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PRZEDMOWA

Fizyke chemiczng wprowadzono do programu nauczania na Wydziale
Chemicznym Politechniki Wroctawskie]j w 1964 r., zamiast wykZadanej
tradyoyjnie fizyki. Zmiana nazwy przedmiotu oznaczaXa przyznanie wy-
kXadowcy prawa wyboru takich zagadnied 1 rozdziastéw, ktére mogiy mieé
najwigksze znaczenie i przydatnosé dla tego kierunku studidw, a jed-
noczesnie mogly byé przedstawione w okreslonym czasie.

Z bilegiem lat program wykadu ulegal rozmaitym ewolucjom. Wpiywa-
¥y nad zaréwno doswiadczenia wiasne autora, wynikajgce z konfrontacji
egzaminacyjnych ze studentami, jak rdéwniez potrzeba wprowadzenias no-
wych poglgadéw i pojeé zamiast mniej aktualnych.Ten proces wymiany nie
zostal zakoXogzony - trwa on do dzisiaj. Nowy czynnik, majgcy wpiyw na
zakres poruszanych w wyktadzie zagadnier, ktdéry pojawik sig przed kil-
koma laty, jest zwigzany z reformg szkolnictwa sredniego i postgpujg=-
cym za nig rozszerzeniem wiadomosci abiturientdéw w zakresie  fizyki.
Spowodowazo to na przykiad w wyktadzie mechaniki zogniskowanie uwagi
na zagadnieniach dynamiki bryty sztywne] zamiast dynamiki punktu,usu-
nigcie z elektrodynamiki prawa Ohma i jego bezpodrednich zastosowai,
pominigoie elektrochemii, w optyce zas$ zagadnierll optyki geometrycz-
nej.

Zmian takich jest wigce]J, ich ogdlnym celem byZo zaréwno wyelimi-
nowanie z wyktadu tych zagadnier, ktdérych lepszg czy gorszg znajomosé
powinien posiadaé absolwent szkoky sredniej, jak tez przeniesienie
niektérych probleméw de innych przedmiotéw, gdzie sg omawiane szerzej
(termodynamika, budowa atomu).

Opracowujgc wyktad wediug przyjetego ostatnio programu autor ko-
rzystax z wielu podrgecznikéw i monografii, w celu znalezienia nsjbar-
dziej trafnego lub interesujgcego sposobu przedstawienia poruszanych
probleméw; niekiedy udaZo sig¢ autorowi samemu cos$ wniesé w tej dzie-
dzinie. Spis odpowiednich dziet zostal zamieszozony na koiricu skryptu.
Z wymienionych tam pozycji mozna korzystaé w celu rozszerzenia i1 po-
gigbienia indywidualnych zainteresowad Czytelnikéw.

Autor nie unikat wprowadzania do wykadu zagadnied trudniejszych,
uznajgc, iz zapoznanie si@ z nimi na weczesnym etapie studidéw uzatwia
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korzystanie z wykXaddéw specjalistyocznych, przeznaczonych dla bardzie}
zaawansowanego grona sXuchaczy. Na zasadzie przyktadu mozna tu wymie-
nié dynamike bryty sztywnej z potrektowaniem momentu bezwiadnosdci ja=-
ko wielkosci tensorowe], elementy teorii wzglednosci i zwiagzane z tym
zagadnienie transformacji uktadu wepdirzednych, anizotropii wiasnosci
fizycznych ciat staiych w opisie tensorowym. Podawane niekiedy przy-
k*ady rachunkowe majga na celu zorientowanie Czytelnika w zastosowaniu
formalizmu do konkretnych zagadnied i = byé moZe - uXatwiq zrozumie-
nie zasad ogélnych.

Wiele zagadnierd lub sposdd ich przedstawienia omawiano w zespole
pracownikéw naukowych, zajmujgcych sig@ nauczaniem fizyki chemicznej.
Wdzigczny jestem szczegdlnie drowi Bolesiawowi Jakubowskiemu 2za jego
gotowo$é do wspbipracy i cenne uwagi. Niezmierng cierpliwosé i wyro-
zumistosé wykazata réwniez moja Zona, przepisujac maio czytelny rgko-
pis; bez jej pomocy nie byzoby mozliwe przygotowanie pracy do druku w
tak krétkim terminie.

Autor

Wroctaw, 21 lipca 1975 r.



DEFINICJE JEDNOSTEK PODSTAWOWYCH W UKEADZIE SI

1. Metr jest diugoscig réwng 1 650 763,73 °A Kpd M g Jest diu-
goscig fali w prézni prgzka spektralnego, odpowiadajacego przejsciu
emisyjnemu migdzy poziomami 2p10 i 5d5 atonu kryptonu goKr.

2, Kilogram jest masg migdzynarodowego wzorca tej Jjednostki, wy-
konanego ze stopu 90% Pt i 10% Ir i przechowywanego w Migdzynarodo-
wym Biurze Miar i Wag w Sevres pod Paryzem.

Widérnym wzorcem 1 kilograma jest masa 1,000028 dm3 wody destylo-
wane] w temperaturze 4 % pod cisnienieniem 1 Atmosfery.

3. Sekunda jest (31 556 925,974 7)-1 czgscig roku zwrotnikowego
dla 1900 r. stycznia O o godzinie 12 czasu efemeryd.

4, Amper jest natgzeniem pradu elektrycznego statego, ktéry piy-
ngc w dwéch réwnolegiych i nieskgﬁczenie d*ugich przewodnikach o prze-
kroju znikomo matym, umieszczonych w prézni w odlegiodeci wzajemnej
Jjednego metra, wywoiuje migdzy tymi przewodnikami size 2-10"7 niutona
na kazdy metr ich diugosci,

5. Kelvin  jest jednostka temperatury skali termodynami-
cznej, w ktérej temperatura punktu potrdjnego wody jest dokladnie réw
na 273,16 K.

6. Kandela jest swiatZos$cig, ktdérg ma w kierunku prostogadlym ele-
ment powierzchni ciata doskonsle czarnego o wielkosci (6°107) ,
promieniujgcego w temperaturze krzepnienia platyny pod eisnieniem 1
atmosfery fizycznej.

OZNACZENIA I SYMBOLE

1. Oznaczenia ogdélne

fi

"jdentyczne 2z ...",

<> wartosé srednia,

— "przechodzi W o...",

2 "pocigga, %€ ...",

A, B wektory A, B; podkreslenie litery u dozu oznaczs wektor,
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iloczyn skalarny wektordéw A i B,

iloczyn wektorowy wektoréw A i B,

kropka nad literg oznacza pochodng wzglgdem czasuj
wiec sktadowg predkosci wzdiuz osi x,

operator gradientu ("nabla"),

macierz A,

macierz A przestawionsa,

tensor A,

sktadowe tensora (lub elementy macierzy) A.
2, Przestrzen i czas

wapbétrzedne poozenia,

wektory jednostkowe wzdtuz osi wspdirzednych,

wektor wodzgcy punktu (w m),
promier okrggu (w m),
niewielki przyrost x,

droga (w m),
powierzchnia (w m
objetosé (w m3)
katy ptaskie (w rad),

)

drugosdé fali (w m),

liczba falowa (wm™ '),

wektor falowy (w m™ '),

czas (w s),

okres (w 8),

ozestodé liniows (w &~ '),

czeatosé katowa (w s~ 1),

predkosé katowa (w s™1),

przyépieszenie katowe (w s~2),

prgdko$é liniowa (w m/s),

przyépieszenie liniowe (w m/s?),

sktadowa przysSpieszenia styczna do toru (w m/sz),
sktadowa przyépieszenis normalna do toru (w m/s2).

3. Dynamika

masa (w kg),

masa spoczynkowa (w kg),



(= Qé’d'cl”dl'dm'o

HIR|lwl Q v @ =
~~
Z
S

[
=
<

™ Q

™ d < B E B E 4 <=
o o

oW
~0|<

gestosé (w kg/m’),

przyspieszenie ziemskie,

sita (w N),

sia przyXozona (w N),

sita wewnetrzna (w N),

stata grawitacji (w Nmz/ks),

energia kinetyozna (w J),

energia potencjalna (w J),

praca przesunigcia masy z punktu A do B (w J),
energia catkowita (w J),

moc (w W),

wapétczynnik liniowej sity sprezystej (w N/m),
ped ciata (w kgm/s),

kret (moment pgdu) punktu (w Nem),

moment sixy (Nem),

moment bezwkadnosci (w kgtmz),

sktadowe tensora momentu bezwtadnosci (w kg.m?),
predkosé $wiatta w prézni (w m/s),

stosunek predkosci obiektu do predkosci sSwiatia,

1-32)"1/zczynnik transformacji Lorentza,

dtugosé preta w ruchu (w m),

czas wtasny uktadu spoczywajacego (w s),

czgstosé katowa drgai harmonicznych (nie tXumionych),
okres drgari harmonicznych (nie tumionych),

aktualna czgstos$é drgan,

aktualny okres,

wapbtczynnik sity tarcia,

czas relaksacji,

stata tzumienia.

4. Elektrostatyka i elektrodynamika

Yadunek swobodny (w C),

dodatni *adunek prébny (w C),

%adunek elektromu (w C),

*adunek zwiazany w dielektryku (w C),
powlerzohniowa gestosé adunku (w C/m?),
objetosciowa gestosé Zadunku (C/m3),

bezwzgledna przenikalnosé dielektryczna prézni (w cz/m:?)

wzgledna przenikalnosé dielektryczna osrodka (astata
dielektryczna),
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natezenie pola elektrycznego w prézni (w V/m),
natgzenie pola elektrycznego w osrodku (w V/m),
moment dipolowy (w Cem),

strumied wektora przez powierzchnie zamkniets S (w Vem),
potencjax pola (w V),

pojemnosé elektrostatyczna, (w F),

czynnik geometryczny kondensatora,(w m),
wektor indukcji elektroatatyczne] (w C/mz),
wektor polaryzacji dielektryka (w C/mz),
natgzenie pola wytwarzane przez *adunki zwigzane (w V/m),
grubosé warstwy podwéjnej w dielektryku (w m),
odlegtosé oktadek kondensatora (w m),
powierzohnia jednej oktadki (w m2),

réznica potencjetéw (w V),

temperatura Curie (w K),

powierzchnia przekroju przewodnika

natesenie pradu (w 4),

przewodnictwo wtadciwe elektryczne (9~ em™1),
opornosé witasciwa (w Qem),

gestosé pradu przewodzenia (w A/m?),

ruchliwosé nosnika, (w 2 /Vs),

szybkosé unoszenia nosnika (w m/s),
xoncentracja nodnikéw, (w m™>),

gestosé materiatu (w kg/m>)

opornoéé przewodnika,

stata czasowa obwodu RC (w s),

stata Boltzmenna (w J/K),

energia aktywacji (w J),

sita elektromotoryczna (ogniwa) (w V),
powierzchnia (obwodu z pradem), (w m?),

element powierzchni,

moment inagnetyczny (obwodu z pradem), (w Aem?),
wektor indukcji magnetyoczne] (w Wb/mz),
natezenie pola magnetycznego (w A/m),

gtrumied wektora B, (w Wb),

moe pradu (w w),

bezwzgledna przenikalno$éé magnetyczna prézni (w Wb/(A-m),
wzgledna przenikalnosé magnetyczna osrodka,
wektor namagnesowania (w A/m),

podatnoéé magnetyczna jednostki objgtosci,
podatno$é magnetyczna 1 mola substaencji,
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wepSiczynnik samoindukcji (w H),
czestosé katowa pradu przemiennego (w s~ 1),
kgt przesunigcia fazowego.

5. Fale

liniowa czestosé drgad (w s~ '),

katowa czgstodé drgaf (w a™1),

réznica drég dwdch ciagéw falowych (w m),

dtugosé fali (w m),

wielkoéé przesunigeia punktu z poZoienia rdéwnowagi w miejs-
cu x iwochwili % (wm),

wektor falowy (w m™1),

predkosé fali (éwiatta) w osSrodku materialnym (w m/s),
predkosé sSwiatta w prézni (w m/s),

natgzenie pola elektrycznego (w V/m),

wektor indukcji elektrostatycznej (w c/ma),

wektor natezenia pola magnetyoznego (w A/m),

wektor indukcji magnetycznej (w Wb/m?),

wektor Poyntinga (w w/m?),

wektor jednostkowy w kierunku normalnej do ptaszczyzny sta-
tej fazy,

wap6zozynnik zatamania $wiatta odrodka 2 wzgledem osSrodka 1
optyczna stata dielektryczna,

stata absorpcji (w m™ 1),

przepuszczalnosé (w %),

indeks absorpcji

wapéZozynnik odbicia,

catkowlta emisja energetyczna ciaza doskonale czarnego
(w w/mz),

zdolnosé emisyjna,

zdolnos¢é absorpeyjna,

stata w prawie Stefana-Boltzmanna,

stata Plancka,

6. Jgdro atomowe i czgstki elementarne

masa jadra, (w kg),

liczba porzgdkowa jadra,

masa atomowa jadra,

liczba masowa,

masa spoczynkowa elektronu,(w kg),
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masa spoczynkowa protomu (w kg),

masa spoczynkowa neutronu (w kg),

defekt masy jgdra,

liczba jader istniejacych w danej chwili,
stata rozpadu (w s~'),

ozas polowicznego zaniku (w s),

Jadra helu (czgstki alfa),

szybkie elektrony, emitowane przez jadro,
kwant promisniowania elektromagnetycznego,
zasigg ozgstki alfa,

przekrdj czynny jadra,

prawdopodobieristwo rozszcszepienia,
wspékczynnik rozmnozenia neutronéw dla nieskoriczenie duzego
kawatka materiatu rozszozepialnego,
neutrino,

antyneutrino; kreska nad symbolem ozgstki ogznacza antyczgs-
tke,

mesony pi (piomy),

mesony mi (miony),

mezony K

hiperony lambda,

hiperony sigma,

hiperony ksi.



1o KINEMATYKA PUNKTU

W niniejszym rozdziale zajmiemy sig opisem stanu ruchu obiektu fi
zycznego, pomijajac przyczyny, powodujgce taki czy inny sposéb poru-
szania sil¢ tego obiektu. Wybdr obiektu, czyli poruszajgoego sig ciaa,
jest sprawg dosé dowolng - najwygodnie] bedzie przyjgé, iz poruszajg-
cym si¢ ciatem jest punkt geometryozny obdarzony masg, ozyli tazw.
punkt materialny. PoXozenie punktu okreslajg doktadnie jego wspéirzed
ne X, ¥, Z, podawane wzglgdem kartezjadskiego i prawoskretnego u-
k¥adu wepSirzednych. Przypisanie punktowi masy okaze sig pozyteczne w
rozdziasle 2, w ktérym bgdziemy si¢ zajmowaé przyczynami, wptywajgoymi
ns zmisng stanu ruchu naszego punktu.

Uktad wspéirzednych jest prawoskregtny, jesli kolejnoséé wystepowa-
nia osi odpowiada ruchowi Sruby prawej - na przyktad obrotowi od osi
x do y o kat mniejszy 04 © towarzyszy ruch postgpowy Sruby prawe]
w dodatnim kierunku osi % (rys. 1-1). Prawoskretnemu ukiadowl wspdi-

Y
- N

Rys. 1=1 Rys. 1=2

rze¢dnych odpowiada cykliozna kolejnosé wystgpowania osi: xyz, yzx lub
zxy (rys. 1-2). Zmiara kolejnofci w dowolnej parze wspdirzednych
zmienia uktad na lewoskretny (np. xzy lub yxz odpowiadajg kolejnoseci
osi uk*adu lewoskretnego). Wprowadzenie zamiast litorowyoh oznaczen
osi oznaczer cyfrowych, x <=1, y —=2, z — 3, ulatwia zapisywanie
sumy przez wykorzystanie znaku .
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Ruch punktu powoduje, %e wazystkle trzy wspdirzedne punktu zslesg
od czasu

x = x(t), y = y(t), 2 = z(¢). (1.1)

Inaczej méwigc, réwnanie (1.1) s parametrycznymi réwnaniami ru-
chu, Mozna je zapisaé krécej, poszugujac sig pojeciem wektora wodzg-
cego r punktu. Jesli porozenie punktu materialnego begdziemy opisy-
waé za pomoca wektora r, ktérego poczatkiem jest (0,0,0) a koricem
punkt materialny, to ruch tego punktu mozna wyrazié jedng zaleznoscig

r=x(t) . (1,2}

1.1, Klasyfikacja wielkosSci fizycznych

Wielkosci fizyoczne, z jakimi bedziemy sig spotykaé podczas kursu
fizyki chemicznej, nalezg do jednej z trzech kategorii.

i, Wielkosé skalarna; przyktadem takie]j wielkosci Jjest masa m,
temperatura T, objgtosé V. Wszystkie wielkosci tego typu majg tylko
Jedng cechg: wartosé liczbowg, niekiedy dodatnig i ujemng.

ii. WielkosSci wektorowe; przykiadem takiej wielkosci jest pred-
kodé v, przyspieszenie g, sita F, nateienie pola elektrycznego E.
Wielkodoi wektorowej odpowiada wartosé liczbowa (dZugosé wektors)
kierunek i zwrot, a niekiedy jeszcze okreslony punkt zaczepienia.GZé-
wne przyozyny, z powodu ktérych wprowadzemy w fizyce wektory, sg na-
stepujgce: zapis praw fizycznych za pomocg wektoréw Jest prosty i
zwigzly, postaé praw fizyoznych zas, wyrazonych za pomocg wektoréw nie
ulega zmianie wraz ze zmiang ukXadu wspéirzgdnych. Korzystajac 2z za-
pisu wektorowego zakiadamy, iz podstawowe dziaXenia na wektorach, ta-
kie jak dodawanie i odejmowanie, rozkXad na sktadowe, iloczyn skalar-
ny i wektorowy, sg Czytelnikowi znane,

Warto zauwazyé, Ze nie wezystkie wielkosci, ktére msja wymienione
cechy wektora, muszg byé wektorami; przykiadem jest obrét bryty sztyw
nej o skorczony kat. Pomimo i%z taki obrdt ma wartosé liczbowg (kat o=
brotu), kierunek (o$ obrotu) i zwrot nie jest wektorem, poniewaz do
dwéch wykonanych kolejno obrotéw nie stosuje sig prawo dodawanig. Wi-
dzimy wigc, i% dodatkowym warunkiem zaliczenia Jakiejs wielkosci fi-
zyoznej do wielkosci wektorowych jest ten, by speiniata ona prawo rdéw
nolegoboku podczas dodawania. Zasadg t¢ speinia na przykiad wektor E
nateZenia pola elektrycznego: Jedli tadunek prébny q, 2znajduje sig
w polu elektrycznym, wytwarzsnym przez dwa inne fadunki punktowe 9
1 Qo to sixa dziaXajgca na 9y wynika 2 nategZenia pola E Jjakie o-
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trzymijemy, dodajgc wektorowo nategzenie pola gh i E,, wyiwarszane
przez oba Xadunki q 1 a5
1ii. W liniowych zwigzkach migdzy wektorami, np.

P.'gosg’

gdzie D Jest wektorem indukecji elektryczne] w dielekiryku, E - na=-
te¢zeniem pola elekirycznego, bardzo czgsto pojawiaja sig pewne staze,
zalezne od wiasnosci materiatu, czyli tzw. state materiaXowe.W naszym
przyktadzie tg statg jest ¢, czyli wzgledna przenikslnosé (stata die-
lektryozna) dielektryka. Charakter tych statych zaleiy od wlasnosci
interesujgqcego nas dielektryka: ¢ moze byé jedng liczbg, jesli mate-
riax ma we wszystkich kierunkach takie same wXasnosci, ale na ogdZ ¢
Jjeat tensorem o dziewlgciu skadowych, uszeregowanych w macierz o
trzech wierszach 1 trzech kolumnach. Taka tablica nosi nazwg tensora
drugiego rzgduj; we wszystkich zagadnieniach, ktérymi bedziemy sig in-
teresowaé w dalszym ciggu, wystgpujgce tensory bedg rzgdu drugiego.

1.2, Predkosé i przyspieszenie punktu materialnego

Przypusémy,ze punkt materialny po-
rusza sig wzdiuz Zuku PQRe.. (rys.1=3).
Pozozenie tego punktu w chwili t, ‘po=
daje wektor =r,, w ochwili t, wektor
Zyy przy ozym oba wektory wodzgce majg
poozatek w dowolnym punkcie O. Mamy

r, +2Q =r,,
czyli
Q= - =ax.

Srednig predkoscig punktu material-
nego migdzy chwilg t1 i t2 nazywa-
my iloraz rdéznicowy

Ryi. 1=3

Z>=— .
At
Wielkos$é ta ma w fizyce niewielkie znaczenie, poniewaz niedokzad-
nie opisuje predkosé aktualng punktu materialnego w okreslonym punk-
cie uku. Jesli jednak t, zmierza do t,, czyli 5t —0, to réw-
niez A r =0, lecz iloraz rdéznicowy zmierza do okreslonej granicy,
zwanej chwilowg predkoscig punktu materialnego

dr
ys — , (103)
dt
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Widzimy réwniez, iz predkosé v Jjest wektorem zawsze atycznym do
toru punktu materialnego.

Rozumujgc analogicznie mozemy okreslié chwilowe przyspieszenie
punktu materialnego

e (1.4)
a4 s = = e °
=T a T a?

Jes$li nie prowadzi to do nieporozumierl, to pochodne wzglgdem cza-
su (ale tylko wzglgdem czasu) bgdziemy oznaczaé dla skrécenia kropks,
umieszczong nad litera; na przyktad v =2, a = i.

1.3. Predkosé i przyspieszenie katowe

Zasada dodawania

Przyjmijmy, 2e punkt materialny

Ad porusza sig po okregu (rys.1-4).Zmia-

ne poktozenia punktu okreslamy za po-

mocg kata Aq, zakreslonego przez pro-

Q miend wodzgoy r w czasie At. Jesli

A Jest kgtem bardzo matym, to moze-

my mu przypisaé wektor prostopadiy do

4 piaszczyzny okregu, przy czym diugosdé

P wektora wynosi Aax, a zwrot okresla re-

gukta sruby prawej (jesli obracamy sSru-

be prawg w kierunku ruchu promienia

Rys. 1=4 wodzgcego, to ruch postepowy &ruby

wakazuje kierunek ag ). Iloraz o /At

jest miarg Sredniej predkosci kgtowej, jaka ma punkt materialny mig-

dzy P i Q3 dokladna wartosoig (chwilowg) pregdkosci katowej (w 5'1)
jest granica tego wyrazenia, gdy At 2zmierza do zera

lin == = = =zuw, (1.5)

Rozumujgc analogicznie mozemy okreslié ohwilowe przyspieszenie ka
towe jako przyrost predkosci katowej na jednostke czasu (w 9'2)

dw dzg
—— 0 == G (1.6)
dt dt

Widzimy, Ze zardéwno predkosé katowa w Jak i przyspieszenie kato-
we g 8§ wektorami prostopadiymi do pZaszcezyzny ruchu punktu, a ich
gwrot okredlony jest reguig Sruby prawej.
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Zetrzymajmy si¢ jeszoze przy zagadnieniu obrotéw o nieskofczenie
mate kgty. Niech 4 bedzie wersorem wzdXui pierwszej osi obrotu,wo-
kéx ktérej obracamy uklad wspSirzednych o kat dp, (rys. 1=5). Podo-
bnie niech e, oznacza wersor wzdtuz drugiej osi obrotu, wokéx kté=-
rej obracamy ukiad wapéirzgdnych o kgt dmz. Kazdemu kgtowi obrotu
mozemy wéwozas przypisaé wektor

e prawo dodawania takich obrotéw o nieskorfczenie male kgty ma postaéd

&g * %) + e, ¢ A0, = g5 o APy, (1.8)

e dy;

Ryﬂo 1"5

Oznaoza to, Ze dwa obroty dg& i 692 mozemy zastgpié jednym ob-
rotem o kgt d93 wokéx osi e3. Jesli wszystkie obroty zachodzg w
tym samym czasie dt, oczyli osie obrotu €4> &, 83 osiami chwilowy-
mi, to poniewaz

de
o —1 (
e = 1#9)
T
otrzymujemy

(1.10) jest prawem dodawanis predkosci kgtowych wokét ohwilowych
osi obrotu. Wektor 33dw3 = dt Jest przekgtng réwnolegtoboku,skon-
struowanego na wektorach skzadowych 21 dt 1 92 dt (rys. 1=5).

Przyk?%ad: Obracamy uktad wspéirzednych xyz wokék osi X
o 3°. a nastgpnie wokéx y o 4°. Znaleid zastepozy kat obrotu wokéx
osl wypadkowej.
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Niech wersorami w tym ukXadzie bedsg &, i 8,9 Prazy ozym g, /7%,
9_2//1. Kolejne obroty mozemy zanotowaé wediug (1.8) w nastepujgey
aposdb

3eq + 4e, = do
Ag 0 =1 2o * &3 903,

wzdZuz nowej osi obrotu, a do

AX [od 2

wypadkowym kgtem obrotu (rys,

Ar 1-6), Jedli t¢ réwnosé pomnozyd

skalarnie przez nig samg, to o=
trzymamy

2, przy ozym g, jest wersorem

doy = (32 + 42)1/2 . 50,

co daje nam wielkosé obrotu dq>3.
Rys. 1=6 Kierunek nowe] osi obrotu wyz=-
nacza wersor

o3 =28 +4e,=06¢e +0,8 e,

Z rysunku 1-6 widaé, zZe &3 kt6ry lesy w ptaszczyinie x,y, tworzy
z osig x kgt o taki, Ze

o = arc cos 0,6 = 53,13%.

W ten sposdb uzyskalidmy wartosSé kata obrotu zastgpczego i orien-
tacje nowej osi obrotu. Wyniki te mozemy sprawdzié za pomocg rozwazain
trygonometrycznych. Rozwagmy zmiane poZozenia punktu (0, 0, 1), leza-
cego na oal 2z w odlegosci jedrostkowej od poczgtku uktadu. Wskutek
obrotu e, dq>1 punkt przesunie sig o Ay = sin 3°, a nastgpny obrét
przesunie ten punkt dodatkowo o odeinek A x = sin 4°.Wypadkowym prze=
sunigciem jest Ar, przy czym

Ar = (A'x2 +Ay2)1/2 = 8ing 5,

zatem ¢3 - 5’003°Q
Ponadto Ay o
C08 ¢ = —— = cos 53,127,

Widzimy, Ze rachunek bezposredni daje wartosci bardzo dobrze zgo-
dne z prawem addytywnosci (1.8). Zgodnosé ta bedzie dobra tak diugo,
jak dfugo bZgd przyblizenia sin ¢ £ ¢ nie bedzie zbyt duzy.
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1.4, Ruch krzywoliniowy

Niech r bedzie wektorem wodzgoym punktu materialnego wzgledem
dowolnego punktu O. Oznaczmy diugosé r przez R, zaé.g niech ozne

czas wektor jednostkowy w kierunku r. Mamy

L=R°p (1.11)
oraz
- = et (1.12)
= O R Op oo BT o 1.12
at - L dt

Pierwszy skadnik sumy z prawej strony (1.12) jest skadowg prgd-
kosci, wynikajgcg ze zmiany dtugosci R. Kierunek tej sktadowej preé-
kosci jest taki sam, jak kierunek r. Druga skiadowa wynika ze zmiany
kierunku r (rys. 1=7).

Rys o 1=T

Rozwazmy wpierw sytuacje gdy dp/dt = O, ozyli przesunigcie punk-
tu materialnego zachodzi wzdiuz prostej o kierunku- r. Mamy wéwczas

drR
v = —
AL L) as
orag
2
dv d°R ( )
s==l=lpN =y mia T 1.13
AT dt< et

Wyrazenie (1.13) jest skadowa styozng przyspieszenia, ktérego
skutkiem jest zmiana liczbowej wartosci predkosci.
Przyjmijmy teraz g kolei, 2e R = const oraz e
dp

5% = b = const, (1.14)
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2 pierwszego 1z obu zaoZed wynika, Ze punkt materialny porusza
sie po okregu. Aby zbadaé co wynika 2z drugiego zaXozenia, przyjmiemy
ukZad wepdirzgdnych Xqs X, W ptasz-
ozyinie ruchu oraz wersory g,//xy i
e,//x, (rys. 1-8).Mozemy wéwozas na-

pisaé
P '9,1 CO08 o +_e_2 8in o
oraz
% ap do
f, — =Db = (-g sinca + g, cO8q) ——
at at

Ne podstawie (1.14) mamy

b b=const =

2
do
= <;) (sin% + cosx) =w 2.

Rys. 1-8 Widzimy wigc,2e zatozenie (1.14)
jest réwnowazne stwierdzeniu,iz pred

kosé katowa
doc
w = — = const, (1.15)
dt

0zyli mamy do czynienia z ruchem jednostajnym po okregu. Wobec tego

am=w -t (1.16)
oraz
p =2 008wt + ¢, sinut, (1.17)

Kazda ze sktadowych (1.17) przedstawia drganie harmoniczne proste
o czgstosci kgtowe] v . Dochodzimy wigc do wnlosku, Ze ruch po okrggu
mozna roztoiyé na dwa drgania harmoniczne proste o tej samej czgstos=
ci i amplitudzie, odbywajqce sig¢ w kierunkach wzajemnie do siebie pro-
stopadiych,

% (1.17) wynika jeszcze jeden wazny wniosek; z (1.12) i (1.17),po
zatozZeniu R = conat, mamy

R * g% =y =R w(-g1 sin 0 t + g, cosw t)
oraz
yeoy= v2 -(u2R2,
czyli
|v] = o R. (1.18)

Jeat to liczbowy zwigzek migdzy liniowg i katowa prgdkoscig punk-
tu w ruchu po okrggu. Wszystkie trzy wielkosSoi w (1.18) sg wektorami
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wzajemnie prostopadiymi; w szczegbélnosci viw i v L r. Na podstawie
rysunku 1=9 widzimy, Ze

Y=u0xr, (1.19)

czyli predkosé liniowa jest ilooczynem
wektorowym predkosci katowej i pro-
mienia okreggu.

Przyspieszenie w ruchu po okregu
otrzymamy rézniczkujgc podane wyraze-
nie okreslajace predkoéé v

—,dag %r( )
R = -y R(eq c08 wt + 8, 8in ot)=

at =1 =2

Ryﬂ. 1-9
= -<92R_g = -(025. (1.20)

W ruchu jednostajnym po okrggu wystgpuje przyspieszenie o nasteg-
pujacych wtasnogciach:

i. Jjest proporcjonalne do promienia okregu R,

ii. ma kierunek przeciwny do P, czyli skierowane jest do sSrodka
okrggu.

Przyspieszenie o tych wZesnosciach nazywamy przyspieszeniem nor-
malnym 8, Liozbowa wartosé tego przyspieszenia wynosi

2

(g, * 8,012 = R (1.21)

W dowolnym ruchu krzywoliniowym
przyspieszenie chwilowe a moZemy
zatem rozxozyé na dwie sktadowe:
przyspieszenie styczne

d|¥|

a
2 at

i przyspiesgzenie normalne

2
o, = R = L,
przy czym R oznacza lokalny pro-
mieXi krzywizny toru. Ogélne przy-

spieszenie punktu (rys. 1=10)

a=ga, +8, (1.22)

—e
lub 2) 1/2
n

Rys. 1=10

as= (a§ + a (1.23)
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zawiers ze styczng do toru (kierunek predkosci) kat ¢ taki, Ze

a
tgq) = Tn ° (1-24)
=]

Zrésniczkowanie (1.19) dla przypadku ruchu po okregu (R = const)
prowadzi do zwigzku miedzy przyspieszeniem kgtowym i liniowym w ruchu
ze zmienng predkosScig kgtowa:

x x. (1.25)

i
L}
{y]



2o ZASADY DYNAMIKIT

W niniejszym rozdziale zajmiemy sig¢ bliZszym sprecyzowaniem przy=-
czyn, decydujgcych o charakterze ruchu punktu materialnego., Podstawo-
wymi prawami sg w tej dziedzinie trzy zasady ruchu, podane przez New-
tona, W dalszym ciggu przypomnimy je w sposdéb zwigzily,zaopatrujac je-
dynie krdétkim komentarzem.

201, Zasady ruchu Newtona

I zasada (prawo bezwZadnosci): Punkt materialny pozostaje w sta
nie spoczynku lub porusza si@ ruchem prostoliniowym ze statg szybkos-—
cig, jesli nie dziastajg naf Zadne sity 1lub sity wzajemnie sig rdéwno-
wazgce.

Wiasoiwodé ciak, polegajacg na z#olnodci zachowywania stanu ru-
chu,nagywamy bezwtadnoscig lub inercjg. Do obserwacji stanu ruchu po-
trzebujemy uktadu wspétrzgdnych, wzgledem ktdérego odozytujemy pooze-
nie ciaza, Z punktu widzenia I zasady kazdy ukZad spoczywajgcy Ilub
poruszajgoy sig ruchem postgpowym ze staxg szybkoscig Jest jednakowo
dobry (zaseda wzglgdnosci Galileusza); ukkad taki nazywamy inercyj-
nym.

BezwZadny ruch ciat moze byé obserwowany tylko 2z inercyjnego
uk¥adu wapéirzgdnych. Gdybysmy punkt materialny, poruszajgcy sig ze
statg prgdkodcig wzdiuz prostej, obserwowali w nieinercyjnym uktadzie
wspéirzgednych, wykonujgcym na przyktad ruch obrotowy, wéwczas wedlug
takich obserwacji ruch punktu byiby krzywoliniowy, a wigc sprzeczny z
I zasadg. Wobec tego ukad wsp6Xrzgdnych, poruszajgcy sig ruchem ob-
rotowym (np. ukad sztywno zwigzany z Ziemia) nie jest dobrym ukadem
odniesienia z punktu widzenia I zasady Newtonsa.

Jednoczesdnie mozemy stwierdzié, Ze ze wzgledu na rdéwnowaznosé
wezystkich ukadéw inercyjnych, pojeocie predkosci bezwzglgdnej nie ma
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sensu. Okazuje sig, Ze owa réwnowaznosé inercyjnych uktadéw odniesie-
nia siega jeszoze ggbiej w strukture podstawowych praw fizyki, oo
znajduje swéj wyraz w zasadzie niezmienniczosci Galileusza: Podstawo-
we prawa fizyki majq jednakowg postaé we wszystkich uk}adach odnie-
sienia, poruszajgcych sig wzgle¢dem siebie ruchem prostoliniowym ze
statg predkoscisg.

II zasada (definicja sity). Z pierwszej zasady wynika, ze wszel-
kie ozynniki, powodujgce zmiang stanu ruchu punktu materislnego muszg
pochodzié z zewngtrz; nazywamy je siXami. Poniewaz wielkoscig podsta-
wowg, opisujacg zmiang stanu ruchu jest przyspieszenie,definiujemy je
Jako wielkosé proporcjonalng do sity F 41 odwrotnie proporcjonslng do
masy m punktu msteriaslnego. Zatem

Fa=me a. (2.1)

Réwnosé (2.1) jest definicj)g sixy, jej Jednoatkq jest 1 niuton:
1N =1kg °(n/s 2). Sita jest wektorem, réwnolegiym do przyspiesze-
nia aj; jesli na punkt materialny dziala wigeej niz jedna siza, wéw-
czas (2.1) mozemy uogélnié do postaci

8
meg= 2 F, (2.2)
i=1
przy ozym sumg¢ po prawe] stronie nalezy rozumieé jako dodawanie wek-
torowe, zas$ sity gi Jjako liniowo niezalezne. Przyspieszenie punktu
materialnego jest wigoc okreslone przez jego masg 1 sumg wektorowg
wazystkich i}, naf dziatajgcych. Szczegélnym przypadkiem dziaXania
tyoh six jest g = O; z (2.2) wynika wéwozas

B, = 0. - (2.3)

UkZad siz (2.3) pazywamy ukZadem sit réwnowazacych sig wzajemniej
nelesy zwrdécié uwage, iz wszystkie gi przyXozone sg do tego samego
punktu. )

Druga zasada jest rdéwnies siuszna tylke wtedy, gdy obserwacji do=-
konujemy w ukladzie odniesienia, nie majgcym wiasnege przyspieszenia.
. Gdyby ktos stanat na obwodzie poruszajacej sig karuzeli, to moze staé
gpokojnie dopiero wéwozas, gdy przechyli sig tak, by akZadowa Jjego
cigzaru wzdtuz $rednicy karuzeli wynosiZa akurat m mzR, a wiec aby
réwnowazyta silte odsrodkowg. Przebywanie w nieinercyjnym ukzadzie od-
niesienia powoduje, 2e przyspieszenie jest rdéizne od zera; mimo braku
przytozonej z zewngtrz sity; wynika ono bowiem z niejednostejnego cha-
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rakteru ruchu samego ukXadu., Innymi sXowy, w uk?adzie nieinercyjnym
P # m g3 oba wyrazenia réinig sig o ozion, wynikajacy 2z ‘wzglednego
przyspieszenia obu ukladéw (nie bgdziemy sig nim szerzej zajmowali).
Przebywanie w nieinercyjnym uktadzie odniesienia moze wywozaé niekie-
dy znaczne skutki, jak tego przykiadem jest ultrawiréwka: na ozgstke
zawieszong w cieczy w zbiorniku wykonujgeym 1000 obrotéw na sekunde
(ws 60103 rad/s) dziats w odlegiodci R = 10 ocm o0d osi obrotu przy-
spieszenie odsrodkowe a -«»2R = 4'106 m/az, czyli okoto 400 000 razy
wigksze od przyspieszenia ziemskiego, g = 9,81 m/sz.

Réwniez Ziemia i zwigzany  nia uklad wepdéirzednych porusza sig
ruchem obrotowym 1 nie stanowi inercyjnego ukiadu odniesienia.Zwiaza-
na z tym ruchem predkosé kqtows wynosi w, = (27/86400)s~ V% 0,73-10"4
rad-s =18 Poniewaz R = 6,37.10° m, zatem a = (0,73.10°4)2+(6,4- -108)>
= 3,4 om/s?. 0 tg wartosé przyspieszenie ziemskie powinno byé wieksze
na biegunie, niz na réwniku. W rzeczywistosci réznica ta jest mnieco
wigksza ze wzgledu na spiaszczenie kuli ziemskiej i1 wynosi 5,2 om/aa.

Przyspieszenie ziemskie na biegunie pénocnym - 9,83245 m/aa.

Przyspieszenie ziemskie na rdéwniku - 9,780 n/s2,

III zasada: Jezeli ciaxo A dziaza na cia;o B silq“FAB, to ciaXo B
dziaZa réwnie% nu ciaXo A siig FBA takg, Ze

F,p+ Py = 0. (2.4)

Obie sity, FAB i FBA’ zwene 83 sirami wewngtrznymi ukadu, zXozo-
nego z oiat A i B. Sity te prazyZozone sg do dwéch réznych ciaxy jeie-
11 moga sig one poruszaé, to obecnosé sik wewngtrznych (2.4) wpywa
na stan ruchu kazdego ciaza

m, * &, +my - ag =0, (2.5)

oczyli ciaza A i B udzielajg sobie nawzajem przyspieszer, odwrotnie
proporcjonalnie do ich mas. Ze wzgledu na wtasnosé (2.4) sily wewne-
trzne nie majg jednak wpiywu na predkosé i przyspieszenie ukzadu, po-
traktowanego jako caXosé. Problemem tym zajmiemy sig@ dalej, badajaec
ruch $rodka masy.

2.2, Transformacja Galileusgza

Stwierdzenie o rdéwnowaznosci dwéch ukadéw inercyjnych ze wzgledu
na postaé podstawowych praw fizyki, mozemy sformuzowaé analitycznie.
Nalezy w tym celu odpowiedzieé na pytanie, jaki jest wzajemny zwigzek
migdzy wspéirzednymi przestrzeni i ozasu x, y, z, t pierwszego ukka-
du (oznacamy go przez S) i wapStrzednymi x", y°, 2°, t° drugiego u-
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kZzadu (oznaczonego przez S'). Majao takie przeksztatcenie (transfor-
macje) S(x,y,z,%) =8 (x’ ,y ‘z°,t"), mosemy poszukiwaé postaci praw
fizyoznych w poruszajgoym sig ukia-

dzie S°, jeéli ag nam one znane

4 y w nieruchomym ukadzie S. W celu
uproszczenia zazozymy, ze ruch

wzgledny obu ukadéw odbywa sig

v < 10% mfo wzdus osi x 2z predkoscia V,osie
y/5° 1 z// 2° pozostaja rdéwnolegie

X' (rys. 2-1). Rozwazania ograniczymy
ponadto do predkosci V < 104 m/8,

znaoznie mniejszych od predkosci

$wiatXa w prézni: o = 3.108 m/s.

ZEz Zagadnienie duzych prgdkodci, po-
Rys. 2-1 réwnywalnych z o, stanowi osobny

problem, ktérym zajmiemy sig w
rozdzisle 5. Zauwazmy jednak, 1% predkodé V = 104 m/s woale nie jest
takas mala: poréwnywalna jest z drugg predkodcig kosmiczna ¥y =
= (26u,/8)"/2 = 11,2 km/s, gdzie G jest statg grawitacji (por.2.18),
M, masq Ziemi,a R Jjej promieniem,

Przy takich zetozeniach poszukiwane gwigzki sg bardzo proste i wy

nikajg bezposrednio 2z rys. 2-1.
t=t,x=x +Vt,y=y,z=2", (2.6)
UkZad réwnaf (2.6) nosi nazwg transformacji Galileusza i obowig-
zuje dla predkosci V<< c. Wynika 2z niej réwnisz prawo dodawanis pred
kosci, poniewas
dx ax”

— ——— i T,

ds dat
v=x + 1. (2.7)

czyli

Widzimy wieo, ze prgdkos$é punktu materialnego w ukXadzie s, u-
mownie przyjetym za poruszajgcy sig, réwna jeé} predkosci tego samego
punktu odczytanej w ukadzis S, umownie przyje¢tego za nieruchomy,po-
mniejszonej o wzgledna predkosé obu ukiaddw.

Poniewaz YV = const, zatem

czyli
_8_ = §._ ° (2.8)
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Ze wzglgdu na m = m’ (V <« c), réwniez
E = _I‘:’, (209)

oczylil przyspieszenia i si%y, mierzone w dwdch ukadach inercyjnych,
g3 takle same.

2¢3. Zasada zachowania du

Zobaozymy obecnie, jakie wynikajg wnioski z przyjecia sZusznosci
transformacji Galileusza dla dwéch uk*adéw inercyjnych. Dla ukZadéw
tyoch zazozZymy ponadto, Ze w kazdym z nich jest speinione prawo zacho-
wanla masy i prawo zachowania energii.

Mamy dene dwie ozgstki swobodne o masach odpowiednio m, i my3
niech ich predkosci w ukiadzie S wynoszg przed zderzeniem vy i Vo
a po zderzeniu w, i w,. Zderzenie w ogélnym przypadku nie musi byé
spregzyste, a wigc do energii kinetycznej po zderzeniu itrzeba dodaé
czion Ae , réwny energii odksztaXcenia niespregzystego obu kul ol
ewentualnie innym rodzajom energii (ciepZo, $wiatXo). Ze wzgledu na
sens fizyczny Ae , czXon ten jest taki sam w ukZadzie s’ Jak i w S;
dla zderzenia sprezystego Ae = 0. Jesli T jJest energia kinetyczng
obu czgstek, to w ukiadzie S mamy

= 2 2 2 2
2T = m,vi + myV5 = myWy + moWo +AcE (2.10)
a w ukzadzie S°
0 2 2 _ o2 2
T O T Ly © DT O T (2.11)
Podstawiajgc obecnie
¥y = v R =iV,

, (2.12)
Wy =83 = v
oraz korzystajgac z zasady zachowanis energii, 7 = T, mamy
2 2 2 2
myVy = 2my¥, o ¥+ 0 V" + movy - 2mov,V + m VT =
= m1w$ - 2mw, -V + m1V2 + mgwg = 2mWoV + m2V2 +Ag .
Po redukcji wyrazdéw i skorzyetaniu z (2.10) otrzymujemy
(myvy + mpyy) ~ ¥ = (mymy + mywy) + L,
czyli
) S A T G SO (2.13)

Widzimy, Ze suma pedéw obu kul przed zderzeniem jest réwna sumie
pedéw tych kul po zderzeniuj stwierdzenie to stanowl zasade zachowa=
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nie pedu. Mozna ja wigc uwazaé jako naturalng konsekwencje¢ siusznosoi
transformacji Galileuszs i zasedy zachowania energii. Warto szwrécié
uwage, iz zasada zachowanla pgdu jest réwniez speiniona w tym prazy-
padku, gdy czedéé energii kinetycznej, Ae , zostaje przeksztaloona w
zderzeniu na inne postacie energii., Innymi siowy, pgd zachowany jest
réwniez w zderzeniu niesprezystym. Nie mozna tego samego powiedzieé o
energii i to w zasadzie z tego powodu, e nie potrafimy obliczydé Ac
w przypadku ogélnym w sposéb niezalezny, tj. nie wiemy Jaka ozgsé
energii kinetycznej ulega przeksztatoeniu w inne postaci energii.

2 Sixa dosrodkowa i odsrodkow

Przypusémy, ze punkt materialny porusza sig¢ ze stazg predkoscia
katowg (» po okregu koza o promieniu R (rys. 2=2). 2 punktu widze~-

N

UNIT

Ul

Rys. 2=2 Ryao 2-3

dzenia obserwatora umieszczonego w uktadzie inercyjnym (v1), znajdu-
jaocym sig¢ na zewngtrz okrggu, na punkt dziaza Jedynie realne przyspie
szenie dosrodkowe

2
2p = -u R,
zwigqzane z zakrzywieniem toru. Przyspieszenie to wywozuje sika
2
Fq = -mo R (2.14)

zwana sitg dosrodkowg.

Na ten sam ruch mozemy spojrzeé réwniez z punktu widzenia ukZadu
nieinercyjnego (UNI), zwiazanego z punktem P 1 poruszajgcego sig
wraz z nim po okrggu kota (rys. 2-3). Niech przyspieszenie UNI wzgle-
dem UI wynosi 853 ogélne przyspieszenie punktu P wzgledem ukiadu
nieinercyjnego wyniesie wéwczas a = 8, +8,» 8 ogllng siztg, mierzo-

ng w uktadzie nieinercyjnym begdzie
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E=megem-g +m° &, (2.15)

Zauwazmy, %e iloczyn m'a, Jest sixg tylko z formalnego punktu wi
dzeniaj jest to bowiem iloczyn masy punktu i przyspieszenia nieiner-
cyJjnego. Oznaczmy

ma, s F, (2.16)

i potraktujmy (2.16) jako sitg; trzeba jedynie pamigtaé, Ze nie ma ta
kiej siy, realnie przyXozonej do punktu P,

W naszym przypadku masa m jest nieruchoma wzgledem nieinercyj-
nego uk¥adu wspéirzgdnych, czyli F = 0, oraz

E,=-mg, = +m 0 2R, (2.17)

Pozorng sitg (2.17) zwiemy sitg odérodkowa; jest ona skiérowana
na zewngtrz okregu i réwna liczbowo sile dosrodkowej dla stacjonarne=-
g0 ruchu po okrggu koXa. Sitg dosdrodkowg w ukXadzie rzeczywistym mogg
byé oddziatywania grawitacyjne (ukady astronomiczne), elektrostaty-
czne (atom), sprezystosé nici lub apregzyny (mase przyczepiona do nici
lub sprezyny), sits adhezji (kropla cieczy na obwodzie kota). Sa to
wazystko sily rzeczywiste, majace okresflong wartosé, kierunek i punkt
przyzozenia.

Jesli znajdujemy sig wewngtrz pojazdu, poruszajgcego sig¢ ze staig
predkoscia kgtowg po okreggu kota, to doznajemy réwnie dziatania si-
¥y, skierowanej na zewnatrz okregu; nle Jest to jednak ani sits prazy-
Zosona, ani nie wynika z obecnosdci pola. Wynika ona jedynie z konser-
watywnej wiasnosci masy, polegajacej na tendencji do zachowania pgdu
(predkosci), rozumianego jako wektor. W celu zachowania réwnowagi me-
chanicznej w przykZadzie 2z pojazdem poruszajgcym sig po okregu kola,
musimy pochylié sie w taki sposéb, by radialna skXadowa naszego cig=
%aru réwnowasyta sitg odsrodkowg. I to jest wiasciwy sens wprowadze-
nia sity odérodkowej: uwzgledniamy .ja w tym celu, aby otrzymsé zrdéw-
nowazenie realnie dziatajgcej sity dosrodkowej, co w rezultacie poz-
wala uzyskaé w uktadzie obracajacym sie (a wigo nieinercyjnym) przy-
spieszenie réwne zeru, ozyli stan stacjonarny ruchu.

2¢5. Prawo grawitacji Newtona

Dowolne dwie masy punktowe M1 i M2 przyclagajg sig¢ wzajemnie si-
ig

e g mi e (2.18)
Ir
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przy czym r/r Jest wektorem jednostkowym skierowsnym umownie od M1
do Mz, a G Jest stakg grawitacyjng o wartossi

M §on?/kg.

Sita grewitacji jest sita centralng, tj. lezy wzdiuz linii Zgcza-
cej masy punktowe M, i M,. Masa M wystgpujaca w (2,18) jest masa gra-
witacyjng w odréznieniu od masy m, wystepujgcej w II zasadzie Newto-
na F = m°a 1 zwanej masg bezwadng, R6wnos$é tych mas nie jest oczy-
wista i zostata stwierdzona doswiadczalnie. Jesli wigc przyjmiemy M1-
= m, gdzde m jest masg bezwtadng dowolnego ciaZa, za$s qu M, Jest
masg Ziemi oraz oznaczymy

G = 6,67-10

2 b ( )
G 0 mmmem = e 201
E’ 9

gdzie g Jest wektorem przyspieszenia ziemskiego, to

E =m ° 8 (2.20)

Jjest cigzarem cista o0 masie m w polu cigzkosci Ziemi.

2.6, Prawo Coulomba

Prawo to ma postaé strukturalnie identyczna z prawem Newtona po-
wszechnej grawitacji, co wynika z duzego podobieldstwa pola grawitacy}
nego do pola elektrostatycznego: oba sg polami potencjalnymi.Bardziej
azczegbrowo zajmiemy sig tg kwestia w rozdziale 6,

Sita dzia*ajgos migdzy dwoma ZXsdunkami moze byé dodatunia, jesli sg
one jednoimienne lub ujemns, jesli majg znaki rézne. Oznaczajgc dwa
tadunki punktowe przesz 94 i 59 zad odlegXosé migdzy nimi przez
(réwniez i tu promieh jest skierowany umownie od Q4 do q2), mozeny
zapisaé si¢ Coulomba w nastgpujgcej postaci

94 q L
gstk'.l..?a_-—’
r r

przy ozym znak (+) odpowiada sile odpychania, (-) sile przyciagania,a
k Jjest wspbczynnikiem, zaleznym od wyboru jednostek. Jesli pracuje-
my w uk*adzie jednostek cgSE, to mozemy poZozyé k = 13 prawo Coulom-
ba stanowi wéwozas podstewe do okreslenia jednostki *adunku, poniewaz
Jednostki P i1 r zostaxy zdefiniowane uprzednio., W ukladzie Jednos-
tek SI, ktérym sie posZugujemy, jednostke Zadunku okresla sig na pod-
stawie dziatah magnetyoznych dwéch przewodnikéw z prgdem; jest nia
1 ooulomb (1C). W takim razie nie mozna przyjaé k réwnego jednosoi
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{podobnie, jak w prawie Newtona), lecz trzeba wyznaczyé je doswiad-

ozalnie
1

k = A (2.21)

4n e,

gdziee = 8,85-10-12 Gz/Nm2 jest przenikalnoscig dielektryczng préz
ni. Mozna przyjaé z wystarczajgacg dla nas doktadnoscig

1

9
k = = 9,0-10° N.n?/c2,

4 e
Druge cecha, odrdézniajgca silty elektroastatyczne od grawitacyjnych
polega na tym, e sita Coulomba zale2y od wkasnosci osrodka, w ktérym
umieszozone sg oba tadunki; nie znamy takiej zaleznosci dla sity dzia-
2ajgcej miedzy dwiema masami. Okazuje sig, %e w kazdym osrodku mate-
rialnym sita Coulomba jest mniejsza, ni% w prdésniy decyduje o tym
wzglegdna przenikalnosé osrodka, oznaczana przez g . Peine prawo Cou-
lomba ma zatem postaé
1 ay q r
o o A 6 ==k (2.22)

2

_F_-
dne e, r

H

2,7, Praca mechaniczna i moo

Pracg, wykonywang przez przytozong siZe zp na drodze Ar defi-
niujemy jako iloczyn skalarny sity i przesunigcisas

AW = F

Ly O (43,0 Bry 0 43 © cos(gp. Ar). (2.23)

Rys. 2-4
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Zakadamy przy tym, 2e sita F_ Jest stats na calym odcinku Ar,
Wyrazenie (2.23) przedstawia prace elementarng, okreslong dla bardzo
matego odcinka Are. Jesli punkt materialny jest przesuwany na skof-
czonej drodze od punktu A do B (rys. 2-4), to korzystajac z (2.23),
mozemy zapisaé pracg w nastgpujgcy sposdb

N
( L (1)
WA——B)gwAB.ng ATy -
i=1
Prawa strona te] réwnosci jest wyrazeniem przybliZonym, poniewas
wartosé sumy zalezy od wielkosSci przesunigé elementarnych Arg, na
ktére podzielilismy droge AB. DokZadne wWyrazenie otrzymamy przecho-
dzgc 2z Azxr, do przesunigé nieskoficzenie matych dr
B

WAB Efzp L4 d_r_' (2024)
A

Jednostkg pracy jest 1 dzul: 1 J = 1 N°m,
Pracg wykonang w jednostce czasu nazywamy mocg. Jesli praca W
zostata wykonana w ciggu t sekund, to drednia moc (P) wynosi

AB

W
<P> n e (2.25)
L]
zaé moc chwilowa aw
Pa— ° (2025)
dat
Ze wzgledu na definicje (2.23) moc chwilows sily przyZozonej wyno-
ai
aw dr
-z F ® === P . Vv (2027)

a¢ P at P -
- jesat wigc iloozynem skalarnym sily przyZozone]j i chwilowej prgdkos-

ci punktu.
Jednostka mooy jest 1 wats 1 w = 1 J/8s.

2.8, Energis kinetyozna

Przypusémy, Ze punkt materialny o masie m porusza eig ruchem
bezwtadnym wzdtuz osi =x inercyjnego uktadu wapéirzednych. W ochwili
t = 0 przykadamy dod stazg site Fp; rozwazmy ruch punktu pod wpiy-
wem tej sily zewngtrznej.
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W myél II zasady przyspileszenie punktu wynosi
F
&’i-_n
m
wobec tego po upywie czasu t predkosé v(t) bedzie wynosiia
t

F F
v(t) = v, +°f Lat=v, + L.,
m m
0

przy czym v, Jest predkoscig poczgtkowsg w chwili ¢ = 0. Otrzymuje-
my 2z tego znane twierdzenie o popgdzie sity

Frtanvemv, . (2.28)

Jesli w chwili + = 0 masa m 2najdowata sig w punkcie X,s to
po uptywie czasu +t poXozeniem jej bedzie x(t)
t

F
x(t) = x, +f v(t) dt = x, + Vb o+ -2 .42,
2m

o
Eliminecja t = (m v - m vo)/Fp prowadzi nas do zwigzku

m m
T -x == (v Vo - vs) + — (v2 = 2v vy + vs) =
F F
P P
m
oy [ — (va - vg)
2Fp
lub nv? mvg
F (x - X ) B cmm— e e g (2029)
p 9 2 2

Zdefiniujmy obecnie energig kinetyczng punktu materialnego

2,
]

T = % ov (2.30)

T jest zawsze tylko funkcja predkosci punktu: T = T(%, §, Z). Na pod-
stawie (2.29) widzimy, %Ze jesli sita F  dziaka na punkt materialny,
ktéry moze sig poruszaé, to praca tej sity réwna jest zmianie energii
kinetycznej punktu B
' 1 2 _1 2
WAB‘fsz’-’E'“B'Em" (2.31)
A

209, Iiniows sita spreizysta

Je$li na punkt materialny o masie m dziata sila F, o nastegpu-
Jacych wiasciwosciach:



32

i. wielkoéé F, jest proporcjonalna do wychylenia punktu 2z pewnego

potozenia réwnowagi x

(e 34

ii. zwrot Fs Jest zawsze skierowany w strong potozenias réwnowagi,

fs

X, 23\\\\\1\\\\\ X

Rya. 2-5

to méwimy, Ze na punkt dzis*a liniowa siZa spresysta. Iluatracjg ta-
kiej sity jest rys. 2=5, przy czym X, jest polozeniem réwnowagi. Dla
wychyled Xy= X, > 0 site F, jest ujemna, zad dla wychyled Xy Xy < 0

dodatnia. W ukZadach rzeczywistych, przy niezbyt
duzyoh wychylenisch x - x,, bezwzgledna wielkosé
sity jest proporcjonalna do (x - xo) i nie zalezy
0od zneku wychylenia. Przykiadem uk}adu,w ktérym po=-
wataje liniows sia sprgzysta moze byé elekiron w
atomie lub atom w ciele statym; najprostszym mode-
lem jest masa m, zawleszona na sprezynie (rys.2-6)

Jeéli e Jjest wersorem wzdtuz osi x, to (rys.
2-7)

F, = =C(x - x,)e, (2.32)

gdzie C Jest wspéXczynnikiem liniowej sily spre-
systej. Liczbowo C rdéwne Jjest sile, powstajace]
przy przesunigciu punktu o jednostke diugosci; wy-
miarem C Jjest 1 N/m.

oo
DAl
o

Rys. 2=T

Obliczmy pracg wykonang przez sile przyZozong

B, = +C(x - x )e (2.33)
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pray przeaﬁwaniu punktu od X, do Xqe Mamy
b d X
1 1

W(xo——x.')nfgpgr;afc(xnxo)gdxga

%o %o

=% C(xf - xg) - olx,xq = xi) =
= §olx, - 202 = F clan)?, (2.34)

gdzie AX = Xy= X (2.35)

Jest przesunigciem punktu z poZozenia réwnowagi. Widzimy, 1% praca
przesunigcia jest proporocjonalna do kwadratu wielkosci przesunigcia.
Wynik ten jeat charakterystyczny dla pracy w ogéle przeciw siXom spre-
zystyme

Jesli wybierzemy x
staé

o = 0y Xy = X, to wyrazenie (2.34) zyska po-

W0 —x) = 1 ¢ 2%, (2.36)

2,10, Sity zachowawcze

Sita jest zachowawoza, jesli praca W (4 —B) przesunigcia czg=
stki z A do B wykonsna przez t¢ sii¢ nie zaleiy od drogi, lecz Jedy-
nie od poXozenia punktéw A i B, Zachowawcze sa w szczegbélnosci siy
centralne, zalezne wyigcznie od odlegtosci r a nie zalezne o0d kie-
runku r. Do takich naleza sily grewitacyjne (2.18) 1 elektrosfatycz-
ne (2.22); dla kazdego punktu, lezgcego na powierzchni kuli o promie-
niu r siza (2.18) lub (2.22) jest taka sama.

Innego typu jest sita, dzisZajgca
np, migdzy dwoma dipolami magnetyocsz-
nymi (rys. 2-8). Zalezy ona nie tylko %
od odlegXosci r migdzy Srodkami di- / N
poli, ale takze od kata ¢ miedzy ich b S
kierunkami; zatem F(r,¢). Praca prze=-
suwania dipola zslezy od r i jesz=-
c¢ze dodatkowo od sposobu poruszanis
sig dipols - sily tu wystepujace nie
8g zachowawcze.Réwniez sity tarcia sg
niezachowawcze, poniewaz praca sity przylozonej przeciwko sile tarcia
przechodzl w formy energii bezuiyteczne w mechanice (ciepZo).

Wréémy jednak do sik centralnych. Mamy udowodnié, %e praca prze=-

sunigcia masy m 2z punktu A do punktu B jest niezalezna od tego, czy

Rys. 2=8



34

Rys . 2=9

z A do B idziemy po drodze 1, czy po drodze 2 (rys. 2=9). Podzielmy
teraz przesunigcie g A do B za pomocg Xukéw koncentrgéznych w O na
przesunigeia elementarne 451(1 i 491(2), odpowiednio po drodze 1 i
2. Wybér punktu O jest zupeinie dowolny = w szczegélnosci mojemy go
wybraé na jednej prostej z A 1 B, Elementy pracy d'i 1 i dwi 2) mo-
Zemy obecnie wyrazié w nastgpujacy sposéb

dwi(1) - 11(1) 951(1) - Pi(1) deih) cos ¢1(1) =
=5, arl) o5 ary -, (@) ar (@) (2.375
. Fi(2) dsi(2) 008 q,1(2) - 31(2) E'im - dwi(a)’

poniewaz siza Fi Jest siig centralng i Fi = P1(1) = Fi(Z). Wobec te-
go B B

B
fz(” etV "f P dr 'f p(2) go(2), (2.38)
A A A
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2011, Energia potencjalna

Jezell sita przyXozona gp wykonuje pracge w taki sposéb, Ze nie
zachodzl zmiana energii kinetycznej punktu materialnego (4T = 0), %o
skutkiem wykonanej pracy jest zmiana energii potencjalnej U punktu

materialnego B

W(A —3) =f_1_ap-a_g = U(B) - U(A); ar = O, (2.39)

A

Sixa PF_  Jest zachowawcza, wobec tego energia potencjalna Jest
wyigeznie funkecjq polozenia punkitu materialnegos ogbélnie - jedli w ja-
kim$ uktadzie dziatajg tylko sity zachowawcze, to energia potencjalna
U tego uk¥adu jest funkcja jedynie wspéirzednych jego czgsci (a nie
np. predkosci): U = U(x,y,2).

Réwnanie (2.39) wymaga pewnego komentarza. Sita przytozona, F ,
skierowana jest przeciwnie do sity wewngtrznej, dziatajgcej na punkt
materialny, np. przeciwnie do liniowej sily sprezystej F, (por.2.9).
Dodatkowo wymagamy w (2.39), by praca F_nie spowodowala zmiany ener
gii kinetycznej punktu a to znaczy, e Ep moze sig rdéznié tylko
nieznacznle od F_:

B -2 g o. (2.40)

Taki proces (tu - przesuwanie punktu) odbywa sig niesiychanie po-
woll; jJego cechg charakterystyczng jest to, zZe

i. biegnie bardzo blisko stanu réwnowagi migdzy sitami wewngtrz-
nymi ukiadu (tu Es) i sitami przyXozonymi z zewnatrz (tu _Ep).

ii. moze zachodzié w jedng lub drugg strong.

Jesli |§p1 - [gﬂ| > 0, to pracg wykonuje siXa zewngtrzna, Jjesli
zas |§p| - IEs| < 0, to pracg wykonuje sita wewngirzna ukzadu., Proces
o tych dwéch cechach nosi nazwg procesu quasi-statyocznego 1 odgrywa
duzg rolg zaréwno w fizyce Jak i w chemii fizycznej. Rzecz w tym, ze
sposéréd wezystkich mozliwych six, dokonujgcych przesunigcia punktu me-
terislnego z A do B (ogélnie: powodujacych zmiang stanu ukadu ze
gtanu A do stamu B), siia gp. odpowiadajgca procesowl quasi-staty-
cznemu, czyni to najoszczgdniej. Ponadto proces quasi-statyczny umoz-
liwia nam zastgpienie sikt zewngtrznych, niekiedy nie znanych, sizZami
wewngtrznymi ukadu, a przez to wprowadzenie do obliczanej pracy in-
formacji charakterystycznych dla uktadu., Bardziej szczegdZowo moze sig
Czytelnik zapoznaé z zagadnieﬁiem proceséw quasi-statycznych w termo-
dynamice, stanowigcej jeden z rozdziaxéw chemii fizycznej.
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Zauwazmy obecnie, ze zgodnie z definicja (2.39) $cidle okreslona
jest nie energia potencjalna, leaz jej réznica dla dwéch poiozed pun=-
ktu materialnego. Jesli dla jednego punktu przyjmiemy dowolnie jakgs
okreglong wartosé energii potencjalnej, to okreslona bgdzie rdwnies
energia w drugim punkcie. Najczgsciej przyjetym punktem odniesienisa
Jest

A —=o>U(a) =0, (2.41)

ozyli energie¢ potencjalng punktu materialnego w nieskoriczonosci przy}
muijemy za réwng zeru. Jest to logiczne nastepstwo tego faktu,ze ener-
gila potencjelna pojawia sig zawsze wskutek wystepowania oddziaXywsi
naszego punktu materialnego z innymi ciatami z otoczenia. Moga to byé
ciaxa wywozujgqce dzialania grswitacyjne lub elektrostatycznejmoze to
byé réwniez sprezyna, przyczepiona jednym koricem do naszego punkitu, 8
drugim do innego cias, 1itd., Jedli teraz punkt materialny znajduje
sig¢ w nieskolXczonosci, to nie oddziaXuje z niczym, zatem jego energie
potencjalng mozna przyjaé za réwng zeru. Energia potencjalna  punkiu
materialnego jest wéwczas rdéwna pracy przesunigoia punktu 2z nieskof-
czonosci do porozenia okreslonego wektorem wodzgoym I
r T

U(g)-fgpgr_--fgwgaw(w——;). (2.42)

We wzorze (2.42) sila Ew = -Ep Jest sixg wewngtrzng ukzadu.
Postugujac sig pojeciem sity wewnetrzne] mozemy napisaé (2.42) dla

jednego wymiaru (wzdfuz osi x)
x

U(x) - U(A) = -wa dx

A

lub
au(x)

O o Bg (2.43)
Coa w

2 (2.43) wynika, %e pochodna energii potencjalnej wzgledem wspSi-
rzednej réwna jest ze znakiem przeciwnym dziatajgcej w tym kierunku
sile wewngtrznej uktadu., Wynik ten mozemy uogélnié w nastgpujgcy spo-
8éb: jesli ¢; oznacza wersor w kierunku osi x;, to

{9-1 ‘a—i* + 8y T+ 83 3_} U(x1,x2,13) ==-F.
1

Wyrazenie w klamrze jest tzw. operatoremgy operator ten Jeat roz-
kazem obliczenis pochodnej czgstkowej funkcji energii potencjalnej
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wzgledem kazde] wapdirzednej i zaopatrzenia tej pochodnej w odpowied=
ni wersor. Operator ten jest bardzo czesto spotykany w fizyce i nosi
nazwg gradientuj oznsczamy go symbolem ¥ (czytajs "nabla’).

2 2 L 7, 2.44)
= 3x1 © &g 3x2 e 3x3 - (

Formalnie mozemy traktowaé v Jako wektor, a wyrazenie _V_U(x1x2x3)

Jako iloczyn wektora gradientu i funkcji skalarnej; iloczyn taki jest
oczywiscie wektorem. Zatem

Niech teraz Fw bgdzie sitg centralng, na przyktad

m1 m2
9
r

Fg = =G ===

w takim razie B
m,m m,m
wadr-G'—J—-g-G—us-{U(B)-U(A)}.
A ' Ty T
Jesli dla r, ——<= przyjmiemy U(A) —0O 7

oraz rp =r, U(B) = U(r), to energig poten-
cjalng masy o, wzglgdem masy m, przedsta-

wia wyrazenie rm
mm,
Ur) = = G —=, (2.46)
x Fy=—mgk

Nad powierzchnig Ziemi {rys. 2-10) ener-
gi¢ potencjalng masy m =zapisuje sig zwykle
w nastepujacy sposédb (k Jjest wersorem wzdiuz
osi 2z, prostopadiej do powierzchni)

z
U(O—-—z)=-f_1iwdg._= s
2°
nfmgl_{_-dzg = mgz. (2.47) ’
o Rys.2«10

2012, Zasada zgchowenia energii

Rozwazmy wplerw przypadek szozegélny: mesa m znajduje sig¢ w
chwili + = O nieruchomo nad Ziemig na wysokosei h, po ozym zaczyna
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swobodnie spadaé. W uktadzie masa-Ziemia jedyng sitg jest siza grawi-
tacjis jest to siZa centiralna, a wigec zachowawcza.

i. Na wysokosci h energia potencjalna wynosi U(h) = mgh, kine-
tyczna T(h) = 0; suma T + U = E jest zwana energiag catkowitg, przy
czym E(h) = mgh.

ii. Podczas swobodnego spadania energia potencjalna maleje, kine-
tyczna zas$ rosnie., Obliczmy te wielkosci dla wysokosci 2z < hs U(z) =
= mgz, T(z) = % mvi = % m {V2g(h -z)} 2 = mg(h - 2z). Wobec tego E(z)=
= mgh,

iii. W chwili zetknigcia 2z powierzchnig Ziemi 2z = O oraz u(0) =
=0, T(0) = % n(y2gh )% = mgh, zatem E = mgh.

Przyktad ten stanowi ilustracje¢ zasady zachowania energii; w u-
kXadzie zamknigtym, tj. takim, w ktérym dziaXajg tylko sity wewngtrz-
ne, catkowita energia ukZadu jJest wielkosScig statg, jesli silty wewng-
trzne sa zachowawcze. Ruch poszczegélnych ozgsci ukZzadu pod wpiywem
8i* wewnegtrznych nie ma wpiywu na wartos$é energii catkowitej.

o4
o SItY ZEWNETRZNE
Wys
04
03
STAN A STAN B
(A) (A) (A) .

VAt g g i 2 ROWNANIA P8 p ... p A8
(A) A) - - o
o, Qr , ~--Q/’“ MECHANIKI ﬁm); £2(3)/ "'fgm)

Rys. 2=11

Rozszerzymy obecnie zasadg zachowania energii na ukiad otwarty,
tj. taki, w ktérym dziatasjg réwniez sity Ep, przyXozone 2z zewngtrz
(rys. 2-11). Skutkiem dziaZania tych si* jest wykonanie pracy, wobec
ozego ulega zmianie stan ukadu. Przez stan ukiadu rozumiemy w mecha-
nice zbidr poZozen Tqs Lps eeey I i PeAdw Dqs Doy eees p, wszyst-
kich n czesci ukZadu. Przed dzialaniem six zewngtrznych zbiér tych
parametréw okresla stan poczgtkowy uktadu, np. stan A; energia cazko-
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wita w tym stanie wynosi EA' Pod wpiywem sit zewngtrznych zostaje wy-
konana prace W(A ——B) = wAB’ przez oo ulegaja zmianie poszczegélne
r; oraz Dy czgsci ukiadu. Uktad przechodzi do stanu B o energii
EB‘ Jesli sity dziaXajgce byly zachowawcze, to zasada zachowania ener-
gii ma postaé

n B
(1)
By - B, = W,p = i; f E,t dry, (2.48)
A

czyli zmiana calkowitej energii ukladu réwna Jest pracy sit przyXozo-
nych., Jezeli w ukadzie czynne sg sity niezachowawcze, to uzyskana
zmiana ukfadu energii jest mniejsza od pracy sii zewngtrznych.

2.13. Krzywa energii potencjalne

Ruch punktu materialnego pod wpiywem sil zewngtrznyoch moZemy opi-
gaé w sposdb analityczny, posiugujgc sig¢ réwnaniami ruchu. Mozemy te-
go dokonaé réwniez w sposéb bardziej pogladowy za pomocg krzywej ener
gii potencjalnej. Krzywa energii potencjalnej (1ub powierzchnia ener-
gii potencjalnej) jest graficzmym obrazem zaleznosci U(x,y,2), gdzie
X, ¥, 2 88 chwilowymi wspéirzednymi poruszajgcej sig masy m 1 cai-
kowicie determinuje charakter ruchu. Dla uproszczenia przyjmiemy jed-
nowymiarowy przypadek ruchu z krzywg U(x), przedstawiong na rys.2=12.

Ux)

£y

|
|
|
l
|
|

M\

" X3 X3

Rys ° 2=12
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Przypusdémy, %e rozwazZamy ruch punktu materiaslnego o energii cak-
kowite] E1 o takim wtasnie modelu krzywe] potencjalnej. Na prawo od
odcigte] x, styozna do krzywej Jjest ujemna, czyli saixs dziazajgca
na poruszajgcy sig punkt Fx = -m(dU/dx) jest dodatnia. Wobes tego
ruch punktu w zakresie Xy <X < X4 bedzie przyspieszony (niekoniecsz
nie jednostajnie), w zakresie X < X< X ‘opéZniony, 4td, Energia
catkowita E,(x,) = U(x;) + T(x,), przy czym U(x,) Jest wyznaczone
przez rzgdng w punkcie X4 W ten sposdéb w dowolnym punkcie o0si x mo-
%emy wyznaczyé oble skXadowe energii. W szczegélnosci T(x4) =0, czy~-
11 E, = U(x4); ruch na prawo od x, Jest niemozliwy, bowiem energia
kinetyczna w zakresie x > X bytaby ujemna., Po osiggnigciu Xy punkt
materialny "odbije sie" i zawrdci w kierunku przeciwnym do pierwotne-
g0, Dochodzimy zatem do wniosku, ze ruch punktu materislnego o ener-
gii cazkowitej, np. Ez, bedzie ruchem periodycznym. Charakter tego
ruchu zalezy od analitycznej postaci funkcji U(x) miedzy punktemi po-
wrotu A i B

Przypusémy teraz, ze ruch punktu materialnego odbywa sig 2z nie-
wielkim tarciem, Jjego energia E2 maleje z blegiem czasu, a punkty
powrotu A i B zblizajg sie do siebis. Nie dzieje sig nic szczegblnego
do chwili, gdy U(xg) = E2. Jesli energia E maleje w dalszym ciggu,
to punkt bgdzie sig poruszaX wokél minimum U(x,) lub U(XB)’ a po cza-
sie dostatecznie ditugim E = U(x1) lub E = U(xB). Stany te sg stanami
réwnowagi trwazej, poniewaz sily F, 1 F,, dzieXsjace na punkt w oto-
czeniu minimum sg skierowane w strong ekstremum. Nie jest takim sta-
nem U(xz), mimo iz Fx = --(dU/dx)x2 = 0, gdyz sity dzia*ajace po obu
stronach X5 skierowane sg na zewngtrz ekstremum. Réwnowaga mozliwa
dla x = x5 Jest metastabilna.

Rozwazmy obecnie bardziej szoczegdXowo charakter ruchu punktu wpo-
blizu X4 zaktadajac, ze dla niewielkich amplitud ruchu "dno"™ kray-
wej energii potencjalnej mo%Zna przyblizyé parabolg o rdéwnaniu

u(x) = o <% (2.49)
Poniewaz energis kinetyczna T = (1/2)m 22, zatem dla energii ca
kowitej mozemy napisaé wyrazenie

E=T+U = % c x° + % n %°. (2.50)

Sity tu dzistajgce 8§ zachowawcze, zatem
0B

——=Cxx+mnx¥=0, {2.51)
0%
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Po podzieleniu przez x otrzymujemy réwnanie ruchu Newtona

m¥+Cx=0 (2.52)
lub

X + wg X = 0’ (2053)
gdzie

oznacza pewng wielkosé staxg. Oczywiscie C Jest wespéiczynuikiem si-
1y sprezystej, poniewas

=C x = =-F
0% X

jest liniowg sitg sprezystgy. Zatwo sig przekonaé za pomoca dwukrotne-
go rézniczkowania, ze rozwiazaniem (2.53) jest funkcja periodyczna ty-
pu

x(t) = A * cos w b

ludb
x(t) = A  + sinow t, (2.55)

przedstawlajqca drganie harmoniczne proste; 0w, jest czegstoscig kg-
towg tego ruchu.

W ten sposdéb otrzymalismy nastepujacy wazny wniosek: jesli krzywa
energii potencjalnej ma ksztaxt paraboli, to ruch punktu materialnego
o stazej energii cazkowite] jest drganiem harmonicznym prostym.

2,14, Srodek masy i jego ruch

Na zakondczenie tego rozdziatu zajmiemy sig krétko ruchem zbioru
punktéw materialnych i pokazemy, w jaki sposéb skomplikowsny opis ru=
chu wielu punktéw mozna zastapié prostym opisem ruchu jednego punktu,
bedgqoego dynamicznym odpowiednikiem
zbioru., Takim odpowiednikiem Jest
srodek masy, ktéry zdefiniujemy
wplerw dla dwéch punktéw material-
nych m, 3 Mye Potozenie tych punk-
téw bedziemy oznaczadé za pomocy wek-
toréw Ty wykredlonych z dowolnego
punktu O (rys. 2-13), natomiast
potozenie Srodka masy S oznacza
wektor r. Definicja potozenia S
jest nastgpujgca: srodkiem masy
dwéoch punktéw materialnych nazywamy
taki punkt, ktéry dzieli odcinek Za- Rys. 2-13




42

czgcy obie masy w stosunku odwrotnie proporcjonalnym do  wielkosci
tych mas,
Na podstawie rysunku 2-13 mozemy napisaé

ry + 4AS =1, 48 = r - ,,
r+8B=x, SB =1x, - L.

Z definicji poXozenia sSrodka masy otrzymujemy
my AS = m, SB,

czyli
my(z -~ £4) = my(z, - &),
stad
m,r, + m I
F o et (2.56)
m1 +m2

Jjest wektorem, okresélajgcym polozenie Srodka dwéch mas.Wyrazenie (2.56)
mozemy Xatwo uogélnié na poXozenie sSrodka masy dowolnej 1liczby mas

m1, m2,oo-’ mn

n
reg 2 e, (2.57)
gdzie

jest ogdélng masa ukadu,

PozozZenie wszystkich mas ulega zmianie z biegiem ozasu; zmienia
sig réwniez poZozenie Srodka masy. Przez zrézniczkowanie (2.57) otrzy
mamy

M= 2 omg £ (2.59)
i

Ped Srodka masy jest réwny sumie pgdéw poszczegélnych punktdéw ma-
terialnyoh., Stwierdzenie to wyraza przydatnosé pojegcia s£rodka masy
jako dynamicznego odpowiednika zbioru mas., Jednoczesdnie widzimy, ze
dla otrzymania prgdkosoci sSrodka masy nalezy obliczyé sumg¢ wektorows
pgddw poszczegélnych punktéw materialnych i podzielié jg przez ogdlng
masg ukiadu., W praktyce dokonuje?y sumowania dla kazdej o0si ukZadu
kartezjafiskiego wspSirzgdnych =x 1) oddzielnie; na przyktad (2,59)
mozemy rozpisaé w nastgpujgey sposéb

$#1) . 1 % a1, 141,23, (2.60)
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Przez powtérne zréizniczkowanie (2.59) otrzymujemy

e ."J’i Y may =g S By (2.61)
i i
Symbol giz oznacza silg zewnetrzng, przytozong do punktu maso-
wego m,; W sumie (2.61) mozna pomingé sity wewngtrzne, dziaXajgce
migdzy poszczegélnymi masami zbioru. Na mooy (2.4) mamy bowiem dla
kazdej pary punktéw materialnych my, mj

Pig v B =0

co oznacza, %e suma wazystkich sit wewngtrznych jest réwna zeru.W re-
zultacie sily te nie majq wpiywu na ruch $rodka masy. Wediug (2.61)
przyspieszenie Srodka masy jest takie jak punktu, w ktérym zgromadzo-
na jest caa masa uktadu, a sika doxf przyZozona jest wypadkowg wszys-
tkich six zewngtrznych, dziatajgoych na poszczegblne punkty material-
ne,

Réwnanie (2.61) mozemy zapisaé jeszcze w nastgpujacy aposdéb

\ |
Ma = %} f_i_z_"a%(; my,. (2.62)
o4

Jezeli zaXozymy teraz, Ze ngil = 0, to d/at( %: mi!i) =0 oraz

%: m,v, = congt. Widzimy wige, %e Jje$li na punkty masowe nie dziata-
ja sity zewngtrzne lub ich wypadkowa wzglgdem sSrodka masy réwna Jest

zeru, to ped uktadu punktéw masowych, a zarazem i pgd srodka masy,
jest wielkodcia staxgq. Stwierdzenie to jest =2zasadgq zachowania pgdu
dla zbioru punktéw materialnych,



3. DYNAMIKA BRYZY SZTYWNEJ

31, Dynamika punktu

3¢1.1. Moment pgdu punktu masowsgo

Przypusémy,ze punkt masowy porusza sig dowolnym ruchem krzywoli-
niowym. Momentem pgdu lub krgtem tego punktu wzglgdem dowolnie obra-
nego punktu O (rys. 3-1) nazywamy wyrazenies

d=rxp=nmzrxy, (kgn?/e. (3.1)

[ (0$ obrotu)
I L5

-

1<

Jy

I

Ay
Ryﬂ o 3=1

Wektor J Jjest prostopadiy do pZaszczyzny r, ¥, & Jjego zwrot
okresla regula sruby prawej: podczas obrotu od r do ¥ o kat mnie
azy od 180° kierunek ruchu postgpowego Sruby wskazuje zwrot J.
Sktadowa J wzdiuz prosie] (0$ obrotu) przechodzacej przez O jest
nazywana momentem punktu wzglgdem tej osi (J;).
Jdesli F Jest sizg, dziaXajacg na punkt masowy, to moment tej si
¥y wzgledem tego samego punktu O wynoei:
M=z xPF, Nm. (3.2)

Zrézniczkujmy wyrazenie na J wzgledem czasu:

aJ dr dy
—am-—xv+mrxa-;=£xma-gx§_=y;,

poniewaz v xy = 0,
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Zatem dJ/dt = M, ozyli szybkosé zmiany kretu jest réwna momentowi
Bikyo

3.1.2. Prawo zachowania momentu pgdu

Warunek M = O pbwoduje, ze
J = const. (3.3)

Jezell zatem moment sity zewngtrznej jest rdéwny zeru, to krgt punkiu
masowego Jest wielkoscig stakg zaréwno co do wartodei jak i kierunku.
Warto tu zauwazyé, iz 2 warunku M = =

= 0 niekoniecznie wynika F =0 =
moze byé takze r = 0. Krgt punktu
masowego bedzie wige staty i w tym
przypadku, gdy dzlatajaca nan sixa
bedzie lezeé w prostej, przechodzg-
oej przez punkt O (ogdlnie: przez
0é obrotu).

Zasada zachowania krgtu prowa-
dzl do waznego wniosku w przypadku
ruchéw, odbywajgcych sig pod dzia-
taniem siX centralnych. Si*a taka,
ktérg ogélnie zapiszemy w postaci
funkoji skalernej f£(r),jest zawsze
skierowana do lub od pewnego staze-
go punktu, niezaleiznie od aktualne=-
go polosenia punktu masowego (rys. Rys. 3-2
3=-2). Niech e oznacza wektor jednostkowy wzdtuz r, wéwozas dla si-
2y centralne] mamy:

17

E(z) = e-£(z), (3.4) 0s obrotu
oraz J
rxF=gerxe £(z) =0, =

tzn. moment sity centralnej wzglgdem
stazego punktu O jest zawsze réwny
zeru., Wynika z tego, ze dJ/dt = 0, za-
tem ruch punktu masowego, zachodzgcy
pod dzialaniem sity oentralnej, musi
8ig odbywaé w jednej ptaszozyfnie (rys.
3-3). Reguta ta wazna Jest zaréwno w
astronomii (np. ruch planet), jak i w Rys. 3=3

fizyce atomowej. Prosta ilustiracja zasady zachowania krgtu jest omé-
wiona w pkcie 3.3.
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3.1.3. Moment pedu ukiadu punktéw masowych

Catkowity moment pedu uk*adu N punktéw masowych wzgledem wybra-
nego punktu O wynosi:

22 mer, X V. (3.5)
n=1 '
Oczywiscie wartosé sumy po praewej stronie, a wigc wielkosé J, za-
lezy od wyboru punktu O, W 0zczegélnosci mozemy wybraé O w  $rodku
masy uktadu, korzystajgc z jego szczegdélnych wasnos$ci.PoXozenie $rod-
ka masy S wzgledem O podaje wektor R, zas Py okreslajq poZozenia
mes wzglgdem S (rys. 3=4).

Rys. 3~4

R+ 24 =ZIj»
czyli
e; = - R. (3.6)
Wyrazenie
Iy = %: m; Py X ¥y (3.7)

nazywamy momentem pgdu uk*adu punktéw wzglgdem $rodke masy. Jest to
wielkosé dynamiczna, charakterystyoczna dla zadanego ukiadu punktéw,
poniewaz S zdefiniowany jest jednoznacznie. Po podstawieniu (3.6)
do (3.7) otrzymujemy
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Ig= X myPy xyy = > my(-R+py)xy, =
1 i

=-Rx (2 mv,)+ X mr, xy, =-Rx2+J,
e i B

J=J,+Rxp, (3.8)

gdzie P = E: m;v; oznaocza ped catego uktadu. W rezultacie otrzymu-
i p—

jemy wniosek, ze kregt ukiadu punktéw wzgledem dowolnego punktu O réw-
ny jest sumie krgtu uk*adu tych punktéw wzgledem Srodka masy 1 kre-
towl srodka masy wzgledem tego punktu.

Jezeli sity wewngtrzne maja charakter sit newtonowskich, (a wigo
spetniajg III zasadg), to Z: (FiJ + Eﬂi) = 0. Mozna pokazaé,%e réw=-

niez momenty tych siz wzgledem 0 88 réwne zeru, tj.:

2 Myewn, = O¢

W takim razie dla ukadu punktéw masowych otrzymujemy
d
; J —zevm, (309)
przy czym krgt w tym réwnaniu jest okreslony przez (3.8).Wynika z te=-
go wniosek, iz zmiang kretu catkowitego takiego ukZadu moze wywozaé
Jedynie moment six zewngtrznych.

3.2, Moment pgdu bryty sztywnej

Brylg sztywna nazywamy ciao, w ktérym odlegZos$é dowolnych dwéch
punktéw-nie ulega zmisnie pod dziaZeniem sit zewngtrznych, przyXozo-
nych do tych punktéw,

Podzielmy catg brytg na mate elementy masy A m, . Definiujemy kret
bryty sztywnej w nastgpujgcy sposéb:

J =§ (8my)er, x y,. (3.10)
Ponadto
M= % o B2 (3.11)

Jest wypadkowym momentem sity, dziatajgecym na bryig. W wyrazeniach
tych Iy Jest wektorem pozozenis elementu masy A myy ¥y jego pred-
koscig, zas Ei 8itg zewngtrzng dod przyiozong. J oraz M muszg byé

odniesione do Jednego i tego samego punktu O, ktdéry czgsto przyjmu-
Jemy w Srodku masy S bryty sztywnej.
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Definicja (3.10) jest przyblizona, poniewaz wartos$é wyrazenia po
prawej stronie zalezy od wielkos$ci elementéw masy An&, na jakie po-
dzielilismy brytg makroskopowg., DokXadnosé tego przyblizenia zalesy z
jednej strony od dokZadnosci okreslenia z; dle elemenetéw o skoh-
czonej rozcigglodei, z drugiej zad od dokxsdmosci, z jakg Y, moina
uwazaé za staze wewngtrz elementu Aﬁmi. Niejednoznacznos$é tg¢ mozna u=
sungé przez zastosowanie rachunku catkowsgo, o czym bgdzie mowa w
pkoie 3.4.

08 obrotu

)

Rys. 3=5

Niech w najprostszym przypadku bryzg sztywng bgdzie cienka obregcz
o promieniu r = const, ktéra obraca sig dookota osi prostopadiej do
niej i przechodzgcej przez srodek okregu o promieniu r (rys. 3=5).
Kret obrgczy wynosi:

g=3Amy (zxy)=Mpxoxz=Ugr? - Ux(z o) =
. w 0

- Mrzﬂ = Iw,
przy czym M= %A my; 0Oznacza masg catej obrgozy (rys. 3=5).

W rozpisaniu potréjnego iloczynu wektorowego skorzystalisdmy z toz-

samosci
4 x (B x C) = B-(aC) - c-(aB),

ktérej wywdd znajduje sig w podrgoznikach analizy wektordw.
W tym najprostszym przypadku mamy

d=1Iu, (3.12)
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tjo wektor J Jjest réwnolegty do osi obrotu; zas I = Mr2

mentem bezwXadnosci obreczy wzgledem wybranej osi obrotu.

W ogélniejszym przypadku obrotu bryxy sztywnej opis dynamiki za=
lezy w istotny dposéb od nastgpujacych czynnikdéws o i

i. od wyboru osi obrotu. Do najwazniejszych nalezg przypadki, w
ktérych oS obrotu przechodzi przez wnetrze bryty sztywnej, w dodatku
przez jej srodek masy S. Nastgpuje wéwozas obrét "gtadki", bez uda-
réw na o$ obrotu.

ii. od wyboru uk*adu wspéirzg¢dnych, do ktérego odnosimy skZadowe
wektoréw, wystgpujacych w dynamice. Najczgsoiej przyjmuje sig, iz po-
ozgtek uk¥adu wspdirzednych jest umieszczony w srodku masy S, co Zna-
komicie upraszoza réwnania ruchu.

Dalszym uproszczeniem jest przyjgcie uktadu wspdirzgdnych x, y,
z inercyjnego, tj. nieruchomego lub poruszajgqcego sig¢ ruchem jednos-
tajn}ﬁ wraz z calg bryts. Ruch jednostajny nie wnosi jednak niczego
nowego w naszym problemie; w dalszym
ciggu zatem przyjmiemy,iZ uktad x,y,s
o poczgtku O pokrywajacym sig ze Srod-
kiem masy S bryity sztywne] Jjest
nieruchomy (rys. 3-6), tj.of z Jest
zawsze skierowana w gére, y w prawo,

a x w przéd rysunku®’,0brét naste-
puje wokét osi ze statg predkoscig
kgtowg w o Przyjgcie nieinercyjnego
uk¥adu wspéirzednych, tj. obracaja-
cego sig@ razem z bryxg wokéx wspdl-
nej osi obrotu wymaga uwzglednienia V%u
przyspleszenia wiasnego uktadu, o©o
powigksza zXozonosé problemujniekie-
dy wybér takiego ukadu wspdéirzgdnych jest potrzebny.
Wzgledem uktadu inercyjnego mamy:

Jjest mo-

08 obrotu

Ryﬂ' 3"'6

I3 % 2X Ly

([
]

(Ami) Ly xy, = %ﬂ\ mi(_r_i xwxr)s=

smg[w + rf - 200 '],

D)
1
2
1

<
0
le
™M
>
B
e
°
"
(%X
'
™M

amy x( w_;i)- (3.13)

X Jesii wypadkowa sit zewngtrznych réwnas jest zeru, to zawsze istnieje taki

uktad inercyjny, w ktérym érodek masy S pozostaje w spoczynku,



50
Rozpisgmy obecnie skladowg J, np.z,Jx:
Jg = Uy ; Amg rf - % amy x, (wy X b g Fy oty z,) =
=0y [%: Ami(rja_- xi)] o [ ; Amy X; ¥y = 0, %Ami Xy By.

Ozneczmy s
2 2
% amy(ry - x7) = I,

o= % Ami xi yi = Iq’ (3014)
- % Amy Xy By = Igge

Wyrazenia te nazywamy sk}adowymi momentu bezwiadnodoi wzglgdem u-
ktadu osi x y z. Na tej podstawie mozemy gapisaé sktadowg Jx W po=-
staci

Ig = Iggg + Ipguy xz Yz°
Podobnie
Jy = Iy ogt Iguy + I, o (3.15)
orag

J, = I u)x+Iz

z ZX @

vy %y + Izz O)zo

Widzimy wigso, %e dla ciaZa o dowolnym ksztalcie i rozkiadzie masy
krgt J nie jest prostym iloozynem wielkodoi skalarnej I oraz pregd-
kodoi katowe] wj w ogdélnym przypadku J nie ma kierunku w.

Zbiér skadowych Ipv stanowi 9 liczb,ktére noszg nazwg sktadowych
tensora momentu bezwtadnosci wzglgdem wybranego ukadu wspéirzednych.
(3.14) jest definicjg trzech sposréd nichy pozostale okredlone 83 w
analogiczny sposéb. Ponadto z (3.14) widaé iz

Iuv = I].W' (3-16)

tj. tensor momentu bezwiadnodci jest symetryczny. Ta wasnosé reduku-
Jje liczbg niezaleinych skiadowych tensora do szesciu.

Korzystajac z tych definicji mozemy zapisaé podstawowe réwnanie
dynamiki bryty sztywnej] w nastgpujgce] postaci:

Jx Ixx Ixy Ixz x
Jy = Ixy Iyy Iyz Yy (3.17)
Iz Iz Iyz Izz/ \9z

lub '(J) = [1] (@, (3.18)
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Korzystajac z (3.18) nalesy pamigtaé, %e w dowolnie wybraenym,lecz
inercyjnym ukiadzie wspSirzgdnyoch x,y,z moment bezwkadnosci  jest
tensorem o szesdoiu rdéinych sktadowyoh, przy czym wartosé tych skXado=-
wych zalezy od wyboru ukZadu x,¥,2.

Zmisna kretu bryty sztywnej pod wpiywem momentu sity zewngtrznej
zachodzi zgodnie z (3.9). Zauwazmy, ze zmiana krgtu AJ = Meat nie ma
kierunku zgodnego ani z J eni z F, lecz jest prostopadia do ptasz-
czyzny r, F, a jJej zwrot okresla reguta sruby prawej.

3.3, Prayktad zasady zachowanis kregtus

rozpraszanie ozgetek alfa przez cigikie jadra
(teoria E. Rutherforda)

Dosdwiadozenia dotyczgce rozpraszanis czgstek alfa doprowadzity do
ustalenia srednicy Jjadra atomowego, co miaxo decydujgey wpiyw na dal-
azy rozwdé]j teorii atomu. Czgstka alfa substancji promieniotwércze]
przechodzgca w poblizu jadra atomowego w ustawione] na jej drodze fo-
1ii metalowej, zostaje odchylona w polu sit kulombowskich jgdra (rys.
3=7). Kat rozproszenia wynosi ¢ . Schemat rozproszenia jest przedsta-

ol
(;He?")
F 5/1’0
metaliczna
Ekran
scyntylacyjny
Rys. 3=7

wiony na rys. 3-8, Czgstka alfa, poruszajaca sig z dala od Jadra 2z
predkoscig v, 2bliza sig dofl na najmniejsza odlegios$é s3 zaréwno 8
jak 1 b, odlegZosé jgdra od asymptoty toru, stanowi  parametry roz-
proszenia,
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Tor
czqstkiol

Rys. 3-8

Przyjmjemy, £Ze masa jgdra atomu folii m, Jest nieskoniczenie du-
%aj zazodymy ponadto, se predkosé poczgtkowa jgdra wynosi O, a zatem
po odrzuceniu czgstki predkosé pozostaje O (insczej méwige nie u-
wzglgdniamy energii odrzutu). Masg czgstki alfa oznaczamy przesz Bge
Kret czgstki wzgledem jadra

Jo = MgeVy°De

Kret w odleglosci s najwigkszego zblizenia:

Ja =m *Vg°8.

Ruch zachodzi w .polu sily centralnej, czyli Jo = dge @ stad Un O
= voob/a Jest predkodcig czgstki w odlegXodci s od jadra. 2 zasady
zachowania energil mamy:

2 2
m_v m. v
ao.—Lﬁ‘.U(ﬂ)’
2 2

gdzie U(s) Jest energig potencjalng ozgstki alfa w punkcie s.
Poniewaz sila oddziatywania jest siig Coulomba

F =+ 1 &5 5202£2ez

¥ 4 neo r2 !
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zatem
v s 71 1 2z
u(s) -_['r; dr = 2Ze .jﬁ — dr = .
= dne, e T 4ne, 8
L 2 2 2
n.v, . mavs ; 1 2Ze .
2 2 4ne, 8
Oznaczmy staly parametr p = 1/(4ne,)e (4Zez)l(mav§), - wéwezas

2/v + p/s = 1, czyli v /v =1 - p/a.

Odlegkoéciq najwigkszego zblizenia czgstkl alfa do jadra Jest s.
' Najmniejsza mozliwa wielkosé s odpowiads zderzeniu centralnemu, gdy
- 0z8stka zostanie odrzucona pod kgtem 180°;w chwili najwigkszego zbli-
%enia e O 0>p =8, dlatego

1 4ze°

8 = D = e °
min 2
4ne, m.ve

Doswiadczenia nad rozpraszaniem czgstek alfa radonu na foliach
réznych metali wykonali GEIGER i MARSDEN. Wyniki, np. dla Cu, s§ na-
stgpujgoces

1 » 9 ﬁ-mz
= 9,0°10 ===y z = 29 (Cu),

4 e,

e = 1,60:107'% ¢, m, ¥ 4°n = 41,67°10"27 kg,

V, = 1,6'107 n/s.-

Zatem
-38

8 . = 9,00109 —22:10 ?25? « 10716 5 = 1,5610"12 ¢
Sl 1,67°10-21.101% '

Z tych doswiadozen wynika, 30 frednica Jgdra atomowego jest rzedu
10'12 om. Prawo Coulomba (1/r ) jest speinione do odlegtosci rzedu
kilku Srednic jgdra.

3.4, Moment bezwladnosci

Praktycznych obliczedl momentu bezwiadnosci dokonuje sig za pomoocg
rachunku catkowego. Jesli bowiem masgA my elementu o skoriczonej objeg-
tofoi zastgqpimy masg dm elementu o objgtosci dV, to poXoienie i
predkosé takiego elementu znane sg doktadnie, lecz suma w (3.10) musi
byé zastgpiona przez cakkeg.

Jeslil p (r) Jest gestosoig w punkcie odlegiym o r od osi obro-
tu, to dm = p (r) aV. Mamy wéwezas
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I, = ‘f(rz - x°)dn =‘fp (r)(r? - x?)av,

(3.19)
Ig® —‘fp(r) xy dV, etc.
Suma wyrazéw przekatniowych wynosi:
2 2 2 2
Lee + Iyy + Tpg = [0 (2) [30% = & + 3% + &®)]av =
= 2[p(r) 2? av (3.20)

i nie zalesy od wyboru ukXadu wspéirzednych x, y, 2. 2 tego wyniku
skorzystamy w podanych dalej kilku przyktadach obliczer momentéw bez-
wktadnodci bryx o czgsto spotykanej symetrii. ‘

i. Powzoka kulista: o0& obrotu przechodzi przez srodek geometryoz-
ny (rys. 3-9)
Ze wzgledu ne symetrig kulistg
jest Iuv = 0 dla p # v, oraz

2 2
In=1yy=1u=3-fp(r)r av =

o =2:%fo(r)av=522am =
2
3

M r2, (3021)

gdzie M = 4 nrl p dr Jest masg po-
wXoki kulistej o grubosci dr.

ii. Kula o promieniu Rj oS obro-
tu przechodzi przez srodek geome-
tryczny. ;

Mamy tu 4V = 41rr2 dr oraz
Z R R

4/ 1=5[anrtoaratnp . ot ar-
(] o

Rys. 3=9

=4np § - 2R = 317
gdzie M = %‘ERBp Jjest masg kuli.
iii. Cienki pret sztywny; oé obrotu
z przechodzi przez Srodek prgta prosto-
padle do jego d¥ugosci L (rys. 3-10)..
Mamy tu: dV = A+dr, gdzie A jest po-
Rys. 3-10 wierzchnig przekroju prgta
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L/2 L/2
2 2 1 2
Iz-fpr dV=pAfr ar = 35 ML™ ,
=L/2 =L/2 z \

gdzie M = o AL jest masg preta.
ive Cienki pret sztywny; os obrotu
pPrzechodzl przez poczatek pregta prosto-
padle do jego d*ugosci (rys. 3-11)
L
Izz=PAfr2dr=%ML2.
o Rys. 3=11

3s5¢ Energia kinetyczna bryty sztywnej w ruchu obrotowym

Energia kinetyczna zbioru elementéw masowych Ami wynbsi
1 2
ZAm $=3 %A mi(ﬂx;i) 5

Do wystepujacego tu iloczynu (uw x 21)2 = (wx 51)'(91 Ei) zg=
stosujemy identycznosé

(A xB)* (c xD) = (ac)(BD) - (AD)(BC).

W naszym przypadku:
3
2 2
(ox2y)?m0fxf - ()22 (Do DD - € 3 0y n)% -

2 2 2y,..2 2 _
= (wx + wg + wz)'ri = (wxxi 0 Yy 0 Zi) =

y ¥

= wi(ri = xi) + w§(ri - yi) +w2(ri - zz)

- 20 y XYy - 20 W, X2y = Zwy W Y4249

zatem
2 2
2T = (Ixx g + Iy oy + Iy, +2 oo 0y +

+ ,2 Iy 0gy + 2 L0 0 z)e (3.22)

Dla kuli o osi obrotu przechodzgcej przez jej srodek, czyli I,y =
=0 dla p #v, otrzymujemy znany wzérokreslajacy energiekinetyczngs

1 2 2 2y 1 2
b g 7 BE (‘”x"’“’y*‘”z)"ZIzzw .
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Wyrazenie (3.22) mozemy zapisaé znacznie proéciej za pomocg rag-
chunku macierzowego:

27 = (%) [I] (w. (3.23)
We wzorze (3.23) (W) oznacza macierz przeatawiong (w) (transpono-
wang). Peiny zapis (3.23) bedzie wigo miaX postaé nastgpujaca:

Ixx Ixy Ixz Wy

2T = (wx wy "’z) Iox Iy Iyz wy

Iox Iy Iz2/ \Ug

3.6, Osie gXéwne momentu bezwiadnosci

W dowolnym wyborze ukladu wspéirzednych x, y, Z, Jjak to czyni-
1lidmy dotgd, zwigzki migdzy J i w oraz wyraienia na energig kinety-
czng T, 88 dosé skomplikowane., W szozegdlnosoi wyrasenie na T,
prawdziwe w kazdym uktadzie kartezjafiskim, mozna tak uproscié przes
wybér odpowiedniego ukladu wspéirzednych, by doprowadzié do gznik-
nigoia wyrazdéw mieszanych typu w p@y o Oznaczmy ten s8zczegélny ukZad
wapéirzgdnych przez X, Y, Z. Mamy w tym ukZadzie:

2 Iwmuu\,-o, ozyli I,,=0 dla p¥v. (3.24)

Ukzad wapbirzednyoch X Y 2 o wkasnodci (3.24) nazywamy osiami
giéwnyni tensora momentu bezwadnosfoi. Dla skrécenis oznaczerl przyj-
miemy %e:

Ixg = Ip Iy = Ipe Ipg = Iy (3.25)

Mamy wigo wzgledem tego ukXadu wspéirzgdnych:
3

2
27 = 2 I w
k=1 k "k?
Jp = Iyo,, ms=1, 2,3, (3.26)
3
21 = ¥ (3%/1).
k=1 k' "k
Jak widaé, wyrazenia nas energig¢ kinetyczng oraz kret bryty aztyw-
nej przybierajg wéwozas szczegélnie prostg postaé. Co wigcej, Jesli
bryta obraca sig dookoZa ktérejs = osi giéwnyoh, np. o8l 2, to kret
bryty wynosi '
J3 = 13(“3’
'@ wige jest rdéwnolegiy do W,
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Nalezy tu wyrafnie podkreslié, se ineroyjno$é (lub nie) ukladu
wepbirzednych jest jego cechq fizyczng. Wkasnosé wyrazona w (3.24) lud
zwigzkami (3.26) jest natomiast cechg geometryczng wyrdéznionego ukia-
du XY Z, Osie XY Z 83 w pewnym sensie osiaml naturalnymi ukZadu,
gdyz zwigzane 834 z jego symetrigj; uwzglgdnienie jej prowadzi do szoze-
g6lnie prostych zaleznosci w dynamice ruchu obrotowego.Symetrie ukia-
du ma ogromna znaczenie nie tylko w dynamice bryiy sztywnej, 1lecz w
ogbéle w fizyoce. Uklad osi x, y, 2 jest wybrany natomiast dowolnie,
g tym tylko warunkiem, by byt inercyjny. Wybdr takiego ukiadu jest e
twy, ale prowadzi do zaleznosoi ogélnych, zXozonyoch.

R"Q 3-12

Kierunki osi géwnyoh ukiadu mozemy czgsto odgadngé na podstawie
Jego symetrii. Przykiadem takiej dedukcji jest rys. 3-12, W bardziej
zXoionych przypadkach intuicyjne znalezienie ukadu X Y Z moze nie
byé proste, lub niejednognaczne. Postugujemy sig wéwozas metodami ra-
ochunkowymi, opartymi na definioji (3.24). W dusym skrécie metodg te
mo3na stredcié nastgpujqco: poszukujemy takiego przeksztaiceniea T u-
kxadu wspéirzednych

(x, y, 3) === (X, ¥, 2),

ktére doprowadzazoby tensor momentu begwladnoioi do postaci prszekat-
niowejs

Iy Iy Ip I, o o
By

Iyx Ly Tye [—]o 1, o

Ly Ty Ipg o o 1,

Szozegdtowym oméwieniem tego zagadnienia nie bgdziemy sig¢ tu zaj-
mowad.
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3.7e PrzykXad ruchu bryxy sziywnej

Dwa ciaXa o masach m; = 200 g 1 m, = 300 g sg poxaczone sziywnym
i niewazkim pretem o dxugosci 50 cm. $rodek masy ukzadu Jest poczgt-
kiem ukZadu wspéirzgdnych. Prgt leiy w pXaszczyfnie x y 1 tworzy kat
20° z osig y. Obliczyé skiadowe momentu bezwZadnosSci I 1 Ixy .
Prayjawszy, %e prgt obraca si¢ z predkoscig kgtowg w wokéx osi x,
gnalefé orientacjg wektora J.

Potozenie $rodka masy wzgledem my

2000 + 30050 :
o T 300 = 20 em.

Wobec tego wsapbirzgdne mas sg
nastepujace (rys. 3-13):

m, (30 cos 70°, =30 sin 70, 0) =

= (10,3; -28,2, 0) om,

Ny, M, GX,_I/
‘ s y m,(-20 sin 20, 20 cos 20, 0) =
“ feor = (-6,8, 18,8, 0) cm.
X Majgc te dane mozemy obliczyé
sktadowe momentu bezwZadnosci:
Rys. 3=13

I, = 2my(rd - x2) = 200(302 - 10,3%) + 300(20%- 6,82) =
= 2,65'105 g-cmz,

Ig == Y myx,y, = 200°10,3°28,2 + 300°6,8°18,8 =

= 0,96°105 g‘omz.

Przypusgémy teraz, ze prgt obraca sig z predkosdcig kgtowa dookoXs

osi x (rys. 3-14).
Jest zatem
W =Wy, W, =0, = (o}
oraz
Jx = Ixx * mx,
Jy = %x (l)xi JZ = o.

J I
x 0,96 on0
W takim razie 3§ = Ii;.- Efgg = 0,363 = tg 20",
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X

Rys. 3-14

zatem w chwili, gdy pret lesy w ptaszozyiZnie x y, wektor krgtu two-
rzy 2 osig x kat 20°, tJ. jest prostopadiy do odecinka X3czgcego obie
masy m, i mye J obraca sig wokét x 2z predkoscigq katowg w, lecz

nie jest do niej réwnolegiy.



4. OSCYLATOR

Osoylatorem moze byé kasdy uklad zdolny do wykonywania drgafd o me-
tym odchyleniu od pozoienia réwnowagi w chwili poczgtkowej. Prsyka-
dami oscylatoréw sg: wahadto, masa zawieszona na sprgiynie,obwdéd elels
tryoczny zloZony z pojemnosSci i indukoyjnodci, elektron w atomis, atom
lub fragment czgsteczki swigzany s innymi atomami, oczgsteczka w sieci
krystaliczne]. Cechg tyoch wezystkioh ukadéw jest to, ze element drga
Jaoy jest zwigqzany 2 pooieniem réwnowegl silg epreiystg, Lktéra ma
dwie waine cechy:

i. Jest zawsze skierowans w strong potozenia réwnowagi,

1i. wielkosé jej jest proporcjonalna do przesunigoia oscylators
wzgledem poZozenia réwnowegi.

Ta druga cecha sily sprezystej moze byé osiggnigta tylko dla drgad
o amplitudzie dostatecznie maze]. Oacylafor, ktéry speinia ten waru-
nek, zwany jest liniowym. '

4.1, Oscylator harmonicgny

Oscylator harmoniczny stanowi wazny model w fizyce klasycznej 1
kwantowej, bowiem posugujemy si¢ nim czgsto w opisie zjawisk i wZas-
nodci materiszéw., Osoylatorem harmonicznym nazywamy ukiad,ktérego wy-
chylenie s wzgledem poXozenia réwnowagi opisuje funkcja typu 8 =
= A gin (Wt + o), przy czym A Jest amplitudg ruchu i nie zaleidy od
czasu, zad u 1 @ oznaczajq odpowiednio ozgstodé katowg i fazg po-
czgtkowsg ruchu.

Rozwazmy obeonie kilka przyktaddéw oscylatora.

4.1.1., WahadZo proste

Modelem jest masa m, zawieszona na sztywnej i niewazkiej nici.
Rozwasmy ruch wahadia ze wzgledu na dynamike bryiy.

Ruch odbywa sig w pkaszozyznie yz (rys. 4-1), a kierunek sity
grawitacyjnej P' = =mg Jeat przeciwny do kierunku osi 2z. Mamy wigc

Ix-PyIO, F, = -ng.
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Dzistajgcy w tym uktadzie mo-~
ment sity wynosi

Mx-(gxg)x-sz-szn

= (1 8in¢ )(-mg) = -mglsing.

Kret wahada wynosi

2
Jx-wa-ml q:a.

_ Zgodnie 2 (3.9) pochodna kre-
tu jest réwna momentowi sity we-
wnegtrzne]

]
dat
czyli y
2--
ml€¢ = -mg 1 sin @,
zatem
$ + § BinQ = 0,
Dla matych odchylei sin ¢ &¢
(w radianach), wéwczas Rys. 4=1
5+ 20a0 (4.1)

1l

jest réwnaniem ruchu wshada dla przybliZenis maitych amplitud.Roz-
wigzaniem jest funkcja periodyczna czasu

¢ =0, 8in (u)ot + 61) (4.2)
1ub
®= ¢ ocos (ut + &),

okreslajgoa aktualne wychylenie wahadla w mierze katowej. Oba rozwig-
zania sg réwnowaine poniewaz & , faza poczgtkowa ruchu jest staig do-
wolng i mozna uwaszaé, 2e

62 - 61 -11:/2.

Podstawiajgc rozwigzanie (4.2) do réwnania (4.1) otrzymujemy
? =00, cos (wot + 84)y

2

¢ ==wSo, ein (wot +61) = -wscp,
ozyli

$tule =0,



62

zatem
! (g)_'l/z
w = I

o
Kgtowa czgstosé drgan wahadta jest wigo odwrotnie proporcjonslna
do pierwiastka z jego diugosdci. Dok¥ady pomiar czestodei drgad, gdy
dtugosé jest znana, moze byé réwniez podstawg pomiaru przyspiesze-
nia ziemskiego. ' ,
Rozwigzanie (4.2) jest funkcjg periodyczngq o okresie 2n, Jesli
zatem t warosnie ¢ okres drgan To’ to wychylenie osiggnie tg samg
wartodé i kierunek co w chwili t, zatem

5 (4.3)

sin [wo(t + To)‘ +5] = gin (mot 5 ),
jesli bedzie speiniony warunek '

wyIyo=2m
lub .
wo--lp';-=2nv°. (4.4)
v, Jest liniowg czestoscig drgad oscylatora.
Interesujgce wiasnodcl ma przyspieszenie liniowe masy m

asloegp = -wg lg = -uﬁ Ve

Sita dziatasjqca na mase m wynosi zatem
F = mea = -muxg y=-K y. (4.5)

Zardéwno przyspieszenie Jak i sila sg wiec skierowane w strone poZo-
zenia réwnowagi i proporcjonalne do przesunigcia oscylatora, tj.spei-
niajg obie cechy oacylatora liniowego. SZuszne jJest to jednak 2z taksg
dokXadnoscig, z jaka s8in¢ mozna przyblizyé przez ¢ .

WspéZozynnik K, w (4.5) nosi nazwe sity kierujgcej, lub krétko,
staXej sprezystej oscylatora i jest zwigzany z kgtowg czgstoscig drgan
zaleznosdcig

Wg = 7 ° (4-6).
Liczbowo Kl réwny jest sile, dziatsjgcej na masg przesunigta
wzgledem poZozenia réwnowagi o jednostke dzugosci.
4.1.2. Wahadzo torsyjne

Modelem takiego wehadia Jjest kragiek iawieazony w drodku masy na
sprezystej 1 niewazkiej nici. Lekko popchnigty, krgzek wykonuje drga-
nia katowe, przy czym skiualne poXozenie wzglgdem poXozenia réwnowagi
(1inia zerowa) oznaczamy przez kat @ (rys. 4-2).
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Korzyetajge z (3.9) mozemy napisaé réwnanie ruchu wahadta torsyj-
negos

d d ..
—J == (Tp) = I0 =M,
at at

gdzie & jest przyspieszeniem ka-
towyn krazka, I jego momentem bez-
wtadnosci dla wybranej osi, za$
M Jest momentem sity wytwarzanym
przez spresystosé skreconej aktu-
alnie nici., Dla mniewielkich od-
chyled od pozozenia rdwnowagi,wy- P
tworzony przez nidé moment pary
811 jest proporcjonalny do wychy-
lenis i skierowany zawsze w stro-
ng pozozenia réwnowagi

M= -Ki ¢, (4.7)

gdzie Kt Jeat taw, statg spreg-
%ystg nici. Liczbowo Kt‘ réwne jest momentowl pary six powstajgcemu
przy skrgocaniu nici o kgt réwny 1 radianowi. Réwnanie ruchu wahadia
torsyjnego ma wigc postad

Zero

R}'So 4=2

I8+ K, ¢ = 0. (4.8)
Jesli oznaczymy
w2 = K /1, (4.9)

to drganie wahadia opisuje funkcja

® =0 sin (wot + 61)

lub (4.10)
¢ =0, cos (mot + 52)

gdzie 61 Jest fazg poczatkowg ruchu.
Rozwiazania (4.10) sg identyczne z (4.2), & réznica
wystgpuje w (4.6) 1 (4.9).

4,1.3. Masa zawieszona na spreiynie

Jezeli =x oznacza przesunigoie masy m wzglgdem po- m
Xozenia rdéwnowagi, to

-]

Fx = -0 x (=

Jest liniows silg spresysts, dzistajgca po rozoiagnigeiu
sprezyny (rys. 4.3). Rys. 4-3

TN
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Réwnanie rachunku Newtona ma zatem postad:

ma = m¥ = =C X,
ogyli . ¢
X+ (E)x = 0, : (4.11)
Réwnanie to ma strukture takq samg, jak poprzednie, tak zZe:
a\1/2
wgy = (E) » x=x, 8in (a % +5 ). (4.12)

4+1+4. Srednia energia oacylatora

Energia catkowits oscylatora skiada sig z jego energii kinetycz-
nej i potencjalnej. Dla przykiadu -4.1.3 moiemy napisaé

E=T+U=3n22+3cx?a
-%m wsxg cos? (mot +85) +w§ xg sin? (wot -+6)]-<E>
<E> '%mwg xgo (4013)

Widzimy z tego, %e energia catkowita nie zalezy od o¢zasu, Jest
wigo réwna energii Sredniej oscylatora. Energia ta jest proporcjonal-
na do kwadratu amplitudy drgaif.

4,2, Oscylator tiumiony

Oscylator rzeczywisty wykonuje drgania o amplitudzie systematyoz-
nie malejgoej £ biegliem czasu. Przyczyng tZumienia ruchu oscylatora
jest istnienie sity tarcia. Kierunek takiej sity jest przeciwny do
predkoseci i zaleiy od predkosdci

rt = =y ina : (4014)
Dla niezbyt duiych predkosci n = 1; dla wigkszyoh (aerodynamika)
moze byé n = 2, a nawet 3.
4.2.1. Relaksacja prgdkosdci

W najprostszym przypadku réwnanie ruchu czgstki, poruszajgcej sig
przy wspétdziastaniu sit tarcia ma postaé:

m .x. + Yi = 0, (4'15)

Poniewaz [y%] = 1 N, zatem [Y] = 1 kg/s, ozyli stata m/y ma wy-
miar czasu,

W zwigzku 2 tym definiujemy nowg wielkosé, zwang czasem relaksa-
cji



65

m
T = —Y— (4.16)
tak, Ze mamy
TX+%x = 0
lub
Tt +v = 0, (4.17)
stgd

1:%%=-v; T d—vv-=-fdt,

Ttln v = =t + const.

Jako warunek poczatkowy zakadamy, 2e t =0 D v = ¥ (pregdkosé
poczatkowa # 0), czyli const =t 1n vy, zatem

In X ==, czyli v = vooe't/r. (4.18)

W przypadku najczgscie]j spotykanej sity tiumienia,proporcjonalnej
do pregdkosci, predkosé maleje wykadniczo z czasem.

Jedli poxozymy t = 1, to v = e % s c2yll t Jest ozasem, po
ktérego uptywie predkosé maleje do 1/e swej poczgtkowe]j wartosci.

Energia kinetyozna réwniez maleje w czasie ruchu z tarciem
T = % m Ve = % m vg e=28/7T o e'Zt/T. (4.19)
zatem -

Wynika stgd, Ze energia kinetyczna maleje z czasem relaksacji dwa
razy krétszym niz predkosdé:

1
Tp = %5 Tge (4.20)
Dobrym przyktadem silty typu F, = - YX jest opornosé omowa R w
obwodzie drgajacym; rdéwniez ruchowi piytki w gazie w kierunku normal-
nym do jej powierzchni lub w cieczy stycznie do powierzchni towarzy-
8zy pojawienie sig takiej wZasnie sily tarcia.
4,2.2. Réwnanie ruchu oscylatora tiumionego

Po wprowadzeniu sitry tarcia mozemy napisaé rdéwnanie ruchu oscyla-
tora ttumionego (oozywiscie nie bgdzie to jus oscylator harmoniczny):

mxs= FS + Ft’

przy czym FB oznacze liniowg sixg¢ spregiystg, a Ft gitg tarcia.
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Po podstawieniu znanych postaci tych siz otrzymujemy:
mX+Yx+Cxa= O, (4.21)

Po podzieleniu przez mas¢ i wprowadzeniu staiych (4.21) prze-
ksztazca sig w rdwnanie

%0 A o 2
T+ Xto;x= 0,

w, Oznacza = jak dotgd - czgéé katowg oscylatora harmonicznego, tJj.
bez tiumienia. Rozwigzaniem ostatniego réwnania jest x(t% czyli funk-
cja, przedstawiajgca zalezncsé wychylenia oscylatora od czasu. Funk-
cja ta musi maleé z biegiem czasu ze wzgl@du na tXumienie ruchu, po-
nadto powinna na ogét zawierad ozynnik periodyozny.

Szukamy zatem rozwiazania (4.21) o postaci

x(t) = x e~t/27, z(t),

gdzie z(t) Jjest na razie nie znang periodyczng funkcjg czasu. Czyn-
nik wyktadniczy opisuje spadek amplitudy. Obliczamy pochodne x(t):

1 ¥ = - 1 ° e-t/2’t; zZ + i e-t/z-c,

2
S TR FA P PR Y
T T
i podstawiamy do réwnania rézniczkowego. Po redukcji otrzymujemy:

Z o+ (wg - Z;L?) z = 0.
T

Czynnik o't/zt'zoataz tu opuszczony, poniewaz nie zeruje sig¢ dla
skoficzonego czasu t. Jesli oznaczymy:
2
2 2 1
w- =wg - <éq9 ’ . (4.22)
przy czym
0 < W <Y

to rozwigzaniem réwnanias rézniczkowego dla 2z Jest funkcja

z(t) = 2z sin (0t +5 ).

Pexne rozwigzanie ma wigc postad

x(t) = A e~t/2t | sinw t, (4.23)

przy ozym Ao Jest amplitudg ruchu harmonicznego. Wybierajge o¢zyn-
nik harmoniczny typu sin ¢t musimy zazozyé, Ze oscylator w chwili

t+ = 0 ma zadang prgdko$é poczgatkowg V_:

o
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x(0) = [- 2—1_— sinp t + wcosw t] ::o =0 Ay,

poniewaz oscylator z tarciem "sam 2 siebie™ nie ruszy z miejsca.

Gdybysmy wybrali oczynnik typu cos yt, wéwczas wystarczyioby zaZo-
4yé, %e w chwili poczgtkowej oscylator ma wychylenie x(0) = Ay,
réwne amplitudzie ruchu harmonicznego. Ponadto widzimy =z (4.22), ze
0zgstosé ruchu tiumionego jest zawsze mniejsza od czgstosci drgad os-
cylatora bez tZumienia.

X
Aok
N
N
\\<Aoe‘t/2T
A f o\ AT
9 \\
AN
; 7?‘7‘?%
BV
| -
/l/
=
= t= 27
7
7
7
/7
~Aol
Rys. 4-4
Wykres funkcji (4.23) jest przedstawiony na rys. 4-43 obwiednie
krzywej, ilustrujgce spadek amplitudy, majg réwnanie x = Ao e-tlzt °

Amplituda maleje do 1/2 swej wartosci poczgtkowej po upiywie ozasu
t = 27; czas relaksacji amplitudy jest wigo 2=-krotnie wigkszy, niz
predkosci. '

Czgsto wprowadza sig, oprécz czasu relaksacji, tzw. statqg tiumie-
nia, ktéra jest jego odwrotnoscig

g = TL . - (4.24)
Rysunek 4-4 odpowiads duzemu okresowi ozasu relaksacji, ozyli ma-

zej statej tiumienia. Najbardziej interesujgcym przypadkiem jeat tzw.
tZumienie krytyczne, okreslone warunkiem:
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w2aw2-p2 o, (4.25)

czyli
Bir ®Woe

Odpowiada mu zerowa czgstosé oscylacji, tzn. uktad wychylony ze
stanu réwnowagl zmierza w Jjego kierunku aperiodycznie w czasie mozli-
wie najkrétszym. Ma to znaczenie w doborze stalych tZzumienia w mier-
nikach, zawierajgcych czgsci ruchome; miernik tZumiony krytycznie po-
zwala na osiggnigoie wielkosSci mierzonej w czasie najkrétszym. Pray
Jeszoze wigkszych statych tiumienia czgstos$é ruchu staje sie¢ urojona,
a wigo ruch dalej zachodzi aperiodycznie; powiada sig, Ze ukZad powo-
14 "perznie" w kierunku poXozenia réwnowagi (rys. 4=5).

ttumienie krytyczne

Rys o 4=5

4,2.,3., Energia oscylatora stabo tZumionego

Szabe tZumienie oznacza mate (B 1lub duzy czas relaksacji t ,tak zZe
w tym przypadku

wt >>1  oraz o ¥, (4.26)
wobec tego mozemy napisaé
x(t) = A - e't/ZT'sin(not. (4.27)

Obliczmy $rednig wartosé energiil catkowitej, <(E), oscylatora tZu-
mionego, przy czym Sredniowanie odnosié sig¢ bgdzie do 1. okresu. Je-
%eli B jest mate, to amplituda ruchu Ao e-t/z"praktycznie nie zmie-
ni sig¢ w ciggu tego czasu, czyli mozna ja uwazaé za statg. Mamy wigc:

o 1 . -t/2‘l’:
¥ = (- 3o sinwyt + o, cos g t)eA, e s

T L o 2

zR X" =5m (Zeii sin wot + wg coaz(not -

w
=0=0 2,0-t/7
sin<»°t cos w _t) Ac.e 5
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Poniewaz
<sin2u)°t>= <cos_2wot>x % ,
<einow % cosmot>-<% sin 2w t>=0
oraz 1 ,
— <02,
zatem 4w
=1 2 ,2 ~t/T
(> gmog Aje
oraz
<U>m(F 0 xf>=qmul A et/ L,
wobec tego
(B> = 20> = $my?2 42 o7H/7, (4.28)

Widzimy wigo, ze srednia moc, z jakg jest tracona energia w ciggu
1 oyklu wynosi

-(p> = FCE> = - 2 E),

czyli g
<P> - <—"C-> e (4-29)

Straty energli zachodzg z czasem relaksacji takim samym, Jak spa-
dek predkosci (dyssypacja, rozpraszanie energii).

Mozna przypuszczaé, %e ta strata energii ma zwigzek z pracqg siiy
tarcia Ft' Obliczmy moc, rozwijang przez sizg tarcia:

<Pt>z<Ft.v>- _<Y*2>' - %Ag e-t/c ((Dg""z) = - % -<E>n

= = (P, (4.30)

Widzimy wigc, Ze moc rozwijana przez sitg tercia istotnie Jest
réwna mocy strat energii catkowitej oscylatora tiumionego.Oznacza to,
%e przyczyng strat mocy jest wkasdnie wystgpowanie sit tarcia.

4.3. Drgaenia wymuszone oscylatora

Drgania wymuszone zachodzg pod wpiywem sizxy FW, przyXozonej z
zewngtrz, Jesli siXa ta ma wywoXaé drgania oscylatora, o musimieé cha-
rakter sily periodycznej. PotoZymy zatem

F, = F, « sinot, (4.31)

gdzie ) Jjest czgstoscigq sity wymuszajace], a Fo jeJ amplitudg. U=
wzglegdnimy réwniez silg tarcia

B, o= -YX
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tak, %e rdéwnanie ruchu ma postaéd
¥ + Y+ C x =P sinpt. (4.32)

Stosujgc poprzednie oznaczenia oraz oznaczajgoc Fo/m =a, = ampli-
tuda przyspieszenia, wywoZanego przez silg wymuszajjcqg - mamy

TR | 2
x+?x+w°xua° singy t.

W tym réwnaniu ¢, Jest czestoscig wtasng ukiadu, tj. bez tZumie-
nia i sity wymuszajacej. .

Pod wplywem 'Fw ukiad bgdzie wykonywaz drganias.Pominiemy zjawis-
ka przejdciowe na poczgtkuy po pewnym czasie ukiad dojdzie do stanu
réwnowagl, w wyniku czego drgenia bgdg sig odbywaé =z czgstoscigq sily
wymuszajacej w, a nie z czgstosScig wiasng W e

Rozwigzanie tego réwnania musi mieé zatem postaé

x=x - sin (b +0), (4.33)

e naszym zadaniem jest znelezienie x, orazg .
Mamy s

¥ =wx  cos (wt + @),

e G x, sin (wt +0).

Po podstawieniu do réwnania rézniczkowego otrzymujemy:

(wg - wz)xo sin (wt +o) + % x, cos (wt +¢) = a; sinwt,

(wg - wa)xo [sin wt coso + coswt sin o] + e x, [cosw t cos 9 -

- sinwt sing [- a  sinwt = O.

Réwnosé zeru ma zachodzié dla dowolnej chwili +t, zatem wspéicayn

niki przy sin wt oraz cosy t, muszg osobno znikaé. Prowaedzi to do
dwéch warunkéw:
(wg-wz)x cos¢ - tx, 8in 0 = &,

(¢} 0

(w’g ) x, 8ing + % x, o8¢ = O.

Drugie z réwnan daje:
w/T

€o = -~ 5—% . (4.34)

WS =W
o
Eliminacja funkcji trygonometryocznych w obu réwnaniach prowadzi
do zwigzku

2 2
2 (w2 -0?) + () 22 - el
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czyli a
(o) = ) : (4.35)
T e e ] "

Réwnanie (4.35) przedstawia amplitude drgad ukZadu Jjako funkcjg
ozestoscl sity wymuszajgcej. Nastgpujace wnioski zasiugujg na uwagg:

i. migdzy sitg wymuszajgcg a "odpowiedzia," ukzadu istnieje prze-
sunigcie fazowe, tj. maksymalne wartosci sity i wychylenia przypadaja
w réznym czasie: ’

a) jesli w< w,, to tgo< O i ¢<O, to faza drgania opéinia
gig¢ wéwczas o At = T/2m,

b) Jesli w>uwgs to 80 > 0 1 ¢> 0, zatem faza drgania wy-
przedza fazg sity o At = ¢ T/2T.

ii. amplituda wymuszonych drged ukadu x,, jest proporcjonalna
do amplitudy przyspieszenia wytwarzanego przez silg wymuszajaca (ao).

T duze (g8 mate)

1)




T2

iii. amplituda drgania zalezy od czgstosci sity wymuszajacej, w ,
i dla pewnej wartosci Wy osigga wartos$é maksymalng X Zjawisko to
nazywamy rezonansem,Wartosé amplitudy w punkcie rezonansowym mozemy

obliczyé z warunku ekstremum funkcji . xo(w):

d 2 2 1
2 2 W 2 2 w\ - .
—dw[(wo-w) +<:)]'"4(“’o-w)“‘+2<1—>1 0,
1
wg—mf‘-——-z’

27T
1/2 1/2
2 1 2 2
0, = (g - == ) = g =-28°) (4.36)
T

Czgstosé rezonansowa jest wigc mniejsza od w, © wielkosé zalezng
od czasu relaksacji.

Zaleznos$é xo(w) od w mozna przedstawié w postaci uniwersalne}j

funkeji £ (-Gg:)

% . ! (=) (4.37)

D (P s

Q)o Wo TWo

Obraz funkcji (4.37) jest przedstawiony na rys. 4-6.



5., ELEMENTY DYNAMIKI RELATYWISTYCZNEJ

Dynamika relatywistyczna Jest dziazem fizyki +traktujgcym o ruchu
oila% przy duzych predkoseiach. Jesli v/¢ > 0,01, to przestaje obo-
wigzywaé dynamika Newtonaj; ruch ciaX o takich prgdkosciach opisuje dy
namika relatywistyczna, ktdérej podstawowe idee sg oparte na szczegdl-
nej teorii wzglgdnosci. Prgdkosé swiatza w prézni, ¢, odgrywa w tych
gagadnieniach podstawowsg role i nig wpierw sie¢ zejmiemy.

5:1, Pomiary ¢

Istnieje wiele metod pomiaru predkosci Swiastia w préini. Wymieni-
my tylko niektére z nich.

i. metody astronomiczne (korzysta sig z obserwacji zmiany poZozen
ciat niebieskf{oh);

ii. metody mechaniczne: koo zgbate (Fizeau) i wirujgce zwiercia-
dto; wykorzystuje sig réznice czasu (rdéznice faz) sygnatu dochodzgce-
go wprost 1 z dalekiej odlegosci po odbiciu od tarczy (lustre).

iii. rezonator wngkowy: pudzo metalowe o dokXadnie znane}j d&ugoég
ci 1, w ktérym dla pewnej czgstosci (znanej) promieniowania mikrofa-
lowego mozna wytworzyé stan fali stojacej, tj. na diugosei 1 miesoi
sig dokladnie znana catkowita liczba n potéwek diugodci fali. Mamy
‘wéwozass '

l1=n-*2= % ne = , (5.1)

X
2 v
Na podstawle znanych n, y i zmierzonego 1 mozna obliczyé c. We
wnetrzu rezonatora powinna byé préznia.
iv. metoda modulacji natezenia s$wiata i czuXosci detektora.
Aparatura, przedstawiona schematycznie na rys. 5-1 skiada sig =z
nastgpujgcych elementéw: Zrédta swiatia (Z), przeszony (B), dwéch so-
ozewek (L,, L,), polaryzatora (P) i analizatora (A), ptaskiego zwier-
ciadta M, generatora ozgéci radiowel (G), detektora (D) i komérki
Kerra (K). Polaryzator wytwarza swiatio liniowo spolaryzowane; Jesli
P + A sg skrzyzowane, s generator G nie dostarcza impulséw, to u~-
ktad ten zatrzymuje promieniowanie i Zaden sygnaz optyczny do detek-
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; [

| il ! t
|

a Impulsy prostokgine z generatora

~

Sygnat optyczny po przejsciu
drogi {;+ 1, = L

dh e

Sygnat detektora

Rys. 5=1

tora nie dochodzi. Wystanie sygnaXu elektrycznego do komérki Kerra wy-
twarza dwéjlomnosé cieozy (nitrobenzen), zawartej migdzy elektrodami
komérki, wekutek oczego ukiad PKA staje sig¢ przepuszczalny dla promie-
niowania. Dzieje .sl@ tak jedynie w przedziatach czasu, w ktérych do
komérki Kerra jest przyZozone napigoie podawanego z generatora sygna-
Zu elektrycznego (rya. 5-1b). Generator wywotuje zatem periodyczne
zmiany natgzenia wiq;ki, biegngce] wzdiuz 11 i 12 (zgczna dzugodé
drogi okoXo 10 km). Ten sam sygnal przykozony jest na detektor, co po
woduje periodyczng zmiasng (modulacje) jego czuZoséci. Sygnat optyczny
po przejéciu drogi 1, + 1,, na co potrzebuje czasu t = (1, + 1,)/c,
jest przesuniety w fazie (rys. 5-1c) wzgledem sygnatu dochodzgcego
bezposrednio do detektora (rys. 5-1b) o kat Ag@ = 2 n(l1 + 12)-v/o o
gdzie v Jest czgstoscig modulacji. Detektor reaguje tylko wtedy,gdy
jest czuty i gdy nal pada séwiatZo (rys. 5-1d). Jesli zatem doprowa-
dzimy do przesunigcia fazowego A9 =rpw, t0 nie uzyskamy aygnalu, o©o0
jest wiasdnie warunkiem pomiaru. W tym stenie 1 = 2Lv /c, przy czym
oznaczylismy L = 11 + 12. Powigkszenie L o AL (przesunigcie zwier
ciadta M) zmienia rézniceg faz: pojawias sig sygnai. Mozna znaleZé no-
we potozenie AL takie, 2e A¢ = 31m, co powoduje ponowne zniknigoie
sygnatu. Mamy wéwczas:

T 2L
—818——“
T
oraz S
2":1: 33.2“:2&1'2‘,,
ozyli

2=4L; o.2a1v. (5.2)
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Na podstawie znanej czestosci modulacji 1 pomiaru przesunigeias
mozna oblioczyé c.

W ostatnim stuleciu wykonano setki pomiardéw wartosci ¢, uzywajgc
opisanych tu metod i jeszcze innyoh. Dzis przyjeta wartosé ¢ wynosi

o = (2,997925 * 3:1076)-108 w/s.

Sprawdzono réwniez, %Ze predkosé sSwiata w prézni ¢ Jest dla
wazystkich uk*adéw ineroyjnych taka sama, tj. nie zaleiy od stanu ru-
chu bezwtadnego lub spoozynku zaréwno Zrddta sSwiatla jak 4 odbiorni-
ka. Innymi skowy, na podstawie doswiadczed mozna sgdzié, 3%e kulista
powierzchnia falowa swiatia wysyanego przez Zrédio punktowe w ukia-
dzie inercyjnym jest réwniez powierzchnig kulistgq dla obserwatora u-
mieszczonego w kazdym innym ukadzie inercyjnym.

5¢2, Efekt Dopplera

Czgstosé promieniowania, podobnie jak fali, np.gZosowej, nie Jest
niezmiennikiem w stosunku do ruchu ukladu wspdirzgdnych i od niego za-
lesy. Efekt Dopplera polega na zaleznosoi czgstodci fali od predkosci
¢rédzas fali lub odbiornika. W obu przypadkach otrzymuje sig¢ trochg in-
ne wzory na zmiang ozgstosci. Zaczniemy od rozwagenia Zrddta fali
dfwigkowej, poruszajgcego sig w osdrodku (gaz)o-

74

T R
SoSe o
N N-1 1
2 v 0

9y
X
Rys. 5-2

W poczgtku ukiadu wspérzgdnych T znajduje si@ Zrédio diwigku Z.
Ukzad T. porusza sig w strong uktadu R 2z prgdkoscig v, Sam ukiad
R, w ktérym spoczywa odbiornik, jest nieruchomy (rys. 5-=2).

Predkosé fali V jest stata i1 nie galeiy od ruchu ukiadu T, leocz
od mechanicznych wZasnosci odrodka, zatem

}‘R.\’R-v'
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Nadajnik wysist w kierunku +y cisg N fal (tj. cigg Nap) w
cilggu czasu t,

W ciggu tego czasu pierwsza fala przebiegnie droge Vet, ostatnia
fala wasnie opusSci nadajnik, zas samo Zrédxo Z przebiegnie droge
vet. Odlegzos$é migdzy poczgtkiem i kodcem ciggu wyniesie Vit - vt =
= (V - v)t 41 na tej drodze znajdzie sig N fal, zatem:

(V—vt \'s NV
A g = et T8 VR *Xg T W=-vJ% °
Jednoczesnie dla nadajnika Vp = N/t. W takim razie

vp = (:T 7 - (5.3)
-V
Jesli T zbliza sig do R, to v> O 1 vg>vps tJeczesiosé zbli-
2ajgcego sig Zrédxa odbieramy jako wyzszg. Gdy T natomiast oddala sig
od R wowezas, v < 0 i czgstosé oddalajacego sig¢ #rdédta odbinramy jako
nizszge. -
Jeéli srdédxo pozostaje nieruchome, a porusza sig@ odbiornik (ukZad
R), to

vg = vT(1 + %) (5.4)

z tg samg konwencjg znakéw odnosnie v, Oba wzory stajg sig identycz
ne, jesli
- <1,

Wzory te sg szuszne réwniez dla czgstodoi fal Swietlnych,lecz je-
dynie w pierwszym przyblizeniu, Efekt Dopplera znany jest zardwno w
dziedzinie akustyki  (zblizajgcy sig pojazd wydaje dZwigk wyzszy, niz
oddalajgcy), Jak i w dziedzinie optyki (linie spektralne obiektéw nie
bieskich przesunigte sg wzgledem linii spektralnych tego samego pier-
wiastka, obserwowanych w warunkach ziemskich).

I E
T T

Rys . 5-3
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Rysunek 5-3 przedstawia ukZad linii spektralnych hipotetycznego
plerwiastka, obserwowanych w widmie emisyjnym. Jeéli obserwacja doko-
nywana jest w warunkach ziemskich, to poZozenia linii odpowiadajq wi-
dmu przedstawionemu na rys. 5-3b. Dla obiektu astronomicznego zbliza-
Jacego sig (v > 0) 1 wysytajacego linie tego samego pierwiastka widmo
przesunigte jest w strong "niebiesks" (rys. 5-3a), natomiast oddalaja
cego sig (v < 0) w strong "czerwieni" (rys. 5-3c). Przesunigcia za-
chodzg zgodnie z przybliZonym wyrazeniems
| Vg Fvpll + %),
czyli

~

g v/e,

AVR . V/o
YR 1 + v/c

dla pregdkosci obiektu v niezbyt dusych w poréwnaniu 2z predkoscig o
$wiatta w prézni. Dla wigkszych pregdkosci przesunigcie spektralne de-
finiuje sig w nastgpujgcy sposéb:

v
—v%-1+z,

gdzie 2z Jest miarg prgdkoscl v obiektu. Na podstawie pomiaréw
spektralnych, ktére nalezg do grupy najdokadniejszych pomiaréw w fi-
zyce znaleziono, iz odlegie od nas obiekty gwiezdne (gwiazdy, mgtawl
ce) oddalajg sig z predkosciami wielu setek kilometrdéw na sekundg 1
to tym szybciej, im dalej od ukXadu sionecznego sig@ znajdujg. Jesli
ioch odlegzosé oznaczyé przez r, to zaleznosé tg¢ mozna wyrazié wzorem

V=g *r,

pray czym o oy = 3210718 871, Odwrotnosé tej stazej, 1/ ¥3-10'7 & ¥
¥ 101 lat, interpretuje sig Jako '"poczgtek" rozpoczgeia ucieczki
mgtewioc, ozyli "wiek" Wszechswiata, wielkosé ¢/ & 10°° uwaza sig na-
tomiast za "promienl" Wszechswiata.

Interpretacja efektu Dopplera i wyniki uzyskane na tej podstawie
w astronomii nie budzity watpliwosci do chwili odkrycia nowych obiek-
téw quasi-gwiezdnyoch,zwanych kwazarami. Odkrycia takiego dokonsno o=
koto 10 lat temu. OkazaXo sig, %e dla niektdérych kwazaréw 2z = 1, a
nawet wigoej, podczas gdy dla "zwykiych" obiektéw gwiezdnych z <0,25.
Co wigcej, udato sig znaleié bardzo nieliczne przypadki pewnego ro=-
dzaju "sprzezenia" kwazaréw z mgtawicg, z ktdéra tgczy go ramig obZoku
gwiezdnego. Sugeruje to wspdlne pochodzenie obiektéw, podczas gdy li-
czby 2z dla obu bardzo sig réznig. Zaréwno obserwacja, jak i anomal-
nie duze warto$éi przesunigcis spektralnego dla niektérych kwazaréw
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stanowiy trudny problem we wspéZczesnej astronomii; méwi sig o pewnym
kryzysie, zwigzanym z zastosowaniem efektu Dopplera w tej dziedzinie
badaﬁo

503, ¢ jako predkos$é graniczna

Doswiadczalnie mozna rozstrzygnaé, czy jakis obiekt o masie spo-
czynkowej m, (np. elektron) moze przekroczyé predkosé $wiata.Czas-
tki natadowane moiemy przyspieszaé do bardzo duzych pregdkosci (ener-
gii) za pomocg odpowiednich przyspieszaczy.

Jezeli elektron o tadunku e przebiegnie réznice potencjatéw U
to wykonana przez pole praca wynosi eU 1 zostaje zuzyta na nadanie
elektronowl energii kinetyczne]

2

T-%mv = eU.

Duze energie mierzy sig w megaelektronowoltach (106 ev). Wedzug

mechaniki klasyczne]
2 27 2eU

VE & e @ cem—

m L]

ozyli wykres v2 w zaleznodei od T (eV) powinien byé linig prosta.

D2107%
(m/s)? V2> 2L (mech. klas.)

10|

6
Energia, Mey

Rye, 5=4
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Do§wiadczenie wekazuje (rys. 5-4), ze jezeli eU rosénie nieogra-
niczenie, to v2 zdgza do statej wartosci réwnej ¢2. ¢ nie moze byé
zatem przekroczone w ruchu elektronu (takze i innych czastek maferia}
nych), stanowi wigc predkosé graniczng.

Oméwione tu wyniki doswiadczalne mozna strescié w nastgpujgcych
punktach:

1. ¢ jest niezmienne w ukzadach inercyjnych.

2. ¢ jest maksymalng prgdkoscig poruszania sig ciala majgcego ma-
s¢ spoczynkowg oraz maksymalng predkoscig rozchodzenia sig sygnazéw.

3. Zasada wzglgdnosci Galileusza nie jest speiniona dla duzych
predkosci, poniewaz pomiary diugosci i1 energii kinetycznej muszq spez-
niaé warunek 1.

4, Poniewaz dla duzych predkosci v2 nie jest proporcjonalne do
T wigc przypuszczamy, %e masa ciata zmienia sig¢ wraz z predkoscig..

Przestanki 1-4 bezposrednio wigzg si¢ z zagadnieniaml poruszanymi
w szczegdlne] teorii wzglednosci. Jej naczelnym postulatem jest:

Predkos¢ swiatta nie zalezy od ruchu
Zrodta swiatta lub odbiornika.

o

Transformacja Galileusza X, y, Z, t == X, y, z, t nie jest
wigc stuszna. W zakresie duzych pregdkosci obowigzuje transformacja Lo-
rentza, ktérg obeonie sig zajmiemy.

5+4. Transformacja Lorentza

Mamy 2 uktady odniesienia S i S, oba inercyjne (rys. 5-=5).

Y y'
p——
S 43' X
X
f4 2z
Rys. 5=5

‘Niech S° porusza sig wzgledem S z predkoscig V wzduz osi X. Wepéi-
rzgdna x odozytywana Jjest w ukiadzie s’ Jako x’ = x - Vt.
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Przypusémy, ze w uktadzie S 2znajduje sig¢ punktowe Zrddio swiat-
ta, ktére zaczyna emitowaé falg w chwili t = O. Rdwnanie czota fali
begdzie réwnaniem kuli o promieniu r, czyli

x2 + y2 + 2% = r2 = 02 t2. (545)
Promier kuli wzrasta z predkoscisg c¢. WepSirzedne w uktadzie S°
oznaczamy przez X, Yy, 2z, t 3 dla uproszozenia zakdzmy, 3e poczgtki

ukzadéw pokrywajg sie w chwili t° = 0. Wobec tego dla obserwstora w
S° réwnanie kulistego czoza falli bgdzie miato postaéd

xo2 o2 2 *2 2 2 (5.6)

przy tym samym c¢. Na podstawie transformacji Galileusza mamy:

o

x" = x = Vt, vy o=y, z" =2, t°=t.

Po podstawieniu

2 2 2 2

x° - 2Vxt + V242 4 32 4 22 = %42

otrzymujemy wzér niezgodny z postulatem (5.5). 2 transformacji Gali-
leusza wynika bowiem, %e w uktadzie S° powinnidmy zaobserwowaé ku-
listg powierzchnig falowg ze Srodkiem w punkcie uktadu S, podczas gdy
w rzeczywistosci obserwujemy kulistg powierzchnig ze Srodkiem 0° wu-
ktadu S°.

Szukamy zatem innej transformacji, ktéra musi byé liniowa wzgleg-
dem x i t (y—y, 2—2z° bez zmian) poniewaz kula w S musi byé tes
kulg w S°. Podstawienie np. x° ='V§¥ lub x° = sin x nie bedzie za
tem dobre.

Wideé tez, Ze nie da sig utrzymaé zaXozenia, ze t7 = t, jesli
maja zniknaé wyrazy A(x, t) = -2Vxt + V242,

Niech prébng transformacja bedzie x" = x - Vt, y' =¥, z2° = Z,
t =t + fx, gdzie £ Jest nie znanym czynnikiem. Po podstawieniu

2 2,2 2

242 2 tfx + ¢ £7°x,

x2 - 2Vxt + V°t° + y2 + 2" = 02t2 + 2¢

czyli 2
2%(1 = 0%22) - 2xt (V + c22) + y2 + 22 = %42 <} - -15).
c
Widaé, ze zniknie wyraz z xt, jezeli potozymy V + c%f = 0, cay-
11 f£. = -V/cz, wéwozas c°f° = g§ oraz
2 2
x2<1--7v +y2+22=c2t2<1——-zv>.
c c
Wyrazenie to ma postaé zblizona do (5.5); bedzie z nim identyczne,
Jezeli usuniemy czynnik zawarty w nawiasie. W tym celu oznaczymy
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v :
E - B (5.7)
i zapiszemy transformacje w nastgpujacy sposdb:
, x =Vt i i .t = Vx/c?
x = y ¥ =Y, z =2, t = . (5.8)

Vi -p2 Vi ?

Znalezlidmy wigc przeksztaZcenie liniowe wzgledem x i t, ktére
nie zmienia postaci wyrazenia (5.5) po przejsciu od uk¥adu S do S°,
Nosi ono nazwg transformacji Lorentza. Zasuwazmy, %e dla V/c—O trans-
formacja przechodzi w

’ e 3

x" = x = Vt, Y =Y, z = 2z, t =1,

tj. w transformacj¢ Galileusza.
Jedli oznaczymy
1

Vi-s?

to przeksztalcenie (5.8) mozna napisaé w postaci standardowe]

=Y, (5.9)

L4

x*=(x=-gotly, y =y, 2° =2, t°=(t - gx/c)y (5.10)

lub w zapisie macierzowym

x’ vy O 0 =BcY b4
vyl .l o 1 o o y (5.11)
z” 0 0 1 o0 z
t° -8Y/c 0 0 ¥ t

Transformacja odwrotna ma postaé:

x=(x"+gct’)y, y=y3", z2=2", t= (" +px/c)y (5.12)

lub
x y 0 0 Bey x’
y 0O 1 0 o0 y°
= ) (5.13)
Z 0 0 1 0] zZ
t BY/e 0 0 ¥ t°

‘Przedstawimy obecnie dwie wazne konsekwencje, wynikajgce 2z prze-
ksztatcenia Lorentza.
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5e4.1. Zmiana diugosci preta
Przypusémy, %e mamy prgt o dugosci L, lezgey wzdiuz osi x w u-
k*adzie S. Poniewaz pret Jest w spoczynku mozemy wigc napisad

Lo = Xy = Xqy

gdzie x, 1 x, 83 wspdirzednymi poczgtku i kodica prgta w S. Ten sam
pret obserwujemy teraz z ukzadu S', ktéry porusza sig z predkoscig V
‘wzdtuz osi x. Drugos$é preta widziang z S’ wyznaczaja wapSirzgdne
x(t°) 1 x/(¢t°) w denej chwili t°. Mamy

xé(t') - x{(t') = L w ukadzie S°.
Poniewas wedtug (5.12) =x; = Yx{ + YBet’, zatem
x, - % = L, = y(x; - x7) = yL.
Wobec tego / ;
L 1/2
L==2-1(-82""" (5.14)

Widzimy, zZe pret poruszajgcy sie wzdiuz swej diugosci 2z szybkos-
cig V ma dzugosé mniejszg, niz w uktadzie spoczywajacym. Efekt ten
nazywa 8ig skréceniem podzuznym Lorentza-Fitzgeralda.

5¢4.2. Dylatacja czasu

Dylatacja czasu jest zjawiskiem polegajgcym na wydiuzeniu odste-
péw czasu mierzonego przez zegar w ruchu. Czas mierzony w ukZadzie, w
ktérym zegar spoczywa, Oznaczamy przez T 1 nazywamy czasem wiasnym

T(y=0) = ©288 wiasny, mierzony w ukiadzie spoczywajacym.

Jezeli zegar spoczywa w poczgtku uktadu wspéirzednych, x = O, to
czasowl T odpowiada w uktadzie S° czas t° (5.10)

. T

t = ye 7T = >
(1 -82)
zatem
At" = %) -t = ——-—Alm, (5.15) .
(3 = %)

czyli odstep czasu mierzony w ukiadzie poruszajgacym sige Jjest diuzszy
od odstegpu czasu w ukzadzie S.

Potwierdzeniem wniosku co do dylatacji czasu w uktadzie porusza-
jacym sig¢, sg obserwacje wiasnosci mezondéw m *, Mezon T it Jjest czagst-
kg elementarng o tadunku dodatnim i o masie ~ 273 m,, gdzie m, Jest
masg elektronu., Jest przy tym nietrwaly, a czas zycia wiZasny
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At = 2,5:1072 85 ¥ 0,90

tzn, mezon w + porusza sig 2z szybkoscig wynoszgcg 90% c.
Gdyby postugiwaé sig pojeciem czasu wiasnego At , wéwczas droga
przebyta przez mezon przed rozpadnigciem wynosiZaby

1= gelav) = 0,9°3°103-2,5-1078 2 6,8 m,

tymczasem w uktadzie S, zwiazanym z mezonem i poruszajécym gle =z
nim z predkoscia B¢ odstep czasu upiywajacy przez rozpadnigciem sig
wynosi

50 o o = = 5,7¢107° g,

1/2
(1 =g 2) (0,19)1/2
a rzeczywista droga przebyta przezen wynosi:

1’ = 0,90°3°10%:5,7.10°8 n = 15,5 m

i jestrsponad dwa razy wigksza od wyniku nierelatywistycznego.Ten wnio-
sek zostal w peini potwierdzony doswiadczalnie.

5e4.3. Pgd ciaa materialhego

%Za cia¥o (czastke) materialne begdziemy uwazaé takie ciazo, ktdére
posiada masg w stanie spoczynku; oznaczymy jg przez m .
Mozna udowodnié, ze jesli przyjmiemy definicje pgdu w postaci

p=m,V

to zasada zachowania pgdu napisana w ukadzie S nie jest spexniona
w ukadzie S°, zatem definicjs ta nie jest niezmiennicza wzgledem
transformacji Lorentza. Nalezy poszukaé nowej definicji pedu, Aby u-
niezaleznié sig od wzglednego ruchu obu ukXaddéw (wzdtuz osi x), roz-
wazmy sktadowa pedu (predkosci) wzdiuz osi y:

AY

AT

Predkosé "widziana" w uktadzie S Jjest ilorazem odeinka drogi Ay,

tego samego co 1 w S° oraz czasu wktasnego At. W ukZadzie S° czas
ten bedzie inny. Mamy

4

AY  AY At 1
— —-’- = V ° 9
AT A AT (- BE)';Q

przeto pegdem relatywistycznym bedzie
m. v

()
pa(‘l—.—B—m=mo OBYO (5016)
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Pgd zapisany w postaci relatywistycznej zachowany jest we wszel-
kich zderzeniach, co potwierdzono doswiadczalnie,
Mozemy to wyrazenie interpretowaé i w ten sposdéb, ze masea w ruchu

m
mD = =l = m Y (5.17)

Vi -82 °

jest wigksza, niz w stanie spoczynku. W definicji pedu
P = mvV (5.18)

m oznacza wtedy mase¢ relatywistyczna.

5.4.4, Energia relatywistyczna
Pegd relatywistyczny ma postaé

P = mCBRY

zatem p2 =~m§c23272 jest niezmiennikiem wzgledem transformecji Lo-

rentza.
Speinione sg ponadto nastgpujgce tozsamosci:
2

2
1 =8 1 B 2 2
1 = = - = - 2Y
T-p2 1-g2 1-p2 ¢ 7F

m§c4 = m§c4(72 - 82Y2) = m§c4Yz'- m§c48272 = m§04Y2 = P202~

Kazda ze stron powyzszych rdéwnosci Jest takZze niezmiennikiem

wzgledem transformacji Lorentza. Rozwazmy wiasnosci czionu
2
50

2
moc Y ZT—:7;EST7§ .

W tym celu wyrazenie /2

=1
(1 - 82) = £(B)

nalezy rozwingé w szereg:

2
£(p) = £(0) + £7(0) £ + £7(0) & + ...,
11 21

przy ozym g << 1. Po obliczeniu kolejnych pochodnych w punkcie zZero
otrzymujemy:

2
£(g) =1 + f? s Ao

myocy = mc + % m v + é% m, 77 £ gae e (5.19)
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Drugi czion rozwinigcia (5.19) jest dobrze znanym wyrazeniem okre-
§lajgoym energig kinetyczng masy spoczynkowe], poruszajace] sig =z
prgdkoscia v, CzZon trzeci i nastgpne mozemy interpretowaé jako czZo-
ny energil kinetycznej "wyZszych rzedéw”; majg one znaczenie wéwczas,
gdy wartodei B sg duze. Czion pierwszy nie znika gdy v = O, zatem
jest energig Eo’ réwnowazng masie spoczynkowej. Kazde z wyrazein:

E=no= mcczy (5.20)
przedstawia catkowitq energig relatywistyczng masy, a wyrazenie
m204Y2 §c4 - m§c482Y2
czyli 2 .
E® - (mocz) = p2e? (5.21)
okresla energie ruchu.

Catkowita energis relatywstyczna masy E = m02 sktada sig wigc z
energii réwnowaznej masie spoczynkowe] E = moc2 oraz energil ruchu
p°c. Teoretyczna mozliwoéé przemiany masy spoczynkowej na energig by-
2a wediug Einsteina najwazniejszym wynikiem jego teorii.Istnieje Sci-
8ty zwigzek migdzy zmiang mesy i1 zwigzang z tym produkcjg energii:

AE=Am 02. (5022)

éwiédczy to o tym, Ze w procesach, w ktérych uwalnia sig energia,

klasyczne prawo zachowania masy nie jest Scisle speinione. Naruszenie

tego prawa nie dotyczy Jjednak zwyklych reakeji chemicznych, w ktérych

"defekt masy", zwigzeny z wydzielaniem sig ciepia podczas reakcji nie
moze by¢ sprawdzony pomiarami. Mamy bowiems

AE ¥ —100 keal g ;57 o 100 \5/mo) ¥ 418 kJ/mol,

0,24 kcal/kJ 0,24
Am = m%ﬂ‘;gl— = 4,65¢ 10"12 kg/1 mol = 5°10~2 g/1 mol,
9°10"'° m“/s

co jest poza zasigglem pomiarowym. Podczas syntezy jadra atomowego na
tomisst z nukleonéw wydzielajg sig¢ ogromne ilosci energii i w takich
przypadkach zwigzek Einsteins znajduje peine potwierdzenie.

.2 réwnania (5.21) wynike wazny i interesujacy wniosek,Je$li przy}
miemy, %e dla pewnej czgstki m, = 0, to

E = pce (5.23)
Dla takiej czgstki, pozbawionej mesy spoczynkowej, mamy:
B
P=De V= ~=——=°1vy
c2 ’

gdzie m Jest masg relatywistyczng.
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Wobec tego
E=P°’YE.V’
c

czyli
v =g,

a wigc czgstka o masie spoczynkowej rdéwnej zeru musi poruszaé sig =z
prgdkoscig Swiata. Jest to ogélna cecha takich czgstek; nalezy do
nich m.;n. foton promieniowania monochromstycznego o energii

E=h °v,
gdzie h Jest staig Plancka. Fotonowi o‘energii E odpowiada ped:
E
Pf = —f » (5024)
[

W celu zilustrowania wynikéw teorii wzglgdnodéci odnosnie do pedu
i energii fotonu przytoczymy Jeszcze nasigpujace rozwazanie,

Atom H Foton
F%:“i; 47 =j?
Rys. 5=6

Przypusémy, %e atom wodoru o masie my, emituje kwant prom;enio-
wania hy , ktdéremu odpowiada pgd E/c. Podozas emisji nastgpuje od-
rzut atomu, ktéry uzyskuje pgd =E/c tak, by sSrodek masy mégk zostad
w spoczynku (rys. 5-6).

Dla prgdkosci $rodka masy otrzymujemy zatem:

mI_I'rH"'mY'G:O
9
+ m
T My

R =

czyli
B +m ¢ = O
¢ Y

Widzimy, 2Ze mYo2 = E 'jost istotnie energia fotonu, zgodnie %
wzorem (5.20),



6. POLE POTENCJALNE

6.1, Pojecie pola

Przez pojecie pola rozumiemy przestirzen,otaczajacg pewne obiekty
fizyczne (masa, Zadunek elektryczny, przewodnik z pradem) o takich
wiasnosdclach, %e w kazdym punkcie pola okreslona jest sita dziaZajgca
na analogiczny obiekt (odpowiednio masg, *adunek, przewodnik .z prg-
dem) tam umieszczony. W tym rozdziale bgdziemy sig zajmowaé géwnie
polem elektrycznym; ma ono wktasnosci fizyczne analogiczne do pola gra=-
witacyjnego, ktérego niektdére cechy poznalismy w rozdziale 2.,W szcze-
gélnosci sita, dzia*ajaca w prézni migdzy dwoma Zadunkami punktowymi
Jest okreslona przez prewo Coulomba, ktére zapisane w uktadzis  jed-
nostek SI przybiera postad

! -01—1—1-‘;-2- T, (6.1)

F =

4ﬁe G ;

przy oczym jednostkowy wektor =r/r, jest skierowany umownie od Zadunku

Q4 do LD Siza, odpychania, dziazajgca na q, ma wéwczas ten sam zwrot,

6o r/r, natomiast sita dziaajgca na qq ma zwrot przeciwny do zx/r;

obie skierowane sg na zewnatrz odcinka Zaczacego Qy i Qpe Sity przy-

ciggania lezg wewngirz odcinka qqq, (rys. 6-1)s Liczbowa wartosé
statego wspSiczynnika wynosi:

12 9,0:10%,

411:80
Prawo Coulomba ms postaé analogiczng do prawa grawitacji Newtona
m, m
P=-G 15ty
r

Obie sily sa odwrotnie proporcjonalne do r2, tzn, do kwadratu od-
legosdci oddziaZujacych ze sobg obiektéw punktowych. Zasadnicze réz-
nice sg nastgpujgce:

o Ol LA *9, Fiz

Rys. 6"1
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i. Staxa grawitacji
¢ = 6,670°107"7,
Jest o 20 rzedéw mniejsza, od statej w prawie Coulomba, dlatego sizy
grawitacji naleZg do najsiabszych ze znanych oddzialywad.

ii. Zadunki elektryczne moga byé dodatnie lub ujemne, w zwigzku 2z
czym sity dziatajgce migdzy nimi polegajg na przycigganiu (=) 1lub od-
pychaniu (+). Sity grawitacyjne sg zawsze sitami przyciagania (-).

Pole jest potencjalne, jesli w kazdym jego punkcie okreslony jest
potencjat lub réwnowazna mu energia potencjalna; obie wielkosci sg
zwigzane z pracg przemieszczania w polu obiektu fizycznego, tzn. masy
lub Zadunku elektrycznego (por. rozdziat 2).

W dalszym ciggu begdziemy uwazaé, Ze pole wytwarzane jest przez Za
dunek g, natomiast dodatni *adunek +q, traktujemy jako prébny, wy-
kazujacy istnienie sizy E(xyz) po umieszczeniu go w punkcie xyz.Natg-
zeniem pola E (xyz) w punkcie xyz nazywamy stosunek sity dziaZajace]
na tadunek prdébny +q,, umieszczony w tym punkcie, do wielkosci tego
tadunku: g(xyz)

E(xyz) = T s (6.2)

Wektor E Jjest okredlony w kazdym punkcie jednoznacznie i stano-
wi jedng z podstawowych wiasnosci pola elektrycznego.

6e.1+1. Natezenie pola wytwarzane przez zadunki punktowe

Niech Zadunkiem wytwarzasjgcym pole bgdzie q, za$ prébnym +q e Ze
wzgledu na dziakajacg miedzy nimi sitg (6.1), natezenie pola w odleg-
¥odci r od q bgdzie wynosiZo

E(r) 1 q
E (2) = =X C _‘3 _1_'. ° (603)
+q, 4me r

Widzimy, %e natezenie pola, podobnie jak sita, msleje odwrotnie
proporcjonalnie do r?, Poza tym dla wszystkich kierunkéw r/r jest ono
liczbowo takie samoj powiadamy, ze pole *adunku punktowego jest izo-
tropowe, )

W oérodku materialnym zaeréwno siZa, jak i nategzenie pola elektry-
cznego jest mniejsze, niz w prézni. Jesli € oznacza wzgledng przeni-
kalnos$é dielektryczng osrodka (definicja podasna jest w T.1), to

dne € 4 r

= —-—1——' 'I_‘. (605)
4 nee , T

oraz

=

Polg tego typu w przyblizZeniu wytwarzajg jony gazowe 1lub w roz-
tworze.
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Jesli pole jJest wytwarzane przez zbidr radunkéw Qq9Qp9eeey Qe tO
na adunek prébny +q, dzialajq sity Fy, E,se.. By (rys. 6=2). W celu
otrzymania E nale2y Je dodaé zgodnie z zasadami dodawania wektordéw:

K

1 q.q q q
F=2 F = DBL p 2 Y_B,
m=1 2 4 mee Tho RUONY mEe, m rim}_-@-?'
czyli
E = Z Emc (5.6)
m —

Wypadkowe nategzenie pola jest wigc sumg wektorowsg natgzed wytwa-
rzanych przez poszczegélne radunki punktowe.

Rys. 6=2

6.1.2, Natgzenie pola wytwarzane przez dipol

Wedug definicji formalnej dipolem nazywamy sztywny ukiad dwéch
*adunkéw réwnych sobie, lecz o znakach przeciwnych. Jesli 1 jest wek-
torem, skierowanym umownie od =-q do +q, to wielkosé

p =19, Cem (6.7 )

jest zwana momentem dipolowym dipola. W obrazie molekularnym za dipol
uwaza sig czgsteozke, w ktérej geometryczny "sSrodek cigzkosci™ tadun-
kéw dodatnich nie pokrywa sie ze "Srodkiem cigzkosci" Xadunkéw ujem~
nych. Jesli mamy na mysli czgsteczkge 8wobodng, to oczgsteczki nie
wezystkich zwigzkdéw chemicznych majg tzw. trwaxy moment dipolowy. Na
przyktad czgsteczka dwutlenku wggla, O = C = O jest liniowa 1 posiada
centrum symetrii. Rozklad *adunku teZ musi posiadaé centrum symetrii,
co powoduje, ze p = O, Czgsteoczka wody natomiast nie Jest liniowaj
symetria jej jest nizsza i dopuszcza p ¥ O w stanie swobodnym.
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Podane dotgd definicje dipola 1 momentu dipolowegc nalezy rozu-
mieé jako przyblizone, ulatwisjace zrozumienie pojeé pod wzgledem ja-
kofciowym. Jest bowiem rzecza jesna, ze dipole odpowiadajace (6.7),
tJj. zXozone 2 dwéch radunkéw punktowych, 84 w przyrodzie niezwykle
rzadkimi prgzypadkami.Z reguly mamy w czgsteczkach do czynienia z rosz-
ktadem pewnej liczby elekironéw wokéx jader o Yadunku dodatnim. Dipol
rzeczywisty skXada sie¢ zatem w gruncie rzeczy 2z duzej liczby Zadun-
kéw, Doktadng definicje momentu dipolowege podamy w paragrafie 6.3.2,
gdzie oméwiono potencjal, wytwarzany przez zbidr radunkéw.

We wszystkich czgsteczkach dochodzi do przesunigecia Zadunku w 0=
becnosci pola slektrycznego. Poniewas Yadunki dodatnie (jgdra) przee
suwaja sige w strong przeciwng niz ujemne (elektrony),pojawias sig¢ wigc
indukowany moment dipolowy o wartoseci proporcjonalnej do natgzenia
pola

Ping = « B (6.8)

Wep6Zozynnik proporcjonalnodci nosi nazwe polaryzowalnodci czgs-

teczki i Jest miarg je) zdolnodci do “odksztaXcania sig® pod wpiywem

pola elektrycznego. Jak zobaczymy pdZ=-

niej « Jest tensorem, poniewaz nie we

9 L v wazyetkich kilerunkach czgsteczka Jeat

Jednakowo podatna na polaryzujgce dzia-
tanie pola.

Jednostkga momentu dipolowego w u-
kZadzie SI jest 1 Cemy; dla ukadéw mo=-
lekularnych czesto uzywea sig jednostki
zwanej debajem (D),zdefiniowanej w na-
stepujacy sposdébs Jjezeli *adunek 1
elektronu przesuniemy wzglegdem takiego
samego dodatniego radunku na odlegXosé
1% = 1010 m, to wytworzonemu w ten
sposéb momentowi dipolowemu odpowiada
4,803 D, tJ.

1e+ 8 =4,803D

wobec tego przesunigcie ujemnego Za-
dunku 1 kulomba, odpowliadajacego

§, 6,022.10%>
F 96 487

elektronom, wzgledem takiego samego do-
datniego na odiegosé 1 m, wytwarza mo-
Rys. 6=3 ment dipolowy o wielkosci
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1 Cem = 3,00 « 102 D,

Rozwazmy obecnie sily dzialajace ze strony dipola na Zadunek préb-
ny +Q,, umieszczony symetrycznie w duzej odlegtosci od niego, tak Ze
r_ = r+.: r>1 (rys. 6=3), Si*a wypadkowa, dziskajgca na 9, wynosi

- 1 9,9 1726 P
F=PF, coaqg + cos o = 2 o s O e T q 3
U 2 41ts° I‘E T, 411:50 9 ;3
zatem
1 P
E = ° (609)
4-n€:° r

Wyrazenie (6.9) jest szczegélnym przypadkiem ogdlniejszej sytua-
cji, odpowiadajgcej dowolnej orientacji dipola. Pokazemy w rozdziale
(6.4), jak mozna uogélnié (6.9) korzystajac 2z potencjatu dowolnego
rozktadu radunkdéw. Na podstawie uzyskanego tu wyniku widzimy, 2e na-
tezenie pola dipola maleje jak r3, wraz ze warostem T

6.1.3. Sity dziaiajgce na dipol w polu jednorodnym

Pole jest jednorodne, jezeli sita dziaZajgca na tadunek +q, ma
ten sam kierunek, zwrot i wartos$é niezaleznie od tego,w jakim punkcie

Rys. 6-4

pola umiescimy +Qge Rysunek 6-4 przedstawia sytuacje¢ dipola w polu
jednorodnym; sizty F1 3l F2 tworzg w takim polu parg¢ sii o momencie M

1l = F11°,ain o =q Elj ginae = p E 8in ¢

W zapisie wektorowym
M=pxE (6.10)
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widaé, %ze moment jest prostopadty do p, E, a jego zwrot okresla re-
guta éruby prawej. M stara sig ustawié p ns kierunek E, tj.

Rl E-¥=0.

6.1.4. Energia potencjalna dipola

Praca dL obrotu dipola o kat d q w strong oddalajgcq kierunek
P od E (rys. 6=5) powoduje powigkszenie energii potencjalnej dipo-
la o dU:
dL = dU = Medq = pE sin g do,

Rye ° 6-5

u wobec tego

2pE @ .
U= j~pE gin c d o =
A :

=pE (1-coso). (6.11)

oF Wykres (6.11) jest przedstawio-
ny na rys. 6=-6., Najwigkszg energie

potencjalng ma dipol ustawiony an-
tyréwnolegle wzglegdem E.

0 - —— - 6.1.5. Sity dziatajgce na dipol
e - AR 2t w polu niejednorodnym

Rys. 6-6 Przyktadem pola niejednorodnego

Jest wytworzone przez Xadunek punk-

towy (rys. 6-7): w tym przypadku F, # F,. Poniewas rozmiary dipoli

molekularnych sg bardzo mate, mozemy wigc dla nich przyjaé 24 Il 22,

natomiast |F;| # |F,|. Obie sily moZemy wéwczas rozoiyé na parg sit,

wywierajaca znany juz moment obrotowy (6.10) oraz sitg wypadkows, po-
wodujgeg przesuwanie dipola. Poniewasz
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i o BT Fa = 3 = B
zatem sitg wypadkowg Jest 5
A

F=F1+F2=-q(E1-E2)--q-A—Z-AZ,

czyli

dE
Paoep—cos g, (6,12)
- dZ

gdzle ¢ Jjest kgtem migdzy p i B, dE/dZ Jest spadkiem nategzenia
pola w kierunku osi 2z 1 jest miarg jego niejednorodnosci w tym kie-
runku.

Na dipol dzieta wigo sita zalezna od niejednorodnosci polas Jed
kierunek zale3y od aktualnej orientacji dipola, ale najbardziej praw-
dopodobnym efektem jest wcigganie dipola w obszar o wigkszym nateie-
niu,

Rys ° 6"7

6.2, Twierdzenie Gaussa-Ostrogradskiego

Wiele wiasnosci pola (nie tylko elektrycznego) mozemy opisaé za
pomocg pojgcia 1linii pola. Linig pola elektrycznego nazywamy krzywg,
po ktérej porusza sig Zadunek dodatni pozbawiony bezwiadnosci. Chodzi
o to, by nie wystgpowaty sily wynikajgce z ruchu krzywoliniowego,ktd=
re powodowalyby odstgpstwa aktualnej trajektorii adunku od linii po=-
la. Réwnie dobrze moglibyémy zazozyé, ze Xadunek o masie m porusza
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8ig w odrodku jednorodnym o duzej lepkosci. Ruch zachodzi wtedy z bar
dzo maXg pregdkoscig,a przyspieszenis mozna zaniedbaé.

Rys. 6-8

Zgodnie z tg definicjg wektor natgzenia pola elektrycznego E jest
styczny do linii w kazdym jej punkcie (rys. 6-8); poniewaz wektor E
jest jednoznacznie okredlony w kazdym punkcie pola, wigc linie nie mo-
ga sie przecinad., Wedug umowy wychodzg z Zadunkéw dodatnich, a wcho=
dzg do ujemnych. Na podstawie tych wiasnosci mozemy narysowsé ukzad
1inii pola, np. dla dwéch tadunkéw jedno- lub réiznoimiennych (rys.6-8).
W polu jednorodnym linie pola sg do siebie rdwnolegie.

‘ : Okreslimy obecnie gegstosé
1inii pola elektrycznego .Przyj
miemy, Ze na kazdy metr kwad-
ratowy powierzchni ustawione]
prostopadle do E przypada ich
tyle, ile wynosi liczbowa war
todé E w danym miejscu pola.
Jesli zatem mamy pXaskl ele-
ment powierzchni dS L E (rys.
6-9), to zgodnie z t3 defini-
cja

d¥s

= = |El. (6.13)

o

Wielkosé dN, = E°dS, nazywamy strumieniem wektora E przez ele-
ment powierzchni dSo. Ten sam element powierzchni dS, uastawiony pod
katem ¢ wzglgdem E (rys. 6-9), obejmuje liczbe linii da¥ < dNo. Ma-
my wéwczas
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dN = E dS * cos a=E - dS : (6.14)

gdzie En jest rzutem E ns normalng n do elementu dS. Zatem licz
ba 1inii pola, przechodzgcych przez dowolnie zorientowany element po-
wierzchni ds; jest proporcjonalna do skladowej wektora E normalnej
do tego elementus:

"WyobrafZmy sobie teraz po-
wierzchnig zamknietg S o do-
wolnym ksztaXcie, obejmujgcag
pewné liczbg Xadunkéw QqsQpe e
(rys. 6=10). Mozemy jg podzie-
1ié na w przyblizeniu pZaskie
elementy powlerzchni dS, przy
czym kazdemu elementowi mozna
przypisaé wektor dS, skiero-
wany na zewnatrz S 1 o wiel=-
kodei |dS| = dS, tj.réwnej pe
wlerzchnl elementu. Strumien
wektora E, przechodzgcy przez
dS, wyraza sig wéwozes w na-
stepujgcy sposéb Rys. 6=10

dN = E dS = E cos o dS = E-dS. (6.15)

Jedli w obrgbie S mamy tylko 1 Xadunek Q9 to caetkowity stru-

mien N; przez powierzchnig zamknieta S wynosi
T

M= EgsefBas, - = [ P faw oL,
. TE o r 4ne , €
(s) (s) (s) S

przy czym r Jest odlegodciag od a4 elementu dSo, normalnego do E,
za$ dy = dSO/r2 jest elementem kgta bryiowego, odpowiadajgcego dso
(rys. 6-10). Catka jest rozciagnigta na cakg powierzchnig S. Analo-
gicznie przedstawiajg sie udziaty adunkdw Qpreees Qo tak Ze w re-
zultacie otrzymamy

k
NEsfg-gazﬁ. (6.16)
(s) =1 %o .

Wyrazenie (6.16) jest twierdzeniem Gaussa-Ostrogradskiego dla po-
la elektrostatycznego w prézni: calkowity strumierl wektora E, objety
dowolng powierzchnig zamknigta S Jjest proporcjonalny do algebraicz-
nej sumy wszystkich Yadunkéw, objetych tg powierzchnig. Nalezy zwrl-
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cié uwage, se Zadunki wchodzg w (6.16) wraz ze znakami; jesli zatem
jekas powierzchnia S obejmuje tyle samo *adunkéw dodatnich co ujem-
nych, to §3qj =0 oraz Np =0,

Przedstawimy obecnie kilka przyktadéw, ilustrujgcych zastosowanie
tego twierdzenia. Aby wywody uczynié ogélniejszymi, wprowadzimy pojg-
cie gestosci radunku dla Zadunkéw nie punktowych. I tak, jesli Zadu-
nek zgromadzony jest wewngtrz jakiejs objetoééi vV, to

p = lim —— = — (6.17)
AV=0 AV av :
jest objgtosciowa (lokelna) gestoscia adunku (w C/m>). Jesli adunek
zgromadzony jest na jakiejé powierzchni S, to
Aq dq

o= lim —— =
ASs0 AS ds

(6.18)

Jest (1lokalng) powierzchniowg gestoécié Xadunku, zatem

a= [ pav 1ub‘q-fcds.
6.2.1. NieskoAczona praszczyzna przewodzaca

Sytuacja jest przedstawiona na rys. 6-11, Wektor E musi byé pro-
stopadty do elementu dS° ptaszezyzny © , gdy2z inaczej zadunek musiaz-

Ryﬂo 6-11

by ptynaé pod dziataniem skladowej E stycznej do ; o.Jesli dN1 i dN2
przedstawiajq strumienie elementarne E po obu stronachn , to

1 gl
+ dN2 = 2 En dsS = cq dq = €q gds,

dN = dN1
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wobec tego

1 o
E 8 emw —— e (5.19)
2 €o

Po kazdej stronie ptaszozyzny, natadowanej 2z jednostajng gestos-

cig Zadunku o , panuje pole elekiryczne o natgzeniu podanym (6.19).

A =
6 <5
yo =
£0 £-£ o« £=0
Rys. 6-12

Latwo sig przekonaé, %e jesli mamy dwie nieskorczone pzaszozyzny,
z ktérych jedna jest natadowana gestoscig +0, a druga - o (rys.6-12),
to na zewnatrz nich E = 0, zas migdzy nimi panuje Jjednorodne pole
elektryczne o natezeniu

(6.20)

tj. dwa razy wiekszym od (6.19),

6.2.2. Réwnomiernie natadowana kula

Niech r bedzie promieniem przewodzgcej kuli rdéwnomiernie nata-
dowanej o g¢stosdci powierzchniowe]

tadunku + ¢ (rys. 6-13). ZIadunek g \\\\
kuli wynosi zatem: // \
\
q=4g 12 g, // + .+ \
Otoczmy teraz wspStirodkowo owg I + 1" \+ )
kulg drugg, o promieniu R, stano- ‘\ n 4 / £
wigca nasm powierzchnie zamknietay S. \ /
Catkowity strumiei E przez S wy- N R /
nosi: = v
~ e ]_, =i

1 3 2
No==—gq= 4t rSo
B €o Es !
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zatem

N 1 /r\? e
E=—_§='—- °T . -21

4 TR €, \R

Wzér (6.21) podaje sposdb obliczenia natgzenia pola natadowanej
kuld w odlegZosci (R = r) od jej powlerzchni. Jeéli jest ona wydrgzo-
na, to w jej wnegtrzu (r‘cr) q = 0, zatem E = O, Wobec tego we wne-
trzu natadowanej kuli (w ogéle przewodnika) nie ma pola elektryczne-
go. Pakt ten jest podstaws zastosowania oston metalowych (puszek,sia-
tek) do ochrony objetych nimi obiektéw przed wplywem zewngtrznego po-

kula przewodzqgca

e 'I'lv—‘
@

Rys. 6=-14

la elektrycznego., Stuszy rdwniez za podstawg konstrukcji generatora
elektrostatycznego Van de Graaffa, umozliwiajgcego osigganie potencje
¥6w do 7 MV (rys. 6-14). Bateria elektryczna, uziemiona z jednej stro-
ny, jest poZgczona z ostrzem metalicznym. Wskutek duzej ggstosci Za-
dunku nastgpuje jego wypiyw z ostrza, a nasfepnie transport za pomocg
pasa transmisyjnego. Wewngtrz kuli przewodzgcej Jjest umieszczone
ostrze "zasysajace" adunek (wypiywas przez nie Zadunek przeciwnego
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znaku). Poniewaz we wngtrzu kuli nie moze byé pola elektrycsnego,wigc
Xadunek wypiywa na jej powierzchnig. Generatordéw tego typu uzywa sig
we wspéiczeanychlaboratoriach fizyki jadrowej do wytwarzania strumie-
nia czgstek naradowanych o duszych prgdkosciach, takze w laboratoriach
wysokich napigé, np. do badania wytrzymaXosci materiaxéw na przebi-
cie,

Prawa Coulomba i Gaussa-Ostrogradskiego sg sobie réwnowazne. Zat-
wo to gobaczyé w nastgpujacy sposdb: jesli tadunek +q, otoczymy po=-
wierzchnigq kulistq o promieniu R tak, by Zadunek 2znaslazZ sig w jej
Srodku, to catkowity strumied E przechodzgcy przez te powierzchnig
wynosi

ng=-l-a= [Eas-B-4xr’
< (s)
zatem 1 q
dne o R®

Na %zadunek punktowy 9 umieszczony na powlerzchni tej kuli dzis

ta siza

1 qqo
4 TE o R

F’q(,'E: ’
co jest wiadnie sikg Coulomba. Twierdzenie Gaussa-Ostrogradskiego w
odréznieniu od prawa Coulomba pozwala w stosunkowo prosty sposéb ob-
liczyé natgzenie pola elektrycznego dokota tadunkdéw, w tym takze prze-
strzennie rozciggtych.

6.3, Potencjai

Przesuwenie Zadunku +q, migdzy dwoma punktemi pola A i B jest
zwigzane z wykonaniem pracy LAB’ Jeéli punktowi A przypiszemy po-
.tencjaz VA, a punktowi B potencjazx Vgs to wykonang pracg mozemy
zapisaé w nastgpujacej postaci:

L,g = +a, (Vg = V,), (6.22)

przy czym 1 J/C =1V, $cisle okresdlona jest w ten sposéb réznica po-
tencjatéw, nie sam potencjat; jesli jednak przyjmiemy umowg, Ze

A—=o > "4 —o0, (6423)
czyli, %e w nieskoriczonosci potencjax (podobnie jak sita) znika, to
L.
Vg = —5, (6.24)

+q°
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Tek wige potencjat w danym punkcie pola jest pracg, potrzebng do
przeniesienia *adunku dodatniego i jednostkowego z nieskoriczonosci do
danego punktu pola.

Jesli prace wykonuje sita przyZozona Ep = -qog, to mamy ponadto:

B B
Iyp = By dl = =g, [ E &L = q,(V5 - 7)),
A A
stad B
Vg =V, = -fgg;. (6.25)
A

Réwnanie (6.25) stanowi bardzo wazny zwigzek migdzy réznicg po-
tencjatéw, a natezeniem pola. Ze wzgledu na wiasnosci pracy LAB,caI-
ka liniowa, wystegpujgaca po prawej stronie (6.25) nie zalezy od drogi
catkowania, a jedynie od punktu poczgtkowego (A) i korcowego (B), Wo-
bec umowy (6.23) potencjal dowolnego punktu pola, okreslonego wekto=-
rem r (mierzonym wzglgdem poczgtku uktadu wspéirzednych) mozemy wy-

=

razié przez

r
v(r) = -f E dl1. (6.26)

Jesli pole jest jednorodne, E = const, to (6.25) upraszcza saig
do znanego wyrazenisg

E = —‘__'—'A- ° (6.27)

Stgd wtasnie w polu jednorodnym natgzenie pola réwne jest spadko-
wi potencjaiu na jednostke diugosci,

6.3.1. Potencjaz Zadunku punktowego
Poniewaz dla *adunku punktowego +q

1 q
E = ,
tne, ™

zatem potencjat takiego adunku w odlegiosci r od niego wynosi
r

q 1 q
v(r) = -f s dr = _— (6.28)
& dne, T dnegy T

Warto zauwazyé, ze w tym przypadku potencjat maleje zgodnie z 1/x
Zadunek q w punkcie pola, okresflonym wektorem r ma energig poten-

cjalng réwng iloczynowi Zadunku i potencjaiu w tym punkcie:
u(r) = q * V(z). (6.29)
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603.2, Potencjal rozktadu tadunkéw
Multipole

Przypusémy, %e memy zadany
bardziej zXozony rozktad Zadun- z
kéw dodatnich i ujemnych, odpo-
wiadajgcy np. ozgsteczce metanu
(rys. 6-15).Chcemy obliczyé prze
de wazystkim wytwarzany przez ten
rozktad potencjax w punkcie A,
dostatecznie odlegiym w pordwna-
niu do liniowych rozmiardéw czgs-
teczki. Podzielmy w tym celu in-
teresujgcy nas obszar przestrzeni
na elementy objetosci dv na tyle
mate, by ggstosé Zadunku p (xyz)
mozna byto w ich obrgbie uwazaé
za staxg. Zadunek zawarty w ta-
kim elemencie wynosi p (xyz) dv
(moze byé dodatni lub ujemny), a
wytwarzany przezen przyczynek do
potencjatu w punkcie A wynosi

1 1
plxy z) dv « — .
R

4ne o

Przyczynki réznych elementéw
dv 8g addytywne oraz

R* = (+2 +R2 = 2 r R cosp)1/2, Rys. 6-15
sted
1 (xy 2)
v, = f 5 29 775 dv. (6.30)
4me (R® + r° - 2r R cosg )

o
Poniewaz wektor r ma diugosé nie wigkszg od liniowych rozmiaréw
czgateczki, wige r<<R oraz r/R = g << 1,
Wyrazenie

(R2 + r® = 2 r R coso y-1/2 . % {1 +6( 8= 2 cosg )} -1/2

mozemy rozwingé w szereg wzgledem

€=56(5=-2c08¢g).
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Otrzymujemy
(1 +¢ 12 . g o %e + %e 2 _ {%e 3 4 een 5
a8 po dwukrotnym dokonaniu podstawienia i uporzgdkowania wyrazéw wzgle
dem rosngcych poteg r/R
1
4me R
. 1 fpr23005¢-1 M
RE

dqe o 2

VA w

1
fpdv+———§fprcosq> dv +
47e R ,

AV + oo (6031)

. 1 3 coso (5 cos?e - 3)
dne R Jo 2

We wzorze (6.31) R Jest state i moze byé wyjete przed znak cax-
ki, natomiastp , r 1 ¢ 83 zmienne na obszarze catkowesnia. Widzimy, iz
potencjat w wybranym punkcie A mozZna przedstawié za pomocg szeregu wy-
razéw, przedstawiajacych potencjazy multipoli, odpowiadajgce rozkia=-
dowi Zadunku w czgsteczce. I tak, w pierwszym wyrazie /np dv = q jest
catkowitym Xadunkiem czgsteczki; jest on réizny od zera tylko wtedy,
gdy oczgsteczka jest jonem. Wyraz ten odpowiada wtedy potencjazowi za-
dunku punktowego. Jesli q # O, to czlon ten ma najwigkeze znaczenie
dla VA’ poniewaz najszabiej maleje ze wzrostem R.

Catka w drugim wyrazie przedstawia moment dipolowy, a caze wyra-
zenie jest znanym nam juz potencjaXem dipola w duzej od niego odlegic-
dci.

Nastgpne czony, coraz szybcie] malejgce wraz ze wzrostem R od-
powiadajg momentowi  kwadrupolowemu
A *9 Q, oktupolowemu, itd.

) Przyktady rozktadu Zadunkéw, po-
_,/ siadajgcych moment kwadrupolowy, a
’ nie posiadajgqce tadunku ani momentu
dipolowego, 83 pokazane na rys.6-=16,
(6.31) stanowi Scistg definicj@ mo-
mentu multipolowego, ponliewaz dipole
punktowe, omawiane w 6.1.2, sg two-
;?k remi niezwykle rzadkimi. Najczgscie]
@ Q mamy do czynienia wZzasnie 2z prze-
strzennym rozktadem elektrondéw i ja-

9 -9 der,

Rys., 6=16
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Zajmijmy sig¢ Jeszoze wyrazeniem

gl o 1 [ ooaodv (6.32)
R |

A 41t€° 2

przedstayiajacym potencjax dipola. Poniewas r cos ¢ = k°r jest rzu-
tem r na o 2 (rys. 6-15), przy czym k. Jjest wersorem wzdituz tej
osi, mozemy wigc (6.32) zapisaé w postaci

k ep
vld) | e, (6.33)
A 4 ne R

gdzie p -.[p r dv jest momentem dipolowym. Je$li umiesScimy dipol w
$rodku ukadu wspSirzednych wzdiuz osi 2 (rys. 6-17), to

W tym przypadku
cos ¢ = /(3% + 22)1/2

A

i

N

Rys. 6=17

Z

Q)
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oraz
Pz
V(R) =

4TIE°(y2 - 22)3/2 S

Sktadowe natgzenia pola w pXaszczyznie yz wynosza wediug (6.26)

v 3pzy 3 pseing cosg G
E. 8 « == = - o A
y Iy 4n€°(y2 - z2)5/2 4 e, RO
. v o {3 2 (yz + g2 (yz . z2)3/2}
zZ g 4 me (32 + 22)3
2
p(3 cos“ o - 1)
- = (6.35)

4 me R?

Jefli wybierzemy ¢ = 90°, to natezenie pola wyraza sig znanym nam
Juz wzorem (6.9), E = =p/(41e oR3), (E ma kierunek przeciwny do p).

6.3.3. Krzywa energii potencjalnej

Rozkad potencjatu dookota adunku punktowego (np. jadra atomu)
jest podany we wzorze (6.28). Wobec tego energia potencjalna Zadunku
tqo, w takim polu wynosi

19 1 (6236)

4ne, r

U(r) = #q . V(r) = t

i przedstawiona jest na rys. 6-18. Krzywa nad osig odcigtych odnosi
sig do sik odpychania (znak (+) w (6.36)), za$ krzywa pod osig do sil
przyciagania (znak (=) w (6.36)). Jefli oba 2Zadunki znajdujg sig w
odlegXosci Ty od sieblie, to ich catkowita energia E wystepuje pod
postacig energii potencjalnej U(r1). Konfiguracjs trwaza takiego u-
kXadu mozliwa jest tylko wtedy, gdy Zzadunki nie moga sige poruszasd.Je=-
811 majg swobodg ruchu, wéwezas czgs¢é energii E wystepuje pod pos~-
taclia energii kinetycznej T, i tek np. dla wzajemnej odlegiosdci jed=-
noimiennych *adunkdw r, i caztkowitej energii E energia kinetyczna
wyniesie

T, = B =0 (r,). (6.37)

W miarge wzrostu r coraz wigksza czgs¢ E wystgpuje pod posta-
clg energii kimetycznej kosztem pracy siz Coulomba, dziaZzajacych mig-
dzy q 1 Qe Konfiguracias réwnowagowa obu tadunkéw nie jest mozli-
w8,

Inaczej sprawa sig¢ ma, jesli migdzy oboma *adunkami dziatajg si-
¥y przyciggenia. Potrzebna do utrzymania réwnowagi energis kinetycz-
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By 3

Rys. 6-=18

na T_ Jest wéwczas wigkesza od T , gdys U_(ro) jest ujemna. Réwno-
waga dynamiczna utrzymuje sie wéwozas dzigki temu, ze sia odsrodkowa
dziazajgca na 9y réwnowazona jest sitgq dosrodkowg Coulomba:

e Q q,

r, 4me, T

o
mamy wéwozas

1 qQ4q
Ta= 1. mv2 = & o
2 8ne > T,
1 qq
U= - 0-_2T’
4ne ° T,
orag
E=U+T=-"T, (6.38)

Widzimy, ze energia catkowita jest ujemna. Z takg sytuacjg spoty-
kamy sig np. w teorii atomu wodoru.
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6.3.4. Powierzochnia ekwipotencjalna

Powierzchnia ekwipotencjalna Jjest powierzchnig staXego potencja-
fu, np. dla *adunku punktowego q ma ona ksztaXt kuli o dowolnym pro-
mieniu R, zatoczonej wokét q (rys. 6-19), dla praszczyzny natado-
wanej statq gestoscia o jest réwniez paszczyzng do niej réwnolegia
w dowolnej odlegosci (ryse. 6-=19).

v—t+ 1T ——1T —

°

Rys. 6-19

Powierzchnia ekwipotencjalna ma nastgpujgce wtasnosdci:

i. Praca przesuwania *adunku q, Po powierzchni ekwipotencjalnej
wynosi zero. Jesli bowiem dwa punkty A 1 B lezg na takiej powierz-
chni, to V, - Vp =0 oraz IL,p = q (V, = V5) =0,

ii. Wektor E Jest normelny do powierzchni ekwipotencjalnej w
kazdym punkcie. Mamy bowiem elementarng pracg przesuwanisa qyt

dL = B dl = -q, Edl = 0, czyli E |dl.

6.4. Pojemnosé elektryczna

Zgromadzenie tadunku dq na powierzchni jaklegos przewodnika po-
woduje, ze potencjat tuz w poblizu jego powierzchni (na samej po-
wierzehni nie jest okreslony) wzrasta o wielkosé proporcjonalng do dg:

dg=C * av. (6.39)

Statg C nazywamy pojemnoscig przewodnika; jednostky pojemnosci
-przewodnika Jjest <farad: 1 F = 1 V/C, np. potencjat kuli o promieniu
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r 1 Xadunku q wynosi tuz w poblizu je] powierzchni V = q/(4ne°r),
zatem jej pojemnosé C = 4 ne_r Jjest proporcjonalna do promienia. W

o)
kondensatorze piaskim natomiast panuje nategzenie pola
; vV, =V fol
Es1 2=——-
d €5
czyli rdsnica potencjaiéw wynosi
ged g. S
Vy, =V, = =
1 2 *
€, (o

gdzie o Jest powierzchniowa ggstoscig Zadunku., Pojemnos$é kondensato-

ra paskiego zatem
€o0° S
(6.40)

C =

d

jest proporcjonalna do powierzchni jednej z jego okzzadek, a odwrotnie
proporcjonalna do odstegpu migdzy ok}adkami. Ogdélnie biorgc pojemnosé
elektrostatyczng mozemy przedstawié w postaci

C=¢g, *G (6.41)

gdzie G jest czynnikiem geometrycznym o wymiarze diugosci, zaleznym
od ksztaitu i rozmieszczenia oktadek. Dla kondensatora ptaskiego G =
= S/d, natomiast dla cylindrycznego G = 27 1l/ln b/a, przy czym b o-
znacza Srednice cylindra zewngtrznego, zas a wewngtrznego (b > a).
Zauwazmy, Zze b —= g odpowiada C —= <= j zatem = formalnie biorgc =
przewodnikowi, stanowigcemu zwarty kondensator, odpowiada nieskoricze-
nie duza pojemnosé elektrostatyczna. To ostatnie stwierdzenie odnosi
sig do wnetrza przewodnika, a nie do jego powilerzchni.

Przeniesieniu Zadunku +dq 2z ok*adkl ujemnej na dodatnig towa-
rzyaszy wzrost energii potencjalnej kosztem wykonanej pracy. Jezeli
Vy =V, Jest résnicq potencjaxréw migdzy okzadkami, to energia naza-

dowanego kondensatora wynosi
: Q Y

q 192 1 5
U=qu (V1-V2)=f—dq=-—=—C(V1-Vz). (6.42)
S ¢ 2¢ 2
Energia ta jest zgromadzona w objgtodci S°d =(14;°)c.d2 tak ze
gestosé energii w pola elektrostatycznego wynosi
1 ¢ (v, =V,)2 1
w=—s°————17£--’eo E2. (6.43)
2 C+ad 2
Widzimy z tego, Ze przestrzeni, w ktérej panuje pole elektryczne

odpowlada energia potencjalna o ggstosci proporcjonalnej do kwadratu
natgzenia pola.
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645, Pomiar adunku elementarnego: metoda Millikana

Rozstrzygnigcie istnienia Zadunku elementarnego i pomiar jego
wielkosci nalezaty do podstawowych probleméw fizyki. Rozwigzal to za=-

A7

Ryﬂ e 6"20

danie Millikan za pomocg bardzo prostej, lecz i bardzo pomysXowej me=
tody. Migdzy okadki kondensatora wprowadza si@ kropelki rozpylonej
oliwy (rys. 6-20), ktérych ruch obserwuje sig w polu mikroskopu. Na
kropelkg dziata siXa cigzkosei, Fc, 8ita oporu Stokesa, Fs oraz si-
t8 wyporu Archimedesa, FA' Pomingwszy fazg poczatkowg ruchu, sity te
w krétkim czasie dochodzg do rdéwnowagi

F, + Py - B = 0, (6.44)

wobec czego kropelka opada z jednostajng predkosciag Voo Siza oporu
Fs jest proporcjonalna do predkoscil; dla przedmiotu w ksztaZcie kuli
ma postad:

Fg = 6nr nv,, (6.45)

gdzie n Jest wspSiczynnikiem lepkosci powietrza, a r promieniem kul-
ki. Jesli przez p ¢ Oznaczymy gestosé oleju, a przeg Pp gestosé po-
wietrza, to z warunku (6.44) mozna obliczyé nie znang wielkosé, Jaka

jest promier r kulki:
9 v 1/2
re=d — y _ (6.46)
2(ps = ppleg

przy czym g Jest przyspieszeniem ziemskim,

WZgczamy teraz pole elektryczne o natezeniu E = (V1- Vz)/d i lam-
pe rentgenowsks (lub stosujemy inny czynnik jonizacyjny). Powstaja w
przestrzeni migdzy okiadkami kondensatora jony gazowe. Z chwilg, gdy
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taki jon przyczepi sig¢ do kulki oleju, jeJ pre¢dkosé skokowo zmieni sig
na Vg poniewaz pojawi sig sita elektryczna FE -':qE, gdzie q jest
tadunkiem jonu. Zmieni sig¢ takze FS na Fé, tak ze obecnie :

s+
Py + Fg T Fp = Py = 0. (6.47)
Odejmujac (6.44) od (6.47) mamy
Fg = Bg = ¥Fp,s
czyli
6nrn(vg = v)) = ¥q "E. (6.48)
Znajac promiefi r i pozostate state mozna z (6.48) obliczyé Zq.
OkazaXo sig, Ze zawsze
la] =n <« |el, (6.49)
tj. Zadunek kulki zmieniaX sig o catkowita wielokrotnosé najmniejsze=
go Yadunku |e|, zwanego elementarnym.
. Wspélczeénie przyjeta warto$é |el, odpowiadajgca tadunkowi elek-

tronu wynosi
le| = (1,60210 * 0,00007)*10~1% ¢. (6.50)

Towarzyszy mu masa m,, odpowiadajgaca masie elektronu

m, = (9,1091 % 0,0004)+107>" kg, (6.51)



7. POLE ELEKTRYCZNE W MATERII

L1, Polaryzacja dielektryka

Zastgpienie prézni migdzy oktadkami kondensatora jakim$ osrodkiem
materialnym (gaz, ciecz, ciako stake) powoduje powigkszenie Jego po-
jemnosci elektrostatycznej. Jesli przez C, oznaczymy pojemnosé kon-
densatora prézniowego, a przez C pojemnosé tego samego kondensatora
po napeinieniu przestrzeni migdzy jego oktadkami osrodkiem material-

nym, to stosunek

+=c, (7.1)
o

nazywamy wzgledng przenikalno$cig dielektryczng (stata dielektryczng)
odrodka. Do wyznaczenia ¢ Jest wige potrzebny pomiar dwu pojemnoscij
wazne jest, by kondensator miax ten sam czynnik geometryczny po wy-
pexnieniu go dielektrykiem,

Wzglgdna przenikalnosé dielektryczna jest liczbg bezwymiarowg.Dla
gazdéw jest ona bliska 1 (np. dla powietrza wynosi 1,0006),dla cieozy,
oprécz wody, wynosi kilka (dla benzenu 2,26), dla cial staiych od kil
ku do kilkuset tysigoy (ferroelektryki). Wyjatkowo duza stata dielek-
tryczna wody (81) jest cechg wsréd cieczy wyjatkowsg; decyduje ona o
dysocjacji elektrolitycznej wielu zwigzkéw chemicznych w roztworze
wodnym, poniewaz sity Coulomba migdzy jonami 853 Ww wodzie 2znacznie
mniejsze, niz w stanie stazym.

Jak wiemy, pojemnosé kondensatora prézniowego wynosi Co = gg = Go
Po udzieleniu jego okt*adkom zadunku q panuje migdzy nimi pole elek-
tryczne o natgzeniu

q q
=U°—0-a=-8-01'-a. (7.2)

Jedli teraz, nie zmieniajgc czynnike geometrycznego G, ani Za-
dunku q, wprowadzimy miedzy ok*adki kondensatora dielektryk o staze]
dielektryoznej e, to natgzenie pola wyniesie:

q q E, (
E=m=m-—g—. T.3)
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Jak widzimy, po wprowadzeniu dielektryka natgzenie pola zmalazo ¢
razy. Przyczyng tego zjawiska jest zmiana stanu dielektryka pod wpzy-
wem pola elektrycznego, noszgca nazwg polaryzacji.

Istniejg dwa mechanizmy polaryzacji.

i. Mechanizm orientacyjny. Wystepuje on tylko wtedy, gdy czgstecz
ki dielektryka posiadajg wkasny, trwaty moment dipolowy. W polu elek-
trycznym dziaXa na dipol para sii, usizujgca ustawié go rdéwnolegle do
kierunku pola. W gazach i cieczach przeszkodg w uzyskaniu peinej o~
rientacji dipoli sg ruchy termiczne, stanowigce czynnik dezorganizu-
jacy porzgdek ustawienia. W ciatach staiych istnieje ograniczona moz-
liwo$é obrotu dipola wskutek ciasnego wypeinienia przestrzeni Dprzez
oczgsteczki. Niemniej jednak efekt orientacji jest dos$é spory; Jesli
tylko wystgpuje, ma decydujgcy udziaz w polaryzacji dielektryka.

ii. Mechanizm indukcyjny. Polega na polaryzacyjnym wpiywie pola
elektrycznego na czgsteczkg, w ktérej indukuje sig zgodnie 2z wzorem
(6.8) moment dipolowy o wielkosci proporcjonalnej do natezenia pola,.-
Pijng = o °E. Moment indukowany jest znacznie mniejszy od spotykanych
momentéw trwatych, jednak efekt indukeyjny wystgpuje zawsze, Jesli w
czgsteczce swobodnej rozkiad Zadunku ma symetrig kulistg, to wywozany
moment ma zawsze kierunek linii pola.

FNF
4 .
g \ N S —= N\ [E=0, Zpi-0

Z NN AN A

- — = - = - - -9

N | LA

Vb /A N2 BN N [ Efo, 2p #0

—F++—\++—f—\—'_f— }J'—QZ

W S Sp A S aF 9P SR
Ryﬁ Y 7—1

Orientacyjny wpiyw pola elekirycznego jest przedstawiony na rys,.
T7=1. Gdybysmy w sytuacji bez pola elektrycznego wybrali element ob-
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Jetosei AV w dowolnym miejscu dieiektryka, woweczas obliczona dla
znajdujgcych sig¢ w jego wngtrzu momentdéw dipolowych Dy suma wektorowa
byzaby réwna zeru, zatem bez pola elektrycznego Zp_i = 0., Po przyio-
zeniu pola zachodzl orientacja dipoli; dzigki temu w cienkiej warst-
wie dielektryka o grubosei §, przylegajacej do ‘okradki natadowane]
tadunkiem -q, gromadzg sig dodatnie konfce dipoli, a przy przeciwne]
oktadce - ujemne.

W tym przypadku dla elementu AV bedziemy mieli 2}21 # 0. Moment
elektryczny, przypadajgcy na jednostkg objetosci ma wazne znaczenies
réwny jest liczbowej wartodci wektora polaryzacji

2 = _Z'—gi . (7-4)
AV

VWidzimy réwniez, ze w warstwach o grubosci & powstaje Zadunek nie-
skompensowany; blisko gérnej okzadki Q0 blisko dolne} =Q e W prze-
ciwiedstwie do tadunku %q, ktéry jest swobodny i moze sig przemiesz-
czaé po oktadce metalicznej, radunki iqz nie sg swobodne: noszg na-
zwg Yadunkdéw zwigzanych. Tak wige wynikiem polaryzacji Jjest pojawie-
nie sig *adunkéw zwigzanych w cilenkiej warstwie dielektryka, zwrdco-
ne,j w strong elektrody.

- -~ _ +

= +

I | - |

| I+

i —|| +

I
£
Rys. T=2

Oznaczmy przez Eo natezenie pola, wytwarzane przez Zadunki swo-
bodne, przez E natezenie pola wytwarzane przez tadunkil zwigzane,

q
za$ E niech bgdzie wypadkowym natezeniem w dielektryku. Mamy (rya

7-2)

wektorowo

E-E +E,
algebraicznie

E = Eo - Ez’

poniewaz pole Ez ma kierunek przeciwny do Eo'
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Zastosujmy teraz twlerdzenle Gaussa-
Ostrogradskiego - wpierw do kondensatora, w
ktérym migdzy okadkami panuje préznia (rys.
7-3). Dowolna powierzchnies zamknigta S moze
mieé ksztatt cylindra; obejmuje tylko Zadu-
nek swobodny q.

Proznia

1
NEO = /"Eo dS = E,- S = - E: a,
(s)
czyli
qi=i=tes Eo' S, (7-5)

poniewaz S wybralismy w poblizu okadki
natadowane]j ujemnie, W drugim przypadku po-
wierzchnia S obejmuje Zadunek swobodny =-q

i zwigzany +q,3 mamy

1
NE’E'5=T°'(-q+qz).
stad 1 z (7.5)
q, = q +e,ES =¢S (g - Eo), Rys. 7-3
czyli 1

g = a(1 - ==)° (7.6)

Wartosé Xadunku zwigzanego zalezy wigc od przenikalnodci dielek=
trycznej osdrodka. Jesli - jak przecigtnie - € = 5, to q,= 0,8 q, ozy-
1i Zadunek zwigzeny sigga 80% *adunku swobodnego. Tak duzy Zadunek
zwigzany znacznie neutralizuje pole oktadek, w wyniku czego wypadkowe
natgZenie pola E Jjest znacznie mniejsze od pola okzadek.

Te2. Twierdzenie Gaussa-Ostrogradskiego dla dielektryka

Twierdzenie Gaussa-Ostrogradskiego, napisane dla strumienia wek-
tora E ma zatem w obecnosci dielektryka postad:

= =1 = -
Ng= J BEgs=-1(a-gq,) T
(s)
Jesli zastgpimy q, przez (7.6)s Mozemy temu wyrazeniu nadaé proat-
szg postaéd, jesSli wprowadzimy definicjg nowego wektora

[e)

D= ¢g,ekE, (7.7)
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wéwczas strumierl wektora D

Ny= [ Das= X q (7.8)
(s) :
réwny jest sumie wszystkich tadunkéw swobodnych,objetych powierzchnig
S. Nalezy zwrécié uwage, %e radunki zwigzane nie majg udziaiu w ND.
Wektor D nosi nazwg wektora indukcji elektrostatycznej.
W kondensatorze ptaskim z dielektrykiem

/ﬂ DdS=D-5=gq

czyli (s)

D= -'q-"' . (7e9)
S

Widzimy wigc, %e liczbowo wektor D réwny jest gestosci Zadunku
swobodnégo na oktadkach kondensatora.
Wyrazenie (7.6) okreslajace wielko$é Zadunku zwigzanego mozemy tez
przepisaé w nastgpujacej postaci
= Ll o —Ll
q q; + ¢ qz+ao<€€°>'
a po podzieleniu przez powierzchnig¢ okXadek S

q q q
B P > (7.10)
S S eeoS

Interpretacja poszczegélnych cztondéw (7.10) jest nastepujaca:

i. q/S jest gegstoscig tadunku swobodnego, czyli liczbowg wartos-
cig D,

ii.

ja=qz'5 - 2P1=P

S S * 5 AV

zatem drugie wyrazenie jest liczbowg wartoscig wektora polaryzacji.Ma-
my tu nowa interpretacjg wektora P: Jjest on liczbowo rdéwny gestosci
*adunkéw zwigzanych.

iii.
q

=E,
egyS

przy czym E jest wypadkowym natgzeniem pola w dielekiryku. Uwzgled-
niajgc punkty i-iii mozZemy (7.10) zapisaé w postaci waznego zwiazku
migdzy trzema podstawowymi wektorami pola w dielektryku:

D=¢E +B. (§7essian)

Zestawienie i1 fizyczny sens tych wektordéw podane sg na rys. T-4.
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I+
+
||

S
o]
b

|
o
(32}
oS
[

Rys. T-4

Pr zy k2 ad: Kondensator ptaski o powierzchni oktadki S =
= 100 cm® i odlegoéci d = 1,0 om zostal natadowany do rdéznicy po-
tencjatdbw Uo = 100 V. Po odZaczeniu baterii wsunigto migdzy okzadki
ptyte dielektryka o grubosci 5 mm 1 statej dielektrycznej e = T,0.
Obliczyé E, D, P w szczelinie 1 dielektryku.

{{1mmm

&
Rys. T=5

W przyktadzie mamy kondensator z dielektrykiem, czesciowo wypei-
niajacym przestrzed migdzy okadkemi. Sytuacja jest przedstawiona na
rys. T=53 €, = 3,9 ° 10"12 02/(Nm2).0bliczamy kolejno potrzebne wiel-
kosci.

i, Pojemno$é kondensatora prézniowego

cC_ = 80 S/d = = 8,9 PF.

2,
8.9'10"12(—-—C2 . 1072 p?
Nm
(o]
10~2
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ii. Zadunek swobodny oktadek

q = C,e U, =8,9°10712. 100 ¢ = 8,9+10710 ¢,
iii. Nategzenie pola elektrycznego w prézni
8,9.10"10 ¢

g
Eo-——s

= 7 = 1,00-10% v/m,
€5  8,9.10712:1072 O

Z drugiej strony

v, / 4y
E =2 =—xV/n=10%V/n
o a 10

daje wynik zgodny z poprzednim. Wyniki te wskazujg, %e wstawienie di-
elektryka nie ma wpiywu na Eo'
iv. Natgzenie pola w dielektryku

q 1,00.10% >
E = = V/m = 1,43°10° V/m,
€, €S 7,0
z drugiej strony 4
Uo 10 3
Es == — V/m = 1,43.10° V/m.
ed 7,0

Wyniki te waskazujg, Ze obeonosé szczeliny nie ma wpiywu na E.
v. Réznica potencjatdéw na kondensatorze

5 d d
U=- JFE dl = E.d, + E,d, = E( —- + =2 . (7.12)
o 1™ 272 o €4 €5

Wyrazenie (7.12) ma postaé trochg ogdélniejszg i dotyczy sytuacji,gdy
przestrzerd migdzy okXadkami kondensatora jest wypelniona dwiema war-

stwami o grubosci d1 i d2 oraz o statych dielekirycznych odpowied-
nio €4 i €56 W naszym przypadku

b =
U=E°|:—E—+(d-b)]
eind ¥ 10™3 m =
- 1,00104 L [2 + 5] -1072 n = 57,14 V.
vi. Pojemno$é kondensatora z dielektrykiem

.an=10
c = 9 - 8.9°10 ~ |, 10'2 ;5 = 15,8 pF.
U 57,14

Zauwazmy, ze pojemnosé wzrasta tylko o 1,8 raza poniewaz

b < d.
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Ogélniejsze wyrazenie na pojemnosé C ma na podstawie (7.12) pe-

stadé e.'s

C = o . (7013)
dy/ 8 + /e,

vii. Wektor D, ma liczbowg wartosé

. -1 2
D, = g, eE, = 8;9°10712:1+1,00+10% —:f" = 8,971073 % ;

Z drugie] strony

eq0-10 .
b, = -l - 8910 O 5 91078 O,
m m

S 10

viii. Wektor P dla szczeliny powietrznej ma wartosé liczbowa

P=D-cE =¢(e=-1)E, (7.14)

zatem w szczelinie P = 0 (préznis nie ulega polaryzacji). Zgqcznie w
szczelinie mamy

E, = 1,00°10% v/m, D = 8,9:107° —:? e pRsio

ix. W dielektryku

-8 _C

12.6,0.1,43°10° 5 = 7,65:1078 L5 |
m m

P = 8,9°10

Inaczej
-10
(o]

qQ, q ( 1) 8,9°10 6 -8 >
oA e S (R = = 7,65.10"2 ¢/m2.
s s € 1072 v e

D = 3,9°1071247,0+1,43+10° ¢/m® = 8,9°10~8 ¢/m?,
(to samo, co w szczelinie). Tak wigc w dielektryku

E=1,43°10> V/m, D= 8,9°1078 ¢/n?, P = 7,65:10"8 ¢/m?

Te3, Fizyczny sens wektoréw D i E

Te3e1e Szczelina podiuzna

Wytnijmy we wnegtrzu spolaryzowanego dielektryka szczeling wzdius
linii pola, ktdérej rozmiary poprzeczne 83 znacznie mniejsze niz diu-
gosé, czyli tzw. kanal podituzny (rys. 7-6). Na dodatni Zadunek +q u-
mieszczony w Srodku szczeliny dziata wéwczas sita, pochodzaca od na-
te¢zenia pola E w dielektryku oraz sika g’, pochodzgca od wpiywu Za-
dunkéw zwigzanych, ktérych powierzchniowa ggsto$é na powierzchniach
bocznych zamykajacych walec wynosit<:z- Wobec tego
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+q
_62 +dz
Rys. T-6
P, =qE+E. (7.15)

Jeéli $érednica szczeliny jest bardzo mata w stosunku do diugosci
to. P’ mozns zaniedbaé; wéwczas

= qeE oraz E=—, (7.16)

Tak wigc natezZenie pola we wnegtrzu dielektryké jest liczbowo rdw-
ne sile, jaka dzia%a na Zadunek dodatni i jednostkowy umieszczony w
kanale podiuznym, wydrgzonym we wngtrzu dielektryka.

7+3.2., Szczelina poprzeczna

Zajmijmy sig obecnie ka-
natem poprzecznym (rys. 7-7),
w ktérym efekty wynikajgce 2z
obecnosci *adunkdéw zwigzanych
nie mogg byé pominigte. Mamy

1 1
[/ EZSEO—E--E-;—%-G--E—->=
2]

QE =.1_o =_1-...P°

€ Z EZO

¢I‘ |
7
W tekim razie

D = So_Et/q- (7017)

Wektor D mozemy wigc
zmierzyé,mierzac site dziata-~
jacg na tadunek dodatni i jed-

Ryse. T=7 stkowy w kanale poprzecznym,
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Te3+3. Szczelina mikroskopowa

Szczegllnym 1 waznym przypadkiem szczeliny jest maie kuliste wy-
drazenie o #rednicy rzgdu rozmiaréw czasteczki (rys. 7-8). Panujace w

RCl

/
[D=EE+FP

Rya. 7-8

niej pole moglibysSmy otrzymaé usuwajgc z pewnego miejsca w krysztale
1 czgsteczke: Jest to tzw., pole lokalne, Obliczenie pola 1lokalnego w
przypadku ogdélnym jest bardzo trudne i do dzis$ nie w pekni rozwigza-
ne, Jesdli jednak zaXozymy, ze mamy do czynienia z dielektrykiem izo-
tropowym, to sytuacja priypomina kanat poprzeczny z jedng rdéznicg: w
obliczaniu D wedfug (7.17) nalezy uwzglednié 1/3 wartosci P, po-
niewaz interesuje nas okreslony kierunek w przestrzeni, a wszystkie
3 kierunki sg w przypadku izotropii jednakowo uprzywilejowane., Otrzy-
mamy wigc wyrazenie na sgize Et

1
By =a(E + 5o~ B) === D,

czyli 2 9
D=eE + % B, - (7.18)
z tego ; /
eE,go;E_f{?.-g
oraz @
E

2 e Al sl o o i
T o S 380{€°(€ ”E}’Eo -3 &
Rozwigzujgc to réwnanie wzglgdem E otrzymamy

E=—2>E. (7.19)

Jest to nategzenie pola wewnatrz dielektryka wyrazone przez natg-
zenie pola oktadek. Na podstawie (7.19) otrzymujemy wazne wyraZenie na

wektor polaryzacji P dielektryka
e=1
R=¢e,le-1)-B=3¢ E,. (7.20)
€+ 2

¢]
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[e4. Ferroelektryki

W omawianych dotychczas przypadkach zwiazki (7.7) i (7.14) maja
charakter zaleznosci proporcjonalnych: D orsz P sg proporcjonalne
do natezenia pola E. Nie zawsze tak musi byé; sg dwa wazne przypad-
ki, w ktérych proste wzory (7.7) i (7.14) sg niewystarczajace. Pier-
wezy dotyczy grupy ciat stalych, zwanych ferroelektrykami, drugi -
ciak polaryzujacych sig w sposdéb anizotropowy. Do ferroelektrykdw na=
lezq niektdére zwlgzki chemiczne, jak na przyktad winian sodowo-pota-
sowy, czyli tzw. s6l Seignette’a, (CHOH)Z(COO)ZKNa; tytanian baru,
BaTiOB; kwasny fosforan potasu, KH2P04, a ze zwigzkéw organicznych Je-
dynym dotychczas poznanym ferroelektrykiem jest tiomocznik, CS(NH2)2.

j49°c
2
Siarczan
log€|  trojglicyny
3
2]
Ellb
Ellc
1] flla
100 50 0 50 100 i)

RyB. 7-9

Najwazniejszg wkasnoscig ferroelektryka jest Jjego wysoka wzgledna
przenikalnos$é dielektryczna, dochodzgca niekiedy do kilkuset tysigey.
Wxasnos$é ta wystepuje jednak ponizej pewnej temperatury, Tc’ zwane J
temperaturg Curie. Na rysunku 7-9 schematycznie przedstawiono wykres
log £ od temperatury dla siarczanu trdjglicyny, ktérej odpowiada tem-
peratura Curie Tc = 322 K. PonizeJ tej temperatury zwigzek wystegpuje
jako ferroelektryk, natomiast powyzej - jako zwyky dielektryk (tzw.
paraelektryk). Tc jest wige temperaturg przejscia fazowego; w tej
temperaturze pojawia sig nieciggosé. Zauwazmy, ze nieciggZosé ta wy-
stepuje tylko dla staze] dielektrycznej mierzonej wzdZuz osi krysta-
lograficznej bj; dla pozostaiych kierunkéw krystalograficznych (a ic)
€ 2zmienia sig niewiele i w sposdéb regularny. Wskazuje to na fakt, ze
mikroskopowy (molekularny) mechanizm przemiany fazowej ferroelek-
tryk ¢ paraelekiryk wykazuje cechy anizotropowes.
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Zaleznodé staXej dielektryoznej. e od temperatury opisuje w naje
prostszym przypadku prawo Curie-Weissa

€ = FoF . (7.21)

c

Zgodnie z tym prawem odwrotnosé staiej dielektrycznej powinna byé
liniowg funkcjgq temperatury, co istotnie, bardzo czgsto jest speinio-
ne (rys. 7-10). Dalszg cechg ferroelektryka jeat Jego struktura dome-

1/¢

o (k)
Ryﬂo T=10

nowa: kawalek ferroelektryka jest podzielony na makroskopowe obszary,
zwane domenami., Mozna je obserwowaé na pasko oszlifowanej powierzch-
ni materiaiu przez DPoOsSypanie jej lekkim proszkiem dielektrycznym.
Rozpad ferroelekiryke na domeny jest zjawiskiem samorzuinym, poniewaz
powoduje powigkszenie jego trwazosci termodynamicznej. Orientacja di-
poli w obszarze domeny Jest bliska idealnej, dlatego polaryzacja w
obregbie domeny osiggs ogromne wartosci - nosi nazweg polaryzacji spon-
tanicznej (samorzutnej).

N = 7=
/:::t /:_‘ o
5 / -
VRN I VI )
| _,_I\ |

/N i
I |

£=0 : £ — Ep—

Ryﬂ ° 7"1 1
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Domeny nie sg jednak czym$ niezmiennym: ulegasjq one zmianie pod
wpiywem pola elektrycznego w tym sensie, Zze rosng te, dla ktérych o=
rientacja dipoli jest zblizona do kierunku pola, a o innych orientacjach
dipoli - malejg (rys. 7=-11)e W ten sposdéb, jesli natgzenia pola sg do-
statecznie duze, to mozna otrzymaé ferroelektryk o tylko jednej dome=-
nie. Powierzchniami oddzielajgcymi domeny, czyli tzw. Sciankami Blo-
cha sg warstwy dipoli o przejsciowym uporzgdkowaniu (rys. 7-12). Mogg
sig one przesuwaé pod wpiywem pola elektrycznego.

YZ/ZANNNNNS

| Grubosc Scianki |
Blocha

Rys. T=12

Polaryzacja dielektryka, ktéry
dXugi czas nie byx w polu elekirycz-

nym, jest blisks zeruj; domeny sg zo- L
rientowane rozmaicie i s$rednio bio=-
rgc moment elekiryczny Jjednostki ob-
Jetosci wynosi zero, Po przyzozeniu ////
pola E nastegpuje wzrost P az do o-

siagniecia nasycenia (rys. 7-13). W £
tym stanie mamy tylko jedng domene o
orientacji dipoli zblizonej do E i
dalsze zwigkszenie momentu elektrycz
nego jednostki objetosci nie Jeat
mozliwe, Zmniejszenie E do zera pro- Rys. 7=13
wadzi réwniez do spadku P, lecz po
innej drodze, W rezultacie, dla E = O otrzymamy P # O. Dalsze zmiany
E pociggajg za sobg zmiany P wedXug krzywej przedstawionej na rys.
T=13, 'zwanej petlg histerezy. Powtdrzenie cyklu wywotuje zmiany P
wzdiuz te] samej krzywej; poczatkowa jej czesé obserwuje sie tylko raz.
Ferroelektryki oraz niektdére inne ciata krystaliczne (np. krysta-
liczny kwarc) wykazujg wiasnos$é, zwang efektem piezoelektrycznym:przy-
tozenie na krysztal mechanicznego naprgzenia ($ciskanie lub rozciaga-
nie) powoduje powstanie *adunkéw przeciwnego znaku na dwéch przeciw-
legxych sScianach, czyli réznicy potencjatéw. Krysztaiéw takich uzywa
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sie do budowy przetwornikdéw piezoelektrycznych, zsmieniajgcych zmiany
cidnienia na sygnaly elektryoczne. Poza tym znajdujg zastosowanie w wy-
twarzaniu ultradzwigkéw i stabilizacji drgad elektryceznych (zegary
kwarcowe ). '

T<5e Anizotropia dielektrykdw

Drugim powodem, dla ktdrego polaryzacja P nie jest proporcjonal-
na do E, jest anizotropia dielekirykéw., Cecha ta dotyczy wytgcznie
gubstancji w stanie krystalicznym i polega na zaleznosci wzglgdnej
przenikalnodci dielektrycznej od kierunku w krysztale, w ktérym Ja
mierzymy.

Jesli interesujacy nas krysztatr jest izotropowy, tj. stata dielel
tryczna ma w kazdym kierunku takg samg wartoéé e, to (7.7) mozemy
rozpisaé na sktadowe w prosty sposéb

D1 = Eo EE1, D2 = 80 EE2, D3 = 80 EEB’

przy czym Di“ ) gdzie Xy Jjest wybranym dla krysztatu ortogonal=
nym ukadem wspdirzednych. Widzimy, Ze kazda skiadowa Di jest pro-
porcjonalna do odpowiednie] sktadowe] Ei z tym samym wsapdiczynni-

Yy
_________ J
Dys=— =
223 £=29
Eafg_ _____

|

|

| ,

EniElx Dy o
Rys., T=14

kiem proporcjonalnosci. Powoduje to, 2e wektor D Jest w takim krysz
tale zawsze réwnolegiy do E, jak to przedstawiono dla przypadku pZas-
kiego (E3 = 0) na rys. T=-14. Jesli jednak dielektryk jest anizotropo-
wy inp. e, =2 ae =3, %o réwnolegtosé D 1 E Jjus nie zachodzi
(rys. 7-15). Przy dowolnie zorientowanym ukktadzie osi 1, 2, 3 (x y z)
kazda skZadowa wektora D zalezy od wazystkich skXadowych wektora E,

przy czym zaleznosci te maja charekter zwigzkéw liniowych.Mozemy wige
napisad
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1
T 017 E1q By teqp Byt ey By
1 =
= D, = €5y By +&,, By + €55 Egy (7.22)
1
e BTty Byt e B ren &
lub ogdlnie ' 3
"‘é: Dm = z emn En’ m = 1’ 2’ 3’0 (7‘23)
n=1
yli
byt -—————=—===20
l
i
|
| fx=2
l fy: 3
IRy Av I
| |
! |
Eo by Dy X
Ryaov7-15

Réwnania liniowe (7.22) w zapisie macierzowym majg postaé

1 &1 &2 83

1
’ |
—;.- D2 = €29 €0 €23 E2 (7.24)
L 31 532 S3f \Es

Widzimy, 2e staza dielektryczna materiaXu anizotropowego jeat ten-
sorem, zawierajgcym w ogdélnym przypadku 6 sktadowych niezaleznych,po-
niewaz

eij - eJi’ (7025)

czyli tensor € jest symetryczny.
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Przyki2ad: Tensor state] diglektryozned'pewnego krysztazu

ma sktadowe: €44 = 1,5, €42 = 1:3, €43 = 0, 822:=2,0. €23 =5,0, £33 =
= 30,0. Na prébke tego materiaXu przyzozono natgzenie pola E(2, 0, 5)
V/m. Jaki jest kgt migdzy wektorami D i E?

Musimy obliczyé wpierw skadowe D:

D, 1,5 1,3 0 2 3,0
-15; D, | = |1,3 20 50| |0]|=]27,6
Dy o 5,0 30,0/ \5 150,0

Korzystamy teraz z definicji iloczynu skalarnego

1 1

5 1
2B < DiEi=—e;!2H§l°°=cp-
stad

2 DyEy 6,0 + 5 * 150,0

= = 0,920
IE| (4 + 25)"/2. (9 + 761,8 + 22500)'/2 ’

1o

o= 23°



8. ELEMENTY ELEKTRODYNAMIKT

8.1, Przepktyw Xadunku

Przeptyw Zadunku elektrycznego, podobnie jak tramsport dinnych
wielkosci fizycznych (masy w procesie dyfuzji, ciepZa w procesie prze-
wodzenia i pedu w przepiywie cieczy) jest Zalezhy od agpadku pewne]
wielkosci wzdiuz drogi przepiywu i od powiérzchni A przekroju, w ktdé-
rego obrebie nastepuje przepiyw. Wielkoscig, ktéra powinna maleé
wzdZuz drogi 2adunku jest potencjaz V: Zadunek dodatni pZynie samo-
rzutnie od potencjaiu wyzszego do nizszego., Wobec tego wielkosé zZa-
dunku dq, przepiywajgcego w czasie dt w kierunku osi x wynosi

av
dg = -0 Z= A dt. (8.1)

Stald o nosi nazwe elektrycznego przewodnictwa wZaSciwegoj; znak
(=) pochodzi stad, ze dV < 0,

M= (8.2)

nazywamy natgzeniem pradu elektrycznego., Jednostkg natezenia prgdu
jest 1 Amper = 1 C/s. Podstawg definicji tej jednostki sg oddziazy-
wania elektrodynamiczne dwéch réwnolegtych przewodnikéw, przez ktére
piynie prad; podamy je nieco péZniej.

Korzystajac z (8.2) mozemy napisaé (8.1) w postaci

iS-O%AO

Podzielmy teraz obustronnie przez A: otrzymamy 2z lewej strony
wyrazenie, zwane ggstoscig pradu przewodzenia (A/me)

i=. (8.3)

Gestodé pradu ma wiasnosci wektora, natomiast natezenie pradu i

nie jeat wektorem. DIugosé J wynosi 1/A; w przewodniku izotropowym

j Jjest prostopadty do A, ktdére jest wéwczas powierzchnia statego po-

tencja*u, wreszcie J ma zwrot odpowladajgacy kierunkowi ruchu zadun-
ku dodatniego.
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Pojgcie spadku potencjaiu dV/dx moZzemy uogélnié na przypadek
tréjwymiarowy. Jesli Xys X5, X3 Jest wybranym kartezjariskim ukXadem
ogi, przy czym 81y &ps &3 83 wersorami w kierunku tych osi,to ogél-
ne wyrasenie na spadek potencjaiu ma postads

: 3
ov ov ov
8q° + &5 v & = .Z—e-i e V=V-.vV,
0xy v sz 3x3 i=1 axi
3
Symbolem V
T o B el (8e4)
A &
=1 Bxi

zostat oznaczony operator gradientu (por. rozdzia* 2.11).Gradient po-
tencjatu jest spadkiem potencjaiu ns jednostkg dtugosci drogi, mierzo-
nym w kierunku najwigkszej wartosci tego spadku.

Iloczyn operatora gradientu 1 potencjatu ma znsk przeciwny do welk
tora natgzenia pola elektrycznego E:

=Ve V:E. (8.5)

}

Wobec tego réwnanie dla przewodnictwa elektrycznego w zapisie wek-
torowym przyjmuje postaéd
l=o0. B (8.6)

Elektryczne przewodnictwo wtasciwe o jest tzw. statg materiaows,
czyli wielkoscig charakterystyczng dla przewodzgcego materiau, Od-
wrotnosé o jest opornoscig wiasciwg o materiaiu
7}_ =0, (8.7)
czyli opornoscia kostki szesdciennej o krawgdzi 1 m, wykonanej 2z o-
kreslonego materiatu. Poniewas opornosé R przewodnika, mierzona w
omach, zalezy od jego cech geometrycznych, tj. przekroju A i diugos-
dst gl

R=p: =, (8.8)
wiec wymiarem p jest Q °m, a wymiarem przewodnictwa wXasSciwego jest
= o
Q m °

Rozpisanie (8.6) dla przypadku jednowymiarowego, np. osi Xl Xqs
prowadzi do wyrazenia
1 V, =V Vv, =V
50 /% o oo 1 2 _ 1 2 ,
P 1/A R

znanego pod nazwa prawa Ohma. (8.6) jest wigc uogdélnionym prawem Ohms,
zapisanym w postaci wektorowej. Taki zapis prowadzi w prosty sposéb
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do wyrasenia ggstosci pradu przewodzonege w materiazach anizotropo-
wych. Jezeli przewodnictwo wiasciwe materiaiu jest jedng tylko licz-
ba, tj. nie zalezy od kierunku przeptywu pradu, to (8.6) mozemy roz-
pisaé w nastgpujacy sposéb

31 = 0By Jpy=0Ey, J3=o0 Ej, (8.9)
czyli ogdéinie g .
ip=0E, m=1,2, 3 (8.10)

WskaZnika m = 1, 2, 3 uzylismy tu na oznaczenie skXadowych J,
odpowiednio wzdtuz kierunku osi X . 2 postaci (8.9) wynika, ze i//i.
Do materiazdéw o takich wiasnosSciach nalezg przede wszystkim metale,
krystalizujgce w uktadzie regularnym, o wysokiej symetrii.

Istnieje jednak spora - jezeli nie liczniejsza = grupa materiazéw
w postaci krystalicznej, dla ktdérych przewodnictwo ¢ 2zalezy od kie-
runku pomiaru. Jesli wybrany przez nas uktad wspéirzgdnych X9 Xps X5
jest przypadkowy, tj. nie uwzglednia kierunkdéw symetrii w krysztale,
to kazda skadowa wektora 1 zalezy od wszystkich skiadowych E. W
tym przypadku nalezy (8.9) napisaé w nastgpujacy sposdb:

j1=m1E1+%2E2+q3Ey

Jp =0 59 By + 0gp By +0pq By, (8.11)
33 =0 31 E1 + 032 E2 + 033 E3
lub ogdlnie 3
g = 21 Ogn Bpe M = 1, 2, 3. (8.12)
n=

Przewodnictwo wzasSciwe takiego masteriaiu jest opisywane zbiorem 9
. liczd

921 022 923 | =9 3% (8.13)

noszgcym nazwg¢ tensora przewodnictwa elektrycznego. Sposréd 9 liczb
tylko 6 Jest niezaleinych, poniewaz

(8.14)

43k = 9%ki®

czyli tensor o ik Jjest symetryczny. W zapisie‘macier20wym (8¢11) ma
postaé
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31 o117 912 913\ (B
J2 | =912 22 23| | %2 (8413
I3 S5 23531 A

Oczywiscie, jezeli materiak anizotropowy wystegpuje w postaci zlep-
ka, czy spieku duzej liczby drobnych krysztaikdéw idealnie wymieaza-
nych pod wzgledem orientacji, to materiat taki rdéwniez przewodzi w
kazdym kierunku tak samo. MoZna pokazaé, ze jego Srednie przewodnic-
two wasSciwe jest wéwczas rdéwne

<0>‘ '31"' (0'11 + (322 +O'33), (8.16)

a wigc réwne jest 1/3 sumy przekgtniowych sktadowych tensora.

Przeptyw pradu elektrycznego opisuje sig czesto za pomoca pojecia
nosnikéw pradu, poruszajacych sig w materiale pod wpiywem przytozone-
g0 pola elektrycznego. Nos$nikami moga byé jony (w roztworach elektro-
1litéw lub w gazie), elektrony (w metalach i pSkprzewodnikach), a na-
wet tzwe. dziury (w pélprzewodnikach). Dziurg Jjest miejsce po usunige-
tym elektronie; moze by¢ zapeinione przez sgsiadujgce elektrony, ¢o
Jest rdéwnowazne samodzielnemu przeptywowi dziury o masie takiej samej
Jak masa elektronu, lecz o Zadunku dodatnim.

Podstawowymi wtasnosciami nosnika sg: Zadunek iq, ruchliwosé u
oraz koncentracja nosnikéw n. Zadunek nosnika jest réwny 2Zadunkowi
elektronu (fe) lub Jjego niewielkieJ wielokrotnosci. Ruchliwos$é jest
pojeciem zwigzanym z szybkoscia unoszenia (wgdrowania) v nosnika w
polu elektryczanym. Przypusémy, ze nodnikiem jest jon w roztworze., Po
przyozeniu pola elektrycznego dziatajg nan dwie sity: pola elektrycz
nego FE = i.qE oraz sita oporu Fs. Jako te drugg mozemy w przybli-
zeniu przyjaé sitg Stokesa FS = 67 rmn v. Przyblizenie zwigzane jest
z tym, 2e zhydratyzowany w roztworze wodnym jon mato przypomina kuleg,
dla ktdérej siuszne jest podane wyrazenie dla Fg; w szczegélnosci pro-
mied r tej "kuli" jest okreslony bardzo nieprecyzyjnie., Obie sity
dziat*aja w kierunkach przeciwnych i rdéwnowazg sig w krdtkim czasie po
przy%ozeniu pola E

FE - FS = 0,

Sita oporu Fg jest wiasnie tym ozynnikiem, ktéry ogranicza prgd-
kos$é unoszenia jonu i sprawia, Ze w okres$lonych warunkach jest ona
staza

tgE=6nr v,
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czyli ; q

vV = E=u- E, | (8-17)

6T -r N

Widzimy, %Ze predkosé unoszenia jonu v (w m/s) Jest proporcjo-
nalna do natgzenia pola Ej; wspdZczynnik proporcjonalnosci u jest na-
zywany ruchliwos$cige. Ruchliwo$é jest liczbowo réwna szybkosci unosze-
nia jonu w polu o natgzeniu jednostkowym. Jednostkg u Jjest [u] = 1
(m/8)/(V/m) = 1 n®/Vs. ,

Koncentracja nodnikéw n jest ich liczbg w jednostce objgtosci ;
jednostka n jest m'?.

Za pomocg tych trzech statych: q, u, n mozemy wyrazié w nasteg-
pujacy sposdéb przepiyw nosnikéw okreslonego znaku

Q n(A-l)q
i = =—— = ———— = q.Ven.4,
t 1/v

gdzie A Jjest przekrojem, a 1 d*ugoscig walca, w ktdérego obrgbie
nastepuje przeptyw nosnikéw (rys. 8-1). W takim razie

j = QgeVvenn = qun - E (8.18)
oraz ’
G= qQ u n. (8.19)
== :
‘ /
&—v |
\
A ; !
I
L ’ -
Ryao 8-1

Przewodnictwo wkasdciwe jest iloczynem Xadunku, ruchliwosci i kon-
centracji nosnikdéwe. Wyrazenie (8419) przedstawia udziaz w przewodnic-
twie jondw okreSlonego znakuj; jesli jest ich wiegcej, niz jeden typ,to
kazdy 2z nich wnosi swéj niezalezny udziak, analogiczny do (8.19).
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8+2, Informacje o przewodnictwie elektrycznym materiaZdw

8e62¢1+. Przewodnictwo metali

Metale odznacza]Jg sig¢ bardzo dobrym przewodnictwem ciepka i elek-
trycznosci; ich elektryczne przewodnictwo wxasciwe wynosi okoZo
107-108 Q - o', Tak wysokie przewodnictwo zawdzigczaja metale duzej
koncentracji elektronéw zdolnych do przewodzenia, ktéra wynosi okoZo
n = No/(A/d)‘E 1028 elektronéw * m~3. N, Jjest tu liczbg Avogadry, 4
masg atomowg, d gestoscig metalu. Przewodnictwo elektryczne zalezy
od temperatury, co wyrazamy zwykle postugujac sig pojeciem opornosci
wiasSciwejo W piérwszym przyblizeniu opornosé wtasciwa jest liniowa
funkcjg temperatury t (w °C)

Py =poll +<adtl, (8.20)

gdzie o Jjest opornoscig wzasciwa w temperaturze O °C, zas ( o ) Sred
nim wspétczynnikiem temperaturowym opornosci w zakresie od O °cdo t %
oy e (8.21)
Py ot

Przyczyng, z ktdérej powodu p metali rosnie wraz ze wzrostem tem-
peratury moze byé zmiana z temperaturg czynnikéw wystepujacych po pre-
wej stronie (8.19). Oczywiscie, tadunek elektronu od temperatury nie
zalezy, w niewielkim réwniez stopniu zalezy od niej koncentracja nos-
nikéw n. W takim razie, géwna przyczyna wpiywu temperatury tkwi w
zaleznosei u(T). Jakosciowy obraz tej sytuacji jest nastgpujacy.Elek
trony przewodnictwa tworzg w metalu gaz elektronowy, ktéry ze wzgledu
na bardzo duzg koncentracje nie ma zwyklych wtasnosci gazu, W sSzcze-
gélnosci nie stosuje sig¢ do réwnania stanu Clapeyrona. Elektrony zaj-
mujg kolejne stany energetyczne, po dwa elektrony o przeciwnych sgpi-
nach na kazdym poziomie; odlegtosci pozioméw sg rzedu n'1 eV, Wpraw-
dzie w przewodnictwie mogg uczestniczyé tylko elektrony swobodne,zaj-
mujgace najwyzej potozone stany energetyczne, ale odlegosSci migdzy
stanami sgq tak mate, Ze stosowane zwykle pole elektryczne jest w sta=

nie uruchomié znaczng czesé ogdlnej koncentracji elektrondw n.
Elektrony swobodne poruszajga sig w polu kulombowskim jondéw dodat-
nich, tworzgcych sieé krystaliczng metalu. W kazdej temperaturze jony
wykonujg mate drgania termiczne woké% poZozer rdéwnowagi, przy czym am-
plituda tych drga’ rofnie wraz ze wzrostem temperatury. Ruch termicz-
ny ma charakter statystyczny, fluktuacyjny i stanowi przeszkode w swo-
bodzie poruszania sig elektronéw. Powiada sig, ze elektrony "swobod-
ne" sg rozpraszane na drganiach termicznych sieci, c¢o 1limituje ich
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Srednla droge swobodng, a zarazem ich ruchliwoéé. Tak wigc ruch ter-
miczny sieci powoduje w czystym metalu spadek przewodnictwa elektrycz
nego wrag ze wzrostem temperatury. W metalu stanowigcym stop, a wigo
zawierajacym wigcej, niz jeden skiadnik, w tym rdéwniei w roziworze
statym, zawierajgcym niewielks domieszke¢ innego pierwiastka, moZe 2a=
chodzié dodatkowe rozpraszanie elektronéw na atomach domieszki. Tym
tZumaozy sig duza opornosé wkasdciwa niektérych stopéw (konstantan,man
ganin) oraz stosunkowo niewielkie jej zmiany pod wpiywem zmian tempe-
ratury.

Zmiana opornosci metali wraz z temperaturg ma wazne zastosowanie
w tzw. termometrii oporowej, ktdérej zadaniem jest pomiar temperatury
za posSrednictwem pomisru opornosci przewodnika sporzgdzonego 2z odpo-
wiedniego materiatu (np. bardzo czysty otéw w zakresie od =200 °¢ ao
temperatury pokojowej i bardzo czysta platyna w zakresie od tempera-
tury pokojowej do 800 °C).

Wyrazenie (8.20) jest do tych celéw za maXo dok¥adne, w praktyce
stosuje sig wielomian wyZszego stopnias

R, = R,(1 + at + vte + ot3). (8.22)

Rt.i Ro sa opornosciaml przewodnikas odpowiednio w temperaturze
t°% io0 °C, za§ a, b, ¢ 83 statyml empirycznymi. Wyznacza sig¢ Je z
pomiaru Rt w okreslonych i staiych temperaturach, tzw.punktach ter-
mometrycznych (np. temperatura topnienia lodu, wrzenia wody, topnie-
nia Cd itd.).

W zakresie bardzo niskich temperatur, w tzw., temperaturach helo-
wych, niektére metale (np. T1, Pb, Nb) wykazujg osobliwo$é,zwana nad-
przewodnictwem. W pewnej, charakterystycznej dla metalu temperaturze,
opornosé spada do wielkosSci niemierzalnie maZejj; prad indukowany w pe-
$11 nadprzewodnika moze sig w nim utrzymywaé przez cate miesigce bez
widocznych zmian w natgzZeniu., Dalszg cechg nadprzewodnika jest ideal-
ny diamagnetyzm: we wngtrzu metalu wektor indukcji magnetycznej B=0.

Mimo, iz wyjasnienie mechanizmu nadprzewodnictwa natrafiazo na
wielkie trudnosdci i podane zostaXo zupeinie niedawno, praktyczne jego
zastosowania rozwingxy sig o wiele wczesniej. Wykonuje sig mianowicie
elektromagnesy z uzwojeniem nadprzewodzgcym, siuzgce do wytwarzania
pSl magnetyoznych o bardzo duzym natezeniu, W niedalekiej przyszosci
przewiduje sig wykorzystanie nadprzewodnika do przesyzania energii
elektrycznej na duze odlegosci, poniewaz nie zachodzg w nim straty
wywotane ciepiem Joule ‘a,
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862020 PéZprzewodniki
P6xprzewodniki stanowig obszerng klasg¢ materiatdw o przewodnict-

wie lezgcym w szerokim zakresie: od 102 g0 1078 q 1 mt, Nalezg do
nich zaréwno pierwiastki: selen (Se), tellur (Te), german (Ge), krzem
(si) 1 inne, jak i zwiazki: tlenek miedziawy (Cu 0), siarczek miedzis-
wy (Cuzs), antymonek indu (InSb), arsenek cynku %ZnBAsz),siarczek cyn-
ku (2nS) 1 inne. Najbardziej uderzajgca ich cechg jest niezwykle sil=
na zaleznosé przewodnictwa wiasSciwego od temperatury. Dla péiprzewod=
nikéw semoistnych, tj. bedgcych materiatami niezwykle czystymi, bez
-8ladéw domieszek, zaleznos$é ta ma postad

g = O’o ° e-AE/sz’ (8.23)

przy czym o, Jest pewng staig (ele nie jest to przewodnictwo w OK),
OE Jest tzw. energig aktywacji, charakterystyczng dla péZprzewodnika,
k stazg Boltzmanna, a T temperaturg bezwzgledng. Czynnik 2 bierze sig
stad, 2e pojawieniu sig¢ elektronu przewodnictwa towarzyszy jednoczes-
ne pojawlenie sig¢ dziury, wnoszgcej dodatkowy udziaxz do przewodnict—
-wa materialu. Energia aktywacji zawlera sig¢ w granicach od 0,1 do 2 eV;
otrzymuje sig jg w badaniach zaleznosci o od T. JeSli na podstawie
tych badail sporzgdzimy wykres zasleznosci lng od 1/T, to z nachylenia
odpowiadajgcej mu prostej mozemy znalezé A E/2k. Im  wyzsze AE, tym
silniejsza zaleznodé o (T); przy AE > 0,5 eV péiprzewodnik w tempe-
raturze 100K i ni2szej praktycznie nie przewodzi pradu elektrycznego,
Jest wigc izolatorem.

Nalezy tu podkreslié, Ze nawet bardzo niewielka ilosé domieszki,
rzegdu 10'10 % molowych, moze podwyzszyé przewodnictwo 100 1 wigce]
razy. Ilodci takie sg niewykrywalne nie tylko tradycyjnymi metodami
analizy chemicznej, ale nawet metodami analizy $ladowej (np. metodsg
spektrograficzna). Przewodnictwo elektryczne takich materiaXéw stano-
wi najbardziej czule kryterium ich czystosci.

Pétprzewodniki sgq materiaZzami o niezwykle waznych zastosowaniaoch.
Mozna powiedzieé, iz wlaénie'wprowadzenie pStprzewodnikéw do wepdi-
czesnej elektroniki spowodowazo prawdziwg rewolucje¢ w konstrukcji ape-
ratury elektronicznej, rozszerzajgc niebywale mozliwosci w tym zskre-
sie (maszyny matematyczne). Przyczyng tak duzego postgpu jest migdsy
innymi duza niezewodnosé 1 miniaturowe rozmiary elementéw elektronicz
nych, budowanych z péiprzewodnikéw, Do podstawowych elementéw nalesza
tu dioda krystaliczna, zastgpujgca diode prdézniowg i tranzystor, za-
stepujacy triode prézniowg. Dalszy postep umozliwii konstrukcje ukia-
déw wielofunkeyjnych, tzw. obwodéw scalonych, zastgpujacych szereg
diod i tranzystoréw wraz z potgczeniami migdzy nimi.
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Silna zaleznos$é przewodnictwa od temperatury jest wykorazystywana
zaréwno w termometrii jak i w konstrukcji termistordéw. Sg to elementy
pSiprzewodnikowe o duze]j opornosci w stanie "zimnym"; ograniczajg
przez to uderzenie prgdu we wiaczane] aparaturze., Po pewnym czasie nea-
grzewajg sie, ich opornosé maleje, a natezenie pradu stopniowo osigga
warto$é nominalng., Innym przykiadem zastosowania pdZprzewodnikdéw jest
konstrukcja ogniw termoelektrycznych; ukady o duzej 1liczbie takich
ogniw, potgczonych w tzw. baterie sXoneczne suzg do bezposrednie] ze-
miany energii promieniowanis Stofica na energig elektryczng (rakiety
kosmiczne).

8.2.3. Elektrolity

Przewodnictwo jonowe wykazuja zardéwno ciata state (krysztaty jo-
nowe o podwyzszonej temperaturze), ciecze (roztwory elektrolitéw) jak
i zjonizowane gazy. Przewodnictwo wtasciwe tych materiatéw réwniez za-
lesy od temperatury,przy czym najsabszg zaleznosé obserwuje sig w ga=-
zach, O przewodnictwie gazdw bgdzie jeszcze mowa w rozdziale 8.6, w
ktérym zajmiemy sig energia jonizacji czgsteczki gazu.

W elektrolitach ciektych koncentracja jonéw moze niekiedy zalezed
od temperatury; poza tym ruchliwos$é jonéw w mysl (8.17) rosnie wraz
ze wzrostem temperatury dos$é szybko, poniewaz wapdiczynnik Ilepkosci
n silnie maleje ze wzrostem temperatury. W rezultacie przewodnictwo
roztworu elektrolitu jest wigksze w wyzszej temperaturze.

Krysztaly zbudowane z jonéw (np. NaCl) sa w temperaturze pokojo-
wej dielektrykami. WyraZne przewodnictwo jonowe zaczyna sig¢ w wigk-
szosci krysztaiéw jonowych dopiero w temperaturze wyzszej od 400 och
W tej temperaturze amplituda drgad termicznych jonéw osigga na tyle
duze rozmiary, ze mogg powstawadé tzw. defekty strukturalne, czyli od=-
8tepstwa od idealnej periodycznosci sieci.

Szczegdtowe oméwienie mechanizmu ich powstawania, koncentracji i
udziatu w przewodnictwie przedstawiona bedzie w innym przedmiocie
(chemia fizyczna).

8.3. Prawa Kirchhoffa

Prawo Ohma, w dowolnym sformutowaniu, jest srodkiem maZo skutecz-
nym w rozwigzywaniu bardziej ztozonych obwodéw, zawierajgcych rozga-
Xe¢zienia pradu. Rozwigzanie polega na tym, ze zawarte w ukXadzie opor
nosci Ri oraz sizy elektromotorycznece i uwazamy za znane, poszuku-
jemy natomiast natezer praddéw i, wraz z ich znakami. Do tego celu
stuzg réwnania Kirchhoffa pierwszego i drugiego rodzaju,liniowe wzgle-
dem 1k i dlatego tatwe do rozwigzania, np. metodg wyznacznikéw,
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Réwnania Kirchhoffa pierwszego rodzaju dotyczg wgzidéw ukiadu, tj.
punktdéw, w ktérych spotykaja sig co najmniej 3 przewodniki. Poniewaz
w stanie stacjonarnym potencjat wgzia nie ulegs zmianie z biegiem cza-
su, przeto suma *adunkéw wnoszonych do wgzta przez poszczegélne prady
jest réwna zeru. Wobec tego

n

2 i, =0, (8.24)
k=1

czyli suma natgzenl praddéw schodzacych sig w wezZle jest réwna zeru.Pra
dy wpiywajace do wgzia uwazamy umownie za dodatnie, prady zed wycho-
dzgce - za ujemne. Réwnar Kirchhoffa pierwszego rodzaju, (8.24), moz-
na napisaé dla dowolnego obwodu o jedno mniej, niz wynosi liczba wez-
¥éw w obwodzie.

Rys. 8=2

Réwnania drugiego rodzaju mozna napisaé tylko dla obwodu zamknig-
tego, Na rysunku 8-2 przedstawiono obwéd zamkniety ABC? stanowiacy
fragment wigkszej sieci elektrycznej. Zaznaczono opornoéci Ri’ opor-
nosci wewngtrzne ogniw Rwi oraz ich sity elektromotoryczne €4 wraz
ze znakami, Wielkosci te uwazamy za znane, Nie znamy natomiast nateg-
%ed pradéw ik’ a nawet nie wiemy, w ktérgq strong piyng poszczegdlne
prady. Wobes tego kierunki ich przepiywdéw mozemy zaznaczyé dowolnie
jesli w dalszym rachunku okaze sig, Ze np. 13 < 0, to w rzeczywisto=-

dci 13 ptynie (w sensie konwencjonalnym, tzn. kierunek przepiywu
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pradu odpowiada kierunkowi ruchu zadunku dodatniego) w kierunku prze-
ciwnym, niz zaznaczony na rysunku.

Rys. 8=3

Jesdll jednak juz przyjeto kisrunki ik’ jak ne rys., 8=-2, to ozna-
oza to, 2e V, > V,, V, > V317, > V3. Przesledzimy teraz spadki po=-
tencjatu wzdxus drogi AC (rys. 8-3). Memy tu spadek potencjaiu 13R4,
nastepnie skokowy wzrost potencjazu o €5 i ponownie spadek 13Rw3.WQ
diug prawas Ohma:

V-5 = 13(R4 + Rw3) - Eq0
Analogicznie
V-V, = 1,(R, + Ry + Ryq) = CH
oraz
Vo = V5 = 12(R3 +Rp) =€,

Mozna teraz dodaé te rdwnania w taki sposéb, by wyeliminowad po-
tencjaty weziéw. Otrzymemy wéwczas

11(R1 + R2 + RW1) + 12(R3 + sz) - 13(R4 + RWB) = 81 v 52 == 530

Ten sam wynik mozemy réwniez otrzymaé bez posiugiwania sig¢ prawem
Ohma, lecz stosujgc nastgpujaca konwencje:

i. Wybieramy okreslony kierunek obchodzenia obwodu =zamknigtego,
gaznaczajqc go na rysunku.

ii. Prgdy piynace zgodnie z przyjetym kierunkiem obchodzenia ob-
wodu uwazamy za dodstnie (i,, i), przeciwnie za$ - za ujemne (13).

1i1i. SiZy elektromotoryczne, podwyzszajace potencjat w kierunku
obchodzenia obwodu uwazamy za dodatnie (61, 52), obnizajgce zas$ - za
wjemne (53).

Stosujgc tg konwencje mozemy ogdlnie sformuzowaé prawo Kirchhoffa
drugiego rodzaju w nastgpujgcy sposéb
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r 8
S R TE= S e T (8.25)
m=1 n=1

czyli suma si* elektromotorycznych w obwodzie zamknigtym rdéwna jest
sumie spadkéw potencjaiu.

Ryse. 8-4

Réwnai Kirchhoffa drugiego rodzaju mozna napisaé tyle, ile wynosi
najmniejsza liczba figur geometrycaznych, z ktdérych mozna jednoznacz-
nie zbudowaé peiny obwéd. Schematycznie obwdéd ztozony jest przedsta-
wiony na rys. 8-4. Mozna go zbudowaé jednoznacznie z ozterech tréjka-
téw ABE, BEC, CED, DEA; moZna go takze zbudowaé z trzech tréjkatéw,
np. ABD, CBD, ABE i z czworoboku ABCD, Kazdy ze sposobéw prowadzi do
czterech rdéwnai liniowych drugiego rodzaju. Wykorzystanie wegzidéw pro-
wadzi nas do dalszych czterech réwnar liniowych pierwszego rodzaju,co
pozwala jednoznacznie obliczyé 8 natezerd praddw,

8s4. Niektére metody pomiarowe w_elektrodynamice

8e4.1, Niezrdwnowazony mostek oporowy Wheatstone ‘a

Pomiar opornodci metodg mostka Wheatstonea jest ogdélnie znany =
przypomnimy go tu jedynie krdétko. Schemat ukadu Jest przedstawiony
na rys. 8-5. Mostek sktada sig 2z czterech opornikdw R1-R4,polaczonych
w czworobok; jedna z przekstnych zawiera galwanometr wraz 2z urzadze-
niami pomocniczymi (wyZacznik, boczniki do zmiany oczulosci), druga
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jest zasilane z baterii akumulatoréw o sile elektromotorycznej e i o=
pornosci wewngtrznej Re Przypusdémy, %2e mierzong opornoscig jest Ry

— natomiast R2-R4 8g znane, przy tym
R2 moze byé zmieniana w znany spo-
aéb.

W ogélnym przypadku, gdy zamk-
nigcle wytgcznika W powoduje prze=-
piyw pradu 15 przez galwanometr,
prawa Kirchhoffa prowadzg do na-
stepujgcego ukzadu rdéwnani:

At -1, -1, + 1 =0,
B: 1y =13 =-1ig =0,

D: i, -1, +15=0, (8426)
ABD: 1,Ry + igRg = 1R, = O,

BCD: iRy = 4,R, - igRg = O,

e ABCE: iR, + 1,R, + igR =€

€ Rw Uktad ten mozna rozwigzad, tj.

Rys. 8=5 obliczyd 11-16, np.metoda wyznacz-

nikéw. W obecnej dyskusji zachowa-

nia sig mostka niezrdéwnowazonego nie jest to potrzebne., Zajmiemy sig

wpiery mostkiem zréwnowazonym, tj. doprowadzonym do stanu 15= 0, za

pomocg doboru odpowiedniej wartosci R,. Mamy wéwczas Vg = Vp» oraz
11 = 13, 12 = 14, a z czwartego i piatego réwnania (8.26)

R1 R

o = n.% (8.27)
3 4

(8.27) jest warunkiem réwnowagi mostka; jes$li cztery oporniki
mostka R1-R4 spetniajgq takg proporcjeg, to 15 = 0, czyli przez galwa-
nometr nie pynie prad po wigczeniu W. Warto zauwazyé, 2ze wielkosé
¢ nie ma wptywu na stan réwnowagl mostka, jesli tylko prad pZyngcy
przez R1-R4 nie powoduje zmiany ich opornosci wskutek wydzielajgcego
eig ciepZa Joule ‘a. Wielko$é e wpiywa natomiast na czuZo$é mostka,tj.
doktadnosé, z Jakg mozna okreslié stan rdéwnowagi,

W tym stanie mamy rdéwniez

i,R; = iRy = 0.
Przypudémy teraz, ze z jakichkolwiek powodéw opornosé R, ulegla
niewielkiej zmianie: R, jest na przykZad termometrem oporowym umiesz-
czonym w przestrzeni, ktérej temperatura nas interesuje, czyli
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R, = 301(1 +at), (8.28)

gdzie Ro1 jest opornoscig zmierzong w O °C. a o temperaturowym wspé*
oczynnikiem zmian opornodci. Jesli mostek zostat zrdéwnowazZony w tempe-
raturze 0 °c, to w temperaturze °¢ przez galwsnometr begdzie piyngZ
prad, poniewaz

14Ryq + 14Rgq @t = 1R, + i5Rs = O,

1 Rot t (8.29)
5"11?{3—'“0 .

czyli

Wildzimy, Ze prad 15 Jest proporcjonalny do temperatury; w tym
przypadku cziony nieliniowe w (8.28) mozna zwykle pomingé.W ten sposéb
mozna mierzyé bezposrednio temperaturg, lub np. indukcje pola magne-
tycznego, jesli R4 Jest sondg bizmutowg. Sonda bizmutowa jest opor-
nikiem, nawinigtym na materiaz izolacyjny przy uzyciu drutu bizmuto-
wego; zmiany opornosdcl tego metalu sg proporcjonalne do wielkoseci B
indukecji pola magnetycznego. Widaé réwniez, Ze mostek niezrdéwnowazony
moze byé wykorzystany jako element automatycznej regulacji, poniewaz
zmiana znaku temperatury powoduje zmiang kierunku przepiywu pradu 15.

8e4.2, Obwéd RC

Mamy dany obwéd zozony z pojem- s
nosci Co, opornosci R i baterii o
napigeiu Uo' pozgczonych szeregowo ;
(rys. 8-6). Kondensator nie przewo- L __
dzi pradu statego, dlatego przepiyw Co—— b] 69

>
™

nagstepowaé moze jedynie w okresie = Cy
tadowania kondensatora. Jesli opor- = 5i

nik R jest duzy, to proces biegnie -T:—_

wolno; aktualne napigoie U na kon- 4w o

densatorze i jego zmiany mogg byé
mierzone za posrednictwem elektrome-
tru (G4 << Cy), a Zgczna pojemnodé wynosi C = C, + C;, Prad ado-
wania 1 moZemy obliczyé na podstawie prawa Ohma: i zalezy od aktu-
alnej réznicy napigé U, i U, poniewai oba napigcia skierowane sg w
‘strony przeciwne

Rys. 8=6

Cir o p 89 _ pe QU
u,-U=1R=R¥-Rrec §, (8.30)
stgd mamy au dt

U. -0 RC

(]
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oraz :
-1ln (U° -U) = g% + const.

Wartodé statej w ostatnim réwnaniu wyznaczyé mozna 2z warunku poe-
czgtkowego: t = 0 DU = 0, czyli const = -1ln U,. Wobec tego
U t

1 2 =
ilub
U = Uy(1 - o~t/RO), (8.31)

Pojawiajgocy sig tu iloczyn RC = ¢ ma wymiar czasu i nosi nazwg
statej czasowej T obwodu. T rdwne jest odstepowi czasu, po ktérego
uptywie napigcie na kondensatorze wzrosnie do (e - 1)/e czesci U,.
Prostszg definicjg czasu © mozna otrzymhé dla obwodu podobnego do
8-6, lecz nie zawierajgcego baterii. Kondensator C° trzeba wéwczas na-
adowaé z zewngtrz do napiecia Uo, a po odigczeniu baterii obserwuje
8lg spadek U do zera, wskutek rozzadowania si¢ = kondensatora przez
opornosé R. Analize tego przypadku pozostawiamy Czytelnikowi. Dla ta-
‘kiego obwodu T réwny jest odstgpowi cza-
su, po ktérego upkywie napigcie na kon-
densatorze maleje do 1/e swej poczatko-
wej wartosdci.

W uk¥sdzie wspéirzgdnych anB/(Uo'U)
wzglegdem t wykresem par liczbowych
(t, U) jest linia prosta. Z jej nachyle-
nis mozna otrzymaé stata czasowg RC ukla
du, a znajge C mozna obliczyé R. Ukzad
RC stanowi wigec metodg pomiaru duzych o-
pornodci, praktycznie R > 10° @ . Mose
gig zdarzyé przypadek, gdy pary liczbowe
(t, U) uktadaja sig na krzywej, nie na
prostej. Odpowiada +to nieliniowe] opor-
nosci R(U), zaleznej od napigcia. Opor-
nosé taka nie spernia prawa Ohma R=U/i,
bowiem R nie Jest wielkoédig stazg,

Rys. 8=T Zauwazyé trzeba ponadto, ze elektro-

' metr E nie powinien pobieraé prgdu. W

tym celu opornosé jego izolacji powinna byé bardzo duza, a pojemnosé
elektrostatyczna bardzo mesta. Miernikiem o takich wZasnosciach Jest
elektrometr kwadrantowy DoleEalka, przedstawiony na rys. 8=7T. Jest to
puszka metalowa rozciefa na 4 kwadranty wzajemnie od siebie izolowa-
ne. Na parg przeciwlegiych kwadrantdéw przykrada sig z baterii nepig-
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ocie pomocnicze U_, zas na druga parge mierzong rdésnice potencjaidéw Ex‘
W drodku puszki znajduje sig elektroda metalowa w ksztaZcie "biszkop-
ta", zawleszona na cienkiej nici metalicznej. Pod wpiywem Zadunkdéw zgro-
madzonych na kwadrantach biszkopt doznaje dzisZania pary sii; obrét
obserwowany jest zs pomoog przesunigcis promienia swietlnego na aska-
11 S. Przyrzqd ten ma pewng swojq wZasng pojemnosé elektrostatyczng
01, 2wykle bardzo matg, Poniewaz zasada jego dziaXania opiera sie na
wystgpowaniu gix Coulomba, elektrometr nie pobiera prgdu podeczas po -
miaruj moze wigc rdéwniez 2znaleZé zastosowanie w pomiarze eilty elek-
tromotorycznej ogniwa.

8e4+3e Metoda kompensacyjna pomiaru SEM ogniwa

Najbardzie]j rozpowszechniong metodsg pomiaru sixy elektromotorycz-
nej jJest metoda kompensascyjna, polegajaca na zrdéwnowazeniu sily elek-
tromotorycznej znanym spadkiem potencjaiu o przeciwnej polaryzacji.

P,

el
/

10 R 2
Ar ‘0 0 D

ﬂqlkf ,
Eo, RW
Rys. 8-8

Zasadniczy schemat tej metody jest przedstawiony na rys. 8-8, Bateria
akumulatordéw o sile elektromotorycznej e, 1 opornosci wewngtrznej R,
powoduje przez opornicg AD przepiyw pradu o natezeniu

€o
i = °
o ﬁo + Rw

Czgs$é spadku napigcia o wielkosSoi i,°R Jest odgeieziona i przy-
iozona na jedno z ogniw €q lub Exs zaleznie od poXozenia przeXgcznika
P2. Przypusémy, ze w pierwszej fazie pomiaru P2 jest zamknigty Jjak
na rys. 8=8, przy czym €4 Oznacza ogniwo wzorcowe o dokXadnie zna-
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nej sile elektromotorycznej. Chwlilowemu 2amknigciu przegcznika P1
towarzyszy na ogéz przepiyw pradu w obwodzie odgaigzionym, wskazywany
przez galwsnometr G. Metodg préb mozemy- tak dobraé opornosé wzdiuz
AC, by po zamknigciu P1 w obwodzie ABCA nie piynat prad. Jesli na-
stapito to dla opornosci R1 wzdxuz AC, to:

. €o
10R1 =REN= R1 m - € = 0, (8.32)

€o
€4 =Ry T FE

o w

atgd

Zmieniamy obecnie za pomocg P2 ogniwo €, Da ey i ponownie wyszu-
kujemy takg wartos$é opornosci wzdiuz AC - tym razem bgdzie to np. Rx-
by galwsnometr G nie wakazywaz przepiywu pradu. Mamy analogicznie

€x = By ° Eo T R °

W takim razie podzielenie obu réwnaid stronami daje proporcje:

€ R
5y S (8.33)
€4 R1

pozwalajacg obliczyd €y 26 znanego ¢, i zmierzonych Rx, R1. W
(8+33) nie wystgpuje kopotliwe staZe €y Rw trudne do wyznaczenia,

Ogniwem wzorcowym, najbardziej rozpowszechnionym,jest ogniwo Wes-
tona o sile elektromotorycznej:

e. = 1,0183 V. w 20 °C.

w
Zaleznosé e od temperatury jest niewielka:

de
—¥ 2 -40 pv/1 c,
dt

lecz w doktadnych pomiarach musi byé uwzgledniona. Opis konstrukcji
ogniwa opuscimy.

i 8.5, Kontaktowa réznica potencjaidéw

Jedli zlgczymy z sobg Scidle dwa rézne metale A i B (rys. 8-9),to
powstaje migdzy nimi niewielka rdéznica potencjaiéw, rzedu kilkudzie-
sigciu miliwoltdéw, zwana kontaktowg réznicag potencjeidweZnacznie wigk
szq kontaktowg rdéznice potencjatréw wykazuje granica faz metal/péiprze-
wodnike, Zakadamy pbzy tym, iz zaréwno oba metale jak i styk migdzy
nimi 2znajdujg sig¢ w tej samej temperaturze.
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Pojewienie sig tej réznicy potencja-
¥6éw jest zwiazane 2z rdiznym potencjatem
chemicznym elektronéw w obu metalach.
Nie bgdziemy tu blizej objasniaé tego po-
jecias bardziej szczegdtowo zapozna sig
z nim Czytelnik W kursie chemii fizycz-
nej. Warto jednak wspomnieé o tym, 12
dla dwu stykajgcych sig metali, pozosta-
jacych w stanie rdéwnowagi,potencjaxt che-
miczny elektronéw w kazdym z tych metali
musi byé takli sam; pewna liczba elektro-
néw przepiywa przez granicg faz z Jedne-
go metalu do drugiego, co powoduje  po-
wetanie réznicy potencjakéw.

Rozwazmy bardziej szczegéiowo skoki potencjatéw dla punktéw 1=6
(rys. 8=9), umieszczonych bardzo blisko granicy faz obu metali.

12 - skok potencjazu préznia/metal A, zwigzany ze skokiem koncen-

tracji elektronéw na granicy faz,

23 - punkty ekwipotencjalne,

34 - skok potencjaiu metal A/metal B, czyli wewngtrzna kontaktowa

réznica potencjatdéw; wielkosé niemierzalna,

45 - punkty ekwipotencjalne,

56 - skok potencjatu metal B/préznia,

16 - zewngtrzna kontaktowa réznica potencjaiéw, U

AB*®
Korzystajge z definicji potencjaXu przewodnika mozemy napisaé

Rys. 8-9

1
Upp = |Vp = Vy|=— [W,_-V¥g_}| (8.34)

gdzie WAcn oznacza pracg usunigcia elektronu z powierzchni metalu A,
czyli prace wyJjsScia elektronu., Widzimy wigc, Ze kontaktowa réznica
potencjatéw jest proporcjonalna do réznicy prac wyjscia elektronu z
obu metali.

Mozna %Zatwo wykazaé, ze umieszczenie migdzy dwoma metalami A i B
trzeciego przewodnika, C, nie zmienia kontaktowej rdéznicy potencjaxzdéw
UAB’ Zamknigcie obwodu (rys. 8-9) nie spowoduje przepiywu prgdu, poO=
niewaz w obwodzie wystgpowaé bgdg dwa skoki potencjaiéw o jednakowej
wielkosci i przeciwnym kierunku.

Sytuacja pod tym wzglgdem ulega zasadniczej zmianie Jjezeli w ob-
wodzie, zawierajacym kilka stykéw réznych metali, jeden z nich ma tem-
peraturg inng niz pozostaze. Przykiad takiego obwodu,sktadajgcego sig
z dwéch réznych metali, jest pokszany na rys. 8=-10. Przewodnikami ze-
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mied? mied?

Konstantan

Qlo°c teoc

o\
Q

Rys. 8=10

wnegtrznymi sg najczegsciej druty miedziane, sSrodkowym odcinkiem moze
byd konstantan., Powstajg dwa styki zwane stykemi termoelekirycznymi,
przy czym czgsto Jeden z nich umieszcza sig w kapieli o temperaturze
0 °C, Ux¥ad nosi nazwg termopary; powstajgca w nim sita elektromoto-
ryczna (TSEM) zalezy wéwczas od temperatury styku "goracego"

£=a + bt + ct, (8.35)

Na podstawie znajomosci staxych a, b, ¢ (pomiar . w kilku zna-
nych temperaturach) oraz ¢ mozemy dokonywaé pomiaru temperatury w
interesujgcych nas punktach. W przypadkach, gdy wystarczy mniejsza do-
kXadnosdé, odczytuje sig t bezposrednio na miliwoltomierzu (wycecho=
wanym w °C); w pomiarach bardziej dokZadnych mierzy sig@emetodg kom-
pensacji. W pierwdzym przypadku wynik jest tym dokZadniejszy,im wigk-
sza jest opornos$é wewngtrzna miernika w pordwnaniu do opornosci ter-
mopary. Sita elektromotoryczna termopary miedz/konstantan wynosi w
przyblizeniu 50 uv/1 °cC.

AN ANANA)

Promieniowanie

Rys. 8=11
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Poszczegbélne termoogniwa mozna taczyé szeregowo w termostosy (rys.
8-11), ktérych czukosé Jest tak duza, ze znajdujg =zastosowanie w po-
miarach natgzenia promieniowania. Szereg stykéw termoelektrycznych B,
przyklejonych do izolowanej oraz poczernionej od zewngtrz cienkiej fo-
1ii metalicznej, tworzy ukiad stykéw goracych; anslogiczny szereg aty-
kéw A, chronionych przed promieniowaniem, jest zbiorem stykéw "zim-
nych", Powstajgca w uktadzie TSEM jest'éciéle proporcjonalna do ggs-
tosci mocy promieniowania, a dla promieniowania monochromatycznego nie
zalezy od diugosci fali tak dzugo, Jjak dXugo absorpcja w poczernionej
folii metalicznej jest zupeina. Termostos moze znalezé réwniez zasto-
sowanie odwrotne, jako bezposredni przetwornik energii promieniowania
w energig elekiryczng. Tego typu baterie sioneczne montuje sig w po-
Jjazdach kosmicznych.

Odwrdceniem efektu termoelektrycznego (dana réznica temperatur,
powstaje rdéznica potencjaidéw) jest efekt Peltiera. Polega on na tym,
ze Jesli przez termoparg przepiywa prad elektryczny, to na kazdym ze
stykdéw wytwarza sig@ troche inna ilosé ciepza, powstaje wigc rdznica
temperatur. Jesli przez q oznaczymy ilosé wydzielajacego sig ciepia
Joule'a, na kazdym ze stykéw taka samg, a przez qp dodatkowy efekt
cieplny wynikajacy ze zjawiska Peltiera, to na styku gorgcym wydziela
sig 1losé ciepza

Q. =4aq+ q_,

g P
a8 na zimnym
Qz SR qpn
zatem .
9, = 7 (@ - Q) (8.36)

Jest miarg efektu Peltiera; jednoczesnie jest to ciepzo przetranspor-
towane w ciggu jednostki czasu od styku zimnego do styku goracego.
Termopara, pracujgca w ukiadzie odréconym, jest wigc "pompg cieplng"
i stanowi zasadg konstrukcji ukXadéw chzodzgcych (lodéwki termoelek-
tryczne).

8.6, Potencjakt jonizacji czgsteczki gazu

Gazy réwniez moga przewodzié pragd elektryczny, jesli zawierajg Jjo-
ny. Powstajg one pod dziataniem czynnikdéw jonizacyjnych, do ktérych
nalezg: wysoka temperatura, promieniowanie nadfioletowe 1 rentgenow-
skie, czgstki emitowane przez substancje radiosktywne, wreszcie zde-
rzenia z elektronami. W tym paragrafie bgdzie nas interesowai wyZgcz-
nie mechanizm zderzen czgsteczek gazu z elektronami.
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Jesli energia elektronu, poruszajgcego sig w rozrzedzonym gazie
jest niewielka (kilka eV), to w zderzeniu praktycznie nie zachodzi
wymiana energii migdzy elektronem a czgsteczkg. Rozwazmy takie zderze-
nie bardziej szczegbiowo: niech m i M oznaczaja masg elektronu i
czgsteczkis V4 jest prgdkoscig elektronu przed zderzeniem, Vo, = PO
zderzeniu. Prgdkosé czgsteczki przed zderzeniem jest niewielka i mo-
zemy Ja zaniedbaé, natomiast predkosé po zderzeniu oznaczymy przez V.
Zasady zachowania maja w tym przypadku postad

mvy = mv, + MV,

S =B o B 2
5 MVy = 3 OV, + MV©,
Rozwigzanie tego uktadu réwnand prowadzi do obliczenia predkosci
czgsteczkl po zderzeniu :
2 mv, 2 mv,

g — (8.37)
m+ M M :

V =

poniewaz m << M, Zysk energii kinetycznej AT czasteczki Jjest taki

sam Jak jJej strata dla elektronu wskutek zderzenia
?

2 m"vy 4m

At = dwv? 8 —5t = 21, (8.38)

gdzie To oznacza energie kinetyczng elektronu przed zderzeniem., Wi-
dzimy z tego, ze AT/T jest bardzo mate, poniewaz m << M, Na przy-
k*ad dla elektronu i atomu helu 4m/M = (1 4)/(1840 4) £ 5°10 4, zna-
czy to, ze tylko 0,05% energii wymienia elektron w jednym zderzeniu 2z
atomem helu. Wynik ten ma ogdélniejsze znaczenie i prowadzi do naste-
pujgcego wnioskus w zderzeniu sprezystym czastki bardzo lekkiej z bar-
dzo cigzkq wymiana energii jest bardzo niewielka, czyli zderzenie ta-
kie jest nieskuteczne.

Niewiele zmienia sig obraz zderzenia elektronu z czgsteczkg w mia-
r¢ wzrostu energii kinetyczne] To elektronu, ale tylko do pewnej gra-
nicy, zwanej potencjatem jonizacji V..

Potencjat jonizacji atomu (czasteczki) wyrazony w elektronowol=-
tach, réwny jest liczbowo pracy oderwania pierwszego elektronu odato-
mu (czgsteczki), Z chwilg osiagnigcia przez elektron energii T = eVJ
zderzenie z czasteczkg jest catkowilcie niesprezyste, a strata energii
kinetycznej jest réwna T . Rozwazania te staiy sie podstawg opraco-
wania przez Francka i Hertza metody pomisru potencjazéw jonizacji,
przedstawione]j schematycznie na rys. 8-12. Banka szklana, zawierajgca
badany gaz pod cisnieniem kilku mm Hg zaopatrzona jest w trzy elek-
trody:
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Rys- 8=12

i. Katode K, wykonang z oienkiégo drutu wolframowegosPo rozgrza-
niu pradem z baterii elektrycznej do wysokiej temperatury,katoda emi
tuje elektrony.

ii. Siatke S, stanowigcg spirale z drutu i otaczajgca katode.Do-
datni potencjat siatki VS, przyzozony z ukiadu potencjometrycznego,
powoduje przyspieszenie elektrondw.

1ii, Anode A, stanowigcag cylinder metaliczny, otaczajacy poprzed-
nie dwie elektrody. Potencjax anody [VA|:>]V8] tak,i%z elektrony przy-
gpieszane przez siatke nie docierajg do anody, natomiast dochodzg do
niej jony dodatnie, ktére mogg powstaé drogg jonizacji przez zdé-
rzenie, Prgd anody mierzony jest posrednio przez elektrometryczny po=
miar potencjaiu V,. ’ :

Jesli Vs <.Vj, elektrometr
nie rejestruje przepiywu pradu
(rys. 8-13).Z chwila, gdy siet-
ka osiggnie potencjax jonizacji,
prad jondw dodatnich szybko ro-
$nie; jony te powstaja tuz w
poblizu siatki.Przy Vs = VJ jo-
nizacja nastepuje przed siatka,
a jej dodatni potencjax wpiywa
hamujgco na ruch jonéw dodat-

7]

nich; odpowiada to spadkowi na- Vs
tezenia pradu i,.Ponowny wzrost Rys. 8-13
obserwuje sig dla Vs = 2VJ, poniewaz po pierwszej jonizacji w okoli-

oy réwnej porowie odlegXosci katoda-siatka elektron zdgzy jeszcze u=
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zyskaé energig wystarczajgog do jonizacji atoméw, znajdujgcych sie w
poblizu siatki. Odstep migdzy kolejnymi maksimami 1A wynosi zatem VJ.

8.7, Pole magnetyczne przewodnika gz pragdem

DookoZa %adunkéw elektrycznych umieszczonych w prézni panuje pole
elektryczne, przejawiajgce sig dzisianiem sit wywieranych na Zadunek
prébny. Sity wystepujg réwniez wtedy, gdy Zadunki sie poruszaja. Jed-
nakze wzajemne oddziaiywania Zadun-
kéw w ruchu sg bardziej ztozone niz
tadunkéw w spoczynku i nie moga
byé wyjasnione za pomocg Jjedynie
praw elektrostatyiki. Przykadem mo-
ga tu byé dwa przewodniki z pradem
(rys. 8-14).Doswiadczalnie stwier-
dzono, ze gdy prady piyngce w obu
przewodnikach majg kierunki zgodne,

Rys. 8-14 dziarajg migdzy nimi siiy przycig-

gania; gdy prady piyng w kierun-

kach przeciwnych, przewodnikl dziaxzajg na siebie siXami odpychania.

Dziatania, wystepujace migdzy przewodnikami z pradem tXumaczymy 2za

pomocg pojgcia pola magnetycznego - uwazemy, 2e przewodnik 2z prgdem
Jest Zrédtem pola magnetycznego.

Do zbadania wkasnosci tego pola siuzy tzw. obwdd

5 prébny z pradem (rys. 8-15), ktéry jest "detektorem"

l pola magnetycznego, podobnie jak Zadunek Jjest "de~

tektorem" obecnoscl pola elektrostatycznego. Jest to

| I pZaska ramka z przewodnika o dowolnym ksztaXcie,leocz

: bardzo maXiych rozmiardéw. Przez ramke piynie prad o

S natezeniu I, ponadto moze sig ona obracaé bez tar-

cia wokétx jednej z jej osi, lezace] w pZaszczyZnie

obwodu. Iloczyn natezenis prgdu I oraz powierzchni S

objetej przewodnikiem nosi nazwg¢ momentu magnetycz-

nego p, obwodu prébnego. Niech N begdzie wektorem

=

I jednostkowym, skierowanym wzdiuz normalnej dodatniej

do powierzchni obwodu; normalng dodatnig nazywamy

IU prostg prostopadig do powierzchni S o zwrocie od-

powiadajacym kierunkowi ruchu postepowego sruby pra-

Rys. 8-15 wej, obracajacej sig zgodnie 2z kierunkiem przepXywu
pradu w ramce. Moment magnetyczny Pn jeat wektorem o kierunku §

Bp=1+5¢K 4-n (8.39)
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Jesli umiecsoimy obwéd prébny w
poblizu przewodnika z pradem (rys. 8-
16), to nea oba boki ramki rdéwnolegile
do przewodnika dziaXeé bedg sity i
22, przeciwnie skierowane, poniewaz
na bok blizszy przewodnikowi dziale
siXa przyciggania, a na dalssy - siza
odpychania. Przy odlegtosci r obwo=
du od przewodnika g£nacznie iiekszej
od linjowych rogmiardéw ramki, czyli w
brzypadku r2£>S1/2, obie sity stano-
wig parg o momencie M zaleinym od
wtasnosci ramki (p ),przestrzeni ota-
czajgcej przewodnik z pradem (B) oraz
od orientacji By

M= x B (8.40)

Pn
lub skalarnie
M:pm'B‘Sin(po (8041)

Moment siy M Jjest wektorem le-
2g0ym w o8i obrotu 00 ramki i skiero-
wanym ggodnie z regutg sSruby prawe}
(iloczyn wektorowy w 8.40). B jest

wektorem charakterystycznym dla pola magnetycznego = nosi nazw¢ wek-
tora indukcji magnetyoznej. Wymiarem B Jest

Rys. 8=16

[M] Nem Ve Wb

[B] = —— = 1 = 1 = .
1] 31 a-me pe ' aE

1 Wb (weber) jest jednostksa strumienia wektora B; wprowadzimy jg
przy koficu tego paragrafu. Kierunek B wynika z (8.40): jesli M = O,
to o= 0 1 Ql}pm, 0ozyli wektor B ma kierunek normalnej dodatniej do
obwodu prébnego z pradem zorientowanego w polu magnetycznym w taki
sposéb, by~dzialaj§oy nafi moment sity wynosit zero., Ten warunek po-
zwala nam na wyznaczenie orientacji wektora B w przestrzenl otacza-
jacej przewodnik z pradem; jednoczesnie badania takie prowadzg do wy-
zngczenia ksztattu linii pola magnetycznego, poniewaz B Jest zawaze
etyozny do 1inii pola. Tym sposobem mozna sig przekonaé, iz linie po=-
la magnetycznego woké: przewodnika z pradem majq ksztaxt okrggéw, w
ktéryoh Srodku znajduje sig przewodnik (rys. 8-17), sq wigc krzywymi
zamknietymi. Kierunek obiegu linii jest zgodny z regula Sruby prawej,



a ggstosé 1linii pols, tJ. ich 1liczba
przebijajgca jednostkowy element po-
wierzchni ustawiony prostopadle do
1inii réwna jest liczbowej wartoseci B

0 ‘ w danym miejsou pola. W takim razie
: mamy N
| B = (8042)
D g
P przy czym dS, jest elementem powierz-

chni proatopadiym do linii pola.Stru-
mied elementarny wektora 3B przez do-

/ wolnie zorientowany element powlerz-
Q chni dS wynosi zatem dNB = B e dS, a
N

strumied przez dowolng powierzenig

| D S zamknietyg S (rys. 8-1T) s
' Ny= [ Bedgs=0. (8.43)
(s)

(8.43) jest prewem Gaussa-08tro-
gradskiego dla pola msgnetycznego. W
odréznieniu od pola elektrostatyczne-
go strumied ten zawsze wynosi zero, poniewaz linie pola magnetycznego
8 krzywymi zemknigtymi. Z tego powodu linia albo nie przebija po-
wierzechni S (wéwozas wohodzi w (8.43) z udziatem zero) lub przebija
Jja dwukrotnie; jesli wejdoie 1inii liczymy dodatnio, to wyjdcie linii
nalezy policzyé ujemnie,

W przyjetym przez nas uktadzie jednostek (SI) strumied NB miersy
sie¢ w weberach

vE. 8=1T

[NB] = 1 Wb,
Z tego powodu [B] = 1 Wb/m?,

8.8. Prawo Biota-Savarte ‘e-Laplace’a

Prawo to pozwala obliczyé indukcje pola magnetycznego, wytwarzane-
g0 przez przewodnik o dowolnym ksztaicie i w dowolnej od niego odleg=
Yodoi. Wybierzmy wzdtuz takiego przewodnike (rys. 8-18) element diu-
gosci dl, ktéry trektujemy jako wektor o zwrocie zgodnym z kierun-
kiem przepiywu pradu. Wektor =r podaje poZozenie dowolnego punktu P
poza przewodnikiem wzglgdem elementu dlj niech poza tym o= <« dl, z.
Wektor dB generowany przez element przewodnika W punkcie P jest
nieskoriczenie maly, a jego zwrot okresla regula Sruby prawej,odnoszg-
ca 8ig@ do kierunku obiegu linii pola otaczajgcege dl. W sytuacji
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przedstawionej ns rys. 8-18 dB \
jest skierowany nad ptaszcayzng
rysunku i jest do niej prostopad-
ty. Wielkosé dB zale2y od nat@ze-
nia pradu i, od wielkofei r oraz
od wzajemnej orientacji dl i =.
W zapisie skalarnym prawo Biota-
Savarte “a-Laplace ‘s ma postaé
a
dB = Lo . -——3——1 S , (8.44)

4T r
przy czym
Ho -7 Wb
—2 = 107! ——— . (8.45)
4 e Rys. 8-18

Jest statym wspélczynnikiem, zwigzanym z uktadem Jednostek. Wielkosé
Ho nogi nazwg bezwzglednej przenikaelnosci magnetyczne]} prdzni.
Korzystajac z tego, ze zwrot dB mozemy otrzymaé réwniez za pomocg
reguty Sruby prawej z iloczynu wektorowego dl x r (obrét o kat o ne-
stgpuje od dl do r), mozna (8.44) zapisaé w postaci zwigzku wektoro=-

wego:
Ko idlxzx

(B o =2 0 =5 o (8.46)
- 41

r

Prawo Biota-Savarte ‘a-Laplace a odnosi sig do elementu przewodni-
ka, ma wiec postaé réznicgkowg. Jesli choemy znaé indukcje pola, wy-
twarzanego przez przewodnik skofczonej dXugosci, trzeba wykonad cak-
kowanie (8.44) na catg interesujaca nas drugos$é przewodnika. Rachunek
ten jest prosty w dwéch szczegblnych przypadkach, ktérymi zajmiemy sig
kolejno.

8.8.1. Nieskoficzenie diugi przewodnik z prgdem

W tym przypaedku mamy (rys.8.,19) dl sino/r = dooraz R = r sing.
Wobec tego z (8.44) otrzymujemy
1 41 sin o 8in o

e = d o
2 s r R

W takim razie catkowanie (8.44) wzglgdem dtugosci w granicach
e zamienia si¢ na catkowanie wzglgdem kata o w granicach od O do g
+o P

- po dl sin ¢ Bo 1 i a o 21
B eomaomo e O 8in o o = -—— P
4 4n R 4n R

-oco o
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czyli
. Ho 21
A ’ B = e S— ° (8047)
47 R

Widzimy, ze indukcja pola magne-~
tycznego, wytwarzanego przez nieskon-
ozenie dtugi przewodnik z prgdem jest
propocjonalna do natgzenia prgdu oraz
odwrotnie proporcjonalna do odlegZos-
ci punktu od przewodnika. W odlegZos-
ci 1 m od przewodnika, przez ktéry
piynie prad o natezeniu 1 A, induko-
ja wynosi 2010~7 Wo/m2.

Rys. 8=19
8.,8.2. Przewodnik koiowy z pradem

Jeat to przypadek Jeszcze prostszy
niz 8.8.1, poniewaz tutaj (rys. 8-20)
sin o« = 1 oraz dl/R = dg . Mamy wigc

2n
Po 1 -
Bz —— — jﬂda,
R
o

o]
47
czyli
u°2ni ;
B = —= ° ' (8048)
4n R

W drodku przewodnika koZowego o pro-
mieniu 1 m, przez ktéry piynie prad o
natezeniu 1 A, panuje pole msgnetyczne o indukcji 6,28'10'7 Wb/mz.

Rys. 8-20

8.9. Prawo Ampere’a

Prawo to okresla sitg¢ dF, dziaajgacg na nieskoficzenie maly ele-
ment diugosci dl przewodnika z prgdem po umieszczeniu go w polu
magnetycznym o indukcji B. W ogdélnym przypsdku przewodnik nie musi
byé prostopadty do 1linii pola; przypusémy, ze element dl zawiera
kqt o 2z kierunkiem wektora B (rys. 8.21)., Sita 4F jest jednak
zawsze prostopadia do ptaszczyzny Tqs przechodzgcej przez dl i B,
ponadto jest proporcjonalna do diugosci elementu dl, do wielkodei
indukcji B oraz do natgienis prgdu i plyngcego przez przewodnik
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Ty

Rys. 8=-21

dF = 1 d] x B. (8049)

Do okreslenia kierunku dziaZajgcej sity uzywa sig¢ czgsto reguiy

lewej dZoni: jesli palce sg skierowane wzdiuz konwencjonalnego kie-

runku przepiywu pradu, a linie wektora B przebijajq dxol, to odchy-
lony kciuk wskazuje kierunek sity dF.

8,10, Si*a ILorentza

Sita ta wystgpuje podczas dziaZania pola elektryocznego 1 magne-
tycznego na poruszajgcy sig swobodny Zadunek., W ogdélnym przypadku obe
pola moga wystgpowaé Zgcznie, dlatego sila Lorentza ma dwie skXadowe:
elektryczng i magnetyczng.

8.10.1. Sktadowa elekiryczna sixy Lorentza

Je$li swobodny %adunek (nodnik pradu) o wielkosci q porusza sig
w polu o natgzeniu E, to dziaZajgqogq nend silg gE otrzymujemy bezpo-
drednio z definicji E

EE =% « E,

8.10.2. Sktadowa magnetyczna sity Lorentza

Sktadowa magnetyczng mozemy otrzymaé z prawa Ampere s, Jesli za-
stqpimy przewodnik z pradem strumieniem nosnikéw. Niech S bgdzie prze-
krojem strumienia noénikéw, poruszajacych sige 2z prgdkoscig v w ob-
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szarze pola magnetycznego. Zatem 1 = j * S = nqvS, gdzie J jest g¢-
stodcig pradu, n koncentracja nosnikéw. Mamy wéwczas z (8.49)

A FB =nqvsS Al Bsing,

przy czym pole dziaia na odcinek strumienia o diugosci A l. W takim
razie S-Al przedstawia objetosdé strumienia w obszarze pola,a n°S Al
jest ogbélng liczbg nosnikéw w tej objetosci. Na jeden nodnik dziaZa
wigc siza

Fg=qvVvB sin « ,

a w zapisie wektorowym
By =q¥x3B. (8.50)

Ogélne wyrazenie dla sily Lorentza ma wigc postaéd
. = q(E + ¥ x 3B (8.51)

8,10+3. Ruch Zadunku w polu magnetycznym

Przypusémy, Ze W obszar jednorodnego pola magnetycznego wpada z
pregdkoscia ¥ | B ozastka natadowana o tadunku gq (rys. 8-22). Po-
niewaz jest v L B, bedzie réw-
niez Fp | v, czyli skZadowa ma-
gnetyczna sity Lorentza (8.51)
bgdzie sitg dosrodkowg.Pod wpiy-
! N wem tej sizy czastka naXadowana
:: ! begdzie sig¢ poruszata w obszarze
pola po fuku o promieniu R, kté-
ry wyznaczymy z warunku
| i’-‘-ﬁ"-z- =qv B, (8.52)

przy czym m Oznacza masg Cz8s—
tki. Pregdkosé v w tym zwigzku
Jest wartoscig nie znangj mozemy
ja wyrazié przez réznice poten-
cjaxzéw Vy=V,=0, ktéra spo-
wodowata przyspileszenie jonu do predkosci v

Rys. 8=22

tov¥-q-u. (8.53)

Z obu warunkéw (8.52) i (8.53) otrzymujemy

1/2
R (=) "7 = Fan)'/?, (8.54)
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czyli iloczyn promienia krzywizny toru oraz pierwiastka Zadunku wias-
ciwego jest dla danych B i U wielkodcig starg. Widzimy tu, iz pro=-
mieA krzywizny toru mose byé wykorzystany do pomiaru Zadunku wasSci-
wego g/m Jjonu., Ulepszong wersje zastosowania odchylenia czastki nae-
Xadowanej do pomiasru q/m przedstawimy w nastgpnym paragrafie. Warto
jeszoze zwrdcié uwage na to, ze czgstka wpadajgca w obszar pola mag-
netycznego 2z predkoscia v zawierajacq kgt z wektorem B rdzny od
90° porusza sie nie po *uku okregu lecz po spirali. Czytelnikowi =zo-
stawiamy rozstrzygnigeie, od czego zalezy skok migdzy "zwojami" tej

spirali,

8.11, Spekirografis mas

Spektrografia mas stanowi wazny dla chemii zespét metod ekspery=-
mentalnych, ktérych celem jest pomisr Zadunku wtasSciwego jonéw 2z ich
jednoczesnym rozdzieleniem za pomocg pola elektrycznego i magnetycz-
nego. Dawniej spektrografig mas interesowall sig przede wszystkim fi-
zycy; doprowadzilta ona do wyznaczenia zbioru izotopéw prawie wszyst-
kich pierwiastkéw chemicznych. Dzis spektrografia mas jest metodg roz
powszechniong réwniez w chemii, zwaszcza organiczne]. Stanowi tu je-
dng z waZnych metod analitycznych, umozliwiajgcych dokZadne okresle-
nie sk¥adu izotopowego mieszaniny pod wzglgdem jakosciowym i ilosScio=-

wWym.

Rys. 8=23
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Podstawq spektroskopii mas jest metoda parabol, opracowana przez
Williama Thomsona (Lord Kelvin) - nig wyigocznie zajmiemy s8i¢ w tym
paragrafie. Thomson zastosowal odchylenie czgstki naiadowanej w sku-
pionych w tej samej przestrzeni polach elektrycznym i magnetycznym o
wektorach wzajemnie do siebie rdéwnolegXych: E || B (rys. 8-23). Zrédiem
badanych jondéw jest rura do wyiadowardi Z, ktérej anoda jest zaopatrzo=-
na w niewielki otwér. Powstajgce w wyladowaniu jony ujemne rozpgdzane
8g w polu elektrycznym i wydostajg sig przez otwér w obszar pdél od-
chylajgcych. Elektromagnes Jest zsopatrzony w nasadki izolacyjne, u-
mo3liwlajqce przytozenie pola elektrycznego. W uktadzie pdl narysowa-
nym na rys. 8-23 jon ujemny poruszajgoy sig w prawo jest odchylany w
g6rg i przed ptaszczyzng rysunku. Wigzka jonéw o jednakowej predkosci

M — >
|ty ——

\

\

Rys ° 8-24

trafia klisze fotograficzng (KF) w punkcie P, natomiast wigzka nie
odchylona - w punkcie O, Schemat si* dziasZsjgcych na jon jest przed-
atawiony na rys. 8=-24, W kierunku osi =x dziaZa na jon siia FE = gE,
wytwarzajgca przyspieszenie a, = qE/M, gdzie M jest masg jonu. Ruch
w kierunku osi X jest jednostajnie przyspieszony.W czasie At = zo/m
potrzebnym na osiggnigcie kliszy, odchylenie Jjonu wzrosmie do X =
= % ax(At)2 = % (qE/M)-(zolv)a. W kierunku osi Y dziala sktadowa mag-
netyozna sity Lorentza FB = q v B, wytwarzajgca przyspieszenie a_ =
= (q v B)/M. Réwniez w kierunku Y ruch jest jednostajnie przyspie-
szony, a po czasie At odchylenie wyniesie

Y = % ay(At)2 = % (qu/M)’(zo/v)2 = % (qB/M)+(23/v).
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Zwigzek miedsy oboma wychyleniami jest réwnaniem sSladu na kliszy,
wzdtuz ktérego ukiadajg sig jony. Otrzymsmy je eliminujge z obu wyra=-
%ed nie znang predkosé vs

2 2 .2
¥ e
M 2E
czyli
¥2 = & (—ir X, (8.55)
gdzie B2 22
A= 9

2E

jest stala aparaturowa. Réwnanie (8.55) przedstawia parabole (stad na-
zwa metody), ktdrej parametrem jest okreslona wartosé radunku wtasci-
wego (q/M). Wszystkie jony iatem, ktére majg ten sam Zadunek wiadoci-
Wy, a réznig sig predkoscig, ukladajg sig¢ na wspdélnej paraboli.

Dalsge udoskonalenia spektrografii polegaty na przestrzennym roz-
dzieleniu pola elektryoznego i magnetycznego (metoda Astona), oo po-
prawilo rozdzielczosé spektrografu, a péZniej wprowadzono metode og-
niskowania magnetycznego (metoda Dempstera). Nie bgdziemy sig¢ nimi
zajmowali bardziej szcsegbéZowo.

8,12, Pole netyczne w materi

Wielkoscia obecnie najczesciej uzywang w magnetyzmie jest wektor
indukcji magnetycznej B. Précz niego wygodnie Jjest postugiwaé sig¢
réwnies preferowanym dawniej pojgciem natezenia pola magnetycznego H.
Jest to wektor w préizni réwnolegiy do B i réznigecy sig od niego
czynnikiem 1« W prézni

E= - B. (8.56)

Naleszy zwrécié uwage na fakt, ze H 1 B oznaczaja rézne wielkosoi,
tak%ze wymiaxr H:

(] A°m Wb . A
H| = 1 == o = —
Wb ;E m

jest inny, niz [B] = 1 Wb/m?. Natezenie pola mozemy obliczyé dzielge
przez p, podane uprzednio dla réznych przypadkéw wyrazenia dla B,
I tak na przykitad, natezenie pola H wokéx liniowego i nieskorczone-
go przewodnika z pradem wynosi w prézni

1 i

H= — —

2T R

5 (8.57)
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Zajmujge sig polem magnetycznym w materil traktujemy zwykle H w
présni jako pole zadane, czyli zewngtrzne, w kiérym znajduje sig¢ in-
teresujgoy nas magnetyk. Ulega on namagnesowaniu (polaryzacji magne=
tycznej), wobec czego natgienie pola wewngirz megnetyka réini sig od
H. Réznice t¢ okresla wektor namagnesowania P, rdéwny momentowi mag-
netycznemu (trwatemu i wzbudzonemu) Jednostki objgtosci materiaiu

Ps= —2—-2-2. (8.53)
AV

Wymiar 2 Ao i
[P] = 1 O 1 A/m
m

Jest taki sam, jak wektora H. Wypadkowe natgZenie pola w magnetyku
wynosi wiec 5

H+P= —:L- B. (8.59)
o

W zaleznosci od tego, jakie wxasnosci mejg elementy strukturalne
(atomw, jony, czasteczki), z ktdrych skiada sie magnetyk mozemy po-
dzielié megnetyki na trzy gZdéwne klasy.

i. Diamsgnetyki. Elementy strukturaslne diamagnetyka nie majg trwa-
tych momentdw magnetycznych. Pod wpiywem H powstajg w nich momenty
indukowane, bardzo mate 1 o zwrocie przeciwnym do H. 2 tego wzglgdu
namagnesowanie materiezu jest liczbowo ujemne, P < 0, oraz |P| <<|H|.
W rezultacie w diamagnetyku izotropowym PRI HII B, lecz (1/u°)§ jest
nieco mniejszy, niz H (rys. 8-25a). W diamagnetyku o wZasnosciach

H
a
il L2
Ho &
b H .
\._//f
7 g
/Uoé
Rys. 8=25

zaleznych od kierunku (snizotropia) kierunki H i P mogg sig réznié
(rys. 8-25b). Do diamagnetykéw naleza na przykiad: woddr H2, woda H20,
miedZ Cu, chlorek sodowy NaCl, bizmut Bi, benzen, ogélnie zwiazki,kté-
rych elementy struktureine majg elektrony sparowane oraz niektére me-

tale.
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H ’

a

E/4

Mo =

H P
b .

AL

/Joﬁ

Rys. 8-26

ii. Paramagnetyki, Elementy strukiuralne majg wiasny, trwazy mo-
ment magnetyoczny gmt s ktérego wartosé znacznie przewyzsza moment in-
dukowany Bpys jaki w nich rdéwniez sig pojewia pod wpiywem H. W re=-
zultacie

(t) (1)
p . 2P :v 2By (8.60)

Jjest dla paramagnetyka izotropowego wektorem o kierunku izwrocie zgod—
nym z H (rys. 8-26), natomiast w anizotropowym ich kierunki mogg sig
résnié. Do parsmagnetykdéw nalezg miedzy innymi: tlen 02, tlenek azotu
NO, glin Al, platyna Pt, ciekky tlen, a wsrédd zwigzkéw organicznych
tzw. wolne rodniki. Sg to zwigzki, ktérych czgsteczkl posiadajg sa-
motne elektrony o niesparowanych spinach.

Zaréwno w dia- jak i w paramasgnetykach wektor namagnesowania P
jest proporcjonalny do natezenia pola magnesujgcego H

2 - ne B.’ (8.61)

a% do bardzo duiych wartoseci H. WspéZczynnik proporcjonalnodci w w
(8.61) nosi nazwg podatnosci magnetycznej i jest staig materialowa do-
datnig (dla paramagnetykéw) lub ujemng (dla diamagnetykéw). Mimo, ze
jest liczbg bezwymiarowsa, wartosé liczbowa i odnosi sig w (8.61) do
Jjednostki objetosci materiatu, poniewaz P okreslone Jest dla jed-

nostki objetosci. W fizyoe chemicznej czgsto uiywa sig pojecia molar-
nej podatnosci magnetycznej,

X = We Vo, (8.62)
gdzie Vn ©Oznacza objetosé 1 mols substancji. Niezaleznie od rodzaju
substancji [n] jest liczbg rzedu 10'5, zatem |y, | <<1. Powoduje to, ze
wypadkowe natgzenie pols wewngtrz magnetyka, H + P, nieznacznie tylk
ko rézni sig od pola magnesujgcego, H.
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Ze wzgledu na (8.61) mosemy napisaé

"1;1‘2=§+2=(1+n)-g.
czyli 2

B = pnpH, (8.63)

gdzie
Uy, £J 1+ n (8064)

Jest nowg staty materialowa, noszgcg nazwg wzglgdnej przenikalnosci
magnetycznej. Dla obu grup materisiéw p nieznaczuie rézni sig od jed
nosci. Oczywisdcie, dla prézni wnw =0 oraz U= 1.

'Ze wzgledu na te wasnosci
kula wykdhana z diamagnetyke jest
"omijana™ przez linie pola mag-

N netycznego, natomiast w paramag-

@ netyku gestosé linii jest trochg

wigksza niZz na 2zewngtrz niego

(rye. 8-27). Powoduje to,iz dia-

magnetyk jest wypychany w nie-

Jednorodnym polu magnetycznym w

Rys. 8-27 obazar pola o mniejszej ggstos=

ci 1inii, natomiast paramagnetyk

woiggany jest w obszar o wigkszym natezeniu pola. Stanowl to podstawe

metody pomiaru podatnosci magnetycznej materialéw za pomocg wazenia

prébek gzamknigetych w rurach szklanych w niejednorodnym polu msgnetycez-
nym i bez obecnosoi pola (metoda Guya, rys. 8-28J.

T

Rys. 8=28

iii, Perromagnetyki. Do ferromagnetykéw nalezsg zelazo, nikiel ko-
balt oraz wiele ich stopdw. Podatnosé magnetyczna ferromagnetyka jest
liczbg bardzo duzg: 103-104, wobec czego moiemy zaniedbaé jednosé w
(8.64), czyli p = u. Zwiazek (8.63) obowiazuje nadal, jednak zaréwno
w Jak i p nie sg juz staiymi materiaZowymi, poniewaz ich wartosci
zalezg od H (rys. 8-29). Ferromagnetyki, podobnie jak ferroelektry-
ki, wykazujg réwniez strukture domenowsy, tj. sktadajg sig¢ 2 obszardw
makroskopowych o idealnym uporzgdkowaniu dipoli magnetycznych.Réwniesz
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petla histerezy jest ich wspdl-
ng cechg: magnesujgc ferromag-
netyk po raz pierwszy rozpoczy-
namy krzywg P(H) w punkcie (0,0)
i dla dostatecznie duzych H o-
siggamy stan nasycenia. Powrét
H ==0 odbywa si¢ po innej
krzywej, w rezultacie czego o-
trzymujemy w punkcie H = 0 stan
spolaryzowania ferromagnetyka,
P, # 0. Materialy o dusym P,
czyli o duze] remanencji magne-
tycznej sq uzywane do konstruk-
cji magnesdéw statych (gtoéniki, stuchawki radiowe). Powierzchnia, ob-
Jeta petla histerezy, przedstawia liczbowg wartosé pracy, zwigzanej z
przemagnesowywaniem materisiu. Jesli petla jest wielokrotnie obiegana
podozas jednej sekundy, jak np. w obwodach prgdu przemiennego, wéw-
czas pobSr mocy na przemsgnesowanie materiatu moze byé duzy; w korou
mos ta jest tracona w postaci ciepta, wytwarzanego w ferromagnetyku.
Sg to zjawiska nlepozgdane; dlatego w technice prgdéw przemiennych po-
szukuje sig¢ materisZéw o mozliwie maXej powierzchni petli histerezy.

o

FERRO-

tgot =3 =pu-1

PARA

Ix

0/A

8.1 Indukc elektromagnetyczna

8e¢13.1. Prawa indukcji

Przypomnimy obecnie podstawowe prawa, okreslajgce przyozyng, kie-
runek i wielkosé pradu indukcyjnego, powstajgacego w obwodzie zamknig-
tyme.

i, W kazdym przewodniku, tworzgcym obwdd zamknigty, powstaje prad
indukeyjny podczas zmiany strumienia wektora 1ndﬁkcji magnatyozne],
objetego tym obwodem,

Prawo to precyzuje przyczyng powstawania prgdu indukcyjnego i po-
ze zwrdéceniem uwagi, 1% mowa w nim o zmianie strumienia wektora B, a
nie wektora H, nie wymaga szerszego komentarza. '”

ii. Powstajacy w zamknigtym obwodzie prad indukoyjny mes taki kie-
runek, ze wytwarzany przezen wiasny sStrumiert indukcji magnetyczne]
kompensuje przyoczyng, ktéra go wywolala.

Prawo to okresla zupelnie ogdélnie kierunek pradu indukcyjnego i
nosi nazwg reguty Lenza. Proste ziluetrowanie tej reguzy przedstawio=-
ne jest na rys. 8=30: do zwojnicy zbliza sig¢ biegun S trwatego magne=
su. Prad indukcyjny ma taki kierunek, by w czgsci zwojnicy zwréconej
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—_— DDDIF——

[ (ind

Rys. 8=30

do S powstat réwniez biegun Sj; linie pola musza wige wchodzié do
zwojnicy od tej strony. Podozas zmiany kierunku ruchu S zmieni sig
réwniez kierunek wzbudzonego prgdu indukcyjnego.

iiji. Trzecle prawo indukcji,
odkryte wraz z plerwszym przez
Faradaya, okresla warto&é indu-
kowanej w przewodniku sity elek-
tromotorycznej. Przypusémy, 32e
odoinek przewodnika o dzugosci
Al porusza sig¢ z predkoscig ¥
prostopadle do 1linii wektora 3B
(rys. 8-31). Na kazdy noénik dzie-

< U Xa wéwczas sia Lorentza (8.51),
przy czym E jest w tym przypadku
natezeniem pola elektrycznego po-

A wetajgcego na koficach przewodnika

I

(=) pod wpiywem skiadowej magnetycz-
nej q ¥ x B. Pole E przeciwsta-
wia sieg dalszemu przemieszczeniu

Rys. 8=31 nosnikdéw o tadunku q, tak, ze w
stanie réwnowagi Agi = 0 oraz

qE= ~-qv B,

Poniewaz E =€ /Al, gdzie € jest rdinicg potencjaiéw migdzy koih-
cami przewodnika i zarazem indukowang siig elektromotoryczng oraz v =
= ds/dt, mamy

€ --AlBis----a-F(ai\lB)
gdzie seAleB Jjest liczbg 1linii strumienia B przecigiych przez prze-
wodnik podczas przesunigcia o odcinek 8 = v°t., Wartosé indukowane]
8ily elektromotorycznej jest wigoc réwna szybkosei zmian strumienia
wektora B, towarzyszgoych ruchowi przewodnikas
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i

e (8.65)
at

Poniewaz [c] = 1 V, [®] = 1 Wb oraz [t]= 1 8 widzimy, Ze 1 Wb =
= 1 Vae ’
Be13.2. Przemienns sita elektromotoryczna

Przypusémy, %Ze migdzy biegunami (elektro)magnesu w jednorodnym po-
lu magnetycznym obraca sig¢ ramka z przewodnika wokéx osi 00 z Jednds-
tajng predkodcia katowa @ (rys.8=32). Akitualne poZozenie normalne}

Ryﬂo 8-32 ¢

N do ramki wzgledem linii B okresla wéwczas kat ? = p° t, a obje~
ty ramka strumien

® =p cosg =06 co8 ut

zmienia a_ie periodycznie w czasie z prgdkoscia kgtowa o G Jest ma-
ksymalng wartoseig & dla t = O. Wobec tego migdzy punktami 11i 2 po=-
wstaje siZa elektromotoryozna o wielkosSci okreslonej prawem (8.65)

e=-d—dt-(9m coswt) =wd  sinwt = sinwt. (8.66)

Jest to przemienna sita elektromotorycznaj; po pokgczeniu punktéw
1 4 2 jakim$ odbiornikiem (szczegély techniczne tego poZaczenia pomi-
jamy) popiynie przezed prad przemienny. Istnieja trzy zasadniocze typy
odbiornikéw prgdu przemiennego: opornos$é omowa, cewka indukcyjna oraz
pojemnosé. Przypomnimy w duzym skrdcie ich zasadnicze cechy.

i, Opornodcig omowg nazywamy opornosé dowolnego opornika zmierzo-
na w obwodzie pradu statego. Na przykiad liniowy przewodnik o diugos-



164

¢i 1 i przekroju poprzecznym A ma opornosé R = (p-l)/A,ktéra jest
taka sama dla pradu staXego, jak i przemiennego.Po doXgczeniu go mig-
dzy punkty 1 i 2 popiynie przezel prad przemienny

€
i = =8 gin gt = i, sin wt.
R

y ii. Zupeinie nowym typem opornosci
[t ———— =) jest cewka indukcyjna, przedstawiona
schematycznie na rys.8-33,Jezeli przez
zwoJnice ptynie dowoluny rodzaj pradu o
natezeniu i, to zgodnie z prawem Bio-
ta-Savarte ‘a-Laplace ‘a wektor indukcji
B jest proporcjonalny do i. W takim
razie mozemy przyjaé, ze strumied wek-
S g ——") tora B pzyngoy w rdzeniu ferromagne-

Rys. 8-33 tycznym jest rdéwnies proporcjonalny do i

|

o
R
0O N0 o0

_I

d =1L e i, (8.67)

przy czym L Jest pewnym wspéiczynnikiem, zalezgcym od geometrycz-
nych cech zwojnicy (przekrdj, rdzef, liczba zwojéw) i wiasnosci rdze-
nia (przenikalnosé magnetyczna). Jeéli teraz przez zwojnice piynie
prad staly, toe = = &/dt = 0, czyli w zwojnicy nie wytwarza sig si=-
ta elektromotoryczna. Zupeinie inna sytuacja wystegpuje wdweczas, gdy
zwojnice zasilamy pradem przemiennym 1 = im 8in wt. Powstaje wéwczas
przemienny strumied magnetyczny, ktéry wtérnie oddziaiuje nae gnajdu-
Jjacq sig w jego zasiggu zwojniceg. W te] ostatniej indukuje sig siza
elektromotoryczna € ind

o ai o
£ B e wmepem —L o msm 8 ° 8
ind at at

o wartodoi zaleznej od szybkosci zmien natgzenia prgdu w zwojnicy.Zja
wisko to nosi nazwe indukcji wZasnej, lub samoindukcji, zas L Jjest
wepbZczynnikiem samoindukcji. W ukZadzie jednostek SI jednostkg L jest
1 henr:
v
L=z1—=1H,
A/s
Przewodnik me wspéZczynnik samoindukcji rdwny jednemu henrowi,jes-
1i zmians natgZenia prgdu o 1 A podczas 1 s wywoiuje na Jego zacis-
kach powstanie sily elektromotorycznej o wartosci 1 V.
iii. Jedli miedzy okZadkami kondensatora znajduje sig¢ dielektryk
idealny, tj. zupeinie nie przewodzgcy pradu, to kondensator przedsta-
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wia w obwodzie pradu stalego opornos$é nieskoiiczenie wielka.Przypusémy
teraz, %e przyozylismy na kondensator napigcie U = Um sinw$, wobec
czego jego radunek chwilowy wynosi Q = CeU = C-Um ginwt, Z defini-
cji 1 = dQ/dt, czyli

is= %% = o C Um cos wt = im cos wt

kondensatorowi o pojemnosci C odpowiada wigc w obwodzle prgdu prze=
miennego opornosé

SRR (8.69)

w C

Piyngecy w tym przypadku prad nie jest jednak pradem przewodzenia,
lecz tzw. pradem przesunigcia. Przyczyng pojawienia sig¢ tego prgdu sg
mikroskopowe przesunigcia elektronéw i jgder czgsteczek, wohodzgcych
w sktad dielektryka, pod wptywem chwilowego pola elektrycznego. Prze=-
sunigcia te sg wprawdzie bardzo mate, rzgdu Srednicy atomu, lecz licz
ba przesuwajacych sig elementéw jest bardzo duza. Nastgpujg onew jed=-
nej potowie okresu % T =7 /o w kierunku jednej okZadki kondensato-
ra, zad w drugiej poZowie w kierunku ok}adki przeciwlegiej.Z tego po-
wodu réwniez polaryzacja dielektryka ulega periodycznym zmianom,

8013.3. Zawada

Rozwazmy obeonie wiasnosci ob-
wodu zXozonego z R, L, C pozgczo- ———
nych szeregowo i zasilanych ze -—————————ffTTﬁFFE}S\———-r
7réd%ta przemiennej sily elektromo- &= _L'Hf
torycznej € =  sinuwt (rys.8=34).
Zaktadamy, %26 L i C 84 elementami
idealnymi, tj. dla pradu staZego Ex R
RC= > i RL =0, Drugie prawo Kirch-
hoffa dla tego obwodu ma postad

di Q Il
e sinwt = L — = iR + = , (8.70)
m Bl
dt C ‘
gdzie - L %% Jjest sixg elektromo-
Rys. 8=33

toryczng samoindukcji, skierowang
przeciwnie do € . Zasuwszmy,ze podstawienie w (8.70) i = dQ/dt prowa-
dzi do réwnania rézniczkowego

2
142,28, & . ainout,
as a

analogicznego do réwnania ruchu drgaf wymuszonych (4.32). Wielkoscia,
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ktéra ulega periodycznym zmianom jest w tym przypadku nie wychylenie,
lecz Zadunek. Sile oporu osipowiada; ozxon R(d4Q/dt), proporcjonalny do
opornoéci omowej R obwodu. /

Przejdsmy obecnie do rozwigzania (8.70). Interesowaé nas begdzie
zaleznosé 1(t), wobec czego w celu ujednolicenia zmiennych nalezy
(8.70) zrésniczkowaé wzgledem czssu. Otrzymsmy réwnanie

2
d di i

L-—%+R—+ =pe._ 008wt (8.71)
at at ¢ .

Poniewaz réwnanie (8.,71) przedstawia zagadnienie analogioczne do
drgari wymuszonych, rogzwigzasniem (8.71) musi byé funkcja 1(t) perio-
dyczna i to o tym samym okresie T = 23 /y, 00 oczynnik wymuszajacy.
PoXozymy wige l

1=1 - 8infet -0), (8.72)

gdzie ¢ Jest katem przesunigcia fazowego migdzy natgdeniem prgdu a
8itgq elektromotoryczng. Zna;)dzieiny obeonie warunki jakie muszg byé
speinione, by (B8.72) byXo rozwigzeniem (8.71). W tym oelu nalesy ob-
liczyé pochodne 1(t) i podstawié do (8.71).

& (ot = o)
- a i cos u)t -
at . m e

2 .
:—t%--wz i, sin (wt = ¢)e

Po podstawieniu otrzymujemy
'im 2 ; '
(?- Lo im> sin (ut - ¢) + o R i, cos (wt - o) = wep S8y te

Podzielmy obecnie dwustronnie przez w ° i, 1 otwérzmy nawiesy w
argumentach funkcji trygonometrycznych. Otrzymamy

1
- (wL-T”_C) {einy t cos ¢ - cosy t sin g} +

€
+ R {cos wt 008 ¢ + sin wt sin o} - % coswt = O,
m

Réwno$é ta powinre byé speiniona dla dowolnej chwili ¢3 w takim ra-
zie muszg znikaé wepdXczynniki esobno przy cos wt i przy sinyt. Pro-
wadzi nas to do dwéch warunkéw

:
N (OLY= W) 608 ¢ + R sin ¢ = 0, (8.73)

1 o
(0L - n) 8in ¢ + R co8p = Em/im'
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Z pierwszego z nich otrzymujemy wyrazenie okreslajgce tangens
przesunigcia fazowego

-
wlh -
8 0 = —— wl (8.74)

Wyrazenie to wskazuje, %e kgt przesunigcia fazowego migdzy przy-
: Xozong s8itg elektromotoryczng e o ginwt, a piyngcym w pbwodzie pra-
dem o natezeniu 1m sin (0t - ¢) zalezy od wielkodeci 41 rodzaju ele-
mentéw, z ktérych zXozony jest obwéd. Kat ¢ moze byé dodatni, ujemny
lub moze réwnaé sig zeru. Szczegbiowe przesnalizowanie poszczegdélnych
przypadkéw pozostawiamy Czytelnikowi.

Podnoszge do kwadratu dwa warunki (8.73)1i dodajac stronami, moze-
my wyeliminowaé funkcje trygonometryczne kata ¢. Otrzymujemy wéwczas

wyrazenie . - 2 1/2
=B\, 7 a . 2 '
( =1 {(?L —) + & } (8.75)

przedetawiajqce ogélng opornosé obwodu R, L, C, zwang zawadgq. Zawada
Z sktada sig¢ z opornosci omowej R, z opornosci rdéwnowaznej pojemno-
Sei Rg = 1/( wC) 1 opornogei réwnowaznej indukecyjnosdoi Ry = wLe Po-
staé wyrazenia (8.75) wskazuje nadto, e zawada ma cechg geometrycz-

R
N

|
|
|
|

% l
|

Re &z widz  wi R
Rys. 8-=35

ng: Jjezeli na osi odcigtych odiozymy w prawo RL, w lewo Rc, a8 na
o8l rzednych od*ozymy R, to 2 Jest przekqtng prostokgta o bokach
RL - Rc oraz R (rys. 8—35), Takli wykres wektorowy obwodu pradu
przemiennego umoizliwia réwniez interpretacje kata przesunigoia fazo-
wego o2 Jeat to kat zawarty migdzy wektorami R i Z.
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8.13.4. Moc prgdu przemiennego

Chwilowe wartosci natezenia pradu i siiy elektromotorycznej w ob=-
wodzie pradu przemiennego podane sg wyrazeniami (8.72) i (8.66)3; 4ch
iloczyn

P(t) =1 e sinwt * sin (Wt -0)

przedstawia chwilowg moc prgadu przemiennego. Jest to wielkos$é mato in-
teresujgca, poniewaz ulega periodycznym zmianom w zaleznosci od cza-
su, Wielkoscia najczgsdciej uzywang jest moc $Srednia, <P>, przy ozym
sredniowanie odnosi sig do czasu

(P>= i e  (einwt * sin (bt - ¢)D =

=1 am<sin2 wt (cos o ='ctgu t sing )) =

=i e {8in® yt) * {cos ¢ - ctg wt sing) .
Poniewaz <sin2 wt) = % » {ctguwt)> =0, otrzymujemy

1 .

{P) = 31 € coso.
Wielkosci im oraz e 83 amplitudami, czyli maksymalnymi wartos-
ciami natezenie pradu i siiy elekitromotorycznej. Wprowadzimy obecnie
tzw. wielkosci efektywne (lub skuteczne) isk’ € 5k mniejsze 2’ razy

od wielkosci amplitudowych

i, = =28 e, = =2 (8.76)

Wyrazenie okreslajace moc sSredniag przyjmie wéwczas postad

<P>= isksak ° COS (P’ (8077)

résnigce sig od wyrazenia dls prgdu stazego czynnikiem co8 o , ZWanego
czynmnikiem mocy. Jesli obwdéd prgdu przemiennego skisda sig tylko 3z
opornosei omowej R, to cos o= 1, a wydzielene ciepZo obliczone 2za
pomocg wartosci skutecznych jest takie samo, jak dla tej samej oporno-
sci 1 mocy w obwodzie pradu statego. Widzimy wiec, 2e wartosci sku-
teczne przy obcigzeniu "czysto omowym" sg réwnowazne wartosciom i, ¢

pradu statego, wywoiujgecym ten sam skutek cieplny.



9. FALE

«1. Ruch falo

Przypusémy, ze punkt Q(0,0) w osrodku spregzystym wykonuje wzdkuz
0osi y ruch periodyczny o amplitudzie Ao (ryse 9-1). Jesli A m ozna
cza element masy osrodka otaczajacy Q, to rdéwnaniem ruchu Am  jest
(por. 4.1)

Am ey +C e+ y=0.

Y
A
0 1]. “
Q(0,0) Rix.0) X
Rys ° 9"1

Rozwigzanie tego réwnania ma postaé
y(t) = Ay cosut,

czyli Am wykonuje drgania harmoniczne proste. Poniewaz osSrodek jest
mechanicznie spéjny, drganie to pociaga za sobg ruch punktéw sgsied-
nich; taki wiasnie ruch zaburzenia w osrodku spregzystym nazywamy fa-
1. W przykiadzie zaburzenia zilustrowanego na rys. 9-1 kierunek ru-
chu punktu Q Jjest prostopadiy do kierunku rozchodzenia sig fali (od
x); falg taka zwiemy poprzeczng. Fala poprzeczna moze powstadé w osro-
diu, ktéry wykszuje sprezystosé postaci (powierzchnia swobodna cie-
czy, naprezona i nieskoriczenie diuga strunsa, ciaZo state).Drugim pod-
stawowym typem jest fala poduzna, w ktérej kierunek drgani elementéw
masy odrodka jest réwnolegty do kierunku rozprzestrzeniania sig fali
(rys. 9=-2). Inng podstaws podziaku fal sq ich cechy geometryczne: mo-
semy mieé fale kulistg (punktowe Zrédxo drgar), lub ptasks (dostatecz
nie maty wycinek fali kulistej). Warto moze przypomnieé, iz ozgstki
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Rys. 9-2

odrodka, uczestniczace w ruchu falowym, wykonujg jedynie drgania wo-
k6% poXozer réwnowagl, ale nie ulegajg trwalym przemieszczeniom w sen
sie ruchu postgpowego.

Miejsce geometryczne punktéw, do ktérych dochodzi zaburzenie po
uptywie okreslonego przedziaiu czasu, zwane jest czoXem fali. Pojecie
to ma sens dla ciggu falowego, kitéry zaczaX sig rozchodzié w okreslo-
nej chwili; falas nieskoficzenie rozciagta w przestrzeni nie ma czoZa.

R L

/

Po e Pz 2

Ryﬂ- 9"3

Powierzchnig fslowg P nazywamy zbiér punktéw, ktérych faza drge-
nia w okresSlonej chwili jest jednakowa. Inaczej méwigc, punkty Q, R,
S ... lezgce na okreslonej powierzchni falowe] P° maja t¢ samg war-
t08¢ 1 kierunek wychylenis w danej chwili (rys. 9-3). Punkty Q,, Ry,
31, coo powierzohni falowe] P1 réwniez drgaja miedzy sobg w jedna-
kowe] fazie ale innej, niz punkty lezgce na P . Poruszajgc sig w kie=
runku prostopadiym do powierzchni falowej 2 szybkoscia znacznie wigk-
8zg od szybkosci rozprzestrzeniania si¢ zaburzenia, co odpowiada og-
lgdaniu "zamrozonego® stanu fali w okreslonej chwili znajdziemy na-
stgpna (najblizszg) powierzehnig¢ falowa P,, ktérej punkty wykonujg
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drgania w jednakowe] fagzie 2 Po. OdlegZosé dwéch powierzchni falo-

wych o tyoh wiasnosciach jest dtugoscig fali A . Jest jasne, Ze jedli

predkosé rozchodzenia sig fali zaleiy od wybranego kierunku w oérod-

ku, czego powodem mo%e byé anizotropia jego wasnosci spreszystych, to

ksztalt powlerzchni falowej P1 ‘bedzie trochg inny, nig Po. W takim

razie diugoscig fali jest odlegXosé dwéch najblisszych powlerzohni jJed-
nakowej fazy, mierzona w okreslonym kierunku normalnej do tych po-.
wierzohni. Bardzie] ScisZg definicje A , opartg na zastosowaniu ra-

chunku réizniczkowego, tutaj pominiemy. .

Okreslona fazs zaburzenia rozchodzi sig w osrodku sprezystym 2
szybkoscia v, zwana prgdkodcia fazowg fali. Ze wzgledu na skoriczong
wartosé v okredlona faza zaburzenia w punkcie Q(0,0) znajdsie sig
w punkcie R(x,0) dopiero po uptywie pewnego czasu T= x/v; 0 tg¢
wartos$é faza w R jest opbfnions wzgledem fazy w Q. Jesli przez
¢(x,t) oZnaczymy uyohylénie punktu R wzglegdem potozenia rdéwnowagi,
to mozna napisaé

¢ (x,t) = A, cos wlt = 7) = A, cosnlt - é). (9.1)

Wediug (9.1) wychylenie dowolnego punktu pola falowego jest wigo
periodyezna funkcjg czasu i potozenia tego punktu. Jesli peZoizymy t =
= oconst (odpowiada to "fotografii" aktualnego stanu fali) i bgdziemy
sig poruszaé w kierunku x to stwierdzimy, 2e wychylenia punktéw sg
periodyczng funkcja Xx. W takim razie, korzystajgec z definicji &lugo-
Soi fali A , mamy

¢ (xy8) =¢ (x#a, t), (9.2)
czyli.

- X + A : X
A, cosw (t - = JRSRAN cos v (t = 3,
stad
22; = 27
v
lub v
AS—G—SV'T. (903)

Wyrazenie (9.3)»przedstawia zwiazek miedzy parametrami fali: dzu-
goseig fali A , predkoscig fazowg v oraz ozgstoscig v 1lub okresem
drgat T. Zwigzek ten ma charakter ogdélny, tzn. speiniajg go parame-
try fali dowolnego typu.

W spektroskopii, czesciej niz dxugosé fali, stosuje sig liczbg f=
lowg

g = —%— (W m-1), (904)
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poniewaz wielkosé ta jest proporcjonalna do energii (podobnie, Jak
czgstodé), W fizyce promieniowsnis uzywa sig nadto wielkosci propore
porcJjonalnej do o , tzw. kgtowej liczby falowe}j

k = %%— (wa™1). (9.5)

Zobaczymy pdézniej, iz k ma wiasnosci wektora,
Korzystajgc z tych oznaczenl mozemy zapisaé  rdéwnanie
fali biegnacej (9.1) w innej, réwniez czgsto spotyka-
nej postaci

¢ (x,8) = A, cos 21 (vt - ?\l) =
= A, cos (wt = k x). (9.6)

Fala, rozchodzgca si¢ w osrodku sprozystym, czgs-
to napotykae przeszkody, ktére powoduja modyfikacje
czoza fali za przeszkodg. Pomocg w konstrukcji nowego
czoza fali Jest zasada Huygensa: kazdy punkt osrodka,
do ktérego dochodzi czoXo fali, mozemy trakiowaé jako
4rédo nowej fali, zwanej elementarna (czgstkows).Czo-
2o fali wypadkowej w okreslonej chwili jest obwiednig
Rys. 9-4 wezystkich fal elementarnych. Ilustrecjg tej 2zasady
Jjeat rys. 9-4: 2z kazdego punktu
P, Q;, Ry ¢oo czoXa fali Po w chwi=-
1i t, rysujemy péiokrag o pro-
mieniu r; = v,+At, przy czymit =
= t1 - to. Powierzchnia styczna do
wazystkich péXokregéw przedstawia
wypadkowe czoto fali P1 w chwili
t1. Na rysunku 9-5 przedstawiono
konstrukcjeg czoxa fali po przejs-
ciu przez otwér w przesionie, kté=-
reg0 rozmiary s3 pordéwnywalne 3z
Rys. 9=5 d¥ugoscig fali A .

20 20 Drsania ﬂtrun!

Drganis napregzonej struny stanowig wazny przypadek ruchu falowe=
g0. Analize tego ruchu jest stosunkowo prosta, poniewaz jest to przy-
padek osrodka "jednowymiarowego"; niemniej jednak uzyskane tu wyni-
ki dajgq sig Zatwo uogélnié, co doprowadzi nas w koxicu & ogdélnego réw-
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nanis rézniczkowego fali, Ponadto analiza postaci drganf, jakie mogg
sie wytworzyé w strunie o skoriczonej diugosci prowadzi do wynikéw bar—
dzo interesujacych ze wzgledu nas pewng asnalogig@ do wXasnosci ukiaddw
kwantowych; zajmiemy sig¢ tym zagadnieniem w nastgpnym paragrafie.

wix, t)

Rys. 9-6

Niech napigta struna bgdzie rozciggnigta w stanie bezwibraoyjnym
w kierunku osi x (rys. 9-6). Na oba korce matego elementu Ax stru-
ny dziata siia To o wartosci jednakowej i o kierunku przeciwnym. W
stanie drgajgqcym siy ’r1 3l ’J:‘2 83 rézne; mate zakrzywienie elementu
Ax pominiemy. Jesli Po jest liniowg ggstoscig struny (kg/m),topm =
=pg° AX jest masg elementu A x. Wychylenie ,x 2z poZozenia rdwno-
wagi opisuje funkcja ¢ (x,t), zslezna od czasu i poZoZenia elementu
AXe

Sita wypadkowa, oiagngca Ax w gérg wynosi

przy czym katy 04 speinisjg warunki

e 6 =[a¢ (x,t):l te o .[ng(x,t):' |
& O, = x-x1o 80 5 —ax .

x=x2

Jedli amplituda drgad jest niewielka, to skiadowe poziome sik T-1
1 T2 sg bliskie siebie

T1 co8s 84 = T2 008 g, = To'
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Mamy wige

Fz(t) =T, 8in6, =T, sing, = T, tg6 , co8 6, -~ Ty tg 04 COB O, =

¥ {tg A < tge1} a To{ [718."];.; = [_}.3 "]x- }.
_ 2 2.3
L, %4 (x,%) 324 (x,t)
=T°‘£\_x.—_a?_=poéxT.

Ostatnie wyrazenie jest rézwinigc:lem 8izy Newtona m.a. Opusszoza-
Jac dxugosé elementu A x, motemy zapisaé oétatniq réwnosé w nastepuja-
ocej postaci
229 (x,8) [T\ 2% (x,%) _—
G (1) Beley
Uzyskany gwigzek (9.7) migdzy przyspieszeniem elementu masy A m
atruny a drugg pochodng wychylenias wzgledem wspdirzgdnej Jjest waznym
réwnaniem rézniczkowym, noszgcym nazw@ klasycznego réwnania falowego.
Réwnanie jest napisane dla jednego wymiaru, odpowiadajgcego przyjete-
mu modelowi osrodka; taks postad zupeinie wystarcza na potrzeby tego
rozdziatu, Niewiadomg jest tu funkcja q,(x,t). podajaca saktualne wy-
chylenie elementu Am struny, potoZonego w okreslonym miejscu osi x.
Fala jest poprzeczna, poniewaz wychylenie ( jest prostopadze do kie-
runku rozchodzenia sig fali, ktérym jest o8 x. Wymiar ilorazu sily
naprezajgcej i liniowe] ggstosdeci struny, To/po' Jjest nastgpujgcy

-5 2] 5]
Po 8 kg 8 ’

Widzimy, 1% Jest to kwadrat wymiaru prgdkoscij tatwo pokazaé, i3
predkoscig tg jest predkosé fazowa fali. (9.6) musi byé rozwigzaniem
réwnania (9.7), poniewaz (9.6) opisuje postaé fali poprzecznej, roz-

chodzgcej si¢ w kierunku osi x. Obliczenie drugich pochodnych

2
2% w(xyt)
—q:é%._. = - 4 n2 \)24)(x’t)

orag
32 (l)(xgt) 25 2 ( )
—axg"" "‘(T) bix,t),

prowadzl nas do zwigzku
T

2
2 2 “ o\4nm
4 (xo8) = =
o ovo X, <po>—-2—)\ e(x,t),
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gtad
4
(52)r rev2 v,

(o)
<T°>1 /2
Val|l— (9.8)

Po
Jest istotnie predkoscig fazowg fali. Zalezy ona od naprgizenia struny
oraz od jej gestosci liniowej. Korzystajac z (9.8) mosemy réwnanie fa-

lowe napisaé w ogdélniejszej postaci
2 ¢(x,t) > 3% ¢ (x,t)
——‘rat == V "'_T"'ax ° '
Parametry odpowiadajgce strunie zastgpilismy parametrem ogdélniej-
szym, Jjakim jJest pregdkosé fazowa fali; moze sig ona rozchodzié w do-
wolnym osrodku.

Zwigzek (9.8) przeastawia dla struny zaleznosé predkosci fazowe]
fali od liniowe]J gestosci struny i jej napregzenia; mozemy go réwniez

napisaé w postaci
0y )1/2 1
v =|=2 o m—
Po A

lub p \1/2 3

o

w = (’—) * k. (9010)
Po

wobec tego

(9.9)

(9.10) jest zalesznoscig kqtowej czgstosoi drgefi elementu dugosci
struny (o$rodek) od liczby falowej k (fala). Widzimy, ze dla struny
zwigzek ten ma szczegdlnie prosty postad: w jest proporcjonalne do k.
Wyrazenie (9.10) jest przykiadem waznej w fizyce funkcji w(k), zwka-
szcza w optyce i fizyce krysztakdéw, noszgcej nazwg zaleznosci dysper-
syjnej lub zwigzku dyspersyjnego. Na ogéx zwigzek ten ma znacznie bar
dziej zXozony charakter, niz w (9.10).

Element masy Am osrodka materialnego, w ktérym rozchodzi sig fa-
la typu (9.65. wykonuje drgania o amplitudzie A, , a Jego aktualnym
wychyleniem jest ¢ (x,t). W takim razie jego energia potencjalna i ki-
netyozna T wynosi

1 2
U= 3 c {¢(x,t)} 5

1 . e
T =z Am{q,(x,t)} 5

2

gdzie C =Am °* o jest wspdZozynnikiem liniowej sity sprezystej, a
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@(x,t) chwilowg predkoscig A m. Suma tych energili jest cetkowitg ener-
giag E drgei elementu masy:

E=T+0U= %;‘\.m wz- Ag 0052 (0t = kx) +

2 2

+3onw?e 22 s10® (0t - kx) = Fame®e a2 (9.11)

Widzimy, iz energia drgel jest proporcjonalna do kwadratu ampli-
tudy drgesfi. Jezeli podstawimy wyrazenie Am = poA‘V, w ktérym Po Jest
gestodcia osrodka, a AV elementem objetosci, to mozemy =zapisaé
(9.11) w postaci

—%v = W= % By w2e Ag. (9.12)

(9.12) jest gestoécia energii, tj. energis jednostki objetosci o-
srodka, w ktérym rozchodzi sig ruch falowy. Energia osSrodka wynika z
przesunigcia i predkosci jego elementdéw masy.

9.3, Fala stojgca

WyobraZmy sobie obecnie, %Ze mamy rozciggnietq strung o skoiczone]
dtugosei L, zamocowsng w punkcie x = 0 i x = L (rys. 9-7).Fala bieg

¥=0 X=L
Rys. 9=7

ngca wzdtuz struny od x = O w prawo odbije sig¢ w punkcie x = L z fazg
przeciwng; otrzymamy stan fali stojgcej. Kazdy punkt struny wykonuje
drgania harmoniczne proste, przy czym amplituda A(x) tego drgania
jest funkcja jedynie x, a nie zaleiy od czasu. Wobec tego w fali sto=-
jgoej zaleznosci od czasu i od wspdirzgdne] przestrzeni wystgpujg roz-
tacznie; matematyoznie wyrazamy to w tem sposéb, ze ogélne wychylenie
¢(x,t) przedstawiamy jako iloczyn funkcji £(x), zaleznej tylko od
wapbirzednej 1 g(t), zaleznej tylko od czasu. Bgdziemy wigc poszuki-
waé funkcji ¢ (x,t) takiej, ze

o (x,t) = £(x) « g(t). (9.13)
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Po podstawieniu do (9.9) memy

ox) - LB L2 o) - 2
X

dt
lub > >
1 4 2 1_4°f 2
e Aty ST (9.14)
g dt £f dx~

Lewa strona (9.14) zawiera czynniki zalezgce tylko od czasu, pra-
wa tylko od 'x3 ich réwnosé oznacza, 2e zaréwno 1lewa Jjak i prawa
strona nie moze zalezeé ani od t ani od x, ozyli kazda z nich muei
byé réwna tej samej statej; staia ta oznaczylismy przez -wz. Réwna-
nie (9.14) jest wige réwnowazne dwom réwnaniom, z ktérych pierwsze ma
postaé

g" + w2 g = 0, (9.15)

Réwnanie to opisuje proces periodyczny o czgstoscl katowej w ;roz-

wigzaniem jest wigc funkcja

g(t) = A cos ((Dt + ([)1). (9016)
Drugie rdéwnanie 2
2
dacf W
e (*) t8=80 (9.17)
dx v

Jest analogiczhe do poprzedniegoj rozwigzaniem ogdlnym bedzie zatem
funkecja

= 2n X (2nx

£(x) = B; cos ( ==+ ¢) + By sin ==+ 0, ) (9.18)
W (9.18) podatawiliémy /v = A @4 i ®5 oznaczajg ns razie do=-

wolne ataxe fazowe, B1 i B2 dowolne amplitudy. Stacjonarny stan fali

stojgcej moze sig wytworzyé jednak tylko wtedy, gdy
¢ (0,t) =¢(L,t) = O, (9.19)

tj. gdy na poczatku i koficu struny wystepujg weziy w kazdej chwili.
Pierwszy 2z warunkdéw powoduje, ze 0y =0, 1 ¢4 = /2, zatem

£(x) = B sin 2—;\‘3
oraz

o{x,t) = C cos (0t + o) 8in giLE R

Zamisst dwdch statych, A i B, wprowadzilismy jedng, C = A°B. Drugi
z warunkéw (9.19) prowadzi do zwiazku
1 L
2;’ =n'ﬁ’

czyli
L‘n‘—g‘" n=1’, 2, eoe (9.20)



178

Otrzymalismy bardzo intereeujqcybwynik: na strunie o dzugosci L
moze sig pojawid stacjoharny stan fali stojgcej tylko wiedy, gdy na
jeJ dxugosci miesci sig caikowita liczba poiéwek diugosci fali., Licz-
ba n, przyjmujgca wartosé kolejnych liczdb naturalnych odgrywa tu ta=-
kgq samg rolg, jak liczba kwantowa w fizyce atomu.

Stan drgania (9.20) opisuje funkcja

$plxst) = C cos (wt +9) sin JH?E . (9.21)

90/T0

o L Ton
) - =Yde L
n=f, 2;=2L, 9= $o Ay, podstawy

Prerwsz.

' _ _ Drugi
n=3 23'3'2L1 % =3Yy, naa’tgan

Wezet Strzatka

X=q_ 595 (L
Rys. 9=8

Kilka poczgtkowych stanéw drgai struny przedstawiono na rys. 9-8.
Gdy n = 1, wéwczas stan nosi nazwe tonu podstawowego, a odpowiadajg=-
ca mu czgstosé drgad jest czegstoscig podstawowg. Pozostate stany sg
nadtonamij terminologia ta jest przyjeta réwniez w spektroskopii os=-
cylatora anharmonicznego.

+ Fala skustyczna

Fala akustyczna w osrodku gazowym jest zawsze falg podXuzng - od=-
powiada jej ruch zagegszozern i rozrzedzed w kierunku normalnym do c¢zo-
a fali. Taka sama fala rozchodzi sig réwniez we wngtrzu cieczy. Ina-
czej jest w ciele stalym, ktére ma sprezystosé postaciy w cimiach sta-
tych mogg sie rozchodzié 3 rézne typy (modusy) fal akustycznych:1 typ
fali podZuznej i 2 typy fal poprzecznych. W tych ostatnich modusach
drgania elementéw objetosci osrodke zachodzg prostopadle do kierunku
normalnej do czota fali, a takich kierunkdéw wzajemnie do siebie pro-
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stopadlych, memy dwa. W krysztatach o wysokie] symetrii czest0501
drgai obu moduséw poprzecznych mogg by¢ Jjednakowe. § dalszych roz-
wazaniach ograniczymy sige do fal w osrodku gazowym.

Ryﬂ o 9=9

Przyktad fali podiuznej, rozchodzacej sig¢ w osrodku jednowymiaro=-
wym, jest przedstawiony na rys. 9-9. Okreslony zwdéj sprezyny jest
przesunigty o A L w pordwnaniu do stanu bezwibracyjnego, wobec czego
dziaxa nai liniowa sita sprezysta A F = =C °* A L. Tego samego typu si-
ta dziaZa na element powierzchni A umieszczonej w gazie. Mozemy so-
bie wyobrazié, iz wewngtrz gazu, znajdujgqcego si¢ w stanie spoczynku,
elementy powierzchni 1, 2, 3,... 83 rozstawione z jednakowg "ggstos-
cig" w pewnym kierunku (rys. 9-10). Fala skustyczna rozchodzgca sig w

A--1 4 4
e S
A A A
i’

7o

SN
B VAN

Rys. 9-10

tym kierunku wywoiuje lokalne zmieny cisnienia, wobec czego ggstosé
rozstawienia elementéw 1°, 2', 3'.... ulega zmianie. Niech przesunie-
cie, np. 6° wzgledem 6 wynosi dLj na 6  dziata sita dF = A - dp, gdzie
dp Jjest malg zmiang cisnienia, dodatnig lub ujemng, w miejscu elemern
tu 6°. Site tg mozemy zapisad réwniez w nastgpujgcy spoadb

dF = A ° (%6) ¢ av = A% . (%&)o dL,

0

gdzie dV = A dL jest matym elementem objetosci, wewngtrz ktérego
cisnienie (p° + dp) mozna uwazaé za state., Znaczek zero przy pochod-
nej oznacza, e wartosé jej wzigta jest w poblizu P, Stad wapbt-
czynnik liniowej sity sprezyste]j wynosi dla gazu
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cR=R=42 (g-@) . (9.22)

o

Przypomnijmy, %e siXa napinajaca strune {(lub asprezyne) o diugosdci
Lo wynosi To = C-LQ, poniewaz C Jest sitg dziaXajacg na jednostke
dXugosci oérodka. Na podstawie (9.8), uwzgledniajac (9.22), mielibys-
my zatem dla struny

v2 = 22 = 29 C = -A2 (%6) fg s
Po Po o Po

gdzie Po jest liniowg gestoscig struny. W tym wyrazeniu parametry 1li-
niowe struny nslezy zastapié parametrami objetosSciowymi gazuj; mozemy
to uczynié na podstawie zwigzku

(1iniowe) , (objgtosciowe) |, (ob3) .
oy I, =P, V, = 0, . AL,

ktéry jest réwnoscig ogdlnej masy kazdego z osrodkéw.
Mamy wigc dla gazu

2 _ _,2(ap 1 v1 - Vo (g
v A (dv)o —m-,—po o3, " Yo —(-—-;po 53 (dv},. (9.23)

W dalszym ciggu bedziemy uwazaé, ze symbol po, Oznacza objetosdcio
wg gestosé gazu. W celu obliczenia predkosci diwigku w osrodku gazo-
wym trzeba obliczyé pochodng (dp/dv)o, a wigc trzeba znaé zwigzek mig-
dzy cisnieniem i objetosfola gazu. Newton, ktéry plerwszy zajmowal sig
ta sprawg przyjaz, Ze zjawisko rozchodzenia sige fall akustyczne] w ga
zie zachodzi w warunkach izotermicznych, a wigc moZna skorzystaé Z
réwnenis _izotermy gazu doskonatego pV = povo; stad (dp/dV)o =
= -povo/vg = -po/vo sRTpO/MVO’gdzie M Jjest masg czgsteczkowsg gazu,
R staXg gazowa, a T temperaturg w stopniach Kelvina. Po podstawie-
niu pochodnej do (9.23) Newton otrzymak wyrazZenie dlas predkosci diwie

ku w osrodku gazowym
<RT>1/2
vV = T °

Jesli podstawimy dla powietrza R = 8,31 J/K°mol, T = 273 K oraz
<M>= 2910~ kg/mol, otrzymamy v = 280 m/s. Wynik ten jest jednak o
wiele za maly w pordwnaniu z wartoscig doswiadczalng

Vg = 332 m/s,
co wskazuje, %Ze w rozumowaniu Newtona by: bigad. Bxgd ten polegal mia-

nowicie na przyjeciu, ze proces rozchodzenia sig¢ déwigku zachodzi w
warunkach izotermicznych. Tymczasem lokalne zggszczenia i rozrzedze-
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nia gazu zachodza tak szybko, 2e ciepzo wytwarzane 1lub pochizaniane
podezas tego procesu nie zdgiy wymienié sig z otoczeniem. Naleiy wige
przyjaé, 2e fala dZwigkowa rozchocdzi sig¢ w warunkach adiabatycznych,
a poprawnym zwigzkiem migdzy cidnieniem gazu 1 jego objetoscig Jest
réwnanie Poissona

pv" = povg = const.

n = Cp/Cv jest stosunkiem ciepeX wZasciwych 1 dla danego gazu
Jjest wielkodcigq stalgy w Jest zawsze wigksze o0d jednodei. Obecdnie
(¢p/av), = =wp,/V, orsz

1/2
R T 024)
— (JLE_,> i (9

\

Podestawienie poprzednich danych dla powietrza oraz wu = 1,40 pro-
wadzi do wyniku
v = 331 m/s

doskonale zgadzajgacego si@ z wynikiem doswiadczalnym.

9¢5. Interferencja fal

Interferencja fal jest zjawiskiem charakterystycznym dla ruchu fa-
lowego 1 polega na nakiadaniu sig dwdch lub wigoej ciggdéw falowych,
rozchodzgcych sig jednoczesnie w tym semym osrodku. Interferencji u-
legajq fale niezaleznie od ich typu, a wigo moga z sobg interferowaé
dwa ciaggi fal podiuznych akustycznych lub dwa ciggi fal elektromagne-
tycznych. Podstawowym warunkiem, ktdéry muszg speiniaé ciggi falowe,by
mogly ze soby interferowaé, jest ioh spéjnosé (koherentnosé): wy-
tworzona przez nie réznica faz w dowolnym punkcie obszaru nakadania
sie musi zalezeé wyZacznie od poXozenia punktu, a nie moze zalezeé od
czasu, Warunek spéjnosci sprawia, Ze na ogét nie mogg interferowaé =z
sobg dwa niezalezne ciggi falowe, np. generowane przez dwa niezaleine
Zrédza.

Przykiad wytwarzania dwdch ciggdéw falowych spéjnych jest . przed-
stawiony na rys. 9=11; w optyce nosi on nazwg doswiadczenia Younga.
Punktowe Zrédto drgadi S wytwarza fale kulistg, ktéra dochodzi do
dwéch szczelin S1 is, w przestonie P. Zgodnie z 2zasadg Huygensa
kazdg ze szczelin mozemy traktowaé jako Zrdédio fali elementarnej,roz-
chodzgcej sig¢ na prawo od P w postaci kolejno nastgpujgcych grzbie-
téw (linia ciggta) i dolin (linia przerywana). Widaé, 1z w niektdérych
punktach paszozyzny rysunku spotyka sig grzbiet (dolina) jednego
ciggu falowego z grzbietem (doling) ciggu drugiego; w tych punktach
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// ! /
=
Rys. 9"11

nastgpuje dodawanie wychylend (zgodnie z zasadg superpozycji). W punk-
tach, gdzie spotykaja sig grzbiety z dolinami, nastgpuje wygaszenie
drgari punktéw osrodka. Nalezy zauwazyé, 1z wskutek spdjnosci obu cig-
géw falowych obraz interferencji po prawej stronie P jeat stacjonar-
ny, tj. nie ulega zmianie z biegiem czasu.

Rys. 9—12\

Sytuacja geometryczna tego doswisdczenia jest przedstawiona na rys.
9-123 ponissza Jed analiza jest stuszna zardwno dla akustycznych
fal poprzecznych, jak i dla fal elektromagnetycznych.Wychylenia wérod
kachszczelin, odlegZych o d, zachodzg w kierunku y prostopadiym do
pXaszczyzny rysunku i wynoszg odpowiednio

SS1
Y 4 = A, 008 2 n{vt = =),

o1l

832
Yoo = A, cos 2 nlvt - T)'
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Widzimy, %Ze sten wychylenia w S, wzgledem S, nie zmienia sig
z biegiem czasu, ciggi fal, wychodzgce z S1 i 32 sqg s8pdjne. Wobec
SS1 = 882 mamy réwniez Y°1 = Yoz' Wychylenia w dowolnym punkcie Q
pola interferencyjnego wynoszg

¢

r
1
¥q = Y, cos 2n (vt - === (5.95)

; r,
¥, = ¥, cos 2mu (vt - =%

przy oczym r, = S1Q, ry, = 82Q oznaczajg odlegXosei punktu Q od szcze
" 1in (rys. 9-12). Zgodnie z zasadg superpozycji, wypadkowym wychyle-
niem punktu Q begdzie 2 N

. v
ry [ , r,
J=yy +7¥, = Yo1{>oos‘21t(vt - 1() + cos 27 (vt - X-)} =

r, - r:
=2Y , cos 2n(vt - =% ) * cos 21t(-l;3C—g). (9.26)

Wyrazenie (9.26) nie jest juz falg, poniewaz zaleznosé od czasu i
przestrzeni zostazsa rozdzielong. Wyrazenie to opisuje drganie punktu
r -
Q, przy czym 2!01 coa‘n(-ljr——g) Jest jego amplitudg. Réznicg od-
legtodci Q od szczelin, (r1 - rz), oznaczamy przez A
r1 J r2 = A (9027)

i nazywamy réznicg drég obu ciggéw falowyoh w punkcie Q. Warunkiem
calkowitego wygaszenia drgadi w Q jest

r, -r
1 2
2Y , - cosn< = )- o,

czyli
EL = (2 + 1)+ F, k=0,1,2...
stad N
A= (21{ + 1). —2_ 9 k = 0,1,2’000 (9.28)

Dwa ciggi falowe dajg zatem wygaszenie w punkcie Q pola interfe
rencyjnego, jeéli spotykaja sig w nim z réinicg drdég réwng nieparzys-
tej wielokrotnosci poxdéwki diugosci fali. Zupeinie apalogiczne rozu-~
mowanie prowadzi do wniosku, %e jesli oba ciggi spotykajq si¢ wQ 2
réznicqg drég réwna parzystej wielokrotnosci potowy dugosei fali:

. b= 2kt (9.29)

to nastgpuje meksymalne wzmocnienie drgai. Przypusémy obecnie, Ze wy-
konujemy doéwiadozenie Younga wediug schematu przedstawionego na rys.
9-12, Przez punkt Q przechodzi wéwezas prostopadle do x ekran, na
ktérym obserwujemy uktad prazkéw ciemnych i jasnych nastgpujacych na
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przemian po sobie. Odlegosé gz tych prazkéw od srodka obrazu moZemy
uzyskaé w nastgpujgcy sposéb. Poniewaz diugos$é fali promieniowania
elektromagnetycznego Jest bardzo mata w pordwnaniu do odlegZzosci &
obu szczelin, siuszne wigc bgdzie nastgpujace przyblizenie

w

D=r,, r,>>d, z. (9.30)

Z twierdzenia Pitagorasa otrzymujemy
2

d 2
r$=(2—5)+D,
2 _ dy2 2
r; = (z + 5) + D ,
stad A 20
(rg - rf) = (r, - r1)(r2 + r1) = 2 zd.

Wobec przyblizerd (9.30) mamy

A+2D=2zd,

czyli .
no= 24, (9.31)

Wyznaczylismy w ten sposéb zwigzek migdzy rdéznicg drég a geo-
metrig uktadu na rys. 9-12. Przez poZaczenie (9.31) 2z (9.28) lub
(9.29) mozemy uzyskaé wzory na porozenie prazkéw ciemnych (zc) 1lub
jasnych (zj) wzgledem geometrycznego srodka obrazu.

D_ ., _A
2o = (2k+ 1)« 3 5,
5 N (9.32)
e B8R 0 a0 S O
Tatwo s8ie przekonal, ze odlegiosé dwéch sgsiednich prazkéw Jasnych
jest taka sama, jak dwSch sgsiednich prazkéw ciemnych i wynosi

a(k + 1) = 2(k) = 3 < AL (9.33)

Analiza obrazu interferencyjnego, wytwarzanego przez dwie szcze-
liny, daje nam zatem mozliwoSé pomisru d¥ugosci fali promieniowania
ng podstawie pomiaréw D, d, oraz z. Warto tu zauwazyé, ze:

i. W celu otrzymenia wyrazZnego obrazu interferencyjnego o dobrze
widocznych i rozdzielonych prgzkach, odlegzosé szczelin d musi byé
bardzo mata, zas odlegXosé ekranu D duza. Przypusémy, %Ze obserwuje
my obraz dla promieniowanie zielonego o dzugosci fali A = 5000 2 =
= 5‘10"'7 n, wybieramy 4 = 0,5 mm = 5-10'4 m, oraz D = 1 m, CdlegZosé
dwéch sgsiednich prazkéw wyniesie wéwezas z(k + 1) - z(k) = (5.1077/
/5’10'4)m = 1 mm, 8 wigc bardzo niewielsy dla uzyskanis dobrego obra-
zu nalezazoby wybraé d = 0,1=0,2 mm.
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ii. Catkowite wygaszenie uzyskamy w obrazie interferencyjnym ityl-
ko dla promieniowanis monochromatycznego. Gdybys$my w doswiadczeniu u=-
2zyli promieniowania o widmie clag-
iym, warunki wygaszenia lub wzmoc-
nienia dla réznych dugosdei fal
zachodzié beda w réznych miejscach
ekranu; wobec tego prazki "ciemne"
i "jasne™ okazg sig prgzksmi zabar
wionymi - wystapl siabe rozdziele-
nie barw, Znacznie lepsze rozdzie- 7
lenie barw mozna uzyskeé wéwczas, [
gdy dwie szczeliny w doswiadczeniu ///////:///
(rys. 9-12) zastgqpimy ukadem bar-
dzo wielu szczelin, noszgcym nazwe Rys. 9-13
siatki dyfrakcyjnej.

Siatka dyfrakcyjna jest zbiorem rdéwnolegtych szczelin, nacigtyoch
na piaskordéwnolegkej piytce szklanej (rys. 9-13).

Niekiedy sporzgdza sig rdéwniez siatki dyfrakcyjne na powierazchni
wklgstej - taka siatka dziata rdéwniez skupiajgco.Dla promieniowania z
zakresu widzialnego i nadfioletu dobre siatki zawierajg do 2000 rys
na milimetrze; ich zdolnosé rozdzielcza jest bardzo duza.Odstgp dwéch
sgsiednich rys oznaczamy przez bj; nosi on nazwg ataxej asiatki.

/ 7/
o/
il

/ 2 3 4
b
| ~ N
7 4 f
N
7 1 § 7
Rys. 9’14

Niech wigzka promieniowania monochromatycznego o diugosci fali A
pada normelnie na powierzchnig siatki (rys. 9-14). Eazda szczelins wy-
twerze fale rozproszona; fale pochodzgce ze wszystkich szozelin (1°,
2', 3', eso) Wygaszaja sig jednak wzajemnie, z wyjatkiem takich kie=-
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runkéw, dla ktéryoh réznica drég dwéch promieni, pochodzacych z sg-
siednich szczelin jest parzystg wielokrotnosdcig poidwki diugosci fa-
14 ;

A=bsing =2n . %?, S E B S50 S5 o o (9.34)

W kierunkach okreslonych wzorem (9.34) nastgpuje wzmoonienie fal
rozproszonych. Dla n = 0 rdéwniez o= 0 i otrzymujemy prgzek zerowe-
g0 rzedu; n = =1 odpowiada prazkowi rzedu pierwszego, ktéry obserwu-
Jje sig@ pod katem s8in ¢ = 3'A/b5 itd. Jesli na siatke pada promienio-
wanie o widmie ciggiym, to nastgpule rozklad spektralny promieniowa-
nia, poniewaz kgt ugiecia ¢ Jest funkcjga A. Dla n = O warunek A = O
Jest speiniony niezaleznie od A = prgzek szerowego rzgdu Jjest zatem
biaty. Symetrycznie po jego obu stronach wystepuje widmo pierwszego
rzedu (rys. 9-15), przy czym promienie fioletowe (£°) wulegaja stab-
szemu odohyleniu niz czerwone (oz”).

fl cz’f” ,-II/ Cl” [Zl"

Rys. 9-15

Widmo pierwszego rzgdu jest najsilnisjsze i ono bywa wiasdnie wy-
korzystywane w praktyce. Zsuwazmy, %e zaleinosé¢ wartosei odchylenia
od diugosci fali jest przeciwna, niz dla pryzmatu, ktéry promieniowa-
nie czerwone odchyla najsabiej.

Za widmem pierwszego rzgdu nastepujq widma rzgddéw wyzq;ych,wpraw-
dzie silniej rozdzielone, ale sZabsze i czgato naktadajgce sie¢ na
aiebie. W zwigzku 3 tym rzadko bywajs wykorzystywane do celdéw prak-
tyeznych.,

6. Dyfrskcija fal

Przedmioty oswietlane same staja sig¢ Zrddiem promieniowsnia.Wigz-
ki promieniowania, wysytane przez elementy powierzchni sg spéjne i
mogg sig¢ wzejemnie nakZadaé, przez co powstaja 2zjawiska .interferen-
cyjne, najlepiej widoozne w obszarze cienia geometrycznego. W pob-
lizu granicy cienie geometrycznegc powstaje charakterystyczny, na-
przemienny rozkad wigkszych i mniejszych natgzefd wigzek, przy ozym
ogélne natgzenie promieniowania ugigtego maleje szybko wraz ze wzros-
tem kqta obserwacji. Obrazy dyfrakoyjne wytwarzajg sig¢ zaréwno w po-
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blizu konturdéw otwordéw, wycigtych w nieprzesroczystyeh przesionach,
Jak 1 w pobliZu krawedzi przedmiotdw nieprzezrodzystych. Zjawiska dy-
frakcji stenowig odstgpstwa od zasady prostoliniowego rozchodzenia sig
promieniowania i stanowig jeden z dowodéw falowej natury swiatia.

X
P u

m!o 9-16

Rozwazmy dla przykiadu Zatwg do zaobserwowania dyfrakcje fal na
otworze okragiym lub podiuinym, wycigtym w nieprzezroczyste] przesio-
nie P. Rysunek 9-16 przedstawis przekrdéj szczeliny, ktérej szerokosd
wynosi a. 2% lewej strony pada réwnolegia wigzka fal, a wynik ugig-
cia na otworze obserwuje sig na ekranie E. 08 x biegnie wzdiuz P i
zaczyna 8ig¢ na dolnym brzegu otworu, zas 0§ u biegnie wzdiuz ekranu
E i zaczyna sig¢ w Srodku obrazu dyfrakcyjnego. Podzielmy szerokosé o=
tworu & na mate elementy dx - kazdy z nich przyczynia sig do natg-
#enia wypadkowego I, obserwowanego w okreslonym miejscu ekranu. Amp-
lituda fali, wysyZana przez element dx Jest proporcjonalna do jego
wielkosci, Jest zatem nieskoriczenie me*s i wynosi d(p(x,t).Miedzy wigz-
kg wychodzgcg 2z dx 1 wychodzgeg z pobliza dolnej Lkrawedzi otworu
(rys. 9-16) istnieje réznica drég o= x gin ¢ , przy czym ¢ jest katem
uglecia mierzonym wzgledem kierunku wiazki padajacej. Réznica drég A
odpowiada réznicy faz ¢ = 21 W A) = 2 (x/A) sin ¢; dlatego amplitu-
da fali, wytwarzana na ekranie przez element dx wynosi

d $(x,t) = dxeB cos (Wt = «) = dx*B cos (wt - 2w % sin ¢).

Przez B oznaczylismy wspdXczynnik proporcjonalnosci. Oéélnq am-
plitude ¢(x,t) fali w dowolnym miejscu ekranu,okreslonym katem ugig-
cia ¢ otrzymamy, dodajgc amplitudy wiazek wysyXanych przez poszcze-
gbélne elementy dx
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a
¢ (x,t) = B j‘cos (wt = 27 %% sin ¢) dx. (9.35)
o
Jesli oznaczymy
' ot - 21:% sin ¢ = y, (9.36)

wéwczas dy = - (27 /A) sin ¢ dx oraz

a
B A
blx,t) = - Treing jjcos y dy =
)
= §fE§T%—$ {sin wt - sin (0t - 2 22 gin ¢)}. (9.37)

Wybierzmy obecnie nowg zmienng

T 8 8in o _ n

3 . (9.38)

Po niewielkich przeksztakceniach trygonometrycznych mozemy (9.37)
doprowadzié¢ do postaci

Plx,t) = 8 ; B 5in u - cos (yt = u) = A cos (pt - u),
w ktérej
=28 giny (9.39)

Jest amplitudsg fali w punkcie u ekranu., Poniewaz nategzenie fali I
Jest kwadratem aplitudy, wigc mamy

: 2
I=(a3)?. (s2u)° .. (alnw)’, (9.40)

Wyrazenie (9.40) opisuje rozkiad natgzed I w obrazie dyfrakoyjnyms
Jest ono periodyczng funkcja parametru u. Najwigksze natgzenie Io = C
obserwuje sig¢ dla u = 03 wzdér (9.40) mozemy wige zapisaé w postaci

2
1= (32u), (9.41)

Teoria dyfrakcji ma duze znaczenie w opisie sposobu rozchodzenia
aig SwiatXa widzialnego (podstawy dziatania przyrzadéw optyeznych),
fal radiowych (radiolokacja) oraz w opisie ugigcia promieniowsnia
rentgenowskiego przez sieé krystaliczng (analiza gtrukturalna).Pewny-
mi poznawczymi aspektami dyfrakcji zajmiemy sie jeszcze w rozdziale
11 (zasada Heisenberga).
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9.7. Drgania i fale elektromegnetyczne

Wiadomo, %Ze poZaczenis cewki samoindukcyjnej L 1 pdjemnoéci Cw
obwéd zamknigty prowadzi do powstania tzw. obwodu drgajgcego. Jezell
w chwili t = 0 natadujemy kondensator, co spowcduje przepiyw pradu
elektrycznego przez cewke, to po upiywie czasu t = 0,25 To caza ensr
gla obwodu begdzie zmagazynowana pod postacig pola magnetycznege (B#0,
E = 0, rys. 9-1T7); To jest okresem drgai obwodu. Wskutek inercyjnego

~
()
&
s
~
AN

o

~ S
™y =
woTEE
S
ﬁ
K:]

,b;z E=0 B=0 E+#0
= 1=025T, £20570
Rys. 9‘17

dziatania samoindukcji prgd popiynie jednak dalej w tym samym kierun-
ku, tak Ze w chwili t = 0,5 To cata energia obwodu bedzie znéw zme-
gazynowana pod postacig pola elektrycznego (B =0, E#0), 2 tym 32e
kierunek E Jjest teraz przeciwny do kierunku E w,chwili poczgtko-
wej. Jesli zatozymy, Ze elementy obwodu sg idealne, to znaczy cew=-
ka samoindukcyjna nie ma opornosci omowej, za$ opornosé kondensatora
dla pradu stalego jest nieakoriczenie duza, to po upiywie czasu t = To
uktad powréci do stanu poczgtkowego. W ten sposéb energis obwodu prze-
chodzi periodycznie 6o 1/4 okresu z postaci elekiryocznej w magnetyocz-
ng, a czgstosé tych zmian jest podana we wzorze Thomsona

T 1
(L)o %‘o" _VI—'—_, s (9042)

Wzér ten mozemy otrzymaé Zatwo z warunku (8.75) okredlajacego czeg-
8tosSé rezonansowg dla R = O.

W obwodzie rzeczywistym ILC ozynne sg jednak zawsze opornosci R,
wynikajgace z niedoskonazosci elementéw obwodu i powodujgoe dyssypacje
energii w postaci ciepXa. W konsekwencji amplituda drgaid w obwodzie
IC maleje; zanalizujmy obecnie ten proces. Schemat obwodu przedsta-
wiony jest na rys., 9-18. Begdziemy uwazaé, iz w chwili t = O kondensa-
tor zostat natadowany, po ozym Zrédto napigcia odXgczono, a w obwo-
dzie ptynie prad o netgzeniu i(t) zaleznym od czasu.
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Drugie prawo Kirchhoffa dla tego ob-

R wodu ma postad
| M
H d
i iR+d=-1, (9.43)
L o c gdzie -L(di/dt) jest jedyng czymng silg
- elektromotoryczng.

W celu uzyskania réwnenia (9.43) w
zmiennych jednorodnych trzeba Jje réz-
niczkowaé wzglgdem czasuj; po podzieleniu

Rys. 9-18 przez L i zgromadzeniu wyrazéw na jed-
nej stronie otrzymamy

2
d7i . R di 1
_2.,.— + == 41 = 0. (9-44)
dat Ldat IC c
Oznaczmy obecnie
Baop, fh=o?. (9.45)

Staza B Jest wielkoscig opisujgcsg szybkos$é zaniku amplitudy drgan
= nagywamy Jjg stazg tiumienia. g o dJest katowg czgatoscig drgad ob-
wodu bez tXumienia, czyli obwodu zzozonege jedynie z L i C. Po pod-
stawieniu nowych oznaczer (9.44) przyjmie postad

2
S v2pdd 4% -0, (9.46)
at at o

Rozwigzaniem (9.46) powinna byé funkcja i(t) periodyczna, ktérej
amplituda msleje z biegiem ozasuj przyjmiemy, Ze zanik ten zachodzi
wedZug prawa wykladniczego

1 = z(t) <o BY, (9.47)

przy czym z(t) oznacza blizej nam jeszcze nie znang periodycznrg fun-
kcje czasu. Jesli podstawimy (9.47) do (9.46)

g% = (2 -p z) e-Bto

2
S = (2 - 282 +p %) &P,
dt
to po redukeji i po podzieleniu przez exp(-Bt) otrzymamy réwnanie
réizniczkowe dla funkeji z(t)
z + G»E -8 %)z = 0. (9.48)

Rozwigzaniem (9.48) jest funkcja

2(t) = a A cos w %,



przy czym iot)

1/2
0= W2 g2)'" (9.49)

oznacza czgstosdé drgai tiumio-
nych, Jak widzimy Jjest ona tym
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(P/Zl)i

/\/\/\\ﬁ,

i(t) ma postad

mniejsza, im wiegksza jest staza \»// /AR~
ttumienia g. Peine rozwigzanie \/ \»/ - [ —=

1(t) = A cos [(wg - 82)1/2 t]' A

. e-(R/ZL)t. (9.50)

Rys. 9-19

Zsuwazmy, Ze staka tZumienia § jest proporcjonalna do opornodei
omowej R w obwodzie., Wykres funkcji (9.50) jest przedstawiony ne

rys. 9=19,

W celu otrzymania drged niegasna-
cyoh trzeba wyrdéwnaé straty energii w
obwodzie LC, MoZna go w +tym -<celu
sprzegnaé na przykiad z teioda (rys.
9-20). Cewka indukcyjna L, znajduje
8ig¢ w zasiggu pola magnetycznego cew-—
ki L, (sprzgzenie indukcyjne); w ten
sposéb zmiany pradu anodowego triody
odwzorowuja si¢ jako zmiany potencja-
tu siatki. SprzgZenie indukcéyjne pod-
trzymuje drgania kosztem energii elels
trycznej, czerpanej z baterii anodo-
wej Be

Dopbéki elementy L i C majg malg
rozciggtosé przestrzenng, dopéty pola

7 |

Rys. 9=20

magnetyczne 1 elektryczne sg skupione w niewielkich objgtosciach.Przy-
pusdémy teraz, %Ze odsuwamy od siebie okXadki kondensatora tak, by o=

r\\d
— 2000000

Ryﬂo 9-21

bejmowaty coraz wigkszy obszar przestrzeni (rys. 9-21). Pominawszy wy
nikajgcg stqd zmieng pojemncsci kondensatora C zauwazmy jedynie, i3
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w ten sposdéb wytwarzamy w spore] czgsci przestrzeni szybkozmienne po-
le elektryczne E = §o cos wot, powodujgce Dprzepiyw pradu szybko-
zmiennego migdzy okZadkami kondensatora. Nie jest to oczywiscie prad
przewodzenia piyngacy w przewodniku, w ktérym'moga sig poruszaé swo-
bodne nosniki pradu.

Prad przepiywajacy migdzy okzadkami kondensatora nosi nazwg pradu
przesunigcia i1 stanowi kontynuacje pradu przewodzenia. Gdy migdzy o-
k*adkami kondensatora znajduje sig dielektryk, wéwczas dla czesci pra-
du przesunigcie mozemy podaé prostg interpretacje: odpowiada on nie-
wielkim przesunigciom elektrondéw i jader (tylko przy dostatecznie ma-
tych czestosciach) z ich poZozern réwnowagi. Gdyby od oktadki ujemnej
kondensatora do dodatniej poruszaz sig swobodny elektron,wéwczas miex
nik zarejestrowsXby przeplyw tadunku e. Poniewaz jednak elektron
przemieszcza sig tylko o niewielki odcinek x <<1, w ktérym 1 jest
odlegioscig migdzy okadkami, elektrometr zarejestruje wigc przepiyw
¥adunku q = Ne x/1. Wprawdzie x jest bardzo mate (ukamek sSrednicy
atomu), ale liczba N przesuwajacych sig elektrondw jest bardzo du-
za3 w rezultacie przeplywajacy *adunek q moze byé dosé spory, a wy-
nikajgce stad nategzenie prgdu przesunigcia rdéwne jest natezeniu prgdu
przewodzenia w obwodzie LC. Prgd przesunigcia pzynie réwniez w préz-
ni, aczkolwiek nie mozemy podal prostego mechanizmu jego powstawania.

Niezaleznie od sposobu powstawania prgdu przesunigcia,nalezy przy
jaé za Maxwellem, twércg teorii fal elektromagnetycznych, e prad
przesunigeia powoduje powstanie linii wirowego pola magnetyoznego,
podobnie jJak to sig dzieje w prgdzie przewodzenis w przewodniku. Li-
nie wektora B majg ksztai krzywych zamknigtych 1 otaczajq struge
pradu przesunigcia (rys. 9-22), Kierunek obiegu 1inii B jest zgodny

b2

B £ B B
Rys o 9=22

Zz regutg sruby prawej. Zmieniajgce esig pole magnetyczne powoduje w
my$l zasady indukcji Faradaya przepiyw pradu w przewodniku, a wigc po-
wstanie pola elektrycznego. Wediug teorii Maxwella powstanie 1linii po-
la elektrycznego towarzyszy zmianom B takZe w prézni; w ten sposéb
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wytwarza sie ukdad nastephjqcych po gobie pdl elektrycznych 1 magne-
tycznych, o wektorach B i E wzajemnie do siebie prostopadiych.

RyS. 9-23

Uk*ad ten nosi nazwg fali elektromagnetycznej i rozochodzi sieg w
prézni z szybkodcig c¢. Wzajemng relacj¢ migdzy wektorami D, B 1 1
przedstawia rys. 9-23. Wektory D i B opisujg wZasnosci fali, rozcho-
dzace]j sig w osrodku materialnym, gdzie predkosé fazowa v jest mniej}
@za, niz w prézni. 1 jest wektorem jednostkowym, prostopadiym do
pieszczyzny staze]j (okreslonej) fazy; 1 Jest zarazem rdéwnolegily do
¥. Dla fali przedstawionej na rys. 9-23 pkaszczyzna drgaii wektora D
Jjest ustalona: jest nig praszczyzna xz. Podobnie yz stanowi astaza
ptaszczyzng drgan wektora ‘B; obie s3 do siebie prostopadie.Falg elel
tromagnetyczng, w ktdérej paszczyzny drgad wektoréw B i D sg usta-
lone, nazywamy fala pZasko spolaryzowang. W zwykiym promieniowaniu
elektromagnetycznym jest zawsze 3B 1 D, lecz chwilowe poiozenie piasa
czyzn ich drgan jest rdzne i ulega przypadkowym zmiznom - fala o tej
wtasnosci nie jest spolaryzowana.

W osrodku niemagnetycznym p = 1, wobec czego B =|1°§; wektory B
i H sg wigc réwnolegte, Wektory D i & natomiast nie muszg byé réw-
nolegte, jesli osrodek wykazuje anizotropig wiasnosci optycznyche. W
takim osrodku staXa dielektryczna, a zarazem i wspéiczynnik zatamania
swiatXa i predkosé rozchodzenia sig fall zslezg od kierunku. Wzajemna
orientacja czterech wektoréw B, H oraz D, E przedstawiona jest o-
gobno na rys. 9-24. Wektory B, H1 D lezg w Jednej paszczyinier 19
stanowigcej ptaszczyzng okreslonej fazy drgan.

Poniewaz 1 Jjest prostopadiy do te] pzaszczyzny, sg wigc spei-
nione nastépujqce relacje migdzy wektorami

B=pi=x(1xE),

1 (9.51)
| o= '; (_]_-, X L{_)o

lo
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A

D

/]

L

b

- ——

-
-

Rys. 9-24

Relacje te wynikajg z réwnai Maxwellay o ich sZusznosdci mozna sig
przekonaé podstawiajgc jednostki wielkosci fizycznych oraz rozwazajac
wzajemne relacje migdzy kierunkami wektordw wedtug rys. 9=%d. Na tym
rysunku widaé, iz wektor E nie lezy w m4$ razem z B tworzy on piaaz
ozyzng, do ktdrej jest prostopadty wektor S. W kierunku § przepitywa
strumied energii z szybkoscig u, zwang szybkoscia grupowg; u jest na
0géx inne niz v - tylko w prézni obie szybkosci sg jednakowe.

Moc promieniowania, przenoszona przez powlerzchnig 1 m2 ustawiong
proatopadle, wynosi w kierunku S, w/m

s = (E x H), (9.52)

S jest nazywany wektorem Poyntinga i przedstawia natgienie fall
elektromagnetycznej. W kierunku 1 przemieszcza sig zatem pZaszczy-
zna okreslone]j fazy z pregdkoscig fazowg v, natomiast w kierunku S
przepiywa energia z predkoscig grupowg u.

Wezystkie wektory, D, B, E 1 H wykonujg drgania z czgstoscig
v =w /21, réwng czgstosci drgan fali elektromagnetycznej. Jesli ozna-
oczymy dowolny z tych wektordw ogdélnie przez A, to ze wzglgdu na pe-
riodycznoéé A od czasu i wspéirzgdnych przestrzeni A spetnia zwig
zek odpowiadajgey falli pzaskie].

Nieoh punkt r(x,y,z) leiy na plaszczyénie stakej fazy m, (rys.
9-23). OdlegXos$é tej piaszozyzny od O wynosi OG = z = r 1; jedno-
czesnie zauwazmy, iz r ° 1 = const, jest réwnaniem pZaszczyzny sta-
tej fazy Tqe Mozna to Xatwo otrzymaé z oczywistego zwigazku micdzy wek=-
torami (rys. 9-23)

kl+p=z,

gdzie k-l = QQ. Mnozgac ostatnig réwnosé skalarnie przez 1 otrzymu-
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jemy x°l = k = const. W takim razie zaleznosé od wspéirzednej prze-
" strzeni mozemy zastgpié w (9.6) wyrazeniem bardziej ogélnym

_u’v_.z.g_lvi(gol)-a(g-xl-l):i'g, (9053)

w ktérym k Jest wektorem falowym o dtugosci 2n/A 1 kierunku 1l.
Réwnanie fali elektromagnetycznej mozna wige zapisaé W nastepujacej
postaci

A=A, cos (0t - krz) (9.54)

lub w zapisie zespolonym

4 =4, otlWt -k (9.55)

Zapis (9.55) ma na celu ukatwienie rachunkéw, poniewaz daleko Zat-
wiej operowadé funkcjami wykZadniczymi o wykadniku urojonym niz funk-
cjami trygonometrycznymi. Poniewaz fala jJest rzeczywistym zjawiskiem
fizyoznym, w kodcowych obliczeniach potrzebnych wielkosci fizycznych
nslezy korzystaé z czgsci rzeczywistej (9.55).

Zajmijmy sie obecnie zagadnieniem prgdkosci fazowej fali, Pokazu-
Je sig w obszerniejszych podrecznikach elektrodynamiki, iz v zaleiy
od przenikalnosci wzglednych i bezwzglgdnych osrodka

1

Vo HEg € ’

édzie €, £, Oznacza przenikalnodci dielektryczne, zas ., Bo DPrze-
nikalnosci magnetyozne. Poniewaz dla prézni € = p = 1, mamy
1

(9.56)

Vv =

¢ = 9 (9-57
Ho €o

wobec czego o

V ue
Liczbowg warto$é ¢ mozemy obliczyé na podstawile znanych wartos-
c¢i przenikalnosci

vV =

(9.58)

i%g = 1077 Wo/am, ¢, = 8,85:107'2 c®/Nen?,
stad
¢ = 2,998°10° m/s.

Dla osrodka niemagnetycznego u= 1, wobec czego

s (9.59)

Na tej podstawie 2
€opt = B e (9.60)
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W zwigzkach (9.59) 1 (9.60) nalezy wziaé wartosé statej dielektry
czneJ dla czgstosci odpowiadajacej czgstosci drgad fali elektromagne-
tyoznej - takiej samej, przy ktérej mierzono wspbiczynnik zaamania
Swiat’a n. W odrdéznieniu od statycznej stalej dielektryczne] €,
mierzone] w polu elektrostatycznym lub wolnc zmiennym (do 4100 kHz),
nazywanmy aopt w (9.60) optyczna staia dielektryczng.

9.8, Swiato spolaryzowane

Sama mozliwosé wytworzenia spolaryzowanej wigzki promieniowania
elektromagnetycznego jest dowodem na to, iz promieniowanie jest falg
i to falg poprzeczng. Nie mozna polaryzowaé fal podzuznych, poniewaz
kierunek drgan jest dla nich réwnolegy do kierunku predkosci, wobec
czego nie mozna uzyskaé kierunku wyrdéznionego prostopadle do kierunku
propagacjie.

Ze wzgledu na duze znaczenle promieniowania spolaryzowanego w ba-
daniach naukowych i w zastosowaniach praktycznych, zajmiemy sig obec-
nie opisem metod otrzymywania fali spolaryzowanej. '

Czgsciowa polaryzacja promienio-
wania zawsze towarzyszy zjawisku od-
bicia promieniowania od gadkiej,wy-

| polerowane]j powierzchni dielektryka

' lub cieczy. Czgsciowo spolaryzowany
I jest zaréwno promien odbity, jak i
[” zatamany, przy ozym kierunki drgad D

; Tior 83 w obu promieniach prostopadie do
}. siebie (rys. 9-25). Catkowita pola-
L ryzacja obu wiazek wystepuje wtedy,
gdy promien zatamany i odbity sg do
siebie prostopadie; stwierdzenie to
stanowi tresé prawa Brewsteta.Na pod-
stawie definicji wspéZczynnika zaza-
Rys. 9-25 mania Swiatta i rys. 9-25 mamy
gin 11
GEm T a0 S eSS e
zatem

tg 1y = n,,. (9.61)

n,q oznacza wapbkczynnik zatamania $wiatla ofrodka 2 (optycznie gest-
szego) wzgledem osfrodka 1 (optycznie rzadszego), 11 jest katem pada-
nia, zas 12 kgatem zaXamania. Catkowita polaryzacja obu promieni na-
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stepuje wige zgodnie z prawem Brewstera wtedy, gdy tangens kgta pada=-
nis réwny jest wspdiczynnikowi zatamanla Swiatla odrodka optyocznie

gestazego. W promieniu odbitym drgania wektora D zachodzg prostopa-

dle do ptaszezyzny padania (punkty
na rys. 9-25), za$ zatamanym - W
ptaszozyinie zalamania,.

Prawo Brewstera moze stanowidé
podetawg najprostszego ze sposobdw
otrgymywania promienia spolaryzowa-

nego za pomocg dwéch ptaskordéwnoleg-
¥ych prytek szklanych (rys. 9-26).
Pierwsza 2z nich odgrywa role polary-
zatora (P), druge analizatora (A):
przy Jjej obrocie o kgt m /2 wokdk
kierunku promienia odbitego 00° jako
osi wigzka odbita od A znika, ponie-
waz w wigzce odbitej wektor D musi
byé prostopadiy do ptaszczyzny odbi- Rys. 9-26

cia, co w ukadzie "skrzyzowanym" piytek jest niemozliwe.Bezposrednie
zastosowanie ukZadu ptytek jako filtru polaryzacyjnego jest przedsta-
wione na rys. 9-27. Niepozadane przesunigcie wiazki w uktadzie a) mo-
%na skompensowaé odpowiednim uktadem ptytek przedstawionym na rys.b).
Zespoly piytek, wykonanych z NaCl lub AgCl, stosuje sig¢,do otrzymywa-
nia promieniowania spolaryzowanego w podczerwieni,

Rys. 9=27

Innym sposobem ctrzymywania sSwiatia spolaryzowanego jest zastoso-
wanie filtru polaryzacyjnego, lub polaroidu, skonstruowanegow 1938 r.
przez E. H. Landa. Zasada dziatania takiego filtru dla mikrofalowego
obszaru widma Jest przedstawiona na rys. 9-28. Filtr skiada sig Z
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cienkich drucikéw, réwnolegiych do
glebie 1 rozpietych na ramce.Promie-
niowanie mikrofalowe o dowolnej o-
rientacji wektora E pada prostopa-
dle do powierzchni ramki, przy ozym

= /,i/ £ sktadowe E réwnolege do kierunku

zZ 7 drucikéw wzbudzajqg w nich ruch elek-

// //// tronéw, zachodzgcy z czgstoscia drgani
z/;/{;// // fali, czyli przepiyw szybkozmiennego

— ///’ 7 pradu elektrycznego. Czgsé mocy tego

e Z prgdu zmienia sig na oiepio, oczesé

////// zostaje wyemitowana we wszyastkich
; ; kierunkach w postaci fali o tej sa-
mej ozgstosci. Energia wypromienio-

wana w kierunku rozchodzenia sig fa-

1i pierwotne] jest znikomo maza 1

mozna Jg zaniedbaé. Po przejsciu

Rys. 9-28 przez ukkad drucikéw wektor E fali

jest dokadnie prostopadiy do dch

dxugosci.
b1

Il 1/}
b f c

TJ}’ if’
bt

Rys. 9-29

Na tej zasadzie jest zbudowany filtr polaryzacyjny Landa z tym,ze
rolg drucikéw odgrywaja ozgsteczki alkoholu poliwinylowego (APW) =z
przyczepionymi do nich czgsteczkami jodu. Czgsteczki alkoholu poliwi-
nylowego majsa ksztatt wydXuzony (afdcuch weglowodorowy), zakoriczony
grupag polarng. W cienkiej folii APW czgsteczki uZozone sg chaotycznie
(ryse 9-29a), lecz po jej rozciagnigciu uozenie ulega znacznemu upo-
rzadkowaniu (rys. 9-29b). Po zanurzeniu folii w alkoholowym roziworze
jodu folia adsorbuje oczgsteczki z roztworu w taki sposéb, 3ze osie
czgsteczki J2 sq réwnolegte do osi czgsteczek APW (rya. 9-29¢). W ten
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gpoadb powstaje uktad "drucikdéw" absorbujgcych z padajgcej wiazki pro-
mieniowanie, ktérego wektor E ma sktadowg réwnolegta do dredniego
kierunku osi czgsteczek J2. Promieniowanie przechodzgce jest spola-
ryzowane w dziewigédziesigciu kilku procentash, przy czym wektor E
promieniowania Jjest prostopadxy do osi J2.

Najbardziej jednak rozpowszechnione i najlepszej jakosci sg pola-
ryzatory, wykonane z krysztatéw dwéjtomnyoch. Nalezy do mnich kalcyt,
ktéry jest jedng z odmian krystalicznych weglanu wapnia i wystepuje w
przyrodzie pod postacig duzych romboedréw (rys. 9-30a). Krysztakt kal-

Ryﬂ e 9=30

oytu ma wyrézniony kierunek, ktérym jest trzykrotna os symetrii (Cj).
tj. prosta przechodzgca przez naroze utworzone przez trzy jednakowe
katy rozwarte: po obrocie krysztaiu wokét tej prostej o 120° powtarza
sig¢ dowolny element krysztatu, np. krawgdé, Sociana, a takze jon cog'
lub Ca?* we wnetrzu krysztatu. Réwniez kazda wielkosé fizyczna, mie-
rzona w kierunku prostopadiym do 03 musi wykazaé symetrie co najmniej
03, tJe wynik pomiaru tej wielkosci musi byé identyoczny po obrocie
krysztatu o 120°.

Jak wiadomo, wiele wielkosci fizycznych wykazujgoych anizotropig,
migdzy innymi wzglgdna przenikalnosé dielektryczna (stata dielektrycs
na) zaréwno statyczna jak i optyczna, moize byé przedstawionych za po-
mocg tensora drugiego rzedu., Cecha charakterystyczng wielkosci tenso-
rowych jest to, Ze majq trzy wzajemmie do siebie prostopadie osie
gtéwne - zapoznalismy sig¢ z nimi blizej omawiajgc moment bezwiadnosci
bryty sztywnej. Jedna z osi giéwnych tensora € , na przykiad 53; mu-
8i byé dla kalecytu réwnolegza do 03, poniewaz jest to jedyny wyréznio-
ny w krysztale kierunek. Pozostaze osie, €4 ie,, 89 prostopadze do
03; kazdy z kierunkéw, €4, €, 1 €5 Jest jednoczesnie dwukrotng osig
symetrii. Jedyny mozliwy do przyjecia sposéb pogodzenia dwukrotnej osi
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symetrii C2||€3 tensora z o0sig trzykrotng C3lle3 krysztaiu Jest
przyjecie, ze €4 = Ege Oznacza to, 2e w kazdym kierunku prostopadiym
do 03 wartodé optyoznej statej dielektrycznej jest w kryszisle kalcy-
tu taka samaj innymi sZzowy, przekrdj tensora prostopadle do 03 Jjest w
tym krysztale kozowy.

Wynika z tego, iz tensor optycznej stazej dielektrycznej mozemy
przedstawié za posrednictwem powierzchni geometrycznej, zbudowanej na
trzech wektorach wzajemnie prostopadiych. Powierzchnig tg jest elip-
soida tréjosiowa, a jej osiami g*dwnymi sg owe trzy wektory. Jest to
ogdélny i dlatego wainy sposéb przedstawiania wielkosci fizycznych,kté
rym odpowiadajg tensory drugiego rzedu. Nie mozna w réwnie pogladowy
gposéb zilustrowaé tensoréw wyzszych rzgddw.

W optyce krysztaiéw bardziej rozpowszechnila sig¢ jednak nie elip-
goida optycznej statej dielektrycznej, lecz powierzchnia zbudowana na
odpowiadajacym ey frzem g¥éwnym wspdiczynnikom zatamania swiatia ny

(51)1/2 =n;, 1=1,2,3, (9.61)

Ma ona rdéwniez ksztaxt elipsoidy tréjosiowej i nosi nazwg indyka-
trysy. Nalezy zwrdcié uwage, 1z wepSiczynnik zalamania SwiatXa nie
jest temsorem, ochoé moze byé przedstawiony powierzchnig analogiczng
do e, poniewaz nie speinia wymagan natozonych na wielkosci tensoro-
we (nie speinia prawa transformacji sktadowych podczas zmiany ukzZadu
wspéirzednych).

RNS. 9"31
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Dochodzimy wiec do wniosku, %e dla kalecytu indykatryse ma ksztait
elipsoidy obrotowej, poniewaz n, = nse Przyjeto oznaczenila

n3 = ne, n1 = n2 = noo ' (9062)

Kazdy, z wyjatkiem jednego, przekrdj centralny takiej bryty Jjest
elipsa (ryse. 9-31). Rozwazmy na przyk¥ad przekrdj EBGD; pé%osiami te}
elipsy sg OE 1 OB, Odpowiadaja im wspdZzczynniki zatamania sSwiatza N
oraz n,, przy czym n, <N S;no. Zauwazmy, iz ng musi byé jedng z
pétosi kazdego przekroju centralnego indykatrysy na rys. 9-31, ponie-
waz ma ona symetrig obrotowg. Wobec tego piytka wycigta z kalcytu pro-
stopadle do osi 03 jest optycznie izotropowa (rys. 9-32a), natomiast

1y

Rys. 9=32

wycieta rdéwnolegle doc3 wykazuje maksymalng anizotropig optyczng (rys.
9-32b). Obie osie kazdego przekroju sg Jjedynymi dopuszczalnymi kierun-
kami drgan wektora E fali elektromagnetycznej, ktdrej wektor falowy k
jest skierowany wzdiu% normalne] do przekroju. Jesli wige rozwazamy
przekréj EBGD, to w krysztale mogg sig rozchodzié tylko dwie fale o
wektorze falowym k: dla jednej z nich wektor E musi byé réwnolegly
do OE, dla drugiej E| OB. Przy innej orientacji wektora E fali pada-
jacej musi sig ona rozszczepié wewngtrz krysztaiu na dwa promienie,
ktérych kierunki drgad speiniajg ten warunek (rys. 9-30b). Z tego po-
wodu kaleyt i inne krysztaly, wykazujgce optyczng anizotropig, sg na-
zywane krysztatami dwéjtomnymi. Jedynie fala, ktdérej wektor k HC3 nie
ulega podwéjnemu zatamaniu, poniewaz przekrdéj prostopadity do 03 Jest
kozowy; orientacja wektora E fall moze byé w tym przypadku dowolna.

Jeden z dwu promieni w kalcycie ma szybkosé staisg, c/no.niezalez-
ng od wyboru kierunku wektora Xk wzgledem osi 03; promier ten ozna-
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cza sig zwykle przez o i nazywa zwyczajnym (ordinaire). Predkosé
drugiego promienis, ¢/N, zmienias sig zaleznie od nachylenia k wzglg-
dem C,3; oznacza sig go literas e 1 nazywa nadzwyczajnym (extraordi-
naire).

68°

Rys. 9=33

Krysztaiéw kaleytu usywa sig do budowy pryzmatdéw, dostarczajgcych
promienia spolaryzowanego. Sposobdéw wykonania pryzmatu jest kilka,
lecz cel stale ten sam: korzystajgac z duzej dwéjtomnosci tego krysz-
tazu (ne = 1,486, D= 1,658) dasy sig do uzyskanis dwéch wigzek spo-
laryzowanych, mozliwie silnie rozdzielonych przestrzennie, a nastgp-
nie usuwa si¢ jedng z nich przez odbicie. Najprostszym rozwigzaniem
Jest pryzmat Nicole ‘a, zwany krétko nikolem (rys. 9=33a). Naturalny
romboedr szlifuje si@ nieco i przecina wzdiuz Jednej przekgtnej tak,
by uzyskaé kgty podesne na rys. 9-33a, a nastegpnie skleja warstwg bal-
samu kanadyjskiego. WepéXezynnik zalamesnia swiata warstwy balsamu ma

wartosé podrednig migdzy n, i n,
y wobec czego promien zwyczajny ulega
catkowitemu odbiciu,promief nadzwy-
czajny zas$ przechodzi przez pryzmat

4 5 2z niewielkim rdéwnolegiym przesunig-
A ciem, Kierunek drgad E promienia o-
A?_ﬁ"'“-_| puszczajgcego pryzmat Jjest prosto-
AX v badiy do kierunku wigzki i lezy w

ptaszczyZnie P poXowigce] rozwar-
ty kat przekroju poprzecznego niko-
A la (rys. 9-33b).
Przypusmy teraz, ze mamy dwa ni-
kole ustawione jeden za drugim,przy
Rys. 9-34 ozym kierunki drgad E przepuszcza-
nego przez nie promieniowania tworzg ze sobg kat ¢ (rys. 9-34). Pro-
mieniowanie niespolaryzowane biegnie prostopadle do pZaszczyzny Iry-
sunku, a po przejdciu przez pierwszy 2z nikoli, =zwany polaryzatorem,

o\
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fala jest spolaryzowana: kierunek drgai E jest réwnolegiy do PP, amp-
lituda zas niech wynosi Ao. Promieniowanie o takim kierunku polaryza-
cji nie moze przejs$é przéz drugi z nikoli, zwany analizatorem, ponie-
wa% dopuszozalny przezef kierunek drgafi réwnolegty jest do AA. Ampli-
tude A, mozemy jednak roztozyé na dwie skZadowe: Ay, réwnolegig do AA
3 Ax’ prostopadtg do AA. Amplituda fali zatem, ktdéra przejdzie przez
analizator wynosi A_ = A_ cos ¢ a je] natgzenie

of o :
TR=RIS cos?e , (9.63)

Jest proporcjonalne do kwadratu cosinusa kata zawartego migdzy kierun
kemi drga’ obu nikoli. Zwigzek (9.63) jest znany pod nazwg prawa Ma-
lusay warto zauwazyé, iz Io jest natezeniem wigzki opuszczajgcej po-
laryzator - jest ono w przybliZeniu o potowg mniejsze od nategsenia
wigzkl padajgcej. Ponadto, Jezeli ¢ = 90°, to I = O3 taki ukZasd niko-
1i nie przepuszcza promieniowania i jest nazywany ukiadem skrzyzowa-
nym. Ma on wazne zastosowania diagnostyczne, poniewaZ pozwala odréz-
nié piytki wykonane z materiatdédw dwéjromnych od pxytek izotropowych.

Niech migedzy dwoma skrzyzowanymi nikolami znajduje sig¢ piytka 2
materiatu dwéjzomnego; n, i n, 83 dopuszczalnymi przez nig kierunka-
mi drgad (rys. 9-35). Rozkad amplitud jest przedstawiony na rys.9-36.
Amplituda Ao fali o kierunku drgard PP moze rozchodzié si¢ w krysz-

AT A
~
m

7

Jo

Rys. 9-35
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ny AD

Rys. 9-36

tale jako fala o kierunku drgai n, i amplitudzie OB = A, cos ¢. Ana-
lizator przepuszcza tylko sxZadowsg réwanQ;L: OB sin ¢ = A, sin ¢cos Q.
Z drugiej strony wzdiuz kierunku n, przechodzi amplituda OC =
= A_8in o0, z ktdérej analizator przepuszcza amplitudg OE = OC OO;\HT‘K

o
= Ao gin o cos ¢, Wobec tego, przez analizator przechodzi OD + OC =
= 2Ao gin ¢ cos ¢ = Ao sin 29, czyli

I=1I, sin2 20. (9.64)

Widzimy zatem, Ze ustawienie piytki z materiaku dwéjZomnego w ta=-
ki spoadb, by jeden z jej kierunkéw gxéwnych (np. n1)‘ byt réwnolegity
do kierunku géwnego polaryzatora ( o= 0), nie zmienia ciemnego pola
widzenia dla ukiadu skrzyzowanych nikoli. Znalezienie takiego poZoze-
nia, zwanego kierunkiem ekstynkcji, jest wazne w badaniach optycznych
wxasnosci piytek. Drugie takie poXozenie wystgpuje gdy o = 90°, Obro-
towi pXytki wokdéx jej normalnej o kat ¢ = 45° odpowiada maksymalne
rozjasnienie pola widzeniaj pooZenia rdwnowazne powtarzaja sie co
90°, W tekim razie obrotowi pxytki woké: jej normalnej o 360° towa-
rzyszy czterokrotne maksymalne rozjasnienie pola widzenia oraz
czterokrotne jego zaciemnienie. W posrednich poXoZeniach ptytki nateg-
zenie promieniowania przepuszczanego przez ukad podaje wyrazenie
(9.64), Jezeli migdzy skrzyzowane nikole wstawimy piytke 2z materiaiu
izotropowego, to pole widzenia zawsze bgdzie ciemnej oméwione tu zja-
wiska sg wigc podstawg do rozrdéznienia obu typéw materiaXdw.
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Rozjasnienie pola widzenia wystgpuje zgodnie z (9.64) niezaleznie
od wartosei réznicy (n; - n,), zwanej dwéjtomnoscig - pojawia sig tale
ze wiedy, gdy dwéjromnosé materiaiu jest niewielka. Stanowi to pod-
stawg do rozpoznania tzw. dwéjromnosci wymuszonej, pojawiajgcej sig w
przezroczystym i izotropowym materiale pod wpiywem czymnikéw zewngtrsz
nych. Nalezg do nich wszelkiego rodzaju naprgzenia, wytwarzane czy to
przez dziaXanie six przyZozonych z zcwnatrz, czy np. na skutek nie-
jednorodnosci ostygania szklanych elementdw aparatury. Ukzad "skrzy-
zZowanych n1k011",~um0211wiajacy obserwowanie wystgpowania naprezed w
duzych elementach sparatury mozna wykonaé z polaroidéw o duzych roz-
miarach.

9.9, Oddziaiywanie promieniowania z materig

W rozdziale tym zajmiemy sig opisem niektdérych zjawisk fizycznych,
towarzyszacych przechodzeniu wigzkl promieniowania elektromagnetycz—
nego przez ciaXo materialne, przez ktdre begdziemy rozumieé jednorodng
ciecz lub cialo stake., Wigzka promieniowania monochromatycznego o diw
gosci fali A i natezeniu I1 ulega czegsciowemu odbiciu od powierzchni
ciata (nategzenie I.), czgdciowej absorpcji w jego wngtrzu (natgzenie
I,) i czgdciowemu rozproszeniu (natgzenie I ). Jesli przez I, ozna-
czymy natgzenie promieniowanis przepuszczanego przez prébke o skoxi-
czonej grubosci, to bilans energetyczny dla wigzki promieniowania
przedstawia sig nastgpujaco

TNCRTTE =S TR =R TS BTN IT oo (9.65)

Réznica migdzy natezeniem wigzki padajgcej i odbitej odpowiada tej
czedcl wigzkl, ktéra wnika do wngtrza ciaia - oznaczaé Jja begdziemy
przez Io' Natezenie wigzki rozproszone] przez fazg chemicznie 1 fi-
zycznie Jednorodng me znikomy, aczkolwiek bardzo wazny udziatx w
(9.65); zjawiskami rozproszenis nie bgdziemy sig tu jednak zajmowali.
Opis ich mozna znaleZé w podrgcznikach chemii fizycznej 1lub analizy
instrumentalnej. .

Absorpcja promieniowania monochromatycznego zachodzi w caxe] ma-
sie prébki i powoduje, Ze natezenie wigzki maleje w misrg przechodze-
nia przez substancjg. Wzgledna strata natgzenia - dI/I po przejsciu
przez warstwg o grubosci dx (rys. 9-37) jJest proporcjonalna do gru-
bosci tej warstwy ) '

= d—II =k + dx. (9.66)

Wyrazenie (9.66) nosi nazwe prawa Lamberta i1 stanowi podstawg do
ilosciowego opisu zjawiska absorpcji. Jednostka stazej k' jest m°1;
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I
I
2 L
— R I
i— 7 —= —
L —-———-0 .7] | Jt
|
||
[
-~
| dx |
|
L.
Rys. 9-37

warto$é k zaledy od diugosci fali A uzytego do pomiaru promienio-
wanisa.
Catka (9.66) ma postaé

ln I = =k * x + const,

przy czym wartosé stete] catkowania wynike z warunkéw: d = 0D51n I =
= const. Jezeli przez It oznaczymy qateZenie promieniowania po
przejsciu przez warstwg materiazu o grubosci d, to otrzymamy prewo
Lamberta w postaci

I
mgh--k-a (9.67)
1lub o .

_ -kd
Iy = I leiss. (9.68)
Zastepujac w (9.67) logarytm naturslny dziesiginym otrzymamy

Iy
2’303 lOg I— = =kd.
o
Wielkosé

it

log 3 = E (9.69)
o

nosi nazweg ekstynkcji, natomiast

Ly
i 100 = D . (9.70)
zwana jest przepuszczalnoscia (w procentach) prébki. Obie wielkosci
83 czgsto spotykane w opisie wZasnosdci prébek. Précz state] absorpcji
k, uzywa sig tez wielkosSci bezwymiarowej % , zwanej indeksem absorp-

cji
Ji, > o

4
spotykanej szczegblnie czgsto w fizyce metali.

(9.71)

U =



207

Staza absorpcji k saleisy od diugosoci fali promieniowania. Kazda
substancja absorbuje w Jakims zakresie widma promieniowania elektro-
magnetycznego; jesli Jjest bezbarwna w zakresie widzialnym, to 2z pew-
noscig absorbuje w nadfiolecie i podozerwieni. Zaleznosé k (A) sta-
nowi wazng cechg¢ indywiduslng kazdej substancji chemicznie i1 fizyoz-
nie jednorodnej, pozwalajgcg na jeJj zidentyfikowanie pod wzgledem ja-
kosciowym i ilosciowym. Postgpowanie oparte na tej zasadzie nosi naz-
we analigy spektrofotometryoznej i jest jednym 2z probleméw silnie roz-
winigtej dzis gaXezi analizy instrumentalnej, noszgcej nazwg spekiro-
fotometrii absorpeyjnej.
Natezenie promieniowania odbitego od zupeinie gZadkiej powierzch-
ni ciata zslezy nile tylko od fizycznych wtasnodci materiazu (wspdl-
czynnik zalamania $wiatla, indeks absorpcji), lecz i od stanu polary-
zacji padajacej fali elektromagnetycznej. Peiny opis tych zjawisk po-
daje teoria Fresnelaj; cbecnie zajmiemy sig¢ tylko najprostszym przy-
padkiem odbicia, gdy wigzka pada prostopadle., Wzory opisujgce taki
przypadek nie zawierajg czynnikéw trygonometryocznych.
WapbéZczynnikiem odbicia nazywamy stosunek natgzenia wigzki odbi-
te] Ir’ do natgzenia wigzki padajace]
R = ;5- (9.72)

i
wyrazany niekiedy w procentach. Jesli material odbijajgecy silnie po-
chtania promieniowanie, np. metal, wéwczaa wspéiczynnik odbicia Ry
granicy faz metal/préznia (réwniez metal/powietrze) wyraza sig naste-

pujﬂoym wzorem
s” 1 22 2
m < ¢ b4

n+ 1) +un

Wartosé wapbiczynnika odbicia bardzo silnie zslezy od udziatu dru
glego czXonu sumy w liczniku i mianowniku., Na przykiad dla miedzi,
jeéli drugosé fali A = 589 nm memy n = 0,62, k = 5,61.10° cm™'.Jest
to przypadek silnej absorpcji, w zwigzku z czym indeks absorpcji wu =
= 2,63 jest réwnies dusy. Podstawienie tych danych do (9.73) prowadzi
do wspétczynnika odbicia

2 2
Rg, = 9;2§§_1_2;§2? = 0,741,

1,62 + 2,63
czyli wypolerowana powierzchnia miedzi odbijs promieniowanie A =
= 589 nm w T4,1%. Odbicie od powierzchni metalu jest wigec dlatego tak
silne, Ze metal silnie pochXania promieniowanie. W zakresie silnego
pochZaniania wspéiczynnik zsZamania Swiatla moze sig wyrazaé liczbg.
mniejszg od jednoseci.
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Wapdtczynnik odbicia materiazdéw nieprzewodzgcych, Rys tym rézni
sig¢ od Rm, ze zwykle u mozemy zaniedbaé. Stala absorpcji dielektry-
kéw bezbarwnych, np. szkXa lub wody jest niewielka: w zakresie dugo-
Sci fal od 300 nm (bliski nadfiolet) do 1000 nm (bliska podczerwier)
stata absorpcji k nie przekracza wartosci 10 cm-1. Wobec tego sred-
nia wartos$é <u> = (10'6,5'10-5)/4n = 5,2'10"5 moze bydé zaniedbana wo-
bec (n - 1)2. W takim razie dia dielektryka, bezbarwnego w interesu-
Jacym nas zakresie spektralnym, wspdtczynnik odbicia wyniesie

2
Rd = (nué ° (9074)

n+ 1)

Dla granicy faz szk¥o/powietrze n = 1,60 oraz Rd = 0,053, czyli
straty w natezeniu wiqzki, ulegajacej odbiciu, wynoszg w tym przypad-
ku 5%. Straty te, niewlelkie dla jednej granicy faz, ulegajg zwielo-
krotnieniu jesli w jakims z2ozonym uktadzie optycznym wystepuje kilka

elementéw, z ktdérych kazdy odbija pro-
Ji mieniowanie. Prosta sytuacja dla piy+
' ki pkaskordwnolegiej jest przedstawio
327 Ry na na rys. 9-38. Natgzenie promienia
odbitego od granicy faz 1/2 wynosi
Ji=Jil1-Ry) Iz = I;Ry, wobec czego do wngtrza ma~
teriatu wnika wigzka o natezeniu I
= 11(1 - Rd). Odbicie nastepuje r6w—
niez na granicy faz 2/1, przy czym dla
2 Tr =3 Ra niej wspékczynnik odbicia

) (__ “1f (1,2
RS- -
Rys. 9-38 d ( B 1) S e e

R

d

jest taki sam, jak dla granicy faz 1/2. W obliczeniach uzylismy wspdk
czynnika zalamania dla przypadku przejscia promieniowania od os$rodka
optycznie gegstszego do rzadszego: Ny, = 1/n21. W takim razie natgze-
nie wigzki odbitej od drugiej granicy faz wyniesie = Ii d' a na-
tezenie wigzki przepuszczone}

I‘

T, = I,(1 = By)(1 = By) & I,(1 - 2R,). (9.75)

Uwzglednienie odbicia od obu granic faz prowadzi do wniosku, ze
straty w natezeniu wigzki ulegajg w przyblizeniu podwojeniu. W ukta-
dach optycznych sg to straty niepozgdane, poniewaz zmniejszaja ich
jasnosgé, W celu obnizenia strat pokrywa sig powierzchnie szklane cien-
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kg warstwa péiprzewodnika (Si.Si-0) przez naparowanie jej w prézni
("niebieska optyka"); dla takie]j warstwy wspézczynnik zatamania Swia-
tta, a wigc i wspbiczynnik odbicia, jest mﬁiejszy niz w dielektryku.

Innym sposobem oddziatywania promieniowania z materig jest wzbu-
dzenie drgan elektronéw i jader elementdédw strukturalnych ciata prze-
zroczystego, przez ktére przechodzi fala élektromagnetyczna. Wymusze=-
nie drgaid prowadzi bezposrednio do wyjasnienia tej wiasnosci dielek-
trykéw, ktéra nazywamy dyspersjg; dyspersja jest Dbowiem zaleznoscig
wspSiczynnika zatamania swiatZa, n (A), od dtugosci fali, przy ktdérej
.zostal zmierzony. Zajmiemy sig przy tym tak zwang klasyczng teorig
dyspersji; nowsza teoria, kwantowa, daje bardzie] Scisiy opis zjawisk,
ale jakosciowe wyniki teorii klasycznej, znacznie prostszej, nie ule=-
gaja wigkszym zmianom.

Przyjmiemy zatem nastgpujgacy model dyspersji. Na ciaio w przybli-
Zeniu przezroczyste, tj. stabo absorbujgce, pada monochromatyczna fa=-
la elektromagnetyczna, ktéra niesie z sobg szybkozmienne pole elek-
tryczne E = go gin wt; w jest czgstoscig katowg zmian wektora E. Pod
wpiywem zmiennego pola elektrycznego zachodzi wymuszenie drgafd elek=-
tronéw, przede wazystkim najsiabiej zwilgzanych z elementem struktural-
aym, czyli tak zwanych elektronéw optycznych. Przy matej czgstoscl
drgan fali mozna pobudzié do drgan jadra atoméw, a przy jeszcze mniej
sze] - cate czgsteczki., Kazdy element (elektron lub jadro) jest zwig~
zany 2z potozeniem réwnowagi za pomoca liniowej sity sprezyste],ktdrej
wepbzczynnik odpowiada sposobowi zwigzania tego elementu z otoczeniem.
W ten sposdb mozemy rozumieé ciaXo state jako zbidér oscylatordéw,wyko-
nujgcych drgania wymuszone pod wpiywem padajacej fall elektromagnety-
cznej. Zbiorowi oscylatoréw odpowiada réwniez pewien zbidér oczgstosei
drgafl wtasnych; oznaczaé Je begdziemy przez Wog dla oscylatordéw "ty-
pu i", tj. dla wszystkich oscylatoréw, posiadajacych tg¢ samg staig
gizowg k.

Poza tym niech Xy, Iy orez ey oznaczaja odpowiednio wychyle-
nie z potozenia réwnowagi, masg oraz radunek oscylatora. Przy tych o-
znaczeniach réwnanie ruchu oscylatora "i" ma postaé

e - 1
myX, + kixi = eiEo ginpt + 37;; eiPi' (9.76)

W réwnaniu tym sg zawarte dwa uproszczenia:

i. zeniedbalismy tiumienie oscylatoréw; mozna to wuczynié wtedy,
gdy absorpcja promieniowania w dielektryku jest bardzo niewielka,JesS-
1i jednak napiszemy rdéwnanie ruchu w postaci (9.76) nalesy od razu 1li-
ezyé sig z tym, ze wartosé amplitudy w punkcie rezonansowym bedzie
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nieskonczenie duza. Jest to wynik faiszywy z fizycznego punktu widze-
nia - odpowiednig poprawke uwzglednimy w kohcowej fazie rachunku.

ii. drugi sktadnik prawej strony przedstawia site, wynikajacg =z
polaryzacyjnego dziastania szczeliny mikroskopowej (por.rozdz. T.3.3).
Piszgc go w tej postaci przyjmujemy, Ze dielektryk ma wiasnosci izo-
tropowe,

Pi jest udziaXem oscylatoréw "i" w ogdlnej polaryzacji osrodka.
Poniewaz liczbowo Pi réwne jest momentowi dipolowemu jednostki ob-
Jjetosci, mozemy wigc napisaéd

Py = N, e, x; = Ny oy E, (9.77)

przy ozym N, oznacza liczbg oscylatoréw i w jednostce objgtosci,zas
ey ¥y jest wymuszonym (wzbudzonym) momentem dipolowym oscylatora.Zgo-
dnie z wzorem (6.8) wielkos$é indukowanego momentu dipolowego jest pro-
porcjonalna do natgzenia pola elektrycznego, w tym przypadku pola E
fali elektromagnetycznej; o i jest polaryzowalnoscig (izotropowsg) os-
cylatora, Ogdélny wektor polaryzacji osrodka bedzie réwny E §:Ni i3
w pokgczeniu z (7.20) otrzymamy

2
c=hi = g2 =1 = 1 2 Ni oci. (9078)
e+ 2 nc + 2 3 €, i

Wréémy obecnie do réwnania rézniczkowege (9.76). Podstawienie do
niego wyrazenia (9.77) na Pi oraz skorzystanie z Trdwnosci ki=-miw gi
prowadzi do rdéwnania

2
e. e
> 2 = _J: 4 —l—
xi + woi xi 1 E + 3e mi Ni Xi- (9-79)

Rozwiagzania (9.79) bedziemy poszukiwaé w postaci
x; = A; sinot, (9.80)

gdzie Ai oznacza amplitude drgan wymuszonych oscylatora. Tym samym
interesujemy sig amplitudg ruchu o tej samej czgstosci, co czgstosé
8ity wymuszajacej. Poniewaz zatozylis$my brak tXumienia, mozemy wiegc
pomingé obecnoéé statej fazowej w (9.80); stata ta odpowiada przesu-
nigciu fazowemu migdzy sitg wymuszajgcg a "odpowiedzig" ukiadu - jej
uwzglednienie znacznie komplikuje rachunki.

Podstawienie rozwiazania (9.80) do (9.79) i uporzadkowanie wyra-
z6w prowadzi do wyrazenia na przesunigcie Xy oscylatora wzgledem po-
Yozenia réwnowagi ei/mi

2
2 2 _ e Ny
T Jeoly

x; = E. (9.81)
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Widzimy, ze czgstosé wiasna oscylatoréw we wnetrzu ciaka stazego,

Wy s Jest inna, niz w prézni, ®oq
2
2 SRy

> N
W =W o °
s, oi 3e 5 mi

(9.82)

W szczegblnosdei, w ciele statym czgstosé ta ulega obnizeniuy 2za-
lesnemu od koncentracji N; oscylatoréwe Po uwzglgdnieniu (9.82) o-
trzymujemy

o, /my
X = 53—y E,
wf =
a na podstawie (9.78)
2 q 2
nc -1 . 1 zg Ny ei/mi i85
2 - o8 2 ° O
n“ +2 3 €o 3 Wg "0

Wzér (9.83) stanowl podstawowg zaleznodé teorii dyspersji: opisu=
Je on zmiany wspdZczynnika zazamenia Swiatia w zaleznodci od czgstod-
ci w padajgcej fali elektromagnetycznej. Ze wzgledu na poczynione u-
proszczenia w teorii, polegajace na zaniedbaniu absorpcji i zwigzane-
g0 z nig tZumienia oscylatordéw, zgodnosci wzoru (9.83) 2z doswiadcze-
niem mozemy oczekiwaé w obszarach spektralnych, dostatecznie oddalo-
nych od czgstosci absorpeyjnych Wye Uwzglgdnienie absorpcji mozliwe
Jjest w sposéb Sciszy jedynie dla gazéwy dla nich n = 1, n2 +2 = 3,
n2 - 12 2(n - 1), Nie wchodzgc w szczegdty rachunku podamy jedynie,
%e wzdér (9.83) przybiera wéwczas postad

1 Niei w i -w® (9.84)
nESRUR === :S (o2 Z)2 20 :
2 eo i my wy T w +I'

w ktérej I' jest wspbXozynnikiem,zwigzanym ze staktg tiumienia oscyla-
toréw, a jednoczesnie ze stakg absorpcji. Wykres funkcji (9.84) jest
przedstawiony na rys., 9-39 dla jednego skadnika sumy, odpowiadajgce=-
go czgstosci absorpcji wq3 Przy tej czgstosci obserwuje sig 1linie
absorpcyjng, k(m/m1). Gdy czestosé w promieniowania wzrasta, rosnie
tes wspSkczynnik zatamania éwiatia materiaiu - czg$é AB krzywej (tak-
ze EF) odpowiada zakresowi dyspersji normaslnej materisZu. Po przejs-
ciu przez maksimum, wspéXczynnik zalamania swiatla gwattownie spada:
czesé CD krzywe]j odpowiada zakresowi dyspersji anomalnej. Niezaleznie
od rodzaju materia*u, dyspersja anomalna wystepuje zawsze na obszarze
pasma absorpcyjnego. W uproszczonej teorii (rdéwnanie 9.83) otrzymuje-
my w tym miejscu nieciggzosé krzywej dyspersji. Widzimy zatem,ze zja-
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RyS. 9-39

wiska absorpcji i dyspersji sg zjawiskami sprzezonymi: pojewienie sig
jednego warunkuje wystgpienie drugiego.

Wréémy obecnie do réwnania (9.,83) i dokonajmy pordwnania z danymi
doswiadczalnymi dla np. krysztaiu chlorku sodowego. KrysztaZ NaCl po-
giada ztozone pasmo absorpeyjne w dalekim nadfiolecie, przy czym Sro-
dek pasma przypada gdy wartosé K1 wynosi 1050 2. w absorpcji uczes=-
tniczg cztery elekirony (po dwa na kazdy rodzaj jondw) tak, AZe kon-
centracja oscylatoréw wynosi Ny = (4 N_*p)/M = 8,90-102 m’, gdzie
No jest liczbg Avogedry, p ggstoscia, a M masg czasteczkowg NaCl,
Poza tym e2/m = 2,81'10‘8 02/kg dla elektrondw. W wyniku podatawie=-

nia tych danych otrzymujemy funkcjeg
n2 -1 2,45

n® +2 8,122 - (0,3/A)° '

przy czym ) jest wyrazone w mikronach. Wyniki obliczenl przedstawiajg
gig nastegpujgco

Alw p) 0,3 0,4 0,5 0,7 1 2 3
obliczone 1,604 | 1,562 | 1,544 |1,529 | 1,522 | 1,517 | 1,516
dos,wgadczalne 1,607 | 1,568 | 1,552 | 1,539 | 1,532 | 1,527 | 1,519

Widzimy, iz nawet przy daleko idacych wuproszczeniach uzyskujemy
dobre wyniki, obarczone bZgdem nie wigkszym od 0,5%. Mozna uzyskaéd
jeszoze wigksza dokZadnoéé przez uwzglednienie dalszych czZondw dys-
perayjnych. Taki sposéb liczenia jest jednak dosé pracochtonny i wy-
maga znajomosci statych, nieraz niedostgpnych. Dlatego do analitycz-
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nego przedstawienia krzywej dyspersji normalnej korzystamy w praktyce
z funkcji p(A), zapisanej w postaci wielomianu. MoZemy Jjg uzyskaé w
nastgpujgey spoaéb: n® + 2, a takie n + 1, zmienia sig¢ znacznie sia-
biej z w , niz n - 1, Wobec tego zamiast (9.83) mozemy napisad

a4
RTt 2T (/22"
gdzie a; 94 pewnymi stazymi, Ai d*ugosciami fal - odpowiadajgcymi
maksimom absorpcji. Poniewaz A.iA. < 1, mozemy wigc kazdy czion dys-
persyjny rozwingé w szereg. Po wykonaniu rachunkéw otrzymamy
S1mAS
n(A) = A, + '}‘-'2- + ;\I + eee o (9.85)

Punkcje (9.85) przyblizamy do wielomianu, zachowujgc liczbeg wyra-
zéw zaleznie od potrzebnej doktadnosci; staze Ai traktujemy jako em—
piryczne, tzn. aby je wyznaczyé trzeba znaé odpowiednig 1liczbg par
(Ay n). Wyrazenie (9.85) nosi nazwg wzoru Cauchy ego.

Zauwazmy w koncu, ze jesli w (9.83) ustalimy , ©2zyli dokonamy
pomiaru n dla okreslonej dtugosci fali, to prawa strona jest war-
toscig statg. Wydziela sig z niej zwykle gegstosé substancji, wchodzg-
cg w wyrazenie dla konbentracji oscylatordéwy; w takim razie wyrazenie

2
R = 7—n = 1 ° —1'- (9.86)
n- + 2 o]

zwane refrakcjq wtasciwg zwigzku chemicznego jest wartoscig stazg.War
todé R nie zalezy od temperatury, jesli czgsteczki zwigzku nie po-
giadajg trwatego momentu dipolowego, nie zaleiy wéwozas rdéwniez od
atanu skupienia. Refrakcja jest wielkosScig wazng dla chemii fizycznej
i tam tez zapozna sig Czytelnik z dalszymi jej wasnosciami.

9,10, Promieniowanie rehtgenowskie

frédzem promieniowania rentgenowskiego jest lampa, przedstawiona
na rys. 9-40. W banice szklanej, bardzo starannie ewakuowanej, sg u=-
mieszczone dwie elektrody: katoda i anoda. Katoda jest wykonans z dru
tu wolframowego i po rozgrzaniu pradem elektrycznym do okoxo 2500 °c
stuzy Jjako Zrddto elektronéw, Anoda jest elektrodg masywng, ma naluto-
wang naktadke 2z badanego metalu oraz uk¥ad kanaxdédw do przepiywu wody
chtodzgcej. Migdzy obie elektrody przyktada sig réznicg potencjaxéw
rzgdu 10 do 100 kV; poniewaZ przez lampg piynie prgd elektronowy o
natezeniu rzegdu kilkudziesigciu miliamperdéw, jej moc nominalna wynosi
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okoxo 1 kW. Z mocy te) tylko 1-2 procent zamienia sig na uzyteczne dla
nas promieniowanie, reszte wydziels sig w postaci ciepta, ktére musi
byé odprowadzone.

10-100kV

— == H,0

A=01-200A
Rys. 9-40

Promieniowanie rentgenowskie wytwarza sig¢ w miejsou uderzenia wig-
zki szybkich elektrondéw w materiak snody. Mechanizm emisji moze byé
dwojaki i dlatego wyrdznia sie dwa typy promieniowania.

i, Jezeli energia jest dostateczna, to niektére =z rozpgdzonych
elektronéw wybijaja z atoméw metalu elektrony znajdujgce sig blisko
jadra; mogg to byé elekitrony nalezgce do warstwy K, L . Pojawiajg sie
w ten sposdb miejsca puste, ktére mogg byé zapetnione elektronami =
dalszych warstw atomu, w poxgczeniu z emisjg promieniowania krdtkofa=
lowego. Przejsécia elektronéw z warstwy L do warstwy K oznacza sig¢
symbolem Ku’ przejscia M - K symbolem K,, przejscia M - L symbolem
L“, itd. Ze wzgledu na dyskretny charakter energii pozioméw atomu e-
misja ma charakter kwantowy i prowadzi do powstania niewielkiej licz-
by 1inii emisyjnych, z ktdérych linie K , 88 najsilniejsze 1 majg naj-
wigksze znaczenie praktyczne. Zbidr tych linii nosi nazwg promienio-
wania charakterystycznego, poniewaz, zgodnie z prawem Moseleya, ich
czgstosé zalezy od liczby porzadkowej Z pierwiastka, tworzgcego ano-
de,

Vv =a (2 - b). (9.87)

v jest czgstoscig linii emisyjnej, zs8 a 1 b sg staiymi.

Jest jasne, %e warunkiem pojawienia si¢ linii promieniowania cha-
rakterystycznego, np. linii CuKa. energia elektronu eU, rozpgdzonego
napigciem Uo musi byé co najmniej réwna pracy Wy usunigcla elek-
tronu z warstwy K; zatem

o, > W, (9.88)
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U° nosi nazwg napigcis wzbudzenia okreslonej linii promieniowania che
rakterystycznego, np. dla miedzi napig¢ciem progowym dla linii K jest
U, = 8,9 kV. *

ii. Zderzenie wigkszosci elektrondw z materiatem anody powoduje
gwattowne zmniejszenie ich prgdkosci. W mysl elektrodynamiki klasycz=-
nej, elektron poruszajgcy sig ruchem opdZnionym musi emitowaé promie-
niowanie elektromagnetyczne., W ten sposdéb powstaje drugi rodzaj emis-
ji, ktdry wiada promieniowaniu hamowanie o widmie ciggym.Przyczy-
ng ciggrego charakteru emisji jest zaréwno rézna szybkosé tracenia
energii jak i to, Zze elektrony mogg mieé rdézne energie kinetyczne.Nie-
mniej jednak istnieje pewna maksymalna wartosé energii, jakg moze po=-
siadaé elektron, zaleZna od wartosci doprowadzonego do lampy napigcia
Um. Jesli cata energia eUm zostaje zuzyta na emisjg promieniowmia, to
powstajgcemu w takim procesie kwantowi odpowiada maksymalna czgstosé

Vmaks lub minimalna d*ugosé fali A Bin
he
eU =hy e (9.89)
m maks Amin

Po podstawieniu staxych otrzymamy

Agin(R) = ﬁi%;$7 ; (9.90)

Widzimy z tego, ze jezelil réznica potencjazdéw wynosi na lampie
50 kV, to widmo cigg¥e promieniowania musi mieé osirg granice krdétko-
falowg przy diugosci fali A:mi = 0,248 3, niezaleznie od materiazu
anody; fale o diugosdci A <A‘mi nie mogg byé emitowane.Te cechy wid-

n
n

Widmo
ciggte

V 2min a
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ma ciggiego oraz charaktérystycznego sg przedstawione schematycznie
na rys. 9-41. Na tym samym rysunku zostaz linig przerywang naniesiony
wykres statej absorpcji kz_1(A) cienkiej folii metalowej, wykonanej z
pierwiastka, ktdrego liczba porzadkowa jest o jednos$é mniejsza od 1li-
czby Z materiazu anody. Cechg charakterystyczng takiego "£iltrut
jest to, Ze jego krawegdZ absorpcji przypada miedzy liniami KB 1 Ka
pierwiastka emitujacego. Wobec tego praktycznie cate natgzenie 1linii
KB oraz bardzo znaczna czg$é promieniowania ciagtego zostaje pochio-
nigta przez folig, a linia Ka zostaje przepuszczons, réwniez 2z pew=-
nym oszabieniem (do 50%). Jest to najprostszy sposéb otrzymania pro-
mieniowania monochrbmatycznego.

Promieniowanie rentgenowskie Jest falg elektromagnetyczng o diu-
gosci fali lezgcej (umownie) w zakresie 0,1 do 200 2. Jednakze diugi
czas po odkryciu R8ntgena brakowalo bezposredniego dowodu falowej na-
tury promieniowania, poniewaz nie udato sig doprowadzié do interfe-
rencji uzywajac najlepszych nawet siatek dyfrakcyjnych. Jedli przyj-
miemy A= 2 2 (o czym wéwczas nie wiedziano), to kat ugigcia dla mak-
gimum pierwszego rzedu przy siatce, zawierajgcej 2000 linii na mili-
metr, wyniesie: sin ¢ = 2°1078/51072 = 441074, ¢ = 0,023° = 1,4 ;nie
mozna zaobserwowalé prgzka przy tak matym kgcie ugigcia.

Rys. 9-42

Wiasciwg metode wykszania interferencji zaproponowax von Laue.Me-
toda ta jest oparta na wykorzystaniu regularnej budowy krysztaXdw:
atomy lub jony,tworzace periodyczng sieé przestrzenng krysztatu, two-
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rzg tym samym okreslone zbiory pzaszczyzn sieciowych. OdlegZosé 83—
siednich p*aszczyzn, nalezgcych do jednego zbioru- jest jednakowa 1
powinna odpowiadaé warunkom potrzebnym do uzyskania obrazu interfe-
rencyjnego promieniowania rentgenowskiego.

Rozwazmy pZaszczyzng sieciowg prostej struktury, jakg ma na przy-
ktad krysztat chlorku potasu (rys. 9-42). Wystgpuja w niej na prze-
mian jony dodatnie i ujemne; mozemy na tej pzaszczyznie wyrdznié kil-
ka kierunkdéw rdéwnolegiych, stanowigcych $lady przeciecia pZaszczyzn
sieciowych w strukturze tréjwymiarowej. Zbidr prostych, oznaczonych
liczbg 1, odpowiada piaszczyznom prostopadiym do ptaszczyzny rysunku
i1 obsadzonym jonami réZnoimiennymi,d1 jest odlegzoscig dwdch sgsiednich
ptaszczyzn. Zbiory prostych 2 i 3 odpowiadajg pZaszczyznom obsadzonym
przez jony jednoimienne; ich odlegXosci wynosag odpowiednio d2 3l d3 i
réznig sig od siebie. Widzimy wigc, iz periodyczng strukture kryszta-
Tu mozemy traktowaé jako zbidr przestrzennych siatek dyfrakcyjnych =
na tym wasnie opierata sig sugestia Lauego.

Y/ 0” ’ 0’
|

Rys. 9-43

Odpowiednie doswiadczenie, przedsta-
wione na rys. 9-43, wykonali Friedrich i
Knipping. Promieniowanie lampy, zawiera-
Jjace skiadowag ciggg i charakterystyczna
widma, przechodzi przez maty otworek w
przesionie P 1 pada na cienksg piytke
krystalicggq K. Obraz dyfrakcyjny otrzy-
muje sig na kliszy fotograficznej F: o-
précz $ladu wiazki pierwotnej 00, w péz-
niejszych doswiadozeniach 2zasZanianej
przed kliszg, pojawia sig wiele $laddéw
wiazek ugietych w postaci zaczernien,zwa
nych refleksami.Rozkad reflekséw w piyt Rys. 9=44
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ce KC1 jJest pokazany schematycznie na rys. 9-44. Widzimy, iZz symetria
rozktadu zaczernied odpowlada czterokrotnej osi symetrii, prostopad-
tej do pkaszczyzny rysunku, a jednoczesnie prostopadiej do piytki kry-
stalicznej. Jest to ogdlna cecha tzw. metody Lauego: zdjgoie wykonu-
je sig przy nieruchomym krysztale i promieniowaniu o widmie ciggym,
Uzyskany rentgenogram posiada symetrig, ktdéra zawiera dwie informac-
jes informacje o symetrii krysztazu i informacjg o orientacji pxytki
wzglegdem kierunku wigzki pierwotnej.

Rys. 9=45

Doswiadczenie Friedricha i Knippinga byXo bezpoérednim dowodem
s¥usznosci hipotezy Lauego, lecz nie dawazo mozliwosci pomiaru dugo-
dci fali uzytego promieniowania., Zasadniczg przeszkodsg Jest fakt, 2ze
do zdjeé tego typu uzywa sig¢ widma ciggXego, Niedostatki te zostaly
usunigete w doswiadozeniu Braggdéw (L. Bregg i W. Bragg), ktdérzy posiu-
2zyli sig monochromatyczng wigzka promieniowania charakterystycznego.
Schemat doswiadczenia jest pokazany na rys. 9=-45. Promieniowanie lam-
py przechodzi przez dwie przesZony P1 i P, w celu otrzymania wigzki
Scidle réwnolegtej, a nastegpnie przez filtr M, obcinajgcy widmo cig-~
g*e., Monochromatyczna wigzka pada na krysztar K, przedstawiony Jjako
2zbidr pkaszczyzn réwnolegiych, a po odbiciu wechodzi do detektora,kté-
rym jest komora jonizacyjna J. Z chwily pojawienia sig wigzki odbi-
tej w komorze piynie prad, wskazywany przez elektrometr E. Dla pro-
mieniowania rentgenowskiego kat padania mierzy si¢ inaczej, niz w op-
tyce: jest to kat zawarty miedzy paszczyzng prdébki a kierunkiem wig-
zki pierwotnej.



219

Wigzka odbita powstaje w ten sposdéb, ze padajgce promieniowanie
ulega rozproszeniu we wszystkich kierunkach przez elektrony, wchodzg-
ce w sktad elementdéw strukturalnych krysztaiuj jgdra atomowe rozpra-
szajg promieniowanie nadzwyczaj siabo., W wystarczajgcym dla nas u-
proszczeniu mozemy stwierdzié zgodnie 2z zasadg Huygensa,iz kazdy atom
(jon) krysztetu mozemy traktowaé jako Zrdédto fali czastkowej, kulis-
tej (rys. 9-46). Powstaniem wigzki odbitej rzadzg dwa prawa Braggdw:

1

Rys. 9-46

1. Fale czastkowe wygaszajg sig we wszystkich kierunkach, 2z wyjat
kiem kierunku lezgcego w ptaszczyZnie odbicia, w ktérym mogg sig
wzmacniadé.

ii. Wzmocnienie wigzki odbitej zachodzi wéwczas, gdy réznica drég
promieni odbitych przez sasiednie pZaszczyzny sieciowe jest réwna ca-
kowitej wielokrotnosci diugosci fali. Na podstawie rysunku 9-47 mamy
A= d sin 6, zatem

2dsine =n 2, (9.91)

Rysc 9-4T
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Warunek (9.91) okresla kat © , zwany czesto katem Bragga,dla kté-
rego mozemy otrzymad wigzk¢ odbitg od zbioru pZaszczyzn sieciowych,
ktérych wzajemna odlegto$é wynosi d. Jednoczesnie rdéwnanie to stano-
wi podstawg interpretacyjng powstawania reflekséwe.

W tym stanie rzeczy mamy zwigzek migdzy dwiema podstawowymi wiel-
kosciami, jednak obie s3 nam jeszcze nie znane. Okazuje sig, ze d dla
prostego krysztazu, np. KCl, mozna wyznaczyé niezaleznie w sposéb na-
stepujacy. Szescian elementarny krysztaiu KC1
jest przedstawiony na rys. 9-48 - na kazdym
narozu znajduje sig¢ na przemian jon KV 1ubC1™
Szescian zawiera zatem 4 - % KV + 4 ¢ % c1” =
= % KCl czagsteczek i ma objgtosé V = dg. 2
drugiej strony 1 mol KCl zawiera No czgste=
czek KCl, gdzie No Jest 1liczbg Avogadra i
ma objgtosé V .. = My,,/p, gdzie My, Jest
masa czgsteczkowg KCl, zasp gegstoscig krysz-
tatu. W takim razie

Rys. 9-48

’

3.5 - Yxo1
2dgi e W= Voon = )

czyli 1/3

M
a, =( =X . (9.92)
2N°-p

Po podstawieniu znanych wartosci otrzymujemy

dy = 3,150 2.

Jest to odlegZosé miedzy sgsiednimi pZaszczyznami typu 1 na rys,
9-42; odlegtosé dwéch identycznych praszeczyzn d = 2 d . Jezeli uZy-
jemy promieniowania CuKa, to pierwsze silne odbicie obserwuje sig dla
e =7,02°, stad n = 1 oraz

mma=2dsh16=1,M02.

Monochromatyczne promieniowanie rentgenowskie o 2znanej dZzugosci
fali moze szuzyé do mierzenia nie znanych odlegZzos$ci migdzy ptaszcazyz
nami w innych krysztatach. Jest to jedno z zadand rentgenowskiej ana-
lizy strukturalnej, ktdrej celem jest poznanie wewngtrznej budowy
(struktury) krysztatéw. Zadanie to jest realizowane w dwéch etapach:

i. Pomiar odlegZosci migdzy pZaszczyznami krysztaiu oraz symetrii
rozk¥adu refleksdéw umozliwia ustalenie rozmiaréw i symetrii elementar
nego réwnolegtoscianu, zwanego komérkg elementarng; periodyczne po-
wtarzanie komdérki elementarnej w kierunku trzech jej rdéznych krawedzi
umozliwia zbudowanie charakterystycznej dla krysztatu sieci prze-

strzennej.
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ii. Pomiar natezenia reflekadéw prowadzi do ustalenia rozkadu ma-
sy (poxozenis atoméw) wewngtrz komérki elementarnej.

Wsréd innych zastosowand promieniowanis rentgenowskiego nalezy wy-
mienié badania diagnostyozne w medycynie, pozwalajace wykryé obecnosé
niektérych schorzerd, ciaX obcych lub zXaman kostnych. Poza tym pro-
mieniowanie ma zastosowanie w defektoskopii, zajmujgcej sig¢ wykrywa-
niem wad materiaéw technologicznych i elementéw budowy maszyn (pgk-
nigcia odlewéw, pecherzyki powietrza, etc.).



10. DUALIZM KORPUSKULARNO-FALOWY

10.1. Promieniowanie temperaturowe cial
Prawo Kirchhoffa

Weszystkie cia%a, ktérych temperatura jest wyzsza od O K, tracag
energig pod postacig emitowanego promieniowania elektromagnetycznego.
Jednoozesnie pobierajg energie promieniowania, emitowang przez ciaza,
znajdujgce sie w ich bezposrednim otoczeniu. Zaleznie od tego, czy
temperatura otoczenia jest wyzsza, czy niZsza od wybranego przez nas
do obserwacji ciasZa, przewaza proces zyskiwania energii nad utratg lub
odwrotnie., Jesli ciaXo otrzymuje od ciakx sgsiadujgcych dokiadnie takg
samg ilosé energii jakg traci wskutek promieniowania przez cazg Jego
powierzchnig, to méwimy o promieniowaniu termicznie zrdéwnowazonym. W
takim przypadku wtasnosci emitowanego przez ciaXo promieniowania za-
lezq od temperatury ciaza, a nie zalezg od sposobu dostarczania ener-
gii na wyréwnani§ strat. Takie promieniowanie nazywamy temperaturowym.

Re

—A

-
ot ==
0 did ——r(1)da

Rys. 10-1

Energia jest emitowana przez rozgrzane ciaXo w postaci tzw. widma
ciggtego; oznacza to, ze kazda drugosé fali, teoretycznie od zera do
nieskoficzonodci, wystepuje w widmie promieniowania, choé z réznym na-
tezeniem. Moc promieniowania emitowana przez Jednostke powierzchni
cista w peinym zakresie dXugosci fal bgdziemy nazywaé emisjsg energe-
tyczna ciasa R, przy ozym jednostkg R, jest w/m2. Czgsto interesuje
nas moc, emitowana tylko w pewnym wqskim przedzisle dzugosci fal djs
energig¢ te oznaczaé bgdziemy przez r(A) dA Mamy oczywiscie (rys.10-1)

dR, = r(r) an (10.1)
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Wertosé energiil dR, zalezy od dwéch czynnikdéw: od szerokosci prze-
dziatu dA i od jego poZozenies na skali diugosci fal. Zauwazmy, 32e
energia promieniowania o Scidle okreslonej diugosei fali, tJj. promie-
niowanie £ciéle monochromatycznego wynosi zero, poniewaz dla takiego
promieniowania dA = O, Dlatego dRe okreslamy dla bardzo maZego,
ale réznego od zera przedziaiu diugos$ci faly takie promieniowanie nie
jest jednak sScisle monochromatyczne.

Poniewaz [r(A)] = J/(gem’) = w/m>, wielkosé r(A) jest gestoscis
mocy promieniowania ciaXa rozgrzanego przypadajacg na jednostkowy
przedziax diugosci fal i nosi nazwg zdolnosci emisyjnej.

Z drugiej strony, jak wiemy, powierzchnia cisa absorbuje energie
na nig padajacg. Niech dE P (A) oznacza energig padajaca na element
dS powierzchni cials w zakresie diugosfci fal od A do A + dAa. Czgsé
te] energii ulegnie odbiciu( czesé zostanie zaabeorbowana.Oznaczmg
ostatnig wielkoéé przez dE a) (A); mamy oczywiscie @ Xa) < dE (p ()
oraz 2N
ae{®) ()
=50 = a(a) < 1. ) (10.2)

Uzamek energii zaabsorbowsnej wzgle¢dem energii padajgcej w tym sa-
mym przedzisle dtugosci fal A, A+ dA, jest oznmozany przez a(r) 1
nosi nazwg zdolnosdci absorpcyjnej ciata. Zdolnosé  absorpcyjna Jest
liczbg bezwymiarowg, ale podobnie jak zdolnosé emisyjna Jest funkcjg
diugosci fali A .

S
v
(v

To4 > Tos
rd)y, > rig

Rys. 10=2

Obie state r(A) i a(A) nie sa niezalezne. Rozwazmy nastgpujaca
sytuacjg: mamy dwa ciata, A i B, umieszczone wewngtrz osiony nieprze-
zroczystej dla promieniowania (rys. 10-2). Niech na poczgtku begdzie
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TOA:> TOB’ czyli poczatkowa temperatura A Jest wyzsza od temperatu-
ry poczatkowej B; przyjmujemy ponadto, ze rCh)A:> r(A)B. CiaZo A wy=-
syta zatem w przedziale A, A+ dA wigkszg moc promieniowania, ni3
B w tym samym przedziale. W takim razie A dostaje mniejszg porcje
energii w ciggu 1 s ni2z samo wysyia; temperatura A musi maleé, zas
temperatura B rosngé, Dzieje sie to tak dzugo, a3 zgodnie 2z prawami
termodynamiki obie temperatury ulegng wyrdéwnaniu, Poniewaz dalej obo-
wigzuje r(A), > r(A)p, wigc dla zachowania staXosci temperatur musi
byé tesz a(A)A > a(k)ﬁ. Wynik ten jest tresciq prawa promieniowania
temperaturowego, podanego przez Kirchhoffa: stosunek zdolnosci emisyj
nej do absorpcyjnej nie zalezy od natury ciaxa 1 dla wszystkich ciak
jest taka samg funkcjg drugosci fali i temperatury £(A,T)

'{r(}‘)} = {r(}‘)} = oo0 = £(A,T)s (10.3)
a(r) N a(a) B |

10.2. Prawa promieniowanis cia}a doskonsle czarnego

Spoéréd réznych obiektéw emitujgcych promieniowanie na szczegélne
wyrdznienie zastugujg takie, ktdére catkowicie pochtaniasjg padajace na
nie promieniowanie. Ciata takie nazywamy doskonale czarnymi; dla nich
a(A) = 1 oraz

r(a) = £2(A,T), (10.4)

czyli zdolnosé emisyjna ciaka doskonale c¢zarnego Jjest uniwersalng
funkcja diugosci fali i temperatury. Kazdy model eksperymentalny cia-
Za doskonale czarnego'bedzie tu dobry, byle +tylko speXniat warunek
a(A) = 1; jeden z takich modeli jest przedstawiony na rys. 10-3, Cia-
Zem dogkonale czarnym jest tu wnegka w dowolnym materiale, kontaktujg-
ca si¢ z otoczeniem za posrednictwem niewielkiego otworu. Blok mate-
ristu moze byé ogrzewany (elektrycznie) do potrzebnej temperatury T.
Kazdy promien przychodzacy z zewngtrz ulega wielokrotnemu odbiciu,prazy
czym za kaZdyﬁ razem czgSé energii zostaje pochionigta tak, ze w korn-
cu cata energia padajgcego promienia zostanie zaabsorbowana.Oiwdr wy-
syta promieniowanie, zaleine Jjedynie od temperatury T bloku.
Zaleznosé r(A), uzyskana dla ciaks doskonale czarnego eksperymen
talnie, czyli rozkkad spektralny zdolnosci emisyjnej, jest przedstawio-
ny na rys. 10-4. Krzywa posiada dla kazde] temperatury maksimum,kté-
rego potozenie, czyli dtugosé fali w maksimum 7 =, zalezy od tempera-
tury ciata., Catkowitg powierzchnie¢ pod krzywg przedstawia wyrazenie

fr(h) dy= Re) (1005)
0
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Ryse 10-3

ri

dRe=riR)da

L1 |
23 48 0

czyli powierzchnia pod krzywq réwna jest liczbowo catkowitej emisji
energetycznej ciaXa doskonale czarnago w okreslonej temperaturze.
Prawa promieniowania ciata doskonale czarnego, poznane empirycz-
nie, sg nastgpujgce.
i. Prawo Stefana-Boltzmanna: caikowita emisja energetyczna Re cle
za doskonale czarnego jest proporcjonalna do czwartej potggl tempera-
tury absolutne] ciaza
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Ry = fr(x) dx =g * 4, (10.6)
)

Lioczbowa wartosé statej o wynosi

J
=8
g = 5,67°10 =T .
,’ s m K
ii, Prawo przesunigé Wiena: diugosé fali A m? Odpowiadajgca maksi-
mum zdolnosci emisyjnej r(A) jest odwrotnie proporcjonalna do tem=
peratury absolutnej ciata doskonale oczarnego

e

Ag = % . (10.7)

gdzie ¢’ = 2,898°10™° m.K.

ik

400 800 2,nm
Rys. 10=5

Drucik wolframowy o temperaturze 3000 K, sSwiecgcy w zwykie] 3a-
réwce,wysyta promieniowanie, ktérego rozkiad spektralny, przedstawiony
na rys. 10=5, przypomina rozktad zdolnosci emisyjnej ciata doskonsle
ozarnego. Maksimum tego rozkZadu 'przypada na dxzugosé fali Ap =
= 2,898010-3/3000 m = 970 nm, a wige w zakresie podozerwieni.Niewiel-
ka, zakreskowana czgsé powierzchni pod krzywa (rys. 10=5) obejmuje za-
kres widzialny promieniowaniajy réwniez niewielka o¢zesé powierzchni
przypada na zakres nadfioletowy (UV), natomiast przewazajaca czgséé mo-
oy jest emitowana pod postacia promieniowania podczerwonego (IR), po-
wodujgcego ogrzewanie Zardwki.,

Podstawowym zagednieniem teorii promieniowania ociata  doskonale
czarnego jest wyjasnienie mechanizmu promieniowania, tj. 2znalezienie
analitycznego opisu krzyweJ na rys. 10-4, Podejmowano w tym kierunku
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wiele wysitkdéw, konstruujac réine modele promieniowania; do czasu o-
gXoszenia przez Plancka teorii promieniowania weszystkie te modele by-
¥y jednak nieudane. Przedstawimy dwie takie préby wyjasnienia mecha-
nizmu emisji, poniewaz stanowig one = jak zobaczymy - graniczne przy-
blizenia modelu Plancka.

Kazda funkcja r(A,T) usitujgca analitycznie opisaé krzywg 2z rys.
10-4, musi spexiniaé dwa postulaty:

i. Poniewaz w okreslonej temperaturze powierzchnia pod krzywg jest
liczbowo réwna Rg» &8 ta Jest wielkoscigq skoriczong, przeto caika
r(A,T) rozciggnieta na caty zakres spektralny musi byé skorficzonaj za-
znéozymy to symbolicznie

R, = jﬂr(x) dR<==re (10.8)
)
ii. W temperaturze nieograniczenie rosngcej réwniez Ry, powinno
roangé do nieskoiczonosci

T—booDRe——oc.

(10.9)

Mozemy obecnie przystgpié do przedstawienia trzech modeli promie-
niowania ciata doskonale czarnego.

10.2+1. Model Rayleigha=Jeansa

W tym modelu przyjmuje sig, ze emitujgce ciaxo jest zbiorem oscy-
latoréw wymieniajgocych energi@ z polem elektromagnetycznym (emiaja 3!
absorpcja)l. Srednia energia catkowita kazdego oscylatora jest taka se
ma. Dla oscylatora liniowego (atom w ciele statym) mamy dwa stopnie
swobody, przy czym jeden z nich odpowiada energii kinetycznej, drugi
zad potencjalnej. Eacznie, na kazdy oscylator przypada sSrednia ener-
gia réwna kT. Oscylatory mogg wymieniaé z polem elektromagnetycznym
energi¢ w dowolnych porcjach, byle tylko sSrednia energia kazdego od-
cylatora w dostatecznie dfugim przedziale czasu wynosita kT.Model ten
(termodynamiczny) prowadzi do funkcji o postaci

r(A) dp = Qﬂtﬁ KT d A. (10.10)
A

Pankcje (10.10) mozemy przedstawié réwniez jako funkcje oczgstos-
ci,v 3 musi byé przy tym speiniona réwnosé

r(p) drn = r(y) dy = dR,, (10.11)

poniewas dwa pierwsze wyrazenia (10.11) przedstawiasjg element catko-
witej emisji energetyoznej, ktérego wartosé nie moze zalezeé od wybo-
ru argumentu. Poniewaz |[d)| = (c/vz)'ldvl, zatem



228

81
r(v) dy = —5 kT v2 dy.
[¢]

tatwo teraz zauwazyé, Ze wyradenie

oo 8 S
Re-fr(v)dv-—cg-k'l‘f\;zdv
) o

Jest réwne nieskoriczonodci dla gérnej granicy catkowania.Fakt ten na-
zwany zostaX "nadfioletowg katastrofa™ i dowodzi, %e funkcja Rayleig=
ha~Jeansa moze byé pordéwnywana 2z doswiadczeniem Jedynie w zakresie
niskich czgstoseci, tj. w zakresie diugich fal.

1062.2, Model Wiena

Przyjmuje sig podobnie, jak w poprzednim modelu, ze oiazo staze
sk¥ada sig z oscylatordéw wymieniajgcych energie z polem elektromagne-
tycznym. Energia oscylatoréw nie jest jednak dla wszystkich taka sa-
maj dla kazdej temperatury jest okreslona funkcja (rozkad Mazwella=-
Boltzmanna) podajgca, jaki uXamek liczby oscylatoréw posiada energie
w zadanym przedziale. Nie wchodzge blizej w szczegéty rachunku, poda-
my postaé funkcji r(v) uzyskanej przez Wiena

s = oy v2 = 02, (10.12)

Teoris nie przewiduje mozliwosci obliczenia staiych c4 i Gy = mur
828 byé znaslezione empirycznie. Widaé jednak, ze funkcja (10.12) nie
speinis postulatu 11, poniewaz dla temperatury zdgzajgace] do nie-
skoniczonosci funkcja pozostaje skodczons

P = oo 5 v(y) --01\;3.

1062¢3. Model Plancka

Jest to model, w ktérym przyjeto najbardziej radykalne zaXozenie.
W oelu uzyskania prawidiowe] interpretacji promieniowania ciaza dos-
konale czarnego Planck musia* przyjaé, iz energis oscylatora nie moze
mieé dowolne]j wartosci, ozyli nie moze byé ciggisg funkcjg jakiegos pe
rametruy energia ta moze przyjmowaé jedna z wartodeci okreslonych wzo-
rem

E,=nhv, n=0,1, 2, ... (10.13)

n Jjest liczbg csikowitg lub zerem i nosi nazwg liczby kwantowe],
h Jest pewng statg, noszgcg nazwe sta&gj Plancka, y jest czestoscig
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drgefi oscylatora. Péfniej okazalo sig, ze wzdér (10.13) jest niezupez-
nie dokZadny; poprawne wyrazenie okreslajgoce energig oscylatora ma
postaé

Ep = (n+3) hw (10.14)

Wartosé stata, réwna 1/2, jest zwigzana z tym faktem, Ze energis
oscylatora w najnizszej temperaturze (0 K) nie moze byé rdéwna zeru,
leoz wynosi 1/2(hv).

Stata Plancka jest Jjedng z nsjwazniejszych staiyoch przyrody - jej
warto$é liczbowa wynosi wediug wspdZczesnych pomiardw h=-6,6256~10‘34
Je8e

Oba wyrazenia, (10.13) lub (10.14) oznaczaja, ze jesli energia os
cylatora ulega zmianie, to zmiana ta nie moZe by¢é dowolna; najmnisj-
8zg porcjg energii, jakg oscylator moze pochtongé lub wyemitowaé jest
h v =i tg wielko$é nazwano kwantem energii. Zwréémy uwage na to, i3z
teoria’Planoka dotyczy kwantowego charakteru energii catkowitej oscy-
latora, zadé o naturze samego promieniowania orzeka posrednio: by ener
gia oscylatora mogts zmienié sig skokowo o hV, promieniowanie elek-
tromagnetyozne o czgatosoi y musi byé strumieniem quasi-czgstek,zwa-
nych fotonami, o energii fotonu réwnej hv.

Zatozenie (10.13) lub (10.14) prowadzi do funkeji r(v) lub r(a)
o nastgpujgce] postaci

(v) S (10.15)
r = 9 ®
VIR T BVET
2
8 m he 1
r(A) = (10.16)
A QHCAKT _, °

doskonale zgadzajgacej sig z danymi doswiadezalnymi. Mozne réwnies po-
kazaé, 1% podane uprzednio prawa Rayleigha=-Jeansa i Wiena sg aproksy-
macjami prawa Plancka dla odpowiedniego zakresu dtugosci fal. Przed-
stawimy krétko otrzymanie tych przyblized i imnych praw promieniowa-
nia cilata doskonale czarnego.

i. W zakresie fal diugich, czyli duzych ) , mamy hc/ kT <<1 oraz

2
he 1 he
ehO/)\.kT = 1 + + - + oo
A kT 2 \ AKkT

Ograniczajgc przyblizenie rozwinigcia do dwéch pierwszych wyrazdw
otrzymamy z (10,16)

2
r(A,T) - 81 ?c A kT = 8n4c
A he A

czyli dokZadnie prawo Rayleigha-Jeansa.

kT,
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11. W zakresie fal krétkich eV XT>51  oras

=(v,1) ay = 858 3 R/ TN

ra,n) funkcja
Plancka

\

funkcja
/ Rayleigha - Jeansa

\S

\

2\
o funkcja
Wiena

\Y

Ryso 10"6

W ten sposdéb otrzymujemy przyblizenie podane przez Wiena.Oba przy-
blizenia wraz z funkcjg Plancka sg przedstawione na rys. 10=6.

Z funkcji (10.16) wynikaja réwniez oba prawa promieniowania ciala
doskonale czarnego, podane w rozdzisle 10.2 jako prawa empiryoczne,np.
poXozenie maksimum rozkZadu spektralnego (10.16) mozemy znaleZé,przy-
réwnujgc do zera pochodng funkcji r(A,t) wzgledem diugodci fali

dr(r,T) 5 5~ (ehO/AKT he ho /) kT -5
= =52~ (e -1) + [ . = 0,
oA : A2 kT 2

Mnozgc obie strony przez }\6 e'h°/ ALT i1 porzgdkujge wyrazy

A e -3 (1 - o~hOAKRT)™! 0,2014,
a stad Am e T = 0,2898 cm/K = ¢}, ozyli prawo przesunigé Wiena. Nieco
bardziej skomplikowany jest wywéd prawa Stefana-Boltzmanna (10.6)jnie
bgdziemy go tu omawiali.

W zakoriczeniu tego paragrafu kilka siéw poswigeimy jeszcze cisiom
niedoskonale czarnym. Dla nich a&(;) <1, ozyli ich zdolnosé emisyjna

r°(A,T) = a(a) ° »(x,T) < »(x,T)

jeat mniejsza od zdolnosci emisyjnej ciata doskonale ozarnego, Moze
sig zdarzyé, se zdolnosé absorpcyjna jakiegos ciata promieniujgcego
nie zalezy od d¥ugodoci fali, Wiasnodci takie w szerokim zakresie diu-
godci fal ma warstwa sadzy, uzywana jako wargtwa absorbujgca w detek-
torach i miernikach natgzenia promieniowania., Ciaza takie nazywamy
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cistami szarymi; rozktad spektralny r (,T) ich zdolnosci emisyjnej
jest proporcjonalny do rozktadu r(A,T) ciata doskonale czarnego. Dla
tych ciat jest speXnione réwniez prawo Stefana-Boltzmanna, przy czym
ma ono postaé

R, =k <o T4, (10.17)

gdzie k <1 Jest wspbiczynnikiem bezwymlarowym, zaleznym od natury
ciata szarego, np. dla rozgrzanej platyny k = 0,15, zas dla tlenku
2elaza k = 0,89.

10.3. Efekt fotoelektryczny

Bezposrednim dowodem doswiadczalnym kwantowej natury promieniowa-
nia jest efekt fotoelektryczny, odkryty Jednoczesnie przez Hallwach-
sa 1 Stoletowa, a wyjasniony przez Einsteina. Zjawisko to, bardzie]
precyzyjnie nazywane zewngtrznym efektem fotoelektrycznym, polega na
wybijaniu elektronéw z powierzchni metalu, na ktdérg pada promieniowa-
nie elektromagnetyczne. Ze wzglgdu na bardzo krdétki zasigg fotoelek-
tronéw w atmosferze gazowej, zjawisko to obserwuje sig i bada w préz-
ni. Natgzenie promieniowania ma bezposredni wpiyw na liczbg emitowa-
nych fotoelektrondw, natomiast ich energia (predkosé) zalezy od czes=
todci promieniowania.

WXasciwg interpretac]je tego zjawiska podax Einstein: kwant pro-
mieniowania monochromatycznego, wybijajacy z powierzchni metalu foto-
elektron pokonuje pracg wyjscia W elektronu 2z powierzchni metalu
oraz nadaje elektronowi energig kinetyczng 1/2 m v2

hy = W + % mve, (10.18)

Praca wyjscia elektronu z powierzohni metalu jest wartoscig dla
danego metalu staka; wraz z malejgca czgstoscig promieniowania maleje
energia kinetyczna wyrzuconego elektronu. Wreszcie dla pewnej czgs-
tosdel Vo energia kwantu hy, wystarczy Jedynie do pokonania pracy
wyjdcia W3 wéwezas 1/2 mv2 = O, Mamy zatem

W = hy, (10.19)
oraz
h(v = v,) = % mv2, (10.20)

Najmniejszéj czgstosei v, odpowiada najwigksza dIugosé fali Ao
przy ktérej mozliwy Jest efekt fotoelektryczny. Dlatego A, nosi na-
zwe czerwone]j granicy zewngtrznego efektu fotoelektrycznego. Dla diu-
goscl fal A > A, fotoefeki jest niemozliwy.
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Dy

Wykresem energii kinetyozne]
T fotoelektrondw w zaleznofci od
czgstodel v Jjest wediug (10.20)
linia prostay odcigta dla T=0 wy-
nosi v = c/ko, zas nachylenie tej
prostej réwne jest h. Badanie fun
kcji T(v) jest jedng =z metod wy-
znaczania hj wielkos$é ta musi byé
niezalezna od rodzaju badanej po-
wierzchni.
S Efekt fotoelektryczny znalaz
bezposrednie zastosowanie w kon-

Rys. 10=T7

strukcji fotokomdérek, stanowigcych

bardzo czue detektory i mierniki
natgzenia promieniowania. Model fotokomérki préiz-
niowej przedstawiony jest na rys. 10-7. Na we-
wngtrznej sScianie bariki prézniowe] jest nanie-
siona ciehka warstwa metalu,atanowiqcego foto-
katode K. Najlepsze sg do tych celéw metale, po-
siadajgce maXg pracg wyjscia W. Nalezy donich
cez (A, = 660 nm) lub fotokatoda Cs/Cs=0, zXo-
2ona z warstwy cezu i tlenku cezu utlenionego
w sposéb niepeiny Cko = 1100 nm).Naprzeciw fo-
tokatody znajduje sig anoda, wykonana 2z siatki
metalicznej, przepuszczajgcej promieniowanie.
W stanie zaciemnionym przez fotokomdérkg piynie
bardzo maiy prad i (log 1, ¥ -14), wynikajg-
cy przede wszystkim 2z niedoskonaze] izolacji
elektrycznej. Oéwietlenie promieniowaniem po-
woduje przepiyw pradu fotoelektrycznego 1f
(=13 < log i, =9), Jjezeli fotokatoda jest po-
Zgczona z ujemnym biegunem baterii (rys.10-7).
Wielkosé i, jest sScisle proporcjonalna do na-
tgzenia promieniowania. Zmiany nategienia if
odwzorowujs 8ig na oporniku wysokoomowym R ja=-
ko zmiany potencjaiu, doxaczane zwykle do u-
kxadu wzmacniajgcego.

Detektorem promieniowania znaoznie bardziej
czutym od fotokomérki jest fotopowielacz (rys.
10=-8). Oprdez fotokatody K sg umieszczone we-
wnatrz berki préizniowej dodatkowe elektrody Dy,
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zwane dynodami, wykonane ze specjalnego stopu o duzym wspéiczynniku
powielenia, Fotoelektron, padajgcy na pierwszg dynodg, wybija 2z niej
$rednio dwa elektrony w zjawisku emisji wtdérnej; liczba ta nosi nazwg
wepbiczynnika powielenia. Dynod jest kilkanascie, przy czym potencja
kazdej nastgpnej jest wyzszy od poprzedniej. Jezeli dynod jest 15 a
wep6Xczynnik powielenia wynosi 2, to otrzymujemy z kazdego fotoelek-
tronu (if) znaczng liczbg elektronéw w mierzonym natgzeniu pradu (i )
WepbZczynnik wzmocnienia wynosi im/if = 215 = 3,3°10°, a w najlep-
szych fotopowielaczach okoxo miliona. Detektordw takich uzywa sig do
pomiaréw bardzo matych natezefl promieniowania, np. w badaniach roz-
kXadu spektralnego emisji luminescencji lub promieniowania gwiazd. W
ppZaczeniu z odpowiednimi przetwornikami, np. 2z krysztalami scyntyla-
cyjnymi, fotopowielacz moze byé detektorem innych rodzajéw promienio-
wania, np. rentgenowskiego, beta, gamma,

10.4. Efekt Comptona

Eksperymenty przedstawione w paragrafach 10.2 1 10.3 dowodzg, Ze
promieniowanie ma aspekt korpuskularny: wigzka promieniowania moze byé
traktowana jak strumied fotonéw. Efekt Comptona dowodzi ponsdto, Ze
kwant posiada ped o wielkosci Pp = hv/e = h/A, odpowiadajgqoe] przewi-
dyweniom teorii wzglednosci. Pod wzglgdem mikroskopowym efekt ten po-
lega na zderzeniu fotonu z elektronem; gderzenie jest sprezyste, a
wigc jest speiniona zssada zachowania energii i zasada zachowania pe-
du. Schemat dos$wiadczenia jest przedstawiony na rys. 10-9. Promienio-
wanie lampy rentgenowskiej (LR) przechodzi przez filtr (F) wydziela=
jgoy monochromatyczng linig promieniowania charakterystycznege o diu-
gosci fali Ao 1 energii kwantu hy,3 przesiona S1 wydziela wgsky
wigzke promieniowania. Do badania efektu Comptona moglibysmy uzyé w
zasadzie réwniez promieniowania nadfioletowego, lecz - jak =zobaczymy
pééniej = dokkadnos$é pomiaru wielkosci efektu jest 2znacznie wigksza w
obszarze promieniowania rentgenowskiego.

Wigzka promieniowania pada na ciaXo state, zwykle grafit (¢), =z
ktérego zostaje wyrzucony elektron - e. Energia odrzuconego kwantu hv
Jest mniejsza od h“b’ wobeo czego A > A 0* Poniewa? nie 2znamy A,
wige promieniowanie rozproszone po przejsciu przesion 82 al 83 pada
na krysztat K, speiniajgcy rolg analizatora dtugoscl fali. Odbicie
pierwszego rzedu od ptaszozyzn krysztaiu wystgpil dla takiego kgta o,
ktéry spetnia warunek Braggéw: 2d sin ¢=Aj odstgp d migdzy piasz-
ozyznami uwazamy za znany. WekaZnikiem wZasciwego doboru ¢ jest ko=
mora jonizacyjna (KJ) - po uzyskaniu wigzki odbitej przez elektrometr
E popiynie prad.
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Rys. 10=9

Niech © bgdzie kgtem zawartym migdzy predkoscig wyrzuconego
elektronu a osig Y, zas & Jest kgqtem miedzy kierunkiem ruchu roz-
proszonego fotonu a osig Y., Jesli uwzglednimy fakt, Ze energia kine-
tyozna i ped elektronu w ciele statym (G) sa znikomo maXe i mozna je
zaniedbaé, natomiast ped elektronu odrzuconego jest basrdzo dusy i na-
lezy go potraktowaé relatywistycznie, to zasady zachowania bgds mialy
postaé:

zasada zachowania energii

+ =, (10.21)

zasada zachowanlas pedu

m.v
0 = % sinolel——0 = sin 6 dla o8t X, (10.22)

J oy cos 3 + cos 8 dla osi Y. (10.23)

Zasadg zachowanie pgdu napisalismy osobno dla sktadowych na oé X
i osobno dla Y, poniewas ped jest wektorem. Te trzy rdéwnania mozemy
zapisaé réwniez w postaci
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<éin@ > m v
h = 8in ©.
A
V4 o @
Delszy rachunek zmierza do wyeliminowania nie interesujgcego nas

kata © rozproszenia elektronu - przedstawimy go jedynie skrdétowo.Pod-
nosimy drugie i trzecie rdwnanie do kwadratu i dodajemy.Wynikiem jest

1 1 2 cos ® .m2v2
02 (— + —5 - -2 (10.24)
Ao A AAg 1-8

Kwadrat pierwszego rdéwnania ma postad

1 1
hz(‘? __7__ <—2+1-1/1T> (10.25)

Réznica (10.24) i (10.25) wynosi

h2.{2(1 - cos @)—}= mg(v2 - ¢?) - n%? + mzc B2 emd s }
A %o 1 - g2 1 -2
1 2.1 1
- 2m§02{ + £ } 2mhc<-—-->
V1 - Bz 1 - 32 A3
zatem B
(A=) =201 = (1 - cosa ). (10.26)

m, ?.

Wynikiem rachunku jest wyrazenie okreslajgce réznicg dxugosci fa-
1i promieniowania rozproszonego i padajgcego. Wynik ten Jest najwaz-
niejszy w teorii efektu Comptona, poniewaz moze byé spraswdzony dos-
wiadczalnie. Jesli podstawimy state uniwersalne: h = 6.626'10334 Jes,
m, = 0,9109:107%° kg, ¢ = 2,998:10% n/s, to

h
B - 0,0242 &

i jest réwniez stalg uniwersalng - nosi nazwg comptonowskie] dXugosci
fali. Ze wzglgdu na uniwersalny charakter tej stazej efekt Comptona
musi wystgpié dla promieniowania kazdej dZugos$ci fali,ktére) odpowia-
da kwant o energii wyzsze] od pracy wyjsScia elektronu. Zauwazmy Jed-
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nak, %ze AA Jjest wielkoscig bardzo matg; w pordéwnaniu do diugosdci fa-
1i promieniowania nadfioletowego, Ao & 2000 R. efekt ten lezy w gra-
nicy dok*adnosci pomiardéw spektroskopowych, natomiast w zakresie pro-
mieniowania rentgenowskiego, A, % 1 2, zmiana dfugosoi fali oA mo-
%e byé dokiadnie zmierzona., Z (10.26) wynika, ze najwigksza 2zmiana
dxugosci fali (\A = 0,0484 R) wystgpi wéwczas, gdy kwanty sg rozpro-
szone watecz (2 = 180°), natomiast gdy wigzka przechodzi bez odchy-
lenia (3 = 0)AA = O,

10.5. Dualizm korpuskularno-falo promieniowani

W poprzednich paragrafach poznalismy doswiadczenia, ktérych wyni-
ki Swiadczg niewgtpliwie o tym, %e promieniowanie ma cechy korpusku-
larne. Sg nimi emisja ciata doskonale czarnego, zjawisko fotoelektry-
czne, efekt Comptona. W rozdziale 9 natomiast omawlalisdmy zjawiska
takie Jak: interferencja, dyfrakcja i polaryzacja, dowodzgce falowe}
natury promieniowania. Mozna wigo postawié sobie pytanie,czym promie-
niowanie jest "naprawde"?

Nasz poglad na naturg rzeczy i zjawisk wynika = przyzwyczajed do
otaczajacych nas przedmiotéw i zjawisk Swiata makroskopowego.Pojgciem
takim jest fala, nieskoficzenie rozciggia w czasie i1 przestrzeni, po-
Jeciem takim jeat réwniez czgstka, posiadajgca pegd, a wige i energig.
Jesli mamy stosowaé te pojecia réwniez w odniesieniu do fotonu,to po-
zorng sprzecznosé zachowanis sie promieniowania w rdéinych doswiadcze-
niach da sig usungé przez przyjecie, iz promieniowanie ma jednoczes-
nie cechy falowe i korpuskularne, tj. wykazuje dualizm korpuskularno-
falowy.

Poxgczenie obu tysh cech jest obecnie - jak sig wydaje = niezupex
nie jasne., Byé moze, iz postep w teorii czgstek elementarnych bedzie
miat wpiyw réwniez na zrogzumienie "natury" fotonu. Niemniej jednak wy-
nik doswiasdczed fizycznyoh jest zupetnie jasny i moze byé  rozumiany
w nastgpujgoy spoedb., Siatka dyfrakecyjna, czy tez krysztak,jeat swoi-
8tego rodzaju analizatorem lub typem "dyskryminatora®™ cech fizycznych,
umozliwisjacym ujawnienie sposrdéd wszystkich mozliwych cech tylko fa-
lowe] natury zjawiska fizycznego, jakim jest promieniowanie.

Innym typem dyskryminatora fizycznego jest pcwierzchnia metalu lub
fotokomérka, ktére z kolei ujawniajg tylko cechy korpuskularne. KNie-
atety, nie posiadamy w chwili obecnej tskiego dyskryminatora, ktéry
pozwoliXby wykryé wystepowanie obu tych cech Zgcznie 1 to stanowi in-
ng postaé stwierdzenis faktu, ze sposéb potaczenia w Jednym obiekcie
cech falil i cech czastki Jjest nam obecnie nie znany.
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10.6. Falowa natura czgstek

Falowa natura wigzki elektrondw zostaa przewidzisna w 1924 r,
przez Loutsa deBroglie'a. DoszedX on do wniosku,%e czgstka materialna,
jaks jest poruszajgcy sie elektron, posiadajgcy zatem pgd p, powinna
ujawniaé réwniez cechy falowe, zgodne z rdéwnaniem

s
A > (10.27)

omawianym uprzednio dla fotonu. Wielkosé A , wystgpujgcg w (10.27),
nalezy rozumieé jako diugos$é fali "sprzgzonej™ z ruchem elekironu.

Sprébujmy oszacowaé A dla elektronéw w przyblizeniu nierelaty-
wistyoznym, tj. dla v<<oc. Przez v rozumieé begdziemy prgdkosSé po-
ruszaenia sig@ elektronu o masie spoczynkowej m_ . Mamy wigc

o
-l—'m v2 =e U,

czyli
<—L>
stagd B 4.3
~ 2 = 12420 3, 10.28
A m,v (2em-U)|; Yu© (20-29)

Elektronom o energii 100 eV powinna zatem towarzyszyé fala o diu-
godel A = 1,225 3, ulegajgca interferencji na krysztazach.

P A [F K

K —
L]

ddk————h{ﬂﬂr——
Rys. 10-10

Znakomitym potwierdzeniem hipotezy de Broglie 'a byty wyniki dos-
wiadczel Davissona i1 Germera. Schemat aparatury jest przedstawiony na
rys. 10-10, W dokZadnie odpompowanym naczyniu szklanym =znajduje sié
katoda K, stanowigca ZrédXo elektrondédw. Elektrony przyspiesza sig 1
ogniskuje w cienks wigzke za pomocg elektrod P i Ay F Jest Dbardzo
cienkg folig, wykonang ze z}ota. Wigzki uglgte dajg ns klissy foto-
graficznej (K) obrez przedstewiony obok schematu apsratury, i supei-
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nie przypominajgoy wynik ugigcia promieniowania rentgenowskiego.W péz-
niejszych doswiadczeniach wykazano, %e réwniez strumied protonéw ule-
gs dyfrakcji w podobnych warunkach i zgodnie z réwnaniem (10.27).
Latwo sig Jednak przekonaé, %e predkosé fali u, spizezonej zZ ru-
chem czgstki mikroskopowej, musi przewyzszaé predkosé dSwiatza., Mamy

bowiem

u hu hy
= === m = o
v hy ‘me”
Jednoczesnie
° A s d
P mv

zatem

u-va=o’, (10.29)

Zadna energia nie moze byé przenoszona z prgdkoscig u > c. Fala
de Broglie’a jest wigc falg fazows.

10, Relacje Heisenberga

Relacje Heisenberga, zwane niekiedy "zasadami nieokreslonosci®
Heisenberas, 23 pewnyml 2zwigzkami migdzy parametrami dynamicznymi,za-
pozyczonymi z fizyki klasycznej, ktérymi opisujemy ruch czgstki mi-
kroskopowej, np. elektronu. Przypusémy, Ze z wigzki elektronéw, poru-

Rys. 10-11

szajgce] sig z lewa na prawo (rys. 10-11) wydzielamy wiazke za pomocg
otworka o Srednicy Ax, wycigtego w przesionie S,;. Falowe wkasnosci
elektronéw uwidooznig sig w postaci obrazu dyfrakcyjnego na ekranie
(1ub kliszy fotograficznej 52). Oprécz $ladu wiazki centralnej (mak-
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gimum zerowego rzgdu) zaobserwujemy pierscienis dyfrakeyjne,z ktdérych
najwazniejszg role odgrywa pierscied pierwszego rzgdu. Ogromna wigk-
52056 elektrondw trafi w jedno z tych dwéch miejsc ekranu; nie mozna
jednak przewidzieé dla poszczegdlnych elektrondéw przed ekranem S1, w
ktére miejsce trafig po przejsociu S1. Wielkodé Ax mozemy wigc uwa-
%aé za niepewno$é znajomosci pozozenia elektronéw w kierunku osi xj
niepewnosé ta zalezy od rozmiardw wycigtego przez nas otworu w Sqe
Fakt, %Ze nie wiadomo, w ktére z dwéch makeiméw (zerowego lub pierwsze-
go rsedu) padnie obserwowany przez nas elektron réwnowazny jest stwier
dzeniu, %e takze ped elektronu (jako wektor) jest znany 2z pewng nie-
pewnoscia Apgs

R =Ry +4R;-
Z teorii siatki dyfrakeyjnej (réwnanie 9.34) mamy dla n = 1

sin o = AT ’

A x
przy czym role statej siatki speinia tu érednica otworu. Ponadto
tg o= A px/pO; poniewaz tg ¢ > sin 0, wigc

AP A
__32__..
Py AX
oraz
')\,.ht

Ap, * AX > P

X (o]

Opisujgc ruch czgstki mikroskopowe] za pomocg pojgcia poZozenia 1
pedu stwierdzamy zatem, ze opis ten moze byé dokonany z okreslong do-
kadnoscig. Niepewnosé (bzad), z jakim mozemy podaé polozenie elek-
tronu oraz niepewnoséé (bXad) z jakim jednoozesnie podaé mozemy pgd
elektronu, w iloozynie nie mogg daé wartosci mniejszej od statej Plan-
cka

APy * AX > ho (10.30)

Stwierdzenie to, wyrazome nierdéwnodcig (10.30) stanowi relacje
Heisenberga i jest prawem przyrody; siusznosé jego nie zaleiy od po-
stepu w metodach pomiaru. Dla pozostatych kierunkéw osi y 1 z mozemy
napisaé analogicznie

fatwo sig przekonaé, Ze w zakresie zjawisk makroskopowych relacja
(10.30) nie ma wigkszego znaczenia. Jezeli bowiem Jako interesujacy
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nas obiekt wybierzemy masg m = 1 g, ktérego predkosé v = 106 m/8 zna
my z dokXadnoscig 0,1%, czyli Ap = 1 kg m/s, to najmniejszy bad,ja-
ki zgodnie z (10.30) moZemy popeinié, okreslajac poXozenie tej masy,
musi byé réwny A x = 6,6-10'34 m., Warunek ten praktycznie nie limitu-
je dokXadnosci pomiardéw poozenia, kibra w rzeczywistodol jest znacz-
nie mniejsza.

Sytuacja zmienia sig wyraZnie Jjesli naszym obiektem b dzie swobo=
dny elektron. Niech réwniez w tym przypadku bgdzie v=(10 103) m/8.
Poniewaz masa m = 9e 10 kg, wieo najmziejszy biad, jaki musimy po-
pexnié mierzgc poXozenie elektronu A X = 7,3+10"' m = 730 nm.Bzad ten
Jest rzedu diugosci fali sSwiatla ozerwonego, ale jug wielokrotnie
przekracza "rozmiary" samego obiektu.

Z jeszcze gorszg sytuacjg spotykamy sig w przypadku elektronu
zwigzanego w atomie. Poniewaz $rednica atomu wynosi okoZo 10'10 m
trzeba zazgdaé, by A x wynosito co najwysze] 10"11 m, inaczej pozoze=
nie elektronu okredlone begdzie za maXo doktadnie. W takim razie mini-
malny bkad w okresleniu prgdkosci musi wynosié A Ve = (6,6 10'34)/
/(9+1031. 10711 . T,3° «107 m/s. Poniewaz predkosé ruohu elektronu wy-
nosi okoxo 10 m/s, btad w okresleniu v kilkadziesigt razy prze-
wyzsza samg wartosé v. Praktyczny wniosek, jaki wynika 2z tego pros-
tego rachunku w odniesieniu do ruchu elektronu woké: jadra w atomie
Jest nastepﬁjqoy: Jesli chcemy zachowaé pojgcie pgdu 1 poZozenia dla
opisu ruchu elektronu wokéz jgdra, to musimy zrezygnowaé 2z pojecia
"toru” elektronu, ktére cazkowicie traci sens,

Pgd oraz poiezenie elektronu sq zmiennymi "sprzgzonymi®™ w tym sen-
sie, Ze iloczyn ich wymiaréw jest wymiarem wielkosci fizyoznej zwane]
dziataniem. Taki sam wymiar ma stata Plancka - dlatego h nosi réw-
niez nazwg "kwantu dziatania™.Mozna znaleZé wigcej par zmiennych,kté-
rych iloczyn ma wymiar dziaXania - nalezy do nich energia i czas; te
zmienne réwniez stanowig parg wielkosdol sprzeionych i mozna dla niej
napiaaé relacje Heisenberga w nastgpujgcej postaci

AE °At >h. (10.31)

W odniesieniu do uklgdu mikroskopowego At oznacza czas, w Jakim
przebywa on w stanie o eﬂergii E, AE Jest zatem bigdem,z jskim mo-
%emy poznalé energle tego stanu. Izolowany atom mo%e nieograniczenie
- dtugo przebywaé w stenie podstawowym, tj. dla takiego stanu t =T =
= oo, przy ozym T oznacza Sredni czas 3ycia atomu w okreslonym sta-
nie energetycznym. Wobeo tego  AE = 0, czyli energig stanu podstawo-
wego mozemy znaé dowolnie dokiadnie. Inaczej jest ze stanami elektro-
nowo wzbudzonymi: dls standw dozwolonych reguiami wyboru oczas 3ycia
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T= 10'8--10'9 8. Oznacza to, %e chwile w ktérej atom przejdzie ze ste
nu wzbudzonego do podstawowego, znamy z dokiadnoscig pt = 10'8--10—9 8.
Fakt ten powoduje pewng "nieostrosé™ energii stanu wzbudzonego o war-
tod6 OB > (4,1301071% eve8)/(1072-10"8 &) = 4+1076-4+10~7 ev. W kon-
sekwencji energia przejscia nie Jest ebsolutnie doktadnie zadana,czy-

1i odpowisdajgca jej linia emisyjna ma pewng skoriczong szerokosé,zwa-
ng szerokoscig "naturalng".



11. MECHANIKA FALOWA

Zjawiska i zasady, oméwione w rozdziale 10, doprowadzity do zro-
zumienia, Ze podstawg opisu ruchu czgstek mikroskopowych nie mogg
by¢é prawa fizyki klasycznej, opisujgce ruch ciak makroskopowych. O-
czywiscie, wprowadzone przez nas w rozdziale 1. pojgcie punktu ma-
terialnego nie stanowl najmniejszej podstawy do zastosowania praw ru-
chu tego punktu do opisu ruchu, np. elektronu. Mimo znikomych rozmia-
réw, punkt materialny jest w gruncie rzeczy obiektem makroskopowym.

Punktem wyjscia nowej mechaniki byzo stwierdzenie, 3%e ruchowi
czgsatkl makroskopowej towarzyszy ruch sprzezonej z nig fali,stgd naz-
wa tego rozdziaiu fizyki teoretycznej. Z biegiem czasu doprowadzizo
ono do odkrycia podstawowego rdéwnania mechaniki falowej, a mianowicie
réwnania Schrédingera

2
s 1z - u(x,y,z>}¢- 0. (11.1)

Réwnanie to opisuje ruch czgstki mikroskopowej za pomocg funk-
c¢ji falowe] ¢(x,y,z), w zapisie (11.1) zaleznej tylko od wspbirzgd-
nych., Taka postaé réwnania Schr8dingera, zwana réwnaniem amplitudowym
determinuje rodzaj zagadnier, ktérymi begdziemy sig¢ w dalszym ciggu
zajmowali, Interesowaé nas bgdg mianowicie tylko problemy stacjonar-
ne, tj. zalezgce od czasu w sposéb periodyczny lub takie, w ktérych
czas nie odgrywa roli (np. w zagadnieniu przechodzenis czastki przez
barierg potencjalng). Czgsé funkcji falowej zalezna od czasu bgdziemy
w dalszym ciggu opuszczaé, Ponadto interesowaé nas bedzie wyZgcznie
ruch jednej czgstki, najczgsciej z jednym stopniem swobody, tj. za=-
chodzgecy wzdiuz osi x. W takich zagadnieniach Jednowymierowych funk-
cja falowa zalezy tylko od jednej zmiennej, ¢ (x),za$ réwnanie Schrl-

dingera ma postaé
d%¢ (x 8xn 2m - ~
_ék;é._l + T {E U(x)} ¢ (x) = 0, (11.2)
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11.1. Czgstka swobodna

Rozwazmy Jasko pierwszy przykad zastosowania réwnania Schr8dinge-
ra nadzwyczaj prosty przypadek ruchu czgstki swobodnej, np.ruch elek-
tronu. W catym obszarze, w jakim ta czgstka moZe sig poruszadé,nie od-
dzia*uje one z niczym, wobec tego jej energia potencjalna jest stazay
dla uproszczenia mozemy przyjaé, ze U(x) = O. Dla tego przypadku réw-
nanie (11.2) przybierze postaé

2
%ﬁ + k2 ¢(x) = 0, (11.3)

2
k2 = ahn o g

przy czym
(11.4)

jest stalym parametrem o dowolnej, skoldczonej wartosci. Wobec tego
réwniez energia catkowita E = T >0 moze byé dowolna. Rozwigzaniem
(11.4) jest funkcja

o (x) = & » e LEX (11.5)

gdzie A oznacza dowolng statg, zas 1 Jest jednostkg urojong. Po-
niewaz 2mE = p<, gdzie p jest pedem czastki, zatem mamy z (11.4)

p° = (2 k)2 = (A k)2,

Przez H oznaczylidmy statg Plancka, podzielong przez 2 m. Pgd Jest
wektorem, zatem i k musi byé wektorem

p=hk. (11.6)

Ze zwiazku de Broglie’a (10.27) widaé, %e

k= 2E, (11.7)

ozyli k Jest wektorem falowym fsli de Broglie 'a, sprzgzonej 2z ru-
chem czgstki. Uogdélnieniem (11.5) jest funkcja

+
e 1kr

o () =4 - (11.8)

opisujaca tylko periodycznoéé przestrzenng fali.

11.2., Czgstka w prostokgtne amie potencjazu

Przypusémy, %e w miejscu x = 0 osi x 2znajduje sig niedkolicze-
nie wysoka prostopadia Sciana potencjalna (rys. 11-1); podobna $ciana
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’J’

S

Rys. 11-1

wystepuje w punkcie x = a. Otrzymujemy w ten sposéb "liniowa" Jjame
potencjalng o diugosci a, wewngatrz ktérej porusza sig ruchem perio-
dycznym czgstka mikroskopowa o statej energii caikowitej E. Funkcja e-
nergii potencjalnej speinia wigc w tym przypadku warunki

U(x) =0 dla 0<x<a,
} (11.9)

U(x) =co dla x<01x>a.

Réwnanie Sohr8dingera w obszarze studni ma postaé (11.3), réwniez
rozwigzania szczegélne sg identyczne z (11.5)3 wobec tego rozwiagzania
ogélne mozemy napisaé jako kombinacje obu typéw rozwigzahd szozegél-
nych

ikx ikx

¢ (x) = A e 4+ B 5%, (11.10)

Ze wzglgdu na ograniczenia (11.9) prawdopodobiefistwo znalezienia
oczgatki w punktach x = 0 1 x = & powinno wynosié zero, zatem

¢ (0) =¢(a) = 0. (11.11)

Podstawienie pierwszego warunku brzegowego do (11.10) prowadzi do
wniosku, iz A = -B. W takim rasgzie

gp(x) = A 6% _ 4 &KX . 5 44 gin kx = C 8in kx,  (11.12)

gdzie C Jest na razie dowolng stazg, ewentualnie urojong. Zastoso-
wanie drugiego z werunkéw (11.11) prowadzi do ograniczenia mozliwych
wartosci ks

¢(a) = C 8in ka = 0,
stad
ka = n °n, n=1,2,3, eoo (11.13)
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Podstawimy obecnie uzyskane wyrazenia okreslajgce k do (11.4);
w rezultacie otrzymamy

LBy . ig,
h a
czyli g 2
2 h
E =0 ¢« ———m, (11.14)
2 8 ma

Widzimy, %e czastka mikroskopowa wewngtrz Jamy potencjalnej +typu
przedstawionego na rys. 11-1 moze przyjmowaé tylko niektére wartodci
energii, inacze] méwigc, energia czgstki wewngtrz jamy jest kwantowa-
na. Jesli oznaczymy h2/8ma2 = E;, to motliwym kolejnym stanom energe-
tycznym odpowiadajg energie E1. 431, 9E1, see Jak widaé,bdutepy mig-
dzy tymi stanami rosng.

Pozostaje nam jeszcze znalezienie wartosci C funkeji (11.12). Jak
wiadomo, funkcja falows powinna byé znormalizowana do jednosci, tzn.

¢(x) powinna speZniaé warunek
(- -]

j(b(x) ¢"(x) ax = 1.

(+]
W naszym przypadku catkowanie wystarozy rozciagngé na obszar od O
do © , poniewaz funkcja sin2 X ma okres o poXowg mniejszy, niz sin x.
W takim razie ma byé

T
| 2 jsina BEX gx = 1, (11.15)
o
Catkowanie przez czgdci prowadzi do wyniku
1/2
lcl -(%) . (11.16)
Ostatecznie
1/2
2 Inx
b (x) = (a ) sin 52X , (11.17)

Przez rozwigzanie rdéwnania Schr8dingera dotyczgcego ozgstkl w ja-
mie potencjalnej, zastosowania do funkcji falowej warunkéw brzegowych
i warunku normalizacyjnego, uzyskalismy jednoczesnie dwa rezultaty:

i. Zbidr dozwolonych stanéw energetycznych -(11.14) ukadu mikros-
kopowego.

ii. Zbiér funkcji falowych, odpowiadajgoych tym stanom.

Zgodnie z interpretacjg Borna iloczyn kwadratu moduiu funkcji fa-
lowej przez objetosé elementu przesirzeni Jest prawdopodobierstwem
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znalezienia czgstki w tym elemencie objgtosoi. Rysunek 11-2 przedsta-
wia rozktad gestosci prawdopodobieristwa ¢_§(x) dla kilku pierwszych
stanéw.

)
n=4
n=2
=
x=0 x=1a

Rys. 11=2

Zauwazmy Jeszcze, %e odstepy miedzy poszczegédlnymi stanami ener-
getycznymi (11.14) sg odwrotnie proporcjonalne do masy ozgstki. W ja-
mie potencjalnej protonu stany te begdq lezeé okoXo 2000 razy gescie],
niz w elektronie. Jeszoze silniej zalezy odlegXos$é migdzy sgsiednimi
stanami od rozmiardéw Jamy potencjalne}

E

2
he¢ 1
el ~ Bp = (en + 1) o ? . (11.18)

a wigo odlegtos$é dwéch najnizszych standw energetycznych elektronu w
jemie potencjalnej wynosi E, - E, = 1,125‘10'18 1/a“ eV.Jesli przyj-
miemy, 2e elektron znajduje sig¢ w jamie o rozmiarach makroskopowych,
np. a =1 om, to E;, - E; = 1,125'10'14 eV jest to odlegXos$é pozio-
méw tak maXa, Ze praktycznie mozemy méwié o ciggrosci energii elek-
tronu w obszarze jamy. Jesli jednak rozmiary jej sa rzedu Srednicy
oczgsteczki, np, a = 10 3, to E2 - E1 = 1,125 eVy nieciggXosé pozio-
méw energetycznych Jest w takim przypadku silnie zaznaczona.

{1.3. Czgstks w_trdjwymiarowe]j jamie potencjaiu

Rozwazania poprzedniego paragrafu mozemy bez trudnosci uogdlnié
do przypadku tréjwymiarowej jamy potencjazu. Przyjmiemy, %e czastka
mikroskopowa znajduje sig wewnqtrz prostopadtosdcianu o krawgdziach a4
wzdtuz osi X4y 8o wzdiuz osi X5 i a5 wzdiug Xqe Energia poten-
cjalna U(x1, X9 13) wewnatrz jamy wynosi zero, natomiast na ze-
wnatrz niej wzrasta do nieskorficzonosci; U(x1, Xps x3) speinia wige

warunek analogiczny do (11.9). Réwnanie Schrodingera ma teraz postaé:
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029! e G 8 1°m
——%+—-45-+-—7-E = 0, (11.19)
’Oxf ¥ 012 0x3 h v

Jest to réwnanie w pochodnych czgstkowych, poniewas ¢(x1,x2,x3)
Jest funkcjg trzech zmiennych. ¢¢* dv okresla prawdopodobiefdstwo zna
lezienia czgstki jednoczesnie w zakresie wspéirzednych (x1, x4 +dx, ),
(x5, %, +dx,) oraz (x5, x4 +dx3). Prawdopodobiedistwo zajdcia trzech
zdarzed jednoczesnie mozemy przedstawié jako iloczyn Dprawdopodobien-
stwzajdcia kazdego z tych zdarzeh oddzielnie, Inacze] méwigc, funkcje
falowa ¢ (xy, X, x3) mo%emy napisaé jako 1loczyn trzech funkcji fa-
lowych o i(xi)' przy ozym kazda 2z nich zalezy tylko od jednej 2zmien-
nej Xy

¢(x1, X,y X3) = ¢4(xq) * g o(x,) '(p3(13). (11.20)

Zmienne xi okre$lone sg w przedziale

O<xgag, 1=1,2 3 (11.21)

Podstawienie (11.20) do (11.19) i dwustronne podzielenie przez ¢
prowadzi nas do réwnania w pochodnych zwyczajnych

3 2 e
> (L d__“’;?__(xi) ) 5 -"T"hn - k. (11.22)

1=1 \ o3 axy

Lewa strona sklada sig z sumy trzech wyrazdéw, z ktérych pilerwszy
zale3y tylko od X drugi tylko od X5 trzeci zas od X3e Suma ich
jest Jednak wielkodcig staxg; Jest to mozliwe tylko w takim przypadku,
gdy kezdy z wyrazéw tej sumy réwny Jest staxej. Wielkosé tej staie]
wygodnie jest przyjaé

2

cy = 8—“?} B (11.23)

poniewaz wéwczas réwnanie (11.23) rozpada sig na trzy réwnania typu
2
ac g,(x;) 8 #m
d:i:2 . = Eyo,(x) =0, 1=1,2,3, (11.24)
i
a ogblna energla czgstki w Jamie potencjalnej jest sumg trzech ener-
gii

E = E, +E, + Bj. (11.25§

Kazda energia E; odpowiada jednemu z trzech stopni swobody ru-
chu.
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Roswiazania (11.24) sg nam juz znane:

2
2 h
E, = n o——z
i i 8 may ’

(n) 1/2 nngx
[} q (xi) =(—a%) sin —?1 .

W takim razie peine rozwiqzania dotyczgce jamy tréjwymiarowej ma-
Ja postaé

2 2 2 2
h (n n n
1, -2
BE=—(%+ 2+—§) (11.26)
8m a, as 83
oraz
8 1/2 T n1x1 T n2x2 T n3x3
¢(x1.!2.x3) -( ;;EEE;) gin 5 8in 5 CEEY —— o

(11.27)

Zajmiemy sig obecnie krétkim oméwieniem energii czgstki (11.26).
Mosemy zbudowaé tréjwymiarowsg, prostokgtng i periodyczng sieé prze-
strzenng, ktérej okresami w trzech réznych kierunkach bgdg wielkosci

2,1/2 1
8m a,
X3 /Xz
7
A
-
R(221)
-~ e
4 =
/
<I|n =
X2
A
(000) ~—=
Rys. 11=3

Fragment takiej sieol jest pokazany na rys. 11-3. Wektory A,, Ay

53 sy jej bazg, a prostopadXodcian na nich zbudowany jest jej komdér-

kg elementarng. Kaidemu punktowi P (ng, n,, n3) tej sieoi odpowiada
wektor

R = nj4) + nyhy + n3h,, - (1.29)

ktérego dtugosé jest réwna energii czgstki w jamie potencjalnej, odpe-

wiadajgcej wartosciom liczb kwantowych Dy Doy 14
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E(n1, n, n3) =R * R. (11.30)

Jezell |Aq| # [A2] ¥ 'ABI’ to kazdemu punktowi sieci odpowiada in
na diugosé wektora R, a zatem inna energia. Inaczej jest w przypadku,
gdy waszystkie wymiary Jamy potencjalnej sg jednakowe, tj.gdy przybilera
ona ksztalt szesdcianu. Mamy wéwozas lA1] = iAZI = |A3| oraz

BE = Eﬁ;z (n$ + ng + n§)° (11.31)

Catkowita energia czgstki zalezy w tym przypadku od sumy kwadra-
téw liczb kwantowych; jednakowg wartosé tej sumy mozemy czgsto zrea-
lizowaé kilkoma sposobami. Stany energetyczne bgdziemy zapisywaé w
sposéb skrécony przez umieszczenie tréjki liczb w nawiasie.(112) oszne
cza na przykiad stan z ngy = 1, n, = 1, n, = 2 , Stosujgc ten sposéd
zapisu tatwo zobaozyé, Ze stany (211), (121), (112) odpowiadajg tej
same]j energii, choé ich funkcje falowe 83 réizne; satem stan E =
= 6 h2/8m32 jeat trzykrotnie zwyrodniaty. Wspdicszynniki swyrodnienia
wyzaszych stanéw energetycznych mogg byé wigkszej; np. stan o energii
E = 14'(h2/8m52) jest szesciokrotnie zwyrodniazy.

11 Linio o8¢ tor harmonicz

Obeonie zajmiemy sig zastosowaniem réwnania Schr8dingera do roz-
wigzania problema oscylatora harmoniocznego. Rozwazaé bgdziemy oscyla=-
tor jednowymiarowy, tj. przyjmiemy, %e drgania ozgstki o masie m sa-
ohodzg wokéX pokozenia réwnowagi wgzdtuz osi x. Przy tym amplitudas
drgal jeast na tyle mata, Ze krzywgq energii potencjalnej mogna przed-
stawié za pomocg réwnania paraboli

U(x) = % kx° = 2n2mv§x2. (11.32)

W tym wzorze x Jest wychyleniem z poXozenia rdéwnowagi, k = m-dg

wspézczynnikiem liniowej sity spregiystej, a vo czgatoscig drgafl os-
cylatora. Przy potencjale (11.32) réwnanie Schr8dingera dla oscylato-

ra ma postad
2 2

i—-%+ gl;—'{E e vg x2} ¢ = O (11.33)
dx h
Jesli wprowadzimy oznaczenia
8 2
-"7’_1‘ ER=EA
oraz ha (11.34)
4 m oy,
——— =y

h
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to réwnanie (11.33) mozemy zapisaé w prostszej postaci

2
d—% + ()\, - uzxz) $-= O, (11-35)
dx

Znalezienie rozwigzania tego rdéwnania nie jest rzeczg Zatwg. Dla=
tego dokonamy wplerw pewnej préby, a mianowicie sprébujemy znalezé
rozwigzanie dla duzych wartodci x, czyli tzw. rozwigzanie asymptoty-
czne. Jeéli =x Jest dostatecznie duze, to a2x2>> As Wobec czego
{11.35) mozemy uproscié do

2
24 _ 22 o,

dx

PrzybliZzonym rozwigzaniem tego réwnania jest funkcja

p(x) & et“xz/z.
Mamy bowiem
dd = Zax ei"‘xz/2
oraz dx
d_2% - a? x2 e: ocx2/2 + o(,et ocxe/Z‘

dx

Jednakze drugi sk*adnik wyrazenia dzq,/d:i:2 jest mary w pordéwna-
niu z pierwszym; jesli go opuscimy, to istotnie funkcje exp(i ax2/2)
mozna uznaé za przyblizZone rozwigzanie réwnania dla duzych wartosci x
Ze wzglgdu na warunek normalizacyjny, tj. catkowalnosé ¢ (x) z kwadrs
tem, nalezy wziagé jako "dobre" rozwigzanie funkcje¢ 2z wyktadnikiem u-
Jemnym.

Wréémy teraz do réwnania pierwotnego (11.35). Doktadnego rozwig-
zania tego réwnania begdziemy poszukiwali w postaci funkeji

2
p(x) = £(x) + e~ &% /2, (11.36)

gdzie f£(x) Jjest na razie nie znang nam funkcjg zmiennej X Sprébu-
jemy ja znalezé przez podstawienie (11.36) do réwnania (11.35). Obli-
czamy pochodne

2
ddx=-g—§e ocx/2~ocxfe

- ot.x2/2
?
2 2 ® 2
d acf af 2.2 -ax°/2
al{==%-20x 3E+ (“x° = ) £te
dx {dx 4x
1 podstawiamy otrzymane wyrazenie do (11.35) opuszczajge czynnik wy-
ktadniczy, ktéry nie zeruje sig dla skonczonych x. Po uporzgdkowaniu
wyrazéw otrzymamy réwnanie réizniczkowe. dla funkcji £(x)
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2

acf af
—T-Zax—-+(}\-oc)f=0-
dx dx

Wprowadzimy teraz zamiast x nowg zmlienng, bezwymiarowg
wx® = £2, ozyli ¢ =|ua° x. (11.37)

Funkcja f£(x) przejdzie wéwczas w nowsg funkcje H(Z)y; musimy réw
nie% dokonaé zmiany zmienne} w zapisie rézniczkowania

d d d d
il v ol Rl A o

@ &
a? ag?

Nowe rdéwnanie rézniczkowe begdzie miazo postaé

2
« ddﬁégz _ 20‘% ' d—isél+ (A=) B(E) =0

%ﬂ.éél-zg iﬂaﬁél+(%--1)ﬁ(g)-o. (11.38)

Prébng funkcjg¢ H(Z) mozemy zatozyé rdéznej postaciy mnajproscie]
jest wyrazié H(Z) za pomocg wielomianu

lub

a
H(E) = a 25 + apq B 4 i = D a2 (11.39)
r=k
Wielomian H(Z) nie moze sktadaé sig z nieskoficzonej liczby wyra-
zéw; w takim przypadku bytby szeregiem, a jego suma byZaby zbiezna do
exp (£2). Wobec (11.36) mielibysmy

2
o () = B(g) SRA e+§2/2’

a wigos funkcje nie dajgcag sig znormalizowadé., Na tej podstawie wnosi-
my, ze H(Z) musi sig sktadaé ze skofczonej liczby wyrazéw,czyli mu-
si byé wielomianem.

Pierwszg i drugs pochodng H(E)
2
d"H k=2 k-1 k
Ez = k(k - 1) a & +(k+1) ka4 & + (k + 2)(k + 1)a & +eae

podstawiamy do (11.38).
Otrzymamy réwnosé

k(k - 1) a, 255w e 1) kak+1§k-1 +(k+2)(k+1)a,, e+

*aee = (k- B4 1)a 25+ ... (11.40)
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Wielomiany po obu stronach tej réwnosci majg byé identyozne, tzn.
muszg mieé jednakowe wspSiczynniki przy tych samych potegach € « Wo-
bec tego mozZemy napisaé dwie nastepujace réwnosoi

k(k - 1) =0, (k+ 1)k =0, (11.41)
Pierwsza z nich prowadzi do wniosku, Ze

k=0 lub k=1, (11.42)

Przypadek k = -1, wyniksjgcy z drugiej réwnosci musi byé odrzu-
ocony, poniewsz £ =0 D 1/ —>co , Widzimy zatem, e wielomian
(11.39) moe sig zaczynaé od wyrazu stelego a  1lub od wyrazu aqZ
Wyrazenie do obliczenia wspdiczynnikdéw 8y wilelomianu otrzymamy przez
poréwnanie wspélcsynnikéw prey £ réwnosei (11.40)

(k+2)(k+1)a ;= (2c+1=8)q,

stgd

2k + 1 =A/a
.k+2 = o + .k- (11.43)

Wzér (11.43) umozliwia obliczenie wspdtczynnika 8,29 Jedli zna-
my &, 1 nosi nazwe wzoru rekurencyjnego dla wspétczynnikéw ape 2 ter
kiej postaci wzoru wynika, %2e bgdziemy mieé dwa typy wielomiandw
(11.39): jeden z nich zawiera tylko nieparzyste, a drugi tylko parzy-
ste potegi E.

Niezaleinie od parzystodci wyrazéw wielomian H(2) musi sig koh-
czyé na pewnym wyrazie e, §n. Warunkiem tego jest zerowanie sig wapli

czynnika LY czyli

2n + 1 --s--o. (11.44)
Po podstawieniu do (11.44) oznaczed z (11.34):
En-hv(nﬂ-% o (11.45)

Wzér (11.45) przedstawia energie zbioru dozwolonych stanéw ener-
getycznych oscylatora harmonicznego, n Jest liczbg kwantowgqg 1 moze
przybieraé wartodcl n =0, 1, 2, ... Energia oscylatora jest wigo
kwantowana inie znika nawet w najnizszych temperaturach, gdy obsadzone
8gq stany z n = O, Najmniejsza energis oscylatora, zwana energig =ze-
rowg, wynosi

E, = bV, (11.46)

Mozna pokazaé, e wynika ona z zasady Heisenberga (por.rozdz. 10).
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Funkcje falowe oscylatora harmonicznego majg postaé

E2
¢ o(x) = N, « H (§) ° 50, (11.47)
Nn Jest czynnikiem normalizacyjnym
/2 ~
N, '(—"E—H) o (11.48)
VE’ n! 2

Hn(é) jest wielomianem o wspStczynnikach (11.43); nosi on nazwg
wielomianu Hermitte ‘a. Kilka pierwszych wielomiandw (dla maXych n) ma
nastgpujgca postaé

H (2) =1,

Hy(2) = 2g,

Hy(Z) = 482 - 2,

Hy(8) = 82 7 - 128,

H,(8) = 168 4 - 482 2 +12.

Funkcje falowe (11.47) dle poszczegélnych n majg nastgpujace po-
atacie

()"

¢ o(8) = (2

dq(2) = ( v’ng')’/i’ 2¢ 02212,

¢ o(2) = (5 V;T)VZ {4§ 2 _ 2};5,2/2’

¢ 58 = (g5 V%")VZ o - 12} B2

v 402 = Gy v-%)VZ {16 -8 P s 12}e‘§2/2.

Wykresy kwadratu moduzu funkcji falowej, ¢ 2({), okreflajgce] g¢-
8tosé prawdopodobiefistwa poZozenia oscylatora, sg przedstawione na
rys. 11-4, dla stanéw od n =0 do n = 3., Na tych samych wykresach
zaznaczono linig przerywang analogiczng funkcje dla oscylatora ma-
kroskopowego, np. wahadXa. Ggsto$é prawdopodobieristwa dla oscylatora
makroskopowego rofnie do nieskofczonosci w punktach powrotu (przy wy-
chyleniach réwnych ampiitudzie drgan), poniewaz w tym punktach pred-
ko$é oscylatora osiaga wartosé zero, natomiast ¢2(§) dla oscylatora
kwantowego zalezy od stanu oscylatora: dla n = 0 ¢2(§) osigga mak-
gimum dla £ = 0, dla n = 1 wystgpujq dwa maksima, itd, Warto tez
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Rys. 11=4

zauwazyé, zZe ¢2(§) przyjmuje wartosci rézne od zera réwniez dla wae
tosei ¥ wigkszych od klasyoznej amplitudye.

11.5. Bariera potencjalna

E< U,

X=0 X=d

Rys. 11=5

Rozwazmy obecnie zagadnienie
prawdopodobieristwa przechodzenia
czgstkl mikroskopowe] przez bariere
potencjazu, ktéra w najprostszym
przypadku ma ksztakt prostokgtny
(rys. 11-5). Bariers zaczyna sig w
punkcie =x = 0 pionowg Sciang po-
tencjalng i takg Sciang korczy w
punkcie x = d3 d Jest wigc szero-
kosdcig bariery, U° jeJ wysokosdcisa.
Czgstka o energii catkowite] E <=Uo
uderza barierg z lewej strony,w ob-
szarze 1, a problem polega na o-
kresleniu prawdopodobiefistwa znale=-

zienia sig jej w obszarze 3 z t3 samg energig E, Z punkitu widzenia
mechaniki klasycznej pojawlenie sig czgstkl w obszarze 3 jest niemoz-
liwe, poniewaz przedtem musiaXaby pojawié sig¢ w obszarze 2, gdzie
(E - U,) <0, a wigo predkosé czgstki jest urojona.
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Przyjmiemy, Ze energia potencjalna czgstki w obszarze 1,2,3 spei-
nia nastgpujgce warunki

dla x<0 i x>4 U=o0, } 1 us)

dla 0 <x <d Uo = const.

Réwnanie Schr8dingera dla obszaru 1 i 3 ma postaéd

2 2
as ¢, 3(x) 8 n°m

1 + E (x)
dx2 h2 ¢1’3

0,

zad dla obszaru 2
g (x) 8xcm et
+ - X = °
dx® n o” %2

Jesli oznaczymy wielkosci stale
2
81t m E = k2

1’.
oraz h (11.50)

2
8 m°m 2
_Th (E - Uo) = k5,

to rozwigzania mozemy zapisaé w nastgpujgcy sposéd

-ik
$4(x) = a, o1K1X b, e =
ik,x =ik, x
¢2(x) =a, e C b, e 2 . (11.51)

1k1x
¢4(x) = a5 e .

W rozwiazaniach (11.51) przyjelismy b3 = 0, poniewaz nie ma sensu
oczekiwaé w obszarze 3 czgstki, poruszajgcej sig¢ w kierunku przeciw=-
nym do zwrotu osi X,

Funkcje (11.51) opisuja stale tg samg czastke, zatem powinny byé
cigge w punkcie x = 0 1 x = d. CiggZe muszg byé takze ich -pochodne,
przy czym uzasadnienie pomijamy; Xscznie warunki ciggiosci przedsta-
wiajg sig nastgpujaco

“ i 5 - (11.52)
(=) _ - (=2 (H_, - =),

Zastosowanie (11.52) do funkcji (11.51) prowadzi nas do czterech
réwnald o pigciu niewiadomych
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aq + b1 = a, + b2,
ik.d -ik,d ik,d
a, e 2 + b, e 2 = a, € 1
2 2 3 ’
(11.53)
k1a1 - k1bi = k232 - k2b2,
ik.d -ik,d ik.d

2 2.
kfze -kfae -k@BB .

W celu zredukowania liczby niewiadomych przyjmiemy, ze dla stru-
mienia czgstek padajgcych a4 = 1. Zatozenie takie réwnowazne Jjest
dwustronnemu podzieleniu kazdego z réwnan przez a4 i obliczaniu sto-
sunkéw ai/a1 lub bi/b1. Zachowamy jednak dotychczasowe oznaczenia.
Najbardziej interesujgcy jest wspbiczynnik a3, okreslajgcy prawdopo-
dobienstwo przeniknigecia czgstek przez barierg potencjalng. Rozwigza-
nie ukZadu réwnai (11.53) prowadzi do wyrazenia

ik,d
4 k1k2 e
1k2d _ (k1 _ k2)2 eikza

8y =

2 -
(kg + k)¢ e

Przezroczystoscig D bariery potencjalnej nazywaé bgdziemy kwad-
rat moduzu 33

-, 5 L2
U=zag-°a,;. (11.54)

Obliczajge D zauwazmy, ze ky Jest wspéiczynnikiem rzeczywis-
tym, zas k, urojonym. Wobec tego

2T ‘{“—"
k1 = 2 mE,
2m
k, = 254 f2u(u,- B) = ik.

Obliczamy obecnie przezroczystos$é bariery

(11.55)

ol
D’3383’
4 ko (ik) * 4 kq(-ik)
{0+ 16026 = (1= 1K)%e 75} {1~ 1k)%5 - (kp+ 1k)%6750}

(4 k,k)2
- (kg + 26)% = (kg = 260)% & (65 + k5

Z2kd 72 g-2kd  *

=
(5 + k%) e

Wyrazenie okreslajgce D w tej postaci Jest maxo usyteczne =
trzeba je uproscié. Zatwo sig przekonad, 2Ze
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K

Poniewaz pierwszy z wyrazdw po prawe] stronie jest mniejszy od +1,
czwarte potegl dwumisnéw mozemy w mianowniku opuscié. Czion w mianow-
niku zawlerajacy exp (-2kd) jest znacznie mniejszy od pozostalegoj
w rezultacie wyrazenie przyblizone ma postadé

D=C exp (~2kd) = C exp{— Al Vém(uo - E) }, (11.56)

gdzie C Jest statg, rzedu jednosci. Przezroczystosé bariery poten=-
cjalne] zalezy zatem od masy czgstki potencjalnej, od szerokosci ba-
riery d oraz od wielkoéci.(Uo - E), zwanej gigbokoscig penetracji.

Jesli interesujemy sig elektronem i ggbokosé penetracji oznaczy-
my przez V, to

k

(kg + 10)% & (kg - 1) 9 (k1)2 ( k)2 3
(4 kqk)? 8 4

(U, -E) = Vev =1,60 «10719, v azuii,
przy czym 0 <V <U,. Mamy wéwczas

42 | on(u, - £) = 1,02010° v o7

D = exp (-1,02:1010 g I,

przy czym przyjelismy C = 1. Wzglgdna przepuszczalnosé barier réznej
szeroko$ci przy giebokosci penetracji V = 1 eV jest nastgpujgca

oraz

V=1¢eV
aw®) | 1 | 1,5 | 2,0 l 5 | 10
D (w %) | 36 | 28,5 l 13 | 0,6 | 3,7.1073

Barierg mozna uwazaé za wzglgdnie przezroczystg dla elektronu
przy gtgbokosci penetracji 1 eV, jesli jej szeroko3é nie przekracza
kilku angstremdéw,



12. J4DRO ATOMOWE

Jadra atoméw, oprécz wodoru, wykazujg budowg zZozong. Niektdre z
nich sg nietrwaie i ulegajg rozpadowi w sposdéb naturalny.Wigkszosé Jg
der atoméw moze byé doprowadzona do stanu nietrwaXo$ci za pomocg bom=
bardowania czgstkami o wysokie] energii. Zjawlska te stanowig przed-
miot zainteresowarn fizyki jadrowe]j i chemii jgdrowej - gazezi nauki,
zmierzajqcych do poznania budowy i 2znalezienia sposobdéw wyzwolenia
oraz praktycznych zastosowal zasobdw energii, tkwigcych w jgdrze ato-
mowym, Mimo, iz dzis dalecy jestesmy od stwierdzenia,ze szczegély bu-~
dowy jgdra sg nam znane, istniejg liczne i wazne zastosowania uzyska-
nych dotychczas wynikéw badar naukowych.

Zajmiemy sig@ w tym rozdziale opisem podstawowych faktéw doswiad-
czalnych 1 praw z dziedziny fizyki jadra atomowego. W kolfcowej czgsci
oméwimy jeden 2z modeli jgdrowych.

i12.1. Defekt masy i energias wigzania jgdra

Jak wiadomo, kazdy atom skada sig¢ z jgdre o masie mj oraz 2
elektronéw, z ktérych kazdy ma mase Mge Jesli 2 Jjeat liczbg porzgd
kowg jgdra, to ogélna masa m elektrycznie obojgtnego atomu wynosi

m=my +Z° mg. (12.1)
W fizyce jgdowe] masy wyraza sig¢ zwykle w liczbach wzglgdnych, za

pomocg tzw, masy atomowej M, przyjmujgc obecnie 2za Jednostkg masy
1/12 masy jadra izotopu wegla 124

1 = * i~ =
1 jumeat. = 3249988 + Jp +1072 kg = (1,66043 £ 7:1079)+10727 g,
W takim razie
m= 1,66+ 10727 « M kg. (12.2)
Na podstawie zwigzku E = cz‘m, jednostce masy atomowej odpowiada
energla wyrazana najczgsciej w megaelektronowoltach

E =1 jom.at. x c2 = 1,66043°10727 x (2,998-10%)2 azuli = 931,5 MeV .
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Oprécz masy atomowej M uzyws sig jeszcze w fizyce jadra atomo-
wogo pojgcia liczby masowej A: jest to liczba catkowita najblizsza M.

Podstewowyml skiadnikemi budowy jgdrs g3 protony i neutrony, no-
szgce wapélnag nazwg nukleondwy ich mésy spoczynkowe sg nastgpujgce

masa spoczynkowa protomu m_ = 1,007271 & 1-10"6 Jemeat.,

P
ma8a spoczynkowa neutronu = 1,008665 = 1'10"6 Je.m.at,
: L34 s

mess spoczynkowa elektronu m_ = (5,486 £ 0,001):107% j.m.at.

e

Jadro o liczbie porzgdkowej Z i liczbie masowej A zawiera wige
Z protonéw i (A -~ Z) neutronéw. Masa atomows takiego jadra powinna
wyposié Zem, + (A - Z)m . Okazuje sig jednak, ze mass jadra nie jest
wielkoscig addytywng: rzeczywiste masa atomowa jadra jest zawsze mniej-
sza od sumy mas wchodzgcych w jego skZad nukleondw. Jesli te¢ rzecazy=-
wistg masg oznaczymy przez gm, to réznicsa

Zm + (4 - Z)m, - 7= AN >0 (12.3)

nosi nazwe defektu masy i Jest miarg trwaXosci jadra.Defekt masy rdéw-
ny jest energii, ktéra wydzieliXaby sig podczas syntezy jadra Z nu-
kleondw. Po podstawieniu znanych mas nukleondw mozemy zapisaé (12,3)
w postaci

AM = 931,5 {1,007277 %z + 1,008665 (A - 2) - gmj}MeV. (12.4)

Korzystajac z tabeli mas izotopéw mozna obliczyé AM poszczegdl-
nych jgder, np. masa atomowa ;Li wynosi 7,015723 po odjeciu masy
trzech elektronéw otrzymujemy rzeczywistq masg jadra 7,014074 j.m.at.
Poniewaz sums mas trzech protcnéw i czterech neutrondw wynosi 7,056491,
zatem defekt masy jadra litu wynosi

M= o,042417'3.m.at. = 39,5 MeV.

Podczas syntezy 1 mola gLi (7 g) 2 nukleonéw uwolni sig energis
AE =AM°N°°02 J = 3,81~1O"2 J. Energia ta réwns jlest ciepiu,jakie wy-
dzieli sig podozas spalanis 3,81°10'2/3,92¢10° = 107 moli wegla =
= 120 t wegla (ciepZo spalania 3,92-105 J/mol). Wydzielajace sig w
takich procesach jadrowych 1loSoci energii sq tak znaczne,iZz mozna by-
o0 dokonsé bezposredniego sprawdzenia relacji Einsteina migdzy masg 1
energig przez pomiary kalorymetryczne.

Jest oczywiste, iz wartosé defektu masy zaleiy od liczby masowe]
A jgdra: dla jader ciezszych Jest on na ogdét wigkszy, niz dla lzel-
szych. Ogdélny defekt masy AM nie jest dlatego dobrg wielkoscig,jes-
1i zalezy nam na pordéwnywaniu wzglednej itrwazosci réznych jgder.Wias-
ciwg miarg trwaXosci jadra jest iloraz AM/A, zwany energia wigzania
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>3

7-9 MeV

30 A
Rys. 12-1

jednego nukleonu w jadrze. Funkcja AM/A w zaleznosci od A jest przed
stawlona na wykresie 12-1; powyzej A = 30 krzyws zmienia sig niewie-
le, tak 2e mozemy przyjaé, iz dla jader cigzszych od A = 30 energia
wigzania jednego nukleonu w jgdrze zmienia sig w granicach 7-9 MeV,
Jadra liejsze 83 na ogét mniej trwate; wyjatkami sg

ine, 120, 1%,

ktére nalezg do najtrwalszych ze wszystkich jgder. Widocznie takie
kombinacje nukleondéw zapewniajg jgdrom pierwiastkéw duzg stabilnosé.

12,2, Naturalne przemiany promieniotwércze

Odkrycie Becquerela (zaczernienie kliszy fotograficznej przez mi-
neraty zawierajace uran), a nastgpnie pionierskie prace Marii i Pio-
tra Curie (wydzielenie nowych pierwiastkéw radu i polonu, 1898 r.) de
prowadzity do stwierdzenia, %e. jadra niektdrych atoméw sg nietrwaze i
ulegajq spontanicznemu rozpadowi. Procesom tym towarzyszy emisja czg-
stek o (jadra gHe) lub B (szybkie elektrony) i zwykle promienio-
wania y (promieniowanie elektromagnetyczne o diugosci fali krétszej
od promieniowania rentgenowskiego). Ogdélna teorig szybkosci rozpadu
promieniotwérczego sformutowaz w 1900 r. Rutherford.

W my$l tej teorii chwilowa szybkosé rozpadu promieniotwérczego
jest proporcjonalna do liczby jgder okreslonego nuklidu, istniejagcej
w danej chwili. Nuklidem nazywamy pierwiastek o okreslonych 2 i A.
Jesli przez N oznaczymy liczbe jgder nuklidu istniejgacych w chwili t,
to - dN/dt oznacza liczbe jader zanikajacych (znak =) w ciagu jed-
nostki czasu, czyli chwilowg szybkos$é rozpadu. W mysl prawa Ruther-
forda mozemy napisad

_gl%h AN, (12.5)
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(12.5) jest réwnaniem rdézniczkowym szybkosSci rozpadu; mozemy je
tatwo scatkowaé poprzez rozdzielenie zmiennych
&= -aat,
czyli
InN=-A + t + const.

Poniewaz t =0 O>ON = N, czyli No Jest liczbg jader istniejg-
cych na poczgtku obserwacji, const = 1n No oraz

In 4~ == A% (12.6)
lub &
N =N * e~ M, (12.7)

Stata A ma wymiar odwrotnosSci czasu i nosi nazwe statej rozpadu
promieniotwdrczego. Précz statej rozpadu uzywa sig¢ czgsto pojecia cza
su polowicznego zaniku (lub okresu potéwkowego)t , zdefiniowanego w
nastgpujacy sposéb: T Jest okresem czasu, po ktérego upiywie poczgt-
kowa liczba jgder maleje do potowy. Na tej podstawie mozemy napisaé

1 -
Bilg =R tee M,
czyli
AeT=1n 2. (12.8)

Widzimy, 2e okres poxzéwkowy jest odwrotnie proporcjonalny do sta-
Xej rozpadu.

Rozpad promieniotwdérczy nuklidu A, z utworzeniem nuklidu B, bieg-
nie czgsto dalej, tj. B rozpada sig z utworzeniem nuklidu C, itd. Ma-
my w tym przypadku do czynienia z szeregiem nastgpczych reakcji roz-
padu

A—>B=—=>C=>,,,

Jedli szybkos$é powstawania nuklidu B z A réwna Jest szybkosci
rozpadu B, to powiadamy, ze B jest w réwnowadze z A. Poniewaz szyb-

kosé powstawania B jest rdéwna szybkosci zaniku A, mamy wigc
d NB d NA

_=——=I—A

® N o
at at A A

Z drugiej strony, szybkosé zaniku B zalezy od staxej rozpadu Ag
d N
B
—_— = = A, * N,
at B "B

Poréwnanie obu szybkosci prowadzi do warunku rdéwnowagi nuklidu
Bz A
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A, ° XN

a Ny =Ag - N, (12.9)

a wigc dwa nuklidy A 1 B s3 ze sobg w rdéwncwadze promiseniotwdroze],.
jeéli w kazdej chwili liczby ich jader sg odwrotnie proporcjonalne do
ich statych rozpadu.

Do praw opisujgcych rozpad promieniotwdrczy pod wzglgdem iloscio-
wym, naleza préez (12.5) i (12.9) dwa prawa sformutowane przez Fajan-
sa 1 Soddy'ego, okreslajgce metryki 2 i A nuklidu po przemianie o
oraz B. S one powszechnie znasne, dlatego nie bgdziemy sig¢ nimi tu
zajmowali.

12,3, Metody detekcji czgstek jonizujgcych

Szybkie czgstki nsladowane, emitowane przez naturalne pierwiastki
promieniotwéroze lub w reakcji sztuoznej promieniotwérczosci,posiada-
Ja wiesnodé wytwarzania jondw: w czasie ich ruchu w osdrodku gazowym
powstajg wskutek oddzialywan elektrostatycznych wolne elektrony oraz
Jony dodatnie. Znanych jest obecnie wiele metod detekcji czgstek jo-,
nizujgcych, opartych zardwno na bezposrednim wykorzystaniu efektdw
zwigzanych z ruchem czgstki, jak tez na wykorzystaniu efektéw wtér-
nych,

12.3.1. Komors jonizacyjna

Metoda ta przedstawiona Jest schematycznie na rys. 12-2, Zbiornik
metalowy K, zsopatrzony w okienko O i dwa izolatory P1 i PZ’ stanowi

Py

I

0

=

g

7777777777
Ryso 12=2

w gruncie rzeczy oszong elekiroatatyczng kopdensetora S1 2° Jedns 32
Jjego okzadek jest uziemiona, druga poaczona szeregowo z wysckoomowym
opornikiem R 1 baterig B. Elektrometr E mierzy spadek napiecia
na komorze w 8poséb elekirostatyczny ze wzgledu na duze opornodci,wy-
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stepujgce w tym obwodzie. Kazda czgstka jonizujgca, ktdra wpadia przez
okienko O, wytwsrza jony; zasada wykorzystania komory Jjonizacyjnej o=
piera sig¢ na pomiarze zwigkszonego przewodnictwa gazu w obecnodci jo=-
néwe

12¢3.2¢ Licznik Geigera-NMiillers

Jest to bez watpienia najprostszy i najczesciej dzis stosowany de-
tektor. Jego rozpowszechnienie wyniks nie tylko z prostoty konstruk-
cji; zalety jest réwniez duza uniwersalnosé (zliczanie ozastek o, B 1
v) oraz to, ze pracuje metodg impulsowg.

~ M Ar+CHz OH (10 mm Hg)
e
0/

(+

B 1

=Y (g

R Rg

iz
RyB. 12-3

W najprostszym wykonsniu jest to cylinder metalowy M (rys. 12-3),
zamknigty z jedne] strony cienkg folig, stanowigcg okienko O, z dru=-
giej izolatorem P. Wewngtrz cylindra znajduje si¢ wypeinienie gazo-
we: najczesSciej argon z niewielks domieszkg par alkoholu metylowego
pod Xgcznym cisnieniem okoXo 10 mm Hg. Oszona stanowi elekirodg ujem
ng, zas dodatnig jest cienki drucik; bateria B dostarcza napigcia
1000-2000 V., Przy tych parametrach jony, powstajgce wzdiuz sSladu czg-
stki jonizujgcej, sa rozpgdzane do duzych szybkosci i wywoZuja widrng
jonizacjey; w rezultacie wytwarza sig lawina Jjondw, powodujaca prze-
pxzyw sporego pradu przez opornik R, Impuls elekiryczny Jest przeks-
zywany dalej poprzez C do ukiadu elektronicznego i rejestrujacego.Pé-
jawienie si¢ duzego prgdu w liczniku tuz po wejsciu czgstki odpowiada
“zapaleniu sie" licznika, tj. powstaniu wytadowania oiggtego migdzy
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Jjego elektrodami. W tym stanie licznik nie reaguje na nastgpne czgst-
ki wchodzgce przez okienko, wobec czego stan ten nslezy przerwad.SZu-
2y do tego celu obecnosé par zwigzku organicznego w niewielkim stgze-
niu, np. metanolu, ktdérego czgsteczki przechwytuja energie rozpedzo-
nych elektronéw i jonéw za posrednictwem zderzed. Same ulegaja przy
tym dysocjacji na nieprzewodzgce pradu rodniki, ale wXasnie to powo-
duje przerwanie lawiny. Wyladowanie gasnie,rodniki ulegaja rekombina-
cji i licznik znéw moze zarejestrowaé nastgpng czgstke.Widaé zarazem,
Ze na przerwanie lawiny oraz powrdt licznika do stanu podstawowego po-
trzebny jest pewien skoriczony przedziat czasu - jest on waznym para=-
metrem licznika i nosi nazwg czasu rozdzielczego. Licznik zarejestru-
Je dwie czgatki jako oddzielne zdarzenia, jesli wejda one do licznika
w odstepie ozasu nie krdétszym, niz czas rozdzielezy. We wspdiczesnych
licznikach Geigera-Millera ozas rozdzielczy wynosi milisekundy.

12.3.3. Komora Wilsona

Komora, skonstruowana przez Wilsona jest jednym z najwaznie jszych
urzgdzed w badaniach nalezgcych do fizyki jadrowej. Komora pozwala
prawie bezposrednio "zobaczyé" Slad czastki jonizujacej,a ponadto mozna
mierzyé jej predkosé, energig, zasigg, a takze z wygladu sladu odréz-
niaé np. elektrony B od czgstek o .

; ‘ ‘ Oswietlenie

. p—
Obserwacja ——

]

Kropla

}

RNS. 12"4

W cylindrze metalowym, zamknietym u do*u tZokiem (rys.12-4), mamy
w temperaturze pokojowej gaz z nasycong para wodng,co ilustruje obec-
noséé kropli wody. Po przesunigciu tzoka w dét na tyle szybko, by pro=-
ces mozna w przyblizeniu traktowaé jak adiabatyczny, nastepuje obni-
zenie temperatury gazu zamknigtego w cylindrze, wobec czego para wod-
na staje sig¢ pars przesycong. Jest to stan metastabilny i trwa bardzo
krétkoy w chwile péZniej pojawiaja sig kropelki wody na wazelkich
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drotnych pytkach - zwaszcza na jonach, stanowigcych doskonate zarod-
ki kondensacji kropelek.

Jesli w ciggu krétkiego odstepu czasu miedzy rozpregzeniem, a sa-
morzutng likwidacjg stanu przesycenia wewngtrz komory znajdzie sig
czgstka, to kropelki wody bgda ulegaty kondensacji giéwnie wzdiuz jej
$ladu. Jednoczesne oswietlenie pozwala na sfotografowanie sladu czas-
tki wewngtrz komory. Wspdczesne ukkady elektroniczne pozwalaja na
gynchronizacjg poszczegélnych czynnosci, jak réwniez na selekcjg czas-
tek o pewnych zdeterminowanych wkasnosciach. Mozna, na przykiad, za-
jaé sie rejestracjgq czgstek o energii przewyzszajgcej zadang wartosé
progowg lub rejestrowaé czgstki przychodzgce z okreslonego kierunku.
Ostatnie uwagi odnoszg sig réwniez do zastosowania licznikéw Geigera-
M#llera w tew. ukXadach koincydencyjnych. Mozna réwniez umiescié we-
wnatrz komory Wilsona preparat promieniotwdérczy i zajmowad sig w réz-
nych warunkach pomiarem zasiggu emitowanych przezed czastek.

Zasigg czgstek zalezy migdzy innymi od ich prgdkosci,lub energii.
Dla czgstek bardzo szybkich bywa w osrodku gazowym tak duzy, ze nie
mozna obserwowaé catego s$ladu czgstki w komorze Wilsona o rozsadnych
wymiarache, Dlatego skonstruowano cieczowy analog komory,znany pod na=
zwg komory pgcherzykowej, w ktérej osrodkiem wypeinisjgcym jest ciek=-
¥y woddér. W cieczy, jakg stanowi skroplony gaz, Lo0zna réwniez wytwo-
rzyé stan metastabilny przez nagite obnizenie preznosci pary nad cie-
czg. Wzdiuz Sladu czgstki jonizujacej pojawiaja 8ig¢ wéwczas drobne
pecherzyki pary, pozwalajgce na uzyskanie fotografii toru czgstki.

12.3.4. Blok emulsji fotograficznej

Do obserwacji ruchu czgstek o najwyzszych energiach, stanowigcych
na przyktad skZadniki promieniowania kosmicznego, uzywea sig¢ niekiedy
blokéw emulsji fotograficznej. Jest to prostopadXoscian wykonany z
halogenku srebra wraez z potrzebnymi dodatkami, zawleszonych w Zelaty=
nie. Po zarejestrowaniu $ladu jednej (lub kilku) czastki blok tnie sig
na cienkie warstwy, wywozuje, utrwala i suszy. Po zXozeniu poszczegbl
nych fragmentéw bloku uzyskuje sie¢ przeatrzenny obraz ruchu czgstki
szczegblnie interesujacy wtedy, gdy jej Slad kodczy sig¢ w obszarze
bloku jskg$ dezintegracjg. Rozpoznanie powstajgcych oczgstek, pomiar
zadiegu i katéw rozproszenia umozliwia niekiedy peiny opis wywozZanego
rozpadu.

12,3.5. Licznik scyntylacyjny

Jest to ostatnio coraz czesciej stosowany detektor przede wszyst-
kim promieniowania?y 1lub rentgenowskiego. Jego zasadniczg czgscia
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Jjeet fotopowielacz, z przyklejonym dc powierzchni czoowej krysztazem
scyntylacyjnym K (rys. 12=-5). Jako scyntylatora usywa sig¢ krysztaiu
jodku sodu, zawierajgcego niewielka domieszke jodku talawego (NaJ«T1J)
gposréd zwigzkéw organicznych dobrym scyntylatorem jest antracen.Kwan=

ty Y absorbowane przez te krysztaty, powoduja wzbudzenie centréw lu=-
minescencjij powrét centrdéw do stanu podstawowego poigczony jest 2
emisjg promieniowania widzialnego, rejestrowanego przez fotopowielacz.
Sprawnosé konwersji kwentéw y w kwanty promieniowania widzialnego wy-
nosi kilka procent, natomiast duzag zaletg licznikéw scyntylacyjnych
jest ich bardzo maly czas rozdzieleczy: w wigkszosSci przypadkéw Jest
on rzgdu 10"9 8. Licznikéw scyntylacyjnych uzywa sig réwniez do detel
cji elektrondéw B, czastek o, a takze powolnych neutrondéw.

1204, Rozpad ¢

Czastka «, opuszczajgca jadro w procesie naturalnej przemiany
promieniotwéreczej, porusza sie w dalszym ciagu w odrodku, najczescie]
gazowym. Wskutek strat energii zwigzanych z produkcjg jondéw, ozastks
zostaje wyhamowana do tzw. predkosci termicznej, odpowiadajgcej ener-
gii trenslacji 3/2 kT czasteczki gazu. Odcinek drogi, przebyty przez
czgstke o« w suchym azocie (lub powietrzu) w warunkach normalnych od
miejsca je] wyrzucenia do zatrzymanis, nazywamy zasiggiem R czgstki.
Jest zdumiewajace, ze okreslony nuklid emituje czgstki oo o Scisle o=
kreslonym zasigguy fluktuacje R 2zdarzsjg sig nadzwyczsj rzadko,.

Ts cecha zasiegu pozwolila na ustalenie zwigzku miedzy R a staig roz-
padu promieniotwérczego A, znanego pod nazwag prawa Geigera-Nuttalla:
logarytm zasiggu R czgstki o jest proporcjonalny do logarytmu
etazej rozpadu

InR=alnA + b, (12.10)

gdzie a i b 83 staiymi charakterystycznymi dla okreslonego nuklidu.
Innymi sXowy: im szybciej rozpada sig¢ pierwiastek promieniotwdrczy,
tym wigkezy maja zasigg emitowane przezeid czgstki o.

PrawidXowosé te Zatwo wyjasnié jesli przyjmiemy, ze jgdro jest o-
toczone barierg potencjalng. O istnieniu tej bariery wiadomo 2z dosg-
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wiadczedl ned bombardowaniem Jjader czastkami naiadowanymi. Znaleziono
mianowicie, %Ze do jadra moze wniknaé czgstks atakujgca dopierc wéw-
czas, gdy jeJ energis kinetyczna jest dostatecznie duia. §wiadozy to
niewgtpliwie o istnieniu bariery potencjazu, choé o Jej szczegdétowym
ksztalcie w poblizu jadra nie wiemy nic pewnego. Wiadomo jedynie, ze
w odlegtosciach "dostatecznie"™ od jgdra dalekich bariera ma ksztait
potencjatu kulombowskiego, co wynika z doswiadozer Rutherforda doty-
ozgoych rozpraszania czastek « przez jadra atoméw (por. rozdz. 3.3).
Za "dostatecznie" duzg mozna uwazaé odlegzosé przewyzszajacg 10 Sred-
nic jadra. Model takiej bariery jest przedstawiony na rys.12-63 przyj
mujemy, %e jgdro znajduje sig¢ w punkcie (0,0). JesSli energia czastki
« wyrzucone] z Jadra, = wige i je] zasigg sa male, to czgstka uderza

u(r)

Jgdro r

w barierg na dole, gdzie prawdopodobiefiatwo przejdécia Jest mate. Dla
takie] czgstki bowiem 1 szerokofé bariery i ggbokoséé penetracji sa
duze, Wobec maitych szans' na emlsje¢, pierwiastek ma dxugi czae Zyecis,
czyli meig statg rozpadu. Jesli zas czgstki  wyrzucane przez Jakies
inne jadro majg energle duzg, prawdopodobierdstwo przejscia przez ba-
rierg Jest rdéwniez duze, co odpowiada duzej stakej rozpadu.

12. Emisja i pozio wzbudzone dexr

Emisja promieniowania +y Jest zjawiskiem towarzyszgqcym emisji g,
Bs po wyrzuceniu czgstki Jjgdro znajduje sie w stanis wzbudzenis ipo-
wrét do stanu podstawowego jest poZgczony z emisjg kwantu vy. Stanéw
wzbudzonych moze byé wigcej niz jedeni stanowig one charakterystyczay
dla kazdego jadres ukad stanéw dyskretnych. Przykiadem reakcji rozpa=-
du, poZzgozonej z emisjg y, moze byé rozpsd polonu
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210Po o ZggPﬁ“ Y 206Pb
84 82

Gwiazdkg zostalo oznaczone jgdro Pb w stanie wzbudzonym. Energe-
tyczny schemat tej reakcji jest podany na rys. 12-7; mamy

E,-E =E, E; -E;=hy

gdzie E; oznacza energi¢ czgstki o , zas EO energle stanu podstawo-
wego. Jest to bardzo prosty schemst z jednym stanem wzbudzonym (E,);
czgsto bywa ich wigcej, np. jadro wegla 1gc ma co najmniej 5 standw

wzbudzonych.

210

85 ° 5
Eq
206
% E,
52 oy
206
Ryse 12=7

Emisja promieniowania Yy pochodzenia jgdrowego powoduje wybicie 2z
atomu elektronu z warstwy K lub L z wydajnoscia bliskg 100%. Jest to
przykad swoistego efektu fotoelektrycznego, noszgcego nazwg konwer-
sji wewnetrznej. Procesowi konwersji towarzyszy emisja promienia rent
genowskiego, co bardzo komplikuje obraz emisji promieniowania elek-
tromagnetycznego przez jadro.

12.6. Rozpad

Nie znany jest obecnie mechanizm powstawania elektronéw w emisji
B; wiadomo jednak, iz elektronéw w jadrze nie ma - brak na to dosta-
tecznie przekonywajacych przesanek za réwno teoretycznych, jak i do=-
Swiadczalnych, Wiadomo rdéwniez, iz widmo energetyozne elektronéw B
jest ciag¥e, tj. okreslony nuklid, ulegajgoy rozpadowi B, emituje
elektrony o dowolnej energii z przedziatu od zera do pewnej gérnej
granicy, ktdrg oznaczymy Em. Takie przestanki doswiadczalne w poZg-
czeniu z wymaganiami zasady zachowania energii 1 pedu doprowadzizy
Pauliego do postawienia w 1931 r. hipotezy, Ze emisji elektronéw B o
energii mniejszej od Em towarzyszy emisja nowej, dotychczas nie zna-
nej czgstki, a mianowicie neutrina.
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Wkasnosci tej hipotetycznej czastki oznaczanej literg v, wydedu-
kowane przez Pauliego byty nastgpujgce: masa zmienna i znacznie mniej-
gza od masy elektronu, *adunek zero. ZaXozenie, %e neutrino istnieje,
pozwolito na wyjasnienie rozpadu B wediug schematu pokazanegc na r¥s.
12-8, Nuklid éx po emisji elektronu B o maksymalnej energii E B)
przechodzi w nuklid z+§¥' w stanle wzbudzonym, ten emituje kwant hv
przechodzgc do stanu podstawowego. Jadro %X moze Jednak emitowad
elektrony B o energii E B/ EmB s wtedy dodatkowo Jest wyrzucane
neutrino o energii potrzebnej do osiggnigecla stanu E1. Gdy energia
elektronu jest mata, wéwczas energia neutrina jest duza, i na odwrét.

m

A
ZX EZ
E(B)
E(B)
E(E) T
m
__ 1 Ey
Ey
Ay ’
qu e _ £,
hv hv hv
) v
rrlf £,
Rys. 12=8

Doswiadozalne wykrycie neutrina nie byZo tatwe z powoddéw, ktére
podamy w rozdziale 13.Dlatego dopiero w 1956 r. Reines i Cowan donie-
811 o eksperymentalnym potwierdzeniu hipotezy Pauliego.

12.7. Akceleratory czgstek natadowanych

Istnienie wokéx jader bariery potencjaku stanowi doéé 2znaczng
przeszkodg, utrudniajgcg zblizenie sig czgstki naxadowanej i nastgp-
nie wniknigcie jej do Jjadra. Pokonaniz tej bariery mozliwe jest tylko
dla czastek o dostatecznie duzej energii, dlatego Jjednym =z wazZnych
zadan fizyki jadrowe] jest przyspieszanie czgstek nat*adowanych do du-
zych predkosci za pomocg odpowiednich urzgdzed, zwanych akceleratora-
mi lub przyspieszaczami,.

Jeden z najprostszych akceleratoréw, generator Van De Graaffa, zo-
stat opisany w rozdziale 6.2.2. Uzyskiwana metodg elektrostatyczng
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réznica potencjsidéw o wielkosci kilku megawoltdéw umozliwia rozpgdze-
nie w rurze dc wytadowad protondéw lub czgstek o do energii rzgdn kil-
ku megaelektronowoltdw,

Do znaoznie skuteczniej dzie-
tajgoych akceleratordéw nalezg u-
rzgdzenia, pracujgce cyklicznie;
caZa ich rodzina zapoczgtkowans
zostata aparatem skonstruowanym
przez Lawrence s 1 noszgca nazwe
oyklotronu. Schemst cyklotronu
jest przedstawiony na rys., 12-9.
Pxaska "puszka" metalows rozcig-
ta jest ns dwa duanty, D1 i Qz
wzajemnie od siebie izolowans 1
atarannie ewakuowane. W poblizu
érodka O wpuszczamy wigzke po-
wolnych o©zgstek nazadowanych,
przyktadamy réznicg potencjatéw
migdzy duanty, a prostopadle do
ich powierzchni pole magnetyczne
o indukcji B. Czgstki przyspieszone w szczelinie migdzy duantami po-
ruszajg sig dalej w przestrzeni ekwipotencjalnej; obecnosé pola mag-
netycznego powoduje zekrzywienie ich toru w *uk okrggu o stazym pro-
mieniu,

W nastgpnym przejsciu przez szczeling mozemy réwniez przyspieszyd
czgstki, Jesli zmienimy znak przyZozonej rdéznicy potencjaxédw. Duanty
powinny byé zatem zasilane przemieunng réznicg potencjaiéw U=, ktére}
czgstosé zmian tatwo wyznaczyé z nastepujgcego rozumowanias. Z warunku
(dla elektronéw) evB = mv2/R mozemy otrzymaé promied toru elektro-
néw: R = v/{(%)°B}. Czas obiegu wynosi t= 2qR/v = 23/ (%)*B s WO=
bec czego potrzebna ozgstosé katowa w= 2¢ /t= (e/m)*B. Po dokonaniu
dajgcej sie przewidziedé liczby przejsé strumienia czgstek naladowa-
nych migdzy duantemi mozna je wyprowadzié przez cienkie okienko na
zewngtrz aparatu. Oczywiscie, cyklotron pracuje metodg impulsowa: po
"watrzyknigciu" porcJi czgstek nastepuje proces ich przyspieszania -
nastgpng porcjg mozna przyspleszal dopiero po wyprowsdzeniu pierwsze]
na zewngtrz.

Po licznych ulepszeniach konstrukcyjnych cyklotron w Massachusets
Institute of Technology (USA) o parametrach: Rmax' 48 cm, B =1,8 Wb/m2
(1,8'104 gauséw) produkowak deuterony o energii 18 MeV. Wartosé ta
jest prawdopodobnie gérng granicg mozliwosSeci cyklotronu, poniewaz je-

Rys. 12=9
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go ‘konstrukcja i obliczenie oparte 28 na niezaleznosci mesy od pred-
kosci., Jezell predkoscli sg duze, to wyrszenie okreslajgce ozgstosé

®.01 zmian pola elekirycznego po uwzglednieniu wyrazenie relatywis-
tycznego okreslajacego masg ma posiad
SR (2 _a2y)1/2
w1 =B Lmo)(1 BEDE, (12.11)

Widaé, %e czgstosé te nie Jest staza, lecz meleje w miare zbliza-
nia sig przyspieszonych czgstek ku obwodowi duvanta, Przy staXej czgs-
todei w czgstki wypadajg z synchronizmu zmian pola i to stanowi giéw-
ne ograniczenie mozliwosci oyklotronu.

Ulepszenie konstrukecji cyklotronu moze isdé w dwdch kierunkachs

i. Mozna zmieniaé czesto$é pola elektrycznego zgodnie 2z (12.11)
(Weksler, McMillen). Metoda ta prowadzi do komstrukecji cyklotronu =z
modulowang czgstoscig, czyli tzw. synchrocyklotronu. Pierwszy synchro-
cyklotron uruchomiono na Uniwersytecie w Berkeley (California, USA);
dostarcza deutrony o ensrgii 200 MeV, czgstkic o energii 400 NeV.
Potrzebny tu elektromagnes ma masge 4000 t i wytwarza pole magnetyczne
o indukcji 1,5 Wb/m°> (15000 geuséw). Réznica potencjaiéw U = 15 kV
zmienia sig¢ z czgstosocig od 11,5 MHz (poczatek) do 9,8 MHz (koniec).

ii. Mozna dostrajaé B, co prowadzi do komstrukecji synchrotronu
(réwniez Weksler, MoMillan).

Maszyny dostarczajgce czastek natadowanych o tak wysokich ener-
giach stuzg w fizyce jadrowej do produkcji czgstek elementarnychjmoz-
liwodci w tym zakresie, zaleznie od mesy spoczynkowe]j czastki elemen-
tarnej, bardzo znacznie zalezg od duzej predkosci oczgstki produkujg-
cej. Do najwigkszych skonstruowanych dotychczas urzadzend nalezg koa-
motron, wytwarzajgcy czgstkl o energil pordwnywalnej do obserwowsnsj w
pierwotnym promieniowaniu kosmicznym i bewatron, dostarczajgcy proto-
néw o energii 6 GeV (6°10° eV).

12.8, Sztuczna promieniotwdrczodé 1 przekroje czynne jader

Rozpgdzone do dusych predkosci czgastki natadowane mogg wnikaé do
jadra atomowego, przez co w pierwszej fazie reagkcji powstaje tzw,jgd-
ro zxozonejy jego liczba porzadkowa i mssowa sg réwne sumie 1liczb po=-
rzgdkowych i masowych ozgstki atakujacej i nuklidu,stanowigcego "tar-
czg"., Jadro zXozone ulega w krétkim czasie rozpadowi z emisjg z regu-
ty jednej czgstki i utworzeniem jadro kodcowego, w wigkszosci przy-
padkéw w stanie wzbudzonym. Prawdopodobiefdstwo trafienia jgdra czgst-
kg z zewngtrz jest na ogél bardzo mate - dyskusjg czynnikéw, od kté-
rych ono zalezy, zajmiemy sig nieco pdéZniej. Obecnie oméwimy mecha=-
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nizm wazniejszych reakcji z dziedziny sztucznej promieniotwdrczosci -
dotychczas poznano ich bardzo duzo.
Pierwsza taka reakcje, odkrytsg

P K?in )Q1TD i przez Rutherforda, byXo "rozbicie"
L - ; E jadra azotu. Schemat doswisdczenia
{Lﬁ;fif:j jest przedstawiony na rys. 12-10,
:1?;‘~—;H 0 Niewielki ocdcinek rury, zaopatrzo-
: - ‘ﬂ ny w dwa krany K1 i K2 stuzgce do

wymiany wypeinlenia gazowego, zam-
knigty  jest z obu stron krazkami
P1 i Pa; drugi z nich posiada otwér O, Wewngtrz znajduje si¢ podstaw-
ka S 2z niewielksg porejg preparatu polonu, emitujgcego oczgstki o,
Otwér O zamknigty jest folia F wykonang z glinu i o takiej grubo-
Sci, by catkowicie zatrzymad czgstki o . Z zewngtrz otwér jest zam-
knigty ekranem, na ktérym obserwuje sig bxyski gcyntylacyjne wywokane
przez takie czgstki, ktdére sg zdolne przeniknaé przez F. Jesli naczy-
nie jest wypeinione na przykiad dwutlenkiem wegla lub tlenem albo ewa=-
kuowane, to ekren E pozostaje zupeinie ciemny. Po wprowadzeniu do wne-
trza rury azotu, obserwuje sig¢ na ekranie biyski scyntylacyjne, kté-
rych pochodzenie musi byé zwigzane z reakcjg jadrowg, wywoiang przez
czgatkli o . Mechanizm tej reakcji, trafnie odgadnigty przez Ruther-
forda, jest nastegpujacy

Rys. 12-10

1,"}1« + BHe — (133‘) = Mo + u.

W wyniku pochtonigcia czgstki o przez Jjadro azotu powstaje jagdro
zXozone fluoru, ktérego rozpad potgczony jest z emisjg szybkiego pro-
tonu - jego zasigg w powietrzu wynosi okozo 40 cm. Reakcje¢ t¢ moznas
zapisaé w skrécie N(wo, p), k*adac na pierwszym miejscu w nawiasie cza
stke atakujgcg, na drugim zas emitowang. Szybki proton przebija alu-
/7 miniowg folig¢ i wytwarza biysk scyn-
30 tylacyjny na ekranie E., MoZzna 1li-
ozyé te bixyski na okreslonym wycin-
ku powierzchni za pomoca lupy; Jjes-
1i w podobny sposéb zmierzymy licz-
bge czgstek o, emitowanych przez
preparat Po w kierunku tego samego

Rys. 12=11 kata brytowego (po usunigeiu folii
F), mozemy oszacowaé wydajnosé tej reakcji, Okazuje sig, ze jest ona
bardzo maXa: Srednio jedna czgstka & na 50 000 powoduje rozbicie jg-
dra szotu. Wynik ten oraz mechanizm reakcji zaproponowany przez Rut-
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herforda zostal péZniej potwierdzony przy uzyciu komory Wilsona. Ty-
powy obraz rozbicia jadra azotu jest przedstawiony schematycznie na
rys. 12-11. Reakeji typu X(o, p) ulega wigcej pierwiastkdéw: np. tar-
czg X moze byé bor, glins krzem, siarka i inne.

Inng bardzo wazng reekcjg jest bombardowsnie berylu czastkami o :
badanie jej doprowadziXo do odkrycia neutrondéw. Odkryto bowiem w 1930
roku, %ze beryl bombardowany czgstkami o« emituje przenikliwe promie-
niowanie, nie wywoxujgce jednak jonizacji w komorze jonizacyjneje. Po
przejs$ciu tego promieniowania przez blok parafiny lub podobnej sub-
stancjli organicznej pojawito sig¢ stabe dziatanie jonizacyjne. Podej=-
rzewano wigc emisje protonéw z parafiny pod wpZtywem "promieniowania y",
ktére miazoby powstawaé podczas bombardowania berylu czgstkami o.Jes-
1i materiaX parafiny oznaczymy dla krdétkosci przez X, to tg hipotezg
mozemy zapisaé jako reskcje X(y, p)e Précz parafiny,powigkszenie dzis
tania Jjonizacyjnego powodowaty takze inne substancje,niekoniecznie or-
ganiczne, przy czym kazda z nich czynita to w sposdb indywidualny.Wy-
nika z tego, 2e reakcja X(Y,p) zachodzi dla bardzo wielu X, co czyni
ja nieprawdopodobng zwtaszcza, ze stwierdzono istnienie okreslonej ze-
leznosci migedzy energig emitowanych "protondw", a liczbg masowg X.

WXasciwe wyjasnienie tej reakcji podat w 1932 r, Chadwick przyj-
mujgc, iz pod wpiywem czastek « beryl emituje strumierd neutrondéw
wedzug reakcji

zBe + gHe —+—(1gc) —+-1éc + én.

Powstajacy tu szybki neutron jest bardzo przenikliwy 1 nie wywo-
*uje praktycznie jonizacji, poniewaZ brak adunku i krétki czas prze-
bywania w poblizu atomu nie stwarza warunkéw potrzebnych do wytwarza-
nia jonéw. Przejscie neutronu przez blok parafiny lub inneJj substan-
¢ji X interpretowat Chadwick jako proces spowolnienia, polegasjgcy na
sprgzystych zderzeniach neutronu z jgdrami wggla lub wodoru podczas
przechodzenia przez weglowoddér. W kazdym zderzeniu czgsé energii neu-
tronu zostaje przekazana uderzonemu jgdruj; dzieje sig tak dopéty, do-
pdéki energia kinetyczna neutronu nie zmaleje do wartosci bliskiej
3/2 kT, Neutrony o takiej energii zwane sg neutronami termiczuymi.Za-
nim osiggng predkosé ruchu termicznego stajq sig one "powolne; takie
neutrony majg niewielkg zdolnosé jonizacyjng.

Ze wzgledu na duze znaczenie procesu spowalniasnia zajmiemy sig o-
becnie blizej jego analizg. Poniewaz zderzenia Jjader atoméw spowalnie-
cza, zwanego tez moderatorem, z neutronami sgq sprgzyste, do elemen-
tarnego aktu zderzenia mozna zastosowaé prawo zachowania energii i
pedu. Oznaczmy masg¢ neutronu przez m., & masg Jadra mj i przyjmij-
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my, Ze wobec mazych predkosci ruchu termicznego energig kinetyczng
jadra 1/2 myvy przed zderzeniem mozna zaniedbaéd.Jesli predkosé neu=
tronu przed zderzeniem wynosi Voo 8 predkosé obu czgstek po zderze-
niu odpowiednio V, i VJ, to zasady zachowasnia majg postad

1 2 1 2 1 2
2 B'n = 3 BpVn * 3 05V,
(12.12)
mv, = mnvn + mjvd.
Prowadzi to do dwéch réwnai liniowych
—Vn + VJ = Vn,
(12.13)

mnVn + mJVJ =mV.
z ktérych mozemy otrzymaé wyrazenie na interesujacg nas predkosé Vn
neutronu po zderzeniu .
(my, = m )
INCREVIRERS L (12.14)
(mJ +m )

Jesli energig kinetyozng neutronu po zderzeniu, 1/2 mnvi 0znaoczy=
my przez Tn’ a przed zderzeniem przez Ton’ to z (12.14) otrzymamy
zwigzek

- 2
Tn,Ton.(ﬂ_’”n),

my + my
lub w przyblizeniu (po podzieleniu licznika i mianownika przez mi)
Do 08
T, =T, o —) . (12.15)
Aj + 1

Wzér (12,15) stanowi relacje migdzy energig kinetyczng przed i po
zderzeniu z Jjgdrem o liczbie mssowej A;. Widzimy, Zze Jesli A, —d oo,
to Tn s Ton‘ W takim razle zderzenia z jgdrami cigikimi sg niesku-
teczne: nie ma praktycznie wymiany energii migdzy neutronem a jadrem.
Podobnie rzecz sig ma w zderzeniu neutronu 2z jgdrem o Aj <1y Dpe W
zderzeniu z elektronem. Najbardziej skuteczne jest zderzenie z proto-
nemy zachodzi wéwczas catkowita wymiana energii. Wykres funkcji (12.15)
w zaleznosci od A, Jjest przedstawiony na rys. 12-123 kézkiem ozna-
czono zakres Aj gla substancji, ktére ze wzglegdéw praktycznych mogg
mieé znaczenie Jako moderatory, Nalezg do nich substancje,ktérych 1li-
czby masowe atoméw lub czgsteczek nie przekraczajg A, = 30. Do takich
aubstancji nalesy na przykZad grafit: dla wegla AJ = 12, Jak bedzie

przebiegal proces spowolnienia na takim moderatorze?
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Tn

U | g

Rys. 12=12
Poniewaz A, - 1\2
T£1) = Ton .( )
A, + 1
oraz J

2 4
T(a)_Tm,(‘a") . .(_1‘ .__")
n 4 Ay + 1 on Ay + 1

itd., zatem po k-tym zderzeniu z jgdrem wggla energia neutronu wynie-
sie

( My =
Tnk) =T, -(—-1-—-) . (12.16)
A:j + 1

Przypudémy, %Ze Top = 1 MeV - jest to zatem neutron "gorgcyeJdes-

1% chcemy otrzymaé zed neutron termiczny, ktéremu odpowiada energia
Tnk) = 0,02 eV, to potrzebna na to liczba zderzexr bgdzie réwna
8
l lo °10 3
k = 2 108 530

W jednym zderzeniu (Tn/’l‘on) = (13/11)°2 - 0,716 natomiast, ozyli
AT = 28,4%.

Skutkiem bombardowania berylu ozgstkami o Jeat zatem powstawanie
neutrondw; nie jest to jedyna reakcja tego typu. W ogdlnym modelu re-
akcji X(oy n) nuklidem X moze byé na przyktad 1lit, bor i inne. Neu-
trony produkowsne w tych reakcjach odznaczajg si¢ duzg energig; zwyk-
le wystgpuje kilka grup neutrondéw o réznych prgdkosciach, odpowiada-
jacych nieciggXemu widmu energii, np. neutrony w reakcji Be(xyn) mogg
mieé energie 13,73 12,03 T,63 6,2 lub 4,6 MeV, Istnienie nieciggego
widma energetycznego swiadozy o tym, Ze jadro korcowe moze sig¢ znaj-
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dowaé w réznym stanie wzbudzonym. Reaskcja z borem

B) = gLi-+a

Jest czgsto wykorzystywana jako metoda detekcji neutrondw: Sciany ko=
mory Jjonizacyjnej wykiada sig pxytkami, zewierajgcymli 2zwigzki boru.
Wychwyt neutrondéw przez jgdra boru powoduje emisjg czgstek &, ktdérych
obecnosé mozna atwierdzidé zwykiymi metodami.

Ze wzglegdu na swg elektryczng obojetosé neutrony,zwtaszcza powol-
ne, sg8 nadzwycza] skuteczmymi pociskami jadrowymi. Prawie kszdy nuk-
1id ulega przemianom podczas bombardowania neutronami. Reakcji takich
wymienilidmy dotychczas kilka, w nastepnym paragrafie zajmiemy ale
skutkami bombardowania neutronami jgdra uranu. Obecnie warto Jeszoze
wapomnieé, iz ze wzgledu na fizyke jgdra atomowego interesujgca jest
reakcja

10, . 1 11

:{H+gnz$D+hv

dowodzgca bezposrednio, iz jadro deuteru jest zXozone z dwéch oczgs-
tek: neutronu i protonu. Poglad ten potwierdza rdéwniez fakt, Ze reak-
cja ta moze biec w kierunku przeciwnym: pod wpiywem krétkofalowego pro-
mieniowania y zachodzi rozpad jgdra deuteru, zwany fotoefektem jgdro-
wWyme

Proces absorpcji neutronu przez
B | okreslone jgdro atomowe wybitnie
| zalezy od prgdkosci neutronu. Typo-
I wy przykiad zsleznosci prawdopodo-
= biefistwa pochtonigcia neutronu Pn
‘ od Jego pregdkosci v jest przed-
i stawiony na rys. 12-13, Widzimy,ze
[ szczegdlnie silnie pochtaniane sg
! neutrony o pewnej okreslonej prgd-
bk 7 kosci v_; zjawisko to nosi nazwg
rezonansu jgdrowego.Doswiadczenia,
ktére trzeba wykonaé w celu uzys—
kania krzywej 12-13, majgcej duze znaczenie praktyczne, nie sg pros-
te: trzeba dysponowadé wigzkg neutrondéw o okreslonej predkosci, czyli
tzw. neutrondw "monochromstycznych". Uzyskuje sig¢ je migdzy innymi za
pomocg mechanicznych selektordw predkosci, pozwalajgcych wybraé =ze
strumienia tylko te, dla ktdrych czas przelotu ustalonej odlegZosci
jest Scidle okresdlony.

Rys. 12-13



277

IloSciowg miara prawdopodobienstwa zajsScia okredlonego procesu 2
okreslonym nuklidem jest przekrdj czymny jgdra. Procesem tym moze byé
ogdlnie absoprcje (a) dowolnej czastki, rozpraszanie (s), reakcja jg-
drowa (r), rozszczepienie jadra (f), itd. Pojecie przekroju czynnego
wprowadza sie dla dowolnego typu czastki atakujgce], lecz szczegdlnie
czgsto by&a ono uzywane w odniesieniu do neutronéw,

Niech n, ozneczazstrumieﬁ czga~-
tek padajacych na 1 om“ tarczy (pxytka
%z badanego materiafu) w ciggu 1 s.Tar-
cza ma ogélng grubosé D i zawiera N
jader w jednostce objgtosciy niech S
bedzie powierzchnig przekroju czoXowe- —_—
go (rys. 12-14), Wydzielmy prostopadle Ny ——em
do biegu wigzki cienkg warstwg materis ———
Iu o grubosci dx - zawiera ona NooS ax T o[BS
Jader. Dochodzgcy do niej strumien ozg- S Qbh Ny
stek wynosi n <n,, poniewaz pewna li-
czba czgstek zniknete ze strumienia =
powodéw wymienionyoch  uprzednio. Na
warstwie dx zachodzi dalsza strata liozby ozgstek, réwna =-dn i pro-
porcjonalna do liczby jader zawartych w dx dla S = 1 cm

)
i

*—_.—_._..__
s
|
1
1o ___|_

Rys. 12-14

-dn = ¢ * n N dx. (12.,17)
Przez catkowanie otrzymujemy
Inn = = cNox + C.

Poniewaz x = 0D n = D zatem C = 1ln n, oraz

-NoDc

n=n e . (12.18)

Wyrazenie (12.18) przedstawia liczbe czgstek w strumieniu, ktéry
przeszedl przez warstwe materisiu o grubosci D. Wspétczynnik propor-
cjonalnosci o Jjest mierzony w centymetrach kwadratowych, poniewaz
[NO'D] = 1 om"'2 1 nosi nazwg przekroju czynnego Jjadra. Liczbowa war-
todé o jest bardzo maZa - podaje sig jg zwykle w jednostkach zwanyoch
barnami, przy czym

1 barn = 10”24 cm2.

Przekrd] czynny, wystgpujacy w (12,18) jest tzw. ogélnym lub in-
tegralnym przekrojem czynnym, Opisuje on 2znikanie czgstek 2ze stru-
mienia przechodzgcego przez materig, niezaleinie od procesu, jaki to
znikanie powoduje. Procesy mogg tu byé rdzne, zatem rézne moga tez
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byé przekroje czynne: Cry © przekréj ozynny na absorpoje, og - przekréj
na rozpraszanie, O = przekrdj na okreslong reakcjg jadrows, i dinne,
Ze wzgledu na postaé funkcji (12.18) przekrdj czynny ma wiasnosci ad-
dytywne, tzn. ogélny przekrdj czymny ¢ jest sumg przekrojéw na po-
szczegdlne procesy

C'=0, +0, +0

r+(jf+ ese (12019)

12, Rozszezepienie dra uranu

Wéréd réiznych reakcji, spowodowanych wniknigeiem neutronu do jgd-
ra atomowego, wyjgtkowe znaczenie ma skutek bombardowania neutronami
Jader uranu o 1liczbie masowej A = 235, Uran metaliczny, otrzyma-
ny z mineratéw zawartych w skorupie ziemskiej 6 Jest mieszaning dwéch
izotopdw: zggU w ilosei 0,72% oraz 92U, stanowiacego reazte, tJj.
99,28% zawartodci. Oba jgdra ulegajg rozpadowi po pochonigciu neu-
tronu, lecz zupeinie odmienng droggs 92U rozpada sig w zwykly, snany
nam sposéb, natomiast 920 ulega tzw. reakcji rozszczepienie, dotych=
czas nie znanej., Zajmiemy sig¢ wpierw tgq wXasnie reakcjg.

Zostata ona wykryta w Niemozech w latach 1936-1937 przez Hahna,
Meitner i Strassmanna 1 polega na peknigciu (rozszozepieniu) Jgdra
uranu 235 na dwa duze fragmenty po pochXonigoiu neutronu. Schemat tej
reakcji jest nastepujacy

235 1 139 95 1
92U + oR — '5aXe + 338r + 2,5 (1 + 150 MeV. (12,20)

W przeciwiefistwie do dotychczas poznanych reakeji skutkiem jej nie
Jest wyrzucenie jednej czgstki z jgdra zXozonego, lecz pojawienis sie
dwéch duzych Jgder oraz Srednio 2,5 neutrons na jedno rozszozepienie
Uwalnia sig¢ przy tym spora energia, wynoszgca 150 MeV na jedno Jgdro

s e
g o

Rys. 12-15

Bieg tego procesu mozemy sobie przedstawié w nastegpujgcy sposadb.
Jadro uranu zachowuje sig pod pewnymi wzgledami Jjak kropls cieczy, o=
czywiscie o bardzo duzej ggstosci. W stanie réwnowagi wszystkich six
jgdrowyoh ciecz przybiera ksztatt kuli (rys. 12-15). Wpadnigcie neu-
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tronu odpowiada ogrzaniu cieczy do bardzo wysokiej temperatury; pray
tak duzej energil wzbudzenia pojawiaja si¢ oscylacje materii jadrowe],
dochodzi do przewgzenia i1 wreszcie pegknigcia jadra na dwa fragmenty.
Oba fragmenty podziazu znajdujgq sig¢ w stanie wzbudzonym i zawilerajg
nadmiar neutronéw; pozbywajg sig¢ wigc tego nadmiaru przez emisjg swo-
bodnych neutronéw, Ten sposéb tZumaczenia pozwala migdzy innymi zro-
zumieé, ze produktami rozszczepienia nie zawsze muszg byé Xe i Sr we-
dxug schematu (12.20). Moga to byé rdézne produkty, przy czym istnieje
okreslony rozktad prawdopodobiefdstwa PA powstania produktu o 1liczbie
masowe]j A, przedstawiony na rys. 12-16. Okazuje sig, iz krzywa ta ma
dwa meksima, przypadajgce przy A4 = 96 1 A = 138, co odpowiada schema=-
towi (12.20): te pierwiastki pojawiajg sig@ w rozszczepieniu najczgs-
ciej, ale nie wytgcznie,

Py

Zatwo wykezaé, ze energia 150 MeV, przypadajgca na jedno rozszcze-
pienie jest pochodzenia elektrostatycznego i jest skutkiem pracy siz
pola, potrzebnej do rozsunigeia jgader produktéw rozszozepienia =z od-
legzosci Ty rzeguzérednicy jgdra, do nieskofczonosci.Przyjmujgc bo-
wiem r, = 1,810 om, Z4 = 38, Z, = 54 mamy

2 -19
1 2,Z,e 38+54¢1,603°10
U - ° 1 2 = 9’0.109. 9

= ——17
4m g, T, 1,810

= 164 MeV,

Jak juz wspominalismy, reakcja rozszczepienia nalezy do niezmier-
nie rzadko spotykanyche. Sposrdd znanych dzis pierwiastkdéw rozszczepie
niu, précz 292U, ulega jedynie pluton, 94Pu. Srednia 1liczba powsta-
Jacych w jednym rozszczepieniu neutronéw oznaczana jest przez vy i sta

nowi wazny parametr tej reakcji

v(zggu = 2,5 % 0,1; v(zgzPu) = 3,0 0,1,



Ze wzglgdu na to, iz dla obu pierwiastkéw v =1, pojawia sig¢ po
raz pilerwszy mozliwosé prowadzenia tej reakcji Jako reakecji Zandcucho-
wej (samopodtrzymujacej sig). Mozliwosé ta zalezy od wspbidziatania
nastepujacych czynnikdw:

i. Produkcja neutronéw, okreslona liczba v .

1i. Ucieczka neutrondéw poza obrgb materia*u rozszczepialnego, o-
kreslona przekrojem ozynnym na rozpraszanie Ogs Predkoscia neutrondéw
i rozmiarami prébki uranu. Uwzglgdnienie tych czynnikéw jest dos$é tru-
dne, dlatego uproszczone obliczenia wykonuje sig dla tak duzej prébki
uranu, by ucieczke (a wige i o,) mozna byXo zaniedbaé.

iii. PochZanianie neutronéw, okreslone przekrojami czynnymi O
pierwiastkéw, wchodzacych oprécz rozszczepialnego izotopu uranu w
skad mieszaniny (lub stopu). Neutrony pochtonigte przez te pierwiast
ki sg tracone podczas procesu rozszczeplenia, choé czgsto mogg dopro-
wadzié do powstania uzytecznych produktdéw. Przykiadem niech tu bgdzie
zachowanie sig¢ jadrs ZggU po pochionigciu neutronu

2330 o n - (2 5U) B, 23§Np £, 232Pu

T= 2,33 T= 24400
dn lat

Powstawanie plutonu jest dla podtrzymywania procesu ZXadcuchowego
nieprzydatne, poniewaz czas rozpadu Np jest za diugi. Dlatego pochio-
nigte przez = 8U neutrony nie moga dalej braé udzialu w rozszczepie-
niu.

Dla bardzie]j szczegéXowego rozwazenia mozliwosci wywolania reak-
cji Zancuchowe] przytoczymy obecnie wartosci przekrojéw czynnych dla
uranu.

Neutronowe przekroje czymne (w barnach)
A Neutrony szybkie

Og gq op
Uran naturalny 4,7 2 0,5
223y 5,2 0 1,3
B. Neutrony powolne
238y 0 2,8 501074

92
235
92U 10 107 580
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WprowadZmy nastegpnie pojgcie prawdopodobienfstwa rozszczepienia ja
ko stosunek przekroju na rozszczepienie do ogdlnego przekroju czymne-
ga jadra uranu 235, Jesli - jak odtad stale - obliczenia bgdziemy wy-
konywaé dla bardzo duzego kawaika uranu, to o mozna pomingé, wobec
czego

Poimy=———i (12.21)
a f
Jeslil v jest drednig liczbg neutrondw, przypadajgca na jedno roz=-
szczepienie, to Ppe v oznacza tzw. wapdXezynnik rozmnozenia neutro-
néw, k__ 3 2z definicji k., jest stosunkiem 1liczby neutrondw n, w
pewnej generacji do liczby neutrondw ng_q4 W generacji poprzedniej.
Znak oo przy k odnosi sig do zaniedbania T ge Mamy wigc

nii1 = ko, = ppove (12.22)

Wepbtczynnik rozmnozenia wraz z definicjg (12.21) =g podstawowymi
wielko$ciami do okreslania mozliwos$cil wystgpienia reakeji zadcuchowe].
Jesli bowiem k ., <1, to liczba neutronéw stopniowo maleje - reakcja
taficuchowa nie moze sig rozwingé. W przypadku k< 1 mamy n; > 0y g
ozyli liczba neutronéw wzrastay poniewaz proces ten nastgpuje lawino-
wo, warunek ten prowadzi do wybuchu (bomba atomowa). Najbardziej in-
teresujgcy 1 wazny dla techniki jest przypadek trzecis k__ = 1. Ozna-
cza on staty poziom strumienia neutronéw, czyli kontrolowang reakcje
Jadrowg. Oczywiscie, poziom ten moze byé rdézny - wazne Jjest to, ze
nie ulega zmianie z biegiem czasu. Mozna go osiggnaé w stosie atomo-
wym, ktdérego zasadg dziaZania omdéwimy przy koidcu tego paregrafu.

Obecnie zajmiemy sie rozwazeniem mozliwo$ci poprowadzenia reakcji
ahocuchowej w uranie, 0sobno za pomocg neutronéw szybkich, powstajg-
oych bezposdrednio w reakecji rozszczepienia oraz 2a pomocg neutrondéw
powolnych, spowolnionych za pomocg moderatora. W dyskusji positugiwad
sig¢ bedziemy danymi liczbowymi, co utatwi Czytelnikowi zrozumienie za-
stosowania pojegé Pe 1 Koo

12.9.1. Reakcja rozszczepienia za pomocg neutrondw szybkich

Obliczamy wpierw prawdopodobiefistwo rozszczepienis dla uranu na-
turalnego
0,5
2 + 0,5
Wynik ten oznacza, %ze 1/5 neutronéw wytworzonych w Jednym roz=-
szczepieniu kontynuuje ten proces. Jesli zatem w pierwszej generacji

Ps = 0,2,
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mamy n, = 10 neutronéw, to 8 zostaje pochionigtych, a 2 powodujg dal-
sze rozszczepienia. W drugiej generacji begdziemy mieli Ny = 22,5 = 5
neutronéwy z nich znowu 4 zostang pochoniete, a 1 spowoduje rozszcze-
pienie. W trzeciej generacjli bedzie n, = 2,5 neutronéw, oczywiscis

n n
3% = ﬁ% =EppeVi= 0,5

Widzimy na tym prostym przykiadzie, ze nie mozna zrealizowaé re-
akcji Zancuchowej w uranie naturalnym za pomocg szybkich neutronéw.

Warto obecnie zastanowié si€, czy proces ten mozna poprowadzié w
uranie wzbogaconym w izotop lzejszy; mysSl takg nasuwa fakt, ze dla
235U Op = 1,3 a 0y = 0o Liczbg jgder izotopu 235U w mieszaninie o-
Znaczymy przez NS’ gBéch przekroje czynne przez cs; odpowiednie oznes-
czenia dle izotopu U bedgq Ng 1 gge Prawdopodobieristwo rozszczepie=-
nia dla mieszaniny wynosi

N_ o + N, ©
P, = sl ; (12.23)
N5(°f5 + 085) + N8(°f8 + UaB)

Sk*ad izotopowy mieszaniny chcemy tak dobraé, by dla niej byzo
koo = 1o Zatem

NS Opg + NB Oeg
kM=Pf\’=\J = 1.
Ns(of5 + °a5) + Nglopg + Y,
W naszym przypadiu
1,3 N5 + 0,5 Ng 1
"9
1,3 No + 2,5 X 255
czyli ! > ? 8 ’
N 3
L -1,568 —.,
N5 2
Wniosek z tego Jest taki, Ze dla osiggnieoia warunkéw krytycznych
mieszenina musi zawieraé 40% 229U 1 60% o Dla prébki uranu o skoi

czonych rozmiarach zawartos$é izotopu 1lzejszego musi byé troche wig-
ksza, ze wzgledu na ucieczkg neutrondw.

Wzbogaocania uranu mozna dokonaé réznymi metouami. Do stosunkowo
prostych nalezy efuzja gazowego szesciofluorku uranu, UF6, przez maly
otwér w zbiorniku. Zgodnie z prawem Grahama szybkosé wypiywu jest od-
wrotnie proporcjonalna do pierwiastka z masy czgsteczkowej. Réznica
mas obu czgsteczek jest jednak niewielka 1 dla uzyskania zawartosci
95% 35y proces ten trzeba powtdérzyé 4000 razy. Tq metodg pracowaxo
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od 1945 r. laboratorium w Oak Ridge (USA), gdzie wyprodukowano dwa ka-
watki uranu stanowigce elementy skxadowe pierwszej bomby atomowej.Kas-
dy z nich ma wielkos$é podkrytyczng; po doktadnym zigczeniu przy uiy-
ciu pomocniczego radunku wybuchowego (trzeba usungé nieciagrosé mate-
riatu, jakg jest szczelina powietrzna) otrzymuje sig catoséé o rozmia-
rach grejpfruta, co odpowiada wartosci nadkrytycznej.

12.9.2. Reakcja rozszczepienia za pomocg neutronéw powolnych

Zupeznie odmienne sg wkasnosci uranu naturalnego podczas bombar-
dowania neutronsmi powolnymi. Dla tego przypadku wspdiczynnik rozmna-
%ania ma wartosé

ko =v" = 1,33,

(°f5 + 0g5) + (NB/NS)(Gfa +0.g)
co wskazuje, %e mozemy osiggnaé stan krytyczny bez potrzeby wzbogaca-
nia materiatu w izotop rozszczeplalny. Nalezy jednak wyprowadzié neu=-
trony gorgce z uranu do spowalniascza, a nastgpnie wprowadzié z powro-
tem do metalu. = |

P
Stanowi to ideg¢ budowy stosu /‘4;:;4/ Z
atomowego, zrealizowang po rasz. /V{i;;47 PF\
plerwszy w USA prgez Fermiego i =z 6R

wapéipracownikéw w 1942 rs. Stos @t/////
sktadaz si¢ z cegiex 2z uranu me- : @
U

talicznego i cegietr grafitowych,
kzadzionyoch na przemian w blok B
(stad nazwa "stos"). Wytwarzanie

ciepZta w stosie Fermiego osiggng-
¥o moc 0,5 W, péZniej podniesiono
jg do 200 W, Schemat budowy tréjelementowego stosu Jjest przedstawiony
na rys. 12-17. W bloku berdzo czystego grafitu, w szczegdlnodei nie
zawilerajgacego domieszek o duzym przekroju czyanym na absorpcje neu-
tronéw, wywiercone sg kanaty poduZne. Czg$é z nich zawiera prety z
uranu metalicznego, stanowigcego paliwo jgdrowey do niektdrych kena-
26w wesunigto prety z metalicznego boru lub 2elaza, silnie pochtania-
jacych neutrony. Obecnosé tych absorbentdéw pozwals osiggngé pozgdany
poziom strumienias neutrondéw w stanie krytyoznym,

Budowane wspéiczednie na podstawie te] zasady duze reakiory ato-
mowe 84 przede wazystkim Zrdédtami mocy, bezposrednio cieplnej, & po
przetworzeniu elsktrycznej. Pracujgce réinych krajach bloki energe-
tyczne majg moc kilkudziesigeciu do kilkuset megawatéw.

Rys. 12-17
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Poza tym buduje sig¢ reaktory atomowe specjalnie przeznaczone do
produkeji izotopéw, migdzy innymi rozszczepialnego plutonu. Czesé
strumienia neutronéw, wytwarzanego podczas pracy stosu mozna wyprowa-
dzié na zewngtrz i wykdrzystaé do badai naukowych. Budowa stoséw ato-
mowych pocigga za sobg konieczno$é  zorganizowania duzego zaplecza
przemystowego, zajmujacego sig produkcjg potrzebnych materiaXdéw, a
takze przerdbkg i dalszym wykorzystaniem zuzytych pretéw uranowych i
berylowyche Nalezy przy tym pamigtaé, iz wszystkie materiaty wyjete z
regktora sg "gorgce" - odznaczajg sig silng radiosktywnoscig. Dalsza
ich obrdébka wymaga przedsigwziecia szczegdlnych sSrodkéw ostroznosdci
na duzg skaleg, ze wzgledu na koniecznosé ochrony s£rodowiska natural-
nego przed zanieczyszczeniami promieniotwdérozymi.

12,10, Modele jadrowe

Mimo tak licznych i waznych ze wzgledu na zastosowania w przemys-
le energii jgadrowej, nie mamy obecnie szczegdétowej teorii budowy Jagd-
ra atomowego. Istniejgce od dawna potrzeba syntezy wiadomosci o jadrze
doprowadzi*a do konstrukcji tzw. modeli jadrowych, z ktérych dwa sg
najbardziej rozpowszechnione,

i. Powzokowy model jgdra: przyjmuje sig, 1%z nukleony zgrupowane s§
W pewne zespoily, stanowigce powioki -~ podobnie, jak zgrupowane =g
elektrony w atomie. Pozwala to wyjasnié periocdycznosé niektdérych wias-
nosci jgder oraz ich nieciggzosé w poblizu okreslonych parzystych
liczb neutrondw lub protondw., Do osobliwych wasnosci nalezy fakt, Ze
szczegdlnie trwate jgdra powstaja wtedy, gdy liczba protondéw 2 i licz-
ba neutronéw A-Z jest réwna jednej 2z nastepujgcych liczb: 2, 8, 20,
50, 82, 126, Trudnosci w uzasadnieniu wartoseci tych liczb spowodowa-
2y, %e nazwano je "magicznymi®.

ii. Kroplowy model jgdra: w odrdéznieniu od modelu poprzedniego,
akcentujgcego niezalesnos$é "powZok" nukleonbéw, model kroplowy ms cha=-
rakter "kolektywny". Jadro traktuje sig¢ Jako jedng catodé, przy czym
materia jgdrowa o gegstosci 1017 kg/m3 ma wiele wkasnos$ci kropli cie-
czy. Na tym modelu opiera sie@ teoria Jadra zXozonego, poza tym dobrze
tZumaczy istnienie stanéw wzbudzonych, oscylacji i rbzszczepienia Jg-
dra, ktére mozna opisaé jako proces odksztaicenia i podziatu kropli
oleosy. Tresclg tego modelu jest pdéiempiryczny wzdr okreslajacy ener-
gie wigzania jgdra, uwzgledniajgcy odpowiedniki energetyczne réznych
wtasnosci jgdra. W dalszym ciggu zajmiemy sig przedstawieniem tego
wzoru za pofrednictwem kilku przeszanek, opisujgcych poszozegélne u-
dziaty energetyczne.
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i. Energia wigzania jednego nukleonu w jgdrze dla 2> 6 Jest w
przybliezniu stata i wynosi $érednio 8,6 MeV. Oznacza to, iz kazdy nu-
kleon oddziaZtuje tylko z najblizszymi sgsiadami, czyli sizy Jadrowe
maja nadzwyczaj krdétki zasigge. W wyniku tego udziax defektu masy w
energii wigzania Jgdra, Ed’ jest proporcjonalny do 4

L,
Eq = -a A, (12,24)

gdzie a = const (= 8,6 MeV),

Gdyby sity Jjadrowe miaty zasigg duzy, jak na przykiad siiy Coulom
ba, wéwczas kazdy nukleon musiatby oddzistywaé z kazdym innym,a ener-
gia Ed bytaby proporcjonalna do Ae.

ii. Ggstosé materii jadrowej jest stata, imnymi sowy promied jg-
dra R rosnie regularnie wraz ze wzrostem A. W takim razie 4 =
= %1tR3° k = R%- k°, a stad

R=r, UER (12.25)

gdzie r = 1,5-10"13 ocm jest stats empiryczng. Wzdér (12.25) oznacza,
%e nie ma zageszczenia upakowania nukleondéw ze wzrostem A,

i1ii. Najtrwalsze sa jadra, w ktérych liczba protonéw rdéwna jest
liczbie neutrondéw, czyli Z = A - Z, Odstgpstwo od tej reguly, czyli
A = 2Z # 0, obniza trwatosé jgdra. Odpowiedni dodatni wudziat energe-
tyczny asymetrii skiadu jgdra wynosi

2
E_=+b iﬂ—'—fﬂ- . (12.26)

o8

ive Trwatoéé jgdra zalezy od parzystosci liczb A, Z oraz A-Z w
sposéb poznany empirycznie. Zwigzany z tym udziaz energili oznaczymy
przez E_.

Ve Migdzy protonami dziaXajg kulombowskie sity odpychania, co da-
je dodatni wkXad do energii wigzania o Sredniej wielkosci

EL =+ 3 Pz z-1)_ 3 &z (2 -1) a~13, (12.27)

E 75 4me R 5 dne T,

vi. Kropli cieczy o promieniu R odpowiada istnienie "powierzchni
swobodnej" 4g R2. Jedli o Jest napigciem powierzohniowym,réwnym licz-
bowo energii potrzebnej do zwigkszenia swobodnej powierzchni cieczy o
jednostke, to udziax energii powierzchniowej wynosi

EB = —4q ri age° A2/3 ° (12025)

Dodanie udziaXéw i=-vi prowadzi do pSiempirycznego wzoru okreslg-
jacego energie wigzania jadra Ew
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2
E = -ah +b ﬂ-‘—:ll— + 4a, Z‘—(ﬁ‘—h}l - asAZ/B + B (12,29)

W zapisaniu (12.29) zostaty zmienione oznaczenia niektérych sta-
tych tak, by uzyskaé zgodnosé ze sposobsm zapisu, spotykanym w mono-
grafiach,

Wartosol statych a, b, a,, a5 1 E; 83 znane, Wzér (12.29) moze
stuzyé do oceny trwatosci réznych jader. Ponadto przez poZaczenie go
z (12.3) otrzymjemy wyrazenie, zwane pétempirycznym wzorem okresdla-
jacym masg jadra. Szcozegbtowe oméwienie tych zagadnied jednak pomi-
niemy.



13, CZ4STKI ELEMENTARNE

1. Pojecie czastki elementarnej

Istnieje zupeinie zrozumisia tendencja w fizyce 1 chemii do wy-
Jasniania wzasnosci materii za pomocg mozliwie maXej liczby zasad,po-
jgé i niewielu prostych cbiektéw. Stgd tendencja do poszukiwania czgs-
tek elementarnych.

Czym jest czgstka elementarna? Nie znamy dzis proste] odpowiedzi
na to pytanie. W miare rozwoju nauki coraz to nowe obiekty ujawnity
zXo%onosé swej strukitury. Okazaio sig, %2e materia skada sig z czgs-
teczek lub etoméw, te ostatnie zas zXozone 83 z jgdra i elektrondw.
Réwniez jgdra nie sg tworami prostymi, lecz skadajg sig z nukleondw,.
Proton i neutron sg uwazane za czgstki elementarne w tym sensie, 13
nie majg struktury. Mozna to rozumieé rdéwniez i w ten sposdéb,ze wias-
noéci nukleondw nie da sig wyjasnié przez przyjecie, 1%z skXadajg sig
2 innych oczgstek, mimo iz neutron jest czgstkg nietrwaZg. Tak wigc za
mo%liwg obecnie do przyjeocia, choé niedoskonatg, definicje oczagstki
elementarnej mozemy przyjaé nastepujace okreslenie: czgstka elemen=-
tarng nazywamy obiekt mikroskopowy, nie przejawiajacy w zadnym znanym
eksperymencie natury zXozonej i ktérego wkasnosci nie da sig wyjasnié
przez przyjecie, iz skxada sig z innych obiektdw.

W tym sensie nastgpujgce czgstki nalezy uwazal za elementarne

proton, neutron, elektron, foton.

Istnieje kilka powoddéw, dla ktérych nie mozna uwazaé neutronu za
czgstke zXozong z protonu i elektronu. Jednym z nich jest to, Ze masa
neutronu

m, - (mp +mg) = 1,5 mg,
przewyzsza sum¢ mas protonu i elektronu o 1,5 Mo Inny argument prze-
ciwko takiej hipotezie polega na tym, ze spin kazdej z czgstek: neu-
tronu, protonu i elektronu wynosi 1/2, tymczaesem wediug regut mecha-
niki kwantowej nie mozna otrzymaé spinu 1/2 z kombinacji dwéch spindw
o wartoéci 1/2. Hipoteza ta jest nie do przyjgcia réwniez =ze wzgledu
na . zasadg Heisenberga. Zgodnie z tg zasadg pgd elekironu "zawartego"
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w neutronie powinien wynosié co najmniej h/A x, przy czym AX = 2+10=13
cm jest rzedu drednicy jgdra atomowego. Otrzymany na tej podstawie
ped wynosi 3,3~10'19 kgm/s, a odpowiadajgca mu energia kinetyczna
p2/2m = 0,60'10"7 J = 300 GeVy przy tak duzej energii kinetycznej
elektron musiatby netychmiast "wyparowadé".

0d roku 1933 fizycy odkryli dalszych 26 czgstek elementarnych;
dzis przyjmuje sig, i%z czgstek elementarnych, %gcznie z ich antyczas-
tkami jest 30, Niektére z nich sa ozgqstkami nietrwatymi, zanikajg
(procesy anihilacji) lub przechodzg w czgstki o masie mniejszej. Pew=-
nego rcdzaju "ochronie" podlegajq czastki cigzkie, tj. proton i
neutron, Istnieje mianowicie w fizyce Jjadra atomowego zasada zachowa-
nia czgstek cigzkich, nastgpujgcej tresci: w kazdym ukZadzie zamknie-
tym ogdélna liczba protondéw i neutrondw pozostaje staZa.

Oczywiscie, neutrony lub protony mogg silnie oddziatywaé w 2zde=-
rzeniach z jgdrem atomowym, co niekiedy prowadzi do pozornego zwigk-
szenia liczby tych czastek (np. w reakcji rozszczepienia). iioze takze
neutron przechodzié w proton i na odwrdét. Zasada zachowania dotyczy
Jjednak wszystkich czgstek cigzkich w uktadzie zamknigtym, & wigc L
swobodnych i zwigzanych w jgdrzej nie zauwazono by liczba ta ulegaia
kiedykolwiek zmianie.

Latwo zdaé sobie sprawg z tego, jak wazne znaczenie ma ta prosta
zasada, Gdyby nie bys speiniona, wéwczas cata materia zawarta we
Wiszechswiecie ulegtaby w ciggu ulamka sekundy konwersji na elektrony
i neutrina. Jest to konsekwencja tzw. "skabycn oddziatywan" i stanowi
awojego rodzaju "chorobeg" atakujacg wszystkie czgstki elementarne w
Jednakowy sposdéb, a ktére]j konsekwencja jest konwersja czgstek elemen-
tarnych na elektrony i neutrina.

Czym sg stabe oddziatywania? Jest t0 termin odnoszgcy sig do zja-
wisk, ktére mogg sig zdarzyé podozas przechodzenia czgstki przez ma-
terig. Otéz gdy neutrino przechodzi przez materig, nie dzieje sig
"praktycznie"™ nic - oddzieslywenis sgq nadzwyczaj siabe., Neutrino v
Jjest ozastkg o nastgpujgcych parametrach:

qv = 0, mOv = C, s\J = % ’ Ev = pGC,
a wigc nie posiada %Zadunku i masy spoczynkowej., Od fotonu rdézni sie
tym, Ze spin neutrina wynosi 1/2. Gdybysmy strumied 1012 neutrindw
wystrzelili w kierunku Ziemi, to z catego strumienia zniknie tylko 1
czgstka, a pozostate przelecg na wylot kulg ziemskg. Swiadczy to o
tym, ze oddziatywania neutrina na materi@ 83 niewyobrazanie siabe
lub - inaczej méwigc - przekroje czynne dla neutrina sg bliskie zera.
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Te wiasnie stabe oddziatywania oraz neutrino odgrywajg duzg roleg
w fizyce czgstek elementarnych. w roku 1958 zaproponowano schemati roz
padu neutronu swobocdnego na proton (p), elektron (e) i antyneutrino
(y) (kreska nad symbolem oznaczaé bgdziemy antyczastki)

ln b }p + _?e = 36- + 0,38 ileVy T= 12 min. (13.1)

Defekt masy
Am = m, = m, = 1,3 MeV
réwnowazny Jjest energii 1,3 MeV. 2 tej ilosci 0,5 MeV potrzebna na
kreacj@ elektronu,zas reszta, 0,8 MeV, jest dowolnie podzielona mig-
dzy energig kinetyczng elekitronu i antyneutrina. Schemat ten pozwala
nam zrozumieé rozpad B : gdyby nie istniaXo neutrino, elektron w roz-
padzie B mialby zawsze energig¢ 0,8 lieVy; tymczasem - jak wiadomo = t¢
gérng granicg obserwuje sig@ rzadko. Wprowadzenie neutrina do fizyki
czgstek elementarnych pozwala na jednoczesne uzgodnienie zasady zacho-

wania energii, zachowania pedu i zachowania kretu.
Jak wynika z tych uwag, neutrino zostaXo wprowadzone drogg posred
nig na podstawie obserwacji wasnosci elektrondw w rozpadzie B. Fi-
zycy szukali jednak bezposrednich dowoddéw istnienia neutrina. Takim

dowodem mogia byé reakcja, zaproponowana przez Fermiego

o~ ., 1 1 o
oV * 1P - ol * g8

W celu sprawdzenia, czy ta reakcja jest mozliwa, potrzeby byt bar
dzo potezny strumier antyneutrindw ze wzglgdu na stabe oddziaktywania.
Dlategquej potwierdzenie stazo sig mozliwe dopiero w 1956 r, gdy u-
ruchomiono w Los Alamos reaktor atomowy duzej mocy. W trakcie roz-
szczepien powstaje duza ilosé B aktywnych proauktéw,a w zwiazku 2z tym
duzy strumied neutrindéw. Za pomocg odpowiednich 1licznikdéw istotnie
stwierdzono powstawanie +?e.

Drugi z nukleondéw, proton, jest czastkg trwatg, poniewaz nie ma
czastki elementarnej o masie trochg mniejszej od mp, w ktérg proion
mégtby przechodzié. Pojawia sig jednax pytanie dlaczego neutron, roz=-
padajacy sig¢ w stanie swobodnym 2z okresem poxdwkowym T= 12 min (na-
wiasem méwigc, w skali czasdéw charakterystycznych dla jadra atomowego
jest to ogromnie duzy odstep czasu) trwaty jest wewngtrz jadra atomo-
wego? Jednym ze sposobdéw usunigecia tej trudnosci jest przyjecie, e
energia oddziak*ywad m = p w jadrze powoduje zmniejszenie masy kaZ-
dej z oddziatujacych czgstek do wartosci mniejszej od masy protonu.,
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1320 Antymateria

Koniecznosé istnienia antyczastek =zostaka przewidziana teore-
tycznie przez Dirace, ktéry zajmowa sig wprowadzeniem postulatdw tec-
ril wzglednosSci do mechaniki kwantowej i zbudowak nowg teorie czgstek
o spinie 1/2, stanowigca cze$é relatywistycznej teorii pola. Obrazowy
= choé niezbyt Scisty - sposéb przedstawienia jednego z wnioskdéw teo=-
rii Diraca moze byé nastgpujgcy: jezeli z ozferowymiarowej CZBBSOPrZe=
strzenl fizyczne] "wyrwiemy" elekiron, to W tym miejscu powstanie
"dziura®, ktdéra ma wezystkie atrybuty czgstki. Masa jej jest dokZad-
nie réwna masie elektronu, tadunek musi byé znaku przeciwnego. Ta
"dziurg® jest antyelektron, zwany pozytonem, +$e. Ten niezbyt precy=-
zyjny model powstawania antyelektronu pozwala jednak zrozumieé jedng
z waznych cech antyczgstki: zderzenie z pierwszg lepszg czgstkg powo-
duje "rekombinacje", poxaczong z wydzieleniem dufej ilosci energii.Za
sade zachowania pegdu wymaga, by podczas takiej anihilacji powstaty dwa
kwanty

Je+ Je—2hv, (13.2)

Réwniez reakcja odwrotna wymaga na ogéZ koincydencji dwéch kwan-
téw vy . Para elektron-pozyton moze jednak powstawaé réwniez w  polu
8ix jadrowych z udziaZzem jednego kwantu., Jesli kwant y o dostatecznie
duze] energil przelatuje w pobliZu cigzkiego Jjgdra, to powoduje czgs-
to powstanle pary elektron-pozyton. Za pomocg takiej wiasnie rezkcjii
udowodnix Anderson hipoteze Diraca.

Zasada zachowania energii wymaga, by energia kazdego kwantu W
(13.2) bya co najmiej réwna myo? = 0,511 MeV, gdzie m  Jest masg
spoczynkowg elektronu., W doswiadczeniu Andersona energia kwantu musi
wynosié hv > 1,022 MeV; jest to wartosé progowa dla kreacji pary.
Kwenty o energii wigksze] powodujg wytwarzanie czgstek o niezerowe]
energil kinetycznej.

Pozytony wystepujgq ponadto w reakcjsch promieniotwérczych typu
(oy n)e Przykadem takiej reakcji jest skutek bombardowania boru czgs-
tkami o , przebiegajacy dwustopniowo wediug nastgpujgcych schematéw

1gB + 4He — (14N) — 1,?11 + ln,
.1,%1:[—) 6° +,5e, ©=11 min,

Antyczastka protonu jest antyproton, p. Zostak on odkryty 2za po-
mocg bewatronu, produkujgcego protony o energii 6,2 GeV, Wediug prze-
widywael teoretycznych bombardowanie jgder (symbol N1) protonami o

energii wigkszej od 6 GeV prowadzi do reakcji
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Ny+p+p—N, +p+p+D+p,

gdzie N, oznacza nowe jgdro (kodcowe).,

Antyproton odkryto w 1955 r. W rok pdéZniej, a wigec w 1956 r., zo0-
stax odkryty antyneutron, ;i. Ulega on anihilacji podozas apo-
tkania z protonem lub neutronem, ktdérej towarzyszy krescja mezondéw

f+n—=nt +at + 17+ 1" + O,

Przez odpowiedni dobdr antyczastek moZemy konstruowaé - przynaj-
mniej mysSlowo - "antyatomy". Najprostszym "odwrdconym® atomem  jest
atom antywodoru - powinien on mieé wZasnosci zupeinie takie same, Jjak
atom wodoru. W szczegdélnosoci ich widma emisyjne i absorpcyjne powinny
byé identyczne. Przez kombinowanie sntyatoméw dochodzimy do pojgcia
antymaterii,

Jest zupeinie oczywiste, i1z wezystkie ziemskie atomy wodoru =sg
zbudowane z czgstek, a nie z antyczgstek. Antymaterii nie ma w naszym
uktadzie sionecznym, e nawet w galaktyce; gdyby byza, wiedzielibysmy
o tym dos$é szybko, Procesy anihilacji, towarzyszgce spotkaniu materii
z antymaterig, przebiegaja z wydajnosdcig jeszcze 1000 razy wigkszg od
oaiggalnej w bombie wodorowe].

Byzoby jednak dziwne, gdyby Wszechswiat antymaterii nie zawierai,
Ogélne zasady symetrii wskazujg, ze pozowa atoméw we Wszechs$wiecie pc
winna byé antymaterige. Trudno zrozumieé, dlaczego miataby istnieéd
przewaga dodatniego Zadunku nukleondw nad ujemnym. Przypuszoza sgig@
wige dzisiaj, ze niektdre galaktyki Wszechswiata moga byé zbudowane z
antymaterii, choé dowodéw na to brak.

Mamy obecnie 9 nastepujacych czgstek elementarnych, przy czym ma-
sy ich sg parami dokZadnie réwne, a *adunki majg znak przeciwny

hy kwant energii (jest swojg wiasnag antyczastka),
v, VU neutrino i antyneutrino,
_?e, +?3 elektron i pozyton,

Py P proton i antyproton,

n, n neutron i antyneutron,

Przypudémy obecnie, Ze w trakcie pewnego eksperymentu fizycznego
wezystkie czgstkil zmienity sig¢ nagle w antyczgstki. Czy eksperyment
mozna kontynuowaé i czy uzyskany wynik bedzie ten sam? Do roku 1957
fizycy sgdzili, Ze antymateria podlega tym samym prawom, co materia.
W zasadzie nie widaé sposobu przekonania sig o tym, czy Jjakis obiekt
fizyozny zbudowany jest z materii, czy z antymaterii., Ta podstaﬁowe
zasada nosi nazwe zasady symetrii czgstka-antyczgstka., W fizyce teo-
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retyczne] nazywa sig jg prawem niezmienniczofci wzgledem sprzgienia
Xadunkowego. )

Sprzezenie radunkowe jest operacjg, ktéra jedynie zamienia czgst-
ke w antyczastke, pozostawiajgc wszystko inne bez 2zmisn, Wynikiem
sprzgzenia Xadunkowego wodoru jest antywoddr. Zasada symetrii czgstka
-antyczgstka przewiduje na przyk¥ad, Ze widmo gazowego wodoru powinno
byé identyczne z widmem gazowege antywodoru., Poniewaz generscja anty-
czastek jest zadaniem nadzwyczaj trudnym (nie wytworzono np. dotych=
czas antywodoru - w czym mozna by go przechowywaé?), wnicskdéw wynike-
Jacych z tej zssady nie da sie obecnie sprawdzié doswiadczalnie.

W roku 1957 okazaXo sie, ze zasadg¢ symetrii materii i antymaterii
obala fakt istnienia szabych oddziaiywad,. Zanim przedstawimy rzecsz
blize], zajmiemy si¢ opisem wkasnosci pozostaiych 21 czgstek elemen-
tarnych.

13.3. Mezony

Mezony sg grupg czgstek elementarnych o mesach posrednich migdzy
masg elektronu i nukleonu. Znane sg trzy typy mezondw: mezony m (mio-
ny), mezony n (piony) i mezony K., Przedstawimy kolejno ich podstawowe
wkasnosci.

13.3.1. Miony

Miony majg masg¢ rdwng okoZo 1/8 mp lub réwng 207 me.Istnieja mio~-
ny dodatnie, u+, ujemne, u', natomiast nie ma mionéw obojetnych,
Spin wszystkich wynosi 1/2, poza tym wasnosci majg podobne do elek-
trondw; Lf oraz_ll' tworzg pareg czastka-antyczgstka. 2e wzgledu na
te podobiedstwa mozna uwazaé miony za cigzkie elektrony. Jedng 2z za-
gadek fizyki czgstek elementarnych jest pytanie, dlaczego natura ob-
darzyta nas tylko dwoma typami elektronéw. Mion rozpada sie szybko na
elektron i dwa neutrina.

pT = e +v +7, 1'1!5'10—6 Se

Trzy lekkie czgstki: up, e,v zalicza sig do Jedne]J klasy czgstek,
zwanych leptonami,

133020 Piony

Piony majg mase w przyblizeniu rdéwnag 1/7 m, lub 273 m o Spin ich
wynosi jednak O, dlatego nie zalicza sig¢ ich do leptondw. Znane 88
3 typy piondw: n+, T i no; n+ oraz n_ tworzg pareg czastka-anty-
czgstka, natomiast mezon obojetny no, podobnie jak foton, jest swojg
wtasng antyczastkae.
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Istnienie pionu zostaXo przewidziane w 1936 r, przez Yukaweg:s jest
to czastka potrzebna do wyjas$nienis natury oddziatywad nukleon-nukleon
w jadrze, Oddziatywania, zwane niekiedy silami jadrowymi, sg oddzia-
Tywaniami silnymi i msja bardzo krétki zésiego Duza energias wigzania
neutron=-proton jest realizowana za posdrednictwem periodycznej wymiany
pionu migdzy dwoma nukleonamiy w ten sposdéb kazda z czgstek staje sig
na przemian protonem i neutronem. Jest to trdjczastkowy model oddziatywan
i do pewnego stopnia przypomina model oddziakywed w tréjczastkowym
uktadzie jonu molekulsrnegoe wodoru H;. Jedyny elektron "wymieniany®
jest migdzy oboma protonami, co zapewnia trwaXos$é uktadu., Réznica po-
lega na tym, Ze oba protony zachowujg trwale swéj stan czgstek ele-
mentarnyoch, Yukawa poprawnie przewidzialr w swej teorii si* jgdrowych
mas@ pionuy dodatkowym wnioskiem byZo to, Ze piony powinny silnie od=
dziatywaé z nukleonami. Rzeczywiscie, piony czgsto powstajg w zderze=-
niach dwéch nukleonéw o energii rzedu 500 MeV

pP+Dp=>p+n+ T

p+n=>p+p+ W
Y+p—)p§|-n° itd.
Po raz pierwszy odkryto piony w 1947 r. jako skiadniki promienio-

wania kosmicznego.
Piony rozpadajg sig¢ za posrednictwem stabych oddziaxywan

t=10"" 8

v =101 g

13.3.3. Mezony K

Mezony K nalezg do najlepie]j poznanych czgstek elementarnych. Ma=-
sa ich réwna jest 1/2 m lub 966 m,, spin wazystkich mezonéw K Jest
réwny zeru., Znane sg mezony dodatnie kY 1 obojgtne K°, ich antyczgst-
kemi sg K i R°, Ze wzglegdu na duzg masg, mezon moze sig@ rozpadaé na
kilka sposobdw wedXug schematu szabych oddzialywail, np.



294

+
't +7°
t sat en”
+ ﬂ+ +n° +n° -8
K' =3 < i T= 0,85-10 g.
e o4y .
pt ey + A
et +v + 10
\

Obojetny K2 rozpada sie wed&ug podobnych schematdw, ale dla nie-
go T= 7,0‘10'11. Jednym z nie rozwigzanych probleméw fizyki oczgstek
elementarnych jesi pytenie, dlaczego okres rozpadu K° Jest o tyle
krétszy od K'?

13.4. Hiperony

Do tej grupy nelezg trzy najciezsze czgstki elementarns

A (lembda) o masie réwnej 2182 Mgy
s (sigma) o masie réwnej 2335 mg,
2 (kei) o masie réwnej 2586 m,.

Wazystkie rozpadajg sig na nukleony, zatem oddziakywania nukleon-
~hiperon nalezg do silnych. Zgcznie do silnych zalicza sig nastgpujg~
ce oddziatrywania nukleon-nukleon, mezon-nukleon, hiperon-nukleon.Jed-
nym z przyktasddéw.oddziakywad silnych jest wiafdnie produkcja hiperondw
i mezondéw K

" +p—=> A +K°, (13.3)

Hiperon w poZgczeniu z mezonem K powstaje 2zawsze w zderzeniach
pionéw z nukleonami. Z tych powoddw hiperony i mezony K zostaly naz-
wane czastkaml dziwnymi. Dziwnosé jest cechg czgstki elementarne],po-
znang empirycznie; wyrazamy Jj§ liczba calkowitg dodatnig, ujemng 1lub
gerem, Odkryto, Ze wazyatkie silne oddziaiywenia typu (13.3) speznia-
Ja pewne nowe prawo, zwane zasadg zschowania dziwnosci.Wrdcimy do tej
gprawy w nastepnym peragrafie.

Hiperon A ma masg o 37 MeV wigkszg od sumy mas protonu i mionu.
Jest obojetny i me spin 1/2. Rozpada sig wed*ug schematu

+ T
A/rp
T n+ n
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Hiperon & ma masg o 78 MeV wigkszg od hiperonu A, spin 1/2 i mo-
%e byé dodatni =¥, ujemny £~ 1lub obojetny £°, Rozpada sig wediug
schematdéw
Z‘.+/’» p +n°
TT— n+nt

LI N e

(o)
z ‘———P*A"’Y

Ogélnie bioragc, z wyjatkiem Z:°, hiperony A 1 % rozpadajg sig
wediug schematu

A,% —> = + nukleon, (13.4)

Hiperon = ma mesg ¢ 205 MeV wigkszg od hiperonu A 1 moze byé
ujemny =~ 1lub obojetny = °.
Kezdy hiperon powinien mieé antyczastke o przeciwnym 2znaku. Do-

tychozas odkryto jedynie R, ', I .

135, Systematyks czgstek elementarnych

Jesli uporagdkowaé poznane przez nas czgstki elementarne wediug
wzrastajgce] masy, to otrzymamy nastgpujgcy schemat

Foton Y
Leptony v, e; p
Mezony T, K (13.5)

Bariony Nukleony p, n
Hiperony A , Z , E

Po uwzglednieniu wszystkich znakéw i antyczgstek dostaniemy do=-
ktadnie 30 czgstek elementarnych. PeXina klasyfikacja ozgstek przed-
gtawiona jest na rys. 13-1. Czastki znajdujg sig¢ z lewej strony tab-
licy; czes$é tablicy po stronie prawe]j stanowi "odbicie" poprzedniej 1
zawiera antyczgstki. Czastki trwate sz umieszczone w kéiku.

Postugujgc sig danymi tej tablicy mozemy uczynié wiele interesu-
jacych spostrzezed, dotyozgcych zasad zachowania, Sprébujmy Je prze-
$ledzié na reakeji (13.3)

" + p — A + K°
1. Masa 273 1837 2182 966
— ——
2110 3148 X m
2. Spin 0 1/2 1/2 0
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3. Zadunek

- + 0
4, Dziwnosé 0 0] =1 1
5. Liczba czgstek cigzkich 1 1
‘U ‘k)
kS 3
Wzgledna S g
Ty masa o, g g gk
— Ty i " unt ==
= 2586 | ? N 0@4 S J108%y 4
335 | 1 | oSl | | 1Z2<7
Bariony > |2 2 | SIS ﬁ Z| >
1 2:, E;l Eﬁ *”,,//4
A 2182 3 T.\‘\‘ ﬂj/ i
7 1 |-7 (2] BT ey
n,p 1837 7 nlp T D ny
K 966 | 0 A5 (0 ] IO il . S
Mezony T+ e [ 237
ié 2731 0 | _deer T T T ——
= L~ \\ A
b+ e
u 207 | % = ~
s ! @ {/ \b\
Leptony | & 2 b \\
v 0 | /é*“’ ""‘Q“T\
Y M — ==
TR

Rys. 13=1

Widzimy, %e ze wzglgdu na relacj¢ Einsteina masa nie jest cechg
zachowywang w reakcjach z udziatem czgstek elementarnychy jej miejsce

zajmuje rozszerzona zasada zachowania energii oraz zasade zachowania

pgdu w sensie relatywistycznym. Speinione sg natomiast cztery dalsze

zasady zachowania: spinu, Zadunku, dziwnosci i liczby czastek ciegs-
kich,

13.6, Zasada parzystosci i jej obalenie

Zasade zachowania parzystodci jest metematycznym wyrazem zasady
symetrii, noszgcej nazwg niezmienniczosdci wzgledem odbicia.Zasada nie-
zmienniczosci wzgledem odbicia orzeka, %e odbicie zwierciadlane kaz-
dego zjawiska fizycznego jest tak samo prawdziwe, jak samo zjawisko.
Zgodnie z tg zasadg mozna powiedzieé, e gdyby ktos obserwowat dowole
ny eksperyment fizyczny w zwierciadle, a nie powiedziano by mu o tym,
%e patrzy w zwierciado, wéwczas nie bgdzie w stanie sam dojsé do ta-
kiego wniosku na podstawie biegu eksperymentu i jego wynikdw.
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Wniosek ten mozemy sformutowaé jeszcze inaczej. W opisie ekspery-
mentu fizycznego uzywamy ukiaddéw wspdirzednych, zwykle prawoskrgtne-
20, Odbicie zwierciadlane zsmienia ten ukZad na lewoskretny, lecz nie
zmienia biegu 1 wyniku eksperymentu. W takim razie mozemy stwierdzidé,
ze podstawowe prawa fizyki majg te samg postad matematyczng niezales-
nie od tego, czy do opisu uzyjemy lewo= czy prawoskretnego ukZadu
wopbirzednych. Jedna z konsekwencji zasady parzystosci jest wigc to,
%e roztargniony naukowiec nie moze rozstrzygngé na podstawie doswiad-
czed fizycznych, ktdra jego reka jest lewa, a ktdéra prawa. MSgiby
wprawdzie rozwigzaé ten dylemat przez ustalenie, PO kidrej stronie
Jest jego serce, ale to rozwigzanle byXoby nie uczciwe 2 fizycznego
punktu widzenia.

Zagada parzystosci nie jest ogélnie stuszna: wyrazZnie nie obowig=-
zuje na terenie przyrody ozywionej. Okgzuje sig, Ze w wielu przypad-
kach przyroda sama wytwarza asymetrig (serce po lewej stronie). Réw-
niez biazka, wystepujace w organizmach Zywych zbudowane sg 2 amino-
kwasdéw, z ktdrych wszystkie majg strukture sruby lewoskretnej; nie ma
w przyrodzie aminokwaséw o strukturze prawoskrgtnej. Nie znaczy to,
%e ich utworzenie jest niemozliwe: w trakcie syntezy w laboratorium
powstaje zawsze mieszanina 1 : 1 odmian lewo- i prawoskretnych.Odmia-
ny aminokwaséw o przeciwne] skrecalno$ci sg jednak w przyrodzie czyms
w rodzaju trucizn wzajJemnie dla siebie. Przypuszcza sig,iz przez ewo-
lucje i eliminacjg¢ przewage uzyskaé mogta tylko jedna z odmian, a tg
byta odmiana lewoskretna.

Okazuje sig, ze w pewnych przypadkach zasada parzystosci nie Jest
stuszna rdwniez w fizyce, co spowodowalo jej obalenie.Przyczynity sie
do tego badania Lee 1 Yanga, dciyczgce szczegdidéw rozpadu pionu xt.
Rozpad ten nastgpuje wediug schematu

5 DI (13.6)
Spiny 0 + % - %
a
J
Ryse. 13=2

Poniewaz spin pionu wynosi zero, wigc poiéwkowe spiny mionu i new
trina musza mieé znaki przeciwne, Wzasncs$cl spinowe czgstek,biorgcych
udziat w rozpadzie {13.5) bgdziemy wyrazali za pomocg symboll graficz-
nych, przedstawionych ns rys. 13-2, I tak, éymbol 13-2a oznacza spin,
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odpowiadajgcy Sruble lewoskretnej, poniewaz kierunek obiegu i zwrot
wektora, przyczepionege do kuli, sg powigzane wzajemnie relacjg Sruby
lewoskrgtnej, Symbol 13-2b oznacza spin, odpowiadajgcy srubie prawo-
skrgtnej.Za pomocg tej symboliki mozemy zilustrowaé wynik rozpadu
(13.5): powstajace czgstki muszg mieé te samg skretno$é spinu, np.le-
wo, zad kierunek wekiordw Ju iJ,, msi byé przeciwny (rys. 13-3a).Do-

« O O
2 4 '

Zwrerciadto
- Ju- (0 () Jy
H* v

Rys. 13=3

konajmy teraz odbicia w pZaszozyZnie zwierciadlanej, prostopadiej do
ptaszezyzny rysunku: kierunek obiegu zmieni sig na  przeciwny, nato-
miast orientacja wektoréw J nie ulegnie zmienie., Otrzymujemy wigo
dwa schematy tej samej reakcji, rdznigce sig¢ skregtnoscig ukkadu wapdx
rzednychy zgodnie z zasadg perzystosdci oba powinny wystepowaé jedna-
kowo czgsto w przyrodzie. Tymczasem wynik doswiadczenia Lee i Yangs
Jest jednoznaczny: w doswiadczeniu obserwuje sig schemat a) na rys.
13-3, a nie obserwuje sig schematu b), czyli neutrina pojawiajg sie
zawaze jako "Sruby lewoskretne". Oznacza to, %e przestrzed ma wbudo-
wang preferencje lewoskretnosci nad prawoskretnoscig.

Nie koniec jednak na tym. Dokonajmy obecnie operacji sprzezenia
Yadunkowego, w wyniku czego otrzymamy antyczgstki (rys.13-4a) zgodnie
ze schematem

0 o~

Zwier-
ciadto

0 On

Ryso 13-4
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b1 s p_- + ; (1307)

_ Po odbiciu w ptaszczyZnie zwierciadlane] otrzymemy schemat 13=4b.
Okazuje sig, Ze w ekaperymencie antyneutrino wystgpuje zawsze  jako
gruba prawoskretna., Tak wigc preferencja skretnosci wbudowans jest w
przestrzed réwniez dla antymaterii, co w sposdéb nie budzgcy wgtpliwos-
ci obala szusznoéé zasady parzystosci na terenie fizyki czgstek ele-
mentarnych. '
Przedstawione tu w wielkim skrdcie wyniki doswiadczed 1 teorii w
zakresie badad czgstek elementarnych pozwalajg sadzié,ze postep w tej
dziedzinie jest coraz szybszy, aczkolwiek daleko jeszcze do peinego
rozwigzania tych tak waznych dle fizyki probleméw. W szczegdlnosdci wy
deje sieg, iz przyjeta obecnie liczba czgstek elementarnych jest zbyt
duza. Byé moze, iz niektbére z nich sg jakimis$ stanami kwantowymi czg-
stek "naprawde" elementarnych, ktérych - wedlug przypuszczed -  po-
winno byé okoto 10. Od teorii oczekuje sig réwnies redukcji Jliczby
fundamentalnych staiych fizyki: ¢, e, h, mg, mp, itd. przez znalezie-
nie nie znanych obecnie relacji migdzy nimi, Do nie rozwigzanych, a
‘waznych probleméw nalesy rdéwnies wyjadnienie natury silnych i sZabych
oddziakywad. Sg to wszystko pytania nurtujgce fizyke wspbiczesna, a
odpowiedZ na nie przyniesie niewatpliwie najblizsza przyszZosé.
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UZUPELNIENIA

Niniejsza czes$é skryptu zawiera uzupeiznienia wisdomodci lub me-
tod, omawianych w czgsci podstawowej skryptu. Zasgsdnienia tu porusza=
ne sg przeznaczone dla interesujgcych sig¢ fizyks w szerszym zakresie,
niz to przewiduje ramowy program studiéw. Autor ma nadziejg, iz gigb-
sze wniknigcie w pewne wybrane problemy umozliwi lepsze zbliZenie wie-
dzy studenta do niektdrych zagadnied wspdiczesnej fizyki, a przez to
rozbudzi zainteresowania problematyksa fizyczng i zachgei do jej kon-
tynuacji. Materiat tej czgsci begdzie stopniowo powigkszany w nastegp-
nych wydaniach skryptu,jesli ich przygotowanie okaze sig celowe.Autor
ma nadziejg, 1% na wybdr doZaczonych w przysziosci nowych  problemdw
bgda mieé wpiyw nie tylko jego wiasne poszukiwania, lecz takie zain-
teresowanis Czytelnikéw.
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Kasdy pomiar wielkosci fizycznej jest obarczony bigdem. Aby sig
o tym przekonaé, wystarczy zmierzyé kilkakrotnie t¢@ samg wielkosé fi=-
zyczng, np. dxugosé sztywnego preta; za kazdym razem otrzymujemy tro-
cheg inny wynik pomiaru. Ze wzgledu na przyczyny powodujace powstanie
bxegdéw mozemy je podzielié na trzy klasy.

i. Bxgdy przypadkowe (losowe) sg spowodowane zmiennoscia warunkdéw
zewnetrznych i predyspozycjg obserwatora (np.zmienne oswietlenie, wa=
hania napigcia zasilajgcego, zmgczenie obserwatora, itd.). Mozna je
zmniejszyé przez wielokrotne wykonanie pomiaru tej samej wielkodeci 1
zastosowanie rachunku bXgddéw, czym zajmiemy si@ w niniejszym paragra=-
fie.

ii. Btgdy systematyczne wyniks]Jg z zeatosowania wadliwych prazy-
rzadéw pomiarowych lub metod pomiarowych. Mogg byé state (np. przesu-
nigcie skali termometru, ktdére powoduje, ze wszystkie odozyty tempe-
ratury sq albo zbyt wysokie albo zbyt niskie) lub zmienne (np. prze-
kréj kapilary, zmieniajgcy sig systematycznie).Sa one dos$é trudne do
zauwazenia,lecz mogg byé wykryte i usuniete przez zastosowanie innych
narze¢dzi pomiarowych (inny termometr) lub metod (zastosowanie termo-
pary). '

1ii. Biedy grube (omytki) zdarzajg sig jako zupeinie bedne poli-
czenie kresek skali, pominigcie mnoznika itd. Sg one zwykle tatwe do
zauwazenia w nastgpnych pomiarach. Omytek takich w ogdle nie bierze
8ie¢ pod uwage podczas oceny wyniku koricowego.

Przypusémy, %e wykonalismy n pomiaréw jakiejs$ wielkosci fizycz-
nej S i otrzymslisdmy wyniki s,, 859 eeey 8o Niech gy 855 +00 8
oznaoczajg wagi statystyozne tych wynikéw. Waga statystyczna jest licaz
bowym wyrazem znaczenia, Jjakie przywigzujemy do poszczegélnych wyni-
kéw. Jest oczywiste, 2e wyniki bardziej dokiadne powinny byé silniej
uwzglednione w rachunku, niz mniej dokadnej inaczej méwisgc,waga sta-
tystyoczna tych pierwszych bgdzie wigksze, niz drugich. Kie rozstrzy-
gamy na razie pytania, skgd znamy wartosci g = Jest to sprawa indy-
widuslna dla metody pomiaru,
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Wartodcig najbardziej zblizong do "prawdziwej™ wartosci S Jest
drednia arytmetyczna "wazona® poszczegélnych wynikdw.

n
2 gisi
<g> =izl (u1.1)
2 &
i=1
"Prawdziwej® wartosci S nie definiujemy, poniewa% jest nam ona
nie znana i stanowi pewng idealizacje. $rednia arytmetyczna <s> Jest
natomiast w okreslonym sensie "najlepszg" reprezentantkg wynikéw po=-
miaru. Pokazemy nieco dalej, jak te "najlepszosSé® nelezy rozumied.
Jedli wagl statystyczne pomierdw nie dadzg sie ustalié, to przyj-
majemy, 2e B8] =8y = co0 =g = 1., Wyrazenie (U1.1) przechodzi wéw-
czas w zwykig definicje¢ Sredniej arytmetycznej

n
1
(8) = —— 1% 8- (U1.2)
Bigd bezwzgledny poszczegdlnego pomiaru definiujemy Jako réznice
wzgledem Sredniej arytmetycznej

61 = 81 - <B>, (0103)

zas$ bigd wzgledny otrzymujemy po podzieleniu &; Pprzez (&)

6! . 8.0 {(8)
<8 8>
Definicji (U1.3) nie mozna jednak uzyé do obliczenia sSredniego
btgdu wartosci dredniej, poniewaz

%§5i-%{§ ei-n<s>}-0.

Na wynik ma wpiyw fakt, e 64 moga byé dodatnie lub ujemne. Po-
niewaz jest rzeczg nieprawdopodobng, by wartosé srednia nie byia o-
barczona btgdem, wigc w definicji Sredniego btgdu wartosci sSredniej
uzywa sig bezwzglednych wartosci bieddéw &4

5 (U1.4)

6y = 1 Ei|ai’ -1 g | sy - <o) (u1.5)

Czgfciej uzywa sie jednak sSredniego kwadratu odchylenia, 02, zZwa=
nego wariancjg
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o?=1 % (s, - <@ (U1.6)
lub odchylenis standardowego
1/2
o -{% Z (8y = <s>)2} (U1.7)
5
Srednie odchylenie standardowe wynosi
1 y 172
o = (s, - <a))? (U1.8)
B { n(n - 1) 2; 1< j

i jest najczescie]j uzywang miara dokkadnosci wyniku korcowego, ktdéry
zapisujemy w nastepujgcy sposdb

8> T op. (U1.9)

Zapis ten oznacza, %e "prawdziwa®™ wartosé s rdézni sig od Sred-
niej <{s) nie wigcej, niz o G p? czyli

(8> =0p (8) <(8) +0 .

Pokazemy obecnie, ze sSrednia aryimetyczna jest takg wartoscig,dle
ktdérej suma Srednich kwadratdw odchyled osigga wartosé najmniejsza,
czyli najmniejszg wartos$é wariancji. W takim wiasnie sensie wartosé
{8)> jest "najlepsza". Przyjmijmy na razie, iz 8, jest wiasnie war-
tosScig tek dobieranag (wartosé zmienna), by wariancjs osiagnete mini-
mum, tj.

Ei: (ay - 30)2 = Min,

lub
d
2
-a-s-;(%(si-so)>=-2 ; (s, - 8,) = 0.
Z tego Z
i 83 =1 55
lub

so’% Z 84 S
i
Okreslilismy dotychczea bgdy przypadkowe i sposcby ich zmniejsze-
nia dla jednej, okreslonej wielkosSci fizycznej. Czegsto mamy Jednak do
czynienia z wielkosciami zXozonymi, zaleznymi od kilku wielkosci pro-
stych. Na przyk*ad, energis kinetyczna T punktu materiaslnego o ma-
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sie m, poruszajacego sig¢ z czgstosdcia katowg ( po okregu koia o
promieniu r wynosi

2T = Iu)ztmrzu)z.

Mierzymy m, r,u 2 btedami Srednimi odpowiednio Am, AYr, Awe. 2 Jo
kg dok}adnoscig znamy T? Mozemy napisad

2(T + AT) = (m + am)(r + ar)? (v + aw)?.

Jeéli zachowaé tylko te wyrazy, ktére nie zawieraja btgdéw lub za-
wiereja je w potedze pierwszej, to wynik obliczer jest nastgpujgcy:

2(T + AT) & mr2 m2 + r2 w2 Am + 2 mr w2 AT + 2 mr2 WAW o

Z tego

2AT % r2 02 Am + 2 mr w2 AT + 2 mr? gaw

orsaz

AEedmagEa

Widzimy, i2 z doktadnoscia do wyrazéw pierwszego rzedu wzglgdny
btgqd energii kinetyoznej jest réwny sumie wzglgdnych bigdéw poszoze=-
gélnyeh wielkosoi z wapdiczynnikami liczbowymi, zaleznymi od poteg
tyoh wielkodci w wyrazeniu okreslajgecym T.

Ten sem wynik mozemy otrzymaé znacznie prosciej przez zastosowa-
nie rachunku réizniczkowego. Jesli P Jest funkcjg zmiennych Xqs Xp9
ese Xp9 to wzgledny bigd AP/P mozna wyrazié ogélnie w nastgpujgey

sposdb
¢ 1/
4.3 %(ﬁf)ui. (v1.10)
- is

Obliczenie wed2ug (U1.10) znacznie sig upraszcza, jesli funkcjg¢ P
przed rézniczkowaniem zlogarytmujemy. W naszym przykladzie z ener-
gig kinetyozng punktu bedziemy mieli

In2+1nT=1nm+21nr +21lngy
oraz
AL, Am Axr Aw
Tsm+2r+2w,

a wigc w ten sposéb znacznie szybciej mozna otrzymaé¢ wyrazenie, po-
trzebne do oceny biegdu wielkodci zXozonej. Nalezy Jjednak pamigtaé o
tym, %e bledy wielkosci wystgpujgcych w mianowniku réwniez wchodzg z
udziatem dodatnim w bxgd wartosci zXozonej. Jesli np. funkcja P ma
postaé



306

2
1 Xq° %

bl
2 x3+bx4

to
AP _ . Ax1 . Ax2+ Ax3 +be4+Ax4-b
P x4 x, x3 +bx4
lub
AX AX AX, + bAX
AE 2 1 + 2 + 3 4 ,
P %4 Xy x3+bx4

gdy parametr b Jest znany dokzadnie.

Przyktady

1+ Zmierzono dziesiecidkrotnie pewng ‘dxugosé i otrzymeno nastepu-
Jjace wyniki

£ | SR |22 O | 40 [ 5 P 6 S [T S | S9N |10
l;5mn | 102 1105 | 102 | 99 [101 | 98 [ 103 [ 102 [100 [105
stgd 10
(1> = =% 2 1, = 101,70 mn,

et
-

(8> = 7% % |13 = @>|= 1,76 mm,

o2 2 (1, - <12 = 5,54 mn?

g 2’35 mm,

(¢

o 0,78 mme

Wynik koricowy
1 = (101,7 £ 0,8) mm.

20 W 293,2 K (pg, = 13,546 ¥ 0,001 g/om’) dtugosé stups rteci w
kapilarze wynosi 7,24 cm (pomisr wykonany suwmiarks), a mase rtgoi
m = 0,4936 g (pomiar na wadze analitycznej, am = 201074 g). Obliczyé
bzgd z jakim znamy promied kapilary.

Mamy

m = ‘n:rzhp,
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qzyli

1/2 1/2
= (=B 5 0,4936 - «10~2
i (nhp ) (Tr%ﬂm) 450035197 om,

Bxad wzgledny r wynosi

45 {AR5 40 5 A

- 1 10 . -4 =
E{‘%mo, + 7I3F * ISR } 10
= %{ 4,05 + 13,81 + 0,74} . 1074 -

9

34104 = 0,1%.

Z tego biad bezwzglgdny

Ar = r-9,3-10-4 om = 4°10~2 om
czyli
r = (4,003 % 0,004)°10"2 cm.

Z tego rachunku widaé, iz najwigkszy udzial w bgdzie wzglgdnym
pochodzi od pomiaru diugosci kropli rtgci w kapilarze zs pomocg suw=
miarki, Gdyby nam zalezalo na dokadniejszym wyniku, wéwezas nalesy
przede wszystkim zwigkszyé doktadnos$é tego pomiaru.

Przyktad ten zostal zaczerpniety ze skryptu J. Demichowicz-Piginiowej, Obli-
cgenia chemiczne, cz. I, Wroctaw 1975 r.

Na zakoficzenie zajmiemy sig¢ jeszcze rachunkiem wyrdéwnawczym dla
zaleznodci liniowej. Przypusémy, ze migdzy wielkosciami fizycznymi X
1 Y istnieje zwigzek liniowy w postaci

Y =a%x + be (U1.11)

Mierzymy pary liczbowe (Xi, Yi)' a chcemy obliczyé optymalne war-
tosci statyoch a 1 b. Przez wartosci optymalne rozumieé begdziemy takie,
ktére speinisjq postulat najmniejszej wartosci wariancji. a i b do-
bieramy zatem tak (zmienne), by suma kwadratdéw btgddéw (Yi-a X, -b )
osiggata minimum

n
2 (Y -aXx -b)? = min, (v1.2)
i=1

Suma rozciggnigta jest na n par (Xi,'Yi). Mamy wige

qg;{zi'(yi-axi-b)z}'-a %xi(Yi-aXi-b)no,
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—%—g{g (Yi-axi-b)z}---z %(!iaaxi-b)-o.

Na tej podstawie moZna napisaé dwa rdéwnania liniows

a zxixi + bz xi = zxi?[i,
(U1.13)
a zxi + b°n= T Yi.
Rozwigzanie ich daje wyrazenis potrzebne do obliozenia a i b,

n XY =-ZITX 3IX
a.= 14 i i 9 (U1014)
n E]Kixi - Z:Xi lei

EYi zxixi = DX EXiYi

b= . (U1.15)
Jedli prosta definicyjnie przechodzi przez zero, tj. b = 0, to
anglogiczny rachunek daje
PHD 9% 4
a=—23=ii, (U1.16)
zxixi

Przedstawiony rachunek dla 1linii proste] jest spotykany w prakty-
ce najczgdciej, poniewaz wiele funkcji wystepujacych w zagadnieniach
fizyoznych moina przedstawié jakoe zaleznos$é prostoliniowg. Mozna go
réwniez bez trudu uogdélnié na przypadek zaleznodci podanych w postaci
wielomiandéw drugiego lub wyzszych stopni, Jednak juz w przypadku pa-
raboli potrzebujemy dla jej petnego opisu trzech parametréw, co pro=-
wadzi do trzech rdéwngd liniowych niejednorodnych.Dla wielomiandw sto-
phia n 1liczba potrzebnych rdéwnai jest réwna liczbie nie znanych nam
wepbkczynnikdw.

3¢ Za pomocg dyfrakcji promieni rentgenowskich mierzono odstep
pZaszczyzn sieciowych (020) krysztatu NaCl w réinych temperaturach i
uzyskano nastgpujace wyniki

Ip.| 1 2 3 4 5 6
(:e?,‘ﬁ) 51,76 57,68 | 74,57 94,32 | 111,63 | 128,50
329° 329° 329° 329° 329° 329°
e 47,06° | 45,10° | 43,34" | 41,03* | 38,72° | 36,61’
przy ozym Oy jest katem dyfrakcji W temperaturze t 2c, Obliczyé
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wspbkezynnik rozszerzalnodci kryszieiu metodg najmniejszych kwadratéw
wiedzgc, %e do10 = 2,820 2 oraz dIugos$é fali promieniowania Cu Ko =
= 1,5405 3.

Obliczer dokonamy na podstawie prawa Braggdéw

2d9in® =n°)e.

Vraz ze zmiang temperatury gzmienia sic zardwno odstep d miedzy
ptaszczyznami sieclowymi, jak i kat rozpraszanis

28ing A d+2deos 9°A0 = 0,
czyli

Do obliczenia wspéiczynnika rozszerzalnosci termicznej  potrze-
bujemy wigo znajomoéoi nachylenia funkeji o (t) oraz wartosei ctge
dla refleksu (020). Latwo sig przekonaé (za pomocs wykresu),3e zalez-
nosé 0 (+) ma tu rzeczywidcie charakter liniowy, co uzasadnis zasto-
gowanie metody najmniejszyoh kwadratéw dla prostej typu aX + b, po=-
niewas stata b Jest tu rézna od zera. Zatem

o, =a°t°C + b,
gdzie e't wyrazone Jjest w minutach (1iczbe peinych stopni opuszcza-
my, ¢o nie ma wpiywu na wartosé nachyleniay wpiywa ona tylke na ware-
todé b, kitéra nas nie interesuje).
Wielkosci wystepujace w (U1.14) wynoszas

£X, = 518,46, 3 Y, = 251,86, = XYy = 21165,70, = XXy = 49436,53,

n-G.
Wobec tego

o o 6 - 2251,86 -128,88010-3 2%2 ~

6°49436,53 = 518,462
- -37,489°107% E8d

Ze wzoru Braggéw

n ) 2°1,5405
ging = = =.0,5463, ozyli cot @ = 1,5333
24 2°2,820

Wapbiczynnik rozszerzalnodci wynosi

o = 1.5333-37.489-10‘6 £ - 57,4z3~10‘6 K™

w zakresie temperatur od 50 do 120 %c, Wartosé liczbowa ¢ Jjest znacz

nie mniejsza od tablicowej, réwne] 110'10'6 K 'y, lecz odnoszgcej sig
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do zakresu temperatur od =79 °¢ do 0 °c, Wepbtezynnik rozszerzalnos-
ol cieplnej krysztatdédw nie jest wielkosScig statg lecz zalezy od tem=
peratury; ponadto jego wartosdé zaleizy rdwniez od obecnosdci defektéw
strukturalnych w badanym krysztale.

U 2. SIZA MAGNETOMOTORYCZNA

Wyrazenie okreslajgce sitg magnetomotoryczng jest analogiczne do
prawa (6.25) w polu elektrostatycznym i w sposéb skoncentrowany wyra-
%za wkasnosci pola. Dotyeczy ono caxki krzywoliniowej po konturze gam-
knigtym w polu magnetycznym.

1]’5
D
r P®
©P
Op ¢

d

Rys. U2.1

Wyobrafmy sobie kontur CDEF (rys. U2-1s), lezgcy w piaszozygnie
prostopadiej do przewocdniks z pradem P, Jaki bgdzie wynik obliczenis
caxki krzywoliniowe:)c 4 Pg-gl_, Jjedli dl_ jest elementem przesunigecia,

D

B natémiast wektorem indukecji msgnetycznej wytwarzanej przez P? Wzdius
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odoinkéw FC i DE mamy B-dl = 0, poniewas w dowolnym ich punkecie
21 FC lub B L ED. Wyblerzmy obecnie elementy przesunigcia g;1 wzdius
CD i 4;2 wzdiuz EF tak, by odpowiadaly temu samemu kgtowi Srodkowemu,
t3. by ”

a1y |  ja,|

W takim razie di, = - (r2/r1)gl1, poniewas oba przesunigeia majg
zwroty przeciwne. Na podstawie prewa Biota-Savarta-Laplace’a  (8.47)
many 3B, = B, (r,/r,). Wobec tego

X r
Ll 1 L . - ®
Byrdlp = By 7, ¢ 4y rf = =Byl

a wigo wynikiem catkowania begdzie zero. Nietrudno pokazaé, %Ze wynik
ten bgdzie stuszny tskie dls dowolnego konturu, nie obejmujgcego prze-
wodniks (np. rys. U2-1b).

Dokonajmy obecnie catkowania pc okreggu koxa otaczajgcego koncen=-
tryocznie przewodnik P, przez ktdéry piynie prgd o natgzeniu i (rys.
U2-1e). Na podstawie prawa Biota-Savarta-Laplace 'a zastosowasnego do
przewodnika liniowego (8.47) memy B = (p0/41t)'(21/R). przy ozym B
jest wazedzie styczny do okregu tak, 2e Bedl = Bedl. Wobec tego

i
fpa- [sa-Le [ a.,. (v2.1)
okrag okrag 2R Grrag

Mozna Xatwo wykazaé, e taki wynik mozna otrzymaé przy dowolnym
ksztatoie konturu otaczajgcego przewodnik. Kontur CC° (rys.U2-1d)nie
otacza przewodnika, wobec tego

[ 2ar=0=f3a-[za,

ces ¢’ c
jedli zamkniemy oba obwody C i C°, Piszac calkg wzdiuz C nalezy
zwrécié uwage na kierunek obiegu konturu w stosunku do kierunku prze-
piywu pradu. Ogdlnie zatem catka krzywoliniowa po dowolnej krazywe]
zamknigtej w polu msgnetycznym jJest proporcjonalna do nstezenia prg-
du, objetego tym konturem

[ BeaL =u t (v2.2)
c

lub w présni
fg a = 4. (U2.3)
c
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Prawo wyrazone zwigzkiem (U2.3) wymaga jeszcze pewnych uzupeiniefi

i. Natezenie prgdu i odnosi sie w (U2.,3) i w poprzednich réwne-
niach do pradu przewodzenia w przewodniku. Jest to przypadek szcze=
- g6lny, gdzie ggstosé prgdu ma duzg wartoéé wewngtrz przewodnika i ré-
wna jest zeru wszgdzie poza nim. W przypadku przestrzennego przypiywu
*adunkéw nalezy posiugiwaé sig gestoscig pradu jJ. Jedli S jest do=-
wolng powierzchnig, rozpigtq na konturze C, dS natomiaest elementem
teJ powierzchni, to di = j dS. Poza tym w przypadku ogélnym, oprdcz
prgdu przewodzenia moze réwniez wystgpowaé prad przesunigcia, ktérego
gestosé niech wynosi jp. W takim razie ogbélniejszg postacig prawé
(U2.3) bedzie

Jea= [(1+ i) gs. (v2.4)
c ]

Cazka =z lewej strony Jest catka krzywoliniowg wzdiuz konturu zam=-
knigtego C, 2z prawe] natomiast mamy catke powierzchniowg po powie-
rzchni S, rozpigtej na C.

ii. Wyrezenie z lewej strony (U2.4)

E = f H 41, (v2.5)
c

Jjest zwane sig magnetomotoryczng. Jest to wielkosé analogiczna do
8itry elektromotorycznej w obwodach elektryeznych i bywa stosowana do
obliczend technicznych obwoddéw magnetycznych. Migdzy sizg magnetomoto-
ryczng i strumieniem magnetycznym & istnieje zwigzek analogioczny do
prawa Ohma

& = g, (U2.6)

m

gdzie Rm jest oporem magnetycznym.

U 3. PRAWA ODBICIA I ZALAMANIA FALI ELEKTROMAGNETYCZNEJ

Jesli na granice rozdziaiu dwéch Jednorodnych, 1leecz o réznych
wiasnodciach optycznych osrodkéw, pada fala elektromagnetyczna,to mu=-
81 ona ulec podzigiowi na dwie falej odbitg i zatamang. Pojawienie sig
dwéch fal jest konieczno$oig, wynikajgca z zasady ciggzosei  skZado=-
wych wektoréw E, H, D i B podczas przechodzenias przez granicg roz-
dzistu. Zasada ta, ktérej sZusznosci nie bedziemy tu dowodzili, brzmi
nastgpujgeo:
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Podozas przechodzenia fali elekiromagnetycznej przez granicg dwdch
oérodkdéw nieprzewodzacych jest zachowana ciggrodé stycznych do grani-
ey skkadowych wektorédw E i H oraz ciggXo$é skXadowych normalnych D
i B. Zadada ta oznacza, Ze dla wiazki promieniowsnia nie ulega zmis-
nie sk¥adowa styczne wektoréw E i H podczas przechodzenia przez gra
nicg fazj podobnie ciaggZosé zachowuje skiadowa normalna wektoréw D
i B.

z Z
Rll
L{i) !-(I‘) R.L ®
5; 8, L 0;
{ 1
2 P{0,0\,O X 2 X
\\\\ ) .
A o J[aNE
; 7 o far
L(t)
Tu
7
Rys. U3-1 Rye. U3-2

Przypusémy, ze w odrodku 1 rozchodzi sié ptaska fala elektromag-
netyczna w kierunku wektora jednostkowego 1 i s nDormalnego do piasz-
ozyzny jednskowej fazys wskaZnik 1 oznacza falg padajgcg.Jesli zna-
my wychylenie A(t) w okreslonym punkcie osrodka, to wychylenie w
innym punkecie, odlegiym od poprzedniego o r wynosi A (t = re-1/v),
gdzie v Jest fazowg predkoscig fali w tym osrodku (por. pkt 9.7).
Wybierzmy interesujgcy nas punkt na granicy rozdziatu dwéch osrodkéw
W tym punkcie fazy drgani fali padajgcej i, odbitej r, i zaXamane] %
bedg jednakowe, ozyldi

wag bl £'l(r) ee1(t)
t o — = f - 2t = — s {U3.1)
V.‘ 71 V2

przy ozym Vv, 0znacza predkosé fazowg fali w osrodku 2.

Przy orientacji ukXadu wspdirzednych pokazanej na rys.U3.1 wektor
r wybrenego punktu ma sktadowe r (x,y,0), wobec czego (U3.1) mozemy
rozpisaé w nastepujgcy sposdbs

alt) o ) al
W o

V4 V4 Vo

(r) X1£ t) yl(t)

+ yl + y;y

(U3.2)
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Réwnodeci (U3.2) majg byé speinione dla dowolnych x,y; mozliwe
jest to tylko wéwezas, gdy

(1) (r) (t) (1) (r) (t)
1 1 ak ! 1 1
X X a <& oraz Y -y ey AL - (03.3)
iz v, Vs vy v, Vo
PXaszczyna, przechodzgca przez l(i) oraz normalng do graaicy faz,

jest zwana pZeszczyzng padania. Réwnosci (U3.3) wskszujg, Ze wektory
;_(r i }.}t s 62yli promied odbity i zstamany, réwniez lezg w tej
ptaszczyZnie. Jedli przez @45 ©,, 16, oznaczymy kqty padania, od-
bicis i zatamania (rys. U3-1), przy czym wszystkie sg mierzone wzgle-
dem normslnej do granicy obu osdrodkéw (o$ z), wéwczas skiadowe wekto-
réw 1 mozemy wyrazié w nastgpujacy sposéb:

L= g | ¢
;l_(i) 8in 64 0 —cos 8,
;(r) sine, | O cos 6, (u3.4)
180 | gin 8y | O | -cose,

dla fali biegngce] z osrodka 1. do 2, Dla fali biegngcej odwrotnie,
tje 2 oérodka 2., do 1., cosinusy kierunkowe wszystkich wekftoréw 1
zmienisjg znsk (rys. U3-2):

| = |5 | =
]_.(i) -8in 84 0 cos 84
;(‘" -sine_, | O | =cos 6, (U3.5)
;,(t) -8in 6, 0 08 6,

Podstawienie (U3.4) do (U3.3) prowadzi do nastgpujgcej réwnosci

sin 91 8in er sin 04

= 5 (U3.6)
vy v, vy
Wynika z tego, iz :
8, =96, (u3.7)
oraz
sin @ vy n,
——i & emme 3 eomm @ n21. (UB.B)
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Wyrazenia (U3.7) oraz (U3.8) sg znane jako prawa Snelliusa. nq 1
n, w (U3.8) oznaczaja bezwzgledne wspétczynniki zsemsnia Swiatka
obu osrodkéw (wzgledem prdézni), Boq zad jest wzglednym wspbiczynni-
kiem zalamsnia $wiatla osrodka 2, wzgledem 1. W drugiej czesci réw-
nsnia (U3.8) skorzystaliémy ze wzoru (9.59). Jeéli n, >n,, to osro-
dek 2. Jest optycznie ggstszy od osrodka 1. Zetamanie promienia zacho-
dzi wéwozas w kierunku ku prostopadiej padania, a poniewaz

sin @, = n—121-sin e, < sin g,

wige dla kazdego kata padania istnieje promier zazamany.
Fie jest to sZuszne, jesli odwrécimy bieg wigzki. W tym przypadku
wspbéZczynnik zatamania swiatia Ry
o, 1 4

n = e 3 mm— <

12 n, Ny,
Jest mniejszy od jednosci. Istnieje wobec tego kat padania 51, zwany
kagtem krytycznym, taki zZe

sin 61 = 0,5 (U3.9)

Jesli 04 = 51, to 6, = 90°, czyli promied zatamany &lizga sig
wzdtuz powierzchni rozdzieXu obu odrodkéw. Zjawisko to nosi nazwg cak
kowitego wewngtrznego odbicia. Przy kacie 84> 51 promieniowanie nie
wohodzi do osrodka 1. Scislej biorsc, natgizenie pola elektromagnetycz-
nego w osrodku 1. jest wéwozas rdéizne od zera, nie przepiywa Jedynie
strumied energii przez granicg faz. Aby to pokazaé 2zaxbimy, %e dla
64>8,4

2 1/2
8in @ 8in” ¢
ainet--———-iv co8 6, = -1 (_7_3_1) . (U3.10)
n n

przy ozym opuscilismy wskaZniki przy n, # dwéch mozliwych wartosdoi
cos et wziglismy natomisst tylko ujemna, poniewaz dodetnia - Jak
zobaczymy - nie ma sensu fizycznego. Oczywisdcie dla 61 > 51 bedzie
(sine /n) > 1, co oznscza, 1% z (U3.10) nie mozemy obliczyé kgqta za-
Zamania © ;+ Korzystajgc z (U3.10) mozemy napisaé réwnsnie <fali za=-
Zamenej w postaci:

Alz,t) = a elo(t-zl/v) | (u3.11)
1/2
. im{t-(x sinei)/(nvz)} -(mz/vz){(aine ei/nz)-1}
= __oe e

Wyrazenie (U3.11) przedstawias fale niejednorodna., Rozchodzi aie
ona bowiem w kierunku x, tj. stycznie do pXaszczyzny rozdziaiu, lecs
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jej emplitude maleje wykXadniczo wraz z gigbokoscig 2z w osrodku op-
tyoznie rzadszym (1). Widaé obecnie, i% dodatnia wartosé cos6, W
(U3.,10) nie ma sensu fizycznego, gdyz w tym przypadku amplituda fali
wzrastalaby nieograniczenie w miarg wnikania w odrodek 1. Poniewa3
ozynnik {(51.111291)/:12 1 } 1/2 jest rzgdu jednodoi, efektywna gie-
boko$é wnikania fali do osrodka 1 jest wigc rzedu

3 2R

w 27

Zop ’ (U3.11)

czyli rzedu diugosci fali promieniowania w odrodku 2.

U 4. WZORY FRESNELA

Zajmiemy sig obeonie amplitudg fali odbitej i zatamansj. ZatoZymy
przy tym, %e oba osrodki sg nieprzewodzgce 1 niemasgnetyczne ‘*‘1 Spy =
& 1), Amplituda fali padajgcej A zslesy od fazy fali (rys. U3=1)

r.1(1) x 8ing, - z co8 ei) ) e

vy v
‘Rozésmy kazdy z wektoréw na sktadowsg leigcq w piaszozyZnie padania
(wakaénik It ) 1 skXadowg do niej prostopadzs (wskaZnik : ). Mamy wigec
dla fali padajgcej skladowe amplitudy A, i A)3 dla fali odbitej R, i
Ry, zreszoie dla fali zatamanej T, 1 T . Wobec tego sktadowe wekto-

ra E Wynoszgs

io ip
Eii) = A, co8 ei e i; E§i) = A @ i,

(U4.2)
i
E;i) = A, sin 6, o ®1

W celu znalezienia sktadowych H zauwazmy, iz wedrug (9.51)

H.—l—'(lx;)

Wobec tego
R0 {1(1) s{1) - 1) 5] L 1 4icon 0 o
iz “ov1 I s SR Y ko' : ’
(1) _ (1) 2(1) _ (1) (1)1
Hy - {12 g, - 1, E, }

1 ip
-m{-ooseiA, aose:l - aineiA., ainei}e i,

1 1
Sy et (v4.3)
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(1) () g(8) L1 (0) g} 1 iny
By p.v.'{l E } Mg‘;“"eie ’
gdzie
(1) -
0y =0 ( . >=w< -x”"neiv1z °°891>. (U4.4)
W dalszym ciggu
i i
Eir) = <R, co8 ©, <pr’ E§r) =R, e ¢r'
£F) « B, sine, Sat (U4.5)
Z.
oraz
(r) (r) (r) o(r) 1
ar) - oV 1{1yr By =1y By } ke L
(r) (r) (r) _1(r) (r)
By " Bo¥ 1 { 'z 'z }
- Ejv_1 { «0080 & Rn cos8 P sin er R" aiuer } oj"pr = (U4o6)
i
- Rn L
Ho¥4 °
i
) < 4 0 a0}« e, o, o,
gdzie 1(1') x 8in ©, + 2 co8 @,
o _w< ) ( - ) (u4.7)
W korcu
i
Eit) = T, cos 6, e (pt, Egt) =T Bilpt:
E(t) = T, 8in 0, o0t (Us4.8)
oraz ie
t t
( ) = m T cos et e 9
oy
H§t) 8 e |J.C:V2 T" e 9 (U409)
(t) sin @t e t’
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gdzie r-1(t)

r X gin 64 = 2 coe g.°
%.wé- = )-(,,(t- tvz “). (u4.10)

Do obliczonych amplitud E i H =zastosujemy obecnie warunki ciag-
¥osdci w postaci

Eii) + 87 - g{8), Eéi) + E§r) = E§t), (U4.11)
S SO A SRS LR LU AP

pamigtajac, 2é dotyczg one skzadowych stycznych E 1 H w punkecie
P(000). W tym punkcie wszystkie ozynniki fazowe skracaja sig do eiwt;
poniewas réwnosci (U4,11) i (U4.12) sa wzgledem tych ozynnikéw jedno-
rodne, mozemy je opusScié. Liczba réwnad napisana na podstawie warun-
kéw ciagZodei wynosi 4 - tyle askurat potrzebs do obliczenia czterech
amplituds R,, Ry, Tqs 1 T, jJesli 4, 1 A; - Jak zwykle - przyjmiemy
za znene,
Réwnania te maja postaé nastepujgoa

cos 8,(A, = Ry) = cos 0, Ty

ny(A, + Ry) = n, Ty

(U4.13)
A,_l: + R'L = T_j_

n, 008 @ (A; = Ry) = n, cosey T,

W zapisie réwnar (U4.13) skorzystalidmy 2 nastepujacych réwnosci
64 =6 §; = n,.

Ukzad (U4.13) przedstawia cztery réwnania o czterech niewiadomych
i moze byé rozwigzany jednoznacznie. Widaé jednek, i% dwa réwnania za
wierajg jedynie skradowe 4, R, T, réwnolegie do pZaszczyzny padanisa,
a nastgpne dwa sktadowe do niej prostopadie. Fale obu tyoch typéw sg
gatem od siebie niezaleine. Mozna wobec tego uktad (U4.13) rozbié na
dwa ukXady o dwéch niewiadomych, ktdérych rozwigzanie nie przedstawia
trudnodci. Wyniki rozwigzania sg nastgpujgce

n2 00581"111 OOBGt‘ n1 coaei-nz OOSet
= ne A

R

Rl-
ny 0086 4 + N4 coaedt n, cos ey + n, coaet

. (U4.14)
2n1 0080 4 2 n, oose:L

Ty =

Ay Tl =
n»2 cosei«o-n1 ooaet n4 oosei+n2 coaet

A
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Réwnania (U4.14) nosgzg nazwg wzordw Fresnela i okredlsja wielkodé
ampliftudy monochromatyczne] fali elektromagnetycznej odbite] (lub za-
emanej) w piaszozyfnie padania lub prostopadle do niej w zaleinosdol
od wapbXozynnikéw zatemania Swiatia, kata padenia, kata 2zsZesmania 1
amplitudy fali padajgcseje.

Opréez (U4.14), réwnania Fresnela pisze sig czesto w trocheg innej
postaci, otrzymanej z (U4.14), przy zsstosowaniu praws zatamsnias swie
txa (U3.8)s

_te by -6y) A sin (o; - o64) -
"
tg (o4 + €;) (sin@i+et)

(U4.15)

2 sin g, co8s @ 2 8in@®, co8 @
L i .A"' Tl - e ;“.L'

sin (ei + et) cos (g - ey) sin (ei + 0;)

Ty =

Wzory Fresnela byly Jjednym z pierwszych i wazZniejszych hiatorybz-
nie dowoddéw elektromagnetycznej teorii Swiata. OkazaXo sig péznie],
i% wzoréw tych nie mozna stosowaé wtedy, gdy zachodzi cdbicie 1 zaZa-
manie wigqzki promieniowanies o bardzeo duzym nategieniu, Wigzki takie sg
emitowane przez wspézczesne 4rédta laserowe,

Pole elektromagnetyczne osigga w wigzce laserowe] dufej mocy war-
todci pordwnywalne z polem wewngtrz atomu lub czgsteczki.Powoduje to,
iz indukoweny w atomie moment dipolowy Jest nieliniowg funkcjg E, wo=
bec czego réwniez réwnanie Maxwella, opisujgce rozchodzenie sig ta-
kiej fali w osrodku steje sig nieliniowe. W +tych warunkach odbiciu
i zatamaniu swiatls towarzyszg nowe zjawisks, np. w obu graniczgcych
%z sobg osdrodkach powstajg fale o czestosciach harmonicznych (2y, 3w
eee) W 8tosunku do czgstosci fali padajgcej (v)e

Na zskoficzenie rozwazmy jeszcze dwa proste przypadki zastosowsanie
réwnaii Fresnela.

1. Przypadek normalnego padania fali elekiromagnetycznej na gra-
nicg rozdziatu dwéch osrodkéw niemagnetycznych i nieprzewodzgcych.Ma-
my w tym przypadku ¢4 = 0 i oczywiscie 6y = 0 orazs

ng-n.‘ n21-1>A“

R,y = A, o =S————

n, + n4 " n,q + 1

- - 1
21 - %2 (B2

(Ug.16)
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2 n 2
N o R W A
W n, + 1, " Dy, + 7 "
(U4.16)
2 n, 2
TJ-"‘n1+112 A = n21+1>Al'

Wzory te stanowig punkt wyjscis do obliczenia wspdXozynnikdéw ode
bicia przy padaniu normalnym, podanych w pkeie 9.9. Zauwazmy, iz gdy-
by fala padajgca byza spolaryzowasna w ten sposéb, np. 3¢ A, = 0,
4, # 0, czyli drgania wektora E nastepujg prostopadle do pkaszozyz-
ny padania, wéwczas rdéwniez w falli odbitej i zalamanej bedzie R, = O
iR, #0 oraz T, =0 i T # 0. Oznacza to, Zze w zjawisku odbicia
i zaZamania stan polaryzacji ulega zachowaniu.

2. Przypusémy obecnie, ze fala pasdajgca nie jeat spolaryzowans,
lecz zZe

8y +64 = 907, (u4.17)

tj. promierd padajgcy 1 zaXamany tworza iazem kgt prosty. Wéwczas
tg (@ +6 ) = =, 8in (8; +6,) = 1, a 2 (U4.15) wynika, ze

R, =0, R; =4, 8in 264 # 0.

Oznacza t0, 1% w promieniu odbitym wektor E nie moze mieé skia-
dowej lezgce] w piaszozyZnie odbicia, czyli po odbiciu fala jest cai-
kowicie spolaryzowans, a wektor E drgas w kierunku prostopadiym do
ptaszozyzny padania, W tych warunkach prawo zatamsnis Swiatia prowa-
dzi do znsnego warunku Brewstera dla kgta padania, odpowiadajgcego
catkowitej polaryzacji (por. 9.61).
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