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SŁOWO WSTĘPNE

Spośród trzech stanów skupienia materii stan stały budzi największe zaintere­
sowanie zarówno dzięki swemu bogactwu form i struktur, w jakich występuje, jak i 
różnorodności praktycznych zastosowań. Dotyczy to w pierwszym rzędzie pier­
wiastków oraz związków nieorganicznych, wśród których metale i materiały 
półprzewodnikowe zrobiły wręcz zawrotną karierę. Znacznie młodsze jest zaintere­
sowanie organicznym ciałem stałym, szerszy program badań kryształów molekular­
nych w Polsce zapoczątkowano bowiem 30 lat temu. Znalazło to również pewne 
odbicie w programach nauczania w wyższych uczelniach w kraju, zwłaszcza na 
wydziałach chemicznych.

Istotnym czynnikiem, który odegrał stymulującą rolę w badaniach kryształów 
molekularnych, jest znaczny postęp, jaki się dokonał w zakresie badań rentge- 
nograficznych. Doprowadził on do dużej perfekcji w określaniu położeń atomów i 
oceny amplitudy ich ruchu termicznego w strukturach, które w porównaniu ze 
związkami nieorganicznymi są znacznie bardziej złożone, a przy tym zbudowane 
są głównie z lekkich atomów. Wyniki tych badań utorowały drogę nowoczesnemu 
i chyba najbardziej pasjonującemu kierunkowi badań: powiązania fizycznych, 
makroskopowych właściwości kryształu z jego strukturą i dynamiką oraz z 
właściwościami samych cząsteczek. Można uważać, że na przykład dwójłomność 
określonej płytki krystalicznej „rozumiemy” wówczas, gdy potrafimy powiązać ją 
ilościowo z bardziej elementarnymi wielkościami, jakimi są składowe tensora 
polaryzowalności cząsteczek i położenia atomów w sieci przestrzennej. Byłoby więc 
osiągnięciem pewnego ideału, gdybyśmy na podstawie znajomości budowy cząste­
czek, ich ułożenia i sposobu ruchu w komórce elementarnej potrafili przewidzieć 
wszystkie fizykochemiczne właściwości kryształu. Niekiedy okazuje się jednak — a 
tak jest w próbach interpretacji właściwości optycznych — że te pojęcia nie 
wystarczają do uzyskania zgodności między wynikami eksperymentu i przewidy­
wań teoretycznych. Opis właściwości fizycznych komplikuje fakt, że dodatkowe 
oddziaływania między sąsiednimi cząsteczkami, wynikające z obecności pola mag­
netycznego czy elektrycznego, są niekiedy nie do pominięcia.

Siły między cząsteczkami w krysztale działają oczywiście również wtedy, gdy 
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znajduje się on poza zasięgiem pola zewnętrznego; dzięki siłom przyciągania 
kryształ wykazuje znaczną spójność, dzięki zaś siłom odpychania odporny jest na 
działanie sił zewnętrznych. I właśnie drugim kamieniem milowym na drodze 
postępu w badaniach kryształów molekularnych jest lepsze zrozumienie natury 
tych oddziaływań (znanych do niedawna pod dość enigmatyczną nazwą „oddziały­
wań van der Waalsa”) i znalezienie dla nich sformułowania matematycznego. 
Korzystając z teorii sił dyspersyjnych Londona, D. E. Williams w Anglii i A. I. 
Kitajgorodski w ZSRR zaproponowali w latach sześćdziesiątych, by energię poten­
cjalną kryształu wyrazić jako sumę oddziaływań między atomami, nie połączonymi 
wiązaniem chemicznym. W języku potocznym metoda ta zwana jest skrótowo 
„oddziaływaniem atom-atom”; szczegółowy opis metody oraz jej wielostronnych 
zastosowań znaleźć można w monografii Kitajgorodskiego „Kryształy molekular­
ne”, tłumaczonej również na język polski i wydanej w roku 1976 przez Państwowe 
Wydawnictwo Naukowe.

Można uważać, iż zadanie powiązania mierzalnych, makroskopowych właści­
wości kryształu z jego strukturą i dynamiką wchodzi w program działania 
dyscypliny zwanej fizyką chemiczną. Program taki winien obejmować również i 
termodynamikę faz stałych, a więc opis makroskopowego mechanizmu przemian 
fazowych, zjawisk i przyczyn nieuporządkowania faz a także i wpływu na nie 
czynników zewnętrznych, takich jak ciśnienie i temperatura. Dalszy, sumbikrosko- 
powy podział materii prowadzi do problemu opisu właściwości cząsteczki za 
pomocą właściwości atomów i sposobu ich powiązania, czym zajmuje się chemia 
teoretyczna. Wyjaśnienie właściwości samego atomu poprzez znajomość cząstek 
elementarnych i sposobu ich oddziaływań jest natomiast domeną fizyki.

Dalecy dziś jesteśmy od pełnej realizacji tak zakreślonego programu działania 
fizyki chemicznej. Tylko niektóre właściwości kryształów wyjaśniono na poziomie 
molekularnym w sposób bardziej zaawansowany. Do przedstawienia w niniejszej 
książce wybrano diamagnetyzm, właściwości optyczne oraz absorpcję promienio­
wania w podczerwieni. Taki wybór podyktowany też został w pewnym stopniu 
własnymi zainteresowaniami autora. Nieco inne miejsce wśród właściwości fizy­
cznych zajmuje rozszerzalność termiczna, cecha ta bowiem nie ma odpowiednika 
na poziomie molekularnym. Poświęcono jej osobny rozdział ze względu na ważne 
znaczenie anharmonicznych cech dynamiki kryształu, przejawiających się we wpły­
wie temperatury na wszystkie inne właściwości fizyczne. W każdym z tych proble­
mów symetria odgrywa niepoślednią rolę: symetria rozmieszczenia materii i ładun­
ku musi się bowiem odzwierciedlać w symetrii makroskopowych właściwości ciała. 
Z tego względu pierwsza część monografii, po omówieniu najczęściej spotykanych 
typów oddziaływań w kryształach molekularnych i właściwości tensorów drugiego 
rzędu, jest poświęcona przedstawieniu wpływu symetrii na postać wektorów i 
tensorów, reprezentujących wielkości fizyczne.

Monografia niniejsza jest kontynuacją inicjatywy, podjętej przed laty przez 
Zakład Fizyki Chemicznej Instytutu Chemii w Uniwersytecie Jagiellońskim, 
kierowany przez prof, dr Janinę Janik. Wyniki wieloletnich badań tego zespołu w 
zakresie fizyki chemicznej organicznego ciała stałego, przy współpracy z Zakładem 
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Fizyki Ciała Stałego Instytutu Fizyki UJ oraz z Zakładem Badań Strukturalnych 
Instytutu Fizyki Jądrowej w Krakowie, zostały opublikowane przez zespół auto­
rów w skrypcie pt. „Fizyka chemiczna” pod redakcją Janiny Janik, wydanym w 
roku 1980 przez Wydawnictwo Uniwersytetu Jagiellońskiego, oraz w książce pod 
tym samym tytułem, wydanej w roku 1989 przez PWN.

Zamysł napisania niniejszej monografii powstał w połowie lat siedemdziesią­
tych, po paru latach wykładów i seminariów prowadzonych dla słuchaczy wyż­
szych lat studiów na Wydziale Chemicznym i Elektrycznym Politechniki Wrocław­
skiej. Znacznie jednak silniejszy wpływ na jej powstanie i zakres tematyki miała 
bez mała dwudziestoletnia praca autora i współpracowników w kierowanym 
przezeń Zakładzie Fizyki Chemicznej, wchodzącym w skład Instytutu Chemii 
Organicznej i Fizycznej Politechniki Wrocławskiej. Sporo wyników badań człon­
ków tego zespołu znalazło odbicie w postaci szerszego lub węższego ich omówie­
nia w drugiej części książki. Pierwsza wersja pracy wydana została w postaci 
skryptu w r. 1983 przez Wydawnictwo Politechniki Wrocławskiej. Zarówno kryty­
czna i żywa uwaga słuchaczy, jak i dalsze studia autora sprawiły, że niniejsza 
książka dość znacznie odbiega od wersji skryptu i jest — autor żywi taką nadzieję 
— jego wersją udoskonaloną. Poszukiwanie ściślejszego wyrazu dla roli symetrii w 
związkach między mikro- i makroskopowym sposobem opisu właściwości kryszta­
łu spowodowało, że rozdział 4 został napisany od nowa i znacznie rozszerzony. 
Zmianie uległa też zawartość rozdziałów 5-8 z uwagi na inne omówienie wpływu 
temperatury na właściwości fizyczne.

Spełniając wreszcie miłą powinność, pragnę podziękować wielu osobom, bez 
których pomocy, życzliwego komentarza lub takiejże krytyki przygotowanie tej 
książki byłoby o wiele trudniejsze. Inicjatorem zainteresowań organicznym ciałem 
stałym we wrocławskim zespole fizykochemików był przed ponad trzydziestu laty 
profesor Kazimierz Gumiński, pierwszy w okresie powojennym kierownik ówczes­
nej Katedry Chemii Fizycznej Uniwersytetu i Politechniki we Wrocławiu. Wiele 
cennych uwag zawdzięczam mym Współpracownikom i Uczniom, a zarazem 
pierwszym Czytelnikom poszczególnych rozdziałów. Są nimi: prof. dr Tadeusz 
Luty, dr hab. Magdalena Szostak, doc. dr hab. Bolesław Jakubowski, dr Włodzi­
mierz Kusto, mgr Michał Dankowski i mgr Krzysztof Rohleder. Szczególną 
wdzięczność winien jestem mym Kolegomi Przyjaciołom: profesorowi Krzysztofo­
wi Pigoniowi i profesorowi Tadeuszowi Lutemu. Pierwszemu — za wielokrotne 
podtrzymywanie ducha i zachęcanie do kontynuacji pracy. Drugiemu — za 
naukową podporę i pomoc, dzięki której między innymi zakończenie rozdziałów 
szóstego i ósmego zyskało bardziej ogólną formę. Recenzje wersji skryptowej 
opracowali profesorowie Jerzy Janik i Krzysztof Pigoń, a książkowej — profesor 
Krzysztof Pigoń, zadając sobie trud przebrnięcia przez gąszcz wzorów i danych 
liczbowych. To im zawdzięczam sprostowanie wielu błędów i nieścisłości maszyno­
pisu. Również dzięki ich sugestiom spora liczba problemów numerycznych przesu­
nięta została do osobnych punktów (problemy i przykłady), przez co zasadniczy 
nurt wykładu zyskał na przejrzystości. Cenną i zawsze żywą pomoc w wykonywa­
niu rysunków okazywała mi mgr Lidia Rzeczkowska. Sprawne wydanie dzieła 
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zawdzięczam życzliwości Państwowego Wydawnictwa Naukowego w osobach 
Pani Redaktor mgr Zofii Dobkowskiej i dr Małgorzaty Galusowej. Dzięki uwadze 
i dociekliwości Pani dr Galusowej udało się wyprostować szereg niepożądanych 
zawiłości tekstu. Na koniec pragnę wyrazy wdzięczności przekazać mej Żonie, 
której cierpliwość i nieustająca troska o byt codzienny przyczyniły się w istotny 
sposób do pomyślnego zakończenia tej pracy.

J. W. Rohleder
Wrocław, w październiku 1985 r.
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WYKAZ SYMBOLI

A
A,- 
AB
A xB 
A®B 
a

— integralne natężenie pasma absorpcyjnego
— macierz, odpowiadająca i-tej operacji symetrii
— iloczyn skalarny dwóch wektorów
— iloczyn wektorowy dwóch wektorów
— iloczyn prosty dwóch macierzy kolumnowych
— macierz orientacji osi głównych tensora w ukośnokątnym 

układzie współrzędnych
a, b, c
al 5 a2- a3 
bi, h2, 
B
Bu 
c
c

— krawędzie komórki elementarnej
— wektory bazy sieci prostej
— wektory bazy sieci odwrotnej
— wektor indukcji magnetycznej
— dwójłomność optyczna płytki
— prędkość światła w próżni
— macierz transformacji, wiążąca z sobą dwa ortogonalne układy

T c
D
De 
d 
dk 
det (A) 
^hkl

współrzędnych
— 'transponowana macierz c
— wektor indukcji elektrostatycznej
— energia wiązania cząsteczki dwuatomowej
— grubość (płytki)
— tensor lokalnego pola elektrycznego w krysztale
— wyznacznik macierzy A
— odległość dwóch sąsiednich płaszczyzn w zbiorze o zadanych 

wskaźnikach Millera (hkl)
dv = dx ■ dy • dz 
E
E
el, *2, ^3
e
F

— element objętości
— energia całkowita
— wektor natężenia pola elektrycznego
— trójka wersorów w ortogonalnym układzie współrzędnych
— tensor odkształcenia względnego (ogólny)
— wektor lokalnego natężenia pola elektrycznego w krysztale

u



Gk 
Gf 
Gs 
Gw 
H 
H(hkl)

h 
h
I
1 
i,j, k 
j 
K 
&(v) 
kt

— grupa symetrii kryształu
— grupa punktowa symetrii wielkości fizycznej
— grupa punktowa symetrii węzła
— grupa wymienna
— wektor natężenia pola magnetycznego
— wektor sieci odwrotnej
— wielomian Hermitte’a
— rząd grupy
— stała Plancka
— natężenie wiązki promieniowania
— wektor namagnesowania
— trójka wersorów w ukośnokątnym układzie współrzędnych
— wektor gęstości prądu elektrycznego
— tensor podatności magnetycznej cząsteczki
— współczynnik absorpcji (w funkcji częstości)
— zredukowane podatności magnetyczne cząsteczki

L 
LMN 
l 
M 
M 
<M> 
Al 
No 
Nt 
Hi 
P 
Pm 
P

p, q 
IpI, Id 
Po 
p’1’ 
Z?, r 
Pm 
RiU

— tensor Lorentza
— osie symetrii cząsteczki
— wektor jednostkowy o zadanym kierunku
— masa molowa
— wektor spektroskopowego momentu przejścia
— średnia wartość M
— wektor jednostkowy, normalny do określonej płaszczyzny
— liczba Avogadra
— współczynnik refrakcji w kierunku l
— główne współczynniki refrakcji
— wektor polaryzacji kryształu
— moment magnetyczny kryształu
— moment dipolowy cząsteczki
— ładunek
— wektory, występujące w ogólnym związku z tensorem
— bezwzględne wartości wektorów p, q
— trwały moment magnetyczny
— indukowany moment magnetyczny
— wektory położenia punktu (atomu)
— refrakcja molowa substancji
— dichroizm pasma absorpcyjnego dla kierunków pomiaru i 

oraz j
rm
Sij 
s, s0 
T

tf 
Tp, tp 
T

— refrakcja molowa cząsteczki
— współczynniki kwadryki
— wektory rozpraszania (jednostkowe)
— temperatura bezwzględna (kelwiny)
— temperatura topnienia (kelwiny, °C)
— temperatura przemiany fazowej (kelwiny, °C)
— energia kinetyczna
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T
t
Tij 

r, 
Tb 
T 0
T 
Tr(T) 
U, V, w

— ogólny tensor drugiego rzędu
— temperatura (°C)
— składowe tensora
— tensor antysymetryczny
— tensor biegunowy
— tensor osiowy
— tensor symetryczny
— ślad tensora
— mikroskopowy, ortogonalny i prawoskrętny układ współrzęd­

nych, związany z cząsteczką
U^j) — energia potencjalna pary i,j nie związanych atomów, których 

odległość wynosi
V
Va
V

w;
X—H-Y
*1, x2, x3

— objętość
— potencjał w punkcie A
— liczba kwantowa
— waga statystyczna pomiaru i
— układ trzech atomów, połączonych wiązaniem wodorowym
— ogólny, makroskopowy, ortogonalny i prawoskrętny układ 

współrzędnych
x2, x3

Xe
Z
X, Y, Z
0
0
1
a
a
a, B, y
P 
r

rm
7
X

— układ osi własnych tensora
— współczynnik anharmoniczności
— liczba cząsteczek w komórce elementarnej
— współrzędne środka masy cząsteczki
— wektor o długości równej zeru
— macierz o wszystkich elementach równych zeru
— macierz jednostkowa
— tensor rozszerzalności termicznej kryształu
— tensor polaryzowalności cząsteczki
— kąty między osiami krystalograficznymi
— zredukowany tensor polaryzowalności cząsteczki
— tensor polaryzowalności komórki elementarnej
— różnica dróg optycznych w płytce
— jedna z reprezentacji w grupie punktowej symetrii
— współczynnik Griineisena
— podatność magnetyczna kryształu utworzonego z 1 mola czą­

steczek
X 
x(Rk) 
ĄjX 
£
E
£o
V
(p, X

— tensor podatności dielektrycznej kryształu
— charakter, odpowiadający operacji Rk
— anizotropia magnetyczna próbki
— tensor względnej przenikalności dielektrycznej materiału
— tensor odkształcenia względnego (część symetryczna)
— bezwzględna przenikalność dielektryczna próżni
— kąt na płaszczyźnie
— kąty Eulera
— podatność jednostki masy materiału
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£ — kąt zawarty między wektorami D i E fali elektromagnetycznej
z, — wartość własna tensora (macierzy)
2 — wektor radialnego przemieszczenia punktu
H — wektor transwersalnego przemieszczenia punktu
/1 — względna przenikalność magnetyczna materiału
/z0 — bezwzględna przenikalność magnetyczna próżni
v — częstość drgań
v — liczba falowa, określająca położenie maksimum pasma- (ab­

sorpcyjnego)
co — częstość kątowa
co — tensor odkształcenia względnego (część antysymetryczna)
i// — podatność magnetyczna materiału (bezwymiarowa)
c — elektryczne przewodnictwo właściwe materiału



1. ODDZIAŁYWANIA
MIĘDZYCZĄSTECZKOWE
I KLASYFIKACJA CIAŁA STAŁEGO

Fizykochemia ciała stałego stanowi obszerną dziedzinę badań naukowych, 
których wyniki mają niezwykle ważne i różnorodne zastosowania w praktyce. 
Podobnie jak cywilizacja dnia wczorajszego nie mogłaby powstać bez metali, tak 
nie sposób wyobrazić sobie cywilizacji dnia dzisiejszego bez półprzewodników. 
Prowadzone od dawna i szeroko zakrojone badania właściwości związków nie­
organicznych nie tylko przyczyniły się bezpośrednio do wielorakich ich zastoso­
wań, lecz także były źródłem nowych i zaskakujących odkryć (dyfrakcji promieni 
rentgenowskich i elektronów, luminescencji, półprzewodnictwa, efektu Móssbauera, 
akcji laserowej). Związki organiczne — jako ciało stałe — cieszą się stale rosnącym 
zainteresowaniem. Wzrasta także ich liczba w produkcji przemysłowej, o czym 
świadczy choćby tylko szybko rozwijający się przemysł tworzyw sztucznych.

Na przeszkodzie bezpośredniemu zastosowaniu kryształów molekularnych stoją 
— pozornie — niezbyt korzystne ich właściwości mechaniczne i termiczne, a 
mianowicie miękkość, znaczna kruchość i na ogół niska temperatura topnienia. 
Taki pogląd można sobie wyrobić wówczas, gdy praktyczną przydatność kryszta­
łów molekularnych ocenia się z punktu widzenia istniejących dziś i znanych 
zastosowań kryształów nieorganicznych — jonowych, a zwłaszcza kowalencyjnych 
— których właściwości mechaniczne i termiczne przedstawiają się o wiele korzyst­
niej. Można jednak przypuszczać, iż ze względu na szczególne cechy struktury, 
przejawiające się przede wszystkim w na ogół niskiej symetrii i nikłości oddziały­
wań międzycząsteczkowych, kryształy molekularne doczekają się zupełnie nowych, 
dziś nie dających się nawet przewidzieć, a nie mniej ważnych zastosowań. Przykła­
dem całej klasy związków, nie mającej substytutu wśród związków nieorgani­
cznych, są ciekłe kryształy. Patrząc na zagadnienie z tego punktu widzenia, 
kryształy molekularne trzeba uważać za materiał przyszłości.

Istnieją dwa główne kierunki badań naukowych w fizykochemii organicznego 
ciała stałego: poznawczy i aplikacyjny. Pierwszy z nich polega na dążeniu do 
zrozumienia makroskopowych właściwości kryształu, takich jak współczynnik 
refrakcji czy też rozszerzalność termiczna, na podstawie opisu przestrzennego 
rozkładu cząsteczek w sieci krystalicznej oraz sposobu ich ruchu, czyli na podsta-
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wie mikroskopowych cech struktury. Właściwości kryształu są mierzalne, mogą 
być zatem znane z doświadczenia. Nie znamy natomiast właściwości samych 
cząsteczek, z których jest zbudowany kryształ; mimo niewielkich sił oddziaływań 
nie należy oczekiwać, że właściwości cząsteczki umieszczonej w sieci krystalicznej 
będą identyczne z właściwościami cząsteczki swobodnej, choć powinny być do niej 
zbliżone. Charakterystyczne różnice będą nas informować o wielkości i naturze 
oddziaływań międzycząsteczkowych. Istotne znaczenie mają tu relacje między 
makroskopowymi, fizycznymi właściwościami kryształu a odpowiednimi mikrosko­
powymi właściwościami cząsteczek. Poznanie tych relacji oraz wpływu na nie 
takich parametrów zewnętrznych, jak temperatura i ciśnienie, stanowi program 
badań dyscypliny zwanej fizyką chemiczną. Realizacja tego programu staje się 
szczególnie interesująca w przypadku kryształów molekularnych. Symetria cząste­
czek jest z reguły znacznie niższa niż symetria jonów lub atomów tworzących 
strukturę kryształu nieorganicznego. Zarówno ten fakt, jak i nikłość sił oddziały­
wań międzycząsteczkowych sprawiają, że również symetria kryształu molekularne­
go nie jest wysoka. Większość tych kryształów (aż 8O°/o) ma symetrię układu 
jedno- i trójskośnego, a kryształy należące do układu regularnego stanowią 
niezwykłą rzadkość. Dzięki temu eksperyment z kryształem molekularnym staje się 
znacznie bogatszy, aczkolwiek jednocześnie jego interpretacja strukturalna jest 
bardzo złożona. Nie mniej interesujące jest to, że w takich kryształach istnieje 
pewna liczba „stopni swobody”, tj. parametrów, których wartości nie są zdetermi­
nowane działaniem reguł symetrii. Na przykład orientację przekroju indykatrysy w 
płaszczyźnie (010) kryształu jednoskośnego opisuje jeden kąt, dowolny z punktu 
widzenia zasad symetrii. Do zadań fizyki chemicznej należy również rozpoznanie, 
które z czynników mikroskopowych determinują aktualne wartości swobodnych 
parametrów i jaki jest wpływ na nie czynników zewnętrznych.

Drugi kierunek, aplikacyjny, ma na celu poszukiwanie nowych zastosowań 
organicznego ciała stałego. Do programu badań stosowanych należy również 
włączyć modyfikowanie właściwości ciał poprzez modyfikację samych cząsteczek, a 
także — jeśli jest to możliwe — również struktury ciała stałego, na przykład przez 
wybór i stabilizację określonej odmiany fazowej. Tak sformułowany cel i zakres 
badań jest obiektem zainteresowań inżynierii materiałowej i opiera się, rzecz jasna, 
na wynikach badań podstawowych. O ile dziś bliscy jesteśmy zrozumienia niektó­
rych właściwości kryształów molekularnych, o tyle inżynieria materiałowa stawia 
obecnie dopiero pierwsze kroki. Nie ulega jednak wątpliwości, że dyscyplina ta 
będzie miała istotne znaczenie dla rozwoju techniki dnia jutrzejszego.

1.1. Klasyfikacja ciała stałego z punktu widzenia 
oddziaływań międzycząsteczkowych

Właściwie każda mierzalna wielkość fizyczna może stanowić kryterium podzia­
łu substancji na co najmniej dwie klasy. Jeśli, na przykład, wybierzemy przewod­
nictwo elektryczne, to możemy podzielić materiały na substancje przewodzące i 
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dielektryki. Bardziej szczegółowy podział, uwzględniający wpływ temperatury na 
przewodnictwo właściwe, obejmować będzie klasę metali, kryształów jonowych, 
półprzewodników oraz dielektryków. Z kolei zachowanie się materiałów w polu 
magnetycznym pozwala wyróżnić klasy para-, dia- i ferromagnetyków. Właściwoś­
ci materiałów w polu elektrycznym są podstawą ich podziału na ferro- i paraelek- 
tryki. Wprawdzie podziałów tego typu może być wiele, jednak dwie spośród 
właściwości fizycznych ciała stałego dają najogólnieszą podstawę podziału; są to: 
energia sieciowa oraz symetria. Obecnie zajmiemy się klasyfikacją ciała stałego z 
punktu widzenia energii oddziaływań między elementami strukturalnymi, z jakich 
ono się składa. Energia ta przejawia się mikroskopowo w postaci określonego 
ciepła sublimacji lub równoważnej mu liczbowo energii sieciowej, tj. zmianie 
energii wewnętrznej towarzyszącej procesowi tworzenia w temperaturze 0 K

Tabela 1.1

Schemat klasyfikacji ciała stałego

Charakter głównych 
sił oddziaływania

Przykład ciała 
stałego, typ sieci

Energia 
sieciowa, 

kJ • mol 1

Charakterystyczne właściwości 
ciała stałego

Siły elektrostat.
między jonami, bez­
kierunkowe

NaCl, reg.; 
BaF2, reg. (104 
struktur)

-750

- 1680

sztywne, często kruche; izolatory elektr. 
w niskich temp., możliwe przewodn. jono­
we w temp, podwyższonej

Wiązania kowalencyj­
ne, przestrz. skiero­
wane

diament, reg.; 
SiC, reg. (103 
struktur)

-710

-1200

sztywne, bardzo twarde, zwykle wysoka 
temp, topn.; w niskich temp, izolatory lub 
półprzewodniki; duży współcz. refrakcji

Wiązania metaliczne, 
bezkierunkowe

Na, reg. przestrz. 
centr.;
Mg, heksagon. o 
najg. ułożeniu 
atomów;
W, reg.

-110

-150
-850

ciągliwe; duże przewodn. cieplne i elektr.; 
duży współcz. odbicia; właściwości po­
dobne w stanic stałym i ciekłym

Siły van der Waalsa, 
bezkierunkowe

Ar, reg. śc. centr.; 
H2, heksagon. 
(105 struktur)

-7,5

-1

niska temp, topn.; ściśliwe; bardzo małe 
przewodn. cieplne i elektr., diamagnetyki

Wiązania wodorowe, 
przestrz. skierowane

H2O (lód), heksa­
gon.;
kwas benzoes., 
jednosk.

-(20-40)

podwyższona temp, topn.; często polimor­
fizm; izolatory niekiedy o zwiększonym 
przewodn. elektr., diamagnetyki

Oddziaływania dono- 
rowo-akceptorowe, 
przestrz. skierowane

chloranil-dimety- 
loamina -(20-40)

substancje barwne; niekiedy paramagnet.; 
charakter, ułożenie cząst. w stosy; niekie­
dy bardzo duże (ęiwsi-metal.) przewodn. 
elektr.
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określonej substancji krystalicznej z jednego mola cząsteczek, znajdujących się w 
stanie gazowym. Oparty na symetrii podział ciała stałego przedstawimy w rozdz. 3.

Schemat klasyfikacji ciała stałego z energetycznego punktu widzenia przedsta­
wiono w tab. 1.1. Najwyższą energię sieciową mają kryształy o wiązaniach 
kowalencyjnych i kryształy jonowe; kryształy molekularne znajdują się na drugim 
biegunie tego podziału, metale zaś są usytuowane pośrodku.

1.2. Oddziaływania uniwersalne

Przejdziemy teraz do bardziej szczegółowego opisu charakteru oddziaływań 
między elementami strukturalnymi w sieci kryształu molekularnego. Można je dla 
ułatwienia interpretacji podzielić na oddziaływania uniwersalne, występujące w 
każdym krysztale molekularnym, oraz na oddziaływania specyficzne (oddziaływania 
elektronodonorowo-akceptorowe, wiązania wodorowe). Źródłem oddziaływań uni­
wersalnych są siły elektrostatyczne, działające między ładunkami elektrycznymi 
(jonami) i trwałymi multipolami elektrycznymi (cząsteczkami), oraz siły elektrody­
namiczne, działające między indukowanymi dipolami. W drugim przypadku siły 
wynikają z efektów kwantowych, polegających na wymianie elektronu lub protonu 
między sąsiednimi cząsteczkami.

Pojęcie momentu multipolowego wywodzi się z pojęcia potencjału, wytwarza­
nego przez układ ładunków w pewnej od niego odległości. Przypuśćmy, że 
interesuje nas potencjał VA w punkcie A, oddalonym od cząsteczki H2O o wektor 
R, o długości znacznie większej od liniowych rozmiarów cząsteczki (rys. 1.1). 
Potencjał ten możemy uważać za wytworzony przez ładunek dq = Q(r)-dv zawarty 
w elemencie objętości dv, przy czym q(r) jest gęstością ładunku stałą wewnątrz 
elementu dv, otaczającego koniec wektora r (r jest, oczywiście, zmienne). Sumując 
udziały wszystkich elementów objętości o nie znikającej gęstości elektronowej,
otrzymamy

VA
1

4n£0
c v 7

(R2 + r2 — IrRcos (p)1/2
(1.1)

steczki wody
Rys. 1.1. Potencjał wytworzony w punkcie A przez zbiór ładunków czą­
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przy czym e0 jest bezwzględną przenikalnością dielektryczną próżni. Mianownik 
wyrażenia podcałkowego można rozwinąć w szereg [1], po czym wyrażenie 
określające VA przyjmie postać [zamiast ^(r) piszemy g]

1 f J 1 f-------- oav -I---------v Q>' cos cpdv +
4ne0RJ 4ra;0R2 J

1
4n£0 R3

, 3cos20 — 1 , 
or2------- - -----dv +

1
+ 4ne0 R4

, cos <p(5cos2 ę> — 3) , 
gr ---------- ----------- dv + ... (1.2)

zwaną szeregiem multipolowym. Pierwszy człon jest proporcjonalny do [ odv = ą, 
czyli do wypadkowego ładunku cząsteczki; przedstawia więc potencjał wytworzony 
przez jon w pewnej od niego odległości. Jeśli element strukturalny nie jest jonem, 
to człon ten równy jest zeru, a o potencjale w punkcie A decyduje następny 
składnik sumy. Jest on proporcjonalny do momentu dipolowego cząsteczki

p = J or cos cp dv (1.3)

Następny składnik sumy po prawej stronie równ. (1.2) jest proporcjonalny do 
momentu kwadrupolowego itd.

Jeśli punkt A jest punktem leżącym we wnętrzu kryształu, to skutek oddziały­
wań międzycząsteczkowych można opisać za pomocą potencjału VA, wytwarzanego 
przez periodyczny zbiór multipoli. Rząd tych multipoli zależy od symetrii rozkładu 
ładunku w cząsteczce w konkretnym przypadku. Przy takim opisie mielibyśmy do 
czynienia z multipolami punktowymi, rozmieszczonymi w węzłach sieci Bravais’go. 
Na rysunku 1.2 przedstawiono schematycznie rozkład kwadrupoli, odpowiadający 
komórce elementarnej kryształu antracenu.

Uwzględnienie oddziaływań wszystkich momentów multipdlowych cząsteczki 
elektrycznie obojętnej, tj. zarówno statycznych [objętych równ. (1.2)], jak i induko­
wanych przez oddziaływanie zmieniającego się w czasie rozkładu gęstości elektro­
nowej w otoczeniu wybranej cząsteczki, prowadzi do oddziaływań objętych zbior­
czą nazwą sił van der Waalsa. Podstawowa nieścisłość takiego opisu polega na tym, 
że cząsteczkę zastępujemy punktowym multipolem. Pomijamy w ten sposób prze­
strzenną rozciągłość cząsteczki, co nie odpowiada rzeczywistej strukturze kryształu 
i nie uwzględnia aktualnej orientacji cząsteczki w przestrzeni.

nej antracenu
Rys. 1.2. Schemat rozkładu kwadrupoli w komórce elementar­
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Znacznie bardziej precyzyjny opis oddziaływań między cząsteczkami w kryszta­
le, sięgający głębiej w mikroskopową strukturę cząsteczki, wprowadzony został 
przez Kitajgorodskiego [2] i prawie jednocześnie przez Williamsa [3]. Sposób ten 
polega na zastąpieniu oddziaływań cząsteczka cząsteczka przez sumę oddziaływań 
atom-atom, przy czym oddziałujące atomy nie są bezpośrednio połączone wiąza­
niem chemicznym, lecz należą do dwóch różnych cząsteczek (rys. 1.3). Ogólna 
energia takich oddziaływań składa się z dwóch części. Pierwsza z nich, ujemna, jest 
energią przyciągania pary atomów; wynika ona z oddziaływań multipol-multipol 
oraz z tak zwanych londonowskich sił dyspersyjnych. Źródłem tych sił jest 
oddziaływanie dipoli indukowanych w najbliższych sąsiadach określonego atomu,

Rys. 1.3. Oddziaływania atom-atom (schematycznie)

w których wystąpiła chwilowa asymetria w rozkładzie gęstości elektronowej. W 
taki sposób oddziałują również atomy, które dla dłuższego przedziału czasu mają 
średnio symetrię kuli, a więc nie mają żadnego trwałego momentu multipolowego 
(np. atomy argonu). Drugim składnikiem, dodatnim, jest energia odpychania, 
wynikająca z nakładania się powłok elektronowych przy zbliżeniu sąsiadujących z 
sobą atomów. Najczęściej przyjmuje się, że pierwszy udział jest proporcjonalny do 
rj6, a drugi do exp [ —Łączne wyrażenie na energię potencjalną zwane jest 
potencjałem „6-exp” i ma postać

i
(1-4)

W funkcji (1.4) r^jest odległością oddziałujących atomów i-tego oraz j-tego, zaś A, 
B, a są stałymi potencjału, najczęściej dobieranymi empirycznie dla określonej pary 
atomów, np. C ■ • • C, C • • ■ H. Zakłada się przy tym, że oddziaływanie nie wykazuje 
efektów kierunkowych. Ponieważ kryształy molekularne zbudowane są zgodnie z 
zasadą najgęstszego ułożenia atomów (cząsteczek), wprowadzoną przez Kitajgo­
rodskiego [2], sytuacja stykających się atomów odpowiada gęstemu ułożeniu kul 
w przestrzeni. Okazuje się, że potencjał zdefiniowany według (1.4) ma w znacznym 
stopniu charakter uniwersalny, to znaczy stałe A, B, a dla oddziaływań na 
przykład C-H są takie same w strukturze naftalenu jak i propanu. Taki model 
odpowiada cząsteczce przestrzennie rozciągłej, lecz składającej się z punktowych 
atomów. Stałe potencjału dla atomów cząsteczek węglowodorów ustalone zostały 
przez Kitajgorodskiego po zbadaniu wielu struktur [2] i podane są w tab. 1.2. Dla 
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przykładu krzywa energii potencjalnej oddziaływań pary atomów C-H, obliczo­
na na podstawie danych z tab. 1.2, przedstawiona jest na rys. 1.4.

Znajomość potencjału oddziaływań atom-atom pozwala obliczyć energię sieciową 
kryształu w temp. 0 K, Uo, przez sumowanie wyrazów Ar~b i Bexp[ —ar] dla 
wszystkich nie związanych z sobą atomów, znajdujących się wewnątrz kuli o 
promieniu 2-3 nm. Uwzględnienie kilku tysięcy takich składników wymaga użycia 
maszyn cyfrowych. Podczas obliczeń korzysta się z położeń atomów, wyznaczo-

Tabela 1.2

Stałe potencjału [funkcja (1.4)] dla niektórych par atomów 
(według [2])

Atomy A-103, 
kj • mol“ 1 ■ nm6

B -10“5, 
kJ-mol“1

a, 
nm- 1

C-C 1,498 1,76 35,8
C-H 0,644 1,76 41,2
H -H 0,238 1,76 48,6

Rys. 1.4. Krzywa energii potencjalnej oddziaływań C-H obliczona 
na podstawie równ.:

C(C -H) = - 6,44 • 10“4/r6 + 1,76 • 105 exp(-41,2r) 
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nych dla określonej struktury metodami rentgenografii strukturalnej. Szczególną 
rolę odgrywa położenie atomów wodoru, często peryferyjnych atomów cząsteczki i 
mających spory udział w energii oddziaływania ze względu na małe wartości rtj. 
Obliczenie atomów wodoru wymaga wykonania neutronograficznych badań 
struktury, pozwalających dokładnie określić współrzędne tych atomów. Jeśli takich 
badań nie ma, to przy znajomości średniej długości wiązania C—H możemy się 
oprzeć na prostej dedukcji geometrycznej.

Energia oddziaływań par nie związanych walencyjnie atomów jest funkcją 
odległości między nimi. Zbiór tych odległości w strukturze o zadanej symetrii 
zależy od geometrii komórki elementarnej, a więc od długości jej krawędzi a, b, c i 
kątów między nimi a, fi, y, oraz od geometrii rozkładu cząsteczek w komórce, a 
więc od współrzędnych środka masy cząsteczki, X, Y, Z i kątów Eulera, opisują­
cych orientację cząsteczki względem a, b, c. Zwykle zakłada się przy tym sztywność 
samej cząsteczki, tj. niezależność względnych położeń atomów związanych w 
cząsteczkę od drobnych zmian wymienionych parametrów. Energię potencjalną 
sieci możemy traktować jak dwunastowymiarową powierzchnię

U = U (a, b, c, a, 0, y, X, Y, Z, (p, &, /)

posiadającą wiele minimów. Jedno z nich odpowiada rzeczywistej strukturze 
kryształu, a energia w tym punkcie — jego energii sieciowej, Uo, w temp. 0 K. 
Wielkość tę porównuje się z wartością ciepła sublimacji, — AH0, ekstrapolowaną 
do temp. 0 K

— AH0 = U0 — K0 (1.5)

gdzie Ko jest tak zwaną energią zerową drgań elementów strukturalnych w temp. 
0 K. Ko ma znaczny udział w cieple sublimacji kryształów o małych cząsteczkach, 
np. kryształów He, Ne, H2; w krysztale lodu energia zerowa stanowi 31°/0 ciepła 
sublimacji [2]. W przypadku większych cząsteczek udział Ko można pominąć, 
ponieważ już dla CO2 nie przekracza on 2%.

W wyniku minimalizacji Uo, dokonywanej za pośrednictwem drobnych zmian 
wybranych parametrów przy ustalonych wartościach pozostałych, otrzymuje się 
następujące informacje:

1. Energię sieciową Uo w temp. 0 K, której porównanie z doświadczalną 
wartością — AH0 służy zwykle jako kryterium wyboru właściwego minimum 
funkcji (1.4) oraz właściwego doboru wartości stałych potencjałowych;

2. Wartości parametrów komórki elementarnej a, b, c, a, /3, y;
3. Orientację cząsteczki względem krawędzi komórki elementarnej i położenie 

jej środka masy, co jest równoznaczne z rozwiązaniem struktury kryształu. W ten 
sposób można więc uzyskać informacje o kryształach, których struktura nie jest 
znana.

Porównanie wyników obliczeń z danymi doświadczalnymi dla kryształu benze­
nu zamieszczono w tab. 1.3 (według [2]).

Wadą opisu oddziaływań międzycząsteczkowych za pomocą potencjału (1.4) 
jest to, że nie jest on wystarczająco uniwersalny. O ile można uzyskać bardzo 
dobre wyniki dla kryształów węglowodorów, o tyle schemat obliczeń zawodzi przy
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Tabela 1.3

Eksperymentalne i obliczone wartości parametrów sieci a, b, c oraz kątów Eulera orientacji cząsteczki 
9, k, V w strukturze kryształu benzenu (według [2])

* Obliczenia przeprowadzono dla temp. 0 K, wartości doświadczalne ekstrapolowano do temp. 0 K.
** Dla temp. 270 K.
*** Wartość obliczona dla temp. 0 K, doświadczalna -dla temp. 278,6 K.

Parametry komórki elem. *, nm Kąty Eulera** Ciepło sublimacji ***, 
kJ - mol“1a b c Z V

Obliczone 0,725 0,941 0,675 47,6 178,0 104,7 + 49,10
Doświadczalne 0,727 0,943 0,671 47,3 178 107,5 +43,1 ±2,1

obecności w cząsteczce atomów takich jak tlen, azot. Pewien postęp w tej 
dziedzinie przyniosły badania w nowym i szybko rozwijającym się kierunku, 
zwanym dynamiką sieci. Ta gałąź fizyki chemicznej zajmuje się badaniem częstości, 
amplitud i kierunku ruchu cząsteczek w sieci krystalicznej w polu potencjału 
wytworzonego przez otoczenie. Pozwala to opisać i uporządkować widma Ramana 
kryształów i widma w dalekiej podczerwieni. Okazuje się, że można poprawić 
uniwersalność opisu oddziaływań między różnymi atomami, jeśli powiększy się 
liczbę parametrów w funkcji energii potencjalnej. Przykładem czteroparametrowej 
funkcji jest [4]

(L6)

Nowsze dane dla stałych potencjału A, B, C, D, zaczerpnięte z pracy [4] i 
przeliczone na jednostki układu SI, zawiera tab. 1.4.

Tabela 1.4

Stałe potencjału [funkcja (1.6)] oddziaływań par nie związanych 
atomów (według [4])

Atomy
A, 

kJ-mol-1 nmD
B, 

nm-1
C-104, 

kJ-mol-1 nm6 D

H - H 9090 37,4 1,021 0
C C 300550 36,0 21,466 0
C-H 35600 36,7 4,682 0
o o 1,084-10'6 0 15,01 12
N---N 268620 36,4 16,86 0
O -H 9,926 10“2 18,7 3,91 6
o c 0,57090 18,0 17,95 6
O -N 0,5397 18,2 15,91 6
N--H 49415 36,9 4,15 0
N---C 284140 36,2 19,02 0
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Badania dynamiki sieci kryształów molekularnych prowadzą jednak również 
do wniosku, że oddziaływania między cząsteczkowe, przynajmniej w niektórych krysz­
tałach, nie mają wyłącznie charakteru sil van der Waalsa. Na przykładzie kryształu 
chloru wykazano, że dynamiki sieci nie można opisać zgodnie z doświadczeniem 
jedynie na podstawie potencjału (1.4) czy (1.6). Trzeba uwzględnić oddziaływanie 
wynikające z przeniesienia ładunku między sąsiednimi cząsteczkami, nie mieszczące 
się w schemacie oddziaływań atom-atom [5].

Obecnie przypuszcza się, iż najlepszy opis oddziaływań w krysztale molekular­
nym można będzie uzyskać na gruncie „czystej” elektrostatyki, przez bezpośrednie 
zastosowanie prawa Coulomba. Jeśli przedstawia lokalną gęstość elektronów 
w elemencie objętości to potencjał w wybranym miejscu R można wyrazić — 
zgodnie z prawem Coulomba — w następujący sposób:

m = <i.7)
47t£0 ;

Aby obliczyć sumę w równ. (1.7), należy podzielić komórkę elementarną na 
dostatecznie małe elementy objętości, tak by gęstość elektronową wewnątrz każde­
go z nich można było uważać za stałą. Wobec słabej zbieżności sumy z równ. 
(1.7) trzeba uwzględnić tak wielką liczbę składników, że przekracza to możliwość 
pamięci operacyjnej większości współczesnych maszyn cyfrowych. Z tych powodów 
metoda ta wymaga jeszcze dalszego opracowania.

1.3. Oddziaływania specyficzne

1.3.1. Wiązanie wodorowe

Wiązanie wodorowe polega na oddziaływaniu między trzema atomami, 
—X—H • • • Y—, z których tylko dwa połączone są wiązaniem chemicznym. Środ­
kowy atom jest atomem wodoru (deuteru), skrajnymi zaś atomami w typowych 
przypadkach są N lub O. Taki układ nosi nazwę mostka wodorowego i może być 
zgięty. Klasycznym przykładem cieczy zasocjowanej za pomocą wiązań wodoro­
wych jest woda. Wśród różnych sposobów asocjacji możliwe jest tworzenie agrega­
tów liniowych

lub cyklicznych
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Cechą charakterystyczną wiązania wodorowego jest to, że odległość skrajnych 
atomów X • • • Y jest mniejsza od sumy promieni van der Waalsa atomów X i Y.

rxY<rx + >\ U-8)
Suma tych promieni w zwykłych oddziaływaniach van der Waalsa z reguły 
przekracza 0,3 nm, na przykład 2ro = 0,306 nm, 2rN = 0,316 nm [2]. Typowe 
wartości rx...Y leżą natomiast w zakresie od 0,27 do 0,29 nm, a mogą być nawet 
mniejsze od 0,25 nm. Właściwości fizykochemiczne związku zasocjowańego mogą 
dość znacznie różnić się od właściwości związku monomerycznego, czego dobit­
nym przykładem jest woda (tab. 1.5).

Tabela 1.5

Fizykochemiczne właściwości wody oraz hipotetycznej cieczy złożonej z poje­
dynczych cząsteczek H2O

Wielkość 
charakterystyczna Jednostka

Wartość

woda ciecz hipotetyczna

Temperatura wrzenia 
Napięcie powierzchniowe 
Ciepło parowania 
Ciepło topnienia

°C 
N-m“1 

kJ ■ mol“ 1 
kj-mol“1

+ 100 
0,072 

40,6
6,0

-80 
0,007

16,7
2,1

Dopóki para atomów —X—H nie oddziałuje z atomem Y, dopóty posiada 
dość dobrze określoną częstość drgań vXH w podczerwieni. Inaczej mówiąc, „swo­
bodnemu” oscylatorowi —X—H odpowiada w podczerwieni pasmo absorpcyjne 
zwykle o małej szerokości, położone przy vXH cm”1. Pasmo absorpcyjne oscylatora 
;,związanego” —X—H • • Y jest natomiast znacznie szersze i na ogół położone przy 
znacznie niższej częstości vXH..Y- Powodem tego przesunięcia jest zmniejszenie stałej 
siłowej oscylatora —XH przez oddziaływanie z atomem Y. Efekt ten sięga od 
kilku cm”1 do paru tysięcy cm”1. Obniżenie częstości

= vXH-vXH...Y (1.9)

uważane jest za jedno z podstawowych kryteriów tworzenia się wiązania wodoro­
wego, a nawet może być podstawą oceny odległości skrajnych atomów X -Y w 
krysztale [6].

Międzycząsteczkowe wiązanie wodorowe pojawia się w cieczach prawie zawsze, 
jeśli tylko cząsteczki substancji rozpuszczonej lub rozpuszczalnika zdolne są do 
jego utworzenia, a więc gdy jedna cząsteczka zawiera ugrupowanie —XH, a druga 
odpowiedni atom Y. Ze względu na ruch termiczny cząsteczek w fazie ciekłej oraz 
niewielką energię wiązania wodorowego zwykle mamy do czynienia z pewną 
równowagą chemiczną między liczbą swobodnych oscylatorów —XH i związanych 
—X—H • • • Y, przy czym równowaga ta może być niekiedy bardzo skomplikowana. 
Jeśli jednak potrafimy ją rozszyfrować pod względem chemicznym, pomiar stężeń 
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uczestniczących w niej indywidów chemicznych w różnych temperaturach pozwala 
doświadczalnie określić energię tworzenia układu —X—H - Y. Energie te leżą w 
zakresie 20-40 kJmol-1 (od 0,2 do 0,4 eV na cząsteczkę) i są trochę większe od 
przeciętnych oddziaływań van der Waalsa.

Inaczej jest w stanie stałym, gdzie o powstawaniu wiązania wodorowego 
między cząsteczkami decydują nie tylko oddziaływania, lecz także stosunki prze­
strzenne i symetria, określające wzajemne ułożenie cząsteczek w krysztale. Dobrym 
przykładem różnych sytuacji może być pentachlorofenol, którego formę zasocjowa- 
ną (kryształ) przedstawia schemat

W swobodnej cząsteczce wodór grupy hydroksylowej słabo oddziałuje z sąsiednim 
atomem chloru, co nie stanowi typowego wiązania wodorowego, ale wystarcza do 
zahamowania rotacji grupy —OH'wokół wiązania C—O. W konsekwencji czę­
stość drgań układu O—H • • ■ Cl w roztworze pentachlorofenolu w niepolarnym 
rozpuszczalniku, np. w CC14, jest trochę przesunięta w stronę niższych częstości w 
porównaniu ze zwykle spotykanymi częstościami swobodnej grupy OH. Widmo 
absorpcyjne takiego roztworu pokazano na rys. 1.5u [7]. Wykonane zostało w 
zakresie tak zwanego nadtonu o częstości w przybliżeniu równej 2vOH. Powstanie 
nadtonów jest cechą charakterystyczną oscylatorów anharmonicznych (por. p. 7.2). 
Na rysunku 1.5h pokazano, że roztwory pentachlorofenolu w CC14 ściśle spełniają 
prawo Beera, co dowodzi, że cząsteczki substancji rozpuszczonej nie ulegają 
asocjacji w roztworze. Można to tłumaczyć w ten sposób, że atomy chloru w 
położeniu orto względem grupy —OH, mające stosunkowo dużą objętość, skute­
cznie „ekranują” grupę hydroksylową przed zbliżeniami prowadzącymi do tworze­
nia międzycząsteczkowych wiązań wodorowych.

Jeżeli wykrystalizujemy pentachlorofenol z takiego roztworu przez powolne 
odparowanie CC14 w temperaturze pokojowej, to powstaną kryształy zbudowane z 
cząsteczek połączonych wiązaniem wodorowym, o czym wiadomo z badań rentge- 
nograficznych tego kryształu [8]. Grupy hydroksylowe tworzą zygzakowate łańcu­
chy o średnim kierunku równoległym do krystalograficznej osi b, natomiast 
pierścienie aromatyczne dołączone są z boku i wykręcone z płaszczyzny 
• • • OH • ■ • OH • • • naprzemiennie w taki sposób, by ułatwić wzajemne zbliżenie grup 
OH. Fragment tej struktury pokazano schematycznie na rys. 1.6. Kryształ składa 
się więc z równoległych do siebie „nici”, których długość przy idealnej strukturze 
równa jest długości kryształu wzdłuż osi b. Widmo absorpcyjne w podczerwieni w
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Rys. 1.5. Absorpcja oscylatora —OH w zakresie pierwszego nadtonu (v = 6868 cm“1): a) pasmo 
absorpcyjne c = 0,15(3) mol-l”1, / = 3,00 cm, b) zależność absorbancji od stężenia pentachlorofenolu 
w roztworach w CC14, l = 1,00 cm, v = 6870 cm“1 (według [7])

zakresie pierwszego nadtonu o częstości równej w przybliżeniu 2vOH...o jest, zgodnie 
z oczekiwaniem, o wiele silniej przesunięte w kierunku niższych częstości, a przy 
tym bardziej złożone (rys. 1.7). Przesunięcie spektralne w zakresie nadtonów jest w 
przybliżeniu dwa razy większe od określonego definicją (1.9) i wynosi w tym 
przypadku około 300 cm-1 [7].

Nie jest to jednak jedyna możliwa faza krystaliczna tego związku. Okazuje się, 
że przy ogrzewaniu kryształów wyhodowanych z roztworu, w temp. 63° C zachodzi 
w nich przemiana fazowa [7], w wyniku czego znika pasmo pokazane na rys. 1.7. 
Pojawia się natomiast proste przejście absorpcyjne, odpowiadające obrazowi

Rys. 1.6. Fragment łańcucha cząsteczek w fazie II pentachlorofenolu (temp, pokojowa). Kółkami 
zaznaczono reszty pentachlorofenylowe, —C6C15
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przedstawionemu na rys. 1.5 i charakterystyczne dla monomerów w roztworze. 
Świadczy to o tym, że faza pentachlorofenolu z międzycząsteczkowym wiązaniem 
wodorowym przestaje być trwała w temp, wyższej niż 63°C, a zamiast niej 
powstaje faza o innej strukturze, zbudowana z izolowanych cząsteczek. Faza ta 
jest nieuporządkowana: cząsteczki zajmują w niej węzły o symetrii C,, choć same 
nie są centrosymetryczne. W takim przypadku postulat zgodności symetrii węzła z 
symetrią cząsteczki może być realizowany tylko statystycznie w taki sposób, że 
każda z nich zajmuje w sposób przypadkowy jedno z sześciu możliwych położeń 
względem normalnej do pierścienia [9]. Być może, iż w wyższych temperaturach 
nieporządek ten ma charakter dynamiczny, tj. cząsteczki dokonują „przeskoków” o 
60° dookoła normalnej do pierścienia benzenowego. Przykład ten wskazuje, że 
możemy mieć fazy krystaliczne bez wiązania wodorowego, mimo iż cząsteczki 
mają atomy —XH i Y zdolne do jego utworzenia.

Często tworzy się wiązanie wodorowe w krysztale w taki sposób, że cała 
cząsteczka znajduje się w łańcuchu głównym. Przykładem takiej sytuacji może być 
wiązanie „ogon głowa” w krysztale p-nitrofenolu [10], przedstawione schematy­
cznie na rys. 1.8. Bardzo silne wiązania wodorowe występują między cząsteczkami 
kwasów karboksylowych, w wyniku czego tworzą się dimery, a niekiedy układy

Rys. 1.7. Widmo absorpcyjne nadtonu OH •••O w krysztale pentachlorofenolu w fazie II (według [7]) 
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pierścieniowe złożone z większej liczby jednostek. Przykładem jest kwas benzoeso­
wy, którego cząsteczki w roztworze benzenowym są praktycznie zasocjowane w 
dimery. W krysztale również nie ma cząsteczek monomerycznych i struktura 
składa się z dimerów [11], które można uważać za autonomiczne jednostki 
strukturalne (rys. 1.86).

b)

Rys. 1.8. Przykłady wiązań wodorowych w kryształach molekularnych: a) „ogon-głowa” w p-nitrofeno- 
lu, b) dimery kwasu benzoesowego

Jednym z bardzo interesujących przykładów jest struktura kryształu gipsu 
CaSO4-2H2O, której rzut na płaszczyznę łupliwości przedstawiono na rys. 1.9 
według danych strukturalnych z pracy [12]. Rzut ten został uproszczony przez 
opuszczenie jonów Ca2+ . Kryształ gipsu składa się z jonów Ca2+ i SOi~, których 
symetria jest bliska kuli, oraz z cząsteczek wody, połączonych wiązaniami wodoro­
wymi. Symetria tych cząsteczek, C2v, jest niższa od symetrii jonów i można 
oczekiwać, iż anizotropia fizycznych właściwości kryształu uwarunkowana będzie 
przede wszystkim anizotropią dipoli wody i ich rozkładu w sieci krystalicznej.

Rys. 1.9. Rzut struktury kryształu gipsu na płaszczyznę (010) (jony Ca2+ pominięto). Widać związek 
między ułożeniem dipoli H2O a głównymi kierunkami optycznymi O.B. i A.B. (według [13])
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Rzeczywiście, na płaszczyźnie łupliwości (010) możemy wyróżnić dwie prostopadłe 
do siebie linie, charakterystyczne ze względu na rozkład cząsteczek H2O (A.B. i 
O.B. na rys. 1.9). Okazuje się, że linie te odpowiadają doświadczalnie wyznaczo­
nym osiom głównym elipsoidy współczynnika refrakcji na tej płaszczyźnie [13]. 
Trzecia oś tej elipsoidy jest równoległa do krystalograficznej osi b, zgodnie z 
przewidywaniami zasady Neumanną. Właściwościami optycznymi tego kryształu 
zajmierny się bardziej szczegółowo w rozdz. 6.

Na koniec warto jeszcze wspomnieć o sytuacji protonu w układzie 
—X—H-- Y—, którą można opisać za pomocą krzywej energii potencjalnej. 
Zasadnicze typy krzywych, wprowadzone przez Sobczyka w celu klasyfikacji 
wiązań wodorowych [14], przedstawiono na rys. 1.10. Najczęściej spotykamy się z 
przypadkiem (u), tj. z asymetryczną krzywą o dwóch minimach. Odpowiada ona 
układowi X—H • • ■ Y przy dużych i średnich odległościach skrajnych atomów X, Y.

a) b) c)
UW

X— H — Y X—H—Y X"-H — Y+ r

Rys. 1.10. Typy krzywych energii potencjalnej wiązań wodorowych: a) proton przebywa w minimum po 
lewej stronie, b) proton położony jest symetrycznie, c) proton przebywa w minimum po prawej stronie 
(struktura jonowa)

Tę sytuację protonu można interpretować w taki sposób, że przebywa on w 
zasadzie w pobliżu jądra X; możliwe są — choć mało prawdopodobne — 
przeskoki w kierunku jądra Y. Ich częstość zależy od wysokości bariery potencjału 
dzielącej oba położenia i od temperatury, rządzącej obsadzeniem dyskretnych 
stanów oscylacyjnych protonu. W drugim skrajnym przypadku, (c), nastąpiło 
przejście protonu od X do Y z utworzeniem struktury jonowej mostka, 
X~ --H—Y+. Przypadki takie występują w bardzo krótkich (silnych) wiązaniach 
wodorowych. Wreszcie w sytuacji (b) krzywa energii potencjalnej jest symetryczna, 
co odpowiada jednakowemu prawdopodobieństwu przebywania protonu wokół 
każdego z jąder. Każdemu ze stanów przedstawionych krzywymi towarzyszy układ 
dyskretnych stanów energetycznych protonu.

1.3.2. Oddziaływania donorowo-akceptorowe

Oddziaływania donorowo-akceptorowe są to oddziaływania między dwiema czą­
steczkami, z których jedna oddaje elektron (donor, D), druga zaś go przyjmuje 
(akceptor, A). Stan równowagi w takim układzie przedstawia równanie

A + D^Aa+Dó (1.10)
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przy czym 3 jest ułamkiem, O <5 1. Powyższy zapis ma charakter probabilisty­
czny, wynikający z opisu tych oddziaływań za pomocą pojęć mechaniki kwanto­
wej. Nie jest bowiem możliwe, by ułamek elektronu mógł zostać przeniesiony od 
jednej cząsteczki do drugiej. Niech będzie funkcją falową opisującą stan układu 
A + D, i//2 zaś funkcją falową odpowiadającą stanowi A~+D + . Stan podstawowy 
kompleksu, przedstawiony równ. (1.10), opisuje funkcja będąca kombinacją liniową 
iAi i

<Ap = «1 ^1+02^2 (1.11)

Współczynniki i a2 są miarą prawdopodobieństwa wystąpienia w stanie podsta­
wowym kompleksu konfiguracji, odpowiednio, molekularnej (aj i jonowej (a2); 
zatem

af + a] = 1 (1-12)
przy czym al > a2.

Spektralny skutek tych oddziaływań jest podobny do skutku wiązania wodoro­
wego: energia wiązania jednego elektronu donora ulega obniżeniu, w wyniku 
czego kompleks donorowo-akceptorowy jest z reguły zabarwiony, mimo iż po­
szczególne składniki mogą być bezbarwne. Absorpcja występuje często w widzial­
nym zakresie widma, a częstość vDA, odpowiadająca maksimum pasma absorpcyj­
nego, jest dość dobrze opisywana wyrażeniem [15]

^DA — £a (1.13)

w którym /D jest energią jonizacji cząsteczki donora, £A — energią przyłączenia 
elektronu do cząsteczki akceptora, WDA — energią oddziaływań między jonem 
donora i jonem akceptora. Po pochłonięciu fotonu o energii ńvDA kompleks przecho­
dzi w stan wzbudzony, a równowaga opisana równaniem (1.10) przesuwa się na 
stronę prawą. Funkcja falowa dla stanu wzbudzonego, i/<e, ma postać analogiczną 
do równ. (1.11)

(1-14)
przy czym spełniony jest warunek

bf+b2 = 1 (1-15)
ale zwykle b^ <śb2.

Pełnemu przejściu elektronu, <5 = 1, odpowiada powstanie jonów, z których 
każdy ma jeden elektron o niesparowanym spinie (jonorodniki). Świadczy o tym 
sygnał paramagnetycznego rezonansu elektronowego oraz przewodnictwo jonowe 
związku po jego rozpuszczeniu w (słabo) polarnym rozpuszczalniku. Energia 
oddziaływania D-A wynosi od 20 do 40 kJmol-1 (0,2-0,4 eV na cząsteczkę).

Typowymi donorami elektronów są cząsteczki węglowodorów aromatycznych, 
metylowych pochodnych benzenu i związków wielopierścieniowych oraz amin 
aromatycznych. Akceptorami elektronów są cząsteczki chlorowców (zwłaszcza 
brom, jod), polinitrowych pochodnych benzenu (np. trinitrobenzen), a zwłaszcza 
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często stosowanych tetrachlorobenzochinonu (chloranilu) oraz tetracyjanoetylenu 
(TCNE).

Charakterystycznymi właściwościami kompleksów donorowo-akceptorowych 
są: absorpcja promieniowania w zakresie bardziej długofalowym niż zakres ab­
sorpcji każdego ze składników oraz duże na ogół przewodnictwo elektronowe w 
stanie stałym. Wynika ono z charakterystycznego ustawienia cząsteczek w stosy — 
często naprzemiennie, jeśli są to kompleksy pochodnych benzenu. Przeglądu 
elektrycznych właściwości kompleksów donorowo-akceptorowych dokonali w swej 
monografii Pigoń i współautorzy [16]. Przykład typowej struktury kompleksu 
złożonego z dwóch cząsteczek płaskich, chinonu i hydrochinonu, przedstawiony 
jest na rys. 1.11. W krysztale tego związku, zwanego chinhydronem, ułożenie

Rys. 1.11. Konfiguracja cząsteczki typowego kompleksu donorowo-akceptorowego chinon-hydrochinon 
i.ułożenie cząsteczek w krysztale (schematycznie)

cząsteczek również jest równoległe. Powstają stosy cząsteczek, na przemian donora 
i akceptora, wzdłuż krystalograficznej osi b, stanowiącej kierunek najlepszego 
przewodnictwa elektrycznego kryształu. Odległość płaszczyzn pierścieni, 0,31 nm, 
jest nieco mniejsza od przeciętnej w zwykłych oddziaływaniach van der Waalsa.
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2. TENSORY DRUGIEGO RZĘDU 
I ICH WŁAŚCIWOŚCI

Wiele właściwości fizycznych kryształu anizotropowego zależy od kierunku 
pomiaru w sposób charakterystyczny dla wielkości reprezentowanych tensorami. 
Wśród nich najczęściej spotykane są tensory drugiego rzędu i wyłącznie nimi 
zajmiemy się w dalszym ciągu. Nacisk położymy bardziej na interpretację sensu 
fizycznego i zastosowanie podanych zależności niż na ścisłość wywodu. Szczegóły 
te może Czytelnik znaleźć w literaturze, zestawionej na końcu rozdziału [1-3].

2.1. Definicja tensora
Tensory mają liczne zastosowania w fizyce ciała stałego z tego względu, że 

wiele wielkości fizycznych wykazuje zależność od kierunku, w którym je mierzymy, 
tj. ma cechę anizotropii. Anizotropia wielkości fizycznych łączy się bezpośrednio z 
symetrią samego ciała krystalicznego, ponieważ właściwości materii zależą nie tylko 
od właściwości samych elementów strukturalnych (atomów, jonów, cząsteczek), z 
których jest zbudowana, lecz także od regularności ich rozmieszczenia w sieci 
przestrzennej. Na przykład kryształ chlorku sodu składa się z jonów Na+ i Cl- o 
symetrii kulistej, które w krysztale idealnym rozmieszczone są bardzo regularnie: 
zajmują węzły sieci przestrzennej, zbudowanej z sześcianów. Tak wysoka symetria 
kryształu sprawia, że na przykład właściwości dielektryczne w każdym kierunku są 
takie same, wobec czego do ich opisu wystarczy podać tylko jedną liczbę. Inaczej 
rzecz się ma, na przykład, z kryształem benzenu. Wprawdzie cząsteczki benzenu o 
kształcie bardzo zbliżonym do sześciobocznej tafli mają jeszcze wysoką symetrię, 
jednak ich rozmieszczenie w sieci przestrzennej jest o wiele mniej symetryczne niż 
jonów w sieci chlorku sodu. Jest to uwarunkowane występowaniem sił działają­
cych między elementami strukturalnymi i powoduje, że względna przenikalność 
dielektryczna kryształu benzenu zależy od kierunku, w którym ją mierzymy; 
przenikalności tej nie można już wyrazić jedną tylko liczbą.

Tensorem nazywać będziemy każdy liniowy operator T, wiążący z sobą dwa 
wektory p i ą w zależność

P = Tq (2.1)
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Według tej definicji każdemu wektorowi q odpowiada inny wektor p, przy czym 
przyporządkowanie to ma dwie podstawowe cechy.

1. Słuszne jest w każdym ortogonalnym układzie współrzędnych. W określo­
nym układzie xr x2 x3 wektory p i q mają określone składowe, również składowe T 
mają określone wartości. Jeśli zmienimy układ odniesienia na nowy, xj x2 x3, to na 
ogół zmienią się składowe wszystkich trzech elementów w równ. (2.1), ale równość 
zostanie dalej zachowana. W tym sensie równanie (2.1) jest niezmiennicze wzglę­
dem wyboru układu współrzędnych pod warunkiem, że przekształcenie Xj x2 x3 w 
xj x2 x'3 nie zmienia metryki układu. Zachowaniem się wektorów i tensorów przy 
zmianie układu współrzędnych zajmiemy się dalej w tym rozdziale.

2. Przyporządkowanie (2.1) jest liniowe, to znaczy, że dla dowolnych wektorów 
q, v i dowolnych liczb s, t słuszna jest relacja

T(sq+tu) = sTq + fTr (2.2)

Iloczyn Tq jest więc wektorem. Aby znaleźć jego składowe, oznaczmy przez 
e2, e3 trzy wersory w układzie x!x2x3, równoległe, odpowiednio, do osi tego 
układu. Iloczyn, np. Te2, jest również wektorem, a jego składowymi są (Te2)i, 
(Te2)2, (Te2)3. Pomnożenie tego wektora skalarnie przez jakikolwiek wersor, np. 
e1; wybiera spośród tych trzech tylko jedną składową: (Te2)j. Wynik takiego 
mnożenia jest wjęc liczbą, którą oznaczymy przez T12

ei '(Te2) = (Te2)i = T12

Przy zmianie porządku wersorów otrzymamy analogicznie

e2 = T21

Ogólnie, związek

(2.3)

będziemy uważali za definicję składowych tensora T w układzie współrzędnych 
*1 X2X3.

Wróćmy teraz do problemu przedstawienia wektora Tq. W układzie xjx2x3 
wektor q możemy zapisać w postaci

4 = Qi ^1+^2 e2 + q3 e3

Wobec tego oraz na podstawie równ. (2.2)

Tq = qi^e1 + q2Te2 + q3 Te3

Ponieważ
e1Tei = Tli e2Tą = T2i e3Tą = T3i

zatem
Te; = Tu er + T2ie2 +T3ie3 .
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oraz

T4 — (Tn ej + T21 e2+ T31 e3) +
+ 42(712 el + ^22 g2+ ^32 e3) +

+ 43(713 + 7^3 e2 + 7^3 e3) =

= (Tli 4i + 712 42+ 7i3 43) ci +

+ (721 41 + 7^2242+ 7’2343) C2 +

+ (73i 4i + Ts2 42 + 733 43) e3 (2-4)

Przy użyciu wskaźników rozpisanie wektora Tq na składowe ma krótszą postać

T4 = (7] j qj) «i + (T2J qj) e2 + (T3j qj) e3 =
(2.5)

W zapisie równ. (2.5) zastosowaliśmy dwukrotnie konwencję automatycznego 
sumowania po powtarzającym się wskaźniku, z opuszczeniem znaku

Wykonanie mnożenia wektora przez tensor, jak też i różnych przekształceń 
wektora lub tensora do nowego układu współrzędnych, staje się znacznie bardziej 
przejrzyste, jeśli zastosujemy operacje znane w rachunku macierzowym. W celu 
ich zastosowania przypiszemy tensorowi macierz

Tii 7] 2 7] 3 

721 7^22 +23

Tsi T32 7^3

wektory zaś traktować będziemy jak macierze jednokolumnowe

Symbolowi qT odpowiada macierz jednowierszowa (transponowana)

qT = (4142 43)

(2.6)

(2.7)

(2.8)

W powyższym zapisie iloczyn Tg równoważny jest mnożeniu dwóch macierzy

7)i 7j 2 7i3

T4 = T21 722 723

_T3i 732 7-33 (
4i

42

43

(2.9)

Za pomocą tej symboliki można przedstawić w prostej postaci również inne 
działania na wektorach i tensorach. Na przykład iloczyn skalarny 5 wektorów p i 
q ma postać '

S = pTq = qTp (2.10)
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W myśl definicji (2.1) wynik mnożenia wektora q przez tensor T jest zawsze jakimś 
nowym wektorem p. Składowe tego wektora podaje równ. (2.4) lub (2.9). Zwróćmy 
uwagę na fakt, że kierunki p i q są na ogół różne. Kąt zawarty między nimi 
możemy obliczyć z definicji iloczynu skalarnego (2.10); korzystając z niej, mamy

COS(p MIpI M Irl (2.11)

gdzie symbole |q| i |p| oznaczają długości obu wektorów. Pewne szczególne 
sytuacje, w których wektory p i q są do siebie równoległe, mają duże znaczenie 
zarówno w algebrze tensorów, jak i w fizyce kryształów; zajmiemy się nimi w p. 
2.7.

Związki między dwoma wektorami typu (2.1) są bardzo częste w fizyce, na 
przykład

D = s0 eE

gdzie D jest wektorem indukcji elektrostatycznej, E — wektorem natężenia pola 
elektrycznego, e0 — bezwzględną przenikalnością dielektryczną próżni, s zaś 
względną przenikalnością ośrodka. Zazwyczaj s ma właściwości tensora. Podobnie 
w uogólnionym prawie Ohma

j =

gdzie j jest gęstością prądu przewodzonego, tr jest przewodnictwem właściwym 
materiału i też ma właściwości tensora.

Przyjrzyjmy się bliżej tej ostatniej relacji. Załóżmy wpierw, że u nie zależy od 
kierunku krystalograficznego, tj. mamy do czynienia z materiałem izotropowym. 
W takim razie każda składowa j jest proporcjonalna do odpowiedniej składowej E 
z tym samym współczynnikiem proporcjonalności, jk = aEk, k = 1, 2, 3, wobec 
czego wektory j i E są do siebie równoległe (rys. 2.1).

W materiale anizotropowym przewodnictwo zależy od kierunku. W pewnym 
szczególnym układzie współrzędnych X1X2X3 (układ osi głównych), do którego 
najwygodniej jest odnosić opis przewodzenia prądu, będziemy mieć trzy stałe 
materiałowe alt a2, <r3, na ogół różne, zwane głównymi składowymi przewodnic­

Rys. 2.1. Wektory E i / w materiale izotropo­
wym (przypadek płaski)

Rys. 2.2. Wektory E i / w materiale anizotropo­
wym (przypadek płaski)
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twa elektrycznego. W takim przypadku winniśmy napisać

jk = ^kEk k = 1,2,3

Jeśli et oznaczają wersory w układzie X1Ar2A'3, to wektor

j = o-! E, er + a2 E2 e2 + <r3 E3 e3

nie jest równoległy do wektora E (rys. 2.2). W ogólniejszym przypadku dowolnie 
zorientowanego i ortogonalnego układu Xi.v2x3 zależności j(E) mają charakter 
związków liniowych o postaci analogicznej do równ. (2.4)

Jk = ^kiEt k = 1,2,3

Widzimy, że opis przewodnictwa elektrycznego kryształu w przypadkowo dobra­
nym układzie współrzędnych wymaga dziewięciu stałych materiałowych akl, stano­
wiących składowe tensora przewodnictwa właściwego. Zobaczymy później, że nie 
wszystkie są niezależne.

Warto zauważyć, że anizotropia przewodnictwa materiału pociąga za sobą 
wystąpienie tzw. przepływów poprzecznych. Jeśli bowiem pole elektryczne przyło­
żone jest na przykład w kierunku osi x15 czyli E(Er, 0, 0), to mamy nie tylko ji 
= cr1£1, lecz także j2 = <t21 E.. oraz j3 —a3lE1. Tym samym istnieją niezerowe 
składowe wektora gęstości prądu w kierunkach prostopadłych do kierunku przyło­
żonego pola.

Wielkości fizyczne o charakterze tensorowym, którymi będziemy się intereso­
wali w tej książce, należą do grupy tensorów o dziewięciu składowych, noszących 
nazwę tensorów drugiego rzędu. Wektory o trzech składowych możemy formalnie 
uważać za tensory pierwszego rzędu. W tej nomenklaturze wielkościom stałym 
odpowiadają tensory rzędu zerowego. Znane są również tensory rzędu wyższego 
niż drugi, na przykład tensor współczynników piezoelektrycznych lub tensory 
opisujące właściwości sprężyste materiału.

Tabela 2.1

Przykłady tensorów drugiego rzędu

Wektor 
przyłożony q

Wielkość 
tensorowa T

Wektor 
indukowany p

Związek

Natężenie pola 
elektrycznego
Natężenie pola 
elektrycznego 
Gradient 
temperatury 
Natężenie pola 
magnetycznego 
Natężenie pola 
elektrycznego

właściwe przewodnictwo 
elektryczne
przenikalność 
dielektryczna
właściwe przewodnictwo 
cieplne
przenikalność 
magnetyczna 
polaryzowalność 
elementu strukturalnego

gęstość natężenia 
prądu
indukcja 
elektrostatyczna 
gęstość prądu 
cieplnego 
indukcja 
magnetyczna 
moment 
dipolowy

j = cE = — uPK

D = £0 sE

h = -kFT

B = p0 pH

p = &E
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Sens fizyczny poszczególnych składowych tensora drugiego rzędu możemy 
rozumieć w następujący sposób. Niech w przykładzie z przewodnictwem elektry­
cznym pole jest przyłożone w kierunku x2, natomiast gęstość prądu mierzona jest 
w kierunku osi x3; wówczas

j3 = g32E2 oraz <r32 = j3/E2

Wyrażenie to podaje sposób pomiaru składowej <r32 i możemy je uważać za 
eksperymentalną interpretację tej składowej. Ogólniejszą definicję wartości wielkoś­
ci tensorowej w zadanym kierunku podamy w p. 2.5.

Przykłady różnych wielkości, którym odpowiadają tensory drugiego rzędu, 
zestawione ■ są w tab. 2.1.

2.2. Tensory symetryczne i antysymetryczne

Jak wynika z poprzedniego paragrafu, iloczyn skalarny e; (Te7) jest z definicji 
równy składowej tensora T. Składowa ta jest na ogół różna od 7}f = e7Tą. 
Mogą zajść dwie sytuacje szczególne, stanowiące podstawę klasyfikacji tensorów 
drugiego rzędu na symetryczne i antysymetryczne. Mianowicie, jeżeli

TtJ = Tn (2.12)

wówczas również
qTv — vTq

dla dowolnych q, v i tensor T jest symetryczny. W przypadku gdy

(2.13) 
lub

qTv = —vTq

T jest tensorem antysymetrycznym.
Symetryczny tensor ma postać

711 2] 2 713
Ts= T12 T22 T23 (2.14)

_2i3 2^3 7^3_
czyli ma najwyżej sześć różnych składowych. Dla tensora antysymetrycznego
natomiast mamy

oraz

Tu = - Tu czyli Tu = 0

0 71 2 713 0 212 7i3

T =a ' T21 0 223 = -T12 0 723 (2.15)
_T31 232 0 _ _ 713 -t23 0
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Interesujące jest, że tensor antysymetryczny drugiego rzędu można zastąpić wekto­
rem. Jest tak dlatego, że — jak zobaczymy później — tensory te opisują obrót 
ciała sztywnego. Trzy niezerowe składowe Ta zawierają bowiem wszystkie trzy 
informacje potrzebne do zdefiniowania takiego obrotu: wielkość (kąta obrotu), 
kierunek (osi obrotu) i zwrot. Aby tę równoważność zobaczyć, oznaczmy składowe 
Ta w następujący sposób:

712 = ~ ^21 = ~ ^3

723 — ~ ^32 — — ^1

(2.16)

przy czym relacje między wskaźnikami odpowiadają porządkowi antycyklicznemu. 
Mamy wówczas

Ta' q = e3 (— T3 q2 + T2 q3) + e2(T3 qL — 7] q3) + e3 (— T2q3 + 7j q2)

Wyrażenia w nawiasach są niczym innym, jak składowymi iloczynu wektorowego, 
w którym jednym z czynników jest wektor T, o składowych (2.16). Zatem

q=Txq (2-17)

Tensory można dodawać, a więc także rozkładać je na sumę dwu lub więcej 
składników. Jeśli bowiem słuszna jest relacja

T^ = Tj9+T2q

to także

T = Tj+T2 (2.18)

W szczególności dowolny asymetryczny tensor T możemy jednoznacznie rozłożyć na 
tensor symetryczny Ts i antysymetryczny Ta. Mamy bowiem

oraz
rik = mik+mik 

Tki=mik-mik
(2.19)

Stąd

oraz

Tii 2(T12+T21) ^(T13 + T31)
722 1(723+ 7^)

T33

0 i(T12-T21) ^-^i)

1(723 — 732)

0

(2.20)

(2.21)
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2.3. Właściwości transformacyjne wektora i tensora

Przypuśćmy, że mamy zadany tensor T wiążący wektory p i q w zależność 
p = Tq. W ortogonalnym układzie współrzędnych x1x2x3 składowe T mają 
określone wartości Tik. Wybieramy teraz nowy układ współrzędnych xjx'2X3, też 
ortogonalny i prawoskrętny. Jakie będą składowe wektorów p' i q' w tym nowym 
układzie? Jak zmienią się składowe tensora, Odpowiedź na to pytanie stanowi 
treść zagadnienia, zwanego transformacją składowych wektora lub tensora przy 
zmianie układu współrzędnych.

Ogólnie biorąc, zmiana układu współrzędnych może wyniknąć na skutek 
działania dwóch różnych operacji:

1. Równoległego przesunięcia układu współrzędnych. Przy takim przesunięciu 
osie układu nowego są równoległe do odpowiednich osi układu starego, tj. xx ||xj, 
x2||x2, x3||x^. Przy takiej operacji zmieniają się współrzędne końca i początku 
wektora p, ale każda z jego składowych, p ei = |p|coscp,, i = 1, 2, 3, nie ulega 
zmianie. W takim razie

p' = P 4 = 9 (2.22)
Jesu tensor w układzie x- oznaczymy przez t, to możemy napisać p' = xq’, ale 
także p=Tq. Stąd, wobec (2.22)

t = T (2.23)

Składowe tensora również nie ulegają zmianie wskutek równoległego przesunięcia 
układu współrzędnych.

2. Obrót układu współrzędnych wokół jego początku 0. Obrót taki można 
opisać za pomocą macierzy c, stanowiącej tabelę kosinusów kierunkowych nowych 
osi x- względem układu osi starych, x;

^1 *2 *3

xj Cli C1 2 C1 3 (2.24)
*2 C21 C22 C23

X3 C31 C32 c3 3

Na przykład element c21 tej macierzy jest kosinusem kąta zawartego między 
osiami x2 i Macierz c ma tę właściwość, że

det c = ± 1 (2.25)

przy czym znak ( + ) obowiązuje dla tak zwanego obrotu „właściwego”, tj. nie 
zmieniającego skrętności układu, znak ( —) występuje zaś wtedy, gdy skrętność 
ulega zmianie na przeciwną. Ponadto dla macierzy c słuszny jest związek

c~1 = cr (2.26)

w którym c“1 oznacza macierz odwrotną, a cr jest macierzą przestawioną 
(transponowaną).
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Za pomocą macierzy c możemy wyrazić wektory w nowym układzie współ­
rzędnych w następujący sposób

p' = cp oraz q' = cq (2.27)

Równanie (2.27) przedstawia prawo transformacji wektora. Transformacja odwrotna 
ma postać następującą

p = c~lp'=cTp' oraz q = cTq'

Można łatwo dowieść, że transformacja (2.27) (także odwrotna) ma tę właściwość, że 
nie zmienia długości wektora, tj. |pj = |p| oraz |gj = |g|.

Przejdźmy obecnie do określenia związku między składowymi tensora r w 
układzie x- i tensora T w układzie x,, przy czym oba układy związane są 
zależnością

a' = ca- (2.28)

x' oraz x oznaczają odpowiednio wektory o składowych xjx2X3 i x1x2x3. 
Spełnione są następujące równości

p = cp = cTq

oraz

p' = rq' = rcq

Wynika stąd, że T i r spełniają ogólny związek

rc = cT (2.29)

z którego możemy otrzymać, na przykład, r w nowym układzie współrzędnych

t = cTcr (2.30)

Transformacja odwrotna ma postać

T = crxc

W zapisie wskaźnikowym równ. (2.30) przedstawia się następująco: 

^ik Tm Tmn C^ C^m C[in Tma

a pełne rozwinięcie ma postać

^12 Tj 3

T22 T23

^32 T33

C11 C21 C31 

c12 c22 c32 

c13 c23 c33

Transformacja (2.30) nie zmienia śładu tensora, czyli Tn+t22 + t33 = Tu + T22 
+ T33 lub

Trt = TrT (2.31)
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Korzystając z tej właściwości śladu możemy wprowadzić nową wielkość <T>, 
zwaną średnią wartością wielkości fizycznej T

Tr t = TrT = 3 <T> (2.32)

Takie wielkości mierzymy przeprowadzając eksperyment, w którym próbką jest 
drobnokrystaliczny i starannie wymieszany proszek badanej substancji lub pastyl­
ka sprasowana z proszku.

Właściwości transformacyjne wielkości fizycznych stanowią ważną ich cechę, 
związaną w istotny sposób z ich strukturą matematyczną. Zachowanie się wielkoś­
ci fizycznej przy zmianie układu współrzędnych może stanowić podstawę jedno­
znacznego jej zaklasyfikowania. Wielkość fizyczna, która nie zależy od wyboru 
układu współrzędnych w sensie dotychczas dyskutowanym, jest skalarem. Wiel­
kość, której składowe transformują się według prawa (2.27), jest wektorem. Wresz­
cie, jeśli składowe wielkości fizycznej transformują się według prawa (2.30), jest ona 
tensorem drugiego rzędu. Składowe tensorów wyższych rzędów podlegają bardziej 
złożonym prawom transformacji — nie będziemy ich tu omawiać.

Wśród różnych układów współrzędnych xj x2 x3 istnieje zawsze taki szczególny 
układ X3X2X3, w którym tensor T przyjmuje postać diagonalną

J11 *12 *13
^21 T22 T23

?31 ^32 T33

Tj 0 0 
0 r2 0 
0 0 r3

Taki układ nosi nazwę układu osi głównych (osi własnych) tensora, r; są zaś jego 
wartościami głównymi (własnymi). Sposobami sprowadzania tensora do układu osi 
głównych zajmiemy się w p. 2.7.

2.4. Pojęcie kwadryki

Rozważmy właściwości równania

Xj = 1

Jeśli przyjmiemy, że = Sj;, to po rozpisaniu otrzymamy

Sn xl + S22x2 + S33xl + 2S12xl x2 + 2S13xr x3 + 2S23x2x3 =

(2.33)

Równanie to przedstawia powierzchnię drugiego stopnia, zwaną kwadryką, o 
środku symetrii leżącym w początku układu współrzędnych. Powierzchnią taką 
może być elipsoida lub hiperboloida.

Oznaczmy przez r(x1x2x3) wektor łączący początek układu współrzędnych z 
dowolnym punktem tej powierzchni. Równanie (2.33) możemy wówczas zapisać 
krócej w postaci

rTSr = 1 (2.34)

Przypuśćmy teraz, że zmieniamy układ współrzędnych przez obrót wokół 0 tak, że 
r’ = cr, czyli r'r = rTcr. Jak zmienią się współczynniki kwadryki Jeśli w
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nowym układzie macierz tych współczynników oznaczymy przez R, to możemy 
napisać równość

r'TRr' = rT {cTRc} r = 1 (2.35)

Ponieważ równ. (2.35) opisuje ‘ tę samą kwadrykę co równ. (2.34), musi być 
spełniona równość S = cTRc, czyli

R = cSc' (2.36)

Wynika z tego, że nowe współczynniki kwadryki otrzymuje się przez transformację 
identyczną z (2.30), opisującą przekształcenia składowych tensora przy obrocie 
układu współrzędnych. Wobec tego powierzchnia opisywana równ. (2.33) może być 
uznana za geometryczny obraz tensora S.

Kwadryka posiada również osie główne, a ich kierunki pokrywają się z osiami 
głównymi X2 X3 tensora. Każdy przekrój płaszczyzną, przechodzącą przez dwie 
z tych osi, jest przekrojem głównym kwadryki (tensora). Równanie kwadryki 
zapisane w układzie osi głównych

Si Xj + S2X22 + S3 Xl = 1 (2.37)

nie zawiera wyrazów mieszanych. Jeśli wszystkie S, są dodatnie, to porównanie ze 
standardową postacią równania elipsoidy

wskazuje, że kwadryka jest elipsoidą o długościach półosi (rys. 2.3)

Sr1/2 (2.39)

Rys. 2.3. Kwadryka jest geometryczną reprezentacją 
równania rrSr = 1; układ osi głównych, S, > 0

Jeśli jeden z trzech współczynników jest ujemny, to kwadryka ma kształt hiperbo- 
loidy jednopowłokowej (rys. 2.4); przy dwóch współczynnikach ujemnych hiperbo- 
loida jest dwupowłokowa (rys. 2.5). Przy wszystkich trzech współczynnikach 
ujemnych powierzchnia (2.37) jest urojoną elipsoidą.
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Kwadryka jest więc powierzchnią wyznaczoną przez końce wektorów r,' które 
spełniają równ. (2.34). Na rysunku 2.6 przedstawiono w układzie współrzędnych 
A j x2, zorientowanym przypadkowo względem osi głównych, przekrój główny 
kwadryki o współczynnikach

Sj j = 3,5 S22 = 5 S12 = —6

Rys. 2.4. Dla Sj, S, > 0, S3 <0 kwadryka jest 
hiperboloidą jednopowłokową

Rys. 2.5. Dla Sj, S2 <0, S3 >0 kwadryka jes 
hiperboloidą dwupowłokową

Rys. 2.6. Przekrój kwadryki o równaniu 3,5x( + 5x2 — 6.Xj x2 = 1

Przekrój ten opisuje równanie

3,5xf+ 5x2 —6xj x2 = 1

2.5. Wartość wielkości fizycznej w zadanym kierunku
Sprecyzujemy obecnie pojęcie wartości wielkości tensorowej w określonym 

kierunku, tzn. spróbujemy uzyskać odpowiedź na pytanie, jaka jest na przykład 
przenikalność dielektryczna kryształu w kierunku [011J? Pytanie to można rów­
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nież odwrócić: mierzymy szereg wartości Tt w różnych kierunkach, określonych 
wektorem jednostkowym /. Jak z tego zbioru danych otrzymać T? Odpowiedzią na 
to „odwrócone” pytanie ząjmiemy się w następnym paragrafie.

Przypuśćmy, że związek

P = Tq 
lub

Pi =

rozpatrujemy dla kryształu izotropowego. W takim przypadku

T = T1

czyli tensor T jest iloczynem jednej liczby T przez macierz jednostkową 1. W 
konsekwencji wektory p i q są do siebie równoległe, wobec czego możemy napisać

Tq = |p|/|9| (2.40)

Wartość T w dowolnym kierunku q uzyskujemy więc przez podzielenie długości 
wektora p przez długość q. Oczywiście wynik tego dzielenia w każdym kierunku 
będzie taki sam.

W ogólnym przypadku p nie jest równoległy do q. Możemy jednak zachować 
słuszność definicji (2.40) pod warunkiem, że przez wartość w liczniku rozumieć 
będziemy składową wektora p w kierunku q, czyli p^q (rys. 2.7). Definicja (2.40) 
przyjmie wtedy ogólniejszą postać

Rys. 2.7. Wartość wielkości fizycznej p = Tq w kierunku q 
reprezentowana jest przez długość rzutu p na q

Ponieważ = pT ■ q/\q\ = qT-p/\q\, jako wynik ogólny otrzymujemy
7j = /rT/ (2.42)

gdzie l = q/|^| jest wektorem jednostkowym o kierunku q. Wektor ten ma składo­
we /15 /2, /3, które są kosinusami kierunkowymi q w układzie xr x2x3. Rozpisując
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równ. (2.42) otrzymamy

— ^11 li + T22l2 + T33 /3 + 27]2 /i l2 + 2T13lt l3 + 2T23l2l3 (2-43)

Wyrażenie to przyjmuje szczególnie prostą postać w układzie osi głównych tensora 
T. Ponieważ w tym układzie = 0 dla i k, mamy

7] = /T t/ = t1/? + t2^ + t3^ (2-44)

Równanie (2.42) lub (2.44) przedstawia nieskończony zbiór punktów tworzą­
cych powierzchnię, zwaną powierzchnią wielkości fizycznej T. Jeżeli wszystkie 
współczynniki tego równania, czyli wszystkie w równ. (2.44) są dodatnie, to 
powierzchnia wielkości fizycznej jest elipsoidą trójosiową. Przypadek taki dla 
względnej przenikalności dielektrycznej, s, przedstawiony jest na rys. 2.8u. Punkt P 
leżący na elipsoidzie przedstawia wartość s w kierunku określonym wektorem l.

Rys. 2.8. a) Elipsoida względnej przenikalności dielektrycznej: + = 1; b) kwadry-
ka względnej przenikalności dielektrycznej: rTSr= 1

Rys. 2.9. Powierzchnia współczynnika rozszerzalności termicznej i jej przekroje: a11; a22 >0, a33 <0
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Dla porównania przedstawiono na rys. 2.86 obraz kwadryki o osiach odpowiada­
jących rys. 2.8a. Widzimy, że kolejność osi pod względem ich długości uległa 
zmianie; przy tym każdy punkt Q(X1X2^3) kwadryki o współczynnikach S; 
spełnia równ. (2.37). W tym przypadku obie powierzchnie są elipsoidami. Jeśli 
jednak choćby jeden z współczynników równ. (2.44) jest ujemny, to wygląd 
powierzchni wielkości różni się zasadniczo od kwadryki. Na przykład na rys. 2.9

Rys. 2.10. Przekrój powierzchni wielkości fizycznej opisywany równaniem: 
T(<p) = 0,625 cos2 —0,250 sin2 <p

przedstawiona jest powierzchnia współczynnika rozszerzalności termicznej kryszta­
łu, dla którego a115 a22 > 0, zaś «33 < 0. Przekrój X2 X3 zawiera wartości ujemne. 
Ilościowy obraz przekroju (001) powierzchni lTTl dla Tn = 0,625, T22 = —0,25 
przedstawiony jest na rys. 2.10, przy czym l ma składowe (cos<p, sin<p, 0).

2.6. Przekrój tensora płaszczyzną (010) 
w układzie jednoskośnym
(metoda najmniejszych kwadratów)

Wyrażenie (2.42) jest bardzo przydatne w badaniu kształtu przekroju tensora 
zadaną płaszczyzną krystalograficzną. Zagadnienie to jest ważne z doświadczalne­
go punktu widzenia, ponieważ często mierzymy kilka do kilkudziesięciu punktów 
takiego przekroju, na przykład przewodnictwa elektrycznego określonej płytki 
krystalicznej w znanych kierunkach, a następnie chcemy uzyskać z tych danych 
syntetyczny obraz przewodnictwa elektrycznego w owej płaszczyźnie, z możliwie 
wiarygodnymi wartościami osi głównych tego przekroju. Jest to typowe zagadnie­
nie na zastosowanie metody najmniejszych kwadratów, która pozwala na wyzna­
czenie wartości tych stałych z określoną dokładnością. Taka metoda jest szczegól­
nie użyteczna wówczas, gdy nie znamy z góry kierunków osi głównych przekroju, 
jak np. w płaszczyźnie (010) układu jednoskośnego. Zajmiemy się wpierw znalezie­
niem równania przekroju, a następnie obliczeniem długości i orientacji osi głów­
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nych przy zastosowaniu rachunku wyrównawczego. Podane postępowanie może 
być, oczywiście, zastosowane i do innego przekroju tensora.

Orientację elipsoidy wielkości w komórce elementarnej kryształu jednoskośne- 
go pokazano na rys. 2.11, sam przekrój zaś na rys. 2.12. Kąt 0O, zawarty między

Rys. 2.11. Orientacja elipsoidy wielkości w jed- 
noskośnej komórce elementarnej

Rys. 2.12. Rozkład ważnych kierunków w pła­
szczyźnie (010) jednoskośnej komórki elementar­
nej

osią i osią a kryształu, jest jedynym przy tej symetrii stopniem swobody 
orientacji przekroju względem osi krystalograficznych. Innymi słowy, kąt ten musi 
być wyznaczony doświadczalnie, ponieważ na ogół nie wiemy, z jakich danych 
strukturalnych ani za pomocą jakiej metody można by go obliczyć.

Mierzymy T w kierunku

(
cos (cp — 0O)

0
sin(<p —0O)

względem osi głównych. Wobec tego

T((p) = (cos(<p-0o) 0 sin(<p — 0O))
tj 0 0
0 r2 0
0 0 r3

cos(<p — 0O) 
0 

sin (<p — 0O)
= Ti cos2(<p —0o) + t3 sin2(<p —0o) (2.45)

Jest to równanie przekroju tensora płaszczyzną (010). Znanymi wielkościami są (p, 
T(<p), szukanymi t15 r3, 0O. Za pomocą prostych przekształceń trygonometry­
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cznych

2T(<p) = Tj cos2(ę> —0o) + t3 sin2(<p —0o) + t!+r3 —

- Ti sin2(ę>- 0O) — t3 cos2(<p- 0O) =

= (Tl +T3) + (T! — T3)cos2(<p —0o)

równ. (2.45) można doprowadzić do postaci

T(<p) = A + B cos 2cp + C sin 2<p (2.46)

gdzie 

. Ti+t3 Tj—T3 Tj— t3 .
A =—-— B =—-—cos20o C=—-—sin20o (2.47)

Równanie (2.46) jest prostsze do prowadzenia dalszych obliczeń od równ. (2.45), 
ponieważ jest liniowe względem szukanych wielkości A, B, C.

Przypuśćmy, że z doświadczenia znamy n par wielkości <p;, T^} (i 
= 1, 2, ..., n). Jeśli dla uproszczenia oznaczymy T^) = 7j, to układ równań typu 
(2.46) możemy zapisać w postaci macierzowej

T=r M (2.48)

przy czym macierze T, r i M mają postać następującą:

Macierze T i r są znane, poszukiwana jest macierz M.
Wskutek popełnionych błędów wartości T{ różnią się od r^Mj; zbiór różnic 

równy jest macierzy błędów Z

T-TM = Z (2.50)

czyli

Zi = Ti-TikMk

Zasada najmniejszych kwadratów wymaga, by suma kwadratów błędów osiągnęła 
najmniejszą wartość, przy czym uzyskuje się to przez dobór odpowiednich wartoś­
ci parametrów A, B, C. Żądamy więc, by

Z^Z, = Min

co można osiągnąć pod warunkiem, że

dZt
Z~ = Zi-rik^Q 

5Mk
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Po uwzględnieniu równ. (2.50) otrzymujemy

= 0

rr T= tt rM

czyli

M = (Tr r)-1 (rT T) (2-51)

rTr jest macierzą zawsze kwadratową — w tym przypadku 3x3. Równanie (2.51) 
prowadzi do obliczenia optymalnych wartości A, B, C, a następnie t15 t3, 0o.

W opisywanej sytuacji znamy orientację płaszczyzny przekroju, co ułatwia 
znalezienie głównych wartości i t3 tensora w tej płaszczyźnie. W ogólniejszej 
orientacji próbki możemy nic o orientacji osi tensora nie wiedzieć; trzeba wtedy 
posłużyć się ogólniejszym związkiem (2.43). Warto również wprowadzić do tych 
obliczeń wagi statystyczne w{ każdego pomiaru. Daje to możliwość uwzględnienia 
w rachunku mniej dokładnych pomiarów z mniejszym udziałem niż pomiarów 
dokładniejszych. Sposób obliczenia konkretnych wartości zależy od przyjętej 
definicji w; — a co za tym idzie — od zastosowanej doświadczalnej metody 
pomiaru rozważanej wielkości fizycznej. Jeśli nie ma potrzeby rozróżniania pomia­
rów ze względu na ich dokładność, można w końcowych wzorach położyć w, = 1. 
Po wprowadzeniu w,-, r-te równanie ma wartość T w kierunku ma postać

wr r»r T^’ = wr (IW T^+w, (I?)2 T22 + wr (Z«)2 T33 +

+ 2wr W 7) 2 + 2wr /w W 7] 3 + 2wr W T23 (2.52)

Ogólnie w zapisie macierzowym

T = VM

przy czym macierze T T i M obecnie zdefiniowane są w następujący sposób 

r =
/Wi (/V1)2 wi (zy1)2 wt (Z’/’)2

( MZ?’)2 W2(Z(22>)2 w2(/<2))2 w2 Z<2> Z<22> w2 Z<2>

Y^m2 Wn(lw M/^)2

(2.53)
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przy czym musi być n 6. Znany już rachunek prowadzi do równania (2.51), skąd 
otrzymujemy składowe tensora w ogólnym układzie współrzędnych, tj. takim, do 
którego odnoszone były pomiary. Wyznaczenie wartości i kierunków osi głównych 
stanowi w tym przypadku osobny problem, o którym będzie mowa dalej.

2.7. Osie główne tensora
Wyznaczenie wartości i osi głównych tensora, zadanego w postaci ogólnej, jest 

ważnym problemem analitycznym z kilku powodów. Po pierwsze, często interesuje 
nas odpowiedź na pytanie, w jakim kierunku wielkość fizyczna materiału anizotro­
powego osiąga wartość ekstremalną? Jak duże są te wartości, lub inaczej, jak duża 
jest anizotropia kryształu? Jaka jest orientacja przekroju izotropowego, tj. pła­
szczyzny, w której wielkość tensorowa ma tę samą wartość w dowolnym kierunku? 
Odpowiedzi na te pytania mają znaczenie praktyczne, ponieważ pozwalają wybrać 
sposób wycięcia z kryształu płytki o najsilniejszej anizotropii lub, przeciwnie, 
płytki izotropowej. Zarówno jeden jak i drugi rodzaj płytek znajduje zastosowanie 
w praktyce. Na przykład w badaniach z dziedziny optyki kryształów płytka 
wycięta w taki sposób, że w jej płaszczyźnie leżą najbardziej różniące się współ­
czynniki refrakcji wytwarza maksymalną różnicę faz obu promieni i może służyć 
jako płytka opóźniająca. Płytka wycięta w drugiej orientacji może być użyta 
natomiast jako okienko lub element konstrukcyjny kuwety w aparaturze spektro- 
fotometrycznej. '

Po wtóre, znajomość orientacji osi głównych tensora ułatwia wpisanie elipsoidy 
wielkości fizycznej w komórkę elementarną kryształu. Dodatkowym wymogiem 
jest tu zasada Neumanna, przewidująca możliwe korelacje między symetrią i 
orientacją elipsoidy wielkości a symetrią kryształu i orientacją osi krystalografi­
cznych. Tą drogą możliwe jest uzyskanie dalszych korelacji między, na przykład, 
kierunkiem najlepszego-przewodnictwa elektrycznego a rozkładem cząsteczek w 
komórce elementarnej kryształu.

Spośród różnych metod żnajdowania wartości własnych i wektorów własnych 
przedstawimy dalej dwie metody. Pierwsza z nich, algebraiczna, opiera się na 
definicji wektorów własnych i wartości własnych macierzy. Dla macierzy drugiego 

•stopnia, wyłącznie nas tu interesujących, prowadzi ona do równania trzeciego 
stopnia, mającego zawsze rozwiązania analityczne. Macierze stopnia wyższego niż 
drugi prowadzą do równań wyższych stopni, nie zawsze łatwych do rozwiązania. 
Dlatego przedstawimy również metodę znajdywania wektorów i wartości własnych 
za pomocą kolejnych przybliżeń, dającą zawsze wyniki numeryczne — także i w 
przypadku macierzy wyższych stopni. Jest ona prostsza pod względem rachunko­
wym od metody algebraicznej, choć niekiedy bardzo czasochłonna.

2.7.1. Metoda algebraiczna
Zbiór współczynników kwadryki będziemy traktować jako macierz S. 

Równie dobrze moglibyśmy zająć się składowymi Tmn tensora, traktując ich zbiór 
również jako macierz. Iloczyn Sh przy dowolnym wektorze u jest wektorem u', na 
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ogół różnym od u. Jeśli zachodzi równoległość obu wektorów, u'||h, to u jest jednym 
z wektorów własnych macierzy S. Ta równoległość zachodzi wtedy, gdy składowe u' 
są proporcjonalne do odpowiednich składowych u, tj. równaniem wektorów włas­
nych u i wartości własnych A macierzy S jest

Sw = au

czyli

(S —21)h = 0 (2.54)

Symbol 1 oznacza macierz jednostkową.
Rozpisanie równ. (2.54) prowadzi do następującego układu trzech równań

(Sn-z)uj +S12u2 + S13u3 =0
S'21 M1 +(^22 —^)w2 + ^23 w3 = 0

S31 w i + S32 u2 + (S33 — 2) = 0

w których Uj są składowymi jednego z wektorów własnych u(,\ i = 1, 2, 3. Aby 
zbiór tych równań jednorodnych miał nietrywialne rozwiązanie ze względu na u, 
musi znikać wyznacznik tego układu

det(S-21) = 0 (2.55)

Równanie (2.55) jest równaniem wiekowym trzeciego stopnia i określa trzy pier­
wiastki 2i, 22, 23, stanowiące trzy możliwe wartości własne S. Jeśli są one liczbami 
rzeczywistymi, odpowiadają długościom trzech osi głównych kwadryki S.

Podstawiając kolejno 2; do równ. (2.54), możemy obliczyć odpowiadające im 
wektory własne w(1). Sens fizyczny wektora jest taki, że jego składowe określają 
kosinusy kierunkowe osi głównej (i) względem układu współrzędnych x!x2x3, w 
którym zadana jest kwadryka S. Wobec tego na h(,) nakłada się warunek normali­
zacyjny

(u^)T = 1

przeprowadzający je w wektory jednostkowe et

= i/“’’ ą (2.56)

2.7.2. Metoda kolejnych przybliżeń

Podstawą tej metody jest właściwość płaszczyzny n stycznej do kwadryki S w 
tym punkcie, w którym przebija ją dowolnie wybrany wektor q (rys. 2.13). 
Pokażemy [2], że wektor p spełniający relację

p = Sg

jest prostopadły do tej płaszczyzny. W tym celu wybierzmy wektor r|| q, którego 
koniec leży na powierzchni kwadryki, tak że rT Sr = 1; przy tym q = kr, gdzie k
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Rys. 2.13. Wektor p = Sq jest prostopadły do pła­
szczyzny Tt stycznej w tym punkcie do kwadryki S, 
w którym q ją przebija

jest stałą. Stałej tej równy jest iloczyn skalarny rT • p, mamy bowiem

rT • p = rT Sq = krT Sr = k

Wynik ten możemy porównać ze standardowym równaniem płaszczyzny 

rT ■ N = k'

w którym r jest wektorem wykreślonym z dowolnego punktu O i kończącym się 
na płaszczyźnie, N jest zaś wektorem wykreślonym też z O i normalnym do niej. Z 
porównania obu równań wynika, że p musi być prostopadły do n. Wynik ten 
słuszny jest w dowolnym układzie współrzędnych.

Rys. 2.14. Metoda kolejnych przybliżeń: kierunek 
kolejnych normalnych do 7t,, Tt2, n3, ... zbliża się do 
osi głównej X, przekroju

Przypuśćmy teraz, że mamy zadane S w ogólnym układzie współrzędnych x{. 
Na rysunku 2.14 przedstawiono przekrój tej kwadryki w płaszczyźnie XjX2. 
Wybierzmy dowolny wektor Wj leżący w płaszczyźnie przekroju (niekoniecznie 
jednostkowy). Wektor

»2 = S U]

będzie normalny do płaszczyzny stycznej w tym punkcie, w którym ur przebije 
kwadrykę. Powtórne zastosowanie tej operacji daje wektor

u3 = S • u2
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normalny do n2, która jest tym razem styczna do kwadryki w punkcie jej 
przebicia przez wektor u2. Widać, że kierunki wektorów ut, u2, u„ zbliżają się 
coraz bardziej do kierunku osi głównej Normalizacja po n przybliżeniach 
prowadzi do wektora własnego er. Wartość własną można otrzymać z równa­
nia

Sei = / = Aj er

a stąd

Warto zauważyć, że kierunki u„ są zbieżne do kierunku najkrótszej osi kwadryki. Dla 
przyspieszenia tej zbieżności najlepiej wybrać wektor próbny u± w takim kierunku, 
który odpowiada wartości najmniejszej spośród S^. Zbieżność przybliżeń jest o 
wiele wolniejsza, jeśli prócz istnieje jeszcze druga wartość Sjj = Su. W konsek­
wencji możemy otrzymać w ten sposób tylko jeden z trzech wektorów własnych. 
Dla znalezienia e2 trzeba zastosować metodę kolejnych przybliżeń do macierzy 
odwrotnej, S“1, według omówionych już zasad. Trzeci wektor oblicza się z 
iloczynu wektorowego

e3 = Cj x e2

Jeśli tensor zadany jest nie w postaci współczynników kwadryki, lecz składowych 
wielkości fizycznej, to wektor próbny należy wybrać w tym kierunku, w którym 
składowa tensora na przekątnej ma największą wartość.

2.8. Problemy i przykłady

Problem 2.8.1
Wyznaczenie przekroju tensora rozszerzalności termicznej kryształu ortorom- 
bowego

W celu wyznaczenia zależności współczynnika rozszerzalności termicznej krysz­
tału od kierunku, czyli ustalenia anizotropii rozszerzalności termicznej sieci, stosuje 
się często jedną z metod rentgenograficznych, na przykład metodę kołysanego 
kryształu lub metodę Weissenberga. Aby uzyskać'możliwie prosty obraz dyfrakcyj­
ny, oś kołysania powinna być równoległa do jednej z osi krystalograficznych — na

(OM)

(1M)

refleksy 
typu

(w) II II II. 1 1 II II II

1 1 III 1 O 1 III II 1

II 1 II 1 '1 II 11 II

o

rząd 
warstwicy

Rys. 2.15. Warstwice refleksów, charakterystyczne dla metody kołysanego kryształu
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dyfraktogramie pojawiają się wówczas refleksy, odpowiadające węzłom określonej 
płaszczyzny sieci odwrotnej. Przyjmijmy, że w niniejszym przykładzie oś kołysania 
jest równoległa do osi a kryształu, na kliszy fotograficznej pojawią się zatem 
refleksy o wskaźnikach Millera (Ok/), (lk/), (lk/), (2k/) itd., zgrupowane w warstwice 
(rys. 2.15). Do naszych celów użyteczne są jedynie refleksy (Ok/) warstwicy zerowej, 
ponieważ tylko dla nich można wyznaczyć z wystarczającą dokładnością zmiany 
braggowskiego kąta rozproszenia, spowodowane zmianą temperatury. W pracach 
tych używa się ekranów metalicznych, eliminujących refleksy innych warstwie, i na 
tej samej kliszy wykonuje się dwa zdjęcia: w temperaturze t1 (najczęściej tempera­
tura ciekłego azotu) i t2 (najczęściej temperatura pokojowa). Fragment takiej kliszy 
przedstawiono na rys. 2.16. Obok dwóch refleksów i s2 narysowany jest ślad 
wiązki pierwotnej, przesłonięty w środku cieniem małego kryształku, użytego jako 
próbka.

Rys. 2.16. Kąty odbłysku Bragga dla dwóch róż­
nych temperatur

Korzystając z prawa Braggów możemy napisać

'2dhkl sin 6 = nż

gdzie dhU jest odległością dwóch sąsiednich płaszczyzn sieciowych o wskaźnikach 
(kk/), 0 — odpowiadającym tym płaszczyznom kątem odbłysku, A — długością fali 
użytego promieniowania monochromatycznego, a n — rzędem dyfrakcji. Przyrost 
temperatury powoduje zmianę dhkl, a to pociąga za sobą zmianę kąta 0

d (dhkl) sin 0j + dhkl <5 (sin 0) = 0 = 5 (dhkl) sin 0t + dhkl cos 0X 50

Stąd

n Mm) ~ — 50
I hk l i — -———————■— ------------
dhkl(t2~tl) (^2 —

(2.57)

Z równania .tego wynika że w celu obliczenia współczynnika rozszerzalności w 
kierunku normalnym do płaszczyzny (/ik/) trzeba znać kąt 0t w temperaturze 
niższej i jego zmianę przypadającą na 1 K. Łatwo też zauważyć, że w celu 
otrzymania dokładniejszych wyników należy wybrać refleksy o dużym kącie 
odbłysku (refleksy wysokokątowe).

Mimo wszystko nie jest to metoda dokładna z następujących powodów:
1. Ruch termiczny sieci powoduje poszerzenie refleksów i ich rozmycie, co 

prowadzi do określonych błędów w ustaleniu ich położenia.
2. Często nie znajdujemy wystarczająco dużej liczby refleksów o dużym kącie 

odbłysku (20 > 80°), potrzebnej do wyznaczenia wybranego przekroju tensora. 
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Korzysta się wtedy również z refleksów niskokątowych, dla których błąd wyzna­
czenia a jest większy.

3. W celu uzyskania mierzalnej zmiany położenia refleksów potrzebna jest 
różnica temperatur rzędu 100 K, w wyniku czego współczynnik rozszerzalności 
podany relacją (2.57) należy traktować jako wartość średnią w zakresie temperatur 
tj-ta- Jeśli w tym zakresie rozszerzalność sieci ma charakter nieliniowy, to niczego 
nie możemy się o tym dowiedzieć.

W nowszych pomiarach rentgenograficznych rozszerzalności liniowej korzysta 
się z metody Bonda [4, 5]. Polega ona na bezpośrednim pomiarze kąta dyfrakcji 6 z 
dwu symetrycznych i dających się dokładnie ustalić położeń odbijających kryszta­
łu. Detektorem natężenia wiązki odbitej jest licznik Geigera-Miillera lub licznik 
scyntylacyjny. W sprzyjających warunkach pozwala to zredukować błędy w pomiarach 
6 do wielkości rzędu sekundy kątowej, co umożliwia pomiar zmiany odległości 
między płaszczyznami sieciowymi odpowiadającej zmianie temperatury o 0,01 K.

Wracając do relacji (2.57) warto zauważyć, że przedstawianie kierunkowej 
zależności a za pośrednictwem wskaźników (hkl) jest bardzo niewygodne. Można 
jednak bez trudu przejść od a (hkl) do a(ę>), gdzie cp jest kątem zawartym między 
wybranym kierunkiem krystalograficznym a normalną do płaszczyzn (hkl) (rys. 
2.17). Dla zbioru (Oki)

Znajomość periodów sieci b i c oraz wskaźników (Oki) pozwala obliczyć (p. Jako 
wyniki doświadczalne będziemy uważać pary liczbowe <pt oraz a (<ą) = a,. W 
układzie ortorombowym mamy 60 = 0 (rys. 2.11) oraz

af = A + B cos lep,

«22+a33 D ^22”®33 n z->
A =---- ----- B =---------- C = 0 (2.58)
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Symetria kryształu powoduje, że refleks (Oki) może występować r; razy; jako a,- 
przyjmiemy średnią arytmetyczną r; niezależnych pomiarów

a; = <«/>±(7; (2.59)

gdzie jest średnim błędem wartości średniej. Wagę statystyczną w; definiujemy 
jako miarę dokładności, proporcjonalną do liczby pomiarów i odwrotnie propor­
cjonalną do średniego błędu

rt
W i — — (2.60)

Poszczególne macierze, występujące w równ. (2.51), mają obecnie postać

w a =

Tabela 2.2

(
iv! w1cos2<p1 

1V2 iv2 COS 2(p2

iv„ w„cos2<p„

M =

Dane doświadczalne dla przekroju (Oki) tensora a w 1,8-dinitronafta- 
lenie [6]

i (Oki) (a; ± <t;) • 106, K“1 cos 2<pf /;•

1 020 67,4 ±18,3 1 8 0,437
2 011 65.0 ±8,4 -0,7705 6 0,714
3 021 55,7 ± 5,6 -0,3174 8 1,428
4 031 59,1 ±17,9 0,0768 4 0,223
5 041 28,9 ±8,0 0,3492 3 0,375
6 081 35,8 ±15,8 0,7849 4 0,253
7 023 58,1 ±4,2 -0,8901 4 0,952
8 043 54,9 ±11,9 -0,6255 3 0,252
9 010 47,2± 11,3 0,1803 1 0,088

10 012 65,3 ±11,3 -0,9373 1 0,088

Zbiór wyjściowych danych doświadczalnych otrzymany dla kryształu 1,8-dinitro- 
naftalenu z niezależnych pomiarów 42 refleksów i zgrupowany w 10 punktach 
przekroju (Oki) zestawiono w tab. 2.2 [6]. Na podstawie tej tabeli możemy obliczyć 
liczbowe wartości elementów macierzy a i r

29,454 r0,437 0,4370 "
46,410 0,714 -0,5501
79,540 1,428 -0,4532
13,179 0,223 0,0171
10,838

9,057 10-6K-1 r = 0,375 0,1310
0,253 0,1986-

55,311 0,952 -0,8474
13,835 0,252 -0,1576
4,154 0,088 0,0159
5,746 0,088 - 0,0825
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Zatem

/ 3,9796 -1,5981\
1,5981 1,5058/

a na podstawie równ. (2.51)

/ł(«22+«J3)\
\ — 4,637/ \2 («22 — «33)/

Stąd

a22 = 50,261-lO’6 K“1

a33 = 59,535 10“6 K“1

Po utworzeniu macierzy błędów według równ. (2.50) znajdujemy, że £Z2 
= 1284-10“12K“2, odchylenie standardowe zaś o = 3,8 10“6 K“1. Wobec tego 

główne współczynniki rozszerzalności wynoszą

a22 =(50,3 ±3,8)-10“ 6 K“1

a33 =(59,5±3,8)-10“6 K“1

Postępując w analogiczny sposób z danymi dla drugiego przekroju tensora (/ikO), 
czego szczegóły tu pomijamy, otrzymujemy

an =(117,7±5,3)-10“6 K“1

a22 = (49,0±3,5) • 10“6 K“1

Oba wyniki a22, otrzymane z dwu niezależnych przekrojów, mieszczą się w 
granicach błędów standardowych. Łącząc oba przekroje otrzymamy

an = (117,7±5,3)-10“6 K“1

a22 = (49,6±3,8) • 10“6 K“1 (2.61)

a33 =(59,5±3,8)-10“6 K“1

Problem 2.8.2
Płaszczyzna izotropii w krysztale

Płaszczyzna izotropii w krysztale ma tę właściwość, że określona wielkość 
fizyczna ma taką samą wartość w każdym kierunku, leżącym w tej płaszczyźnie. 
Płytka wycięta z kryształu równolegle do płaszczyzny izotropii ma na przykład 
współczynnik refrakcji jednakowy w każdym kierunku leżącym w płytce, a więc 
nie wykazuje zjawiska podwójnego załamania światła dla promienia padającego 
prostopadle. Oczywiście, położenie takiej płaszczyzny zależy od tego, jaka konkret­
nie właściwość kryształu nas interesuje: płaszczyzna izotropii optycznej nie będzie 
na ogół identyczna z płaszczyzną izotropową pod względem rozszerzalności termi­
cznej.
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Orientację płaszczyzny izotropii można podawać za pomocą kosinusów kierun­
kowych wektora prostopadłego do niej; jest to kierunek charakterystyczny, zależy 
od symetrii kryształu oraz od względnej orientacji osi głównych elipsoidy wielkoś­
ci. W niektórych przypadkach ma on określoną nazwę: w odniesieniu do właściwoś­
ci optycznych kierunki normalne do przekrojów' izotropowych noszą nazwę osi 
optycznych. W diamagnetykach również można mówić o osiach magnetycznych, 
zdefiniowanych w analogiczny sposób (por. p. 5.9).

Rys. 2.18. Normalne i N2 do dwóch płaszczyzn izotropii w krysztale jednoskośnym

Rozważmy rozkład potrzebnych nam kierunków na przykładzie kryształu 
jednoskośnego, podany na rys. 2.18. Osie krystalograficzne a i c leżą w płaszczy­
źnie (010), oś b jest do nich prostopadła. Oś c* jest osią prostopadłą do a i b tak, 
że abc* tworzy ortogonalny układ osi krystalograficznych. Jeśli c jest kierunkiem 
poślizgu w sieci przestrzennej, to układ ortogonalizujemy do a*bc. Dla sprecyzo­
wania sytuacji przyjmiemy, że główne wartości tensora t spełniają relację

O<TJ<T2<T3 oraz T2||b

W takim razie między Tj i t3 istnieje taki kierunek lT = (cos cp, 0, sin tp), że wartość 
t w tym kierunku równa jest t2

Tt cos2 <p + T3sin2 = t2 (2.62)

Warunek ten wyznacza położenie płaszczyzny izotropii Kj. Zauważmy, że istnieje 
jeszcze druga taka płaszczyzna, położona symetrycznie względem Tj. Po niewiel­
kich przekształceniach otrzymujemy z równ. (2.62)

/ _ \l/2
cos <p = I —---- - I (2.63)

Vi~T3/

Jeśli znamy wartości główne tensora, to z równ. (2.63) możemy obliczyć kąt 
zawarty między l i Xt. W odniesieniu do osi krystalograficznych abc* l ma 
orientację lT = {cos ((p — 0O), 0, sin(<p —0O)} (rys. 2.18). Częściej jednak orientację 
płaszczyzn izotropii podaje się za pośrednictwem wektorów do nich normalnych, 
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A', i A2. Kosinusy kierunkowe tych wektorów wynoszą

względem osi X1Ar2^3 Al = {— sin ę? 0 cosę?}
A 2 = ’ — sin(ę> + 2P) 0 cos(<p + 2K)}

względem osi abc* N? = [ —sin(ę> —0O) 0 cos(<p —0O)’
A2 = { — sin(ę> + 2P— 0O) 0 cos(ę? + 2K-0o)} (2.64)

przy czym 2/ oznacza kąt między Ni i A2. Ponieważ 2 / = 180 — 2cp, mamy 
cos 2V = —cos 2ę> = sin2 (p — cos2 <p =

=(*.+^-^=3<o-^ (2.65)

Tj-T3 T1-T3

<r> jest wartością średnią, zdefiniowaną przez (2.32).
Korzystając z równ. (2.65), możemy wyróżnić następujące przypadki:
1. Tl #T2^T3. Mamy wówczas dwa przekroje kołowe elipsoidy wielkości, 

zatem dwa kierunki do nich prostopadłe Aj i A2.
2. |(t1+t3) = t2. W tym przypadku 2K = 90°, czyli At 1A2. Oba przekroje 

są do siebie prostopadłe i zorientowane pod kątem 45° względem XrX3.
3- t3 = r2 (2K = 0) lub Tj = r2 (27 = 180). Obrazem elipsoidy wielkości jest 

elipsoida obrotowa wokół Xy lub X3, a każda płaszczyzna prostopadła do jednej 
z tych osi jest przekrojem izotropowym. W tej sytuacji mamy tylko jeden kierunek 
wyróżniony; jego orientacją względem abc rządzi zasada Neumanna (por. p. 3.1).

4. Tj =t2 = r3. Kryształ o tych właściwościach jest izotropowy, wobec czego 
nie ma w przestrzeni kierunku wyróżnionego. Inaczej mówiąc, każdy kierunek jest 
prostopadły do przekroju izotropowego.

Jak już zauważyliśmy, izotropowe przekroje kryształów mają ważne znaczenie 
zarówno z uwagi na prostotę warunków eksperymentu, jak i praktyczne zastoso­
wania takich płytek. Okazuje się, że również strukturalna interpretacja wyników 
takich pomiarów jest nie tylko możliwa, lecz i interesująca, ponieważ prowadzi do 
poznania rozkładu charakterystycznych kierunków molekularnych w takiej pła­
szczyźnie. Wrócimy do bardziej szczegółowego omówienia tych problemów w 
rozdz. 5 i 6.

Przykład 2.8.3
Wartości własne i osie własne tensora

Znaleźć kierunki osi głównych i wartości główne tensora przewodnictwa elek­
trycznego pewnego materiału, przy czym składowe tensora są następujące 
[Q-1 -m“1]: (7n = 25, a22 = 7, <r33 = 13, <r12 = <r13 = <r2i = <r31 = 0, cr23 = <r32 = 
-3^/3.

W rozwiązaniu tego zadania zastosujemy metodę algebraiczną. W celu znale­
zienia rozwiązań nietrywialnych powinien być spełniony warunek (2.55), czyli

det^-ź^.) =
(25-ź) 

0
0

0 o
(7 —A) -3^/5
-3^3 (13 —A)

= 0
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Stąd
(25->0 j(7 —2)(13 —z) —27] = O 

oraz
= 25

Rozwiązaniem równania drugiego stopnia zawartego w klamrze są pozostałe 
wartości własne

22 = 16 ż3 = 4

Przejdziemy obecnie do obliczenia wektorów własnych.
a) Wartości własnej = 25 odpowiada wektor własny h(1) taki, że

Po rozpisaniu otrzymujemy trzy równania jednorodne 

25^'' = 251/!11

7u(21) —3 = 25u<211

-3y3u(2”+ Bu*/’= 25u,31)

Rozwiązaniami tych równań są 

dowolne = 0 u*/’ = 0

Ze względu na warunek normalizacyjny otrzymujemy 

= (1 0 0)

b) Wartości własnej 22 = 16 odpowiada wektor h(2). Układ równań ma obecnie 
postać 

25u<2) = 16u(2)

7i/22)-3y3u(32) = 16u(22)

-3^^  ̂+ BiĄ2’= 16i?32)

Z pierwszego wynika, że u(i2) = 0. Pozostałe dwa są sobie równoważne — możemy 
z nich otrzymać jedynie informację, że

«m2, = -V3/3
Obliczenie tych składowych umożliwia nam warunek normalizacyjny

№)2 + №)2 = 1

czyli

^2+^)2 = 1
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Stąd otrzymujemy

t _
2 —e

c) Wartości własnej A3 = 4 odpowiada wektor własny u*3). Po napisaniu 
równań jednorodnych widzimy, że u(3) = 0, pozostałe zaś dwa równania

3u^-3j3u^ = 0

-3.j3u^+ 9u^ = 0

mają rozwiązania = 73/2, u(3} = 1/2. Zatem

T L 73 1 e3 = 0 -
3 \ 2 2

Znalezione trzy wektory własne tworzą razem macierz transformacji

c =
1 0 0
o 73/2 1/2
0 -1/2 73/2

doprowadzającą zadany tensor u do postaci diagonalnej. W macierzy c zamieniliś­
my wiersz drugi z trzecim dla zachowania skrętności układu współrzędnych. 
Łatwo się przekonać, że

c<rcT
25 0 0

0 4 0
0 0 16

Przykład 2.8.4
Relacja między składowymi tensora i współczynnikami kwadryki

Tensorowi

16 0 0 
0 4 0
0 0 20

w układzie osi głównych odpowiada równanie elipsoidy wielkości
v2 y2
a2 A3

162 42 202

Obróćmy teraz układ współrzędnych o +30° wokół X3 (układ xj'x2x3> macierz 
transformacji ej, a następnie o kąt +45° (układ x\ x'2x'3, macierz transformacji c2) 
wokół nowej osi x2 (rys. 2.19). Złożenie obu obrotów prowadzi do relacji między
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C =C2C!

układem Xr X2 X2 a xj x2 x2 (macierz transformacji c)

/^6/4 72/4 ~V2/2\ / 0,6124 0,3536
I -1/2 73/2 0 1= 1 -0,5000 0,8660

\Tó/4 72/4 72/2 / V °’6124 °’3536

-0,7071 
0

0,7071
(2.66)

Wynika z tego, że łączny obrót jest iloczynem macierzy c2'Cj (należy zwrócić uwagę 
na kolejność czynników). Wiersz i macierzy c podaje orientację osi x- w układzie 
X. X2X2.

Rys. 2.19. Obroty układu współrzędnych:

Składowe t w układzie x- przyj mą wartości

T = crcr =
16,500 -3,674 -3,500

-3,674 7,000 -3,674
-3,500 -3,674 16,500

Oczywiście 7j i + T22 + = Tj + t2 + r3 = 40.
Poszukajmy teraz osi głównych tensora T metodą kolejnych przybliżeń wie­

dząc, że muszą nimi być XxX2X3. Ponieważ znamy ten wynik, możemy z
łatwością prześledzić procedurę. Zauważmy, że Tu = 7^3. Spróbujmy więc jako 
wektora próbnego wf = (1 0 — 1). Mamy

16,500
-3,674
-3,500

-3,674 -3,500
7,000 -3,674

-3,674 16,500

63



a więc już pierwsze przybliżenie prowadzi do dobrej orientacji jednej z osi 
głównych

4 = (/272 0 -//2)

Drugiej osi należy szukać dla T“1

1280,04

102,03 73,50 38,01
73,50 260,07 73,50
38,01 73,50 102,03

Największą składową na przekątnej jest (T-1)22 = 260,07/1280,04, wobec czego 
następny wektor próbny powinien być postaci w2 = (0 1 0). Tym razem rachunek 
jest nieco dłuższy — wektor ósmego przybliżenia u? = (0,35355 0,86603 0,35355) 
—►ej (//4 //2 /2/4). Po obliczeniu trzeciego wektora z iloczynu wektorowego 
otrzymujemy macierz transformacji

/ 72/2 72/4 /6/4 
c = I 0 73/2 - 1/2

\-T2/2 72/4 //4
(2.67)

W porównaniu z równ. (2.66) nastąpiła zamiana osi Xt i X3 oraz zmiana znaku 
kosinusów kierunkowych Xt; wobec tego obie macierze są równoważne.

Przejdźmy obecnie do współczynników kwadryki S, odpowiadającej tensorowi

1/16 0 0 6,250 0 0
s = 0 1/4 0 = 10“2 0 25,000 0 (2.68)

_ 0 0 l/20_ 0 0 5,000

Transformacja macierzą c [równ. (2.66)] prowadzi do współczynników S w ukła­
dzie %'j *2 X3

R = cScr = 10“2
7,970 5,742 2,970
5,742 20,311 5,742
2,970 5,742 7,970

(2.69)

Poszukiwanie wektorów własnych tej macierzy trzeba zacząć od kierunku 
(10—1), odpowiadającego najmniejszym składowym Tu. Dalsze postępowanie nie 
wymaga komentarzy.

Przykład 2.8.5
Stożek zerowej rozszerzalności termicznej w kalcycie

Współczynniki rozszerzalności termicznej kalcytu (krystalizuje w układzie try- 
gonalnym) są następujące [3]:

an = a22 = -5,56-10~6K-1 a33 = + 24,91 • 10“ 6 K-1

Znaleźć kierunek, w którym rozszerzalność termiczna wynosi zero.
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Przypuśćmy, że zerowa rozszerzalność kalcytu występuje w -kierunku l, odnie­
sionym do układu osi głównych a. Według równ. (2.42) mamy

= «11 (^1 +© + «33 /3 = «11 +(«33-«u) *3

an 0 0
a; = 0 = ro/ = (/1 /2 /3) 0 anO 1 2 )=

_0 0 a33 y3 /

Stąd
/ _w • \l/2

/3 = I------ — = 0,4272
\«33~ «11/

Zatem zbiór kierunków, w których występuje efekt zerowej rozszerzalności termi­
cznej określają wektory jednostkowe

lT = /2 0,4272) oraz lT = /2 - 0,4272)

Rys. 2.20. Stożek zerowej rozszerzalności termicznej w kalcycie

Składowe /1; /2 wektora l muszą spełniać warunek

/2 + /2 = 0,8175

poza tym są dowolne. Zbiory tych kierunków tworzą więc dwa stożki wokół a33 
jako osi (rys. 2.20). Kątem wierzchołkowym każdego ze stożków jest

2(p = 2 arc cos (0,4272) = 2 • 64,75°
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3. TRANSFORMACJE SYMETRII

Symetria jest jedną z najbardziej ogólnych cech materii, zarówno ożywionej jak 
i nieożywionej, równie powszechną jak masa czy temperatura. W rozdziale niniej­
szym ograniczymy się do zastosowania tego pojęcia do regularnie zbudowanego 
ciała stałego, występującego w postaci kryształów. Wspominaliśmy już w rozdz. 1, 
iż symetria może być również podstawą podziału krystalicznego ciała stałego na 
różne grupy. Jednak w odróżnieniu od innych cech fizycznych symetria jest 
kryterium tak ogólnym, że podlegają mu wszelkie obiekty fizyczne, niezależnie od 
wszystkich innych kryteriów podziału, jakie z różnych punktów widzenia można 
wprowadzić. Jest tak dlatego, że prócz geometrii budowy ciał symetria obejmuje 
również ich właściwości fizyczne.

Kryształ o identycznym następstwie atomów w każdym z trzech wzajemnie 
ortogonalnych kierunków w przestrzeni ma również w każdym z tych kierunków 
taką samą wartość przewodnictwa elektrycznego, czy też przenikalności dielektry­
cznej. Przeciwnie, jeśli rozkład materii w każdym kierunku jest inny, to również 
przewodnictwo jak i przenikalność dielektryczna wykazują anizotropię.

Związek między symetrią zewnętrznej, naturalnej postaci kryształu i symetrią 
jego właściwości fizycznych, intuicyjnie oczywisty, został sformułowany dopiero 
pod koniec XIX w. przez Franza Neumanna. Zanim go przedstawimy, przypomni­
my krótko podstawowe pojęcia, nie wdając się w szczegóły, które można znaleźć w 
specjalistycznych monografiach poświęconych teorii grup.

3.1. Symetria obiektu i wielkości fizycznej

Do podstawowych pojęć teorii grup, zajmującej się opisem symetrii obiektów 
fizycznych lub funkcji matematycznych, należy pojęcie elementu symetrii i operacji 
symetrii. Elementami symetrii obiektu makroskopowego mogą być: centrum syme­
trii T (lub zj, płaszczyzna zwierciadlana m (lub oj, n-krotna oś symetrii z? (lub C„) 
oraz inwersyjna oś symetrii ń (lub S„), przy czym możliwe wartości n są n = 1, 2, 3, 
4, 6. Nie zajmujemy się 5-krotną osią symetrii, ponieważ nie można jej pogodzić z
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symetrią translacyjną sieci przestrzennej kryształu makroskopowego. W oznacze­
niach elementów symetrii na pierwszym miejscu wymieniono symbol międzynaro­
dowy, w nawiasie zaś symbol według oznaczeń Schoenfliesa.

Pojęcie elementu,symetrii nie jest identyczne z pojęciem operacji symetrii. Przez 
operację symetrii będziemy rozumieć takie przekształcenie, które doprowadza obiekt 
do położenia identycznego z wyjściowym. Jeśli obiekt ma na przykład czterokrotną 
oś symetrii C4, to możemy dokonywać następujących operacji symetrii: Ci (obrót 
obiektu o kąt 360/4 = 90°), C4 = C4 • C4 = (wykonanie kolejno dwóch obrotów 
o 90° w tym samym kierunku lub jednego o kąt 180°), C4 = C4-Cj-C4 = C4 1 
(wykonanie trzech kolejnych obrotów o 90° każdy lub o 90° w kierunku przeciw­
nym), wreszcie Ci = C4 • Ci • Ci ■ C4 = Cj, co jest operacją tożsamości (obrót ciała 
o 360°). Widzimy zat-em, iż w tym przykładzie jednemu elementowi symetrii 
odpowiadają cztery różne operacje symetrii, a zbiór ich tworzy grupę w sensie 
matematycznym. Wynik ten możemy uogólnić w następujący sposób: każdemu 
elementowi symetrii odpowiada generowana przezeń grupa operacji symetrii.

Operacji symetrii, dokonywanej na obiekcie fizycznym, równoważne jest 
przekształcenie (transformacja) układu współrzędnych, w którym opisujemy poło­
żenie obiektu. Przypuśćmy, że kryształ w formie naturalnego wielościanu ma 
trzykrotną oś symetrii równoległą do osi z układu xyz, którego początek umie­
szczamy w środku kryształu. W tym układzie współrzędnych możemy opisać 
położenie ścian ograniczających kryształ, a także położenie elementów struktural­
nych (atomy, jony, cząsteczki) tworzących jego strukturę. Po obrocie kryształu o 
120° spostrzeżemy, że kryształ ma dokładnie taki sam rozkład ścian zewnętrznych 
względem tego układu jak poprzednio. Musi mieć również taki sam rozkład 
elementów strukturalnych w obu położeniach. Wynik tych obserwacji będzie 
dokładnie taki sam, jeśli obrót wielościanu zastąpimy obrotem układu współrzęd­
nych xyz wokół osi z o kąt 120° w kierunku przeciwnym do poprzedniego. Nato­
miast korzyść płynąca z zastąpienia operacji fizycznej, dokonywanej na obiekcie 
fizycznym, przez operację matematyczną, dokonywaną na układzie współrzędnych 
polega na tym, że tej ostatniej możemy przypisać macierz wyrażającą ten obrót 
ilościowo. Przyjmiemy, iż każdej operacji symetrii można przypisać macierz 
przekształcającą układ współrzędnych w sposób, który dokładnie tej operacji 
odpowiada.

Pełna symetria obiektu makroskopowego (określonego wielościanu) mieści się 
w pojęciu punktowej grupy symetrii. Jest to taki zbiór operacji symetrii, że przynaj­
mniej jeden punkt w przestrzeni nie ulega przemieszczeniu po wykonaniu wszystkich 
op.eracji tworzących ten zbiór. Jeśli dla przykładu weźmiemy grupę punktową 222 
(D2), obejmującą operację tożsamości oraz trzy wzajemnie prostopadłe i przecina­
jące się dwukrotne osi’e symetrii, to jedynym punktem nie ulegającym przemie­
szczeniu pod wpływem operacji tego zbioru jest miejsce przecięcia się trzech osi. 
Niekiedy punktów takich może być nieskończenie wiele, jak na przykład w grupie 
m2m (C2v), zawierającej prócz elementu tożsamości dwie prostopadłe płaszczyzny 
zwierciadlane i oś dwukrotną, biegnącą wzdłuż prostej przecięcia się obu pła­
szczyzn. Zbiory elementów symetrii i inne podstawowe informacje o 32 krysta­
lograficznych grupach punktowych zebrane są w problemie 3.7.1 (p. 3.7).
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Symetria kryształu powoduje, że istnieje w nim pewna liczba kierunków 
symetrycznie równoważnych. Do naczelnych zasad fizyki kryształów należy stwier­
dzenie wypowiedziane przez F. Neumanna, że kierunki symetrycznie równoważne 
są również fizycznie równoważne. Innymi słowy, pomiar dowolnej wielkości fizy­
cznej w określonym kierunku musi dać ten sam wynik w każdym innym kierunku 
symetrycznie równoważnym. Zasadę tę możemy wyrazić również w języku teorii 
grup. Niech Gk oznacza grupę punktową symetrii kryształu (jako ciała makrosko­
powego), Gf zaś grupę punktową symetrii wielkości fizycznej. Gf zawiera wszystkie 
elementy symetrii właściwe, na przykład, kwadryce. Zasada Neumanna orzeka, że 
Gk musi być podgrupą Gf, czyli

GkcGf (3.1)

przy czym c jest znakiem inkluzji (zawierania).
Z takiego sformułowania związku między symetrią kryształu a symetrią wiel­

kości fizycznej wynika, że kwadryka podatności diamagnetycznej w krysztale 
należącym do układu tetragonalnego (czterokrotna oś symetrii) musi mieć symetrię 
elipsoidy obrotowej, co jest jej symetrią minimalną. Jest możliwe, że w pewnym 
krysztale tego układu będzie mieć symetrię kuli, ale nie może się zdarzyć, by miała 
symetrię elipsoidy trójosiowej. Słuszność zasady Neumanna ogranicza się do 
kryształów niemagnetycznych, ponieważ równoważność kierunków w kryształach 
magnetycznych nie jest związana wyłącznie z symetrią grupy punktowej. Ponadto 
symetria grupy punktowej Gk odnosi się do kryształu znajdującego się w próżni, 
bez obecności pola. Umieszczenie kryształu w polu oznacza pojawienie się efektów 
polaryzacyjnych w określonym kierunku, co obniża efektywną symetrię kryształu. 
Wystąpienie tej dodatkowej asymetrii prowadzi do tak zwanych efektów drugiego 
i wyższych rzędów, obejmujących zjawiska takie, jak dwójłomność kryształu 
izotropowego wymuszona obecnością pola elektrycznego (efekt Kerra), skręcenie 
płaszczyzny polaryzacji w polu magnetycznym (efekt Faradaya), polaryzację elek­
tryczną (pyroelektryczność) i magnetyczną (pyromagnetyzm) wymuszone obecnoś­
cią gradientu temperatury i inne. Zasada Neumanna w sformułowaniu (3.1) nie 
obejmuje stanów kryształu spolaryzowanego działaniem czynników zewnętrznych.

3.2. Generatory punktowych grup symetrii

Do opisania symetrii kryształów niemagnetycznych (z wyłączeniem kryształów 
ferri-, ferro- i antyferromagnetycznych) potrzebne są i wystarczają 32 grupy 
punktowe, stanowiące 32 możliwe klasy krystalograficzne. Każda z tych grup 
punktowych obejmuje pewną liczbę elementów symetrii,' wybranych spośród 10 
elementów uznanych za pierwotne i stanowiących listę generatorów grup punkto­
wych.

Listę generatorów można sporządzić w rozmaity sposób, zależnie od tego, 
które z elementów symetrii uzna się za proste a które za złożone — w tym sensie, 
że można je przedstawić jako iloczyn dwóch (lub więcej) innych elementów. Wybór
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Tabela 3.1 c.d.

generatorów podany w tab. 3.1 obejmuje 10 następujących elementów symetrii:

C1; i, C^, C^, ay, az, C<3Z), C[3111], C^,

W pierwszej kolumnie tabeli podano oznaczenia elementów, w drugiej rzut stereo- 
graficzny, ilustrujący położenie punktu wyjściowego (krzyżyk) i punktów symetry­
cznie równoważnych (krzyżyk lub kółko), wytwarzanych przez wszystkie operacje 
symetrii, generowane przez ten element.. Położenia odnoszą się do układu współ­
rzędnych x1x2*3, zaznaczonego na rysunku w drugiej kolumnie tablicy. W 
trzeciej kolumnie podano przekształcenie układu współrzędnych, w czwartej zaś 
macierze tych przekształceń. Każda z macierzy odpowiada określonej operacji 
symetrii w potędze pierwszej. Niektóre z operacji umieszczonych w tabeli mogą 
być, formalnie- biorąc, złożone z innych operacji tej tabeli, np. A5 = A3 • A2. Mimo 
to warto zachować A5 jako osobny generator, ponieważ istnieje grupa punktowa 
zawierająca płaszczyznę symetrii, a nie zawierająca osi dwukrotnej ani centrum 
symetrii. Trzykrotna oś symetrii C[3111] przechodzi przez punkt [000] i naroże 
[111] sześcianu (rys. 3.1). Przekształca ona współrzędne według schematu xj = x2,

Rys. 3.1. Osie symetrii C!31I1J i ej1"] sześcianu
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x'2 = x3, x'3 = xt, reprezentowanego macierzą A8. Symetrycznie położoną oś 
trzykrotną, przechodzącą przez naroże [111], powinniśmy traktować jako złożony 
element symetrii (przykład 3.7.4). Oś jest czerokrotną osią inwersyjną; operacja 
4 polega na wykonaniu obrotu o 90°, a następnie odbiciu punktu w centrum 
inwersji, znajdującym się w początku układu współrzędnych. Mimo że formalnie 4 
= 4-1, nie można rozkładu punktów na rzucie stereograficznym 4 zastąpić przez 
połączenie rzutów 4 i T. Pozostałe osie inwersyjne można zastąpić już wprowadzo­
nymi generatorami, ponieważ 2Z = az, 3Z = 3Z-1, 6Z = 3Z-2Z; również 6Z = 3_-2z.

3.3. Wektory biegunowe i osiowe
Zgodnie z zasadą Neumanna wielkość fizyczna kryształu, należącego do jednej z 

32 grup punktowych symetrii, musi być niezmiennicza względem wszystkich operacji 
symetrii, należących do tej grupy punktowej. Jeśli zatem wektor p po transformacji 
układu współrzędnych oznaczymy przez p’, to zasada Neumanna wymaga, by

P' = P (3.2)
Korzystając z prawa transformacji wektorów (2.27), warunek (3.2) możemy zapisać 
w następujący sposób:

Ap = p
czyli

{A —l}p = 0 (3.3)

gdzie 1 jest macierzą jednostkową. Równanie (3.3) wyraża ogólne ograniczenie, 
nakładane na składowe wektora przez wymogi symetrii. Warunek ten dotyczy w 
równym stopniu cząsteczki jak i komórki elementarnej oraz kryształu, co można 
wyrazić w postaci trzech następujących stwierdzeń:

1. Każdy wektor, reprezentujący określoną właściwość fizyczną cząsteczki w 
krysztale, musi być niezmienniczy względem wszystkich operacji symetrii A;, 
należących do grupy symetrii węzła, w którym ta cząsteczka jest umieszczona.

2. Każdy wektor, reprezentujący określoną właściwość fizyczną komórki ele­
mentarnej, musi być niezmienniczy względem wszystkich operacji symetrii Ar, 
należących do grupy symetrii komórki elementarnej.

3. Każdy wektor, reprezentujący określoną właściwość fizyczną kryształu, musi 
być niezmienniczy względem wszystkich operacji symetrii As, należących do grupy 
przestrzennej kryształu.

Pojęcia grup symetrii, użyte w tych stwierdzeniach, zdefiniowane będą w 
następnym rozdziale (p.. .4.2). Fizyczny sens warunku (3.3) zilustrujemy obecnie 
kilku przykładami.

a) Przypuśćmy, że cząsteczka umieszczona jest w węźle o symetrii i. W takim
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Wynik ten wskazuje że cząsteczka, która zajmuje węzeł o symetrii i, nie może mieć 
właściwości reprezentowanej wektorem, w szczególności nie może mieć trwałego 
momentu dipolowego. Inaczej mówiąc, cząsteczki, które mają trwały moment 
dipolowy, nie mogą zajmować w krysztale położeń szczególnych o symetrii i. 
Mogą natomiast zajmować położenia ogólne. Symetria takich położeń jest At, 
wobec czego {Aj — 1} =0 oraz p / 0. W położeniu ogólnym wszystkie trzy 
składowe każdego wektora, w tym również trwałego momentu dipolowego, mogą 
być różne od zera.

Przypuśćmy teraz, że komórka elementarna, wypełniona cząsteczkami dipolo­
wymi zajmującymi położenia ogólne, ma centrum symetrii w punkcie [Hi], jak to 
ma miejsce w wielu grupach przestrzennych. Ponieważ Z 1 jest zawsze parzyste 
(możliwość obsadzenia komórki elementarnej jedną cząsteczką istnieje tylko w 
układzie trójskośnym), każdej cząsteczce o momencie p, odpowiada inna o mo­
mencie pj = — Pi tak, że suma momentów na obszar całej komórki znika, ^Pi = 0.

Przypuśćmy dalej, że centra symetrii umieszczone są nie w punkcie [Hi], lecz 
w punkcie [000] i wszystkich innych punktach, translacyjnie równoważnych. 
Wybierzmy sobie jakąś komórkę elementarną i przypuśćmy, że ma ona jako całość 
różny od zera moment dipolowy Ps; niech położenie jej środka określa wektor rs. 
W idealnej strukturze zawsze można znaleźć symetryczną względem punktu [000] 
komórkę elementarną w położeniu — rs, przy czym jej moment dipolowy musi 
wynosić — Ps. Wniosek ten można pogodzić z translacyjną symetrią sieci tylko 
wtedy, gdy Ps = 0.

Wynika z tego, że dla właściwości cząsteczki, komórki elementarnej i kryształu 
decydujące znaczenie ma symetria rozkładu materii w tych obiektach.

b) Cząsteczka umieszczona jest w węźle, którego grupa punktowa symetrii 
obejmuje dwukrotną oś symetrii C^. W tym przypadku

/1 0 o\
’A3 —1] = — 2 I 0 0 0 I

\0 0 1/

Dla wektora wynikają stąd ograniczenia
Pi = P3 = 0 P2 0

Cząsteczka umieszczona w takim węźle może mieć właściwość reprezentowaną 
przez wektor pod warunkiem, że jest on równoległy do osi dwukrotnej C(/b Taki 
sam warunek otrzymuje się dla zwykłej osi symetrii rzędu n > 2 (przykład 3.7.5). 
Rozważania analogiczne, jak w punkcie a, doprowadzają nas do wniosku, że 
kryształ posiadający n-krotną oś symetrii może mieć właściwość wektorową nieznika- 
jącą tylko w kierunku tej osi.

c) Wpływ płaszczyzny symetrii na postać wektora p możemy zilustrować za 
pomocą macierzy A6, odpowiadającej płaszczyźnie prostopadłej do osi z. Mamy

/o o o\
{A6 —1} = -2 I 0 0 0 I

\0 0 1 /
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Wynikają stąd warunki

Pi O p2 O p3 = O

Obecność tej płaszczyzny powoduje, że znika składowa p2 do niej prostopadła. 
Ogólniejszy wynik można sformułować następująco: przy obecności płaszczyzny 
symetrii różne od zera mogą być tylko takie wektory, które leżą w tej płaszczyźnie 
(przykład 3.7.6).

Mówiąc do tej pory o wektorach mieliśmy na uwadze spontaniczne, tj. trwałe 
właściwości cząsteczek. Należy do nich trwały moment dipolowy, jak też kierunki 
tzw. spektroskopowych momentów przejść absorpcyjnych, które wynikają ze spek­
troskopowych reguł wyboru (por. rozdz. 7). Właściwości wektorowe, indukowane w 
cząsteczkach pod wpływem przyłożonego pola elektrycznego czy magnetycznego, nie 
są objęte regułą (3.3), ponieważ spolaryzowany kryształ nie stosuje się do zasady 
Neumanna. Poza tym dotychczas zajmowaliśmy się wielkościami reprezentowany­
mi przez tak zwane wektory biegunowe. Należą do nich takie wielkości fizyczne, jak 
siła F, wektor falowy k czy natężenie pola elektrycznego E, do określenia których 
należy podać długość, kierunek i jeden z dwu zwrotów na prostej, na której leżą. 
Prócz nich występują w fizyce jeszcze inne wielkości wektorowe, którym przypisu­
jemy również długość i kierunek, lecz zwrot dotyczy jednego z dwu możliwych 
kierunków obrotu wokół prostej, wzdłuż której są umieszczone. Takim wielkoś­
ciom odpowiadają wektory osiowe, a ich właściwości zilustrujemy zachowaniem się 
dipola w jednorodnym polu elektrycznym.

Jeśli dipol o momencie elektrycznym p znajduje się w jednorodnym polu 
elektrycznym o natężeniu E, to — jak wiadomo — działa nań para sił o momencie

M = p xE

gdzie krzyżyk oznacza iloczyn wektorowy. Wszystkie trzy wektory przedstawione 
są na rys. 3.2u w prawoskrętnym układzie współrzędnych x, x2x3. Dla uproszcze­
nia założono, że p i E leżą w płaszczyźnie x2x3 — wektor M ma wówczas 
kierunek osi +xj. Dokonajmy teraz inwersji układu współrzędnych, odpowiadają­
cej operacji C, . Sytuacja w układzie xj x2x3, lewoskrętnym, jest odbiciem rys. 3.2n 
w punkcie [000] (rys. 3.26); iloczyn wektorowy stosuje się do reguły śruby lewej. 
W układzie y] x2 x'3 mamy zatem

Rys. 3.2. Wpływ skrętności układu współrzędnych na wynik pxE
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Jeśli do każdego z wektorów zastosujemy znane prawo transformacji 

p' = A2 • p = — p E' = A2 • E = — E M' = A2- M = — M

to otrzymamy
(~p) x( —E) = -M

niezgodnie z postulatem niezmienniczości postaci prawa fizycznego przy zmianie 
układu współrzędnych. Postulat ten może być jednak zachowany; jeśli przyjmiemy, 
że w prawie transformacji wektora osiowego winien wystąpić czynnik sygnalizują­
cy zmianę skrętności układu współrzędnych. Czynnikiem takim jest wyznacznik 
macierzy A2, wiążącej układ primowany z nieprimowanym. Wnioskujemy stąd, że 
prawo transformacji wektora osiowego winno być zapisane w postaci

M' = (detA)AM (3.4)

Wobec równania (3.4) warunek niezmienniczości wektora osiowego winien mieć 
postać

{(det A)A —1} M = 0 (3.5)

Wektorami osiowymi, prócz M, są wszystkie wielkości, które można wyrazić jako 
iloczyn .wektorowy dwóch wektorów biegunowych. Dalej, osiowy jest również 
wektor da, wyrażający obrót o nieskończenie mały kąt wokół określonej osi, oraz 
wektor natężenia pola magnetycznego H. Ostatni wniosek odnośnie H wynika z 
postulatu niezmienniczości równań Maxwella względem transformacji Lorentza.

Przypadki szczególne warunku (3.5) przedstawimy w postaci krótkich stwier­
dzeń.

a) Wielkość fizyczna, reprezentowana wektorem osiowym, może mieć w punkcie o 
symetrii C, dowolną wartość, kierunek i zwrot, ponieważ

{(det A2)A2 —1} = 0

b) Zwyczajna oś symetrii o dowolnej krotności nakłada na wektor osiowy takie 
same ’ograniczenia, jak na wektor biegunowy. Wynika to stąd, że podziałanie 
operacją Cf,} nie zmienia skrętności układu współrzędnych. Natomiast oś inwersyj- 
na n o krotności n > 2 dopuszcza nieznikanie tylko niektórych składowych M. Na 
przykład dla operacji 4 (macierz A10) otrzymujemy

czyli Mr = M2 =0, M3 / 0. Nie znika tylko składowa równoległa do osi S{f.
c) Płaszczyzna symetrii dopuszcza nieznikanie tylko takiej składowej wektora 

osiowego, która jest do niej prostopadła (przykład 3.7.7).
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3.4. Tensory biegunowe i osiowe

Przyjmowaliśmy dotąd milcząco, że w ogólnym związku (2.1)

P = Tą
oba wektory p i q są wektorami biegunowymi. Jeśli istotnie tak jest, to T nosi 
nazwę tensora biegunowego (polarnego), a zasada transformacji jego składowych 
przy zmianie układu współrzędnych wyraża się znanym nam już prawem (2.29). T 
jest tensorem' biegunowym również wtedy, gdy wiąże w zależność (2.1) dwa 
wektory osiowe. Wynika to z ogólnego postulatu niezmienniczości prawa fizyczne­
go (2.1) względem zmiany układu współrzędnych. Postulat ten prowadzi nas do 
bardzo ogólnych relacji między wielkościami występującymi w tym prawie. Możli­
we sytuacje zestawione są w następującej tabelce:

i j = 1 7 = 2

P T T 9
1 biegunowy biegunowy biegunowy osiowy osiowy

(+) ( + ) ( + ) (-) (-)
2 osiowy biegunowy osiowy osiowy biegunowy

(-) ( + ) (-) (-) (+)

Z tabeli wynika, że tensor T ma charakter biegunowy, jeśli wiąże w zależność 
dwa wektory o tym samym charakterze; jeśli charakter tych wektorów jest różny, to 
T jest tensorem osiowym.

Kilka zależności typu 11 (i = 1, j = 1) podaliśmy w rozdz. 2. Należy do nich 
związek między wektorem indukcji elektrostatycznej D a natężeniem pola elektry­
cznego E lub między gęstością prądu przewodzonego j oraz E. Ponieważ oba 
wektory występujące w nich są biegunowe, tensor ma również charakter bieguno­
wy. Przykładem zależności typu 21 może być związek między wektorem indukcji 
magnetycznej B a natężeniem pola magnetycznego H

B = u0[iH (3.6)

lub związek między momentem, pędu J a prędkością kątową co, znany w dynamice 
bryły sztywnej

J = I co (3.7)

Zarówno tensor względnej podatności magnetycznej w równ. (3.6), jak i moment 
bezwładności w równ. (3.7) mają charakter tensorów biegunowych. Biegunowy jest 
również tensor c, wiążący dwa elementarne obroty: da (w x1x2x3) oraz dP (w 
%j X2 *3)

dp = oda (3.8)
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przy czym oba układy współrzędnych związane są z sobą zależnością (2.28): x' 
= cx. Jest tak dlatego, że takie granicznie małe kąty obrotu można zdefiniować 
jako wektory osiowe.

Istnieją również przypadki relacji między dwoma wektorami typu 12 lub 22, w 
których jeden jest biegunowy, drugi osiowy. Do takiego związku prowadzi, na 
przykład, analiza zjawiska aktywności optycznej. Gdy płaska i liniowo spolaryzo­
wana fala elektromagnetyczna przechodzi przez pewne kryształy, nie posiadające 
centrum symetrii, wówczas kierunek E promieniowania po wyjściu z takiego 
ośrodka jest inny niż na wejściu. Zjawisko to występuje również wtedy, gdy 
wiązka promieniowania biegnie wzdłuż osi optycznej kryształu, a więc nie może 
być sprowadzone do zwykłej dwójłomności. Wiązce padającej odpowiada wektor 
E, który jest biegunowy. Płaszczyzna polaryzacji ulega skręceniu, przy czym 
możliwe są dwa zwroty tego skręcenia: zgodnie lub przeciwnie do ruchu wskazó­
wek zegara. Efekt ten opisuje zatem wektor osiowy. Tensor opisujący aktywność 
optyczną musi więc być tensorem osiowym.

Przejdziemy obecnie do przedstawienia prawa niezmienniczości tensorów, przy 
czym jako macierze stosować będziemy generatory od Aj do A10. Wobec relacji 
(2.1) słuszny będzie również związek

Aip = (A,TAi“1)Aiq = (AiTA17’)Aiq (3.9)

dla i = 1, 2, ..., 10. Równość tę możemy zapisać w następujący sposób

p' = t?'
Dla wektorów biegunowych mamy zgodnie z równ. (3.3) A; p — p oraz A; q = q, 
niezmienniczość tensora biegunowego określa zatem warunek

t = (A; TAf) = T (3.10)

Jeśli wektory mają charakter różny, na przykład p jest osiowy, czyli (det AJ A, p 
= p, a- q jest biegunowy, A, q = q, to z równ. (3.9) otrzymujemy

A, p = (det AJ (A, TAf) A; q

ponieważ (det AJ = ± 1. Stąd

r = (det AJ (A; TA,r) = T (3.11)

Równanie (3.11) przedstawia prawo niezmienniczości tensora osiowego. Ma ono tę 
samą postać co równ. (3.10), jeśli wyznacznik macierzy generatora jest równy +1.

Prawa (3.10) i (3.11) prowadzą do określonych związków między składowymi 
tensorów. Rozważymy je dla ważniejszych typów generatorów.

1. Centrum symetrii i. Zastosowanie do tensora biegunowego transformacji 
macierzą A2 prowadzi do wyniku

a2ta[ = t

czyli centrum symetrii nie nakłada żadnych ograniczeń na składowe tensora bieguno­
wego. Jest tak dlatego, że geometryczny obraz tensora — kwadryka — jest zawsze 
centrosymetryczny. Dodatkowa obecność tego elementu niczego nowego nie wnosi 
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do symetrii kwadryki. Sześć różnych i niezerowych składowych tensora symetry­
cznego odpowiada dokładnie sześciu stopniom swobody kwadryki: dowolnej 
długości trzech osi głównych i dowolnej ich orientacji (3 kąty).

Jeśli T jest tensorem osiowym, to, ponieważ (detA2)= —1, otrzymujemy z 
równ. (3.11)

— A2TAf = T czyli T = 0

Wynik ten oznacza, że tensor osiowy znika w centrum symetrii. Cząsteczka 
umieszczona w takim węźle nie może powodować na przykład skręcenia płaszczy­
zny polaryzacji światła a symetria translacyjna powoduje, że nie ma tej właściwości 
również kryształ.

2. Dwukrotna oś symetrii, C*/1. Dla tensora biegunowego otrzymujemy

Pod wpływem przekształcenia cztery składowe zmieniły znak. Tensor może być 
niezmienniczy względem przekształcenia tylko wtedy, gdy składowe te będą równe 
zeru. Ogólną postacią tensora biegunowego w węźle o symetrii C^’ jest zatem

T = 0 (3.12)
0 T13

Taką samą postać będzie miał też tensor kryształu posiadającego dwukrotną oś 
symetrii, równoległą do b. Cztery różne i niezerowe składowe odpowiadają czterem 
stopniom swobody kwadryki w takim krysztale: długości trzech osi głównych (3 
wektory) oraz orientacji osi kwadryki w płaszczyźnie (010) (1 kąt, por. rys. 2.11). 
Ponieważ detA3 = +1, ograniczenia nałożone przez na składowe tensora 
osiowego są takie same.

3. Płaszczyzna symetrii oy. Temu operatorowi odpowiada macierz A5, a 
transformacja prowadzi do wyniku 

A5TAI
Tu -T12 T13

-t21 T22 — T23

T31 -T32 T33

identycznego z poprzednim. Obecność płaszczyzny symetrii oy nie wprowadza 
nowych zmian do postaci (3.12). Można zatem stwierdzić, że postać tensora (3.12) 
jest charakterystyczna dla grupy punktowej symetrii C2h pod warunkiem, że 
dwukrotna oś symetrii jest równoległa do y. Łatwo się przekonać, że zastosowanie
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lub gz (lub obu łącznie) prowadzi do analogicznego wyniku: muszą się 
zerować cztery składowe tensora, jednak inne niż w (3.12).

Prawo niezmienniczości tensora osiowego łatwo otrzymać z (3.12). Ponieważ 
det A5 = — 1, zerowanie się składowych ma właściwość inwersji: znikają te składo­
we tensora osiowego To, które dla tensora biegunowego Tb były różne od zera. 
Ogólną postacią To przy obecności ay jest więc

0 712 0
To = Tli 0 713

_0 T32 0
(3.13)

Nie jest prawdą jednak, że (3.13) jest postacią charakterystyczną dla grupy 
punktowej C2h- Ze względu na obecność w tej grupie centrum inwersji znikać 
muszą wszystkie składowe To.

4. Oś symetrii Cn rzędu n > 2. Rozważmy wpierw działanie generatora C[3 11], 
określonego macierzą A8, na składowe tensora biegunowego

(
0 1
0 0
1 0

712
^32

7^2 713 T2i

7^2 7j3 T3l 
712 713 7]]

7]3 

713 

T33

0
1
0

Wynikają stąd następujące związki między Tik (= Tki)

Tli — Tl2 — 713 — A

712 = 713 = T31 = B

Wobec tego w ogólnej postaci tensora biegunowego

A B B
(3.14)

występują tylko dwie składowe niezależne. Odpowiada to dwóm stopniom swobo­
dy kwadryki obrotowej wokół osi [111]. Niekonwencjonalna postać (3.14) bierze 
się stąd, że trzykrotna oś obrotu [111] nie pokrywa się z żadną z osi współrzęd­
nych. Możemy jednak sprowadzić (3.14) do postaci diagonalnej za pomocą odpo­
wiednio dobranej transformacji (przykład 3.7.7), a wtedy symetria obrotowa (3.14) 
stanie się bezpośrednio widoczna. Wyznacznik macierzy A8 równy jest +1, przeto 
(3.14) jest zarazem ogólną postacią tensora osiowego.

Symetrię obrotową kwadryki możemy otrzymać bardziej bezpośrednio, wybie­
rając jako operację symetrii A9; macierz ta odpowiada czterokrotnej osi symetrii o
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kierunku równoległym do x3. Mamy

a9 ta£
T22 -r2i Тгз

-T12 Tu -t13
Тэг -T31 7зз

Stąd

^ii — T22 = A T33 = В
Tl2 = — T2l = T2l czyli Tl2 = T21 = 0

7]з = T23 = — 7j3 czyli Tl3 = T31 = 0

oraz
723 — 7^2 — 0

Ogólna postać tensora jest więc następująca

A 0 0 
ОАО 
О О В

(3.15)

5. Inwersyjna oś symetrii S^. Zastosowanie generatora A10 do tensora bieguno­
wego prowadzi do znanego już wyniku (3.15). Do nowego rezultatu prowadzi 
natomiast poddanie transformacji tensora osiowego. Korzystając z tego, że A10 = 
— 1 A9 = — A9 oraz detA10 = —1, otrzymujemy

(det Aj0) A10TAf0 = — A9TA9

a stąd warunki na zerowanie Tik

Tli = ~ 7^2 7^3 = 0

7i3 = 73i = 0 T23 = T32 — 0

Ogólną postacią tensora osiowego w tym przypadku będzie zatem

Tu T12 0
T12 -Tn 0
0 0 0

(3.16)

Podsumowanie analizy wpływu geometrii na postać tensora biegunowego 
drugiego rzędu przedstawione jest w tab. 3.2. Obok zbiorów generatorów wymie­
nionych w wierszach, z których każdy odpowiada innej klasie krystalograficznej 
(problem 3.7.1), podano postać tensora w ogólnym układzie współrzędnych 
xYx2x3. Postać ta jest charakterystyczna dla wszystkich klas określonego układu; 
pewnym wyjątkiem od tej reguły są klasy układu jednoskośnego, gdzie orientację 
osi dwukrotnej wybiera się najczęściej 2||x2, lecz niekiedy 2||x3. Ma to wpływ na 
wskaźniki tych czterech składowych, które muszą być równe zeru. W układach 
trygonalnym, tetragonalnym i heksagonalnym wspólna postać tensora zgodna jest
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Tabela 3.2

Postać tensora biegunowego w poszczególnych układach krystalograficznych w ogólnym układzie współ­
rzędnych, x2 x3

Układ 
krysta- 

logr.
Generatory Postać 

tensora

Liczba 
niezal. 
skład.

Rodzaj 
kwadryki

Trój- 
skośny

A]
Az

fi. fiz fi/ 

fiz fi3
fi3_

6 elipsoida trójosiowa; 
brak korelacji z osiami 
krystalograficznymi

Jedno- 
skośny

Aa (A4) 
As (A6) 
a2+a3

fi 1 0 fi 3 

fiz 0
fi3_

4 elipsoida trójosiowa; 
jedna z osi || x2 (x3)

Rombowy A3 + A4
A4 + A5
A2 + A3 + A4

1 
1

H
 O

tu
 J

H
 O 

O
W

 J L_
__

__
__

__
_

1

3 elipsoida trójosiowa 
z osiami || x;

Try- 
gonalny

A7 j A2 4- A7
A3 + A7; A54-A7
^2 + A3 + A7

fi. 0 0
fi. 0 

fi3_

2 elipsoida obrotowa 
wokół osi x3

Tetra- 
gonalny

Ag J Ajgj A 2 4“ Ag j
A34-Ag" A54-A9; A34_Ajq;
A 2 4- A3 *4- Ag

Heksa­
gonalny

A44-A7; Ae4-A7; A24~A4 + A7;
A3+A4 + A7; A44-A54-A7;
A34-A64-A7; A24-A34-A44-A7

Regu­
larny

A44-A8; A24-A44-A8;
A8 4-Ag; A8 4- A10;
A 2 4~ A8 4" Ag

_fi. 0 0 

fi. 0 
fil_

1 kula

z położeniem głównej osi symetrii: C„||x3 lub 5„||x3 przy rt>2. W obrazie 
geometrycznym kwadryka jest obrotowa wokół x3, a jej symetria już z natury 
rzeczy obejmuje pozostałe elementy symetrii. Nie ma takich cech ogólnych tensor 
osiowy. Ze względu na występowanie czynnika (det A) = +1 w prawie niezmienni- 
czości, warunki zerowania się składowych T są różne dla różnych klas krystalogra­
ficznych w obrębie tego samego układu. Z tych powodów nie zamieszczono w tab. 
3.2 standardowych postaci tensorów osiowych.

Ogólne prawa transformacji wielkości fizycznych przy zmianie układu współ­
rzędnych zestawione są w tab. 3.3.
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Tabela 3.3

Prawa transformacji wielkości fizycznych

Wielkość fizyczna X2 *3 xi X2 x2 X1 x2 X3 *2*3

Macierz transformacji c c“1(=cr)
Skalar s' — s s = s'
Wektor biegunowy p' = cp p = cTp'
Wektor osiowy p' = (det c) cp p = (detc)cTp'
Tensor biegunowy t = cTcT T = cT tc
Tensor osiowy t = (detc)cTc7 T = (det c) cT tc

Przy omawianiu symetrii grup punktowych oraz właściwości wektorów biegu­
nowych i osiowych warto na zakończenie wspomnieć o symetrii niektórych brył i 
wektorów, opierając się na dyskusji zamieszczonej w monografii Żełudiewa [1].

Nieruchomy cylinder posiada oś obrotu nieskończonego rzędu, nieskończenie 
wiele płaszczyzn symetrii przechodzących przez tę oś i jedną płaszczyznę symetrii 
prostopadłą do osi. Grupę punktową symetrii nieruchomego cylindra możemy 
zapisać w postaci co/mmm. Obrót cylindra wokół osi symetrii oo likwiduje 
wszystkie równoległe do niej płaszczyzny symetrii, a więc jego grupą punktową 
będzie co/m. Jeszcze niższą symetrię ma cylinder skręcony wzdłuż pobocznicy: oo2, 
ponieważ znikają wszystkie płaszczyzny symetrii.

Stożek nieruchomy ma symetrię co mm, natomiast obracający się wokół osi — 
symetrię co.

W tej symbolice symetrię kuli możemy oznaczyć przez co/co/mmm, ponieważ 
każda średnica kuli ma symetrię cylindra, a jest ich nieskończenie wiele. Taką 
symetrię ma w fizyce wielkość skalarna. Jeśli skręcimy kulę wzdłuż jednej z tych 
średnic, to symetria nowej kuli będzie równa oo/oo2. Fizycznie twór taki odpowia­
da kuli wykonanej z ośrodka skręcającego płaszczyznę polaryzacji światła, np. z 
roztworu cukru w wodzie. Ponadto taką symetrię ma tak zwana wielkość pseudo- 
skalarna, której odpowiada figura „prawoskrętna” lub „lewoskrętna”, zależnie od 
zwrotu skręcenia średnicy. Znak skrętności zmienia się na przeciwny po odbiciu 
figury w zwierciadle.

Wektor polarny ma symetrię nieruchomego stożka, czyli co mm. Przykładem takiej 
wielkości jest natężenie pola elektrycznego E, wektor polaryzacji kryształu P, 
dipolowy moment elektryczny p.

Wektor osiowy ma symetrię obracającego się cylindra, czyli co/m. Do grupy 
takich wielkości należy, na przykład, wektor natężenia pola magnetycznego H, 
namagnesowania / lub momentu magnetycznego M.

Ważnym pojęciem jest kierunek polarny w krysztale. Rozważmy prostą MN, na 
której rozmieszczone są atomy A i B w jednakowych odległościach od siebie (rys. 
3.3). Odległość od A do B jest taka sama niezależnie od tego, czy patrzymy wzdłuż 
kierunku MN czy też wzdłuż kierunku przeciwnego, NM. Jeśli jednak atomy 
rozmieszczone są wzdłuż M'N' periodycznie, lecz w niejednakowych odstępach, to 
odległość AB widziana wzdłuż M'N' będzie inna niż w kierunku N'M'. Kierunek
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M'N' jest więc polarny. Kierunki polarne w krysztale mają symetrię wektora 
polarnego cc mm lub niższą, tj. grupa punktowa symetrii takiego wektora może być 
podgrupą cc mm.

----- o------ ------- o------ •------ o------ •--------
M A B A B A B N 

-----O—  O—• O—•-------------------- 
M' A B--------------- AB----------------AB-------------------- N'

Rys. 3.3. Rozkład atomów wzdłuż kierunku niepolarnego i polarnego

Możliwość wystąpienia kierunku polarnego w krysztale zależy od grupy punk­
towej, do której należy kryształ. Na przykład obecność centrum symetrii od razu 
wyklucza możliwość istnienia kierunku polarnego, ale nawet bez obecności cen­
trum symetrii kryształ może nie mieć właściwości polarnych. Łatwo dostrzec, że 
istnienie płaszczyzny symetrii lub osi dwukrotnej, prostopadłej do M’N’, jest nie 
do pogodzenia z takim rozkładem atomów. Biorąc pod uwagę możliwość wystą­
pienia kierunku polarnego, możemy podzielić 32 klasy krystalograficzne na trzy 
następujące grupy (użyte tu symbole klas objaśnione są w problemie 3.7.1, 
natomiast wyjaśnienie symboli grup przestrzennych znaleźć można w p. 3.5):

1. Klasy, którym odpowiadają kryształy o jednym tylko kierunku polarnym (oś 
unipolarna). Mają one elementy symetrii zawarte w grupie punktowej symetrii 
wektora polarnego lub w jego podgrupie. Mamy 10 takich klas krystalografi­
cznych, a mianowicie 1, 2, 3, 4, 6, m, mm2, 3m, 4mm, 6mm. I tak w układzie 
trójskośnym możemy mieć jedną tylko grupę przestrzenną, która jest całkowicie 
asymetryczna: PI. Jeśli cząsteczka w komórce elementarnej (Z = 1) ma moment 
dipolowy pi 0, to komórka elementarna, a zatem i cały kryształ, będzie wykazy­
wać spontaniczną polaryzację P 0 o kierunku P równoległym do p,. W układzie 
jednoskośnym jest więcej grup przestrzennych z kierunkiem polarnym. Różnią się 
one typem centrowania lub rodzajem płaszczyzny symetrii: P2, P21; C2 (oś 
unipolarna równoległa do dwukrotnej osi symetrii), Pm, Pc, Cm, Cc (oś unipolarna 
leży w płaszczyźnie symetrii, lecz jej kierunek nie jest zdeterminowany przez 
orientację elementów symetrii kryształu). Najwięcej grup przestrzennych o osi 
unipolarnej, równoległej do osi z, można znaleźć w układzie ortorombowym; są to 
grupy: mml, Pmc21, Pcc2, Pma2, Pca2r, Pnc2, Pmn21, Pba2,»Pna2l, Pnn2, Cmm2, 
Cmc2l, Ccc2, Amm2, Abm2, Ama2, Aba2, Fmm2, Fdd2, lmm.2, Iba2, Ima2. W 
układzie tetragonalnym oś unipolarną, równoległą do z, wykazują kryształy nale­
żące do następujących grup przestrzennych: P4, P4H P42, P43, /4, , P4mm,
P4bm, P42 nm, P4cc, P4nc, P42 mc, P42 bc, I4mm, I4cm, I4} md, I4r cd, P42 cm.

Nieznikający moment elektryczny mogą mieć wreszcie kryształy o następują­
cych grupach przestrzennych układu trygonalnego i heksagonalnego: P3, P31; 
P32, R3, P3ml, P31m, P3cl, P31c, R3m, R3c, P6, P6t, P62, P63, P64, P6mm, Pócc, 
P63 cm, P63 mc.

2. Klasy krystalograficzne, w których występuje centrum symetrii, a więc 
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krystalizujące w nich substancje nie mogą wykazywać różnego od żera dipolowego 
momentu elektrycznego pod nieobecność pola. Klas tych jest 11:1, 2/m, mmm, 4/m, 
4/mmm, 3, 3/m, 6/m, 6/mmm, ml, mim.

1. Pozostałych 11 klas: 222, 4, 422, 42m, 3/2, 6, 622, 62, 23, 432, 43m — 
odpowiada kryształom o tak zwanych właściwościach polarno-obojętnych. Ewen­
tualnie występujące w nich kierunki polarne są symetrycznie zależne, co daje 
ogólną kompensację bez wypadkowej osi unipolarnej. Na przykład trzy kierunki 
polarne kwarcu, równoległe do trzech osi C2, tworzą układ z wypadkowym 
wektorem polarnym równym zeru.

Inny podział ciał, oparty na wprowadzeniu klas magnetycznych, nie ma 
zastosowania w dziedzinie kryształów molekularnych. Są one bowiem w ogromnej 
większości diamagnetykami, a tylko nieliczne z nich.mają właściwości paramagne­
tyczne. Czytelnika zainteresowanego właściwościami klas magnetycznych odsyłamy 
do innych dzieł, np. [2].

3.5. Symetria grup przestrzennych

Sieć przestrzenna jest podstawowym pojęciem w krystalografii. Powstaje ona 
przez powtarzanie podstawowych wektorów sieci a, h, c (oznaczanych często też 
przez a1; a2, a3), odpowiednio w trzech kierunkach przestrzeni. Wektory te mogą 
zawierać między sobą kąty dowolne w przedziale (90°, 180°), lecz przyjmują 
niekiedy wartości 60°, 90° lub 120°. Powstaje w ten sposób nieskończony zbiór 
punktów wyznaczony przez zakończenie wektorów

r = Uj a, + n2 a2 + n3 a3 (3.17)

zwanych wektorami sieci (prostej); n15 n2, «3 s4 liczbami całkowitymi dodatnimi, 
ujemnymi lub zerem. Sieć przestrzenna jest więc tworem geometrycznym; wypeł­
nienie jej materią stanowi to, co nazywamy strukturą. Równoległościan zbudowa­
ny na trzech wektorach a,, z których tylko dwa mogą leżeć w jednej płaszczyźnie, 
odzwierciedla symetrię sieci przestrzennej i odpowiada komórce elementarnej w 
rzeczywistej strukturze kryształu. Bravais wykazał, że można skonstruować nie 
więcej niż 14 różnych typów równoległościanów, noszących nazwę komórek 
Bravais’go i zestawionych w tab. 3.4. Sieć przestrzenną możemy więc rozumieć 
także jako periodyczne powtarzanie w trzech kierunkach jednej z czternastu 
komórek Bravais’go przy zachowaniu warunku ciasnego wypełnienia przestrzeni; 
powstaje w ten sposób czternaście typów sieci Bravais’go. Nie wystarczają one 
jednak do utworzenia wszystkich możliwych grup przestrzennych.

Prócz komórek prymitywnych, tj. zawierających elementy strukturalne tylko w 
narożach komórki Bravais’go, istnieją jeszcze komórki złożone, zawierające te 
elementy w dodatkowych położeniach: w środkach ścian lub w środku równoleg- 
łościanu. Możliwe typy centrowania komórek Bravais’go podane są w tab. 3.5. 
Tabela 3.4 przedstawiona została skrótowo w tym sensie, że wszystkie trzy typy 
centrowania ścian zebrane są w jednej kolumnie. W obu tabelach zastosowano 
symbolikę Hermanna i Mauguina.
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Tabela 3.4

Typy komórek Bravais’go

Liczba 
i typy 

komórki

Układ 
krystalogr.

Typ komórki Parametry 
sieciP c I F

1:P trójskośny zK
a b c 
a^P^y

2:P i B 
(lub A) jednoskośny

"i
i\ 
1 a^b/c 

a = y = 90° p

4:P, I, C 
(lub A, 
lub B) 

i F

rombowy
<<

l""--- •
i""'"
•• a b # c 

a = ^ = y = 90°

l:R trygonalny

/l\
a = b = c 

a = p = y / 90°

1:P heksagonalny zi- 1
a = b / c 

a = [i = 90° 
y = 120°

2:P i I tetragonalny
■< 

i
i 
i
i

-J

•
>----

a = b / c 
a = p = y = 90°

3:P, I, F regularny i ’ 
t— - a

•
---- > •k- ' •

• a = b = c

Wzajemne powiązania elementów symetrii w idealnej strukturze kryształu 
wskazują, że prócz znanych nam już operacji, polegających na prostej translacji, 
odbiciu w centrum lub zwierciadlanej płaszczyźnie symetrii, przemieszczeniu zwy­
kłą lub inwersyjną osią obrotu, należy wyróżnić dwa nowe elementy symetrii. Są 
nimi płaszczyzny poślizgu oraz oś śrubowa. Te dwa elementy nie występują w
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Typy centrowania komórek Bravais’go

Tabela 3.5

Oznaczenie Opis
Liczba węzłów 

w komórce

P prymitywna 1
I przestrzennie centrowana 2
C centrowane dwie ściany (001) 2
В centrowane dwie ściany (010) 2
A centrowane dwie ściany (100) 2
F centrowane wszystkie ściany 4

grupach punktowych. Grupy przestrzenne powstają przez spójne połączenie sieci 
Bravais'go z możliwymi typami centrowania, z operacjami grup punktowych i z 
dwoma dodatkowymi elementami symetrii. Różne sposoby połączenia tych elemen­
tów (z wyłączeniem pięciokrotnej osi obrotu) prowadzą do 230 możliwych grup 
przestrzennych.

Odbicie w płaszczyźnie poślizgu składa się z dwóch operacji, wykonanych w 
dowolnej kolejności: odbicia punktu w płaszczyźnie zwierciadlanej oraz przesunię­
cia go o wektor a/2 (płaszczyzna typu a), c/2 (płaszczyzna typu c) lub (a+ł>)/2 
(płaszczyzna typu n). Przykład działania płaszczyzny poślizgu typu c przedstawio­
ny został na rys. 3.4; punkt A zostaje przekształcony w punkt A' lub A" (A1 i A” 
są translacyjnie równoważne).

Oś śrubowa rzędu n jest elementem symetrii stanowiącym połączenie obrotu o 
kąt 360°/n oraz przesunięcie o ułamek m/n periodu w kierunku osi obrotu; m = 1, 
2, ..., n — 1. Zgodnie z tą nomenklaturą 2X oznacza dwukrotną oś śrubową. Jej 
działanie polega na obrocie punktu w położeniu ogólnym o 180° i przesunięciu go 
o ±ja, ±^b lub +^c, zależnie od kierunku osi. Trzykrotne osie śrubowe mogą 
być dwojakiego rodzaju: 3j i 32. Jeśli pierwszą z nich nazwiemy prawoskrętną, to 
druga jest lewoskrętna. Czterokrotne osie śrubowe mogą być typu 4X i 43 (prawo- 
i lewoskrętna) oraz 42. Działanie osi 4j pokazane jest na rys. 3.5. Sześciokrotne 
osie śrubowe tworzą następujące pary osi enancjomorficznych: 6r i 65, 62 i 64, 
oraz 63. Rysunek 3.6 jest ilustracją możliwych osi sześciokrotnych; położenia 
punktów odpowiadają rzutowi wzdłuż osi. Cyfry w kółkach oznaczają wysokość

Rys. 3.4. Działanie płaszczyzny poślizgu typu c
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punktu nad płaszczyzną w jednostkach |c. Sześciokrotna oś inwersyjna, 6, ma 
działanie analogiczne do 4. Rysunek 3.7 zawiera zestawienie wszystkich możliwych 
w grupach przestrzennych osi śrubowych oraz ich symbole graficzne.

Rys. 3.6. Możliwe sześciokrotne osie śrubowe
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Występowanie płaszczyzn poślizgu oraz osi śrubowych sprawia, iż prócz opera- 
/m \

cji translacji T(r) istnieją również przemieszczenia typu Tl — ą I. Nie należą one 

jednak do translacji prymitywnych, objętych wektorem (3.17).

Rys. 3.7. Osie symetrii występujące w grupach przestrzennych

Oznaczenia grup przestrzennych zawierają kilka symboli, z których pierwszy 
determinuje typ komórki elementarnej według klasyfikacji Bravais’go: P, A, B, C, I 
lub F (tab. 3.5), oraz R. Dalsze symbole oznaczają generatory grupy przestrzennej, 
przy czym najpierw wymienia się oś główną, zwykle o najwyższej krotności, z 
podaniem jej składowej translacyjnej, jeśli jest to oś śrubowa. Później następują 
symbole pozostałych osi i płaszczyzn symetrii. Odstępstwo od tych zasad występu­
je tylko w trzech klasach układu regularnego: T = 23, Th = m3 oraz Oh = mim. W
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(Space group) 
abbr.

(Space group) 
full symbol 

P2,2I2

Point group 

222 orthorhombic

+O
O+

Origin at 112 in plane of 2t2t

Number of positions, 
Wyckoff notation 

4 c 1

Coordinates of equivalent po­
sitions

xyz, xyz; j + x, | —y, 2;
i~x, i + y, 2

Conditions limiting possible 
reflections

0 | z, j 0 z
0 0 z, | | 2

Symmetry of special projection

hkl:
Oki' I
hoi I N° conditions
McO:J

hOO: h = 2n
OkO: k = 2n 
001: No cond.
Special: as above, plus

> hkO: h + k = 2n
2 b 2
2 a 2

(001) pgg; a' = a, 
b' = b

(100) pmg; b' = b (010) pgm: c'= c

Rys. 3.8. Przykład informacji o grupie przestrzennej P2,2,2 (Międzynarodowe Tabele Rentgenografii)

celu zaznaczenia prostopadłości płaszczyzny symetrii do osi używa się kreski 
skośnej. Na przykład P2r/m oznacza grupę przestrzenną o komórce prymitywnej, 
dwukrotnej osi śrubowej i prostopadłej do niej zwierciadlanej (m) płaszczyzny 
symetrii. Wykaz wszystkich możliwych grup przestrzennych znaleźć można w mo­
nografiach z zakresu rentgenografii strukturalnej, a ponadto w Międzynarodowych 
Tabelach Rentgenografii [3]. Podane są tam również wszystkie istotne informacje 
potrzebne do ustalenia rodzaju i położenia w przestrzeni wszystkich elementów 
symetrii, właściwych określonej grupie przestrzennej.

Dla przykładu jedna’ strona Tabel, opisująca jedną z grup przestrzennych 
układu ortorombowego, P2l212, przedstawiona jest w oryginalnej wersji na rys. 
3.8. U góry w środku umieszczony jest pełny symbol grupy przestrzennej, a z lewej 
strony symbol skrócony (w tym przypadku ten sam). Z prawej strony podany jest 
symbol grupy punktowej odpowiadającej klasie krystalograficznej. Otrzymuje się 
go z pierwszego po opuszczeniu wszystkich operacji translacji, zamianie płaszczyzn 
poślizgu na płaszczyzny zwierciadlane oraz osi śrubowych na zwykłe osie obrotu.
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Pierwszy z rysunków ilustruje rozkład w komórce elementarnej punktów symetry­
cznie równoważnych, drugi — rozkład samych elementów symetrii. Układ osi 
współrzędnych obowiązuje taki sam, jak w rzucie stereograficznym (tab. 3.1). Z 
symbolu grupy wynika, że komórka jest prymitywna. Osie śrubowe równoległe są 
do x i y, natomiast oś dwukrotna jest równoległa do osi z układu współrzędnych. 
Należy zwrócić uwagę na fakt, że nie wszystkie osie symetrii przecinają się w 
jednym punkcie, co zdarza się w wielu grupach przestrzennych. Oś śrubowa 2X ||x 
przechodzi przez punkty y = | (ułamek periodu) lub y = % i z = 0, jeśli przy jej 
symbolu nie podano żadnej liczby. Umieszczenie przy znaku graficznym osi 
ułamka, np. £ oznaczałoby, że oś 21||x przechodzi na wysokości z=^c nad 
płaszczyzną rysunku. Podobnie osie 2x||y przechodzą przez punkty x = ^ lub x 
= 5 i z = 0. Obie pary przecinają się w punktach Qi0], DHO], 0] i [HO]. Oś 
2||z przechodzi przez punkt [00] lub [|0], lub [0|], lub [||] płaszczyzny xy i nie 
przecina żadnej z osi śrubowych. Przestrzenny rozkład elementów symetrii w 
grupie P21212 przedstawiony jest na rys. 3.9.

Rys. 3.9. Elementy symetrii w grupie przestrzennej

Jeśli komórka elementarna w grupie przestrzennej P21212 wypełniona jest 
cząsteczkami całkowicie pozbawionymi symetrii (symetria 1), to ich liczba musi 
wynosić cztery. Muszą ponadto zajmować położenia ogólne, gdyż tylko te położe­
nia są całkowicie asymetryczne. Przypiszmy jakiemuś atomowi cząsteczki P współ­
rzędne xyz; wskutek działania operacji symetrii identyczne atomy zajmą w pozo­
stałych cząsteczkach położenia

pili* -^Q(i+xA-y,^ 
P(xyz)< ŻJIy ^R(^-x, ^ + y, Ź)

£2||z ->S(1 — x, 1— y, z)

Dla przykładu transformacja P-*Q pokazana jest na rys. 3.10. Współrzędne 
punktów P, Q, R, S podane są na rys. 3.8 jako położenia c z tym, że punkt 5 
zastąpiono translacyjnie równoważnym.

W grupie przestrzennej P2r2r2 kryształ może być też zbudowany z cząsteczek 
posiadających dwukrotną oś symetrii (symetria 2). W takim przypadku komórka 
elementarna zawiera tylko dwie cząsteczki, ponieważ istnieją tylko dwa położenia 
szczególne o tej symetrii, oznaczone przez a i b na rys. 3.8. Cząsteczki muszą być
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przy tym tak zorientowane, by ich oś dwukrotna pokrywała się z makroskopową 
osią symetrii. Jest to ilustracja znanej zasady, że cząsteczka, zajmująca w krysztale 
określony punkt (węzeł) o określonej symetrii, musi mieć przynajmniej symetrię 
tego węzła.

Rys. 3.10. Transformacja współrzędnych osią 2]||x

Czasami zdarza się, że komórka elementarna wypełniona jest dwoma zbiorami 
identycznych cząsteczek. W obrębie każdego zbioru położenia atomów związane są 
relacjami symetrii, jednak nie ma żadnego związku między położeniem atomu w 
jednym zbiorze i atomu w zbiorze drugim. Mówi się, że oba zbiory są symetry­
cznie niezależne. Sytuacja taka ma znaczenie przy stosowaniu modelu gazu 
zorientowanego w interpretacji właściwości fizycznych kryształów, o czym będzie 
mowa w następnym rozdziale.

3.6. Położenia punktów symetrycznie równoważnych

Położenia atomów w sieci przestrzennej (komórce elementarnej) winniśmy w 
ogólnym przypadku odnosić do ukośnokątnego (krystalograficznego) układu 
współrzędnych. Najczęściej podajemy je wtedy jako współrzędne ułamkowe, tj. 
wyrażone w ułamkach periodu w kierunku trzech osi krystalograficznych a, b, c. 
Postępowanie takie nie jest jednak zbyt wygodne w licznych problemach numery­
cznych ani przy wykonywaniu rzutu struktury na określoną płaszczyznę. Z tego 
powodu najczęściej dokonuje się ortogonalizacji układu ukośnokątnego do kartez- 
jańskiego i prawoskrętnego układu współrzędnych xtx2x3. Przedstawimy to 
zagadnienie dla trój- i jednoskośnego układu krystalograficznego.

Grupy przestrzenne w układzie trójskośnym mogą być albo całkowicie asyme­
tryczne (jeśli pominąć symetrię translacyjną), albo posiadać centrum symetrii. W 
takim przypadku ortogonalizacji układu możemy dokonać w zasadzie dowolnie. 
Jednak najczęściej stosowany sposób przedstawiony jest na rys. 3.11. Przyjmuje się 
mianowicie xj|x, x2 w płaszczyźnie xy oraz x3 lx15 x2. Jeśli elt e2, e3 są 
wersorami w układzie x; a xyz jest prawoskrętny, to kryterium właściwego wyboru 
x3 jest e3-c>0. Oczywiście, jest także e3 = e1xe2- Dla dowolnego wektora R 
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mamy następujący związek między jego współrzędnymi w obu układach (zakłada­
my, że początkiem wektora jest punkt [000], wspólny w obu układach)

R = xa + yh + zc = xlel+x2 e2 + x3 e3

Rys. 3.11. Ortogonalizacja układu trójskośnego

Dwustronne pomnożenie kolejno przez e3, e2, e3 i uporządkowanie wyrazów 
(szczegóły tego rachunku można znaleźć w monografii Jeffery’ego [4]) prowadzi do 
wyniku

= xa + yb cos y + zc cos fi 

x2 = yb sin y + zcA

x3 = zcB

(3.18)

gdzie

A = (cos a — cos fi cos y) 
sin y

B = ——(sin2a + sin2^ + sin2y + 2cosacos)3cosy —2)1/2 
siny

Na podstawie znajomości a, fi, y, a, b, c możemy zamienić ukośnokątne i
ułamkowe współrzędne xyz na współrzędne ortogonalne xr x2 x3.

Rys. 3.12. Ortogonalizacja abc*
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Ortogonalizację układu jednoskośnego trzeba wykonać ostrożniej. Rzecz w 
tym, iż w grupach przestrzennych tego układu często pojawia się kierunek 
poślizgu, który jest kierunkiem symetrycznie ważnym. Należy więc tak wybrać 
nowe osie, by kierunek poślizgu nie uległ zmianie, jeśli tylko jest to możliwe.

Jeśli osią symetrii jest y, a kierunek poślizgu jest równoległy do a, to ortogona- 
lizujemy układ do abc* (rys. 3.12). Orientacja nowych osi dana jest macierzą, 
wynikającą z zastosowania równ. (3.18) przy a = y = 90°

xa yh zc

*1 1 0 COS P
*2 0 1 0
x3 0 0 sin P

(3.19a)

Przekształcenie układu współrzędnych ma wówczas postać

X! = xa+zc cos P 

x2 = yb 

x3 = zc sin P

(3.19b)

Rys. 3.13. Ortogonalizacja a* bc

W drugim przypadku, gdy kierunek poślizgu jest równoległy do c (rys. 3.13), 
ortogonalizacji do a* bc odpowiada przekształcenie

xr = xasinP

x2 = yb (3.20)

x3 = xa cos P+zc

W grupach przestrzennych z poślizgiem typu n, a więc w kierunku jednej z 
przekątnych ścian komórki elementarnej, nie jest możliwa ortogonalizacja układu 
bez naruszenia kierunku poślizgu. Jest wówczas rzeczą obojętną, czy wybierzemy 
układ a* bc, czy abc* — w każdym z nich można jednak łatwo odnaleźć nowy 
kierunek poślizgu.

Na zakończenie zajmijmy się problemem analitycznego znajdywania położeń 
punktów symetrycznie równoważnych, generowanych przez operacje symetrii ma­
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jące składową translacyjną, tj. oś śrubową n-tego rzędu i płaszczyznę poślizgu. 
Ogólne rozwiązania tego problemu mają zastosowanie i do zwykłych osi obrotu, i 
zwykłych płaszczyzn zwierciadlanych i mogą być przydatne w tych przypadkach, 
kiedy trzeba znaleźć położenia atomów wodoru lub „idealne” współrzędne innych 
atomów cząsteczki.

Rozważmy wpierw położenia punktów P1; P2, P3,--, generowanych prżez 
kolejne operacje osi symetrii nm (rys. 3.14). Punkty te leżą na obwodzie koła o 
środku w 0', zaś oś nm, prostopadła do tego okręgu, może być dowolnie zoriento­
wana względem układu współrzędnych x2 x3. Wybierzmy teraz pomocniczy i 
związany z nm układ xj x'2x3 w taki sposób, że x3||nm; pozostałe osie mogą mieć 
kierunki dowolne, lecz ustalone. Położenia punktów Pt zadane są w xr x2 x3 
wektorami R,, w xjx2xj zaś wektorami r-. Wzajemną orientację obu układów, 
których początki przesunięte są o s, podaje macierz c.

Rys. 3.14. Generacja punktów przez oś symetrii

Jeśli punkt wyjściowy, Pt, ma położenie rj, to pozycję P2 określa wektor r2 (w 
ogólności obrót możemy stowarzyszyć z translacją)

Ó = Ar) +1'

gdzie A jest generatorem operacji nr o składowej translacyjnej f. Położenie m-tego 
punktu określa wektor

4 = A^-^rj+jm-ljf (3.21)

Ponieważ między wektorami w xt i występują związki

4 = Crm t' =Ct

a ponadto spełniona jest równość

s + rm =
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położenia kolejnych punktów w xt otrzymujemy z następującego równania, kładąc 
kolejno m = 1, 2, n

Rm = cT A.(m~1)cR1+cT — (3.22)

1. Dwukrotna oś śrubowa 21; równoległa do x3. W tym przypadku wybieramy 
a ponadto (dla wygody) x'1||x1 i x'2||x2. c jest wówczas macierzą jednostko­

wą, c = 1. Dla uproszczenia oznaczeń składowe wektorów w x; oznaczać będziemy 
przez xyz. Aktualna sytuacja przedstawiona jest na rys. 3.15. Mamy

Oczywiście macierz A, podobnie jak składowa translacyjna t', jest zadana w 
układzie x-. Wybierając jako A generator innej operacji symetrii, na przykład 
płaszczyzny zwierciadlanej (wtedy t’ = 0), możemy z równ. (3.22) otrzymać współ­
rzędne punktów generowanych również przez ten element symetrii. Warto zauwa­
żyć, iż występująca w równ. (3.22) składowa translacyjna odnosi się do układu xt 
(nieprimo wanego).

Rozważmy obecnie dwa proste przykłady. Inne zamieszczone są w następnym 
paragrafie.

wektory s i t mają zaś składowe 

sT = (0 s2 0) tT = (0 0 t3)
Z równania (3.22) otrzymujemy

R^ -  AR{ + j 1 —A} s+ t =
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współrzędne P2 wynoszą zatem

x2 =-*i J’2 = -)h + 2s2 z2=zl+t3
W kolejności

R3 — R^ 4~ 2/

czyli współrzędnymi punktu P3 są

x3 = *i y3=yi z3=z1 + 2t3
Znalezienie współrzędnych dalszych punktów nie przedstawia nowych problemów.

Rys. 3.16. Generacja punktów przez płaszczyznę poślizgu n (010)

2. Płaszczyzna poślizgu (010) typu n, a więc prostopadła do x2 i x2 (rys. 3.16). 
Wybieramy xj|xj i x3||x3 tak, że c = 1. W tym przypadku mamy

/1 \ /°
A=l -1 ) (1- A) = 21 1

\ 1/ \ 0

sT = (0 s2 0) tT = (t, 0 t3) 
wobec tego

R2 = ARj + [1 — A ] s +1 =

Z 2 = Zr+t3

Współrzędne punktu P2 wynoszą

X2 =X1+t1 y2 = -yt + 2s2
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W dalszym ciągu

R3 — + 2t

czyli współrzędnymi punktu P3 są 

x3=x1+2tl y3=yi z3=z1 + 2t3

Dalsze punkty otrzymujemy w analogiczny sposób.

3.7. Problemy i przykłady

Problem 3.7.1
Krystalograficzne grupy punktowe

Z punktu widzenia symetrii makroskopowej wielościanu, obejmującej rozmie­
szczenie ścian symetrycznie równoważnych, kątów między ścianami, kierunków 
symetrycznie równoważnych itp., każdy kryształ możemy zaklasyfikować do jednej z 
32 możliwych grup punktowych symetrii, znanych jako klasy krystalograficzne. Klasy 
te wraz z ich zbiorami elementów symetrii zebrane są w tab. 3.6. Ze względu na 
symetrię charakterystyczną klasy możemy zgrupować w siedem znanych układów 
krystalograficznych. Zbiór elementów symetrii potrzebnych do utworzenia wszyst­
kich klas obejmuje centrum symetrii C;, zwierciadlaną płaszczyznę symetrii a, 
zwykłe osie obrotu C15 C2, C3, C4, oraz osie inwersyjne St, S2, S3, S4, S6 (lub 
równoważne im inne elementy symetrii).

Podane w kolumnie 4 elementy symetrii są wszystkimi możliwymi w danej 
klasie elementami. Na tej podstawie można łatwo wydedukować zbiór operacji 
symetrii stanowiący grupę algebraiczną, przez co tabela może być również przydat­
na w zagadnieniach dotyczących innych aspektów teorii grup. Na przykład grupie 
punktowej 422 odpowiada według tabeli następujący zbiór elementów symetrii:

C C C" -L^1. ^2 > ! '-'2» ^2> TV4 , v4

Ponieważ (C^*)2 = C(2Z), (C^1)3 = 1 = — C4Z), możemy ten zbiór zapisać w
konwencjonalnych oznaczeniach teorii grup

E, C4, C4, C2, C2x, C2y, C2, C2

spotykanych, na przykład, jako nagłówek w tabeli charakterów grupy punktowej 
422. W celu uzmysłowienia sobie wzajemnego powiązania tych operacji i wydedu- 
kowania położeń punktów symetrycznie równoważnych celowe jest posłużenie się 
rzutem stereograficznym. Pominąwszy element identyczności E, pierwsze trzy 
operacje powielają punkt w położeniu ogólnym (oznaczony krzyżykiem) w cztery 
punkty równoważne (rys. 3.17u). Dołączenie osi dwukrotnych C2x i C2y powoduje 
podwojenie liczby punktów, przy czym pojawiają się one po drugiej stronie 
płaszczyzny rzutów (oznaczone kółkiem). Na rzucie 3.1 Ib widzimy, że z obecności 
pierwszych sześciu elementów symetrii wynika pojawienie się dalszych dwóch osi 
dwukrotnych, C'2 i C2, które nie mają kierunku zgodnego z żadną z osi współrzęd-
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Tabela 3.6

Elementy symetrii 32 krystalograficznych grup punktowych (krystalograficznych klas)

Objaśnienia:

Układ 
krysta- 

logr.

Symbol 
mię- 

dzynar.

Klasy 
Schoen- 

fliesa
Elementy symetrii

Liczba 
elem. 
sym.

Generatory

Trój- 
skośny

1 
T

c, 
c,

c,
c., C,

1
2

Ai 
a2

Jcdno- 
skośny

2
m 

2/m

c, 
C, 
C2/i

C., C'/’
Cl, ay
Cl Cf, C’/1, ay

2
2
4

A3
a5
A2, A3

Rom­
bowy

222 
mm2 
mmm

D2 
c2r 
D2I,

Cl Cf, Cf, Cf
С,, ax, ay, Cf
Cl C,., Cf, Cf, Cf, ax, az

4
4
8

A3, A4
A4, Aj
A2, A3, A4

Trygo- 
nalny

3
3

32 
3ni 
3m

C3 
C3i 
D3 
c3l.

c„ ±Cf
Cl C„ ±Cf, ±S(/>
Cl 3Cf iC1/1
Cl 2af + Cf
Cl ct, 3C2, З^., IC^’, ±S3=)

3 
6
6
6
12

a7
^2» ^7

A3, A7
^5» ^7

a2, a3, a7

Terago- 
nalny

4
4

4/m 
422 

4mm 
42m

4/mmm

c4 
s4 
Сщ, 
D* 
c4r 
d2J

Cl Cf, ±Cf
C,, Cf, ±5!f’
С,, C„ Cf, az, + Cf, ±S(4='
С,. Cf, Cf, Cf, C'2, Cf ±C'4=) 
C,, Cf, ax, ay, a',., a", ± Cf 
Cl Cf, Cf, Cf, af a", ±S2' 
С,, C^ Cf, Cf, Cf, C2, Cf ax, 
ay, a., a'v, a", ±C4\ +S2’

4
4
8
8
8
8
16

a9
A io 
a2, a9
Aj, Ag
A5, Ag 
^3» A10 

^2» Aj, Ag

Heksago­
nalny

6
6 

6/m

622 
6mm 
6m2 

6/mmm

C, 
C3h 
Cćh

D6 
c6r 
Dih

С., Cf, ±Cf, ±Cf
Cl a:, ±Cf, ±Sf
C,. Cf, a:, ±Cf, ±Sf, 
+ Cf, +Sf
Cl Cf, 3C2, 3C2, +Cf, it!?’
Cl Cf, 3<, За", +Cf, ±Cf
С,, 3C2, 3af a:, ±Cf, ±Sf
Cl 3C2, 3C'f Cf, 3af 3af
±Cf, az, ±Sf, ±Cf, ±Sf

6 
6 
12

12
12 
12
24

a4, a7
Aó, A7 
a2, a4, a7

A3, a4, A7
a4, a5, a7
A3, A6, A7 
A2, A3, A4,
A?

Regu­
larny

23 
m3 
432 
43m 
m3m

T 
T„ 
0 
Td 
Oh

Cl 3C2, ±4C3
Cl' 3C2, 3ar, ±4C3, ±4S3
Cl 9C2i ±4C3, ±3C4
Cj, 3C2, 6av, ±4C3, ±3S4
С,, С;, 9C2, 9a, ±4C3, ±4S3, ±3C4, 
±3S4

12
24
24
24
48

a4, a8
a2, a4, a8
A8, Ag
Ag, A10
A2, Ag, Ag

- dwukrotna oś symetrii o kierunku określonej osi układu współrzędnych X|X2X3 (lub xyz);
C2, C'2 - dwukrotne osie symetrii o kierunkach niezgodnych z osiami XjX2x3 (nP- u układzie trygonalnym);
ax - płaszczyzna symetrii prostopadła do określonej osi;
a',., a” - pionowe płaszczyzny symetrii, równoległe do głównej osi symetrii;
+ - przy osiach o krotności wyższej niż 2 oznacza dwie możliwe skrętności osi.
Dwukrotni! oś symetrii w układzie jednoskośnym przyjęto za równoległa do o i b (f); konwencje w tym zakresie mogą być inne. 

W klasach zawierających osie o krotności wyższej niż 2 oś o krotności najwyższej jest zawsze równoległa do osi z.



nych (rys. 3.17c). Łącznie możemy więc wydedukować 8 położeń punktów równo­
ważnych, zgodnie z rzędem grupy 422. Podobnie podany w tabeli zbiór elementów 
grupy punktowej 6m2

G, 3C2, 3a;, oz, cy, -c^, sf, -s?

Rys. 3.17. Ewolucja rzutu stereograficznego grupy punktowej 422

można zapisać następująco:

$6! $6> ^3> ^3, <TZ, 3C2, 3<7p

ponieważ Sg = (C(3Z))2, S& = °z> = C3'1 są operacjami już występującymi w
grupie. Przy dokonywaniu generacji punktów za pomocą S6 widzimy (rys. 3.18a), 
że pojawia się element az. Przez podziałanie następnie trzema osiami C2, zawiera­
jącymi między sobą kąt 60° (rys. 3.18b), otrzymujemy podwojenie punktów do ich 
ogólnej liczby 12. Jednocześnie z rysunku wynika, iż te operacje symetrii generują 
3 płaszczyzny symetrii typu a'v.

Rys. 3.18. Ewolucja rzutu stereograficznego grupy punktowej 6m2

Liczba elementów symetrii w określonej grupie punktowej podana jest w 
kolumnie 5 tab. 3.6. Jest to jednocześnie liczba punktów symetrycznie równowa­
żnych na rzucie stereograficznym. W kolumnie 6 podane są generatory każdej 
grupy punktowej.

Problem 3.7.2
„Najlepsza” płaszczyzna

Przez zadany zbiór punktów poprowadzić płaszczyznę w taki sposób, by suma 
kwadratów odchyleń tych punktów od płaszczyzny była najmniejsza.
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Postawienie tego zadania ma, oczywiście, sens wtedy, gdy skądś wiemy, że 
określona grupa atomów winna w przybliżeniu leżeć w jednej płaszczyźnie — na 
przykład atomy węgla pierścienia benzenowego w krysztale. Nie ma natomiast 
sensu włączanie do tej grupy atomów takich, o których wiadomo, że na niej nie 
leżą — na przykład atomy wodoru grupy metylowej w metylobenzenie. Rozwiąza­
nie tego problemu przedstawimy według pracy Schomakera i in. [5].

Niech a1; a2, a3 przedstawiają wektory sieci prostej, niekoniecznie ortogonal­
nej, a x(k\ x(3) niech będą współrzędnymi ułamkowymi, 0 |x^| 1, jednego
z zadanych punktów Pk, k = 1, 2, ..., n. Punkty Pj, P2, Pk leżą z pewnym 
rozrzutem na płaszczyźnie, którą chcemy wyznaczyć (rys. 3.19). Płaszczyznę tę 
określają cztery parametry: trzy składowe wektora jednostkowego m, prostopadłe­
go do niej, oraz odległość d od początku układu.

Rys. 3.19. Najlepsza płaszczyzna przez punkty
P2,-,Pk

Położenie punktu Pk wyznacza wektor rk

rk = 41J «i + 42) «2 + 43) «3 (3-23)
Jeśli przez blt b2, b3 oznaczymy parametry sieci odwrotnej (por. problem 3.7.3), to 
wektor normalny do płaszczyzny możemy zapisać w następujący sposób (por. 
problem 3.7.3):

m = mlb1+m2b2 + m3b3 (3.24)

Wtedy odległość punktu Pk od płaszczyzny wyrazi się wzorem

rk • m—d = Y1xk)mi — d
i

Suma kwadratów tych odchyleń
S = Y^-m-d)2 (3.25)

k

jest funkcją owych czterech parametrów i osiąga wartość minimalną przy odpo­
wiednim ich doborze. Sumowanie po k obejmuje wszystkie zadane punkty, przez 
które zamierzamy poprowadzić płaszczyznę. Warunek

1 = 1^^ = o
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gdzie n 3 jest ogólną liczbą punktów, pozwala wyeliminować d, ponieważ

d = -V • m (3.26)

Ostatnie równanie możemy zapisać jeszcze prościej, jeśli wprowadzimy pojęcie 
geometrycznego środka zbioru n punktów (centroidu). Uważać będziemy, że zbiór 
zawiera punkty odpowiadające jednakowym atomom cząsteczki, na przykład 
atomom węgla. Niech położenie centroidu oznacza wektor (r). Jeśli nie wprowa­
dzamy wagi statystycznej, z jaką poszczególne punkty wchodzą do rachunku, to 
wektor <r> zdefiniowany jest natępująco:

(O^E^ 
n k

Wtedy
d = <r>T- m

oraz
S = (3.27)

k

W wyrażeniu (3.27) występują względne położenia punktów, odniesione do położe­
nia centroidu. Oznaczmy je przez Uk

Uk = rk-<r> (3.28)

Zanim wprowadzimy Uk do wyrażenia (3.27), uwzględnimy jeszcze żądanie, by 
wektor m, normalny do płaszczyzny, był wektorem jednostkowym

m m = 1 = EE mi wij bj = mTgm (3.29)
i j

W ostatnim wierszu wprowadziliśmy macierz g, której elementy są iloczynami 
skalarnymi odpowiednich par wektorów sieci odwrotnej

9ij = k bj = gjt (3.30)

g jest więc macierzą symetryczną, a dla sieci ortogonalnej jest macierzą diagonal­
ną.

Warunek normalizacyjny (3.29) również trzeba wprowadzić do wyrażenia (3.27). 
Uczynimy to za pomocą mnożnika Lagrange’a 2, wobec czego S przejdzie w 
funkcję F parametrów wij, m2, wi3

F = Y(V^m)2-łmTgm (3.31)
k

Mamy obecnie trzy warunki minimalizacji funkcji F: 
dF

= HUk>(V^-m)~Agljmj = 0

dF
= Z Uk2)(U^-m)-Xg2jmj = 0

dF
= E Uk} (Ul • tri) - Xg3j wij = 0
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Te trzy równania można zapisać macierzowo

Bm = 2gm (3.32)

gdzie B jest macierzą symetryczną o elementach

= Z u? W (3-33)
k

Jeżeli równanie (3.32) podzielimy przez 2 i pomnożymy lewostronnie przez B1, to 
otrzymamy następujące równanie:

(B-1g)m = (3-34)
Z

Wynika z niego, iż poszukiwane wektory m są wektorami własnymi macierzy 
(B-1g). Mamy trzy takie wektory i odpowiadające im trzy wartości własne 
1/2,■, i = 1, 2, 3. Rozwiązanie takiego problemu było już dyskutowane w związku z 
poszukiwaniem osi głównych tensora (por. p. 2.7).

Interpretację 2 możemy znaleźć w następujący sposób. Połączenie równań 
(3.27), (3.28) oraz (3.33) prowadzi do

S = mTBm (3.35)

Jeśli teraz pomnożymy obie strony równ. (3.32) przez mT, to po porównaniu z 
równ. (3.35) otrzymamy

2=5 (3.36)

Widzimy, iż każda z trzech wartości 2,- jest równa pewnej wartości sumy kwadra­
tów odchyleń punktów od wyznaczonej płaszczyzny. Poszczególne wartości własne 
spełniają warunek

2j < 22 23

i odpowiadają kolejno „najlepszej”, „średniej” i „najgorszej” płaszczyźnie. Wszyst­
kie płaszczyzny są do siebie prostopadłe i przechodzą przez centroid. W interesują­
cym nas zagadnieniu najlepszej płaszczyzny należy wybrać najmniejsze 2, tj. 2V 
Wobec tego rachunek kolejnych przybliżeń w poszukiwaniu wektora mU) należy 
rozpocząć od przyjęcia na wektor próbny takiej kolumny macierzy (B-1g), w 
której występują największe elementy. Dokładnej koplanarności punktów odpo­
wiada 2} = 0.

Jeśli już znamy d oraz składowe wektora m, to możemy napisać równanie 
najlepszej płaszczyzny w układzie współrzędnych ukośnokątnych

m1 xw + m2 x{2) + m3 x{3) = d (3.37)

W celu przejścia do ortogonalnego układu osi trzeba przeliczyć ukośnokątne i 
ułamkowe współrzędne x(i) na współrzędne ortogonalne x{, wyrażone w jakichś 
jednostkach długości. Przy ortogonalizacji, na przykład, abc* można to uczynić za 
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pomocą macierzy h, spokrewnionej z macierzą (3.19a)

(
'

0 
,0

0 a3cosp
a2 0
0 a3 sin P

(3.38)

Jeśli przez R(xlx2x3) oznaczymy położenie punktu w układzie ortogonalnym, to 
ze związku

R = hr

możemy obliczyć

r = h1 /?

W końcu otrzymujemy

(i), (2), o» mi L m2 ,/ m3 m1ctgp\mt x' ' + m2 x' ' + m3 x( ’ = — Xj H-----x, + ----- ;—-------------x3 = d (3.39)
«1 «2 ” \a3 sin P ai /

Druga część równania zawiera szukane współczynniki równania płaszczyzny, d jest 
niezmiennikiem transformacji. Mamy zatem

mj m2 m3 m1 ctg P
n1 = — n2 = — n3 =--- :—--------------
a3 a2 a3smP a3

(3.40)

Równaniem płaszczyzny cząsteczki w układzie abc* jest więc

«i X! + n2 x2 + n3 x3 = d (3.41)
a wektor

NT = (lh, n2, n3) (3.42)

jest wektorem jednostkowym i normalnym do tej płaszczyzny, a zarazem do 
płaszczyzny cząsteczki.

W analogiczny sposób możemy wyznaczyć kierunek drugiej osi cząsteczki, np. 
M. Będzie to wektor leżący w płaszczyźnie (3.41) i jednocześnie prostopadły do 
„najgorszej” płaszczyzny poprowadzonej przez zbiór punktów. Aby go znaleźć, 
trzeba wybrać w macierzy (B^g)“1 kolumnę o największych elementach i wyko­
nać znany już rachunek od równ. (3.34) począwszy. Postępowanie takie możemy 
zastosować wtedy, gdy wyznacznik macierzy (B-1g) jest różny od zera. Jeśli 
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jednak det(B-1g) < 10“6 (co się często zdarza, gdy punkty są dostatecznie bliskie 
płaszczyzny), to rachunku prowadzić nie można, a M trzeba znaleźć inną metodą.

Rozsądna wydaje się w tej sytuacji następująca propozycja. Posługując się 
współrzędnymi ortogonalnymi, obliczamy orientację kilku wektorów pą o kierunku 
możliwie zbliżonym do M i łączących odpowiednie pary atomów w cząsteczce, a 
następnie obliczamy średni kierunek

= (3.43)

Tak znaleziony wektor <Ju) nie spełnia na ogół warunków ortonormalności, wobec 
tego wprowadzamy poprawki na które nakładamy następujące warunki: nor­
malizujemy skorygowany wektor do jedności, żądamy ścisłej ortogonalności do IV 
oraz żądamy, by suma poprawek była równa zeru

3

Z (c2j+^ = i 
j=i
3
^2j + ^c3j = 0 (3.44)
J

ZW 

j

c2j są kosinusami kierunkowymi M.
Jeśli zastosuje się przybliżenie

(c2J^)2^+M' (3.45)
to układ (3.44) jest układem trzech równań liniowych względem dj. Bardziej 
szczegółowe omówienie tego problemu można znaleźć w przykładzie 3.7.9.

Trzecią oś cząsteczki znajdujemy z iloczynu wektorowego

L=MxN

Problem 3.7.3
Sieć odwrotna

Każdą strukturę kryształu idealnego można zbudować przez wypełnienie mate­
rią sieci skonstruowanej za pomocą periodycznego powtarzania w trzech kierun­
kach przestrzeni pewnej jednostki strukturalnej, zwanej komórką elementarną. 
Komórka ta jest równoległościanem zbudowanym na trzech wektorach alt a2, a3, 
nie leżących w jednej płaszczyźnie. Przy ciasnym zapełnieniu przestrzeni komórka­
mi elementarnymi ich naroża tworzą trójperiodyczny zbiór punktów, zwany siecią 
prostą danej struktury. Tę samą sieć otrzymamy również jako zbiór końców 
wektora

r = at'+ n2 a2 + n3 a3

jeżeli nt, n2, n3 przebiegać będą zbiór całkowitych liczb dodatnich, ujemnych i zer. 
Można zatem powiedzieć, że wówczas wektor r generuje sieć prostą kryształu.
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Objętość komórki elementarnej sieci prostej dana jest iloczynem mieszanym 
wektorów Oj

Va = • (a2 x a3) (3.46)

Pojęcie sieci prostej jest nieodzowne w geometrycznym opisie struktury. Stano­
wi ona bowiem zgodny z symetrią struktury układ współrzędnych, do którego 
odnosimy położenia atomów. W dalszych rozważaniach pominiemy ruch termi­
czny, tj. będziemy uważać atomy za nieruchome.

Okazuje się, że zastosowanie pojęcia sieci prostej do przedstawienia niektórych 
zjawisk w kryształach prowadzi do zależności zbyt skomplikowanych, nie oddają­
cych przy tym istoty zagadnienia. Do tych zjawisk należą przede wszystkim 
problemy związane z rozchodzeniem się fal w kryształach i ich rozpraszaniem. 
Podobnie jak dla geometrycznego opisu struktury naturalnym punktem odniesie­
nia jest sieć prosta, tak naturalną bazą dla opisu zjawisk fizycznych jest sieć 
odwrotna. Pojęcie sieci odwrotnej przydatne jest w analizie zjawisk falowych 
niezależnie od tego, czy mamy do czynienia z falą elektromagnetyczną, falą 
sprężystą, czy też z falą sprzężoną z ruchem w krysztale takiej cząstki, jak elektron 
lub neutron. Może być więc zastosowane zarówno w opisie dyfrakqi promieniowa­
nia rentgenowskiego, jak i dyfrakcji elektronów i neutronów; potrzebne jest w 
badaniach zjawiska przewodzenia prądu elektrycznego, jak i termicznych ruchów 
cząsteczek. Sprecyzujemy obecnie pojęcie sieci odwrotnej, a następnie przedstawi­
my jej proste zastosowania.

Sieć odwrotną można zdefiniować za pomocą trzech wektorów, br, b2, b3, 
stanowiących jej bazę. Wektory te definiujemy tak, by było

^bj^S^ (3.47)

gdzie jest symbolem Kroneckera. Korzystając z tej definicji oraz z wyrażenia na 
objętość komórki elementarnej (3.46), można otrzymać wyrażenia pozwalające na 
obliczenie bj. Na przykład dla i = j = 2 otrzymujemy

a2 ■ b2 = 1 = — «2 («3 x ai) 
'a

Stąd

b2=^(a3xa1) (3.48)

Wektor b2 sieci odwrotnej, o długości podanej przez równ. (3.48), jest prostopadły 
do płaszczyzny a1; a3 sieci prostej, a więc do płaszczyzny (010). Łatwo się 
przekonać, że br ±(100) oraz b3 ±(001). Zauważmy, że wskaźnik „i” przy b, 
odpowiada niezerowemu wskaźnikowi Millera w symbolu płaszczyzny, co nie jest 
przypadkowe. Wzory (3.46) i (3.48) są symetryczne względem obu baz, a więc na 
przykład

«3 =y(*l Xb2> 
^b
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gdzie Vb jest objętością komórki sieci odwrotnej

Vb = br-(b2 xb3) (3.49)

Jeśli ar, a2, a3 są bazą sieci ortogonalnej, to również blf b2, b3 stanowią bazę 
sieci ortogonalnej. W takim przypadku 

oraz bt Lai. W nieortogonalnych układach współrzędnych do obliczenia bt trzeba 
korzystać z definicji lub wzorów trygonometrycznych, podawanych w podręczni­
kach rentgenografii i krystalografii. W najogólniejszym przypadku nie ma także 
prostych relacji między kątami fib, fi2, ^3 sieci prostej i kątami fi*, fi^, fi*, 
zawartymi między wektorami

Podobnie jak wektor w sieci prostej r można też zdefiniować wektor H w sieci 
odwrotnej

H = hb1+kb2 + lb3 (3.50)

lub prościej

H^bi+h^ + h.b, (3.51)

Również i tutaj h, k, / lub hY, h2, h3 stanowią trójkę liczb całkowitych dodatnich, 
ujemnych a niektóre (lub wszystkie) mogą też być zerami. Można uważać, że sieć 
odwrotna jest zdefiniowana przez trój periodyczny zbiór punktów stanowiących 
zakończenie wektorów (3.51).

Nieprzypadkowo użyto w równ. (3.50) liter h, k, l oznaczających wskaźniki 
Millera płaszczyzny w sieci prostej. Wektor H(hkl) ma bowiem dwie podstawowe 
właściwości

1. Każdy wektor sieci odwrotnej H (hkl) jest prostopadły do rodziny płaszczyzn 
równoległych o wskaźnikach (hkl) w sieci prostej.

2. Długość wektora H(hkl) jest równa odwrotności odległości między dwiema 
sąsiednimi płaszczyznami zbioru (hkl)

\H(hkD\ = -1- (3.52)
“hkl

W ten sposób nieskończony zbiór nieskończonych płaszczyzn w sieci prostej, (hkl), 
(2h, 2k, 21), (—5h, —5k, —5/), ••• reprezentowany jest w sieci odwrotnej tylko jed­
nym punktem. Dowody obu twierdzeń można znaleźć w podręcznikach rentge­
nografii. Nie będziemy ich tu przytaczali, zajmiemy się natomiast prostymi zasto­
sowaniami.

Bezpośrednie wykorzystanie równ. (3.52) prowadzi do przejrzystego i najszyb­
szego obliczenia odległości między dwiema sąsiednimi płaszczyznami rodziny (hkl), 
bez potrzeby uciekania się do zawiłej trygonometrii. Wystarczy w tym celu 
policzyć iloczyn skalarny H ■ H, który równy jest kwadratowi odwrotności szuka-

106



nego odstępu. Na przykład w sieci ortorombowej

X = (H.H)l/2 = 

ahkl

V £ £¥/2 

«1 «2 «3 /

Przejdźmy obecnie do opisu dyfrakcji promieniowania rentgenowskiego na 
kryształach. Będziemy się interesować odbiciem fali monochromatycznej o długości 
A od zbioru płaszczyzn o odstępach dhia (rys. 3.20), spełniającym prawo Braggów

(3.53)2dhkt sin 6 = nA

Rys. 3.20. Związek między wektorami s0, s i G w konfiguracji odbicia wiązki monochromatycznego 
promieniowania rentgenowskiego

przy czym 0 jest kątem odbłysku, zaś n = 1, 2, ... rzędem interferencji. Przyjmiemy 
dalej, jak to się często czyni, że hkl nie muszą być liczbami względem siebie 
pierwszymi, w równ. (3.53) można zatem n pominąć. Zjawisko dyfrakcji odpowia­
dające prawu Braggów można też interpretować jako spójne i sprężyste rozprasza­
nie fotonów, zachodzące bez zmiany długości fali po rozproszeniu. Wprowadźmy 
dwa wektory s i s0 o długości

l»ol = |s| = I (3.54)
Z

przy czym s0 jest normalny do czoła fali padającej, s do czoła fali rozproszonej. 
Kąt między nimi wynosi 20 (rys. 3.20), zatem

So • S = -^ cos 20 
a

Wektor
s—s0 = G (3.55)

nosi nazwę wektora rozproszenia. Łatwo zobaczyć, że G jest normalny do zbioru 
płaszczyzn odbijających (rys. 3.20). Ponadto

G • G = s2 + 5q — 2ss0 = X. (i _ cos 20) = 4sin2 0/A2
Z

a zatem
(G-G)112 = 2sin0/A
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Jeśli zastosujemy teraz warunek Braggów (3.53) z pominięciem n, to otrzymamy

|G| = ^- = |H| 
ahkl

czyli
G = H (3.56)

Otrzymujemy w ten sposób bardzo prosty i przejrzysty warunek na pojawienie się 
refleksu wiązki promieniowania rentgenowskiego o długości fali A od zbioru 
płaszczyzn (hkl): wystąpi on wtedy, gdy wektor rozproszenia równy będzie jakiemu­
kolwiek wektorowi sieci odwrotnej. Warunek ten jest ogólniejszy od prawa Brag­
gów, zawiera bowiem explicite również kierunek wiązki rozproszonej.

Rys. 3.21. Przekrój kuli Ewalda płaszczyzną 
sieci odwrotnej blt b2, ilustrujący warunek 
odbicia

Opisywana sytuacja może być rozwinięta za pomocą pojęcia noszącego nazwę 
kuli Ewalda (rys. 3.21). Na płaszczyźnie sieci odwrotnej bt, b2 narysowano okrąg o

promieniu |r*| = y = |s| = |s0| ze środkiem w OE, czyli przekrój kuli Ewalda tą 

płaszczyzną. Warunek odbicia spełniają tylko te zbiory płaszczyzn, dla których 
reprezentujące je w sieci odwrotnej punkty znajdą się na powierzchni kuli. Tylko 
bowiem dla takich węzłów spełniony jest warunek

s—s0 = H

Na rysunku 3.21 znalazł się na powierzchni kuli węzeł (20/) i tylko ten zbiór 
płaszczyzn może się znaleźć w pozycji odbijającej, jeśli nic więcej się nie zdarzy, tj. 
jeśli fala jest monochromatyczna a płaszczyzna sieci odwrotnej bi, b2 jest nieru­
choma względem kuli Ewalda. Przy odrobinie innej orientacji płaszczyzny sieci 
odwrotnej względem kuli Ewalda w ogóle żaden z węzłów nie znalazłby się na 
powierzchni kuli, czyli w pozycji odbijającej. Sytuacja zmienia się jednak, gdy 
zaczniemy obracać płaszczyznę sieci odwrotnej wokół punktu O (początek) przy 
nieruchomej kuli, co odpowiada obrotowi kryształu wokół prostej przechodzącej 
przez O i normalnej do płaszczyzny rysunku. Na powierzchni kuli mogą teraz 
znaleźć się węzły (10/), (11/), (12/), ..., oznaczone czarnymi kółkami na rys. 3.21. 
Widoczne są również ograniczenia zbioru refleksów: na powierzchni kuli nie może 
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znaleźć się żaden węzeł sieci odwrotnej, którego odległość od początku -jest 
większa od średnicy kuli Ewalda. Rozwinięcie tego rozumowania pozwala łatwo 
zrozumieć strukturę zbioru refleksów, powstających przy obracaniu czy kołysaniu 
kryształu. Równie prosto można interpretować wyniki zastosowania metody Laue- 
go, jeśli uzmysłowimy sobie, że ciągłemu widmu promieniowania w pewnym 
zakresie długości fal odpowiadać będzie w sieci odwrotnej warstwa kulista w 
pewnym przedziale średnic.

Warto zauważyć, że definicje (3.54) używane są zwykle w dyfrakcji promienio­
wania rentgenowskiego. W fizyce ciała stałego korzysta się raczej z definicji 
wektora falowego k

k = 2ns (3.57)

tak że wektor rozproszenia Q jest równy

Q = k-k0 (3.58)

Wobec tego warunek (3.56) ma analogiczną postać

Q = 2nH (3.59)

Pojęcie sieci odwrotnej oddaje również cenne usługi w reprezentacji ruchu 
falowego w sieci krystalicznej. Do najczęściej spotykanych zastosowań należy 
przedstawienie stanów fali stojącej w równoległościanie o skończonej objętości, 
który rozmiarami odpowiada wielkości kryształu. Jak wiadomo, stan fali stojącej 
może się wytworzyć w strukturze periodycznej wtedy, gdy płaszczyzny węzłów fali 
pokrywają się z jakimiś płaszczyznami sieci prostej, przy czym płaszczyzny węzłów

Rys. 3.22. Dwa (z wielu możliwych) stany fali stojącej 
w sieci prostej (ortogonalnej) przy wektorze falowym 
II “i
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muszą się też wytworzyć na zewnętrznych ścianach kryształu. Warunek ten 
limituje dopuszczalne wartości długości fali ruchu falowego, 2 staje się zatem 
wielkością nieciągłą. Dwa możliwe (spośród bardzo wielu) ciągi falowe przedsta­
wione są na rys. 3.22.

Wybierzmy dla uproszczenia rozważań sieć ortogonalną o wektorach bazy at, 
a2, a3 oraz równoległościan o krawędziach ^1 a1, N2a2, N3a3, przy czym Nt są 
dużymi liczbami naturalnymi. Jeśli interesujemy się ciągami falowymi o wektorze 
kil«!, to warunek wytworzenia się stacjonarnej fali stojącej orzeka, że najmniejsza 
długość fali może wynosić 2mi/2 = ax, czyli 2min = 2a1. Odpowiada jej wektor 
falowy o długości

Z drugiej strony, stan fali stojącej o największej długości fali spełnia warunek 
^ma/2 = N3 , czyli

Jeśli zatem rozważamy ruch falowy taki, że normalna do płaszczyzny jednakowej 
fazy jest równoległa do kierunku krystalograficznego a^, to mogą się wytworzyć 
stany fali stojącej o wektorze falowym

k = ^nh1 (3.60)

gdzie 1 < nt < Nt. Tym możliwym stanom odpowiada w sieci odwrotnej zbiór 
punktów o położeniach nb1/N1, 2itb1/N1, nb3. Reprezentacja w sieci odwrot­
nej dwóch ciągów falowych z rys. 3.22 jest przedstawiona na rys. 3.23. Ponieważ

Rys. 3.23. Reprezentacja w sieci odwrotnej fal 
stojących z rys. 3.22

Ni są liczbami bardzo dużymi (rzędu 1020), wszystkie możliwe stany fali stojącej 
reprezentuje w rezultacie quasi-ciągły zbiór punktów. Tym sposobem opisuje się 
fale sprężyste w kryształach i ruch termiczny atomów.
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Pprzyklad 3.7.4
Analiza elementów symetrii

Posługując się tabelą generatorów 3.1 wykazać, że С[31Г11 jest złożonym elemen­
tem symetrii.

Z rysunku 3.1 wynika, że elementowi C[31T1] odpowiada przekształcenie współ­
rzędnych xj = x3, x2 = — x15 — x2, czyli macierz В

/ ° ° ЛВ = I —1 0 0 )

\ 0-10/

Próbujemy rozłożyć В na iloczyn X-A8 gdzie X jest macierzą nieznaną. Mamy

X = В A8 1 = В Aj
/ 0 0 1\ /0 0 1 \ / 0 1 0 
(-1 0 0 1 1 1 0 0 I = ( 0 0-1 

\ 0 -1 0/ \0 1 О/ \-l o o

Ponieważ X nie odpowiada żadnemu z generatorów, piszemy dalej

X = Y = Y A5

Stąd

Y = X-Aj

zatem

В — A8 A2 A5 A8 — A8 A3 A8

Nie jest to jedyny sposób rozkładu B. Łatwo to dostrzec, jeśli napiszemy, jak 
poprzednio, B = XA8, lecz tym razem uważać będziemy, że macierz X da się 
przedstawić w postaci iloczynu nieznanej operacji Y z powtórzoną operacją A8. 
Mamy obecnie X = YA8, czyli

Y = XAJ

Jako drugą możliwość rozkładu mamy więc

B = (A3A4)(A8A8)
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Przykład 3.7.5
Wpływ symetrii na postać wektora

Jakie ograniczenie nakłada na wektor biegunowy trzykrotna oś symetrii Ą1111?

Ponieważ

wobec tego

/-1 1 0\
A8 - 1 = [ 0-1 11

\ 1 o -1/

/-Pl +p2\
— 1}p = I -P2 + P3 1 = 0

\ P1-P3/

Wynika stąd, że pr = p2 = p3. Wektor p ma więc kosinusy kierunkowe {1/^/3, 
l/xl/x/3] takie same, jak C^1111, czyli jest równoległy do osi symetrii.

Przykład 3.7.6
Wpływ symetrii na postać wektora

Jakie są ograniczenia nakładane na wektor biegunowy przez płaszczyznę 
symetrii połowiącą kąt xr, x2 i równoległą do x3?

Płaszczyźnie takiej odpowiada macierz transformacji

/0 1 0\
A = I 1 0 0 )

\o 0 1/

Równość

/-1 /~Pi + P2\
;a-1’p = i i-ioilp2l = l P1-P2 l = o 

\ 0 0 0/ \p3/ \ 0 /

narzuca warunki pt = p2, p3 / 0. Płaszczyzna symetrii dopuszcza więc wektor pT 
= (Pi Pi P3Y leżący na tej płaszczyźnie.

Przykład 3.7.7
Wpływ symetrii na postać wektora

Jakie ograniczenia nakłada na wektor osiowy płaszczyzna symetrii (110)?

Ślad tej płaszczyzny na xt x2 przechodzi przez punkty [100] i [010]. Na 
rysunku 3.24 zaznaczono płaszczyznę równoległą do niej i przechodzącą przez
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początek układu. Transformacji punktu xi = — x2, x2 = — x3 = x3 odpowiada 
macierz

Zgodnie z warunkiem niezmienniczości (3.5) mamy
/ i -i o\/pĄ 
1-1 i o 11 p2 I 
\ o 0 2/ \pj (Pi-P2\

-P1+P2 l = o 

2p3 /
Stąd Pi = p2, p3 = 0. Wektor pT = (pt pr 0) jest prostopadły do (110).

Przykład 3.7.8
Osie główne tensora

Mamy dany tensor

A B B *

BA B
B B A

Należy go sprowadzić do układu osi głównych.

W tym przypadku wiadomo, że jedną z osi głównych jest x3||[lll], pozostały­
mi są x^ 1 x2 1 x3. Przejście od układu x3 x2 x3 do xi x2 x3 może być dokonane 
za pomocą dwóch kolejnych przekształceń (rys. 3.25):

1. Obrót o kąt 45° wokół xx, któremu odpowiada macierz ct

(
10 0 \
0 1/^/2 -1/^ j 

0 1/^2 1/V2 /
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Rys. 3.25. Schemat transformacji Xj x2 *3 
! X2 X3 —* X2 X3

2. Obrót wokół osi x2 o kąt <p taki, że cos (p = 2/76. Związek między x," i x- 
przedstawia macierz c2

c2

/2/^6 0 -1/73 
[010 
\ 1/73 0 2/76

Zatem przejście od układu X; do x- określa macierz a taka, że

a = c2 Cj =
/2/76 -1/76 -i/76\ 
I 0 1/72 -1/72 I

\i/73 1/73 1/73 /

Macierz ta powinna sprowadzić T do postaci diagonalnej. Istotnie

Wynik tej transformacji dowodzi, że obrazem tensora w krysztale, w którym 
występuje trójkrotna oś obrotu o kierunku [111], jest kwadryka obrotowa wokół 
tej osi.
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Przykład 3.7.9
Równanie ■ płaszczyzny cząsteczki antracenu

Dane są współrzędne ułamkowe atomów węgla cząsteczki antracenu w kryszta­
le w dwóch temperaturach: 290 i 95 K. Znaleźć równanie płaszczyzny przechodzą­
cej przez te atomy w obu temperaturach oraz orientację normalnej do tych 
płaszczyzn w układzie abc*.

Antracen krystalizuje w układzie jednoskośnym, grupa przestrzenna Pija. 
Komórka elementarna ma parametry podane dla obu temperatur w tab. 3.7 i jest 
wypełniona dwiema cząsteczkami. Zajmują one położenia szczególne o symetrii C;, 
wobec czego wystarczy podać położenia połowy atomów (tab. 3.8 i 3.9). Współ­
rzędne ortogonalne obliczone zostały z współrzędnych ułamkowych, zaczerpnię­
tych z pracy Masona [6]. Numerację atomów węgla i orientację osi symetrii 
przedstawiono na rys. 3.26. Rozwiązanie problemu zaczniemy od znalezienia 
normalnej N do płaszczyzny cząsteczki, następnie poszukamy orientacji pozosta­
łych osi symetrii, L i M.

Tabela 3.7

Parametry sieci prostej antracenu (a;, P) [6] i sieci odwrotnej 
IP)

Parametr
Temperatura

290 K 95 K

0], nm 0,8562 ± 0,0006 0,8443 ± 0,0006
a2, nm 0,6038 ± 0,0008 0,6002 ± 0,0007
a3, nm 1,1184 ±0,0008 1,1124 ± 0,0008
P, stopień 124,7 ±0,1 125,6 ±0,1
b,, nm-1 1,4206 1,4567
b2, nm' 1 1,6562 1,6661
by, nm “ 1 1,0876 1,1056
P*, stopień 55,3 54,4

Tabela 3.8

Współrzędne ułamkowe i ortogonalne atomów węgla cząsteczki antracehu w krysztale w 
temp. 290 K (na podstawie danych z pracy [6])

Atom Współrzędne ułamkowe Współrzędne ortogonalne, nm

A 0,08728 0,02712 0,36562 -0,15805 0,01638 0,33618
B 0,11875 0,15775 0,28072 -0,07706 0,09525 0,25812
C 0,05864 0,08030 0,13816 -0,03776 0,04848 0,12704
D 0,08786 0,20936 0,04738 0,04506 0,12641 0.04356
E 0,03038 0,13067 -0,08990 0,08325 0,07890 -0,08266
F 0,06055 0,25943 -0,18346 0,16865 0,15663 -0,16869
G 0,00336 0,18060 -0,31659 0,20444 0,10905 -0,29100
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Tabela 3.9

Współrzędne ułamkowe i ortogonalne atomów węgla cząsteczki antracenu w krysztale w 
temp. 95 K (na podstawie danych z pracy [6])

Atom Współrzędne ułamkowe Współrzędne ortogonalne, nm

A 0,08617 0,02613 0,36813 -0,16563 0,01568 0,33297
B 0,11793 0,15850 0,28352 -0,08403 0,09513 0,25644
C 0,05886 0,07899 0,14027 -0,04114 0,04741 0,12687
D 0,08783 0,20916 0,05076 0,04128 0,12554 0,04591
E -0,03011 -0,13488 0,08974 0,08353 0,08096 -0,08117
F -0,06123 -0,26634 0,18215 0,16965 0,15986 -0,16475
G -0,00391 -0,18761 0,31834 0,20944 0,11260 -0,28794

Rys. 3.26. Szkielet węglowy cząsteczki antracenu z ozna­
czeniem atomów i osi symetrii LMN

Wychodząc z współrzędnych ułamkowych obliczamy wpierw macierze B i g 
według definicji (3.33) oraz (3.30). W temperaturze 290 K otrzymujemy (ze względu 
na małą wartość wyznaczników rachunek trzeba prowadzić z dokładnością do 
szóstego miejsca)

/ 7,495585 12,897612 12,521582 
102B = I 12,897612 38,579036 -8,261099 

\ 12,521582 -8,261099 75,156706 
/2,018161 0 0,879543\

g = ( 0 2,742932 0 I
\ 0,879543 0 1,182787/

Ponieważ det(B) = 2,3912-10 6 jest różny od zera, możemy obliczyć B 1

oraz

/1184,02 -448,64 -246,58
lO^B"1 = 1 170,02 93,43

51,36

' 217266 -123059 74974"
(B1g) = l -82325 46635 -28409

-45246 25627 -15613>
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Szukając wektorów własnych macierzy (B 1 g), wybieramy jako zerowe przybliże­
nie kolumnę o największych elementach. Jest nią

/ 217266\ 
q0 = I -82325 I

\- 45246/

Następnie obliczamy pierwsze przybliżenie
/ 5,39431\ 

=(B-1g)ff0 = -2,04403 1010
\-1,12337/

Jeżeli podzielimy składowe przez analogiczne składowe q0, to otrzymamy 
/248281 \
I 248287 I 
\248281 /

Składowe te różnią się między sobą tak niewiele, że gj możemy uznać za 
wystarczająco dobre przybliżenie m(1), a średnią wartość 248 283 jako wartość 
własną 1/2(1). Stąd

A(1> =4,027-10" 6 nm2

Liczba ta przedstawia sumę kwadratów odchyleń atomów od płaszczyzny. Po 
znormalizowaniu

e[g0i = 61,018540-1020 =/ /1/2 = 7,811436-1010

otrzymujemy wektor m

mT = (0,69056 -0,26167 -0,14381)

tak że równanie płaszczyzny całej cząsteczki we współrzędnych ukośnokątnych ma 
postać

0,69056x(1) —0,26167x(2) —0,1438 lx<3) = 0

Dla sprawdzenia tego równania policzmy odchylenia atomów węgla oraz ich
kwadraty. Otrzymujemy

A B C D E F G
a i • 103 0,60 0,36 -0,39 -0,92 -0,28 0,31 0,59 nm

■ 106 0,355 0,126 0,149 0,854 0,081 0,097 0,350 nm2

2£<t2 = 4,024-10-6 = 5 S 2,(1)

Zgodność obu wartości 2(1) jest zupełnie zadowalająca.
Podstawienie mi, af oraz fi do równ. (3.40) pozwala napisać równanie płaszczy­

zny cząsteczki (w temp. 290 K) we współrzędnych ortogonalnych

0,80654%! - 0,43337x2 + 0,40207x3 = 0
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Wektor

NT = (0,80654 -0,43337 0,40207)

jest normalny do tej płaszczyzny,
W celu znalezienia drugiego wektora własnego, M, nie możemy odwrócić 

macierzy (B-1 g) i ponownie skorzystać z rachunku kolejnych przybliżeń, ponieważ 
wyznacznik tej macierzy jest równy zeru. Wobec tego wybieramy zbiór wektorów 
AG', BF', ..., w przybliżeniu równoległych do M, i obliczamy średni kierunek

</> = (-0,3234 -0,8922 -0,3151)

Korekta do ścisłej ortonormalności z N poprzez nałożenie warunków (3.44) [z 
uwzględnieniem przybliżenia (3.45)] prowadzi do poprawek

51=20110’5 <52 = —610~5 <53 = —195 • 10“5

Po ich wprowadzeniu otrzymujemy

MT = (-0,32143 -0,89230 -0,31701)

W końcu

LT = (-0,49615 -0,12644 0,85897)

Pełna orientacja osi LMN cząsteczki antracenu w układzie abc* podana jest dla 
temp. 290 K w tab. 3.10.

Tabela 3.10

Orientacja osi LMN cząsteczki antracenu wzglę­
dem ortogonalnych osi kryształu abc* (temp.
290 K)

Oś a b- c*

L -0,49615 -0,12644 0,85897
M -0,32143 -0,89230 -0.31701
N 0,80654 -0,43337 0,40207

Wyniki te różnią się nieco od podanych przez Masona, co jest spowodowane 
zapewne trochę inną procedurą aproksymacyjną. Najłatwiej określić precyzję 
przybliżenia za pomocą normalnej N, ponieważ dla atomu „F leżącego dokładnie 
na płaszczyźnie Rt N = 0. Jako precyzję wyznaczenia równania płaszczyzny może­
my zatem przyjąć błąd standardowy

—

X^-N)2) V2 

n(n — 1) | 
(3.62)
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przy czym n jest liczbą atomów. Otrzymujemy dla temp. 290 K

N (Mason) cr^, = ±8,6 -10“4

N (niniejsze obliczenia) = ± 1,5 • 10-4

Na tej podstawie wyniki przytoczone w tab. 3.10 można uważać za trochę 
dokładniejsze.

Podobna procedura, zastosowana do danych kryształu dla temp. 95 K, prowa­
dzi do wyników zamieszczonych w tab. 3.11.

Tabela 3.11

Orientacja osi LMN cząsteczki antracenu wzglę­
dem ortogonalnych osi kryształu abc* (temp. 
95 K)

Oś a b c*

L -0,51135 -0,13030 0,84947
M -0,30191 -0,89822 -0,31952
N 0,80461 -0,41983 0,41995

Przykład 3.7.10
Symetryczne położenia atomów

Mając wektor

R^ = (0,03776 0,04848 0,12704) nm

opisujący położenie atomu węgla C w cząsteczce antracenu w abc* w temp. 290 K 
(tab. 3.8), znaleźć „idealne” położenia pozostałych atomów węgla pierścienia środ­
kowego i porównać wyniki z położeniami rzeczywistymi.

Ponieważ środek cząsteczki (centroid) przypada w punkcie [000], w równ. 
(3.22) mamy s = 0 i t = 0. Zatem

Rm = cTA.im~1}cR1

Macierz c odpowiada operacji C^, kolejność atomów widoczna jest na rys. 3.26.
Wyniki .obliczeń zebrane są w tab. 3.12. Jak wynika z danych zawartych w 

tabeli, położenia idealne różnią się od rzeczywistych w granicach 1 • 10“3 nm. 
Podobny rachunek wykonany dla pierścieni skrajnych (t = 0, s 0) wskazuje na 
różnice około trzy razy większe. Można stąd wnosić, że anizotropia sił w krysztale, 
działających na cząsteczkę, powoduje niewielkie odstępstwa do jej pełnej symetrii.

Przytoczony tu rachunek może być bardzo przydatny do określania położeń 
atomów wodoru, znanych z badań rentgenograficznych zwykle z małą dokładnoś­
cią.
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Tabela 3.12

„Idealne” (R'm) i rzeczywiste (Rm) położenia atomów węgla środkowego pierścienia cząsteczki antracenu

m Atom 1) c^A^^c = D = R'm, 
10-2 nm Rm

Ó104, 
nm

/1 0 o\ /1 o o\ /- 3,776 \ /-3,776 \ —
1 C 1 0 1 ° I 1 ° 1 ° 1 I 4,848 1 1 4,848 1 —

\o o 1 / \0 0 1 / \ 12,704 / \ 12,704 / -

/ 1 o\ /0,8275 - 0,5212 - 0,2088\ /- 8,303 \ /-8,325 \ -2,2
2 E hx/3 i

0 /
1 0,1742 0,5919 -0,7870 j 1 -7,786 1 [ -7,890 1 -10,4

\ 0 0 1/ \0,5337 0,6149 0,5806 / \ 8,342/ \ 8,266 / -7,6

o\ / 0,4826 -0,8681 0,1162\ / - 4,555 \ / - 4,506 \ 4,9
3 D' liV3 -ł

0 /
1 -0,1727 - 0,2244 - 0,9591 1 I -12,620 I -12,641 -2,1

\ 0 0 1/ \ 0,8587 0,4428 -0,2582/ \ -4,376/ \ -4,356/ 2,0

/-1 0 0 / 0,3101 -0,6939 0,6499 \ / 3,721 \ / 3,776 \ 5,5
4 C 1 0-10 I -0,6939 - 0,6325 - 0,3442 1 1 -4,819 I -4,848 -2,9

\ 0 0 1 \ 0,6499 - 0,3442 -0,6776/ \-12,731 / \-12,704 / 2,7

/ -i o\ / 0,4826 -0,1727 0,858ó\ / 8,249 \ / 8,325 \ 7,6
5 E 1 -1^3 -ł

0 /
1 -0,8681 -0,2244 0,4428 1 1 7,815 1 1 7,890 1 7,5

\ 0 0 1/ \ 0,1162 -0,9591 —0,2582/ \- 8,369 / \-8,266 / 10,3

/ ł 173 o\ / 0,8275 0,1742 0,5337\ / 4,500 \ / 4,506 \ 0,6
6 D 0 /

1 -0,5212 0,5919 0,6149 1 1 12,649 1 1 12,641 1 -0,8

\ 0 0 1/ \-0,2088 - 0,7870 0,5806/ \ 4,349 / \ 4,356/ 0,7
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4. MODEL GAZU ZORIENTOWANEGO

4.1. Opis modelu, zastosowania i ograniczenia

W molekularno-kinetycznym opisie właściwości zwykłego gazu przyjmujemy, 
że składa się on z cząsteczek słabo oddziałujących z sobą, a jeśli zajmujemy się 
gazem idealnym, to oddziaływania te z definicji równe są zeru. Przyjmujemy też 
zwykle, iż rozmiary cząsteczek w porównaniu z odległościami między nimi są 
znikomo małe, co odpowiada traktowaniu cząsteczek jako tworów punktowych.

W analogii do tego obrazu możemy opisać wiele właściwości kryształu moleku­
larnego zakładając, że składa się on z cząsteczek zajmujących określone położenia 
w przestrzeni oraz że rozmiary cząsteczek są małe w porównaniu z odległościami 
między nimi w krysztale. W pierwszym przybliżeniu możemy też zaniedbać oddzia­
ływania między cząsteczkami. Różnica między zwykłym gazem a kryształem 
polegać więc będzie w pierwszym rzędzie na tym, że w tym ostatnim przypadku 
cząsteczki tworzą określoną strukturę periodyczną, w której zajmują określone 
położenia i mają określone orientacje względem wybranego układu odniesienia. 
Zależnie od interesującego nas problemu możemy każdej cząsteczce przypisać 
wektor lub tensor, a wtedy rzeczywistą strukturę kryształu można zastąpić zbiorem 
wektorów lub tensorów o takiej samej periodyczności i symetrii, jak jego sieć 
molekularna.

Ta koncepcja stanowi istotę modelu gazu zorientowanego i pozwala napisać 
relacje między fizycznymi właściwościami samych cząsteczek a właściwościami 
komórki elementarnej. Dalsze przejście, od komórki elementarnej do właściwości 
kryształu makroskopowego, zależy już od właściwości fizycznej, jaką zamierzamy 
interpretować. Jeśli jest nią taka właściwość materiałowa, jak podatność magnety­
czna kryształu diamagnetycznego, to mikroskopowym odpowiednikiem tensora 
podatności kryształu jest tensor podatności cząsteczki. W takim przypadku utożsa­
mia się właściwości komórki elementarnej z właściwościami kryształu, żądając przy 
tym, najczęściej, by ślady tensorów mikro- i makroskopowego były identyczne 
(zgodnie z zasadą niezmienniczości śladu tensora względem przesunięcia lub 
obrotu układu współrzędnych). Podobnie moglibyśmy sformułować problem w 
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odniesieniu do przenikalności dielektrycznej kryształu, gdyby mikroskopowym jej 
odpowiednikiem był tensor podatności dielektrycznej cząsteczki. Tak jednak nie 
jest. Jak wiadomo, statyczną (przenikalność dielektryczna) i dynamiczną (współ­
czynnik refrakcji) właściwość ośrodka przezroczystego zwykło się uzasadniać 
polaryzowalnością obiektów mikroskopowych (atomów, jonów, cząsteczek), z któ­
rych zbudowany jest kryształ. Przejście od tensora polaryzowalności komórki 
elementarnej, który możemy otrzymać przez zastosowanie modelu gazu zoriento­
wanego, do tensora przenikalności dielektrycznej wymaga znajomości równań 
makroskopowych, które wiążą obie te wielkości między sobą. Porównanie polary­
zowalności cząsteczek, otrzymanej z pomiarów współczynnika refrakcji, z polary- 
zowalnościami wynikającymi z innych obserwacji, na przykład efektu Kerra, 
wypada więc lepiej lub gorzej w zależności nie tylko od precyzji pomiarów i lepszej 
czy gorszej stosowalności modelu gazu zorientowanego, lecz także od naszego 
zrozumienia związku między polaryzowalnością komórki elementarnej a współ­
czynnikiem refrakcji kryształu. I wreszcie możliwe są takie przypadki, a znakomi­
tym przykładem jest rozszerzalność termiczna, że właściwość kryształu nie ma 
odpowiednika mikroskopowego. Właściwym bowiem sposobem wytłumaczenia 
zjawiska rozszerzalności jest — jak się wydaje — ruch termiczny elementów 
strukturalnych, a w szczególności pewne jego cechy, takie jak anharmoniczność.

Model gazu zorientowanego może odnosić się do wielkości molekularnych, 
dających się przedstawić jako wektor lub tensor drugiego rzędu. Konsekwencją 
potraktowania kryształu jako zbioru zorientowanych wektorów lub kwadryk, przy 
podanych założeniach, będzie addytywność: wiele właściwości ciał makroskopo­
wych można opisać za pomocą właściwości cząsteczek, dodając je według zasad 
odpowiadających matematycznemu charakterowi reprezentujących je wielkości. 
Dla przykładu można zaproponować następujące, obszary zastosowań tego mode­
lu:

1. Wyznaczenie wypadkowego elektrycznego momentu dipolowego kryształu w 
fazie ferroelektrycznej. W zwykłym krysztale, tworzącym fazę paraelektryczną w 
stanie niespolaryzowanym, suma momentów dipolowych cząsteczek w komórce 
elementarnej równa jest zeru, ponieważ kryształ nie ma wypadkowego momentu 
dipolowego pod nieobecność pola. Inaczej jest w kryształach należących do grupy 
ferroelektryków. W kryształach pyroelektrycznych, które są dielektrykami liniowy­
mi o jednej domenie ferroelektrycznej, istnieje polaryzacja spontaniczna: cały 
kryształ pod nieobecność pola ma dipolowy moment elektryczny, tj. stanowi 
elektrostatyczne ogniwo elektryczne. Pochodzi to stąd, że każda cząsteczka takiego 
związku ma trwały moment dipolowy. Suma tych momentów nie znika w pewnym 
kierunku, stanowiącym oś (uni)polarną dielektryka. Kryształy wykazujące takie 
właściwości należą do jednej z dziesięciu grup punktowych, wymienionych w 
rozdz. 3.

2. Obliczanie dichroizmu, tj. anizotropii absorpcji promieniowania spolaryzo­
wanego w krysztale molekularnym. W zakresie spektralnym, odpowiadającym 
obszarowi tzw. drgań wewnętrznych cząsteczki, każdemu przejściu absorpcyjnemu 
możemy przypisać wektor wzbudzonego momentu dipolowego, związany w prosty 
sposób z elementami symetrii cząsteczki. Absorpcję całego kryształu można opisać
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za pomocą sumowania wzbudzeń poszczególnych cząsteczek, tworzących prze­
strzenny gaz zorientowany. Problemem tym zajmiemy się szerzej w rozdz. 7.

3. Wyjaśnienie i opis szeregu makroskopowych właściwości fizycznych, repre­
zentowanych tensorem drugiego rzędu, takich jak diamagnetyzm, optyczna przeni- 
kalność dielektryczna i inne, na podstawie fizycznych właściwości samych cząste­
czek. Niektóre z tych zagadnień będą przedmiotem bardziej szczegółowych rozwa­
żań w następnych rozdziałach.

4. Opis wpływu temperatury na właściwości fizyczne kryształów. Mimo iż 
średnie właściwości kryształu, na przykład podatność diamagnetyczna proszku, 
praktycznie nie zależą od temperatury, podatność kryształu w określonym kierun­
ku zmienia się wyraźnie wraz ze zmianą temperatury. Jeśli możemy uznać, że 
właściwości samych cząsteczek są niezmienne w tym sensie, że od temperatury nie 
zależą, to obserwowana zależność temperaturowa dla kryształu świadczy o tym, że 
zmianie ulega przestrzenne rozmieszczenie cząsteczek, a więc ich liczba w jednostce 
objętości i ich orientacja. Efekty te są wprawdzie niewielkie, ale mają znaczenie 
fundamentalne, świadczą bowiem o anharmoniczności dynamiki sieci.

5. Wiele kryształów ma tę właściwość, że w pewnej temperaturze (lub w 
pewnym zakresie temperatur) ulega „katastrofie strukturalnej”, zwanej przemianą 
fazową. Zjawiska takie są bardzo pospolite wśród kryształów molekularnych, a 
liczba odkrywanych przykładów rośnie lawinowo. Przyczynia się do tego w 
niemałym stopniu fakt, iż coraz więcej uwagi i inwencji poświęca się starannemu 
oczyszczeniu substancji przed przystąpieniem do badań. Znane są bowiem przykła­
dy, gdy niewielka domieszka obcego związku (mniej niż 1% mol.), wbudowująca 
się substytucyjnie w sieć macierzystego kryształu molekularnego, powoduje zna­
czne zmniejszenie szybkości przemiany fazowej, a nieco większe jej stężenie całko­
wicie blokuje przemianę i stabilizuje na okres rzędu miesięcy metastabilną fazę 
krystaliczną [1]. Badania zjawiska polimorfizmu, a zwłaszcza kinetyki przemian 
fazowych, powinny więc być poprzedzone starannym rozpoznaniem stopnia czy­
stości substancji.

Liczne właściwości fazy wysokotemperaturowej są inne niż fazy niskotempera­
turowej. W temperaturze przemiany fazowej niektóre z nich ulegają skokowym 
zmianom. Do najbardziej elementarnych właściwości kryształu należą: funkcje 
termodynamiczne, określające ich trwałość, oraz symetria. Nie mamy dziś jeszcze 
pewności co do tego, która z tych właściwości winna być uważana za „bardziej 
pierwotną”, tj. która jest przyczyną, a która skutkiem. Być może fakt, że w 
określonej temperaturze faza krystaliczna przestaje być termodynamicznie trwała, 
zmusza cząsteczki do zajmowania nowych położeń i przyjmowania nowych orien­
tacji, co określa odmienną symetrię nowej fazy. Można jednak na rolę tych 
czynników spojrzeć odwrotnie: to swoista i anharmoniczna dynamika sieci oraz 
przekroczenie pewnych krytycznych amplitud ruchu doprowadzają cząsteczki do 
nowych położeń i orientacji, co pociąga za sobą zmianę funkcji termodynami­
cznych.

Niezależnie od tego, który z tych dwóch punktów widzenia jest słuszniejszy, 
badania relacji między zmianą wielkości fizycznej w przemianie fazowej a struktu­
rą kryształu należą do niezwykle interesujących, ponieważ informują nas o mole­
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kularnym mechanizmie obserwowanych zjawisk makroskopowych. Ilościowe po­
wiązanie tych dwu czynników możliwe jest wówczas, gdy przemianie fazowej 
towarzyszy niezbyt drastyczna zmiana objętości kryształu i symetrii. W takich 
przypadkach termodynamicznie sąsiadujące z sobą fazy są krystaliczne, wobec czego 
próbka zachowuje mechaniczną spójność. Pozwala to na zastosowanie modelu 
gazu zorientowanego do opisu procesów molekularnych pod warunkiem, że kon­
formacja samej cząsteczki nie uległa zmianie.

Na koniec wypada krótko wspomnieć o ograniczeniach w stosowalności mode­
lu gazu zorientowanego do opisu fizycznych właściwości kryształów. W modelu 
tym interesują nas w zasadzie dwa parametry: położenie środka masy cząsteczki 
oraz orientacja w przestrzeni związanego z nią układu współrzędnych. Te dwa 
zbiory danych są wystarczające do napisania relacji między wielkością przypisywa­
ną komórce elementarnej a jej odpowiednikiem molekularnym. Pomijamy w tych 
rozważaniach przestrzenną rozciągłość cząsteczki, co już stanowi przybliżenie i 
ogranicza stosowalność modelu. Na przykład, nie będziemy w stanie opisać 
właściwości sprężystych ani też dynamiki ruchu cząsteczek, ponieważ w tych 
zagadnieniach istotną rolę odgrywają właśnie skończone rozmiary cząsteczek i 
natura oddziaływań między nimi.

Mimo iż z punktu widzenia zasady addytywności pragnęlibyśmy zaniedbać 
oddziaływania międzycząsteczkowe w krysztale molekularnym, przecież nie może­
my całkowicie o nich zapomnieć. Wprawdzie w kryształach molekularnych są one 
znacznie słabsze niż w kryształach jonowych, jednak decydują o spójności całego 
kryształu, a mają też często znaczący wpływ na konformację cząsteczki w ciele 
stałym. Jeśli więc mówimy — jak w opisie diamagnetyzmu — że oddziaływania 
między wzbudzonymi dipolami magnetycznymi można pominąć, to pozwala nam 
to na skorzystanie z zasady addytywności, w myśl której podatność magnetyczna 
komórki elementarnej równa jest sumie podatności wypełniających ją cząsteczek. 
Nie znaczy to jednak, że tym samym pomijamy wszelkie inne oddziaływania, 
niemagnetyczne. Pośredni wpływ tych innych oddziaływań przejawi się w tym, że 
tensor podatności magnetycznej cząsteczki w krysztale będzie trochę inny niż tej 
samej cząsteczki w stanie swobodnym. Może mieć na to wpływ drobna zmiana 
konformacji cząsteczki, na przykład zahamowanie rotacji grup metylowych, lub 
planarność cząsteczki w stanie swobodnym niepłaskiej, wywołana presją pola 
molekularnego, czy wreszcie przesunięcie ładunku spowodowane polaryzacją ota­
czających cząsteczek. Gdy znamy szczegóły struktury kryształu i wiemy coś o 
naturze występujących w nim oddziaływań międzycząsteczkowych, potrafimy zwy­
kle skonstruować rozsądny model cząsteczki, pozwalający zrozumieć, dlaczego, na 
przykład, podatność jakiegoś kryształu w kierunku krystalograficznym a jest dwa 
razy większa niż w kierunku c. Jeśli jednak — jak w przypadku interpretacji 
współczynnika refrakcji — oddziaływania między wzbudzonymi dipolami elektry­
cznymi są silne, to zasada addytywności będzie jedynie przybliżeniem, od którego 
rzeczywisty moment dipolowy komórki elementarnej będzie mniej lub bardziej 
odbiegał. W takich sytuacjach molekularna interpretacja makroskopowej wielkości 
fizycznej jest bardzo złożona, jeśli nie wręcz niemożliwa.

Czynnikiem ograniczającym stosowalność modelu jest również termiczny ruch 
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cząsteczek. Amplituda drgań translacyjnych, nawet z uwzględnieniem anharmoni- 
czności, nie ma bezpośredniego wpływu na wielkość składowych wektora czy 
tensora drugiego rzędu z uwagi na ich niezmienniczość względem przesunięcia 
układu współrzędnych. Występujący wpływ pośredni poprzez zmianę gęstości ciała 
stałego nie jest trudny do uwzględnienia i dyskutowany będzie w rozdz. 6. 
Natomiast większość obserwowanych eksperymentalnie temperaturowych zale­
żności wielkości fizycznych, mierzonych w określonym kierunku, przypisać można 
anharmoniczności ruchów libracyjnych. W niektórych strukturach, np. w bifenylu, 
amplituda libracji jest na tyle duża, że przyjęcie stacjonarnej orientacji cząsteczek 
prowadzi do wyraźnych rozbieżności w interpretacji wyników doświadczalnych 
(por. p. 8.5). Ogólnie jednak anharmoniczność ruchów libracyjnych powoduje 
zależność od temperatury średniej orientacji cząsteczki w komórce elementarnej. 
Prowadzi to w konsekwencji do wpływu temperatury na wszystkie właściwości 
fizyczne kryształów, które od tej orientacji zależą. Pewne koncepcje opisu tych 
zależności przedstawimy w punktach 4.5 i 8.5.

4.2. Rola symetrii
Istotną cechą modelu gazu zorientowanego jest to, że zbiór molekularnych 

odpowiedników badanej wielkości fizycznej, a więc wektorów dla wielkości wekto­
rowej lub kwadryk dla wielkości tensorowej, tworzy sieć periodyczną. Sieć ta jest 
izomorficzna ze strukturą kryształu i zawiera dokładnie te same elementy symetrii, 
co grupa przestrzenna kryształu. Przykładem takiej reprezentacji jest rys. 4.1, na

Rys. 4.1. Obraz reprezentacji tensorowej komórki elementarnej przy obsadzeniu dwiema cząsteczkami 
w położeniach szczególnych (C2): a) schematycznie, b) kwadryki w komórce elementarnej
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którym dwie cząsteczki w komórce elementarnej zastąpione zostały przez trójosio- 
we elipsoidy podatności diamagnetycznej. Zajmują one, tak jak i cząsteczki, 
położenia szczególne: jedna z osi głównych elipsoidy pokrywa się z makroskopową 
osią symetrii (oś b kryształu), orientacja zaś pozostałych dwóch osi ma w płaszczy­
źnie xz jeden stopień swobody (kąt <p). Orientacja osi elipsoidy 2 wynika z 
zastosowania do elipsoidy 1 operacji symetrii, zawartych w grupie wymiennej 
komórki elementarnej. Anizotropia komórki elementarnej wynika więc z dwóch 
powodów: z anizotropii samej cząsteczki oraz z usytuowania jej w przestrzeni. W 
celu uściślenia pojęć wprowadzimy obecnie definicje grup symetrii, ważnych w 
opisie fizycznych właściwości kryształów.

1. Grupa przestrzenna, Gp, obejmuje wszystkie operacje symetrii, które przeksz­
tałcają w sieci krystalicznej dowolny punkt, prostą lub płaszczyznę w analogiczny 
(odpowiednio) punkt, prostą lub płaszczyznę. Analogiczność dwóch punktów, 
prostych lub płaszczyzn oznacza ich symetryczną równoważność: dwa analogiczne 
twory mają identyczne otoczenia w przestrzeni. Grupa przestrzenna opisuje więc 
symetrię rozmieszczenia materii w określonej strukturze.

2. Grupa komórki elementarnej, Gc, zawiera wszystkie operacje symetrii grupy 
przestrzennej po wyłączeniu translacji prymitywnych, tj. przedstawionych wekto­
rem t

t = a{ + n2 a2 + n3a3

gdzie a15 a2, a3 są krawędziami komórki elementarnej (która nie musi być 
prymitywna), są zaś liczbami całkowitymi. Grupa komórki elementarnej może, 
ale nie musi, być grupą punktową, ponieważ: (1) może zawierać osie śrubowe lub 
płaszczyzny poślizgu, które mają nieprymitywną składową translacji; (2) nie 
wszystkie elementy tej grupy muszą się przecinać w jednym punkcie. Grupa 
symetrii komórki elementarnej ma największe znaczenie w opisie symetrii fizy­
cznych właściwości kryształów.

Ze względu na translacyjną symetrię sieci każdy wektor lub tensor, przedsta­
wiający jakąś wielkość fizyczną nieskończenie dużego kryształu, musi mieć identy­
czne składowe w każdym punkcie translacyjnie równoważnym. Innymi słowy, 
właściwości fizyczne nieskończonego kryształu są niezmiennicze względem prostych 
translacji sieciowych, opisywanych wektorem t. Określenie „nieskończenie duży 
kryształ”, użyte w powyższym stwierdzeniu, pozwala ominąć szczególne sytuacje, 
występujące na granicy faz kryształ/próżnia. Na przykład, natężenie pola elektry­
cznego wewnątrz spolaryzowanego kryształu różni się znacznie od pola występują­
cego w punktach bliskich jego powierzchni.

3. Grupa węzła, Gs, jest zawsze grupą punktową, ponieważ zbiór operacji, z 
których się składa, nie zmienia w przestrzeni położenia co najmniej jednego 
punktu — węzła. Jest ona podgrupą jednocześnie grupy przestrzennej i grupy 
komórki elementarnej. Jednak każda rzeczywista cząsteczka ma skończoną obję­
tość, wobec czego pojęcie symetrii węzła należy odnosić do położenia jej środka 
masy. Przyjmuje się najczęściej — choć z pewnym przybliżeniem — że cała 
cząsteczka w danej strukturze ma symetrię grupy Gs.

4. Grupę wymienną, Gw, można zdefiniować dla określonego punktu sieci, 
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najczęściej węzła. Obejmuje ona wszystkie operacje grupy komórki elementarnej z 
wyłączeniem operacji zawartych w Gs i z dodaniem operacji identyczności. Grupa 
wymienna zawiera więc wszystkie operacje, których trzeba użyć, aby wygenerować 
położenia wszystkich symetrycznie równoważnych cząsteczek, mieszczących się w 
komórce elementarnej idealnego kryształu. Najczęściej Gw również nie jest grupą 
punktową.

Dla zilustrowania powyższych definicji wybierzmy do analizy jedną z grup 
przestrzennych układu ortorombowego, np. Pbca. Symbol ten wskazuje, że sieć 
przestrzenna ma trzy rodzaje płaszczyzn poślizgu; dwa rodzaje płaszczyzn prosto­
padłych do płaszczyzny rzutu zaznaczone są kreską przerywaną na rys. 4.2. 
Prowadzą one do operacji symetrii, które można przedstawić symbolicznie w 
następujący sposób:

kJHo!

Rys. 4.2. Rozkład elementów symetrii komórki elementarnej w grupie przestrzennej Pbca (według [3])

Każda z tych formuł, według symboliki wprowadzonej przez Seitza [2], składa się 
z dwóch części. Pierwsza jest operacją grupy punktowej (w tym przypadku 
odbiciem w płaszczyźnie zwierciadlanej), druga zaś wektorem translacji, którego 
składowe podane są w ułamkach periodów sieci przestrzennej. Biorąc pod uwagę, 
na przykład, pierwszy z symboli, możemy w prosty sposób określić nowe położenie 
x'x'z' punktu xyz, poddanego działaniu płaszczyzny poślizgu, prostopadłej do 
krystalograficznej osi x||a

' — 1 0 0 \ / x \ /1 \ / i—x
0 1 0 I I y j+li j = I 2 + y

\ 0 0 1/ \z / V 0/ \ z

Wynik ten otrzymany został według definicji, określającej działanie operacji 
na wektorze r, która ma następującą postać [4]:

r' = {A|t) • r = Ar+ t (4.1)

Definicja (4.1) jest szczególnym przypadkiem prawa mnożenia elementów grupy. W 
symbolice Seitza prawo to wyraża się wzorem

MiIg! • MzIg] = MrA2M1T2+T1; (4.2)
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Prócz płaszczyzn poślizgu trzech typów i nieskończonej grupy prymitywnych 
translacji, grupa przestrzenna obejmuje jeszcze dwa następujące elementy: element 
identyczności, |£|000), oraz centrum symetrii, jC,|OOO], przy czym oba mają 
składową translacyjną równą zeru. Dokonując asocjacji centrum symetrii z każdą 
z trzech płaszczyzn poślizg-u zgodnie z ogólną definicją (4.2), otrzymamy zbiór 
trzech osi śrubowych. Na przykład

IGIooo; ■ = lajoHi • !C,|OOOJ = !c2joH)
Nie powinien dziwić nas fakt, że oś śrubowa 21||y ma nie jedną, lecz dwie 
niezerowe składowe translacyjne. Wartość y=^b wynika bowiem z definicji, 
natomiast składowa z = | c związana jest z faktem, że oś symetrii przebija pła­
szczyznę xz w punkcie [0|], a nie w punkcie [00]. W wyniku tego punkt z 
przekształca się„w punkt z' taki, że

z' = 2 • (|—z)+z = 1—z

W sumie Gc składa się z ośmiu elementów

(£|ooo] {cjooo’ !<7jH0> 'ajoH’

'tc2xiHo; ',c2y|0H! tc2ziioi}

Zauważmy obecnie, że komórkę elementarną Pbca można wypełnić materią na 
dwa różne sposoby.

a) Komórka może zawierać cząsteczki całkowicie asymetryczne, które wówczas 
muszą zajmować położenia ogólne, tj. również asymetryczne. W takim przypadku 
grupa węzła jest trywialna, ponieważ zawiera tylko element tożsamości, {£|000}. 
Grupa wymienna staje się identyczna z grupą komórki elementarnej. Prowadzi to 
do obsadzenia komórki elementarnej ośmioma cząsteczkami, których położenia 
związane są operacjami grupy wymiennej.

b) W drugim przypadku komórka elementarna wypełniona jest cząsteczkami 
posiadającymi centra symetrii. Mogą one zajmować węzły o symetrii C, (przypa­
dek benzenu). Grupa symetrii węzła jest wówczas rzędu drugiego i zawiera 
następujące elementy:

Gs3!£|000], {CJOOO}

W tym przypadku grupa wymienna jest czwartego rzędu, co prowadzi do obsadze­
nia kómórki czterema cząsteczkami w położeniach szczególnych, C;. Cztery ele­
menty grupy Gw można wybrać z 3a, 3C2 i E na szereg różnych sposobów. 
Najlepszy zbiór zawierać będzie osie śrubowe, ponieważ te operacje nie zmieniają 
skrętności układu współrzędnych [5]

Gw9 !£|000’, |C2x|H0>, ’C2z|i0|) (4.3)

Z tych wyników skorzystamy dalej w przykładzie 4.6.2 na końcu tego rozdziału. 
Zastosowanie zasad symetrii do badania fizycznych właściwości kryształów 

streścić można w postaci następujących czterech zasad.
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1. Symetria translacyjna sieci przestrzennej powoduje, że do opisu fizycznych 
właściwości kryształu wystarczy wziąć pod uwagę tylko jedną komórkę elementarną.

1. Obliczając wkład, wnoszony do makroskopowej wielkości fizycznej przez 
każdą cząsteczkę zawartą w komórce elementarnej, można pominąć składowe 
translacyjne operacji grupy wymiennej. Jeśli w krysztale istnieje kilka symetrycznie 
niezależnych podsieci, to sumowanie trzeba rozciągnąć na każdą z podsieci 
osobno, a wyniki następnie dodać.

3. Oznaczmy ogólnie przez w molekularny (mikroskopowy) odpowiednik wiel­
kości fizycznej kryształu opisywanej wektorem W, a przez t odpowiednik wielkości 
opisywanej tensorem T. Sumę w (lub t) dla wszystkich cząsteczek zawartych w 
komórce elementarnej utożsamiać będziemy z wielkością makroskopową W (lub T). 
Składowe W (lub T) nie zawsze muszą być wielkościami bezpośrednio dostępnymi 
w eksperymencie.

4. Wielkości molekularne, w lub t, przypisywane są cząsteczce umieszczonej w 
węźle określonej sieci — muszą zatem być niezmiennicze względem wszystkich 
operacji symetrii grupy węzła, Gs. Na ogół symetria własna w lub t jest wyższa od 
symetrii Gs.

Czwarty postulat jest w skali molekularnej odpowiednikiem zasady Neumanna, 
obowiązującej mierzalne, makroskopowe właściwości fizyczne kryształów. Oczy­
wiście, przestrzenny rozkład atomów tworzących cząsteczkę musi być zgodny z 
symetrią węzła, w którym przypada środek jej masy w krysztale idealnie uporząd­
kowanym. Przyjmujemy, iż ta zgodność z symetrią węzła jest prawdą również w 
odniesieniu do każdego wektora lub tensora, opisującego dowolną wielkość fizy­
czną cząsteczki. W szczególności cząsteczka, której środek masy spoczywa w 
centrum symetrii kryształu, nie może mieć trwałego momentu dipolowego. W 
obecności pola elektrycznego sytuacja jest inna: kryształ ulega polaryzacji, przez 
co jego symetria zmienia się w sposób, który prowadzi do utraty centrum symetrii. 
W tej nowej sytuacji cząsteczka może mieć niezerowy wzbudzony moment dipolowy.

4.3. Model gazu zorientowanego dla wielkości wektorowej

Przypuśćmy, że komórka elementarna interesującego nas kryształu zawiera Z 
cząsteczek, których położenia związane są wzajemnie operacjami grupy wymiennej. 
Niech operacjom tym odpowiadają macierze A15 A2, ...,AZ. Schemat takiej 
struktury w ortogonalizowanym układzie współrzędnych dla Z = 2 przedstawiony 
jest na rys. 4.3. Cząsteczki zastąpione są wektorami ilustrującymi, na przykład, 
momenty dipolowe wzbudzone przyłożonym statycznym polem elektrycznym lub 
polem padającej fali elektromagnetycznej. Rzut płaski tej sieci przedstawiony jest 
na rys. 4.4. Wybierzmy wektor jednostkowy em w kierunku dipola m (kierunek w), 
natomiast i, j, k niech oznaczają wektory jednostkowe, równoległe odpowiednio do 
osi x2, x3 ortogonalnego układu współrzędnych, związanego z kryształem. W 
tym makroskopowym układzie dokonywać będziemy sumowania wielkości mikro­
skopowych.

Zwróćmy w tym miejscu uwagę, że wybór zarówno wektora em, jak i wektorów
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i, j, k zależny jest od rozpatrywanego problemu i nie może być zupełnie dowolny. 
Jeśli interesuje nas, na przykład, problem absorpcji promieniowania w krysztale, to 
em winien być równoległy do jednego z możliwych momentów przejścia absorpcyj­
nego w cząsteczce. Zbiór takich kierunków określają reguły wyboru na podstawie 
symetrii cząsteczki, o czym będzie mowa w rodź. 7. W innych zagadnieniach 
wektor em może być wybrany inaczej. Oczywiście może zdarzyć się tak, że nie 
mamy żadnych fizycznych przesłanek do zdefiniowania em. Można wówczas wy­
brać em w kierunku osi symetrii L, M lub N cząsteczki, a nawet przyjąć dlań 
kierunek dowolny. Porównanie wyników eksperymentu z obliczeniami, opartymi 
na modelu gazu zorientowanego pozwala na ogół rozpoznać, czy wybór em był 
sensowny.

b

Rys. 4.3. Chwilowy rozkład dipoli wzbudzonych w 
krysztale, którego komórka elementarna obsadzona jest 
dwiema cząsteczkami w położeniach ogólnych (schema­
tycznie). Moment wypadkowy nie znika wzdłuż osi b

Rys. 4.4. Płaski rzut rozkładu di­
poli z rys. 4.3, reprezentowanych 
wektorami jednostkowymi i*,, e2 
(schematycznie). Wektory jednost­
kowe i, k są równoległe do kie­
runków optycznie ważnych (por. 
rozdz. 6)

Podobnie jest z definicją wektorów i, j, k, odpowiadających wielkości makro­
skopowej. Winniśmy je zawsze wybrać w takich kierunkach, w jakich pomiar 
wielkości makroskopowej ma sens. W pierwszym rzędzie wybór ten zależny jest od 
symetrii układu krystalograficznego, do którego należy kryształ. Jeśli więc w 
dalszym ciągu mamy na myśli absorpcję promieniowania elektromagnetycznego, to 
kierunki i, j, k muszą leżeć w głównych płaszczyznach optycznych próbki. Tylko 
bowiem dla tak zdefiniowanych i, j, k obserwacja absorpcji promieniowania może 
być ściśle interpretowana z punktu widzenia zasad optyki. Szerzej ten problem 
omówiony jest w p. 6.2.

Po tych uwagach możemy przystąpić do sumowania udziałów molekularnych 
ir wielkości makroskopowej W. Pomiar W w kierunku i daje nam wartość Wt, 
natomiast udział m-tej cząsteczki w wielkości mierzonej jest proporcjonalny do 
iloczynu skalarnego em • i. Wkład wszystkich cząsteczek, zawartych w komórce 
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elementarnej, wynosi więc w tym kierunku
Z z

Wi = B £ emi = B X (4.4)
m=1 m— 1

B jest współczynnikiem proporcjonalności, nieistotnym, jeśli zależy nam jedynie na 
porównywaniu wyników pomiarów w dwóch różnych kierunkach. W pozostałych 
kierunkach, / oraz k, mamy analogicznie

W^B^^-j 
m

Wk=B^m^-k 
m

Jeśli komórka elementarna zawiera nie jeden, lecz dwa zbiory cząsteczek symetry­
cznie od siebie niezależnych, to w równ. (4.4) należy napisać dwie osobne sumy

Z/2 Z/2

W^B (Am^)-i+ £ (AXi')-i] (4.5)
m~ 1 n= 1

e' i e” oznaczają wektory jednostkowe cząsteczek odpowiednio jednego i drugiego 
zbioru.

Związek (4.4) lub (4.5) wyraża model gazu zorientowanego w odniesieniu do 
wielkości molekularnych, które można zdefiniować jako wektory. Jeśli dla jakiegoś 
kryształu możemy wykonać pomiary wielkości W w trzech kierunkach wzajemnie 
prostopadłych, to w zasadzie możliwe jest wyznaczenie orientacji — w naszym 
przykładzie orientacji absorbującego oscylatora.

4.4. Model gazu zorientowanego dla wielkości tensorowej

Z kolei przyjmiemy, że w określonej strukturze każdej cząsteczce możemy 
przypisać identyczny tensor molekularny t, zadany w układzie osi cząsteczki 
ulu2u3. Jeśli wszystkie trzy główne składowe t są dodatnie, to zbiór cząsteczek 
tworzący strukturę można zastąpić zbiorem elipsoid. Przykład takiej reprezentacji 
dla Z = 2 pokazany jest na rys. 4.5. Naszym zadaniem będzie obecnie znalezienie 
relacji między tensorem cząsteczki t a tensorem kryształu T. W sprzyjających 
warunkach relacja taka pozwala na obliczenie t na podstawie znanego z doświad­
czenia tensora makroskopowego T. Związek ten znajdziemy na razie dla kryształu 
o symetrii nie niższej niż układu jednoskośnego.

Sumowanie poszczególnych tensorów t wykonywać będziemy w ortogonalnym 
układzie współrzędnych x3 x2x3, wybranym równolegle do kierunków ortogonali- 
zowanego układu osi krystalograficznych abc* lub a*bc. Dla końcowego wyniku 
nie ma znaczenia, w którym z dwu układów pracujemy, jednak z punktu widzenia 
symetrii poprawniejsza jest taka ortogonalizacja, która nie narusza kierunku 
poślizgu, zawartego często w symbolu grupy przestrzennej. W kryształach o 
symetrii wyższej od symetrii układu jednoskośnego ortogonalizacja nie jest, oczy­
wiście, potrzebna. Układ ją x2 x3 nazywać będziemy krystalograficznym układem 
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współrzędnych. Zwróćmy uwagę na to, że nie jest on na ogół układem osi 
własnych tensora T, które oznaczać będziemy przez Jeśli mimo to
decydujemy się na wykonanie operacji sumowania w takim pośrednim układzie 
współrzędnych, to czynimy tak ze względu na operacje symetrii A1; A2, ..., Az 
grupy wymiennej: są one słuszne nie w układzie X1X2X3, lecz w x1x2x3.

Rys. 4.5. Rozkład kwadryk w położeniach szczególnych (C,) komórki elementarnej układu jednoskośne- 
go [6]

Również wybór osi molekularnych u2 u3 wymaga pewnej ostrożności. Tensor 
molekularny musi być niezmienniczy względem wszystkich operacji symetrii grupy 
węzła, Gs. Jeśli ma on wysoką symetrię, np. C2h, to wybór ur u2u3 jest jednozna­
czny: osie molekularne muszą pokrywać się z osiami symetrii grupy węzła, co 
redukuje liczbę niezerowych składowych t do trzech składowych głównych. Jeśli 
jednak symetria Gs jest niska, to możemy nie mieć wystarczających przesłanek do 
wyboru osi utu2u3, a nadto liczba składowych t może nawet w ogóle nie ulec 
redukcji. Może się wówczas zdarzyć, że tensor molekularny zawierać będzie sześć 
składowych, natomiast makroskopowa symetria kryształu z pewnością obniży nam 
liczbę dostępnych w doświadczeniu parametrów do co najwyżej czterech. W takiej 
sytuacji liczba równań, jakie możemy napisać, jest mniejsza od liczby niewiado­
mych, wobec czego w ścisły sposób problemu rozwiązać nie można. Przybliżone 
rozwiązanie można osiągnąć na dwa sposoby:

a) Jeśli cząsteczka ma w stanie swobodnym jakieś osie lub płaszczyzny symetrii, 
to można niekiedy uznać, że zachowuje je również w krysztale, mimo iż nie 
wynika to z symetrii węzła. Założenie to można uznać za słuszne wtedy, gdy nie 
podnosimy symetrii zbyt radykalnie i gdy możemy uznać cząsteczkę za sztywną. 
Przykładem może być cząsteczka benzenu, której z powodu względnej sztywności 
można przypisać w krysztale symetrię co najmniej C2h, mimo iż zajmuje węzeł o 
symetrii Jeśli cząsteczka nie jest dostatecznie sztywna lub ma wyraźną asyme­
trię, to w celu oszacowania t, można próbować skorzystać z zasady dodawania 
tensorów submolekularnych (por. p. 5.8).
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b) Zjawiskiem występującym dość często wśród kryształów molekularnych jest 
ich polimorfizm. Jeśli na podstawie znajomości struktury dwu lub więcej odmian 
polimorficznych można uznać, że konformacja cząsteczki jest w nich taka sama, to 
pomiar właściwości fizycznych kryształów tych odmian, różniących się jedynie 
symetrią, pomaga na ogół w rozwiązaniu problemu.

Po tych uwagach możemy przystąpić do bardziej szczegółowego omówienia 
zagadnienia. Niech c(r) oznacza macierz orientacji osi u2 u3 r-tej cząsteczki 
względem xt x2 x3; r = 1, 2, ..., Z. Macierz c zdefiniowana jest tak, że 
= cos (ui, Xj). Poszczególne macierze c(r) otrzymuje się z pierwszej, c(1), którą 
znamy ze struktury, przez działanie operacjami symetrii grupy wymiennej

1 z
t(xiX2x3)=-X Ar{c(ł)Ttc(1,}ArT 

r= i

Jeśli udział pierwszej cząsteczki oznaczymy przez t(1)
T(D = cdjr^i) (4.8)

to równ. (4.7) możemy zapisać w postaci

-t(xj x2x3) = T<1>ArT (4.9)

Wpływ operacji Ar na postać t(x!x2x3) ilustruje przykład 4.6.1.
Jeśli zatem pomiary wykonujemy w układzie współrzędnych x3 x2 x3, to rów­

nania opisujące związki między t kryształu i t cząsteczki mają, w najogólniejszym

c«r = ArC(i)T (4.6)

przy czym c^T oznacza macierz c(r) transponowaną, Ar odpowiadają zaś kolejno 
wszystkim operacjom grupy wymiennej Gw. Transponowanie macierzy c(r) po obu 
stronach równości wynika z faktu, że osie molekularne ut u2u3 muszą występować 
we wzorze (4.6) jako wektory kolumnowe. Udział r-tej cząsteczki w tensorze r, 
odpowiadającym komórce elementarnej, wynosi c('')rtc<''), dla całej komórki otrzy­
mamy zatem

1 z
r (x, x2 x3) = - £ tc(r) (4.7)

z r= !

Wynik dodawania udziałów Z tensorów molekularnych, (4.7), oznaczony dla 
lepszej przejrzystości dalszych przekształceń przez t, podzielony został przez liczbę 
cząsteczek w komórce elementarnej, Z. Odpowiada to zwyczajowo zachowaniu 
śladów obu tensorów tak, by

Tr r = Trt

Tensor r zadany jest w krystalograficznym układzie współrzędnych xr x2 x3 i — 
jak pokazaliśmy w rozdz. 3 — w kryształach o symetrii wyższej od trójskośnej ma 
zawsze jakieś składowe równe zeru. Które z nich ulegają zerowaniu, możemy 
zobaczyć bezpośrednio, podstawiając c(r) z równ. (4.6) do równ. (4.7). Otrzymamy
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przypadku układu trójskośnego, następującą postać:

= yYXYc^ck^ik 
r i k

(4-10)

W układzie jednoskośnym, którego symetria ingeruje poprzez macierze Ar, powo­
dując znikanie czterech składowych t(x1x2x3), mamy

Z r i k

Z r i k

T33 = 7 X S X Ci3 ck3 {ik 
r i k

r = — y V y r(r) f ^mn ry / < / t / , '-im '-kn ^ik
r i k

(4.11)

przy czym wskaźniki m, n zależą od położenia elementu symetrii (płaszczyzny lub 
osi dwukrotnej). W układach ortogonalnych zm„ znika, a w układach o wyższej 
symetrii na ogół Tu = t22 (jeśli oś o krotności wyższej od 2 jest równoległa do x3).

Alternatywnym rozwiązaniem jest napisanie równ. (4.9) w układzie osi włas­
nych X1A2A'3 tensora T. Niech położenie X1A2X3 względem XjX2x3 określa 
macierz a taka, że aik = cos(A;, xk). Słuszny jest związek

T = at(x! x2 x3)aT (4.12)

przy czym dla i k znikają wszystkie Tik. W celu znalezienia związków między 
składowymi T i t rozważmy określoną konfigurację w układzie jednoskośnym. 
Niech X2||x2 będzie dwukrotną osią symetrii; wtedy i X3 leżą w płaszczyźnie 
osi Xj x3, ale nie są do nich równoległe. Oznaczmy kąt między Xt i xx prze cp; 
uważamy go za dodatni wtedy, gdy jest liczony od do Xt w obrębie rozwartego 
kąta krystalograficznego /? (konwencje mogą tu być inne, por. na przykład p. 5.6). 
Macierz a ma wówczas postać

X, 
X2

Xj x2 x3

cos cp 0 sin cp
0 10

— sinę? 0 cos cp

a związek (4.12) przedstawia cztery następujące równania:
7] = Tu cos2 <p + T33 sin2 ę> + 2T13 sin cp cos cp

= T22

T3 = Tu sin2 ę> + T33 cos2 ę> —2r13sin ę>cos cp

7]3 = 0 = (t33—Tu)sinę>cosę> —T13(sin2ę> —cos2<p)

(4.13)
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Ostatnie równanie możemy zapisać również w postaci
2l 13

tg 2ę? =----- (4.14)
T11 T33

Z pomiarów Tt, T2, T3 i cp możemy wyznaczyć cztery składowe r, a mianowicie 
Tll> T22> ^33 i T13-

Z dotychczasowych rozważań wynika jasno, że nie tylko w tej szczególnej, lecz 
i w każdej innej orientacji mamy dla kryształu układu jednoskośnego do dyspozycji 
cztery równania, z których możemy wyznaczyć cztery składowe molekularne. Jeśli 
teraz grupa symetrii węzła obejmuje grupę punktową C2h, to problem znalezienia 
składowych molekularnych może być rozwiązany jednoznacznie. Przy niższej syme­
trii węzła liczba składowych t jest większa niż T, wobec czego liczba równań jest 
za mała.

Z jednoznaczną sytuacją spotykamy się jedynie w przypadku kryształów 
należących do układu trójskośnego. W tym układzie grupy przestrzenne są albo 
asymetryczne, albo zawierają centrum symetrii. W obu przypadkach wszystkie 
(sześć) składowe tensora makroskopowego (3 składowe główne oraz 3 kąty 
określające położenie osi głównych względem .¥2*3) są, przynajmniej w zasadzie, 
dostępne pomiarowi. Niska symetria węzła nie powoduje redukcji liczby różnych 
od zera składowych molekularnych, wobec czego możemy dysponować sześcioma 
równaniami. Inna sprawa, że wycięcie odpowiednich próbek i rozpoznanie ich 
orientacji krystalograficznej jest pracą żmudną i czasochłonną — bardziej szczegó­
łową analizą tego najogólniejszego przypadku nie będziemy się zajmowali.

4.5. Wpływ temperatury na wielkości tensorowe

Rozpatrywaliśmy dotąd struktury, w których elementy mikroskopowe zajmują 
określone położenia i przyjmują określone orientacje względem jakiegoś ustalone­
go układu współrzędnych. Przyjmowaliśmy zatem milcząco, że owe elementy 
strukturalne są nieruchome.

W rzeczywistości w każdej strukturze pojawia się ruch termiczny atomów w 
temperaturze wyższej od 0 K. Jeśli wszystkie atomy cząsteczki powiązane są między 
sobą dostatecznie sztywno, to ruch termiczny atomów można rozpatrywać w 
kategoriach ruchu cząsteczki jako całości (przybliżenie ciała sztywnego). W naj­
prostszym przypadku, gdy sztywne i centrosymetryczne cząsteczki obsadzają w 
krysztale centrosymetryczne węzły, chaotyczny ruch termiczny możemy podzielić 
na dwa typy: oscylacje translacyjne, czyli translacje, polegające na periodycznym 
przemieszczaniu się w określonym kierunku wszystkich atomów równolegle do 
siebie, oraz oscylacje kątowe, czyli libracje, polegające na periodycznej zmianie 
orientacji całej cząsteczki względem nieruchomego układu współrzędnych. Przy 
braku w krysztale centrum symetrii ruch cząsteczek nie może być złożony w 
prosty sposób z tych dwóch typów, ponieważ są one sprzężone. W takim przypad­
ku rzeczywiste przemieszczenia atomów odbywają się po spirali, tj. niewielkiemu 
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przesunięciu towarzyszy mały obrót wokół określonej osi, którą jest na oj 
z osi głównych momentu bezwładności cząsteczki.

Niezależnie od wymogów symetrii, w każdym krysztale ruch termiczny ma 
pewne cechy wspólne. Można wyróżnić trzy takie cechy:

1. Częstość oscylacji jest rozmaita i zmienia się w sposób przypadkowy od 
jednej cząsteczki do drugiej. W określonej temperaturze kryształowi odpowiada 
quasi-ciągłe widmo częstości ruchu translacyjnego i libracyjnego. Wraz z podwyż­
szeniem temperatury widmo to poszerza się od strony wysokich częstości.

2. Amplituda ruchu termicznego jest również różna dla różnych cząsteczek i 
przypadkowa w małym przedziale czasu. Jednak dla przedziału czasu dostatecznie 
długiego w porównaniu z okresem drgań istnieje pojęcie średniego kwadratu 
amplitudy drgań, jednakowego dla wszystkich cząsteczek. Średni kwadrat amplitudy 
wiąże się z energią kinetyczną ruchu termicznego poprzez zasadę ekwipartycji 
energii.

3. Translacje i libracje są ruchami anharmonicznymi, tj. takimi, dla których 
krzywa energii potencjalnej różni się trochę od paraboli drugiego stopnia (por. p. 
8.1). Ta cecha jest dla naszych obecnych rozważań najważniejsza. Anharmoniczność 
powoduje bowiem zarówno przemieszczanie się środka masy cząsteczki, jak też i 
małe zmiany orientacji związanego z nią układu współrzędnych. Oba efekty towarzy­
szą zmianie temperatury i prowadzą bezpośrednio do rozszerzalności termicznej 
kryształu i związanej z nią zmiany jego gęstości. W konsekwencji efekty te 
odpowiedzialne są za zależność od temperatury wszystkich wielkości fizycznych, 
które zależą od położenia i orientacji cząsteczek. Związkami anharmoniczności z 
rozszerzalnością termiczną zajmiemy się w rozdz. 8, w którym poruszony będzie 
również problem krzywej energii potencjalnej. Obecnie rozważymy wpływ małej 
zmiany orientacji cząsteczek nafizykochemiczne właściwości kryształu. Rozwiązanie 
tego zagadnienia równoważne będzie wprowadzeniu temperatury do modelu gazu 
zorientowanego. Towarzyszące zmianie temperatury małe zmiany gęstości kryszta­
łu są łatwe do opisu i omówione zostaną później (por. rozdz. 6).

Postawmy wpierw następujące pytanie. Przypuśćmy, że każdej cząsteczce w 
określonej strukturze przypisaliśmy sztywno z nią związany układ współrzędnych 

Czy istnieją przesłanki doświadczalne świadczące o tym, że przy zmianie 
temperatury zmienia się orientacja U!U2U3 względem makroskopowego układu 
odniesienia, na przykład abc*, uważanego za niezmienny?

Odpowiedzi na to pytanie dostarczają nam wyniki rentgenograficznych badań 
struktury kryształu, wykonanych w kilku temperaturach. Jeśli macierz orientacji 
ux u2 u3 względem abc* oznaczymy przez c, to z badań rentgenograficznych 
wynika, że dla fazy krystalicznej termodynamicznie trwałej w pewnym zakresie 
temperatur, c jest ciągłą funkcją temperatury. Ten wynik mógłby być uważany 
jedynie za formalny skutek naszego sposobu interpretacji drgań termicznych 
poszczególnych atomów, uwarunkowany przyjętym sposobem ich porządkowania. 
Okazuje się jednak, że ze znajomości c w dwóch różnych temperaturach możemy 
wydedukować tensor obrotu całej cząsteczki, potraktowanej jako ciało sztywne. 
Zanim to uczynimy, przyjrzymy się wpierw, jaką postać ma taki tensor.

Przypuśćmy, że molekularny układ współrzędnych, m1m2u3, ma jakąś ogólną
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orientację względem układu makroskopowego, x1x2x3. Pod wpływem niewielkiej 
zmiany temperatury (albo ciśnienia) osie u1u2u3 obróciły się nieco, tak że ich 
nowymi położeniami są uju2u3 (rys. 4.6u). Macierz ogólnego obrotu R możemy 

Rys. 4.6. Obrót układu współrzędnych t/j u2u3, zastępujący obrót ciała sztywnego: a) ogólny, b) wokół 
osi Mj

złożyć jako iloczyn trzech macierzy: Rt obrotu wokół t^, R2 obrotu wokół u2 i R3 
obrotu wokół u3. Rozpatrzmy pierwszy z nich; względną orientację u1u2u3 i 
uj u2 u3 przedstawiono na rys. 4.6b. Oba układy związane są tabelą kosinusów 
kierunkowych

uj 

«2 

»3

»1 «2 «3

1 0 0
0 cos A j sin A j
0 — sindj cosdj

w której Ar oznacza mały kąt obrotu wokół ut. Wobec małej wartości At możemy 
zastosować przybliżenie cosĄ = 1, sinĄ = Ah a wtedy otrzymamy

/ 1 0 0 \
Rt = I 0 1 At j 

\0 -Ar 1 /
(4.15)

Postępując analogicznie, znajdujemy pozostałe macierze obrotu wokół u2

/ 1 0 -zl2\ 
r2 = I 0 1 0 I

\d2 0 1 /

oraz wokół u3
/ 1 d3 0\

R3 = -d3 1 0
\ 0 0 1/

Ogólną macierzą obrotu będzie zatem

/ 1 d3 —A2
R = Ri R2 R3 = I — d3 1 A^ 

\ 412 -dr 1

(4.16)

(4.17)

(4.18)
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przy zaniedbaniu w rachunku wyrazów rzędu wyższego niż pierwszy. Jeśli ze 
względu na małą wartość Aj możemy to uczynić, to wynik (4.18) nie zależy od 
porządku czynników.

Jest widoczne, że R możemy rozłożyć na część symetryczną, która jest macierzą 
jednostkową, 1, i część ant ysy metryczną A, przedstawiającą „czysty" obrót

R = l + A (4.19)

Mając obecnie tensor obrotu A, możemy napisać związek między macierzą orien­
tacji u1u2u3 w temperaturze Tr, c(l), oraz macierzą c(2) orientacji u1u2u3 w 
temperaturze T2

c(2) = Rc(l) = (1 +A)c(l)
skąd

A=c(2)c(l)r—1 (4.20)

Pisząc tak uważamy, że jedynym powodem zmiany c(l) do c(2) jest obrót układu 
współrzędnych u1 u2 u3.

Związek (4.20), zapisany przy użyciu wskaźników, przyjmuje postać trzech 
równań

A r(Dr(2H+ 2i e3i —C3i C2i । 
— i

^=^^c^-c^c  ̂ (4.21)
— i

Ą _ 1 V <,.(!) ,.(2) ..(D..(2))
^3 — + 1/ c 2i —c2i C1; ,

pozwalających obliczyć średnie kąty obrotu cząsteczki wokół osi, odpowiednio, 
uYu2u3, w zakresie temperatur od 7j (niższa) do T2 (wyższa).

Jak duże są te zmiany orientacji? Aby odpowiedzieć na to pytanie, posłużmy 
się badanym już przykładem antracenu [7]. Staranną analizę strukturalną tego 
kryształu w temperaturze T2 = 290 i = 95 K wykonał Mason [8]. Jako układ 
uiu2u3 przyjmiemy osie symetrii LMN cząsteczki (tab. 5.2, nr 29); elementy 
macierzy c(2) i c(l) mają wówczas następujące wartości liczbowe:

/ -0,49409 -0,12738 +0,86003 \
290 K: c(2) = | -0,31752 -0,89444 -0,31490

‘ +0,80935 -0,42867 +0,40149/
(4.22)

/ -0,51171 -0,13109 +0,84910 \
95 K: c(l)=| -0,30351 -0,89699 -0,32140

' +0,80376 -0,42218 + 0,41920/

Korzystając z równań (4.21), otrzymujemy [10 5rad-K

41 =4,98 ±0,06 A2 = 8,78 ±0,03 A3 = 6,29 ±0,04 (4.23) 
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Wyrazy diagonalne są rzędu d;i = 1 • 10~6rad-K“1, a więc znacznie mniejsze od 
wartości (4.23). Te właściwości macierzy A wskazują, iż — istotnie — opisuje ona 
obrót cząsteczki jako sztywnej całości przy zmianie temperatury od Tx do T2. 
Średnie przemieszczenia cząsteczki antracenu na 1 K są wprawdzie niewielkie — 
rzędu kilkunastu sekund kątowych — ale znaczące.

To samo zagadnienie możemy również rozwiązać posługując się kątami Eulera 
— tymi samymi, których używa się w mechanice do opisu ruchu obrotowego bryły 
sztywnej. Droga prowadząca do wyniku (4.23) jest może trochę dłuższa, lecz 
bardziej bezpośrednia i przedstawia się następująco.

Kąty Eulera (p, li i / określają orientację utu2u3 (ruchomy lub wewnętrzny 
układ współrzędnych) względem układu xt x2x3 (nieruchomy lub zewnętrzny układ 
współrzędnych) (rys. 4.7). Przejście od x;x2x3 do «1u2u3 (LMN] określają trzy 
następujące obroty:

1. Obrót Xi x2 wokół x3 o kąt <p: x3x2x3 ->-xjx2x3

2. Obrót x2x3 wokół xj o kąt <9: Xj x2 x3 —>Xj x2 u3 (4.24)

3. Obrót xj x2 wokół u3 o kąt /: xjx2M3 -^u3u2u3

Rys. 4.7. Geometryczna interpretacja kątów Eule­
ra (według [9])

Oczywiście, między kosinusami kierunkowymi u3 u2 u3 i kątami Eulera muszą 
istnieć związki; są one zebrane w tab. 4.1 według [9]. Wybierając trzy odpowied­
nie, ale w zasadzie dowolne elementy macierzy c możemy obliczyć kąty Eulera w 
obu temperaturach. Na przykład, (9 można obliczyć bezpośrednio z c33, tp z c31 i 
c32, zaś z c13 i c23. Dla cząsteczki antracenu otrzymujemy następujące wyniki:

<P

290 K 62,09218(2)
95 K 62,28889(22)

,9
66,32864(0)
65,21591(0)

Z
110,10988(42)
110,73268(14)

(4.25)
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Tabela 4.1

Związki między kosinusami kierunkowymi i kątami Eulera

a b c*
i/, lcii ci2 C13 \ / cos / cos tp — sin / cos 9 sin <p cos/sin <p + sin/cos .9cos <p sin/sinS
»2 I c2i c22 c23 |= I - sin x cos — cos / cos 9 sin — sin xsin <p + cos /cos .9cos tp cos x sin 9
u} \c31 c32 c33 / \ sin 9 sin <p — sin 9 cos <p cos9

Liczby w nawiasach oznaczają w jednostkach piątego miejsca błędy, jakie towarzy­
szą obliczaniu kątów Eulera z różnych elementów macierzy (4.22). Z danych (4.25) 
można obliczyć*zmiany tych kątów przypadające na 1 K [10“3rad-K-1]

— = 3,433 
AT

d9
----= -19,421
AT

— = 10,870 
AT

(4-26)

Liczby powyższe nie przedstawiają, oczywiście, kątów obrotu cząsteczki wokół 
u} u2 u3. Te ostatnie możemy otrzymać z (4.26) przez zastosowanie znanych z 
mechaniki wzorów [9], wiążących prędkości kątowe <p, Ś, %, wyrażone przez kąty 
Eulera, i prędkości kątowe Ar, d2, d3, wyrażone przez obrót wokół, odpowiednio, 
u1u2u3. Kropki nad literami oznaczają różniczkowanie po czasie. Opuszczając w 
tych wzorach czas i zastępując nieskończenie małe przyrosty zmianami skończony­
mi, otrzymamy następujące związki na przemieszczenia kątowe, wyrażone przez 
oba typy zmiennych

d3 = (dęOsin/j sin + (d3)cosxi

A 2 = (A<p)cosxi sin^! — (dSjsin/j (4.27)

A3 = (d<p)cos +(dx)

Wskaźnik „1” po prawej stronie oznacza wartość kątów Eulera w temperaturze 7]. 
Z (4.26) i (4.27) otrzymujemy w końcu [10~5rad-K-1]

di =5,02 d2 = 8,75 d3 = 6,31

Porównanie z (4.23) wskazuje na bardzo bliskie siebie wartości obu wyników. 
Warto zauważyć, iż pierwsza metoda, wyrażająca się układem równań (4.21), jest 
bardziej dokładna, ponieważ prowadzi do wartości uśrednionych z wykorzysta­
niem wszystkich elementów macierzy c(l) i c(2).
Strukturę naftalenu w dwóch temperaturach oznaczyli Kożyn i Kitajgorodski 
[10]. Macierze kosinusów kierunkowych c(2) i c(l), obliczone z podanych w tej 
pracy współrzędnych atomów, podane są w tab. 4.2. Średnie kąty obrotu cząstecz­
ki naftalenu w zakresie temperatur od Tr = 78 do T2 = 293 K, obliczone według 
równań (4.21), wynoszą w tych samych jednostkach [10~5 rad-K“1]

dj =-15,81 ±0,61 d2 = — 15,36 + 0,05 d3=3,40± 0,29 (4.28)
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Tabela 4.2

Kosinusy kierunkowe osi ut u2 u3 cząsteczki naftalenu, obliczone 
ze współrzędnych atomów, podanych w pracy [10]

c a b ' c*

"i 0,4320 0,2049 -0,8783
c(2) (293 K) »2 0,3258 0,8726 0,3638

"3 0,8420 -0,4405 0,3114
»1 0,4620 0,1971 -0,8647

c(l) (78 K) »2 0,2925 0,8866 0,3583
«3 0,8372 —0,4188 0,3518

W obu tych przykładach otrzymujemy wyniki średnie dla stosunkowo dużego 
przedziału temperatury. Nie możemy z nich wnioskować, na przykład, w jaki 
sposób At zależą od temperatury.

Tabela 4.3

Kosinusy kierunkowe osi u, u2 u3 i kąty Eulera cząsteczki antrachinonu, obliczone ze współrzędnych 
atomów, podanych W pracy [11]

c a b c* <P X .9

«i 0,52355 0,48701 0,69908
c (293,8 K) “2

“3
Ul

-0,77927 
0,34441
0,52644

-0,05797
-0,87147

0,46082

0,62400
0,34917
0,71449

21,5643 48,2478 69,5634

c (260,8 K) «2 
»3
U,

-0,79034 
0,31340
0,52623

-0,04453
-0,88637

0,45014

0,61105
0,34076
0,72143

19,4729 49,4620 70,0768

c (201 K) U2 
“3
»1

-0,79603 
0,29903 
0,52843

-0,03757
-0,89217

0,44334

0,60409 
0,33855 
0,72402

18,5296 50,0588 70,2114

c (161 K) U2
“3
Ul

-0,79834
0,28882
0,52332

-0,03063
-0,89583

0,43493

0,60143
0,33775
0,73277

17,8694 50,2842 70,2602

c (103 K) u2
«3

-0,80621
0,27596

-0,02577
-0,90009

0,59107
0,33716

17,0455 51,1095 70,2961

Bardziej szczegółowych danych dostarcza przykład antrachinonu, którego 
struktura wyznaczona została w pięciu temperaturach [11]. Tabele kosinusów 
kierunkowych oraz kąty Eulera, podane w tab. 4.3, obliczone zostały z podanych 
w cytowanej pracy współrzędnych atomów przy następującej definicji osi Uj u2 w3:

1. u3 jest normalną do najlepszej płaszczyzny, poprowadzonej przez atomy od 
C(l) do C(8) cząsteczki antrachinonu;

2. u2 jest średnim kierunkiem poprowadzonym przez cztery pary odpowiednich 
atomów, a następnie skorygowanym przez mały obrót do ścisłej ortogonalności z 
m3 według procedury opisanej w p. 5.7;
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3. Wj = h2 x w3.
W rezultacie ortogonalność wektorów w, m2 n3 nie jest gorsza niż + 1-10“5, a 

błędy w kątach Eulera nie większe niż + 3-10“4 stopnia. Temperaturowe funkcje 
kątów Eulera przedstawione są na rys. 4.8. W temperaturach niższych od 240 K 
funkcje te są praktycznie liniowe, przy czym dwa z kątów maleją ze wzrostem 
temperatury, a (p rośnie. W temperaturze bliskiej 260 K zmiany kątów Eulera 
przypadające na 1 K zaczynają być duże, co wskazuje na łączność z jakimś — 
bliżej nie rozpoznanym — procesem w sieci krystalicznej. Potwierdzenie tego 
zachowania się odnajdujemy również na rys. 4.9, na którym przedstawione są 

Rys. 4.8. Funkcje temperaturowe kątów Eulera czą­
steczki antrachinonu w krysztale

Rys. 4.9. Zmiany kątowego położenia cząsteczki antrachinonu, w funkcji temperatury
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zmiany kątowego położenia cząsteczki, d;, w funkcji temperatury, wykreślone z 
danych zawartych w tab. 4.4. Na możliwość występowania osobliwości struktural­
nej w tym zakresie temperatur zwracają uwagę również autorzy pracy [11] w 
związku z tym, że współczynnik rozszerzalności termicznej a3, ujemny w temp, 
niższej od 263 K, staje się dodatni w pobliżu temp. 273 K (por. nr 33 w tab. 8.1). 
Przykład antrachinonu dowodzi, że w szerszym zakresie temperatur 4,- są na ogół 
funkcją temperatury, niekoniecznie liniową.

Przemieszczenia kątowe cząsteczki antrachinonu

Tabela 4.4

Zakres 
temperatury, K

Przemieszczenie kątowe, 10 3 rad Przemieszczenie kątowe, 
10'5 radK~‘

4li ^2 “413 A JAT 412/4l T 413/41T

293,8-260,8 -19,9 ±0,1 -29,28 ±0,09 + 8,6 ±0,3 -60,3 -88,7 + 26,0
260,8-201 -10,29 ±0,03 - 11,79 ±0,03 + 4,82 ±0,06 -17,2 -19,7 + 8,1
201-161 -7,782 ±0,004 -7,599 ±0.001 + (4±3)-10-2 -19,4 -19,0 + 0,1
161-103 -10,08 ±0,05 -9,06 ±0,05 + 9,55 ±0,05 -17,4 -15,6 + 16,5

Struktura kryształu benzenu badana była w trzech temperaturach: rentgeno- 
graficznie w temp. 270 K przez Coxa i innych [12] oraz neutronograficznie w 
temp. 218 i 138 K przez Bacona i innych [13]. W tabeli 4.5 zamieszczone są 
kosinusy kierunkowe osi cząsteczki, odpowiadające osiom symetrii LMN
(dla definicji por. nr 1 w tab. 5.2). Dane zamieszczone w tej tabeli obliczone zostały 
ze współrzędnych podanych w cytowanych pracach metodą już opisaną. Warunki 
ortonormalności macierzy c spełnione są z błędami nie przekraczającymi 1-10-4.

Tabela 4.5

Kosinusy kierunkowe osi tiy u2 u3 cząsteczki benzenu, obliczone 
ze współrzędnych atomów, podanych w pracy [12] (270 K) i 
pracy [13] (218 i 138 K)

c a b c

»1 -0,2770 0,9604 -0,0307
c (270 K) «2 -0,6510 -0,1641 0,7411

«3 0,7067 0,2252 0,6707

"1 -0,2970 0,9546 -0,0200
c (218 K) "2 -0,6425 -0,1844 0,7436

«3 0,7063 0,2337 0,6682
Wj -0,3209 0,9466 -0,0315

c (138 K) "2 -0,6537 -0,1973 0,7306
»3 0,6854 ’0,2551 0,6821
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Przemieszczenia kątowe cząsteczki benzenu, Ą-, obliczone według równ. (4.21) 
zawiera tab. 4.6, przy czym wyrazy diagonalne tensora A są nie mniejsze niż 
-0,7 • 10 5 rad K '. Zagadkowe jest, że dwa z przemieszczeń mają większe 
wartości w zakresie niższych temperatur, przy czym jedno z nich (dj zmienia 
znak.

Tabela 4.6

Przemieszczenia kątowe cząsteczki benzenu [10“5 rad-K"1]

Zakres 
temperatury, K di/dT d3/dT

270-218 5,92 ±0,17 15,93 ±0,06 42,10 ±0,03
218-138 -24,66 ±0,14 33,04±0,10 10,63 ±0,32

Przytoczone przykłady wskazują, że, wpływ temperatury na zmianę orientacji osi 
u2u3 cząsteczki można opisać za pomocą antysymetrycznego tensora A, wiążącegO 

z sobą macierze orientacji tych osi w dwóch temperaturach

c(2) = (1 +A)c(l) (4.29)

Związek ten może posłużyć do oceny zależności od temperatury wszystkich 
wielkości tensorowych, które zależą od orientacji cząsteczki w komórce elementar­
nej. Przyjmując — jak dotąd — że c(2) jest macierzą zadaną w temperaturze T2, 
wyższej od 7], której odpowiada macierz c(l), możemy c(l) z równ. (4.29) 
podstawić do równ. (4.8). Otrzymamy

c(l) = (1 —A)c(2)

ponieważ Ar = — A ze względu na antysymetryczność tego tensora. Otrzymujemy 
dalej dla pierwszej cząsteczki

r(l)U) = [[c(2)(1T+[c(2)(1Ta;^^ =

= [c (2)( 1 ’7 tc (2)( 11 - [c (2)( 1 >] r t Ac (2)'1 > + [c (2)( 1 ’]T Atc (2)<1 > - [c (2)( 1 y At Ac (2)( u

W tej równości t jest tensorem molekularnym w układzie u1u2u3. Komentując 
ostatnie rozwinięcie po prawej stronie, można zauważyć, że pierwszy człon jest 
udziałem pierwszej cząsteczki w temperaturze T2, t(2)(1), ostatni człon można zaś 
pominąć ze względu na małą wartość elementów A. Dla całej komórki elementar­
nej otrzymamy zatem

z
r(l) —r(2) = £ Ar[c(2)(1)]T !At-tA’c(2)(1)Ar (4.30)

r= 1

Tym razem nie ma powodu, by dzielić prawą stronę przez liczbę cząsteczek w 
komórce elementarnej, ponieważ Tr A = 0. Ze względu na występowanie po prawej 
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stronie równ. (4.30) operacji symetrii grupy wymiennej obie strony tej równości są 
tensorami o tej samej liczbie niezerowych składowych. Równanie to wyraża 
średnią zmianę wielkości tensorowej w określonym przedziale temperatur. Oparte 
jest na założeniu, że jedynym powodem tej zmiany jest obrót molekularnych osi 
Uj u2 u3.

Zastosowaniem równ. (4.30) do badania wpływu temperatury na wielkości 
fizyczne zaj mierny się w następnych rozdziałach.

Stosując analogiczne rozumowanie, można też opisać wpływ temperatury na 
wielkości fizyczne reprezentowane wektorami. Nie będziemy się jednak zajmowali 
szczegółowo tym problemem, pozostawiając go do rozwiązania zainteresowanemu 
Czytelnikowi.

4.6. Problemy i przykłady

Przykład 4.6.1
Wpływ symetrii na postać tensora w krysztale jednoskośnym

Przypuśćmy, że kryształ należący do układu jednoskośnego, ma komórkę 
elementarną o symetrii (z pominięciem elementów translacji) C2h, przy czym oś 
symetrii C2 jest równoległa do ; symetrią węzła jest E. Które składowe t będą 
miały wartości niezerowe?

Grupa wymienna składa się z czterech operacji

£, Cf, C2x, <jh

którym odpowiadają macierze
/1 0 0\ /-1 0 0\

Aj = I 0 1 0 ) A2 = I 0-1 0 A3

\0 0 1/ \ 0 0-1/

/1 o o\
I0 -1 0
\0 0-1/

/-1 0 0 
a4=( o 1 o 

\ 0'0 1

Przedstawmy tensor (4.8) symbolicznie w postaci

Ponieważ operacje Ar nie zmieniają wskaźników składowych t(1), lecz tylko ich 
znaki, wynik działania Ar możemy zapisać również symbolicznie w taki sam
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sposób. Mamy zatem

^2

A4t(1)AI =

Sumowanie prowadzi do

t(xj x2 x3) = 4
+ 00
0 + + 
o + +

Szczegółową postać czterech niezerowych składowych, tu, t22, ^33, t23, podają 
równania (4.11).

Problem 4.6.2
Relacja między liczbą składowych tensora mikro- i makroskopowego w krysztale 
benzenu

Jak powiedzieliśmy w p. 4.2, kryształowi benzenu odpowiada grupa przestrzen­
na o symbolu Pbca, należąca do układu ortorombowego. Cząsteczki mają symetrię 
Cj i zajmują węzły o takiej samej grupie punktowej, grupa węzła składa się zatem 
z dwóch elementów

Gs9(£|000’, {CJOOOj

Nie powoduje to redukcji liczby elementów tensora molekularnego t, ich liczba 
wynosi zatem 6.

Grupa wymienna jest czwartego rzędu i zawiera, na przykład, następujące 
operacje symetrii (4.3):

Gw9 ‘£1000’, ;c2xiiM {c2y\o^}, ;c2jioi]

Opuszczając składowe translacyjne, możemy je przedstawić za pomocą następują­
cych macierzy:

/1 0 0\ /1 0 0\ /-1 0 0
Aj = I 0 1 0 I A2 = I 0 -1 0 A3 = I 01 0

\0 0 1/ \0 0 -1 / \ 0 0 -1

/-1 0 0
A4 = I 0-10 

\ 0 0 1
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Ponieważ żadna z nich nie miesza porządku wskaźników składowych tensora t(1)

o
r(X! x2x3) = 4

O
OO

O O
która odpowiada trzem różnym i dostępnym doświadczalnie wartościom głównym 
t. Jest to zgodne z faktem, że do opisu każdej wielkości tensorowej, reprezentowa­
nej tensorem drugiego rzędu, wystarczy i potrzeba znać w krysztale ortorombo- 
wym jedynie wartości główne. Stąd w równ. (4.11) zmn = 0.

Trzy równania nie wystarczają, oczywiście, do wyznaczenia sześciu składowych 
molekularnych. Możemy jednak podwyższyć symetrię cząsteczki w krysztale tak, 
by liczbę składowych niezerowych zredukować do trzech. Z punktu widzenia 
symetrii nie jest to zabieg niedozwolony, ponieważ symetria węzła, Gs, określa 
jedynie minimalną symetrię cząsteczki w tym węźle; efektywna symetria cząsteczki 
może być wyższa. Postępowanie takie jest jednak spekulacją, której uzasadnieniem 
może być symetria rozkładu atomów, wynikająca z rentgenowskiej analizy struktu­
ralnej. Wnioski płynące z takich rozważań mogą być niekiedy interesujące (por. 
problem 5.11.2, dotyczący diamagnetyzmu cząsteczki heksachlorobenzenu).

Zauważmy na koniec, że nic nie stoi na przeszkodzie, by pomiarów wielkości 
makroskopowej t wykonać więcej niż 3. Nie będą to, oczywiście, informacje 
niezależne. Możemy je jednak wykorzystać w celu zwiększenia dokładności w 
obliczeniu wartości głównych metodą najmniejszych kwadratów. Dyskusję taką 
przedstawiliśmy w rozdz. 2 (por. problem 2.8.1).

Literatura

1. Rohleder J. W„ Fulihska-Wojdk G., Roczniki Chemi, 46, 493 (1972).
2. Seitz F, An*. Math., 37, 17 (1936).
3. „International Tables for X-Ray Crystallography”, t. I, No 61, The Kynoch Press, England 1959.
4. Decius J. C., Hexter R. M., „Molecular Vibrations in Crystals”, McGraw-Hill Inc., New York 1977.
5. Bernstein E. R., Colson S. D., Kopelman R., Robinson G. W., J. Chem. Phys., 48, 5596 (1968).

147



6. Rohleder J. W., Mierzejewski A., Materials Sei., 4, 97 (1978).
7. Rohleder J. W., Faraday Disc., 69, 183 (1980).
8. Mason R., Acta Cryst., 17, 547 (1964).
9. Weizel W., „Fizyka teoretyczna”, t. 1.1, PWN, Warszawa 1958 (tłum, z niem.).

10. Kożyn W. M., Kitajgorodski A. I., Ż. fiz. chim., 29, 1897 (1955).
11. Lonsdale K., Milledge H. J., El Sayed K., Acta Cryst., 20, 1 (1966).
12. Cox E. G., Cruickshank D. W. J., Smith J. A. S., Proc. Roy. Soc. (London), MAI, 1 (1958).
13. Bacon E. G., Curry N. A., Wilson S. A., Proc. Roy. Soc. (London), A279, 98 (1964).



5. DIAMAGNETYZM KRYSZTAŁÓW

Badania właściwości diamagnetycznych ciał stałych rozpoczęto na serszą skalę 
dopiero od r. 1933, gdy Krishnan odkrył anizotropię podatności kryształów i 
opisał metody pomiaru tej wielkości. Wkrótce stało się jasne, że wyniki tych 
doświadczeń mogą być pomocne w określaniu struktur szczególnie kryształów 
molekularnych, ponieważ w tych substancjach diamagnetyzm kryształu w szczegól­
nie prosty sposób może być złożony z diamagnetyzmu cząsteczek. Dodatkowym 
argumentem był wcześnie odkryty fakt, że kryształ molekularny jest praktycznie 
przezroczysty dla pola magnetycznego. Jest tak dlatego, że indukowane w poszcze­
gólnych cząsteczkach w obecności pola magnetyczne momenty dipolowe mają w 
diamagnetykach nadzwyczaj małe wartości i ich oddziaływanie można zwykle 
pominąć. Dzięki temu z pomiarów podatności kryształów możemy wprost wydeduko- 
wać podatności cząsteczek, a jeśli możemy je określić w inny sposób, to badania 
właściwości kryształów prowadzą do oceny orientacji samych cząsteczek w struk­
turze krystalicznej. Ułatwiało to znakomicie rozwiązanie struktury, badanej meto­
dami rentgenograficznymi.

Współcześnie sytuacja w dziedzinie badań strukturalnych uległa radykalnej 
zmianie. Wobec znacznego rozwoju metod instrumentalnych aktualnie budowane 
dyfraktometry, współpracujące z maszynami cyfrowymi, stanowią tak skuteczne 
narzędzie badań, że nikt dziś nie szuka pomocy w metodach diamagnetycznych. 
Niemniej jednak podatności cząsteczek, dedukowane z badań kryształów, stanowią 
w dalszym ciągu ważny zbiór informacji, potrzebny przynajmniej w trzech kierun­
kach badań:

1. Obliczenia ab initio podatności magnetycznej cząsteczek. Obecnie istniejące 
teorie dalekie są jeszcze od doskonałości, skoro nie tłumaczą ilościowo anizotropii 
cząsteczki, a nawet teoretyczny wynik dla średniej podatności niekiedy znacznie 
odbiega od wartości znanych z doświadczenia.

2. Metody magnetyczne są bardzo skutecznym narzędziem wykrywania prze­
mian fazowych w kryształach molekularnych i badania ich mechanizmu. Wynika 
to z faktu, że podatność kryształu w określonym kierunku bezpośrednio zależy od 
orientacji cząsteczek. Wobec tego nawet niewielkie zmiany orientacji, spowodowa­
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ne zmianą temperatury, pociągają za sobą znaczne zmiany podatności kryształu. 
Obserwowany efekt jest jeszcze większy, gdy mierzoną wielkością jest nie podat­
ność, lecz anizotropia kryształu: ponieważ średnia podatność praktycznie nie 
zależy od temperatury, spadkowi tej wielkości w określonym kierunku towarzyszy 
często jej wzrost w kierunku do niego prostopadłym. Warto też zauważyć, że 
pomiary zmian podatności można wykonać dla każdego kryształu anizotropowe­
go, podczas gdy dielektryczne metody badania przemian fazowych zawodzą dla 
substancji zbudowanych z cząsteczek niepolarnych.

3. Szczególną rolę odgrywa pole magnetyczne w grupie substancji zwanych 
ciekłymi kryształami. W fazach ciekłych, lecz wykazujących anizotropię optyczną, 
pole działa porządkujące na ustawienie cząsteczek. Zrozumienie i ścisły opis 
właściwości zwykłych faz krystalicznych z pewnością ma znaczenie dla lepszego 
poznania właściwości ciekłych kryształów i rozszerzenia ich nadzwyczaj interesują­
cych zastosowań.

W niniejszym rozdziale analizować będziemy właściwości magnetyczne klasy 
substancji, która obejmuje ciała stałe nie przewodzące prądu elektrycznego. Skon­
centrujemy uwagę głównie na ciałach zbudowanych z cząsteczek mających zam­
knięte powłoki elektronowe, a więc nie wykazujących trwałego momentu magnety­
cznego. Ta klasa substancji, nosząca nazwę diamagnetyków, obejmuje bardzo wiele 
związków zarówno organicznych, jak i nieorganicznych. Spora część dyskusji w 
tym rozdziale może być odniesiona również do substancji, których elementy 
strukturalne mają nieparzystą liczbę elektronów, a więc jeden z nich jest niesparo- 
wany; takie materiały określa się nazwą paramagnetyków. Paramagnetyzm jest 
cechą substancji raczej rzadko spotykaną, podczas gdy diamagnetyzm jest uniwersal­
ną cechą materii. Substancja może być więc jednocześnie dia- i paramagnetykiem, 
ale jeśli występuje paramagnetyzm, to jest on na tyle silny, że całkowicie przysłania 
właściwości diamagnetyczne. Obie te klasy substancji łącznie stanowią grupę tzw. 
materiałów słabo magnetycznych.

Celem naszym będzie przedstawienie metod doświadczalnych używanych w 
pomiarach anizotropii a następnie opisanie, jak z właściwości kryształu można 
otrzymać informacje o właściwościach cząsteczki przy założeniu, że struktura 
kryształu jest znana. Innymi słowy, będziemy się zajmować w tym rozdziale 
strukturalną interpretacją diamagnetyzmu kryształów. Opis makroskopowej właś­
ciwości fizycznej ciała stałego za pomocą właściwości pojedynczych cząsteczek jest 
jednym z głównych zadań współczesnej fizyki chemicznej. Bardziej klasyczne 
przedstawienie magnetycznych właściwości materii może Czytelnik znaleźć w 
monografiach [1-8].

5.1. Definicje wielkości podstawowych

Każde ciało, umieszczone w zewnętrznym i jednorodnym polu magnetycznym, 
staje się spolaryzowane magnetycznie. Efekt ten, zwany namagnesowaniem, wywoła­
ny jest wpływem pola magnetycznego na atomy i cząsteczki, z których zbudowane 
jest ciało. Zależnie od charakteru tych elementów strukturalnych mechanizm
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namagnesowania może być dwojakiego rodzaju. Jeśli mają one trwały moment 
magnetyczny, p(0>, to zewnętrzne pole H powoduje uporządkowanie tych momen­
tów zgodnie z kierunkiem H. Istnienie trwałego momentu magnetycznego może 
być spowodowane obecnością w cząsteczce atomu, który taki moment posiada, np. 
Fe2+ w FeCO3, lub może być związane z obecnością niesparowanego elektronu w 
układach o nieparzystej liczbie elektronów. Taki układ elektronów, charakterysty­
czny dla cząsteczek związków, zwanych wolnymi rodnikami, spotykany jest na 
przykład w tlenku azotu, NO, lub difenylopikrylohydrazylu. Jeśli cząsteczki nie 
mają trwałego momentu magnetycznego, to substancja z nich zbudowana jest 
diamagnetykiem. Ale we wszystkich cząsteczkach, niezależnie od wykazywanego 
przez nie trwałego momentu, przyłożone pole indukuje moment magnetyczny, p{'\ 
którego wielkość jest proporcjonalna do H, a kierunek (w cząsteczce izotropowej) 
jest przeciwny do H.

Rys. 5.1. Prąd pierścienia wzbudzony w cząsteczce benzenu przez zewnętrzne pole magnetyczne i 
kierunek indukowanego momentu magnetycznego, p^

Efekt ten można zilustrować prostym modelem elektrodynamicznym cząsteczki 
benzenu, opisanym przez Pople’a [9] i przedstawionym na rys. 5.1. Przypuśćmy, że 
wektor H jest prostopadły do płaszczyzny pierścienia. Sześć ruchomych elektro­
nów 7t wykonuje wówczas larmorowską precesję wokół kierunku H z częstością 
kątową a> = p0 eH/(2m}, co jest równoważne przepływowi „prądu pierścienia” o 
natężeniu tr; e oraz m oznaczają odpowiednio ładunek i masę elektronu, p0 jest 
bezwzględną przenikalnością magnetyczną próżni

p0 = 4n-10-7 Wb-A-1-m“1 (5.1)
Prąd pierścienia wywołuje z kolei pojawienie się wtórnego pola magnetycznego, 
H', którego linie wewnątrz obszaru pierścienia skierowane są przeciwnie do linii 
pola przyłożonego. Indukowany moment magnetyczny, liczbowo równy iloczynowi 
natężenia prądu i powierzchni S objętej konturem, wynosi

(^2) = -p0^2a2H/m lit 2
(5.2)
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Przyjęto tutaj, że kontur jest okręgiem o promieniu a. Jak więc widać, pole 
magnetyczne wewnątrz pierścienia jest odrobinę słabsze, a na peryferiach pierście­
nia odrobinę silniejsze od pola przyłożonego. Tym efektem wyjaśnił Popie fakt 
znany z pomiarów częstości rezonansowej w magnetycznym rezonansie jądrowym 
protonów cząsteczki benzenu. Polega on na tym, że częstość rezonansową dla tych 
protonów obserwuje się przy wartościach H nieco mniejszych niż dla protonów 
cząsteczki etylenu, przyjętej za wzorzec. Przesunięcie chemiczne, obliczone przez 
Pople’a, wynosi +1,7 ppm, co doskonale zgadza się z wielkością obserwowaną, 
+ 1,4 ppm.

Koncentracja zarówno trwałych jak i indukowanych momentów magnetycznych, 
liczona na jednostkę objętości, określa wielkość zwaną wektorem namagnesowania 
substancji, / [ A ■ m ”1 ]

1 = --------------  (5.3)
AV

A V oznacza element objętości ciała, w obrębie którego liczona jest suma wektoro­
wa. Namagnesowanie jest zatem równe liczbowo momentowi magnetycznemu jednost­
ki objętości. Zależy ono od wielkości przyłożonego pola: dla substancji dia- i 
paramagnetycznych, dla niezbyt silnych pól, spełniona jest zależność

I = (5.4)

przy czym jest śtałą materiałową niezależną od natężenia pola, zwaną podatnoś­
cią magnetyczną substancji. Najczęściej tę właśnie wielkość wyznacza się ekspery­
mentalnie. W równaniu (5.4) zarówno / jak i H mają ten sam wymiar, którym jest 
— zgodnie z równ. (5.3) — Am-1.

W częstym użyciu są również inne podatności magnetyczne: jednostki masy, x, 
i jednego mola, /

x = j//Q % = u ■ M = jj M/q (5.5)

q jest gęstością substancji [kgm~3], a M — masą molową [kgmol“1]. Podat­
ności x i / mają wymiary: [m3-kg-1] i [m3-mol-1], nie spełniają zatem równ. 
(5.4).

Podatność magnetyczna jest wielkością fizyczną, która może być użyta jako 
podstawa klasyfikacji substancji chemicznie i fizycznie jednorodnych. W takim 
podziale znaczenie mają zarówno wielkość, jak i znak podatności. Uprzedzając 
nieco przedstawienie metod pomiaru podatności (p. 5.5), wspomnimy obecnie 
krótko o samej zasadzie. Polega ona na pomiarze wielkości i kierunku siły, jaka 
działa na próbkę sproszkowanej substancji po umieszczeniu jej w niejednorodnym 
polu magnetycznym. W trzech zasadniczych klasach magnetyków może być ona 
mała i dodatnia (paramagnetyk), mała i ujemna (diamagnetyk), wreszcie bardzo 
duża i dodatnia (ferromagnetyk). Na tej podstawie zaproponowano następującą, 
rozwiniętą później, klasyfikację substancji pod względem magnetycznym [1].

1. Diamagnetyki. Jest to obszerna klasa substancji o podatności małej i uje­
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mnej, rzędu 10“6, niezależnej od H i praktycznie niezależnej również od tempera­
tury. Niezależność od temperatury dotyczy średniej podatności, tj. takiej, jaką 
mierzy się dla drobno sproszkowanej i starannie wymieszanej próbki. Jak zobaczy­
my dalej, w kryształach anizotropowych podatność w określonym kierunku może 
nawet znacznie zależeć od temperatury, co ma ważne znaczenie eksperymentalne. 
Przy podatności ujemnej swobodna w przestrzeni cząstka diamagnetyka przesuwa 
się od miejsc o większym natężeniu pola do miejsc o natężeniu mniejszym. Do tej 
klasy substancji należy ogromna większość czystych związków organicznych i 
nieorganicznych w stanie gazowym, ciekłym lub stałym, np. woda, benzen, chlorek 
sodu, antracen, niektóre metale, jak np. ołów, miedź.

2. Paramagnetyki. Te substancje mają podatność dodatnią, rzędu 10“ 6-10“4, i 
są wciągane w obszar pola magnetycznego o większym natężeniu. Zależnie od 
zachowania się podatności przy zmianie temperatury wprowadza się jeszcze dalszy 
podział paramagnetyków:

a) Dielektryki paramagnetyczne. Są to ciała nie przewodzące prądu elektryczne­
go, a odwrotność ich podatności, 1/^, jest liniową funkcją temperatury zgodnie z 
prawem Curie lub Curie-Weissa. Ta klasa substancji obejmuje niektóre sole metali 
z grupy żelaza (np. FeCO3), a także pierwiastków ziem rzadkich. Należą do niej 
również związki organiczne, posiadające niesparowane spiny (wolne rodniki).

b) Metale paramagnetyczne mają małą podatność (10” 6), związaną z istnieniem 
w nich elektronów przewodnictwa (paramagnetyzm Pauliego). Podatność tych 
metali, np. Na, Al, bardzo słabo zależy od temperatury.

c) Antyferromagnetyki podatność mają zbliżoną do zwykłych paramagnetyków, 
ale wpływ temperatury wykazuje bardzo interesujące cechy osobliwe. W pewnej 
temperaturze, zwanej temperaturą Neela, f przechodzi przez maksimum (MnS, 
MnO).

3. Ferromagnetyki. Ta klasa ciał obejmuje metale grupy żelaza (Fe, Ni, Co) i 
niektóre ich stopy. Podatność jest bardzo duża (103-104) i zależy od temperatury 
(powyżej temperatury Curie, 'Ę, stają się zwykłymi paramagnetykami), od natęże­
nia pola magnetycznego i od magnetycznej, termicznej i mechanicznej historii 
próbki. Spośród ferromagnetyków wyodrębnia się zwykle ferryty, tworzące małą 
grupę ferrimagnetyków. Różnią się one od ferromagnetyków bardziej złożonym 
typem zależności 1^(7) powyżej Tc i charakterystycznymi cechami strukturalnymi 
uporządkowania magnetycznego (uporządkowane spiny w przynajmniej jednej z 
podsieci mają zwrot przeciwny do zwrotu spinów w pozostałych podsieciach, też 
uporządkowanych).

W powyższej klasyfikacji pominęliśmy diamagnetyki anomalne i tak zwane 
metamagnetyki, stanowiące grupy o bardzo niewielu przedstawicielach. W dalszej 
części będziemy się zajmowali wyłącznie diamagnetykami, odsyłając Czytelnika 
zainteresowanego właściwościami innych grup do wykazu literatury, zamieszczone­
go na końcu rozdziału.

Wektor indukcji magnetycznej B określony jest związkiem

B = p0(H + f) (5.6)
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Korzystając z zależności (5.4), otrzymujemy

B = poH + p.oi/sH = ;(0(l+iA)W = popH (5.7)

p jest przenikalnością magnetyczną materiału.
Warto zauważyć, że diamagnetyzmowi substancji towarzyszy zawsze niewielki na 

ogół udział paramagnetyzmu. Zgodnie z teorią Van Vlecka magnetyczne właściwoś­
ci cząsteczki wieloatomowej opisuje wyrażenie, składające się z dwóch .członów 
[3, 6]

Ne2 k
<A = -^07— E <'’1?>+2VłUoE 

6m /=1

l<0|MH|n>|2
En Eq

(5.8)

Pierwszy z nich opisuje diamagnetyzm, wywołany larmorowską precesją orbity 
elektronu w polu magnetycznym. Średni kwadrat promienia tej orbity wynosi 
<r?>, N jest liczbą Avogadra, e i m oznaczają zaś ładunek i masę spoczynkową 
elektronu. Suma rozciąga się na wszystkie elektrony cząsteczki. W drugim członie 

n> jest elementem macierzowym składowej orbitalnej momentu pędu w 
kierunku wektora H dla przejścia od stanu podstawowego (indeks 0, energia Eo) 
do wzbudzonego (indeks n, energia E„). Jak wiadomo, kąt między wektorem 
momentu magnetycznego elektronu i kierunkiem H może przyjmować tylko 
określone wartości, przy czym każdej orientacji odpowiada trochę inna energia. 
Tak więc aktualna wartość rzutu momentu na kierunek H rządzona jest czynni­
kiem temperaturowym (w przybliżeniu czynnikiem Boltzmanna), ale wobec dużej 
liczby elektronów zależność od temperatury średniego rzutu jest słaba. Niemniej 
jednak najniższym energiom odpowiada dodatnia wartość rzutu, co równoważne 
jest pewnemu udziałowi paramagnetyzmu. Sumując można stwierdzić, że obok 
ujemnej podatności występującej zawsze, w układach wieloelektronowych 
pojawia się słaby udział paramagnetyczny , zwykle rzędu kilku procent, przy 
czym zarówno iAd jak i praktycznie nie zależą od temperatury. W doświadczeniu 
mierzy się zawsze sumę

=<Ad + -Ap (5.9)
Ocena części paramagnetycznej potrzebna jest wtedy, gdy interesujemy się porów­
naniem doświadczenia z wynikiem teorii w zakresie bezwzględnych wartości 
podatności. Ponieważ porównań takich czynić nie będziemy, potraktujemy wyniki 
doświadczalne diamagnetyzmu kryształów jako podatności efektywne.

Wyrażenie Van Vlecka (5.8) możemy odnieść również do cząsteczki w krysztale. 
Ale wtedy (r2j oraz Eo i E„ oznaczać będą trochę co innego niż dla cząsteczki 
swobodnej. Różnice te spowodowane będą istnieniem oddziaływań międzycząstecz- 
kowych występujących także wtedy, gdy oddziaływania wzbudzonych dipoli mag­
netycznych można pominąć. Rozważania te prowadzą do wniosku, że podatność 
cząsteczki w krysztale może się różnić, choć niewiele, od podatności magnetycznej 
cząsteczki swobodnej.

Związki między wektorami magnetycznymi pisaliśmy dotąd dla ciał izotropo­
wych. Rozszerzenie ich na takie ciała, których właściwości magnetyczne zależą od 
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kierunku w przestrzeni, nie przedstawia szczególnych trudności. W takim przypad­
ku stałe materiałowe są tensorami, a relacja (5.7) przechodzi w

B = p0(l+^)H

Stąd mamy

fi = 1+*

(5.10)

(5.11)

gdzie \|r jest tensorem podatności magnetycznej kryształu, p — tensorem względnej 
przenikalności magnetycznej kryształu, 1 oznacza zaś macierz jednostkową. 
Wszystkie tensory są rzędu drugiego. W postaci rozwiniętej

1+<A11 >A12 •Ań

h = •^21

_ ^31

1+^22 ^23

^32 1 + ^33

(5.12)

Z równań termodynamiki, opisujących energię namagnesowanego ciała, wynika, że 
\|/ i p są tensorami symetrycznymi, a więc

K = (5.13)

Nie będziemy przytaczali dowodu tego twierdzenia, który Czytelnik może znaleźć 
w monografii Nye’a [4]. Poświęcimy natomiast trochę uwagi problemowi tzw. 
pola wewnętrznego w diamagnetyku.

Jak wynika z relacji (5.7), indukcja magnetyczna we wnętrzu materiału różni się 
od indukcji w próżni wyrażeniem p0 ipH. Różnica ta spowodowana jest obecnością 
pola wtórnego, H' = fH, wytwarzanego przez indukowane molekularne momenty 
magnetyczne (5.2). Spróbujmy ocenić wielkość tego pola. Biorąc znów cząsteczkę 
benzenu jako przykład, możemy napisać wyrażenie na H' w odległości r od środka 
cząsteczki

Czynnik | pochodzi z średniowania na wszystkie kierunki [9]. Przyjmując r 
= r(CC) + r(CH) = 0,25 nm oraz a = r(CC) = 0,14 nm, z równ. (5.14) otrzymuje­
my

^ = 210- 
H (5.15)

Podobny wynik otrzymamy korzystając bezpośrednio z podatności kryształu 
benzenu

— = = 8-10-6

Obie liczby są zbliżone i wskazują, że pole wytworzone przez dipol indukowany ma 
na peryferiach cząsteczki natężenie około 105 razy mniejsze od natężenia pola 
przyłożonego. Wynik ten słuszny jest ogólnie, ponieważ absolutne podatności 
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materiałów diamagnetycznych są rzędu 10~5. W wielu problemach możemy więc 
zaniedbać obecność pola wtórnego. Innymi słowy możemy uznać, że diamagnetyk 
jest praktycznie zupełnie przezroczysty dla pola magnetycznego. Sytuacja ta jest 
krańcowo odmienna od tej, jaką spotykamy w elektrostatyce lub optyce dielektry­
ków, gdzie generowane wewnątrz materiału pole molekularne może mieć wielkość 
zbliżoną do pola przyłożonego.

Tensor podatności magnetycznej, \|/ lub y, może być przedstawiony jako trójwy­
miarowa powierzchnia w kształcie elipsoidy. Powierzchnię tę można rozpiąć na 
ortogonalnym i prawoskrętnym układzie współrzędnych Xt X2 X3 w taki sposób, 
że każdy z kierunków Xt pokrywa się z kierunkiem jednej z trzech osi elipsoidy. 
Kierunki Xt zwane są wówczas osiami głównymi lub osiami własnymi 7, a trzy 
wartości wzdłuż tych osi, £i, y2 i Z3, odcinane powierzchnią, zwane są wartościami 
głównymi lub wartościami własnymi 7. W krysztale diamagnetyka wszystkie wartości 
własne są ujemne, nie znamy przypadku o jednej lub więcej wartości y; dodatnich.

Rys. 5.2. Podatność magnetyczna w kierunku wektora jed­
nostkowego Q

W tym szczególnym układzie współrzędnych tensor y ma postać diagonalną, tj. 
y = (/1 0 0/0 y2 0/0 0 y3). Każdy punkt położony na elipsoidzie określa wartość 
podatności w kierunku wektora jednostkowego o, skierowanego od O do P (rys. 5.2). 
Zgodnie z równaniem (2.42) mamy

Ze = QT1Q = Zi 01+Z2d + Z3 03 (5.16)
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5.2. Para sił w jednorodnym polu magnetycznym

Rozważmy obecnie zachowanie się kryształu diamagnetyka, zawieszonego na 
cienkiej i sprężystej nici w jednorodnym polu magnetycznym. Niech kierunek 
zawieszenia będzie równoległy do jednej z osi głównych tensora podatności, np. do 
osi i//2 (rys. 5.3). Pozostałe dwie osie, i i//3, leżą wówczas w płaszczyźnie 
poziomej. Przyjmiemy dalej, że |t^j| > |^3|. Kierunek osi algebraicznie krótszej, , 
możemy poznać z obserwacji zachowania się próbki w polu magnetycznym: jeśli 
przy nieruchomym krysztale włączymy pole i kryształ pozostanie dalej nierucho­
my, to kierunek krótszej z dwu osi jest równoległy do kierunku linii pola. Stan 
równowagi mechanicznej w polu magnetycznym osiągamy zatem wtedy, gdy i//3\\H 
oraz 1H.

Rys. 5.3. Para sił w jednorodnym polu magnety­
cznym

Przypuśćmy teraz, że zaburzamy tę równowagę przez obrót górnego zawiesze­
nia nici o znany kąt a (rys. 5.3). Dzięki elastyczności zawieszenia kryształ obróci 
się również w tym samym kierunku, lecz o kąt cp, mniejszy od a. W nowym 
położeniu równowagi działa na kryształ para sił, Fx i F2, starająca się przywrócić 
kryształ do poprzedniej orientacji. Moment pary sił, M, zależy od wielkości 
wzbudzonego w krysztale momentu magnetycznego Pm i od natężenia pola H

M = Po PmxH (5.17)

Korzystając z zależności (5.4) i definicji wektora namagnesowania, możemy napi­
sać wyrażenie na moment magnetyczny próbki o objętości V

Pm = v I=V^H (5.18)
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Przy wybranym przez nas kierunku zawieszenia kryształu wystarczy znać tylko 
składową M2 momentu, działającą w tym kierunku. Oznaczając przez Ht składowe 
H wzdłuż głównych kierunków t/*, (rys. 5.4), mamy

M2 = p0 (P3 H, - Pi H3) = p0 V^3 H3

Składowe natężenia pola wzdłuż kierunków

Ponieważ

Hr = H sin (p H3 = H cos cp 
oraz

gdzie m/M jest liczbą moli cząsteczek substancji zawartej w próbce, otrzymujemy
m

=łPoT;(Z3-Zi)H2sin2ę> (5.19)
M

W tym prostym przypadku moment pary sił działających na próbkę jest więc 
proporcjonalny do różnicy głównych podatności, leżących w płaszczyźnie prostopad­
łej do kierunku zawieszenia. Ta różnica zwana jest anizotropią kryształu w 
określonym przekroju. Gdybyśmy zawiesili kryształ wzdłuż innej osi głównej 
tensora, na przykład wzdłuż jj3, to otrzymalibyśmy składową M3 momentu pary 
sił proporcjonalną do wielkości (x2 —XiX określającej anizotropię innego przekroju 
kryształu. Bardziej ogólny przypadek, w którym żadna z osi głównych \|/ nie jest 
równoległa do kierunku zawieszenia, dyskutowany będzie w następnym punkcie.

Wyrażenie na moment siły, działającej na kryształ w jednorodnym polu 
magnetycznym, podał po raz pierwszy Krishnan [10, 11]. Krishnan również opisał 
kilka metod pomiaru anizotropii, którymi zajmiemy się w dalszej kolejności.

5.3. Statyczne metody pomiaru anizotropii

W stanie równowagi mechanicznej moment pary sił, działających na kryształ 
umieszczony w jednorodnym polu magnetycznym, równoważony jest przez 
przeciwnie skierowany moment M2, wytwarzany przez skręcenie sprężystego za­
wieszenia (nici). W zakresie odkształceń sprężystych moment M'2 jest proporcjonal­
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ny do kąta skręcenia, a — <p. Ogólniej

M'2 = k (a — a0 — (p) (5.20)

przy czym a jest kątem, o który zostało obrócone górne zawieszenie nici, a cp jest 
kątem, o który obrócił się kryształ w polu magnetycznym o natężeniu H. Dla cp 
= 0 również M'2 = 0, a stąd a =a0. a0 jest zatem początkiem odczytu kątów 
skręcenia. Indykatorem kątowego położenia kryształu jest zwykle małe zwiercia- 
dełko, umieszczone poza zasięgiem pola magnetycznego i odbijające promień 
świetlny w kierunku podziałki milimetrowej.

Przyrównując oba momenty otrzymujemy

^o^(Z3-Zi)W2sin2<p = k(a-a0-<P)

Jeśli oznaczymy

Z3-Zi=d3iZ (5.21)

oraz

(jUo mH2\/(2Mk) = A

to otrzymamy

a — a0 — cp = A • d31 / • sin 2(p (5.22)

Jeśli kryształ zostanie zawieszony na bardzo cienkim włóknie kwarcowym, to (a 
— a0) jest znacznie większe od cp. W tych warunkach można zaniedbać cp po lewej 
stronie równ. (5.22), wobec czego względny kąt skręcenia zawieszenia, (a —a0), 
stanie się liniową funkcją sin 2<p. Z kilku obserwacji kątów cp dla rosnących 
wartości a można otrzymać A3 j / z dobrą dokładnością zwłaszcza wtedy, gdy 
skorzystamy z rachunku wyrównawczego dla linii prostej [12].

Inny sposób pomiaru anizotropii opisany został przez Krishnana [11]. Powięk­
szaniu kąta a towarzyszy wzrost cp aż do pewnej wartości krytycznej, która wynosi 
45°, czyli <pm.„. = tt/4. Takie położenie kryształu jest metastabilne — każdy, naj­
mniejszy nawet wzrost a wyzwala szybkie wirowanie kryształu wokół kierunku 
zawieszenia. Dla cp^ kąt a przyjmuje wartość krytyczną, akr, a nadto sin2ę?max 
= 1. Wobec tego z równ. (5.22) otrzymujemy

^31 Z =j («kr-“o-*/4) (5.23)
za

Korzystając z jednej z tych metod można określić anizotropię kryształu pod 
warunkiem, że znamy stałą sprężystości nici, k. Można ją wyznaczyć w ekspery­
mencie z kryształem, np. kalcytem, którego główne podatności i kierunki ich osi są 
znane. Kalcyt ma trójkrotną oś symetrii, co znacznie ułatwia rozpoznanie głów­
nych kierunków. Oś ta przechodzi przez naroże, w którym spotykają się trzy 
krawędzie pod tym samym kątem rozwartym e = 103° (rys. 5.5). Jedna z głównych 
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podatności, /3, musi być równoległa do tego kierunku, a prostopadły do niego 
przekrój musi być izotropowy. Wartości podatności wynoszą [13]

Zi = %2 = — 456-10 12 /3 = -509-10 12 m3 • mol 1

Rys. 5.5. Główne osie podatności magnetycznej w krysztale kal- 
cytu

W najprostszym przypadku można zawiesić płytkę wzdłuż dwusiecznej płaskiego 
kąta £. Jeśli kąt zawarty między tym kierunkiem a osią trójkrotną oznaczymy 
przez y, to siny = (x/3/3)tg(e/2). Anizotropia mierzona przy tej orientacji wynosi 

d/ = (Zt — Zsj-sin2^ = 27,8 • 10-12 m3 -mol-1

5.4. Dynamiczna metoda pomiaru anizotropii

Kryształ zawieszony między biegunami magnesu na cienkiej nici może wykony­
wać oscylacje kątowe, jeśli zostanie wyprowadzony z położenia równowagi przez 
obrót o mały kąt e wokół zawieszenia i pozostawiony swobodnie. Przy zaniedba­
niu tłumienia równanie ruchu takiego oscylatora ma postać taką samą jak 
wahadła torsyjnego

Ib e = — AkA^ sin 2fi — ke (5.24)

W tym równaniu Ib jest momentem bezwładności kryształu, a £ = ćPe/dt2 oznacza 
przyspieszenie kątowe. Pierwszy wyraz po prawej stronie jest momentem siły 
wywołanym przez pole magnetyczne, drugi wynika z reakcji sprężystej zawieszenia. 
Korzystając z przybliżenia małych kątów, sin 2e = 2e, równ. (5.24) możemy napisać 
w postaci

k
£+—(1 + 2AA/)s = 0 

Aj
(5.25)
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Łatwo sprawdzić, że rozwiązaniem takiego równania jest funkcja

e = s0 sin (coHt) (5.26)

w której e0 oznacza kątową amplitudę ruchu, t — czas. Częstość kątową drgań, 
a>H, określa czynnik stały w równ. (5.25)

m2 =^-(l + 2/MZ) (5.27)

Równanie (5.27) określa częstość drgań w polu magnetycznym. Pod nieobecność 
pola A = 0, a częstość kątowa jest mniejsza i wynosi

k
= y- (5.28)

U
Łącząc równania (5.27) i (5.28), otrzymujemy

Pomiary okresów drgań TH (w polu magnetycznym) i To (z polem wyłączonym) 
prowadzą więc bezpośrednio do wyznaczenia wielkości anizotropii kryształu.

W eksperymencie dynamicznym potrzebna jest również znajomość stałej sprę­
żystości nici. Można ją wyznaczyć na podstawie pomiaru okresu drgań Tr ciała o 
prostej geometrii, zastępującego kryształ. Na przykład, pręt w kształcie cylindra o 
długości l i masie m, zawieszony w połowie długości, ma moment bezwładności

Ir = rj ml2

a odpowiednia częstość wahań wynika z wzoru

4k2 k

Pomiary anizotropii wykonuje się zwykle w celu wyznaczenia głównych podat­
ności kryształu. W rozważanych dotąd prostych sytuacjach pomiary możemy 
wykonać w trzech różnych kierunkach zawieszenia, kolejno równoległych do 
każdego z głównych kierunków /. Uzyskane stąd wielkości anizotropii prowadzą 
do następującego zbioru równań liniowych:

Z3-Z1 = a
X2~Xi=b

/3-/2= C

w których a, b, c są liczbami znanymi z pomiarów. Łatwo jednak dostrzec, że 
tylko dwie z tych trzech informacji są niezależne, ponieważ wyznacznik charakte­
rystyczny tego układu znika. Dla znalezienia poszczególnych Zi potrzebujemy 
nowej, niezależnej informacji, którą najczęściej jest średnia podatność proszkowa 
</> badanej substancji. Metodę jej pomiaru omówimy w następnym punkcie.
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Często się zdarza, że nie potrafimy na pierwszy rzut oka odgadnąć kierunków 
osi głównych w interesującej nas próbce. Jest tak w szczególności wtedy, gdy 
próbka ma kształt nieregularny i pozbawiona jest płaszczyzn łupliwości, które 
zawsze ułatwiają rozpoznanie orientacji krystalograficznej. Dowolnie wybrany 
kierunek zawieszenia może nie odpowiadać żadnej z osi głównych /. Przekrój 
tensora prostopadle do kierunku zawieszenia jest jednak zawsze elipsą. W szczegól­
ności, gdy przez przypadek kierunek ten pokrywa się z osią magnetyczną kryształu 
(definicja - por. p. 5.9), to przekrój w płaszczyźnie prostopadłej degeneruje się do 
okręgu. Dla sprecyzowania opisu wybierzmy laboratoryjny układ współrzędnych 
xyz w taki sposób, że oś z jest równoległa do kierunku zawieszenia i skierowana 
jest w górę, x jest równoległa do linii H, które biegną poziomo, y kompletuje zaś 
prawoskrętny układ współrzędnych. Ponadto niech /, m i n będą wektorami 
jednostkowymi układu współrzędnych związanego z próbką i wybranego w taki 
sposób, że h||z, a równoległość /||x oraz zachodzi tylko wtedy, gdy orientacja 
próbki po włączeniu pola nie ulega zmianie. Spełnienie tego warunku oznacza, że l 
determinuje kierunek krótszej osi elipsy badanego przekroju, m zaś kierunek jej osi 
dłuższej. Mierzona w takim przekroju anizotropia wynosi

d/ = lTxl-mTxm (5.30)

Pierwszy z członów prawej strony równ. (5.30) przedstawia wartość % w kierunku /, 
drugi w kierunku m. Oczywiście, musimy znać orientację l, m, n względem 
krystalograficznego układu współrzędnych Oj a2 a3. Można to osiągnąć przez 
pomiar periodów identyczności kryształu lub obserwacje w mikroskopie polaryza­
cyjnym, jeśli właściwości optyczne kryształu są rozpoznane.

Rozwiązanie układu złożonego z dwóch równań (5.30), napisanych dla dwóch 
różnych kierunków zawieszenia, oraz trzeciego, wynikającego z definicji średniej 
podatności, prowadzi i w tym ogólniejszym przypadku do wyznaczenia głównych 
podatności kryształu. Wykonanie większej liczby pomiarów dla szerszego zakresu 
różnych kierunków zawieszenia pozwala obliczyć z większą dokładnością przez 
zastosowanie metody najmniejszych kwadratów, ale nowych informacji nie dostar­
cza.

5.5. Średnia podatność substancji

Średnia podatność substancji jest wielkością często używaną dla jej scharakte­
ryzowania, a również łatwo dostępną w drodze bezpośredniego pomiaru. Definiuje 
się ją jako jedną trzecią śladu tensora podatności, tj.

<X> = łTrx = i (Zn+/22 + 733) (5-31)

Wybór takiej definicji podyktowany jest faktem, że ślad każdego tensora drugiego 
rzędu jest niezmiennikiem każdej transformacji układu współrzędnych, która pozo­
stawia go ortogonalnym i prawoskrętnym. Taką też podatność będzie miał pro­
szek, złożony z drobnych kryształków substancji, starannie wymieszanych w taki 
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sposób, by każdy kierunek kryształu reprezentowany był w proszku jednakowo 
często.

Najbardziej rozpowszechniona a zarazem dokładna metoda pomiaru średniej 
podatności magnetycznej opisana została przez Gouya [14] (rys. 5.6). Można ją 
równie dobrze stosować do badania substancji izotropowych, polikrystalicznych, a 
także anizotropowych. Obszerniejszy niż w tym punkcie przegląd metod pomiaru 
<7) znaleźć można, na przykład, w doskonałej monografii Batesa [15].

Rys. 5.6. Siła działająca na próbkę proszku diamagnetycznego w polu niejednorodnym

W metodzie Gouya korzysta się z siły, działającej na próbkę magnetyka w 
niejednorodnym polu magnetycznym. Sproszkowana substancja zawarta jest w 
ampułce szklanej, o jednolitym przekroju wzdłuż całej długości. Zawiesza się ją na 
jednym z ramion wagi i wstawia w obszar pola w taki sposób, by dolny koniec 
próbki znalazł się w obszarze największego natężenia pola, natomiast górny 
powinien przypadać na obszar znacznie mniejszego natężenia pola. Jeśli próbka 
jest diamagnetykiem i nie wykazuje efektów anizotropowych, to w tych warunkach 
działa na nią siła skierowana pionowo do góry, przez co jej efektywny ciężar 
maleje. Różnicę tę możemy mierzyć używając odważników albo stosując elektrody­
namiczną metodę równoważenia (rys. 5.66). Związek między podatnością materiału 
a wielkością siły wynika z następującego rozumowania.

Siła działająca na element objętości proszku, dV = Adz, zależy od wielkości 
indukowanego przez pole momentu magnetycznego, Pm = IdV. A jest powierzchnią 
przekroju poprzecznego ampułki, a I - namagnesowaniem substancji. Siła działa­
jąca na element objętości skierowana jest zatem wzdłuż osi z i wynosi

dH dH
dF. = /i0IdV- —— = Ho (iky HA —— dz =

= Ho A <^>HdH
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Całkując między początkiem (natężenie pola H) i końcem próbki (natężenie pola 
Ho), otrzymamy siłę działającą na całą próbkę

«0 1
F-= \ ^A(^HdH = (5.32)

h

lub w przybliżeniu (jeśli Ho można zaniedbać)
FZ=-^OA^H2 (5.33)

Znak minus wynika z tego faktu, że siła działająca na próbkę o ujemnej średniej 
podatności skierowana jest zgodnie z kierunkiem osi z. Dla osiągnięcia dobrej 
dokładności wysokość próbki nie powinna być mniejsza niż 15 cm, średnica 
ampułki winna zaś być tylko trochę mniejsza od odległości między nabiegunnika- 
mi magnesu. Dokładność wyników można zwiększyć, wykonując pomiary porów­
nawcze, zwykle w odniesieniu do czystej wody, umieszczonej w tej samej ampułce i 
w tym samym miejscu pola. Takim postępowaniem eliminuje się błędy związane ze 
zmiennymi warunkami eksperymentu. Podatność wody w różnych temperaturach 
podana jest w tab. 5.1. W dokładniejszych pomiarach trzeba również zadbać o 
zastąpienie powietrza zawartego w ampułce azotem lub wodorem. Powietrze, 
dzięki obecności tlenu, wykazuje małą dodatnią podatność, która w temperaturze 
pokojowej wynosi 0,36 10“12 m3-mol-1.

Tabela 5.1

Podatność wody destylowanej w funkcji temperatury [1]

t, C 1 10 30 70

— (/z -106 9,034 9,05 9,07 9,10

Metoda Gouya, w zasadzie prosta 'i dokładna, ma jednak tę niedogodność, iż z 
jej pomocą mierzy się objętościową podatność substancji. Tymczasem zwykle 
potrzebujemy wielkości podatności odniesionej do jednostki masy. Przeliczenie 
jednej z tych wielkości na drugą jest bardzo proste, jeśli zajmujemy się badaniem 
cieczy lub gazów; nie jest to takie łatwe z proszkiem, którego gęstość zależy od 
sposobu sprasowania w rurce. Trudności te znikają w metodzie Faradaya, w której 
używa się nabiegunników magnesu o takim kształcie, by iloczyn H(cH/cz) był 
stały w kierunku zawieszenia próbki. Dzięki temu siła działająca na elementy 
objętości w dwóch różnych punktach pola jest taka sama i nie jest potrzebne 
całkowanie na całą objętość próbki. W metodzie Faradaya otrzymujemy więc 
bezpośrednio podatność jednostki masy substancji. Dalszą jej zaletą jest fakt, iż 
pomiary możemy wykonywać ze znacznie mniejszymi próbkami, bez ograniczenia 
dokładności. Szczegóły aparaturowe tej metody i opis jej zastosowania do badania 
próbek o masie nie większej niż 20 miligramów w zakresie temperatur od 5 do 300 
K znaleźć można w pracy Morrisa [16]. Podana jest tam również metoda 
eliminowania błędów wynikających z obecności ładunku elektrostatycznego w 
świeżo sproszkowanej próbce nieprzewodzącego materiału. Opis innych jeszcze 
metod znaleźć można również w monografii Batesa [15].
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5.6. Zastosowanie modelu gazu zorientowanego do opisu 
podatności kryształów i cząsteczek

W punkcie 5.1 wykazaliśmy, że małe wartości podatności diamagnetyków 
powodują, iż pole wewnętrzne w krysztale jest praktycznie takie samo, jak pole 
przyłożone. Taka sytuacja jest nadzwyczaj rzadka wśród różnych fizycznych 
właściwości kryształów, a jednocześnie bardzo korzystna. Badając relacje między 
właściwością kryształu i cząsteczki, możemy w tej sytuacji zastosować bezpośred­
nio relacje (4.9) lub (4.11).

Tensor podatności kryształu utworzonego z jednego mola cząsteczek oznaczać 
będziemy przez /, tensor cząsteczki zaś przez K. Uważać też będziemy, że ślady 
obu tensorów są sobie równe

TrZ = TrK

Sumowania udziałów poszczególnych cząsteczek dokonywać będziemy w makro­
skopowym układzie współrzędnych x1x2x3, ° osiach równoległych do ortogonal­
nego układu osi krystalograficznych. W układach o symetrii nie niższej niż układu 
ortorombowego można bezpośrednio posługiwać się układem abc, oznaczanym 
często przez Uj a2a3. W układzie jednoskośnym trzeba dokonać wpierw ortogona- 
lizacji do a*bc lub abc*, wybierając taką wersję ortogonalizacji, która nie narusza 
kierunku poślizgu równoległego do osi, odpowiednio, c lub a. Jeśli kierunkiem 
poślizgu jest przekątna komórki elementarnej, a także w układzie trójskośnym, 
ortogonalizacja może być dokonana dowolnie.

Oznaczenia wartości własnych, Z1, /2, Z3 i osi własnych X2 X3 oraz opis ich 
orientacji względem x2 x3 zostały wprowadzone po raz pierwszy przez Krishna- 
na i współpracowników [10]. Późniejsza modyfikacja, dokonana przez Lasheena 
[17], dotyczy jedynie innego oznaczenia w układzie jednoskośnym. Podajemy 
niżej konwencję z uwzględnieniem tych zmian, dziś powszechnie przyjętą.

1. W kryształach posiadających oś symetrii o krotności wyższej niż 2 powierzch­
nia reprezentująca wszystkie właściwości fizyczne o tensorach rzędu drugiego ma 
symetrię obrotową, przy czym oś obrotu pokrywa się z kierunkiem tej osi (zasada 
Naumanna). Dlatego tylko dwie wartości są potrzebne do opisu właściwości 
magnetycznych kryształu: /t) i Z1, odpowiednio równolegle i prostopadle do osi 
symetrii. Jedna z osi głównych, zwykle X3, jest równoległa do osi symetrii, 
pozostałe mogą być wybrane dowolnie. Ponieważ /u i mogą mieć wartości 
dowolne, przypadkowi temu odpowiadają dwa stopnie swobody.

2. W kryształach ortorombowych powierzchnia reprezentująca Z jest elipsoidą 
trójosiową, której osie pokrywają się z a, b, c. Osie własne / mają więc kierunki 
ustalone w przestrzeni, a trzy różne wartości własne, oznaczane przez /a, /6, /f, 
mogą mieć wartości dowolne. Odpowiada to trzem stopniom swobody.

3. W kryształach należących do układu jednoskośnego wartości własne ozna­
cza się przez Z1, /2, %3, przy czym tradycyjnie wybiera się /3||ó; wtedy Z1 i /2 leżą 
w płaszczyźnie (010). Kąt zawarty między Xt i kierunkiem [100] oznaczany jest 
przez 0. Niekiedy używa się kąta zawartego między Xt i [001], oznaczając go
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przez i//. Kąty 3 i uważane są za dodatnie, jeśli znajdują się wewnątrz kąta fi; na 
zewnątrz niego są ujemne. Przykład orientacji z < 0 przedstawiony jest na rys. 
5.7. W drugiej, nowszej konwencji X2 oraz /2 przyjmuje się za równoległe do osi 
b, a orientację X3 i X3 w płaszczyźnie (010) opisuje się podobnie jak poprzednio. 
Elipsoida reprezentująca / ma w układzie jednoskośnym cztery stopnie swobody : trzy 
wartości własne i kąt orientacji w płaszczyźnie (010).

Rys. 5.7. Przykład orientacji kierunków głównych / w krysztale jednoskośnym

4. W układzie trójskośnym nie ma ograniczeń nałożonych przez symetrię na 
wartości własne ani na orientację osi własnych y. W tym przypadku elipsoida ma 
maksymalną liczbę sześciu stopni swobody.

Jak widzimy, wybór makroskopowego układu współrzędnych xt x2 x3 i osi 
własnych tensora, X2X3, jest jednoznaczny i opiera się na symetrii kryształu 
oraz na wybranej konwencji oznaczeń. Podobnie jest z wyborem mikroskopowego 
układu współrzędnych dla wyrażenia tensora K: jest on zdeterminowany symetrią 
grupy węzła, Gs. Jeśli obejmuje ona tylko centrum symetrii lub jest asymetryczna, 
to wybór m1m2m3 jest dowolny, a w takim układzie K ma maksymalną liczbę 
sześciu niezerowych składowych, odpowiadającą sześciu stopniom swobody. Wyż­
sza symetria Gs precyzuje w przestrzeni kierunki niektórych osi układu współrzęd­
nych i jednocześnie redukuje liczbę stopni swobody K, podobnie jak czyni to 
grupa wymienna z tensorem makroskopowym.

Ogólny związek, łączący podatność magnetyczną kryształu z podatnościami 
cząsteczki, można zapisać w postaci analogicznej do równ. (4.9)

1 z
X (*1X2*3) =2 Z c<r)TKc(r) (5.34)

Tensor kryształu, x(xt x2 *3), zdefiniowany jest w układzie krystalograficznym, w 
którym działają operacje symetrii grupy wymiennej, określone macierzami Ar. 
Liczba tych operacji wynosi Z i dokładnie odpowiada liczbie cząsteczek zawartych 
w komórce elementarnej. Tensor mikroskopowy zdefiniowany jest w układzie 
Wj u2u3, w którym działają operacje symetrii grupy węzła. Determinują one liczbę 
niezerowych składowych K. Każdą z macierzy orientacji c00 otrzymuje się z c(1) 
przez działanie operacją Ar [p. równ. (4.8)]:

cw = AkrCwT
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Oznaczając zatem

c,1)TKc(1) = K* (5.35)

możemy równ. (5.34) zapisać w postaci zawierającej explicite operacje A,.

(5.36)

Tensor K* nie jest niczym innym, jak tylko tensorem cząsteczki 1, wyrażonym w 
układzie makroskopowym.

Przykłady zastosowania tych związków do konkretnych struktur, a mianowicie 
dla benzenu (problem 5.11.1) i heksachlorobenzenu (problem 5.11.2) przedstawione 
są przy końcu tego rozdziału.

5.7. Wyniki doświadczalne badań podatności kryształów i cząsteczek

Przegląd poznanych magnetycznych właściwości kryształów, przede wszystkim 
molekularnych, zestawiony jest w tab. 5.2. Przy układaniu tabeli nie podjęto 
szczególnych starań, by uczynić ją kompletną. Zwrócono raczej uwagę na wyszu­
kanie nowszych danych strukturalnych, ponieważ dane te rzutują w zasadniczy 
sposób na wyniki uzyskane dla cząsteczek. Przeliczonych zostało od nowa kilka­
naście przypadków budzących wątpliwości.

W zestawieniu interesujące są w pierwszym rzędzie benzen, naftalen i antracen, 
reprezentujące związki aromatyczne. Te trzy związki są również w pewnym sensie 
wzorcami dla poszukiwań teoretycznych, zmierzających do wyjaśnienia przyczyn 
anizotropii cząsteczek.

Przy sporządzaniu tabeli koncentrowano również uwagę na problemach, które 
wynikają z badań magnetycznych właściwości kryształów i cząsteczek. W tym celu 
włączone zostały do tabeli podstawowe informacje, potrzebne do przejścia od 
właściwości kryształu do właściwości cząsteczki, zgodnie z modelem gazu zoriento­
wanego. Należą do nich parametry komórki elementarnej i symbol grupy prze­
strzennej, stanowiące metrykę identyfikacyjną określonej fazy krystalicznej. Właści­
wości kryształu opisują wartości własne & i orientacja osi własnych, podane według 
konwencji przyjętej w p. 5.6. Tabele kosinusów kierunkowych zaczerpnięto z prac 
opisujących struktury kryształów. Jednak nie wszyscy autorzy podają orientację 
osi cząsteczki w sposób jednolity, odpowiadający orientacji układu trzech osi 
symetrii cząsteczki względem ortogonalnego układu osi krystalograficznych. 
W takich przypadkach punktem wyjścia było równanie najlepszej płaszczyzny 
cząsteczki, definiujące kierunek osi N. Dla płaskich cząsteczek jest to kierunek 
zadany najbardziej dokładnie. Jeśli cząsteczka nie jest płaska, wybór trzech 
ortogonalnych osi może nie być jednoznaczny; w takim przypadku podatności KL, 
KM i KN mają znaczenie umowne.

Najlepszą płaszczyznę prowadzono z reguły przez atomy węgla szkieletu; jeśli 
wybór był inny, zaznaczono to w tabeli. Kierunki pozostałych osi poszukiwane

167



Tabela 5.2

Magnetyczne właściwości kryształów i cząsteczek oraz podstawowe informacje o kryształach molekular- 
przez 10. Podatności molowe % lub K podane są w jednostkach m3 - mol-1; dla otrzymania ich w jednost- 
czone są w nawiasach kątowych

Lp. Nazwa związku Opis 
struktury

Geometria 
cząsteczki

1 2 3 4

1 Benzen, C6H6

O-

ortorombowa 
Pbca, Z = 4 
a = 0,746 
b = 0,9666 
c = 0,7033 
(270 K) [18]

cz. płaska: 
swobodna — sym. 
6/mmm., w kryszt. I 
(odchyl, od pełnej sym. 
niewielkie). W ekspery­
mencie cz. przejawia 
sym. od 2/m do 6/mmm 
[19]

2 1,4-Benzochinon, C6H4O2

o=<^ Z^0 => L 

7«

jednoskośna 
P2Ja, Z = 2 
a = 0,7055 
b = 0,6795 
c = 0,5767 
ß = 101,47° 
[23]

cz. płaska (odchyl, ato­
mów + 0,0007 nm): 
swobodna — sym.
mmm, w kryszt. I [23]

3 Tetrachloro-p-benzochinon, C6C14O2 
0

Cl II Cl
XX

er Tl

0
D‘

jednoskośna 
P2Jc, Z = 2 
a = 0,8708 
b = 0,5755 
c = 0,8603 
ß = 105,85° 
[25]

pierścień chinon, pła­
ski — śr. odchyl, pod­
stawników 0,005 nm, 
co odpowiada zgięciu 
C—Cl o kąt 1,5°, a 
C=O o kąt 2,1°

4 Tetrachlorohydrochinon, C6C14(OH)2

OH

XXXT M

C1
OH

jednoskośna 
P2Jc, Z = 2 
a = 0,8214 
b = 0,4843 
c = 1,2441 
ß = 123,82° 
[27]

cz. płaska
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nych. Parametry sieci podano w nanometrach; dla otrzymania ich w A należy dane z tabeli pomnożyć 
kach układu cgsM (cm3-mol1) należy dane z tabeli pomnożyć przez 106/4n. Średnie wartości umiesz-

Podatność kryształu x 1012 Macierz orientacji osi LMN 
cząsteczki х 104

Podatność 
cząsteczki x 1012

5 6 7

~ <Z> “Za ~K.b “Ze a b c [22] -KL -KM -KN

689 819 476 770 [20] (261 K)
689 819 476 770 [21] (261 K)

-2756,5 9608,1 -296,6
-6486,8 -1633,9 7433,2

7093,9 2239,4 6683,0

438 438 1189 [20]
437 405 1224 [22]

— <Z> “Zi -Z2 — Z3 a* b c [23] -KL -KM -KN

503 340 843 325 +31,2° [11]
482 323 820 305 +30,7° [17]

3120 8178 4835
4207 -5740 7025
8522 -153 -5229

305 361 843 [24]
289 339 819 [17]

-<Z> -Zi —z2 —z3 0 a* b c [25] -KL -KM -KN [17]

- 1180 1460 1209 +90° [26] 
1346 1238 1530 1271 +90° [17]

5390 8306 -1399
2604 -64 9655

-8011 5569 2197

1061 1238 1740

-<Z> —Zi — Z2 —Z3 0 [17] a* b c [27] -KL -KM — KN [17]

1517 1301 1624 1626 +29,9° 9820 -1080 1550
-2010 -6940 6910
-350 7100 7030

1294 1436 1821
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tab. 5.2 cd.

1 2 3 4

5 1,4-Dichlorobenzen, C6H4C12

x—(fZ))—X =>■ L

jednoskośna 
Pija, Z = 2 
a = 1,480 
b = 0,578 
c = 0,399 
P= 113° 
[28]

cz. płaska, reg. sześcio- 
bok; sym. podstawiona 
ma sym. F [28]

6 1,4-Chlorobromobenzen, C6H4ClBr

X—---- X L

jednoskośna 
Pija, Z = 2 
a = 1,520 
b = 0,586 
c = 0,411 
P= 113,2° 
[29]

cz. płaska, reg. sześcio- 
bok; sym. podstawiona 
ma sym. F [28]

7 1,4-Dibromobenzen, C6H4Br2

■x—^Z^—x L

d„

jednoskośna 
Pija, Z = 1 
a = 1,536 
b = 0,575 
c = 0,410 
P= 112,63° 
[30]

cz. płaska, reg. sześcio- 
bok; sym. podstawiona 
ma sym. F [28]

8 1,4-Dimetoksybenzen, C6H4(OCH3)2
H3(+ 0

—

°\
c

ortorombowa 
Pbca, Z = 4 
a = 0,729 
b = 0,630 
c = 1,655 
[31]

pierścień benzenowy 
płaski: sym. 1 [31]

9 1-3-Dinitrobenzen, C6H4(NO2)2 

fŁ

O2 N, N 0 2
TC3J m

ortorombowa 
Pbnl^ Z = 4 
a = 1,320 
b = 1,397 
c = 0,380 
[33]

atomy C i N leżą w 
jednej płaszczyźnie, 
grupy NO2 są z niej 
wykręcone 0 kąty 11,8° 
i 9,6°

10 a-p-Nitrofenol, C6H4(OH)(NO2)

°2n——oh L

L

jednoskośna 
PIJn, Z = 4 
a = 1,166 
b = 0,878 
c = 0,6098 
£ = 107,53° 
[34]

pierścień benzenowy 
płaski ( + 0,0004 nm), 
pł. NO2 tworzy z nim 
kąt 1,5°
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5 6 7

-<Z> ~Xi ~Zz ~Хз lA a b c* [17] -KL -KM -KN [17]

1073 880 1334 1004 +86,9° [11] 7898 -6116 474 984 632 1510
1042 846 1304 976 +87,4° [17] 4417 6206 6478

4255 4909 -7602

-<Z> "Z. ~Zz ~Хз Ф ПЛ a b c* [17] -KL -KM -KN [17]

1158 971 1411 1092 +87,2° 8092 -5871 -213
4752 6328 6112
3527 4993 -7915

1101 753 1621

-<z> -Xi -X1 -Хз Ф a b c* [17] ~KL —KM —KN [17]

1258 1084 1489 1199 +87,0° [11] 7995-5994 131 1220 886 1718
1274 1093 1517 1211 +87,1° [17] 4585 6267 6295

3891 4951 -7759
(orient, uśredn.)

— <Z> ~Xa ~Хь -Xc [32] a b c [31] -KL -KM -KN [32]

1089 1313±2 1084 + 4 870±4 290 3635 9313
5499 -7836 2887
8348 5038 -2228

824±5 988±9 1455±6

-<Z> -Xa ~Xb ~Xe a b c [32] -KL -KM -KN [32]

866 548 720 1330 [26] 5786 -7238 3744 628 ±87 524 ±26 1505 ±84
886 567 + 29 740±30 1351±58[32] 8109 5596 -1713

871 -4048 -9103

-<Z> -Zi — Zz ~Хз 0 [35] a b c* [34] ~&L ~&M ~^N [35]

825 604 1033 838 -40° -8417 -4426 3094
762 -6646 -7433

5346 -6020 5931

621 560 1293
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tab. 5.2 cd.

1 2 3 4

11 ^-p-Nitrofenol, C6H4(OH)(NO2)

°2n—^23^—°h l

jednoskośna 
P2Ja, Z = 4 
a = 1,5403 
b = 1,1117 
c = 0,3785 
P = 107,10° 
[34]

pierścień benzenowy 
płaski ( + 0,0002 nm), 
pł. NO2 tworzy z nim 
kąt 7,2°

12 Heksachlorobenzen, C6C16

X

X. /x
tqt m 

x^y^-x

X

jednoskośna 
PC Je, Z = 2 
a = 0,808 
b = 0,387 
c = 1,665 
P= 117,0° 
[36]

cz. płaska o kształcie 
sześcioboku [36]

13 Heksachlorobenzen (wersja II) P2Jn, Z = 2 
a = 0,80476(8) 
b = 0,38363(5) 
c = 1,48208(29) 
P = 92,134(14)° 
[37]

szkielet C jest płaski 
(±0,00008 nm), 3 ko­
lejne atomy Cl są wy­
chyl. o (14, 20, 
15)-10~4 nm. Sym. w 
kryszt. bliska 6/mmm 
[37]

14 Pentachlorofenol C6C15OH

OH
x\ k\/x

X
k

jednoskośna 
C2/c, Z = 8 
a = 2,911 
b = 0,4930 
c = 1,209 
P = 93,63° 
(dane dla odmiany 
nisko-temp. [39]). 
Kr. jest dimorficzny, 
tp = 63°C [40, 41]

pierścień benzenowy 
płaski (por. poz. 13) 
[39]

15 Kwas benzoesowy (dimer) (C6H5COOH)2 

----- - ,0 • • ■ HO .___ , 
L<^((------ >----C C----((___ )>

jednoskośna 
P2Jc, Z = 4 
a = 0,552 
b = 0,514 
c = 2,190 
P = 97° 
[42]

cz. w kryszt. są całko­
wicie zasocj. w centro- 
symetr. dimery, połą­
czone 2 wiązaniami 
typu OH - O [42]
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5 6 7

-<Z> —Zi -Z2 —Zs 6 [35] a be* [34] -KL -KM -KN [35]

825 621 1221 633 -5° 9208,3 3882,2 368,9
— 3848,2 8892,6 2472,5

631,9 -2418,7 9682,5

627 588 1260

- <Z> -Zi ~Z2 -Z3 Ф a b c* [17] -KL -KM -KN [32]

1830 1626 1712 2150 +53° [11]
1854 1661 1733 2168 6° [32]

9253 1988 3229
2590 2907 -9212
2691 -9375 -2202

1663 1663 2229

-<Z> -Zi -Z2 -Z3 0 [13,38] a b c* [22] -KL —KM — [22]

1854 1661 1733 2165 93,6° 8952,2 3080,0 -3220,4
2511,4 2482,6 9355,6
3681,1 -9184,2 1449,0

1645 1654 2261

— <Z> -Zi -Z2 -Z3 Ф [32] a* b c [39] -KL -KM -KN [32]

1778 1576 1889 1871 81,4° 9814 769 1758
1778 -7094 -6823
651 7006 -7114

1577 1575 2184

— <Z> -Zi -Z2 -Z3 Ф [43-45] a b e* [22] -KL -KM -Kn[22]

885 638 1039 979 -42° 2118 71896621
-8229-2342 5176

5276-6546 5420

689 588 1378
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tab. 5.2 cd.

1 2 3 4

16 Kwas antranilowy, C6H4NH2COOH

TCDj =:> m

ortorombowa 
Pcn2, Z = 8 
a = 1,283 
b = 1,077 
c = 0,928
(dwa zbiory cz. syme­
trycznie niezależne) 
[17]

pierścień benzenowy 
pofałdowany ( + 0,0015 
nm), cz. zasocj. w pary 
A+B: cz. obojętna + 
jon obojnaczy [17]

17 Acetanilid, C6H5NHCOCH3
0

5 6 ||

L<5= 4\( )/----^CH3

3 2 H
L

ortorombowa, 
Pbca, Z = 8 
a = 1,9640 
b = 0,9483 
c = 0,7979 
[46]

cz. występuje w formie 
amidowej, atomy leżą 
w 2 płaszczyznach 
[46]

18 p-Nitroanilina, C6H4(NO2)(NH2)

°2N---- -----------------NH2 L

jednoskośna 
P2Jn, Z = 4 
a = 1,2336 
b = 0,607 
c = 0,8592 
P = 91,45° 
[47]

pierścień benzenowy 
płaski, podstawniki 
wykręcone z pł. pierście­
nia (NO2: 1,9°, NH2: 
16°) [47]

19 Izatyna C8H5O2N 
r

HN C=0
'"'C

II
0

jednoskośna 
P2Jc, Z = 4 
a = 0,619 
b = 1,446 
c = 0,717 
p = 94,82° 
[49]

cz. płaska w granicach 
. błędu dośw. [49]

20 Wodoroftalan sodu, 
C6H4(COOH)(COONa) 

r

MO—c C OH
w //

0 0

ortorombowa 
B2ab, Z = 8 
a = 0,676 
b = 0,931 
c = 2,642 
[50]

wszystkie atomy C leżą 
w płaszczyźnie, pł. grup 
karbonylowych tworzą 
z nią kąty 21° i 65° 
[50]
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5 6 7

-<Z> ~ Xa -Xb -Xc . [17] cząsteczka A [17] 

a b c

3109-2934 9038 
1865 9470 2624 

-9304 837 3568
cząsteczka B [17] 

a b c

-2897 3713 8823 
2138 9295-3014 
9356-1045 3388

~KL -KM — KN [17]

993 1414 745 820 725 739 1514

-<Z> ~Xa ~Xb ~XC [17] a b c [17] — KL —&M —

907 721 834 1169 9289 -1404 3428
3073 8211 -4811
2074 -5512 -8082

701 557 1465

~<z> -Zi -z2 —z3 a* b c [47] -KL -KM -KN

837 628 1191 690 -47° [17]
833 604 1220 675 -47° [48]

7501 -4334 -4994
730 8030 -5915

6563 4077 6348

653 540 1317 [17]
630 514 1355 [48]

-<Z> -Zi -Z2 ~Z3 0 [17] a b c* [49] ~KL -KM -KN [17]

1020 722 1556 781 +22° 1814 -9815 611
9095 1911 3694
3736 123 -9261

779 720 1561

-<Z> ~Xa ~Xb -Xc [17] a b c [50] ~KL ~KM — KN [17]

1450 994 994 1130 2382 4578 -8565
4873 -8192 -3024
8368 3390 4300

743 961 1685
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tab. 5.2 cd.

1 2 3 4

21 Wodoroftalan potasu, 
C6H4(COOHXCOOK)

O

MO—C \—OH

// 
0 0

ortorombowa 
P21212, Z = 4 
a = 0,647 
b = 0,961 
c = 1,326 
[50]

wszystkie atomy C leżą 
w płaszczyźnie [50]

22 Naftalen, C10H8 jednoskośna 
Pija, Z = 2 
a = 0,8235 
b = 0,6003 
c = 0,8658 
/? = 122,92° 
[51]

cz. płaska 
(±0,0007 nm) [51]

23 Bifenyl, (C6H5)2

L

jednoskośna 
P2Ja, Z = 2 
a = 0,8124 
b = 0,5635 
c = 0,9153 
p -95,1° 
[52, 53]

cz. płaska w granicach 
błędu dośw. [52]

24 Acenaften C10H6(CH2)2

H2C------- CH2

ortorombowa 
Pcm2j, Z = 4 
a = 0,8290 
b = 1,4000 
c = 0,7225
(15°C, dwa zbiory 
cz. symetrycznie nie­
zależne) [54]

cz. płaska, w kryszt. 
ma sym. m [54]

25 ^-Naftol, C10H7OH

/0H

OyOT L
| M

jednoskośna 
la, Z = 8 
a = 0,8185 
b = 0,5950 
c = 3,629 
P= 119,87° 
(dwa zbiory cz. sy­
metrycznie nieza­
leżne) [55]

cz. w krysztale jest 
asymetryczna [55]

[176]



5 6 7

— <Z> -Z« -Ze -Zc [17] a b c [50] -KL -KM -KN [17]

1570 1123 1046 1246 2382 4578 -8565
4873 -8192 -3024
8368 3390 4300

834 1104 1801

-<Z> -Zi ~Zz -Z3 P4] a b c* [51] — KL —KM —KN

1169 704 1840 962 +12° -4379 -2103 8741
-3207 -8718 -3704

8399 -4425 3143

705 677 2124 [24]
705 678 2122 [22]

~<Z> “Zi — Zz -Z3 a b c* [17] -KL — KM -KN [17]

1293 797 1841 1243 +20° [10]
1312 847 1821 1268 +22° [17]

2966 -256 9545
5355 -8233 -1881
7928 5669 -2243

851 775 2310

-<Z> ~Xa ~Xb ~Xc cząsteczka A [54]
a b c

0 10000 0
10000 0 0

0 0 10000
cząsteczka B [54]
a b c

0 10000 0
4772 0 8788
8788 0 -4772

-KL — KM -KN [17]

1404 1478 906 1830 [10]
1374 1444 905 1773 [17]

905 886 2331

— <Z> “Zi “Zz -Z3 ł cząsteczka A [17]
a b e*

-4005 2430 8835
2913 -8918 3438
8625 4269 2718
cząsteczka B [17]
a b c*

-4190 -1616 8936
3860 8610 3305

-8188 4954 -2902

-KL -KM — KN [17]

1219 783 1864 1010 + 9,4° [10]
1219 789 1861 1006 +11° [17]

803 652 2202

[177]
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tab. 5.2 cd.

1 2 3 4

26 Kwas naftoesowy, C10H7COOH
0. OH

0«

jednoskośna 
Pija, Z = 4 
a = 3,112 
b = 0,387 
c = 0,692 
£ = 92,2° 
[56]

pierścień naftaleno­
wy płaski (±0,004 nm) 
[56]

27 1,5-Dinitronaftalen, C10H6(NO2)2

no2

L

“2N

jednoskośna 
Pija, Z = 2 
a = 0,776 
b = 1,632 
c = 0,370 
/3 = 101,8° 
[57]

cz. ma centrum sym.; 
pł. grup nitrowych 
tworzą z pierścieniem 
kąt 48,7° [57]

28 1,8-Dinitronaftalen, C10H6(NO2)2

o2n no2
ÓÓ-

ortorombowa 
P212121, Z = 4 
a = 1,1352 
b = 1,4934 
c = 0,5376 
[59]

cz. jest asym. i nie- 
płaska; grupy nitrowe 
obrócone względem 
pierścienia w tę samą 
stronę o kąty 45,1° i 
41,7° [59]

29 Antracen, C14H10
B D F

f' d' b'
Jm

jednoskośna 
Pija, Z = 1 
a = 0,8562 
b = 0,6038 
c= 1,1184 
p = 124,70° 
(290 K) [60]

cz. płaska 
(±0,0004 nm), ma 
sym. mmm [60]
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5 6 7

— <Z> “Zi ~Zz ~Z3 [17] a* b c [56] -KL -KM — KN [17]

1349 820 1069 2157 -10° 7646 2472 5952
6441 -3217 -6939

238 9152 -4022

886 741 2419

-<Z> -Zi -Z2 -Z3 ł [58] pierścień naftalenowy [58] 
a b c*

2132 -8982 3845
8867 3431 3098

-4102 2749 8696 
grupa nitrowa [58] 

a b c*

-4799 7904 3808
-8535 -3202 -4111
-2029 -5223 8282

-K, -K2 -K3 [58]

1347 2503 686 847 118° 911 621 2509
orient, osi gł. K [58] 

L M N

—9599 — 1391 2433
K2 -953 9784 1834
K3 -2636 1528-9524

-<Z> “Z« ~Zj -Zc pierścień naftalenowy [59] 

a b c

L 1047 -9742 -1997
M 6567 -831 7495
N -7468 -2097 6311 
grupa nitrowa 1 [59] 

a b c

u -3618 8885 2822 
v -97 2990 -9540 
w -9320 -3479 -996 
grupa nitrowa 2 [59]

a b c

u 1961 9713 1346
v -595 1487 -9866 
w -9783 1855 870

-K, K2 -K3 [22]

1347 2121 689 1232 [12]
1347 2146 745 1148 [22]

1023 538 2481
orient, osi gł. K [22] 

L M N

K2 9232 -3635 -1247
K2 -3825 -9003 -2077
K3 341 -2384 9706

— <z> -Zi -Z2 ~z3 a b c* -KL -KM — KN

1635 949 2662 1293 +8° [24]
1686 964 2727 1367 +8° [61]
1634 910 2675 1317 +9,4° [32]

-4940,9 -1273,8 +8600,3
-3175,2 -8944,4 -3149,0
+ 8093,5 -4286,7 +4014,9
(290 K, por. przykład 3.7.9)

952 787 3164 [24]
908 922 3071 [22]
966 962 3128 [61]
910 902 3088 [32]
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tab. 5.2 cd.

1 2 3 4

30 Antrachinon, C14H8O2 
0

L

0
Im

jednoskośna 
P21/a, Z = 2 
a = 1,5810 
b = 0,3942 
c = 0,7865 
p = 102,72° 
[62]

cz. płaska w granicach 
błędu dośw. [49]

31 Antrachinon (wersja II) jednoskośna 
Pija, Z = 2 
a = 1,583 
b = 0,397 
c = 0,789 
P = 102,5° 
[63]

(por. poz. 30)

32 Akrydyna III, C13H9N 

r iF ICvj l 

(L

jednoskośna 
P2Jn, Z = 4 
a = 1,1375 
b = 0,5988 
c = 1,3647 
P = 98,97° 
[64]

cz. zgięta wzdłuż
N—C5;
kąt między normal­
nymi do obu połówek 
wynosi 2,1° [64]

33 a-Fenazyna C12H8N2

r t Jx2)j l

jednoskośna 
P2Ja, Z = 2 
a = 1,322 
b = 0,5061 
c = 0,7088 
P = 109,22° 
[65]

cz. płaska w granicach 
błędu dośw.; sym. 
swob. mmm, w kryszt. 
f [65]

34 Glicyna, CH2(NH2)COOH
HO .0

1
H2C
xnh2

jednoskośna 
P2Jn, Z = 4 
a = 0,5102 
b = 1,197 
c = 0,54575 
P = 111,7° 
[67]

atomy C i O leżą w 
jednej płaszczyźnie 
[67]

35 Kwas barbiturowy (dwuwodny) 
C4H4N2O3-2H2O

Az.
H " .H

| |

/N\ /N\ 
W XH

II 
0

ortorombowa 
Pnma, Z = 4 
a = 1,274 
b = 0,624 
c = 0,889
cz. leżą w pł. sym. 
(010) i tworzą sieć 
powiązaną wiąz, 
wodor. [68]

cz. ma sym. mmm [68]
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5 6 7

-<Z> —Zi ~Zz -Xs 0 [171 a b c* [62] -KL -KM -KN [17]

1503 805 1335 2369 -38° 5310 4510 7130
7880 360 -6150

-3050 8890 -3410

956 811 2738

— <Z> “Zi ~Zz ~Z3 0 [I7] a b c* [22] -KL -KM KN [22]

1503 798 1342 2369 -44° 5235,5 4870,1 6990,8
-7792,7 -579,7 6240,0

3444,1 -8714,7 3491,7 
(293,8 K)

866 798 2845

-<z> —Zi -Z2 — Z3 [!7] a b c* [17] ~KL -KM -KN

1549 771 2628 1246 -12° 4725 1562-8674
4369 -8962 766
7652 4151 4921

772 886 2991 [17]
690 867 3091 [22]

— <Z> -Zi -Z2 —z3 ł E66] a b c* [22] -KL-KM KN

1470 764 1885 1762 -15° 4029 6979 5921
-6852 -1989 7006

6064 -6886 3976

580 777 3054 [66]
598 777 3036 [22]

— <Z> -Zi -Z2 -Z3 ł [32] a* b c [32] -KL -KM — KN [32]

506 473 495 551 +48° 8731 -2903 3899
4127 195-9105
2616 9550 1390

464 495 561

— <Z> -Z« ~Xb “Ze [17] a b c [68] -KL -Ku — KN [17]

988 919 1138 907 7650 0 6439
-6440 0 7650

0 10000 0

946 880 1138
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tab. 5.2 cd.

1 2 3 4

36 Kwas barbiturowy (dwuwodny) (wersja II) . por. poz. 35 por. poz. 35

37 N-Chloroimid kwasu bursztynowego, 
C4H4O2NC1

0

H2C-----
| ---- X =o L

H2C—cr
II
0

ortorombowa
P2j 2j 2,. Z = 4 
a = 0,641 
b = 0,711 
c = 1,169 
[71]

cz. płaska w granicach 
błędu dośw. [71]

38 N-Bromoimid kwasu bursztynowego, 
C4H4O2NBr

0
II

H2C-----C\
| ---- X => L

H2C—r
II
0

ortorombowa
P2, 2,2,, Z = 4 
a = 0,684 
b = 0,725 
c = 1,186 
[71]

cz. płaska w granicach 
błędu dośw. [71]

[182]



[I83J

5 6 7

— <Z> -z„ -z* -Ze [17]

988 919 1138 907

cząsteczka kwasu [22] 
a b c

cząsteczka kwasu [22]
-KL -KM -KN

7581 0 6522
6522 0 -7581

0 10000 0

cząsteczka wody I [22] 
a b c

u 1642 0 -9864
v -9864 0 -1642
w 0 10000 0

cząsteczka wody II [22] 
a b c

u -9540 0 2999
v 2999 0 9540
w 0 10000 0

635 542 819

cząsteczka wody
-Ku — Kv — Kw

170 152 172 [69]
172 152 160 [70]

— <Z> -Za -Ib “Ze [17] a b c [71] -KL -KM -KN [17]

809 743 912 780 3569 2612 -8967
8062 3987 4370

-4732 8783 675

810 650 967

— <Z> -Za -Zł -Ze [17] a ' b c [71] ~KL -KM -KN [17]

942 871 1034 909 3569 2612 -8967
8062 3987 4370

-4732 8783 675

955 774 1097



tab. 5.2 cd.

1 2 3 4

39 Kwas parabanowy, CO(NH-CO)2 
tr 

0’

H / \
N1 N2
\ /

jednoskośna 
P21/n, Z = 4 
a = 1,0685 
b = 0,8194 
c = 0,5074 
fi = 92,73° 
[72]

pięć atomów pierście­
nia tworzy płaską 
strukturę [72]

c2------c3
// V

o2 o3

40 (+)-Wodoro winian amonu, 
C4H4O6H(NH4)

L

HO? .o1

\ I 8
H0‘ \Jch

^\3/< \3
CH \ OH

^Ct /M'

ortorombowa 
P2I2I21, Z = 4 
a = 0,7648 
b = 1,1066 
c = 0,7843 
[73]

łańcuch węglowy i 
atomy O połowy cz. 
są prawie płaskie [73]; 
układ odniesienia 
LHC^2, 
L'||C4O5, MIC1©2 i 
w pł. C1©1©2; 
M'1C*O5 i w pł, 
C4O5O6; N±L, M; 
N'A.L, M' [17]

o6 -OM
L'

41 (+)-Wodorowinian potasu, C4H4O6HK

HO? ^o1
M/ Y 

I B
HO? \^CH

13H\ ^oh
A 1 ' z

O6^ OM

ortorombowa 
P212121, Z = 4 
a = 0,764 
b = 1,062 
c = 0,775 
[73]

łańcuch węglowy i 
atomy O połowy cz. 
są prawie płaskie [73]; 
układ odniesienia 
LUC1©2, 
L'||C4O5, MIC1©2 i 
w pł. C1©1©2; 
M'J_C4O5 i w pł. 
C4O5O6; NIL, M; 
N'LL, M' [17]

42 Chloroacetamid, CH2C1CONH2

M L

/

Cl----- CH2—c

nh2

jednoskośna 
PIJc, Z = 4 
a = 1,026 
b = 0,515 
c = 0,741 
p = 98,82° 
[74] (chloroacetamid 
jest dimorf., właści­
wości? magn. zbada­
no tej odmiany, któ­
ra krystalizuje z 
EtOH)

w tej odmianie fazo­
wej cz. jest prawie pła­
ska [74]
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5 6 7

— <Z> ~Zi — Z2 -Za [I7] a b c* [72] -KL — KM -K„ [17]

444 346 450 536 -77° 547 5758 -8158
-9904 1191 176

1076 8094 5768

359 346 627

— <Z> ~la ~lb -lc [17J

1028 970 1067 1048

część A cząsteczki [17] 
a b c

L 3773 8325 4056
M 8684 -4702 1574
N 3218 2929 -9005
część B cząsteczki [17]

a b c

E 7324 -1655 -6605
M' 6786 988 7278
N' 551 9808 -1845

podatność połowy cz. zawie­
rającej gr. [CH(OH)COO] 
i średni podst.

-KL — KM -KN [17]

470 485 588

-<Z> ~Xa ~lb -lc [I7]

1044 986 1082 1063

część A cząsteczki [17] 
a b c

E 3773 8325 4056
M 8684 -4702 1574
N 3218 2929 -9005
część B cząsteczki [17]

a b c

E 7324 -1655 6605
M' 6786 988 7278
N' 551 9808 -1845

podatność połowy cz. zawie­
rającej gr. [CH(OH)COO] 
i średni podst.

-KL -KM — KN [17]

481 490 594

-<z> -Zi — Z2 -Z-3 [17] a b c* [74] -KL -KM — KN [17]

644 616 675 642 -56° 3516 -9190 -1780
8890 3875 -2439
2788 -355 9597

650 612 671
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były w następujący sposób. Wybierano pary atomów, leżące na prostych o 
kierunkach zbliżonych do osi M i obliczano średnie wartości składowych wektora 
jednostkowego (My. Okazuje się najczęściej, że tak znaleziony wektor (My nie 
jest prostopadły do N. Jeśli oznaczymy

(My- N = cosd (537)

to (5 — 90) jest małym kątem, najczęściej mniejszym od 1°. Położenie osi (My 
można wówczas skorygować przez obrót układu współrzędnych wokół L. Popra­
wionym kierunkiem M jest

M = <M)cos(<5 —90) +/Vsin(<5 —90)

Położenie trzeciej osi definiuje iloczyn wektorowy

L= MxN

(5.38)

(5.39)

W ten sposób otrzymujemy na ogół wystarczająco dokładne położenie osi LMN. 
Przykład takiej korekcji dla cząsteczki antracenu podany jest w p. 5.11.

W rzeczywistości składowe tensora K zawsze obarczone są błędami, mającymi 
dwa główne źródła. Pierwszy rodzaj błędów powstaje na skutek ograniczonej 
dokładności pomiaru anizotropii kryształu, a także dokładności wyznaczenia 
parametrów, takich jak masa próbki, stała sprężystości nici itp. Również struktu­
ralna doskonałość kryształu może mieć pewne znaczenie. Drugi rodzaj popełnia­
nych błędów ma charakter czysto rachunkowy i występuje w układach krysta­
lograficznych o wyższej symetrii. Na przykład, dla kryształu ortorombowego 
związki (5.34) możemy zapisać w prostszej postaci

(5.40)

przy czym elementy macierzy D są funkcjami cik. Rozwiązania układu równań 
(5.40) są wtedy dokładne, gdy wyznaczniki macierzy D oraz D; są dostatecznie 
duże. Jeśli przypadkiem dwie kolumny D lub D, są bliskie proporcjonalności, to 
— według znanego twierdzenia — wyznacznik ma wartość bliską zera. Wielkości 
błędów stąd wynikających dyskutują szczegółowo Lasheen i Tadros dla kryształów 
ortorombowych [75]. Autorzy ci pokazują na przykład, że jeśli Xa'Xh'-'/.c 
= Ci i: cf2: cf3, to składowe KM i KN wyznaczone będą z dużymi błędami.

Spora część wyników, zamieszczonych w tab. 5.2, została zaczerpnięta z prac 
Krishnana i współpracowników. Dane te są niekiedy nieścisłe, a miejscami nie­
kompletne — głównie z tego powodu, że dokładne rozwiązania struktur krystali­
cznych pojawiły się dopiero w latach, które nastąpiły po odkryciu przez Krishnana 
diamagnetyzmu kryształów. Wyniki te trzeba było uzupełniać, a czasami dokonać 
pełnych przeliczeń, cytowanych w tabeli jako obliczenia własne autora książki. 
Nowszym i obfitym źródłem informacji o anizotropii kryształów są dwie prace 
Lasheena [17, 32]. Niewątpliwie lista poznanych związków będzie się powiększała, 
ponieważ zainteresowanie diamagnetyzmem nie słabnie i w naszych czasach.
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Ogólną prawidłowością wśród cząsteczek związków aromatycznych jest fakt, że 
podatność KN w kierunku normalnej do płaszczyzny pierścieni znacznie przewyższa 
podatności w tej płaszczyźnie, KL, KM, oraz że te dwie podatności mają na ogół 
zbliżone wartości. Jako miarę anizotropii cząsteczki często podaje się w literaturze 
wielkość wprowadzoną przez Lasheena [17]

AK = ±(KL + KM)-KN (5.41)
Jeśli jednak interesujemy się relacją między K lub AK i strukturą różnych 
cząsteczek, nie zawsze możemy uzyskać z tych liczb przejrzyste wnioski. Jest 
bowiem rzeczą jasną, że średnia podatność cząsteczki, na przykład benzenu, będzie 
wzrastać przy wprowadzaniu podstawników do pierścienia. Ale czy anizotropia 
cząsteczki również wzrośnie po dokonaniu określonego podstawienia? Wiadomo 
również, iż w szeregu benzen, naftalen, antracen rosną wszystkie trzy główne 
podatności cząsteczki, ale czy anizotropia również ulega zmianie? Grafit, który jest 
kryształem o strukturze warstwowej, powinien mieć w tym szeregu największą 
anizotropię, a tymczasem jego podatności molowe wzdłuż warstwy, /||, i prosto­
padle do niej, są najmniejsze [1]

Xll = — 6,3 • 10“12 m3 • mol” 1

= — 264 • 10“ 12 m3 • mol-1

Spróbujemy odpowiedzieć na te pytania przez obliczenie podatności zredukowa­
nych, kh zdefiniowanych w następujący sposób:

ki=~~ i =1,2,3 (5.42)
3 / , 

n

ki są zatem liczbami względnymi, zawsze dodatnimi, których suma dla każdej 
cząsteczki jest taka sama i wynosi 3. Zostały one wprowadzone w pracy [48] ale 
— jak dotychczas — nie znalazły odbicia w literaturze naukowej.

Dla zilustrowania przydatności k, przy rozważaniu relacji między podatnościa- 
mi różnych cząsteczek, zajmijmy się wpierw szeregiem benzen, naftalen, antracen, 
grafit. Ze względu na dość znaczne przewodnictwo elektryczne wzdłuż warstw, 
podatność diamagnetyczna grafitu ulega zmniejszeniu wskutek pewnego udziału 
dodatniego paramagnetyzmu Pauliego, związanego z obecnością elektronów prze­
wodnictwa. Ponieważ jednak elektronowe przewodnictwo właściwe grafitu w tem-

Tabela 5.3

Podatności cząsteczek bezwzględne, K, [10“12 m3 mol-1], i 
zredukowane, kt

Cząsteczka -Kt ~K2 -k3 ^2 ^3

Benzen 437 405 1224 0,635 0,588 1,777
Naftalen 705 678 2122 0,603 0,581 1,816
Antracen 950 895 3059 0,581 0,547 1,871
Grafit 6,2 6,2 263 0,068 0,068 2,864
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peraturze pokojowej jest 10 rzędów mniejsze od przewodnictwa metali, udział 
paramagnetyczny ma charakter poprawki, którą w tych rozważaniach można 
pominąć. Tabela 5.3 zawiera zestawienie Kt oraz kt cząsteczek tych materiałów. 
Wynika z niej, iż podatności zredukowane w płaszczyźnie cząsteczki, k^ i k2, 
systematycznie maleją, natomiast k3, prostopadle do niej, systematycznie rośnie. 
Regularności te widoczne są jeszcze lepiej na rys. 5.8. Staje się jasne, że anizotropia 
cząsteczek w tym szeregu rośnie, a kl grafitu są wielkościami granicznymi, do których 
zmierzają podatności cząsteczek w miarę wzrostu liczby pierścieni. Zrozumiałe jest 
także, że kj i k2 mają wspólną granicę.

Rys. 5.8. Zredukowane podatności magnetyczne skondensowanych węglowodorów aromatycznych

Drugim przykładem niech będą chlorowcowe pochodne benzenu, zestawione w 
tab. 5.4. Jeśli przez n oznaczymy liczbę atomów chloru w cząsteczce, to mamy dwa 
związki graniczne: benzen (n = 0) i heksachlorobenzen (n = 6). Z rysunku 5.9, 
sporządzonego na podstawie danych z tab. 5.4 wynika, że istnieje liniowa zale­
żność k2 i k3 od n. Nie ma prostego związku między k3 i n, ponieważ oś L 
wyznacza w cząsteczce benzenu w przybliżeniu kierunek wiązania C—H, a w 
pozostałych dwu cząsteczkach C—Cl.

Te dwa przykłady wskazują, że zredukowane podatności magnetyczne cząstecz­
ki, k^ mogą być wielkościami użytecznymi w poszukiwaniach korelacji między

Tabela 5.4

Podatności cząsteczek bezwzględne, Ki [10“12 m3 mol-1], i zredu­
kowane, k

Cząsteczka -Ki ~K2 ~K3 fci k2 ki

Benzen 437 405 1224 0,635 0,588 1,777
1,4-Dichlorobenzen 984 632 1510 0,944 0,606 1,449
Heksachlorobenzen 1704 1640 2217 0,919 0,885 1,196
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właściwościami magnetycznymi określonej klasy związków a jakimś wybranym 
parametrem. Może być nim liczba wprowadzonych atomów chlorowca albo 
sposób podstawienia, czy też rodzaj atomów wprowadzonych. Zredukowane po­
datności ułatwiają ponadto uszeregowanie cząsteczek w obrębie określonej ich 
grupy według wzrastającej anizotropii, co nie zawsze jest łatwe, jeśli korzystamy z 
podatności bezwzględnych. Wyniki poszukiwań tego typu nie są wprawdzie zbyt 
odkrywcze, mają jednak wielką przydatność w ustalaniu tensora K takich cząste­
czek, dla których nie mamy dostatecznych informacji o krysztale. Poprzemy 
obecnie wygłoszone tezy dalszymi przykładami.

Rys. 5.9. Zależność zredukowanych podatności k, 
od liczby atomów chloru w chlorowcowych po­
chodnych benzenu

Spośród różnych klas związków chemicznych chlorowcowe pochodne benzenu 
wydają się szczególnie interesujące w takiej analizie. Sprawia to zapewne zarówno 
prostota symetrii, jak i planarność ich cząsteczek. Wybierzmy przeto jako kolejny 
przykład puru-dwu podstawione chlorowcowe pochodne benzenu, typu 
Xt—C6H4—X2. Skorzystamy z wyników zawartych w tab. 5.2, nr 5, 6, 7, i 
spróbujemy ustalić związek między głównymi podatnościami cząsteczki a typem 
wprowadzonych do cząsteczki atomów chlorowca. Dla uzyskania korelacji wpro-

Tabela 5.5

Definicja zmiennej n dla 1,4-dwupodsta- 
wionych chlorowcowych pochodnych ben­
zenu typu Xj—C6H4—X2

X2 n

H H 0
H F 1
F F 2
F Cl 3 '
Cl Cl 4
Cl Br 5
Br Br 6
Br I 7
I I 8
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wadzimy zmienną n, zdefiniowaną za pomocą tab. 5.5. Główne podatności cząste­
czek, K-"1, jako funkcje zmiennej n, przybliżymy liniowym związkiem

A-, + nB; = K1̂  (5.43)

w którym Aj i Bt są stałymi, które trzeba wyznaczyć, zaś i = 1, 2, 3 oraz n = 4, 5, 
6. Związek (5.43) przedstawia 3 zbiory równań; na przykład, rozpisanie (5.43) dla i 
= 2 prowadzi do

A2 + 4B2 = K^

A2 + 5B2=K(?

A2 + 6B2 = K^

przy czym, na przykład, K2} oznacza podatność KM cząsteczki 1,4-chlorobromo- 
benzenu.

Rys. 5.10. Związek między głównymi podatnościami 1,4- 
dihalogenobenzenów i parametrem n (por. tab. 5.5)

Przedstawienie graficzne funkcji (5.43) wskazuje na trafność wyboru zmiennej n 
(rys. 5.10). Jeszcze bardziej upewnia nas o tym przeprowadzenie rachunku, mające­
go na celu wyznaczenie stałych A i B. Każdy z układów równań możemy zapisać 
w postaci

MX, = K

gdzie

Zastosowanie metody najmniejszych kwadratów do trzech równań o dwóch 
niewiadomych prowadzi, w znany już sposób, do rozwiązań

Xi =(MrM)“1(MTK;)
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Po wykonaniu obliczeń otrzymujemy następujące równania, ilustrujące zależność 
głównych podatności cząsteczek [10“12 m3 • mol“1] od rodzaju («) wprowadzo­
nych dwóch atomów chlorowca

1. Podatności molowe cząsteczek 1,4-dwupodstawionych chlorowcowych po­
chodnych benzenu bardzo dobrze stosują się do przybliżenia (5.43), nie wyłączając 
średniej podatności proszkowej [równ. (5.45)]. Można o tym wnosić na podstawie 
porównania wielkości Kt obliczonych z równ. (5.44) kolejno dla « = 4, 5, 6 z 
analogicznymi wartościami wziętymi z tab. 5.2; różnice nie przekraczają 
2,5 • 10“12 m3-mol“Wyjątek stanowi cząsteczka benzenu, « = 0.

2. Cząsteczka benzenu swymi właściwościami magnetycznymi zupełnie odbiega 
od szeregu Xj—C6H4—X2. Jest tak dlatego, że oba atomy chlorowca powodują

K, = -511,0-118,1«

K2 = -122,2-126,9«

K3 = -1098,0-103,6«

(5.44)

Podobne postępowanie, zastosowane do średnich podatności cząsteczki (krysz­
tału), prowadzi do związku

(K) = ć/> = — (577,1 + 116,2«) • 10“ 12 m3 • mol“1 (5.45)

Wyniki obliczeń według równań (5.44) i (5.45) zestawione są wraz z odpowiednimi 
danymi, wziętymi z tab. 5.2, w tab. 5.6. Porównanie ich pozwala wyciągnąć 
następujące wnioski.

Tabela 5.6

Przewidywane główne podatności [10-12 m^mc'“1] cząsteczek 1,4-dwupodstawionych 
pochodnych benzenu, X!—C6H4—X2

X, x2 n -<z> ~KM ~KN Ak Uwagi

H H 0 577 511 122 1098 1,355 obi.*
0 689 438 438 1189 1,089- eksp.**

H F 1 693,3 629,1 249,1 1201,6 1,094 obi.
F F 2 809,5 747,2 376,0 1305,2 0,818 obi.
F Cl 3 925,7 865,3 502,9 1408,8 0,783 obi.
Cl Cl 4 1041,9 983,4 629,8 1512,4 0,677 obi.

4 1042,1 984 632 1510 0,674 eksp.
Cl Br 5 1158,1 1101,5 756,7 1616,0 0,593 obi.

5 1158,1 1101 753 1621 0,600 eksp.
Br Br 6 1274,3 1219,6 883,6 1719,6 0,524 obi.

6 1274 1220 885,9 1718 0,522 eksp.
Br I 7 1390,5 1337,7 1010,5 1823,2 0,467 obi.
I I 8 1506,7 1455,8 1137,4 1926,8 0,418 obi.

* Obliczone z równań (5.45), (5.44) i (5.46).
** Dane z tab. 5.2.
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charakterystyczną polaryzację pierścienia, czym zajmiemy się jeszcze w dalszym 
tekście.

3. Wkład atomów chlorowca do podatności magnetycznych cząsteczki jest 
wyraźnie anizotropowy, jak o tym świadczą współczynniki w równ. (5.44). 
Wskutek zmiany atomów chlorowca najsłabiej zmienia się podatność prostopadle 
do płaszczyzny pierścienia (K3), a najsilniej w kierunku prostopadłym do osi Xj- 
X2 (K2).

4. Stosując zbiór równań (5.44) dla różnych n możemy przewidzieć wartości K . 
cząsteczek związków jeszcze nie badanych, a także ich podatności proszkowe, 
(5.45). Wiarygodność tych przewidywań uzasadnia punkt 1.

5. Z tabeli wynika, iż względna anizotropia cząsteczek, określona analogicznie 
do definicji Lasheena (5.41)

Ak=i(k1+k2)-k3 =i(l-k3) (5.46)

maleje systematycznie ze wzrostem parametru n, tj. ze wzrostem liczby porządko­
wej wprowadzonych atomów chlorowca. Największą anizotropię ma hipotetyczna 
cząsteczka, umieszczona w pierwszym wierszu tab. 5.6. Nie jest to cząsteczka 
benzenu; jej właściwości otrzymane zostały przez ekstrapolację właściwości związ­
ków Xj—C6H4—X2 do wartości n = 0. Duża różnica między KL i KM wskazuje 
na silną polaryzację w płaszczyźnie pierścienia. Wprowadzanie do cząsteczki coraz 
cięższych atomów chlorowca wybitnie tę anizotropię zmniejsza. Przy okazji warto 
zauważyć, że w definicji (5.46), wyrażonej za pomocą zredukowanych podatności 
k^ o wielkości anizotropii cząsteczki decyduje wyłącznie podatność k3 w kierunku 
normalnym do płaszczyzny cząsteczki.

Interesujący komentarz do udziału wiązania wodorowego w podatności czą­
steczki zawarty jest w pracy [76]. Przedstawimy tu krótko wyniki rozważań 
autora, dotyczące chlorowcowych pochodnych kwasu benzoesowego, typu 
X—C6H4—COOH, przy czym atom X = F, Cl, Br, I umieszczony jest w pozycji 
sąsiadującej z grupą karboksylową. Związki takie w fazie stałej są w pełni 
zasocjowane w centrosymetryczne dimery

Problem polega na obliczeniu podatności środkowego pierścienia, składającego się 
ze skrajnych atomów węgla oraz dwóch identycznych wiązań wodorowych 
OH • O. Podatności monomerów badanych cząsteczek zebrane są w tab. 5.7.

Analizy tych danych dokonuje autor dwiema metodami. Pierwsza metoda 
opiera się na znanym od dawna fakcie, że przynajmniej część anizotropii cząsteczek 
związków aromatycznych i ich pochodnych wynika z delokalizacji elektronów n, 
prowadzącej do pojawienia się tzw. prądu pierścienia. Udział tego efektu w
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Tabela 5.7

Podatności Ki [10-12 m3 mol-1] monomerów kwasów 2-halogenobenzoesowych, X—C6H4—COOH, 
zaczerpnięte z prac [76] i [43, 44], oraz udział wiązania wodorowego w anizotropii cząsteczki J^B = AK'm 
— AK'b (metoda I) i Af^ = AK0 — AKC (metoda II)

X -<z> ~KL ~KM ~KN ~AK'm — A*A HB -AK0 _ A**

F 937,4 657,2 630,8 1523,0 534,0 54,0 878,7 61,9
Cl 1089,5 809,2 784,1 1677,6 535,9 55,9 881,1 64,4
Br 1205,1 932,4 893,4 1793,2 533,9 53,9 880,1 63,3
I 1389,8 1110,8 1088,2 1977,9 537,4 57,9 878,5 61,7

H 884,6 688,6 588,1 1378,5
śr. 535,4 55,4 879,7 62,8

anizotropii, AK'm, oszacowany przez Masona [77, 78] oraz Craiga i współpracow­
ników [79], podaje wyrażenie

dK; = K3-Zx:it (5.47)
w którym Zat oznaczają średnie wartości podatności atomów, wchodzących w 
skład danej cząsteczki, czyli tzw. inkrementy atomowe. Różnica między a 
analogicznym udziałem delokalizacji elektronów n w anizotropii niepodstawionego 
pierścienia benzenu, AKb

A^ = AK’m-AK'b (5.48)

jest właśnie udziałem jednego wiązania wodorowego w anizotropii cząsteczki 
badanego kwasu..W przypadku benzenu przyjęta dla AKb wartość wynosi [80]

AKb = -480,0-10-12m3-mol-1

Aby obliczyć AK'm, trzeba znać inkrementy Zat poszczególnych atomów. Autor 
przyjął dla nich następujące wartości [10-12m3-mol-1]: Zc = —92,9, Zh = —25,1, 
Xo = -66,6, Zn = -113,0, Zf = -79,1, Zci = -232,4, ZBr = -349,3, Zl = -530,3. 
Obliczone stąd wartości AK'm podane są w kolumnie 6 tab. 5.7. Są one prawie 
stałe; średnia wartość wynosi = — 535,4-10--12m3-mol-1. Stąd też średni 
udział wiązania wodorowego, <dgB) = — 55,4-10“12 m3 • mol-S nieznacznie tylko 
zależy od wprowadzonego chlorowca.

W drugiej metodzie, którą autor uważa za dokładniejszą, anizotropię danej 
cząsteczki kwasu, zUC0, porównuje się z anizotropią takiej samej cząsteczki, lecz 
pozbawionej atomu chlorowca, AKC. Pierwszą z tych wielkości oblicza się Według 
definicji

AK0 =K3-i(K1+K2) (5.49)

Wartości AK0 cząsteczek podane są w kolumnie 8 tab. 5.7. AKC oblicza się 
natomiast z sumy anizotropii pierścienia benzenu, AKb, i grupy karboksylowej,

AKC = AKb + AKk (5.50)
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Jest to słuszne przy założeniu, że atom chlorowca jest izotropowy, tzn. że jego 
udział w AKC wynosi zero. Na podstawie dokonanej przez nas poprzednio analizy 
wpływu atomu chlorowca na właściwości magnetyczne 1,4-dwupodstawionych 
pochodnych benzenu wydaje się, iż uwagi tej nie należy pozostawić bez komenta­
rza. Poświęcimy tej sprawie trochę miejsca nieco dalej'w tym paragrafie.

Udział wiązania wodorowego w anizotropii magnetycznej cząsteczki oblicza się 
więc w tej metodzie ze wzoru

d** = ZlK0-JKc (5.51)

Dla i AKk przyjęto następujące, znane z literatury wartości:

AKb = — 753,9 ■ 10“ 12 AKk = -62,8 • 10“12 m3 • mol“1

a więc
AKC = — 816,8 • 10“12 m3 • mol“1

Obliczony według równ. (5.51) udział jednego wiązania wodorowego w anizotropii 
cząsteczki kwasu 2-halogenobenzoesowego podany jest w kolumnie 9 tab. 5.7. 
Również i tym razem udział wiązania wodorowego, tylko nieznacznie zależy 
od rodzaju chlorowca. Uzyskana wartość średnia jest trochę większa niż w 
metodzie 1 i — zdaniem autora pracy [76] — jest bardziej wiarygodna. Ponieważ 
pierścień pośredni dimeru tworzą dwa wiązania wodorowe, sumaryczny ich udział 
w anizotropii cząsteczki wynosi zatem

> = 2 > = — 126,0-10“ 12 m3 • mol“1

Autor cytowanej pracy [76] wykonuje podobne obliczenia również dla innych 
struktur, w których cząsteczki powiązane są w łańcuchy. Wyniki te są jednak 
mniej przejrzyste i nie będziemy ich tu komentowali.

Powróćmy natomiast do pytania, czy udział chlorowca w właściwościach 
magnetycznych cząsteczek kwasów 2-halogenobenzoesowych można uznać za izo­
tropowy. Na przykładzie 1,4-dwupodstawionych chlorowcowych pochodnych ben­
zenu mieliśmy okazję przekonać się, że nie zawsze musi to być słuszne. Stosując 
ten sam typ analizy, co poprzednio, możemy na podstawie tab. 5.5 przypisać 
kolejnym cząsteczkom kwasu chlorowcobenzoesowego wartości parametru n = 2, 
4, 6, 8. Łatwo wtedy przekonać się za pomocą wykresu K^n), i — 1, 2, 3, że 
poszczególne punkty odbiegają od prostych z dość znacznym rozrzutem. Punkty te 
możemy trochę wyrównać, stosując korekcję liniową (5.43) do podatności proszko­
wych tych związków, które z pewnością do takiego przybliżenia powinny się 
stosować. Otrzymujemy

(^ > = (-787,4- 73,6«) ■ 10“12 m3 ■ mol“1

Wygładzenie polega na zastosowaniu korekcji
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Wygładzone zależności K*(n) [10 12 m3 • mol Ł] przedstawiają równania (rys. 
5.11)

K* = -507,0-74,1« £a2 = 0,3

KI = —478,7 — 73,8«

= —1372,2 — 74,1«

£o-2 = 199,8

Vff2 = 199,8

(5.52)

£ cr2 oznacza sumę kwadratów błędów, tj. różnic między wartościami K, podany­
mi w tab. 5.7 i obliczonymi z równań (5.52). Porównanie współczynników przy « 
wskazuje, że istotnie, udział chlorowca w anizotropii magnetycznej tych cząsteczek 
jest izotropowy. Potwierdza to założenie poczynione wcześniej. Zwróćmy jeszcze 
uwagę, iż podobnie, jak w poprzednim przykładzie, również i tu właściwości 
magnetyczne nie podstawionego kwasu benzoesowego (ostatni wiersz tab. 5.7) nie 
mieszczą się w szeregu kwasów halogenobenzoesowych.

Rys. 5.11. Podatności cząsteczek kwasów 2-haloge- 
nobenzoesowych w funkcji parametru chlorowca, n

Przejdziemy obecnie do przedstawienia uwag szczegółowych do niektórych 
pozycji tab. 5.2.

W grupie związków aromatycznych o jednym pierścieniu na wyróżnienie 
zasługują benzen i heksachlorobenzen ze względu na symetrię cząsteczek. W 
cząsteczce benzenu (nr 1) KL = KM; taka sama relacja wynika z danych dla 
heksachlorobenzenu (nr 12). Nowsze dane strukturalne (nr 13) wskazują na 
istnienie niewielkiej różnicy między dwiema podatnościami w płaszczyźnie czą­
steczki heksachlorobenzenu (problem 5.11.2). Jeśli jednak przyjmiemy kształt czą­
steczki wynikający z danych strukturalnych, to musimy zgodzić się z tym, że 
cząsteczka heksachlorobenzenu ma w krysztale taką samą symetrię jak cząsteczka 
benzenu, czyli obie są magnetycznie jednoosiowe. Warto przy tym zwrócić uwagę 
na różnie wybraną grupę przestrzenną w obu strukturach heksachlorobenzenu. 
Wskutek tego macierze c różnią się znacznie, a mimo to właściwości magnetyczne 
cząsteczek, dedukowane z obu struktur, są bardzo zbliżone.
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Badania magnetyczne 4-nitrofenolu podjęte zostały z 'tego powodu, że substan­
cja ta występuje w dwóch odmianach fazowych, pozostających między sobą 
najprawdopodobniej w relacji monotropowej, tj. nie ma między nimi przejścia 
fazowego pod normalnym ciśnieniem. Obie odmiany wykazują różną wrażliwość 
fotochemiczną na światło [35]: odmiana a ulega zabarwieniu na czerwono pod 
wpływem promieniowania widzialnego, podczas gdy odmiana /1 jest całkowicie 
niewrażliwa na naświetlanie. Badania magnetochemiczne wykazały, że podatności 
cząsteczek w obu odmianach są dostatecznie bliskie siebie, by można uznać ich 
magnetyczną równoważność. Niewielkie różnice Kt, widoczne przy porównaniu nr 
10 z nr 11 tab. 5.2, mogą pochodzić po części z błędów doświadczalnych, 
częściowo zaś mogą być wywołane różną konfiguracją samych cząsteczek: w 
odmianie P kąt zawarty między płaszczyzną grupy nitrowej i płaszczyzną pierście­
nia benzenowego jest wyraźnie większy niż w cząsteczce odmiany a.

Badania anizotropii magnetycznej stałych roztworów pentachlorofenolu w he- 
ksachlorobenzenie [38] pomogły w ustaleniu ich struktury, która okazała się 
zbliżona do struktury kryształu czystego heksachlorobenzenu [81]. Przyczyniło się 
to do wyjaśnienia mechanizmu przemiany fazowej pentachlorofenolu. Zbadanie 
właściwości magnetycznych 2,3-dimetylonaftalenu również było przydatne w okreś­
leniu kierunków niektórych momentów przejść absorpcyjnych w tym krysztale o 
nieznanej strukturze [82].

W grupie cząsteczek o trzech pierścieniach skondensowanych akrydyna (nr 32) 
jest prawdopodobnie wyjątkiem [17]: numeryczna wartość KL jest mniejsza niż 
KM. Podobny wynik znaleziono jeszcze dla a-fenazyny (nr 33). Antrachinon należy 
do bardzo jeszcze nielicznych przypadków, w których strukturę kryształu zbadano 
w kilku temperaturach [63]. W tabeli 5.2 zamieszczono wyniki tylko dla tempera­
tury pokojowej (nr 30 i 31), ponieważ wpływem temperatury na właściwości 
magnetyczne zajmiemy się osobno przy końcu rozdziału.

Przechodząc do kryształu kwasu barbiturowego (nr 35) wypada stwierdzić, że 
dedukcja magnetycznych właściwości cząsteczki tego związku w pracy Lasheena 
[17] jest błędna. Kryształ jest bowiem uwodniony, tymczasem w ewidentny sposób 
pominięto obecność wody, o czym można się łatwo przekonać, porównując ślady 
tensora kryształu i cząsteczki. Ponowne przeliczenie dla tego kryształu (nr 36) 
znaleźć rm,z...i w przykładzie 5.11.4.

Na zakończenie tego przeglądu warto jeszcze wspomnieć o zastosowaniach 
badań magnetochemicznych do poznania struktury ciał o znaczeniu przemysło­
wym. Szczególnie często wykorzystuje się metody magnetochemiczne w badaniach 
polimerów i reakcji polimeryzacji; przegląd uzyskanych w tej dziedzinie wyników i 
osiągniętych postępów znaleźć można w pracy Selwooda [83]. Duże zainteresowa­
nie budzi problem znalezienia orientacji cząsteczki w substancji zasadniczo bezpo­
staciowej, jaką jest na ogół polimer. Problem ten może być rozwiązany za pomocą 
pomiarów anizotropii podatności magnetycznej materiału z jednej strony, z drugiej 
wymaga określenia anizotropii monomeru lub jednostki strukturalnej, stanowiącej 
umowny „motyw powtarzania” w polimerze. Bardzo pomocne jest użycie w takich 
przypadkach substancji modelowych, a przykładem tego typu badań może być 
praca Selwooda i innych [84].
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Interesujące wyniki przynoszą również magnetochemiczne badania folii uprzed­
nio rozciągniętych, na przykład polistyrenu [85]. Zwykła folia, wykonana z tego 
materiału, jest magnetycznie bliska izotropii. Rozciągnięcie jej w temperaturze 
podwyższonej prowadzi do częściowego uporządkowania materiału, co powoduje 
pojawienie się anizotropii magnetycznej. Anizotropię przypisuje się głównie upo­
rządkowaniu pierścieni fenylowych. Stan ten można zamrozić przez szybkie ochło­
dzenie próbki. Nie tylko podatność magnetyczna tak spreparowanej folii wykazuje 
anizotropię; anizotropowe są również inne jej właściwości, na przykład mechani­
czne i optyczne. Dla folii badanych w cytowanej pracy uzyskano podatności /u = 
(— 9,5±0,3)-10“12 i = ( —8,2 + 0,3)• 10~ 12m3-mol“\ Indeks || oznacza wielkość 
mierzoną równolegle do kierunku rozciągnięcia, zaś ± — prostopadle do tego 
kierunku. Jeśli rozciągnięty uprzednio polistyren ogrzeje się do wyższej temperatu­
ry, to obserwuje się przejście do stanu izotropowego, odpowiadające przejściu 
fazowemu typu porządek-nieporządek.

Wielkość uzyskanej przez rozciągnięcie materiału anizotropii magnetycznej 
zależy w wysokim stopniu od rodzaju użytego materiału. Pokazali tó Weir i 
Selwood [86] na przykładzie trzech rodzajów polimerów: polietylenu, polistyrenu i 
poli(2,5-dichlorostyrenu). Okazało się, że największe efekty występują w trzecim 
materiale, najmniejsze w pierwszym.

5.8. Zasada addytywności podatności cząsteczek 
w ujęciu tensorowym

Jak już o tym wspomniano uprzednio, model gazu zorientowanego w zastoso­
waniu do właściwości magnetycznych pozwala wydedukować tensor podatności 
cząsteczki K z pomiarów makroskopowego tensora / kryształu. Z dyskusji zamie­
szczonej w rozdz. 4 wynika również, że ścisłe rozwiązanie tego problemu możliwe 
jest jedynie dla kryształów trójskośnych, dla których możemy uzyskać na drodze 
doświadczalnej sześć niezależnych informacji, potrzebnych do wyznaczenia sześciu 
niezależnych składowych K. W wyżej symetrycznych układach krystalograficznych 
symetria redukuje liczbę nietrywialnych informacji, co algebraicznie prowadzi do 
redukcji liczby równań, jakie możemy napisać dla składowych K. W takiej sytuacji 
dokonuje się zwykle mniej lub więcej spekulatywnego wyboru kierunków osi 
głównych K, co wprawdzie pozwala na rozwiązanie równań, ale jednocześnie 
usztywnia problem orientacji K. Słuszność określonego a priori wyboru osi K 
miałaby szanse weryfikacji, gdybyśmy dysponowali dobrą teorią, pozwalającą 
obliczyć K z danych bardziej podstawowych. Stan teorii w dziedzinie magnetoche- 
mii cząsteczki nie jest jednak obecnie na tyle zaawansowany, by można było 
obliczać składowe tensora podatności jakiejkolwiek cząsteczki wykazującej anizo­
tropię. Nawet średnie wartości (Ky, uzyskiwane różnymi metodami teoretycznymi, 
są dość dalekie od zgodności z doświadczeniem.

W tej sytuacji interesująca jest propozycja, którą przedstawili Van den Bossche 
i Sobry [87]. Autorzy ci zakładają, że każdą cząsteczkę można podzielić na rdzeń, 
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będący szkieletem cząsteczki, i szereg połączonych z nim podstawników. Zakładają 
oni dalej, że tensory K(m) szkieletu i podstawników w przybliżeniu nie zależą od 
tego, w jakim konkretnie krysztale lub cząsteczce elementy te występują, czyli 
zaniedbują oddziaływania nie tylko między cząsteczkami, lecz także między szkie­
letem i podstawnikami. Słuszne to będzie jedynie w przybliżeniu, jednak autorzy są 
zdania, że właśnie porównanie wyników takich obliczeń z tensorem K dedukową- 
nym z pomiarów wykonanych dla kryształu może nas poinformować o oddziały­
waniach magnetycznych w cząsteczce. Hipoteza addytywności podatności magne­
tycznych nie jest nowa — znanych jest szereg schematów, pozwalających przewi­
dzieć właściwości całej cząsteczki na podstawie inkrementów podatności atomów 
lub wiązań. Nie będziemy ich tu przytaczali, ponieważ wszystkie wcześniejsze 
propozycje dotyczą wartości średniej, (K).

W metodzie Van den .Bossche i Sobry orientację tensorów K(m) wybiera się 
w zasadzie dowolnie. Najczęściej jednak i bez szkody dla ogólności rozwiązania 
jako osie K(m) można wybrać ich osie symetrii, oznaczane odpowiednio przez 
LMN (szkielet) i umvmwm (podstawniki). Nawet gdy cząsteczka jako całość jest, 
asymetryczna, jej fragmenty mają symetrię wystarczającą do uzasadnienia tego 
założenia. Oczywiście, osie podstawników nie pokrywają się z osiami głównymi 
szkieletu, jeśli podstawnik nie ma symetrii kulistej. Dodawanie tensorów prowadzi 
się więc w jakimś układzie współrzędnych, wspólnym dla wszystkich fragmentów 
cząsteczki; najczęściej jest to ortogonalizowany układ osi krystalograficznych. 
Uzyskany przez sumowanie tensor wypadkowy zawiera z reguły sześć składowych 
niezerowych, co pozwala na wyszukanie osi głównych K niezależnie od wszelkich 
założeń o symetrii cząsteczki. Opisywna metoda jest więc modelem gazu zoriento­
wanego w przybliżeniu tensorowym, w odniesieniu do jednej cząsteczki.

Cząsteczkę, którą można podzielić na szkielet i M— 1 podstawników, opisuje w 
układzie współrzędnych abc* tensor K [87]

M s(m)
K = £ £ D(r, m)K(m)Dr(r, m) 

m— 1 r~ 1
(5.53)

D(r, m) jest macierzą transformacji do układu abc* r-tego podstawnika m-tego 
rodzaju. Przyjmujemy w tym zapisie, że r-ty podstawnik może się powtórzyć s(m) 
razy.

Dla komórki elementarnej możemy napisać

x = B K (5.54)

przy czym /;1 ,-2 oraz Kj1J2(m) równe są odpowiednio & oraz według 
konwencji

ii
ii + i2 + 1

dla ii — i 2
dla ii i2

(5.55)
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Analogiczna konwencja obowiązuje wskaźnik j. Elementy macierzy B można 
zapisać w następujący sposób:

। M s(m) 3
^ij = 1 , s S Ś ^<1,12 ^kp X

* ' ^ji,j2 m= 1 r- 1 p^q~ 1 
k,l = 1

x (5.56)

R jest macierzą transformacji podatności kryształu w układzie abc* do układu osi 
głównych x-

Ponieważ liczba niezależnych elementów / nie przekracza 6, liczba elementów 
K^^n) może zaś być znacznie większa, korzysta się z założenia, że K(m) jest 
charakterystyczne dla podstawnika i nie zależy od cząsteczki, w skład której 
wchodzi. Dla wyznaczenia wszystkich K(m) trzeba wykonać badania dla kilku 
kryształów różnych substancji, których cząsteczki zawierają takie same podstawni­
ki.

Metoda Van den Bossche i Sobry pozwala więc na wyznaczenie wartości 
głównych i osi głównych dowolnej cząsteczki, a ponadto na skonstruowanie 
systematyki tensorów charakterystycznych dla szkieletów i podstawników. Tym 
samym możliwe jest oszacowanie anizotropii magnetycznej kryształów dotąd nie 
badanych.

Przykłady obliczenia tensorów rdzenia i podstawników na podstawie danych 
strukturalnych i podatności kryształów znaleźć można w pracy Sobry i Van 
den Bossche [88] oraz w pracy Mierzejewskiego [89]. Wybrane zastosowania 
przedstawione są w problemach 5.11.5 i 5.11.6.

5.9. Osie magnetyczne kryształu

Jak wiadomo, podatność magnetyczną kryształu można opisać za pomocą 
symetrycznego tensora drugiego rzędu, /, mającego trzy osie główne. Orientacją 
tych osi względem krystalograficznego układu współrzędnych rządzą reguły syme­
trii właściwe klasie symetrii, do której należy kryształ. Odcinane na tych osiach 
trzy wartości główne są w krysztale diamagnetyka wszystkie ujemne; nie znamy 
dotąd przykładu o jednej lub dwu wartościach głównych dodatnich. Być może, iż 
przypadki takie są do pomyślenia w grupie kryształów związków donorowo- 
akceptorowych, jednak nie zostały dotąd poznane. Możemy zatem przyjąć, że 
obrazem właściwości magnetycznych typowego diamagnetyka jest elipsoida trój- 
osiowa.

Analogicznie do sytuacji znanej w optyce, możemy w każdym krysztale diamag- 
netycznym znaleźć przynajmniej jeden przekrój magnetycznie izotropowy, tj. taką 
płaszczyznę, że w każdym kierunku w niej leżącym podatność magnetyczna jest 
taka sama. Normalna do takiego przekroju definiuje pewien charakterystyczny 
kierunek, który zwać będziemy osią magnetyczną kryształu.
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Przypuśćmy, że mamy kryształ jednoskośny, w którym osie główne zorientowa­
ne są w sposób podany na rys. 5.12. Poza tym niech będzie

IZiI > IZiI > IXil (5.57)

oraz x2 II h- Orientację Xi względem krystalograficznej osi a podaje kąt i/c Przy tych 
założeniach zawsze możemy znaleźć taki kierunek OP, leżący w płaszczyźnie (010), 
że podatność kryształu w tym kierunku’będzie równa y2. OP określa więc jeden z 
dwu możliwych w takim krysztale przekrojów kołowych o zerowej anizotropii 
magnetycznej. Innymi słowy, kryształ, zawieszony w polu magnetycznym wzdłuż 
OQ 1 OP, nie będzie przyjmował uprzywilejowanej orientacji. Niech kąt między 
normalnymi do takich przekrojów, czyli kąt między osiami magnetycznymi, wyno­
si 2P; kąt ten jest równy (180 — 25), przy czym 5 jest kątem determinującym zero 
anizotropii kryształu według równania

d/ = x1cos25 + x3sin25-x2 = 0 (5.58)

Stąd otrzymujemy

Ryś. 5.12. Przekrój izotropowy (o promieniu OP) w 
krysztale diamagnetyka [58]

sin V =
X2-z3Y/2 

.Zi -/3/
(5.59)

W przypadku pokazanym na rys. 5.12 płaszczyzną osi magnetycznych jest (010), 
ale nie zawsze musi tak być. Położenie tej płaszczyzny zależy od nierówności 
(5.57).

Warto zauważyć, że wyrażenie (5.59) różni się od znanego w optyce dla sin 27; 
różnica ta wynika stąd, że współczynnik refrakcji nie jest wielkością tensorową.
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Postępując podobnie jak w optyce, możemy podzielić diamagnetyki na trzy 
klasy: magnetycznie dwuosiowe (kryształy należące do układu trójskośnego, jedno- 
skośnego i ortorombowego), jednoosiowe (układy: tetragonalny i heksagonalny) 
oraz magnetycznie izotropowe (układ regularny).

Istnienie przekroju magnetycznie izotropowego pokazano doświadczalnie — 
jak się wydaje po raz pierwszy — na przykładzie 1,5-dinitronaftalenu (1,5-DNN, 
[58]). Dla kryształu otrzymujemy z tab. 5.2 (nr 27) po zamianie /2 z /3

-2508
-847

-686
■ 10~12m3-mol-1

oraz t/t = 118,2°. Płaszczyzną osi magnetycznych jest zatem płaszczyzna (010).

Rys. 5.13. Orientacja kierunków magnetycznych w krysztale
1,5-dinitronaftalenu

Płytkę wyciętą z kryształu zawieszamy w kierunku prostopadłym do osi b w 
sposób pokazany na rys. 5.13. Kąt zawieszenia sj, mierzony względem krystalogra­
ficznej osi a, jest znany i dla każdego pomiaru inny. Ponieważ cj + 90 = ą, 
mierzona anizotropia wynosi

A^ — A cos2 ef + B sin Si cos Si + C sin2 e; (5.60)

gdzie i = 1, 2, 3, ..., n > 3, oraz

A = (Zi - Z2) cos2 + (z3 - Z2) sin2

B = 2(z1-z3)sin</,cosiA (5.61)

c = (Z1 - Z2) sin2 + (Z3 - Z2) cos2

Wyniki A^ w funkcji kąta zawieszenia e; przedstawione są na rys. 5.14. Wynika z 
niego, że istnieją dwa kierunki, Li i L2, o zerowej anizotropii magnetycznej. Kąt 
między osiami, odczytany z wykresu wynosi

2P = 35,1 ±0,5°

podczas gdy według (5.59)
2 P = 34,6 ±0,2°
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Orientację osi magnetycznych w tym krysztale w układzie abc* podają wektory 
jednostkowe

=(-0,1886 0 0,9820)

M2 =(-0,7136 0 0,7005)

Rys. 5.14. Kierunkowa zależność anizotropii 
diamagnetyzmu w płaszczyźnie (010) kryształu 
1,5-dinitrobenzenu, wykazująca istnienie kierun­
ków zerowej anizotropii (Lj i L2) [58]

5.10. Wpływ temperatury na diamagnetyzm kryształów

Staraliśmy się wykazać w tym rozdziale, że podatność kryształu diamagnety- 
cznego jest właściwością stosunkowo łatwo poddającą się interpretacji molekular­
nej. Główne przyczyny tego stanu rzeczy są — powtórzmy — następujące:

1. W diamagnetyzmie praktycznie nie istnieje problem pola lokalnego, wobec 
czego relacje między podatnością kryształu, komórki elementarnej i cząsteczki 
mają charakter związków geometrycznych, opisywanych modelem gazu zoriento­
wanego.

2. Problem zmiany gęstości ciała stałego, spowodowanej zmianą temperatury 
można pominąć, ponieważ efekty stąd wynikające są niewielkie i wobec niezbyt 
dużej dokładności metod eksperymentalnych nie są zauważalne.

W konsekwencji podstawową przyczyną, dla której można oczekiwać zmian 7 
przy zmianie temperatury, jest zależność od temperatury orientacji osi u2U3 
tensora molekularnego w każdej fazie krystalicznej, termodynamicznie stabilnej w 
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rozważanym przedziale temperatur. Zanim zajmiemy się bliżej tą zależnością, 
zauważmy, że średnia (proszkowa) podatność każdej substancji, </), nie powinna 
zależeć od temperatury. Jeśli bowiem orientacja ur u2 u3 cząsteczki względem 
niezmiennego układu x, x2 x3 zadana jest w temperaturze T2 macierzą c<2>. a w 
temperaturze 7] macierzą c(1), to związek (5.35) możemy zapisać w uproszczonej 
postaci następująco (opuszczamy wskaźnik numerujący cząsteczki):

K'(l) = c(1,rK(l)c(1>
(5.62) 

K'(2) = c(2)TK(2)c(2)

przy czym K'(l) i K'(2) oznaczają udział cząsteczki 1 w tensorze makroskopowym 
w temperaturze, odpowiednio, 7] i T2, a K(l) i K(2) są tensorami molekularnymi 
w obu tych temperaturach. Ale tensor drugiego rzędu ma tę właściwość, że jego 
ślad jest niezmiennikiem każdej transformacji, polegającej na obrocie układu 
współrzędnych. Wobec tego możemy napisać

TrK'(l) = TrK(l)
(5.63) 

TrK'(2) = TrK(2)

Jeśli teraz możemy uznać, że cząsteczka jest dostatecznie sztywna, tak że odpowia­
dający jej tensor nie zależy od temperatury

TrK(l) = TrK(2)
to również

TrK'(l) = TrK'(2) (5.64)

Równość (5.64) oznacza, że temperatura nie ma wpływu na udział pierwszej 
cząsteczki w podatności komórki elementarnej, jeśli ta cząsteczka jest sztywna. To 
samo słuszne jest w odniesieniu do udziałów pozostałych Z —1 cząsteczek. W 
rezultacie </> nie powinno zależeć od temperatury. Stąd wynika drugi wniosek: 
zależności /,(7) w poszczególnych głównych kierunkach powinny mieć charakter 
kompensacyjny.

Słuszność obu tych wniosków potwierdzają wyniki pomiarów autorów francu­
skich [20, 90], których część została zebrana w tab. 5.8. Jak widzimy, suma liczb

Tabela 5.8

Główne podatności kryształów: [10“12 m3mol-1] w temperaturze 
ciekłego azotu, Xi [10"12 n^-mol'1] w temperaturze pokojowej [90] 
(liczby w nawiasach podają błędy w jednostkach ostatniego miejsca)

Związek Zi-Zi ń~X2 ń-X3

1,4-Dibromobenzen 2,7(3) -7,5(3) 4,5(5)
1,4-Benzochinon 4(2) -13(1) 9(2)
Naftalen 16(2) — 20(2) 3(3)
Bibenzyl 4(5) — 26(6) 24(10)
Stilben 0(4) — 24(2) 24(1)
Azobenzen 3(1) -5,0(8) 2(1)
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każdego wiersza równa jest zeru w granicach błędów doświadczalnych. Natomiast 
poszczególne Zi wprawdzie niewiele, jednak niewątpliwie zależą od temperatury.

Bardziej szczegółowo zbadano funkcje Xi(T) dla kryształu benzenu [20]. Nie­
które z tych wyników przedstawione są na rys. 5.15, a mianowicie

Xa(T)-Xb(T) = di2z(T)

oraz

z6(n-zc(n = d23Z(T)

Rys. 5.15. Zależność wyników anizotropii benzenu: doświadczalnych (krzywe ciągłe) i wynikających z 
modelu sztywnej skrzynki (krzywe przerywane) od temperatury

Odczytując wartości liczbowe z tych wykresów i przyjmując [20]

</> = — 689(1) • 10“12 m3 ■ mol“1

możemy obliczyć Zo, Xb i Zc w funkcji temperatury według równań

Xa + Xb + Xe = 3 </>

Xa~Xb =^12X

Xb~Xc = d23Z

Tabela 5.9

Główne podatności diarnagnetyczne, /1012, m3 mol-1, kry­
ształu benzenu w funkcji temperatury. Wartości doświadczalne 
zaczerpnięte z pracy [20], wartości obliczone — na podstawie 
modelu „sztywnej skrzynki” [91] (por. rozdz. 8)

T, K
-Za ~Xb ~Xc

dośw. obi. dośw. obi. dośw. obi.

260 816,3 .815,9 472,2 472,2 777,2 777,7
240 810,6 811,1 471,9 472,6 783,1 782,1
200 803,1 801,4 472,1 473,6 790,6 790,8
160 797,7 791,9 471,9 474,3 796,2 799,5
120 793,9 782,2 471,8 475,2 800,1 808,3
80 792,1 772,7 471,7 476,0 802,1 817,1
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Wyniki podane są w tab. 5.9. Okazuje się, że w krysztale benzenu praktycznie 
nie zależy od temperatury, wobec czego zmiany (T) kompensowane są zmianami 
Xc(T) przeciwnego znaku. W tabeli podano dla porównania również wyniki 
temperaturowych funkcji x,(T), otrzymanych z modelu „sztywnej skrzynki” [91]. 
Model ten opiera się na rozważaniach skrajnych orientacji, jakie może przyjmować 
równoległościan o ustalonej wielkości krawędzi („sztywna skrzynka”, odpowiadają­
ca cząsteczce w temp. 0 K), wewnątrz równoległościanu o objętości równej 1/Z 
komórki elementarnej, zmieniającej się wskutek rozszerzalności cieplnej tego krysz­
tału. Bardziej szczegółowym opisem modelu i wniosków odnoszących się do 
temperaturowych funkcji wielkości fizycznych zajmiemy się w rozdz. 8.

W ortorombowym krysztale benzenu przemieszczenia kątowe cząsteczki pro­
wadzić mogą jedynie do zmiany głównych wartości tensora /, ponieważ — 
wskutek symetrii kryształu — orientacja osi głównych / jest ustalona względem 
krystalograficznego układu odniesienia. Ale w kryształach o niższej symetrii zmianie 
z temperaturą ulegać mogą również kąty, zawarte między osiami głównymi y a 
układem krystalograficznym. Niech za przykład posłuży kryształ antrachinonu, 
którego struktura zbadana została w pięciu temperaturach. Obliczone w p. 4.5 
przemieszczenia kątowe cząsteczki w funkcji temperatury (tab. 4.4) wraz z podat- 
nościami cząsteczki (tab. 5.2, nr 31) są informacjami wystarczającymi do przewi­
dzenia zachowania się y^T) oraz kąta 0 = w funkcji temperatury. Wyniki 
przedstawione są w tab. 5.10 i na rys. 5.16. Ponieważ /j praktycznie nie zależy od

Rys. 5.16. Zależność głównych podatności kryształu antrachinonu od temperatury
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Tabela 5.10

Temperaturowa zależność głównych podatności, /,-1012, m3 mol’1, i 
kąta orientacji, 0, w krysztale antrachinonu, obliczona na podstawie 
przemieszczeń kątowych cząsteczki (tab. 4.4)

T, K — Zi -Z2 ~Z3 — 0, stopień

298,3 798,4 1341,5 2368,7 43,87
260,8 798,2 1288,8 2420,6 41,93
201 798,1 1269,5 2441,1 40,84
161 798,0 1256,7 2454,0 40,01
103 797,8 1241,6 2469,2 38,83

temperatury, zmiany /2 kompensowane są zmianami /3. Widzimy również wyra­
źną zależność 0(T) (rys. 5.17). Z eksperymentalnego punktu widzenia ciekawsze są 
raczej funkcje temperaturowe anizotropii kryształu niż samych podatności, ponie­
waż te pierwsze mierzone są bezpośrednio w doświadczeniu. Dla kryształu antra­
chinonu przedstawiono je na rys. 5.17. Wobec bardzo słabej zależności Xi(T) 
największe efekty temperaturowe powinniśmy obserwować wtedy, gdy kryształ 
zawieszony jest wzdłuż Xi • Pomiarów takich w krysztale antrachinonu jednak 
dotychczas nie wykonano.

Sądzimy, że omówione przykłady ilustrują problemy, jakie mogą być rozwiązy­
wane za pomocą modelu gazu zorientowanego. Dotyczą one kryształów zbudowa­
nych z cząsteczek sztywnych i stanowiących fazy termodynamicznie trwałe. Na 
zakończenie tego rozdziału pragniemy wskazać jeszcze na przypadki, w których 
pierwsze lub drugie założenie nie jest spełnione.

Rys. 5.17. Wpływ temperatury na anizotropię podatności magnetycznej kryształu antrachinonu
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Interesującym przykładem kryształu zbudowanego z cząsteczek niesztywnych 
jest bifenyl. Cząsteczka tego związku, przedstawiona schematycznie na rys. 5.18, 
składa się z dwu połączonych z sobą liniowo pierścieni fenylowych, które mogą 
wykonywać względem siebie oscylacje kątowe o niespotykanie dużej amplitudzie.

Rys. 5.18. Skręcona cząsteczka bifenylu

Ma to oczywiście wpływ na podatności magnetyczne kryształu oraz jego rozsze­
rzalność termiczną, tym bardziej, że amplituda tych ruchów silnie zależy od 
temperatury. W tym miejscu zajmiemy się jedynie związkiem między podatnością 
kryształu a amplitudą ruchów termicznych, przedstawiając punkt widzenia Char­
bonneau i Rivet [92]. Autorzy ci nie analizują niesztywności cząsteczki, lecz 
traktują ją w całości jako ciało sztywne, wykonujące ruchy libracyjne o amplitu­
dzie zależnej od temperatury. Tabela kosinusów kierunkowych osi LMN (rys. 5.18) 
w temperaturach 293 i 80 K oraz tensory drgań libracyjnych podane są w tab. 
5.11. Tensor libracyjny, L, zdefiniowany jest w taki sposób [93], że jego główne

Tabela 5.11
Cząsteczka bifenylu [92]: kosinusy kierunkowe osi LMN oraz tensory drgań libracyjnych 
[stopień 2] (liczby w nawiasach oznaczają bezwzględne błędy standardowe)

T, K a b c* ^11 ^22 L33

L 0,2960 -0,0001 0,9552
293 c M 0,5160 -0,8415 -0,1599 109,2 (2,8) 8,4 (0,6) 11,5 (0,5)

N 0,8038 0,5402 -0,2491
110

L 0,2890 -0,0140 0,9573
45,7 (2,1) 2,5 (0,4) 3,4 (0,4)

80 c M 0,5015 -0,8492 -0,1696 33,2 1,8 2,5
N 0,8157 0,5288 -0,2346

składowe przedstawiają połowę kwadratu amplitudy drgań wokół osi, odpowied­
nio, L, M lub N. Z tabeli 5.11 wynika, że największą amplitudę, 0^, mają drgania 
cząsteczki wokół osi L. W temperaturze 293 K 0(™} = (2Ln)1/2 = 14,8° i nawet w 
temp. 80 K amplituda ta jest jeszcze znaczna (8,1°). Pominięcie tego faktu 
prowadzi do rozbieżności między wartościami głównych składowych K w obu 
temperaturach, jeśli do analizy danych doświadczalnych zastosuje się bezpośrednio 
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równania (4.8) i (4.9). Ilustruje to tab. 5.12: wartości K2 (również K3) w obu 
temperaturach różnią się o ok. 38 • 10~12m3 - mol-1. Rozumowanie autorów pracy 
[92], prowadzące do zmniejszenia tych rozbieżności, jest w skrócie następujące.

Tabela 5.12

Główne podatności magnetyczne [10*12 m3 mol-1] kryształu 
(%,) i cząsteczki (K,) bifenylu [92]

T, K — Zi ~ Zż -Z3 -A -Tr z

293
80

863,3
855,7

1257,8
1223,9

1873,6
1911,3

22°40'
21°40'

3994,8
3991,0

~Kt ~K2 -k3 -Tr K

293
80

863,3
864,1

830,6
792,9

2302,1
2338,6

3996,1
3996,1

-Kr ~K*2 -Kt -Tr K*

293
80

859,5
863,3

780,3
790,4

2356,1
2354,9

3996,1
4008,6

Przyjmijmy, że cząsteczka wykonuje wokół każdej z osi symetrii LMN drgania 
harmoniczne

0i — 0*m) ’cos (“t — (Pt) (5.65)
gdzie 0-mi jest amplitudą, a cpt fazą początkową tych ruchów. Połowa średniego 
kwadratu amplitudy równa jest z definicji odpowiedniej składowej głównej tensora 
libracji

(5.66)

Wskutek tego średnie w czasie położenie każdej z osi LMN jest inne niż osi 
L* M* N* w spoczynku. Jeśli wybierzemy wektory jednostkowe wzdłuż tych osi, tj. 
eJIL, e2ll^, oraz e*l|Ł*, e$UM*, e*||N* i przypiszemy im postać macierzy 
kolumnowych, to oba układy można związać zależnością

ą = ae* (5.67)

w której a jest macierzą obrotu ogólnego, analogiczną do R (4.18) 
/(i-^-0i)1/2 -e3 e2 \

a= 03 a-oj-W2 -er (5.68)
\ -02 0r

Różnica między równaniami (5.68) i (4.18) polega na tym, że w pierwszym 
przypadku zastosowano dokładniejsze przybliżenie cos 0; = 1 — 02/2. Jeśli więc K 
jest tensorem obliczonym z y dla cząsteczki wykonującej łibrację, a K* tensorem 
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cząsteczki w spoczynku, to związek między nimi polega na transformacji K z 
układu o bazie ą do K* w bazie ef za pomocą macierzy a

K = aK* ar (5.69)

Rozpisanie równ. (5.69) z pominięciem wyrazów proporcjonalnych do a^j i 
wprowadzenie wartości średnich prowadzi do układu równań

K, = <ah)K^+^12>K^+{ah>K^

K2= <^>^+<^>^+<^3)  ̂ (5.70)

K3 = <fl32i>^+<a322>^+<U323 > 3̂*

W końcu, przez zastosowanie definicji (5.66) i (5.68), otrzymujemy podstawowy 
związek

K1=(l-L22-L33)Kt + L33 KI + L22 K^

(5.71)

K3 = L22 K? + M! K% + (1 - L,, - L22) Kf

Znajomość K w układzie osi głównych oraz Lu pozwala obliczyć K* cząsteczki w 
stanie spoczynku. Wyniki obliczeń powinny być takie same dla obu temperatur. Z 
tabeli 5.12 wynika, że największej zmianie uległy K2 i K3, zgodnie z faktem, że 
amplituda drgań wokół L jest największa. Poza tym, istotnie, różnice między Kf w 
obu temperaturach są na ogół mniejsze niż między Kt.

Na ten sam problem można też, oczywiście, spojrzeć inaczej. Przypuśćmy, na 
przykład, że cząsteczka bifenylu nie jest płaska w krysztale. Założenie takie nie jest 
bynajmniej oczywiste, ponieważ zagadnienie planarności bifenylu w fazie stałej jest 
jednym z najtrudniejszych w fizykochemii organicznego ciała stałego i właściwie 
nie zostało rozwiązane do dziś. Poświęcono mu wiele uwagi i prac, komentując 
wyniki badań zarówno czysto strukturalnych jak i fizykochemicznych, dotyczących 
różnych właściwości tej substancji. Nie będziemy tych prac tu przytaczać, ponie­
waż nie zamierzamy referować tego problemu szczegółowo. Gdyby jednak należało 
możliwie krótko streścić panujący aktualnie pogląd ze strukturalnego punktu 
widzenia, sytuacja zdaje się być taka, że w zakresie temperatur od 40 K do 
pokojowej niepłaskość cząsteczki jest nie do pogodzenia z symetrią kryształu i 
obserwowanym zbiorem refleksów rentgenowskich. Natomiast w temperaturze niższej 
od 40 K kryształ zbudowany jest z cząsteczek niepłaskich, przy czym kąt skręcenia 
obu pierścieni fenylowych względem siebie wynosi 10,2° [94].

Abstrahując jednak od trudności, jakie napotyka analiza strukturalna w pogo­
dzeniu nieplanarności cząsteczki ze strukturą kryształu, przyj mij my, że kąt skręce­
nia między pierścieniami fenylowymi wynosi cp i popatrzmy, czy ta hipoteza 
pozwala wyjaśnić pozorną zależność K od temperatury. Kąt <p traktujemy, oczy­
wiście, jako wartość średnią, z pominięciem ruchu oscylacyjnego obu pierścieni 
względem siebie. Niech dalej UJU2M3 oznacza układ współrzędnych związany z 
pierścieniem fenylowym w sposób analogiczny, jak w cząsteczce benzenu (rys.
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5.18). W tym układzie tensor h podatności pierścienia ma postać diagonalną

hi 0 0
0 h2 0

.0 0 h3

przy czym / h2, w odróżnieniu od cząsteczki benzenu. Dla całej cząsteczki 
definiujemy układ LMN w taki sposób, że L||Uj, M jest dwusieczną cp, a N 
kompletuje układ prawoskrętny. W tym układzie tensor K ma również postać 
diagonalną

K =
Ki 0 0
0 K2 o 

.0 0 K3

Związek między K i h jest następujący:

K = chcr+ crhc (5.72)

gdzie c jest macierzą, odpowiadającą obrotowi jednego pierścienia o kąt + (p/2. 
Macierz transponowana, cT, opisuje wówczas obrót drugiego pierścienia o kąt 
— ę>/2. Ponieważ obroty liczone są względem płaszczyzny LM, mamy

Uj u2 u3

L 1 0 0
M 0 cos(ę>/2) sin(ę>/2)
N 0 — sin(<p/2) cos(<p/2)

= c dla + cp/2

Wykonując działania w (5.72), otrzymujemy
hi

K = 2 0
0

0 0
h2 cos2 (ę>/2) + h3 sin2 (cp/2) 0

0 /i2sin2(ę>/2) + /i3cos2(ę>/2)
(5.73)

Jeśli oznaczymy K(293) przez K', a K(80) przez K", to związek (5.73) dla obu 
temperatur równoważny jest zbiorowi równań

Kj = K'{

iK'2 = h2 + (h3 — h2)sm2((p'/2)

^K3 — h3 — (h3 — h2)sin2((p'/2) (5.74)

iK^^ + ^-^jsin2^) 

iK^^-^-^jsin2^)

Jeśli pominąć pierwsze równanie, to pozostałe zawierają cztery niewiadome: h2, 
h3, cp', (p" i pozornie stanowią układ czterech równań o czterech niewiadomych. 
Nie można go jednak rozwiązać ze względu na powiązania między równaniami. Z

210



układu (5.74) wynikają jednak pewne związki, które można uważać za testy 
przedstawianego tu poglądu, a mianowicie

M = Kj (5.75)

tj. podatność cząsteczki wzdłuż osi L nie powinna zależeć od temperatury, jeśli 
powodem tej zależności ma być zmiana kąta skręcenia, (p. Istotnie, różnica między

(293) i Kl (80) mieści się w granicach błędów doświadczalnych, jak na to 
wskazują .wartości śladów tensorów w tab. 5.12, i jest mniejsza niż Kf(293) 
- K* (80).

K'2 + K'3 = K'j + K’j
tj. suma podatności K2 + K3 również nie powinna zależeć od temperatury. Nie jest 
to jednak związek nowy, ponieważ wynika z (1) oraz stałości śladu K.

1— sin2(ę//2) K'2 — K'3
1 — sin2 (ę?"/2) K2-K3

(5.76)

C = 0,9520

Mimo że nie można rozwiązać równania (5.76) w taki sposób, by obliczyć osobno 
kąty skręcenia <p' i cp" w obu temperaturach, wynikają z niego dwa interesujące 
wnioski.

a) Ponieważ C > 0, więc cp' > cp", tj. kąt skręcenia w temp. 293 K jest większy 
niż w temp. 80 K. Wniosek ten wydaje się fizycznie bardziej uzasadniony niż 
przyjęcie, iż w całym zakresie temperatur 80 7X 293 K cząsteczka bifenylu jest 
płaska. Konformacja cząsteczki zależy bowiem co najmniej od trzech czynników, a 
mianowicie: sprzężenia między obu pierścieniami (energia ujemna), odpychania 
atomów wodoru w obu pierścieniach (energia dodatnia) oraz oddziaływań typu 
atom-atom z cząsteczkami otoczenia (energia ujemna). Stan planarności wynikać 
może jedynie z równowagi sił, generowanych przez te czynniki. Wskazuje na to 
również przyjęty przez wszystkich bezsporny fakt, że cząsteczka bifenylu w stanie 
gazowym nie jest płaska. Dlatego planarność — jeśli występuje w krysztale — 
zdarzyć się może w niewielkim zakresie temperatur.

b) Nie znając cp' ani cp", możemy przyjąć cp" = 0. Z równania (5.76) wynika 
wówczas, że kąt skręcenia w temp. 293 K wynosi

= 17,82'

Jest to minimalna wartość kąta skręcenia cząsteczki w temp. 293 K, wynikająca z 
przytoczonych danych magnetycznych.

Przyjąwszy zatem cp” = 0° w temp. 80 K, otrzymujemy cp' = 17,82° w temp. 293 
K oraz główne wartości 2 h:

2h{ = -864,6-10"12 2A2 = —2338,6-10-12 2h3 = -792,9• 10"12 m3• mol"1

identyczne w obu temperaturach. Widoczne jest, że hipoteza o skręceniu cząsteczki 
prowadzi do uzgodnienia znanych faktów magnetochemicznych nie gorszego niż 
hipoteza poprzednia.

Do tej pory zajmowaliśmy się wpływem temperatury na podatność magnety­
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czną fazy krystalicznej termodynamicznie trwałej w pewnym zakresie temperatur, a 
w każdym razie takiej, której symetria nie ulega zmianie. Podczas przemiany 
fazowej występuje na ogół skokowa zmiana symetrii w temperaturze przejścia, 
charakterystyczna dla przemiany pierwszego rodzaju. W punkcie przemiany ma­
cierz orientacji c cząsteczek ulega stosunkowo bardzo znacznym zmianom, pociągając 
za sobą kontrastowe i bardzo duże zmiany głównych podatności kryształu. Odnosi 
się to, oczywiście, do kryształów zbudowanych z cząsteczek magnetycznie anizo­
tropowych. Przykładem takich badań mogą być eksperymenty wykonane z krysz­
tałami pentachlorofenolu (układ jednoskośny, [95]), których anizotropia w czasie 
ogrzewania maleje skokowo w pobliżu temp. 63°C, będącej temperaturą przejścia 
fazowego w tym związku. Jeszcze silniejsze efekty znaleziono w przypadku 1,8- 
dinitronaftalenu (układ ortorombowy, [96]). Obserwacje d23=x6 —wskazują 
(rys. 5.19, [91]), że po przejściu fazowym znak anizotropii ulega zmianie na

Rys. 5.19. Wpływ temperatury na anizotropię magnetyczną kryształu 1,8-dinitronaftalenu w okolicy 
przejścia fazowego [91, 96]

przeciwny. Powrotowi do temperatury pokojowej towarzyszy znaczna histereza, a 
kryształ nie osiąga struktury stanu wyjściowego. Jest to związane ze strukturalną 
nieodwracalnością przemiany fazowej, wywołaną przypuszczalnie zbyt dużą zmia­
ną gęstości, towarzyszącą przemianie. Prowadzi to z reguły do zniszczenia upo­
rządkowania dalekiego zasięgu, uniemożliwiając w ten sposób rekonstrukcję fazy 
wyjściowej. Takie przypadki wymykają się, oczywiście, interpretacji molekularnej, 
mimo znacznych i dobrze mierzalnych efektów. Wobec dużej czułości, metoda 
pomiarów anizotropii magnetycznej w zmienianej temperaturze może być uważana 
za metodę detekcji przemiany fazowej pod warunkiem, że same cząsteczki są 
magnetycznie anizotropowe i że możemy otrzymać interesującą nas substancję w 
postaci kryształów.
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5.11. Problemy i przykłady

Problem 5.11.1
Podatność cząsteczki benzenu

W rozdziale 4 (problem 4.6.2) pokazaliśmy, że makroskopowa symetria orto- 
rombowego kryształu benzenu redukuje liczbę niezerowych składowych każdego 
tensora drugiego rzędu do trzech składowych głównych. Tymczasem cząsteczki 
benzenu zajmują węzły o symetrii C,, wobec czego tensor K zawiera pełną liczbę, 
czyli sześć składowych różnych od zera. Dla uzyskania rozwiązań, tj. obliczenia 
K;j z musimy więc podnieść symetrię cząsteczki. Przedstawimy niżej dwie 
wersje rozwiązania tego zagadnienia.

a) Przyj mierny, że cząsteczka ma w krysztale sześciokrotną oś symetrii, prosto­
padłą do płaszczyzny wyznaczonej przez atomy węgla. Jak wykazaliśmy w p. 3.4, 
oś taka redukuje tensor drugiego rzędu do postaci

Ki 0 0
0 Kj 0

.0 0 K3

Równania wiążące K{ z Xt [równ. (4.11)] są następujące: 

(c?1 + c^)K1 + c]iK3 =Xa 

(c212 + c222)Kl + cj2K3 = Xb 

(c?3 + C23)^1 +c$3K3 = Xc

Przy oznaczeniach

powyższy układ równań możemy zapisać w postaci

MK = z
Układ zawiera trzy równania o dwóch niewiadomych; w rozwiązaniu żadnego z 
tych równań nie powinniśmy pominąć. W tej sytuacji na rozwiązania należy 
przyjąć takie wartości K(, dla których suma kwadratów błędów jest najmniejsza. Z 
takim sformułowaniem problemu zetknęliśmy się już w p. 2.6, wobec czego 
analogicznym rozwiązaniem będzie

K = (MrM)-1(MTx)

Mamy

(MTM) =
a + d l-d\
4~d d /
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oraz
d d-1 

3d-l 3d—1 
d-1 d+1 
3d^l 3d-l

gdzie

— ^31 + C32 + C33

Jeśli oznaczymy

Xa + Zt> + Xc = A
C31Za + C32Zb + C33Zc = B

to rozwiązania wyrażą się wzorami

dA — B _A(d-l) + 2B
K1 “ 3d-l 3 ~ 3d-l

Po podstawieniu danych z tab. 5.2 (nr 1) otrzymujemy

K1=K2 = -438,1 10"12 m3-mol“1

K3 = -1189,6-10-12 m3-mor1

(5.77)

Rozwiązanie powyższe zupełnie dobrze spełnia wyjściowy układ równań, z błędami 
|cr| < 4 oraz z sumą kwadratów błędów £ a2 = 1,7. Można jednak uważać, iż 
wybierając symetrię cząsteczki C6h posunęliśmy się trochę za daleko, ponieważ 
narzuciliśmy równość = K2, podczas gdy symetria kryształu takiego warunku 
nie wymaga.

b) W drugiej wersji przyjmiemy, źe cząsteczka ma w krysztale trzy wzajemnie 
prostopadłe dwukrotne osie obrotu, pokrywające się z osiami LMN. Przy takiej 
symetrii K ma postać

0 0
K2 0 
o K3

Układ równań (4.11) redukuje się do układu

Cl1Ki+C221K2+cl1K3 =Xa 

cLK1+c222 K2 + cl2K3 =xb 

c2sKv+c223K2 + c233K3 = Xc 
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który w pełni odpowiada liczbie stopni swobody kryształu i jednocześnie cząstecz­
ki. Korzystając ponownie z danych tab. 5.2 (nr 1), otrzymujemy rozwiązanie

Kj = —437 • 10“ 12 п^-тоГ1

K2 = —405-10“12 m^mol“1

K3 = - 1224-10“12 m^mol“1

podane w tab. 5.2 (nr 1). Obecnie uzyskane rozwiązanie jest, oczywiście, dokładne, 
tj. dla niego £ a2 = 0. Różni się ono od poprzedniego w pierwszym rzędzie tym, że

K2, a nadto wartość |K3| jest trochę większa od poprzedniej. Trudno 
rozstrzygnąć, czy różnice te są znaczące, czy też wynikają z błędów w pomiarach

Problem 5.11.2
Podatność cząsteczki heksachlorobenzenu

Heksachlorobenzen krystalizuje w układzie jednoskośnym, a komórka elemen­
tarna zawiera dwie cząsteczki. Grupa przestrzenna ma symetrię Pljc, przy czym 
dwukrotna oś śrubowa jest równoległa do osi b kryształu. Podobnie jak w 
strukturze benzenu, centrosymetryczne cząsteczki umieszczone są w centrach syme­
trii kryształu. Grupa symetrii węzła obejmuje więc dwie operacje

Gs э{£|000}, {Ct|000}

Grupę wymienną można wybrać na dwa sposoby

Gw3{£|000}, }C2y|0H} 

lub

Gw3’£|000}, !^|0H}

Z powodów przytoczonych już wcześniej wybierzemy pierwszą reprezentację. Sche­
matyczny rozkład cząsteczek w płaszczyźnie ab przedstawiony jest na rys. 5.20.

Rys. 5.20. Schematyczny rozkład cząsteczek w strukturze heksachlorobenzenu (rzut na płaszczyznę ah) 
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Operacjom grupy wymiennej odpowiadają macierze
/1 0 0\ /-1 0 0\

Aj = I 0 1 0 j A2 = I 0 1 0

\0 0 1 / \ 0 0 -1/

Przy symetrii węzła C, tensor molekularny zawiera sześć elementów niezerowych, 
podczas gdy tensor kryształu w układzie abc*

Zn 

0X =
Ut31

0 Zi3

Z22 0 

o Z33_

ma cztery niezerowe elementy. Dla rozwiązania problemu musimy i tu podwyższyć 
efektywną symetrię cząsteczki w krysztale. Nie byłoby jednak racjonalnie przypisać 
cząsteczce symetrię, odpowiadającą istnieniu osi sześciokrotnej, ponieważ spowo­
dowałoby to zbyt daleko posuniętą redukcję tensora t (problem 5.11.1). Zauważmy 
jednak, iż obecność sześciu względnie dużych podstawników może spowodować 
niewielkie odstępstwa od planarności całej cząsteczki. Mimo iż dotychczasowe 
wyniki analizy strukturalnej nie wskazują na to, przyjmiemy, iż środki atomów 
chloru odbiegają nieco od średniej płaszczyzny wyznaczonej przez atomy węgla, 
oczywiście, naprzemiennie. Cząsteczka ma wówczas symetrię <7V (rys. 5.21). W 
układzie Uj u2 u3 tensor K ma wówczas postać analogiczną do /

*11 0 *13 
0 K22 o

*31 0 K33

co prowadzi do układu równań
Cli *11+^21 *22 +cii *33 + 2cn c31 *13 = Zi cos2 0 + /2sin2 0

C12 *11 +C22 *22 +C32 *33 + ~C12 C32 *13 = Z3

c?3 *11 + ci3 K22 + cl3 K33 + 2c13 c33 X13 = Zi sin2 0 + Z2 coś2 6
Cu c13*i1 + c21c23 *22 + c31c33K33 + 2cii c33K13 = (zt-z2)sin0cos 0

Rys. 5.21. Cząsteczka heksachlorobenzenu: a) wszystkie atomy w płaszczyźnie, b) atomy chloru 
wychylone naprzemiennie (symulacja komputerowa)
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Korzystając z podatności kryształu i macierzy c podanych w tab. 5.2 (nr 12), 
otrzymamy rozwiązania

Ku = -1693• 10“12 m^mor1

K22 = —1640-10“12 m3-mol-1

K33 = -2227-10“12 m3-mol”1

K13 = + 44-10“12 m3-mol-1
Element K13 jest mały w porównaniu ze składowymi głównymi, ale różny od zera. 
Wskazuje to, że układ UjUjUj różni się trochę od osi symetrii LMN pierścienia 
benzenowego. Obrót wokół M||w2 sprowadza K do postaci diagonalnej; potrzebny 
kąt S możemy obliczyć z warunku

Kusin^cos^ —K13sin2<5 + K13cos2<5 —K33sin<5cos5 = 0
lub

Podstawiając wartości K^, otrzymujemy

<5 = -4,7° 
a główne wartości wynoszą

Kn = - 1704-10“12m3-mol"1

K22 = —1640-10“12 m3-mol“1

K33 = - 2217 ■ 10“12 m3-mol“1

Do wartości 5 trzeba odnieść się raczej krytycznie. Jest ona mała, bardzo zatem 
czuła na niewielkie różnice w podstawianych danych. Na przykład, wyniki innych 
autorów, zamieszczone również w tab. 5.2 (nr 13), prowadzą do wartości

<5 =-6,8° 
oraz

Kn = —1733• 10“12 m3-mol“1

K22 — —1620-10“12 m3-mol-1
K33 = -2208-10“12 т3-тоГ’

Niemniej jednak oba rozwiązania zdają się wskazywać na małą nieplanarność 
cząsteczki, odpowiadającą naprzemiennemu przesunięciu jąder atomów chloru od 
średniej płaszczyzny pierścienia na odległości rzędu 0,03 nm.

Przykład 5.11.3
Osie symetrii LMN cząsteczki antracenu

W celu znalezienia orientacji osi LMN cząsteczki antracenu względem krawę­
dzi komórki elementarnej wykorzystamy współrzędne atomów węgla, podane w 
pracy Masona [60]. Po przeliczeniu współrzędnych do abc* otrzymujemy w tym 
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układzie cztery wektory jednostkowe, poprowadzone przez odpowiednie pary 
atomów, o kierunkach zbliżonych do M, a mianowicie (oznaczenia atomów 
podane są w tab. 5.2, nr 29)

a b c*

AG' -0,32865 -0,88855 -0,32009
BF' -0,32416 -0,89149 -0,31650
CE' -0,31957 -0,89482 -0,31171
DD' -0,31936 -0,89592 -0,30876

Stąd średni kierunek M

<M> =(-0,32294 -0,89270 -0,31426)

Kierunek normalny do płaszczyzny cząsteczki, znaleziony z równania najlepszej 
płaszczyzny, ma składowe

,/V = (0,80935 -0,42867 0,40149)

Nieortogonalność średniego kierunku M do N jest nieduża

(My-N = -0,00485

Kąt między tymi wektorami, <5, wynosi

<5 = 90°+ 0,279°

Poprawniony kierunek M

M = y cos (ó — 90) + N sin (<5 — 90)

ma, po znormalizowaniu, następujące kosinusy kierunkowe

M = (-0,3190 -0,8948 -0,3123)

Pełna tabela orientacji osi cząsteczki antracenu, cA, jest następująca:

/ — 0,4931 -0,1247 0,8610 \
cA = I -0,3190 -0,8948 -0,3123 I

\ 0,8094 - 0,4287 0,4015/

Z porównania elementów tej macierzy z oryginalną tabelą Masona, ę^, wynika, że 
różnice nie przekraczają l°/0. Przy zwykle potrzebnej dokładności obliczeń nie ma 
to wpływu na wartości co ilustruje następująca tabela:

X, Lasheen [32] 
c^, Mason [60] 
/, Lasheen [32] 
cA, przybliż.

KL KM KN

-908 -922 -3071 x 10’12 m3-mol“1

-908 -922 -3071 x 10’12 m3 • mol’1
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Przykład 5.11.4
Główne podatności magnetyczne cząsteczki kwasu barbiturowego

Obliczając główne podatności cząsteczki kwasu barbiturowego z danych dla 
kryształu, trzeba uwzględnić fakt, że komórka elementarna zawiera 4 cząsteczki 
kwasu i 8 cząsteczek wody (tab. 5.2, nr 35). Zgodnie z tymi danymi na jedną 
cząsteczkę kwasu przypadają dwie cząsteczki wody. Ponieważ obie mają współ­
rzędne symetrycznie niezależne, musimy udział każdej z nich w podatności komór­
ki elementarnej napisać z osobna. Oznaczając przez KB cząsteczkę kwasu, a przez 
WI i WII cząsteczki wody, mamy w układzie abc zgodnie z modelem gazu 
zorientowanego

Z(KB-2W) = X(KB) + Z(WI) + x(WII) =
1 4 1 4 1 4— - ' V elk}T K c(k) - + - ’ y c^T K c(k) 1 + - f y K cw 1 (5 79)— . ( / . VKB nKBvKB| ,1'4 ewi nwvwi i • A ( Zj vwii ^w^-wii)
4 k = 1 4 k = 1 4 k= 1

Tabela kosinusów kierunkowych osi 1, 2, 3 cząsteczek wody jest typu (tab. 5.2, nr 
36)

je ° f \
Cw = I / 0 -ej 

\0 1 0 /

Stąd, po uwzględnieniu elementów symetrii grupy wymiennej (mmm), suma dla 
ośmiu cząsteczek wody I redukuje się do wyrażenia

e,2K1+^2K2 0 0
X(WI) = 0 *3 0

0 0 /2K1+e2K2_
(5.80)

Analogiczny wynik otrzymamy dla cząsteczek WII. Udział podatności cząsteczek 
wody w podatności komórki elementarnej wynosi zatem numerycznie

X(WI) + x(WII) =
-323 

0 
0

0
-319 

0

o o
-325

•10 12 m3 - mol 1

W obliczeniach skorzystaliśmy z dokładniejszych podatności cząsteczek wody, 
podanych przez Yen-Chi Pana i Hamekę [70].

Podatności molowe kryształu „bezwodnego”, w którym cząsteczki kwasu bar­
biturowego zachowują swe oryginalne orientacje, wynoszą

“ — 591 0 0
z(KB) = 0 -819 0 ■1012 ny-moU1

0 0 — 582_
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Obliczone stąd podatności KL, KM, KN (tab. 5.2, nr 36) są równe
”-634,7 0 0

K = 0 -542,2 0 •10 12 m3 - mol
0 0 - 819,3 _

Wobec prawie izotropowego udziału cząsteczek wody w ogólnej podatności ko­
mórki elementarnej, sekwencja długości osi KL, KM i KN kwasu jest taka sama, 
jak w wynikach Lasheena. Podatności te są jednak znacznie mniejsze niż podane 
w pracy [17].

Problem 5.11.5
Zasada addytywności tensora molekularnego: 1,5-dinitronaftalen

Tensor K cząsteczki 1,5-dinitronaftalenu możemy złożyć z tensora podatności 
rdzenia naftalenowego, Hr, podanego w układzie LMN [58]

”-684,8 0 0
Hr = 0 -663,6 0 • 10 12 m3 - mol

0 0 -2181,3_

oraz z tensora podatności grupy nitrowej, hn, zadanego w lokalnym układzie uvw 
[58]

h
+ 73,3 -97,7 +4,1

+ 22,1 -72,6
-351,1

■10“12 m^mor1

Przykład ten zaczerpnięty został z pracy [58]. Schematycznie cząsteczka przedsta­
wiona jest na rys. 5.22. Orientacje obu układów osi molekularnych względem abc* 
w krysztale 1,5-dinitronaftalenu przedstawiają macierze

/ 0,2132 
c(LMN) = ( 0,8867 

\-0,4102

-0,8982 
0,3431 
0,2749

0,3845
0,3098
0,8696

Rys. 5.22. Cząsteczka 1,5-dinitronaftalenu (schematycznie)
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oraz

/—0,4799 0,7904
c(uvw) = i —0,8535 —0,3202 

\- 0,2029 -0,5223

0,3808 \
-0,4111 I

0,8282 /

obliczone w pracy [58] na podstawie współrzędnych atomów [57]. Uwzględniając 
fakt, że cząsteczka ma centrum symetrii, mamy na podstawie modelu gazu 
zorientowanego

Hm = c(LMN)Hrc(LMNY + 2c(uvw)hnc(uvw)T (5.81)

w układzie abc*. Po dokonaniu obliczeń otrzymujemy tensor cząsteczki

1091,6 85,8
-847,2 •10~12 m^moU1

-2101,9

Po sprowadzeniu do osi głównych

-911,3
-620,7 • 10 12 m3 - mol 1

-2509,1

przy czym orientację K, w abc* określa macierz
/ 0,4282 -0,8812 0,2010 \ 

cjKt K2K3) = ( 0,7717 0,4722 0,4260 I

\-0,4703 -0,0273 0,8821 /
Wyniki te są zamieszczone w tab. 5.2, nr 27. Osie różnią się orientacją od 
LMN o kilka stopni z powodu nieplanarności całej cząsteczki.

Dodawanie tensorów podstawników i rdzenia wykonaliśmy po sprowadzeniu 
wszystkich tensorów do układu abc*. Oczywiście, dodawanie to możemy wykonać 
w każdym innym układzie, np. w LMN. W takim przypadku trzeba użyć macierzy 
a takiej, że np. a23 = cos (M, w)

/-0,6658 - 0,0524 0,7443
a = I -0,0364 -0,9940 -0,1025 

\ 0,7453 -0,0954 0,6599

Mamy wówczas
ą, = Hr + 2ahX (5.82)

W układzie osi głównych

911,1
-621,0 •10’12 n^-mol“1

- 2508,2_

Wynik ten jest zupełnie zgodny z poprzednim.
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Zauważmy na koniec, że diagonalizacja w pełnej postaci prowadzi, oczy­
wiście, do wyznaczenia długości i orientacji osi głównych tensora molekularnego 
K. Gdybyśmy zastosowali do Hm operacje grupy wymiennej i dodali do siebie 
tensory, odpowiadające obu cząsteczkom w komórce elementarnej, otrzymalibyś­
my — zgodnie ze znanymi już zasadami — tensor y kryształu w abc*

abc*

l(abc*) =
-1091,6 0

-847,2
757,8 

0
-2101,9_

• 10 12 m3 • mol 1

Diagonalizacja macierzą

1 -0,4719 0 0,8817
2 0,8817 0 0,4719
3 0 1 0

sprowadza i(abc*) do osi głównych

- 2507,8
-685,9 •10’12 m3-mol-1

— 847,2

Wynik ten zgodny jest z wartościami doświadczalnymi y, podanymi w tab. 5.2, nr ' 
27.

Problem 5.11.6
Zasada addytywności tensora molekularnego: 1,8-dinitronaftalen

Korzystając z tensora podatności rdzenia naftalenowego i grupy nitrowej, 
podanych w problemie 5.11.5, oraz z danych strukturalnych zawartych w tab. 5.2 
(nr 28), możemy obliczyć tensor podatności cząsteczki 1,8-dinitronaftalenu w 
układzie abc tego kryształu (układ ortorombowy). Obie grupy nitrowe tej cząstecz­
ki należy potraktować jako niezależne, ponieważ nie ma relacji symetrii między 
położeniami atomów N'O'O2 i N2O3O4. Zatem

Hm = c (LMN) Hrc (LMN)T + c (uj vT wj hn c vr wj7 + c (m2 v2 w2) hn c (u2 v2 w2)T
(5.83)

Po wykonaniu dodawania otrzymujemy

-2145,7 -256,6 559,4
-745,5 353,3 • 10" 12 m3 • mol” 1

-1149,0
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Wartości i wektory własne Hm są następujące

- 1022,2
K = -537,3

-2480,7
■1012 m^mor1

c(KiK2K3) =
/—0,4756 0,4908
I 0,0511 0,8439

\ 0,8782 0,2167

- 0,7300 \
0,5341 1

-0,4264 /
Główne podatności cząsteczki 1,8-dinitronaftalenu są trochę inne niż 1,5-dinitro- 
naftalenu — największe różnice dotyczą i K2, leżących w przybliżeniu w 
płaszczyźnie cząsteczki. Składowe diagonalne Hm stanowią bezpośrednio główne 
podatności kryształu.
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6. WŁAŚCIWOŚCI OPTYCZNE

Przedmiotem naszego zainteresowania w niniejszym rozdziale będą właściwości 
optyczne ośrodka anizotropowego, będącego dia- lub paramagnetykiem i prakty­
cznie nie przewodzącego prądu elektrycznego. Naszym celem będzie podjęcie 
próby wyjaśnienia makroskopowych właściwości kryształu poprzez właściwości 
samych cząsteczek i ich rozmieszczenie w komórce elementarnej — podobnie, jak 
to czyniliśmy w opisie diamagnetyzmu. Poświęcimy też trochę uwagi metodom 
pomiaru dwójłomności, ponieważ wielkość ta budzi zainteresowanie ze względu na 
postęp, jaki się dokonał w interpretowaniu wpływu temperatury na zmiany tej 
wielkości. Czytelnikowi, zainteresowanemu jeszcze innymi problemami z dziedziny 
optyki, warto zarekomendować znakomite wykłady na poziomie akademickim 
Crawforda [1] lub Feynmana [2] (zob. też [3]). Bardziej zaawansowany wykład z 
optyki kryształów można znaleźć w monografiach Nye’a [4] oraz Borna i Wolfa 
[5].

6.1. Fala elektromagnetyczna w ośrodku anizotropowym

Rozchodzenie się fali elektromagnetycznej w ośrodku materialnym opisują 
równania Maxwella

dD
rotH =j + —

rot E =
dB 
~8t~

(6.1)

(6.2)

przy czym E i H oznaczają odpowiednio wektory natężenia pól elektrycznego i 
magnetycznego sprzężonych z ruchem fali, D jest wektorem indukcji elektrostaty­
cznej, B — wektorem indukcji magnetycznej, j oznacza zaś gęstość prądu przewo­
dzonego. Interesować nas będą wnioski, wynikające z tych równań dla fali płaskiej 
danej związkiem

E = Eo exp {ia> (t — r- l/v)} (6.3)
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Zakładamy przy tym, że fala rozchodzi się w ośrodku o następujących właściwoś­
ciach:

1) ośrodek nie przewodzi prądu elektrycznego, zatem j = 0,
2) ośrodek jest dia- lub paramagnetykiem, zatem n = 1.
W równaniu fali (6.3) cu jest częstością kątową drgań wektora E, v jest 

prędkością fazową fali, / jest zaś wektorem normalnym do powierzchni określonej 
fazy, tj. do takiej powierzchni, której wszystkie punkty mają w ruchu drgającym 
takie same wychylenia, skierowane w tę samą stronę. Jeśli z dowolnego punktu O 
wykreślimy wektor r zakończony na powierzchni określonej fazy n (rys. 6.1), to

r • l = const = ON

jest równaniem tej powierzchni, a 
kierunku /.

v określa prędkość jej przesuwania się w

Rys. 6.1. Powierzchnia stałej fazy

Przy tych założeniach równania Maxwella zyskują postać

8D „ dH
rotH = — rotE=-^0 — (6.4)

ot ot

przy czym, ju0 jest bezwzględną przenikalnością magnetyczną próżni. Jeśli teraz 
skorzystamy ze związku (6.3) i rozpiszemy rot E, to po scałkowaniu po czasie 
drugiego z równań (6.4) otrzymamy

p.0H = -lxE (6.5)
v

oraz
H = Ho exp {ico(t — r ■ l/v)} (6.6)

Szczegóły tego rachunku można znaleźć w monografii Nye’a [4]. Z równania (6.6) 
wynika, że w dielektryku H ma również postać fali płaskiej. Kierunek drgań H w 
każdym punkcie powierzchni n jest prostopadły do kierunku drgań E, tak że H, l i 
E tworzą trójkę prawoskrętną.

Jeśli postąpimy podobnie z pierwszym z równań (6.4), to otrzymamy

D=--lxH (6.7)
v

czyli -D, l i H tworzą również trójkę prawoskrętną. Wzajemną orientację
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wszystkich wektorów, opisujących stan fali elektromagnetycznej, przedstawiono w 
sposób poglądowy na rys. 6.2. Warto zauważyć, że w ośrodku anizotropowym D i E 
na ogół nie są równoległe; kąt zawarty między nimi oznaczyliśmy przez a jego 
wielkością i znaczeniem fizycznym zajmiemy się nieco dalej w tym rozdziale. 
Ponieważ założyliśmy p = 1, wektor B jest, oczywiście, równoległy do H. Zazna­
czony na rysunku wektor Poyntinga, S, określa kierunek przepływu strumienia 
energii, przenoszonej przez falę. Przepływ ten następuje z prędkością u inną, na 
ogół, niż prędkość fazowa v.

b)

Rys. 6.2. Przestrzenne związki między wektorami opisują­
cymi stan fali elektromagnetycznej

Najważniejszy dla nas wniosek, który wynika z równań Maxwella dla rozcho­
dzenia się fali elektromagnetyc?nej w ośrodku anizotropowym, otrzymamy przez 
połączenie równań (6.5) i (6.7). Ma on następującą postać:

D =---- ^/x(łxĘ (6.8)

Rozpisanie równania (6.8) według tożsamości

Ax(BxQ = B(AC)-C(AB) 

prowadzi do równania
D =---- ^{1(IE)-E}

Po”
(6.9)

Wyprowadzając równanie (6.9) korzystaliśmy jedynie z równań Maxwella i 
kształtu fali (6.3). Jeśli chcemy obliczyć składowe E fali w ośrodku anizotropowym, 
to musimy wprowadzić do równ. (6.9) związek między wektorami D i E

D = £oeE (6.10)
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w którym e0 jest bezwzględną przenikalnością dielektryczną próżni, £ jest zaś 
tensorem względnej przenikalności dielektrycznej ośrodka dla częstości optycznych, 
czyli tensorem tzw. optycznej przenikalności dielektrycznej. Najbardziej czytelną i 
dającą się łatwo interpretować postać równ. (6.9) otrzymamy wtedy, gdy napisze- 
my równ. (6.10) w układzie osi głównych e; mamy mianowicie

oraz

£o£;-
1 A 1

2 ----------2
Atof

I^IE) = 0

(6.11)

(6.12)

D, = £0 £i Ei

W celu zanalizowania równ. (6.12) wybierzmy sobie jakiś prosty kierunek /. Niech, 
na przykład, / = [100], czyli niech l będzie równoległy do osi tensora e. Kładąc 
kolejno i = 1, 2, 3, otrzymamy trzy równania dla składowych E

' 1
£0 £1 2

1^0 »
E^ 4------y — 0

1 V -O 

£0£2 2 l^2 — 02 7
(6.13)

i
£0 £3----------- 2

W)»
£3 = 0

Pierwsze z tych równań prowadzi do wniosku, że E^ = 0, logicznego z fizycznego 
punktu widzenia: nie może istnieć składowa natężenia pola elektrycznego w 
kierunku propagacji fali. Z pozostałych dwóch równań wynika natomiast, że

^ = (£o^o£k) 1/2 k = 2, 3 (6.14)

Przy kierunku padania wzdłuż /[100] możemy więc mieć w krysztale dwie fale: w 
jednej z nich kierunek drgań E jest równoległy do e2, w drugiej do e3, a prędkości 
określone są związkiem (6.14). Stany polaryzacji tych fal przedstawiono na rys. 6.3.

Rys. 6.3. Dwa możliwe stany polaryzacji fali o 
normalnej I, skierowanej wzdłuż osi X, indyka- 
trysy
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Dwa możliwe stany polaryzacji otrzymamy również przy kierunku padania l [010] 
lub /[001].

Jeśli zauważymy, że
(«0 Ho) V2 = f (6.15)

gdzie c jest prędkością światła w próżni, to związki typu (6.14) można zapisać jako 
definicje trzech głównych współczynników refrakcji kryształu

(c \2£. = - = nj i = 1, 2, 3 (6.16)
\vi J

Powierzchnia rozpięta na trzech wzajemnie ortogonalnych wektorach, których długoś­
ci równe są odpowiednio nY, n2 i n3 jest elipsoidą wielkości i nosi nazwę indykatrysy. 
Równaniem tej powierzchni jest

(6.17)

Trzeba podkreślić, że współczynnik refrakcji nie ma właściwości tensorowych, 
ponieważ n^ n2, n3 nie transformują się przy zmianie układu współrzędnych 
zgodnie z regułami, właściwymi dla składowych tensora. Mimo to termin: „współ­
czynnik refrakcji w określonym kierunku” ma sens, a jego określeniem zajmiemy 
się w następnym rozdziale. Tensorem jest natomiast przenikalność dielektryczna, e.

6.2. Indykatrysa

Przy końcu poprzedniego paragrafu wprowadziliśmy pojęcie indykatrysy, tj. 
powierzchni rozpiętej na trzech głównych współczynnikach refrakcji nlt n2, n3. 
Współczynniki te odmierzamy na trzech osiach ortogonalnego układu współrzęd­
nych X2X3, zwanych osiami głównymi indykatrysy. Są to zarazem osie główne 
tensora względnej przenikalności dielektrycznej ośrodka, a

Współczynniki refrakcji są zawsze dodatnie i — z wyjątkiem szczególnych 
obszarów widma promieniowania elektromagnetycznego, gdzie występuje dyspersja 
anomalna — są również większe od jedności. W obszarach dyspersji anomalnej, 
sprzężonej z silną absorpcją promieniowania, współczynnik refrakcji staje się liczbą 
zespoloną. W niniejszym paragrafie pominiemy te obszary widma i będziemy 
uważać, że indykatrysa ma kształt elipsoidy trójosiowej o długościach półosi 
większych od jedności. Elipsoidę, w której każda z osi ma inną długość, przedsta­
wiono na rys. 6.4.

Położenie dowolnego punktu P{X1X2X3) na powierzchni elipsoidy określają 
trzy współrzędne lub wektor wodzący r. Definiujemy długość |r| jako
wartość współczynnika refrakcji w kierunku r, określonym wektorem jednostko­
wym /(cos«/?! cosę?2 cos<p3)

Nt = |r| (6.18)
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Na tej podstawie mamy

= |r|

Rys. 6.4. Indykatrysa o trzech różnych osiach

Korzystając z równania indykatrysy jako elipsoidy wielkości (6.17), możemy 
napisać ciąg równości

£

; i fil i Hi

Stąd

l = _L = y£
r2 N2 7 n?

czyli
/ /2\-l/2Z4 (619)
\ i ni /

Równanie (6.19) określa wartość współczynnika refrakcji w kierunku l, zadanym 
względem osi głównych indykatrysy. Widzimy, że równ. (6.19) znacznie się różni 
od wyrażenia dla wartości Tt wielkości tensorowej [p. równ. (2.44)]

i

Przy zadanym kierunku l każdy prostopadły do niego i centralny (tj. przecho­
dzący przez początek układu współrzędnych) przekrój indykatrysy jest elipsą; w 
szczególnym przypadku może być okręgiem. Długości półosi tej elipsy równe są 
współczynnikom .refrakcji N] i N2 (rys. 6.4), określającym prędkości fal o dwóch 
możliwych stanach polaryzacji: D||^i i £>||^2- Promieniowanie o kierunku D 
pośrednim między N1 i N2 nie może rozchodzić się w krysztale: fala ulega 
rozszczepieniu na dwie wiązki o stanach polaryzacji DJI^i i ^2l|N2, poruszające 
się w krysztale niezależnie od siebie.

Te właściwości indykatrysy można pokazać również analitycznie. Zastosujmy w 
tym celu równanie (6.12) do trochę prostszego przekroju, pokazanego na rys. 6.5.
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Wektor l wybieramy w kierunku l(cosq> sinę; 0); wtedy równ. (6.12) dla i = 1, 2 
ma postać

e0 e; - E, H------ y /,• (cos <pEr + sin cpE2) = 0 (6.20)

natomiast dla i = 3

2
Po»

(6.21)

Rys. 6.5. Składowe wektora D fali poruszającej się w 
kierunku normalnej l do powierzchni stałej fazy

Trzecie równanie od razu prowadzi do już nam znanego wyniku

H 2 
e3 = — = «3\v3J

Jeśli do pierwszych dwóch równań wprowadzimy oznaczenie

(e0 u2)~1 = G = c2/v2 = N2 (6.22)

to po przegrupowaniu wyrazów otrzymamy dwa równania jednorodne ze względu 
na Et

(gj — G sin2 (p) Er + G sin <p cos <pE2 = 0
(6.23)

Gsin ę?cos tpEj +(e2 —Gcos2<p)E2 = 0
Przyrównanie do zera wyznacznika charakterystycznego tego układu prowadzi do 
wyrażenia

1 = ± = + (6.24)

Według równania (6.19) wyrażenie (6.24) przedstawia współczynnik refrakcji w 
kierunku AB, leżącym w linii przecięcia płaszczyzny jednakowej fazy płaszczyzną

X2 (rys. 6.5). Podstawienie G z równ. (6.24) do któregokolwiek z równań (6.23) 
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prowadzi do równości

sin (p cos ę> 
czyli

AO = OB

Składowe D wzdłuż linii AB są sobie równe, a ich zwroty przeciwne; kierunek AB, 
pokrywający się z jedną z osi przekroju eliptycznego, determinuje więc jeden z 
możliwych kierunków drgań wektora D. Drugi kierunek, zgodnie z równ. (6.21), 
równoległy jest do X3.

Spośród różnych przekrojów centralnych indykatrysy szczególne znaczenie 
mają jej przekroje kołowe. Zależnie od tego, czy indykatrysa jest elipsoidą 
trójosiową, elipsoidą obrotową, czy też kulą, ma odpowiednio dwa takie przekroje, 
jeden lub nieskończenie wiele. Przekrój kołowy determinuje położenie płaszczyzny 
optycznej izotropii w krysztale, tj. takiej płaszczyzny, że w każdym kierunku na niej 
leżącym współczynnik refrakcji jest taki sam. Normalna do niej zwana jest osią 
optyczną kryształu. Biegnąca przez kryształ fala o normalnej l równoległej do osi 
optycznej nie ulega podwójnemu załamaniu i przechodzi przez ośrodek bez zmiany 
kierunku przy dowolnym stanie polaryzacji. Te właściwości kryształów stanowią 
podstawę ich klasyfikacji na optycznie dwuosiowe, jednoosiowe i izotropowe, 
zależnie od symetrii. Szczegóły tego podziału nie będą tu przedmiotem bliższych 
rozważań. Zainteresowanego nimi Czytelnika odsyłamy do literatury podanej we 
wstępie do tego rozdziału oraz do pracy [6]. Obecnie zajmiemy się trochę bardziej 
szczegółowo analizą biegu wiązki promieniowania spolaryzowanego w krysztale 
anizotropowym. Problem ten ma ważne znaczenie w spektroskopii kryształów, co 
omówimy w rozdz. 7.

Rozważmy właściwości płytki krystalicznej, przedstawionej na rys. 6.6. Przy­
puśćmy, że płytka wycięta jest z kryształu jednoskośnego, jej płaszczyzna ma

Rys. 6.6. Dopuszczalne stany polaryzacji fali przechodzącej 
przez płytkę wyciętą równolegle do płaszczyzny (001); a, 

oraz c leżą w jednej płaszczyźnie nt 
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wskaźniki (001). Płytkę tę przecina prostopadła do niej płaszczyzna w której 
leżą główne współczynniki refrakcji n1 i n3 oraz oś krystalograficzna c, a ślad jej 
przecięcia się z płaszczyzną (001) jest równoległy do osi krystalograficznej a. Drugą 
płaszczyznę jc2 wybieramy tak, by przechodziła przez n2||b i normalną do płytki, 
.x3. Pozostałe osie układu odniesienia x( i x2 są odpowiednio śladami przecięcia 
i n:2 z płaszczyzną (001). Kąt zawarty między i xt oznaczamy przez <p; określa 
on orientację osi głównych indykatrysy w przekroju (010).

Przypuśćmy teraz, że na tę płytkę pada liniowo spolaryzowana, płaska fala 
elektromagnetyczna. Jeśli l jest wektorem jednostkowym wzdłuż D i określającym 
jego orientację w układzie n^, n2, n3, to składowe tego wektora w powietrzu 
wynoszą

D^l^DlJ

W krysztale wektor D ma składowe takie same, ponieważ wektor indukcji nie 
doznaje nieciągłości przy przejściu przez granicę między dwoma ośrodkami. Nato­
miast składowe E w krysztale wynoszą

E(W(^t) ^2/(eOe2) D13/(e0£3))
i są, oczywiście, inne niż w powietrzu. W krysztale oba wektory zawierają między 
sobą kąt £ (rys. 6-7)- Ten sam kąt zawarty jest między — x3 i kierunkiem 
promienia w krysztale. Z iloczynu skalarnego otrzymujemy

s DE ZO^t))
cosę |D||E| EUW^.2))}1^

zatem
Z™2

cos^ £(A2)2]1/2 6,25

Rys. 6.7. Orientacja wektorów D i E fali przechodzącej przez płytkę wyciętą równolegle do płaszczyzny 
(001)

Znajomość głównych współczynników refrakcji oraz orientacji D względem n; 
pozwala obliczyć odchylenie wiązki promieniowania w krysztale. W eksperymencie 
interesują nas na ogół proste sytuacje geometryczne, przy czym z reguły wybiera­
my prostopadłe padanie wiązki. Jeśli ponadto żądamy, by w krysztale wiązka nie 
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uległa rozdwojeniu, to możemy mieć tylko dwie dopuszczalne orientacje D dla 
'każdej płytki anizotropowej. W odniesieniu do rys. 6.7 orientacje te są następujące:

1. Dl^: wtedy l(cos(p 0 — sin <p). Wewnątrz kryształu wektor E zawiera kąt £ 
z x1||D, lecz w czasie przechodzenia fali przez kryształ pozostaje stale w płaszczy­
źnie xt x3, tj. stanowi jedną wiązkę promieniowania o określonej prędkości tak w 
krysztale, jak i poza nim. Przy zadanych wartościach nr i n3 zależy tylko od <p. 
Łatwo się przekonać przez obliczenie pochodnej wyrażenia (6.25) i przyrównanie 
jej do zera, że maksymalne odchylenie wiązki nastąpi dla kąta cp = 45°. Wynosi ono

(COS Omax
i/nj + l/nj

2 y^ + i/nT1 (6.26)

Jeśli przyjmiemy dla przykładu nr = 1,5 i n3 = 2,U, to otrzymamy ćmax = 15,6°. Tak 
dużych wartości nie spotyka się w praktyce — w większości przypadków kąt £ nie 
przekracza kilku stopni. Odchylenie wiązki jest jednak znaczące, a zaniedbanie tego 
efektu w spektroskopii kryształów molekularnych prowadzi do wyraźnych rozbieżnoś­
ci między wynikami teorii i eksperymentu (por. rozdz. 7).

2. D||x2, czyli /(010). W tym przypadku

cos £ = 1 (6.27)

Stan polaryzacji i kierunek E w powietrzu zachowują się po wejściu wiązki do 
kryształu.

Wniosek ten ma znaczenie ogólne: jeśli wektor D fali elektromagnetycznej, 
padającej prostopadle na powierzchnię próbki, jest równoległy do którejkolwiek z 
osi głównych indykatrysy, to odchylenie wiązki w krysztale nie występuje.

Rys. 6.8. Przesunięcie s punktu wyjścia O" wiązki promienio­
wania, przechodzącej przez płytkę dwójłomną

Odchylenie wiązki może być również obserwowane bezpośrednio w prostym 
eksperymencie [7] (rys. 6.8). Umieszczamy płytkę krystaliczną na stoliku obroto­
wym mikroskopu polaryzacyjnego i oświetlamy ją przez mały otworek O, wykona­
ny w nieprzezroczystej folii. Obracając stolikiem zauważymy na ogół dwie plamki 
światła, O' i O". W pewnym położeniu płytki jasność obu plamek będzie jednako­
wa; w takim położeniu główne płaszczyzny optyczne płytki tworzyć będą kąt 45° z 
płaszczyznami optycznymi mikroskopu („położenie 45°”). Odległość obu plamek 
może być zmierzona za pomocą mikrometru okularowego. Jeśli ten odstęp ozna­
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czymy przez s, to z rys. 6.8 wynika, że

tg£=s/J0 (6.28)
przy czym <70 jest rzeczywistą grubością płytki. Obie wielkości w równ. (6.28) są 
mierzalne, wobec czego i, może być wyznaczony doświadczalnie. Zauważmy, że dla 
wiązki biegnącej jak na rys. 6.7 długość drogi w krysztale wynosi nie d0, lecz

d = d0/cos ć, (6.29)

6.3. Dwójłomność kryształów

Przez dwójłomność płytki krystalicznej rozumiemy różnicę dwóch ekstremalnych 
współczynników refrakcji tej płytki, leżących w jej płaszczyźnie. Jest to więc różnica 
między połowami długiej i krótkiej osi elipsy, stanowiącej centralny przekrój 
indykatrysy płaszczyzną płytki. W najprostszym przypadku, gdy płytka wycięta 
jest prostopadle do jednej z osi głównych indykatrysy, nk, o osiach nit nj, nk, 
dwójłomność jest równa

B^ = nt — nj (6.30)

Dwójłomność tak zdefiniowana może być liczbą dodatnią lub ujemną. W doświad­
czeniu mierzymy jednak zawsze B^, które jest liczbą dodatnią. Do rozstrzygnięcia 
znaku służą metody opisane w monografiach, zajmujących się zastosowaniem 
mikroskopu polaryzacyjnego do badania optycznych właściwości kryształów, np. 
[8]. Z każdego kryształu możemy wycinać płytki, których dwójłomność będzie 
wzrastać od zera do pewnej maksymalnej wartości, określonej wielkościami n(, nj, 
nk.

Dwójłomność jest wielkością fizyczną, którą zajmujemy się z dwóch wzajemnie 
od siebie zależnych powodów:

a) Istnieją stosunkowo nieskomplikowane metody doświadczalne, pozwalające 
mierzyć różnice współczynników refrakcji z dokładnością o wiele przewyższającą 
dokładność konwencjonalnych metod pomiaru samego współczynnika refrakcji;

b) Wskutek dużej czułości metod pomiaru B możliwe jest dokładniejsze rozpo­
znanie właściwości optycznych ośrodka, na przykład udziału dwójłomności koło­
wej w ogólnej eliptycznej dwójłomności badanej płytki. O dwójłomności kołowej 
mówimy wtedy, gdy promień padający w określonym kierunku i spolaryzowany 
kołowo lewoskrętnie rozchodzi się w krysztale z prędkością inną niż promień 
padający w tym samym kierunku, lecz spolaryzowany kołowo prawoskrętnie. 
Możliwość pomiaru bardzo drobnych zmian dwójłomności pozwala na badanie 
wpływu czynników zewnętrznych na właściwości optyczne, takich jak temperatura, 
ciśnienie, a nawet przyłożenie pola elektrycznego.

Wielkością pokrewną dwójłomności jest różnica dróg optycznych

= M; d — njd = Bij d (6.31)

Wiązka promieniowania padająca wzdłuż ek o wektorze E||£; porusza się z 
prędkością vt, inną niż wiązka o E||£j. W miarę przechodzenia przez coraz większą 
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grubość kryształu rośnie wzajemne opóźnienie jednej wiązki względem drugiej

d d d 1
r =-------= -(«,- n,) = - Bt: d (6.32)Vi Vj c c

Z opóźnieniem związana jest różnica faz, z jaką obie wiązki opuszczają kryształ. 
Ponieważ fala płaska wytwarza w punkcie x różnicę faz (2nx)/A względem począt­
ku układu współrzędnych 0, mamy

/ 1 1 \ o

$ = 2nd --- \ = ^BiJd (6.33)
Aj j

gdzie Ao jest długością fali w próżni wiązki padającej. Z tych definicji będziemy 
korzystali w dalszej dyskusji.

Rys. 6.9. Interferencyjna metoda pomiaru dwójłomności

b)

/< = 774-1 77+2 m+3 H

Najprościej, choć niezbyt dokładnie, można mierzyć B^ metodą interferencyjną 
przedstawioną na rys. 6.9a. Na układ złożony z dwóch skrzyżowanych filtrów 
polaryzacyjnych, polaryzatora P, analizatora A oraz z płytki dwójłomnej K, 
umieszczonej prostopadle do biegu wiązki i w położeniu 45°, pada promieniowanie 
monochromatyczne o długości fali A, dającej się zmieniać. W zakresie A odpowied­
nio dobranym do grubości płytki i dwójłomności dwie wiązki, opóźniane w różny 
sposób, interferują z sobą po sprowadzeniu ich przez A do jednakowego kierunku 
drgań. W wyniku interferencji natężenie I wiązki opuszczającej A jest periodyczną 
funkcją A (rys. 6.9h). Maksima natężenia występują dla takich długości fali, dla 
których różnica długości dróg jest parzystą wielokrotnością połowy długości fali

(n; — n;) d = mA m = 1, 2, ...
Stąd kolejnym maksimom odpowiadają liczby falowe

m
- nj) d

(6.34)

(6.35)

Znajomość rzędu interferencji, czyli bezwzględnej wartości m, nie jest nieodzowna, 
ponieważ zależność v(m) jest liniowa niezależnie od początkowej wartości m. 
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Występowanie w krysztale silnych pasm absorpcyjnych w badanym przedziale, 
liczb falowych może spowodować odstępstwo niektórych punktów od linii prostej 
ze względu na anomalną dyspersję.

Często się zdarza, że dwójłomność płytki jest zbyt mała lub zbyt duża do 
wykonania pomiarów. W takich przypadkach pomocne jest sklejanie próbki z 
płytką dodatkową w położeniu addytywnym lub substraktywnym. Pierwszy spo­
sób opisany został przez Wardzyńskiego w związku z pomiarami małej dwójło- 
mności [9], indukowanej w kryształach pod wpływem naprężeń mechanicznych.

Rys. 6.10. Kompensacja dwójłomności płytki

Drugi sposób, przedstawiony w pracy [10], pokazany jest schematycznie na rys. 
6.10. Badana płytka o grubości ds sklejona jest z płytką pomocniczą o grubości dc, 
wyciętą na przykład z kalcytu. Kierunki główne obu płytek muszą leżeć odpowied­
nio we wspólnych płaszczyznach, ponadto kierunek szybszego promienia w jednym 
krysztale powinien przypadać na kierunek wolniejszego w drugim. Użycie kalcytu 
jako płytki pomocniczej ma tę zaletę, że współczynniki refrakcji tego kryształu 
słabo zależą od temperatury [1]

= 1,6544 + 0,19 10"5

= 1,4846+1,18 • 10“5

dla długości fali 2 = 656,3 nm i temperatury t °C. Współczynnikami refrakcji w 
płaszczyźnie płytki, uzyskanej przez wykorzystanie naturalnych płaszczyzn łupli- 
wości, są co, i e't

/ 2 -2
COS cp Sin (p -1/2

(6.36)

przy czym cp = 45,38° jest kątem między trójkrotną osią symetrii i płaszczyzną 
łupliwości. Wobec tego

e(' = 1,5638 + 0,762 ■ 10“5 r

Dwójłomność układu złożonego z dwóch płytek jest równa 

(codc + n2 — (e' dc + nr d^

(6.37)

(6.38)
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Możemy, oczywiście, tak dobrać grubość kalcytu, by dwójłomność układu zniknę­
ła. Kompensacja nastąpi przy grubości d° równej

Hi - n2
CD — fi'

(6.39)

Znacznie doskonalszą, a jednocześnie ogólniejszą metodę pomiaru dwójło- 
mności kryształów opisał Verreault [12]. Polega ona na analizie stanu polaryzacji 
promieniowania rozpraszanego przez tzw. centra rozpraszania, którymi mogą być 
naturalne niedoskonałości struktury kryształu o rozmiarach atomowych albo 
sztucznie wytworzone niejednorodności powierzchni, na przykład przez jej zmato­
wienie. Metoda ta pozwala na pomiar ogólnej dwójłomności kryształu, składającej 
się z dwójłomności liniowej i kołowej. W celu lepszego jej zrozumienia zaczniemy 
od przedstawienia reprezentacji stanów polaryzacji promieniowania za pomocą 
kuli Poincarego, opierając ten opis na cytowanej już pracy Yerreaulta.

Ogólny stan polaryzacji fali elektromagnetycznej przedstawia elipsa, opisywana 
w płaszczyźnie XY przez wektor D w kierunku przeciwnym ( + ) lub zgodnym ( —) 
z ruchem wskazówek zegara dla obserwatora patrzącego w kierunku źródła 
światła (rys. 6.1 la). Kierunkiem rozchodzenia się fali jest oś Z, prostopadła do 
płaszczyzny rysunku. Oś długa elipsy tworzy z X kąt t/ó a eliptyczność fali 
charakteryzuje parametr co taki, że tg co = b/a. Dla co = 0 mamy falę spolaryzowa­
ną liniowo, dla co = 45° — kołowo.

Rys. 6.11. Ogólny stan polaryzacji fali (a) i jego przedstawienie za pomocą kuli Poincarego (b) (oprać, 
według [12])

Te stany można zilustrować punktem P na powierzchni kuli o promieniu 
jednostkowym, zwanej kulą Poincarego (rys. 6.1lh). Kąt 2^ jest „długością geogra­
ficzną”, a kąt 2co „szerokością geograficzną” punktu. Stany o polaryzacji liniowej 
przedstawiają punkty leżące na równiku (co = 0); osiom X i Y odpowiadają dwa 
przeciwległe punkty równika. Każde dwa stany, reprezentowane na kuli dwoma 
przeciwległymi punktami, zwane są stanami ortogonalnymi. Pozostałym dwóm 
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skrajnym stanom, co = ±k/4, odpowiada fala spolaryzowana kołowo lewo- i 
prawoskrętnie, przedstawiona biegunami odpowiednio L i R kuli. Pozostałym 
punktom na powierzchni kuli odpowiadają stany o polaryzacji eliptycznej (kombi­
nacja polaryzacji liniowej i kołowej).

Rys. 6.12. Przedstawienie różnych typów dwójłomności (a) i zasada addytywności (b) (oprać, według 
1121)

Właściwości optyczne dowolnej płytki dwójłomnej możemy jednoznacznie przed­
stawić na powierzchni kuli za pomocą dwóch punktów, M i N (z wyjątkiem 
polaryzacji czysto kołowej) (rys. 6.12a). Punkty te odpowiadają kierunkom długiej i 
krótkiej osi elipsy na rys. 6.4 i jeśli kryształ nie absorbuje promieniowania, to 
stany M i N są ortogonalne, a więc leżą na średnicy kuli (mówi się o płytce MN). 
Fala spolaryzowana zgodnie ze stanem M (lub N) przechodzi przez płytkę bez 
zmian. Każda fala o innym stanie polaryzacji, na przykład P na rys. 6.12a, ulega 
rozłożeniu przez kryształ na stany M i N. Ważne znaczenie może mieć znajomość 
stanu polaryzacji Q promieniowania opuszczającego kryształ. Otrzymamy go w ten 
sposób, że obracamy kulę wokół MN o kąt A', równy różnicy faz między stanem 
M i N; obrót jest zgodny z ruchem wskazówek zegara, jeśli dla obserwatora 
stojącego na zewnątrz bliższy jest ten stan na powierzchni kuli, któremu odpowiada 
szybszy promień w krysztale (tu M). Jeżeli płytka ma tylko liniową dwójłomność, a 
między stanami X (kierunek drgań szybszego promienia) i Y występuje różnica faz 
5', to osią obrotu jest XY, a stan wiązki opuszczającej kryształ reprezentuje punkt 
Q. W drugim skrajnym przypadku, gdy płytka ma dwójłomność czysto kołową, 
obracamy kulę Poincarego wokół osi LR o kąt 2q', przy czym q' jest różnicą faz 
wytwarzaną przez płytkę. Przepuszczone promieniowanie Q" ma tę samą elipty- 
czność co P, lecz oś dłuższa elipsy uległa obrotowi o kąt q'. Jak widzimy, 
promieniowanie przepuszczone przez płytkę o dwójłomności liniowej może być 
spolaryzowane liniowo lub eliptycznie — zależy to od stanu fali na wejściu.

Ogólna dwójłomność złożona jest z dwójłomności liniowej i kołowej. Jeśli 
płytka jest bardzo cienka, to wytwarzane przez nią różnice faz, wynoszące odpo­
wiednio A', d' i 2q', mogą być dodawane jak wektory, odpowiadające nieskończenie 
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małym obrotom kuli Poincarego wokół odpowiednich osi (rys. 6.12h). Dzieląc 
przez grubość płytki d, otrzymamy związek między różnicami faz na jednostkę 
grubości płytki

A=8 + 2q (6.40)

Ogólna dwójłomność płytki o grubości d będzie zatem równa

(6.41)Zn

przy czym 20 oznacza długość fali promieniowania w próżni. Zastosowanie kuli 
Poincarego pozwala więc w prosty sposób przewidzieć stan polaryzacji promienio­
wania po przejściu przez płytkę o znanych właściwościach lub analizować je, gdy 
znamy stany promieniowania.

Przejdziemy teraz do rozważenia polaryzacji promieniowania, rozpraszanego 
na niejednorodnościach struktury kryształu lub na sztucznie wytworzonych cen­
trach. W przeciwieństwie do gazu lub cieczy, nawet całkowicie pozbawionych 
zawiesiny, idealny kryształ nie rozprasza promieniowania, jeśli pominiemy niesprę- 
żyste rozpraszanie typu Brillouina lub Ramana. Klasyczne rozpraszanie wiązki 
promieniowania występuje natomiast w krysztale rzeczywistym w obszarach, wy­
kazujących jakieś odstępstwa od periodyczności, na przykład niedoskonałości 
stechiometrii, obce wtręty, dyslokacje, czy też domeny ferroelektryczne lub magne­
tyczne. Jeśli liniowe rozmiary takich centrów są mniejsze od długości fali, rozpra­
szanie sprężyste jest typu Rayleigha. Analiza stanu polaryzacji promieniowania 
rozproszonego pozwala na uzyskanie informacji o naturze centrów, ich rozmiarach 
i rozkładzie przestrzennym. Nie będziemy dyskutowali szerzej tych zagadnień, 
odsyłając zainteresowanego Czytelnika do oryginalnej pracy Verreaulta. Zajmiemy 
się natomiast drugim przypadkiem, gdy struktura kryształu bliska jest doskonałości, 
a centra rozpraszania mają wymiary porównywalne z długością fali promieniowania. 
Centra takie można wytworzyć sztucznie, na przykład przez delikatne zmatowienie 
tej ściany kryształu, przez którą promieniowanie rozproszone opuszcza kryształ. W 
takich warunkach eksperyment daje informacje o dwójłomności kryształu. Badana 
próbka ma kształt prostopadłościanu o ścianie czołowej prostopadłej do wiązki

Rys. 6.13. Metoda Yerreaulta pomiaru dwójłomności (oprać, według [12])
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spolaryzowanego i monochromatycznego promieniowania, natomiast ściana obser­
wacyjna zeszlifowana jest tak, że tworzy niewielki kąt z kierunkiem wiązki 
padającej (rys. 6.13). Kryształ umieszcza się w wiązce promieniowania w taki 
sposób, by cała powierzchnia matowa była równomiernie oświetlona. Centra 
rozpraszające są analizatorami stanu fazowego wiązek, dochodzących do nich po 
przebyciu rosnącej drogi w krysztale. Sytuacja jest tu podobna jak w klinie, 
wyciętym z materiału anizotropowego i umieszczonym między skrzyżowanymi 
nikolami w położeniu 45°. Klin o kącie ostrza a wytwarza wówczas układ 
prążków interferencyjnych, których odstęp Ak związany jest następującą relacją z 
odstępem prążków w interesującej nas konfiguracji rozpraszania:

Ak = A • ctg a (6.42)

Zakładamy przy tym, że klin i kostka rozpraszająca są wycięte z tego samego 
materiału i w tej samej orientacji względem kierunku rozchodzenia się wiązki w 
krysztale. Obserwator patrzący na zmatowioną powierzchnię (ewentualnie przez 
mikroskop) z kierunku 0 widzi układ prążków interferencyjnych. 0 jest kątem 
rozpraszania, i// zaś oznacza azymut płaszczyzny drgań promienia biegnącego w 
krysztale względem płaszczyzny n1. Najprostszą geometrią jest 0 = 90°: składowa 
E w płaszczyźnie jest wówczas równa zeru dla każdej wartości f. W tym 
szczególnym przypadku kierunek propagacji i kierunek drgań w wiązce rozproszo­
nej leżą w płaszczyźnie prostopadłej do wiązki przechodzącej przez kryształ. Stany 
polaryzacji wiązki rozproszonej mogą więc być opisane dwoma ortogonalnymi stana­
mi S i Sa, ujawnianymi przez analizator A umieszczony prostopadle do 7^ (rys. 
6.13).

Rys. 6.14. Geometria rozpraszania promieniowania spolaryzo­
wanego przez centra o małych rozmiarach (oprać, według 
[12])

Ograniczając się do kryształu z liniową dwójłomnością oraz fali padającej 
spolaryzowanej liniowo i liniowych polaroidów, możemy opisać geometrię rozpro­
szenia za pomocą rys. 6.14. Niech z będzie osią równoległą do kierunku propagacji 
fali w krysztale, tak że wiązka o stanie polaryzacji Pq wchodzi do płytki XV w 
punkcie 2 = 0 (por. rys. 6.13). Rozkład stanów polaryzacyjnych wzdłuż z jest taki, 
że reprezentujący je punkt P zatacza na kuli koło wokół XY w miarę wzrostu z. 
Rozkład natężeń w wiązce rozproszonej opisuje funkcja

I = ki o sin2 (| PS)
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w której PS oznacza duży luk łączący P(z) z S. Natężenie wiązki jest funkcją 
periodyczną, przy czym minima pojawiają się wtedy, gdy P(z) pokrywa się z 
punktem E, a maksima, gdy P(z) przypada na F. Odstęp tych prążków wynosi w 
ogólnym przypadku

Z= —= 2n!(<5)2 + (2e)2’-1/2 (6.43)

Ciemne prążki położone są w miejscach

/ P0E\Zm = ij + ^—]A J = 0,1,2... (6.44)
\ 2n J

W przypadku takim, jak na rys. 6.14, P0E = 0, pomiar położenia prążków zm oraz 
grubości płytki d pozwala zatem na wyznaczenie dwójłomności liniowej <5. Posłu­
gując się płytką ćwierćfalową, można określić znak dwójłomności na podstawie 
kierunku przesunięcia układu prążków. Metoda ta może być stosowana w zakresie 
dwójłomności

10-6 <(nN — nM) <0,2

z względnym błędem nie przekraczającym 1%. Na przykład, zmierzone przez 
Verreaulta dwójłomności kwarcu wynoszą

(n£ - = (8,99 ±0,05)-10-3

= (18,76 + 0,05) stopień-mm-1

przy 2 = 632,8 nm i t = 27°C. Przypadki innych kątów obserwacji, stanów polary­
zacji i orientacji wiązki padającej, dyskutowane są szerzej w cytowanej pracy.

Metoda pomiaru dwójłomności liniowej, równoważna pod względem czułości z 
metodą Verreaulta a jednocześnie prostsza w zastosowaniu, opisana została w 
pracy [13]. Jest ona szczególnie przydatna do badania wpływu temperatury na 
właściwości optyczne cienkich płytek krystalicznych, które pod względem opty­
cznym muszą być bardzo dobrej jakości. Najbardziej odpowiednie są cienkie płytki 
o naturalnych ścianach, jakie dość często można otrzymać ze związków organi­
cznych przez powolną ich sublimację. Przy użyciu mikroskopu można badać płytki 
bardzo małych rozmiarów.

Metoda ta opiera się na zastosowaniu kompensatora ćwierćfalowego Senar- 
monta, a jej schemat przedstawiony jest na rys. 6.15. W przybliżeniu monochroma­
tyczna i równoległa wiązka promieniowania lampy L, na przykład wiązka odpo­
wiadająca linii lampy rtęciowej izolowana przez filtr interferencyjny F, polaryzo-

Rys. 6.15. Kompensacyjna metoda pomiaru dwójłomności [13]
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wana jest liniowo przez polaryzator P. Płytka krystaliczna C znajduje się w 
położeniu 45° względem kierunku przepuszczania polaryzatora. Ponieważ wiązka 
opuszczająca kryształ jest na ogół spolaryzowana eliptycznie, płytka ćwierćfalowa 
2 służy do sprowadzania stanu polaryzacji do liniowego.

Azymut kierunku drgań promienia opuszczającego płytkę mierzony jest kątem 
obrotu analizatora A, potrzebnym do wygaszenia wiązki. Wskaźnikiem wygaszenia 
jest fotokomórka PC, połączona z elektrometrem EM. W celu uzyskania możliwie 
dużej dokładności pomiarów różnica dróg w płytce ćwierćfalowej musi być do­
kładnie równa 1/4 długości fali użytego promieniowania. Z tego powodu płytkę 
taką najlepiej przygotować we własnym zakresie, na przykład z kryształu gipsu.

Różnicę dróg (6.31) można przedstawić w postaci

r = m/. + kż (6.45)

gdzie m jest liczbą całkowitą, k zaś ułamkiem 0 < k < 1. Powyższa metoda 
pozwala mierzyć składową kż z dokładnością do + 1,5 nm. Składowa m/. musi być 
wyznaczona osobno, na przykład za pomocą mikroskopu interferencyjno-polaryza- 
cyjnego. Błąd w wyznaczeniu różnicy dróg optycznych jest więc bardzo mały, 
końcową zatem dokładność określenia dwójłomności wyznacza w gruncie rzeczy 
błąd, jaki popełnia się w pomiarze grubości płytki.

6.4. Związek między właściwościami optycznymi 
i polaryzowalnością cząsteczek

Mikroskopowym odpowiednikiem współczynnika refrakcji jest polaryzowal- 
ność cząsteczki a. Wielkość ta jest w istotny sposób odpowiedzialna za optyczne 
właściwości ciała stałego: gdybyśmy mogli mieć do czynienia z ośrodkiem mate­
rialnym zbudowanym z cząsteczek, dla których a = 0, okazałoby się, że współczyn­
nik refrakcji tego ośrodka n = 1 w całym zakresie widma fal elektromagnety­
cznych, a więc tak, jak dla próżni. Jeśli więc ośrodek przezroczysty zmienia bieg 
wiązki promieniowania wskutek zjawiska załamania światła, to dzieje się tak 
dlatego, że zbudowany jest z cząsteczek mających właściwość polaryzowania się.

Przez polaryzowałność rozumiemy podatność cząsteczki na wpływ pola elek­
trycznego. Wpływ tego pola mierzymy wielkością indukowanego w cząsteczce 
momentu dipolowego

H = a F (6.46)

przy czym F oznacza natężenie pola w miejscu, w którym znajduje się rozważana 
cząsteczka, a więc we wnętrzu cieczy czy kryształu. Zwykle przyjmuje się, że 
cząsteczka ma rozmiary zaniedbywalnie małe, co pozwala przyjąć F za stałe w 
objętości zajmowanej przez cząsteczkę. F jest więc polem lokalnym, co już stanowi 
grube przybliżenie stanu rzeczywistego, zważywszy, że w ciele stałym odległości 
między cząsteczkami są porównywalne z ich rozmiarami liniowymi. Mimo to 
można stwierdzić, że właściwie cała trudność mikroskopowego opisu optycznych 
właściwości kryształu sprowadza się do trudności znalezienia właściwego wyraże­
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nia na natężenie pola lokalnego. Warto również zauważyć, że związek (6.46) 
słuszny jest przy niezbyt dużych natężeniach pola zewnętrznego. W bardzo silnych 
polach, wytwarzanych przez współczesne źródła promieniowania (masery i lasery), 
występują zjawiska nieliniowe powodujące, że zależy również od wyższych 
potęg F.

Przejdziemy obecnie do przedstawienia dwóch poglądów na pole lokalne lub 
— co jest równoważne — dwóch typów związków między n i a.

Punktem wyjścia w pierwszym z nich jest równanie Lorentza-Lorenza, uogól­
nione przez Rousseta na przypadek ośrodka anizotropowego [14]. Zastosowania 
tego modelu są jednak dość poważnie ograniczone przez fakt, że nie obejmuje on 
swym zasięgiem substancji zbudowanych z cząsteczek polarnych. Problematyczne 
jest również zastosowanie jednakowej stałej dla wszystkich trzech składowych pola 
lokalnego — jest to pewna sztuczność wobec jednoczesnego wprowadzenia anizo­
tropii właściwości optycznych. Ta ostatnia niekonsekwencja powoduje, że wyniki 
obliczeń polaryzowalności cząsteczek nie zawsze możemy traktować z pełnym 
zaufaniem jako stałe molekularne. Niemniej jednak prostota tej teorii oraz fakt, że 
wartości a cząsteczki w krysztale bliskie są polaryzowalności cząsteczki swobodnej, 
powodują, że często się nią posługujemy. Możemy z niej korzystać przynajmniej w 
tych przypadkach, gdy celem jest w większym stopniu wyjaśnienie niewielkich 
zmian właściwości optycznych, wynikających na przykład z małej zmiany tempera­
tury, niż absolutne wartości a0-.

Przyjmiemy, jak to się zwykle czyni, iż F można zapisać jako sumę trzech 
udziałów: zewnętrznego (przyłożonego) pola o natężeniu E, pola Ep wytworzonego 
przez ładunki polaryzacyjne pojawiające się na powierzchni kuli otaczającej miejs­
ce w krysztale, z którego usunięto rozważaną cząsteczkę, oraz pola, wynikającego 
z oddziaływań rozważanej cząsteczki z otaczającymi ją sąsiadami, Es

F=E+Ep+Es (6.47)

Pole Ep obliczył po raz pierwszy Lorentz dla ośrodka izotropowego
Ep = ^P (6.48)

P 3e0
gdzie e0 = 8,8542-10~12 F-m"1, P zaś jest wektorem polaryzacji dielektryka, 
zdefiniowanym jako moment elektryczny jednostki objętości. Szczegóły rozważań 
prowadzące do związku (6.48) można znaleźć w podręczniku [3] lub w monografii 
[15]. Jeśli pominie się Es, co można uczynić tylko dla ciała stałego o wysokiej 
symetrii (symetria powoduje uśrednienie do zera wpływu cząsteczek otaczających 
kulistą wnękę) lub cieczy, czy gazu (podobne uśrednienie spowodowane jest przez 
ruch termiczny), to pole F możemy zapisać w postaci równania

F = E+-P (6.49)
3e0

Podstawienie równ. (6.49) do równ. (6.46) i skorzystanie ze związku

P = e0(£—1)E
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prowadzi po kilku przekształceniach do wyrażenia na polaryzację dielektryka

/ £ — 1 \P = Np = W 1 + —!<«> E (6.50)

przy czym N jest liczbą cząsteczek w jednostce objętości. Stąd otrzymujemy znane 
wyrażenie Clausiusa-Mossottiego na polaryzację 1 mola cząsteczek substancji

£-1 M 1Pm=^ — = (6.51)£ + 2 Q 3fi0

gdzie M jest masą molową substancji, q jej gęstością, (a) średnią polaryzowalnoś- 
cią cząsteczek, zaś No liczbą Avogadra.

Związek (6.51) stosuje się ściśle do gazów, których cząsteczki nie mają momentu 
dipolowego. Ponieważ Pm nie zależy od stanu skupienia substancji, może być użyte 
również dla cieczy i ciała stałego z tymi samymi ograniczeniami.

Dotychczasowe wywody oparte były na równaniach elektrostatyki dielektry­
ków. Następny krok polega na przejściu od polaryzacji molowej Pm do refrakcji 
molowej Rm, przez wprowadzenie relacji Maxwella

p-e = n2 (6.52)

co oznacza przejście od zakresu małych częstości (od 1 do 100 kHz) do częstości 
odpowiadających fali elektromagnetycznej (4-8)-1014 Hz dla zakresu promienio­
wania widzialnego. Przy p = 1 relacja Maxwella spełniona jest jedynie dla takich 
substancji, których cząsteczki pozbawione są trwałego momentu dipolowego. Przy 
tych ograniczeniach otrzymujemy równanie znane pod nazwą równania Lorentza- 
Lorenza

n2 — 1 M 1
= = 7-^0^) (6.53)n +2 Q 3£0

Ponieważ M/q = Vm jest objętością jednego mola cząsteczek, N0/Vm = N jest liczbą 
cząsteczek w jednostce objętości. Wobec tego

No 7
= N = V (6.54)

m k

przy czym Z oznacza liczbę cząsteczek w komórce elementarnej o objętości Vk. 
Jeśli średnią polaryzowalność całej komórki elementarnej oznaczymy przez <T}, to

<P> = Z<a> (6.55)

oraz

= F" V<a> = V<r> (6'56)m 4- 2 3&o 3óq

Uogólnienie Rousseta [14] polega na zastosowaniu równ. (6.56) do ośrodka 
anizotropowego w taki sposób, że piszemy to równanie osobno dla każdego z 
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kierunków głównych indykatrysy

n,2-l _ 1 . 1 f 
n? + 2 3e0 K '

(6.57)

Każdemu z kierunków głównych indykatrysy jest więc przyporządkowana jedna z 
głównych składowych tensora polaryzowalności komórki elementarnej. Związek 
między r i a otrzymamy przez zastosowanie modelu gazu zorientowanego dla 
wielkości tensorowych (por. rozdz. 4)

T = a [ y c^ac^la7 ( Z—i ) (6.58)

gdzie a jest macierzą transformacji F(abc*) do układu osi głównych, c opisuje 
orientację osi głównych a względem abc*, a sumowanie rozciąga się na wszystkie 
cząsteczki symetrycznie zależne.

Równanie (6.57) oparte jest na założeniu, że pole lokalne ma postać wynikającą 
z równ. (6.50). Widzimy tu negatywny skutek zastosowanego przybliżenia, pole

Fi=^ + 2)Ei (6.59)

zależy bowiem tylko od czynników makroskopowych: kierunków i długości osi 
głównych e oraz pola przyłożonego Et. Struktura mikroskopowa występuje jedynie 
w polaryzowalności komórki elementarnej (6.58) i na pole lokalne ma wpływ 
pośredni. Poza tym nie ma uzasadnienia fakt, że stała 1/3 jest dla każdego 
kierunku taka sama.

Problem osi głównych a przedstawia się podobnie, jak w diamagnetyzmie. Dla 
cząsteczek dostatecznie symetrycznych i zajmujących węzeł o symetrii co najmniej 
C2h można przyjąć, że są nimi osie LMN. Dla cząsteczek mniej symetrycznych 
można poszukiwać osi głównych przy zastosowaniu zasady addytywności analogi­
cznie, jak to uczynili Van den Bossche i Sobry na terenie diamagnetyzmu. O ile 
nam jednak wiadomo, systematycznych prób w tym kierunku nie podjęto. Jeżeli 
zaś nie uczynimy żadnego założenia odnośnie kierunku osi głównych, to problem 
jest nie do rozwiązania na poziomie molekularnym, z wyjątkiem kryształów 
trójskośnych i to tylko w tym przypadku, gdy komórka elementarna zawiera jedną 
cząsteczkę. Do tego zagadnienia jeszcze wrócimy.

Zastosowanie równań (6.57) i (6.58) do konkretnych struktur zilustrujemy 
przykładami kilku kryształów, dla których główne współczynniki refrakcji oraz ich 
orientacje są znane. Dane zawarte w tab. 6.1 zaczerpnięte zostały (z wyjątkiem 
ostatniej kolumny) z monografii Winchella [16]. W przyjętej tu konwencji nJIXi, 
w układzie jednoskośnym A'2II^ a kąt między Jfj i osią krystalograficzną a 
oznaczony został przez <p. Przyjęto też, iż osiami głównymi a są osie symetrii 
LMN; orientację ich względem abc* podaje macierz c. Przy znajomości n1; n2, n3 
oraz c zadanie polega na wyznaczeniu głównych składowych a, a pośrednio 
również cp, którego wartość winna być uzgodniona z a.
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Tabela 6.1

Wartości doświadczalne współczynników refrakcji niektórych krysz­
tałów molekularnych dla ż = 546 nm [16]

Kryształ «i »2 «3 q> = < , a <Pobl

Benzen 1,544 1,646 1,550 o' 0
Naftalen 1,525 1,722 1,945 42,3 22,6
Antracen 1,556 1,786 1,959 26,9 27,1
Fenantren 1,548 1,920 1,724 27,0 26,7
Fluoren 1,578 1,919 1,663 0 0

Tak postawionego zadania nie da się rozwiązać metodą algebraiczną. Nawet 
jeśli przyjmiemy, że w układzie LMN tensor a ma postać diagonalną — co 
oznacza nie zawsze uzasadnione podwyższenie symetrii cząsteczki do C2h — 
musimy wyznaczyć cztery stałe z trzech danych wyjściowych. Problem można 
rozwiązać metodą kolejnych przybliżeń, uważając, że w zależności

n, = n,(a, c, <p) i = 1, 2, 3 (6.60)

c oraz nt są niezmiennikami przybliżeń. Szczegółowy opis postępowania na przy­
kładzie typu naftalenu opisany został w problemie 6.6.1 na końcu rozdziału, a 
wyniki obliczeń dla pewnej liczby kryształów zebrane są w tab. 6.2. Najważniej­
szym wnioskiem, jaki z niej wynika, jest to, że zastosowanie równań Rousseta 
prowadzi do składowych a. dość bliskich wartości a*0) cząsteczki swobodnej. Zwróćmy 
uwagę na to, że składowe a<0) obliczone zostały w sposób niezależny, a mianowicie 
przez skorzystanie z inkrementów polaryzowalności atomów i wiązań, otrzyma­
nych przez Le Fevre’a [17] z badań efektu elektrooptycznego roztworów (tab. 
6.11). Zbieżność wartości składowych obu tensorów jest raczej zgodna z oczekiwa­
niem, słabe oddziaływania międzycząsteczkowe nie powinny bowiem prowadzić do 
znacznej modyfikacji fizycznych właściwości swobodnej cząsteczki po umieszczeniu 
jej we wnętrzu kryształu. Pogląd taki potwierdzają wyniki spektroskopowych 
badań kryształów w zakresie drgań wewnętrznych cząsteczki: częstości tych drgań 
różnią się od analogicznych częstości cząsteczki w roztworze o kilka cm”1. 
Wyjątkiem w tab. 6.2 jest cząsteczka fenantrenu, a przypuszczalną przyczyną — jej 
moment dipolowy.

Innym przykładem, ilustrującym addytywność polaryzowalności komórki ele­
mentarnej, jest analiza właściwości optycznych kryształu gipsu. Zwróciliśmy już 
uwagę w rozdz. 1 na bezpośrednią korelację między orientacją głównych współ­
czynników refrakcji a położeniem dipoli wody, widoczną na pierwszy rzut oka na 
rys. 1.9. Jak się okazuje, korelacja ta jest również ilościowa, co zostało przedsta­
wione w problemie 6.6.2. Również i w tym przypadku główne polaryzowalności 
cząsteczki wody bliskie są wartości znanych dla cząsteczki swobodnej, mimo iż 
dipole wody znajdują się w tym krysztale w polu elektrycznym otaczających je 
jonów, o natężeniu zapewne znacznie większym niż pola występujące w kryszta­
łach molekularnych.

Nieco inny punkt widzenia na związek między n i a, oparty na pojęciu refrakcji
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Tabela 6.2

Polaryzowalność niektórych cząsteczek w stanie swo­
bodnym (według inkretnentów podanych w tab. 6.11) 
oraz w krysztale

Cząsteczka Warunki

Polaryzowalność 
a-1040, F-m2

“ł aM

Benzen swobodna 12,5 12,5 8,2
w krysztale 12,5 11,8 9,3

Naftalen swobodna 21,8 19,6 12,9
w krysztale 24,4 20,5 11,7

Antracem swobodna 31,1 26,7 17,6
w krysztale 30,7 28,5 18,5

Fenantren swobodna 30,0 27,8 17,6
w krysztale 33,4 38,7 5,1

Fluoren swobodna 27,6 25,6 16,5
w krysztale 28,9 24,6 18,7

molowej nie tylko kryształu, lecz także cząsteczki, prezentuje Lasheen i inni w 
dwóch publikacjach [18, 19]. Zgodnie z równ. (6.53) refrakcja molowa kryształu w 
jednym z kierunków głównych indykatrysy określona jest wyrażeniem

n?-l M
R: = —5----  

n? + 2 Q

Wobec tego refrakcję molową jednej cząsteczki, r, możemy tak zdefiniować, by 
spełniony był związek

(6.61)

Zakładamy przy tym, że R i r stosują się do modelu gazu zorientowanego (6.58).
Wartości refrakcji molowej cząsteczki obliczone tą drogą pozbawione są przy­

najmniej jednej z dotychczasowych wad polaryzowalności, a mianowicie nie zawie­
rają izotropowego czynnika 1/3, przenoszonego z równ. (6.49) do równ. (6.57). 
Dane uzyskane w obu pracach Lasheena wraz z innymi danymi z literatury 
zebrane są w tab. 6.3. Zostały one przeliczone tak, by konsekwentnie spełniony był 
związek (6.61). Przy opracowaniu tabeli stosowano następującą konwencję, wpro­
wadzoną przez Lasheena:

1) w kryształach ortorombowych Ka||a, Kfc||b, Kc||c,
2) w kryształach jednoskośnych K3||b; Rk, R2 leżą w płaszczyźnie (010).
Współczynniki refrakcji mierzone były za pośrednictwem linii Beckego dla Unii 

D lampy sodowej, ŻD, w temperaturze pokojowej (21-25°C, [18]). W tabeli podano 
błędy n, R i r oszacowane przez Lasheena. Niekiedy małe błędy w doświadczalnym 
wyznaczeniu n prowadzą do dużych błędów w wartościach r; odnoszą się do tego 
problemu te same uwagi, co i do pomiarów podatności magnetycznej (rozdz. 5). 
Związek między polaryzowalnością cząsteczki i jej refrakcją w tym samym kierun-
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Tabela 6.3

Strukturalne i optyczne stale kryształów molekularnych
M-masa molowa [kg-mol“'], 4, — gęstość [kg-m“3], l/Z - objętość jednej cząsteczki [10-3 nm3], a, b, c - parametry komórki elementar­
nej [nm], Z - liczba cząsteczek w komórce elementarnej, nx, nv, n. — współczynniki refrakcji wzdłuż głównych kierunków drgań, n„, nb, nc — 
współczynniki refrakcji wzdłuż osi krystalograficznych (układ ortorombowy), nt, n2, n3 - współczynniki refrakcji wzdłuż osi głównych tensora 
(układ jedno- i trójskośny), R — refrakcja kryształu, r — refrakcja cząsteczki [cm3-mol-1] (dla otrzymania R i r w jednostkach układu SI 
fm3-moi '] należy liczby w tabeli pomnożyć przez 10 6)

1250]

A. Kryształy ortorombowe

Nazwa związku
Wzór sumaryczny * 

i dane makroskopowe
Dane struk- 

turalne
Współczynnik refrakcji 

(Na Ż.D)
Refrakcja 

kryształu cząsteczki

1,3,5-Trifenylobenzen

(C6H5)3C6H3 
M = 306,14 
8 = 1237 
l/Z =410,8

Pm^ [20] 
a =0,747 
b = 1,966 
c =1,119 
Z = 4

nx = 1,5241 n„ = 1,509
ny =1,8670 nh = 1,843
n. = 1,8725 nc = 1,849

[16] [18]

Ru = 73,9 rL = 28,2
Rh= 109,9 rM = 28,9
Rc = 110,5 rN=16,7

[18] [18]

Acenaften

CIOH6(CH2)2 
M = 154,21 
e = 1190 
ł/Z = 209,6

Pcm2, [21] 
a = 0,8290 
b = 1,4000 
c = 0,7225 
Z = 4

a =1,4065 n„= 1,489
/1 = 1,4678 nb = 1,642
y = 1,6201 nc = 1,396

[22] [18]

«„ = 37,4 rL = 11,7
Rh = 46,8 rM=I2,0
Rc =31,1 rN = 5,1

[18] [18]

Wodoroftalan sodu

C6H4(COOH)(COONa)
M = 188,13
2 = 1504
V/Z = 207,8

B2ub [23]
</ =0,676 
b =0,931 
c =2,642
Z =8

nx = 1,485 n„ = 1,476
ny = 1,661 nb = 1,665
n. = 1,668 nc = 1,678

[16] [18]

R„ = 70,6 rL = 12,4
Rb=92,8 r„ = ll,8
Rc = 94,4 rN = 8,1

[18] [18]

Wodoroftalan potasu

C6H4(COOH)(COOK) 
M = 204,22 
e = 1579 
f/Z = 214,7

P2X uh [24] 
u =0,646 
b =0,960 
c = 1,385 
Z =4

nx = 1,498 n„ = 1,494
yy = 1,659 nb = 1,632
n. = 1,663 nc = 1,674

[16] [18]

Ra = 37,6 rL = 12,8
^=46,1 rM = l2,l
Rc = 48,5 rN = 8,3

[18] [18]
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1,3-Dinitrobenzen

C6H4(NO2)2 
M = 168,05 
q = 1593 
V/Z = 175,2

Pbn2i [25] 
a = 1,320 
b = 1,397 
c = 0,380 
Z = 4

nx = 1,432 na = 1,746
ny = 1,765 nb = 1,841
n, = 1,839 nc = 1,482

[16] [18]

Ra = 42,8 rL = 12,4
Rb = 46,8 rM = 10,6
Rc = 30,1 rN = 7,0

[18] [18]

Acetanilid

C6H5NHCOCH3 
M = 135,04 
q = 1206
V/Z = 185,8

Pbca [26] 
a = 1,9640 
b = 0,9483 
c = 0,7979 
Z =8

nx = 1,515 na = 1,748
ny = 1,620 nb = 1,612
nz = 1,733 nc = 1,524

[16] [18]

Ra = 45,5 rL = 5,8
Rb = 38,9 rM = 5,5
Rc = 34,3 rN = 3,6

[18] [18]

Kwas antranilowy

C6H4(NH2)(COOH)
M = 137,1
q = 1420
V/Z = 160,3

Pcn2 [27] 
a = 1,283 
b = 1,077 
c =0,928 
Z =8

nx = 1,560 na = 1,508
ny = 1,730 nb = 1,768
n, = 1,760 nc = 1,736

[16] [18]

Ra = 28,8 rL = 5,1
Rb = 40,0 rM = 5,2
Rc = 38,8 rN = 3,2

[18] [18]

Chloroimid kwasu 
bursztynowego

C4H4O2NC1
M = 133,54 
q = 1650 
V/Z = 133,2

P21212l [28] 
a =0,641 
b = 0,711 
c = 1,169 
Z =4

na = 1,668(3) 
nb = 1,616(3) 
nc = 1,661(4)

[19]

Ra = 30,9(2) rL = 7,4(3)
Rb = 28,3(2) rM = 8,1(4)
Rc = 29,9(3) rN = 6,8(2)

[19] [19]

Bromoimid kwasu 
bursztynowego

C6H4O2NBr 
M = 178,00 
0 = 2109 
V/Z = 139,3

P212121 [28] 
a =0,648 
b = 0,725 
c = 1,186 
Z =4

na = 1,706(3)
^ = 1,641(2) ■ 
nc = 1,681(3)

[19]

Ra = 32,8(2) rL = 7,9(2)
Rb = 30,4(2) rM= 8,5(4)
K= 31,9(2) rN= 7,4(1)

[19] [19]

(4-)-Wodorowinian 
amonu

C4H4O6(NH4)H 
M = 167,07 
0 = 1680
V/Z = 165,94

P2l212l [29] 
a = 0,7648 
b = 1,1066 
c = 0,7843 
Z =4

na = 1,534(1) 
nb = 1,500(2) 
nc = 1,510(2)

[19]

R„= 30,9(1) rL= 7,4(1)
Rb = 29,2(2) rM = 8,0(1)
Rc = 29,7(2) rN = 7,1(2)

[19] [19]
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A. Kryształy ortorombowe

Nazwa związku Wzór sumaryczny 
i dane makroskopowe

Dane struk­
turalne

Współczynnik refrakcji 
(Na ZD)

Refrakcja 
kryształu cząsteczki

(+ )-W odorowinian 
potasu

C6H4O6(K)H 
M = 188,18 
e = 1954 
k/Z = 157,20

P2,2,21 [29] 
ci =0,764 
b = 1,062 
c = 0,775 
Z =4

«« 
nb 
nc

= 1,566(2)
= 1,534(2)
= 1,544(2)

[19]

Ra =31,4(2) 
Rb = 29,9(3) 
Rc = 30,4(2)

[19]

rL = 7,5(5) 
i-m = 8,0(1) 
rN = 7,3(1)

[19]

B. Kryształy jednoskośne

Antracen

Ci4H10
M= 178,2 
q = 1026
V/Z = 237,08
Z = 2

[30] 
ci =0,8561 
b =0,6035 
c =0,9163 
/ł = 124,70

nx = 1,556 
ny = 1,786 
n. = 1,959

[16]

nt = 1,959 
«2 = 1,485 
n3 = 1,837

[18]
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 4^ i-L =42,3 

rM = 42,5 
fjy = 20,8 

[18]

Bifenyl

Ci 2H1 o

M = 154,2 
q = 1224 
V/Z = 221,4 
Z = 2

Pija [31] 
u =0,863 
b =0,563 
c =0,915 
0 =95,1

nx = 1,561 
ny = 1,658 
nz = 1,945

[16]

nx = 1,945 
n2 = 1,550 
n} = 1,661

[18]
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rL =31,1
= 26,9

rpi ~ 15,6
[18]

Heksachlorobenzen

c6ci6 
M = 284,74 
Q = 1816
V/Z = 232,0 .
Z = 2

P2t/c [32] 
ci =0,808 
b =0,387 
c = 1,665 
/1=117,0

n, = 1,738 . 
n2 = 1,701 
n3 = 1,601

[18] - II I
I II 

,°8
 en 

O
, 0

 
' W 

O
 LU rL =31,4 

'■M=31,4 
=26,1 
[18]

1,4-Dichlorobenzen

C6H4C12
M = 146,95 
q = 1526
V/Z =157,1
Z = 2

P2J« [33] 
ci = 1,480 
b =0,578 
c =0,399 
fi =113

n, = 1,752 
n2 = 1,528 
n3 = 1,679

[18]

R, = 39,3 
R2 = 29,6 
R3 = 36,4 

[18]

1'l = 19,2 
rM = 20,3 
rN = 13,2 

[18]



Antrachinon

C14H8O2 
M = 208,20 
q = 1438
V/Z = 239,1 
Z = 2

P2,/« [34] 
a = 1,5810 
b = 0,3942 
c = 0,7865 
fi = 102,72

«X = 1,506 
= 1,698 
= 1,816 
[16]

n, = 1,875(3) 
n2 = 1,717(3) 
n3 = 1,486(2)

[19]

Pi = 66,0(4)
R2 = 57,0(4)
P3 = 41,6(3)

[19]

rL = 38(10)
rM = 29(8)

= 16,30(2)
[19]

Tetrachloro-l,4-benzo- 
chinon (chloranil)

C6C14O2
M = 245,89 
q = 1712
V/Z = 207,4
Z = 2

P2J« [35] 
a = 0,8708 
b = 0,5755 
c = 0,8603 
P = 105,85

n, = 1,522(2) 
n2 = 1,621(3) 
n, = 1,589(2)

[19]

Rr =43,8(3) 
R2 = 50,5(4) 
«3 = 48,4(3) 

[19]

rL = 26(3) 
rM = 25,2(8) 
rn = 20(1)

[19]

Tetrachlorohydrochinon

C6C14(OH)2 
M = 247,90 
e = 2002
V/Z = 205,6
Z = 2

P21/c [36] 
a =0,8214 
b = 0,4843 
c = 1,2441 
P = 123,82

= 1,676(3) 
n2 = 1,625(2) 
n, = 1,636(3)

[19]

Rt = 46,6(3)
R2 = 43,8(2)
R3 = 44,4(4)

[19]

rL = 22,8(22) 
rM = 26(2) 
rN =20(1)

[19]

1 -Amino-4-nitrobenzen

C6H4(NO2)-NH2
M = 138,12 
q = 1437
V/Z = 160,8
Z = 4

W« [37] 
a = 1,2336 
b =0,607 
c = 0,8592 
P =91,45

n, = 1,788(4) 
n2 = 1,525(2)

= 1,756(3)
[19]

Rt =40,6(4) 
R2 = 29,5(2) 
«3 = 39,4(3)

[19]

rL = 9,6 
rM = 10,6 
-A = 7,1 

[19]

Izatyna

C8H5O2N 
M = 147,05 
g = 1527
V/Z = 159,9
Z = 4

P2Jc [38] 
a =0,619 
b = 1,446 
c = 0,717 
P =94,82

«X

«z

= 1,460(5)
= 1,80(3)
= 1,90(3)
[16]

n, = 1,886(5) 
n2 = 1,453(2) 
«3 = 1,782(4)

[19]

Rt =44,3(5) 
R2 = 26,0(2) 
«3 = 40,5(4)

[19]

't = 10(2)
= H,0(7)
= 6,6(1)
[19]

Teofilina (monohydrat)

C5H2O2N4(CH3)2
M = 198,28 
q = 1454
V/Z = 225,8
Z = 4

P2, [39] 
a = 1,33 
b = 1,53 
c =0,45 
P =99,5

"1

«2

«3

= 1,447 
= 1,695 
= 1,753 
[16]

n, = 1,447(2) 
n2 = 1,687(4) 
n3 = 1,641(3)

[19]

Rr = 36,4(2) 
R2 = 52,0(5) 
«3 = 49,2(4)

[19]

rL = 13,0(1) 
= 12,4(20)

rN = 9,1(8)
[19]
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B. Kryształy jednoskośnc

Nazwa związk Wzór sumaryczny 
i dane makroskopowe

Dane struk- 
turalne

Współczynnik refrakcji 
(Na /D)

Refrakcja
kryształu cząsteczki

2,6-Dimetylopyron

C7H8O2 
M = 124,06 
e =1234 
k/Z = 165,1 
Z = 4

P2Jc |40] 
u = 0,7672 
b =0,7212 
c = 1,392 
/>' = 120,98

n, = 1,556(1) 
n2 = 1,463(1) 
n3 = 1,535(1)

[19]

Rt = 32,32(9) 
R2 = 27,69(9) 
R3 = 31,30(9) 

[19]

'7, = 8(2)
= 8(2)
= 6,3(0)
[19]

Kwas parabanowy

CO(NHCO)2 
M= 114,03 
q = 1713 
l /Z = 110,5 , 
Z =4

P2Jn [41] 
a = 1,0685 
b =0,8194 
c = 0,5054 
// =92,73

n, = 1,441(2) 
n2 = 1,554(3) 
n3 = 1,479(2)

[19]

R, = 17,6(1) 
R2 = 21,3(2) 
R3= 18,9(1)

[19]

= 6(2)
= 4,4(1)

'n = 4(2)
[19]



ku głównym jest następujący:

a. = 3e0K^ri (6-62)

przy czym wymiarem a,- jest F-m2, a rt — m3-moU1.
Badania optycznych i magnetycznych właściwości cząsteczek prowadzone przez 

Lasheena i współpracowników miały na celu głównie wykazanie pokrewieństwa 
między anizotropią polaryzowalności i podatności magnetycznej. Uzyskane przez 
tych autorów wyniki można streścić w postaci następujących stwierdzeń:

1. Z porównania wyników dla refrakcji cząsteczek z wartościami ich podatnoś­
ci magnetycznej wynika, że silnej anizotropii magnetycznej zawsze towarzyszy silna 
anizotropia optyczna. Anizotropię definiuje się w następujący sposób:

refrakcja = i(rL + rM)-rN (6.63)

podatność diamagnetyczna dK = ^(KL +KM)~ KN (6.64)
2. W cząsteczkach płaskich bezwzględna wartość podatności magnetycznej jest 

największa w kierunku prostopadłym do ich płaszczyzny, natomiast polaryzowal- 
ność jest w tym kierunku najmniejsza.

3. Jeśli wielkość anizotropii optycznej dowolnej cząsteczki podzieli się przez 
wielkość anizotropii optycznej cząsteczki benzenu, dr/drb, to uzyskany iloraz 
będzie mniejszy niż analogiczny stosunek wielkości magnetycznych, 4K/4Kb. 
Tłumaczy się to tym, że wzbudzone dipole optyczne są znacznie większe niż 
magnetyczne, co w rezultacie prowadzi do znacznie większej energii oddziaływania 
dipoli optycznych (zagadnienie pola lokalnego).

4. Podstawniki w cząsteczkach aromatycznych zmniejszają na ogół anizotropię 
optyczną. Efekt ten zależy od rodzaju podstawników i ich pozycji w pierścieniu.

Zupełnie nowy pogląd na zagadnienie pola lokalnego i efektywną polaryzowal- 
ność cząsteczek został zaprezentowany w kilku pracach przez Dunmura, Cummin- 
sa i Munna [42-44].

Przyjmiemy za Dunmurem, że każdej komórce elementarnej kryształu przy 
Z = 1 odpowiada moment dipolowy /i, wzbudzony polem E padającej fali elektro­
magnetycznej. Kryształ możemy więc traktować jako trójperiodyczny zbiór jednako­
wych dipoli, umieszczonych w węzłach sieci Branais^o. Węzły te generuje zakończe­
nie wektora

r(/) = (i a1 + /2a2 + /3a3

przy czym /j /2/3 jest trójką liczb całkowitych dodatnich, ujemnych lub zer, a2, 
a3 są zaś krawędziami komórki elementarnej (rys. 6.16). Jeśli liczba cząsteczek w 
komórce elementarnej jest większa od jedności, to będziemy uważać, że strukturę 
można przedstawić za pomocą zbioru przenikających się podsieci, numerowanych 
przez k = 1, 2, ..., Z, przy czym każda z podsieci zawiera wyłącznie cząsteczki 
translacyjnie równoważne. Wektor polaryzacji każdej podsieci jest równy

Pk=-*Fk (6.65)v
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gdzie F(r) jest lokalnym natężeniem pola elektrycznego w punkcie sieci określo­
nym przez r, a v jest objętością prymitywnej (tj. zawierającej 1 cząsteczkę) komórki 
elementarnej. ak jest tensorem efektywnej polaryzowalności cząsteczki w podsieci k.

Rys. 6.16. Orientacja wektorów w sieci Bravais’go

i

Podobnie jak w poprzednich sformułowaniach związku między n i a, również i w 
tym ujęciu nie wprowadza się parametrów, charakteryzujących przestrzenną roz­
ciągłość cząsteczki. Należy uważać, że dipole wzbudzone (6.46) mają rozmiary 
punktowe. Pole elektryczne F(r) kryształu spolaryzowanego otrzymuje się jako wynik 
dodania do pola zewnętrznego natężenia pola, wynikającego z sumowania pól wszyst­
kich dipoli umieszczonych w węzłach sieci Bravais’go. Ewald [45] i Born [46] podali 
sposób obliczania występującej tu tzw. sumy sieciowej i pokazali, że aby obliczyć 
pole makroskopowe wewnątrz krysżtału, nie trzeba uciekać się do modelu pustej 
wnęki, wyciętej w krysztale. Rezultatem tych rozważań jest wyrażenie na F(r), 
które w zapisie podanym przez Dunmura ma w układzie jednostek SI postać

Fk = E+-XŁkk,Pk. (6.66)
£0 k'

gdzie Łkk- jest tzw. tensorem Lorentza, którego składowe są bezwymiarowe i mogą 
być obliczone z parametrów sieci prostej i odwrotnej, zależą więc od właściwości 
translacyjnych samej sieci. Ponieważ LfcV muszą być niezmiennicze względem 
operacji symetrii grupy komórki elementarnej, Gc, zachodzą następujące związki:

^kk' — Ek'k Lkk = Lk.k- (6.67)

Ponadto z definicji składowych L, które można znaleźć w oryginalnej pracy 
Dunmura [42], wynika, że

Tr(LkV) = l (6.68)
czyli średnia wartość elementu diagonalnego wynosi 1/3. Jest to ważny wniosek, 
dotyczy bowiem sensu fizycznego L: tensor ten zastępuje stosowany dotąd w teorii
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stały czynnik 1/3. Możemy więc powiedzieć, że tensor Lorentza charakteryzuje w 
sposób anizotropowy udział podsieci w ogólnej polaryzacji kryształu. Ogólna polary­
zacja P jest właśnie trzecim potrzebnym nam równaniem

P = E pk = £o 
k

(6.69)

przy czym
X = 8-1 (6.70)

oznacza tensor podatności dielektrycznej. Równania (6.65), (6.66) i (6.69) stanowią 
bazę opisu optycznych właściwości kryształu. Z tych trzech równań możemy dojść 
do podstawowego związku w następujący sposób.

Obliczmy E z równ. (6.69) i podstawmy Pk z równ. (6.65). Otrzymujemy

£ = -x 
£0

1 1 -1

P = ~X Xpk’=—X 
£0 k- £0 V

X ^k' Fk'

Wówczas równanie (6.66) przyjmie postać

Fk = — 1 —
£o v k' £o£ k'

= — 
£o v k.

Jeśli teraz wprowadzimy oznaczenia

= x-1 + Lkk- 
(6.71)

Pk =------ «k 
£0T

to otrzymamy
Fk — f MkVpvFv k = 1, 2, ...,Z (6.72)

k'— 1

Równanie (6.72) jest podstawową zależnością, która łączy natężenie pola lokalnego 
Fk z właściwościami makroskopowymi kryształu zawartymi w tensorze oraz z 
bezwymiarowym tensorem cząsteczki pk. pk możemy nazwać tensorem zredukowa­
nym. Równanie to jest ogólne, ponieważ droga, jaka do niego prowadzi, nie 
wymaga żadnych innych założeń prócz przybliżenia dipoli punktowych. Przybliże­
nie takie oznacza nie tylko to, że pole lokalne ma natężenie stałe w objętości całej 
cząsteczki. Dalszą konsekwencją jest również fakt, że nie jesteśmy w stanie uwzględ­
nić różnej orientacji cząsteczek translacyjnie nierównoważnych, ponieważ nie ma 
sensu mówić o orientacji dipola punktowego.

Rozwiązanie (6.72) ma prpstą postać i jest jednoznaczne tylko dla przypadku 
kryształów z jedną cząsteczką w komórce elementarnej. Mamy wówczas k = k' 
= 1. Opuszczając zatem wskaźniki, możemy napisać

P = MJ = (x^+L)’1 (6.73)
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Rozwiązanie komplikuje się jednak już dla Z = 2. Układ równań liniowych (6.72) 
ma wtedy postać

F2 = M21p1F1 + M22p2F2
Układ ten możemy rozwiązać metodą algebraiczną, obliczając na przykład F2 z 
pierwszego równania i podstawiając do drugiego. Otrzymany w ten sposób 
związek między pt i p2

(M12 p2r1 (1- Mn pj = (1 - M22 p2)’1 (M21 pj
można uprościć do

Pf1 =M11 + M12(p21-M11)-1M12 (6.75)

Szczegółowe rozwiązanie układu (6.74) wraz z komentarzem przedstawione jest w 
problemie 6.6.3 na końcu tego rozdziału.

Zastosowanie równania (6.75) zostało zilustrowane w pracy [43] przykładami 
kilku kryształów molekularnych jednoskośnych, o grupie przestrzennej Pija z 
dwiema cząsteczkami w komórce elementarnej. Ponieważ otoczenie każdej z nich 
jest identyczne, tensory obu cząsteczek są również identyczne. Można zatem 
napisać dodatkowy związek, wynikający z modelu gazu zorientowanego

pt = aŁpatr k = 1, 2 (6.76)

pozwalający w zasadzie na ustalenie jednoznacznego związku między p i M. jest 
macierzą orientacji cząsteczki k, odnoszoną niekiedy do osi głównych e. Jednak 
podstawienie równ. (6.76) do równ. (6.75) prowadzi do równania, którego nie 
można rozwiązać metodą algebraiczną i p trzeba poszukiwać metodą kolejnych 
przybliżeń. Wyniki, zaczerpnięte z pracy [43], przedstawione są dla czterech 
kryształów w tab. 6.4 i 6.5. Jako komentarz do tych danych niech posłuży 
porównanie, zawarte w tab. 6.6. Zgodnie z oczekiwaniem, w miarę wzrostu liczby 
pierścieni benzenowych w cząsteczce rośnie regularnie jej średnia polaryzowalność 
a także i anizotropia — niezależnie od tego, czy interesuje nas cząsteczka w próżni 
(swobodna), czy w krysztale. O ile jednak polaryzowalności obliczone za pośred­
nictwem refrakcji są dość bliskie wartości dla cząsteczki swobodnej, o tyle nowy 
formalizm daje wartości znacznie większe.

Tabela 6.4

Składowe tensorów Lorentza w układzie osi głównych tensora przenikałności dielektrycznej [43]

Kryształ
L 1 L 2

Lyy ^XZ ^XX Lyy LXz

Naftalen 0,201 0,626 0,173 0,012 0,741 0,327 -0,068 -0,451

Antracen 0,140 0,821 0,039 -0,042 0,846 0,354 -0,200 -0,756
Fenantren 0,156 0,820 0,024 0,014 1,190 0,372 -0,562 0,366
Bifenyl 0,108 0,925 -0,033 0,077 0,989 0,366 -0,355 0,828
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Tabela 6.5

Tensory efektywnej polaryzowalności cząsteczek w kryształach (a • 1040, 
F m2) (według [43])

Cząsteczka W układzie osi LMN W układzie osi własnych
—-

42,2 -5,2 7,1 45,0
Naftalen 19,1 -2,4 18,1

11,8 10,1— — —
— —-

70,4 -7,5 13,6 73,4
Antracen 24,7 -3,0 22,9

14,6 11,4— -- -- —
-- _

96,8 2,9 -9,4 97,8
Fenantren 19,3 5,1 20,8

4,0 1,4—. -- — • --
r— -

63,6 1,6 6,2 64,7
Bifenyl 19,3 0,0 19,3

L 8,6 J L 7,ij

Tabela 6.6

Porównanie średnich polaryzowalności, (a), i anizotropii optycznej cząsteczek, da, obliczonych różnymi 
metodami (a • 1040, F • m2)

Cząsteczka

<а> = зТга da = %(aL+ aM) — aN

swobodna 
(tab. 6.2)

w krysztale swobodna 
(tab. 6.2)

w krysztale
(tab. 6.2) (tab. 6.5) (tab. 6.2) (tab. 6.5)

Naftalen 18,1 . 18,9 24,4 7,8 10,8 21,4
Antracen 25,1 25,9 36,6 11,3 H,1 37,8
Fenantren 25,1 25,7 40,0 11,3 31,0 57,9
Bifenyl 22,9 30,0 12,5 34,9

Interesujący komentarz do problemu polaryzowalności, a w szczególności do 
równania (6.75), podany został przez Lutego [47]. Jeśli nie poczynimy żadnych 
założeń odnośnie związku między Pj i p2, czyli zrezygnujemy z równ. (6.76) i 
będziemy poszukiwać tzw. rozwiązań ogólnych metodą kolejnych przybliżeń, to 
okaźe się, że jest ich nieskończenie wiele. Rzecz w tym, że rozwiązanie ogólne {p15 
p2{ zależy od p, które przyjmiemy jako przybliżenie zerowe. Można więc powie­
dzieć, że równanie (6.75) nie wykazuje zbieżności rozwiązań dla różnych p, wybra­
nych jako przybliżenie zerowe. Stanowi to oczywiście, wadę całej procedury, która 
uniemożliwia rozszerzenie metody na przypadki o większej liczbie cząsteczek w 
komórce elementarnej. Z logicznego punktu widzenia najbardziej uzasadniony 
wybór p odpowiada tensorowi dla cząsteczki swobodnej. Procedura iteracyjna
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przypomina wówczas proces, polegający na adaptacji cząsteczki do sieci prze­
strzennej w miarę wzrostu objętości kryształu. Wyniki obliczeń tą metodą podane 
są w tab. 6.7 dla kryształu jodu, heksachlorobenzenu i naftalenu [47]. Okazuje się, 
że jedna z głównych polaryzowalności tensora heksachlorobenzenu staje się uje­
mna po sprowadzeniu go do osi głównych. Taki wynik nie ma sensu fizycznego i 
również wskazuje na niedostatki teorii.

Tabela 6.7

Tensory efektywnej polaryzowalności cząsteczek (a-l O40, F m2) [47]

Kryształ
Metoda 

iteracyjna
Koncepcja 

subcząsteczek
Cząsteczka 
swobodna

Jod 
(CmCa)

Heksachloro- 
benzen 
(P2I/c)

Naftalen 
(P2t/«)

7.5 0 0
14,6 -7,9

30,4 _

17,2 19,3 -7,4
16,0 -41,5

25,6

41,0 8,7 20,4
21.1 7,7

17,6

8,7 0 0
17,7 5,3

16,0_

14,1 -1,7 -6,7
42,1 5,5

37,3

24,3 3,9 -0,2
19,0 3,8

15,4

8,0
8,0

17,7_

17,1
28,2

28,2

23,9
19,6

11,5

Chen, Hanson i Fox [48] oraz Luty [47] zwrócili uwagę, że niejednoznaczność 
rozwiązań równ. (6.75) tkwi w samej metodzie, niezależnie od wykorzystania (lub 
nie) równania (6.76) dla struktur o Z = 2. Przypatrzmy się bliżej konstrukcji 
równania (6.69). Dla Z = 2 ma ono postać

Pt+P2 =eoXE
przy czym Pi i P2 oznaczają wektory polaryzacji obu prymitywnych podsieci. 
Każdy z nich zależy od p, a tensor ten ma symetrię węzła odpowiedniej podsieci. 
Natomiast makroskopowy tensor / ma symetrię grupy punktowej kryształu, 
zwykle wyższą od symetrii węzła. Spotykamy tu ten sam problem, który wystąpił 
już w rozdz. 5: z mniejszej liczby informacji, zawartych w wielkości mierzonej, 
chcemy dojść do większej liczby informacji, zawartych w poszukiwanym tensorze. 
Oczywiście, nie da się tego dokonać bez przyjęcia dodatkowych założeń, dopaso­
wujących liczbę informacji po obu stronach równości. Zadanie nasze dałoby się 
rozwiązać bez dodatkowych adjustacji, gdyby teoria pozwalała na napisanie 
jeszcze jednego, dodatkowego równania, na przykład

Inną próbę rozwiązania problemu przez obniżenie symetrii M podjął Luty w 
pracy [47]. Przyjmijmy, że każdą cząsteczkę możemy przedstawić jako zbiór dwu lub 
więcej części, tzw. subcząsteczek, rozkładając ją na przykład na rdzeń i podstawni­
ki, a w najprostszym przypadku przepoławiając ją (np. cząsteczkę jodu, naftalenu).
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Do każdej z subcząsteczek możemy zastosować przybliżenie dipola punktowego; 
tensor polaryzowalności i-tej subcząsteczki wchodzącej w skład k-tej cząsteczki 
można zatem przedstawić w postaci

₽n=fcMnr (6.77)
lk-j

(KK\
określone są równaniem (6.71) i — podobnie, jak tensory Loren- 

y /
tza — muszą być obliczone osobno dla każdej subcząsteczki. Obecnie symetria 
tensora Lorentza, a także i M, jest mniejsza, niż w (6.77). Polaryzowąlność całej 
cząsteczki jest sumą

₽.=e₽Q
Zauważmy, że w tym przybliżeniu traktujemy cząsteczkę jako zbiór anizotropo­
wych subcząsteczek, przez co możemy uwzględnić jej kształt. Lokalne pole elektry­
czne jest sumą pól rozciągających się na subcząsteczkach i jest uśrednione na 
obszar zajmowany przez całą cząsteczkę.

Ilustracją tego przybliżenia są wyniki, przytoczone w tab. 6.7, w kolumnie 3. 
Zupełnie niezłe zbliżenie do wartości znanych dla cząsteczki swobodnej pozwala 
sądzić, że jest to chyba najlepsza z dotychczas zaproponowanych koncepcji 
polaryzowalności. Koncepcję tę możemy uważać za rozszerzenie zasady addytyw- 
ności, zaproponowanej w diamagnetyzmie przez Van den Bossche i Sobry (por. 
rozdz. 5), na przypadek, gdy wpływu pola lokalnego nie można pominąć.

Mimo iż omówiony wyżej sposób opisu właściwości optycznych poprzez 
obliczenie lokalnych pól elektrycznych nie prowadzi do jednoznacznych rozwiązań 
na polaryzowalność cząsteczki w krysztale z przytoczonych powodów, uzyskane 
wnioski o naturze pól lokalnych mają duże znaczenie dla lepszego zrozumienia 
właściwości kryształów molekularnych. Aby to dostrzec, powróćmy jeszcze do 
podstawowych równań (6.65), (6.66) i (6.69). Podstawienie równ. (6.65) do równ. 
(6.66) przy skorzystaniu z definicji (6.71) prowadzi do

F^E+ZLM (6.79)
k'

Uzyskane wyrażenie jest związkiem między lokalnym polem elektrycznym Fk, 
„widzianym” aktualnie przez węzeł k, a zewnętrznym polem elektrycznym. Równa­
nie (6.79) możemy zapisać krócej w postaci

Fk = dkE (6.80)

przy czym tensor pola lokalnego, dt, zależny jest od tensora Lorentza i polaryzo­
walności cząsteczki

d*=Zdtt =X(1-LPK? (6.81)
k' k'

gdzie L i p są supermacierzami; ich elementy równe są odpowiednio macierzom
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Równanie

Ft=£(l-LP)^E (6.82)
k'

można porównać z relacją, znaną z mikroskopowej teorii dielektrycznej

F(r) = fe-1^, r')E(r')d3r' (6.83)

d3r = dx-dy-dz oznacza element objętości, a całkowanie rozciąga się na całą 
przestrzeń. Relacja ta definiuje odwrotność nielokalnej funkcji dielektrycznej. Ter­
min „nielokalna” odzwierciedla tu fakt, że e-1 jest funkcją położenia zarówno 
określonego punktu r, jak i punktów r' leżących w jego otoczeniu. Zatem e~r(r, r') 
jakby „czuje” rozkład ładunków w otoczeniu r. Pamiętając o przyjętym przez nas 
przybliżeniu cząsteczki do dipola punktowego, co odpowiada przejściu z ciągłej 
reprezentacji r w równ. (6.83) do reprezentacji wskaźnikowej w równ. (6.82) 
widzimy, że macierze dtk mają znaczenie odwrotności funkcji dielektrycznej. Stąd 
mamy związek

Fk = E E (6-84)
k'

gdzie
& = (1-LPK? (6.85)

Nielokalny charakter funkcji dielektrycznej 0 dla k k') jest istotną cechą 
izolatorów, odróżniającą je od ciał przewodzących. Widać, że w ramach naszego 
prostego modelu kryształu molekularnego wynika ona ze sprzężenia dipol-dipol 
między podsieciami molekularnymi. Najważniejsze dalsze konsekwencje, jakie wy­
nikają z tego sprzężenia, są następujące:

1) pojawienie się kolektywnego charakteru wzbudzeń elementarnych, tzw. eks- 
cytonów. Inaczej mówiąc, ekscyton można traktować jako kwant pola lokalnego w 
stanie wzbudzonym kryształu;

2) pole lokalne w określonym węźle k sieci jest wynikiem ekranowania tego 
punktu przez otoczenie od pola zewnętrznego [wynika to z równ. (6.84)];

3) podatność dielektryczna kryształu, /, nie jest równa sumie polaryzowalności 
cząsteczek. Ścisły związek między tymi wielkościami jest następujący:

X = E Pk (Z = X (r1 - L)f? (6.86)
k k' kk'

W dużym uproszczeniu można powiedzieć, że nielokalna funkcja dielektryczna 
koreluje, dzięki sprzężeniu dipolowemu, odpowiedź cząsteczki k z odpowiedzią' 
cząsteczki k'. Z faktu, że korelacja ta daje wynik niezerowy dla k / k' wynika, że 
wszystkie cząsteczki uczestniczą w tych samych, zdelokalizowanych wzbudzeniach 
elementarnych.

Pełniejszą dyskusję roli funkcji dielektrycznej w zagadnieniach dotyczących 
kryształów molekularnych znaleźć można w pracach [49, 50].
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6.5. Wpływ temperatury na właściwości 
optyczne kryształów

Wraz ze zmianą temperatury zmieniają się również właściwości optyczne 
kryształów, przede wszystkim współczynników refrakcji. Zmiany takie występują 
we wszystkich układach krystalograficznych i są na ogół niewielkie: rzędu kilku do 
kilkunastu dziesięciotysięcznych na 1 K. Poszczególne współczynniki refrakcji 
określonego kryształu mogą zarówno rosnąć, jak i maleć przy podwyższeniu 
temperatury. W dwóch układach krystalograficznych o najniższej symetrii, a więc 
w jedno- i trójskośnym, prócz zmian długości osi indykatrysy występują również 
zmiany ich orientacji względem osi krystalograficznych. Liczba stopni swobody 
zależy od symetrii układu: w kryształach jednoskośnych może się zmieniać tylko 
jeden kąt (w płaszczyźnie a, c), natomiast w trójskośnych zmieniają się wszystkie 
trzy kąty. Maksymalnie możemy mieć zatem 6 parametrów zależnych od tempera­
tury, minimalnie — jeden.

Mimo niewielkich wartości liczbowych efekty te mają ważne znaczenie pozna­
wcze, świadczą bowiem bezpośrednio o anharmoniczności dynamiki sieci. Innym 
powodem zainteresowania tą dziedziną badań jest fakt, że funkcje temperaturowe 
współczynników refrakcji, a także dwójłomności, często wykazują punkty osobliwe 
lub zakrzywienia informujące nas o przemianach fazowych, zachodzących w 
badanych substancjach w określonym przedziale temperatur. Szczególnie cenne są 
przypadki, w których struktura kryształu nie ulega zniszczeniu po przejściu do 
wyższej temperatury; ten rodzaj przemian określa się mianem kryształ-kryształ. Z 
wielkości zmian właściwości optycznych możemy w takich przypadkach wniosko­
wać o charakterze procesów molekularnych, odpowiedzialnych za te przemiany.

Częściej niż pojedyncze współczynniki refrakcji badana jest dwójłomność krysz­
tałów w funkcji temperatury. Tłumaczy się to tym, że wielkość ta jest łatwiej 
dostępna pomiarowi i dokładniej mierzona od współczynników refrakcji; wykazuje 
przy tym dużą czułość na zmiany temperatury.

W zakresie temperatur, w którym faza krystaliczna jest termodynamicznie 
stabilna, zmiany dwójłomności są ciągłe i najczęściej liniowe. We wszystkich 
zbadanych dotąd przypadkach współczynnik temperaturowy dB/dT jest ujemny, 
tzn. przy wzroście temperatury dwójłomność maleje. Zauważmy, że najczęściej 
mierzymy w eksperymencie optycznym różnicę dróg optycznych, T, a żądamy 
informacji o dwójłomności B, ponieważ ta właśnie wielkość poddawana jest 
interpretacji mikroskopowej. Jeśli uwzględnimy podany już związek między tymi 
wielkościami

r = Bd

to relację między ich współczynnikami 
żniczkowanie względem temperatury

dB _ 1 
dT d0

temperaturowymi otrzymamy przez zró-

d£_£o 
dT d0

(6.87)
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Temperaturowy współczynnik dwójłomności możemy więc obliczyć z temperaturo­
wej zależności różnicy dróg optycznych, r(T), oraz współczynnika rozszerzalności 
termicznej w kierunku normalnym do płaszczyzny płytki, a±. Wielkości d0 i r0 
mierzone są w temperaturze odniesienia.

Rys. 6.17. Dwójłomność płytki wyciętej równolegle 
do płaszczyzny (010) fluorenu w funkcji temperatu­
ry (według [13])

Przykładem liniowej zależności r(T) jest różnica dróg optycznych kryształu 
fluorenu, mierzona w płaszczyźnie (010) (rys. 6.17) [13]. Jeśli przy ogrzewaniu 
występują w sieci nawet niewielkie zmiany strukturalne, to skutkiem ich jest 
odstępstwo od liniowej zależności właściwości optycznych od temperatury. Można 
to zauważyć na rys. 6.18, ilustrującym zachowanie się płytki karbazolu

Rys. 6.18. Dwójłomność płytki wyciętej równolegle 
do płaszczyzny (010) karbazolu w funkcji temperatu­
ry (według [51])
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[51] . W temperaturze 118°C (punkt C na krzywej) rozpoczyna się przemiana 
fazowa, której występowanie w karbazolu stwierdzono również za pomocą pomia­
rów kalorymetrycznych [52].

W dyskusji, którą podejmiemy w dalszym ciągu, będziemy się zajmować przede 
wszystkim liniowymi zmianami współczynnika refrakcji lub dwójłomności. Wystę­
pują one w przedziale temperatur, w którym faza krystaliczna jest termodynami­
cznie stabilna. Zmiany wielkości optycznych opisywać będziemy za pośrednictwem 
formalizmu Rousseta-Lasheena. Mimo wskazanych już niedoskonałości formalizm 
ten jest prosty i może być użyty z powodzeniem w takim przypadku, gdy mniej 
przywiązujemy wagę do bezwzględnych wartości polaryzowalności, a bardziej 
interesujemy się mechanizmem procesów molekularnych, wywołujących obserwo­
wane efekty. W szczególności

1. Będziemy korzystać ze związku między refrakcją molową kryształu i refrak­
cją komórki elementarnej. Napisany w układzie osi głównych R ma on postać

n?-l M 
tli +2 Q

(6.88)

R/ zastępuje główne polaryzowalności komórki elementarnej. Podając związek w 
tej postaci, unikamy kłopotliwych czynników liczbowych.

2. Będziemy korzystać z modelu gazu zorientowanego

R = a { £ c(k,Trc} aT 
k = 1

(6.89)

przy czym tutaj r zastępuje tensor a polaryzowalności cząsteczki. Będziemy badać 
związek między strukturą kryształu i zmianami ni; zakładając, że składowe r nie 
zależą od temperatury.

Zróżniczkowanie równ. (6.88) prowadzi do wyrażenia

n, dn, dR: do
6-- ---------- --  M = O —--- F R: —— 

(n2 + 2)2 dT " dT dT
(6.90)

Widzimy, że w zależności n^T) mają udział dwa efekty:
a) zmiana kątowych położeń cząsteczek, występująca w dRJdT,
b) zależność gęstości kryształu od temperatury, którą możemy wyrazić bezpoś­

rednio

do
= -^(“i +a2+a3) (6.91)d 1

Udział drugiego z tych czynników w temperaturowej funkcji dwójłomności dysku­
tują również Bounds i Munn [53].

Równanie (6.90) napisane jest w układzie osi głównych indykatrysy. Jeśli 
analizujemy właściwości optyczne w układzie jedno- lub trójskośnym, to celowe 
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jest użycie macierzy orientacji b takiej, że

R = f b^rb^ 
k

gdzie b^ = cosjr^’, Rj).
Ocenę zmian dnJdT za pośrednictwem obu efektów prześledzimy na kilku 

przykładach.

1. Dwójłomność antracenu
Zgodnie z konwencją wprowadzoną przez Lasheena przyjmiemy, że nY i n2 leżą 

w płaszczyźnie (010) oraz że n3||b. Macierze orientacji LMN względem R, dla obu 
temperatur (290 i 95 K) podane są w tab. 6.8. Dane strukturalne potrzebne do 
obliczenia b zaczerpnięte zostały z pracy Masona [54], dane optyczne z pracy 
Lasheena (tab. 6.3). Stąd dla współczynników temperaturowych kątów Eulera, 
liczonych względem osi Rt, otrzymujemy

^=-l,07-10’3 — = -6,18-10“3 — = + 2,ll-10“3 stopień-K-1
AT AT AT H

Ai>
— —12,1-10 3 stopień-K 1

Tabela 6.8

Macierze orientacji osi LMN cząsteczki antracenu i kąty Eulera względem osi indykatrysy Rt, R2, R3

Temperatura, 
K Macierz orientacji Kąty Eulera, stopień

Zr

290 b =
/-0,9918 - 0,0840 -0,1274\

0.1112 0,4331 -0.8944
\ 0,0626 -0,9013 -0,4287 /

188,105 3,974 115,383 -59,64

95 b = 1
/ — 0,9910 -0,0284 -0,1311 \ 

0,1063 0,4291 -0,8970
k 0,0818 -0,9028 -0,4222/

188,314 5,178 114,972 -57,28

W dalszym ciągu wobec

Z = 2 ai+a2 + a3 = 19,7-10-5 K-1

£?o = 1,026 g-cm~3 M = 178,2 g-mol-1

otrzymujemy współczynniki temperaturowe n,

— = -26,87-10“5 — = -12,16-10-5 —= -22,68-10-5 K-1
AT AT AT
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Uwzględniając, że dwójłomność w płaszczyźnie łupliwości [płaszczyźnie (001)] 
antracenu wynosi

B3a = n3-na

gdzie
na = (nf 2 cos2 + «7 2 sin2 ~1/2

otrzymujemy temperaturowy współczynnik dwójłomności

= — 2,5-10'5 K-1
AT

Porównanie wyników obliczeń z danymi doświadczalnymi przedstawione jest w 
tab. 6.9. Okazuje się, że obliczenia oddają w prawidłowy sposób zarówno rząd 
wielkości, jak i kierunek zmian dwójłomności antracenu w płaszczyźnie (001). 
Nieco mniejsza wartość współczynnika obliczonego w porównaniu z wartością 
doświadczalną tłumaczy się — przynajmniej częściowo — faktem, że pochodne 
kątów Eulera maleją wraz z obniżeniem temperatury. Użyte w obliczeniach 
wartości średnie są więc mniejsze od „lokalnych” w pobliżu temp. 300 K.

Tabela 6.9

Porównanie wyników obliczeń temperaturowej funkcji dwójłomności kryształu 
antracenu z wartościami doświadczalnymi [(dB/dT) 105, K“1]

dB^JdT dBl2/dT dBi3/dT dB23/dT

Soltzberg [55] -5,12 — — —
Kusto [56] -4,8 — — —
Obliczenia -2,5 -14,7 -4,2 -10,5

2. Dwójłomność antrachinonu
Problem wpływu temperatury na właściwości optyczne antrachinonu postawi­

my odwrotnie: na podstawie znajomości macierzy osi LMN cząsteczki w kilku 
temperaturach (Lonsdale i in., tab. 8.5) oraz znajomości tensora refrakcji cząsteczki 
r (Lasheen i in., tab. 6.3) należy przewidzieć wpływ temperatury na główne 
współczynniki refrakcji.

Tabela 6.10
Zależności głównych współczynników refrakcji ni i dwójłomności B,k 
kryształu antrachinonu od temperatury

T, K »i n3 Bi3 512 B23

293,8 1,8552 1,7168 1,5012 0,3540 0,1384 0,2156
260,8 1,8807 1,7233 1,4895 0,3912 0,1574 0,2338
201 1,9015 1,7339 1,4896 0,4119 0,1676 0,2443
161 1,9155 1,7412 1,4899 0,4256 0,1743 0,2513
103 1,9354 1,7515 1,4913 0,4441 0,1839 0,2602
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Wyniki obliczeń uzyskane przez zastosowanie podanych już związków zesta­
wione są w tab. 6.10 obok wartości dwójłomności. Okazuje się, że najsilniej zależy 
od temperatury nr, następnie n2 (rys. 6.19); w zakresie temp. 100-260 K zależność 
ta ma charakter liniowy. W tym zakresie n3 jest stały, wzrasta w temperaturze 
wyższej od 260 K. W związku z tym również dwójłomność kryształu w głównych 
płaszczyznach optycznych zmienia się liniowo z temperaturą (rys. 6.20). We 
wszystkich trzech płaszczyznach B maleje ze wzrostem temperatury, jak to wskazu­
ją średnie współczynniki temperaturowe
^-=-33,110~5 = -18,810~5 = -23,4-10~5 K“1
dT dT dT

Wynika z tego, że zmiany kątów Eulera, współczynników refrakcji oraz dwójło­
mności z temperaturą są w antrachinonie znacznie silniejsze niż w krysztale 
antracenu. Zapewne jakieś znaczenie ma tu fakt, że antrachinon jest substancją 
znacznie łatwiej sublimującą niż antrancen; winno się to przejawiać w silniejszej

Rys. 6.19. Przewidywana zależność współczynników refrakcji antrachinonu od temperatury

Rys. 6.20. Przewidywana zależność dwójłomności antrachinonu od temperatury
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anharmoniczności dynamiki sieci kryształu antrachinonu. O ile nam wiadomo, 
pomiarów optycznych dla kryształu antrachinonu w różnych temperaturach nie 
wykonano.

3. Dwójłomność karbazolu
Do szczególnie interesujących i prostszych w interpretacji struktur krystali­

cznych należą takie, w których płaszczyzna symetrii cząsteczki pokrywa się z 
płaszczyzną symetrii kryształu. Przykładem może być cytowany już karbazol, 
którego strukturę zbadali Kurahashi i in. [57] oraz fluoren, zbadany przez Burnsa 
i Iballa [58]. Obie struktury są bardzo do siebie podobne. W karbazolu zwierciad­
lana płaszczyzna symetrii kryształu przechodzi przez atom N cząsteczki i jest 
prostopadła do jej własnej płaszczyzny (rys. 6.21). Z pominięciem atomu wodoru 
cząsteczka jest płaska w granicach ±0,003 nm; dokładniejsza analiza wykazuje, że 
oba pierścienie benzenowe tworzą kąt 1,63°. W ciele stałym nie ma wiązań 
wodorowych typu N—H-N, na co wskazuje zarówno duża odległość /N...N = 0,389 
nm, jak i występowanie przeszkód sterycznych. Rozkład cząsteczek w komórce 
elementarnej przedstawiony jest schematycznie na rys. 6.22. Oba związki krystali-

Rys. 6.21. Płaszczyzna cząsteczki karbazolu jest prostopadła do zwierciadlanej płaszczyzny symetrii m 
kryształu

Rys. 6.22. Schemat rozkładu osi symetrii LMN cząsteczek karbazolu w komórce elementarnej 
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zują w tej samej grupie przestrzennej Pnma. Kąt zawarty między osią a i 
płaszczyzną cząsteczek (0 na rys. 6.22) wynosi w fluorenie 55,2°, w karbazolu 61,0°. 
Interesujące w obu strukturach jest to, że nakrywanie się płaszczyzn symetrii 
cząsteczki i kryształu narzucone jest regułami symetrii, wobec czego nie może 
ulegać zmianie przy ochłodzeniu lub ogrzaniu kryształu. Innymi słowy, w całym 
zakresie temperatur, w którym ani grupa przestrzenna, ani konformacja cząsteczki 
nie ulegają zmianie, średnie w czasie położenie normalnej N do płaszczyzny 
cząsteczki oraz osi M musi leżeć w płaszczyźnie (010). Oznacza to, że anharmoni- 
czność drgań cząsteczki wokół N oraz M nie może prowadzić do zmiany kątowe­
go położenia cząsteczki; ten warunek może być spełniony wtedy, gdy odpowiednie 
krzywe energii potencjalnej są symetryczne. W takim przypadku mamy w jednym 
krysztale dwa typy krzywych energii potencjalnej: asymetryczną dla libracji wokół 
osi L, przy czym temu ruchowi towarzyszy kątowe przemieszczanie cząsteczki przy 
zmianie temperatury, oraz krzywe symetryczne dla pozostałych osi libracji. Krysz­
tały te przedstawiają więc problem „jednoparametrowy”: od temperatury może 
zależeć tylko kąt 9.

Zanalizujmy nieco bliżej wpływ temperatury na właściwości optyczne kryształu 
karbazolu; fluoren badany był nieco inną metodą w pracy [59]. Współczynniki 
rozszerzalności termicznej [60] i refrakcji karbazolu wynoszą

aa = 12210“6 ah = 55-10“6 ac = 46-10~6 K“1

na = 1,560 nb = 2,057 nc = 1,726

a parametry komórki elementarnej przy obsadzeniu czterema cząsteczkami są 
następujące:

a = 0,7772(5) b = 1,9182(10) c = 0,5725(5) nm

Dla grupy Pnma wybieramy jako operatory symetrii następujące macierze:

Aj = (1 0 0/0 1 0/0 0 1) A2 = (1 0 0/0 1 0/0 0 1)

A3 = (T 0 0/0 1 0/0 0 1) A4 = (1 0 0/0 1 0/0 0 1)

Jeśli przez h oznaczymy kosinus kąta zawartego między normalną N i krystalogra­
ficzną osią c, to dla karbazolu

h = cos (N, c) = 0,4818

a macierz c(1) orientacji LMN w abc przyjmie ogólną postać 
/0 — h ~(l~h2)ll2\

* = 11 0 0 1 (6.92)
\0 -(l-h2)112 h J

Wobec tego dla refrakcji R komórki elementarnej otrzymujemy ogólny wynik 
/rM h2+ rN(l — h2) \

R =^c№)rc«T = 4 I I (693)
k \ rM(l-h2) + rNh2 J
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Z tych związków i przy znajomości n{ możemy obliczyć w znany sposób refrakcje 
cząsteczki rL, rM, rN. Zróżniczkowanie (6.93) względem temperatury prowadzi do 
zależności

dRa o/i dh— = 8/z(rM-rN) — 
dl dl

dRb
= 0 (6.94)d 1

dRc dh= -g^r r) 
dT dT

W krysztale karbazolu (również fluorenu) sytuacja jest wyjątkowo korzystna: 
płytki hodowane z roztworu lub stanu pary rosną chętnie w płaszczyźnie (010). 
Właśnie w tej płaszczyźnie efekty wynikające z równań (6.94) sumują się, wobec 
czego dwójłomność płytki o takiej orientacji najsilniej zależy od temperatury. 
Pomiary wykonane w pracy [51] prowadzą do wyniku

= ^(n3-»i) = —8,3110~5 K“1
dT dT 3

W równaniach (6.94) mamy wszystkie informacje prócz dh/dT. Współczynnik ten 
odpowiada małemu obrotowi AL cząsteczki wokół osi L; po podstawieniu otrzy­
mujemy

(Al)b = — 2,7 ■ 10-3 stopień K“1

Wynik ten zupełnie dobrze koreluje z przewidywaniami modelu sztywnej skrzynki 
(rozdz. 8)

(dJRBM = -1,9-10~3 stopień-K“1

Oczywiście, ze względu na szczególne położenie cząsteczki jest także

Wyniki tu uzyskane zestawione są w tab. 8.9 (rozdz. 8).
Przedstawione tu rezultaty wskazują, że zmiany współczynników refrakcji 

przypadające na 1 K wynoszą przeciętnie kilka dziesięciotysięcznych. Znaczną 
część tych efektów możemy przypisać niewielkim zmianom orientacji cząsteczek, 
jakie wynikają z anharmoniczności ruchów libracyjnych. Jeśli opisać te zmiany za 
pomocą różnicy macierzy orientacji LMN w dwóch różnych temperaturach, to 
wynikające stąd zmiany położeń kątowych cząsteczki są rzędu 10“3 stopień-K-1, 
czyli kilku sekund kątowych na 1 K. Pewien udział we współczynniku dnJdT ma 
również zmiana gęstości kryształu w kierunku normalnym do płytki, reprezento­
wana drugim członem w równ. (6.87). Na przykład płytka (010) karbazolu o 
grubości d0 = 7,4-104 nm wykazuje w temperaturze pokojowej (20°C) różnicę dróg 
o wielkości To = 12 284 nm. Współczynnik temperaturowy, mierzony metodą
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kompensacyjną [13], jest stały w zakresie temperatury 20 < T < 156°C i wynosi
^31 \

. dT %sp
-5,48 nm-K-1

Ponieważ a± = 5510-6 K-1, pierwszy człon równ. (6.87) ma wartość — 7,4-10-5 
K“1; a drugi — 0,9110-5 K-1. Na przykładzie karbazolu widzimy, że wpływ 
zmiany grubości płytki dochodzi do 12% ogólnej zmiany anizotropii optycznej 
płytki i nie powienien być zaniedbywany. Efekt ten ma oczywiście niewielkie 
znaczenie w pomiarach anizotropii magnetycznej, których dokładność jest znacznie 
mniejsza.

6.6. Problemy
Problem 6.6.1

Wychodząc z polaryzowalności swobodnej cząsteczki naftalenu, obliczyć meto­
dą kolejnych przybliżeń uzgodnione składowe a oraz (kąt n15 Xt) w krysztale 
jednoskośnym (Pija).

Składowe tensora polaryzowalności a(0) swobodnej cząsteczki naftalenu może­
my obliczyć, korzystając z anizotropowych inkrementów atomowych, podanych 
przez Le Fevre’a (tab. 6.11). Składamy je według zasady dodawania wielkości 
tensorowych, przy czym kierunki wiązań C—C wystarczy wybrać takie, jak w 
regularnym sześcioboku. Otrzymujemy

’21,8
a<0) = 19,6 •10“40 F-m2

12,9

Z a<0) oraz orientacji LMN w abc* (tab. 5.2 w rozdz. 5) możemy obliczyć tensor 
polaryzowalności komórki elementarnej. W krysztale jednoskośnym przy Z = 2

Tabela 6.11

“ c2af0) 0 C<1 ci3 a*0)
^(abc*) = 2 0 0

ci3 Ci a)0) 0 4^°*

Inkrementy polaryzowalności pary związanych 
atomów według Le Fevre’a [17] (6 1040, F m2)

Para atomów b, b, bv

C—H 0,71 0,71 0,71
C—C 1,10 0,30 0,30
c__c^-arT^ar 2,49 0,23 0,66

C—Cl 4,68 2,15 1,65

b) — polaryzowało ość wzdłuż wiązania, bt — prostopadle 
do wiązania, lecz w płaszczyźnie cząsteczki, bv — prostopadle 
do wiązania i płaszczyzny cząsteczki.

272



Z kolei obliczamy zerowe przybliżenie 0 ze związku
1 / 2F(1°3) \

&o - 2arct§ ąo> _ y-w y (6.95)

co umożliwia diagonalizację r*0)(ahc*) macierzą
/ COS 0O 0 sin 0O

a = ( 0 1 0
\ — sin<?0 0 cos

Pisząc teraz trzy równania Rousseta 

— - — r^ = bi3£0 K
nf — 1
n? + 2

w których dla układu jednoskośnego

Vk = abc sin P

możemy obliczyć współczynniki refrakcji, odpowiadające zerowemu przybliżeniu T 
i <Ż>

/1 + 2/l\1/2(0) _ /1

U-2hJ
Punktem wyjścia w pierwszym przybliżeniu są doświadczalne wartości n, oraz 

<P0. Obliczamy z nich ^^(abc*), a stąd a(1) i Postępowanie to prowadzi do 
wyników przedstawionych w tab. 6.12, które wskazują, że metoda jest szybko 
zbieżna.

Problem 6.6.2

Analiza właściwości optycznych gipsu, CaSO4 • 2H2O

Kryształ, którego strukturę zbadano metodą dyfrakcji neutronów [61], ma 
symetrię grupy przestrzennej I2/a. Jednoskośna komórka elementarna o parame­
trach a = 0,5680(8), b = 1,5180(9), c = 0,6520(8) nm, p = 118,38(33), zawiera cztery 
jednostki o składzie CaSO4-2H2O. Jony Ca2+ i SO4~ zajmują położenia szczegól­
ne o symetrii C2. Wydaje się, iż jony SO4~ nie mają symetrii Td, odpowiadającej 
im w stanie swobodnym. Odstępstwa od pełnej symetrii nie są jednak duże i 
możemy uznać, że zarówno jony Ca2 + jak i SO4~ mają symetrię wystarczającą, by 
ich połaryzowalność uważać za izotropową. Cząsteczki wody mają oczywiście 
niższą symetrię. Atomy tlenu zajmują położenia ogólne o symetrii C15 natomiast 
szesnaście atomów wodoru należy do dwóch nierównoważnych zbiorów, o symetrii 
węzła również Ct. Ta sytuacja dopuszcza wystąpienie niewielkiej asymetrii czą­
steczki, polegającej na tym, że długości obu wiązań, O—H1 i O—H2 trochę się 
różnią.
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Tabela 6.12
Wyniki obliczeń polaryzowalności cząsteczek metodą kolejnych 
przybliżeń

Przybli­
żenie a-1040, F-.m2 rt; (obi) njdośwj

A. Kryształ naftalenu

(0) 21,8 1,5083
19,6 1,6602

12,9_ 1,8710 22,24

(1) 23,2 1,5228
20,1 1,7220

13,2_ 1,9484 22,62

(2) 23,1 1,5250 1,525
20,1 1,7220 1,722

13,3_ 1,9450 1,945 22,62

B. Kryszta antracenu

(0) 31,1
-

1,5224
26,7 1.7262

17,6_ 1,9767 27,68

(O 30,6 1,5606
28,4 1,7860

18,6_ 1.9526 27,12

(2) ’ 30,7 1,5559 1,556
28,4 1.7860 1,786

- 18,4_ 1.9593 1,959 27,14

Zasadnicza rola cząsteczek wody w anizotropii optycznej wynika na pierwszy 
rzut oka z rys. 1.9, przedstawiającego rzut struktury na płaszczyznę (010). Nanie­
sione linią przerywaną główne kierunki indykatrysy A.B. i O.B. są odpowiednio 
równoległe i prostopadłe do kierunków OH na tej płaszczyźnie [62]. Przyjmiemy 
więc w dalszym ciągu, że ten fakt stanowi główną przyczynę anizotropii optycznej 
kryształu i spróbujemy obliczyć a cząsteczki wody oraz ocenić izotropową sumę 
polaryzowalności aiz obu jonów [62].

Kryształ jest optycznie dwuosiowy, dodatni. Współczynniki refrakcji dla ź 
= 589 nm mają następujące wartości [63]:

ng = 1,5299 nm = 1,5230 np = 1,5207

Oś nm indykatrysy jest równoległa do osi b kryształu, zaś ngHA.B. i npHO.B. 
Orientację tych osi względem a, b, c (układ jednoskośny) podają trzy wektory 
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jednostkowe R, (tab. 6.13). W tej tabeli podane są również orientacje osi symetrii r, 
cząsteczki wody. Z tych danych wynika, że r2 R} = 0,0443 oraz r2 ^2 = 0,9724, 
czyli normalna do płaszczyzny cząsteczki wody jest prawie równoległa do jednej z 
osi indykatrysy i prawie prostopadła do drugiej w płaszczyźnie (010). Jony SO^- 
występują wzdłuż kierunków optycznych naprzemiennie, co eliminuje ich ewen­
tualną słabą anizotropię.

Tabela 6.13

Molekularne (r) i optyczne (R) wektory jednostkowe 
w układzie jednoskośnym abc kryształu gipsu [62] (i, j, 
k są wektorami jednostkowymi w kierunku odpowiednio 
«, h, c)

< = 0,62621 + 0,7782/ - 0,0038 k
6” = 0,79081 — 0,2288/ + 1,0567k
ó" = - 0,53761+ 0,5676/ + 0,4184k
K = 0,83111 - 0,287 Ik
r2 = 0,77531 +1,0997k
«3 = V

Rachunek można wykonać metodą kolejnych przybliżeń. Niech punktem wyjś­
cia będzie tensor polaryzowalności cząsteczki swobodnej a(01, obliczony przez 
Liebmanna i Moskowitza [64] i podany w tab. 6.14. Otrzymany stąd tensor 
polaryzowalności komórki elementarnej r*01^ R2 R3) w optycznym układzie od­
niesienia ma składowe w zerowym przybliżeniu

1,730
r°’ = 8 1,380 •IO“40 Fm2

1,703

ponieważ Z = 8. Jeśli teraz przez A]0) oznaczymy udział (w zerowym przybliżeniu) 
podsieci wody we współczynnikach refrakcji, a przez d)0) izotropowy udział jonów,* 
to w myśl zasady addytywności możemy napisać

zl<°> = m - A]0) (6.96)

Kolejne przybliżenie, k-te, uważać będziemy za dobre wtedy, gdy okażą się 
liczbami jednakowymi dla i = 1, 2, 3. Korzystając z równań w problemie 6.6.1,

Tabela 6.14

Teoretyczne i eksperymentalne wartości polaryzowalności 
cząsteczki wody (a-l040, F-m2)

«i a2 «3 <a> ■ Literatura

1.422 1,189 1,292 1,301 Arrighini i in. [65]
1,836 1,363 1,614 1,604 Liebmann, Moskowitz [64]

— . — 1,61 Landolt-Börnstein [63]
1,598 1,592 1,619 1,603 Rohleder [62]
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otrzymujemy

= 1,2073 = 1,1676 M0) = 1,2031

40) = 0,3266 40) = 0,3554 40) = 0,3176

Widzimy, że A nie ma stałej wartości, wobec czego jako parametr następnego 
przybliżenia przyjmujemy

<d(0)> = 0,3332

Po powtórzeniu rachunku już w następnym przybliżeniu okazuje się, że

41’ = = 41) = 0,3319

Uzyskane przez rozwiązanie układu równań liniowych polaryzowalności cząsteczki 
wody podane są w ostatnim wierszu tab. 6.14. Okazuje się, że anizotropia 
optyczna cząsteczki wody jest bardzo niewielka, co uzasadnia słabą dwójłomność 
kryształu. Dla pozostałej części współczynnika refrakcji <d(1)> możemy napisać w 
przybliżeniu

2 + <d(1)>2 1
<n2>+2 3£0 1

gdzie

Ni = (^ubcsin/O-1 = 8,0873 nm-3

Stąd otrzymujemy

a;z = 6,85 • 10-40 F ■ m2

Porównanie tego wyniku z dostępnymi w literaturze danymi prowadzi do następu­
jących wniosków. Jeśli dla polaryzowalności Ca2+ przyjąć wartość 
= 0,63 -KT40 F-m2, obliczoną przez Borna i Heisenberga z poprawki spektrosko­
powej w serii Rydberga-Ritza, zaś dla polaryzowalności SO4“ wartość aa 
= 4,23• 10“40 F-m2, otrzymaną przez Bóttchera z pomiarów gęstości i współczyn­
nika refrakcji roztworów siarczanu sodu [66], to otrzymamy łącznie

alz = 4,87 ■ 10-40 F-m2

Wartość ta zupełnie dobrze zgadza się z wynikiem dla kryształu gipsu.

Problem 6.6.3

Rozwiązać układ równań (6.74), tj. znaleźć związek między pt i p2 przy 
obsadzeniu komórki elementarnej dwiema cząsteczkami.

Zaczniemy od przytoczenia analizy tego problemu, przedstawionej w pracy 
[43]. Zastanawiając się nad właściwościami układu równań (6.74), autorzy cytowa­
nej pracy stwierdzają, że nie ma on rozwiązań algebraicznych, ponieważ natężenia 
pola lokalnego w dwóch punktach sieci, Fr i F2, nie są na ogół niezależne od 
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siebie. Oba te wektory możemy więc związać z sobą zależnością

F2 = QF{ (6.97)

w której Q jest pewną macierzą. Nie znamy wprawdzie jej elementów, lecz związek 
powyższy jest w stanie opisać wszelkie zmiany wektora F przy przejściu od punktu 
1 do 2 w krysztale (zmiany długości, kierunku i zwrotu).

Wprowadźmy wpierw zależność (6.97) do obu równań (6.74). Otrzymamy

F, = M11p1F1 + M12p2QF1
QFi =M21p1F1 + M22₽2QF1

Możemy teraz wyeliminować Fj

l Mnp, =M12p2Q
Q = M21 pj + M22 p2 Q

a następnie Q. Prowadzi to do jednego równania, zawierającego Pj i p2

(M^PJ-^l-Mn PO = (1-M^pj-1 (M21 PO (6.98)

Korzystając z ogólnie słusznej równości

(A-B)“1 B 1 A1
możemy stopniowo przegrupować czynniki

p21 Mr/ (1 - Mt, po = (i - M22 po1 (M21 PO
Mr2] (1 - Mn PO = (P2 r1 (1 - M22 po1 (M21 PO =

= {(l-M22p2)p21}(M21po =
= {p2’1-M22}-1(M21p1)

Mnożąc przez M12 a następnie przez Pf1, otrzymamy

1-Mjip! = m12(P71-m22)-1(m21 po
a następnie

Pr1 =m11+m12(p;1-m22)’1m21

Macierz M ma właściwości analogiczne do L, czyli M21 = M12, M22 = Mn; 
możemy więc bez trudności doprowadzić ostatnią równość do postaci (6.75) 
jedynie przez wybór odpowiednich wskaźników.

Dokładnie takie samo równanie (6.98) możemy również otrzymać bez wprowa­
dzania macierzy Q, przez zastosowanie zwykłej metody podstawienia: obliczamy 
F2 z pierwszego z dwóch równań (6.74) i podstawiamy do drugiego. Otrzymujemy

F2=(M12p2)-1(l-M11p1)F1
a następnie

(1 - M22 p2) (M12 p2)-1 (1 - Mi! Pi) F. = (M21 PJ Fi
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Zakładając, że F^ O, otrzymamy po eliminacji i pomnożeniu przez (1 
-M22p2r‘

(M12 p2)-1 (1-Mn PO = (1 - m22 ₽2)-1 (M21 ₽j

co dokładnie odpowiada równaniu (6.98).
Wydaje się więc, że komentarz w pracy [43] odnośnie omawianego tu proble­

mu jest chybiony w tym sensie, że związek (6.97), spełniony dla każdej pary 
wektorów F2 i F2, w rzeczywistości nie przedstawia żadnej nowej informacji w 
stosunku do układu równań (6.74). Z algebraicznego punktu widzenia fakt istnie­
nia związku między Ft i F2 nie stanowi przeszkody w rozwiązaniu obu równań 
przez bezpośrednie zastosowanie metody podstawienia i eliminacji pod warunkiem, 
że oba wektory mają długości niezerowe. Istnienie takiego związku między i F2 
jest niemal oczywiste: „odpowiedź” układu w punkcie 2 na przyłożone pole jest 
wywołana przez takie same atomy, choć w trochę innej konfiguracji niż w punkcie 
1. Aby te odpowiedzi poznać, trzeba jednak wpierw obliczyć Pt i p2, a następnie 
za ich pomocą F] i F2. Wtedy dopiero napisanie równ. (6.97) może pozwolić na 
ocenę związku między Fj i F2.
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7. ABSORPCJA KRYSZTAŁÓW 
W PODCZERWIENI

Współczesna spektroskopia jest jedną z najsilniej rozwiniętych metod ekspery­
mentalnych i obejmuje zarówno wiele różnorodnych problemów naukowych, jak i 
zastosowań praktycznych. Obszar zastosowań jest bardzo rozległy nawet wówczas, 
gdy termin „spektroskopia” zawęzimy do tak zwanej spektroskopii optycznej, 
obejmującej zjawiska występujące w zakresie długości fal promieniowania elektro­
magnetycznego od 200 nm do 106 nm, tj. w zakresie liczb falowych od 50000 
cm-1 do 10 cm-1. Tymczasem do spektroskopii zalicza się dziś również obserwa­
cje w zakresie mikrofalowym, a więc i technikę magnetycznego rezonansu jądrowe­
go i elektronowego rezonansu paramagnetycznego, a ostatnio również spektrosko­
pię Móssbauera czy też spektroskopię rentgenowską. Znakomite przedstawienie 
zastosowań szerokiego wachlarza metod spektroskopowych do badania układów 
molekularnych znaleźć można w monografii [1]. Prócz zagadnień klasycznej 
spektroskopii molekularnej opisano tam również zastosowania spektroskopii 
móssbauerowskiej do określania charakteru wiązań chemicznych, a także spektro­
skopię korelacyjną, zajmującą się analizą kształtu pasm absorpcyjnych.

Najogólniej rzecz biorąc, klasyczna spektroskopia polega na badaniu wiązki 
promieniowania, która przeszła przez określoną warstwę materiału chemicznie i 
fizycznie jednorodnego. Interesują nas takie cechy tej wiązki, jak jej natężenie i stan 
polaryzacji, a niekiedy również skład spektralny. Informacje, jakie z tych danych 
potrafimy odczytać, dotyczą w pierwszym rzędzie energii stanów wzbudzonych 
poszczególnych cząsteczek lub całego kryształu. Dalej, możemy określić prawdopo­
dobieństwo przejścia między stanem podstawowym i wzbudzonym, kierunek mo­
mentu przejścia w cząsteczce lub w krysztale. Badania te informują nas również o 
wielkości sil działających między określoną parą atomów przy rozciąganiu łączącego 
je wiązania chemicznego, a także o naturze i wielkości oddziaływań międzycząstecz- 
kowych w fazie skondensowanej. Badania półprzewodników metodami spektro­
skopii służą między innymi do określania dyskretnych poziomów energetycznych, 
pojawiających się w wyniku wprowadzenia atomów domieszki do sieci macierzy­
stej pierwiastka. Zastosowania analityczne należy zaliczyć do zadań praktycznych 
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spektroskopii: należy do nich jakościowe i ilościowe określanie składu mieszanin, 
w tym również ważny problem określenia stopnia czystości substancji.

W niniejszym rozdziale będziemy się zajmować spektroskopią tylko w takim 
aspekcie, w jakim metoda ta jest użytecznym narzędziem badania struktury materii 
— w mniejszym stopniu samej cząsteczki niż kryształu. Będziemy rozważać tylko 
problemy związane z drganiami wewnętrznymi cząsteczki. Obszerne zestawienie 
literatury tego przedmiotu z lat 1965-1971 zawiera artykuł przeglądowy Szostak 
[2]. Poza tym położymy akcent na przedstawienie problemów charakterystycznych 
dla bliskiej podczerwieni, obejmującej występowanie tak zwanych nadtonów i 
tonów złożonych. Powodów takiego wyboru jest kilka.

Przede wszystkim trzeba zauważyć, że ten zakres spektroskopii jest znakomicie 
przystosowany do badania ciała stałego. Absorpcja w zakresie nadtonów jest 
bowiem od 100 do 1000 razy słabsza od absorpcji w zakresie przejść podstawowych, 
wobec czego najdogodniejsze do badań grubości płytek od 0,2 do 2 mm można 
łatwo uzyskać z hodowanych różnymi metodami monokryształów. Otrzymane dla 
takich próbek rezultaty są zwykle pod względem fotometrycznym o wiele dokład­
niejsze niż w innych zakresach podczerwieni. Dalszą okolicznością sprzyjającą jest 
podjęcie farbrycznej budowy spektrofotometrów na zakres bliskiej podczerwieni 
(NIR, Carl Zeiss, Jena). Nie bez znaczenia jest również fakt, że obszar częstości 
podstawowych doczekał się licznych i znakomitych opracowań monograficznych, 
których kilka zostało zamieszczonych w spisie literatury przy końcu tego rozdzia­
łu. Znacznie słabiej natomiast reprezentowany jest w piśmiennictwie, zwłaszcza 
polskim, zakres bliskiej podczerwieni [2]. Problemy eksperymentalne, związane z 
przygotowaniem próbek, cechowaniem spektrofotometru pod względem skali czę­
stości lub skali fotometrycznej itd., są w spektroskopii wspólne. Wobec licznych 
opracowań (zob. np. [3]) nie będą tu poruszane.

7.1. Absorpcja w podczerwieni cząsteczki swobodnej

Widmo absorpcyjne cząsteczki swobodnej, związane z przejściami między 
stanami rotacyjnymi i oscylacyjnymi należącymi do podstawowego stanu elektro­
nowego, występuje w zakresie od 10000 cm'1 do 100 cm'1. Równanie 
Schródingera, opisujące względny ruch atomów cząsteczki, zależy jedynie od 
współrzędnych jąder atomów — współrzędne elektronów występują w wyrażeniu 
na energię potencjalną. Uważamy zwykle, że konfiguracja elektronów w przejściu 
oscylacyjnym jest ustalona i odpowiada stanowi podstawowemu.

Widmo absorpcyjne składa się z wielu lepiej lub gorzej rozdzielonych pasm 
absorpcyjnych, określanych za pomocą dwóch wielkości:

1) częstości w maksimum pasma; jest ona zdeterminowana przez mechanikę 
ruchu atomów cząsteczki, w szczególności przez masy poruszających się atomów i 
współczynniki liniowych sił sprężystych, działających między nimi;

2) natężenia pasma; jest ono wyznaczone przez elektryczne właściwości czą­
steczki, zwłaszcza przez moment dipolowy, a niekiedy przez wielkość oddziaływa­
nia momentu elektrycznego i magnetycznego.
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Do opisu częstości drgań cząsteczki dwuatomowej można przyjąć w najprost­
szym przypadku model oscylatora harmonicznego. W modelu tym uważa się, że 
na atom, wychylony z położenia równowagi o odcinek x, działa siła

F=-kx (7.1)

zwana liniową siłą sprężystą; k jest jej współczynnikiem. Energia potencjalna 
przesuniętego atomu jest proporcjonalna do kwadratu przesunięcia

V = ikx2 (7.2)

Model ten opisuje tak zwane drgania podstawowe, tj. odpowiadające jednokwan- 
towemu przejściu między stanem podstawowym i wzbudzonym stanem oscylacyj­
nym. Nie obejmuje innych, obserwowanych w doświadczeniu przejść spektralnych, 
dla których zmiany liczby kwantowej są większe od jedności (nadtony) lub w 
których wzbudza się w cząsteczce więcej niż jedno drganie podstawowe (tony 
złożone). Dla wyjaśnienia takich przejść trzeba przyjąć, że energia potencjalna jest 
bardziej złożoną funkcją współrzędnych niż funkcja (7.2). Funkcję taką przedstawia 
się zwykle w postaci rozwinięcia V w szereg względem małych przesunięć qk, k 
= 1, 2, ...

W rozwinięciu (7.3) możemy pominąć pierwszy człon, definiując odpowiednio 
położenie zera na skali energii. Człon drugi obligatoryjnie równy jest zeru, 
ponieważ w stanie równowagi siła wypadkowa, działająca na atomy, jest równa 
zeru. Trzeci człon jest uogólnieniem zależności (7.2), a czwarty i następne opisują 
odstępstwo krzywej energii potencjalnej oscylatora rzeczywistego od kształtu para­
bolicznego. Człony te są odpowiedzialne za występowanie tak zwanej anharmoni- 
czności mechanicznej, prowadzącej do pojawienia się nadtonów i tonów złożonych. 
Zależność (7.3) energii potencjalnej od współrzędnych możemy interpretować w ten 
sposób, że siła, działająca w oscylatorze rzeczywistym, nie ma charakteru ściśle 
liniowego.

Istnieje jeszcze drugi powód, dla którego cząsteczka rzeczywista zachowuje się 
odmiennie od prostego modelu oscylatora harmonicznego. Jak wiadomo, zupełnie 
ogólnym warunkiem dopuszczającym pojawienie się przejścia dipolowego między 
stanami opisywanymi funkcjami falowymi i j/j jest nieznikanie całki

Pij = Mil/jdxdydz (7.4)

przynajmniej dla jednej składowej M [4]. Jeśli ograniczymy się do przejść absorp­
cyjnych, to M jest operatorem momentu dipolowego cząsteczki. We współrzędnych 
kartezjańskich

M = (7.5)
k
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przy czym rk określają położenia wszystkich ładunków ek (elektrony i jądra), z 
których zbudowana jest cząsteczka. W przejściu oscylacyjnym M ulega zmianie, to 
znaczy średni w czasie moment dipolowy w stanie wzbudzonym jest inny niż w 
stanie podstawowym. Jeśli wychylenia jąder z położenia równowagi są niewielkie, 
to M można rozwinąć w szereg Taylora względem współrzędnych. Rozwinięcia 
takiego dokonuje się najczęściej względem współrzędnych normalnych źk, dla 
których energia potencjalna (7.2) jest formą kwadratową. Dla takich współrzęd­
nych rozwinięcie ma postać

i / a3M \ _
(7.6)

Podstawienie równ. (7.6) do wyrażenia (7.4) prowadzi do sumy pewnej liczby 
wyrazów zależnie od tego, w którym miejscu zakończymy szereg (7.6). Pierwszy 
wyraz tej sumy, zawierający Mo, decyduje o natężeniu przejścia czysto rotacyjne­
go; dla przejść oscylacyjnych równy jest zeru wobec ortogonalności funkcji 
falowych oscylatora harmonicznego. Drugi wyraz określa natężenie przejścia oscy­
lacyjnego w przybliżeniu harmonicznym. Warunkiem niezerowej absorpcji, P^ 0, 
jest zmiana momentu dipolowego przynajmniej wzdłuż jednej ze współrzędnych nor­
malnych. Są to przejścia tzw. podstawowe, występujące w zakresie od 100 do 3500 
cm"1. Człony trzeci i dalsze, świadczące o „elektrycznej” anharmoniczności oscyla­
tora, prowadzą do powstania nadtonów i tonów złożonych i to w sposób 
niezależny od występowania anharmoniczności mechanicznej.

Liczbowe określenie natężenia przejścia absorpcyjnego na podstawie równ. (7.4) 
wymaga znajomości funkcji falowych stanu podstawowego i stanów wzbudzonych, 
a nadto takich trudno dostępnych szczegółów budowy cząsteczki, jak kształt 
krzywej energii potencjalnej wzdłuż każdej współrzędnej normalnej, potrzebny do 
określenia współczynników w równ. (7.6). W rezultacie procedura rachunkowa 
zmierzająca do obliczenia bezwzględnej wartości prawdopodobieństwa przejścia 
jest niezwykle skomplikowana nawet dla cząsteczki swobodnej i może być użyta 
tylko w najprostszych przypadkach.

Istnieje o wiele prostszy sposób skorzystania z równ. (7.4), polegający na 
zastosowaniu zasad symetrii. Trzeba jednak od razu powiedzieć, że wyniki uzyska­
ne tą drogą sprowadzają się do wartości P^ równej 0 lub 1 — nie możemy 
otrzymać wartości pośrednich. Nie wdając się tu w szczegóły zastosowania teorii 
grup w spektroskopii cząsteczki, które Czytelnik może znaleźć w licznych, poświę­
conych tym zagadnieniom monografiach (zob. [1-10]), zasadę postępowania mo­
żna streścić w następujący sposób.

Przypuśćmy, że interesuje nas cząsteczka o określonej konfiguracji jąder w 
stanie równowagi mechanicznej, tzn. gdy nie wykonuje żadnych drgań i gdy nie 
działają na nią żadne siły. Konfiguracja ta zawsze należy do jakiejś grupy punkto­
wej, składającej się z operacji symetrii R{, R2,...,Rh takich, że konfiguracja 
równowagowa cząsteczki jest ich niezmiennikiem. Również kwadraty modułów 
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funkcji falowych muszą być niezmiennicze względem operacji symetrii tej grupy. 
W takim razie dla każdej funkcji falowej będącej rozwiązaniem równania 
Schródingera dla tej cząsteczki, możemy napisać

= (7-7)

przy czym — jeśli i/<; jest unormowana i opisuje niezdegenerowany stan cząsteczki 
— musi być

ą = 1 (7.8)

Sama funkcja falowa spełnia zatem związek

Rk^=+^ (7.9)
dla wszystkich operacji grupy, k = 1, 2, ..., h.

Wynika z tego, ze rezultat działania każdej operacji symetrii na funkcję falową, 
opisującą niezdegenerowany stan cząsteczki, można przedstawić liczbą +1 lub — 1. 
Dla funkcji stanu zdegenerowanego wynikiem działania Rk może być 2 (stan 
dwukrotnie zdegenerowany) lub 3 (degeneracja trójkrotna), a także liczba urojona. 
Zbiór tych liczb, zwanych charakterami poszczególnych operacji Rk, nosi nazwę 
reprezentacji stanu. W zbiorze operacji symetrii, stanowiącym grupę, znajduje się 
zawsze operacja tożsamościowa, oznaczana przez E. Jeśli wynikiem działania E na 
funkcję falową jest charakter +1, to odpowiednią reprezentację nazywa się jedno­
wymiarową. Jeśli wynikiem jest 2, to reprezentacja jest dwuwymiarowa. W każdym 
przypadku jedna z reprezentacji składa się całkowicie z liczb + 1 i nosi nazwę 
reprezentacji pełnosymetrycznej.

Również wektorom, przesunięciom i obrotom odpowiadają reprezentacje. Jeśli na 
przykład jako operacje symetrii wybierzemy trzy płaszczyzny odbicia, prostopadłe 
odpowiednio do osi x, y, z, to zachowanie się składowej x wektora przesunięcia 
względem tych operacji możemy opisać charakterami —1, +1, +1; łącznie z +1 
dla operacji identyczności E zbiór tych liczb stanowi fragment jednej z reprezenta­
cji grupy punktowej D2h lub C2h. Postępując wedle tej umowy można wszystkim 
trzem czynnikom w równ. (7.4) przypisać reprezentacje. Warunek nieznikania całki 
można wówczas przedstawić następująco:

zdRk)xM(Rk)Xj(Rk) = i (7.10)
dla każdego k = 1, 2, ..., h. W wyrażeniu (7.10) Xi(Rk) jest charakterem, stanowią­
cym liczbowy wynik działania operacji Rk na funkcję falową </<, , itd. Zbiór jedności 
z prawej strony po wykonaniu działań wszystkimi Rk nie jest niczym innym, jak 
reprezentacją pełnosymetryczną. Właśnie taką reprezentację musimy otrzymać, jeśli 
przejście do stanu ifj jest dozwolone, ponieważ prawdopodobieństwo przejścia 
ma być niezmiennikiem wszystkich operacji symetrii grupy punktowej. W ten 
sposób warunek (7.4) zastąpiliśmy warunkiem (7.10), noszącym nazwę pierwotnej 
reguły wyboru. Określa ona stany, do jakich możliwe jest przejście ze stanu 
podstawowego, tylko na podstawie reguł symetrii — a więc prowadzi do roz­
strzygnięcia „zero-jedynkowego”. Ponieważ stan podstawowy jest z reguły pełno- 
symetryczny, równ. (7.10) prowadzi do następującego wniosku: przejścia dipolowe 

284



mogą następować do takich stanów wzbudzonych, których reprezentacja jest taka 
sama, jak jednej ze składowych momentu dipolowego M.

Końcowe wyniki podobnych rozważań przedstawia się najczęściej w postaci 
tabelarycznej. Niech jako przykład posłuży tab. 7.1, w której przedstawiono w 
skrócony sposób zbiory charakterów, pogrupowane w reprezentacje nieprzywiedlne

Tabela 7.1

Ramana cząsteczek typu 1,4-C6H4X2
Typy symetrii i liczba drgań aktywnych w widmie w podczerwieni i w widmie

Typ 
symetrii

Główne 
elementy symetrii Typ 

ruchu
Liczba drgań 
normalnych

Aktywność
W

IR
widmie

Ramanac2z C2I p.

1 1 1 — 6 na P
1 1 -1 — 2 na na
1 -1 -1 E 3 ez na

^2u -1 1 1 Tx 5 ex na
B3u -1 -1 1 T 5 ev na

1 -1 1 Rz 5 na dp
Big -1 1 -1 R, 1 na dp
B3e -1 -1 -1 Ry 3 na dp

A - dragnie symetryczne względem głównych osi symetrii, 
B — drganie antysymetryczne względem głównych osi symetrii, 
g - drganie symetryczne względem centrum symetrii, 
u - drganie antysymetryczne względem centrum symetrii, 
T — translacja całej cząsteczki w określonym kierunku,
R — rotacja całej cząsteczki wokół określonej osi
p — pasmo spolaryzowane,
dp — pasmo zdepolaryzowane,
na — drganie nieaktywne, 
e — wektor jednostkowy w kierunku momentu przejścia.

(nieredukowalne), tj. nie dające się przedstawić bardziej elementarnie, dla grupy 
punktowej D2h. Reprezentacje te symbolizują dopuszczalne typy symetrii drgań 
cząsteczki o symetrii D2I„ na przykład benzenu podstawionego w położeniach para 
dwoma jednakowymi atomami chlorowca, 1,4-C6H4X2. Zgodnie z rzędem grupy h 
= 8 możemy mieć osiem różnych reprezentacji, a mianowicie Ag, Au, B3g, 
według podanych w tabeli i ogólnie przyjętych oznaczeń. W tabeli podane są 
jedynie charaktery głównych elementów symetrii (generatorów). W razie potrzeby 
można je uzupełnić bez trudu do pełnego zbioru charakterów każdej reprezentacji. 
W tym celu trzeba wpierw uzupełnić zbiór operacji symetrii do grupy

C2z, C2x, Bz, C2y, Px, Py, Cl, E
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Kolejność występowania operacji jest w zasadzie dowolna, ale porządek raz 
ustalony musi być dalej przestrzegany. Z zasad mnożenia operacji wynika, że 
z(Qy) = Z(C2J-x(C2j, %(C2x)-/(Pj = x(Q itd. Wobec tego pełna reprezentacja, 
odpowiadająca na przykład typowi drgania B2„, składa się z charakterów

Z(BJ =(-L 1, i, -L -h h -i, 1)

Zbiorowi n atomów połączonych w cząsteczkę również odpowiada zbiór 
charakterów, tworzący reprezentację. W odróżnieniu od reprezentacji nieprzywiedl- 
nych, podanych w tab. 7.1, jest to reprezentacja rzędu 3n, a więc przywiedlna 
(redukowalna). Zasady tworzenia takich reprezentacji są w skrócie następujące.

Każdemu z atomów cząsteczki odpowiadają 3 stopnie swobody, cząsteczka 
jako zbiór n atomów ma zatem łącznie 3n stopni swobody ruchu. Z tej liczby 3 są 
translacyjnymi stopniami swobody, a dalsze 3 (cząsteczka nieliniowa) lub 2 (czą­
steczka liniowa) związane są z obrotami cząsteczki jako całości; częstość jednych i 
drugich ruchów wynosi zero. W rezultacie dla cząsteczki nieliniowej możemy mieć 
3n —6, a dla liniowej 3n —5 tak zwanych wewnętrznych stopni swobody: odpowia­
dają im drgania normalne atomów o określonych częstościach. Jak konstruuje się 
charaktery wszystkich 3n rodzajów ruchu? Po pierwsze, charakterem dla określo­
nego elementu symetrii jest też wartość śladu macierzy transformacji, odpowiada­
jącej temu elementowi symetrii. A więc dla płaszczyzny symetrii (niezależnie od jej 
orientacji) będzie to liczba +1, dla dwukrotnej osi symetrii — 1, a dla centrum 
symetrii —3. Po wtóre, udział w charakterach reprezentacji przywiedlnej mają 
tylko te atomy, które leżą na odpowiednich elementach symetrii — elementy 
macierzy transformacji dla innych atomów nie leżą bowiem na przekątnej macie­
rzy, nie wnoszą więc udziału do charakteru. Patrząc na cząsteczkę 1,4-C6H4X2 
możemy łatwo dostrzec, że w płaszczyźnie symetrii Py leżą cztery atomy, wobec 
tego x(Py) = 4. Na osi Cly oraz w centrum symetrii C; nie ma żadnego atomu, 
wobec tego z(C2},) = z(C,) = 0. Na każdy atom cząsteczki przypada dla operacji 
tożsamości charakter 3, czyli łącznie /(£) = 36. Pełny zbiór charakterów reprezen­
tacji Pm przedstawia się następująco

rm = (0, — 4, 12, 0, 0, 4, 0, 36)

Dane potrzebne przy konstruowaniu reprezentacji rm można odczytać z tab. 7.2, w 
której zamieszczono udziały jednego atomu dla operacji symetrii, spotykanych w 
spektroskopii molekularnej.

Możemy teraz zastanowić się nad sposobem rozbicia rm na reprezentacje 
nieprzywiedlne. Wykonanie takiej analizy prowadzi do ważnego wyniku: do 
znalezienia typów (i ich liczby) względnego ruchu atomów rozważanej przez nas 
cząsteczki, jakie są w ogóle dozwolone ze względu na symetrię; ten właśnie fakt 
decyduje o ważkości zastosowań teorii grup w spektroskopii.

Zadanie to może być rozwiązane za pomocą jednego z fundamentalnych 
twierdzeń teorii grup: liczba n, która podaje, ile razy reprezentacja nieredukowalna
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Tabela 7.2

Udział w charakterach reprezentacji przywiedlnej rm jednego atomu, którego poło­
żenie jest niezmiennicze względem operacji symetrii R [6]

Operacje „właściwe” Operacje „niewłaściwe”

R Zr R Zr

E = (Cf 3 a = (G)1 1(G)1 -1 G = (G)1 -3(G)'. (G)2 0 (G)‘. (G)2 -2(G)h (G)3 1 (G)1. (G)3 - 1(GG (G)5 2 (GG (GP 0

Ogólnie □golnie

(G)‘ 1 +2со5(2лА./и) (V - 1 + 2cos(2nG!ł

Гк mieści się w Гт, wynosi

<Ub(WX * = l,2...Ji (7.11)
11 j= i

przy czym h jest rzędem grupy. Jeśli reprezentacje potraktujemy jako wektory h- 
wymiarowe, to równ. (7.11) możemy zapisać prościej, korzystając z przedstawienia 
iloczynu skalarnego za pomocą składowych wektorów

п(Гк) = ^ГтЦ (7.12)
/7

Równania (7.11) i (7.12) napisaliśmy w pewnym uproszczeniu: mianowicie przy 
założeniu, że wszystkie charaktery są liczbami rzeczywistymi.

Korzystając z równ. (7.12), spróbujmy obliczyć, ile możemy mieć sposobów 
ruchu o symetrii, na przykład, B2u w 12-atomowej cząsteczce o symetrii D2h. 
Otrzymujemy

n(B2u) = 1(0—4+12 + 0+0+4 + 0 + 36) = 6

Ostatnim wreszcie zadaniem jest uzyskanie odpowiedzi na pytanie, do jakich 
reprezentacji należą ruchy o częstości zerowej: te reprezentacje trzeba będzie odjąć. 
Składowe wektora momentu przejścia transformują się tak, jak współrzędne x, y, z. 
Po dokonaniu prostych obliczeń znajdujemy na przykład, że

Г(.х) = (-1, 1, 1, -1,-1, 1, -1, 1) = Г(В2ц)

Г(У) = Г(В3и) = Г(В1и)

Wyniki te oznaczają jednocześnie, że jedynie dozwolone przejścia absorpcyjne 
cząsteczki o symetrii D2h muszą należeć do jednej z trzech reprezentacji: B2u — 
kierunek momentu przejścia wzdłuż osi x cząsteczki, B3„||y oraz Blu||z (Tx, Ty, T. 
w tab. 7.1).
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Można wykazać [6], że reprezentacje odpowiadające ruchom rotacyjnym tworzy 
się tak samo, jak dla odpowiednich składowych tensora momentu bezwładności. Na 
przykład, dla obrotu wokół osi y otrzymamy

Xk(Ry) = ZkCO&W = Xk(B3g)

dla każdego k = 1, 2, h.
Po odjęciu tych sześciu reprezentacji znajdujemy w końcu żądaną informację: 

liczba możliwych w podczerwieni przejść absorpcyjnych wynosi dla rozważanej 
cząsteczki 13, w tym 5 częstości należy do reprezentacji B2u, 5 jest typu B2u oraz 3 
są typu Blu

rm = 5r(B2u) + 5r(B3u) + 3r(Blu)

Warto przypomnieć, że reguły wyboru, oparte na pojęciu symetrii, pozwalają 
wprawdzie przewidzieć liczbę drgań normalnych każdej cząsteczki i kierunki ich 
momentów przejścia, lecz nic nie mówią o częstości i natężeniu określonego 
przejścia. Może się więc okazać, że nie każde z dozwolonych drgań normalnych 
uda się nam odszukać w widmie absorpcyjnym cząsteczki.

Nie będziemy się tu zajmowali szczegółowo problemem częstości i formy ruchu, 
pod którą rozumiemy zbiór przesunięć poszczególnych atomów, należący do 
określonej współrzędnej normalnej. Zagadnienie to należy do dynamiki ruchu 
cząsteczki, a jego przedstawienie można znaleźć w wielu monografiach poświęco­
nych spektroskopii cząsteczki swobodnej. Godne polecenia są monografie Wilsona, 
Deciusa i Crossa [6], Borna i Huanga [11], a także monografia Willisa i Pryora 
[12], w której przedstawiono dynamikę ruchu w sposób nowoczesny w zwięzłym 
zapisie. Równania ruchu poszczególnych atomów prowadzą do typowego zagad­
nienia własnego, a jego rozwiązanie pozwala osiągnąć dwa cele jednocześnie. 
Pierwszym z nich jest wyznaczenie częstości własnych, a drugim — odpowiadają­
cych im wektorów własnych, zawierających informację o wielkości i kierunkach 
przesunięć atomów, uczestniczących w drganiu normalnym. Przykłady takich 
rozwiązań dla cząsteczki o symetrii D2h, zaczerpnięte z pracy [13], podane są w 
tab. 7.3. Realność uzyskanego zbioru częstości — w rozumieniu jego zgodności z 
doświadczeniem — zależy w pierwszym rzędzie od znajomości wielkości zmiany sił 
międzyatomowych, przypadających na jednostkę przesunięcia atomów lub na 
jednostkę zmiany kąta między wiązaniami chemicznymi. Wielkości te mają sens 
fizyczny analogiczny do współczynnika liniowej siły sprężystej w równ. (7.1) i 
decydują również o wielkości zmiany momentu dipolowego w czasie przejścia 
optycznego, a więc i o natężeniu tego przejścia.

Jeśli spojrzymy na którykolwiek z rysunków w tab. 7.3, to spostrzeżemy, że w 
każdym drganiu normalnym uczestniczy pewna liczba atomów tworzących pary 
(oscylatory). Wychylenia atomów w obrębie każdej pary mają określoną wartość i 
kierunek, zgodnie z podaną symetrią, oraz — zgodnie z definicją drgania normal­
nego — mają wszystkie tę samą częstość drgań. Faza drgań każdego z atomów 
względem sąsiada nie ulega zatem zmianie z biegiem czasu, a środek masy 
cząsteczki pozostaje nieruchomy.
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Tabela 73

Typy drgań normalnych (połowa możliwych) pochodnych benzenu typu 1,4-C6H4X2 (według [13])

Drgania walencyjne Drgania deformacyjne płaskie Drgania deformacyjne niepłaskie

typ 
syme­
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Być może, iż spektroskopia molekularna nie cieszyłaby się takim zainteresowa­
niem i wielostronnością zastosowań, gdyby prócz drgań normalnych nie istniały 
jeszcze tak zwane drgania charakterystyczne. Mówimy o nich wówczas, gdy 
cząsteczka zawiera jeden samotny oscylator, na przykład grupę OH lub NH2, 
który nie może ulegać narzuconemu przez symetrię sprzężeniu z innymi identy­
cznymi oscylatorami. Jeśli w dodatku występuje znaczna asymetria między masą 
każdego z atomów grupy i masą reszty cząsteczki, to z dobrym przybliżeniem 
można uważać, że w drganiu charakterystycznym uczestniczą w zasadzie tylko dwa 
atomy. W konsekwencji częstość drgań charakterystycznych oscylatora jest w zna­
cznym stopniu niezależna od jego otoczenia. Dalej omówimy tę tezę dokładniej.

Tabela 7.4

Częściej spotykane częstości charakterystyczne oscylatorów dwu- i trójatomowych, 
aktywne w podczerwieni [14]

Drgania walencyjne Drgania deformacyjne

zakres liczb 
falowych, cm-1

grupa zakres liczb 
falowych, cm “1 grupa

3550-3700 —OH* 1480-1640, 700-900 —NH
2950-3600 —OH, — NH**
3300-3500 —nh2 1300-1480, 600-900 __CH
2670-2700 —OD
2750-3300 __CH 1200-1450, __OH
1620-1830 —c=o 1580-1650 —nh2
1640-1760 —C=N, —C=C 1340-1380, 830-920 —no2
1480-1560 —no2
9OO-I3OO __C__C C N

1000-1400 —C—F
600-850 C Cl
500-750 —C—Br

* Częstość grupy swobodnej.
** Grupy uczestniczące w wiązaniu wodorowym mają częstość niższą, zależnie od energii wiązania.

Zgodnie z ogólnymi zasadami dla oscylatora typu —XH mamy 3 • 2 — 3 = 3 
drgania charakterystyczne; jedno z nich odpowiada periodycznej zmianie długości 
wiązania X—H (drgania rozciągające), dwa pozostałe polegają na zginaniu tego 
wiązania (drgania deformacyjne). Dla grupy takiej jak —NH2 będziemy mieli 6 
częstości charakterystycznych. W celu znalezienia ich symetrii można stosować 
rozumowanie analogiczne jak dla całej cząsteczki, przyjmując dla grupy —NH2 
lokalną grupę symetrii C2v. Niektóre z częściej spotykanych częstości charaktery­
stycznych podane są w tab. 7.4. Istnieją również dzieła specjalistyczne, poświęcone 
spektroskopii określonej grupy związków, na przykład ugrupowaniom amidowym 
[15] lub związkom koordynacyjnym [16].

290



7.2. Nadtony i częstości sumacyjne

Przejdziemy z kolei do omówienia symetrii nadtonów, która w jakiś sposób 
winna wynikać z symetrii jednokwantowych przejść podstawowych. W dalszym 
ciągu będziemy zajmować się cząsteczką swobodną, a więc tak zwanym proble­
mem drgań wewnętrznych.

Zasady symetrii do przejść sumacyjnych i nadtonów zastosował po raz pier­
wszy Tisza [17], a przejrzyste przedstawienie tego problemu można znaleźć w 
monografii [6]. Zauważmy, że metody teorii grup są zupełnie ogólne, winny więc 
stosować się do poziomów czy przejść energetycznych także oscylatora anharmoni- 
cznego. Wynika to z zasady superpozycji: jeśli oznacza jedną z pełnego zbioru 
funkcji falowych oscylatora harmonicznego, to każdą funkcję opisującą stan 
oscylatora anharmonicznego, można przedstawić w postaci kombinacji liniowej ф„

Ф=^Ф. (7.13)
V

co uzasadnia konieczność stosowania się ф do tych samych zasad symetrii, со ф„. 
Z kolei funkcję falową opisującą wzbudzony stan vk elementarnego oscylatora 
harmonicznego, któremu odpowiada współrzędna normalna Qk, możemy zapisać 
w następujący sposób [6]:

Ф^к, ^k) = WJexp[~Kfl W, ^) (7.14)

przy czym N(yk) jest czynnikiem normalizacyjnym, H(vk, £k) zaś wielomianem 
Hermitte’a stopnia vk. Zmienna ^k odgrywa rolę pomocniczą

Q = Ук2 Qk Ук = ^7-^ (7-15)
n

vk jest zaś liniową częstością drgań. Jak wiadomo [6], wielomian Hermitte’a jest 
funkcją albo wyłącznie parzystych potęg Qk (dla vk parzystego), albo wyłącznie 
potęg nieparzystych (dla vk nieparzystego). W szczególności

Я(0,&) = 1 Н(1Лк) = ^к Н(2,Ы = Ж-2

W takim razie funkcja falowa stanu podstawowego oscylatora

Ф^, ^) = N(0)exp[ —|^]

jest pełnosymetryczna, a funkcja jednokwantowego stanu wzbudzonego 

lA(l,^) = N(l)exp[-4^]2t

transformuje się pod wpływem operacji symetrii tak, jak współrzędna Qk. Ten 
ważny wniosek można łatwo uogólnić na cząsteczkę, którą opisujemy zbiorem 
współrzędnych normalnych g1; ..., Qr. Funkcję falową stanu podstawowego mo­
żemy zapisać symbolicznie w następujący sposób:

= (7.16) 
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gdzie G jest iloczynem r czynników wykładniczych

G(£1,...,£r) = exp£ (-Rk2) (7.17)
k = 1

Stan ten jest, oczywiście, również pełnosymetryczny, ponieważ funkcja (7.17) jest 
funkcją niezmienniczą względem wszystkich operacji symetrii danej grupy punkto­
wej. Jeśli teraz jako stan wzbudzony wybierzemy stan dwukwantowy z vk — 2, to 
funkcja tego stanu w symbolicznym zapisie będzie miała postać

^(0, ..., 2, ..., 0, G, •••, = N(0, ..., 2, ..., 0)-G(^, ..., ^)-(2^-2) (7.18)

Jest widoczne, że funkcji (7.18) odpowiada również reprezentacja pełnosymetry- 
czna, ponieważ H(2, nie ulega zmianie pod wpływem operacji symetrii. Jeśli 
cząsteczka ma w stanie podstawowym badaną już przez nas symetrię D2h, to (7.18) 
wskazuje, że wszystkie parzyste nadtony będą zabronione, ponieważ odpowiada im 
pełnosymetryczna reprezentacja Ag. Dozwolone są natomiast nadtony nieparzyste­
go stopnia, ponieważ

R{H(2n+l,^)} = R{H(l,^} (7.19)

czyli wynik działania operacji R na wielomian Hermitte’a stopnia nieparzystego 
jest taki sam, jak na wielomian stopnia pierwszego. Przedstawiona tu reguła 
odnosi się do nadtonów, które odpowiadają niezdegenerowanym stanom wzbudzo­
nym cząsteczki.

Analogiczną regułę możemy podać dla tonów sumacyjnych typu Vj 0, vk^ 0. 
Wybierając konkretnie Vj = 1 i vk = 1, mamy w symbolicznym zapisie

<A(o,...,i,...,i,...,e1,...,er) =
= A(0, ..., 1,..., 1,0) G)^, ..., (7.20)

W tym przypadku funkcja falowa transformuje się tak, jak iloczyn współrzędnych. 
Reprezentacją stanu wzbudzonego będzie

= r}®Fk (7.21)

gdzie ® oznacza iloczyn prosty obu reprezentacji, lub

i = 1,2,..., h (7.22)

W przypadku niezdegenerowanym zawsze mamy trzy dopuszczalne kierunki mo­
mentu przejścia wzdłuż osi x, y, z związanych sztywno z cząsteczką. Nadtony i 
tony sumacyjne możemy więc zapisywać skrótowo za pomocą trójki liczb (/ m n); 
na przykład (0 2 0) oznacza pierwszy nadton jakiejkolwiek częstości, której 
odpowiada przejście o symetrii B3u i moment przejścia równoległy do y. Dla takiej 
cząsteczki z równ. (7.21) wynika, że ton sumacyjny (1 1 0) jest dozwolony, 
ponieważ r(B2u) - F(B3u) = F (Blu). Co więcej, łatwo dostrzec, że wśród tonów 
sumacyjnych mogą wystąpić kombinacje z przejściem zabronionym, ponieważ na 
przykład

r(Ag)®B(Blu) = B(Blu)
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Określenie symetrii nadtonu jest trochę bardziej skomplikowane, jeśli stan 
wzbudzony wykazuje degenerację. W takim przypadku stanowi wzbudzonemu 
v > 1 odpowiada pewna reprezentacja redukowalna. Jeśli stan wzbudzony v = 1 
jest podwójnie zdegenerowany, to charaktery reprezentacji dla przejścia 
można obliczyć z wzoru [6]

ZJK)MW)Zl>-tU?) + ZUn} (7.23)

przy czym v oznacza liczbę kwantową stanu wzbudzonego, R — kolejno każdą 
operację symetrii grupy punktowej, a Rv jest r-tą potęgą tej operacji. Przyjmujemy 
przy tym, że

XdR) = X(R) ZoW = l Z-iW = 0 (7.24)
Przy zachowaniu tych samych oznaczeń charaktery reprezentacji nadtonu, odpo­
wiadającego drganiu trójkrotnie zdegenerowanemu, obliczamy z zależności

M = |(2Z(K)Z,_1 (K)+l {Z(K2)-[Z(K)]2}xv_2(R) + ńRv)) (7.25)

Zastosowanie tych wzorów ^yjaśnimy na konkretnym przykładzie. Grupa 
punktowa D2h nie jest do tego celu odpowiednia, ponieważ wszystkie jej reprezen­
tacje są jednowymiarowe, zatem drgania podstawowe i nadtony nie wykazują 
degeneracji. Wybierzmy więc dla przykładu grupę D^, ósmego rzędu, przedstawio­
ną skrótowo w tab. 7.5. Prócz jednowymiarowych reprezentacji Ar, A2, Bt i B2 
mamy jedną reprezentację dwuwymiarową typu E. Zaj mierny się symetrią nadto- 
nów 0 —* 2, a następnie 0 -* 3 i 0 -> 4 częstości podstawowej o symetrii E. Przed 
zastosowaniem wzoru (7.23) musimy wpierw znaleźć wyrażenia dla potęg R2, R3 i

Tabela 7.5

Reprezentacje nieprzywiedlne oraz reprezentacje nadtonów w 
grupie punktowej

R E 2C4 ci = c2 2C2 2C2

4i 1 1 1 1 1
1 1 1 -1 -1

Bi 1 -1 1 1 -1
B2 1 -1 1 -1 1
E 2 0 -2 0 0

R2 E C2 E E E
R3 E c. c2 c2 C'i

2 0 -2 0 0
z(K2) 2 -2 2 2 2
z(B3) 2 0 -2 0 0
z(B4) 2 2 2 2 2

r2 3 -1 3 1 11 Ai 4- By + B2
r3 4 0 — 4 0 0:2E
G 5 1 5 1 1:2 A i + /42 + Bi + B2
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R4 wszystkich operacji grupy. Zadanie to nie nastręcza szczególnych trudności, 
również znalezienie charakterów x(Rv) nie wymaga komentarza. Po tych przygoto­
waniach można już obliczyć charaktery reprezentacji XvW- Dla przejścia 0->ł> 
otrzymuje się reprezentację (r + l)-wymiarową. Dokonując rozkładu według (7.12), 
otrzymujemy, na przykład, że

r(2) = r(A)+r(B1)+r(B2)
Sens fizyczny takiego rozkładu polega na tym, że drganie zdegenerowane ulega 
rozszczepieniu na 3 składowe wskutek drobnych różnic energii, towarzyszących 
anharmoniczności. Rozszczepienie to jest jednak na ogół bardzo małe i rzadko 
kiedy udaje się zaobserwować trzy osobne pasma w widmie. Interesujący jest przy 
tym fakt, że anharmoniczność znosi degenerację: wszystkie trzy składowe reprezen­
tacje są jednowymiarowe. Podobne właściwości ma reprezentacja E(4), natomiast 
F(3) rozszczepia się na dwie reprezentacje dwuwymiarowe.

Symetrię tonów sumacyjnych można określić na podstawie równ. (7.21), nieza­
leżnie od tego, czy uczestniczą w nich poziomy zdegenerowane czy nie. Rozszerze­
nie tej zasady dla trzech poziomów można zapisać w następujący sposób:

G = rj®rk®ri (7.26)

Przejdźmy obecnie do omówienia energii i częstości drgań oscylatora. W 
przybliżeniu harmonicznym energia całkowita oscylatora wyraża się wzorem

E^/n^ + ł) (7.27)

przy czym v = 0, 1, 2, ... jest liczbą kwantową. Ponieważ przejścia energetyczne 
mogą zachodzić tylko między sąsiednimi stanami energetycznymi, Av = +1, możli­
wa do zaabsorbowania lub emisji energia wynosi

E(r + 1) — E(v) = hv0 (7.28)

niezależnie od początkowego stanu energetycznego. Widmo absorpcyjne takiego 
oscylatora składa się więc z jednej tylko linii, której odpowiada liczba falowa

v0 = v0/c (7.29)

Nawiasem mówiąc, rzadko mamy sposobność obserwować przejście absorpcyjne 1 
-*2, a jeszcze rzadziej 2-^3 itd. Aby pojawiła się taka linia, dość spora liczba 
oscylatorów musi się znaleźć w stanie o energii E(l) = jhcvQ, E(2) =%hcv0 itd. 
Jeśli zażądamy, by przy liczbie falowej przejścia v = 1000 cm-1 tylko 10% 
oscylatorów miało energię E(l), to zgodnie z rozkładem Maxwella trzeba podnieść 
temperaturę absorbującego zbioru do blisko 1000 K — nie każdy oscylator 
„wytrzyma” taką temperaturę.

Jeśli w rozwinięciu (7.3) energii potencjalnej zachowamy również czwarty człon, 
to rozwiązanie równania Schródingera przy takim potencjale prowadzi do wyraże­
nia na zbiór dozwolonych poziomów energetycznych oscylatora anharmonicznego

E(v) = hvQ(y + ^-xhv0(v + $2 (7.30)
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Uwzględnienie członów rzędu wyższego niż czwarty prowadzi do pojawienia się 
dalszych wyrazów anharmonicznych w równ. (7.30); pełniejsze rozwinięcie jest 
jednak rzadko stosowane. Zamiast energii stanu E(v) wyrażonej w dżulach, 
wprowadza się zwykle w spektroskopii wielkość G(v) = E(y)/hc, wyrażoną w cm-1 
i proporcjonalną do energii. Oznaczając vQ/c przez a»e, możemy równ. (7.30) 
zapisać w postaci

GW = ^e(v+^)-a>exe(v+^2 (7.31)

jest wielkością rachunkową, odpowiadającą fikcyjnej liczbie falowej przejścia 0
1 przy wartości xe = 0; xe jest liczbą bezwymiarową i nosi nazwę współczynnika 

anharmoniczności. Wskaźnik e oznacza, że wielkości odnosimy do minimum 
krzywej energii potencjalnej, a więc do położenia równowagi re (rys. 7.1). xe i we 
możemy wyznaczyć z obserwowanych liczb fałowych przejść 0 -►1 i 0 -»2 oscyla­
tora. W zapisie (7.31) różnica G(v + 1) — G(v) wyraża wprost liczbę falową linii 
odpowiadającej przejściu oscylatora między sąsiednimi stanami v, v +1

(7.32)G(p+l)-G(v) = me[l-2xe(r + l)]

Rys. 7.1. Krzywa energii potencjalnej i stany energetyczne oscylatora anharmonicznego

Wzór (7.30) wskazuje, że poziomy energetyczne oscylatora anharmonicznego nie 
są równoodległe, lecz zagęszczają się w pobliżu pewnej wartości energii, oznaczanej 
względem minimum potencjału symbolem De i nazywanej energią wiązania czą­
steczki (w określonym stanie elektronowym) (rys. 7.1). Do jest energią dysocjacji 
cząsteczki na swobodne atomy i różni się od De energią stanu podstawowego (v 
= 0)

Do = hc {G (oo) - G (0)} = De - hcG (0) (7.33)

Rozwiązanie równania Schródingera dla oscylatora anharmonicznego prowadzi 
nie tylko do zmiany energii dozwolonych poziomów, lecz także do modyfikacji 
reguły wyboru. Oprócz przejść v-*r±l możliwe są również przejścia v ^v + 2, v 
-♦v±3 itd., prowadzące do pojawienia się nadtonów. Przy jednoczesnej zmianie 
dwóch lub więcej liczb kwantowych należących do różnych drgań normalnych, 
obserwujemy tony sumacyjne. Przejściu 0 -* v odpowiada w widmie linia absorpcyj­
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na o liczbie falowej

G(t>) — G(0) = v(0 -*d) = va>e {1 — xe(v +1)} (734)

Anharmoniczność powoduje, że częstość takiego przejścia jest mniejsza niż vcoe. 
Ponieważ zwykle spotykane współczynniki anharmoniczności mieszczą się w grani­
cach

0,01 < xe < 0,05 (7.35)

różnica ta wynosi kilka procent Częstości sumacyjne, zwłaszcza kombinacje 
częstości podstawowych dla wszystkich Vj = ± 1, są znacznie mniej anharmoniczne 
od nadtonów — z zupełnie dobrym przybliżeniem możemy więc napisać

ojW = c^1» ± m<2) ± mi3) ± ... (7.36)

Przykład zbioru stanów energetycznych i liczb falowych v (0 -> v) odpowiadających 
drganiom oscylatorów OH i OD, wchodzących odpowiednio w skład cząsteczek 
CH3OH i CH3OD, podany jest w tab. 7.6 według danych z pracy [18]. Na

Tabela 7.6

Zbiór stanów energetycznych i liczb falowych (cm *) drgań 
oscylatorów OH i OD w cząsteczkach CH3OH i CH3OD [18]

GM CH3OH CH3OD v (0 -> t>) CH3OH CH3OD

G(0) 1904 1394
G(l) 5585 4113 v(0 - 1) 3681 2719
G(2) 9095 6742 v(0-2) 7191 5348
G(3) 12435 9279 v(0-3) 10531 7875
G(4) 15604 11726 v(0 -4) 13700 103.32
G(5) 18603 14083 7(0-5) 16699 12689

xe 0,0221 0,0161 3851 2810

podstawie tych informacji obliczono xe oraz we. Zgodnie z równ. (7.34) iloraz v(0 
-+v)/v winien być liniową funkcją u, co pokazane jest na rys. 7.2. Uzyskanie takiej 
zależności dla zbioru nadtonów obserwowanych doświadczalnie jest gwarancją, że 
częstości przypisane zostały prawidłowo. Z obu wartości a>e otrzymujemy stosunek

ae OH 3851 , „„„
—---- - =----- = 1,370
ą(OD) 2810

który jest w bliskim związku ze stosunkiem mas zredukowanych obu oscylatorów. 
Mianowicie, częstość drgań prostego oscylatora składającego się z dwóch mas i 
m2, połączonych wiązaniem chemicznym o stałej siłowej k, wynosi coe = (k/p)112, 
gdzie

/z 1 = 7^ 1 + m2 1 (7.37) 
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jest masą zredukowaną oscylatora. Przyjmując, że k jest takie samą dla obu 
oscylatorów, otrzymujemy

coe(OH) 
oe(OD)

34\1/2 
18/

= 1,374

Rys. 7.2. Ilustracja liniowej zależności v(0 -+v)/v od v dla kolejnych nadtonów v(OH) i v(OD) (według 
danych z [18])

Zupełnie dobra zgodność obu liczb świadczy o tym, że w drganiu uczestniczą tylko 
atomy H lub D i atom O, tj. resztę cząsteczki możemy pominąć. Przykład ten 
stanowi ilustrację dobrze izolowanego drgania charakterystycznego.

Krzywą energii potencjalnej podaną na rys. 7.1 można również przedstawić 
analitycznie. Najczęściej używanym przybliżeniem tej krzywej jest funkcja Morse’a

V(r) = {1 —exp [ —u(r —re)]}2 (7.38)

zawierająca trzy parametry: położenie równowagi oscylatora re w minimum energii 
potencjalnej, energię wiązania cząsteczki De i parametr a. Rozwiązanie równania 
Schródingera dla potencjału (7.38) prowadzi w przybliżeniu małych amplitud do 
następującego wyrażenia na energię oscylatora anharmonicznego [19]:

co^ hc
G(v)M = coe(v+^-~-(v+^ (7.39)

Z porównania współczynników drugiego członu w równaniach (7.39) i (7.31) 
wynika, że

Wzór (7.40) pozwala ocenić energię wiązania obu atomów, tworzących oscylator, z 
danych spektroskopowych: częstości harmonicznej coe i współczynnika anharmoni-
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czności xe. Korzystając z tab. 7.6, otrzymujemy następujący wynik:

DJOH) = DJOD) = 521 kJ-mol“1

Doświadczalna, średnia wartość energii wiązania OH w temp. 0 K jest trochę 
mniejsza i wynosi [20]

De(OH)eksp = 458 kJ-mol’1

Różnica ta nie jest przypadkowa. Wzór (7.40) prowadzi z reguły do zawyżonych 
wartości De, co świadczy o tym, że równ. (7.38) jedynie w przybliżeniu opisuje 
krzywą energii potencjalnej oscylatora. Mimo to przybliżenie takie jest często 
bardzo użyteczne, a potrzebną w nim stałą a można obliczyć również z danych 
spektroskopowych

1/2
I (7.41)

Podstawienie liczbowych wartości dla wiązania OH prowadzi do wyniku

u(OH) = 2,181-108 cm’1

/2^ 
a = (oecn I—-

We

7.3. Bezodrzutowa absorpcja promieniowania

Wprowadzenie lasera do spektroskopii doprowadziło do szeregu nowych i 
zaskakujących odkryć, do których zaliczyć należy również zjawisko jednoczesnej 
absorpcji dwu lub więcej fotonów o jednakowej energii. Odkrycie to rozwinęło się 
wkrótce do nowej gałęzi spektroskopii, znanej pod nazwą bezodrzutowej spektro­
skopii wielofotonowej.

Zjawisko, o którym mówimy, różni się od aktu zwykłej absorpcji dwufotono­
wej; schemat takiej absorpcji jest przedstawiony na rys. 7.3a. Po pochłonięciu 
kwantu йсоО1 układ przechodzi do stanu wzbudzonego o energii Ek, skąd może 
przejść do stanu E2 po pochłonięciu następnego kwantu Йсо12, jeśli ten drugi 
proces „zastanie” obiekt kwantowy w stanie wzbudzonym Ek. Oba akty absorpcji 
są więc niezależne, muszą jedynie nastąpić dostatecznie szybko kolejno po sobie. 
W tym paragrafie a>ik = 2nvik oznaczać będzie częstość kątową przejścia, zaś h

a) e2----------- ------ b) Ey---------- --------
Л<У12

E, ------ ------------ ------------

bó>01

Ea---------- ------------  Eo------------- L—----

Rys. 7.3. Schemat: a) zwykłego przejścia dwufotonowego, b) dwufotonowego przejścia bez odrzutu
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= h/2n; wOi nosi nazwę częstości rezonansowej. Oczywiście, układ może przejść 
od razu do stanu E2 przez pochłonięcie jednego kwantu promieniowania, przy 
czym oba typy absorpcji mogą być badane przy użyciu zwykłej lampy rtęciowej. 
Istotne jest to, że w zwykłej absorpcji multifotonowej istnieją wszystkie pośrednie 
poziomy energetyczne układu kwantowego, potrzebne do zrealizowania wszystkich 
składowych przejść jednofotonowych. Natomiast w procesie bezodrzutowej absor­
pcji multifotonowej nie istnieje żaden rzeczywisty pośredni poziom energetyczny (rys. 
7.3/>). W celu wzbudzenia takiej absorpcji potrzebny jest laser strojony, ponieważ 
częstość (ustalona) zwykłego lasera atomowego tylko przypadkowo może odpo­
wiadać częstości przejścia (Ej — E0)/2h. Powrotowi z Er do stanu podstawowego 
odpowiada emisja promieniowania o częstości (Ej — E^/h, dwukrotniej wyższej od 
częstości wzbudzenia, co ułatwia rozpoznanie tej emisji oraz ilościowe jej zbadanie. 
Jednoczesna emisja dwóch jednakowych fotonów powoduje zniesienie odrzutu 
cząsteczki, dzięki czemu zdolność rozdzielcza w eksprymencie ulega nadzwyczajnemu 
podwyższeniu', w zwykłej absorpcji poszerzenie Dopplera jest 100-1000 razy więk­
sze od- naturalnej szerokości linii absorpcyjnej.

Aby móc zastosować taki sposób wzbudzenia w spektroskopii wysokiej roz­
dzielczości, trzeba dysponować laserem, którego wiązka ma szerokość spektralną 
co najwyżej taką, jak naturalna szerokość spektralna linii, tj. co najwyżej 10 MHz. 
W tym celu laser musi pracować na pojedynczym modusie podłużnym. Jeśli tylko 
szerokość wiązki nie jest zbyt duża, to moc lasera może być niewielka, zwłaszcza w 
badaniach absorpcji rezonansowej. Przejścia między stanem podstawowym i rezo­
nansowym zachodzą we wszystkich cząsteczkach, co oznacza duże natężenie 
sygnału. Obliczono, że w takim przypadku do zaobserwowania absorpcji wystar­
cza wzbudzenie o mocy 1 kW-cm"2.

Bezodrzutowe przejścia absorpcyjne możliwe są, oczywiście, zarówno w obsza­
rze nadfioletu, jak i w podczerwieni. Możliwość ich wystąpienia nie zależy również 
od tego, czy interesująca nas cząsteczka jest w fazie gazowej, czy też znajduje się 
we wnętrzu kryształu. Doświadczenia, wykonane w ciągu ostatnich kilkunastu lat, 
dotyczą jednak wyłącznie cząsteczki swobodnej, aczkolwiek nie ulega wątpliwości, 
że ich wykonanie dla stanu krystalicznego byłoby nadzwyczaj interesujące. Dalszą 
dyskusję spektroskopii bezodrzutowej oprzemy na znakomitym opracowaniu tego 
tematu przez Grynberga i Cagnaca [21], przy czym ograniczymy się do absorpcji 
dwufotonowej.

Dopplerowskie poszerzenie linii absorpcyjnej spowodowane jest prędkościami ter­
micznymi obiektów absorbujących (atomu, cząsteczki). Jeśli V jest prędkością 
obiektu, a k wektorem falowym padającej nań fali elektromagnetycznej, to przesu­
nięcie Dopplera pierwszego rzędu wynosi k ■ P Dla fali padającej z kierunku 
przeciwnego przesunięcie to wynosi — k-V. Ten wynik wykorzystamy w absorpcji 
dwufotonowej. Przypuśćmy, że obiekt mikroskopowy znajduje się w polu stojącej 
fali elektromagnetycznej o częstości co; falę taką można otrzymać przez odbicie 
światła lasera w lustrze. Jeśli obiekt zaabsorbuje jednocześnie po jednym kwancie z 
każdego ciągu falowego, to jego energia zmieni się o wielkość (rys. 7.3b)

Ej -Eo = h(a> + k- V) + h(co — k- V) = 2ha> (7.42) 
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Udział prędkości obiektu w zmianie energii znika. Oznacza to, że w przejściu 
rezonansowym cząsteczka absorbuje kwant o zawsze jednakowej energii, niezależnie 
od swej prędkości. Teoretycznie szerokość linii rezonansowej równa jest w tych 
warunkach naturrlnej szerokości linii. Eksperymentalnie efekt ten zauważyli po raz 
pierwszy Wasilenko i inni [22], zaś Cagnac i inni [23] opracowali teorię efektu i 
rozszerzyli ją na przejścia wielofotonowe.

Warunek (7.42) łatwo uogólnić dla przejść wielofotonowych. Niech cząsteczka 
o prędkości V oddziałuje z kilkoma polami falowymi, przy czym każdemu z nich 
niech odpowiada jeden z wektorów falowych k{. Długości wszystkich k, są takie 
same, jedynie kierunki są różne. Przesunięcie Dopplera pierwszego rzędu dla 
każdej fali wynosi k^Y. Jeśli doprowadzimy do spełnienia warunku

= 0 (7.43)
i

to jednoczesne pochłonięcie przez cząsteczkę n fotonów również odbędzie się bez 
odrzutu.

Warunek (7.43) możemy interpretować jako zasadę zachowania pędu w zderze­
niu cząsteczka-fotony, w którym każdy foton ma pęd hk,. Ponieważ w takim 
zderzeniu energia kinetyczna cząsteczki nie ulega zmianie, energia wszystkich 
fotonów powoduje zmianę jej energii wewnętrznej

E^E^^hc^ (7-44)
i

O szerokości Unii w absorpcji bezodrzutowej decyduje jej szerokość naturalna, 
wynikająca z zasady nieoznaczoności Heisenberga, oraz efekt Dopplera drugiego 
rzędu. Jest on proporcjonalny do (Er - Eo) V2/2c2 i ze względu na małą wartość 
V/c jest niemierzalnie mały.

Absorpcyjna linia rezonansowa winna mieć kształt krzywej Lorentza. Prócz 
takiego profilu powinny wystąpić również skrzydła o kształcie gaussowskim (rys. 
7.4), wynikające ze szczególnej roli energii kinetycznej w zjawisku rezonansu. 
Kształt skrzydła można przewidzieć przeprowadzając następujące rozumowanie. 
Jeśli częstość lasera co nie spełnia dokładnie warunku (7.42), lecz ma wartość 
zbliżoną, to na ogół nie wszystkie cząsteczki mogą zaabsorbować dwa fotony o

Rys. 7.4. Kształt linii absorpcyjnej w spektroskopii 
bezodrzutowej (schematycznie); Po jest naturalną sze­
rokością linii (profil Lorentza), Ld jest szerokością 
skrzydeł poszerzenia dopplerowskiego (profil Gaussa)
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przeciwnych kierunkach progagacji. Mogą to uczynić tylko takie cząsteczki, dla 
których różnica energii (E1—Eo — 2hco) równa jest przesunięciu Dopplera w jed­
nostkach energetycznych, +2hk-V Grupa takich cząsteczek wyznaczona jest dla 
każdego co rozkładem Maxwella-Boltzmanna, stąd właśnie taki kształt skrzydeł 
linii rezonansowej. Ogólny kształt linii z rys. 7.4 został przewidziany przez 
Wasilenkę [22]. Jeśli natężenie i stan polaryzacji obu fal są takie same, to 
powierzchnia pod częścią lorentzowską jest dwa razy większa od powierzchni 
części gaussowskiej. Przez odpowiedni dobór stanu polaryzacji można niekiedy 
doprowadzić do zniknięcia tła gaussowskiego.

e2

E,

E0

^12

procesy 
jednofotonowe

(laser)

::_________
proces 
dwufotonowy

Rys. 7.5. Schemat jedno- i dwufotonowych aktów 
absorpcji

Prawdopodobieństwo przejścia dwufotonowego ze stanu podstawowego Eo do 
stanu wzbudzonego E2 (rys. 7.5), obliczone za pomocą rachunku zaburzeń, przed­
stawia następujący wzór:

2P(o22)(^)= Y^<2\Ha\i><i\^^  ̂ ’ . (7

w którym dw = co — coo jest różnicą między częstością lasera a częstością rezonan­
sową, tak że 2h6co jest energetycznym „rozstrojeniem” między „nadajnikiem” a 
„odbiornikiem”; Ha i Hb są hamiltonianami oddziaływania dipolowego cząsteczki 
z falą padającą i odbitą, hAco, = h(o-(Ei — E0) jest energią rozstrojenia w przejściu 
jednofotonowym dla każdego ze stanów pośrednich i, r2 jest szerokością spektral­
ną stanu wzbudzonego, r2/(43o)2 + ^r2) jest zaś czynnikiem Lorentza, determinu­
jącym kształt krzywej.

Jeśli obie fale elektromagnetyczne, padająca i odbita, są identyczne, tj. mają te 
same natężenia i stany polaryzacji oraz są „dopasowane” do rezonansu tak, że Sco 
= 0, to prawdopodobieństwo przejścia dwufotonowego upraszcza się do wyrażenia

P*o22)(rez) = 1 2 16X— <2|H|i> <i|H|0> — 
i Acą • 12

(7.46)

Numeryczne obliczenie P*02](rez) wymaga sumowania po wszystkich stanach po­
średnich i. Sumę można ograniczyć tylko do jednego poziomu Er, jeśli deficyt 
energii hAm1 jest znacznie mniejszy od pozostałych i jeśli siły oscylatora /01 i fl2 
nie są zbyt małe. W takim przypadku zastąpienie operatora H wyrażeniem 
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szczegółowym prowadzi do wzoru

Pol (rez) = 1 P r2 U
R0 ^01 A2 Y /Y %! ^12 

lic / \S / dcof

x|<J2lw2-^|J1 lmr — q\J0m0y\2 (7.47)

w którym Ro = e2/(4ne0 mc2) = 2,8 • 10“13 cm jest klasycznym promieniem elektro­
nu, 201 = 2nc/w01 i ż12 = 2kc/cu12 są długościami fal dla przejść jednofotonowych, 
których siłami oscylatora są/01 i /12. P oznacza moc, a S przekrój wiązki lasera. 
Współczynniki Clebscha-Gordona (Jim — q\Jmy można obliczyć z liczb kwanto­
wych J i m każdego z trzech poziomów 0, 1, 2 oraz ze stanu polaryzacji q fali (q 
= +1,0, — 1). W najczęściej spotykanych przypadkach kwadrat iloczynu tych 
współczynników jest rzędu 0,1. Jeśli przyjmiemy Aa>1/(o01 = Aa>Ja>l2 = 0,1; /Oi 
= /12 0,1; żOi = ż12 = 600 nm; r2 = 108 s-1, to P/S = 1 W-mm2 prowadzi do 
rezultatu

(rez) = 1 s 1

Ponieważ w rezonansie uczestniczą wszystkie cząsteczki (a nie tylko grupa o 
określonej prędkości), liczba wzbudzeń jest dostatecznie duża dla wykonania 
pomiarów. Warto zwrócić uwagę, że możliwie silne zmniejszenie przekroju wiązki 
lasera (ogniskowanie) zwiększa sygnał. Wprawdzie liczba cząsteczek objętych wiąz­
ką maleje proporcjonalnie do 5, jednak P^j wzrasta proporcjonalnie do S“2.

Na zakończenie tego krótkiego opisu spektroskopii bezodrzutowej wypada 
wspomnieć jeszcze o korzyściach, płynących z zastosowania tej metody. Zniknięcie 
odrzutu odpowiada takiej sytuacji, jaką mielibyśmy obserwując proces absorpcji 
lub emisji cząsteczki bez zmiany jej prędkości. Prowadzi to do pojawienia się 
bardzo wąskich linii, których częstości można wyznaczyć z dużą dokładnością. Tym 
samym możliwe jest podwyższenie dokładności w określeniu takich stałych fizy­
cznych, jak masy zredukowanej, czy momentu bezwładności cząsteczki. Z drugiej 
strony możliwe staje się uzyskanie wniosków dotyczących wpływu składu izotopo­
wego, konformacji, a także wpływu oddziaływań międzycząsteczkowych na czasy 
życia w stanach wzbudzonych lub na prawdopodobieństwo przejścia spektralnego.

Pierwszymi zbadanymi tą metodą cząsteczkami były:
1) w podczerwieni: CH3F [24, 25] i NH3 [26];
2) w nadfiolecie: C6H6 (benzen) [27].

7.4. Drgania wewnętrzne cząsteczki w krysztale

W spektroskopii cząsteczki izolowanej zakłada się, iż mamy do czynienia z 
mniej lub więcej symetrycznym zbiorem atomów, połączonych z sobą wiązaniami 
chemicznymi. Przypisanie cząsteczki do określonej punktowej grupy symetrii poz­
wala — jak widzieliśmy — na ustalenie reguł wyboru, tj. pozwala przewidzieć 
liczbę i symetrię dozwolonych przejść w podczerwieni, przy czym warunkiem 
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wystąpienia przejścia optycznego jest zmiana momentu dipolowego cząsteczki pod 
wpływem zmiennego pola elektrycznego fali elektromagnetycznej.

W zasadzie niewiele się zmienia w tym obrazie, jeśli interesującą nas cząsteczkę 
umieścimy w krysztale. Ponieważ energia wiązania atomów przewyższa o rząd 
wielkości energię oddziaływań międzycząsteczkowych, częstości drgań wewnętrz­
nych cząsteczek w fazie stałej ulegają jedynie niewielkim przesunięciom w porówna­
niu z drganiami cząsteczki swobodnej. Przesunięcia te wynikają z faktu, że kryształ 
stanowi ośrodek, traktowany zwykle jako medium ciągłe, o przenikalności dielek­
trycznej większej od jedności. Anizotropia przenikalności powoduje — jak widzie­
liśmy — anizotropię pola lokalnego, co w spektroskopii interpretuje się jako 
lokalną symetrię cząsteczki w krysztale. Inaczej mówiąc, uważa się, że efektywna 
symetria w sieci jest taka, jak symetria węzła, który zajmuje cząsteczka w określonej 
strukturze. Uważa się też, że lokalna symetria węzła rozciąga się na obszar całej 
cząsteczki. Relacje między symetrią węzła a symetrią cząsteczki swobodnej prowa­
dzą do pewnej modyfikacji reguł wyboru, którymi zajmiemy się w tym paragrafie. 
Dalszą konsekwencją, wynikającą z niższej na ogół symetrii węzła, jest fakt, że 
niekiedy przejścia zabronione dla cząsteczki swobodnej mogą być dozwolone dla 
cząsteczki w krysztale. Może się także zdarzyć, że pole krystaliczne znosi degenera­
cję stanu wzbudzonego, któremu opowiada dwu- lub trzywymiarowa reprezenta­
cja; efekty te noszą nazwę rozszczepienia statycznego.

Inny rodzaj rozszczepienia pojawia się w związku z tym, że w komórce 
elementarnej zawartych jest Z cząsteczek, stanowiących układ Z sprzężonych z 
sobą oscylatorów o identycznych właściwościach. Oddziaływania tych oscylatorów 
między sobą w stanie wzbudzonym prowadzą do rozszczepienia każdego drgania na 
Z składowych, z których nie wszystkie muszą być obserwowalne. Ostatnia wreszcie 
— i może najważniejsza w zastosowaniach — różnica między stanem krystali­
cznym a stanem gazowym polega na tym, że wzbudzone w krysztale oscylatory 
stanowią układ dipoli, wykazujący wiele cech „gazu zorientowanego”. Stany wzbu­
dzone możemy wywołać i analizować za pomocą promieniowania spolaryzowanego, co 
rozszerza możliwość poznania właściwości poszczególnych oscylatorów. Zajmiemy 
się opisem tych zjawisk nieco bardziej szczegółowo, poczynając od modyfikacji 
reguł wyboru.

Translacyjna symetria sieci przestrzennej nie jest cechą interesującą w spektro­
skopii cząsteczki. Jeśli przyjmiemy, że górna granica widma częstości drgań 
wewnętrznych cząsteczki wynosi 104 cm-1, to takiej częstości odpowiada fala o 
długości 103 nm. Na tym odcinku mieści się 103 komórek elementarnych o 
przeciętnym wymiarze krawędzi 1 nm. Wynikająca stąd różnica faz między sąsied­
nimi komórkami elementarnymi, wywołana zmiennym polem elektrycznym fali, 
jest rzędu 2tt10-3 rad = 0,4° i może być zaniedbana. Wobec tego w problemie 
analizy drgań wewnętrznych cząsteczki w krysztale znaczenie ma jedynie zawartość 
jednej komórki elementarnej. Upraszcza to znacznie reprezentację kryształu z 
punktu widzenia zasad symetrii, rozkład materii wewnątrz komórki opisywany jest 
bowiem przez grupę symetrii komórki elementarnej, Gc, wprowadzoną w rozdz. 4. 
Gc niekoniecznie musi być grupą punktową, ponieważ często obejmuje operacje 
odbicia lub obrotu połączone z nieprymitywną translacją. Jeśli i te translacje 
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opuścimy, to Gc staje się punktową grupą symetrii komórki elementarnej, Gk. 
Właśnie to pojęcie jest najczęściej używane w spektroskopii kryształów. Gk obej­
muje, oczywiście, operacje symetrii zawarte w grupie punktowej węzła, Gs.

Gs składa się z operacji symetrii właściwych węzłowi, w którym przypada 
środek masy cząsteczki, i zawsze jest grupą punktową. Jeśli węzeł położony jest w 
miejscu zupełnie dowolnym (położenie ogólne), to odpowiada mu trywialna grupa 
punktowa C15 zawierająca jedynie element tożsamości, E. Środek masy może też 
zajmować położenie szczególne, tj. leżeć na jakimś elemencie symetrii, a nawet 
przypadać w punkcie przecięcia kilku elementów. Węzłowi odpowiada wówczas 
grupa symetrii właściwa symetrii położenia szczególnego. Zdarza się często, iż 
komórka elementarna może być obsadzona na kilka sposobów, zależnie między 
innymi od grupy punktowej węzła i cząsteczki. Sądzi się nawet, że w pewnych 
przypadkach tych sposobów obsadzeń może być bardzo dużo. Na przykład, węzła 
o symetrii Ct nie może na ogół zajmować cząsteczka nie posiadająca centrum 
symetrii. Zgodnie z tą zasadą zbudowane są kryształy benzenu, naftalenu, antrace­
nu: środek masy tych cząsteczek pokrywa się z centrum symetrii kryształu. Czy 
jednak nie można zbudować centrosymetrycznego kryształu z cząsteczek niecentro- 
symetrycznych? Okazuje się, że w pewnych przypadkach jest to możliwe. Na 
przykład cząsteczki pentachlorofenolu [28] lub pentachlorobenzenotiolu [29] nie 
mają centrum symetrii, a jednak w fazach wysokotemperaturowych tych substancji 
zajmują położenia Jak się wydaje, struktury tych substancji mogą być realizo­
wane w połączeniu z nieuporządkowaniem cząsteczki względem normalnej do 
pierścienia benzenowego. Każdy podstawnik pierścienia zajmuje w strukturze 
jedno z sześciu położeń z prawdopodobieństwem 1/6, a centrum symetrii kryształu 
realizowane jest statystycznie.

Grupa wymienna Gw, wprowadzona w rozdz. 4, jest zbiorem operacji wiążą- 
cych położenia atomów symetrycznie równoważnych w komórce elementarnej; 
podobnie jak Gc, Gw obejmuje także operacje połączone z translacją o ułamek 
periodu sieci. Jeśli je opuścimy, to Gw przechodzi w punktową grupę wymienną 
Gk, wprowadzoną przez Kopelmana [30]. Wszystkie trzy grupy punktowe Gk, Gj 
oraz Gs spełniają relację

Gk = G1Gs (7.48)

Warto zauważyć, że symetria węzła, określona operacjami grupy Gs, nie musi 
być identyczna z symetrią cząsteczki swobodnej, GM; GM jest zazwyczaj wyższego 
rzędu niż Gs. W najogólniejszym sformułowaniu relacja między GM, Gs i Gk jest 
następująca: Gs musi być podgrupą Gk i jednocześnie GM

GM^GS^ Gk (7.49)

Dopuszczalna symetria węzła i liczba obsadzeń Z przy zadanej grupie punkto­
wej komórki elementarnej może być odczytana z opisu grup przestrzennych, 
zamieszczonego w Międzynarodowych Tabelach Rentgenografii (por. rozdz. 3). 
Podaje je również w zestawieniu tabelarycznym Halford [31]. Najwygodniej 
jednak korzystać z nomogramu opracowanego przez Ryttera [32] i przytoczonego 
po niewielkim uproszczeniu w tab. 7.7 (opuszczono grupy punktowe, zawierające
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Tabela 7.7

Grupy węzła w skończonych grupach punktowych (oprać, według [32])

. • • • 6 • • ■ ’ • ■ 8 ■ • .... -12 . ■ 24 • 48
/*0’/ I • ■ • ■...........................6 ................................8 ............................... 12 24

zio /\ ■ • . . . . 4 . . . . . . 6 • ■ 12 ■ 24
/^/\ • ................................8 ■ • • • 6 ■ • 12 ■ 24

• • 1 / ................................ 6 12
• • / | • . 2 . . I—>- m • • • • ............................... 12 12 ■ 24

• • • J Z 1 ' 2 • • ................. /Gk • ■ • ■ 6 ■ ■ 12 • 24
......................... /ó0^/1 • • 2 ................................6 12

6 • 12
/o«1/ I2 6 • 12

............................. C2c2 ■ 1 /*G^/ 6
■ -I /&/ | • • • 2 • • ................................ 8 8 • 16

^2 * Csf Z 1 • • 2 • • .................................• • • • 4 • • 8 • 16
G'?/ | • • • 2 ................................ 4 8

/g^/ 1* • 2 8

’ 4 • 8
............................ ‘ 1 / G^ / 12 4 ■ 8

03............................... • • • ■ c2 c2 ‘ ’ 1 /^G^/ 4
■ • -I Z z/ | • • • 2 • • ................................6 6 • 12

• O3......................... ............................ ■ 4 • AG^Z~] • • 2 • • . . . . 3 . . 6 • 12
G^/~\- • • 2 ................................ 3 6
/^Z ’̂ • 2 6

/ 1 ' 3 • 6
J /G^/\l 3 ■ 6

O4 • O2 • • • ■ Ci Ci ■ J /g^/ 3
■ • H / | ■ 2 ■ 4 4 • 8

■ Oi • O20O2 . . . . . . Cl Ci ■ Cj / G%/n- • 2 ■ • 4 • 8
4

/G%/I • • 2 4
1 * * 2 • 4

J 12 2 ■ 4
7 ‘ - S6 ■ • C6 .......................... G ..........................................................Cl Cl • %G^/ 2

■ ■ n /G'/ 2
• T • • 4 Civ ■ Cs ' ’ ' C4v ' ck • • • • c2v • Cl • • • • c2v- Ci^ ' Cs / Gh 2

0 ■ T T ■ D6O6 • C6 C6 • D, O4 • • C4 C4 • D3 D3 ’ ’ C3 C3 • D2 o2 * • C2C2 ’ I
/ CA

a

Krotność węzła (m) podana jest w górnej prawej części, a grupa wymienna (G,) w dolnej lewej 
części względem przekątnej. Sposób odczytu relacji między Gk, Gs, G, oraz m ukazuje schemat u góry 
tabeli. Gwiazdka oznacza zasadę wzajemnego wykluczania przejść aktywnych'w widmie Ramana i w 
widmie JR. Kropka oznacza brak relacji, znak 4- wskazuje zaś, że żadna z grup wymiennych nie spełnia 
równania (7.48). Litera a podaje, że G, = Gk dla G„ = Cj.

pięciokrotną oś symetrii). Liczby nad przekątną nomogramu podają krotność 
obsadzenia komórki elementarnej, przy czym symetrię węzła określa za każdym 
razem grupa punktowa Gs w kierunku pionowym w dół. Symbole pod przekątną 
oznaczają punktowe grupy wymienne, Gj.

Z nomogramu możemy odczytać, na przykład, że komórka elementarna o 
symetrii grupy punktowej D2h może być obsadzona na trzy sposoby, a mianowicie 
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(informacje znajdujemy zawsze w miejscu przecięcia określonego wiersza z określo­
ną kolumną; jeśli w tym miejscu występuje kropka to oznacza to, że postawionego 
zadania zrealizować nie można);

1) możemy obsadzić tę komórkę dwiema identycznymi cząsteczkami o symetrii 
C2t„ przy czym symetria tego obsadzenia będzie odpowiadać symetrii grupy 
punktowej C2,

2) w takiej samej komórce możemy mieć cztery cząsteczki w węzłach o 
symetrii C5, przy czym ich rozkład będzie miał symetrię D2,

3) w komórce elementarnej możemy rozmieścić osiem cząsteczek asymetry­
cznych (CJ, a symetrią ich rozkładu będzie D2h.

Zapis (7.49) oznacza, że w spektroskopii poszukujemy odpowiedniości między 
reprezentacjami grupy punktowej węzła i swobodnej cząsteczki oraz między reprezen­
tacjami węzła i komórki elementarnej. Tego typu korelacje między różnymi grupami 
punktowymi mają znaczenie ogólniejsze i podawane są w dziełach specjalisty­
cznych z zakresu teorii grup; przytoczone są również w monografii Wilsona, 
Deciusa i Crossa [6]. Niech jako przykład posłuży kryształ o symetrii grupy 
punktowej komórki elementarnej D2h. Przyjmiemy dalej, że komórka obsadzona 
jest dwiema cząsteczkami, symetria węzła będzie zatem C2v (tab. 7.7), sama zaś 
cząsteczka niech ma symetrię D2d. Diagram korelacyjny, opracowany na podstawie 
monografii [6], przedstawiony jest w tab. 7.8. Z tego diagramu możemy odczytać 
następujące informacje:

1) Kierunkom przejść spektroskopowych w cząsteczce Tx, Ty, T. odpowiadają 
kierunki przejść spektroskopowych w krysztale Ta, Tb, Tc. równoległe do odpo­
wiednich osi krystalograficznych a, b, c. Zwróćmy uwagę na fakt, że drganie typu 
E w cząsteczce swobodnej ma moment przejścia leżący w płaszczyźnie ale jego 
szczegółowy kierunek nie może być określony na podstawie zasad symetrii.

Tabela 7.8

Diagram korelacyjny między grupami punktowymi D2ll (cząsteczka), C2, 
(węzeł) i D2h (komórka elementarna)

Grupa punktowa 
cząsteczki swobodnej

Grupa punktowa 
węzła 
C2r

Grupa punktowa 
komórki elementarnej 
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2) Przejścia typu A^ zabronione w cząsteczce, dopuszczone są symetrią węzła i 
mogą się pojawić w krysztale jako słabe przejścia o symetrii B3u, tj. o polaryzacji 
wzdłuż osi a kryształu.

3) Przejścia typu A2 są zabronione w cząsteczce i nie mogą też wystąpić w 
krysztale. Podobnie rzecz się ma z przejściami typu

4) Przejścia B2 dopuszczone są przez symetrię cząsteczki i węzła i pojawią się 
w krysztale jako silne przejścia o symetrii B3u.

5) Przejścia typu E zostaną rozszczepione przez symetrię węzła. Przy wystar­
czająco dużej zdolności rozdzielczej spektrofotometru pojawią się w widmie IR 
dwa osobne maksima o symetrii Biu i B2u o różnych polaryzacjach. Jest to 
przypadek rozszczepienia statycznego.

Obecność większej liczby identycznych oscylatorów elementarnych w cząsteczce 
lub komórce elementarnej prowadzi nas do problemu tak zwanych oscylatorów 
sprzężonych. Wynika on stąd, że jeśli częstości dwóch lub więcej oscylatorów są 
identyczne, to są one wzbudzane równocześnie, a wtedy również fazy drgań nie mogą 
być dowolne, lecz muszą spełniać określone reguły symetrii. Zagadnienie oscylato­
rów sprzężonych, opisane szczegółowo w znakomitej monografii Davydova [33], 
prowadzi do zrozumienia zagadnienia ekscytonów. Przedstawimy tu niektóre 
wyniki tej teorii.

Rozważmy wpierw dla przypomnienia elementarny problem dwóch oscylato­
rów sprzężonych. Dla uproszczenia przyjmiemy, że masy obu oscylatorów są 
identyczne, n^ = m2 = m, a wobec identyczności stałych siłowych, kt = k2 = k, 
również częstości drgań w stanie swobodnym są takie same, m01 = m02 = coo. Jeśli 

i a2 oznaczają współrzędne ruchu, to całkowitą energię układu można przedsta­
wić w następujący sposób:

E = imćf + 2maj + 2 ka^+2ka2 + ya1 a2 (7.50)

Kropka oznacza różniczkowanie względem czasu, yak a2 zaś jest energią sprzężenia 
— przyjęto proporcjonalność do iloczynu współrzędnych. Równania ruchu mają 
postać

■ y ■ 
ó]+<Uo Ui 4—a2 = 0 

m
(7.51)

.. , 2 ,7 nCl2 “F ^0 ^2 ----  m

Jeśli założymy rozwiązanie periodyczne typu

ak = ak0 exp [imf] (7.52)

gdzie i jest jednostką urojoną, ak0 zaś amplitudą ruchu, k = 1, 2, to otrzymamy 
układ dwóch równań jednorodnych. Warunkiem istnienia nietrywialnych rozwią­
zań dla amplitudy jest znikanie wyznacznika układu

/ v \2
(mg —m2)(mg —m2)—I — =0

\m /
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Stąd otrzymujemy
2 2 y
wf = «0----  m

(7.53a)

m

Podstawienie wyrażeń (7.53a) do rozwiązań równań ruchu prowadzi do związków 
między amplitudami ruchu obu oscylatorów sprzężonych, a mianowicie

dla cm «20 = ^10
(7.53b) 

dla cu2 n2o = «10
Częstości niższej (coj odpowiada więc drganie antysymetryczne, wyższej zaś (<w2) 
— drganie symetryczne.

Przejdźmy teraz do opisu widma drgań wewnętrznych cząsteczki w krysztale. 
Niech wskaźniki a, numerują cząsteczki, a n, m komórki elementarne. Jeśli 
ładunek elementarny oznaczymy przez q, siłę oscylatora przez f (jest to współczyn­
nik korekcyjny, bezwymiarowy i mniejszy od jedności, dopasowujący prawdopodo­
bieństwo przejścia do natężenia przejścia), to moment dipolowy cząsteczki w 
komórce n możemy zapisać następująco:

Pm = q ea «na (7-54)
przy czym e oznacza wektor jednostkowy w kierunku P, a oznacza obecnie 
współrzędną normalną, zdefiniowaną jako iloczyn masy oscylatora i przesunięcia. 
Ponieważ mamy Z cząsteczek w komórce elementarnej oraz N = NrN2 N3 komó­
rek w krysztale, całkowita energia Z ■ N drgających oscylatorów wyniesie

2E = + X' r^d [Pm Pmp ~
n,a n,a n,a

3 Qna.,m^) (7.55)
R„a mp jest odległością obu oddziałujących dipoli, a wektorem jednostkowym 
w kierunku R (rys. 7.6). Prim przy znaku sumy oznacza, że opuszczamy wyrazy, 
dla których n = m i a = p.

Rys. 7.6. Oznaczenia wektorów w sieci prostej
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Przyjmijmy, że równanie ruchu oscylatora a
1 , q2 f

^na~^~ ^0 ni 3 Qna.mp) (^a 0 (7.56)
m,fi ^na,mP

ma rozwiązanie w postaci fali biegnącej, co odpowiada ruchowi wzbudzenia we 
wnętrzu kryształu

a,m = aa exp [i (kr -mt)] (7.57)

gdzie k jest wektorem falowym, r jest zaś wektorem sieci prostej, której periodami 
są krawędzie komórki elementarnej. Podstawienie wyrażenia (7.57) do równ. (7.56) 
prowadzi do zbioru liniowych równań jednorodnych, określającego zbiór wartości 
amplitud aa

z 
(m^-ct>2)aa+= 0 (7.58)

P

rap jest tensorem, opisującym oddziaływania międzycząsteczkowe typu dipol- 
dipol, przy czym jego składowe są funkcją wektora falowego k

N, q2 f
F«p (k) = £ —3— exp [i (rm - rj k] [ą, - 3 (^ g,^) (ea (7.59)

raa rozumieć będziemy jako wpływ otoczenia na cząsteczkę w węźle a. Ponieważ 
wymiarem r jest s~2, rxa można uważać za zmianę kwadratu częstości, wywołaną 
umieszczeniem oscylatora w ośrodku o przenikalności dielektrycznej e / 1. Zakła­
dając promień sumowania oddziaływań dipolowych 5 nm, tj. przeciętnie 7 stałych 
sieciowych, oraz |k| = k-100 cm^1, będziemy mieli różnicę faz, wytworzoną przez 
falę między środkiem a peryferiami kuli sumowania, równą n-10-4 rad. Jest to tak 
mało, że praktycznie czynnik wykładniczy w równ. (7.59) można dla kryształów 
molekularnych przyjąć za równy jedności, a elementy rxp uznać za rzeczywiste.

Rozwiązanie układu równań jednorodnych (7.58) prowadzi do zbioru częstości 
własnych

m2=m2(k) a = 1,2, ...,Z (7.60)

z których każda zależy od wektora falowego. Wektor k przyjmuje N dyskretnych 
wartości 

tak że każdej częstości własnej cząsteczki swobodnej odpowiada w krysztale ąuasi- 
ciągłe pasmo (rys. 7.7).

Rozważmy trochę bardziej szczegółowo przypadek obsadzenia jednoskośnej 
komórki elementarnej Clh czterema cząsteczkami (Z = 4). Rozkład wektorów 
jednostkowych oddziałujących dipoli przedstawiony jest na rys. 7.8. Przyjmiemy, 
że składowe tensora oddziaływań, raP, spełniają następujące warunki, wynikające z
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symetrii rozkładu wektorów:

Gi = G2 = G3 = 

^12 ~ ^34 = ^2 

G3=G4 = G

G4 = G3 = G

r 44. — r]

(7.62)

6JQ

Rys. 7.7. Schemat rozszczepienia poziomu energetycznego (<un) w sieci krystalicznej

Rys. 7.8. Rozkład molekularnych wektorów momentu 
przejścia w komórce elementarnej (przykład)

Przy takich założeniach układ równań liniowych (7.58) może być rozwiązany, przy 
czym otrzymujemy następujące częstości własne:

cnf = o>q + T i + G + (G + G)

W1 = CŁ>o + G + G — (G + G)
(1.63)

<»3 — "o + G ~ r2 4- (G — G)

m4 = mo+G—G-(G~G).
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i wektory własne

«i — B. (t*! + e2 + e3 + e4) £ P^ — 0

«2 = B2(e1 + e2-e3-e4) ^P^Q

«3 = B2 (^ - e2 + e3 - e4) ^P^b

< = B4 (^ - e2 - e3 + e4) £ Px Ib

0-M)

Dokonana analiza prowadzi do wniosku, że sprzężenie drgań czterech cząsteczek w 
komórce elementarnej prowadzi do rozszczepienia każdej częstości na cztery składowe 
(dalsze rozszczepienie, wynikające z guasi-ciągłe] struktury częstości, pomijamy), z 
których dwie nie wykazują zmiany wypadkowego momentu dipolowego i nie mogą być 
aktywne w IR. Dla pozostałych dwóch składowych kierunek momentu przejścia jest 
odpowiednio równoległy lub prostopadły do krystalograficznej osi b (rys. 7.9).

Rys. 7.9. Wypadkowe momenty przejścia dla całej komórki elementarnej

Trochę inny wynik otrzymujemy z zastosowania teorii grup do analizy tego 
przypadku. Komórka elementarna C2h ma elementy symetrii C2||b (y), ahlb, I, E. 
Wobec tego tabela charakterów ma następującą postać:

Typ 
drgania E CE I Aktywność

IR R

1 1 1 1 By
4 1 1 -1 -1 T(Hfe)

1 -1 -1 1 Rx. R.
B„ 1 -1 1 - 1 T, TA Eh)

rR 12 0 4 0

Rozkład reprezentacji redukowalnej rR zgodnie z równ. (7.11) prowadzi do wyniku 

rR = 4 Ag + 2AU + 2Bg + 4BU
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Po odjęciu typów akustycznych (AU + 2BU) otrzymujemy

rR = 4Ag + AU + 2Bg + 2BU (7.65)

Wynik ten wskazuje na istnienie jednego przejścia o polaryzacji równoległej do osi 
b, lecz dwóch przejść o polaryzacji prostopadłej. Niezgodność z poprzednim 
wynikiem spowodowana jest prawdopodobnie zbyt daleko idącym uproszczeniem 
założeń (7.62).

Prócz wzbudzeń kolektywnych typu optycznego, z którymi mamy do czynienia 
w spektroskopii, istnieją też inne wzbudzenia kolektywne,.które są koherentnymi 
ruchami dużej liczby wzbudzeń elementarnych. Przykładami mogą być fale akusty­
czne, akustyczno-elektryczne i magnetyczno-hydrodynamiczne różnych typów. 
Ogólnie biorąc, wzbudzenia elementarne można podzielić na następujące typy [34]:

1. Wzbudzenia typu Bosego, tj. podlegające statystyce Bosego-Einsteina: 
fotony, 
fonony podłużne i poprzeczne, 
librony, 
fonony i rotony w nadciekłym helu (He II), 
fale spinowe w materiałach magnetycznych, 
ekscytony w półprzewodnikach i kryształach molekularnych.

2. Wzbudzenia typu Fermiego, tj. podlegające statystyce Fermiego-Diraca: 
elektrony przewodnictwa i dziury w półprzewodnikach, 
guasi-cząstki w metalach, nadprzewodnikach i w ciekłym He III, 
polarony w półprzewodnikach i kryształach molekularnych.

Z kolektywnymi wzbudzeniami mamy do czynienia w spektroskopii przede 
wszystkim wówczas, gdy absorpcja materiału jest duża. Przy dużej gęstości stanów 
wzbudzenia następuje kolektywizacja ich ruchu, co w języku teorii grup sprowadza 
się do konieczności opisu ruchu przez podanie modusów drgań ciała stałego. Owe 
modusy mają określone częstości i wektory propagacji, których kierunki w krysz­
tale zależą od symetrii sieci i — jak widzieliśmy — w znacznym stopniu mogą być 
przewidywane regułami wyboru.

7.5. Model gazu zorientowanego w spektroskopii

Poprzednio rozważaliśmy przypadek silnego sprzężenia drgań oscylatorów w 
komórce elementarnej, prowadzącego do kolektywnego modusu drgań wszystkich 
cząsteczek w krysztale pod postacią fali biegnącej (ekscytonu). Jeśli jednak absorp­
cja jest słaba, to stan wzbudzenia kryształu możemy traktować jako zbiór wzbudzeń 
elementarnych, oddziałujących słabo lub nie oddziałujących na siebie wzajemnie. 
Poszczególne akty absorpcji z wytworzeniem cząsteczek w stanie wzbudzonym 
następują wówczas niezależnie i warunki fazowe nie odgrywają roli. Absorpcja 
uzależniona jest natomiast od geometrycznych związków między kierunkami mo­
mentów przejścia w elemencie strukturalnym (atomie, cząsteczce, jonie) a kierun­
kiem wektora E padającej fali elektromagnetycznej. Taki obraz absorpcji przypo­
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mina zjawisko scyntylacji, a rozkład przestrzenny wzbudzonych dipoli jest przy­
kładem „gazu zorientowanego”.

Model gazu zorientowanego, który tu opiszemy, polega na powiązaniu do­
świadczalnie zmierzonej absorpcji określonego typu oscylatorów w krysztale mole­
kularnym z przewidywaniami wielkości absorpcji, jakich możemy oczekiwać na 
podstawie znajomości struktury tego kryształu.

Aby porównanie to mogło mieć charakter ilościowy, pomiary natężenia pasma 
absorpcyjnego muszą spełniać pewne warunki. Najważniejszymi z nich są:

1. Wiązka promieniowania spolaryzowanego musi padać na kryształ w taki 
sposób, by wektor E fali leżał w jednej z płaszczyzn optycznych kryształu. Płaszczy­
zną optyczną jest taka płaszczyzna, która przechodzi przez dwie osie główne 
indykatrysy. Przy innej orientacji wektora E następuje rozszczepienie wiązki w 
momencie wejścia do kryształu na dwa promienie, z których każdy porusza się z 
inną prędkością i jest absorbowany w różny sposób. Wynik takiego pomiaru nie 
ma sensownej interpretacji fizycznej (por. p. 6.2). Ponadto będziemy rozważać 
wyłącznie przypadek prostopadłego padania wiązki na płytkę krystaliczną.

2. Część promieniowania ulega odbiciu na granicy faz powietrze/kryształ. W celu 
wyeliminowania błędów stąd pochodzących najlepiej umieścić na drodze wiązki 
odniesienia możliwie cienką płytkę z tego samego materiału i w tej samej orienta­
cji, co na drodze wiązki pomiarowej. Wyniki pozbawione błędów pochodzących z 
odbicia można również otrzymać przez wykonanie pomiarów natężenia pasma dla 
szeregu płytek o różnych grubościach i zastosowanie prawa Lamberta (7.66).

3. Pomiar natężenia wiązki wchodzącej do kryształu, Io, oraz wiązki opuszcza­
jącej kryształ, It, pozwala zgodnie z prawem Lamberta na określenie współczynni­
ka absorpcji k materiału przy określonej częstości wiązki padającej

2,303
k W = ~CF~ log V-66)d

Miarą integralnego natężenia pasma jest wyrażenie
”2

A(a) = J k (v) dv = Ck{^ (7.67)
vi

w którym kmax jest współczynnikiem absorpcji w maksimum pasma, H — jego 
szerokością połówkową, a C pewną stałą, nie mającą znaczenia dla dalszych 
rozważań. Wskaźnik „a” oznacza, że mierzone wielkości są pozorne. Zawierają one 
błędy eksperymentalne, wynikające ze skończonej szerokości spektralnej wiązki 
promieniowania, opuszczającej monochromator. W celu uzyskania „prawdziwych” 
parametrów pasma A(t>, k^ i H(t), trzeba zastosować jedną z procedur korekcyjnych, 
na przykład podaną przez Ramsaya [35].

Przytoczone dotąd uwagi dotyczyły eksperymentalnych warunków pomiaru 
natężenia pasma. Po wykonaniu pomiarów dla dwóch prostopadłych kierunków 
optycznych płytki, i x2, oraz zastosowaniu procedury korekcyjnej możemy 
otrzymać wielkość, zwaną doświadczalnym dichroizmem pasma

j(0
^2=  ̂ (7-68)

313



Liczba ta charakteryzuje anizotropię absorpcji określonego typu oscylatorów dla 
wybranych dwóch kierunków pomiaru. Jeśli znamy strukturę kryształu i orientację 
osi idykatrysy, to kierunki te mogą być łatwo zorientowane względem osi krysta­
lograficznych. W takim przypadku możliwe jest obliczenie wielkości dichroizmu, 
R{i/2, z danych strukturalnych przy zastosowaniu modelu gazu zorientowanego dla 
wielkości wektorowej (por. p. 4.3).

Rys. 7.10. Orientacja optyczna płytki wyciętej w pła­
szczyźnie (001) układu jednoskośnego

W celu sprecyzowania sytuacji weźmy pod uwagę płytkę, przedstawioną na rys. 
7.10; n{, n2, n3 oznaczają główne współczynniki refrakcji, a N2, N3 są 
współczynnikami refrakcji wzdłuż osi układu współrzędnych x2x3, związanego z 
płytką. Przypuśćmy, że nJI*!, lecz n2 nie leży w płaszczyźnie płytki. Z sytuacją 
taką spotykamy się, na przykład, w płaszczyźnie (001) układu jednoskośnego — w 
tej orientacji Xi||h. Aby napisać wyrażenie na dichroizm, trzeba wziąć pod uwagę 
następujące fakty:

1) Promień świetlny E||.Xi przebywa w krysztale drogę optyczną o innej długości 
niż promień E||x2. Długość drogi optycznej wynosi [p. równ. (4.69)]

r^d^y

gdzie di jest efektywną grubością kryształu. Zgodnie z równ. (6.29) mamy

di=d0/cos^ (7.69)

przy czym d0 jest geometryczną grubością płytki, £ zaś kątem zawartym między D 
i E,k> fali wewnątrz kryształu (por. rys. 6.7). Poprawka stąd wynikająca powinna się 
znaleźć w mianowniku w celu zrównania dróg optycznych dla obu kierunków Xj i 
X2 •

2) Orientacja wektora E(k} względem x, jest na ogól inna niż wektora E w 
powietrzu (próżni).

Energia absorbowana przez oscylator w /-tej cząsteczce w komórce elementar­
nej, któremu odpowiada wektor momentu przejścia

Mj = Mo mj (7.70) 
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gdzie mj jest wektorem jednostkowym w kierunku Mj, jest proporcjonalna do 

(Mj^)2 = M20(mjEm)2 (7.71)

Po tych przygotowaniach wyrażenie na dichroizm możemy zapisać w następujący 
sposób:

R^l2=------- i-----------  (7.72)
N{ £ (mj E^')2

j

Należy teraz obliczyć długość drogi optycznej i orientację E^ dla każdego z dwu 
możliwych kierunków pomiaru.

1. Dla mamy Nt = nJI*!, zatem zgodnie z równ. (6.25) ć = 0. Wobec 
tego

d1Ni=don1 (7.73)

oraz 
E^HEJK

2. Dla E2||x2 współczynnik refrakcji określa wyrażenie (6.24)

1 _ eos^sn^, (? ?4)
A2 «2 «3

Ponadto 

przy czym kąt £ jest określony przez równ. (6.25).
Orientację E^ podaje następująca tabelka:

(7.76)
E(2} 0 cosę ±sinę

Wybór znaku przy sinę zależy od orientacji przekroju n2, n3 indykatrysy. Na 
podstawie danych (7.76) otrzymujemy

3
(mjE^) = £ cos(mj, xr)cos(xr, E2}) = 

r= i
= cos cos (mj, x2) ± sin ć cos (mj, x3) (7.77)

Podstawienie tych wyrażeń do równ. (7.72) prowadzi do wyniku
z

• % cos2(mj, xt)
R^/2 = ------------------------------- (7.78)

X [cos ę cos (mj, x2) + sin ę cos (mj, x3)J
J=i
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W tym wyrażeniu występuje zarówno orientacja osi indykatrysy, jak i kierunków 
momentów przejścia mj względem przyjętego układu współrzędnych xxx2x3. Naj­
prościej jest skorelować ten układ z kierunkami optycznymi płytki, jak na rys. 
7.10. Występujące w równ. (7.78) kosinusy kierunkowe można otrzymać z 
danych strukturalnych i orientacji kierunków optycznych za pomocą zwykłej 
transformacji układu współrzędnych.

Zastosowanie równania (7.78) do obliczania dichroizmu pasm absorpcyjnych 
ilustruje tab. 7.9. Kąt £ wynosi od kilku sekund (dureń) do ponad 12° (antracen). 
Jak wynika z danych zawartych w tabeli, poprawka zależna od kąta ma niekiedy 
istotne znaczenie przy obliczaniu wartości dichroizmu. Szczególnie wyraźnie jest to 
widoczne w przejściu A benzamidu; przy zaniedbaniu £ dichroizm pasma ma 
kierunek odwrotny niż w eksperymencie.

Wyniki pomiarów i obliczeń dichroizmu niektórych pasm absorpcyjnych w bliskiej podczerwieni

Tabela 7.9

L.
P-

Kryształ Przejście 
absorpcyjne

Typ 
symetrii

R& 
i = o [36] <bl) KSdośw) Literatura

1 Naftalen tfD 4-v<2»VCH + VCH B2u 5995 6,94 4,80 4,51(28) [37]
5965 0,17 0,45 0,47(6) [37]

2 p-Nitro- 
anilina * 2^2 A 6901 0,41 0,45 0,46(2) [37]

3 Acetanilid 27ch A’ 5980 0,69 0,69 0,70(2) [37]
4 Benzamid 2^ch A' 6030 0,91 • 1,28 1,18(1) [37]
5 Dureń v4 + 2v5 E 5670 0,85 0,85 0,82(4) [37]
6 Kwas 

benzoesowy 2vCH A' 6030 0,81 0,71 0,68(1) [38]
7 Antracen tfl) _l#2) vch + vch B2u 5940 7,00 5,25 5,05(55) [38]

* Dichroizm w układzie osi 6 oraz a' = [101].

Interesujący problem pojawia się wtedy, gdy jedynym elementem symetrii 
cząsteczki jest płaszczyzna ah, pokrywająca się z płaszczyzną cząsteczki [37]. 
Grupa punktowa symetrii GM zawiera wówczas tylko dwie reprezentacje: A i A', 
czyli drgania mogą być symetryczne albo antysymetryczne względem tej płaszczy­
zny. W tym drugim przypadku moment przejścia jest oczywiście wektorem n 
prostopadłym do ah, ale jaką wybrać reprezentację geometryczną dla A, skoro o 
wektorze momentu przejścia wiemy tylko tyle, że leży w płaszczyźnie <7h?

Otóż okazuje się [38], że wyrażenie na dichroizm (7.78) pozostaje słuszne 
również i dla takich pasm, jeśli tylko zamiast kosinusów kierunkowych momentu 
przejścia podstawić kosinusy kątów zawartych między ah i osiami układu współ­
rzędnych lub — co jest równoważne — sinusy normalnej n

cos (ah, xf) = — sin(n, xj (7.79)

Przykłady drgań A, podane w tab. 7.9, zostały potraktowane w taki właśnie 
sposób.
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Pomiary i obliczenia dichroizmu, przedstawione dotychczas, zostały zdefinio­
wane dla pojedynczych, dobrze izolowanych pasm absorpcyjnych, z jakimi nie 
zawsze możemy mieć do czynienia. Luty, Szostak i Karwowska wykazali na 
przykładzie tiomocznika i p-nitroaniliny [39], że pojęcie dichroizmu można rozsze­
rzyć na grupę pasm. W krysztale tiomocznika, o symetrii ortorombowej, obserwuje 
się w przedziale częstości 6000-7200 cm'1 pasmo absorpcyjne, złożone z kilku 
nadtonów i tonów sumacyjnych grupy —NH2. Analiza wykonana metodami teorii 
grup wskazuje, że w tym obszarze spektralnym może wystąpić sześć przejść o 
symetrii A^ i cztery przejścia o symetrii Bt. Natężenie integralne tego zbioru 
zapiszemy w postaci

Ii = ót^cos2^, i)+4b1cos2(B1, i) (7.80)

gdzie i w krysztale o tej symetrii oznacza jedną z osi krystalograficznych a, b lub c, 
a} i b^ są zaś współczynnikami, określającymi natężenia przejść odpowiednio typu 
Ai i Br

Dichroizm całej grupy dziesięciu pasm dla kierunków i oraz j będzie zatem równy

= 6a1 cos2(A!, 0 + 4^ cos2(B1, i)
,/J n, 6a1cos2(A1,j) + 4b1cos2(B1,j)

Obliczenie R^j wymaga znajomości at i br. Wobec tego, iż mamy do czynienia z 
przejściami o różnej symetrii, lecz tego samego oscylatora, autorzy pracy [39] 
przyjmują, że ar = br. Uzyskane wyniki pomiarów i obliczeń zestawione są w tab. 
7.10.

Tabela 7.10

Dichroizm złożonych pasm absorpcyjnych w bliskiej podczerwieni [39]

Orientacja Dichroizm

i Bi obliczony doświadczalny

tiomocznik, kryształ jednoskośny, grupa —NH2 (6000-7200 cm-1), 6AI+4B1

Cl 
b 
c

0,2418
0,8691

-0,4313

0,3893
-0,5428
-0,7441 >3

 >3 1,70
3,18

1,77 ±0,02
2,78 ±0,06

p-nitroanilina, kryształ jednoskośny, grupa —NH2 (6400-7200 cm“1), 3zl1+2B1

Cl' 
b

-0,5516 
0,5560

0,4760
0,8490 D *

Kajb 1,51 1,52 ±0,08

* Dichroizm w układzie osi b, a’ (|| [101]).
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Przytoczone w tym paragrafie wyniki wskazują, że zastosowanie modelu gazu 
zorientowanego do interpretacji natężenia pasm absorpcyjnych w podczerwieni 
prowadzi do rozsądnej zgodności między dichroizmem zmierzonym i obliczonymi 
Model ten może być więc wykorzystany do potwierdzenia przypisań pasm absorp­
cyjnych przejściom o określonej symetrii, jak również może być pomocny w 
uzyskaniu informacji o przybliżonej orientacji cząsteczki w krysztale o nieznanej 
strukturze.

7.6. Absorpcja w przekroju izotropowym

Poprawny sposób wykonania pomiarów spektrofotometrycznych przy użyciu 
promieniowania spolaryzowanego wymaga dla płytki anizotropowej — jak widzie­
liśmy — zachowania określonych relacji między kierunkiem E fali a kierunkami 
optycznymi płytki. Takich pomiarów dla każdej próbki możemy wykonać tylko 
dwa, co ogranicza dokładność, z jaką możemy wyznaczyć interesujące nas stałe 
makro- lub mikroskopowe. Oczywiście nie ma takich ograniczeń, jeśli płytka jest 
izotropowa, ponieważ każda fala spolaryzowana, padająca prostopadle, może się w 
niej rozchodzić bez zmiany stanu polaryzacji i kierunku propagacji.

Otóż każdy kryształ ma co najmniej jeden przekrój optycznie izotropowy. Jeśli 
grupa punktowa komórki elementarnej zawiera jedną oś symetrii o krotności 
wyższej niż 2, kryształ jest jednoosiowy, a w płaszczyźnie prostopadłej do tej osi 
współczynnik refrakcji jest zawsze taki sam, niezależnie od kierunku. Kryształy nie 
mające osi symetrii o krotności wyższej od 2 są dwuosiowe; mamy wtedy dwa 
przekroje izotropowe, określane płaszczyznami i л2, przy czym każda z nich 
jest prostopadła do odpowiedniej osi optycznej. Położenie jednej z płaszczyzn 
ilustruje rys. 7.11. Jeśli zaś w krysztale występuje więcej niż jedna oś symetrii o

Rys. 7.11. Płaszczyzna izotropii optycznej w układzie jednoskoś- 
nym
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krotności wyższej od 2, to indykatrysa degeneruje się do kuli, dla której istnieje 
nieskończenie wiele przekrojów izotropowych.

Jeśli więc w yt niemy płytkę izotropową z jakiegoś kryształu, to jej absorpcję 
możemy mierzyć, przy dowolnym kącie 0, zawartym między wektorem E i jakimś 
kierunkiem odniesienia, leżącym w płytce. Zakładać będziemy w dalszym ciągu 
kierunek padania wiązki prostopadły do płaszczyzny próbki. Z pomiarów otrzy­
mamy pewną charakterystyczną funkcję przepuszczalności optycznej, T(0); której 
kształt nie zależy od właściwości optycznych płytki, lecz jedynie od rozkładu 
oscylatorów względem układu współrzędnych, związanego z płaszczyzną izotropii. 
Spróbujemy obecnie znaleźć analityczny kształt tego profilu.

Wybierzmy lokalny układ współrzędnych xt x2x3 w taki sposób, że x3 Itij, oś 
x2 leży w płaszczyźnie i jest równoległa do krystalograficznej osi b, zaś xx lx2, 
x3 (rys. 7.11). Związek między xtx2x3 oraz a^c* niech określa macierz b. Wektor 
E leży w płaszczyźnie x15 x2, a kąt zawarty między E i osią oznaczamy przez 0. 
Przyjmiemy dalej, że w cząsteczce może być wzbudzony’moment przejścia równo­
legle do osi symetrii L, M lub N, zależnie od częstości wiązki promieniowania; 
orientacja LMN względem abc* określona jest macierzą c. Wobec tego położenie 
LMN względem Xj x2 x3 określa macierz d taka, że

d = b cr (7.82)

Zgodnie z modelem gazu zorientowanego przepuszczalność płytki możemy wyrazić 
wzorem

z
(I/Io)j = Tj(0) = £ (E-D^)2 (7.83)

k = 1

w którym Dj jest j-tą kolumną macierzy d. Wskaźnik j numeruje typ momentu 
przejścia: dla j = 1 za absorpcję odpowiedzialne są momenty przejścia o kierunku 
L w cząsteczce, j = 2 odpowiada oscylatorom M, wreszcie j = 3 oscylatorom N.

Rozpisanie równ. (7.83) prowadzi po prostych przekształceniach do kształtu 
profilu T(0)

Tj(0) =4T0 [A2 + (B2-A])sin2 0] (7.84)

gdzie dla płaszczyzny ny 1O1

A: = c-j sin cp + cj3 cos (p
(7.85) 

BJ = cn

zaś dla płaszczyzny n2 102

A -. = c;i sin(27— cp) — ci3 cos(2K— (p)
(7.86)

BJ = CJ2

2V jest kątem między osiami optycznymi 0^, O2. Ilustracja figur absorpcyjnych 
dla oscylatorów typu L przedstawiona jest na rys. 7.12. Widzimy, że w krysztale 
jednoskośnym obie figury są różne, ponieważ obie płaszczyzny izotropii położone są 
w takim krysztale asymetrycznie względem układu osi krystalograficznych. Stąd
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też i rozkład absorbujących oscylatorów „widziany” jest przez wektor E w różny 
sposób. Jednakowe krzywe otrzymalibyśmy dla kryształu ortorombowego. Obie 
krzywe na rys. 7.12 znormalizowane zostały do jednakowej wartości To.

Rys. 7.12. Figury absorpcyjne w przekroju i n2 dla oscylato­
rów o momencie przejścia || L

W prostych sytuacjach możemy z długości osi głównych obu figur wnioskować 
o kątowych cechach rozkładu oscylatorów względem krawędzi komórki elementar­
nej, czego jednak szczegółowo rozważać nie będziemy.
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8. ROZSZERZALNOŚĆ TERMICZNA 
KRYSZTAŁÓW MOLEKULARNYCH

Rozszerzalność termiczna jest jedną z częściej mierzonych wielkości materiało­
wych. Każde ciało pod wpływem ogrzania doznaje przyrostu objętości, aczkolwiek 
— jak zobaczymy później — liniowa rozszerzalność może mieć w niektórych 
kierunkach współczynnik ujemny. Właściwie nie rozumiemy jeszcze dzisiaj zbyt 
dobrze, dlaczego materiały rozszerzają się, jeśli terminem „zrozumienie” określamy 
umiejętność interpretacji właściwości lub zjawisk na poziomie molekularnym. W 
opisywanych dotychczas takich właściwościach materiałów, jak podatność magne­
tyczna czy optyczna przenikalność dielektryczna, tensorowi makroskopowemu 
odpowiadał tensor mikroskopowy, przypisywany cząsteczce. Można więc powie­
dzieć, że kryształ dlatego jest dia- czy paramagnetykiem, że jego cząsteczki mają 
właściwości dia- czy paramagnetyczne. Nie ma jednak molekularnego odpowiedni­
ka tej wielkości makroskopowej, którą zwiemy współczynnikiem rozszerzalności 
termicznej. Cząsteczki uważa się zazwyczaj za twory sztywne, przynajmniej w 
zakresie niezbyt wysokich temperatur. W wyższych temperaturach, gdy staje się 
możliwe termiczne wzbudzenie drgań wewnętrznych wskutek wzrostu czynnika 
Boltzmanna, średnie w czasie rozmiary cząsteczek mogą ulegać niewielkim zmia­
nom, co zapewne może mieć wpływ na makroskopową objętość ciała stałego. 
Podobny efekt mógłby wystąpić również wtedy, gdybyśmy potrafili wytworzyć 
dostatecznie dużą gęstość stanów wzbudzonych w obszarze drgań wewnętrznych 
cząsteczki za pomocą promieniowania o dużym natężeniu; efekt taki, którego 
zbadanie mogłoby przyczynić się do poznania udziału drgań wewnętrznych w 
dylatacji sieci, nie został jeszcze — według naszej znajomości zagadnienia — 
opisany.

W niższych temperaturach, gdy wzbudzenia termiczne wewnętrznych, oscylacyj­
nych stopni swobody są aktami mało prawdopodobnymi, o rozszerzalności ciał 
decydować będzie w pierwszym rzędzie wielkość i fizyczny charakter sił, działają­
cych między wybraną cząsteczką a jej otoczeniem. Analizą głównie tego czynnika 
zajmiemy się w niniejszym rozdziale.

Ogólnie biorąc, im słabsze są siły oddziaływania między elementami struktural­
nymi ciała stałego, tym większa jest jego rozszerzalność termiczna. Wyrazem tej 
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prawidłowości jest znany fakt, iż średnie współczynniki rozszerzalności termicznej 
kryształów molekularnych są na ogół znacznie większe od współczynników krysz­
tałów jonowych, a te są z kolei większe niż kryształów walencyjnych. O wielkości 
współczynników rozszerzalności i ich zależności od kierunku w przestrzeni decydo­
wać więc będzie w pierwszym rzędzie wielkość i przestrzenny rozkład potencjału, 
wynikającego z oddziaływań międzycząsteczkowych. Ważną, jeśli nie równorzędną 
cechą tego potencjału, będzie jego anharmoniczność.

Taki sposób myślenia o związkach rozszerzalności ze zmianami innych wiel­
kości fizycznych z temperaturą jest jednak wysoce niedoskonały, ponieważ powo­
łuje się na obraz statyczny sieci. Nie znajduje w nim zastosowania explicite tak 
ważna cecha każdej struktury, jaką jest jej swoista dynamika, z charakterysty­
cznym widmem amplitud ruchu i częstości — innym w każdej temperaturze. 
Właściwe rozwiązanie problemu rozszerzalności termicznej i jej związków z wpły­
wem temperatury na inne wielkości fizyczne musi opierać się na teorii anharmoni- 
cznej dynamiki sieci. Nie mamy dziś jeszcze takiej teorii, aczkolwiek w najnow­
szych publikacjach [1-4] podejmowane są próby jej skonstruowania. Z konie­
czności opis zjawisk anharmonicznych w kryształach ma charakter fenomenologi­
czny i opiera się na różnego rodzaju modelach. Przedstawimy w tym rozdziale 
kilka takich modeli, rozpoczynając od opisu prostych zagadnień jednowymiaro­
wych.

8.1. Proste modele efektów anharmonicznych

Zbadajmy ruch jakiegoś prostego oscylatora, którym może być wahadło lub 
cząsteczka, wykonująca w sieci krystalicznej drgania libracyjne wokół jednej z osi 
symetrii. W pierwszym przypadku energia potencjalna opisywana jest funkcją

U = Ł/0(l-sin 0tg0) = [/0(l-02-|04- ) (81)

przy czym 0 jest kątem zawartym między nicią wahadła odchylonego z położenia 
równowagi a kierunkiem pionu. W drugim przypadku energia potencjalna może 
być zapisana w postaci funkcji

I7 = Uo(l-cos0) = t/o(102-^04+...) (8.2)
która przyjmuje wartość równą zeru w położeniu równowagi, 0 = 0. Obie funkcje 
mają jedną cechę wspólną: w rozwinięciu energii potencjalnej dla małych wychyleń 
pojawiają się wyłącznie parzyste potęgi wychylenia, a więc krzywa energii.poten­
cjalnej jest w obu przypadkach symetryczna. Jeśli wychylenia są małe, to można 
odrzucić potęgi 0 stopnia wyższego niż 2, co nas prowadzi do problemu drgań 
oscylatora lub libratora harmonicznego. Załóżmy jednak, że amplitudy są na tyle 
duże, iż trzeba zachować jeszcze wyraz 04; oscylacje w obu przypadkach będą 
anharmoniczne. Ze względu na niewielkie różnice w kształcie funkcji U (0) rozwa­
żymy dalej ruch z zastosowaniem funkcji (8.2).

Zastosowanie równania Lagrange’a
d SE 8E— V = 0dt 8q dq
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przy
u = u0$92-£9*)

oraz

T = y02 (8.3)

gdzie I jest momentem bezwładności, a 9 — prędkością kątową, prowadzi do 
równania ruchu libratora

I0+Uo(9-i93) = Q
lub

S+cD20e-ia)2093 = 0 (8.4)

Iloraz U0// ma wymiar kwadratu częstości — oznaczyliśmy go przez o>q. Przybli­
żonym rozwiązaniem równ. (8.4) jest funkcja

9 = 90 sin cot + z90 sin 3mt (8.5)

w której £ jest małą liczbą, £ < 1. W dokładniejszym rozwiązaniu można uwzględ­
nić również dalsze nieparzyste harmoniczne w równ. (8.5), których częstości są 
równe (2n+ l)m. Udział ich jest jednak rzędu e", a więc szybko maleje ze wzrostem 
n — dlatego w dalszym rachunku zaniedbamy wszystkie człony z ek dla k > 1. 
Podstawienie wyrażenia (8.5) do równ. (8.4) prowadzi do równości trygonometry­
cznej, która musi być spełniona w dowolnej chwili t; warunkiem jest znikanie 
współczynników przy sinrnt i sin(3cot). Otrzymujemy stąd dwa równania

(o^90-CD290-^ia)i9l = 0
(8.6)

-9a>2 £9o + a>oe9o + ^a>o9o = 0

Pierwsze równanie zawiera zależność częstości od amplitudy ruchu

o = m0(l-W'2Sm0(l-^) (8.7)
Ze wzrostem amplitudy częstość maleje, lecz zależność ta jest słaba. Niemniej, w 
zakresie dużych amplitud ruchu nie ma jednej określonej częstości drgań; widmo 
amplitud drgań termicznych libratora transformuje się na pasmo częstości, którego 
szerokość Aco zależy od skrajnych amplitud ruchu. Oznacza to poszerzenie linii 
absorpcyjnej w kryształach, w których amplituda ruchu cząsteczki jest dostatecznie 
duża.

Z drugiego równania, przyjmując co2 = «o, otrzymujemy

Dla 90 = 20°, £ = 6-10-4, jest więc rzeczywiście małą liczbą. £ możemy nazwać 
współczynnikiem anharmoniczności, określającym udział członów nieharmoni- 
cznych w funkcji energii potencjalnej (8.2).

Prócz anharmoniczności, towarzyszącej symetrycznej krzywej energii potencjal­
nej, możemy mieć anharmoniczność, związaną z asymetrią krzywej. Przyjmijmy 
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funkcje U i T w postaci

oraz
W = 1cx2 — 3 ^cx3

T(x) = | mż2

(8.9)

(8.10)

gdzie c jest współczynnikiem liniowej siły sprężystej, m — masą, a x — prędkością 
oscylatora. <5 ma wymiar odwrotności długości, przy czym <5-1 jest dużo większe 
od amplitudy ruchu, drugi człon równ. (8.9) stanowi więc jedynie niewielką 
poprawkę wobec pierwszego. Krzywe energii potencjalnej obu typów, (8.2) i (8.9), 
przedstawione są na rys. 8.1.

Rys. 8.1. Typy krzywych energii potencjalnej os­
cylatora anharmonicznego (schematycznie): a) sy­
metryczna, b) asymetryczna

Zastosowanie równania Lagrange’a prowadzi w ostatnim przypadku do równa­
nia ruchu

mx + cx — dcx2 = 0
lub

x + o)qX — ÓC0qX2 = 0 (8.11)

przy czym coo = c/m jest ponownie kwadratem częstości drgań.
Rozwiązaniem tego równania jest funkcja

x (t) = A (cos a>t + q cos 2a>t) + xt (8.12)

w której oraz q < 1 mamy wyznaczyć. Łatwo dostrzec, że xr jest średnim w 
czasie położeniem oscylatora. Mamy bowiem

<x(t)> = A <cosa>t)+qA <cos2cot') + x1 = xr (8.13) 
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Ponieważ krzywa energii potencjalnej jest asymetryczna, czyli w punkcie — x0 
działa siła większa niż w punkcie + x0, przy wzroście amplitudy drgań oscylator 
będzie się przesuwał w kierunku słabszej siły. Jeśli zero wybierzemy na osi 
odciętych w taki sposób, by dla oscylatora harmonicznego średnie położenie 
przypadało w punkcie v = 0, to xx oznaczać będzie niewielkie przesunięcie oscyla­
tora anharmonicznego z położenia równowagi. Pomijając w x2(t) wyrazy zawiera­
jące oraz q [x2 wchodzi do równ. (8.11) z małym współczynnikiem <5], możemy 
napisać

x2(t) = A2 cos2 a>t = |42(1+cos 2mt)

Po podstawieniu rozwiązania i przybliżenia do równ. (8.11) otrzymamy

— co 2 A (cos cot + 4q cos 2cat) + cd2 A (cos cot + q cos 2cot) +

+o)qX1 — ^ScoqA2 — .4 2 cos 2ctjr = 0

Przyrównując do zera współczynnik przy cos cot, otrzymujemy

— cd2 A + cdq A = 0
czyli

cd = cd0 (8.14)

Wynika z tego, że w tym modelu anharmoniczności nie ma zależności częstości 
drgań od amplitudy.

Przyrównanie do zera współczynnika przy cos 2cot i wyrazu wolnego prowadzi 
do równania

— 4qco2 A + qcDo A — |ómo42 = 0
czyli

q = -i^A
oraz

x,=yA2 (8.15)

Najbardziej interesujący jest tu wynik dla . Przesunięcie oscylatora anharmoni­
cznego względem położenia równowagi jest proporcjonalne do współczynnika <5, 
opisującego asymetrię funkcji energii potencjalnej, oraz do kwadratu amplitudy 
drgań. Ponieważ średnia energia oscylatora, (E) = kT, gdzie k jest stałą Boltzman- 
na, zatem

x, - A2 ~ T (8.16)

W tym wyniku zawiera się istotna część wyjaśnienia rozszerzalności termicznej 
ciała stałego: zmiany liniowych rozmiarów ciała spowodowane są przemieszczeniami 
elementów strukturalnych z położenia równowagi, proporcjonalnymi do temperatury. 
Przyczyną tych przemieszczeń jest asymetria krzywej energii potencjalnej.

Związek między przemieszczeniem oscylatora a typem anharmoniczności może­
my uogólnić, korzystając z dyskusji tego zagadnienia, zamieszczonej w monografii
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Kittela [5]. Łącząc równania (8.2) i (8.9), możemy zapisać funkcję energii poten­
cjalnej w ogólniejszej postaci

V(x) = cx2-gx3-fx^ (8-17)

przy czym w członie gx3 będzie się przejawiać asymetria sił działających na 
oscylator przesunięty z położenia równowagi, a w członie /x4 wpływ dużej 
amplitudy drgań. Korzystając teraz ze statystyki Boltzmanna, możemy napisać 
wyrażenie na średnie przemieszczenie oscylatora

( x exp [ — V (x)/(k T1)] dx
/ \ -00<x> = ---------------------------

J exp [ — V (x)/(k T)] dx
(8.18)

Dla niezbyt dużych x wyrażenie podcałkowe można rozwinąć w szereg, zachowu­
jąc tylko dwa pierwsze wyrazy rozwinięcia. Otrzymujemy

+ 00 + 00

f xexp[ — V(x)/(k7")]dx = J xexp[ — cx2/(kT)'] 'exp [#№/(^73] x
-oo - 00

x exp [/x4/(k T)] ] dx =
+ a> (/ ax3\k fx4\)= f xexp[-cx2/(kT)]^l+^y Hl+^7/x =

+ a> ( ax4 fx5l= f exp[-cx2/(kT)]7 + y— + y— [dx
( kT kT\

przy zaniedbaniu małego wyrazu fgxs/kT
Poszczególne całki tej sumy możemy obliczyć za pomocą wzorów Poissona

2n —
7 2n , A 2.. (2n—l)(2n —3)...-3 • 1f x2n exp (- Ax2) dx =------------—-------------

Wynika stąd, że niezerowy wynik całkowania otrzymamy jedynie dla członu 
gx4/(kT), związanego z asymetrią krzywej energii potencjalnej. Otrzymujemy

/ \ / T 3 9 /Z7\ (8.19)

l 2n+ 1 — 0

(Ey jest średnią wartością energii całkowitej oscylatora w przybliżeniu harmoni­
cznym. Przybliżony wynik kwantowy dla <x> można otrzymać, podstawiając za 
(Ey funkcję

h<x>
> exp [hw/{k 7^] — 1 (8.20)
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Przy takiej postaci równania (8.20) jest widoczne, że współczynnik rozszerzalności 
termicznej powinien szybko maleć przy spadku temperatury poniżej temperatury 
charakterystycznej oscylatora, 0 = hco/k, i powinien dążyć do zera dla T ^0 K. 
Takie zachowanie się zostało istotnie stwierdzone doświadczalnie.

Sumując powyższe rozważania możemy stwierdzić, że w rozszerzalności termi­
cznej ciała stałego mają udział następujące efekty:

1. Istnieje związek między objętością ciała stałego a amplitudą drgań termi­
cznych elementów strukturalnych. Ze wzrostem temperatury amplituda tych drgań 
rośnie, także w przybliżeniu drgań harmonicznych. Efekt ten możemy rozumieć 
tak, jak gdyby „efektywna”, dynamiczna objętość elementów strukturalnych zale­
żała od temperatury. W zakresie temperatur, w którym cząsteczki związków 
organicznych są trwałe, możemy pominąć wpływ wzbudzenia oscylacji wewnętrz­
nych na efektywną objętość cząsteczek.

2. Drugim powodem, dla którego zmieniają się rozmiary i objętość kryształu 
przy ogrzewaniu, jest anharmoniczność oscylacji zewnętrznych, sieciowych. Powo­
duje ona, że zarówno położenie środka masy cząsteczki, jak i jej orientacja kątowa 
ulegają niewielkim, lecz ciągłym zmianom w miarę podwyższania temperatury. Dowo­
dem występowania takich efektów jest fakt, że kryształy molekularne mają współ­
czynniki rozszerzalności kilkakrotnie większe od kryształów zbudowanych z jonów 
jednoatomowych. Oba te efekty mają też — jak zobaczymy dalej — znaczny 
udział we współczynniku rozszerzalności kryształu molekularnego.

Analizując wpływ czynników mikroskopowych na zmianę objętości czy też 
liniowych rozmiarów kryształu, zakładamy stale, że w badanym zakresie tempera­
tur faza krystaliczna jest termodynamicznie stabilna, tj. nie występują przemiany 
fazowe. Wiadomo bowiem, iż w przejściu fazowym występuje zmiana symetrii 
makroskopowej, której towarzyszy o wiele większa i niekiedy nieciągła zmiana 
położeń i orientacji cząsteczek w sieci krystalicznej.

W następnym paragrafie wykażemy, że analiza odkształceń wywołanych zmia­
ną temperatury również prowadzi do dwojakiego rodzaju przesunięć cząsteczek w 
sieci: przemieszczeń liniowych i kątowych. Pomiar rozszerzalności termicznej 
umożliwia ocenę ich wielkości.

8.2. Makroskopowy opis deformacji

Dyskutowane w poprzednim paragrafie skutki anharmoniczności drgań termi­
cznych cząsteczek są efektami anizotropowymi: przesunięcia liniowe środka masy 
cząsteczki zależą od kierunku krystalograficznego, w którym przesunięcie to 
mierzymy. Przemieszczenia kątowe cząsteczek zależą nie tylko od sposobu wyboru 
osi libracji, lecz i od jej orientacji w sieci krystalicznej. W wyniku anizotropii tych 
efektów makroskopowa deformacja ciała jest również anizotropowa: kula wycięta 
z fliateriału w określonej temperaturze przestaje być kulą po zmianie temperatury. 
Przedstawimy obecnie opis tej deformacji według Nye’a [6], mimo iż zawiera on 
pewną, dość istotną niekonsekwencję: zmiany rozmiarów i kształtu kryształu 
traktuje się jak deformację ośrodka ciągłego. Tymczasem składa się on z cząste-
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czek na ogół sztywnych, wypełniających przestrzeń ze współczynnikiem upakowa­
nia bliskim jedności. Wiemy zatem z góry, że tylko niewielka część przestrzeni 
zajętej przez kryształ efektywnie ulega odkształceniu! Pomimo iż nie w pełni 
konsekwentny, opis ten jest przydatny do przedstawienia geometrycznych skutków 
ogrzania, takich jak zmiana kierunku w sieci krystalicznej.

struna
nie rozciągnięta

struna 
rozciągnięta

Rys. 8.2. Deformacja jednowymiarowa

Zmiana temperatury powoduje zmianę rozmiarów kryształu, tj. dowolny punkt 
P wewnątrz kryształu przemieszcza się względem początku układu współrzędnych 
w jakieś nowe położenie. W przypadku kryształu jednowymiarowego, którego 
odpowiednikiem jest struna, skutki wydłużenia przedstawione są na rys. 8.2. 
Będziemy się interesować losami nie jednego punktu, lecz odcinka PQ = Z 
rysunku wynika, że zmiana temperatury wywołuje następujące skutki:

1) początek odcinka przesuwa się z P do P', przy czym OP' = OP + u
2) długość odcinka ulega zmianie o wielkość P'Q' — PQ = Au.
Przyrost długości odcinka o długości jednostkowej jest miarą odkształcenia 

względnego Au/Ax. Ogólnie odkształceniem nazywamy wielkość bezwymiarową

Jeśli odkształcenie jest jednorodne, tj. nie zależy od położenia x, to przesunięcie 
dowolnego punktu

u = u0 + ex (8.22)

jest liniową funkcją jego położenia.
W dwóch i trzech wymiarach zachodzą bardziej złożone przesunięcia punktów, 

ponieważ odcinek Ax ulega nie tylko wydłużeniu, lecz także obrotowi. Rozważmy te 
skutki w płaszczyźnie x2 (rys. 8.3). Po deformacji płaski element prostokątny 
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PQt przejdzie w równoległobok P'Q[. Względne przemieszczenie punktu może­
my rozłożyć na dwie składowe: przesunięcie duj wzdłuż osi Xj i przesunięcie 
du2||x2. Wówczas

duj
«11 =1~ dx ।

jest składową odkształcenia, odpowiadającą względnemu wydłużeniu odcinka dx1, 
zaś

du'2
621 = 7“ = tg = <P

jest składową odkształcenia, odpowiadającą obrotowi o kąt (p. W ostatniej 
równości zaniedbaliśmy w mianowniku duj <4xl. Podobnie

du2 
e22 = 77

jest miarą wydłużenia Ax2, zaś

ei2 = 7^- = tg $ = 5
(1X2

przedstawia obrót 4x2 o kąt 9. Obroty ę i 3 są na ogół różne i mają zwroty 
przeciwne. Ogólnie 

jest składową tensora odkształcenia względnego. Tensor ten jest drugiego rzędu i 
nie jest symetryczny. Możemy go rozłożyć na tensor symetryczny ą opisujący 
czyste odkształcenie, i tensor antysymetryczny cj, opisujący czysty obrót

tik=i(eik + eki) (824)

= i (eik — eki)

Symetryczny tensor e można sprowadzić do układu osi głównych e1; e2, £3 — 
znikają wtedy składowe ścinające. Sześcian o krawędzi l zmieni długość tych 
krawędzi do /(1 + ą), a przy tym ich prostopadłość zostanie zachowana. Niezmien- 
niczość kierunków osi głównych jest ważną właściwością tensora odkształcenia, 
ponieważ — jak zobaczymy później — wszystkie inne kierunki ulegają zmianie po 
odkształceniu. Wskutek zmiany długości krawędzi zmienia się również objętość 
sześcianu

zik = pa+Gjjł+^cł+E,)-/3

^/3(ei+£2 + £3) = /3)5 . (8.25)

gdzie P jest średnim odkształceniem objętości materiału.
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Kula o promieniu jednostkowym

X2 + X2 + X2 = 1

zmieni się pod wpływem odkształcenia w elipsoidę o osiach

x- = xi(l+ei) (8.26)

przy czym x- wybrane są wzdłuż osi głównych e. Równanie tej elipsoidy ma postać 

xj2 xf x'fx2+z1 a2+;, 3 <2 = 1 (8.27)
(l + £i) (1 + e2) (l+e3)

Warto podkreślić, że równ. (8.27) zawsze przedstawia elipsoidę; nosi ona nazwę 
elipsoidy odkształcenia. Natomiast kwadryka, zadana równaniem

= = 1 (8.28)
i

może być elispoidą, lecz może również przedstawiać hiperboloidę, jeśli nie 
wszystkie £; są dodatnie.

W ogólnym przypadku odkształcenie nie musi spełniać zasady Neumanna, 
ponieważ jest ono „odpowiedzią” kryształu na działanie czynnika zewnętrznego. 
Symetria tej odpowiedzi zależy nie tylko od symetrii kryształu, lecz również od 
związku między kierunkiem działania tego czynnika a układem osi własnych 
tensora. Jeśli rozważamy odkształcenie spowodowane przez zmianę temperatury 
A T = T2 — 7j w jednorodnym polu temperaturowym, to symetria s zależy tylko od 
symetrii kryształu. W takim przypadku możemy zdefiniować główne współczynniki 
rozszerzalności termicznej w kierunku osi głównych 

gdzie dTjest możliwie małą zmianą temperatury. W jednorodnym polu temperatu­
rowym ogólny związek między tensorem odkształcenia i rozszerzalności termicznej 
jest następujący:

E = a-JT (8.30)

Jednym ze skutków rozszerzalności jest więc przesunięcie punktu w przestrzeni, 
opisywane sumarycznie przez równ. (8.27). Drugim skutkiem jest deformacja posta­
ci, określona współczynnikami ścinania. Wielkość tych współczynników obliczył 
Jakubowski [7] w układzie osi głównych a

<5 = !(an-a22)2cos2/91cos2i82 +
+ (^H-X33)2COS2 PiCOS2 p3 +

+ (a22-a33)2cos2^2cos2^3}1/2 (8.31)

W wyrażeniu tym cosjf, cosfi2, cos fi3 są kosinusami kierunku, wybranego 
względem osi głównych a15 a2, a3. <5 ma trzy składowe i jest wektorem, któremu
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możemy przypisać antysymetryczny tensor

0
^21

_^31

8 =
<512 <513 

0 ^23

^32 0

(8.32)

Składowe 6 spełniają relację dik = — Ski i zależą od wielkości anizotropii a 
^ik = (“i- - a«) cos cos pk (8?33)

Odkształcenia ścinania nie będziemy zatem obserwowali w kryształach regularnych, 
gdy aj = a2 =a3; nie wystąpi ono również w krysztale anizotropowym w kierunku 
którejkolwiek z osi głównych.

Rys. 8.4. Rozłożenie ogólnego przemieszczenia 
punktu (r) na składową radialną (Jl) i transwersalną 
W

Wynik (8.31) możemy otrzymać również na innej drodze, ukazującej bezpośred­
nio na powiązania obu podstawowych skutków deformacji termicznej: przesunię­
cia i obrotu. Rozważania prowadzić będziemy w układzie osi głównych s; niech 
zatem Wybierzmy wektor jednostkowy /(/j /2 l3) w dowolnym kierunku. Po 
podgrzaniu kryształu o AT, l zmieni długość i kierunek, a punkt P przesunie się w 
nowe położenie P', opisywane wektorem R (rys. 8.4)

R = ł + r (8.34)
przy czym

r = d (8.35)

jest wektorem przemieszczenia P do P1. Ogólne przemieszczenie r możemy rozło­
żyć na składowe 2||/ i pil przy zachowaniu związku

(8.36)

Długość 2 można obliczyć w następujący sposób:

|2| = lr = l(£l) = lTsl = sl

gdzie Si jest odkształceniem w kierunku l (por. p. 2.5). Wobec tego

ł = si-l (8.37)
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Przesunięcie punktu w zadanym kierunku l, czyli przesunięcie radialne, jest wprost 
równe iloczynowi współczynnika rozszerzalności w tym kierunku przez przyrost 
temperatury

1 = 0^-ATI (8.38)

Natomiast wielkość przesunięcia punktu P w kierunku prostopadłym do l, czyli 
przesunięcie transwersalne, obliczymy z twierdzenia Pitagorasa

|^( = {r-r—A-A}1/2 = {(£• Z)2 —£?}1/2

Wektor przesunięcia transwersalnego wynosi zatem
fi = {(E-l)2 — e2}1/2 • m

lub
p= {(a-l)2-a2}1'2-AT-m (8.39)

gdzie m jest wektorem jednostkowym, prostopadłym do l. Jeśli rozpiszemy równ. 
(8.39), to otrzymamy

3 3
P {(E ^^{-(AT)2 =

i= 1 i= 1

= {z*.2 $ (i - - 2ZZt ij }-№2 
i i <j

W = ^^-a^ljlJ^-AT (8.40)

rezultat identyczny z wynikiem Jakubowskiego [por. równ. (8.31)]. e; oznaczają 
wektory jednostkowe wzdłuż osi współrzędnych. Ponieważ przemieszczenie |^| jest 
bardzo małe, możemy traktować je jako łuk okręgu o promieniu |/| = 1. W takim 
przypadku |#| można uważać wprost za kąt tp, zawarty między l i R. Z równania 
(8.40) wynika, że składa się z trzech składników o wskaźnikach (i,j) równych 
odpowiednio (1,2), (1,3) i (2,3); każdy z nich przedstawia przemieszczenie kątowe <p; 
wokół jednej z osi układu współrzędnych, a wyrażenie (8.40) jest ich sumą zgodnie 
z zasadą dodawania małych kątów jak wielkości wektorowych. Wyrażenia opisują­
ce poszczególne tpi mają postać

(Pi = + — a.k) lj lk A Tei (8.41)

Przemieszczenia tp, następują wokół osi xh związanych z tensorem odkształcenia. 
W ten sposób skutki, wywołane ogólnym odkształceniem kryształu wskutek ogrza­
nia, możemy opisać za pośrednictwem dwóch elementarnych efektów: przesunięcia 
radialnego A i obrotu tp^ Wskaźniki w równ. (8.41) zmieniają się w porządku 
cyklicznym.

Przypomnijmy w tym miejscu przykład kalcytu, dyskutowany przez Jakubow­
skiego [7] i poruszany już przez nas w rozdz. 2 w związku ze stożkiem zerowej 
rozszerzalności (przykład 2.8.5). Ponieważ dodatnią rozszerzalność wykazuje kalcyt 
w kierunku osi C3, a prostopadle do niej ulega skurczeniu przy ogrzewaniu

ail = a22 = —5,56-10~6 K1 a33 = 24,91-10~6 K1 
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w tym krysztale występuje stożek zerowej rozszerzalności, którego tworząca zawie­
ra z osią C3 kąt równy 64,75° = (p. Pytanie jest obecnie następujące: co dzieje się z 
tym kierunkiem, jeśli zmienimy temperaturę?

Ponieważ /(0 sin<p costp), z równ. (8.41) otrzymujemy

/ą = ±30,47-10“6 sin64,75cos64,75 = ±2,42 sek. kąt.-K”1
^2 = № = 0

Przy zmianie temperatury o 1 K kierunek tworzącej obróci się więc o 2,42 
sekundy kątowe w płaszczyźnie x2x3, tj. wokół osi ją.

Rys. 8.5. Biegunowy wykres naprężeń ścinających w płaszczyźnie (010) antracenu (<p2) i współczynnik 
rozszerzalności (a;)

Przykład wykresu biegunowego naprężeń ścinających w płaszczyźnie (010) 
kryształu antracenu przedstawiony jest na rys. 8.5. Położenie atomów zaczerpnięto 
z pracy [8], profil współczynnika rozszerzalności a( oraz składową cp2 naprężeń 
obliczono na podstawie danych z pracy [9]. Widzimy, że wielkość naprężenia 
zeruje się w kierunkach osi głównych a, natomiast osiąga maksimum pod kątem 
45° względem którejkolwiek z tych osi. Z taką sytuacją spotykamy się w każdym 
krysztale, co wynika z postaci równ. (8.41).
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8.3. Doświadczalne metody pomiaru współczynnika 
rozszerzalności termicznej

Stosowane współcześnie metody pomiaru współczynnika rozszerzalności termi­
cznej ciała stałego należą do jednej z czterech grup, które można krótko scharakte­
ryzować w następujący sposób:

1. Metoda dylatometrii kwarcowej polega na pomiarze wydłużenia próbki w 
kształcie pręcika. Wydłużenie próbki przenosi się na zewnątrz strefy ogrzewanej za 
pomocą pręcika kwarcowego i obserwuje przesuwanie wykonanego na nim znacz­
ka, używając mikroskopu. Opis takich dylatometrów można znaleźć w pracach [7, 
10, 11].

2. Metoda bezpośrednia polega na obserwacji przemieszczeń jednego z końców 
próbki w kształcie pręcika przy użyciu teleskopu optycznego [12, 13].

3. Metoda interferencyjna opiera się na pomiarze przesunięcia układu prążków 
interferencyjnych. Przesunięcie to wynika ze zmiany długości jednej z dróg opty­
cznych wskutek zmiany temperatury próbki [14-17].

4. Metoda rentgenogrąficzna polega na pomiarze zależności kąta odbłysku od 
temperatury dla zbioru płaszczyzn sieciowych o znanych wskaźnikach (odbicie 
braggowskie). Obecnie najczęściej stosowana jest zasada pomiaru Bonda [18, 19], 
najbardziej precyzyjna w tej grupie metod.

Pierwsze trzy rodzaje eksperymentów można nazwać ogólnie metodami dylato­
metrii makroskopowej, ponieważ wyniki uzyskane z ich pomocą są średnimi dla 
całej próbki. W metodach rentgenograficznych natomiast wykorzystuje się jedynie 
drobny fragment próbki, objęty skolimowaną wiązką promieniowania, są więc na 
ogół metodami lokalnymi. W pracach eksperymentalnych coraz częściej stwierdza 
się istnienie systematycznych różnic w wynikach współczynników rozszerzalności 
makroskopowych i lokalnych, mierzonych dla tego samego — przynajmniej pod 
względem chemicznym — materiału. Pochodzenie tych różnic nie jest jeszcze 
dzisiaj dostatecznie wyjaśnione. Doświadczenia wykonane dla kryształów związ­
ków nieorganicznych wskazują, że pewien udział w rozbieżności wyników ma 
obecność punktowych defektów strukturalnych [20-22], „widzianych” przez meto­
dy lokalne. Timmesfeld i Elliot uważają, że obecność defektów punktowych w 
kryształach prowadzi do następujących konsekwencji: zmiany stałych sprężystych 
wokół defektu, zmiany ąnharmoniczności drgań w pobliżu defektu, wreszcie zmia­
ny częstości i prędkości fononów w krysztale zdefektowanym. Efekty te częściowo 
neutralizują się wzajemnie, rezultat wypadkowy może więc być zarówno dodatni, 
jak i ujemny. W kryształach molekularnych dodatkowy wpływ może mieć częsta 
obecność zamrożonych naprężeń, uwalnianych następnie w czasie powolnego ogrze­
wania (zob. też [23]).

Większość z tradycyjnie stosowanych metod makroskopowych jest dobrze 
znana, wobec czego poświęcimy w tym rozdziale trochę uwagi opisowi dwóch 
nowszych metod interferencyjnych i wspomnimy o metodzie Bonda.

Pierwsza z nich, opisana przez Hollenberga i Sharpe’a [16], polega na ilościo­
wej analizie obrazu interferencyjnego, wytwarzanego w promieniowaniu lasera
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przez dwa cienkie i nieprzezroczyste włókna. Jedno z nich złączone jest sztywno z 
końcem badanej próbki, drugie może być przyłączone do próbki odniesienia lub 
unieruchomione. Zmiana temperatury powoduje przesunięcie układu prążków 
interferencyjnych, wywołane zmianą odległości włókien przy ogrzewaniu próbki. 
Rozważmy wpierw obraz interferencyjny, wytwarzany przez jedną nić (rys. 8.6a).

Rys. 8.6. Schemat obrazu interferencyjnego wytwarzanego przez a) jedną, b) dwie cienkie nici

Pojawia się on wtedy, gdy średnica włókna leży w przedziale 10 A-100 A, gdzie A 
jest długością fali promieniowania lasera. Interferencja powstaje w wyniku różnicy 
dróg promieni, A, dochodzących z punktów A i B po obu stronach włókna 

A = b sin a

lub związanej z nią różnicy faz

Natężenie wiązki, I, ugiętej pod kątem a
sin fi \2

(8.42)

(8.43)

(8.44)

p = j o sin a
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wynika z teorii dyfrakcji Fraunhofera. / osiąga minimum w tych punktach, dla 
których

P = —- sin a = nn n = ±1, ±2, ... (8.45)
Z

Z równania (8.45) można obliczyć średnicę włókna b, jeśli zmierzymy kątowy 
odstęp prążków. Zauważmy, że warunek (8.45) jest identyczny z dobrze znanym 
wyrażeniem na sinus kąta ugięcia siatki dyfrakcyjnej, przy czym stałej siatki 
odpowiada grubość włókna. W miarę zmniejszania b odległość prążków rośnie.

Analogiczny jest opis zjawiska interferencji dla dwóch włókien (rys. 8.6b). 
Różnica faz wynosi w tym przypadku

y = — d sin a

a natężenie wiązki ugiętej dane jest wzorem

I = 47 0 (sin2 P/P2) cos2 y

(8.46)

(8-47)

przy czym p zdefiniowane jest nadal równ. (8.43). Obecnie w obrazie widoczne są 
nie tylko zmiany intensywności, spowodowane średnicą włókna, lecz występuje 
dodatkowa modulacja, wywołana odstępem d między włóknami. Jeśli odniesiemy 
punkt obserwacyjny do jakiejś szczególnej wartości a = a0, to natężenie światła w 
układzie dwóch włókien możemy przedstawić wzorem

I = 41 ( cos2 — asina0 (8.48)

w którym Jj jest identyczne z I opisanym równ. (8.44). Funkcja (8.48) osiąga 
minima w punktach

TT i
—dsina0 = (m+|)7t m = 0, ±1, ±2, ...
Z

(8.49)

Ponieważ a0 i 2 są stałe w czasie eksperymentu, zależność (8.49) określa związek 
między odstępem włókien d a rzędem interferencji. Zmianie tego odstępu Ad 
odpowiada liczba prążków Am taka, że

W referowanej pracy eksperymenty prowadzono do temp. 1100°C, używając 
włókien z korundu o średnicy 21 pm, 2 = 0,6328 pm (laser He-Ne). Obraz 
interferencyjny rzutowany był przez szczelinę i filtr interferencyjny na fotokomór­
kę, co pozwalało na automatyczny zapis kolejnych zmian natężenia wiązki, 1, w 
miarę wzrostu temperatury. Odległość fotokomórki od próbki wynosiła 2 m, kąt 
a0 wynosił od 3 do 5°, zapis temperatury automatyczny przy użyciu termopary Pt- 
PtRh. Porównanie tej metody z dobrej klasy dylatometrami kwarcowymi wskazu­
je, że różnice wyników są mniejsze od 0,1%. Błąd względny metody interferencyj­
nej w temp. 1000°C oceniają autorzy na 2%.
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Druga z metod, którą chcemy tu przedstawić z uwagi na możliwość dokonywa­
nia pomiarów także dla kryształów z powierzchnią rozpraszającą światło (próbki 
nieodpolerowane), opiera się na zastosowaniu interferometrii holograficznej. Układ 
opisany w pracy [17] pozwala na pomiary rozszerzalności termicznej małych 
próbek dowolnego kształtu. Pewną cechą szczególną metody jest to, że jest ona 
niewrażliwa na wszystkie typy przesunięć równoległych próbki i na jeden z 
możliwych obrotów. Obraz interferencyjny, wynikający z pozostałych dwóch obro­
tów i rozszerzalności cieplnej próbki, ma prostą interpretację i pozwala obliczyć a 
bez znajomości przesunięć kątowych. Wymagania odnośnie położenia próbki są 
tak niewielkie, że tą metodą mierzono rozszerzalność próbek ferromagnetyka, 
lewitujących w polu magnetycznym.

b)

Rys. 8.7. Schemat zastosowania interferometrii holograficznej do pomiarów a

Istotne elementy aparatury przedstawione są na rys. 8.7. Światło odbite od 
przezroczystego klina jest promieniem odniesienia. Soczewki umieszczone w pro­
mieniu przedmiotowym wytwarzają wiązkę o dużym przekroju, potrzebną do 
oświetlenia próbki. Wiązka ta kierowana jest na próbkę za pomocą klina, pokryte­
go warstwą o współczynniku odbicia 0,5. Droga optyczna od tego klina do 
pryzmatu rozdzielającego jest taka sama, jak dla wiązki odniesienia. Pozwala to 
na użycie laserów prostej konstrukcji, ze słabą koherencją czasową. W celu 
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wskazania kierunku, z którego należy oglądać przedmiot, w bieg wiązki oświetlają­
cej wstawiony jest reflektor pryzmatyczny; daje on ostry sygnał świetlny, łatwo 
widoczny na białej kartce papieru.

Na rysunku 8.7b pokazano sposób oglądania hologramu. Dla spełnienia wa­
runku, by wszystkie części przedmiotu oglądane były z dokładnie tego samego 
kierunku, można zastosować układ telecentryczny o dużej średnicy soczewki 
kolimacyjnej. Oko lub kamera fotograficzna znajdują się w odległości ogniskowej, 
która powinna być kilkakrotnie większa od odległości obrazu od soczewki. W tej 
konfiguracji można zastosować zarówno laser helowo-neonowy, jak i prosty 
impulsowy laser rubinowy. Jeżeli używa się lasera gazowego, to nie wolno zmie­
niać położenia próbki w czasie ekspozycji, aczkolwiek zmiana położenia między 
dwiema kolejnymi ekspozycjami jest bez znaczenia. Jeśli Tr i T2 oznaczają tempe­
ratury próbki w momencie pierwszej i drugiej ekspozycji, to AT = TY~T2 jest 
różnicą temperatur, która musi być znana do obliczenia a według równ. (8.55).

Rys. 8.8. Składowe przesunięcia, uczestniczące w powstawaniu różnicy dróg optycznych

Analityczny schemat sytuacji przedstawiony jest na rys. 8.8. Oś z jest kierun­
kiem oświetlenia próbki i jednocześnie kierunkiem oglądania obrazu. Niech r 
oznacza wektor położenia jakiegoś punktu na powierzchni próbki. W wyniku 
przesunięcia całej próbki lub jej obrotu, oraz efektu rozszerzalności termicznej, 
punkt z położenia r przesunie się do r'. Niech 3 = r—r oznacza wielkość ogólnego 
przesunięcia. Odpowiadająca mu zmiana długości drogi optycznej F, wynosi

Tz = 23uz (8.51)

gdzie uz jest wektorem jednostkowym wzdłuż z. Ponieważ przesunięcia są małe, 
ogólne przemieszczenie 3 jest sumą poszczególnych przesunięć: translacyjnego 3t, 
rotacyjnego 5,. oraz wynikającego z rozszerzalności termicznej 3C. Obrót próbki o 
mały kąt to, któremu odpowiada wektor równoległy do chwilowej osi obrotu, 
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powoduje przesunięcie punktu o odcinek

8, = r x co

Izotropowa ekspansja próbki przy współczynniku rozszerzalności termicznej a 
powoduje przesunięcie 3e = ad Tr. Jeśli próbka rozszerza się anizotropowe, to tę 
część przemieszczenia możemy przedstawić za pomocą wyrażenia

<5e = ardT

Ogólne przemieszczenie punktu na powierzchni próbki będzie zatem równe

3 = 5t + Ą + 3C = 5t + r x co + ar AT (8.52)

Wobec tego zmiana długości drogi optycznej wyniesie

rz = 2(3, + a>yx — a)xy + azAT) (8.53)

Jeśli Tz jest całkowitą wielokrotnością długości fali światła lasera 2, to powstaje 
układ prążków interferencyjnych, opisywany przez równanie

mż = 2 (3Z + coy x — cax y + azA T) (8.54)

w którym m jest liczbą całkowitą. Zauważmy, że kąt obrotu coz wokół osi z nie ma 
udziału w Tz. Zmienne xyz możemy traktować jako parametry swobodne, a wtedy 
równ. (8.54) ma bardzo prostą interpretację: dla m = 0,1,2,... jest to zbiór 
płaszczyzn wzajemnie do siebie równoległych. Kosinusy kierunkowe normalnej do 
tego zbioru są proporcjonalne do coy, cox i aAT. Wytworzony układ prążków jest 
rezultatem przecięcia się tego zbioru płaszczyzn z powierzchnią próbki (rys. 8.9).

Rys. 8.9. Układ prążków interferencyjnych, powstających na powierzchni 
sześcianu (schematycznie)

Jeśli co jest równe zeru, to zbiór płaszczyzn jest prostopadły do osi z. Z. liczby 
prążków i rozmiaru próbki w kierunku osi z możemy w prosty sposób obliczyć a. 
Jeśli o / 0, lecz A T = 0, to wszystkie płaszczyzny, a więc i prążki, staną się 
równoległe do osi z, niezależnie od kształtu próbki. Rozszerzalność przejawia się 
więc w nachyleniu prążków interferencyjnych względem osi z.

Wybierzmy trzy punkty x1y1z1, x2y2z2 i xsy3z3 takie, że leżą na jednej linii 
prostej. Definiujemy q tak, by było

x2~ X3 y2~y3 Z2 z3

x2 yi~y2 zi z2
Q = ------------  = ------------ ------------
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Podstawienie tych współrzędnych do równ. (8.54) prowadzi do związku

A
adT{(z1-z2)-0(z2-Z3)} =^{(fni-m2)-Q(m2-m3)} (8.55)

Z tego wyrażenia możemy bezpośrednio obliczyć a. Prążki są na ogół bardzo 
dobrej jakości, wobec czego możliwy jest pomiar przemieszczenia rzędu 0,1 ich 
odstępu. Liczba prążków wzrasta wraz z rozmiarem próbki, z wielkością współ­
czynnika rozszerzalności i przyrostem temperatury. Testy wykonane z kostką Al o 
boku 5 cm wskazują, że otrzymane wyniki a zgodne są w granicach 10% z 
wartościami literaturowymi.

Metoda Bonda opiera się na zastosowaniu dyfraktometru rentgenowskiego do 
precyzyjnego pomiaru odległości między płaszczyznami sieciowymi o znanych 
wskaźnikach Millera(hkl). Jej zasadniczą ideą jest spostrzeżenie [24], że kąt odbicia 
wiązki promieniowania rentgenowskiego od zbioru równoległych płaszczyzn siecio­
wych można mierzyć o wiele dokładniej, notując położenie kryształu zamiast 
położenia detektora. W tej metodzie wykorzystuje się dwa symetryczne położenia 
kątowe kryształu <pt i <p2, spełniające warunek Bragga (rys. 8.10). Kąt dyfrakcji 
dany jest związkiem

0 = | {180 —(<?/—<p2)}

Rys. 8.10. Schemat metody Bonda

Przy takim systemie odczytu wyeliminowane zostają błędy, wynikające z niepew­
ności określenia zera na skali (p. Wysoką precyzję odczytu uzyskuje się przez 
analizę kształtu refleksu, pozwalającą na dokładne wyznaczenie położenia maksi­
mum w natężeniu wiązki odbitej. Trzeba również uwzględnić poprawki, wynikają­
ce z błędów w ustawieniu kryształu, nierównoległości wiązki i jej załamania w 
krysztale, wreszcie z przesunięcia maksimum natężenia wiązki, spowodowanego 
czynnikiem Lorentza i czynnikiem polaryzacyjnym. Natomiast absorpcja promie­
niowania w krysztale, jak też niewielki mimośród próbki względem osi obrotu nie 
mają wpływu na dokładność pomiaru kąta Bragga. Szczegółowe omówienie wa­
runków precyzyjnego pomiaru 0 i potrzebnych poprawek znaleźć można w pracy 
[18]. Współczesne konstrukcje dyfraktometrów pozwalają na odczyt kątów z
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1342]

Tabela 8.1

Rozszerzalność termiczna kryształów molekularnych
a jest współczynnikiem rozszerzalności liniowej. W przypadkach gdy autorzy cytowanych prac podają współczynnik rozszerzalności objętościo­
wej, w tabeli wpisano 1/3 wartości, oznaczając te dane wskaźnikiem górnym v (a" lub np. 132"). Wszystkie temperatury: T (aktualna), Tp (prze­
miany fazowej ciało stałe-ciało stałe) i 7} (topnienia) podano w kelwinach. Parametry komórki elementarnej podane są nanometrach. Orientację 
osi głównej X, U«! określa w kryształach układu jednoskośnego kąt 0 = jest on dodatni, jeśli leży wewnątrz krystalograficznego kąta [i

Lp.
Związek 

chemiczny Informacje strukturalne а -106, K’1 Metoda, próbka Lite­
ratura

1 Metan (CH4) regularny 360" polikryst. [27]

2 Metan T a

2 +20
4 -20
8 -21

12 -12
(odczyt, z wykresu)

dylatometria, polikryst. [28]

3 Metan Tp = 20,4 
obie fazy reg. ściennie centr., 
a = 0,5904 (22 K)

T a

22 180
25 191
30 223
40 269
60 382

rentgenografia, 
99,99% CH4

[29]

4 Deuterometan 
(CD4)

regularny faza I 370,6 rentgenografia, 40-60 К [30]
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5 Deuterometan T y.

2 0,075
4 0,59
6 3,17

10 25,3
13 64,9
17 162

dylatometria, 2-17 K [31]

6 Deuterometan Tp = 22,2
T < Tp - faza tetragon.,
T > Tp — faza reg. ściennie centr.

T av

10 11
14 93
20 563
25 690
30 367
40 340
60 433

rentgenografia [32]

7 a-Azot regularny
Tp = 35,6
a/T liniowe względem T2

T a

2,15 0,26
3 0,70
5 3,88

10 43,6
15 133,6
20 176,5

dylatometria, materiał 
polikryst.,
99,99% mol. N2

[33]

8 Parawodór 98% odmiany parawodoru T ac

11 530
12 727
13 927
13,8 1103

materiał polikryst., 
dokł. ±10%

[34]
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Lp. Związek 
chemiczny Informacje strukturalne a - IO6, K“‘ Metoda, próbka Lite­

ratura

9 Jod ortorombowy
nisu2h
a = 0,4795
b = 0,7255
c = 0,978 (293 K)

a„ = 88 + 0,228(7-83) 
a„ = 71,2 + 0,021 (7-83) 
ac = 13,4 + 0,010(7-83)

rentgenografia 
przy krokach 30 K, 
83-293 K

[35, 36]

10 Tetrabromometan 
(CBr4)

regularny
7p = 320,03

a1'(220 K) = 110
a1 (300 K) = 153
dla 7 < 7p
a' = 41og|l-777p| + B
4 = 31, B = 121

piknometrycznie, 
doki. 1 °/0

[37]

11 Adamantan regularny faza I 157r [27]

12 Cykloheksan 
(C6H12)

F43nl
Z = 2
« = 0,873 (233 K)

= 600
/ da \ ,
— = 0,64 K~2 (233 K)
ST 4

pomiary przenikalności 
dielektrycznej

[38]

13 Bicyklo-[2.2.2]-
-oktan

regularny faza I 147' 254-316 K [27]

14 Kwas kwadratowy faza tetragon., I4/m, 
trwała w 373 K

«lit, 60
a .u, = 20

[39]

15 Kwas kwadratowy 
(H2C4O4)

faza psudotetragon., 
w temp. pok. PIJm 
a = 0,6143(2) 
b = 0,5285(2) 
c = 0,6148(2) 
11 = 89,96(2)°

— 6,10'6 nm-K'1 
dT

db
— ^6,3-10’5 nm-K“ 
dT

rozpraszanie neutronów [40]
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16 Pentaerytryt Tp = 457, 74, Z = 2 
dla T < Tp; 
reg. dla T > Tp

«1(14) = 10 (nie zależy od T);
a3(||4) = 125 (zależy nielin. od T), 
dla 105 C T < 458 K

rentgenografia, 
105^458 K

[41]

17 Etylen
(C2H4)

99,96% C2H4 
7} = 103,97

T a''

85 270
89 278
93 300
97 370
99 400

piezometr własnej kon­
strukcji, materiał 
po lik ry st.

[42]

18 Pirazyna 
(C4H4N2)

= - 14(3)
a» = 111(5)
ac = 246(3) (293 K)

rentgenografia [43]

19 Benzen
(C6H6)

ortorombowy
a = 0,746
b = 0,967
c = 0,703 (270 K)

a„ = 73,6
ab = 198,5
ac = 249,6

parametry a, b, c z po­
tencjałów atom-atom

[44]

20 Benzen ortorombowy
a, b, c — j.w.

ft ft 
ft 

n er 
b 

II II II to
 — 

—
 

tO
 O 

—
O
S

rentgenografia [45]

21 1,8-Dinitronaftalen 
(faza I)

ortorombowy 
P212121,Z = 4 
a = 1,1352 
b = 1,4934 
c = 0,5376

a„ = 117,7(14) 
ab = 49,6(10)
af = 59,5(12)

rentgenografia, 
293-370 K

[46]
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Lp.
Związek 

chemiczny
Informacje strukturalne a NO6, K’1 Metoda, próbka

Lite­
ratura

22 Tiomocznik 
(CH4N2S)

ortorombowy 
faza I: P2lnw 
faza V: Pnnui

a,=B, + 2.4,T
T .4, B,

||u 293 -193 0.54 -69,2
188-123 1.93 -493,2

||/> 293 213 0.21 -74,1
206-173 0,51 -176,6
168 123 0.09 -7,44

||c 293 213 0,33 -85,2
213-193 0 0
193-173 2,55 -1045,8
163-123 -0,03 17,6

dylatometr kwarcowy [47]

23 Fenantren 
(C14H10)

ortorombowy 
P2,, Z = 2 
a = 0,857 
b = 0,611 
c = 0,947 
Tp = 345 K

T<Tp T>Tp
y.„ — 34 a„ = 34
a« = 74 ab = 64
a,. = 220 = 180

nieelastyczne rozprasza­
nie neutronów

[48]

24 Dekafluorobifenyl 
(C.2F io)

ortorombowy 
Fdd2, Z = 8 
a = 1,360(3) 
b = 2,565(5) 
c = 0,622(1)

T=236 K T= 128 K
a, = 66(3) a, = 34(3)
a2= 116(4) a2 = 83(4)
a, = 66(3) a3 = 25(3)

rentgenografia, 77-293 K [49]

25 Naftalen 
(C10H8)

jednoskośny 
P2Ja. Z = 2 
a = 0,8218(5) 
b = 0,5990(1) 
c = 0,8640(0,5)
/i = 122°55'(l0') (293 K)

a, = 212,8(40) 
a2 = 40,3(4)
*3 = 5,1(1)
() = 44°0'(10')

rentgenografia, 78-293 K [50]
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: 26 Antracen
(C14H10)

jednoskośny 
P^/a, Z = 2 
a = 0,856 
b = 0,6035 
c = 1,1167 
fi = 124°42'

at = 111,7(35) 
a 2 = 13,4(4) 
a3 = 20,6(6)
0 = 51°

rentgenografia, dla
zakresu 78-293 K

[51]

27 Antracen a = 0,8550
b = 0,6028
c = 1,1172
[i = 124°40' (290 K)

a, = 191
a2 =40
«3 =61
0 = 42,4°

rentgenografia, <a> dla 
T = 300 K

[52]

28 Antracen kryształ I

kryształ II

aj = 160 (wyzn. pośrednio)
a2 = 22
a3 = 7 (wyzn. pośrednio)
0 = 35°
«i = 150 (wyzn. pośrednio)
a2 = 25
a3 = 6
0 = 43°

dylatometr kwarcowy, 
a różniczk.

[53]

29 Antracen a = 0,8562(6)
b = 0,6038(8)
c= 1,1184(8)
fi = 124°42'(6') (290 K)

ai = 132,0 
a2 = 31,0 
a3 = 34,0 
0 = 35,48°

rentgenografia, (a) dla 
zakresu 95-290 K

[8]

30 Antracen a = 0,85457(1)
b = 0,60265(9)
c = 1,11650(3)
fi = 124°36'53(7)"

T = 215 K T = 293 K 
a, = 124,1 ai = 267,1 
a 2 = 34,0 a2 = 39,3
a3 = 33,6 a3 = 45,5 
0 = 35,50° 0 = 28,63°

dyfraktometr (metoda 
Bonda) różniczk.

[9]
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[S

W
l

Lp.
Związek 

chemiczny Informacje strukturalne a-106, K“‘ Metoda, próbka
Lite­

ratura

31 Bifenyl 
(C12H10)

jednoskośny 
P2%, Z = 2 
a = 0,812 
b = 0,567 
c = 0,947
/i = 95°24' (temp, pok.)

T = 257 K T= 185,5 K 
a, = 300 a] = 190 
a2 = 96 a2 = 96 
a3 = 30 a3 = 18
0 = - 16° 0 = - 16°

T = 148,5 K
a1 = 120
a2 = 12
a, = 10 
0 =-16°

rentgenografia, przy 
AT — 40 K, standard 
wewn. (NaCl)

[54]

32 Bibenzyl 
(C14H14)

jednoskośny 
Z = 2

a = 1,2770
b = 0,6110
c = 0,7720
// = 116°00' (287 K)

a, = 70
a2 = —30
a3 = 250 ±10%
0 = 39°

rentgenografia, <a> dla 
zakresu 83-297 K

[55]

33 Antrachinon 
(C14H8O2)

jednoskośny 
P2Ja, Z = 2 
ci = 1,583(4) 
b = 0,397(1) 
c = 0,789(1) 
/1=102,5° (293,8 K)

a, = 56,4 
a2 = 125,0 
a3 = —8,6 
0 = -1°

rentgenografia, <ot> dla 
zakresu 103-293 K

[56]

34 Heksachlorobenzen 
(C6C16)

jednoskośny 
P2i/c, Z = 2 
a = 0,808 
b = 0,387 
c = 1,665 
P = 117,0°

«i =61,4(5) 
a, = 46,8(4) 
0 = 36,4°

rentgenografia, 
293-425 K

[46]
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35 4-Nitroanilina 
(C6H6N2O2)

jednoskośny
P2Jn, Z = 4 
a = 1,2336(8) 
b = 0,607(2) 
c = 0,8592(5)
P = 91,45(5)° (temp, pok.) 

[58]

4-Nitroanilina

Tetracyjanoetylen 
(C6N4)

jednoskośny
Tf = 292,0(2), 
dalsze anomalie w zakresie 
270-285 K

Kwas amino- 
octowy (glicyna) 
(C2H5NO2)

P2Jn, Z = 4 
a = 0,5102 
b = 1,1970 
c = 0,5457 
p = 111°42'

P2t, Z = 2 
u = 0,5077 
b = 0,6267 
P = 113°12'

P3j lub P32, Z = 3 
komórka ortoheksagon. 
a = 0,7037 
b = 1,2189 
c = 0,5483

a, = 246,0 
a2 = 13,2 
a3 = 14,5 
9 = 32,2°

rentgenografia, dyla- 
tometr kwarcowy, 
290-380 K

[57]

a, = 150,3
a2 = 7,5
a3 = 24
0 = — 40°2'

rentgenografia, <a > dla 
zakresu 90-293 K

[59]

a, = 108
a2 = 87
a3 = 64 (293 K)
0 = -21°
(odczytane z wykresu)

dyfraktometr
(metoda Bonda)

[60]

odmiana a
AT 77-293 293-355 355-415

rentgenografia, 77-415 K, 
standard wewn. (NaCl)

[61]

aJI« 31,0 22,1 16,3
a2||b 55,9 92,9 123,9 
a3||c* 7,6 0 0

odmiana P
AT 77-293

«111« 0

«2II b 90,1
a3 la, b 6,2

odmiana y
AT 77-293 293-415

at||« 24,5 52,0
a2\\b 24,5 52,0
a3||c 8,9 0
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Lp. Związek 
chemiczny Informacje strukturalne a-106, K-1 Metoda, próbka Lite­

ratura

39 Glicyna a! = 263,4 
a2 = 52,1 
a3 = 18,7 
0 = 43,5°

rentgenografia, <a> dla 
zakresu 293-373 K

[62]

40 Siarczan triglicyny 
(C6H,3O8N3S)

348 + 378 K .
a,||a* = -75,1+0,3257’ 
a2||b = 95,6 — 0,3107’ 
a3||c = - 14,2 + 0,2107"

pojemnościowa, zdolność 
rozdz. Al/l = 2-10“7

[63]

41 Kompleks 1-mety- 
lotymina: 9-mety- 
loadenina

O oo" 
in 

CM C$ 
" 

II 
II 

II¥

rentgenografia, 
295-339 K

[64]

42 Kompleks 1:1 
mocznik: kwas 
szczawiowy 
(CH4N2O-
C2H2O4)

jednoskośny
C2/c
a = 1,30625(7)
b = 0,66437(2)
c = 0,68478(5)
li = 92,474(6)° [295(1) K]

= -1(5) 
a2 = 29(6) 
a3 = 199(10)

dyfraktometr, 
-Kai, a = 36° 
<a3, a = 126° 

a2||b

[65]

43 Kompleks 2:1 
N-metylo- 
mocznik:kwas 
szczawiowy 
(2C2H6N2O-
C2H2O4)

jednoskośny 
Z = 2 
a = 0,51429(3) 
b = 1,05498(5) 
c = 1,03102(5) 
fi = 101,910(5)° 
ortorombowy 
Z = 4 
a = 1,04220(2) 
b = 0,64274(1) 
c = 1,61253(5)

aj = 23(5)
a, = 24(5)
a3 = 188(9)

, a = 38,3° 
4ca3, a = 51,7°

a., = 14(5)
a, = 274(14)
a„ = 28(6)

dyfraktometria, poniżej 
182 K P2Jc, w 182 K 
przechodzi nieodwr.
w Pnma

[66]



dokładnością do jednej sekundy kątowej; można uważać, że mniej więcej z taką 
samą dokładnością możliwe jest zmierzenie kąta 9. Osiągnięcie takiej precyzji 
pomiarów w pobliżu 0 = 75° odpowiada dokładności pomiaru odstępu d między 
płaszczyznami sieciowymi 1:1000000. Ma to sens tylko w odniesieniu do kryszta­
łów odznaczających się wysokim stopniem uporządkowania i korzystnymi właści­
wościami mechanicznymi, a więc przy dobrym sprecyzowaniu stałych sieciowych 
(Si, Ge, NaCl). Przy tak wysokiej czułości aparatury można zauważyć zmiany d 
odpowiadające zmianie temperatury o ułamek stopnia. Osiągnięcie stabilizacji 
temperatury z dokładnością co najmniej 0,01 K pozwala wiec mierzyć tzw. 
różniczkowe współczynniki rozszerzalności termicznej, co znajduje nadzwyczaj 
interesujące i ważne zastosowanie do poznania szczegółów strukturalnych w 
przemianach fazowych.

Sposób obliczania głównych współczynników rozszerzalności z pomiarów zale­
żności kąta dyfrakcji od temperatury omówiliśmy w rozdz. 2 (problem 2.8.1). 
Zmodyfikowane zastosowanie metody fotograficznej w pomiarach rentgenografi- 
cznych przedstawione jest w pracy [25]. Autor zaleca wykonanie w temperaturze 
pokojowej zdjęcia obrotowego warstwicy zerowej w ustawieniu asymetrycznym 
(metoda Straumanisa), a następnie wskaźnikowanie refleksów za pomocą zdjęcia 
Weissenberga. Pomiary rozszerzalności wykonuje się w specjalnie zaadaptowanej 
kamerze Weissenberga, zapewniającej dobrą stabilizację temperatury próbki. Róż­
nica temperatur, potrzebna do uzyskania mierzalnego przesunięcia refleksów w 
dwóch ekspozycjach, jest rzędu 100 K. W pracy [25] opisano też procedurę, 
mającą na celu minimalizację błędów systematycznych.

Inny schemat rachunkowy obliczania głównych współczynników rozszerzalnoś­
ci, mierzonych metodami dylatometrii rentgenowskiej, opisany jest w pracy [26].

8.4. Wyniki pomiarów rozszerzalności termicznej kryształów

Zestawienie wyników pomiarów współczynnika rozszerzalności termicznej sze­
regu kryształów molekularnych podane jest w tab. 8.1. Związki uszeregowane są 
według malejącej symetrii kryształów. Składowe tensora podane są według kon­
wencji podobnej do tej, jaka została przyjęta dla właściwości optycznych w rozdz. 
6: w układzie ortorombowym aa, aj, ac odnoszą się do krystalograficznych osi a, b, 
c, a a15 ą2, «3 oznaczają składowe główne a w układzie jednoskośnym. Składowa 
a2 jest równoległa do b, co stanowi różnicę w porównaniu z rozdz. 6. Orientację 
przekroju tensora w płaszczyźnie (010) określano przez podanie kąta między osią 
a! i osią a (jeśli jest on znany); kąt ten jest dodatni, jeśli mieści się w obrębie 
krystalograficznego kąta p. W niektórych przypadkach (zależnie od informacji 
dostępnych w literaturze) zamiast a podano współczynnik rozszerzalności objętoś­
ciowej p. Przedstawimy obecnie kilka uwag do danych zamieszczonych w tej 
tabeli.

Kryształ jodu (nr 9) rozszerza się nieliniowo, ponieważ wszystkie trzy współ­
czynniki zależą od temperatury. Zwraca uwagę duży współczynnik temperaturowy 
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aa — jest on o rząd większy od pozostałych dwóch współczynników. Ma to 
odzwieciedlenie w strukturze [36]: cząsteczka jodu tworzy kąt około 33° z osią c, 
co tłumaczy nie tylko anizotropię rozszerzalności, lecz także niezwykle silną 
anizotropię właściwości sprężystych. Współczynnik sztywności wzdłuż osi c wynosi 
bowiem = 172 N-m-1, w kierunku zaś osi a f5 = 0,41 N-m-1 [36]. Temperatu­
ra Debye’a dla jodu 0D = 106 K jest dostatecznie niska na to, by w funkcji a(T) 
nie pojawiały się człony z T2 i wyższymi potęgami T.

Kwas kwadratowy H2C4O4 (nr 14, 15) ma dwie odmiany polimorficzne. W 
temperaturze niższej od temperatury przejścia Tp = 373 K jest jednoskośny 
(P2j/m), w wyższej zaś symetria kryształu jest tetragonalna W odmianie 
jednoskośnej płaski szkielet C4O4 powiązany jest wiązaniami wodorowymi z 
czterema sąsiadami w płaszczyźnie ac, a oddziaływania między warstwami mają 
głównie charakter sil van der Waalsa. Faza jednoskośna ma właściwości ferroelek­
tryczne: uważa się [39], że właściwości te występują w warstwach ac i są 
spowodowane specyficznymi przesunięciami atomów wodoru w obrębie mostka 
wodorowego. Poszczególne warstwy ac ułożone są wzdłuż osi b antyferroelektry- 
cznie. Zwraca uwagę znacznie większy współczynnik rozszerzalności ab i mniejszy 
afl w fazie jednoskośnej w porównaniu z fazą tetragonalną. W samej temperaturze 
przemiany fazowej z funkcją a(T) nie dzieje się nic szczególnego.

Znaczna anizotropia rozszerzalności termicznej jednoskośnej fazy kwasu kwad­
ratowego nie jest czymś wyjątkowym. Bardzo często kierunek najsilniejszej rozsze­
rzalności jest prostopadły do warstw, w których ułożone są cząsteczki — zwłaszcza 
wtedy, gdy cząsteczki połączone są w warstwie wiązaniami wodorowymi. Przykła­
dami uzasadniającymi tę tezę są, poza kwasem kwadratowym, pentaerytryt (nr 16) 
i glicyna (nr 38, 39). W temperaturze 457 K tetragonalna komórka pentaerytrytu 
(14, Z = 2) przechodzi w komórkę regularną. W fazie tratragonalnej oś 4 jest 
prostopadła do płaszczyzny wiązań wodorowych. W tej płaszczyźnie rozszerzal­
ność jest mała, a aj praktycznie nie zależy od temperatury. Współczynnik rozsze­
rzalności a3 wzdłuż osi 4 jest 12 razy większy od at i silnie (oraz nieliniowo) zależy 
od temperatury. Pod tym względem wyniki z pracy [41] zgodne są z wcześniej 
znanymi właściwościami pentaerytrytu [67]. Z kolei glicyna ma trzy odmiany 
krystalograficzne: a, fi i y. Struktury wszystkich trzech odmian są znane: a [68], 
[69], y [70]. Kryształy odmiany fi nie są trwałe i w temperaturze pokojowej łatwo 
przechodzą w odmianę a; w suchej atmosferze przejście to jest wolniejsze [69]. 
Natomiast kryształy odmiany y są trwałe, lecz przy ogrzewaniu do temperatury 
powyżej 438 K przechodzą w odmianę a. Ogrzewaniu fazy a towarzyszy zmniejsze­
nie współczynników rozszerzalności w płaszczyźnie (010), «! i a3 (a3 maleje do 
zera), oraz silny wzrost a2||h. Zarówno ten fakt, jak i prosta korelacja periodów 
odmian a i fi tłumaczą łatwość przejścia fazowego fi -»a. Korelacja między 
kierunkiem najsilniejszej rozszerzalności kryształu warstwowego a kierunkiem 
normalnym do warstwy nie musi być słuszna, jeśli wiązanie wodorowe powstaje 
również między warstwami. Przykładem takiej struktury jest kompleks mocznika z 
kwasem szczawiowym (nr 42).

Zapewne najwięcej pomiarów rozszerzalności termicznej wykonano dla kryszta­
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łów antracenu (nr 26-30). Przedstawimy nieco obszerniej wyniki tych badań i 
spróbujemy opatrzyć je komentarzem.

W trzech pracach [8, 51, 52] stosowano metodę rentgenograficzną, fotografując 
zbiory refleksów w temperaturze pokojowej i temperaturze ciekłego azotu. W 
publikacji [51] autorzy donoszą, że przy ochładzaniu kryształu do temp. 80 K 
szczególnie silnej zmianie ulegają: oś a (zmniejsza się prawie o 0,01 nm) i kąt fi 
(wzrasta o 0,88°). Te zmiany w antracenie są jednak dwa razy mniejsze niż w 
naftalenie (nr 25), co jest widoczne z średnich współczynników rozszerzalności: 
<a>naftaien = 86,1-10“6 K“1, <a>antracen = 48,6■ 10“6 K“1. Wniosku tego nie pot­
wierdzają wyniki zawarte w pracy [8], a już w wyraźnej sprzeczności są z nimi 
wyniki pracy [52], otrzymane w tym samym laboratorium. We wszystkich trzech 
pracach współczynniki wyznaczane były w dość sporym przedziale temperatury, są 
więc z pewnością mniejsze od współczynników różniczkowych w pobliżu tempera­
tury pokojowej.

Współczynniki bliskie różniczkowych mierzył Jakubowski za pomocą dylato- 
metru kwarcowego [53]. Pomiary wykonał dla dwóch typów próbek, otrzymanych 
metodą Bridgmana. Próbka I hodowana była z fazy ciekłej o temperaturze tylko o 
kilka stopni wyższej, próbka II zaś w temperaturze znacznie wyższej (35O°C) od 
temperatury topnienia antracenu (230°C). Oba kryształy były zupełnie przezroczy­
ste, aczkolwiek w bombie zawierającej kryształ II stwierdzono ślady rozkładu 
substancji. Obserwacje w mikroskopie polaryzacyjnym, badania spektroskopowe i 
chromatograficzne nie ujawniły żadnych zauważalnych różnic między nimi. Autor 
stwierdza, że różnice współczynników rozszerzalności dla obu próbek są mniejsze 
niż rozbieżności między wynikami metody dylatometrycznej i metod rentgenografi- 
cznych. Ponadto autor stwierdził występowanie interesującej korelacji między 
przekrojami tensora a i tensora ściśliwości p w płaszczyźnie (010). W tej płaszczy­
źnie oba tensory mają jeden stopień swobody, ponieważ orientacja osi głównych w 
tym przekroju nie jest- wymuszona przez symetrię. Kierunek najsilniejszej rozsze­
rzalności, «!, różni się tylko o 16° od kierunku największej ściśliwości, fir. Jeśli 
posłużymy się danymi z pracy [9], to okaże się, że korelacja aj i fix wypadnie 
jeszcze lepiej: oba kierunki różnią się zaledwie o 1°.

Pomiary rozszerzalności antracenu w pracy [9] wykonano dla kryształu, 
hodowanego z roztworu w acetonie. Nie wykazywał rys ani spękań, nie miał 
również struktury mozaikowej. Analiza szerokości połówkowej refleksów, wykona­
na za pomocą dyfraktometru Bonda, potwierdziła wysoką jakość strukturalną 
kryształu. Osiągnięta precyzja pomiarów pozwoliła stwierdzić, iż — zgodnie z 
oczekiwaniem — gęstość fazy stałej zmierzona rentgenograficznie (1,2505 g-cm“3) 
była większa od maksymalnej gęstości, uzyskanej metodą flotacyjną dla bardzo 
czystego antracenu ([71]: 1,2490 g-cm“3). Zmierzony w tej pracy współczynnik aj 
ma w temperaturze pokojowej wartość największą z wszystkich dotąd podawa­
nych.

Pobieżny nawet rzut oka na wyniki rozszerzalności cieplnej kryształu antrace­
nu wskazuje na istnienie bardzo dużej rozbieżności wartości liczbowych, na co 
zwracają uwagę również niektórzy autorzy [9, 53]. Jeśli uwzględnić wszystkie
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przytoczone w tabeli wyniki, to długości osi głównych tensora rozszerzalności, 
wyrażone w jednostkach 10“6 K-1, zawierają się w granicach

112 267 (1:2,4)

13 a2 40 (1:3,1)

6 ^a3^61 (1:10,2)

Nie jest łatwo skomentować to zestawienie, ponieważ na razie tylko dla kryształów 
antracenu dysponujemy takim bogactwem wyników, uzyskanych różnymi metoda­
mi dla niewątpliwie rozmaitych materiałów. Zapewne słuszność mają autorzy 
pracy [9], gdy twierdzą, że najpoważniejszym powodem tych rozbieżności jest 
niedoskonałość kryształów, jakimi zajmowano się w poszczególnych laboratoriach. 
Słabość oddziaływań międzycząsteczkowych w krysztale molekularnym dopuszcza 
„do głosu” wpływ rozmaitych czynników zewnętrznych, utrudniających otrzymanie 
struktury wysoce uporządkowanej w czasie wzrostu kryształu. Nie można też 
wykluczyć obecności w kryształach naprężeń mechanicznych, wynikających z histo­
rii próbki, zwłaszcza gdy kryształ hodowany był ze stopu. Niezależnie od tego, 
zmiany temperatury w trakcie wykonywania pomiarów również prowadzą do dość 
sporych deformacji. Jak łatwo wykazać na podstawie równania (8.41), największe 
naprężenia przy ogrzewaniu powstają zawsze prostopadle do kierunku, zawierają­
cego kąt 45° z którąkolwiek osi tensora a. Ich wielkość zależy od anizotropii 
rozszerzalności termicznej. Na przykład w krysztale antracenu w płaszczyźnie (010) 
maksymalne naprężenia ścinające prowadzą do deformacji o wielkości

ó2 = ±ł(«i —a3) = 1J10-4 rad-K“1
Wartość ta jest w przybliżeniu 10 razy większa od obliczonej dla kalcytu. Nie jest 
rzeczą obojętną, czy naprężenia termiczne likwidują inne naprężenia, statyczne, czy 
też się do nich dodają. Nie mamy też zbyt dobrego rozpoznania, jak dalece 
nieodwracalne zmiany zachodzą w próbce wskutek samego tylko jej ogrzewania 
lub ochładzania. Wydaje się, że rozszerzalność termiczna kryształu molekularnego 
jest w tej chwili właściwością fizyczną najbardziej czułą na stan fizyczny próbki, 
zwłaszcza na jej uporządkowanie bliskiego i dalekiego zasięgu.

W bifenylu (nr 31) kierunek najmniejszej rozszerzalności, a3, pokrywa się z 
kierunkiem dłuższej osi cząsteczki, kierunek zaś największej rozszerzalności w 
płaszczyźnie (010) tworzy kąt prosty z dłuższą osią cząsteczki [54]. Taka relacja 
jest typowa dla związków aromatycznych, mających cząsteczki wydłużone w 
jednym kierunku. Potwierdzają to również właściwości kryształów naftalenu i 
antracenu.

Anomalią rozszerzalności w pobliżu punktu przemiany fazowej pierwszego 
rodzaju, jaką jest topnienie ciał, zajmowali się między innymi Bartieniew z 
współautorami [72]. Pokazali oni na przykładzie naftalenu, że w pobliżu tempera­
tury topnienia współczynnik rozszerzalności rośnie gwałtownie. Początek tego wzro­
stu przesuwa się znacznie w kierunku niższych temperatur, jeśli próbka wykazuje 
jakieś odstępstwa od idealności. Odstępstwami mogą być zarówno defekty punkto­
we, jak i struktura mozaikowa.
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Omówimy jeszcze dwa przykłady zastosowania dylatometrii do badania prze­
mian fazowych i towarzyszących im zjawisk. Pierwszy dotyczy badań polimorfiz­
mu 1,8-dinitronaftalenu [73]. Związek ten można otrzymać w temperaturze poko­
jowej w postaci kryształów ortorombowych przez powolne odparowanie roztworu 
czystej substancji w benzenie lub EtOH. Wykresy względnych zmian długości 
próbek wraz ze zmianami temperatury reprodukowane są z cytowanej pracy na 
rys. 8.11 dla trzech kierunków krystalograficznych, oznaczonych przez I, II, III i 
odpowiadających osiom krystalograficznym a, b, c. W czasie ogrzewania kryształu 
odmiany trwałej w temperaturze pokojowej, oznaczanej jako faza I, w temperatu-

Rys. 8.11. Dylatometryczne badania 1,8-dinitronaftalenu; pomiary wykonano w kierunkach osi krysta­
lograficznych a, b, c (według [73])
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rze Tp = 373-378 K pojawia się przejście do fazy II, któremu towarzyszy znaczna 
nieciągłość zmiany długości próbki; obserwowana jest we wszystkich trzech kie­
runkach, a największą wartość ma w kierunku I. Nie jest jasne, czy przemianę tę 
można uważać za odwracalną właśnie ze względu na duże efekty dylatacyjne w 
temperaturze Tp. Powoduje to, że po przejściu powrotnym II ->I faza I nie ma 
wszystkich cech uporządkowania kryształu w stanie wyjściowym. Świadczą o tym 
badania rentgenograficzne — zdjęcia kołysanego kryształu lub Weissenberga dla 
fazy I wykazują w obu przypadkach dość spore różnice w liczbie i natężeniu 
refleksów. Niektóre szczegóły krzywych dylatometrycznych (nachylenie i drobne 
odstępstwa od liniowości) pozwalają jednak odnaleźć cechy fazy I po odbyciu 
cyklu ogrzewania, przynajmniej w dwu kierunkach krystalograficznych (rys. 8.1 la, 
b, c). Przemianie towarzyszy histereza o wielkości AT = 15-20 K. Ogrzanie próbki 
do temperatury o kilkanaście stopni niższej niż temperatura topnienia, Ts = 443- 
445 K, początkującej mięknięcie próbki, pozwala ujawnić istnienie dwóch dalszych 
odmian fazowych 1,8-dinitronaftalenu. Obserwowane zjawiska można wyjaśnić w 
następujący sposób [73]. Ogrzewanie kryształu 1,8-DNN prowadzi w temp. 373- 
378 K do przemiany fazowej I -»II, dylatometrycznie odwracalnej, której towarzy­
szy znaczny wzrost objętości kryształu i zmiana współczynników rozszerzalności. 
Wychodząc z monokryształu (k) w fazie I otrzymujemy polikryształ (pk) w fazie II, 
jest to zatem przemiana typu k -»pk. Ochładzaniu towarzyszy odwrotna przemia­
na fazowa, która inicjowana jest w temperaturze niższej niż I —>II (ok. 358 K); 
połączona jest ze zmniejszenierń długości próbki i odwracalnym powrotem współ­
czynników rozszerzalności do pierwotnych wartości. Występująca tu histereza 
rozszerzalności jest charakterystyczna dla przemian typu k ->k. Występowanie 
histerezy oznacza, że przemiana polega na procesie krystalizacji zarodków nowej 
fazy (I) w ośrodku metastabilnym (II). Warunek termodynamiczny, wymagający by 
AT było różne od zera w cieczy lub fazie gazowej dla utworzenia centrów 
krystalizacji, obowiązuje zapewne również metastabilną fazę stałą. Jeśli jednak 
ogrzejemy próbkę do wyższej temperatury, co najmniej do 423 K, stworzone 
zostaną warunki dla przejścia II -»III przy ochładzaniu. Polegają one na „zmię­
knięciu” sieci, potrzebnym — być może — dla bardziej radykalnej zmiany 
orientacji cząsteczek. Przy dalszym ochładzaniu faza III przechodzi spontanicznie 
w fazę IV w temp. ok. 333 K, przy czym ten proces nie powoduje destrukcji sieci 
krystalicznej. Faza IV jest kryształem, który można wyhodować również ze stopu; 
wykazuje dobrą przezroczystość i stosukowo długi „czas życia”, ponieważ proces 
IV —»I przebiega w temperaturze pokojowej bardzo powoli. Relacje między fazami 
pokazane są według [73] na diagramie 8.12.

Kryształ tiomocznika CS(NH2)2 ma pięć odmian fazowych, przy czym wszyst­
kie przejścia mają charakter odwracalnych przemian typu k -»k. Fazy I i III są 
ferroelektryczne, stąd duże zainteresowanie fizykochemicznymi właściwościami te­
go związku. Metodą analizy rentgenograficznej [74, 75] oraz dyfrakcji neutronów 
[76] i elektronów [77, 78] szczegółowo poznano struktury fazy I (ortorombowa, 
P2j ma) i V (ortorombowa, Pnma). Nie ma powodów by sądzić, że struktury faz 
pośrednich należą do innego układu krystalograficznego. Anomalie dielektryczne 
badane były w pracy [74]. Z pomiarów przenikalności dielektrycznej wzdłuż osi a 
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wynikają następujące temperatury równowagi sąsiadujących z sobą faz:

Tp(IV/V) = 220 K Tp(III/IV) = 179 K Tp(II/III) = 176 K Tp(I/II) = 169 K

Faza I
(z roztworu, trwała 

w temp, pok.)

ogrzewanie
Tp = 373-378 K

Faza II

Faza III

ochładzanie 
Tp = 358 K

ochładzanie

przegrzanie 
(T> 423 K) 

potem ochładzanie

Faza IV
Tp = 333 K

Rys. 8.12. Schemat relacji fazowych w 1,8-dinitronaftalenie [73]

Dylatometrią tiomocznika zajmowali się Futama [79] i Jakubowski [47]. 
Wyniki uzyskane w tej ostatniej pracy można streścić w następujący sposób:

1. Poszczególne fragmenty krzywych dylatometrycznych między punktami nie­
ciągłości, odpowiadające zakresowi egzystencji określonych faz, są nieliniowymi 
funkcjami temperatury. Można je opisać wielomianem drugiego stopnia

Al/l = C + BT+AT2 (8.56)

Wobec tego współczynniki rozszerzalności w tych przedziałach nie są stałe, lecz 
zależą liniowo od temperatury. Współczynniki temperaturowe a, wyznaczone 
metodą najmniejszych kwadratów, podane są w tab. 8.1, nr 22.

2. Występowanie nieciągłości współczynnika rozszerzalności liniowej, odpowia­
dających przemianom fazowym, zależy od kierunku krystalograficznego: wzdłuż 
osi a można zauważyć tylko jeden punkt nieciągłości, podczas gdy w kierunku c 
występują trzy takie punkty. W tabeli 8.2 zestawiono obserwowane temperatury 
anomalii dielektrycznych [74] i dylatometrycznych [47]. Nie wiadomo w jakim

Tabela 8.2

Temperatury przemian fazowych, Tp [K], tiomocznika

Kierunek 
krystalo­
graficzny

Tp(IV/V) Tp(HI/IV) Tp(n/IIl) Tp(I/II) Literatura

a 220 179 176 169 [74]
a — 185±6 — * [47]
b 213 185 + 6 — * [47]

■ c 213 185 + 6 173 * [47]

* Poza badanym zakresem temperatury.
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stopniu występujące tu różnice można przypisać metodzie, a w jakim procedurze 
postępowania w czasie pomiarów.

3. Liniowa rozszerzalność termiczna jest skorelowana z rozkładem sił między- 
cząsteczkowych w krysztale. Największy współczynnik obserwuje się w kierunku a 
i w tym też kierunku oddziaływania między cząsteczkami tiomocznika są najsłab­
sze. Odwrotnie, najmniejszy współczynnik rozszerzalności występuje w kierunku 
osi b, w którym oddziaływania NH---S, silniejsze od oddziaływań van der Waalsa, 
mają udział największy.

4. W przeciwieństwie do wyników badań właściwości sprężystych kryształu 
tiomocznika, opublikowanych przez Benoit i Chapelle’a [80], Jakubowski i Ecoli- 
vet [81] wykazali, że istnieje znakomita korelacja między rozszerzalnością termi­
czną i ściśliwością tego kryształu: kierunki największej ściśliwości pokrywają się z 
kierunkami najsilniejszej rozszerzalności zarówno w przekroju ac, jak i bc [81]. 
Również typ przekroju obu tensorów w tych płaszczyznach jest taki sam.

Rys. 8.13. Zasada dwuwymiarowej reprezentacji tenso­
ra rozszerzalności i

Obecnie opiszemy sposób dwuwymiarowego przedstawienia tensora rozszerzal­
ności termicznej, zaproponowany przez Weigla i innych [82]. Metoda ta pozwala 
poglądowo przedstawić ewolucję głównych składowych tensora wraz ze zmianą 
jakiegoś parametru, na przykład ciśnienia lub temperatury, i nie wiadomo, dlacze­
go praca ta przeszła w literaturze nie zauważona. Korzystając z samej idei, 
wprowadzimy dwuwymiarową reprezentację a w nieco inny, uproszczony sposób. 
Wyobraźmy sobie trójkąt równoboczny o boku a (rys. 8.13). Położenie dowolnego 
punktu P w obrębie trójkąta możemy podać za pośrednictwem trzech współrzęd­
nych x1x2x3, które są długościami odcinków PQt, prostopadłych do odpowied­
nich boków trójkąta. Dowodzi się w elementarnej planimetrii, że suma Xj + x2 + x3 
nie zależy od położenia P i jest równa wysokości trójkąta. Wobec tego

+ x2 + x3 = h = (x/3/2) a

Jeśli wybierzemy h = 1, czyli a = 2/x/3, to współrzędne P spełniają warunek

*1 + x2 + x3 = 1 (8.57)
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Takim samym warunkiem możemy związać główne składowe af, jeśli wprowadzi­
my wielkości zredukowane

A—W/Elad) i = 1,2,3 (8.58)

przy czym ź; są liczbami bezwymiarowymi i zawsze dodatnimi. Mamy wówczas

Ą+Ą + ^l (8.59)

a tensor a reprezentowany jest punktem P w obrębie trójkąta. Jeśli jego składowe 
zależą od temperatury, to punkt reprezentujący funkcję a(T) przesuwa się po 
pewnej trajektorii, która jest obrazem badanej zależności.

Punktem reprezentującym tensor każdego kryształu izotropowego jest C(|||). 
Długość odcinka CP jest więc miarą asferyczności tensora; autorzy pracy [82] 
nazywają CP wskaźnikiem asferyczności. Wprowadzają ponadto prawo, zwane 
przez nich prawem ciągłych zmian symetrii tensora rozszerzalności termicznej: 
wskaźnik asferyczności maleje w miarę wzrostu temperatury dla struktur trójwy­
miarowych, nie przechodzących przez przemianę fazową. Prawo to oznacza, że w 
miarę wzrostu temperatury kryształu, stanowiącego fazę termodynamicznie stabil­
ną, punkt P zbliża się do punktu C. Okazuje się, że nie zawsze jest to słuszne w 
klasie kryształów molekularnych, a ilustracją są rys. 8.14 i 8.15. Punkt reprezentu­

Rys. 8.14. Reprezentacja a bifenylu i siarcza­
nu triglicyny w różnych temperaturach

jący tensor a bifenylu lub siarczanu triglicyny (rys. 8.14) leży w temperaturze 
wyższej rzeczywiście bliżej C, aczkolwiek w obu przypadkach proste nie przecho­
dzą przez C. Z jeszcze gorszą sytuacją spotykamy się na diagramie 8.15, ilustrują­
cym wpływ temperatury na a dwóch odmian glicyny (a i 7): punkty 3, przedsta­
wiające współczynniki rozszerzalności w zakresie temperatur leżącym najwyżej w 
skali temperatury, znajdują się najdalej od C. Dane do tych diagramów zostały 
zaczerpnięte z tab. 8.1.

Podobna niezgodność występuje również w przypadku antracenu (rys. 8.16). 
Na tym diagramie przedstawione są uzyskane dotychczas wyniki pomiarów a
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Rys. 8.16. Reprezentacja a antracenu według wyników 
pomiarów różnych autorów: kółko czarne — [51], 
kółka z krzyżykiem — [52], kółka z kropką — [53], 
kółko puste — [8], trójkąt — [9] (219 K), kwadrat — 
[9] (213 K)

antracenu. Mimo unormowania wartości 7, do jedności, co powinno zmniejszyć 
rozrzut wyników, jest on jednak znaczny.

Przedstawione tu przykłady wskazują, że reprezentacja a za pomocą punktu w 
trójkącie równobocznym, zaproponowana przez Weigla, jest pożyteczną ilustracją 
ewolucji tensora, aczkolwiek na wypowiadanie uogólnień pora może być jeszcze za 
wczesna. Warto zauważyć, że reprezentacja Weigla może być zastosowana dla 
każdego innego symetrycznego tensora drugiego rzędu, po przeliczeniu jego głów­
nych składowych na wartości zredukowane.

8.5. Model rozszerzalności termicznej

Współczesne próby skonstruowania teorii zjawisk anharmonicznych, w szcze­
gólności powiązania tensora rozszerzalności termicznej z innymi wielkościami 
fizycznymi, dotyczą prawie wyłącznie kryształów izotropowych, głównie metali [83, 
84] i związków nieorganicznych [85]. W nielicznych tylko przypadkach czynione 
są próby objęcia teorią związków organicznych, jak również krystalizujących w 
klasie o najwyższej symetrii [86]. Nie brak wśród nich prac, posługujących się 
bardzo zaawansowanymi metodami komputerowej symulacji dynamiki sieci w celu 
znalezienia związku p-V-T, znanego pod nazwą równania stanu stałego [84]. 
Pokazano również [87], że rozszerzalność termiczną możemy pojmować jako odpo­
wiedź sieci krystalicznej na ciśnienie wewnętrzne, wytwarzane przez gaz fononowy; 
interesujące jest, że opisy rozszerzalności termicznej za pomocą objętościowych 
efektów anharmonicznych lub za pomocą ciśnienia fononów są dwiema równowa­
żnymi sobie metodami, przynajmniej w zakresie niskich temperatur. Mimo intere­
sujących w tej dziedzinie osiągnięć nie ma — jak dotychczas — ogólnej interpreta­
cji rozszerzalności termicznej kryształów niżej symetrycznych, w szczególności brak 
powiązań a ze strukturą. Przedstawimy dalej kilka prób, czynionych w tym 
kierunku.

W paragrafie 8.2 wykazaliśmy, że z rozszerzalnością termiczną nieodłącznie 
związana jest deformacja sieci krystalicznej. Opis tej deformacji musi — naszym 
zdaniem — uwzględnić pewną szczególną cechę ośrodka, jakim jest kryształ, a 

360



mianowicie, że przestrzeń zabudowana jest cząsteczkami, które nie tylko mają 
skończone rozmiary, ale są tworami sztywnymi. To ostatnie przybliżenie słuszne 
jest przynajmniej w odniesieniu do sporej liczby cząsteczek, w których nie wystę­
pują ruchy libracyjne ich części (podstawników); drobne zmiany odległości między 
związanymi w cząsteczce atomami, wywołane wzrostem amplitudy drgań atomów 
z temperaturą, możemy tu zaniedbać. Deformacja jest zatem guusi-ciągła: ciągłość 
dotyczy samej przestrzeni. Możemy skonstruować dwuwymiarowy model sieci 
przestrzennej w postaci cienkiej warstwy gumy, na której periodycznie rozłożono 
równoległoboki, wycięte z materiału sztywnego. Po anizotropowym rozciągnięciu 
gumy stwierdzimy, że odległości między środkami równoległoboków uległy zwięk­
szeniu, również ich wzajemne orientacje zmieniły się nieco, jednak ich kształt i 
rozmiary nie uległy zmianie. Temu dwuwymiarowemu obrazowi można przypisać 
w trójwymiarowej przestrzeni pewien model, który — opisując dalej — zwać 
będziemy „modelem sztywnej skrzynki” lub RBM (z ang. rigid box model, [88]).

Przypuśćmy, że znamy strukturę jakiegoś kryształu w temp. 0 K. Każdą 
komórkę elementarną, zawierającą Z cząsteczek, możemy podzielić na Z równo- 
ległościanów o symetrii identycznej z symetrią komórki, lecz o krawędziach dr, d2, 
d3, które są prostymi ułamkami periodów identyczności a, b, c, tak by spełniony 
był warunek

Z-dld2d3 = abc (8.60)

Elementarny równoległościan, zawierający tylko jedną cząsteczkę w jej oryginalnej 
orientacji przyjmowanej w strukturze, będziemy nazywać sztywną skrzynką: przyj- 
miemy bowiem dalej, że rozmiary i kształt tej skrzynki nie zależą od temperatury, 
podobnie jak nie zależą od niej kształt i rozmiary samej cząsteczki. Temperatura 
powoduje jedynie powiększenie i deformację przestrzeni, jaką skrzynki mają do 
dyspozycji. W temperaturze 0 K przylegają do siebie ciasno, lecz w temp. T > 0 K 
przestrzeń swobodna jest większa od Z • d3 d2 d3 na jedną komórkę elementarną. 
Wobec tego może zachodzić fluktuacja położenia kątowego skrzynek o pewne 
niewielkie kąty. Przyjmijmy, że amplitudy tych fluktuacji wynoszą tpx, <p2, cp3, przy 
czym ich osiami niech będą kierunki równoległe do krawędzi a, b, c komórki 
elementarnej (rys. 8.17). Biorąc pod uwagę względne przesunięcia kątowe sąsiadu­
jących z sobą skrzynek, możemy rozróżnić dwie sytuacje:

Rys. 8.17. Osie libracji sztywnej skrzynki jednoskośnej
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a) Obrót każdej skrzynki zachodzi „kooperatywnie”, tj. z uwzględnieniem poło­
żeń skrzynek sąsiednich (rys. 8.18). Spełniona jest wówczas zasada ciasnego 
ułożenia skrzynek, których środki zbliżają się do siebie na tyle, na ile pozwalają 
względy geometryczne. Oznaczmy w skrócie

orzlT = A (8.61)

przy czym niech A dane będzie w układzie abc*. Wtedy, na przykład dla płaskiego 
przekroju struktury przedstawionego na rys. 8.18, dopuszczalną amplitudą oscyla­
cji kątowych skrzynek będzie cp3

coscp3 = (l+jTAjr>

czyli

<P3 S (2/rĄ/)1/2 (8.62)

i, j, k oznaczają wersory równoległe odpowiednio do osi a, b, c kryształu. 
Posługując się tensorem a, na przykład dla antracenu, łatwo się przekonać, że ta 
wersja modelu prowadzi do wartości tp3 w przybliżeniu 100 razy większej od 
wartości <p3, wynikającej z danych strukturalnych (por. p. 4.5). O wiele za duże 
liczby otrzymuje się też dla innych kierunków, model kooperatywny możemy więc 
odrzucić.

Rys. 8.18. Zmiana orientacji sztywnej skrzynki 
przez obrót kooperatywny

b) Obrót każdej skrzynki zachodzi przypadkowo, niezależnie od położenia sąsia­
dów (rys. 8.19). Wtedy każda skrzynka zachowuje się indywidualnie w dostępnej 
jej przestrzeni o wielkości a (T) • b (T) ■ c( T)/Z, a przemieszczenia kątowe są nastę­
pujące:

1) na płaszczyźnie (100): jeśli spełniona jest nierówność

A/j <d3(kTM)
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Rys. 8.19. Zmiana orientacji sztywnej skrzynki 
przez obrót przypadkowy

to „styki” limitujące wielkość przemieszczenia występować będą wzdłuż osi c oraz

<Pi = ±^(/TĄ/)sin(</2, d3) (8.63)
d3

W drugim przypadku, gdy
d3(kTAk) <d2(jT Aj)

styki pojawiają się wzdłuż osi b, a dopuszczalne przemieszczenie kątowe wynosi 

d,
<p'i = ± — (kTAk)sin(d2, d3) (8.64)

d2
2) na płaszczyźnie (010): jeśli

d{ (iT Ai) < d3(kT Ak)

to styki występują wzdłuż osi c oraz

ę>2 = ±y-(«TAi)sin(d1, d3) (8.65)
«3

Przy nierówności skierowanej przeciwnie

(p'2 = ±^-(kT Ak) sin (d3, d3) (8.66)
di

występują styki profilu skrzynki z osią a.
3) na płaszczyźnie (001):

<p3 = ± ~(jT Ą)sin , d2) (8.67)
di
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lub

= ±"(iT Ai) sin (dj, d2) (8.68)
“2

zależnie od tego, czy spełniona jest nierówność (styki wzdłuż osi d) 

d2(jTAj) <d1(iT Ai)

czy też nierówność przeciwna (styki wzdłuż osi b).
Ponieważ model ma charakter statystyczny, nie jesteśmy w stanie przewidzieć, 

który ze znaków <p; jest właściwy. Wobec tego musimy wprowadzić dodatkową 
regułę: kierunek przemieszczeń kątowych musi być tak dobrany, by korelował z 
obserwowaną zmianą dwójlomności przy zmianie temperatury (podwyższeniu tem­
peratury towarzyszy z reguły zmniejszenie dwójłomności, por. rozdz. 6).

Porównanie wyników doświadczalnych z uzyskanymi z niniejszego modelu 
podane jest dla kilku kryształów w tab. 8.3. Komentarze, zamieszczone w ostatniej 
kolumnie, dotyczą — poza benzenem — dyskutowanych już problemów. Wielkości 
AL, Am i AN dla cząsteczki benzenu w krysztale (rys. 8.20) zostały obliczone z 
temperaturowej zależności głównych podatności magnetycznych tego kryształu 
(por. p. 5.10). Mimo dużych uproszczeń i pewnych niedomogów, RBM prawidłowo 
oddaje wielkość przemieszczeń kątowych cząsteczek. Wartość AM = AN = 0 dla 
cząsteczki karbazolu ma charakter obligatoryjny. Wynika stąd, że płaszczyzna

Tabela 8.3

Zestawienie wyników obliczeń przemieszczeń kątowych AL, AM, AN [sekunda-K “'] wokół osi symetrii 
LMN cząsteczki

Lp. Uwagi

A. Cząsteczka antracenu

1 -10,3 ±0,1 -18,10±0,07 -12,98 ±0,09 obi. bezpośrednio z c(2) i c(l) [8]
2 -14,8 -14,0 -1,6 RBM [88], a [8]
3 -6,1 -3,5 + 0,5 RBM [88], a [51]
4 -18,3 -11,8 + 0,9 RBM [88], a [52]
5 -10,2 -3,2 + 2,3 RBM [88], a [53]

B. Cząsteczka karbazolu

1 -9,8 0 0 obli, z dwójłomności [89]
2 -7,0 0 0 RBM [88], a [90]

C. Cząsteczka benzenu

1 + 73,6 -13,7 -12,8 obi. z anizotropii diamagn. [91]
2 + 60,3 -15,2 -37,2 RBM [88], a [45]
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cząsteczki jest prostopadła do płaszczyzny symetrii kryształu i temperatura nie 
może spowodować odstępstwa od prostopadłości w przedziale czasu dostatecznie

Rys. 8.20. Zmiany kątowego położenia cząsteczki benzenu, Ą, w funkcji temperatury

8.6. Krzywa energii potencjalnej i drgania cząsteczek
Zwracaliśmy już wielokrotnie uwagę na znaczenie krzywej energii potencjalnej, 

zwłaszcza jej asymetrii, dla niewielkich, ale znaczących przesunięć i obrotów 
cząsteczek, modyfikujących w sposób ciągły strukturę kryształu w miarę powolne­
go podwyższania lub obniżania temperatury. W tym punkcie pragniemy zająć się 
nieco bliżej energią potencjalną cząsteczki we wnętrzu kryształu, jako funkcją 
położenia kartezjańskiego i kątowego, oraz jej związkiem z częstością ruchów 
periodycznych.

Pierwsze próby zmierzające do rozwiązania problemu anharmonicznej libracji 
podjęte zostały w latach czterdziestych. Jedną z nich, o podstawowym znaczeniu, 
jest publikacja Hanus [92], w której autorka rozwiązuje problem częstości i 
funkcji własnych stanów energetycznych bąka asymetrycznego, posługując się 
równaniem Schródingera. Zastosowany operator energii kinetycznej ma postać

SiŁU/a^ ^ae/2^ p3/1ae2a^3 +

(8.69)
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W operatorze tym B, oznaczają główne momenty bezwładności; są symetryczny­
mi parametrami Eulera i opisują chwilowe położenie układu xyz związanego z 
cząsteczką względem układu odniesienia xoyozo (rys. 8.21); £k = cosxksin(s/2) dla
k = 1, 2, 3 oraz ę4 = cos(e/2); £

1.2,3
3 1 

zmianie wskaźników; 8y=^ —; £

oznacza sumę trzech członów przy cyklicznej

jest amplitudą libracji wokół osi l.

Rys. 8.21. Orientacja ruchomego układu współrzędnych 
xyz i osi libracji / względem układu nieruchomego xoyozo

Współrzędne Eulera spełniają warunek
h,2 = i

(a nie = 0, jak podano w cytowanej pracy). 
Operator energii potencjalnej ma postać

U = 2^^^ (8.70)

przy czym u jest tensorem stałych siłowych liniowych sił sprężystych, działających 
ze strony otoczenia. Taka postać energii potencjalnej wynika z rozwinięcia energii 
potencjalnej U (£,) w szereg w pobliżu położenia równowagi z zachowaniem 
trzeciego członu (por. p. 7.1). W tym przybliżeniu wyrażenie ma postać taką, jak 
dla oscylatora harmonicznego i z tej racji przybliżenie nosi nazwę modelu „pseu- 
doharmonicznego”.

Równanie Schródingera z energią kinetyczną (8.69) i potencjalną (8.70) nie ma 
rozwiązań analitycznych. Przybliżone rozwiązania można uzyskać metodami ra­
chunku zaburzeń. W przybliżeniu zerowym operator T jest ograniczony do pier­
wszych dwóch członów w klamrze [równ. (8.69)]. Po transformacji do współrzęd­
nych normalnych

= j= 1,2,3
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równanie Schródingera przybiera postać

2? 8^ 2^k%k 2?^

gdzie = EaV^> k = 1, 2, 3. 
}

Jeśli przyjmie się rozwiązania w postaci

07i)-</'2('h)'>/'3('73)

to wartości własne będą równe

przy czym n, oznaczają liczby kwantowe. Energia libratora jest sumą trzech 
członów, o postaci analogicznej dla każdego z trzech stopni swobody, co jest 
naturalną konsekwencją multiplikatywnej postaci funkcji falowej.

Wpływ dalszych członów operatora T, zaniedbywanych w przybliżeniu zero­
wym, można teraz potraktować jako zaburzenie. W dalszym rachunku czynione są 
następujące założenia [92]:

1) drgania libracyjne wykonywane są wokół głównych osi bezwładności,
2) wartości własne energii libratora nie są zdegenerowane.
Przy tych założeniach otrzymujemy w wyniku rachunku następujący zbiór 

stanów energetycznych libratora:

Bi
1Y
2/

/B!—B3 cot B2 — B3(O2\/ ,1^/ Y\ 5 1 
\ B2B3 co2 BtB3 wjy1 2/\2 2/ 4 B, (8.72)

przy czym

W przeciwieństwie do równ. (8.71) energii tej nie można przedstawić jako sumy 
trzech członów, odpowiadających trzem oddzielnym libracjom wokół każdej z osi 
bezwładności, co znacznie utrudnia zastosowanie równ. (8.72) do konkretnych 
obliczeń.

Inne sformułowanie modelu pseudoharmonicznego podane zostało przez Vi- 
swanathana [93] w celu wyjaśnienia wpływu temperatury na częstość i szerokość 
linii przejść ramanowskich. Według autora główną przyczyną tych zjawisk jest 
anharmoniczność mechaniczna, która prowadzi do wzajemnego oddziaływania 
drgań normalnych. Do rozwiązania problemu autor stosuje metodę samouzgod- 
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nionego pola Hartree-Focka przy energii kinetycznej i potencjalnej

1 N
Т = (8-73)

^i = 1

v = 3 E + Z ^ijk4i^lj4k (8-74)

gdzie ^15 fj2, t]N są współrzędnymi normalnymi N drgań kryształu, N = 3n — 6, 
n jest zaś liczbą cząsteczek w krysztale. aijk są stałymi anharmoniczności. Rozwią­
zanie równania Schródingera prowadzi do skomplikowanego wyrażenia na zbiór 
stanów energetycznych WM (vt), którego przytaczać nie będziemy. Podamy nato­
miast wyrażenie na częstość linii spektralnej, która w efekcie Ramana pierwszego 
rzędu polega na przejściu między stanem podstawowym ^'’(O) i pierwszym 
wzbudzonym FK(i)(l)

^(0(1) _ jy« (0) = hv' = hVi-^-4|-- X - X Bm (vm + Л (8.75) 
24 yfhVi m \ 2J

przy czym

Ът У*

^yi Ут hvt 4y2 y; hvm 4y; yk ym hvk 

(2я)2
У i 7—vi

h

W wyrażeniu (8.75) hv[ oznacza kwant przejścia w i-tym drganiu normalnym w 
przybliżeniu anharmonicznym, natomiast hvt jest energią w przejściu harmoni­
cznym. Jak widać, różnica energii zależy od stopnia wzbudzenia pozostałych drgań 
normalnych. Autor pracy [93] przyjmuje dalej, że liczbę kwantową vm można 
utożsamiać z liczbą fononów w stanie o energii hvm; średnia wartość vm wynosi 
zgodnie ze statystyką Bosego-Einsteina

<rm> = {exp [hv^kT)] -1}“1 (8.76)

co oznacza wprowadzenie temperatury do równ. (8.75). Otrzymujemy
5a2.

~^Bm 
m

Stąd zmiana częstości linii ramanowskiej, Av{, wynikająca z wpływu temperatury, 
wyniesie

(8.77)
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Widzimy, że w celu obliczenia zmiany częstości określonego i-tego drgania w 
temperaturze T K musimy wykonać sumowanie po wszystkich drganiach normal­
nych.

Dyskusja stałych anharmoniczności, aiA, i ich powiązania z dynamiką sieci, 
przedstawiona w pracy [93], ma raczej charakter rozważań jakościowych. Autor 
wskazuje jednak, gdzie leżą główne trudności w interpretacji anharmoniczności 
drgań sieciowych — teoria, jak dotychczas, nie daje możliwości obliczenia aijŁ.

W dalszym ciągu tej dyskusji pragniemy zająć uwagę Czytelnika pracą Wil- 
liamsa [94], w której przedstawiono praktyczne próby oszacowania stałej anhar­
moniczności i obliczeń rozszerzalności termicznej. W tej pracy stała anharmoni­
czności określona została inaczej. Do tej definicji dochodzimy w następujący 
sposób. Niech cząsteczka wykonuje drgania translacyjne i libracyjne w zmiennym 
polu sąsiednich cząsteczek. Energię potencjalną oddziaływania atomów danej 
cząsteczki z atomami jej sąsiadów U (r) można rozwinąć w szereg Taylora w 
pobliżu położenia równowagi re

U(r) = t7(re) + ^'W+^2 U"'(re) + ...

gdzie U', U" i U"' oznaczają pochodne po r, natomiast

8 = r~re
jest przesunięciem atomu z położenia równowagi wskutek uczestniczenia w ruchu 
drgającym. Jak zwykle, U (r^ = U'(re) = 0. Jeśli uwzględnimy, że średnia siła, 
działająca na atom w położeniu równowagi, również równa jest zeru

/^\ = °= <0>t/"(re) + l<02>Ł/"'(re)
\ax /

to otrzymamy

gdzie

<e> = k<e2>

1 U"’(re)
2 U"(re)

(8.78)

(8.79)

k jest stałą anharmoniczności, a równ. (8.79) jest jej nową definicją. Potencjał 
oddziaływań atom-atom, przyjęty przez Williamsa, zwany jest funkcją typu 
„6-exp”

U (r) = — Ar~° + Bexp( — Cr) (8.80)

W potencjale jedynie część opisująca energię odpychania jest dostatecznie czuła na 
małe przesunięcia atomów z położenia równowagi; tylko ta część uwzględniona 
została w dalszym rachunku. Dalej, potencjał musi być funkcją temperatury oraz 
musi być anizotropowy, ponieważ wielkość przesunięcia atomów również zależy 
od kierunku. Williams przyjmuje, że od temperatury zależy tylko współczynnik B, 
natomiast C jest stałe. Wzrost B do B'(T) przy średnim wychyleniu z położenia 
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równowagi można zapisać następująco:
B' ( r

—7- exp(C<e>) (8.81)
B \re+^)J

Podstawienie B' do potencjału (8.80) pozwala obliczyć minimum energii sieciowej 
w różnych temperaturach, a stąd zależność parametrów komórki elementarnej od 
temperatury. Potrzebny tu średni kwadrat amplitudy przesunięcia atomu oblicza 
się z wzoru Cruickshanka dla sztywnej cząsteczki

<02 > (/, i',) = lT Tl + (/ x r./ L(/ x rj (8.82)

T i L są odpowiednio tensorami drgań translacyjnych i libracyjnych, / jest 
wektorem jednostkowym w kierunku przesunięcia, r, łączy dany atom i ze środ­
kiem libracji cząsteczki.

Wyniki obliczeń według tego formalizmu dość dobrze odpowiadają danym 
doświadczalnym dla zestalonych gazów szlachetnych, natomiast znacznie gorzej — 
danym dla antracenu. Williams proponuje szereg poprawek, mających na celu 
polepszenie zgodności z doświadczeniem, których tu nie będziemy referowali.

Półempiryczne funkcje energii potencjalnej typu 6-exp lub podobnego, mają 
szereg ważnych zastosowań w fizykochemii organicznego ciała stałego między 
innymi dlatego, że pozwalają obliczać profile energii potencjalnej przy zadanym 
sposobie przemieszczania cząsteczki. Profile te determinują częstości i amplitudy 
ruchów cząsteczki w krysztale, a ich przydatność do krytycznej analizy tych 
parametrów wykazali — jak piszą po raz pierwszy — Shmueli i Goldberg [95]. 
Jeśli libracja jest bliska harmonicznej, otrzymuje się profil prawie paraboliczny; 
natomiast w większości zbadanych przez autorów przypadków ruchu o dużej 
amplitudzie profil odpowiadał albo nieuporządkowaniu orientacyjnemu, albo ru­
chom silnie anharmonicznym. Podstawowym założeniem metody jest, że cząstecz­
ka porusza się w polu nieruchomego otoczenia, co jest równoznaczne z zaniedba­
niem sprzężenia dynamicznego z sąsiednimi cząsteczkami. Mimo drastyczności 
takiego założenia autorzy uzyskali zachęcające wyniki dla szerokości krzywych 
potencjalnych i dla odpowiadającego im pierwiastka z średniego kwadratu ampli­
tudy drgań.

Metoda obliczeń polega na symulacji ruchu libracyjnego wokół wybranej osi, 
która najczęściej jest jedną z osi symetrii. Wychodząc z położenia równowagi 
cząsteczki w strukturze, obraca się jej szkielet w małych krokach, równych 0,5°, i 
za każdym razem oblicza energię potencjalną przy użyciu funkcji (8.83). Stosując tę 
metodę, autorzy pracy [96] analizują profile energii potencjalnej libracji antrachi- 
nonu, dla którego struktura kryształu znana jest w pięciu temperaturach [56]. 
Celem tej pracy jest uzyskanie odpowiedzi na następujące pytania:

1) Czy można metodą klasyczną obliczyć amplitudę ruchu libracyjnego?
2) Jak dokonać oceny udziału anharmoniczności w profilu energii potencjalnej?
3) Jakie rezultaty można stąd otrzymać dla częstości libracji i jak przedstawia 

się porównanie z doświadczeniem?
Ponieważ w tym rozdziale jesteśmy zainteresowani znajomością odpowiedzi na 

te pytania, zreferujemy pracę [96] nieco bardziej szczegółowo.
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Do analitycznego opisu krzywej energii potencjalnej, V(r), autorzy proponują 
czteroparametrową funkcję 6-exp

V (r) = a exp (— br)/rd — c/r6 (8.83)

Parametry a, b, c, d tej funkcji, w jednostkach układu SI, podane są w tab. 8.4 dla 
różnych par nie związanych z sobą atomów. Wartości energii potencjalnej oblicza 
się dla każdego profilu w obrębie sfery o promieniu r 0,7 nm i dla różnych 
kątów obrotu cp cząsteczki. Następnie wygładza się profil metodą najmniejszych 
kwadratów przy użyciu funkcji aproksymacyjnej Kjó7)

Vs(cp) = a + bcp + ccp2 + dcp3 + ecpd (8.84)

Tabela 8.4

Parametry funkcji energii potencjalnej (8.83) według [95] (dla r 
wyrażonego w nanometrach energię otrzymamy w kJ mor1)

Atomy 
oddziałujące

a h c-106 d

H -H 9081 37,4 102,0 0
c-c 300264 36,0 2144,6 0
C-H 35570 36,7 467,74 0
o-o 1,083-10“6 0 1499,6 12
N---N 268360 36,4 1684 0
O-H 9,9166-10" 2 18,7 391 6
o-c 0,57035 18,0 1793 6
O -N 0,53919 18,3 1589,5 6
N -H 49368 36,9 414 0
N---C 283870 36,2 1901 0

Taka postać funkcji pozwala na oddzielną ocenę udziału członów harmonicznych i 
— co jest bardziej interesujące — członów anharmonicznych

Va (cp) = dcp3 + ecp4 (8.85)

Średni kwadrat amplitudy libracji oblicza się z wzoru
+ 00

[ <p2exp[ — ccp2/(kT)] dcp
<(p2 > = ---------------- ---------- (8.86)

f exp[ — ccp2/(kT)'] dcp

a więc przyjmując dla harmonicznej części energii potencjalnej, V = ccp2, rozkład 
zgodny z klasyczną statystyką Maxwella-Boltzmanna. Ten człon energii potencjal­
nej, V(cp) = ccp2 = |(2c) cp2, decyduje o częstości drgań libratora, traktowanego 
jako obiekt sztywny

Vr
1

2n
2£V/2 
I /

(8.87)
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gdzie I jest momentem bezwładności, właściwym dla wybranej osi libracji. Łącząc 
równ. (8.86) z równ. (8.87) otrzymujemy dobrze znany związek, podany przez 
Cruickshanka [97]

<(P2>
kT

/vR
(8.88)

Wyniki obliczeń dla cząsteczki antrachinonu w krysztale przedstawiono w tab. 8.5. 
Przytoczymy w streszczeniu komentarz autorów do tych danych.

Kształt wygładzonych profilów energii potencjalnej determinowany jest w 
pobliżu minimum przede wszystkim przez człon kwadratowy w równ. (8.84). Ze

Tabela 8.5

Cząsteczka antrachinonu w krysztale

1. Rotacja wokół osi L, q> od —10° do +10° w krokach 0,5°

T, K c d-105 «b2 d<Pl/2 vR

103 0,1255(12) -192 1,85 3,00 2,49 74
161 0,1113(4) -176 2,45 4,04 3,26 70
201 0,1146(4) -184 2,70 4,23 3,64 71
260,5 0,1054(12) -180 3,20 4,52 4,32 68
293,5 0,0870(8) -167 3,74 5,41 4,81 61

2. Rotacja wokół osi M, <p od —10° do +10° w krokach 0,5°

T, K c e-105 <<p2>u2 r„l/2 ^22 dę>i/2 v'r

103 0,4928(17) 259 0,93 0 1,31 93
161 0,4685(21) 251 1,20 0,97 1,68 91
201 0,4472(25) 238 1,37 1,60 1,92 89
260,5 0,4112(25) 230 1,62 0,85 2,26 85
293,5 0,3723(25) 222 1,81 1,16 2,51 81

3. Rotacja wokół osi N, <p od —6° do +5° w 
krokach 0,5°

Objaśnienia:
cfkJ-mol ~ 1 ’Stopień — -], r/[kj-mol— ' -stopień “ e[kJ mol“ ' x

x -topień “ współczynniki krzywej energii potencjalnej (8.84).
- pierwiastek z średniego kwadratu amplitudy drgań (8.86), -
doświadczalna wartość pierwiastka z średniej amplitudy drgań (56], d<p]/2 
- szerokość krzywej w stopniach na w ysokości C = kT, vp - częstość dt gań 
sztywn go libratora (8.87) w cni-1.

t; k c <^>v2 OJ1/2 W33 d<Pl/2 vR

103 0,4815(42) 0,94 1,26 1,54 78
161 0,4915(42) 1,17 1,98 2,02 79
201 0,4723(54) 1,33 2,17 2,23 77
260,5 0,4392(46) 1,57 2,67 2,67 74
293,5 0,4254(54) 1,69 3,18 3,04 73
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wzrostem temperatury c maleje, co odpowiada stopniowemu spłaszczeniu paraboli­
cznej części krzywej. Takie zachowanie się c zgodne jest z wynikami teorii 
pseudoharmonicznej [98], która przewiduje zmniejszenie stałych siłowych oraz 
częstości ze wzrostem temperatury. Wartości vR w tab. 8.5 przewidywania te 
również spełniają, przy czym zależność temperaturowa jest zbliżona do obserwo­
wanej przez Miyazaki i Ito [99] w widmie Ramana tej substancji.

Kątowa amplituda drgań <<p2)1/2 rośnie ze wzrostem temperatury dla wszyst­
kich trzech osi libracji. Zależność ta jest jednak silniejsza niż T1/2, jak to wynika z 
teorii pseudoharmonicznej. Stałe siłowe oraz amplituda drgań mają więc trochę 
zbyt duże wartości, co po części tłumaczy się ustaleniem położeń cząsteczek 
otoczenia w przyjętym modelu rachunkowym, a po części niezbyt dużą dokładnoś­
cią wyznaczenia strukturalnych parametrów termicznych (piszą o tym również 
autorzy pracy [56]). Oczywiście, mogą wchodzić w grę również inne powody tych 
rozbieżności. Po pierwsze, atomy tlenu wykonują niezależne oscylacje poza pła­
szczyznę cząsteczki; zaniedbanie tych ruchów podwyższa prawdopodobnie częstość 

cząsteczki, potraktowanej jako sztywny librator. Po wtóre, powiększenie 
rozbieżności powoduje z pewnością anharmoniczność ruchów, co jest szczególnie 
widoczne dla silnie anharmonicznej libracji wokół osi N.

Zauważmy w końcu, że minima wszystkich krzywych energii potencjalnej są 
przesunięte, w porównaniu z rzeczywistą orientacją cząsteczek w strukturze, o 
niewielkie kąty. Podane przez autorów przesunięcia, uśrednione dla całego prze­
działu temperatury, wynoszą: dla rotacji wokół osi L —2,05(0,25)°, dla osi M 
+ 0,36(0,08)° i dla osi N —1,42(0,19)°. Wskutek uśrednienia nie są to jednak dane 
szczególnie dla nas przydatne. Bardziej interesująca byłaby znajomość przesunięcia 
w poszczególnych temperaturach, ponieważ takie wyniki moglibyśmy porównać z 
liczbami, wynikającymi bezpośrednio ze struktury lub modelu sztywnej skrzynki. 
Tych szczegółów autorzy jednak nie podają.

Zupełnie nowy związek między rozszerzalnością termiczną a dynamiką sieci, 
oparty na nowej definicji parametru Grtineisena, zaproponowali Choy, Wong i 
Young w publikacji [100]. Bardzo interesujące jest w cytowanej pracy to, że przez 
nową definicję y potrafili w prawidłowy sposób wyrazić udział każdego drgania 
normalnego w sieci we współczynniku rozszerzalności, przy czym objęli formaliz­
mem również kryształy anizotropowe. Ponieważ publikacja ta otwiera nowe 
możliwości interpretacji a, opiszemy jej wyniki w pewnym skrócie.

W materiałach anizotropowych rozszerzalność określają trzy główne składowe 
tensora odkształcenia, (^ = 1, 2, 3)

(8.89)

Pochodna odkształcenia względem temperatury T określona jest przy ustalonych 
składowych naprężenia tv, v = 1, 2, . ..,6. Z kolei główne współczynniki 
Grtineisena definiuje się tradycyjnie w następujący sposób:

1
(8.90)
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gdzie 5 jest entropią kryształu, a C, - jego pojemnością cieplną przy stałym 
odkształceniu. Indeks /7' przy pochodnej wskazuje, że poza wszystkie inne 
składowe odkształcenia są ustalone. Drogą rozważań termodynamicznych dowodzi 
się następnie, że istnieje następujący związek między i y^.

(8-91)

przy czym Ct jest pojemnością cieplną przy stałym naprężeniu, a S%v i S?v 
oznaczają składowe tensora podatności, odpowiednio adiabatycznej i izotermicznej

(8.92)

Definicja (8.91), prawie zawsze używana w literaturze, zawiera szereg wad i 
niekonsekwencji.

a) Nieprzekątniowe składowe odnoszą się do różnych składowych tensora 
odkształcenia. W konsekwencji nie jest spełniona równość

ł(? 1+72 + 73) = 7v (8-93)

jakiej należy oczekiwać między głównymi współczynnikami yt a objętościowym 
współczynnikiem Griineisena yv.

b) Relację (8.91) możemy odwrócić — jak to się zwykle czyni — dla obliczenia 
yv. Definiując tensory sztywności 

otrzymamy

7v = a, = (8.95)

Związek (8.95) wyraża główne współczynniki Griineisena poprzez główne składowe 
tensora rozszerzalności. Otóż jest faktem dość często spotykanym, że jeden z 
trzech współczynników jest ujemny. W takim przypadku suma po prawej stronie 
może mieć wartość małą, co zwiększa niepewność w obliczeniu yv. Co więcej, 
dodatnie i ujemne udziały w spowodowane są różnymi mechanizmami, a 
takiego rozróżnienia równ. (8.95) zupełnie nie zawiera.

c) W badaniach rozrzerzalności termicznej odkształcenie traktuje się najczęściej 
jako funkcję zmiennych niezależnych, którymi są temperatura i główne składowe 
naprężenia. Związek (8.90) nie jest zgodny z takim postawieniem zagadnienia.

W tej sytuacji autorzy wprowadzają, na drodze termodynamicznych uogólnień, 
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nową definicję współczynnika Griineisena, a mianowicie 

gdzie Bs jest adiabatycznym i średnim modułem sprężystości. Taka definicja 
prowadzi do nowego wyrażenia dla składowych

(8’97)

w którym nie ma składowych odkształcenia o różnych wskaźnikach. W wyniku 
tego spełniony jest obecnie naturalny związek (8.93). Ważniejsze jednak jest to, że 
nowa definicja współczynnika Griineisena, y^, otwiera możliwość wglądu w mecha­
nizm mikroskopowy, odpowiedzialny za rozszerzalność termiczną. Aby zbadać tę 
relację, należy odpowiedzieć na następujące pytanie: jaki jest udział drgania 
normalnego „i” sieci we współczynniku rozszerzalności a^?

Najbardziej ogólny związek między wielkościami makro- i mikroskopowymi 
wynika stąd, że przy słabym sprzężeniu drgania sieci i z drganiem j entropię S (a 
stąd również ćS/ćdn K) można zapisać jako sumę udziałów każdego z drgań 
normalnych

i

wobec tego [por. równ. (8.90)]

?;(T)-C,(T) = £%Ci(T) (8.98)
i

Współczynniki y^ wiążą się obecnie ze składowymi rozszerzalności oę(T), zależny­
mi od temperatury, w następujący sposób:

Analiza tego równania pozwala rozpoznać znaczenie y^: współczynnik ten określa 
mianowicie udział jednostkowego wzbudzenia drgania sieci „i” w składowej odkształ­
cenia r]^. Funkcja C'(T) opisuje sposób, w jaki aktualny stopień wzbudzenia zmienia 
się z temperaturą.

Do równania (8.99) można wprowadzić częstości-drgań sieciowych co,, które są 
wielkościami bezpośrednio mierzonymi. Otrzymujemy wówczas

-C^T) (8.100)
V i \ Ot^ JT4.

Ostatnie równanie zawiera zależność między wielkością odkształcenia i częstością 
wzbudzonych w określonej temperaturze drgań sieciowych. Obejmuje więc nie 
tylko mikroskopową interpretację termicznej rozszerzalności kryształu, ale również 
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funkcję temperaturową a. Widoczne jest również, że współczynnik rozszerzalności 
wzdłuż jakiegoś kierunku głównego, o^, zależy wyłącznie od odkształcenia w tym 
samym kierunku, t^.

Przedstawiona tu w dużym skrócie nowa koncepcja łączy częstości i współ­
czynniki anharmoniczności drgań sieciowych oraz zależność stopnia ich wzbudze­
nia od temperatury z współczynnikiem rozszerzalności termicznej anizotropowego 
ciała stałego. Stanowi znakomite uściślenie i rozszerzenie intuicyjnie odczuwanych 
związków między rozszerzalnością kryształu a orientacją cząsteczek, zależną od 
temperatury.
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parametr Grtineisena 373
parametry funkcji energii potencjalnej 371
— — Morse’a 297
— pasma absorpcyjnego 281, 313
pasmo absorpcyjne, natężenie 313
— energii w krysztale 309
pełna reprezentacja, zasady tworzenia 285
pentachlorofenol, absorpcja roztworu 27
— ,fazy krystaliczne 27
— , oddziaływania w krysztale 26
— , prawo Beera 28
— , przemiana fazowa 27
pentaerytryt, rozszerzalność kryształu 352
planarność cząsteczki bifenylu w krysztale 209
płaszczyzna izotropii 58
— —, normalna do 59
— poślizgu 86
— stałej fazy, równanie 227
— zbioru punktów, optymalna 99
płytka dwójlomna w spektroskopii 235
— kalcytu, dwójłomność 238
— krystaliczna, wpływ na bieg wiązki 233
pochodne benzenu, anizotropia magnetyczna 188
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podatności magnetyczne cząsteczek halogenoben- 
zenów 188

— — —, relacje empiryczne 189
— — —, zredukowane 187
— — kalcytu 159
— —, tabela 168
— — związków wielopierścieniowych 188
podatność diamagnetyka, metoda Gouya 163
— —, model gazu zorientowanego 165
— dielektryczna kryształu 257
— magnetyczna cząsteczek 167
-------, błędy 186
— — cząsteczki, tensory submikroskopowe 198
— — — w krysztale 154
— — —, wybór osi 166
— — czystej wody 164
— — jednostki masy 164
— — kryształów, wyniki pomiarów 167
— — kryształu, wybór osi 165
— — substancji 152
— - średnia 162
— — w określonym kierunku 156
— — związków aromatycznych 167, 187
podsieci w strukturze 255
polaryzacja kryształu, udział podsieci 257
— magnetyczna pierścienia benzenu 191
— molowa 246
— substancji niedipolowych 246
— wiązki towarzysząca rozpraszaniu 241
polaryzowalność cząsteczek 244
— —, obliczenia 272
— cząsteczki, efektywna 256
— — naftalenu 272
— — rzeczywistej 261
— —, zredukowana 257
— komórki elementarnej 247
— subcząsteczki 260
pole lokalne 244
— —, teoria 255
— —, związek ze stałymi optycznymi 257
— Lorentza 245, 247
położenia ogólne cząsteczek (atomów) 90
— szczególne cząsteczek (atomów) 90
położenie płytek substraktywne 238
pomiar anizotropii magnetycznej metodą oscylacji 

160
— — — — statyczną 158
— dwójłomności, metoda interferencyjna 237
- — Verreaulta 239
— podatności magnetycznej metodą Gouya 163
poszerzenie linii spektralnej 299
potencjał atom-atom 20, 23, 369
— jonu 19
— multipoli punktowych 18, 19

— w sieci krystalicznej 19
powierzchnia energii potencjalnej 22
— stałej fazy 227
— wielkości fizycznej 46
— współczynnika rozszerzalności termicznej 46
pozorne natężenie absorpcji 313
prawa transformacji wielkości fizycznych, tabela 

82
prawdopodobieństwo przejścia dwufotonowego 

300
prawo Braggów, interpretacja 107
— niezmienniczości tensorów 77
— — wektorów 72, 75
— transformacji tensora 41
— — wektora 41
prąd pierścienia, udział w diamagnetyzmie 192
prędkość fazowa fali 227, 229
profile energii potencjalnej 370
przejścia zabronione, dopuszczenie w krysztale 

307
przejście dipolowe 282
przekroje kołowe 60
przekrój izotropowy, krzywa absorpcji 319
— magnetycznie izotropowy 199
— tensora w układzie jednoskośnym 47
przemiana fazowa, zmiany diamagnetyzmu 212
przenikalność magnetyczna materiału 154
przepuszczalność optyczna płytki izotropowej 319
przesunięcie częstości drgań w krysztale 303
— Dopplera linii spektralnej 299
— oscylatora z położenia równowagi 326
— radialne w deformacji 332
— transwersalne w deformacji 333
przybliżenie dipoli punktowych 257
punkty symetrycznie równoważne 71, 90, 94

Redukcja reprezentacji przywiedlnej 286
refrakcja cząsteczek, tabela 250
— kryształów, tabela 250
— molowa 246
- — cząsteczki 249
reguła wyboru dla częstości sumacyjnych 292
— — dla nadtonów 292
— — pierwotna 284
reguły wyboru, modyfikacja w krysztale 303
reprezentacja dwuwymiarowa 284
— graficzna wielkości tensorowej 46
— jednowymiarowa 284
— pełnosymetryczna 284
— przywiedlna konfiguracji 286
— stanu cząsteczki 284
— — zdegenerowanego 293
reprezentacje nieprzywiedlne 285
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reprezentacje przemieszczeń 284
rezonansowe przejście absorpcyjne 300
rola podstawników w anizotropii 255
Rousseta uogólnienie w optyce kryształów 245
rozchodzenie się fali 228
rozkład elementów symetrii w grupie Pbca 127
— kwadryk w komórce jednoskośnej 132
— oscylatorów, informacje o 319
rozszczepienie stanu zdegenerowanego 294
— statyczne stanu energetycznego 303, 307
— wiązki promieniowania 313
rozszerzalność, korelacja ze ściśliwością 353
— , mechanizm mikroskopowy 375
— , metoda Bonda 341
— , modele 360
— , rozbieżność danych 353
— , skok w przemianie fazowej 355
— termiczna, anomalie 354
— — kryształów 322
— — —, tabela 342
— —, możliwe przyczyny 326
— , udział defektów strukturalnych 335
— , wpływ wiązania wodorowego 352
— , współczynnik różniczkowy 351
— zerowa 64
— , związek z odkształceniem 376
równania ruchu oscylatorów sprzężonych 307
równanie Clausiusa-Mossottiego 246
— Lorentza-Lorentza dla ciała anizotropowego 

246
— modelu gazu zorientowanego w układzie kry­

stalograficznym 133
— — — — — osi tensora 134
— płaszczyzny 102, 115
— ruchu libratora anharmonicznego 324
różnica dróg optycznych w krysztale 236
— faz dwóch wiązek w krysztale 237
ruch falowy, reprezentacja w sieci odwrotnej 109
— libracyjny, symulacja 370
— termiczny atomów, wpływ na wielkości fizy­

czne 135
— —, rola w modelu gazu zorientowanego 125
rzut stereograficzny, ewolucja 97

Sieci Bravais’go 84
sieć odwrotna, definicja 105
— —, zastosowania 105, 107
— prosta, definicja 104
— przestrzenna 84
siła oscylatora 308
składowe tensora, ograniczenia 77, 78
— —, sens fizyczny 38
— —, związek z kwadryką 62
— wektora, ograniczenia 72, 75, 112 

skrętność układu w operacjach symetrii 74
skutki anharmoniczności drgań termicznych 328
spektroskopia bezodrzutowa, zastosowania 302
— , grupy symetrii 303, 305
— , model gazu zorientowanego 312
— w zakresie nadtonów 281, 291
spektroskopowa energia wiązania oscylatora

297
sprzężenie dipol-dipol w optyce 262
stałe potencjału atom-atom 20
- -, tabela 21, 23
stan polaryzacji wiązki na wyjściu 240
— zdegenerowany, reprezentacja 293
stany energetyczne oscylatorów OH i DH 296
— fali stojącej, reprezentacja 109
— ortogonalen płytki dwójłomnej 240
— — polaryzacji 239
— polaryzacji fali 229
- — wiązki rozproszonej 242
— wzbudzone oscylatora harmonicznego 291
stożek rozszerzalności zerowej 64
struktura kryształu benzenu 23
— —, dedukcja 22
suma sieciowa 256
symetria brył 82
— cząsteczki, lokalna 303
— - w węźle, adiustacja 147
— dozwolonych przejść spektroskopowych 287
— grup przestrzennych 84
— kryształu, efektywna 69
— makroskopowa 67
— nadtonów 291
— składowych momentu przejścia 287
— stanów dwukwantowych 292
— stanu podstawowego oscylatora 292
— translacyjna sieci 126
— w modelu gazu zorientowanego 126
— węzła, wpływ na postać tensora 132
— właściwości fizycznej 67
symetrie drgań w grupie Dlh 285, 289
szereg multipolowy 19
szerokość połówkowa pasma 313
sztuczne centra rozpraszania, polaryzacja 241

Temperaturowa niezmienniczość 270
tensor antysymetryczny 38
— asymetryczny 39
— —, rozkład 39
— biegunowy 81
— —, postać w węźle sieci 78
— czystego odkształcenia 330
— , definicja 33
— drgań libracyjnych 370
— — translacyjnych 370
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— Lorentza 256
— molekularny, niezmienniczość 132
— obrotu cząsteczki 136
— — w odkształceniu 330
— odkształcenia 373
— — względnego 330
— , osie główne 42, 51
— , parametry przekroju 49
— podatności dielektrycznej 257
— — magnetycznej 155
— — —, korelacja osi 165
— polaryzowalności cząsteczki 244
— — —, zredukowany 257
— —, osie główne 247
— przenikalności magnetycznej 155
— , reprezentacja graficzna 46
— rozszerzalności, obraz graficzny 358
— —, osie główne 331
— —, przekrój kołowy 64
— — termicznej 54
— —, zredukowany 359
— , równanie przekroju 48
— , składowe 34
— , — niezależne 37, 38
— .sprowadzenie do osi głównych 113
— symetryczny 38
— .transformacja składowych 40
— , wartości własne 51, 60
— , wartość w zadanym kierunku 44
— , wektory własne 51, 60
— , wpływ symetrii na postać 145
— , zmiana z temperaturą 144
tensory biegunowe 76
— .dodawanie 146
— drugiego rzędu 37
— .klasyfikacja 37, 42
— , model gazu zorientowanego 198
— osiowe 76
— podatności 374
— — magnetycznej, systematyka 199
— , sumowanie 39
— sztywności 374
— , ślad 41
termiczne poszerzenie linii absorpcyjnej 324
tiomocznik, rozszerzalność kryształu 356
trynslacje prymitywne 84, 126
typy krzywych energii potencjalnej 325
— oddziaływań 18
— wzbudzeń elementarnych w krysztale 313

Udział charakterów atomów w reprezentacji
287

układ jednoskośny, ortogonalizacja 92
— trójskośny, ortogonalizacja 91

25

Wadliwe pomiary absorpcji 313
waga statystyczna punktów 50, 57
wartości własne macierzy 102
wartość średnia 42
— tensora w zadanym kierunku 46
warunek niezmienniczości tensora 77
— — wektora 72
— odbicia fali 108
- przejścia dipolowego 284
warunki pomiarów absorpcji w krysztale 313
wektor biegunowy, symetria 82
- falowy, reprezentacja 110
— — w sieci krystalicznej 110
- indukcji magnetycznej 153, 155
— normalny fali 227
— osiowy, symetria 82
— rozproszenia promieniowania 107
— sieci prostej 84
— , transformacja składowych 40
wektory bazy sieci odwrotnej 105
— — — prostej 104
— biegunowe 72, 74
— osiowe 72, 74, 75
— , symetria 82
— własne macierzy 102
wewnętrzne stopnie swobody ruchu 286
węglowodory, anizotropia magnetyczna 188
wiązanie wodorowe 24
— —, asocjacja cieczy 25
— —, przejawy 25
— —, przeszkody steryczne 26
— —.sytuacja protonu w 30
— — w diamagnetyzmie 192
— — w krysztale 26, 28
wiązka promieniowania, bieg w krysztale 233
widmo absorpcyjne oscylatora 294
— Ramana, wpływ temperatury 372
wielkości tensorowe w modelu gazu zorientowa­

nego 131
— wektorowe w modelu gazu zorientowanego 

129
wielkość fizyczna, niezmienniczość 72
— przemieszczeń kątowych 362, 364
wielomiany Hermitte’a 291
woda, polaryzowalność cząsteczki 275
wolne rodniki 151
wpływ temperatury na podatności magnetyczne 

202
— — na wielkości tensorowe 135
współczynnik absorpcji materiału 313
— anharmoniczności 295, 324
— refrakcji kryształów, tabela 250
— — w zadanym kierunku 231
— —, wpływ temperatury 263
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współczynnik rozszerzalności, konwencja 351
— —, metody pomiaru 335
— —, wpływ temperatury 328
— ścinania 331
współrzędne normalne 283
— punktów, ułamkowe 91
wybór osi cząsteczki w modelu gazu zorientowa­

nego 129, 132
— — kryształu w modelu gazu zorientowanego 

129, 131

Zasada najmniejszych kwadratów, równanie pła­
szczyzny 100

- Neumanna 69
— —, odpowiednik molekularny 129
zasady symetrii w opisie właściwości kryształów

129
zbiory cząsteczek symetrycznie niezależne 91
zderzenie foton-cząsteczka 300
zmiany diamagnetyzmu w przemianie fazowej 212
— orientacji układu osi cząsteczki 136
zorientowany gaz wzbudzonych dipoli 313
zredukowane podatności magnetyczne 187
związek między anizotropiami cząsteczki 255
związki wielkości makro- i mikroskopowych 129,

131
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