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Abstract: Accurate assessment of the effects of parameters on the flotation process is important for
understanding the complex flotation mechanisms. To address the problem of unsatisfactory prediction
of large sample flotation data (641 sets) by traditional machine learning algorithms, four advanced
algorithms (GBDT, CatBoost, LightBGM and XGBoost) are used in this paper to investigate the effects
of feed properties and flotation conditions on the effectiveness of coal flotation. It was found that the
data at flotation recoveries below <40% were difficult to predict effectively by machine learning
algorithms due to abnormal flotation results caused by lower flotation reagent dosages. An importance
analysis of flotation parameters and prediction of flotation results were carried out based on the
reordered data. The results showed that the fraction and ash content of -74 um in the feed are the main
factors affecting concentrate yield and ash content. The XGBoost model also achieved the best prediction
results compared to other models, and the prediction coefficient of determination R2 reached 0.877 and
0.971 for concentrate yield and ash content, respectively. The results are expected to provide a reference
for the intelligent control of coal beneficiation plant by machine learning technology in the future.
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1. Introduction

The overall sophistication of flotation intelligence within coal preparation plants remains inadequately
low, representing a significant bottleneck to the advancement of intelligent production and
management practices in this sector (Flores et al.,, 2024). A transformative approach to the flotation
process is urgently needed to improve mineral processing efficiency, reduce production costs, and
ensure operational safety. In this context, deep learning technology is emerging as a key avenue for
facilitating intelligent coal slurry flotation in the foreseeable future (Abkhoshk et al., 2010; Meng et al.,
2022). The application of deep learning enables real-time monitoring, intelligent control, and optimal
scheduling of the flotation process, which is expected to significantly improve both flotation efficiency
and environmental performance. An intelligent coal slurry flotation system can achieve precise control
and optimization by integrating state-of-the-art control systems, sophisticated sensors, and advanced
data processing technologies (Zhao et al., 2022). This system requires real-time and accurate monitoring
of numerous parameters, including chemical dosing, slurry concentration, flow rate, liquid level height
and product ash content. Building on this foundation, advanced machine learning techniques can be
used to predict sorting results and adjust parameters accordingly, ultimately maximizing flotation yield
and improving economics (Ali et al., 2018; Chelgani et al., 2024; Meng et al., 2022).

The parameters affecting the flotation process can be categorized into four primary dimensions:
liquid variables, reagent variables, gas variables and solids variables (Sun et al., 2023; Vinnett et al.,
2023). Traditionally, single-factor experimental designs have been used to evaluate the effect of
individual parameters on the flotation process. However, a number of advanced experimental methods
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have been used to optimize flotation processes and investigate the interactions between different
influencing factors, including the Taguchi method (du Plessis and de Villiers, 2007; Lubisi et al., 2018;
Sachinraj et al., 2022) and response surface methodology (Arancibia-Bravo et al., 2022; Bu et al., 2016;
Wang et al., 2016; Wang et al., 2021). Multiple nonlinear regression is often used to predict flotation
responses, both in the Taguchi method and in response surface methodology. However, multivariable
linear regression typically provides modest predictive performance, with an R? value of approximately
0.8. To improve prediction accuracy, various machine learning techniques have been incorporated into
flotation process prediction. Gomez-Flores et al. (2022) used multivariate linear regression, k-nearest
neighbours, decision trees and random forests to model flotation grade and recovery based on
physicochemical and operational parameters and found that random forests showed superior
predictive performance for flotation concentrate grade and recovery. Guner et al. (2024) found that
genetic programming (GP) with novel data demonstrated greater accuracy in predicting grade, while
random forests excelled in predicting recovery. Furthermore, Ali et al. (2018) conducted a comparative
analysis of the predictive behaviour in fine high-ash coal flotation using random forests (RF), artificial
neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), Mamdani fuzzy logic (MFL)
and a hybrid neural-fuzzy inference system (HyFIS), and concluded that the MFL model provided the
most favourable performance. A number of studies have successfully implemented intelligent soft
computing (IS) methods, including various types of artificial neural networks (ANNs) and the adaptive
neuro-fuzzy inference system (ANFIS), to model mineral flotation responses dependent on process and
sample conditions. Although these models are recognised for their reliability in predicting coal
responses, they often fall short in assessing the correlations between flotation results and operating
conditions (Bu et al., 2021). In this context, random forests (RF), as a sophisticated machine learning
tool, not only facilitates the ranking of input variables based on their importance in influencing outputs,
but also competently addresses linear and non-linear challenges (Chehreh Chelgani et al., 2016;
Chelgani and Matin, 2018). In the field of mineral flotation, random forests have been applied to
evaluate the effects of different parameters on coarse particle flotation recovery (Nazari et al., 2019),
model coal flotation responses under different operating conditions (Bu et al., 2021), predict copper
flotation recovery (Flores et al., 2024), and predict froth flotation responses influenced by different
conditioning parameters (Shahbazi et al., 2017).

Gradient boosting trees are an advanced ensemble learning technique within the field of boosting
methods (Zhang et al., 2019). Adaboost, for example, uses the error rates of weak learners from previous
iterations to strategically adjust the weights of the training dataset, facilitating a sequential refinement
process. In contrast, Gradient Boosting Decision Trees (GBDT) use a forward stepwise approach where
the weak learners are constrained to the CART (Classification and Regression Trees) regression tree
model (Zhang and Janosik, 2024). The goal of each iteration is to identify a CART weak learner that
minimises the loss function. As the algorithm has evolved, GBDT has given rise to several prominent
implementations, most notably XGBoost, CatBoost and LightGBM. The proliferation of machine
learning methods and the growing volume of data have spurred continuous advances in gradient
boosting algorithms (Ma et al., 2018). For example, XGBoost (eXtreme Gradient Boosting) is a highly
efficient boosting algorithm that uses second-order derivative information to optimise the loss function.
It also incorporates features such as feature selection and tree pruning to reduce the risk of
overfittingnm (Carmona et al., 2019). LightGBM, developed by Microsoft on top of the gradient boosting
framework, uses a histogram-based decision tree algorithm, which allows it to effectively handle large
datasets and high-dimensional feature spaces (Sun et al., 2020). Meanwhile, the CatBoost algorithm,
innovated by Yandex, has features such as automatic missing value handling and support for GPU
acceleration, which significantly improves its performance when dealing with datasets characterised by
many categorical features. As a result, CatBoost has demonstrated remarkable effectiveness in various
real-world applications (Chelgani et al., 2024).

Recently, Chelgani et al. (2024) conducted a comparative analysis of the predictive effectiveness of
various machine learning models, including Catboost, Random Forest, Support Vector Regression,
Extreme Gradient Boosting and Convolutional Neural Networks. Their results showed that Catboost
outperformed the other models, achieving an impressive accuracy (R% 0.90) in predicting the
metallurgical responses of copper flotation, particularly in terms of grade and recovery. In the context
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of coal flotation, Bu et al. (2024) collected a dataset of 641 valid samples for model training and
validation. They developed an enhanced deep neural network (DNN) architecture to predict the quality
of flotation products. Their results showed that the proposed DNN model yielded superior R? values -
0.71 for concentrate yield and 0.87 for concentrate ash content - compared to Random Forest. However,
it is noteworthy that the permutation feature importance analysis could not be performed for all input
features in the DNN model proposed by Bu et al. (2024). This limitation highlights the urgent need to
develop highly efficient and accurate models that can provide robust predictive performance across the
full set of 641 datasets.

In this study, a comparative analysis of the predictive performance of GBDT, CatBoost, LightGBM,
and XGBoost in the context of coal flotation was conducted. The flotation data were categorized into
two different groups based on concentrate levels and were used to explore the reasons for the low
prediction accuracy of flotation results. Also, the feature importance has been analyzed using different
datasets.

2. Materials and methods
2.1. Data collection

A comprehensive dataset of 641 instances of laboratory unit flotation data for coal samples from
different regions was curated from the publicly available supplementary material detailed in the
literature Bu et al. (2024). The dataset encompasses eight input parameters alongside four output
parameters, as delineated in Table 1. Our analysis concentrates exclusively on the modeling and
prediction of concentrate yield and ash content. Fig. 1 elucidates the complex interrelationships among
concentrate yield, ash content, and tailings. The concentrate yields display a remarkable range,
oscillating between 1.3% and 97.1%, while the ash content spans from 2.97% to 33.2%. Tailings are
similarly observed to fluctuate between 17.3% and 84.5%. This considerable variability in concentrate
yield and ash content underscores the dataset's ability to encapsulate a diverse spectrum of feed
characteristics and flotation conditions.

Table 1. Input and output parameters in the dataset

Parameter types Parameters
Ash content of feed
Pulp densit
Feed properties = !

Fraction of -74 pm in feed

Ash content of -74 pm in feed

Input parameters
putp Collector dosage

Frother dosage

Flotation conditions -
Aeration

Rotation speed

Concentrate yield

Concentrate properties
prop Concentrate ash content

Output t
utput parameters Tailing yield

Tailing properties
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Fig. 1. Relationship between yield and ash content of flotation concentrate (a) and tailing (b) in the full dataset
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2.2. Regression prediction

Model training and data analysis were performed using the SPSSPRO software suite. The dataset,
consisting of 641 instances of flotation data, was divided into training and test sets in an 8:2 ratio. This
study is based on a decision tree framework inspired by the boosting methodology, specifically using
the gradient boosting algorithm for our investigations. We selected four widely used gradient boosting
decision tree models recognized for their superior predictive performance: GBDT, CatBoost, LightGBM
and XGBoost. Compared to other machine learning models, such as Support Vector Machine (SVM),
Random Forests (RF), and Artificial Neural Networks(ANN), the four algorithms analyzed in this paper
offer several advantages, including high robustness, strong generalization capabilities, and rapid
training times. Additionally, these algorithms can effectively assess the importance of various features,
providing valuable insights for understanding and evaluating the models. Using these selected models,
we performed regression analysis to predict both coal yield and ash content.

2.3. Model optimization

Hyperparameters are parameters that need to be manually set before training a machine learning
model, such as learning rate and tree depth. The choice of hyperparameters can have a large impact on
the performance of the model, so hyperparameter optimization is needed to find the best combination
of hyperparameters to improve the performance and generalization of the model. The Bayesian
algorithm is used to optimize the model in this model building process. The hyperparameters for the
four models to be optimized are shown in Table 2.

Table 2. Hyperparameters optimized for different models

GBDT

Loss function

XGBoost

Base learner

CatBoost
Number of iterations

LightGBM

Base learner

Number of base Number of base

Node split criterion

Number of base
learners
Learning rate
Sampling ratio without
replacement
Maximum features
ratio considered for
splitting
Minimum samples for
split in internal nodes
Minimum samples for
leaf node
Minimum weight of
samples in leaf node

Learning rate

L2 regularization term

Maximum depth of tree
Overfitting detection
threshold

Number of iterations
after convergence

learners
Learning rate
L1 regularization term
L2 regularization term
Sample feature
sampling rate

Tree feature sampling
rate

Node split threshold

Minimum weight of
samples in a leaf node

learners
Learning rate
L1 regularization term
L2 regularization term
Sample feature
sampling rate

Tree feature sampling
rate

Node split threshold

Minimum weight of
samples in a leaf node

3. Results and discussion
3.1. Regression prediction for the all datasets

Four regression models, GBDT, CatBoost, LightBGM and XGBoost, were used to learn the training set
(512 records) and predict the test set (129 records) respectively. The training and test sets are the same
for all four models. The hyperparameters are optimised using a Bayesian approach to obtain the optimal
prediction model. The relationship between the real and predicted data for refined mineral yield and
ash content after optimisation of the different models is shown in Fig. 2 and Fig. 3. The coefficient of
determination (R2?) of the four regression models, GBDT, CatBoost, LightBGM and XGBoost, for the
prediction of concentrate yield were 0.764, 0.827, 0.800, 0.836 and the R? for the prediction of ash content
were 0.688, 0.829, 0.817 and 0.853 respectively. The results indicate that the XGBoost model has the



Physicochem. Probl. Miner. Process., 60(6), 2024, 196385

highest accuracy for both yield and ash prediction. However, the prediction accuracy of all four models
was insufficient for concentrate yield and ash. As can be seen from the offset law between the predicted
and actual values in Fig. 2, the prediction accuracy for concentrate yield below 40% is significantly lower
than that for concentrate yield above 40%.
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Fig. 2. Test set prediction results of (a) GBDT, (b) CatBoost, (c) LightBGM, and (d) XGBoost model for the
flotation concentrate yield
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Two representative sets of flotation data were selected from the dataset to determine the reasons for
the large difference in prediction accuracy for concentrate yields less than 40% and greater than 40%.
The results of the variation of flotation concentrate yield and ash with collector dosage (the ratio of
collector to frother dosage is 3:1) are shown in Fig. 4. Data 1 and Data 2 show the flotation results of two
coal pulps with different feed characteristics. The results of data 1 show that the concentrate yield and
ash content are about 15% and 10%, respectively, when the collector dosage is less than 400 g/t.
However, when the collector dosage is more than 600 g/t, the concentrate yield and ash content increase
slowly after a sharp increase, and the yield and ash content are more than 50% and 20%, respectively.
The results of data 2 show that the concentrate yield is 32% when the collector dosage is 100g/t, and
when the collector dosage is more than 200g/t, the concentrate yield increases significantly to more than
60% and then increases slowly. It can be seen that the concentrate yield at low trapping agent dosage is
significantly lower than the flotation yield at normal or excessive trapping agent dosage, thus showing
different laws. Therefore, the use of the full dataset for machine learning may be the main reason for
the low prediction accuracy in Fig. 2 and Fig. 3.
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Fig. 4. (a) yield and (b) ash content of the flotation concentrate using different data

3.2. Regression prediction for the categorical datasets

The full dataset used for machine learning was categorised. Data with less than 40% concentrate
recoveries were filtered into Dataset I (116 records), while data with recoveries greater than 40% were
grouped into Dataset II (525 records). Dataset I consists mainly of the results when the flotation
chemicals are used at low doses, while Dataset II consists mainly of the results when the flotation
chemicals are used at normal or excessive doses. These two datasets were randomised separately and
then 80% of the data was used as the training set and the remaining 20% as the test set. Four machine
learning methods, GBDT, CatBoost, LightBGM and XGBoost, were used to train modelling and
regression prediction respectively on the two datasets. The comparison of predicted and true values for
Dataset I and Dataset II is shown in Fig. 5 and Fig. 6.

The prediction accuracy of the four machine learning methods is evaluated by three metrics, Root
Mean Squard Error (RMSE), Mean Absolute Error (MAE) and R?, and the results are shown in Fig. 7.
The smaller the calculation results of MAE and RMSE, the smaller the error value between the predicted
value and the actual value, and the model predicted value has better reliability. The value of R? is
between 0 and 1, and the closer R? is to 1, the better the fitting effect works. The prediction models built
by the four machine learning methods for Dataset I have high MAE and RMSE and very low R? (below
0.4). This indicates that it is difficult for all four machine learning methods to build accurate predictive
models for Dataset I. When the flotation reagent dosage is low, the flotation concentrate yield and ash
content have a certain degree of randomness and poor regularity. This leads to the difficulty of
regression prediction of this part of the data using machine learning methods. The accuracy of the
prediction models built by the four models for Dataset II was significantly improved when the data
with flotation concentrate yield less than 40% in the original dataset were removed. Among the four
machine learning methods, the accuracy of the prediction model XGBoost>LightBGM>CatBoost>GBDT
was the best. Taking the prediction model established by XGBoost as an example, compared to the full
dataset, the RMSE, MAE and R2 metrics of the concentrate yield prediction model established for
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Dataset I were improved from 8.37, 5. 28 and 0.836 to 5.08, 3.56 and 0.877 respectively, and those of the
concentrate ash content prediction model were improved from 1.83, 0.96 and 0.853 to 0.85, 0.57 and
0.971 respectively. Compared to the whole Dataset and Dataset I, the reliability and fit of the prediction
model for Dataset II were significantly improved. From this result, it can be speculated that machine
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learning modelling using data results of appropriate flotation chemical dosing may be more suitable for
online prediction of concentrate yield and ash content in future flotation plants.

According to the collected flotation data (Bu et al., 2024), it can be seen that the corresponding
flotation reagent dosage is usually lower when the flotation yield is below 40%. The basic requirement
for a high flotation selectivity is the existence of a significant difference in hydrophobicity between coal
and gangue (Ramudzwagi et al., 2020). When the amount of collector is low, the difference in
hydrophobicity between coal and gangue is too small, making it difficult for coal particles to adhere to
the surface of bubbles and enter the concentrate product (Bu et al., 2020). In addition, when the amount
of frother is too low, it is difficult to form a stable foam layer in flotation, resulting in that hydrophobic
coal particles adhered to the bubble surface cannot be recycled into concentrate products through the
foam area (Pawliszak et al., 2024). The lower dosage of flotation reagents results in very poor selectivity
of flotation results, leading to high randomness and poor predictability of flotation results. Therefore,
appropriate screening of collected flotation data is an important step in ensuring the accuracy and
effectiveness of flotation prediction.
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Fig. 7. Comparison of the accuracy of the prediction models of the four machine learning methods

3.3. Feature importance analysis

The results of the importance analyses of the prediction models for the full dataset are shown in the
Supporting Information (Fig. R1 and Fig. R2). The results of the importance analysis of concentrate
yield show that the importance of frother dosing is always in the top two in the order of importance
obtained by all models. The presence of a frother reduces the surface tension, which is beneficial for
inhibiting bubble incorporation and maintaining the stability of the foam layer. Therefore, frother
dosage is a key factor influencing concentrate yield. The results of the importance analysis of the
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prediction model for Dataset I are shown in Fig. 8 and Fig. 9. When the part of the dataset with a yield
of <40% is removed, the importance of the frother for the concentrate yield decreases significantly. This
may be due to the fact that with a sufficient amount of frother, any further increase in the amount of
frother will not significantly improve the concentrate yield. Meanwhile, the results also show that the
increase in frother dosage is the main reason for the apparent increase in concentrate yield in Fig. 4(a),
which is also an important reason why frother dosage has a higher degree of importance in the
prediction model for the full dataset. The relationship between the importance level of the full dataset
and the other factors in Dataset II did not change significantly except for frother dosage.

The fraction and ash content of -74 um in the feed are the two factors that rank in the top three in the
importance results of most models. Flotation is a method of mineral separation based on the differential
adhesion of hydrophobic and hydrophilic minerals to flotation bubbles. The hydrophobic mineral
particles adhere to the bubbles and move from the slurry zone to the froth zone, eventually becoming
the concentrate. It is well known that fine particles (-74 um) have a low probability of collision with
flotation bubbles due to their fine size and low inertia. In addition, the high specific surface area of the
fine particles will consume a large amount of the limited flotation chemicals, leaving the coarse particles
unable to obtain sufficient flotation reagent to mineralise with the bubbles. With the increase of the -74
um fraction in the feed, the limited amount of reagent has been consumed in large quantities. This
results in a large loss of coarse particles with good floatability in the flotation concentrate and a
significant reduction in concentrate yield. In addition, as the ash content of -74 pm increases, a large
number of fine vein particles present in the slurry will cover the fine coal particles. As a result, the fine
coal particles are unable to interact with the flotation chemicals and bubbles and are eventually lost in
the tailings.

Compared to the amount of foaming agent, the amount of trapping agent was significantly less
important for concentrate yield and ash, both ranking fifth in all models. This is due to the fact that coal
particles tend to float naturally and do not require excessive amounts of foaming agent. Feed ash
content, -74 um content and ash content all reflect to some extent the degree of floatability of the feed.
Therefore, the characteristics of the feed have a greater influence on the flotation results than the dosage
of the collector. Also, slurry concentration, agitation rate and aeration were the three factors that had
the least effect on concentrate yield of all the predictive models, which may be due to the fact that these
three factors are less controllable in flotation experiments.

Ad of -74 ym Ad of -74 ym
Ad of feed Fraction of -74 ym
Frother Ad of feed
Fraction of -74 pm Frother
Collector Collector
Pulp density Rotation speed

Rotation speed Pulp density 1

Aeration Aeration (b) ]

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3
Importance Importance
Ad of feed Ad of -74 ym
Fraction of -74 pm Fraction of -74 pm
Ad of -74 pm Ad of feed
Frother Frother
Collector Collector
Pulp density Rotation speed
Rotation speed Pulp density
Aeration () 1 Aeration (d)
0 0.05 0.1 0.15 0.2 0.25 0 0.2 0.4 0.6 0.8
Importance Importance

Fig. 8. Feature importance results for the flotation concentrate yield using (a) GBDT, (b) CatBoost, (c) LightBGM,
and (d) XGBoost models
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Ad of feed Fraction of -74 ym
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Fig. 9. Feature importance results for the ash content of the flotation concentrate using (a) GBDT, (b) CatBoost, (c)
LightBGM, and (d) XGBoost models

4. Conclusions

This study effectively evaluated the predictive performance of GBDT, CatBoost, LightGBM, and

XGBoost for coal flotation results. The main findings are as follows:

1. The XGBoost model outperformed the others, achieving high prediction accuracy with R? values of
0.877 and 0.971 for concentrate yield and ash content, respectively.

2. The low prediction accuracy for concentrate yield below 40% was attributed to the abnormal
flotation results caused by low flotation reagent dosages. Filtering out this data subset significantly
improved the model accuracy.

3. The fraction and ash content of -74 pm particles in the feed were identified as the key factors affecting
flotation results, emphasizing the importance of feed properties over flotation reagent dosages.

4. The results indicate that machine learning models based on appropriately dosed flotation chemicals
could potentially provide accurate online predictions for coal flotation plants, facilitating intelligent
control and management.
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