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PRZEDMOWAFizykę chemiczną wprowadzono do programu nauczania na Wydziale Chemicznym Politechniki Wrocławskiej w 1964 r., zamiast wykładanej tradycyjnie fizyki. Zmiana nazwy przedmiotu oznaczała przyznanie wy­kładowcy prawa wyboru takich zagadnień i rozdziałów, które mogły mieć największe znaczenie i przydatność dla tego kierunku studiów, a jed­nocześnie mogły być przedstawione w określonym czasie.Z biegiem lat program wykładu ulegał rozmaitym ewolucjom. Wpływa­ły nań zarówno doświadczenia własne autora, wynikające z konfrontacji egzaminacyjnych ze studentami, jak również potrzeba wprowadzenia no­wych poglądów i pojęć zamiast mniej aktualnych.Ten proces wymiany nie został zakończony - trwa on do dzisiaj. Nowy czynnik, mający wpływ na zakres poruszanych w wykładzie zagadnień, który pojawił się przed kil­koma laty, jest związany z reformą szkolnictwa średniego i postępują­cym za nią rozszerzeniem wiadomości abiturientów w zakresie fizyki. Spowodowało to na przykład w wykładzie mechaniki zogniskowanie uwagi na zagadnieniach dynamiki bryły sztywnej.zamiast dynamiki punktu,usu­nięcie z elektrodynamiki prawa Ohma i jego bezpośrednich zastosowań, pominięcie elektrochemii, w optyce zaś zagadnień optyki geometrycz­nej. Zmian takich jest więcej, ich ogólnym celem było zarówno wyelimi­nowanie z wykładu tych zagadnień, których lepszą czy gorszą znajomość powinien posiadać absolwent szkoły średniej, jak też przeniesienie niektórych problemów do innych przedmiotów, gdzie są omawiane szerzej (termodynamika, budowa atomu).Opracowując wykład według przyjętego ostatnio programu autor ko­rzystał z wielu podręczników i monografii, w celu znalezienia najbar­dziej trafnego lub interesującego sposobu przedstawienia poruszanych problemów; niekiedy udało się autorowi samemu coś wnieść w tej dzie­dzinie. Spis odpowiednich dzieł został zamieszczony na końcu skryptu. Z wymienionych tam pozycji można korzystać w celu rozszerzenia i po­głębienia indywidualnych zainteresowań Czytelników.Autor nie unikał wprowadzania do wykładu zagadnień trudniejszych, uznając, iż zapoznanie się z nimi na wczesnym etapie studiów ułatwia 



4korzystanie z wykładów specjalistycznych, przeznaczonych dla bardziej zaawansowanego grona słuchaczy. Na zasadzie przykładu można tu wymie­nić dynamikę bryły sztywnej z potraktowaniem momentu bezwładności ja­ko wielkości tensorowej, elementy teorii względności i związane z tym zagadnienie transformacji układu współrzędnych, anizotropii własności fizycznych ciał stałych w opisie tensorowym. Podawane niekiedy przy­kłady rachunkowe mają na celu zorientowanie Czytelnika w zastosowaniu formalizmu do konkretnych zagadnień i - być może - ułatwią zrozumie­nie zasad ogólnych.Wiele zagadnień lub sposób ich przedstawienia omawiano w zespole pracowników naukowych, zajmujących się nauczaniem fizyki chemicznej. Wdzięczny jestem szczególnie drowi Bolesławowi Jakubowskiemu za jego gotowość do współpracy i cenne uwagi. Niezmierną cierpliwość i wyro­zumiałość wykazała również moja Żona, przepisując mało czytelny ręko­pis; bez jej pomocy nie byłoby możliwe przygotowanie pracy do druku w tak krótkim terminie. Autor
Wrocław, 21 lipoa 1975 r.



DEFINICJE JEDNOSTEK PODSTAWOWYCH W UKŁADZIE SI1. Metr jest długością równą 1 650 763,73 ’X X jest dłu­gością fali w próżni prążka spektralnego, odpowiadającego przejściu emisyjnemu między poziomami 2p10 i 5d^ atomu kryptonu JgKr.2. Kilogram jest masą międzynarodowego wzorca tej jednostki, wy­konanego ze stopu 90% Pt i 10% Ir i przechowywanego w Międzynarodo­wym Biurze Miar i Wag w Sevres pod Paryżem»Wtórnym wzorcem 1 kilograma jest masa 1,000028 dm^ wody destylo­wanej w temperaturze 4 °C pod ciśnienieniem 1 Atmosfery.3. Sekunda jest (31 556 925,974 7)”! częścią roku zwrotnikowego dla 1900 r. stycznia 0 o godzinie 12 czasu efemeryd.4. Amper jest natężeniem prądu elektrycznego stałego, który pły­nąc w dwóch równoległych i nieskończenie długich przewodnikach o prze­kroju znikomo małym, umieszczonych w próżni w odległości wzajemnej jednego metra, wywołuje między tymi przewodnikami siłę 2«10 niutona na każdy metr ich długości.5. Kelvin jest jednostką temperatury skali termodynami­cznej, w której temperatura punktu potrójnego wody jest dokładnie rów­na 273,16 K.6. Kandela jest światłością, którą ma w kierunku prostopadłym ele­ment powierzchni ciała doskonale czarnego o wielkości (6«10'’)”1 m2,promieniującego w temperaturze krzepnienia platyny pod ciśnieniem 1 atmosfery fizycznej. OZNACZENIA I SYMBOLE1. Oznaczenia ogólne"identyczne z .<> wartość średnia,— "przechodzi w ...","pociąga, że ..A, B wektory A, B; podkreślenie litery u dołu oznacza wektor,
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iloczyn skalarny wektorów A i S, iloczyn wektorowy wektorów A i B, kropka nad literą oznacza pochodną względem czasu; x jest więc składową prędkości wzdłuż osi x, operator gradientu ("nabla"), macierz A, macierz A przestawiona, tensor A, składowe tensora (lub elementy macierzy) A.2. Przestrzeń i czaswspółrzędne położenia,
wektory jednostkowe wzdłuż osi współrzędnych, wektor wodzący punktu (w m), promień okręgu (w m), niewielki przyrost x, droga (w m), powierzchnia (w m2), objętość (w m^) kąty płaskie (w rad),długość fali (w m), liczba falowa (w m-^), wektor falowy (w m-^), czas (w s), okres (w e), częstość liniowa (w s-^), częstość kątowa (w s"^), prędkość kątowa (w s“^), przyśpieszenie kątowe (w s“2), prędkość liniowa (w m/s), przyśpieszenie liniowe (w m/s2), składowa przyśpieszenia styczna do toru (w m/s2), składowa przyśpieszenia normalna do toru (w m/s2).3. Dynamikamasa (w kg),masa spoczynkowa (w kg),
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gęstość (w kg/m^), przyspieszenie ziemskie, siła (w N), siła przyłożona (w N), siła wewnętrzna (w N), stała grawitacji (w Nm2/kg),T U w(a-b) EP C
energia kinetyczna (w J), energia potencjalna (w J), praca przesunięcia masy z punktu A do B (w J), energia całkowita (w J), moc (w W), współczynnik liniowej siły sprężystej (w N/m),

>|O’ m 
21 h h o ca pęd ciała (w kgm/s),kręt (moment pędu) punktu (w N*m),moment siły (N*m),moment bezwładności (w kg«m2),składowe tensora momentu bezwładności (w kg.m2), prędkość światła w próżni (w m/s),stosunek prędkości obiektu do prędkości światła, n . 1 /nL długość pręta w ruchu (w m),T czas własny układu spoczywającego (w s),“o To <0T

częstość kątowa drgań harmonicznych (nie tłumionych), okres drgań harmonicznych (nie tłumionych), aktualna częstość drgań, aktualny okres,Y T ₽ współczynnik siły tarcia, czas relaksacji, stała tłumienia.4. Elektrostatyka i elektrodynamikaq+% e ładunek swobodny (w C), dodatni ładunek próbny (w C), ładunek elektronu (w C),% o ładunek związany w dielektryku (w C), powierzchniowa gęstość ładunku (w C/m2),Peo € objętościowa gęstość ładunku (C/m^),bezwzględna przenikalność dielektryczna próżni (w C2/NiĄ względna przenikalność dielektryczna ośrodka (stała dielektryczna),
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natężenia pola elektrycznego w próżni (w V/m), natężenie pola elektrycznego w ośrodku (w V/m), moment dipolowy (w C-m), strumień wektora przez powierzchnię zamkniętą S (w V-m), potencjał pola (w V), pojemność elektrostatyczna, (w F), czynnik geometryczny kondensatora, (w m), wektor indukcji elektrostatycznej (w C/m2), wektor polaryzacji dielektryka (w C/m2), natężenie pola wytwarzane przez ładunki związane (w V/m), grubość warstwy podwójnej w dielektryku (w m), odległość okładek kondensatora (w m), powierzchnia jednej okładki (w m2), różnica potencjałów (w V), temperatura Curie (w K), powierzchnia przekroju przewodnika natężenie prądu (w A), przewodnictwo właściwe elektryczne (^“^m”1), oporność właściwa (w Q-m), gęstość prądu przewodzenia (w A/m2), ruchliwość nośnika, (w m2/Vs), szybkość unoszenia nośnika (w m/s), koncentracja nośników, (w m-^), gęstość materiału (w kg/nP) oporność przewodnika, stała czasowa obwodu RC (w s), stała Boltzmanna (w J/K), energia aktywacji (w J), siła elektromotoryczna (ogniwa) (w V), powierzchnia (obwodu z prądem), (w m2), element powierzchni, moment -magnetyczny (obwodu z prądem), (w A-m2), wektor indukcji magnetycznej (w wb/m2), natężenie pola magnetycznego (w A/m), strumień wektora B, (w Wb), moc prądu (w w), bezwzględna przenikalność magnetyczna próżni (w Wb/(A-m), względna przenikalność magnetyczna ośrodka, wektor namagnesowania (w A/m), podatność magnetyczna jednostki objętości,X podatność magnetyczna 1 mola substancji
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L współczynnik samoindukcji (w H),w częstość kątowa prądu przemiennego (w s”1),<p kąt przesunięcia fazowego»5. Falev liniowa częstość drgań (w s”1),w kątowa częstość drgań (w a”1),A różnica dróg dwóch ciągów falowych (w m),X długość fali (w m),<|>(x,t) wielkość przesunięcia punktu z położenia równowagi w miejs­cu x i w chwili t (w m), k wektor falowy (w m“1),v prędkość fali (światła) w ośrodku materialnym (w m/s),o prędkość światła w próżni (w m/s),natężenie pola elektrycznego (w V/m), wektor indukcji elektrostatycznej (w C/m2), wektor natężenia pola magnetycznego (w A/m), wektor indukcji magnetycznej (w Wb/m2), wektor Poyntinga (w w/m2), wektor jednostkowy w kierunku normalnej do płaszczyzny sta­łej fazy,n^ współczynnik załamania światła ośrodka 2 względem ośrodka 1 eopt optyczna stała dielektryczna,k stała absorpcji (w m-1),D przepuszczalność (w %),u indeks absorpcjiR współczynnik odbicia,Re całkowita emisja energetyczna ciała doskonale czarnego(w w/m2), r(x) zdolność emisyjna,a(\) zdolność absorpcyjna,
a stała w prawie Stefana-Boltzmanna,h stała Plancka,6« Jądro atomowe i cząstki elementarne masa jądra, (w kg), Z liczba porządkowa jądra,M masa atomowa jądra,A liczba masowa,mg masa spoczynkowa elektronu,(w kg).
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masa spoczynkowa protonu (w kg), masa spoczynkowa neutronu (w kg), defekt masy jądra, liczba jąder istniejących w danej chwili, stała rozpadu (w s'1), czas połowicznego zaniku (w s), jądra helu (cząstki alfa), szybkie elektrony, emitowane przez jądro, kwant promieniowania elektromagnetycznego, zasięg cząstki alfa, przekrój czynny jądra, prawdopodobieństwo rozszczepienia, współczynnik rozmnożenia neutronów dla nieskończenie dużego kawałka materiału rozszczepialnego, neutrino, antyneutrino; kreska nad symbolem cząstki oznacza antycząs- tkę, mezony pi (piony), mezony ml (miony), mezony K hiperony lambda, hiperony sigma, hiperony ksi.



1 . KINEMATYKA PUNKTUW niniejszym rozdziale zajmiemy się opisem stanu ruchu obiektu fi­zycznego, pomijając przyczyny, powodujące taki czy inny sposób poru­szania się tego obiektu. Wybór obiektu, czyli poruszającego się ciała, jest sprawą dość dowolną - najwygodniej będzie przyjąć, iż poruszają­cym się ciałem jest punkt geometryczny obdarzony masą, czyli tzw. punkt materialny. Położenie punktu określają dokładnie jego współrzęd­ne x, y, z, podawane względem kartezjańskiego i prawoskrętnego u- kładu współrzędnych. Przypisanie punktowi masy okaże się pożyteczne w rozdziale 2, w którym będziemy się zajmować przyczynami, wpływającymi na zmianę stanu ruchu naszego punktu.Układ współrzędnych jest prawoskrętny, jeśli kolejność występowa­nia osi odpowiada ruchowi śruby prawej - na przykład obrotowi od osi x do y o kąt mniejszy ćd n towarzyszy ruch postępowy śruby prawej w dodatnim kierunku osi z (rys. 1-1). Prawoskrętnemu układowi współ­

rzędnych odpowiada cykliczna kolejność występowania osis xyz, yzx lub zxy (rys. 1-2). Zmiana kolejności w dowolnej parze współrzędnych zmienia układ na lewoskrętny (np. xzy lub yxz odpowiadają kolejności osi układu lewoskrętnego). Wprowadzenie zamiast literowych oznaczeń osi oznaczeń cyfrowych, x 1, y — 2, z — 3, ułatwia zapisywanie sumy przez wykorzystanie znaku 2«



12 Ruch punktu powoduje, że wszystkie trzy współrzędne punktu zależąod czasu x = x(t), y = y(t), z = z(t). (1.1)Inaczej mówiąc, równania (1.1) są parametrycznymi równaniami ru­chu. Można je zapisać krócej, posługując się pojęciem wektora wodzą­cego r punktu. Jeśli położenie punktu materialnego będziemy opisy­wać za pomocą wektora r, którego początkiem jest (0,0,0) a końcem punkt materialny, to ruch tego punktu można wyrazić jedną zależnościąr = r(t) . (1.2)
1.1. Klasyfikacja wielkości fizycznychWielkości fizyczne, z jakimi będziemy się spotykać podczas kursu fizyki chemicznej, należą do jednej z trzech kategorii.i. Wielkość skalarna; przykładem takiej wielkości jest masa m, temperatura T, objętość V. Wszystkie wielkości tego typu mają tylko jedną cechę: wartość liczbową, niekiedy dodatnią i ujemną.ii. Wielkości wektorowe; przykładem takiej wielkości jest pręd­kość v, przyspieszenie £, siła F, natężenie pola elektrycznego E. Wielkości wektorowej odpowiada wartość liczbowa (długość wektora) kierunek i zwrot, a niekiedy jeszcze określony punkt zaczepienia.Głó­wne przyczyny, z powodu których wprowadzamy w fizyce wektory, są na­stępujące: zapis praw fizycznych za pomocą wektorów jest prosty 1 zwięzły, postać praw fizycznych zaś, wyrażonych za pomocą wektorów nie ulega zmianie wraz ze zmianą układu współrzędnych. Korzystając z za­pisu wektorowego zakładamy, iż podstawowe działania na wektorach, ta­kie jak dodawanie i odejmowanie, rozkład na składowe, iloczyn skalar­ny i wektorowy, są Czytelnikowi znane.Warto zauważyć, że nie wszystkie wielkości, które mają wymienione cechy wektora, muszą być wektorami; przykładem jest obrót bryły sztyw­nej o skończony kąt. Pomimo iż taki obrót ma wartość liczbową (kąt o- brotu), kierunek (oś obrotu) i zwrot nie jest wektorem, ponieważ do dwóch wykonanych kolejno obrotów nie stosuje się prawo dodawania. Wi­dzimy więc, iż dodatkowym warunkiem zaliczenia jakiejś wielkości fi­zycznej do wielkości wektorowych jest ten, by spełniała ona prawo rów- noległoboku podczas dodawania. Zasadę tę spełnia na przykład wektor E natężenia pola elektrycznego: jeśli ładunek próbny q0 znajduje się w polu elektrycznym, wytwarzanym przez dwa inne ładunki punktowe q1 i q2, to siła działająca na q0 wynika z natężenia pola E jakie o­



13trzymujemy, dodając wektorowo natężenie pola E^ i E2, wytwarzana przez oba ładunki q1 i q2.iii. W liniowych związkach między wektorami, np.2 ’ s o £ Łgdzie D jest wektorem indukcji elektrycznej w dielektryku, E - na­tężeniem pola elektrycznego, bardzo często pojawiają się pewne stałe, zależne od własności materiału, czyli tzw. stałe materiałowe.W naszym przykładzie tą stałą jest e, czyli względna przenikalność (stała die­lektryczna) dielektryka. Charakter tych stałych zależy od własności interesującego nas dielektryka: e może byś jedną liczbą, jeśli mate­riał ma we wszystkich kierunkach takie same własności, ale na ogół a jest tensorem o dziewięciu składowych, uszeregowanych w macierz o trzech wierszach i trzech kolumnach. Taka tablica nosi nazwę tensora drugiego rzędu; we wszystkich zagadnieniach, którymi będziemy się in­teresować w dalszym ciągu, występujące tensory będą rzędu drugiego.
1.2. Prędkość i przyśpieszenie punktu materialnegoPrzypuśćmy,że punkt materialny po­rusza się wzdłuż łuku PQR... (rys. 1-3). Położenie tego punktu w chwili t1 po- daje wektor r 1, w chwili t2 wektor r2, przy czym oba wektory wodzące mają początek w dowolnym punkcie 0. Mamyr1 + PQ « r2, czyli za " ^2 “ -1 “ 4 -•Średnią prędkością punktu material­nego między chwilą t1 i t2 nazywa­my iloraz różnicowy A £<£> - ---  .A tWielkość ta ma w fizyce niewielkie znaczenie, ponieważ niedokład­nie opisuje prędkość aktualną punktu materialnego w określonym punk­cie łuku. Jeśli jednak t2 zmierza do t^, czyli Ąt —^0, to rów­nież A r —- 0, lecz iloraz różnicowy zmierza do określonej granicy, zwanej chwilową prędkością punktu materialnegodrv = — . (1.3)dt



14 Widz-łmy również, iż prędkość v jest wektorem zawsze stycznym do toru punktu materialnego.Rozumując analogicznie możemy określić chwilowe przyspieszenie punktu materialnego dv d^ra = —- = —w • (l,4)dt dt*Jeśli nie prowadzi to do nieporozumień, to pochodne względem cza­su (ale tylko względem czasu) będziemy oznaczać dla skrócenia kropką, umieszczoną nad literą; na przykład v = ń, a = r.
1,3, Prędkość 1 przyspieszenie kątoweZasada dodawaniaPrzyjmijmy, że punkt materialny porusza się po okręgu (rys.1-4)■Zmia­nę położenia punktu określamy za po­mocą kąta Aa» zakreślonego przez pro­mień wodzący r w czasie At. Jeśli Aa jest kątem bardzo małym, to może­my mu przypisać wektor prostopadły do płaszczyzny okręgu, przy czym długość wektora wynosi Aa, a zwrot określa re­guła śruby prawej (jeśli obracamy śru­bę prawą w kierunku ruchu promienia wodzącego, to ruch postępowy śruby wskazuje kierunek a<y. ). Iloraz Aa /a ijest miarą średniej prędkości kątowej, jaką ma punkt materialny mię­dzy P i Q; dokładną wartością (chwilową) prędkości kątowej (w s“1 ) jest granica tego wyrażenia, gdy At zmierza do zeraAa d cc1 im ----- * — = to •At—O At dt (1.5)Rozumując analogicznie możemy określić chwilowe przyśpieszenie ką­towe jako przyrost prędkości kątowej na jednostkę czasu (w a'2)o d to d a ----  = —5- » e. (1.6) dt dt*Widzimy, że zarówno prędkość kątowa w jak i przyśpieszenie kąto­we e są wektorami prostopadłymi do płaszczyzny ruchu punktu, a ich zwrot określony jest regułą śruby prawej.



15Zatrzymajmy się jeszcze przy zagadnieniu obrotów o nieskończenie małe kąty. Niech będzie wersorem wzdłuż pierwszej osi obrotu,wo­kół której obracamy układ współrzędnych o kąt dę^ (rys. 1-5). Podo­bnie niech e2 oznacza wersor wzdłuż drugiej osi obrotu, wokół któ­rej obracamy układ współrzędnych o kąt d<p2. Każdemu kątowi obrotu możemy wówczas przypisać wektor—i = -i dtpi’ (1.7)a prawo dodawania takich obrotów o nieskończenie małe kąty ma postać^1 d^ + e2 • d<₽2 = e^ • dę^ (1.8)

Hys. 1-5Oznacza to, że dwa obroty di d®2 możemy zastąpić jednym ob­rotem o kąt d^^ wokół osi e-j. Jeśli wszystkie obroty zachodzą w tym samym czasie dt, czyli osie obrotu Bp e2 są Osiami chwilowy­mi, to ponieważ d<p.«i • 77 - “i dtotrzymuj emy w1 + Wg = w-. (1.10)(1.10) jest prawem dodawania prędkości kątowych wokół chwilowych osi obrotu. Wektor e^dcp^ = w^ dt jest przekątną równoległoboku,skon­struowanego na wektorach składowych dt i “2 dt (rys. 1-5).Przykład: Obracamy układ współrzędnych ryz wokół osi x o 3°, a następnie wokół y o 4°. Znaleźć zastępczy kąt obrotu wokół osi wypadkowej.



16 Niech wersorami w tym układzie będą e1 i e2, przy ozym ęa1//x, e2//y« Kolejne obroty możemy zanotować według (1.8) w następujący sposób + 4e,2 ® —3 ^3’

Rys. 1-6

przy ozym e., jest wersorem wzdłuż nowej osi obrotu, a dę^ wypadkowym kątem obrotu (rys. 1-6). Jedli tę równość pomnożyć skalarnie przez nią samą, to o- trzymamydcp3 = (32 + 42)1/2 - 5°,00 daje nam wielkość obrotu dcp^. Kierunek nowej osi obrotu wyz­nacza wersor
£.3 = 5 £-| + £2 = °’6 -1 + 0,8 —2*Z rysunku 1-6 widać, że z osią x kąt a taki, że e^ który leży w płaszczyźnie x,y, tworzy

a x arc cos 0,6 « 53,13°.W ten sposób uzyskaliśmy wartość kąta obrotu zastępczego i orien­tację nowej osi obrotu. Wyniki te możemy sprawdzić za pomocą rozważań trygonometrycznych. Rozważmy zmianę położenia punktu (0, 0, 1), leżą­cego na osi z w odległości jednostkowej od początku układu. Wskutek obrotu e1 d<p1 punkt przesunie się o Ay = sin 3°, a następny obrót przesunie-ten punkt dodatkowo o odoinek A x = sin 4°.Wypadkowym prze­sunięciem jest Ar, przy ozymAr = (Ax2 + Ay^)^^ = sinq>3, zatem q> 3 = 5,003°. Ponadto . V Qoos a = — = cos 53,12 .Widzimy, że raohunek bezpośredni daje wartości bardzo dobrze zgo­dne z prawem addytywności (1.8). Zgodność ta będzie dobra tak długo, jak długo błąd przybliżenia sin © = <p nie będzie zbyt duży.



171.4» Ruch krzywoliniowy
(1.11)
(1.12)

Biech r będzie wektorem wodzącym punktu materialnego względem dowolnego punktu 0. Oznaczmy długość r przez R, zaś p nieoh ozna- czas wektor jednostkowy w kierunku r. Mamy r ■ R • p oraz dr dR d p—* _ v “ p — + R ~~ dt — dt dtPierwszy składnik sumy z prawej strony (1.12) jest składową pręd­kości, wynikającą ze zmiany długości R. Kierunek tej składowej pręd­kości jest taki sam, jak kierunek r. Druga składowa wynika ze zmiany kierunku r (rys. 1-7).

Rozważmy wpierw sytuację gdy dp/dt ■ 0, czyli przesunięcie punk­tu materialnego zachodzi wzdłuż prostej o kierunku r. Mamy wówczas dR v = p — " x dtoraz dv d2R— = P —7 = Sg. (1.13)dt ~ dt^Wyrażenie (1.13) jest składową styczną przyśpieszenia, którego skutkiem jest zmiana liczbowej wartości prędkości.Przyjmijmy teraz z kolei, że R = oonst oraz żedp—= » b ® const dt — (1.14)



18 Z pierwszego z obu założeń wynika, że punkt materialny porusza się po okręgu. Aby zbadać co wynika z drugiego założenia, przyjmiemy

kość kątowa da
ożyli mamy do czynienia z ruchem

układ współrzędnych x1, x2 w płasz­czyźnie ruchu oraz wersory ^//x^ i e2//x2 (rys. 1-8).Możemy wówczas na­pisać p ■ ooe a + e,2 sin a oraz ~dP_ da----  «ba (-e. sin a + eo cos a) —— dt--------------------------------------------- T dt 'Na podstawie (1.14) mamyb • b = oonst ■(o 2 2■ | — | (sin^a + cos a) « w . \dt /Widzimy więc,że założenie (1.14) jest równoważne stwierdzeniu,iż pręd-
■ const, (1.15)jednostajnym po okręgu. Wobec tegoa ■ a> • t (1.16)oraz p = cos wt + ę,2 sinwt. (1 .17)Każda ze składowych (1.17) przedstawia drganie harmoniczne proste o częstości kątowej u . Dochodzimy więo do wniosku, że ruch po okręgu można rozłożyć na dwa drgania harmoniczne proste o tej samej częstoś­ci i amplitudzie, odbywające się w kierunkach wzajemnie do siebie pro­stopadłych,Z (1.17) wynika jeszcze jeden ważny wniosek; z (1.12) i (l.17),po założeniu R ■ const, mamydp < ir • —= ■ v « R wl-e. sin w t + eo oosw tj dt “ 1oraz V • V a V2 « (0 2R2, czyli Iv| - w R. (1.18)Jest to liczbowy związek między liniową i kątową prędkością punk­tu w ruchu po okręgu. Wszystkie trzy wielkości w (1.18) są wektorami 



19wzajemnie prostopadłymi; w szczególności vi u i v x r. Na podstawie rysunku 1-9 widzimy, żev = w x r, (1.19)czyli prędkość liniowa jest iloozynem wektorowym prędkości kątowej i pro­mienia okręgu.Przyspieszenie w ruchu po okręgu otrzymamy różniczkując podane wyraże­nie określające prędkość v.:d2P „

i przyspieszenie normalne2 v2a_ - w R = -2~ a Rprzy czym R oznacza lokalny pro­mień krzywizny toru. Ogólne przy­spieszenie punktu (rys. 1-10)

R • -—5 ■ -w R(e. cos wt + eo sin wt)= dt‘ "2« - w2R p - - w2r. (1.20)W ruchu jednostajnym po okręgu występuje przyspieszenie o nastę­pujących własnościach:i. jest proporcjonalne do promienia okręgu R,li. ma kierunek przeciwny do P, czyli skierowane jest do środka okręgu.Przyspieszenie o tyoh własnościach nazywamy przyspieszeniem nor­malnym Liczbowa wartość tego przyspieszenia wynosi(^ * - an = w2R » ~ . (1.21)
W dowolnym ruchu krzywoliniowym przyspieszenie chwilowe a możemy zatem rozłożyć na dwie składowe: przyspieszenie styczned li i

lub a - an + a
• - <4. 4>1/2

(1.22)(1.23) Rys. 1-10



20zawiera ze etyczną do toru (kierunek prędkości) kąt <p taki, że tg<p = . (1.24)asZróżniczkowanie <1.19) dla przypadku ruchu po okręgu (R = const) prowadzi do związku między przyspieszeniem kątowym i liniowym w ruchu ze zmienną prędkością kątową: a « e x r. (1.25)



2. ZASADY DYNAMIKI
W niniejszym rozdziale zajmiemy się bliższym sprecyzowaniem przy­czyn, decydujących o charakterze ruchu punktu materialnego. Podstawo­wymi prawami są w tej dziedzinie trzy zasady ruchu, podane przez New­tona. W dalszym ciągu przypomnimy je w sposób zwięzły.zaopatrując je­dynie krótkim komentarzem.

2,1, Zasady ruchu NewtonaI zasada (prawo bezwładności): Punkt materialny pozostaje w sta­nie spoczynku lub porusza się ruchem prostoliniowym ze stałą szybkoś­cią, jeśli nie działają nań żadne siły lub siły wzajemnie się równo­ważące.Właściwość ciał, polegającą na zdolności zachowywania stanu ru­chu,nazywamy bezwładnością lub inercją. Do obserwacji stanu ruchu po­trzebujemy układu współrzędnych, względem którego odczytujemy położe­nie ciała. Z punktu widzenia I zasady każdy układ spoczywający lub poruszający się ruchem postępowym ze stałą szybkością jest jednakowo dobry (zasada względności Galileusza)} układ taki nazywamy inercyj­nym. Bezwładny ruch ciał może być obserwowany tylko z inercyjnego układu współrzędnych. Gdybyśmy punkt materialny, poruszający się ze stałą prędkością wzdłuż prostej, obserwowali w nieinercyjnym układzie współrzędnych, wykonującym na przykład ruch obrotowy, wówczas według takich obserwacji ruch punktu byłby krzywoliniowy, a więc sprzeczny z I zasadą. Wobec tego układ współrzędnych, poruszający się ruchem ob­rotowym (np. układ sztywno związany z Ziemią) nie jest dobrym układem odniesienia z punktu widzenia I zasady Newtona.Jednocześnie możemy stwierdzić, że ze względu na równoważność wszystkich układów inercyjnych, pojęcie prędkości bezwzględnej nie ma 



22sensu. Okazuje się, że owa równoważność inercyjnych układów odniesie­nia sięga jeszcze głębiej w strukturę podstawowych praw fizyki, co znajduje swój wyraz w zasadzie niezmienniczości Galileusza? Podstawo­we prawa fizyki mają jednakową postać we wszystkich układach odnie­sienia, poruszających się względem siebie ruchem prostoliniowym ze stałą prędkością.II zasada (definicja siły). Z pierwszej zasady wynika, że wszel­kie czynniki, powodujące zmianę stanu ruchu punktu materialnego muszą pochodzić z zewnątrz; nazywamy je siłami. Ponieważ wielkością podsta­wową, opisującą zmianę stanu ruohu jest przyspieszenie,definiujemy je jako wielkość proporcjonalną do siły F i odwrotnie proporcjonalną do masy m punktu materialnego. ZatemF = m • a. (2.1)Równość (2.1) jest definicją siły, jej jednostką jest 1 niuton:1 H ■ 1 kg •(m/s ). Siła jest wektorem, równoległym do przyspiesze­nia a; jeśli na punkt materialny działa więcej niż jedna siła, wów­czas (2.1) możemy uogólnić do postaci2

2 ii * °- (2.3)Układ sił (2.3) nazywamy układem sił równoważących się wzajemnie; należy zwrócić uwagę, iż wszystkie F^ przyłożone są do tego samego punktu.Druga zasada jest również słuszna tylko wtedy, gdy obserwacji do­konujemy w układzie odniesienia, nie mającym własnego przyspieszenia. Gdyby ktoś stanął na obwodzie poruszającej się karuzeli, to może stać spokojnie dopiero wówczas, gdy przechyli się tak, by składowa jego 2ciężaru wzdłuż średnicy karuzeli wynosiła akurat m <0 R, a więc aby równoważyła siłę odśrodkową. Przebywanie w nieineroyjnym układzie od­niesienia powoduje, że przyspieszenie jest różne od zera, mimo braku przyłożonej z zewnątrz siły; wynika ono bowiem z niejednostajnego cha-

sm • a - 2 (2.2)i=1przy czym sumę po prawej stronie należy rozumieć jako dodawanie wek­torowe, zaś siły jako liniowo niezależne. Przyspieszenie punktu materialnego jest więc określone przez jego masę i sumę wektorową wszystkich sił, nań działających. Szczególnym przypadkiem działania tych sił jest a = 0; z (2.2) wynika wówczas 



23rakteru ruchu samego układu. Innymi słowy, w układzie nieineroyjnym F / m s; oba wyrażenia różnią się o ozłon, wynikający z względnego przyspieszenia obu układów (nie będziemy się nim szerzej zajmowali). Przebywanie w nieinercyjnym układzie odniesienia może wywołać niekie­dy znaczne skutki, jak tego przykładem jest ultrawirówka: na cząstkę zawieszoną w cieczy w zbiorniku wykonującym 1000 obrotów na sekundę (6»10^ rad/s) działa w odległości R = 10 cm od osi obrotu przy­spieszenie odśrodkowe a *w2R » 4*10^ m/s2, czyli około 400 000 razy większe od przyspieszenia ziemskiego, g ■ 9,81 m/s .Również Ziemia i związany z nią układ współrzędnych porusza się ruchem obrotowym i nie stanowi inercyjnego układu odniesienia.Związa­na z tym ruchem prędkość kątowa wynosi mQ ■ (2ti/86400)s"1 = 0,73’10“^ rad’s"1. Ponieważ R ■ 6,37-W6 m, zatem a„ - (0,73»10"4)2’(6,4’1O6)^ 2 °■ 3,4 om/s . 0 tę wartość przyspieszenie ziemskie powinno być większe na biegunie, niż na równiku. W rzeczywistości różnica ta jest nieco większa ze względu na spłaszczenie kuli ziemskiej i wynosi 5,2 cm/s2.Przyspieszenie ziemskie na biegunie północnym - 9,83245 m/s2. Przyspieszenie ziemskie na równiku - 9,780 m/s2.III zasada: Jeżeli ciało A działa na ciało B siłą ?AB, to ciało B działa również na ciało A siłą ₽BA taką, żeFAB + PBA ” °* (2.4)Obie siły, i F^, zwane są siłami wewnętrznymi układu, złożo­nego z ciał A i B. Siły te przyłożone są do dwóch różnych ciał} jeże­li mogą się one poruszać, to obecność sił wewnętrznych (2.4) wpływa na stan ruohu każdego ciałamA * aA + mB ’ aB * °’ ^2*5^czyli ciała A i B udzielają sobie nawzajem przyśpieszeń, odwrotnie proporcjonalnie do ich mas. Ze względu na własność (2.4) siły wewnę­trzne nie mają jednak wpływu na prędkość i przyśpieszenie układu, po­traktowanego jako oałość. Problemem tym zajmiemy się dalej, badając ruch środka masy. 2.2. Transformacja GalileuszaStwierdzenie o równoważności dwóch układów inercyjnych ze względu na postać podstawowych praw fizyki, możemy sformułować analitycznie. Należy w tym celu odpowiedzieć na pytanie, jaki jest wzajemny związek między współrzędnymi przestrzeni i ozasu x, y, z, t pierwszego ukła­du (oznaczmy go przez S) i współrzędnymi x', y', z*, t' drugiego u­



24kładu (oznaczonego przez 3*). Mając takie przekształcenie (transfor­mację) S(x,y,z,t) —— S^^^y^z^t*), możemy poszukiwać postaci praw

Rys. 2-1

fizycznych w poruszającym się ukła­dzie S\ jeśli aą nam one znane 
w nieruchomym układzie S. W celu uproszczenia założymy» że ruch względny obu układów odbywa się wzdłuż osi x z prędkością V,osie y/$?' i z// z' pozostają równoległe (rys. 2-1). Rozważania ograniczymy ponadto do prędkości V $ 10^ m/s, znacznie mniejszych od prędkości światła w próżni: o « 3.108 m/s. Zagadnienie dużych prędkości» po­równywalnych z c, stanowi osobny problem, którym zajmierny się w rozdziale 5. Zauważmy jednak, iż prędkość V = 10^ m/s wcale nie jest taka mała: porównywalna jest z drugą prędkością kosmiczną v2 = = (2GMZ/R)1^2 » 11,2 km/s, gdzie G jest stałą grawitacji (por.2.18), Mz masą Ziemi, a R jej promieniem.Przy takich założeniach poszukiwane związki są bardzo proste i wy­nikają bezpośrednio z rys, 2-1.t. ■ t’, x = x* + V’t, y » y*, z = z'. (2.6)Układ równań (2.6) nosi nazwę transformacji Galileusza i obowią­zuje dla prędkości V«c. Wynika z niej również prawo dodawania pręd­kości, ponieważ

czyli dx dx'— - — + V, dt dtv » v' + V. (2.7)Widzimy więc, że prędkość punktu materialnego w układzie S , u- mownie przyjętym za poruszający się, równa jest prędkości tego samego punktu odczytanej w układzie S, umownie przyjętego za nieruchomy,po­mniejszonej o względną prędkość obu układów.Ponieważ V = oonst, zatem dv dv' —- 3     _ dt dtą = ą\czyli (2.8)



25Ze względu na m = m* (V <<o), równieżF « F', (2.9) ożyli przyspieszenia i siły, mierzone w dwóch układach, inercyjnych, są takie same. 2.3. Zasada zachowania pęduZobaczymy obecnie, jakie wynikają wnioski z przyjęcia słuszności transformacji Galileusza dla dwóch układów inercyjnych. Dla układów tych założymy ponadto, że w każdym z nich jest spełnione prawo zacho­wania masy i prawo zachowania energii.Mamy dane dwie cząstki swobodne o masach odpowiednio m1 i niech ioh prędkości w układzie S wynoszą przed zderzeniem v1 i v2, a po zderzeniu w. i w2. Zderzenie w ogólnym przypadku nie musi byó sprężyste, a więc do energii kinetycznej po zderzeniu trzeba dodaó ozłon Ae , równy energii odkształcenia niesprężystego obu kul i ewentualnie innym rodzajom energii (ciepło, światło). Ze względu na sens fizyczny Ae , ozłon ten jest taki sam w układzie s" jak iw S; dla zderzenia sprężystego Ae =0. Jeśli T jest energią kinetyczną obu cząstek, to w układzie S mamy2T = m^^ + m2V2 ~ m1w1 + m2W2 +Ae * (2.10)a w układzie S*» *2 * 2 * 22T a = ^1^1 ^2^2 "•'△s ^2 11 )Podstawiając obecnie ii = -v-i ,, (2.12)Wj = wy - Voraz korzystając z zasady zachowania energii, i' = T, mamym^^ - 2m1?1 • V + m^ + m2v2 - 2m2V2V + m2V « 2 2 2 2» m^w1 - 2m^w1 «V + m^lT + m2w2 - 2m2w2V + m2V +Ae .Po redukcji wyrazów i skorzystaniu z (2.10) otrzymujemy(m^^ + m^g) *V » (m1w1 + mgWg) «V, czyli m1v1 + m2v2 = m1w1 + m2Wg. (2.13)Widzimy, że suma pędów obu kul przed zderzeniem jest równa sumie pędów tyoh kul po zderzeniu; stwierdzenie to stanowi zasadę zachowa- 



26Hia pędu. Można ją więc uważać jako naturalną konsekwencję słuszności transformacji Galileusza i zasady zachowania energii. Warto zwrócić uwagę, iż zasada zachowania pędu jest również spełniona w tym przy­padku, gdy część energii kinetycznej, As , zostaje przekształcona w zderzeniu na inne postacie energii. Innymi słowy, pęd zachowany jest również w zderzeniu niesprężystym. Me można tego samego powiedzieć o energii i to w zasadzie z tego powodu, że nie potrafimy obliczyć Ae w przypadku ogólnym w sposób niezależny, tj. nie wiemy jaka część energii kinetycznej ulega przekształceniu w inne postaci energii.2.4, Siła dośrodkowa i odśrodkowaPrzypuśćmy, że punkt kątową w po okręgu koła materialny porusza się ze stałą prędkościąo promieniu R (rys. 2-2). Z punktu widze-

dzenia obserwatora umieszczonego w układzie inercyjnym (Ul), znajdu­jącym się na zewnątrz okręgu, na punkt działa jedynie realne przyspie­szenie dośrodkowe
2Sn*'“ S,związane z zakrzywieniem toru. Przyspieszenie to wywołuje siła» -su 2R (2.14)zwana siłą dośrodkową.Ka ten sam ruch możemy spojrzeć również z punktu widzenia układu nieinercyjnego (UNl), związanego z punktem P i poruszającego się wraz z nim po okręgu koła (rys. 2-3). Mech przyspieszenie UNI wzglę­dem Ul wynosi a0; ogólne przyspieszenie punktu P względem układu nieinercyjnego wyniesie wówczas a » + ą^, a ogólną siłą, mierzo­ną w układzie nieinercyjnym będzie



27(2.15)Zauważmy, że iloczyn m*ao jest siłą tylko z formalnego punktu wi­dzenia; jest to bowiem iloczyn masy punktu i przyspieszenia nieiner- cyjnego. Oznaczmy
“ % Ł £o (2.16)i potraktujmy (2.16) jako siłę; trzeba jedynie pamiętać, że nie ma ta­kiej siły, realnie przyłożonej do punktu P.W naszym przypadku masa m jest nieruchoma względem nieinercyj- nego układu współrzędnych, czyli F » O, oraz» -m an » +mw2R. (2.17)Pozorną siłę (2.17) zwiemy siłą odśrodkową; jest ona skierowana na zewnątrz okręgu i równa liczbowo sile dośrodkowej dla stacjonarne­go ruchu po okręgu koła. Siłą dośrodkową w układzie rzeczywistym mogą być oddziaływania grawitacyjne (układy astronomiczne), elektrostaty­czne (atom), sprężystość nici lub sprężyny (masa przyczepiona do nici lub sprężyny), siła adhezji (kropla cieczy na obwodzie koła). Są to wszystko siły rzeczywiste, mające określoną wartość, kierunek i punkt przyłożenia.Jeśli znajdujemy się wewnątrz pojazdu, poruszającego się ze stałą prędkością kątową po okręgu koła, to doznajemy również działania si­ły, skierowanej na zewnątrz okręgu; nie jest to jednak ani siła przy­łożona, ani nie wynika z obecności pola. Wynika ona jedynie z konser­watywnej własności masy, polegającej na tendencji do zachowania pędu (prędkości), rozumianego jako wektor. W celu zachowania równowagi me­chanicznej w przykładzie z pojazdem poruszającym się po okręgu koła, musimy pochylić się w taki sposób, by radialna składowa naszego cię­żaru równoważyła siłę odśrodkową. I to jest właściwy sens wprowadze­nia siły odśrodkowej: uwzględniamy ją w tym celu, aby otrzymać zrów­noważenie realnie działającej siły dośrodkowej, co w rezultacie poz­wala uzyskać w układzie obracającym się (a więc nieinercyjnym) przy­spieszenie równe zeru, czyli stan stacjonarny ruchu.2,5, Prąwo grawitacji NewtonaDowolne dwie masy punktowe M1 1 M2 przyciągają się wzajemnie si­łą M. • M rF = -G • ——g-2 • ---- , (2.18)r r 



28przy czym r/r jest wektoręm jednostkowym skierowanym umownie od M^ do Mg, a G jest stałą grawitacyjną o wartościG - 6,67*1O~^ N«m2/kg.Siła grawitacji jest siłą centralną, tj. leży wzdłuż linii łączą­cej masy punktowe i Mg. Masa M występująca w (2.18) jest masą gra­witacyjną w odróżnieniu od masy m, występującej w II zasadzie Newto­na F « m'a i zwanej masą bezwładną. Równość tych mas nie jest oczy­wista i została stwierdzona doświadczalnie. Jeśli więc przyjmiemy M-p » m, gdzie m jest masą bezwładną dowolnego ciała, zaś Mg= M2 jest masą Ziemi oraz oznaczymy M £G —§ • ----  = - g, (2.19)r rgdzie £ jest wektorem przyspieszenia ziemskiego, toF = m • g (2.20)jest ciężarem ciała o masie m w polu ciężkości Ziemi.2.6. Prawo OoulombaPrawo to ma postać strukturalnie identyczną z prawem Newtona po­wszechnej grawitacji, co wynika z dużego podobieństwa pola grawitacyj­nego do pola elektrostatycznego: oba są polami potencjalnymi.Bardziej szczegółowo zajmiemy się tą kwestią w rozdziale 6.Siła działająca między dwoma ładunkami może być dodatnia, jeśli są one jednoimienne lub ujemna, jeśli mają znaki różne. Oznaczając dwa ładunki punktowe przez q1 i q2, zaś odległość między nimi przez r (również i tu promień jest skierowany umownie od q^ do qg), możemy zapisać siłę Ooulomba w następującej postaci
r rprzy czym znak (+) odpowiada sile odpychania, (-) sile przyciągania,a k jest współczynnikiem, zależnym od wyboru jednostek. Jeśli pracuje­my w układzie jednostek cgSE, to możemy położyć k » 1; prawo Coulom- ba stanowi wówczas podstawę do określenia jednostki ładunku, ponieważ jednostki P i r zostały zdefiniowane uprzednio. W układzie jednos­tek SI, którym się posługujemy, jednostkę ładunku określa się na pod­stawie działań magnetycznych dwóch przewodników z prądem; jest nią 1 coulomb (10). W takim razie nie można przyjąć k równego jedności 



29(podobnie, jak w prawie Newtona}, lecz trzeba wyznaczyć je doświad­czalnie 1k = ,™™„ , (2.21)4 * £0—12 2 2gdzie e - 8,85'10 C /Nm jeat przenlkalnośoią dielektryczną próż­ni. Można przyjąć z wystarczającą dla nas dokładnościąk = —-— = 9,0«1°9 N-m2/C2.4Tte0Druga cecha, odróżniająca siły elektrostatyczne od grawitacyjnych polega na tym, że siła Coulomba zależy od własności ośrodka, w którym umieszczone są oba ładunki; nie znamy takiej zależności dla siły dzia­łającej między dwiema masami. Okazuje się, że w każdym ośrodku mate­rialnym siła Coulomba jest mniejsza, niż w próżni; decyduje o tym względna przenikalność ośrodka, oznaczana przez e • Pełne prawo Cou­lomba ma zatem postać + 1 9, q2 £ .F - i ----------- . ——. (2.22)4u e e0 r r 
2,7- Praca mechaniczna i mocPracę, wykonywaną przez przyłożoną siłę na drodze Ar defi­niujemy jako iloczyn skalarny siły i przesunięcia

Rys. 2-4

(2.23)



30 Zakładamy przy tym, że siła Pp jest stała na oałym odcinku Ar. Wyrażenie (2.23) przedstawia pracę elementarną, określoną dla bardzo małego odcinka Ąr. Jeśli punkt materialny jest przesuwany na skoń­czonej drodze od punktu A do B (rys. 2-4), to korzystając z (2.23), możemy zapisać pracę w następujący sposóbN (i)W (A — B) - WAB S 2 Fp • .i=1Prawa strona tej równości jest wyrażeniem przybliżonym, ponieważ wartość sumy zależy od wielkości przesunięć elementarnych Ąr^, na które podzieliliśmy drogę AB. Dokładne wyrażenie otrzymamy przecho­dząc z A r^ do przesunięć nieskończenie małych drBWAB -f Fp • dr. (2.24)AJednostką pracy jest 1 dżul: 1 J » 1 N*m.Pracę wykonaną w jednostce czasu nazywamy mocą. Jeśli praca WA$ została wykonana w ciągu t sekund, to średnia moo <P> wynosiW<P> - ----- , (2.25)tzaś moo chwilowa P - — . (2.25)dtZe względu na definicję (2.23) moo chwilowa siły przyłożonej wyno­si dW dr— * F • — = F • v (2.27)dt ~₽ dt -₽ "- jest więc iloczynem skalarnym siły przyłożonej i chwilowej prędkoś­ci punktu.Jednostką mocy jest 1 wats 1 w = 1 J/s.2.8. Energia kinetycznaPrzypuśćmy, że punkt materialny o masie m porusza się ruchem bezwładnym wzdłuż osi x inercyjnego układu współrzędnych. W chwili t » 0 przykładamy doń stałą siłę Fpj rozważmy ruch punktu pod wpły­wem tej siły zewnętrznej.



31W myśl II zasady przyspieszenie punktu wynosi•• a » x « mwobec tego po upływie ozasu t prędkość v(t) będzie wynosiłatv(t) » v + / -£ dt = v + —^ • t, 
° J m ° moprzy czym vQ Jest prędkością początkową w chwili t » 0« Otrzymuje­my z tego znane twierdzenie o popędzie siły
V* » m v - m vQ (2.28)Jeśli w chwilipo upływie czasu t t 0 mafia położeniem t m znajdowała się w jej będzie x(t) punkcie xQ, to

lub

x(t)Eliminacja t » o j o(m v - m v0)/^p prowadzi nas
’o “ (= ---  \V VFP. — (v22F P

2F (v2
2m t2do związku• + V2)o o

PP(I „2 mv’o mv02 (2.29)
o-^2 o

2

Fo o
mP

Zdefiniujmy obecnie energię kinetyczną punktu materialnego
i 2T » mv ; (2.30)T jest zawsze tylko funkcją prędkości punktu: T = T(±, y, ż). Na pod­stawie (2.29) widzimy, że jeśli siła F^ działa na punkt materialny, który może się poruszać, to praca tej siły równa jest zmianie energii kinetycznej punktu _ ■D Zpdr = |mv2 -|mv2. (2.31)A2.9, Liniową siła sprężystaJeśli na punkt materialny o masie m działa siła Fg o następu­jących właściwościach:



32 i. wielkość F, jest proporcjonalna do wychylenia punktu z pewnego £5położenia równowagi xQ,ii. zwrot F_ jest zawsze skierowany w stronę położenia równowagi, 8

X- — X >1 o

Rys. 2-6

to mówimy, że na punkt działa liniowa siła sprężysta. Ilustracją ta­kiej siły jest rys. 2-5, przy czym xQ jest położeniem równowagi. Dla 0 siła Fg jest ujemna, zaś dla wychyleń x2~ x0 < 0 dodatnia. W układach rzeczywistych, przy niezbyt dużych wychyleniach x - xQ, bezwzględna wielkość siły jest proporcjonalna do (x - xQ) i nie zależy od znaku wychylenia. Przykładem układu,w którym po- wstaje liniowa siła sprężysta może być elektron w atomie lub atom w ciele stałym; najprostszym mode­lem jest masa m, zawieszona na sprężynie (rys.2-6X -Jeśli e jest wersorem wzdłuż osi x, to (rys. 2-7) P_ » -C(x - x )£, (2.32)gdzie C jest współczynnikiem liniowej siły sprę­żystej. Liczbowo C równe jest sile, powstającej przy przesunięciu punktu o jednostkę długości; wy­miarem C jest 1 N/m.
h-----■--------------------------- ------- 1-------- - ----------------—
*o XRys. 2-7Obliczmy pracę wykonaną przez siłę przyłożoną Sp = +C(x - xQ)e (2.33)



33przy przesuwaniu punktu od xQ do x1. MamyX1 X1w(xq -*-x1) » Fp dr = J C(x - xQ)e dx e = xo xo“ ? C^x1 “ xo} “ C^xox1 X0) “• | 0{x1 - xQ)2 = ~ C(ax)2, (2.34)gdzie Ax » x1- x0 (2.35)jest pi'zesunlęciem punktu z położenia równowagi. Widzimy, iż praca przesunięcia jest proporcjonalna do kwadratu wielkości przesunięcia. Wynik ten jest charakterystyczny dla pracy w ogóle przeciw siłom sprę­żystym.Jeśli wybierzemy xQ = 0, x^ = x, to wyrażenie (2.34) zyska po­stać W(0 — x) = | C x2. (2.36)
2.10. Siły zachowawczeSiła jest zachowawcza, jeśli praca W (a B)stki z A do B wykonana przez tę siłę nie zależy od przesunięcia czą- drogi, lecz jedy-nie od położenia punktów A i B. Zachowawcze są w szczególności siły centralne, zależne wyłącznie od odległości r a nie zależne od kie­runku r. Do takich należą siły grawitacyjne (2.18) i elektrostatycz­ne (2.22); dla każdego punktu, leżącego na powierzchni kuli o promie­niu r siła (2.18) lub (2.22) jest taka sama.Innego typu jest siła, działająca np. między dwoma dipolami magnetycz­nymi (rys. 2-8). Zależy ona nie tylko od odległości r między środkami di­poli, ale także od kąta <p między ioh kierunkami; zatem P(r,<p). Praca prze­suwania dipola zależy od r i jesz­cze dodatkowo od sposobu poruszania się dipola - siły tu występujące nie są zachowawcze.Również siły tarcia są niezachowawcze, ponieważ praca siły przyłożonej przeciwko sile tarcia przechodzi w formy energii bezużyteczne w mechanice (ciepło).Wróćmy jednak do sił centralnych. Mamy udowodnić, że praca prze­sunięcia masy m z punktu A do punktu B jest niezależna od tego, czy



34

Rys. 2-9z A do B idziemy po drodze 1, ozy po drodze 2 (rys. 2-9). Podzielmy teraz przesunięcie z A do B za pomocą łuków koncentrycznych. w 0 na przesunięcia elementarne da/1) i de/2), odpowiednio po drodze 1 i 2. Wybór punktu 0 jest zupełnie dowolny - w szczególności możemy go wybrać na jednej prostej z A i B. Elementy pracy dw/1) i dw/2) mo­żemy obecnie wyrazić w następujący sposóbdw/1 ) = j?/1) ^s/1) « f/1^ da/1) cos tp/1) -= f/1} dr^1^ ^F1dг1« f/2) dr/2) - (2.37J- f/2^ ds/2) cos q>/2) - f/2) dą/2) - dw/2\ponieważ siła F^ jest siłą centralną i F4 ■ f/1) » Fi^2). Wobec *e~ J d/1) = J F dr - J F^2) d/2). (2.38)A AA



352.11. Energia potencjalnaJeżeli aiła przyłożona Fp wykonuje pracę w taki sposób, że nie zachodzi zmiana energii kinetycznej punktu materialnego (dT ■ 0), to skutkiem wykonanej pracy jest zmiana energii potencjalnej U punktu materialnego BW(a — B) = j Fp-dr " U(b) - U(a); dT = 0. (2.39)ASiła Fp jest zachowawcza, wobec tego energia potencjalna jest wyłącznie funkcją położenia punktu materialnego; ogólnie - jeśli w ja­kimś układzie działają tylko siły zachowawcze, to energia potencjalna U tego układu jest funkcją jedynie współrzędnych jego części (a nie np. prędkości): U * U(x,y,z).Równanie (2.39) wymaga pewnego komentarza. Siła przyłożona, F , skierowana jest przeciwnie do siły wewnętrznej, działającej na punkt materialny, np. przeciwnie do liniowej siły sprężystej F0 (por.2.9). Dodatkowo wymagamy w (2.39), by praca F$ nie spowodowała zmiany ener­gii kinetycznej punktu a to znaczy, że Fp może się różnić tylko nieznacznie od Pg: P ~ Ł - 0. (2.40)Taki proces (tu - przesuwanie punktu) odbywa się niesłychanie po­woli; jego cechą charakterystyczną jest to, żei. biegnie bardzo blisko stanu równowagi między siłami wewnętrz­nymi układu (tu F ) i siłami przyłożonymi z zewnątrz (tu F ), —8 pii. może zachodzie w jedną lub drugą stronę.Jeśli |Fp| - | Fg | >0, to pracę wykonuje siła zewnętrzna, jeśli zaś |Fp| - | Fg | <0, to pracę wykonuje siła wewnętrzna układu. Proces o tych dwóch cechach nosi nazwę procesu quaei-statyoznego i odgrywa dużą rolę zarówno w fizyce jak i w chemii fizycznej. Rzecz w tym, że spośród wszystkich możliwych sił, dokonujących przesunięcia punktu ma­terialnego z A do B (ogólnie: powodujących zmianę stanu układu ze stanu A do stanu B), siła Fp, odpowiadająca procesowi quasi-staty- cznemu, czyni to najoszczędniej. Ponadto proces quasi-statyczny umoż­liwia nam zastąpienie sił zewnętrznych, niekiedy nie znanych, Siłami wewnętrznymi układu, a przez to wprowadzenie do obliczanej pracy in­formacji charakterystycznych dla układu. Bardziej szczegółowo może się Czytelnik zapoznać z zagadnieniem procesów quasi-statyoznych w termo­dynamice, stanowiącej jeden z rozdziałów chemii fizycznej.



36 Zauważmy obecnie, że zgodnie z definicją (2.39) ściśle określona jest nie energia potencjalna, lecz jej różnica dla dwóch położeń pun­ktu materialnego. Jeśli dla jednego punktu przyjmiemy dowolnie jakąś określoną wartość energii potencjalnej, to określona będzie również energia w drugim punkcie. Najczęściej przyjętym punktem odniesienia jest
A (2.41)czyli energię potencjalną punktu materialnego w nieskończoności przyj­mujemy za równą zeru. Jest to logiczne następstwo tego faktu,że ener­gia potencjalna pojawia się zawsze wskutek występowania oddziaływań naszego punktu materialnego z innymi ciałami z otoczenia. Mogą to byó ciała wywołujące działania grawitacyjne lub elektrostatycznejmoże to być również sprężyna, przyczepiona jednym końcem do naszego punktu, a drugim do innego ciała, itd. Jeśli teraz punkt materialny znajduje się w nieskończoności, to nie oddziałuje z niczym, zatem jego energię potencjalną można przyjąć za równą zeru. Energia potencjalna punktu materialnego jest wówczas równa pracy przesunięcia punktu z nieskoń­czoności do położenia określonego wektorem wodzącym r r ru(r) “ y £p dr “ - f -“-r). (2.42)

We wzorze (2.42) siła F^ » -Fp jest siłą wewnętrzną układu.Posługując się pojęciem siły wewnętrznej możemy napisać (2.42) dla jednego wymiaru (wzdłuż osi z) xU(x) - U(A) * ~ f Fw dzAlub dU(x)— - - F . (2.43)dx wZ (2.43) wynika, że pochodna energii potencjalnej względem współ­rzędnej równa jest ze znakiem przeciwnym działającej w tym kierunku sile wewnętrznej układu. Wynik ten możemy uogólnić w następujący spo­sób? jeśli oznacza wersor w kierunku osi x^, top1 Z“ + —2 * ^3 u(xvx2,x3) - - Fw.Wyrażenie w klamrze jest tzw. operatorem^ operator ten jest roz­kazem obliczenia pochodnej cząstkowej funkcji energii potencjalnej 



37względem każdej współrzędnej i zaopatrzenia tej pochodnej w odpowied­ni wersor. Operator ten jest bardzo często spotykany w fizyce i nosi nazwę gradientu; oznaczamy go symbolem v (czytaj: "nabla").£ _J_ + » _J_ + £ ~~ & V. (2.44) J $x3Formalnie możemy traktować y jako wektor, a wyrażenieyu(x1x2x^) jako iloczyn wektora gradientu i funkcji skalarnej; iloczyn taki jest oczywiście wektorem. Zatem (2.45)Niech teraz F w będzie siłą centralną, na przykładF„ w -G m1m2
w takim razie B 

r m.m« mi®o f ,F dr » G ~~~ - G -J-Ł » - ^U(B) - U(a) V W _ „ lA rB rAJeśli dla r^ przyjmiemy u(a) — 0oraz rB = r, u(b) = U(r), to energię poten­cjalną masy mg względem masy m1 przedsta­wia wyrażenie . m,moU(r) = - G . (2.46)rNad powierzchnią Ziemi (rys. 2-10) ener­gię potencjalną masy m zapisuje się zwykle w następujący sposób (k jest wersorem wzdłuż osi z, prostopadłej do powierzchni)zU(0 —z) = - J1 ?w dz = z°
» J mgk*dzk » mgz. (2.47) o Rys. 2*102.12. Zasada zachowania energiiRozważmy wpierw przypadek szczególny: masa m znajduje się w chwili t » 0 nieruchomo nad Ziemią na wysokości h, po czym zaczyna 



33swobodnie spadać. W układzie masa-Ziemia jedyną siłą jest siła grawi­tacji; jest to siła centralna, a więc zachowawcza.i. Na wysokości h energia potencjalna wynosi u(h) = mgh, kine­tyczna l(h) = 0$ suma I + U = E jest zwana energią całkowitą, przy czym E(h) =■ mgh.ii. Podczas swobodnego spadania energia potencjalna maleje, kine­tyczna zaś rośnie. Obliczmy te wielkości dla wysokości z < h: U(z) ■ = mgz, l(z) = ~ mv2 = 1 m {/2g(h --z) } 2 = mg(h - z). Wobec tego E(z)= = mgh.iii. W chwili zetknięcia z powierzchnią Ziemi z = 0 oraz U(0) = = 0, T(o) = m(]/2gh )2 = mgh, zatem E = mgh.Przykład ten stanowi ilustrację zasady zachowania energii; w u- kładzie zamkniętym, tj. takim, w którym działają tylko siły wewnętrz­ne, całkowita energia układu jest wielkością stałą, jeśli siły wewnę­trzne są zachowawcze. Ruch poszczególnych części układu pod wpływem sił wewnętrznych nie ma wpływu na wartość energii całkowitej.

Rys. 2-11Rozszerzymy obecnie zasadę zachowania energii na układ otwarty, tj. taki, w którym działają również siły przyłożone z zewnątrz (rys. 2-11). Skutkiem działania tych sił jest wykonanie pracy, wobec ozego ulega zmianie stan układu. Przez stan układu rozumiemy w mecha­nice zbiór położeń r1, r2, ...» rn i pędów p1, P2, ...» Pn wszyst­kich n części układu. Przed działaniem sił zewnętrznych zbiór tych parametrów określa stan początkowy układu, np. stan A; energia całko-



39wita w tym stanie wynosi E^. Pod wpływem sił zewnętrznych zostaje wy­konana praca w(a — B) » WAB, przez co ulegają zmianie poszczególne r^ oraz części układu. Układ przechodzi do stanu B o energii Eg. Jeśli siły działające były zachowawcze, to zasada zachowania ener­gii ma postać n BEB - ■ "ab ’ 2, f ipli) ^1- (2-48)Aczyli zmiana całkowitej energii układu równa jest pracy sił przyłożo­nych. Jeżeli w układzie czynne są siły niezachowawcze, to uzyskana zmiana układu energii jest mniejsza od pracy sił zewnętrznych.2.13. Krzywa energii potencjalnejRuch punktu materialnego pod wpływem sił zewnętrznych możemy opi­sać w sposób analityczny, posługując się równaniami ruchu. Możemy te­go dokonać również w sposób bardziej poglądowy za pomocą krzywej ener­gii potencjalnej. Krzywa energii potencjalnej (lub powierzchnia ener­gii potencjalnej) jest graficznym obrazem zależności U(x,y,z), gdzie x, y, z są chwilowymi współrzędnymi poruszającej się masy m i cał­kowicie determinuje charakter ruchu. Dla uproszczenia przyjmiemy jed­nowymiarowy przypadek ruchu z krzywą U(x), przedstawioną na rys.2-12.

Rys. 2-12



40 Przypuśćmy, że rozważamy ruch punktu materialnego o energii cał­kowitej E1 o takim właśnie modelu krzywej potencjalnej® Na prawo od odciętej xq styozna do krzywej jest ujemna, czyli siła działająca na poruszający się punkt Px = -m(dU/dx) jest dodatnia. Wobec tego ruoh punktu w zakresie x0 < x < x^ będzie przyspieszony (niekoniecz­nie jednostajnie), w zakresie x^ < x < x2 opóźniony, itd. Energia całkowita E^x^ » ü(x1) + TCx^, przy czym U(x^) jest wyznaczone przez rzędną w punkcie x^. W ten sposób w dowolnym punkcie osi x mo­żemy wyznaczyć obie składowe energii. W szczególności T(x^)=0, czy­li E^ = u(x^)j ruoh na prawo od x^ jest niemożliwy, bowiem energia kinetyczna w zakresie x > x^ byłaby ujemna. Po osiągnięciu x^ punkt materialny "odbije się” i zawróci w kierunku przeciwnym do pierwotne­go. Dochodzimy zatem do wniosku, że ruch punktu materialnego o ener­gii całkowitej, np. B2, będzie ruchem periodycznym. Charakter tego ruchu zależy od analitycznej postaci funkcji ü(x) między punktami po­wrotu A i B.Przypuśćmy teraz, że ruch punktu materialnego odbywa się z nie­wielkim tarciem, jego energia E2 maleje z biegiem czasu, a punkty powrotu A i B zbliżają się do siebie. Nie dzieje się nic szczególnego do chwili, gdy U(x2) = E2. Jeśli energia E maleje w dalszym ciągu, to punkt będzie się poruszał wokół minimum U(x^) lub U(x^), a po cza­sie dostatecznie długim E = ü(x^) lub E = ü(xj). Stany te są stanami równowagi trwałej, ponieważ siły i P2, działające na punkt w oto­czeniu minimum są skierowane w stronę ekstremum. Nie jest takim sta­nem U(x2), mimo iż Fx = -(dU/dx)X2 = 0, gdyż siły działająca po obu stronach x2 skierowane są na zewnątrz ekstremum. Równowaga możliwa dla x » x2 jest metastabilna.Rozważmy obecnie bardziej szczegółowo charakter ruchu punktu w po­bliżu x^ zakładając, że dla niewielkich amplitud ruchu "dno” krzy­wej energii potencjalnej można przybliżyć parabolą o równaniuU(x) = | C x2. (2.49)Ponieważ energia kinetyczna T « (l/2)m i2, zatem dla energii cał­kowitej możemy napisać wyrażenieE = T + U = | C x2 + | m ż2. (2.50)Siły tu działające są zachowawcze, zatem3e™ «Cxi + miü’O. (2.51)3t



41Po podzieleniu przez x otrzymujemy równanie ruchu Newtona
lub
gdzie

m x + C x = 0
.. 2x + w x ■ 0,w o = C/m

(2.52)(2.53)(2.54)oznacza pewną wielkość stałą. Oczywiście C jest współczynnikiem si­ły sprężystej, ponieważ au------  = 0 x = -P_ ,ax----------------- xjest liniową siłą sprężystą. Łatwo się przekonać za pomocą dwukrotne­go różniczkowania, że rozwiązaniem (2.53) jest funkcja periodyczna ty­pu x(t) = Aq • cos wotlub x(t) = AQ • BinwQt, (2.55)przedstawiająca drganie harmoniczne proste; w0 jest częstością ką­tową tego ruchu.W ten sposób otrzymaliśmy następujący ważny wniosek: jeśli krzywa energii potencjalnej ma kształt paraboli, to ruch punktu materialnego o stałej energii całkowitej jest drganiem harmonicznym prostym.2.14. środek masy i jego ruchNa zakończenie tego rozdziału zajmiemy się krótko ruchem zbioru punktów materialnych i pokażemy, w jaki sposób skomplikowany opis ru­chu wielu punktów można zastąpić prostym opisem ruchu jednego punktu,będącego dynamicznym odpowiednikiem zbioru. Takim odpowiednikiem jest środek masy, który zdefiniujemy wpierw dla dwóch punktów material­nych m^ i mg. Położenie tych punk­tów będziemy oznaczać za pomocą wek­torów r^, wykreślonych z dowolnego punktu 0 (rys. 2-13), natomiast położenie środka masy S oznacza wektor r. Definicja położenia S jest następująca: środkiem masy dwóch punktów materialnych nazywamy taki punkt, który dzieli odcinek łą­ Rys. 2-13



42czący obie masy w stosunku odwrotnie proporcjonalnym do wielkości tych mas.Na podstawie rysunku 2-13 możemy napisaćr1 + AS = r, AS = r - r^,r + SB = r2, SB = r2 - r.Z definicji położenia środka masy otrzymujemym1 AS ° m9 SB . czyli m1 (e ~ Ep * m2(r2 ” stąd m1r1 + mor9r » _Ld-------2^2 (2.56)m^ + m2jest wektorem, określającym położenie środka dwóch mas.Wyrażenie (2.56) możemy łatwo uogólnić na położenie środka masy dowolnej liczby mas m1’ m2.......... “n n£ = M mi-i’ (2.57)gdzie M = Z m. (2.58)i 1 jest ogólną masą układu.Położenie wszystkich mas ulega zmianie z biegiem czasu; zmienia się również położenie środka masy. Przez zróżniczkowanie (2.57) otrzy­mamy “E = 2 Ef (2.59)iPęd środka masy jest równy sumie pędów poszczególnych punktów ma­terialnych. Stwierdzenie to wyraża przydatność pojęcia środka masy jako dynamicznego odpowiednika zbioru mas. Jednocześnie widzimy, że dla otrzymania prędkości środka masy należy obliczyć sumę wektorową pędów poszczególnych punktów materialnych i podzielić ją przez ogólną masę układu. W praktyce dokonujemy sumowania dla każdej osi układu kartezjańskiego współrzędnych ' oddzielnie; na przykład (2.59) możemy rozpisać w następujący sposób2 1 - 1.2,3. (2.60)



43Przez powtórne zróżniczkowanie (2.59) otrzymujemy- “ 2 miąi "ł Z -iz* (2.61)Symbol ?iz oznacza siłę zewnętrzną, przyłożoną do punktu maso­wego w sumie (2.61) można pominąć siły wewnętrzne, działające między poszczególnymi masami zbioru. Na mocy (2.4) mamy bowiem dla każdej pary punktów materialnych m^, m^
co oznacza, że suma wszystkich sił wewnętrznych jest równa zeru.W re­zultacie siły te nie mają wpływu na ruch środka masy. Według (2.61 ) przyspieszenie środka masy jest takie jak punktu, w którym zgromadzo­na jest cała masa układu, a siła doń przyłożona jest wypadkową wszys­tkich sił zewnętrznych, działających na poszczególne punkty material­ne. Równanie (2.61) możemy zapisaó jeszcze w następujący sposób= ę (ę ^ir (2-62)Jeżeli założymy teraz, że Z = 0, to d/dt( Z mi^i) ■ 0 oraz Z m4v. » const. Widzimy więc, że jeśli na punkty masowe nie działa- iją siły zewnętrzne lub ich wypadkowa względem środka masy równa jest zeru, to pęd układu punktów masowych, a zarazem i pęd środka masy, jest wielkością stałą. Stwierdzenie to jest zasadą Zachowania pędu dla zbioru punktów materialnych.



3. DYNAMIKA BRYŁY SZTYWNEJ
?.1. Dynamika punktu

3.1.1. Moment pędu punktu masowegoPrzypuśćmy,że punkt masowy porusza się dowolnym ruchem krzywoli­niowym. Momentem pędu lub krętem tego punktu względem dowolnie obra­nego punktu 0 (rys. 3-1) nazywamy wyrażenie:J » r x £ * m-r x v, (kg-m2)/s. (3.1)

Rys. 3-1Wektor J jest prostopadły do płaszczyzny r, v, a jego zwrot określa reguła śruby prawej: podczas obrotu od r do v o kąt mniej­szy od 180° kierunek ruchu postępowego śruby wskazuje zwrot J.Składowa J wzdłuż prostej (oś obrotu) przechodzącej przez 0 jest nazywana momentem punktu względem tej osi (J1).Jeśli P jest siłą, działającą na punkt masowy, to moment tej si­ły względem tego samego punktu 0 wynosi:M - Ł x P, N-m. (3.2)Zróżniczkujmy wyrażenie na J względem czasu:dJ dr dv— = m-— xv + mrx — = rxma»rxF = M,dt dt dt “ ~ ~ ~ “ponieważ v x v » 0.



45Zatem dJ/dt = M, ożyli szybkość zmiany krętu Jest równa momentowi aiły. 3.1.2. Prawo zachowania momentu pęduWarunek M »> 0 powoduje, żeJ » const.Jeżeli zatem moment siły zewnętrznej Jest (3.3)równy zeru, to kręt punktumasowego Jest wielkością stałą zarówno Warto tu zauważyć, iż z warunku M ■ > 0 niekoniecznie wynika F = 0 może być także r = 0. Kręt punktu masowego będzie więc stały i w tym przypadku, gdy działająca nań siła będzie leżeć w prostej, przechodzą­cej przez punkt 0 (ogólnie: przez oś obrotu).Zasada zachowania krętu prowa­dzi do ważnego wniosku w przypadku ruchów, odbywających się pod dzia­łaniem sił centralnych. Siła taka, którą ogólnie zapiszemy w postaci funkcji skalarnej f(r),Jest zawsze skierowana do lub od pewnego stałe­go punktu, niezależnie od aktualne­go położenia punktu masowego (rys.

co do wartości Jak i kierunku.

3-2). Niech e oznacza wektor Jednostkowy wzdłuż r, wówczas dla si-ły centralnej mamy:F(r) ■ e'f(r), (3.4)oraz r x F = e-r x e f(r) = 0, tzn. moment siły centralnej względem stałego punktu 0 Jest zawsze równy zeru. Wynika z tego, że dJ/dt =0, za­tem ruch punktu masowego, zachodzący pod działaniem siły centralnej, musi śię odbywać w jednej płaszczyźnie (rys. 3-3). Reguła ta ważna Jest zarówno w astronomii (np. ruch planet), Jak i w

oś obrotu
J

Rys. 3-3fizyce atomowej. Prosta ilustracja zasady zachowania krętu Jest omó­wiona w pkcie 3.3.



46 3.1.3. Moment pędu układu punktów masowychCałkowity moment pędu układu N punktów masowych względem wybra­nego punktu 0 wynosi: Ki = 2 mn-£n x Zn- (3.5)n=1Oczywiście wartość sumy po prawej stronie, a więo wielkość J, za­leży od wyboru punktu O. W ozczególnoścl możemy wybrać 0 w środku masy układu, korzystając z jego szczególnych własności.Położenie środr ka masy S względem 0 podaje wektor R, zaś pŁ określają położenia mas względem S (rys. 3-4).

Rys. 3-4
czyli

Wyrażenie
S + 2-i 3 Zi»Łi “ Ei - S-4 a 2 -i £1 1 (3.6)

(3.7)nazywamy momentem pędu układu punktów względem środka masy. Jest to wielkość dynamiczna, charakterystyczna dla zadanego układu punktów, ponieważ S zdefiniowany jest jednoznacznie. Po podstawieniu (3.6) do (3.7) otrzymujemy



47
V mi P x vi « V m^t-R + z Zi = i ” i= -R x ( 2 i m^^) + 2 m^^ x —i ~ “— x — + -’£ = J + R x P, (3.8)gdzie P = S oznacza pęd całego układu. W rezultacie otrzymu­jemy wniosek, że kręt układu punktów względem dowolnego punktu O rów­ny jest sumie krętu układu tyoh punktów względem środka masy i krę­towi środka masy względem tego punktu.Jeżeli siły wewnętrzne mają charakter sił newtonowskich, (a więc spełniają III zasadę), to 2 (F. . + F..) = 0. Można pokazać,że rów-11 1nież momenty tyoh sił względem 0 są równe zeru, tj.s2 Ąvewn. “ °*W takim razie dla układu punktów masowych otrzymujemy d—— J = M dt “ -zewa. (3.9)przy czym kręt w tym równaniu jest określony przez (3.8).Wynika z te­go wniosek, iż zmianę krętu całkowitego takiego układu może wywołać jedynie moment sił zewnętrznych.3.2. Moment pędu bryły sztywnejBryłą sztywną nazywamy ciało, w którym odległość dowolnych dwóch punktów-nie ulega zmianie pod działaniem sił zewnętrznych, przyłożo­nych do tych punktów.Podzielmy całą bryłę na małe elementy masy △ m^. Definiujemy kręt bryły sztywnej w następujący sposób:J=S (3.10)Ponadto iM » 2 r± x Pi (3.11)jest wypadkowym momentem siły, działającym na bryłę. W wyrażeniach tych r^ jest wektorem położenia elementu masy A m^, v± jego pręd­kością, zaś F^ siłą zewnętrzną doń przyłożoną. J oraz M muszą być odniesione do jednego i tego samego punktu 0, który często przyjmu­jemy w środku masy S bryły sztywnej.



48 Definicja (3.10) jest przybliżona, ponieważ wartość wyrażenia po prawej stronie zależy od wielkości elementów masy Am^, na jakie po­dzieliliśmy bryłę makroskopową. Dokładność tego przybliżenia zależy z jednej strony od dokładności określenia r^ dla elemenetów o skoń­czonej rozciągłości, z drugiej zaś od dokładności, z jaką można uważać za stałe wewnątrz elementu Am^. Niejednoznaczność tę można u- eunąć przez zastosowanie rachunku całkowego, o czym będzie mowa w pkcie 3.4.

Rys. 3-5Niech w najprostszym przypadku bryłą sztywną będzie cienka obręcz o promieniu r = const, która obraca się dookoła osi prostopadłej do niej i przechodzącej przez środek okręgu o promieniu r (rys. 3-5). Kręt obręczy wynosi:J « Sń m. (r x v) ■ x u i r = Mur2 - Mr(r • w ) =i 1 " o = Mr^w = ,przy czym M » Sń m^ oznacza masę całej obręczy (rys. 3-5).W rozpisaniu potrójnego iloczynu wektorowego skorzystaliśmy z toż­samości
Ą x (B x 0) = B«(ĄC) - C«(ĄB),której wywód znajduje się w podręcznikach analizy wektorów. W tym najprostszym przypadku mamy

J = !• w, (3.12)



49ptj. wektor _J jest równoległy do oai obrotu} zaś I = Mr jest mo­mentem bezwładności obręczy względem wybranej osi obrotu.W ogólniejszym przypadku obrotu bryły sztywnej opis dynamiki za­leży w istotny Sposób od następujących czynników:i. od wyboru osi obrotu. Do najważniejszych należą przypadki, w których oś obrotu przechodzi przez wnętrze bryły sztywnej, w dodatku przez jej środek masy S. Następuje wówczas obrót "gładki", bez uda­rów na oś obrotu.ii. od wyboru układu współrzędnych, do którego odnosimy składowe wektorów, występujących w dynamice. Najczęściej przyjmuje się, iż po­czątek układu współrzędnych jest umieszczony w środku masy S, co zna­komicie upraszcza równania ruchu.Dalszym uproszczeniem jest przyjęcie układu współrzędnych x, y, z inercyjnego, tj. nieruchomego lub poruszającego się ruchem jednos­tajnym wraz z całą bryłą. Ruch jednostajny nie wnosi jednak niczego nowego w naszym problemie; w dalszym ciągu zatem przyjmiemy,iż układx,y,s o początku 0 pokrywającym się ze środ­kiem masy S bryły sztywnej jest nieruchomy (rys. 3-6), tj.oś z jest zawsze skierowana w górę, y w prawo, a x w przód rysunku*\Obrót nastę­puje wokół osi ze stałą prędkością kątową w . Przyjęcie nieinercyjnego układu współrzędnych, tj. obracają­cego się razem z bryłą wokół wspól­nej osi obrotu wymaga uwzględnienia przyspieszenia własnego układu, co powiększa złożoność problemu;niekie­dy wybór takiego układu współrzędnych jest potrzebny.Względem układu inercyjnego mamy:
y^ « wx r^.

ri “ Łi<“ ‘-1^]»

J = « Zim, »r? -
- - x 11 A w^). (3.13)s i

X rJeśli wypadkowa sił zewnętrznych 
układ inercyjny, w którym środek masy S

równa jest zeru, to zawsze 
pozostaje w spoczynku.

istnieje taki



50 Rozpiszmy obecnie składową J, np.: Jx:2 “ S A “i xi(“x xi + “y ?i+ “z apJx = "x”“x A“i(ri" Xi}] ” "y £ Ami xi yi " “z 2 Am4 x1 z±. iOznaczmy: Z A “ xi^ “ Ixx’— A Xj yi “ Ixy’ (3.14)- 2 Am± xx 0 zi “

I ■ I , (3.16)|1V pv*tj. tensor momentu bezwładności jest symetryczny. Ta własność reduku­je liczbę niezależnych składowych tensora do sześciu.Korzystając z tych definicji możemy zapisać podstawowe równanie dynamiki bryły sztywnej w następującej postaci:

Wyrażenia te nazywamy składowymi momentu bezwładności względem u- kładu osi x y z. Na tej podstawie możemy zapisać składową Jx w po?» staoi J_ “ I»» w _ + w „ + w „ • x xx x xy y xz zPodobnie J « I w + I w + I w (3.15)y yx x yy y yz zoraz Jz m Izx “x + Tzy “y + Xzz wz’Widzimy więc, że dla ciała o dowolnym kształcie i rozkładzie masy kręt J nie Jest prostym iloczynem wielkości skalarnej I oraz pręd­kości kątowej wj w ogólnym przypadku J nie ma kierunku w.Zbiór składowych I etanowi 9 liczb,które noszą nazwę składowych tensora momentu bezwładności względem wybranego układu współrzędnych. (3.14) jest definicją trzech spośród niohj pozostałe określone są w analogiczny sposób. Ponadto z (3.14) widać iż

lub (J) = [I] ( o).

(3.17)
(3.18)



51Korzystając z (3.18) należy pamiętać, że w dowolnie wybx‘anym,leoz inercyjnym układzie współrzędnych x,y,z moment bezwładności jest tensorem o sześciu różnych składowych, przy czym wartość tych składo­wych zależy od wyboru układu x,y,z.Zmiana krętu bryły sztywnej pod wpływem momentu siły zewnętrznej zachodzi zgodnie z (3.9). Zauważmy, że zmiana krętu a J = M«At nie ma kierunku zgodnego ani z J ani z P, lecz jest prostopadła do płasz­czyzny r, P, a jej zwrot określa reguła śruby prawej.3.3. Przykład zasady zachowania krętu: rozpraszanie cząstek alfa przez ciężkie jądra (teoria E. Rutherforda)Doświadczenia dotyczące rozpraszania cząstek alfa doprowadziły do ustalenia średnicy jądra atomowego, co miało decydujący wpływ na dal­szy rozwój teorii atomu. Cząstka alfa substancji promieniotwórczej przechodząca w pobliżu jądra atomowego w ustawionej na jej drodze fo­lii metalowej, zostaje odchylona w polu sił kulombowskioh jądra (rys. 3-7). Kąt rozproszenia wynosi <p . Schemat rozproszenia jest przsdsta-

Rys. 3-7wiony na rys. 3-8. Cząstka alfa, poruszająca się z dala od jądra z prędkością vq zbliża się doń na najmniejszą odległość s; zarówno s jak i b, odległość jądra od asymptoty toru, stanowi parametry roz­proszenia.
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Rys. 3-8Przyjmujemy, te masa jądra atomu folii m^ jest nieskończenie du­
ża; założymy ponadto, że prędkość początkowa jądra wynoai 0, a zatem po odrzuceniu oząstki prędkość pozostaje 0 (inaczej mćwląo nie u- względniamy energii odrzutu). Masę oząstki alfa oznaczamy przez ma.Kręt cząstki względem jądraJo " ma*To*^‘Kręt w odległości e największego zbliżenia:Ja “ W8' o a oRuch zachodzi w polu siły centralnej, czyli Jo ■ Jg, a stąd vg ■ ■ v0>b/s jest prędkością cząstki w odległości s od jądra. Z zasady zachowania energii mamy:
gdzie U(s) jest energią potencjalną oząstki alfa w punkcie s. Ponieważ siła oddziaływania jest siłą CoulombaF = + 1 . (Ze)(2e)w A 2 *4 Tieo r



53zatem p 1 o r 1 1 2Ze2U(b) - / dr = -------- 2Ze2 / -w dr - —---- ------  .
i a r 3Mamy więo m v2 m v2 1 2Ze2 _a_2 . -Ł-Ł +-------- ------ .2 2 4ue0 aOznaczmy stały parametr p ■ 1/(4Tt£0)’(4Ze2)/(mav2), wówczas v2/v2 + p/a » 1, czyli v2/v2 • 1 - p/s.Odległością największego zbliżenia cząstki alfa do jądra jest s. Najmniejsza możliwa wielkość s odpowiada zderzeniu centralnemu, gdy cząstka zostanie odrzucona pod kątem 180°jw chwili największego zbli­żenia v_ “ O d p » s, dlatego 1 4Z.2’ml” p «"s 'Doświadczenia nad rozpraszaniem cząstek alfa radonu na foliach różnych metali wykonali GEIGER i MARSDEN. Wyniki, np. dla Cu, są na­stępującej 1 a N*m2-------- - 9,0’10’ —; Z « 29 (Cu), 4 ue0------------------ oe - 1.6O-1O"19 C, m » 4’mn - 4’1,67’1O"27 kg, t* nvQ ■ 1,6’107 m/s.-Zatem8min 9,0*10$ ---- 22112«^—— . 2132 • 10“16 m = 1,56*10“12 om.1,67’10“27 *1014 1»*>7Z tych doświadczeń wynika, że średnica jądra atomowego jest rzędu 10-12 om. Prawo Coulomba (1/r2) jest spełnione do odległości rzędu kilku średnio jądra. 3,4, Moment bezwładnościPraktycznych obliczeń momentu bezwładności dokonuje się za pomocą rachunku całkowego. Jeśli bowiem masęA mi elementu o skończonej obję­tości zastąpimy masą dm elementu o objętości dV, to położenie i prędkość takiego elementu znane są dokładnie, lecz suma w (3.10) musi być zastąpiona przez całkę.Jeśli p (r) jest gęstością w punkcie odległym o r od osi obro­tu, to dm “ p (r) dV. Mamy wówczas
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Ixx = f(r2 - x2)dm =yp (r)(r2 - x2)dV, r . (3.19)IXy = -J p(ry xy dV, etc.Suma wyrazów przekątniowych wynosi:*xx + *yy + *zz “/p pr2 - + y2 + z2)> *= 2jp (r) r2 dV (3.20)i nie zależy od wyboru układu współrzędnych x, y, z. Z tego wyniku skorzystamy w podanyoh dalej kilku przykładach obliczeń momentów bez­władności brył o często spotykanej symetrii.i. Powłoka kulista: ny (rys. 3-9) oś obrotu przechodzi przez środek geometryoz-Ze względu na symetrię kulistąjest I ■ 0 dla p v8 orazTxx = Tyy = ^z - jfp (r) p2 dV “= j r2/p (r) dV = j r2 f dm == | M r2, (3.21)o gdzie M = 4 nr p dr jest masą po­włoki kulistej o grubości dr.ii. Kula o promieniu R; oś obro­tu przechodzi przez środek geome­tryczny.

oMamy tu dV >» 4 k r dr orazR RI = j 4n r4p dr ® 4np • y r4 dr = o o- 4irp | | R5 = | MR2gdzie M » itR^p jest masą kuli.iii. Cienki pręt sztywny; oś obrotu z przechodzi przez środek pręta prosto­padle do jego długości L (rys. 3-10).Mamy tu: dV » A'dr, gdzie A jest po­wierzchnią przekroju pręta



55L/2 L/2I2Z * f Pr2 dV = p A J r2 dr = ML2 ,-L/2 -L/2gdzie M » p AL jest masą pręta,iv. Cienki pręt sztywnyj oś obrotu przechodzi przez początek pręta prosto­padle do jego długości (rys, 3-11)L
Rys. 3-113,5» Energia kinetyczna bryły sztywnej w ruchu obrotowymEnergia kinetyczna zbioru elementów masowyoh Am^ wynosiT - | S A = 2 2 A mi( “ x r±)2.Do występującego tu iloczynu ( w x e^)2 » (w x r^J^Cws r^) za­stosujemy identyczność(Ą x B) • (C x D) = (AC)(BD) - (ĄD)(BC).W naszym przypadku: 3 3(w x r±)2 » w2 r| - (w-rp2 « ( X w m^i) " ( S % rim>2 = m=1 m=i- (w2 + w2 + w2)-r2 “ ♦Wy?! +“ =- “x(ri " ziJ + wy(ri " yP + "z^ri " zi} "

" 2wx “yxiyi “ ^“z*!2! - 2wy“zyizi’
2T ” ^xx wx + Iyy wy + Izz “z + 2 Xxy “x“y ++ 2 ^^“z + 2 ^“y^z^ (3’22)Dla kuli o osi obrotu przechodzącej przez jej środek, czyli ® « 0 dla p otrzymujemy znany wzórokreśla jący energię kinetyczną:^^zz (“^“y^^ -Pzz“2-



56 Wyrażenie (3.22) możemy zapisać znacznie prościej za pomocą ra­chunku macierzowego: 2T - (w) [I] (<o). (3.23)We wzorze (3.23) (w) oznacza macierz przestawioną (w) (transpono- waną). Pełny zapis (3.23) będzie więc miał postać następującą:Z1» ^Xy2I'(^“y“? lyz Xyy ^Z Wyy^ZT ^zy ^zz/\“z/
3.6, Osie głćwne momentu bezwładności

(3.24) osiami przyj—(3.25)
(3.26)
sztyw- jeśli

W dowolnym wyborze układu współrzędnych x, y, z, jak to czyni­liśmy dotąd, związki między J i w oraz wyrażenia na energię kinety­czną T, są dość skomplikowane. W szczególności wyrażenie na T, prawdziwe w każdym układzie kartezjańskim, można tak uprościć przez wybór odpowiedniego układu współrzędnych, by doprowadzić do znik­nięcia wyrazów mieszanych typu w . Oznaczmy ten szczególny układ współrzędnych przez X, Y, Z. Mamy w tym układzie:2 1^«^» 0, czyli Igv » 0 dla p / v .Układ współrzędnych X Y Z o własności (3.24) nazywamy głównymi tensora momentu bezwładności. Dla skrócenia oznaczeń mierny że: XXX “ . XZZ “ I3*Mamy więc względem tego układu współrzędnych:32T - Z Ł uL k-1 K KJm = Imwm’ m « 1, 2, 3, 32T - S (Ju/M- k»1 K >Jak widać, wyrażenia na energię kinetyczną oraz kręt bryły nej przybierają wówczas szczególnie prostą postać. Co więcej, bryła obraca się dookoła którejś z osi głównych, np. osi Z, to kręt bryły wynosi Jj ■ w 3,a więc jest równoległy do u.



57Należy tu wyraźnie podkreślić, że ineroyjność (lub nie) układu współrzędnych jest jego cechą fizyczną. Własność wyrażona w (3.24)lub związkami (3.26) jest natomiast cechą geometryczną wyróżnionego ukła­du X Y Z. Osie X Y Z są w pewnym sensie osiami naturalnymi układu, gdyż związane są z jego symetriąj uwzględnienie jej prowadzi do szcze­gólnie prostych zależności w dynamice ruchu obrotowego.Symetria ukła­du ma ogromna znaczenie nie tylko w dynamice bryły sztywnej, lecz w ogóle w fizyce. Układ osi x, y, z jest wybrany natomiast dowolnie, z tym tylko warunkiem, by był inercyjny. Wybór takiego układu jest ła­twy, ale prowadzi do zależności ogólnych, złożonych.

Kierunki osi głównych układu możemy często odgadnąć na podstawie jego symetrii. Przykładem takiej dedukcji jest rys. 3-12. W bardziej złożonych przypadkach intuicyjne znalezienie układu X Y Z może nie być proste, lub niejednoznaczne. Posługujemy się wówczas metodami ra­chunkowymi, opartymi na definicji (3.24). W dużym skrócie metodę tę można streścić następująco: poszukujemy takiego przekształcenia T u- kładu współrzędnych (x, y, z) -X- (X, Y, Z), które doprowadzałoby tensor momentu bezwładności do postaci przekąt­niowej :

Szczegółowym omówieniem tego zagadnienia nie
Zxx Xxz X1 0 0T 0 J2 0
Xzx xzy Xzz 0 0 X3będziemy się tu zaj­mować .



58 3.7« Przykład ruchu bryły sztywnejDwa ciała o masach m^ « 200 g i m? = 300 g są połączone sztywnym i nieważkim prętem o długości 50 cm. Środek masy układu jest począt­kiem układu współrzędnych. Pręt leży w płaszczyźnie x y i tworzy kąt 20° z osią y. Obliczyć składowe momentu bezwładności i .Przyjąwszy, że pręt obraca się z prędkością kątową w wokół osi x, znaleźć orientację wektora J.Położenie środka masy względem m^200'0 + 300'50 .rs 3 '' ~TÓÓ V3Ó0 = 30 cm'

Bys. 3-13In “ - XP “ 200(30■ 2,65'105 g«cm2,

Wobec tego współrzędne mas są następujące (rys. 3-13):m1 (30 cos 70°, -30 sin 70, 0) -» (10,3} -28,2, 0) om, m2(-20 sin 20, 20 oob 20, 0) == (-6,8, 18,8, 0) cm.Mając te dane możemy obliczyć składowe momentu bezwładności:
! - 10,32) + 300(202- 6,82) •

I_ = - ^m^y« - 200'10,3'28,2 + 300'6,8'18,8 - » O,96'1O3 g'om2.Przypuśćmy teraz, osi x (rys. 3-14). że pręt obraca się z prędkością kątową dookołaJest zatem w - U)x, (I>y ■ 0>z > 0 oraz J « I • W . X XX X’J « X (1) a J = 0» y X’ Z *W takim razie » 0,363 = tg 20°,ux xxx
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Rys. 3-14zatem w chwili, gdy pręt leży w płaszczyźnie x y, wektor krętu two­rzy z osią x kąt 20°, tj. jest prostopadły do odcinka łączącego obie masy i m2» J obraca się wokół x z prędkością kątową w, lecz nie jest do niej równoległy.



4. OSCYLATOROscylatorem może być każdy układ zdolny do wykonywania drgań o ma­łym odchyleniu od położenia równowagi w chwili początkowej. Przykła­dami oscylatorów są: wahadło, masa zawieszona na sprężynie,obwód elek­tryczny złożony z pojemności i indukcyjności, elektron w atomie, atom lub fragment cząsteczki związany z innymi atomami, cząsteczka w sieci krystalicznej. Cechą tych wszystkich układów jest to, że element drga­jący jest związany z położeniem równowagi siłą sprężystą, która ma dwie ważne cechy:i. jest zawsze skierowana w stronę położenia równowagi,li. wielkość jej jest proporcjonalna do przesunięcia oscylatora względem położenia równowagi.Ta druga cecha siły sprężystej może być osiągnięta tylko dla drgań o amplitudzie dostatecznie małej. Oscylator, który spełnia ten waru­nek, zwany jest liniowym.
4,1 < Oscylator harmonicznyOscylator harmoniczny stanowi ważny model w fizyce klasycznej i kwantowej, bowiem posługujemy się nim często w opisie zjawisk i włas­ności materiałów. Oscylatorem harmonicznym nazywamy układ,którego wy­chylenie s względem położenia równowagi opisuje funkcja typu s ■ 

■ A sin (<i>t + <p), przy czym A jest amplitudą ruchu i nie zależy od czasu, zaś u i <p oznaczają odpowiednio częstość kątową i fazę po­czątkową ruchu.Rozważmy obecnie kilka przykładów oscylatora.4.1.1. Wahadło prosteModelem jest masa m, zawieszona na sztywnej i nieważkiej nici. Rozważmy ruch wahadła ze względu na dynamikę bryły.Ruch odbywa się w płaszczyźnie yz (rys. 4-1), a kierunek siły grawitacyjnej P ■ -mg jest przeciwny do kierunku osi z. Mamy więc
Px " ?y " o, Pa - -mg.



61Działający w tym układzie mo­ment aiły wynosiMx » (r x £)x - y Fz - z Fy -■ (1 sin <₽ )(~mg) ■ -mg 1 sin <p .Kręt wahadła wynosiJx * 1 “i “Zgodnie z (3.9) pochodna krę­tu jest równa momentowi siły we­wnętrznej
czyli Q ekml <P -mg 1 sin <p, zatem <p + sinę ■ 0.Dla małych odchyleń sin ? s<p (w radianach), wówczas
jest równaniem ruchu wahadła dla przybliżenia małych amplitud.Roz-#iązaniem jest funkcja periodyczna czasu
lub <p « sin (wot + 6^<P - cos ( w^t + 62), (4.2)
określająca aktualne wychylenie wahadła w mierze kątowej. Oba rozwią­zania są równoważne ponieważ 6 , faza początkowa ruchu jest stałą do­wolną i można uważać, że 6g ~ &i “u/2.Podstawiając rozwiązanie (4.2) do równania (4.1) otrzymujemy<P""o” o 008 ("oł + 6p’<P ■ -“>0% 8in (“o* +61^ “ “«o'’1’ożyli <p+ w 0 <p - O,



62zatam /2
%4f) • <4-3)Kątowa częstość drgań wahadła jest więc odwrotnie proporcjonalna do pierwiastka z jego długości. Dokłady pomiar częstości drgań, gdy długość jest znana, może być również podstawą pomiaru przyśpiesze­nia ziemskiego.Rozwiązanie (4.2) jest funkcją periodyczną o okresie 2n. Jeśli zatem t wzrośnie o okres drgań TQ, to wychylenie osiągnie tę samą wartość i kierunek co w chwili t, zatemsin [w 0(t + To) + s] = sin (wot + 6 ),jeśli będzie spełniony warunek“ o To “ 2 71 lub % “ = 2 kv 0, (4.4)vQ jest liniową częstością drgań oscylatora.Interesujące własności ma przyspieszenie liniowe masy m ••2 2a = 1 • <₽ = -w0 1 <p » -w y.Siła działająca na masę m wynosi zatemp = m-a = -mw2y = -K1 y. (4.5)Zarówno przyspieszenie jak i siła są wiec skierowane w stronę poło­żenia równowagi i proporcjonalne do przesunięcia oscylatora, tj.speł­niają obie cechy oscylatora liniowego. Słuszne jest to jednak z taką dokładnością, z jaką sin<p można przybliżyć przez <₽ .Współczynnik K^ w (4.5) nosi nazwę siły kierującej, lub krótko, stałej sprężystej oscylatora i jest związany z kątową częstością drgań zależnością

2“o“^’ (4.6)Liczbowo Kj równy jest sile, działającej na masę przesuniętą względem położenia równowagi o jednostkę długości.4.1.2. Wahadło torsyjneModelem takiego wahadła jest krążek zawieszony w środku masy na sprężystej i nieważkiej nici. Lekko popchnięty, krążek wykonuje drga­nia kątowe, przy czym aktualne położenie względem położenia równowagi (linia zerowa) oznaczamy przez kąt $ (rys. 4-2).



63Korzystając z (3.9) możemy napisać równanie ruchu wahadła toreyj- negos d dJ ■ — (i w) » I*<P = M, dt dtgdzie ? jest przyspieszeniem ką­towym krążka, I jego momentem bez­władności dla wybranej osi, zaś M jest momentem siły wytwarzanym przez sprężystość skręconej aktu­alnie nici. Dla niewielkich od­chyleń od położenia równowagi,wy­tworzony przez nić moment pary sił jest proporcjonalny do wychy­lenia i skierowany zawsze w stro­nę położenia równowagiM » -Kt <p , (4.7)gdzie K^. jest tzw. stałą sprę­żystą nici. Liczbowo równe jest momentowi pary sił powstającemu przy skręcaniu nici o kąt równy 1 radianowi. Równanie ruohu wahadła torsyjnego ma więc postać I»<p + K^. <p = 0. (4.8)Jeśli oznaczymy w o = Kt/I, (4.9)to drganie wahadła opisuje funkcja9 » <Pq sin (u)Qt + 61) lub (4.10)<P » <P0 cos (wQt + &2)gdzie 6^ jest fazą początkową ruchu.Rozwiązania (4.10) są identyczne z (4.2), a różnica występuje w (4.6) i (4.9).4.1.3. Masa zawieszona na sprężynieJeżeli x oznacza przesunięcie masy m względem po­łożenia równowagi, to Fx - -0 x Rys. 4-3jest liniową siłą sprężystą, działającą po rozciągnięciu sprężyny (rys. 4.3).



64 Równanie rachunku Newtona ma zatem postać: ma » mx » -C x,
Równanie to ma strukturę taką samą, jak poprzednie, tak że:« o “ (m)^^* x “ xo ain ^o* +6 (4«12^

4.1.4. brednia energia oscylatoraEnergia całkowita oscylatora składa się z jego energii klnetycz~ nej i potencjalnej. Dla przykładu 4.1.3 możemy napisać
E.J+Ub|bx2 + |cx2«■ j m[w 2 x2 cos2 (tuot + 6) +w x2 sin2 (wot + 5 )J - <E><E> - £ mw 2 x2. (4.13)Widzimy z tego, że energia całkowita nie zależy od czasu, jest więo równa energii średniej oscylatora. Energia ta jest proporcjonal­na do kwadratu amplitudy drgań.4,2 , Oscylator tłumionyOscylator rzeczywisty wykonuje drgania o amplitudzie systematycz­nie malejącej z biegiem czasu. Przyczyną tłumienia ruchu oscylatora jest istnienie siły tarcia. Kierunek takiej siły jest przeciwny do prędkości i zależy od prędkości - -Y F* (4.14)VDla niezbyt dużych prędkości n » 1; dla większych (aerodynamika) może byś n - 2, a nawet 3.4.2.1. Relaksacja prędkościW najprostszym przypadku równanie ruchu cząstki, poruszającej się przy współdziałaniu sił tarcia ma postać:m x + yx ■ 0. (4.15)Ponieważ [y±] ■ 1 N, zatem [Y] ■ 1 kg/s, czyli stała m/y ma wy­miar czasu.W związku z tym definiujemy nową wielkość, zwaną czasem relaksa­cji
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Y

t x + x = O

(4.16)tak, że mamylubstąd (4.17)rt + V = O,

t In v = -t + conat.Jako warunek początkowy zakładamy, że t = 0 □ v = vQ (prędkość początkowa / 0), czyli conat =t In v , zatemIn -------- , czyli v = v0’e”^/T. (4.18)*o LW przypadku najczęściej spotykanej aiły tłumienia,proporcjonalnej do prędkości, prędkość maleje wykładniczo z czaaem.Jeśli położymy t = r, to v = vQ. — , czyli t jest czasem, po którego upływie prędkość maleje do 1/e swej początkowej wartości.Energia kinetyczna również maleje w czasie ruchu z tarciemT*£mv2«lmv2 e“2t/T a e-2t/x(4.19) zatem T = - — T e“2^/T = - — T. t o tWynika stąd, że energia kinetyczna maleje z czaaem relaksacji dwa razy krótszym niż prędkość: rT = | tv. (4.20)Dobrym przykładem siły typu F^ = -Yx jest oporność omowa R w obwodzie drgającym; również ruchowi płytki w gazie w kierunku normal­nym do jej powierzchni lub w cieczy stycznie do powierzchni towarzy­szy pojawienie się takiej właśnie siły tarcia.4.2.2. Równanie ruchu oscylatora tłumionegoPo wprowadzeniu siły tarcia możemy napisać równanie ruchu oscyla­tora tłumionego (oczywiście nie będzie to już oscylator harmoniczny):m * “ pB + Ft,przy czym Fg oznacza liniową siłę sprężystą, a F^ siłę tarcia.



66 Po podstawieniu znanych postaci tych sił otrzymujemy:mx+Yi+Cx- 0. (4.21)Po podzieleniu przez masę i wprowadzeniu stałych (4.21) prze­kształca się w równanie
■ ■ 1 • 2x + —- x + w0 x ° 0,wQ oznacza - jak dotąd - część kątową oscylatora harmonicznego, tj. bez tłumienia. Rozwiązaniem ostatniego równania jest x(t)^ czyli funk­cja, przedstawiająca zależność wychylenia oscylatora od czasu. Funk­cja ta musi maleć z biegiem czasu ze względu na tłumienie ruchu, po­nadto powinna na ogół zawierać czynnik periodyczny.Szukamy zatem rozwiązania (4.21) o postacix(t) = x0 е“^^2т. z(t),gdzie z(t) jest na razie nie znaną periodyczną funkcją czasu. Czyn­nik wykładniczy opisuje spadek amplitudy. Obliczamy pochodne x(t):i = - ~~ • e"^2 z + ż ,xQ 2тx = ’ Z - - Ż + Z }x0 1(2т/ т Ji podstawiamy do równania różniczkowego. Po redukcji otrzymujemy:z + (w2----- Цт) z ■ 0.0 4 r

/2 TCzynnik e ' został tu opuszczony, ponieważ nie zeruje się dla skończonego czasu t. Jeśli oznaczymy;
ш2 “ wo “ (A) ’ (4,22)przy czym 0 < coto rozwiązaniem równania różniczkowego dla z jest funkcjaz(t) = zQ sin (wt + 6 ).Pełne rozwiązanie ma więc postaćx(t) » Ao . sinw.t, (4.23)przy czym Ao jest amplitudą ruohu harmonicznego. Wybierając czyn­nik harmoniczny typu sin wt musimy założyć, że oscylator w chwili t ■ 0 ma zadaną prędkość początkową vQ:
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x(0) » I - J— sin W t + (1) 008(1) tl Ao L J t=o Ao’ponieważ oscylator z tarciem "sam z siebie" nie ruszy z miejsca.Gdybyśmy wybrali czynnik typu cos ot, wówczas wystarczyłoby zało­żyć, że w chwili początkowej oscylator ma wychylenie x(0) « Ao, tj. równe amplitudzie ruchu harmonicznego. Ponadto widzimy z (4.22), że czystość ruchu tłumionego jest zawsze mniejsza od częstości drgań os­cylatora bez tłumienia.

Rys. 4-4Wykres funkcji (4.23) jest przedstawiony na rys. 4-4; obwiednie /p*r krzywej, ilustrujące spadek amplitudy, mają równanie x = kQ e . Amplituda maleje do 1/2 swej wartości początkowej po upływie czasu t ■ 2Tj czas relaksacji amplitudy jest więc 2-krotnie większy, niż prędkości.Często wprowadza się, oprócz czasu relaksacji, tzw. stałą tłumie­nia, która jest jego odwrotnościąP - 2T ’ <4.24)Rysunek 4-4 odpowiada dużemu okresowi czasu relaksacji, czyli ma­łej stałej tłumienia. Najbardziej interesującym przypadkiem jest tzw. tłumienie krytyczne, określone warunkiem:
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ożyli 2 2 2w ₽kr “ °» (4.25)kr “ w o *Odpowiada mu zerowa częstość oscylacji, tzn. układ wychylony ze stanu równowagi zmierza w Jego kierunku aperiodycznie w czasie możli­wie najkrótszym. Ma to znaczenie w doborze stałych tłumienia w mier­nikach, zawierających części ruchome; miernik tłumiony krytycznie po­zwala na osiągnięcie wielkości mierzonej w czasie najkrótszym. Przy Jeszcze większych stałych tłumienia częstość ruchu staje się urojona, a więo ruch dalej zachodzi aperiodycznie; powiada się, że układ powo­li "pełznie" w kierunku położenia równowagi (rys. 4-5).

4.2.3. Energia oscylatora słabo tłumionegoSłabe tłumienie oznacza małe p lub duży czas relaksacjir,tak że w tym przypadku wt » 1 oraz o s ojo, (4.26)wobec tego możemy napisaćx(t) - Aq. e“t/2T sinwot. (4.27)Obliczmy średnią wartość energii całkowitej, <E>, oscylatora tłu­mionego, przy czym średniowanie odnosić się będzie do 1. okresu. Je­żeli p Jest małe, to amplituda ruchu e-^2 T praktycznie nie zmie­ni się w ciągu tego czasu, czyli można Ją uważać za stałą. Mamy więc:x = (- sin wQt + Uo cos wot)‘Ao e“*/2T,
m __ ±.2 1 Z 1 + । 2 r»r\a^ +1 = 5 m x = m a sin w t + m cos w t —

4 t- — sinw t cos a) t) A2-e't/T. r o oo



69Ponieważ < sin2 0) ot > = <cos2 w Qt > » ,< sin w Qt cos w t sin 2 w t > = 0oraz 1 «m2, zatem t<T> S | mu 2 A2 e“^/T oraz <U>-<| C x2> = 1 muo A2 e"^T = <T>, wobec tego <E> - 2<U> = | mw 2 a2 e"*^. (4.28)Widzimy wigc, że średnia moc, z jaką jest tracona energia w ciągu 1 cyklu wynosi -<»- <E> - - 1<E>,czyli <£><?>-—. (4.29)Straty energii zachodzą z czasem relaksacji takim samym, jak spa­dek prędkości (dyssypacja, rozpraszanie energii).Można przypuszczać, że ta strata energii ma związek z pracą siły tarcia F^. Obliczmy moc, rozwijaną przez siłę tarcia:<Pt>-<VT>" -<Yi2>- - SA2 e"tA (^.J) . _ 1 .<B>.= -<?>. (4.30)Widzimy wiec, że moc rozwijana przez siłę tarcia istotnie jest równa mocy strat energii całkowitej oscylatora tłumionego.Oznacza to, że przyczyną strat mocy jest właśnie występowanie sił tarcia.4.3. Drgania wymuszone oscylatoraDrgania wymuszone zachodzą pod wpływem siły F , przyłożonej z zewnątrz. Jeśli siła ta ma wywołać drgania oscylatora,to musimieć cha­rakter siły periodycznej. Położymy zatemFw = Fo • sin u} t, (4.31)gdzie w jest częstością siły wymuszającej, a Fo jej amplitudą. U- względnimy również siłę tarciaFt - - yż



70tak, że równanie ruchu ma postaćmx + Y i 0 x = PQ sinwt. (4.32)Stosując poprzednie oznaczenia oraz oznaczając PQ/m ■ aQ - ampli­tuda przyspieszenia, wywołanego przez siłę wymuszającą - mamy
»- 1 2x + 'ii+wox = ao sin o, t.W tym równaniu w0 jest częstością własną układu, tj. bez tłumie­nia i siły wymuszającej.Pod wpływem Pw układ będzie wykonywał drgania.Pominiemy zjawis­ka przejściowe na początku; po pewnym czasie układ dojdzie do stanu równowagi, w wyniku czego drgania będą się odbywać z częstością siły wymuszającej w, a nie z częstością własną wQ.Rozwiązanie tego równania musi mieć zatem postaćx = xo> sin (w* + <p ), (4.33)a naszym zadaniem jest znalezienie xq oraz <p .Mamy: i « w cos (wt + <₽ ),x = -w 2 xQ sin (wt + <₽ ).Po podstawieniu do równania różniczkowego otrzymujemy:(w2 - w2)xQ sin (wt + cp ) + xQ cos (wt + <P) « aQ sinwt,(w2 - w2)x0 £sin wt cos cp + cos w t sin cp] + "T" x0 w t cos cp - - sin co t sincp ]- a0 sin w t ■ 0.Równość zeru ma zachodzić dla dowolnej chwili t, zatem współczyn­niki przy sin wt oraz ooawt, muszą osobno znikać. Prowadzi to do dwóch warunków: z 2 2 \ co .(w0 - w ) x0 cos cp - t x0 sin cp = a0,(w2 - w2) xQ sincp + r xQ coscp = 0.Drugie z równań daje: w /t , .tg (p « - —5------w • (4.34)

«0 " wEliminacja funkcji trygonometrycznych w obu równaniach prowadzi do związku (»J - .2)2 . <“->2 - >o.



71czyli (4.35)
Równanie (4.35) przedstawia amplitudę drgań układu jako funkcję częstości siły wymuszającej. Następujące wnioski zasługują na uwagę:i. między siłą wymuszającą a "odpowiedzią" układu istnieje prze­sunięcie fazowe, tj. maksymalne wartości siły i wychylenia przypadają w różnym czasie:a) jeśli w < u Q, to tg <p < 0 i ę < 0, to faza drgania opóźnia się wówczas o At = <pT/2Tt,b) jeśli to tg cp > 0 i <p> 0, zatem faza drgania wy­przedza fazę siły o At = <p T/2n.ii. amplituda wymuszonych drgań układu x0, jest proporcjonalna do amplitudy przyśpieszenia wytwarzanego przez siłę wymuszającą (aQ).

Rys. 4-6



72 iii. amplituda drgania zależy od czystości siły wymuszającej, w , i dla pewnej wartości Wr osiąga wartość maksymalną xp. Zjawisko to nazywamy rezonansem.Wartość amplitudy w punkcie rezonansowym możemy obliczyć z warunku ekstremum funkcji xQ(a))s

, , . 1/2 , 2 1/2ur “ (“o “ T “ (“o ” 2₽ ) . (4.36)2?Częstość rezonansowa jest więc mniejsza od o)o o wielkość zależną od czasu relaksacji.Zależność xq(w) od w można przedstawić w postaci uniwersalnej funkcji f^')
Obraz funkcji (4.37) jest przedstawiony na rys. 4-6.



5. ELEMENTY DYNAMIKI RELATYWISTYCZNEJDynamika relatywistyczna Jest działem fizyki traktującym o ruchu ciał przy dużych prędkościach. Jeśli v/c 0,01, to przestaje obo­wiązywać dynamika Newtona; ruch ciał o takich prędkościach opisuje dy­namika relatywistyczna, której podstawowe idee są oparte na szczegól­nej teorii względności. Prędkość światła w próżni, c, odgrywa w tych zagadnieniach podstawową rolę i nią wpierw się zajmiemy.5.1. Pomiary cIstnieje wiele metod pomiaru prędkości światła w próżni. Wymieni­my tylko niektóre z nich.i. metody astronomiczne (korzysta się z obserwacji zmiany położeń ciał niebieskfoh);ii. metody mechaniczne: koło zębate (Fizeau) i wirujące zwiercia­dło; wykorzystuje się różnicę ozasu (różnicę faz) sygnału dochodzące­go wprost i z dalekiej odległości po odbiciu od tarczy (lustra).iii. rezonator wnękowy: pudło metalowe o dokładnie znanej długoś­ci 1, w którym dla pewnej częstości (znanej) promieniowania mikrofa­lowego można wytworzyć stan fali stojącej, tj. na długości 1 mieśoi się dokładnie znana całkowita liczba n połówek długości fali. Mamy wówczas: 1 = n • 4 = i no i . (5.1)2 2 vNa podstawie znanych n, y i zmierzonego 1 można obliczyć c. We wnętrzu rezonatora powinna być próżnia.iv. metoda modulacji natężenia światła i czułości detektora.Aparatura, przedstawiona schematycznie na rys. 5-1 składa się z następujących elementów: źródła światła (Z), przesłony (B), dwóch so­czewek (L^, L2), polaryzatora (P) i analizatora (a), płaskiego zwier­ciadła M, generatora części radiowej (G), detektora (D) i komórki Kerra (k). Polaryzator wytwarza światło liniowo spolaryzowane; Jeśli P i A są skrzyżowane, a generator G nie dostarcza impulsów, to u- kład ten zatrzymuje promieniowanie i żaden sygnał optyczny do detek-
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Ryg. 5-1

Impulsy prostokątne z generatora

Sygnał optyczny po przejściu 
drogi lt r li = L

Sygnał detektora

tora nie dochodzi. Wysłanie sygnału elektrycznego do komórki Kerra wy­twarza dwójłomność cieczy (nitrobenzen), zawartej między elektrodami komórki, wskutek czego układ PKA staje się przepuszczalny dla promie­niowania. Dzieje 3ię tak jedynie w przedziałach czasu, w których do komórki Kerra jest przyłożone napięcie podawanego z generatora sygna­łu elektrycznego (rys. 5-1b). Generator wywołuje zatem periodyczne zmiany natężenia wiązki, biegnącej wzdłuż 1^ i 12 (łączna długość drogi około 13 km). Ten sam sygnał przyłożony jest na detektor, co po­woduje periodyczną zmianę (modulację) jego czułości. Sygnał optyczny po przejściu drogi 1^ + 12, na co potrzebuje ozasu t ■ (1^ + l2)/c, jest przesunięty w fazie (rys. 5-1 c) względem sygnału dochodzącego bezpośrednio do detektora (rys. 5-1b) o kąt A<p ■ 2 tc (11 + l2)«v/c ,gdzie v jest częstością modulacji. Detektor reaguje tylko wtedy,gdy jest czuły i gdy nań pada światło (rys. 5-1d). Jeśli zatem doprowa­dzimy do przesunięcia fazowego A<p ■ k, to nie uzyskamy sygnału, oo jest właśnie warunkiem pomiaru. W tym stanie 1 ■ 2Lv/c, przy czym oznaczyliśmy L » 11 + 12. Powiększenie L o Al (przesunięcie zwier­ciadła M) zmienia różnicę faz: pojawia się sygnał. Można znaleźć no­we położenie Al takie, że a<₽ = 3 tc, co powoduje ponowne zniknięcie sygnału. Mamy wówczas: tc 2L~ s 1 = — V oraz 0
V- ■ 3 - ,czyli 2 « lAJ: . 0 - 2 AL v . (5.2)



75Na podstawie znanej częstości modulacji i pomiaru przesunięcia można obliczyć o.W ostatnim stuleciu wykonano setki pomiarów wartości o, używając opisanych tu metod i jeszoze innych. Dziś przyjęta wartość o wynosi o - (2,997925 i 3*1O“6)’1O8 m/s.Sprawdzono również, że prędkość światła w próżni o jest dla wszystkich układów inercyjnych taka sama, tj. nie zależy od stanu ru­chu bezwładnego lub spoczynku zarówno źródła światła jak i odbiorni­ka. Innymi słowy, na podstawie doświadczeń można sądzić, że kulista powierzchnia falowa światła wysyłanego przez źródło punktowe w ukła­dzie inercyjnym jest również powierzchnią kulistą dla obserwatora u- mieszczonego w każdym innym układzie inercyjnym.5,2, Efekt DoppleraCzęstość promieniowania, podobnie jak fali, np.głosowej, nie jest niezmiennikiem w stosunku do ruchu układu współrzędnych i od niego za­leży. Efekt Dopplera polega na zależności częstości fali od prędkości źródła fali lub odbiornika. W obu przypadkach otrzymuje się trochę in­ne wzory na zmianę częstości. Zaozniemy od rozważenia źródła fali dźwiękowej, poruszającego się w ośrodku (gaz).

W początku układu współrzędnych T znajduje się źródło dźwięku Z. Układ T porusza się w stronę układu R z prędkością v. Sam układ R, w którym spoczywa odbiornik, jest nieruchomy (rys. 5-2).Prędkość fali V jest stała i nie zależy od ruchu układu T, lecz od mechanicznych własności ośrodka, zatem* R * v R ”



76 Nadajnik wysłał w kierunku +y ciąg N fal (tj. ciąg N^j) w ciągu czasu t.W ciągu tego czasu pierwsza fala przebiegnie drogę V«t, ostatnia fala właśnie opuści nadajnik, zaś samo źródło Z przebiegnie drogę vt. Odległość między początkiem i końcem ciągu wyniesie Vt - vt “ » (V - v)t i na tej drodze znajdzie się N fal, zatem:. (V - v)t _____ _ V _ N*VA R--------- 8---- - ’ oraz VR W v)t •Jednocześnie dla nadajnika = N/t. W takim razie
V rnVR (5.3)Jeśli T zbliża się do R, to v> 0 ivs>vT» tj.częstość zbli­żającego się źródła odbieramy jako wyższą. Gdy T natomiast oddala się od R wówczas, y < o i częstość oddalającego się źródła odbieramy jako niższą.Jeśli źródło pozostaje nieruchome, a porusza się odbiornik (układ R), to vR ■ vT(l + p (5.4)z tą samą konwencją znaków odnośnie ne, jeśli Oba wzory stają się identyoz-

Wzory te są słuszne również dla częstości fal świetlnych,lecz je­dynie w pierwszym przybliżeniu. Efekt Dopplera znany jest zarówno w dziedzinie akustyki (zbliżający się pojazd wydaje dźwięk wyższy, niż oddalający), jak i w dziedzinie optyki (linie spektralne obiektów nie­bieskich przesunięte są względem linii spektralnych tego samego pier­wiastka, obserwowanych w warunkach ziemskich).

Rys. 5-3



77Rysunek 5-3 przedstawia układ linii spektralnych hipotetycznego pierwiastka, obserwowanych w widmie emisyjnym. Jeśli obserwacja doko­nywana jest w warunkach ziemskich, to położenia linii odpowiadają wi­dmu przedstawionemu na rys. 5-3b.. Dla obiektu astronomicznego zbliża­jącego się (v > 0) i wysyłającego linie tego samego pierwiastka widmo przesunięte jest w stronę "niebieską" (rys. 5-3a), natomiast oddalają­cego się (v < 0) w stronę "czerwieni" (rys. 5-3o). Przesunięcia za­chodzą zgodnie z przybliżonym wyrażeniem:
2 +ożyli VRAv R v/o----------- s v/c1 + v/cdla prędkości obiektu v niezbyt dużych w porównaniu z prędkością c światła w próżni. Dla większych prędkości przesunięcie spektralne de­finiuje się w następujący sposób: 

gdzie z jest miarą prędkości v obiektu. Na podstawie pomiarów spektralnych, które należą do grupy najdokładniejszych pomiarów w fi­zyce znaleziono, iż odległe od nas obiekty gwiezdne (gwiazdy, mgławi­ce) oddalają się z prędkościami wielu setek kilometrów na sekundę i to tym szybciej, im dalej od układu słonecznego się znajdują. Jeśli ioh odległość oznaczyć przez r, to zależność tę można wyrazić wzoremv = a • r,przy czym a obs - 3*10-13 s-1. Odwrotność tej stałej, 1/a* 3*101? s * = 1010 lat, interpretuje się jako "początek" rozpoczęcia ucieczki 28mgławic, czyli "wiek" Wszechświata, wielkość c/a ■ 10 uważa się na­tomiast za "promień" Wszechświata.Interpretacja efektu Dopplera i wyniki uzyskane na tej podstawie w astronomii nie budziły wątpliwości do chwili odkrycia nowych obiek­tów quasi-gwiezdnyoh,zwanych kwazarami. Odkrycia takiego dokonano o- koło 10 lat temu. Okazało się, że dla niektórych kwazarów z = 1, a nawet więcej, podczas gdy dla "zwykłych" obiektów gwiezdnych z 40,25. Co więcej, udało się znaleźć bardzo nieliczne przypadki pewnego ro­dzaju "sprzężenia" kwazarów z mgławicą, z którą łączy go ramię obłoku gwiezdnego. Sugeruje to wspólne pochodzenie obiektów, podczas gdy li­czby z dla obu bardzo się różnią. Zarówno obserwacja, jak i anomal­nie duże wartość! przesunięcia spektralnego dla niektórych kwazarów 



78stanowią trudny problem we współczesnej astronomii; mówi alg o pewnym kryzysie, związanym z zastosowaniem efektu Dopplera w tej dziedzinie badać. 5,3, c Jako prędkość granicznaDoświadczalnie można rozstrzygnąć, ozy Jakiś obiekt o masie spo­czynkowej mQ (np. elektron) może przekroczyć prędkość światła.Cząs­tki naładowane możemy przyspieszać do bardzo dużych prędkości (ener­gii) za pomocą odpowiednich przyspieszaczy.Jeżeli elektron o ładunku e przebiegnie różnicę potencjałów U to wykonana przez pole praca wynosi eU i zostaje zużyta na nadanie elektronowi energii kinetycznej
1 2T - mv = eU.Duże energie mierzy się w megaelektronowoltach (10$ eV). Według mechaniki klasycznej 2 2T 2eUm mczyli wykres v2 w zależności od T (eV) powinien być linią prostą.

Rye. 5-4



79Doświadczenie wskazuje (rys. 5-4), że jeżeli eU rośnie nieogra- 2 2niczenie, to v zdąża do stałej wartości równej c . c nie może być zatem przekroczone w ruchu elektronu (także i innych cząstek material­nych), etanowi więc prędkość graniczną.Omówione tu wyniki doświadczalne można streścić w następujących punktach:1. o jest niezmienne w układach inercyjnych.2. o jest maksymalną prędkością poruszania się ciała mającego ma­sę spoczynkową oraz maksymalną prędkością rozchodzenia się sygnałów.3. Zasada względności Galileusza nie jest spełniona dla dużyoh prędkości, ponieważ pomiary długości i energii kinetycznej muszą speł­niać warunek 1. , 24. Ponieważ dla dużych prędkości v nie jest proporcjonalne do T więc przypuszczamy, że masa ciała zmienia się wraz z prędkością..Przesłanki 1-4 bezpośrednio wiążą się z zagadnieniami poruszanymi w szczególnej teorii względności. Jej naczelnym postulatem jest:
Prędkość światła nie zależy od ruchu 
źródła światła lub odbiornika.Transformacja Galileusza x, y, z, t — x' yf z^ t* nie jest więc słuszna. W zakresie dużyoh prędkości obowiązuje transformacja Lo­rentza, którą obecnie się zajmiemy.5.4« Transformacja LorentzaMamy 2 układy odniesienia S i S,' oba inercyjne (rys. 5-5).

Rys. 5-5Niech S porusza się względem S z prędkością V wzdłuż osi x. Współ'rzędna x odczytywana jest w układzie s' jako x - Vt



80 Przypuśćmy, że w układzie S znajduje się punktowe źródło świat­ła, które zaczyna emitować falę w chwili t = 0. Równanie czoła fali będzie równaniem kuli o promieniu r, czylix2 + y2 + z2 = r2 » c2 t2 (5.5)Promień kuli wzrasta z prędkością c. Współrzędne w układzie S" oznaczamy przez xf yf zf t*; dla uproszczenia załóżmy, że początki układów pokrywają się w chwili t' = 0. Wobec tego dla obserwatora w S* równanie kulistego czoła fali będzie miało postać»2 *2 *2X + y + z ’2 „2= c t'2 (5.6)przy tym samym c. Ha podstawie transformacji Galileusza mamy: x' = x - Vt, y' « y, z' = z, t' = t.Po podstawieniux2 - 2Vxt + V2t2 + y2 + z2 = o2t2otrzymujemy wzór niezgodny z postulatem (5.5). Z transformacji Gali­leusza wynika bowiem, że w układzie S* powinniśmy zaobserwować ku­listą powierzchnię falową ze środkiem w punkcie układu S, podczas gdy w rzeczywistości obserwujemy kulistą powierzchnię ze środkiem O* u- kładu S*.Szukamy zatem innej transformacji, która musi być liniowa wzglę­dem x i t (y—yf z—z' bez zmian) ponieważ kula w S musi być też kulą w s\ Podstawienie np. x' = ]/xt lub x' = sin x nie będzie za­tem dobre.Widać też, że nie da się utrzymać założenia, że t' = t, jeśli mają zniknąć wyrazy A(x, t) = -2Vxt + V2t2.Niech próbną transformacją będzie x* = x - Vt, y* = y, z* = z, t' = t + fx, gdzie f jest nie znanym czynnikiem. Po podstawieniux2 - 2Vxt + V2t2 + y2 + z2 = o2t2 + 2c2tfx + c2f2x2, czyli x2(l - o2f2) - 2xt (V + c2f) + y2 + z2 = c2t2 ----
\ c/Widać, że zniknie wyraz z xt, Jeżeli położymy V + o f = 0, czy­li f = -V/o2, wówczas c2f2 » X2c orazx2< _ y2 + z2 = O2t2 Ak c / \ c /Wyrażenie to ma postać zbliżoną do (5.5); będzie z nim identyczne, jeżeli usuniemy czynnik zawarty w nawiasie. W tym celu oznaczymy



31V ci zapiszemy transformacje w następujący sposób:, x - Vt , , # t - Vx/c2x = —---- — » y = y» z = z, t = ——...
Znaleźliśmy więc przekształcenie liniowe względem x i t, nie zmienia postaci wyrażenia (5.5) po przejściu od układu S Nosi ono nazwę transformacji Lorentza. Zauważmy, że dla V/c-*-0 formacja przechodzi w• x - Vt, y' = y» z' = z, t' = t,tj. w transformację Galileusza.Jeśli oznaczymy 1

Vi - p2'to przekształcenie (5.8) można napisać w postaci standardowejx" ■ (x - p ct)y, y' = y, z' = z, t' = (t - p x/c)y lub w zapiarie macierzowym

(5.7)
(5.8)
które do S'. trans-

(5.9)
(5.10)
(5.11)

(5.12)
(5.13)

z prze­

Transformacja odwrotna ma postać:X = (x' + p Ct')Y, y - y', z = z', t = (t' + px'/c) ylub / X \I y l I I sI z I\ t /Przedstawimy obecnie

/ Y 0 0 pc y\ /x*\0 1 0 0 \ / y'0 0 1 0 I l z*\PY/c 0 0 Y / \t'/dwie ważne konsekwencje, wynikającekształcenia Lorentza.



82 5.4.1. Zmiana długości prętaPrzypuśćmy, że mamy pręt o długości LQ leżący wzdłuż osi x w u- kładzie S. Ponieważ pręt jest w spoczynku możemy więc napisaćŁo » x2 - Xi,gdzie x^ i x2 są współrzędnymi początku i końca pręta w S. Ten sam pręt obserwujemy teraz z układu 3*, który porusza się z prędkością V wzdłuż osi x. Długość pręta widzianą z s' -wyznaczają współrzędne x2(t') i z^t') w danej chwili t*. Mamyx2(tx) - x^(t*) = L w układzie S*.Ponieważ według (5.12) x^ = Yxf + YPct\ zatemx2 “ X1 “ Lo = y^x2 “ XP “ yL*Wobec tego L = = L (1 - p 2^2’ (5.14)Y 0Widzimy, że pręt poruszający się wzdłuż swej długości z szybkoś­cią V ma długość mniejszą, niż w układzie spoczywającym. Efekt ten nazywa się skróceniem podłużnym Lorentza-Pitzgeralda.5.4.2. Dylatacja czasuDylatacja czasu jest zjawiskiem polegającym na wydłużeniu odstę­pów czasu mierzonego przez zegar w ruchu. Czas mierzony w układzie, w którym zegar spoczywa, oznaczamy przez r i nazywamy czasem własnymT(v=o) = czas własny, mierzony w układzie spoczywającym.Jeżeli zegar spoczywa w początku układu współrzędnych, x «= 0, to czasowi t odpowiada w układzie S* czas t' (5.10);
zatem At'»t'-t' = ------ -—f/g » (5.15)(1 - ₽2)czyli odstęp czasu mierzony w układzie poruszającym się jest dłuższy od odstępu czasu w układzie S.Potwierdzeniem wniosku co do dylatacji czasu w układzie porusza­jącym się, są obserwacje własności mezonów u +. Mezon n + jest cząst­ką elementarną o ładunku dodatnim i o masie ~ 273 me, gdzie me jest masą elektronu. Jest przy tym nietrwały, a czas życia własny



83
At = 2.5-10-3 s; p = o,9Otzn. mezon w + porusza się z szybkością wynoszącą 90% c.Gdyby posługiwać się pojęciem czasu własnego At > wówczas droga przebyta przez mezon przed rózpadnięciem wynosiłaby1 = 8c( At) - 0,90-3*103’2,5-10"8 = 6,8 m.tymczasem w układzie s', związanym z mezonem i poruszającym się znim z prędkością po odstęp czasu upływający przez rózpadnięciem się wynosi At(1 - p2)T72

2,5-W“3(0,19)^ 5,7’10-8 s,At' »a rzeczywista droga przebyta przezeń wynosi:1' = 0,90-3»103’5,7-W8 m = 15,5 mi jestzponad dwa razy większa od wyniku nierelatywistycznego.Ten wnio­sek został w pełni potwierdzony doświadczalnie.5.4.3. Pęd ciała materialnegoZa ciało (cząstkę) materialne będziemy uważać takie ciało, które posiada masę w stanie spoczynku; oznaczymy ją przez mQ.Można udowodnić, że jeśli przyjmiemy definicję pędu w postacip = m0 vto zasada zachowania pędu napisana w układzie S nie jest spełniona w układzie s', zatem definicja ta nie jest niezmiennicza względem transformacji Lorentza. Należy poszukać nowej definicji pędu. Aby u- niezależnić się od względnego ruchu obu układów (wzdłuż osi x), roz­ważmy składową pędu (prędkości) wzdłuż osi y:A y AtPrędkość "widziana" w układzie S jest ilorazem odcinka drogi △y, tego samego co i w S' oraz czasu własnego At. W układzie S' czas ten będzie inny. Mamy
AN A? A*' 1At At' At y (1 -przeto pędem relatywistycznym będzie



84 Pęd zapisany w postaci relatywistycznej zachowany jest we wszel­kich zderzeniach, co potwierdzono doświadczalnie.Możemy to wyrażenie interpretować i w ten sposób, że masa w ruchum - —-S--- : = m y (5.17)/1 -02

2 1 2 9= moo + 2 mov + mo “7 +c

jest większa, niż w stanie spoczynku. W definicji pędup = m-v (5.18)m oznacza wtedy masę relatywistyczną.5.4.4. Energia relatywistycznaPęd relatywistyczny ma postaćp - mQc py2 2 2 2 2zatem p = mQc p y jest niezmiennikiem względem transformacji Lo­rentza.Spełnione są ponadto następujące tożsamości: 2 21 -p^ 1 0 21 M --------- - --------,----------- -  = Y -1 - P 1-0 1-0 0^2
mo°4 = “o^Y2 “ ₽2Y2) 3 “o®4^" “o®4^2 = m2c4Y2 - p2c2.Każda ze stron powyższych równości jest także niezmiennikiem względem transformacji Lorentza. Rozważmy własności członu„2 -"»°2v v" (1 - ■W tym celu wyrażenie i?(1 - 02) = f(0)należy rozwinąć w szereg: 2f(0) = f(o) + f*(0) -Ł + f~ (0) £- + ...,1! 2!przy czym p « 1. Po obliczeniu kolejnych pochodnych w punkcie zero otrzymujemy: 2 4f(0) = 1 + ■*—- + -i— + ...,2! 4!2 mo° Y (5.19)



35Drugi człon rozwinięcia (5.19) jest dobrze znanym wyrażeniem okre­ślającym energię kinetyczną maay spoczynkowej, poruszającej się z prędkością v. Człon trzeci i następne możemy interpretować jako czło­ny energii kinetycznej "wyższych rzędów"; mają one znaczenie wówczas, gdy wartości p są duże. Człon pierwszy nie znika gdy v = 0, zatem jest energią Eq, równoważną masie spoczynkowej. Każde z wyrażeń:E = m c2 » ®o°2Y (5.20)przedstawia całkowitą energię relatywistyczną masy, a wyrażenie m2„4v2 = m2 4o2v2mQc Y - mQc = mQc p Y ,czyli „E2 - (mQc2) = p2o2 (5.21)określa energię ruchu, pCałkowita energia relatywstyczna masy E = mc składa się więc z energii równoważnej masie spoczynkowej E » oraz energii ruchu p-c. Teoretyczna możliwość przemiany masy spoczynkowej na energię by­ła według Einsteina najważniejszym wynikiem jego teorii.Istnieje ści­sły związek między zmianą masy i związaną z tym produkcją energii:A E = A m c2. (5.22)Świadczy to o tym, że w procesach, w któryoh uwalnia się energia, klasyczne prawo zachowania masy nie jest ściśle spełnione. Naruszenie tego prawa nie dotyczy jednak zwykłych reakcji chemicznych, w których "defekt masy", związany z wydzielaniem się ciepła podczas reakcji nie może być sprawdzony pomiarami. Mamy bowiem:AE » —19° foa1 /1 moi = 122- kJ/mol = 418 kJ/mol, 0,24 kcal/kJ 0,24Am - ŚJ8kJ2mol_ _ 4 65.1O-12 kg/1 mol „ 5.1O"9 g/1 mol 9"10'° m2/sco jest poza zasięgiem pomiarowym. Podczas syntezy jądra atomowego na­tomiast z nukleonów wydzielają się ogromne ilości energii i w takich przypadkach związek Einsteina znajduje pełne potwierdzenie.Z równania (5.21) wynika ważny i interesujący wniosek.Jeśli przyj- miemy, że dla pewnej cząstki mQ =0, toE = pc. (5.23)Dla takiej cząstki, pozbawionej masy spoczynkowej, mamy:Ep = m • v = ----  • v,c2gdzie m jest masą relatywistyczną.



86 Wobec tego
czyli uv » c, a więc cząstka o masie spoczynkowej równej zeru musi poruszać się z prędkością światła. Jest to ogólna cecha takich cząstek} należy do nich m.in. foton promieniowania monochromatycznego o energiiE « h • v , gdzie h jest stałą Plancka. Fotonowi o energii E odpowiada pęds E_pf . —i . (5.24)oW celu zilustrowania wyników teorii względności odnośnie do pędu i energii fotonu przytoczymy jeszcze następujące rozważanie.

Atom H Foton- ©------ -— -----
Rys. 5-6Przypuśćmy, że atom wodoru o masie nip emituje kwant promienio­wania hv , któremu odpowiada pęd E/c. Podczas emisji następuje od­rzut atomu, który uzyskuje pęd -E/c tak, by środek masy mógł zostać w spoczynku (rys. 5-6).Dla prędkości środka masy otrzymujemy zatem:mą ♦ rH + m • c R = ———   *" = O,“H + aY czyli - — + m c = 0. c y

2Widzimy, że my o = E jest istotnie energią fotonu, zgodnie z wzorem (5.20).



6. POLE POTENCJALNE6.1, Pojęcie pojąPrzez pojęcie pola rozumiemy przestrzeń,otaczającą pewne obiekty fizyczne (masa, ładunek elektryczny, przewodnik z prądem) o takich, własnościach, że w każdyin punkcie pola określona jest siła działająca na analogiczny obiekt (odpowiednio masę, ładunek, przewodnik z prą­dem) tam umieszczony, W tym rozdziale będziemy się zajmować głównie polem elektrycznym; ma ono własności fizyczne analogiczne do pola gra­witacyjnego, którego niektóre cechy poznaliśmy w rozdziale 2.W szcze­gólności siła, działająca w próżni między dwoma ładunkami punktowymi jest określona przez prawo Coulomba, które zapisane w układzie jed­nostek SI przybiera postać* 1 q1 t. f A 11P = ■■ ——W” r, 16,1)4ue 0 rJprzy czym jednostkowy wektor r/r, jest skierowany umownie od ładunku q^ do qg. Siła, odpychania, działająca na qg ma wówczas ten sam zwrot, co r/r, natomiast siła działająca na q1 ma zwrot przeciwny do r/r; obie skierowane są na zewnątrz odcinka łączącego q^ i qg. Siły przy­ciągania leżą wewnątrz odcinka q^qg (rys. 6-1). Liczbowa wartość stałego współczynnika wynosi:7-4— s 9.O-1O9,4 ne oPrawo Coulomba ma postać analogiczną do prawa grawitacji Newtona m, m„F = -G —5-- r r^
oObie siły są odwrotnie proporcjonalne do r , tzn. do kwadratu od­ległości oddziałujących ze sobą obiektów punktowych. Zasadnicze róż­nice są następujące:

Fji f/r F12

[21 /[2Rys. 6-1



38 i. Stała grawitacji G = 6,670’10"11,jest o 20 rzędów mniejsza, od stałej w prawie Coulomba, dlatego siły grawitacji należą do najsłabszych ze znanych oddziaływań.ii. Ładunki elektryczne mogą byó dodatnie lub ujemne, w związku z czym siły działające między nimi polegają na przyciąganiu (-) lub od­pychaniu ( + ). Siły grawitacyjne są zawsze siłami przyciągania (-).Pole jest potencjalne, jeśli w każdym jego punkcie określony jest potencjał lub równoważna mu energia potencjalna; obie wielkości są związane z praoą przemieszczania w polu obiektu fizycznego, tzn. masy lub ładunku elektrycznego (por. rozdział 2).W dalszym ciągu będziemy uważaó, że pole wytwarzane jest przez ła­dunek q, natomiast dodatni ładunek +q0 traktujemy jako próbny, wy­kazujący istnienie siły P(xyz) po umieszczeniu go w punkcie xyz.Natę­żeniem pola E (xyz) w punkcie xyz nazywamy stosunek siły działającej na ładunek próbny +q0, umieszczony w tym punkcie, do wielkości tego ładunku; p(xyz)E(xyz) = =—----- , (6.2)qoWektor E jest określony w każdym punkcie jednoznacznie i stano­wi jedną z podstawowych własności pola elektrycznego.6.1.1. Natężenie pola wytwarzane przez ładunki punktoweNiech ładunkiem wytwarzającym pole będzie q, zaś próbnym +q0. Ze względu na działającą między nimi siłę (6.1), natężenie pola w odleg­łości r od q będzie wynosiło
+q0 4тге 0 гWidzimy, że natężenie pola, podobnie jak siła, maleje odwrotnie proporcjonalnie do r2. Poza tym dla wszystkich kierunków r/r jest ono liczbowo takie samo; powiadamy, że pole ładunku punktowego jest izo­tropowe.W ośrodku materialnym zarówno siła, jak i natężenie pola elektry­cznego jest mniejsze, niż w próżni. Jeśli e oznacza względną przenl- kalność dielektryczną ośrodka (definicja podana jest w 7.1), to
z-—!— te.,)oraz 4ue a 0 rE = -------^r. (6.5)4 nee 0Pola tego typu w przybliżeniu wytwarzają jony gazowe lub w roz­tworze.



89Jeśli pole jest wytwarzane przez zbiór ładunków q1fq2,..., qm, to na ładunek próbny +q0 działają siły , Ł"1' ^rya* 6-2). W celu otrzymania E należy je dodaó zgodnie z zasadami dodawania wektorów:
ożyli

K 1
? » 2 z-------4 TH - m=1 — 4 nee o -mo qo y_2s r

. t. =-mo ’4 kes 0 m rmó? —
Ę - 2 (6.6)m —Wypadkowe natężenie pola jest więc sumą wektorową natężeń wytwa­rzanych przez poszczególne ładunki punktowe.

6.1.2. Natężenie pola wytwarzane przez dipolWedług definicji formalnej dipolem nazywamy sztywny układ dwóch ładunków równych sobie, lecz o znakach przeciwnych. Jeśli 1 jest wek­torem, skierowanym umownie od -q do +q, to wielkość2 * l*q, C«m (6.7 )jest zwana momentem dipolowym dipola. W obrazie molekularnym za dipol uważa się cząsteczkę, w której geometryczny "środek ciężkości" ładun­ków dodatnich nie pokrywa się ze "środkiem ciężkości" ładunków ujem­nych. Jeśli mamy na myśli cząsteczkę swobodną, to cząsteczki nie wszystkich związków chemicznych mają tzw. trwały moment dipolowy. Na przykład cząsteczka dwutlenku węgla, 0 = C ■ 0 jest liniowa i posiada centrum symetrii. Rozkład ładunku też musi posiadać centrum symetrii, co powoduje, że p - O. Cząsteczka wody natomiast nie jest liniowa} symetria jej jest niższa i dopuszcza p / O w stanie swobodnym.



90 Podane dotąd definicje dipola 1 momentu dipolowego należy rozu­mieć jako przybliżone, ułatwiające zrozumienie pojęć pod względem ja­kościowym. Jest bowiem rzeczą jasną, że dipole odpowiadające (6.7), tj. złożone z dwóch ładunków punktowych, są w przyrodzie niezwykle rzadkimi przypadkami.Z reguły mamy w cząsteczkach do czynienia z roz­kładem pewnej liczby elektronów wokół jąder o ładunku dodatnim. Dipol rzeczywisty składa się zatem w gruncie rzeczy z dużej liczby ładun­ków. Dokładną definicję momentu dipolowego podamy w paragrafie 6.3.2, gdzie omówiono potencjał, wytwarzany przez zbiór ładunków.We wszystkich cząsteczkach dochodzi do przesunięcia ładunku w o- becności pola elektrycznego. Ponieważ ładunki dodatnie (jądra) prze­suwają się w stronę przeciwną niż ujemne (elektrony),pojawia się więc indukowany moment dipolowy o wartości proporcjonalnej do natężenia pola Pind a a £•Współczynnik proporcjonalności nosi nazwę polaryzowalnośoi cząs­teczki i jest miarą jej zdolności do Bodkształcania się" pod wpływem pola elektrycznego. Jak zobaczymy póź­niej a jest tensorem, ponieważ nie we wszystkich kierunkach cząsteczka jest jednakowo podatna na polaryzujące dzia­łanie pola.Jednostką momentu dipolowego w u- kładzie SI jest 1 C«mj dla układów mo­lekularnych często używa się jednostki zwanej dębajem (d),zdefiniowanej w na­stępujący sposób? jeżeli ładunek 1 elektronu przesuniemy względem takiego samego dodatniego ładunku na odległość 1 X = 10“^° m, to wytworzonemu w ten sposób momentowi dipolowemu odpowiada 4,803 D, tj.1 e • 2 => 4,803 D;wobec tego przesunięcie ujemnego ła­dunku 1 kulomba, odpowiadającego»0 6,022-W23F 96 487 elektronom, względem takiego samego do­datniego na odległość 1 m, wytwarza mo­ment dipolowy o wielkościRys. 6-3



91
1 C«m = 3,00 • 10^ D.Rozważmy obecnie siły działające ze strony dipola na ładunek prób­ny umieszczony symetrycznie w dużej odległości od niego, tak że r_ = r+ ■ r»l (rys. 6-3). Siła wypadkowa, działająca na q0 wynosi1 q q 1/2 £ 1 pF = F^ cos a + ?2 cos a « 2 ------- - . —« -—— q0 -j , 4ue0 r+ r+ 4 ne0 rzatem 1 p VE = ——---- ¥ ♦ (6.9)4 ire 0Wyrażenie (6.9) jest szczególnym przypadkiem ogólniejszej sytua­cji, odpowiadającej dowolnej orientacji dipola. Pokażemy w rozdziale (6.4), jak można uogólnió (6.9) korzystając z potenojału dowolnego rozkładu ładunków. Na podstawie uzyskanego tu wyniku widzimy, że na­tężenie pola dipola maleje jak r\ wraz ze wzrostem r.6.1.3. Siły działające na dipol w polu jednorodnymPole jest jednorodne, jeżeli siła działająca na ładunek +qo maten sam kierunek, zwrot i wartość niezależnie od tego,w jakim punkcie

Rys. 6-4pola umieścimy +qQ. Rysunek 6-4 przedstawia sytuację dipola w polu jednorodnym^ siły F^ i Fg tworzą w takim polu parę sił o momencie MM = F^l = F.,^ sin a = q El0 sina = p E sin a .W zapisie wektorowym M = £ x E (6.10)



92widać, że moment jest prostopadły do £, E, a jego zwrot określa re­guła śruby prawej. M stara się ustawić £ na kierunek E, tj.£ || E => M « O.6.1.4. Energia potencjalna dipolaPraca dl obrotu dipola o kąt d a w stronę oddalającą kierunek £ od Ę (rys. 6-5) powoduje powiększenie energii potencjalnej dipo­la o dU:

Hys. 6-6

wobec tego
<?U « J pE sin a d a “ o» p E (1 - cos <p ). (6.11 )Wykres (6.11) jest przedstawio­ny na rys. 6-6. Największą energię potencjalną ma dipol ustawiony an- tyrównolegle względem E.6.1.5. Siły działające na dipol w polu niejednorodnymPrzykładem pola niejednorodnego jest wytworzone przez ładunek punk­towy (rys. 6-7): w tym przypadku P1 ?2. Ponieważ rozmiary dipoli molekularnych są bardzo małe, możemy więc dla nich przyjąć || P2, natomiast 1?^ / |P2I. Obie siły możemy wówczas rozłożyć na parę sił, wywierającą znany już moment obrotowy (6.10) oraz siłę wypadkową, po­wodującą przesuwanie dipola. Ponieważ



93= -q • Ev F, - +q • E2,zatem siłą wypadkową jest △ EF = P. + F, = -q(E. - E„) » -q ----- A Z,' 1 * a Zoayii F = -p -— cos tp , (6,12)■ dZgdzie <P jest kątem między £ i E, dE/dZ jest spadkiem natężenia pola w kierunku osi z 1 jest miarą jego niejednorodności w tym kie­runku.Na dipol działa więc siła zależna od niejednorodności pola; jej kierunek zależy od aktualnej orientacji dipola, ale najbardziej praw­dopodobnym efektem jest wciąganie dipola w obszar o większym natęże­niu.

Rys. 6-76,2, Twierdzenie Gaussa-OstrogradskiegoWiele własności pola (nie tylko elektrycznego) możemy opisać za pomocą pojęcia linii pola. Linią pola elektrycznego nazywamy krzywą, po której porusza się ładunek dodatni pozbawiony bezwładności. Chodzi o to, by nie występowały siły wynikające z ruchu krzywoliniowego,któ­re powodowałyby odstępstwa aktualnej trajektorii ładunku od linii po­la. Równie dobrze moglibyśmy założyć, że ładunek o masie m porusza



94si® w ośrodku jednorodnym o dużej lepkości. Ruch zachodzi wtedy z bar­dzo małą prędkością, a przyspieszenia można zaniedbać.

Rys. 6-8Zgodnie z tą definicją wektor natężenia pola elektrycznego E jest styczny do linii w każdym jej punkcie (rys. 6-8); ponieważ wektor E jest jednoznacznie określony w każdym punkcie pola, więc linie nie mo­gą się przecinać. Według umowy wychodzą z ładunków dodatnich, a wcho­dzą do ujemnych. Na podstawie tych własności możemy narysować układ linii pola, np. dla dwóch ładunków jedno- lub różnoimiennych (rys.6-8).W polu jednorodnym linie pola są do

Rys. 6-9

siebie równoległe.Określimy obecnie gęstość linii pola elektrycznego.Erzyj- miemy, że na każdy metr kwad­ratowy powierzchni ustawionej prostopadle do E przypada ioh tyle, ile wynosi liczbowa war­tość E w danym miejscu pola. Jeśli zatem mamy płaski ele­ment powierzchni dSQlE (rys, 6-9), to zgodnie z tą defini­cją dNdŚ~ = |E|. (6.13)
OWielkość dNo » E*dSQ nazywamy strumieniem wektora E przez ele­ment powierzchni dS0. Ten sam element powierzchni dS, ustawiony pod kątem a względem E (rys. 6-9), obejmuje liczbę linii dN < dNQ. Ma­my wówczas



95dK « E dS • cob k E„ • dS (6.14)gdzie Eq jest rzutem E na normalną n do elementu dS. Zatem licz­ba linii pola, przechodzących przez dowolnie zorientowany element po­wierzchni dS, jest proporcjonalna do składowej wektora E normalnejdo tego elementu.Wyobraźmy sobie teraz po­wierzchnię zamkniętą S o do­wolnym kształcie» obejmującą pewną liczbę ładunków q1tq2=.. (rys. 6-10). Możemy ją podzie­lić na w przybliżeniu płaskie elementy powierzchni dS, przy czym każdemu elementowi można przypisać wektor dS, skiero­wany na zewnątrz S i o wiel­kości IdSI » dS, tj.równej po­wierzchni elementu. Strumień wektora E, przechodzący przez dS, wyraża się wówczas w na­stępujący sposób Rys. 6-10dN = En dS = E cos a dS = E*dS. (6.15)Jeśli w obrębie S mamy mień Kg przez powierzchnię
(S) (S)

tylko 1 ładunek q^, to zamkniętą S wynosiqi r dSQ
° . J 2 = ,45ie°(s) 4lte°

całkowity stru-4m
C 9./ dw * -1J eooprzy czym r jest / 2 zaś dw = dSQ/r (rys. 6-10). Całka odległością od q^ elementu dS0, normalnego do E, jest elementem kąta bryłowego, odpowiadającego dSQ jest rozciągnięta na całą powierzchnię S. Analo- glcznie przedstawiają się udziały ładunków q2,..., ą^, tak że w re­zultacie otrzymamy

C k qN„ = / E • dS = S • (6.16)E (s) ■ ” '»Wyrażenie (6.16) jest twierdzeniem Gaussa-Ostrogradskiego dla po­la elektrostatycznego w próżni: całkowity strumień wektora E, objęty dowolną powierzchnią zamkniętą S jest proporcjonalny do algebraicz­nej sumy wszystkich ładunków, objętych tą powierzchnią. Kależy zwró­



96cić uwagę, że ładunki wchodzą w (6.16) wraz ze znakami; jeśli zatem jakaś powierzchnia S obejmuje tyle samo ładunków dodatnich co ujem­nych, to 2 q j =0 oraz Ng = 0.Przedstawimy obecnie kilka przykładów, ilustrujących zastosowanie tego twierdzenia. Aby wywody uczynió ogólniejszymi, wprowadzimy poję­cie gęstości ładunku dla ładunków nie punktowych. I tak, jeśli ładu­nek zgromadzony jest wewnątrz jakiejś objętości V, toAq dq .p = lim ----  = — (6.17)AV-0 AV dVjest objętościową (lokalną) gęstością ładunku (w C/m^). Jeśli ładunek zgromadzony jest na jakiejś powierzchni S, toA q dq a = lim ----- = — (6.18)AS+O AS dS jest (lokalną) powierzchniową gęstością ładunku, zatem q = J pdV lub q = odS.6.2.1. Nieskończona płaszczyzna przewodzącaSytuacja jest przedstawiona na rys. 6-11. Wektor E musi byó pro­stopadły do elementu dSQ płaszczyzny n , gdyż inaczej ładunek musiał-

by płynąć pod działaniem składowej E stycznej do n .Jeśli dN^ i dN2 przedstawiają strumienie elementarne E po obu stronach n , todN - dN. + dS, = 2 E dS « 1- dq = y odS,1 n e o e o



97wobec tego 1 o E - ----  ----- .2 eo (6.19)Po każdej stronie płaszczyzny, naładowanej z jednostajną gęstoś­cią ładunku a , panuje pole elektryczne o natężeniu podanym (6.19).

Łatwo się przekonać, że jeśli mamy dwie nieskończone płaszczyzny, z których jedna jest naładowana gęstością +o, a druga - a (rys.6-12), to na zewnątrz nich E = 0, zaś między nimi panuje jednorodne pole elektryczne o natężeniu E = — , (6.20)e otj. dwa razy większym od (6.19),6.2.2. Równomiernie naładowana kulaNiech r będzie promieniem przewodzącej kuli równomiernie nała­dowanej o gęstości powierzchniowej ładunku + a (rys. 6-13). Ładunek kuli wynosi zatem:9 ■ 4 u r2 • a ,Otoczmy teraz współśrodkowo ową kulę drugą, o promieniu R, stano­wiącą naszą powierzchnie zamkniętą S. Całkowity strumień E przez S wy­nosi: Ng = ~q“~4u r2° ’



98zatem N 1 / r\2E = ------ * = ---- ( - ) .4 irn e Q \ R / (6.21)
Wzór (6.21) podaje sposób obliczenia natężenia pola naładowanej kuli w odległości (R - r) od jej powierzchni. Jeśli jest ona wydrążo­na, to w jej wnętrzu (r’< r) q ■ 0, zatem E = O. Wobec tego we wnę­trzu naładowanej kuli (w ogóle przewodnika) nie ma pola elektryczne­go. Fakt ten jest podstawą zastosowania osłon metalowych (puszek,sia­tek) do ochrony objętych nimi obiektów przed wpływem zewnętrznego po­

la elektrycznego. Służy również za podstawę konstrukcji generatora elektrostatycznego Tan de Graaffa, umożliwiającego osiąganie potencja­łów do 7 W (rys. 6-14). Bateria elektryczna, uziemiona z jednej stro­ny, jest połączona z ostrzem metalicznym. Wskutek dużej gęstości ła­dunku następuje jego wypływ z ostrza, a następnie transport za pomocą pasa transmisyjnego. Wewnątrz kuli przewodzącej jest umieszczone ostrze "zasysające" ładunek (wypływa przez nie ładunek przeciwnego 



99znaku). Ponieważ we wnętrzu kuli nie może być pola elektrycznego,więc ładunek wypływa na Jej powierzchnię. Generatorów tego typu używa się we współczesnych laboratoriach fizyki jądrowej do wytwarzania strumie­nia cząstek naładowanych o dużych prędkościach, także w laboratoriach wysokich napięć, np. do badania wytrzymałości materiałów na przebi­cie. Prawa Coulomba i Gaussa-Ostrogradskiego są sobie równoważne. Łat­wo to zobaczyć w następujący sposób: jeśli ładunek +qQ otoczymy po­wierzchnią kulistą o promieniu R tak, by ładunek znalazł się w jej środku, to całkowity strumień E przechodzący przez tę powierzchnię wynosi Ne = — q = e° (S) zatem 1E - --------------j . 4ne 0 RRa ładunek punktowy q0 umieszczony na powierzchni tej kuli dzia­ła siła 
co jest właśnie siłą Coulomba. Twierdzenie Gaussa-Ostrogradskiego w odróżnieniu od prawa Coulomba pozwala w stosunkowo prosty sposób ob­liczyć natężenie pola elektrycznego dokoła ładunków, w tym także prze­strzennie rozciągłych. 6.3. PotencjałPrzesuwanie ładunku +q0 między dwoma punktami pola A i B jest związane z wykonaniem pracy LAB. Jeśli punktowi A przypiszemy po­tencjał VA, a punktowi B potencjał VB, to wykonaną pracę możemy zapisać w następującej postaci:LAB = +% (VB - VA}* (6-22)przy czym 1 J/C ■ 1 V. Ściśle określona jest w ten sposób różnica po­tencjałów, nie sam potencjał; jeśli jednak przyjmiemy umowę, żeA —^.00 3 VA —-O, (6.23)czyli, że w nieskończoności potencjał (podobnie jak siła) znika, toVB = (6.24)+%



100 Tak więc potencjał w danym punkcie pola jest pracą, potrzebną do przeniesienia ładunku dodatniego i jednostkowego z nieskończoności do danego punktu pola.Jeśli pracę wykonuje siła przyłożona Fp - ”%$» i-0 ®amy ponadto: B BLAB -/ £p dl = -q0 / Ę dl = q0(VB - VA),A Astąd $VE - VA = - J E dl. (6.25)ABównanie (6.25) stanowi bardzo ważny związek między różnicą po­tencjałów, a natężeniem pola. Ze względu na własności pracy LAB, cał­ka liniowa, występująca po prawej stronie (6.25) nie zależy od drogi całkowania, a jedynie od punktu początkowego (a) i końcowego (B), Wo­bec umowy (6.23) potencjał dowolnego punktu pola, określonego wekto­rem r (mierzonym względem początku układu współrzędnych) możemy wy­razić przez rV(r) = -/ B dl. (6.26)
Jeśli pole jest jednorodne, E = const, to (6.25) upraszcza się do znanego wyrażenia V — vE » —------  . (6.27)

1Stąd właśnie w polu jednorodnym natężenie pola równe jest spadko­wi potencjału na jednostkę długośoi.6.3.1. Potencjał ładunku punktowegoPonieważ dla ładunku punktowego +q1E = — - “■X ęAue 0 rzatem potencjał takiego ładunku w odległości r od niego wynosi rr 1 q 1 qv(r) = - / —— —j dr -----------------. (6.23)„ 4jtE0 r 4-nxorWarto zauważyć, że w tym przypadku potencjał maleje zgodnie z 1/r. Ładunek q w punkcie pola, określonym wektorem r ma energię poten­cjalną równą iloczynowi ładunku i potencjału w tym punkcie:U(r) = q • V(r). (6.29)



1016.3.2. Potencjał rozkładu ładunkówMultipolePrzypuśćmy, że mamy zadany bardziej złożony rozkład ładun­ków dodatnich i ujemnych, odpo­wiadający np. cząsteczce metanui (rya, 6-15).Chcemy obliczyć prze­de wszystkim wytwarzany przez ten rozkład potencjał w punkcie A, dostatecznie odległym w porówna­niu do liniowych rozmiarów cząs­teczki. Podzielmy w tym celu in­teresujący nas obszar przestrzeni na elementy objętości dr na tyle małe, by gęstość ładunku p (xyz) można było w ich obrębie uważać za stałą. Ładunek zawarty w ta­kim elemencie wynosi p (xyz) dr (może być dodatni lub ujemny), a wytwarzany przezeń przyczynek do potencjału w punkcie A wynosi1 1-------- p(xy z) dv • — .4ue 0 RPrzyczynki różnych elementów dr są addytywne orazR' ■ (r2 + R2 - 2 r R cos cp )1/2,8tąd 1 f p (x y z)
7A = -------- / TT----- 2----------- —""<172 dr. (6.30)4ne 0 (R^ + r - 2r H oos<p ) 7Ponieważ wektor r ma długość nie większą od liniowych rozmiarów cząsteczki, więc r<<R oraz r/R = 5 «1. Wyrażenie(R2 + r2 - 2 r R ooscp )-1/2 = |l +6(5-2 cos<p -1/2możemy rozwinąć w szereg względeme =6 (ó - 2 cos <p).



102 Otrzymujemy(1 + e )-1/2 = i _ le + 2 - 3 + ... ,a po dwukrotnym dokonaniu podstawienia i uporządkowania wyrazów wzglę­dem rosnących potęg r/R
4ue 0R1
+ -------------T4ue 0RJ1+ 4------4ue Qk

p dv + ----- ----x f p r cos tp dv +4ne 0R J 
2 „ „ 3 cos <p - 1

J p r ----------- ------- dv +coscp (5 cos2<p - 3)p rJ ............... —------------- — dv + ... (6.31)
We wzorze (6.31) R jest stałe i może być wyjęte przed znak cał­ki, natomiastp r i cp są zmienne na obszarze całkowania. Widzimy, iżpotencjał w wybranym punkcie A można przedstawić za pomocą szeregu wy­razów, przedstawiających potencjały multipoli, odpowiadające rozkła­dowi ładunku w cząsteczce. I tak, w pierwszym wyrazie f p dv = q jest całkowitym ładunkiem cząsteczki} jest on różny od zera tylko wtedy,, gdy cząsteczka jest jonem. Wyraz ten odpowiada wtedy potencjałowi ła­dunku punktowego. Jeśli q / 0, to człon ten ma największe znaczenie dla Vponieważ najsłabiej maleje ze wzrostem R.Całka w drugim wyrazie przedstawia moment dipolowy, a całe wyra­żenie jest żnanym nam już potencjałem dipola w dużej od niego odległo­ści. Następne człony, coraz szybciej malejące wraz ze wzrostem R od­powiadają momentowi kwadrupolowemu Q, oktupolowemu, itd.Przykłady rozkładu ładunków, po­siadających moment kwadrupolowy, a nie posiadające ładunku ani momentu dipolowego, są pokazane na rys.6-16. (6.31) stanowi ścisłą definicję mo­mentu multipolowego, ponieważ dipole punktowe, omawiane w 6.1.2, są two­rami niezwykle rzadkimi. Najczęściej mamy do czynienia właśnie z prze­strzennym rozkładem elektronów i ją­der.Rys. 6-16



юзZajmijmy się jeszcze wyrażeniemy(d) ж 1 f p r 003 Ф dv (6.32)A 4 7t e0 R^ J
przedstawiającym potencjał dipola. Ponieważ r cos Ф - k*r jest rzu­tem r na oś Z (rys. 6-15)» przy czym к jest wersorem wzdłuż tej osi, możemy więc (6.32) zapisać w postaciy(d) = , (6.33)A 4 ue0Rgdzie £ - fp r dv jest momentem dipolowym. Jeśli umieścimy dipol w środku układu współrzędnych wzdłuż osi Z (rys. 6-17), to2 R p oos<pV(R) - --------- 7 • - - --------- я .4ле 0R R 4-n;e 0RW tym przypadku cos ф = z/(y2 + z2)1/2

Rys. 6-17



104oraz
Składowe natężenia pola w płaszczyźnie yz wynoszą 3v 3 p z y 3 p sin <p cos

y h 4ue0(y^ + z2)^2 4 Tte03V p j3 z2 (y2 + z2)1^2 - (y2 + z2)?'2Z 3 Z 4 KE 0 I (y2 + Z2Pp(3 cos2 <p - 1) 4 ire 0 R^Jeśli wybierzemy <p = 90°, to natężenie pola wyraża się znanym nam już wzorem (6.9), E ■ -p/(4ue 0R^), (E ma kierunek przeciwny do 2).

według (6.26);- , (6.34)

(6.35)
6.3.3, Krzywa energii potencjalnejRozkład potencjału dookoła ładunku punktowego (np. jądra atomu) jest podany we wzorze (6.28). Wobec tego energia potencjalna ładunku + q0, w takim polu wynosi q q 1U(r) - ±q„’ V(r) = i ----- (6-36)° 4re0 ri przedstawiona jest na rys. 6-18. Krzywa nad osią odciętych odnosi się do sił odpychania (znak (+) w (6.36)), zaś krzywa pod osią do sił przyciągania (znak (-) w (6.36)). Jeśli oba ładunki znajdują się w odległości r1 od siebie, to ich całkowita energia E występuje pod postacią energii potencjalnej U(r1). Konfiguracja trwała takiego u- kładu możliwa jest tylko wtedy, gdy ładunki nie mogą się poruszać.Je­śli mają swobodę ruchu, wówczas część energii E występuje pod pos­tacią energii kinetycznej T, i tek np. dla wzajemnej odległości jed- noimiennych ładunków rQ i całkowitej energii E energia kinetyczna wyniesie T+ = E - U+(r0). (6.37)W miarę wzrostu r coraz większa część E występuje pod posta­cią energii kinetycznej kosztem pracy sił Coulomba, działających mię­dzy q i qQ. Konfiguracja równowagowa obu ładunków nie jest możli­wa. Inaczej sprawa się ma, jeśli między oboma ładunkami działają si­ły przyciągania. Potrzebna do utrzymania równowagi energia kinetycz-



105

na T_ jest wówczas większa od T+, gdyż U_(rQ) jest ujemna. Równo­waga dynamiczna utrzymuje się wówczas dzięki temu, że siła odśrodkowa działająca na qQ, równoważona jest siłą dośrodkową Coulomba:
mamy wówczas

omv 1 q q0
1 2T - — mv^ » --------2 Sue „

4ue 0 r0
<1 %ro- 2 T,oraz E-U+T=-T. (6.38)Widzimy, że energia całkowita jest ujemna. Z taką sytuacją spoty­kamy się np. w teorii atomu wodoru.



106 6.3.4. Powierzchnia ekwipotencjalnaPowierzchnia ekwipotencjalna jest powierzchnią stałego potencja­łu, np. dla ładunku punktowego q ma ona kształt kuli o dowolnym pro­mieniu R, zatoczonej wokół q (rys. 6-19), dla płaszczyzny nałado­wanej stałą gęstością a jest również płaszczyzną do niej równoległą w dowolnej odległości (rys. 6-19).

Rys. 6-19Powierzchnia ekwipotencjalna ma następujące własności:i. Praca przesuwania ładunku qQ po powierzchni ekwipotencjalnaj wynosi zero. Jeśli bowiem dwa punkty A i B leżą na takiej powierz­chni, to VA - VB « 0 oraz Lab = qo(VA - VB) = 0.ii. Wektor E jest normalny do powierzchni ekwipotencjalnej wkażdym punkcie. Mamy bowiem elementarną pracę przesuwania qQ:dL “ P dl = -qQ E dl = 0, czyli E J. dl.6.4. Pojemność elektrycznaZgromadzenie ładunku dq na powierzchni jakiegoś przewodnika po­woduje, że potencjał tuż w pobliżu jego powierzchni (na samej po­wierzchni nie jest określony) wzrasta o wielkość proporcjonalną do dqdq = C • dV. (6.39)Stałą C nazywamy pojemnością przewodnika; jednostką pojemności przewodnika jest farads 1 P = 1 ńp. potencjał kuli o promieniu 



107r i ładunku q wynosi tuż w pobliżu jej powierzchni V = q/(4iteor), zatem jej pojemność C = 4 ueor jest proporcjonalna do promienia. W kondensatorze płaskim natomiast panuje natężenie pola 
czyli różnica potencjałów wynosi a • d a. S

gdzie a jest powierzchniową gęstością ładunku. Pojemność kondensato­ra płaskiego zatem Eo* SC = —— d (6.40)jest proporcjonalna do powierzchni jednej z jego okładek, a odwrotnie proporcjonalna do odstępu między okładkami. Ogólnie biorąc pojemność elektrostatyczną możemy przedstawić w postaciC = e0 ‘ G (6.41)gdzie G jest czynnikiem geometrycznym o wymiarze długości, zależnym od kształtu 1 rozmieszczenia okładek. Dla kondensatora płaskiego G * = S/d, natomiast dla cylindrycznego G * 2k1/ln b/a, przy czym b o- znacza średnicę cylindra zewnętrznego, zaś a wewnętrznego (b > a). Zauważmy, że b —a odpowiada C —~ ; zatem - formalnie biorąc - przewodnikowi, stanowiącemu zwarty kondensator, odpowiada nieskończe­nie duża pojemność elektrostatyczna. To ostatnie stwierdzenie odnosi się do wnętrza przewodnika, a nie do jego powierzchni.Przeniesieniu ładunku +dq z okładki ujemnej na dodatnią towa­rzyszy wzrost energii potencjalnej kosztem wykonanej pracy. Jeżeli 71 “ V2 różnicą potencjałów między okładkami, to energia nała­dowanego kondensatora wynosi
Q 1 2z. r q 1 (/ 1 ,U = / dq (V1 - V2) = / - dq - ----------  - - V. (6.42)q J C 2 C 2Energia ta jest zgromadzona w objętości S*d «(l/e0)C.d2 tak że gęstość energii w pola elektrostatycznego wynosi

Widzimy z tego, że przestrzeni, w której panuje pole elektryczne odpowiada energia potencjalna o gęstości proporcjonalnej do kwadratu natężenia pola«,



108 6,5t Pomiar łądunku elementarnego; metoda MillikanaRozstrzygnięcie istnienia ładunku elementarnego i pomiar jego wielkości należały do podstawowych problemów fizyki. Rozwiązał to za­

Rys. 6-20danie Millikan za pomocą bardzo prostej, lecz i bardzo pomysłowej me­tody. Między okładki kondensatora wprowadza się kropelki rozpylonej oliwy (rys. 6-20), których ruch obserwuje się w polu mikroskopu. Na kropelkę działa siła ciężkości, ?c, siła oporu Stokesa, Fs oraz si­ła wyporu Archimedęsa, F^. Pominąwszy fazę początkową ruchu, siły te 
w krótkim czasie dochodzą do równowagiPA + Ps - Fc = 0, (6.44) wobec czego kropelka opada z jednostajną prędkością vQ. Siła oporu Fs jest proporcjonalna do prędkości; dla przedmiotu w kształcie kuli ma postaó: Fs = 6n r n v0, (6.45)gdzie t) jest współczynnikiem lepkości powietrza, a r promieniem kul­
ki. Jeśli przez p 0 oznaczymy gęstośó oleju, a przez p gęstość po­wietrza, to z warunku (6.44) można obliczyć nie znaną wielkość, jaką jest promień r kulki:

. ^(p0 " Pp^*^przy czym g jest przyspieszeniem ziemskim.Włączamy teraz pole elektryczne o natężeniu E = (7^ V2)/d lam~ pę rentgenowską (lub stosujemy inny czynnik jonizacyjny). Powstają w przestrzeni między okładkami kondensatora jony gazowe. Z chwilą, gdy 



109taki jon przyczepi się do kulki oleju, jej prędkość skokowo zmieni się na vE, ponieważ pojawi się siła elektryczna FE ■ -qE, gdzie ą jest ładunkiem jonu. Zmieni się także Fs na F$, tak że obecnie+ Pś * PE - PC = °’Odejmując (6.44) od (6.47) mamy’ +^E* czyli 6n rjj (v£ - v0) = +q *E. (6.48)Znając promień r i pozostałe stałe można z (6.48) obliczyć -q. Okazało się, że zawsze |q| * n • |e|, (6.49)tj. ładunek kulki zmieniał się o całkowitą wielokrotność najmniejsze­go ładunku |e|, zwanego elementarnym.Współcześnie przyjęta wartość lei, odpowiadająca ładunkowi elek­tronu wynosi |e| = (1,60210 t 0,00007)*10"^3 0. (6.50)Towarzyszy mu masa me, odpowiadająca masie elektronume - (9,1091 i O,OOO4)«1O"31 kg. (6.51)



7. POLE ELEKTRYCZNE W MATERII7,1 « Polaryzacja dielektrykaZastąpienie próżni miedzy okładkami kondensatora jakimś ośrodkiem materialnym (gaz, ciecz, ciało stałe) powoduje powiększenie jego po­jemności elektrostatycznej. Jeśli przez CQ oznaczymy pojemność kon­densatora próżniowego, a przez C pojemność tego samego kondensatora po napełnieniu przestrzeni miedzy jego okładkami ośrodkiem material­nym, to stosunek -S- = e , (7.1)onazywamy względną przenikalnością dielektryczną (stałą dielektryczną) ośrodka. Do wyznaczenia a jest wiec potrzebny pomiar dwu pojemności; ważne jest, by kondensator miał ten sam czynnik geometryczny po wy­pełnieniu go dielektrykiem.Względna przenikalność dielektryczna jest liczbą bezwymiarową.Dla gazów jest ona bliska 1 (np. dla powietrza wynosi 1,0006),dla cieczy, oprócz wody, wynosi kilka (dla benzenu 2,26), dla ciał stałych od kil­ku do kilkuset tysięcy (ferroelektryki). Wyjątkowo duża stała dielek­tryczna wody (31) jest cechą wśród cieczy wyjątkową; decyduje ona o dysocjacji elektrolitycznej wielu związków chemicznych w roztworze wodnym, ponieważ siły Coulomba między jonami są w wodzie znacznie mniejsze, niż w stanie stałym.Jak wiemy, pojemność kondensatora próżniowego wynosi c0 = e0 * Po udzieleniu jego okładkom ładunku q panuje między nimi pole elek­tryczne o natężeniu q q .
Jeśli teraz, nie zmieniając czynnika geometrycznego G, ani ła­dunku q, wprowadzimy między okładki kondensatora dielektryk o stałej dielektrycznej e, to natężenie pola wyniesie:q q E„

E = 771 = e e' gj “ ~ ‘** *— t. O q • o



111Jak widzimy, po wprowadzeniu dielektryka natężenie pola zmalało e razy. Przyczyną tego zjawiska jest zmiana stanu dielektryka pod wpły­wem pola elektrycznego, nosząca nazwę polaryzacji.Istnieją dwa mechanizmy polaryzacji.i. Mechanizm orientacyjny. Występuje on tylko wtedy, gdy cząstecz­ki dielektryka posiadają własny, trwały moment dipolowy. W polu elek­trycznym działa na dipol para sił, usiłująca ustawić go równolegle do kierunku pola. W gazach i cieczach przeszkodą w uzyskaniu pełnej o- rientacji dipoli są ruchy termiczne, stanowiące czynnik dezorganizu­jący porządek ustawienia. W ciałach stałych istnieje ograniczona moż­liwość obrotu dipola wskutek ciasnego wypełnienia przestrzeni przez cząsteczki. Niemniej jednak efekt orientacji jest dość spory; jeśli tylko występuje, ma decydujący udział w polaryzacji dielektryka.ii. Mechanizm indukcyjny. Polega na polaryzacyjnym wpływie pola elektrycznego na cząsteczkę, w której indukuje się zgodnie z wzorem (6.8) moment dipolowy o wielkości proporcjonalnej do natężenia pola, ^ind = a * Łlomen't indukowany jest znacznie mniejszy od spotykanych momentów trwałych, jednak efekt indukcyjny występuje zawsze. Jeśli w cząsteczce swobodnej rozkład ładunku ma symetrię kulistą, to wywołany moment ma zawsze kierunek linii pola.

Orientacyjny wpływ pola elektrycznego jest przedstawiony na rys.7-1. Gdybyśmy w sytuacji bez pola elektrycznego wybrali element ob­



112jętości A V w dowolnym miejscu dielektryka, wówczas obliczona dla znajdujących się w jego wnętrzu momentów dipolowych suma wektorowa byłaby równa zeru, zatem bez pola elektrycznego = 0. Po przyło­żeniu pola zachodzi orientacja dipoli; dzięki temu w cienkiej warst­wie dielektryka o grubości 5, przylegającej do okładki naładowanej ładunkiem -q, gromadzą się dodatnie końce dipoli, a przy przeciwnej okładce - ujemne.W tym przypadku dla elementu AV będziemy mieli £/ 0. Moment elektryczny, przypadający na jednostkę objętości ma ważne znaczenie» równy jest liczbowej wartości wektora polaryzacjiP = . (7,4)AVWidzimy również, że w warstwach o grubości 5 powstaje ładunek nie- skompensowany; blisko górnej okładki +q„, blisko dolnej -q„. W prze- 4* ciwienstwie do ładunku -q, który jest swobodny i może się przemiesz­czać po okładce metalicznej, ładunki -qz nie są swobodne: noszą na­zwę ładunków związanych. Tak więc wynikiem polaryzacji jest pojawie­nie się ładunków związanych w cienkiej warstwie dielektryka, zwróco­nej w stronę elektrody.

Rys. 7-2Oznaczmy przez natężenie pola, wytwarzane przez ładunki swo­bodne, przez E^ natężenie pola wytwarzane przez ładunki związane, zaś E niech będzie wypadkowym natężeniem w dielektryku. Mamy (rys. 7-2) wektorowe E = E, + 1L,— —o —zalgebraicznie E = E„ - E_, o zponieważ pole Ez ma kierunek przeciwny do EQ.
r



113Zastosujmy teraz twierdzenie Gaussa- Oatrogradskiego - wpierw do kondensatora, w którym między okładkami panuje próżnia (rys. 7-3). Dowolna powierzchnia zamknięta S może mieć kształt cylindra; obejmuje tylko ładu­nek swobodny q.Ne = /eq dS = Eq. 3 = - 1 q,° (3) °czyli q = - e0 Eo- S, (7.5)ponieważ 5 wybraliśmy w pobliżu okładki naładowanej ujemnie. W drugim przypadku po­wierzchnia S obejmuje ładunek swobodny -q i związany +qz; mamyNE . E • S - -1- (-q + qz), Ostąd i z (7.5)qz = q + s = Gos " Eo^» czyli 1qz = q(i - — ).

Próżnia

Rys. 7-3
(7.6)Wartość ładunku związanego zależy więc od przenikalności dielek­trycznej ośrodka. Jeśli - jak przeciętnie - e “ 5, to qz= 0,8 q, oży­li ładunek związany sięga 80% ładunku swobodnego. Tak duży ładunek związany znacznie neutralizuje pole okładek, w wyniku czego wypadkowe natężenie pola E jest znacznie mniejsze od pola okładek.7.2 » Twierdzenie Gaussa-Ostrogradskiego dla dielektrykaTwierdzenie Gaussa-Ostrogradskiego, napisane dla strumienia wek­tora E ma zatem w obecności dielektryka postać;NE = f I as = -±- (q - qz) = ,(s) 0 0jeśli zastąpimy qz przez (7.6). Możemy temu wyrażeniu nadać prost­szą postać, jeśli wprowadzimy definicję nowego wektoraD = e0 eE, (7.7) 



114wówczas strumień wektora DND = / D dS = 5 q± (7.8)(S) 1
równy jest sumie wszystkich ładunków swobodnych,objętych powierzchnią S. Należy zwrócić uwagę, że ładunki związane nie mają udziału w N^. Wektor D nosi nazwę wektora indukcji elektrostatycznej.W kondensatorze płaskim z dielektrykiemy D dS = D • S = q, czyli (S) D = — . (7.9)SWidzimy więc, że liczbowo wektor D równy jest gęstości ładunku swobodnego na okładkach kondensatora.Wyrażenie (7.6) określające wielkość ładunku związanego możemy też przepisać w następującej postaciq = qz + -f- “ 9Z + e0a po podzieleniu przez powierzchnię okładek S

Interpretacja poszczególnych członów (7.10) jest następująca:i. q/S jest gęstością ładunku swobodnego, czyli liczbową wartoś­cią D, ii. q2 q2 ’8 SPiZi ći ___ J- _ pS S • S AVzatem drugie wyrażenie jest liczbową wartością wektora polaryzacji.Ma­my tu nową interpretację wektora P: jest on liczbowo równy gęstości ładunków związanych.iii. ee0Sprzy czym E jest wypadkowym natężeniem pola w dielektryku. Uwzględ­niając punkty i-iii możemy (7.10) zapisać w postaci ważnego związku między trzema podstawowymi wektorami pola w dielektryku:D = a0Ę + P. (7.11)Zestawienie i fizyczny sens tych wektorów podane są na rys. 7-4.
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Rys. 7-4Przykład: Kondensator płaski o powierzchni okładki S » = 100 cm2 i odległości d » 1,0 om został naładowany do różnicy po­tencjałów UQ = 100 V. Po odłączeniu baterii wsunięto między okładki płytę dielektryka o grubości 5 mm i stałej dielektrycznej e = 7,0. Obliczyć E, D, P w szczelinie i dielektryku.

Rys. 7-5W przykładzie mamy kondensator z dielektrykiem, częściowo wypeł­niającym przestrzeń między okładkami. Sytuacja jest przedstawiona na rys. 7-5; e0 = 3,9 • 10~12 C2/(Nm2).Obliczamy kolejno potrzebne wiel­kości.i. Pojemność kondensatora próżniowego8,9’10“12^~Y 10"2 m20 = en S/d = ------------ --------------------------  = 3,9 py,U U Q10"^ m



116 ii. Ładunek swobodny okładekq = co« Uo = 8,9’10"12. 100 C = 8,9’10“10 C.iii. Natężenie pola elektrycznego w próżniq 8,9«10-10 C .E = ----- = ------------------------- --- 1,00-10* V/m.eoS 8,9.10-12.10-2 4-Z drugiej strony „U 102 .E = —2 = ---- 7 V/m = 10* V/m0 d iodaje wynik zgodny z poprzednim. Wyniki te wskazują, że wstawienie di­elektryka nie ma wpływu na EQ.iv. Natężenie pola w dielektrykuq 1.00-104 ,E = -------- = ------------  V/m = 1,43.1OJ V/m.e0 eS 7,0z drugiej strony .Un 104 -5E • —2- = ----  V/m = 1,43.1OJ V/m.ed 7,0Wyniki te wskazują, że obecność szczeliny nie ma wpływu na E. v. Różnica potencjałów na kondensatorze dU = - / E dl = E.d. + Eod„ = E li i ii O 0Wyrażenie (7.12) ma postać trochę ogólniejszą i dotyczy sytuacji,gdy przestrzeń między okładkami kondensatora jest wypełniona dwiema war­stwami o grubości d^ i dg oraz o stałych dielektrycznych odpowied­nio e1 i e2. W naszym przypadkuu = Eo [“T + (d " b)] 3= 1,00’104 |^- + 5] -10“3 m = 57,14 v.vi. Pojemność kondensatora z dielektrykiemc = _a_ = ą^io"— . w12 pp = 15,8 pp.U 57,14

ii + (7.12)E1 e27

Zauważmy, że pojemność wzrasta tylko o 1,8 raza ponieważ b < d.



117Ogólniejsze wyrażenie na pojemność C ma na podstawie (7.12) po- staó en SC = --------2----------- . (7.13)d^/E^ + d2/e?vii. Wektor Dq ma liczbową wartośćDq = e0 sE0 = 3,9.10-12-1.1,00-104 -£4 = 8,9’10”3 -X . u nrZ drugiej strony0 o = — = C = 3>9.10-8 C .S 10 ni nrviii. Wektor P dla szczeliny powietrznej ma wartość liczbowąP = D - e0E = sq(e - 1) E, (7.14)zatem w szczelinie P = 0 (próżnia nie ulega polaryzacji). Łącznie w szczelinie mamyEo = 1,00*104 V/m, DQ = 3,9*10"3 , P = 0.niW dielektrykuP » 8,9’10“12.6,0*1,43‘1O3 = 7,65’W8 -4 nr m‘Inaczejq2P —S 8,9*10"10 10~2 6 C a 2- -x = 7,65*10 a C/m2.7 m2D = 3,9*10"12*7,0*1,43*1O3 C/m2 = 8,9’10"8 C/m2,(to samo, co w szczelinie). Tak więc w dielektrykuE = 1,43’103 V/m, D = 3,9*10"8 C/m2, P = 7,65*W8 C/m27.3. Fizyczny sens wektorów D i E7.3.1. Szczelina podłużnaWytnijmy we wnętrzu spolaryzowanego dielektryka szczelinę wzdłuż linii pola, której rozmiary poprzeczne są znacznie mniejsze niż dłu­gość, czyli tzw. kanał podłużny (rys. 7-6). Na dodatni ładunek +q u- mieszczony w środku szczeliny działa wówczas siła, pochodząca od na­tężenia pola g w dielektryku oraz siła F', pochodząca od wpływu ła­dunków związanych, których powierzchniowa gęstość na powierzchniach bocznych zamykających walec wynosi+o • Wobec tego
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Ą = q Ę + F'. (7.15)Jeśli średnica szczeliny jest bardzo mała w stosunku do długości to. P* można zaniedbać', wówczas F,= q*Ę oraz Ę = — . (7.16)qTak więc natężenie pola we wnętrzu dielektryka jest liczbowo rów­ne sile, jaka działa na ładunek dodatni i jednostkowy umieszczony w kanale podłużnym, wydrążonym we wnętrzu dielektryka.7.3.2. Szczelina poprzeczna

Rys. 7-7

Zajmijmy się obecnie ka­nałem poprzecznym (rys. 7-7), w którym efekty wynikające z obecności ładunków związanych nie mogą byó pominięte. Mamy

W takim raziep s q(Ę + -J- P) = -2- q D, r eo eoczyli D = e^/ą. (7.17)Wektor D możemy więc zmierzyć,mierząc siłę działa­jącą na ładunek dodatni i jed- stkowy w kanale poprzecznym.



1197.3.3. Szczelina mikroskopowaSzczególnym i ważnym przypadkiem szczeliny jest małe kuliste wy­drążenie o średnicy rzędu rozmiarów cząsteczki (rys. 7-8). Panujące w

niej pole moglibyśmy otrzymać usuwając z pewnego miejsca w krysztale 1 cząsteczkę: jest to tzw. pole lokalne. Obliczenie pola lokalnego w przypadku ogólnym jest bardzo trudne i do dziś nie w pełni rozwiąza­ne. Jeśli jednak założymy, że mamy do czynienia z dielektrykiem izo­tropowym, to sytuacja przypomina kanał poprzeczny z jedną różnicą: w obliczaniu D według (7.17) należy uwzględnić 1/3 wartości P, po­nieważ interesuje nas określony kierunek w przestrzeni, a wszystkie 3 kierunki są w przypadku izotropii jednakowo uprzywilejowane. Otrzy­mamy więc wyrażenie na siłę F. “*(F =ą(E + p) x 1 qczyli ooD = e0E + | P, (7.18)z tego /e E 9 E_ E + — P- -° 3 e0 "oraz E = = I M e - 1 )E [ = E - - Г A E.~o 3^- -o 3 e 0 l o -j -o 3 -Rozwiązując to równanie względem E otrzymamy
Jest to natężenie pola wewnątrz dielektryka wyrażone przez natę­żenie pola okładek. Na podstawie (7.19) otrzymujemy ważne wyrażenie na wektor polaryzacji P dielektryka e - 1P = eo( e - 1 ) • E = 3 e ---- — E. (7.20)0 0 a + 2



120 7,4, FerroelektrykiW omawianych dotychczas przypadkach związki (7.7) i (7.14) mają charakter zależności proporcjonalnych: D oraz P są proporcjonalne do natężenia pola E. Nie zawsze tak musi być; są dwa ważne przypad­ki, w których proste wzory (7.7) i (7.14) są niewystarczające. Pier­wszy dotyczy grupy ciał stałych, zwanych ferroelektrykami, drugi - ciał polaryzujących się w sposób anizotropowy. Do ferroelektryków na­leżą niektóre związki chemiczne, jak na przykład winian sodowo-pota­sowy, czyli tzw. sól Seignette'a, (CHOH)2(COO)2Oa; tytanian baru, BaTiO^; kwaśny fosforan potasu, KHgPO^, a ze związków organicznych je­dynym dotychczas poznanym ferroelektrykiem jest tiomocznik, CS(NH2)2.

Wt) 50 0 50 TobRys. 7-9Najważniejszą własnością ferroelektryka jest jego wysoka względna przenikalność dielektryczna, dochodząca niekiedy do kilkuset tysięcy. Własność ta występuje jednak poniżej pewnej temperatury, Tc, zwanej temperaturą Curie. Na rysunku 7-9 schematycznie przedstawiono wykres log e od temperatury dla siarczanu trójglioyny, której odpowiada tem­peratura Curie To = 322 K. Poniżej tej temperatury związek występuje jako ferroelektryk, natomiast powyżej - jako zwykły dielektryk (tzw. paraelektryk). Tc jest więc temperaturą przejścia fazowego; w tej temperaturze pojawia się nieciągłość. Zauważmy, że nieciągłość ta wy­stępuje tylko dla stałej dielektrycznej mierzonej wzdłuż osi krysta­lograficznej b; dla pozostałych kierunków krystalograficznych (a i o) e zmienia się niewiele i w sposób regularny. Wskazuje to na fakt, że mikroskopowy (molekularny) mechanizm przemiany fazowej ferroelek­tryk <—* paraelektryk wykazuje cechy anizotropowe.



121Zależność stałej dielektrycznej e od temperatury opisuje w naj­prostszym przypadku prawo Curie-Weissae 3 f-t ‘ (7.21)cZgodnie z tym prawem odwrotność stałej dielektrycznej powinna być liniową funkcją temperatury, co istotnie, bardzo często jest spełnio­ne (rys. 7-10). Dalszą cechą ferroelektryka jest jego struktura dome-

Rys. 7-10nowa: kawałek ferroelektryka jest podzielony na makroskopowe obszary, zwane domenami. Można je obserwować na płasko oszlifowanej powierzch­ni materiału przez posypanie jej lekkim proszkiem dielektrycznym. Rozpad ferroelektryka na domeny jest zjawiskiem samorzutnym, ponieważ powoduje powiększenie jego trwałości termodynamicznej. Orientacja di­poli w obszarze domeny jest bliska idealnej, dlatego polaryzacja w obrębie domeny osiąga ogromne wartości - nosi nazwę polaryzacji spon­tanicznej (samorzutnej).

E_ ~ 0 Ej —— Eg —Rys. 7-11



122 Domeny nie są jednak czymś niezmiennym: ulegają one zmianie pod wpływem pola elektrycznego w tym sensie, że rosną te, dla których o- rientacja dipoli jest zbliżona do kierunku pola, a o innych orientacjach dipoli - maleją (rys. 7-11). W ten sposób, jeśli natężenia pola są do­statecznie duże, to można otrzymać ferroelektryk o tylko jednej dome­nie. Powierzchniami oddzielającymi domeny, czyli tzw. ściankami Blo­cha są warstwy dipoli o przejściowym uporządkowaniu (rys. 7-12). Mogą się one przesuwać pod wpływem pola elektrycznego.

। Grubość ścianki I 
BlochaRys. 7-12Polaryzacja dielektryka, który długi czas nie był w polu elektrycz­nym, jest bliska zeru; domeny są zo­rientowane rozmaicie i średnio bio- rąo moment elektryczny jednostki ob­jętości wynosi zero. Po przyłożeniu pola E następuje wzrost P aż do o- siągnięcia nasycenia (rys. 7-13). W tym stanie mamy tylko jedną domenę o orientacji dipoli zbliżonej do E i dalsze zwiększenie momentu elektrycz­nego jednostki objętości nie jest możliwe. Zmniejszenie E do zera pro­wadzi również do spadku P, lecz po innej drodze. W rezultacie, dla E = 0 Rys. 7-13 otrzymamy P 0. Dalsze zmianyE pociągają za sobą zmiany P według krzywej przedstawionej na rys. 7-13, zwanej pętlą hlsterezy. Powtórzenie cyklu wywołuje zmiany P wzdłuż tej samej krzywej; początkową jej część obserwuje się tylko raz.Ferroelektryki oraz niektóre inne ciała krystaliczne (np. krysta­liczny kwarc) wykazują własność, zwaną efektem piezoelektrycznym;przy­łożenie na kryształ mechanicznego naprężenia (ściskanie lub rozciąga­nie) powoduje powstanie ładunków przeciwnego znaku na dwóch przeciw­ległych ścianach, czyli różnicy potencjałów. Kryształów takich używa 



123się do budowy przetworników piezoelektrycznych, zamieniających zmiany ciśnienia na sygnały elektryczne«. Poza tym znajdują zastosowanie w wy­twarzaniu ultradźwięków i stabilizacji drgań elektrycznych (zegary kwarcowe). 7 »5, Anizotropia dielektrykówDrugim powodem, dla którego polaryzacja P nie jest proporcjonal- na do E, jest anizotropia dielektryków. Cecha ta dotyczy wyłącznie substancji w stanie krystalicznym i polega na zależności względnej przenikalności dielektrycznej od kierunku w krysztale, w którym ją mierzymy.Jeśli interesujący nas kryształ jest izotropowy, tj. stała dielek­tryczna ma w każdym kierunku taką samą wartość e, to (7.7) możemy rozpisać na składowe w prosty sposóbD1 - e0 eE^ D2 = e0 eE2, D3 = e0 sE3,przy czym D^|| xi9 gdzie jest wybranym dla kryształu ortogonal­nym układem współrzędnych. Widzimy, że każda składowa D^ jest pro-

kiem proporcjonalności. Powoduje to, że wektor D jest w takim krysz­tale zawsze równoległy do E, jak to przedstawiono dla przypadku płas­kiego (E3 » 0) na rys. 7-14. Jeśli jednak dielektryk jest anizotropo­wy i np. ex = 2 a Sy » 3» to równoległość D i E już nie zachodzi (rys. 7-15). Przy dowolnie zorientowanym układzie osi 1, 2, 3 (x y z) każda składowa wektora D zależy od wszystkich składowych wektora E, przy czym zależności te mają charakter związków liniowych.Możemy więc napisać



124
4^ D1 = e11 E1 + e12 B2 + e13 E3*~ D2 = e21 E1 + e22 E2 + e23 E3, (7.22)4^ D3 = e31 E1 + e32 E2 + e33 E3lub ogólnie 3 m- 1,2,3. (7.23)0 n=1

Równania liniowe (7.22) w zapisie macierzowym mają poataó

Widzimy, że stała dielektryczna materiału anizotropowego jest ten­sorem, zawierającym w ogólnym przypadku 6 składowych niezależnych,po­nieważ eij 3 eji’ (7’25)czyli tensor e jest symetryczny.



125Przykład! Tensor stałej dielektrycznej pewnego kryształu ma składowe: £1 1 = 1,5, e12 = ">»3, e^ = 0, e^'2’0» e23 = 5’°’ e33 ” = 30,0. Ka próbkę tego materiału przyłożono natężenie pola E(2, 0, 5) V/m. Jaki jest kąt między wektorami DIB?Musimy obliczyć wpierw składowe D:

Korzystamy teraz z definicji iloczynu skalarnego1 1 1----  D • E = “— Z D. E. = ----- | D| |E | cos cp» eo ~ eo i 1 x eo ~stąd SDiEi 6,0 + 5 • 150,0E l5ll®l (4 + 25)'/2' (9 + 761,8 + 22500)"'^ Oczyli <P » 23°.
= 0,920,



8. ELEMENTY ELEKTRODYNAMIKI8.1, Przepływ ładunkuPrzepływ ładunku elektrycznego, podobnie jak transport innych wielkości fizycznych (masy w procesie dyfuzji, ciepła w procesie prze­wodzenia i pędu w przepływie cieczy) jest zależny od spadku pewnej wielkości wzdłuż drogi przepływu i od powierzchni A przekroju, w któ­rego obrębie następuje przepływ. Wielkością, która powinna maleć wzdłuż drogi ładunku jest potencjał V: ładunek dodatni płynie samo­rzutnie od potencjału wyższego do niższego. Wobec tego wielkość ła­dunku dq, przepływającego w czasie dt w kierunku osi x wynosidq = - o ™ A dt. (8.1 )Stała o nosi nazwę elektrycznego przewodnictwa właściwego} znak (-) pochodzi stąd, że dV < 0. Ssi <8.2)nazywamy natężeniem prądu elektrycznego. Jednostką natężenia prądu jest 1 Amper = 1 C/s. Podstawą definicji tej jednostki są oddziały­wania elektrodynamiczne dwóch równoległych przewodników, przez które płynie prąd} podamy je nieco później.Korzystając z (8.2) możemy napisać (8.1) w postacii = - A.Podzielmy teraz obustronnie przez As otrzymamy z lewej strony wyrażenie, zwane gęstością prądu przewodzenia (A/m^)j = 4~ • <8.3)Gęstość prądu ma własności wektora, natomiast natężenie prądu i nie jest wektorem. Długość j wynosi i/A} w przewodniku izotropowym j jest prostopadły do A, które jest wówczas powierzchnią stałego po­tencjału, wreszcie j ma zwrot odpowiadający kierunkowi ruchu ładun­ku dodatniego.



127Pojęcie spadku potencjału dV/dx możemy uogólnić na przypadek trójwymiarowy« Jeśli x,, x2, x^ jest wybranym kartezjańskim układem osi, przy czym 8p ę2, e^ są wersorami w kierunku tych osi,to ogól­ne wyrażenie na spadek potencjału ma postać:
3v 3vQ < -- 4. Q —+ Q '■■■■"' ■3x1 3x2 8 3x^

3Symbolem V Z, j7 = S yę -Ł_ (8.4)
i=1 1 3x±został oznaczony operator gradientu (por. rozdział 2.11).Gradient po­tencjału jest spadkiem potencjału na jednostkę długości drogi, mierzo­nym w kierunku największej wartości tego spadku.Iloczyn operatora gradientu i potencjału ma znak przeciwny do wek­tora natężenia pola elektrycznego E:- V . V = Ę. (8.5)Wobec tego równanie dla przewodnictwa elektrycznego w zapisie wek­torowym przyjmuje postać 1 = o « Ę. (8.6)Elektryczne przewodnictwo właściwe o jest tzw. stałą materiałową, czyli wielkością charakterystyczną dla przewodzącego materiału. Od­wrotność o jest opornością właściwą p materiału

J--P. (3.7)czyli opornością kostki sześciennej o krawędzi 1 m, wykonanej z o- kreślonego materiału. Ponieważ oporność R przewodnika, mierzona w omach, zależy od jego cech geometrycznych, tj. przekroju A i długoś- li 1
k = p - 4~ ’ (s.s)więc wymiarem p jest Q *m, a wymiarem przewodnictwa właściwego jest Q“1 m-1 .Rożpisanie (8.6) dla przypadku jednowymiarowego, np. osi x || x^, prowadzi do wyrażenia

p 1/A Rznanego pod nazwą prawa Ohma. (8.6) jest więc uogólnionym prawem Ohma, zapisanym w postaci wektorowej. Taki zapis prowadzi w prosty sposób 



128do wyrażenia gęstości prądu przewodzonego w materiałach anizotropo­wych. Jeżeli przewodnictwo właściwe materiału jest jedną tylko licz­bą, tj. nie zależy od kierunku przepływu prądu, to (8.6) możemy roz­pisać w następujący sposóbJ1 • aEp j2 » a E2, j^ = a E3, (8.9) czyli ogólnie dm = o V * - i. 2, 3. (8.10)Wskaźnika m = 1, 2, 3 użyliśmy tu na oznaczenie składowych j, odpowiednio wzdłuż kierunku osi xm. Z postaci’ (8.9) wynika, że j //E. Do materiałów o takich własnościach należą przede wszystkim metale, krystalizujące w układzie regularnym, o wysokiej symetrii.Istnieje jednak spora - jeżeli nie liczniejsza - grupa materiałów w postaci krystalicznej, dla których przewodnictwo o zależy od kie­runku pomiaru. Jeśli wybrany przez nas układ współrzędnych x1, x2, x3 jest przypadkowy, tj. nie uwzględnia kierunków symetrii w krysztale, to każda składowa wektora j. zależy od wszystkich składowych E. W tym przypadku należy (8.9) napisać w następujący sposób:

lub ogólnie
^1 = on E1 + °12 e2 + o13 E3’
h = a 21 E1 + a22 E2 + ° 23 E3,
h = o 31 E1 + a32 e2 + o33 E3
^m 3= 2 n=1 amn. En’ m := 1, 2 , 3.

(8.11)
(8.12)Przewodnictwo właściwe takiego materiału jest opisywane zbiorem 9 liczb

(
^11 °12 °13\cr 21 o22 O23 = ° ik (8.13)o31 o32 o33ynoszącym nazwę tensora przewodnictwa elektrycznego. Spośród 9 liczb tylko 6 jest niezależnych, ponieważOik = oki, (8.14)czyli tensor o jest symetryczny. W zapisie macierzowym (8.11) ma postać



129
(8»13)

Oczywiście, jeżeli materiał anizotropowy występuję w postaci zlep­ka, czy spieku dużej liczby drobnych kryształków idealnie wymiesza­nych pod wzglgdem orientacji, to materiał taki również przewodzi w każdym kierunku tak samo. Można pokazać, że jego średnie przewodnic­two właściwe jest wówczas równe-y- + a22 +033), (8.16)a więc równe jest 1/3 sumy przekątniowych składowych tensora.Przepływ prądu elektrycznego opisuje sie często za pomocą pojęcia nośników prądu, poruszających sie w materiale pod wpływem przyłożone­go pola elektrycznego. Nośnikami mogą być jony (w roztworach elektro­litów lub w gazie), elektrony (w metalach i półprzewodnikach), a na­wet tzw. dziury (w półprzewodnikach). Dziurą jest miejsce po usunię­tym elektronie; może być zapełnione przez sąsiadujące elektrony, co jest równoważne samodzielnemu przepływowi dziury o masie takiej samej jak masa elektronu, lecz o ładunku dodatnim.Podstawowymi własnościami nośnika są: ładunek iq, ruchliwość u oraz koncentracja nośników n. Ładunek nośnika jest równy ładunkowi elektronu (^e) lub jego niewielkiej wielokrotności. Ruchliwość jest pojęciem związanym z szybkością unoszenia (wędrowania) v nośnika w polu elektrycznym. Przypuśćmy, że nośnikiem jest jon w roztworze. Po przyłożeniu pola elektrycznego działają nań dwie siły: pola elektrycz­nego Pg = i qE oraz siła oporu Pg. Jako tę drugą możemy w przybli­żeniu przyjąć siłę Stokesa Ps = 6urr]V. Przybliżenie związane jest z tym, że zhydratyzowany w roztworze wodnym jon mało przypomina kulę, dla której słuszne jest podane wyrażenie dla Pg; w szczególności pro­mień r tej "kuli" jest określony bardzo nieprecyzyjnie. Obie siły działają w kierunkach przeciwnych i równoważą się w krótkim czasie po przyłożeniu pola E ~ Ps = 0.Siła oporu Pg jest właśnie tym czynnikiem, który ogranicza pręd­kość unoszenia jonu i sprawia, że w określonych warunkach jest ona stała - q E = 6 u; r T) v,



130ożyli qv = i ----------- E = u ” E. (3.17)6 n r T)Widzimy, że prędkość unoszenia jonu v (w m/s) jest proporcjo­nalna do natężenia pola E; współczynnik proporcjonalności u jest na­zywany ruchliwością. Ruchliwość jest liczbowo równa szybkości unosze­nia jonu w polu o natężeniu jednostkowym. Jednostką u jest [u] = 1 (m/s)/(V /m) = 1 m^/Ts.Koncentracja nośników n jest ich liczbą w jednostce objętości ; jednostką ń jest m .Za pomocą tych trzech stałych: q, u, n możemy wyrazić w nastę­pujący sposób przepływ nośników określonego znakuQ n(A’l)qi = ----  = ----------- = q.v.n.A,t l/vgdzie A jest przekrojem, a 1 długością walca, w którego obrębię następuję przepływ nośników (rys. 8-1). W takim raziej = q«v»n = q u n • E (8.18)oraz a= q u n. (8.19)

Rys. 8-1Przewodnictwo właściwe jest iloczynem ładunku, ruchliwości i kon­centracji nośników. Wyrażenie (8.19) przedstawia udział w przewodnic­twie jonów określonego znaku; jeśli jest ich wiecej, niż jeden typ,to każdy z nich wnosi swój niezależny udział, analogiczny do (8.19).



1318.2. Informacje o przewodnictwie elektrycznym materiałów8«2.1. Przewodnictwo metaliMetale odznaczają się bardzo dobrym przewodnictwem ciepła i elek­tryczności; ich elektryczne przewodnictwo właściwe wynosi około 7 3 —*J —110 -10 q m . Tak wysokie przewodnictwo zawdzięczają metale dużej koncentracji elektronów zdolnych do przewodzenia, która wynosi około n NQ/(A/d) = 1028 elektronów • m“\ jest tu liczbą Ayogadry, A masą atomową, d gęstością metalu. Przewodnictwo elektryczne zależy od temperatury, co wyrażamy zwykle posługując się pojęciem oporności właściwej. W pierwszym przybliżeniu oporność właściwa jest liniową funkcją temperatury t (w °C)pt = p 0(l + <a>t), (8.20)gdzie p0 jest opornością właściwą w temperaturze 0 °C, zaś < a>śred­nim współczynnikiem temperaturowym oporności w zakresie od 0 °C do t °C<a>=—---- — . (8.21)Po ’ *Przyczyną, z której powodu p metali rośnie wraz ze wzrostem tem­peratury może być zmiana z temperaturą czynników występujących po pra­wej stronie (8.19). Oczywiście, ładunek elektronu od temperatury nie zależy, w niewielkim również stopniu zależy od niej koncentracja noś­ników n. W takim razie, główna przyczyna wpływu temperatury tkwi w zależności u(T). Jakościowy obraz tej sytuacji jest następujący.Elek­trony przewodnictwa tworzą w metalu gaz elektronowy, który ze względu na bardzo dużą koncentrację nie ma zwykłych własności gazu, w szcze­gólności nie stosuje się do równania stanu Clapeyrona. Elektrony zaj­mują kolejne stany energetyczne, po dwa elektrony o przeciwnych spi- nach na każdym poziomie; odległości poziomów są rzędu n eV. Wpraw­dzie w przewodnictwie mogą uczestniczyć tylko elektrony swobodne,zaj­mujące najwyżej położone stany energetyczne, ale odległości między stanami są tak małe, że stosowane zwykle pole elektryczne jest w sta­nie uruchomić znaczną część ogólnej koncentracji elektronów n.Elektrony swobodne poruszają się w polu kulombowskim jonów dodat­nich, tworzących sieć krystaliczną metalu. W każdej temperaturze jony wykonują małe drgania termiczne wokół położeń i*ównowagi, przy czym am­plituda tych drgań rośnie wraz ze wzrostem temperatury. Ruch termicz­ny ma charakter statystyczny, fluktuacyjny i stanowi przeszkodę w swo­bodzie poruszania się elektronów. Powiada się, że elektrony "swobod- ne" są rozpraszane na drganiach termicznych sieci, co limituje ich 



132średnią drogę swobodną, a zarazem ich ruchliwość. Tak więc ruch ter­miczny sieci powoduje w czystym metalu spadek przewodnictwa elektrycz­nego wraz ze wzrostem temperatury. W metalu stanowiącym stop, a więc zawierającym więcej, niż jeden składnik, w tym również w roztworze stałym, zawierającym niewielką domieszkę innego pierwiastka, może za­chodzić dodatkowe rozpraszanie elektronów na atomach domieszki. Tym tłumaozy się duża oporność właściwa niektórych stopów (konstantan,man- ganin) oraz stosunkowo niewielkie jej zmiany pod wpływem zmian tempe­ratury.Zmiana oporności metali wraz z temperaturą ma ważne zastosowanie w tzw. termometrii oporowej, której zadaniem jest pomiar temperatury za pośrednictwem pomiaru oporności przewodnika sporządzonego z odpo­wiedniego materiału (np. bardzo czysty ołów w zakresie od -200 °C do temperatury pokojowej i bardzo czysta platyna w zakresie od tempera­tury pokojowej do 800 °C).Wyrażenie (8.20) jest do tych celów za mało dokładne, w praktyce stosuje się wielomian wyższego stopnia:R. = R„(1 + at + bt2 + ct3). (8.22)Rt 1 % 3ą opornościami przewodnika odpowiednio w temperaturze t °C i 0 °C, zaś a, b, c są stałymi empirycznymi. Wyznacza się je z pomiaru R^. w określonych i stałych temperaturach, tzw.punktach ter- mometrycznych (np. temperatura topnienia lodu, wrzenia wody, topnie­nia Cd itd.).W zakresie bardzo niskich temperatur, w tzw. temperaturach helo­wych, niektóre metale (np. Tl, Pb, Nb) wykazują osobliwość,zwaną nad­przewodnictwem. W pewnej, charakterystycznej dla metalu temperaturze, oporność' spada do wielkości niemierzalnie małej; prąd indukowany w pę­tli nadprzewodnika może się w nim utrzymywać przez całe miesiące bez widocznych zmian w natężeniu. Dalszą cechą nadprzewodnika jest ideal­ny diamagnetyzm: we wnętrzu metalu wektor indukcji magnetycznej B=0.Mimo, iż wyjaśnienie mechanizmu nadprzewodnictwa natrafiało na wielkie trudności i podane zostało zupełnie niedawno, praktyczne jego zastosowania rozwinęły się o wiele wcześniej. Wykonuje się mianowicie elektromagnesy z uzwojeniem nadprzewodzącym, służące do wytwarzania pól magnetycznych o bardzo dużym natężeniu. W niedalekiej przyszłości przewiduje się wykorzystanie nadprzewodnika do przesyłania energii elektrycznej na duże odległości, ponieważ nie zachodzą w nim straty wywołane ciepłem Joule'a.



1338.2.2. PółprzewodnikiPółprzewodniki stanowią obszerną klas® materiałów o przewodniot- 2 —8 —1 —1wie leżącym w szerokim zakresie: od 10 do 10 Q m . Należą do nich zarówno pierwiastki: selen (Se), tellur (Te), german (Ge), krzem (Si) i inne, jak i związki: tlenek miedziawy (Cu„0), siarczek miedzia- wy (Cu2S), antymonek indu (inSb), arsenek cynku (Zn^ASg).siarczek cyn­ku (ZnS) i inne. Najbardziej uderzającą ich cechą jest niezwykle sil­na zależność przewodnictwa właściwego od temperatury. Dla półprzewod­ników samoistnych, tj. będących materiałami niezwykle czystymi, bez ■śladów domieszek, zależność ta ma postaćo -oo • (8.23)przy czym o0 jest pewną stałą (ale nie jest to przewodnictwo w OK), △E jest tzw. energią aktywacji, charakterystyczną dla półprzewodnika, k stałą Boltzmanna, a T temperaturą bezwzględną. Czynnik 2 bierze się stąd, że pojawieniu się elektronu przewodnictwa towarzyszy jednoczes­ne pojawienie się dziury, wnoszącej dodatkowy udział do przewodnict­wa materiału. Energia aktywacji zawiera się w granicach od 0,1 do 2 eV; otrzymuje się ją w badaniach zależności a od T. Jeśli na podstawie tych badań sporządzimy wykres zależności lnu od 1/T, to z nachylenia odpowiadającej mu prostej możemy znaleźć A E/2k. Xm wyższe aE, tym silniejsza zależność a(t)j przy aE $.0,5 eV półprzewodnik w tempe­raturze 100 Ki niższej praktycznie nie przewodzi prądu elektrycznego, jest więc izolatorem.Należy tu podkreślić, że nawet bardzo niewielka ilość domieszki, rzędu 10“10 % molowych, może podwyższyć przewodnictwo 100 1 więcej razy. Ilości takie są niewykrywalne nie tylko tradycyjnymi metodami analizy chemicznej, ale nawet metodami analizy śladowej (np. metodą spektrograficzną). Przewodnictwo elektryczne takich materiałów stano­wi najbardziej czułe kryterium ich czystości.Półprzewodniki są materiałami o niezwykle ważnych zastosowaniach. Można powiedzieć, iż właśnie wprowadzenie półprzewodników do współ­czesnej elektroniki spowodowało prawdziwą rewolucję w konstrukcji apa­ratury elektronicznej, rozszerzając niebywale możliwości w tym zakre­sie (maszyny matematyczne). Przyczyną tak dużego postępu jest między innymi duża niezawodność i miniaturowe rozmiary elementów elektronicz­nych, budowanych z półprzewodników. Do podstawowych elementów należą tu dioda krystaliczna, zastępująca diodę próżniową i tranzystor, za­stępujący triodę próżniową. Dalszy postęp umożliwił konstrukcję ukła­dów wielofunkcyjnych, tzw. obwodów scalonych, zastępujących szereg diod i tranzystorów wraz z połączeniami między nimi.



134 Silna zależność przewodnictwa od temperatury jest wykorzystywana zarówno w termometrii jak i w konstrukcji termistorów. Są to elementy półprzewodnikowe o dużej oporności w stanie "zimnym"; ograniczają przez to uderzenie prądu we włączanej aparaturze. Po pewnym czasie na­grzewają się, ich oporność maleje, a natężenie prądu stopniowo osiąga wartość nominalną. Innym przykładem zastosowania półprzewodników jest konstrukcja ogniw termoelektrycznych; układy o dużej liczbie takich ogniw, połączonych w tzw. baterie słoneczne służą do bezpośredniej za­miany energii promieniowania Słońca na energię elektryczną (rakiety kosmiczne). 8.2.3. ElektrolityPrzewodnictwo jonowe wykazują zarówno ciała stałe (kryształy jo­nowe o podwyższonej temperaturze), ciecze (roztwory elektrolitów) jak i zjonizowane gazy. Przewodnictwo właściwe tych materiałów również za­leży od temperatury,przy czym najsłabszą zależność obserwuje się w ga­zach. 0 przewodnictwie gazów będzie jeszcze mowa w rozdziale 3.6, w którym zajmiemy się energią jonizacji cząsteczki gazu.W elektrolitach ciekłych koncentracja jonów może niekiedy zależeć od temperatury; poza tym ruchliwość jonów w myśl (3.17) rośnie wraz ze wzrostem temperatury dość szybko, ponieważ współczynnik lepkości r) silnie maleje ze wzrostem temperatury. W rezultacie przewodnictwo roztworu elektrolitu jest większe w wyższej temperaturze.Kryształy zbudowane z jonów (np. NaCl) są w temperaturze pokojo­wej dielektrykami. Wyraźne przewodnictwo jonowe zaczyna się w więk­szości kryształów jonowych dopiero w temperaturze wyższej od 400 °C. W tej temperaturze amplituda drgań termicznych jonów osiąga na tyle duże rozmiary, że mogą powstawać tzw. defekty strukturalne, czyli od­stępstwa od idealnej periodyczności sieci.Szczegółowe omówienie mechanizmu ich powstawania, koncentracji i udziału w przewodnictwie przedstawiona będzie w innym przedmiocie (chemia fizyczna). 8.3» Prawa KirchhoffaPrawo Ohma, w dowolnym sformułowaniu, jest środkiem mało skutecz­nym w rozwiązywaniu bardziej złożonych obwodów, zawierających rozga­łęzienia prądu. Rozwiązanie polega na tym, że zawarte w układzie opor­ności R^ oraz siły elektromotorycznee uważamy za znane, poszuku­jemy natomiast natężeń prądów i^ wraz z ich znakami. Do tego celu służą równania Kirchhoffa pierwszego i drugiego rodzaju,liniowe wzglę­dem i^ i dlatego łatwe do rozwiązania, np. metodą wyznaczników.



135Równania Kirchhoffa pierwszego rodzaju dotyczą węzłów układu, tj. punktów, w których, spotykają się co najmniej 3 przewodniki. Ponieważ w stanie stacjonarnym potencjał węzła nie ulega zmianie z biegiem cza­su, przeto suma ładunków wnoszonych do węzła przez poszczególne prądy jest równa zeru. Wobec tego n s k=1 ik = 0, (3.24)czyli suma natężeń prądów schodzących się w węźle jest równa zeru.Prą­dy wpływające do węzła uważamy umownie za dodatnie, prądy zeń wycho­dzące - za ujemne. Równań Kirchhoffa pierwszego rodzaju, (8.24), moż­na napisać dla dowolnego obwodu o jedno mniej, niż wynosi liczba węz­łów w obwodzie.

Równania drugiego rodzaju można napisać tylko dla obwodu zamknię­tego. Ra rysunku 8-2 przedstawiono obwód zamknięty ABC', stanowiący fragment większej sieci elektrycznej. Zaznaczono oporności R^, opor­ności wewnętrzne ogniw R oraz ich siły elektromotoryczne e wraz ze znakami. Wielkości te uważamy za znane. Nie znamy natomiast natę­żeń prądów i^, a nawet nie wiemy, w którą stronę płyną poszczególne prądy. Wobeo tego kierunki ich przepływów możemy zaznaczyć dowolnie ; jeśli w dalszym rachunku okaże się, że np. 1^ < 0, to w rzeczywisto­ści i^ płynie (w sensie konwencjonalnym, tzn. kierunek przepływu 



136prądu odpowiada kierunkowi ruchu ładunku dodatniego) w kierunku prze­ciwnym, niż zaznaczony na rysunku.

Rys. 8-3Jeśli jednak już przyjęto kierunki i^, jak na rys. 8-2, to ozna­cza to, że > Vg, i Yj > Prześledzimy teraz spadki po­tencjału wzdłuż drogi AC (rys. 8-3). Mamy tu spadek potencjału ijR^, następnie skokowy wzrost potencjału oe3 i ponownie spadek i-jR^.We­dług prawa Ohma: V1 - V3 = i3(R4 + Rw3) - s3.Analogicznie V1 - V2 = ^l + R2 + “ e1oraz V2 - V3 = i2(R3 + Rw2) -e2.Można teraz dodać te równania w taki sposób, by wyeliminować po­tencjały węzłów. Otrzymamy wówczasi^ (R^ + R2 + Rw-|) + 1-2^3 + “ ^3^4 + Rw3^ = e1 +e2“e3’Ten sam wynik możemy również otrzymać bez posługiwania się prawem Ohma, lecz stosując następującą konwencję:i. Wybieramy określony kierunek obchodzenia obwodu zamkniętego, zaznaczając go na rysunku.ii. Prądy płynące zgodnie z przyjętym kierunkiem obchodzenia ob­wodu uważamy za dodatnie (i^ i2), przeciwnie zaś - za ujemne (13).iii. Siły elektromotoryczne, podwyższające potencjał w kierunku obchodzenia obwodu uważamy za dodatnie (e^, e2), obniżające zaś - za ujemne (e3).Stosując tą konwencję możemy ogólnie sformułować prawo Kirchhoffa drugiego rodzaju w następujący sposób



137
S śn®. m=1 m sS en’ n=1 (8.25)

czyli suma sił elektromotorycznych sumie spadków potencjału. obwodzie zamkniętym równa jestw

RyaRównań Kirchhoffa drugiego rodzaju można napisać tyle, ile wynosi najmniejsza liczba figur geometrycznych, z których można jednoznacz­nie zbudować pełny obwód. Schematycznie obwód złożony jest przedsta­wiony na rys. 3-4. Można go zbudować jednoznacznie z czterech trójką­tów ABE, BEC, GED, DBA; można go także zbudować z trzech trójkątów, np. ABD, CBD, ABE i z czworoboku ABCD. Każdy ze sposobów prowadzi do czterech równań liniowych drugiego rodzaju. Wykorzystanie węzłów pro­wadzi nas do dalszych czterech równań liniowych pierwszego rodzaju,co pozwala jednoznacznie obliczyć 8 natężeń prądów.3.4. Niektóre metody pomiarowe w elektrodynamice8.4.1. Niezrównoważony mostek oporowy Wheatstone'aPomiar oporności metodą mostka Wheatstone's jest ogólnie znany - przypomnimy go tu jedynie krótko. Schemat układu jest przedstawiony na rys. 3-5. Mostek składa się z czterech oporników R^-R^(połączonych w czworobok; jedna z przekątnych zawiera galwanometr wraz z urządze­niami pomocniczymi (wyłącznik, boczniki do zmiany czułości), druga



138jest zasilane z baterii akumulatorów o sile elektromotorycznej eporności wewnętrznej i o- jest Rp natomiast R2~R4 a$ przy tymR2 może być zmieniana w znany spo­sób. W ogólnym przypadku, gdy zamk­nięcie wyłącznika W powoduje prze­pływ prądu i^ przez galwanometr, prawa Kirchhoffa prowadzą do na­stępującego układu równań:-i1 - i2 + i6 = O,- i3 - i5 = O,i2 - i4 + i5 = O, (8.26) i1R1 + i5R5 " i2R2 ~ °’ i3*3 - i 4^4 " ^5R5 = ig^ + ^4R4 + ^6®w = e *Układ ten można rozwiązać, tj. obliczyć i^-ig, np.metodą wyznacz­ników. W obecnej dyskusji zachowa­nie jest to potrzebne. Zajmiemy się

Bw. Przypuśćmy, że mierzoną opornością
D

nia się mostka niezrównoważonego

A:B:D:ABD:BOD:
ABCe:

wpierw mostkiem zrównoważonym, tj. doprowadzonym do stanu i^= O, za pomocą doboru odpowiedniej wartości R2. Mamy wówczas VB = Vp, oraz i^ = ip i2 = i^, a z czwartego i piątego równania (8.26)R1 R2
ST = IT •o 4 (8.27)(8.27) jest warunkiem równowagi mostkaj jeśli cztery oporniki mostka R-j-R^ spełniają taką proporcję, to 1^ = O, czyli przez galwa­nometr nie płynie prąd po włączeniu W. Warto zauważyć, że wielkość e nie ma wpływu na stan równowagi mostka, jeśli tylko prąd płynący przez R^-R^ nie powoduje zmiany ich oporności wskutek wydzielającego się ciepła Joule^. Wielkość e wpływa natomiast na czułość mostka,tj. dokładność, z jaką można określić stan równowagi.W tym stanie mamy równieżi^R^ - i2R2 =Przypuśćmy teraz, że z jakichkolwiek powodów oporność R1 uległa niewielkiej zmianie: R^ jest na przykład termometrem oporowym umiesz­czonym w przestrzeni, której temperatura nas interesuje, czyli



139R1 = R01 (1 +at), (8.28) gdzie RQ1 Jest opornością zmierzoną w 0 °C, a a temperaturowym współ­czynnikiem zmian oporności. Jeśli mostek został zrównoważony w tempe­raturze O °C, to w temperaturze t °C przez galwanometr będzie płynął prąd, ponieważ ^■1^01 + *1R01 “ ^2R2 + ^5R5 a 0’ czyli Ri = -i -£1 at. (8.29) 
5 1 r5Widzimy, że prąd ij jest proporcjonalny do temperatury; w tym przypadku człony nieliniowe w (8.28) można zwykle pominąć.W ten sposób można mierzyć bezpośrednio temperaturę, lub np. Indukcję pola magne­tycznego, jeśli R^ jest sondą bizmutową. Sonda bizmutowa jest opor­nikiem, nawiniętym na materiał izolacyjny przy użyciu drutu bizmuto­wego; zmiany oporności tego metalu są proporcjonalne do wielkości B indukcji pola magnetycznego. Widać również, że mostek niezrównoważony może być wykorzystany jako element automatycznej regulacji, ponieważ zmiana znaku temperatury powoduje zmianę kierunku przepływu prądu i^.8.4.2. Obwód RCMamy dany obwód złożony z pojem­ności CQ, oporności R i baterii o napięciu UQ, połączonych szeregowo (rys. 8-6). Kondensator nie przewo­dzi prądu stałego, dlatego przepływ następować może jedynie w okresie ładowania kondensatora. Jeśli opor­nik R jest duży, to proces biegnie wolno; aktualne napięcie U na kon­densatorze i jego zmiany mogą być mierzone za pośrednictwem elektrome-tru (C-|«C0), a łączna pojemność wynosi C » Co + , Prąd łado­wania i możemy obliczyć na podstawie prawa Ohma: i zależy od aktu­alnej różnicy napięć Uo i U, ponieważ oba napięcia skierowane są w strony przeciwne

stąd mamy U - U = iR = R = RC , o dt dt ’dU dtUo - U “ rc

(8.30)



140oraz -In (U - ü) = Ar + COnst. oWartość stałej w ostatnim równaniu wyznaczyć można z warunku po­czątkowego: t = 0 DU = 0, czyli const = -In Uo. Wobec tegoln U" - "0 = RĆO lub U = UO(1 - e-^^). (8.31)Pojawiający się tu iloczyn RC = u ma wymiar czasu i nosi nazwę stałej czasowej t obwodu, t równe jest odstępowi czasu, po którego upływie napięcie na kondensatorze wzrośnie do (e - 1)/e części Uo. Prostszą definicję czasu t można otrzymać dla obwodu podobnego do 8-6, lecz nie zawierającego baterii. Kondensator Co trzeba wówczas na­ładować z zewnątrz do napięcia Uo, a po odłączeniu baterii obserwuje się spadek U do zera, wskutek rozładowania się kondensatora przez oporność R. Analizę tego przypadku pozostawiamy Czytelnikowi. Dla ta­kiego obwodu t równy jest odstępowi cza­su, po którego upływie napięcie na kon­densatorze maleje do 1/e swej początko­wej wartości.W układzie współrzędnych lnU0/(UQ-U) względem t wykresem par liczbowych (t, U) jest linia prosta. Z jej nachyle­nia można otrzymać stałą czasową RC ukła­du, a znając C można obliczyć R. Układ RC stanowi więo metodę pomiaru dużych o- porności, praktycznie R $ 10$ Q . Może się zdarzyć przypadek, gdy pary liczbowe (t, U) układają się na krzywej, nie na prostej. Odpowiada to nieliniowej opor­ności R(U), zależnej od napięcia. Opor­ność taka nie spełnia prawa Ohma R=U/i, bowiem R nie jest wielkością stałą.Zauważyć trzeba ponadto, że elektro- metr E nie powinien pobierać prądu. Wtym celu oporność jego izolacji powinna być bardzo duża, a pojemność elektrostatyczna bardzo mała. Miernikiem o takich własnościach jest elektrometr kwadrantowy Dolezalka, przedstawiony na rys. 8-7. Jest to puszka metalowa rozcięta na 4 kwadranty wzajemnie od siebie izolowa­ne. Na parę przeciwległych kwadrantów przykłada się z baterii napię- 



U1oie pomocnicze U , zaś na drugą parę mierzoną różnicę potencjałów E . p xW środku puszki znajduje się elektroda metalowa w kształcie "biszkop­ta", zawieszona na cienkiej nici metalicznej. Pod wpływem ładunków zgro­madzonych na kwadrantach biszkopt doznaje działania pary siłj obrót obserwowany jest za pomocą przesunięcia promienia świetlnego na ska­li S. Przyrząd ten ma pewną swoją własną pojemność elektrostatyczną Cp zwykle bardzo małą. Ponieważ zasada jego działania opiera się na występowaniu sił Coulomba, elektrometr nie pobiera prądu podczas po - miaru; może więc również znaleźć zastosowanie w pomiarze siły elek­tromotorycznej ogniwa.8.4.3. Metoda kompensacyjna pomiaru SEM ogniwasiły elektromotorycz-Najbardziej rozpowszechnioną metodą pomiaru

Zasadniczy schemat tej metody jest przedstawiony na rys. 8-8. Bateria akumulatorów o sile elektromotorycznej eQ i oporności wewnętrznej powoduje przez opornicę AD przepływ prądu o natężeniu
° = RO + ’Część spadku napięcia o wielkości i0*R jest odgałęziona i przy­łożona na jedno z ogniw e1 lub ex, zależnie od położenia przełącznika P2. Przypuśćmy, że w pierwszej fazie pomiaru P2 jest zamknięty jak na rys. 8-8, przy czym oznacza ogniwo wzorcowe o dokładnie zna­



142nej sile elektromotorycznej. Chwilowemu zamknięciu przełącznika towarzyszy na ogół przepływ prądu w obwodzie odgałęzionym, wskazywany przez galwanometr G. Metodą prób możemy tak dobraó oporność wzdłuż AC, by po zamknięciu w obwodzie ABCA nie płynął prąd. Jeśli na­stąpiło to dla oporności R1 wzdłuż AC, to:Ml - e1 = Ri • R-o; - <8-32)stąd £oe1 = R1 ’ R~+T • o wZmieniamy obecnie za pomocą P2 ogniwo ę1 na e x i ponownie wyszu­kujemy taką wartość oporności wzdłuż AC - tym razem będzie to np. Rx~ by galwanometr G nie wskazywał przepływu prądu. Mamy analogicznie
ex - Rx • •W takim razie podzielenie obu równań stronami daje proporcję: e R— - — (8.33)e1 R1pozwalającą obliczyć ex ze znanego i zmierzonych Rx, R^. W(8.33) nie występują kłopotliwe stałe e0, Rw trudne do wyznaczenia.Ogniwem wzorcowym, najbardziej rozpowszechnionym,jest ogniwo Wes- tona o sile elektromotorycznej:ew - 1,0183 V w 20 °C.Zależność ew od temperatury jest niewielka:de— = -40 nV/1 °C, dtlecz w dokładnych pomiarach musi być uwzględniona. Opis konstrukcji ogniwa opuścimy. 8.5 . Kontaktowa różnica potencjałówJeśli złączymy z sobą ściśle dwa różne metale A i B (rys. 8-9),to powstaje między nimi niewielka różnica potencjałów, rzędu kilkudzie­sięciu miliwoltów, zwana kontaktową różnicą potencjałów.Znacznie więk­szą kontaktową różnicę potencjałów wykazuje granica faz metal/półprze- wodnik. Zakładamy przy tym, iż zarówno oba metale jak i styk między nimi znajdują się w tej samej temperaturze.



143Pojawienie się tej różnicy potencja­łów jest związane z różnym potencjałem chemicznym elektronów w obu metalach. Nie będziemy tu bliżej objaśniać tego po­jęcia; bardziej szczegółowo zapozna się z nim Czytelnik w kursie chemii fizycz­nej. Warto jednak wspomnieć o tym, iż dla dwu stykających się metali, pozosta­jących w stanie równowagi,potencjał che­miczny elektronów w każdym z tych metali musi być taki sam; pewna liczba elektro­nów przepływa przez granicę faz z jedne­go metalu do drugiego, co powoduje po­wstanie różnicy potencjałów. dla punktów 1-6Rozważmy bardziej szczegółowo skoki potencjałów(rys. 8-9), umieszczonych bardzo blisko granicy faz obu metali.12 - skok potencjału próżnia/metal A, związany ze skokiem koncen­tracji elektronów na granicy faz,23 - punkty ekwipotencjalne,34 - skok potencjału metal A/metal B, czyli wewnętrzna kontaktowa różnica potencjałów; wielkość niemierzalna,45 - punkty ekwipotencjalne,56 - skok potencjału metal B/próżnia,16 - zewnętrzna kontaktowa różnica potencjałów, U^g.Korzystając z definicji potencjału przewodnika możemy napisaćUAB” |VB" M’4- lWA-‘M’ (8’34) gdzie oznacza pracę usunięcia elektronu z powierzchni metalu A, czyli pracę wyjścia elektronu. Widzimy więc, że kontaktowa różnica potencjałów jest proporcjonalna do różnicy prac wyjścia elektronu z obu metali.Można łatwo wykazać, że umieszczenie między dwoma metalami A i B trzeciego przewodnika, C, nie zmienia kontaktowej różnicy potencjałów U^g. Zamknięcie obwodu (rys. 8-9) nie spowoduje przepływu prądu, po­nieważ w obwodzie występować będą dwa skoki potencjałów o jednakowej wielkości i przeciwnym kierunku.Sytuacja pod tym względem ulega zasadniczej zmianie jeżeli w ob­wodzie, zawierającym kilka styków różnych metali, jeden z nich ma tem­peraturę inną niż pozostałe. Przykład takiego obwodu,składającego się z dwóch różnych metali, jest pokazany na rys. 8-10. Przewodnikami ze-
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Rys. 3-10 wnętrznymi są najczęściej druty miedziane, środkowym odcinkiem może być konstantan. Powstają dwa styki zwane stykami termoelektrycznymi, przy czym często jeden z nich umieszcza się w kąpieli o temperaturze 0 °C. Układ nosi nazwę termoparyj powstająca w nim siła elektromoto­ryczna (TSEM) zależy wówczas od temperatury styku "gorącego"e = a + bt + ct2. (8.35)Na podstawie znajomości stałych a, b, c (pomiar e w kilku zna­nych temperaturach) oraz e możemy dokonywać pomiaru temperatury w interesujących nas punktach. W przypadkach, gdy wystarczy mniejsza do­kładność, odczytuje się t bezpośrednio na miliwoltomierzu (wycecho- wanym w °C); w pomiarach bardziej dokładnych mierzy sięemetodą kom­pensacji. W pierwszym przypadku wynik jest tym dokładniejszy,im więk­sza jest oporność wewnętrzna miernika w porównaniu do oporności ter- mopary. Siła elektromotoryczna termopary miedź/konstantan wynosi w przybliżeniu 50 pV/1 °C.

Rys. 8-11



145Poszczególne termoogniwa można łączyó szeregowo w termostosy (rys. 8-11), których czułość jest tak duża, że znajdują zastosowanie w po­miarach natężenia promieniowania. Szereg styków termoelektrycznych B, przyklejonych do izolowanej oraz poczernionej od zewnątrz cienkiej fo­lii metalicznej, tworzy układ styków gorących} analogiczny szereg sty­ków A, chronionych przed promieniowaniem, jest zbiorem styków "zim­nych". Powstająca w układzie TSEM jest ściśle proporcjonalna do gęs­tości mocy promieniowania, a dla promieniowania monochromatycznego nie zależy od długości fali tak długo, jak długo absorpcja w poczernionej folii metalicznej jest zupełna. Termostos może znaleźć również zasto­sowanie odwrotne, jako bezpośredni przetwornik energii promieniowania w energię elektryczną. Tego typu baterie słoneczne montuje się w po­jazdach kosmicznych.Odwróceniem efektu termoelektrycznego (dana różnica temperatur, powstaje różnica potencjałów) jest efekt Peltiera. Polega on na tym, że jeśli przez termoparę przepływa prąd elektryczny, to na każdym ze styków wytwarza się trochę inna ilość ciepła, powstaje więc różnica temperatur. Jeśli przez q oznaczymy ilość wydzielającego się ciepła Joule a, na każdym ze styków taką samą, a przez dodatkowy efekt cieplny wynikający ze zjawiska Peltiera, to na styku gorącym wydziela się ilość ciepła % = q + a na zimnymzatem «z = q - qp’qp = 2 (Qg “ Qz^ (8.36)jest miarą efektu Peltiera; jednocześnie jest to ciepło przetranspor­towane w ciągu jednostki czasu od styku zimnego do etyku gorącego. Termopara, pracująca w układzie odróconym, jest więc "pompą cieplną" i stanowi zasadę konstrukcji układów chłodzących (lodówki termoelek­tryczne). 8.6 , Potencjał jonizacji cząsteczki gazuGazy również mogą przewodzić prąd elektryczny, jeśli zawierają jo­ny. Powstają one pod działaniem czynników jonizacyjnych, do których należą: wysoka temperatura, promieniowanie nadfioletowe i rentgenow­skie, cząstki emitowane przez substancje radioaktywne, wreszcie zde­rzenia z elektronami. W tym paragrafie będzie nas interesował wyłącz­nie mechanizm zderzeń cząsteczek gazu z elektronami.



146 Jeśli energia elektronu, poruszającego się w rozrzedzonym gazie jest niewielka (kilka eV), to w zderzeniu praktycznie nie zachodzi wymiana energii między elektronem a cząsteczką. Rozważmy takie zderze­nie bardziej szczegółowo! niech m i M oznaczają masę elektronu i cząsteczki} jest prędkością elektronu przed zderzeniem, Vg - po zderzeniu. Prędkość cząsteczki przed zderzeniem jest niewielka i mo­żemy ją zaniedbać, natomiast prędkość po zderzeniu oznaczymy przez V. Zasady zachowania mają w tym przypadku postaćmv1 = mVg + MV,■g- mv2 = mv| + — MV2.Rozwiązanie tego układu równań prowadzi do obliczenia prędkości cząsteczki po zderzeniu 2 mv. 2 mv1V = -----1 S ------ 1,m + M M (8.37)ponieważ m « M. Zysk energii kinetycznej A T cząsteczki jest takisam jak jej strata dla elektronu wskutek zderzeniao 2 . 9 2 m 4mAT = | W2 S ---- T To, (8.38)gdzie TQ oznacza energię kinetyczną elektronu przed zderzeniem. Wi­dzimy z tego, że AT/Tq jest bardzo małe, ponieważ m « M. Na przy­kład dla elektronu i atomu helu 4m/M = (1,4)/(l840,4) = 5*10 zna­czy to, że tylko 0,05% energii wymienia elektron w jednym zderzeniu z atomem helu. Wynik ten ma ogólniejsze znaczenie i prowadzi do nastę­pującego wniosku! w zderzeniu sprężystym cząstki bardzo lekkiej z bar­dzo ciężką wymiana energii jest bardzo niewielka, czyli zderzenie ta­kie jest nieskuteczne.Niewiele zmienia się obraz zderzenia elektronu z cząsteczką w mia­rę wzrostu energii kinetycznej TQ elektronu, ale tylko do pewnej gra­nicy, zwanej potencjałem jonizacji Vj.Potencjał jonizacji atomu (cząsteczki) wyrażony w elektronowol- tach, równy jest liczbowo pracy oderwania pierwszego elektronu od ato­mu (cząsteczki). Z chwilą osiągnięcia przez elektron energii TQ = eVj zderzenie z cząsteczką jest całkowicie niesprężyste, a strata energii kinetycznej jest równa Rozważania te stały,się podstawą opraco­wania przez Francka i Hertza metody pomiaru potencjałów jonizacji, przedstawionej schematycznie na rys. 8-12. Bańka szklana, zawierająca badany gaz pod ciśnieniem kilku mm Hg zaopatrzona jest w trzy elek­trody!
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przez

Rys. 8-13 Vs

i. Katodę K, wykonaną z cienkiego drutu wolframowego.Po rozgrza­niu prądem z baterii elektrycznej do wysokiej temperatury,katoda emi tuje elektrony.ii. Siatkę S, stanowiącą spiralę z drutu i otaczającą katodę.Do­datni potencjał siatki Vg, przyłożony z układu potencjometrycznego, powoduje przyspieszenie elektronów.iii. Anodę A, stanowiącą cylinder metaliczny, otaczający poprzed­nie dwie elektrody. Potencjał anody |7^| >|V0| tak,iż elektrony przy­spieszane przez siatkę nie docierają do anody, natomiast dochodzą do niej jony dodatnie, które mogą powstać drogą jonizacji przez zde­rzenie. Prąd anody mierzony jest miar potencjału VA.Jeśli V0 < V.j, elektrometr nie rejestruje przepływu prądu (rys. 8-13 ).Z chwilą, gdy siat­ka osiągnie potencjał jonizacji, prąd jonów dodatnich szybko ro­śnie; jony te powstają tuż w pobliżu siatki.Przy Va > V. jo- “ J nizacja następuje przed siatką, a jej dodatni potencjał wpływa hamująco na ruch jonów dodat­nich; odpowiada to spadkowi na­tężenia prądu iA.Ponowny wzrostobserwuje się dla V = 2Vj, ponieważ po pierwszej jonizacji w okoli- s Joy równej połowie odległości katoda-siatka elektron zdąży jeszcze u­



148zyskać energie wystarczającą do jonizacji atomów, znajdujących się w pobliżu siatki. Odstęp między kolejnymi maksimami i^ wynosi zatem Vj.8.7 « Pole magnetyczne przewodnika z prądemDookoła ładunków elektrycznych umieszczonych w próżni panuje pole elektryczne, przejawiające się działaniem sił wywieranych na ładunek próbny. Siły występują również wtedy, gdy ładunki się poruszają. Jed­nakże wzajemne oddziaływania ładun­ków w ruchu są bardziej złożone niż ładunków w spoczynku i nie mogą być wyjaśnione za pomocą jedynie praw elektrostatyki. Przykładem mo­gą tu być dwa przewodniki z prądem (rys. 8-14).Doświadczalnie stwier­dzono, że gdy prądy płynące w obu
Rys. 8-14 przewodnikach mają kierunki zgodną działają między nimi siły przycią­gania; gdy prądy płyną w kierun-kach przeciwnych, przewodniki działają na siebie siłami odpychania. Działania, występujące między przewodnikami z prądem tłumaczymy za pomocą pojęcia pola magnetycznego - uważamy, że przewodnik z prądem jest źródłem pola magnetycznego.Do zbadania własności tego pola służy tzw. obwód próbny z prądem (rys. 8-15), który jest "detektorem" pola magnetycznego, podobnie jak ładunek jest "de­tektorem" obecności pola elektrostatycznego. Jest to płaska ramka z przewodnika o dowolnym kształcie,lecz bardzo małych rozmiarów. Przez ramkę płynie prąd o natężeniu I, ponadto może się ona obracać bez tar­cia wokół jednej z jej osi, leżącej w płaszczyźnie obwodu. Iloczyn natężenia prądu I oraz powierzchni Sobjętej przewodnikiem nosi nazwę nego pm obwodu próbnego. Niech jednostkowym, skierowanym wzdłuż do powierzchni obwodu; normalną

momentu magnetycz- N będzie wektorem normalnej dodatniej dodatnią nazywamy
Rys. 8-15 prądu w ramce

prostą prostopadłą do powierzchni 3 o zwrocie od­powiadającym kierunkowi ruchu postępowego śruby pra­wej, obracającej się zgodnie z kierunkiem przepływuMoment magnetyczny jest wektorem o kierunku N= I • S • N, A • m2 (3.39)



149Jeśli umieścimy obwód próbny w pobliżu przewodnika z prądem (rys. 8- 16), to na oba boki ramki równoległe do przewodnika działać będą siły i F2s przeciwnie skierowane, ponieważ na bok bliższy przewodnikowi działa siła przyciągania, a na dalszy - siła odpychania. Przy odległości r obwo­du od przewodnika znacznie większej od liniowych rozmiarów ramki, ożyli w
1 /?przypadku r»S ' , obie siły stano­wią parę o momencie M zależnym od własności ramki (^J,przestrzeni ota­czającej przewodnik z prądem (B) oraz od orientacjiM » pm x B (8.40) lub skalarnieM = pm • B • sin ® • (8.41)Moment siły M jest wektorem le­żącym w osi obrotu 00 ramki i skiero­wanym zgodnie z regułą śruby prawej (iloczyn wektorowy w 8.40). B jest Bya. 3-16wektorem charakterystycznym dla pola magnetycznego - nosi nazwę wek­tora indukcji magnetycznej. Wymiarem B jest[B] [M] N • m V s Wb—- = 1 —5 “ 1 ~ ‘K “ 1 —w[I] Es] A • nT m m1 Wb (weber) jest jednostką strumienia wektora B; wprowadzimy ją przy końcu tego paragrafu. Kierunek B wynika z (8.40): jeśli M ■ 0, to <p ■ 0 i B II p^. czyli wektor B ma kierunek normalnej dodatniej do obwodu próbnego z prądem zorientowanego w polu magnetycznym w taki sposób, by działający nań moment siły wynosił zero. Ten warunek po­zwala nam na wyznaczenie orientacji wektora B w przestrzeni otacza­jącej przewodnik z prądem; jednocześnie badania takie prowadzą do wy­znaczenia kształtu linii pola magnetycznego, ponieważ B jest zawsze styczny do linii pola. Tym sposobem można się przekonać, iż linie po­la magnetycznego wokół przewodnika z prądem mają kształt okręgów, w których środku znajduje się przewodnik (rys. 8-17), są więc krzywymi zamkniętymi. Kierunek obiegu linii jest zgodny z regułą śruby prawej,



150 a gęstość linii pola, tj. ich liczba przebijająca jednostkowy element po­wierzchni ustawiony prostopadle do linii równa jest liczbowej wartości B w danym miejscu pola. W takim razieB . (8.42)czym d.So jest elementem powierz- prostopadłym do linii pola.Btru- elementarny wektora B przez do­wolnie zorientowany element powierz­chni dS wynosi zatem dBg « B • dS, a strumień przez dowolną powierzeni© zamkniętą S (rys. 8-17) V» f B • dS = 0. (8.43)(s)(8.43) jest prawem Gaussa-Ostro- gradskiego dla pola magnetycznego. W odróżnieniu od pola elektrostatyczne-Rys. 8-17

mamy
przy chni mień

go strumień ten zawsze wynosi zero, ponieważ linie pola magnetycznegosą krzywymi zamkniętymi. Z tego powodu linia albo nie przebija po­wierzchni S (wówczas wchodzi w (8.43) z udziałem zero) lub przebija ją dwukrotnie; jeśli wejście linii liczymy dodatnio, to wyjście linii należy policzyć ujemnie.W przyjętym przez nas układzie jednostek (Si) strumień Kg mierzy się w weberach [HB] = 1 Wb.Z tego powodu [B] » 1 Wb/m2.8.8» Prawo Biota-Savarte'a-Łaplace*aPrawo to pozwala obliczyć indukcję pola magnetycznego, wytwarzane­go przez przewodnik o dowolnym kształcie i w dowolnej od niego odleg­łości. Wybierzmy wzdłuż takiego przewodnika (rys. 8-18) element dłu­gości dl, który traktujemy jako wektor o zwrocie zgodnym z kierun­kiem przepływu prądu. Wektor r podaje położenie dowolnego punktu P poza przewodnikiem względem elementu dl; niech poza tym a» < dl, r. Wektor dB generowany przez element przewodnika w punkcie P jest nieskończenie mały, a jego zwrot określa reguła śruby prawej.odnoszą­ca się do kierunku obiegu linii pola otaczającego dl. W sytuacji 



151przedstawionej na rys. 3-18 dB jest skierowany nad płaszczyznę rysunku i jest do niej prostopad­ły. Wielkość dB zależy od natęże­nia prądu i, od wielkości r oraz od wzajemnej orientacji dl i r. W zapisie skalarnym prawo Biota- Savarte#a-Łaplace’a ma postaću i dl sin adB = —£ . —----r, (8.44) 4n r^przy ozym
7 wb—- - 10~7 ------ X (8.45)4 tt A«mjest stałym współczynnikiem, związanym z układem jednostek. Wielkość Po nosi nazwg bezwzględnej przenikalności magnetycznej próżni.Korzystając z tego, że zwrot dB możemy otrzymać również za pomocą reguły śruby prawej z iloczynu wektorowego dl x r (obrót o kąt a na­stępuje od dl do r), można (8.44) zapisać w postaci związku wektoro­wego: i dl x r (8.46)Prawo Biota-Savarte a-Laplace a odnosi się do elementu przewodni­ka, ma więc postać różniczkową. Jeśli chcemy znać indukcję pola, wy­twarzanego przez przewodnik skończonej długości, trzeba wykonać cał­kowanie (8.44) na całą interesującą nas długość przewodnika. Rachunek ten jest prosty w dwóch szczególnych przypadkach, którymi zajmiemy się kolejno. 8.8.1. Nieskończenie długi przewodnik z prądemW tym przypadku mamy (rys.8.19) dl sina/r = da oraz R = r sin a. Wobec tego z (8.44) otrzymujemy1 dl sin a sin a —• —---------- « ——— da.r r RW takim razie całkowanie (8.44) względem długości w granicach - oo zamienia się na całkowanie względem kąta a w granicach pd 0 do np r dl sina i f 21B ■ —— i / —~—~k— = — —— / s in a d a “ —------,4 tc J r 4tc 4tc- R

O



152 ożyli B--^4 te 21 (3.47)RWidzimy, że indukcja pola magne­tycznego, wytwarzanego przez nieskoń­czenie długi przewodnik z prądem jest propocjonalna do natężenia prądu oraz odwrotnie proporcjonalna do odległoś­ci punktu od przewodnika. W odległoś­ci 1 m od przewodnika, przez który płynie prąd o natężeniu 1 A, indukc­ja wynosi 2*10“^ Wb/m2.Rys. 8-198.8.2. Przewodnik kołowy z prądemJest to przypadek jeszcze prostszy niż 8.8.1, ponieważ tutaj (rys. 8-20) sin a » 1 oraz dl/R «da. Mamy więc2nB - — f da,4 n R o czyli
W środku przewodnika kołowego o pro­mieniu 1 m, przez który płynie prąd o magnetyczne o indukcji 6,23*10“^ Wb/m2.8.9. Prawo Ampere'aPrawo to określa siłę dP. działającą na nieskończenie mały ele­ment długości dl przewodnika z prądem po umieszczeniu go w polu magnetycznym o indukcji B. W ogólnym przypadku przewodnik nie musi być prostopadły do linii polaj przypuśćmy, że element dl zawiera kąt a z kierunkiem wektora B (rys. 8.21). Siła dP jest jednak zawsze prostopadła do płaszczyzny n1, przechodzącej przez dl 1 B, ponadto jest proporcjonalna do długości elementu dl. do wielkości indukcji B oraz do natężenia prądu 1 płynącego przez przewodnik
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dF - i dl x B. (3.49)Do określenia kierunku działającej aiły używa się często reguły lewej dłoni: jeśli palce aą akierowane wzdłuż konwencjonalnego kie­runku przepływu prądu, a linie wektora B przebijają dłoń, to odchy­lony kciuk wakazuje kierunek aiły dF.8,10« Siła LorentzaSiła ta występuje podozaa działania pola elektrycznego i magne­tycznego na poruszający się ewobodny ładunek. W ogólnym przypadku oba pola mogą występować łącznie, dlatego aiła Lorentza ma dwie składowe: elektryczną i magnetyczną.8.10.1. Składowa elektryczna siły LorentzaJeśli swobodny ładunek (nośnik prądu) o wielkości q porusza się w polu o natężeniu E, to działającą nań siłę Fg otrzymujemy bezpo­średnio z definicji E Fw -«41 • E.8.10.2. Składowa magnetyczna siły LorentzaSkładową magnetyczną możemy otrzymać z prawa Ampere a, jeśli za­stąpimy przewodnik z prądem strumieniem nośników. Niech S będzie prze­krojem strumienia nośników, poruszających się z prędkością v w ob­



154szarze pola magnetycznego. Zatem i = j • S = nqvS, gdzie j jest gę­stością prądu, n koncentracją nośników. Mamy wówczas z (8.49)AFg = n q v S A 1 B sina , przy czym pole działa na odcinek strumienia o długośoi a 1. W takim razie S«A1 przedstawia objętość strumienia w obszarze pola,a n*S Al jest ogólną liczbą nośników w tej objętości. Na jeden nośnik działa więc siła PB = q v B sin a , a w zapisie wektorowym £B = q v x B. (8.50)Ogólne wyrażenie dla siły Lorentza ma więc postaćPL » q(E + v x B). (8.51)8.10.3. Ruch ładunku w polu magnetycznymPrzypuśćmy, że w obszar jednorodnego pola magnetycznego wpada z prędkością v i B cząstka naładowana o ładunku q (rys. 8-22). Po-nieważ jest v 1 B, będzie rów-nież ?B j_ v, czyli składowa ma­gnetyczna siły Lorentza (8.51) będzie siłą dośrodkową.Pod wpły­wem tej siły cząstka naładowana będzie się poruszała w obszarze pola po łuku o promieniu R, któ­ry wyznaczymy z warunku= q v B, (8.52)przy czym m oznacza masę cząs­tki. Prędkość v w tym związku jest wartością nie znaną} możemy ją wyrazić przez różnicę poten­cjałów V1 - V2 ” u» która spo­wodowała przyśpieszenie jonu do prędkości v
1 2m v- = q • U.Z obu warunków (8.52) i (8.53) otrzymujemyR • (-£-)1/2 = I (2U)1/2, 

(8.53)
(8.54)



155czyli iloczyn promienia krzywizny toru oraz pierwiastka ładunku właś­ciwego jest dla danych B i U wielkością stałą. Widzimy tu, iż pro­mień krzywizny toru może być wykorzystany do pomiaru ładunku właści­wego ą/m jonu. Ulepszoną wersję zastosowania odchylenia cząstki na­ładowanej do pomiaru q/m przedstawimy w następnym paragrafie. Warto jeszcze zwrócić uwagę na to, że cząstka wpadająca w obszar pola mag­netycznego z prędkością v zawierającą kąt z wektorem B różny od 90° porusza się nie po łuku okręgu lecz po spirali. Czytelnikowi zo­stawiany rozstrzygnięcie, od czego zależy skok między "zwojami" tej spirali. 8.11. Spektrografia masSpektrografia mas stanowi ważny dla chemii zespół metod ekspery­mentalnych, których celem jest pomiar ładunku właściwego jonów z ich jednoczesnym rozdzieleniem za pomocą pola elektrycznego i magnetycz­nego. Dawniej spektrografią mas interesowali się przede wszystkim fi­zycy; doprowadziła ona do wyznaczenia zbioru izotopów prawie wszyst­kich pierwiastków chemicznych. Dziś spektrografia mas jest metodą roz­powszechnioną również w chemii, zwłaszcza organicznej. Stanowi tu je­dną z ważnych metod analitycznych, umożliwiających dokładne określe­nie składu izotopowego mieszaniny pod względem jakościowym i ilościo­
wym.

Rys. 8-23



156 Podstawą spektroskopii mas jest metoda parabol, opracowana przez Williama Thomsona (Lord Kelvin) - nią wyłącznie zajmiemy się w tym paragrafie. Thomson zastosował odchylenie cząstki naładowanej w sku­pionych w tej samej przestrzeni polach elektrycznym i magnetycznym o wektorach wzajemnie do siebie równoległych? Ę ||B (rys. 8-23). źródłem badanych jonów jest rura do wyładowań Z, której anoda jest zaopatrzo­na w niewielki otwór. Powstające w wyładowaniu jony ujemne rozpędzane są w polu elektrycznym i wydostają się przez otwór w obszar pól od­chylających. Elektromagnes jest zaopatrzony w nasadki izolacyjne, u- możliwlające przyłożenie pola elektrycznego. W układzie pól narysowa­nym na rys. 8-23 jon ujemny poruszający się w prawo jest odchylany w górę i przed płaszczyznę rysunku. Wiązka jonów o jednakowej prędkości

trafia kliszę fotograficzną (KP) w punkcie P, natomiast wiązka nie odchylona - w punkcie 0. Schemat sił działających na jon jest przed­stawiony na rys. 8-24. W kierunku osi x działa na jon siła PE = qE, wytwarzająca przyspieszenie ax ■ qE/M, gdzie M jest masą jonu. Ruch w kierunku osi X jest jednostajnie przyspieszony.W czasie At » zQ/v, potrzebnym na osiągnięcie kliszy, odchylenie jonu wzrośnie do X » ■ ax(At)2 « (qE/M)»(zQ/v)2. W kierunku osi Y działa składowa mag-netyozna siły Lorentza ■ (q v B)/M. Również w PB = q v B, wytwarzająca przyśpieszenie ay = kierunku Y ruch jest jednostajnie przyspie­szony, a po czasie At odchylenie wyniesieY 'ł ayUt)2 ° 2 UvB/M)’(z0/v)2 = (qB/M)«(z2/v).



157Związek między oboma wychyleniami jest równaniem śladu na kliszy, wzdłuż którego układają się jony. Otrzymamy je eliminując z obu wyra­żeń nie znaną prędkość v: Y ą B zQ«arasauu 83 «iteiair® O -r.-rmrtwno.om» $X M 2E czyli Y2 » A • (-%-)• X. (8.55)gdzie B2 2a - --------a2Bjest stałą aparaturową. Równanie (8.55) przedstawia parabolę (stąd na­zwa metody), której parametrem jest określona wartość ładunku właści­wego (q/M). Wszystkie jony zatem, które mają ten sam ładunek właści­wy, a różnią się prędkością, układają się na wspólnej paraboli.Dalsze udoskonalenia spektrografii polegały na przestrzennym roz­dzieleniu pola elektrycznego i magnetycznego (metoda Astona), co po­prawiło rozdzielczość spektrografu, a później wprowadzono metodę og­niskowania magnetycznego (metoda Dempstera). Nie będziemy się nimi zajmowali bardziej szczegółowo.
8,12. Pole magnetyczne w materii

czynnikiem |.i . W próżni
Wielkością obecnie najczęściej używaną w magnetyzmie jest wektor indukcji magnetycznej B. Prócz niego wygodnie jest posługiwać się również preferowanym dawniej pojęciem natężenia pola magnetycznego H. Jest to wektor w próżni równoległy do B i różniący się od niego

H » -i- B. (8.56)^ofakt, że 3 i B oznaczają różne wielkośoi,A ♦ m Wb A1 1 1 • “ 1---- -Wb m^ m jest inny, niż [B3 • 1 Wb/m2. Natężenie pola możemy obliczyć dzieląo przez p0 podane uprzednio dla różnych przypadków wyrażenia dla B. I tak na przykład, natężenie pola H wokół liniowego i nieskończone­go przewodnika z prądem wynosi w próżni1 i ,H = ----- ----- . (8.57)2u R

Należy zwrócić uwagę na także wymiar Hs [Hj =



158 Zajmując się polem magnetycznym w materii traktujemy zwykle H w próżni jako pole zadane, ożyli zewnętrzne, w którym znajduje się in­teresujący nas magnetyk. Ulega on namagnesowaniu (polaryzacji magne­tycznej), wobec czego natężenie pola wewnątrz magnetyka różni się od H. Różnicę tę określa wektor namagnesowania P, równy momentowi mag­netycznemu (trwałemu i wzbudzonemu) jednostki objętości materiałuP » . (8.53)A VWymiar P 2“ A • m[P] = 1 ——*— « 1 A/m nrjest taki sam, jak wektora H. Wypadkowe natężenie pola w magnetyku wynosi więc 1H + P » -T- B. (8.59)oW zależności od tego, jakie własności mają elementy strukturalne (atomy, jony, cząsteczki), z których składa się magnetyk możemy po­dzielić magnetyki na trzy główne klasy.i. Diamagnetyki. Elementy strukturalne diamagnetyka nie mają trwa­łych momentów magnetycznych. Pod wpływem H powstają w nich momenty indukowane, bardzo małe i o zwrocie przeciwnym do H. Z tego względu namagnesowanie materiału jest liczbowo ujemne, P < 0, oraz |PI«|H|. W rezultacie w diamagnetyku izotropowym £11 H II B, lecz (l/pQ)B jest nieco mniejszy, niż H (rys. 8-25a). W diamagnetyku o własnościach
£

a

zależnych od kierunku (anizotropia) kierunki H i P mogą się różnić (rys. 8-25b). Do diamagnetyków należą na przykład: wodór H2, woda H20, miedź Cu, chlorek sodowy NaCl, bizmut Bi, benzen, ogólnie związki,któ­rych elementy strukturalne mają elektrony sparowane oraz niektóre me­tale.
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Hya. 8-26ii. Paramagnetyki. Elementy strukturalne mają własny, trwały mo­ment magnetyczny P^, którego wartość znacznie przewyższa moment in­dukowany jaki w nich również się pojawia pod wpływem H. W re­zultacie
P JS

y n(t) y (i)-2 Pm * 2^ (8.60)△ vjest dla paramagnetyka izotropowego wektorem o kierunku i zwrocie zgod­nym z H (rys. 8-26), natomiast w anizotropowym ich kierunki mpgą się różnić. Do paramagnetyków należą między innymi: tlen 02, tlenek azotu NO, glin Al, platyna Pt, ciekły tlen, a wśród związków organicznych tzw. wolne rodniki. Są to związki, których cząsteczki posiadają sa­motne elektrony o nieeparowanych spinach.Zarówno w dia- jak i w paramagnetykach wektor namagnesowania P jest proporcjonalny do natężenia pola magnesującego HP » u• H, (8.61)aż do bardzo dużych wartości g. Współczynnik proporcjonalności m w (8.61) nosi nazwę podatności magnetycznej i jest stałą materiałową do­datnią (dla paramagnetyków) lub ujemną (dla diamagnetyków). Mimo, że jest liczbą bezwymiarową, wartość liczbowa u odnosi się w (8.6l) do jednostki objętości materiału, ponieważ P określone jest dla jed­nostki objętości. W fizyce chemicznej często używa się pojęcia molar- nej podatności magnetycznej,
X = h • vm. (8.62)gdzie vm oznacza objętość 1 mola substancji. Niezależnie od rodzaju substancji [hJ jest liczbą rzędu 10“$, zatem |M| <<1. Powoduje to, że wypadkowe natężenie pola wewnątrz magnetyka, H + P, nieznacznie tyl­ko różni się od pola magnesującego, H.



160 Ze względu na (8.61) możemy napisać
czyli
gdzie

-1— B » H + P = (1 + h) H, ^o " - “B 3 |1 Hgg,
p “ 1 + u

(8.63)
(8.64)jest nową atałą materiałową, noszącą nazwę względnej przenikalnościmagnetycznej. Dla obu grup materiałów p nieznacznie różni się od jed­ności. Oczywiście, dla próżni u ■

Rys. 8-27

O oraz P « 1.Ze względu na te własności kula wykonana z diamagnetyka jeat "omijana" przez linie pola mag­netycznego, natomiast w paramag- netyku gęstość linii jest trochę większa niż na zewnątrz niego (rye. 8-27). Powoduje to,iż dia- magnetyk jest wypychany w nie­jednorodnym polu magnetycznym w obszar pola o mniejszej gęstoś­ci linii, natomiast paramagnetykwciągany jest w obszar o większym natężeniu pola. Stanowi to podstawę metody pomiaru podatności magnetycznej materiałów za pomocą ważenia próbek zamkniętych w rurach szklanych w niejednorodnym polu magnetycz­nym i bez obecności pola (metoda Guya, rys. 8-28).

Rys. 8-23iii. Perromagnetyki. Do ferromagnetyków należą żelazo, nikiel,ko­balt oraz wiele ich stopów. Podatność magnetyczna ferromagnetyka jest liczbą bardzo dużą: 10^-10^, wobec czego możemy zaniedbać jedność w (8.64), czyli p « u. Związek (8.63) obowiązuje nadal, jednak zarówno H jak i p nie są już stałymi materiałowymi, ponieważ ich wartości zależą od H (rys. 8-29)• Perromagnetyki, podobnie jak ferroelektry­ki, wykazują również strukturę domenową, tj. składają się z obszarów makroskopowych o idealnym uporządkowaniu dipoli magnetycznych. Również



161pętla histerezy jest ioh współ» ną cechą: magnesując ferromag- netyk po raz pierwszy rozpoczy­namy krzywą P(h) w punkcie (0,0) i dla dostatecznie dużych H o- siągamy stan nasycenia» Powrót H —»-o odbywa się po innej krzywej, w rezultacie czego o~ trzymujemy w punkcie H = 0 stan spolaryzowania ferromagnetyka, Pg / 0. Materiały o dużym Pa, czyli o dużej remanencji magne­tycznej są używane do konstruk­cji magnesów stałych (głośniki, słuchawki radiowe). Powierzchnia, ob­jęta pętlą histerezy, przedstawia liczbową wartość pracy, związanej z przemagnesowywaniem materiału. Jeśli pętla jest wielokrotnie obiegana podczas jednej sekundy, jak np. w obwodach prądu przemiennego, wów­czas pobór mocy na przemagnesowanie materiału może być duży; w końcu moc ta jest tracona w postaci ciepła, wytwarzanego w ferromagnetyku. Są to zjawiska niepożądanej dlatego w technice prądów przemiennych po­szukuje się materiałów o możliwie małej powierzchni pętli histerezy.
8.13. Indukcja elektromagnetyczna8.13.1. Prawa indukcjiPrzypomnimy obecnie podstawowe prawa, określające przyczynę, kie­runek i wielkość prądu indukcyjnego, powstającego w obwodzie zamknię­tym. i. W każdym przewodniku, tworzącym obwód zamknięty, powstaje prąd indukcyjny podczas zmiany strumienia wektora Indukcji magnetycznej, objętego tym obwodem.Prawo to precyzuje przyczynę powstawania prądu indukcyjnego i po­za zwróceniem uwagi, iż mowa w nim o zmianie strumienia wektora B, a nie wektora H, nie wymaga szerszego komentarza.ii. Powstający w zamkniętym obwodzie prąd indukcyjny ma taki kie­runek, że wytwarzany przezeń własny strumień indukcji magnetycznej kompensuje przyczynę, która go wywołała.Prawo to określa zupełnie ogólnie kierunek prądu indukcyjnego i nosi nazwę reguły Lenza. Proste zilustrowanie tej reguły przedstawio­ne jest na rys. 8-30: do zwojnicy zbliża się biegun S trwałego magne­su. Prąd indukcyjny ma taki kierunek, by w części zwojnicy zwróconej
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Rys. 8-30do 3 powstał również biegun 8; linie pola muszą więc wchodzić do zwojnicy od tej strony. Podczas zmiany kierunku ruchu S zmieni się również kierunek wzbudzonego prądu indukcyjnego.iii. Trzecie prawo indukcji, odkryte wraz z pierwszym przez Faradaya, określa wartość indu­kowanej w przewodniku siły elek­tromotorycznej. Przypuśćmy» że odcinek przewodnika o długości △1 porusza się z prędkością v prostopadle do linii wektora B (rys. 8-31). Na każdy nośnik dzia­ła wówczas siła Lorentza (8.51), przy czym E jest w tym przypadku natężeniem pola elektrycznego po­wstającego na końcach przewodnika pod wpływem składowej magnetycz­nej q v x B. Pole E przeciwsta­wia się dalszemu przemieszczeniu nośników o ładunku q, tak, że w stanie równowagi « 0 orazq E ■ -q v B.Ponieważ E = e/Al, gdzie e jest różnicą potencjałów między koń­cami przewodnika i zarazem indukowaną siłą elektromotoryczną oraz v ■■ ds/dt, mamy e ■ -Al B (s«Al*B),gdzie s»Al«B jest liczbą linii strumienia B przeciętych przez prze­wodnik podczas przesunięcia o odcinek s = v*t. Wartość indukowanej siły elektromotorycznej jest więc równa szybkości zmian strumienia wektora B, towarzyszących ruchowi przewodnika!
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dS e = - - ----- (3.65)dtPonieważ [e] = 1 V, [$] » 1 Wb oraz [t]* 1 a widzimy, że 1 Wb = = 1 Vs. 3.13.2. Przemienna siła elektromotorycznaPrzypuśćmy, że między biegunami (elektro)magnesu w jednorodnym po­lu magnetycznym obraca się ramka z przewodnika wokół osi 00 z jednos­tajną prędkością kątową u (rys. 3-32). Aktualne położenie normalnej

N do ramki względem linii B określa wówczas kąt a = w• t, a obję­ty ramką strumień $ = $ „ cos m 3 ® _ cos w t m mzmienia się periodycznie w czasie z prędkością kątową w•$ m jest ma­ksymalną wartością $ dla t = 0. Wobec tego między punktami 1 i 2 po- wstaje aiła elektromotoryczna o wielkości określonej prawem (8.65)e = - -rr (£_ cos u t) «w $ sin w t = a _ sin u; t. (3.66) Cl v Dl Dl DlJest to przemienna siła elektromotoryczna; po połączeniu punktów 1 i 2 jakimś odbiornikiem (szczegóły techniczne tego połączenia pomi­jamy) popłynie przezeń prąd przemienny. Istnieją trzy zasadnicze typy odbiorników prądu przemiennego: oporność omowa, cewka indukcyjna oraz pojemność. Przypomnimy w dużym skrócie ich zasadnicze cechy.i. Opornością omową nazywamy oporność dowolnego opornika zmierzo­ną w obwodzie prądu stałego. Na przykład liniowy przewodnik o długoś­



164ci 1 i przekroju poprzecznym A ma oporność R » (p*1)/A,która jest taka sama dla prądu stałego, jak i przemiennego.Po dołączeniu go mię­dzy punkty 1 i 2 popłynie przezeń prąd przemienny
R

Rys. 8-33

sin mt = i sin mt.ii. Zupełnie nowym typem oporności jest cewka indukcyjna, przedstawiona schematycznie na rys.8-33.Jeżeli przez zwojnicę płynie dowolny rodzaj prądu o natężeniu i, to zgodnie z prawem Bio- ta-Savarte'a-Laplace'a wektor indukcji B jest proporcjonalny do i. W takim razie możemy przyjąć, że strumień wek­tora B płynący w rdzeniu ferromagne­tycznym jest również proporcjonalny do i$ = 1 • i. (3.67)przy czym Ł jest pewnym współczynnikiem, zależącym od geometrycz­nych cech zwojnicy (przekrój, rdzeń, liczba zwojów) i własności rdze­nia (przenikalność magnetyczna). Jeśli teraz przez zwojnicę płynie prąd stały, to e = - ds/dt » 0, czyli w zwojnicy nie wytwarza się si­ła elektromotoryczna. Zupełnie inna sytuacja występuje wówczas, gdy zwojnicę zasilamy prądem przemiennym i = im sin mt. Bowstaje wówczas przemienny strumień magnetyczny, który wtórnie oddziałuje na znajdu­jącą się w jego zasięgu zwojnicę. W tej ostatniej indukuje się siła elektromotoryczna e
o wartości zależnej od szybkości zmian natężenia prądu w zwojnicy.Zja­wisko to nosi nazwę indukcji własnej, lub samoindukcji, zaś L jest współczynnikiem samoindukcji. W układzie jednostek SI jednostką L jest 1 henr: VL > 1 — = 1 H.A/sPrzewodnik ma współczynnik samoindukcji równy jednemu henrowi.jeś­li zmiana natężenia prądu o 1 A podczas 1 s wywołuje na jego zacis­kach powstanie siły elektromotorycznej o wartości 1 V.iii. Jeśli między okładkami kondensatora znajduje się dielektryk idealny, tj. zupełnie nie przewodzący prądu, to kondensator przedsta­



165wia w obwodzie prądu stałego oporność nieskończenie wielką.Przypuśćmy teraz, że przyłożyliśmy na kondensator napięcie U = Um sinwt, wobec czego jego ładunek chwilowy wynosi Q « C«U ■ C-l^ sinwt. Z defini­cji i = dQ/dt, czylii “ 4$ = co C Um cos wt « i_ cos wt dt m mkondensatorowi o pojemności C odpowiada więc w obwodzie prądu prze­miennego oporność R » ----  . (8.69)0 w CPłynący w tym przypadku prąd nie jest jednak prądem przewodzenia, lecz tzw. prądem przesunięcia. Przyczyną pojawienia się tego prądu są mikroskopowe przesunięcia elektronów i jąder cząsteczek, wchodzących w skład dielektryka, pod wpływem chwilowego pola elektrycznego. Prze­sunięcia te są wprawdzie bardzo małe, rzędu średnicy atomu, lecz licz­ba przesuwających się elementów jest bardzo duża. Następują onew jed­nej połowie okresu T » k /w w kierunku jednej okładki kondensato­ra, zaś w drugiej połowie w kierunku okładki przeciwległej.Z tego po­wodu również polaryzacja dielektryka ulega periodycznym zmianom.8.13.3. ZawadaRozważmy obecnie własności ob­wodu złożonego z R, L, C połączo­nych szeregowo i zasilanych ze źródła przemiennej siły elektromo­torycznej e sinwt (rys.8-34). Zakładamy, że L i 0 są elementami idealnymi, tj. dla prądu stałego Rc= 00 i Rj, » O. Drugie prawo Kirch- hoffa dla tego obwodu ma postaćdi Qe sinwt - L — = iR + — , (8.70) m dt Cgdzie - L 4™ jest siłą elektromo­toryczną samoindukcji, skierowaną przeciwnie do e . Zauważmy,że podstawienie w (8.70) i = dQ/dt prowa­dzi do równania różniczkowego
lĄ + R^ dt* dt ■®- » e „ sin w t 0 manalogicznego do równania ruchu drgań wymuszonych (4.32). Wielkością, 



166która ulega periodycznym zmianom jest w tym przypadku nie wychylenie, lecz ładunek. Sile oporu odpowiada człon R(dQ/dt), proporcjonalny do oporności omowej R obwodu.Przejdźmy obecnie do rozwiązania (8.70). Interesować nas będzie zależność i(t), wobec czego w celu ujednolicenia zmiennych należy (8.70) zróżniczkować względem czasu. Otrzymamy równanie2Ł ^4 + R — + —i— ж W E 008 wt. dt2 dt C m (8.71)Ponieważ równanie (8.71) przedstawia zagadnienie analogiczne do drgań wymuszonych, rozwiązaniem (8.71) musi być funkcja i(t) perio­dyczna i to o tym samym okresie T « 2 u/w, co czynnik wymuszający. Położymy więc i = im • sinUt -cp ), (8.72) gdzie cp jest kątem przesunięcia fazowego między natężeniem prądu a siłą elektromotoryczną. Znajdziemy obecnie warunki jakie muszą być spełnione, by (8.72) było rozwiązaniem (8.71). W tym oelu należy ob­liczyć pochodne i(t) i podstawić do (8.71).— ■ w i_ cos (wt - «>), dt m2 » -w2 i sin (wt - <p).dt2 mPo podstawieniu otrzymujemy“ L “21т) sin - <p) + w R ooe (w* - q>) “ w em cosw t.Podzielmy obecnie dwustronnie przez w • im i otwórzmy nawiasy w argumentach funkcji trygonometrycznych. Otrzymamy- (wL 1- ——) {sinw t cos $ - cosw t sin <p| +
i > e+ R j COS Wt 008 cp + sin wt sin ср I - —тRówność zie muszą wadzi nas ta powinra być spełniona dla dowolnej znikać współczynniki osobno przy cos to do dwóch warunków1- (wL - ——) oos cp + R sin cp “ C

mchwili t; w takim ra- wt i przy sin wt. Pro-
(8.73)1(wL - ——) sin cp + R oosm = e„/i„ w c m m

= O
O



167Z pierwszego z nich przesunięcia fazowego otrzymujemy wyrażenie określające tangens 
tg <p = (8.74)Wyrażenie to wskazuje, że kąt przesunięcia fazowego między przy- >łożoną siłą elektromotoryczną effl sinwt, a płynącym w obwodzie prą­dem o natężeniu im sin (wt - <p) zależy od wielkości i rodzaju ele­mentów, z których złożony jest obwód. Kąt q> może być dodatni, ujemny lub może równać się zeru. Szczegółowe przeanalizowanie poszczególnych przypadków pozostawiamy Czytelnikowi.Podnosząc do kwadratu dwa warunki (8.73)i dodając stronami, może­my wyeliminować funkcje trygonometryczne kąta <p. Otrzymujemy wówczas wyrażenie 2 i 1/2 (8-75)przedstawiające ogólną oporność obwodu R, L, C, zwaną zawadą. Zawada Z składa się z oporności omowej R, z oporności równoważnej pojemno­ści Rq ■ 1/( wC) i oporności równoważnej indukcyjnośoi Rj, ■ <uL. Po­stać wyrażenia (3.75) wskazuje nadto, że zawada ma cechę geometrycz­

Rys. 8-35ną: Jeżeli na osi odciętych odłożymy w prawo R^, w lewo Rc, a na osi rzędnych odłożymy R, to Z jest przekątną prostokąta o bokach Rl - Rc oraz R (rys. 8-35). Taki wykres wektorowy obwodu prądu przemiennego umożliwia również interpretację kąta przesunięcia fazo­wego <p: jest to kąt zawarty między wektorami R i Z.



168 8.13.4. Moc prądu przemiennegoChwilowe wartości natężenia prądu i siły elektromotorycznej w ob­wodzie prądu przemiennego podane aą wyrażeniami (8.72) i (3.66)5 ioh iloczyn P(t) = i e sin wt • sin (wt - <p) mm rprzedstawia chwilową moc prądu przemiennego. Jest to wielkość mało in­teresująca, ponieważ ulega periodycznym zmianom w zależności od cza­su. Wielkością najczęściej używaną jest moc średnia, <P>, przy czym średniowanie odnosi się do czasu< P > = im e m Zsin w t • sin (ш t - ę ) > == im em <sin2 wt (cos ф - otgw t sin® )> == im sm <(sin2 wt> • <cos ф - ctg wt sin(C)>.Ponieważ <sin2wt)>= , <(otgwt^>= 0, otrzymujemy<P>“ 4 i £ cos ® .2 m mWielkości i oraz em są amplitudami, czyli maksymalnymi wartoś­ciami natężenia prądu i siły elektromotorycznej. Wprowadzimy obecnie tzw. wielkości efektywne (lub skuteczne) mniejsze 7? razyod wielkości amplitudowych i £isk ’̂ (8*76)Wyrażenie określające moc średnią przyjmie wówczas postać< s> “ igk esk • COS <₽ , (8.77)różniące się od wyrażenia dla prądu stałego czynnikiem сое ф, zwanego czynnikiem mocy. Jeśli obwód prądu przemiennego składa się tylko zoporności omowej R, to cos ф= 1, a wydzielane ciepło obliczone za pomocą wartości skutecznych jest takie samo, jak dla tej samej oporno­ści i mocy w obwodzie prądu stałego. Widzimy więc, że wartości sku­teczne przy obciążeniu "czysto omowym" są równoważne wartościom i, e prądu stałego, wywołującym ten sam skutek cieplny.



9. PALE 9«1. Ruch falowyPrzypuśćmy, że punkt q(O,O) w ośrodku sprężystym wykonuje wzdłuż osi y ruch periodyczny o amplitudzie Ao (rys. 9-1). Jeśli Am ozna­cza element maay ośrodka otaczający Q, to równaniem ruchu A m jeat (por. 4.1) Am.y + C*y=O.
- V

Q(o,o) 'r(x,o) "x

Rys. 9-1Rozwiązanie tego równania ma postaćy(t) = Aq- cos o> t, czyli A m wykonuje drgania harmoniczne proste. Ponieważ ośrodek jest mechanicznie spójny, drganie to pociąga za sobą ruch punktów sąsied­nich} taki właśnie ruch zaburzenia w ośrodku sprężystym nazywamy fa­lą. W przykładzie zaburzenia zilustrowanego na rys. 9-1 kierunek ru­chu punktu Q jest prostopadły do kierunku rozchodzenia się fali (oś x)} falę taką zwiemy poprzeczną. Pala poprzeczna może powstać w ośro­dku, który wykazuję sprężystość postaci (powierzchnia swobodna cie­czy, naprężona i nieskończenie długa struna, ciało stałe).Drugim pod­stawowym typem jest fala podłużna, w której kierunek drgań elementów masy ośrodka jest równoległy do kierunku rozprzestrzeniania się fali (rys. 9-2). Inną podstawą podziału fal są ich cechy geometryczne: mo­żemy mieć falę kulistą (punktowe źródło drgań), lub płaską (dostatecz­nie mały wycinek fali kulistej). Warto może przypomnieć, iż cząstki
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Ao -------

a (o,o) x

Rys. 9-2ośrodka, uczestniczące w ruohu falowym, wykonują jedynie drgania wo­kół położeń równowagi, ale nie ulegają trwałym przemieszczeniom w sen­sie ruohu postępowego.Miejsce geometryczne punktów, do których dochodzi zaburzenie po upływie określonego przedziału czasu, zwane jest czołem fali. Pojęcie to ma sens dla ciągu falowego, który zaczął się rozchodzić w określo­nej chwili} fala nieskończenie rozciągła w przestrzeni nie ma czoła.

Rys. 9-3Powierzchnią falową P nazywamy zbiór punktów, których faza drga­nia w określonej chwili jest jednakowa. Inaczej mówiąc, punkty Q, R, S ... leżące na określonej powierzchni falowej PQ mają tę samą war­tość i kierunek wychylenia w danej chwili (rys. 9-3). Punkty Q1, R^, Sp ... powierzchni falowej P1 również drgają między sobą w jedna­kowej fazie ale innej, niż punkty leżące na Po. Poruszając się w kie­runku prostopadłym do powierzchni falowej z szybkością znacznie więk­szą od szybkości rozprzestrzeniania się zaburzenia, co odpowiada og­lądaniu "zamrożonego" etanu fali w określonej chwili znajdziemy na­stępną (najbliższą) powierzchnię falową P której punkty wykonują 



171drgania w jednakowej fasie z PQ. Odległość dwóch powierzchni falo­wych o tyoh własnościach jest długością fali X . Jest jasne, że jeśli prędkość rozchodzenia się fali zależy od wybranego kierunku w ośrod­ku, czego powodem może być anizotropia jego własności sprężystych, to kształt powierzchni falowej będzie trochę inny, niż PQ. W takim razie długością fali jest odległość dwóch najbliższych powierzchni jed­nakowej fazy, mierzona w określonym kierunku normalnej do tych po­wierzchni. Bardziej ścisłą definicję X, opartą na zastosowaniu ra­chunku różniczkowego, tutaj pominiemy.Określona faza zaburzenia rozchodzi się w ośrodku sprężystym z szybkością v, zwaną prędkością fazową fali. Ze względu na skończoną wartość v określona faza zaburzenia w punkcie Q(0,0) znajdzie się w punkcie R(x,O) dopiero po upływie pewnego czasu to x/v; o tę wartość faza w R jest opóźniona względem fazy w Q. Jeśli przez <|> (x,t) oznaczymy wychylenie punktu R względem położenia równowagi, to można napisać<p (x,t) ■ AQ cos co (t - t) = AQ cos w (t - —). (9.1)Według (9.1) wychylenie dowolnego punktu pola falowego jest więc periodyczną funkcją czasu i położenia tego punktu. Jeśli położymy t » = oonst (odpowiada to "fotografii1* aktualnego stanu fali) i będziemy się poruszać w kierunku x to stwierdzimy, że wychylenia punktów są periodyczną funkcją x. W takim razie, korzystając z definicji długo­ści fali A , mamy cp (x,t) = cp (x+X, t), (9.2)czyli AQ COSo) (t - ~) B COS (1) (t - ~),stąd wX _ — » 2nlub vX = —~ » V • T. (9.3)Wyrażenie (9.3) przedstawia związek między parametrami fali: dłu­gością fali X , prędkością fazową v oraz częstością v lub okresem drgań I. Związek ten ma charakter ogólny, tzn. spełniają go parame­try fali dowolnego typu.
W spektroskopii, częściej niż długość fali, stosuje się liczbę fa­lową

a = _J_ (w m“1), (9.4)
A



172ponieważ wielkość ta jest proporcjonalna do energii (podobnie, jak częstość). W fizyce promieniowania używa aię nadto wielkości pro por- porcjonalnej do a , tzw. kątowej liczby falowej

Kya. 9-4

k = —- (w m”1). (9.5)
AZobaczymy później, iż k ma własności wektora. Korzystając z tych oznaczeń możemy zapisać równanie fali biegnącej (9.1) w innej, również często spotyka­nej postaci(x,t) = Ao cos 2n (vt - -*—) == Ao cos (wt - k x). (9.6)Pala, rozchodząca się w ośrodku sprężystym, częs­to napotyka przeszkody, które powodują modyfikację czoła fali za przeszkodą. Pomocą w konstrukcji nowego czoła fali jest zasada Huygensa: każdj punkt ośrodka, do którego dochodzi czoło fali, możemy traktować jako źródło nowej fali, zwanej elementarną (cząstkową).Czo­ło fali wypadkowej w określonej chwili jest obwiednią wszystkich fal elementarnych. Ilustracją tej zasadyjest rys. 9-4s z każdego punktu P, Q, H, ... czoła fali Po w chwi­li t0 rysujemy półokrąg o pro­mieniu r^ = Y^ńt, przy czym At - » t^ - tQ. Powierzchnia styczna do wszystkich półokręgów przedstawia wypadkowe czoło fali P1 w chwili t1. Na rysunku 9-5 przedstawiono konstrukcję czoła fali po przejś­ciu przez otwór w przesłonie, któ­rego rozmiary są porównywalne z długością fali A .9.2. Drgania strunyDrgania naprężonej struny stanowią ważny przypadek ruchu falowe­go. Analiza tego ruchu jest stosunkowo prosta, ponieważ jest to przy­padek ośrodka "jednowymiarowego"j niemniej jednak uzyskane tu wyni­ki dają się łatwo uogólnić, co doprowadzi nas w końcu do ogólnego rów-



173nania różniczkowego fali. Ponadto analiza postaci drgań, jakie mogą się wytworzyć w strunie o skończonej długości prowadzi do wyników bar­dzo interesujących ze względu na pewną analogię do własności układów kwantowych; zajmiemy się tym zagadnieniem w następnym paragrafie.

Rys. 9-6Niech napięta struna będzie rozciągnięta w etanie bezwibracyjnym w kierunku osi x (rys. 9-6). Na oba końoe małego elementu Ax stru­ny działa siła TQ o wartości jednakowej i o kierunku przeciwnym. W stanie drgającym siły T1 i T2 są różne; małe zakrzywienie elementu pominiemy. Jeśli p0 jest liniową gęstością struny (kg/m),tOAm ■ = p0’ A* jest masą elementu △ x. Wychylenie ąx z położenia równo­wagi opisuje funkcja (x,t), zależna od czasu i położenia elementu △ x. Siła wypadkowa, oiągnąca &x w górę wynosiPz(t) - T2 sin 02 - T1 sin e1 przy czym kąty ©j^ spełniają warunki34 (x,t) tg© 2 = 3(x,t)
Jeśli amplituda drgań jest niewielka, to składowe poziome sił i T2 są bliskie siebiet1 cos ©1 a t2 cos e2 a t0.



174 Машу więcFz(t) = T2 sin 6 2 - T1 sin 01 = $2 tg 6 2 cos 62 - 0Ц tg e1 cose1 •* To Ц *ee,j • >.{ -а2Ф (x,t) з2ф (x,t)3x2^POAI at2 ‘
Ostatnie wyrażenie jest rozwinięciem siły Newtona m.a. Opuszcza­jąc długość elementu A x, możemy zapisać ostatnią równość w następują­cej postaci a%(x,t) /T \ 3% (x,t)------”2~ “ — ------- ’ 0.7) 3t2 \Po/ 3x2Uzyskany związek (9.7) między przyspieszeniem elementu masy a m struny a drugą pochodną wychylenia względem współrzędnej jest ważnym równaniem różniczkowym, noszącym nazwę klasycznego równania falowego. Równanie jest napisane dla jednego wymiaru, odpowiadającego przyjęte­mu modelowi ośrodka} taka postać zupełnie wystarcza na potrzeby tego rozdziału. Niewiadomą jest tu funkcja 4>(x,t), podająca aktualne wy­chylenie elementu A m struny, położonego w określonym miejscu osi x. Pala jest poprzeczna, ponieważ wychylenie 4» jest prostopadłe do kie­runku rozchodzenia się fali, którym jest oś x. Wymiar ilorazu siły naprężającej i liniowej gęstości struny, TQ/p0, jest następujący
Widzimy, iż jest to kwadrat wymiaru prędkości} łatwo pokazać, iż prędkością tą jest prędkość fazowa fali. (9.6) musi być rozwiązaniem równania (9.7), ponieważ (9.6) opisuje postać fali poprzecznej, roz­chodzącej się w kierunku osi x. Obliczenie drugich pochodnych

а2 ф(хЗ) / 2 \2 ,—J?--------prowadzi nas do związku / T \ . 24 / v2 ^(^t) -[\ Po / X



175stąd
wobec tego (9.8)jest istotnie prędkością fazową fali. Zależy ona od naprężenia struny oraz od jej gęstości liniowej. Korzystając z (9.8) możemy równanie fa­lowe napisać w ogólniejszej postaci

3 (^i t ) 2
—--------- Ą \ = Vdt" 32 <p(x,t) (9.9)Parametry odpowiadające strunie zastąpiliśmy parametrem ogólniej­szym, Jakim jest prędkość fazowa fali; może się ona rozchodzić w do­wolnym ośrodku.Związek (9.8) przedstawia dla struny zależność prędkości fazowej fali od liniowej gęstości struny i jej naprężenia; możemy go również napisać w postaci T \1/2 1_o .   Po/ x lub ,T d/2________ ,w - — * k- (9.10)\Po /(9.10) jest zależnością kątowej częstości drgań elementu długości struny (ośrodek) od liczby falowej k (fala). Widzimy, że dla struny związek ten ma szczególnie prostą postać: w jest proporcjonalne do k. Wyrażenie (9.10) jest przykładem ważnej w fizyce funkcji w(k), zwła­szcza w optyce i fizyce kryształów, noszącej nazwę zależności dysper- ayduej lub związku dyspersyjnego. Na ogół związek ten ma znacznie bar­dziej złożony charakter, niż w (9.10).Element masy A m ośrodka materialnego, w którym rozchodzi się fa­la typu (9.6), wykonuje drgania o amplitudzie Ao, a jego aktualnym wychyleniem jest (x,t). W takim razie jego energia potencjalna i ki­netyczna T wynosi U = C | c|>(x,t)j ,I = | Am (<p(x,t)} , ogdzie 0 «Am • w jest współczynnikiem liniowej siły sprężystej, a 



176<J>(x,t) chwilową prędkością a m. Suma tych energii jest całkowitą ener­gią E drgań elementu masy:E = T + U = ^Am w2. A2 cos2 (ut - kx) ++ |ńmiD2, A2 sin2 (u>t - kx) = A m w2» A2. (9.11)Widzimy, iż energia drgań jest proporcjonalna do kwadratu ampli­tudy drgań. Jeżeli podstawimy wyrażenie Am = pQAV, w którym pQ jest gęstością ośrodka, a AV elementem objętości, to możemy zapisań (9.11) w postaci -Ty • W - i Po m2* A2. (9.12)(9.12) jest gęstością energii, tj. energią jednostki objętości o- środka, w którym rozchodzi się ruch falowy. Energia ośrodka wynika z przesunięcia i prędkości jego elementów masy.9,3. Pala stojącaWyobraźmy sobie obecnie, że mamy rozciągniętą strunę o skończonej długości L, zamocowaną w punkcie x = 0 i x = L (rys. 9-7).Pala bieg­

nąca wzdłuż struny od x - 0 w prawo odbije się w punkcie x = L z fazą przeciwną; otrzymamy stan fali stojącej. Każdy punkt struny wykonuje drgania harmoniczne proste, przy czym amplituda A(x) tego drgania jest funkcją jedynie x, a nie zależy od czasu. Wobec tego w fali sto­jącej zależności od czasu i od współrzędnej przestrzeni występują roz­łącznie; matematycznie wyrażamy to w ten sposób, że ogólne wychylenie <J>(x,t) przedstawiamy jako iloczyn funkcji f(x), zależnej tylko od współrzędnej i g(t), zależnej tylko od czasu. Będziemy więc poszuki­wań funkcji (x,t) takiej, żecp (x,t) = f(x) • g(t). (9.13)



177Po podstawieniu do (9.9) mamyf(x) . v2.g(t). dLfWdt* dx*
lUb , o _u2. (9.14)g dt^ f dx^Lewa strona (9.14) zawiera czynniki zależące tylko od czasu, pra­wa tylko od X; ich równość oznacza, że zarówno lewa jak i prawa strona nie może zależeć ani od t ani od x, czyli każda z nich musi 2być równa tej samej stałej; stałą tą oznaczyliśmy przez -w . Równa­nie (9.14) jest więc równoważne dwom równaniom, z których pierwsze ma postać g" + w2 g » 0. (9.15)Równanie to opisuje proces periodyczny o częstości kątowej «Roz­wiązaniem jest więc funkcjag(t) = A cos (wt + <₽.]). (9.16)Drugie równanie o£-4 + (— j f = o (9.17)dx^ \ v /jest analogiczne do poprzedniego; rozwiązaniem ogólnym będzie zatem funkcja f(x) » B1 cos + <P^ + B2 sin (9.18)W (9.18) podstawiliśmy w/v » X; i <p 2 oznaczają na razie do­wolne stałe fazowe, i B2 dowolne amplitudy. Stacjonarny stan fali stojącej może się wytworzyć jednak tylko wtedy, gdy4>(0,t) = <p(L,t) = 0, (9.19)tj. gdy na początku i końcu struny występują węzły w każdej chwili. Pierwszy z warunków powoduje, że <p2 • 0, i = i u /2, zatemf(x) = B sin oraz <p(x,t) = 0 cos (u)t + <p) sin -JLZ ,

Zamiast dwóch stałych, A i B, wprowadziliśmy jedną, C = A«B. Drugi z warunków (9.19) prowadzi do związku2 Tt Ł „ . „ - = n n , czyli AL « n- , n = 1, 2, ... (9.20)



178 Otrzymaliśmy bardzo interesujący wynik: na strunie o długości L może się pojawić stacjonarny stan fali stojącej tylko wtedy, gdy na jej długości mieści się całkowita liczba połówek długości fali. Licz­ba n, przyjmująca wartość kolejnych liczb naturalnych odgrywa tu ta­ką samą rolę, jak liczba kwantowa w fizyce atomu.Stan drgania (9.20) opisuje funkcja

Rys. 9-8Kilka początkowych stanów drgań struny przedstawiono na rys. 9-8. Gdy n = 1, wówczas stan nosi nazwę tonu podstawowego, a odpowiadają­ca mu częstość drgań jest częstością podstawową. Pozostałe stany są nadtonamit terminologia ta jest przyjęta również w spektroskopii os- cylat ora anharmonic znego. 9,4» Pala akustycznaPala akustyczna w ośrodku gazowym jest zawsze falą podłużną - od­powiada jej ruch zagęszczeń i rozrzedzeń w kierunku normalnym do czo­ła fali. Taka sama fala rozchodzi się również we wnętrzu cieczy. Ina­czej jest w ciele stałym, które ma sprężystość postacią w ciałach sta­łych mogą się rozchodzić 3 różne typy (modusy) fal akustycznych: 1 typ fali podłużnej i 2 typy fal poprzecznych. W tych ostatnich modusach drgania elementów objętości ośrodka zachodzą prostopadle do kierunku normalnej do czoła fali, a takich kierunków wzajemnie do siebie pro-



179stopadłych, mamy dwa. W kryształach o wysokiej symetrii częstości drgań obu modusów poprzecznych mogą być jednakowe, w dalszych roz­ważaniach ograniczymy się do fal w ośrodku gazowym.

Rys. 9-9Przykład fali podłużnej, rozchodzącej się w ośrodku jednowymiaro­wym, jest przedstawiony na rys. 9-9. Określony zwój sprężyny jest przesunięty o A L w porównaniu do stanu bezwibracyjnego, wobec czego działa nań liniowa siła sprężysta A P = -0 •A L. Tego samego typu si­ła działa na element powierzchni A umieszczonej w gazie. Możemy so­bie wyobrazić, iż wewnątrz gazu, znajdującego się w stanie spoczynku, elementy powierzchni 1, 2, 3,... są rozstawione z jednakową "gęstoś­cią" w pewnym kierunku (rys. 9-10). Pala akustyczna rozchodząca się w
/ 2 3 4 5 fjL 6 7 8

Po + dPRys. 9-10tym kierunku wywołuje lokalne zmiany ciśnienia, wobec czego gęstość rozstawienia elementów 1', 2*, 3*,... ulega zmianie. Niech przesunię­cie, np. 6' względem 6 wynosi dLj na 6' działa siła dP = A • dp, gdzie dp jest małą zmianą ciśnienia, dodatnią lub ujemną, w miejscu elemen­tu 6*. Siłę tę możemy zapisać również w następujący sposóbdP = A * •' dV = A2 • dL, \ /0 \ /0gdzie dV » A dL jest małym elementem objętości, wewnątrz którego ciśnienie (pQ + dp) można uważać za stałe. Znaczek zero przy pochod­nej oznacza, że wartość jej wzięta jest w pobliżu pQ. Stąd współ­czynnik liniowej siły sprężystej wynosi dla gazu
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С - (Ą (9.22)Przypomnijmy, że siła napinająca strunę (lub sprężynę) o długości 1Q wynosi To = C’LQ, ponieważ C jest siłą działającą na jednostkę długości ośrodka. Na podstawie (9.8)» uwzględniając (9.22), mielibyś­my zatem dla struny

T2 s is
Po ■Ho %gdzie pQ jest liniową gęstością struny. W tym wyrażeniu parametry li­niowe struny należy zastąpić parametrami objętościowymi gazu; możemy to uczynić na podstawie związku0 (liniowe) . T o (objętościowe) , v _ _ (obj) , ..T ‘o ^o p o *o po o’który jest równością ogólnej masy każdego z ośrodków.Mamy więc dla gazu, , V z \ l9-o)

W dalszym ciągu będziemy uważać, że symbol pQ oznacza objętościo-wą gęstość gazu. W celu obliczenia prędkości dźwięku w ośrodku gazo­wym trzeba obliczyć pochodną (dp/dV)0, a więc trzeba znać związek mię­dzy ciśnieniem i objętością gazu. Newton, który pierwszy zajmował się tą sprawą przyjął, że zjawisko rozchodzenia się fali akustycznej w ga­zie zachodzi w warunkach izotermicznych, a więc można skorzystać z równania izotermy gazu doskonałego pV “ Povo* stąd (dp/dV)0 = » “PoVo/Vo = -P0/v0 M jest masą cząsteczkową gazu, R stałą gazową, a T temperaturą w stopniach Kelvina. Po podstawie­niu pochodnej do (9.23) Newton otrzymał wyrażenie dla prędkości dźwię-ku w ośrodku gazowym RT УJeśli podstawimy dla powietrza R » 3,31 J/K*mol, T = 273 K oraz <M>= 29*1O~3 kg/mol, otrzymamy v = 280 m/'s. Wynik ten jest jednak o wiele za mały w porównaniu z wartością doświadczalnąvd » 332 m/s.co wskazuje, że w rozumowaniu Newtona był błąd. Błąd ten polegał mia­nowicie na przyjęciu, że proces rozchodzenia się dźwięku zachodzi w warunkach izotermicznych. Tymczasem lokalne zgęszozenia i rozrzedzę- 



181nia gazu zachodzą tak szybko, że ciepło wytwarzane lub pochłaniane podczas tego procesu nie zdąży wymienić się z otoczeniem. Należy więc przyjąć, że fala dźwiękowa rozchodzi się w warunkach adiabatycznych, a poprawnym związkiem między ciśnieniem gazu i jego objętością jest równanie Poissona pVH » p^ = const.u = Cp/Cv jest stosunkiem ciepeł właściwych i dla danego gazu jest wielkością stałąj h jest zawsze większe od jedności. Obecnie (dp/dV)0 = -nP0/VQ oraz
„ l hR tA1/2 (9.24)\ M / 'Podstawienie poprzednich danych dla powietrza oraz u = 1,40 pro­wadzi do wyniku v = 331 m/e doskonale zgadzającego się z wynikiem doświadczalnym.9.5. Interferencja falInterferencja fal jest zjawiskiem charakterystycznym dla ruchu fa­lowego i polega na nakładaniu się dwóch lub więcej ciągów falowych, rozchodzących się jednocześnie w tym samym ośrodku. Interferencji u- legają fale niezależnie od ich typu, a więc mogą z sobą interferować dwa ciągi fal podłużnych akustycznych lub dwa ciągi fal elektromagne­tycznych. Podstawowym warunkiem, który muszą spełniać ciągi falowe,by mogły ze sobą interferować, jest ich spójność (koherentność)s wy­tworzona przez nie różnica faz w dowolnym punkcie obszaru nakładania się musi zależeć wyłącznie od położenia punktu, a nie może zależeć od czasu. Warunek spójności sprawia, że na ogół nie mogą interferować z sobą dwa niezależne ciągi falowe, np. generowane przez dwa niezależne źródła.Przykład wytwarzania dwóch ciągów falowych spójnych jest przed­stawiony na rys. 9-11; w optyce nosi on nazwę doświadczenia Younga. Punktowe źródło drgań S wytwarza falę kulistą, która dochodzi do dwóch szczelin S1 i S2 w przesłonie P. Zgodnie z zasadą Huygensa każdą ze szczelin możemy traktować jako źródło fali elementarnej,roz­chodzącej się na prawo od P w postaci kolejno następujących grzbie­tów (linia ciągła) i dolin (linia przerywana). Widać, iż w niektórych punktach płaszczyzny rysunku spotyka się grzbiet (dolina) jednego ciągu falowego z grzbietem (doliną) ciągu drugiego^ w tych punktach
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Rys. 9-11następuje dodawanie wychyleń (zgodnie z zasadą superpozycji). W punk­tach, gdzie spotykają się grzbiety z dolinami, następuje wygaszenie drgań punktów ośrodka. Należy zauważyć, iż wskutek spójności obu cią­gów falowych obraz interferencji po prawej stronie P jest stacjonar­ny, tj. nie ulega zmianie z biegiem czasu.

S

Rys. 9-12,Sytuacja geometryczna tego doświadczenia jest przedstawiona na rys. 9-12; poniższa jej analiza jest słuszna zarówno dla akustycznych fal poprzecznych, jak i dla fal elektromagnetyoznyoh.Wychylenia wśród- kachszczelin, odległych o d, zachodzą w kierunku y prostopadłym do płaszczyzny rysunku i wynoszą odpowiednioXO1 ” Ao cos 2 it( vt----^~),
, $$2009 2 rc(vt---- —^).02 o A



183Widzimy, że etan wychylenia w S1 względem S2 nie zmienia sięz biegiem czasu, ciągi fal, wychodzące z i S2 są spójne. WobecSS1 « SS2 mamy również Yq1 ■ pola interferencyjnego wynoszą' y1 " Yo1y2 ' Yo2
Yq2. ^chylenia w dowolnymI* cos 2u (vt - -y1 ), A , r? cos 2 u (vt---- ~~),A J

punkcie Q
(9.25)

przy czym r^ = S^Q, r2 ■ S2Q oznaczają odległości punktu Q od szcze­lin (rys. 9-12). Zgodnie z zasadą superpozycji, wypadkowym wychyle­niem punktu Q będzie
( rl r? Iy » Yl + y2 “ *01 l 003 (2 71 (vt - -£■) + cos 2 tt (vt - j == 2Yq1 cos 2 u (vt - —- ) • cos 2it(-l——Ś). (9.26)

Wyrażenie (9.26) nie jest już falą, ponieważ zależność od czasu i przestrzeni została rozdzielona. Wyrażenie to opisuje drganie punktu Q, przy czym 2Yoi cos u(£1.^—-) jest jego amplitudą. Różnicę od­ległości Q od szczelin, (r1 - r2), oznaczamy przez Ar1 “ r2 “ A (9.27)i nazywamy różnicą dróg obu ciągów falowych w punkcie Q. Warunkiem całkowitego wygaszenia drgań w Q jest2Yq1 . cosuf-3-^—-J» 0, czyli ' '« (2k + 1) • -5- , k = 0,1,2,...Stąd 4« (2k + D*y, k = 0,1,2,... (9.28)Dwa ciągi falowe dają zatem wygaszenie w punkcie Q pola interfe­rencyjnego, jeśli spotykają się w nim z różnicą dróg równą nieparzys­tej wielokrotności połówki długości fali. Zupełnie analogiczne rozu­mowanie prowadzi do wniosku, że jeśli oba ciągi spotykają się w Q z różnicą dróg równą parzystej wielokrotności połowy długości fali:A » 2k (9.29)to następuje maksymalne wzmocnienie drgań. Przypuśćmy obecnie, że wy­konujemy doświadczenie Younga według schematu przedstawionego na rys. 9-12. Przez punkt Q przechodzi wówczas prostopadle do x ekran, na którym obserwujemy układ prążków ciemnych i jasnych następujących na



184przemian po sobie. Odległość z tych prążków od środka obrazu możemy uzyskać w następujący sposób. Ponieważ długość fali promieniowania elektromagnetycznego jest bardzo mała w porównaniu do odległości d obu szczelin, słuszne wigo będzie następujące przybliżenieD = r1t r2>> d, z. (9.30)Z twierdzenia Pitagorasa otrzymujemyr2 = (z - |) + D2,r2 = (z + ^)2 + B2,stąd A(r2 - r2) = (r2 - r-])^ + rp = 2 zd.Wobec przybliżeń (9.30) mamy
czyli A • 2D = 2 zd,A = . (9.31)Wyznaczyliśmy w ten sposób związek między różnicą dróg a geo­metrią układu na rys. 9-12. Przez połączenie (9.31) z (9.28) lub(9.29) możemy uzyskać wzory na położenie prążków ciemnych (zo) lubjasnych (zp względem geometrycznego środka obrazu.Z « (2 k + 1) • -4 U Cl (9.32)
Łatwo się przekonać, że odległość dwóch sąsiednich prążków jasnych jest taka sama, jak dwóch sąsiednich prążków ciemnych i wynosiz(k + 1) - z(k) = -j- • X. (9.33)Analiza obrazu interferencyjnego, wytwarzanego przez dwie szcze­liny, daje nam zatem możliwość pomiaru długości fali promieniowania na podstawie pomiarów D, d, oraz z. Warto tu zauważyć, żesi. W celu otrzymania wyraźnego obrazu interferencyjnego o dobrze widocznych i rozdzielonych prążkach, odległość szczelin d musi być bardzo mała, zaś odległość ekranu D duża. Przypuśćmy, że obserwuje­my obraz dla promieniowania zielonego o długości fali X = 5000 2 = = 5’1O“7 m, wybieramy d = 0,5 mm = 5*1O“4 m, oraz D ■ 1 m. Odległość dwóch sąsiednich prążków wyniesie wówczas z(k + 1) - z(k) = (5.10-^/ /5’1O“4)m = 1 mm, a więc bardzo niewiele^ dla uzyskania dobrego obra­zu należałoby wybrać d = 0,1-0,2 mm.



185ii. Całkowite wygaszenie uzyskamy w obrazie interferencyjnym tyl~ ko dla promieniowania monochromatycznego. Gdybyśmy w doświadczeniu ul­żyli promieniowania o widmie ciąg­łym, warunki wygaszenia lub wzmoc­nienia dla różnych długości fal zachodzić będą w różnych miejscach ekranu; wobec tego prążki "ciemne" i "jasne" okażą się prążkami zabar­wionymi - wystąpi słabe rozdziele­nie barw. Znacznie lepsze rozdzie­lenie barw można uzyskać wówczas, gdy dwie szczeliny w doświadczeniu (rys. 9-12) zastąpimy układem bar­dzo wielu szczelin, noszącym nazwę siatki dyfrakcyjnej. Rys. 9-13Siatka dyfrakcyjna jest zbiorem równoległych szczelin, naciętych na płaskorównoległej płytce szklanej (rys. 9-13).Niekiedy sporządza się również siatki dyfrakcyjne na powierzchni wklęsłej - taka siatka działa również skupiająco.Dla promieniowania z zakresu widzialnego i nadfioletu dobre siatki zawierają do 2000 rys na milimetrze; ich zdolność rozdzielcza jest bardzo duża.Odstęp dwóch sąsiednich irys oznaczamy przez b; nosi on nazwę stałej siatki.

Niech wiązka promieniowania monochromatycznego o długości fali A pada normalnie na powierzchnię siatki (rys. 9-14). Każda szczelina wy­twarza falę rozproszoną; fale pochodzące ze wszystkich szczelin (1 , 2', 3\ ...) wygaszają się jednak wzajemnie, z wyjątkiem takich kie­



136runków, dla których różnica dróg dwóch promieni, pochodzących z są­siednich szczelin Jest parzystą wielokrotnością połówki długości fa- 11 A ■ b sin <p ■ 2 n • -y, n « 0, -1, ±2, ... . (9.34)W kierunkach określonych wzorem (9.34) następuje wzmocnienie fal rozproszonych. Dla n =■ 0 również O i otrzymujemy prążek zerowe­go rzędu; n ■ -1 odpowiada prążkowi rzędu pierwszego, który obserwu­je się pod kątem sin <p « - A/b, itd. Jeśli na siatkę pada promienio­wanie o widmie ciągłym, to następuje rozkład spektralny promieniowa­nia, ponieważ kąt ugięcia <p jest funkcją A. Dla n = 0 warunek A ■ 0 jest spełniony niezależnie od A - prążek zerowego rzędu jest zatem biały. Symetrycznie po jego obu stronach występuje widmo pierwszego rzędu (rys. 9-15), przy czym promienie fioletowe (f ) ulegają słab­szemu odchyleniu niż czerwone (cz ).

Rys. 9-15Widmo pierwszego rzędu jest najsilniejsze i korzystywane w praktyce. Zauważmy, że zależność ono bywa właśnie wy­warto śc i odchyleniaod długości fali jest przeciwna, niż dla pryzmatu, który promieniowa­nie czerwone odchyla najsłabiej.Za widmem pierwszego rzędu następują widma rzędów wyższych,wpraw­dzie silniej rozdzielone, ale słabsze i często nakładające się na siebie. W związku z tym rzadko bywają wykorzystywane do celów prak­tycznych. 9»6, Dyfrakcja falPrzedmioty oświetlane same stają się źródłem promieniowania.Wiąz­ki promieniowania, wysyłane przez elementy powierzchni są spójne i mogą się wzajemnie nakładać, przez co powstają zjawiska interferen­cyjne, najlepiej widoczne w obszarze cienia geometrycznego. W pob­liżu granicy cienia geometrycznego powetaje charakterystyczny, na­przemienny rozkład większych i mniejszych natężeń wiązek, przy ozym ogólne natężenie promieniowania ugiętego maleje szybko wraz ze wzros­tem kąta obserwacji. Obrazy dyfrakcyjne wytwarzają się zarówno w po­



187bliżu konturów otworów, wyciętych w nieprzeźroczystych przesłonach, jak i w pobliżu krawędzi przedmiotów nieprzezroczystych. Zjawiska dy­frakcji stanowią odstępstwa od zasady prostoliniowego rozchodzenia się promieniowania i stanowią jeden z dowodów falowej natury światła.

Rozważmy dla przykładu łatwą do zaobserwowania dyfrakcję fal na otworze okrągłym lub podłużnym, wyciętym w nieprzezroczystej przesło­nie P. Rysunek 9-1$ przedstawia przekrój szczeliny, której szerokość wynosi a. Z lewej strony pada równoległa wiązka fal, a wynik ugię­cia na otworze obserwuje się na ekranie E. Oś x biegnie wzdłuż P i zaczyna się na dolnym brzegu otworu, zaś oś u biegnie wzdłuż ekranu E i zaczyna się w środku obrazu dyfrakcyjnego. Podzielmy szerokość o- tworu a na małe elementy dx - każdy z nich przyczynia się do natę­żenia wypadkowego I, obserwowanego w określonym miejscu ekranu. Amp­lituda fali, wysyłana przez element dx jest proporcjonalna do jego wielkości,jest zatem nieskończenie mała i wynosi d (p (x,t).Między wiąz­ką wychodzącą z dx i wychodzącą z pobliża dolnej krawędzi otworu (rys. 9-1$) istnieje różnica dróg △= x sin<p, przy czym q> jest kątem ugięcia mierzonym względem kierunku wiązki padającej. Różnica dróg △ odpowiada różnicy faz a = 2.n (ń A ) « 2jt (x/A.) sin <₽; dlatego amplitu­da fali, wytwarzana na ekranie przez element dx wynosid 4>(x,t) « dx»B oos (wt - a ) = dx’B cos (wt - 2u sin <p).Przez B oznaczyliśmy współczynnik proporcjonalności. Ogólną am­plitudę (p(x,t) fali w dowolnym miejscu ekranu,określonym kątem ugię­cia <p otrzymamy, dodając amplitudy wiązek wysyłanych przez poszcze­gólne elementy dx



188 a<p (x,t) = B J ooa (ut - 2ir y- ain cp) dx. (9.35)oJeśli oznaczymy wt - 2ir — ain cp = y, (9.36)wówczas dy = - (2it/x) sin ® dx oraz a= - ~iin~- f 003 y dy * o= 2^3^ (ain w* - sin (wt - sin ę)j. (9.37) Wybierzmy obecnie nową zmienną
JL-a „sin ,tp = u> (9.38)

APo niewielkich przekształceniach trygonometrycznych możemy (9.37) doprowadzić do postaci<p(x,t) = - * B sin u • cos (ojt - u) = A cos (wt - u), w której
A = ~ sin u (9.39)jest amplitudą fali w punkcie u ekranu. Ponieważ natężenie fali I jest kwadratem aplitudy, więc mamy 2 2I = (a B)2 • (SiŁJł) = c • (^i) . (9.40)Wyrażenie (9.40) opisuje rozkład natężeń I w obrazie dyfrakcyjnym; jest ono periodyczną funkcją parametru u. Największe natężenie I = C obserwuje się dla u = 0; wzór (9.40) możemy więc zapisać w postaci

o
I . T (Uaj«) . (9.41)Teoria dyfrakcji ma duże znaczenie w opisie aposobu rozchodzenia się światła widzialnego (podstawy działania przyrządów optycznych), fal radiowych (radiolokacja) oraz w opisie ugięcia promieniowania rentgenowskiego przez sieć krystaliczną (analiza strukturalna).Pewny­mi poznawczymi aspektami dyfrakcji zajmiemy się jeszcze w rozdziale 11 (zasada Heisenberga).



1899.7° Drgania i fale elektromagnetyczneWiadomo, że połączenie cewki samoindukcyjnej L i pojemności C w obwód zamknięty prowadzi do powstania tzw. obwodu drgającego. Jeżeli w chwili t “ 0 naładujemy kondensator, co spowoduje przepływ prądu elektrycznego przez cewkę, to po upływie czasu t = 0,25 TQ cała ener­gia obwodu będzie zmagazynowana pod postacią pola magnetycznego (B / 0, E = 0, rys. 9-17); TQ jest okresem drgań obwodu. Wskutek inercyjnego 
+

L C

B=0 EiO 
t = 0

Rys. 9-17działania samoindukcji prąd popłynie jednak dalej w tym samym kierun­ku, tak że w chwili t = 0,5 TQ cała energia obwodu będzie znów zma­gazynowana pod postacią pola elektrycznego (B * 0, E / 0), z tym że kierunek E jest teraz przeciwny do kierunku E w, chwili początko­wej. Jeśli założymy, że elementy obwodu są idealne, to znaczy cew­ka samoindukcyjna nie ma oporności omowej, zaś oporność kondensatora dla prądu stałego jest nieskończenie duża, tc po upływie czasu t = TQ układ powróci do stanu początkowego. W ten sposób energia obwodu prze­chodzi periodycznie co 1/4 okresu z postaci elektrycznej w magnetycz­ną, a częstość tych zmian jest podana we wzorze Thomsonaw « . (9.42) 
0 1o VLCWzór ten możemy otrzymać łatwo z warunku (8.75) określającego czę­stość rezonansową dla R « 0.W obwodzie rzeczywistym LC czynne są jednak zawsze oporności R, wynikające z niedoskonałości elementów obwodu i powodujące dyssypację energii w postaci ciepła. W konsekwencji amplituda drgań w obwodzie LC maleje; zanalizujmy obecnie ten proces. Schemat obwodu przedsta­wiony jest na rys. 9-18. Będziemy uważać, iż w chwili t = 0 kondensa­tor został naładowany, po czym źródło napięcia odłączono, a w obwo­dzie płynie prąd o natężeniu i(t) zależnym od czasu.



190 Drugie prawo Kirchhoffa dla tego ob­wodu ma postaćiR + j = -L , (9.43) gdzie -L(di/dt) jest jedyną ozynną siłą elektromotoryczną.W celu uzyskania równania (9.43) w zmiennych jednorodnych trzeba je róż­niczkować względem czasu; po podzieleniu przez L i zgromadzeniu wyrazów na jed­nej stronie otrzymamy
Oznaczmy obecnie d2i dt^ + Rdi+_Li5j0.L dt 10

' 2₽»

(9.44)
(9.45)R

IStała p jest wielkością opisującą szybkość zaniku amplitudy drgań - nazywamy ją stałą tłumienia, w Q jest kątową częstością drgań ob­wodu bez tłumienia, czyli obwodu złożonego jedynie z L i C. Po pod­stawieniu nowych oznaczeń (9.44) przyjmie postać+ 2 p ~ + w 2i » 0.dt2 dt o (9.46)Rozwiązaniem (9.46) powinna być funkcja i(t) periodyczna, której amplituda maleje z biegiem czasu; przyjmiemy, że zanik ten zachodzi według prawa wykładniczego i - z(t) «e^*, (9.47)przy czym z(t) oznacza bliżej nam jeszcze nie znaną periodyczną fun­kcję czasu. Jeśli podstawimy (9.47) do (9.46)H = (ż -p z) e"₽t,= (ś? - 2p ż +p 2z) e“₽t, dt2to po redukcji i po podzieleniu przez exp(-pt) otrzymamy równanie różniczkowe dla funkcji z(t)z + (w2 -P 2)z = 0. (9.48)Rozwiązaniem (9.48) jest funkcjaz(t) » a A cos u) t,



191przy czym“ = ("o “ 32//2 (9=49) oznacza częstość drgań tłumio­nych» Jak widzimy jest ona tym mniejsza, im większa jest stała tłumienia p. Pełne rozwiązanie i(t) ma postaći(t) - A cos [(w2 - p2)1/2 t]*. e-(R/2L)t. (9.50)Zauważmy, że stała omowej P. w obwodzie. tłumienia p jest proporcjonalna do opornościWykres funkcji (9.50) jest przedstawiony narys. 9-19.W celu otrzymania drgań niegasną- cych trzeba wyrównać straty energii w obwodzie LC. Można go w tym celu sprzęgnąć na przykład z triodą (rys. 9-20). Cewka indukcyjna L2 znajduje się w zasięgu pola magnetycznego cew­ki (sprzężenie indukcyjne)} w ten sposób zmiany prądu anodowego triody odwzorowują się jako zmiany potencja­łu siatki. Sprzężenie indukcyjne pod­trzymuje drgania kosztem energii elek­trycznej, czerpanej z baterii anodo­wej B.Dopóki elementy L i C mają małą rozciągłość przestrzenną, dopóty pola magnetyczne i elektryczne są skupione w niewielkich objętościach.Przy-puśćmy teraz, że odsuwamy tak, by o—od siebie okładki kondensatora

Rys. 9-21bejmowały coraz większy obszar przestrzeni (rys. 9-21). Pominąwszy wy­nikającą stąd zmianę pojemności kondensatora C zauważmy jedynie, iż 



132w ten sposób wytwarzamy w sporej części przestrzeni szybkozmienne po­le elektryczne E = ĘQ cos wots powodujące przepływ prądu szybko- zmiennego między okładkami kondensatora. Nie jest to oczywiście prąd przewodzenia płynący w przewodniku, w którym mogą się poruszać swo­bodne nośniki prądu.Prąd przepływający między okładkami kondensatora nosi nazwę prądu przesunięcia i stanowi kontynuację prądu przewodzenia. Gdy między o- kładkami kondensatora znajduje się dielektryk, wówczas dla części prą­du przesunięcia możemy podać prostą interpretację: odpowiada on nie­wielkim przesunięciom elektronów i jąder (tylko przy dostatecznie ma­łych częstościach) z ich położeń równowagi. Gdyby od okładki ujemnej kondensatora do dodatniej poruszał się swobodny elektron,wówczas mier­nik zarejestrowałby przepływ ładunku e. Ponieważ jednak elektron przemieszcza się tylko o niewielki odcinek x «1, w którym 1 jest odległością między okładkami, elektrometr zarejestruje więc przepływ ładunku q = Ne x/l. Wprawdzie x jest bardzo małe (ułamek średnicy atomu), ale liczba N przesuwających się elektronów jest bardzo du­ża; w rezultacie przepływający ładunek q może być dość spory, a wy­nikające stąd natężenie prądu przesunięcia równe jest natężeniu prądu przewodzenia w obwodzie LC. Prąd przesunięcia płynie również w próż­ni, aczkolwiek nie możemy podać prostego mechanizmu jego powstawania.Niezależnie od sposobu powstawania prądu przesunięcia,należy przy­jąć za Maxwellem, twórcą teorii fal elektromagnetycznych, że prąd przesunięcia powoduje powstanie linii wirowego pola magnetycznego, podobnie jak to się dzieje w prądzie przewodzenia w przewodniku. Li­nie wektora B mają kształ krzywych zamkniętych i otaczają strugę prądu przesunięcia (rys. 9-22). Kierunek obiegu linii B jest zgodny

z regułą śruby prawej. Zmieniające się pole magnetyczne powoduje w myśl zasady indukcji Faradaya przepływ prądu w przewodniku, a więc po­wstanie pola elektrycznego. Według teorii Maxwells powstanie linii po­la elektrycznego towarzyszy zmianom B także w próżni; w ten sposób



193wytwarza się układ następujących po sobie pól elektrycznych i magne­tycznych, o wektorach B i E wzajemnie do siebie prostopadłych.

Układ ten nosi nazwę fali elektromagnetycznej i rozchodzi się w próżni z szybkością c. Wzajemną relację między wektorami B i 1 przedstawia rys. 9-23. Wektory D i B opisują własności fali, rozcho­dzącej się w ośrodku materialnym, gdzie prędkość fazowa v jest mniej­sza, niż w próżni. 1. jest wektorem jednostkowym, prostopadłym do płaszczyzny stałej (określonej) fazy; 1 jest zarazem równoległy do v. Dla fali przedstawionej na rys. 9-23 płaszczyzna drgań wektora D jest ustalona: jest nią płaszczyzna xz. Podobnie yz stanowi stałą płaszczyznę drgań wektora B; obie są do siebie prostopadłe.Palę elek­tromagnetyczną, w której płaszczyzny drgań wektorów B i D są usta­lone, nazywamy falą płasko spolaryzowaną. W zwykłym promieniowaniu elektromagnetycznym jest zawsze BID, lecz chwilowe położenie płasz­czyzn ich drgań jest różne i ulega przypadkowym zmianom - fala o tej własności nie jest spolaryzowana.W ośrodku niemagnetycznym p = 1, wobec czego B = p wektory B i H są więc równoległe. Wektory D i E natomiast nie muszą być rów­noległe, jeśli ośrodek wykazuje anizotropię własności optycznych. W takim ośrodku stała dielektryczna, a zarazem i współczynnik załamania światła i prędkość rozchodzenia się fali zależą od kierunku. Wzajemna orientacja czterech wektorów B, H oraz D, E przedstawiona jest o- sobno na rys. 9-24. Wektory B, H i D leżą w jednej płaszczyźnien t stanowiącej płaszczyznę określonej fazy drgań.Ponieważ 1 jest prostopadły do tej płaszczyzny, są więc speł­nione następujące relacje między wektoramiB = PQH = 1 (1 x E),D = - 1 (1 x H). (9.51)
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Rys. 9-24Relacje te wynikają z równań Maxwella; o ich słuszności można się przekonań podstawiając Jednostki wielkości fizycznych oraz rozważając wzajemne relacje między kierunkami wektorów według rys. 9-4M* Na tym rysunku widać, iż wektor E nie leży w ; razem z B tworzy on płasz­czyznę, do której Jest prostopadły wektor S. W kierunku S przepływa strumień energii z szybkością u, zwaną szybkością grupową; u jest na ogół inne niż v - tylko w próżni obie szybkości są jednakowe.
pMoc promieniowania, przenoszona przez powierzchnię 1 m ustawioną o prostopadle, wynosi w kierunku S, w/mS = (E x H), (9.52)S Jest nazywany wektorem Poyntinga i przedstawia natężenie fali elektromagnetycznej. W kierunku 1 przemieszcza się zatem płaszczy­zna określonej fazy z prędkością fazową v, natomiast w kierunku S przepływa energia z prędkością grupową u.Wszystkie wektory, D, B, E i H wykonują drgania z częstością v » w/Bit, równą częstości drgań fali elektromagnetycznej. Jeśli ozna­czymy dowolny z tych wektorów ogólnie przez A, to ze względu na pe- riodyozność A od czasu i współrzędnych przestrzeni A spełnia zwią­zek odpowiadający fali płaskiej.Niech punkt r(x,y,z) leży na płaszczyźnie stałej fazy k(rys. 9-23). Odległość tej płaszczyzny od 0 wynosi OG » z « r • 1; jedno­cześnie zauważmy, iż r • 1 = const, jest równaniem płaszczyzny sta­łej fazy . Można to łatwo otrzymać z oczywistego związku między wek­torami (rys. 9-23) k 1 + p » r, gdzie k’l = OG. Mnożąc ostatnią równość skalarnie przez 1 otrzymu­



195jemy x*l = k .= const. W takim razie zależność od współrzędnej prze­strzeni możemy zastąpić w (9.6) wyrażeniem bardziej ogólnym(r . i) - r (2-Ł . i) = r . k, (9.53)
V v “ A — —w którym k jest wektorem falowym o długości 2nA i kierunku 1. Równanie fali elektromagnetycznej można więc zapisać w następującej postaci A = cos (wt -kr) (9.54)lub w zapisie zespolonym A = Ao e^wt - ż £>• (9.55)Zapis (9.55) ma na celu ułatwienie rachunków, ponieważ daleko łat­wiej operować funkcjami wykładniczymi o wykładniku urojonym niż funk­cjami trygonometrycznymi. Ponieważ fala jest rzeczywistym zjawiskiem fizycznym, w końcowych obliczeniach potrzebnych wielkości fizycznych należy korzystać z części rzeczywistej (9.55).Zajmijmy się obecnie zagadnieniem prędkości fazowej fali. Pokazu­je się w obszerniejszych podręcznikach elektrodynamiki, iż v zależy od przenikalności względnych i bezwzględnych ośrodka1V = y , (9.56)^Eo egdzie e, eq oznacza przenikalności dielektryczne, zaś p, p0 prze­nikalności magnetyczne. Ponieważ dla próżni e = p = 1, mamy1c = —------, , (9.57PA eo wobec czego v = . (9.58)

ypeLiczbową wartość c możemy obliczyć na podstawie znanych wartoś­ci przenikalności= 10"7 Wb/Am, e0 = 8,85«10“12 C2/N’m2, stąd c = 2,998«108 m/s.Dla ośrodka niemagnetycznego H3 1» wobec czego c cV = = — . (9=59)y e opt nNa tej podstawie eopt “ n • (9.60)



196 W związkach (9.59) i (9.60) należy wziąć wartość stałej dielektry­cznej dla częstości odpowiadającej częstości drgań fali elektromagne­tycznej - takiej samej, przy której mierzono współczynnik załamania światła n. W odróżnieniu od statycznej stałej dielektrycznej e, mierzonej w polu elektrostatycznym lub wolno zmiennym (do 100 kHz), nazywamy e Opt w (9.60) optyczną stałą dielektryczną.9.8. Światło spolaryzowaneSama możliwość wytworzenia spolaryzowanej wiązki promieniowania elektromagnetycznego jest dowodem na to, iż promieniowanie jest falą i to falą poprzeczną. Nie można polaryzować fal podłużnych, ponieważ kierunek drgań jest dla nich równoległy do kierunku prędkości, wobec czego nie można uzyskać kierunku wyróżnionego prostopadle do kierunku propagacji.Ze względu na duże znaczenie promieniowania spolaryzowanego w ba­daniach naukowych i w zastosowaniach praktycznych, zajmiemy się obec­nie opisem metod otrzymywania fali spolaryzowanej.Częściowa polaryzacja promienio­wania zawsze towarzyszy zjawisku od­bicia promieniowania od gładkiej,wy­polerowanej powierzchni dielektryka lub cieczy. Częściowo spolaryzowany jest zarówno promień odbity, jak i załamany, przy czym kierunki drgań D są w obu promieniach prostopadłe do siebie (rys. 9-25). Całkowita pola­ryzacja obu wiązek występuje wtedy, gdy promień załamany i odbity są do siebie prostopadłej stwierdzenie to stanowi treść prawa Brewsteta.Na pod­stawie definicji współczynnika zała­mania światła i rys. 9-25 mamy
zatem sin i1sin i2 = n21 * + *2 =tg i1 = n21. (9.61)n2i oznacza współczynnik załamania światła ośrodka 2 (optycznie gęst­szego) względem ośrodka 1 (optycznie rzadszego), i^ jest kątem pada­nia, zaś i2 kątem załamania. Całkowita polaryzacja obu promieni na­



197stępuje więc zgodnie z prawem Brewstera wtedy, gdy tangens kąta pada­nia równy jest współczynnikowi załamania światła ośrodka optycznie gęstszego. W promieniu odbitym drgania wektora D zachodzą prostopa­dle do płaszczyzny padania (punkty na rys. 9-25), zaś załamanym - w płaszczyźnie załamania.Prawo Brewstera może stanowić podstawę najprostszego ze sposobów otrzymywania promienia spolaryzowa­nego za pomocą dwóch płaskorównoleg- łych płytek szklanych (rys. 9-26). Pierwsza z nich odgrywa rolę polary- zatora (P), druga analizatora (a): przy jej obrocie o kąt u /2 wokół kierunku promienia odbitego 00' jako osi wiązka odbita od A znika, ponie­waż w wiązce odbitej wektor D musi być prostopadły do płaszczyzny odbi­ Rys. 9-26cia, co w układzie "skrzyżoy/anym" płytek jest niemożliwe.Bezpośrednie zastosowanie układu płytek jako filtru polaryzacyjnego jest przedsta­wione na rys. 9-27. Niepożądane przesunięcie wiązki w układzie a) mo­żna skompensować odpowiednim układem płytek przedstawionym na rys.b).Zespoły płytek, wykonanych z NaCl lub AgCl, stosuje się.do otrzymywa­nia promieniowania spolaryzowanego w podczerwieni.

Rys. 9-27Innym sposobem otrzymywania światła spolaryzowanego jest zastoso­wanie filtru polaryzacyjnego, lub polaroidu, skonstruowanego w 1938 r. przez E. H. Landa. Zasada działania takiego filtru dla mikrofalowego obszaru widma jest przedstawiona na rys. 9-28. Filtr składa się z
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Rys. 9-28

cienkich drucików, równoległych do siebie i rozpiętych na ramce.Promie­niowanie mikrofalowe o dowolnej o- rientacji wektora E pada prostopa­dle do powierzchni ramki, przy czym składowe E równoległe do kierunku drucików wzbudzają w nich ruch elek­tronów, zachodzący z częstością drgań fali, czyli przepływ szybkozmiennego prądu elektrycznego. Część mocy tego prądu zmienia się na ciepło, część zostaje wyemitowana we wszystkich kierunkach w postaci fali o tej sa­mej częstości. Energia wypromienio- wana w kierunku rozchodzenia się fa­li pierwotnej jest znikomo mała i można ją zaniedbać. Po przejściu przez układ drucików wektor E fali jest dokładnie prostopadły do ich długości.

Na tej zasadzie jest zbudowany filtr polaryzacyjny Landa z tym,że rolę drucików odgrywają cząsteczki alkoholu poliwinylowego (APW) z przyczepionymi do nich cząsteczkami jodu. Cząsteczki alkoholu poliwi­nylowego mają kształt wydłużony (łańcuch węglowodorowy), zakończony grupą polarną. W cienkiej folii APW cząsteczki ułożone są chaotycznie (rys. 9-29a), lecz po jej rozciągnięciu ułożenie ulega znacznemu upo­rządkowaniu (rys. 9-29b). Po zanurzeniu folii w alkoholowym roztworze jodu folia adsorbuje cząsteczki z roztworu w taki sposób, że osie cząsteczki J2 są równoległe do osi cząsteczek APW (rys. 9-29o). W ten 



199sposób powstaje układ "drucików" absorbujących z padającej wiązki pro­mieniowanie, którego wektor E ma składową równoległą do średniego kierunku osi cząsteczek J2. Promieniowanie przechodzące jest spola­ryzowane w dziewięćdziesięciu kilku procentach, przy czym wektor E promieniowania jest prostopadły do osi Jg.Najbardziej jednak rozpowszechnione i najlepszej jakości są pola- ryzatory, wykonane z kryształów dwójłomnyoh. Należy do nich kaloyt, który jest jedną z odmian krystalicznych węglanu wapnia i występuje w przyrodzie pod postacią dużych romboedrów (rys. 9-30a). Kryształ kal-

Rys. 9-30oytu ma wyróżniony kierunek, którym jest trzykrotna oś symetrii (Cj), tj. prosta przechodząca przez naroże utworzone przez trzy jednakowe kąty rozwarte: po obrocie kryształu wokół tej prostej o 120° powtarza się dowolny element kryształu, np. krawędź, ściana, a także jon CO?” lub Ca we wnętrzu kryształu. Również każda wielkość fizyczna, mie­rzona w kierunku prostopadłym do musi wykazać symetrię oo najmniej Cj, tj. wynik pomiaru tej wielkości musi być identyczny po obrocie kryształu o 120°.Jak wiadomo, wiele wielkości fizycznych wykazujących anizotropię, między innymi względna przenikalność dielektryczna (stała dielektrycz­na) zarówno statyczna jak 1 optyczna, może być przedstawionych za po­mocą tensora drugiego rzędu. Ceohą charakterystyczną wielkości tenso­rowych jest to, że mają trzy wzajemnie do siebie prostopadłe osie główne - zapoznaliśmy się z nimi bliżej omawiając moment bezwładności bryły sztywnej. Jedna z osi głównych tensora e , na przykład ej, mu­si być dla kaloytu równoległa do C^, ponieważ jest to jedyny wyróżnio­ny w krysztale kierunek. Pozostałe osie, e1 i e2, są prostopadłe do C^j każdy z kierunków, ep e2 i £3 3®st jednocześnie dwukrotną osią symetrii. Jedyny możliwy do przyjęcia sposób pogodzenia dwukrotnej osi



200symetrii C2 II tensora z osią trzykrotną II £3 kryształu jest przyjęcie, że = Eg« Oznacza to, że w każdym kierunku prostopadłym do Oj wartość optycznej stałej dielektrycznej jest w krysztale kalcy- tu taka sama; innymi słowy, przekrój tensora prostopadle do jest w tym krysztale kołowy.Wynika z tego, iż tensor optycznej stałej dielektrycznej możemy przedstawić za pośrednictwem powierzchni geometrycznej, zbudowanej na trzech wektorach wzajemnie prostopadłych. Powierzchnią tą jest elip­soida trójosiowa, a jej osiami głównymi są owe trzy wektory. Jest to ogólny i dlatego ważny sposób przedstawiania wielkości fizycznych,któ­rym odpowiadają tensory drugiego rzędu. Nie można w równie poglądowy sposób zilustrować tensorów wyższych rzędów.W optyce kryształów bardziej rozpowszechniła się jednak nie elip­soida optycznej stałej dielektrycznej, leoz powierzchnia zbudowana na odpowiadającym trzem głównym współczynnikom załamania światła n^ (ep1/2 = ni, i = 1,2,3. (9.61)Ma ona również kształt elipsoidy trój osiowej i nosi nazwę indyka- trysy. Należy zwrócić uwagę, iż współczynnik załamania światła nie jest tensorem, ohoć może być przedstawiony powierzchnią analogiczną do e, ponieważ nie spełnia wymagań nałożonych na wielkości tensoro­we (nie spełnia prawa transformacji składowych podczas zmiany układu współrzędnych).

Rys. 9-31



201Dochodzimy więc do wniosku, że dla kalcytu indykatrysa ma kształt elipsoidy obrotowej, ponieważ n^ = n2» Przyjęto oznaczenian3 » ne, n1 = n2 = nQ. (9.62)Każdy, z wyjątkiem jednego, przekrój centralny takiej bryły jest elipsą (rys. 9-31). Rozważmy na przykład przekrój EBGD; półoslami tej elipsy są OE i OB. Odpowiadają im współczynniki załamania światła N oraz nQ, przy czym ng 4 N 4nQ> Zauważmy, iż n0 musi byó jedną z półosi każdego przekroju centralnego indykatrysy na rys. 9-31, ponie­waż ma ona symetrię obrotową. Wobec tego płytka wycięta zkalcytu pro­stopadle do osi 0^ jest optycznie izotropowa (rys. 9-32a), natomiast

wycięta równolegle do 0^ wykazuje maksymalną anizotropię optyczną (rys. 9-32b). Obie osie każdego przekroju są jedynymi dopuszczalnymi kierun­kami drgań wektora E fali elektromagnetycznej, której wektor falowy k jest skierowany wzdłuż normalnej do przekroju. Jeśli więc rozważamy przekrój EBGD, to w krysztale mogą się rozchodzić tylko dwie fale o wektorze falowym k: dla jednej z nich wektor E musi być równoległy do OE, dla drugiej E || OB. Przy innej orientacji wektora E fali pada­jącej musi się ona rozszczepić wewnątrz kryształu na dwa promienie, których kierunki drgań spełniają ten warunek (rys. 9-30b). Z tego po­wodu kalcyt i inne kryształy, wykazujące optyczną anizotropię, są na­zywane kryształami dwójłomnymi. Jedynie fala, której wektor k ||C^ nie ulega podwójnemu załamaniu, ponieważ przekrój prostopadły do Cj jest kołowy; orientacja wektora E fali może być w tym przypadku dowolna.Jeden z dwu promieni w kalcycie ma szybkość stałą, c/nQ,niezależ­ną od wyboru kierunku wektora k względem osi C^; promień ten ozna-
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drugiego promienia, o/N, zmienia się zależnie od nachylenia k wzglę-cza się zwykle przez o i nazywa zwyczajnym (ordinaire). Prędkość

Kryształów kalcytu używa się do budowy pryzmatów, dostarczających promienia spolaryzowanego. Sposobów wykonania pryzmatu jest kilka, lecz cel stale ten sam: korzystając z dużej dwójłomności tego krysz­tału (ng = 1,486, nQ » 1,658) dąży się do uzyskania dwóch wiązek spo­laryzowanych, możliwie silnie rozdzielonych przestrzennie, a następ­nie usuwa się jedną z nich przez odbicie. Najprostszym rozwiązaniem jest pryzmat Nicole'a, zwany krótko nikolem (rys. 9-33a). Naturalny romboedr szlifuje się nieco i przecina wzdłuż jednej przekątnej tak, by uzyskaó kąty podane na rys. 9-33a, a następnie skleja warstwą bal­samu kanadyjskiego. Współczynnik załamania światła warstwy balsamu ma wartość pośrednią między ng i nQ, wobec czego promień zwyczajny ulega całkowitemu odbiciu,promień nadzwy­czajny zaś przechodzi przez pryzmat z niewielkim równoległym przesunię­ciem. Kierunek drgań E promienia o- puszczającego pryzmat jest prosto­padły do kierunku wiązki i leży w płaszczyźnie P połowiącej rozwar­ty kąt przekroju poprzecznego niko- la (rys. 9-33b).Przypuśmy teraz, że mamy dwa ni­kole ustawione jeden za drugim,przy czym kierunki drgań E przepuszcza­nego przez nie promieniowania tworzą ze sobą kąt q> (rys. 9-34). Pro­mieniowanie niespolaryzowane biegnie prostopadle do płaszczyzny ry- sunku, a po przejściu przez pierwszy z nikoli, zwany polaryzatorem,



203fala jest spolaryzowana: kierunek drgań E jest równoległy do PP, amp­lituda zaś niech wynosi Aq. Promieniowanie o takim kierunku polaryza­cji nie może przejść przez drugi z nikoli, zwany analizatorem, ponie­waż dopuszczalny przezeń kierunek drgań równoległy jest do AA, Ampli­tudę Aq możemy jednak rozłożyć na dwie składowe: Ay, równoległą do AA i Ax, prostopadłą do AA. Amplituda fali zatem, która przejdzie przezanalizator wynosi A = A cos <₽ a jej natężenie7 2I = Io cos <p , (9.63)jest proporcjonalne do kwadratu cosinusa kąta zawartego między kierun­kami drgań obu nikoli. Związek (9.63) jest znany pod nazwą prawa Ma- lusaj warto zauważyć, iż IQ jest natężeniem wiązki opuszczającej po- laryzator - jest ono w przybliżeniu o połowę mniejsze od natężenia wiązki padającej. Ponadto, jeżeli <p = 90°, to I = Oj taki układ niko­li nie przepuszcza promieniowania i jest nazywany układem skrzyżowa­nym. Ma on ważne zastosowania diagnostyczne, ponieważ pozwala odróż­nić płytki wykonane z materiałów dwójłomnych od płytek izotropowych.Niech między dwoma skrzyżowanymi nikolami znajduje się płytka z materiału dwójłomnego; n1 i n2 są dopuszczalnymi przez nią kierunka­mi drgań (rys. 9-35). Rozkład amplitud jest przedstawiony na rys.9-36. Amplituda Aq fali o kierunku drgań PP może rozchodzić się w krysz-

Rys. 9-35
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Rys. 9-36tale jako fala o kierunku drgań n^ i amplitudzie OB = AQ coa <p. Ana­lizator przepuszcza tylko składową równąOD = OB sin cp = Ao sincpcoscp. Z drugiej strony wzdłuż kierunku n2 przechodzi amplituda OC » = Aq sin cp, z której analizator przepuszcza amplitudę OE = OC cos^cp^< 3 Aq sin co cos cp. Wobec tego, przez analizator przechodzi OD + OC = = 2Aq sin cp cos cp = Ao sin 2cp, czyliI = Io sin2 2cp. (9.64)Widzimy zatem, że ustawienie płytki z materiału dwójłomnego w ta­ki sposób, by jeden z jej kierunków głównych (np. n^) był równoległy do kierunku głównego polaryzatora ( cp= 0), nie zmienia ciemnego pola widzenia dla układu skrzyżowanych nikoli. Znalezienie takiego położe­nia, zwanego kierunkiem ekstynkcji, jest ważne w badaniach optycznych własności płytek. Drugie takie położenie występuje gdy cp = 90°. Obro­towi płytki wokół jej normalnej o kąt cp = 45° odpowiada maksymalne rozjaśnienie pola widzenia; położenia równoważne powtarzają się 00 90°. W takim razie obrotowi płytki wokół jej normalnej o 36O0 towa­rzyszy czterokrotne maksymalne rozjaśnienie pola widzenia oraz czterokrotne jego zaciemnienie. W pośrednich położeniach płytki natę­żenie promieniowania przepuszczanego przez układ podaje wyrażenie (9.64). Jeżeli między skrzyżowane nikole wstawimy płytkę z materiału izotropowego, to pole widzenia zawsze będzie ciemne; omówione tu zja­wiska są więc podstawą do rozróżnienia obu typów materiałów.



205Rozjaśnienie pola widzenia występuje zgodnie z (9.64) niezależnie od wartości różnicy (n^ - ng), zwanej dwójłomnością - pojawia się tak­że wtedy, gdy dwójłomność materiału jeat niewielka. Stanowi to pod­stawę do rozpoznania tzw. dwójłomności wymuszonej, pojawiającej się w przezroczystym i izotropowym materiale pod wpływem czynników zewnętrz­nych. Należą do nich wszelkiego rodzaju naprężenia, wytwarzane czy to przez działanie sił przyłożonych z zewnątrz, czy np. na skutek nie­jednorodności ostygania szklanych elementów aparatury. Układ "skrzy­żowanych nikoli", umożliwiający obserwowanie występowania naprężeń w dużych elementach aparatury można wykonaó z polaroidów o dużych roz­miarach. 9,9. Oddziaływanie promieniowania z materiąW rozdziale tym zajmiemy się opisem niektórych zjawisk fizycznych, towarzyszących przechodzeniu wiązki promieniowania elektromagnetycz­nego przez ciało materialne, przez które będziemy rozumieć jednorodną ciecz lub ciało stałe. Wiązka promieniowania monochromatycznego o dłu­gości fali A. i natężeniu ulega częściowemu odbiciu od powierzchni ciała (natężenie Ir), częściowej absorpcji w jego wnętrzu (natężenie Ia) 1 częściowemu rozproszeniu (natężenie Ig). Jeśli przez ozna­czymy natężenie promieniowania przepuszczanego przez próbkę o skoń­czonej grubości, to bilans energetyczny dla wiązki promieniowania przedstawia się następująco*1 ~ = *0 = + Ja + (9.65)XX U U cl uRóżnica między natężeniem wiązki padającej i odbitej odpowiada tej części wiązki, która wnika do wnętrza ciała - oznaczać ją będziemy przez IQ. Natężenie wiązki rozproszonej przez fazę chemicznie i fi­zycznie jednorodną ma znikomy, aczkolwiek bardzo ważny udział w (9.65)i zjawiskami rozproszenia nie będziemy się tu jednak zajmowali. Opis ich można znaleźć w podręcznikach chemii fizycznej lub analizy instrumentalnej.Absorpcja promieniowania monochromatycznego zachodzi w całej ma­sie próbki i powoduje, że natężenie wiązki maleje w miarę przechodze­nia przez substancję. Względna strata natężenia - dl/I po przejściu przez warstwę o grubości dx (rys. 9-37) jest proporcjonalna do gru­bości tej warstwy - ^ = k • dx. (9.66)Wyrażenie (9.66) nosi nazwę prawa Lamberta i stanowi podstawę do—1 ilościowego opisu zjawiska absorpcji. Jednostką stałej k jest m ;
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Rys. 9-37

przejściu przez warstwęLamberta w postaci

wartość k zależy od długości fali A. użytego do pomiaru promienio­wania.Całka (9.66) ma postaćIn I = -k • x + oonst,przy czym wartość stałej całkowania wynika z warunków: d = 0 Jln IQ = = oonst. Jeżeli przez 1^. oznaczymy natężenie promieniowania po materiału o grubości d, to otrzymamy prawo
In = - k • d (9.67)xoIt = Io e’kd. (9.68)

u Ulogarytm naturalny dziesiętnym otrzymamy2,303 log = -kd. xoWielkość jlog yŁ = E (9.69)

lub
Zastępując w (9.67)

nosi nazwę ekstynkcji, natomiast
• 100 = D . (9.70)■^ozwana jest przepuszczalnością (w procentach) próbki. Obie wielkości są często spotykane w opisie własności próbek. Prócz stałej absorpcji k, używa się też wielkości bezwymiarowej h , zwanej indeksem absorp­cji» k.xh « (9.71)spotykanej szczególnie często w fizyce metali.



207Stała absorpcji k sależy od długości fali promieniowania. Każda substancja absorbuje w jakimś zakresie widma promieniowania elektro­magnetycznego; jeśli jest bezbarwna w zakresie widzialnym, to z pew­nością absorbuje w nadfiolecie i podczerwieni. Zależność k (A) sta­nowi ważną cechę indywidualną każdej substancji chemicznie i fizycz­nie jednorodnej, pozwalającą na jej zidentyfikowanie pod względem ja­kościowym i ilościowym. Postępowanie oparte na tej zasadzie nosi naz­wę analizy spektrofotometrycznej i jest jednym z problemów silnie roz­winiętej dziś gałęzi analizy instrumentalnej, noszącej nazwę spektro­fotometrii absorpcyjnej.Natężenie promieniowania odbitego od zupełnie gładkiej powierzch­ni ciała zależy nie tylko od fizycznych własności materiału (współ­czynnik załamania światła, indeks absorpcji), lecz i od stanu polary­zacji padającej fali elektromagnetycznej. Pełny opis tych zjawisk po- daje teoria Fresnela; obecnie zajmiemy się tylko najprostszym przy­padkiem odbicia, gdy wiązka pada prostopadle. Wzory opisujące taki przypadek nie zawierają czynników trygonometrycznych.Współczynnikiem odbicia nazywamy stosunek natężenia wiązki odbi­tej I , do natężenia wiązki padającejXrR = (9.72)1iwyrażany niekiedy w procentach. Jeśli materiał odbijający silnie po­chłania promieniowanie, np. metal, wówczas współczynnik odbicia Rm granicy faz metal/próżnia (również metal/powietrze) wyraża się nastę­pującym wzorem Rm m (n + i)2 + H277 (9.73)Wartość współczynnika odbicia bardzo silnie zależy od udziału dru­giego członu sumy w liczniku i mianowniku. Na przykład dla miedzi, jeśli długość fali A = 589 nm mamy n = 0,62, k ■ 5,61«1O^ cm"\jest to przypadek silnej absorpcji, w związku z czym indeks absorpcji u = - 2,63 jest również duży. Podstawienie tych danych do (9.73) prowadzi do współczynnika odbicia = 0,741,odbija promieniowanie A » metalu jest więc dlatego taksilne, że metal silnie pochłania promieniowanie. W zakresie silnego pochłaniania współczynnik załamania światła może się wyrażać liczbą mniejszą od jedności.

O.#2* 2.67 1,622 + 2,632czyli wypolerowana powierzchnia miedzi = 589 nm w 74,1%. Odbicie od powierzchni



208 Współczynnik odbicia materiałów nieprzewodzących, Rd, tym różni się od Rm, że zwykle h możemy zaniedbać. Stała absorpcji dielektry­ków bezbarwnych, np. szkła lub wody jest niewielka: w zakresie długo­ści fal od 300 nm (bliski nadfiolet) do 1000 nm (bliska podczerwień) stała absorpcji k nie przekracza wartości 10 cm . Wobec tego śred­nia wartość <n> = (lO"6,5*1O-5= 5ł2*10-5 może być zaniedbana wo­bec (n - 1)2. W takim razie dla dielektryka, bezbarwnego w interesu­jącym nas zakresie spektralnym, współczynnik odbicia wyniesie
Rd =

(n - 1 )2 (n + 1 / ’ (9.74)Dla granicy faz szkło/powietrze n = 1,60 oraz Rd = 0,053, czyli straty w natężeniu wiązki, ulegającej odbiciu, wynoszą w tym przypad­ku 5%. Straty te, niewielkie dla jednej granicy faz, ulegają zwielo­krotnieniu jeśli w jakimś złożonym układzie optycznym występuje kilka elementów, z których każdy odbija pro­mieniowanie. Prosta sytuacja dla płyt­ki płaskorównoległej jest przedstawio­na na rys. 9-38. Natężenie promienia odbitego od granicy faz 1/2 wynosi ■^R 3 •'■i^d’ wobeo czeS° do wnętrza ma­teriału wnika wiązka o natężeniu = = 1^(1 - Rd). Odbicie następuje rów­nież na granicy faz 2/1, przy czym dla niej współczynnik odbicia oKys. 9-38 Rd ’ + 1^ (1 + n2l)2 R<ł
jest taki sam, jak dla granicy faz 1/2. W obliczeniach użyliśmy współ­czynnika załamania dla przypadku przejścia promieniowania od ośrodka optycznie gęstszego do rzadszego: n12 = 1/n21. W takim razie natęże­nie wiązki odbitej od drugiej granicy faz wyniesie = I^»Rd, a na­tężenie wiązki przepuszczonejIt - I±(1 - Rd)(l - Rd) S 1^1 - 2Rd). (9.75)Uwzględnienie odbicia od obu granic faz prowadzi do wniosku, że straty w natężeniu wiązki ulegają w przybliżeniu podwojeniu. W ukła­dach optycznych są to straty niepożądane, ponieważ zmniejszają ich jasność. W celu obniżenia strat pokrywa się powierzchnie szklane cień- 



209ką warstwą półprzewodnika (Si.Si-O) przez naparowanie jej w próżni ("niebieska optyka"); dla takiej warstwy współczynnik załamania świa­tła, a więc i współczynnik odbicia, jest mniejszy niż w dielektryku.Innym sposobem oddziaływania promieniowania z materią jest wzbu­dzenie drgań elektronów i jąder elementów strukturalnych ciała prze­zroczystego, przez które przechodzi fala elektromagnetyczna. Wymusze­nie drgań prowadzi bezpośrednio do wyjaśnienia tej własności dielek­tryków, którą nazywamy dyspersją; dyspersja jest bowiem zależnością współczynnika załamania światła, n (x), od długości fali, przy której został zmierzony. Zajmiemy się przy tym tak zwaną klasyczną teorią dyspersji; nowsza teoria, kwantowa, daje bardziej ścisły opis zjawisk; ale jakościowe wyniki teorii klasycznej, znacznie prostszej, nie ule­gają większym zmianom.Przyjmiemy zatem następujący model dyspersji. Na ciało w przybli­żeniu przezroczyste, tj. słabo absorbujące, pada monochromatyczna fa­la elektromagnetyczna, która niesie z sobą szybkozmienne pole elek­tryczne E = Eq sinwt; w jest częstością kątową zmian wektora E. Pod wpływem zmiennego pola elektrycznego zachodzi wymuszenie drgań elek­tronów, przede wszystkim najsłabiej związanych z elementem struktural­nym, czyli tak zwanych elektronów optycznych. Przy małej częstości drgań fali można pobudzić do drgań jądra atomów, a przy jeszcze mniej­szej - całe cząsteczki. Każdy element (elektron lub jądro) jest zwią­zany z położeniem równowagi za pomocą liniowej siły sprężystej,której współczynnik odpowiada sposobowi związania tego elementu z otoczeniem. W ten sposób możemy rozumieć ciało stałe jako zbiór oscylatorów,wyko­nujących drgania wymuszone pod wpływem padającej fali elektromagnety­cznej. Zbiorowi oscylatorów odpowiada również pewien zbiór częstości drgań własnych; oznaczać je będziemy przez <doi dla oscylatorów "ty­pu i", tj. dla wszystkich oscylatorów, posiadających tę samą stałą siłową k.Poza tym niech x^, m^ oraz e^ oznaczają odpowiednio wychyle­nie z położenia równowagi, masę oraz ładunek oscylatora. Przy tych o- znaczeniach równanie ruchu oscylatora "i" ma postaćm.x. + k, x. = e,E sinwt + — e.P,. (9.76) ii ii lo i e i iW równaniu tym są zawarte dwa uproszczenia:i. zaniedbaliśmy tłumienie oscylatorów; można to uczynić wtedy, gdy absorpcja promieniowania w dielektryku jest bardzo niewielka.Jeś­li jednak napiszemy równanie ruchu w postaci (9.76) należy od razu li­czyć się z tym, że wartość amplitudy w punkcie rezonansowym będzie 



210nieskończenie duża. Jest to wynik fałszywy z fizycznego punktu widze­nia - odpowiednią poprawkę uwzględniły w końcowej fazie rachunku.ii. drugi składnik prawej strony przedstawia siłę, wynikającą z polaryzacyjnego działania szczeliny mikroskopowej (por.rozdz. 7.3.3). Pisząc go w tej postaci przyjmujemy, że dielektryk ma własności izo­tropowe.P^ jest udziałem oscylatorów "i" w ogólnej polaryzacji ośrodka. Ponieważ liczbowo P^ równe jest momentowi dipolowemu jednostki ob­jętości, możemy więc napisaćP± = N± e± x± . N± «i E, (9.77)przy czym Ni oznacza liczbę oscylatorów i w jednostce objętości,zaś eixi ^es'i: wymuszonym (wzbudzonym) momentem dipolowym oscylatora.Zgo­dnie z wzorem (6.8) wielkość indukowanego momentu dipolowego jest pro­porcjonalna do natężenia pola elektrycznego, w tym przypadku pola E fali elektromagnetycznej} jest polaryzowalnością (izotropową) os­cylatora. Ogólny wektor polaryzacji w połączeniu z (7.20) otrzymamy e- 1 _ n2 - 1 e+ 2 n2 + 2
ośrodka będzie równy E Z. N. a 4}i 1 1—— 2 N< (9.78)Wróćmy obecnie do równania różniczkowego (9.76). Podstawienie do niego wyrażenia (9.77) na oraz skorzystanie z równości k^^m^w^ prowadzi do równania e. e2x. + w2 x. = -i E + r- 1 ' N. X., (9.79)i oi i 3 £ omi 1 iRozwiązania (9.79) będziemy poszukiwać w postacixi “ Ai 3in (9.30)gdzie oznacza amplitudę drgań wymuszonych oscylatora. Tym samym interesujemy się amplitudą ruchu o tej samej częstości, co częstość siły wymuszającej. Ponieważ założyliśmy brak tłumienia, możemy więc pominąć obecność stałej fazowej w (9.30)} stała ta odpowiada przesu­nięciu fazowemu między siłą wymuszającą a "odpowiedzią" układu - jej uwzględnienie znacznie komplikuje rachunki.Podstawienie rozwiązania (9.80) do (9.79) i uporządkowanie wyra­zów prowadzi do wyrażenia na przesunięcie x^ oscylatora względem po­łożenia równowagi ex = --------- 6i—------  E. (9.81) 2 2 el ®i“oi - <*> " 3^



211Widzimy, że częstość własna oscylatorów we wnętrzu ciała stałego,0)^, jest inna, niż w próżni,2 “i “oi
2=“ oi - 3£q mi (9.82)W szczególności, w ciele stałym częstość ta ulega obniżeniu, za­leżnemu od koncentracji trzymujemy N^ oscylatorów. Po uwzględnieniu (9.82) o-

ei/®i
xi = -g E»

Wj. - wa na podstawie (9.78)
x? - 1 1 Vn2 + 2 3 eQ * w2 - w2 ’ (9.83)

Wzór (9.83) stanowi podstawową zależność teorii dyspersji: opisu­je on zmiany współczynnika załamania światła w zależności od częstoś­ci w padającej fali elektromagnetycznej. Ze względu na poczynione u- proszczenia w teorii, polegające na zaniedbaniu absorpcji i związane­go ż nią tłumienia oscylatorów, zgodności wzoru (9.83) z doświadcze­niem możemy oczekiwać w obszarach spektralnych, dostatecznie oddalo­nych od częstości absorpcyjnych w.. Uwzględnienie absorpcji możliwe 1 2jest w sposób ścisły jedynie dla gazów; dla nich n = 1, n +2^3, n2 - 1 = 2(n - 1). Nie wchodząc w szczegóły rachunku podamy jedynie, że wzór (9.83) przybiera wówczas postać
n - 1 2 2 21 v N^ w i - w7— -- 7~2-- ’2 a o i mi “ w ) + 1 w (9.84)

w której r jest współczynnikiem,związanym ze stałą tłumienia oscyla­torów, a jednocześnie ze stałą absorpcji. Wykres funkcji (9.84) jest przedstawiony na rys. 9-39 dla jednego składnika sumy, odpowiadające­go częstości absorpcji u; przy tej częstości obserwuje się linię absorpcyjną, k(w/m..|). Gdy częstość w promieniowania wzrasta, rośnie też współczynnik załamania światła materiału - część AB krzywej (tak­że EF) odpowiada zakresowi dyspersji normalnej materiału. Po przejś­ciu przez maksimum, współczynnik załamania światła gwałtownie spada: część CD krzywej odpowiada zakresowi dyspersji anomalnej. Niezależnie od rodzaju materiału, dyspersja anomalna występuje zawsze na obszarze pasma absorpcyjnego. W uproszczonej teorii (równanie 9.83) otrzymuje­my w tym miejscu nieciągłość krzywej dyspersji. Widzimy zatem,że zja-
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wiaka absorpcji i dyspersji są zjawiskami sprzężonymi: pojawienie się jednego warunkuje wystąpienie drugiego.Wróćmy obecnie do równania (9.83) i dokonajmy porównania z danymi doświadczalnymi dla np. kryształu chlorku sodowego. Kryształ NaCl po­siada złożone pasmo absorpcyjne w dalekim nadfiolecie, przy czym śro­dek pasma przypada gdy wartość X wynosi 1050 W absorpcji uczes­tniczą cztery elektrony (po dwa na każdy rodzaj jonów) tak, że kon­centracja oscylatorów wynosi- = (4 NQ* P )/M = 8,90-1023 m"'>, gdzie Nq jest liczbą Avogadry, p gęstością, a M masą cząsteczkową NaCl. Poza tym e2/m = 2,81*10“S C2/kg dla elektronów. W wyniku podstawie­nia tych danych otrzymujemy funkcję4^  n + 2 8,122 - (0,3A)przy czym x jest wyrażone w mikronach. Wyniki obliczeń przedstawiają się następującoX (w g ) 0,3 0,4 0,5 0,7 1 2 3n obliczone 1,604 1,562 1,544 1,529 1,522 1,517 1,516n doświadczalne 1,607 1,568 1,552 1,539 1,532 1,527 1,519
Widzimy, iż nawet przy daleko idących uproszczeniach uzyskujemy dobre wyniki, obarczone błędem nie większym od 0,5%. Można uzyskać jeszcze większą dokładność przez uwzględnienie dalszych członów dys­persyjnych. Taki sposób liczenia jest jednak dość pracochłonny i wy­maga znajomości stałych, nieraz niedostępnych. Dlatego do analitycz­



213nego przedstawienia krzywej dyaperaji normalnej korzystamy w praktyce z funkcji n(x), zapisanej w postaci wielomianu. Możemy ją uzyskać w następujący sposób: n2 + 2, a także n + 1, zmienia się znacznie sła­biej z ш , niż n - 1. Wobec tego zamiast (9.83) możemy napisaćn = a + V --------i------ x , 1 - (A^A)2gdzie a^ są pewnymi stałymi, A* długościami fal odpowiadającymi maksimom absorpcji. Ponieważ A A < 1, możemy więc każdy człon dys­persyjny rozwinąć w szereg. Po wykonaniu rachunków otrzymamyn(A) = Ao + + ... • (9.85)
Л. ЛFunkcję (9.85) przybliżamy do wielomianu, zachowując liczbę wyra­zów zależnie od potrzebnej dokładności} stałe A^ traktujemy jako em­piryczne, tzn. aby je wyznaczyć trzeba znać odpowiednią liczbę par (A, n). Wyrażenie (9.85) nosi nazwę wzoru Cauchy^go.Zauważmy w końcu, że jeśli w (9.83) ustalimy щ , czyli dokonamy pomiaru n dla określonej długości fali, to prawa strona jest war­tością stałą. Wydziela się z niej zwykle gęstość substancji, wchodzą­cą w wyrażenie dla koncentracji oscylatorów; w takim razie wyrażenie2R = "a ~ 1 • (9.86)n + 2 pzwane refrakcją właściwą związku chemicznego jest wartością stałą.War­tość R nie zależy od temperatury, jeśli cząsteczki związku nie po­siadają trwałego momentu dipolowego, nie zależy wówczas również od stanu skupienia. Refrakcja jest wielkością ważną dla chemii fizycznej i tam też zapozna się Czytelnik z dalszymi jej własnościami.9.10. Promieniowanie rentgenowskieŹródłem promieniowania rentgenowskiego jest lampa, przedstawiona na rys. 9-40. W bańce szklanej, bardzo starannie ewakuowanej, są u- mieszczone dwie elektrody: katoda i anoda. Katoda jest wykonana z dru­tu wolframowego i po rozgrzaniu prądem elektrycznym do około 2500 °C służy jako źródło elektronów. Anoda jest elektrodą masywną, ma naluto- waną nakładkę z badanego metalu oraz układ kanałów do przepływu wody chłodzącej. Między obie elektrody przykłada się różnicę potencjałów rzędu 10 do 100 kV; ponieważ przez lampę płynie prąd elektronowy o natężeniu rzędu kilkudziesięciu miliamperów, jej moc nominalna wynosi



214około 1 W. Z mocy tej tylko 1-2 procent zamienia się na użyteczne dla nas promieniowanie, reszta wydziela się w postaci ciepła, które musi być odprowadzone»

zki

10- 100 kM

Rys. 9-40

H20

Promieniowanie rentgenowskie wytwarza się w miejscu uderzenia wią- szybkich elektronów w materiał anody. Mechanizm emisji może byódwojaki i dlatego wyróżnia się dwa typy promieniowania.i. Jeżeli energia jest dostateczna, to niektóre z rozpędzonych elektronów wybijają z atomów metalu elektrony znajdujące się blisko jądra; mogą to byó elektrony należące do warstwy K, L . Pojawiają się w ten sposób miejsca puste, które mogą byó zapełnione elektronami z dalszych warstw atomu, w połączeniu z emisją promieniowania krótkofa­lowego. Przejścia elektronów z warstwy L do warstwy K oznacza sięsymbolem La, itd. misja ma by linii
Ka, przejścia M -» K symbolem , przejścia M L symbolem Ze względu na dyskretny charakter energii poziomów atomu e- charakter kwantowy i prowadzi do powstania niewielkiej licz- emisyjnych, z których linie K a są najsilniejsze i mają naj-większe znaczenie praktyczne. Zbiór tych linii nosi nazwę promienio­wania charakterystycznego, ponieważ, zgodnie z prawem Moseleya, ich częstość zależy od liczby porządkowej Z pierwiastka, tworzącego ano­dę. v = a (Z - b) (9.87)V jest częstością linii emisyjnej, zaś a i b są stałymi.Jest jasne, że warunkiem pojawienia się linii promieniowania cha­rakterystycznego, np. linii CuKa, energia elektronu eU0 rozpędzonego napięciem UQ musi być co najmniej równa pracy usunięcia elek­tronu z warstwy K; zatem eUQ (9.88)



215Uo nosi nazwę napięcia wzbudzenia określonej linii promieniowania cha­rakterystycznego, np. dla miedzi napięciem progowym dla linii K jest UQ = 8,9 kV.ii. Zderzenie większości elektronów z materiałem anody powoduje gwałtowne zmniejszenie ioh prędkości. W myśl elektrodynamiki klasycz­nej, elektron poruszający się ruchem opóźnionym musi emitować promie­niowanie elektromagnetyczne. W ten sposób powstaje drugi rodzaj emis­ji, który opowiada promieniowaniu hamowania o widmie ciągłym.Przyczy­ną ciągłego charakteru emisji jest zarówno różna szybkość tracenia energii jak i to, że elektrony mogą mieć różne energie kinetyczne.Nie­mniej jednak istnieje pewna maksymalna wartość energii, jaką może po­siadać elektron, zależna od wartości doprowadzonego do lampy napięcia Um. Jeśli cała energia eUm zostaje zużyta na emisję promieniowania, to powstającemu w takim procesie kwantowi odpowiada maksymalna częstość vmaks minimalna długość fali A mine U = hv , = . (9.89) m maks A^Po podstawieniu stałych otrzymamy- ujttj • (9-90)Widzimy z tego, że jeżeli różnica potencjałów wynosi na lampie 50 kV, to widmo ciągłe promieniowania musi mieć ostrą granicę krótko­falową przy długości fali A mln = 0,248 2, niezależnie od materiału anody} fale o długości A <A nie mogą być emitowane.Te cechy wid-

Rys. 9-41



216ma ciągłego oraz charakterystycznego są przedstawione schematycznie na rys. 9-41. Na tym samym rysunku został linią przerywaną naniesiony wykres stałej absorpcji kZ-1(x) cienkiej folii metalowej, wykonanej z pierwiastka, którego liczba porządkowa jest o jedność mniejsza od li­czby Z materiału anody. Cechą charakterystyczną takiego "filtru" jest to, że jego krawędź absorpcji przypada między liniami i Ka pierwiastka emitującego. Wobec tego praktycznie całe natężenie linii Kp oraz bardzo znaczna część promieniowania ciągłego zostaje pochło­nięta przez folię, a linia Ka zostaje przepuszczona, również z pew­nym osłabieniem (do 50%). Jest to najprostszy sposób otrzymania pro­mieniowania monochromatycznego.Promieniowanie rentgenowskie jest falą elektromagnetyczną o dłu­gości fali leżącej (umownie) w zakresie 0,1 do 200 £. Jednakże długi czas po odkryciu Rdntgena brakowało bezpośredniego dowodu falowej na­tury promieniowania, ponieważ nie udało się doprowadzić do interfe­rencji używając najlepszych nawet siatek dyfrakcyjnych. Jeśli przyj- miemy X= 2 i (o czym wówczas nie wiedziano), to kąt ugięcia dla mak­simum pierwszego rzędu przy siatce, zawierającej 2000 linii na mili­metr, wyniesie: sin q> = 2*1O~3/5*1O-5 = 4«1O“4, = 0,023° = 1,4x;nie można zaobserwować prążka przy tak małym kącie ugięcia.

Rys. 9-42Właściwą metodę wykazania interferencji zaproponował von Laue.Me­toda ta jest oparta na wykorzystaniu regularnej budowy kryształów: atomy lub jony.tworzące periodyczną sieć przestrzenną kryształu, two-



217rzą tym samym określone zbiory płaszczyzn sieciowych. Odległość są­siednich płaszczyzn, należących do jednego zbioru jest jednakowa i powinna odpowiadać warunkom potrzebnym do uzyskania obrazu interfe­rencyjnego promieniowania rentgenowskiego.Rozważmy płaszczyznę sieciową prostej struktury, jaką ma na przy­kład kryształ chlorku potasu (rys. 9-42). Występują w niej na prze­mian jony dodatnie i ujemne; możemy na tej płaszczyźnie wyróżnić kil­ka kierunków równoległych, stanowiących ślady przecięcia płaszczyzn sieciowych w strukturze trójwymiarowej. Zbiór prostych, oznaczonych liczbą 1, odpowiada płaszczyznom prostopadłym do płaszczyzny rysunku i obsadzonym jonami różnoimiennymi,d1 jest odległością dwóch sąsiednich płaszczyzn. Zbiory prostych 2 i 3 odpowiadają płaszczyznom obsadzonym przez jony jednoimienne; ich odległości wynoszą odpowiednio d2 i d^ i różnią się od siebie. Widzimy więc, iż periodyczną strukturę kryszta­łu możemy traktować jako zbiór przestrzennych siatek dyfrakcyjnych - na tym właśnie opierała się sugestia Lauego.

Odpowiednie doświadczenie, przedsta­wione na rys. 9-43, wykonali Friedrich i Knipping. Promieniowanie lampy, zawiera­jące składową ciągłą i charakterystyczną widma, przechodzi przez mały otworek w przesłonie P i pada na cienką płytkę krystaliczną K. Obraz dyfrakcyjny otrzy­muje się na kliszy fotograficznej Fs o- prócz śladu wiązki pierwotnej 00," w póź­niejszych doświadczeniach zasłanianej przed kliszą, pojawia się wiele śladów wiązek ugiętych w postaci zaczernień,zwa­nych refleksami.Rozkład refleksów w płyt- Rys. 9-44



218oe KOI jest pokazany schematycznie na rys. 9-44. Widzimy, iż symetria rozkładu zaczernień odpowiada czterokrotnej osi symetrii, prostopad­łej do płaszczyzny rysunku, a jednocześnie prostopadłej do płytki kry­stalicznej. Jest to ogólna cecha tzw. metody Lauego: zdjęcie wykonu­je się przy nieruchomym krysztale i promieniowaniu o widmie ciągłym. Uzyskany rentgenogram posiada symetrię, która zawiera dwie informac­je: informację o symetrii kryształu i informację o orientacji płytki względem kierunku wiązki pierwotnej.

Rys. 9-45Doświadczenie Friedricha i Knippinga było bezpośrednim dowodem słuszności hipotezy Lauego, lecz nie dawało możliwości pomiaru długo­ści fali użytego promieniowania. Zasadniczą przeszkodą jest fakt, że do zdjęó tego typu używa się widma ciągłego. Niedostatki te zostały usunięte w doświadczeniu Braggów (L. Bragg i W. Bragg), którzy posłu­żyli się monochromatyczną wiązką promieniowania charakterystycznego. Schemat doświadczenia jest pokazany na rys. 9-45. Promieniowanie lam­py przechodzi przez dwie przesłony P^ i ?2 w celu otrzymania wiązki ściśle równoległej, a następnie przez filtr M, obcinający widmo cią­głe. Monochromatyczna wiązka pada na kryształ K, przedstawiony jako zbiór płaszczyzn równoległych, a po odbiciu wchodzi do detektora,któ­rym jest komora jonizacyjna J. Z chwilą pojawienia się wiązki odbi­tej w komorze płynie prąd, wskazywany przez elektrometr E. Dla pro­mieniowania rentgenowskiego kąt padania mierzy się inaczej, niż w op­tyce: jest to kąt zawarty między płaszczyzną próbki a kierunkiem wią­zki pierwotnej.



219Wiązka odbita powstaje w ten sposób, że padające promieniowanie ulega rozproszeniu we wszystkich kierunkach przez elektrony, wchodzą­ce w skład elementów strukturalnych kryształu; jądra atomowe rozpra­szają promieniowanie nadzwyczaj słabo. W wystarczającym dla nas u- proszczeniu możemy stwierdzić zgodnie z zasadą Huygensa,iż każdy atom (jon) kryształu możemy traktować jako źródło fali cząstkowej, kulis­tej (rys. 9-46). Powstaniem wiązki odbitej rządzą dwa prawa Braggów:

i. Pale cząstkowe wygaszają się we wszystkich kierunkach, z wyjąt­kiem kierunku leżącego w płaszczyźnie odbicia, w którym mogą się wzmacniać.ii. Wzmocnienie wiązki odbitej zachodzi wówczas, gdy różnica dróg promieni odbitych przez sąsiednie płaszczyzny sieciowe jest równa cał­kowitej wielokrotności długości fali. Na podstawie rysunku 9-47 mamy A n d sin 6, zatem 2 d sin 0 = n • X, (9.91)

Rys/ 9-47



220 Warunek (9.91) określa kąt 0 , zwany często kątem Bragga,dla któ­rego możemy otrzymać wiązkę odbitą od zbioru płaszczyzn sieciowych, których wzajemna odległość wynosi d. Jednocześnie równanie to stano­wi podstawę interpretacyjną powstawania refleksów.W tym stanie rzeczy mamy związek między dwiema podstawowymi wiel­kościami, jednak obie są nam jeszcze nie znane. Okazuje się, że d dlaprostego kryształu, np. KC1, można wyznaczyć niezależnie w sposób na­stępujący. Sześcian elementarny kryształu KOI jest przedstawiony na rys. 9-48 - na każdym narożu znajduje się na przemian jon K+ lub Cl~ Sześcian zawiera zatem 4 • g K+ + 4 * $ 01“ = = 2 KC1 cząsteczek i ma objętość V = d^. Z drugiej strony 1 mol KOI zawiera Nq cząste­czek KOI, gdzie Nq jest liczbą Avogadra i ma objętość Vmol = MKC1/p, gdzie MKG1 jest masą cząsteczkową KOI, zaśp gęstością krysz­tału. W takim razie
czyli do

2 do (9.92)
Po podstawieniu znanych wartości otrzymujemyd0 = 3,150 2.Jest to odległość między sąsiednimi płaszczyznami typu 1 na rys. 9-42; odległość dwóch identycznych płaszczyzn d = 2 dQ. Jeżeli uży­jemy promieniowania CuKa, to pierwsze silne odbicie obserwuje się dla 0 = 7,02°, stąd n = 1 orazCuK = 2d sin 0 - 1,540 2. aMonochromatyczne promieniowanie rentgenowskie o znanej długości fali może służyć do mierzenia nie znanych odległości między płaszczyz­nami w innych kryształach. Jest to jedno z zadań rentgenowskiej ana­lizy strukturalnej, której celem jest poznanie wewnętrznej budowy (struktury) kryształów. Zadanie to jest realizowane w dwóch etapach:i. Pomiar odległości między płaszczyznami kryształu oraz symetrii rozkładu refleksów umożliwia ustalenie rozmiarów i symetrii elementar­nego równoległościanu, zwanego komórką elementarną; periodyczne po­wtarzanie komórki elementarnej w kierunku trzech jej różnych krawędzi umożliwia zbudowanie charakterystycznej dla kryształu sieci prze­strzennej .



221ii. Pomiar natężenia refleksów prowadzi do ustalenia rozkładu ma­sy (położenia atomów) wewnątrz komórki elementarnej.Wśród innych zastosowań promieniowania rentgenowskiego należy wy­mienić badania diagnostyczne w medycynie, pozwalające wykryć obecność niektórych schorzeń, ciał obcych lub złamań kostnych. Poza tym pro­mieniowanie ma zastosowanie w defektoskopii, zajmującej się wykrywa­niem wad materiałów technologicznych i elementów budowy maszyn (pęk­nięcia odlewów, pęcherzyki powietrza, etc.).



10. DUALIZM KORPUSKULARNO-FALOWY10,1. Promieniowanie temperaturowe ciałPrawo KirchhoffaWszystkie ciała, których temperatura jest wyższa od 0 K, tracą energię pod postacią emitowanego promieniowania elektromagnetycznego. Jednocześnie pobierają energię promieniowania, emitowaną przez olała, znajdujące się w ich bezpośrednim otoczeniu. Zależnie od tego, ozy temperatura otoczenia jest wyższa, czy niższa od wybranego przez nas do obserwacji ciała, przeważa proces zyskiwania energii nad utratą lub odwrotnie. Jeśli ciało otrzymuje od ciał sąsiadujących dokładnie taką samą ilośó energii jaką traci wskutdjpromieniowania przez całą jego powierzchnię, to mówimy o promieniowaniu termicznie zrównoważonym. W takim przypadku własności emitowanego przez ciało promieniowania za­leżą od temperatury ciała, a nie zależą od sposobu dostarczania ener­gii na wyrównanie strat. Takie promieniowanie nazywamy temperaturowym.
Rę

-------+-------------------H------------------ —
o Rys. 10-1Energia jest emitowana przez rozgrzane ciało w postaci tzw. widma ciągłego; oznacza to, że każda długość fali, teoretycznie od zera do nieskończoności, występuje w widmie promieniowania, choó z różnym na­tężeniem. Moo promieniowania emitowana przez jednostkę powierzchni ciała w pełnym zakresie długości fal będziemy nazywać emisją energe­tyczną ciała Re, przy czym jednostką Re jest w/m2. Często interesuje nas moc, emitowana tylko w pewnym wąskim przedziale długości fal dx; energię tę oznaczać będziemy przez r(\) d A. Mamy oczywiście (rys.10-1)dRe = r(A) dA. (10.1)



223Wartość energii dRg zależy od dwóch czynników? od szerokości prze­działu dX i od jego położenia na skali długości fal. Zauważmy» że energia promieniowania o śoiśle określonej długości fali, tj. promie­niowania ściśle monochromatycznego wynosi zero, ponieważ dla takiego promieniowania dX « 0. Dlatego dRe określamy dla bardzo małego, ale różnego od zera przedziału długości fal} takie promieniowanie nie jest jednak ściśle monochromatyczne.Ponieważ [r(X)] ■ J/(s*m^) = w/nP, wielkość r(X) jest gęstością mocy promieniowania ciała rozgrzanego przypadającą na jednostkowy przedział długości fal i nosi nazwę zdolności emisyjnej.Z drugiej strony, jak wiemy, powierzchnia ciała absorbuje energię na nią padającą. Niech dE^p\x) oznacza energię padającą na element dS powierzchni ciała w zakresie długości fal od X do X + dx. Częśćtej energii ulegnie odbiciu, część ostatnią wielkość przez dE^a\x)i oraz ,dE a\x) dE^(x) ~
zostanie zaabsorbowana.Oznaczmy tę mamy oczywiście dE^a\x) $ dE p (x)
a(x) 1. (10.2)Ułamek energii zaabsorbowanej względem energii padającej w tym sa­mym przedziale długości fal X, X+ dX, jest oznaczany przez a(x) i nosi nazwę zdolności absorpcyjnej ciała. Zdolność absorpcyjna jest liczbą bezwymiarową, ale podobnie jak zdolność emisyjna jest funkcją długości fali X•

Rys. 10-2Obie stałe r(x) i a(x) nie są niezależne. Rozważmy następującą sytuację: mamy dwa ciała, A i B, umieszczone wewnątrz osłony nieprze­zroczystej dla promieniowania (rys. 10-2). Niech na początku będzie 
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f(X,T) (10.3)B

T0A> TqB, czy-'-^ początkowa temperatura A jest wyższa od temperatu­ry początkowej B; przyjmujemy ponadto, że r(\ )^ > r(\)B. Ciało A wy­syła zatem w przedziale X, X+ d\ większą moo promieniowania, niż B w tym samym przedziale. W takim razie A dostaje mniejszą porcję energii w ciągu 1 a niż samo wysyła; temperatura A musi maleć, zaś temperatura B rosnąć. Dzieje się to tak długo, aż zgodnie z prawami termodynamiki obie temperatury ulegną wyrównaniu. Ponieważ dalej obo­wiązuje > r(x)B, więc dla zachowania stałości temperatur musi być też a(\)A > a(A)B. Wynik ten jest treścią prawa promieniowania temperaturowego, podanego przez Kirchhoffa: stosunek zdolności emisyj­nej do absorpcyjnej nie zależy od natury ciała i dla wszystkich ciał jest taką samą funkcją długości fali i temperatury f(A.,T)r(x)] r(\) aU) JA a(\)
10»2. Prawa promieniowania ciała doskonale czarnegoSpośród różnych obiektów emitujących promieniowanie na szczególne wyróżnienie zasługują takie, które całkowicie pochłaniają padające na nie promieniowanie. Ciała takie nazywamy doskonale czarnymi; dla nich a(x) « 1 oraz r(A) = f(\,T), (10.4)czyli zdolność emisyjna ciała doskonale czarnego jest uniwersalną funkcją długości fali i temperatury. Każdy model eksperymentalny cia­ła doskonale czarnego będzie tu dobry, byle tylko spełniał warunek a(\) = 1; jeden z takich modeli jest przedstawiony na rys. 10-3. Cia­łem doskonale czarnym jest tu wnęka w dowolnym materiale, kontaktują­ca się z otoczeniem za pośrednictwem niewielkiego otworu. Blok mate­riału może być ogrzewany (elektrycznie) do potrzebnej temperatury T. Każdy promień przychodzący z zewnątrz ulega wielokrotnemu odbiciu,przy czym za każdym razem część energii zostaje pochłonięta tak, że w koń­cu cała energia padającego promienia zostanie zaabsorbowana.Otwór wy­syła promieniowanie, zależne jedynie od temperatury T bloku.Zależność r(A.), uzyskana dla ciała doskonale czarnego eksperymen­talnie, czyli rozkład spektralny zdolności emisyjnej,jest przedstawio­ny na rys. 10-4. Krzywa posiada dla każdej temperatury maksimum,któ­rego położenie, czyli długość fali w maksimum , zależy od tempera­tury ciała. Całkowitą powierzchnię pod krzywą przedstawia wyrażenieJrU)«XiRe, (10.5)
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Rys. 10-3

Rys. 10-4czyli powierzchnia pod krzywą równa jest liczbowo całkowitej emisji energetycznej ciała doskonale czarnego w określonej temperaturze.Prawa promieniowania ciała doskonale czarnego, poznane empirycz­nie, są następujące.i. Prawo Stefana-Boltzmanna: całkowita emisja energetyczna Re cia­ła doskonale czarnego jest proporcjonalna do czwartej potęgi tempera­tury absolutnej ciała
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Ke - J rU) dx = a * T4. (10.6)oLiczbowa wartość stałej a wynosi-a J o = 5,67’10 a —-y—r .s m^ K4ii. Prawo przesunięć Wiena: długość fali A m, odpowiadająca maksi­mum zdolności emisyjnej r(A) jest odwrotnie proporojonalna do tern- peratury absolutnej ciała doskonale czarnego\ = -r • (10-7)gdzie c' - 2,898-10“^ m.K.

Drucik wolframowy o temperaturze 3000 K, świecący w zwykłej ża­rówce, wysyła promieniowanie, którego rozkład spektralny, przedstawiony na rys. 10-5, przypomina rozkład zdolności emisyjnej ciała doskonale czarnego. Maksimum tego rozkładu przypada na długość fali Xm = ■ 2,898’10~^/3000 m = 970 nm, a więc w zakresie podczerwieni.Niewiel­ka, zakreskowana część powierzchni pod krzywą (rys. 10-5) obejmuje za­kres widzialny promieniowania; również niewielka część powierzchni przypada na zakres nadfioletowy (UV), natomiast przeważająca część mo­cy jest emitowana pod postacią promieniowania podczerwonego (IR), po­wodującego ogrzewanie żarówki.Podstawowym zagadnieniem teorii promieniowania ciała doskonale czarnego jest wyjaśnienie mechanizmu promieniowania, tj. znalezienie analitycznego opisu krzywej na rys. 10-4. Podejmowano w tym kierunku 



227wiele wysiłków, konstruując różne modele promieniowania; do czasu o- głoszenia przez Plancka teorii promieniowania wszystkie te modele by­ły jednak nieudane. Przedstawimy dwie takie próby wyjaśnienia mecha­nizmu emisji, ponieważ stanowią one - jak zobaczymy - graniczne przy­bliżenia modelu Planoka.Każda funkcja r(A,f) usiłująca analitycznie opisać krzywą z rys. 10-4, musi spełniać dwa postulaty:i. Ponieważ w określonej temperaturze powierzchnia pod krzywą jest liczbowo równa Re, a ta jest wielkością skończoną, przeto całka r(A,T) rozciągnięta na cały zakres spektralny musi być skończona; za­znaczymy to symbolicznie Re = J t(a) dA . (10.8)oii. W temperaturze nieograniczenie rosnącej również Re powinno rosnąć do nieskończoności I — Re —— (10.9)Możemy obecnie przystąpić do przedstawienia trzech modeli promie­niowania ciała doskonale czarnego.10.2.1. Model Rayleigha-JeansaW tym modelu przyjmuje się, że emitujące ciało jest zbiorem oscy­latorów wymieniających energię z polem elektromagnetycznym (emisja i absorpcja). Średnia energia całkowita każdego oscylatora jest taka sa­ma. Dla oscylatora liniowego (atom w ciele stałym) mamy dwa stopnie swobody, przy czym jeden z nich odpowiada energii kinetycznej, drugi zaś potencjalnej. Łącznie, na każdy oscylator przypada średnia ener­gia równa kT. Oscylatory mogą wymieniać z polem elektromagnetycznym energię w dowolnych porcjach, byle tylko średnia energia każdego od- cylatora w dostatecznie długim przedziale czasu wynosiła kT.Model ten (termodynamiczny) prowadzi do funkcji o postacir(A) dA - kT d A. (10.10)A 4Punkoję (10.10) możemy przedstawić również jako funkcję częstoś­ci, v ; musi być przy tym spełniona równośćr(A) dA - r(v) dv - dRe, (10.11)ponieważ dwa pierwsze wyrażenia (10.11) przedstawiają element całko­witej emisji energetycznej, którego wartość nie może zależeć od wybo­ru argumentu. Ponieważ | dA I “ (o/v2)*ldvl» zatem
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, . Sit 2 r(y) dv “ —-w kT v dv.oŁatwo teraz zauważyć, że wyrażenieHe = ^r(y) dv = kT dv o ojest równe nieskończoności dla górnej granicy całkowania«Fakt ten na­zwany został "nadfioletową katastrofą" i dowodzi, że funkcja Rayleig- ha-Jeansa może być porównywana z doświadczeniem jedynie w zakresie niskich czystości, tj. w zakresie długich fal.10.2.2. Model WienaPrzyjmuje się podobnie, jak w poprzednim modelu, że ciało stałe składa się z oscylatorów wymieniających energię z polem elektromagne­tycznym. Energia oscylatorów nie jest jednak dla wszystkich taka sa- maj dla każdej temperatury jest określona funkcja (rozkład Maxwella- Boltzmanna) podająca, jaki ułamek liczby oscylatorów posiada energię w zadanym przedziale. Nie wchodząc bliżej w szczegóły rachunku, poda­my postać funkcji r(v) uzyskanej przez Wiena□ -cov/Tr(v) - c1 vJ • e d . (10.12)Teoria nie przewiduje możliwości obliczenia stałych o^ i Cg - mu­szą być znalezione empirycznie. Widać jednak, że funkcja (10.12) nie spełnia postulatu ii, ponieważ dla temperatury zdążającej do nie­skończoności funkcja pozostaje skończonaT — 2) r(v) —0^^. '10.2.3. Model PlanckaJest to model, w którym przyjęto najbardziej radykalne założenie. W celu uzyskania prawidłowej interpretacji promieniowania ciała dos­konale czarnego Planck musiał przyjąć, iż energia oscylatora nie może mieć dowolnej wartości, czyli nie może być ciągłą funkcją jakiegoś pe- rametruj energia ta może przyjmować jedną z wartości określonych wzo­rem En = n h v, n - 0, 1, 2, ... (10.13)n jest liczbą całkowitą lub zerem i nosi nazwę liczby kwantowej, h jest pewną stałą, noszącą nazwę stałej Plancka, y jest częstością 



229drgań oscylatora. Później okazało się, że wzór (10.13) jest niezupeł­nie dokładny; poprawne wyrażenie określające energię oscylatora ma postać En = (b+|) hw (10.14)Wartość stała, równa 1/2, jest związana z tym faktem, że energia oscylatora w najniższej temperaturze (o K) nie może być równa zeru, lecz wynosi 1/2(hv).Stała Plancka jest jedną z najważniejszych stałych przyrody - jej wartość liczbowa wynosi według współczesnych pomiarów h = 6,6256* 10”^ J.s. Oba wyrażenia, (10.13) lub (10.14) oznaczają, że jeśli energia os­cylatora ulega zmianie, to zmiana ta nie może być dowolna; najmniej­szą porcją energii, jaką oscylator może pochłonąć lub wyemitować jest h v - i tę wielkość nazwano kwantem energii. Zwróćmy uwagę na to, iż teoria Plancka dotyczy kwantowego charakteru energii całkowitej oscy­latora, zaś o naturze samego promieniowania orzeka pośrednio: by ener­gia oscylatora mogła zmienić się skokowo o hv, promieniowanie elek­tromagnetyczne o częstości v musi być strumieniem ąuaei-cząstek,zwa­nych fotonami, o energii fotonu równej hv.Założenie (10.13) lub (10.14) prowadzi do funkcji r(v) lub r( \ ) o następującej postaci 8 tc h v3r(v) = -y ~h77kT-----7 ’ (10.15)c e — i, Snhc2 1r(A) = -—3— e-hoAkł , (10.16)doskonale zgadzającej się z danymi doświadczalnymi. Można również po­kazać, iż podane uprzednio prawa Rayleigha-Jeansa i Wiena są aproksy­macjami prawa Plancka dla odpowiedniego zakresu długości fal. Przed­stawimy krótko otrzymanie tych przybliżeń i innych praw promieniowa­nia ciała doskonale czarnego.i. W zakresie fal długich, czyli dużych a • mamy hcĄkT<<1 oraz
Ograniczając przybliżenie rozwinięcia do dwóch pierwszych wyrazów otrzymamy z (10,16)r(A,T) » ŁJS = 8WC kT#X5 ho A4czyli dokładnie prawo Rayleigha-Jeansa.



230 ii. W zakresie fal krótkich orazr(v,T) dv » v3 e-hv/kT dv> c

W ten sposób otrzymujemy przybliżenie podane przez Wiena.Oba przy­bliżenia wraz z funkcją Plancka są przedstawione na rys. 10-6.Z funkcji (10.16) wynikają również oba prawa promieniowania ciała doskonale czarnego, podane w rozdziale 10.2 jako prawa empiryczne,np. położenie maksimum rozkładu spektralnego (10.16) możemy znaleźó,przy­równując do zera pochodną funkcji r(A,t) względem długości fali
IM „ _5 A“6 (ehoAkT _ + _hc_ ehcĄkT . -5 = 0.A2 kT AMnożąc obie strony przez 0-hcAkT porządkując wyrazy

kT 1 u z» A wp= -3 (1 - e"hoAkI) = 0,2014,a stąd • I « 0,2898 cm/K » o', ożyli prawo przesunięć Wiena. Nieco bardziej skomplikowany jest wywód prawa Stefana-Boltzmanna (l0.6);nie będziemy go tu omawiali.W zakończeniu tego paragrafu kilka słów poświęcimy jeszcze ciałom niedoskonale czarnym. Dla nich a(x) <1» czyli ich zdolność emisyjnar'(\,T) = aU) ’ r(x,T) <r(x,T)jest mniejsza od zdolności emisyjnej ciała doskonale czarnego. Może się zdarzyć, że zdolność absorpcyjna jakiegoś ciała promieniującego nie zależy od długości fali. Własności takie w szerokim zakresie dłu­gości fal ma warstwa sadzy, używana jako warptwa absorbująca w detek­torach i miernikach natężenia promieniowania. Ciała takie nazywamy 



231ciałami szarymi; rozkład spektralny t*(a,T) ich zdolności emisyjnej jest proporcjonalny do rozkładu r(x,T) ciała doskonale czarnego. Dla tych ciał jest spełnione również prawo Stefana-Boltzmanna, przy czym ma ono postać Re = k •a I4, (10.17)gdzie k <1 jest współczynnikiem bezwymiarowym, zależnym od natury ciała szarego, np. dla rozgrzanej platyny k « 0,15, zaś dla tlenku żelaza k « 0,89. 10.3« Efekt fotoelektrycznyBezpośrednim dowodem doświadczalnym kwantowej natury promieniowa­nia jest efekt fotoelektryczny, odkryty jednocześnie przez Hallwach- sa i Stoletowa, a wyjaśniony przez Einsteina. Zjawisko to, bardziej precyzyjnie nazywane zewnętrznym efektem fotoelektrycznym, polega na wybijaniu elektronów z powierzchni metalu, na którą pada promieniowa­nie elektromagnetyczne. Ze względu na bardzo krótki zasięg fotoelek- tronów w atmosferze gazowej, zjawisko to obserwuje się i bada w próż­ni. Natężenie promieniowania ma bezpośredni wpływ na liczbę emitowa­nych fotoelektronów, natomiast ich energia (prędkość) zależy od częs­tości promieniowania.Właściwą interpretację tego zjawiska podał Einstein: kwant pro­mieniowania monochromatycznego, wybijający z powierzchni metalu foto- elektron pokonuje pracę wyjścia W elektronu z powierzchni metalu A oraz nadaje elektronowi energię kinetyczną 1/2 m vhv = W + $ mv2. (10.18)Praca wyjścia elektronu z powierzchni metalu jest wartością dla danego metalu stałą; wraz z malejącą częstością promieniowania maleje energia kinetyczna wyrzuconego elektronu. Wreszcie dla pewnej częs­tości v0 energia kwantu hv0 wystarczy jedynie do pokonania pracy wyjścia W; wówczas 1/2 mv^ ■ 0. Mamy zatemW = hv0 (10.19)oraz h(v - v0) = | mv2. (10.20)Najmniejszej częstości v0 odpowiada największa długość fali Xo, przy której możliwy jest efekt fotoelektryczny. Dlatego Ao nosi na­zwę czerwonej granicy zewnętrznego efektu fotoelektrycznego. Dla dłu­gości fal X > fotoefekt jest niemożliwy.
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Rys. 10-7

Wykresem energii kinetycznej T fotoelektronów w zależności od. częstości v jest według (10.20) linia prostaj odcięta dla T = 0 wy­nosi vQ = °A0, zaś nachylenie tej prostej równe jest h. Badanie fun­kcji l(v) jest jedną z metod wy­znaczania h; wielkość ta musi być niezależna od rodzaju badanej po­wierzchni.Efekt fotoelektryczny znalazł bezpośrednie zastosowanie w kon­strukcji fotokomórek, stanowiących bardzo czułe detektory i miernikinatężenia promieniowania. Model fotokomórki próż- 

Rys. 10-8

nlowej przedstawiony jest na rys. 10-7. Na we­wnętrznej ścianie bańki próżniowej jest nanie­siona cieńka warstwa metalu,stanowiącego foto­katodę K. Najlepsze są do tych celów metale, po­siadające małą prace wyjścia W. Należy do nich cez (X « 660 nm) lub fotokatoda Cs/Cs-O, zło­żona z warstwy cezu i tlenku cezu utlenionego w sposób niepełny (xq = 1100 nm).Naprzeciw fo­tokatody znajduje się anoda, wykonana z siatki metalicznej, przepuszczającej promieniowanie. W stanie zaciemnionym przez fotokomórkę płynie bardzo mały prąd iQ (log i « -14), wynikają­cy przede wszystkim z niedoskonałej izolacji elektrycznej. Oświetlenie promieniowaniem po­woduje przepływ prądu fotoelektryoznego if (-13 log if-9), jeżeli fotokatoda jest po­łączona z ujemnym biegunem baterii (rys.10-7). Wielkość if jest ściśle proporcjonalna do na­tężenia promieniowania. Zmiany natężenia odwzorowują się na oporniku wysokoomowym R ja­ko zmiany potencjału, dołączane zwykle do u- kładu wzmacniającego.Detektorem promieniowania znacznie bardziej czułym od fotokomórki jest fotopowielacz (rys, 10-8). Oprócz fotokatody K są umieszczone we­wnątrz bańki pi-óżniowej dodatkowe elektrody D^, 



233zwane dynodami, wykonane ze specjalnego stopu o dużym współczynniku powielenia. Potoelektron, padający na pierwszą dynodę, wybija z niej średnio dwa elektrony w zjawisku emisji wtórnej} liczba ta nosi nazwę współczynnika powielenia. Dynod jest kilkanaście, przy czym potencjał każdej następnej jest wyższy od poprzedniej. Jeżeli dynod jest 15 a współczynnik powielenia wynosi 2, to otrzymujemy z każdego fotoelek- tronu (1») znaczną liczbę elektronów w mierzonym natężeniu prądu (i ). Współczynnik wzmocnienia wynosi im/lf = 2 3 » 3,3’1 Cr, a w najlep­szych fotopowielaczach około miliona. Detektorów takich używa się do pomiarów bardzo małych natężeń promieniowania, np. w badaniach roz­kładu spektralnego emisji luminescencji lub promieniowania gwiazd. W ppłączeniu z odpowiednimi przetwornikami, np. z kryształami scyntyla­cyjnymi, fotopowielaoz może byó detektorem innych rodzajów promienio­wania, np. rentgenowskiego, beta, gamma.10.4. Efekt ComptonaEksperymenty przedstawione w paragrafach 10.2 i 10.3 dowodzą, że promieniowanie ma aspekt korpuskularnys wiązka promieniowania może byó traktowana jak strumień fotonów. Efekt Comptona dowodzi ponadto, że kwant posiada pęd o wielkości pf = hv/c = h/A, odpowiadającej przewi­dywaniom teorii względności. Pod względem mikroskopowym efekt ten po­lega na zderzeniu fotonu z elektronem; zderzenie jest sprężyste, a więc jest spełniona zasada zachowania energii i zasada zachowania pę­du. Schemat doświadczenia jest przedstawiony na rys. 10-9. Promienio­wanie lampy rentgenowskiej (LR) przechodzi przez filtr (?) wydziela­jący monochromatyczną linię promieniowania charakterystycznego o dłu­gości fali Xo 1 energii kwantu hv0; przesłona S1 wydziela wąską wiązkę promieniowania. Do badania efektu Comptona moglibyśmy użyć w zasadzie również promieniowania nadfioletowego, lecz - jak zobaczymy później - dokładność pomiaru wielkości efektu jest znacznie większa w obszarze promieniowania rentgenowskiego.Wiązka promieniowania pada na ciało stałe, zwykle grafit (G), z którego zostaje wyrzucony elektron - e. Energia odrzuconego kwantu hv jest mniejsza od hvQ, wobec czego A > A 0. Ponieważ nie znamy A, więc promieniowanie rozproszone po przejściu przesłon Sg i S- pada na kryształ K, spełniający rolę analizatora długości fali. Odbicie pierwszego rzędu od płaszczyzn kryształu wystąpi dla takiego kąta <p, który spełnia warunek Braggóws 2d sin <p-A; odstęp d między płasz­czyznami uważamy za znany. Wskaźnikiem właściwego doboru <p jest ko­mora jonizacyjna (KJ) - po uzyskaniu wiązki odbitej przez elektrometr E popłynie prąd.
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Rys. 10-9Niech 0 będzie kątem zawartym między prędkością wyrzuconego elektronu a osią Y, zaś $ jest kątem między kierunkiem ruchu roz­proszonego fotonu a osią Y. Jeśli uwzględnimy fakt, że energia kine­tyczna i pęd elektronu w oiele stałym (G) są znikomo małe i można je zaniedbać, natomiast pęd elektronu odrzuconego jest bardzo duży i na­leży go potraktować relatywistycznie, to zasady zachowania będą miały postać:zasada zachowania energii 
o2 hc m c ho m.o + — « ~ ,o jĄ - p2 xzasada zachowania pędu

h mov0 « — sin$------- ------ sin © dla osi X,
A Y _p2'. h m v— » — cos $ + cos 0 dla osi Y.

(10.21)
(10.22)
(10.23)Zasadę zachowania pędu napisaliśmy osobno dla składowych na oś X i osobno dla Y, ponieważ pęd jest wektorem. Te trzy równania możemy zapisać również w postaci
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Dalszy rachunek zmierza do wyeliminowania nie interesującego nas kąta 6 rozproszenia elektronu - przedstawimy go jedynie skrótowo.Pod­nosimy drugie i trzecie równanie do kwadratu i dodajemy.Wynikiem jest(10.24)Kwadrat pierwszego równania ma postaó
Różnica (10.24) i (10.25) wynosi? 2(1 - cos 5) 1 m2(v2 - c2) - m2c2 + m2c2p2

u u •A Ao . 1 — p2 s2

(10.26)zatem (X - A ) 5 AA = ------ (1 - cos 5 ).mQ o.Wynikiem rachunku jest wyrażenie określające różnicę długości fa-li promieniowania rozproszonego i padającego. Wynik ten jest najważ­niejszy w teorii efektu Comptona, ponieważ może byó sprawdzony doś­wiadczalnie. Jeśli podstawimy stałe uniwersalne: h ■ 6,626*1O~8^ J-s, mQ » O,91O9’1O“30 kg, c = 2,998-108 m/s, to’ 0,0242 2i jest również stałą uniwersalną - nosi nazwę comptonowskiej, długości fali. Ze względu na uniwersalny charakter tej stałej efekt Comptona musi wystąpić dla promieniowania każdej długości fali,której odpowia­da kwant o energii wyższej od pracy wyjścia elektronu. Zauważmy jed­



236nak, że AA jest wielkością bardzo małąj w porównaniu do długości fa­li promieniowania nadfioletowego, AQ » 2000 S, efekt ten leży w gra­nicy dokładności pomiarów spektroskopowych, natomiast w zakresie pro­mieniowania rentgenowskiego, 1 « 1 X, zmiana długości fali o mo­że być dokładnie zmierzona. Z (10.26) wynika, że największa zmiana długości fali (lA = 0,0434 8) wystąpi wówczas, gdy kwanty są rozpro­szone wstecz ( ® « 180°), natomiast gdy wiązka przechodzi bez odchy­lenia (® = 0) AA. = 0.10.5. Dualizm korpuakularno-fąlowy promieniowaniaW poprzednich paragrafach poznaliśmy doświadczenia, których wyni­ki świadczą niewątpliwie o tym, że promieniowanie ma cechy korpusku- larne. Są nimi emisja ciała doskonale czarnego, zjawisko fotoelektry- ozne, efekt Comptona. W rozdziale 9 natomiast omawialiśmy zjawiska takie jaks interferencja, dyfrakcja i polaryzacja, dowodzące falowej natury promieniowania. Można więc postawić sobie pytanie,czym promie­niowanie jest "naprawdę"?Nasz pogląd na naturę rzeczy i zjawisk wynika a przyzwyczajeń do otaczających nas przedmiotów i zjawisk świata makroskopowego.Pojęciem takim jest fala, nieskończenie rozciągła w ozasie i przestrzeni, po­jęciem takim jest również cząstka, posiadająca pęd, a więc i energię. Jeśli mamy stosować te pojęcia również w odniesieniu do fotonu,to po­zorną sprzeczność zachowania się promieniowania w różnych doświadcze­niach da się usunąć przez przyjęcie, iż promieniowanie ma jednocześ­nie cechy falowe i korpuskularne, tj. wykazuje dualizm korpuskularno- falowy.Połączenie obu tych cech jest obecnie - jak się wydaje - niezupeł­nie jasne. Być może, iż postęp w teorii cząstek elementarnych będzie miał wpływ również na zrozumienie "natury" fotonu. Niemniej jednak wy­nik doświadczeń fizycznych jest zupełnie jasny i może być rozumiany w następujący sposób. Siatka dyfrakcyjna, ozy też kryształ,jest swoi­stego rodzaju analizatorem lub typem "dyskryminatora" ceoh fizycznych, umożliwiającym ujawnienie spośród wszystkich możliwych cech tylko fa­lowej natury zjawiska fizycznego, jakim jest promieniowanie.Innym typem dyskryminatora fizycznego jest powierzchnia metalu lub fotokomórka, które z kolei ujawniają tylko ceohy korpuskularne. Nie­stety, nie posiadamy w chwili obecnej takiego dyskryminatora, który pozwoliłby wykryć występowanie obu tych cech łącznie i to stanowi in­ną postać stwierdzenia faktu, że sposób połączenia w jednym obiekcie cech fali i cech cząstki jest nam obecnie nie znany.



23710.6. galowa natura cząstekPalowa natura wiązki elektronów została przewidziana w 1924 r. przez Louisa de Broglie"a. Doszedł on do wniosku,że cząstka materialna, jaką jest poruszający się elektron, posiadający zatem pęd p, powinna ujawniać również cechy falowe, zgodne z równaniemX.-|- (10.27)omawianym uprzednio dla fotonu. Wielkość X , występującą w (10.27), należy rozumieć jako długość fali "sprzężonej" z ruchem elektronu.Spróbujmy oszacować X dla elektronów w przybliżeniu nierelaty- wistyoznym, tj. dla v«o. Przez v rozumieć będziemy prędkość po­ruszania się elektronu o masie spoczynkowej mQ. Mamy więcmQv2 . e U,czyn 1/2
stąd 'X - — - ------^—¥79 ’ (10.28)mQV (pem^U)1'^ yUElektronom o energii 100 eV powinna zatem towarzyszyć fala o dłu­gości X = 1,225 X, ulegająca interferencji na kryształach.

Rys. 10-10Znakomitym potwierdzeniem hipotezy de Broglie 'a były wyniki doś­wiadczeń Daviesona i Germera. Schemat aparatury jest przedstawiony na rys. 10-10. W dokładnie odpompowanym naczyniu szklanym znajduje się katoda K, stanowiąca źródło elektronów. Elektrony przyspiesza się i ogniskuje w cienką wiązkę za pomocą elektrod P i A; P jest bardzo cienką folią, wykonaną ze złota. Wiązki ugięte dają na kliszy foto­graficznej (K) obraz przedstawiony obok schematu aparatury, i zupeł­



238nie przypominający wynik ugięcia promieniowania rentgenowskiego.W póź­niejszych doświadczeniach wykazano, że również strumień protonów ule­ga dyfrakcji w podobnych warunkach i zgodnie z równaniem (10.27).Łatwo się jednak przekonań, że prędkość fali u, sprzężonej z ru­chem cząstki mikroskopowej, musi przewyższać prędkość światła. Mamy bowiem A - -i------- . v hv mc^Jednocześnie . .p mv ’zatem u • v - o2. (10.29)Żadna energia nie może być przenoszona z prędkością u > o. Pala de Broglie'a jest więc falą fazową.10.7, Relacje HeisenbergaRelacje Heisenberga, zwane niekiedy ’’zasadami nieokreśloności" Heisenbera, są pewnymi związkami między parametrami dynamicznymi,za­pożyczonymi z fizyki klasycznej, którymi opisujemy ruch cząstki mi­kroskopowej, np. elektronu. Przypuśćmy, że związki elektronów, poru-

Rys. 10-11szająoej się z lewa na prawo (rys. 10-11) wydzielamy wiązkę za pomocą otworka o średnicy A x, wyciętego w przesłonie S1. Falowe własności elektronów uwidocznią się w postaci obrazu dyfrakcyjnego na ekranie (lub kliszy fotograficznej Sg). Oprócz śladu wiązki centralnej (mak­



239simum zerowego rzędu) zaobserwujemy pierścienie dyfrakcyjne,z których najważniejszą rolę odgrywa pierścień pierwszego rzędu. Ogromna więk­szość elektronów trafi w jedno z tych dwóch miejsc ekranuj nie można jednak przewidzieć dla poszczególnych elektronów przed ekranem , w które miejsce trafią po przejściu S1. Wielkość Ax możemy więc uwa­żać za niepewność znajomości położenia elektronów w kierunku osi x; niepewność ta zależy od rozmiarów wyciętego przez nas otworu w . Fakt, że nie wiadomo, w które z dwóch maksimów (zerowego lub pierwsze­go rzędu) padnie obserwowany przez nas elektron równoważny jest stwier­dzeniu, że także pęd elektronu (jako wektor) jest znany z pewną nie­pewnością ipx! £ = + Ą^.Z teorii siatki dyfrakcyjnej (równanie 9.34) mamy dla n = 1sin <p = ,A xprzy czym rolę stałej siatki spełnia tu średnica otworu. Ponadto tg cp « A px/poj ponieważ tg <p sin m, więcA P* > Po " Ax oraz APX 1 Ax ^Po ‘X » h.Opisując ruch cząstki mikroskopowej za pomocą pojęcia położenia i pędu stwierdzamy zatem, że opis ten może być dokonany z określoną do­kładnością. niepewność (błąd), z jakim możemy podać położenie elek­tronu oraz niepewność (błąd) z jakim jednocześnie podać możemy pęd elektronu, w iloczynie nie mogą dać wartości mniejszej od stałej Plan­cka Apz • Ax > h. (10.30)Stwierdzenie to, wyrażone nierównością (10.30) stanowi relację Heisenberga i jest prawem przyrodyj słuszność jego nie zależy od po­stępu w metodach pomiaru. Dla pozostałych kierunków osi y i z możemy napisać analogicznie A Pv . A y > h,A pz ’ A z > h.Łatwo się przekonać, że w zakresie zjawisk makroskopowych relacja (10.30) nie ma większego znaczenia. Jeżeli bowiem jako Interesujący 



240nas obiekt wybierzemy masę m ® 1 g, którego prędkość v = 10$ m/s zna­my z dokładnością 0,1%, czyli A p = 1 kg m/s, to najmniejszy błąd,ja­ki zgodnie z (10.30) możemy popełnić, określając położenie tej masy, musi być równy A z « 6,6* W“^'* m. Warunek ten praktycznie nie limitu­je dokładności pomiarów położenia, która w rzeczywistości jest znacz­nie mniejsza.Sytuacja zmienia się wyraźnie jeśli naszym obiektem będzie swobo­dny elektron. Niech również w tym przypadku będzie v»(10 -10^) m/s.—31Ponieważ masa m » 9’10 kg, więc najmniejszy błąd, jaki musimy po­pełnić mierząc położenie elektronu A x = 7,3*10“? m = 730 nm.Błąd ten jest rzędu długości fali światła czerwonego, ale już wielokrotnie przekracza "rozmiary" samego obiektu.Z jeszcze gorszą sytuacją spotykamy się w przypadku elektronu związanego w atomie. Ponieważ średnica atomu wynosi około 10“10 m, trzeba zażądać, by A x wynosiło co najwyżej 10“11 m, inaczej położe­nie elektronu określone będzie za mało dokładnie. W takim razie mini­malny błąd w określeniu prędkości musi wynosić A • (6,6 • 10“^)/ /(9’W“^1’10-11) » 7,3*10? m/s. Ponieważ prędkość ruchu elektronu wy- nosi około 106 m/e, błąd w określeniu v kilkadziesiąt razy prze­wyższa samą wartość v. Praktyczny wniosek, jaki wynika z tego pros­tego rachunku w odniesieniu do ruchu elektronu wokół jądra w atomie jest następujący: jeśli chcemy zachować pojęcie pędu i położenia dla opisu ruchu elektronu wokół jądra, to musimy zrezygnować z pojęcia "toru" elektronu, które całkowicie traci sens.Pęd oraz położenie elektronu są zmiennymi "sprzężonymi" w tym sen­sie, że iloczyn ich wymiarów jest wymiarem wielkości fizycznej zwanej działaniem. Taki sam wymiar ma stała Plancka - dlatego h nosi rów­nież nazwę "kwantu działania". Można znaleźć więcej par zmiennych,któ­rych iloczyn ma wymiar działania - należy do nich energia i czas; te zmienne również stanowią parę wielkości sprzężonych i można dla niej napisać relację Helsenberga w następującej postaciA E • A t h. (10.31)W odniesieniu do układu mikroskopowego At oznacza czas, w jakim przebywa on w stanie o energii E, aE jest zatem błędem,z jakim mo­żemy poznać energię tego stanu. Izolowany atom może nieograniczenie długo przebywać w etanie podstawowym, tj. dla takiego stanu t ■ t » ■ oo , przy ozym t oznacza średni czas życia atomu w określonym sta­nie energetycznym. Wobec tego AE - 0, czyli energię stanu podstawo­wego możemy znać dowolnie dokładnie. Inaczej jest ze stanami elektro­nowo wzbudzonymi» dla stanów dozwolonych regułami wyboru czas życia



241—8 —9t* 10 -10 s. Oznacza to, że chwilę w której atom przejdzie ze sta-••8 -9nu wzbudzonego do podstawowego, znamy z dokładnością ^t ■ 10 -10 s. Fakt ten powoduje pewną "nieostrość" energii stanu wzbudzonego o war­tość AB > (4,13*10~15 eV*s)/(l0“9-10“8 s) - 4’1O"6-4*1O“7 eV. W kon­sekwencji energia przejścia nie jest absolutnie dokładnie zadana,oży­li odpowiadająca jej linia emisyjna ma pewną skończoną szerokość,zwa­ną szerokością "naturalną".



11. MECHANIKA FALOWAZjawiska i zasady, omówione w rozdziale 10, doprowadziły do zro­zumienia, że podstawą opisu ruchu cząstek mikroskopowych nie mogą być prawa fizyki klasycznej, opisujące ruch ciał makroskopowych. 0- czywiście, wprowadzone przez nas w rozdziale 1. pojęcie punktu ma­terialnego nie stanowi najmniejszej podstawy do zastosowania praw ru­chu tego punktu do opisu ruchu, np. elektronu. Mimo znikomych rozmia­rów, punkt materialny jest w gruncie rzeczy obiektem makroskopowym.Punktem wyjścia nowej mechaniki było stwierdzenie, że ruchowi cząstki makroskopowej towarzyszy ruch sprzężonej z nią fali,stąd naz­wa tego rozdziału fizyki teoretycznej. Z biegiem czasu doprowadziło ono do odkrycia podstawowego równania mechaniki falowej, a mianowicie równania Schrddingera
V2

2+ - U(x,y ,z)j- 4, » 0. (11.1)Równanie to opisuje ruch cząstki mikroskopowej za pomocą funk- cji falowej (];(x,y,z), w zapisie (11.1) zależnej tylko od współrzęd­nych. Taka postać równania SchrOdingera, zwana równaniem amplitudowym determinuje rodzaj zagadnień, którymi będziemy się w dalszym ciągu zajmowali. Interesować nas będą mianowicie tylko problemy stacjonar­ne, tj. zależące od czasu w sposób periodyczny lub takie, w których czas nie odgrywa roli (np. w zagadnieniu przechodzenia cząstki przez barierę potencjalną). Część funkcji falowej zależną od czasu będziemy w dalszym ciągu opuszczać. Ponadto interesować nas będzie wyłącznie ruch jednej cząstki, najczęściej z jednym stopniem swobody, tj. za­chodzący wzdłuż osi x. W takich zagadnieniach jednowymiarowych funk­cja falowa zależy tylko od jednej zmiennej, (x),zaś równanie SchrB- dingera ma postać {e _ u(x)} (H*) “ (11.2)



24311 «1« Cząstka swobodnaRozważmy jako pierwszy przykład zastosowania równania SchrOdinge- ra nadzwyczaj prosty przypadek ruchu cząstki swobodnej, np.ruch elek­tronu. W całym obszarze, w jakim ta cząstka może się poruszać,nie od­działuje ona z niczym, wobec tego jej energia potencjalna jest stała; dla uproszczenia możemy przyjąć, że U(x) = 0. Dla tego przypadku rów­nanie (11.2) przybierze postać
^4^2 + k2 <|Ax) = 0, (11.3)dxprzy czym 2k2 = e (11.4)łijest stałym parametrem o doiąolnej, skończonej wartości. Wobec tego również energia całkowita E = T > 0 może być dowolna. Rozwiązaniem (11.4) jest funkcja 4 (x> - A • (11.5)gdzie A oznacza dowolną stałą, zaś i jest jednostką urojoną. Po­nieważ 2mE » p2, gdzie p jest pędem cząstki, zatem mamy z (11.4)

Przez fi oznaczyliśmy stałą Plancka, podzieloną przez 2 n. Pęd jest wektorem, zatem i k musi być wektorem2 » fi k . (11.6)Ze związku de Broglie'a (10.27) widać, żek - , (11.7)czyli k jest wektorem falowym fali de Broglie'a, sprzężonej z ru­chem cząstki. Uogólnieniem (11.5) jest funkcja4« (r) = A • e”1— (11.8)opisująca tylko periodyczność przestrzenną fali.11.2. Cząstka w prostokątnej jamie potencjałuPrzypuśćmy, że w miejscu x » 0 osi x znajduje się nieskończe­nie wysoka prostopadła ściana potencjalna (rys. 11-1); podobna ściana
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występuje w punkcie x = a. Otrzymujemy w ten sposób "liniową” jamę potencjalną o długości a, wewnątrz której porusza się ruchem perio­dycznym cząstka mikroskopowa o stałej energii całkowitej E. Funkcja e- nergii potencjalnej spełnia więc w tym przypadku warunkiU(x) ■ 0 dla 0 < x < a, ] . , k (11.9)U(x) «oo dla x^0 i x>a. JRównanie SohrBdingera w obszarze studni na postać (11.3), również rozwiązania szczególne są identyczne z (11.5)| wobec tego rozwiązania ogólne możemy napisać jako kombinację obu typów rozwiązań szczegól­nych ^(i) > A eikx + B e“ikx. (11.10)Ze względu na ograniczenia (11.9) prawdopodobieństwo znalezienia cząstki w punktach x « 0 i x « a powinno wynosić zero, zatem<|> (0) « <|> (a) - 0. (11.11)Podstawienie pierwszego warunku brzegowego do (11.10) prowadzi do wniosku, iż A » -B. W takim razie<p (x) » A elkx - A e~ikx « 2 Al sin kx • C sin kx, (11.12)gdzie C jest na razie dowolną stałą, ewentualnie urojoną. Zastoso­wanie drugiego z warunków (11.11) prowadzi do ograniczenia możliwych wartości k: <|>(a) - C sin ka « 0,stąd ka ■ n ’i , n - 1,2,3, ... (11.13)



245Podstawimy obecnie uzyskane wyrażenia określające k do (11.4); w rezultacie otrzymamy 2 2 28 it m „ n^ 7t —-y- h = w~ , h aożyli 2E = n2 • —k-_ . (11.14)n 8 m a^Widzimy, że cząstka mikroskopowa wewnątrz jamy potencjalnej typu przedstawionego na rys. 11-1 może przyjmować tylko niektóre wartości energii, inaczej mówiąc, energia cząstki wewnątrz jamy jest kwantowa- 2 2na. Jeśli oznaczymy h /8ma • E1, to możliwym kolejnym stanom energe­tycznym odpowiadają energie E^, 4E1, 9E1, ... Jak widaó,odstępy mię­dzy tymi stanami rosną.Pozostaje nam jeszcze znalezienie wartości C funkcji (11.12). Jak wiadomo, funkcja falowa powinna byó znormalizowana do jedności, tzn. <p(x) powinna spełniać warunek
J<p(x) <p*(x) dx ■ 1. oW naszym przypadku całkowanie wystarczy rozciągnąć na obszar od 0 2do n , ponieważ funkcja sin x ma okres o połowę mniejszy, niż sin x. 

W takim razie ma być Tl|C| 2 J sin2 dx - 1. (11.15)oCałkowanie przez części prowadzi do wyniku, o x 1 /2ICI - . (11.16)Ostatecznie 1/2*n<x) '(ł) ain-^. (11.17)
Przez rozwiązanie równania Schrfldingera dotyczącego cząstki w ja­mie potencjalnej, zastosowania do funkcji falowej warunków brzegowych i warunku normalizacyjnego, uzyskaliśmy jednocześnie dwa rezultaty:i. Zbiór dozwolonych stanów energetycznych (11.14) układu mikros­kopowego.ii. Zbiór funkcji falowych, odpowiadających tym stanom.Zgodnie z interpretacją Borna iloczyn kwadratu modułu funkcji fa­lowej przez objętość elementu przestrzeni jest prawdopodobieństwem 



246znalezienia cząstki w tym elemencie objętości. Rysunek 11-2 przedsta­wia rozkład gęstości prawdopodobieństwa 4 2(x) dla kilku pierwszych stanów.

Zauważmy jeszcze, że odstępy między poszczególnymi stanami ener­getycznymi (11.14) są odwrotnie proporcjonalne do masy cząstki. W ja­mie potencjalnej protonu stany te będą leżeć około 2000 razy gęściej, niż w elektronie. Jeszcze silniej zależy odległość między sąsiednimi stanami od rozmiarów jamy potencjalnej
2En+1 -En=(2n + 1)feV ^^la) aa więc odległość dwóch najniższych stanów energetycznych elektronu w jamie potencjalnej wynosi Eg - E1 x 1,125*10-18 1/a2 eV.Jeśli przyj- miemy, że elektron znajduje się w jamie o rozmiarach makroskopowych, np. a = 1 om, to Eg - = 1,125*10“^ eV; jest to odległość pozio­mów tak mała, że praktycznie możemy mówić o ciągłości energii elek­tronu w obszarze jamy. Jeśli jednak rozmiary jej są rzędu średnicy cząsteczki, np. a = 10 3, to Eg - E^ = 1,125 eV; nieciągłość pozio­mów energetycznych jest w takim przypadku silnie zaznaczona.11.3. Cząstka w trójwymiarowej jamie potencjałuRozważania poprzedniego paragrafu możemy bez trudności uogólnić do przypadku trójwymiarowej jamy potencjału. Przyjmiemy, że cząstka mikroskopowa znajduje się wewnątrz prostopadłościanu o krawędziach a^ wzdłuż osi x1, a2 wzdłuż osi x2 i a^ wzdłuż Xj. Energia poten­cjalna U(x^, x2, x.j) wewnątrz jamy wynosi zero, natomiast na ze­wnątrz niej wzrasta do nieskończoności; U(x1, x2, x^) spełnia więc warunek analogiczny do (11.9). Równanie Schrodingera ma teraz postać:
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Jest to równanie w pochodnych cząstkowych, ponieważ (x^ ,x2,x3) jest funkcją trzech zmiennych. <p<p * dv określa prawdopodobieństwo zna­lezienia cząstki jednocześnie w zakresie współrzędnych , x1 + dx1), (xg, x2+dx2) oraz (xp x^ + dx^K Prawdopodobieństwo zajścia trzeoh zdarzeń jednocześnie możemy przedstawić jako iloczyn prawdopodobień­stw zajścia każdego z tych zdarzeń oddzielnie. Inaczej mówiąc, funkcję falową <p (x1f x2, x^) możemy napisać jako iloczyn trzeoh funkcji fa­lowych <p przy czym każda z nich zależy tylko od jednej zmien­nej x^ cp (x1, x2, x^) — <p (x ) • cp 2 ( x2) • 2 € x^ ) • (11.20)Zmienne x i określone są w przedziale0 xA a^, i = 1, 2, 3. (11.21)Podstawienie (11.20) do (11.19) i dwustronne podzielenie przez <p prowadzi nas do równania w pochodnych zwyczajnych/ 1 d2 (p (x.) \ 8 Tc2m2_ — —- —5— E- 1=1 \ dx£ / hLewa strona składa się z sumy trzeoh wyrazów, z których zależy tylko od x^, drugi tylko od x2, trzeci zaś od x^. jest jednak wielkością stałą} jest to możliwe tylko w takim gdy każdy z wyrazów tej sumy równy jest stałej. Wielkość tej stałej wygodnie jest przyjąć a 2ci = Ei’ (11.23)

(11.22)
pierwszy Suma ich przypadku,

ponieważ wówczas równanie (11.23) rozpada się na trzy równania typud2 <p< (x.) 8------ i™- + —a— E. (p.(x.) = 0, i = 1,2,3, (11.24) dx2 n 1 1 1a ogólna energia cząstki w jamie potencjalnej jest sumą trzeoh ener­gii E = E1 + E2 + E3. (11.25)Każda energia E^ odpowiada jednemu z trzeoh stopni swobody ru­chu.



248 Rozwiązania (11.24) są nam już znane:e, - 4. -A. 1 1 8(nE , / 5 ^/2 "“Asin —■' ■ al<₽

W takim razie pełne rozwiązania dotyczące ją postać jamy trójwymiarowej ma-
(11.26)oraz ., / 8 *»1X1 Tt nox„ n n-X,

4’(x1.x2,x3) ain sin sin .(11.27)Zajmiemy ale obecnie krótkim omówieniem energii cząstki (11.26). Możemy zbudować trójwymiarową, prostokątną i periodyczną sieć prze­strzenną, której okresami w trzech różnych kierunkach będą wielkości(11.28)

Rys. 11-3Fragment takiej aieoi jest pokazany na rys. 11-3. Wektory A1, A2, Ą3 są jej bazą, a prostopadłościan na nich zbudowany jest jej komór­
ką elementarną. Każdemu punktowi P (n^, n2, n^) tej sieoi odpowiada wektor R “ n1A^ + n2—2 * ^3A3> (11.29) którego długość jest równa energii cząstki w jamie potencjalnej, odpo­wiadającej wartościom liczb kwantowych , n2, n^



249E(n1, n2, ” R ’ £' (11.30)Jeżeli |A11 |A2| 4 |A^| , to każdemu punktowi sieci odpowiada la­na długość wektora R, a zatem inna energia. Inaczej jest w przypadku, gdy wszystkie wymiary jamy potencjalnej są jednakowe, tj.gdy przybiera ona kształt sześcianu. Mamy wówczas |A1 j = jAg | = |A-j| orazE = (n2 + n2 + n2). (11.31) 8maCałkowita energia oząstki zależy w tym przypadku od sumy kwadra­tów liczb kwantowych; jednakową wartość tej sumy możemy często zrea­lizować kilkoma sposobami. Stany energetyczne będziemy zapisywać w sposób skrócony przez umieszczenie trójki liczb w nawiasie.(112) ozna­cza na przykład stan z n1 ■ 1, n2 ■ 1, n^ ■ 2 . Stosując ten sposób zapisu łatwo zobaczyć, że stany (211), (121), (112) odpowiadają tej samej energii, choć ich funkcje falowe są różne; zatem stan E ■ ■ 6 h2/3ma2 jest trzykrotnie zwyrodniały. Współczynniki zwyrodnienia wyższych stanów energetycznych mogą być większe; np. stan o energii E ■ 14’(h2/8ma2) jest sześciokrotnie zwyrodniały.11,4, Liniowy oscylator harmonicznyObecnie zajmiemy się zastosowaniem równania Sohrddingera do roz­wiązania problemu oscylatora harmonicznego. Rozważać będziemy oscyla­tor jednowymiarowy, tj. przyjmiemy, że drgania oząstki o masie m za­chodzą wokół położenia równowagi wzdłuż osi x. Przy tym amplituda drgań jest na tyle mała, że krzywą energii potencjalnej można przed­stawić za pomocą równania paraboliU(x) - | kx2 - 2n2mv^2. (11.32)OW tym wzorze x jest wychyleniem z położenia równowagi, k » m,w0 współczynnikiem liniowej siły sprężystej, a v0 częstością drgań os­cylatora. Przy potencjale (11.32) równanie Schrddlngera dla oscylato­ra ma postać d_<^ + gn^m fE _ 2 n2m 2 X21 = o. (11.33)dx2 l o JJeśli wprowadzimy oznaczenia28 n m „ ,ą E = A h2oraz . 24 u m v0 (11.34)



250to równanie (11.33) możemy zapisać w prostszej postaci^7 + (A - a2x2) 4> = 0. (11.35) dx^Znalezienie rozwiązania tego równania nie Jest rzeczą łatwą. Dla­tego dokonamy wpierw pewnej próby, a mianowicie spróbujemy znaleźć rozwiązanie dla dużych wartości x, czyli tzw. rozwiązanie aeymptoty- czne. Jeśli x jest dostatecznie duże, to a x \ , wobec czego (11.35) możemy uprościć do
Przybliżonym rozwiązaniem tego równania Jest funkcja<p(x) e1“^2.

i podstawiamy otrzymane wyrażenie do (11.35) opuszczając czynnik wy­kładniczy, który nie zeruje się dla skończonych x. Po uporządkowaniu wyrazów otrzymamy równanie różniczkowe dla funkcji f(x)

Mamy bowiem o
IŁ _ + Ax2/2ds^ oraz ^4 = a2 x2 e" ax2/2 ± a*2/2.

di^
2 2Jednakże drugi składnik wyrażenia d <p/dx jest mały w porówna­niu z pierwszym; jeśli go opuścimy, to istotnie funkcje exp(i ax2/2) można uznać za przybliżone rozwiązanie równania dla dużych wartości x. Ze względu na warunek normalizacyjny, tj. oałkowalność cp (x) z kwadra­tem, należy wziąć jako "dobre" rozwiązanie funkcję z wykładnikiem u- jemnym.Wróćmy teraz do równania pierwotnego (11.35). Dokładnego rozwią­zania tego równania będziemy poszukiwali w postaci funkcji2<p(x) = f(x) • e“ax /2, (11.36)gdzie f(x) jest na razie nie znaną nam funkcją zmiennej x. Spróbu­jemy ją znaleźć przez podstawienie (11.36) do równania (11.35). Obli­czamy pochodne £l± _ df - ax2/2 _ - ax2/2dx “ dx e a x r e
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- 2 ax — + (x- a)f = O.dx dxWprowadzimy teraz zamiast x nową zmienną, bezwymiarowąax2 « g2, czyli =y~<x • x. (11.37)Funkcja f(x) przejdzie wówczaa w nową funkcje H(ę); musimy rów­nież dokonać zmiany zmiennej w zapisie różniczkowania

dxc d 1Nowe równanie różniczkowe bedzie miało postaća _ 2a _l_ dH^i + u _ a) HU) a 0 aę2 № aęlub _ 2 g ^12 + ( -A------ 1 i H(^) - o. (11.38) dr d 5 \ a /Próbną funkoje H(g) możemy założyć różnej postaci; najprościej jest wyrazić H(§) za pomocą wielomianu sH(§) = ak £k + ak+1 §k+1 + ... - ^ ar 5r« (11.39)r»kWielomian H(ę) nie może składać sie z nieskończonej liczby wyra­zów; w takim przypadku byłby szeregiem, a jego suma byłaby zbieżna do exp (£2). Wobec (11.36) mielibyśmy. H(j) .-S2« .a więc funkcję nie dającą się znormalizować. Na tej podstawie wnosi­my, że H(ę) musi się składać ze skończonej liczby wyrazów,czyli mu­si być wielomianem.Pierwszą i drugą pochodną H(ę)- k(k - 1) ak gk"2 + (k + 1) kak . gk"1 + (k + 2)(k + 1 )ak 2ęk+...podstawiamy do (11.38).Otrzymamy równośćk(k - 1) ak 5k~2 + (k + 1) kak+1 §k“1 + (k + 2)(k + 1) ak+2 £k ++ ... = (2k - + 1) ak £k (11.40)



252 Wielomiany po obu stronach tej równości mają być identyczne, tzn. muszą mieć jednakowe współczynniki przy tych samych potęgach § . Wo­bec tego możemy napisać dwie następujące równościk(k - 1) = 0, (k + 1)k » 0. (11.41)Pierwsza z nich prowadzi do wniosku, żek = 0 lub k - 1. (11.42)Przypadek k = -1, wynikający z drugiej równości musi być odrzu­cony, ponieważ £ —► 0 d 1/g—♦<»= . Widzimy zatem, że wielomian (11.39) może się zaczynać od wyrazu stałego aQ lub od wyrazu a1 £. Wyrażenie do obliczenia współczynników ak wielomianu otrzymamy przez porównanie współczynników przy $k równości (11.40)(k + 2)(k + Dak+2 - (2k + 1 - $-)ak, stąd . = (2k + 1 - A./a) _ r, iak+2 = (FTWTTJ 8k* (11.43)Wzór (11.43) umożliwia obliczenie współczynnika ak+2» 3®^li zna­my ak i nosi nazwę wzoru rekurencyjnego dla współczynników a^. Z ta­kiej postaci wzoru wynika, że będziemy mieć dwa typy wielomianów (11.39)« jeden z nich zawiera tylko nieparzyste, a drugi tylko parzy­ste potęgi £.Niezależnie od parzystości wyrazów wielomian H(§) musi się koń­czyć na pewnym wyrazie an §n. Warunkiem tego jest zerowanie się współ­czynnika an+2» czyli 2n + 1 - ~ - 0. (11.44)Po podstawieniu do (11.44) oznaczeń z (11.34)«En - h v(n + £ ). (11.45)Wzór (11.45) przedstawia energią zbioru dozwolonych stanów ener­getycznych oscylatora harmonicznego, n jest liczbą kwantową i może przybierać wartości n=0, 1, 2, ... Energia oscylatora jest więo kwantowana lnie znika nawet w najniższych temperaturach, gdy obsadzone są stany z n ■ 0. Najmniejsza energia oscylatora, zwana energią ze­rową, wynosi Bo ’ | h v. (11.46)Można pokazać, że wynika ona z zasady Heisenberga (por.rozdz. 10).



253Funkcje falowe oscylatora harmonicznego mają postać r 2* Q(x) = Nn . Hn( 5) • e^ /2.Nn jest czynnikiem normalizacyjnym (11.47)
(11.43)Hn( 5) jest wielomianem o współczynnikach (11.43)i nosi on nazwę wielomianu Hermitte'a. Kilka pierwszych wielomianów (dla małych n) ma następującą postać Ho(£) - 1,H/5) - 25,H2U) » 4 52 - 2, H3U) - 85 3 - 125, h4<5) - 165 4 - 485 2 + 12.Funkcje falowe (11.47) dla poszczególnych n mają następujące po­stacie -1/4 o ̂ 2’

* i(?) - <4* f?)1/2 ®“s2/2’* 2(^ - {4?2 - ^"52/2»* 3(ę) “ {8 ■ 124 •”?2/2»
^■^^1/2{^4-^Wykresy kwadratu modułu funkcji falowej, (p 2(5), określającej gę­stość prawdopodobieństwa położenia oscylatora, są przedstawione na rys. 11-4, dla stanów od n = 0 do n = 3. Na tych samych wykresach zaznaczono linią przerywaną analogiczną funkcję dla oscylatora ma­kroskopowego, np. wahadła. Gęstość prawdopodobieństwa dla oscylatora makroskopowego rośnie do nieskończoności w punktach powrotu (przy wy­chyleniach równych amplitudzie drgań), ponieważ w tym punktach pręd­kość oscylatora osiąga wartość zero, natomiast <p2(5) dla oscylatora kwantowego zależy od stanu oscylatora: dla n ■ 0 cp2(5) osiąga mak­simum dla 5 ■ 0, dla n » 1 wystąpują dwa maksima, itd. Warto też
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Rys. 11-4zauważyć, że <p^(§) przyjmuje wartości różne od zera również dla war­tości 5 większych od klasycznej amplitudy.11.5. Bariera potencjalna

x = aRys. 11-5zienia się jej w obszarze 3 z tą

Rozważmy obecnie zagadnienie prawdopodobieństwa przechodzenia cząstki mikroskopowej przez barierę potencjału, która w najprostszym przypadku ma kształt prostokątny (rys. 11-5). Bariera zaczyna się w punkcie x = 0 pionową ścianą po­tencjalną i taką ścianą kończy w punkcie x » d; d jest więc szero­kością bariery, Uq jej wysokością. Cząstka o energii całkowitej E «=UQ uderza barierę z lewej strony,w ob­szarze 1, a problem polega na o- kreśleniu prawdopodobieństwa znale- samą energią E. Z punktu widzeniamechaniki klasycznej pojawienie się cząstki w obszarze 3 jest niemoż­liwe, ponieważ przedtem musiałaby pojawić się w obszarze 2, gdzie (E - UQ) <0, a więc prędkość cząstki jest urojona.



255Przyjmiemy, że energia potencjalna cząstki w obszarze 1,2,3 speł­nia następujące warunkidla x < 0 i x > d U = 0, ► dla O <№Sd Uo ° const.Równanie SchrBdingera dla obszaru 1 i 3 ma postaćd2 n ,(x) 8 x2m---------------  + -----5- E <p . ,(x) = 0,zaś dla obszaru 2d2 <p2(x) 8 Tt2m------ 5----- + -----5- (E - U ) <p9(x) = 0.

(11.49)

oraz
Jeśli oznaczymy wielkości stałe8 Km „ ,2—y- E = ,n 2§-2^ (E - UQ) = k2, hto rozwiązania możemy zapisać w następujący sposób(|>1(x) = ai e^1x + bl e"^k^X, ik2x -ik2x<p 2(x) = a2 e + b2 e , ik1x4>j(x) = a^ eW rozwiązaniach (11.51) przyjęliśmy b^ = oczekiwać w obszarze 3 cząstki, poruszającej

(11.50)

(11.51)
0, ponieważ nie ma sensu się w kierunku przeciw­nym do zwrotu osi x.Funkcje (11.51) opisują stale tę samą cząstkę, zatem powinny być ciągłe w punkcie x = 0 i x = d. Ciągłe muszą być także ich 'pochodne,przy czym uzasadnienie pomijamy; łącznie warunki ciągłości przedsta­wiają się następująco<p (0 ) = (p 2(0 ), (p 2(d) = (p ^ ( ń ),

Zastosowanie (11.52) do funkcji (11.51) prowadzi nas do czterech równań o pięciu niewiadomych



256 a^ + b1 » a2 + b2, ikgd -ikgd ik..dag e * + bg e 4 = aj e ,

* (k2 + k2) e2^ - (k1 + ik)4 - (k.j - ik)4 + (k, + k2)2 e"2kd ’Wyrażenie określające D w tej postaci jest mało użyteczne - trzeba je uprościć. Łatwo się przekonać, że

k1a1 - k^b^ = k2a2 - kgb2, ikgd -ik?d ik.dk2a2 e - k2b2 e = k^^ e
(11.53)

W celu zredukowania liczby niewiadomych przyjmiemy, że dla stru- mienia cząstek padających a1 = 1. Założenie takie równoważne jest dwustronnemu podzieleniu każdego z równań przez a^ i obliczaniu sto­sunków a^/a-j lub b^/b.]. Zachowamy jednak dotychczasowe oznaczenia. Najbardziej interesujący jest współczynnik a^, określający prawdopo­dobieństwo przeniknięcia cząstek przez barierę potencjalną. Rozwiąza­nie układu równań (11.53) prowadzi do wyrażeniaik.d4 ^k e 1a3 =;------------t z------------7“^ * (k1 + kg)*  e - (k1 - kg) e *Przezroczystością D bariery potencjalnej nazywaó będziemy kwad­rat modułu a^ C a a3 • a*  . (11.54)Obliczając D zauważmy, że k^ jest współczynnikiem rzeczywis­tym, zaś k2 urojonym. Wobec tego^1 = ^2 m B; (11.55) k2 = V2m(U0- E)‘ = ik.Obliczamy obecnie przezroczystość barieryD « a^ a * = 4 (ik) • 4 k^-ik) {(k^7"ik)?eE;I_3~(^T7U?r:rayjcę^(4 ^k)2



257(k1 + ik)4 + - ik)4 1 f/k^2 / k\2] 3(4 ^k)2 8 [\ k / / J 4Ponieważ pierwszy z wyrazów po prawej stronie jest mniejszy od +1. czwarte potęgi dwumianów możemy w mianowniku opuścić. Człon w mianow­niku zawierający exp (-2kd) jest znacznie mniejszy od pozostałego} w rezultacie wyrażenie przybliżone ma postaćD = C exp (-2kd) - C expj- y2m(UQ - E)‘ • , (11.56)gdzie C jest stałą, rzędu jedności. Przezroczystość bariery poten­cjalnej zależy zatem od masy cząstki potencjalnej, od szerokości ba­riery d oraz od wielkości (UQ - E), zwanej głębokością penetracji.Jeśli interesujemy się elektronem i głębokość penetracji oznaczy­my przez V, to (U - E) = V eV »1,60 -10“13. V dżuli,przy czym 0 <UQ. Mamy wówczasy 2m(u0 - E)' = 1,02*10^° fT m-1 oraz D = exp (-1,O2«1O10 d ^V), przy czym przyjęliśmy C = 1. Względna przepuszczalność barier różnej szerokości przy głębokości penetracji V = 1 eV jest następującaV = 1 eVd (w 2) 1 1,5 2,0 5 10D (w &) 36 28,5 13 0,6 3,7«1O-3Barierę można uważać za względnie przezroczystą dla elektronu przy głębokości penetracji 1 eV, jeśli jej szerokość nie przekracza kilku angstremów.



12. J|DRO ATOMOWEJądra atomów, oprócz wodoru, wykazują budowę złożoną. Niektóre z nich są nietrwałe i ulegają rozpadowi w sposób naturalny.Większość ją­der atomów może być doprowadzona do stanu nietrwałości za pomocą bom­bardowania cząstkami o wysokiej energii. Zjawiska te stanowią przed­miot zainteresowań fizyki jądrowej i chemii jądrowej - gałęzi nauki, zmierzających do poznania budowy i znalezienia sposobów wyzwolenia oraz praktycznych zastosowań zasobów energii, tkwiących w jądrze ato­mowym. Mimo, iż dziś dalecy jesteśmy od stwierdzenia,że szczegóły bu­dowy jądra są nam znane, istnieją liczne i ważne zastosowania uzyska­nych dotychczas wyników badań naukowych.Zajmiemy się w tym rozdziale opisem podstawowych faktów doświad­czalnych i praw z dziedziny fizyki jądra atomowego. W końcowej części omówimy jeden z modeli jądrowych.12.1. Defekt masy i energia wiązania jądra ij oraz zJak wiadomo, każdy atom składa się z jądra o masie melektronów, z których każdy ma masę m„. Jeśli Z jest liczbą porząd­kową jądra, to ogólna masa m elektrycznie obojętnego atomu wynosim = m. + Z • m3 e (12.1)W fizyce jądowej masy wyraża się zwykle w liczbach względnych, za pomocą tzw. masy atomowej M, przyjmując obecnie za jednostkę masy 1 /12 masy jądra izotopu węgla ^2C.1 j.m.at. = • y? -10“26 kg = (1 ,66043 - 7*1O"5)*1O-27 kg.W takim razie m = 1,66 • 10“27 • M kg. (12.2)
2Na podstawie związku E = o *m, jednostce masy atomowej odpowiada energia wyrażana najczęściej w megaelektronowoltachE = 1 j.m.at. x c2 = 1,66043*1O-27 x (2,998*108)2 dżuli = 931,5 MeV .



259Oprócz masy atomowej M używa się jeszcze w fizyce jądra atomo­wego pojęcia liczby masowej A: jest to liczba całkowita najbliższa M.Podstawowymi składnikami budowy jądra są protony i neutrony, no­szące wspólną nazwę nukleonów; ich masy spoczynkowe są następującemasa spoczynkowa protonu nip = 1,007271 i 1*10“^ j.m.at.,masa spoczynkowa neutronu = 1,008665 - 1’10~^ j.m.at., masa spoczynkowa elektronu mg = (5,486 i 0,001 )*10”4 j.m.at.Jądro o liczbie porządkowej Z i liczbie masowej A zawiera więc Z protonów i (A - Z) neutronów. Masa atomowa takiego jądra powinna wyposić Z^nip + (A - 2)mn. Okazuje się jednak, że masa jądra nie jest wielkością addytywną: rzeczywista masa atomowa jądra jest zawsze mniej­sza od sumy mas wchodzących w- jego skład nukleonów. Jeśli tę rzeczy­wistą masę oznaczymy przez gM, to różnicaZ mp + (A - Zjn^ - gM = AM >0 (12.3)

gM^-MeV. (12.4)
nosi nazwę defektu masy i jest miarą trwałości jądra.Defekt masy rów­ny jest enei-gii, która wydzieliłaby się podczas syntezy jądra z nu­kleonów. Po podstawieniu znanych mas nukleonów możemy zapisać (12.3) w postaciAM = 931,5 |l,007277 Z + 1,008665 (A - Z) -Korzystając z tabeli mas izotopów można obliczyć AM poszczegól- 7nych jąder, np. masa atomowa ^Li wynosi 7,01572; po odjęciu masy trzech elektronów otrzymujemy rzeczywistą masę jądra 7,014074 j.m.at. Ponieważ suma mas trzech protonów i czterech neutronów wynosi 7,056491, zatem defekt masy jądra litu wynosiM = 0,042417 j.m.at. = 39,5 MeV.Podczas syntezy 1 mola ^Li (7 g) z nukleonów uwolni się energia AE = AM*N 'c^ J = 3,81»10^2 J. Energia ta równa jest ciepłu,jakie wy- o 19 5 7dzieli się podczas spalania 3,81*10 /3,92*10' = 10 moli węgla » = 120 t węgla (ciepło spalania 3,92*10^ J/mol). Wydzielające się w takich procesach jądrowych ilości energii są tak znaczne,iż można by­ło dokonać bezpośredniego sprawdzenia relacji Einsteina między masą i energią przez pomiary kalorymetryczne.Jest oczywiste, iż wartość defektu masy zależy od liczby masowej A jądra: dla jąder cięższych jest on na ogół większy, niż dla lżej­szych. Ogólny defekt masy AM nie jest dlatego dobrą wielkością,jeś­li zależy nam na porównywaniu względnej trwałości różnych jąder.Właś­ciwą miarą trwałości jądra jest iloraz aM/A, zwany energią wiązania
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Rys. 12-1jednego nukleonu w jądrze. Funkcja A M/A w zależności od A jest przed­stawiona na wykresie 12-1; powyżej A = 30 krzywa zmienia się niewie­le, tak że możemy przyjąć, iż dla jąder cięższych od A = 30 energia wiązania jednego nukleonu w jądrze zmienia się w granicach 7-9 MeV. Jądra lżejsze są na ogół mniej trwałe; wyjątkami są2He’ 1°»które należą do najtrwalszych ze wszystkich jąder. Widocznie takie kombinacje nukleonów zapewniają jądrom pierwiastków dużą stabilność.12.2. Naturalne przemiany promleniotwórozeOdkrycie Becąuerela (zaczernienie kliszy fotograficznej przez mi­nerały zawierające uran), a następnie pionierskie prace Marii i Pio­tra Curie (wydzielenie nowych pierwiastków radu i polonu, 1898 r.) do­prowadziły do stwierdzenia, że jądra niektórych atomów są nietrwałe i ulegają spontanicznemu rozpadowi. Procesom tym towarzyszy emisja czą­stek a (jądra ^He) lub p (szybkie elektrony) i zwykle promienio­wania y (promieniowanie elektromagnetyczne o długości fali krótszej od promieniowania rentgenowskiego). Ogólną teorię szybkości rozpadu promieniotwórczego sformułował w 1900 r. Rutherford.W myśl tej teorii chwilowa szybkość rozpadu promieniotwórczego jest proporcjonalna do liczby jąder określonego nuklidu, istniejącej w danej chwili. Nuklidem nazywamy pierwiastek o określonych Z i A. Jeśli przez N oznaczymy liczbę jąder nuklidu istniejących w chwili t, to - dN/dt oznacza liczbę jąder zanikających (znak -) w ciągu jed­nostki czasu, czyli chwilową szybkość rozpadu. W myśl prawa Ruther­forda możemy napisać - H » X • N. (12.5)



261(12.5) jest równaniem różniczkowym szybkości rozpadu; możemy je łatwo scałkowaó poprzez rozdzielenie zmiennychdN .czyli In N = - X • t + const.Ponieważ t = O N = NQ, czyli NQ jest liczbą jąder istnieją­cych na początku obserwacji, const = In Nq orazIn = - A t (12.6)lub 0N = No • e-^. (12.7)Stała A ma wymiar odwrotności czasu i nosi nazwę stałej rozpadu promieniotwórczego. Prócz stałej rozpadu używa się często pojęcia cza­su połowicznego zaniku (lub okresu połówkowego)-,; , zdefiniowanego w następujący sposób: t jest okresem czasu, po którego upływie począt­kowa liczba jąder maleje do połowy. Na tej podstawie możemy napisaći N = N «e-^, c O O czyli A = In 2. (12.8)Widzimy, że okres połówkowy jest odwrotnie proporcjonalny do sta­łej rozpadu.Rozpad promieniotwórczy nuklidu A, z utworzeniem nuklidu B, bieg­nie często dalej, tj. B rozpada się z utworzeniem nuklidu C, itd. Ma­my w tym przypadku do czynienia z szeregiem następczych reakcji roz­padu A —» B —> C —> ...Jeśli szybkość powstawania nuklidu B z A równa jest szybkości rozpadu B, to powiadamy, że B jest w równowadze z A. Ponieważ szyb­kość powstawania B jest równa szybkości zaniku A, mamy więcd N, d N.B _ _ A dt dt NAZ drugiej strony, szybkość zaniku B zależy od stałej rozpadu Agd NB dt *B * NBPorównanie obu szybkości prowadzi do warunku równowagi nuklidu B z A
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^'A ^A “ (12.9)a więc dwa nuklidy A i B są ze sobą w równowadze promieniotwórczej , jeśli w każdej chwili liczby ich jąder są odwrotnie proporcjonalne do ich stałych rozpadu»Do praw opisujących rozpad promieniotwórczy pod względem ilościo­wym, należą prócz (12.5) i (12.9) dwa prawa sformułowane przez Bajan- sa i Soddy'ego, określające metryki Z i A nuklidu po przemianie a oraz p. Są one powszechnie znane, dlatego nie będziemy się nimi tu zajmowali. 12.3. Metody detekcji cząstek jonizującychSzybkie cząstki naładowane, emitowane przez naturalne pierwiastki promieniotwórcze lub w reakcji sztucznej promieniotwórczości,posiada­ją własność wytwarzania jonóws w czasie ich ruchu w ośrodku gazowym powstają wskutek oddziaływań elektrostatycznych wolne elektrony oraz jony dodatnie. Znanych jest obecnie wiele metod detekcji cząstek jo­nizujących. opartych zarówno na bezpośrednim wykorzystaniu efektów związanych z ruchem cząstki, jak też na wykorzystaniu efektów wtór­nych. 12.3.1. Komora jonizacyjnaMetoda ta przedstawiona jest schematycznie na rys, 12-2. Zbiornik metalowy K, zaopatrzony w okienko 0 i dwa izolatory ₽, i ?2’ a'fcanowi

w gruncie rzeczy osłonę elektrostatyczną kondensatora S^Sg. Jedna z jego okładek jest uziemiona, druga połączona szeregowo z wysokocmowym opornikiem R i baterią B. Elektrometr 3 mierzy spadek napięcia na komorze w sposób elektrostatyczny ze względu na duże oporności,wy­



263stępujące w tym obwodzie. Każda cząstka jonizująca, która wpadka przez okienko 0, wytwarza jony; zasada wykorzystania komory jonizacyjnej o- piera się na pomiarze zwiększonego przewodnictwa gazu w obecności jo­nów, 12.3.2. Licznik Geigera-MdlleraJest to bez wątpienia najprostszy i najczęściej dziś stosowany de­tektor, Jego rozpowszechnienie wynika nie tylko z prostoty konstruk­cji; zaletą jest również duża uniwersalność (zliczanie cząstek a, p i y) oraz to, że pracuje metodą impulsową.

W najprostszym wykonaniu jest to cylinder metalowy -M (rys. 12-3), zamknięty z jednej strony cienką folią, stanowiącą okienko 0, z dru­giej izolatorem 2. Wewnątrz cylindra znajduje się wypełnienie gazo- wes najczęściej argon z niewielką domieszką par alkoholu metylowego pod łącznym ciśnieniem około 10 mm Hg. Osłona stanowi elektrodę ujem­ną, zaś dodatnią jest cienki drucik; bateria B dostarcza napięcia 1000-2000 V. Przy tych parametrach jony, powstające wzdłuż śladu czą­stki jonizującej, są rozpędzane do dużyoh szybkości i wywołują wtórną jonizacje; w rezultacie wytwarza się lawina jonów, powodująca prze­pływ sporego prądu przez opornik R. Impuls elektryczny jest przeka­zywany dalej poprzez 0 do układu elektronicznego i rejestrującego.Po­jawienie się dużego prądu w liczniku tuż po wejściu cząstki odpowiada "zapaleniu się'6 licznika, tj. powstaniu wyładowania ciągłego między 



264jego elektrodami. W tym stanie licznik nie reaguje na następne cząst­ki wchodzące przez okienko, wobec czego stan ten należy przerwać.Słu­ży do tego celu obecność par związku organicznego w niewielkim stęże­niu, np. metanolu, którego cząsteczki przechwytują energię rozpędzo­nych elektronów i jonów za pośrednictwem zderzeń. Same ulegają przy tym dysocjacji na nieprzewodzące prądu rodniki, ale właśnie to powo­duje przerwanie lawiny. Wyładowanie gaśnie.rodniki ulegają rekombina­cji i licznik znów może zarejestrować następną cząstkę.Widać zarazem, że na przerwanie lawiny oraz powrót licznika do stanu podstawowego po­trzebny jest pewien skończony przedział czasu - jest on ważnym para­metrem licznika i nosi nazwę czasu rozdzielczego. Licznik zarejestru­je dwie cząstki jako oddzielne zdarzenia, jeśli wejdą one do licznika 
w odstępie ozasu nie krótszym, niż czas rozdzielczy. We współczesnych licznikach Geigera-lKlllera czas rozdzielczy wynosi milisekundy.12.3.3. Komora WilsonaKomora, skonstruowana przez Wilsona jest jednym z najważniejszych urządzeń w badaniach należących do fizyki jądrowej. Komora pozwala prawie bezpośrednio "zobaczyć" ślad cząstki jonizującej,a ponadto można mierzyć jej prędkość, energię, zasięg, a także z wyglądu śladu odróż­niać np. elektrony 3 od cząstek a.

W cylindrze metalowym, zamkniętym u dołu tłokiem (rys.12-4), mamy w temperaturze pokojowej gaz z nasyconą parą wodną,co ilustruje obec­ność kropli wody. Po przesunięciu tłoka w dół na tyle szybko, by pro­ces można w przybliżeniu traktować jak adiabatyczny, następuje obni­żenie temperatury gazu zamkniętego w cylindrze, wobec czego para wod­na staje się parą przesyconą. Jest to etan metastabilny i trwa bardzo krótko^ w chwilę później pojawiają się kropelki wody na wszelkich 



265drobnych pyłkach - zwłaszcza na jonach, stanowiących doskonałe zarod­ki kondensacji kropelek.Jeśli w ciągu krótkiego odstępu czasu między rozprężeniem, a sa­morzutną likwidacją stanu przesycenia wewnątrz komory znajdzie się cząstka, to kropelki wody będą ulegały kondensacji głównie wzdłuż jej śladu. Jednoczesne oświetlenie pozwala na sfotografowanie śladu cząs­tki wewnątrz komory. Współczesne układy elektroniczne pozwalają na synchronizację poszczególnych czynności, jak również na selekcję cząs­tek o pewnych zdeterminowanych własnościach. Można, na przykład, za­jąć się rejestracją cząstek o energii przewyższającej zadaną wartość progową lub rejestrować cząstki przychodzące z określonego kierunku. Ostatnie uwagi odnoszą się również do zastosowania liczników Geigera- Mttllera w tzw. układach koincydencyjnych. Można również umieścić we­wnątrz komory Wilsona preparat promieniotwórczy i zajmować się w róż­nych warunkach pomiarem zasięgu emitowanych przezeń cząstek.Zasięg cząstek zależy między innymi od ich prędkości,lub energii. Dla cząstek bardzo szybkich bywa w ośrodku gazowym tak duży, że nie można obserwować całego śladu cząstki w komorze Wilsona o rozsądnych wymiarach. Dlatego skonstruowano cieczowy analog komory,znany pod na­zwą komory pęcherzykowej, w której ośrodkiem wypełniającym jest ciek­ły wodór. W cieczy, jaką stanowi skroplony gaz, rożna również wytwo­rzyć etan metastabilny przez nagłe obniżenie prężności pary nad cie­czą. Wzdłuż śladu cząstki jonizującej pojawiają się wówczas drobne pęcherzyki pary, pozwalające na uzyskanie fotografii toru cząstki.12.3.4. Blok emulsji fotograficznejDo obserwacji ruchu cząstek o najwyższych energiach, stanowiących na przykład składniki promieniowania kosmicznego, używa się niekiedy bloków emulsji fotograficznej. Jest to prostopadłościan wykonany z halogenku srebra wraz z potrzebnymi dodatkami, zawieszonych w żelaty­nie. Po zarejestrowaniu śladu jednej (lub kilku) cząstki blok tnie się na cienkie warstwy, wywołuje, utrwala i suszy. Po złożeniu poszczegól­nych fragmentów bloku uzyskuje się przestrzenny obraz ruchu cząstki szczególnie interesujący wtedy, gdy jej ślad kończy się w obszarze bloku jakąś dezintegracją. Rozpoznanie powstających cząstek, pomiar zasięgu i kątów rozproszenia umożliwia niekiedy pełny opis wywołanego rozpadu. 12.3.5. Licznik scyntylacyjnyJest to ostatnio coraz częściej stosowany detektor przede wszyst­kim promieniowaniaY lub rentgenowskiego. Jego zasadniczą częścią 



266jest foto powielacz, z przyklejonym do powierzchni czołowej kryształem scyntylacyjnym K (rys. 12-5). Jako scyntylatora używa się kryształu jodku sodu, zawierającego niewielką domieszkę jodku talawego (NaJ.TlJ)} spośród związków organicznych dobrym scyntylatorem jest antracen.Kwan-

ty Y absorbowane przez te kryształy, powodują wzbudzenie centrów lu- minescencji; powrót centrów do stanu podstawowego połączony jest z emisją promieniowania widzialnego, rejestrowanego przez fotopowialacz. Sprawność konwersji kwantów y w kwanty promieniowania widzialnego wy­nosi kilka procent, natomiast dużą zaletą liczników scyntylacyjnych jest ich bardzo mały czas rozdzielczy: w większości przypadków jest «m Qon rzędu 10 s. Liczników scyntylacyjnych używa się również do detek­cji elektronów p, cząstek a, a także powolnych neutronów.12.4, Rozpad aCząstka a, opuszczająca jądro w procesie naturalnej przemiany promieniotwórczej, porusza się w dalszym ciągu w ośrodku, najczęściej gazowym. Wskutek strat energii związanych z produkcją jonów, cząstka zostaje wyhamowana do tzw. prędkości termicznej, odpowiadającej ener­gii translacji 3/2 ki cząsteczki gazu. Odcinek drogi, przebyty przez cząstkę a w suchym azocie (lub powietrzu) w warunkach normalnych od miejsca jej wyrzucenia do zatrzymania, nazywamy zasięgiem R cząstki. Jest zdumiewające, że określony nuklid emituje cząstki a o ściśle o- kreślonym zasięgu} fluktuacje R zdarzają się nadzwyczaj rzadko.Ta cecha zasięgu pozwoliła na ustalenie związku między R a stałą roz­padu promieniotwórczego A, znanego pod nazwą prawa Geigera-Nuttalla: logarytm zasięgu R cząstki a jest proporcjonalny do logarytmu stałej rozpadu In R = a In A + b, (12.10)gdzie a i b są stałymi charakterystycznymi dla określonego nuklidu. Innymi słowy: im szybciej rozpada się pierwiastek promieniotwórczy, tym większy mają zasięg emitowane przezeń cząstki a.Prawidłowość tę łatwo wyjaśnić jeśli przyjmiemy, że jądro jest o- toczone barierą potencjalną. 0 istnieniu tej bariery wiadomo z doś­



267wiadczeń md bombardowaniem Jąder cząstkami naładowanymi. Znaleziono mianowicie, że do jądra może wniknąć cząstka atakująca dopiero wów­czas, gdy jej energia kinetyczna jest dostatecznie duża. Świadczy to niewątpliwie o istnieniu bariery potencjału, choć o jej szczegółowym kształcie w pobliżu jądra nie wiemy nic pewnego. Wiadomo jedynie, że w odległościach "dostatecznie” od jądra dalekich bariera ma kształt potencjału kulombowskiego, co wynika z doświadczeń Rutherforda doty­czących rozpraszania cząstek a przez jądra atomów (por. rozdz. 3.3). Za "dostatecznie" dużą można uważać odległość przewyższającą 10 śred­nic jądra. Model takiej bariery jest przedstawiony na rys.12-6$ przyj­mujemy, że jądro znajduje się w punkcie (0,0). Jeśli energia cząstki a wyrzuconej z jądra, a więc i jej zasięg są małe, to cząstka uderza
U(r)

Rys. 12-6Jądro

w barierę na dole, gdzie prawdopodobieństwo przejścia jest małe. Dla takiej cząstki bowiem i szerokość bariery i głębokość penetracji są duże. Wobec małych szans- na emisję, pierwiastek ma długi czas życia, czyli małą stałą rozpadu. Jeśli zaś cząstki a wyrzucane przez jakieś inne jądro mają energię dużą, prawdopodobieństwo przejścia przez ba­rierę jest również duże, co odpowiada dużej stałej rozpadu.12.5, Emisja Y i poziomy wzbudzone jąderEmisja promieniowania y jest zjawiskiem towarzyszącym emisjiPs po wyrzuceniu cząstki jądro znajduje się w stanie wzbudzenia i po­wrót do stanu podstawowego jest połączony z emisją kwantu y. Stanów wzbudzonych może być więcej niż jedenj stanowią one charakterystyczny dla każdego jądra układ stanów dyskretnych. Przykładem reakcji rozpa­du, połączonej z emisjąy, może być rozpad polonu



268 210po^ 206pb*84 82 Pb 82Gwiazdką zostało oznaczone jądro Pb w stanie wzbudzonym. Energe­tyczny schemat tej reakcji jest podany na rys. 12-7; mamyE9 - E. = E , E. - E = hv, k 1 a i 0gdzie Ea oznacza energię oząatki a , zaś Eq energię stanu podstawo­wego. Jest to bardzo prosty schemat z jednym stanem wzbudzonym (E.);
1 3często bywa ich więcej, np. jądro węgla gC ma co najmniej 5 stanów wzbudzonych.
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82' ° LoRys. 12-7Emisja promieniowania y pochodzenia jądrowego powoduje wybicie z atomu elektronu z warstwy K lub L z wydajnością bliską 100%. Jest to przykład swoistego efektu fotoelektrycznego, noszącego nazwę konwer­sji wewnętrznej. Procesowi konwersji towarzyszy emisja promienia rent­genowskiego, co bardzo komplikuje obraz emisji promieniowania elek­tromagnetycznego przez jądro.12.6. Rozpad BNie znany jest obecnie mechanizm powstawania elektronów w emisji B; wiadomo jednak, iż elektronów w jądrze nie ma - brak na to dosta­tecznie przekonywających przesłanek za równo teoretycznych, jak i do­świadczalnych. Wiadomo również, iż widmo energetyczne elektronów B jest ciągłe, tj. określony nuklid, ulegający rozpadowi B» emituje elektrony o dowolnej energii z przedziału od zera do pewnej górnej granicy, którą oznaczymy Em. Takie przesłanki doświadczalne w połą­czeniu z wymaganiami zasady zachowania energii i pędu doprowadziły Pauliego do postawienia w 1931 r. hipotezy, że emisji elektronów B 0 energii mniejszej od Em towarzyszy emisja nowej, dotychczas nie zna­nej cząstki, a mianowicie neutrina.



269Własności tej hipotetycznej cząstki oznaczanej literą v, wydedu- kowane przez Pauliego były następujące» masa zmienna i znacznie mniej­sza od masy elektronu, ładunek zero. Założenie, że neutrino istnieje, pozwoliło na wyjaśnienie rozpadu p według schematu pokazanego na rys. 12-8. Nuklid po emisji elektronu p o maksymalnej energii E2, " A • mprzechodzi w nuklid w stanie wzbudzonym, ten emituje kwant hv przechodząc do stanu podstawowego. Jądro gX może jednak emitować elektrony p o energii E'^«^ wtedy dodatkowo jest wyrzucaneneutrino o energii potrzebnej do osiągnięcia stanu E1. Gdy energia elektronu jest mała, wówczas energia neutrina jest duża, i na odwrót.

Doświadczalne wykrycie neutrina nie było łatwe z powodów, które podamy w rozdziale 13. Dlatego dopiero w 1956 r. Reines i Cowan donie­śli o eksperymentalnym potwierdzeniu hipotezy Pauliego.12.7. Akceleratory cząstek naładowanychIstnienie wokół jąder bariery potencjału stanowi dośó znaczną przeszkodę, utrudniającą zbliżenie sią cząstki naładowanej i następ­nie wniknięcie jej do jądra. Pokonania tej bariery możliwe jest tylko dla cząstek o dostatecznie dużej energii, dlatego jednym z ważnych zadań fizyki jądrowej jest przyspieszanie cząstek naładowanych do du­żych prędkości za pomocą odpowiednich urządzeń, zwanych akceleratora­mi lub przyspieszaczami.Jeden z najprostszych akceleratorów, generator Van De Graaffa, zo­stał opisany w rozdziale 6.2.2. Uzyskiwana metodą elektrostatyczną 



270różnica potencjałów o wielkości kilku megawoltów umożliwia rozpędze- nie w rurze do wyładowań protonów lub cząstek a do energii rzęćki kil­ku megaelektronowoltów.

Rys. 12-9

Do znacznie skuteczniej dzia­łających akceleratorów należą u- rządzenia, pracujące cyklicznie^ cała ich rodzina zapoczątkowana została aparatem skonstruowanym przez Lawrenoe a i nosząca nazwę cyklotronu. Schemat cyklotronu jest przedstawiony na rys. 12-9. Płaska "puszka" metalowa rozcię­ta jest na dwa duanty, D1 i Dg wzajemnie od siebie izolowane i starannie ewakuowane. W pobliżu środka 0 wpuszczamy wiązkę po­wolnych cząstek naładowanych, przykładamy różnicę potencjałów między duanty, a prostopadle do ich powierzchni pole magnetyczne między duantami po- mag-o stałym pro-o indukcji B. Cząstki przyspieszone w szczelinie ruszają się dalej w przestrzeni ekwipotencjalnejj obecność pola netyoznego powoduje zakrzywienie ich toru w łuk okręgu mieniu.W następnym przejściu przez szczelinę możemy również przyspieszyć cząstki, jeśli zmienimy znak przyłożonej różnicy potencjałów. Duanty powinny być zatem zasilane przemienną różnicą potaicjałów U w , której częstość zmian łatwo wyznaczyć z następującego rozumowania. Z warunku (dla elektronów) evB = mv^/R możemy otrzymać promień toru elektro­nów: R = v/j(^)«B|. Czas obiegu wynosi t« 2 m R/v » 2 K /^(^)«Bj-, wo- beo czego potrzebna częstość kątowa w® 2it/t= (e/m)’B. Po dokonaniu dającej się przewidzieć liczby przejść strumienia cząstek naładowa­nych między duantami można je wyprowadzić przez cienkie okienko na zewnątrz aparatu. Oczywiście, cyklotron pracuje metodą impulsową: po "wstrzyknięciu" porcji cząstek następuje proces ich przyspieszania - następną porcję można przyspieszać dopiero po wyprowadzeniu pierwszej na zewnątrz.Po licznych ulepszeniach konstrukcyjnych cyklotron w Massachusets Institute of Technology (USA) o parametrach: Rmax “ 48 cm, B =1,8 Wb/m2 (1,8’10^ gausów) produkował deuterony o energii 18 MeV. Wartość ta jest prawdopodobnie górną granicą możliwości cyklotronu, ponieważ je­



271go konstrukcja i obliczenia oparte są na niezależności masy od pręd­kości, Jeżeli prędkości są duże, to wyrażenie określające częstość wrel zmian pola elektrycznego po uwzględnieniu wyrażenia relatywis­tycznego określającego masę ma postać“rei = B ”^2^/2’ (12.11) oWidać, że częstość ta nie jest stała, lecz maleje w miarę zbliża­nia się przyspieszonych cząstek ku obwodowi duanta. Przy stałej częs­tości <o cząstki wypadają z synohronizmu zmian pola i to stanowi głów­ne ograniczenie możliwości cyklotronu.Ulepszenie konstrukcji cyklotronu może iść w dwóch kierunkach:i. Można zmieniać częstość pola elektrycznego zgodnie z (12.11) (Weksler, McMillan). Metoda ta prowadzi do konstrukcji cyklotronu z modulowaną częstością, czyli tzw. synchrocyklotronu, Pier-wszy synchro- cyklotron uruchomiono na Uniwersytecie w Berkeley (California, USA); dostarczał deutrony o energii 200 MeV, cząstki a o energii 400 MeV. Potrzebny tu elektromagnes ma masę 4000 t i wytwarza pole magnetyczne o indukcji 1,5 Wb/m2 (15000 gausów). Różnica potencjałów U » 15 kV zmienia się z częstością od 11,5 MHz (początek) do 9,8 MHz (koniec).ii. Można dostrajać B, co prowadzi do konstrukcji synchrotronu (również Weksler, McMillan).Maszyny dostarczające cząstek naładowanych o tak wysokich ener­giach służą w fizyce jądrowej do produkcji cząstek elementarnyoh;moż- liwości w tym zakresie, zależnie od masy spoczynkowej cząstki elemen­tarnej, bardzo znacznie zależą od dużej prędkości cząstki produkują­cej. Do największych skonstruowanych dotychczas urządzeń należą kos- motron, wytwarzający cząstki o energii porównywalnej do obserwowanej w pierwotnym promieniowaniu kosmicznym i bewatron, dostarczający proto­nów o energii 6 GeV (6*10$ eV).12,8. Sztuczna promieniotwórczość i przekroje czynne jąderRozpędzone do dużych prędkości cząstki naładowane mogą wnikać do jądra atomowego, przez co w pierwszej fazie reakcji powstaje tzw.jąd­ro złożone; jego liczba porządkowa i masowa są równe sumie liczb po­rządkowych i masowych cząstki atakującej i nuklidu,stanowiącego "tar­czę". Jądro złożone ulega w krótkim czasie rozpadowi z emisją z regu­ły jednej cząstki i utworzeniem jądro końcowego, w większości przy­padków w stanie wzbudzonym. Prawdopodobieństwo trafienia jądra cząst­ką z zewnątrz jest na ogół bardzo małe - dyskusją czynników, od któ­rych ono zależy, zajmiemy się nieco później. Obecnie omówimy meoha- 
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Rys. 12-10

nizm ważniejszych reakcji z dziedziny sztucznej promieniotwórczości - dotychczas poznano ich bardzo dużo. Pierwszą taką reakcję, odkrytą przez Rutherforda, było "rozbicie" jądra azotu. Schemat doświadczenia jest przedstawiony na rys. 12-10. Niewielki odcinek rury, zaopatrzo­ny w dwa krany K1 i K2 służące do wymiany wypełnienia gazowego, zam­knięty jest z obu stron krążkamiP^ i ?2; drugi z nich posiada otwór 0. Wewnątrz znajduje się podstaw­ka S z niewielką porcją preparatu polonu, emitującego cząstki a. Otwór 0 zamknięty jest folią P wykonaną z glinu i o takiej grubo­ści, by całkowicie zatrzymać cząstki a. Z zewnątrz otwór jest zam­knięty ekranem, na którym obserwuje się błyski scyntylacyjne wywołane przez takie cząstki, które są zdolne przeniknąć przez P. Jeśli naczy­nie jest wypełnione na przykład dwutlenkiem węgla lub tlenem albo ewa­kuowane, to ekran E pozostaje zupełnie ciemny. Po wprowadzeniu do wnę­trza rury azotu, obserwuje się na ekranie błyski scyntylacyjne, któ­rych pochodzenie musi być związane z reakcją jądrową, wywołaną przez cząstki a. Mechanizm tej reakcji, trafnie odgadnięty przez Ruther­forda, jest następujący1 ^N + ^He (^P) -> ^0 + ]h.W wyniku pochłonięcia cząstki a przez jądro azotu powstaje jądro złożone fluoru, którego rozpad połączony jest z emisją szybkiego pro­tonu - jego zasięg w powietrzu wynosi około 40 cm. Reakcję tę można zapisać w skrócie N(a, p), kładąc na pierwszym miejscu w nawiasie czą­stkę atakującą, na drugim zaś emitowaną. Szybki proton przebija alu­miniową folię i wytwarza błysk scyn­tylacyjny na ekranie E. Można li­czyć te błyski na określonym wycin­ku powierzchni za pomocą lupy; jeś­li w podobny sposób zmierzymy licz­bę cząstek a , emitowanych przez preparat Po w kierunku tego samegoRys. 12-11 kąta bryłowego (po usunięciu foliiP), możemy oszacować wydajność tej reakcji, Okazuje się, że jest ona bardzo małas średnio jedna cząstka a na 50 000 powoduje rozbicie ją­dra azotu. Wynik ten oraz mechanizm reakcji zaproponowany przez Rut­



273herforda został później potwierdzony przy użyciu komory Wilsona. Ty­powy obraz rozbicia jądra azotu jest przedstawiony schematycznie na rys«. 12-11. Reakcji typu X(a, p) ulega więcej pierwiastków? np. tar- ozą X może byó bor, glin, krzem, siarka i inne.Inną bardzo ważną reakcją jest bombardowanie berylu cząstkami a : badanie jej doprowadziło do odkrycia neutronów. Odkryto bowiem w 1930 roku, że beryl bombardowany cząstkami a emituje przenikliwe promie­niowanie, nie wywołujące jednak jonizacji w komorze jonizacyjnej. Po przejściu tego promieniowania przez blok parafiny lub podobnej sub­stancji organicznej pojawiło się słabe działanie jonizacyjne. Podej­rzewano więc emisję protonów z parafiny pod wpływem "promieniowania y", które miałoby powstawać podczas bombardowania berylu cząstkami a.Jeś­li materiał parafiny oznaczymy dla krótkości przez X, to tę hipotezę możemy zapisać jako reakcję X(y, p). Próoz parafiny,powiększenie dzia­łania jonizacyjnego powodowały także inne substancje,niekoniecznie or­ganiczne, przy czym każda z nich czyniła to w sposób indywidualny.Wy­nika z tego, że reakcja X(y,p) zachodzi dla bardzo wielu X, co czyni ją nieprawdopodobną zwłaszcza, że stwierdzono istnienie określonej za­leżności między energią emitowanych "protonów", a liczbą masową X.Właściwe wyjaśnienie tej reakcji podał w 1932 r. Chadwick przyj­mując, iż pod wpływem cząstek a beryl emituje strumień neutronów według reakcji 4®e + *He (1^C) ->1fc + Jn.Powstający tu szybki neutron jest bardzo przenikliwy i nie wywo­łuje praktycznie jonizacji, ponieważ brak ładunku i krótki czas prze­bywania w pobliżu atomu nie stwarza warunków potrzebnych do wytwarza­nia jonów. Przejście neutronu przez blok parafiny lub innej substan­cji X interpretował Chadwiok jako proces spowolnienia, polegający na sprężystych zderzeniach neutronu z jądrami węgla lub wodoru podczas przechodzenia przez węglowodór. W każdym zderzeniu część energii neu­tronu zostaje przekazana uderzonemu jądru; dzieje się tak dopóty, do­póki energia kinetyczna neutronu nie zmaleje do wartości bliskiej 3/2 ki. Neutrony o takiej energii zwane są neutronami termicznymi.Za­nim osiągną prędkość ruchu termicznego stają się one "powolne"; takie neutrony mają niewielką zdolność jonizacyjną.Ze względu na duże znaczenie procesu spowalniania zajmiemy się o- becnie bliżej jego analizą. Ponieważ zderzenia jąder atomów spowalnia- cza, zwanego też moderatorem, z neutronami są sprężyste, do elemen­tarnego aktu zderzenia można zastosować prawo zachowania energii i pędu. Oznaczmy masę neutronu przez ma, a masę jądra m^ i przyjmij- 



274my, że wobec małych prędkości ruchu termicznego energię kinetyczną jądra 1/2 mjv| przed zderzeniem można zaniedbać.Jeśli prędkość neu­tronu przed zderzeniem wynosi vn, a prędkość obu cząstek po zderze­niu odpowiednio Yq i Vj, to zasady zachowania mają postaćI m^ = 1 m^ + | mjY^ 
mnvn = ^n + mjVj* Prowadzi to do dwóch równań liniowych 

(12.12)
-Vn * Vj ’ V (12.13)m^Yn + m^Yj = m^,z których możemy otrzymać wyrażenie na interesującą nas prędkość VQ neutronu po zderzeniu V = -v • —। n n km. (12.14)2Jeśli energię kinetyczną neutronu po zderzeniu, 1/2 mnVn oznaozy-my przez związek Tn, a przed zderzeniem przez TQn, to z (12.14) otrzymamy , „ .2m.T = T n onlub w przybliżeniu (po podzieleniu licznika i mianownika przez m^)2T = T n on A (12.15)

Aj+1Wzór (12.15) stanowi relację między energią kinetyczną przed i po zderzeniu z jądrem o liczbie masowej Aj. Widzimy, że jeśli Aj —»<*>, to Tn —» T0Q. W takim razie zderzenia z jądrami ciężkimi są niesku­teczne: nie ma praktycznie wymiany energii między neutronem a jądrem. Podobnie rzecz się ma w zderzeniu neutronu z jądrem o Aj <1, np. w zderzeniu z elektronem. Najbardziej skuteczne jest zderzenie z proto­nem} zachodzi wówczas całkowita wymiana energii. Wykres funkcji (12.15) w zależności od A. jest przedstawiony na rys. 12-12; kółkiem ozna­czono zakres Aj dla substancji, które ze względów praktycznych mogą mieć znaczenie jako moderatory. Należą do nich substancje,których li­czby masowe atomów lub cząsteczek nie przekraczają Aj a3O, Do takich substancji należy na przykład grafit: dla węgla Aj « 12. Jak będzie przebiegał proces spowolnienia na takim moderatorze?
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itd., aie zatem po k-tym zderzeniu z jądrem węgla energia neutronu wynie- 
= T on (12.16)

Przypuśćmy, że TQn = 1 MeV - jeet to zatem neutron "gorący1*.Jeś­li ohcemy otrzymać zeń neutron termiczny, któremu odpowiada energia = 0,02 eV, to potrzebna na to liczba zderzeń będzie równa. 1 log (o.s^io8) a «k = 2 "log rn/fTF 53,W jednym zderzeniu (®n/Ton) ” (13/11)”2 * 0,716 natomiast, czyli A T = 28,4%.Skutkiem bombardowania berylu cząstkami a jest zatem powstawanie neutronów; nie jest to jedyna reakcja tego typu. W ogólnym modelu re­akcji X(a, n) nuklidem X może być na przykład lit, bor i inne. Neu­trony produkowane w tych reakcjach odznaczają się dużą energią} zwyk­le występuje kilka grup neutronów o różnych prędkościach, odpowiada­jących nieciągłemu widmu energii, np. neutrony w reakcji Be(a,n) mogą mieć energię 13,7} 12,0} 7,6} 6,2 lub 4,6 MeV. Istnienia nieciągłego widma energetycznego świadczy o tym, że jądro końcowe może się znaj­



276dować w różnym stanie wzbudzonym. Reakcja z borem
1°B + $n —> (1^B) -» Jli + ajest często wykorzystywana jako metoda detekcji neutronów: ściany ko­mory jonizacyjnej wykłada się płytkami, zawierającymi związki boi"u. Wychwyt neutronów przez jądra boru powoduje emisję cząstek a, których obecność można stwierdzić zwykłymi metodami.Ze względu na swą elektryczną obojętość neutrony,zwłaszcza powol­ne, są nadzwyczaj skutecznymi pociskami jądrowymi. Prawie każdy nuk­lid ulega przemianom podczas bombardowania neutronami. Reakcji takich wymieniliśmy dotychczas kilka, w następnym paragrafie zajmiemy się skutkami bombardowania neutronami jądra uranu. Obecnie warto jeszcze wspomnieć, iż ze względu na fizykę jądra atomowego interesująca jest reakcja 1 1 . 2+ ^n p + h vdowodząca bezpośrednio, iż jądro deuteru jest złożone z dwóch cząs­tek: neutronu i protonu. Pogląd ten potwierdza również fakt, że reak­cja ta może biec w kierunku przeciwnym: pod wpływem krótkofalowego pro­mieniowania x zachodzi rozpad jądra deuteru, zwany fotoefektem jądro­

wym. Proces absorpcji neutronu przez l|i określone jądro atomowe wybitnieI1 \ zależy od prędkości neutronu. Typo-I ; \ wy przykład zależności prawdopodo-/ [ \ bieństwa pochłonięcia neutronu Pn/ | \ od jego prędkości v jest przed-/ I \ stawiony na rys. 12-13. Widzimy,żev j szczególnie silnie pochłaniane sąV। neutrony o pewnej określonej pręd-kości vr; zjawisko to nosi nazwę rezonansu jądrowego.Doświadczenia, Rys. 12-13 które trzeba wykonać w celu uzys­kania krzywej 12-13, mającej duże znaczenie praktyczne, nie są pros­te: trzeba dysponować wiązką neutronów o określonej prędkości, czyli tzw. neutronów "monochromatycznych”. Uzyskuje się je między innymi za pomocą mechanicznych selektorów prędkości, pozwalających wybrać ze strumienia tylko te, dla których czas przelotu ustalonej odległości jest ściśle określony.



277Ilościową miarą prawdopodobieństwa zajścia określonego procesu z określonym nuklidem jest przekrój czynny jądra« Procesem tym może byó ogólnie absoprcja (a) dowolnej cząstki, rozpraszanie (s), reakcja ją­drowa (r), rozszczepienie jądra (f), itd. Pojęcie przekroju czynnego wprowadza się dla dowolnego typu cząstki atakującej, lecz szczególnie często bywa ono używane w odniesieniu do neutronów.Niech n oznacza strumień cząs- 0 2 ,tek padających na 1 cm tarczy kpłytka z badanego materiału) w ciągu 1 s.Tar­cza ma ogólną grubość D i zawiera Nq jąder w jednostce objętości} niech S będzie powierzchnią przekroju czołowe­go (rys, 12-14). Wydzielmy prostopadle do biegu wiązki cienką warstwę materia­łu o grubości dx - zawiera ona Nq»S dx jąder. Dochodzący do niej strumień czą­stek wynosi n <n0, ponieważ pewna li­czba cząstek zniknęła ze strumienia z powodów wymienionych uprzednio. Na Rys. 12-14warstwie dx zachodzi dalsza strata liczby cząstek, równa -dn i pro- 2porcjonalna do liczby jąder zawartych w dx dla S « 1 om-dn = a • n NQdx.Przez całkowanie otrzymujemyIn n = - + C.Ponieważ x « 0 D n = nQ, zatem C = In n0 orazn = nQ e

(12.17)

(12.18)Wyrażenie (12.18) przedstawia liczbę cząstek w strumieniu, który przeszedł przez warstwę materiału o grubości D. Współczynnik propor­cjonalności a jest mierzony w centymetrach kwadratowych, ponieważ [N ’D] = 1 cm”2 i nosi nazwę przekroju czynnego jądra, Liczbowa war­tość a jest bardzo mała - podaje się ją zwykle w jednostkach zwanych barnami, przy czym 1 barn = 10"24 cm2.Przekrój czynny, występujący w (12.18) jest tzw. ogólnym lub in­tegralnym przekrojem czynnym. Opisuje on znikanie cząstek ze stru­mienia przechodzącego przez materię, niezależnie od procesu, jaki to znikanie powoduje. Procesy mogą tu być różne, zatem różne mogą też 



278być przekroje czynne? aa - przekrój czynny na absorpcję, Os -przekrój na rozpraszanie, - przekrój na określoną reakcję Jądrową, i inne. Ze względu na postać funkcji (12.18) przekrój czynny ma własności ad- dytywne, tzn. ogólny przekrój czynny a Jest sumą przekrojów na po­szczególne procesy ° “ °8 + as + °r + 9f + (12.19)12.9, Rozszczepienie Jądra uranuWśród różnych reakcji, spowodowanych wniknięciem neutronu do Jąd­ra atomowego, wyjątkowe znaczenie ma skutek bombardowania neutronami Jąder uranu o liczbie masowej A = 235. Uran metaliczny, otrzyma­ny z minerałów zawartych w skorupie ziemskiej, Jest mieszaniną dwóch izotopów: 2g|u w ilości 0,72% oraz 2$|u, stanowiącego resztę, tj. 99,28% zawartości. Oba Jądra ulegają rozpadowi po pochłonięciu neu- z 238tronu, lecz zupełnie odmienną drogą: —U rozpada się w zwykły, znany * 235nam sposób, natomiast ggU ulega tzw. reakcji rozszczepienia, dotych­czas nie znanej. ZaJmierny się wpierw tą właśnie reakcją.Została ona wykryta w Niemczech w latach 1936-1937 przez Habna, Meitner i Strassmanna i polega na pęknięciu (rozszczepieniu) Jądra uranu 235 na dwa duże fragmenty po pochłonięciu neutronu. Schemat tej reakcji jest następujący2^U + Jn -i 1gxe + $|sr + 2,5 Jn + 150 MeV. (12.20)W przeciwieństwie do dotychczas poznanych reakcji skutkiem Jej nie Jest wyrzucenie Jednej cząstki z Jądra złożonego, lecz pojawienie się dwóch dużych jąder oraz średnio 2,5 neutrona na Jedno rozszczepienie. Uwalnia się przy tym spora energia, wynosząca 150 MeV na jedno Jądro uranu.

Rys. 12-15Bieg tego procesu możemy sobie przedstawić w następujący sposób. Jądro uranu zachowuje się pod pewnymi względami Jak kropla cieczy, o- czywiście o bardzo dużej gęstości. W stanie równowagi wszystkich sił Jądrowych ciecz przybiera kształt kuli (rys. 12-15). Wpadnięcie neu­



279tronu odpowiada ogrzaniu cieczy do bardzo wysokiej temperatury; przy tak dużej energii wzbudzenia pojawiają się oscylacje materii jądrowej, dochodzi do przewężenia i wreszcie pęknięcia jądra na dwa fragmenty. Oba fragmenty podziału znajdują się w stanie wzbudzonym i zawierają nadmiar neutronów; pozbywają się więc tego nadmiaru przez emisję swo­bodnych neutronów. Ten sposób tłumaczenia pozwala między innymi zro­zumieć, że produktami rozszczepienia nie zawsze muszą być Xe i Sr we­dług schematu (12.20). Mogą to być różne produkty, przy czym istnieje określony rozkład prawdopodobieństwa P^ powstania produktu o liczbie masowej A, przedstawiony na rys. 12-16. Okazuje się, iż krzywa ta ma dwa maksima, przypadające przy A = 96 i A « 138, co odpowiada schema­towi (12.20): te pierwiastki pojawiają się w rozszczepieniu najczęś­ciej, ale nie wyłącznie.

_J____I________L_
96 11S 138Rys. 12-16Łatwo wykazać, że energia 150 MeV, przypadająca na jedno rozszcze­pienie jest pochodzenia elektrostatycznego i jest skutkiem pracy sił pola, potrzebnej do rozsunięcia jąder produktów rozszczepienia z od­ległości rQ, rzędu średnicy jądra, do nieskończoności.Przyjmująo bo­wiem rQ = 1,8«10~^2 om, Z^ = 38, Zg = 54 mamy1 Z Z e2 q 38»54»1,6O3’1O-^U = -------- • ——— = g.O'W3« -------- -------- r,------  = 164 MeV.4ne0 r0 1,8»10-^Jak już wspominaliśmy, reakcja rozszczepienia należy do niezmier­nie rzadko spotykanych. Spośród znanych dziś pierwiastków rozszczepie­niu, prócz $|u, ulega jedynie pluton, brednia liczba powsta­jących w jednym rozszczepieniu neutronów oznaczana jest przez v i sta­nowi ważny parametr tej reakcjiv(2^U = 2,5 t 0,1; v(2^Pu) = 3,0 ± 0,1.



Ze względu na to, iż dla obu pierwiastków v >1, pojawia się po raz pierwszy możliwość prowadzenia tej reakoji jako reakoji łańcucho­wej (samopodtrzymującej się). Możliwość ta zależy od współdziałania następujących czynników:i. Produkcja neutronów, określona liczbąv.ii. Ucieczka neutronów poza obręb materiału rozszczepialnego, o- kreślona przekrojem czynnym na rozpraszanie ag, prędkością neutronów i rozmiarami próbki uranu. Uwzględnienie tych czynników jest dość tru­dne, dlatego uproszczone obliczenia wykonuje się dla tak dużej próbki uranu, by ucieczkę (a więc i og) można było zaniedbać.iii. Pochłanianie neutronów, określone przekrojami czynnymi aa pierwiastków, wchodzących oprócz rozszczepialnego izotopu uranu w skład mieszaniny (lub stopu). Neutrony pochłonięte przez te pierwiast­ki są tracone podczas procesu rozszczepienia, choć ozęsto mogą dopro­wadzić do powstania użytecznych produktów. Przykładem niech tu będzie zachowanie się jądra 2gfu po pochłonięciu neutronu
2SU + 5“ 239>T= 2,33 t= 24400 dni latPowstawanie plutonu jest dla podtrzymywania procesu łańcuchowego nieprzydatne, ponieważ czas rozpadu Np jest za długi. Dlatego pochło- 238 nięte przez J U neutrony nie mogą dalej brać udziału w rozszczepie­niu. Dla bardziej szczegółowego rozważenia możliwości wywołania reak­cji łańcuchowej przytoczymy obecnie wartości przekrojów czynnych dla uranu. Neutronowe przekroje czynne (w barnach)A Neutrony szybkie as ^a afUran naturalny 4,7 2 0,5235v92 u 5,2 0 1,3B. Neutrony powolne238TJ92 J 0 2,8 5«1O“4235g92 u 10 107 580



281Wprowadźmy następnie pojęcie prawdopodobieństwa rozszczepienia ja­ko stosunek przekroju na rozszczepienie do ogólnego przekroju czynne- gą jądra uranu 235. Jeśli - jak odtąd stale - obliczenia będziemy wy­konywań dla bardzo dużego kawałka uranu, toos można pominąć, wobec czego o r= -......- . (12.21)i a a-o a fJeśli v jest średnią liczbą neutronów, przypadającą na jedno roz­szczepienie, to Pf* v oznacza tzw. współczynnik rozmnożenia neutro­nów, k; z definicji kjest stosunkiem liczby neutronów n^ w pewnej generacji do liczby neutronów n^_1 w generacji poprzedniej. Znak oo przy k odnosi się do zaniedbania oQ. Mamy więc~~ 5 ko, - p_. v. (12.22)ni-1 fWspółczynnik rozmnożenia wraz z definicją (12.21) są podstawowymi wielkościami do określania możliwości wystąpienia reakcji łańcuchowej. Jeśli bowiem k <1, to liczba neutronów stopniowo maleje - reakcja łańcuchowa nie może się rozwinąć. W przypadku kw< 1 mamy nŁ > n^.], czyli liczba neutronów wzrastaj ponieważ proces ten następuje lawino­wo, warunek ten prowadzi do wybuchu (bomba atomowa). Najbardziej in­teresujący i ważny dla techniki jest przypadek trzecis k^ =1. Ozna­cza on stały poziom strumienia neutronów, czyli kontrolowaną reakcję jądrową. Oczywiście, poziom ten może być różny - ważne jest to, że nie ulega zmianie z biegiem czasu. Można go osiągnąć w stosie atomo­wym, którego zasadę działania omówimy przy końcu tego paragrafu.Obecnie zajmiemy się rozważeniem możliwości poprowadzenia reakcji łańcuchowej w uranie, osobno za pomocą neutronów szybkich, powstają­cych bezpośrednio w reakcji rozszczepienia oraz za pomocą neutronów powolnych, spowolnionych za pomocą moderatora. W dyskusji posługiwać się będziemy danymi liczbowymi, co ułatwi Czytelnikowi zrozumienie za­stosowania pojęć Pf i k^ .12.9 .1. Reakcja rozszczepienia za pomocą neutronów szybkichObliczamy wpierw prawdopodobieństwo rozszczepienia dla uranu na­turalnego 0,5 ------ - 1 = 0,2. 2 + 0,5Wynik ten oznacza, że 1/5 neutronów wytworzonych w jednym roz­szczepieniu kontynuuje ten proces. Jeśli zatem w pierwszej generacji 



282mamy n.( = 10 neutronów, to 8 zostaje pochłoniętych, a 2 powodują dal­sze rozszczepienia. W drugiej generacji będziemy mieli n2 3 2«2,5 = 5 neutronów; z nich znowu 4 zostaną pochłonięte, a 1 spowoduje rozszcze­pienie. W trzeciej generacji będzie n^ = 2,5 neutronów, oczywiście
Hn lip = Pf.v = 0,5.Widzimy na tym prostym przykładzie, że nie można zrealizować re­akcji łańcuchowej w uranie naturalnym za pomocą szybkich neutronów.Warto obecnie zastanowić sig, czy proces ten można poprowadzić wuranie wzbogaconym w izotop lżejszy; myśl taką nasuwa fakt, że dla 235g o^ = 1,3 a aa » 0. Liczbę jąder izotopu w mieszaninie o- znaczymy przez N^, czenia dla izotopu a ich przekroje czynne przez acł odpowiednie ozna- 238 3U będą Ng i Ug. Prawdopodobieństwo rozszczepie­nia dla mieszaniny wynosi

N5^af5 + CTa5^ + N8^af8 + aa8^ (12.23)
Skład izotopowy mieszaniny chcemy tak dobrać, by dla niej było kM =1. Zatem ________ N5 cf5 + ?T8 qf8__________ a 1N5^af5 + aa5^ + ^8^af8 + °a8^W naszym przypadku 1,3K5 t 0,5 Ng _ 11,3H5+ 2,5 N3 2,5 ’ czyli 5 aNo 3= 1,56 ~ .N5 2Wniosek z tego jest taki, że dla osiągnięcia warunków krytycznych 235 238mieszanina musi zawierać 40% i 60% U. Dla próbki uranu o skoń­czonych rozmiarach zawartość izotopu lżejszego musi być trochę wię­ksza, ze względu na ucieczkę neutronów.Wzbogacania uranu można dokonać różnymi metodami. Do stosunkowo prostych należy efuzja gazowego sześciofluorku uranu, UPg, przez mały otwór w zbiorniku. Zgodnie z prawem Grahama szybkość wypływu jest od­wrotnie proporcjonalna do pierwiastka z masy cząsteczkowej. Różnica mas obu cząsteczek jest jednak niewielka i dla uzyskania zawartości 23595% U proces ten trzeba powtórzyć 4000 razy. Tą metodą pracowało 



283od 1945 r. laboratorium w Oak Ridge (USA), gdzie wyprodukowano dwa ka­wałki uranu stanowiące elementy składowe pierwszej bomby atomowej.Każ- dy z nich ma wielkość podkrytyczną; po dokładnym złączeniu przy uży­ciu pomocniczego ładunku wybuchowego (trzeba usunąć nieciągłość mate­riału, jaką jest szczelina powietrzna) otrzymuje się całość o rozmia­rach grejpfruta, co odpowiada wartości nadkrytycznej.12.9 .2« Reakcja rozszczepienia za pomocą neutronów powolnychZupełnie odmienne są własności uranu naturalnego podczas bombar­dowania neutronami powolnymi. Dla tego przypadku współczynnik rozmna­żania ma wartość O «>c + (Na^N—) O po = v • ---------- -------------2—2--------------------  = 1,33,(af^ + aa$) + (Ng/^Hcjfg + aaa)co wskazuje, że możemy osiągnąć stan krytyczny bez potrzeby wzbogaca­nia materiału w izotop rozszczepialny. Należy jednak wyprowadzić neu­trony gorące z uranu do spowalniacza, a następnie wprowadzić z powro­tem do metalu.Stanowi to ideę budowy stosu atomowego, zrealizowaną po raz pierwszy w USA przez Fermiego i współpracowników w 1942 r. Stos składał się z cegieł z uranu me­talicznego i cegieł grafitowych, kładzionych na przemian w blok (stąd nazwa "stos'’). Wytwarzanie ciepła w stosie Fermiego osiągnę­ło moc 0,5 W, później podniesiono ją do 200 W. Schemat budowy trójelementowego stosu jest przedstawiony na rys. 12-17. W bloku bardzo czystego grafitu, w szczególności nie zawierającego domieszek o dużym przekroju czynnym na absorpcję neu­tronów, wywiercone są kanały podłużne. Część z nich zawiera pręty z uranu metalicznego, stanowiącego paliwo jądrowe; do niektórych kana­łów wsunięto pręty z metalicznego boru lub żelaza, silnie pochłania­jących neutrony. Obecność tych absorbentów pozwala osiągnąć pożądany poziom strumienia neutronów w stanie krytycznym.Budowane współcześnie na podstawie tej zasady duże reaktory ato­mowe są przede wszystkim źródłami mocy, bezpośrednio cieplnej, a po przetworzeniu elektrycznej. Pracujące różnych krajach bloki energe­tyczne mają moc kilkudziesięciu do kilkuset megawatów.



284 Poza tym buduje się reaktory atomowe specjalnie przeznaczone do produkcji izotopów, między innymi rozszczepialnego plutonu. Część strumienia neutronów, wytwarzanego podczas praoy stosu można wyprowa­dzić na zewnątrz i wykorzystać do badań naukowych. Budowa stosów ato­mowych pociąga za sobą konieczność zorganizowania dużego zaplecza przemysłowego, zajmującego się produkcją potrzebnych materiałów, a także przeróbką i dalszym wykorzystaniem zużytych prętów uranowych i berylowych. Należy przy tym pamiętać, iż wszystkie materiały wyjęte z reaktora są "gorące" - odznaczają się silną radioaktywnością. Dalsza ich obróbka wymaga przedsięwzięcia szczególnych środków ostrożności na dużą skalę, ze względu na konieczność ochrony środowiska natural­nego przed zanieczyszczeniami promieniotwórczymi.12.10, Modele jądroweMimo tak licznych i ważnych ze względu na zastosowania w przemyś­le energii jądrowej, nie mamy obecnie szczegółowej teorii budowy jąd­ra atomowego. Istniejąca od dawna potrzeba syntezy wiadomości o jądrze doprowadziła do konstrukcji tzw. modeli jądrowych, z których dwa są najbardziej rozpowszechnione.i. Powłokowy model jądra: przyjmuje się, iż nukleony zgrupowane są w pewne zespoły, stanowiące powłoki - podobnie, jak zgrupowane są elektrony w atomie. Pozwala to wyjaśnić periodyczność niektórych włas­ności jąder oraz ich nieciągłość w pobliżu określonych parzystych liczb neutronów lub protonów. Do osobliwych własności należy fakt, że szczególnie trwałe jądra powstają wtedy, gdy liczba protonów Z i licz­ba neutronów A-Z jest równa jednej z następujących liczb: 2, 8, 20, 50, 82, 126. Trudności w uzasadnieniu wartości tych liczb spowodowa­ły, że nazwano je "magicznymi".ii. Kroplowy model jądra: w odróżnieniu od modelu poprzedniego, akcentującego niezależność "powłok" nukleonów, model kroplowy ma cha­rakter "kolektywny". Jądro traktuje się jako jedną całość, przy czym materia jądrowa o gęstości 10 kg/nr ma wiele własności kropli cie­czy. Na tym modelu opiera się teoria jądra złożonego, poza tym dobrze tłumaczy istnienie stanów wzbudzonych, oscylacji i rozszczepienia ją­dra, które można opisać jako proces odkształcenia i podziału kropli cieczy. Treścią tego modelu jest półempiryczny wzór określający ener­gię wiązania jądra, uwzględniający odpowiedniki energetyczne różnych własności jądra. W dalszym ciągu zajmiemy się przedstawieniem tego wzoru za pośrednictwem kilku przesłanek, opisujących poszczególne u- działy energetyczne.



285i. Energia wiązania jednego nukleonu w jądrze dla Z ^6 jest w przyblieżniu stała i wynosi średnio 8,6 MeV. Oznacza to, iż każdy nu­kleon oddziałuje tylko z najbliższymi sąsiadami, czyli siły jądrowe mają nadzwyczaj krótki zasięg. W wyniku tego udział defektu masy w energii wiązania jądra, Ed, jest proporcjonalny do AEd = -a A, (12.24)gdzie a » const (= 8,6 MeV).Gdyby siły jądrowe miały zasięg duży, jak na przykład siły Coulom­bs , wówczas każdy nukleon musiałby oddziaływać z każdym innym,a ener- 2 gia Efi byłaby proporcjonalna do A .ii. Gęstość materii jądrowej jest stała, innymi słowy promień ją­dra R rośnie regularnie wraz ze wzrostem A. W takim razie A ■ » k = R^« k\ a stąd R « r0 A^^, (12.25)gdzie rQ = 1,5*10”^ cm jest stałą empiryczną. Wzór (12.25) oznacza, że nie ma zagęszczenia upakowania nukleonów ze wzrostem A.iii. Najtrwalsze są jądra, w których liczba protonów równa jest liczbie neutronów, czyli Z = A - Z. Odstępstwo od tej reguły, czyli A = 2Z / 0, obniża trwałość jądra. Odpowiedni dodatni udział energe­tyczny asymetrii składu jądra wynosi 2E - + b ~ . (12.26)os Aiv. Trwałość jądra zależy od parzystości liczb A, Z oraz A-Z w sposób poznany empirycznie. Związany z tym udział energii oznaczymy przez Ep.v. Między protonami działają kulombowskie siły odpychania, 00 da- je dodatni wkład do energii wiązania o średniej wielkości
B, = + - = 2 Iz.-_D. A-1/3. (12.27)5 0R 5 4kg Qr0vi. Kropli cieczy o promieniu R odpowiada istnienie "powierzchni 2swobodnej" 4m R • Jeśli a jest napięciem powierzchniowym,równym licz­bowo energii potrzebnej do zwiększenia swobodnej powierzchni cieczy o jednostkę, to udział energii powierzchniowej wynosiEs - -4* Ą a- ^2/3 • (12.28)Dodanie udziałów l-vi prowadzi do półemplrycznego wzoru określa­jącego energię wiązania jądra Ew
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Ew » -aA + b iA_X_2Z2_ + 4a° Z(Z^l) _ a0A2/3 + Bp. (12.29)W zapisaniu (12.29) zostały zmienione oznaczenia niektórych sta­łych tak, by uzyskać zgodność ze sposobem zapisu, spotykanym w mono­grafiach.Wartości stałych a, b, ac, ag i Ep są znane. Wzór (12.29) może służyć do oceny trwałości różnych jąder. Ponadto przez połączenie go z (12.3) otrzymujemy wyrażenie, zwane półempirycznym wzorem określa­jącym masę jądra. Szczegółowe omówienie tyoh zagadnień jednak pomi­niemy.



13. 0Z4STKI ELEMENTARNE13.1. Pojęcie cząstki elementarnejIstnieje zupełnie zrozumiała tendencja w fizyce i chemii do wy­jaśniania własności materii za pomocą możliwie małej liczby zasad,po­jęć i niewielu prostych obiektów. Stąd tendencja do poszukiwania cząs­tek elementarnych.Czym jest cząstka elementarna? Nie znamy dziś prostej odpowiedzi na to pytanie. W miarę rozwoju nauki coraz to nowe obiekty ujawniły złożoność swej struktury. Okazało się, że materia składa się z cząs­teczek lub atomów, te ostatnie zaś złożone są z jądra i elektronów. Również jądra nie są tworami prostymi, lecz składają się z nukleonów. Proton i neutron są uważane za cząstki elementarne w tym sensie, iż nie mają struktury. Można to rozumieć również i w ten sposób,że włas­ności nukleonów nie da się wyjaśnić przez przyjęcie, iż składają się z innych cząstek, mimo iż neutron jest cząstką nietrwałą. Tak więc za możliwą obecnie do przyjęcia, choć niedoskonałą, definicję cząstki elementarnej możemy przyjąć następujące określenie: cząstką elemen­tarną nazywamy obiekt mikroskopowy, nie przejawiający w żadnym znanym eksperymencie natury złożonej i którego własności nie da się wyjaśnić przez przyjęcie, iż składa się z innych obiektów.W tym sensie następujące cząstki należy uważać za elementarne proton, neutron, elektron, foton.Istnieje kilka powodów, dla których nie można uważać neutronu za cząstkę złożoną z protonu i elektronu. Jednym z nich jest to, że masa neutronu “n - (mp + me) = 1,5 me, przewyższa sumę mas protonu i elektronu o 1,5 mg. Inny argument prze­ciwko takiej hipotezie polega na tym, że spin każdej z cząstek: neu­tronu, protonu i elektronu wynosi 1/2, tymczasem według reguł mecha­niki kwantowej nie można otrzymać spinu 1/2 z kombinacji dwóch spinów o wartości 1/2. Hipoteza ta jest nie do przyjęcia również ze względu na zasadę Heisenberga. Zgodnie z tą zasadą pęd elektronu "zawartego" 



288w neutronie powinien wynosić co najmniej hA x, przy czym A x = 2’W"1^ cm jest rzędu średnicy jądra atomowego. Otrzymany na tej podstawie pęd wynosi 3,3,1O~13 kgm/s, a odpowiadająca mu energia kinetyczna p /2m = 0,60*10 J ■ 300 GeV; przy tak dużej energii kinetycznej elektron musiałby natychmiast "wyparować".Od roku 1933 fizycy odkryli dalszych 26 cząstek elementarnych; dziś przyjmuje się, iż cząstek elementarnych, łącznie z ich antycząs- tkami jest 30. Niektóre z nich są cząstkami nietrwałymi, zanikają (procesy anihilacji) lub przechodzą w cząstki o masie mniejszej. Pew­nego rodzaju "ochronie" podlegają cząstki ciężkie, tj. proton i neutron. Istnieje mianowicie w fizyce jądra atomowego zasada zachowa­nia cząstek ciężkich, następującej treści: w każdym układzie zamknię­tym ogólna liczba protonów i neutronów pozostaje stała.Oczywiście, neutrony lub protony mogą silnie oddziaływać w zde­rzeniach z jądrem atomowym, co niekiedy prowadzi do pozornego zwięk­szenia liczby tych cząstek (np. w reakcji rozszczepienia). Może także neutron przechodzić w proton i na odwrót. Zasada zachowania dotyczy jednak wszystkich cząstek ciężkich w układzie zamkniętym, a więc i swobodnych i związanych w jądrze; nie zauważono by liczba ta ulegała kiedykolwiek zmianie.Łatwo zdać sobie sprawę z tego, jak ważne znaczenie ma ta prosta zasada. Gdyby nie była spełniona, wówczas cała materia zawarta we Wszechświacie uległaby w ciągu ułamka sekundy konwersji na elektrony i neutrina. Jest to konsekwencja tzw. "słabych oddziaływań" i stanowi swojego rodzaju "chorobę" atakującą wszystkie cząstki elementarne w jednakowy sposób, a której konsekwencją jest konwersja cząstek elemen­tarnych na elektrony i neutrina.Czym są słabe oddziaływania? Jest to termin odnoszący się do zja­wisk, które mogą się zdarzyć podczas przechodzenia cząstki przez ma­terię. Otóż gdy neutrino przechodzi przez materię, nie dzieje się "praktycznie" nic - oddziaływania są nadzwyczaj słabe. Neutrino v jest cząstką o następujących parametrach:q »0, m„ »0, s =4, S “ po, nv ’ Oy ’ v va więc nie posiada ładunku i masy spoczynkowej. Od fotonu różni się tym, że spin neutrina wynosi 1/2. Gdybyśmy strumień 1012 neutrinów wystrzelili w kierunku Ziemi, to z całego strumienia zniknie tylko 1 cząstka, a pozostałe przelecą na wylot kulę ziemską. Świadczy to o tym, że oddziaływania neutrina na materię są niewyobrażanie słabe lub - inaczej mówiąc - przekroje czynne dla neutrina są bliskie zera.



289Te właśnie słabe oddziaływania oraz neutrino odgrywają dużą rolę w fizyce cząstek elementarnych, w roku 1958 zaproponowano schemat roz­padu neutronu swobodnego na proton (p), elektron (e) i antyneutrino (v) (kreską nad symbolem oznaczać będziemy antycząstki)^n —* ^p + _®e = °v + 0,8 MeV; t= 12 min. (13.1)Defekt masy Am = mn - = 1,3 MeVrównoważny jest energii 1,3 MeV. Z tej ilości 0,5 MeV potrzebna na kreację elektronu,zaś reszta, 0,8 MeV, jest dowolnie podzielona mię­dzy energię kinetyczną elektronu i antyneutrina. Schemat ten pozwala nam zrozumieć rozpad ₽ : gdyby nie istniało neutrino, elektron w roz­padzie p miałby zawsze energię 0,8 MeV; tymczasem - jak wiadomo - tę górną granicę obserwuje się rzadko. Wprowadzenie neutrina do fizyki cząstek elementarnych pozwala na jednoczesne uzgodnienie zasady zacho­wania energii, zachowania pędu i zachowania krętu.Jak wynika z tych uwag, neutrino zostało wprowadzone drogą pośred­nią na podstawie obserwacji własności elektronów w rozpadzie p. Fi­zycy szukali jednak bezpośrednich dowodów istnienia neutrina. Takim dowodem mogła być reakcja, zaproponowana przez Fermiegoo ~ , 1 __ . 1„ .ov + iP -> on + +1e*W celu sprawdzenia, czy ta reakcja jest możliwa, potrzeby był bar­dzo potężny strumień antyneutrinów ze względu na słabe oddziaływania. Dlatego jej potwierdzenie stało się możliwe dopiero w 1956 r., gdy u- ruchomiono w Dos Alamos reaktor atomowy dużej mocy. W trakcie roz­szczepień powstaje duża ilość 8 aktywnych produktów,a w związku z tym duży strumień neutrinów. Za pomocą odpowiednich liczników istotnie stwierdzono powstawanie +°e.Drugi z nukleonów, proton, jest cząstką trwałą, ponieważ nie ma cząstki elementarnej o masie trochę mniejszej od m, w którą proton mógłby przechodzić. Pojawia się jednak pytanie dlaczego neutron, roz­padający się w stanie swobodnym z okresem połówkowym t= 12 min (na­wiasem mówiąc, w skali czasów charakterystycznych dla jądra atomowego jest to ogromnie duży odstęp czasu) trwały jest wewnątrz jądra atomo­wego? Jednym ze sposobów usunięcia tej trudności jest przyjęcie, że energia oddziaływań m » p w jądrze powoduje zmniejszenie masy każ­dej z oddziałujących cząstek do wartości mniejszej od masy protonu.



290 13.2. AntymateriaKonieczność istnienia antycząstek została przewidziana teore­tycznie przez Diraca, który zajmował się wprowadzeniem postulatów teo­rii względności do mechaniki kwantowej i zbudował nową teorię cząstek o spinie 1/2, stanowiącą część relatywistycznej teorii pola. Obrazowy - choć niezbyt ścisły - sposób przedstawienia jednego z wniosków teo­rii Diraca może być następujący! jeżeli z czterowymiarowej czasoprze­strzeni fizycznej "wyrwiemy" elektron, to w tym miejscu powstanie "dziura", która ma wszystkie atrybuty cząstki. Masa jej jest dokład­nie równa masie elektronu, ładunek musi być znaku przeciwnego. Tą "dziurą" jest antyelektron, zwany pozytonem, +°e, Ten niezbyt precy­zyjny model powstawania antyelektronu pozwala jednak zrozumieć jedną z ważnych cech antycząstkis zderzenie z pierwszą lepszą cząstką powo­duje "rekombinację", połączoną z wydzieleniem dużej ilości energii.Za­sada zachowania pędu wymaga, by podczas takiej anihilacji powstały dwa kwanty _°e + +°e —> 2 hu . (13.2)Również reakcja odwrotna wymaga na ogół koincydencji dwóch kwan­tów y . Para elektron-pozyton może jednak powstawać również w polu sił jądrowych z udziałem jednego kwantu. Jeśli kwant y ° dostatecznie dużej energii przelatuje w pobliżu ciężkiego jądra, to powoduje częs­to powstanie pary elektron-pozyton. Za pomocą takiej właśnie reakcji udowodnił Anderson hipotezę Diraca.Zasada zachowania energii wymaga, by energia każdego kwantu w (13.2) była co najmniej równa moc^ = 0,511 MeV, gdzie mQ jest masą spoczynkową elektronu. W doświadczeniu Andersona energia kwantu musi wynosić hv 1,022 MeVj jest to wartość progowa dla kreacji pary. Kwanty o energii większej powodują wytwarzanie cząstek o niezerowej energii kinetycznej.Pozytony występują ponadto w reakcjach promieniotwórczych typu (a, n). Przykładem takiej reakcji jest skutek bombardowania boru cząs­tkami a, przebiegający dwustopniowo według następujących schematów1°B + gHe -4 (1^N) -4 + Jn,-4 + +°e, T = 11 min.Antycząstką protonu jest antyproton, p. Został on odkryty za po­mocą bewatronu, produkującego protony o energii 6,2 GeV. Według prze­widywań teoretycznych bombardowanie jąder (symbol ) protonami o energii większej od 6 GeV prowadzi do reakcji
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H1 + p + p -*N2 + p + p + p + ps gdzie Ng oznacza nowe jądro (końcowe).Antyproton odkryto w 1955 r. W rok później, a więc w 1956 r., zo­stał odkryty antyneutron, Ulega on anihilaoji podczas spo­tkania z protonem lub neutronem, której towarzyszy kreacja mezonów- * + - - o
n + n —> Tt + Tt + TC + TT + TC .Przez odpowiedni dobór antycząstek możemy konstruować - przynaj­mniej myślowo - "antyatomy". Najprostszym "odwróconym" atomem jest atom antywodoru - powinien on mieć własności zupełnie takie same, jak atom wodoru«, W szczególności ich widma emisyjne i absorpcyjne powinny być identyczne. Przez kombinowanie antyatomów dochodzimy do pojęcia antymaterii.Jest zupełnie oczywiste, iż wszystkie ziemskie atomy wodoru są zbudowane z cząstek, a nie z antycząstek. Antymaterii nie ma w naszym układzie słonecznym, a nawet w galaktyce^ gdyby była, wiedzielibyśmy o tym dość szybko. Procesy anihilaoji, towarzyszące spotkaniu materii z antymaterią, przebiegają z wydajnością jeszcze 1000 razy większą od osiągalnej w bombie wodorowej.Byłoby jednak dziwne, gdyby Wszechświat antymaterii nie zawierał. Ogólne zasady symetrii wskazują, że połowa atomów we Wszechświacie po­winna być antymaterią. Trudno zrozumieć, dlaczego miałaby istnieć przewaga dodatniego ładunku nukleonów nad ujemnym. Przypuszcza się więc dzisiaj, że niektóre galaktyki Wszechświata mogą być zbudowane z antymaterii, choć dowodów na to brak.Mamy obecnie 9 następujących cząstek elementarnych, przy czym ma­sy ich są parami dokładnie równe, a ładunki mają znak przeciwny hv kwant energii (jest swoją własną antyoząstką),v, v neutrino i antyneutrino,o o _1«> +ie elektron i pozyton,p, p proton i antyproton,n, n neutron i antyneutron.Przypuśćmy obecnie, że w trakcie pewnego eksperymentu fizycznego wszystkie cząstki zmieniły się nagle w antycząstki. Czy eksperyment można kontynuować i czy uzyskany wynik będzie ten sam? Do roku 1957 fizycy sądzili, że antymateria podlega tym samym prawom, co materia. W zasadzie nie widać sposobu przekonania się o tym, czy jakiś obiekt fizyczny zbudowany jest z materii, czy z antymaterii. Ta podstawowa zasada nosi nazwę zasady symetrii cząstka-antycząstka. W fizyce teo­



292retycznej nazywa się ją prawem niezmienniczości względem sprzężenia ładunkowego.Sprzężenie ładunkowe jest operacją, która jedynie zamienia cząst­kę w antycząstkę, pozostawiając wszystko inne bez zmian. Wynikiem sprzężenia ładunkowego wodoru jest antywodór. Zasada symetrii cząstka -antyoząstka przewiduje na przykład, że widmo gazowego wodoru powinno być identyczne z widmem gazowego antywodoru. Ponieważ generacja anty- cząstek jest zadaniem nadzwyczaj trudnym (nie wytworzono np. dotych­czas antywodoru - w czym można by go przechowywać?), wniosków wynika­jących z tej zasady nie da się obecnie sprawdzić doświadczalnie.W roku 1957 okazało się, że zasadę symetrii materii i antymaterii obala fakt istnienia słabych oddziaływań. Zanim przedstawimy rzecz bliżej, zajmiemy się opisem własności pozostałych 21 cząstek elemen­tarnych. 13.3. MezonyMezony są grupą cząstek elementarnych o masach pośrednich między masą elektronu i nukleonu. Znane są trzy typy mezonów; mezony g (mio­ny), mezony u (piony) i mezony K. Przedstawimy kolejno ich podstawowe własności, 13.3.1. MionyMiony mają masę równą około 1/8 m_ lub równą 207 m_.Istnieją mio- 4. _ P ®ny dodatnie, p , ujemne, |_i , natomiast nie ma mionów obojętnych. Spin wszystkich wynosi 1/2, poza tym własności mają podobne do elek­tronów; u" oraz n' tworzą parę cząstka-antycząstka. Ze względu na te podobieństwa można uważać miony za ciężkie elektrony. Jedną z za­gadek fizyki cząstek elementarnych jest pytanie, dlaczego natura ob­darzyła nas tylko dwoma typami elektronów. Mion rozpada się szybko na elektron i dwa neutrina.p —e + v + v, 1,5'10 ^s.Trzy lekkie cząstki: p, e,v zalicza się do jednej klasy cząstek; zwanych leptonami. 13.3.2. PionyPiony mają masę w przybliżeniu równą 1/7 mp lub 273 m9. Spin ich wynosi jednak 0, dlatego nie zalicza się ich do leptonów. Znane są 3 typy pionów; k+, tt" i 7t°j oraz v~ tworzą parę cząstka-anty­cząstka, natomiast mezon obojętny n0, podobnie jak foton, jest swoją własną antycząstką.



293Istnienie pionu zostało przewidziane w 1936 r. przez Yukawęs Jest to cząstka potrzebna do wyjaśnienia natury oddziaływań nukleon-nukleon w jądrze» Oddziaływania, zwane niekiedy siłami jądrowymi, są oddzia­ływaniami silnymi i mają bardzo krótki zasięg» Duża energia wiązania neutron-proton jest realizowana za pośrednictwem periodycznej wymiany pionu między dwoma nukleonami} w ten sposób każda z cząstek staje się na przemian protonem i neutronem. Jest to trójcząstkowy model oddziaływań 1 do pewnego stopnia przypomina model oddziaływań w trójcząstkowym układzie jonu molekularnego wodoru Hg. Jedyny elektron "wymieniany" jest między oboma protonami, co zapewnia trwałość układu» Różnica po­lega na tym, że oba protony zachowują trwale swój stan cząstek ele­mentarnych. Yukawa poprawnie przewidział w swej teorii sił jądrowych masę pionuj dodatkowym wnioskiem było to, że piony powinny silnie od­działywać z nukleonami. Rzeczywiście, piony często powstają w zderze­niach dwóch nukleonów o energii rzędu 500 MeVp + p —4 p + n + 7t+ p+n—»p + p+ tT Y + p —► p + it0 itd.Po raz pierwszy odkryto piony w 1947 r. jako składniki promienio­wania kosmicznego.Plony rozpadają się za pośrednictwem słabych oddziaływań

13.3.3. Mezony КMezony К należą do najlepiej poznanych cząstek elementarnych. Ma­sa ich równa jest 1/2 lub 966 me, spin wszystkich mezonów К jest równy zeru. Znane są mezony dodatnie K+ i obojętne K°, ich antycząst- kami są K* i K°. Ze względu na dużą masę, mezon może się rozpadać na kilka sposobów według schematu słabych oddziaływań, np.
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K
e+ + v + it0

t= 0,85*10~8 a.
Obójginy K° rozpada alg według podobnych schematów, ale dla nie- “11go t= 7,0*10 . Jednym z nie rozwiązanych problemów fizyki cząstek elementarnych jest pytanie, dlaczego okres rozpadu K° jest o tyle krótszy od K+? 13» 4« HiperonyDo tej grupy należą trzy najcięższe cząstki elementarneA (lambda) o masie równej 2182 m8,S (sigma) o masie równej 2335 m ,S (ksi) o masie równej 2586 m_.eWszystkie rozpadają się na nukleony, zatem oddziaływania nukleon- -hiperon należą do silnych«, Łącznie do silnych zalicza się następują­ce oddziaływania nukleon-nukleon, mezon-nukleon, hiperon-nukleon.Jed­nym z przykładów oddziaływań silnych jest właśnie produkcja hiperonów i mezonów K w “ + p ■—* A + K°. (13.3)Hiperon w połączeniu z mezonem K powataje zawsze w zderzeniach pionów z nukleonami. Z tych powodów hiperony i mezony K zostały naz­wane cząstkami dziwnymi. Dziwność jest cechą cząstki elementarnej,po- znaną empirycznie; wyrażamy ją liczbą całkowitą dodatnią, ujemną lub zerem. Odkryto, że wszystkie silne oddziaływania typu (13.3) spełnia­ją pewne nowe prawo, zwane zasadą zachowania dziwności.Wrócimy do tej sprawy w następnym paragrafie.Hiperon A ma masę o 37 MeV większą od sumy mas protonu i mionu. Jest obojętny i ma spin 1/2. Rozpada się według schematu

A
p + tT n + 7t°



295Hiperon E ma masę o 78 MeV większą od hiperonu A» spin 1/2 i mo­że być dodatni S + , ujemny s" lub obojętny S°o Rozpada się według schematów
E~ --------- n + u oE --------- >- A + YOgólnie biorąc, z wyjątkiem E°, hiperony A i E rozpadają się według schematu A , E te + nukleon. (13.4)Hiperon E ma masę o 205 MeV większą od hiperonu a i może być ujemny E- lub obojętny £ °.Każdy hiperon powinien mieć antycząstkę o przeciwnym znaku. Do­tychczas odkryto jedynie A*, E+, E°.13.5 » Systematyka cząstek elementarnychJeśli uporządkować poznane przez nas cząstki elementarne według wzrastającej masy, to otrzymamy następujący schemat

Bariony
Poton YLeptony v , e, pMezony u, KNukleony P. nHiperony A , E , (13.5)

Po uwzględnieniu wszystkich znaków i antycząstek dostaniemy do­kładnie 30 cząstek elementax'nych. Pełna klasyfikacja cząstek przed­stawiona jest na rys. 13-1. Cząstki znajdują się z lewej strony tab- licyj część tablicy po stronie prawej stanowi '’odbicie" poprzedniej i zawiera antycząstki. Cząstki trwałe są umieszczone w kółku.Posługując się danymi tej tablicy możemy uczynić wiele interesu­jących spostrzeżeń, dotyczących zasad zachowania. Spróbujmy je prze­śledzić na reakoji (13.3)
1. Masa u" + p273 _183721102. Spin 1/2

—> A + K°2182 9663148 x m81/20 0



296 3. Ładunek4. Dziwność 05. Liczba cząstek ciężkich 0■1101 01

Rye. 13-1Widzimy, że ze względu na relację Einsteina masa nie jest cechą zachowywaną w reakcjach z udziałem cząstek elementarnych; jej miejsce zajmuje rozszerzona zasada zachowania energii oraz zasada zachowania pędu w sensie relatywistycznym. Spełnione są natomiast cztery dalsze zasady zachowania: spinu, ładunku, dziwności i liczby cząstek cięż­kich. 13.6 . Zasada parzystości i jej obalenieZasada zachowania parzystości jest matematycznym wyrazem zasady symetrii, noszącej nazwę niezmienniczości względem odbicia.Zasada nie- zmienniczości względem odbicia orzeka, że odbicie zwierciadlane każ­dego zjawiska fizycznego jest tak samo prawdziwe, jak samo zjawisko. Zgodnie z tą zasadą można powiedzieć, że gdyby ktoś obserwował dowol­ny eksperyment fizyczny w zwierciadle, a nie powiedziano by mu o tym, że patrzy w zwierciadło, wówczas nie będzie w stanie sam dojść do ta­kiego wniosku na podstawie biegu eksperymentu i jego wyników.



297Wniosek ten możemy sformułować jeszcze inaczej» W opisie ekspery­mentu fizycznego używamy układów współrzędnych, zwykle prawoskrętne- go. Odbicie zwierciadlane zamienia ten układ na lewoskrętny, lecz nie zmienia biegu i wyniku eksperymentu» W takim razie możemy stwierdzić, że podstawowe prawa fizyki mają tę samą postać matematyczną niezależ­nie od tego, czy do opisu użyjemy lewo- czy prawoskrętnego układu współrzędnych. Jedną z konsekwencji zasady parzystości jest więc to, że roztargniony naukowiec nie może rozstrzygnąć na podstawie doświad­czeń fizycznych, która jego ręka jest lewa, a która prawa. Mógłby wprawdzie rozwiązać ten dylemat przez ustalenie, po której stronie jest jego serce, ale to rozwiązanie byłoby nie uczciwe z fizycznego punktu widzenia.Zasada parzystości nie jest ogólnie słuszna: wyraźnie nie obowią­zuje na terenie przyrody ożywionej. Okazuje się, że w wielu przypad­kach przyroda sama wytwarza asymetrię (serce po lewej stronie). Rów­nież białka, występujące w organizmach żywych zbudowane są z amino­kwasów, z których wszystkie mają strukturę śruby lewoskrętnej; nie ma w przyrodzie aminokwasów o strukturze prawoskrętnej. Nie znaczy to, że ich utworzenie jest niemożliwe: w trakcie syntezy w laboratorium powstaje zawsze mieszanina 1 : 1 odmian lewo- i prawoskrętnych.Odmia­ny aminokwasów o przeciwnej skręcalności są jednak w przyrodzie czymś w rodzaju trucizn wzajemnie dla siebie. Przypuszcza się,iż przez ewo­lucję i eliminację przewagę uzyskać mogła tylko jedna z odmian, a tą była odmiana lewoskrętna.Okazuje się, że w pewnych przypadkach zasada parzystości nie jest słuszna również w fizyce, co spowodowało jej obalenie.Przyczyniły się do tego badania Lee i Yanga, dotyczące szczegółów rozpadu pionu 7t . Rozpad ten następuje według schematun +-----> +1 Spiny 0 + v (13.6)1
" 2

Rys. 13-2Ponieważ spin pionu wynosi zero, więc połówkowe spiny mionu i neu­trina muszą mieć znaki przeciwne. Własności spinowe cząstek,biorących udział w rozpadzie (13.5) będziemy wyrażali za pomocą symboli graficz­nych, przedstawionych na rys. 13-2. I tak, symbol 13-2a oznacza spin, 



298odpowiadający śrubie lewoskrętnej, ponieważ kierunek obiegu i zwrotwektora, przyczepionego do kuli, są powiązane wzajemnie relacją śruby lewoskrętnej. Symbol 13-2b oznacza spin, odpowiadający śrubie prawo- skrętnej «.Za pomocą tej symboliki możemy zilustrować wynik rozpadu (13.5)s powstające cząstki muszą mieć tę samą skrętność spinu, np.le­wo, zaś kierunek wektorów i Jv musi być przeciwny (rys, 13-3a).Do-
Q

Zwierciadło---------- ---------------------------- —-—-

Bys. 13-3konajmy teraz odbicia w płaszczyźnie zwierciadlanej, prostopadłej do płaszczyzny rysunku: kierunek obiegu zmieni się na przeciwny, nato­miast orientacja wektorów J nie ulegnie zmianie. Otrzymujemy więc dwa schematy tej samej reakcji, różniące się skrętnością układu współ- rzędnychj zgodnie z zasadą parzystości oba powinny występować jedna­kowo często w przyrodzie. Tymczasem wynik doświadczenia Lee i Yanga jest jednoznaczny: w doświadczeniu obserwuje się schemat a) na rys. 13-3, a nie obserwuje się schematu b), czyli neutrina pojawiają się zawsze jako "śruby lewoskrętne". Oznacza to, że przestrzeń ma wbudo­waną preferencję lewoskrętności nad prawoskrętnością.Kie koniec jednak na tym. Dokonajmy obecnie operacji sprzężenia ładunkowego, w wyniku czego otrzymamy antycząstki (rys.dJ-Aa) zgodnie ze schematem

Zwier­
ciadło

Bys. 13-4



299m ~ * p, + v (13.7)Po odbiciu w płaszczyźnie zwierciadlanej otrzymamy schemat 13-4b. Okazuje się, że w eksperymencie antyneutrino występuje zawsze jako śruba prawoskrętna. Tak więc preferencja skrętności wbudowana jest w przestrzeń również dla antymaterii, co w sposób nie budzący wątpliwoś­ci obala słuszność zasady parzystości na terenie fizyki cząstek ele­ment arnych.Przedstawione tu w wielkim skrócie wyniki doświadczeń i teorii w zakresie badań cząstek elementarnych pozwalają sądzió,że postęp w tej dziedzinie jest coraz szybszy, aczkolwiek daleko jeszcze do pełnego rozwiązania tych tak ważnych dla fizyki problemów. W szczególności wy- daje się, iż przyjęta obecnie liczba cząstek elementarnych jest zbyt duża. Być może, iż niektóre z nich są jakimiś stanami kwantowymi czą­stek "naprawdę” elementarnych, których - według przypuszczeń - po­winno być około 10. Od teorii oczekuje się również redukcji ^liczby fundamentalnych stałych fizyki: c, e, h, me, nip, itd. przez znalezie­nie nie znanych obecnie relacji między nimi. Do nie rozwiązanych, a ważnych problemów należy również wyjaśnienie natury silnych i słabych oddziaływań. Są to wszystko pytania nurtujące fizykę współczesną, a odpowiedź na nie przyniesie niewątpliwie najbliższa przyszłość.
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UZUPEŁNIENIA

Niniejsza część skryptu zawiera uzupełnienia wiadomości lub me­tod, omawianych w części podstawowej skryptu. Zagadnienia tu porusza­ne są przeznaczone dla interesujących się fizyką w szerszym zakresie, niż to przewiduje ramowy program studiów. Autor ma nadzieję, iż głęb­sze wniknięcie w pewne wybrane problemy umożliwi lepsze zbliżenie wie­dzy studenta do niektórych zagadnień współczesnej fizyki, a przez to rozbudzi zainteresowania problematyką fizyczną i zachęci do jej kon­tynuacji. Materiał tej części będzie stopniowo powiększany w następ­nych wydaniach skryptu,jeśli ich przygotowanie okaże się celowe.Autor ma nadzieję, iż na wybór dołączonych w przyszłości nowych problemów będą mieć wpływ nie tylko jego własne poszukiwania, lecz także zain­teresowania Czytelników.



U 1. ELEMENTY RACHUNKU BŁĘDÓWKażdy pomiar wielkości fizycznej jest obarczony błędem. Aby się o tym przekonać, wystarczy zmierzyć kilkakrotnie tę samą wielkość fi­zyczną, np. długość sztywnego pręta; za każdym razem otrzymujemy tro­chę inny wynik pomiaru. Ze względu na przyczyny powodujące powstanie błędów możemy ja podzielić na trzy klasy.i. Błędy przypadkowe (losowe) są spowodowane zmiennością warunków zewnętrznych i predyspozycją obserwatora (np.zmienne oświetlenie, wa­hania napięcia zasilającego, zmęczenie obserwatora, itd.). Można je zmniejszyć przez wielokrotne wykonanie pomiaru tej samej wielkości i zastosowanie rachunku błędów, czym zajmiemy się w niniejszym paragra­fie. ii. Błędy systematyczne wynikają z zastosowania wadliwych przy­rządów pomiarowych lub metod pomiarowych. Mogą być stałe (np. przesu­nięcie skali termometru, które powoduje, że wszystkie odczyty tempe­ratury są albo zbyt wysokie albo zbyt niskie) lub zmienne (np. prze­krój kapilary, zmieniający się systematycznie).Są one dość trudne do zauważenia,leoz mogą być wykryte i usunięte przez zastosowanie innych narzędzi pomiarowych (inny termometr) lub metod (zastosowanie termo- pary).iii. Błędy grube (omyłki) zdarzają się jako zupełnie błędne poli­czenie kresek skali, pominięcie mnożnika itd. Są one zwykle łatwe do zauważenia w następnych pomiarach. Omyłek takich w ogóle nie bierze się pod uwagę podczas oceny wyniku końcowego.Przypuśćmy, że wykonaliśmy n pomiarów jakiejś wielkości fizycz­nej S i otrzymaliśmy wyniki s1, s2, ..., sn. Niech g1, g2, ... gn oznaczają wagi statystyczne tych wyników. Waga statystyczna jest licz­bowym wyrazem znaczenia, jakie przywiązujemy do poszczególnych wyni­ków. Jest oczywiste, że wyniki bardziej dokładne powinny być silniej uwzględnione w rachunku, niż mniej dokładne; inaczej mówiąc,waga sta­tystyczna tych pierwszych będzie większa, niż drugich. Sie rozstrzy­gamy na razie pytania, skąd znamy wartości g^ - jest to sprawa indy­widualna dla metody pomiaru.



303Wartością najbardziej zbliżoną do "prawdziwej" wartości S jest średnia arytmetyczna "ważona" poszczególnych wyników.ni-i 1 n S *i i=1 (U1.1)
"Prawdziwej" wartości s nie definiujemy, ponieważ jest nam ona nie znana i stanowi pewną idealizację. Średnia arytmetyczna <a> jest natomiast w określonym sensie "najlepszą" reprezentantką wyników po­miaru. Pokażemy nieco dalej, jak tę "najlepszość" należy rozumieć.Jeśli wagi statystyczne pomiarów nie dadzą się ustalić, to przyj­mujemy, że g^ ® g2 = ... “ gn = 1« Wyrażenie (U1.1) przechodzi wów­czas w zwykłą definicję średniej arytmetycznejn<a> - 4“ S s,. (Ul.2)n i=1 1Błąd bezwzględny poszczególnego pomiaru definiujemy jako różnicę względem średniej arytmetycznej6± = st - <s>, (U1.3)zaś błąd względny otrzymujemy po podzieleniu 6^ przez <s>

<s> <S>Definicji (U1.3) nie można jednak użyć do obliczenia średniego błędu wartości średniej, ponieważi ?6i-ł{2 Si-n<8>}-0.i li JNa wynik ma wpływ fakt, że mogą być dodatnie lub ujemne. Po­nieważ jest rzeczą nieprawdopodobną, by wartość średnia nie była o- barczona błędem, więc w definicji średniego błędu wartości średniej używa się bezwzględnych wartości błędów g^<6> = J S|6i| - J S | Si - <8>|. (U1.5)
2Częściej używa się jednak średniego kwadratu odchylenia, a < zwa­nego wariancją
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a2 = 1 S (s4 - <8>)2 (Ul.6)i 1lub odchylenia standardowego( i V oP/2a - £ 2 (s. - <a>)2f (U1.7)

l i 1 JŚrednie odchylenie standardowe wynosi r 1 „ , pi 1/2
M S (si' / “”-3)

i jest najczęściej używaną miarą dokładności wyniku końcowego, który zapisujemy w następujący sposób<a> i am. (U1.9)Zapis ten oznacza, że "prawdziwa" wartość s różni się od śred­niej <s> nie więcej, niż o o , czyli<s> -am <s> <s> +om.Pokażemy obecnie, że średnia arytmetyczna jest taką wartością,dla której suma średnich kwadratów odchyleń osiąga wartość najmniejszą, czyli najmniejszą wartość wariancji. W takim właśnie sensie wartość <s> jest "najlepsza". Przyjmijmy na razie, iż sQ jest właśnie war­tością tak dobieraną (wartość zmienna), by wariancja osiągnęła mini­mum, tj. S (a, - a )2 = Min, i 1lub ~ (s± - s0)2) X -2 2 (s. - s0) . 0.o \ i / iZ tego S Si = n so, lub % 31 2 ai “<9>- iOkreśliliśmy dotychczas błędy przypadkowe i sposoby ich zmniejsze­nia dla jednej, określonej wielkości fizycznej. Często mamy jednak do czynienia z wielkościami złożonymi, zależnymi od kilku wielkości pro­stych. Na przykład, energia kinetyczna T punktu materialnego o ma­



305sie m, poruszającego się z częstością kątową u po okręgu koła o promieniu r wynosi o 2 22T * I a ‘ " a r‘ o)4.Mierzymy m, r, w z błędami średnimi odpowiednio дт, дг, д«. Z ja­ką dokładnością znamy T? Możemy napisać2(T + ДТ) = (m + Дт)(г + Дг)2 (w + Дш)2.Jeśli zachować tylko te wyrazy, które nie zawierają błędów lub za­wierają je w potędze pierwszej, to wynik obliczeń jest następujący:2(T + дТ) « mr2 oj2 + r2 w2 Дт + 2 mr w2 дг + 2 mr2 шдш .Z tego 2 2 2 22 ДТ • г ш Дт + 2 mr w Дг + 2 mr шдшoraz .M a .AS + 2+ 2-Am . T m г шWidzimy, iż z dokładnością do wyrazów pierwszego rzędu względny błąd energii kinetycznej jest równy sumie względnych błędów poszcze­gólnych wielkości z współczynnikami liczbowymi, zależnymi od potęg tyoh wielkości w wyrażeniu określającym T.Ten sam wynik możemy otrzymać znacznie prościej przez zastosowa­nie rachunku różniczkowego. Jeśli P jest funkcją zmiennych x^, x2, ... Хд, to względny błąd ДР/Р można wyrazić ogólnie w następujący sposób (0Ы0) i-1 4 17Obliczenie według (U1.10) znacznie się upraszcza, jeśli funkcję P przed różniczkowaniem zlogarytmujemy. W naszym przykładzie z ener­gią kinetyczną punktu będziemy mieliIn 2 + In T = In m + 2 In r + 2 In woraz jLZ . JUS + 2 + 2 .T m^r**^’a więc w ten sposób znacznie szybciej można otrzymać wyrażenie, po­trzebne do oceny błędu wielkości złożonej. Należy jednak pamiętać o tym, że błędy wielkości występujących w mianowniku również wchodzą z udziałem dodatnim w błąd wartości złożonej. Jeśli np. funkcja P ma postać
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Przykłady

1 X^ • X,P = - it ,2 x, + b x^to śp 2 ax2P x1 x2 x3 + b x4lub a p △ 2C- A △ XA— = 2 -----1 + ---- & + —4----- ----- & ,P Xl x2 x3 + b x4gdy parametr b jest znany dokładnie.
1. Zmierzono dziesięciokrotnie pewną długość i otrzymano następu­jące wynikii 1 2 3 4 5 6 7 8 9 10l^,mn 102 105 102 99 101 98 103 102 100 105stąd 10<1> = -i- 2 1. = 101,70 mn, i=1 1

<S> = S | - <1> | = 1,76 mm,
o2 » “ <1»2 ■ 5,54 mm2

a = 2,35 mm,a m » 0,78 mm. mWynik końcowy1 - (101,7 i 0,8) mm.2. W 293,2 K (pHg = 13,546 i 0,001 g/om^) długość słupa rtęci w kapilarze wynosi 7,24 cm (pomiar wykonany suwmiarką), a masa rtęci m = 0,4936 g (pomiar na wadze analitycznej, ą m = 2*10~^ g). Obliczyć błąd z jakim znamy promień kapilary.Mamy o m = n r hp ,



307czyli r ■ (tkt/2 ■ ■ 4.003-10-2 ca.Błąd względny r wynosi
_ 1 f 2 . 100 . 10 ] .„-4"?to7^ + 77tf + T3T54n 10 s= 11 4,05 + 13,81 + 0,74 } • 10"4 - 
» 9,3’1O"4 = 0,1%.Z tego błąd bezwzględnyAr = r’9,3‘10“4 cm - 4*10"^ om czyli r - (4,003 - O,OO4)’1O"2 cm.Z tego rachunku widać, iż największy udział w błędzie względnym pochodzi od pomiaru długości kropli rtęci w kapilarze za pomocą suw­miarki. Gdyby nam zależało na dokładniejszym wyniku, wówczas należy przede wszystkim zwiększyć dokładność tego pomiaru.

Przykład ten został zaczerpnięty ze skryptu J. Demichowicz-Piginiowej, Obli­
czania chemiczne, cz. I, Wrocław 1975 r.Na zakończenie zajmiemy się jeszcze rachunkiem wyrównawczym dla zależności liniowej. Przypuśćmy, że między wielkościami fizycznymi X i Y istnieje związek liniowy w postaciY - a X + b. (U1.11 )Mierzymy pary liczbowe (X^, Y^), a chcemy obliczyć optymalne war­tości stałych alb. Przez wartości optymalne rozumieć będziemy takie, które spełniają postulat najmniejszej wartości wariancji, a i b do­bieramy zatem tak (zmienne), by suma kwadratów błędów (Y^ - a X^ - b ) osiągała minimum nS (Y. - a X. - b)2 - Min. (U1.2)1-1 1 1Suma rozciągnięta jest na n par (Xi, Y^). Mamy więc-jj | S - a Xi - b)2} ’ -2 S VYi - a Xt - b) = 0,
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-j Z (Yi - a X± » b)2 « -2 Z * a X± - b) » 0.<■1 J iNa taj podstawie można napisać dwa równania liniowea + b 2 - 2^, (U1.13)a 2X4 + b°n = 2 .Rozwiązanie ich. daje wyrażenia potrzebne do obliczenia a i b.n 2 X. Y. - SI. 2Y.a „ , (Ul. 14)n 2 X.2^ — 2 X^ 22 Х± 2 X1Xi - 2 X± 2 n 2 Х±Х± - 2 X± 2Х^ (U1.15)

(U1.16)linii prostej jest spotykany w prakty- funkcji występujących w zagadnieniach

Jeśli prosta definicyjnie przechodzi przez zero, tj. b » 0, to analogiczny rachunek daje aPrzedstawiony rachunek dla ce najczęściej, ponieważ wiele fizycznych można przedstawić jaka zależność prostoliniową. Można go również bez trudu uogólnić na przypadek zależności podanych w postaci wielomianów drugiego lub wyższych stopni. Jednak już w przypadku pa­raboli potrzebujemy dla jej pełnego opisu trzech parametróws co pro­wadzi do trzech równań liniowych niejednorodnych.Dla wielomianów sto­pnia n liczba potrzebnych równań jest równa liczbie nie znanych nam współczynników.3. Za pomocą dyfrakcji promieni rentgenowskich mierzono odstęp płaszczyzn sieciowych (020) kryształu NaCl w różnych temperaturach i uzyskano następujące wyniki

przy czym 0t jest kątem dyfrakcji w temperaturze t °C. Obliczyć

Łp. 1 2 3 4 5 6temp (w °C) 51,76 57,63 74,57 94,32 111,63 128,50
9t 329° 47,06’ 329°45,10’ 329°43,34’ 329°41,03’ 329°33,72’ 329°36,61’



309współczynnik rozszerzalności kryształu metodą najmniejszych kwadratów wiedząc, że ^o-jo “ 2,320 2 oraz długość fali promieniowania Cu Ka ■ » 1,5405 2.Obliczeń dokonamy na podstawie prawa Braggów2 d sin 0 » n° x .Wraz ze zmianą temperatury zmienia się zarówno odstęp d między płaszczyznami sieciowymi, jak i kąt rozpraszania2 sine A d + 2 d cos 0 • A0 “ 0, czyli Ad A0——— = a » - cot 0 • —- . d’ A t AtDo obliczenia współczynnika rozszerzalności termicznej a potrze­bujemy więc znajomości nachylenia funkcji © (t) oraz wartości ctg0 dla refleksu (020). Łatwo się przekonać (za pomocą wykresu),że zależ­ność 0 (t) ma tu rzeczywiście charakter liniowy, co uzasadnia zasto­sowanie metody najmniejszych kwadratów dla prostej typu aX + b, po­nieważ stała b jest tu różna od zera. Zatem0' t = a • t°C + b, gdzie 0'^ wyrażone jest w minutach (liczbę pełnych stopni opuszcza­my, co nie ma wpływu na wartość nachylenia^ wpływa ona tylko na war­tość b, która nas nie interesuje).Wielkości występujące w (U1.14) wynoszą»2X± = 518,46, 251,86, 2 = 21165,70, 2 = 49436,53,n = 6.Wobec tegoa = 6‘ 21.1^x79 - ,^.,^1221x86 „ _128t88.i0"3 min = 6-49436,53 - 518,462 K- -37,489’1O-6 .Ze wzoru Braggówn *x 2-1,5405Sin0 a —™ b —— a 0,5463, czyli cot 0 ■ 1,5333 2d 2’2,820Współczynnik rozszerzalności wynosia = 1»5333’37,489’1O“6 K~1 « 57,48’10~6 K"1w zakresie temperatur od 50 do 120 °C. Wartość liczbowa a jsst znacz­nie mniejsza od tablicowej, równej 110’10“^ K”\ lecz odnoszącej się 



310do zakresu temperatur od -79 °C do 0 °C. Współczynnik rozszerzalnoś­ci cieplnej kryształów nie jest wielkością stałą lecz zależy od tem­peratury? ponadto jego wartośó zależy również od obecności defektów strukturalnych w badanym krysztale.
U 2. SIŁA MAGHETOMOTORYCZNAWyrażenie określające sił® magnetomotoryczną jest analogiczne do prawa (6.25) w polu elektrostatycznym i w sposób skoncentrowany wyra­ża własności pola. Dotyczy ono całki krzywoliniowej po konturze zam­kniętym w polu magnetycznym.

Rys. U2.1Wyobraźmy sobie kontur CDBP (rys. U2-1a), leżący w płaszczyźnie prostopadłej do przewodnika z prądem P. Jaki będzie wynik obliczenia całki krzywoliniowej / B*dl, jeśli dl jest elementem przesunięcia, CDEP”B natómiaet wektorem indukcji magnetycznej wytwarzanej przez P? Wzdłuż 



311odcinków PC i DE mamy B«dl * 0, ponieważ w dowolnym ich punkcie B j_ PC lub B jl ED. Wybieramy obecnie elementy przesunięcia dl^ wzdłuż CD i dl2 wzdłuż EJ? tak, by odpowiadały temu samemu kątowi środkowemu, tj. by ~--------- — . 4,.W takim razie dj2 “ " (r2/r^)d^1, ponieważ oba przesunięcia mają zwroty przeciwne» Na podstawie prawa Biota-Savarta-Laplaoe'a (8.47) mamy Bp » B^ (r^/rg). Wobec tegoB2-ąi2 • -B, ' .a więc wynikiem całkowania będzie zero. Nietrudno pokazać, że wynik ten będzie słuszny także dla dowolnego konturu, nie obejmującego prze­wodnika (np. rys. U2-1b).Dokonajmy obecnie całkowania po okręgu koła otaczającego koncen­trycznie przewodnik P, przez który płynie prąd o natężeniu i (rys. U2-1e). Na podstawie prawa Biota-Savarta-Laplace'a zastosowanego do przewodnika liniowego (8.47) mamy B « (p0/4tc )•(2i/R), przy ozym B Jest wszędzie styczny do okręgu tak, że B*dl ■ B»dl. Wobec tego
JUl- f B-di . i»i f dl = ^1. (U2.1)okrąg okrąg 2 k R okrągMożna łatwo wykazać, że taki wynik można otrzymać przy dowolnym kształcie konturu otaczającego przewodnik. Kontur CC* (rys.U2-1d)nie otacza przewodnika, wobec tego

cc' c' cJeśli zamkniemy oba obwody C 1 c'. Pisząc całkę wzdłuż 0 należy zwrócić uwagę na kierunek obiegu konturu w stosunku do kierunku prze­pływu prądu. Ogólnie zatem całka krzywoliniowa po dowolnej krzywej zamkniętej w polu magnetycznym Jest proporcjonalna do natężenia prą­du, objętego tym konturem /B»dl=|ioi (U2.2)C lub w próżni
J H dl -i. (U2.3)C



312 Prawo wyrażone związkiem (U2.3) wymaga jeszcze pewnych uzupełnień i. Natężenie prądu i odnoai się w (U2.3) i w poprzednich równa­niach do prądu przewodzenia w przewodniku. Jeat to przypadek szcze­gólny, gdzie gęstość prądu ma dużą wartość wewnątrz przewodnika i ró­wna jest zeru wszędzie poza nim. W przypadku przestrzennego przypływu ładunków należy posługiwać się gęstością prądu j,. Jeśli S jest do­wolną powierzchnią, rozpiętą na konturze C, dS natomiast elementem tej powierzchni, to di » J. dS. Poza tym w przypadku ogólnym, oprócz prądu przewodzenia może również występować prąd przesunięcia, którego gęstość niech wynosi ip. W takim razie ogólniejszą postacią prawa (U2.3) będzie / H dl » / (1 + Ap) dS. (U2.4)C 3Całka z lewej strony jeat całką krzywoliniową wzdłuż konturu zam­kniętego C, z prawej natomiast mamy całkę powierzchniową po powie­rzchni 3, rozpiętej na C.ii. Wyrażenie z lewej strony (U2.4)/ H dl, (U2.5)Cjest zwane siłą magnetomotoryozną. Jest to wielkość analogiczna do siły elektromotorycznej w obwodach elektrycznych i bywa stosowana do obliczeń technicznych obwodów magnetycznych. Między siłą magnetomoto- ryczną i strumieniem magnetycznym $ istnieje związek analogiczny do prawa Ohma
F$ = , (U2.6)“mgdzie R jest oporem magnetycznym.

U 3. PRAWA ODBICIA I ZAŁAMANIA FALI ELEKTROMAGNETYCZNEJJeśli na granicę rozdziału dwóch jednorodnych, lecz o różnych własnościach optycznych ośrodków, pada fala elektromagnetyczna,to mu­si ona ulec podziałowi na dwie fale; odbitą i załamaną. Pojawienie się dwóch fal jest koniecznością, wynikającą z zasady ciągłości składo­wych wektorów Ę, H, D i B podczas przechodzenia przez granicę roz­działu. Zasada ta, której słuszności nie będziemy tu dowodzili, brzmi następująco:



313Podczas przechodzenia fali elektromagnetycznej przez granicę dwóch ośrodków nieprzewodzących jest zachowana ciągłość stycznych do grani­cy składowych wektorów E i H oraz ciągłość składowych normalnych D i B. Zadada ta oznacza, że dla wiązki promieniowania nie ulega zmia­nie składowa etyczna wektorów E i H podczas przechodzenia przez gra­nic® fazj podobnie ciągłość zachowuje składowa normalna wektorów D i B.

Przypuśćmy, że w ośrodku 1 rozchodzi się płaska fala elektromag­netyczna w kierunku wektora jednostkowego X'1 , normalnego do płasz­czyzny jednakowej fazyj wskaźnik i oznacza falę padającą«Jeśli zna­my wychylenie A(t) w określonym punkcie ośrodka, to wychylenie w innym punkcie, odległym od poprzedniego o r wynosi A (t - r • l/v), gdzie v jest fazową prędkością fali w tym ośrodku (por. pkt 9.7). Wybierzmy interesujący nas punkt na granicy rozdziału dwóch ośrodków W tym punkcie fazy drgań fali padającej i, odbitej r, i załamanej t będą jednakowe, czylir-l^ r-l(r) r»!^t , t - -------— = t - ™, (U3.1 )V1 V1 v2przy czym v2 oznacza prędkość fazową fali w ośrodku 2.Przy orientacji układu współrzędnych pokazanej na rys.UJ.1 wektor r wybranego punktu ma składowe r (x,y,o), wobec czego (U3.1) możemy rozpisać w następujący sposób:
* - - s _____ „4 „ .V1 V1 v2 (U3.2)



314 Równości (U3.2) mają być spełnione dla dowolnych x,y;jest to tylko wówczas, gdyi(i) n(rj -.(t)x 3 x _ xV1 V1 v2
możliwe

(U3.3)oraz 15 orazPłaszczyna, przechodząca przez normalną do granicy fazjest zwana płaszczyzną padania. Równości (U3.3) wskazują, że wektory 1 i 1^\ czyli promień odbity i załamany, również leżą w tej płaszczyźnie. Jeśli przez 0^, ©r i 0^ oznaczymy kąty padania, od­bicia i załamania (rys. U3-1), przy czym wszystkie są mierzone wzglę- dem normalnej do granicy obu ośrodków (oś z), wówczas składowe wekto­rów 1 możemy wyrazić w następujący sposób;
X y z/i) sin 0^ 0 -cos 0^

llr) sin er 0 cos 0r (U3.4)i(t) sin ©t 0 -cos et
dla fali biegnącej z ośrodka 1. do 2. Dla fali biegnącej odwrotnie, tj. z ośrodka 2. do 1., cosinusy kierunkowe wszystkich wektorów 1 zmieniają znak (rys. U3-2):

X y z1<^ -sin 0± 0 COS ©i^r) -sin ©_ 0 -aos ©r (U3.5)i“’ -sin ©^ 0 oos ©^Podstawienie (U3.4) do (U3.3) prowadzi do następującej równości sine, sin e„ sin©.
A - ------ £ .--------1 . (U3.6)

V1 V1 V2Wynika z tego, iż ©i = er (U3.7)oraz ^±1 V1 n2 „ --------* - = «n21. sin ©t v2 (U3.8)



315Wyrażenia (U3.7) oraz (U3.8) są znane jako prawa Snelliusa. n^ i n2 w (U3«8) oznaczają bezwzględne współczynniki załamania światła obu ośrodków (względem próżni), n^ zaś jest względnym współczynni­kiem załamania światła ośrodka 2. względem 1. W drugiej części rów­nania (U3.8) skorzystaliśmy ze wzoru (9.59). Jeśli n2 > n^, to ośro­dek 2. jest optycznie gęstszy od ośrodka 1. Załamanie promienia zacho­dzi wówczas w kierunku ku prostopadłej padania, a ponieważsin 0. “ ~~ sin 0. < sin ©.,* n21 1 1więc dla każdego kąta padania istnieję promień załamany.Nie jest to słuszne, jeśli odwrócimy bieg wiązki. W tym przypadku współczynnik załamania światła n^2n 1n. o * T" * M 1 12 n2 n21jest mniejszy od jedności. Istnieje wobec tego kąt padania 0^, zwany kątem krytycznym, taki że sin ex “ n12- (U3.9)Jeśli ©£ = ©£, to 0^ « 90°, czyli promień załamany ślizga się wzdłuż powierzchni rozdziału obu ośrodków. Zjawisko to nosi nazwę cał­kowitego wewnętrznego odbicia. Przy kącie > 94 promieniowanie nie wchodzi do ośrodka 1. Ściślej biorąc, natężenie pola elektromagnetycz­nego w ośrodku 1. jest wówczas różne od zera, nie przepływa jedynie strumień energii przez granicę faz. Aby to pokazać załóżmy, że dla 6i> 0« 1 1 2 1/?sin 0 . sin e,sin et a --------i , cos 0t » -i (---- £—Ł - 1) , (U3.10)n nprzy czym opuściliśmy wskaźniki przy n, z dwóch możliwych wartości cos 01 wzięliśmy natomiast tylko ujemną, ponieważ dodatnia - jak zobaczymy - nie ma sensu fizycznego. Oczywiście dla 04 > będzie (sinO^n) > 1, co oznacza, iż z (U3.10) nie możemy obliczyć kąta za­łamania 6t. Korzystając z (U3.10) możemy napisać równanie fali za­łamanej w postaci:A(r,t) - Ąoeiw<t-r‘l/v) = (U3.11)1 /2 l(D-[t-(x Sin 0 i)/(nv2)| -(mz/v2) j(sin2 0 4/n2)-.lj* 6Wyrażenie (U3.11) przedstawia falę niejednorodną. Rozchodzi się ona bowiem w kierunku x, tj, stycznie do płaszczyzny rozdziału, lecz



316jej amplituda malej® wykładniczo wraz z głębokością z w ośrodku op­tycznie rzadszym (1). Widaó obecnie, iż dodatnia wartość cos8w (U3.10) nie ma sensu fizycznego, gdyż w tym przypadku amplituda fali wzrastałaby nieograniczenie w miarę wnikania w ośrodek 1. Ponieważ czynnik { (sin26i)/n2 - 1 } jest rzędu jedności, efektywna głę­bokość wnikania fali do ośrodka 1 jest więo rzędu▼o A2 .zef " ’ (U3.11)w 2kczyli rzędu długości fali promieniowania w ośrodku 2.
U 4. WZORY FRESNELAZajmiemy się obecnie amplitudą fali odbitej i załamanej. Założymy przy tym, że oba ośrodki są nieprzewodzące i niemagnetyczne (p.^ = p2 ■■ 1). Amplituda fali padającej A zależy od fazy fali (rys. U3-1) r»!^ x sine. - z cos 0.cp. -w (t - ——) - W (t--------------—------------ -*) (U4.1)V1 V1Rozłóżmy każdy z wektorów na składową leżącą w płaszczyźnie padania (wskaźnik it) i składową do niej prostopadłą (wskaźnik i ). Mamy więc dla fali padającej składowe amplitudy An i Aj_j dla fali odbitej R„ i Rit wreszcie dla fali załamanej Tn 1 T^. Wobec tego składowe wekto­ra E i) wynoszą:

E(i) .A «ca « E^> - A e1’1E_ cos 8, e , E » e ,* i» (U4.2)E^^ = A„ sin 8. e i.
Z " 1W celu znalezienia składowych H zauważmy, iż według (9.51)H - (1 * E).

^”0Wobec tegog(i) . _]— 11^ E^^ - l^ E^M “ —~ A 1 cos 9j e^i,* Hov1 l ? z z y J pioV1 1„(i) « 1 fi(i) - l(j-^ E^M =y l^ovi 1 z x X z J“ "00s 6 iA" 00s 6 i “ sinej^An sine^le^1 .
(U4.3)
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gdzie

’i

“ i7“v” I 4^ 4^ “ = ~V” A± sine±HcJl l x y y x J 1 i/ r«!^ \ / x sin 6 j - z cos © . \■“ .,Jt. ............. .1 .

izpi 
e .

(U4«4)W dalszym ciąguE^ “ -R„ cos 0r e^1", E^r) = R± e*$r.
(r)E' ' " R„ sine ■ aZoraz

| S^l “ “ ~T” R1 0080 r ®i(PrX nov1 1 y z z y J Mov1 1 r
„(r) _ 1 J i (r) W(r) t/*) R^l .1 Xz Ex S Ez J

1 f l» ~~ j -cose r R„ coee r - Sin er R„ sin 0 p j 8 ■

(U4.5)

(U4.6)
■ —1— 1E^r^ - » —1— r ain e enz lxx ay xy X J |Jov1 ± ’gdzie

Qr *» (t
X sin 0 + Z COS 0. CU4.7)1W końcu - T cos fi 8i<₽t E^^ - T008 yt e » X1 e »- T„ sin 6. (U4.8)Z u(+ ) 1 tE’ ■ 11 °M e* ’ ■■ - uV T" (0,-9)y Hov2

H?) S1»et e1"*.



318gdzie Z r*l \ Z X Sin 0+ - Z 000 0+\<Pt “ ------J - o>^t------------------------------------ ~J. (U4.10)Do obliczonych amplitud E i H zastosujemy obeonie warunki ciąg­łości w postaciE^ + E^ - E^, E^1^ + E^ = E^, (U4.11)
x x * y y y+ + 3 (U4.12)■*• x x y y ypamiętając, że dotyczą one składowych stycznych E i H w punkcie P(OOO). W tym punkcie wszystkie czynniki fazowe skracają się do eiu)tj ponieważ równości (U4.11) i (U4.12) są względem tych czynników jedno­rodne, możemy je opuścić. Liczba równań napisana na podstawie warun­ków ciągłości wynosi 4 - tyle akurat potrzeba do obliczenia czterech amplitud: R„, R^, T„, i T^, jeśli A„ i Ai - jak zwykle - przyjmiemy za znane.Równania te mają postać następującącos 8 i(A„ - RM) = cos tmn^(AM + Rn) = n2 T„ (U4.13AA + R1 » Tin1 cos e i(A1 - r±) « n2 cos et t±W zapisie równań (U4.13) skorzystaliśmy z następujących równości i r* iUkład (U4.13) przedstawia cztery równania o czterech niewiadomych i może być rozwiązany jednoznacznie. Widać jednak, iż dwa równania za wierają jedynie składowe A, R, T, równoległe do płaszczyzny padania, a następne dwa składowe do niej prostopadłe. Fale obu tych typów są zatem od siebie niezależne. Można wobec tego układ (U4.13) rozbić na dwa układy o dwóch niewiadomych, których rozwiązanie nie przedstawia trudności. Wyniki rozwiązania są następującen2 cos © i “ ni 008 0 + n1 000 0 i “ n2 008 6 tRn . ----------—- ------ --------- r* AHj R± “ ---------------------------------no GOS 8 , + n, COS 8». n, COS e< + Do coa © +2 11  ̂ 1 i 2 t (U4.14)2 n. cos e i 2 n, cos 8 ,T„ ■ ' AMJ T_l ■ ' Aj

n2 COS 8 ± + n1 008 0 t n1 008 0 + ng 008 0 $



319Równania (U4.14) noszą nazwę wzorów Freanela i określają wielkość amplitudy monochromatycznej fali elektromagnetycznej odbitej (lub za­łamanej ) w płaszczyźnie padania lub prostopadle do niej w zależności od współczynników załamania światła, kąta padania, kąta załamania 1 amplitudy fali padającej.Oprócz (U4.14), równania Presnela pisze się często w trochę innej postaci, otrzymanej z (04.14), przy zastosowaniu prawa załamania świa­tła (U3.8)s tg (e. - e+) sin (e. - et)R„ ■ —- An, Rj_ = -tg (e. + e+) (sin®. +et) -1 * i t (U4.15)2 sin e+ cos ©j 2 sine* cos 0 4Tn = —--- _----- _ An9 T± =------------------------ A±.sin (©i + 0t) cos (©i - e-f) sin (6j * 8t'Wzory Presnela były jednym z pierwszych i ważniejszych historycz­nie dowodów elektromagnetycznej teorii światła. Okazało się później, iż wzorów tych nie można stosować wtedy, gdy zachodzi odbicie 1 zała­manie wiązki promieniowania o bardzo dużym natężeniu. Wiązki takie są emitowane przez współczesne źródła laserowe.Pole elektromagnetyczne osiąga w wiązce laserowej dużej mocy war­tości porównywalne z polem wewnątrz atomu lub cząsteczki.Powoduje to, iż indukowany w atomie moment dipolowy jest nieliniową funkcją E, wo­bec czego również równanie Mazwella, opisujące rozchodzenie się ta­kiej fali w ośrodku staje się nieliniowe. W tych warunkach odbiciu i załamaniu światła towarzyszą nowe zjawiska, np. w obu graniczących z sobą ośrodkach powstają fale o częstościach harmonicznych (2v, 3v, ...) w stosunku do częstości fali padającej («).Na zakończenie rozważmy jeszcze dwa proste przypadki zastosowania równań Fresnela.1. Przypadek normalnego padania fali elektromagnetycznej na gra­nicę rozdziału dwóch ośrodków niemagnetycznych i nieprzewodzącyoh.Ma­my w tym przypadku 0 ■ O i oczywiście » O oraz:
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Wzory te stanowią punkt wyjścia do obliczenia współczynników od­bicia przy padaniu normalnym, podanych w pkcie 9.9» Zauważmy, iż gdy­by fala padająca była spolaryzowana w ten sposób, np. że ■ 0, 0, czyli drgania wektora E następują prostopadle do płaszczyz­ny padania, wówczas również w fali odbitej i załamanej będzie R„ « 0 i 0 oraz T„ » 0 i Oznacza to, że w zjawisku odbiciai załamania stan polaryzacji ulega zachowaniu.2. Przypuśćmy obecnie, że fala padająca nie jest spolaryzowana, lecz że 6i+6t” 90°, (U4.17)tj. promień padający i załamany tworzą razem kąt prosty. Wówczas tg C+6 = “, sin (6^ + et) = 1, a z (U4.15) wynika, żeR„ =0, R± = sin 2 e± i 0.Oznacza to, iż w promieniu odbitym wektor E nie może mieć skła­dowej leżącej w płaszczyźnie odbicia, czyli po odbiciu fala jest cał­kowicie spolaryzowana, a wektor E drga w kierunku prostopadłym do płaszczyzny padania. W tych warunkach prawo załamania światła prowa­dzi do znanego warunku Brewstera dla kąta padania, odpowiadającego całkowitej polaryzacji (por. 9.61).
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