
Hanna Mazur

Typy danych
w programowaniu strukturalnym

Zbiór zadań z programowania
w języku Pascal

Politechnika Wrocławska

p

Hanna Mazur

Typy danych
w programowaniu strukturalnym

Zbiór zadań z programowania
w języku Pascal

Wrocław 1990

Wydawnictwo dydaktyczne do przedmiotów:
Podstawy informatyki, Zaawansowane metody programowania
dla studentów wszystkich wydziałów Politechniki Wrocławskiej

Opiniodawcy:
Helena KRUPICKA
Jerzy KUCHARCZYK

Opracowanie redakcyjne
Teresa JARMAKOWICZ

Korekta
Teresa JARMAKOWICZ

© Copyright by Wydawnictwo Politechniki Wrocławskiej, Wrocław 1990

BihlintEka Głową i OM
PnliiEchniki (IrncławkiEj

WYDAWNICTWO POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław OOO B46856

Nakład 3000 70 egz. Ark. "yd. 13,5. Atk. druk. 15' Papier offset, ki. lii, 70 g, 81.
Oddano ■ ■ c jku w listopadzie 1989 r. Druk ukończono w styczniu 1990 r.
Zakład miki ./rocławskk; nr 1612 S3. Cena zł 2500,-

SPIS TREŚCI

WSTĘP ... 5

1. WPROWADZENIE ... 7

2. ZSTĘPUJĄCĄ METODA KONSTRUOWANIA PROGRAMÓW ... 9

3. KOMPILACJA I WYKONYWANIE PROGRAMÓW ... 13

3. 1. Zadania.. 15

4. STRUKTURA PROGRAMU W JEŻYKU TURBO PASCAL 3.0 ... 16

4.1. Instrukcje... 17

4.2. Procedury i funkcje..21

4.3. Typy danych..25

4.4. Proste i strukturalne typy danych............................ 26

4.4.1. Typy standardowe .. 27

4.4.2. Typy wyliczeniowe i okrojone .. 30

4.5. Definicje stałych ... 31

4.6. Deklaracje zmiennych .. 32

4.7. Zadania...40

5. TYP TABLICOWY..61

5.1. Zadania...68
6. TYP ŁAŃCUCHOWY..'.. 104

6.1. Operacje na łańcuchach..105

6.2. Zadania...110

7. TYP REKORDOWY..115

7.1. Instrukcja wiążąca .. 117

7.2. Rekordy z wariantami...120

7.3. Zadania...126

8. TYP ZBIOROWY...131

8.1. Zadania...138

9. TYP PLIKOWY...141

9.1. Pliki tekstowe...144

9.2. Pliki bez typu elementów...146

9.3. Zadania.. 147

10. TYP WSKAŹNIKOWY 152

10.1. Zadania................................-.. 165

11. ZADANIA ROŻNE.. 170

4-

12. ROZWIĄZANIA ZADAŃ ... 183

Do rozdz. 4............................ 188

Do rozdz. 5...198

Do rozdz. 6...209

Do rozdz. 7....................................... 211

Do rozdz. 8...215

Do rozdz. 9....................................... 218

Do rozdz. 10... 219

Do rozdz. 11.-..220

DODATEK A. SKŁADNIA JĘZYKA TURBO PASCAL 3.0 (DIAGRAMY SYNTAKTYCZ—

NE)..225

DODATEK B. ZESTAWIENIE OBIEKTÓW STANDARDOWYCH W JĘZYKU TURBO

PASCAL 3.0...233

DODATEK C. TABLICA KODU ASCII *..238

LITERATURA...239

SKOROWIDZ...240

WSTĘP

Niniejszy skrypt jest przeznaczony zarówno dla osób uczących się

programowani a w języku Turbo Pascal wersji 3.0 (w skrócie TP 3.0) jak i

dla zaawansowanych w programowaniu. Skrypt ten, ze względu na dużą

liczbę zamieszczonych w nim zadań, może być również wykorzystywany przez

osoby prowadzące zajęcia związane z programowaniem w TP 3.0.

W skrypcie omówiono typy danych występujące w języku Turbo Pascal

wersji 3.0. Rozdział 1 zawiera uwagi ogólne na temat metodologii

programowani a. W rozdziale 2 przedstawiono zstępującą metodę

konstruowania programów. Rozdział 3 dotyczy kompilacji i wykonywania

programów. W rozdziałach 4-10 scharakteryzowano poszczególne typy oraz

podano przykłady ilustrujące ich użycie. Po każdym rozdziale

zamieszczono zestaw zadań do samodzielnego opracowania. Z myślą o

Czytelniku początkującym umieszczono po kilka zadań tego samego typu.

Zakłada się, że Czytelnik zna podstawowe pojęcia z dziedziny

programowani a <np. wyrażenie arytmetyczne).

Przyjęty układ rozdziałów (opis typu, przykłady, zadania) ma

sugerować, że zadania umieszczone na końcu danego rozdziału można

rozwiązać za pomocą dotychczas omówionych typów danych, ale wybór

odpowiedniego typu pozostawia się Czytelnikowi.

Znaczna część studentów jest zainteresowana dodatkowymi tematami

zadań. Jedni z nich pragną zadań bardzo prostych, na których mogliby

samodzielnie przećwiczyć podstawowe techniki programowania i nabrać

większej wprawy w pisaniu programów, inni natomiast poszukują zadań

bardziej złożonych. Dlatego też stopień trudności zamieszczonych zadań

jest bardzo zróżnicowany. Celowo nie wyróżniono zadań trudniejszych,

ażeby nie zniechęcać Czytelników nie wierzących we własne siły, tym

bardziej, że pojęcie "zadanie trudne" jest względne. Na końcu skryptu

znajdują się rozwiązania niektórych zadań. Programy zamieszczone w tym

skrypcie zostały napisane w języku Turbo Pascal wersji 3.0 i uruchomione

na komputerze IBM PC/XT/ftT. Ze względu na ograniczoną objętość skryptu w

niektórych rozwiązaniach zadań pominięto komentarze lub drukowanie

tekstów objaśniających a' skupiono się na samym algorytmie. Jako

ćwiczenie dla Czytelnika pozostawi a się dopisanie odpowiednich

komentarzy oraz instrukcji wyjścia.

6

Wszystkie zwykłe znaki przestankowe (kropka, przecinek, średnik i

in.) są symbolami języka Pascal. Z tego też powodu w niektórych zdaniach

zawierających przykłady w tym języku zasady interpunkcji nie są

przestrzegane.

W celu zwiększenia czytelności zamieszczonych w skrypcie przykładów

i programów w tekstach napisanych w Języku TP 3.0 używa się polskich

liter, które w alfabecie TP 3.0 nie występują.

Koniec przykładu jest oznaczany symbofem B.

Życzymy wszystkim Czytelnikom wytrwałości w pisaniu programów, co

często nie Jest rzeczą łatwą ani małą. Najlepszy efekt w nauce

programowania można osiągnąć uruchamiając napisane programy. Dlatego też

w celu sprawdzenia swoich umiejętności radzimy, w miarę możliwości

dostępu do sprzętu, uruchamiać opracowane programy.

Pragniemy również zwrócić uwagę Czytelników, że często programy

realizujące ten sam algorytm, ale pisane przez różne osoby mogą się

różnić w zapisie, w użytych typach danych, liczbie zmiennych,

wykorzystanych instrukcjach itd. Z wielu możliwych (i co najważniejsze,

poprawnych) należy wybrać ten, który jest najbardziej czytelny,

optymalny (np. pod względem czasu obliczeń), wykorzystuje jak najmniej

pamięci itp. Zagadnienie to jest omówione w rozdz. 1.

1. WPROWADZENIE

Przystępując do rozwiązania dowolnego zadania należy dokładnie

sformułować jego treść, tzn. określić, co jest dane, a co należy

obliczyć i podać jako wynik. Następnie należy dokonać wyboru metody

rozwiązania danego problemu, czyli podać algorytm.

Do precyzyjnego zapisu algorytmów służą języki programowania.

Program napisany w danym języku programowani a powinien dawać poprawne

wyniki. Na ogół proces tworzenia programu przebiega w trzech etapach:

1. opracowanie algorytmu,

2. wybór odpowiedniej reprezentacji danych związanych z tym

algorytmem,

3. napisanie programu w danym języku programowania.

Jedną z metod tworzenia poprawnych programów jest programowanie

strukturalne. Opracowując algorytm w programowaniu strukturalnym

dzielimy problem na podproblemy a następnie zajmujemy się ich

rozwiązaniem. Jeśli podproblemy te są złożone, to znowu dzielimy je na

podproblemy itd. Taką metodę konstruowania programów nazywa się metodą

zstępującą i jest ona opisana w rozdz. 2.

W praktyce na ogół etapy 14-3 łączą się ze sobą. Dwa pierwsze

etapy, czyli opracowanie algorytmu i wybór reprezentacji danych,

będziemy nazywali szkicem programu. Często właśnie opracowanie szkicu

programu sprawia największą trudność, natomiast napisanie programu w

odpowiednim języku i dla konkretnego komputera przez osobę znającą ten

język i komputer nie przedstawia większej trudności, jest czynnością

wręcz mechaniczną.

Pisząc program należy zadbać o to, aby po napisaniu był on:

a) poprawny,

b) uniwersalny,

c) zupełny,

d) efektywny,

e) czytelny.

Pokrótce scharakteryzujemy własności a 4- e.

ad a) Program jest poprawny, Jeśli dla każdego możliwego zbioru

wartości danych otrzymuje się poprawny wynik.

8

ad b) Program Jest uniwersalny, jeśli jest niezależny od konkret­

nego zestawu danych, tzn. łatwo można go zmodyfikować, aby wprowadzić

inne dane. W celu osiągnięcia uniwersalności powinno się parametryzować

program za pomocą zmiennych, a nie stałych. Na przykład, Jeśli chcemy

napisać program, który wczytuje 100 liczb rzeczywistych i oblicza ich

średnią, to powinniśmy napisać

SR:=0.0;

readln(n);

for i:=l to n do

begin

read(1iczba);

SR:=SR+1iczba

end Cii;

SR:=SR/n

a nie

SR:=0.0;

■for i:=l to 100 do

begin

read(liczba);

SR:=SR+1i czba

end Cii;
SR:=SR/100

ad c) Program powinien przewidywać możliwość wprowadzenia złych

danych i wyprowadzać odpowiedni komunikat informujący o błędzie. Nie

powinien wykonywać dalszych obliczeń na błędnych danych i podawać

wyników według zasady "błędne dane — błędne wyniki".

ad d) Obliczenia wykonywane przez program powinny być wykonalne w

dostępnej pamięci komputera i być skończone w czasie.

ad e) Program powinien być zrozumiały i czytelny. Niektórzy nazy­

wają tę zasadę zasadą BUZI (Bez Udziwnień Zapisuj Idioto - ang. Keep It

Simple, Stupid).

Oczywiście, często spełnienie Jednego warunku odbywa się kosztem

innego, np. można napisać bardzo zrozumiały program ale nieoptymalny,

tzn. wykorzystujący zbyt dużo pamięci i wykonujący wiele zbędnych

obliczeń. Modyfikacja takiego programu może doprowadzić do oszczędniej­

szej gospodarki pamięcią i czasem, ale program straci na przejrzystości.

Programista musi sam wybrać te kryteria, na których spełnieniu zależy

mu bardziej.

2. ZSTĘPUJĄCA METODA KONSTRUOWANIA PROGRAMOM

W rozdziale 1 wprowadziliśmy pojęcie metody zstępującej. Posługując

się nią próbujemy rozłożyć dany problem na ciąg prostszych podproblemów.

Dla danego zadania P próbujemy znaleźć zbiór mniej złożonych zadaó

P1,P7,...,Pn taki, że rozwiązując zadanie Pj, następnie P2 itd.

otrzymamy rozwiązanie wyjściowego zadania P. To podejście jest stosowane

również do każdego podproblemu dając w ten sposób zbiór

podpodproblemów, których rozwiązanie jest rozwiązaniem zadania P. Proces

ten kontynuujemy tak długo, aż podproblemy będą tak małe, że dadzą się

bezpośrednio rozwiązać.

W każdym kroku metody musimy mieć na uwadze dwa warunki:

a) poprawność - czy poprawne rozwiązanie podproblemów P^,P_,...,PR

da nam poprawne rozwiązanie problemu P?

b) wykonalność - czy rozwiązanie podproblemów P ,p ,...,Pn będzie

wykonalne w danym Języku programowania i na danym komputerze?

Każdy błąd wykryty podczas procesu konstruowani a programu powinien

być poddany pełnej analizie i po kolei należy sprawdzać:

- jego przyczynę i zasięg,

- niewłaściwe zrozumienie lub niespełnienie założeń doprowadzające

do powstania błędu.

Jeśli przyczyna błędu jest nie znana, programista musi cofnąć się

do pierwszego bezbłędnego kroku metody zstępującej. Tylko w ten sposób

będzie zapewniona poprawność szkicu końcowego.

Umiejętność ustalenia przyczyny błędu jest jedną z cech

odróżniających wprawnego programistę od niespecjalisty.

W praktyce na ogół do opracowania nowego algorytmu stosuj' się

metodę zstępującą. Znane są jeszcze inne metody programowania, np.

wstępująca. W metodzie tej z prostych instrukcji tworzy się podprogramy

(podrozdz. 4.2), z których otrzymuje się program będący rozwiązaniem

danego zadania. Katodę wstępującą wykorzystuje się np. u celu

dostosowania znanego algorytmu (programu) dc nieco zmienionego zadania.

Aby lepiej zrozumieć ideę prograsnowania zstępującego, prześledźmy

następujący przykład.

10

Przykład 2.1

Danych jest n liczb całkowitych (n<20). Napisać program, który

czyta te liczby, porządkuje je w ciąg niemalejący i drukuje ten ciąg

przed i po uporządkowaniu.

Rozwiązanie

Z zadania wynikają trzy podstawowe operacje do wykonania:

czytanie ciągu,

drukowanie ciągu,

porządkowanie ciągu.

Pierwszy szkic programu ma postać:

begin

czytaj_ciąg;

drukuj_ciąg;

porządkuj_ciąg;

drukuj_ci ąg

end.

Poprawność i wykonalność tego rozwiązania nie ulega wątpliwości.

Kusimy się teraz zastanowić za pomocą jakiej struktury reprezentować

ciąg liczb całkowitych. Odpowiednią strukturą dla tego zadania będzie

tablica jednowymiarowa, n-elementowa (n<20), ponieważ do każdego

elementu mamy bezpośredni dostęp, dzięki czemu możemy te elementy

wczytywać, drukować i sortować. Możemy więc teraz zapisać drugi szkic:

program sortuj;

const nmax=20;

type tahlica=arrayt1..nmax] of integer;

var a: tablica;

i,n: integer; {n-liczba elementów ciągu!

begin

{czytaj ciąg!

write<’Podaj n: ’); readln(n);

wri tein (’Podaj elementy ciągu:’);

for i:=l to n do read(aCil);

{drukuj ciąg!

writeln;

writeln(’Elementy ciągu przed uporządkowaniem:’);

drukuj ciąg a^a^j^^a^ oraz liczbę elementów ciągu a

porządkuj ciąg a,,a^,■■.,;

{drukuj ciąg!

11

writeln;

writein<’Elementy ciągu po uporządkowaniu:’);

drukuj ciąg an oraz liczbą elementów ciągu a

end.

Ponieważ w programie dwukrotnie chcemy drukować ciąg, wiąc możemy w

tym celu napisać następującą procedurą:

procedura drukuj<x: tablica; m: integer);

var i: integer;

begin

writeln;

■for i:=l to m do write(xCi 3:3) ;

writeln;

writein(’Liczba elementów ciągu wynosi: m)

end {drukuj}

Teraz należy zastanowić się nad wyborem metody porządkowania

dowolnego n—elementowego ciągu a. Możemy przyjąć następujący algorytm:

for i:=l to n-1 do

begin

znajdź minimum ciągu a.,a. a orazi i+l n

wskaźnik k elementu minimalnego;

zamień a. za, i k

end

W następnym kroku metody zstępującej musi my sprecyzować sposób

szukania minimum ciągu oraz zamiany a. z a^. W efekcie otrzymujemy

algorytm szukania minimum:

min:=aCi3; k:=i;

for j:=i to n do

if aCJKmin then

begin

mi n:=aC j1;

k:=j

end {aCJ3<min>

Łącząc ze sobą wszystkie fragmenty, otrzymamy następujący program:

program sortuj;

const nmax=20;

type tablica=arrayC1..nmax3 of integer;

var a: tablica; {tablica liczb całkowitych!

n: integer; {liczba elementów w tablicy a}

12

<
min: integer; (minimalna wartość w tablicy a!

i,j,k: integer; (indeksy elementów w tablicy a!

procedura drukuj(x: tablica; tn: integer);

var i: integer;

beg i r.

writeln;

■for i:=l to m do wri te (xti 3:3) ;

writeln;

writein(’Liczba elementów ciągu wynosi: m)

end (drukuj!;

begin

(czytaj ciąg!

write(’Podaj n: ’);readln(n);

writeln(’Podaj elementy ciągu:’);

■for i:=l to n do read(atil);

(drukuj ciąg!

writeln;

writeln(’Elementy ciągu przed uporządkowaniem:’);

drukuj(a,n);

(porządkuj ciąg at13 , aC23,...atnl!

for i:=1 to n-1 do

begin

min:=a[i 3;

k:=i ;

for j:=i to n do

if atjKmin ther>

begin

min:=atj3;

k:=j

end (atjKmin!;

atk3:=ati3;

ati 3:=min

end (i!;

(drukuj ciąg!

writeln;

writein(’Elementy ciągu po uporządkowaniu:’);

drukuj(a,n)

end.

3. KOMPILACJA I WYKONYWANIE PROGRAMÓW

Prawidłowe uruchomienie programu napisanego w Języku Turbo Pascal

wersji 3.0 przebiega w dwóch etapach:

a) kompilacja,

b) wykonanie.

Kompilacja polega na przetłumaczeniu programu napisanego w Języku

Turbo Pascal na program zapisany binarnie (w postaci ciągu zer i

jedynek) w języku wewnętrznym komputera. Programy, których zadaniem jest

tłumaczenie na Język wewnętrzny komputera nazywamy konpilatoraai danego

języka. Program wykorzystywany do tłumaczenia programów napisanych w

języku Pascal na kod wynikowy (czyli postać binarną) nazywa się

koapi1atorea Pascala.

Na etapie kompilacji sprawdzana jest poprawność syntaktyczna

programu, tzn. czy dany program został napisany zgodnie z regułami

języka. Jeśli nie, to są sygnalizowane wykryte błędy, jeśli natomiast

program jest syntaktycznie poprawny, to jest generowany kod wynikowy i

można przejść do etapu wykonania. Gdy nie ma żadnej sygnalizacji błędów

wykonania i zostają wyprowadzone wyniki, wówczas należy dokładnie

sprawdzić, czy są one zgodne z wynikami oczekiwanymi. Jeśli nie, to

znaczy, że mamy do czynienia z błędami nie sygnalizowanymi.

Każdy język programowania, kompilator i komputer przyczynia się do

popełniania błędów określonego typu. Rozróżnia się trzy najważniejsze

typy błędów programowania:

a) błędy kompilacji, np. brak słowa end dla odpowiedniego słowa

begin; są to tzw. błędy syntaktyczne (składniowe),

b) błędy wykonania, np. jeśli jako drugi argument operatora div

pojawi się zero, to nastąpi sygnalizacja błędu ponieważ dzielenie przez

zero jest niewykonalne; są to tzw. błędy semantyczne,

c) błędy nie wykrywane przez komputer, np. jeśli w pewnym miejscu

programu zamiast znaku + napiszemy znak - lub zamiast -funkcji sgrt

napiszemy sqr, to obliczenia zostaną wykonane i program zakończy swoje

działanie podając błędne wyniki bez Jakiejkolwiek sygnalizacji.

Jest jeszcze wiele innych możliwości powstania błędów w programie,

np. wprowadzenie błędnych danych. Jeśli zamiast danej 10 wprowadzimy

u

daną 11, to uzyskamy zły wynik. Dlatego też w celu sprawdzenia

poprawności danych wejściowych program powinien zawierać instrukcje

drukowania danych.

Do błędów nie sygnalizowanych należy również często popełniany błąd

złego umieszczenia słów kluczowych begin i end lub ich brak. Rozważmy na

przykład następujące instrukcje:

1) if x>0 then begin

k:=k+l;

s:=s+x;

p:=p»x

end

2) begin

i-f x>0 then k:=k+l;

s:=s+x;

p:=p*x

end

3) begin

i-f x>0 then begin

k:=k+l;

s:=s+x

end;

p:=ptx

end

Instrukcje 1+3 mają zupełnie różne znaczenie, ale wszystkie są

syntaktycznie i semantycznie poprawne.

Aby ustrzec się błędów wykonania, należy napisać np.

i-f x<>0 then zs=y/x

else stop

gdzie stop będzie procedurą drukującą in-formację o przyczynie błędu.

Wszystkie te nie zamierzone zatrzymania opóźniają zarówno

kompilację, jak i poprawne wykonanie programu. Najczęściej jednak czas

komputera można zaoszczędzić dzięki dobrej diagnostyce błędów.

15

3. 1. Zadania

1. Odpowiedzieć na pytania dotyczące stylu programowania:

a) dlaczego programy powinny być czytelne?

b) jak często umieszczać komentarze?

c) gdzie dogodnie jest umieścić komentarz (wymień niektóre

łni ejsca) ?

d) jak należy wybierać nazwy zmiennych?

e) jakimi regułami można się posłużyć w celu utworzenia czytelnych

skrótów nazw zmiennych?

■f) gdzie powinno się stosować puste linie?

g) dlaczego jest pożądane stosowanie odstępów?

h) dlaczego nie powinno się umieszczać wielu instrukcji w jednej

linii?

i) podaj kilka przykładów sytuacji, w których nawiasy zwiększają

czytelność programów.

2. Jakie są cechy dobrego programu?

3. Napisz krótki program (do 50 wierszy) tak, aby kompilator

sygnalizował jak największą liczbę błędów.

4, Napisz programy powodujące błędy wykonania i sprawdź, jak

odpowiednie błędy są sygnalizowane:

a) dzielenie przez zero,

b) przekroczenie zakresu tablicy,

c) użycie w zmiennej tablicowej indeksu mniejszego (lub większego)

od dopuszczalnego,

d) błędna dana na wejściu (np. znak lub liczba rzeczywista, gdy

powinna to być liczba całkowita).

5. Podać kilka rodzajów błędów nie wykrywanych przez kompilator.

6. Jaka jest różnica między błędem syntaktycznym i błędem

semantycznym? Wymienić kilka błędów syntaktycznych i semantycznych.

4. STRUKTURA PROGRAMU W JEŻYKU TURBO PASCAL 3.0

Struktura programu napisanego w języku Turbo Pascal 3.0 jest

następująca:

nagtónek_prograaui blok.

lub

blok.

gdzie nagtanekjrogratu ma postać:

program nazna_prograBu(lista_nazn_plikan}

natomiast blok składa się z części definiującej i deki aracyjnej (mogą

być pominięte) oraz wykonawczej:

(.definicje i deklaracje)

begin
(.instrukcje)

end

Występująca w nagłówku nazna_progranu jest dowolnym ciągiem liter,

cyfr oraz znaku podkreślenia (ale zawsze musi zaczynać się literą) i nie

ma znaczenia w tekście programu. Podobnie 1ista_nazn_j>likóu, która może

być pusta, nie ma żadnego znaczenia i jest pomijana. Znak kropki na

końcu programu jest obowiązkowy. Kolejność definicji i deklaracji jest

dowolna, ale musi być sensowna (zob. diagramy syntaktyczne zamieszczone

w dodatku A). Instrukcje w programie oddziela się znakiem średnika.

Najprostszym programem w TP 3.0 jest

begin
end.

W dalszej części rozdziału pokrótce omówimy następujące konstrukcje

języka Turbo Pascal 3.0:

- instrukcje,

— procedury,

- funkcje.

17

4.1. Instrukcje

Instrukcje opisują czynności wykonywane na ustalonym, określonym w

programie zbiorze obiektów, zwanych danymi. Składnia języka Turbo Pascal

wersji 3.0 (tzn. zbiór zasad budowy wszystkich konstrukcji języka) Jest

przedstawiona za pomocą diagramów syntaktycznych w dodatku A.

W języku TP 3.0 można wyróżnić następujące rodzaje instrukcji:

- przypisania

nazna_zaiennej:=»yra^enie

naz»a_funkcj i: wyrażenie

Przykład 4.1

znak:=’k * ;

x:=a+b;

qC i 1:=i<J;

rok:=1989

złożona

begin

instrukcja ;

instrukcja^

instrukcja

end

Przykład 4,2

begin

x:=sin(y);

k:=k+l;

y:=y+h

end

begin

readln <x) ;

writeln(’sin(’,x:6:2,’)=’,sin(x):8:5)

end

18

pusta

Instrukcja pusta nie powoduje wykonania żadnej czynności i została

wprowadzona do języka w celu ujednolicenia opisu pewnych konstrukcji.

Przykład 4.3

Miejsce wystąpienia instrukcji pustej zaznaczono komentarzem.

program nic;

begin

repeat

{instrukcja pusta}

until KeyPressed;

{instrukcja pusta}

end.

warunkowe

if nyrażenie_logiczne then instrukcja

if wyrażenie_log iczne then instrukcja^ else instrukcja?

Przykład 4.4

if n=0 then silnia:=l

else siInia:=n*siInia<n-l);

i-F q then w:=w+l

i teracyjne

•For nazwa_zaiennej:=wyrażenie^ to wyrażenie? do instrukcja

for nazwa_zuiennej:=wyrażeniedownto wyrażenie? do instrukcja

while wyrażenie_logiczne do instrukcja

repeat ciąg_instrukcji until wyrażenie_logiczne

Przykład 4.5

repeat

i:=i+l;

read(cC i 1)

until cCi] = ’.’

19

•for i:=l to n do s:=s»i

■for k:=n downto 1 do P:=P+xCkj

while n>0 do n:=n-m

wyboru

case wyrażenie of

1 i sta_staTych_nybor: instrukcja^;

1ista_staTych_nyboru^i instrukcja^;

1ista_staTych_wybcrun: instrukcja^

end

case wyrażenie of

1ista_staTych_wyboru^: instrukcja ;

1 ista_staTych_wyboru,-i instrukcja^;

1ista_staTych_wyboru^: instrukcja^

else instrukcja

end

Jeśli dowolna instrukcja^ ma być wykonana dla ciągu kolejnych

elementów typu porządkowego, to można napisać

pierwszy..ostatni: instrukcja^

wyszczególniając pierwszy i ostatni element tego ciągu.

Przykład 4.6

case miesiąc of

1. .4,9..12: 1iczba_wyjazdów: =2;

5,7,8: 1iczba_wyjazdów:=3;

6: begin

1 i czba_wyj azdów: = 1

cpłata:=3250

end

end icasel

case znak of

’0’..’9’: writein(’CYFRA’);

’a’..’z’s writeln('HALA LITERA’);

’A’..’Z’: writein(’WIELKA LITERA’)

else writeln(*INNY ZNAK’)

end (case)
n

20

- wiążąca

with 1 ista_naz»_rekordó» do instrukcja

Przykład 4.7

with autoCił do

begin

nrsiIni ka:=32703;

rok_produkcji : =1978;

nr_rejestracyjny:=’WRA1234’

end

with student Ci], data_ur do

begin

writeln(nazwisko);

wri teln(wydz i ał);

writeln(’Data urodzenia: ’,dzień,miesiąc,rok)

end

■

- wywołania procedury

nożna_procedury(1 i sta _paraaetrd»_aktualnycb)

nazwa-procedury

Przykład 4.8

ClrScr {czyszczenie ekranu)

DelLine {usunięcie wiersza wskazanego przez kursor}

Delay(500) {wstrzymanie wykonania programu na okres 500

mili sekund}

GoToXY(3,5) {ustawienie kursora w 5 wierszu i w 3 kolumnie}

— skoku

goto etykieta

gdzie etykieta jest liczbą c łkowitą z przedziału [1,99993 lub nazwą.

Przykład 4.9

goto 3;

goto koniec

■

21

4.2. Procedury i -Funkcje

Podczas opracowywania programu możemy zauważyć, że pojawiają się w

nim pewne takie same ciągi instrukcji operujące na różnych wartościach,

w różnym miejscu programu. Do zapisu takich właśnie ciągów instrukcji

służą podprogramy, wśród których rozróżniamy • procedury i -funkcje.

Definicja funkcji (procedury) składa się z:

— nagłówka,

- bloku, tzn. części definiującej i deklarującej różne obiekty

(tzw. zmienne lokalne) na użytek tej funkcji (procedury) oraz instrukcji

złożonej (zob. dodatek A).

Nagłówek procedury ma postać

procedurę nazwaklista_paranatra»_foraalnych'>

przy czym lista_paraBetrón_foraaInycb może być pusta.

Nagłówek funkcji różni się tym od nagłówka procedury, że dodatkowo

określa się typ wyniku funkcji

function nazwa (1 istajaranetrón_fonalm/cM: typ_wyniku

Zasadnicze różnice między procedurami a funkcjami to:

- w nagłówku procedury piszemy słowo procedurę, a w nagłówku

funkcji słowo function,

- w nagłówku funkcji określa się typ wyniku funkcji, a w nagłówku

procedury nie,

- w bloku funkcji musi wystąpić instrukcja przypisania odpowiedniej

wartości pod nazwę funkcji,

— procedurę wywołujemy w instrukcjach wywołania procedury (pisząc

po prostu jej nazwę z parametrami aktualnymi), a funkcję wywołujemy w

wyrażeniach.

W dalszej części skryptu terminy "procedura" i "podprogram” należy

rozumieć jako "procedura lub funkcja", jeśli z kontekstu nie będzie

wynikało inaczej.

Aby podprogram zdefiniowany w danym programie został wykonany musi

nastąpić jego wywołanie z parametrami aktualnymi (jeśli występowały

parametry formalne), które muszą występować w takiej kolejności jak

odpowiadające im parametry formalne. Liczba parametrów aktualnych musi

być równa liczbie parametrów formalnych danego podprogramu, a typy

parametrów formalnych i aktualnych muszą być zgodne (zob. C23).

22

Dotychczasowe uwagi zilustrujemy przykładami.

Przykład 4.10

Chcemy wydrukować w kilku miejscach programu n pustych wierszy.

W tym celu możemy napisać procedurą PiszLinie(n), gdzie n Jest dowolną

liczbą całkowitą określającą liczbą wyprowadzanych pustych wierszy.

Definicja tej procedury może mieć postać

procedura PiszLinietn: integer);

var i: integer; {i-zmienna lokalna procedury!

begin
■for i: =1 to n do writeln

end {PiszLinieJ;

Wywołaniem takiej procedury mogą być instrukcje

PiszLinie(10);

PiszLinie(k+j);

gdzie k, j są zmiennymi typu integer.

■

Przykład 4.11

Zapiszemy funkcją sgn wyznaczającą znak danej liczby całkowitej x,

gdzie

{-1 jeśli x<0,
O jeśli x=0,
1 jeśli x>0.

Definicją funkcji sgn(x) w można zapisać następująco:

function sgn(x: integer): integer;

begin
if x < 0 then sgn:=-l

else if x=0 then sgn:=0

else sgn:=l

end <sgn>;

Funkcją sgn(x) wywołujemy w wyrażeniach arytmetycznych pisząc, np.

k: =sgn (z ' tnl;

writeln(’znak liczby a= ’,sgn<a):2)

■

W nagłówkach procedur i funkcji określamy typy parametrów

formalnych oraz sposób komunikowania się z otoczeniem. W języku Turbo

Pascal wersji 3.0 parametry mogą być przekazywane przez:

1. wartość,

2. zmienną.

23

ad 1. W przypadku przekazywania parametru przez wartość parametr

ten jest traktowany jako lokalna zmienna programu. W chwili wywołania

podprogramu przypisuje się jej wartość wyrażenia stanowiącego odpowiedni

parametr aktualny.

ad 2. Parametr formalny poprzedzony słowem kluczowym var jest

przekazywany przez zmienną i wówczas odpowiedni parametr aktualny musi

być nazwą zmiennej. Wszystkie instrukcje w danym podprogramie,

wykorzystujące parametry formalne poprzedzone słowem var, są w

rzeczywistości wykonywane na odpowiadających im parametrach aktualnych,

tzn. na nielokalnych zmiennych.

Należy wspomnieć, że w języku standardowym Pascal jest jeszcze

możliwość przekazywani a parametrów przez funkcję i przez procedurę,

natomiast w języku Turbo Pascal 3.0 taki sposób przekazywania parametrów

jest niedopuszczalny.

Przykład 4,12

Napiszmy procedurę, która dla danego n-elementowego ciągu liczb

rzeczywistych podaje liczbę oraz sumę elementów większych od zera. Niech

type tablica=arrayC1..201 of real;

Możemy zdefiniować następującą procedurę:

procedurę Suma(var x:tablica; n: integer; var SumaDodatnich: real;

var LiczbaDodatnich: integer);

var i: integer;

begin

SumaDodatnich:=0.O;

LiczbaDodatnich:=0;

for i:=l to n do

if xCil > 0 then

begin

SumaDodatni ch:=SumaDodatnich+x Ci J;

LiczbaDodatnich:=LiczbaDodatni ch+1

end <xCi3>0>

end {Suma);

W nagłówku procedury występują:

- trzy parametry przekazywane przez zmienną:

x, SumaDodatnich, LiczbaDodatnich,

- jeden parametr przekazywany przez wartość: n.

Gdyby w treści procedury wystąpiła instrukcja zmieniająca wartość

parametru formalnego nie poprzedzonego słowem var, a więc zmiennej n,

np.

24

while n > O do

begin

if xtnl > 0 then

begin

SumaDodatnich:=SumaDodatnich+x Cni;

Li czbaDodatni ch:=LiczbaDodatnich+1

end <xCnl>03;

n:=n—1

end <n>03;

to parametr aktualny m występujący w instrukcji wywołania

Suma(a,m,S,liczba)

w miejscu n, miałby po zakończeniu działania procedury taką samą wartość

jak przed wywołaniem procedury.

■

Na zakończenie tego podrozdziału omówimy jeszcze możliwość

deklarowania funkcji i procedur napisanych w wersji rekurencyjnej. W

procedurach rekurencyjnych występuje bezpośrednie lub pośrednie

wywołanie tej samej procedury.

Przykład 4.13

Daną procedurą iteracyjną drukowania liczb naturalnych od n do 1

napisaną w następujący sposób:

procedurę drukujl(n: integer);

var i: integer;

begin

for i:=n downto 1 do

wr i te (i : 4)

end fdrukujll

możemy napisać w postaci rekurencyjnej:

procedurę drukuj2(n: integer);

begin
wri te(n:4);

if n>l then drukuj?(n-i)

end <drukuj21

a

Rekurencyjna definicja procedury często skraca jej zapis, ale

towarzyszy temu na ogół wielokrotne jej wywoływanie oraz obliczanie tych

samych wartości po kilka razy, co w sumie pogarsza efektywność

algorytmu.

25

Należy podkreślić, że pojęcie procedury Jest podstawowym pojęciem

programowani a strukturalnego i często procedurę pisze się nawet wówczas,

gdy występuje w niej tylko jedna instrukcja.

4.3. :ypy danych

Opracowując szkic programu, należy zastanowić się nad wyborem typów

danych, jakie będą wykorzystane w programie.

W programie napisanym w Języku Turbo Pascal 3.0 każda zmienna musi

być zadeklarowana, tzn. musi mieć określony typ. Typ zmiennej jest to

zbiór wartości, jakie ta zmienna może przyjmować.

Typy danych występujące w języku Turbo Pascal 3.0 zestawiono w

tabelce:

Typ
Standa­
rdowy

Porząd­
kowy

Prosty Str uktu-
ralny

całkowi ty + + +

bajtowy + +

rzeczywisty + 4-

logiczny + + +

znakowy + + 4-

wyliczeniowy 4-

okrojony + i
tablicowy + •
łańcuchowy +
rekordowy +
zbiorowy

pli kowy +
wskaźni kowy _______ J

26

4.4. Proste i strukturalne typy danych

Wśród typów danych można wyróżnić:

- typy proste,

- typy strukturalne (złożone),

- typ wskaźnikowy.

Do prostych w języku Turbo Pascal 3.0 zaliczamy typy: całkowity,

bajtowy, rzeczywisty, logiczny, znakowy, wyliczeniowy i okrojony.,

Podstawowowymi typami są typy proste. Za ich pomocą określa się m.in.

złożone struktury danych. Zbiór wartości każdego typu prostego jest

zbiorem skończonym i uporządkowanym. Wartości dowolnego typu prostego

można ze sobą porównywać za pomocą następujących operatorów relacyjnych:

< , < = , =, O, >=, >.

Wśród tych typów wyróżnia się typy standardowe, do których

zaliczamy typy: całkowity, bajtowy, rzeczywisty, logiczny i znakowy. Są

one opisane w p. 4.4.1. Dwa pozostałe typy proste, nie będące typami

standardowymi, tzn. wyliczeniowy i okrojony, zostały omówione w

p. 4.4.2.

Spośród typów prostych wszystkie typy, za wyjątkiem rzeczywistego

(real) są typami porządkowymi. Dla danej x dowolnego typu porządkowego

są określone -funkcje:

ord (:•:)

pred(x)

suce(x)

— której wartością jest liczba porządkowa elementu

w tym typie,

— wyznaczająca element bezpośrednio poprzedzający x,

— wyznaczająca element bezpośrednio następujący po x.

x

Uwaga. Funkcja pred(x) nie jest określona dla pierwszego elementu

natomiast funkcja succ(x) dla ostatniego elementu danego typu.

Typy strukturalne są wykorzystywane do opisu obiektów złożonych. Do

strukturalnych w TP 3.0 należą typy:

- tablicowy,

- łańcuchowy,

- rekordowy,

- zbiorowy,

- plikowy.

27

W Języku Turbo Pascal 3.0 zmienne wszystkich typów danych z

wyjątkiem zmiennych typu wskaźnikowego są zmiennymi statycznymi. Dla

zmiennej typu statycznego miejsce w pamięci komputera Jest przydzielane

podczas kompilacji deklaracji tej zmiennej. Natomiast dla zmiennych typu

wskaźnikowego miejsce w pamięci komputera Jest przydzielane i zwalniane

w trakcie wykonywania programu w chwili napotkania odpowiedniego

żądania. Z tego względu zmienne typu wskaźnikowego nazywa się zmiennymi

dynamicznymi■ Typem wskaźnikowym zajmiemy się w rozdz. 10.

4.4.1. Typy standardowe

Typ całkowity o nazwie integer zawiera liczby z przedziału

(—max i nt..max i nt 3,

gdzie maxint jest stałą standardową o maksymalnej wartości całkowitej

dostępnej na danym komputerze i w TP 3.0 wynosi 32 767. Przykłady liczb

całkowitych: 17, -109, 0.

Każda dana typu całkowitego jest reprezentowana w 2 bajtach pamięci

<1 bajt=8. bitów).

Na wielkościach typu całkowitego są określone operacje;

dodawanie (+), odejmowanie (—) , mnożenie(i),

dzielenie (/), dzielenie całkowite (div), raodulo (mcd),

przesunięcie w lewo (shl), przesunięcie w prawo (shr)

negacja (not), iloczyn logiczny (and),

suma logiczna (or), różnica symetryczna (x or) .

Przykład 4.14

Wyrażenie Wyn i k

3/4 0.75

3 div 4 0

3 mod 4 3

3 shl 1 6

3 shr 1 1

not 3 -4

not 5 -6

5 and 2 0

5 and 3 1

5 or 2 7

5 or 3 . 7

5 xor 2 7

5 xor 3 6

■

28

Dla elementów dowolnego typu porządkowego (a więc dla typu

integer) są określone -funkcje standardowe

ord(k) pred(k) suce(k>

Przykład 4.15

ord (-2)=—2,

ord (0)=0,

ord(5)=5,

pred(4)=3,

suce(6)=7.

Typ bajtowy o nazwie byte jest to podzbiór liczb całkowitych z

przedziału £0,2551. Każda dana typu byte zajmuje 1 bajt pamięci.

W języku Turbo Pascal 3.0 dane typu całkowitego i bajtowego można

zapisywać za pomocą cy-fr szesnastkowych, tzn. cyfr od 0 do 9 oraz liter

od A dc F. Takie liczby poprzedzamy znakiem $, np.

SA, SA2, -SBC (odpowiednie wartości dziesiętne 10, 162, -188).

•Typ rzeczywisty oznaczany jako real, jest to skończony podzbiór

liczb rzeczywistych zawierający liczbę O oraz liczby o wartości
_ 3Q ^g

bezwzględnej z przedziału £10 ,10 1. Przykładami liczb rzeczywistych

są 5.0, -7.25, 0.0, 4E-3 (czyli 0.004). Zapis 4E-3 oznacza 4 razy 10

Pisząc liczby rzeczywiste zamiast przecinka używamy kropki.

Każda dana typu rzeczywistego jest reprezentowana w 6 bajtach

pamięci z dokładnością ok. 11 cyfr znaczących.

Na wielkościach typu rzeczywistego są określone działania:

+ , -, *, /.

Ponadto są określone standardowe funkcje przejścia z typu rzeczywistego

na typ całkowity:

|trunc(x)| - odrzucenie części ułamkowej z x,

np. trunc(7.4)=7, trunc(-7.8)=—7.

|round(x)[- zaokrąglenie do najbliższej liczby całkowitej,

np. round(3.75)=4,

round(-3.15)=-3,

round(3.5)=4,

round(-3.5)=-4.

Za pomocą funkcji trunc funkcję round można zdefiniować następująco:

round(x) = trunc(x+0.5)
trunc(x-0.5)

jeśli x>0,
j eśli x < 0.

29

Typ logiczny o nazwie boolean jest określony tylko przez dwie

wartości:

false (fałsz), oznaczaną umownie przez 0,

true (prawda), oznaczaną umownie przez 1.

Każda dana typu logicznego jest pamiętana w 1 bajcie pamięci. Dla

zmiennych typu boolean są określone cztery operatory:

Operator Operacja

and koniunkcja

or alternatywa

xor różnica symetryczna

not negacja

W tabelce poniżej zestawiono operacje na zmiennych typu logicznego.

p q not p P or q p and q p x or q

1 i 0 1 1 0
0 i 1 1 0 1
1 0 0 1 0 1
0 0 1 0 0 0

Funkcje ord(p), pred(p) oraz succ(p) dla danej p typu boolean

przyjmują następujące wartości:

ord(false)=0, ord (true) =1,

pred(true)=false, suce (false)=true,

pred(false), suce(true) — nieokreślone.

Typ znakowy o nazwie char obejmuje uporządkowany zbiór znaków

zewnętrznych zależny od komputera. Zawsze zawiera on:

- cyfry od 0 do 9

’0’<’l’<. . , /

- łacińskie litery małe i wielkie alfabetycznie uporządkowane

’ a’< ’ b’< . . . < ’ z ’ oraz ’ A’< ’ B’<.. . < ’ Z ’,

- znak spacji ’ ’ ,

- symbole specjalne, np.

Wartości typu znakowego zapisujemy w apostrofach. Każda dana typu

znakowego jest pamiętana w 1 bajcie pamięci.

Dla wartości typu char są określone funkcje standardowe:

upcase(z) — której wartość jest wyznaczana następująco:

jeśli argumentem jest mała litera, to wynikiem jest

odpowiednia wielka litera, w przeciwnym razie

wynikiem jest ten sam znak.

30

ord(z) - której wartością jest numer porządkowy znaku z,

chr(i) - której wartością jest znak o numerze porządkowym

... "i", jeśli taki znak istnieje.

Prawdziwe są równości:

ord(chr(i))=i, jeśli chr(i) jest określone,

chr(ord(z))=z, dla z typu char.

Przykład 4.16

upcase(’t’)=’T’, upcase(’T*)=’T’, upcase(’+’)=’+’,

ord(’a’)=97, chr(97)=’a’, cnr(ord(’A’))=’A’.

■

4.4.2. Typy wyliczeniowe i okrojone

Typ wyliczeniowy definiujemy poprzez wyliczenie jego elementów,

które muszą być unikalnymi nazwami, tzn. różnymi ciągami liter, cyfr i

znaku podkreślenia zaczynającymi się od litery (nazwa w TP 3.0 może

zawierać maksymalnie 127 znaków, przy czym wszystkie znaki są istotne).

Na elementach typu wyliczeniowego nie wykonuje sią żadnych operacji

arytmetycznych.

Przykład 4.17

type pomieszczenie=(aula, klasa, gabinet, korytarz, szatnia);

budynek=(D_l, D_2, C_1, C_2, T_18) ;

zmienne=(al, a2, a3, a4) ;

waluta=(doiar, funt, marka);

Elementy typu wyliczeniowego s; uporządkowane i można je ze sobą

porównywać, np.

dolar < funt,

funt < marka,

oraz mają przypisane numery porządkowe

ord(dolar)=0,

ord(funt) =1,

ord(marka)=2.

Dwa różne typy wyliczeniowe nie mogą mieć wspólnych wartości.

Znacznym ograniczeniem w stosowaniu typu wyliczeniowego jest fakt, że

jego wartości nie można wczytywać ani drukować.

31

Typ okrojony jest niepustym podzbiorem dowolnego typu porządkowegr?

(integer, byte, char, baolean, wyliczeniowego).

Przykład 4.18

type pomieszczeriie=(aula, klasa, gabinet, korytarz, szatnia):

zakres=0..9; {typ okrojony typu integer}

WielkaLitera=’A’..’Z’; Ctyp okrojony typu char!

cyfra=’0’..’9’; <typ okrojony typu char}

sala=aula..gabinet; {typ okrojony typu wyliczeniowego}

logiczny=false.-true; {typ okrojony typu boolean}

Numery porządkowe dla wartości należących do typu okrojonego

pierwotnego typu T są równe numerom porządkowym w typie T.

Przykład 4.19

Ni ech

type cy+ra=(zero, jeden, dwa, trzy, cztery);

var n: 15..30;

c: cyfra;

w: dwa..cztery;

n:=15;

c:=zero;

w:=dwa;

Wówczas ord(n)=15, ord(30)=30, ord(c)=0, ord(w)=2, ord (cztery)=4,

pred(dwa)=jeden, suce(dwa)=trzy,

pred(zero), suce(cztery) - nieokreślone.

4.5. Definicje stałych

W celu zwiększenia czytelności programu oraz umożliwienia jego

modyfikacji często używa się stałych, których definicja w języku Turbo

Pascal 3.0 wygląda następująco:

const nazwa1=T1;

nazwak=Tk;

gdzie Tl,...,Tk - liczba, łańcuch lub nazwa stałej, która może być

poprzedzona znakiem + lub —.

32

Przykład 4.20

const m=10;

mi nusm=-ir;

plusm=+m;

szablDn=’ Ut;

nl^J; {znak sterujący oznaczający nową linię}

cr^M; {znak sterujący oznaczający powrót karetki!

znakA=#65; {znak o kodzie 65}

znakN=#$4E; {znak o kodzie szesnastkowym 4E}

■

W TP 3.0 standardowo są predefiniowane dwie stałe:

maxint=32 767;

pi=3.1415926536.

4.6. Deklaracje zmiennych

W języku Turbo Pascal 3.0 zmienne można deklarować dwoma sposobami:

yar zl,z2,...,zk: Tl;

pl,p2,....,pt: Tn;

1 ub

type nazwa_typa=T;

var zl,z2,...,zk: nazwa_typa;

gdzie: .
zl,z2,.. . ,zk,...,pl,p2,...,pt - różne nazwy zmiennych,

T, Tl,...,Tn - nazwy lub opisy typów.

Przykład 4.21

type odbiornik=(radio, tv);

Wi elkaLitera=’A’ . .’ Z ’ ;

var MałaLitera: ’a’..’z’;

1: WielkaLitera;

S: odbiornik;

drzewo: (klon, lipa, sosna, wierzba);

nrdomu: 1..20;

a

Zakresem deklaracji zmiennej Jest blok, w którym ta zmienna została

zadeklarowana.

33

W języku Turbo Pascal 3.0 istnieje możliwość przypisywania zmiennym

danych początkowych. Deklaracji zmiennych, którym nadajemy wartości

początkowe, nie poprzedzamy słowem var tylko const.

Przykład 4.22

const godz: integer=60;

głoski: set o-f char=C’a’,’e’,’i’,’o’,u’,*y’1;

jest: boolean=true;

hasło: stringC101=’PARASOL’;

sen: arrayC1..4J o-f integer=(5,7,6,9);

■

Jeśli wartości tak zadeklarowanych zmiennych ulegną zmianie w

trakcie wykonywania programu, to przy ponownym uruchomieniu programu

znajdującego się w pamięci operacyjnej zmienne mają wartość z ostatniego

wykonywania. W związku z tym zaleca się nadawanie wartości początkowych

tym zmiennym, które są traktowane w programie jak stałe.

Na zakończenie tego podrozdziału podamy przykład, w którym

dokładnie precyzujemy problem oraz szukamy metod jego rozwiązania.

Następnie podajemy treści programów napisanych w języku Turbo Pascal 3.0

oraz wyniki uruchomienia tych programów na IBH PC.

Przykład 4.23

Do palika wbitego na okręgu o promieniu R ograniczającego łąkę,

sznurkiem długości D jest przywiązana koza. Jaka powinna być długość

sznurka, żeby koza pasła się tylko na połowie łąki?

Analizując zadanie będziemy wykorzystywać oznaczenia z rys. 4.1.

Rys. 4.1

34-

Niech a = ^<^AKB. Wówczas

Rn / 2 5tg a = , gdzie BC = / 4R^ - D^

czyi i

Stąd
/ AR2 - D2

a = arctg ------ —-p--------- .

Pole S wypasu kozy Jest sumą pola zakreskowanego SI oraz pola S2

będącego wycinkiem koła o promieniu D, środku K i łuku AB, czyli

2
S = SI + S2, ędzie S2 = aD .

Aby obliczyć pole SI, obliczamy póle wycinka koła o promieniu R, środku

w punkcie □ oraz łuku AB, od którego odejmujemy pole czworokąta AKBO,

czyi i

2SI = 2^R2 - 2PńoKB ,

gdzie

R«D*sino< _ n
PAOKB = -------- 2--------- ’ = 2 -

I
Stąd

2 2S = aD + (n - 2a)«R - R«D*sina.

Dalej zadanie można rozwiązać dwiema metodami.

Metoda 1

Chcemy znaleźć takie D, by

1 2S = ^rR .

Z rysunku 4.1 widać, że interesuje nas D>R. W związku z tym musimy

stablicować funkcję

2 2
S(D) = aD - R*D*sina + (n-2o<)*R

<s przedziale CD . ,D Iz krokiem h, przy czym min max

/----2-------2". / 4R - D
a = arctg -----------0--------- ,

D . - minimalna długość sznura,min

D ” maksymalna długość sznura.

35

Na początek można wybrać:

D . = R, D = 2R, h - dowolne min max ’

a następnie zawęzić przedział poszukiwań n, D^* 1 oraz zmniejszyć

krok h.

Metodę tę można zapisać następująco:

(1) Podaj D . , D , h. min max

(2) Stablicuj -funkcję S(D) w przedziale CD . ,D Iz krokiem h. min max

(3) Przeprowadź analizę otrzymanych wyników.

(4) Czy otrzymane wyniki są wystarczająco dokładne, tzn. czy

|S(D)-in R | < £ ?

Jeśli tak, to przejdź do (7).

(5) Wybierz nowe D . , D , h. min max

(6) Przejdź do (2).

(7) Koniec.

Punkty (3), (4), (5) może wykonywać człowiek lub program.

Poniżej zamieszczamy tekst programu rozwiązującego zadanie o kozie

według podanej metody, z kontrolą wyników dokonywaną przez człowieka.

Jako ćwiczenie proponujemy takie zmodyfikowanie programu, b\ analiza

wyników była wykonywana automatycznie przez program.

program metodal;

var R,R2,alfa,Dmin,Dmax,d2,h,S,pom: real;

litera: char;

begin

clrscr; {czyszczenie ekranu}

repeat

writeln(’Podaj promień R (R>0):’>;

readln(R);

until R>0;

writelnf’ Promień koła R=',R:5:2);

R2:=sqr(R);

pom:=4tR2;

writeln(* Połowa pola koła wynosi:’, 0.5*piłR2:13: B);

1 i tera:= ’ y ’ ;

while litera=’y’ do

begin

wr itein(’Podaj Dmin,Dmax,h*);

readln <Dmin,Dmax,h);

36

while Dmin<=Dmax do

begin

d2:=sqr(Dmin);

alfa:=arctan <sqrt (pom-d2)/Dmin);

8:=alfa*d2-RJDmin*si n(alfa)+(pi-2*alfa)*R2;

writelnt’ D=’,Dmin:10:6,’ S=’,S:13:8);

Dmi n:=Dmi n+h

end {whilei;

writeln(’Czy obliczenia powtórzyć(y/n)?’);

readln <1 i tera)

end <litera=’y’>

end.

Oto wyniki otrzymane po uruchomieniu programu dla

początkowych Dmin=10, Dmax=20, h=O.B:

danych

Podaj promień R (R>0) :

10.0

Promień kola R= 10.00

Polowa pola kol a wynosi: 157.07963268

Podaj Dmin, Dmax , h

10.0

D=

20.0 0.8

10.000000 S= 122.83696986

D= 10.800000 S= 139.86949921

D= 11.600000 8= 157.36044825

D= 12.400000 8= 175.15768138

D= 13.200000 S= 193.09678421

D= 14.000000 8= 210.99767204

D= 14.800000 S= 228.65975121

D= 15.600000 S= 245.85468009

D= 16.400000 S= 262.31485878

D= 17.200000 8= 277.71356625

D= 18.000000 S= 291.62640904

D= 18.800000 S= 303.44106453

D= 19.600000 S= 312.04942239

Czy obli czeni a powtórzyć <y/n)?

y
Podaj Dmin, Dmax , h

10.8

D=

11.6 0.1

10.800000 S= 139.86949921

D= 10.900000 8= 142.03381501

D= 11.000000 S= 144.20501835

D= 11.100000 8= 146.38281906

37

D= 11.200000 S= 148.56692449

D= 11.300000 S= 150.75703937

D= 11.400000 S= 152.95286583

D= 11.500000 8= 155.15410326

D= 11.600000 8= 157.36044824

Czy obliczenia powtórzyć(y/n)?

y
Podaj Dmi n, Dmax, h

11.5

D=

11.6 0.01

11.500000 8= 155.15410326

D= 11.510000 8= 155.37451295

D= 11.520000 8= 155.59497341

D= 11.530000 8= 155.81548434

D= 11.540000 8= 156.03604543

D= 11.550000 S= 156.25665638

D= 11.560000 8= 156.47731688

D= 11.570000 8= 156.69802662

D= 11.580000 8= 156.91878530

D= 11.590000 8= 157.13959261

D= 11.600000 8= 157.36044824

Czy obi i czeni a powtórzyć(y/n)?

y
Podaj Dmin, Dmax, h

11.58 11.59 0.001

D= 11.580000 S= 156.91878530

D= 11.581000 S= 156.94086385

D= 11.582000 8= 156.96294288

D= 11.583000 S= 156.98502240

D= 11.584000 8= 157.00710241

D= 11.585000 S= 157.02918290

D= 11.586000 8= 157.05126387

D= 11.587000 S= 157.07334533

D= 11.588000 8= 157.09542727

D= 11.589000 S= 157.11750970

D= 11.590000 8= 157.13959261

Czy obiiczenia powtórzyć(y/n)?

n

Obliczenia programu zostały w tym miejscu przerwane. Wartość

zmiennej S (oznaczającej obliczone pole wypasu kozy) najbliższa połowie

pola koła o promieniu R=10 wynosi 157.07334533 (połowa pola koła wynosi

157.07963268), a więc dokładność obliczeń jest mała. Obliczona długość

38

sznura kozy D=11.587. Przedział CDmin,Dmaxl był 3-krotnie zawężany, przy

czym jednocześnie był zmniejszany krok h. Program wymaga ciągłej analizy

wyników przez użytkownika i wprowadzania odpowiednich danych w kolejnych

krokach algorytmu.

Rozważmy teraz drugi sposób rozwiązania zadania o kozie.

Metoda 2

k= 0, jeśli

k = 1, jeśli

| W (x) |<c,

|D -D .1 max min

program metoda2;

var pi2,P,R,R2,R4,Dmin,Dmax,WDmin,WDmax,x,Wx,eps: real;

k: -1..2;

function W (D,R,R2,R4,pi2: real): real;

var D2,alfa: real;

begin

D2:=sqr(D);

alfa:=arctan(sqrt(R4-D2)/D);

W:=alfatD2—RŻDtsin(alfa) + (pi 2—2talfa)SR2

end <W1;

begin

{wczytywanie danychl

2
Chcemy znaleźć takie D, by S(D) = , czyli znaleźć rozwiązanie

równania

(7.) W(D) = aD2 - R*D*sina + - 2a)R2 = O,

gdzie a = arctg

W celu znalezienia rozwiązania równania (X) możemy zastosować np. metodę

połowienia przedziału. W metodzie tej konstruujemy ciąg kolejnych

przybliżeń x, następującym algorytmem:

(1) ieśli W(D .) i W(D) mają takie same znaki, to brak min max

rozwiązania i stop,

(2) x = (D . + D)/2,min max

(3) jeśli W(x) i W(D) mają różne znaki, to D . :=x i idź do (2), maw min

(4) D :=x i idź do (2). max

Warunkiem zakończenia obliczeń jest:

k=-l, jeśli rozwiązanie nie istnieje.

39

writeln(’Podaj promień koła R’> ;

readln(R);

writeln(’Podaj eps’);

readln(eps);

writeln(’Podaj Dmin, Dmax’);

readln(Dmin,Dmax);

{obliczanie wielkości pomocniczych}

R2:=sqr(R);

R4:=4*R2;

pi2:=0.5tpi; {pi-stała predełiniowanal

P:=pi2»R2;

writeln(’ Połowa pola koła wynosi:’,P:13:8);

{szukanie miejsca zerowego -funkcji W w przedziale [Dmin,Dmaxl

metodą połowienia przedziału}

WDmin:=W(Dmin,R,R2,R4,pi 2);

WDmax:=W(Dmax,R,R2,R4,pi2);

k:=2;

if WDmintWDmax>0

then k:=-l

el se

repeat

x:=0.5*(Dmi n+Dmax) ;

Wx : =W (x , R, R2, R4, pi 2) ;

if Wx*WDmax<0

then Dmin:=x

else

begin

Dmax:=x;

WDmax:=Wx

end;

if abs(Wx)<=eps

then k:=0

else if abs(Dmax-Dmin)<=eps then k:=l

until (k=0) or (k=l);

{wyprowadzanie wyników}

case k of
-1: writein(’Brak rozwiązania w przedziale C*,Dmin,’,’,Dmax,’1 ’ > ;

0,1: begin

writeln(’ Obliczona długość sznura wynosix:10:6);

writelnt’ Obliczone pole wypasu kozy wynosi:’,Wx+P:13:8)

end

4-0

end Ccasel

end.
Poniżej zamieszczono tabulogram otrzymany podczas uruchamiania

programu metoda?.

Podaj promień kola R

10.00

Podaj eps

0.00001

Podaj Dmin, Dmax

10.0 20.0

Polowa pola kola wynosi: 157.07963268

Obliczona dlugosc sznura wynosi: 11.587286

Obliczone pole wypasu kozy wynosi: 157.07966062

4.7. Zadania

1. Czym różnią się podane symbole języka Pascal?

a) a ’ a’

b) btil bi

c) 1 ’ 1’

d) 5 5.0

e) : = =

■F) end <end>

Z di v

h) *

2. Zadeklarowano zmienne

var x,y,z: real;

i,j,k: integer;

Które z poniższych wyrażeń są syntaktycznie poprawne, jakiego są typu,

ile jest niejawnyc operacji przejścia z typu integer do typu real?

x+yżi ;

i div J+x;

i div (j+x);

i mod (j+y);

i tx+j *y;

41

(x+y) < (i+j);

2/x;

3/5;

i/j/x;

3. Zapisać w języku Pascal następujące wyrażenia logiczne:

7x > a;

y < -2.5 v x > 8.75;

-1 < i < 1 -2 < j < 2;

p > sin y z. p+lcg^ p X 0;

~ (a > b> v (z < 4) ;

4. Zapisać w języku Pascal następujące wyrażenia arytmetyczne:

ctg <x-y i

In(a-i b)
z + i ’

a b
c d

3 7

5, Niech

const trzyspacje=’

var m,n: integer;

a,b: real;

p,q: boolean;

cl,c2: char;

Które instrukcje są poprawne, a które błędne? Odpowiedź uzasadnić.

42

a) m:=trunc(b)+a;

b) p:=m+n;

c) read(cl,c2,’ ’);

d) c1:=trzyspacje;

e) c2:=’AB’;

■F) p:=a > b;

g) m:=n mod a;

h> ’cl’:=’c2’

i1 c2: =chr (’ a’);

j) m:=m-ord(’O’);

k) wri tein(a,b,m,n,q,p,q);

1> read(m, m);

1) a:=m/n;

m> m:=a div n;

6. Zaprogramować obliczanie następujących wielkości:

3 2
c> y=5x +3x -2x+2

■ • ł . 2d> t=sina-sin a

2
e) w=(k —4>:<k—2);

f) f=p/2+(6-r>/4-|;

g) x=6+t5

h) t=2n/4

i) jeśli a < b lub c > d, to x=4, w przeciwnym przypadku y=0.

7. Czy w następujących przykładach kolejność instrukcji

i stotna?

a) n:=m;

m: =p;

p:=2*n-m;

b) y:=x;

z:=2*x;

c) x:=3*x-l;

S:=S+x;

d) z:=z+x;

z:=z-x;

e) a:=a+x;

x:=a+x;

jest

43

8. Za pomocą Jednej instrukcji przypisania zapisać:

a) nadanie zmiennej całkowitej wartości m, jeśli zmienna miała

wartość n natomiast wartości n, Jeśli miała wartość m,

b) obliczanie kwartału w zależności od numeru miesiąca,

c) nadawanie zmiennej logicznej p wartości true, jeśli x > 2 oraz

false, jeśli x < 2.

9. Czy dane -fragmenty programów są równoważne, tzn. czy nadają

zmiennym takie same wartości?

a) 1) if k=l then begin k:=k+2; Ss=S+k end

2) if k=l then k:=k+2; S:=S+k

b) 1) if x=y then p:=l else p:=2

2) if x=y then ps=i; p:=2.

c) 1) ks=l; for i:=l to n do if aCil > alki then ks=i

2) k:=l; for i:=l to n do if atkl < = atil then k:=i

d) 1) for j: = l to n do S:=S+aCjl; S:=S/n

2) for j:=l to n do begin S:=S+aCJJ; S:=S/n end

10. Zbadać poprawność semantyczną przypisań w następującym fragmen­

cie programu:

var a,b,c: real;

m,n,k: integer;

s,p,q: boolean;

s:=a»c;

q:=m<n;

k:=b/c-2»m;

n:=a;

b:=m;

c:=sqr(k);

p:=q=s;

11 Czy poprawna jest instrukcja:

for i:=l to 20 do

begin

writeln (i) ;

i:=i+l

end

4-4-

12. Napisać program obliczający wielkości:

a) . t = lir/ 1 Zg

dane: 1 - liczba rzeczywista dodatnia,

g - stała grawitacji (g=981 cmZs),

2
b) F = Gm^m^Zr

dane: nip m2, r - liczby rzeczywiste dodatnie,

-8 3 2
G - uniwersalna stała grawitacji (G = 6.673«10 cm /(g*s >).

13. Z podanych wyrażeń wybrać te, które są poprawne w języku Turbo

Pascal i określić ich wartość w kodzie ASCII:

a) ord(’a’);

b) ord(1>;

c) ord(’3’) ;

u) ord(’abc’);

e) ord(.) ;

f> ord'’ ’).

U. Jaki będzie wydruk?

a) wri tein (ord (-fal se> : 3, ord(true):3)

b> wri tein (ord (suce (-fal se)): 3, ord(pred(true)>:3)

15. Jak należy przygotować dane dla programu zawierającego

deklaracją zmiennych:

var i,j,k,1,m,n: integer;

oraz następujące instrukcje czytania:

a) read(n,m,i,j); read(k,l);

b) read(n,m,i,j,k,1>;

c) readln(n,m,i,j); read(k,l);

d) readln(n); readln(m); readln(i); readln(j);

readln(k); readln(l);

e) readln (n,m,i,j,k,1);

Który z zapisów (a)-e(e) uważasz za najlepszy?

16. Niech

const n=10;

var in,im,p,q: integer;

s,t: real;

4-5

Czy podane instrukcje są poprawne?

a) read <n);

b) p:=s div t;

c) q:=n=10;

d) im:=in/n;

e) write(n,p,q,im)

17. Czy poprawne są następujące definicje typu wyliczeniowego:

a) type waga=(3.75,4.5,28.2,13.7);

b) type 1 itera=(a,b,z,s,w);

c> type SemestrLetni= (luty,...,czerwiec>;

d) type znak=(’A’,’B*, ’ C’ł ;

e) type cyfra=(0,1,2,3,4);

f) type dni=(p,w,s,c,p,s,n);

18. Czy poprawne są następujące definicje typu okrojonego:

a) type rok=1900..1900;

b> type wojna=1914..1917,1939..1945;

c) type 1 i tera=’A’..’z’;

d) type wzrost=l.5..2.1;

19. Czy poprawny jest program:

program nic;

begin

end.

20. Wydrukować napis:

Tytuł: 'PASCAL’.

21. Ile razy zostanie wywołana procedura wyjścia w danym fragmencie

programu?

for licznikl:=l to 5 do

for licznik2:=4 to 9 do

wri tein(Iiczni kl*1iczni k2)

22. Napisać program, który danym zmiennym rzeczywistym o

wartościach x, y (x^y) nadaje nowe wartości w następujący sposób:

zmiennej o wartości mniejszej przypisuje wartość ich średniej

arytmetycznej, zmiennej o wartości większej przypisuje wartość x»y.

4-6

23. Cyfry od 1 do 5 oznaczają kolory:,

1 - szary,

2 - czerwony,

3 - zielony,

4 - niebieski,

5 - czarny.

Napisać program, który dla danej liczby całkowitej kolor (l<kolor<5),

wydrukuje tekst w postaci (np. dla kolor=4)

Moim ulubionym kolorem jest niebieski.

24. Danych jest n liczb naturalnych. Dla każdej z tych liczb

wydrukować napis "parzysta" lub "nieparzysta".

25. Daną cyfrą k (od 0 do 9) wydrukować słownie.

26. Dana jest cyfra rzymska od I do X. Wydrukować ją w postaci

arabskiej.

27 Dana jest liczba całkowita z przedziału Cl,123 oznaczająca

miesiąc. Wydrukować, który to kwartał.

28. W zależności od podanego dnia i miesiąca wydrukować nazwę

odpowiedniej pory roku.

29. Dana jest liczba naturalna oznaczająca rok. Napisać program

sprawdzający czy Jest to rok przestępny, czy nie i drukujący odpowiedni

tekst w każdym przypadku (rok jest przestępny, jeśli dzieli się przez 4

i nie dzieli się przez 100 lub dzieli się przez 400).

30. Dane są liczby rzeczywiste a, b. Obliczyć

[a jeśli a=b,
P 1 j ab Jeśli a*b.

31. Dane są a, b, c - długości boków trójkąta. Obliczyć:

— promień ok, ęgu wpisanego — r,

- promień okręgu opisanego - R,

- pole trójkąta - S,

- kąty trójkąta a, ft, y (w stopniach).

Wzory:

p = ^(a+b+c),

r - / <P-a> <p~b) (p-c) _ abc
r “ y ----------------- p---------------- ’ = ~ Pr, x - 4^ • ,

a = 2arctg = 2arctg 2'^ > X = 18O°-a-f3.

32. Napisać programy dla następujących zadań:

a) Dla stożka ściętego dane są wartości r, R, h.

Obliczyć:

1 - tworzącą stożka,

M — pole powierzchni bocznej,

V - objętość stożka,

H - wysokość stożka.

Wzory:

1 = / h +(R-r) ,

M = nl(R+r),

V = ^<R2+r2+rR) ,

u _ ŁB.H ~ R—r"

b) Dany jest stożek o promieniu podstawy r, wysokości h

tworzącej 1. Obliczyć:

M - pole powierzchni bocznej,

S — pole powierzchni całkowitej,

V - objętość stożka.

Wzory:

M = nrl, S = nr(r+1), V = i nr2h.

48

33. Dana jest liczba rzeczywista x. Obliczyć:

A(x)

x2+l

x3+7
5 :

jeśli x<-l.

Jeśli x=-l,

jeśli x >—1.

34. Dla każdej z podanych n liczb całkowitych (n dana liczba

naturalna) obliczyć wielkość S określoną wzorem:

Jeśli x - parzyste.

Jeśli x - nieparzyste i x>0.

jeśli x - nieparzyste i x<0.

35. Dane są liczby rzeczywiste a. b, c, d <a<b. c>0) . Obli czyć:

Z

2 2 Jeśli x +y <a,
2 2jeśli a<x +y <b,

2 2 Jeśli b<x +y ,

gdzie:

x = In c + cos(a+b), y = 7|axotbx-t-c | .

36. Dane są x, y - liczby rzeczywiste. Obliczyć:

Jeśli x*y,

w przeciwnym przypadku.

rzeczywiste, m - liczba całkowita,

[<x +y x)(x+y)
=] 43

t <y-x y) <y +x)

37. Dane są a, b, c - liczby

(l<m<5>. Obliczyć

max(a,b,c) jeśl i m=.
min(a,b,c) Jeśl i m=2,
a+b+c

3 Jeśl i m=3.

a2+b2+c2 jeśli m=4,

jeśli m=5.

38. Dana jest liczba naturalna n oraz liczba rzeczywista x.

Obliczyć:

n
5 = x 1 <bez użycia potęgowania).

i = l

49

39. Dana Jest liczba naturalna n. Obliczyć sumę

n

4-0. Dana jest liczba naturalna n oraz liczba rzeczywista x.

Napisać program obliczający sumą:

n

i=0

raz od początku a raz od końca. Porównać otrzymane wyniki. Który sposób

Jest lepszy? Dlaczego?

41. Dana jest liczba naturalna n oraz liczba rzeczywista x.

Obliczyć

-- ■' 1 S
' n!x jeśli x<0,

n
5 x* jeśli xiO.

. i = 1

42. Dla danej liczby naturalnej n oraz liczby rzeczywistej

obiiczyć

G(x,n) i=l
n ..x + l
0.1 n (x+i)

jeśli x<0,

jeśli x>0.

43. Dane są: n - liczba naturalna, x - liczba rzeczywista. Obliczyć

_ , . n n . n-1 n-1 . ,1 , ,F (x) = =• x + —x + . . . + ^ x + 1.n 3 3 3

44. Dla danych liczb naturalnych m, n oraz zmiennej rzeczywistej y,

która przyjmuje wartości a+i*h, gdzie a, h - dane liczby rzeczywiste,

i=0,l,...,n, obliczyć i wydrukować wartości

,, , . ,1 2 2 3 3 , , , m m mW^y) = 1- - y + j y -?y +...+(-l) y . .

45. Dane są liczby rzeczywiste x, eps. Obliczyć

S
2 3X X X

1 2! 3!

z dokładnością eps (tzn. obliczenia zakończyć, jeśli

|S - e[<eps, gdzie e a: 2.71).

50

46. Obliczyć

M 2 x4 n+1 xn
2 “ 3 4 5 "’’ n+1

dla x=2,5,8,11,14,17,20 oraz dowolnej liczby naturalnej n.

47. Dane są liczby rzeczywiste x, e. Obliczyć przybliżoną wartość

sin(x) ze wzoru

3 5 i+1x.x + x +sin (x) = x - zr + zy - ... — _ -3! 5! (1+11!

Obliczenia należy zakończyć, gdy

—IM < IM’
gdzie

2i+l , x _____
Łi ~ (2i + l) ! ’

1 k
s = £ <-i>Kt .

1 k=0 K

48. Dane są liczby rzeczywiste x, eps. Obliczyć przybliżoną wartość

cos(x> ze wzoru

2 4 6
cos(x) = l- jr+4T~6F+"-

Obliczenia należy zakończyć, gdy

i
t.< eps, gdzie t. = Ty (i=2,4,6, .. .) .

49. Dla danej liczby rzeczywistej x>0 obliczyć przybliżoną wartość

całek:

x
r 2 3 5 7

J e du 1 3*1! 5*2! 7*3!
[0W

b) 3*1 ! + 5*2! 7*3!

Obliczenia należy zakończyć, gdy .

-IM IM.
gdz i e:

t. - ostatnio obliczony

S. - ostatnio obliczona

wyraz ciągu,

przybliżona wartość całki.

51

50. Opracować program, który liczy

1 1 _ 1 __ 1 _ 1
1 2 3 4 -■• + 9999 10000

a) z lewa na prawo, ,

b) z prawa na lewo,

c) oddzielnie dodatnie i ujemne z lewa na prawo,

d) oddzielnie ujemne i dodatnie z prawa na lewo.

Wyniki porównać.

51. Dana jest liczba naturalna n>0 oraz li czba rzeczywista x.

Obliczyć wartość -funkcji danej wzorem:

F (x) = n

+
(N

M
)

in
X

X
X

X
x

N

ro
id

o

;

1 jeśl i

jeśl i

jeśli

jeśl i

jeśl i

jeśl i

n=l,

n=2,

n=3,

n=4,

n=5,

n>6.

+ X + 1

X + 1

+

+

+

2x" + x + 1
3 7

3x + 2x + x + 1

4x + ox + 2x +

52. Napisać procedurę, która dla

wyznacza max(a,b,c).

danych liczb całkowitych a, b, c

53. Jakie bądą wartości zmiennych d oraz p po wykonaniu programu:

program fun;

var z,y,d,p: real;

■function f <var x: real): real;

begin

v:=x+10.0;

f:=0.0

end <f>;

begin
z:=5.Ó;

y:=5.O;

d: =f (z) +z;

p:=y+f(y);

wri tein(’d=’,d:5:1,’ z = ’,z:5:l);

wri tein(’p=’,p:5:1,’ y=’,y:5:l)

end.

52

54- . Dany Jest program

program zabawa;

var a,b: real;

procedura xyz(var x,y,z: real);

begin

x:=l.0;

y:=2.0;

z:=3.0;

end <xyzł;

begin
xyz (a, b, a);

writeln<’a=’,a:5:2);

writeln(’b=*,b:5:2)

end.

Jakie wartości zostaną wydrukowane?

55. Porównać dane cztery programy. Co zostanie wydrukowane w każdym

przypadku?

1. program pl;

var xs integer;

procedura zmiana!;

begin

x:=l

end (zmiana!);

begin

x: =0;

zmi anal;

wr i te (x)

end.

2. program p2;

var x: integer;

procedurę zmiana?;

var x: integer;

begin

x:=l

end <zmiana2>;

begin

x:=0;

zmi ana2;

53

wr i te (x)

end. .

3. program p3;

var x: integer;

procedurę zmiana3(var x: integer);

begin

x:=l;

end <zmiana3>;

begin

x:=0;

zmiana3(x);

wri te(x)

end.

4. program p4;

war x: integer;

procedura zmiana4(x: integer);

begin

x: = l

end <zmiana4};

begin

x:=O;

z mi ana4(x);

write(x)

end.

56. Jaka wartość zostanie wydrukowana?

program sprawdzian;

var myśl: integer;

proceduro oszust(var hi,ha: integer);

begin

his=-l;

ha:=-hi

end;

begin

myśl:=1;

oszust(myśl,myśl);

wri teln(myśl)

end.

54-

57. Jaka wartość zostanie wydrukowana?

program hi ha;

var myśl: integer;

procedura kłamca(var hi: integer; ha: integer);

begin

hi:=10«ha

end {kłamca};

begin

myśl:=10;

kłamca(myśl,myśl);

writeln(myśl)

end.

58. Dane są liczby rzeczywiste a>0, h>0.

Funkcją t stablicować w przedziale C-a,al z krokiem h, gdzie

|x | Jeśli x<0,
f (x) = ■

In x Jeśli x>0.

59. Napisać procedurą, która dzieli przedział Ca,bl na n

podprzedziałów p ,...,p jednakowej długości i sprawdza, dla których k

(k=l,...n) ustalona -funkcja f(x) ma różne znaki na początku i końcu

podprzedziału p. . k

60. Funkcja (ciągła) G(x) przyjmuje na końcach przedziału Cx ,x j

różne znaki (ma zatem co nsjmniej Jeden punkt zerowy w tym przedziale).

Metodą dzielenia przedziału na połowy zlokalizować miejsce zerowe

ustalonej -funkcji G(x) z dokładnością eps.

61. Napisać procedurą wyznaczania miejsca zerowego -funkcji f(x>

metodą Newtona:

f (x .)
X . , = X . - —t-f-.----- r- ,1+1 1 f (X .) ’1

gdzie x$ - dane przybliżenie początkowe.

Obliczenia należy zakończyć, gdy

|f(x. ,) I < c. 1 i +1 1

Wykorzystując tą procedurą wyznaczyć miejsce zerowe -funkcji:

f(x) = cos(x) - x»eX.

—2
Przyjąć XQ = 0, c = 10

55

62. Rozwiązać metodą stycznych równanie

2
f(x) = x - sin(x) - 1 =0.

Metoda:

f(x)
xn+l = xn “ TOT dla "=0,1,...,

n

gdzie

xQ - dane przybliżenie początkowe (przyjąć xQ = 1.4).

Obliczenia należy zakończyć, gdy

63. Znaleźć miejsce zerowe -funkcji -f(x) ze wzorów:

Xq -- dane,

2
f (x) (f (x)) * f “ (x >n n nX . , = X - ----- r - ------------------------------ ------n+l n r-oTT 2.(fMx »S

n

Obliczenia należy zakończyć, gdy |xn+|~ xr| < £.

Przyjąć:
1 -4a) xQ = n, f(x> = sin(x) - ^x, £ = 10 ,

x —2
b) Xq = 1, -f(x) = cos(x) - xe , £ = 10

64- . Napisać procedurę rozwiązywania równania kwadratowego.

65. Dane: n>2, r>0. Obliczyć

W

gdzie:

ao
1

al = 2’

ak = ak-l + r*ak—2 dla X=2,3,...,n.

66. Dany jest ciąg rosnący i ograniczony zadany rekurencyjnie

uk-l+^
dlak=l,2,...

k-1

Znaleźć pierwszy wyraz un spełniający warunek

gdzie e>0.

56

67. Obliczyć pierwiastek sześcienny a z liczby x wykorzystując

do tego celu wzór iteracyjny Newtona

1 Xa.= ~l2a. + > dla i=O,l,...,n ,i+l 312 a. 1
gdzie

a^, c, n - dane.

Sygnałem zakończenia obliczeń będzie albo zrealizowanie, żądanej

dokładności c obliczenia wartości pierwiastka sześciennego, albo

wykonanie zadanej maksymalnej liczby iteracji n.

68. Dla danych liczb rzeczywistych a, c >0 oraz liczby naturalnej

k obliczać kolejne przybliżenia x. ze wzorów:

p— j a
x_ = a, x. = —— x. . + —:—r dla.0 ’ i k 1-1 k-1 ’x. . i-l

k tak długo, aż |x^-a| < e.

Ostatnie obliczone przybliżenie wydrukować (ciąg x$, Xp... jest

k —
zbieżny do Ta) .

7269. Obliczyć ■ -y- ze wzoru iteracyjnego

X1 = 1,

xk+1 = dla k=l,2,....

70. Dane są:

M - liczba naturalna,

a, b - liczby rzeczywiste takie, że l<a<b,

*1 = b, gt = a,

+ = 1 <+ + n 1 n = 2*n 9n
n+1 2 n ^n ’ $n+l f + g

n n

Sprawdzić dla n=0,prawdziwość nierówności

71. Napisać program testujący prawdziwość nierówności

gdzie n jest dowolną liczbą naturalną.

57

72. Napisać w języku Pascal definicję następujących funkcji:

a) sinh<x)=(ex-e x)/2,

cosh(x)=(ex+e x)/2,

tgh(x) =si r.h (x)/cosh (x) ,

-1 'b) sinh (x)=ln(x+v x +1),

-1 J ~ 'cosh (x)=ln(x+7 x -1 >.

73. Napisać procedurę, która zaaienia wartości dwóch zmiennych

rzeczywistych, np. jeśli przed wywołaniem procedury

x=-7.5, y=13.4,

to po wywołaniu

x=13.4, y=—7.5.

74. Niech

type nieujemne=O..maxint;

Co oblicza następująca funkcja rekurencyjna?

function f(n: nieujemne): integer;

begin

if n=0 then f:=0

else f:=n+f(n-11

end <f>;

Napisać iteracyjną funkcję odpowiadającą funkcji rekurencyjnej f.

75. Obliczyć wartość funkcji

r1X jeśl i
jeśl i

n=0,
n=l,

P (x) = -j n (2n-l)P ,(x) - (n-l)P _(x)| n-1 n-2 jeśl i n>l.n

76. Obliczyć wartość funkcji Ackermanna (m>0, nSO)

Ack(O,n) = n+1, jeśli m=O i n2O,

Ack<m,0) = Ack(m-l,l), jeśli m>0 i n=0,

Ack(m,n) = Ack(m-1,Ack(m,n—11) jeśli m>0 i n>0.

77. Dane są kolejne liczby naturalne z przedziału Cnp,nk3.

Sprawdzić, które z tych liczb są liczbami pierwszymi, a które nie.

Wydrukować odpowiedni tekst przy każdej liczbie.

58

78. Napisać program rozmieniający pewną kwotę pieniędzy (do 99

centów) za pomocą banknotów o wartości:

1,5, 10 i 25 centów.

Uwaga. Zapisujemy za pomocą banknotów o największej wartości.

79. Napisać funkcję o wartości logicznej, która sprawdza, czy dane

trzy punkty są współliniowe.

80. Wydrukować napis

Dzisiaj jest

(w miejscu kropek wydrukować odpowiedni dzień tygodnia) w zależności od

wartości zmiennej całkowitej dz (l<dz<7) oznaczającej dzień tygodnia

(1 - poniedziałek,...,? - niedziela).

81. Dana jest liczba naturalna n (n£100), określająca wiek pewnej

osoby (w latach). Opracować program, który podaje ten wiek z odpowiednim

napisem "rok", "lata" lub "lat”, np.

1 rok

3 1 ata

18 lat

43 lata

Zmodyfikować program tak, aby można było go uruchomić dla dowolnej

liczby zestawów danych.

82. Napisać program, który czyta n znaków i dla każdego znaku

drukuje napis

'cyfra', 'mała litera’, 'wielka litera’ lub ’inny znak’

w zależności od podanego znaku.

83. Za pomocą n różnych znaków wydrukować trójkąty następującej

postaci (m — dana liczba naturalna)

a)

59

84. Napisać program, który drukuje znak * przesuwający się z lewej

strony ekranu do prawej.

I ,
85. Wydrukować formularz na wpisanie ocen z przedmiotów dla ucznia

klasy I postaci

Nazwisko i^imię ucznia

1. Sprawowanie ..
2. Język polski ...
3. Matematyka
4. Środowisko ..
5. Muzyka
6. Wych. plastyczne
7. Praco - technika ..
8. Wych. fizyczne ..

podpis wychowawcy

Zmodyfikować program tak, aby można było drukować również odpowiednie

nazwisko i imię ucznia oraz (w miejscu kropek) jego oceny uzyskane w

czasie semestru.

86. Wydrukować układ współrzędnych.

87. Napisać program drukujący zawiadomienie o zebraniu następującej

treści:

Wrocław , 5.05,1988

ZAWIADOMIENIE
Uprzejmie zawiadamiamy

JANA NOWAKA
ob..

, . 28 maja 1988 rokuze dnia

, 17.15 . . , D—2o godz................. w budynku...........

w sali odbędzie się

członków PTI zebranie ...

Adam Paluch

sekretarz PTI

Słowa wykropkowane (kropek nie trzeba drukować) mogą być zmieniane

(powinny być wprowadzane jako dane).

60

88. Na płaszczyźnie danych jest n punktów o współrzędnych (K^y^,

gdzie i=l,...,n. Wydrukować współrzędne punktów leżących wewnątrz

obszaru zakreskowanego lub na jego brzegu (r - dana liczba rzeczywista

dodatnia).

5. TYP TABLICOWY

Pojęcie tablic w językach programowania wywodzi się z pojęć

matematycznych. W matematyce zbiór zmiennych o wartościach liczbowych

ał,a2,-...,a jest traktowany jako wektor n-wymiarowy lub jako ciąg

n-elementowy, natomiast w językach programowani a taka struktura jest

nazywana tablicą. W języku Turbo Pascal 3.0 tablicę n-elementową o

wartościach rzeczywistych można zadeklarować następująco:

var a: arrayCl-.nl of real;

Pojęcie tablicy rozszerza się następnie na regularne układy

zmiennych z dwoma wskaźnikami, otrzymując w ten sposób strukturę

analogiczną do macierzy. Na przykład zbiór liczb rzeczywistych

B = CbijS i=l,..,n; j=l,..,ml

w języku Turbo Pascal można zadeklarować jako dwuwymiarową tablicę B

var B: arrayCl..n,1..ml of real;

Wszystkie elementy tablicy B są typu reąl.

Dostęp do poszczególnych elementów tablic uzyskuje się przez użycie

indeksów, np. aCil, BCk+j,31.

Wartości indeksów są obliczane w chwili odwołania do tablicy, a

czas dostępu do elementu tablicy jest dla każdego elementu tablicy taki

sam. Z tego względu typ tablicowy jest ‘typem strukturalnym o dostępie

bez pośr edn i m.

Dwuwymiarowa tablica A zadeklarowana Jako

var A: arrayC1..n,1..ml ot real;

może być traktowana jako jednowymiarowa tablica, której każdy element A*

Jest jednowymiarową tablicą, tzn.

w A: arrayCl-.nl o-f arrayCl-.ml o< real;

Ten sposób deklaracji jest polecany wówczas, gdy w programie chcemy mieć

dostęp do całych wierszy tablicy. Przy takiej deklaracji tablicy A do

jej elementów można odwoływać się następująco:

ACil - dostęp do i-tego wiersza,

ACilCJl lub ACi,jl - dostęp do elementu w i-tym wierszu i w J-tej

kolumnie.

62

Prz ykł ad 5.1

Załóżmy, że w pewnym programie wystąpiły następujące deklaracje:

const m=3; n*=4;

var a< arrayt1..m,1. . n1 o-f integer;

b: array£l..nl of integer;

Wówczas instrukcja przypisania

b:=a£U

będzie sygnalizowana Jako b-łądma, natomiast będzie osia dozwolona Jeśli

riapi azemy np.

const m=3; n=4;

type wiersz=arrayC 1. .nJ of integer;

var a: arrayCl-.ml o-f wiersz;

b: wiersz;

■

Wszystkie elementy zmiennej tablicowej są tego samego ustalonego

typu. Ogólna postać deklaracji zmiennej tablicowej (tablicy) «ia postać:

type nazna_typa_tablicowego=array£Tl,...,Tnl of T;

var nazna_zniennej _tabl iconej : nazna_typu_tabl icot/ego;

lub

var nazna_ZBiennej_tabliconeji arra-yCTl, . . . , Tnl a-f T;

gdzie

Tl,...,Tn - nazwy lub opisy typów porządkowych (z wyjątkiem typu

integer) określające typ indeksów,

T - dowolny typ określający typ elementów.

Tablice jednowymiarowe o elementach typu char 1 indeksach' o

wartościach całkowitych nazywa się tablicami znakowymi.

Przykład 5.2

Niech

var drzewo: arrayCl..71 of char;

kwiat: arrayC1..91 o-f char;

Poprawnymi przypisaniami są, np.

drzewo:=’1 i pa

kwiat:=’stokrotka’

Natomiast przypisania

drzewo:=’klon’;

kwi at:=’irys’

array%25c2%25a3l..nl

63

są niepoprawne, ponieważ w apostrofach Jest za mało znaków

(liczba znaków w apostrofach powinna być równa liczbie znaków danej

tablicy).

I ■ -

W programach tablice można wykorzystać na przykład do zapisu

odwzorowań określonych na zbiorze n-elementowym.

Przykład 5.3

Relacja p określona na zbiorze n-elementowym alta2,. ..,a jest

zapisana w postaci macierzy mx stopnia n (tzn. mx Jest macierzą

kwadratową o n wierszach i n kolumnach, co zapisujemy umownie mx-n«n)

następująco:

O w przeciwnym przypadku,

gdzie i,j=l,...,n.

Należy sprawdzić, czy relacja p jest częściowym porządkiem, tzn.

czy Jest 4

a) zwrotna,

b) antysymetryczna,

c) przechodnia.

Przypomnijmy, że Jeśli p:D-»D, to

a) relacja jest zwrotna <=> V a p a,
aeD

b) relacja jest antysymetryczna <=> V a p b * ~(b pa),
a, bcD

c) relacja Jest przechodnia <=>

V (a p b b p c) ■> a p c.
a,b,ceD

Przykładem relacji, która Jest częściowym porządkiem może być

relacja " < " określona na zbiorze liczb rzeczywistych.

Poniżej przedstawiamy program sprawdzający, czy dana zerojedynkowa

tablica'MX opisuje częściowy porządek,

program relacja;

const nmax=5;

type tabl ica=arrayC 1. . nmax , 1. . nmax 1 o-f integer;

var MX: tablica;

i,J,n: integer;

•function czporz(A: tablica; n: integer): boolean;

(zmiennej czporz zostanie nadana wartość true, jeśli relacja

określona za pomocą tablicy A Jest częściowym porządkiem.

34

natomiast false w przeciwnym przypadku}

var i,il,j,k: integer;

p: boolean;

begin

p:=true;

{test na zwrotność}

k: = l;

while p and <k<=n> do

if ACk,,k3“O then ps=false else k:=k+l;

{test na antysymetrycznośd i przechodniośd}

i: =2;

while p and (i<=n) do

begin

j = = 15
il:=i-l;

while p and (j<=il) do

if ACi,J3»ACJ,i3=l

then p:---false

e-1 be-

begin

if ACi,j3=0 then

begin

k:=l;

while p and(k<=n) do

if ACi,k3tACk,J3=1 then p:=false else k:=k+l

end {AC i,j3=03;

if ACj,i3=O then

begin

k:=l;

while p and <k<=n) do

if ACj,kj»ACk,i 3=1 then p:=false else k:=k+l

end {ACJ,i3=OJ;

j:=j+l

end <else3;

i:=i+l

end {i};

czporz:=p

end {czporz};

begin

clrscr;

write(’n=’); readln(n);

writelni’ Podaj elementy macierzy:’);

65

■for i:=l to n do

■for j:=l to n do readln 'MXti,j2);

wri tełn;

writein(’ Macierz MX: ’) ;

■for i:=l to n do

begin

for j:=l to n do write(MXCi,j2:3);

writeln

end <i2;

writeln;

writef’ Relacja określona macierzą HX’);

if not czporz(MX,n) then writet’ nie’);

writelnf’ jest częściowym porządkiem’)

end.

■
Na zakończenie tego rozdziału podamy przykład ilustrujący

wykorzystywanie menu w programach oraz programowanie konwersacji.

Przykład 5.4

Napiszemy program, który umożliwia wykonywanie następujących zadań:

1. czytanie wymiarów i elementów macierzy,

2. drukowanie macierzy,

3. drukowanie wybranego wiersza macierzy,

4. obliczanie iloczynu skalarnego dwóch wybranych wierszy

macierzy,

5. zakończenie wykonywania programu.

Program przed wykonaniem zadań 2 4 powinien sprawdzać, czy została

wcześniej wczytana macierz. Ponadto, w przypadku 3 i 4, powinien

sprawdzać, czy podane numery wierszy są odpowiednie.

program macierze;

const nmax=10;

mmax=10;

spacje=’

typa wiersz=arrayC1..mmax2 of integer;

tablica=arrayC1..nmax2 of wiersz;

var A: tablica;

i,j,m,n,numer,nrwi ersza: integer;

znak: char;

dozwolone: boolean;

procedura czytaj(var X: tablica; var n,m: integer);

var i,j: integer;

66

begin

clrscr;

writeln(spaćje,’Podaj wymiary macierzy:’);

write(spaćje,’ n= ’); readln(n);

write(spaćje,’ m= ’); readln(m);

writein(spacje,’Podaj elementy macierzy (wierszami):’);

writein;

■for i:=l to n do

begin

for j:=l to m do

begin

read(XCi,j1); write(* ’>

end <j>;

writeln

end <i>

end {czytaj};

procedurę drukuj(X: tablica; n,m: integer);

var i,j: integer;

begin

clrscr;

writein(’Elementy macierzy:’);

for i:=l to n do

begin

wri tein;

for j: = l to m do wri te(XEi,j1:5)

end Ci}

end {drukuj};

procedurę drukuj_wiersz(X: wiersz; m: integer);

var j: integer;

begin

fOr j:=l to m do write(XCj2:4);

writeln

end {drukuj_wiersz};

function iloczyn_sk(x,y: wiersz; n: integer): integer;

var i,pom: integer;

begin

pom:=0;

for i:=l to n do

pom:=pom+x Cii4yC i 1;

i 1oczyn_sk:=pom

end {iloczyn_sk};

67

begin

dozwolone:=false;

repeat

clrscr;

gotoxy(10,5);

writeln(’Menu programu:’);

wri teln(spacje,

’1. Czytanie danych (wymiarów i elementów macierzy).’);

writeln(spaćje,’2. Drukowanie całej macierzy’);

writeln(spaćje,’3. Drukowanie wybranego wiersza macierzy’);

wri te(spacje,

’4. Obliczanie iloczynu skalarnego dwóch wybranych wierszy’);

writein(spaćje,’5. Koniec programu’);

writeln;

write(spaćje,’Wybierz dowolny numer od 1 do 5: ’);

readln(numer);

case numer of

1: begin

dozwolone:=true;

czytaj(A,n, m);

end <numer=lł;

5: begin

writeln;

writeln(spacje,spaćje,’ G 0 O D B Y E’) ;

halt (zakończenie wykonywania programu!

end <numer=5!

else

if dozwolone then

case numer o-f

2: drukuj(A,n,m);

3: begin

write(spaćje, 'Podaj numer wiersza: ’);

readln(nrwi ersza);

if (0<nrwiersza) and (nrwiersza<=n) then

begin

writeln(’ Elementy ’,nrwiersza,’-go wiersza’);

drukuj_wiersz(ACnrwiersza!, m)

end

else writeln(’Podałeś zły numer wiersza’)

end <numer=3J;

4: begin

writeln;

68

write(spaćje,’Podaj numery wierszy, dla których’);

writeln(’ chcesz obliczyć iloczyn skalarny’);

write(spaćje,’ k= ’); readln(nrwiersza);

write(spaćje,’ 1= ’); readln(i);

if (O<nrwiersza) and (nrwiersza<=n)

and (0<i) and (i<=n> then

begin

writein(spaćje,’Elementy ’,nrwiersza,

’-go wiersza:’);

drukuj_wiersz(ACnrwierszal,m);

writeln(spaćje,'Elementy ’,i,’-go wiersza:’);

drukuj_wiersz(Ali 1,m);

writelni’ iloczyn skalarny wybranych wierszy= ’,

iloczyn_sk(ACnrwierszal,ACi 3,m))

end <then>

else writeln('Podałeś złe numery’)

end <numer=4>

end !case)

else writeln(spaćje,’Podałeś zły numer’)

rand (case);

writeln;

write(’Czy zakończyć program (y/n)? ■’>;

readln(znak)

until znak=’y’

end.

■

5,1. Zadania

Uwaga. Wiele zadań z tego rozdziału dotyczy ciągów, wektorów i macierzy.

W każdym przypadku należy zastanowić się, czy w programie jest konieczne

użycie zmiennych typu tablicowego. Wybór odpowiedniej struktury danych

należy do Czytelnika.

1 Kiedy używać deklaracji (a) a kiedy deklaracji (b>? Odpowiedź

uzasadnij.

a) var x: array11..n,1..m3 o* real;

b) var y: arrayCl..n3 of arrayCl-.ml o-F real;

69

2. Które z poniższych deklaracji są błędne? Dlaczego?

a) wektor: arraytl..21 of real;

b> ceny: arrayd..l01 o-f 15.O..72.5;

c) oceny: arrayCS..21 of integer;

d) test: arrayCbooleanl of true..false;

3. Ile elementów ma tablica a? Jak prościej ją zadeklarować?

const n=3;

m=3;

var a: arrayC-3..3,0..O,n..ml af integer;

4- . Zadeklarować zmienne tablicowe jednowymiarowa

a) o wskaźnikach logicznych i elementach rzeczywistych,

b) o wskaźnikach typu kolor i elementach całkowitych, gdzie

type kolor=(pik, trefl, karo, kier);

c) o wskaźnikach typu znakowego i elementach typu logicznego.

5. Tablice a i b zadeklarowano następująco:

var x: arrayd..51 of arrayd..51 of real;

y: arrayt1..5,1..51 of real;

Które z podanych instrukcji są poprawne?

a) read(x> ;

b) y:=x;

c> read(x d 1) ;

d) read(ydl);

e) xdls=0.0;

f) xC2,21:=5.5;

g) yC31C31:=4;

h) xC21C31:=yC31dl;

6. Której z podanych instrukcji należy użyć do obliczania wartości

zmiennej x? Dlaczego?

a) x: = <ad 1+sin (ali 1)) Z (ad 1+2. 5)

b) begin

ai:=aCi1;

x : = (ai+sin(ai))/<ai+2.5)

end

7. Niech

var a: arrayC1..201 of integer;

b: arrayd..501 of integer;

70

Jakie będą wartości elementów tablicy b po wykonaniu podanych

instrukcji? Czy możesz zaproponować lepszy sposób obliczenia tych

wartości?

a) -for i:=l to 20 do

•for k:=l to 50 do
bCk]:=b[kl+a£i1

b> -for i:=l to 20 do
teegin

ai:=a£i1;

•for k: = l to 50 do
bCk3:=b£kl+ai

end <i>

8. Co robi dany -fragment programu?

if x<>0

then begin
y:=atll;
for i:=2 to n do

y:=y*x+a£i1
end <x<>0ł

else y:=a£n3

9. W danym n-elementowym ciągu x ,,xn zamienić parami

elementy o numerach

lin,

2 i n-1.

Wydrukować ciąg wejściowy i wyjściowy.

10. Dany jest n-elementowy ciąg a oraz liczba x. Wydrukować:

a) liczbę elementów w ciągu a o wartości x,

b) numery elementów w ciągu a o wartości x.

11. Danych jest n liczb rzeczywistych. Obliczyć, ile jest liczb

dodatnich i ich sumę oraz ile jest liczb niedodatnich i ich średnią

arytmetyczną.

12. Na wejściu dane są liczby całkowite. Wczytywać je i dodawać tak

długo, aż

a) pojawi się liczba 0,

b) pojawi się liczba mniejsza od 0.

71

13. Dany Jest n-elementowy ciąg a^a.,,------ ,an- Znaleźć liczbę

elementów ujemnych, zerowych i dodatnich ciągu.

14. Ciąg a1,a2,...,an posegregować na liczby ujemne UpU^.-.jU i

nieujemne Vj,v2,...,v^ (p+q=n).

15. Dla dowolnego n-elementowego ciągu liczb całkowitych napisać

program wyznaczający:

- sumę elementów ciągu, jeśli co najmniej jeden z wyrazów ciągu ma

wartość O,

- iloczyn elementów, w przeciwnym przypadku.

16. Dana jest liczba naturalna parzysta n oraz ciąg a^, a,,,. . . , a^.

Obliczyć i wydrukować:

S = a_ + a„ + a. + ... + a ,p 2 4 6 n

S = a. + a_ + a_ + ... + anp 1 3 5 n-1

17. Znaleźć minimum ciągu n-elementowego.

18. Dany jest n-elementowy ciąg a^,a^,.--,an- Obliczyć

n n
max |a | • £ a * p (a +1) .

l<i<n i = l i=l

19. Dla danego n-el ementowego ciągu a^a,^ ...,an obliczyć i

wydrukować

n
(max |a. | — min a. > * a. .
l<i<n 1 l<i<n 1 i=l 1

20. Dane: n,a^,a7,...a^. Obliczyć

n-1 a.
min < £

n
I ’ n ap-

i = l

21. Dane są liczby całkowite: n, k (n, k > 0), a^,a^,--.,an,

bj,b^,...,b^. Obliczyć

/--------------- 1
/ n

s = I n ai I + max bi-
i = l 1 l<i<k

72

22. Dla danego n-elementowego ciągu a obliczyć i wydrukować

n
max |a.| * £ a .

l<i<n i = l

Ponadto znaleźć liczbą k taką, że

lakl = ,^ lail-
l<i<n

Jeśli jest kilka takich elementów, to wydrukować indeks ostatniego z

nich.

23. Dane są wartości całkowite: n, at,a2,...,a^; m, bj,b^,...,b^.

Obliczyć

mi n (m, n)
£ (a.-b.)« max <a.-b.).

■ < i i , ,111=1 l<iSmn(ni,n)

24. Znaleźć maksimum ciągu n-elementowego oraz

a) wskaźnik pierwszego elementu maksymalnego,

b> wskaźnik ostatniego elementu maksymalnego,

c) wskaźniki wszystkich elementów maksymalnych.

25. Dane są zarobki n pracowników. Obliczyć i wydrukować średni

zarobek oraz liczbą pracowników zarabiających poniżej tej średniej.

26. Dla lat 1950 do 1987 podane są średnie temperatury roczne.

Podać ostatni najcieplejszy rok i jego temperaturą.

27. Dane są liczby rzeczywiste q,,qo,...,qn oznaczające wydajności

zbiorów pszenicy z n pól. Obliczyć średnią wydajność dwoma sposobami

1 n V '
1) SI = - E q - ,

n i = l 1

1 n
2) S2 = £ q. - max q. - min q.).

n “ i=l 1 l<i<n 1 l<i<n 1

Porównać otrzymane wyniki.

28. W danym ' -elementowym ciągu przestawić jego wyrazy tak, by

elementy o wartościach parzystych znalazły sią na początku.

29. Danych jest n liczb całkowitych apa9,...,a . Posegregować te

liczby na parzyste i nieparzyste. Podać liczbą elementów parzystych i

ni eparzystych.

73

30. Dany jest n-elementowy ciąg a^a^.-.a liczb całkowitych z

przedziału C0,m-ll. Zastosować algorytm koszykowy do uporządkowania

wartości elementów ciągu a w ciąg rosnący b, przy czym elementy pow­

tarzające się wydrukować tylko raz.

Algorytm koszykowy:

(1) b_.=0 dla j=0,1,...,m-1,

(2) b =b +1 dla i=l,2,...n, aa. ’ ’ ’
1 1

(3) drukować te wskaźniki j, dla których b^OO (j=0,1,...,m-1) .

31. Powtarzające się elementy z zadania 30 drukować tyle razy, ile

razy występują.

32. Dane są dwa wektory n-wymiarowe. Za pomocą instrukcji:

a) f or,

b) while,

c) repeat

napisać program obliczania ich iloczynu skalarnego.

33. Jakie będą wartości elementów w tablicy a po wykonaniu poniż­

szego -fragmentu programu?

var i,j,n: integer;

a: arrayC1..10,1..101 o-f real;

begin

read(n);

■for i: = l to n do

■for j:=l to n do

aCi,jl:=(i div J)*(j div i);

34- . W tablicy PŁACA dane są zarobki n pracowników (n<50).

Obliczyć nowe zarobki pracowników według wzoru

NOWAPŁACA. = • i

PŁACA.+ 1

PŁACA.+l 1

157. SR

107. SR

jeśl i

jeśl i

PŁACA.<SR, i

PŁACA.>SR, i

gdzie
1 n

i = l,...,n, SR = — F
n i = l

PŁACA.. 1

Wyniki wydrukować w czytelnej postaci.

35. Daną kwotę pieniędzy rozdzielić na n szkół proporcjonalnie do

ilości makulatury zebranej przez każdą szkołę.

74

36. Danych Jest p temperatur mierzonych o ustalonej godzinie w

ciągu kolejnych p dni. Wydrukować numery dni w porządku rosnących

temperatur.

37. Danych Jest n liczb rzeczywistych x1,...,x . Obliczyć

wariancję S dwoma sposobami:

1) S = £
n

n 2
£ <x.-SA>

i = l 1

2) S = 1
n

n 2 2
£ x -(SA)

• 4 11=1
gdz i e

n
SA= 1

n

i = l

Porównać obydwa programy.

*
33. I ciągu a.,a„,-----,a utworzyć ciąg b ,b„,...,b przez

1 £ Fi 1 i ■

umieszczenie na początku elementów ujemnych, potem dodatnich, a na końcu

zerowych. Następnie obliczyć:

1ŚREDNIA = - £b., MIN = min b., MAX = max b..
n i=l 1 l<i<n 1 l<i<n 1

39. Dla wektora x = (x ...,x > obliczyć:

n
- normę pierwszą j|x || = £ |x. |,

1 i = l

n 2 l/"7
- normę drugą ||x||2=< Z ’

— normę maksimum

a następnie sprawdzić prawdziwość następujących nierówności:

<1/2IMi * |M2 <

4-0. Dla danej liczby n obliczyć

n 2
z *7

5 Jl*lii £ nIML >

S

75

gdzie

i

(i-i >«i

jeśli i=l,

jeśli i*l.
x .

4-1 Dla n-elementowego ciągu liczb rzeczywistych apa,,...,^

obliczyć (jeśli można)

a) średnią geometryczną SG = •/a *a *.. . «a ,
12 n

b) średnią harmoniczną SH = y--------- —--------- — .

aT ' ' " a-1 n

42. Zapisać w języku Turbo Pascal

4-3. Pewna osoba ważyła się co miesiąc od stycznia do grudnia.

Podać, w którym miesiącu nastąpił największy:

- przyrost wagi,

- spadek wagi.

44- . Dany jest n-elementowy ciąg a,a^,...,a^. Utworzyć ciąg

y ,y ,...,y , w którym
1 2 n-1

a . . -a .
J + 1 J

J
Jeśl i a . . >a .,

J + l J

Yj =
a.-a . ,,

jeśl i a . .=a ., J + l j’

J j + i jeśl i a . . , <a ..
J + l Jl j+l

45. Dana jest liczba naturalna n oraz liczby rzeczywiste:

a1Sa2,...,an, bj,b2>...,bR.

Utworzyć ciąg CpC,,...,c , którego elementy są określone wzorem:

c. = a. + b. + i- dla i = l,...,n.
1113

Dla każdego ciągu a, b, c obliczyć:

— średnią arytmetyczną,

- iloczyn elementów,

— element minimalny w ciągu.

76

4.6. Utworzyć ciąg u p . . . , u m według wzoru

u. = i!*x1 dla
1

gdzie

m, x - liczby dane.

Obliczyć sumę elementów ciągu u.

47. Dana jest liczba naturalna n oraz liczba rzeczywista x.

Napisać program, który oblicza wartość

gdzie
, . , k k (-1) x ,, , ,y, = ------ —, dla k=l,...,n.k k!

48. Utworzyć ciąg d p dwedług wzoru

d. = dla i=l,...,k
1 1 1

oraz obliczyć sumy częściowe S.

i
S. = £ d . dla i=l,___,k.

1 j=l J

4-9. Dane: n, xJ,...,xn i=l,..,n). Utworzyć ciąg y^,...,yn>

którego elementy są określone wzorem

x . 1
y = ------ - ------- dla i = 1, . . . , n.

V l+x.
1

50. Dana jest liczba naturalna n oraz liczba rzeczywista x

(x*0). Utworzyć ciąg u, w którym

U1 = X’

Uk-1 -1
u, = ln(—--------------—) dla k=2,3,...,n

k Uk-1

oraz obliczyć iloczyn elementów ciągu u»

51. Objątość k-wymiarowej kuli o promieniu r jest obliczana

według zależności

% =
V1 = 2r,

77

k Vkv2 dla k=2,3,....

Obliczyć (r, n - dane).

52. Dana jest liczba naturalna n. Obliczyć an ze wzorów:

a0 = al ” 0,

ak = k + ak-l + ak-2 dla k-2‘

53. Niech

a0 = ł’

ak = aOak-l + alak-2 + ■” + ak—2al + a^a^ dla k>0.

Dla danej liczby naturalnej n obliczyć a .

54-. Dane: n, a^

liczbą zmian znaków w ciągu y^

..,an- Utworzyć ciąg y^ ,yn oraz wyznaczyć

,yn> w którym

2 a.

(k-1) (n-k) 2
yk (n-k+l)k ak ak-lak+l dla k=2,

yn

1

n-1,

Obliczając liczbą zmian znaków nie uwzględniać wyrazów ciągu y o

wartości równej 0.

55. Napisać procedurą, która dla danych

n,

m’ bl........... bm

utworzy ciąg c,...,c^,ck+J,...,ct, w którym

k = mi n(n,m),

t = max(n, m) ,

ai+bi jeśli l<i<k,

c. = ■ a. jeśli k<i<t oraz t=n,
i i

b^ jeśli k<i<t oraz t=m,

dla i=l,2,...,t.

78

56. Dany jest n-elementowy ciąg liczbowy ai (i=l,...n). Obliczyć

wartości P oraz Q ze wzorów:

n n

n n
□ = n e (ai~aj>-

i=l j = l

57 Dane: n, a ,...,a . Obliczyć

n
r (a.-a.)

n i=l 1 J

58. Dane: n, xlt...,x , y^^^y^. Obliczyć

, .in (x. -y.)
X X

59. Dane: n, a1,...,an. Obliczyć wartości

k k
w(k) = n n (a -a > dla k=2,...,n.

i=l j=l 1 J
J*i

Wyniki wydrukować w postaci

k=2 w(2)=.............................

k=3 w(3)=.............................

60. Dane: n, aj,.. . , an« Obliczyć średnie bieżące

dla x=l,2,...,n

oraz
n

S = (F S.)Zn.
i=l 1

Wyniki wydrukować w postaci

i S (i >

1
2

n

średnia średnich S =

79

61. Dla danej liczby n obliczyć liczby Fibonacciego u.,___,u ze
1________n

wzorów:

U1 = u2 = 2’

Uk = Uk-1 + Uk-2 dla k=3.............n

oraz obliczyć

v = .— dla k=3,...,n.
k uk-l

Wyniki wydrukować w postaci

ku v

3 3 1.50000000

4 5 1.66666667

(liczbę v = (1+7^5)/2 = 1.6180339887... nazywa się złotym stosunkiem).

62. Dla danego n+1-elementowego ciągu x^,x ,...,x^ liczb parami

różnych oraz danej liczby x obliczyć sumy

n x—x .
S = V ((x- x.)m * n —> dla m=l,2,...,n.

m , " k . ' ■ x, -x . ’ ’ ’k=0 j=0 k j
j*k

■ 63. Napisać podprogram, który dla ciągu liczb rzeczywistych

P’ ,Xp wyznacza wartość zmiennej logicznej 5 określonej następująco:

S
true jeśli ciąg x ,...,x. jest uporządkowany rosnąco, p k

■False w przeciwnym przypadku.

Dla danego ciągu ap...,a sprawdzić, czy uporządkowane są rosnąco

kolejne pięcioelementowe podciągi

al...........a5’
%...........a10 itd‘

oraz czy jest uporządkowany rosnąco cały ciąg ap...,an-

64-. Napisać program wybierający z danego ciągu liczb całkowitych

wszystkie (co najmniej trzyelementowe) sekwencje stanowiące ciąg

arytmetyczny, np. w ciągu

5,-7,-3,-1,1,2,4,6,8,3,-2,4,-8,16,40;

są następujące ciągi arytmetyczne:

"3,-1,1;

80

2,4,6,8;

8,3,-2;

-8, 16,40.

65. Napisać program wybierający z danego ciągu liczb całkowitych

wszystkie (co najmniej trzyelementowe) sekwencje stanowiące ciąg

geometryczny, np. w ciągu

5,-7,-3,-1,1,2,4,6,8,3,-2,4,-8,16,40;

są następujące ciągi geometryczne

1,2,4;

-2,4,-8,16.

66. W danym n-elementowym ciągu liczb całkowitych (n>0) znaleźć

element występujący w nim najczęściej oraz liczbę jego wystąpień. Jeżeli

dwa różne elementy występują w ciągu tyle samo razy, to można wybrać

którykolwiek z nich.

67. Dane są :

- ciąg liczb całkowitych a^a^ ..., an (n>0) ,

- ciąg wartości logicznych b^,b^,...,bn.

Wiadomo, że w ciągu a jest k (0<k<n) liczb ujemnych, w ciągu b jest

< wartości true. Napisać procedurę, która uporządkuje ciąg a tak, aby

liczby ujemne w ciągu a znalazły się na tych samych pozycjach, na

których w ciągu b znajdują się wartości true.

68. W danym n-elementowym ciągu liczb naturalnych znaleźć

najmniejszą liczbę podzielną przez 3.

69. Danych jest n ciągów m-elementowych zerojedynkowych oraz

liczba k <l<k<m). Obliczyć ile ciągów

a) nie zawiera jedynki na k-tym miejscu,

b) ma same jedynki,

c) ma same zera.

70. Dany jest n-elementowy ciąg liczb całkowitych ap...,a .

Sprawdzić, czy ten ciąg jest złożeniem ciągu niemalejącego i ciągu

nierosnącego, tzn. czy jest spełniony jeden z trzech warunków:

1) ciąg jest niemalejący,

2) ciąg jest nierosnący,

3) istnieje t (l<t<n) takie, że

a < a. , dla l<i<t oraz a.Ł a. . dla t:£i<n. i i+l i i+l

81

71 Dany Jest n-elementowy ciąg uporządkowany rosnąco. Zmienić
porządek ciągu na przeciwny.

72. Dane są dwa ciągi uporządkowane rosnąco. Połączyć je w jeden

ciąg rosnący.

73. Dla danych n-wymiarowych wektorów x oraz y sprawdzić, czy

5 E
i=l 1

74. Ela danych wektorów n-wymiarowych x oraz y sprawdzić, że

x.
max <—----->

l<i<n yj
l<j<n

max x.
ISiśn 1
min y~

l<j<n J

przy czym y^O dla J=l,..,n.

75. Dla danych n-wymiarowych

rzeczywistej k znaleźć n~wymiarowy

c = b + k»a,

ortogonalny do wektora a.

wektorów a, b oraz liczby

wektor c o postaci

n
E

i = l

2
1

" 2
+ E y.

n

i

[i76. Dana jest liczba naturalna n i dwa ciągi n-elementowe d

oraz g o elementach całkowitych, reprezentujące ograniczenia dolne i

górne tablicy n—wymiarowej o elementach całkowitych, np. dane:

n=5,

d=<2,5,3,-7,4),

g= (7, 5,6,0,6)

reprezentują tablicę zadeklarowaną

var a: arrayCZ..7,5..5,3..6,-7..0,4..61 o-f integer;

Napisać program sprawdzający, czy dane dwa ciągi d, g reprezentują

tablicę n-wymiarową (tzn. czy d. S g^ dla i=l,..n). Jedli tak, to podać

liczbę elementów tablicy a.

77. Na podstawie wartości -funkcji c obliczyć, ile było w tekście

liter, a ile znaków operacji. Funkcja c jest określona następująco:

dla danego ciągu SjS^.-.s^ liter i znaków operacji

c(0) = 0,

' c(i-l)+l jeśli s. jest literą,
ctl> ~ ' c(i—1>-1 jeśli Sj jest znakiem operacji.

82

Na przykład, dla ciągu znaków

X+Y-ZAL*A*B/C

■funkcja c przyjmuje wartości

c(0)=0, c(l)=l, c(2)=0, c(3)=l, c<4)=0, c(5)=l, c(6)=2,

c(7)=3, c(B)=2, c(9) =3, c<10)=2, c(ll)=3, c(12>=2, c(13)=3.

Uwaga. Danymi dla programu mają być wartości funkcji c <a nie ciąg

znaków s,.. . s) .1 n

78. Dla danego n-elementowego ciągu x

a) uporządkować elementy ciągu rosnąco metodą przestawiania elemen­

tów sąsiednich nie stojących we właściwym porządku; sortowanie zakoń­

czyć, jeżeli w danym kroku algorytmu nie będzie ani jednego przesta­

wienia,

b) zaprogramować inne metody porządkowania ciągu w ciąg rosnący.

Dla każdej metody wydrukować liczbą porównań i liczbę przestawień

elementów ciągu.

79. Dany jest ciąg n trójek liczb rzeczywistych

al’ bl’ C1

a2’ b2’ C2

Wydrukować wartości wskaźników i oraz a., b., c., dla których

2 '
b - 4a.c.>0. i ii

Wydrukować liczbę trójek spełniających powyższy warunek.

80. W danym uporządkowanym niemalejąco ciągu liczb całkowitych

znaleźć wartość występującą najczęściej oraz liczbę jej wystąpień, np. w

danym ciągu

1,1,3,3,3,5,7,9,9,9,9,20

liczba 9 występuje najczęściej (4 razy).

81. Dla danych trójek (nr, il, c), gdzie

nr - numer towaru (l<n£5OO>,

il - ilość towaru w jednostkach umownych,

c - cena jednostki towaru w złotówkach,

dokonać następującego spisu towarów w sklepie: '

a) wydrukować zestawienie:

nr i 1 c i 1 «c

uporządkowane według numerów towarów, KM

83

b) wydrukować ogólną wartość towarów w sklepie.

Uwagi:

- sygnałem końca danych jest 0,

- mogą występować trójki z tym samym numerem, np.

(5,10,160);

(5,12,220).

82. Dane są dwa ciągi u oraz w. Sprawdzić, czy u jest podcią­

giem w, złożonym z kolejnych elementów ciągu w, np.

w = 12,7,4,-3,5,1,83,

u = 14,-3,52 u jest podciągiem w,

u = 12,4,52 u nie jest podciągiem w,

u = 11,8,21 u nie jest podciągiem w.

83. Napisać procedury obliczania sumy, różnicy i iloczynu dla dwóch

ciągów zerojedynkowych reprezentujących binarnie liczby całkowite

ni eujemne.

84- . Danych jest n serii pomiarów. Każda z serii może zawierać od

2 do 100 pomiarów. Napisać program, który:

a) dla każdej serii wyznacza średnią arytmetyczną pomiarów,

b) drukuje wykres, w którym

oś odciętych = numer serii,

oś rzędnych = średnia w serii,

c) drukuje numery serii w porządku malejących średnich.

85. Obliczyć pole wielokąta o wierzchołkach:

P2<x2’y2)’”‘*Pn(Xn’yn>

ze wzoru:

3 = 5C(xrx2)(yl+y2) + + + <xn~xl>(yn+yl1:k

Uwaga. Jeśli wierzchołki ponumerowane są zgodnie z ruchem wskazówek

zegara, to S<0, natomiast w przeciwnym przypadku S>0.

86. Dana jest macierz A-n*m. Obliczyć liczbę zer w każdym wierszu.

87. Dane są liczby naturalne n, m (n, m<10) oraz macierz A—n»m.

Obliczyć:

m

84

Wydrukować macierz

MACIERZ A

aU a12 •"

A oraz obliczone sumy (i=l,...,n) w postaci np.:

alm

Suma

S1

ani an2 a nm s n

88. Dane są 1iczby naturalne n<10. m<10 oraz macierz B-n»m.

Obliczyć:

M . = min b . .
J l<i<n JJ

Wydrukować macierz

dla j = l,.. , m.

B oraz obliczone wartości minimum w postaci np.

B

bll b12 '’‘ blm

b b „ . . . b nl n2 nm

min M, M„ ... M12 m

89. Dane są liczby naturalne n, m (510) oraz macierz A-m»n.

Utworzyć wektor b o wartościach

b^ = max lajjl dla i=l,..,m.

l<j<n

Wydrukować macierz A oraz wektor b w czytelnej postaci.

90. Dana jest macierz A-m«n. Wyznaczyć wartość oraz indeksy

elementu o maksymalnej wartości bezwzględnej. Jeśli takich elmentów jest

kilka, to wyznaczyć wartość pierwszego napotkanego.

91 Dana jest.macierz prostokątna A-n*m. Znaleźć

1< j<m

Podać indeksy wszystkich elementów macierzy mających wartość W.

92. Dana jest macierz A-n«m. Obliczyć:

max

b) min a

E

m
E

85

n
c) min £ hi J-

l<j<m i = l J

93. Dana jest macierz A-n»m. Znaleźć dwa elementy o równych

wartościach. Wydrukować tę wartość i indeksy tych elementów.

94. Dla danej macierzy A-m»n obliczyć i wydrukować:

1 /1 2 2
SRi = ; jE/ij’ Di = J/ij ~ SRi dla i=l,2,...,m.

95. Dla danej macierzy A~m*n obliczyć i wydrukować:

SRj = ~ dla i=l,..,m;

COVij = - SR.SR. dla i,j=l........... m.

96. Na pewnym kierunku studiów prowadzi się Iw wykładów i studiu­

je tam Is studentów. Mając dane stopnie, obliczyć średni stopień z

i-tego wykładu oraz średni stopień ze wszystkich wykładów dla każdego

studenta. Policzyć również ogólny średni stopień wszystkich studentów ze

wszystkich wykładów.

97. Dana jest macierz A-n*m. Obliczyć i wydrukować

n
S. = sini r a. .) dla j=l,...,m.

J i = l 1J

98. Dana jest macierz A-m*m. Obliczyć:

a) maksimum w wierszach nieparzystych,

b) sumę elementów w wierszach parzystych,

c) minimum w kolumnach nieparzystych,

d) iloczyn w kolumnach parzystych.

99. Napisać procedurę obliczania maksimum w ciągu. Dla danej

macierzy B-n«m wykorzystać ją do obliczenia

a) M. = max b.. dla i=l,...,n,
1 l<J<m 1J

b> MM = max M. ,
l£i5n 1

c) S = aax b. .,
l<i<n 1J
l<J<m

d) porównać MM i S.

86

100. Napisać procedurą, która sprawdza, czy w danej macierzy

prostokątnej A-m*n istnieje element a^ taki, że

a. = min a. = max a, . .
ks l<i<m 15 l<j<n kj

Jeśli taki element istnieje, to podać wartości k, s, ajss-

101. Napisać funkcję, która oblicza średnią geometryczną ciągu

n-elementowego. Wykorzystać ją do obliczenia średniej geometrycznej

każdego wiersza macierzy A-m*n.

102. Napisać procedurę, która dla danego ciągu n-elementowego

wyznacza liczbę elementów ujemnych, równych zeru oraz dodatnich.

Wykorzystać ją do obliczenia liczby elementów ujemnych, równych zeru

oraz dodatnich w każdej kolumnie macierzy A-m*n.

103. Napisać procedurę obliczania średnich bieżących b

ciągu ze wzorów:

al*a2
bl = “T“ ’

a._ +a.+a. .
b. = ■ ----- - dla

Obliczyć średnie bieżące w każdym wierszu macierzy X-m*n.

104. Wśród n osób przeprowadzono następujące glosowanie: każda

osoba oddaje jeden głos na dowolną spośród n osób. Wydrukować, ile

głosów otrzymała każda z osób oraz która osoba otrzymała maksymalną

liczbę głosów.

105. Dane są dwie macierze X-l»k oraz Y-l*k. Dla każdej z tych

macierzy X i Y utworzyć wektory , S , których elementami są średnie

arytmetyczne kolejnych wierszy odpowiednio macierzy X i Y. Obliczyć

iloczyn skalarny i S^.

106. Uporządkować każdy wiersz macierzy A-m*n w ciąg malejący.

107. Uporządkować każdą kolumnę macierzy A-m*n w ciąg rosnący.

108. Dana jest macierz kwadratowa A-n*n. Wyznaczyć iloczyn skalarny

elementów głównej przekątnej z każdym wierszem tej macierzy.

87

109. Danych Jest m wektorów n-wymiarowych

X1 = (x11,x12,.•■,xin>,

X2 = <X21’X22’"■■’X2n}’

X = (x ,, x x) .m ml m2 mn

Sprawdzić, które pary wektorów są ortogonalne.

Uwaga. Wektory X i Y są ortogonalne, jeśli ich iloczyn skalarny

równa się 0.

110- Dla danej macierzy A-m*n wydrukować napis

'zero w każdym wierszu’.

Jeśli w każdym wierszu macierzy co najmniej Jeden element Jest równy 0.

111. Dla danej macierzy A-m*n wydrukować napis

'dokładnie jedno zero w każdym wierszu’,

jeśli w każdym wierszu macierzy dokładnie jeden element jest równy 0.

112. Dana jest macierz A-n»n. Sprawdzić, czy jest to macierz

symetryczna.

113. Dana jest macierz A-n*m. Zamienić miejscami elementy kolumn o

numerach k oraz t (l<k<m, l<t<m, k#t).

114. Dane są dwie macierze prostokątne A-n*m i B-n»m oraz liczba

rzeczywista h. Utworzyć macierze C-n*m i D-n*m, gdzie

C = A - h*B, D = 2A + 3B.

Wydrukować macierze A, B, C, D.

115. Dane są macierze A-r»s, C-m*r oraz liczba całkowita k.

Obliczyć iloczyn skalarny k-tej kolumny macierzy A z każdym wierszem

macierzy C.

116. Dane są macierze A-r«s, B-m*s. Obliczyć iloczyn skalarny

każdego wiersza macierzy A z każdym wierszem macierzy B.

117. Dane są dwie macierze prostokątne A-m*n, B-n»l. Obliczyć

elementy macierzy C-m«l, C=A*B, gdzie

c. . = 5 a..b, . , dla i=i,...,m; j=l,...,l.
1J Z. 1 k kj

k=l

88

118. Zastąpić zerami te elementy macierzy A-n*n, które nie leżą na

wskazanych przekątnych:

119. Dana jest macierz A-r»s. Wyzerować

wierszy i parzystych kolumn.

elementy nieparzystych

120 Dana jest macierz A-n»m, n-elementowy ciąg x.,...,x oraz 1 n
liczba całkowita k (lSk<n).

(1) Obliczyć sumę SA elementów macierzy A oraz sumę SX elemen­

tów ciągu X.

(2) Zastąpić k-tą kolumnę i k-ty wiersz w macierzy A ciągiem x.

<3> Obliczyć sumę SAX elementów nowo*utworzonej macierzy A.

(4) Za pomocą wielkości SA, SAX, SX i x. obliczyć sumę tych

elementów wejściowej macierzy, które zostały zastąpione ciągiem x.

121. Dla danej macierzy A-n*n oraz liczby naturalnej k <k=l,2,3)

obliczyć:

a) minimum z elementów nad główną przekątną, gdy k=i.

b) średnią arytmetyczną elementów pod główną przekątną, gdy k=2.

c) iloczyn elementów leżących na głównej przekątnej, gdy k=3.

122. Dana jest macierz kwadratowa A-n«n. Dwie główne przekątne

dzielą macierz A na 4 części

Obli czyć;

a) minimum w części 1,

b) średnią arytmetyczną w części 2,

c) liczbę zer w części 3,

d) iloczyn elementów w części 4.

123. Napisać procedurę usuwającą z danej macierzy wiersze i kolumny

o wszystkich elementach zerowych. Pozostałe kolumny przesunąć w lewy

górny róg, np.

89

1 0 2 0 3'
4 0 5 0 6
0 0 0 0 0
7 0 8 0 9
0 0 0 0 0

’ 1 2 3 '
4 5 6
7 8 9

124- . Z macierzy A-m*n usunąć k-ty wiersz (l<k<m).

125. Dana Jest macierz A-n*n ó elementach całkowitych. Usunąć z
niej wiersze i kolumny, które zawierają dany element x, np. niech x=7.

2 5 7 0 3 '
4 2 3 1 9

- 4 2 6 2
4-3 0

1
2 '

6 1 3 2 4

A po usunięciu pierwszego wiersza i trzeciej kolumny

4 2 19'
8 2 2 1

-5 4 0 2
6 1 2 4

126. Sprawdzić, czy w macierzy A-n»m są dwie kolumny takie same lub

dwa takie same wiersze.

127. w macierzy prostokątnej znaleźć wszystkie kolumny jednakowe.

128. Dana jest macierz A-n*m. Utworzyć macierz AT.

129. Dana jest liczba naturalna n (n<7). Utworzyć i wydrukować

macierz A-n»n o elementach3*i____ Jeól i i<J,

a. . = ■
U

/ i«j Jeśl i i=J,

<i-j>3 jeśl i i>j.

3+4+5

131. Dane: n, m - liczby naturalne. Utworzyć macierz A-n*m o

gdzie i,J=1,...,n.

130. Utworzyć macierz A-n»n w sposób wynikający z przykładu dla n=3

A 2

1+2 1+2+3'

2+3 2+3+4

3

90

elementach

a . = i*J dla i=l,...,n; j=l,...,m.
u

132. Dana Jest macierz A-n*m. Utworzyć macierz B-m«m postaci

1 minA

gdzie minA, maxA oznaczają odpowiednio minimum i maksimum macierzy A.

133. Dana jest macierz A-n*m. Utworzyć macierz B-n*n postaci:

’ml Pi ml Pi ‘ ' •'

m2 P2 m2 P2 ' • ’ '

gdzie m^— mi imum i-tego wiersza macierzy A,

p_ — maksimum i-tego wiersza macierzy A.

134. Dane: n, m. Utworzyć i wydrukować macierz C-n*m o postaci:

1+1 1+2 ... 1+m

2+1 2+2 ... 2+m

n+1 n+2 ... n+m

135. Dane m, n. Utworzyć macierz A-m*n o elementach

a. . = 213J dla i = j =
U

136. Dla danej macierzy A-m*n wyznaczyć macierz, która zawiera

tylko elementy dodatnie macierzy A (pozostałe elementy wyzerować) oraz

macierz, która zawiera tylko elementy ujemne z A (pozostałe wyzerować).

Wszystkie macierze wydrukować.

137. Dana jest macierz A-n*m. Utworzyć macierze B-n*m i C-n*m

takie, że:

a) macierz B zawiera elementy o wartościach parzystych z macierzy A

(pozostałe elementy mają wartość 0) ,

b) macierz C zawiera elementy o wartościach nieparzystych z A

(pozostałe elementy mają wartość 0).

91

Sprawdzić, czy

n m n m n m
2 2 au = 2 2 bij + 2 2 cu- /

i=l j=l i=l j=l i=l j=l

138. Utworzyć macierz A—n*n o postaci

1 2 3 .. . n

2 3___ n 1
A 3 . . . n 1 2 ’

n 1 2 . ..n-1

139. Dane są macierze A-n*n, B-n*n. Utworzyć macierz C-n»n o

elementach

c.. = min (a. . + b.) dla i=l,...n: k=l,...,n.
lk l<j<n 1J jk

14-0. Napisać procedury, które realizują następujące zadani as

— transponowanie macierzy R—m*n,

— dodawanie lub odejmowanie dwóch macierzy prostokątnych A—m*n oraz

B—m*n,

— mnożenie macierzy prostokątnych X—m*k, Y—k*n.

Wykorzystując te procedury dla danych macierzy A, B, C stopnia n,

wyznaczyć wartości elementów macierzy M, V, W, przy czym

M = a»b+ct, V =(M*C)T+B, w = m-at,

AT oznacza macierz transponowaną do A.

1 4-1. Danymi dla programu są: liczba naturalna i n oraz elementy

macierzy A—n*n podane w następującej kolejności

all’ a21’ a12’ a31’ a22’ a13’ ■■■’an,n-l’ an-l,n’ V

Napisać program, który tworzy macierz A.

14-2. Sprawdzić, czy

a«at=at*a=e,

gdz i e

A - dowolna macierz n«n,

E - macierz jednostkowa n*n, tzn.

92

14-3. Dane są dwie macierze diagonalne stopnia n (tzn. tylko główne

przekątne mają elementy niezerowe). Obliczyć ich iloczyn. Jak najlepiej

jest pamiętać macierze diagonalne?

14-4-. Dana jest macierz dwuwstęgowa A-n*n (n - duże), tzn. wszystkie

elementy poza wyróżnionymi przekątnymi mają wartość 0.

Zapamiętać elementy z pięciu wyróżnionych przekątnych macierzy A w

tablicy b C-2. . 2, 1. . n 1 następująco:

Ile elementów zawiera tablica C?

b-2,i = a. . _ dla i=3,4,...,n,1,1-2

b-l,i = a. . , dla i=2,3,...,n,
1,1-1

bo,i = a. . dl a i = l,2,...,n,ii

bl,i = a . . dla i=l,2,...,n-1,1,1 + 1

b„ .
2,1

= a. . _ dla i = l,2,.. . ,n-2,1,1+2

b-l, cr
1 M
 II C
T

1 M M
 II cr

+-
+ □
II cr

K)

□ i li cr N

□
n o

14-5. Mac ierz s-wstęgową A-n«n postaci

* * * *
* * * * *

. 0*
A = *

* * * * * « *
* * * * * * *

o =s przekątnych
« * « * 4e

* * * *

gdz i e

s<n— 1, a. =0 dla 1 i-j1>s
U 1 1

zapamiętać w tablicy jednowymiarowej C:

c = [-1 1’’‘’’al,s+l’'‘"a , . . . a 1. i,n—s nnJ

14-6. Elementy macierzy s-wstęgowych A-n*n, B-n«n zapamiętane są w

tablicach jednowymiarowych AW, BW. Obliczyć CW = AW + BW. Tablice AW,

BW, CW wydrukować w postaci macierzy wymiaru n»n o s wstęgach.-

93

147. Obliczyć wyznacznik macierzy A-n«n postaci:

0 * * *

148. Dana jest macierz X-n«m. Obliczyć i wydrukować

<n
- normę wierszową: SA = max (£ x.

l<i<n j = l 1J

n
- normę kolumnową: SB = max (£ x..),

l<j<m i = l 1J

n m 2 1/2
- normę Euklidesową: SE = (£ £ x. .)

i=l j = l 1J

149. Dany jest n-elementowy wektor a, którego elementami są

wartości głównej przekątnej macierzy diagonalnej A. Wydrukować macierz A

oraz obliczyć:

a) normę Euklidesową,

b) normę drugą,

(zobacz zadanie 148).

150. Dla danej macierzy A-m»n i n-elementowego wektora x obliczyć

normę wektora y ze wzoru

bil =
gdzie

dla i=lyi ^“i^k

151. Daną macierz B-n»m zapamiętać w tablicy jednowymiarowej C.

Wydrukować B, C.

152. Macierz A-n»n ma postać

94

Zapamiętać elementy

jednowymiarowej C

głównej przekątnej spod w tablicy

C 11 ’ **21 ’ d22’ ■a ,,a anl n2’ nn

153. Napisać procedurę, która rozwiązuje

postaci:

układ równań stopnia n

11X1 b

21X1 22X2 b2

l . X .n 1 1 ln2x2 ix = b nn n n

Wskazówka. Z pierwszego równani a obli czyć x^, wstawić do drugiego

równania obliczyć itd.

154. Dane są macierze trójkątne ń-n«n B-n«n postaci

11 0 O b b12 bln

21 22 0 0 0
A B

b22 ‘‘‘ b2n

n2 . .

Zapamiętać elementy

11 bll

21 22

AB

155.
B-n»n.

156.

A

0

nn 0 . O b nn

tych macierzy w

b12

b22

bln

b2n

nl a „ n2 l b nn nn

Pomnożyć macierz trójkątną

Dane są

o

Napisać program,

wymiaru (n+l)»n

macierzy AB-n«(n+l> postaci

górną A-n*n przez trójkątną

dwie macierze trójkątne górne A, B wymiaru n»n

B 0

który wczytuje elementy macierzy A

oraz oblicza iloczyny A«B, B«A,

B do
które są

doi ną

tabli cy

macierzami trójkątnymi górnymi

wektorach (n^+^j-elementowych.

zapamiętuje te i 1oczyny dwóch

95

157.

a. .

la jest macierz A stopnia n o elementach:

'1 dl a i ,

u d dl a i=j,

d - dowolna liczba rzeczywista różna od zera.

1. Obliczyć metodą eliminacji Gaussa z częściowym wyborem elementu

głównego macierz X odwrotną do A, tzn.

A*X = E, gdzie E oznacza macierz jednostkową.

Jeśli przez x. oznaczymy elementy macierzy odwrotnej do A, to

d+n—2
Xii d(d+n-2)-n+l

______ 1________
xij d(d+n-2)-n+l

2. Obliczyć i wydrukować:

n

dla 1 = 1,... ,n,

dla i,J=l,...,n; i*j.

158. Dla danego grafu jest

macierz A-n*n o elementach:

jeśli węzeł

w przeciwnym przypadku.

określona zerojedynkowa, symetryczna

i jest połączony krawędzią z węzłem j,

Korzystając z A utworzyć B-n*n o elementach:

' true Jeśli istnieje droga z węzła i do j,
b. . = •

1J false w przeciwnym przypadku,

według następującego algorytmu:

B° = A,

bk = bk71 -V (b^1 z. bk-1> dla k=l,...,n; i,j = l,...,n.
U u ik kj

Bn Jest macierzą szukaną.

159. Relacja R określona na zbiorze aj,-.-.a^ jest zapisana w

tablicy M-n*n, gdzie

r 1 jeśli a^a.,
m. . = 4

1J [0 w przeciwnym przypadku,

dla i,j=l,...,n. '

96

Sprawdzić, czy relacja R jest

a) zwrotna,

b) symetryczna,

c) przechodnia.

160. Działanie o określane na zbiorze a^ an jest zapisane w

tablicy M-n«n następująco

m. ,=k a.o a =a. dla i,j,k=l 1 j i J k
, n.

Sprawdzić, czy działanie ma element neutralny.

Uwaga. e e {a----------- a 1 jest elementem neutralnym wtedy ------ - — 1................ n
tylko wtedy,

gdy /\ a o e
l<i<n

e o a.
i

161. Napisać procedurę tworzenia tablicy W-n*n o elementach

{i+f(R«j> dla i>j,
.

2«(i+j)*g(j+R*i) dla i<j,

gdzie

i,J=1,••-,n,
n - dana liczba naturalna,

R - dana liczba rzeczywista,

f, g - dane funkcje.

Wykorzystać tę procedurą do utworzenia tablicy:

- A-n*n, gdzie n=7, R - dowolne,

, , , 2. xf (x) = x + e ,

2x + |sin <x> | dla x<0.

1 dla x=0,
COS(X)

dla x>0.

- B-n*n, gdzie n=7, R - dowolne,

f (x) = sin (x) ,

g (x) = cos (x) .

162. Uporządkować ciąg wierszy macierzy prostokątnej A według

malejących wartości elementów kolumny o numerze k (należy tak przestawić

wiersze macierzy A, by k-ta kolumna była uporządkowana malejąco).

163. W macierzy A-n*m policzyć liczbę zmian znaków w każdym

wierszu, np. -

97

'1-1 2 O

-4 -2 7 -1

3 3 2 5

nr wiersza

. 1

2

3

3’

5 ,

7

liczba zmian znaku

2

3
O

"164.. Dane są macierze A-n«n, 8-n*n zawierające elementy O i 1

(oznaczające fałsz i prawdą). Utworzyć macierz C, która Jest sumą

logiczną macierzy A i B, oraz macierz D taką, że

n
d. . = U (a., w b .) dla i,j=l U ik kj

gdzie U - alternatywa, - koniunkcja.

165. Napisać procedurą ZAMIANA, która dla danych dwóch wektorów T

oraz TMOD w wektorze T zastępuje zerami te elementy, które występują w

TMOD. Następnie dla danych dwóch macierzy A-n»m, B-n*k wykorzystując

procedurą ZAMIANA w i—tym (i=l,...,n) wierszu macierzy A zastąpić

zerami te elementy, które występują w i-tym wierszu macierzy 9.

166. Magicznym kwadratem stopnia n nazywamy tablicę wymiaru n»n,
' 2zawierającą liczby od 1 do n zapamiętane w .taki sposób, że sumy liczb w

każdym wierszu, w każdej kolumnie i na każdej z dwóch głównych

przekątnych są sobie równe. Napisać program, który sprawdza, czy dana

tablica n»n jest magicznym kwadratem.

2
167. Zapełnić macierz T-n*n liczbami od 1 do n idąc po spirali ocJ

lewego górnego rogu według wskazówek zegara, np. dla n=6 należy utworzyć

macierz

1 ; 2 3 4 5 6 '

20 21 22 23 24 £*7^

T = 19 32 33 34 25 8

18 31 36 35 26 9

17 30 29 2B 27 10

. 16 15 14 13 12 11

168. W pewnym zakładzie jest zatrudnionych n pracowników, którzy
mają nienormowany czas pracy. Dla każdego pracownika znana jest litzba

godzin przepracowanych przez niego w kolejnych dniach tygodnia.

98

Wykorzystując typ wyliczeniowy dnitygodnia, obliczyć liczbę godzin

przepracowanych między datą początkową a datą końcową

a) przez każdego pracownika,

b) przez n pracowników.

169. Dla dowolnej sieci określa się macierz incydencji A-n*n

(n - liczba węzłów sieci) o elementach O lub 1 następująco:

' 1 jeśli w sieci jest strzałka od węzła i do węzła j,

0 w przeciwnym przypadku.

dla i,j=l, ...,n.

Utworzyć macierz połączeń M-n«n określoną następująco:

jeśli w sieci można dojść od węzła i do j,

w przeciwnym przypadku.

dla i,j=l, ...,n.

Na przykład

0 i O O O

0 0 10 0

0 0 0 0 0

0 0 10 0

0 10 0 0

Dla powyższej sieci macierz M ma postać:

M

0 1 1 0 0 "

0 0 10 0

o o o o o
0 0 10 0

0 110 0

170. Dana jest liczba naturalna n oraz liczby rzeczywiste:

x,, x_,...,x (x.*x. dla i,J=l,...,n, ixj),1 2 ’ n i j ’ ’ ’ ’

Yp y2’"‘"’yn’ *3dzie Yj = dla i = l,...,n.

Obliczyć wartość wielomianu interpolacyjnego Lagrange’a w zadanym

punkcie x według wzoru

n n x-x .
L(x) = E (y . n ’•

i=l j=l i j

99

171. Obliczyć wartość zespoloną wielomianu

, , n n-1 . _w(x) = a$x + a^x +...+ a^, gdzie x = R + i»I

według schematu

wo = ao’ Ro = ao> *0 = °’
w, = (R. ,R-I. ,1 + a.) + i(I. ,R + R, ,1),k k—1 k-1 k k-1 k-1 ’

gdz ie

Rk_j _ część rzeczywista w^-l’

Ij i - część urojona w^_ *

dla k=l, 2,...,n.

172. Obliczyć ze schematu Hornera wartość wielomianu

_ , . n , n-1 ŁE« <x) = a x + a . x +...+ a,x + a..£n n n-1 10

Schemat Hornera: wartość wielomianu

, , n . n-1 ,
n n n-1 1 0

można obliczyć ze wzorów:

w. = a , 0 n
w. = w ,x + a dla i=l,...,n.i i-l n-i

173. Dane są liczby naturalne m, n (m, n<20>

wi el orni anów:

. . m m-1 .p(x) = aAx + a,x +...+ a , 0 1 m

, , . n , n-1 .q(x) = b.x + b,x +...+ b .0 1 n

Obliczyć współczynniki wielomianów:

oraz współczynniki

v <x) = p (x) + q <x) ,

w(x) = p(x)q(x) = CqXF + CjXr * + ...+ c^.,

gdz i e

r = m + n,

dla k=l ,r; l=min<m,kj, t=max{0,k-nł.

174. Dla wielomianu

, v n n—1 ,w(x) = a_x +a.x +...+ a , 0 1 n’

gdzie a. są liczbami rzeczywistymi (i=0,...,n>,

oszacować przedział (0, G), w którym znajdują się jego wszystkie

pierwiastki rzeczywiste dodatnie, przy czym

100

m - wskaźnik .erwszego ujemnego współczynnika.

Wartość współczynnika a^ powinna być dodatnia (jeśli a$<0, to

należy pomnożyć w(x) przez -1).

Jeśli a^-0 dla i=0,l,...,n, to wydrukować napis:

NIE MA PIERWIASTKÓW DODATNICH.

175. Dla danych m punktów x,x^ obliczyć i wydrukować

wartość wielomianu

, . n n—1w (x) = a x + a . x +. . . + a, x + an n-1 1 0

(skorzystać ze schematu Homera). Dla ilu p nktów w(x)<0?

Wyniki wydrukować w czytelnej postaci.

176. Napisać funkcję, która dla danych liczb n, x oblicza wartość

wi elomianu

, . n n—1w(x) = a x + a ,x +...+ a,x + a„. n n-1 1 0

Wykorzystać tę funkcję do obliczenia wartości wyrażenia

M A(r+s.)
6 ÓCr-s1) ’

1 = 1 1

gdz i e
A(x) = A xP +...+ A,x + A. ,

p 10

B(x) = B xP +...+ B,x + B ,
p 10’

M, p — dane liczby naturalne,

A^ , Bi (i=0,...,p), r, s ,...,5^ - dane liczby rzeczywiste.

Jeśli B(i—Si>=0 dla pewnego i, to należy program' przerwać i sygnalizować

błąd.

177. Na płaszczyźnie jest danych n punktów o współrzędnych

’ i’^)’ Wydrukować współrzędne tych punktów, które leżą

wewnątrz koła o danym promieniu R i środku (0,0), tzn. spełniają warunek

2 2 , „2x . + y. < R .
i i

178. Dane są współrzędne n punktów leżących na płaszcz nie.

Wyznaczyć punkty leżące

101

a) wewnątrz kwadratu wyznaczonego przez proste

y = o. x = 0, y = 2, x = 2.

b) wewnątrz trójkąta wyznaczonego przez proste

y = 0, 1 .y=^x, y = -x + 4.

179. Napisać procedury sprawdzające, czy dany punkt (x,y) leży:

(1) na okręgu o środku (0,0) i promieniu R,

(2) wewnątrz trójkąta ABC wyznaczonego przez proste

y = 0, y = 2x, y = -2x + a,

(a - dana liczba rzeczywista, |a| > 1).

W programie, dla danych n punktów, wydrukować współrzędne tych punktów,

które spełniają:

a) warunek (1),

b) warunek (2),

c) warunki (1) i (2).

180. Dane a, b, c - liczby rzeczywiste, n - liczba naturalna oraz

współrzędne (x^,y^> dla i=l,...,n.

Wydrukować numery oraz współrzędne punktów leżących na prostej

ax + by + c = 0.

181. Dana jest prosta y = ax + b oraz m punktów na płaszczyźnie.

Wydrukować współrzędne oraz liczbę punktów leżących ponad tą prostą.

182. Na płaszczyźnie danych jest n punktów o współrzędnych

<x.,y.) dla i=l,...,n.11

Znaleźć parę punktów położonych najbliżej siebie oraz podać odległość

mi ędzy ni mi.

Uwaga. Odległość dwóch punktów na płaszczyźnie jest określona wzorem

J-----------------2---------------------- 2~S. . = V (x.-x.) + (y.-y.) .
U i J i J

183. Na płaszczyźnie danych jest n punktów o współrzędnych

(Xj,y^), dla i=l,...,n.

Wydrukować współrzędne punktów położonych:

a) najwyżej,

b) najniżej, /

c) najbardziej na lewo,

d) najbardziej na prawo,

e) na osi 0X,

f) na osi 0Y.

Wyniki wydrukować w czytelnej postaci.

102

184. Na płaszczyźnie danych jest n punktów o współrzędnych

(x , y .), dla i = 1, . . . , n. 11

Podać liczbę punktów w każdej ćwiartce i wydrukować ich współrzędne, np.

dla n=6 i punktów:

(2,1), (-3,-8), (-4,-7), (5,-8), (1,1), (-2,-2)

wydruk powinien mieć postać:

ĆWIARTKA I

Liczba punktów

Współrzędne punktów:

(2, 1)

(1, 1)

2

ĆWIARTKA II

Liczba punktów 0

ĆWIARTKA III

Liczba punktów

Współrzędne punktów:

(-3,-8)

(-4,-7)

(-2,-2)

3

ĆWIARTKA IV

Liczba punktów

Współrzędne punktów:

(5,-8)
\

1

185. Dany jest punkt (x,y), liczba calkowi ta n oraz liczby

rzeczywiste a., b., c. dla i=l,...,n. iii
Spośród n prostych

a. x + b. x + c. = O (i=l,...,n), iii

wyznaczyć te, na których leży punkt (x,y). Wydrukować odpowiednie

186. Na płaszczyźnie danych jest n punktów. Wydrukować współ­

rzędne tych trójek punktów, które są współ1 i ni owe.

137. Na płaszczyźnie danych jest n punktów. Wydrukować współ­

rzędne par punktów, które wyznaczają najdłuższy odcinek.

188. Dane są dwie proste o równaniach:

a . x + b.y + c . = O, dla i = 1,2. i i i

103

Znaleźć punkt przecięcia

Uwzględnić trzy przypadki:
tych prostych.

1. proste są równoległe, punktu przecięcia nie ma

(jeśli W = O, W * 0, W X 0), x y

2. proste pokrywają się, punktów przecięcia jest nieskończenie

wiele (cała prosta)

(jeśli W = 0, W =0, W =0),
x y

3. proste przecinają się.

_ blC2-b2Cl
X0 W

gdz i e

W = aib2 ~ a2b1

12 2 1
W jeśli W X 0

1C2 ~ b2Cl Wy = Cla2

0

W x 2 1

6. TYP ŁAŃCUCHOWY

W wielu zadaniach operuje się na danych,"które są ciągami znaków, a

ich długość w czasie wykonywania programu może ulegać zmianie, np.

nazwisko, stan cywilny, adres itp. Aby umożliwić posługiwanie się takimi

danymi, w języku Turbo Pascal wersji 3.0 wprowadzono typ danych

łańcuchowych string. W języku standardowym Pascal typ ten nie występuje.

Dane typu string nazywamy zmiennymi łańcuchowymi lub łańcuchami. Zmienną

łańcuchową x deklarujemy

typ® naz»a_typa_rartcucbo»ego=5tringCBax_dTugo^ć1;

var nszHa_zaienne j _Vai\.cuc bonę j : nazNa_t ypu—tartcucbonego;

■iub

var r>aziua_zaiennej_TancucboMejz strir\gLBax_dTugość 1;

gdzie sax^długość jest liczbą naturalną lub stałą o wartości liczbowej z

przedziału [0,2551.

Wartością tak zadeklarowanej zmiennej łańcuchowej może być dowolny

ciąg znaków. Liczba znaków łańcucha (czyli długość łańcucha) może się

zmieniać, ale nie może przekroczyć ograniczenia górnego nax _dtugość.

Każda zmienna łańcuchowa zadeklarowana w powyższy sposób zajmuje

l+«ax_dtugość bajtów w pamięci, ponieważ w jednym (pierwszym) bajcie

Jest pamiętana aktualna długość łańcucha^ (stąd ograniczenie, że

sax_dtugość < 255) .

Dana łańcuchowa (łańcuch) jest ciągiem składającym się ze znaków

zawartych między parą apostrofów, znaków sterujących oraz znaków

zapisanych dziesiętnie lub szesnastkowe, np.

’J’ [jeden znak J>

(jeden znak sterujący oznaczający nową liniej

$74 (jeden znak o kodzie dziesiętnym 74, czyli Jj

$Ś4A (jeden znak o kodzie szesnastkowym 4A, czyli Jj.

Przykład b.1

. Załóżmy, że zadeklarowano zmienne:

ver dlugi_łańcuch: string[2503;

nazwisko: stringt201;

105

Jeżeli zmiennej nazwisko chcemy nadać wartość 0’Neill, to możemy napisać

nazwisko:= ’O’’Nei11’

pamiętając, że apostrof wewnątrz łańcucha zapisujemy zawsze jako

podwójny apostrof.

Zapis

nazwi sko:=’’

oznacza, że nazwisko jest łańcuchem pustym o długości O czyli, że nie

zawiera żadnych znaków.

Wartością zmiennej długi_łańcuch może być ciąg zawierający

maksymalnie 250 znaków. Gdyby wystąpiło więcej niż 250 znaków, wówczas

znaki od 251 do końca zostaną pominięte.

Przykład 6.2

W wyniku wykonania programu

var 11,12: string[41;

begin

clrscr;

11:=~J; 12:=#73;

writeln(12,’ TAK’,11,12,’ NIE’)

end.

na ekranie pojawi się napis

I TAK

I NIE

6.1. Operacje na łańcuchach

Łańcuchy w języku Turbo Pascal wersji 3.0 można łączyć, porównywać,

przepisywać w całości lub tylko pewną część, skracać przez usunięcie

określonych elementów itp. Dla zmiennych łańcuchowych jest określony

operator konkatenacji + . Zapis-

napisl + napis2

gdzie napisl, napis2 są łańcuchami, oznacza utworzenie łańcucha o

elementach z napisl i następujących po nich elementach z napis2, np.

napisl:=’INFORMATYK’;

napi s2:=’A’;

106

wyni kl:=napi s1+napi s2; <wyni kl = ’INFORMATYKA’}

wyni k2;=napi s2+’NN’ + ’’+napi s2; twynik2=’ANNA’}

Łańcuchy można porównywać za pomocą operatorów relacji:

>, >=, =, O, < = , <■

A oto przykłady, które i lustr"ują sposób, w jaki są określone

poszczególne relacje

Wyrażenie

’AA’=’AA’

’A’=’AA’

’ AB’O’AA’

’morze’>’Morze

’KOT’<’KOTKA’

Wyni k

true

fal se

true

true

true

{bo

(bo

ord(’ m’)

’K0T’ ma

> ord(’M’>}

mniej znaków niż ’kOTKA’1

’123’>’1000’

Poniżej podamy

true

■funkcje i

(bo ord(’2’)

procedury i

>ord(’0’)}

□kreślone dl a łańcuchów.
Pełniejszy opis tych procedur i funkc: j i można znaleźć w C21.

Funkcje

concat(11, ł2, . . . , łk) wynikiem jest łańcuch ł1+ł2+...+1k, np.

łl:=’A’; 12:=’B’;

ł:=concat(11,12,12,11) <ł=’ABSA’}

copy(ł,n,k) - wartością funkcji jest łańcuch o k elementach pobra-

nych z łańcucha ł począwszy od miejsca n (jeśli jest

to możliwe), np.

11:=copy(’ASTER’,2,4); {łl=’S¥ER’}

ł1:=copy(’DOM’,5,1); {11=’’}

ł1:=copy(’PARA’,3,3) {łl=’RA’}

1ength (i) - wartością funkcji jest liczba znaków łańcucha 1, np.

n:=1ength (’12’) ; <n=2>

n:=1ength (’’’’) ; {n=ll

n:=1ength (’’) ; {n=01

n:=length(’ ’) <n=l>

pos(ł1,12) - wynikiem jest liczba zero lub najmniejszy numer

pozycji w łańcuchu 12, od której zaczyna sią podciąg

identyczny z łańcuchem łl, np.

n:=pos(’AB’,’ABRAKADABRA’); <n=lł

n:=pos(’W’,’MAGIA’); ,{n=0}

n:=pos(’RABA’,’KRAB’> {n=0ł

107

Procedury

delete(ł,n,k) - usunięcie k znaków z łańcucha ł począwszy od

znaku znajdującego się na pozycji n, np.

ł:=’KOWALSKI ’ ;

delete(ł,9,2); Cł=’KOWALSKI’1

delete(ł,6,3); {ł=’K0WAL’}

delete(ł,1,1) <ł=’0WAL’l

insert(ł1,12,n) — wstawienie do łańcucha 12 przed znak znajdujący

się na pozycji n znaków z łańcucha 11, przy

czym:

a) n musi należeć do przedziału [1,2553,

b) jeśli n > length(12), to n:=1ength(12)+1,

c) jeśli wartość wyrażenia length(11)+length(12)

Jest większa niż zadeklarowana maksymalna

długość 12, to przypisuje się znaki od lewej

do prawej odrzucając znaki nadmiarowe.

Przykład 6.3

var ł: stringC53;

ł:=’A’;

insert(’R’,ł,4); [ł=’AR’>

insert(’KA’,1,3); <ł=’ARKA’l

insert(’B’,ł,1); [ł=’BARKA’l

insert(’TOR’,ł,1) d = ’T0RBA’l

1 • ' ■ - n

str(»yr,ł1) 1 ub str(wyr:m, 11) lub str tuyr:m:n,11)

przekształcenie danej reprezentowanej przez wyrażenie arytmetyczne

Hyr w ciąg znakowy (mający postać liczby o wartości tej danej),

który zostanie przekształcony w daną łańcuchową i przypisany

zmiennej 11. W powyższych wywołaniach procedury

m - wyrażenie typu integer, określa długość ciągu znakowego,

n - wyrażenie typu integer, określa liczbą cyfr ułamkowych w

ciągu znakowym.

Przykład 6.4

var x: stringC43;

y: stringClOl;

108

b oznacza spację.

Wywołani e CiAS. Wy ni k

str(17,x) 17 <x = ’17’}

str(17:3,x) 617 <x = ’ 17’}

str(17:5,x) bbb!7 <x = ’ 1’}

str(17.98:6:2,y) 617.98 <y=’17.98’}

str(17.98:10:2,y) 6666617.98 <y=’ 17.98’}

Uwaga. Symbol

val(ł, x , k) znaki łańcucha ł są traktowane jako zapis liczby, która

zostaje przypisana zmiennej x typu integer lub real.

W łańcuchu ł nie mogę występować spacje. Ponadto, jeśli

x jest typu integer, to liczba reprezentowana przez

łańcuch ł też musi być typu integer. Jeśli opisane

przypisanie jest wykonalne, to k=0, w przeciwnym

przypadku k ma wartość numeru znaku w łańcuchu ł,

który uniemożliwił wykonanie konwersji (wówczas x się

nie zmienia).

Przykład 6.

yar x,k: integer;

• • •

val(’17’,x,k); {x=17,k=0}

val(’19.75’,x,k); <x=17,k=3ł

val(’ 2O’,x,k); <x=17,k=l}

val'’21 ’,x,k); <x=17,k=3ł

val(’25’, x,k) <x=25,k=0}

a

Podamy teraz przykład programu, w którym wykorzystano zmienne

łańcuchowe.

Przykład 6.6

Danych jest n nazwisk. Podać liczbę liter w każdym nazwisku.

Wydrukować nazwisko najdłuższe (jeśli jest takich kilka, to pierwsze

wczytane).

program names;

type napis=string[153;

var name,maxname: napis;

1engthname,maxlength, i , n: integer;

szablon: stringC251;

109

procedurę druk(x: napis; var d: integer);

begin

d:=length(x) ;

writeln(’ Liczba liter: ’,d:5);

wri teln

end (druki;

begin

clrscr;

write(’Podaj liczbę nazwisk: ’);

readIn (n) ;

writeln;

writeln(’Podaj 1 nazwisko’);

readln(maxname);

druk(maxname,max1ength);

for i : =2 to n do

begin

writeln(’Podaj ’,i:3,’ nazwisko’);

readln(name);

druk(name,1engthname);

if 1engthname > maxlength

then

begin

maxlength:=lengthname;

maxname:=name

end {ifl

end <i>;

{drukowanie wyników!

szablon:=’*’;

for i:=1 to 10 do

szablon:=szablon+’-t’;

writeln;

wri teln;

writeln(szablon,’WYNIKI’,szablon);

wri tein;

writeln(’ Najdłuższe nazwisko: ’,maxname);

writeln(’ Liczba liter: ’,maxlength:5)

end.

w

6.2. Zadania

1 Danych jest n nazwisk. Uporządkować je alfabetycznie.

2. W tablicy MIASTO są zapamiętane nazwy n miast natomiast w

tablicy KOD są zapamiętane l^ody głównych urzędów pocztowych ty®h miast,

np.

MIASTO! 1 3=’ PRUDNIK' , KO"bl 13 = ’42-800’ ,

MIAST0C23=’WARSZAWA’ K0D023=’00-001’.

Utworzyć tablicą Kl>l zawierającą nazwy miast z odpowiednimi kodami, np.

KMI13-’42-800’ FRUDNIK ’,

KMI23=’00-001 WARSZAWA’.

3. Sprawdzić, czy łańcuch łl jest zawarty w łańcuchu ł2, np.

12=’LOKOMOTYWA’,

łl=’L0K’ łl jest zawarty w ł2,

łl=’M0TYKA* łl nie jest zawarty w 12,

łl=’WAL’ łl nie jest zawarty w ł2.

4- . Podać, ile razy łańcuch łl Jest zawarty w łańcuchu ł2.

5. Danych jest m łańcuchów. Podać:

a) długość każdego łańcucha,

b) najdłuższy łańcuch.

c) wydrukować wszystkie łańcuchy od najkrótszego do najdłuższego,

każdy w nowej linii tak, aby ostatnie znaki w łańcuchach były w tej

samej kolumnie (Jeśli jest kilka łańcuchów tej samej długości, tc

drukować je w porządku alfabetycznym), np.

CHEMIA

FIZYKA

BIOLOGIA

ZOOLOGIA

MATEMATYKA

ELEKTRONIKA

INFORMATYKA

111

6. W pewnym wykazie osób nazwiska kobiet kończą się literę a,

nazwiska mężczyzn kończą się literą i. Napisać procedurę, która przed

dane nazwisko (zapamiętane jako łańcuch) dopisuje odpowiednio Pan lub

Pani .

7. Napisać procedurę, która dla danego łańcucha zawierającego nazwę

państwa i jego stolicy, np.

’POLSKA—WARSZAWA’

tworzy dwa łańcuchy, z których jeden zawiera tylko nazwę państwa, a

drugi tylko nazwę stolicy, np.

'POLSKA’, 'WARSZAWA*.

8. Danych jest n nazw miast, napisanych małą literą. Zastąpić

pierwsze litery (małe) odpowiednimi wielkimi literami.

9. W tablicy NAZWISKA jest zapamiętanych n nazwisk zapisanych

małymi i wielkimi literami. Wszystkie małe litery występujące w tych

nazwiskach zastąpić odpowiednimi wielkimi literami; Uporządkować te

nazwiska według następującej zasady: na początku umieszczamy (w porządku

alfabetycznym) te nazwiska, których na daną literę jest najwięcej, a na

końcu te, których najmniej. Na przykład nazwiska

KOS, MUCHA, KRET, BARAN, MAMUT, DZIK

należy uporządkować w następujący sposób:

KOS, KRET, MAMUT, MUCHA, BARAN, DZIK.

10. Wykorzystując typ łańcuchowy zaprogramować grę w inteligencję

dla dwóch graczy.

Opis gry: Jeden z graczy podaje pierwszą literę rzeczownika w

liczbie pojedynczej. Następnie gracze na przemian dodają po jednej

literze tak, aby powstał jakiś rzeczownik w mianowniku liczby

pojedynczej (bez zdrobnień). Żaden z graczy nie wie, jaki wyraz ma na

myśli drugi gracz. Który gracz poda ostatnią literę, ten przegrywa (w

grze chodzi p tworzenie jak najdłuższych rzeczowników), np.

Gracz 1 Gracz 2 Tworzony wyraz

k k

o ko

z koz

i koz i

o koz i o

ł koz i oł

Wygrał Gracz 1.

112

Po zakończonej grze, program powinien podać:

- utworzony przez graczy rzeczownik i jego długość,

- numer (lub inicjały) gracza, który wygrał,

- komunikat zawierający gratulacje dla zwycięzcy i pocieszenie dla

pokonanego (program powinien drukować różne komunikaty w zależności, np.

od długości utworzonego wyrazu),

- komunikat z zapytaniem, czy gracze grają dalej.

W grze mogą być np. sumowane punkty przydzielane zwycięzcy (w

liczbie równej długości utworzonego wyrazu) podczas kilku partii.

11 Dana jest rodzina m wyrazów pokrewnych. Znaleźć ich rdzeń

(tzn. powtarzającą się część wyrazu), np. dla rodziny wyrazów:

dom, domowy, domownik, domator, domek;

rdzeniem jest dom.

12, Dany jest tekst zakończony kropką. Wydrukować wyrazy, w których

litery występują w porządku rosnącym, np. dla danego tekstu:

Ach, co to za kot.

należy wydrukować wyrazy

Ach

co

kot

13. Napisać procedurę, która sprawdza, czy dany wyraz jest palin-

dromem, tzn. czy jest to taki sam wyraz czytany od początku i od końca,

np. palindromami są wyrazy:

KOK, OKO, SOS, ANNA, KAJAK, KASAK, RADAR.

14- . Przeczytać n znaków i wydrukować napis

JEST WIELKA LITERA

jeśli w danym ciągu znaków występuje przynajmniej jedna wielka litera.

15. Z danego tekstu zakończonego wykrzyknikiem usunąć wybrany

znak.

16. Dana jest pewna litera oraz tekst zakończony kropką. Obliczyć

częstość występowania tej litery w tym tekście.

17. Napisać program czytający dany tekst zakończony kropką i

redukujący ciągi kolejnych spacji do jednej spacji.

113

18. Dany jest tekst zakończony kropką. Pomiędzy każde dwa znaki nie

będące spacją wstawić jedną spacją, a występujące ciągi spacji podwoić.

19. Dany jest tekst zakończony kropką. Policzyć, ile razy występuje

w nim dwugłoska cz.

20. Dany jest ciąg zdań. Wydrukować każde zdanie od nowej linii.

21. Napisać program, który czyta tekst i drukuje liczbę słów

długości l,2,...,d, gdzie d jest maksymalną długością słowa w tym

tekście.

22. Dany jest tekst (składający się z wyrazów oddzielonych

spacjami) zakończony kropką oraz liczba naturalna k. Wydrukować

wszystkie k-1i terowe wyrazy tekstu.

23. Napisać program, który czyta tekst tak długo, aż napotka wyraz

zawierający cztery różne litery.

24- . Napisać program, który czyta ciąg znaków zakończonych kropką i

drukuje liczbę liter, przecinków, spacji i cyfr w tym tekście, np. dla

danego tekstu

Dodaj x+2, gdzie x=5.

należy wydrukować:

W tekście wystąpiło:

12 liter

1 przecinek

3 spacje

2 cyfry

25. Napisać program, który czyta ciąg znaków zakończony kropką i

arukuje powtarzające się znaki, występujące obok siebie, np. dla danych

Inna panna, Abba, week.

należy wydrukować

nn, nn, bb, ee

26. Napisać program, który:

a) czyta n liczb naturalnych z przedziału 133,1261 będących

kodami znaków w kodzie ASCII,

b) dla każdej liczby wypisuje tę liczbę, znak, którego kodem jest

ta liczba oraz odpowiedni napis "litera" lub "cyfra" lub “inny znak".

114

27 Dany Jest tekst zakończony kropką. Znaleźć literę występującą w

nim najczęściej.

28. Danych jest n wyrazów uporządkowanych alfabetycznie. Napisać

program, który porządkuje te wyrazy alfabetycznie względem liter branych

od końca wyrazu, np.

DANE WYNIK

adres instrukcja

bit cyfra

cyf ra etyki eta

etykieta kod

i nstrukcja adres

kod bit

29. Dany tekst (do 40 znaków) wydrukować na środku wiersza

zawierającego m znaków, gdzie m jest stałą zależną od wykorzystywanego

urządzenia zewnętrznego (drukarki, monitora).

7. TYP REKORDOWY

Do opisu obiektów

służą tablice. Załóżmy

studenta, podając jako

z łożonych

jednak

których składowe są tego samego

chcemy opisać obiekt złożony

elementy opisu:

nazwisko studenta łańcuch

typu

np

- imią studenta

- datą urodzenia

łańcuch

- trzy liczby całkowite:

dzień — z przedziału 11,311

miesiąc — z przedziału

rok przędz i ału

11,121,

11900,19801

— wydział łańcuch

- średnią ocen liczba

rok studiów liczba

- liczba wypożyczonych książek

rzeczywi sta,

całkowita z przedziału 11,51,

z biblioteki - liczba całkowita.

nie byłaby strukturą odpowiednią,

strukturą zwaną rekordem. Daną

Do opisu takiego obiektu tablica i

W takich przypadkach wykorzystujemy

typu rekordowego, czyli rekord deklarujemy następująco:

type nazna_t ypa_rekordonego=reconi

lista_pól

end;

yar r: nazna_typ<i_rekordo»ego

lub /
var r: record

lista_pól

end;

gdzie lista_p<51 ma postać:

P11’P12’'"■’Plm1!

p21’p22’‘'’p2m2: T2

Pnl’Pn2’’"'’Pnm

1’ 2’
’ są nazwami lub opisami typów.

116

Do poszczególnych pól rekordu odwołujemy się, pisząc np.

r.pn, r.pł2,...,r.pn(n .
n

Przykład 7■1

Prostym przykładem typu rekordowego jest data, która może być

zdefiniowana Jako rekord zawierający trzy pola: dzień, miesiąc i rok.

type data=record
dzień: 1..31;
miesiąc: 1..12;

rok: integer

end;
B

Przykład 7.2

Zde-finiujmy typ rekordowy dla opisu studenta oraz zmienną rekordową

sl typu śtudent

type student=record

nazwisko,imię: stringCIOl;

data_urodzenia: record
dzień: 1..31;

mi esi ąc: 1..12;

rok: integer

end;

wydział: stringC71;

średnia: real; {średnia oceni

rokst: 1..5; {rok studiów!

1iczba_ks:integer {liczba wypożyczonych książek!

end;
var sl: student;

Na rysunku 7.1 rekord sl jest przedstawiony graficznie.

sl:
nazwisko imię data_urodzenia wydział średnia rokst liczba_ks

dzień miesiąc rok

: i
- - * *

Rys. 7.1. Graficzne przedstawienie zmiennej rekordowej sl

Do poszczególnych pól rekordu sl odwołujemy się, pisząc np.

read(sl.nazwisko) ;

sl.data urodzenia.dzień:=13

117

Mając zdefiniowany typ rekordowy można zdefiniować na przykład

zmienną typu tablicowego o elementach typu rekordowego.

Przykład 7.3

Zadeklarujmy zmienną tablicową s następująco:

var s: arrayCl-.Sl of student;

gdzie student jest typem zdefiniowanym w poprzednim przykładzie.

Obraz graficzny s przedstawia rysunek 7.2.

Rys. 7.2. Graficzne przedstawienie zmiennej tablicowej s

s: nazwi sko imię data_urodzenia wydział średnia rokst liczba_ks
dzi eń mi esi ąc rok

sE13

sE23

sE33

sE43

sE53

sDo poszczególnych pól zmiennej można odwoływać się następująco

read <sEi1.data_urodzenia.miesiąc) ;

wri te(sEi3.nazwi sko);

sE43.rokst:=3;

sEi+j3.wydział:=’PPT’ ;

7.1. Instrukcja wiążąca

Operując na zmiennych rekordowych często stosujemy instrukcję

wiążącą with. Dzięki tej instrukcji programy są czytelniejsze i krótsze

w zapisie, np. zamiast pisać

for i:=l to 5 do
read(sEi 3.nazwisko, sEi3.i<nię, sEi 3.data urodzenia.dzień,

sE i 3.data_urodzenia.miesiąc, sEi 3.data_urodzenia.rok,

sEi3.wydział, sEi 3.średni a, sEi3.rokst, sEi 3.1 iczba_ks) ;

można zapis znacznie skrócić, pisząc

118

■for i:=l to 5 do

with stiJ,data_urodzenia do

read(nazwisko, i mi ę, dz i eń, mi esi ąc,rok,wydział,średnia,rokstud,

1iczba_ks);

Z zamieszczonych dalej przykładów widać, że nie należy stosować

tych samych nazw dla różnych zmiennych, ponieważ jeśli nawet nie ma

błędów syntaktycznych, a więc składnia jest poprawna, powoduje to

znaczne ograniczenia i utrudnienia w swobodnym operowaniu tymi

zmiennymi.

Przykład 7.4

Dany jest fragment programu

var a: arrayll..71 of record

b,c: integer

end;

is integer;

begin

i: =6;

a1 i 1.b;=5;

with atil do

begin

— te dwa przypisania odnoszą się do zmiennej aC61

b:=4

end;

W wyniku wykonania tego fragmentu programu zmienna aC61 otrzyma wartości

aC61.b=4, al61.c=17.

Poniżej przedstawiono graficznie zmienną tablicową a.

7

119

Przykład 7.5

Dany Jest fragment programu:

yar k: integer;

r: record
k: char;

b: boolean

end;
begin

with r do read(k);

k:=5;

W programie tym zadeklarowano zmienną całkowitą k oraz zmienną

rekordową r o polu k typu znakowego. Użycie tej samej nazwy k w

tym przypadku nie Jest błędem, ponieważ pisząc w programie instrukcję

k:=5

odwołujemy się do zmiennej' całkowitej, natomiast wewnątrz instrukcji

with zmienna całkowita k jest niedostępna. Instrukcja

with r do read(k)

jest równoważna instrukcji

read(r.k)

i powoduje wczytanie Jednego znaku.
K

Przykład 7.6

W programie zdefiniowano typ termin oraz zadeklarowano dwie zmienne

rekordowe odczyt i osoba w następujący sposób:

type termin=record
dz: 1..31;

m: 1..12;

r: integer

end {termin!;

var odczyt: record
tytuł: stringC201;
data: termin {data odczytu};

,sala: integer

end {odczyt};

120

osoba: record

nazw: stringCIO};

data: termin <data urodzenia};

tytuł: (mgr, dr, doc, pro-f)

end {osoba};

Przykładowe instrukcje dla tych zmiennych:

(1) odczyt.data.dz:=1;

(2) osoba.data.dz:=13;

(3) with odczyt,osoba do

tytuł:=dr;

(4) with odczyt,osoba,data do

begin

sal a:=103;

odczyt.tytuł:=’PASCAL C’;

tytuł:=doc;

dz:=13; m:=l; r:=1940

<13.1.1940 jest to data urodzenia wykładowcy a nie

termin odczytu }

end <with};

W instrukcji (1) i (2) wprost wskazujemy zmienne, do których się

odwołujemy. W instrukcji (3) pisząc

tytuł:=dr

odwołujemy się do pola tytuł zmiennej rekordowej osoba, ponieważ ta

zmienna jest zapisana jako ostatnia na liście instrukcji with. W

instrukcji (4) podano kilka przykładów prawidłowych odwołań do ól

zmiennych odczyt i osoba.

7.2. Rekordy z wariantami

Dotychczas rc. ważane rekordy miały stałą liczbę pól ustalonego

typu. W języku Turbo Pascal 3.0, podobnie jak w Pascalu standardowym,

mamy możliwość definiowania rekordów z wariantami, które umożliwiają

interpretację zmiennych rekordowych różnymi sposobami.

121

Przykład 7.7

Załóżmy, że interesują nas następujące informacje o danych osobach:

nazwisko i płeć oraz nazwisko panieńskie, jeśli dana osoba jest kobietą,

stosunek do służby wojskowej oraz cechy charakterystyczne w

przypadku mężczyzny, jeśli natomiast dana osoba jest dzieckiem, to nie

interesują nas żadne dodatkowe informacje.

W celu podania opisu uwzględniającego wymienione żądania możemy

zadeklarować zmienną rekordową

var osoba: record

nazwisko: stringClOł;

case płeć:(kobieta,mężczyzna,dziecko) of

kobieta: (nazwisko_panieńskie: stringt101>;

mężczyzna: (wojsko: boolean;

opis: (broda,wąsy,okulary,nic));

dziecko: ()

end;

W pamięci komputera jest rezerwowane miejsce na rekord zawierający

maksymalną liczbę pól. Dla każdego przypadku pola z części zmiennej mają

inną interpretację, np.

wariant kobieta:

nazwisko

płeć

nazwi sko_panieńskie

«----- pole nie wykorzystywane

wariant mężczyzna:

122

wariant dziecko:

osoba

nazwisko

płeć

— ------- -———--------* jpola nie wykorzystywane

Przykład 7.3

Dane są informacje o n osobach:

- nazwisko i imię,

- data urodzenia,

- liczba osób na utrzymaniu,

- stan cywilny (żonaty, mężatka, wdów, rozw, wolny),

- liczba rozwodów.

W zależności od stanu cywilnego są podane dodatkowe informacje:

- żonaty lub mężatka - data ślubu,

- wdów - data ślubu i śmierci współmałżonka,

— rozw - data ostatniego ślubu i rozwodu,

- wolny — liczba dzieci oraz informacja, czy dana osoba ma

mieszkanie czy nie.

Napisać program drukujący imię, nazwisko, datę urodzenia oraz liczbę

rozwodów osoby, która rozwodziła się najczęściej (jeśli jest takich

kilka, to program powinien drukować informację o pierwszej z nich).

program rozwody;

const nmax=10;

type data=record

dzień: 1..31;

miesi ąc: 1..12;

rok: integer

end fdatal;

osoba=record

nazwisko,imię: stringCIOl;

data_ur: data;

liczba_osób: integer;

liczba_rozw: integer;

123

case stan: (żonaty,mężatka,wdów,rozw,wolny) of

żonaty,mężatka: (data_śl: data);

wdów: (ślub,śmierć: data);

rozw: (ożenek,rozwód: data;)

wolny: (ma_mieszk: boolean;

liczba_dzieci: integer)

end (osoba);

var wsk,nr,max,i,j,n,pom: integer;

WYKAZ: arrayC1..nmax1 of osoba;

ROZWIEDZENI: arrayC1..nmax] of integer;

StanCywilny: 1..S;

begin

clrscr;

write(’ Podaj liczbę osób w wykazie: ’); readln(n);

j:=0; tliCTba osób rozwiedzionych}

for i:=l to n do

with WYKAZCi 1,data_ur do

begin

writeln(’ Podaj dane ’,i:3,’~ej osoby: ’>;

write(’ nazwisko (do 10 znaków): ’); readln(nazwisko);

write(’ imię (do 10 znaków): ’); readln(imię);

write(’ datę urodzenia postaci: dzień,miesiąc,rok: *>;

readln(dzień,miesiąc,rok);

writet’ liczbę osób na utrzymaniu: ’);

readln(1iczba_osób);

write(’ Podaj liczbę rozwodów: ’); readln(1iczba_rozw);

if liczba_rozw >0

then

begin

J:=j+i;

ROZWIEDZENICj1:=i

end <if>;

repeat

writeln(*

wri teln(’

wri tein(’

writeln(’

writeln(’

writeln('

Podaj stan cywilny:’);

1-żonaty’);

2-mężatka ’);

3-wdowi ec ’);

4-rozwiedziony ’);

5-wolny’);

readln(StanCywilny)

until (OCStanCywilny) and (StanCywilny<6);

124

case StanCywilny o-f

1,2: with data_śl do

begin

write(’Podaj datę ślubu: ’);

readln(dzi eń,mi esi ąc,rok)

end;

3: begin

with ślub do

begin

write(’Podaj datę ślubu: ’);

readln(dzi eń,miesi ąc,rok)

end;

with śmierć do

begin

write(’Podaj datą śmierci: ’);

readln(dzień,mi esi ąc,rok)

end

end;

4: begin

with ożenek do

begin

write(’Podaj datą ślubu: ’);

readln(dzień,mi esi ąc,rok)

end;

with rozwód do

begin

1 writein(’Podaj datą rozwodu’);

readln(dzień,miesiąc,rok)

end

end;

5: begin

write(’Podaj 1—jeśli ma mieszkanie’,

0—jeśli nie ma mieszkania:

readln(pom); (zmienna pomocnicza}

i-f pom=l

then ma_mieszk:“truś

else ma_mieszk:=false;

write(’Podaj liczbą dzieci: ’);

readln(1 i cżba_dz i eci)

end

end (case)

end (withl;

125

(szukanie osoby, która rozwodziła się najczęściej}

i-f J=0

then wri tein(’Brak osób z rozwodami’)

else begin

writeln;

write(’ In-formacje o osobie, która rozwodziła si.ą’,

’ najczęściej:’);

nr:=ROZWIEDZENILi3;

max:=WYKAZCnr3.1 i czba_rozw;

■for i :-2 to j do

begin

wsk:=RQZWIEDZENICi 3;

pom:=WYKAZCwsk3.1iczba_rozw;

i-f pom > max

then

begin

nr:=wsk;

max:=pom

end <if}

end (ił;

with WYKAZ[nr3,data_ur do

wri tein(nazwisko,imię:11,’ urr ’ , dz i eń: 2, ’ ; ’ ,

miesi ąc:2,’.’,rok:4,chr(10), chr(13),

’ liczba rozwodów=’,1iczba_rozw:2,

’ liczba osób na utrzymaniu=’,

1 i czba_osób:2)

end <j>CL ■

end.

s

Jako ćwiczenie dla Czytelnika proponujemy napisanie programu,

który:

a) podaje informacje o wszystkich osobach, które rozwodziły się

najczęściej,

b> dla osób owdowiałych oblicza, ile dni pozostawały w związku

małżeńskim,

c) drukuje in-formacje o osobie, która ostatnia wzięła ślub,

d) drukuje in-formacje o najstarszym bezdzietnym kawalerze z

mi eszkani em.,

126

7.3. Zadania

1 Zdefiniować typ rekordowy POJAZD o polach:

- rodzaj samochodu,

— marka,

- rok produkcji,

- numer rejestracyjny.

2. Za pomocą rekordu opisać towar, podając Jego nazwą, cenę, wagę,

rok produkcji, termin ważności, producenta itp.

3. W programie zadeklarowano zmienne:

var i: integer;

upis: orrayCl..10J cf record

i: char;

Jestcyfra: booleah

end;

Jaki będzie efekt wykonania poniższej instrukcji?

for i:=l to 10 do

begin

with opislil do

begin

write('Podaj znak readln(i);

if <’0’ <= i) and (i <= ”?’)

then jestcyfra:=true

else jestcyfra:=false;

writeln(i)

end <with};

writeln (i)

end <i}

4- . Jakie będą wartości w tablicy a po wykonaniu podanego fragmen­

tu programu?

var a: arrayC1..51 of record

b,c: integer

end;
i: i nteger;

127

begin

for i:=l to 5 do

begin

aC i 3. b:=0;

ati 3.c:=1

end <i>;

i:=4;

with aEi3 do

begin

b:=3;

is=i+l;

c:=19;

b:=9

end fwithl;

5. Dane są informacje o n osobach. Wydrukować imię, nazwiska,

zawód oraz stan cywilny osób urodzonych w lipcu 1950 roku.

6. Dane są następujące informacje o n studentach: nazwisko, imię,

miejsce zamieszkania, data urodzenia, wydział, średnia ocen, liczba

wypożyczonych książek z biblioteki. Napisać program, który

a) oblicza, ilu studentów na wydziale elektroniki ma średnią 4.0, a

ilg Średnią 5.0,

b) drukuje nazwiska i imiona studentów zamieszkałych we Wrocławiu,

c> drukuje nazwiska, imiona i wydział studentów, którzy wypożyczyli

więcej niż 5 książek.

7. Dane są informacje o n studentach. Sprawdzić, czy student o

nazwisku nazWj ma taką samą średnią ocen jak student o nazwisku nazw^.

Jeśli nie, to podać, który z nich ma wyższą średnią.

8. Dane są informacje o n osobach: nazwisko, imię, data urodze­

nia, płeć, stan cywilny oraz liczba dzieci. Policzyć, ile jest bez­

dzietnych kobiet stanu wolnego. Wydrukować ich imię, nazwisko,' datę

urodzenia.

9. Dane są informacje o n osobach: nazwisko, waga, wzrost, kolor

oczu i włosów oraz płeć danej osoby. Napisać program, który:

a) wczytuje dane do tablicy,

b) drukuje liczbę kobiet o wadze ponad SOkg,

c) drukuje nazwisko i wzrost niebieskookich blondynek.

128

1Q. Napisać program, który:

- wczytuje i drukuje w postaci tabeli imiona i nazwiska n

sportowców oraz wyniki m konkurencji sportowych,

- wyprowadza imię i nazwisko oraz średni wynik najlepszego

sportowca. Za kryterium przyjąć sumę wyników z m konkurencji.

11. Zdefiniować zmienną o nazwie FISURA jako rekord z wariantami

zawierający następujące informacje:

- promień koła, jeśli opisuje koło,

- długości dwóch boków, w przypadku prostokąta,

- długości trzech boków, jeśli opisuje trójkąt.

Napisać program, który:

a) dla danej -figury (koło, prostokąt, trójkąt) oblicza jej pole,

b) dla danych dwóch figur sprawdza, czy te figury są kołem,

kwadratem lub trójkątem równobocznym. Jeśli tak, to sprawdza, czy jedna

z figur zawiera się w drugiej.

12. Typ osoba ma zawierać pola:

- nazwisko, imię, data urodzenia, płeć, liczba rozwodów,

- stan cywilny: żonaty, mężatka, wdów, rozw, panna, kawaler

oraz jeśli stan cywilny jest:

- żonaty lub mężatka, to datę ślubu,

- wdów, to datę ślubu i datę śmierci współmałżonka,

- rozw, to datę ostatniego ślubu i datę ostatniego rozwodu,

- panna lub kawaler, to czy ma mieszkanie, czy nie, oraz liczbę

dzieci.

Napisać program, który dla danych n osób drukuje:

a) nazwisko, imię, datę urodzenia, płeć i stan cywilny osób, które

wzięły ślub w maju 1985 roku.

b) nazwisko i imię bezdzietnych kawalerów z mieszkaniem,

c) nazwisko i imię mężatki o najdłuższym stażu małżeńskim,

d) nazwisko i imię wdowy, która owdowiała ostatnia,

e) i nformacje o osobie, która rozwodziła się najwięcej razy

13. Dany jest wykaz dzieci z przedszkola (nazwisko, imię, średni

zarobek matki, średni zarobek ojca, liczba osób na utrzymaniu rodziców).

Napisać program, óry:

a) wczytuje dane;

b) oblicza opłatę za przedszkole według zasady:

(1) osoby samotne płacą ustaloną kwotę złotych,

(2) małżeństwa płacą 20Z średniej wypadającej na osobę w

rodzinie;

129

c) drukuje alfabetycznie nazwiska i imiona dzieci z przedszkola

podając przy każdym dziecku wysokość opłaty.

14. Daną liczbę rzeczywistą można zapamiętać w postaci rekordu:

type lrzecz=record
całk, ułam: O..maxint

end;

Dla danego ciągu z^z^,...^ liczb rzeczywistych, z których każda

a) zapamiętana jest w postaci powyższego rekordu,

b) część ułamkową ma nie mniejszą niż 0.1,

napisać program, znajdujący liczbę największą według metody:

(1) znajdź maksymalną część całkowitą,

(2) jeśli kilka liczb ma taką samą część całkowitą, to wybierz

spośród nich tę, która ma maksymalną część ułamkową.

15. Dane są dwie tablice STUDENT i PRACOWNIK. Elementami tablicy

STUDENT są rekordy opisujące studentów (nazwisko, imię, średnia ocen),

elementami tablicy PRACOWNIK — rekordy opisujące pracowników (nazwisko,

imię, wynagrodzenie, premia). Obie tablice są uporządkowane alfabe­

tycznie według nazwisk i imion. Zarówno w tablicy STUDENT jak i w

PRACOWNIK nie występują dwie osoby o takim samym nazwisku i imieniu.

Napisać procedurę przydzielającą 10% premię od wynagrodzenia dla każdego

pracownika, który jest jednocześnie studentem i ma średnią wyższą niż

3.0.

16. Dane są:

a) aktualny dzień, miesiąc i rok,

b) dzień, miesiąc i rok urodzenia danych n osób.

Obliczyć wiek tych osób z dokładnością do dnia. Wydrukować ich nazwiska

od najmłodszego do najstarszego. Uwzględnić w programie, że luty może

mieć 28 lub 29 dni.

"(7 Dane są informacje o n osobach: nazwisko, numer telefonu,

miejsce zamieszkania, data urodzenia, płeć. Napisać program sortujący

informacje o tych osobach według wybranego pola.

18. Dane są informacje o n pracownikach: nazwisko i imię, stawka

godzinowa w złotówkach oraz czas pracy w poszczególne dni tygodnia.

Napisać program, który dla każdego pracownika oblicza całkowity czas

130

pracy w tygodniu oraz zapłatę według zasady: 40 gadzin pracy w tygodniu

jest płatnych według podanej stawki, wszystkie godziny ponad 40 są o 507.

droższe.

19. Elementami tablicy PRACOWNIK są rekordy opisujące górników

zatrudnionych w pewnej kopalni. Wydrukować dane o tych górnikach, którzy

są braćmi lub stanowią rodzinę (ojciec i synowie).

20. Elementami tablicy LISTA są rekordy opisujące członków pewnego

towarzystwa (nazwisko, imię, data urodzenia, adres, miejsce pracy,

itp.). Wczytać dane do tablicy SKŁADKA następująco:

SKŁADKA.
1

' 1 ’ jeśli i-ty członek towarzystwa•zapłacił składkę,

0 w przeciwnym przypadku.

Na podstawie tablic LISTA i SKŁADKA wydrukować informacje o osobach,

które nie zapłaciły składki i skreślić te osoby z listy członków, tzn. z

tablicy LISTA usunąć informacje o tych osobach.

8. TYP ZBIOROWY

W wielu przypadkach nie interesuje nas porządek występujących

wartości (co jest istotne np. w przypadku tablic), ale jedynie wartości

elementów. Mówimy wówczas o zbiorach.

Zmienną typu zbiorowego w języku Turbo Pascal 3.0 deklarujemy

następująco:

type nazwa_t /pu_zbior'owego=set a-f T;

var nazwa_za2ennej : nazwa_typu_zbiorowego;

lub

var nazwa_ZBi ennej: set o-f T;

gdzie T jest nazwą lub opisem typu porządkowego (T jest nazywany typem

bazowym typu zbiorowego). Typ T nie może zawierać więcej niż 256

elementów. Ponadto, dla xeT, ord(x) musi należeć do przedziału 10,2551.

Typ zbiorowy jest zbiorem potęgowym zbioru bazowego.

Przykład 8.1

Rozważmy typ MałyZbiór, którego zbiorem bazowym jest zbiór

<0,1,2,3}

type MałyZbiór=set ot 0..3;

oraz zmienną x, zadeklarowaną następująco:

var x: MałyZbiór;

Typ MałyZbiór jest odpowiednikiem zbioru potęgowego, czyli zbiorem

wszystkich podzbiorów zbioru liczb O,1,2,3. Możliwymi wartościami

zmiennej x są:

I 3 - zbiór pusty,

C03,[13,[23,[33 - podzbiory jednoelementowe zbioru bazowego

<0,1,2,3},

[O,13,CO,23,[0,33,Cl,23,[1,33,C2,33 - podzbiory dwuelementowe

zbioru bazowego,

CO,1,23,CO,1,33,[0,2,33,Cl,2,33 - podzbiory trzyelementowe zbioru

bazowego.

[0,1,2,33 - cały zbiór bazowy.

132

Typ MałyZbiór z omawianego przykładu ma 16 (czyli 2) możliwych

wartości (podzbiorów). Ogólnie, jeśli typ bazowy ma n wartości, to typ
zbiorowy ma 2n możliwych wartości.

Zmiennym typu zbiorowego możemy nadawać pewne wartości początkowe,

zmieniać te wartości oraz Je porównywać. Na elementach typu zbiorowego

są określone następujące operacje:

operator operacja

+ suma zbiorów,

- różnica zbiorów,

t część wspólna zbiorów,

in należenie do zbioru,

= równość zbiorów,

O nierówność zbiorów,

<,<=,>=,> zawieranie zbiorów.

Za pomocą zmiennych typu zbiorowego oraz operacji na nich

określonych możemy zapisywać w TP 3.0 obliczenia teoriomnogościowe.

Przykład 8.2

Załóżmy, że zadeklarowano zmienne x oraz y

var x,y: set of 0..9;

Dla tych zmiennych można napisać następujące instrukcje:

x:=E 1; < X = { 1 1

x:=x+E01; { x={01 1

y:=x+E21; < y={0,21 1

if not (3 in x) then x:=x + E31; < x=E0,31 1

y:=y*x; { y=<01 1

y:=y—EO1; < y={ 1 1

x:=EO..3,6,8..91; < x=<0,1,2,3,6,8,91 1

i-f x<y then x:=y; { x=<0,1,2,3,6,8,91 1

3

Przykład 8.3
------------------------- 7 /

Załóżmy, że mamy pojemnik zawierający n piłek (ni.5) i chcemy

wyciągnąć k piłek spośród nich. Szczególnie interesuje nas sposób

generowania rozwiązań. Je£li założymy, że piłki są oznaczone numerami od

1 do n, to zadanie sprowadza się do wygenerowani a jednej k—elementowej

permutacji ze zbioru n-elementowego.

Napiszemy program generujący wszystkie k-elementowe permutace ze

zbioru n—elementowego (n>k), wykorzystując następujący algorytm:

133

Załóżmy, że mamy Już wybranych 1 piłek. Jeśli

(1) l<k, to musimy wyciągnąć następną piłkę,

(2) l=k, to koniec wyciągania.

Przedstawiony algorytm Jest rekurencyjny i dlatego procedura WYBIERZ w

programie permutacje jest rekurencyjna.

program permutacje;

const nmax=20;

type 1 icznik=0..nmax;

zabawka=l..nmax;

pojemnik=set of zabawka;

tablica=arrayl1..nmax3 of integer;

var permutacja: tablica;

n,k: licznik;

procedurę WYBIERZ(WOREK: pojemnik; n,l,r: 1icznik;ZBIÓR: tablica);

(procedura WYBIERZ zapisuje do tablicy ZBIÓR numery piłek

wyciąganych z n-elementowego zbioru WOREK, z którego trzeba

wyciągnąć 1 piłek, przy czym r piłek Już wyciągnięto!

var piłka: zabawka;

begin

if r=l

then

{koniec wyciągania, drukowanie numerów wyciągniętych piłek!

begin

for piłka:=l to 1 do

wri te(ZBIÓRCpiłkał:5);

writeln

end {r=l!

el se

{wyciąganie 1-r piłek!

for piłka:=l to n do

if piłka in WOREK

then

begin

ZBIORCr+13:=piłka;

WYBIERZ(WOREK—Cpiłkal, n,1,r+l, ZBIÓR)

end

end {WYBIERZ!;

begin

clrscr;
writeln('Program generuje wszystkie k—elementowe permutacje);

writeln(’ze zbioru n-elementowego’);

134

write(’Podaj liczbę elementów zbioru n=’) ;

readln (n);

write(’Fodaj k=’) ;

readln(k);

writeln;

if n>=k then

begin

writeln!’ WYNIKI’);

writeln;

WYBIERZ(LI..ni,n,k,0,permutacja)

end tn>=k>

else writeln(’ZLE DANE’)

end.

□to otrzymane wyniki dla n=3 i k=3:

Program generuje wszystkie k-elementowe permutacje
ze zbioru n—elementowego
Podaj liczbę elementów zbioru n=3
Podaj k=3

WYNIKI
1 2 3
1 3 2
2 1 2
2 3 1
3 1 2
3 2 1

■

Przykład 8,4

Danych jest n znaków. Dla każdego znaku wydrukować jeden z

napisów:

- litera

- cyfra

- inny znak

w zależności od tego, do której grupy znak należy.

program znaki;

var znal . char;

i , n: integer;

begin

clrscr; gz f•' xy <5,5) ;

write!’ Podaj n: ’); readln(n);

•for i : = 1 to n do

begin

gotoxy(5,5+i);

135

writet’ Podaj znak: ’);

read(znak) ;

ił znak in C’A’..’Z’,’a’..’z’l

then writet’ — LITERA’)

el se

i-f znak in C’0’..’9’]

then writet’ - CYFRA’)

else writet’ - INNY ZNAK’)

end <i>

end.

Przykład 8.5

W grupie 1aboratoryjnej n studentów za pomocą 7-elementowych

ciągów zerojedynkowych określa dni, w które chcieliby mieć laboratorium

z informatyki, np. dane

1, 0, 0, 1, 0, 0, 0,

oznaczają, że student chciałby mieć laboratorium w poniedziałki i w

czwartki. Wydrukować dni odpowiadające wszystkim studentom oraz dni nie

odpowiadające żadnemu studentowi.

program laborka;

const nmax=10;

type tydzień=(poniedz,wtorek,środa,czwartek,piątek,sobota,niedz) ;

OdpowiednieDni=set of tydzień;

var dni: arrayI1..nmax3 of OdpowiednieDni;

fdnitil - dni odpowiadające i-temu studentowi!

DobreDni,ZłeDni: OdpowiednieDni;

{DobreDni - dni odpowiadające wszystkim studentom}

{ZłeDni - dni nie odpowiadające żadnemu studentowi}

NieTak: 0..1; -

dzień: tydzień;

i,n: integer;

procedurę Pisz(dz: tydzień);

begin

case dz of

poni edz: writel’ poniedziałek ’)

wtorek : writet’ wtorek ’);

środa : writet’ środa ’);

czwartek: writet’ czwartek ’);

pi ątek: writet’ piątek ’);

136

sobota: write(’ sobota ’);

niedz: writef niedziela ’)

end {case}

end {Pisz};

procedurę Drukuj(zbiór: OdpowiednieDni);

var dzień: tydzień;

begin

■for dzień:=poniedz to niedz do

i-f dzień in zbiór then

begin

Pisz(dzień);

writeln

end Cif}

end {Drukuj};

begin

{czytanie danych}

clrser;

write(’Podaj liczbę studentów: ’);

readln(n);

■for i:=l to n do

begin

writeln(’ Podaj za pomocą 0 i 1 (O-nie,

write(’ czy w dany dzień chcesz mieć');

writeln(’ laboratorium z informatyki:’);

dniCil:=C 1;

for dzień:=poniedz to niedz do

begin

Pisz(dzień);

readln(NieTak);

case NieTak of

O: ;

1: dni Ci 3:=dniCi3+CdzieńJ

else

begin

writeln;

writeln(’ ZLE PODAJESZ DANE!’);

halt

end {else}

end {case}

end {dzień}

1-tak)’)

end {i};

137

<obl i czerń al

DobreDni:=Cponiedz..niedz3;

ZłeDnis=DobreDni;

■for i : =1 to n do

begin

DobreDni:=DobreDni Sdni Ci 3;

ZłeDni:=ZłeDni-dni Ci 3

end <i>;

{wyprowadzanie wyników?

writeln;

if DobreDni<>C3

then begin

writeln(’Dni odpowiadające wszystkim studentom:’);

Drukuj(DobreDni)

end <DobreDniOC3>

else writeln(’Brak dni odpowiadających wszystkim studentom’);

writeln;

if ZłeDniOCl

then begin

writein(’Nie ma chętnych na dzień:’);

Drukuj(ZłeDni)

end

else writeln(’Na każdy dzień tygodnia są chętni’)

end.
' ■

Przykład 8.6

W danym tekście zakończonym kropką, policzyć wystąpienia par małych

liter, np. w tekście

Tata lata.

są następujące pary małych liter

at - 2,

ta - 2,

la - 1.

Oto program realizujący powyższe zadanie:

program liczpary;

type 1 itera=’a’..’z’;

var LiczbaPar: arrayCli tera,1 i tera] of integer;

tekst: stringC2O3;

11,12: litera;

138

zl,z2: char;

ks integer;

begin

•for ll:=’a’ to ’z’ do

■for 12:=’a’ to ’z’ do

LiczbaParCl 1,123:=0;

clrscr;

writeln(’ Podaj tekst (do 20 znaków):’);

readln(tekst);

zl:=’ ’;

■ for k:=l to 1ength(tekst) do

begin

z2:=tekstCk3;

if Cz 1,z23< = C’a’..’z’3 then

Li czbaParCz1,z23:=LiczbaParCz1,z23 + 1;

zl:=z2

end tk};

writein;writein;

• for ll:=’a’ to ’z’ do

• for 12:=’a’ to ’z’ do

begin

k:=LiczbaPar111,123;

i-f k<>0 then wr i tein (11,12, ’-1 iczba wystąpień:k: 3)

end <123

end.

8.1. Zadania

t Dane są zbiory A, B liczb całkowitych od 4 do 10. Obliczyć

C = A u B.

Wydrukować elementy zbiorów A, B, C.

2. Dane są podzbiory E, F, G wielkich liter. Utworzyć zbiór

S = E u F u G.

Wydrukować elementy zbiorów E, F, G, S.

139

3. Dane są podzbiory A, B, C małych liter. Utworzyć zbiór

D = A n B Ci C.

Wydrukować elementy zbiorów A, B, C, D.

4 Dla danych dwóch zbiorów A, B liczb całkowitych z przedziału

Cl,201 utworzyć zbiory C, D, E, F, gdzie

C = A U B,

D = A n B,

E = A - B,

F = B - A.

Wydrukować elementy zbiorów A, B, C, D, E, F. Sprawdzić, czy

A £ C,

DSC,

C = E U F U D,

E n F = 0.

5. Znaleźć wielkie litery w danym tekście zakończonym średnikiem.

Podać liczbę wielkich liter w tym tekście.

6. Dany Jest tekst zakończony znakiem $. Obliczyć częstość

wystąpienia poszczególnych wielkich liter w tym tekście.

7. Dany jest tekst zakończony kropką. Wydrukować liczbę głosek

występujących w tym tekście.

8. Dane są dwa zbiory A, B liczb całkowitych z przedziału Cl,nl

oraz -funkcja f(x) określona dla X należących do zbioru A. Napisać

program, tworzący zbiór Z, którego elementy x spełniają relację:

(xeA) r. <f(x)eB). f

Na przykład:

n = 10, A = 12..81, B = 15..101, -F <x ł = 2x,

wówczas

2=13,4,51.

9. Znaleźć liczby pierwsze mniejsze niż dana liczba MAXN metodą

sita Eratostenesa <zob. tli s. 155).

10. W programie zadeklarowano tablicę rekordów zawierających

informacje, o miesiącach, w jakich osoba o danym nazwisku chciałaby

wziąć urlop

14-0

type mies= (i,ii,iii,iv,v,vi,vii,viii,ix,x,xi,xii);

var osoba:: record

nazw: stringC151;

urlop: set o-f mieś •

end;

prac:: arraytl..501 o-f osoba;

Napisać program., który drukuje zestawienie postaci:

MIESIĄC NAZWISKA

styczeń Król i kowski

Stępień

Kowal

luty Pal uch

itd.

11. Zmodyfikować program laborka z przykładu 8.5 tak, aby:

a) można było jako dane podawać nazwy dni,

b> program drukował procentowe zestawienie studentów chętnych na

laboratorium w poszczególne dni tygodnia.

9. TYP PLIKOWY

Plik jest strukturą danych przypominającą taśmę magnetofonową.

Elementy pliku twarzą ciąg. Dostęp do elementów jest sekwencyjny, tzn.

żeby odczytać lub zapisać coś do pliku trzeba plik “przewinąć" w

odpowiednie miejsce. Wszystkie elementy pliku są tego samego typu, a ich

liczba jest teoretycznie nieograniczona.

W danej chwili program ma dostęp tylko do jednego elementu pliku.

Graficznie plik można przedstawić następująco:

plik f

T '
pierwszy element pliku -f

Zmienną typu plikowego deklarujemy następująco:

type naz»a_typu _plikonego=file o-f T;

var Dazna_zBiennejt nazna_typu_plikonego;

lub

var nazna_ZBiennej: -file o-f T;

gdzie T Jest nazwą lub opisem dowolnego typu z wyjątkiem plikowego.

Ze zmienną plikową wiąże się pojęcie długości pliku, tzn. liczby

elementów w danej chwili wykonywania programu. Plik o długości zero

nazywamy plikiem pustym.

Wszystkie operacje na plikach są wykonywane za pomocą wywołań

■funkcji i procedur. Należy pamiętać, że przed wykonaniem jakiejkolwiek

operacji na pliku należy plik związać ze zbiorem (danych lub wyników)

procedurą assign, np. jeśli plik f zadeklarowany

var -f: -file o-f integer;

chcemy związać ze zbiorem danych DANEF, to musimy napisać

assi gn (-f, ’ DANEF’)

Podamy teraz procedury standardowe dotyczące operacji na plikach

(Turbo Pascal wersja 3.0):

14-2

assign(f,’ZBIÓR’>

reset (-f)

rewrite(f)

skojarzenie pliku -f ze zbiorem o nazwie

ZBIÓR; jest wymagane, aby przed wywołaniem

procedury assign plik f nie był otwarty;

otwarcie pliku -f (wcześniej musi być

wywołana procedura assign (-F,’ZBIÓR’) ;

dostępny staje się pierwszy element pliku;

otwarcie pliku f; jeśli wcześniej nie był

pusty, to jego zawartość zostanie skasowana.

Po wykonaniu rewrite(f), plik -F jest pusty.

Przed wywołaniem rewrite(f) należy wywołać

procedurę assign(f,’ZBIÓR’);

read (f, x)

wr i te (f , x >

seek (-F, n)

close(f)

rename(f,’NOWY’)

- odczytanie z pliku f Jednego elementu i

przypisanie jego wartości zmiennej x;

zmienna x musi być tego samego typu co

elementy pliku +;

- zapisanie do pliku f wartości zmiennej x;

zmienna x musi być tego samego typu co

elementy pliku f;

- ustawienie pliku f w takiej pozycji, że

Jest dostępny n—ty element pliku -f, gdzie

n jest wyrażeniem o wartości typu integer;

- zamknięcie pliku f, jeśli był wcześniej

otwarty (za pomocą reset(f) lub rewrite(f)),

w przeciwnym przypadku stan pliku -f nie

zmienia się;

— zmiana dotychczasowej nazwy zbioru skojarzo­

nego z plikiem -F na nową nazwę NOWY, przy

czym nowa nazwa nie może być nazwą żadnego

zbioru już istniejącego.

W chwili wywołania procedury rename(f) plik

■f nie może być otwarty;

erase (-f) skasowanie zbioru danych skojarzonego z

plikiem -f. Zaleca się, by przed wywołaniem

procedury erase(-f) plik -f nie był otwarty.

143

Dla zmiennych plikowych są określone następujące -funkcje

standardowe:

eo-f (f) - (ang. end of file) przyjmująca wartości

logiczne 1

eof(f) =

.rue i false:

true jeśli koniec pliku f,

false w przeciwnym przypadku.

f ilesi ze (f) - wynikiem funkcji jest liczba całkowita,

określająca liczbę elementów pliku f (tzn.
/

długość f); dla pliku pustego f

filesize(f)=0;

fil epos(f) - rezultatem funkcji jest liczba całkowita

określająca numer aktualnie dostępnego

elementu w pliku f.

Szczegółowe omówienie procedur i -funkcji standardowych związanych z

plikami w języku Turbo Pascal 3.0 znajduje się w [21.

Przykład 9.1

Zapisać n liczb całkowitych do pliku f, któremu odpowiada zbiór

o nazwie 'DANE*.

program piszdane;

var f: file of integer;

i,n,x: integer;

begin

assi gn (f, ’ DANE’) ;

rewri te(f) ;

clrscr;

write(’Podaj n:

readln (n);

•for i:=l to n do

begin

write<’Podaj x:

readln(x);

wr i t s (f , x)

end <i>;

close(f)

end.

14-4-

Przykład 9.2

Dany jest plik o elementach całkowitych (plik ten można utworzyć

wykorzystując program o nazwie piszdane z poprzedniego przykładu).

Policzyć, ile razy występuje w tym pliku dana liczba całkowita x.

program zlicz;

var f: file of integer;

x,licz,z: integer;

begin

clrscr;

assign(f,’DANE’); reset(f);

if eof(f) then writein(’PLIK PUSTY’)

el se

begin

licz:=O;

write<’Podaj x: ’); readln(x);

wr i tein(’Elementy pliku:’);

repeat

read(f,z); writeln(’ z=’,z:3);

if x=z then licz:=licz+l

unti1 eof(f); '

write(’1iczba x=’,x:3,’ wystąpiła ’,licz:5);

if licz=l then writeln(’ raz’) else writeln(’ razy’)

end (else);

cl ose (f)

end Czliczl.

9.1. Pliki tekstowe

Pliki tekstowe o standardowej nazwie text w języku Turbo Pascal 3.0

definiujemy następująco:

type nazwa_typ<z=text;

var nazwa_z»2ennej: nazna_typa^

1 ub

var nazna_zaiennejt text;

Dowolny plik tekstowy składa się z różnej długości wierszy

zawierających znaki. Każdy wiersz jest zakończony znakiem końca wiersza

14-5

CR/LF (carriage return/line feed). Standardowo definiuje się:

type text=file of char;

var input,output: text;

przy czym

- plik input Jest standardowym plikiem wejścia, może być czytany

tylko raz, nie można dc niego zapisywać;

- plik output jest standardowym plikiem wyjścia, może być tylko

generowany, nie można z niego czytać.

Dowolny plik tekstowy można skojarzyć ze zbiorem danych albo z

urządzenieam zewnętrznym, takim Jak: drukarka, konsola, terminal lub

klawiatura.

Wcześniej opisane standardowe procedury i funkcje dotyczące

operacji na plikach można wykorzystywać również i dla plików tekstowych.

Podamy teraz zasadnicze różnice w wywołaniach procedur i funkcji, w

przypadku, gdy występujący w nich parametr f jest nazwą pliku

tekstowego:

assign(f,’ZBIÓR’) - ZBIÓR jest nazwą zbioru lub urządzenia

zewnętrznego (CON: - konsola,

TRM: — terminal,

KBD: — klawiatura,

LST: - drukarka);

reset(f) - f nie może być nazwą input ani output;

jeśli plik f został skojarzony z

urządzeniem zewnętrznym, to jest już otwarty

i wywołanie tej procedury nie powoduje

żadnego skutku;

rewrite(f) - uwagi jak dla reset(f);

close(f) - f nie może być nazwą pliku standardowego;

reao(f,x1,...,xn) - przypisanie kolejnych wartości elementów z

pliku tekstowego f zmiennym xl,...,xn typu

integer, real, char, lub string. Brak

parametru f oznacza wywołanie dla pliku

input;

readln(f) - wprowadzenie jednego wiersza z pliku f (znaki

z tego wiersza są ignorowane). Brak parametru

f oznacza wywołanie dla pliku input;

readln(f,xl,...,xn) - czytanie jednego wiersza danych z pliku

tekstowego f i przypisanie kolejnych wartości

zmiennym xl,...,xn. Brak parametru f

oznacza wywołanie dla pliku input;

14-6

wr i te (f , x 1, . . . ,xn> - dopisanie wartości zmiennych xl,...,xn (typu

integer, real, char, string lub boolean) do

pliku tekstowego f. Brak parametru f oznacza

wywołanie dla pliku output;

writeln (f) — wyprowadzenie jednego wiersza do pliku f.

Brak parametru f oznacza wywołanie dla pliku

output;

writeln (f,x1, . .. ,xn) - dopisanie jednego wiersza zawierającego

wartości xl,...,xn do pliku f. Brak parametru

f oznacza wywołanie dla pliku output;

eof (f) - brak parametru f oznacza wywołanie dla

pliku input;

eoln (f 1 - -funkcja boolowska, eoln(f) = true, jeśli

aktualnie dostępny element pliku f jest

znakiem końca wiersza lub gdy

eof(f> = true. Brak parametru f oznacza

wywołanie dla pliku input;

seekeof (f) - -funkcja boolowska zbliżona do eof(f);

po pominięciu najbliższych znak w spacji,

— tabulacji, CR i LF seekeof(f) = eof(f).

Brak parametru f oznacza wywołanie dla

pliku input;

seekeoln (f) — funkcja boolowska zbliżona do eoln(f);

po pominięciu najbliższych znaków spacji

i tabulacji seekeoln(f) = eoln(f).

Brak parametru f oznacza wywołanie dla

_ pliku input.

9.2. Pliki bez typu elementów

W języku Turbo Pascal 3.0 mogą występować pliki bez typu elementów.

Są one deklarowane następująco:

type nazM_t ypu=fi 1 e;
var nazna_z»iennejt nazua_typa^

1 ub
var naznazaiennej: file;

W tak zadeklarowanych plikach typ elementów jest bez znaczenia.

Elementami pliku są bloki po 128 bajtów pamięci dyskowej. Pliki te

U7

są wykorzystywane do niebuforowanych operacji wejścia/wyjścia

wykonywanych między zmiennymi programu a zewnętrzną pamięcią dyskową.

Operacje assign, reset, rewrite, close, rename, erase, seek i eo-f

mają taką samą interpretację jak dla plików z ustalonym typem elementów.

Zamiast operacji read i write wykonuje się natomiast operacje blockread

i blockwrite. Wywołania tych procedur mają postać:

blockread(f,x , n, 1 i cz) ;

blockread(f,x,n);

blockwrite(f,x,n,licz) ;

bl ockwr i te (-F , x, n) ;

gdzie

•f - nazwa zmiennej plikowej reprezentującej plik bez typu

elementów,

x - nazwa dowolnej zmiennej programu,

n - wyrażenie o wartości typu integer,

k - nazwa zmiennej typu integer.

Wynikiem wywołania procedury blockread jest wprowadzenie n bloków (po

128 bajtów każdy) z pliku f do obszaru pamięci operacyjnej zajmowanego

przez zmienną x. Jeśli w wywołaniu występuje parametr k, to zostaje mu

przypisana liczba wprowadzonych bloków. Znaczenie parametrów w wywołaniu

procedury blockwrite jest takie jak w blockread, z tym, że dotyczy

wyprowadzania z pamięci operacyjnej do pliku -f (pamięci dyskowej).

9.3. Zadania

1 Dana jest liczba rzeczywista £>0. Elementy ciągu XpX2>... są

określone wzorem

•i-O. 1 „x. = -------------------- dla 1 = 1,2,....
1 i3+|tg2i|

Zapisać do pliku -f elementy dla i = l,...,k-l, gdzie k jest

najmniejszą liczbą naturalną, dla której jx^j<£.

2. Dany jest plik f zawierający liczby całkowite. Utworzyć:

a) plik h zawierający liczby niezerowe z pliku t,

b) plik s zawierający sumy częściowe obliczane dla elementów

pliku h, tzn.

14-8

gdzie h. - j-ty

s - i-ty

element w pliku h,

element w pliku s.

3 W pliku f są zapamiętane dowolne liczby całkowite. Do pliku g

zapisać liczby parzyste występujące w pliku f, a do pliku h - liczby

nieparzyste z pliku f. Zachować porządek elementów z pliku f.

4. Dane są dwa pliki f, g zawierające niemalejące ciągi liczb

całkowitych. Z plików tych utworzyć plik h uporządkowany niemalejąco.

5. Napisać procedurą, która kopiuje zawartość pliku f do pliku h

i podaje liczbą przekopiowanych elementów.

6. Napisać program kasujący zbiór dyskowy o podanej nazwie.

7. Dany jest plik f zawierający liczby całkowite. Wydrukować

liczby, które wystąpiły w tym pliku tylko raz.

8. W danym pliku f elementy o wartościach całkowitych są

zapamiętane w następującym porządku: 10 liczb dodatnich, 10 liczb

ujemnych, 10 liczb dodatnich, itd. Z pliku f utworzyć plik g tak,

aby było w nim:

a) 5 liczb dodatnich, 5 liczb ujemnych, 5 liczb dodatnich, itd.

b) 20 liczb dodatnich, 20 liczb ujemnych, 20 dodatnich, itd.

9. Elementami pliku POJAZDY są rekordy zawierające następujące

informacje o samochodach:

— marka,

— rok produkcji,

- liczba wypadków,

- numer rejestracyjny.

Napisać program, który:

a) drukuje numery rejestracyjne, liczby wypadków oraz marki

samochodów, które miały więcej niż pięć wypadków,

b) przepisuje informacje z pliku POJAZDY do pliku NOWY, pomijając

rekordy dotyczące samochodów, które miały więcej niż k (np. k=5)

wypadków,

c) drukuje informacje (z pliku NOWY) o samochodach wyprodukowanych

przed 19S0 rokiem .

14-9

10. Dany jest plik DATY, którego elementami są rekordy typu data,

gdzie

type data=record
dzień: 1..31;

miesi ąc: 1..12;

rok: integer

end {data}

Napisać program, który znajduje:

a) najwcześniejszy rok zapisany w pliku DATY,

b) wszystkie daty letnie,

c) rbk, z którego zapamiętanych było najwięcej dat.

11. Elementami pliku OSOBY są rekordy zawierające nazwiska i adresy

osób stojących w kolejce oraz nazwę i ilość towaru, jaki dana osoba chce

kupić. Elementami pliku TOWAR są rekordy zawierające nazwę i ilości

towarów, jakie są aktualnie w sprzedaży. Wydrukować:

a) nazwiska i adresy kolejnych osób dokonujących zakupu oraz nazwy

i ilości zakupionych towarów,

b) nazwiska osób, które nadal stoją w kolejce, nazwę towaru, na

który dana osoba czeka i jego ilość,

c) nazwy i ilości towarów, które są nadal w sprzedaży.

12. Listę uczniów pewnej szkoły zawierającą następujące informacje:

nazwisko i imię ucznia oraz klasa, do której uczęszcza (np. 2a) ,

zapamiętana w pliku WYKAZ. Napisać program, który:

a) sprawdza, czy w szkole są uczniowie o takim samym nazwisku;

jeśli tak, to sprawdza, czy uczęszczają do dowolnych równoległych klas,

b) podaje klasy, w których liczba uczni ów'przekracza 30,

c) przepisuje do pliku 0STATNI_R0K informacje o uczniach z

ostatniej klasy, umieszczając najpierw informacje o uczniach

klasy a, potem b itd.

d) drukuje listę uczniów wybranej klasy według określonego wzoru,

np. nazwisko imię

nazwisko i.

i.nazwisko

13. Standardowy plik input zawiera nazwiska osób poprzedzone

odpowiednim tytułem naukowym. Każdy tytuł wraz z nazwiskiem stanowi w

tym pliku oddzielny wiersz. Tytuł od nazwiska oddzielony Jest jedną

spacją lub kropką. Korzystając z tego pliku wydrukować nazwiska

profesorów.

150

14- . Elementami pliku PUNKTY są rekordy złożone z dwóch pól typu

integer reprezentujące współrzędne punktu na płaszczyźnie. Napisać

program, który czyta dane z pliku PUNKTY i zapisuje w pliku DODATNIE te

przeczytane rekordy, które zawierają współrzędne punktów należących do

pierwszej ćwiartki układu współrzędnych.

15. Utworzyć plik, którego elementami są rekordy zawierające

informacje o mieszkaniach do wynajęcia. Napisać program drukujący adresy

mieszkań jednopokojowych z kuchnią, łazienką, osobnym wejściem i w

określonej cenie x złotych za miesiąc.

16. W pliku SPIS są zapamiętane numery telefonów, nazwiska, imiona

i adresy osób. Napisać program, który na podstawie nazwiska, imienia i

adresu podaje numer telefonu. Uwzględnić w programie możliwość

dopisywania lub skreślania osób z pliku.

17. Plik PRACOWNICY zawiera następujące informacje o pracownikach

zatrudnionych w danym zakładzie: nazwisko, imię, zarobek oraz opłaty

jakie mają być potrącone z pensji (RTV, światło, mieszkanie, pożyczka) z

uwzględnieniem, czy jest to opłata miesięczna, kwartalna czy roczna.

Napisać program, który:

a) zakłada plik PRACOWNICY,

b) raz w miesiącu aktualizuje plik PRACOWNICY,

c) drukuje nazwiska, imię pracownika oraz kwotę przeznaczoną do

wypłaty.

18. W pliku standardowym input są zapamiętane nazwiska osób

oddzielone jedną spacją od imienia. Każde nazwisko zapamiętane jest w

jednym wierszu. Napisać program, który drukuje wszystkie nazwiska i

imiona zaszyfrowane w następujący sposób (podstawi eni.e Cezara):

zamiast A wydrukuj C,

zamiast B wydrukuj D, itd.

19. Elementami pliku STARYPLIK są rekordy zawierające

porządkowy, markę i kolor samochodu oraz rok produkcji, np.

numer

2 FIAT czerwony 86

3 SYRENA biały 83

4 LADA biały 85

6 TOYOTA metalic 87

7 TRABANT beżowy 85

151

Elementami pliku TRANS są rekordy zawierające numer porządkowy, nazwę

jednej z trzech operacji: ZAMIEŃ, USUŃ, WSTAW i ewentualnie marką i

kolor samochodu oraz rok produkcji, np. ,

3 ZAMIEŃ OPEL ziele / 87

5 WSTAW MERCEDES czerwony 86

7 USUŃ

Rekordy pliku TRANS opisują transakcje dotyczące samochodów z pliku

STARYPLIK, np. samochód o numerze porządkowym 3 zamień na zielony Opel z

1987 roku, z numerem porządkowym 5 dopisz czerwony Mercedes z 1986 roku,

usuń z pliku element o numerze porządkowym 7.

Napisać program, który:

a) na podstawie pliku STARYPLIK i TRANS tworzy plik o nazwie

NOWYPLIK, zawierający aktualne informacje o samochodach,

b) podaje liczbą rekordów plików STARYPLIK I NOWYPLIK,

c) drukuje liczbą operacji ZAMIEŃ, WSTAW i USUŃ wykonanych podczas

uruchomienia programu.

20. Dane są dwa pliki: LICZBY i EDIT. Elementami pliku LICZBY są

liczby całkowite, elementami pliku EDIT są komendy postaci:

Z m k - zastąpienie wartości m-tego elementu w pliku LICZBY liczbą

całkowitą k,

W m k — wstawienie po m—tym elemencie w pliku LICZBY liczby k,

Urn - usunięcie m-tego elementu z pliku LICZBY.

Komendy w pliku EDIT są ustawione rosnąco według numerów elementów,

których dotyczą.

Napisać program, który kopiuje plik LICZBY do pliku WYNIKI

uwzględniając komendy z pliku EDIT.

21. Elementami pliku ORBIS są rekordy zawierające informacje o

wczasach zagranicznych (kraj, miejscowość, termin, cena, liczba miejsc

itp.). Elementami pliku KOLEJKA są informacje o osobach zgłaszających

chąć wyjazdu na wczasy. Napisać program, który

a) drukuje informacje o osobach, które wykupiły wczasy,

b) aktualizuje plik ORBIS po każdej sprzedaży wczasów,

c) usuwa z pliku KOLEJKA informacje o osobach, które wykupiły

wczasy.

10. TYP WSKA2NIK0WY

W poprzednich rozdziałach zostały omówione typy statyczne. Miejsce

w pamięci dla zmiennych typu statycznego jest rezerwowane w czasie

interpretadji deklaracji zmiennych. Takie zmienne znajdują się w pamięci

komputera dopóki jest realizowana część programu, w której były

zadeklarowane. Natomiast dla zmiennych dynamicznych miejsce w pamięci

nie jest rezerwowane w czasie kompilacji, tylko jest przydzielane w

momencie napotkania odpowiedniego żądania (podczas wykonywania

programu) . Do dynamicznego zarządzania pamięcią operacyjną w języku

Turbo Pascal 3.0 można wykorzystać zmienne typu wskaźnikowego.

Do typu wskaźnikowego należy zbiór pewnych wartości adresów

komputera oraz stała standardowa nil. Elementy typu wskaźnikowego

nazywamy wskaźnikami. Wartość nil nazywamy wskaźnikiem pustym, który nie

wskazuje na żadną zmienną. Typ wskaźnikowy definiujemy

type nazua _ty pa_ns ka^ni konego^T;

gdzie T jest nazwą typu (nie może być opisem typu).

Deklarację taką należy czytać następująco: "Typ naz»a_typa_»skażnikonego

składa się ze zbioru wartości wskazujących na zmienne typu T”.

Zmienną wskaźnikową deklarujemy:

var nazua_ztbi ennej : nazwa _ty pa _ws ka^n i kowego;

1 ub

var nazwa_z»iennej i ^T;

Przykład 10.1

Prostym przykładem dynamicznej struktury danych jest lista

jednokierunkowa definiowana w następujący sposób:

type 1 ista=^element;

element record
i ,

liczba: integer;

wsk : lista

end;

var x : li sta:

153

Graficznie listę jednokierunkową można przedstawić następująco:

X'"'

x--------------> ------------» -------- —» nil

1 iczba iwslć

Rys. 10.1. Graficzne przedstawienie listy jednokierunkowej

Zapis x^ oznacza zmienną, na którą wskazuje zmienna x. W tym przypadku

zmienna x~ jest typu element a więc jest rekordem składającym się z

dwóch pól: liczba i wsk.

■

Zbiór wartości typu wskaźnikowego w czasie wykonywania programu

może się zmieniać. Na początku do tego zbioru należy tylko wskaźnik

pusty nil. Inne elementy typu wskaźnikowego oraz zmienne wskazywane

można tworzyć wywołując standardową procedurę

new

Jeżeli

type lista="'T;

var q: lista;

to new(q) spowoduje:

a) utworzenie zmiennej typu T w obszarze pamięci zwanym stertą;

jej wartości są nieokreślone, /

b) utworzenie wskaźnika typu lista wskazującego na utworzoną

zmienną typu T,

c) przypisanie zmiennej q wartości wskaźnika.

Poszczególne węzły listy z przykładu 10.1 można tworzyć dynamicznie

przez użycie procedury standardowej new, której argumentem musi być

zmienna wskaźnikowa. Każdorazowe wywołanie procedury new(x) spowoduje:

a) utworzenie zmiennej typu element,

b) utworzenie wskaźnika typu lista wskazującego na utworzoną

zmi enną,

c) nadanie zmiennej x wartości wskaźnika.

Do zwalniania miejsca w pamięci wskazywanego przez q służy

procedura standardowa

di spose(q)

Wywołanie procedury dispose(q) powoduje usunięcie ze zbioru

wskaźników wartości' zmiennej q. Wartości wszystkich zmiennych, które

154-

były równe q, stają się wówczas nieokreślone. Obszar zajmowany przez

usuwaną zmienną może być ponownie przydzielony w trakcie "tworzenia

innych zmiennych.

Oprócz omówionych procedur new i dispose, w języku Turbo Pascal

wersji 3.0 do dynamicznego zarządzania pamięcią operacyjną, można

wykorzystywać następujące procedury standardowe:

mark(q)

reiease(q)

getmem(q,k)

freemem(q, k)

maxavai1

przypisanie zmiennej wskaźnikowej q adresu szczytu

sterty,

usunięcie ze sterty zmiennej wskazywanej przez q i

wszystkich zmiennych umieszczonych po niej na stercie,

zarezerwowanie na stercie k bajtów pamięci a następnie

przypisanie zmiennej q wskaźnika na początek tego

obszaru,

zwrócenie do sterty obszaru zajmującego k bajtów

pamięci o początku wskazywanym przez zmienną

wskaźnikową q,

■funkcja całkowita, której wynikiem jest rozmiar

największego spójnego obszaru pamięci operacyjnej

dostępnego na stercie, wyrażony liczbą paragrafów po

16 bajtów. Jeśli maxavail<0, to do otrzymanego wyniku

należy dodać liczbę 65 536.

Jeżeli w programie do utworzenia zmiennej wskazywanej

wykorzystujemy procedurę new, to miejsce zajęte przez tę zmienną należy

zwolnić procedurą dispose. Analogicznie należy w programie wykorzystywać

parę procedur mark i release. Różnicę w wykonaniu dispose(q) i

release(q) można przedstawić następująco:

Przykład 10.2

Zadeklarujmy zmienne x oraz p następująco:

type 1 i sta=''el ement;

element=record

war: integer;

155

wsk: ^lista

end;

var x,p: lista;

Na rys. 10.2 przedstawiona graficznie efekty wykonania deklaracji

oraz kilku przykładowych instrukcji związanych z wyżej zadeklarowanymi

zmiennymi wskaźnikowymi x, p oraz ze zmiennymi wskazywanymi. Znak

zapytania ? oznacza wartość nieokreśloną. Po rysunku 10.2 znajduje 3ią

jego omówienie.

var x,p

156

(■f) p'-.war:=4; p'". wsk: =ni 1;

P~
4 ni 1

(g) p: =x;

4 ni 1

4 ni 1

10 eracje imiennych wskaźnikowych i wskazywanych

□mówimy pokrótce rysunek 10.2. Na początku wartości x oraz p są

nieokreślone (rys. 10.2a) . Element tworzony za pomocą procedury new(x)

oznaczamy x^ (rys. 10.2b) . Ponieważ x^ Jest rekordem, więc do jego pól

odwołujemy się pisząc

x^.war:=2; (rys. 10.2c),

xA.wsk;=x; (rys. 10.2d) .

Następnie tworzymy element p"' (rys. 10.2e) i nadajemy odpowiednie

wartości (rys. 10.2-f). Wykonując instrukcję

p: =x;

tracimy dostęp do poprzedniej zmiennej pA, przy czym miejsce w pamięci

nie zostaje zwolnione. Na zmienną xz' wskazują teraz dwa wskaźniki: x

oraz p (rys. 10.2g). Dlatego też po wykonaniu

di spose(x);

zwalnia się miejsce w pamięci po zmiennej x^ (i jednocześnie po zmiennej

p'j i zarówno x Jak i p mają wartości nieokreślone (rys. 10.2h>.

157

Przykład 10.3

Danych jest n liczb całkowitych. Wstawić je do listy

Jednokierunkowej. Wydrukować elementy listy. Wstawić element o wartości

t po elemencie o wartości z (jeśli wartość z nie występuje, to

element o wartości t wstawić na koniec listy).

program oplist;

type 1 ista=^węzeł;

węzeł=record

war: integer;

wsk: lista

end;

var x,p,q: lista;

z,i,n,t: i nteger;

procedurę druk(x: lista; n: integer);

var p: lista;

i: integer;

begi n

if x=nil

then writelnt’ LISTA PUSTA’)

else begin

p:=x;

■for i : =1 to n do

begin

wr i te (p’'. war: 5) ;

p: =p's. wsk

end <i>

end {elsel

end {druki;

begin

write(’Podaj n: ’);

readln(n);

{tworzenie listy!

if n>0

then

begin

new(x);

writeln(’Podawać elementy listy od końca’);

readln (t);

x^.war:=t;

x"'. wsk: =ni 1;

158

•for i:=2 to n do

begin

p:=x;

new(x);

xA.wsk:=p;

readln (t);

x^.war:=t

end {ił

and {n>Oł

else x:=ni1;

{drukowanie listy}

wri tein(’Elementy listy:’);

druk(x,n);

{wstawienie elementu t po elemencie zl

wri teln;

write(’Podaj wartość, którą chcesz wstawić: ’);

readln (t) ;

if x=nil

then

begin

new (x) ;

x"'. war: =t;

x'".wsk:=nil

end {x=nill

el se

begin

write(’Podaj wartość, po której wstawić: ’);

readln(z) ;

p:=x;

while (p^.warOz) and (pA.wsk<>ni1) do p:=p^.wsk;

new(q);

g-'. wsk: =p'x. wsk;

p'A.wsk:=q;

q^.war:=t

end {x<>nill;

{drukowanie listy po wstawieniu jednego elementu}

writeln(’Elementy listy po wstawieniu:’);

druk(x,n+1)

end.

W podanych dotychczas przykładach każdy element listy ma jeden

wskaźnik wyznaczający element następny. Zdefiniujemy teraz listą, w

159/

której każdy element powiązany jest z elementem poprzednim i następnym.

Jest to tzw. lista dwukierunkowa. Graficznie można ją przedstawić

następująco:

Rys. 10.3. Graficzne przedstawienie listy dwukierunkowej

Elementami powyższej listy dwukierunkowej są rekordy o trzech

polach: war (wartość), 11 (wskaźnik do poprzedniego elementu) oraz Ir

(wskaźnik do następnego elementu). W celu utworzenia takiej listy należy

zdefiniować:

type lista=^elem;

elem=record

war: integer;

11, Ir: 1 ista

end;

var x: lista;

Listy mogą być wykorzystywane do realizacji struktur o specjalnym

przeznaczeniu. Jeżeli na przykład elementy wstawiane są jedynie na

koniec listy, a usuwane są zgodnie z zasadą: ostatni wstawiony -

pierwszy usuwany, to taką strukturę nazywamy stosem.

Innym zastosowaniem listy jest, kolejka, tj. lista, do której

elementy są wstawiane z jednego końca, a usuwane z drugiego (pierwszy

wstawiany - pierwszy usuwany). Mówiąc o listach należy również wspomnieć

o cyklicznych listach jednokierunkowych, w których ostatni element

zawiera wskaźnik na pierwszy element. Graficznie cykliczną listę

jednokierunkową można przedstawić następująco:

Omówmy jeszcze jedną strukturę danych a mianowicie drzewa, których

szczególnym przypadkiem są drzewa binarne.

Drzewo jest to zbiór skończony D elementów (węzłów). Jeśli zbiór D

nie jest pusty, to składa

i rozłącznych podzbiorów

D ,D2,...,Dm nazywane są

charakter rekurencyjny.

się z wyróżnionego węzła K zwanego korzeniem

D. , D„,...,D , które są drzewami. Podzbiory 1 2 m
poddrzewami drzewa D. Podana definicja ma

Graficznie drzewo można przedstawić w

następujący sposób:

160

Typowym przykładem drzewa Jest drzewo genealogiczne, np.

Jeżeli każdy węzeł drzewa ma co najwyżej

ze Jest to drzewo binarne. Niepuste drzewo

przedstawić następująco:

dwa poddrzewa, to mówimy,

binarne można graficznie

Rys. 10.4. Graficzne przedstawienie drzewa binarnego

gdzie

K - korzeń drzewa,

D^ — lewe poddrzewo,

— prawe poddrzewo.

Dowolne wyrażenie arytmetyczne można zapisać w postaci drzewa

binarnego, np. dla wyrażenia arytmetycznego

a - abs (x) • ln(b+j)'

drzewo binarne ma postać

161

Wiele zadań wiąże się z przeszukiwaniem drzew, które musi odbywać

się w ustalonym porządku. Wyróżnia się trzy podstawowe porządki:

(1) poprzeczny: , K, D^,

(2) wzdłużny: K, D2,

(3) wsteczny: Dj, D^, K.

Powyższy zapis należy rozumieć następująco Cnp. dla porządku

poprzecznego): w porządku poprzecznym przeszukujemy kolejno:

- lewe poddrzewo,

- korzeń,

- prawe poddrzewo.

Przykład 10,4

Utworzyć drzewo binarne zawierające liczby całkowite według

następującej metody: pierwszą liczbę wstawić do korzenia, liczby

mniejsze wstawiać do lewego poddrzewa, liczby większe do prawego, a

liczby występujące już w drzewie nie wstawiać.

Wydrukować węzły drzewa binarnego

a) w porządku poprzecznym,

b) w porządku wzdłużnym,

c) w porządku wstecznym.

162

program drzewa;

type drzewo-*!iść;

1 i ść=record

wartość: integer;

lewe,prawe: drzewo

end {liśćl;

var d: drzewo;

i,n,w: integer;

procedurę budujdrzewo(var p: drzewo; k: integer);

begin

if p=nil

then begin

new <p);

with p' do

begin

wartość:=k; lewe:=nil; prawe:=nil

end twith}

end <p~nil}

cl se

if k<p^.wartość

then budujdrzewo(p^.lewe,k)

else if k >p-*. wartość then budujdrzewo (p-*. prawe, k)

end {budujdrzewo};

procedurę porzpoprzeczny<p: drzewo);

begin

' if pOnil then

begin

wri te (p'*. wartość: 5) ;

porzpoprzeczny(pOlewe);

por z poprzeczny (pO prawe)

end

end {porzpoprzeczny};

procedurę porzwzdłużny(p: drzewo);

begin

/ if pOnil then

begin

por z wzdłużny (p'*. 1 ewe) ;

wri te ip'". wartość: 5) ;

porzwzdłużny(p*.prawe)

end

end {porzwzdłużny};

163

procedurę porzwsteczny(p: drzewo);

begin

if pOnil then
begin

porzwsteczny<P~.lewe);

porzwsteczny (p"'. prawe) ;

wri te(pA.wartość:5)

end

end {porzwsteczny};

begin

{tworzenie drzewa}

d:=ni1;
writel’Podaj ns ’>;
readln<n);

writein(’Podaj elementy drzewa:’);

for i:=l to n do

begin

readln(w);

budujdrzewo(d,w)

end ii};

{wyprowadzanie wyników}

wri tein;

writein(’Elementy drzewa w porządku poprzecznym:');

porzpoprzeczny(d) ;

writeln;

writeln(’Elementy drzewa w porządku wzdłużnym:’);

porzwzdłużny(d);

writeln;

writein(’Elementy drzewa w porządku wstecznym:’);

porzwsteczny(d)

end.

Dla n=8 i danych liczb: 4,8,3,5,2, 1,7, 6 otrzymano następujące

wyniki:

Elementy drzewa w porządku poprzecznym:

1 2 3 4 5 6 7 8

Elementy drzewa w porządku wzdłużnym:

4 3 2 1 8 5 7 6

Elementy drzewa w porządku wstecznym:

12367584

164
• rzyki ad 10.5

Dane drzewo binarne

można zapisać, np.

(a) w postaci nawiasowej:

E(B(A(,;,D(C,)),F(,H(G,I)))

(b: u postaci wciąć:

B

A

D

C

F

H

G

Napisać program, który wczytuje drzewo binarne postaci (a

drukuje w postaci (b) .

program bin;

var drzewo: stringC3O3;

znak: char;

1 iczba_spacji , i , j: integer;

begin

clrser;

gotoxy(5,5);

writelnCF daj drzewo binarne w postaci nawiasowej:’);

readln(drzewo);

1iczba_spacji:=0;

wr i teln;

writelnt’ WYNIKI’);

165

•for i:=l to length(drzewo) do

begin

znak:=drzewoti1 ;

case znak of

’A’ ..’Z’,’a’..’z’ : begin

for j:=l to liczba_spacji do
write(’ ’);

writeln(znak)

end {literał;

’ (’ : liczba_spacji : =1iczba_spacji+1;

’ 1 ’ : 1 iczba_spacji:=1 i czba_spacji-1

end {case}

end Ci}

end.

10.1. Zadani a

1 Napisać procedury dla liniowej listy jednokierunkowej realizują­

ce następujące zadania:

a) dołączanie jednego elementu na końcu listy,

b> wstawianie jednego elementu na początek listy,

c) wstawianie jednego elementu x po elemencie z,

d) usuwanie pierwszego elementu z listy,

e) usuwanie ostatniego elementu z listy,

f) usuwanie n-tego elementu listy,

g) osuwanie elementu listy o wartości x,

h) usuwanie z listy elementu znajdującego się przed elementem x.

2. Napisać procedury realizujące następujące zadania:

a) łączenie dwóch list,

b) zwalnianie wszystkich węzłów listy,

c) usuwanie co drugiego elementu listy,

dl łączenie dwóch uporządkowanych rosnąco list w jedną listę

uporządkowaną rosnąco,

e) tworzenie części wspólnej dwóch list,

f) tworzenie sumy dwóch list.

g> obliczanie sumy elementow z = i ’ owi- -- . : -

166

h) obliczanie liczby elementów listy,

i) zamiana i-tego i k-tego elementu listy,

j) kopiowanie listy,

k) drukowanie listy od początku,

1) drukowanie listy od końca.

3. Napisać procedurą

testq <q, x , zmjog) ,

która dla danej listy jednokierunkowej q o elementach typu T oraz dla

zmiennej x typu T nadaje zmiennej logicznej zm_log wartość

wyznaczoną według wzoru:

zm_log =
true

•fal se

jeśli lista q jest pusta lub

w przeciwnym przypadku.

występuje w

4. Napisać procedurę, która z danej listy jednokierunkowej o

elementach typu

type element=record

war: integer;

klucz: lista

end {element}

gdz i e

type 1 ista="element;

usuwa elementy o wartości minimalnej.

5. Dana jest lista jednokierunkowa p. Utworzyć listę jedno­

kierunkową q, zawierającą elementy listy p uporządkowane rosnąco.

6. Zmienić porządek listy jednokierunkowej na przeciwny.

7. Dana jest liniowa lista jednokierunkowa. Sprawdzić, czy zawiera

wartość x. Jeśli nie, dopisać x na końcu listy.

8. Utworzyć n-elementową tablicę A zawierającą adresy komórek,

w których są zapamiętane liczby całkowite. Obliczyć sumę i iloczyn tych

1iczb.

9. Napisać procedurę, która dla danej listy jednokierunkowej

zadeklarowanej jako

167

type lista=^elem;

ele®=record

war: integer;

wsk: lista

end Celem};

drukuje liczby, występujące w liście dokładnie dwa razy.

10. Utworzyć listę dwukierunkową,

11. Dla danej listy dwukierunkowej zdefiniowanej jako

type 1 ista=^elem;

elem=record

war: integer;

pcprz,nast: lista

end Celem};

napisać procedury:

a) usuwania z listy elementów o danej wartości,

b) dołączania jednego elementu na początek listy,

c) obliczania, ile elementów listy ma daną wartość k,

d) usuwania elementów o wartości maksymalnej,

e) porządkowania elementów listy rosnąco,

■f) drukowania elementów listy od początku,

g) drukowania elementów listy od końca.

12. Dane są dwa wielomiany trzech zmiennych x, y, z:

v(x,y,z) , w(x,y,z).

i j kKażdy jednomian postaci cx y z (cOO, i,j,k>0) zapamiętujemy w postaci

rekordu

c

i J k

łączni k

Jednomiany są uporządkowane najpierw według malejących potęg

następnie względem potęg y, a na końcu z, np.

, , 3 4 „25 2 3v(x,y,z) = 3x y + 2x y z - y z + z.

Obliczyć współczynniki wielomianu v(x,y,z> + w(x,y,z).

168

13. Zmodyfikować program z przykładu 10.5 tak, by z wyników można

było odczytać, czy wydrukowane poddrzewo Jest lewym, czy prawym

poddrzewem, (z postaci (b) nie wynika, np. czy C jest lewym, czy pra­

wym poddrzewem D) .

14. Na wejściu rozjazdu kolejowego przedstawionego poniżej znajduje

się n wagonów w kolejności l,2,...,n.

Oznaczmy operację pobrania wagonu z wejścia przez D (dołączenie do

stosu), natomiast przez U przekazanie na wyjście (usunięcie ze stosu).

Odpowiedzieć na następujące pytania:

. 1. Jaki ciąg operacji (tzn. ciąg składający się z liter U i D)

należy wykonać, aby wagony na wyjściu (dla n=4) były ustawione w

< kolejności 2,4,3,17

2. Czy na wyjściu takiego rozjazdu można uzyskać taką samą

kolejność, co na wejściu? Jeśli tak, to podać odpowiedni ciąg operacji.

3. Czy z ustawienia 1,2,3,4,5 można otrzymać ustawienie

2,3,4,5, 1;

1,5,4,2,3;

3,2,5,4,17

Jeśli tak, to podać odpowiednie ciągi operacji.

15. Dla danego zbioru Z liczb całkowitych utworzyć drzewo binar

ne, a następnie wydrukować Jego elementy w porządku

a) rosnącym,

b) malejącym.

16. Napisać procedurę (z jednym parametrem - wskaźnikiem na korzeń

drzewa) zwalniającą wszystkie węzły drzewa binarnego.

169

17. Poziom korzenia drzewa określamy jako O. Poziom każdego innego

węzła określamy Jako poziom o jeden większy niż poziom jego rodzica.

Wysokością drzewa jest poziom węzła o najwyższym poziomie. Napisać

procedury:

a) znalezienia poziomu określonego węzła w drzewie,

b) znalezienia wysokości drzewa.

18. Wagą drzewa nazywamy liczbą jego węzłów. Napisać procedurę

obliczania wagi danego drzewa binarnego.

19- Liściem drzewa nazywamy węzeł, którego wszystkie poddrzewa są

puste. Napisać procedurę, która oblicza liczbą liści danego drzewa

binarnego.

20. Załóżmy, że drzewo binarne ma węzły postaci

type węzeł=record

k: integer;

lewe,prawe: drzewo

end;

gdz i e

type drzewo^^węzeł;

Napisać procedurą

delete(drzewo,k1,k2)

usuwania z drzewa wszystkich wązłów, dla których kl < k < k2.

21. Dwa drzewa binarne są symetrycznie podobne, jeśli:

a) obydwa są puste

1 ub

b) obydwa są niepuste i lewe podrzewo pierwszego jest symetrycznie

podobne do prawego poddrzewa drugiego drzewa.

Napisać procedurą sprawdzającą, czy dwa drzewa są symetrycznie

podobne.

22. Dwa drzewa binarne są podobne, jeśli:

a) obydwa są puste

lub

b) obywa są niepuste, ich lewe poddrzewa są podobne i ich prawe

poddrzewa są podobne.

Napisać procedurą sprawdzającą, czy dwa drzewa binarne są podobne.

11. ZADANIA ROŻNE

1 Wykorzystując procedurą obliczania minimum w n-elementowym ciągu

liczb rzeczywistych, obliczyć minimum i maksimum m-elementowego ciągu x.

2. Niech

var T: arrayl1..101 of stringCISI;

Jaka będzie postać wyników po wykonaniu instrukcji:

a) for i:=l to n do writelnt’ ’:5,Tti3)

b) for i:=1 to n do writeln(TtiI:20)

3. Jaką wartość będą miały elementy tablicy A po wykonaniu

następującego fragmentu programu?

program haczyk;

var i: integer;

A: arrayCl-.lOI of integer;

procedurę xpluslO(var x: integer);

var i: integer;

begin

for i:=l to 10 do x:=x+l

end CxpluslO};

begin

for i:=l to 10 do ACi3:=0;

i : = 1;

xpluslO(At i 1);

for i:=1 to 10 do

writelnt’ At ’ , i:2,’J=’,At i 3:2)

end.

4- . Dana jest liczba naturalna n. Obliczyć 2n za pomocą mnożenia.

Rozpatrzyć n parzyste i nieparzyste.

5. Dana jest macierz D-n*n o elementach całkowitych. Zastąpić

jedynkami te elementy macierzy D, które leżą na głównych przekątnych.

171
Wydrukować macierz D przed i po. zamianie.

6. Napisać procedurę, która dla danej macierzy X-m*n oblicza

iloczyn tych elementów x^j, dla których i+J jest liczbą parzystą. W

programie obliczyć takie iloczyny dla danych macierzy A,B-m*n.

Wydrukować macierze A,B oraz obliczone iloczyny.

7. Dane są liczby naturalne n, m takie dzieli się przez m.
Utworzyć macierz A-n*m postaci

Pozostałe elementy macierzy są zerami.

8. Wypisać wszystkie czynniki pierwsze danej liczby naturalnej n,

np. 792=2*2*2*3*3*11.

9. Dla danych dwóch liczb a, b znaleźć największy wspólny dziel­

nik i najmniejszą wspólną wielokrotność.

10. Obliczyć największy wspólny dzielnik danych n liczb natural­

nych.

11. Obliczyć najmniejszą wspólną wielokrotność danych n liczb natu­

ralnych.

12. Dana jest tablica A-n*n o elementach całkowitych. Sprawdzić,

czy elementy tablicy spełniają następujące warunki:

(1) a. . e <1,2,...,nl dla i,j=l,...,n;
U

(2) a. . X a., dla i,J,k=l,...,n oraz j^k; i j ik

(3) a. . * a, . dla i,j,k=l,___,n oraz i^k.
U kj

172

13. Napisać program wyznaczający wartość ■funkcji L określonej

wzorem:

L(p,q) =

q

~p
true

■fal se

dla p=true,

dla q=true,

dla p=false,

dla q=-false.

14-. Dla liczby rzeczywistej x jest określona funkcja

f (x)

2 3 2(x-l) -<x +x)

0
2 3

(x-l)(x+5)(x +1)

jeśli x<-5,

jeśli x=-5,

jeśli x>-5.

Obliczyć f(x) dla x=-6,-5,-4,...4,5,6.

x w pozostałych przypadkach.

15. Dane n, (x^,y^) dl a i = 1, . .. , n . Obliczyć

x+y dla X >1 i |y|a2.

x-y dla |x |<1 i 0<y<2,

H(x,y) = ■ y—x dla |X|<1 i -2<y<0,

-y dla |x | >1 i y=o,

dla x., y., i=l,...,n.

16. Stablicować funkcją

■ '
n i

1 + £ i-,- dla x>0,
f (x) = ■ 1=1

n

n i----H - i dla X<0.. I* 1 n (x +2i) t i=l >1
1 1

dla n=l,2,...,20 oraz x = -1, 0, 1. Wyniki wydrukować w czytelnej

postaci.

17. Funkcja X(n) jest zdefiniowana następująco:

X(n)

' 0
X(|n)+1

mintMj(n-l)) ,X(~(n+1)>1+2

dla n=l,

dla n=2,4,...

dla n=3,5, . . .

Obliczyć i wydrukować X(m) dla m=l,2,...,10.

18. Dane są liczby rzeczywiste X, q (0<q<l, X>0) , oraz liczba

naturalna n. Obliczyć

173

P ej,k

min <j,k)
E

i=0 Yt-i s r

dla j,k = 1,...,n.

Wyniki wydrukować w postaci:

pH pJ2 ... pln

^n 1 ^2 ' ' ' %n

19. Dana jest liczba naturalna n oraz ciąg

i*J, i,J=1,...,n). Obliczyć
al . ,a (a. Xa . n i j dl a

n
s = E

gdz i e

f (a.) i
n
n (a.-a .)
Li 1 J

, X e dla x<-l.

f (X) = ■ 4
5 V- dla -1<X<1

cos/ X dla X>1.

20. Dane są liczby n, x^,...,x . Obliczyć

gdzie

• ,2' smCj) dla x<0.

t (X) = ■ COS(X)
2

ln(x)+l

x4

dla

dla

0<x<5,

x>5.

G określoną wzorem:21. Obliczyć wartość

' n
E

i = l

a.i
i * jeśli n<k.

G = •

W
|0

0

Jeśli n=k.

k
n (a. +b.) i i jeśli n>k.

i =1

gdzie dane są liczby: n. k, a. , . . . , a , ’ 1’ n’

174-
22. Obliczyć przybliżoną wartość całki

20

1 = J
10

stosując wzór

n-1 h
J f (x)dx ? (f^) + f (xi + 1)>,

i = l ~
x0

gdzie h=xi+1~xi- Przyjąć h=0.01.

23. Obliczyć wartość całki metodą trapezów

0 h- n-1

f f (x)dx Ę-2. (f (a) + 2 r f (x.) + f(b)) .
J 2n . ‘r 11 = 1 a

_ , r , , sin(x) __Przyjąć, np. a=0, b=rr/2, f(x) =— ------- , n=25.

24-. Dla danej liczby rzeczywistej

dla i=l,...,n obliczyć wartość funkcji

si n(c+x)+cos(c-x >
ł"i 5 sin(c+x.)«cos(c—x.)

i i

c oraz danych argumentów x.=i^

Wyniki wydrukować w czytelnej postaci.

25. Obliczyć wartość funkcji

f <x) = ——— si n (x) (1 —cos (x > >

dla x zmieniającego sią z krokiem h w przedziale Ca,bj

26. Obliczyć

4
2 k.(x+y>1

i = l 1

gdz i e:

kj = f(x,y>,

k2 = f(2x’V+k1)>

k3 = f<2*,y+k1+k2),

k4 = f(ix,y+k1+k2+k3).

175

Przyjąć

-f (x,y) sin (x+y >
sin(x+y)

* cos(x-y)
+cos(x-y)

27. Obliczyć

4
£ k.(x+y)

gdz i e:

k = -f (x , y >

•2 2'

k3 =

k4
1_
6 2kl+?k2+6k3

Przyjąć

f(x,y) si n(x+y)*cos <x-y)
sin(x+y)+cos(x—y)'

2 1 4 2

28. Wydrukować potęgi od 1 do 10 dla liczb 2, 3, 4.

29. Napisać program drukujący za pomocą n różnych znaków napis

LALA powiększonymi literami

30. Obliczyć wartość współczynnika dwumianu Newtona

_n*<n-l)»...* <n+l-m)
lkJ---------- 1*2*...»m-------------- ’

gdzie

m = min<k,n—kł oraz 0<k<n.

31. Napisać iteracyjną i rekurencyjną -funkcję, która dla danej

liczby naturalnej n i dla danej liczby rzeczywistej x oblicza war

tość wielomianu Hermite’a H (x) ze wzorów: n

HQ (x) = 1,

<x> = 2x ,

H (x) = 2xH ,(x) - 2(n-l)H _(x) dla n>l.n n-1 n-2

176
32. 01^ danej liczby naturalnej n oraz liczby rzeczywistej x

obliczyć wartość wielomianu P (x) ze wzorów: 7 n

P0(x) = 1,

P (x) = x,

P +1<x) = xPr<x) - Pr_1(x) dla r=l,2........... n-1.

(bez użycia tablic).

33. Znaleźć stopień wielomianu H^Ck), dla którego spełniona jest

nierówność

lHn<XO^yol < £’

gdzie

Xq, y0, « _ dane liczby rzeczywiste,

i 3^
Hq(x) = ~, H1<x) = r x,

2
H, (x) = 2x H. ,(x) - H, „(x) dla k=2,3,....k k-1 k-2

Podać stopień n oraz wartość Hn<x).

34- . Wydrukować wartości wielomianów PQ<x),P^(xP (x),

gdz i e

x - dana liczba rzeczywista,

n — dana liczba naturalna,

P0<x) = 1,

P (X) = 2x,

” 1/ +1 ? k+
—- xP, (x) - y yP, . (x) dla x<0,n k k+1 k-1

Pk+l(x^ k „ , , 2k „ , ,
— xP. (x) - — P, , (x) dla x>0,4 k 5 k-1

dla k=l,2,...,n-l.

35. Dla danych liczb rzeczywistych a, b, c, d obliczyć wartość

sumy, iloczynu, ilorazu i modułu liczb zespolonych x, y, gdzie

x = a + i*b, y = c + i*d.

36. Danych jest n liczb zespolonych postaci

z. = x. + i«y, dla k=l,...n. k k ' k ’

Funkcji unit nadać wartość true, jeśli moduły wszystkich liczb

zespolonych z^ (k=l,...,n) są mniejsze od 1.

1'7

37. Napisać rekurencyjną procedurę porządkowania n-elementowego

ciągu w ciąg rosnący.

38. Napisać iteracyjną i rekurencyjną procedurę szukania liczby |x

w uporządkowanej rosnąco tablicy a. Porównać napisane procedury.

39. Funkcja comm(n,k) wyznacza liczbę różnych zespołów k-osobowych

utworzonych spośród n osób, np. comm(4,3)=4 ponieważ dla danych osób

A,B,C,D są możliwe następujące 4 zespoły 3-osobowe:

ABC, ABD, ACD, BCD.

Napisać procedurę rekurencyjną obliczania comm(n,k) dla n,k2:l, przy

czym wiadomo, że

comm(n,k) = comm(n-l,k) + comm(n-1,k-1) dla n,k>l,

comm(0,k) = 0 dla k>l,

comm(n,0) = 1 dla nSO.

40. Niech A będzie tablicą o n elementach całkowitych. Napisać

rekurencyjne procedury obliczające:

a) max A.,
l<i<n 1

b) min A.,
l<i<n 1

n
c) £A

i = l

di nAi-
i = l

41. Dane są liczby naturalne k, n, m, x, y, z. Obliczyć wartość

A = ■/ S (n, x) +S (k, z) +S <m, y > ,

gdzie

p 1 t
s(p,t> = n t«(e rr)-

i=l j=iJ’

42. Zaprogramować obliczanie wielkości

— i |z I,z2 । I’

gdzie Zj, z^, z - liczby zespolone postaci z^ = xk + i*yk-

Wykorzystać wzory:

178

4-3. Dla danych liczb całkowitych n, m wydrukować wszystkie potęgi

liczby n mniejsze niż m.

44. Dodawanie w słupkach. Dane są dwie liczby całkowite nieujemne

reprezentowane za pomocą tablic liczb całkowitych. Napisać program,

który dla n-cyfrowych liczb całkowitych

ulu2-"un

V1V2"‘'Vn

oblicza ich sumą w^w^..^, gdzie w$ Jest przeniesieniem.

45. Napisać program, który oblicza n! dla dużych n (np. n>10) i

podaje dokładny wynik.

46. Napisać funkcją cyfra(n,k), która podaje k-tą cyfrą licząc od

prawej strony liczby n, np.

cyfra (17892,4) = 7,

cyfra (13,5) = 0.

47. Napisać funkcję, która dla danej liczby rzeczywistej x oraz

liczby całkowitej m zaokrągli liczbę x do m miejsc po przecinku,

np. dla x=127 "762, m=2, wynik: 127.58.

48. Dla dane' liczby naturalnej n sprawdzić, czy ma dokładnie dwie

takie same cyfry.

49. Jeśli p>0 jest liczbą pierwszą, to liczba

2P-1 Jest liczbą pierwszą Lp_2=0,

179
gdzie

L° = 4’
Li + 1 = <Li-2> <2P —1) dla i=0,...,p-3.

Dla dziesięciu początkowych liczb pierwszych sprawdzić, która liczba
postaci 2P-1 jest liczbą pierwszą.

50. Napisać program, który dla danej liczby naturalnej n znajduje

pierwszy n-elementowy ciąg kolejnych liczb naturalnych, wśród których

nie ma liczby pierwszej.

51. Zamienić liczby całkowite p, q, p+q oraz p*q z układu dwój­

kowego na układ dziesiętny.

52. Napisać procedurę zamieniającą liczbę całkowitą dodatnią z

układu dziesiętnego na układ dwójkowy.

53. Napisać procedurę, która daną liczbą całkowitą (w systemie

dziesiętnym) zapisuje w systemie szesnastkowym wykorzystując 16 znaków

0, 1, 2,...,?, A, B, 0, D, E, F,

np. (16)10=(10)16, <12)1o=(C>16.

54. Dane są liczby naturalne a, b w układzie ósemkowym. Obliczyć

ich iloczyn w układzie dwójkowym i wynik podać w układzie dziesiętnym.

55. Opracować procedury zamiany liczb

a) z układu dwójkowego na czwórkowy,

b) z układu dwójkowego na ósemkowy,

c) z układu trójkowego na dziewiątkowy,

d) z układu ósemkowego na dwójkowy.

56. Zbiór P na początku zawiera dwie liczby całkowite: 112.

Utworzyć zbiór P zawierający wszystkie liczby (mniejsze niż dopusz­

czalne ograniczenie górne komputera) postaci

3x + y,

gdzie x, y są różnymi elementami P.

Tak więc zbiór P zawiera liczby

1, 2, 5, 7, 8, 10, 11, 13, 14, 16, 17,...

57. Liczbami bliźniaczymi nazywamy dwie liczby pierwsze p, q <p<q)

takie, że q = p + 2. Napisać program znajdujący k pierwszych par liczb

bliźniaczych.

180
58. Napisać program, który drukuje wszystkie sześcioelementowe

zbiory liczb naturalnych a^ , a^,, a^, a^, a^, a^ większych od zera takich, że

2 2 2 2 2 2a,+a_+a_ = a.+a^+a,, 1 2 3 4 5 6

gdzie

al < a2 < a3 < 20,

at < a4 < a5 < a6 < 20.

Wskazówka. Wygenerować wszystkie możliwe sumy kwadratów i wykorzystując

procedurę sortowania, znaleźć sumy powtarzające się.

59. Znaleźć k pierwszych liczb piramidalnych, które są liczbami

trójkątnymi, gdzie

- liczby trójkątne są elementami ciągu określonego wzorami:

t + n + 1, nt n + 1

- liczby piramidalne są elementami ciągu określonego wzorami:

T , = T + t , , n+1 n n+1

np. dla k=3

, . . nLiczby <

trój kątne

pi rami dalne

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.3. A.ió.15.21■23. S&. 45.55.^178.9171057127
1,4,10, 20,35,56,84,120

60. Liczba automorficzna, to liczba znajdująca się na końcu swego

■7 2 2kwadratu, np. 5 =25, 6 =36, 25 =625. Znaleźć n liczb automorficznych.

61. Znaleźć liczby od 1 do 3000000, które są równe sumie silni

swoich cyfr, np. 145=1!+4!+5!

62. Dana jest liczba nmax. Wyznaczyć liczby Stirlinga drugiego

rodzaju dla n=0,1,...,nmax; m=O,...,n, ze wzorów:

S(0,n)=S<n,0)=0 dla n >0,

S(n,n) = 1 dla n>0,

S(n,m> = mS(n-l,m> + S(n-l,m-l) dla n>0, m=l,...,n-1..

Obli czyć

n
Pn = £ S(n,m) dla n=0,1,...,nmax.

m=l

181
63. Dla ciągu liczbowego a^,...,an można wykonać cykliczne

przesunięcie o:

o, wówczas ciąg wejśći owy nie ulega zmianie.

1, wówczas jest utworzony ciąg a2,...,an,a1.

-1, wówczas jest utworzony Cią9 an’ai.............an-l’
k*0, wówczas wykonuje się | k|-krotne przesunięcie o sgn(k).

Napisać program przesuwający dany n-elementowy ciąg liczb

rzeczywistych o daną liczbą całkowitą k.

I64. Dla liczb naturalnych k z przedziału Cl,kkl (kk-dane) można

utworzyć ciąg liczbowy według algorytmu:

(1) jeśli k=l, to stop,

(2) jeśli k jest parzyste, to k:=k/2,

<3) jeśli k jest nieparzyste, to k:=3k+l.

Na przykład: dla k=21 otrzymujemy ciąg liczb:

21, 64, 32, 16, 8, 4, 2, 1.

Napisać program, który:

a) tworzy takie ciągi liczb dla kell,kkl i drukuje:

k,
n^ - liczba wykonanych kroków algorytmu,

maxk - maksymalna wartość w ciągu liczb dla wartości k.

Na przykład: jeśli k=21, to n2-=7, maxk=64.

Wyniki wydrukować w postaci: (kk=4>

k n(k) max(k)

1 0 1
2 1 *2

3 7 16

4 2 4

Uwaga. Dotychczas nie wiadomo, czy dla każdej liczby naturalnej algorytm

jest skończony.

b) dla n od 1 do danej liczby nmax wyznacza zbiory Z(n) liczb,

dla których wykonuje sią n kroków algorytmu.

Na przykład:

Z(O)={lł,

Z(l)=<2ł,

Z(2)={4ł,

Z(3)=<8},

Z(4)=<16ł.

182
Zbiór Z(n) można tworzyć rekurencyjnie w następujący sposób:

Z(0) = <11.

Jeśli Z(n) = <k,,k„,...,k 1, to Z(n+1) zawiera: 12 n

- dla każdej liczby k^ liczbę 2k* ,

- jeśli liczba (k^-41/6 jest liczbą naturalną dodatnią, to liczbę

(k. —1)/3.
1

c) znajduje ciągi kolejnych liczb k, k+l,...,k+r, dla których

k k+1 k+r

65. Dla danego ciągu liczb całkowitych policzyć ile jest podciągów

zawierających co najmniej trzy liczby dodatnie obok siebie.

66. Dany jest tekst zakończony znakiem i napisany małymi literami.

Wydrukować ten tekst wielkimi literami.

67. Obliczyć przybliżoną wartość liczby n do n miejsc po kropce

68. Obliczyć długość krzywej y = f(x) na odcinku Ca,bl (należy

aproksymować ją krzywą łamaną i obliczyć długość tej łamanej).

Przyjąć f (x) = sin(x), a = 0, b = n.

69. Napisać procedurę sprawdzającą, czy dana -formuła logiczna jest

tautologią, tzn. czy dla każdych wartości zmiennych logicznych formuła

jest prawdziwa. Tautologiami są na przykład formuły

p -p, -i(p ~ ip) .

70. Wśród n osób przeprowadzano ankietę zawierającą 4 pytania:

1) Wiek:

a) poniżej 20 lat

b) 20 - 29 lat

c) 30 - 39 lat

d) 40 - 49 lat

e) 50 - 59 lat

g) 60 lub więcej lat

2) Palisz:

a) tylko fajkę

b) mniej niż jedną paczkę papierosów dziennie

c) 1 lub 2 paczki papierosów dziennie

183
d) więcej niż 2 paczki papierosów dziennie

e) nie palę wcale

3) Przynależność polityczna:

a) partyjny

b) bezpartyjny

4) Zarobek:

a) poniżej 150 tys. zł.

b) 150 - 250 tys. zł włącznie

c) 250 - 350 tys. zł włącznie

d) 350 — 450 tys. zł

e) powyżej 450 tys. zł

Dane są podawane jako n ciągów 4—elementowych zawierających numery

odpowiedzi do kolejnych pytań. Opracować następujące wyniki ankiety:

a) średni przedział wieku ankietowanych,

b) liczbę osób palących, które mają mniej niż 20 lat,

c) procent osób bezpartyjnych,

d) w którym przedziale zarobkowym było najwięcej ankietowanych.

71. Chodzenie losowe po kole. Dany jest promień R okręgu o środku

(0,0). Startujemy z punktu x=0, y=0 w czasie t=0. Dla kolejnych

t=l,2,3,... możemy wykonać jeden z czterech ruchów

1. x : =x -1,

2. x:=x+l,

3. y:=y-l,

4. y:=y+l,

przy czym ruchy te są wybierane losowo. Chodzenie kończy się, jeśli

a) Wydrukować liczbę wykonanych ruchów (czyli t) oraz numery

wykonywanych ruchów.

b) Wydrukować układ współrzędnych oraz kolejne punkty (x,y).

72. Sra “zgadnij liczbę". Napisać program, który losowo generuje

dowolną cyfrę. Zadaniem grającego jest odgadnięcie tej liczby

maksymalnie w trzech próbach. F'o każdej nieudanej próbie program

powinien drukować komunikat informujący, czy liczba podana przez

grającego jest mniejsza czy większa od liczby wygenerowanej.

73. Napisać program, który sprawdza wiadomości ucznia szkoły

podstawowej z zakresu dodawania, odejmowania , mnożenia lub dzielenia.

184
74. Zapisać procedurą wyznaczającą najlepszy ruch w następującej

grze: W puli jest umieszczona pewna liczba sztonów. Dwóch graczy na

zmianę bierze jeden lub dwa sztony z puli. Gracz, który bierze ostatni,

przegrywa.

75. Dana jest liczba całkowita R oznaczająca rok. Sprawdzić, czy

dany rok jest rokiem przestępnym (rok jest przestępny, jeśli dzieli się

przez 4 i nie dzieli się przez 100 lub dzieli się przez 400).

76. Napisać procedurę - wieczny kalendarz - określającą dzień

tygodnia w zależności od daty (trzech liczb całkowitych: rok, miesiąc,

dzień).

77. Dane są trójki liczb naturalnych. Napisać program in-Formujący,

która trójka określa właściwą datę. Ponadto dla poprawnych dat program

powinien podać, który to dzień w roku i ile dni zostało do końca roku.

78. Zebrania pewnego towarzystwa odbywają się w każdy pierwszy

czwartek miesiąca. Napisać program, który podaje daty zebrań w wybranym

roku.

79. Dane są dwie liczby naturalne godz i min (0<godz<12, 0<min<60)

oznaczające aktualną godzinę i minuty. Podać, ile czasu musi upłynąć, by

wskazówki: godzinowa i minutowa na zegarze

a) pokryły się,

b) ustawiły się pod kątem 90°.

80. Zaprogramować grę w kości pięcioma kostkami. Wynik rzutu, zwany

-Figurą, symulowany jest jednokrotnym losowaniem 5 liczb. Uwzględnić

następujące -Figury:

Figura Wynik rzutu Premi a

SEKWENCJA 1,2,3,4,5 lub 2,3,4,5,6 60

SĄSIEDNIE n,n,n,k,k lub n,n,k,k,k, gdzie k=n+l 40

DWIE_PARY n,n,k,k (piąta liczba dowolna) 30
POKER wszystkie jednakowe 100

NIE_FIGURA układ nie wymieniony wyżej -

Ocena -Figury równa jest sumie oczek plus premia.

Opracować procedury o nazwach SEKWENCJA, SĄSIEDNIE, DWIE_PARY,

POKER sprawdzające, czy zawartość 5-elementowej tablicy jest figurą o

danej nazwie i obliczające ocenę wyniku rzutu. Sprawdzenie będzie

185
łatwiejsze. Jeżeli elementy tablicy zostaną najpierw uporządkowane.

Napisać program symulujący przebieg opisanej gry (N rzutów) z dwoma

uczestni kami.

81. Gra w życie. W czasie t pole żyje, jeśli albo:

a) było puste w czasie t-1 i żyły dokładnie trzy pola sąsiednie,

albo

b) żyło w czasie t-1 i żyły dwa lub trzy pola sąsiednie.

W pozostałych przypadkach pole Jest puste.

Zasymulować konfiguracją 15*15 pól przy żyjących początkowo

wybranych polach. Zasymulować k cykli, np. dla k=5 i początkowo

żyjących pól:

(3 ,8),(4,7),(5,7),(5,8),(5,9),(10,7),(10,8),(10,9),(11,7),(12,8),

(3,2), (4,3), (5,1) , (5,2), (5,3), (9,1) , (9,2), (9,3), (10,3), (11,2).

82. Napisać program opisujący następującą grę: komputer generuje

n-elementowy zbiór cyfr. Gracz wprowadza z klawiatury swój n-elementowy

zbiór cyfr. Gra kończy śię, jeśli zbiór gracza Jest identyczny ze

zbiorem komputera. Jeśli ten zbiór nie jest identyczny, to komputer

informuje, ile cyfr jest wspólnych w obu zbiorach.

83. W grupie n kobiet i n mężczyzn każda osoba podaje 5 osób

płci przeciwnej najbardziej jej odpowiadających. Napisać program

dopasowujący pary małżeńskie.

84. N osób głosuje na m przebojów. Wydrukować listę przebojów.

85. Wieże Hanoi. Dane są trzy pałeczki: A, B, C oraz n krążków

różnej wielkości. Przenieść wszystkie krążki z pałeczki A na pałeczkę C

(wykorzystując pałeczkę B) według zasad:

a) krążki przenosi się pojedynczo,

b) większy krążek nie może znaleźć się nad krążkiem mniejszym.

Wydrukować g oraz liczbą wykonanych przeniesień.

Opracować taki sposób drukowania wyników, aby można było odczytać,

który krążek, z której pałeczki i na którą pałeczkę był przenoszony w

danym kroku.

186

86. Wydrukować szachownicę.

87. Rozmieścić 8 królówek na polu szachowym tak, by żadna z nich

nie biła innych.

88. Napisać program, który wyznacza drogą skoczka szachowego przez

wszystkie 64 pola tak, by

a) przez żadne pola nie przechodzić więcej niż raz,

b) przejść przez maksymalną liczbę pól bez przecinania własnej

drogi.

89. Zaprogramować grę w kółko i krzyżyk.

90. Napisać program, który wczytuje dany ciąg znaków pomijając

ewentualne spacje (przed lub między znakami' a następnie sprawdza, czy

wczytany ciąg

a) zawiera tylko znaki +, -, *, Z, (,), _, litery i cyfry,

b) zawiera tyle samo okrągłych nawiasów otwierających co

zamykających,

c) nie zawiera znaków + , -, i, / obok siebie,

d) rozpoczyna się znakiem (, cyfrą lub nazwą,

e) po każdym znaku (zawiera znak -, cyfrę lub nazwę,

f) po znaku) nie występuje cyfra, litera ani znak (,

g> nie zawiera liter występujących bezpośrednia po cyfrach.

91. Napisać procedury, które sprawdzają, czy dany ciąg znaków

reprezentuje

a) liczbę całkowitą, ■ '

b> liczbę rzeczywistą,

c) nazwę, tzn. czy jest to ciąg liter, cyfr i/lub znaku

podkreślenia, przy czym zaczyna się literą.

92. Napisać program, który czyta i oblicza wartość wyrażenia, w

którym:

a) liczby są całkowite,

b) każda liczba jest poprzedzona znakiem plus lub minus,

c) wyrażenie jest zakończone średnikiem,

tzn. wyrażenia powinny być w postaci np. +20-4-3+169; -17+14;

93. Gra w TOTOLOTKA. N graczy wybiera po 6 liczb od 1 do 49.

Następnie jest losowanych 6 liczb. Wydrukować nazwiska osób, które

trafnie podały

187
a> sześć liczb,

b) piąć liczb,

c) cztery liczby.

94. Napisać program symulujący działanie automatu do wypłacania

pieniądzy: n złotych należy wypłacić minimalną liczbą monet k-złotowych

i 1-złotowych. Jeżeli jest to niemożliwe, program powinien podać

najbliższą mniejszą kwotą, jaką można wypłacić.

95. Dana jest lista tytułów książek i artykułów. Napisać program,

który sprawdza, czy dany tytuł wystąpuje na tej liście. Jeśli tak, to

wydrukować potrzebne in-formacje o danej pozycji.

96. Napisać program obliczjący dla danej książeczki PKO procent,

jaki należy wypłacić właścicielowi. Uwzglądnić daty wpłat i wypłat,

kwoty wpłacane i wypłacane, wysokość oprocentowania książeczki, datą

ostatniego oprocentowania, datą złożenia książeczki do oprocentowani a

itp.

97. W pewnym systemie katalogów wszystkie katalogi są zorganizowane

jako drzewa binarne. Każdy korzeń drzewa zawiera m.in. nazwą katalogu i

datą ostatniego odwołania do katalogu. Napisać procedurą usuwającą te

katalogi, do których ostatnie odwołanie było przed daną datą.

188

12. ROZWIĄZANIA ZADAŃ

ROZDZIAŁ 4

25 program słownie;

var cyfęa: O.. 9;

begin

clrscr;

write!’Podaj cyfrę: readln(cyfra);

if (cyfra<0) or (cyfra>9) then writeln(’Złe dane’)

else begin

wri te(cyfra:2);

case cyfra of

0: writeln(’— zero’);

1: writeln<’- jeden’);

2: writeln!’- dwa’);

3: writeln!’- trzy’);

4: writelnt’- cztery’);

5: writeln(’- pięć’);

6: writeln!’- sześć’);

7: writeln!’- siedem’);

8: writeln!’— osiem’);

9: writeln!’- dziewięć’)

end (case)

end (else!

end ■

34. program Sx;

var i,n,x,S: integer; .

begin

readln(n);

for i:=l to n do

begin

readln(x);

189

if not odd(x) then S:=sqr(x)+3»abs(x)

else if x>0 then S:=(x+7) div 2-

else S:=(x-7) div 2;

writein(’x=*,x:5,’ S=’,S:7)

end fil

end.

35. program abcd; 7

yar a,b,c,d,x,y,x2,y2: real;

begin

readln(a,b,c,d);

if (b<=a) or (c<=0)

then writeln(’Złe dane’)

else

begin

x:=ln(c)+cos(a+b);

x2:=sqr(x) ;

y:=sqrt(abs(a»x2tx+b*x+c));

y2:=sqr(y);

x2:=x2+y2;

if x2<=a

then x2:=exp(x)+abs(y»y2)

else if x2<b

then x2:=sin(x)+sqr(d)

else x2:=12.Otsqr(y2)+exp(1n(x)/3.0) ;

writein(’z=’,x2:10:5)

end (else)

end.

37. program Sm;

var a,b,c,S: real;

m: integer;

begin

readln(a,b,e,m);

case m of

1: begin

S:=a;

if b>S then S:=b;

if c>S then S:=c

end;

2: begin

S:=a;

190

if b<S then S:=b;

if c<S then S:=c

end;

3: S:=(a+b+c)/3.O;

4: S: =sqr(a)+sqr(b)+sqr (c) ;

5: S:=abs(a)+abs(b)+abs(c)

else S:=0.0

end icase};

writeln(’a=’,a:5:2,’ b=’,b:5:2,’ c=’,c:5:2,

8=',8:8:3)

end.

4-0. program dwiesumy;

var x,wyraz,sumal,suma2: real;

i,n: integer;

begin

clrscr;

write(’x = ’) ;

readłn(x) ;

if x=0

then writeln(’sumal=suma2=l.0’)

el se

begin

write('Podaj n: ’);

readln(n);

sumal:=1.0;

wyraz:=1.O;

for i: = l to n do

begin

wyr az:=wyr az * x/i;

suma1:=suma1+wyraz

end <i>;

suma2:=wyraz;

for i:=n downto 2 do

begin

wyraz:=wyrazłi/x;

suma2:=suma2+wyraz

end fil;

writeln(’sumal=’,sumal:15:8);

wr i teln(’suma2=’,suma2:15:8)

end <x<>0>

end.

191

4-6. program suma;

var 1icznik,x,suma: real;

i,n: integer;

begin

clrscr;

write('Podaj n: ’);

readln(n);

x:=2.0;

repeat

suma:=0.0;

licznik:=-1.0;

■for i: =2 to n+1 do

begin

licznik:=-liczni k*x;

suma:=suma+liczni k/i

end <i>;

wri tein(’n=’,n:3,’ x = ’,x:5:2,’ suma=’,suma:16:4);

x:=x+3.O

until x>20.0

end.

58. program fx;

var a,h,x: real;

■function -f(x: real): real;

begin

if x<=0 then -f:=abs(x)

el se f: =1n(x)

end

begin

repeat

write(’Podaj liczby rzeczywiste a>0 oraz h>0: ’);

readln(a, h);

until (a>0.0) and (h>0.0);

writeln;

writeln(’ a f(a)’);

x:=-a;

repeat

writeln(x : 6: 2,f(x): 17:4) ;

x:=x+h '

until x >a

end.

192

60. program bisekcja;

const maxiter=500; (maksymalna liczba iteracji}

var xp,xk,x0,eps,Gp,Gk,GO: real;

i: integer;

function G(x: real): real;

begin

G: =sqr(x)-4.O

end <G>;

begin

clrscr;

readln(xp,xk,eps);

6p:=G(xp);

Gk:=G(xk);

x0: =xp+0.5*(xk—xp);

G0:=G(x0);

i :=0;

while (abs(GO)>eps) and (i<maxiter) do

begin

if G0tGp<0 then begin

xk:=xO; /

Gk:=GO

end

else begin

x p: =x O;

Gp:=60

end;

x0:=xp+0.5*(xk-xp) ;

GO:=G(xO);

i:=i+l

end <while>; "

writeln(’G(’, x0:10:6,’)=’,60:10:6)

end.

66. program ciąg;

var u0,ul,eps: real;

k: integer;

begin

readln(eps);

ul:=0.0;

k:=0;

writein(’u(’,k:4,’)=’,ul: 10:6) ;

193

repeat

uO:=ul;

ul:=(uO+l.O)/(uO+2.O);

k:=k+l;

writeln(’ u (’,k:4,’)=’, ul:10:6)

until (ul-uOKeps

end.

77. program pierwsze; /

var np,nk,i: integer;

•function jesttn: integer): bcolean;

var i,sqrtn: integer;

p: boolean;

begin

p:=true;

i :=2;

sgrtn:=trunc(sgrt(n)); *

while (i<=sqrtn) and p do

begin

i-f (n mod i=0) then p:=false;

i:=i+l

end {while};

jest:=p

end {jest};

begin

readln(np,nk);

for i:=np to nk do

begin

wri te(i:5);

i-f jest(i) then writeln(’- liczba pierwsza’)

else writeln(’- to nie Jest liczba pierwsza’)

end <i}

end.

78. program centy;

var kwota,s,c25,c10,c5,cl: integer;

procedurę licz(var s,c: integer; m: integer);

begin

c:=s div m; <

s:=s mod m

end {licz};

194-

begin

readln(kwota);

s:=kwota;

c25:=0; clO:=O; c5:=0; cl:=O;

licz(s,c25,25);

licz(5,cl0,10);

licz(s,c5,5);

wri tein(kwota,’c=’, c25,’«25c+’,clO,’*10c+’,c5, ’«5c + ’,s,’*lc’)

end.

79. function wspliniowe(x1,x2,x3,y1,y2,y3: real): boolean;

begin

if xl=x2

then

if xl=x3 then wspliniowe:=true

else wspli ni owe:=false

el se

if (yl-y2)*(x3-x1)=(y3-yl)*(xl-x2)

then wspliniowe:=true

else wspliniowe:=false

end Cwspliniowej

80. program dzień;

var dz: 1..7;

begin

clrscr;

wr i te ' 'Podaj dzień (1—7): ’);

readln(dz);

wri teln;

wri te(’Dzisiaj jest ’);

case dz of

1: writein(’poniedziałek’);

2: writeln(’wtorek’);

3: writeln(’środa’);

4: writeln(’czwartek’);

5: writeln(’piątek’);

6: writein(’sobota’);

7: writeln(’niedziela’)

end (case)

end.

195

83^ program trójkąt;

var i,J,k,m,n: integer;

zn: char;

begin

readln(n, m);

■for k:=l to n do

begin

clrscr;

zn:=chr(33+random(93)>; { wybór znaku 1

< drukowanie trójkąta 1

for i:=l to m do

begin

for j:=l to 24+m-i do write(’ ’);

for j:=l to 2»i-l do write(zn) ;

wri teln

end Cii;

delay(3000)

end Ckl

end.

85. program oceny;

const szablon1’...’;

var i: integer;

begin

clrscr;

writeln;

for i:=l to 80 do writel’-’);

writeln;

writeln;

writel’ ’);writein(szablon);

write(’ ’);writeln(’nazwisko i imię ucznia’);

writeln;

writeln(’ 1.Sprawowani e ’,szablon);

writeln(’ 2.Język polski szablon);

writeln(’ 3.Matematyka ’,szablon);

wri tein(’ 4.Środowi sko ’ , sz ab 1 on) ;

wr i teln(’ 5.Muzyka szablon);

wri teln(’ k.Wych.plastyczne ’,szablon);

wri tein(’ 7.Praco-techni ka ’,szablon);

writeln (’ 8.Wych.f i zyczne szablon);

wri tein;

for i:=l to 20 do writel’ ’);

196

writeln(szablon);

-for i:=l to 20 do writel’ ’);

writelnt’podpis wychowawcy’);

writeln;

writeln;

•for i:=l to 80 do writet’-’);

writeln;

wri teln

end.

87. program druk;

const kr20=’..’ ;

krlO=’.........................’ ;

var i: integer;

begin

gotoxy(1,6);

■for i:=l to 40 do writet’ ’);

wri teln< kr20);

writeln;

writelnt’ ZAWIADOMIENIE’);

writeln;

writeln(’ Uprzejmie zawiadamiamy ob.’,kr20,’,’)

writeln;

writelnt’ że dni a’, kr20,’roku’,kr 10);

writeln;

writelnt’ o godz.’,kr 10,’w budynku’,kr20);

writeln;

writelnt’ w sal i’,kr 10,’odbędzie sie zebranie’)

writeln;

writelnt’ ’,kr2O,kr20,kr20);

writeln;

■for i:=l to 40 do writet’ ’);

writelnlkr20); writeln;

■for i:=l to 40 do writet’ ’);

writeln(kr20)

end.

98. program obszar;

const spacje=’ -’;

tekst=’ leży w zakreskowanym obszarze’);

var ax,x,y,r,r2,r3,rkw: real;

i,n: integer;

197

procedura pisztak;

begin

writeln(spacje,tekst)

end fpisztakl;

procedura pisznie;

begin

writeln(spacje,’ nie’,tekst)

end (pisznie);

begin

clrscr;

write (’Podaj' r>0: ’);

readln(r);

r3:=r2+r;

rkw:=sqr(r);

write(’Podaj n: ’);

readln(n);

for i:=1 to n do

begin

write('Podaj x,y’>;

readln(x, y) ;

if y>0

then

begin

ax:=abs(x);

if (y<=r3) and (r<=ax) and (ax<=r2)

then pisztak

else

if (y<=r2) and (ax<=r) and (sqr(x)+sqr(y)>=rkw)

then pisztak

else pisznie

end <y>01

el se

begin

ax : =sqr (x) +sqr (y);

if (rkw<=ax) and (ax<=4*rkw)

then pisztak

else pisznie

end <y<=0>

end fil

end.

198

ROZDZIAŁ 5

29. program parzyste;

type tab=arrayC1..10] o-f integer;

var z,i,1 parz,Inparz,n: integer;

a: tab; < w tablicy a zostaną umieszczone na początku

/ elementy parzyste a za nimi elementy nieparzyste 1

begin

clrscr;

write(’Podaj n: ’>; readln(n);

lparz:=0;

Inparz:=0;

■for i: = l to n do

begin

wri te(’Podaj element ciągu:

readln(z);

i -f odd (z) then

begin

Inparz:=lnparz+l;

aln-lnparz+ll:=z

end

el se

begin

Iparz:=1parz+1;

aClparzl:=z

end

end Cii;

writeln;

writeln(’Elementy ciągu po ustawieniu:’);

■for i:=l to n do

wri te(a[i 1:5);

wr ittln(’Liczb parzystych: ’,lparz:5);

writeln(’Liczb nieparzystych: ’,1nparz:5)

end.

30. program kosz;

const m=10;

var j,n,liczba: integer;

a: arrayC0..m] o-f integer;

199

begin

readln<n);

for J:=0 to m-1 do

aCjl:=O;

• for J:=l to n do

begin

r ead1n(1 i cz ba>;

a[liczbal:=aEliczbaj+l

end fjł;

< drukowanie bez powtórzeń 1

wri tein(’Elementy ciągu po uporządkowaniu:’);

■ for j:=0 to m-1 do

if aEJ3>0 then write(j:5)

end.

4-6. program ui ;

v ar u,x,suma: real;

i , m: i nteger;

begin

readln(m,x);

suma: =0.0;,

u:=1.0;

writein(’Ci ag u:’);

for i:=l to m do

begin

u:=i»x*u;

suma:=suma+u;

wr i tel n (’ uE ’ , i : 2, ’] = ’ , u: 10: 3)

end Ei };

writeln(’Suma elementów uEil wynosi: suma:10:3)

end.

55. program twciąg;

const nmax=20;

type tablica=arrayE1..nmax1 of real;

var a,b,c: tablica;

i,n,m: i nteger;

procedurę czytaj(var x: tablica; var n: integer; nazwa:

var i: integer;

begin

char);

write(’Podaj liczbą elementów ciągu: ’); readln(n);

200

writeln(’Podaj elementy ciągu nazwa,’:’);

•for i:=l to n do readUiil);

writeln

end {czytaj!;

procedura drukuj(x: tablica; n: integer; nazwa: char);

var i: integer;

begin
writein<’Elementy ciągu ’,nazwa,’:’)

■For i:=l to n do write(xCi 3: 8:2) ;

wr i tein

end {drukuj};

procedurę cnm(x,y: tablica; n: integer; var z: tablica);

var i,1: integer;

begin
1:=1;

■for i: = l to n do

begin

zC13:=xCi3;

z Cl+13:=yCi 3;

1:=l+2

end {i}

end {cnm};

procedurę twórz_ciąg(x,y: tablica; n,m: integer; var zztablica)

var i: integer;

begin
if n<m then

begin

cnm (x,y,n,z);

■for i:=n+l to m do zCn+i3:=yCi3

end Cn<m}

el se

begin

cnm <x , y,m,z);

i-f n>m then

■for i:=m+l to n do zCm+i3:=xCi 3

end Cn>=m>

end <twórz_ciąg};

begin
czytaj(a,n,’a’);

czytaj (b, m, ’ b ’) ;

201

twórz_ciąg(a,bs n,m,c);

writeln;

drukuj(a, n,’ a’);

drukuj(b, m,’b’) ;

drukuj(c,n+m,’ c’)

end.

63. program fragmenty;

const nmax=20;

type tab=arrayC1..nmax1 of real;

var a: tab;

jest: boolean;

n,nk,i: integer;

procedurę spr(x: tab; np,nk: integer; var s: boolean);

var i: i nteger;

begin

s:=true;

i : =np + l;

while s and (i<=nk> do

begin

if xCi]<xCi-l1 then s:=false;

i:=i+l

end fwhilel

end fsprl;

procedurę druk(x: tab; np,nk: integer; s: boolean);

var i: integer;

begin

wr i tein;

writeln('Czy poniższy ciąg jest rosnący ?’) ;

for i:=np to nk do

wr i te (x C i 1: 5: 1 >;

writeln;

if s then writeln(’Ciąg jest rosnący’)

else wri tein(’Ciąg nie jest rosnący’)

end fdrukl;

begin

readln (n);

for i:=l to n do readln(aCi1);

writeln; wri tein(’Ciąg a:’);

for i:=l to n do wri te(aCi1:5:1);

writeln;

202'

spr(a,1, n,jest);

druk(a,1, n,jest);

if not jest then

begin

i :=1;

while i<n do

begin

nk:=i +4;

i-f nk>n then nk:=n;

spr(a,i,nk,jest);

druk(a,i,nk,jest);

i:=i +5

end {while}

end <if}

end.

G7. program clog;

const maxn=20;

var a: array C 1. . maxn j o-f integer;

b: arrayt1..maxnl o-f boolean;

i,l, n,pom: integer;

begin

clrscr;

gotowy(10,5);

wri te(’Podaj n: ’); readln(n);

writeln(’ Podaj elementy ciągu a (liczby całkowite)

pom:=0;

for i:=1 to n do

begin

readln(aC i 1);

if atil<0 then pom:=pom+l

end fil;

writeln (’ Podaj elementy ciągu b (wartości O lub 1)

for i:=1 to n do

begin

readln(1);

if .1 = 1 then begin

bt i 1:=true;

pom:=pom-l

end tif}

else b C i 1:=false

end {i};

203

case pom of

0: begin

1:=1;

for i:=l to n do

if bCi3 then

begin

while aL13>=0 do 1:=1+1;

if i Ol then

begin

pom:=ali 1;

ati3:=atl3;

atl 3:=pom

end <iOl>;

1:=1+1

end Cif);

writeln(’ Elementy ciągu b:’);

for i:=l to n do write(bli3:6);

writeln;

writeln(’ Elementy ciągu a (po uporządkowaniu):’);

for i:=l to n do write(ali3:6);

writeln

end <pom=03

else writeln(’Złe dane’)

end {case)

end.

68. program p3;

var xk,k,n,min,i: integer;

begin

clrscr;

write(’ Podaj n: ’);

readln(n);

i :=0;

repeat

i:=i+l;

write(’ Podaj liczbą naturalną: ’);

readln(min);

k:=min mod 3 ' •

until (k=0) or (i=n) ;

if kÓO

then writeln(’ Nie ma liczby podzielnej przez 3’)

el se

204-

begin

if i On then

for k:=i+l to n do

begin

writeC Podaj liczbę naturalną: ’ j ;

readln <xk);

if (xk mod 3=0) and (xk<min) then min:=xk

end {k};

wri tein(’Mi nimalna liczba podzielna przez 3=’,min:5)

end <k=0>

end.

70. program ciągi;

type tablica=arrayCl..503 of integer;

var m,n,i,j,k,l: integer;

x,y,z: tablica;

procedurę czytaj(var x: tablica; var n: integer; znak: char);

begin

write(’Podaj liczbę elementów ciągu: ’); readln(n);

writeln(’Podaj elementy ciągu ’,znak,’:’);

for i:=l to n do readln(xlil)

end {czytaj};

procedurę drukuj(x: tablica; n: integer, znak: char);

var i: integer;

begin

wri teln;

writeln(’Elementy ciągu ’,znak,’:’);

for i:=l to n do

write(x t i 1:3);

wr i teln

end {drukuj};

begin

czytaj(x,n, ’ x ’) ;

czytaj(y,m,’ y’);

if xtn3<=y[13

then

begin

for i:=l to n do z[il:=xtil;

for j:=l to m do zCn+j1:=ytj1

end

el se

205

if yEm3<=xE13

then

begin

■for j:=l to m do zEJ3:=yEj3;

■for i:=l to n do z Em+i 3: =x Ei 3

end

else

begin

1:=1; i:=l; j:=l;

repeat

if xEi3<yEJ3 then

begin

z El3:=xEi 3;

1:=1+1;

i:=i+l

end

else

begin

zE13:=yEj3;

1:=1+1;

j:=j+l

end

until <i>n) or <j>m>;

if i<=n

then

for k:=i to n do

begin

z E1 3 : =x E k 3 ;

1:=1+1

end <kJ

el se

for k:=j to m do

begin

zE13:=yEk3;

1:=1+1

end Ek3

end Eelseł;

drukuj(x,n,’x’);

drukuj (y, <n, * y’);

drukuj(z,n+m,’z’)

end.

206

75. program wektor;

type tablica=arrayC1..103 ot real;

var a,b,c: tablica;

i , n: i nteger;

k: real;

■function ilskal(x,y: tablica; n: integer): real;

var i: integer;

S: real;

begin

S:=0.0;

•for i : =1 to n do

S:=S+xCi3 iyCi1;

i 1 skal:=S

end tilskalł;

begin

readln(n);

■for i:=l to n do readln(aCi 3);

■for i: = l to n do readln (bCi 3);

k:=i1 skal(a,a,n);

if k=0.0 then writeln(’Złe dane’)

el se

begin

k:=-ilskal(a,b,n)/k;

wri teln(’k=’,k:8:2);

writeln(’Wektor c=b+k*a:’);

for i:=1 to n do

begin

cCi 3:=bCi3+k*aCi 3;

wri te<cCi 3: 8: 2)

end Ci 3;

wri teln;

writeln(’IIoczyn skalarny wektorów a i c wynos

ilskal(a,c,n):8:5)

end CelseJ

end.

118. program zeruj;

var n,i,j: integer;

a: arrayC1..10,1..103 of integer;

begin

writeCPodaj n: ’); readln(n);

207

•for i:=l to n do

.■ for J:=l to n do

readl n'(aCi , j 3) ;

for i:=l to n-2 do

for j:=l to n-i-1 do aCi,j3:=0;

for i:=3 to n do

for j:=n-i+3 to n do aCi,J3:=0;

{drukowanie macierzy wynikowej!

writeln(’Macierz A po wyzerowaniu:’);

for i:=l to n do

begin

for j:=l to n do wri te(aCi,j3 : 3) ;

wri teln

end <i!

end.

124-. program wierszk;

var m,n,i,j,k: integer;

a: arrayCl.,103 of array Cl..101 of integer;

begin

writet’ Podaj n,m,k: ’); readln(n,m,k);

if (l<=k) and (k<=n) then

begin

writeln(’ Podaj elementy macierzy wierszami:’);

for i:=l to n do

begin

for j:=l to m do

begin

read(aCi,j3); write(’ ’:3)

end <jl;

writeln

end fil;

for i:=k to n-1 do aCi3:=aCi+l3;

writeln(’Macierz A po usuniąciu’,k:3,’-go wiersza:’);

for i:=l to n-1 do

begin

writeln;

for j:=l to m do write(aCi,j3:5)

end Cii

end {then!

else writeln(’Złe k’)

end.

208

130 procedurę twórz_macierz (var A: tablica; n: integer);

var i,J: integer;

begin

■For i: =1 to n do

begin

Ali,13:=i;

•for j:=2 to n do

Ali,jl:=ACi,j-ll+j

end fil

end <twórz_macierzj;

163. program zmiany;

var i,j,k,l,n,m: integer;

a: array11. .10,1..101 o-f integer;

begin

clrscr;

writeln(’ podaj wymiary macierzy:’);

wr i te(’ n= *);

read(n);

wr i te(’ m= ’);

readln (m) ;

writeln(’ Podaj ’,n*m,’ elementów macierzy (wierszami):

for i:=l to n do

for j:=l to m do

readln(ali , j 1) ;

writeln;

writeln(’ nr wiersza liczba zmian znaku’);

for i:=1 to n do

begin

< k:=0;

for j:=2 to n do

begin

l:=ati,jlłaCi,j-ll;

if KO

then k:=k+l

else if 1=0 then if (ati,jl<0) or (aCi,j-ll<0)

then k:=k+l;

end <jł;

writeln(i:7,’ ’sl5,k:3)

end <il

end.

209

ROZDZIAŁ 6

1 program alfabet;

type tab=stringl153;

var nazw: arraytl..2O3 of tab; { tablica nazwisk }

pom: tab; { zmienna pomocnicza >

i,j,k,n: integer;

begin

readln(n);

■for i:=l to n ao readln (nazwli 3) ;

■For j: = l to n-1 do

begin

k:=j;

For i:=j+l to n do

if nazw! i KnazwC k3 then k:=i;

pom:=nazwtk3;

nazwlk3:=nazwlj3;

nazwtj3:=pom

end <J3;

.writeln(’NAZWISKA W PORZĄDKU ALFABETYCZNYM:’);

for i:=l to n do

writeln(’ ’,nazwli3)

end.

17. program spacje;

var znak: char;

sp: boolean;

tekst: stringCSOl;

i: integer;

begin

writeln(’ Podaj tekst zakończony kropką:’); x

readln(tekst); writeln;

sp:=false;

znak:=tekst113;

while znakO do

begin

if znakO’ ’ then

begin

210

write(znak) ;

sp:=false

end

else

if not sp then

begin

write(znak)

sp:=true

end;

i:=i+l;

znak:=tekstCi3-

end Cwhilel;

wri te(’.’)

end.

18. program dwójspacje;

var tekst: stringC2O3;

i: integer;

begin

clrscr;

writeln(’ Podaj tekst:’);

readln(tekst);

wri teln;

for i:=l to 1ength(tekst) do

write(tekstCi 3,’ ’)

end.

19. program cz;

var tekst: stringC2O3;

znak: char;

i,licznik: integer;

begin

clrscr;

writeln(’Podaj tekst zakończony kropką’)

readln(tekst);

i: = l;

licznik:=0;

znak:=tekstCi 3;

while znakO’ . ’ do

begin

if znak=’c’ then

if tekstCi+13=’z’ then

211

begin

1icznik:=liczni k+1;

i:=i+l

end;

i:=i+l;

znak:=tekstE i1

end Ewhilel;

write(’Dwugłoska "cz" wystąpiła’,1:4);

if 1 = 1 then writelnC raz’)

else writelnf’ razy’)

end.

20. program zdania;

var tekst: stringE1001;

i: integer;

begin

clrscr;

witelnl’ Podaj ciąg zdań’);

readln(tekst);

■for i:=l to 1ength(tekst) do

begin

write(tekst[i 1);

i-f tekstEil=’.’ then writeln

end <i>

end.

ROZDZIAŁ 7

16. program dni_życia;

const nmax=10;

type data=record

dzień: 1..31;

mi esiąc: 1..12;

rok: 1900..1990

end <data>:

opi s=record

nazwisko,imig: stringE153;

data_ur: data;

wiek: integer

end Eopisl;

212

var OSOBY: arraytl. .nma:<] o-f opis;

akt_data: data; < aktualna data >

pom: opis; < zmienna pomocnicza}

i,j,k,min,n: integer;

procedurę 1 icz_dni(ur, dziś: data; var dni: integer);

var i,dz,robo: integer; { zmienne pomocnicze)

begin
dni : =dzi ś.dz i eń;

with ur do

i-f rok<dziś.rok

then

begin

robo:=1;

{wyznaczenie liczby dni lutego w roku urodzenia)

if rok div 4=rok/4 then dz:=29 else dz:=28;

{obliczanie dni od.miesiąca urodź, do końca roku urodź.}

■for i:=miesiąc to 12 do

case i o-f

1,3,5,7,8,10,12: dni:=dni+31;

4,6,9,11: dni:=dni+30;

2: dni:=dni +dz

end (case);

{obliczanie dni pełnych lat życia)

■for i:=rok+l to dziś.rok—1 do

i-f i div 4=i/4 then dni:=dni + l;

dni:=dni + (dz i ś.rok—rok-1)1365

end {then);

with dziś do

begin 5

{wyznaczenie dni lutego w bieżącym roku)

i-f rok div 4=rok/4 then dz: =29 else dz:=28;

{obliczanie dni życia w bieżącym roku)

i-f ur.rok=rok

then

begi n

robo:=ur.mi esi ąc;

i-f ur . miesiąc=miesiąc then dni:=dzień

end {then);

■for i:=robo to miesiąc-1 do

case i o-f

1,3,5,7,8,10,12: dni:=dni+31;

213.

4,6,9,11: dni:=dni+30;

2: dni:=dni +dz

end tcase)

end !with>;

dni:=dni-ur.dzień

end <licz_dni>;

begin

elrser; gotoxy(2,2);

writeln(’DZISIEJSZA DATA’);

with akt_data do

begin

gotoxy(2,3); write(’DZIEN ’); read(dzień);

gotoxy(2,4); wri te(’MI ES I AC ’); read(miesiąc) ;

gotoxy(2,5); write(’ROK read(rok)

end iwithl;

c1rser;

gotoxy(2,2);

write(’PODAJ LICZBĘ OSdB: ’); read(n);

gotoxy(2,3);

tor i:=1 to n do

begi n

write('OSOBA ’,i);

with OSOBY!i 1,data_ur do

begin

gotoxy(3,4); write(’NAZWISKO—’); read(nazwisko);

gotoxy(2,5); writet’ IMIĘ-’); readtimię);

gotoxy (2,6) ; writeCDATA URODZENIA’);

gotoxy(2,7); write(’DZIEN :’); read(dzi eh);

gotoxy(2,S); write(’MIESIĄC :’); read(miesiąc) ;

gotoxy(2,9); write(’ROK :’); readtrok);

clrser

end twithl

end <i>;

tor i:=l to n do

with OSOBY!i 1 do

1 i ez_dni (data_ur,akt_data,OSOBY!i].wiek);

for i:=l to n-1 do

begin

k:=i ;

min:=OSOBY!i 1.wiek;

tor j:=i+l to n do

214

i-f OSOBYCjT.wiek < min then begin

k:=j;

mi n:=OSOBYCj 3.wiek

end Cif 3;

if k > i then

begin

pom:=OSOBYCk3;

OSOBY C k 3:=OSOBY t i 3;

OSOBYCi 3:=pom

end <k>i>

end Ci 3;

writeln;

with akt_data do

begin
writeln(’D ZISIEJSZA DAT A’);

wri tein(dz i eń:2,’.’, mi esi ąc: 2,’.’,rok: 4)

end Cwith3;
writeln(’- ----------- ------------ -’)

for i:=l to n do

with OSOBYCi3,data_ur do

begin

wr i tel n;

writeln(nazwisko, ’ ’,imią>;

wri te(dz i eń:2,’.’,miesi ąc:2,’.’,rok:4);

writet’ WIEK wiek:8);

£f wiek=l then writeln(’ dzień’)

else writelnf’ dni’);

writeln(’* 1 * i * i * » * * * * i * * * i *4 « « * * » *’)

end Cwith}

end.

18 program stawka;

const nmax=10;

type pracownik=record

imię,nazwisko: stringCISI;

stawka: integer;

czaspracy: arrayC1..63 of real

end;

var osoby: arrayC1..nmax3 of pracownik;

k,i,n: integer;

zarobek,godz: real;

{ godz-liczba przepracowanych godzin w tygodniu 3

215

begin

clrscr;

write(’ Podaj liczbę pracowników: ’);

readln (n); { n-liczba pracowników 1

■for i:=1 to n do

with osobylil do

begin

writet’ Podaj imię: ’); readln(i mię);

writet’ Podaj nazwisko: ’); readln(nazwisko);

writet’ Podaj stawkę: ’); readln(stawka);

writeln(’ Podaj czas pracy w kolejne dni tygodnia:’);

■for k:=l to b do readln(czaspracyCkl)

end <i>;

writeln; :

writeln(’ NAZWISKO IMIĘ STAWKA ZAROBEK’);

■for i: =1 to n do

begin

with osobyCil do

begin

godz:=0.O;

for k: = l- to 6 do godz: =godz+czaspracy Ckl;

if godz<=40.0 then zarobek:=godzłstawka

else zarobek: = 1.5*godz*stawka-20.Ołstawka;

writeln(nazwisko:10,imię:11,stawka:10,zarobek:16:2)

end <withl

end fil

end.

ROZDZIAŁ 8

1 program zbiory;

type zakres=4..10;

zbiór=set of zakres;

var A,B,C: zbiór;

m,n,i: integer;

k: zakres;

procedurę czytaj(var X: zbiór; var n: integer);

var i: integer;

k: zakres;

216

begin

writefPodaj liczbę elementów zbioru: ’);

readln(n);

X:=C 3;

writein(’Podaj elementy zbioru:’);

for i:=1 to n do

begin

readln(k); X:=X+Ck3

end <il

end {czytaj};

procedurę drukuj(X: zbiór);

var k: zakres;

begin

for k:=4 to 10 do if k in X then write(k:3);

wri teln

end {drukuj};

begin

czyt aj(A,n);

czytaj(B,m);

C:=A+B;

wri teln;

writein(’Zbiór A:’); drukuj(A);

writeln(’Zbiór B:’); drukuj(B);

wri tein;

writeln(’Suma zbiorów A+B:’); drukuj(C)

end.

5. program WielkieLitery;

var i,licznik: integer;

tekst: stringC2O3;

begin

clrscr;

writeln(’ Podaj tekst:’); readln(tekst);

1iczni k:=0;

for i:=l to length(tekst) do

if tekstCi 3 in C A’ . . ’Z’3

then begin

writeln(tekstCi 3,’ - wielka litera’);

licznik:=licznik+l

end;

write(’ Podany tekst zawiera ’,1 icznik:5);

217

case licznik of
1: writelnt’ wielką literę’);

2. .4: writelnt’ wielkie litery’)

else writelnt’ wielkich liter’)

end {case}

end.

6. program częstość;

var litera: arrayt’A’..’Z’3 o-f integer;

znak: char;

tekst: stringC3O3;
i: integer;

begin
■for znak:=’A’ to ’Z’ do

litera[znak3:=0;

clrscr;

writelnt’ Podaj tekst’);

readln ftekst);

■for i:=l to length (tekst) do

begin

znak:=tekstt i 3;

if znak in C’A’..’Z’3

then litera [znak3:=1 iteralznak3+l

end <i3;

wri teln;

writelnt’ LITERA LICZBA WYSTĄPIEŃ’);

wri tein;

for znak:=’A’ to ’Z’ do
if literalznak3 > 0 then writeintznak:5,1 iteralznakl:16)

end.

7. program głoski;

var znak: char;

licznik: integer;

begin
licznik:=0;

repeat
readln tznak) ;

if znak in [’a’,’e’,’i’,’o’,’u’,’y’3 then 1icznik:=1icznik+1

unt.i 1 znak=’ . ’ ;

writelnt’Liczba głosek w tekście wynosi ’,licznik:5)

end.

218

9. program sito;

const maxn=100;

var liczby set o-f 2..maxn;

i3 m: integer

begin
clrscr;

writeln(’ Liczby pierwsze mniejsze od ’,maxn:5,’ :’)

writeln;

liczby:=C2..maxnl;

■for i: =2 to maxn do

i-f i in liczby

then begin

writeln (i : 4) ;

•for m:=l to (maxn div i) do

liczby:=liczby-tiłml

end

end.

ROZDZIAŁ 9

1 program piszliczby;

var -f: -file o-f real;

i: integer;

x,eps: real;

begin

assign (-f , ’ dane’)-^

rewri te(f);

clrscr;

wri te('Podaj eps: ’);

readln(eps);

i :=0;

repeat

i:=i+l;

x:=(i-0.1)/(itsgr(i)+abs(sin(2ii)/cos(2łi)));

write(f,x)

until x<eps;

close(f)

end.

219

ROZDZIAŁ 10

2b procedurę zwolnij(var a: lista);

begin

if a O nil then

begin
zwolnij(aA.wsk) ;

di spose(a)

end

end {zwolnij};

8. program wsk;

const nmax=lO;

type tab=arrayC1..nmax1 of ''integer;

var A: tab;

i,n,suma,i 1oczyn: integer; '

begin

clrscr;

writet’ Podaj n: ’);

readln (n);

■for i:=l to n do

begin

new(Al i 1);

writel’ Podaj wartość kolejnego elementu: ’);

readln (Ali l"')

end <i>;

suma:=0;

i 1oczyn:=1;

•for i:=l to n do

begin

suma:=suma+ACil";

i 1oczyn:=iloczyn»ACi

end <i>;
writein(’suma=’,suma);

wri teln(’iloczyn=’,iloczyn)

end.

220

ROZDZIAŁ 11

28. program potęgi;

const nmax=10;

var p2,p3,p4: real;

n: integer;

begin

clrser;writein;

writelnf’ k 2 3 4’)

wri teln(’

p2:=1.0; p3:=1.0; p4:=1.0;

writein(’ 0’ ,p2: 11:1,p3:11:1,p4:11:1);

■for n:=l to nmax do

begin

p2:=p2+p2; p3:=3.0*p3; p4:=4.0*p4;

writein(n:2,p2: 11:1,p3:11: 1,p4:11:1)

end Cni

end.

63. program przesuń;

type tablica=arrayC1. . 103 o-f real;

var a: tablica;

ka,k,n,i: integer;

procedurę cykli(n: integer; var x: tablica);

var i: integer;

z: real;

begin

z: =x C 1 3;

for i: = l to n-1 do xCi 3 : =xCi+13;

xIn 3:=z

end {cykl 11;

procedurę cyklml(n: integer; var x: tablica);

var i: integer;

z: real;

begin

z : =x C n 3 ;

for i:=n downto 2 do xCi 3:=xCi-1 3;

x C13 : =z

end {cyklml};

221

begin

clrscr;

write('Podaj n: ’);

readln(n) ;

writeln(’Podaj elementy ciągu:’);

■for i:=l to n do

readln(aCi1);

write(’Podaj k: ’); readln(k);

writeln;

wri tein(’Ciąg a:’);

■for i:=l to n do write (aCi 1: 5: 1) ;

writeln;

ka:=abs(k) ;

if ka>n then ka:=ka mud n;

if k>0 then for i:=l to ka do cykli(n,a)

else if k<0 then for i:=l to ka do cyklml(n,a);

writeln(’Ciąg a po przesunięciu o’,k:5);

for i:=l to n do wri te(aCi3:5:1)

end.

64-a program m3dl;

const kk=lO; <kk-k końcowe)

var i,k,nk,maxk: integer;

begin

clrscr;

writeln(’ k n(k) max(k)’);

for i:=l to kk do

begin

k:=i ;

n k:=0;

maxk:=k;

while kOl do

begin

if odd(k) then k:=3*k+l

else k:=k div 2;

nk:=nk+l;

if k>maxk then maxk:=k

end CkOl);

writeln(i:4,nk:6,max k: 9)

end <i>

end.

222

64-b program zbiory;

const nmax=10;

var Z,noweZ: array t1. . nmax) o-f integer;

j,n,s,1 icznik: integer; <s—liczba elementów w Zl

<1icznik-1iczba elementów w noweZl

pom: real;<J,n,pom-zmienne pomocnicze!

begin

writeln(’ s n elementy z(n)’l;

n:=0;

ss = l;

ZCU:=1;

wr i te (s: 3, n: 5, z 111: 6) ;

■For n: = l to nmax do

begin

writein;writein;

1iczni k:=s;

■for j:=l to s do

begin

noweZCj1:=2tZCj1;

pom:=<ZCj1—4)/6.O;

if (frac(pom)=0.O) and (pom>0.0)

(wynikiem frac jest część ułamkowa liczby rzeczywistej)

then

begin

1 iczni k:=1iczni k+1;

noweZClicznik1:=(Z£j1-1) div 3

end (if!

i end <j>;

s:=1iczni k;

write(s:3,n:5) ;

for J:=l to s do

begin

write(noweZtj1:6);

Z Cj1:=noweZ CJ 3

end <j>

end <n>

end.

65. program trzydod;

var a: arrayC1..10] of integer;

n,i,1,1 icznik: integer;

begin

223

writei’ Podaj ns readln(n);

for i:=l to n do readln(aCi]);

i:=l; licznik:=O;

while i<=n do

begin
if atil>0 then

begin
1 :=0;

repeat
1:=1+1;

i:=i+l

until (i>n) or (ati3<=0);

if 1>=3 then 1icznik:=1icznik+1

end <aCil>0};

i:=i+l

end {while};

writelnf’ Ciąg a:’);

for i':=l to n do write(aEi]:4);

writeln;

writelnt’ Liczba podciągów=’,1 icznik:3)

end.

92. program wyrażenie;

type tekst=stringE301;

var wyrażenie: tekst;

wartość,i: integer;

function liczba(var i: integer; a: tekst): integer;

{funkcja wyznacza wartość liczby występującej w łańcuchu

pozycji ii

var t,p: integer;

begin

p:=l; {p-potęgi 101

t:=0; tt-wartość liczby!

i:=i+l;

while aCil in E’0’..’9’] do

begin

t:=t*p+ord(aEi1)-ord(’O’);

i:=i+l;

p:=10*p

end {while};

1iczba:=t

od

224-

end Cliczba};

begin
clrscr;

writelnf’ Podaj wyrażenie:’);

readln(wyrażenie);

wartość:=0;

i : = 1;

while wyrażenieCi3<>’;’ do
case wyrażenieCi3 o-F

’+’: wartość:=wartość+li ozba(i,wyrażeni e)

’—’: wartość:=wartość-liczba(i,wyrażenie)

end (case);

writelnf’ Wartość wyrażenia = ’,wartość:8)

end.

DODATEK A

SKŁADNIA JĘZYKA TURBO PASCAL 3.0 (DIAGRAMY SYNTAKTYCZNE)

Uwagi

1. Prostokąty oznaczają diagramy syntaktyczne, natomiast kółka i

owale oznaczają symbole języka Turbo Pascal 3.0.

2. Między kolejnymi symbolami może wystąpić dowolna liczba znaków

rozdzielających z jednym wyjątkiem: żadne znaki rozdzielające nie mogą

występować wewnątrz nazw i liczb.

3. Przynajmniej jeden znak rozdzielający musi wystąpić między

następującymi po sobie nazwami (lub liczbami) i symbolami podstawowymi

(takimi Jak np. begin, end).

4. Znakami rozdzielającymi mogą być spacje, komentarze i koniec

wiersza. Komentarzem Jest dowolny ciąg znaków ujęty w nawiasy klamrowe

< oraz } lub (t i Ż).

5. Słowo "nazwa” oznacza nazwę stałej, typu, zmiennej, funkcji lub

procedury.

226

Liczba
całkowi ta
bez znaku

Li czba
bez znaku

Łańcuch

Stała bez
znaku

227

Typ porządkowy

228

Czynni k

229

Wyrażenie

Wyrażenie logiczne

Wyrażenie

Li sta
parametrów
■for mai nych

230

231

232

Blck

DODATEK B

•ZESTAWIENIE OBIEKTÓW STANDARDOWYCH W JEŻYKU TURBO PASCAL 3.0

W rozdziale tym zebrano wszystkie stałe, zmienne, funkcje

procedury standardowe w języku Turbo Pascal 3.0.

STALE STANDARDOWE

false, true

max int

Pi

TYPY STANDARDOWE

integer, byte, real

char, boolean

text

ZMIENNE STANDARDOWE

input, output

FUNKCJE STANDARDOWE

abs (x)

sqr (x)

arctan(x >

cos(x)

ex p (x)

f rac.(x)

int(x)

ln(x)

sin (x)

sgrt(x)

p. 4.4.1

p-. 4.4.1, 4.5

p. 4.5 '

p. 4.4.1

podrozdz. 9.1

podrozdz. 9.1

wartość bezwzględna x,

kwadrat x,

x - typu integer lub real,

typ wyniku jak typ argumentu;

arcus tangens x,

cosinus x,
x e ,

część ułamkowa x,

część całkowita x,

logarytm naturalny x,

sinus x,

pierwiastek kwadratowy x,

x - typu integer lub real,

typ wyniku — real;

234-

x - typu integer, typ wyniku - string;

round(x) zaokrąglenie x do najbliższej liczby

całkowitej.

trunc(x) część całkowita x,

x — typu real, typ wyniku — integer;

p. 4.4.1

odd(x) nieparzystość x,

Ctrue jeśli X - nieparzyste,
odd(x)

Iłalse w przeciwnym przypadku,

x - typu integer,

typ wyniku - boolean

pred(x) poprzednik x,
SLICC (x) J następnik x,

x - typu porządkowego,

typ wyniku taki Jak typ argumentu;

podrozdz. 4.4

chr (x) znak o kodzie x,

x - typu integer, typ wyniku - char;

podrozdz. 4.4

ord (x) numer porządkowy x,

x - typu porządkowego,

typ wyniku - integer;

podrozdz. 4.4

hi (x) wartość bardziej znaczącego bajtu x,

lo(x) wartość mniej znaczącego bajtu x,

x - typu integer, typ wyniku - integer;

random wartość losowa z przedziału CO,1),

typ wyniku — real;

random(x) wartość losowa z przedziału CO,x—13,

x - typu integer, typ wyniku - integer;

keypressed sprawdzenie, czy w.buforze wejściowym

konsoli znajduje śię nie wprowadzony

jeszcze znak,

typ wyniku - boolean;

paramcount liczba parametrów przekazanych do

programu w chwili jego wywołania,

typ wyniku — integer;

paramstr(x) łańcuch reprezentujący parametr o

numerze x, przekazany programowi w

chwili jego wywołania,

si zeof (x)

swap(x)

upcase(x)

235
liczba bajtów przydzielonych danej x lub

potrzebnych do reprezentowani a danej

typu x,

x o— nazwa zmiennej lub nazwa typu,

typ wyniku- integer;

przypisanie danej,, której bardziej

znaczący bajt ma wartość lo(x) a mniej

znaczący bajt ma wartość hi(x),

x - typu integer, typ wyniku - integer;

zamiana małej litery na odpowiednią

wi elką,

x, wynik - typu char; p, 4.4.1

concat(x1,...,xn) '

copy(x,n,k)

1ength(x)

pos(xl,x2)

eof (f)

eoln

filesizelf) -
fil epos(f)

seekeof(f)

seekeoln(f)

maxavai1

funkcje dotyczące zmiennych typu string,

podrozdz. 6.1

funkcje dotyczące plików,

rozdz. 9

rozmiar największego spójnego obszaru

pamięci operacyjnej dostępnego na

stercie, typ wyniku - integer;

PROCEDURY STANDARDOWE

randomize

clreol

clrscr

crtinit

crtexi t

dellinę

zainicjowanie generatora liczb losowych;

zastąpienie spacjami wszystkich znaków

wiersza, w którym znajduje się kursor;

czyszczenie ekranu;

skierowanie do monitora łańcucha znaków

inicjujących (kończących), określonego

podczas instalowania systemu Turbo

Pascal;

usunięcie wiersza, w którym znajduje się

kursor, pozycja kursora nie ulega

zmianie;

236
insli ne wstawienie pustego wiersza w miejscu

wskazywanym przez kursor, pozycja

kursora nie ulega zmianie;

gotoxy(x,y) ustawienie kursora w wierszu o numerze

y mod n i kolumnie o numerze x mod m,

przy czym lewy górny narożnik ekranu ma

współrzędne (1,1), x zmienia się od

lewej do prawej a y od góry do dołu;

1owvideo poddawanie inwersji znaków wyprowadza­

nych na ekran;

normvideo powrót do normalnego wyprowadzania

znaków na ekran;

delay(t) wstrzymanie wykonywania programu na t

milisekund (jeśli t<0, to prżyjmuje się

t=0) ;

-Fili (x,k,z) umieszczenie w obszarze,, którego począ­

tek przydzielono zmiennej x, k danych

bajtowych o takiej samej reprezentacji

jak zmienna bajtowa z, gdzie

x — nazwa zmiennej dowolnego typu,

k - wyrażenie typu integer,

z - wyrażenie typu char lub byte;

ex i t zakończenie wykonywania bloku, w którym

tę procedurę wywołano;

hal t zakończenie wykonywania programu;

mo ve(x,y,k) przepisanie zawartości k bajtów z

obszaru pamięci, którego początek przy­

dzielono zmiennej x do obszaru, którego

początek przydzielono zmiennej y, gdzie

x, y — nazwy zmiennych dowolnego typu,

k - wyrażenie typu integer;

delete(x,n,k)

insert(x1,x2,n)

str(w,x) procedury dotyczące łańcuchów,

str(w:m,x) podrozdz. 6.1

str(w: m: n, x)

val(x,y,k)

237
assign(f,x)

reset (-f)

rewri te(f)

read (f, x 1........... xn)

readln (f)

readln(f,xl,...,xn)
procedury dotyczące zmiennych typu

write(-f,xl, . . . ,xn)

writeln(f,xl,...,xn)
plikowego; rozdz. 9

wr itel n (f)

seek (f, n>

close(f>

rename(f, x >

erase(f)

blockread<f,x,n,1 icz)

blockread(f,x,n) procedury dotyczące plików bez typu

blockwrite(f,x,n,licz>

bl ockwri te(f,x,n)

elementów; podrozdz. 9.2

new(x)

di spose<x)

mar k (x) procedury związane z dynamicznym

reiease(x) zarządzaniem pamięcią operacyjną;

getmem(x, k)

•f reemem <x , k)

rozdz. 10

DODATEK C

TABLICA KODU ASCII

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

0 00 NUL 32 20 64 40 @ 96 60

1 01 -A SOH 33 21 1 65 41 fA 97 61 a

2 02 ~B STH 34 22 II 66 42 B 98 62 b

3 03 -'C ETX 35 23 # 67 43 C 99 63 c

4 04 -D EOT 36 24 $ 68 44 D 100 64 d

5 05 -E ENQ 37 25 z 69 45 E 101 65 e

6 06 -F ACK 38 26 & 70 46 f 102 66

7 07 AG BEL 39 27 < 71 47 G 103 67 g

S 08 -H BS 40 28 (72 48 H 104 68 h

9 09 *1 HT 41 29) 73 49 1 105 69 i

10 OA LF 42 2A * 74 4A J 106 6A J

11 OB ~K VT 43 2B + 75 4B K 107 6B k

12 oc *L FF 44 2C 76 - 4C L 108 6C 1

13 OD ~M CR 45 2D - 77 4D M>jiM 109 6D m

14 OE SO 46 2E • 78 4E N 110 6E n

15 OF -O SI 47 2F 79 4F 0 111 6F o

16 10 -P DLE 48 30 0 80 50 112 70 p

17 11 "0 DCI 49 31 1 81 51 □ 113 71 q

18 12 '■R DC2 50 32 2 82 52 r 114 72 r

19 13 -S DC3 51 33 3 83 53 S 115 73 s

20 KEI ~T DC4 52 34 4 84 54 t 116 , 74 t

21 15 -'U NAK 53 35 5 85 55 u 117 75 u

22 16 -V SYN 54 36 6 86 56 v 118 76 V

23 17 -'W ETB 55 37 7 87 57 w 119 77 w

24 18 -x CAN 56 38 8 88 58 X 120 78 X

25 19 -Y EM 57 39 9 89 59 Y 121 79 y

2c 1A SUB 58 3A : 90 5A Z 122 7A Z

27 IB ESC 59 3B 5 91 5B c 123 7B {

28 1C FS 60 3C 92 5C 124 7C »

29 ID -3 GS 61 3D = 93 5D mm 125 7D i

30 1E RS 62 3E > 94 5E 126 7E

31 IF US 63 3F ? 95 5F — 127 7F DEL

LITERATURA

III ALAGIC S., ARBIB M. A., Projektowanie programów poprawnych i dobrze

zbudowanych, Warszawa, WNT, 1982.

C23 BIELECKI J., Turbo Pascal wersja 3.O, Warszaw?, WNT, 1987.

131 GR0G0N8 P. , Programming in Pascal, Addison-Wesley Publishing

Company, INC. 1978.

C41 IGLEWSKI M., MADEY J., MATWIN S.,. Pascal, Język wzorcowy, Pascal

360, wyd. 4, Warszawa, WNT, 1986.

C51 KOTT R. K., Programowanie w języku Pascal, Warszawa, WNT, 1988.

24-0

SKOROWIDZ

A crtexit 235

abs 233 częściowy porządek 63

algorytm 7 część definiująca 16, 21

alternatywa 29 - deklarująca 16, 21

and 29, 228 — wykonawcza 16

apostrof 104 - zmienna 121

arctan 233 czynnik 228

array 61, 230

assign 141, 145

czytelność programu 7, 8

D

B definicja funkcji 21

bajt 27 - procedury 21

begin 16 - stałej 31

bit 27 deklaracja zmiennej 32

blok 16, 21, 232 delay 20, 236

błędy kompilacji 13 delete 107, 236

- wykonania 13 delline 20, 235

boolean 29, 233 diagramy syntaktyczne 16, 22

blockread 147 dispose 153

blockwrite 147 div 27, 228

byte 28, 233 długość łańcucha 104

- pliku 141

C do 18

case 19, 230, 231 downto 18

char 29, 233 drzewo 159

chr 30 - binarne 160

close 142, 145

Sireol 235 E
clrscr 20, 235 efektywność programu 7, 8

concat 106 else 18

const 31 end 16

copy 106 eof 143, 146

cos 233 eoln 146

crtinit 235 erase 142

241

etykieta 20, 225

exit 236

exp 233

F

false 29, 233

-file 141

•fil epos 143

filesize 143

■fili 236

■for 18, 231

frac 233

freemem 154, 237

■function 21

funkcja 21

- rekurencyjna 24

- standardowa 106, 233

G
getmem 154, 237

goto 20, 231

gotoxy 20, 236

H
halt 218

hi 216

I

if 18, 231

in 132, 229

input 145, 233

insert 107, 236

insline 236

instrukcja 16, 231

- case 19, 231

-• for 18, 231

- if 18, 231

- iteracyjna 18

- przypisania 17

--pusta 18

- repeat .18, 231

- skoku 20

- warunkowa 18

- while 18, .231

- with 20, 117, 231

- wiążąca 20, 117

- wyboru 19

- złożona 17

int 233

integer 27, 233

K
keypressed 18, 234

kod ASCII 238

kolejka 159

komentarz 15, 18, 225

kompilacja programu 13

kompilator 13

koniunkcja 29

konkatenacja 105

korzeń drzewa 159

kropka 16

L
label 232

length 106

liczba automorficzna 180

- Stirlinga 180

liczby bliźniacze 179

- piramidalne 180

- trójkątne 180

lista 152

- cykliczna 159

- dwukierunkowa 159

- jednokierunkowa 152

- nazw rekordów 20

- parametrów aktualnych 20

- - formalnych 21, 229

- pól 115, 230

- stałych wyboru 19

liść drzewa 169

In 233

lo 234

lowvideo 236

242

0

łańcuch 104, 226

- pusty 105/

M

mark 154, 237

maxavail 154, 235

maxint 27, 32, 233

metoda połowienia przedziału 38

mad 27, 228

move 236

N

nagłówek -funkcji 21

- procedury 21

- programu 16

nazwa 16, 30, 225

negacja 29

new 153

ni 1 152

normvideo 236

not 29, 228

□

odd 234

of 19, 61

operacje na łańcuchach 105

- - plikach 141, 237

operator relacyjny 26, 106

or 27, 29, 228

ord 26, 28, 29, 131, 234

otwarcie pliku 142

output 145, 233

oznaczenie typu 230

P

paramcount 234

parametr aktualny 21

- -formalny 21

paramstr 234

pi 32, 233

plik 141

- bez typu elementów 146

- pusty 141

- standardowy 144

- tekstowy 144

poddrzewo 159

podprogram 21

poprawność programu 7

porządek 161

— częściowy 63

- poprzeczny 161

- wsteczny 161
i

— wzdłużny 161

pos 106

poziom drzewa 169

pred 26, 28, 29, 234

procedura 20, 21

— rekurencyjna 24

- standardowa 107, 141, 154, 235

procedurę 21

program 16, 232

programowanie strukturalne 7

przekazywanie parametrów 22

- - przez -funkcją 23

- - - procedurę 23

---------- wartość 22, 23

— — — zmienną 22, 23

R

random 234

randomize 237

read 142, 145, 236

readln 142, 145, 236

real 28, 233

record 115

rekord 1115

- z wariantami 120

relacja 63

- antysymetryczna 63

- przechodnia 63

- zwrotna 63

release 154, 237

rename 142, 237

243

repeat 18, 231

reset 142, 145, 237

rewrite 142, 145, 237

round 28, 234

S

seek 142, 237

seekeaf 146, 235

seekeoln 146, 235

set 131

shl 27, 228

shr 27, 228

sin 233

sizeof 235

składnia 16, 225

składnik 228

sqr 233

sqrt 233

stała 152, 227

sterta 154

stos 159

str 107, 236

string 104

suce 26, 28, 234

swap 235

symbol specjalny 29

szkic programu 7

v rS.
- łańcuchowy 25, 104

- okrojony 26, 31

- plikowy 25, 141

- porządkowy 25, 26, 227

- prosty 25, 26

- rekordowy 25, 115

- rzeczywisty 25, 28

- standardowy 25, 26

- strukturalny 25, 26

~ tablicowy 25, 26, 61

- wskaźnikowy 25, 152

— wyliczeniowy 26, 30

- wyniku -funkcji 21

- zbiorowy 25, 131

- złożony 25

- znakowy 25, 29

type 32

U
until 18

upcase 29, 235

uniwersalność programu 7

urządzenie zewnętrzne 114,

V

var 32

val 108, 236

145

T
tablica 61

- znakowa 62

text 144, 230, 233

then 18

to 18

true 29, 233

trunc 28, 234

typ 25

- bajtowy 25, 28

- bazowy 131

- całkowity 25, 27

— danej 25

- logiczny 25, 29

W

waga drzewa 169

wariant 120

wartość -funkcji 21

- indeksu 61

- początkowa 33

węzeł drzewa 159

while 18

with. 20, 117

write 142, 146, 237

writeln 142, 146, 237

wstępująca metoda 9

wykonanie programu 13

wyrażenie 229

244-

- logiczne 229

- proste 228

wysokość drzewa 169

X
xor 29,228

Z

zakres deklaracji 32

zamknięcie pliku 142

zbiór 131

- bazowy 131

- danych 141

- potęgowy 131

zmienna 25, 227

- dynamiczna 27, 152

- lokalna 21, 23

— standardowa 233

- statyczna 27

znak końca wiersza 144

- rozdzielający 225

- sterujący 32

zstępująca metoda 9

zupełność programu 7, 8

S. 97

263892
Cena zł 2500,-

Wydawnictwa Politechniki Wrocławskiej
są do nabycia w:

P.P „Dom Książki”
Księgarni Wr 49

Wybrzeże Wyspiańskiego 27,50-370 Wrocław
oraz

Wojewódzkiej Księgarni Technicznej
ul. Świdnicka 8, 50-067 Wrocław

Raport dostępności

		Nazwa pliku:

		Typy_danych_w_programowaniu_strukturalnym.pdf

		Autor raportu:

		

		Organizacja:

		

[Wprowadź informacje osobiste oraz dotyczące organizacji w oknie dialogowym Preferencje > Tożsamość.]

Podsumowanie

Sprawdzanie napotkało na problemy, które mogą uniemożliwić pełne wyświetlanie dokumentu.

		Wymaga sprawdzenia ręcznego: 2

		Zatwierdzono ręcznie: 0

		Odrzucono ręcznie: 0

		Pominięto: 1

		Zatwierdzono: 28

		Niepowodzenie: 1

Raport szczegółowy

		Dokument

		Nazwa reguły		Status		Opis

		Flaga przyzwolenia dostępności		Zatwierdzono		Należy ustawić flagę przyzwolenia dostępności

		PDF zawierający wyłącznie obrazy		Zatwierdzono		Dokument nie jest plikiem PDF zawierającym wyłącznie obrazy

		Oznakowany PDF		Zatwierdzono		Dokument jest oznakowanym plikiem PDF

		Logiczna kolejność odczytu		Wymaga sprawdzenia ręcznego		Struktura dokumentu zapewnia logiczną kolejność odczytu

		Język główny		Zatwierdzono		Język tekstu jest określony

		Tytuł		Zatwierdzono		Tytuł dokumentu jest wyświetlany na pasku tytułowym

		Zakładki		Niepowodzenie		W dużych dokumentach znajdują się zakładki

		Kontrast kolorów		Wymaga sprawdzenia ręcznego		Dokument ma odpowiedni kontrast kolorów

		Zawartość strony

		Nazwa reguły		Status		Opis

		Oznakowana zawartość		Zatwierdzono		Cała zawartość stron jest oznakowana

		Oznakowane adnotacje		Zatwierdzono		Wszystkie adnotacje są oznakowane

		Kolejność tabulatorów		Zatwierdzono		Kolejność tabulatorów jest zgodna z kolejnością struktury

		Kodowanie znaków		Zatwierdzono		Dostarczone jest niezawodne kodowanie znaku

		Oznakowane multimedia		Zatwierdzono		Wszystkie obiekty multimedialne są oznakowane

		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu

		Skrypty		Zatwierdzono		Brak niedostępnych skryptów

		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych

		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się

		Formularze

		Nazwa reguły		Status		Opis

		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane

		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis

		Tekst zastępczy

		Nazwa reguły		Status		Opis

		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego

		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany

		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością

		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji

		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy

		Tabele

		Nazwa reguły		Status		Opis

		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot

		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR

		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki

		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie

		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie

		Listy

		Nazwa reguły		Status		Opis

		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L

		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI

		Nagłówki

		Nazwa reguły		Status		Opis

		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie

Powrót w górę

