67]

35 | Kwas barbiturowy (dwuwodny)
C,H,N,0;-2H,0
L

ortorombowa
Pnma, Z =4
a=1274

b =0,624

¢ = 0,889

cz. leza w pt. sym.
(010) i tworza siec
powiazang wiaz.
wodor. [68]

cz. ma sym. mmm [68]
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5

7

x> —x —x —xs 0 [17] a b c*  [62] —K; —Ky —Ky[17]
1503 805 1335 2369 —38° 5310 4510 7130 956 811 2738
78380 360 —6150
—3050 8890 —3410
~ —n ~f -2 8 [17] a b * [22] —-K, —K, Ky [22]
1503 798 1342 2369 —44° 52355 4870,1 6990,8 866 798 2845
—7792,7 —579,7 6240,0
3444,1 —8714,7 34917
(293,8 K)
0~ % —¥xs ¥ 7] a b & [17] —-K, —Ky —Ky
1549 771 2628 1246 —12° 4725 1562—8674 772 886 2991 [17]
4369 —8962 766 690 867 3091 [22]
7652 4151 4921
= —X —X2 —Xs ¥ [66] a b ¢* [22] —Kp—Ky Ky
1470 764 1885 1762 —15° 4029 6979 5921 580 777 3054 [66]
—6852 —1989 7006 598 777 3036 [22]
6064 —6886 3976
0 -m k- ¥ B | e b e [32] —K, —Ky —Ky [32]
506 473 495 551 +48° 8731 —2903 3899 464 495 561
4127 195—9105
2616 9550 1390
(> —te —21 —% [17] a b ¢ [68] ~K;, —Ky —Ky [17]
988 919 1138 907 7650 0 6439 946 880 1138
—6440 0 7650
0 10000 0
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tab. 5.2 cd.

1 2 3 4
36 | Kwas barbiturowy (dwuwodny) (wersja I) |. por. poz. 35 por. poz. 35
37 | N-Chloroimid kwasu bursztynowego, ortorombowa cz. ptaska w granicach
C,H,0O,NCl P2,2,2,. Z=4 bledu dosw. [71]
0 a = 0,641
” b=0,711
H2C—C_ ¢ = 1,169
N—X = L [71]
Hzc—(ﬁ
0
Ju
38 | N-Bromoimid kwasu bursztynowego, ortorombowa cz. plaska w granicach
C,H,0O,NBr P2:2, 2 Z=4 bledu dosw. [71]
a=0,684 - )
3 b= 0,725
¢ = 1,186
H;C——C .
\N——X = L (71]
Hzc—ﬁ
0
Ju

[182]




5

6 7
— =X =X —x [17] czgsteczka kwasu [22] czasteczka kwasu [22]
a b c —K, —-K,, —Ky
988 919 1138 907
7581 0 6522 635 542 819
652(2) i 0 _75801 czasteczka wody
—-K, —K, —K,
czasteczka wody I [22]
a b c 170 152 172 [69]
172 152 160 [70]
u 1642 0 —9864
v —9864 0 —1642
w 0 10000 0
czasteczka wody II [22]
a b c
u —9540 0 2999
v 2999 0 9540
0 10000 0
= %~ —X [17] a b ¢ [1] —-K, —K, —Ky[17]
809 743 912 780 3569 2612 —8967 810 650 967

8062 3987 4370
—4732 8783 675

=<

—Xa —X —x [17]

942

871 1034 909

a b ¢

713

—K, —K, —Ky [17]

3569 2612 —8967
8062 3987 4370
—4732 8783 675

955 774 1097
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tab. 5.2 cd.
1 2 3 4
39 | Kwas parabanowy, CO(NH-CO), jednoskosna pig¢ atomow pierscie-
ﬁL P2,/n, Z=4 nia tworzy plaska
a = 1,0685 strukture [72]
o' b =0_8194
[ ¢ = 0,5074
¢! B =9273°
H
H\N1/ \NZ/ [721
M <= \ /
C2 C3
o{/ \\03
40 | (+)-Wodorowinian amonu, ortorombowa fancuch weglowy i
C,H,O,H(NH,) P2,2,2;, Z =4 atomy O polowy cz.
L a = 0,7648 sa prawie plaskie [73];
\ .
HO2 o' b = 1,1066 uktad odniesienia
M/ \01 ¢ =0,7843 L|C'0?,
. | B [731] L|C*05 MLCO? i
not N\ 2CH w pt. C!0O'0%;
\(3:‘_;/\ \g)H M 1C*O% i w pl,
., | C*0%0%; NLL, M;
N 1L, M' [17]
e /M’
05/ 3
AN L
41 | (+)-Wodorowinian potasu, C;H,O,HK | ortorombowa lafncuch weglowy i
" P2,2,2,,Z=4 atomy O polowy cz.
a=0,764 sa prawie plaskie [73];
HOZ\ o' b = 1,062 uklad odniesienia
M/ ¢! ¢ =0,775 L|C'0?,
N 2| B [73] L|C*0O%, MLC'O? i
HOL CH w pl. C'010%
SN Ty M/LC*0’ i w pt
A | C*0°0% N.LL, M;
4 M/ ’ 1 ’
s/c\s N'LL, M [17]
0 OM
. \ L,
42 | Chloroacetamid, CH,CICONH, jednoskoséna w tej odmianie fazo-
P2, Z=4 wej cz. jest prawie pla-
M L a=1,026 ska [74]
N A b=0,515
/0 ' ¢ = 0,741
Cl— CH;—C p = 98,82°
\ [74] (chloroacetamid
NH; jest dimorf,, whasci-
wosci: magn. zbada-
no tej odmiany, kto-
ra krystalizuje z
EtOH)
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5

7

— =x —x —x3 ¥ [17]

444 346 450 536 —77°

a b [12]

547 5758 —8158
—9904 1191 176
1076 8094 5768

359 346 627

=X —Xe —X —X [17]

1028 970 1067 1048

cze$c A czasteczki [17]
a b c

L 3773 8325 4056
M 8684 —4702 1574
N 3218 2929 —9005
czes¢ B czasteczki [17]

a b c

L 7324 —1655 —6605
M 6786 988 7278
N’ 551 9808 —1845

podatno$é polowy cz. zawie-
rajacej gr. [CH(OH)COO-]
i $redni podst.

—K, Ky —Ky [17]

470 485 588

) —Xa —X —Xx [17]

1044 986 1082 1063

cze$¢ A czasteczki [17]

a b ¢

L 3773 8325 4056
M 8684 —4702 1574
N 3218 2929 —9005
cze§¢ B czasteczki [17]

a b c

L 7324 —1655 6605
M 6786 988 7278
N’ 551 9808 —1845

podatnosé¢ potowy cz. zawie-
rajacej gr. [CH(OH)COO-]
i $redni podst.

—K;, ~Kyy —Ky [17]

481 490 594

=<0 —xn —t —% ¥ [17]

a b c*  74]

644 616 675 642 —56°

3516 —9190 —1780
8890 3875 —2439
2788 —355 9597

~K;, —Ky —Ky[17]

650 612 671
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byly w nastepujacy sposéb. Wybierano pary atomow, lezace na prostych o
kierunkach zblizonych do osi M 1 obliczano srednie wartosci sktadowych wektora
jednostkowego <M>. Okazuje si¢ najczeSciej, ze tak znaleziony wektor (M nie
jest prostopadly do N. Jesli oznaczymy

(M>»-N =cosd (5.37)

to (0—90) jest malym katem, najczesciej mniejszym od 1°. Polozenie osi (M)
mozna wowczas skorygowaé przez obrot ukladu wspétrzgdnych wokét L. Popra-
wionym kierunkiem M jest

M = (M>cos(0—90)+ Nsin(d—90) (5.38)
Polozenie trzeciej osi deliniuje iloczyn wektorowy
L=MxN (5.39)

W ten sposob otrzymujemy na ogoél wystarczajaco dokladne polozenie osi LMN.
Przyklad takiej korekcji dla czasteczki antracenu podany jest w p. 5.11.

W rzeczywistosci skladowe tensora K zawsze obarczone sq bledami, majacymi
dwa glowne zrodia. Pierwszy rodzaj bledow powstaje na skutek ograniczonej
doktadno$ci pomiaru anizotropii krysztatu, a takze dokladnosci wyznaczenia
parametrow, takich jak masa probki, stala sprezystosci nici itp. Rowniez struktu-
ralna doskonalos¢ krysztalu moze mie¢ pewne znaczenie. Drugi rodzaj popelnia-
nych bledow ma charakter czysto rachunkowy i wystepuje w ukladach krysta-
lograficznych o wyzszej symetrii. Na przykiad, dla krysztalu ortorombowego
zwiazki (5.34) mozemy zapisa¢ w prostszej postaci

K, A1
D-| Ky |=1 12 (5.40)
Ky A3

przy czym elementy macierzy D sa funkcjami ¢;,. Rozwigzania ukladu rownan
(5.40) sg wtedy dokladne, gdy wyznaczniki macierzy D oraz D; sa dostatecznie
duze. Jesli przypadkiem dwie kolumny D lub D; sa bliskie proporcjonalnosci, to
— wedlug znanego twierdzenia — wyznacznik ma wartos¢ bliska zera. Wielkosci
bledow stad wynikajacych dyskutuja szczegdélowo Lasheen i Tadros dla krysztatlow
ortorombowych [75]. Autorzy ci pokazuja na przyklad, ze jeSli y.:xs:x
= c?,:¢2,: 024, to skladowe K, i Ky wyznaczone beda z duzymi bledami.
Spora czes¢ wynikow, zamieszczonych w tab. 5.2, zostala zaczerpnigta z prac
Krishnana i wspdtpracownikéw. Dane te sa niekiedy niesciste, a miejscami nie-
kompletne — gidéwnie z tego powodu, ze dokladne rozwiazania struktur krystali-
cznych pojawily si¢ dopiero w latach, ktére nastapily po odkryciu przez Krishnana
diamagnetyzmu krysztatlow. Wyniki te trzeba bylo uzupetniaé, a czasami dokona¢
pelnych przeliczen, cytowanych w tabeli jako obliczenia wilasne autora ksigzki.
Nowszym i obfitym zrédlem informacji o anizotropii krysztaléw sa dwie prace
Lasheena [17, 32]. Niewatpliwie lista poznanych zwiazkow bedzie si¢ powigkszala,
poniewaz zainteresowanie diamagnetyzmem nie stabnie i w naszych czasach.
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Ogolna prawidtowoscia wsrod czasteczek zwiazkow aromatycznych jest fakt, ze
podatnosé Ky w kierunku normalnej do plaszczyzny piericieni znacznie przewyzsza
podatnosci w tej plaszczyznie, Ky, Ky, oraz ze te dwie podatnosci maja na ogdt
zblizone wartosci. Jako miare anizotropii czasteczki czesto podaje sie w literaturze
wielkos¢ wprowadzona przez Lasheena [17]

AK:%(KL‘FK‘W)_KN (541)

Jesli jednak interesujemy sie relacja miedzy K lub 4K i strukturag roznych
czgsteczek, nie zawsze mozemy uzyskaé z tych liczb przejrzyste wnioski. Jest
bowiem rzecza jasna, ze $rednia podatnosé czasteczki, na przykilad benzenu, bedzie
wzrastaé przy wprowadzaniu podstawnikow do pierscienia. Ale czy anizotropia
czasteczki rowniez wzrosnie po dokonaniu okreslonego podstawienia? Wiadomo
rowniez, iz w szeregu benzen, naftalen, antracen rosna wszystkie trzy glowne
podatnosci czasteczki, ale czy anizotropia rowniez ulega zmianie? Grafit, ktory jest
krysztalem o strukturze warstwowej, powinien mie¢ w tym szeregu najwigcksza
anizotropig, a tymczasem jego podatno$ci molowe wzdluz warstwy, x;, i prosto-
padle do niej, y,, sa najmniejsze [1]

a = —63-10""2m? mol™!
.= —264-10""2m* -mol~*

Sprobujemy odpowiedzie¢ na te pytania przez obliczenie podatnosci zredukowa-
nych, k;, zdefiniowanych w nastepujacy sposob:

K.
L §=1,2,3 (5.42)

2K,

k; sa zatem liczbami wzglednymi, zawsze dodatnimi, ktérych suma dla kazdej
czasteczki jest taka sama i wynosi 3. Zostaly one wprowadzone w pracy [48] ale
— jak dotychczas — nie znalazly odbicia w literaturze naukowej.

Dla zilustrowania przydatnosci k; przy rozwazaniu relacji migdzy podatnoscia-
mi roznych czasteczek, zajmijmy sie wpierw szeregiem benzen, naftalen, antracen,
grafit. Ze wzgledu na do$¢ znaczne przewodnictwo elektryczne wzdiuz warstw,
podatno$¢ diamagnetyczna grafitu ulega zmniejszeniu wskutek pewnego udziatu
dodatniego paramagnetyzmu Pauliego, zwiazanego z obecnoscia elektrondéw prze-
wodnictwa. Poniewaz jednak elektronowe przewodnictwo wilasciwe grafitu w tem-

k.:

L

G

Tabela 53

Podatnosci czasteczek bezwzgledne, K; [107!2 m*-mol~'], i
zredukowane, k;

Czasteczka —K, | —K; | —=K3| ky ks ks
Benzen 437 405 1224 10,635 | 0,588 | 1,777
Naftalen 705 678 2122 10,603 | 0,581 | 1,816
Antracen 950 895 3059 } 0,581 | 0,547 | 1,871
Grafit 6,2 6,2 | 263 (0,068 0,068 | 2,864
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peraturze pokojowej jest 10 rzgdow mniejsze od przewodnictwa metali, udziat
paramagnetyczny ma charakter poprawki, ktéra w tych rozwazaniach mozna
pominac. Tabela 5.3 zawiera zestawienie K; oraz k; czasteczek tych materialow.
Wynika z niej, iz podatnosci zredukowane w plaszczyznie czasteczki, ki i k,,
systematycznie maleja, natomiast ks, prostopadle do niej, systematycznie rosnie.
Regularnosci te widoczne sg jeszcze lepiej na rys. 5.8. Staje si¢ jasne, ze anizotropia
czqsteczek w tym szeregu rosnie, a k; grafitu sq wielkosciami granicznymi, do ktorych
- zmierzajq podatnosci czqsteczek w miar¢ wzrostu liczby pierscieni. Zrozumiale jest
takze, ze k, 1 k, maja wspdlna granice.

ky, grafit  ——
25
Q
S
220 ——e ==
é _______x____x ky
@
N 15
‘5
-
2
5 10
o
o
a \8 k1
05— —
ko T

0 k1=k2, groﬁt

1 2 3 °o

Bz Nf An liczba pierscieni benzenowych

Rys. 5.8. Zredukowane podatnosci magnetyczne skondensowanych weglowodoréw aromatycznych

Drugim przykladem niech beda chlorowcowe pochodne benzenu, zestawione w
tab. 5.4. Jedli przez n oznaczymy liczbe atoméw chloru w czasteczce, to mamy dwa -
zwiazki graniczne: benzen (n = 0) i heksachlorobenzen (n = 6). Z rysunku 5.9,
sporzadzonego na podstawie danych z tab. 54 wynika, Ze istnieje liniowa zale-
7no$¢ k, i k; od n. Nie ma prostego zwiazku migdzy k; i n, poniewaz o$ L
wyznacza w czgsteczce benzenu w przyblizeniu kierunek wiazania C—H, a w
pozostatych dwu czasteczkach C—Cl. ’

Te dwa przyklady wskazuja, ze zredukowane podatnosci magnetyczne czastecz-
ki, k;, moga by¢ wielko$ciami uzytecznymi w poszukiwaniach korelacji migdzy

Tabela 54
Podatnosci czasteczek bezwzgledne, K; [107'? m*-mol™'], i zredu-
kowane, k;
Czasteczka —K {—-K,|~-K;5| k, ks ks
Benzen . 437 | 4051224 |0,635|0,588 | 1,777
1,4-Dichlorobenzen 984 | 632 1510 (0,944 | 0,606 | 1,449
Heksachlorobenzen 1704 | 1640 | 2217 {0,919 |1 0,885 | 1,196
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wlasciwosciami magnetycznymi okreslonej klasy zwigzkéw a jakim§ wybranym
parametrem. Moze byé nim liczcba wprowadzonych atoméw chlorowca albo
sposéb podstawienia, czy tez rodzaj atoméw wprowadzonych. Zredukowane po-
datnosci ulatwiaja ponadto uszeregowanie czasteczek w obrebie okreslonej ich
grupy wedlug wzrastajacej anizotropii, co nie zawsze jest latwe, jesli korzystamy z
podatnoséci bezwzglednych. Wyniki poszukiwan tego typu nie sa wprawdzie zbyt
odkrywcze, maja jednak wielka przydatnos¢ w ustalaniu tensora K takich czaste-
czek, dla ktérych nie mamy dostatecznych informacji o krysztale. Poprzemy
obecnie wygloszone tezy dalszymi przykiadami.

2,0

podatnosci zredukowane
o

Rys. 5.9. Zalezno§¢ zredukowanych podatnosci k;
0 2 . 6 od liczby atoméw chloru w chlorowcowych po-
liczba atoméw chloru chodnych benzenu

Sposrod roznych klas zwigzkow chemicznych chlorowcowe pochodne benzenu
wydaja si¢ szczegoOlnie interesujace w takiej analizie. Sprawia to zapewne zar6wno
prostota symetrii, jak i planarnos¢ ich czasteczek. Wybierzmy przeto jako kolejny
przyktad  para-dwupodstawione chlorowcowe pochodne benzenu, typu
X,—C¢H,—X,. Skorzystamy z wynikéow zawartych w tab. 5.2, nr 5, 6, 7, i
sprobujemy ustalié zwigzek miedzy glownymi podatnosciami czasteczki a typem
wprowadzonych do czasteczki atomoéw chlorowca. Dla uzyskania korelacji wpro-

Tabela 5.5

Definicja zmiennej n dla 1,4-dwupodsta-
wionych chlorowcowych pochodnych ben-
zenu typu X, —C¢H,—X,

X, X, n
H H 0
H F 1
F F 2
F Cl1 3°
Cl Cl 4
Cl Br 5
Br Br 6
Br I 7
1 1 8
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wadzimy zmienng n, zdefiniowang za pomocy tab. 5.5. Gléwne podatnosci czaste-
czek, K", jako funkcje zmiennej n, przyblizymy liniowym zwiazkiem

Ai + ”Bi E= K:n) (543)

w ktorym A; i B; sa stalymi, ktore trzeba wyznaczyé, za$ i = 1, 2, 3 oraz n =4, 5,
6. Zwigzek (5.43) przedstawia 3 zbiory rownan: na przyklad, rozpisanie (5.43) dla i
= 2 prowadzi do

A2+4Bz = K(24)
A2+SBZ = K(ZS)
A,+6B, = K

przy czym, na przykiad, K%' oznacza podatno$é¢ K,, czasteczki 1,4-chlorobromo-
benzenu.

2000

T
X
\X
w

o
[}
o
T
x\

I_o‘

mgl X/

1= K1(/n)
9 1000 /3{
2 =

3

(:,/8 Rys. 5.10. Zwiazek miedzy gléwnymi podatnoéciami 1,4-
5000 é Z L - dihalogenobenzendw i parametrem n (por. tab. 5.5)

(o]
o |-

Przedstawienie graficzne funkcji (5.43) wskazuje na trafno$¢ wyboru zmiennej n
(rys. 5.10). Jeszcze bardziéj upewnia nas o tym przeprowadzenie rachunku, majace-
go na celu wyznaczenie statych A i B. Kazdy z ukladow réwnan mozemy zapisaé
w postaci

MX,; = K;
gdzie
. 7 K4
A; y
M=|[15 Xi=<'> K, = | KI®

Zastosowanie metody najmniejszych kwadratéow do trzech réwnan o dwéch
niewiadomych prowadzi, w znany juz sposob, do rozwiazan

X, = (M M)} (M K)
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Po wykonaniu obliczen otrzymujemy nastgpujace rownania, ilustrujace zaleznos¢
glownych podatnosci czasteczek [107'?m3-mol™ '] od rodzaju (n) wprowadzo-
nych dwéch atoméw chlorowca

K, = -511,0—118,1n
—1222—-1269n (5.44)
K; = —1098,0—-103,6n

=
I

Podobne postgpowanie, zastosowane do Srednich podatnos$ci czasteczki (krysz-
tatu), prowadzi do zwiazku

(K>= (> = —(577,1+116,2n)-10" *m* - mol ™! (5.45)

Wyniki obliczert wedtug rownan (5.44) i (5.45) zestawione sa wraz z odpowiednimi
danymi, wzigtymi z tab. 5.2, w tab. 5.6. Poroéwnanie ich pozwala wyciagnac
nastepujace wnioski.

Tabela 5.6

Przewidywane gléwne podatnosci [107!'2 m3-mci™!] czasteczek 1,4-dwupodstawionych
pochodnych benzenu, X,—C,H,—X,

Xy X, n -0 -K; —Ky —Ky 4k Uwagi

H H 0 577 511 122 | 1098 1,355 | obl.*

0 689 438 438 1189 1,089 [ eksp. **
H F 1 693,3 629,1 249,1 1201,6 1,094 | obl.
F F 2 809,5 747,2 376,0 1305,2 0,818 | obl
F Cl 3 925,7 865,3 502,9 1408.,8 0,783 | obl.
Cl Cl 4 1041,9 983,4 629.8 1512,4 0,677 | obl

4 1042,1 984 632 1510 0,674 | eksp.
Cl Br 5 1158,1 1101,5 756,7 1616,0 0,593 | obl.

5 1158,1 1101 753 1621 0,600 | eksp.
Br Br 6 1274,3 1219,6 883,6 .| ‘1719,6 0,524 | obl.

6 1274 1220° | 8859 1718 0,522 | eksp.
Br I 7 1390,5 1337,7 1010,5 1823,2 0,467 | obl
| 8 1506,7 .| 14558 11374 1926,8 0,418 | obl

* Obliczone z réwnan (5.45), (5.44) i (5.46).

** Dane z tab. 5.2

1. Podatnosci molowe czasteczek 1,4-dwupodstawionych chlorowcowych po-
chodnych benzenu bardzo dobrze stosuja si¢ do przyblizenia (5.43), nie wytaczajac
sredniej podatnosci proszkowej [rown. (5.45)]. Mozna o tym wnosi¢ na podstawie
porownania wielkosci K; obliczonych z réwn. (5.44) kolejno dla n=4, 5, 6 z
analogicznymi wartosciami wzietymi z tab. 5.2; roznice nie przekraczaja
2,5-10712m3 - mol~!. Wyjatek stanowi czasteczka benzenu, n = 0.

» 2. Czasteczka benzenu swymi wiasciwosciami magnetycznymi zupelnie odbiega
od szeregu X,—C¢H,—X,. Jest tak dlatego, ze oba atomy chlorowca powodujq
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charakterystyczna polaryzacje pierScienia, czym zajmiemy si¢ jeszcze w dalszym
tekscie.

3. Wkiad atomow chlorowca do podatnosci magnetycznych czasteczki jest
wyraznie anizotropowy, jak o tym $wiadcza wspolczynniki B; w rown. (5.44).
Wskutek zmiany atomow chlorowca najstabiej zmienia si¢ podatno$¢ prostopadle
do plaszczyzny pierécienia (K3), a najsilniej w kierunku prostopadlym do osi X~
Xy (Ky).

4. Stosujac zbiér rownan (5.44) dla réoznych n mozemy przewidzie¢ wartosci K .
czasteczek zwiazkOw jeszcze nie badanych, a takze ich podatnosci proszkowe,
(5.45). Wiarygodnos¢ tych przewidywan uzasadnia punkt 1.

5. Z tabeli wynika, iz wzgledna anizotropia czasteczek, okre§lona analogicznie
do definicji Lasheena (5.41)

Ak =% (ky+k;)—ks =3(1—kj3) (5.46)

maleje systematycznie ze wzrostem parametru n, tj. ze wzrostem liczby porzadko-
wej wprowadzonych atomow chlorowca. Najwigksza anizotropi¢ ma hipotetyczna
czasteczka, umieszczona w pierwszym wierszu tab. 5.6. Nie jest to czasteczka
benzenu; jej wlasciwosci otrzymane zostaly przez ekstrapolacj¢ wlasciwoéci zwiaz-
kow X,—C¢H,—X, do wartosci n = 0. Duza réznica migdzy K; i K,, wskazuje
na silng polaryzacje w plaszczyznie pierscienia. Wprowadzanie do czasteczki coraz
ciezszych atomow chlorowca wybitnie t¢ anizotropie zmniejsza. Przy okazji warto
zauwazyé, ze w definicji (5.46), wyrazonej za pomoca zredukowanych podatnosci
k;, o wielkosci anizotropii czasteczki decyduje wylacznie podatno$é k3 w kierunku
normalnym do plaszczyzny czasteczki.

Interesujacy komentarz do udzialu wigzania wodorowego w podatnosci cza-
steczki zawarty jest w pracy [76]. Przedstawimy tu krétko wyniki rozwazan
autora, dotyczace chlorowcowych pochodnych kwasu benzoesowego, typu
X—C¢H,—COOH, przy czym atom X = F, Cl, Br, I umieszczony jest w pozycji
sasiadujacej z grupa karboksylowa. Zwigzki takie w fazie stalej sa w pelni
zasocjowane w centrosymetryczne dimery

- HO

O..
C// \C
\ 4
OH:«+- 0

X

Problem polega na obliczeniu podatnos$ci srodkowego pierscienia, sktadajacego sie
ze skrajnych atoméw wegla oraz dwoch identycznych wigzan wodorowych
OH - - O. Podatnosci monomeréw badanych czasteczek zebrane sa w tab. 5.7.
Analizy tych danych dokonuje autor dwiema metodami. Pierwsza metoda
opiera si¢ na znanym od dawna fakcie, ze przynajmniej czesé anizotropii czqsteczek
zwiqzkow aromatycznych 1 ich pochodnych wynika z delokalizacji elektronow m,
prowadzacej do pojawienia si¢ tzw. prqdu pierScienia. Udzial tego efektu w
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Tabela 5.7

Podatnosci K; [107'% m3-mol™!] monomeréw kwaséw 2-halogenobenzoesowych, X—C,H,—COOH,
zaczerpnigte z prac [76] i [43, 44], oraz udzial wigzania wodorowego w anizotropii czasteczki 4}, = 4K},
— 4K, (metoda I) i Aff = AK,— 4K (metoda II)

X - -K, —Ku —Ky —4K;, — 4 —dK, — 4k
F 9374 657,2 6308 | 1523,0 534,0 54,0 878,7 61,9
Cl 1089,5 809,2 784,1 1677,6 5359 55,9 881,1 64,4
Br 1205,1 9324 8934 | 17932 533,9 53,9 880,1 63,3
I 1389,8 1110,8 1088,2 | 1977,9 5374 57,9 878,5 61,7

§r. 5354 554 879,7 62,8
H 884,6 688,6 588,1 1378,5

anizotropii, 4K, , oszacowany przez Masona [77, 78] oraz Craiga i wspolpracow-
nikéw [79], podaje wyrazenie

4K = K3~ X (5.47)

w ktorym y, oznaczaja Srednie warto$ci podatnosci atomoéw, wchodzacych w
sklad danej czasteczki, czyli tzw. inkrementy atomowe. Roéznica migdzy 4K/ a
analogicznym udzialem delokalizacji elektrondow n w anizotropii niepodstawionego
pierscienia benzenu, 4Kj

4%, = AK' — 4K, (5.48)

jest wlasnie udzialem jednego wiazania wodorowego w anizotropii czasteczki
badanego kwasu. W przypadku benzenu przyjeta dla 4K; warto$¢ wynosi [80]

AK; = —480,0- 1072 m3 -mol~!

Aby obliczy¢ 4K, trzeba zna¢ inkrementy y, poszczegélnych atoméw. Autor
przyjat dla nich nastepujace wartosci [10”12m?3 -mol™']: y. = —929, x,, = — 25,1,
Xo = — 06,6, xy= —113,0, yp = —79,1, xo = —2324, xp, = —349,3, ;= —5303.
Obliczone stad wartoéci 4K’ podane sa w kolumnie 6 tab. 5.7. Sa one prawie
stale; $rednia warto$é wynosi (4K’ > = —5354-10"'?2m3 -mol~". Stad tez sredni
udzial wigzania wodorowego, (A%,> = —554-10"*2m> -mol~?, nieznacznie tylko
zalezy od wprowadzonego chlorowca.

W ‘drugiej metodzie, ktora autor uwaza za dokladniejsza, anizotropie danej
czasteczki kwasu, 4K, poréwnuje si¢ z anizotropia takiej samej czasteczki, lecz
pozbawionej atomu chlorowca, AK.. Pierwsza z tych wielkosci oblicza sie wedtug
definicji

Wartosci 4K, czasteczek podane sa w kolumnie 8 tab. 5.7. AK_. oblicza sig¢
natomiast z sumy anizotropii pierscienia benzenu, 4K,, i grupy karboksylowej,
4K,

4K = AK, + 4K, (5.50)
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Jest to stuszne przy zalozeniu, ze atom chlorowca jest izotropowy, tzn. ze jego
udzial w 4K_. wynosi zero. Na podstawie dokonanej przez nas poprzednio analizy
wplywu atomu chlorowca na wlasciwosci magnetyczne 1,4-dwupodstawionych
pochodnych benzenu wydaje sig, iz uwagi tej nie nalezy pozostawi¢ bez komenta-
rza. Poswiecimy tej sprawie troche miejsca nieco dalej'w tym paragrafie.

Udziat wigzania wodorowego w anizotropii magnetycznej czasteczki oblicza sig
wiec w te] metodzie ze wzoru

AfF = AKy— 4K (5.51)
Dla 4K, 1 4K, przyjeto nastgpujace, znane z literatury wartosci:
AK, = —753,9-10712 4K, = ~628-10"*2m>*-mol !

a wiec
AK. = —816,8-10712m?* mol ™!

Obliczony wedlug rown. (5.51) udzial jednego wiazania wodorowego w anizotropii
czasteczki kwasu 2-halogenobenzoesowego podany jest w kolumnie 9 tab. 5.7.
Réwniez i tym razem udzial wigzania wodorowego, 4%¥, tylko nieznacznie zalezy
od rodzaju chlorowca. Uzyskana warto$¢ srednia jest troche¢ wigksza niz w
metodzie I i — zdaniem autora pracy [76] — jest bardziej wiarygodna. Poniewaz
pierscien posredni dimeru tworza dwa wiazania wodorowe, sumaryczny ich udzial
w anizotropii czasteczki wynosi zatem

> = 2 {4555 = —126,0-10712m> - mol !

Autor cytowanej pracy [76] wykonuje podobne obliczenia rowniez dla innych
struktur, w ktérych czasteczki powiazane sa w tancuchy. Wyniki te sa jednak
mniej przejrzyste i nie bedziemy ich tu komentowali.

Powr6¢my natomiast do pytania, czy udzial chlorowca w wlasciwosciach
magnetycznych czasteczek kwasow 2-halogenobenzoesowych mozna uznaé za izo-
tropowy. Na przykiadzie 1,4-dwupodstawionych chlorowcowych pochodnych ben-
zenu mieliSmy okazje przekonac si¢, Ze nie zawsze musi to by¢ stuszne. Stosujac
ten sam typ analizy, co poprzednio, mozemy na podstawie tab. 5.5 przypisaé
kolejnym czasteczkom kwasu chlorowcobenzoesowego warto$ci parametru n = 2,
4, 6, 8. Latwo wtedy przekonaé si¢ za pomoca wykresu K;(n), i=1, 2, 3, ze
poszczegolne punkty odbiegaja od prostych z dos¢ znacznym rozrzutem. Punkty te
mozemy troche wyrownad, stosujac korekcje liniowa (5.43) do podatnosci proszko-
wych tych zwiazkow, ktére z pewnoscia do takiego przyblizenia powinny si¢
stosowac. Otrzymujemy

oo > = (—787,4—73,6n)-10" > m> - mol !

Wygladzenie polega na zastosowaniu korekcji

K¥ (n) = Ki(n) Qpeor 2/ 0
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Wygladzone zaleznosci K*(n) [107'12m® -mol™!] przedstawiaja réwnania (rys.
5.11)

K =—-507,0-74,1n Y o>=03
Ki = —4787-7387 Y o> =1998 (552)
K§=—13722-T41n Yo =1998

il

Y 62 oznacza sum¢ kwadratow bledow, tj. roznic miedzy wartosciami K; podany-
mi w tab. 5.7 i obliczonymi z réwnan (5.52). Porownanie wspotczynnikow przy n
wskazuje, Ze istotnie, udziat chlorowca w anizotropii magnetycznej tych czasteczek
jest izotropowy. Potwierdza to zalozenie poczynione wczesniej. Zwrdéémy jeszcze
uwage, iz podobnie, jak w poprzednim przykladzie, rowniez i tu wiasciwosci
magnetyczne nie podstawionego kwasu benzoesowego (ostatni wiersz tab. 5.7) nie
mieszcza si¢ w szeregu kwasow halogenobenzoesowych.

2000
K(n)
./ 3
/‘
T 1500 B o
g / K(n)
. 1
E /:¢ K(;]
" -/
o /c
< 1000 L
| L
500 ! ! ] ; Rys. 5.11. Podatnosci czasteczek kwaséow 2-haloge-
4 5 6 7 n nobenzoesowych w funkeji parametru chlorowca. n

Przejdziemy obecnie do przedstawienia uwag szczegdtowych do niektérych
pozycji tab. 5.2.

W grupie zwiazkéw aromatycznych o jednym pierScieniu na wyrdznienie
zastuguja benzen i heksachlorobenzen ze wzgledu na symetric czasteczek. W
czasteczce benzenu (nr 1) K; = K,,; taka sama relacja wynika z danych dla
heksachlorobenzenu (nr 12). Nowsze dane strukturalne (nr 13) wskazuja na
istnienie niewielkiej réznicy miedzy dwiema podatnosciami w plaszczyznie cza-
steczki heksachlorobenzenu (problem 5.11.2). Jesli jednak przyjmiemy ksztatt cza-
steczki wynikajacy z danych strukturalnych, to musimy zgodzié¢ si¢ z tym, ze
czqsteczka heksachlorobenzenu ma w krysztale takq samq symetrie jak czqsteczka
benzenu, czyli obie sa magnetycznie jednoosiowe. Warto przy tym zwrdci¢é uwage
na roznie wybrang grupe przestrzenna w obu strukturach heksachlorobenzenu.
Wskutek tego macierze ¢ roznia si¢ znacznie, a mimo to wlasciwosci magnetyczne
czasteczek, dedukowane z obu struktur, sa bardzo zblizone.
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Badania magnetyczne 4-nitrofenolu podijete zostaly z tego powodu, ze substan-
cja ta wystgpuje w dwéch odmianach fazowych, pozostajacych miedzy soba
najprawdopodobniej w relacji monotropowej, tj. nie ma migdzy nimi przejscia
fazowego pod normalnym cisnieniem. Obie odmiany wykazuja rozna wrazliwosé
fotochemiczna na $wiatlo [35]: odmiana « ulega zabarwieniu na czerwono pod
wplywem promieniowania widzialnego, podczas gdy odmiana f jest calkowicie
niewrazliwa na naswietlanie. Badania magnetochemiczne wykazaly, ze podatnosci
czasteczek w obu odmianach sa dostatecznie bliskie siebie, by mozna uznaé ich
magnetyczng réwnowaznosé. Niewielkie roznice K;, widoczne przy poréwnaniu nr
10 z nr 11 tab. 5.2, moga pochodzi¢ po czgéci z bledow doswiadczalnych,
czgsciowo za§ moga by¢ wywolane rozna konfiguracja samych czasteczek: w
odmianie § kat zawarty miedzy plaszczyzna grupy nitrowej i plaszczyzna pierscie-
nia benzenowego jest wyraznie wigkszy niz w czasteczce odmiany o.

Badania anizotropii magnetycznej statych roztwordéw pentachlorofenolu w he-
ksachlorobenzenie [38] pomogly w ustaleniu ich struktury, ktora okazala si¢
zblizona do struktury krysztalu czystego heksachlorobenzenu [81]. Przyczynito si¢
to do wyjasnienia mechanizmu przemiany fazowej pentachlorofenolu. Zbadanie
wlhasciwo$ci magnetycznych 2,3-dimetylonaftalenu réwniez byto przydatne w okres-
leniu kierunkéw niektérych momentow przej$¢ absorpcyjnych w tym krysztale o
nieznanej strukturze [82].

W grupie czasteczek o trzech pierécieniach skondensowanych akrydyna (nr 32)
jest prawdopodobnie wyjatkiem [17]: numeryczna warto$¢ K, jest mniejsza niz
K. Podobny wynik znaleziono jeszcze dla a-fenazyny (nr 33). Antrachinon nalezy
do bardzo jeszcze nielicznych przypadkow, w ktorych strukture krysztalu zbadano
w kilku temperaturach [63]. W tabeli 5.2 zamieszczono wyniki tylko dla tempera-
tury pokojowej (nr 30 i 31), poniewaz wplywem temperatury na wlasciwosci
magnetyczne zajmiemy si¢ osobno przy koncu rozdziatu.

Przechodzac do krysztatu kwasu barbiturowego (nr 35) wypada stwierdzi¢, ze
dedukcja magnetycznych wihasciwosci czasteczki tego zwiazku w pracy Lasheena
[17] jest bledna. Krysztal jest bowiem uwodniony, tymczasem w ewidentny sposob
pominieto obecno$¢ wody, o czym mozna si¢ tatwo przekonaé, poréwnujac slady
tensora krvsztatlu i czasteczki. Ponowne przeliczenie dla tego krysztalu (nr 36)
znalez¢ moe..1 w przykladzie 5.114.

Na zakonficzenie tego przegladu warto jeszcze wspomnie¢ o zastosowaniach
badan magnetochemicznych do poznania struktury cial o znaczeniu przemysto-
wym. Szczegdlnie czesto wykorzystuje sie metody magnetochemiczne w badaniach
polimeréw i reakcji polimeryzacji; przeglad uzyskanych w tej dziedzinie wynikow i
osiagnietych postepow znalezé mozna w pracy Selwooda [83]. Duze zainteresowa-
nie budzi problem znalezienia orientacji czasteczki w substancji zasadniczo bezpo-
staciowej, jaka jest na ogél polimer. Problem ten moze by¢ rozwigzany za pomoca
pomiar6w anizotropii podatnosci magnetycznej materiatu z jednej strony, z drugiej
wymaga okreslenia anizotropii monomeru lub jednostki strukturalnej, stanowiacej
umowny ,,motyw powtarzania” w polimerze. Bardzo pomocne jest uzycie w takich
- przypadkach substancji modelowych, a przykladem tego typu badan moze byc
praca Selwooda i innych [84].
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Interesujace wyniki przynosza rowniez magnetochemiczne badania folii uprzed-
nio rozciagnigtych, na przyklad polistyrenu [85]. Zwykla folia, wykonana z tego
materialu, jest magnetycznie bliska izotropii. Rozciagniecie jej w temperaturze
podwyzszonej prowadzi do czgSciowego uporzadkowania materiatu, co powoduje
pojawienie si¢ anizotropii magnetycznej. Anizotropi¢ przypisuje sie gldéwnie upo-
rzadkowaniu pierécieni fenylowych. Stan ten mozna zamrozi¢ przez szybkie ochto-
dzenie prébki. Nie tylko podatnos¢ magnetyczna tak spreparowanej folii wykazuje
anizotropi¢; anizotropowe sa réwniez inne jej wlasciwosci, na przyklad mechani-
czne 1 optyczne. Dla foli badanych w cytowanej pracy uzyskano podatnodci yx =
(—=9,54+0,3)-10712 i y, =(~8,24+0,3)-10"!?2m* -mol™'. Indeks || oznacza wielko$é
mierzona rownolegle do kierunku rozciagniecia, za§ 1 — prostopadle do tego
kierunku. Jesli rozciagnigty uprzednio polistyren ogrzeje si¢ do wyzszej temperatu-
ry, to obserwuje si¢ przejscie do stanu izotropowego, odpowiadajace przejsciu
fazowemu typu porziadek—nieporzadek.

Wielkoé¢ uzyskanej przez rozciagnigcie materialu anizotropii magnetycznej
zalezy w wysokim stopniu od rodzaju uzytego materiatu. Pokazali t8 Weir i
Selwood [86] na przykladzie trzech rodzajoéw polimerdéw: polietylenu, polistyrenu 1
poli(2,5-dichlorostyrenu). Okazalo sig, ze najwigksze efekty wystepuja w trzecim
materiale, najmniejsze w pierwszym.

5.8. Zasada addytywnosci podatnosci czasteczek
W ujeciu tensorowym

Jak juz o tym wspomniano uprzednio, model gazu zorientowanego w zastoso-
waniu do wlasciwo$ci magnetycznych pozwala wydedukowac tensor podatnosci
czasteczki K z pomiaréw makroskopowego tensora y krysztalu. Z dyskusji zamie-
szczonej w rozdz. 4 wynika rowniez, ze Sciste rozwigzanie tego problemu mozliwe
jest jedynie dla krysztalow trdjskosnych, dla ktorych mozemy uzyska¢ na drodze
doswiadczalnej szes¢ niezaleznych informacji, potrzebnych do wyznaczenia szesciu
niezaleznych sktadowych K. W wyzej symetrycznych ukladach krystalograficznych
symetria redukuje liczbe nietrywialnych informacji, co algebraicznie prowadzi do
redukcji liczby rownan, jakie mozemy napisa¢ dla skladowych K. W takiej sytuacji
dokonuje sie zwykle mniej lub wigcej spekulatywnego wyboru kierunkow osi
glownych K, co wprawdzie' pozwala na rozwiazanie réwnan, ale jednoczes$nie
usztywnia problem orientacji K. Stuszno$¢ okreslonego a priori wyboru osi K
mialaby szanse weryfikacji, gdybySmy dysponowali dobra teoria, pozwalajaca
obliczy¢ K z danych bardziej podstawowych. Stan teorii w dziedzinie magnetoche-
mii czasteczki nie jest jednak obecnie na tyle zaawansowany, by mozna bylo
obliczaé¢ sktadowe tensora podatnosci jakiejkolwiek czasteczki wykazujacej anizo-
tropie. Nawet $rednie wartosci (K >, uzyskiwane roznymi metodami teoretycznym1
sa dos¢ dalekie od zgodnosci z do§wiadczeniem.

W tej sytuacji interesujaca jest propozycja, ktora przedstawili Van den Bossche
i Sobry [87]. Autorzy ci zakladaja, ze kazdq czaqsteczke mozna podzieli¢ na rdzen,
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bedacy szkieletem czasteczki, i szereg polaczonych z nim podstawnikow. Zaktadaja
oni dalej, ze tensory K(m) szkieletu i podstawnikow w przyblizeniu nie zalezq od
tego, w jakim konkretnie krysztale lub czgsteczce elementy te wystepujq, czyli
zaniedbuja oddzialywania nie tylko miedzy czasteczkami, lecz takze miedzy szkie-
letem i podstawnikami. Stuszne to bedzie jedynie w przyblizeniu, jednak autorzy sa
zdania, ze wlasnie poréwnanie wynikow takich obliczen z tensorem K dedukowa-
nym z pomiaréw wykonanych dla krysztalu moze nas poinformowad o oddziaty-
waniach magnetycznych w czasteczce. Hipoteza addytywnos$ci podatnosci magne-
tycznych nie jest nowa — znanych jest szereg schematéw, pozwalajacych przewi-
dzie¢ wlasciwosci calej czasteczki na podstawie inkrementdw podatnosci atomow
lub wiazan. Nie bedziemy ich tu przytaczali, poniewaz wszystkie wczesniejsze
propozycje dotycza wartosci sredniej, <K >.

W metodzie Van den Bossche i Sobry orientacje tensoréw K(m) wybiera sig
w zasadzie dowolnie. Najczesciej jednak i bez szkody dla ogdlnosci rozwiazania
jako osie K(m) mozna wybraé¢ ich osie symetrii, oznaczane odpowiednio przez
LMN (szkielet) 1 u,,v,w, (podstawniki). Nawet gdy czasteczka jako calosé jest.
asymetryczna, jej fragmenty maja symetri¢ wystarczajaca do uzasadnienia tego
zalozenia. Oczywiscie, osie podstawnikéw nie pokrywaja si¢ z osiami glownymi
szkieletu, jesli podstawnik nie ma symetrii kulistej. Dodawanie tensorow prowadzi
sie wiec w jakim$ ukladzie wspolrzednych, wspélnym dla wszystkich fragmentow
czqsteczki; najczeSciej jest to ortogonalizowany uklad osi krystalograficznych.
Uzyskany przez sumowanie tensor wypadkowy zawiera z reguly szes¢ skltadowych
niezerowych, co pozwala na wyszukanie osi gtownych K niezaleznie od wszelkich
zalozen o symetrii czasteczki. Opisywna metoda jest wigc modelem gazu zoriento-
wanego w przyblizeniu tensorowym, w odniesieniu do jednej czasteczki.

Czasteczke, ktora mozna podzieli¢ na szkielet i M —1 podstawnikéw, opisuje w
uktadzie wspolrzednych abc* tensor K [87]

M  s(m)
K= > D@ mKmDT(r, m (5.53)

m=1r=1
D (1, m) jest macierza transformacji do ukladu abc* r-tego podstawnika m-tego
rodzaju. Przyjmujemy w tym zapisie, ze r-ty podstawnik moze si¢ powtdrzy¢ s(m)

razy.
Dla komorki elementarnej mozemy napisac

v =B-K (5.54)

przy czym y;;;, oraz K;; ;;(m) rowne sa odpowiednio y; oraz K;(m) wediug
konwencji

L dla iy =1 (5.55)
ii+i,+1 dla i #i,
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Analogiczna konwencja obowiazuje wskaznik j. Elementy macierzy B mozna
zapisa¢ w nastepujacy spos()b:

M  s(m) 3
B"J' Z Z Z Rl’lqullAkpAlq
1+51112m 1r=1p z{f
x [D§i DY37 + D37 D (5.56)

R jest macierza transformacji podatnosci krysztatu w ukladzie abc* do ukladu osi
gléwnych y.

Poniewaz liczba niezaleznych elementow y nie przekracza 6, liczba elementow
K;;(m) moze za$ by¢ znacznie wigksza, korzysta sie z zalozenia, ze K(m) jest
charakterystyczne dla podstawnika i nie zalezy od czasteczki, w skiad ktorej
‘wchodzi. Dla wyznaczenia wszystkich K(m) trzeba wykona¢ badania dla kilku
krysztalow réznych substancji, ktorych czasteczki zawieraja takie same podstawni-
ki.

Metoda Van den Bossche i Sobry pozwala wigc na wyznaczenie wartosci
gléwnych i osi gldwnych dowoinej czasteczki, a ponadto na skonstruowanie
systematyki tensoréw charakterystycznych dla szkieletow i podstawnikow. Tym
samym mozliwe jest oszacowanie amzotropn magnetycznej krysztalow dotad nie
badanych.

Przyklady obliczenia tensoréw rdzenia i podstawnikéw na podstawie danych
strukturalnych i podatnosci krysztaléw znalezl mozna w pracy Sobry 1 Van
den Bossche [88] oraz w pracy Mierzejewskiego [89]. Wybrane zastosowania
przedstawione sa w problemach 5.11.5 i 5.11.6.

5.9. Osie magnetyczne krysztalu

Jak wiadomo, podatnosé¢ magnetyczna krysztalu mozna opisa¢ za pomoca
symetrycznego tensora drugiego rzedu, g, majacego trzy osie glowne. Orientacja
tych osi wzgledem krystalograficznego ukladu wspotrzednych rzadza reguly syme-
trii wlasciwe klasie symetrii, do ktoérej nalezy krysztal. Odcinane na tych osiach
trzy wartosci glowne sa w krysztale diamagnetyka wszystkie ujemne; nie znamy
dotad przykiadu o jednej lub dwu wartosciach glownych dodatnich. By¢ moze, iz
przypadki takie sa do pomySlenia w grupie krysztalow zwiazkéw donorowo-
akceptorowych, jednak nie zostaly dotad poznane. Mozemy zatem przyjaé, ze
obrazem wlasciwosci magnetycznych typowego diamagnetyka jest elipsoida tréj-
osiowa.

Analogicznie do sytuacji znanej w optyce, mozemy w kazdym krysztale diamag-
netycznym znalezé przynajmniej jeden przekroj magnetycznie izotropowy, tj. taka
plaszczyzne, ze w kazdym kierunku w niej lezacym podatno$é¢ magnetyczna jest
taka sama. Normalna do takiego przekroju definiuje pewien charakterystyczny
kierunek, ktory zwaé bedziemy osiq magnetvczng krysztatu.
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Przypusémy, ze mamy krysztat jednosko$ny, w ktérym osie gléwne zorientowa-
ne sa w sposob podany na rys. 5.12. Poza tym niech bedzie

X1l > Ixal > [xal (5.57)

oraz y,||b. Orientacje x; wzgledem krystalograficznej osi a podaje kat . Przy tych
zaloZzeniach zawsze mozemy znalez¢ taki kierunek OP, lezacy w plaszczyznie (010),
ze podatnos¢ krysztalu w tym kierunku bedzie rowna y,. OP okresla wigc jeden z
dwu mozliwych w takim krysztale przekrojow kolowych o zerowej anizotropii
magnetycznej. Innymi stowy, krysztal, zawieszony w polu magnetycznym wzdluz
0OQ | OP, nie bedzie przyjmowal uprzywilejowanej orientacji. Niech kat miedzy
normalnymi do takich przekrojéw, czyl kat miedzy osiami magnetycznymi, wyno-
si 2V; kat ten jest rowny (180—2d), przy czym & jest katem determinujacym zero
anizotropii krysztalu wedlug réwnania

Ay =y, 0825+ y38in?d—y, =0 (5.58)

Rys. 5.12. Przekrdj izotropowy (o promieniu OP) w
krysztale diamagnetyka [58]

Stad otrzymujemy

o \1/2
sinV = (M> (5.59)
X1—X3

W przypadku pokazanym na rys. 5.12 plaszczyzna osi magnetycznych jest (010),
ale nie zawsze musi tak by¢. PoloZenie tej plaszczyzny zalezy od nieréwnosci
(5.57).

Warto zauwazy¢, ze wyrazenie (5.59) rézni sie od znanego w optyce dla sin 2V}
roéznica ta wynika stad, ze wspoélczynnik refrakcji nie jest wielkoscia tensorowa.
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Postgpujac podobnie jak w optyce, mozemy podzieli¢ diamagnetyki na trzy
klasy: magnetycznie dwuosiowe (krysztaly nalezace do ukltadu tréjskosnego, jedno-
skosnego i ortorombowego), jednoosiowe (uklady: tetragonalny i heksagonalny)
oraz magnetycznie izotropowe (uklad regularny).

Istnienie przekroju magnetycznie izotropowego pokazano doswiadczalnie —
jak si¢ wydaje po raz pierwszy — na przykladzie 1,5-dinitronaftalenu (1,5-DNN,
[587]). Dla krysztalu otrzymujemy z tab. 5.2 (nr 27) po zamianie y, z Y3

—2508
X = — 847 -107'2m3 -mol™!
— 686

oraz Y = 118,2°. Plaszczyzna osi magnetycznych jest zatem plaszczyzna (010).

b, x,

Rys. 5.13. Orientacja kierunkéw magnetycznych w krysztale
1,5-dinitronaftalenu

Plytke wycigta z krysztatu zawieszamy w kierunku prostopadiym do osi b w
sposob pokazany na rys. 5.13. Kat zawieszenia &, mierzony wzgledem krystalogra-
ficznej osi a, jest znany i dla kazdego pomiaru inny. Poniewaz &/+90 =g,
mierzona anizotropia wynosi

Ay; = Acos?¢;+ Bsing; cosg; + Csin? g (5.60)
gdzie i=1,2,3,...,n>3, oraz
A = (1, — x2)cos? Y + (x5 — xo) sin? Y
B =2(x;—xa)siny cosy (5.61)

C = (11— x2) SIn® Y + (x5 — x2) cos* ¥

Wyniki Ay; w funkcji kata zawieszenia ¢; przedstawione sa na rys. 5.14. Wynika z
niego, ze istniejg dwa kierunki, L; i L,, o zerowej anizotropii magnetycznej. Kat
miedzy osiami, odczytany z wykresu wynosi

2V =35,1+0,5°

podczas gdy wedlug (5.59)
2V =34,640,2°
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Orientacj¢ osi magnetycznych w tym krysztale w ukladzie abc* podaja wektory
jednostkowe

M; =(-0,1886 0 0,9820)
M, =(-0,7136 0 0,7005)

Rys. 5.14. Kierunkowa zalezno$¢ anizotropii
diamagnetyzmu w plaszczyznie (010) krysztatu
- 1,5-dinitrobenzenu, wykazujaca istnienie kierun-
kéw zerowej anizotropit (L, i L,) [58]

5.10. Wplyw temperatury na diamagnetyzm Kkrysztalow

Staralismy si¢ wykaza¢ w tym rozdziale, ze podatnos¢ krysztatu diamagnety-
cznego jest wilasciwoscia stosunkowo latwo poddajaca si¢ interpretacji molekular-
nej. Glowne przyczyny tego stanu rzeczy sa — powtdérzmy — nastepujace:

1. W diamagnetyzmie praktycznie nie istnieje problem pola lokalnego, wobec
czego relacje miedzy podatnoscia krysztalu, komoérki elementarnej i czasteczki
maja charakter zwigzkéw geometrycznych, opisywanych modelem gazu zoriento-
wanego.

2. Problem zmiany gestosci ciala stalego, spowodowanej zmiana temperatury
mozna pominaé, poniewaz efekty stad wynikajace sa niewielkie i wobec niezbyt
duzej dokladnosci metod eksperymentalnych nie sa zauwazalne.

W konsekwencji podstawowq przyczyng, dla ktérej mozna oczekiwaé zmian o
przy zmianie temperatury, jest zalezno$¢ od temperatury orientacji osi uyu,us
tensora molekularnego w kazdej fazie krystalicznej, termodynamicznie stabilnej w
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rozwazanym przedziale temperatur. Zanim zajmiemy si¢ blizej ta zaleznoscia,
zauwazmy, ze $rednia (proszkowa) podatno$¢ kazdej substancji, (x>, nie powinna
zaleze¢ od temperatury. Jesli bowiem orientacja u;u,u; czasteczki wzgledem
niezmiennego ukladu x,; x, x; zadana jest w temperaturze T, macierza ¢?, a w
temperaturze T; macierza ¢V, to zwiazek (5.35) mozemy zapisa¢ w uproszczonej
postaci nastepujaco (opuszczamy wskaznik numerujacy czasteczki):

K'(1) = ¢ T K (1)

K'(2) =c@TK(2)c? ' (5.62)

przy czym K’(1) i K'(2) oznaczaja udzial czasteczki 1 w tensorze makroskopowym
w temperaturze, odpowiednio, 7, i T,, a K(1) 1 K(2) sa tensorami molekularnymi
w obu tych temperaturach. Ale tensor drugiego rzegdu ma t¢ wlasciwosc, ze jego
$lad jest niezmiennikiem kazdej transformacji, polegajacej na obrocie ukiadu
wspoltrzednych. Wobec tego mozemy napisaé

TrK'(1) = TrK(1)

(5.63)
TrK'(2) = TrK(2)

Jesli teraz mozemy uznac, Ze czasteczka jest dostatecznie sztywna, tak ze odpowia-
dajacy jej tensor nie zalezy od temperatury

TrK(1) = TrK(2)
to rowniez
TrK' (1) = TrK'(2) (5.64)

Rownos¢ (5.64) oznacza, ze temperatura nie ma wplywu na udzial pierwszej
czasteczki w podatnosci komorki elementarnej, jesli ta czasteczka jest sztywna. To
samo sluszne jest w odniesieniu do udzialdw pozostalych Z—1 czasteczek. W
rezultacie (x> nie powinno zaleze¢ od temperatury. Stad wynika drugi wniosek:
zaleznosci y;(T) w poszczegdlnych gléwnych kierunkach powinny mie¢ charakter
kompensacyjny. :

Stusznos¢ obu tych wnioskéw potwierdzaja wyniki pomiaréw autoréw francu-
skich [20, 907, ktorych cze$¢ zostala zebrana w tab. 5.8. Jak widzimy, suma liczb

Tabela 5.8

Glowne podatnosci krysztalow: x; [107!2 m>-mol™ '] w temperaturze
cieklego azotu, y; [107'% m3-mol~!] w temperaturze pokojowej [90]
(liczby w nawiasach podaja bledy w jednostkach ostatniego miejsca)

Zwiazek X1— X1 X2— 22 X3—Xa
1,4-Dibromobenzen 2,7(3) -7,5(3) 4,5(5)
1,4-Benzochinon 42 —13(1) 92
Naftalen 16(2) —-20(2) 33
Bibenzyl 4(5) —26(6) 24(10)
Stilben 04) —24(2) 24(1)
Azobenzen 3 —5,0(8) 1)
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kazdego wiersza réwna jest zeru w granicach bledow doswiadczalnych. Natomiast
poszczegdine y; wprawdzie niewiele, jednak niewatpliwie zaleza od temperatury.

Bardziej szczeg6towo zbadano funkcje x;(T) dla krysztalu benzenu [20]. Nie-
ktére z tych wynikdw przedstawione sa na rys. 5.15, a mianowicie

Xa(T) =15 (T) = 41, x(T)

oraz

% (T) =2 (T) = A3 x(T)

350 ‘
Lo
T L _ (2 /
g \\‘1\2\2‘}06/ /
i (lb—lc)ek:\ [~ ==
™ P \\\ //
S 325 ; _—— ——]
o (Zb"‘la)eks | "] %-/
= P S
a3 /// \‘\\\
N LR \*-\b
\Xb,/]' T
300 1 i N
T80 100 120 140 160 180 200 220 240 260 T,K

Rys. 5.15. Zalezno$¢ wynikéw anizotropii benzenu: doswiadczalnych (krzywe ciagle) i wynikajacych z
modelu sztywnej skrzynki (krzywe przerywane) od temperatury
Odczyfujqc wartosci liczbowe z tych wykresow i przyjmujac [20]
&> = —689(1)-10"*2 m* - mol !
mozemy obliczy¢ x,, x, 1 x. W funkcji temperatury wedlug rownan
XatXot2e =3 Q0
Xa—Xpo =412X
Xo—Xe = A23 X

Tabela 59

Gléwne podatnoici diamagnetyczne, y-10'2, m®-mol™?, kry-
sztalu benzenu w funkcji temperatury. Wartosci doswiadczalne
zaczerpnigte z pracy [20], wartosci obliczone — na podstawie
modelu ,,sztywnej skrzynki” [91] (por. rozdz. 8)

—Xa —Xb —Xe
T K
dosw. obl. dosw. obl dosw. obl.

260 816,3 .8159 | 4722 4722 | 7772 7717
240 810,6 811,1 | 471,9 4726 | 783,1 7821
200 803,1 8014 | 472,1 473,6 | 790,6 790,8
160 797,7 7919 | 471,9 4743 | 796,2 799,5
120 7939 7822 | 471,8 4752 | 800,1 808,3

80 792,1 772,77 | 471,7 476,0 | 802,1 817,1
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"~ Wyniki podane sa w tab. 59. Okazuje si¢, ze w krysztale benzenu y, praktycznie
nie zalezy od temperatury, wobec czego zmiany y,(7T) kompensowane sa zmianami
x.(T) przeciwnego znaku. W tabeli podano dla poréwnania réwniez wyniki
temperaturowych funkcji x;(7T), otrzymanych z modelu ,sztywnej skrzynki” [91].
Model ten opiera si¢ na rozwazaniach skrajnych orientacji, jakie moze przyjmowac
réwnolegloscian o ustalonej wielkosci krawedzi (,,sztywna skrzynka”, odpowiadaja-
ca czasteczce w temp. 0 K), wewnatrz rownolegloscianu o objetosci réwnej 1/Z
komorki elementarnej, zmieniajacej si¢ wskutek rozszerzalno$ci cieplnej tego krysz-
tatu. Bardziej szczegdlowym opisem modelu i wnioskéw odnoszacych si¢ do
temperaturowych funkcji wielkosci fizycznych zajmiemy si¢ w rozdz. 8.

W ortorombowym krysztale benzenu przemieszczenia katowe czasteczki pro-
wadzi¢ moga jedynie do zmiany gléwnych wartosci tensora y, poniewaz —
wskutek symetrii krysztalu — orientacja osi glownych y jest ustalona wzgledem
krystalograficznego uktadu odniesienia. Ale w krysztalach o nizszej symetrii zmianie
z temperaturq ulegaé mogq rowniez kqty, zawarte miedzy osiami glownymi y a
ukladem krystalograficznym. Niech za przyklad postuzy krysztal antrachinonu,
ktorego struktura zbadana zostala w pieciu temperaturach. Obliczone w p. 4.5
przemieszczenia katowe czasteczki w funkcji temperatury (tab. 4.4) wraz z podat-
nosciami czasteczki (tab. 5.2, nr 31) sa informacjami wystarczajacymi do przewi-
dzenia zachowania si¢ y; (T) oraz kata 8 = ¥ y,,a w funkcji temperatury. Wyniki
przedstawione sa w tab. 5.10 i na rys. 5.16. Poniewaz y, praktycznie nie zalezy od

c 820
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Rys. 5.16. Zalezno$é gléwnych podatnoscei krysztatu antrachinonu od temperatury
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Tabela 5.10

Temperaturowa zaleznosé¢ gléwnych podatnosci, y;- 1012, m®-mol™1, i
kata orientacji, 6, w krysztale antrachinonu, obliczona na podstawie
przemieszezen katowych czasteczki (tab. 4.4)

T K - X1 —X2 — X3 — 8, stopien
2983 7984 13415 2368,7 43,87
260,8 798,2 1288,8 2420,6 41,93
201 798,1 1269,5 2441,1 40,84
161 798,0 1256,7 2454,0 40,01
103 7978 1241,6 2469,2 38,83

temperatury, zmiany y, kompensowane sa zmianami y;. Widzimy réwniez wyra-
zng zalezno$¢ 6(T) (rys. 5.17). Z eksperymentalnego punktu widzenia ciekawsze sg
raczej funkcje temperaturowe anizotropii krysztatu niz samych podatnosci, ponie-
waz te pierwsze mierzone sa bezposrednio w doswiadczeniu. Dla krysztatu antra-
chinonu przedstawiono je na rys. 5.17. Wobec bardzo stabej zaleznosci y, (7T)
najwigksze efekty temperaturowe powinniSmy obserwowaé wtedy, gdy krysztat
zawieszony jest wzdluz y;. Pomiaréw takich w krysztale antrachinonu jednak
dotychczas nie wykonano.

Sadzimy, ze omowione przyktady ilustruja problemy, jakie moga byé rozwiazy-
wane za pomocg modelu gazu zorientowanego. Dotyczg one krysztaléw zbudowa-
nych z czasteczek sztywnych i1 stanowiacych fazy termodynamicznie trwate. Na
zakonczenie tego rozdzialu pragniemy wskazaé jeszcze na przypadki, w ktorych
pierwsze lub drugie zalozenie nie jest spelnione.

Cl) 48°
/"/
> 43 ———
IRy
-0 | e %
e /
380X
b) —luz |
T 1200 O - 620 T
= \ S
E O\ :
mE \O "’E
o v N
2 1100 \ 1530 @
X N
ﬂm e <T
/
Ay | _ " |
1000 ke | A\ 440
100 150 200 250 300 T, K

Rys. 5.17. Wplyw temperatury na anizotropie podatnosci magnetycznej krysztatu antrachinonu
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Interesujacym przykladem krysztalu zbudowanego z czasteczek niesztywnych
jest bifenyl. Czasteczka tego zwiazku, przedstawiona schematycznie na rys. 5.18,
skiada sie z dwu polaczonych z soba liniowo pierscieni fenylowych, ktére moga
wykonywaé wzgledem siebie oscylacje katowe o niespotykanie duZej amplitudzie.

Rys. 5.18. Skregcona czasteczka bifenylu

Ma to oczywiscie wplyw na podatno$ci magnetyczne krysztatu oraz jego rozsze-
rzalno$¢ termiczna, tym bardziej, ze amplituda tych ruchéw silnie zalezy od
temperatury. W tym miejscu zajmiemy si¢ jedynie zwiazkiem miedzy podatnoscia
krysztalu a amplituda ruchow termicznych, przedstawiajac punkt widzenia Char-
bonneau i Rivet [92]. Autorzy ci nie analizuja niesztywnosci czgsteczki, lecz
traktuja ja w calosci jako cialo sztywne, wykonujace ruchy libracyjne o amplitu-
dzie zaleznej od temperatury. Tabela kosinuséw kierunkowych osi LMN (rys. 5.18)
w temperaturach 293 i 80 K oraz tensory drgan libracyjnych podane s3 w tab.
5.11. Tensor libracyjny, L, zdefiniowany jest w taki sposéb [93], ze jego glowne

Tabela 5.11

Czasteczka bifenylu [92]: kosinusy kierunkowe osi LMN oraz temsory drgai libracyjnych
[stopieii 2] (liczby w nawiasach oznaczaja bezwzgledne bledy standardowe)

T K a b c* Ly, Lj, Lj,
L] 02960 | —0,0001 0,9552

293 |e¢ M| 05160 | —08415 | —0,1599 | 109,2 (2,8) 8.4 (0,6) 11,5 (0,5)
N | 08038 0,5402 | —0,2491

110 457 (2,1) 2,5 (0,4) 34 (04)
L| 02890 | —0,0140 09573

80 |¢ M| 0,5015 | —0,8492 { —0,1696 33,2 1,8 2,5

N 08157 0,5288 | —0,2346

skladowe przedstawiaja polowe kwadratu amplitudy drgan wokot osi, odpowied-
nio, L, M lub N. Z tabeli 5.11 wynika, Ze najwicksza amplitude, 8{”, maja drgania
czasteczki wokot osi L. W temperaturze 293 K 6/ = (2L,,)"/? = 14,8° i nawet w
temp. 80 K amplituda ta jest jeszcze znaczna (8,1°). Pominigcie tego faktu
prowadzi do rozbieznosci miedzy wartosciami glownych skladowych K w obu
temperaturach, je$li do analizy danych doswiadczalnych zastosuje si¢ bezposrednio
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rownania (4.8) i (4.9). Ilustruje to tab. 5.12: wartoéci K, (réwniez K;) w obu
temperaturach roznia sie o ok. 38-10"!?m?3-mol~!. Rozumowanie autoréw pracy
[92], prowadzace do zmniejszenia tych rozbieznosci, jest w skrocie nastepujace.

Tabela 5.12

12

Gléwne podatnosci magnetyczne [107'2 m?-mol™!] krysztalu

(x;) i czasteczki (K;) bifenylu [92]

TK| —-xn —X2 —X3 ¥ =Tr ¢

293 | 8633 12578 | 1873,6 | 22°40 3994,8
80 | 8557 1223,9 | 19113 | 21°40 3991,0

By | —kg | —Ks -Tr K
293 | 8633 830,6 | 2302, 3996,1
80 | 864,1 792,9 | 23386 | 39961

—-Kt | -k | -k —Tr K*
293 | 8595 780,3 | 2356,1 3996,1
80 | 8633 7904 | 23549 4008,6

Przyjmijmy, Ze czasteczka wykonuje wokot kazdej z osi symetrii LM N drgania
harmoniczne

6; = 68\™ - cos (wt — ¢;) (5.65)

gdzie 6™ jest amplituda, a ¢; faza poczatkowa tych ruchow. Polowa $redniego
kwadratu amplitudy rowna jest z definicji odpowiedniej sktadowej glownej tensora
libragji

OF> =567 = Ly (5.66)
Wskutek tego srednie w czasie poloZenie kaidej z osi LMN jest inne niZ osi
L* M* N* w spoczynku. Jesli wybierzemy wektory jednostkowe wzdluz tych osi, tj.
e l|L, ;]| M, es||N oraz ef||L*, ef||M*, e¥||N* i przypiszemy im posta¢ macierzy
kolumnowych, to oba uklady mozna zwigzaé zaleznoscia

e, = aef (5.67)
w ktorej a jest macierza obrotu ogolnego, analogiczna do R (4.18)
(1-03-63)"? —0; 0,
a= 03 (1—6%—6%)1/2 -0, (5.68)
-0, 0, (1-62-031/2

Réznica miedzy réwnaniami (5.68) i (4.18) polega na tym, ze w pierwszym
przypadku zastosowano dokladniejsze przyblizenie cos 8, = 1—67/2. Jesli wigc K
jest tensorem obliczonym z y dla czasteczki wykonujacej libracje, a K* tensorem

208



czasteczki w spoczynku, to zwigzek miedzy nimi polega na transformacji K z
uktadu o bazie ¢, do K* w bazie ¢ za pomoca macierzy a

K =aK*aT (5.69)

Rozpisanie réwn. (5.69) z pominigciem wyrazéw proporcjonalnych do a;a; i
wprowadzenie wartosci srednich prowadzi do ukladu réwnan

K, = <at; YK¥+<af, ) K5+ {al; Y K3
K, = <a3; >KF+<a, > Ki+ a3 ) K% (5.70)
K3 = {a3; YKt + a3,y K3+ a3 K3

W koncu, przez zastosowanie definicji (5.66) i (5.68), otrzymujemy podstawowy
zwiazek

Ky =(1—L,,~Ly3) Kt + L33 K5+ L,, K}
K, =Ls; Kf+(1—-L;; —L33) K3+ L;; K} (5.71)
Ky =L, Kf+L;; K¥+(1—Ly; —L,,)K}

Znajomos$¢ K w ukladzie osi gtéwnych oraz L;; pozwala obliczyé K* czasteczki w
stanie spoczynku. Wyniki obliczen powinny by¢ takie same dla obu temperatur. Z
tabeli 5.12 wynika, Ze najwigkszej zmianie ulegly K, i K5, zgodnie z faktem, ze
amplituda drgan wokot L jest najwigksza. Poza tym, istotnie, réznice miedzy KF* w
obu temperaturach sa na ogdl mniejsze niz miedzy K;.

Na ten sam problem mozZna tez, oczywiscie, spojrzeé inaczej. Przypusémy, na
przyklad, Ze czasteczka bifenylu nie jest ptaska w krysztale. Zatozenie takie nie jest
bynajmniej oczywiste, poniewaz zagadnienie planarnoéci bifenylu w fazie stalej jest
jednym z najtrudniejszych w fizykochemii organicznego ciala stalego i wlasciwie
nie zostalo rozwiazane do dzis. Poswigcono mu wiele uwagi i prac, komentujac
wyniki badan zar6wno czysto strukturalnych jak i fizykochemicznych, dotyczacych
réznych wlasciwosci tej substancji. Nie begdziemy tych prac tu przytaczaé, ponie-
waz nie zamierzamy referowaé tego problemu szczegétowo. Gdyby jednak nalezalo
mozliwie krotko stresci¢ panujacy aktualnie poglad ze strukturalnego punktu
. widzenia, sytuacja zdaje si¢ by¢ taka, ze w zakresie temperatur od 40 K do
pokojowej nieplaskosé czasteczki jest nie do pogodzenia z symetriq krysztalu i
obserwowanym zbiorem refleksow rentgenowskich. Natomiast w temperaturze nizszej
od 40 K krysztal zbudowany jest z czasteczek nieplaskich, przy czym kat skrecenia
obu pierscieni fenylowych wzgledem siebie wynosi 10,2° [94].

Abstrahujac jednak od trudnosci, jakie napotyka analiza strukturalna w pogo-
dzeniu nieplanarno$ci czasteczki ze strukturg krysztatu, przyjmijmy, ze kat skrece-
nia miedzy pierécieniami fenylowymi wynosi ¢ i popatrzmy, czy ta hipoteza
pozwala wyjasni¢ pozorna zalezno$¢ K od temperatury. Kat ¢ traktujemy, oczy-
wiscie, jako warto$¢ Srednia, z pominigciem ruchu oscylacyjnego obu pierScieni
wzgledem siebie. Niech dalej u, u,u; oznacza uklad wspotrzednych zwiazany z
pierScieniem fenylowym w sposdb analogiczny, jak w czasteczce benzenu (rys.
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5.18). W tym ukladzie tensor h podatnoéci pierscienia ma posta¢ diagonalng

hy 0 0
h=|0 h O
0 0 hs

przy czym hy # h,, w odrdznieniu od czasteczki benzenu. Dla calej czasteczki
definiujemy uklad LMN w taki sposob, ze L{lu;, M jest dwusieczna ¢, a N
kompletuje uklad prawoskretny. W tym ukladzie tensor K ma réwniez postaé
diagonalna

K, 0 0
K=} 0k, 0
0 0 K,

Zwigzek miedzy K i h jest nastepujacy:
K = che” +¢"he (5.72)

gdzie ¢ jest macierza, odpowiadajaca obrotowi jednego piericienia o kat + ¢/2.
Macierz transponowana, ¢’, opisuje woéwczas obrét drugiego pierscienia o kat
— /2. Poniewaz obroty liczone sa wzgledem plaszczyzny LM, mamy

Uy Uy Us
L 1 0 0
M 0 cos{p/2) sin(¢/2) =c¢ dla +¢/2

N 0 —sin(p/2) cos(g/2)

Wykonujac dzialania w (5.72), otrzymujemy

h, 0 0
K =210 h;cos?(¢/2)+hysin?(¢/2) 0 (5.73)
0 0 h, sin? (@/2) + hy cos? (¢/2)

Jesli oznaczymy K(293) przez K', a K(80) przez K", to zwiazek (5.73) dla obu
temperatur rownowazny jest zbiorowi réwnan

K, =K/
3K = hy+(hy—hy)sin’ (¢'/2)
$ K5 = hy—(hs — hy)sin® (¢'/2) (5.74) -

3K = hy+(hs —hy)sin? (¢"/2)
3K5 = hy—(hs —hy)sin®(¢"/2)

Jesli pominaé pierwsze rOwnanie, to pozostale zawieraja cztery niewiadome: h,,
hy, @, @" i pozornie stanowig uklad czterech rownan o czterech niewiadomych.
Nie mozna go jednak rozwiaza¢ ze wzgledu na powigzania migdzy réwnaniami. Z
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uktadu (5.74) wynikaja jednak pewne zwiazki, ktére mozna uwazal za testy
przedstawianego tu pogladu, a mianowicie

) 1 =K (5.75)
tj. podatno$¢ czasteczki wzdhuz osi L nie powinna zaleze¢ od temperatury, jesli
powodem tej zaleznosci ma byé zmiana kata skrecenia, ¢. Istotnie, réZznica miedzy
K,;(293) 1 K,(80) miesci si¢ w granicach bledow doswiadczalnych, jak na to
wskazuja wartosci §ladow tensoréw w tab. 5.12, i jest mniejsza niz K¥(293)
— K¥(80).

2) K5+K5 = K5+K5
{j. suma podatnosci K, + K3 réwniez nie powinna zaleze¢ od temperatury. Nie jest
to jednak zwiazek nowy, poniewaz wynika z (1) oraz stalosci $ladu K.
1—sin?(¢//2) K)—K5
I—sin®(¢"/2) K5—K45

3) (5.76)

C = 09520

Mimo ze nie mozna rozwiaza¢ réwnania (5.76) w taki sposéb, by obliczy¢ osobno
katy skrecenia ¢’ 1 @” w obu temperaturach, wynikaja z niego dwa interesujace
wnioski.

a) Poniewaz C > 0, wiec ¢’ > ¢”, tj. kat skrecenia w temp. 293 K jest wiekszy
niz w temp. 80 K. Wniosek ten wydaje sie fizycznie bardziej uzasadniony niz
przyjecie, iz w calym zakresie temperatur 80 < T< 293 K czqstec.zka bifenylu jest
ptaska. Konformacja czasteczki zalezy bowiem co najmniej od trzech czynnikow, a
mianowicie: sprzezenia migdzy obu pierScieniami (energia ujemna), odpychania
atoméw wodoru w obu pierScieniach (energia dodatnia) oraz oddzialywan typu
atom-atom z czasteczkami otoczenia (energia ujemna). Stan planarnosci wynikaé
moze jedynie z rownowagi sil, generowanych przez te czynniki. Wskazuje na to
rowniez przyjety przez wszystkich bezsporny fakt, ze czasteczka bifenylu w stanie
gazowym nie jest ptaska. Dlatego planarno$é¢ — jesli wystgpuje w krysztale —
zdarzy¢ si¢ moze w niewielkim zakresie temperatur.

b) Nie znajac ¢’ ani ¢”, mozemy przyja¢ ¢" = 0. Z réwnania (5.76) wynika
wowczas, ze kat skrecenia w temp. 293 K wynosi

(P[:'yin = 17’8 20

Jest to minimalna wartos¢ kata skrecenia czasteczki w temp. 293 K, wynikajaca z
przytoczonych danych magnetycznych.

Przyjawszy zatem ¢” = 0° w temp. 80 K, otrzymujemy ¢’ = 17,82° w temp. 293
K oraz gléwne wartosci 2-h:

2h; = —864,6-1071%  2h, = —2338,6-107!2  2hy = —792,9-10" 2 m3-mol !

identyczne w obu temperaturach. Widoczne jest, ze hipoteza o skreceniu czasteczki
prowadzi do uzgodnienia znanych faktow magnetochemicznych nie gorszego niz
hipoteza poprzednia.

Do tej pory zajmowalismy si¢ wplywem temperatury na podatno$é magnety-
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czna fazy krystalicznej termodynamicznie trwatej w pewnym zakresie temperatur, a
w kazdym razie takiej, ktorej symetria nie ulega zmianie. Podczas przemiany
fazowej wystepuje na ogol skokowa zmiana symetrii w temperaturze przejscia,
charakterystyczna dla przemiany pierwszego rodzaju. W punkcie przemiany ma-
cierz orientacji ¢ czqsteczek ulega stosunkowo bardzo znacznym zmianom, pociagajac
za sobg kontrastowe i bardzo duze zmiany gléwnych podatnosci krysztatu. Odnosi
si¢ to, oczywiscie, do krysztaldw zbudowanych z czasteczek magnetycznie anizo-
tropowych. Przykladem takich badan moga by¢ eksperymenty wykonane z krysz-
talami pentachlorofenolu (ukiad jednoskosny, [957]), ktdrych anizotropia w czasie
ogrzewania maleje skokowo w poblizu temp. 63°C, bedacej temperatura przej$cia
fazowego w tym zwiazku. Jeszcze silniejsze efekty znaleziono w przypadku 1,8-
dinitronaftalenu (uktad ortorombowy, [96]). Obserwacje 4,3 = x,—x. wskazuja
(rys. 5.19, [91]), ze po przejsciu fazowym znak anizotropii ulega zmianie na
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Rys. 5.19. Wplyw temperatury na anizotropiqrmagnetycznq krysztatu 1,8-dinitronaftalenu w okolicy
przejscia fazowego [91, 96]

przeciwny. Powrotowi do temperatury pokojowej towarzyszy znaczna histereza, a
krysztal nie osiaga struktury stanu wyjsciowego. Jest to zwigzane ze strukturalng
nieodwracalnos$cia przemiany fazowej, wywolana przypuszczalnie zbyt duza zmia-
na gestodci, towarzyszaca przemianie. Prowadzi to z reguly do zniszczenia upo-
rzadkowania dalekiego zasiggu, uniemozliwiajac w ten sposob rekonstrukcje fazy
wyjsciowej. Takie przypadki wymykaja sig, oczywiscie, interpretacji molekularnej,
mimo znacznych i dobrze mierzalnych efektéow. Wobec duzej czulosci, metoda
pomiaréw anizotropii magnetycznej w zmienianej temperaturze moze by¢ uwazana
za metode detekcji przemiany fazowej pod warunkiem, Ze same czasteczki sa
magnetycznie anizotropowe i ze mozemy otrzyma¢ interesujaca nas substancje w
postaci krysztatow.
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5.11. Problemy i przyklady

ProBLEM 5.11.1
Podatno$¢ czasteczki benzenu

W rozdziale 4 (problem 4.6.2) pokazaliémy, ze makroskopowa symetria orto-
rombowego krysztalu benzenu redukuje liczbe niezerowych skladowych kazdego
tensora drugiego rzedu do trzech skladowych glownych. Tymczasem czasteczki
benzenu zajmuja wezly o symetrii C;, wobec czego tensor K zawiera pelna liczbe,
czyli sze$¢ sktadowych réznych od zera. Dla uzyskania rozwigzan, tj. obliczenia
K;; z y;, musimy wiec podnies¢ symetri¢ czasteczki. Przedstawimy nizej dwie
wersje rozwigzania tego zagadnienia.

a) Przyjmiemy, Ze czgsteczka ma w krysztale szeSciokrotng oS symetrii, prosto-
padla do plaszczyzny wyznaczonej przez atomy wegla. Jak wykazalismy w p. 34,
os taka redukuje tensor drugiego rzedu do postaci

K, 0 0
K= 0 Kl 0
0 0 K,

Réwnania wiazace K; z y; [rown. (4.11)] sa nastepujace:
(i1 +c3)Ki+c3 K3 = 1,
(cla+c3)K i+, Ks =1
(cf3+c33) Ki+c33Ks =

Przy oznaczeniach
1—c3, C.%l Xa
2 2 K,
M= |1-c3 c3 K= X= 1%
K,

2 .2
1—c33 c33 3

powyzszy uklad réwnan mozemy zapisa¢ w postaci
MK =y

Uklad zawiera trzy réwnania o dwdch niewiadomych; w rozwiagzaniu zadnego z
tych réwnan nie powinniSmy pominaé. W tej sytuacji na rozwiazania nalezy
przyjaé takie wartosci K;, dla ktorych suma kwadratow bledow jest najmniejsza. Z
takim sformulowaniem problemu zetkngliSmy si¢ juz w p. 2.6, wobec czego
analogicznym rozwiazaniem bedzie

K=M"M)™'(M"y)
Mamy

1+d 1-d
(MTM)=<:(1 d)

213



oraz
d d—1

V-t - | 3471 3T
MEM=1 a1 d
3d—1 3d—1

gdzie
d=c%+ci+c3;
Jesli oznaczymy
Xa e Ab + Xe = A

i xat S tp+ i3 =B

to rozwiazania wyraza sie wzorami

_dA-B _A@d-1)+2B

T 3d-1 T 3d—1 (5.77)

Ky

Po podstawieniu danych z tab. 5.2 (nr 1) otrzymujemy

K, =K,=—4381-107" m®-mol ™!
Ky = —1189,6-10"'2 m* - mol !

Rozwigzanie powyzsze zupelnie dobrze spetnia wyjsciowy uktad réwnan, z bledami
lo| <4 oraz z suma kwadratow bledow ) ¢® =1,7. Mozna jednak uwazaé, iz
wybierajac symetri¢ czasteczki C,, posungliSmy sie troche za daleko, poniewaz
narzuciliémy réownos$é K, = K,, podczas gdy svmetria krysztalu takiego warunku
nie wymaga.

b) W drugiej wersji przyjmiemy, ze czqsteczka ma w krysztale trzy wzajemnie
prostopadle dwukrotne osie obrotu, pokrywajace si¢ z osiami LMN. Przy takiej
symetrii K ma postac

K, 0 0
K=| 06 K, 0

Uklad réwnan (4.11) redukuje si¢ do ukladu
et Ky +c3 Ky+e3 K3 =y,
C%zKll +c5 Ko+ Ks =
3K +ei Ky+eis Ks = g
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ktéry w pelni odpowiada liczbie stopni swobody krysztatu i jednocze$nie czastecz-
ki. Korzystajac ponownie z danych tab. 5.2 (nr 1), otrzymujemy rozwigzanie

K; = —437-10"'2 m® -mol ™!
K, = —405-10""? m® mol !
Ky =—1224-10"'2 m®-mol ™!

podane w tab. 5.2 (nr 1). Obecnie uzyskane rozwiazanie jest, oczywiscie, dokladne,
tj. dla niego ) ¢* = 0. Rozni si¢ ono od poprzedniego w pierwszym rzedzie tym, ze
K, # K,, a nadto warto$¢ |K;| jest troche wieksza od poprzedniej. Trudno
rozstrzygnac, czy roznice te s znaczace, czy tez wynikaja z bledow w pomiarach
Xi-

ProBLEM 5.11.2
Podatnos$¢ czasteczki heksachlorobenzenu

Heksachlorobenzen krystalizuje w ukladzie jednosko$nym, a komorka elemen-
tarna zawiera dwie czasteczki. Grupa przestrzenna ma symetri¢ P2,/c, przy czym
dwukrotna o§ srubowa jest rownolegla do osi b krysztalu. Podobnie jak w
strukturze benzenu, centrosymetryczne czasteczki umieszczone sa w centrach syme-
trii krysztalu. Grupa symetrii wezta obejmuje wigc dwie operacje

G,>{E|000}, {C;|000}
Grupe wymienng mozna wybra¢ na dwa sposoby

G, 3 {E[000}, {C,,|0%3)
lub

G, > {E|000}, {0,|0 %%}

Z powodow przytoczonych juz wczesniej wybierzemy pierwsza reprezentacje. Sche-
matyczny rozklad czasteczek w plaszczyznie ab przedstawiony jest na rys. 5.20.

0 »A B 1
~ T ~ 2,[0y 7
| | y 1[ y/,]
1 |
| |
| 1
| |
| |
| I
~ T 1 e 21[17)/2‘]
| |
| |
| I
| |
| ; .
! : 1
~ T~ ~ 21y 7]

Rys. 5.20. Schematyczny rozklad czasteczek w strukturze heksachlorobenzenu (rzut na plaszczyzne ab)
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Operacjom grupy wymniennej odpowiadaja macierze

100 -10 O
A, =1010 A, = 01 O
001 00 —1

Przy symetrii wezta C; tensor molekularny zawiera szes¢ elementéw niezerowych,
podczas gdy tensor krysztalu w ukladzie abc*

Xx11 0 xi3
xX= 0 x2 O
31 0 X33

ma cztery niezerowe elementy. Dla rozwiazania problemu musimy i tu podwyzszy¢
efektywna symetrig czasteczki w krysztale. Nie byloby jednak racjonalnie przypisaé
czasteczce symetrie, odpowiadajaca istnieniu osi szeSciokrotnej, poniewaz spowo-
dowaloby to zbyt daleko posunieta redukcje tensora t (problem 5.11.1). Zauwazmy
jednak, iz obecnosé¢ szesciu wzglednie duzych podstawnikéw moze spowodowaé
niewielkie odstepstwa od planarnosci calej czasteczki. Mimo iz dotychczasowe
wyniki analizy strukturalnej nie wskazuja na to, przyjmiemy, iz $rodki atomow
chloru odbiegaja nieco od $redniej plaszczyzny wyznaczonej przez atomy wegla,
oczywiscie, naprzemiennie. Czasteczka ma wowczas symetrie o, (rys. 5.21). W
uktadzie u; u,u; tensor K ma wowczas posta¢ analogiczna do y

K1 0 Ky
K= O Kzz 0
K31 0 K33

co prowadzi do ukladu réwnan
2 Ky +c3, Ky +c2 Ky3+2¢,, ¢35, Ky3 = 3, €020+ x,sin*
¢t Ky +¢3,Kyp+¢3,Kas+261563, K3 =13
23K 1 +e23 Ky +23 K33 +2¢,3 033 Kq3 = yq8in2 0+ y,cos? 0
€11 €13 Ky 1+ €23 Ky +e3 ¢33 K3z +2c1; ¢33 Ky3 = (3~ x;)sinfcos

us

a) ' b) 1 N M, u,

[
Uy

Rys. 5.21. Czasteczka heksachlorobenzenu: ) wszystkie atomy w plaszczyznie, b)ratomy chloru
wychylone naprzemiennie (symulacja komputerowa)
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Korzystajac z podatnosci krysztalu i macierzy ¢ podanych w tab. 5.2 (nr 12),
otrzymamy rozwiazania

—1693:10"'2 m®-mol !

K,, = —1640-10"'%? m*® - mol !

K33 = —2227 * 10_12 m3 'mol—l

K3 = +44-107"* m> mol™*
Element K, ; jest maly w poréwnaniu ze sktadowymi gtéwnymi, ale rézny od zera.
Wskazuje to, ze uklad u; u,u; rézni si¢ troche od osi symetrii LMN pierscienia

benzenowego. Obrot wokol M |ju, sprowadza K do postaci diagonalnej; potrzebny
kat 6 mozemy obliczy¢ z warunku

Ll
I

: K“smécosé K,3sin?8+K,5¢c08?5~K;3sindcosd =0
lub

tg2d = ———-—— (5.78)
K1 —Kss
Podstawiajac wartosci K;;, otrzymujemy
o= —47°

a gléwne warto$ci wynosza
K,y =—1704-10"'2m?* -mol ™!
K,, = —1640-10"'?2m?-mol ™!
Kss = —2217-10" > m® - mol !

Do wartos$ci 6 trzeba odnies¢ sie raczej krytycznie. Jest ona mata, bardzo zatem
czula na niewielkie réznice w podstawianych danych. Na przyktad, wyniki innych
autoréw, zamieszczone rowniez w tab. 5.2 (nr 13), prowadza do wartosci

6=—68°
oraz

K,y = —1733:107*2 m®-mol~!
K;, = —1620-107*2 m®-mol~!
K33 = —2208:107'2 m* -mol !

Niemniej jednak oba rozwiqzania zdajq sie wskazywaé na malq nieplanarnosé
czqsteczki, odpowiadajaca ndprzemiennemu przesunieciu jader atomoéw chloru od
sredniej plaszczyzny pierScienia na odleglosci rzedu 0,03 nm.

Przykrap 5.11.3
Osie symetrii LMN czasteczki antracenu

W celu znalezienia orientacji osi LMN czasteczki antracenu wzgledem krawe-
dzi komorki elementarnej wykorzystamy wspoirzedne atomoéw wegla, podane w
pracy Masona [60]. Po przeliczeniu wspdlrzednych do abc* otrzymujemy w tym
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ukladzie cztery wektory jednostkowe, poprowadzone przez odpowiednie pary
atomow, o kierunkach zblizonych do M, a mianowicie (oznaczenia atomow
podane sa w tab. 5.2, nr 29)

a b c*
AG’ —0,32865 —0,88855 —0,32009
BF’ —0,32416 —0,89149 —0,31650
CE' —0,31957 —0,89482 —-0,31171
DD’ —0,31936 —0,89592 —0,30876

Stad $redni kierunek M
M>=(-0,32294 —0,89270 —0,31426)

Kierunek normalny do ptaszczyzny czasteczki, znaleziony z réwnania najlepszej
plaszczyzny, ma skladowe

N =(0,80935 —0,42867 0,40149)

Nieortogonalnos¢ sredniego kierunku M do N jest nieduza
(M>-N = —0,00485
Kat miedzy tymi wektorami, §, wynosi
0 =90°+40,279°

Poprawniony kierunek M

M = (M>cos(6—90)+ Nsin (o —90)
ma, po znormalizowaniu, nastepujace kosinusy kierunkowe

M =(-0,3190 —0,8948 —0,3123)
Petna tabela orientacji osi czasteczki antracenu, ¢,, jest nastgpujaca:

—-0,4931 —-0,1247 08610
¢, = | —03190 —08948 —0,3123
0,8094 —0,4287 04015

Z porownania elementéw tej macierzy z oryginalna tabela Masona, ¢, wynika, ze
rdznice nie przekraczaja 1°/,. Przy zwykle potrzebnej dokladnosci obliczeti nie ma
to wptywu na wartosci K;, co ilustruje nastepujaca tabela:

Ky Ky Ky

y, Lasheen [32]}

¢y, Mason [60]
¥, Lasheen [32]}

¢,, przybliz.

—908 —922 -3071 x107*2 m* -mol™!

—908 —922 —3071 x 10712 m3 -mol™!
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Przykeap 5.11.4
Giéwne podatnosct magnetyczne czasteczki kwasu barbiturowego

Obliczajac gléwne podatnosci czasteczki kwasu barbiturowego z danych dla
krysztalu, trzeba uwzgledni¢ fakt, ze komoérka elementarna zawiera 4 czasteczki
kwasu 1 § czasteczek wody (tab. 5.2, nr 35). Zgodnie z tymi danymi na jedng
czasteczke kwasu przypadaja dwie czasteczki wody. Poniewaz obie maja wspol-
rzedne symetrycznie niezalezne, musimy udzial kazdej Z nich w podatnosci komér-
ki elementarnej napisa¢ z osobna. Oznaczajac przez KB czasteczke kwasu, a przez
WI i WII czasteczki wody, mamy w ukladzie abc zgodnie z modelem gazu
zorientowanego

Y (KB 2W) = x(KB) + ¢ (WD) + ¢ (WII) =
1 & 1 & 1 2
= 2 e Kpela+ 7 {2 enKwenj+g 12 el Ky ey} (5.79)
k=1 k=1 k=1
Tabela kosinuséw kierunkowych osi 1, 2, 3 czasteczek wody jest typu (tab. 5.2, nr
36)
e 0 f
Cy = (f 0 —e
01 0

Stad, po uwzglednieniu elementéw symetrii grupy wymiennej (mmm), suma dla
o$miu czasteczek wody I redukuje si¢ do wyrazenia

q2K1+ﬁ2K2 0 0
L (WI) = 0 K, 0 (5.80)
0 0 f?*K;+e’K,

Analogiczny wynik otrzymamy dla czasteczek WII. Udzial podatnosci czasteczek
wody w podatnosci komorki elementarnej wynosi zatem numerycznie

~33 0 0
AWD+yWID=] 0 =319 0 [107'2m3 mol!
0 0 —325

W obliczeniach skorzystalismy z dokladniejszych podatnosci czasteczek wody,
podanych przez Yen-Chi Pana i Hameke [70].

Podatnosci molowe krysztalu ,,bezwodnego”, w ktérym czasteczki kwasu bar-
biturowego zachowuja swe oryginalne orientacje, wynosza

—591 0 0
7 (KB) = 0 -819 0 1072 m? -mol™!?
0 0 —582
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Obliczone stad podatnosci K;, K,, Ky (tab. 5.2, nr 36) sa roOwne

—634,7 0 0
K= 0 —~542,2 0 10712 m3 -mol?
0 0 —819,3

Wobec prawie izotropowego udziatu czasteczek wody w ogdlnej podatnosci ko-
morki elementarnej, sekwencja dtugosci osi K;, K, 1 Ky kwasu jest taka sama,
jak w wynikach Lasheena. Podatnosci te sa jednak znacznie mniejsze niz podane
w pracy [17].

ProBLEM 5.11.5
Zasada addytywnos$ci tensora molekularnego: 1,5-dinitronaftalen

Tensor K czasteczki 1,5-dinitronaftalenu mozemy zlozy¢ z tensora podatnosci
rdzenia naftdlenowego, H,, podanego w ukladzie LMN [58]

— 6848 0 0
H, = 0 —663,6 0 10712 m* mol ™!
0 0 —2181,3

oraz z tensora podatnosci grupy nitr\owej, h,, zadanego w lokalnym ukladzie uow
[58]
+733 -97,7 +4,1
h = +221 =726 |-107'2 m3 -mol~!
-351,1
Przykiad ten zaczerpnigty zostal z pracy [58]. Schematycznie czasteczka przedsta-

wiona jest na rys. 5.22. Orientacje obu ukladdéw osi molekularnych wzgledem abc*
w krysztale 1,5-dinitronaftalenu przedstawiaja macierze

0,2132 —0,8982 10,3845
¢(LMN) = 0,8867 0,3431 0,3098
—-0,4102 0,2749 00,8696

Rys. 5.22. Czasteczka 1,5-dinitronaftalenu (schematycznie)
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oraz

—0,4799 0,7904 0,3808
c(uvw) = | —0,8535 -03202 —-04111
—0,2029 —0,5223 0,8282
obliczone w pracy [58] na podstawie wspolrzednych atomow [57]. Uwzgledniajac
fakt, ze czasteczka ma centrum symetrii, mamy na podstawie modelu gazu
zorientowanego

H_=c(LMN)H,c(LMN)" + 2¢(uvw) h, ¢ (uvw)” (5.81)

w ukladzie abc*. Po dokonaniu obliczen otrzymujemy tensor czasteczki

| —-1091,6 858 757,7
H, = —847,2 96,7 [-107*2 m3 mol~!
B —2101,9
Po sprowadzeniu do osi gléwnych
[ —911,3
K= —-620,7 ‘1072 m3-mol !
B —2509,1

przy czym orientacje K; w abc* okre§la macierz

04282 -—08812 10,2010
c¢(K;K;K3) = 0,7717 0,4722 0,4260
—-0,4703 —0,0273 028821
Wyniki te sa zamieszczone w tab. 5.2, nr 27. Osie K; réznia si¢ orientacja od
LMN o kilka stopni z powodu nieplanarnosci calej czasteczki.

Dodawanie tensoréw podstawnikéw i1 rdzenia wykonaliSmy po sprowadzeniu
wszystkich tensorow do ukladu abc*. Oczywiscie, dodawanie to mozemy wykonaé
w kazdym innym ukladzie, np. w LMN. W takim przypadku trzeba uzy¢ macierzy
a takiej, ze np. a,; = cos(M, w)

—0,6658 —0,0524 00,7443
a=| —0,0364 —09940 —0,1025
0,7453 —0,0954 0,6599

Mamy woéwczas
H_ =H, +2ah a” (5.82)

W ukladzie osi glownych

—911,1
K = —621,0 10712 m3®-mol~?
' —2508,2

Wynik ten jest zupelnie zgodny z poprzednim.
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Zauwazmy na koniec, ze diagonalizacja H, w pelnej postaci prowadzi, oczy-
wiscie, do wyznaczenia dlugosci i orientacji osi glownych tensora molekularnego
K. GdybySmy zastosowali do H_ operacje grupy wymiennej i dodali do siebie
tensory, odpowiadajace obu czgsteczkom w komorce elementarnej, otrzymalibys-
my — zgodnie ze znanymi juz zasadami — tensor y krysztalu w abc*

—1091,6 0 757,8
¥ (abc*) = —847,2 0 10712 m3 -mol !
-2101,9

Diagonalizacja macierza

a b c*
1 —-04719 0 0,8817
2 0,8817 0 04719
3 0 1 0
sprowadza y(abc*) do osi glownych
—2507,8 i
x = —685,9 1072 m*-mol ™!

—847,2

Wynik ten zgodny jest z wartosciami doswiadczainymi y, podanymi w tab. 5.2, nr -
27.

ProBLEM 5.11.6
Zasada addytywnosci tensora molekularnego: 1,8-dinitronaftalen

Korzystajac z tensora podatnosci rdzenia naftalenowego i grupy nitrowej,
podanych w problemie 5.11.5, oraz z danych strukturalnych zawartych w tab. 5.2
(nr 28), mozemy obliczy¢ tensor podatnosci czasteczki 1,8-dinitronaftalenu w
ukladzie abc tego krysztatu (ukiad ortorombowy). Obie grupy nitrowe tej czastecz-
ki nalezy potraktowaé jako niezalezne, poniewaz nie ma relacji symetrii migdzy
polozeniami atoméw N'O'O? i N?20*0*. Zatem

H_ =c(LMN)H,c(LMN)T +c¢(u; v; wi)h, e(uy v;w)"+c¢(uy v, wy)h e(u, v, wy)™
(5.83)

Po wykonaniu dodawania otrzymujemy

— 2457 —2566 5594
H =| —7455 3533 1'107 ' m® - mol !
—1149,0
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Wartoéci 1 wektory wlasne H _ sa nastgpujace

%0222
K= —-537,3 10712 m3 -mol~!
—2480,7
—0,4756 0,4908 —0,7300
(K, K,K;) = 0,0511 0,8439  0,5341

0,8782 0,2167 —04264

Glowne podatnosci czasteczki 1,8-dinitronaftalenu sa troche¢ inne niz 1,5-dinitro-
naftalenu — najwieksze réznice dotycza K, i K,, lezacych w przyblizeniu w
ptaszczyznie czasteczki. Sktadowe diagonalne H,, stanowig bezposrednio glowne
podatnosci krysztatu.
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6. WELASCIWOSCI OPTYCZNE

Przedmiotem naszego zainteresowania w niniejszym rozdziale beda wlasciwosci
optyczne osrodka anizotropowego, bedacego dia- lub paramagnetykiem 1 prakty-
cznie nie przewodzacego pradu elektrycznego. Naszym celem bedzie podjgcie
proéby wyjasnienia makroskopowych wiasciwosci krysztatu poprzez wiasciwosci
samych czasteczek i ich rozmieszczenie w komorce elementarnej — podobnie, jak
to czyniliémy w opisie diamagnetyzmu. Po$wigcimy tez troch¢ uwagi metodom
pomiaru dwojtomnosci, poniewaz wielko$¢ ta budzi zainteresowanie ze wzgledu na
postep, jaki si¢ dokonal w interpretowaniu wplywu temperatury na zmiany tej
wielkosci. Czytelnikowi, zainteresowanemu jeszcze innymi problemami z dziedziny
optyki, warto zarekomendowac¢ znakomite wyklady na poziomie akademickim
Crawforda [1] lub Feynmana [2] (zob. tez [3]). Bardziej zaawansowany wyklad z
optyki krysztaldw mozna znalezé w monografiach Nye’a [4] oraz Borna 1 Wolfa

[5].
6.1. Fala elektromagnetyczna w osrodku anizotropowym

Rozchodzenie sie fali elektromagnetycznej w os$rodku materialnym opisuja
roOwnania Maxwella

oD
= e 1
rotH = j+ P (6.1)
oB
E=—— )
rot 5 (6.2)

przy czym E i H oznaczaja odpowiednio wektory natezenia pél elektrycznego i
magnetycznego sprzezonych z ruchem fali, D jest wektorem indukcji elektrostaty-
cznej, B — wektorem indukcji magnetycznej, j oznacza za$ gesto$¢ pradu przewo-
dzonego. Interesowaé nas beda wnioski, wynikajace z tych rownan dla fali plaskiej
danej zwigzkiem

E = Eyexp {iw(t—r-1l/v)} (6.3)
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Zakladamy przy tym, ze fala rozchodzi si¢ w o$rodku o nast¢pujacych wiasciwos-
ciach:

1) osrodek nie przewodzi pradu elektrycznego, zatem j = 0,

2) ofrodek jest dia- lub paramagnetykiem, zatem p = 1.

W réwnaniu fali (6.3) @ jest czestoscia katowa drgan wektora E, v jest
predkoscia fazowa fali, f jest za§ wektorem normalnym do powierzchni okreslone;
fazy, tj. do takiej powierzchni, ktorej wszystkie punkty majg w ruchu drgajacym
takie same wychylenia, skierowane w te¢ sama strone. Jesli z dowolnego punktu O
wykreslimy wektor r zakonczony na powierzchni okreslonej fazy = (rys. 6.1), to

r-l =const = ON

jest roOwnaniem tej powierzchni, a v okresla predkoS¢ jej przesuwania si¢ w
kierunku L

r
z e ]
o 1 Y

{

Rys. 6.1. Powierzchnia stalej fazy

Przy tych zalozeniach réwnania Maxwella zyskuja postac

oD oH
tH=— tE=—py—— 6.4
ro Py 1o Mo (64)
przy czym,/"}:o jest bezwzgledna przenikalnoScia magnetyczna prozni. Jesli teraz
skorzystamy-ze zwigzku (6.3) i rozpiszemy rot E, to po scalkowaniu po czasie
drugiego z rownan (6.4) otrzymamy

1
poH =~IxE (6.5)
oraz
H = Hyexp {io(t—r-l/v)} (6.6)

Szczegoly tego rachunku mozna znalezé w monografii Nye’a [4]. Z rownania (6.6)
wynika, ze w dielektryku H ma réwniez postaé fali plaskiej. Kierunek drgan H w
kazdym punkcie powierzchni 7 jest prostopadly do kierunku drgan E, tak ze H, I i
E tworza trojke prawoskretng.

Jesli postapimy podobnie z pierwszym z réwnan (6.4), to otrzymamy

1

czyli —D, I i H tworza roéwniez trojk¢ prawoskretna. Wzajemna orientacje
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wszystkich wektorow, opisujacych stan fali elektromagnetycznej, przedstawiono w
sposéb pogladowy na rys. 6.2. Warto zauwazy¢, ze w osrodku anizotropowym D i E
na ogdl nie sq rownolegle; kat zawarty migdzy nimi oznaczyliSmy przez &, a jego
wielkoscia 1 znaczeniem fizycznym zajmiemy si¢ nieco dalej w tym rozdziale.
Poniewaz zalozylismy u = 1, wektor B jest, oczywiscie, rownolegly do H. Zazna-
czony na rysunku wektor Poyntinga, S, okresla kierunek przeplywu strumienia
energii, przenoszonej przez fale. Przeplyw ten nastepuje z predkoscia u inna, na
0gol, niz predkos¢ fazowa wv.

b)
]
P
E\
3 \
D
§l v
H ski*u Rys. 6.2. Przestrzenne zwiazki migdzy wektorami opisuja-
y cymi stan fali elektromagnetycznej

Najwazniejszy dla nas wniosek, ktéry wynika z réwnan Maxwella dla rozcho-
dzenia sie fali elektromagnetycznej w osrodku anizotropowym, otrzymamy przez
polaczenie réwnan (6.5) i (6.7). Ma on nastgpujaca postac:

D=-———Ix(IxE) (6.8)

fov*
Rozpisanie rownania (6.8) wedlug tozsamosci
Ax(BxC)=B(AC)— C(AB)

prowadzi do réwnania
1

fo 02

D=-

(I1E)— E} (6.9)

Wyprowadzajac réwnanie (6.9) korzystalismy jedynie z réwnan Maxwella i
ksztaltu fali (6.3). Je$li chcemy obliczy¢ sktadowe E fali w osrodku anizotropowym,
to musimy wprowadzi¢ do rown. (6.9) zwiazek miedzy wektorami D i E

D =¢ytE (6.10)
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w ktorym ¢, jest bezwzgledna przenikalnoscia dielektryczna prozni, € jest zas
tensorem wzglednej przenikalnosci dielektrycznej osrodka dla czestosci optycznych,
czyli tensorem tzw. optycznej przenikalno$ci dielektrycznej. Najbardziej czytelng i
dajaca si¢ latwo interpretowac postac rown. (6.9) otrzymamy wtedy, gdy napisze-
my réwn. (6.10) w ukladzie osi gldwnych &; mamy mianowicie

Di == 80 8,' Ei (611)

oraz

1 1
(80 & — 2>Ei+ 2 li (IE) = 0 (612)
KoV HoV

W celu zanalizowania réwn. (6.12) wybierzmy sobie jaki$ prosty kierunek L Niech,
na przyktad, I = [100], czyli niech ! bedzie réwnolegly do osi X, tensora & Kladac

kolejno i =1, 2, 3, otrzymamy trzy réwnania dla skltadowych E

1 1
- E E, =0
<80 “ Ho UZ) . o V? !

1
<8082—W>E2 =0 (613)

0

1
(8083"“ 2>E3 =0
KoV

Pierwsze z tych rownan prowadzi do wniosku, ze E, = 0, logicznego z fizycznego
punktu widzenia: nie moze istnie¢ skladowa natezenia pola elektrycznego w
kierunku propagacji fali. Z pozostalych dwdch réwnan wynika natomiast, ze

v = (eo ot ?  k=2,3 (6.14)

Przy kierunku padania wzdluz I[100] mozemy wiec mie¢ w krysztale dwie fale: w
jednej z nich kierunek drgan E jest rownolegly do ¢,, w drugiej do &5, a predkosci
okreslone sa zwiazkiem (6.14). Stany polaryzacji tych fal przedstawiono na rys. 6.3.

X, E
2
1{100} v X
X3 H3
X
v X
Rys. 6.3. Dwa mozliwe stany polaryzacji fali o
% normalnej I, skierowanej wzdtuz osi X, indyka-
E; H, trysy
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Dwa mozliwe stany polaryzacji otrzymamy roéwniez przy kierunku padania [[010]
lub 1[001].
Jesli zauwazymy, ze

(o)™ =c (6.15)

gdzie c jest predkoscia swiatla w prozni, to zwiazki typu (6.14) mozna zapisac jako
definicje trzech glownych wspolczynnikéw refrakcji krysztatu

c 2
gi=<_> =n? i=1,2,3 (6.16)

Ui
Powierzchnia rozpieta na trzech wzajemnie ortogonalnych wektorach, ktérych dlugos-
ci réwne sq odpowiednio ny, n, i ny jest elipsoidq wielkosci i nosi nazwe indykatrysy.
Réwnaniem tej powierzchni jest
XZ X2 XZ
_21+_22_+_23 =1 (6.17)
ng Ny N
Trzeba podkresli¢, ze wspélczynnik refrakcji nie ma wlasciwosci tensorowych,
poniewaZz n,, n,, n; nie transformuja si¢ przy zmianie ukladu wspodlrzednych
zgodnie z regulami, wiasciwymi dla skladowych tensora. Mimo to termin: ,,wspol-
czynnik refrakcji w okres§lonym kierunku” ma sens, a jego okresleniem zajmiemy
si¢ w nastgpnym rozdziale. Tensorem jest natomiast przenikalno$¢ dielektryczna, e.

6.2. Indykatrysa

Przy koncu poprzedniego paragrafu wprowadzilismy pojecie indykatrysy, tj.
powierzchni rozpigte; na trzech glownych wspdlczynnikach refrakcji n,, n,, ns.
Wspolczynniki te odmierzamy na trzech osiach ortogonalnego uktadu wspoirzed-
nych X, X, X, zwanych osiami glownymi indykatrysy. Sa to zarazem osie gléwne
tensora wzglednej przenikalnosci dieicktrycznej osrodka, e.

Wspélczynniki refrakcji sa zawsze dodatnie i — z wyjatkiem szczegSlnych
obszaréw widma promieniowania elektromagnetycznego, gdzie wystepuje dyspersja
anomalna — sg rowniez wigksze od jednodci. W obszarach dyspersji anomalnej,
sprzezonej z silna absorpcja promieniowania, wspotczynnik refrakcji staje sie liczba
zespolona. W niniejszym paragrafie pominiemy te obszary widma i bedziemy
uwazaé, ze indykatrysa ma ksztalt elipsoidy trojosiowej o dlugosciach potosi
wigkszych od jednosci. Elipsoide, w ktorej kazda z osi ma inng dtugosé, przedsta-
wiono na rys. 64.

Polozenie dowolnego punktu P(X; X, X3) na powierzchni elipsoidy okreslaja
trzy wspolrzedne X, X, X; lub wektor wodzacy r. Definiujemy diugos¢ |v| jako
‘wartos¢ wspodlczynnika refrakcji w kierunku », okreSlonym wektorem jednostko-
wym l{(cos ¢, cos @, cos @s3)

N, =¥ (6.18)
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Na tej podstawie mamy

— 7

Rys. 6.4. Indykatrysa o trzech réznych osiach

Korzystajac z rownania indykatrysy jako elipsoidy wielkosci (6.17), mozemy
napisa¢ ciagg réwnosci’

X? (rll)* P
2F Tl Tyt
Stad
11 12
il v o
czyh

2\~ 1/2
N, = <Z;’2—) (6.19)
Réwnanie (6.19) okresla wartos¢ wspdlczynnika refrakcji w kierunku I, zadanym
wzgledem osi gléwnych indykatrysy. Widzimy, ze réwn. (6.19) znacznie si¢ rézni
od wyrazenia dla warto$ci T, wielkosci tensorowej [p. rown. (2.44)]

7;=Zfili2

Przy zadanym kierunku ! kazdy prostopadly do niego i centralny (tj. przecho-
dzacy przez poczatek ukladu wspolrzednych) przekrdj indykatrysy jest elipsa; w
szczegdlnym przypadku moze by¢ okregiem. Dlugosdci polosi tej elipsy rowne sa
wspoétczynnikom _refrakcji Ny i N, (rys. 6.4), okreslajacym predkosci fal o dwoch
mozliwych stanach polaryzacji: D||N, i D||N,. Promieniowanie o kierunku D
posrednim miedzy N; i N, nie moze rozchodzi¢ si¢ w krysztale: fala ulega
rozszczepieniu na dwie wiazki o stanach polaryzacji D,||N, i D,||N,, poruszajace
si¢ w krysztale niezaleznie od siebie.

Te wlasciwosci indykatrysy mozna pokaza¢ roéwniez analitycznie. Zastosujmy w
tym celu réwnanie (6.12) do troche prostszego przekroju, pokazanego na rys. 6.5.
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Wektor 1 wybierarhy w kierunku I(cos ¢ sin¢ 0); wtedy réown. (6.12) dlai=1,2
ma postaé

1 1 .
<80 g — 2>E,- +—— L(cos pE; +sin pE,) = 0 (6.20)
HoU KoV
natomiast dla i =3
1
(8083— 2>E3 =0 (6.21)
HoV
82, Xz

Rys. 6.5. Skladowe wektora D fali poruszajacej sie w
kierunku normalnej I do powierzchni stalej fazy

&1y Xy

Trzecie rownanie od razu prowadzi do juz nam znanego wyniku

c\? 5
&3 =\ ) =0nh3
U3

Jesli do pierwszych dwoch rownan wprowadzimy oznaczenie
(o o v?) ™' = G = c*/v? = N? (6.22)

to po przegrupowaniu wyrazéw otrzymamy dwa réwnania jednorodne ze wzgledu
na E;

(6,—Gsin? @) E; +Gsin ¢ cos pE, = 0
g : ’ (6.23)
Gsinpcos 9E, +(e;—Gcos? o) E, =0

Przyréwnanie do zera wyznacznika charakterystycznego tego ukladu prowadzi do
wyrazenia

1 2 2D
__2=cos <p+sm ® (6.24)
N €y &4

Q=

Wedlug réwnania (6.19) wyrazenie (6.24) przedstawia wspotczynnik refrakcji w
kierunku AB, lezacym w linii przecigcia plaszczyzny jednakowej fazy plaszczyzna
X, X, (rys. 6.5). Podstawienie G z rown. (6.24) do ktoéregokolwiek z réwnan (6.23)
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prowadzi do réwnosci

D D
—+—2- =0
sing coso
czyli
AO = OB

Sktadowe D wzdtuz linii AB sa sobie réwne, a ich zwroty przeciwne; kierunek 4B,
pokrywajacy si¢ z jedna z osi przekroju eliptycznego, determinuje wigc jeden z
mozliwych kierunkéw drgan wektora D. Drugi kierunek, zgodnie z réwn. (6.21),
réwnolegty jest do X;. .

Sposrdd roznych przekrojow centralnych indykatrysy szczegdlne znaczenie
maja jej przekroje kotowe. Zaleznie od tego, czy indykatrysa jest elipsoida
tréjosiowa, elipsoida obrotowa, czy tez kula, ma odpowiednio dwa takie przekroje,
jeden lub nieskonczenie wiele. Przekrdj kolowy determinuje polozenie plaszczyzny
optycznej izotropii w krysztale, tj. takiej plaszczyzny, ze w kazdym kierunku na niej
lezacym wspolczynnik refrakcji jest taki sam. Normalna do niej zwana jest osiq
optycznq krysztalu. Biegnaca przez krysztal fala o normalnej I réwnoleglej do osi
optycznej nie ulega podwdjnemu zalamaniu i przechodzi przez osrodek bez zmiany
kierunku przy dowolnym stanie polaryzacji. Te wlasciwosci krysztalow stanowia
podstawe ich klasyfikacji na optycznie dwuosiowe, jednoosiowe i izotropowe,
zaleznie od symetrii. Szczegdly tego podzialu nie beda tu przedmiotem blizszych
rozwazan. Zainteresowanego nimi- Czytelnika odsylamy do literatury podanej we
wstepie do tego rozdziatu oraz do pracy [6]. Obecnie zajmiemy si¢ troche bardziej
szczegblowo analiza biegu wiazki promieniowania spolaryzowanego w krysztale
anizotropowym. Problem ten ma wazne znaczenie w spektroskopii krysztalow, co
oméwimy w rozdz. 7.

Rozwazmy wlasciwosci plytki krystalicznej, przedstawionej na rys. 6.6. Przy-
pusémy, ze plytka wycigta jest z krysztalu jednoskosnego, jej plaszczyzna ma

Rys. 6.6. Dopuszczalne stany polaryzacji fali przechodzacej
przez ptytke wycigta rownolegle do plaszczyzny (001); q, x;, n,,
X3, ny oraz c leza w_jednej plaszczyznie m,
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wskazniki (001). Plytke te przecina prostopadla do niej plaszczyzna m,, w ktorej
leza gléwne wspotczynniki refrakcji n, i ny oraz o$ krystalograficzna c, a slad jej
przeciecia si¢ z ptaszczyzna (001) jest rownolegly do osi krystalograficznej a. Druga
plaszczyzne n, wybieramy tak, by przechodzila przez n,||b i normalng do ptytki,
x5. Pozostale osie ukladu odniesienia x, i x, sa odpowiednio §ladami przecigcia 7,
i m, z ptaszczyzng (001). Kat zawarty miedzy n, i x; oznaczamy przez ¢; okresla
on orientacje osi gléwnych indykatrysy w przekroju (010).

Przypus¢my teraz, ze na t¢ plytke pada liniowo spolaryzowana, plaska fala
elektromagnetyczna. Jesli [ jest wektorem jednostkowym wzdluz D i okreslajacym
jego orientacje w ukladzie n,, n,, n;, to skladowe tego wektora w powietrzu
Wynosza

D(D!, DI, DI,)

W krysztale wektor D ma skladowe takie same, poniewaz wektor indukcji nie
doznaje nieciagtosci przy przej$ciu przez granicg miedzy dwoma osrodkami. Nato-
miast skladowe E w krysztale wynosza

E(Dll/(go e1) Dl/(eg€;) Dl3/(eo 83))

i sa, oczywiscie, inne niz w powietrzu. W krysztale oba wektory zawieraja migdzy
soba kat & (rys. 6.7). Ten sam kat zawarty jest migdzy —x; 1 kierunkiem
promienia w krysztale. Z iloczynu skalarnego otrzymujemy

D-E ¥ (F/eoss)

cosé = =
IDIIE| ) (I/(e5eD)} ">
zatem
> (h/m)?
o8l m s Y 6.25
N (l/n2)? 12 (6.23)
<2<E— n3 c
14 (001)
a, xy
D

E 1ok
|
|
|
|
i

v

Rys. 6.7. Orientacja wektoréw D i E fali przechodzacej przez ptytke wycigta rownolegle do ptaszczyzny
(001)

Znajomos$¢ glownych wspolczynnikdw refrakcji oraz orientacji D wzgledem n;
pozwala obliczy¢ odchylenie wiazki promieniowania w krysztale. W eksperymencie
interesuja nas na ogot proste sytuacje geometryczne, przy czym z reguly wybiera-
my prostopadle padanie wiazki. Jesli ponadto zadamy, by w krysztale wiazka nie
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ulegla rozdwojeniu, to mozemy mie¢ tylko dwie dopuszczalne orientacje D. dla
“kazdejplytki anizotropowej. W odniesieniu do rys. 6.7 orientacje te sg nastepujace:

1. D}|x,: wtedy I{cos ¢ 0 —sin ¢). Wewnatrz krysztatu wektor E zawiera kat ¢
z x,|| D, lecz w czasie przechodzenia fali przez krysztal pozostaje stale w plaszczy-
znie x; X5, tj. stanowi jedna wiazke promieniowania o okreslonej predkosci tak w
krysztale, jak i poza nim. Przy zadanych wartosciach n, i ny £ zalezy tylko od o.
- Latwo si¢ przekona¢ przez obliczenie pochodnej wyrazenia (6.25) i przyrownanie
jej do zera, ze maksymalne odchylenie wigzki nastqpi dla kqta ¢ = 45°. Wynosi ono

\/5. 1/n?+1/n3

2 (nt+1/nd)12 (6:26)

(€08 &)pax =
Jesli przyjmiemy dla przykladu ny = 1,51 ny = 2,0, to otrzymamy &_,, = 15,6°. Tak
duzych wartosci nie spotyka sie w praktyce — w wigkszosci przypadkow kat & nie
przekracza kilku stopni. Odchylenie wiazki jest jednak znaczace, a zaniedbanie tego
efektu w spektroskopii krysztatow molekularnych prowadzi do wyraznych rozbieznos-
ci miedzy wynikami teorii i eksperymentu (por. rozdz. 7).
2. D||x,, czyli 1(0i0). W tym przypadku

cosé =1 (6.27)

Stan polaryzacji i kierunek E w powietrzu zachowuja sic po wejSciu wiazki do
krysztatu.

Wniosek ten ma znaczenie ogolne: jesli wektor D fali elektromagnetycznej,
padajacej prostopadle na powierzchni¢ probki, jest rownolegly do ktorejkolwiek z
osi glownych indykatrysy, to odchylenie wiazki w krysztale nie wystgpuje.

s
OI O//
do| /d
3
S PR Rys. 6.8. Przesunigcie s punktu wyjscia O wiazki promienio-
wania, przechodzacej przez plytke dwdjtomna

Odchylenie wigzki moze byé réwniez obserwowane bezposrednio w prostym
eksperymencie [7] (rys. 6.8). Umieszczamy plytke krystaliczna na stoliku obroto-
wym mikroskopu polaryzacyjnego i o§wietlamy ja przez maty otworek O, wykona-
ny w nieprzezroczystej folii. Obracajac stolikiem zauwazymy na ogét dwie plamki
$wiatla, 0’ i 0”. W pewnym potozeniu plytki jasno$¢ obu plamek bedzie jednako-
wa; w takim polozeniu gléwne plaszczyzny optyczne plytki tworzy¢ beda kat 45° z
plaszczyznami optycznymi mikroskopu (,potozenie 45°”). Odleglos¢ obu plamek
moze by¢ zmierzona za pomoca mikrometru okularowego. Jesli ten odstgp ozna-

235



czymy przez s, to z rys. 6.8 wynika, Ze
tgé = s/d, (6.28)

przy czym d, jest rzeczywista gruboscia ptytki. Obie wielko$ci w rown. (6.28) sa
mierzalne, wobec czego & moze byé wyznaczony doswiadczalnie. Zauwazmy, ze dla
wiazki biegnacej jak na rys. 6.7 dlugos¢ drogi w krysztale wynosi nie d,, lecz

d = dy/cos ¢ (6.29)

6.3. Dwojlomnosc krysztalow

Przez dwdjlomnosé plytki krystalicznej rozumiemy roznice dwoch ekstremalnych
wspéblczynnikow refrakcji tej plytki, lezgcych w jej plaszczyznie. Jest to wigc rdznica
miedzy polowami dlugiej i krotkiej osi elipsy, stanowiacej centralny przekrodj
indykatrysy ptaszczyzna plytki. W najprostszym przypadku, gdy plytka wycigta
jest prostopadle do jednej z osi glownych indykatrysy, n,, o osiach n;, n;, n,
dwoéjlomnosé jest rébwna

Bij =n—n; (630)

Dwoéjlomnosé tak zdefiniowana moze by¢ liczba dodatnia lub ujemna. W doswiad-
czeniu mierzymy jednak zawsze B;;, ktore jest liczba dodatnia. Do rozstrzygniecia
znaku stuza metody opisane w monografiach, zajmujacych si¢ zastosowaniem
mikroskopu polaryzacyjnego do badania optycznych wiasciwosci krysztatdw, np..
[8]. Z kazdego krysztalu mozemy wycinaé plytki, ktérych dwojtomnosé bedzie
wzrasta¢ od zera do pewnej maksymalnej wartosci, okreslonej wielkosciami n;, n;,
Fy.

Dwojtomnosé jest wielkosécia fizyczna, ktora zajmujemy si¢ z dwoch wzajemnie
od siebie zaleznych powodow:

a) Istnieja stosunkowo nieskomplikowane metody do§wiadczalne, pozwalajace
mierzy¢ roznice wspdtczynnikéw refrakcji z dokladnoscia o wiele przewyzszajaca
dokiadno$¢ konwencjonalnych metod pomiaru samego wspdlczynnika refrakcji;

b) Wskutek duzej czulosci metod pomiaru B mozliwe jest dokladniejsze rozpo-
znanie wlasciwosci optycznych osrodka, na przykilad udzialu dwéjtomnosci koto-
wej w ogodlnej eliptycznej dwoéjtomnosci badanej ptytki. O dwoéjtomnosci kolowej
méwimy wtedy, gdy promien padajacy w okre$lonym kierunku i spolaryzowany
kolowo lewoskretnie rozchodzi sie w krysztale z predkoscia inng niz promien
padajacy w tym samym kierunku, lecz spolaryzowany kolowo prawoskretnie.
Mozliwo$¢ pomiaru bardzo drobnych zmian dwojlomnosci pozwala na badanie
wplywu czynnikOw zewnetrznych na wlasciwosci optyczne, takich jak temperatura,
ci$nienie, a nawet przylozenie pola elektrycznego.

Wielkoécia pokrewna dwojtomnosci jest réZnica drég optycznych

Wiazka promieniowania padajaca wzdliz ¢, o wektorze E|le; porusza si¢ z

predkoscia v;, inna niz wiazka o El|le;. W miare przechodzenia przez coraz wigksza
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grubo$¢ krysztalu ro$nie wzajemne opdznienie jednej wiazki wzgledem drugiej

d d ;d( ' | IB d‘ 632 '
= ———=—(N—Nn;) =—D;; S
T b b p i j v ij ( )

Z opbznieniem zwiazana jest réznica faz, z jaka obie wiazki opuszczaja krysztal.
Poniewaz fala ptaska wytwarza w punkcie x roznice faz (2rnx)/A wzgledem poczat-
ku ukladu wspélrzednych 0, mamy

1 1 2n
— ———}=Z"B.. 33
0 = 2na (1 ) =By (633

i j
gdzie A, jest dlugoscia fali w prozni wiazki padajacej. Z tych definicji bedziemy
korzystali w dalszej dyskusji.

b)
k=m+1 m+2 m+3 -+ n
— =¥

Rys. 6.9. Interferencyjna metoda pomiaru dwéjtomnoéci

Najprosciej, cho¢ niezbyt doktadnie, mozna mierzy¢ B;; metoda interterencyjna
przedstawiona na rys. 6.9a. Na uklad zltozony z dwoéch skrzyzowanych filtrow
polaryzacyjnych, polaryzatora P, analizatora A oraz z plytki dwojtomnej K,
umieszczonej prostopadle do biegu wiazki i w polozeniu 45°, pada promieniowanie
monochromatyczne o diugosci fali A, dajacej si¢ zmieniaé. W zakresie 4 odpowied-
nio dobranym do grubosci ptytki i dwojlomnosci dwie wiazki, opdzniane w rézny
sposob, interferuja z soba po sprowadzeniu ich przez A do jednakowego kierunku
drgan. W wyniku interferencji nate¢zenie I wiazki opuszczajacej A jest periodyczna
funkcja A (rys. 6.9b). Maksima natgZenia wystepuja dla takich dlugodci fali, dla
ktorych roznica dlugosci drog jest parzysta wielokrotnoscia potowy dlugosci fali

(m—n)d=mi m=1,2,... (6.34)
Stad kolejnym maksimom odpowiadaja liczby falowe

o= (6.35)

m = m—ny)d

Znajomo$¢ rzedu interferencji, czyli bezwzglednej wartosci m, nie jest nieodzowna,
poniewaz zalezno$¢ ¥(m) jest liniowa niezaleznie od poczatkowej wartosci m.
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Wystepowanie w krysztale silnych pasm absorpcyjnych w badanym przedziale.
liczb falowych moze spowodowaé odstepstwo niektdrych punktéw od linii prostej
ze wzgledu na anomalna dyspersie.

Czesto si¢ zdarza, ze dwojtomnosé plytki jest zbyt mala lub zbyt duza do
wykonania pomiarow. W takich przypadkach pomocne jest sklejanie probki z
ptytka dodatkowa w potozeniu addytywnym lub substraktywnym. Pierwszy spo-
sOb opisany zostal przez Wardzynskiego w zwigzku z pomiarami matej dwojto-
mnosci [9], indukowanej w krysztalach pod wplywem naprgzeft mechanicznych.

Rys. 6.10. Kompensacja dwdjlomnosci plytki

Drugi sposob, przedstawiony w pracy [10], pokazany jest schematycznie na rys.
6.10. Badana plytka o grubosci d, sklejona jest z ptytka pomocnicza o grubosci d,,
wycieta na przykiad z kalcytu. Kierunki gléwne obu ptytek musza leze¢ odpowied-
nio we wspolnych ptaszczyznach, ponadto kierunek szybszego promienia w jednym
krysztale powinien przypadaé na kierunek wolniejszego w drugim. Uzycie kalcytu
jako plytki pomocniczej ma tg¢ zaletg, ze wspolczynmkl refrakcji tego krysztatlu
slabo zaleza od temperatury [1]

w, = 1,6544+0,19-1075¢
g = 1,4846+1,18-107 % ¢

dla dtugosci fali A = 656,3 nm i temperatury ¢t °C. Wspdlczynnikami refrakcji w
plaszczyznie plytki, uzyskanej przez wykorzystanie naturalnych plaszczyzn tupli-
woscl, sa w, 1 &

2

cos? sin? @\~ 1/?
o ( g "’) (6.36)
8! a)t

przy czym ¢ = 4538° jest katem miedzy trojkrotna osig symetrii 1 plaszczyzna
tupliwosci. Wobec tego

& = 1,5638+0,762-10"5¢ (6.37)

Dwojtomnos$é ukiadu zlozonego z dwoch plytek jest réwna

_Awd.+nyd)—(e'"d.+ny dy)
" d.+d,

(6.38)
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Mozemy, oczywiscie, tak dobraé¢ grubo$¢ kalcytu, by dwojtomnosé uktadu znikne-
la. Kompensacja nastapi przy grubosci d° rownej
d? _ 1y "HIZ ds‘ (639)
w—¢

Znacznie doskonalszg, a jednocze$nie ogolniejsza metode pomiaru dwojto-
mnosci krysztalow opisal Verreault [12]. Polega ona na analizie stanu polaryzacji
promieniowania rozpraszanego przez tzw. centrd rozpraszania, ktorymi moga by¢
naturalne niedoskonatosci struktury krysztalu o rozmiarach atomowych albo
sztucznie wytworzone niejednorodno$ci powierzchni, na przyklad przez jej zmato-
wienie. Metoda ta pozwala na pomiar ogdlnej dwojlomnosci krysztahy, skladajacej
si¢ z dwojlomnosci liniowej i kotowej. W celu lepszego jej zrozumienia zaczniemy
od przedstawienia reprezentacji stanOw polaryzacji promieniowania za pomoca
kuli Poincarégo, opierajac ten opis na cytowanej juz pracy Verreaulta.

Ogolny stan polaryzacji fali elektromagnetycznej przedstawia elipsa, opisywana
w plaszczyznie XY przez wektor D w kierunku przeciwnym (+) lub zgodnym (—)
z ruchem wskazowek zegara dla obserwatora patrzacego w kierunku zrédia
$wiatta (rys. 6.11a). Kierunkiem rozchodzenia si¢ fali jest o§ Z, prostopadia do
plaszczyzny rysunku. O$ dluga elipsy tworzy z X kat y, a eliptyczno$¢ fali
charakteryzuje parametr o taki, ze tgw = b/a. Dla w = 0 mamy fale spolaryzowa-
na liniowo, dla w = 45° — kolowo.

a)

Rys. 6.11. Ogdlny stan polaryzacji fali (a) i jego przedstawienie za pomoca kuli Poincarégo (b) (oprac.
wediug [12])

Te stany mozna zilustrowa¢ punktem P na powierzchni kuli o promieniu
jednostkowym, zwanej kula Poincarégo (rys. 6.11b). Kat 2y jest ,dlugoscia geogra-
ficzna”, a kat 2w ,,szeroko$cia geograficzna” punktu. Stany o polaryzacji liniowej
przedstawiaja punkty lezace na réwniku (w = 0); osiom X 1 Y odpowiadaja dwa
przeciwlegle punkty rownika. Kazde dwa stany, reprezentowane na kuli dwoma
przeciwleglymi punktami, zwane sa stanami ortogonalnymi. Pozostalym dwom
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skrajnym stanom, w = +n/4, odpowiada fala spolaryzowana kolowo lewo- i
prawoskretnie, przedstawiona biegunami odpowiednio L i R kuli. Pozostalym
punktom na powierzchni kuli odpowiadaja stany o polaryzacji eliptycznej (kombi-
nacja polaryzacji liniowej i kolowej).

R

Rys. 6.12. Przedstawienie réznych typdéw dwdjlomnosci (a) i zasada addytywnosci (b) (oprac. wedlug

120

Wiasciwosci optyczne dowolnej plytki dwéjlomnej mozemy jednoznacznie przed-
stawi¢ na powierzchni kuli za pomocq dwoch punktow, M 1 N (z wyjatkiem
polaryzacji czysto kolowej) (rys. 6.12a). Punkty te odpowiadaja kierunkom dlugiej i
krotkiej osi elipsy na rys. 6.4 i jesli krysztal nie absorbuje promieniowania, to
stany M i N sq ortogonalne, a wigc leza na $rednicy kuli (méwi si¢ o ptytce MN).
Fala spolaryzowana zgodnie ze stanem M (lub N) przechodzi przez ptytke bez
zmian. Kazda fala o innym stanie polaryzacji, na przyklad P na rys. 6.12a, ulega
rozlozeniu przez krysztal na stany M 1 N. Wazne znaczenie moze mie¢ znajomos¢
stanu polaryzacji Q promieniowania opuszczajacego krysztal. Otrzymamy go w ten
sposéb, ze obracamy kule wokoét MN o kat 4, rowny réznicy faz migdzy stanem
M i N: obrét jest zgodny z ruchem wskazowek zegara, jesli dla obserwatora
stojycego na zewngtrz blizszy jest ten stan na powierzchni kuli, ktéremu odpowiada
szybszy promien w krysztale (tu M). Jezeli ptytka ma tylko liniowa dwojlomnosé, a
miedzy stanami X (kierunek drgan szybszego promienia) i Y wystepuje roznica faz
&', to osia obrotu jest XY, a stan wiazki opuszczajacej krysztal reprezentuje punkt
Q'. W drugim skrajnym przypadku, gdy ptytka ma dwdjlomnosé czysto kolowa,
obracamy kule Poincarégo wokot osi LR o kat 29, przy czym ¢ jest roznica faz
wytwarzang przez plytke. Przepuszczone promieniowanie Q” ma t¢ sama elipty-
‘cznos¢ co P, lecz os dluzsza elipsy ulegla obrotowi o kat ¢'. Jak widzimy,
promieniowanie przepuszczone przez plytke o dwdjtomnosci liniowej moze by¢
spolaryzowane liniowo lub eliptycznie — zalezy to od stanu fali na wejsciu.

Ogoélna dwéjtomnos¢ zlozona jest z dwojtomnosci liniowej 1 kotowej. Jesli
plytka jest bardzo cienka, to wytwarzane przez nia réznice faz, wynoszace odpo-
wiednio 4', §' 1 2¢', mogq by¢ dodawane jak wektory, odpowiadajace nieskonczenie .
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malym obrotom kuli Poincarégo woko6l odpowiednich osi (rys. 6.12b). Dzielac
przez grubo$¢ plytki d, otrzymamy zwigzek miedzy réznicami faz na jednostke
grubosci plytki

A=46+2 (6.40)

Ogolna dwéjlomnosé plytki o grubosci d bedzie zatem réwna
A ;
=== {67 +(20)*}'72 (6.41)
2n

przy czym A, oznacza dlugosé fali promieniowania w prézni. Zastosowanie kuli
Poincarégo pozwala wiec w prosty sposdb przewidzieé stan polaryzacji promienio-
wania po przejciu przez plytke o znanych wilasciwosciach lub analizowaé je, gdy
znamy stany promieniowania.

Przejdziemy teraz do rozwazenia polaryzacji promieniowania, rozpraszanego
na niejednorodnosciach struktury krysztalu lub na sztucznie wytworzonych cen-
trach. W przeciwienstwie do gazu lub cieczy, nawet calkowicie pozbawionych
zawiesiny, idealny krysztal nie rozprasza promieniowania, jesli pominiemy niespre-
zyste rozpraszanie typu Brillouina lub Ramana. Klasyczne rozpraszanie wiazki
promieniowania wystepuje natomiast w krysztale rzeczywistym w obszarach, wy-
kazujacych jakies odstegpstwa od periodycznosci, na przykiad niedoskonalosci
stechiometrii, obce wtrety, dyslokacje, czy tez domeny ferroelektryczne lub magne-
tyczne. Jesli liniowe rozmiary takich centréOw sg mniejsze od diugosci fali, rozpra-
szanie sprezyste jest typu Rayleigha. Analiza stanu polaryzacji promieniowania
rozproszonego pozwala na uzyskanie informacji o naturze centréw, ich rozmiarach
1 rozkladzie przestrzennym. Nie bedziemy dyskutowali szerzej tych zagadnien,
odsylajac zainteresowanego Czytelnika do oryginalnej pracy Verreaulta. Zajmiemy
si¢ natomiast drugim przypadkiem, gdy struktura krysztalu bliska jest doskonalosci,
a centra rozpraszania majq wymiary poréwnywalne z diugosciq fali promieniowania.
Centra takie mozna wytworzy¢ sztucznie, na przyklad przez delikatne zmatowienie
tej ciany krysztatu, przez ktdra promieniowanie rozproszone opuszcza krysztat. W
takich warunkach eksperyment daje informacje o dwojtomnosci krysztatu. Badana
probka ma ksztalt prostopadioscianu o $cianie czolowej prostopadiej do wiazki

e e e A —-0——|— t—————

o[ —]
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Rys. 6.13. Metoda Verreaulta pomiaru dwdjlomnosci (oprac. wedlug [12])
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spolaryzowanego i monochromatycznego promieniowania, natomiast $ciana obser-
wacyjna zeszlifowana jest tak, ze tworzy niewielki kat z kierunkiem wiazki
padajacej (rys. 6.13). Krysztal umieszcza sie w wiazce promieniowania w taki
sposob, by cala powierzchnia matowa byla roéwnomiernie o$wietlona. Centra
rozpraszajgce sq analizatorami stanu fazowego wiqzek, dochodzacych do nich po
przebyciu rosngcej drogi w krysztale. Sytuacja jest tu podobna jak w klinie,
wycietym z materialu anizotropowego i umieszczonym migdzy skrzyZowanymi
nikolami w potozeniu 45°. Klin o kacie ostrza o wytwarza wédwczas uklad
prazkéw interferencyjnych, ktorych odstgp A, zwiazany jest nastepujaca relacjy z
odstepem prazkéw w interesujacej nas konfiguracji rozpraszania:

A, =A-ctga (6.42)

Zakladamy przy tym, Ze klin i kostka rozpraszajaca sa wycigte z tego samego
materialu i w tej samej orientacji wzglgdem kierunku rozchodzenia si¢ wiazki w
krysztale. Obserwator patrzacy na zmatowiong powierzchni¢ (ewentualnie przez
mikroskop) z kierunku @ widzi uklad prazkéw interferencyjnych. @ jest katem
rozpraszania, Y za§ oznacza azymut plaszczyzny drgan promienia biegnacego w
krysztale wzgledem plaszczyzny 7,. Najprostsza geometrig jest @ = 90°: sktadowa
E w plaszczyZznie n; jest woéwczas rowna zeru dla kazdej wartosci . W tym
szczegllnym przypadku kierunek propagacji i kierunek drgan w wiazce rozproszo-
nej leza w ptaszczyznie prostopadlej do wiazki przechodzacej przez krysztal. Stany
polaryzacji wiqzki rozproszonej mogq wiec byé opisane dwoma ortogonalnymi stana-
mi S i S,, ujawnianymi przez analizator A umieszczony prostopadle do =, (rys.
6.13).

Rys. 6.14. Geometria rozpraszania promieniowania spolaryzo-
wanego przez centra o malych rozmiarach (oprac. wedtug

[12])

Ograniczajac sie do krysztalu z liniowa dwdjlomnoscia oraz fali padajacej
spolaryzowanej liniowo i liniowych polaroidéw, mozemy opisa¢ geometri¢ rozpro-
szenia za pomoca rys. 6.14. Niech z bedzie osia rownolegla do kierunku propagacii
fali w krysztale, tak ze wigzka o stanie polaryzacji P, wchodzi do plytki XY w
punkcie z = 0 (por. rys. 6.13). Rozklad stanéw polaryzacyjnych wzdhuz z jest taki,
ze reprezentujacy je punkt P zatacza na kuli koto wokot XY w miar¢ wzrostu z.
Rozklad natezen w wiazce rozproszonej opisuje funkcja

I = klysin*(% PS)
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w ktorej PS oznacza duzy luk laczacy P(z) z S. Natezenie wiazki jest funkcja
periodyczna, przy czym minima pojawiaja sie wtedy, gdy P(z) pokrywa si¢ z
punktem E, a maksima, gdy P(z) przypada na F. Odstgp tych prazkoéw wynosi w
ogoélnym przypadku

- 2n

A= =m {3+ (6.43)

Ciemne prazki polozone sg w miejséach

P, E
Zy = |J+ A J=0,1,2... (6.44)
2n

W przypadku takim, jak na rys. 6.14, P, E = 0, pomiar potozenia prazkow z,, oraz
grubosci plytki d pozwala zatem na wyznaczenie dwéjtomnosci liniowej §. Postu-
gujac si¢ plytka cwiercfalowa, mozna okresli¢ znak dwoéjtomnosci na podstawie
kierunku przesunigcia uktadu prazkéw. Metoda ta moze by¢ stosowana w zakresie
dwodjtomnoscei

1075 < (1ny—1y) < 0,2

z wzglednym bledem nie przekraczajacym 1°/,. Na przyklad, zmierzone przez
Verreaulta dwéjtomnosci kwarcu wynosza

(n—n,)t = (8,99 +0,05) 10~
of =(18,7640,05)  stopief-mm™*

przy 1 = 6328 nm i t = 27°C. Przypadki innych katéw obserwacji, stanéw polary-
zacji 1 orientacji wiazki padajacej, dyskutowane sa szerzej w cytowanej pracy.

Metoda pomiaru dwojlomnosci liniowej, rOwnowazna pod wzgledem czulosci z
metoda Verreaulta a jednocze$nie prostsza w zastosowaniu, opisana zostala w
pracy [13]. Jest ona szczegéOlnie przydatna do badania wplywu temperatury na
wlasciwosci optyczne cienkich ptytek krystalicznych, ktore pod wzgledem opty-
cznym musza by¢ bardzo dobrej jakosci. Najbardziej odpowiednie sg cienkie ptytki
o naturalnych $cianach, jakie do$¢ czesto mozna otrzymac ze zwiazkow organi-
cznych przez powolna ich sublimacje. Przy uzyciu mikroskopu mozna badac plytki
bardzo matych rozmiaréw. '

Metoda ta opiera si¢ na zastosowaniu kompensatora c¢wieréfalowego Senar-
monta, a jej schemat przedstawiony jest na rys. 6.15. W przyblizeniu monochroma-
tyczna i rownoleglta wiazka promieniowania lampy L, na przyklad wiazka odpo-
wiadajaca linii lampy rteciowej izolowana przez filtr interferencyjny F, polaryzo-
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Rys. 6.15. Kompensacyjna metoda pomiaru dwdjlomnosci [13]



wana jest liniowo przez polaryzator P. Plytka krystaliczna C znajduje sie w
polozeniu 45° wzgledem kierunku przepuszczania polaryzatora. Poniewaz wiagzka
opuszczajaca krysztal jest na ogdt spolaryzowana eliptycznie, plytka ¢wiercfalowa
0 stuzy do sprowadzania stanu polaryzacji do liniowego.

Azymut kierunku drgan promienia opuszczajacego ptytke mierzony jest katem
obrotu analizatora A, potrzebnym do wygaszenia wiazki. Wskaznikiem wygaszenia
jest fotokomoérka PC, polaczona z elektrometrem EM. W celu uzyskania mozliwie
duzej dokladno$ci pomiaréw roznica drog w plytce ¢wier¢falowej musi by¢ do-
kladnie rowna 1/4 dlugosci fali uzytego promieniowania. Z tego powodu ptytke-
taka najlepiej przygotowaé we wlasnym zakresie, na przyklad z krysztalu gipsu.

Roéznice drog (6.31) mozna przedstawi¢ w postaci

I'=mi+ki . (6.45)

gdzie m jest liczba calkowita, k za$ ulamkiem 0 <k <1. Powyzsza metoda
pozwala mierzy¢ skladowa kA z dokladnoscia do +1,5 nm. Skladowa mA musi byé
wyznaczona osobno, na przykiad za pomoca mikroskopu interferencyjno-polaryza-
cyjnego. Blad w wyznaczeniu rdéznicy droég optycznych jest wigc bardzo maly,
koncowa zatem dokladnos¢ okreslenia dwodjlomnosci wyznacza w gruncie rzeczy
blad, jaki popelnia si¢ w pomiarze grubosci plytki.

6.4. Zwiazek miedzy wlasciwosciami optycznymi
i polaryzowalnoscig czasteczek

Mikroskopowym odpowiednikiem wspolczynnika refrakcji jest polaryzowal-
no$¢ czasteczki o. Wielkos¢ ta jest w istotny sposob odpowiedzialna za optyczne
wlasciwosci ciala stalego: gdyby$my mogli mie¢ do czynienia z osrodkiem mate-
rialnym zbudowanym z czasteczek, dla ktorych a = 0, okazaloby sig, ze wspolczyn-
nik refrakcji tego osrodka n=1 w calym zakresie widma fal elektromagnety-
cznych, a wiec tak, jak dla prozni. Jedli wiec osrodek przezroczysty zmienia bieg
wiazki promieniowania wskutek zjawiska zalamania $wiatla, to dzieje si¢ tak
dlatego, ze zbudowany jest z czasteczek majacych wilasciwo$¢ polaryzowania sie.

Przez polaryzowalnosé rozumiemy podatnos¢ czasteczki na wplyw pola elek-
trycznego. Wplyw tego pola mierzymy wielkoscia indukowanego w czasteczce
momentu dipolowego g

w=0oF (6.46)

przy czym F oznacza natezenie pola w miejscu, w ktérym znajduje si¢ rozwazana
czasteczka, a wigec we wnetrzu cieczy czy krysztalu. Zwykle przyjmuje sig, ze
czasteczka ma rozmiary zaniedbywalnie male, co pozwala przyja¢ F za stale w
objetoéci zajmowanej przez czasteczke. F jest wigc polem lokalnym, co juz stanowi
grube przyblizenie stanu rzeczywistego, zwazywszy, ze w ciele staltym odleglosci
miedzy czasteczkami sa poré6wnywalne z ich rozmiarami liniowymi. Mimo to
mozna stwierdzi¢, ze wlasciwie cala trudno$¢ mikroskopowego opisu optycznych
wlasciwosci krysztalu sprowadza sie do trudno$ci znalezienia wlasciwego wyraze-
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nia na natezenie pola lokalnego. Warto réwniez zauwazy¢, ze zwigzek (6.46)
stuszny jest przy niezbyt duzych natezeniach pola zewngtrznego. W bardzo silnych
polach, wytwarzanych przez wspodlczesne zrédla promieniowania (masery i lasery),
wystepuja zjawiska nieliniowe powodujace, ze u; zalezy réwniez od wyzszych
poteg F.

Przejdziemy obecnie do przedstawienia dwoch pogladéw na pole lokalne lub
— co jest rownowazne — dwoch typoéw zwiazkéw miedzy n i a.

Punktem wyjscia w pierwszym z nich jest rOwnanie Lorentza—Lorenza, uogol-
nione przez Rousseta na przypadek osrodka anizotropowego [14]. Zastosowania
tego modelu sa jednak do$¢ powaznie ograniczone przez fakt, ze nie obejmuje on
swym zasiegiem substancji zbudowanych z czasteczek polarnych. Problematyczne
jest réwniez zastosowanie jednakowe;j stalej dla wszystkich trzech sktadowych pola
lokalnego — jest to pewna sztuczno$é wobec jednoczesnego wprowadzenia anizo-
tropii wlasciwosci optycznych. Ta ostatnia niekonsekwencja powoduje, ze wyniki
obliczenn polaryzowalnosci czasteczek nie zawsze mozemy traktowaé z pelnym
zaufaniem jako stale molekularne. Niemniej jednak prostota tej teorii oraz fakt, ze
wartos$ci o czasteczki w krysztale bliskie sa polaryzowalnos$ci czasteczki swobodnej,
powoduja, ze czesto si¢ nig postugujemy. Mozemy z niej korzysta¢ przynajmniej w
tych przypadkach, gdy celem jest w wigkszym stopniu wyjasnienie niewielkich
zmian wiasciwosci optycznych, wynikajacych na przyklad z malej zmiany tempera-
tury, niz absolutne wartosci «;;.

Przyjmiemy, jak to sie zwykle czyni, iz F mozna zapisa¢ jako sume¢ trzech
udzialéw: zewnetrznego (przylozonego) pola o natezeniu E, pola E, wytworzonego
przez tadunki polaryzacyjne pojawiajace si¢ na powierzchni kuli otaczajacej miejs-
ce w krysztale, z ktérego usunigto rozwazang czasteczke, oraz pola, wynikajacego
z oddzialywan rozwazanej czasteczki z otaczajacymi ja sasiadami, E,

F=E+E +E (6.47)
Pole E, obliczyl po raz pierwszy Lorentz dla osrodka izotropowego
1
E =—P 6.48
> 3eg (6.48)

gdzie &, = 8,8542-107!2 F-m™!, P za$ jest wektorem polaryzacji dielektryka,
zdefiniowanym jako moment elektryczny jednostki objetosci. Szczegély rozwazan
prowadzace do zwiazku (6.48) mozna znalezé w podreczniku [3] lub w monografii
[15]. Jesli pominie sie E, co mozna uczyni¢ tylko dla ciala stalego o wysokiej
symetrii (symetria powoduje uérednienie do zera wplywu czasteczek otaczajacych
kulista wneke) lub cieczy, czy gazu (podobne usrednienie spowodowane jest przez
ruch termiczny), to pole F mozemy zapisa¢ w postaci rownania

1
F=E4+—P (6.49)
3eq

Podstawienie réwn. (6.49) do réwn. (6.46) i skorzystanie ze zwiazku

P=¢y,(e—1)E
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prowadzi po kilku przeksztalceniach do wyrazenia na polaryzacje dielektryka

P=Ny=N<1+%><cx>E (6.50)

przy czym N jest liczba czasteczek w jednostce objetosci. Stad otrzymujemy znane
wyrazenie Clausiusa—Mossottiego na polaryzacje 1 mola czasteczek substancji

_e—1 M1
T et2 0 380

— Ny (o) (6.51)

m

gdzie M jest masa molowa substancji, ¢ jej gestoscia, (o) $rednia polaryzowalno$-
cia czasteczek, zas N, liczba Avogadra.

Zwiqzek (6.51) stosuje si¢ Scisle do gazow, ktorych czqstecakz nie majq momentu
dipolowego. Poniewaz P, nie zalezy od stanu skupienia substancji, moze by¢ uzyte
rowniez dla cieczy i ciala stalego z tymi samymi ograniczeniami.

Dotychczasowe wywody oparte byly na réwnaniach elektrostatyki dielektry-
koéw. Nastepny krok polega na przejsciu od polaryzacji molowej P, do refrakeji
molowej R,,, przez wprowadzenie relacji Maxwella

pe=n? (6.52)

co oznacza przejécie od zakresu matych czestosci (od 1 do 100 kHz) do czestosci
odpowiadajacych fali elektromagnetycznej (4-8)-10'* Hz dla zakresu promienio-
wania widzialnego. Przy p = 1 relacja Maxwella spelniona jest jedynie dla takich
substancji, ktérych czasteczki pozbawione sa trwalego momentu dipolowego. Przy
tych ograniczeniach otrzymujemy réwnanie znane pod nazwa réwnania Lorentza—
Lorenza

_n” ——1 M 1
T n2y2 0 3;-:0

m

No ) (653)

Poniewaz M/g =V jest objgtoscia jednego mola czasteczek, No/V, = N jest liczba
czasteczek w jednostce objetosci. Wobec tego

(6.54)

przy czym Z oznacza liczbe czasteczek w komorce elementarnej o objetosci 1.
Jesli srednia polaryzowalno$é catej komorki elementarnej oznaczymy przez {I ), to

I>y=Z > (6.55)

oraz

;1 _< >__ — (6.56)

Uogolnienie Rousseta [14] polega na zastosowaniu rown. (6.56) do osrodka
anizotropowego w taki sposob. ze piszemy to réwnanie osobno dla kazdego z
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kierunkow glownych indykatrysy
nf—1 1 1
242 3g VO

(6.57)

Kazdemu z kierunkéw gléwnych indykatrysy jest wiec przyporzadkowana jedna z
glownych skladowych tensora polaryzowalnosci komorki elementarnej. Zwiazek
migdzy ' i a otrzymamy przez zastosowanie modelu gazu zorientowanego dla
wielkosci tensorowych (por. rozdz, 4)

F=a {Z T ac”a” (6.58)

r=1

gdzie a jest macierzg transformacji I'(abc*) do ukladu osi glownych, ¢ opisuje
orientacje osi glownych a wzgledem abc*, a sumowanie rozciaga si¢ na wszystkie
czasteczki symetrycznie zalezne.

Rownanie (6.57) oparte jest na zalozeniu, ze pole lokalne ma posta¢ wynikajaca
z réwn. (6.50). Widzimy tu negatywny skutek zastosowanego przyblizenia, pole

1
F; = 5(n?+ 2 E (6.59)

zalezy bowiem tylko od czynnikéw makroskopowych: kierunkow i dlugosci osi
gléwnych € oraz pola pfzyloionego E;. Struktura mikroskopowa wystepuje jedynie
w polaryzowalno$ci komorki elementarnej (6.58) i na pole lokalne ma wplyw
posredni. Poza tym nie ma uzasadnienia fakt, ze stala 1/3 jest dla kazdego
kierunku taka sama.

~ Problem osi gléownych a przedstawia sie podobnie, jak w diamagnetyzmie. Dla
czasteczek dostatecznie symetrycznych i zajmujacych wezel o symetrii co najmniej
C,, mozna przyjaé, ze sa nimi osie LMN. Dla czasteczek mniej symetrycznych
mozna poszukiwac osi glownych przy zastosowaniu zasady addytywnosci analogi-
cznie, jak to uczynili Van den Bossche i Sobry na terenie diamagnetyzmu. O ile
nam jednak wiadomo, systematycznych préob w tym kierunku nie podjeto. Jezeli
za$ nie uczynimy zadnego zatozenia odnoénie kierunku osi gléwnych, to problem
jest nie do rozwigzania na poziomie molekularnym, z wyjatkiem krysztatow
tréjskosnych i to tylko w tym przypadku, gdy komédrka elementarna zawiera jedna
czasteczke. Do tego zagadnienia jeszcze wrdcimy.

Zastosowanie rownan (6.57) i (6.58) do konkretnych struktur zilustrujemy
przyktadami kilku krysztalow, dla ktérych gtéwne wspodtczynniki refrakcji oraz ich
orientacje sa znane. Dane zawarte w tab. 6.1 zaczerpnigte zostaly (z wyjatkiem
ostatniej kolumny) z monografii Winchella [16]. W przyjetej tu konwencji #;|| X;,
w ukladzie jednosko$nym X,|/b, a kat migdzy X, 1 osia krystalograficzna a
oznaczony zostal przez ¢. Przyjeto tez, iz osiami gldéwnymi o sa osie symetrii
LMN ; orientacje ich wzgledem abc* podaje macierz c¢. Przy znajomosci n,, n,, n;
oraz ¢ zadanie polega na wyznaczeniu gléwnych skladowych o« a posrednio
rowniez ¢, ktorego wartos¢ winna by¢ uzgodniona z a.
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Tabela 6.1

Wartosci do§wiadczalne wspélczynnikow refrakcji niektérych krysz-
talow molekularnych dla 2 = 546 nm [16}

Krysztat ny n, ns Q= <Xn,a Pobl
Benzen 1,544 1,646 1,550 0 0
Naftalen 1,525 1,722 1,945 423 22,6
Antracen 1,556 1,786 1,959 26,9 27,1
Fenantren 1,548 1,920 1,724 27,0 26,7
Fluoren 1,578 1,919 1,663 0 0

Tak postawionego zadania nie da si¢ rozwiaza¢ metoda algebraiczng. Nawet
jeSli przyjmiemy, ze w ukladzie LMN tensor & ma posta¢ diagonalna — co
oznacza nie zawsze uzasadnione podwyzszenie symetrii czasteczki do C,, —
musimy wyznaczy¢ cztery stale z trzech danych wyjSciowych. Problem mozna
rozwigza¢ metoda kolejnych przyblizen, uwazajac, ze w zaleznosci

n=mnac e =123 (6.60)

¢ oraz n; sa niezmiennikami przyblizen. Szczegdtowy opis postepowania na przy-
kladzie typu naftalenu opisany zostal w problemie 6.6.1 na koncu rozdziatu, a
wyniki obliczen dla pewnej liczby krysztalow zebrane sa w tab. 6.2. Najwazniej-
szym wnioskiem, jaki z niej wynika, jest to, Ze zastosowanie réwnan Rousseta
prowadzi do skladowych & dosé bliskich wartosci &® czqsteczki swobodnej. Zwrdémy -
uwage na to, Zze sktadowe a'” obliczone zostaly w sposob niezalezny, a mianowicie
przez skorzystanie z inkrementéw polaryzowalnosci atomow i wigzan, otrzyma-
nych przez Le Févre’a [17] z badan efektu elektrooptycznego roztwordw (tab.
6.11). Zbieznos¢ wartosci sktadowych obu tensordw jest raczej zgodna z oczekiwa-
niem, stabe oddzialywania migdzyczasteczkowe nie powinny bowiem prowadzi¢ do
znacznej modyfikacji fizycznych wiasciwosci swobodnej czasteczki po umieszezeniu
jej we wnetrzu krysztalu. Poglad taki potwierdzaja wyniki spektroskopowych
badan krysztalow w zakresie drgan wewnetrznych czasteczki: czestosci tych drgan
réznia si¢ od analogicznych czesto$ci czasteczki w roztworze o kitka cm™!.
Wyjatkiem w tab. 6.2 jest czasteczka fenantrenu, a przypuszczalng przyczyna — jej
moment dipolowy. '

Innym przykladem, ilustrujacym addytywno$¢ polaryzowalnosci komorki ele-
mentarnej, jest analiza wlasciwoséci optycznych krysztatu gipsu. ZwréciliSmy juz
uwage w rozdz. 1 na bezposrednia korelacj¢ miedzy orientacja gléwnych wspot-
czynnikow refrakcji a potozeniem dipoli wody, widoczna na pierwszy rzut oka na
rys. 1.9. Jak si¢ okazuje, korelacja ta jest rowniez iloSciowa, co zostato przedsta-
wione w problemie 6.6.2. Rowniez i w tym przypadku glowne polaryzowalnosci
czasteczki wody bliskie sa wartosci znanych dla czasteczki swobodnej, mimo iz
dipole wody znajduja sie¢ w tym krysztale w polu elektrycznym otaczajacych je
jonéw, o natgzeniu zapewne znacznie wiekszym niz pola wystepujace w kryszta-
fach molekularnych.

Nieco inny punkt widzenia na zwiazek migdzy n i «, oparty na pojeciu refrakcji
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Tabela 6.2

Polaryzowalnos¢ niektorych czasteczek w stapie swo-
bodnym (wedlug inkrementéw podanych w tab. 6.11)
oraz w krysztale

Polaryzowalnos¢

L1040 L2

Czasteczka Warunki 210, Frm
oy Apg oy
Benzen swobodna 125 | 125 | 82
w krysztale 125 1 11,8 9,3
Naftalen swobodna 21,8 | 19,6 | 129
w krysztale 244 1 20,5 | 11,7
Antracem swobodna 31,1 | 26,7 | 17,6
w krysztale 30,7 { 28,5 | 18,5
Fenantren swobodna 30,0 | 27,8 | 17,6
w krysztale 334 | 38,7 5,1
Fluoren swobodna 27,6 | 25,6 | 16,5
w krysztale 289 1 246 | 18,7

molowej nie tylko krysztatu, lecz takZze czasteczki, prezentuje Lasheen i1 inni w
dwoch publikacjach [18, 19]. Zgodnie z réwn. (6.53) refrakcja molowa krysztatu w
jednym z kierunkow glownych indykatrysy okreslona jest wyrazeniem

=1 M

T nA+2 o

i

Wobec tego refrakcje molowa jednej czasteczki, r, mozemy tak zdefiniowaé, by
spelniony byl zwiazek

YR =2ZYr, (6.61)

Zakladamy przy ‘ym, ze R i r stosuja si¢ do modelu gazu zorientowanego (6.58).

Wartosci refrakcji molowe) czasteczki obliczone ta droga pozbawione sa przy-
najmniej jednej z dotychczasowych wad polaryzowalnosci, a mianowicie nie zawie-
raja izotropowego czynnika 1/3, przenoszonego z rown. (6.49) do rown. (6.57).
Dane uzyskane w obu pracach Lasheena wraz z innymi danymi z literatury
zebrane sa w tab. 6.3. Zostaly one przeliczone tak, by konsekwentnie spetniony byt
zwigzek (6.61). Przy opracowaniu tabeli stosowano nastgpujaca konwencje, wpro-
wadzona przez Lasheena:

1) w krysztatlach ortorombowych R,[|a, R,||b, R |c,

2) w krysztatach jednoskosnych R;|lb; R;, R, leza w plaszczyznie (010).

Wspolczynniki refrakcji mierzone byly za posrednictwem linii Beckego dla linii
D lampy sodowej, 4,, w temperaturze pokojowej (21-25°C, [187). W tabeli podano
bledy n, R i r oszacowane przez Lasheena. Niekiedy male bledy w doswiadczalnym
wyznaczeniu n prowadza do duzych bledéw w wartosciach r; odnosza si¢ do tego
problemu te same uwagi, co i do pomiaré6w podatnosci magnetycznej (rozdz. 5).
Zwiazek miedzy polaryzowalnoscia czasteczki i jej refrakcja w tym samym kierun-
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Tabela 6.3

Strukturalne i optyczne stale krysztaléw molekularnych

M —masa molowa [kg-mol™'], o—gestosé¢ [kg-m™3], V/Z—objetosé jednej czasteczki [1073 nm?], 4, b, ¢ — parametry komorki elementar-

nej [nm], Z — liczba czysteczek w komérce clementarnej, ny, n,, n. — wspolczynniki refrakcji wzdhuz gtéwnych kierunkow drgan, n,, n,, n, —
wspolczynniki refrakcji wzdtuz osi krystalograficznych (uklad ortorombowy), ny, n,, ny — wspblczynniki refrakcji wzdiuz osi gtéwnych tensora
(uktad jedno- i tréjskosny), R — refrakcja krysztalu, r — refrakcja czysteczki [cm®+-mol™'] (dla otrzymania R i r w jednostkach ukiadu SI

[m?®-mol™ '] nalezy liczby w tabeli pomnozy¢ przez 107 9)

A. Krysztaly ortorombowe

Nazwa zwigzku

Wzér sumaryczny

Danc struk-

Wspdlczynnik refrakeji

Refrakcja

1z =4

i dane makroskopowe turalne (Na 4p) krysztatu czysteczki
(CeH;5)3CeH; Pnu2, [20] n, = 1,5241 n, = 1,509 R, =739 rp =282
M = 306,14 a =0,747 n, = 18670 n, = 1,843 R, = 1099 ry =289
1,3,5-Trifenylobenzen 0= 1237 b =1966 n. = 18725 n. = 1,849 R. =110,5 ry =167
1/Z = 4108 ¢ =1L119 [16] [18] [18] [183
Z =4
C, H4(CH,), Pem2, [21] o = 1,4065 n, = 1,489 R, =374 r, =117
M = 154,21 a =08290 /i = 14678 n, = 1,642 R, =468 ry =120
Acenaften o =1190 b = 14000 y = 1,6201 n. = 1,396 R, =31,1 ry = 5,1
VZ =209,6 ¢ =0,7225 [22] [18] [18] [18]
Z =4
CegH4(COOH) - (COONu) | B2ub [23] n, = 1,485 n, = 1476 R, =706 rp =124
M = 188,13 a =0,676 n, = 1,661 n, = 1,665 R, =928 ry =118
Wodoroftalan sodu o = 1504 b =031 n. = 1,668 n. = 1,678 R. =944 iy = 8,
1z = 2078 ¢ =2642 [16] [18] [18] [18]
zZ =8
CeH,(COOH) - (COOK) P2, ub [24] n, = 1498 n, = 1,494 R, =376 r, =128
M = 204,22 a =0,646 v, = 1,659 n, = 1,632 R, = 46,1 iago= 12,1
Wodoroftalan potasu 0 =1579 b =0960 n. = 1,663 n. = 1,674 R. =485 v = 83
Nz = 2147 ¢ =1385 [16] [18] [18] [18%
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tab. 6.3 cd.

Pbn2, [25]

Z =4

CoH,(NO,), n, = 1,432 n, = 1,746 R, =428 vy =124
M = 168,05 a =17320 n, = 1,765 n, = 12841 R, =468 ry = 10,6
1,3-Dinitrobenzen 0 =1593 b =1,397 n, = 1,839 n, = 1,482 R, =30,1 ry = 7,0
VZ =175,2 ¢ =0380 [16] 18] [18] [18]
Z =4
C¢H;NHCOCH, Pbca . [26] n, = 1515 n, = 1,748 R, =455 r, =58
M = 135,04 a =19640- |n, =1,620 n, = 1,612 R, =389 Far = 5,5
Acetanilid 0 = 1206 b =09483 | m, =1,733 n, = 1,524 R, =343 ry = 3,6
V/Z = 1858 ¢ =07979 [16] 8] [18] [18]
Z =8
C¢H,(NH,) - (COOH) Pen2 [27] ny = 1,560 1, = 1,508 R, =288 =51
M =137, a =1,283 n, = 1,730 n, = 1,768 R, =400 Fag = 5.2
Kwas antranilowy o = 1420 b =1,077 n, =1,760 n. =1,736 R, =388 ry =32
V/Z = 1603 ¢ =0928 [16] [18] [18] [18]
Z =8
C,H,0,NCl P2,2,2, [28] n, = 1,668(3) R, =309 . =740)
. M = 133,54 a =0,641 n, = 1,616(3) R, =283  ry =814
ghlort‘”m‘zekwasu o0 = 1650 b =0711 n. = 1,661(4) R, =29903) ry =680
Ursztynowego V/Z = 1332 ¢ =1,169 [19] [191 [19]
7 ~4
C¢H,0,NBr P2,2,2, [28] 1, = 1,706(3) R,=3282) 1, =790
" M = 178,00 a =0,648 n, = 1,641(2) R, =304(2)  ry =854
E“’mt‘"m‘fv kewasu 0 = 2109 b =0,725 n. = 1,681(3) R.=3192  ry =741
ULy ROvERS V/Z = 139,3 ¢ =1,186 [19] [19] [19]
Z =4
C,H,O4NH,)-H P2,2,2, [29] 1e = 1,534(1) R, =309(1) 1, =74
_ o M = 167,07 a =07648 n, = 1,50002) Ry =292(2)  ry =801
(+)-Wodorowinian 0 = 1680 b =1,1066 n, = 1,5100) R =297 ry =710
amont V/Z = 165,94 ¢ =0,7843 [19] [19] [19]
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Tab. 6.3 cd.

A. Krysztaly ortorombowe

Nazwa zwiazku Wzér sumaryczny Dane struk- Wspdlezynnik refrakcji Refrakcja
. i dane makroskopowe turalne (Na Ap) krysztatu czasteczki
CcH,O4K)-H P2,2,2, [29] n, = 1,566(2) R, =314(2) g = 7,5(5).
— M = 188,18 a =0,764 n, = 1,534(2) R, = 29,9(3) ry = 8,0(1)
(Jgt)fg"dorowm““ o= 1954 b =1,062 ne = 1,544(2) R, =3042) ~ ry =73()
Bt V)Z = 157,20 ¢ =0,775 [19] [19] [191
Z. =4
B. Krysztaly jednoskos$ne

C.Hp P2,/a [30] n, = 1,556 n, = 1,959 R, =844 rp =423

M =178.2 a =108561 n, = 1,786 ny, = 1,485 R, =498 ry =425
Antracen 0 =1026 b =0,6035 n, = 1,959 ny = 1,837 Ry =767 ry =208

V/Z = 237,08 ¢ =09163 [16] [18] [18] [18]

‘Z=13 f =12470

Ci2Ho P2, /a [31] n, = 1,561 n, = 1,945 R, = 60,6 rp =311

M =154.2 a =0863 n, = 1,658 ny, = 1,550 R, =40,1 ry =269
Bifenyl 0=1224 b =0,563 n, = 1,945 ny = 1,661 R;=46,6 ry =156

VZ =2214 ¢ =0915 [16] [18] [18] [18]

Z=2 B =951

CeClg P2,/c [32] n =1,738 . R, = 63,1 rp =314

M = 284,74 a =0,808 n, = 1,701 R, = 60,7 ry =314
Heksachlorobenzen 0 =1816 b =0387 ny; = 1,601 Ry =537 ry = 26,1

V/Z =232,0 . ¢ = 1,665 [18] [18] [18]

Zm=2 p =1170

C¢H,Cl, P2,/u [33] ny, = 1,752 R, =393 rp =192

M = 146,95 a = 1,480 ny, = 1,528 R, =296 ry =203
1,4-Dichlorobenzen 0= 1526 b =0,578 ny = 1,679 R; =364 ry =132

VzZ = 157,1 ¢ =0,399 [18] [18] [18]

Z=2 f =113
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C.H,0, P2,/a [34] n, = 1,506 ny =18753) | R, =6604)  r, =38(10)
M = 208,20 a =15810 |n, =1,698 n, = 1,717(3) | R, =57,04)  ry = 298)
Antrachinon o= 1438 b =03942 |n, =1816 ny, = 1486(2) | Ry=41,63) ry = 163002
V/Z =239,1 ¢ =0,7865 [16] [19] [19] [193
Z=2 f =102,72
CsCL0, P2,/a [35] n =15222 | R, =4383) . =26(3)
M = 245,89 a =08708 n, = 1,62133) | R, =50,5(4)  ry = 252(8)
ngéiihl(‘;;i’oi:nﬁfmo 0= 1712 b =05755 ny = 1,5892) | R, =484(3)  ry =20(1)
VZ = 2074 ¢ =0,8603 [19] [193 [19]
=2 p =10585
C¢Cl,(OH), P2,/c [36] ny = 1,676(3) | R, = 46,6(3) 1 =22,8(22)
M = 24790 a =08214 n, = 1,625(2) | R, = 43,8(2) Fyu = 26(2)
Tetrachlorohydrochinon o = 2002 b =04843 ny = 1,636(3) R; = 44.4(4) ry = 20(1)
ViZ = 205,6 ¢ =1,2441 [19] [19] [19]
Z=2 f =12382
CeH,(NO,)-NH, P2,/n [37] n, = 1,788(4) | R, = 40,6(4) rL = 96
M = 138,12 a =12336 n, =15252) | R,=29502)  ry =106
1-Amino-4-nitrobenzen o = 1437 b =0,607 ny = 1,756(3) R; =39,4(3) ry = 7,1
V/Z = 1608 ¢ =08592 [19] [19] [19]
Z=4 f =9145
CyH;0,N P2,/c [38] n, = 1460(5) n, = 1,886(5) | R, =443(5) r, =10(2)
M = 147,05 a =0619 n, = 1803)  n, =14532) |R,=26002)  ry =107
Tzatyna 0 =1527 b = 1,446 n, =1903)  ny; =1,7824) |R,=4054) ry = 66(1)
V/Z = 159,9 ¢ =0717 [16] [19] [19] [19]
Z=4 f =9482
C,H,0,N, -(CH,), P2, [39] n, = 1,447 n, =14472) | R, =364  r, =13,01)
. M = 198,28 a =133 n, = 1,695 n, = 1,687(4) | R, =520(5)  ry = 12,4(20)
Teofilina (monohydrat) ¢ = 1454 b =153 ny = 1,753 ny = 1,641(3) R; =49,2(4) v = 9,1(8)
V/Z = 2258 ¢ =045 [16] [19] [19] [19]
Z=4 f =995
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tab. 6.3 cd.

B. Krysztaly jednoskosne

e sk Wzér sumaryczny Dance struk- Wspolczynnik refrakcji Refrakeja
oo ) i dane makroskopowe turalne (Na /p) krysztatu czasteczki

C,H 0, P2,/c 140] n, = 1,556(1) R, =32,329) r. = 8(2)
M = 124,06 u =0,7672 n, = 1,463(1) R, = 27,69%9) ry = 8(2)

2,6-Dimetylopyron 0=1234 b =0,7212 ny = 1,535(1) R; = 31,30(9) ry = 6,3(0)
V/Z = 165,1 ¢ =1392 [19] [19] [19]
Z=4 po=12098
CO(NH-CO), P2,/n [41] n, = 1,441(2) R, =17,6(1) re =62
M = 114,03 a = 1,0685 n, = [,554(3) R, =21,3(2) ray =44(1)

Kwas parabanowy 0=1713 b =08194 ny = 1,479(2) R; = 18,9(1) v =42)
V/Z = 110,5., ¢ =0,5054 [19] [19] [19]
Z =4 o =9273




ku gléwnym jest nastepujacy:

' 0
o T T, 6.62
&; &g VI( Mr ( )
przy czym wymiarem o; jest F-m? a r, — m3-mol~ 1.

Badania optycznych 1 magnetycznych wiasciwosci czasteczek prowadzone przez
Lasheena i wspotpracownikow mialy na celu gléwnie wykazanie pokrewienstwa
migdzy anizotropia polaryzowalnosci i podatnosci magnetycznej. Uzyskane przez
tych autoréw wyniki mozna stresci¢ w postaci nastepujacych stwierdzen:

1. Z porownania wynikow dla refrakcji czasteczek z wartosciami ich podatno$-
ci magnetycznej wynika, ze silnej anizotropii magnetycznej zawsze towarzyszy silna
anizotropia optyczna. Anizotropi¢ definiuje si¢ w nastepujacy sposob:

refrakcja Ar =L(rp+ry)—ry (6.63)
podatno$¢ diamagnetyczna 4K =3 (K, +K,)—Ky (6.64)

2. W czasteczkach plaskich bezwzgledna wartos¢ podatnosci magnetycznej jest
najwigksza w kierunku prostopadlym do ich plaszczyzny, natomiast polaryzowal-
no$¢ jest w tym kierunku najmniejsza.

3. Jesli wielko§¢ anizotropii optycznej dowolnej czasteczki podzieli sie przez
wielkos¢ anizotropii optycznej czasteczki benzenu, Ar/dr,, to uzyskany iloraz
bedzie mniejszy niz analogiczny stosunek wielkosei magnetycznych, AK/AK,.
Thumaczy si¢ to tym, ze wzbudzone dipole optyczne sa znacznie wieksze niz
magnetyczne, co w rezultacie prowadzi do znacznie wieckszej energii oddmalywama
dipoli optycznych (zagadnienie pola lokalnego).

4. Podstawniki w czqsteczkach aromatycznych zmniejszajq na ogdél anizotropie
optyczng. Efekt ten zalezy od rodzaju podstawnikow i ich pozycji w pierscieniu.

Zupelnie nowy poglad na zagadnienie pola lokalnego i efektywna polaryzowal-
nos¢ czasteczek zostal zaprezentowany w kilku pracach przez Dunmura, Cummin-
sa 1 Munna [42-44]. '

Przyjmiemy za Dunmurem, ze kazdej komoérce elementarnej krysztatu przy
Z =1 odpowiada moment dipolowy u, wzbudzony polem E padajacej fali elektro-
magnetycznej. Krysztal mozemy wiec traktowaé jako tréjperiodyczny zbior jednako-
wych dipoli, umieszczonych w wezlach sieci Bravais’'go. Wezly te generuje zakoncze-
nie wektora

riy=lLa+ha+l;a,

przy czym [y I, I3 jest trojka liczb catkowitych dodatnich, ujemnych lub zer, a,, a,,
a; sa za$§ krawedziami komorki elementarnej (rys. 6.16). Jesli liczba czasteczek w
komorce elementarnej jest wigksza od jednosci, to bedziemy uwazaé, ze strukture
mozna przedstawi¢ za pomoca zbioru przenikajqcych sie podsieci, numerowanych
przez k=1,2,..., Z, przy czym kazda z podsieci zawiera wylacznie czasteczki
translacyjnie rownowazne. Wektor polaryzacji kazdej podsieci jest rowny

1
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gdzie F(r) jest lokalnym natezeniem pola elektrycznego w punkcie sieci okreslo-
nym przez r, a v jest objetoscia prymitywnej (tj. zawierajacej 1 czasteczke) komorki
elementarnej. o, jest tensorem efektywnej polaryzowalnosci czasteczki w podsieci k.

X3

r r{{)

X2

x;, Rys. 6.16. Orientacja wektorow w sieci Bravais’go

}
Podobnie jak w poprzednich sformulowaniach zwigzku miedzy n i «, réwniez i w
tym ujeciu nie wprowadza si¢ parametrow, charakteryzujacych przestrzenna roz-
ciggtos¢ czasteczki. Nalezy uwazaé, ze dipole wzbudzone (6.46) maja rozmiary
punktowe. Pole elektryczne F(r) krysztalu spolaryzowanego otrzymuje sie jako wynik
dodania do pola zewnetrznego natezenia pola, wynikajacego z sumowania pol wszyst-
kich dipoli umieszczonych w wezlach sieci Bravais'go. Ewald [45] i Born [46] podali
sposob obliczania wystgpujacej tu tzw. sumy sieciowej i pokazali, ze aby obliczy¢
pole makroskopowe wewnatrz krysztatu, nie trzeba uciekaé sie do modelu pustej
wneki, wycietej w krysztale. Rezultatem tych rozwazan jest wyrazenie na F(r),
ktore w zapisie podanym przez Dunmura ma w ukladzie jednostek SI postaé

1
Fk = E+_Z ka' Pk’ (6.66)
80 k/

gdzie L, jest tzw. tensorem Lorentza, ktorego skladowe sg bezwymiarowe i moga
by¢ obliczone z parametrow sieci prostej i odwrotnej, zaleza wiec od wlasciwosci
translacyjnych samej sieci. Poniewaz L, musza by¢ niezmiennicze wzgledem
operacji symetrii grupy komorki elementarnej, G., zachodza nastepujace zwiazki:
L = Ly Lklg =Ly (6.67)
Ponadto z definicji sktadowych L, ktére mozna znalezé w oryginalnej pracy
Dunmura [42], wynika, Ze
czyli Srednia wartos¢ elementu diagonalnego wynosi 1/3. Jest to wazny wniosek,
dotyczy bowiem sensu fizycznego L: tensor ten zastepuje stosowany dotad w teorii

256



staly czynnik 1/3. Mozemy wiec powiedzieC, ze tensor Lorentza charakteryzuje w
sposob anizotropowy udzial podsieci w ogdlnej polaryzacji krysztalu. Ogdlna polary-
zacja P jest wlasnie trzecim potrzebnym nam réwnaniem

P=YP, =cxE (6.69)
k

przy czym
y=¢—1 (6.70)
oznacza tensor podatno$ci dielektrycznej. Rownania (6.65), (6.66) 1 (6.69) stanowia
baze opisu optycznych wiasciwosci krysztatu. Z tych trzech réwnan mozemy dojsé¢
do podstawowego zwiazku w nastepujacy sposob.
Obliczmy E z réwn. (6.69) i podstawmy P, z réwn. (6.65). Otrzymujemy

1 1 1
E=—y'P=—y"YP. =—1y! F
v o kZ v =X ‘k;ak i
Wéwcezas rownanie (6.66) przyjmie postac
1
By =—+, lzdk F +_Zkaaka =

&V Eo U
— E (™' + Lyw) o F.}
.go ,
Jesli teraz wprowadzimy oznaczenia
My =y~ '+ L

1
B =—o

&gV

(6.71)

to otrzymamy

z
F,.=) MubFo k=1,2,...,Z (6.72)
k=1
Roéwnanie (6.72) jest podstawowa zaleznoScia, ktora laczy natezenie pola lokalnego
F, z wlasciwo$ciami makroskopowymi krysztalu zawartymi w tensorze M, oraz z
bezwymiarowym tensorem czasteczki f,. B, mozemy nazwac tensorem zredukowa-
nym. Réwnanie to jest ogélne, poniewaz droga, jaka do niego prowadzi, nie
wymaga Zzadnych innych zalozen procz przyblizenia dipoli punktowych. Przyblize-
nie takie oznacza nie tylko to, Zze pole lokalne ma natezenie stale w objetosci calej
czasteczki. Dalsza konsekwencja jest roOwniez fakt, ze nie jesteSmy w stanie uwzgled-
nié roznej orientacji czqsteczek tranmslacyjnie nieréwnowazmnych, poniewaZz nie ma
sensu moOwi¢ o orientacji dipola punktowego.
Rozwiazanie (6.72) ma prpsta postac i jest jednoznaczne tylko dla przypadku
krysztaldw z jedna czasteczka w komorce elementarnej. Mamy wowczas k = k'
= 1. Opuszczajac zatem wskazniki, mozemy napisac

p=M"'=(x"'+D)! (6.73)
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Rozwiazanie komplikuje sie jednak juz dla Z = 2. Uklad rownan liniowych (6.72)
ma wtedy postac
Fy =M B F, + M, B F,

Fy =M, B Fi+M;, B, F,

(6.74)

Uklad ten mozemy rozwiaza¢ metoda algebraiczng, obliczajac na przyklad F, z
pierwszego rownania i podstawiajac do drugiego. Otrzymany w ten sposob
zwigzek miedzy B, 1 B,

(Mlz 52)_1(1"M11 B1) = (I—Mzz Bz)-l(Mn Bl)
mozna uprosci¢ do
!31_1 =M11+M12(BZ_I_M11)_1M12 (6-75)

Szczegolowe rozwigzanie ukladu (6.74) wraz z komentarzem przedstawione jest w
problemie 6.6.3 na koncu tego rozdziatu.

Zastosowanie rownania (6.75) zostato zilustrowane w pracy [43] przykladami
kilku krysztalow molekularnych jednoskos$nych, o grupie przestrzennej P2;/a z
dwiema czasteczkami w komoérce elementarnej. Poniewaz otoczenie kazdej z nich
jest identyczne, tensory obu czasteczek sa rowniez identyczne. Mozna zatem
napisa¢ dodatkowy zwiazek, wynikajacy z modelu gazu zorientowanego

B =a.Pa; k=1,2 (6.76)

pozwalajacy w zasadzie na ustalenie jednoznacznego zwiazku miedzy i M. a, jest
macierza orientacji czasteczki k, odnoszona niekiedy do osi gtownych e Jednak
podstawienie réwn. (6.76) do réwn. (6.75) prowadzi do réwnania, ktérego nie
mozna rozwigza¢ metoda algebraiczna i B trzeba poszukiwaé metoda kolejnych
przyblizen. Wyniki, zaczerpniete z pracy [43], przedstawione sa dla czterech
krysztaléw w tab. 64 i 65. Jako komentarz do tych danych niech postuzy
poréwnanie, zawarte w tab. 6.6. Zgodnie z oczekiwaniem, w miar¢ wzrostu liczby
pier§cieni benzenowych w czasteczce ro$nie regularnie jej srednia polaryzowalnos¢
a takze i anizotropia — niezaleznie od tego, czy interesuje nas czasteczka w prozni
(swobodna), czy w krysztale. O ile jednak polaryzowalnosci obliczone za posred-
nictwem refrakcji sg dos§¢ bliskie wartosci dla czasteczki swobodnej, o tyle nowy
formalizm daje wartosci znacznie wigksze.

Tabela 64

Skladowe tensorow Lorentza w ukladzie osi glownych tensora przenikalnoéci dielektrycznej [43]

Ll 1 Ll 2
Krysztat
Ly Lyy L. L L. L, L. L.
Naftalen 0,201 0,626 0,173 0,012 | 0,741 0,327 —0,068 | —0,457
Antracen 0,140 0,821 0,039 | —0,042 | 0846 0,354 —0,200 | —0,756
Fenantren 0,156 0,820 0,024 0,014 | 1,190 0,372 —-0,562 0,366
Bifenyl 0,108 0,925 —0,033 0,077 | 0,989 0,366 —0,355 0,828
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Tabela 6.5

Tensory efektywnej polaryzowalnosci czasteczek w krysztalach (- 1040,
F-m? (wedlug [43])

Czasteczka | W ukladzie osi LMN | W ukladzie osi wlasnych
422 52 71 45,0 7
Naftalen 19,1 —24 18,1
| 1.8_| | 10,1 |
[ 704 —75 136 | [ 734 f
Antracen 247 =30 229
B 14,6 | B 114
968 29 —94 | [ 978 T
Fenantren 19,3 5,1 20,8
| 4,0 | L 14 |
[ 636 16 62 ] [ 64,7 7
Bifenyl 193 00 19,3
5 8,6 | B AN

Tabela 6.6

Poréwnanie Srednich polaryzowalnosci, {x), i anizotropii optycznej czasteczek, da, obliczonych réznymi
metodami (x-10*°, F-m?)

@y=3Tra Ao = F{og +oy)—ay
Caysteczka swobodna w krysztale swobodna w krysztale
(tab. 6.2) (tab. 6.2) (tab. 6.5) (tab. 6.2) (tab. 6.2) (tab. 6.5)
Naftalen 18,1 18,9 244 7.8 10,8 214
Antracen 25,1 25,9 36,6 11,3 11,1 378
Fenantren 25,1 25,7 40,0 11,3 31,0 57,9
Bifenyl 229 30,0 12,5 349

Interesujacy komentarz do problemu polaryzowalno$ci, a w szczegdlnosci do
rownania (6.75), podany zostal przez Lutego [47]. Je$li nie poczynimy Zadnych
zalozen odnosnie zwiazku miedzy B, i B,, czyli zrezygnujemy z roéwn. (6.76) i
bedziemy poszukiwaé tzw. rozwiazan ogoélnych metoda kolejnych przyblizen, to
okaze sig, ze jest ich nieskonczenie wiele. Rzecz w tym, Ze rozwiazanie ogdlne (B,
B.) zalezy od B, ktére przyjmiemy jako przyblizenie zerowe. Mozna wigc powie-
dzie¢, ze réwnanie (6.75) nie wykazuje zbiezno$ci rozwigzan dla rézinych B, wybra-
nych jako przyblizenie zerowe. Stanowi to oczywiscie, wade calej procedury, ktora
uniemozliwia rozszerzenie metody na przypadki o wickszej liczbie czasteczek w
komoérce elementarnej. Z logicznego punktu widzenia najbardziej uzasadniony
wybdr B odpowiada tensorowi dla czasteczki swobodnej. Procedura iteracyjna
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przypomina wowczas proces, polegajacy na adaptacji czasteczki do sieci prze-
strzennej w miare wzrostu objetosci krysztatu. Wyniki obliczen ta metoda podane
sa w tab. 6.7 dla krysztatu jodu, heksachlorobenzenu i naftalenu [47]. Okazuje sig,
ze jedna z glownych polaryzowalnosci tensora heksachlorobenzenu staje si¢ uje-
mna po sprowadzeniu go do osi gtownych. Taki wynik nie ma sensu fizycznego i
rowniez wskazuje na niedostatki teorii.

Tabela 6.7

Tensory efektywnej polaryzowalnosci czasteczek (x-10*°, F-m?) [47]

Krvsztat Metoda Koncepcja Czasteczka
ryszta iteracyjna subczasteczek swobodna
Jod 75 0 0 87 0 0 8.0
(CmCuy) 146 —79 17,7 53 8,0
304 16,0 177
Heksachloro- 172 193 -74 14,1 —1,7 —6,7 | 17,1 )
benzen 16,0 —41,5 42,1 55 28,2
(P2,/c) 25,6 373 || | 282 |
Naftalen 41,0 8,7 204 243 39 -02 | 23,9 B
(P2,/a) 21,1 7,7 190 38 19,6
17,6 15,4 L 11,5 |

Chen, Hanson i Fox [48] oraz Luty [47] zwrdcili uwagg, ze niejednoznacznosé
rozwiqzan réwn. (6.75) tkwi w samej metodzie, niezaleznie od wykorzystania (lub
nie) rownania (6.76) dla struktur o Z = 2. Przypatrzmy sie blizej konstrukcji
rownania (6.69). Dla Z =2 ma ono postad

P, +P;, =¢oxE

przy czym P, i P, oznaczaja wektory polaryzacji obu prymitywnych podsieci.
Kazdy z nich zalezy od §, a tensor ten ma symetri¢ wezla odpowiedniej podsieci.
Natomiast makroskopowy tensor y ma symetri¢ grupy punktowej krysztalu,
zwykle wyzsza od symetrii wezta. Spotykamy tu ten sam problem, ktory wystapil
juz w rozdz. 5: z mniejszej liczby informacji, zawartych w wielkosci mierzonej,
chcemy dojs¢ do wiekszej liczby informacji, zawartych w poszukiwanym tensorze.
Oczywiscie, nie da sie tego dokonaé bez przyjecia dodatkowych zalozen, dopaso-
wujacych liczbe informacji po obu stronach réwnosci. Zadanie nasze daloby si¢
rozwigza¢ bez dodatkowych adjustacji, gdyby teoria pozwalala na napisanie
jeszcze jednego, dodatkowego rownania, na przykiad

Pl_Pzz?

Inng prdbe rozwiazania problemu przez obniZenie symetrii M podjat Luty w
pracy [47]. Przyjmijmy, ze kazdq czqsteczke mozemy przedstawié jako zbidor dwu lub
wiecej czesci, tzw. subczqsteczek, rozktadajac ja na przyktad na rdzen i podstawni-
ki, a w najprostszym przypadku przepolawiajac ja (np. czasteczke jodu, naftalenu).
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Do kazdej z subczasteczek mozemy zastosowac przyblizenie dipola punktowego;
tensor polaryzowalnosci i-tej subczasteczki wchodzacej w sklad k-tej czasteczki
mozna zatem przedstawi¢ w postaci

k kk'\| !
(") = {zm ()] (67
L k'j y/

KK’ ; ; : . -
Tensory M( ‘ ) okreslone sa roOwnaniem (6.71) i — podobnie, jak tensory Loren-

j
tza — musza by¢ obliczone osobno dla kazdej subczgsteczki. Obecnie symetria
tensora Lorentza, a takZze i M, jest mniejsza, niz w (6.77). Polaryzowalnos¢ calej

czasteczki jest suma
k
Bo=28() (678)

Zauwazmy, ze w tym przyblizeniu traktujemy czasteczk¢ jako zbidr anizotropo-
wych subczasteczek, przez co mozemy uwzglednié jej ksztalt. Lokalne pole elektry-
czne jest suma pol rozciagajacych sie na subczasteczkach i jest usrednione na
obszar zajmowany przez cala czasteczke.

Ilustracja tego przyblizenia sa wyniki, przytoczone w tab. 6.7, w kolumnie 3.
Zupelnie niezle zblizenie do wartosci znanych dla czasteczki swobodnej pozwala
sadzi¢, ze jest to chyba najlepsza z dotychczas zaproponowanych koncepcji
polaryzowalnosci. Koncepcje te mozemy uwazal za rozszerzenie zasady addytyw-
nodci, zaproponowanej w diamagnetyzmie przez Van den Bossche i Sobry (por.
rozdz. 5), na przypadek, gdy wplywu pola lokalnego nie mozna pominaé.

Mimo iz omdwiony wyzej sposob opisu wlasciwosci optycznych poprzez
obliczenie lokalnych pél elektrycznych nie prowadzi do jednoznacznych rozwigzan
na polaryzowalno$¢ czasteczki w krysztale z przytoczonych powodow, uzyskane
wnioski o naturze pdl lokalnych maja duze znaczenie dla lepszego zrozumienia
wlasciwoséci krysztatow molekularnych. Aby to dostrzec, powr6émy jeszcze do
podstawowych rownan (6.65), (6.66) 1 (6.69). Podstawienie réwn. (6.65) do rown.
"(6.66) przy skorzystaniu z definicji (6.71) prowadzi do

Fo.=E+Y Ly B Fy (6.79)
Z

Uzyskane wyrazenie jest zwiazkiem miedzy lokalnym polem elektrycznym F,,
»widzianym” aktualnie przez wezet k, a zewnetrznym polem elektrycznym. Réwna-
nie (6.79) mozemy zapisa¢ krocej w postaci

Fk = dk E (6.80)

przy czym tensor pola lokalnego, d,, zalezny jest od tensora Lorentza i polaryzo-
walnosci czasteczki

d=Yd, =Y A-Lpg’ (6.81)
Z

g

gdzie L i P sa supermacierzami; ich elementy réwne sa odpowiednio macierzom
Ly 1 B O
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Rownanie
F,=Y(1-Lpa'E (6.82)

=
mozna porownac z relacja, znana z mikroskopowej teorii dielektrycznej

F@r)= e (r, 7) E(r’)d? v (6.83)

d®r =dx-dy-dz oznacza element objetosci, a calkowanie rozciaga si¢ na cala
przestrzen. Relacja ta definiuje odwrotnos$¢ nielokalnej funkcji dielektrycznej. Ter- -
min ,nielokalna” odzwierciedla tu fakt, ze ¢! jest funkcja polozenia zaréwno
okreslonego punktu v, jak i punktéw v lezqcych w jego otoczeniu. Zatem &~ (r, r)
jakby ,.czuje” rozklad tadunkéw w otoczeniu r. Pamigtajac o przyjetym przez nas
przyblizeniu czasteczki do dipola punktowego, co odpowiada przejsciu z ciaglej
reprezentacji r w rown. (6.83) do reprezentacji wskaznikowej w réwn. (6.82)
widzimy, Ze macierze d,,. majg znaczenie odwrotnosci funkcji dielektrycznej. Stad
mamy zwiazek

Fo=Y il E (6.84)
.

gdzie
g = (1-Lpg’ (6.85)

Nielokalny charakter funkcji dielektrycznej (e # 0 dla k # k') jest istotng cechg
izolatorow, odrozniajgcq je od cial przewodzqcych. Widaé, ze w ramach naszego
prostego modelu krysztalu molekularnego wynika ona ze sprzezenia dipol-dipol
migdzy podsieciami molekularnymi. Najwazniejsze dalsze konsekwencje, jakie wy-
nikaja z tego sprzezenia, sa nastepujace:

1) pojawienie si¢ kolektywnego charakteru wzbudzen elementarnych, tzw. eks-
cytondw. Inaczej mowiac, ekscyton mozna traktowaé jako kwant pola lokalnego w
stanie wzbudzonym krysztalu;

2) pole lokalne w okreslonym wezle k sieci jest wynikiem ekranowania tego
punktu przez otoczenie od pola zewngtrznego [wynika to z rown. (6.84)];

3) podatnos$¢ dielektryczna krysztatu, y, nie jest rowna sumie polaryzowalnosci
czasteczek. Scisty zwiazek miedzy tymi wielko$ciami jest nastepujacy:

x =28 %)= Y6 - L (6:86)

kk’

W duzym uproszczeniu mozna powiedzieé, Zze nielokalna funkcja dielektryczna
koreluje, dzigki sprz¢zeniu dipolowemu, odpowied? czgsteczki k z odpowiedziq
czgsteczki k'. Z faktu, ze korelacja ta daje wynik niezerowy dla k # k' wynika, ze
wszystkie czasteczki uczestnicza w tych samych, zdelokalizowanych wzbudzeniach
elementarnych.

Pelniejsza dyskusje roli funkcji dielektrycznej w zagadnieniach dotyczacych
krysztatow molekularnych znalezé mozna w pracach [49, 50].
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6.5. Wplyw temperatury na wlasciwosci
optyczne krysztaléw

Wraz ze zmiana temperatury zmieniajg si¢ rowniez wlasciwosci optyczne
krysztaiow, przede wszystkim wspolczynnikéw refrakcji. Zmiany takie wystepuja
we wszystkich ukladach krystalograficznych i sa na ogét niewielkie: rzedu kilku do
kilkunastu dziesigciotysiecznych na 1 K. Poszczegdlne wspodlczynniki refrakgi
okres§lonego krysztalu moga zaréwno rosnaé, jak i male¢ przy podwyZzszeniu
temperatury. W dwoch uktadach krystalograficznych o najnizszej symetrii, a wigc
w jedno- i trojskosnym, procz zmian diugosci osi indykatrysy wystgpuja rowniez
zmiany ich orientacji wzglegdem osi krystalograficznych. Liczba stopni swobody
zalezy od symetrii ukladu: w krysztatach jednosko$nych moze sie zmieniaé tylko
jeden kat (w plaszczyznie a, ¢), natomiast w trojsko$nych zmieniaja si¢ wszystkie
trzy katy. Maksymalnie mozemy miec¢ zatem 6 parametrow zaleznych od tempera-
tury, minimalnie — jeden.

Mimo niewielkich wartos$ci liczbowych efekty te maja wazne znaczenie pozna-
wcze, $wiadcza bowiem bezposrednio o anharmonicznos$ci dynamiki sieci. Innym
powodem zainteresowania tg dziedzing badan jest fakt, ze funkcje temperaturowe
wspolczynnikow refrakcji, a takze dwoéjtomnosci, czesto wykazujg punkty osobliwe
lub zakrzywienia informujace nas o przemianach fazowych, zachodzacych w
badanych substancjach w okreslonym przedziale temperatur. Szczegodlnie cenne sa
przypadki, w ktorych struktura krysztalu nie ulega zniszczeniu po przej$ciu do
wyzszej temperatury; ten rodzaj przemian okresla si¢ mianem krysztal-krysztal. Z
wielkosci zmian wlasciwosci optycznych mozemy w takich przypadkach wniosko-
waé o charakterze procesow molekularnych, odpowiedzialnych za te przemiany.

Czesciej niz pojedyncze wspotczynniki refrakcji badana jest dwojlomnosé krysz-
talow w funkcji temperatury. Tlumaczy sie to tym, ze wielko$¢ ta jest latwiej
dostepna pomiarowi i doktadniej mierzona od wspolczynnikow refrakcji; wykazuje
przy tym duza czulo$¢ na zmiany temperatury.

W zakresie temperatur, w ktoérym faza krystaliczna jest termodynamicznie
stabilna, zmiany dwodjtomnosci sa ciagle i najcze$ciej liniowe. We wszystkich
zbadanych dotad przypadkach wspdiczynnik temperaturowy dB/dT jest ujemny,
tzn. przy wzroscie temperatury dwdojlomnosé maleje. Zauwazmy, Ze najczesciej
mierzymy w eksperymencie optycznym roéznice drog optycznych, I', a zadamy
informacji o dwdjlomnosci B, poniewaz ta wlasnie wielko$¢ poddawana jest
interpretacji mikroskopowej. Jesli uwzglednimy podany juz zwigzek miedzy tymi
wielkosciami

I'=B-d

to relacje migdzy ich wspotczynnikami temperaturowymi otrzymamy przez zro-
zniczkowanie wzgledem temperatury

dB 1 dI' T,
dB _ 1 dI' T, 6.87
AT dg AT dy ™ &&7)
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Temperaturowy wspolczynnik dwodjlomnosci mozemy wigc obliczy¢ z temperaturo-
wej zaleznosci roznicy drog optycznych, I'(T), oraz wspolczynnika rozszerzalnosci
termicznej w kierunku normalnym do plaszczyzny ptytki, o,. Wielkosci dy i T
mierzone s3 w temperaturze odniesienia.

120 T T T T

nm
T
1

2
’

18

—_
=1
[=2]

=y
e
rs

12

rdznica drog optycznych I'-10™

Rys. 6.17. Dwojlomnosé plytki wycigtej rownolegle
10 1 ! L I i _
20 20 &0 30 o QO plaszczyzny (010) fluorenu w funkcji temperatu

ry (wedtug [13])

temperatura, °C

Przykladem liniowej zalezno$ci I'(T) jest réznica drog optycznych krysztatu
fluorenu, mierzona w plaszczyznie (010) (rys. 6.17) [13]. Jesli przy ogrzewaniu
wystepuja w sieci nawet niewielkie zmiany strukturalne, to skutkiem ich jest
odstepstwo od liniowej zaleznosci wlasciwos$ci optycznych od temperatury. Mozna
to zauwazyé na rys. 6.18, ilustrujacym zachowanie sie¢ B,;(T) plytki karbazolu

By [
LA
0165 -\s
\‘
\.
.\.
B\
0,160
C.—.\'\
.\.
\.
Rys. 6.18. Dwojlomno$é plytki wycietej réwnolegle '\
do plaszczyzny (010) karbazolu w funkcji temperatu- 1155 D
ry (wedtug [517) "0 50 100 150 ¢,°C
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[51]. W temperaturze 118°C (punkt C na krzywej) rozpoczyna si¢ przemiana
fazowa, ktorej wystepowanie w karbazolu stwierdzono réwniez za pomoca pomia-
row kalorymetrycznych [52].

W dyskusji, ktora podejmiemy w dalszym ciagu, bedziemy si¢ zajmowac przede
wszystkim liniowymi zmianami wspolczynnika refrakcji lub dwoéjtomnosci. Wyste-
puja one w przedziale temperatur, w ktorym faza krystaliczna jest termodynami-
cznie stabilna. Zmiany wielkosci optycznych opisywaé bedziemy za posrednictwem
formalizmu Rousseta-Lasheena. Mimo wskazanych juz niedoskonalosci formalizm
ten jest prosty i moze by¢ uzyty z powodzeniem w takim przypadku, gdy mniej
przywiazujemy wage do bezwzglednych wartosci polaryzowalno$ci, a bardziej
interesujemy si¢ mechanizmem proceséw molekularnych, wywolujacych obserwo-
wane efekty. W szczegolnosci

1. Bedziemy korzystaé ze zwiazku miedzy refrakcja molowa krysztatu i refrak-
cja komorki elementarnej. Napisany w ukladzie osi gléwnych R ma on postac

(6.88)

R; zastepuje glowne polaryzowalnosci komorki elementarnej. Podajac zwiazek w
tej postaci, unikamy klopotliwych czynnikéw liczbowych.
2. Bedziemy korzysta¢ z modelu gazu zorientowanego

R=a ’Z ¢®Trcla” (6.89)

k=1

przy czym tutaj r zastepuje tensor o polaryzowalnosci czasteczki. Bedziemy badaé
zwiazek miedzy struktura krysztalu i zmianami »;, zakladajac, ze skladowe r nie
zaleza od temperatury.

Zrozniczkowanie réwn. (6.88) prowadzi do wyrazenia

n; dn; dR,; do
s My 0 .
Sweraz ar M= art R 650

Widzimy, ze w zaleznosci n,(T) maja udzial dwa efekty:
a) zmiana kaqtowych polozen czqsteczek, wystepujaca w dR;/dT,
b) zaleznosé gestosci krysztalu od temperatury, ktéra mozemy wyrazi¢ bezpos-
rednio '
do

ﬁ = —@0o (al +a2 +(Z3) (6.91)

Udziat drugiego z tych czynnikdw w temperaturowej funkcji dwojtomnosci dysku-
tuja réwniez Bounds i Munn [53].

Réwnanie (6.90) napisane jest w ukladzie osi glownych indykatrysy. Jeshi
analizujemy wlasciwosci optyczne w ukladzie jedno- lub trojsko$nym, to celowe
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jest uzycie macierzy orientacji b takiej, ze
Z
R =) b®Trb®
k

gdzie b = cos(r®, R)).
Ocen¢ zmian dn/dT za posrednictwem obu efektow przesledzimy na kilku
przykladach.

1. Dwojlomno$¢ antracenu

Zgodnie z konwencja wprowadzona przez Lasheena przyjmiemy, ze n, 1 n, leza
w plaszczyznie (010) oraz ze ns|lb. Macierze orientacji LMN wzgledem R; dla obu
temperatur (290 i1 95 K) podane sa w tab. 6.8. Dane strukturalne potrzebne do
obliczenia b zaczerpnigte zostaly z pracy Masona [54], dane optyczne z pracy
Lasheena (tab. 6.3). Stad dla wspoélczynnikéw temperaturowych katdéw FEulera,
liczonych wzgledem osi R;, otrzymujemy

AyR -3 A(pR -3 A‘QR -3 i -1
—— = —1,07-10 — = —6,18-10 —— = +2,11-107~ stopien-K
AT AT AT &

AP

—— = —12,1-10"3 stopien-K!

AT

Tabela 68

Macierze orientacji osi LMN czasteczki antracenu i katy Eulera wzgledem osi indykatrysy R,, R,, R;

T ature . . .. Katy E ¢ ien
emperatura, Mixglers: melbsadi ity Eulera, stopien
K AR Pr Sx ¢ = ¥(ny, q)

( —09918 —0,0840 —0,1274
b=

290 01112 04331 —08944 | [ 188,105 3974 115,383 — 59,64
00626 —09013 —04287
—0,9910 —0,0284 —0,1311

95 b= 0,1063 04291 -—08970 | | 188314 5178 114972 —57,28
0,0818 —0,9028 — 04222

W dalszym ciagu wobec

Z=2 o Foy+ay =19,7-107° K1
0o = 1,026 g-cm ™3 M =178,2 g -mol !
otrzymujemy wspolczynniki temperaturowe #;
Anl _ Anz _ An3 _ _
—— = -2687-10"73 — = —12,16-107° — = —22,68-1075 K!
T AT AT
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Uwzgledniajac, ze dwdjlomnosé w plaszczyznie tupliwosci [plaszczyznie (001)]
antracenu wynosi :
B3a =Nn3—Mn,

gdzie
n, = (ny 2cos2 @-+n; 2sin? )~ 112

otrzymujemy temperaturowy wspélczynnik dwojlomnosci

4B;,

= —251075 K™
AT

Porownanie wynikéw obliczenn z danymi doswiadczalnymi przedstawione jest w
tab. 6.9. Okazuje si¢, ze obliczenia oddaja w prawidlowy sposob zaréwno rzad
wielkosci, jak i kierunek zmian dwojtlomno$ci antracenu w plaszezyznie (001).
Nieco mniejsza warto$¢ wspoélczynnika obliczonego w pordéwnaniu z wartoscia
do$wiadczalng tlumaczy sie — przynajmniej czeSciowo — faktem, Zze pochodne
katéw Eulera maleja wraz z obnizeniem temperatury. Uzyte w obliczeniach
wartosci $rednie sa wiec mniejsze od ,lokalnych” w poblizu temp. 300 K.

Tabela 69

Poréwnanie wynikow obliczen temperaturowej funkcji dwojlomnosci krysztalu
antracenu z wartoSciami do$wiadczalnymi [(dB/dT)-10°, K~ ']

dB;,/dT dB,,/dT dB,3/dT dB,3/dT
Soltzberg [55] -512 - - —
Kusto [56] —438 = - -
Obliczenia —25 —14,7 —42 —105

2. Dwéjlomnos$é antrachinonu

Problem wplywu temperatury na wlasciwosci optyczne antrachinonu postawi-
my odwrotnie: na- podstawie znajomosci macierzy osi LMN czasteczki w kilku
temperaturach (Lonsdale 1 in., tab. 8.5) oraz znajomosci tensora refrakcji czgsteczki
r (Lasheen i1 in, tab. 6.3) nalezy przewidzie¢ wplyw temperatury na glowne
wspotczynniki refrakcii.

Tabela 6.10

Zaleinosci gléwnych wspélczynnikéw refrakeji n; i dwéjlomnodei B,
krysztalu antrachinonu od' temperatury

T K ny ny ns3 By B, B;;

293,8| 1,8552 1,7168 1,5012 0,3540 0,1384 0,2156
260,8 | 1,8807 1,7233 1,4895 0,3912 0,1574 0,2338
201 1,9015 1,7339 1,4896 0,4119 0,1676 0,2443
161 1,9155 1,7412 1,4899 0,4256 0,1743 0,2513
103 19354 1,7515 1,4913 0,4441 0,1839 0,2602
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Wyniki obliczenn uzyskane przez zastosowanie podanych juz zwiazkow zesta-
wione sa w tab. 6.10 obok wartosci dwojtomnosci. Okazuje sig, ze najsilniej zalezy
od temperatury n,, nastepnie n, (rys. 6.19); w zakresie temp. 100-260 K zaleznos¢
ta ma charakter liniowy. W tym zakresie n, jest staly, wzrasta w temperaturze
wyzszej od 260 K. W zwiazku z tym rowniez dwoédjtomnos¢ krysztalu w gtownych
plaszczyznach optycznych zmienia si¢ liniowo z temperatura {rys. 6.20). We
wszystkich trzech plaszczyznach B maleje ze wzrostem temperatury, jak to wskazu-
ja $rednie wspdlczynniki temperaturowe

dB,;

dB13 dB]_z -5 —i5 ""1
— —188-10 — — 234 1P K
dT T dT

= —331:107°

Wynika z tego, ze zmiany katéw Eulera, wspdlczynnikéw refrakcji oraz dwoéjto-
‘mnosci z temperatura sa w antrachinonie znacznie silniejsze niz w krysztale
antracenu. Zapewne jakies znaczenie ma tu fakt, Ze antrachinon jest substancja
znacznie latwiej sublimujaca niz antrancen; winno si¢ to przejawia¢ w silniejszej

N3 Nz M

1501 1,80}1,95 xJ

145175 |- 1,90 2= \

140L 17001 1,85 A3
100 150 200 250 300

Rys. 6.19. Przewidywana zaleznosé wspoélczynnikow refrakcji antrachinonu od temperatury

0,45

13 \
8 \\

0,60 —
035 \

0,30
0,20
By [ |
\..
0,15 \\.\
N
0,10
100 150 200 250 300
T, K

Rys. 6.20. Przewidywana zalezno$é¢ dwojlomnoscei antrachinonu od temperatury
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anharmoniczno$ci dynamiki sieci krysztalu antrachinonu. O ile nam wiadomo,
pomiaréw optycznych dla krysztalu antrachinonu w roéznych temperaturach nie
wykonano.

3. Dwojlomno$é karbazolu -

Do szczegélnie interesujacych i prostszych w interpretacji struktur krystali-
cznych naleza takie, w ktorych plaszczyzna symetrii czasteczki pokrywa si¢ z
ptaszczyzna symetrii krysztalu. Przykladem moze byé cytowany juz karbazol,
ktérego strukture zbadali Kurahashi i in. [57] oraz fluoren, zbadany przez Burnsa
i Iballa [58]. Obie struktury sa bardzo do siebie podobne. W karbazolu zwierciad-
lana plaszczyzna symetrii krysztalu przechodzi przez atom N czasteczki i jest
prostopadia do jej wlasnej plaszczyzny (rys. 6.21). Z pominigciem atomu wodoru
czasteczka jest ptaska w granicach +0,003 nm; dokladniejsza analiza wykazuje, Ze
oba pierscienie benzenowe tworza kat 1,63°. W ciele stalym nie ma wiazan
wodorowych typu N—H--N, na co wskazuje zar6wno duza odleglos¢ I = 0,389
nm, jak i wystgpowanie przeszkdd sterycznych. Rozklad czasteczek w komodrce
elementarnej przedstawiony jest schematycznie na rys. 6.22. Oba zwiazki krystali-

m(010)

Rys. 6.21. Plaszczyzna czasteczki karbazolu jest prostopadla do zwierciadlanej plaszczyzny symetrii m .
krysztatu

N :
C§ \/1 '3 1 3
| |
_____ i R R
b s od
5 _iN7/1<%> 5 2<%>/<le ;
e |
R | N L]
1 [/;4/
s | s AN 5
° L AN
2:(3) 2,(3)

Rys. 6.22. Schemat rozkiadu osi symetrii LMN czasteczek karbazolu w komorce elementarnej
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_ zuja w tej samej grupie przestrzennej Pnma. Kat zawarty miedzy osia a i
plaszczyzng czasteczek (6 na rys. 6.22) wynosi w fluorenie 55,2°, w karbazolu 61,0°.
Interesujace w obu strukturach jest to, ze nakrywanie sie plaszczyzn symetrii
czqsteczki 1 krysztalu narzucone jest regulami symetrii, wobec czego nie moZe
ulegaé zmianie przy ochlodzeniu lub ogrzaniu krysztalu. Innymi stowy, w catym
zakresie temperatur, w ktérym ani grupa przestrzenna, ani konformacja czasteczki
nie ulegaja zmianie, Srednie w czasie polozenie normalnej N do ptaszczyzny
czasteczki oraz osi M musi leze¢ w plaszczyznie (010). Oznacza to, ze anharmoni-
czno$¢ drgan czasteczki wokdt N oraz M nie moze prowadzi¢ do zmiany katowe-
go polozenia czasteczki; ten warunek moze by¢ spetniony wtedy, gdy odpowiednie
krzywe energii potencjalnej sa symetryczne. W takim przypadku mamy w jednym
krysztale dwa typy krzywych energii potencjainej: asymetryczng dla libracji wokot
osi L, przy czym temu ruchowi towarzyszy katowe przemieszczanie czasteczki przy
zmianie temperatury, oraz krzywe symetryczne dla pozostatych osi libracji. Krysz-
taly te przedstawiaja wiec problem ,jednoparametrowy”: od temperatury moze
zalezeé tylko kat 6.

Zanalizujmy nieco blizej wptyw temperatury na wlasciwosci optyczne krysztatu
karbazolu; fluoren badany byl nieco innag metodg w pracy [59]. Wspotczynniki
rozszerzalno$ci termicznej [60] i refrakcji karbazolu wynosza

o, = 122-107¢ &, = 55-107° o0, =46-10"6 K~!
1, = 1,560 n, = 2,057 n, = 1,726

a parametry komorki elementarnej przy obsadzeniu czterema czasteczkami sa
nastepujace:

a = 0,7772(5) b =1,9182(10) ¢ =0,5725(5) nm

Dla grupy Pnma wybieramy jako operatory symetrii naste¢pujace macierze:
A;=(100010/001 A,=(100/010/00T)
A;=(100010/001 - A,=(100/010001)

Jesli przez h oznaczymy kosinus kata zawartego miedzy normalna N i krystalogra-
ficzna osig ¢, to dla karbazolu

h =cos(N, c¢) = 0,4818

a macierz ¢ orientacji LMN w abc przyjmie ogdlna postaé

0 —h —(1—h)\2
ch=11 0 0 (6.92)
0 —(1—hH12 h

Wobec tego dla refrakcji R komorki elementarnej otrzymujemy ogdlny wynik
R=>c¥re®T =4 r (6.93)
¢ g (1= h?)+ry h?
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Z tych zwiazkOw 1 przy znajomosci n; mozemy obliczy¢ w znany sposob refrakcje
czasteczki rp, ry, ry. Zrozniczkowanie (6.93) wzgledem temperatury prowadzi do
zalezno$ci ' :

dR, dh

iT = 811(;'M—rN)ﬁ

— =0 6.94
o7 (6.94)
dR, dh

iT _8h(rM"rN)ﬁ

W krysztale karbazolu (réwniez fluorenu) sytuacja jest wyjatkowo korzystna:
plytki hodowane z roztworu lub stanu pary rosna chetnie w plaszczyznie (010).
Wilasnie w tej plaszczyznie efekty wynikajace z réwnan (6.94) sumuja sie, wobec
czego dwodjlomnos¢ plytki o takiej orientacji najsilniej zalezy od temperaiury.
Pomiary wykonane w pracy [51] prowadza do wyniku

dB d - =
R ) = ~831107° K

W rownaniach (6.94) mamy wszystkie informacje procz dh/dT. Wspolczynnik ten
odpowiada malemu obrotowi A4, czasteczki wokol osi L; po podstawieniu otrzy-
mujemy

(4)p = —2,7-1073 stopien-K !

Wynik ten zupelnie dobrze koreluje z przewidywaniami modelu sztywnej skrzynki
(rozdz. 8)

(4)rem = —1,9-1072 stopien - K ™!

Oczywiscie, ze wzgledu na szczegélne polozenie czasteczki jest takze
AM = AN = 0

Wyniki tu uzyskane zestawione sa w tab. 8.9 (rozdz. 8).

Przedstawione tu rezultaty wskazuja, Zze zmiany wspolczynnikow refrakcji
przypadajace na 1 K wynosza przecigtnie kilka dziesigciotysiecznych. Znaczna
cze$¢ tych efektéw mozemy przypisa¢ niewielkim zmianom orientacji czasteczek,
jakie wynikaja z anharmonicznoéci ruchow libracyjnych. Jesli opisaé te zmiany za
pomoca roznicy macierzy orientacji LMN w dwoch réznych temperaturach, to
wynikajace stad zmiany potozen katowych czasteczki sa rzedu 1072 stopien-K ™!,
czyli kilku sekund katowych na 1 K. Pewien udzial we wspotczynniku dn;/dT ma
rowniez zmiana gestosci krysztalu w kierunku normalnym do plytki, reprezento-
wana drugim czlonem w rown. (6.87). Na przyklad pltytka (010) karbazolu o
grubosci dy = 7,4-10* nm wykazuje w temperaturze pokojowej (20°C) roznice drog
o wielkosci 'y =12284 nm. Wspolczynnik temperaturowy, mierzony metoda
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kompensacyjna [13], jest staly w zakresie temperatury 20 < T < 156°C i wynosi

dr
( ) = -548 nm-K™!
dT eksp

Poniewaz o, = 55-107% K1, pierwszy czton réwn. (6.87) ma warto$¢ —7,4-1073
K™% a drugi —091-107° K~!. Na przykladzie karbazolu widzimy, Ze wplyw
zmiany grubosci ptytki dochodzi do 12%, ogdlnej zmiany anizotropii optycznej
pltytki i nie powienien by¢ zaniedbywany. Efekt ten ma oczywiscie niewielkie
znaczenie w pomiarach anizotropii magnetycznej, ktorych doktadnosé jest znacznie
mniejsza.

6.6. Problemy

ProsLEm 6.6.1

Wychodzac z polaryzowalnosci swobodnej czasteczki naftalenu, ob'liczyé meto-
da kolejnych przyblizen uzgodnione skladowe o oraz @ (kat ny, Xy w krysztale
jednoskosnym (P2,/a).

Skiadowe tensora polaryzowalnosci o!® swobodnej czasteczki naftalenu moze-
my obliczy¢, korzystajac z anizotropowych inkrementéw atomowych, podanych
przez Le Févre’a (tab. 6.11). Skladamy je wedlug zasady dodawania wielkosci
tensorowych, przy czym kierunki wiazan C—C wystarczy wybrac takie, jak w
regularnym szescioboku. Otrzymujemy

21,8
! = 19,6 ‘1074° F-m?
129

Z o' oraz orientacji LMN w abc* (tab. 5.2 w rozdz. 5) mozemy obliczyé tensor
polaryzowalnosci komorki elementarnej. W krysztale jednosko$nym przy Z = 2

2 (0 0
Ci1 a} ) 0 ¢aias °‘§ )
9 (abc*) = 2 0 e al® 0
(0 2 (0)
Ci3 Ciy & 0 Ciz &;

Tabela 6.11

Inkrementy polaryzowalnosci pary zwiazanych
atoméw wedlig Le Févre'a [17] (b-10*°, F-m?)

Para atomow b, b, b,
C-H 0,71 0,71 0,71
C—-C 1,10 0,30 0,30

Coy—Car 2,49 023 0,66
C—Ci 4,68 2,15 1,65

by — polaryzowalno$¢ wzdiuz wiazania, b, — prostopadle

do wiazania, lecz w plaszczyinie czasteczki, b, — prostopadle

do wigzania i plaszczyzny czasteczki.
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Z kolei obliczamy zerowe przyblizenie ¢ ze zwiazku

1 aryy
¢0 = Earc tg <m (695)

co umozliwia diagonalizacj¢ I'? (abc*) macierza
“cos®, O sin®,
a= ( 0 1 0

—sin®, 0 cos P,

Piszac teraz trzy rownania Rousseta

w ktérych dla ukladu jednoskosnego
V. = abcsin

mozemy obliczyé wspdlezynniki refrakcji, odpowiadajace zerowemu przyblizeniu I’

1 P
1/2
o - (L2
: 1—2b,

Punktem wyjScia w pierwszym przyblizeniu sa doswiadczalne warto$ci n; oraz
®@,. Obliczamy z nich I'V(abc*), a stad of* i &,. Postepowanie to prowadzi do
wynikéw przedstawionych w tab. 6.12, ktore wskazuja, Zze metoda jest szybko
zbiezna.

ProBLEM 6.6.2
Analiza wlasciwosci optycznych gipsu, CaSO,-2H,0

Krysztal, ktérego strukture zbadano metoda dyfrakcji neutronow [61], ma
symetri¢ grupy przestrzennej I2/a. Jednoskos$na komorka elementarna o parame-
trach a = 0,5680(8), b = 1,5180(9), ¢ = 0,6520(8) nm, B = 118,38(33), zawiera cztery
jednostki o skladzie CaSO, -2H,0. Jony Ca?* i SOZ~ zajmuja polozenia szczegol-
ne o symetrii C,. Wydaje sig, iz jony SO2™ nie majg symetrii T;, odpowiadajacej
im w stanie swobodnym. Odstgpstwa od pelnej symetrii nie sa jednak duze i
mozemy uznad, Ze zaréwno jony Ca** jak i SO2~ maja symetrie wystarczajaca, by
ich polaryzowalnoé¢ uwazaé za izotropowa. Czasteczki wody maja oczywiscie
nizsza symetrig. Atomy tlenu zajmuja polozenia ogdlne o symetrii C,, natomiast
szesnascie atomow wodoru nalezy do dwoch nieréwnowaznych zbiordéw, o symetrii
wezla rowniez C,. Ta sytuacja dopuszcza wystapienie niewielkiej asymetrii cza-
steczki, polegajacej na tym, ze dtugosci obu wigzan, O—H' i O—H? troche si¢
roznia.
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Tabela 6.12
Wyniki obliczer polaryzowalnosci czasteczek metody l\olejnych
przyblizen

Przybli-

L7 a-10*°, F-m? n(obl) |n(dosw)| &
Zenie

A. Krysztal naftalenu

(V)] 218 1,5083
19,6 1,6602
i 12,9 18710 22,24

(1) 232 1,5228
20,1 1,7220
| 132 )| 1.9484 22,62

@ |[ 21 15250 | 1,525
20,1 17220 | 1,722
| 133 || 19450 | 1945 | 2262

‘B. Krysztal antracenu

o || 311 1,5224
26,7 1.7262
L 17,6 19767 27,68

(n 30,6 1,5606
28,4 1,7860
L 186 || 19526 27,12

2 30,7 1,5559 1,556
284 1,7860 1,786 )
L 18,4 1.9593 1,959 27,14

Zasadnicza rola czasteczek wody w anizotropii optycznej wynika na pierwszy
rzut oka z rys. 1.9, przedstawiajacego rzut struktury na plaszczyzne (010). Nanie-
sione linia przerywana glowne kierunki indykatrysy 4.B. i O.B. sa odpowiednio
rownolegle i prostopadle do kierunkéw OH na tej plaszczyznie [62]. Przyjmiemy
wiec w dalszym ciagu, ze ten fakt stanowi gtowna przyczyne anizotropii optycznej
krysztatu i sprobujemy obliczy¢ a czasteczki wody oraz ocenié izotropowa sume
polaryzowalnosci «;, obu jonoéw [62].

Krysztal jest optycznie dwuosiowy, dodatni. Wspolczynmkl refrakcji dla 4
= 589 nm maja nastgpujace wartosci [63]:

n, = 1,5299 n, = 1,5230 n, = 1,5207

Os n, indykatrysy jest rownoleglta do osi b krysztalu, zas n,||4.B. i n,||O0.B.
Orientacje tych osi wzgledem a, b, ¢ (uktad jednosko$ny) podaja trzy wektory
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jednostkowe R; (tab. 6.13). W tej tabeli podane sa rowniez orientacje osi symetrii r;

_czasteczki wody. Z tych danych wynika, Zze r, R; = 0,0443 oraz r, R, = 0,9724,
czyli normalna do plaszczyzny czasteczki wody jest prawie rownolegla do jednej z
osi indykatrysy i prawie prostopadia do drugiej w plaszczyznie (010). Jony SO2~
wystepuja wzdhuz kierunkéw optycznych naprzemiennie, co eliminuje ich ewen-
tualng staba anizotropig.

Tabela 6.13

Molekularne () i optyczne (R) wektory jednostkowe
w ukladzie jednoskosnym abc krysztalu gipsu [62] (i, j,
k s3 wektorami jednostkowymi w kierunku odpowiednio

a, b, ¢
* M = 0,6262i+0,7782j—0,0038k
H = 0,7908i—0,2288j+ 1,0567k
M) = —0,5376i+0,5676j+ 0,4184k
R, = 08311 ~0,2871k
R, = 0,7753i +1,0997k
Ry = lj

Rachunek mozna wykonaé¢ metoda kolejnych przyblizen. Niech punktem wyjs-
cia bedzie tensor polaryzowalnosci czasteczki swobodnej o, obliczony przez
Liebmanna i Moskowitza [64] i podany w tab. 6.14. Otrzymany stad tensor
polaryzowalnosci komorki elementarnej I” (R, R, R;) w optycznym ukladzie od-
niesienia ma skladowe w zerowym przyblizeniu

1,730
T =8 1,380 ‘107*° F-m?
1,703

poniewaz Z = 8. Jedli teraz przez N'® ozh_a'czymy udziat (w zerowym przyblizeniu)
podsieci wody we wspélczynnikach refrakcji, a przez 4{ izotropowy udzial jonow,*
to w mysl zasady addytywnosci mozemy napisaé .-

A9 = p;— N© (6.96)

Kolejne przyblizenie, k-te, uwazaé bedziemy za dobre wtedy, gdy 4% okaza si¢
liczbami - jednakowymi dla i=1,2,3. Korzystajac z rownan w problemie 6.6.1,

Tabela 6.14

"~ Teorétyczne i eksperymentalne wartosci polaryzowalnosci
. czgsteczki wody (x:10*°, F-m?)

o ay | @y | ) .. Literatura

1.422 ] 1,189 [ 1,292 | 1,301 | Arrighini 1 in. [65]

1,836 11,363 | 1,614| 1,604 | Liebmann, Moskowitz [64]
- | .= — (1,61 | Landolt-Bornstein [63]

1,598 1 1,592 | 1,619 | 1,603 | Rohleder [62]
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otrzymujemy
N = 1,2073 N = 1,1676 N =1,2031
49 = 0,3266 4P = 0,3554 49 =0,3176

Widzimy, Ze A nie ma stalej wartosci, wobec czego jako parametr nastgpnego
przyblizenia przyjmujemy

{49y = 0,3332
Po powtérzeniu rachunku juz w nastgpnym przyblizeniu okazuje sig, ze
AP = AP = AP = 0,3319

Uzyskane przez rozwigzanie ukladu réwnan liniowych polaryzowalnosci czasteczki
wody podane sa w ostatnim wierszu tab. 6.14. Okazuje si¢, Ze anizotropia
optyczna czasteczki wody jest bardzo niewielka, co uzasadnia staba dwojtomnosc¢
krysztatu. Dla pozostalej czesci wspolczynnika refrakcji <4¥> mozemy napisaé¢ w
przyblizeniu

2Dy + <A EN
n*y+2 3eq

gdzie
N, = (G abcsinp)™! =8,0873 nm ™3
Stad otrzymujemy
o, = 6,85-1074° F-m?

Poroéwnanie tego wyniku z dostgpnymi w literaturze danymi prowadzi do nastepu-
jacych wnioskow. Jesli dla polaryzowalnosci Ca?* przyjaé warto$¢ a
=0,63-10"*° F-m? obliczona przez Borna i Heisenberga z poprawki spektrosko-
powej w serii Rydberga—Ritza, za§ dla polaryzowalnoéci SO;~ warto$é a,

=4,23-107*° F-m? otrzymana przez Bottchera z pomiaréw gestosci i wspéiczyn-
nika refrakcji roztwordw siarczanu sodu [66], to otrzymamy lacznie

%, = 4,87-107%° F-m?

Wartoé¢ ta zupelnie dobrze zgadza sie z wynikiem dla krysztatlu gipsu.

PROBLEM 6.6.3

Rozwiazaé uklad réwnan (6.74), tj. znalezé zwigzek miedzy B, i P, przy
obsadzeniu komorki elementarnej dwiema czasteczkami.

Zaczniemy od przytoczenia analizy tego problemu, przedstawionej w pracy
[43]. Zastanawiajac si¢ nad wlasciwosciami uktadu rownan (6.74), autorzy cytowa-
nej pracy stwierdzaja, Ze nie ma on rozwigzan algebraicznych, poniewaz natezenia
pola lokalnego w dwéch punktach sieci, F, i F,, nie sa na ogél niezalezne od
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siebie. Oba te wektory mozemy wiec zwigza¢ z soba zaleznoscia
F, = QF, (6.97)

w ktorej Q jest pewna macierza. Nie znamy wprawdzie jej elementow, lecz zwiazek
powyzszy jest w stanie opisa¢ wszelkie zmiany wektora F przy przejsciu od punktu
1 do 2 w krysztale (zmiany dlugosci, kierunku i zwrotu).

Wprowadzmy wpierw zaleznos¢ (6.97) do obu rownan (6.74). Otrzymamy

Fy =My, B, F, +M;, B, QF,
QF, =M, B, F, +M,, B, QF;
Mozemy teraz wyeliminowac F,
1_M11 By =M, B,Q
Q=M;, B +M;,8,Q
a nastepnie Q. Prowadzi to do jednego rownania, zawierajacego B; i B,
My, Bz)_l (I_Mu By = (1 —M,, B,)" ! (M2, B1) (6.98)
Korzystajac z ogélnie stuszhej réwnosci
(A-By"'=B"tA"!
mozemy stopniowo przegrupowad czynniki
By My (1-M;, By) = (1 -M,, B) 7 (M, By)
My (1-M; ) =) (A -My, B) (M, By) =
= {(1 —M,, B,) B7 1} My, By) =
= {Bz_l —Mzz}_l(le B.)
Mnozac przez M;, a nastepnie przez B;’, otrzymamy
1—M11 B = Mlz(Bz—l —M,,) 7 (M, By)
a nastepnie
Br' =My + M, (B —My,) " My,

Macierz M ma wlasciwosci analogiczne do L, czyli M,; = M;,, M,, = M;;;
mozemy wigc bez trudnosci doprowadzi¢ ostatnia réwnos¢ do postaci (6.75)
jedynie przez wyboér odpowiednich wskaznikow.

Doktladnie takie samo rownanie (6.98) mozemy réwniez otrzymac bez wprowa-
dzania macierzy Q, przez zastosowanie zwyklej metody podstawienia: obliczamy
F, z pierwszego z dwoch rownan (6.74) 1 podstawiamy do drugiego. Otrzymujemy

F,=M;,B,) " (1-M,; B,)) F,

a nast¢pnie

(I_Mzz Bz)(MnBz)_l(l_Mu BI)FI = (M21 B1)F1
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Zakladajac, ze F, #0, otrzymamy po eliminacji i pomnozeniu  przez (1
~M,;, B, ' '

(M, Bz)_l'(l—Mu B) = (1-M,, )~ (M, By)

co dokladnie odpowiada rownaniu (6.98). .

Wydaje si¢ wiec, ze komentarz w pracy [43] odno$nie omawianego tu proble-
mu jest chybiony w tym sensie, ze zwiagzek (6.97), spelniony dla kazdej pary
wektoréw F,; i F,, w rzeczywistoéci nie przedstawia zadnej nowej informacji w
stosunku do uktadu réwnan (6.74). Z algebraicznego punktu widzenia fakt istnie-
nia zwiazku miedzy F, 1 F, nie stanowi przeszkody w rozwiazaniu obu réwnan
przez bezposrednie zastosowanie metody podstawienia i eliminacji pod warunkiem,
ze oba wektory majg dltugosci niezerowe. Istnienie takiego zwiazku miedzy F, i F,
jest niemal oczywiste: ,odpowiedz” ukladu w punkcie 2 na przylozone pole jest
wywolana przez takie same atomy, cho¢ w troche innej konfiguracji niz w punkcie
1. Aby te odpowiedzi pozna¢, trzeba jednak wpierw obliczy¢ $, i B,, a nastepnie
za ich pomoca F, i F,. Wtedy dopiero napisanie rown. (6.97) moze pozwoli¢ na
oceng zwiazku miedzy F, i F,. '
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7. ABSORPCJA KRYSZTALOW
W PODCZERWIENI

Wspolczesna spektroskopia jest jedna z najsilniej rozwinigtych metod ekspery-
mentalnych i obejmuje zaréwno wiele roznorodnych problemow naukowych, jak i
zastosowan praktycznych. Obszar zastosowan jest bardzo rozlegly nawet wowczas,
gdy termin ,spektroskopia” zawezimy do tak zwanej spektroskopii optycznej,
obejmujacej zjawiska wystepujace w zakresie dlugosci fal promieniowania elektro-
magnetycznego od 200 nm do 10° nm, tj. w zakresie liczb falowych od 50000
cm~ ! do 10 ecm™!. Tymczasem do spektroskopii zalicza sie dzi§ rowniez obserwa-
cje w zakresie mikrofalowym, a wigc i technike magnetycznego rezonansu jadrowe-
go i elektronowego rezonansu paramagnetycznego, a ostatnio rowniez spektrosko-
pi¢ Mdssbauera czy tez spekiroskopie rentgenowska. Znakomite przedstawienie
zastosowan szerokiego wachlarza metod spektroskopowych do badania ukladdéw
molekularnych znalez¢ mozna w monografi [1]. Procz zagadnien klasycznej
spektroskopii molekularnej opisano tam roéwniez zastosowania spektroskopii
mdossbauerowskiej do okreslania charakteru wigzan chemicznych, a takze spektro-
skopi¢ korelacyjna, zajmujaca si¢ analiza ksztaltu pasm absorpcyjnych.

Najogodlniej rzecz biorac, klasyczna spektroskopia polega na badaniu wiqzki
promieniowania, ktéra przeszla przez okreslonq warstwe materiatu chemicznie i
fizycznie jednorodnego. Interesuja nas takie cechy tej wiazki, jak jej natgzenie i stan
polaryzacji, a niekiedy rowniez sktad spektralny. Informacje, jakie z tych danych
potrafimy odczyta¢, dotycza w pierwszym rzedzie energii stanéw wzbudzonych
poszczegdlnych czasteczek lub calego krysztatu. Dalej, mozemy okresli¢ prawdopo-
dobienistwo przejScia miedzy stanem podstawowym i wzbudzonym, kierunek mo-
mentu przej$cia w czasteczce lub w krysztale. Badania te informuja nas rowniez o
wielkosci sil dzialajqcych miedzy okreslonq parq atoméw przy rozcigganiu laczacego
je wiazania chemicznego, a takze o naturze i wielkosci oddzialywan migdzyczastecz-
kowych w fazie skondensowanej. Badania potprzewodnikéw metodami spektro-
skopii stuza miedzy innymi do okreslania dyskretnych poziomoéw energetycznych,
pojawiajacych sie w wyniku wprowadzenia atomoéw domieszki do sieci macierzy-
stej pierwiastka. Zastosowania analityczne nalezy zaliczy¢ do zadan praktycznych
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spektroskopii: nalezy do nich jakosciowe i ilosciowe okreslanie sktadu mieszanin,
w tym rowniez wazny problem okre§lenia stopnia czystosci substancji.

W ninigjszym rozdziale bedziemy si¢ zajmowaé spektroskopia tylko w takim
aspekcie, w jakim metoda ta jest uzytecznym narz¢dziem badania struktury materii
— w mniejszym stopniu samej czasteczki niz krysztalu. Bedziemy rozwazaé tylko
problemy zwigzane z drganiami wewnetrznymi czasteczki. Obszerne zestawienie
literatury tego przedmiotu z lat 1965-1971 zawiera artykul przegiadowy Szostak
[2]. Poza tym polozymy akcent na przedstawienie problemow charakterystycznych
dla bliskiej podczerwieni, obejmujacej wystepowanie tak zwanych nadtonow i
tonow zilozonych. Powodéw takiego wyboru jest kilka.

Przede wszystkim trzeba zauwazy¢, Ze ten zakres spektroskopii jest znakomicie
przystosowany do badania ciata stalego. Absorpcja w zakresie nadtonow jest
bowiem od 100 do 1000 razy stabsza od absorpcji w zakresie przejsé¢ podstawowych,
wobec czego najdogodniejsze do badan grubosci ptytek od 0,2 do 2 mm mozna
fatwo uzyska¢ z hodowanych réznymi metodami monokrysztalow. Otrzymane dla
takich prébek rezultaty sa zwykle pod wzgledem fotometrycznym o wiele doktad-
niejsze niz w innych zakresach podczerwieni. Dalsza okoliczno$cia sprzyjajaca jest
podjecie farbrycznej budowy spektrofotometréw na zakres bliskiej podczerwieni
(NIR, Carl Zeiss, Jena). Nie bez znaczenia jest rowniez fakt, ze obszar czestosci
podstawowych doczekatl si¢ licznych 1 znakomitych opracowan monograficznych,
ktorych kilka zostato zamieszczonych w spisie literatury przy koncu tego rozdzia-
tu. Znacznie slabiej natomiast reprezentowany jest w piSmiennictwie, zwlaszcza
polskim, zakres bliskiej podczerwieni [2]. Problemy eksperymentalne, zwiazane z
przygotowaniem probek, cechowaniem spektrofotometru pod wzglgdem skali cze-
stosci lub skali fotometrycznej itd., sa w spektroskopii wspdlne. Wobec licznych
opracowan (zob. np. [3]) nie beda tu poruszane.

7.1. Absorpcja w podczerwieni czasteczki swobodnej

Widmo absorpcyjne czasteczki swobodnej, zwiazane z przejSciami migdzy
stanami rotacyjnymi i oscylacyjnymi nalezacymi do podstawowego stanu elektro-
nowego, wystepuje w zakresie od 10000 cm™! do 100 cm™!. Rownanie
Schrédingera, opisujace wzgledny ruch atoméw czasteczki, zalezy jedynie od
wspolrzednych jader atomow — wspblrzedne elektrondéw wystepuja w wyrazeniu
na energi¢ potencjalng. Uwazamy zwykle, ze konfiguracja elektronéw w przejsciu
oscylacyjnym jest ustalona i odpowiada stanowi podstawowemu.

Widmo absorpcyjne sklada si¢ z wielu lepiej lub gorzej rozdzielonych pasm
absorpcyjnych, okreslanych za pomoca dwéch wielkosci:

1) czestosci w maksimum pasma; jest ona zdeterminowana przez mechanike
ruchu atomow czasteczki, w szczegolnoSci przez masy poruszajacych si¢ atomow i
wspélczynniki liniowych sit sprezystych, dzialajacych miedzy nimi;

2) natezenia pasma; jest ono wyznaczone przez elektryczne wlasciwosci cza-
steczki, zwlaszcza przez moment dipolowy, a niekiedy przez wielkosé oddziatywa-
nia momentu elektrycznego i magnetycznego.
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Do opisu czestosci drgan czasteczki dwuatomowej mozna przyja¢ w najprost-
szym przypadku model oscylatora harmonicznego. W modelu tym uwaza sig, ze
na atom, wychylony z potozenia rownowagi o odcinek x, dziata sila

F = —kx (7.1)

zwana liniowa sila sprezysta; k jest jej wspoOlczynnikiem. Energid potencjalna
przesunigtego atomu jest proporcjonalna do kwadratu przesunigcia

V =4kx? (7.2)

Model ten opisuje tak zwane drgania podstawowe, tj. odpowiadajace jednokwan-
towemu przejsciu miedzy stanem podstawowym i wzbudzonym stanem oscylacyj-
nym. Nie obejmuje innych, obserwowanych w do§wiadczeniu przejs¢ spektralnych,
dla ktorych zmiany liczby kwantowej sa wigksze od jednosci (nadtony) lub w
ktérych wzbudza sig w'cz_zgsteczce- wiecej niz jedno drganie podstawowe (tony
zlozone). Dla wyjasnienia takich przej$¢ trzeba przyjaé, ze energia potencjalna jest
bardziej zlozong funkcja wspolrzednych niz funkcja (7.2). Funkcje taka przedstawia
si¢ zwykle w postaci rozwiniecia V w szereg wzgledem malych przesunie¢ g, k
=1,2, : ’

v 1

>V
e vr 2 () (L) e
o Zk: 04y Jo * 2!;_ 0q, 0, ) K
1 ( >V

31 T \ 84 0, O et e .y
+3 ! k.lm ‘aqk aCIl aqm >0 qk qlq ( )

W rozwinieciu (7.3) mozemy pomina¢ pierwszy czlon, definiujac odpowiednio
polozenie zera na skali energii. Czlon drugi obligatoryjnie réwny jest zeru,
poniewaz w stanie roOwnowagi sita wypadkowa, dzialajaca na atomy, jest rowna
zeru. Trzeci czlon jest uogdlnieniem zaleznosci (7.2), a czwarty i nastgpne opisuja
odstepstwo krzywej energii potencjalnej oscylatora rzeczywistego od ksztattu para-
bolicznego. Czlony te sa odpowiedzialne za wystgpowanie tak zwanej anharmoni-
cznosci mechanicznej, prowadzacej do pojawienia sig¢ nadtonéw i tondw zlozonych.
Zalezno$é (7.3) energii potencjalnej od wspotrzednych mozemy interpretowaé w ten
sposob, ze sila, dzialajgca w oscylatorze rzeczywistym, nie ma charakteru Scisle
liniowego.

Istnieje jeszcze drugi powdd, dla ktérego czasteczka rzeczywista zachowuje si¢
odmiennie od prostego modelu oscylatora harmonicznego. Jak wiadomo, zupelnie
ogblnym warunkiem dopuszczajacym pojawienie sig przejscia dipolowego miedzy
stanami opisywanymi funkcjami falowymi ; 1 ; jest nieznikanie catki

P; = (yF My;dxdydz (7.4)

przynajmniej dla jednej skladowej M [4]. Jesli ograniczymy si¢ do przejs¢ absorp-
cyjnych, to M jest operatorem momentu dipolowego czasteczki. We wspotrzednych
kartezjanskich ‘

M = Zek Vk (75)
k
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przy czym r, okreS$laja polozenia wszystkich tadunkow e, (elektrony i jadra), z
ktorych zbudowana jest czasteczka. W przejsciu .oscylacyinym M ulega zmianie, to
znaczy $redni w czasie moment dipolowy w stanie wzbudzonym jest inny niz w
stanie podstawowym. Jesli wychylenia jader z polozenia réwnowagi sg niewielkie,
to M mozna rozwinal w szereg Taylora wzgledem wspotrzednych. Rozwiniecia
takiego dokonuje sig¢ najczesciej wzgledem wspolrzednych normalnych &, dla
ktorych energia potencjalna (7.2) jest forma kwadratowa. Dla takich wspotrzed-
nych rozwinigcie ma postac

oM i M\
M—1W0+Z a Cl+ e )ngm-f—
il 'l.m

Ogl Og m

1 *M S e

gy L}ZM (a———a T >g15mc,,+ (7.6)
Podstawienie rown. (7.6) do wyrazenia (7.4) prowadzi do sumy pewnej liczby
wyrazow zaleznie od tego, w ktérym miejscu zakonczymy szereg (7.6). Pierwszy
wyraz tej sumy, zawierajacy M, decyduje o natezeniu przejscia czysto rotacyjne-
go; dla przejs¢ oscylacyjnych réwny jest zeru wobec ortogonalnosci funkcji
falowych oscylatora harmonicznego. Drugi wyraz okre$la natgzenie przejscia oscy-
lacyjnego w przyblizeniu harmonicznym. Warunkiem niezerowej absorpcji, P;; # 0,
jest zmiana momentu dipolowego przynajmniej wzdluz jednej ze wspolrzednych nor-
malnych. Sa to przejscia tzw. podstawowe, wystepujace w zakresie od 100 do 3500
cm”!. Czlony trzeci i dalsze, $wiadczace o ,.elektrycznej” anharmonicznosci oscyla-
tora, prowadza do powstania nadtondéw i tondéw zlozonych i to w sposob
niezalezny od wyst¢gpowania anharmonicznosci mechaniczne;.

Liczbowe okreslenie nateZzenia przejscia absorpcyjnego na podstawie rown. (7.4) -
wymaga znajomosci funkcji falowych stanu podstawowego i stanéw wzbudzonych,
a nadto takich trudno dostepnych szczegoléw budowy czasteczki, jak ksztalt
krzywej energii potencjalnej wzdluz kazdej wspotrzednej normalnej, potrzebny do
okreslenia wspblczynnikéw w réwn. (7.6). W rezultacie procedura rachunkowa
zmierzajaca do obliczenia bezwzglednej wartosci prawdopodobienstwa przejscia
jest niezwykle skomplikowana nawet dla czasteczki swobodnej i moze by¢ uzyta
tylko w najprostszych przypadkach.

Istnieje o wiele prostszy sposéb skorzystania z rown. (74), polegajacy na
zastosowaniu zasad symetrii. Trzeba jednak od razu powiedzie¢, ze wyniki uzyska-
ne ta droga sprowadzaja si¢ do wartosci P;; réwnej O lub 1 — nie mozemy
otrzymaé wartoéci posrednich. Nie wdajac sie tu w szczegodly zastosowania teorii
grup w spektroskopii czasteczki, ktore Czytelnik moze znalezé w licznych, poswie-
conych tym zagadnieniom monografiach (zob. [1-10]), zasade postegpowama mo-
zna stresci¢ w nastgpujacy sposob.

Przypusémy, Ze interesuje nas czasteczka o okreslonej konfiguracji jader w
stanie rOwnowagi mechanicznej, tzn. gdy nie wykonuje Zadnych drgan i gdy nie
dzialaja na nia zadne sily. Konfiguracja ta zawsze nalezy do jakiejs grupy punkto-
wej, sktadajacej sie z operacji symetrii R, R;, ..., R, takich, ze konfiguracja
réwnowagowa czasteczki jest ich niezmiennikiem. Rowniez kwadraty modutéw
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funkcji falowych muszq byé niezmiennicze wzgledem operacji symetrii tej grupy.
W takim razie dla kazdej funkcji falowej ;, bedacej rozwiazaniem réwnania
Schrédingera dla tej czasteczki, mozemy napisac

R, (¥ ) = e (i ) (7.7)
przy czym — jesli ¥; jest unormowana i opisuje niezdegenerowany stan czasteczki
— musi by¢

g =1 , (7.8)

Sama funkcja falowa spelnia zatem zwiazek

Ry ‘//i = iwi (7‘9)

dla wszystkich operacji grupy, k=1, 2, ..., h

Wynika z tego, ze rezultat dzialania kazdej operacji symetrii na funkcje falowq,
opisujacq niezdegenerowany stan czqsteczki, mozna przedstawié¢ liczbg +1 lub —1.
Dla funkcji stanu zdegenerowanego wynikiem dzialania R, moze by¢ 2 (stan
dwukrotnie zdegenerowany) lub 3 (degeneracja trdjkrotna), a takze liczba urojona.
Zbior tych liczb, zwanych charakterami poszczegélnych operacji R,, nosi nazwe
reprezentacji stanu. W zbiorze operacji symetrii, stanowiacym grupe, znajduje si¢
zawsze operacja tozsamosciowa, oznaczana przez E. Jesli wynikiem dzialania E na
funkcje falowa jest charakter +1, to odpowiednia reprezentacje nazywa si¢ jedno-
wymiarowa. Jesli wynikiem jest 2, to reprezentacja jest dwuwymiarowa. W kazdym
przypadku jedna z reprezentacji sklada si¢ calkowicie z liczb +1 i nosi nazwe
reprezentacji pelnosymetryczne;.

Rowniez wektorom, przesunigciom i obrotom odpowiadajg reprezentacje. Jesli na
przyklad jako operacje symetrii wybierzemy trzy plaszczyzny odbicia, prostopadle
odpowiednio do osi x, y, z, to zachowanie si¢ skladowej x wektora przesuniecia
wzgledem tych operacji mozemy opisa¢ charakterami —1, +1, +1; lacznie z +1
dla operacji identycznosci E zbidr tych liczb stanowi fragment jednej z reprezenta-
cji grupy punktowej D,, lub C,,. Postepujac wedle tej umowy mozna wszystkim
trzem czynnikom w rown. (7.4) przypisa¢ reprezentacje. Warunek nieznikania calki
mozna wowczas przedstawi¢ nastgpujaco:

% (Ri) 2w (Ry) 2 (Ry) = 1 (7.10)

dla kazdego k =1, 2, ..., h. W wyraZeniu (7.10) x; (R,) jest charakterem, stanowia-
cym liczbowy wynik dzialania operacji R, na funkcje falowa ;, itd. Zbiér jednosci
z prawej strony po wykonaniu dzialan wszystkimi R, nie jest niczym innym, jak
reprezentacja pelnosymetryczna. Wiasnie taka reprezentacje musimy otrzymac, jesl
przejscie do stanu i; jest dozwolone, poniewaz prawdopodobienstwo przejscia P;;
ma by¢ niezmiennikiem wszystkich operacji symetrii grupy punktowej. W ten
sposOb warunek (7.4) zastapiliSmy warunkiem (7.10), noszacym nazwe pierwotnej
reguly wyboru. Okresla ona stany, do jakich mozliwe jest przejScie ze stanu
podstawowego, tylko na podstawie regul symetrii — a wiec prowadzi do roz-
strzygniecia ,,zero—jedynkowego”. Poniewaz stan podstawowy jest z reguly pelno-
symetryczny, réwn. (7.10) prowadzi do nastgpujacego wniosku: przejscia dipolowe
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mogq nastepowaé do takich stanow wzbudzonych, ktérych reprezentacja jest taka
sama, jak jednej ze skladowych momentu dipolowego M.

Koncowe wyniki podobnych rozwazan przedstawia si¢ najczeSciej w postaci
tabelarycznej. Niech jako przyklad postuzy tab. 7.1, w ktoérej przedstawiono w
skrocony sposdb zbiory charakterow, pogrupowane w reprezentacje nieprzywiedlne

Tabela 7.1

Typy symetrii i liczba drgan aktywnych w widmie w podczerwieni i w widmie
Ramana czasteczek typn 1,4-CoH,X,

Gtlowne Aktywnosc

Typ elementy symetrii Typ Liczba drgan w widmie
symetrit Cy, Cae P, ruchu normalnych IR Ramana

A, 1 1 1 - 6 na p
A, 1 1 -1 - 2 na na
B,, 1 -1 -1 T 3 3 na
B,, -1 1 1 T 5 e, na
B, -1 -1 1 T 5 e, na
By, 1 -1 1 R, 5 na dp
B, -1 1 -1 R, 1 na dp
By, —1 -1 -1 R, 3 na dp

X
uktad wspolrzednych
z ¥y
®X
A — dragnie symetryczne wzgledem gléwnych osi symetrii,
B — drganic antysymetryczne wzgledem glownych osi symetrii,
g — drganic symetryczne wzgledem centrum symetrii,
u - drganic antysymetryczne wzgledem centrum symetrii,
T — translacja calej czasteczki w okre$lonym kierunku,
R — rotacja calej czysteczki wokdt okreslonej osi
p — pasmo spolaryzowane,
dp — pasmo zdcepolaryzowane,
na — drganic nicakiywne,
¢ — wektor jednostkowy w kierunku momentu przejscia.

(nieredukowalne), tj. nie dajace si¢ przedstawi¢ bardziej elementarnie, dla grupy
punktowej D,,. Reprezentacje te symbolizuja dopuszczalne typy symetrii drgan
czasteczki o symetrii D,,, na przyklad benzenu podstawionego w polozeniach para
dwoma jednakowymi atomami chlorowca, 1,4-CH,X,. Zgodnie z rzedem grupy h
=8 mozemy mie¢ osiem rdznych reprezentacji, a mianowicie A,, A4,, ..., Bz,
wedlug podanych w tabeli i ogolnie przyjetych oznaczen. W tabeli podane sa
jedynie charaktery glownych elementow symetrii (generatoréw). W. razie potrzeby
mozna je uzupetni¢ bez trudu do pelnego zbioru charakteréw kazdej reprezentacii.
W tym celu trzeba wpierw uzupelni¢ zbidér operacji symetrii do grupy
C22a C2x9 Pz’ CZy: an Py9 Ci> E
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Kolejnos¢ wystgpowania. operacji jest w zasadzie dowolna, ale porzadek raz
ustalony musi by¢ dalej przestrzegany. Z zasad mmnozZenia operacji wynika, ze
1(C2) = 2(C) 2(Ca), £(C9-%(P) = x(C) itd. Wobec tego pelna reprezentacja,
odpowiadajgca na przyklad typowi drgania B,,, sklada si¢ z charakterow

1By =(—1,1,1, =1, —=1,1, =1, 1)

Zbiorowi n atomodéw potaczonych w czasteczke rdéwniez odpowiada zbidr
charakterdw, tworzacy reprezentacje. W odréznieniu od reprezentacji nieprzywiedl-
nych, podanych w tab. 7.1, jest to reprezentacja rzedu 3n, a wiec przywiedlna
(redukowalna). Zasady tworzenia takich reprezentacji sa w skrocie nastepujace.

Kazdemu z atomoéw czasteczki odpowiadaja 3 stopnie swobody, czasteczka
jako zbiér n atoméw ma zatem lgcznie 3n stopni swobody ruchu. Z tej liczby 3 sa
translacyjnymi stopniami swobody, a dalsze 3 (czasteczka nieliniowa) lub 2 (cza-
steczka liniowa) zwigzane sg z obrotami czasteczki jako catosci: czestosé jednych i
drugich ruchow wynosi zero. W rezultacie dla czasteczki nieliniowej mozemy mieé
3n—6, a dla liniowej 3n—35 tak zwanych wewnetrznych stopni swobody: odpowia-
daja im drgania normalne atoméw o okreslonych czestoéciach. Jak konstruuje sie
charaktery wszystkich 3n rodzajow ruchu? Po pierwsze, charakterem dla okreslo-
nego elementu symetrii jest tez wartos¢ $ladu macierzy transformacji, odpowiada-
.jacej temu elementowi symetrii. A wigc dla plaszczyzny symetrii (niezaleznie od jej
orientacji) bedzie to liczba +1, dla dwukrotnej. osi symetrii —1, a dla centrum
symetrii —3. Po wtére, udzial w charakterach reprezentacji przywiedlnej maja
tylko te atomy, ktére leza na odpowiednich elementach symetrii — elementy
macierzy transformacji dla innych atomoéw nie leza bowiem na przekatnej macie-
rzy, nie wnoszg wigc udziatu do charakteru. Patrzac na czasteczke 1,4-C H,X,
mozemy tatwo dostrzec, ze w plaszczyZnie symetrii P, leza cztery atomy, wobec
tego x(P,) =4. Na osi C,, oraz w centrum symetrii C; nie ma zadnego atomu,
wobec tego x(C,,) = x(C;) = 0. Na kazdy atom czasteczki przypada dla operacji
tozsamosci charakter 3, czyli acznie y (E) = 36. Pelny zbior charakterow reprezen-
tacji I',, przedstawia sie nastepujaco

Fm = (05 —4, 12, O, 0, 4, 0, 36)

Dane potrzebne przy konstruowaniu reprezentacji I',, mozna odczytaé z tab. 7.2, w
ktorej zamieszczono udzialy jednego atomu dla operacji symetrii, spotykanych w
spektroskopii molekularne;.

Mozemy teraz zastanowi¢ si¢ nad sposobem rozbicia I, na reprezentacje
nieprzywiedlne. Wykonanie takiej analizy prowadzi do waznego wyniku: do
znalezienia typow (i ich liczby) wzglednego ruchu atoméw rozwazanej przez nas
czasteczki, jakie sa w ogdle dozwolone ze wzgledu na symetri¢; ten wlasnie fakt
decyduje o wazkosci zastosowan teorii grup w spektroskopii.

Zadanie to moze by¢ rozwigzane za pomoca jednego z fundamentalnych
twierdzen teorii grup: liczba n, ktéra podaje, ile razy reprezentacja nieredukowalna
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Tabela 7.2

Udzial w charakterach reprezentacji przywiedlnej I',, jednego atomu, ktérego polo-
Zenie jest niezmiennicze wzgledem operacji symetrii R [6]

Operacje ,,whasciwe” » Operacje ,,nicw‘}uéciwe"

R /AR R AR
E=(C) 3 o =(S;) !
(Cy)! -1 C; =(S,) =3
(C3)', (C3)? 0 (S3)', (S3)? ~2
(Cy)', (Co) 1 (5" (89)° =1
(Ce)', (Co) 2 (Se)' (So) 0

Ogoblnie Ogélnie

(C, ) 1 + 2cos (2nk/n) (8, — 1+ 2cos (2nk/n)

I, miesci sig w I',,, wynosi

! .
n(lr,) = ZXJ ry-x(r,) k=1,2,...,h (7.11)
J
przy czym h jest rzedem grupy. Jesli reprezentacje potrak'tujemy jako' wektory h-
wymiarowe, to rown. (7.11) mozemy zapisa¢ prosciej, korzystajac z przedstawienia
iloczynu skalarnego za pomoca skladowych wektorow

n(l,) = r,n I ’ (7.12)

Roéwnania (7.11) i (7.12) napisaliSmy w pewnym uproszczeniu: mianowicie przy
zalozeniu, ze wszystkie charaktery sg liczbami rzeczywistymi.

Korzystajac z rown. (7.12), sprobujmy obliczy¢, ile mozemy mie¢ sposobow
ruchu o symetrii, na przyklad, BZu w 12-atomowej czasteczce o symetrii D,;,.
Otrzymujemy

n(By) = £(0—4+12+0+0+4+0+36) =6
Ostatnim wreszcie zadaniem jest uzyskanie odpowiedzi na pytanie, do jakich
reprezentacji naleza ruchy o czestosci zerowej: te reprezentacje trzeba bedzie odjaé.
Skladowe wektora momentu przejscia transformujq sie tak, jak wspétrzedne x, y, z
Po dokonaniu prostych obliczen znajdujemy na przykiad, ze
rxy=(-1,1,1, -1, =1, 1, =1, 1) = I'(B,,)
I'(y) =T'(Bs,) I'(z) = I'(By.)
Wyniki te oznaczaja jednocze$nie, ze jedynie dozwolone przej$cia absorpcyjne
czasteczki o symetrii D,, musza naleze¢ do jednej z trzech reprezentacji: B,, —

kierunek momentu przejScia wzdhuz osi x czasteczki, Bs,||y oraz By, ||z (T, T, T,
w tab. 7.1).
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Mozna wykazaé [6], ze reprezentacje odpowiadajgce ruchom rotacyjnyni tworzy
sie tak samo, jak dla odpowiednich skiadowych tensora momentu bezwladnosci. Na
przyklad, dla obrotu wokét osi y otrzymamy

Xx (Ry) = % (2) 1 (%) = 1 (B3g)

dla kazdego k=1, 2,..., h.

Po odjeciu tych szeéciu reprezentacji znajdujemy w koncu zgdang informacje:
liczba mozliwych w podczerwieni przej$é absorpcyjnych wynosi dla rozwazanej
czasteczki 13, w tym 5 czestos$ci nalezy do reprezentacji B,,, S jest typu B, oraz 3

sa typu By,
Fm = SF(BZM)+5F(B3M)+3F(BIIJ)

Warto przypomnieé, ze reguly wyboru, oparte na pojeciu symetrii, pozwalaja
wprawdzie przewidzieé liczbe drgan normalnych kazdej czasteczki i kierunki ich
momentdéw przejScia, lecz nic nie mdéwia o czgstosci 1 natgZeniu okreslonego
przejScia. Moze si¢ wigc okazaé, ze nie kazde z dozwolonych drgan normalnych
uda si¢ nam odszuka¢ w widmie absorpcyjnym czasteczki.

Nie bedziemy sie tu zajmowali szczegdtowo problemem czestosci i formy ruchu,
pod ktéra rozumiemy zbidr przesunig¢ poszczegdlnych atoméw, nalezacy do
okre$lonej wspoirzednej normalnej. Zagadnienie to nalezy do dynamiki ruchu
czasteczki, a jego przedstawienie mozna znalezé w wielu monografiach po$wieco-
nych spektroskopii czasteczki swobodnej. Godne polecenia sa monografie Wilsona,
Deciusa i Crossa [6], Borna i Huanga [11], a takze monografia Willisa i Pryora
[12], w ktorej przedstawiono dynamike ruchu w sposéb nowoczesny w zwigzlym
zapisie. Rownania ruchu poszczegdlnych atomdéw prowadza do typowego zagad-
nienia wlasnego, a jego rozwiazanie pozwala osiagnaé¢ dwa cele jednocze$nie.
Pierwszym z nich jest wyznaczenie czestosci wlasnych, a drugim — odpowiadaja-
cych im wektoréw wilasnych, zawierajacych informacje o wielkosci 1 kierunkach
przesunig¢ atomoéw, uczestniczacych w drganiu normalnym. Przyklady takich
rozwiazan dla czasteczki o symetrii D,,, zaczerpniete z pracy [13], podane sg w
tab. 7.3. Realno$¢ uzyskanego zbioru czgstosci — w rozumieniu jego zgodnoS$ci z
do$wiadczeniem — zalezy w pierwszym rzedzie od znajomosci wielkosci zmiany sit
miedzyatomowych, przypadajacych na jednostke przesunigcia atoméw lub na
jednostke zmiany kata migdzy wiazaniami chemicznymi. Wielko$ci te maja sens
fizyczny analogiczny do wspélczynnika liniowej sity sprezystej w rown. (7.1) i
decyduja rowniez o wielkosci zmiany momentu dipolowego w czasie przejScia
optycznego, a wigc 1 O natgZeniu tego przejscia.

Jesli spojrzymy na ktorykolwiek z rysunkow w tab. 7.3, to spostrzezemy, ze w
kazdym drganiu normalnym uczestniczy pewna liczba atoméw tworzacych pary
(oscylatory). Wychylenia atoméw w obrebie kazdej pary maja okreslona wartos¢ i
kierunek, zgodnie z podana symetria, oraz — zgodnie z definicja drgania normal-
nego — maja wszystkie t¢ sama czestos¢ drgan. Faza drgan kazdego z atomoéw
wzgledem sasiada nie ulega zatem zmianie z biegiem czasu, a $rodek masy
czasteczki pozostaje nieruchomy.
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- Tabela 7.3

Typy drgan normalnych (polowa mozliwych) pochodinych benzenu typu 1,4-C,H,X, (wedlug [13])

Drgania walencyjne Drgania deformacyjne ptaskie |Drgania deformacyjne nieplaskie
kie- kie- kie-
g runek i runek ¢ runek
YP l7mian YP |7 mian YP | mian
syme-{" syme-|~ syme-}"

trii trii trii
mentu mentu mentu
dipol. dipol. dipol.
Iﬁ A, 0 B,, 0
I;E( " 0 - 0
ﬁ:[ BZu €x B lu 7 €
I;( - ) - d
ji? Bsu ey Blu ez

19
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By¢ moze, iz spektroskopia molekularna nie cieszylaby si¢ takim zainteresowa-
niem i wielostronno$cig zastosowan, gdyby procz drgan normalnych nie istnialy
jeszcze tak zwane drgania charakterystyczne. Moéwimy o nich wowczas, gdy
czasteczka zawiera jeden samotny oscylator, na przyklad grupe OH lub NH,,
ktory nie moze ulega¢ narzuconemu przez symetri¢ sprzgzeniu z innymi identy-
cznymi oscylatorami. Jesli w dodatku wystepuje zuaczna asymetria migdzy masa
kazdego z atomoéw grupy i masg reszty czasteczki, to z dobrym przyblizeniem
mozna uwazal, ze w drganiu charakterystycznym uczestniczq w zasadzie tylko dwa
atomy. W konsekwencji czesto$¢ drgan charakterystycznych oscylatora jest w zna-
cznym stopniu niezalezna od jego otoczenia. Dalej omoéwimy te¢ tez¢ dokladniej.

Tabela 74

Czgéciej spotykane czestoéci charakterystyczne oscylatoréw dwu- i tréjatomowych,
aktywne w podczerwieni [14]

Drgania walencyjne Drgania deformacyjne
zakres liczb zakres liczb
falowych, cm™! grupa falowych, cm ™! grupa

3550-3700 —OH* 1480-1640, 700-900| —NH
2950-3600 —OH, —NH **

3300-3500 —NH, 1300-1480, 600-900{ —CH
2670-2700 —OD

2750-3300 —CH 1200-1450, —OH
1620-1830 —C=0 1580-1650 —NH,
1640-1760 —C=N, —C=C 1340-1380, 830-920{ —NO,
1480-1560 —NO,

900-1300 —C—C—, —CN—

1000-1400 —C-F

600-850 —C—C1

500-750 —C—Br

* Czesto$¢ grupy swobodnej.
** Grupy uczestniczace w wigzaniu wodorowym maja czestosé nizsza, zaleznie od energii wigzania.

Zgodnie z ogélnymi zasadami dla oscylatora typu —XH mamy 3:-2—-3=3
drgania charakterystyczne; jedno z nich odpowiada periodycznej zmianie dtugosci
wigzania X—H (drgania rozciggajace), dwa pozostale polegaja na zginaniu tego
wigzania (drgania deformacyjne). Dla grupy takiej jak —NH, bedziemy mieli 6
czestosci charakterystycznych. W celu znalezienia ich symetrii mozna stosowac
rozumowanie analogiczne jak dla calej czasteczki, przyjmujac dla grupy —NH,
lokalng grupe symetrii C,,. Niektore z czgSciej spotykanych czgstosci charaktery-
stycznych podane sa w tab. 7.4. Istnieja rowniez dziela specjalistyczne, poswigcone
spektroskopii okreslonej grupy zwiazkoéw, na przyklad ugrupowaniom amidowym
[15] lub zwiazkom koordynacyjnym [16].
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7.2. Nadtony i czestoSci sumacyjne

Przejdziemy z kolei do omdwienia symetrii nadtonow, ktéra w jaki$ sposob
winna wynika¢ z symetrii jednokwantowych przejs¢ podstawowych. W dalszym
ciggu bedziemy zajmowac si¢ czasteczka swobodna, a wigc tak zwanym proble-
mem drgan wewnetrznych.

Zasady symetrii do przej$¢ sumacyjnych i nadtonéw zastosowal po raz pier-
wszy Tisza [17], a przejrzyste przedstawienie tego problemu mozna znalezé w
monografii [6]. Zauwazmy, ze metody teorii grup sa zupelnie ogdlne, winny wigc
stosowac sie¢ do poziomoéw czy przej$¢ energetycznych takze oscylatora anharmoni-
cznego. Wynika to z zasady superpozycji: jesli ¥, oznacza jedna z pelnego zbioru
funkcji falowych oscylatora harmonicznego, to kazda funkcje i, opisujaca stan
oscylatora anharmonicznego, mozna przedstawi¢ w postaci kombinacji liniowej ¥,

=) ay, (7.13)

co uzasadnia koniecznos¢ stosowania sie ¥ do tych samych zasad symetrii, co y,,.
Z kolei funkcje falowa opisujaca wzbudzony stan v, elementarnego oscylatora
harmonicznego, ktoremu odpowiada wspdlrzedna normalna Q,, moZemy zapisac
w nastepujacy sposéb [6]:

¥ (v, &) = N exp[—3 &2 H (v, &) (7.14)

przy czym N(v,) jest czynnikiem normalizacyjnym, H (v, &) za$ wielomianem
Hermitte’a stopnia v,. Zmienna &, odgrywa role pomocnicza

4n?v
ék=)’é/2Qk Yk = h :

(7.15)

v jest za$ liniowa czestoscia drgan. Jak wiadomo [6], wiclomian Hermitte’a jest
funkcja albo wylacznie parzystych poteg @, (dla v, parzystego), albo wylacznie
poteg nieparzystych (dla v, nieparzystego). W szczegolnosci

H(QO, &) =1 H(, &) = 2¢, H(Q2, &) =25 -2
W takim razie funkcja falowa stanu podstawowego oscylatora
¥ (0, &) = N(Oexp[—3&;]
jest pelnosymetryczna, a funkcja jednokwantowego stanu wzbudzonego

Y1, &) = NDexp[-3&01Qk

transformuje si¢ pod wplywem operacji symetrii tak, jak wspdirzedna Q.. Ten
wazny wniosek mozna latwo uogdlni¢ na czagsteczke, ktéra opisujemy zbiorem

wspolrzednych normalnych @, ..., 9,. Funkcje falowa stanu podstawowego mo-
zemy zapisa¢ symbolicznie w nastgpujacy sposob:
lﬁ(oa vy O’ él, P fr) = N(O’ SNE; O)G(gla s vy ér) (716)
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gdzie G jest iloczynem r czynnikéw wykladniczych

G(ﬁla LR ér) = eXp Z (—_12—613) (717)
k=1

Stan ten jest, oczywiscie, rOwniez pelnosymetryczny, poniewaz funkcja (7.17) jest
funkcja niezmiennicza wzgledem wszystkich operacji symetrii danej grupy punkto-
wej. Jedli teraz jako stan wzbudzony wybierzemy stan dwukwantowy z v, = 2, to
funkcja tego stanu w symbolicznym zapisie bgdzie miata postaé

WO s 25 5155 D Bty onn B = WD sarm s 095 0)-6(51,77..., &)-(2E2—-2) (7.18)

Jest widoczne, ze funkcji (7.18) odpowiada rowniez reprezentacja pelnosymetry-
czna, poniewaz H(2, £,) nie ulega zmianie pod wplywem operacji symetrii. Jesh
czasteczka ma w stanie podstawowym badana juz przez nas symetri¢ D,,, to (7.18)
wskazuje, ze wszystkie parzyste nadtony beda zabronione, poniewaz odpowiada im
petnosymetryczna reprezentacja A,. Dozwolone sa natomiast nadtony nieparzyste-
go stopnia, poniewaz :

R{H@Qn+1, &)} = R{H(1, &)} 4 (7.19)

czyli wynik dzialania operacji R na wiclomian Hermitte’a stopnia nieparzystego
jest taki sam, jak na wielomian stopnia pierwszego. Przedstawiona tu regula
odnosi si¢ do nadtonow, ktore odpowiadaja niezdegenerowanym stanom wzbudzo-
nym czasteczki.

Analogiczng regule mozemy poda¢ dla tonéw sumacyjnych typu v; # 0, v, # 0.
Wybierajac konkretnie v; =1 i v, = 1, mamy w symbolicznym zapisie

(O, ..., 1,..., 1, .., &, ..., &=
=N©,....,1,...,1,..,0G(, ..., )-Q;- Q. (7.20)

W tym przypadku funkcja falowa transformuje si¢ tak, jak iloczyn wspoélrzednych.
Reprezentacja stanu wzbudzonego bedzie

gdzie ® oznacza iloczyn prosty obu reprezentacji, lub
Xe(R) = 2;(R) x(R) i=1,2,...,h (7.22)

W przypadku niezdegenerowanym zawsze mamy trzy dopuszczalne kierunki mo-
mentu przej$cia wzdtuz osi x, y, z zwigzanych sztywno z czasteczka. Nadtony i
tony sumacyjne mozemy wigc zapisywac skrotowo za pomoca trojki liczb (I m n);
na przykltad (0 2 0) oznacza pierwszy nadton jakiejkolwiek czestosci, ktorej
odpowiada przejécie o symetrii B, i moment przejicia rownolegly do y. Dla takiej
czasteczki z rown. (7.21) wynika, ze ton sumacyjny (1 1 0) jest dozwolony,
poniewaz I'(B,,) I'(B;,) = I'(B;,). Co wiecej, latwo dostrzec, ze wsrod tondw
sumacyjnych moga wystapi¢ kombinacje z przejsciem zabronionym, poniewaz na
przyktad
I'(A4,)®I'(By,) = I'(By,)
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Okreslenie symetrii nadtonu jest troch¢ bardziej skomplikowane, jesli stan
wzbudzony wykazuje degeneracje. W takim przypadku stanowi wzbudzonemu
v > 1 odpowiada pewna reprezentacja redukowalna. Jesli stan wzbudzony v =1
jest podwdjnie zdegenerowany, to charaktery reprezentacji dla przejscia 0 —v
mozna obliczy¢ z wzoru [6]

% (R) =3 {x(R) xo— 1 (R)+ x (R} (7.23)

przy czym v oznacza liczbe kwantowa stanu wzbudzonego, R — kolejno kazda
operacje symetrii grupy punktowej, a R” jest v-ta potgga tej operacji. Przyjmujemy
przy tym, ze

x1 (R) = x(R) Xo(R) =1 x-1(R)=0 (7.24)

Przy zachowaniu tych samych oznaczen charaktery reprezentacji nadtonu, odpo-
wiadajacego drganiu trojkrotnie zdegenerowanemu, obliczamy z zaleznosci

% (R) = (2 (R) 20— 1 (R)+3 {x (R =[x (R)I*}  xo- 2 (R)+2(R?)  (7.29)

Zastosowanie tych wzordéw wyjasnimy na konkretnym przykladzie. Grupa
punktowa D,, nie jest do tego celu odpowiednia, poniewaz wszystkie jej reprezen-
tacje sa jednowymiarowe, zatem drgania podstawowe i nadtony nie wykazuja
degeneracji. Wybierzmy wigc dla przyktadu grupe D,, 6smego rzedu, przedstawio-
na skrotowo w tab. 7.5. Procz jednowymiarowych reprezentacji 4y, 4,, B; i B,
mamy jedna reprezentacje dwuwymiarowa typu E. Zajmiemy si¢ symetria nadto-
n6w 0 —2, a nastepnie 0 =3 i 0 =4 czestosci podstawowej o symetrii E. Przed
zastosowaniem wzoru (7.23) musimy wpierw znalezé wyrazenia dla poteg R?, R? i

Tabela 7.5

Reprezentacje nieprzywiedine oraz reprezentacje nadtonéw w
grupie punktowej D,

R |E 2¢, Ci=C, 2C, 2C;

4, 111 1 1 1

A, |11 Y [

B, |1 ~—1 1 1 -

B, |1 -1 T =l 1

E |2 B -3 0 0

R* |E G, E E E

R® |E C, C, G

R |2 0 -2 0 0

y(RY) |2 -2 2 2 2

2R} |2 0 =2 0 0

Ry |2 2 2 2 2

r, |3 -1 3 1 1:4,+B,+B,
r, |4. —4 0 0:2E

r, |5 t 5 1 1:24,+4,+B,+B,
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R* wszystkich operacji grupy. Zadanie to nie nastrecza szczegdlnych trudnosci,
réwniez znalezienie charakterow y(R’) nie wymaga komentarza. Po tych przygoto-
waniach mozna juz obliczyé charaktery reprezentacji y,(R). Dla przejscia 0 —v
otrzymuje si¢ reprezentacj¢ (v+ 1)-wymiarowa. Dokonujac rozkiadu wedlug (7.12),
otrzymujemy, na przyklad, ze

r2)=r(4,)+rB,)+IB))

Sens fizyczny takiego rozkladu polega na tym, Ze drganie zdegenerowane ulega
rozszczepieniu na 3 skladowe wskutek drobnych roznic energii, towarzyszacych
anharmonicznosci. Rozszczepienie to jest jednak na ogoét bardzo male 1 rzadko
kiedy udaje si¢ zaobserwowac trzy osobne pasma w widmie. Interesujacy jest przy
tym fakt, ze anharmonicznosé znosi degeneracje: wszystkie trzy sktadowe reprezen-
tacje sa jednowymiarowe. Podobne wiasciwosci ma reprezentacja I'(4), natomiast
I'(3) rozszczepia si¢ na dwie reprezentacje dwuwymiarowe.

Symetri¢ tonéw sumacyjnych mozna okresli¢ na podstawie rown. (7.21), nieza-
leznie od tego, czy uczestnicza w nich poziomy zdegenerowane czy nie. Rozszerze-
nie tej zasady dla trzech poziomdéw mozna zapisa¢ w nastgpujacy sposob:

I,=TI,Qr,®r, (7.26)

Przejdzmy obecnie do omoéwienia energii i czestosci drgan oscylatora. W
przyblizeniu harmonicznym energia catkowita oscylatora wyraza si¢ wzorem

E(®) = hvo(v+1) (7.27)

przy czym v =0, 1, 2, ... jest liczba kwantowa. PoniewaZ przejécia energetyczne
moga zachodzi¢ tylko migdzy sasiednimi stanami energetycznymi, 4v = + 1, mozli-
wa do zaabsorbowania lub emisji energia wynosi

E(w+1)—E(v) = hy, (7.28)

niezaleznie od poczatkowego stanu energetycznego. Widmo absorpcyjne takiego
oscylatora sklada si¢ wiec z jednej tylko linii, ktérej odpowiada liczba falowa

Vo = Vg/c (7.29)

Nawiasem mowiac, rzadko mamy sposobno$é obserwowaé przejscie absorpcyjne 1
— 2, a jeszcze rzadziej 2 — 3 itd. Aby pojawila si¢ taka linia, dos¢ spora liczba
oscylatoréw musi sie znalez¢ w stanie o energii E(1) =3 he¥y, E(2) = 3 he¥, itd.
Jedli zazadamy, by przy liczbie falowej przejécia v = 1000 cm™' tylko 10%,
oscylatorow miato energie E (1), to zgodnie z rozkladem Maxwella trzeba podniesé
temperatur¢ absorbujacego zbioru do blisko 1000 K — nie kazdy oscylator
»2Wytrzyma” taka temperature.

Jesli w rozwinieciu (7.3) energii potencjalnej zachowamy réwniez czwarty czlon,
to rozwigzanie roOwnania Schrodingera przy takim potencjale prowadzi do wyraze-
nia na zbiér dozwolonych pozioméw energetycznych oscylatora anharmonicznego

E@®) = hvg(v+3)—xhvo (v+3)? (7.30)
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Uwzglednienie czlondéw rzedu wyzszego niz czwarty prowadzi do pojawienia sig
dalszych wyrazow anharmonicznych w réwn. (7.30); pelniejsze rozwinigcie jest
jednak rzadko stosowane. Zamiast energii stanu E(v) wyrazonej w dzulach,
wprowadza si¢ zwykle w spektroskopii wielko$¢ G (v) = E (v)/hc, wyrazona w cm~*
i proporcjonalng do energii. Oznaczajac vo/c przez w,, mozemy réwn. (7.30)
zapisa¢ w postaci

G) =w,0+)—w,x, (v+3)> (7.31)

w, jest wielko$cia rachunkowa, odpowiadajaca fikcyjnej liczbie falowej przejscia 0
— 1 przy wartosci x, = 0; x, jest liczbg bezwymiarowa 1 nosi nazwe¢ wspolczynnika
anharmoniczno$ci. Wskaznik e oznacza, Zze wielkoSci odnosimy do minimum
krzywej energii potencjalnej, a wiec do polozenia réwnowagi r, (rys. 7.1). x, i w,
mozemy wyznaczy¢ z obserwowanych liczb falowych przejs¢ 0 —1 1 0 — 2 oscyla-
tora. W zapisie (7.31) réznica G(v+1)—G(v) wyraza wprost liczbe falowa linii
odpowiadajacej przejsciu oscylatora migdzy sasiednimi stanami v, v+ 1

Gw+1)—G®) = w,[1-2x,0+1)] (7.32)

vir)

Do De

Rys. 7.1. Krzywa energii potencjalnej i stany energetyczne oscylatora anharmonicznego

Wzor (7.30) wskazuje, ze poziomy energetyczne oscylatora anharmonicznego nie
sq rownoodlegle, lecz zageszczaja si¢ w poblizu pewnej wartosci energii, oznaczanej
wzgledem minimum potencjalu symbolem D, i nazywanej energia wiqzania cza-
steczki (w okre$lonym stanie elektronowym) (rys. 7.1). D, jest energiq dysocjacji
czasteczki na swobodne atomy i rozni si¢ od D, energia stanu podstawowego (v
= 0)

Dy = he {G(00)—G(0)} = D, —heG(0) (7.33)

Rozwigzanie rownania Schrodingera dla oscylatora anharmonicznego prowadzi
nie tylko do zmiany energii dozwolonych poziomow, lecz takze do modyfikacji
reguly wyboru. Oprocz przejsé v —v+1 mozliwe sq réwniez przejscia v »v+2, v
—v+3 itd., prowadzqce do pojawienia si¢ nadtonow. Przy jednoczesnej zmianie
dwéch lub wigcej liczb kwantowych nalezacych do réznych drgan normalnych,
obserwujemy tony sumacyjne. Przejsciu 0 —v odpowiada w widmie linia absorpcyj-
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na o liczbie falowej
G()—G(0) =7(0 =v) = vw, {1 —x, (v+1)} (7.34)

Anharmonicznos¢ powoduje, ze czesto$¢ takiego przejscia jest mniejsza niz vw,.
Poniewaz zwykle spotykane wspolczynniki anharmoniczno$ci mieszcza si¢ w grani-
cach

0,01 < x, < 0,05 (1.35)

réznica ta wynosi kilka procent w,. Czestosci sumacyjne, zwlaszcza kombinacje
czgstosci podstawowych dla wszystkich v; = +1, sa znacznie mniej anharmoniczne
od nadtondw — z zupelnie dobrym przyblizeniem mozemy wigc napisac

o® =P+ 0P +0@+ ... (7.36)
Przyklad zbioru standéw energetycznych i liczb falowych ¥ (0 —v) odpowiadajacych

drganiom oscylatoréw OH i OD, wchodzacych odpowiednio w skiad czasteczek
CH,0H i CH;0D, podany-jest w tab. 7.6 wedlug danych z pracy [18]. Na

Tabela 7.6

Zbiér stanéw energetycznych i liczb falowych (cm™!) drgan
oscylatorow OH i OD w czasteczkach CH;OH i CH;0D [18]

G(v) |CH;0H |CH;0D| ¥(0 —»v) | CH;0OH |{ CH,OD

G(0) 1904 1394
G(1) 5585 4113 |70-1)] 3681 2719
G(2) 9095 6742 | 7(0—-2)| 7191 5348
G(3) | 12435 9279 | (0 »3)| 10531 7875
G@) | 15604 | 11726 |70 —4)| 13700 | 10332
G(5) | 18603 | 14083 |¥(0—5)| 16699 | 12689

X

A 0,0221 0,0161 w, 3851 2810

podstawie tych informacji obliczono x, oraz w,. Zgodnie z rown. (7.34) iloraz (0
—v)/v winien by¢ liniowa funkcja v, co pokazane jest na rys. 7.2. Uzyskanie takiej
zaleznosci dla zbioru nadtondéw obserwowanych doswiadczalnie jest gwarancja, ze
czestosci przypisane zostaly prawidtowo. Z obu wartosci w, otrzymujemy stosunek

»,(OH) _ 3851

— = 1,370
©,(OD) _ 2810

ktéry jest w bliskim zwiazku ze stosunkiem mas zredukowanych obu oscylatorow.
Mianowicie, czesto$¢ drgan prostego oscylatora sktadajacego sie z dwoch mas m, i
m,, polaczonych wiazaniem chemicznym o stalej sitowej k, wynosi w, = (k/w)'/?,
gdzie

pl=mit+my!t (7.37)

296



jest masq zredukowang oscylatora. Przyjmujac, ze k jest takie samgq dla obu
oscylatoréw, otrzymujemy

12 1/2
2O _ (ton )" = ()" <1274
w,(0OD) Hou 18

D\. .
3500 T~
————

&1

cm

(0=>v)/v,

3000

v

2500
1

Rys. 7.2. Hustracja liniowej zaleznasci 7(0 —v)/v od v dla kolejnych nadtonéw ¥(OH) i ¥(OD) (wedlug
danych z [18])

Zupetnie dobra zgodno$¢ obu liczb §wiadczy o tym, ze w drganiu uczestnicza tylko
atomy H lub D i atom O, tj. reszt¢ czasteczki mozemy pomingé. Przyklad ten
stanowi ilustracje dobrze izolowanego drgania charakterystycznego.

Krzywa energii potencjalnej podana na rys. 7.1 mozna roéwniez przedstawic
analitycznie. NajczeSciej uzywanym przyblizeniem tej krzywej jest funkcja Morse’a

V(r)=D,{l—exp[—a(r—r,)]}> (7.38)

zawierajaca trzy parametry: poloZenie rownowagi oscylatora r, w minimum energii
potencjalnej, energie wigzania czasteczki D, i parametr a. Rozwiazanie réwnania
Schrédingera dla potencjatu (7.38) prowadzi w przyblizeniu malych amplitud do
nastepujacego wyrazenia na energi¢ oscylatora anharmonicznego [19]:

w? he

4D,

G W)y = 0, (v+3)— (v+3)? (7.39)

Z pordéwnania wspotczynnikéw drugiego czionu w réwnaniach (7.39) 1 (7.31)
wynika, Ze

_ W he

¢ 4x,

Wzér (7.40) pozwala ocenié energie wigzania obu atomoéw, tworzacych oscylator, z
danych spektroskopowych: czgstosci harmonicznej w, i wspotczynnika anharmoni-

D (7.40)
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cznosci x,. Korzystajac z tab. 7.6, otrzymujemy nastepujacy wynik:
D,(OH) = D,(OD) = 521 kJ -mol ™!

Doswiadczalna, $rednia warto$é energii wiazania OH w temp. 0 K jest troche
mniejsza i wynosi [20]

D,(OH),, = 458 kJ-mol™*

eksp
Roéznica ta nie jest przypadkowa. Wzér (7.40) prowadzi z reguly do zawyzonych
wartoéci D,, co $wiadczy o tym, ze réwn. (7.38) jedynie w przyblizeniu opisuje
krzywa energii potencjalnej oscylatora. Mimo to przyblizenie takie jest czesto
bardzo uzyteczne, a potrzebna w nim stala a mozna obliczy¢ rowniez z danych

spektroskopowych
2“ 1/2
= — 741
a=w,cn (De> (741)

Podstawienie liczbowych wartoéci dla wiazania OH prowadzi do wyniku

a(OH) = 2,181-10® cm™*

7.3. Bezodrzutowa absorpcja promieniowania

Wprowadzenie lasera do spektroskopii doprowadzilo do szeregu nowych i
zaskakujacych odkry¢, do ktorych zaliczyé nalezy rowniez zjawisko jednoczesnej
absorpcji dwu lub wiecej fotonéw o jednakowej energii. Odkrycie to rozwinelo si¢
wkrétce do nowej galezi spektroskopii, znanej pod nazwa bezodrzutowej spektro-
skopii wielofotonowe;j.

Zjawisko, o ktorym mowimy, rézni si¢ od aktu zwyklej absorpcji dwufotono-
wej; schemat takiej absorpcji jest przedstawiony na rys. 7.3a. Po pochionigciu
kwantu hw,, uklad przechodzi do stanu wzbudzonego o energii E,, skad moze
przej$¢ do stanu E, po pochlonigciu nastgpnego kwantu hw,,, jesli ten drugi
proces ,zastanie” obiekt kwantowy w stanie wzbudzonym E;. Oba akty absorpcji
sa wiec niezalezne, musza jedynie nastapi¢ dostatecznie szybko kolejno po sobie.
W tym paragrafie w;, = 2nv; oznaczaé bedzie czestos¢ katowa przejicia, zas h

O) b) Ey mmeeeeee

f7&)12

herg,

Eo

Eq

Rys. 7.3. Schemat: a) zwyklego przejscia dwufotonowego, b) dwufotonowego przejScia bez odrzutu
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= h/2r; wo, nosi nazwe czestosci rezonansowej. Oczywiscie, uklad moze przejsé
od razu do stanu E, przez pochloni¢cie jednego kwantu promieniowania, przy
czym oba typy absorpcji moga by¢ badane przy uzyciu zwyklej lampy rteciowe;.
Istotne jest to, ze w zwyklej absorpcji multifotonowej istniejq wszystkie posrednie
poziomy energetyczne ukladu kwantowego, potrzebne do zrealizowania wszystkich
sktadowych przejs¢ jednofotonowych. Natomiast w procesie bezodrzutowej absor-
pcji multifotonowej nie istnieje Zaden rzeczywisty posredni poziom energetyczny (rys.
7.3b). W celu wzbudzenia takiej absorpcji potrzebny jest laser strojony, poniewaz
czestos¢ (ustalona) zwyklego lasera atomowego tylko przypadkowo moze odpo-
wiadaé czestosci przejscia (E; — Ey)/2h. Powrotowi z E; do stanu podstawowego
odpowiada emisja promieniowania o czgstosci (E, — Ey)/h, dwukrotniej wyzszej od
czestosci wzbudzenia, co ulatwia rozpoznanie tej emisji oraz ilosciowe jej zbadanie.
Jednoczesna emisja dwoch jednakowych fotondéw powoduje zniesienie odrzutu
czgsteczki, dzigki czemu zdolnosé rozdzielcza w eksprymencie ulega nadzwyczajnemu
podwyziszeniu: w zwyklej absorpcji poszerzenie Dopplera jest 100-1000 razy wigk-
sze od- naturalnej szerokosci linii absorpcyjne;.

Aby moc zastosowaé taki sposéb wzbudzenia w spektroskopii wysokiej roz-
dzielczosci, trzeba dysponowac laserem, ktorego wiazka ma szerokos$é spektralng
co najwyzej taka, jak naturalna szeroko$¢ spektralna linii, tj. co najwyzej 10 MHz.
W tym celu laser musi pracowac¢ na pojedynczym modusie podltuznym. Jesli tylko
szeroko$¢ wiazki nie jest zbyt duza, to moc lasera moze by¢ niewielka, zwlaszcza w
badaniach absorpcji rezonansowej. PrzejScia migdzy stanem podstawowym i rezo-
nansowym zachodza we wszystkich czasteczkach, co oznacza duze natezZenie
sygnatu. Obliczono, ze w takim przypadku do zaobserwowania absorpcji wystar-
cza wzbudzenie 0 mocy 1 kW-cm™2

Bezodrzutowe przej$cia absorpcyjne mozliwe sa, oczywiscie, zarOwno w obsza-
rze nadfioletu, jak i w podczerwieni. Mozliwos¢ ich wystapienia nie zalezy réwniez
od tego, czy interesujaca nas czasteczka jest w fazie gazowej, czy tez znajduje si¢
we wnetrzu krysztatlu. Doswiadczenia, wykonane w ciagu ostatnich kilkunastu lat,
dotycza jednak wylacznie czasteczki swobodnej, aczkolwiek nie ulega watpliwosci,
ze ich wykonanie dla stanu krystalicznego byloby nadzwyczaj interesujgce. Dalsza
dyskusje spektroskopii bezodrzutowej oprzemy na znakomitym opracowaniu tego
tematu przez Grynberga i1 Cagnaca [21], przy czym ograniczymy si¢ do absorpcji
dwufotonowe;j. '

Dopplerowskie poszerzenie linii absorpcyjnej spowodowane jest predkosciami ter-
micznymi obiektow absorbujacych (atomu, czasteczki). Jesli ¥V jest predkoscia
obiektu, a k wektorem falowym padajacej nan fali elektromagnetycznej, to przesu-
niecie Dopplera pierwszego rzedu wynosi k-V. Dla fali padajacej z kierunku
przeciwnego przesuniecie to wynosi —k-¥. Ten wynik wykorzystamy w absorpcji
dwufotonowej. Przypusémy, Zze obiekt mikroskopowy znajduje si¢ w polu stojgcej
fali elektromagnetyczne] o czestosci w; fale taka mozna otrzymac przez odbicie
Swiatla lasera w lustrze. Jesli obiekt zaabsorbuje jednoczesnie po jednym kwancie z
kazdego ciagu falowego, to jego energia zmieni si¢ o wielkos¢ (rys. 7.3b)

E,—Ey=h(w+k-V)+h(w—k-V) = 2ho (7.42)
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Udzial predkosci obiektu w zmianie energii znika. Oznacza to, Zze w przejsciu
rezonansowym czqsteczka absorbuje kwant o zawsze jednakowej energii, niezaleznie
od swej predkosci. Teoretycznie szeroko$¢ linii rezonansowej roéwna jest w tych
warunkach natur: Inej szerokos$ci limi. Eksperymentalnie efekt ten zauwazyli po raz
pierwszy Wasilenko i inni [22], za§ Cagnac i inni [23] opracowali teori¢ efektu i
rozszerzyli ja na przej$cia wielofotonowe.

Warunek (7.42) tatwo uogdlni¢ dla przej$¢ wielofotonowych. Niech czasteczka
o predkosci V oddziatluje z kilkoma polami falowymi, przy czym kazdemu z nich
niech odpowiada jeden z wektorow falowych k;. Diugosci wszystkich k; sa takie
same, jedynie kierunki sa rézne. Przesunigcie Dopplera pierwszego rze¢du dla
kazdej fali wynosi k;, V. Jesli doprowadzimy do spelnienia warunku

Yhk=0 (7.43)

to jednoczesne pochlonigcie przez czasteczke n fotonéw rowniez odbedzie si¢ bez
odrzutu.

Warunek (7.43) mozemy interpretowac jako zasade zachowania pedu w zderze-
niu czasteczka—fotony, w ktérym kazdy foton ma ped hk;. Poniewaz w takim
zderzeniu energia kinetyczna czasteczki nie ulega zmianie, energia wszystkich
fotonébw powoduje zmiang jej energii wewnetrznej

E,—E, =) hc|k (7.44)

O szerokos$ci linii w absorpcji bezodrzutowej decyduje jej szeroko$¢ naturalna,
wynikajaca z zasady nieoznaczonosci Heisenberga, oraz efekt Dopplera drugiego
rzedu. Jest on proporcjonalny do (E; — Eo) V?/2¢* i ze wzgledu na mala wartos¢
V/c jest niemierzalnie maly.

Absorpcyjna linia rezonansowa winna mie¢ ksztalt krzywej Lorentza. Procz
takiego profilu powinny wystapi¢ rowniez skrzydia o ksztalcie gaussowskim (rys.
7.4), wynikajace ze szczegOlnej roli energii kinetycznej w zjawisku rezonansu.
Ksztalt skrzydla mozna przewidzie¢ przeprowadzajac nastgpujace rozumowanie.
Jesli czesto$¢ lasera w nie spelnia dokladnie warunku (7.42), lecz ma wartos$¢
zblizona, to na ogdl nie wszystkie czasteczki moga zaabsorbowaé¢ dwa fotony o

I
Iy
Rys. 74. Ksztalt linii absorpcyjnej w spektroskopii
I, bezodrzutowej (schematycznie); I'y jest naturalng sze-
/ \ rokoscia linii (profil Lorentza), I'y jest szerokoscia
© skrzydel poszerzenia dopplerowskiego (profil Gaussa)
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przeciwnych kierunkach progagacji. Moga to uczyni¢ tylko takie czasteczki, dla
ktérych roznica energii (E, — E,~— 2hw) roéwna jest przesunieciu Dopplera w jed-
nostkach energetycznych, +2hk-V. Grupa takich czasteczek wyznaczona jest dla
kazdego w rozkladem Maxwella-Boltzmanna, stad wlasnie taki ksztalt skrzydet
linii rezonansowej. Ogolny ksztalt linii z rys. 7.4 zostal przewidziany przez
Wasilenke [22]. Jesli natezenie i stan polaryzacji obu fal sg takie same, to
powierzchnia pod czeécia lorentzowska jest dwa razy wigksza od powierzchni
czesci' gaussowskiej. Przez odpowiedni dobor stanu polaryzacji mozna niekiedy
doprowadzi¢ do znikniecia tla gaussowskiego.

& —  2hbw 2z — Ty
W12
f
E1 12
hewg,
for hew (laser)
procesy AiREEE Rys. 7.5‘..Schemat jedno- i dwufotonowych aktow
jednofotonowe dwufotonowy absorpcji

Prawdopodobienstwo przejScia dwufotonowego ze stanu podstawowego E, do
stanu wzbudzonego E, (rys. 7.5), obliczone za pomoca rachunku zaburzen, przed-
stawia nastgpujacy wzor:

. r

PE)(60) = lz e QUL G0+ QUL GIHLI0)| g (149)
w ktérym dw = w—w, jest réznica migdzy czestoscia lasera a czestoScig rezonan-
sowa, tak ze 2héw jest energetycznym ,rozstrojeniem” miedzy ,nadajnikiem” a
,odbiornikiem”; H, i H, sa hamiltonianami oddzialywania dipolowego czasteczki
z falg padajaca i odbita, hdw; = hw —(E; — E,) jest energia rozstrojenia w przejsciu
jednofotonowym dla kazdego ze standéw posrednich i, I', jest szerokoscig spektral-
na stanu wzbudzonego, I',/(4d0w?+3%TI?2) jest za§ czynnikiem Lorentza, determinu-
jacym ksztalt krzywej.

Jesli obie fale elektromagnetyczne, padajaca i odbita, sa identyczne, tj. maja te
same natezenia i stany polaryzacji oraz sa ,,dopasowane” do rezonansu tak, ze dw
=, to prawdopodobienistwo przejscia dwufotonowego upraszcza si¢ do wyrazenia

1 216

P (rez) = ‘;Awi [H|i) <il'H|‘0> T, (7.46)

Numeryczne obliczenie P{3(rez) wymaga sumowania po wszystkich stanach po-
$rednich i. Sume mozna ograniczy¢ tylko do jednego poziomu E,, jesli deficyt
energii hdw, jest znacznie mniejszy od pozostatych i jesli sily oscylatora fy, i fi,
nie sa zbyt male. W takim przypadku zastapienie operatora H wyrazeniem
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szczegolowym prowadzi do wzoru

3 Ryigl 4 P\ w, w
Pz’rez)—f_~<~ 0401 12) <“> 01 12f01f12><

2 \T he S Aw?

><|<J21m2—q|.]1m1><J1lml—q|J0m0>|2 (747)

w ktorym R, = e?/(dneome?) = 2,8-107 13 ¢m jest klasycznym promieniem elektro-
nu, Aoy = 2nc/we; 1 Ay, = 2nc/w,, sa dlugosciami fal dla przejs¢ jednofotonowych,
ktérych sitami oscylatora sa f,, 1 fi,. P oznacza moc, a S przekrdj wiazki lasera.
Wspotczynniki Clebscha-Gordona {J1m—gq|Jm) mozna obliczy¢ z liczb kwanto-
wych J i m kazdego z trzech pozioméw 0, 1, 2 oraz ze stanu polaryzacji q fali (g
= +1, 0, —1). W najczesciej spotykanych przypadkach kwadrat iloczynu tych
wspdlczynnikow jest rzedu 0,1. Jesli przyjmiemy dw;/wy; = dw,/wi, = 0,15 for
> f,201; Ay =4, =600 nm; I', =10% s~ !, to P/S =1 W-mm? prowadzi do
rezultatu

PP (rez) =151

Poniewaz w rezonansie uczestnicza wszystkie czasteczki (a nie tylko grupa o
okreslonej predkosci), liczba wzbudzen jest dostatecznie duza dla wykonania
pomiaréw. Warto zwroci¢ uwage, ze mozliwie silne zmniejszenie przekroju wiazki
lasera (ogniskowanie) zwigksza sygnal. Wprawdzie liczba czasteczek objetych wigz-
ka maleje proporcjonalnie do S, jednak PY) wzrasta proporcjonalnie do S™2.

Na zakonczenie tego krotkiego opisu spektroskopii bezodrzutowej wypada
wspomnieé jeszcze o korzysciach, pltynacych z zastosowania tej metody. Znikniecie
odrzutu odpowiada takiej sytuacji, jaka mielibySmy obserwujac proces absorpcji
lub emisji czasteczki bez zmiany jej predkosci. Prowadzi to do pojawienia sie
bardzo waskich linii, ktérych czestosci mozna wyznaczy¢ z duza doktadnoscig. Tym
samym mozliwe jest podwyzszenie dokladnosci w okreSleniu takich stalych fizy-
cznych, jak masy zredukowanej, czy momentu bezwladnosci czasteczki. Z drugiej
strony mozliwe staje si¢ uzyskanie wnioskéw dotyczacych wptywu skladu izotopo-
wego, konformacji, a takze wplywu oddzialywan miedzyczasteczkowych na czasy
zycia w stanach wzbudzonych lub na prawdopodobienstwo przejscia spektralnego.

Pierwszymi zbadanymi ta metoda czasteczkami byly:

1) w podczerwieni: CH5F [24, 25] i NH; [26];

2) w nadfiolecie: CqHg (benzen) [27].

7.4. Drgania wewnetrzne czasteczki w krysztale

W spektroskopii czasteczki izolowanej zaklada sie, iz mamy do czynienia z
mniej lub wigcej symetrycznym zbiorem atomoéw, potaczonych z soba wigzaniami
chemicznymi. Przypisanie czasteczki do okreslonej punktowej grupy symetrii poz-
wala — jak widzieliSmy — na ustalenie regul wyboru, tj. pozwala przewidzie¢
liczbe 1 symetri¢ dozwolonych przejs¢ w podczerwieni, przy czym warunkiem
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wystapienia przejscia optycznego jest zmiana momentu dipolowego czasteczki pod
wplywem zmiennego pola elektrycznego fali elektromagnetycznej.

W zasadzie niewiele sie¢ zmienia w tym obrazie, jesli interesujaca nas czasteczke
umiescimy w krysztale. Poniewaz energia wigzania atomow przewyZzsza o rzad
wielko$ci energie oddzialywan migdzyczasteczkowych, czestosci drgan wewnetrz-
nych czqsteczek w fazie stalej ulegajq jedynie niewielkim przesunigciom w poréwna-
niu z drganiami czgsteczki swobodnej. Przesuniecia te wynikaja z faktu, ze krysztat
stanowi osrodek, traktowany zwykle jako medium ciagte, o przenikalnosci dielek-
trycznej wiekszej od jednosci. Anizotropia przenikalnosci powoduje — jak widzie-
lismy — anizotropi¢ pola lokalnego, co w spektroskopii interpretuje si¢ jako
lokalna symetrie czasteczki w krysztale. Inaczej mowiac, uwaza sig, ze efektywna
symetria w sieci jest taka, jak symetria wezla, ktéry zajmuje czqsteczka w okreslonej
strukturze. Uwaza si¢ tez, Ze lokalna symetria wezla rozciaga si¢ na obszar calej
czasteczki. Relacje miedzy symetrig wezla a symetria czasteczki swobodnej prowa-
dza do pewnej modyfikacji regul wyboru, ktorymi zajmiemy si¢ w tym paragrafie.
Dalsza konsekwencja, wynikajaca z nizszej na ogét symetrii wezla, jest fakt, ze
niekiedy przejscia zabronione dla czqsteczki swobodnej mogq by¢ dozwolone dla
czqsteczki w krysztale. Moze sie takze zdarzy¢, ze pole krystaliczne znosi degenera-
cje stanu wzbudzonego, ktéremu opowiada dwu- lub trzywymiarowa reprezenta-
cja; efekty te nosza nazwe rozszczepienia statycznego. '

Inny rodzaj rozszczepienia pojawia si¢ w zwiazku z tym, Ze w komorce
elementarnej zawartych jest Z czasteczek, stanowiacych ukiad Z sprzezonych z
soba oscylatoréw o identycznych wlasciwosciach. Oddzialywania tych oscylatoréw
miedzy soba w stanie wzbudzonym prowadzq do rozszczepienia kazdego drgania na
Z sktadowych, z ktorych nie wszystkie musza by¢ obserwowalne. Ostatnia wreszcie
— i moze najwazniejsza w zastosowaniach — rdznica migdzy stanem krystali-
cznym a stanem gazowym polega na tym, ze wzbudzone w krysztale oscylatory
stanowia uktad dipoli, wykazujacy wiele cech ,,gazu zorientowanego”. Stany wzbu-
dzone mozemy wywolaé i analizowa¢é za pomocq promieniowania spolaryzowanego, co
rozszerza mozliwo$¢é poznania wlasciwosci poszczegdlnych oscylatorow. Zajmiemy
si¢ opisem tych zjawisk nieco bardziej szczegoélowo, poczynajac od modyfikacji
regul wyboru.

Translacyjna symetria sieci przestrzennej nie jest cecha interesujaca w spektro-
skopii czasteczki. JeS§li przyjmiemy, ze goérna granica widma czestosci drgan
wewnetrznych czasteczki wynosi 10* ¢cm™!, to takiej czestosci odpowiada fala o
dtugosci 10° nm. Na tym odcinku miesci sie 10° komorek elementarnych o
przecietnym wymiarze krawedzi 1 nm. Wynikajaca stad roznica faz migdzy sasied-
nimi komérkami elementarnymi, wywotana zmiennym polem elektrycznym fali,
jest rzedu 2rn-1073 rad = 0,4° i moze by¢ zaniedbana. Wobec tego w problemie
analizy drgah wewnetrznych czqsteczki w krysztale znaczenie ma jedynie zawartosé
jednej komorki elementarnej. Upraszcza to znacznie reprezentacje krysztalu z
punktu widzenia zasad symetrii, rozktad materii wewnatrz komorki opisywany jest
bowiem przez grupe symetrii komorki elementarnej, G,, wprowadzona w rozdz. 4.
G. niekoniecznie musi by¢ grupa punktowa, poniewaz czesto. obejmuje operacje
odbicia lub obrotu polaczone z nieprymitywna translacja. Jesli i te translacje
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opuscimy, to G, staje si¢ punktowa grupa symetrii komodrki elementarnej, G,.
Wlasnie to pojecie jest najczescie] uzywane w spektroskopii krysztalow. G, obej-
muje, oczywiscie, operacje symetrii zawarie w grupie punktowej wezta, G,.

G, sklada si¢ z operacji symetrii wlasciwych weztowi, w ktérym przypada
srodek masy czasteczki, i zawsze jest grupa punktowa. Je§li wezet polozony jest w
miejscu zupelnie dowolnym (potoZzenie ogdlne), to odpowiada mu trywialna grupa
punktowa C,, zawierajaca jedynie element toZzsamosci, E. Srodek masy moze tez
zajmowaé polozenie szczegblne, tj. leze¢ na jakim$ elemencie symetrii, a nawet
przypada¢ w punkcie przecigcia kilku elementéw. Weztowi odpowiada wowcezas
grupa symetrii wlasciwa symetrii polozenia szczegdlnego. Zdarza sie czesto, iz
komérka elementarna moze byé obsadzona na kilka sposobow, zaleznie miedzy
innymi od grupy punktowej wezla i czasteczki. Sadzi si¢ nawet, ze w pewnych
przypadkach tych sposobéw obsadzenn moze byé bardzo duzo. Na przykiad, wezla
o symetrii C; nie moze na ogoél zajmowaé czasteczka nie posiadajaca centrum
symetrii. Zgodnie z ta zasada zbudowane sa kryszialy benzenu, naftalenu, antrace-
nu: srodek masy tych czasteczek pokrywa si¢ z centrum symetrii krysztalu. Czy
jednak nie mozna zbudowaé centrosymetrycznego krysztatu z czasteczek niecentro-
symetrycznych? Okazuje sig¢, ze w pewnych przypadkach jest to mozliwe. Na
przyklad czasteczki pentachlorofenolu [287 Iub pentachlorobenzenotiolu [29] nie
maja centrum symetrii, a jednak w fazach wysokotemperaturowych tych substancji
zajmuja polozenia C;. Jak si¢ wydaje, struktury tych substancji moga byé realizo-
wane w polaczeniu z nieuporzadkowaniem czasteczki wzgledem normalnej do
pierScienia benzenowego. Kazdy podstawnik piericienia zajmuje w strukturze
jedno z szesciu polozen z prawdopodobienstwem 1/6, a centrum symetrii krysztatu
realizowane jest statystycznie.

Grupa wymienna G,,, wprowadzona w rozdz. 4, jest zbiorem operacji wiaza-
cych polozenia atoméw symetrycznie réwnowaznych w komoérce elementarnej;
podobnie jak G., G, obejmuje takze operacje polaczone z translacja o ulamek
periodu sieci. Jesli je opuscimy, to G, przechodzi w punktowa grupe wymienna
G,, wprowadzong przez Kopelmana [30]. Wszystkie trzy grupy punktowe G,, G,
oraz G, spelniaja relacje

G, =G, G, (7.48)

Warto zauwazy¢, ze symetria wezla, okre§lona operacjami grupy G, nie musi
by¢ identyczna z symetria czasteczki swobodnej, G, ; Gy, jest zazwyczaj wyzszego
rzgdu niz G,. W najogélniejszym sformulowaniu relacja miedzy G,,, G, i G, jest
nastgpujaca: G, musi by¢ podgrupa G, i jednocze$nie G,, '

Gy > G, =G, (7.49)

Dopuszczalna symetria wezla i liczba obsadzen Z przy zadanej grupie punkto-
wej komoérki elementarnej moze byé odczytana z opisu grup przestrzennych,
zamieszczonego w Migdzynarodowych Tabelach Rentgenografii (por. rozdz. 3).
Podaje je réwniez w zestawieniu tabelarycznym Halford [31]. Najwygodniej
jednak korzysta¢ z nomogramu opracowanego przez Ryttera [32] i przytoczonego
po niewielkim uproszczeniu w tab. 7.7 (opuszczono grupy punktowe, zawierajace
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Tabela 7.7

Grupy wezla w skonczonych grupach punktowych (oprac. wedlug [32])

G 57 g -+ S12 - |2 - 48

10° E 6 i 8 . 12 + 24
%Q -i' 4 . 6 12 - 2
A9 > + - 8 6 12 - 2

AT 4 - Bl - 12

A 2 m . .- 12012 - 24

o< 2 - - 6 - - 12 - 2

%0 v e D . - Ble « 12

Qe . 6 - 12

.. o 2 6 - 12

G Cp - Ay 6

—_— G

v o m v . 818 16

C2 - G 4 -{8 - 16

. . . L 8

8
L - 8|

- L - 8
Dy - - e f
v & s 2 - . 616 -« 12
. Dy - 0 2 . 3 . .l - 12
o -2 - - 3-8

Q” .2 <l 0B

N ¢ 3+ 6

. (J'h“ 2 3 -6

D, + Dy ‘e ey - (&) : - - 3
3 o A= o @ o> 2 LlL - 8

Dy - DanDy €51C; = Co 0¥ 2 - -4 -8
T . . . <O x 3 B e i

R Qv 20 « 4

(9\:- . 2 . L

. . oo . . oY 22 « &

F + S - Cg "Cl. * Cy G *Q’q}\ - -2
. . . . . . . . IS . .2
T -« +1Cg - Cg “Cuw - Gy - *|Cs C3 - Gt Cp+ - G 0 2

0 - TT -|DgD0s+ CoCs-|0,D, - » GG, »|D3Dy« + C3C3 +|DyD; « + CyCy w0
a

Krotno$¢ wezia (m) podana jest w gornej prawej czesci, a grupa wymienna (G;) w dolnej lewej
czesci wzgledem przekatnej. Sposdb odezytu relacji migdzy Gy, G,, G, oraz m ukazuje schemat u gory
tabeli. Gwiazdka oznacza zasade wzajemnego wykluczania przej$é aktywnych w widmie Ramana i w
widmie IR. Kropka oznacza brak relacji, znak + wskazuje za$, ze Zadna z grup wymiennych nie spetnia
rownania (7.48). Litera a podaje, ze G; =G, dla G, =C,.

pieciokrotna of symetrii). Liczby nad przekatna nomogramu podaja krotnos¢
obsadzenia komorki elementarnej, przy czym symetrie wezla okresla za kazdym
razem grupa punktowa G, w kierunku pionowym w doét. Symbole pod przekatna
oznaczaja punktowe grupy wymienne, Gj.

Z nomogramu mozemy odczytaé, na przyklad, ze komorka elementarna o
symetrii grupy punktowej D,, moze byé obsadzona na trzy sposoby, a mianowicie

20
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(informacje znajdujemy zawsze w miejscu przecigcia okreslonego wiersza z okreslo-
ng kolumna; jesli w tym miejscu wystepuje kropka to oznacza to, ze postawionego
zadania zrealizowaé¢ nie mozna): _

1) mozemy obsadzi¢ t¢ komérke dwiema identycznymi czasteczkami o symetrii
C,,, przy czym symetria tego obsadzenia bedzie odpowiada¢ symetrii grupy
punktowej C,,

2) w takiej samej komorce mozemy mie¢ cztery czasteczki w wezlach o
symetrii C,, przy czym ich rozklad bedzie mial symetri¢ D,,

3) w komorce elementarnej mozemy rozmie$ci¢ osiem czasteczek asymetry-
cznych (C;), a symetria ich rozkladu bedzie D,,.

Zapis (7.49) oznacza, ze w spektroskopii poszukujemy odpowiedniosci miedzy
reprezentacjami grupy punktowej wezla i swobodnej czqsteczki oraz miedzy reprezen-
tacjami wezla i komérki elementarnej. Tego typu korelacje migdzy roéznymi grupami
punktowymi maja znaczenie ogolniejsze i podawane sa w dzielach specjalisty-
cznych z zakresu teorii grup: przytoczone sa rowniez w monografii Wilsona,
Deciusa i Crossa [6]. Niech jako przyklad postuzy krysztal o symetrii grupy
punktowej komorki elementarnej D,,. Przyjmiemy dalej, ze komoérka obsadzona
jest dwiema czasteczkami, symetria wezla bedzie zatem C,, (tab. 7.7), sama za$
czasteczka niech ma symetrie D,,. Diagram korelacyjny, opracowany na podstawie
monografii [6], przedstawiony jest w tab. 7.8. Z tego diagramu mozemy odczytac
nastepujgce informacje:

1) Kierunkom przejs¢ spektroskopowych w czasteczce T, T,, T. odpowiadaja
kierunki przej$¢ spektroskopowych w krysztale T,, T,, T., rownolegte do odpo-
wiednich osi krystalograficznych a, b, ¢. Zwro¢my uwage na fakt, Zze drganie typu
E w czasteczce swobodnej ma moment przejscia lezacy w plaszczyznie xy, ale jego
szczegbtowy kierunek nie moze by¢ okreSlony na podstawie zasad symetrii.

Tabela 7.8

Diagram korelacyjny miedzy grupami punktowymi D,, (czasteczka), C,,
(wezel) i D,, (komdrka elementarna)

Grupa punktowa Grupa punktowa Grupa punktowa
czgsteczki swobodnej wezlia komérki elementarnej
D?.d CZ!‘ D2h
S AT e

1 iz T’/ 319
)
B
A, M
B —— Big
A
B‘I ] 7;< ¢
T2, By B, T
By, T
BZ: 7:v 2ur b
. By, Ta
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2) Przejécia typu A,, zabronione w czasteczce, dopuszczone sa symetria wezla i
moga si¢ pojawi¢ w krysztale jako stabe przejscia o symetrii B3u, tj. o polaryzacji
wzdhuz osi a krysztatu.

3) Przejscia typu A, sa zabronione w' czasteczce i nie mogg tez wystaplc w
krysztale. Podobnie rzecz si¢ ma z przejSciami typu B;.

4) Przejécia B, dopuszczone sg przez symetri¢ czasteczki i wezta i pojawia sig
w krysztale jako silne przejscia o symetrii Bs,.

5) Przejscia typu E zostana rozszczepione przez symetrie wezta. Przy wystar-
czajaco duzej zdolnodci rozdzielczej spektrofotometru pojawia sie w widmie IR
dwa osobne maksima o symetrii By, i B,, o ro6znych polaryzacjach. Jest to
nrzypadek rozszczepienia statycznego.

Obecnos¢ wigkszej liczby identycznych oscylatoréw elementarnych w czasteczce
lub komérce elementarnej prowadzi nas do problemu tak zwanych oscylaroréw
sprzezonych. Wynika on stad, ze jesli czestosci dwéch lub wiecej oscylatoréw sq
identyczne, to sq one wzbudzane réwnoczesnie, a wtedy réwniez fazy drgar nie mogq
by¢ dowolne, lecz musza spetnia¢ okreslone reguly symetrii. Zagadnienie oscylato-
row sprzezonych, opisane szczegélowo w znakomitej monografii Davydova [33],
prowadzi do  zrozumienia zagadnienia ekscytonéw. Przedstawimy tu niektore
wyniki tej teorti.

Rozwazmy wpierw dla przypomnienia elementarny problem dwoch oscylato-
row sprzezonych. Dla uproszczenia przyjmiemy, Zze masy obu oscylatoréow sa
identyczne, m; =m, = m, a wobec identycznosci stalych sitowych, k, =k, =k,
rowniez czestosci drgan w stanie swobodnym sg takie same, wy; = wg, = w,. Jesli
‘ay 1 a, oznaczaja wspdlrzedne ruchu, to calkowity energie uktadu mozna przedsta-
wi¢ w nastgpujacy sposob:

E =Ymai +ima3+5kal +ikas+vya, a, (7.50)

Kropka oznacza rozniczkowanie wzgledem czasu, ya; a, zas jest energia sprzezenia
— przyjeto proporcjonalnos¢ do iloczynu wspétrzednych. Réwnania ruchu majg
postac

i +wia,+—a, =0
__ m

(7.5 i)
i +a)(2,a2+—y—a1 =0
m .
Jesli zatozymy rozwigzanie periodyczne typu
a, = o exp fiowt] (7.52)

gdzie i jest jednostka urojona, @, za$ amplituda ruchu, k =1, 2, to otrzymamy
uktad dwéch réownan jednorodnych. Warunkiem istnienia nietrywialnych rozwia-
zan dla amplitudy jest znikanie wyznacznika uktadu

" 2
(@3~ w?) (@i —w?) - (i> =]
m
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Stad otrzymujemy

w? = wé—l
m

(7.53a)
w? = co%-l—1

m

Podstawienie wyrazen (7.53a) do rozwiazan rownan ruchu prowadzi do zwigzkow
miedzy amplitudami ruchu obu oscylatorow sprzezonych, a mianowicie
dla w, ajg i (7.53)
dla w, ayo= 4y
Czestosci nizszej (w,) odpowiada wiec drganie antysymetryczne, wyzszej za$ (w,)
— drganie symetryczne. .

Przejdimy teraz do opisu widma drgan wewnetrznych czasteczki w krysztale.
Niech wskazniki «, f numeruja czasteczki, a n, m komorki elementarne. Jesli
ladunek elementarny oznaczymy przez g, site oscylatora przez f (jest to wspodlczyn-
nik korekcyjny, bezwymiarowy i mniejszy od jednosci, dopasowujacy prawdopodo-
bienstwo przejscia do natezenia przejscia), to moment dipolowy czasteczki w
komoérce n mozemy zapisa¢ nastepujaco:

Po=q/f €t (7.54)

przy czym e oznacza wektor jednostkowy w kierunku P, a oznacza obecnie

wspOlrzedna normalng, zdefiniowana jako iloczyn masy oscylatora i przesunigcia.

Poniewaz mamy Z czasteczek w komorce elementarnej oraz N = Ny N, N3 komo-

rek w krysztale, calkowita energia Z-N drgajacych oscylatorow wyniesie
2E=Y a%+wdY al+ Y Y Ryl [P Pus—

na m,p

—3 (Pmﬁ sz.mﬂ) (Pna Qna,mﬂ)] (755)

R, s jest odlegioscia obu oddziatujacych dipoli, a @,y Wektorem jednostkowym
w kierunku R (rys. 7.6). Prim przy znaku sumy oznacza, ze opuszczamy wyrazy,
dla ktorych n=m i a = f.

/

P ® /

gnM
Rna,mﬁ
y Pmﬂ

Rys. 7.6. Oznaczenia wektordw w sieci prostej
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Przyjmijmy, Zze réwnanie ruchu oscylatora «

I a*f ‘
EZ R amﬂ [eg; eﬂ -3 (eﬁ Qna,mﬂ) (ea Qna,m/f)] = O (756)
m,f *Vna,mp

Uy + 03 Ay +
ma rozwiazanie w postaci fali biegnacej, co odpowiada ruchowi wzbudzenia we
wnetrzu krysztatu

a,, = a,exp [i (kr—wt)] (7.57)

gdzie k jest wektorem falowyin, r jest za$§ wektorem sieci prostej, ktorej periodami
sa krawedzie komorki elementarnej. Podstawienie wyrazenia (7.57) do réwn. (7.56)
prowadzi do zbioru liniowych réwnan jednorodnych, okre$lajacego zbidr wartosci
amplitud a,

z

(wi—w?a,+ Y Tyyag =0 (7.58)
B

I',; jest tensorem, opisujacym oddzialywania migdzyczasteczkowe typu dipol-
dipol, przy czym jego skiadowe sg funkcja wektora falowego k

N 2
Faﬂ (k) = Zl 21;13 fﬂ exp [l (rm a rn) k] [ea e/} - 3 (eﬁ Qna,m/]) (eat sz,m/])] (759)

I',, rozumie¢ bedziemy jako wplyw otoczenia na czasteczke w wezle «. Poniewaz
wymiarem I jest s~ 2, I',, mozna uwazaé za zmiane kwadratu czestoéci, wywolana
umieszczeniem oscylatora w osrodku o przenikalnos$ci dielektrycznej ¢ # 1. Zakla-
dajac promien sumowania oddzialywan dipolowych 5 nm, tj. przecietnie 7 statych
sieciowych, oraz |k| = n-100 cm ™!, bedziemy mieli réznice faz, wytworzona przez
fale miedzy $rodkiem a-peryferiami kuli sumowania, roGwna m-10~* rad. Jest to tak
malo, ze praktycznie czynnik wykladniczy w réwn. (7.59) mozna dla krysztaléw
molekularnych przyja¢ za rowny jednosci, a elementy I',; uzna¢ za rzeczywiste.

Rozwiazanie ukladu réwnan jednorodnych (7.58) prowadzi do zbioru czestosci
wlasnych

w=w?k) o=1,2,...,2Z (7.60)

z ktorych kazda zalezy od wektora falowego. Wektor k przyjmuje N dyskretnych
wartosci

N
AL . (7.61)
a

tak ze kazdej czestosci wlasnej czqsteczki swobodnej odpowiada w krysztale quasi-
cigglte pasmo (rys. 7.7).

Rozwazmy troch¢ bardziej szczegélowo przypadek obsadzenia jednoskosnej
komorki elementarnej C,, czterema czasteczkami (Z = 4). Rozklad wektoréw
jednostkowych oddziatujacych dipoli przedstawiony jest na rys. 7.8. Przyjmiemy,
ze sktadowe tensora oddziatywan, I',,, spetniaja nastgpujace warunki, wynikajace z
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symetrii rozkladu wektorow:

Iy =T=133=ry=T,

Iy, =T3,=1T,
] (7.62)
Iyy=Tyu=1I;
Fiy=Tyy3=1,
N o
Ne
1
k) = %2 }
Ns
wz(k) :1;2 }2
Ns -
3
wilk) =—=—=———=" }
Ny
}z.
IRV IE———— 7]

Rys. 7.7. Schemat rozszczepienia poziomu energetycznego (w,) w sieci krystalicznej

Rys. 7.8. Rozklad molekularnych wektoréw momentu

a przejScia w komorce clementarnej (przyklad)

Przy takich zalozeniach uklad rownan liniowych (7.58) moze by¢ rozwiazany, przy
czym otrzymujemy nast¢pujace czestosci wlasne:
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Wi =wi+ Ty +Ty+(T3+Ty)
w§=w§+Fi¥F2+(F3—F4) .

wi =wf+ T =T, —(I3=T,)



1 wektory wlasne

di = By (¢ +ey+es+ey) YP.=0

a,2 = BZ(CII -+—(’2-—L’3—L’4) ZP“ =0 (764)
ag=B3((’1—(’2+L’3-L’4) ZPa”b

ay, = B (e, —e;,—e3+¢,) Y P,Lb

Dokonana analiza prowadzi do wniosku, ze sprze¢zenie drgan czterech czqsteczek w
komorce elementarnej prowadzi do rozszczepienia kazdej czestosci na cztery skladowe
(dalsze rozszczepienie, wynikajace z quasi-ciaglej struktury czgstosci, pomijamy), z
ktorych dwie nie wykazujq zmiany wypadkowego momentu dipolowego i nie mogq by¢
aktywne w IR. Dla pozostalych dwoch skliadowych kierunek momentu przejscia jest
odpowiednio réwnolegly lub prostopadly do krystalograficznej osi b (rys. 7.9).

e, eN /€, —8,3/~€;

a
Rys. 7.9. Wypadkowe momenty przejScia dla catej komoérki elementarnej

Troche inny wynik otrzymujemy z zastosowania teorii grup do analizy tego
przypadku. Komérka elementarna C,, ma elementy symetrii C,||b(y), o,Lb, I, E.
Wobec tego tabela charakterow ma nast¢gpujaca postac:

Typ ®) Aktywnos$¢

drgania E = T ! IR R
A, 1 1 1 1 - R,
A, 1 1 -1 ~l TAl1b) =
B, 1 -1 -1 1 — R, R,
Iz 12 0 4 0

Rozkiad reprezentacji redukowalnej I'y zgodnie z rown. (7.11) prowadzi do wyniku

g =4A4,+2A4,+2B,+4B,
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Po odjeciu typow akustycznych (4,+2B,) otrzymujemy
I'p =44,+A,+2B,+2B, (7.65)

Wynik ten wskazuje na istnienie jednego przejscia o polaryzacji rOwnoleglej do osi
b, lecz dwoch przejs¢ o polaryzacji prostopadlej. Niezgodno$¢ z poprzednim
wynikiem spowodowana jest prawdopodobnie zbyt daleko idacym uproszczeniem
zalozen (7.62). ~

Précz wzbudzen kolektywnych typu optycznego, z ktorymi mamy do czynienia
w spektroskopii, istnieja tez inne wzbudzenia kolektywne, ktore sa koherentnymi
ruchami duzej liczby wzbudzen elementarnych. Przykladami moga by¢ fale akusty-
czne, akustyczno-elektryczne i magnetyczno-hydrodynamiczne réznych typow.
Ogolnie biorac, wzbudzenta elementarne mozna podzieli¢ na nastepujace typy [34]:

1. Wzbudzenia typu Bosego, tj. podlegajace statystyce Bosego—FEinsteina:

fotony,
fonony podtuzne i poprzeczne,
librony,
fonony i rotony w nadcieklym helu (He II),
fale spinowe w materialach magnetycznych,
ekscytony w poétprzewodnikach i krysztalach molekularnych.
2. Wzbudzenia typu Fermiego, tj. podlegajace statystyce Fermiego—Diraca:
elektrony przewodnictwa 1 dziury w poélprzewodnikach,
quasi-czastki w metalach, nadprzewodnikach i w cieklym He III,
polarony w polprzewodnikach i krysztalach molekularnych.

Z kolektywnymi wzbudzeniami mamy do czynienia w spektroskopii przede
wszystkim wowczas, gdy absorpcja materiatlu jest duza. Przy duzej gestosci standéw
wzbudzenia nast¢puje kolektywizacja ich ruchu, co w jezyku teorii grup sprowadza
sie¢ do koniecznosci opisu ruchu przez podanie moduséw drgan ciala statego. Owe
modusy maja okreslone czgstosci i wektory propagacji, ktorych kierunki w krysz-
tale zaleza od symetrii sieci i — jak widzieliSmy — w znacznym stopniu moga by¢
przewidywane regulami wyboru.

7.5. Model gazu zorientowanego w spektroskopii

Poprzednio rozwazalismy przypadek silnego sprzezenia drgan oscylatorow w
komorce elementarnej, prowadzacego do kolektywnego modusu drgan wszystkich
czasteczek w krysztale pod postacia fali biegnacej (ekscytonu). Jesli jednak absorp-
cja jest staba, to stan wzbudzenia krysztalu mozemy traktowaé jako zbiér wzbudzen
elementarnych, oddzialujacych stabo lub nie oddzialujacych na siebie wzajemnie.
Poszczegdlne akty absorpcji z wytworzeniem czasteczek w stanie wzbudzonym
nastgpuja wowczas niezaleznie i warunki fazowe nie odgrywaja roli. Absorpcja
uzalezniona jest natomiast od geometrycznych zwiazkoéw miedzy kierunkami mo-
mentdéw przejscia w elemencie strukturalnym (atomie, czasteczce, jonie) a kierun-
kiem wektora E padajacej fali elektromagnetycznej. Taki obraz absorpcji przypo-
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mina zjawisko scyntylacji, a rozklad przestrzenny wzbudzonyoh dipoli jest przy-
kladem ,gazu zorientowanego”.

Model gazu zorientowanego, ktory tu opiszemy, polega na powiazaniu do-
swiadczalnie zmierzonej absorpcji okreslonego typu oscylatoréw w krysztale mole-
kularnym z przewidywaniami wielkosci absorpcji, jakich mozemy oczekiwaé na
podstawie znajomosci struktury tego krysztatu.

Aby poréwnanie to mogto mie¢ charakter ilo$ciowy, pomiary natezenia pasma
absorpcyjnego musza spelnia¢ pewne warunki. Najwazniejszymi z nich s3:

1. Wigzka promieniowania spolaryzowanego musi pada¢ na krysztal w taki
sposob, by wektor E fali lezal w jednej z plaszczyzn optycznych krysztatu. Plaszczy-
zna optyczna jest taka plaszczyzna, ktora przechodzi przez dwie osie gtowne
indykatrysy. Przy innej orientacji wektora E nastgpuje rozszczepienie wiazki w
momencie wejscia do krysztalu na dwa promienie, z ktorych kazdy porusza sie z
inng predkoscig i jest absorbowany w rézny sposéb. Wynik takiego pomiaru nie
ma sensownej interpretacji fizycznej (por. p. 6.2). Ponadto bedziemy rozwazaé
wylacznie przypadek prostopadlego padania wiazki na plytke krystaliczng.

2. Czesé promieniowania ulega odbiciu na granicy faz powietrze/krysztal. W celu
wyeliminowania bledéw stad pochodzacych najlepiej umiesci¢ na drodze wiazki
odniesienia mozliwie cienka plytke z tego samego materialu i w tej samej orienta-
cji, co na drodze wiazki pomiarowej. Wyniki pozbawione bledéw pochodzacych z
odbicia mozna réwniez otrzymaé przez wykonanie pomiarOw natezenia pasma dla
szeregu plytek o roznych grubosciach i zastosowanie prawa Lamberta (7.66).

3. Pomiar natezenia wiazki wchodzacej do krysztatu, I,,, oraz wiazki opuszcza-
jacej krysztal, I,, pozwala zgodnie z prawem Lamberta na okreslenie wspolczynni-
ka absorpcji k materialu przy okreslonej czestosci wiazki padajacej

2,303
k(v) = log (Io/1)) (7.66)
Miarq integralnego natezenia pasma jest wyrazenie
Y2
A¥ = [k(v)dv = CKk), H® (7.67)
i

w ktorym k. jest wspolczynnikiem absorpcji w maksimum pasma, H — jego
szerokoscia polowkowa, a C pewna stala, nie majaca znaczenia dla dalszych
rozwazan. Wskaznik ,,a” oznacza, ze mierzone wielko$ci sg pozorne. Zawieraja one
btedy eksperymentalne, wynikajace ze skonczonej szerokosci spektralnej wiazki
promieniowania, opuszczajacej monochromator. W celu uzyskania ,prawdziwych”
parametréw pasma AY, kU 1 HY, trzeba zastosowaé jednqg z procedur korekcyjnych,
na przyklad podana przez Ramsaya [35].

Przytoczone dotad uwagi dotyczyly eksperymentalnych warunkéw pomiaru
natezenia pasma. Po wykonaniu pomiaréw dla dwdch prostopadtych kierunkow
optycznych plytki, x; 1 x,, oraz zastosowaniu procedury korekcyjnej mozemy
otrzymac¢ wielko$¢, zwang doswiadczalnym dichroizmem pasma

AW

1
RY), = I (7.68)
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Liczba ta charakteryzuje anizotropie absorpcji okreslonego typu oscylatoréw dla
wybranych dwoch kierunkow pomiaru. Jesli znamy strukture krysztalu i orientacje
osi idykatrysy, to kierunki te moga by¢ latwo zorientowane wzglgdem osi krysta-
lograficznych. W takim przypadku mozliwe jest obliczenie wielko$ci dichroizmu,
RY),, z danych strukturalnych przy zastosowaniu modelu gazu zorientowanego dla
wielkosci wektorowej (por. p. 4.3).

3

T2

/ Rys. 7.10. Orientacja optyczna plytki wycigtej w pla-
% ’ szezyznie (001) ukladu jednosko$nego

W celu sprecyzowania sytuacji wezmy pod uwage ptytke, przedstawiona na rys.
7.10; n,, n,, ny oznaczaja glowne wspolczynniki refrakcji, a N;, N,, N; sg
wspotczynnikami refrakcji wzdtuz osi uktadu wspoirzednych x; x, x3, zwigzanego z
ptytka. Przypusémy, ze n||x,, lecz n, nie lezy w plaszczyznie plytki. Z sytuacja
taka spotykamy sie, na przyklad, w ptaszczyznie (001) uktadu jednoskos$nego — w
tej orientacji x,||b. Aby napisa¢ wyrazenie na dichroizm, trzeba wzia¢ pod uwage
nastepujace fakty:

1) Promien swietlny El|x; przebywa w krysztale droge optyczng o innej diugosci
niz promien E||x,. Dlugos¢ drogi optycznej wynosi [p. rown. (4.69)]

, Ii=d;n
gdzie d; jest efektywna gruboscia krysztatu. Zgodnie z réwn. (6.29) mamy
d; = dy/cos &; (7.69)

przy czym d, jest geometryczna gruboscia plytki, & za$ katem zawartym miedzy D
i E® fali wewnatrz krysztalu (por. rys. 6.7). Poprawka stad wynikajaca powinna si¢
znalez¢ w mianowniku w celu zréwnania drog optycznych dla obu kierunkéw x; i
Xs.

2) Orientacja wektora E® wzgledem x; jest na ogdl inna niz wektora E w
powietrzu (prozni).

Energia absorbowana przez oscylator w j-tej czasteczce w komorce elementar-
nej, ktéremu odpowiada wektor momentu przejscia

M, = M,m; (7.70)



gdzie m; jest wektorem jednostkowym w kierunku M, jest proporcjonalna do
(M;- E®)? = M§(m; EW)? (7.711)
Po tych przygotowaniach wyrazenie na dichroizm mozemy zapisaé w nastepujacy
sposob: :
V4
N,d,> (m EP)?
By = J (172

z

N, (112(n1j E¥)2
d

Nalezy teraz obliczyé dtugoéé drogi optycznej i orientacje E® dla kazdego z dwu
mozliwych kierunkéw pomiaru.

1. Dla E,||x, mamy N, = n,||x,, zatem zgodnie z réwn. (6.25) £ = 0. Wobec
tego :

dl Nl =dol‘ll (7-73)

oraz
EPNE lIx,

2. Dla E,||x, wspotczynnik refrakcji okresla wyrazenie (6.24)

1 cos? +sin2 )

7.74
N3 n3 n? : )
Ponadto
dy

e : ' 7.75
e cosé (7.75)

przy czym kat ¢ jest okreSlony przez réwn. (6.25).

Orientacje EY podaje nastepujaca tabelka:

. W (1.76)

EY 0 cosé +siné

Wybdr znaku przy siné zalezy od orientacji przekroju n,, ny indykatrysy. Na
podstawie danych (7.76) otrzymujemy

3
(m; EP) = 3 cos(m, x,)cos(x,, EY) =
1

= cos £cos (m;, x,)+sin cos(m;, x3) (7.77)

Podstawienie tych wyrazéﬁ do rown. (7.72) prowadzi do wyniku

z

2 ;
J cos“(m;, X
N2 j;l ( jo 1)

Tz
n, COs .
1cos¢ Y [cos & cos (m;, x,)+sin & cos (m;, x3)]?
j=1

RY, = (7.78)
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W tym wyraZzeniu wystepuje zardwno orientacja osi indykatrysy, jak i kierunkow
momentow przejscia m; wzgledem przyjetego uktadu wspotrzednych x; x, x;. Naj-
prosciej jest skorelowaé ten uklad z kierunkami optycznymi plytki, jak na rys.
7.10. Wystepujars w réown. (7.78) kosinusy kierunkowe m; mozna otrzymac z
danych strukturalnych i orientacji kierunkow optycznych za pomoca zwyklej
transformacji ukladu wspéirzednych.

Zastosowanie rownania (7.78) do obliczania dichroizmu pasm absorpcyjnych
itustruje tab. 7.9. Kat ¢ wynosi od kilku sekund (duren) do ponad 12° (antracen).
Jak wynika z danych zawartych w tabeli, poprawka zalezna od kata ¢ ma niekiedy
istotne znaczenie przy obliczaniu wartosci dichroizmu. Szczegodlnie wyraznie jest to
widoczne w przejsciu A’ benzamidu; przy zaniedbaniu ¢ dichroizm pasma ma
kierunek odwrotny niz w eksperymencie.

Tabela 79

Wyniki pomiaréw i obliczen dichroizmu niektérych pasm absorpcyjnych w bliskiej podczerwieni

st obl) X i
I [t B L B o e e s
1 | Naftalen Ty + 73 By 5995 6,94 480 | 4,51(28) [37]
)+ 78 B, 5965 0,17 045 | 047(6) [37]
2 | p-Nitro-
anilina * 208, A, 6901 0,41 045 | 04602 [37]
3 | Acetanilid 2Ven A’ 5980 0,69 0,69 0,70(2) [37]
4 | Benzamid Tor A’ 6030 091 { 1,28 | 1,18(1) [37]
5 | Duren T+ 27 E 5670 0,85 085 | 082(4) [37]
6 | Kwas
benzoesowy Wey A’ 6030 081 071 | 0,68(1) [38]
7 | Antracen T+ Ry B, 5940 7,00 525 | 5,05(55) [38]
* Dichroizm w uktadzie osi b oraz « = [101].

Interesujacy problem pojawia si¢ wtedy, gdy jedynym elementem symetrii
czasteczki jest plaszczyzna o,, pokrywajaca si¢ z plaszczyzna czasteczki [37].
Grupa punktowa symetrii G,, zawiera wowczas tylko dwie reprezentacje: A" i A",
czyli drgania moga by¢ symetryczne albo antysymetryczne wzgledem tej plaszczy-
zny. W tym drugim przypadku moment przej$cia jest oczywiscie wektorem n
prostopadlym do ¢, ale jaka wybra¢ reprezentacj¢ geometryczna dla A’, skoro o
wektorze momentu przejScia wiemy tylko tyle, ze lezy w plaszczyznie a,?

Otoz okazuje si¢ [38], ze wyrazenie na dichroizm (7.78) pozostaje stuszne
réwniez i dla takich pasm, jesli tylko zamiast kosinuséw kierunkowych momentu
przejscia podstawi¢ kosinusy katéw zawartych migdzy o, i osiami ukladu wspot-
rzednych lub — co jest rOwnowazne — sinusy normalnej n

cos (o, x;) = —sin(n, x;) (7.79)
Przyklady drgan A, podane w tab. 7.9, zostaly potraktowane w taki wlasnie

Sposob.
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Pomiary i obliczenia dichroizmu, przedstawione dotychczas, zostaly zdefinio-
wane dla pojedynczych, dobrze izolowanych pasm absorpcyjnych, z jakimi nie
zawsze mozemy mie¢ do czynienia. Luty, Szostak i Karwowska wykazali na
przykladzie tiomocznika i p-nitroaniliny [39], Ze pojecie dichroizmu mozna rozsze-
rzy¢ na grupe pasm. W krysztale tiomocznika, o symetrii ortorombowej, obserwuje
sie¢ w przedziale czestosci 6000-7200 cm™! pasmo absorpcyjne, ztozone z kilku
nadtondw i tondéw sumacyjnych grupy —NH,. Analiza wykonana metodami teorii
grup wskazuje, ze w tym obszarze spektralnym moze wystapi¢ sze$¢ przejsé o
symetrii A; i cztery przejécia o symetrii B;. NateZenie integraine tego zbioru
zapiszemy w postaci

I; = 6a, cos®(A,, i)+4b, cos*(By, i) (7.80)

gdzie i w krysztale o tej symetrii oznacza jedna z osi krystalograficznych a, b lub ¢,
a, 1 by sa zas wspolczynnikami, okreslajacymi natezenia przej$¢ odpowiednio typu
A{ i By

a_u
“ 0q 44

b1~

(&)
aq By

Dichroizm calej grupy dziesigciu pasm dla kierunkow i oraz j bedzie zatem réwny

n; 6a; cos®(Ay, i)+4b, cos®(B,, i)

R. s = —
" n 6ay cos? (A, j)+4b; cos? (B, )

(7.81)

Obliczenie R;; wymaga znajomosci a; 1 b;. Wobec tego, iz mamy do czynienia z
przejSciami o rdznej symetrii, lecz tego samego oscylatora, autorzy pracy [39]
przyjmuja, ze a; = b,. Uzyskane wyniki pomiaréw i obliczens zestawione sa w tab.
7.10. :

Tabela 7.10

Dichroizm zlozonych pasm absorpcyjnych w bliskiej podczerwieni [39]

Orientacja Dichroizm
A, B, obliczony dodwiadczalny
tiomocznik, krysztat jednosko$ny, grupa —NH, (6000-7200 cm™'), 64, +4B,
a 0,2418 0,3893
0,2691 —0,5428 Ry 1,70 1,77 +£0,02
¢ —0,4313 —0,7441 R, 3,18 2,78 + 0,06
p-nitroanilina, krysztat jednosko$ny, grupa —NH, (6400-7200 cm™'), 34, + 2B,
74 —0,5516 0,4760
b 0,5560 0,8490 Rop™ 1,51 1,524+0,08
* Dichroizm w ukladzic osi b, «' (|| [101]).
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Przytoczone w tym paragrafie wyniki wskazuja, ze zastosowanie modelu gazu
zorientowanego do interpretacji natgzenia pasm absorpcyjnych w podczerwieni
prowadzi do rozsadnej zgodnosci migdzy dichroizmem zmierzonym i obliczonym.
“Model ten moze by¢ wiec wykorzystany do potwierdzenia przypisan pasm absorp-
cyjnych ‘przejéciom. o okreslonej symetrii, jak réwniez moze byé pomocny w
uzyskaniu informacji o przyblizonej orientacji czasteczki w krysztale o nieznanej
strukturze.

7.6. Absorpcja w przekroju izotropowym

Poprawny sposob wykonania pomiaréw spektrofotometrycznych przy uzyciu
promieniowania spolaryzowanego wymaga dla plytki anizotropowej — jak widzie-
lismy — zachowania okreslonych relacji migdzy kierunkiem E fali a kierunkami
optycznymi plytki. Takich pomiaréw dla kazdej probki mozemy wykonaé tylko
dwa, co ogranicza dokladnos¢, z jaka mozemy wyznaczy¢ interesujace nas stale
makro- lub mikroskopowe. Oczywiscie nie ma takich ograniczen, jesli ptytka jest
izotropowa, poniewaz kazda fala spolaryzowana, padajaca prostopadle, moze si¢ w
niej rozchodzi¢ bez zmiany stanu polaryzacji i kierunku propagacji. ’

Oto6z kazdy krysztal ma co najmniej jeden przekrdj optycznie izotropowy. Jesli
grupa punktowa komorki elementarnej zawiera jedna o$ symetrii o krotno$ci
wyzszej niz 2, krysztal jest jednoosiowy, a w plaszczyznie prostopadlej do tej osi
wspOlczynnik refrakcji jest zawsze taki sam, niezaleznie od kierunku. Krysztalty nie
majace osi symetrii o krotnosci wyzszej od 2 sa dwuosiowe: mamy wtedy dwa
przekroje izotropowe, okreslane plaszczyznami m, i m,, przy czym kazda z nich
jest prostopadla do odpowiedniej osi optycznej. Polozenie -jednej z plaszczyzn
ilustruje rys. 7.11. Jesli zas w krysztale wystepuje wiecej niz jedna 0§ symetrii o

Rys. 7.11. Plaszczyzna izotropii optycznej n, w ukladzie jednoskos-
nym




krotnosci wyzszej od 2, to indykatrysa degeneruje si¢-do kuli, dla ktorej istnieje
nieskonczenie wiele przekrojow izotropowych. o e

Jesli wiec wytniemy plytke izotropowq z jakiego$ krysztalu, to jej absorpcje
mozemy mierzyé przy dowolnym kqcie 0, zawartym miedzy wektorem E i jakims
kierunkiem odniesienia, lezacym ‘w plytce. Zakladaé bedziemy w- dalszym -ciagu
kierunek padania wiazki prostopadly do plaszczyzny probki. Z pomiaréw otrzy-
mamy pewna charakterystyczna funkcje przepuszczalnosci optycznej, T(0), ktore;
ksztalt nie zalezy od wlasciwosci optycznych piytki, lecz jedynie od rozkladu
oscylatoréw wzgledem ukladu wspolrzednych, zwiazanego z plaszczyzna izotropii.
Sprobujemy obecnie znalezé analityczny ksztalt tego profilu.

Wybierzmy lokalny uktad wspotrzednych x; x, x3 w taki sposéb, ze x; L xy, 08
x, lezy w plaszczyznie m, 1 jest rownolegla do krystalograficznej osi b, zas$ x; 1 x,,
X3 (rys. 7.11). Zwiazek migdzy x, x, x5 oraz abc* niech okresla macierz b. Wektor
E lezy w ptaszczyznie xq, x,, a kat zawarty miedzy E i osia x; oznaczamy przez 0.
Przyjmiemy dalej, Ze w czasteczce moze byé wzbudzony moment przejécia rowno-
legle do osi symetrii L, M lub N, zaleznie od czestosci wiazki promieniowania;
orientacja LMN wzgledem abc* okreslona jest macierza ¢. Wobec tego polozenie
LMN wzgledem x, x, x5 okre$la macierz d taka, ze

d=b-c’ R (7.82)

Zgodnie z modelem gazu zorientowanego przepuszczalnos¢ plytki moZemy wyrazic
wzorem

Z
(I/1o); = T;(0) = Z (E'Di‘k))z (7.83)
k=1
w ktorym D; jest j-ta kolumna macierzy d. Wskaznik j numeruje typ momentu
przejécia: dla j = 1 za absorpcje odpowiedzialne sa momenty przejscia o kierunku
L w czasteczce, j = 2 odpowiada oscylatorom M, wreszcie j = 3 oscylatorom N.
Rozpisanie rown. (7.83) prowadzi po prostych przeksztalceniach do ksztattu
profilu T(6)
T;(0) = 4T, [A] +(B] — A?)sin* 0] (7.84)
gdzie dla plaszczyzny =, 1 O,
' A; = ¢j sin@+cj3c08 ¢
(7.85)
Bj=cj,
za$ dla plaszczyzny n, 1 O,
A; = c¢; sin(2V— @) —c;3cos 2V— )
Rk ’3 (7.86)
Bj = Cjz

2V jest katem miedzy osiami optycznymi O,, O,. Ilustracja figur absorpcyjnych
dla oscylatoréw typu L przedstawiona jest na rys. 7.12. Widzimy, ze w krysztale
Jjednoskosnym obie figury sq roZne, poniewaZ obie plaszczyzny izotropii' potoZone sg
w takim krysztale asymetrycznie wzgledem ukladu osi kr»ystalograﬁc_znych" Stad

319



tez i rozklad absorbujacych oscylatoréw ,,widziany” jest przez wektor E w rézny
sposOb. Jednakowe krzywe otrzymalibysmy dla krysztalu ortorombowego. Obie
krzywe na rys. 7.12 znormalizowane zostaly do jednakowej wartosci Tp.

*,]|b

X

Rys. 7.12. Figury absorpcyjne w przekroju n, i #n, dla oscylato-
réw o momencie przejscia || L

W prostych sytuacjach mozemy z dlugosci osi gtéwnych obu figur wnioskowaé

o katowych cechach rozkladu oscylatoréw wzgledem krawedzi komorki elementar-
nej, czego jednak szczegdélowo rozwazaé nie bedziemy.
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8. ROZSZERZALNOSC TERMICZNA
KRYSZTALOW MOLEKULARNYCH

Rozszerzalno$¢ termiczna jest jedna z czesciej mierzonych wielko$ci materiato-
wych. Kazde cialo pod wptywem ogrzania doznaje przyrostu objetosci, aczkolwiek
— jak zobaczymy pdzniej — liniowa rozszerzalnos¢ moze mie¢ w niektérych
kierunkach wspoétczynnik ujemny. Wilasciwie nie rozumiemy jeszcze dzisiaj zbyt
dobrze, dlaczego materialy rozszerzaja sie, jesli terminem ,,zrozumienie” okreslamy
umiejetnos$¢ interpretacji wlasciwosci lub zjawisk na poziomie molekularnym. W
opisywanych dotychczas takich wlasciwosciach materialéw, jak podatnos¢ magne-
tyczna czy optyczna przenikalnos$é dielektryczna, tensorowi makroskopowemu
odpowiadal tensor mikroskopowy, przypisywany czgsteczce. Mozna wigc powie-
dzieé, ze krysztal dlatego jest dia- czy paramagnetykiem, ze jego czasteczki maja
wlasciwosci dia- czy paramagnetyczne. Nie ma jednak molekularnego odpowiedni-
ka tej wielkosci makroskopowej, ktorg zwiemy wspodlczynnikiem rozszerzalnosci
termicznej. Czasteczki uwaza si¢ zazwyczaj za twory sztywne, przynajmniej w
zakresie niezbyt wysokich temperatur. W wyzszych temperaturach, gdy staje si¢
mozliwe termiczne wzbudzenie drgan wewnetrznych wskutek wzrostu czynnika
Boltzmanna, $rednie w czasie rozmiary czasteczek moga ulegac¢ niewielkim zmia-
nom, co zapewne moze mie¢ wplyw na makroskopowa objetos¢ ciala stalego.
Podobny efekt mogtby wystapi¢ rowniez wtedy, gdyby$Smy potrafili wytworzy¢
dostatecznie duzg gestos¢ standw wzbudzonych w obszarze drgan wewnetrznych
czasteczki za pomoca promieniowania o duzym natezeniu; efekt taki, ktorego
zbadanie mogloby przyczyni¢ si¢ do poznania udzialu drgan wewnetrznych w
dylatacji sieci, nie zostal jeszcze — wedlug naszej znajomosci zagadnienia —
opisany.

W nizszych temperaturach, gdy wzbudzenia termiczne wewngtrznych, oscylacyj-
nych stopni swobody sa aktami malo prawdopodobnymi, o rozszerzalnodci cial
decydowaé bedzie w pierwszym rzedzie wielkos¢ i fizyczny charakter sil, dzialaja-
cych miedzy wybrana czasteczka a jej otoczeniem. Analiza gtownie tego czynnika
zajmiemy si¢ w niniejszym rozdziale.

Ogolnie biorac, im stabsze sa sily oddzialywania migdzy elementami struktural-
nymi ciala stalego, tym wieksza jest jego rozszerzalno$¢ termiczna. Wyrazem tej
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prawidlowosci jest znany fakt, iz srednie wspotczynniki rozszerzalnosci termicznej
krysztalow molekularnych sa na ogdt znacznie wigksze od wspolczynnikow krysz-
talow jonowych, a te sa z kolei wigksze niz krysztaldow walencyjnych. O wielkosci
wspotczynnikéw rozszerzalnosci i ich zaleznosci od kierunku w przestrzeni decydo-
waé wiec bedzie w pierwszym rzedzie wielkos¢ i przestrzenny rozkiad potencjatu,
wynikajacego z oddzialywan migdzyczasteczkowych. Wazna, jesli nie réwnorzedna
cecha tego potencjatu, bedzie jego anharmonicznos¢.

Taki sposdéb myslenia o zwigzkach rozszerzalnosci ze zmianami innych wiel-
kosci fizycznych z temperatura jest jednak wysoce niedoskonaly, poniewaz powo-
luje sie¢ na obraz statyczny sieci. Nie znajduje w nim zastosowania explicite tak
wazna cecha kazdej struktury, jaka jest jej swoista dynamika, z charakterysty-
cznym widmem amplitud ruchu i czestosci — innym w kazdej temperaturze.
Wlasciwe rozwiazanie problemu rozszerzalno$ci termicznej i jej zwiazkéw z wply-
wem temperatury na inne wielkosci fizyczne musi opierac si¢ na teorii anharmoni-
cznej dynamiki sieci. Nie mamy dzi$ jeszcze takiej teorii, aczkolwiek w najnow-
szych publikacjach [1-4] podejmowane sa préby jej skonstruowania. Z konie-
cznos$ci opis zjawisk anharmonicznych w krysztalach ma charakter fenomenologi-
czny 1 opiera sie na réznego rodzaju modelach. Przedstawimy w tym rozdziale
kilka takich modeli, rozpoczynajac od opisu prostych zagadnienn jednowymiaro-
wych,

8.1. Proste modele efektow anharmonicznych

Zbadajmy ruch jakiego$ prostego oscylatora, ktorym moze by¢ wahadlo lub
czasteczka, wykonujaca w sieci krystalicznej drgania libracyjne wokot jednej z osi
symetrii. W pierwszym przypadku energia potencjalna opisywana jest funkcja

U=Uy(l—sinftg) = Ug(1—02—10*— ) (8.1)

przy czym 0 jest katem zawartym migdzy nicia wahadta odchylonego z potozenia
rownowagi a kierunkiem pionu. W drugim przypadku energia potencjalna moze
by¢ zapisana w postaci funkcji

U=Uj(1—-cosh)=Uy(56>—%0*+..) 8.2)

ktora przyjmuje warto$¢ rowna zeru w potozeniu rownowagi, 8 = 0. Obie funkcje
maja jednag ceche wspolna: w rozwinigciu energii potencjalnej dla matych wychylen
pojawiaja si¢ wylacznie parzyste potegi wychylenia, a wiec krzywa energii»poten-
cjalnej jest w obu przypadkach symetryczna. Je$§li wychylenia sa male, to mozna
odrzuci¢ potegi 0 stopnia wyzszego niz 2, co nas prowadzi do problemu drgan
oscylatora lub libratora harmonicznego. Zalézmy jednak, ze amplitudy sa na tyle
duze, iz trzeba zachowad jeszcze wyraz 6*; oscylacje w obu przypadkach beda
anharmoniczne. Ze wzgledu na niewielkie roznice w ksztalcie funkcji U () rozwa-
zymy dalej ruch z zastosowaniem funkcji (8.2).
Zastosowanie rownania Lagrange’a
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przy
U=U,(30°-746%
oraz
T =116? (8.3)

gdzie I jest momentem bezwladnosci, a § — predkoscia katowa, prowadzi do
réwnania ruchu libratora

15+ U,0-6%=0
lub
I+ wi0-1w260*=0 . (8.4)

Tloraz U,/I ma wymiar kwadratu czestoSci — oznaczyliSmy go ﬁriez wi. Przybli-
zonym rozwiazaniem réwn. (8.4) jest funkcja

0 = Oy sin wt + €6 sin 3wt (8.5)

w ktorej ¢ jest malg liczba, ¢ < 1. W dokladniejszym rozwiazaniu mozna uwzgled-
ni¢ réwniez dalsze nieparzyste harmoniczne w réwn. (8.5), ktorych czestosci sa
rowne (2n+ 1) w. Udzial ich jest jednak rzedu &, a wigc szybko maleje ze wzrostem
n — dlatego w dalszym rachunku zaniedbamy wszystkie cztony z & dla k > 1.
Podstawienie wyrazenia (8.5) do réwn. (8.4) prowadzi do rownosci trygonometry-
cznej, ktéra musi by¢ spelniona w dowolnej chwili ¢; warunkiem jest znikanie
wspolczynnikow przy sinwt i sin(3wt). Otrzymujemy stad dwa réwnania
CU(Z)GO—CUZQO_“;Z(D(Z)Q3=O (8 6)
—9w? el + ey +wi 03 =0 .
Pierwsze rownanie zawiera zalezno$¢ czestosci od amplitudy ruchu
= o (1 —563)'? = w, (1 —756) @7

Ze wzrostem amplitudy czesto$¢ maleje, lecz zalezno$¢ ta jest staba. Niemniej, w
zakresie duzych amplitud ruchu nie ma jednej okreslonej czestosci drgan; widmo
amplitud drgan termicznych libratora transformuje si¢ na pasmo czgstosci, ktorego
szeroko$¢ Aw zalezy od skrajnych amplitud ruchu. Oznacza to poszerzenie linii
absorpcyjnej w krysztatach, w ktoérych amplituda ruchu czasteczki jest dostatecznie
duza.

Z drugiego réwnania, przyjmujac o? = w3, otrzymujemy

05

Y 8.8
=192 (8.8)

Dla 6, =20° ¢ =6-10"%, jest wiec rzeczywiscie mala liczbg. ¢ mozemy nazwaé
wspoétczynnikiem anharmonicznos$ci, okreslajacym udzial czlondéw nieharmoni-
cznych w funkcji energii potencjalnej (8.2).

Précz anharmoniczno$ci, towarzyszacej symetrycznej krzywej energii potencjal-
nej, mozemy mie¢ anharmoniczno$¢, zwiazana z asymetria krzywej. Przyjmijmy
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funkcje U i T w postaci
U(x) =%ex?—3dex? (8.9)

oraz
T(%) = L mx? (8.10)

gdzie c jest wspolczynnikiem liniowej sily sprezystej, m — masa, a x — predkoscia
oscylatora. 6 ma wymiar odwrotnoéci dtugosci, przy czym 6! jest duzo wicksze
od amplitudy ruchu, drugi czlon rown. (8.9) stanowi wigc jedynie niewielka
poprawke wobec pierwszego. Krzywe energii potencjalnej obu typow, (8.2) i (8.9),
przedstawione sa na rys. 8.1.

ulel
a
) \ ,
\ /
\\ harmon./ anharmon.
\ I
\ /
\ I
\\ /
\ //
\ /
\ /
\ /
\ /
\ /
8
b Ulx) /
\ /
\\ /
\ //
\\ harmon./ / anharmon
\ //
\ /
\ /
\ /,
\ /
N y
> Y, Rys. 8.1. Typy krzywych energii potencjalnej os-
cylatora anharmonicznego (schematycznie): a) sy-
x metryczna, b) asymetryczna

Zastosowanie rownania Lagrange’a prowadzi w ostatnim przypadku do roéwna-

nia ruchu
mi+cx—odcx* =0

lub
X+wdx—dwix? =0 8.11)

przy czym wj} = ¢/m jest ponownie kwadratem czestosci drgan.
Rozwiazaniem tego réwnania jest funkcja
x(t) = A(cos wt + gcos 2wt) + x; _ 8.12)
w ktorej x, oraz g <1 mamy wyznaczy¢. Ltatwo dostrzec, ze x; jest Srednim w
czasie polozeniem oscylatora. Mamy bowiem

{x(t)> = A {coswt>+gA {cos 2wt >+ x; = X4 (8..13)
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Poniewaz krzywa energii potencjalnej jest asymetryczna, czyli w punkcie —x,
dziata sita wigksza niz w punkcie + x,, przy wzroscie amplitudy drgan oscylator
bedzie si¢ przesuwal w kierunku slabszej sily. Jesli zero wybierzemy na osi
odcietych w taki sposéb, by dla oscylatora harmonicznego $rednie polozenie
przypadato w punkcie x = 0, to x, oznacza¢ bedzie niewielkie przesunigcie oscyla-
tora anharmonicznego z potozenia réwnowagi. Pomijajac w x?(t) wyrazy zawiera-
jace x; oraz q [x? wchodzi do réwn. (8.11) z matym wspdlczynnikiem 7], mozemy
napisac

x2(t) = A?cos?wt = 3 A% (1 +cos 2wi)
Po podstawieniu rozwigzania i przyblizenia do rown. (8.11) otrzymamy
—w? A (cos wt +4q cos 2wt) + wE A (cos wt + g cos 2wt) +
+wix; —16w3 A% -1 6w A% cos 2wt = 0

Przyréwnujac do zera wspdlczynnik przy coswt, otrzymujemy
—w?A+wid =0
czyh
W = w, (8.14)
Wynika z tego, ze w tym modelu anharmoniczno$ci nie ma zaleznosci czestosci ‘
drgan od amplitudy.
Przyréwnanie do zera wspolczynnika przy cos 2wt i wyrazu wolnego prowadzi
do réwnania
—4qw* A+ qoi A—36wi A =0
czyli
q=—%064
oraz
x =184° (8.15)

Najbardziej interesujacy jest tu wynik dla x,. Przesunigcie oscylatora anharmoni-
cznego wzgledem potozenia roéwnowagi jest proporcjonalne do wspodlczynnika 96,
opisujacego asymetrie funkcji energii potencjalnej, oraz do kwadratu amplitudy’
drgan. Poniewaz §rednia energia oscylatora, (E> = kT, gdzie k jest stala Boltzman-
na, zatem

X, ~A2~T (8.16)

W tym wyniku zawiera si¢ istotna cze$¢ wyjasnienia rozszerzalnosci termicznej
ciala stalego: zmiany liniowych rozmiaréw ciala spowodowane sq przemieszczeniami
elementow strukturalnych z poloZenia rownowagi, proporcjonalnymi do temperatury.
Przyczyna tych przemieszczen jest asymetria krzywej energii potencjalne;.
Zwiazek miedzy przemieszczeniem oscylatora a typem anharmonicznosci moze-
my uogélnié, korzystajac z dyskusji tego zagadnienia, zamieszczonej w monografii
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Kittela [5]. Laczac rownania (8.2) i (8.9), mozemy zapisa¢ funkcj¢ energii poten-
cjalnej w ogolniejszej postaci

V(x) = cx?—gx3 —fx* (8.17)

przy czym w czlonie gx® bedzie si¢ przejawia¢ asymetria sit dzialajacych na
oscylator przesuniety z potozenia réwnowagi, a w czlonie fx* wplyw duzej
amplitudy drgan. Korzystajac teraz ze statystyki Boltzmanna, mozemy napisaé
wyrazenie na $rednie przemieszczenie oscylatora

+ oo

[ xexp[—V(x)/(kT)]dx
Ey = (8.18)
[ expl-V (/T dx

Dla niezbyt duzych x wyrazenie podcalkowe mozna rozwina¢ w szereg, zachowu-
jac tylko dwa pierwsze wyrazy rozwinigcia. Otrzymujemy

+ + oo

[ xexp[—V(0)/(kT)]dx = | xexp[—cx?/(kT)] {exp[gx*/(kT)] x

— ®©

xexp [fx*/(kT)]} dx =
= +.fwxexp[—cx2/(kT)] (1 +gﬁ><1 +J;i;>}dx o

— 0

11

To exp[ —ex?/(kT)] {x+g_x4+f_5} dx

—

przy zaniedbaniu malego wyrazu fgx®/kT.
Poszczegolne calki tej sumy mozemy obliczy¢ za pomoca wzorow Poissona
M 2n—1)(2n—-3)...-3-1 1/2
I,= | xz"exp(—sz)dx=( Gt nzn ) (Azann)

— ®©

I3+ =0

Wynika stad, ze niezerowy wynik calkowania otrzymamy jedynie dla czlonu
gx*/(kT), zwiazanego z asymetria krzywej energii potencjalnej. Otrzymujemy
3.9

)=~ —kT=§-

g
e 12 B> (8.19)

(E> jest $rednia wartoscia energii calkowitej oscylatora w przyblizeniu harmoni-
cznym. Przyblizony wynik kwantowy dla (x> mozna otrzymaé, podstawiajac za
(E> funkcje

_ ho
~ exp[hw/(kT)]—1

E) (8.20)
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Przy takiej postaci rownania (8.20) jest widoczne, ze wspotczynnik rozszerzalnosci
termicznej powinien szybko male¢ przy spadku temperatury ponizej temperatury
charakterystycznej oscylatora, @ = hw/k, i powinien dazy¢ do zera dla T -0 K.
Takie zachowanie si¢ zostalo istotnie stwierdzone doswiadczalnie.

Sumujac powyzsze rozwazania mozemy stwierdzi€, Zze w rozszerzalnosci termi-
cznej ciala stalego maja udzial nastepujace efekty:

1. Istnieje zwiazek miedzy objetoscig ciata stalego a amplituda drgan termi-
cznych elementow strukturalnych. Ze wzrostem temperatury amplituda tych drgan
roénie, takze w przyblizeniu drgan harmonicznych. Efekt ten mozemy rozumiec
tak, jak gdyby ,efektywna”, dynamiczna objetos¢ elementdéw strukturalnych zale-
zata od temperatury. W zakresie temperatur, w ktorym czasteczki zwiazkow
organicznych sa trwate, mozemy pominaé wplyw wzbudzenia oscylacji wewnetrz-
nych na efektywna objetos¢ czasteczek.

2. Drugim powodem, dla ktérego zmieniaja si¢ rozmiary i objetos¢ krysztatu
przy ogrzewaniu, jest anharmoniczno$é oscylacji zewnetrznych, sieciowych. Powo-
duje ona, ze zaréwno polozenie srodka masy czqsteczki, jak i jej orientacja kqtowa
ulegajq niewielkim, lecz ciqglym zmianom w miare podwyzszania temperatury. Dowo-
dem wystepowania takich efektow jest fakt, ze krysztaly molekularne maja wspot-
czynniki rozszerzalnosci kilkakrotnie wigksze od krysztatéw zbudowanych z jonow
jednoatomowych. Oba te efekty maja tez — jak zobaczymy dalej — znaczny
udzial we wspolczynniku rozszerzalnosci krysztalu molekularnego.

Analizujac wptyw czynnikéw mikroskopowych na zmiang objgtosci czy tez
liniowych rozmiardéw krysztatu, zakladamy stale, ze w badanym zakresie tempera-
tur faza krystaliczna jest termodynamicznie stabilna, tj. nie wystgpuja przemiany
fazowe. Wiadomo bowiem, iz w przejSciu fazowym wystepuje zmiana symetrii
makroskopowej, ktorej towarzyszy o wiele wigksza 1 niekiedy nieciagla zmiana
polozZen i orientacji czasteczek w sieci krystaliczne;.

W nastepnym paragrafie wykazemy, ze analiza odksztalcen wywotanych zmia-
na temperatury rowniez prowadzi do dwojakiego rodzaju przesunig¢ czasteczek w
sieci: przemieszczenn liniowych i katowych. Pomiar rozszerzalnosci termicznej
umozliwia ocene ich wielkosci.

8.2. Makroskopowy opis deformacji

Dyskutowane w poprzednim paragrafie skutki anharmonicznosci drgan termi-
cznych czasteczek sa efektami anizotropowymi: przesunigcia liniowe $rodka masy
czasteczki zaleza od kierunku krystalograficznego, w ktéorym przesunigcie to
mierzymy. Przemieszczenia katowe czasteczek zaleza nie tylko od sposobu wyboru
osi libracji, lecz i od jej orientacji w sieci krystalicznej. W wyniku anizotropii tych
efektéw makroskopowa deformacja ciala jest réwniez anizotropowa: kula wycigta
z #materialu w okreslonej temperaturze przestaje by¢ kula po zmianie temperatury.
Przedstawimy obecnie opis tej deformacji wedtug Nye’a [6], mimo iz zawiera on
pewna, do$¢ istotng niekonsekwencje: zmiany rozmiaréw 1 ksztaltu krysztatu
traktuje sie jak deformacje osrodka ciaglego. Tymczasem sklada si¢ on z czaste-
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czek na og6t sztywnych, wypelniajacych przestrzen ze wspolczynnikiem upakowa-
nia bliskim jednosci. Wiemy zatem z gory, ze tylko niewielka cze$¢ przestrzeni
zajetej przez krysztat efektywnie ulega odksztalceniu! Pomimo iz nie w pelni
konsekwentny, opis ten jest przydatny do przedstawienia geometrycznych skutkdéw
ogrzania, takich jak zmiana kierunku w sieci krystalicznej.

0 P Q 0 P’ Q'
LY —

L x { x+u Ax +A4u

struna struna

nie rozciggnieta rozciggnigta

Rys. 8.2. Deformacja jednowymiarowa

Zmiana temperatury powoduje zmiane rozmiarow krysztahy, tj. dowolny punkt
P wewnatrz krysztalu przemieszcza si¢ wzgledem poczatku ukladu wspotrzednych
w jakie$ nowe potozenie. W przypadku krysztalu jednowymiarowego, ktdrego
odpowiednikiem jest struna, skutki wydluzenia przedstawione sa na rys. 8.2.
Bedziemy si¢ interesowaé losami nie jednego punktu, lecz odcinka PQ = Ax. Z
rysunku wynika, ze zmiana temperatury wywotuje nastepujace skutki:

1) poczatek odcinka przesuwa si¢ z P do P’, przy czym OP = OP+u

2) dtugos¢ odcinka ulega zmianie o wielkosé P'Q'—PQ = Au.

Przyrost dlugosci odcinka o dlugosci jednostkowej jest miarg odksztalcenia
wzglednego Au/Adx. Ogdlnie odksztalceniem nazywamy wielko$¢ bezwymiarowa

du

=— (8.21)

Jesli odksztalcenie jest jednorodne, tj. nie zalezy od polozenia x, to przesunigcie
dowolnego punktu
U =uUg+ex (8.22)

jest liniowa funkcja jego polozenia.

W dwoch i trzech wymiarach zachodza bardziej zlozone przesuniecia punktow,
poniewaz odcinek Ax ulega nie tylko wydluzeniu, lecz takze obrotowi. Rozwazmy te
skutki w ptaszczyznie x; x, (rys. 8.3). Po deformacji ptaski element prostokatny

5]

X1
Rys. 8.3. Deformacja o dwoch wymiarach
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PQ; przejdzie w réwnoleglobok P'Q;. Wzgledne przemieszczenie punktu Q; moze-
my rozlozyé na dwie skladowe: przesuniecie Au) wzdluz osi x; i przesunigcie
Ausy || x,. Wowcezas

du’l

€11 :—dx
dx,

jest sktadowa odksztalcenia, odpowiadajaca wzglednemu wydtuzeniu odcinka 4x,,
zas

7

u
321=a‘2"=tg€0'=”€0
1

jest sktadowa odksztalcenia, odpowiadajaca obrotowi Ax; o kat ¢. W ostatniej
rownosci zaniedbaliSmy w mianowniku Auj <€ Ax,;. Podobnie

o — du’y
22 &

dx,
jest miara wydhuzenia A4x,, za$

du”
el?zijth;g

2

przedstawia obrot dx, o kat 3. Obroty ¢ i 3 sa na ogoél rozne i maja zwroty
przeciwne. Ogdlnie
Ou:

€ = *a-)a (823)

jest sktadowa tensora odksztalcenia wzglgdnego. Tensor ten jest drugiego rzedu i
nie jest symetryczny. Mozemy go rozlozy¢ na tensor symetryczny g opisujacy
czyste odksztalcenie, i tensor antysymetryczny , opisujacy czysty obrot

ex = 3 (€ + )

, (8.24)
Wy = 7 (€ — €s)

Symetryczny tensor € mozna sprowadzi¢ do ukladu osi gléwnych ¢, &,, &5 —
znikaja wtedy skladowe S$cinajace. SzeScian o krawedzi | zmieni dlugos¢ tych
krawedzi do [(1+¢;), a przy tym ich prostopaditosc¢ zostanie zachowana. Niezmien-
niczo$¢ kierunkOw osi glownych jest wazna wilasciwoscia tensora odksztalcenia,
poniewaz — jak zobaczymy pOzniej — wszystkie inne kierunki ulegaja zmianie po
odksztalceniu. Wskutek zmiany dlugoéci krawedzi zmienia si¢ rowniez objetosé

szeScianu
AV = 13(1+81)(1+82)(1 +83)“[3 ;
= 13 (81 +82+83) = 13,8 ! (825)

gdzie f jest $rednim odksztalceniem objgtosci materiatu.
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Kula o promieniu jednostkowym
Eemen =1
zmieni si¢ pod wplywem odksztalcenia w elipsoide o osiach
xi = x;(1+¢) (8.26)
przy czym x; wybrane sg wzdluz osi gtéwnych & Rownanie tej elipsoidy ma postaé
x'2 12 72
Tty +(1i282)2 T :3)2

=1 (8.27)

Warto podkreslié, ze rown. (8.27) zawsze przedstawia elipsoide; nosi ona nazwe
elipsoidy odksztalcenia. Natomiast kwadryka, zadana rownaniem

Tex=Yex?=1 (8.28)

moze by¢ elispoida, lecz moze réwniez przedstawiaé hiperboloide, jesli nie
wszystkie ¢ sa dodatnie. _

W ogélnym przypadku odksztalcenie nie musi spelniaé zasady Neumanna,
poniewaz jest ono ,,odpowiedzig” krysztalu na dzialanie czynnika zewnetrznego.
Symetria tej odpowiedzi zalezy nie tylko od symetrii krysztalu, lecz rowniez od
zwigzku miedzy kierunkiem dzialania tego czynnika a ukladem osi wlasnych
tensora. Je§li rozwazamy odksztalcenie spowodowane przez zmiang temperatury
AT = T,—T; w jednorodnym polu temperaturowym, to symetria € zalezy tylko od
symetrii krysztatu. W takim przypadku mozemy zdefiniowac gtéwne wspotczynniki
rozszerzalnosci termicznej w kierunku osi glownych

'
L |

= 8.29
%= AT (8.29)

gdzie AT jest mozliwie mala zmiana temperatury. W jednorodnym polu temperatu-
rowym ogdlny zwiazek migedzy tensorem odksztalcenia i rozszerzalnosci termicznej
_jest nastegpujacy:

e=0a4dT - (8.30)

Jednym ze skutkow rozszerzalno$ci jest wige przesuniecie punktu w przestrzeni,
opisywane sumarycznie przez rown. (8.27). Drugim skutkiem jest deformacja posta-
ci, okreslona wspélczynnikami §Scinania. Wielko$¢ tych wspdlczynnikéw obliczyt
Jakubowski [7} w ukladzie osi gléwnych o

8 = {(ay1 —ay5)* cos® By cos? B, +
+(a11 —0(33)2COSZ,31 COSZ ﬁ3+

+(0tp5 —t33)2 cos? B, cos? B )12 _ (8.31)

W wyrazeniu tym cosf;, cosf,, cosf; sa kosinusami kierunku, wybranego
wzgledem osi glownych oy, a,, ;. § ma trzy skladowe i jest wektorem, ktéremu
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mozemy przypisa¢ antysymetryczny tensor

OA 012 013
0=1021 0 05 (8.32)
531 532 0
Skladowe & spelniaja relacje d; = —J,; 1 zaleza od wielkosci anizotropii o
iy = (0t — 0tyq)) €O f; €O By (833)

Odksztalcenia $cinania nie bedziemy zatem obserwowali w krysztalach regularnych,
gdy oy = o, = a3; nie wystqpi ono rowniez w krysztale anizotropowym w kierunku
ktorejkolwiek z osi giownych.

X2
Pl
u
=
A
R
L
¥ Rys. 84. Rozlozenie ogdlnego przemieszczenia
punktu (r) na skladowa radialna (A i transwersalng
To To+aT X (&)

Wynik (8.31) mozemy otrzyma¢ rowniez na innej drodze, ukazujacej bezposred-
nio na powiazania obu podstawowych skutkéw deformacji termicznej: przesunig-
cia 1 obrotu. Rozwazania prowadzi¢ bedziemy w ukladzie osi gléwnych &; niech
zatem x;||e;. Wybierzmy wektor jednostkowy I(l; I, ;) w dowolnym kierunku. Po
podgrzaniu krysztalu o AT, | zmieni dlugos$¢ i kierunek, a punkt P przesunie si¢ w
nowe polozenie P, opisywane wektorem R (rys. 8.4)

R=1+r (8.34)
przy czym
r=¢ (8.35)

jest wektorem przemieszczenia P do P'. Ogélne przemieszczenie r mozemy rozio-
zy¢ na sktadowe A||l i p L1 przy zachowaniu zwiazku

r=Aitp (8.36)
Dlugo$¢ A mozna obliczyé w nastepujacy sposob:
A=lr=le)=1"e=¢
gdzie ¢ jest odksztalceniem w kierunku [ (por. p. 2.5). Wobec tego
A=¢g-l (8.37)
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Przesuniecie punktu w zadanym kierunku 1, czyli przesunigcie radialne, jest wprost
réwne iloczynowi wspblczynnika rozszerzalnosci w tym kierunku przez przyrdst
temperatury

A=a, ATl (8.38)

Natomiast wielko§é przesuniecia punktu P w kierunku prostopadlym do I, czyli
przesuniecie transwersalne, obliczymy z twierdzenia Pitagorasa

W = {rr— - 12 = (e )P}
Wektor przesunigcia transwersalnego wynosi zatem
= {(e-02 e} m
lub
pu= {0 D*—af}t?- AT -m (8.39)

gdzie m jest wektorem jednostkowym, prostopadlym do I Jesli rozpiszemy réwn.
(8.39), to otrzymamy

3

ww= (% k)’ ~(% g} =

i=1

= a2 P(1-13)-2Y Y aa; 22} -(AT)?

i<j
= Y (o —a)> P22 AT (8.40)
i<j

rezultat identyczny z wynikiem Jakubowskiego [por. réwn. (8.31)]. e, oznaczaja
wektory jednostkowe wzdluz osi wspolrzednych. Poniewaz przemieszczenie |y jest
bardzo mate, mozemy traktowacé je jako tuk okregu o promieniu |l = 1. W takim
przypadku |y mozna uwazaé wprost za kat ¢, zawarty miedzy ! i R. Z rownania
(8.40) wynika, ze |y sklada si¢ z trzech skladnikow o wskaznikach (i, j) rownych
odpowiednio (1,2), (1,3) i (2,3); kazdy z nich przedstawia przemieszczenie katowe ¢;
wokot jednej z osi ukladu wspolrzednych, a wyrazenie (8.40) jest ich suma zgodnie
z zasada dodawania malych katdéw jak wielkosci wektorowych. Wyrazenia opisuja-
ce poszczegblne ¢; maja postaé

0 = +(;—u) I ATe, (8.41)

Przemieszczenia ¢; nastgpuja wokotl osi x;, zwiazanych z tensorem odksztalcenia.
W ten sposéb skutki, wywotane ogdlnym odksztalceniem krysztatu wskutek ogrza-
nia, mozemy opisa¢ za posrednictwem dwodch elementarnych efektow: przesuniecia
radialnego A i obrotu ¢,. Wskazniki w rown. (8.41) zmieniaja sic w porzadku
cyklicznym.

Przypomnijmy w tym miejscu przyklad kalcytu, dyskutowany przez Jakubow-
skiego [7] i poruszany juz przez nas w rozdz. 2 w zwiazku ze stozkiem zerowej
rozszerzalnosci (przyklad 2.8.5). Poniewaz dodatnia rozszerzalno$¢ wykazuje kalcyt
w kierunku osi C;, a prostopadle do niej ulega skurczeniu przy ogrzewaniu

U, =0y, = —5,56-10"6 K1 o3y = 2491-10"6 K1
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w tym krysztale wystgpuje stozek zerowej rozszerzalnosci, ktorego tworzaca zawie-
ra z osia Cs kat rowny 64,75° = ¢. Pytanie jest obecnie nastepujace: co dzieje si¢ z
tym kierunkiem, jesli zmienimy temperaturg?

Poniewaz (0 sing cos @), z réwn. (8.41) otrzymujemy

+30,47-107 % sin 64,75 cos 64,75 = +2.42 sek. kat.-K ™!

Ky
Pa=p3 =0

Przy zmianie temperatury o 1 K kierunek tworzacej obrdci si¢ wigc o 242
sekundy katowe w plaszczyznie x, x5, tj. wokol osi x;.

X3
‘>/—k\\
e X
Q3 7’ \
/
/ 1
) 1
/I . ! ()
-]
{
/I
~
\ //
b a,
/
\ P
\ =N Tyv~
- v N
\\ : Y X
N \P2
[}
q Y
P el
7~—_-f’7

Rys. 8.5. Biegunowy wykres naprezen $cinajacych w plaszczyznie (010) antracenu (@,) i wspdlczynnik
rozszerzalnosci (o)

Przyklad wykresu biegunowego naprezen S$cinajacych w plaszczyznie (010)
krysztalu antracenu przedstawiony jest na rys. 8.5. PoloZzenie atoméw zaczerpnigto
z pracy [8], profil wspolczynnika rozszerzalnosci o, oraz skladowa ¢, naprezen
obliczono na podstawie danych z pracy [9]. Widzimy, ze wielko$¢ naprezenia
“ zeruje sie w kierunkach osi glownych &, natomiast osigga maksimum pod katem
45° wzgledem ktorejkolwiek z tych osi. Z taka sytuacja spotykamy sie w kazdym
krysztale, co wynika z postaci réwn. (8.41).
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8.3. Doswiadczalne metody pomiaru wspoélczynnika
rozszerzalnosci termicznej

Stosowane wspoicze$nie metody pomiaru wspolczynnika rozszerzalno$ci termi-
cznej ciata stalego nalezg do jednej z czterech grup, ktére mozna krotko scharakte-
ryzowaé w nastgpujacy sposob:

1. Metoda dylatometrii kwarcowej polega na pomiarze wydtuzenia probki w
ksztalcie precika. Wydtuzenie probki przenosi si¢ na zewnatrz strefy ogrzewanej za
pomoca precika kwarcowego i obserwuje przesuwanie wykonanego na nim znacz-
ka, uzywajac mikroskopu. Opis takich dylatometréw mozna znalez¢ w pracach [7,
10, 11].

2. Metoda bezposrednia polega na obserwacji przemieszczen jednego z koncow
probki w ksztalcie precika przy uzyciu teleskopu optycznego [12, 13].

3. Metoda interferencyjna opiera si¢ na pomiarze przesunigcia uktadu prazkow
interferencyjnych. Przesuniecie to wynika ze zmiany dlugosci jednej z drog opty-
cznych wskutek zmiany temperatury probki [14-17].

4. Metoda rentgenograficzna polega na pomiarze zaleznosci kata odblysku od
temperatury dla zbioru plaszczyzn sieciowych o znanych wskaznikach (odbicie
braggowskie). Obecnie najczesciej stosowana jest zasada pomiaru Bonda [18, 19],
najbardziej precyzyjna w tej grupie metod.

Pierwsze trzy rodzaje eksperymentow mozna nazwac ogélnie metodami dylato-
merrii makroskopowej, poniewaz wyniki uzyskane z ich pomoca sa $rednimi dla
calej probki. W metodach rentgenograficznych natomiast wykorzystuje si¢ jedynie
drobny fragment probki, objety skolimowana wiazka promieniowania, s3 wigc na
ogot metodami lokalnymi. W pracach eksperymentalnych coraz czeSciej stwierdza
si¢ istnienie systematycznych réznic w wynikach wspoiczynnikoéw rozszerzalno$ci
makroskopowych i lokalnych, mierzonych dla tego samego — przynajmniej pod
wzgledem chemicznym — materiatlu. Pochodzenie tych rdznic nie jest jeszcze
dzisiaj dostatecznie wyjasnione. Doswiadczenia wykonane dla krysztalow zwiaz-
koéw nieorganicznych wskazuja, ze pewien udzial w rozbieznosci wynikow ma
obecnos¢ punktowych defektoéw strukturalnych [20-22], ,,widzianych” przez meto-
dy lokalne. Timmesfeld i Elliot uwazaja, ze obecnosé¢ defektéw punktowych w
krysztalach prowadzi do nastepujacych konsekwencji: zmiany statych sprezystych
wokot defektu, zmiany anharmonicznosci drgan w poblizu defektu, wreszcie zmia-
ny czestosci 1 predkosci fonondw w krysztale zdefektowanym. Efekty te cze$ciowo
neutralizuja si¢ wzajemnie, rezultat wypadkowy moze wiec by¢ zaréwno dodatni,
jak i ujemny. W krysztalach molekularnych dodatkowy wplyw moze mie¢ czgsta
obecnos¢ zamrozonych naprezerni, uwalnianych nastepnie w czasie powolnego ogrze-
wania (zob. tez [23]). _

Wigkszo$¢ z tradycyjnie stosowanych metod makroskopowych jest dobrze
znana, wobec czego poswigcimy w tym rozdziale troche uwagi opisowi dwdch
nowszych metod interferencyjnych i wspomnimy o metodzie Bonda.

Pierwsza z nich, opisana przez Hollenberga i Sharpe’a [16], polega na iloscio-
we] analizie obrazu interferencyjnego, wytwarzanego w promieniowaniu lasera
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przez dwa cienkie i nieprzezroczyste widkna. Jedno z nich ztaczone jest sztywno z
koncem badanej probki, drugie moze by¢ przylaczone do probki odniesienia lub
unieruchomione. Zmiana temperatury powoduje przesunigcie ukladu prazkow
interferencyjnych, wywolane zmiang odleglosci widkien przy ogrzewaniu probki.
Rozwazmy wpierw obraz interferencyjny, wytwarzany przez jedna ni¢ (rys. 8.6a).

i
%

Rys. 8.6. Schemat obrazu interferencyjnego wytwarzanego przez a) jedna, b) dwie cienkie nici

laser

Pojawia si¢ on wtedy, gdy $rednica widkna lezy w przedziale 10 A-100 A, gdzie A
jest dlugoécia fali promieniowania lasera. Interferencja powstaje w wyniku roéznicy
drég promieni, 4, dochodzacych z punktow A4 i B po obu stronach widkna

4 =bsina (8.42)
lub zwiazanej z nia réznicy faz
B = %bsina (8.43)
Natezenie wiazki, I, ugietej pod katem o
=1, (Si‘/;—’f) . 8:44)
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wynika z teorii dyfrakcji Fraunhofera. I osiaga minimum w tych punktach, dla
ktorych

b
ﬂ:zl—sina=mt =11, +£2, .. (8.45)

Z roéwnania (8.45) mozna obliczy¢ Srednice widkna b, jesli zmierzymy katowy
odstep prazkéw. Zauwazmy, ze warunek (8.45) jest identyczny z dobrze znanym
wyrazeniem na sinus kata ugiecia siatki dyfrakcyjnej, przy czym stalej siatki
odpowiada grubos$¢ widkna. W miarg zmniejszania b odleglos¢ prazkow rosnie.

Analogiczny jest opis zjawiska interferencji dla dwoch wiokien (rys. 8.6b).
Réznica faz wynosi w tym przypadku

= %dsina (8.46)

a natezenie wiazki ugietej dane jest wzorem

I = 41, (sin? B/B?*) cos?y (8.47)
przy czym B zdefiniowane jest nadal rown. (8.43). Obecnie w obrazie widoczne sg
nie tylko zmiany intensywnosci, spowodowane $rednica wldkna, lecz wystepuje
dodatkowa modulacja, wywolana odstepem d miedzy widknami. Jesli odniesiemy
punkt obserwacyjny do jakiej§ szczegdlnej wartosci o = a,, to natezenie §wiatta w
ukladzie dwoch widkien mozemy przedstawi¢ wzorem

I = 41, cos? {%dsin oco} (8.48)

w ktorym I; jest identyczne z I opisanym roéwn. (8.44). Funkcja (8.48) osiaga
minima w punktach

%dsinoco —m+hn m=0, +1, +2, ... (8.49)

Poniewaz o, 1 4 sg stale w czasie eksperymentu, zaleznos¢ (8.49) okresla zwiazek
miedzy odstepem wiokien d a rzedem interferencji. Zmianie tego odstepu Ad
odpowiada liczba prazkow 4m taka, Ze

Am =%Sinao-41d (8.50)
W referowanej pracy eksperymenty prowadzono do temp. 1100°C, uzywajac
widkien z korundu o $rednicy 21 pm, 4 =0,6328 pm (laser He-Ne). Obraz
interferencyjny rzutowany byl przez szczeline i filtr interferencyjny na fotokomor-
ke, co pozwalalo na automatyczny zapis kolejnych zmian nateZzenia wiazki, I, w
miare wzrostu temperatury. Odleglos¢ fotokomorki od probki wynosita 2 m, kat
oo wynosit od 3 do 5°, zapis temperatury automatyczny przy uzyciu termopary Pt—
PtRh. Porownanie te] metody z dobrej klasy dylatometrami kwarcowymi wskazu-
je, ze réznice wynikow sa mniejsze od 0,1°/,. Blad wzgledny metody interferencyj-
nej w temp. 1000°C oceniaja autorzy na 2°,.
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Druga z metod, ktéra chcemy tu przedstawi¢ z uwagi na mozliwos¢ dokonywa-
nia pomiarow takze dla krysztalow z powierzchnia rozpraszajaca $wiatlo (probki
nieodpolerowane), opiera si¢ na zastosowaniu interferometrii holograficznej. Uklad
opisany w pracy [17] pozwala na pomiary rozszerzalnosci termicznej malych
probek dowolnego ksztaltu, Pewna cecha szczegdlna metody jest to, Ze jest ona
niewrazliwa na wszystkie typy przesunie¢ rownoleglych prébki i na jeden z
mozliwych obrotow. Obraz interferencyjny, wynikajacy z pozostatych dwoch obro-
tow 1 rozszerzalnosci cieplnej probki, ma prosta interpretacij¢ i pozwala obliczy¢ «
bez znajomosci przesunie¢ katowych. Wymagania odnosnie poloZenia prébki sa
tak niewielkie, ze ta metoda mierzono rozszerzalnos¢ probek ferromagnetyka,
lewitujacych w polu magnetycznym.

pryzmat rozdzielajgecy
G) {przezroczysty

R ““]l laser l

He-Ne lub rubinowy

przedmiot
refl.

m pryzmat,

—| filtr szary

————’—A‘ kli /
1 Vl 50% P
\\
soczewka
kolimacyjna

b)

PR

< I 7 CU. .

lub kamera fot. P ———

telecentr.
hologram

Rys. 8.7. Schemat zastosowania interferometrii holograficznej do pomiaréw «

Istotne elementy aparatury przedstawione sa na rys. 8.7. Swiatlo odbite od
przezroczystego klina jest promieniem odniesienia. Soczewki umieszczone w pro-
mieniu przedmiotowym wytwarzaja wiazk¢ o duzym przekroju, potrzebna do
oswietlenia probki. Wigzka ta kierowana jest na probke za pomoca klina, pokryte-
go warstwa o wspolczynniku odbicia 0,5. Droga optyczna od tego klina do
pryzmatu rozdzielajacego jest taka sama, jak dla wigzki odniesienia. Pozwala to
na uzycie laserow proste] konstrukcji, ze staba koherencja czasowa. W celu
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wskazania kierunku, z ktorego nalezy ogladaé przedmiot, w bieg wiazki oswietlaja-
cej wstawiony jest reflektor pryzmatyczny; daje on ostry sygnal $wietlny, tatwo
widoczny na bialej kartce papieru.

Na rysunku 8.7b pokazano sposob ogladania hologramu. Dla spelnienia wa-
runku, by wszystkie czesci przedmiotu ogladane byly z dokladnie tego samego
kierunku, mozna zastosowaé uklad telecentryczny o duzej Srednicy soczewki
kolimacyjnej. Oko lub kamera fotograficzna znajduja si¢ w odleglosci ogniskowe;j,
ktora powinna by¢ kilkakrotnie wigksza od odlegtosci obrazu od soczewki. W tej
konfiguracji mozna zastosowa¢ zaréwno laser helowo-neonowy, jak i prosty
impulsowy laser rubinowy. Jezeli uzywa si¢ lasera gazowego, to nie wolno zmie-
nia¢ polozenia probki w czasie ekspozycji, aczkolwiek zmiana polozenia miedzy
dwiema kolejnymi ekspozycjami jest bez znaczenia. Jes$li T; i T, oznaczaja tempe-
ratury probki w momencie pierwszej i drugiej ekspozycji, to AT =T, ~ T, jest
réznica temperatur, ktéra musi by¢ znana do obliczeénia o wedlug rown. (8.55).

z /
kierunek oswietlenia

i ogladania obrazu

Rys. 8.8. Skiadowe przesunigcia, uczestniczace w powstawaniu réznicy drog optycznych

Analityczny schemat sytuacji przedstawiony jest na rys. 8.8. O$ z jest kierun-
kiem oswietlenia probki i jednoczesnie kierunkiem ogladania obrazu. Niech r
oznacza wektor polozenia jakiego$ punktu na powierzchni probki. W wyniku
przesunigcia calej probki lub jej obrotu, oraz. efektu rozszerzalnosci termicznej,
punkt z poloZenia r przesunie sie do r. Niech é = ¥ —r oznacza wielko$¢ ogdlnego
przesunigcia. Odpowiadajaca mu zmiana dlugo$ci drogi optycznej I, wynosi

I,=25u (8.51)

gdzie u, jest wektorem jednostkowym wzdluz z. Poniewaz przesunigcia sa male,
ogoblne przemieszczenie 4 jest suma poszczegdlnych przesunigl: translacyjnego 4,
rotacyjnego 4, oraz wynikajacego z rozszerzalno$ci termicznej d,. Obrét probki o
maly kat o, ktéremu odpowiada wektor rownolegly do chwilowej osi obrotu,
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powoduje przesunigcie punktu o odcinek
0, =rxw

Izotropowa ekspansja probki przy wspolczynniku rozszerzalnosci termicznej o
powoduje przesuniecie 8, = aAdTr. Je§li probka rozszerza si¢ anizotropowo, to te
cze$é przemieszczenia mozemy przedstawi¢ za pomoca wyrazenia

6. =ar AT
Ogolne przemieszczenie punktu na powierzchni probki bedzie zatem rowne
0=0+8+0, =8 +rxwt+ordT (8.52)
Wobec tego zmiana dhugosci drogi optycznej wyniesie
I,=20.+w,x—w,y+0zdT) (8.53)

Jesli I, jest catkowita wielokrotnoscia dlugosci fali $wiatta lasera A, to powstaje
uklad prazkéw interferencyjnych, opisywany przez réwnanie

mi = 2(8,+w, x—w, y+0zAT) (8.54)

w ktorym m jest liczba calkowits. Zauwazmy, ze kat obrotu w, wokét osi z nie ma
udziatu w I',. Zmienne xyz mozemy traktowac jako parametry swobodne, a wtedy
réwn. (8.54) ma bardzo prosta interpretacje: dla m =0, 1, 2, ... jest to zbidr
ptaszczyzn wzajemnie do siebie rownoleglych. Kosinusy kierunkowe normalnej do
tego zbioru sa proporcjonalne do w,, w, i «4T. Wytworzony uklad prazkéw jest
rezultatem przecigcia si¢ tego zbioru plaszczyzn z powierzchnia probki (rys. 8.9).

Rys. 8.9. Uklad prazkow interferencyjnych, powstajacych na powierzchni
szeScianu (schematycznie)

Jesli o jest rowne zeru, to zbidr plaszczyzn jest prostopadly do osi z. Z liczby
prazkéw i rozmiaru probki w kierunku osi z mozemy w prosty sposdb obliczy¢ .
Jesli o+#0, lecz AT =0, to wszystkie plaszczyzny, a wigc i prazki, stang sig
réwnolegte do osi z, niezaleznie od ksztaltu probki. Rozszerzalno$¢ przejawia sig
wiec w nachyleniu prazkow interferencyjnych wzgledem osi z.

Wybierzmy trzy punkty x; y;z,, X, y22, 1 X3 y32z3 takie, ze leza na jednej linii
prostej. Definiujemy ¢ tak, by bylo

X1 =Xy Yi—)2 4 212y

Q = —
Xp—X3 Ya—JYV3 22723
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Podstawienie tych wspéirzednych do réwn. (8.54) prowadzi do zwiazku -
A
adT{(z,—2;)—0(2;—23)} = 5 {my —my)— @ (my—m3)} (8.55)

Z tego wyraZzenia mozemy bezposrednio obliczy¢ «. Prazki sa na 'ogdél bardzo
dobrej jakosci, wobec czego mozliwy jest pomiar przemieszczenia rzedu 0,1 ich
odstepu. Liczba prazkOw wzrasta wraz z rozmiarem probki, z wielkoscia wspol-
czynnika rozszerzalnos$ci i przyrostem temperatury. Testy wykonane z kostka Al o
boku 5 cm wskazuja, ze otrzymane wyniki o zgodne sa w granicach 10%, z
warto$ciami literaturowymi.

Metoda Bonda opiera si¢ na zastosowaniu dyfraktometru rentgenowskiego do
precyzyjnego pomiaru odlegloSci migdzy plaszczyznami sieciowymi o znanych
wskaznikach Millera (hkl). Jej zasadnicza idea jest spostrzezenie [24], ze kat odbicia
wiazki promieniowania rentgenowskiego od zbioru rownoleglych ptaszczyzn siecio-
wych mozna mierzy¢ o wiele dokladniej, notujac polozenie krysztalu zamiast
polozenia detektora. W tej metodzie wykorzystuje sic dwa symetryczne polozenia
katowe krysztalu ¢, 1 ¢,, spetniajace warunek Bragga (rys. 8.10). Kat dyfrakcji
dany jest zwiazkiem

0 =2 {180—(p,"~ ¢2)}

Rys. 8.10. Schemat metody Bonda

Przy takim systemie odczytu wyeliminowane zostaja bledy, wynikajace z niepew-
nosci okreslenia zera na skali ¢. Wysoka precyzje odczytu uzyskuje si¢ przez
analize ksztaltu refleksu, pozwalajaca na dokladne wyznaczenie polozenia maksi-
mum w natezeniu wiazki odbitej. Trzeba rowniez uwzgiedni¢ poprawki, wynikaja-
ce z bledow w ustawieniu krysztalu, nierownoleglosci wiazki i jej zalamania w
krysztale, wreszcie z przesunigcia maksimum nateZzenia wiazki, spowodowanego
czynnikiem Lorentza i czynnikiem polaryzacyjnym. Natomiast absorpcja promie-
niowania w krysztale, jak tez niewielki mimosrod probki wzglgdem osi obrotu nie
maja wptywu na dokladno$¢ pomiaru kata Bragga. Szczegélowe omoéwienie wa-
runkOw precyzyjnego pomiaru 6 i potrzebnych poprawek znalezé mozna w pracy
[18]. Wspolczesne konstrukcje dyfraktometréw pozwalaja na odczyt katow z
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[ewved

Tabela 8.1

Rozszerzalnos¢ termiczna krysztaléw molekularnych

« jest wspdiczynnikiem rozszerzalnodci liniowej. W przypadkach gdy autorzy cytowanych prac podaja wspolczynnik rozszerzalnosci objgtoécio-
wej, w tabeli wpisano 1/3 wartodci, oznaczajac te dane wskaznikiem goérnym v («* lub np. 1327). Wszystkie temperatury: T (aktualna), T, (prze-
miany fazowej cialo stale-ciato stale) i T} (topnienia) poduno w kelwinach. Parametry komorki elementarnej podane sq nanometrach. Orientacje
osi gléwnej X, ||a; okresla w krysztatach ukladu jednoskosnego kat 0 = & X, ¢; jest on dodatni, jesli lezy wewnatrz krystalograficznego kqta f3

Lp.. Zwu?zek Informacje strukturalne w-10% K™ Metoda, probka Lits-
chemiczny ratura
1 | Metan (CH,) regularny 360" .| polikryst. f27]
2 | Metan T « dylatometria, polikryst. [28]

2 +20

4 =20

8 21

12 -12

(odczyt. z wykresu)
3 | Metan T,=204 ‘ T o rentgenografia, [29]
obie fazy reg. $ciennie centr., 99,999/, CH,

a=05904 (22 K) 22 180

25 191

30 223

40 269

60 382
4 | Deuterometan regularny faza [ 370,6 rentgenografia, 40-60 K [30]

(CDy) ' -




[evel

tab. 8.1 cd.

dylatometria, 2-17 K

5 | Deuterometan T o {31]
2 0,075
4 0.59
6 3,17
10 25,3
13 649
17 162
6 | Deuterometan T,=1222 T of rentgenografia [32]
T < Tp — faza tetragon,,
T > T, — faza reg. Sciennie centr. 10 11
: 14 93
20 563
25 690
30 367
40 340
60 433
7 | a-Azot regularny T o dylatometria, material [33]
”I;, = 35,6 polikryst.,
o/ T liniowe wzgledem T2 2,15 0,26 99,99%, mol. N,
3 0,70
S 3,38
10 43,6
15 133,6
20 176,5
8 | Parawodor 98°/, odmiany parawodoru T o” material polikryst., [34]
dokt. +10%,
11 530
12 727
13 927
13,8 1103




[vvel

tab. 8.1 cd.

f = 89,96(2)°

Lp. Zw1§zek Informacje strukturalne a- 108, K™! Metoda, prébka Life-
chemiczny ratura
9 |Jod ortorombowy o, = 88+0,228 (T—83) rentgenografia [35, 36]
DL o, = 71,2+ 0,021 (T—83) przy krokach 30 K,
a = 04795 o, = 13,44 0,010(T—83) 83-293 K
b = 0,7255
¢c=0978 (293 K)
10 | Tetrabromometan | regularny o"(220 K) =110 piknometrycznie, [37]
(CBry) T, = 320,03 a"(300 K) = 153 dokl. 19,
dla T<T,
a" = Alog|l - T/T|+B
A=31, B=12I
11 | Adamantan regularny faza [ 157" [27]
12 | Cykloheksan F43m {ad = 600 pomiary przenikalnosci [38]
(CeH,2) Z=2 o\ -2 dielektrycznej
a=0873 (233 K) a7 ), "ot KT @3 K)
13 | Bicyklo-[2.2.2]- regularny faza 1 147" 254-316 K [27]
-oktan
14 } Kwas kwadratowy | faza tetragon., I4/m, oy, = 60 [39]
trwata w 373 K oy =20
15 [ Kwas kwadratowy | faza psudotetragon., da 6.10-6 K- rozpraszanie ncutronow [40]
(H,C,O0,) w temp. pok. P2,/m ar =" ot
a =0,6143(2)
= db
b—0,5285(2) _;6,3_10--5 nm~K_'
¢ = 0,6148(2) dT




[svel

tab. 8.1 cd.

16 | Pentaerytryt T, = 457, 14,Z =2 oy (J._Z) = 10 (nie zalezy od T); rentgenografia, [41]
dla T < T,; a3(l|4) = 125 (zalezy nielin. od T), | 105458 K
reg. dla T> T, dla 105< T<458 K
17 | Etylen 99,96%, C,H, T o piezometr wlasnej kon- [42]
(C,Hy) T, = 103,97 strukcji, materiat
8 270 polikryst.
89 278
93 300
97 370
99 400
18 | Pirazyna o, = — 14(3) rentgenografia [43]
(C4H4N,) a, = 111(5)
o, = 246(3) (293 K)
19 | Benzen ortorombowy o, = 13,6 parametry a, b, ¢ z po- [44]
(C¢Hg) a= 0,746 o, = 198,5 tencjaléw atom-atom
b = 0,967 o, = 249,6
c=0703 (270 K)
20 | Benzen ortorombowy o, =119 rentgenografia [457
a, b, ¢ — jw. o, = 106
o, =221
21 | 1,8-Dinitronaftalen | ortorombowy a, = 117,7(14) rentgenografia, f46]
(faza 1) P2,2,2,,Z=4 o, = 49,6(10) 293-370 K
a=1,1352 o. = 59,5(12)
b=1,4934
¢ =0,5376




[ored

tab. 8.1 cd.

b = 0,5990(1)
¢ = 0,8640(0,5)

B =122°55(10) (293 K)

0 = 44°0(10)

Lp. waqzek Informacje strukturalne @108 K~ Metoda, probka Liver
chemiczny ratura
22 | Tiomocznik ortorombowy o =B +24; T dylatometr kwarcowy f47]
(CH4N,S) faza 1. P2,mu T - A; B;
faza V: Pnma flu 293-193 054 ~69,2
188123 1,93 —4932
Ith 293-213 0.2t -74,1
206-173 0,51 - 176,6
168123 0.09 —744
e 293213 0,33 —85.2
213-193 0 0
193173 255 —10458
163123  —0.03 17,6
23 | Fenantren ortorombowy T<T, T>T, nieelastyczne rozprasza- [48]
(Cy4H;o) P, Z=2 2, = 34 n, = 34 nie neutrondéw
a = 0,857 o, =74 o, = 64
b=00611 a. =220 « =180
¢ = 0947
T, =345 K
24 | Dckafluorobifenyl | ortorombowy T=236 K T=128 K rentgenografia, 77-293 K [49]
(C12F10) Fdd2, Z =8 o, = 66(3) o, = 34(3)
a = 1,360(3) uy, = 116(4) a, =83(4)
b = 2,565(5) 23 = 66(3) oy = 25(3)
¢ = 0,622(1)
25 | Naftalen jednosko$ny o, = 212,8(40) rentgenografia, 78-293 K [50]
(C,,Hg) P2, Ja, Z =2 o, = 40,3(4)
a = 08218(5) oy = 51(1)




[Lpe]

tab. 8.1 cd.

0 = 28,63°

T 26 | Antracen jednoskos$ny oy = 111,7(35) rentgenografia, (o) dla [51]
(C14H;0) P2/a, Z =2- oy = 13,4(4) zakresu 78-293 K
a= 0856 oy = 20,6(6)
b = 0,6035 0 = 51°
c=1,1167
f = 124°42
27 | Antracen a = 08550 o; =191 rentgenografia, (x> dla [52]
b = 0,6028 oy =40 T=300K
c=1,1172 oy = 61
f=124°40 (290 K) 0 =424°
28 | Antracen krysztat 1 o, = 160 (wyzn. posrednio) dylatometr kwarcowy, [53]
o, =22 a rozniczk.
a3 =7 (Wyzn. posrednio)
0 = 35°
krysztat II a, = 150 (wyzn. posrednio)
oy =25
oy =6
0 =43°
29 | Antracen a = 0,8562(6) oy = 132,0 rentgenografia, (x> dla (8]
b = 0,6038(8) oy =31,0 zakresu 95-290 K
¢ =1,1184(8) oy = 34,0
= 124°42(6) (290 K) 0 = 35,48°
30 | Antracen a = 0,85457(1) T=2I15K T=23K dyfraktometr (metoda {93
b = 0,60265(9) oy = 1241 oy = 267,1 Bonda) rézniczk.
¢ = 1,11650(3) o, = 34,0 o, =393
B = 124°36'53(7)" o3 = 33,6 o3 =455
8 = 35,50°




[8ve1

tab. 8.1 cd.

Lp. ZWI(?ZFk Informacje strukturalne a-10% K™! Metoda, probka Lite-
chemiczny ratura
31 | Bifenyl jednosko$ny T =257 K T=1855 K rentgenografia, przy [54]
(Ci2H,0) P2,/a, Z =2 a, =300 «, =190 AT =40 K, standard
a=0812 o, =96 o, =96 wewn. (NaCl)
b = 0,567 oy =30 oz = 18
¢ = 0,947 0=—16° 0= —16°
f =95°24" (temp. pok.) T=1485 K
oy, = 120
oy =12
oy =10
0 =—16°
32 | Bibenzyl jednoskosny a, =70 rentgenografia, () dla [55]
(C14H}4) Gy, L2 o, = —30 zakresu 83-297 K
a=12770 as = 250+ 10%,
b=106110 0 = 39°
¢ =0,7720
f=116°00" (287 K)
33 | Antrachinon jednosko$ny o, =564 rentgenografia, (o> dla [56]
(C14Hg0O5) P2ju, Z =2 o, = 1250 zakresu 103-293 K
a = 1,583(4) oy = —8,6
b =0,397(1) 0=-—1°
c = 0,789(1)
B =1025 (2938 K)
34 | Heksachlorobenzen| jednosko$ny o, = 61,4(5) rentgenografia, [46]
(CClg) P2,jc, Z=2 1, = 46,8(4) 293-425 K
a = 0,808 6 = 364°
b = 0,387
¢ = 1,665

f=117,0°




[ovel

tab. 8.1 cd.
35 | 4-Nitroanilina jednoskosny oy = 246,0 rentgenografia, dyla- [57]
(C6HgN,0,) P2,/n, Z =4 o, = 13,2 tometr kwarcowy,

a = 1,2336(8) oy = 14,5 290-380 K

b =0,607(2) 0 =322

c = 0,8592(5)

p =91455° (temp. pok.)

[58]
36 | 4-Nitroanilina o, = 1503 rentgenografia, <) dla [59]

o, =715 zakresu 90-293 K
oy =24
0 = —40°2

37 | Tetracyjanoetylen | jednoskosny oy = 108 dyfraktometr {60]

(CsNy) T, =292,002), o, =87 (metoda Bonda)
dalsze anomalic w zakresie oy =64 (293 K)
270-285 K 0=-21°
(odczytane z wykresu)

38 | Kwas amino- P2/n, Z =4 ) odmiana o rentgenografii, 77-415 K, {61]
octowy (glicyna) a=0,5102 AT 77-293 293-355 355-415 | standard wewn. (NaCl) :
(C,H5;NO,) b=1,1970

¢ = 0,5457 o fla 31,0 22,0 16,3
f=111°42 ay|lb 559 929 1239
oslle* 76 0O 0
odmiana f
P2, Z'i=2 AT 77-293
a =0,5077
b =0,6267 oy fla 0
f=113°12 ay||b 90,1
ay La, b 6,2

P3, lub P3,, Z=3
komorka ortoheksagon.
a=0,7037

b=12189

¢ = 0,5483

odmiana y
AT 77-293 293-415

ol 24,5 52,0
a,lb 24,5 52,0
asflc 89 0




[ose]
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Lp. L Informacje strukturalne a-105 K1 Metoda, probka Lite-
chemiczny ratura
39 | Glicyna o, = 2634 rentgenografia, () dla [62]
oy = 52,1 zakresu 293-373 K
oy = 18,7
0 =43,5°
40 | Siarczan triglicyny M8 < T<37 K . pojemnosciowa, zdolnosé | [63]
(CeH 304 N;5) oy jla* = —7514+0325T rozdz. Alfl =2-1077
ayflb = 956—0310T
osllc = — 14,240,210T
41 | Kompleks 1-mety- o, =359 rentgenografia, [64]
lotymina: 9-mety- o, =2,1 295-339 K
loadenina o =25
Xoz, ¢ =8,1°
42 | Kompleks 1:1 jednoskosny oy = —1(5) dyfraktometr, [65]
mocznik : kwas C2/c %, = 29(6) Xoy, a=36°
szczawiowy a = 1,30625(7) a3 = 199(10) Xoz, a =126°
(CH,N,O- b = 0,66437(2) a,||b
| "C,H,0,) ¢ = 0,68478(5)
f=92474(6)° . [295(1) K]
43 | Kompleks 2:1 jednosko$ny oy = 23(5) dyfraktometria, ponizej [66]
N-metylo- Z=172 o, = 24(5) 182 K P2,/c, w 182 K
mocznik :kwas a=0,51429(3) oy = 188(9) przechodzi nieodwr.
SzCzawiowy b = 1,05498(5) Xoy, a =38,3° w Pnma
(2C,HgN,O - ¢ = 1,03102(5) ¥ay, a =517°
‘C,H,0,) p = 101,910(5)°
ortorombowy
Z=4 o, = 14(5)
a = 1,042200) @, = 274(14)
b = 0,64274(1) o, = 28(6)

¢ = 1,61253(5)




dokladnoscia do jednej sekundy katowej; mozna uwazac, ze mniej wigcej z taka
sama dokladnoscia mozliwe jest zmierzenie kata 6. Osiagniecie takicj precyzji
pomiaréw w poblizu 0 = 75° odpowiada dokladnosci pomiaru odsigpu 4 migdzy
ptaszczyznami sieciowymi 1:1000000. Ma to sens tylko w odniesieniu do kiyszta-
6w odznaczajacych sie wysokim stopniem uporzadkowania i1 korzystnymi wiadci-
wosciami mechanicznymi, a wigc przy dobrym sprecyzowaniu stz ieciowych
(Si, Ge, NaCl). Przy tak wysokiej czutodci aparatury mozna z iy d
odpowiadajace zmianie temperatury o ulamek stopnia. Osi i
temperatury z dokladnoscia co najmniej 0,01 K pozwala X
rézniczkowe wspdlczynniki rozszerzalno$ci termicznej, co Lnajdar PadL\VYCZdJ
interesujagce 1 wazne zastosowanie do poznania szczegolow strukturalnych w
przemianach fazowych.

Sposob obliczania glownych wspdlezynnikéw rozszerzalnosci z pomiaréw zale-
znosci kata dyfrakcji od temperatury omowiliSmy w rozdz. 2 (problem 2.8.1).
Zmodyfikowane zastosowanie metody fotograficznej w pomiarach rentgenografi-
cznych przedstawione jest w pracy [25]. Autor zaleca wykonanie w temperaturze
pokojowej zdjgcia obrotowego warstwicy zerowej w ustawieniu asymetrycznym
(metoda Straumanisa), a. nastgpnie wskaznikowanie reflekséw za pomoca zdjecia
Weissenberga. Pomiary rozszerzalno$ci wykonuje si¢ w specjalnie zaadaptowanej
. kamerze Weissenberga, zapewniajacej dobra stabilizacje temperatury probki. Roz-
nica temperatur, potrzebna do uzyskania mierzalnego przesunigcia reflekséw w
dwoch ekspozycjach, jest rzedu 100 K. W pracy [25] opisano tez procedure,
majaca na celu minimalizacje bledéw systematycznych.

Inny schemat rachunkowy obliczania gléwnych wspolczynnikow rozszerzalnos-
ci, mierzonych metodami dylatometrii rentgenowskiej, opisany jest w pracy [26].

~

8.4. Wyniki pomiaréw rozszerzalno$ci termicznej krysztalow

Zestawienie wynikéw pomiaréw wspolczynnika rozszerzalnosci termicznej sze-
regu krysztaldéw molekularnych podane jest w tab. 8.1. Zwiazki uszeregowane sa
wedlug malejacej symetrii krysztaldéw. Skladowe tensora podane sa wedlug kon-
wencji podobnej do tej, jaka zostala przyjeta dla wlasciwosci optycznych w rozdz.
6: w ukladzie ortorombowym a,, o, o, odnosza si¢ do krystalograficznych osi a, b,
¢, a oy, o,, a3 oznaczaja skladowe glowne a w ukladzie jednosko$énym. Skladowa
o, jest rownolegla do b, co stanowi réznicg w porownaniu z rozdz. 6. Orientacje
przekroju tensora w plaszczyznie (010) okre$lano przez podanie kata miedzy osia
o; 1 osig a (jesli jest on znany); kat ten jest dodatni, je§li miesci si¢ w obrgbie
krystalograficznego kata . W niektérych przypadkach (zaleznie od informacji
dostepnych w literaturze) zamiast « podano wspdlczynnik rozszerzalnosci objgtos-
ciowej f. Przedstawimy obecnie kilka uwag do danych zamieszczonych w tej
tabeli.

Krysztal jodu (nr 9) rozszerza si¢ nieliniowo, poniewaz wszystkie trzy wspol-
czynniki zaleza od temperatury. Zwraca uwage duzy wspoOlczynnik temperaturowy
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o, — jest on o rzad wigkszy od pozostalych dwoch wspdlczynnikow. Ma to
odzwieciedlenie w strukturze [36]: czasteczka jodu tworzy kat okoto 33° z osig ¢,
co tlumaczy nie tylko anizotropi¢ rozszerzalnosci, lecz takze niezwykle silna
anizotropie wlasciwosci sprezystych. Wspolczynnik sztywnosci wzdtuz osi ¢ wynosi
bowiem f; = 172 N-m™!, w kierunku za$ osi a f5 = 0,41 N-m™! [36]. Temperatu-
ra Debye’a dla jodu &, = 106 K jest dostatecznie niska na to, by w funkcji a(T)
nie pojawialy sie cztony z T? i wyzszymi potegami T.

Kwas kwadratowy H,C,O, (nr 14, 15) ma dwie odmiany polimorficzne. W
temperaturze nizszej od temperatury przejscia 7, =373 K jest jednoskosny
(P2,/m), w wyzszej zas symetria krysztalu jest tetragonalna (I4/m). W odmianie
jednoskos$nej plaski szkielet C,O, powiazany jest wigzaniami wodorowymi z
czterema sgsiadami w plaszczyznie ac, a oddzialywania miedzy warstwami maja
glownie charakter sil van der Waalsa. Faza jednosko$na ma wiasciwosci ferroelek-
tryczne: uwaza sie [39], ze wlasciwosci te wystgpuja w warstwach ac i sa
spowodowane specyficznymi przesunieciami atomow wodoru w obrebie mostka
wodorowego. Poszézegdlne warstwy ac ulozone sa wzdluz osi b antyferroelektry-
cznie. Zwraca uwage znacznie wigkszy wspolczynnik rozszerzalnosci o, i mniejszy
o, w fazie jednoskosnej w poroéwnaniu z faza tetragonalna. W samej temperaturze
przemiany fazowej z funkcja «(7T) nie dzieje si¢ nic szczegdlnego.

Znaczna anizotropia rozszerzalnos$ci termicznej jednoskoénej fazy kwasu kwad-
ratowego nie jest czyms$ wyjatkowym. Bardzo czesto kierunek najsilniejszej rozsze-
rzalnosci jest prostopadly do warstw, w ktorych uloZone sq czqsteczki — zwlaszcza
wtedy, gdy czasteczki polaczone sa w warstwie wiazaniami wodorowymi. Przykia-
dami uzasadniajacymi te tez¢ sa, poza kwasem kwadratowym, pentaerytryt (nr 16)
i glicyna (nr 38, 39). W temperaturze 457 K tetragonalna komérka pentaerytrytu
(I4, Z =2) przechodzi w komérke regularnag. W fazie tratragonalnej o$ 4 jest
prostopadla do plaszczyzny wiazan wodorowych. W tej plaszczyznie rozszerzal-
nos¢ jest mala, a o, praktycznie nie zalezy od temperatury. Wspotczynnik rozsze-
rzalnosci oy wzdluz osi 4 jest 12 razy wiekszy od «, i silnie (oraz nieliniowo) zalezy
od temperatury. Pod tym wzgledem wyniki z pracy [41] zgodne sa z wczesniej
znanymi wlasciwodciami pentaerytrytu [67]. Z kolei glicyna ma trzy odmiany
krystalograficzne: «, f§ i . Struktury wszystkich trzech odmian sa znane: o [68], f
[69], y [70]. Krysztaly odmiany f§ nie sa trwale i w temperaturze pokojowej tatwo
przechodza w odmiang «; w suchej atmosferze przejscie to jest wolniejsze [69].
Natomiast krysztaly odmiany y sa trwale, lecz przy ogrzewaniu do temperatury
powyzej 438 K przechodza w odmiane a. Ogrzewaniu fazy « towarzyszy zmniejsze-
nie wspdlczynnikdéw rozszerzalnosci w plaszczyznie (010), «; 1 a3 (23 maleje do
zera), oraz silny wzrost «,||b. Zarowno ten fakt, jak i prosta korelacja periodow
odmian « 1 f tlumacza latwosé¢ przejscia fazowego pf —a. Korelacja miedzy
kierunkiem najsilniejszej rozszerzalnosci krysztalu warstwowego a kierunkiem
normalnym do warstwy nie musi by¢ stuszna, jesli wiazanie wodorowe powstaje
rowniez migdzy warstwami. Przykladem takiej struktury jest kompleks mocznika z
kwasem szczawiowym (nr 42). :

Zapewne najwigce] pomiarow rozszerzalnosci termicznej wykonano dla kryszta-



16w antracenu (nr 26-30). Przedstawimy nieco obszerniej wyniki tych badan i
sprobujemy opatrzy¢ je komentarzem.

W trzech pracach [8, 51, 52] stosowano metode rentgenograficzna, fotografujac
zbiory refleksow w temperaturze pokojowej i temperaturze cieklego azotu. W
publikacji [51] autorzy donosza, Zze przy ochtadzaniu krysztalu do temp. 80 K
szczegolnie silnej zmianie ulegaja: 0§ a (zmniejsza sie prawie o 0,01 nm) i kat §
(wzrasta o 0,88°). Te zmiany w antracenie sa jednak dwa razy mniejsze niz w
naftalenie (nr 25), co jest widoczne z $rednich wspdlczynnikdéw rozszerzalnosci:
O mataen = 86,1 1078 K71 (D acen = 48,6-107¢ K~ 1. Whiosku tego nie pot-
wierdzaja wyniki zawarte w pracy [8], a juz w wyraznej sprzeczno$ci sa z nimi
wyniki pracy [52], otrzymane w tym samym laboratorium. We wszystkich trzech
pracach wspoélczynniki wyznaczane byly w dos$¢ sporym przedziale temperatury, sa
wiec z pewno$cia mniejsze od wspolczynnikow rozniczkowych w poblizu tempera-
tury pokojowe;j.

Wspolczynniki bliskie rézniczkowych mierzyt Jakubowski za pomoca dylato-
metru kwarcowego [53]. Pomiary wykonat dla dwoch typow probek, otrzymanych
metoda Bridgmana. Préobka I hodowana byla z fazy cieklej o temperaturze tylko o
kilka stopni wyzszej, probka Il za§ w temperaturze znacznie wyzszej (350°C) od
temperatury topnienia antracenu (230°C). Oba krysztaly byly zupelnie przezroczy-
ste, aczkolwiek w bombie zawierajacej krysztal II stwierdzono §lady rozkiadu
substancji. Obserwacje w mikroskopie polaryzacyjnym, badania spektroskopowe i
chromatograficzne nie ujawnily Zadnych zauwazalnych réznic miedzy nimi. Autor
stwierdza, ze roznice wspotczynnikoéw rozszerzalnosci dla obu prébek sa mniejsze
niz rozbiezno$ci migdzy wynikami metody dylatometrycznej i metod rentgenografi-
cznych. Ponadto autor stwierdzil wystepowanie interesujacej korelacji miedzy
przekrojami tensora a i tensora $ci§liwosci B w plaszczyznie (010). W tej plaszczy-
Znie oba tensory maja jeden stopien swobody, poniewaz orientacja osi glownych w
tym przekroju nie jest- wymuszona przez symetrig. Kierunek najsilniejszej rozsze-
rzalnosci, a,, rézni sie tylko o 16° od kierunku najwickszej $ci§liwosci, f,. Jesli
postluzymy si¢ danymi z pracy [9], to okaze sie, ze korelacja «; 1 f; wypadnie
jeszcze lepiej: oba kierunki roznia sie zaledwie o 1°.

Pomiary rozszerzalnosci antracenu w pracy [9] wykonano dla krysztatu,
hodowanego z roztworu w_acetonie. Nie wykazywal rys ani spekan, nie mial
réwniez struktury mozaikowej. Analiza szerokosci potowkowej reflekséow, wykona-
na za pomocg dyfraktometru Bonda, potwierdzita wysoka jako$¢ strukturalng
krysztatu. Osiagniecta precyzja pomiaréw pozwolita stwierdzié, iz — zgodnie z
oczekiwaniem — gesto$¢ fazy stalej zmierzona rentgenograficznie (1,2505 g-cm™3)
byla wigcksza od maksymalnej gestosci, uzyskanej metoda flotacyjna dla bardzo
czystego antracenu ([71]: 1,2490 g-cm™?). Zmierzony w tej pracy wspdlczynnik o
ma w temperaturze pokojowej warto$¢ najwicksza z wszystkich dotad podawa-
nych.

Pobiezny nawet rzut oka na wyniki rozszerzalno$ci cieplnej krysztatu antrace-
nu wskazuje na istnienie bardzo duzej rozbieznosci wartosci liczbowych, na co
zwracaja uwage rowniez niektorzy autorzy [9, 53]. Jesli uwzgledni¢ wszystkie
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przytoczone w tabeli wyniki, to dlugosci osi gldwnych tensora rozszerzalnosci,
wyrazone w jednostkach 107° K ™!, zawieraja si¢ w granicach

112 <oy €267 (1:24)
<a, <40  (1:3,1)
6<o, <61 (1:10,2)

Nie jest tatwo skomentowac to zestawienie, poniewaz na razie tylko dla krysztalow
antracenu dysponujemy takim bogactwem wynikdw, uzyskanych réznymi metoda-
mi dla niewatpliwie rozmaitych materialow. Zapewne stuszno$¢ maja autorzy
pracy [9], gdy twierdza, ze najpowazniejszym powodem tych rozbieznosci jest
niedoskonalosé¢ krysztalow, jakimi zajmowano si¢ w poszczegdlnych laboratoriach.
Stabo$¢ oddziatywan migdzyczasteczkowych w krysztale molekularnym dopuszcza
,»do glosu” wplyw rozmaitych czynnikow zewngtrznych, utrudniajacych otrzymanie
struktury wysoce uporzadkowanej w czasie wzrostu krysztatu. Nie mozna tez
wykluczy¢ obecnosct w krysztalach naprezen mechanicznych, wynikajacych z histo-
rii probki, zwlaszcza gdy krysztal hodowany byt ze stopu. Niezaleznie od tego,
zmiany temperatury w trakcie wykonywania pomiaréw réwniez prowadza do dos¢
sporych deformacji. Jak latwo wykaza¢ na podstawie réwnania (8.41), najwicksze
naprezenia przy ogrzewaniu powstaja zawsze prostopadle do kierunku, zawieraja-
cego kat 45° z ktorakolwiek osi tensora o. Ich wielko$¢ zalezy od anizotropii
rozszerzalno$ci termicznej. Na przyklad w krysztale antracenu w plaszczyznie (010)
maksymalne naprezenia $cinajace prowadza do deformacji o wielkosci

8, = £}y —a3) = 1,1-107* rad ‘K~

Warto$¢ ta jest w przyblizeniu 10 razy wigksza od obliczonej dla kalcytu. Nie jest
rzecza obojetna, czy naprezenia termiczne likwiduja inne naprezenia, statyczne, czy
tez sic do nich dodaja. Nie mamy tez zbyt dobrego rozpoznania, jak dalece
nieodwracalne zmiany zachodza w probce wskutek samego tylko jej ogrzewania
lub ochtadzania. Wydaje sie, Zze rozszerzalnos¢ termiczna krysztalu molekularnego
jest w tej chwili wlasciwoscia fizyczng najbardziej czula na stan fizyczny prébki,
zwlaszcza na jej uporzadkowanie bliskiego i dalekiego zasiegu.

W bifenylu (nr 31) kierunek najmniejszej rozszerzalnosci, a3, pokrywa sie z
kierunkiem dtuzszej osi czasteczki, kierunek za$ najwickszej rozszerzalnosci w
plaszczyznie (010) tworzy kat prosty z dluzsza osia czasteczki [54]. Taka relacja
jest typowa dla zwiazkdédw aromatycznych, majacych czasteczki wydluzone w
jednym kierunku. Potwierdzaja to réwniez wilasciwosci krysztaldw naftalenu i
antracenu.

Anomalia rozszerzalnosci w poblizu punktu przemiany fazowej pierwszego
rodzaju, jaka jest topnienie cial, zajmowali si¢ migdzy innymi Bartieniew z
wspotautorami [72]. Pokazali oni na przykladzie naftalenu, ze w poblizu tempera-
tury topnienia wspdlczynnik rozszerzalnosci rosnie gwaltownie. Poczatek tego wzro-
stu przesuwa si¢ znacznie w kierunku nizszych temperatur, jesli probka wykazuje
jakie$ odstepstwa od idealnosci. Odstepstwami moga by¢ zaréwno defekty punkto-
we, jak 1 struktura mozaikowa.
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Omowimy jeszcze dwa przyklady zastosowania dylatometrii do badania prze-
mian fazowych i towarzyszacych im zjawisk. Pierwszy dotyczy badan polimor fiz-
mu 1,8-dinitronaftalenu [73]. Zwiazek ten mozna otrzymac¢ w temperaturze poko-
jowej w postaci krysztalow ortorombowych przez powolne odparowanie roztworu
czystej substancji w benzenie lub EtOH. Wykresy wzglednych zmian dlugosci
probek wraz ze zmianami temperatury reprodukowane sa z cytowanej pracy na
rys. 8.11 dla trzech kierunkéw krystalograficznych, oznaczonych przez I, II, III i
odpowiadajacych osiom krystalograficznym a, b, c. W czasie ogrzewania krysztalu
odmiany trwalej w temperaturze pokojowej, oznaczanej jako faza I, w temperatu-
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Rys. 8.11. Dylatometryczne badania [,8-dinitronaftalenu; pomiary wykonano w kierunkach osi krysta-
lograficznych «a, b, ¢ (wedtug [73])
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rze T, = 373-378 K pojawia si¢ przejscie do fazy II, ktéremu towarzyszy znaczna
nieciaglo$¢ zmiany diugosci probki; obserwowana jest we wszystkich trzech kie-
runkach, a najwigksza warto§¢ ma w kierunku I. Nie jest jasne, czy przemiane te
mozna uwazac¢ za odwracalng wlasnie ze wzgledu na duze efekty dylatacyjne w
temperaturze T,. Powoduje to, Zze po przejsciu powrotnym II —1 faza I nie ma
wszystkich cech uporzadkowania krysztalu w stanie wyjsciowym. Swiadcza o tym
badania rentgenograficzne — zdjecia kotysanego krysztalu lub Weissenberga dla
fazy 1 wykazuja w obu przypadkach do$¢ spore roznice w liczbie i natezeniu
refleksow. Niektore szczegoly krzywych dylatometrycznych (nachylenie i drobne
odstepstwa od liniowosci) pozwalaja jednak odnalezé cechy fazy I po odbyciu
cyklu ogrzewania, przynajmniej w dwu kierunkach krystalograficznych (rys. 8.11a,
b, ¢). Przemianie towarzyszy histereza o wielkosci 4T = 15-20 K. Ogrzanie prébki
do temperatury o kilkanascie stopni nizszej niz temperatura topnienia, T; = 443—
445 K, poczatkujacej migkniecie probki, pozwala ujawnié istnienie dwoch dalszych
odmian fazowych 1,8-dinitronaftalenu. Obserwowane zjawiska mozna wyjasni¢ w
nastepujacy sposob [73]. Ogrzewanie krysztalu 1,8-DNN prowadzi w temp. 373—
378 K do przemiany fazowej I — 11, dylatometrycznie odwracalnej, ktorej towarzy-
szy znaczny wzrost objetosci krysztatu i zmiana wspdtczynnikow rozszerzalnosci.
Wychodzac z monokrysztatu (k) w fazie I otrzymujemy polikrysztat (pk) w fazie II,
jest to zatem przemiana typu k — pk. Ochtadzaniu towarzyszy odwrotna przemia-
na fazowa, ktéra inicjowana jest w temperaturze nizszej niz I —II (ok. 358 K);
polaczona jest ze zmniejszeniem dlugosci probki i odwracalnym powrotem wspot-
czynnikdw rozszerzalnosci do pierwotnych wartosci. Wystepujaca tu histereza
rozszerzalnosci jest charakterystyczna dla przemian typu k —k. Wystepowanie
histerezy oznacza, ze przemiana polega na procesie krystalizacji zarodkéw nowej
fazy (I) w osrodku metastabilnym (II). Warunek termodynamiczny, wymagajacy by
AT bylo rézne od zera w cieczy lub fazie gazowej dla utworzenia centréw
krystalizacji, obowiazuje zapewne rowniez metastabilna faze stala. Jesli jednak
ogrzejemy probke do wyzszej temperatury, co najmniej do 423 K, stworzone
zostana warunki dla przejscia II —III przy ochladzaniu. Polegaja one na ,zmig-
knieciu” sieci, potrzebnym — by¢é moze — dla bardziej radykalnej zmiany
orientacji czasteczek. Przy dalszym ochtadzaniu faza III przechodzi spontanicznie
w faze IV w temp. ok. 333 K, przy czym ten proces nie powoduje destrukgji sieci
krystalicznej. Faza IV jest krysztalem, ktéry mozna wyhodowaé réwniez ze stopu;
wykazuje dobra przezroczystos$¢ i stosukowo dlugi ,czas zycia”, poniewaz proces
IV —1 przebiega w temperaturze pokojowej bardzo powoli. Relacje miedzy fazami
pokazane sa wedlug [73] na diagramie 8.12.

Krysztal tiomocznika CS(NH,), ma pie¢ odmian fazowych, przy czym wszyst-
kie przejScia maja charakter odwracalnych przemian typu k —k. Fazy I i III sg
ferroelektryczne, stad duze zainteresowanie fizykochemicznymi wiasciwosdciami te-
go zwiazku. Metoda analizy rentgenograficznej [74, 75] oraz dyfrakcji neutrondéw
[76] i elektrondéw [77, 78] szczegdtowo poznano struktury fazy I (ortorombowa,
P2, ma) i V (ortorombowa, Pnma). Nie ma powodoéw by sadzié, ze struktury faz
posrednich naleza do innego ukladu krystalograficznego. Anomalie dielektryczne
badane byly w pracy [74]. Z pomiaréw przenikalnosci dielektrycznej wzdluz osi a
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wynikaja nastepujace temperatury rownowagi sasiadujacych z soba faz:
T,AV/V)=220K T (II/IV)=179K T (II/Ill) =176 K  T,(/I) =169 K

ogrzewanie

Tp=373—378 K
Faza 1 Faza 11
(z roztworu, trwala ochtadzanie
w temp. pok.) Tp=35%8 K przegrzanie
(T> 423 K)
potem ochladzanie
ochladzanie
Faza III . Faza IV
T,=33K

Rys. 8.12. Schemat relacji fazowych w 1,8-dinitronaftalenie [73]

Dylatometria tiomocznika zajmowali si¢ Futama [79] i Jakubowski [47].
Wyniki uzyskane w tej ostatniej pracy mozna stresci¢ w nastgpujacy sposob:

1. Poszczegdlne fragmenty krzywych dylatometrycznych migdzy punktami nie-
ciaglosci, odpowiadajace zakresowi egzystencji okre§lonych faz, sa nieliniowymi
funkcjami temperatury. Mozna je opisa¢ wielomianem drugiego stopnia

Al/l = C+BT+AT? (8.56)

Wobec tego wspolczynniki rozszerzalnoéci w tych przedzialach nie s stale, lecz
zaleza liniowo od temperatury. Wspolczynniki temperaturowe o, wyznaczone
metoda najmniejszych kwadratéw, podane sa w tab. 8.1, nr 22.

2. Wystepowanie nieciaglosci wspodtczynnika rozszerzalnosdci liniowej, odpowia-
dajacych przemianom fazowym, zalezy od kierunku krystalograficznego: wzdtuz
osi a mozna zauwazy¢ tylko jeden punkt nieciaglosci, podczas gdy w kierunku ¢
wystepuja trzy takie punkty. W tabeli 8.2 zestawiono obserwowane temperatury
anomalii dielektrycznych [74] i dylatometrycznych [47]. Nie wiadomo w jakim

Tabela 8.2
Temperatury przemian fazowych, T, [K], tiomocznika
Kierunek
krystalo- T,(av/V) T, (1/1V) T, (11/110) T,(/1) Literatura
graficzny
a 220 179 176 169 [74]
a - 185+6 — ¥ [47]
b 213 185+6 — [473
o i 213 185+6 173 [47]

* Poza badanym zakresem temperatury.




stopniu wystepujace tu rdéznice mozna przypisa¢ metodzie, a w jakim procedurze
postepowania w czasie pomiarow.

3. Liniowa rozszerzalnos$¢ termiczna jest skorelowana z rozkladem sil miedzy-
czasteczkowych w krysztale. Najwiekszy wspotczynnik obserwuje si¢ w kierunku a
i w tym tez kierunku oddzialywania migdzy czasteczkami tiomocznika sa najstab-
sze. Odwrotnie, najmniejszy wspolczynnik rozszerzalno$ci wystepuje w kierunku
osi b, w ktorym oddzialywania NH - - S, silniejsze od oddzialywan van der Waalsa,
maja udzial najwickszy.

4. W przeciwienstwie do wynikéw badan wlasciwosci sprezystych krysztalu
tiomocznika, opublikowanych przez Benoit i Chapelle’a [80], Jakubowski 1 Ecoli-
vet [81] wykazali, Ze istnieje znakomita korelacja migdzy rozszerzalnoscia termi-
czng i SciSliwoscia tego krysztatu: kierunki najwigkszej scisliwosci pokrywaja si¢ z
kierunkami najsilniejszej rozszerzalnosci zarowno w przekroju ac, jak i be [81].
Réwniez typ przekroju obu tensoréw w tych plaszczyznach jest taki sam.

Q2
X2

X

X3

Rys. 8.13. Zasada dwuwymiarowej reprezentacji tenso-
2 ra rozszerzalnosci o

Q3

Obecnie opiszemy spos6b dwuwymiarowego przedstawienia tensora rozszerzal-
nosci termicznej, zaproponowany przez Weigla i innych [82]. Metoda ta pozwala
pogladowo przedstawi¢ ewolucje gtéwnych skladowych tensora wraz ze zmiana
jakiegos$ parametru, na przyklad cisnienia lub temperatury, i nie wiadomo, dlacze-
go praca ta przeszla w literaturze nie zauwazona. Korzystajac z samej idei,
wprowadzimy dwuwymiarowg reprezentacje o w nieco inny, uproszczony sposob.
Wyobrazmy sobie trojkat rownoboczny o boku a (rys. 8.13). Polozenie dowolnego
punktu P w obrgbie trojkata mozemy podaé za posrednictwem trzech wspoirzed-
nych x; x, x5, ktére sa dlugosciami odcinkéw PQ;, prostopadlych do odpowied-
nich bokéw trojkata. Dowodzi si¢ w elementarnej planimetrii, ze suma x; + X, + X3
nie zalezy od polozenia P i jest rdwna wysokosci tréjkata. Wobec tego

Xi+x,+x3=h= (\,/5/2)(1
Jedli wybierzemy h =1, czyli a = 2/\/3, to wspolrzedne P spelniaja warunek

X+ X+ x5 =1 (8.57)
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Takim samym warunkiem mozemy zwigza¢ giéwne skladowe «;, jesli wprowadzi-
my wielkosci zredukowane

A= lol/Qlel)  i=1,2,3 (8.58)
przy czym /4; sa liczbami bezwymiarowymi i1 zawsze dodatnimi. Mamy wowczas
Aitd,+A3 =1 (8.59)

a tensor o reprezentowany jest punktem P w obrgbie trojkata. Jesli jego sktadowe
zaleza od temperatury, to punkt reprezentujacy funkcje «(7T) przesuwa si¢ po
pewnej trajektorii, ktora jest obrazem badanej zaleznosci.

Punktem reprezentujacym tensor kazdego krysztalu izotropowego jest C(314).
Diugosé odcinka CP jest wiec miara asferycznodci tensora; autorzy pracy [82]
nazywaja CP wskaznikiem asferycznosci. Wprowadzaja ponadto prawo, zwane
przez nich prawem ciaglych zmian symetrii tensora rozszerzalnosci termicznej:
wskaznik asferycznosci maleje w miare wzrostu temperatury dla struktur tréjwy-
miarowych, nie przechodzacych przez przemiang fazowa. Prawo to oznacza, ze w
miare wzrostu temperatury krysztatu, stanowiacego faz¢ termodynamicznie stabil-
na, punkt P zbliza sic do punktu C. Okazuje sig¢, ze nie zawsze jest to sluszne w
klasie krysztalow molekularnych, a ilustracja sa rys. 8.14 i 8.15. Punkt reprezentu-

TGS

\3{;

—e—o—e—— bifenyl

Rys. 8.14. Reprezentacja « bifenylu i siarcza- Rys. 8.15. Reprezentacja o odmian triglicyny
nu triglicyny w roznych temperaturach

jacy tensor a bifenylu lub siarczanu triglicyny (rys. 8.14) lezy w temperaturze
wyzszej rzeczywiscie blizej C, aczkolwiek w obu przypadkach proste nie przecho-
dza przez C. Z jeszcze gorsza sytuacja spotykamy sie na diagramie 8.15, ilustruja-
cym wplyw temperatury na o dwoch odmian glicyny (x i y): punkty 3, przedsta-
wiajace wspolczynniki rozszerzalnosci w zakresie temperatur lezacym najwyzej w
skali temperatury, znajduja si¢ najdalej od C. Dane do tych diagraméw zostaly
zaczerpnigte z tab. 8.1.

Podobna niezgodno$¢ wystepuje rowniez w przypadku antracenu (rys. 8.16).
Na tym diagramie przedstawione sa uzyskane dotychczas wyniki pomiarow o
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Rys. 8.16. Reprezentacja @ antracenu wedlug wynikow
pomiaré6w réznych autoréw: kétko czarne — [S1],
kotka z krzyzykiem — [52], kolka z kropka — [53],
kétko puste — [8], trojkat — [9] (219 K), kwadrat —
[9] (213 K)

%
oY)

antracenu. Mimo unormowania wartoéci o; do jednosSci, co powinno zmniejszy¢
rozrzut wynikow, jest on jednak znaczny.

Przedstawione tu przyklady wskazuja, ze reprezentacja & za pomoca punktu w
trojkacie rownobocznym, zaproponowana przez Weigla, jest poZyteczna ilustracja
ewolucji tensora, aczkolwiek na wypowiadanie uogélnienn pora moze by¢ jeszcze za
wczesna. Warto zauwazyC, ze reprezentacja Weigla moze by¢ zastosowana dla
kazdego innego symetrycznego tensora drugiego rzedu, po przeliczeniu jego glow-
nych skladowych na wartosci zredukowane.

8.5. Model rozszerzalnosci termicznej

Wspolczesne proby skonstruowania teorii zjawisk anharmonicznych, w szcze-
gblnosci powiazania tensora rozszerzalnosci termicznej z innymi wielkosciami
fizycznymi, dotycza prawie wylacznie krysztalow izotropowych, gtownie metali [83,
84] i zwiazkow nieorganicznych [85]. W nielicznych tylko przypadkach czynione
sa proby objecia teoria zwigzkow organicznych, jak réwniez krystalizujacych w
klasie o najwyzszej symetrii [86]. Nie brak wsrdéd nich prac, postugujacych sie
bardzo zaawansowanymi metodami komputerowej symulacji dynamiki sieci w celu
znalezienia zwiazku p-V~T, znanego pod nazwa rownania stanu stalego [84].
Pokazano rowniez [87], ze rozszerzalnosé¢ termiczng mozemy pojmowaé jako odpo-
wiedz sieci krystalicznej na ci$nienie wewnetrzne, wytwarzane przez gaz fononowy;
interesujace jest, ze opisy rozszerzalno$ci termicznej za pomoca objetosciowych
efektow anharmonicznych lub za pomoca ci$nienia fononoéw sa dwiema réwnowa-
znymi sobie metodami, przynajmniej w zakresie niskich temperatur. Mimo intere-
sujacych w tej dziedzinie osiagnieé¢ nie ma — jak dotychczas — ogdlnej interpreta-
cji rozszerzalnoscl termicznej krysztaldéw nizej symetrycznych, w szczegdlnosci brak
powigzan o ze struktura. Przedstawimy dalej kilka prob, czynionych w tym
kierunku.

W paragrafie 8.2 wykazaliSmy, Ze z rozszerzalnosécia termiczna nieodlacznie
zwigzana jest deformacja sieci krystalicznej. Opis tej deformacji musi — naszym
zdaniem — uwzgledni¢ pewna szczegdlna ceche o$rodka, jakim jest krysztal, a
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mianowicie, ze przestrzen zabudowana jest czasteczkami, ktére nie tylko maja
skonczone rozmiary, ale sa tworami sztywnymi. To ostatnie przyblizenie stuszne
jest przynajmniej w odniesieniu do sporej liczby czasteczek, w ktorych nie wyste-
puja ruchy libracyjne ich czgsci (podstawnikow); drobne zmiany odleglosci migdzy
zZwigzanymi w czasteczce atomami, wywolane wzrostem amplitudy drgan atomoéw
z temperatura, mozemy tu zaniedbaé. Deformacja jest zatem quasi-ciagla: ciaglosé
dotyczy samej przestrzeni. Mozemy skonstruowa¢ dwuwymiarowy model sieci
przestrzennej w postaci cienkiej warstwy gumy, na ktérej periodycznie rozlozono
rownolegloboki, wyciete z materiatu sztywnego. Po anizotropowym rozciggnigciu
gumy stwierdzimy, ze odlegtosci miedzy srodkami réwnoleglobokow ulegly zwigk-
szeniu, réwniez ich wzajemne orientacje zmienily si¢ nieco, jednak ich ksztalt i
~ rozmiary nie ulegly zmianie. Temu dwuwymiarowemu obrazowi mozna przypisaé
w trojwymiarowej przestrzeni pewien model, ktéry — opisujac dalej — zwaé
bedziemy ,modelem sztywnej skrzynki” lub RBM (z ang. rigid box model, [88]).

Przypusémy, ze znamy strukture jakiego$ krysztatu w temp. 0 K. Kazda -
komérke elementarna, zawierajaca Z czasteczek, mozemy podzielié na Z réwno-
leglo$cianéw o symetrii identycznej z symetria komorki, lecz o krawedziach d,, d,,
d;, ktore sa prostymi ulamkami periodow identycznosci a, b, ¢, tak by spelniony
byt warunek

Elementarny rownolegloscian, zawierajacy tylko jedna czasteczke w jej oryginalnej
orientacji przyjmowanej w strukturze, bedziemy nazywaé sztywng skrzynkq: przyj-
miemy bowiem dalej, Ze rozmiary i ksztalt tej skrzynki nie zaleza od temperatury,
podobnie jak nie zaleza od niej ksztalt i rozmiary samej czasteczki. Temperatura
powoduje jedynie powickszenie i deformacje przestrzeni, jaka skrzynki maja do
dyspozycji. W temperaturze 0 K przylegaja do siebie ciasno, lecz w temp. T > 0 K
przestrzen swobodna jest wigksza od Z-d,;d,d; na jedna komoérke elementarna.
Wobec tego moze zachodzi¢ fluktuacja polozenia katowego skrzynek o pewne
niewielkie katy. Przyjmijmy, ze amplitudy tych fluktuacji wynosza ¢,, @, @3, przy
czym ich osiami niech beda kierunki réwnolegle do krawedzi a, b, ¢ komorki
elementarnej (rys. 8.17). Biorac pod uwage wzgledne przesuniecia katowe sasiadu-
jacych z soba skrzynek, mozemy rozrozni¢ dwie sytuacje:

Rys. 8.17. Osie libracji sztywnej skrzynki jednoskosnej
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a) Obrét kazdej skrzynki zachodzi kooperatywnie”, tj. z uwzglednieniem poto-
zen skrzynek sasiednich (rys. 8.18). Spelniona jest wowczas zasada ciasnego
utozenia skrzynek, ktorych srodki zblizajg si¢ do siebie na tyle, na ile pozwalaja
wzgledy geometryczne. Oznaczmy w skrocie

a- AT = A (8.61)
przy czym niech A dane bedzie w ukladzie abc*. Wtedy, na przyklad dla plaskiego

przekroju struktury przedstawionego na rys. 8.18, dopuszczalng amplituda oscyla-
cji katowych skrzynek bedzie ¢,

cos 3 = (147 Aj)~"
czyli .
@3 = (27 A2 (8.62)

i, j, k oznaczaja wersory rdéwnolegle odpowiednio do osi a, b, ¢ krysztalu.
Postugujac si¢ tensorem o, na przykiad dla antracenu, tatwo si¢ przekonaé, ze ta
wersja modelu prowadzi do wartosci @5 w przyblizeniu 100 razy wigkszej od
wartosci 5, wynikajacej z danych strukturalnych (por. p. 4.5). O wiele za duze
liczby otrzymuje si¢ tez dla innych kierunkow, model kooperatywny mozemy wigc
odrzucié.

d2(1+A4;)

Rys. 8.18. Zmiana orientacji sztywnej skrzynki
0\ dil1+41)  przez obrét kooperatywny

b) Obrét kazdej skrzynki zachodzi przypadkowo, niezaleznie od potozenia sasia-
dow (rys. 8.19). Wtedy kazda skrzynka zachowuje si¢ indywidualnie w dostepnej
Jjej przestrzeni o wielkosci a(T)-b(T) ¢«(T)/Z, a przemieszczenia katowe sa naste-
pujace:

1) na plaszczyznie (100): jesli spelniona jest nierdwno$é

d; (7 Aj) < ds (K" AK)
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Rys. 8.19. Zmiana orientacji sztywnej skrzynki
przez obrét przypadkowy

dy(1+45) {

d1(1+A1)

to ,styki” limitujace wielko$¢ przemieszczenia wystgpowaé beda wzdluz osi ¢ oraz

dy 4o
o1 = +-2(7 Apsin(dy, dy) | (8.63)
3

W drugim przypadku, gdy
ds (k" Ak) < d,(j" Aj)

styki pojawiaja si¢ wzdtuz osi b, a dopuszczalne przemieszczenie katowe wynosi
d . |
¢y = idi(kTAk)Sm (3, d3) (8.64)
2

2) na ptaszczyznie (010): jesli
d, (iTAj) < dy(kT Ak)

to styki wystepuja wzdluz osi ¢ oraz

@, = —_}-Z—:(iTAi)sin(dl, ds) (8.65)
Przy nieréwnosci skierowanej przeciwnie

;= iZ—‘:’(kTAk)sin(dl, d;) (8.66)

wystepuja styki profilu skrzynki z osia a.
3) na plaszczyznie (001):

dy r g0
03 = =27 Aj)sin(dy, dy) (8.67)
1
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lub

d
0 = ia-l—(iTAi) sin(d,, d,) (8.68)
2

zaleznie od tego, czy spelniona jest nierownos¢ (styki wzdluz osi a)
d, (j" Aj) <d (iTA)

czy tez nierownos$¢ przeciwna (styki wzdtuz osi b).

Poniewaz model ma charakter statystyczny, nie jesteSmy w stanie przewidzied,
ktory ze znakéw ¢; jest whasciwy. Wobec tego musimy wprowadzié dodatkowa
regule: kierunek przemieszczen katowych musi by¢ tak dobrany, by korelowal z
obserwowana zmiana dwdjlomnosci przy zmianie temperatury (podwyzszeniu tem-
peratury towarzyszy z reguly zmniejszenie dwojlomnoscei, por. rozdz. 6).

Porownanie wynikéw doswiadczalnych z uzyskanymi z niniejszego modelu
podane jest dla kilku krysztaléow w tab. 8.3. Komentarze, zamieszczone w ostatniej
kolumnie, dotycza — poza benzenem — dyskutowanych juz probleméw. Wielkosci
4;, Ay 1 Ay dla czasteczki benzenu w krysztale (rys. 8.20) zostaly obliczone z
temperaturowe] zaleznosci gléwnych podatnosci magnetycznych tego krysztalu
(por. p. 5.10). Mimo duzych uproszczen i pewnych niedomogéw, RBM prawidlowo
oddaje wielko$¢ przemieszczen katowych czasteczek. Wartosé A, = 4y =0 dla
czasteczki karbazolu ma charakter obligatoryjny. Wynika stad, Zze plaszczyzna

Tabela 83

Zestawienie wynikow obliczen przemieszczen katowych A, A, Ay [sekunda-K~'] wokél osi symetrii
LMN czasteczki

Lp. 4, Ay Ay Uwagi
A. Czasteczka antracenu
| —10,3+0,1 — 18,10+ 0,07 —12,9810\,09 obl. bezposrednio z ¢(2) i ¢(1) [8]
2 —14,8 —14,0 —-1,6 RBM [88], « [8]
3 —6,1 -35 +0,5 RBM [88], « [51]
4 —18,3 —-118 +0,9 RBM [88], « [52]
5 -10,2 —-32 +2,3 RBM [88], « [53]
B. Czasteczka karbazolu
i —-9.8 0 0 obli. z dwdjtomnoscei [89]
2 -17,0 0 0 RBM [88], « [90]
C. Czasteczka benzenu
1 +73,6 —13,7 —128 obl. z anizotropii diamagn. [91]
2 +60,3 —-15,2 -372 RBM [88], a [45]
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czasteczki jest prostopadia do plaszczyzny symetrii krysztalu i temperatura nie
moze spowodowaé odstepstwa od prostopadiosci w przedziale czasu dostatecznie
dlugim w poréwnaniu z okresem drgan czasteczki.

A[y S'K-1 /
60
/
AO //
20 W
0 x‘\g =
—t
\§§>‘<\x A3
\.§x\
.\§§X~
4, I
-20
90 130 170 210 250 7, K

Rys. 8.20. Zmiany katowego poloZenia czasteczki benzenu, 4;, w funkcji temperatury

8.6. Krzywa energii potencjalnej i drgania czasteczek

Zwracali$my juZz wielokrotnie uwage na znaczenie krzywej energii potencjalne;j,
zwlaszcza jej asymetrii, dla niewielkich, ale znaczacych przesunie¢ i obrotow
czasteczek, modyfikujacych w sposob ciagly strukture krysztalu w miare powolne-
go podwyzszania lub obnizania temperatury. W tym punkcie pragniemy zajaé sie
nieco blizej energia potencjalna czasteczki we wnetrzu krysztatu, jako funkcja
polozenia kartezjanskiego i katowego, oraz jej zwiazkiem z czesto$cia ruchoéw
periodycznych.

Pierwsze proby zmierzajace do rozwiazania problemu anharmonicznej libracji
podjete zostaly w latach czterdziestych. Jedna z nich, o podstawowym znaczeniu,
jest publikacja Hanus [92], w ktorej autorka rozwiazuje problem czestosci i
funkcji wilasnych standw energetycznych baka asymetrycznego, postugujac sie
réwnaniem Schrb'dingera Zastosowany operator energii kinetycznej ma postaé

1 0 0 1 02
r= Ea{Bl EZEE ( B, )é‘ %,
1, L__ 1 0?
+[ Bt (Bs >52 (Bz B)ﬂaé%
2 # (1 1 o
B—lézésm-(g—]z)ézésa—a} (8.69)
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W operatorze tym B; oznaczaja glowne momenty bezwladnosci; &; sa symetryczny-
mi parametrami Eulera i opisuja chwilowe polozenie ukladu xyz zwigzanego z
czasteczka wzgledem uktadu odniesienia xqyqz,o (rys. 8.21); & = cos x, sin(g/2) dla

k=1,2,3 oraz £, =cos(¢/2); ) oznacza sume trzech cztonéw przy cykliczne;

1,2,3
3

zmiani€ wskaznikow; 8y =ZE; ¢ jest amplituda libracji wokot osi L

1 i

Zy

o

*3

Y
x4 0

Rys. 8.21. Orientacja ruchomego ukladu wspélrzednych

Xo ¥x xyz 1 osi libracji | wzglgdem ukladu nieruchomego x, y,z,

Wspélrzedne Eulera spelniaja warunek

(a nie =0, jak podano w cytowanej pracy).
Operator energii potencjalnej ma postad

U= ZZuijéifj (8.70)

przy czym u jest tensorem statych sitowych liniowych sit sprezystych, dziatajacych
ze strony otoczenia. Taka postaé energii potencjalnej wynika z rozwiniecia energii
potencjalnej U (&) w szereg w poblizu potozenia réwnowagi z zachowaniem
trzeciego czlonu (por. p. 7.1). W tym przyblizeniu wyrazenie ma postaé taka, jak
dla oscylatora harmonicznego i z tej racji przyblizenie nosi nazwe modelu ,,pseu-
doharmonicznego”.

Réwnanie Schrodingera z energia kinetyczna (8.69) i potencjalng (8.70) nie ma
rozwiazan analitycznych. Przyblizone rozwiazania mozna uzyska¢ metodami ra-
chunku zaburzen. W przyblizeniu zerowym operator T jest ograniczony do pier-
wszych dwoch cztondw w klamrze [rown. (8.69)]. Po transformacji do wspdirzed-
nych normalnych

n,=2B; & j=1,2,3
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rownanie Schrodingera przybiera postaé

o2
T Z aulzﬁ VCk

J

X + %ik (¢ =Ey

Jesli przyjmie si¢ rozwiazania w postaci

o= () a2 s (ns)

to wartosci wlasne beda réwne
1 Ui ( 1) Uy 1> /U33
O =h — + — 8.71
%(nl 2) eI +(my+3 Ji 8.7

przy czym m; oznaczaja liczby kwantowe. Energia libratora jest suma trzech
cztonow, o postaci analogicznej dla kazdego z trzech stopni swobody, co jest
naturalng konsekwencja multiplikatywnej postaci funkcji falowe;.

Wplyw dalszych czlondéw operatora 7, zaniedbywanych w przyblizeniu zero-
wym, mozna teraz potraktowaé jako zaburzenie. W dalszym rachunku czynione sa
nastepujace zalozenia [92]:

1) drgania libracyjne wykonywane sa wokot gtownych osi bezwladnosci,

2) warto$ci wlasne energii libratora nie sa zdegenerowane.

Przy tych zalozeniach otrzymujemy w wyniku rachunku nastepujacy zbior
stanow energetycznych libratora:

E( )—hZ(Jr1 h21(+12
nE TR e\ T2/ e B\ T

7Y e M P 1 - e 8.72
(3233 o, BB o )\T)\ts e | 672

przy czym

W przeciwienistwie do réwn. (8.71) energii tej nie mozna przedstawi¢ jako sumy
trzech czlonéw, odpowiadajacych trzem oddzielnym libracjom wokot kazdej z osi
bezwladnosci, co znacznie utrudnia zastosowanie rown. (8.72) do konkretnych
obliczen.

Inne sformutowanie modelu pseudoharmonicznego podane zostalo przez Vi-
swanathana [93] w celu wyjasnienia wptywu temperatury na czesto$¢ i1 szeroko$é
linii przej$¢ ramanowskich. Wedlug autora gléwna przyczyna tych zjawisk jest
anharmoniczno$¢ mechaniczna, ktéra prowadzi do wzajemnego oddzialywania
drgan normalnych. Do rozwiazania problemu autor stosuje metode samouzgod-
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nionego pola Hartree-Focka przy energii kinetycznej i potencjalnej

1y
T=32 (8.73)
2,5
1 X , 1
V=2 ) hnfts ) 30 ) cp i e (8.74)
344 314 & &

gdzie 5y, n,, ..., ny sa wspOlrzegdnymi normalnymi N drgan krysztalu, N = 3n—6,
n jest za$ liczba czasteczek w krysztale. o, sa stalymi anharmonicznosci. Rozwia-
zanie réwnania Schrodingera prowadzi do skomplikowanego wyrazenia na zbiér
stanow energetycznych W® (v), ktérego przytaczaé nie bedziemy. Podamy nato-
miast wyrazenie na czesto$¢ linii spektralnej, ktéra w efekcie Ramana pierwszego
rzgdu polega na przejSciu miedzy stanem podstawowym W®(0) i pierwszym
wzbudzonym W®(1)
5 ak

1
WO (1)— WO (0) = hv! = hy, — — i _ ~YVB Z :
(H)— w9 (0) = hv; h_v{ 2 7 hy, > Ay Em » (v,,,+ 2> (8.75)

m

przy czym
_ Oim
" 2 yF v,
i i %iim Emmm ik X mmk
" 497 Y hv; AV Y RV A7 Y Y AV
_(2n)
Yi = n

W wyrazeniu (8.75) hv; oznacza kwant przejScia w i-tym drganiu normalnym w
przyblizeniu anharmonicznym, natomiast hv; jest energia w przejSciu harmoni-
cznym. Jak wida¢é, réznica energii zalezy od stopnia wzbudzenia pozostatych drgan
normalnych. Autor pracy [93] przyjmuje dalej, ze liczbe kwantowa v, mozna
utozsamiaé z liczba fonondéw w stanie o energii hv,,; $rednia warto$é¢ v,, wynosi
zgodnie ze statystyka Bosego—Einsteina

0nd = fexp [y (kT)]— 1} 8.76)

co oznacza wprowadzenie temperatury do réwn. (8.75). Otrzymujemy
S5a2; 1
h(vi—v) = N | Ap+=B, |-
) = o= E 3 )

— 3B, {exp[hv,/(kT)] — 1}~

Stad zmiana czgstosci linii ramanowskiej, 4v;, wynikajaca z wplywu temperatury,
wyniesie

Av, = —%Z B, {exp [hvu/(kT)]— 1}~ 8.77)
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Widzimy, ze w celu obliczenia zmiany czestosci okreSlonego i-tego drgania w
temperaturze T K musimy wykonaé¢ sumowanie po wszystkich drganiach normal-
nych.

Dyskusja stalych anharmonicznosci, o;5, i ich powiazania z dynamikg sieci,
przedstawiona w pracy [93], ma raczej charakter rozwazan jakosciowych. Autor
wskazuje jednak, gdzie leza gtdéwne trudnosci w interpretacji anharmonicznosci
drgan sieciowych — teoria, jak dotychczas, nie daje mozliwosci obliczenia o;j.

W dalszym ciagu tej dyskusji pragniemy zaja¢ uwage Czytelnika praca Wil-
liamsa [94], w ktorej przedstawiono praktyczne proby oszacowania stalej anhar-
monicznosci i obliczenr rozszerzalnosci termicznej. W tej pracy stala anharmoni-
cznosci okre$lona zostala inaczej. Do tej definicji dochodzimy w nastgpujacy
sposob. Niech czasteczka wykonuje drgania translacyjne i libracyjne'w zmiennym
polu sasiednich czasteczek. Energie potencjalna oddzialywania atoméw danej
czasteczki z atomami jej sasiadow U(r) mozna rozwina¢ w szereg Taylora w
poblizu polozenia réwnowagi r, .

U =U(r)+eU (r)+30* U (r)+52° U (r) + ..
gdzie U’, U” 1 U" oznaczaja pochodne po r, natomiast
o=r—r,

jest przesunigciem atomu z polozenia rownowagi wskutek uczestniczenia w ruchu
drgajacym. Jak zwykle, U(r,) =U’(r,) = 0. Je$li uwzglednimy, ze $rednia sila,
dzialajaca na atom w polozeniu réwnowagi, réwniez réwna jest zeru

<§%>=0==@>UWQH%<¢>U”UJ

to otrzymamy

@)=k <e* (8.78)
gdzie
-1
k= — ) (8.79)

k jest stala anharmonicznosci, a réwn. (8.79) jest jej nowa definicja. Potencjal
oddzialywan atom-atom, przyjety przez Williamsa, zwany jest funkcja typu
,»0-exp”

U(r)= —Ar °+Bexp(—Cr) (8.80)

W potencjale jedynie cze$¢ opisujaca energi¢ odpychania jest dostatecznie czuta na
male przesuniecia atomow z polozenia réwnowagi; tylko ta cze$§¢ uwzgledniona
zostata w dalszym rachunku. Dalej, potencjal musi by¢ funkcja temperatury oraz.
musi by¢ anizotropowy, poniewaz wielkos¢ przesuniecia atomoéw rowniez zalezy
od kierunku. Williams przyimuje, ze od temperatury zalezy tylko wspélczynnik B,
natomiast C jest stale. Wzrost B do. B'(T) przy srednim wychyleniu z potozenia
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roOwnowagi mozna zapisaé¢ nastgpujaco:
Bl
B

r 7

= . exp(C (¢)) (8:81)
(re + <@>>

Podstawienie B’ do potencjatu (8.80) pozwala obliczy¢ minimum energii sieciowej

w roznych temperaturach, a stad zalezno$¢ parametrow komorki elementarnej od

temperatury. Potrzebny tu $redni kwadrat amplitudy przesuni¢cia atomu oblicza

si¢ z wzoru Cruickshanka dla sztywnej czasteczki

5, 1) = ITTI+(I xr)T LI xry (8.82)

T i L sg odpowiednio tensorami drgan translacyjnych i libracyjnych, [ jest
wektorem jednostkowym w kierunku przesunigcia, r; laczy dany atom i ze $rod-
kiem libracji czasteczki.

Wyniki obliczen wedlug tego formalizmu dos¢ dobrze odpowiadaja danym
doswiadczalnym dla zestalonych gazéw szlachetnych, natomiast znacznie gorzej —
danym dla antracenu. Williams proponuje szereg poprawek, majacych na celu
polepszenie zgodno$ci z doswiadczeniem, ktorych tu nie bedziemy referowali.

Pélempiryczne funkcje energii potencjalnej typu 6-exp lub podobnego, maja
szereg waznych zastosowan w fizykochemii organicznego ciala stalego miedzy
innymi dlatego, ze pozwalaja oblicza¢ profile energii potencjalnej przy zadanym
sposobie przemieszczania czasteczki. Profile te determinuja czestosci i amplitudy
ruchéw czasteczki w krysztale, a ich przydatno$¢ do krytycznej analizy tych
parametréw wykazali — jak pisza po raz pierwszy — Shmueli i Goldberg [95].
Jesli libracja jest bliska harmonicznej, otrzymuje si¢ profil prawie paraboliczny;
natomiast w wigkszosci zbadanych przez autoréw przypadkéw ruchu o duzej
amplitudzie profil odpowiadatl albo nieuporzadkowaniu orientacyjnemu, albo ru-
chom silnie anharmonicznym. Podstawowym zalozeniem metody jest, Ze czgstecz-
ka porusza sie w polu nieruchomego otoczenia, co jest rOwnoznaczne z zaniedba-
niem sprzezenia dynamicznego z sasiednimi czasteczkami. Mimo drastycznosci
takiego zalozenia autorzy uzyskali zachecajace wyniki dla szerokosci krzywych
potencjalnych i dla odpowiadajacego im pierwiastka z $redniego kwadratu ampli-
tudy drgan.

Metoda obliczenh polega na symulacji ruchu libracyjnego wokoét wybranej osi,
ktéra najczesciej jest jedna z osi symetrii. Wychodzac z polozenia réwnowagi
czasteczki w strukturze, obraca sie jej szkielet w matych krokach, réwnych 0,5° i
za kazdym razem oblicza energie potencjalng przy uzyciu funkcji (8.83). Stosujac te
metode, autorzy pracy [96] analizuja profile energii potencjalnej libracji antrachi-
nonu, dla ktorego struktura krysztalu znana jest w pieciu temperaturach [56].
Celem tej pracy jest uzyskanie odpowiedzi na nast¢pujace pytania:

1) Czy mozna metoda klasyczna obliczy¢ amplitude ruchu libracyjnego?

2) Jak dokonaé oceny udziatu anharmonicznoéci w profilu energii potencjalne;j?

3) Jakie rezultaty mozna stad otrzymac dla czestosci libracji i jak przedstawia
si¢ porownanie z do$wiadczeniem?

Poniewaz w tym rozdziale jesteSmy zainteresowani znajomoscia odpowiedzi na
te pytania, zreferujemy pracg [96] nieco bardziej szczegbélowo.
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Do analitycznego opisu krzywej energii potencjalnej, V(r), autorzy proponuja
czteroparametrowa funkcje 6-exp

V(r) = aexp(—br)/ri—c/r® (8.83)

Parametry a, b, ¢, d tej funkcji, w jednostkach ukladu SI, podane sa w tab. 8.4 dla
réznych par nie zwigzanych z sobg atomow. Wartosci energii potencjalnej oblicza
sic dla kazdego profilu w obrgbie sfery o promieniu r < 0,7 nm i dla réznych
katéw obrotu ¢ czasteczki. Nastepnie wygladza si¢ profil metoda najmniejszych
kwadratéw przy uzyciu funkcji aproksymacyjnej ¥ (¢)

V.(0) = a+bo+cop*+do®+ep* (8.84)

Tabela 84

Parametry funkcji energii potencjalnej (8.83) wediug [95] (dla r
wyrazonego w nanometrach energie otrzymamy w kJ-mol™')

Atomy %
oddziatujace “ g o d
H---H 9081 374 102,0 0
c¢ 300264 36,0 2144,6 0
C-=H 35570 36,7 467,74 0
O0:--0 1,083-107¢ 0 1499,6 12
N---N 268360 36,4 1684 0
O-H 9,9166-10"2 | 18,7 391 6
Q- -C 0,57035 18,0 1793 6
O---N 0,53919 18,3 1589,5 6
N---H 49368 36,9 414 0
N---C 283870 36,2 1901 0

Taka posta¢ funkcji pozwala na oddzielng oceng udzialu cztondéw harmonicznych i
— co jest bardziej interesujace — czlondéw anharmonicznych

Vo(@) = do’ +eq* (8.85)

Sredni kwadrat amplitudy libracji oblicza sic z wzoru
+
[ @*exp[—co?/(kT)1de
L =—2— (8.86)
[ exp[—co?/(kT)]do

-

a wiec przyjmujac dla harmonicznej czeéci energii potencjalnej, V = co?, rozklad
zgodny z klasyczna statystyka Maxwella—Boltzmanna. Ten czton energii potencjal-
nej, V(p) = cp® =1(2c) % decyduje o czestosci drgan libratora, traktowanego

jako obiekt sztywny
1 [2c\'/?
=—|— 8.87
VR m (1 ) ( )
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gdzie I jest momentem bezwladnos$ci, wlasciwym dla wybranej osi libracji. Laczac
rown. (8.86) z réown. (8.87) otrzymujemy dobrze znany zwiazek, podany przez
~ Cruickshanka [97]

kT
4n? Iv,

9> = (8.88)
Wyniki obliczenr dla czasteczki antrachinonu w krysztale przedstawiono w tab. 8.5.
Przytoczymy w streszczeniu komentarz autoréw do tych danych.

Ksztalt wygladzonych profilow energii potencjalnej determinowany jest w

poblizu minimum przede wszystkim przez czlon kwadratowy w rown. (8.84). Ze

Tabela 8.5

Czasteczka antrachinonu w krysztale

1. Rotacja wokét osi L, ¢ od —10° do +10° w krokach 0,5°

T K ¢ d-105| (@22 | 02 | Aoy, | TR
103 0,1255(12) —-192] 185 |300]| 249 | 74
161 0,1113(4) —176] 245 |404| 326 | 70
201 0,1146(4) —184] 270 |423| 364 | T
260,5 0,1054(12) ~180| 320 |452| 432 | 68
293,5 0,0870(8) —167| 374 |s541| 481 | 61

2. Rotacja wokét osi M, ¢ od —10° do +10° w krokach 0,5°

T K c e-10° <(P2>1/2 w3 49y, VR
103 0,4928(17) 259 0,93 0 1,31 93
161 0,4685(21) 251 1,20 0,97 1,68 91
201 0,4472(25) 238 1,37 1,60 1,92 89
260,5 0,4112(25) 230 1,62 0,85 2,26 85
293,5 0,3723(25) 222 1,81 1,16 2,51 81

3. Rotacja wokét osi N, ¢ od —6° do +5° w
krokach 0,5°

T K c <(P2>”2 ")]3/32 4@y, VR

103 0,4815(42) 0,94 1,26 1,54 78
161 0,4915(42) 1L17 1,98 2,02 79
201 0,4723(54) 1,33 2,17 2,23 77
260,51 0,4392(46) 1,57 2,67 2,67 74
293,51 0,4254(54) 1,69 3,18 3,04 73

Objasnienia:

fkJ-mol = D-stopie =21, dTkI-mol— ! -stopie =37, ¢[kF-mol ™ ! x
x~topien ~ 4] wapolezynniki krzyw oj encrgii potencjaineg (8.84). (rpzy/z
— pierninstek z $rednicgo kwadrate amplitndy drgan (8.86), W2 -
doswiadczalna wartosé picrw iastka z $rednicj ampiitudy drgan {56], 4oy
- szerokosé krzywej w stopniuch na wysokosci U = kT, ¥p — czestodé digari

sztywn go librators (8.87) w ecm™'.

LSS
~J
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wzrostem temperatury ¢ maleje, co odpowiada stopniowemu splaszczeniu paraboli-
cznej czeSci krzywej. Takie zachowanie si¢ ¢ zgodne jest z wynikami teorii
pseudoharmonicznej [98], ktora przewiduje zmniejszenie statych sitowych oraz
czestosci ze wzrostem temperatury. Wartosci vy w tab. 8.5 przewidywania te
rOwniez spelniaja, przy czym zalezno$¢ temperaturowa jest zblizona do obserwo-
wanej przez Miyazaki i Ito [99] w widmie Ramana tej substancji.

Katowa amplituda drgaf {(@*>'/? ro$nie ze wzrostem temperatury dla wszyst-
kich trzech osi libracji. Zalezno$¢ ta jest jednak silniejsza niz T/2, jak to wynika z
teorii pseudoharmonicznej. Stale sitowe oraz amplituda drgan maja wiec troche
zbyt duze wartosci, co po czesci ttumaczy si¢ ustaleniem polozen czasteczek
otoczenia w przyjetym modelu rachunkowym, a po czesci niezbyt duza dokladnos-
cia wyznaczenia strukturalnych parametréw termicznych (pisza o tym rdwniez
autorzy pracy [56]). Oczywiscie, moga wchodzi¢ w gre réwniez inne powody tych
rozbieznosci. Po pierwsze, atomy tlenu wykonuja niezalezne oscylacje poza pla-
szczyzng czasteczki; zaniedbanie tych ruchdéw podwyzsza prawdopodobnie czestosé
wy, czasteczki, potraktowanej jako sztywny librator. Po wtére, powiekszenie
rozbieznosci powoduje z pewnoscia anharmoniczno$¢ ruchdéw, co jest szczegdlnie
widoczne dla silnie anharmonicznej libracji wokot osi N.

Zauwazmy w koncu, ze minima wszystkich krzywych energii potencjalnej sa
przesunig¢te, w porOwnaniu z rzeczywista orientacja czasteczek w strukturze, o
niewielkie katy. Podane przez autoréw przesunigcia, usrednione dla calego prze-
dzialu temperatury, wynosza: dla rotacji wokol osi L —2,05(0,25)°, dla osi M
+0,36(0,08)° 1 dla osi N —1,42(0,19)°. Wskutek usrednienia nie sa to jednak dane
szczegolnie dla nas przydatne. Bardziej interesujaca bylaby znajomos$¢ przesuniecia
w poszczegolnych temperaturach, poniewaz takie wyniki moglibySmy poréwnaé z
liczbami, wynikajacymi bezposrednio ze struktury lub modelu sztywnej skrzynki.
Tych szczegdtow autorzy jednak nie podaja.

Zupelnie nowy zwiazek miedzy rozszerzalnoscia termiczna a dynamika sieci,
oparty na nowej definicji parametru Griineisena, zaproponowali Choy, Wong i
Young w publikacji [100]. Bardzo interesujace jest w cytowanej pracy to, ze przez
nowa definicj¢ y potrafili w prawidlowy sposdb wyrazi¢ udzial kazdego drgania
normalnego w sieci we wspolczynniku rozszerzalnoscl, przy czym objeli formaliz-
mem rowniez krysztaly anizotropowe. Poniewaz publikacja ta otwiera nowe
mozliwosci interpretacji «, opiszemy jej wyniki w pewnym skrécie.

W materiatach anizotropowych rozszerzalnos¢ okreslaja trzy gléwne skladowe
tensora odksztalcenia, n, (u =1, 2, 3)

_ (O
a, = <0T), (8.89)
Pochodna odksztalcenia wzgiedem temperatury T okreslona jest przy ustalonych
skladowych naprgzenia ¢, v=1,2,...,6. Z kolei gldwne wspdlczynniki
Griineisena definiuje si¢ tradycyjnie w nastgpujacy sposob:
' 1 /88
. (_\ (8.90)
Cn 6’7/4 St
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gdzie S jest entropia krysztalu, a C, — jego pojemnoscia Cieplna przy stalym
odksztalceniu. Indeks ' przy pochodnej wskazuje, ze poza #, wszystkie inne
sktadowe odksztalcenia sa ustalone. Droga rozwazan termodynamicznych dowodzi
si¢ nastepnie, ze istnieje nastgpujacy zwiazek miedzy o, 1 y,:

C C
=2 S r = 2 8L, (891)

przy czym C, jest pojemno$cia cieplna przy stalym naprezeniu, a S5, i S7,
oznaczaja sktadowe tensora podatnosci, odpowiednio adiabatycznej i izotermicznej

on
S | Z1®
S#v - (atv )S,t’

on
SZV = (at—#>7' )

Definicja (8.91), prawie zawsze uzywana w literaturze, zawiera szereg wad i
niekonsekwencji.

a) Nieprzekatniowe skltadowe S,, odnosza si¢ do réznych skladowych tensora
odksztatcenia. W konsekwencji nie jest spelniona rowno$é

T +y2+y3) =7, (8.93)

(8.92)

jakiej nalezy oczekiwaé miedzy gléwnymi -wspélczynnikami y; a objetosciowym
wspolczynnikiem Griineisena 7, .

b) Relacje (8.91) mozemy odwroci¢ — jak to sie zwykle czyni — dla obliczenia
v,. Definiujac tensory sztywnosci

CS - (SS)—I
(8.94)
CT - (ST)—-I
otrzymamy
V V
P, = -C—,g oy = C—”zu: a7 (8.95)

Zwiazek (8.95) wyraza gldwne wspotczynniki Griineisena poprzez gtowne sktadowe
tensora rozszerzalnosci. Otoz jest faktem do$¢ czgsto spotykanym, ze jeden z
trzech wspodlczynnikow jest ujemny. W takim przypadku suma po prawej stronie
moze mie¢ warto$¢ mata, co zwicksza niepewno$¢ w obliczeniu y,. Co wigcej,
dodatnie i ujemne udzialy w 7y, spowodowane sa réznymi mechanizmami, a
takiego rozréznienia rown. (8.95) zupelnie nie zawiera.

c) W badaniach rozrzerzalnosci termicznej odksztalcenie traktuje sie najczesciej
jako funkcje zmiennych niezaleznych, ktérymi sg temperatura i gtéwne sktadowe
naprezenia. Zwiazek (8.90) nie jest zgodny z takim postawieniem zagadnienia.

W tej sytuacji autorzy wprowadzaja, na drodze termodynamicznych uogdlnien,

374



nowa definicje wspolczynnika Griineisena, a mianowicie

oS
3 = ———B .
Y Ct (atu >T,t' (8 96)

gdzie BS jest adiabatycznym i $rednim modutem sprezystosci. Taka definicja
prowadzi do nowego wyrazenia dla sktadowych o,

(I

O(u = T/‘é“B—S'})u (897)

w ktérym nie ma sktadowych odksztalcenia o réznych wskaznikach. W wyniku
tego spelniony jest obecnie naturalny zwiazek (8.93). Wazniejsze jednak jest to, ze
nowa definicja wspotczynnika Griineisena, j,, otwiera mozliwo$é¢ wgladu w mecha-
nizm mikroskopowy, odpowiedzialny za rozszerzalno$¢ termiczna. Aby zbadaé te
relacje, nalezy odpowiedzie¢ na nastepujace pytanie: jaki jest udzial drgania
normalnego ,,i” sieci we wspdlczynniku rozszerzalnosci o,?

Najbardziej ogdlny zwiazek miedzy wielko$ciami makro- i mikroskopowymi
wynika stad, ze przy slabym sprze¢zeniu drgania sieci i z drganiem j entropie S (a
stad réwniez 0S/0InV) mozna zapisa¢ jako sume¢ udzialéw kazdego z drgan
normalnych

=5
wobec tego [bor. réwn. (8.90)]

7.(T)-C(T) = Z C{(T) (8.98)

Wspolczynniki 7, wiaza si¢ obecnie ze skladowymi rozszerzalnosci a, (T), zalezny-
mi od temperatury, w nastepujacy sposob:

1 o
o, (T) = —373—372 7. C'(T) (8.99)

Analiza tego réwnania pozwala rozpoznaé znaczenie 3,: wspdlczynnik ten okresla
mianowicie udzial jednostkowego wzbudzenia drgania sieci ,i” w skiadowej odksztal-
cenia n,. Funkcja C'(T) opisuje sposob, w jaki aktualny stopien wzbudzenia zmienia
sie z temperaturq.

Do réwnania (8.99) mozna wprowadzi¢ czestosci *drgan sieciowych w;, ktore sa
wielkosciami bezposrednio mierzonymi. Otrzymujemy wowczas

w(=-72 (G

Olnw;

> -CH(T) (8.100)
T,t'

u

Ostatnie rownanie zawiera zalezno$¢ miedzy wielkoscia odksztalcenia i czestoscia
wzbudzonych w okreslonej temperaturze drgan sieciowych. Obejmuje wiec nie
tylko mikroskopowa interpretacje termicznej rozszerzalnos$ci krysztatu, ale réwniez
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funkcje temperaturowa «. Widoczne jest rowniez, ze wspélczynnik rozszerzalnosci
wzdluz jakiego$ kierunku gléwnego, a,, zalezy wylqcznie od odksztalcenia w tym
samym kierunku, t,.

Przedstawiona tu w duzym skrocie nowa koncepcja laczy czestosci i wspol-

czynniki anharmonicznos$ci drgan sieciowych oraz zalezno$¢ stopnia ich wzbudze-

nia

od temperatury z wspdtczynnikiem rozszerzalnosci termicznej anizotropowego

ciala stalego. Stanowi znakomite uscislenie i rozszerzenie intuicyjnie odczuwanych
zwiazkéw miedzy rozszerzalno$cia krysztalu a orientacja czasteczek, zalezng od
temperatury. ’

Literatura

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.
20.
21.
22.
23.
24.
25.
26.
27,
28.

29.
30.

376

. Krishnan R. S, ,Thermal Expansion of Crystals”, Intern. Series in the Science of the Solid State,

Pergamon Press, Oxford 1978.

. Willemsen H. W, ,Thermal Expansion Near Structural Phase Transition”, Univ. Toronto,

Toronto 1975.

. Yates B, ,Thermal Expansion”, Plenum Press, New York 1972.
. ,Thermal Expansion”, Proceedings of the 6th International Symposium on Thermal Expansion,

Hecla Island, Canada 1977 (Ed. I. D. Peggs), Plenum Press, New York 1978.

. Kittel Ch,, ,,Wstep do fizyki ciala stalego”, PWN, Warszawa 1960 (ttum. z ang.).
. Nye J. F.,, ,Wlasnoéci fizyczne krysztatlow”, PWN, Warszawa 1974 (ttum. z ang).
. Jakubowski B., ,,Rozszerzalno$¢ termiczna krysztaldw molekularnych”, Prace Naukowe Instytutu

Chemii Organicznej i Fizycznej, nr 20, Wydawnictwo Politechniki Wroclawskiej, Wroctaw 1980.

. Mason R., Acta Cryst., 17, 547 (1964).
. Swiatkiewicz J., Zurawinski G., Materialy Ogoélnopolskiej Konferencji ,,Krysztaty molekularne”,

Blazejewko 1979.

Kinston W. E., Met. Progr., 44, 1115 (1943).

Koenig J, McKendre J., High Precision Dilatometer, US Patent 1972 (cytowane za [16]).
Lement B. S., Roberts C. S., Auerbach B. L., Rev. Sci. Instrum., 22, 194 (1951).

Gaal P. F, High Temperatures — High Pressures, 4, 49 (1972).

Luckbush M., Holladay L. L., Sinden R. H,, J. Franklin Inst., 194, 251 (1922).

Linquist K. O., Opt. Laser Technol., 4, 76 (1972).

Hollenberg G. W., Sharpe W. N, Rev. Sci. Instrum., 47, 1536 (1976).

Heflinger L. O., Wuerker R. F., Spetzler H., Rev. Sci. Instrum., 44, 629 (1973).

tukaszewicz K., Pietraszko A., Kucharczyk D., Malinowski M., Stepieni-Damm J.,, Urbanowicz E.,
,Precyzyjne pomiary statych sieciowych krysztatow metoda Bonda”, Instytut Niskich Temperatur
i Badan Strukturalnych PAN, Wroclaw 1976.

Lukaszewicz K., Kucharczyk D., Malinowski M., Pietraszko A. Krist. Tech., 13, 561 (1978).
Janot Ch.,, Mallejac D., George B., Compt. rend., B270, 404 (1970).

Pathak P. D, Vasavada N. G., Acta Cryst., A26, 655 (1970).

Timmesfeld K. H.,, Elliot R. J., Phys. Stat. Sol, 42, 859 (1970).

Baughman R. H,, Turnbull D., J. Phys. Chem. Solids, 32, 1375 (1971).

Bond W. L, Acta Cryst., 13, 814 (1960).

Popovié S., Sljuki¢ M., Hanic F., Phys. Stat. Sol, (a)23, 265 (1974).

Boiko A. A., Kristallografija, 17, 988 (1972).

Breitling S. H., Jones A. D.,, Boyd R. H, J.<Chem. Phys., 54, 3959 (1971).

Aleksandrowski A. N, Kokszeniew W. B., Manzelij W. G., Totkaczew A. M., Fiz. Nizkich Tiemp.,
4, 915 (1978).

Bolszutkin D. N, Gasan W. M., Prochwatitow A. I, Z. strukt. chim., 12, 734 (1971).

Baer D. R, Fraass B. A, Riehl D. N, Simmons R. O,, J. Chem. Phys., 8, 1411 (1978).



31.
32.

33

34.
35.
36.
37.
38.
39.

40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52
53.
54.
55,
56.
57.
58.
59.
60.

61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72,
73.
74.
75.
76.
77.
78.
79.
80.

Toltkaczew A. M., Aleksandrowski A. N, Manzelij W. G., Fiz. Nizkich Tiemp., 3, 1340 (1977).
Bolszutkin D. N, Gasan W. M., Prochwatitow A. 1, Jancewicz L. D., Z. strukt. chim., 12, 1115
(1971).

Totkaczew A. M., Azarienkow W. P., Jezowski J.,, Manzelij W. G., Kosobucka E. A., Fiz. Nizkich
Tiemp., 4, 1354 (1978).

Udovidchenko B. G, Manzhelii V. G., Eselson V. B., Phys. Stat. Sol, (a)19, K 189 (1973).
Kitajgorodski A. L, Z. fiz. chim., 27, 780 (1953).

Machalczenko W. P, Czornei S. A, Ukr. Fiz. Z., 19, 1790 (1974).

Kuczniew W. I, Totkaczew A. M. Manzelij W. G., Fiz. twierd. tiela, 17, 615 (1975).

Chan R. K., Chew H. A, Can. J. Chem., 47, 2249 (1969).

Yasuda N, Sumi K., Shimizu H,, Fujimoto S., Okada K., Suzuki I., Sugie H., Yoshino K., Inuishi
Y., J. Phys. C (Solid State Phys), 11, L 299 (1978).

Samuelsen E. J, Semmingsen D., J. Phys. Chem. Solids, 38, 1275 (1977).

Ryzenkow A. P., Kristallografija, 17, 425 (1972).

Dorfmiiller Th., Ber. Bunsen Ges. Phys. Chem., 78, 289 (1974).

De With G, J. Appl. Crystallogr., 9, 502 (1976).

Kitajgorodski A. I., Mirska K. W., Towbis A. B, Kristallografija, 13, 225 (1968).

Cox E. G, Cruickshank D. W. J., Smith J. A. S., Proc. Roy. Soc., A247, 1 (1958).
Rohleder J. W., Swiatkiewicz B., Acta Phys. Polon., A45, 901 (1974).

Jakubowski B., Rohleder J. W., Mol. Cryst. Lig. Cryst., 46, 157 (1978).

Spielberg D. H,, Arndt R. A, Damask A. C,, Lefkowitz 1., J. Chem. Phys., 54, 2597 (1971).
Kozyn W. M., Konszyna L. F., Kristallografija, 16, 642 (1971).

Kozyn. W. M, Kitajgorodski A. I, Z. fiz. chim., 27, 534 (1953).

Kozyn W. M, Kitajgorodski A. 1., Z. strukt. chim., 27, 1676 (1953).

Ryzenkow A. P, Kozyn W. M, Miasnikowa P. M., Kristatlografija, 13, 1028 (1968).
Jakubowski B., Krist. Techn., 14, 991 (1979).

Kozyn W. M., Mirska K. W., Kristallografija, 14, 1077 (1969).

Ryzenkow A. P., Kristallografija, 15, 326 (1970).

Lonsdale K., Milledge H. J., El Sayed K., Acta Cryst., 20, 1 (1966).

Rohleder J. W., Jakubowski B., Szostak M., Acta Phys. Polon., A40, 777 (1971).

Trueblood K. N, Goldish E., Donohue J., Acta Cryst., 14, 1009 (1961).

McKeown P. J. A, Ubbelohde A. R, Woodward 1., Acta Cryst., 4, 391 (1951).
Swiatkiewicz J, w Materiatach Konferencji Miedzynarodowej , Electrical and Related Properties
of Organic Solids”, Karpacz 1978.

Kozyn W. M., Kristallografija, 23, 1211 (1978).

Campa-Vineta J. A, An. Quim., 75, 280 (1979).

Ema K, Katayama M., lkeda Y., Hamano K., J. Phys. Soc. Japan, 46, 347 (1979).
Szekelly G., Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem., 144, 102 (1976).
Harkema S., Ter Brake J. H. M., Acta Cryst., B35, 1011 (1979).

Harkema S., Ter Brake J. H. M., Meutstege H. J. G., Acta Cryst., B35, 2087 (1979).
Lonsdale K., Z. Kristallogr., 112, 188 (1959).

Marsh R. E., Acta Cryst, 11, 654 (1958).

litaka Y., Nature, 183, 390 (1959).

Iitaka Y., Acta Cryst, 14, 1 (1961).

Radomska M., Radomski' R., wyniki nie publikowane.

Bartieniew G. M., Remizowa A. A, Tiewi S. A, Ukr. Fiz. Z. 16, 817 (1971).

Jakubowski B., Rohleder J. W., Acta Phys. Polon., A44, 593 (1973).

Goldsmith G. J., White J. G, J. Chem. Phys., 31, 1175 (1959).

Kunchur N. R, Truter M. R, J. Chem. Soc., 1958, 2551.

Elcombe M. M, Taylor J. C.,, Acta Cryst., A24, 410 (1968).

Dworiankin W. F., Wajnsztejn B. K., Kristatlografija, 5, 589 (1960).

Dworiankin W. F., Wajnsztejn B. K., Kristatlografija, 6, 949 (1961).

Futama H., J. Phys. Soc. Japan, 17, 434 (1962).

Benoit J. P., Chapelle J. P., Solid State Commun., 14, 883 (1974).

377



81.
82.
83.
84.
8s.
86.
87.
88.
89.
90,
91.
92.
93.
94,
95.
96.
97.
98.
99,

100.

Jakubowski B., Ecolivet Cl, Mol. Cryst. Lig. Cryst., 62, 33 (1980).

Weigel D., Garnier P., Bérar J. F., Compt. rend., C283, 385 (1976).

Jain A, Tolpadi S., Indian J. Phys., 50, 67 (1976).

Welch D. O, Dienes G. J, J. Phys. Chem. Solids, 39, 589 (1978).

Srivastava S. P., Saraswat R. S, J. Phys. Chem. Solids, 36, 351 (1975).

Srivastava S. P.; Singh 1. D.,, Gupta P. L., J. Phys. Chem. Solids, 38, 1216 (1977).
Ceccaldi D., Ghelfenstein M., Szwarc H,, J. Phys. C.: Solid State Phys., 8, 417 (1975).
Rohleder J. W., Farady Disc., 69, 183 (1980).

Kusto W. J,, Rohleder J. W., Mol. Cryst. Lig. Cryst., 55, 151 (1959).
Swiatkiewicz J., wyniki nie publikowane.

Hoarau J.,, Lumbroso N., Pacault A.,, Compr. rend., 242, 1702 (1956).

Hanus W., Acta Phys. Polon., 10, 173 (1950).

Viswanathan K. S, Can. J. Phys., 41, 423 (1963).

Williams D. E., Acta Cryst., A28, 84 (1972).

Shmueli U., Goldberg 1., Acta Cryst., B29, 2466 (1973).

Shmueli U, Kroon P. A, Acta Cryst., A30, 768 (1974).

Cruickshank D. W. J,, Acta Cryst., 9, 1005 (1956).

Willis B. T. M., Acta Cryst., A25, 277 (1969).

Miyazaki Y., Ito M., Bull. Chem. Soc. Japan, 46, 103 (1973).

Choy C. L., Wong S. P, Young K., Phys. Rev. B, 29, 1741 (1984).



SKOROWIDZ

Absorpcja promieniowania bezodrzutowa 298
— w przekroju izotropowym 318

— wielofotonowa 298

addytywnosé wlasciwoscl fizycznych 124
adiustacja ortonormalnosci wektorow 186, 217
— symetrii czasteczki w krysztale 213, 215
akrydyna, diamagnetyzm czasteczki 196
amplituda drgan, wplyw temperatury 372
analiza reprezentacji przywiedlnej 286
anharmoniczno$é elektryczna oscylatora 283
— mechaniczna oscylatora 282

— przej$é spektralnych 296

— ruchéw molekularnych 136

—, wspolczynnik 369

anizotropia absorpcji optycznej 314

— efektéw anharmonicznych 328

— magnetyczna czasteczki 187

— — —, wzgledna 192

— — krysztatu 158

— — przekroju krysztatu 162

— — zwiazkéw wielopierscieniowych 18R

— optyczna czasteczek, tabela 259

— — krysztalu gipsu 273

— whasciwosci fizycznych 37

antracen, osie symetrii czgsteczki 217

—, rozszerzalno$¢ krysztatu 353

—, wspdlrzedne atomoéw 218

—, wykres naprezeni $cinajacych 334
antrachinon, parametry libracji 372

—, temperaturowe wspolczynniki refrakcji 266
asferycznoséci wskaznik 359

aspekty poznawcze badan diamagnetyzmu 149

Barbiturowy kwas, rekalkulacja diamagnetyzmu
196, 219

benzen, anizotropia magnetyczna czasteczki 195,
213

bifenyl, planarno$¢ w krysztale 209

—, rozszerzalnos¢ krysztatu 354

bledy w obliczaniu refrakcji 249

— w podatnosciach magnetycznych 186

— w spektroskopii polaryzacyjnej 235

Braggéw prawo 55

Centra rozpraszania, polaryzacja 239, 241

centroid 101

centrum symetrii wezla i czasteczki 304

charaktery operacji symetrii 284

— stopni swobody ruchu 286

cialo stale, klasyfikacja 17

cienkie ptytki, dwdjtomnosé 243

czasteczka antracenu, katy Eulera 139

— —, macierze orientacji 138

— —, obrét w sieci 138

— —, orientacja osi symetrii 118, 119

— —, polozenia atoméw ,idealne” 119

— —,réwnanie plaszczyzny 115

— —, wspotrzedne atoméw 115

— —,zmiana orientacji z temperaturg 115

— antrachinonu, macierze orientacji 141

— —, obrot w sieci 143

— benzenu, macierze orientacji 143

— —, obrét w sieci 144
—, pole magnetyczne 151

—, moment indukowany 244

— naftalenu, macierze orientacji 141

— —, obrot w sieci 141

czasteczki zwiazkow aromatycznych, diamagne-
tyzm 167

czgstosci charakterystyczne grup atomow 290, 297

379



czestodei drgan wewnetrznych czasteczki 303
— sumacyjne 251

Deformacja clementu plaskiego 329

— jednowymiarowa 329

— krysztatu, quasi-ciagta 361

~ oérodka ciagtego 328

— postaci 331

— sieci, opis makroskopowy 328

delokalizacja elektronow =, udzial w diamagne-
tyzmie 192

diagram korelacyjny w spektroskopii 306

diamagnetyk, pole wewnegtrzne 155

—, sita w polu niejednorodnym 163

diamagnetyki, podstawowe wlasciwosci 152

diamagnetyzm, addytywnos$¢ tensoréw 197, 220,
222

—, detekcja przemiany fazowej 212

— krysztaiow 149

— —, wplyw temperatury 202

— krysztalu kalcytu 159

dichroizm grupy pasm 317

—, korekcja drogi optycznej 314

—, — orientacji E 314

— krysztalow, tabela 316

— pasma, warto$¢ doswiadczalna 313

— —, — obliczona 314

dihalogenobenzeny, podatnosci magnetyczne 188

1,5-dinitronaftalen, diamagnetyzm czasteczki 220;
222

1,8-dinitronaftalen, fazy krystaliczne 356

—, przemiana fazowa 212

—, rozszerzalno$¢ krysztatu 355

dtugosé drogi wiazki w krysztale 236

drgania charakterystyczne w spektroskopii 290

— normalne, udzial w rozszerzalnosci 372

— — w grupie D,, 289

— podstawowe czasteczki 282

— sieciowe, wptyw temperatury 375

— termiczne, anharmoniczno$¢ 328

dwojlomnos¢ antracenu 266

— antrachinonu 267

— eliptyczna 236

— kalcytu, wplyw temperatury 238

— karbazolu 269

— kolowa, metoda pomiaru 239

— krysztaléw 236

— —, wplyw temperatury 263

—, metody kompensacji 238, 243

— ukladu zloZzonego 238

~—, zasada dodawania 240

dwufotonowe  przejscie,
300
dylatometria makroskopowa, metody 335

prawdopodobienstwo

380

Efekt Dopplera w spektroskopii 299

— izotopowy w spektroskopii 296

efekty anizotropowe 37

efektywna objetos¢ czasteczek 328

~ polaryzowalno$¢ czasteczki 256, 259, 260
element symetrii 67

elementéw symetrii analiza 111

elementy symetrii grup punktowych 98

— — .grupy przestrzennej 90

— —, oznaczenia 67

elipsoida odksztalcenia 331

— podatno$ci magnetycznej 156

— wielko$ci w ukladzie jednoskosnym 48
energia dysocjacji czasteczki 295

— oscylatora anharmonicznego 294

— potencjalna, funkcja czteroparametrowa 371
— sieciowa 17

— —, obliczenie 21, 22

— sprzezenia oscylatoréow 307

— wiagzania czasteczki 295

Fala elektromagnetyczna, stan w osrodku 228
— — w osrodku nieprzewodzacym 226

— plaska, rownanie 226, 227

— —, wektor normalny do 227

— spolaryzowana, bieg w krysztale 243
a-fenazyna, diamagnetyzm czasteczki 196
figura absorpcyjna w plaszczyznie izotropii 320
fluktuacja katowej orientacji czasteczki 361
funkcja dielektryczna, nielokalna 262

— energia potencjalnej oscylatora 282

— Morse’a 297

funkcje falowe oscylatora harmonicznego 291

Generacja punktow przez o$ symetrii 94
— — przez plaszczyzng symetrii 96
generatory grup punktowych 69

gips, analiza wlasciwosci optycznych 273
glicyna, rozszerzalnos$é krysztatu 352
gtowne podatnosci magnetyczne, tabela 168
— — —, wyznaczanie 161

— wspolczynniki refrakcji 230

grafit, podatnosci magnetyczne 187
grupa komorki elementarnej 126

— operacji symetrii 68

— przestrzenna 126

— punktowa symetrii 68

— — — wielko$ci fizycznej 69

— — wezla 126

— wymienna 126, 145

grupy przestrzenne 86

— —, oznaczenia 88

— —, symetria 84

— — z kierunkiem polarnym 83



— —, zestawienie osi symetrii 88

— punktowe z kierunkiem polarnym 83

— symetrii w spektroskopii 303

— — —, korelacja 306

Heksachlorobenzen, czgsteczki
195, 215

—, nieplanarnos¢ czasteczki 216

diamagnetyzm

Iloczyn prosty reprezentacji 292

ilustracja stanoéw polaryzacji 239

indykatrysa 230

inkrementy atomowe w diamagnetyzmie 193

— polaryzowalnosci atoméw 272

integralne natgzenie pasma 313

interferencyjne metody pomiaru rozszerzalnosci
335

interpretacja rozszerzalnosci krysztalow 372

inwersja ukladu wspoétrzednych 70, 74

izotropowy przekrdj krysztalu, absorpcja 318

Jod, rozszerzalno$¢ termiczna krysztatu 351

Kalcyt, podatno$ci magnetyczne 159

—, wlasciwosci optyczne 238

katy Eulera, definicje 139

— — w funkcji temperatury 142

— —, zwigzek z kosinusami kierunkowymi 140

kierunek najsilniejszej rozszerzalnosci 352

— polarny, symetria 83

— — w krysztale 82

kierunki symetrycznie roéwnowazne 69

— w krysztale spektroskopowo poprawne 235

— zerowej rozszerzalnosci w krysztale 64

klasy krystalograficzne 69

— —, tabela 98

klin interferencyjny 242

komorka elementarna, objgtos¢ 105, 106

— —, obsadzenie 90

— —, tensor polaryzowalnosci 247

— —, wypelniernie materig 128

komérki Bravais’go 84

— —, tabela 85

— —, typy centrowania 84, 86

kompensacyjna metoda pomiaru dwdjlomnosei
243

kompensator ¢wiercfalowy 243

kompleks donorowo-akceptorowy 31

korelacja elementow symetrii 132

— liczby sktadowych i réwnan 135, 146

kosinusy kierunkowe 40

krystalograficzne grupy punktowe, tabela 98

krysztal benzenu, grupy symetrii 146

— gipsu, wlasciwosci optyczne a struktura 22

— izotropowy, reprezentacja rozszerzalnosci 359
— kwarcu, dwéjlomnosci 243

— spolaryzowany, zasada Neumanna 74
krysztaty polarno-obojetne 84

krzywa energii potencjalnej 365

— — —,asymetryczna 324

- — — C—H 21

— — —,symetryczna 270, 323

— Morse’a 297

ksztalt linii w spektroskopii bezodrzutowej 300
kula Ewalda 108

— Poincarégo 239

kwadratowy kwas, rozszerzalno$é krysztatu 352
kwadryka 42, 62

-, centrosymetryczno$¢ 77

—, osie gléwne 43

—, plaszczyzna styczna do 53

—, stopnie swobody 78

—, transformacje wspotczynnikéw 42

kwasy halogenobenzoesowe, diamagnetyzm 192

Libracja, anharmoniczno$¢ 365

librator anharmoniczny 323

—, stany energetyczne 367

liczba niezerowych sktadowych tensora 146
— obsadzen weziéw 304

— skladowych tensora molekularnego 132
— — — w krysztale benzenu 146

— sposobow ruchu o'okreélonej symetrii 287
linia absorpcyjna, poszerzenie Dopplera 299
- rezonansowa w absorpcji 300

Lorentza tensor 256

Lorentza-Lorenza réwnanie 245

Macierz blgdéw, definicja 49

— kosinusow ‘kierunkowych 40

— transformacji 40

— transponowana 40

magnetochemia, zastosowania 196

magnetyki, klasyfikacja 152

masa zredukowana oscylatora 296

materialy stabo magnetyczne 150

metoda interferencyjna pomiaru dwojtomnosci
237

— najmniejszych kwadratow 49

— Verreaulta pomiaru dwéjlomnosci 239

mikroskopowy mechanizm rozszerzalnosci 375

model gazu zorientowanego dla wielkosci tenso-
rowej 133, 198

— — — — wektorowej 129

— — —,ograniczenia 124

— — —,opis 121

— — —, wplyw temperatury 136

— — —,zastosowania 122

381



model oscylatora harmonicznego 282

— Pople’a momentu magnetycznego 151

— pseudoharmoniczny 366

— sztywnej skrzynki 361

modele efektéw anharmonicznych 323

modut sprezystosci 375

molekularne odpowiedniki wielkosci makrosko-
powych 129

moment magnetyczny indukowany 151

— — krysztalu 157

— — trwaly 151

— multipolowy 18

— pary sit w polu magnetycznym 157

momenty przej$cia spektralnego dla komorki ele-
mentarnej 311

mostek wodorowy, przykiady 24

Nadtony, efekt izotopowy 296

—, przyczyny powstawania 283

—, przypisanie czestosci 296

naftalen, polaryzowalno$é czasteczki 272
najlepsza ptaszczyzna czgsteczki 167
namagnesowanie substancji 150, 152
naprezenia $cinajace, wykres biegunowy 334
naturalna szeroko$¢ linii spektralnej 299
niedoskonatoéci strukturalne, rozpraszanie 241
p-nitrofenol, anizotropia magnetyczna faz 196
nomogram obsadzen weztow 305

Objetos¢ komérki elementarnej w sieci odwrotnej
106

— — — - prostej 105

obrot czasteczki antracenu 138

— — naftalenu 140

— odcinka w odksztalceniu o$rodka 329

. odbicie promieniowania, eliminacja 313

odchylenia punktow od plaszczyzny 100

odchylenie wiazki promieniowania w krysztale
234, 235

oddzialywania atomoéw specyficzne 24

- donorowo-akceptorowe 30

— migdzyczasteczkowe, rola w modelu gazu zo-
rientowanego 124

— uniwersalne 18

oddziatlywanie pary nie zwigzanych atomow 20

odksztalcenie jednorodne 329

— kuli do elipsoidy 331

— $rednie materialu 330

— w osrodku ciagtym 329

— w polu temperaturowym 331

odleglo$¢ plaszczyzn w sieci prostej 106

ogolna dwojtomnoéé ptytki 240

operacja symetrii 68

382

— — na ukladzie wspoirzednych 71
operacje symetrii, zapis Seitza 127

— — zlozone 71, 111

opoOznienie wigzki w krysztale 237
optyka krysztalow, baza opisu 257
optymalna plaszczyzna, normalna do 100
orientacja osi gléwnych indykatrysy 234
— — molekularnych w wezle 132

— — tensora w ukladzie jednoskosnym 48
— wektora E w pomiarach absorpcji 313
— wektoréw D i E fali w krysztale 234
ortogonalizacja a* bc 93

— abc* 92

— ukladu tréjskosnego 91

oscylator anharmoniczny 323

— —, energia potencjalna 295

— —, reguly wyboru 295

—, stany energetyczne 294

oscylatory sprzgzone 307

osie glowne indykatrysy 230

— — tensora 42, 51

— — — polaryzowalnosci 247

— magnetyczne krysztalu 199, 201

— optyczne 59

— symetrii czasteczki 104, 115, 118

— —, inwersyjne 72

— tensora podatnosci magnetycznej 165, 166
0$ srubowa rzedu » 86

Para sit w polu magnetycznym 157
paramagnetyczny udzial w diamagnetyzmie 154
parametr Griineisena 373

parametry funkcji energii potencjalnej 371

— — Morse’a 297

— pasma absorpcyjnego 281, 313

pasmo absorpcyjne, natezenie 313

— energii w krysztale 309

petna reprezentacja, zasady tworzenia 285
pentachlorofenol, absorpcja roztworu 27

—, fazy krystaliczne 27

—, oddzialtywania w krysztale 26

—, prawo Beera 28

—, przemiana fazowa 27

pentaerytryt, rozszerzalnos¢ krysztalu 352
planarno$¢ czasteczki bifenylu w krysztale 209
plaszczyzna izotropii 58

— —, normalna do 59

— poslizgu 86

— stalej fazy, rownanie 227

— zbioru punktéw, optymalna 99

ptytka dwéjtomna w spektroskopii 235

— kalcytu, dwéjlomno$é 238

— krystaliczna, wplyw na bieg wiazki 233
pochodne benzenu, anizotropia magnetyczna 188



podatnosci magnetyczne czasteczek halogenoben-
zen6w 188

— — —, relacje empiryczne 189

— — —,zredukowane 187

— — kalcytu 159

— —, tabela 168

— — zwiazkéw wielopierscieniowych 188

podatno$¢ diamagnetyka, metoda Gouya 163

— —, model gazu zorientowanego 165

— dielektryczna krysztatu 257

— magnetyczna czasteczek 167

— — —, bledy 186

— — czasteczki, tensory submikroskopowe 198

— w krysztale 154

—, wybér osi 166

— — czystej wody 164

~ — jednostki masy 164

— — krysztaléw, wyniki pomiarow 167

— — krysztatu, wybér osi 165

substancji 152

$rednia 162

w okreslonym kierunku 156

— - zwiazkdw aromatycznych 167, 187

podsieci w strukturze 255

polaryzacja krysztatu, udzial podsieci 257

— magnetyczna pierScienia benzenu 191

— molowa 246

— substancji niedipolowych 246

— wiazki towarzyszgca rozpraszaniu 241

polaryzowalno$é¢ czasteczek 244

— —, obliczenia 272

— czasteczki, efektywna 256

— — naftalenu 272

— — rzeczywistej 261

— —, zredukowana 257

— komorki elementarnej 247

— subczasteczki 260

pole lokalne 244

— —, teoria 255

— —, zwiazek ze stalymi optycznymi 257

— Lorentza 245, 247

polozenia ogdlne czgsteczek (atomdw) 90

— szczegdlne czgsteczek (atomow) 90

polozenie plytek substraktywne 238

pomiar anizotropii magnetycznej metoda oscylacji
160

— — — — statyczng 158

— dwojlomnosci, metoda interferencyjna 237

— —, — Verreaulta 239

— podatnoéci magnetycznej metoda Gouya 163

poszerzenie linii spektralnej 299

potencjal atom-atom 20, 23, 369

— jonu 19

— multipoli punktowych 18, 19

— w sieci krystalicznej 19

powierzchnia energii potencjalnej 22

— stalej fazy 227

— wielkosci fizycznej 46

— wspodlczynnika rozszerzalnosci termicznej 46

pozorne nategzenie absorpcji 313

prawa transformacji wielkosci fizycznych, tabela
82

prawdopodobienistwo przejécia dwufotonowego
300

prawo Braggdw, interpretacja 107

— niezmienniczosci tensorow 77

— — wektorow 72, 75

— transformacji tensora 41

— — wektora 41

prad pier§cienia, udzial w diamagnetyzmie 192

predkosé fazowa fali 227, 229

profile energii potencjalnej 370

przejécia zabronione, dopuszczenie w krysztale
307

przejscie dipolowe 282

przekroje kotowe 60

przekrdj izotropowy, krzywa absorpgji 319

— magnetycznie izotropowy 199

— tensora w ukiadzie jednosko$nym 47

przemiana fazowa, zmiany diamagnetyzmu 212

przenikalno$¢ magnetyczna materiatu 154

przepuszczalnos¢ optyczna plytki izotropowej 319

przesunigcie czgstosci drgan w krysztale 303

— Dopplera linii spektralnej 299

— oscylatora z polozenia réwnowagi 326

— radialne w deformacji 332

— transwersalne w deformacji 333

przyblizenie dipoli punktowych 257

punkty symetrycznie rownowazne 71, 90, 94

Redukcja reprezentacji przywiedlnej 286
refrakcja czasteczek, tabela 250

— krysztaloéw, tabela 250

— molowa 246

— — czasteczki 249

regula wyboru dla czestosci sumacyjnych 292
— — dla nadtonéw 292

— — pierwotna 284

reguly wyboru, modyfikacja w krysztale 303
reprezentacja dwuwymiarowa 284

— graficzna wielkosci tensorowej 46

— jednowymiarowa 284

— pelnosymetryczna 284

— przywiedlna konfiguracji 286

— stanu czasteczki 284

— — zdegenerowanego 293

reprezentacje nieprzywiedlne 285

383



reprezentacje przemieszczen 284

rezonansowe przejscie absorpcyjne 300

rola podstawnikéw w anizotropii 255

Rousseta uogdlnienie w optyce kiysztaléw 245

rozchodzenie si¢ fali 228

rozktad elementow symetrii w grupie Pbkca 127

— kwadryk w komorce jednoskosnej 132

— oscylatordéw, informacje o 319

rozszczepienie stanu zdegenerowanego 294

— statyczne stanu energetycznego 303, 307

— wiazki promieniowania 313

rozszerzalno$é, korelacja ze $ciSliwoscia 353

—, mechanizm mikroskopowy 375

—, metoda Bonda 341

—, modele 360

—, rozbiezno$¢ danych 353

—, skok w przemianie fazowej 355

— termiczna, anomalie 354

— .— krysztaléw 322

— — —,tabela 342

— —, mozliwe przyczyny 326

—, udzial defektow strukturalnych 335

—, wpltyw wiazania wodorowego 352

—, wspolczynnik rozniczkowy 351

— zerowa 64

—, zwiazek z odksztalceniem 376

rownania ruchu oscylatoréow sprzezonych 307

rownanie Clausiusa—Mossottiego 246

— Lorentza-Lorentza dla ciala anizotropowego
246

— modelu gazu zorientowanego w ukladzie kry-
stalograficznym 133

— osi tensora 134

— plaszczyzny 102, 115

— ruchu libratora anharmonicznego 324

roznica drog optycznych w krysztale 236

-— faz dwoch wiazek w krysztale 237

ruch falowy, reprezentacja w sieci odwrotnej 109

— libracyjny, symulacja 370

— termiczny atoméw, wplyw na wielkosci fizy-
czne 135

— -, rola w modelu gazu zorientowanego 125

rzut stereograficzny, ewolucja 97

Sieci Bravais’go 84

sie¢ odwrotna, definicja 105

— —, zastosowania 105, 107

— prosta, definicja 104

— przestrzenna 84

sita oscylatora 308

skladowe tensora, ograniczenia 77, 78
— —, sens fizyczny 38

— —, zwiazek z kwadryka 62

— wektora, ograniczenia 72, 75, 112

384

skretnosé ukladu w operacjach symetrii 74

skutki anharmoniczno$ci drgan termicznych 328

spektroskopia bezodrzutowa, zastosowania 302

—, grupy symetrii 303, 305

—, model gazu zorientowanego 312

— w zakresie nadtonow 281, 291

spektroskopowa energia wiazania oscylatora
297

sprzezenie dipol-dipol w optyce 262

stale potencjatu atom-atom 20

— —, tabela 21, 23

stan polaryzacji wigzki na wyjsciu 240

— zdegenerowany, reprezentacja 293

stany energetyczne oscylatoréw OH i DH 296

— fali stojacej, reprezentacja 109

— ortogonalen plytki dwojtomnej 240

— — polaryzacji 239

— polaryzacji fali 229

— — wiazki rozproszonej 242

— wzbudzone oscylatora harmonicznego 291

stozek rozszerzalno$ci zerowej 64

struktura krysztalu benzenu 23

— —, dedukcja 22

suma sieciowa 256

symetria bryt 82

— czasteczki, lokalna 303

— — w wezle, adiustacja 147

— dozwolonych przej$¢ spektroskopowych. 287

— grup przestrzennych 84

— krysztatu, efektywna 69

— makroskopowa 67

— nadtondéw 291

— skladowych momentu przejécia 287

— standéw dwukwantowych 292

— stanu podstawowego oscylatora 292

— translacyjna sieci 126

~ w modelu gazu zorientowanego 126

— wezla, wplyw na posta¢ tensora 132

— wiasciwosci fizycznej 67

symetrie drgan w grupie D,, 285, 289

szereg multipolowy 19

szerokos$¢ poldwkowa pasma 313

sztuczne centra rozpraszania, polaryzacja 241

Temperaturowa niezmienniczo$é 270
tensor antysymetryczny 38

— asymetryczny 39

— —, rozklad 39

— biegunowy 81

— —, posta¢ w wezle sieci 78

— czystego odksztalcenia 330

—, definicja 33

— drgan libracyjnych 370

— — translacyjnych 370



— Lorentza 256

— molekularny, niezmienniczo$¢ 132
— obrotu czasteczki 136

— — w odksztalceniu 330 -

— odksztalcenia 373

— — wzglednego 330

—, osie glowne 42, 51

—, parametry przekroju 49

— podatnosci dielektrycznej 257

— — magnetycznej 155

— — -, korelacja osi 165

— polaryzowalnosci czasteczki 244

— — —,zredukowany 257

— —, osie gléwne 247

— przenikalnosci magnetycznej 155
—, reprezentacja graficzna 46

— rozszerzalno$ci, obraz graficzny 358
— —, osie gtowne 331

— —, przekrdj kolowy 64

— — termicznej 54

— —, zredukowany 359

—, rownanie przekroju 48

—, sktadowe 34

—, — niezalezne 37, 38

—, sprowadzenie do osi gtéwnych 113
— symetryczny 38

—, transformacja skltadowych 40

—, wartosci wihasne 51, 60

—, warto$¢ w zadanym kierunku 44
—, wektory wlasne 51, 60

—, wplyw symetrii na posta¢ 145
—,zmiana z temperatura 144

tensory biegunowe 76

—, dodawanie 146

— drugiego rzedu 37

—, klasyfikacja 37, 42

—, model gazu zorientowanego 198

— osiowe 76

— podatnosci 374

— — magnetycznej, systematyka 199
—, sumowanie 39

— sztywno$ci 374

—, Slad 41

termiczne poszerzenie linii absorpcyjnej 324
tiomocznik, rozszerzalno$¢ krysztatlu 356
trynslacje prymitywne 84, 126

typy krzywych energii potencjalnej 325
— oddziatywan 18

— wzbudzen elementarnych w krysztale 313

Udzial charakteréw atoméw W

287 :
uktad jednoskosny, ortogonalizacja 92

— trojskosny, ortogonalizacja 91

reprezentacji

25

Wadliwe pomiary absorpcji 313

waga statystyczna punktow 50, 57

wartoéci wlasne macierzy 102

warto$¢ srednia 42 ]

— tensora w zadanym kierunku 46

warunek niezmienniczosci tensora 77

— — wektora 72

— odbicia fali 108

— przejscia dipolowego 284

warunki pomiaréw absorpcji w krysztale 313

wektor biegunowy, symetria 82

— falowy, reprezentacja 110

— — w sieci krystalicznej 110

— indukcji magnetycznej 153, 155

— normalny fali 227

— osiowy, symetria 82

— rozproszenia promieniowania 107

— sieci prostej 84

—, transformacja skladowych 40

wektory bazy sieci odwrotnej 105

— — — prostej 104

— biegunowe 72, 74

— osiowe 72, 74, 75

—, symetria 82

— wlasne macierzy 102

wewnetrzne stopnie swobody ruchu 286

weglowodory, anizotropia magnetyczna 188

wigzanie wodorowe 24

— —, asocjacja cieczy 25

— —, przejawy 25

— —, przeszkody steryczne 26

— —, sytuacja protonu w 30

— — w diamagnetyzmie 192

— — W krysztale 26, 28

wigzka promieniowania, bieg w krysztale 233

widmo absorpcyjne oscylatora 294

— Ramana, wplyw temperatury 372

wielkosci tensorowe w modelu gazu zorientowa-
nego 131

— wektorowe w modelu gazu zorientowanego
129

wielkosé fizyczna, niezmienniczo$é 72

— przemieszczen katowych 362, 364

wielomiany Hermitte’a 291

woda, polaryzowalno$¢ czasteczki 275

wolne rodniki 151

wplyw temperatury na podatnosci magnetyczne
202

— — na wielkosci tensorowe 135

wspotczynnik absorpcji materiatu 313

— anharmonicznosci 295, 324

— refrakcji krysztatéw, tabela 250

— — w zadanym kierunku 231

— —, wplyw temperatury 263

385



wspolczynnik rozszerzalnosei, konwencja 351

— —, metody pomiaru 335

— —, wplyw temperatury 328

— S$cinania 331

wspéirzedne normalne 283

— punktéw, ulamkowe 91

wybor osi czasteczki w modelu gazu zorientowa-
nego 129, 132

— — krysztalu w modelu gazu zorientowanego
129, 131

Zasada najmniejszych kwadratéw, réwnanie pla-
szczyzny 100

— Neumanna 69

— —, odpowiednik molekularny 129

zasady symetrii w opisie wlasciwoscei krysztalow
129

zbiory czasteczek symetrycznie niezalezne 91

zderzenie foton—czasteczka 300

zmiany diamagnetyzmu w przemianie fazowej 212

— orientacji ukladu osi czasteczki 136

zorientowany gaz wzbudzonych dipoli 313

zredukowane podatnos$ci magnetyczne 187

zwigzek miedzy anizotropiami czasteczki 255

zwiazki wielkosci makro- i mikroskopowych 129,
131




PANSTWOWE WYDAWNICTWO NAUKOWE

Wydanie 1. Naktad 1300+ 200 cgzemplarzy. Ark.
wyd. 2875. Ark. druk. 24.25. Papier druk. sat.
ki M. 80 g, 70 x100 cm. Oddano do skladania
w lutyin 1988 r. Podpisano do druku w maju
1989 r. Druk ukonczono w czerweu 1989 v
Zamowienic nr 3134/88. K-13.

WROCLAWSKA DRUKARNIA NAUKOWA






Raport dostępności





		Nazwa pliku: 

		rohleder_fizyka_chemiczna_krysztalow_molekularnych.pdf









		Autor raportu: 

		



		Organizacja: 

		







[Wprowadź informacje osobiste oraz dotyczące organizacji w oknie dialogowym Preferencje > Tożsamość.]



Podsumowanie



Sprawdzanie napotkało na problemy, które mogą uniemożliwić pełne wyświetlanie dokumentu.





		Wymaga sprawdzenia ręcznego: 2



		Zatwierdzono ręcznie: 0



		Odrzucono ręcznie: 0



		Pominięto: 1



		Zatwierdzono: 28



		Niepowodzenie: 1







Raport szczegółowy





		Dokument





		Nazwa reguły		Status		Opis



		Flaga przyzwolenia dostępności		Zatwierdzono		Należy ustawić flagę przyzwolenia dostępności



		PDF zawierający wyłącznie obrazy		Zatwierdzono		Dokument nie jest plikiem PDF zawierającym wyłącznie obrazy



		Oznakowany PDF		Zatwierdzono		Dokument jest oznakowanym plikiem PDF



		Logiczna kolejność odczytu		Wymaga sprawdzenia ręcznego		Struktura dokumentu zapewnia logiczną kolejność odczytu



		Język główny		Zatwierdzono		Język tekstu jest określony



		Tytuł		Zatwierdzono		Tytuł dokumentu jest wyświetlany na pasku tytułowym



		Zakładki		Niepowodzenie		W dużych dokumentach znajdują się zakładki



		Kontrast kolorów		Wymaga sprawdzenia ręcznego		Dokument ma odpowiedni kontrast kolorów



		Zawartość strony





		Nazwa reguły		Status		Opis



		Oznakowana zawartość		Zatwierdzono		Cała zawartość stron jest oznakowana



		Oznakowane adnotacje		Zatwierdzono		Wszystkie adnotacje są oznakowane



		Kolejność tabulatorów		Zatwierdzono		Kolejność tabulatorów jest zgodna z kolejnością struktury



		Kodowanie znaków		Zatwierdzono		Dostarczone jest niezawodne kodowanie znaku



		Oznakowane multimedia		Zatwierdzono		Wszystkie obiekty multimedialne są oznakowane



		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu



		Skrypty		Zatwierdzono		Brak niedostępnych skryptów



		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych



		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się



		Formularze





		Nazwa reguły		Status		Opis



		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane



		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis



		Tekst zastępczy





		Nazwa reguły		Status		Opis



		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego



		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany



		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością



		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji



		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy



		Tabele





		Nazwa reguły		Status		Opis



		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot



		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR



		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki



		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie



		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie



		Listy





		Nazwa reguły		Status		Opis



		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L



		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI



		Nagłówki





		Nazwa reguły		Status		Opis



		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie










Powrót w górę

