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Abstract: Accurate assessment of the effects of parameters on the flotation process is important for 
understanding the complex flotation mechanisms. To address the problem of unsatisfactory prediction 
of large sample flotation data (641 sets) by traditional machine learning algorithms, four advanced 
algorithms (GBDT, CatBoost, LightBGM and XGBoost) are used in this paper to investigate the effects 
of feed properties and flotation conditions on the effectiveness of coal flotation. It was found that the 
data at flotation recoveries below <40% were difficult to predict effectively by machine learning 
algorithms due to abnormal flotation results caused by lower flotation reagent dosages. An importance 
analysis of flotation parameters and prediction of flotation results were carried out based on the 
reordered data. The results showed that the fraction and ash content of -74 um in the feed are the main 
factors affecting concentrate yield and ash content. The XGBoost model also achieved the best prediction 
results compared to other models, and the prediction coefficient of determination R2 reached 0.877 and 
0.971 for concentrate yield and ash content, respectively. The results are expected to provide a reference 
for the intelligent control of coal beneficiation plant by machine learning technology in the future. 
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1. Introduction 

The overall sophistication of flotation intelligence within coal preparation plants remains inadequately 
low, representing a significant bottleneck to the advancement of intelligent production and 
management practices in this sector (Flores et al., 2024). A transformative approach to the flotation 
process is urgently needed to improve mineral processing efficiency, reduce production costs, and 
ensure operational safety. In this context, deep learning technology is emerging as a key avenue for 
facilitating intelligent coal slurry flotation in the foreseeable future (Abkhoshk et al., 2010; Meng et al., 
2022). The application of deep learning enables real-time monitoring, intelligent control, and optimal 
scheduling of the flotation process, which is expected to significantly improve both flotation efficiency 
and environmental performance. An intelligent coal slurry flotation system can achieve precise control 
and optimization by integrating state-of-the-art control systems, sophisticated sensors, and advanced 
data processing technologies (Zhao et al., 2022). This system requires real-time and accurate monitoring 
of numerous parameters, including chemical dosing, slurry concentration, flow rate, liquid level height 
and product ash content. Building on this foundation, advanced machine learning techniques can be 
used to predict sorting results and adjust parameters accordingly, ultimately maximizing flotation yield 
and improving economics (Ali et al., 2018; Chelgani et al., 2024; Meng et al., 2022). 

The parameters affecting the flotation process can be categorized into four primary dimensions: 
liquid variables, reagent variables, gas variables and solids variables (Sun et al., 2023; Vinnett et al., 
2023). Traditionally, single-factor experimental designs have been used to evaluate the effect of 
individual parameters on the flotation process. However, a number of advanced experimental methods 
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have been used to optimize flotation processes and investigate the interactions between different 
influencing factors, including the Taguchi method (du Plessis and de Villiers, 2007; Lubisi et al., 2018; 
Sachinraj et al., 2022) and response surface methodology (Arancibia-Bravo et al., 2022; Bu et al., 2016; 
Wang et al., 2016; Wang et al., 2021). Multiple nonlinear regression is often used to predict flotation 
responses, both in the Taguchi method and in response surface methodology. However, multivariable 
linear regression typically provides modest predictive performance, with an R² value of approximately 
0.8. To improve prediction accuracy, various machine learning techniques have been incorporated into 
flotation process prediction. Gomez-Flores et al. (2022) used multivariate linear regression, k-nearest 
neighbours, decision trees and random forests to model flotation grade and recovery based on 
physicochemical and operational parameters and found that random forests showed superior 
predictive performance for flotation concentrate grade and recovery.  Guner et al. (2024) found that 
genetic programming (GP) with novel data demonstrated greater accuracy in predicting grade, while 
random forests excelled in predicting recovery. Furthermore, Ali et al. (2018) conducted a comparative 
analysis of the predictive behaviour in fine high-ash coal flotation using random forests (RF), artificial 
neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), Mamdani fuzzy logic (MFL) 
and a hybrid neural-fuzzy inference system (HyFIS), and concluded that the MFL model provided the 
most favourable performance. A number of studies have successfully implemented intelligent soft 
computing (IS) methods, including various types of artificial neural networks (ANNs) and the adaptive 
neuro-fuzzy inference system (ANFIS), to model mineral flotation responses dependent on process and 
sample conditions. Although these models are recognised for their reliability in predicting coal 
responses, they often fall short in assessing the correlations between flotation results and operating 
conditions (Bu et al., 2021). In this context, random forests (RF), as a sophisticated machine learning 
tool, not only facilitates the ranking of input variables based on their importance in influencing outputs, 
but also competently addresses linear and non-linear challenges (Chehreh Chelgani et al., 2016; 
Chelgani and Matin, 2018). In the field of mineral flotation, random forests have been applied to 
evaluate the effects of different parameters on coarse particle flotation recovery (Nazari et al., 2019), 
model coal flotation responses under different operating conditions (Bu et al., 2021), predict copper 
flotation recovery (Flores et al., 2024), and predict froth flotation responses influenced by different 
conditioning parameters (Shahbazi et al., 2017).   

Gradient boosting trees are an advanced ensemble learning technique within the field of boosting 
methods (Zhang et al., 2019). Adaboost, for example, uses the error rates of weak learners from previous 
iterations to strategically adjust the weights of the training dataset, facilitating a sequential refinement 
process. In contrast, Gradient Boosting Decision Trees (GBDT) use a forward stepwise approach where 
the weak learners are constrained to the CART (Classification and Regression Trees) regression tree 
model (Zhang and Jánošík, 2024). The goal of each iteration is to identify a CART weak learner that 
minimises the loss function. As the algorithm has evolved, GBDT has given rise to several prominent 
implementations, most notably XGBoost, CatBoost and LightGBM. The proliferation of machine 
learning methods and the growing volume of data have spurred continuous advances in gradient 
boosting algorithms (Ma et al., 2018). For example, XGBoost (eXtreme Gradient Boosting) is a highly 
efficient boosting algorithm that uses second-order derivative information to optimise the loss function. 
It also incorporates features such as feature selection and tree pruning to reduce the risk of 
overfittingnm (Carmona et al., 2019). LightGBM, developed by Microsoft on top of the gradient boosting 
framework, uses a histogram-based decision tree algorithm, which allows it to effectively handle large 
datasets and high-dimensional feature spaces (Sun et al., 2020). Meanwhile, the CatBoost algorithm, 
innovated by Yandex, has features such as automatic missing value handling and support for GPU 
acceleration, which significantly improves its performance when dealing with datasets characterised by 
many categorical features. As a result, CatBoost has demonstrated remarkable effectiveness in various 
real-world applications (Chelgani et al., 2024). 

Recently, Chelgani et al. (2024) conducted a comparative analysis of the predictive effectiveness of 
various machine learning models, including Catboost, Random Forest, Support Vector Regression, 
Extreme Gradient Boosting and Convolutional Neural Networks. Their results showed that Catboost 
outperformed the other models, achieving an impressive accuracy (R²: 0.90) in predicting the 
metallurgical responses of copper flotation, particularly in terms of grade and recovery. In the context 
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of coal flotation, Bu et al. (2024) collected a dataset of 641 valid samples for model training and 
validation. They developed an enhanced deep neural network (DNN) architecture to predict the quality 
of flotation products. Their results showed that the proposed DNN model yielded superior R² values - 
0.71 for concentrate yield and 0.87 for concentrate ash content - compared to Random Forest. However, 
it is noteworthy that the permutation feature importance analysis could not be performed for all input 
features in the DNN model proposed by Bu et al. (2024). This limitation highlights the urgent need to 
develop highly efficient and accurate models that can provide robust predictive performance across the 
full set of 641 datasets. 

In this study, a comparative analysis of the predictive performance of GBDT, CatBoost, LightGBM, 
and XGBoost in the context of coal flotation was conducted. The flotation data were categorized into 
two different groups based on concentrate levels and were used to explore the reasons for the low 
prediction accuracy of flotation results. Also, the feature importance has been analyzed using different 
datasets. 

2. Materials and methods 

2.1. Data collection 

A comprehensive dataset of 641 instances of laboratory unit flotation data for coal samples from 
different regions was curated from the publicly available supplementary material detailed in the 
literature Bu et al. (2024). The dataset encompasses eight input parameters alongside four output 
parameters, as delineated in Table 1. Our analysis concentrates exclusively on the modeling and 
prediction of concentrate yield and ash content. Fig. 1 elucidates the complex interrelationships among 
concentrate yield, ash content, and tailings. The concentrate yields display a remarkable range, 
oscillating between 1.3% and 97.1%, while the ash content spans from 2.97% to 33.2%. Tailings are 
similarly observed to fluctuate between 17.3% and 84.5%. This considerable variability in concentrate 
yield and ash content underscores the dataset's ability to encapsulate a diverse spectrum of feed 
characteristics and flotation conditions. 

Table 1. Input and output parameters in the dataset 

Parameter types Parameters 

Input parameters 

Feed properties 

Ash content of feed 
Pulp density 

Fraction of -74 µm in feed 
Ash content of -74 µm in feed 

Flotation conditions 

Collector dosage 
Frother dosage 

Aeration 
Rotation speed 

Output parameters 
Concentrate properties 

Concentrate yield 
Concentrate ash content 

Tailing properties 
Tailing yield 

Tailing ash content 

 
Fig. 1. Relationship between yield and ash content of flotation concentrate (a) and tailing (b) in the full dataset 
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2.2. Regression prediction 

Model training and data analysis were performed using the SPSSPRO software suite. The dataset, 
consisting of 641 instances of flotation data, was divided into training and test sets in an 8:2 ratio. This 
study is based on a decision tree framework inspired by the boosting methodology, specifically using 
the gradient boosting algorithm for our investigations. We selected four widely used gradient boosting 
decision tree models recognized for their superior predictive performance: GBDT, CatBoost, LightGBM 
and XGBoost. Compared to other machine learning models, such as Support Vector Machine (SVM), 
Random Forests (RF), and Artificial Neural Networks(ANN), the four algorithms analyzed in this paper 
offer several advantages, including high robustness, strong generalization capabilities, and rapid 
training times. Additionally, these algorithms can effectively assess the importance of various features, 
providing valuable insights for understanding and evaluating the models. Using these selected models, 
we performed regression analysis to predict both coal yield and ash content. 

2.3. Model optimization 

Hyperparameters are parameters that need to be manually set before training a machine learning 
model, such as learning rate and tree depth. The choice of hyperparameters can have a large impact on 
the performance of the model, so hyperparameter optimization is needed to find the best combination 
of hyperparameters to improve the performance and generalization of the model. The Bayesian 
algorithm is used to optimize the model in this model building process. The hyperparameters for the 
four models to be optimized are shown in Table 2. 

Table 2. Hyperparameters optimized for different models 

GBDT CatBoost LightGBM XGBoost 
Loss function Number of iterations Base learner Base learner 

Node split criterion Learning rate 
Number of base 

learners 
Number of base 

learners 
Number of base 

learners 
L2 regularization term Learning rate Learning rate 

Learning rate Maximum depth of tree L1 regularization term L1 regularization term 
Sampling ratio without 

replacement 
Overfitting detection 

threshold 
L2 regularization term L2 regularization term 

Maximum features 
ratio considered for 

splitting 

Number of iterations 
after convergence 

Sample feature 
sampling rate 

Sample feature 
sampling rate 

Minimum samples for 
split in internal nodes 

- 
Tree feature sampling 

rate 
Tree feature sampling 

rate 
Minimum samples for 

leaf node 
- Node split threshold Node split threshold 

Minimum weight of 
samples in leaf node 

- Minimum weight of 
samples in a leaf node 

Minimum weight of 
samples in a leaf node 

3. Results and discussion 

3.1. Regression prediction for the all datasets 

Four regression models, GBDT, CatBoost, LightBGM and XGBoost, were used to learn the training set 
(512 records) and predict the test set (129 records) respectively. The training and test sets are the same 
for all four models. The hyperparameters are optimised using a Bayesian approach to obtain the optimal 
prediction model. The relationship between the real and predicted data for refined mineral yield and 
ash content after optimisation of the different models is shown in Fig. 2 and Fig. 3. The coefficient of 
determination (R2) of the four regression models, GBDT, CatBoost, LightBGM and XGBoost, for the 
prediction of concentrate yield were 0.764, 0.827, 0.800, 0.836 and the R2 for the prediction of ash content 
were 0.688, 0.829, 0.817 and 0.853 respectively. The results indicate that the XGBoost model has the 
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highest accuracy for both yield and ash prediction. However, the prediction accuracy of all four models 
was insufficient for concentrate yield and ash. As can be seen from the offset law between the predicted 
and actual values in Fig. 2, the prediction accuracy for concentrate yield below 40% is significantly lower 
than that for concentrate yield above 40%. 

 
Fig. 2. Test set prediction results of (a) GBDT, (b) CatBoost, (c) LightBGM, and (d) XGBoost model for the 

flotation concentrate yield 

 
Fig. 3. Test set prediction results of (a) GBDT, (b) CatBoost, (c) LightBGM, and (d) XGBoost model for the ash 

content of flotation concentrate 
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Two representative sets of flotation data were selected from the dataset to determine the reasons for 
the large difference in prediction accuracy for concentrate yields less than 40% and greater than 40%. 
The results of the variation of flotation concentrate yield and ash with collector dosage (the ratio of 
collector to frother dosage is 3:1) are shown in Fig. 4. Data 1 and Data 2 show the flotation results of two 
coal pulps with different feed characteristics. The results of data 1 show that the concentrate yield and 
ash content are about 15% and 10%, respectively, when the collector dosage is less than 400 g/t. 
However, when the collector dosage is more than 600 g/t, the concentrate yield and ash content increase 
slowly after a sharp increase, and the yield and ash content are more than 50% and 20%, respectively. 
The results of data 2 show that the concentrate yield is 32% when the collector dosage is 100g/t, and 
when the collector dosage is more than 200g/t, the concentrate yield increases significantly to more than 
60% and then increases slowly. It can be seen that the concentrate yield at low trapping agent dosage is 
significantly lower than the flotation yield at normal or excessive trapping agent dosage, thus showing 
different laws. Therefore, the use of the full dataset for machine learning may be the main reason for 
the low prediction accuracy in Fig. 2 and Fig. 3.  

 
Fig. 4. (a) yield and (b) ash content of the flotation concentrate using different data 

3.2.  Regression prediction for the categorical datasets 

The full dataset used for machine learning was categorised. Data with less than 40% concentrate 
recoveries were filtered into Dataset I (116 records), while data with recoveries greater than 40% were 
grouped into Dataset II (525 records). Dataset I consists mainly of the results when the flotation 
chemicals are used at low doses, while Dataset II consists mainly of the results when the flotation 
chemicals are used at normal or excessive doses. These two datasets were randomised separately and 
then 80% of the data was used as the training set and the remaining 20% as the test set. Four machine 
learning methods, GBDT, CatBoost, LightBGM and XGBoost, were used to train modelling and 
regression prediction respectively on the two datasets. The comparison of predicted and true values for 
Dataset I and Dataset II is shown in Fig. 5 and Fig. 6. 

The prediction accuracy of the four machine learning methods is evaluated by three metrics, Root 
Mean Squard Error (RMSE), Mean Absolute Error (MAE) and R2, and the results are shown in Fig. 7. 
The smaller the calculation results of MAE and RMSE, the smaller the error value between the predicted 
value and the actual value, and the model predicted value has better reliability. The value of R2 is 
between 0 and 1, and the closer R2  is to 1, the better the fitting effect works. The prediction models built 
by the four machine learning methods for Dataset I have high MAE and RMSE and very low R2 (below 
0.4). This indicates that it is difficult for all four machine learning methods to build accurate predictive 
models for Dataset I. When the flotation reagent dosage is low, the flotation concentrate yield and ash 
content have a certain degree of randomness and poor regularity. This leads to the difficulty of 
regression prediction of this part of the data using machine learning methods. The accuracy of the 
prediction models built by the four models for Dataset II was significantly improved when the data 
with flotation concentrate yield less than 40% in the original dataset were removed. Among the four 
machine learning methods, the accuracy of the prediction model XGBoost>LightBGM>CatBoost>GBDT 
was the best.  Taking the prediction model established by XGBoost as an example, compared to the full 
dataset, the RMSE, MAE and R2 metrics of the concentrate yield prediction model established for 
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Dataset I were improved from 8.37, 5. 28 and 0.836 to 5.08, 3.56 and 0.877 respectively, and those of the 
concentrate ash content prediction model were improved from 1.83, 0.96 and 0.853 to 0.85, 0.57 and 
0.971 respectively. Compared to the whole Dataset and Dataset I, the reliability and fit of the prediction 
model  for  Dataset  II  were  significantly  improved.  From  this  result, it can be speculated that machine 

 
Fig. 5. Test set prediction results of (a) GBDT, (b) CatBoost, (c) LightBGM, and (d) XGBoost models for the 

flotation concentrate yield using different dataset 

 
Fig. 6. Test set prediction results of (a) GBDT, (b) CatBoost, (c) LightBGM, and (d) XGBoost models for the 

ash content the flotation concentrate using different dataset 
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learning modelling using data results of appropriate flotation chemical dosing may be more suitable for 
online prediction of concentrate yield and ash content in future flotation plants. 

According to the collected flotation data (Bu et al., 2024), it can be seen that the corresponding 
flotation reagent dosage is usually lower when the flotation yield is below 40%. The basic requirement 
for a high flotation selectivity  is the existence of a significant difference in hydrophobicity between coal 
and gangue (Ramudzwagi et al., 2020). When the amount of collector is low, the difference in 
hydrophobicity between coal and gangue is too small, making it difficult for coal particles to adhere to 
the surface of bubbles and enter the concentrate product (Bu et al., 2020). In addition, when the amount 
of frother is too low, it is difficult to form a stable foam layer in flotation, resulting in that hydrophobic 
coal particles adhered to the bubble surface cannot be recycled into concentrate products through the 
foam area (Pawliszak et al., 2024). The lower dosage of flotation reagents results in very poor selectivity 
of flotation results, leading to high randomness and poor predictability of flotation results. Therefore, 
appropriate screening of collected flotation data is an important step in ensuring the accuracy and 
effectiveness of flotation prediction. 

 
Fig. 7. Comparison of the accuracy of the prediction models of the four machine learning methods 

3.3. Feature importance analysis 

The results of the importance analyses of the prediction models for the full dataset are shown in the 
Supporting Information (Fig. R1 and Fig. R2). The results of the importance analysis of concentrate 
yield show that the importance of frother dosing is always in the top two in the order of importance 
obtained by all models. The presence of a frother reduces the surface tension, which is beneficial for 
inhibiting bubble incorporation and maintaining the stability of the foam layer. Therefore, frother 
dosage is a key factor influencing concentrate yield. The results of the importance analysis of the 
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prediction model for Dataset II are shown in Fig. 8 and Fig. 9. When the part of the dataset with a yield 
of <40% is removed, the importance of the frother for the concentrate yield decreases significantly. This 
may be due to the fact that with a sufficient amount of frother, any further increase in the amount of 
frother will not significantly improve the concentrate yield. Meanwhile, the results also show that the 
increase in frother dosage is the main reason for the apparent increase in concentrate yield in Fig. 4(a), 
which is also an important reason why frother dosage has a higher degree of importance in the 
prediction model for the full dataset. The relationship between the importance level of the full dataset 
and the other factors in Dataset II did not change significantly except for frother dosage.  

The fraction and ash content of -74 um in the feed are the two factors that rank in the top three in the 
importance results of most models. Flotation is a method of mineral separation based on the differential 
adhesion of hydrophobic and hydrophilic minerals to flotation bubbles. The hydrophobic mineral 
particles adhere to the bubbles and move from the slurry zone to the froth zone, eventually becoming 
the concentrate. It is well known that fine particles (-74 um) have a low probability of collision with 
flotation bubbles due to their fine size and low inertia. In addition, the high specific surface area of the 
fine particles will consume a large amount of the limited flotation chemicals, leaving the coarse particles 
unable to obtain sufficient flotation reagent to mineralise with the bubbles. With the increase of the -74 
um fraction in the feed, the limited amount of reagent has been consumed in large quantities. This 
results in a large loss of coarse particles with good floatability in the flotation concentrate and a 
significant reduction in concentrate yield. In addition, as the ash content of -74 µm increases, a large 
number of fine vein particles present in the slurry will cover the fine coal particles. As a result, the fine 
coal particles are unable to interact with the flotation chemicals and bubbles and are eventually lost in 
the tailings. 

Compared to the amount of foaming agent, the amount of trapping agent was significantly less 
important for concentrate yield and ash, both ranking fifth in all models. This is due to the fact that coal 
particles tend to float naturally and do not require excessive amounts of foaming agent. Feed ash 
content, -74 um content and ash content all reflect to some extent the degree of floatability of the feed. 
Therefore, the characteristics of the feed have a greater influence on the flotation results than the dosage 
of the collector. Also, slurry concentration, agitation rate and aeration were the three factors that had 
the least effect on concentrate yield of all the predictive models, which may be due to the fact that these 
three factors are less controllable in flotation experiments. 

 
Fig. 8. Feature importance results for the flotation concentrate yield using (a) GBDT, (b) CatBoost, (c) LightBGM, 

and (d) XGBoost models 
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Fig. 9. Feature importance results for the ash content of the flotation concentrate using (a) GBDT, (b) CatBoost, (c) 

LightBGM, and (d) XGBoost models 

4. Conclusions 

This study effectively evaluated the predictive performance of GBDT, CatBoost, LightGBM, and 
XGBoost for coal flotation results. The main findings are as follows: 
1. The XGBoost model outperformed the others, achieving high prediction accuracy with R² values of 

0.877 and 0.971 for concentrate yield and ash content, respectively. 
2. The low prediction accuracy for concentrate yield below 40% was attributed to the abnormal 

flotation results caused by low flotation reagent dosages. Filtering out this data subset significantly 
improved the model accuracy. 

3. The fraction and ash content of -74 µm particles in the feed were identified as the key factors affecting 
flotation results, emphasizing the importance of feed properties over flotation reagent dosages. 

4. The results indicate that machine learning models based on appropriately dosed flotation chemicals 
could potentially provide accurate online predictions for coal flotation plants, facilitating intelligent 
control and management. 
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