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I. ISTOTA ZAGADNIENIA

Mechanike budowli mozna oprze¢ — poza prawem Hooke’a lub
innym zalozeniem zastepujacym to prawo — na jednej z dwoch podsta-
wowych zasad mechaniki ogélnej — na zasadzie prac wirtualnych lub na
regule réwnolegtoboku sit.

Pierwszej z tych zasad brak niewatpliwie sugestywnosci, cechuje ja
za to calkowita ogdélnos$¢, druga natomiast jest bardzo przekonywajaca
swoja prostota, przejrzystoscig i oczywistoscia, ogélnosé jej jest jednak
mniej wyrazna. Aby uzna¢ regule réwnolegioboku sit za mozliwy punkt
wyjscia wszystkich poczynan mechaniki budowli, nalezy zda¢ sobie sprawe
z tego, ze na réwnolegtoboku sit oparta jest teoria wieloboku sznurowego,
z ktoérej wywodzg sie z kolei wszystkie nieomal wchodzace tu w gre twier-
dzenia mechaniki ciat sztywnych, a wiec regula momentéw, réwnanie
krzywej sznurowej itd. '

Zasada prac wirtualnych prowadzi bezpos$rednio do metod analitycz-
nych, reguta réwnolegtoboku sit — do geometrycznych sposobdw obliczen.
W dalszym rozwoju metod mechaniki budowli podobny podzial staje sie
juz mniej wyrazny.

Celem niniejszej pracy jest wykaza¢, w jaki sposéb gléwne zadania
mechaniki budowli moga by¢ rozwigzywane za pomocg metod wywodza-
cych sie z reguly réwnolegioboku sit. ;

W uktadach pretowych w znacznie wiekszym stopniu niz w uktadach
peinych wystepuja réznice w stosowaniu metod opartych na zasadzie prac
wirtualnych i w stosowaniu geometrycznych sposobow badania konstruk-
cji. Stad w pracy niniejszej omawiane sa wiasnie konstrukcje pretowe.

Sposrod czynnikéw obliczeniowych dotyczacych konstrukeji wykona-
nych z materialéw sprezystych gléwne miejsce w mechanice budowli zaj-
muja obliczenia odksztalcen i wielkoSci statycznie niewyznaczalnych.
Totez o nich tu przede wszystkim bedzie mowa. W zwiazku z tym dalej
oméwione zostana, z jednej strony, przesuniecia wezldw kratownicy
i odksztalcenia belek i ram, z drugiej za$, wyznaczenie wielkosci nadlicz-
bowych w belkach i ramach. Wyznaczenie wielkosci nadliczbowych w kra-
townicach nie jest poruszane wobec tego, ze cdbywa sie ono czesto na pod-
stawie wzoru Maxwella i Mohra, do ktéorego w ten sam sposéb
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doprowadza traktowanie zagadnien mechaniki budowli z punktu widzenia
zasady prac wirtualnych, jak i z punktu widzenia reguty réwnolegtoboku
sit. Przedstawione jest tu natomiast zastosowanie wynikéw otrzymanych
przy badaniu odksztatcen kratownic do wyprowadzenia réwnan energii
sprezystej uzywanych w mechanice budowli.
Rozprawa niniejsza oparta jest w znacznym stopniu na nastepujacych
publikacjach autora:
(1) Geometryczne uzasadnienie wzoru mna przesuniecia weztow kra-
townic, Przeglad Techniczny, Warszawa 1930,
(2) Obliczenie ramownicy czteroprzestowej o koncach przesuwnych,
Przeglad Techniczny, Warszawa 1930,
(3) Rozwiagzanie ramy wielobocznej przy zastosowaniu réownan rozni-
cowych, Czasopismo Techniczne, Lwow 1932,
(4) O zastosowaniu teorit kraty do wyprowadzenia rownan energii
sprezystej, Lwow 1932,
(5) W sprawie wyznaczania ugie¢ wspornika sposobem momentéow
wtornych, Prace Warsz. Tow. Pol., 1933,
(6) Zagadnienie zmiennosci przekrojow w konstrukcjach zelbetowych,
Cement, Warszawa 1933.
Przed zastosowaniem tych publikacji do dalszych wywodéw zostaly
one zanalizowane z punktu widzenia dzisiejszych potrzeb budownictwa.

II. UKLADY PRETOW ROZCIAGANO-SCISKANYCH
1. Uzasadnienie wzoru Maxwella i Mohra dla kratownic

Przesuniecia weztéw kratownic przegubowych znajdujacych sie pod
dzialaniem pewnych sit zewnetrznych bywaja wyznaczane badz bezpo-
$rednio jednym ze sposobdéw wykreslnych (najczesciej sposobem Wil-
liota), badz tez ze wzoru Maxwellai Mohra

Umi== v"*' (1)
=

w ktérym v, oznacza przesuniecie wezla m w pewnym kierunku, S sily
w poszezegdlnych pretach kratownicy, Z sily, ktére dziatatyby w tych
pretach, gdyby w wezle m byla zaczepiona sila rowna 1 i majgca kieru-
nek przesuniecia v, wreszcie EA iloczyn wspolczynnika sprezystosci przez
pole przekroju preta i 1 dlugos¢ preta. Suma dotyczy wszystkich pretow
kratownicy.

Wzor (1) zostanie nizej uzasadniony na podstawie rozwazan o charak-
terze geometrycznym. Ogolny bieg postepowania bedzie nastepujacy.
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Zakladamy, ze jeden tylko z pretéw kratownicy (pret i j) ulegl zmianie
diugosci, i twierdzimy, ze wowczas przesuniecie wezla m wyraza sie
wzorem

Chin== Z,’/.l lij y (2)
gdzie przez Al; oznaczamy przyrost dlugosci preta ij nie robige przy tym
zadnych zatozen co do natury tego przyrostu.

Przyjmujemy taki uklad wspolrzednych, aby jedna z osi byla réwno-
legla do poszukiwanego przesuniecia v, 1 ustawiamy dwa nastepujace
uklady réwnan liniowych: uklad réwnan

itmdlas, A ai= 0

i (Alge, Al sy =), (3)
wyrazajacy zalezno$¢ miedzy przyrostami wspoéirzednych weztéw kratownicy,
obejmujacych poszczegdlne prety 12, 23 itd., oraz uklad

Fl (Zl‘l’ Z23 "') = 0,

Fy(Zyy, Zyy..) =0, (4)

wyrazajacy warunki roéwnowagi poszczegblnych weztow.

Rozwigzujge uklad rownan (3) wzgledem v, réwnego w przyjetym
ukladzie wspodlrzednych jednemu z przyrostow Ax lub Ay, oraz rozwig-
zujac uklad (4) wzgledem sity Z; dzialajacej w precie ij znajdujemy
z dyskusji obu rozwigzan, ze

UIII . .
AT :Z,'/, czyh ’U,,,:Z,j A l[j. (5)
Al

Poniewaz zmiana dlugosci kazdego z pretow kratownicy wywola po-

dobne przesuniecie wezta m, dochodzimy do wzoru
Sa— Sl (6)

Leed
1

lub przyjmujac, ze wydluzenia Al sa to wydluzenia sprezyste kratownicy
réwne Al=SI/EA, do wzoru (1).

Przystepujac do obliczen zauwazamy przede wszystkim, ze zaleznos¢
miedzy wspélrzednymi wezlow kratownicy a diugoscia preta wyraza sie
znanym wzorem geometrii
Ly = (i )i () — yj)2 (7)
lub tez wzorem

9 [ ¢ 2
fij=(i—x))* + (yi —y)* —1; = 0. (8)
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Pochodne czastkowe funkeyj f; wzgledem wspoélrzednych przybieraja
postaé

0f:; 0fi

O.fxz = 2(x:— x)), 0*3;;' =—2(x;—xj), I )
a ij / a ) o

6{/,-] =2(Yyi—vY)), *(;gjj =—2(y:—yj). I

Wyznaczajagc przyrost Al; z réwnania (7) i pomijajagc wyrazy 2 rzedu
dochodzimy do réwnania

Lij Al =(x: — xj) Ax; — (i — x;) A + (10)
+ (i —y) dyi—(yi —y) Ay;.
Po uwzglednieniu zaleznosci (9) otrzymujemy

3%4 7 %iu_c’-jﬂlxj *,gf@}f Ay + 3{}; A=t Al (11)

Liczba réwnan typu (11) réwna sie liczbie pretow kratownicy r, ktéra
wynosi dla kratownicy statycznie wyznaczalnej o k wezlach 2k — 3. Liczba
niewiadomych przyrostéw wspoélrzednych wynosi réwniez 2k — 3, gdyz
wprawdzie calkowita liczba przyrostéw réwna sie podwoéjnej liczbie wezlow,
jednak dwa przyrosty odpowiadajace przegubowo-nieprzesuwnej podporze
kratownicy i jeden odpowiadajacy jej podporze przegubowo-przesuwnej
réwne sg stale 0, niezaleznie od ukladu wspdtrzednych.

Aby moéc korzystaé przy dysku-
towaniu réwnan (11) z ogélnej teorii
réwnan liniowych, nadajemy im po-
sta¢ ogblna. W tym celu wprowadza-
my do kazdego z nich wszystkie nie-
wiadome przyrosty Axi, Ay:, Axj, Ay,
oznaczajac je niezaleznie od ich kie-
runku przez Az z odpowiednim nume-

% rem porzadkowym I, II, ..., %, ..., 7, przy

Rys. 1. czym z z wladciwym znaczkiem wy-

raza¢ bedzie wspdirzedne x;, yi, xj, Y,

odpowiednich weztéw, tzn. Zze np. przesuniecie Az, odpowiadaé bedzie
wspbélrzednej z, (rys. 1).

Wspdlczynnikami przy niewiadomych .1z, przeksztalconych w ten spo-
s6b rownan beda pochodne 0f;;/0z,, ktére, jak to wynika ze wzoréw (9),
bedg rézne od zera jedynie dla przyrostéw A1z wspolrzednych weziow i1i j
obejmujacych dany pret ij.
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Mozemy wiec nada¢ réwnaniom (11) postac¢

()fz/ zlzl | 0f// ;Iz“ afu AZz dflj AZr

0z 2l; " 0z 2l,~,‘+ T 9z 21, T g, 21,

Przypusémy w dalszym ciggu, ze do poszczeg6lnych weziéw ¢ kratownicy

zaczepione zostaly sity zewnetrzne P;. i P;, skierowane réwnolegle do
osi wspolrzednych i wywolujace w pretach ;; sity S; (rys. 1).

= Al;.  (12)

7 warunkow rownowagi wezla i otrzymamy w ten sposéb roéwnania

Piy + 2 S[j,\' = Oy 1

Py + XSiy=0, |

gdzie symbol S;; ze znaczkiem a, y lub ogoélnie z wyraza rzut sity dzia-

lajacej w danym precie na kierunek jednej z osi wspolrzednych, a sumy

dotycza sit we wszystkich pretach S;; zbiegajacych si¢ w danym wezle i.
Majac na widoku zaleznosci

(13)

X; — Xj

Si/’.\‘ == Si/ 71“1 ) Sij_v = Sij y‘IE& (14)

jako rezultaty rzutowania sit S na osi wspolrzednych oraz rozwazania przy-
toczone przy wyprowadzeniu rownania (12), nadajemy réwnaniom (13) postac¢

0fu Sw  Ofu Sw |, 0y Sy
0 2, 2113_*_ )7 2123+ i 0z, 21 25}
Ofr—tr Sr—tr _ pe
LT T

gdzie symbol P: oznacza sile zewnetrzng majaca kierunek przesuniecia
vm = Az, 1 zaczepiona do wezla, ktory tego przesuniecia doznal.

Liczba rownan typu (15) rowna sie tak samo, jak liczba réwnan typu
(12) liczbie r pretow kratownicy. -

Przystepujac do rozwigzania ukladu (12) r réwnan z r niewiadomymi
typu 42z,/21; oraz ukladu (15) r réwnan z r niewiadomymi typu S;;/21;
wprowadzamy nastepujace symbole dla wyznacznikéw tych réwnan:

| 9fis Ofw . 9fu  9fu

;
|
|
|
\

i ()Z[ ()Zu ()Zx OZr

\ )

Ofsy Ofss  Ofs . Ofn
0z, 0z 0z, 02z,

A T R ] (16)

Ofy  Ofy . Ofy  Ofy
dz;, 0z, 0 zx 0z,

Qf’?li %’1".‘.df'_l",”afr~1.r
0z 0z 02z, . 02z




|
0z 0-5,1 0z 02z |
ofu )'dfzg ﬂ!’ ﬁ"'l"j
dzy Oz 02y 0z ;
Do | =t e e e ) (17)
011; f)f:zx dff/; 2&71 r|
0z, 0z 0z, 0z, |
0f12 d_fg; ‘QL/ dfr—l 7
dzr er azr er ‘
AT T Ofis 4y Ofin  Ofi
!‘ 0z 0z 02,—1 021 0z,
02] ()Z” 02,1 28 02,1 0z l
i e B I (18)
0fy;  0fi Ofy 4 Ofy  0fy |
0= oz 02, Y 02,41 dz; ‘
|
...................... I
df’_l'af'_lr...gi_l"Al Q]ir—l r ”gfkr—l r[
dZ[ 02“ 027,..1 L d % +1 027
ofw dfzi dft Lip 0fis1, af’.'_"_’
0z 0z 0z ° 0z 0z
Ofis Ofss Ofictr 5 9fivr;  Ofr—ts
02” dz“ 0411 © 0z dz,
Dij— .................. . (19)
Ofio Ofss Ofictj p Ofiiny  Ofr—tr
0z, 0z, 0z, ° Oz 02,
Ofis 0fs 0 1) pr Ofisty  Ofr,
0z dzr 0z Oz 0z

Wobec przyjetych oznaczen otrzymujemy na podstawie teorii réownan
liniowych rozwigzania nastepujace:

Az, D:
2y Dy’ (20}
Sij Y



Rozpatrzmy obecnie otrzymane rozwiazania w zalozeniu:

(1) ze w omawianej kratownicy jedynie diugosé preta l; ulega zmia-
nie, ze wiec przyrosty A1l dla pozostalych pretow réwne sa zeru,

(2) ze do kratownicy zaczepiona zostala jedna tylko sila réwna 1 i za-
czepiona w kierunku przesuniecia 4z,

(3) ze zmiana dlugoéci preta l; powstala nie na skutek dziatania
sity 1, lecz niezaleznie od niej, w sposob zreszta zupelnie dowolny.

W zwiazku z powyzszymi zalozeniami w wyznaczniku (18) wszystkie
wyrazy kolumny zawierajacej przyrosty Al réwne sa zeru z wyjatkiem
wyrazu Al;. Podobnie w wyznaczniku (19) w kolumnie zawierajacej
sity P, jedynie P:=1 rozni sie od zera. Majgc to na widoku przesta-
wiamy w wyznaczniku (18) kolumne zawierajaca 41l na miejsce pierwsze,
a w wyznaczniku (19) przestawiamy w ten sam sposob kolumne zawiera-
jaca sity P.. Tego rodzaju przestawienie wywoluje, jak wiadomo, zmiane
znakOw w wyznacznikach. Otrzymujemy wiec

o Ofie Ofiw  Ofs 0fis  Ofn
()Zl 02“ 022_1 ()Zz 1 ()Zr
o0 9f Ofs  Ofis Ofyy  Ofu
()Z| dZ“ ()Zy__q 022.1 er
D; :(—1) E T T T C ‘ ’ (22)

0fy O0fy . 0fy O0fy - Ofy |

111// ()sz ()2” i azz_j C)Zy,+1 dzr

0fr—1.,0fr1r  Ofr1r0fr1, 0fr—tr

0— dZ| 02“ 7() 27.~1 dzz+1 : 70 Zl‘ |

0 (ﬁl_; df‘.::% dAfl:Ij Qf',_l_/ ()fr—-]_,r

dz dz, 0z dz 0dz
o Ofu Ofu  0fia0finy  Ofiis
dzp 0Dz dzp  0dzg 0 2y
D:/:(—l) . . . . . . . - . . . . . . . . . . . ‘ ) (23)
1 O0fis Ofsy  0fi1,;0fic1; Ofr—1r
0z, 02z 0z, 0z, 0 2
| o Ofie Ofw  Ofic1;0ficr;  Ofr—tr

0z dz, 0z dz, 0Oz
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Wyznaczniki (22) i (23) obliczamy wedlug ogdlnego wzoru

D= Z (— 1)k +1a, Ay, (24)

w ktérym ar oznacza kolejne wyrazy pierwszej kolumny wyznacznika,
Ay za$ odpowiednie podwyznaczniki, przy czym znak sumy dotyczy wszyst-
kich wyrazéw pierwszej kolumny wyznacznika. Mamy wiec

| 0fi Ofin | Ofin O9f . Ofn
dz 0z, 02,—1 0241 0z
0 fas f)fe% ”afza 0 fa Qfgx

02z 0z; 021 021 Oz

..........

Ofi—1; Ofiry  0fiz1j Ofi—rj  Ofi-1,

D = (=1) 4 0z Oz 02—1 02,1 gz, (25)
0fi i1 0fic1y  Ofiing Ofi vy  Ofisr
0z 0z 02,—1 0241 0z,
é e e e e e S . .
| Ofr—1r0fr—tr  Ofrtr Ofr—sr  Ofrrr |
| 0z 0z 02,1 02,41 0z |
Ofis Ofoy  O0fic1yj0finy  Ofrrr
0z 02z 0z 0z 0z
Ofiz Ofos  Ofio1j Ofivry  Ofr1r
Ozy Oz 0z 0z 02y
: difsh 0 Ofi—1; 0fi1; 0fr—t.r
(e (e L A = I L e =
D=l 5 02 s Oz Oz (e
Ofia Of | Ofiey Ofisty . fss
0Zz+1 dzz+1 dzz 1 dzx+‘ 02,‘“
Ofiy Ofes . Ofi—tj Oficry  Of—ts
8z 0z d2; 0z, 0z,
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Poréwnujac ze soba wyznaczniki (16) i (17) zauwazamy, Ze kolumny
pierwszego z nich odpowiadaja wierszom drugiego i na odwrét, wobec
czego

To samo dotyczy wyznacznikow (25) i (26), czyli ze

ey (28)

Ogélne rozwigzania (20) i (21) ukladow réwnan (12) i (15) przybieraja
wobec tego postaé (tu bedzie Si= Z;)

%
/‘] Zx DZ

= — 29
2l; D: &)
Zij D’
= — == 30
2 l,‘j : 4 l,‘j D;’ ( :
skad mamy
A} By == pp == Zl'j A lff ) (31)

co bylo do dowiedzenia. Przejscie od wzoru (31) do wzoru (1) bylo juz
omowione wyzej.

W wielu przypadkach szczegdélnych, majacych znaczenie praktyczne
dla budowy mostéw i budynkoéw, tatwo mozna uzasadni¢ wzér (31) row-
niez bez nadawania réwnaniom
przesunie¢ oraz réwnaniom row- 4
nowagi postaci ogoélnych (12)
i (15).

Poniewaz wiekszo$¢ kra- 1
townic mostowych sklada sie 7 Z
z dwoch paséw i kraty, wiec ‘ ' 0 9, f ‘*‘J
damy tu uzasadnienie wzoru (31) 10 - xip_ | =
w przypadku zmiany diugosci r — L —
jednego z pretow w pasie kra- Rys. 2

townicy tego rodzaju (rys. 2). .
Przypu$émy, ze skrotu Al doznal pret 34 goérnego pasa i ze chodzi
0 wyznaczenie pionowego przesuniecia wezta 8.
Zaczepiamy w wezle 8 pionowg sile 1 i wyznaczamy wywolang przez
nig sile Z,, sposobem momentéow (Rittera):
_ My

Zyy = o (32)
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gdzie M,, oznacza moment zginajacy w punkcie 10, a h odleglo$¢ punktu 10
od preta 34.

Przyjmujemy na razie, ze pret 1, 11 przylegajacy do podpory nieprze-
suwnej nie ulega obrotowi. W zwigzku z tym zalozeniem uwazamy za
nieruchomg réwniez czes¢ kratownicy 1, 2, 3, 10, 11, ktérej prety zadnych
zmian diugosci nie doznaty.

Na skutek skrocenia sie preta 34 o A1l cze$¢ kratownicy 4, 5, 6, 7, 8,
9, 10 dozna obrotu wzgledem punktu 10, przy czym wezel 7 uniesie sie
nad odpowiednig podporg. Kat tego obrotu wynosi

Alyy

O~tg0=—", (33)
wobec czego przesuniecie pionowe wezta 7 bedzie rowne
vy = Oy (34)
Jednoczesnie wezel 8 dozna przesuniecia pionowego
v, =01. (35)

Poniewaz wezel 7 w rzeczywistosci nie moze unie$¢ sie nad podporg

i pret 1, 11 ulega wobec tego obrotowi, nalezy wiec od przesuniecia vy

odja¢ przesuniecie wywolane przez obrét kratownicy wzgledem punktu 1
o kat )
v

[

D=1 (36)

Nowe przesuniecie wezla 8 wyniesie
Vg = (x,+ 1), (37)
a wiec catkowite jego przesuniecie bedzie réwne

Al

. Algy 34 L10
= — (x

87 h hL 10

” T b M,
=< ;,;4 ()‘ _ xl() i)r) - h] )‘1 134 0

Vg= Vg — ¥ L ) = (38)

Poréwnujac ze soba wzory (32) i (38) otrzymujemy wreszcie

Vg = Zy, - Ay, . (39)

3

Rozpatrzymy w dalszym ciagu przypadek majacy duze znaczenie
w budownictwie, mianowicie przypadek belki kratowej o pasach réwno-
leglych (rys. 3). Przypusémy, iz wydluzeniu ulegl tu krzyzulec 3 b i ze
chodzi o wyznaczenie pionowego przesuniecia wezla 5.
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Zaczepiwszy w wezle 5 pionowa sile réwng 1, skierowang ku gorze,
wyznaczamy odpowiednig sile w precie 3b ze wzoru

L9

23— (40) L L
S y b B AA R S
Za nieruchomy przyjmujemy |, | R d le F g
na razie pret 23 dolnego pasa, T N
co pocigga za soba obroét cze- /,/ \\ // \\ // \\ /f T N/
$ci lab2 kratownicy wzgledem | \[/ n- R / L AR
wezta 2 i czeSei 3cgT wzgle- J5— 2/ y——Vi sk 5 //75_7/
dem wezta 3 o katy réwne i o /
X10 B
g A ey -
h l,ysing Rys. 3

oraz wywoluje przesuniecia pionowe v, oraz v, wezlow 1 i 7 wzgledem
odpowiednich podpor.
Na podstawie rys. 3 znajdujemy, ze

v, =01 v, — 0y, (42)

Aby kratownica, ktéra myslowo oddzieliliSmy od podpdr, z powrotem
znalazla sie na podporach, nalezy jg jako calo$¢ przesunaé¢ w kierunku
pionowym o v, i obroci¢ wzgledem punktu 1 o kat

vit+v; Oy +r) Al (r+Ty)
L I TS L, Sithg:

)= —

(43)

Wezet 5 dozna wskutek obrotu czesci kratownicy 3cg7 wzgledem
-wezla 3 przesuniecia w kierunku ku dolowi rownego

v.=021. (44)

5

Przesuniecie pionowe calej kratownicy o v; wywoluje réwne v, prze-
suniecie wezta 5 ku dolowi. Wreszcie, obrot catej kratownicy o kat o
wzgledem podpory 1 powoduje przesuniecie wezta 5 ku gorze rowne

Vs = 0 Xy, (45)

Catkowite pionowe przesuniecie wezta 5 wynosi wobec tego

Vs =+ ¥, — 0, =04+ 01, — 0x;;= (46)
_ Alg - Alpayo(ry +15)
o Ll,sing
_ Al | Lo . | Aly, (xw Ty Tyl
L,y sin ¢ l(/ r')—ﬁ#LA (r‘_}_”)» Tl,sing\ L T L)
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Poniewaz

TyoTy 5 Tho(ri+loy) |
e L (47)

wiec rownanie (46) przybiera postac

xio
Tin Alzy, (48)

B =

9

skad poréwnujac wzor ten ze wzorem (40) dochodzimy do zaleznosci
Vy = Z3p Alzp . (49)

W podobny sposéb moze by¢ wyprowadzony wzoér (49) i dla innych
typéw kratownic o pasach réwnolegtych.

2. Ogoélne rownanie kraty

Geometryczne i kinematyczne witasnosci kraty ujmuje w sposéb naj-
bardziej ogélny i zwiezly nastepujace réwnanie:

D Po— D sda1=0; (50)

tu v oznacza rzuty przesunie¢ poszczegolnych weziéw kratownicy od I-go
do k-go na kierunki sit P zaczepionych do tych weztow, S sity w poszcze-
golnych pretach kratownicy od I-go do r-go, a Al zmiany dlugosci odpo-
wiednich pretow. :

Uzasadnienie réwnania (50) oparte jest na wzorze (6), ktory dla po-
szczegblnych wezlow daje wyrazenia nastepujace:

vy =Z Al +ZLAL, + -+ Z1 AL, + -+ ZL AL,
g =Z8 AL +Z0 AL, &+ ZHAL -+ Z0 AL,

{(51)
v, =Z{ Al + Z5 AL, 4+ ZEAL + -+ Z2 A1,

D=l A A o e G e I D T
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Wyrazenia te mnozymy kolejno przez sity Py, Py, ..., Pe, ..., P zaczepione
odpowiednio w wezlach I, II, ...,e, ...,k i dodajemy je do siebie kolumnami:

Prvp e PaUy oo B e sn By, =
:(Z;Pl—{—Z'lIP“+-~~+Zch+~--+Zka)A”1+

AT R, R S e A 52)

+(ZLPy + Z Pyt o ZEP o ZEP) AL+

+(ZIP, + ZNP -+ Z2P, + -+ ZEP) AL,

Sumy zawarte tu w nawiasach wyrazaja sily w pretach kratownicy
1,2, .., % ..,r (por. p. 2 tego rozdzialu), a wiec

Zi P2 B s LR e 2R, =5
ZLP+ 2 Pyt o+ ZP +o H ZEP, =, (53)

W ten sposéb wyrazenie (52) przybiera postac
k
D Pv=Pv; -+ Pyoy+ -+ Peve + -+ Prop = (54)
1
.
=8, Al + Sy Al + -+ S AL+ -+ S, AL = Y S 41,
1

czyli postaé poszukiwanego réwnania (50), ktére w mechanice ogélnej od-
powiada réwnaniu prac wirtualnych.

Podkresli¢ nalezy, ze w rownaniu tym ani wielkosci A1, ani wielkosci
v nie sg w ogolnym wypadku zalezne od sit P lub S; wielkosci A1 moga
wiec np. mie¢ charakter termiczny, sprezysty lub tez moga wyraza¢ roz-
nice dlugo$ci dwoch pretow, z ktorych jeden zastgpil drugi w ukladzie
kratowym. Natomiast sity P i S tworza tu uklady sit od siebie zalezne,
a réwniez przesuniecia v i Al sa od siebie wzajemnie uzaleznione.

W pierwsze] sumie rownania (50) zwroty sit P odpowiadaja zwrotom
przesunie¢ v, a w drugiej, podobnie jak we wzorze (6) poprzedniego pa-
ragrafu, sity rozciggajgce odpowiadaja wydluzeniom A, a sity Sciskajace
skréceniom.
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III. UKLADY PRETOW ZGINANYCH
1. Metoda momentéw wtornych

Wywodzaca sie z reguly réwnolegloboku sit teoria wieloboku sznuro-
wego doprowadza do réwnania rézniczkowego krzywej sznurowej

d® q
Fasr— "1 (59)
gdzie H oznacza odleglo$¢ biegunowa wieloboku sit odpowiadajacego krzy-
wej sznurowej.
Krzywa sznurows, szczegblny przypadek wieloboku sznurowego, trak-
tujemy w danym razie jako krzywa zamknietg, gdyz belka pod dzialaniem
% obcigzenia q i reakcji podpor znaj-
duje sie w réwnowadze. Jezeli za
prosta zamykajacg bedziemy uwe-
zali o$ belki, to otrzymamy uklad
przedstawiony na rys. 4, gdzie g
Rs 4 oznacza obcigzenie jednostkowe
: w dowolnym punkcie belki, # rzed-
ng krzywej sznurowej. Odcinek » w pewnym przekroju ca belki
pomnozony przez H wyraza moment sil zaczepionych do belki na prze-
strzeni Aa, czyli moment zginajacy M.; a wiec

Mq=nH. (56)

Gdybysmy wykresowi obciazen jednostkowych g nadali ksztalt wykresu
momentéw zginajacych M podzielonych przez 1 ecm®, a odleglo$ci biegu-
nowej H wartos¢ EJ podzielong réwniez przez 1 cm?® co odpowiadaloby
wymiarom wielkoSci g i M, woéwczas roéwnanie (55) otrzymaloby postaé

det - (57)

czyli byloby identyczne z rownaniem rozniczkowym osi odksztalconej belki
w zalozeniu, ze 7 wyraza ugiecia belki w poszczeg6lnych przekrojach, czyli
ze 1 =1y. Stad wynika, ze stosujgc wzér (56) do krzywej wyrazonej row-
naniem rozniczkowym (57), a wieec do obcigzenia g = M/1 cm® znajdujemy

’ EJ
M

[ yfcrﬁg (58)

lub
Me=1y EJ, (59)

gdzie M, = M, -1 cm® nazywamy momentem wtérnym.
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Ze wzoru (59) wyplywa bezposrednio wzor na ugiecia belki

M

Y=7%7" (60)
Rozniczkujac wzoér ten wzgledem x znajdujemy, ze
, 1 dW
Y=FT dz (1)

skad wynika, ze kat obrotu przekroju poprzecznego belki odpowiadajacego
ugieciu y, czyli kat ¢ = co tg ¢ =y’ réwna sie

EJ’ (&2

([. =

gdzie ¥ oznacza sile poprzeczng w pewnym przekroju poprzecznym belki
pomnozona przez 1 cm? i nosi nazwe sily poprzecznej wtornej. Dla ujedno-
stajnienia sposobu wyrazania sie nazywamy moment zginajagcy M obcigze-
niem wtornym i oznaczamy to obciazenie litera  (dla unikniecia niepo-
rozumien nizej stosujemy tu symbol q.

Metode momentéw wtérnych, nie uzywajac zreszta te] nazwy, zastoso-
wat do belek w dwoch punktach swobodnie podpartych pierwszy O. Mohr.
Wzory (60) i (62) zawodza jednak, gdy chodzi o wspornik, tzn. o belke
w jednym koncu utwierdzong, a w drugim swobodng (rys. 5). W tych
wypadkach wzory (60) i (62) powinny by¢ zastapione przez wzory

_ W (63)
Y=gy
zl
» =7 (64)

gdzie WU’ oznacza moment statyczny obcigzenia wtérnego zawartego miedzy
podpora A a danym przekrojem aa wzgledem $rodka tego przekroju,
a ¥ — wypadkowa tegoz obcigzenia.

Podajemy nizej uzasadnienie wzorow (63) A : 3
i (64) dla dowolnego obcigzenia wspornika. 7 p T
Przypusémy, ze dla belki przedstawione] el

na rys. 6a, w. dowolny sposob obcigzonej, Rvs. 5

zostatl sporzadzony wykres momentow zgina-

jacych i ze uwazajac ten wykres za wykres obcigzenia sporzadzilismy dla
odleglosci biegunowej EJ krzywa sznurowg A'mb (rys. 6b), ktorej rzed-
ne 1 liczone sa od prostej ab, stycznej do tej krzywej w punkcie b.
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Rzedne tej samej krzywej liczone od prostej A'B’, stycznej w punkcie A’,

oznaczamy przez y. .
O ile krzywa A'mb ma wyraza¢ ugiecia belki, musi by¢ ona umie-
szczona w ten sposob, aby

a) styczna A'B’ pokryla sie
4 L - z nieodksztalcona osig belki
AZ; 8 (rys. 6¢); rzedne y bylyby
i b) wowezas rzednymi osi od-
g ksztalconej.
f Poniewaz mozemy przyjac,
ﬁ’ m b ze cos L AKa =1, wiec
¢)
g | tgX AKa=—q,
. N " . i ' (65)
el IE
. n,g-x"ﬂ\ 14 9 4
& gdzie #, oznacza warto$¢ po-
Rys. 6 chodnej funkcji # w punk-
cie A.

W tych warunkach dla pewnego punktu n (rys. 6c) bedzie
p—yY=mnn,=—(g—x)n,. (66)
Mnozgc wszystkie wyrazy réwnania (66) przez EJ mamy
nEJ —yEJ =y,EJ +xn,EJ. (67)

Poniewaz 7 jest odcinkiem zawartym miedzy skrajnymi bokami wielo-
boku sznurowego zbudowanego dla danej belki i dla obcigzenia q¢ =M przy
odleglosci biegunowej EJ, bedzie wiec iloczyn nEJ réwnal sie¢ momentowi
zginajacemu od tego obcigzenia, a wiec momentowi wtérnemu IN:

nEJ = N, i BT =M, (68)

Stad wynika, ze

‘ dM, - : ; i
WEJ =—==1, i 0, BI="l, (69)

gdzie . oznacza sile poprzeczna i U reakcje podpory A od obcigzenia
wtornego q=M .
W ten sposdb réwnanie (67) przybiera postac

My =D+ Nz + yEJ. (70)
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7 drugiej strony, wyrazenie dla momentu zginajacego w dowolnym
przekroju nn’ belki AB od obciazenia q przybiera postaé¢

My = Ma + Ax + N, (71)
gdzie M oznacza moment statyczny obcigzenia wtornego zawartego miedzy

podporg A a danym przekrojem, wzgledem S$rodka tego przekroju.
Zestawiajac ze sobg wzory (70) i (71) znajdujemy, ze

N

= —= 72
co bylo do dowiedzenia.
Roézniczkujac wyrazenie (72) wzgledem x znajdujemy
S
= (73)

(p:EJ’

~1

gdzie I oznacza wypadkowg obcigzenia wtérnego ( znajdujacego sie
miedzy danym przekrojem a przekrojem utwierdzenia.

Sposob momentéw wtérnych mozna zastosowaé¢ i bezposrednio do wy-
kreslenia odksztalconej; powiazanie z regula rownolegloboku jest w tym
wypadku juz catkowicie bezposrednie.

Metoda momentow wtérnych moze by¢ wyzyskana nieraz do wycig-
gniecia pewnych wnioskow ogdélnych z obliczen statycznych. Wyzyskamy
tu te metode do oceny'wplywu zmiennosci przekroju poprzecznego belek
statycznie niewyznaczalnych na wielkosci nadliczbowe. Chodzi o belki
malo odbiegajace od ksztaltu pryzmatycznego.

Moéwiac o belkach o ksztalcie zblizonym do pryzmatycznego mamy na
widoku badz belki o przekroju stalym, przystosowanym do momentow
zginajacych przez odpowiednie uzbrojenie, badz belki majace w widoku
ksztalt prostokata z poszerzeniami na podporach, powstatymi przez na-
chylenie dolnej krawedzi belki do poziomu pod katem nie wiekszym od
arc tg-1/3.

Zbadamy teraz wplyw zmiennosci przekroju w takich belkach na wiel-
kosci statycznie niewyznaczalne. Sposréd roznych konstrukeji tego rodzaju
zatrzymamy sie na belce jednoprzestowej, jako na przypadku pozwalajg-
cym przy réznym stopniu sprezystosci utwierdzenia na wyciagniecie wnio-
skow najbardziej ogdlnych. '

Niech bedzie rozpieto$¢ belki AB =1 i niech obciazenie belki skiada
sie z 5 sit rownych P i zaczepionych w odleglosciach ¢ =1/6 jedna od
drugiej (rys. Ta).

Momenty bezwladnosci zwiekszajg sie w belkach utwierdzonych zwykle
od s$rodka ku koncom. Zmiana momentu bezwladnosci nastepuje tu w spo-

19



s6b dos¢ szybki, lecz mniej wiecej ciagly; poniewaz jednak uwzglednienie
tej ciggloSci natrafialoby przy obliczaniu odksztalcen na trudnosci bardzo
powazne, zakladamy, ze belka podzielona jest na odecinki o statej diugosci,
lecz o réznych momentach bezwladnosei. Tego rodzaju zalozenie nie moze
spowodowa¢ znaczniejszych bledéw, w kazdym razie bledow wiekszych
niz te, na ktére decydujemy sie w réznych dzialach statyki budowli za-
stepujac ciagla zmienno$é funkeji przez zmienno$é nieciagly, np. przy sto-
sowaniu réwnan réznicowych lub przy wyznaczaniu odksztalcen lukéow

sposobem Bresse’a.
Przypu$émy, ze na odcinku 23 iloczyn momentu bezwladnosci przez
wspolezynnik sprezystosci rowna sie EJ=1i,, a na odcinkach 12 i Al
odpowiednio i = i,/k, oraz

a) JP P P lp r : i, =1s/k, 1 Ze w czesci belki
A% } § s /s 3B wielkoSci i zmieniaja sie
Z p 3 4 .5 2

Z W sposéb symetryczny wzgle-

s | e - [ 2 [ q "L = dem S$rodka belki.
Celem obliczen statycz-
, 2_",,_?0\ 4° , nych jest tu wykazanie, w ja-
b) Ty ] ] kim stopniu powiekszenie

A £ o

A 5 \\ przekrojéw poprzecznych bel-
A 8 ki okolo podpoér wplywa na
c) . momenty podporowe Ma=Mz.
;::____1 [_”___‘_[I”, 22 IY’”:-—TI;” g: Przyjmujemy za statycz-
/ L nie wyznaczalny schemat za-
A , . : - B stepczy belke w dwoéch punk-
4 - tach swobodnie podparta
Rys. 7. (rys. 7b i Tc). Wykres mo-

mentéw zginajacych od ob-
cigzenia P ma ksztalt linii tamanej A1°2°3°4°5° B, przy czym momenty
zginajagce w poszczegélnych punktach belki réwnaja sie¢ odpowiednio :

Mi=119=—25Pq;
M= 220=—210/Pq, (74)
M= 330=—=5Pq’

Jest to wiec wykres obcigzen wtérnych (.
Kat obrotu przekroju A belki swobodnie podpartej AB wynosilby przy
stalym momencie bezwladnosci
J
Pa= 7 > (75)

3

gdzie ¥ oznacza reakcje podpory A belki od obcigzenia wtérnego. Wobec
tego, ze momenty bezwladnos$ci belki nie s3 stale, nalezy rzedne wykresu
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obcigzen wtérnych zmieni¢ odpowiednio do momentéw bezwladnosci w da-
nym odcinku, skad dojdziemy do rzednych:

11"=k,-11°=k, - 2,5 Pa, l

11’ =k,-11°=k,- 2,5 Pa, (76)

22" =k,+22°=k,-4 Pa.
W zwigzku z tym otrzymamy dla reakcji A” od obcigzenia wtérnego
wyrazonego polem A 171°2"2°3°3 wzor
AP = (1,25k, + 3,25 k, + 4,25) Pa>. (77)
Stad

Ph=—" (78)

Zaczepiamy w dalszym ciggu do belki swobodnie podpartej momenty Ma
do jej koncow. Odpowiedni wykres momentow zginajacych przedstawiony
jest na rys. 7c za pomoca prostokata A A°B"B, ktérego rzedne powinny
byé zmienione ze wzgledu na zmienno$¢ momentéw bezwladnosci przekro-
jow, podobnie jak rzedne wykresu na rys. 7b. Zmienione rzedne wykresu
réwne sg odpowiednio :

AA" =k, - AA°=Kk, Ma, |
T =l 0 LI ==l Wla, |
IS —TTcoS- I IR=—F eIy,
DI == [lye PI= ]l Nila

(79)

a kat obrotu koncowych przekrojow spowodowany przez moment M wynosi

M

gdzie AM oznacza pole A A”1”I'II'II III 3, tzn. ze
\‘)[M = (k1 M,q —I- k2 MA + MA) a. (81)
W drodze przyréwnania odksztalcen otrzymujemy roéwnanie

oh =7, (82)

z ktérego wyznaczamy moment podporowy M.a:

1’25 kl + 3725 kf} + 4)2§ Pajz MA kl + k2 + 1 a, (83)
13 1y
1,25k, + 3,25k, + 4,25
_ - - 8
M e Pa. (84)
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Wstawiajac w wyrazenie (84) wartosci k, i k, odpowiadajace réznym
momentom bezwladno$ci przekroju na réznych odcinkach belki ustalamy
wplyw zmiennoSci przekroju na wielkos¢ momentu podporowego M.
Uwzgledniamy tu wahania stosunku momentéw bezwladnosci w $rodku
i na koncu belki w granicach od 1:1 do 1:3, co uzasadnia sie praktyka
budowlang. Stad otrzymujemy tablice 1.

Tablica 1

| { w |
wo| k| | R } ki + Ky + 1 ) 125k, + 325k, + 425 | M,

| | ' | \
1 | 1 ‘ 1 1 1 | 3 8,75 | 2,92 Pa
2 | 1 | 1 050 | 1 | 25 | 8,12 | 3,25 Pa
2B ' 1 050 | 050 2 6,50 | 3,25 Pa
SN R T 0,33 il ‘ 2,33 7,92 3,40 Pa
S RO 0,33 | 050 | 1,83 6,30 | 3,45 Pa
3 | 3 | 1 | 033 | 033 | 1,66 1 5,75 | 3.47 Pa

Z tablicy 1 wida¢, ze wahania w momencie M4 dochodzg do blisko 20/,
przy czym zmienno$¢ przekrojow wplywa na powiekszenie momentu pod-
porowego.

Jezeli poréwna¢ ze soba momenty zginajagce w $rodku belki przy mo-
mencie M, odpowiadajgcym staiemu momentowi bezwladnosci na calej
dtugosci belki i przy najwiekszym z momentéw M, tablicy 1, to znajdziemy,
ze w pierwszym przypadku

Ms=(25:3—292—1-1—1-2)Pa=1,58 Pa, (85)
a) ia w drugim za$
a4 48 M —(2,5-3—3,47—3)Pa=
& 1 2 & 4 5 Z
.a joa j aj.a | a_ | a| =1,03 Pa, (86)
- [ co daje roéznice wynoszaca z go-
b) 20‘\30 ra 50.

/170/f T\ﬁf 5 Aby zorientowaé sie, jakim
o | I, g Wwahaniom podlega w belce
2 0 b 2 '30 :a 50 2 o zmiennym przekroju mo-
A _1% i ~4{7\ﬁ\4~,{: — ”5§'~¥ gl"’ ment Ms w razie niesymetrycz-
A | ‘ ‘ 1 \5‘} B , Dnego obciazenia, wezmy pod
4 1 ? 3 4 5 4  uwage belke obcigzong jedna si-

Rys. 8 I3 P zaczepiong w odleglosei

2a=1/3 od lewej podpory

(rys. 8a). Wykres momentéw zginajacych wywolanych sil3 P ma ksztalt
trojkata A2°B (rys. 8b). Aby uwzgledni¢é w obliczeniu momentéw pod-

22



porowych zmiennos¢ przekroju belki, zastepujemy wymieniony wyKkres
przez wielobok A171'2°2°3°4°4"5"5” B, ktérego rzedne réwnaja sie
(rys. 8b):

1 2 ’ 2
18] =§Pakl, 44 :Ep(lk.),
7= = Pak,, 5 = 2 Pak,, (87)
3 3
, / 1
2 = 1R, 55 :gpak, .

Wielkosci A7 i WP reakeji obciazenia wtérnego wyrazonego przez wie-
lobok A1717272°3°4°4" 5’5" B znajdujemy z réwnan

AP+ VP = pole A171°2°2°3°4°4’5"5" B, (88)

WP —=P.6a=2Dp-T, (89)

gdzie P oznacza pola trapezéw A171,11'2°2,22°3"3 itd., skladajacych

sie na pole A1712°2°3°4°4’5"5"”" B, a r odlegtosci srodkéw ciezkoSci tych
trapezow od podpory B. Z rownan tych znajdujemy

AP = (0,317 k, + 0,870 k, + 1,045) Pa?®, (90)
NP =(0,192 k, + 0,630 k, + 0,955) Pa?. (91)

Wykres momentéw zginajagcych wywolanych w belce przez momenty
podporowe Ma i Mp ma ksztalt trapezu A A’ B’ B (rys. 8c). Wobec réznicy
w momentach bezwladno$ci przekrojéw na poszczegbélnych odcinkach belki
trapez ten zastepujemy przez wielobok AA”171°2°2°3°4°4'5'5" B w ten
sposéb, ze poszczegdlne rzedne wynosza:

AA”:Mrlklr
1 1
11/,='€(5MA+MB)R31: aa =4 (2Ma+ 4 Mp)k,,
N e
11 =€(5M,\+M3)kz, 95 ZF(MA_FSMB)’C"
(92)
; 1
221 2—613—(4M,‘+2M3)k3, 85" = (Ma +5Mp) k.,
1 7’
331)_:__6_(3MA+MB), BB :MB-k1.
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Korzystajage w dalszym ciggu ze wzoréw analogicznych do wzoréw (88)
i (89) znajdujemy dla reakcji podpor belki AB od obcigzenia wtérnego
AA”171"2"2°3%°4° 4’ 5’ 5” B wyrazenia nastepujace:

YM — é,% [MA(30,673 k, + 22,671 k, -+ 18,760) + (93)

+ M35 (5,334 k, + 13,836 k, -+ 17,337)],
a2
36

RM —

[Ma (5,327 k, + 13,329 k, + 17,330) + (94)
+ Mp(30,666 k, + 22,164 k, + 18,663)].

Roéwnania analogiczne do réwnania (82)

e R L (95)
przybieraja w danym razie postaé
=gt P = R (96)
czyli postac

mMyg+nMp=s, ]

m,; Ma + n, MB:sl,lv (37)
gdzie
m = 30,673 k, 4 22,671 k, + 18,670 ,
n= 5,334k, + 13,836 k, + 17,337 ,
s=(11,412k, + 31,320 k, + 37,620) Pa, (98)
m, = 5,327k, + 13,329 k, - 17,330,
n, = 30,666 k, + 22,164k, + 18,663 ,
s; = (6,912 k, + 22,680 k, + 34,380) Pa
i skad
My— =210 (99)

Dla momentéw bezwladnosci przekrojow wahajacyéh sie w granicach
omowionych wyzej wspoélczynniki (98) przybierajg wartosci zawarte
w tablicach 2 i 3.
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Tablice 2 i 3 dowodza, ze w razie niesymetrycznego obcigzenia belki
wplyw zmienno$ci przekroju na wartoS¢ momentu podporowego moze
dosiegna¢ w przyjetych granicach zmiennosci 44%bo.

W przypadku belki utwierdzonej na koncach w sposéb sprezysty,
wzglednie belki poziomej w ramownicy, wplyw zmiennosci przekroju na
wielkoé¢ momentéw podporowych ulega pewnemu zmniejszeniu. Wynika
to miedzy innymi bezposrednio z réwnania (83), ktéore musi by¢ w tym
wypadku uzupelnione przez wstawienie do prawej jego czeéci dodajnika
@ =M/» wyrazajacego kat obrotu sprezyscie utwierdzonego konca belki.

Tablica 2
Przypadek | i, | i, | i k, k, : m n s/Pa
i | | |
SRR | | SR T | B
1 1 1 1 1 | 1 72,014 36,507 80,352
11 2 1 1 0,500 0.333 56,777 33,840 74,646
I1T 2 2 1 0,500 0,500 45,341 26,922 58,986
v 3 1 1 0,333 ]! 51,555 32,949 72,940
W 3 | 2 1 0,333 0,500 40,219 26.031 56,080
VI al I 3 1 0.333 0,333 36,433 23,121 51,850
|
Tablica 3
\ ! 1 ‘ |
Przypadek i ‘ 15 ‘ i3 i k, k. m; n, ‘ s;/Pa ‘ M4
— | — i
i it 1 10N 1 35,986 71,493 63,972 | 0,148 Pl
11 2 1 1 1 0,500 0,333 51,979 [108.9%0 $0,108 0,191 PL
11T 2 2 il 0,500 0,500 45,315 97,908 78,768 0,189 PL
IV 3 1 1 ‘ 0,333 1 51,089 [ 103,869 88,954 0,211 P1
v 3 2 1 l 0,333 0,500 44,425 92,787 77,614 0,206 Pl
VI l 3 3 i ‘ 0,333 0,333 42,198 89,086 73,826 0,213 P1

Z przytoczonych obliczen wynika, ze wplyw zmiennosci przekrojow
belek na wielkoéci nadliczbowe moze by¢ bardzo znaczny i ze catkowite
pomijanie go w obliczeniach nie jest wlasciwe. Wida¢ stad réwniez, jak
powazng role przy badaniu pracy konstrukecji odegra¢ moze spos6b mo-
mentow wtérnych.

2. Geometryczne dodawanie odksztalcen

Réwnaniu (82), z ktorego korzystaliSmy w p. poprzednim do wyzna-
czenia wielkos$ci statycznie niewyznaczalnych, mozemy nada¢ postac

ph—ei =0 (100)



lub postac
g—f=0, (101)
gdzie (| oznacza odksztaicenie w pewnym punkcie uktadu danego (w przy-
nadku przedstawionym w p. poprzednim réwne 0), a f odksztatcenie sche-
matu zastepczego (w przypadku omoéwionym wyzej wynoszace ¢f—g¢).
Rownania typu (101) sa w tych warunkach wyrazem dodawania od-
ksztatcen lub przyréwnania odksztalcen. Roéwnania te moga byc¢ usta-
wione w przypadkach belek prostych za pomocg sposobu momentow
y o wtornych, w przypadku jednak ogél-
| 3 __——==" nym, gdy w plaszczyznie dzialania sit
ukltad stanowi linie lamang, doda-
4 wanie odksztalcen w réwnaniach ty-
pu (101) musi mie¢ charakter doda-
wania geometrycznego. Chodzi wiec
przede wszystkim o geometryczne
dodawanie odksztatcen uktadow ra-
mowych ptaskich.
Poszczegblne prety kazdej ramy
znajdujace] sie pod dzialaniem sit
Rys. 9 zewnetrznych doznaja odksztatcen
w postaci ugie¢ i obrotéw przekrojow
poprzecznych. Odksztalcenie ramy jako caloSci mozemy wyznaczy¢ droga
geometrycznego dodawania do siebie odksztalcen jej poszczegdlnych pre-
tow. Z kinematycznego punktu widzenia zadanie sprowadza sie do nada-
nia takich obrotéw i przesunie¢ poszczeg6élnym pretom ramy w jej postaci
niedoksztalconej (rys. 9b), aby
ta posta¢ mogla sie pokryé z
odksztalcong postacia ramy
rys. 9a).

2o
X

Wezmy pod uwage fragment
ramy przedstawionej na rys. 10.
Niech j—1, j, ..., i, ..., n oznacza-
ja kolejne wezty ramy, a pewna
cyfra j niech odpowiada row-
niez pretowi zawartemu miedzy
weztami j—1 a j. Bys.0

Robimy w wezle j przekréj poprzeczny prostopadty do preta j—1, 3
i zastepujemy oddzialywanie cze$ci jm na cze$¢ A j ramy przez site T;
i moment M; Wplyw sily N; na odksztalcenia pomijamy, gdyz oblicze-
nie odksztalcen stanowi w teorii ram przewaznie tylko etap posredni do
wyznaczenia wielko$ei statycznie niewyznaczalnych, a wéwcezas sity po-
dtuzne nie sa zwykle brane pod uwage.
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Kazdy pret j — 1, j mozemy tu uwaza¢ za pret utwierdzony w przekro-
ju j— 1, swobodny w przekroju j i obciazony sita T, i momentem M;
(rys. 11). Oznaczamy przez y; przesuniecie punktu j takiego preta prosto-
padte do nieodksztatconej jego osi, a przez ?; obroét przekroju poprzecznego
w j i uwazamy za dodatnie wielko$ci y; i ¢; spowodowane przez dodatni
moment M;. Wéwczas bedzie

p T
Ik M. 12 , J "h
o i n : AW
Yi SEJ T 2EJ | % i b1
S | (102) |
T 12 1
R L/ Wi’ o/ AN .
W= oy L ES s

gdzie y? i q‘/’ oznaczaja odpowiednio ugiecie i kat obrotu w punkcie j
wywolane przez sily P zaczepione do preta j-—1 miedzy jego koncami.

Aby pret j — 1, j ramy, a wlasSciwie je-
go cieciwa (rys. 12, polozenie a), mogt za-

J
a) //\_ ja¢ pewne polozenie b, nalezy mu nada¢
J_,\/( ' \‘Aj’ obrét o pewien kat o i pewne przesunie-
\ \.‘ e cie c. Wobec tego geometryczne dodawa-
\' peme fe : nie odksztalcen ramy przeprowadzamy

J-1 b) J w etapach nastepujacych:
Rys. 12 (1) ustalamy obroty w poszczegoélnych
pretow,

(2) znajdujemy przesuniecia poszczego6lnych wezldw ramy, wywolane
obrotami pretow o katy o,

(3) znajdujemy przesuniecia weztow, spowodowane ugieciami poszcze-
gé6lnych pretéow, ,

(4) dodajemy przesunigcia wymienione pod (2) i (3).

Zaktadamy na razie, ze odksztalcenie ramy przedstawionej na rys. 10
odbywa sie w ten sposob, ze kazdy z pretow js— 1, j pozostaje prosty
i tylko koncowy przekroj j ulega obrotowi.

Przypus$émy, ze linia lamana A 1234 (rys. 13) przedstawia (w ska-
zeniu) cze$¢ ramy pokazanej na rys. 10, przylegajaca do podpory A.

Plaszczyzna przekroju poprzecznego preta Al w punkcie 1 przed od-
ksztalceniem zajmuje polozenie oznaczone przez 0. Pod dziataniem sity T,
i momentu M, oraz odpowiednich sit P przekr6j poprzeczny w punkcie 1
doznaje obrotu o kat ¢, w zwigzku z czym i cata czeS¢ ramy polozona
na rysunku na prawo od przekroju 1 obraca sie rowniez o kat ¢, (kat 011)
i zajmuje polozenie 1 2; 3, 4,.

Nowe potozenia przekrojow poprzecznych w punktach 1, 2 i 3 ozna-
czone sa na rysunku znaczkiem I.



Z kolei sita T, i moment M, oraz odpowiednie sity P wywolujg obrot
koncowego przekroju poprzecznego 2 preta 12 o kat ¢, (juz w polozeniu
1 2,), co pocigga za soba odpowiedni obrdt czesci ramy potozonej na prawo
od punktu 2, wzgledem tego punktu
1 zajecie przez nig potozenia 2, 3, 4,.

Odpowiednie potozenie przekroju
poprzecznego w punkcie 2 ozna-
czone jest przez I, a przez 0 oznacza-
my tu polozenie plaszczyzny prze-
chodzacej przez punkt 2, i prosto-
padiej do pierwotnego polozenia pre-
ta 12.

A wiec kat miedzy ptaszczyzna-
mi 0 i IT rowna sie

Wy =@y + @a. (103)

Rys. 13

W podobny spos6b sita T; i moment M, oraz odpowiednie sity P wywo-
tuja obrot koncowego przekroju poprzecznego 3 preta 23 o kat ¢, (juz
w polozeniu 2, 3,), czemu bedzie odpowiadato polozenie 3,4, czesSci ramy
polozonej na prawo od punktu 3. Prosta oznaczona przez 0 wyobraza
potozenie koncowego przekroju preta 23 przed odksztalceniem ramy,
prosta I polozenie tegoz przekroju po odksztalceniu preta 01, prosta II
po odksztalceniu preta 12, a prosta III po odksztalceniu preta 2 3.

W tych warunkach mamy

w3 =@ + @2 + 3. (104)
Rozumujac w podobny sposéb w dalszym ciagu znajdujemy dla kgtow

nachylenia w; przekrojéw poprzecznych poszczegélnych pretéw wzgledem
ich polozenia pierwotnego wyrazenie nastepujace:

(I) D— Z Qj- (105)

A
Gdyby przekr6j poprzeczny w punkcie A obrécit sie o kat o, wowczas

wyrazenie (105) przybraloby postaé¢

i = S @i + oY, (106)
A

gdyz wowcezas wszystkie przekroje poprzeczne ramy uleglyby obrotow

o kat 9.
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Obrét przekroju poprzecznego w punkcie 1 o kat w; = ¢, wywoluje obrot
o ten sam kat preta 12 (Scislej jego cieciwy). Wskutek tego obrotu punkt 2
doznaje przesuniecia 22;=w,l, (rys. 14), ktére uwazamy za prostopadie
do osi preta 12 wobec tego, ze kat 212 jest bardzo maty.

Z powodu przesuniecia 2 2, cze$¢ ramy polozona na prawo od wezla 2
zajmuje polozenie 2,3;4, w ten
sposéb, ze jest 2,2 3,3|4,4 oraz
2,3:123 i 3;4,|34.

Wskutek obrotu preta 23 o
kat o, wezel 3 doznaje przesu-
niecia 3, 3, = w,l, prostopadiego do
nowego polozenia tego preta 2, 3,.
Odpowiednio do tego czes¢ ramy
polozona na rysunku na prawo od
wezla 3. zajmie polozenie 3,4,,
gdzie 4,4,(3,3,, a 3,4,/3,4,.

Odcinek 4,4, prostopadty do 3,4, =
oznacza przesuniecie punktu 4 spo- A X
wodowane obrotem preta 34
1 rowne wyl,.

W ten sposéb na skutek przesunie¢ typu o,-1l; punkt 4 ramy zajmie
potozenie 4., czyli ze punkt ten dozna przesuniecia v, w kierunku osi Y-6w
i przesuniecia u, w kierunku rownoleglym do osi X-6w, lecz o zwrocie
ujemnym.

Z wieloboku 44, 4,4,4 mamy

Rys. 14

Uy =— (01 l) — (w3 1) — (w5 1y) 5

v, = (0, 12 (0 ly)" + (w3 14)’:

(107)

gdzie kreski poziome oznaczajg rzuty przesunie¢ na o§ X-6w, a kreski
pionowe na o$ Y-ow. Uogoélniajac wzory (107) znajdujemy

U, — — E ((T)j:1 l/),]
A

(108)

vo= Y (wjal). l
a

Zauwazy¢ nalezy, ze zarOwno na rys. 13, jak i na rys. 14 przedstawione
sg polozenia wezlow ramy wywolane obrotami poszczegbélnych pretow,
a wiec w rzeczywisto$ci oba rysunki powinny by by¢ identyczne. Roznica
w polozeniu poszézeg(’)lnych wezlow na obydwoch rysunkach pochodzi
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stad, ze przesuniecia w,—1l; mozna uwaza¢ za prostopadle do osi pretéw
j—1,]j tylko wowczas, gdy sa one bardzo male, natomiast na rys. 14 przesu-
niecia te sg z koniecznosci skazone.

%% : e 4‘4“134' Ugiecia y: poszczegélnych pre-
(e = 3

tow pod dziataniem sit T; i mo-
mentéw M, oraz odpowiednich sit
P dodajemy do siebie w podobny
spos6b jak przesuniecia w;—1l;. Do-
dawanie to przedstawione jest na
rys. 15, na ktérym

11, =y, 212, =1,

35 3; = Ys, 4;,4,= y,.

Rys. 15 Z wieloboku 44,4,4,4,4" znaj-

dujemy, podobnie jak na rys. 14,

ze przesuniecia u, i v, punktu 4 (rys.15) w kierunkach réwnolegtych do
osi wspodlrzednych odpowiednio wynoszg

Uy | y, ' Yy ' y3 : y47 l (109)

=y + v+ v+, |

gdzie kreski poziome i pionowe maja takie samo znaczenie jak we wzo-
rach (107). Uogblnienie wzoréw (109) daje

Uy = — \j 17‘: ]
7 A‘J /
. (110)

A

W wyniku dodawania do siebie dla danego wezla i przesunie¢ wy-
wolanych zaréwno obrotami (przesuniecia u, i v,), jak i ugieciami (prze-
suniecia uy i vy) pretow j—1, 7 w punktach j dochodzimy do wzoréow
nastepujacych:

13 t

(1) w=— M (-1l — V ;l//»l

A A

f | (111)
(I11) vi= Y (01b)+ Yy I

O ile pret jest calkowicie utwierdzony w punkcie A, woéwczas nalezy
we wzorach (111) korzysta¢ dla katéw o z wyrazenia (105) przyjmujac,
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ze i=7j—1; o ile za§ mozliwy jest obrét przekroju A, woéwczas nalezy
korzysta¢ z wyrazenia (106).

W przypadku pretow zakrzywionych rozumowania podobne do poprzed-
nich doprowadzaja do tzw. wzoré6w Bresse’a, stuzacych do obliczen sta-
tycznych tukow.

Poniewaz belke prosta mozemy uwazaC za przypadek szczegélny preta
o ksztalcie linii lamanej, wiec wzory (111) moga byé i w tym wypadku
zastosowane. .

Dla belki przedstawionej na rys. 16 drugi ze wzoréw (111) przybiera
postac

Ve=@plgc T+ Yp T Yc> (112)
skad wobec
T.=P,, M,=0, T,=P, + P,, Mlg.z—PngC (113)
mamy
, . (Pt P:)li/f 0 (_P‘Jllxc)lin
Ys ="  3EJ ‘ 2EJ ’
Pl
o 12UAC (114)
Ye 3EJ’
. (i P:)l'f)m i (Sley l/;c) lA/:
Y8 = 2EJ ' EJ ’

gdzie EJ jest w obydwoch czeSciach belki state.
Przesuniecie v, =y prostopadle do osi belki wynosi wiec ostatecznie

D Pl — Piliglse R P A S
& 3EJ 2HJ
" 8 c
Py (Lyz+1pe)? 115
SEJ ’ ( ) Rys. 16

Wzory I, IT i III na geometryczne dodawanie odksztalcen znajduja
przede wszystkim zastosowanie dla trzech nastepujacych rodzajow ram:

(1) dla jednoprzestowych ram prostokatnych,

(2) dla jednoprzestowych ram wielobocznych,

(3) dla ram wieloprzestowych.

Omowimy te trzy przypadki na przykladach.

Bierzemy pod uwage rame prostokatna bezprzegubowa obcigzong pio-
nowg sita skupiona P (rys. 17). Rama ta jest trzykrotnie statycznie nie-
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wyznaczalna, gdyz dwom plaskim podporom A i D odpowiada tu liczba
skladowych reakeji sze$¢ przy trzech réwnaniach réwnowagi.

Za schemat zastepczy statycznie wyzna-
czalny przyjmujemy w tym wypadku pret

— a ajﬁ bﬁ_“*__{ o ksztalcie linii }amanej ABCD, utwierdzony
8 / o catkowicie w punkcie A i obcigzony poza silg P
j 6 [ niewiadomymi sitami H, R, i M, réwnymi
P e skladowym reakeji odrzuconej plaskiej pod-
g‘ pory D (na rys. 17 strzalki przerywane).
o Wielko$ci nadliczbowe zadania wyznacza-
J ” my z rownan oznaczonych wyzej liczbami,
i N mianowicie:
Al D\
Y 78 V., 72k (1) wp,=0, '
T
éRo (1) U — O (116)
Rys. 17 (III) Vp =% I

Roéwnania te wyrazaja rownos¢ skiadowych przesuniecia punktu D
w schemacie danym i w schemacie zastgpczym.

Za wielko$ci nadliczbowe zadania przyjmujemy skladowe reakcji pod-
pory A mianowicie M,, R, i H,, ktére zwigzane sa z sitami M,, R, i H,,
za pomoca réwnan réwnowagi.

Katy nachylenia ¢ poszczegélnych pretow ciggu ABCD wynosza

dla preta AB p=90°",
BC p=0,
CD Q= 90° ;

wobec czego wzory I, IT i IIT przybierajg postac

@ Op=¢p+ @c T Pp,
(1) Up=weh =y (117)
(111) vp=wgl+ Y.,
przy czym
wc=g¢g T 1 w0z=gg,
gdzie katy ¢, i ¢, obliczamy z drugiego ze wzoréw (102).
Wielkosci y% 1 ¢ wynosza tu
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Po wstawieniu uogoélnionych przesunie¢ (117) w réwnania (116) znaj-
dujemy stad wielkosci nadliczbowe zadania.

Ogoélny schemat rozwigzania ramy wielobocznej (rys. 18) przy pomi-
nieciu wplywu sit podtuznych na wielkosci statycznie niewyznaczalne jest
nastepujacy.

Odrzucamy utwierdzenie jed-
nego z koncéw ramy np. B
i zaczepiamy tu dwie niewia-
dome sity Hp (pozioma), Rz (pio-
nowg) oraz moment Mp, ktore
uwazamy za wielkoSci statycznie
nadliczbowe.

Na podstawie wymienionych
sil oraz sit bezposrednio do ra-
my zaczepionych  obliczamy
przesuniecia Y. punktow x
wzgledem punktéw x-—1 w kierunku prostopadlym dol AN oraz
obroty ¢. przekrojow normalnych x ramy wzgledem przekrojéow normal-
nych®a=—"1%

Rys. 18

Jezeli wprowadzimy oznaczenia

v

x—1
W =— Z Px Wx—1 — Z Px (119)
( 0

to otrzymamy w ten sposéb zalezno$c

Wx — Wx—1 = Px. (120)

Wyobrazamy sobie w dalszym ciggu, ze poszczegblne odcinki ra-
my x—1,x sg sobie rowne i ze zmiana katow p, ktére tworzg osie kolej-
nych odcinkéw x—1,x oraz x,x {1 miedzy soba, podlegaja pewnej
regule, sa wigc znanymi funkcjami wielkoSci x okreSlajacej potozenie
danego odcinka w ramie.

WielkoSci momentéw zginajacych M. w danym punkcie ramy oraz
odpowiednich sit poprzecznych T. (normalnych do odcinka ramy x—1,x)
zaleza od polozenia danego wezla ramy, wobec czego katy ¢., wyraza-
jace sie wzorem

Al (121)
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gdzie E, J i | oznaczaja odpowiednio wspoélczynnik sprezystosci materialu
ramy, moment bezwladno$ci jej przekroju poprzecznego oraz diugosé¢ prze-
dziatu, sa funkcjami x, czyli ze

@x = F(x). (122)
W ten sposéb rownanie (120) przybiera postac
Wy — wx—1 = F(x), (123)

a wiec dochodzimy do réwnania réznicowego pierwszego rzedu.
Po scaltkowaniu réwnania (123) dojdziemy do wyrazenia typu

w0y == 10518 (124)

Wstawiajgc tu x=mn, co odpowiada zwolnionemu koncowi ramy, przed-
stawiamy kat obrotu tego przekroju w zaleznosci od wielko$ci Hp, Rz i Mg

w,=w,=F,(Hy, Ry, M,). (125)

Zaleznos¢é

0w, =0, czyli F,(Hy,Rz,My) =0 (126)

da nam pierwsze rownanie do wyznaczenia wielkosci nadliczbowych
zadania.

Dla znalezienia poziomych (tj. rownolegtych do kierunku AB) przesu-
nie¢ poszezegblnych wezléw ramownicy uciekamy sie do wzoru

D+ Y., (127)

1

X /

X
u= Y (o
T

gdzie y. oznacza poziome skladowe przesunie¢ y. roéwnych

TP M.

Y"=3EJ "2EJ’

(128)

a iloczyn (we—1l) oznacza poziome sktadowe przesunieé wezlow x, wywo-
tanych obrotami przekrojéow x—1 ramy o katy w.—i.

Przy x=mn dochodzimy do drugiego réwnania sluzacego do wyznaczenia
wielko$ci nadliczbowych:

up=0, czyli  F,(Hg, Rs,Mp)=0. (129)
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Wreszcie w sposob analogiczny do wyrazen (127) i (129) znajdujemy

ve= Y (ox—1) + ¥ ¥, (130)
T T
vp=0, czyli F,(Hs Rp, Ms) =0, (131)

’

gdzie v, oznacza pionowe przesuniecie wezla x, a wielkodci (w.—11)" 1 ¥,

oznaczaja pionowe skladowe odpowiednich przesunie¢ catkowitych.
Rownania (126), (129) i (131) igcznie rozwigzuja zadanie.

Zastosujemy przytoczony wyzej schemat ogélny do obliczenia ramy
wielobocznej przegubowe] obcigzonej symetrycznie.

Przypusémy, ze rama posiada ksztalt wieloboku wpisanego w odcinek
kota i jest obcigzona w Srodku silg 2P (rys. 19).

Wobec tego, ze rama jest symetryczna i symetrycznie obciazona wzgledem
punktu srodkowego O, mozemy rozpatrywa¢ réwnowage tylko
jej polowy AO przyjmujac, ze jest ona w punkcie O utwierdzona,
a w punkcie A swobodna i obcig-
zona znang sita R= P i niezna-
ng H. Numeracje weztéw be-
dziemy prowadzili od $rodka
ramy do punktu A4, czyli od O
do n. Dlugos$é | poszczegdlnych
przesel ramy x—1,x jest, jak
wyzej, wielkoscig stalg. W danym
razie rowniez i f, = = const.
Poszczegoblne przesla x—1,x ra-
my beda nachylone wzgledem
poziomego kierunku AB pod Rys. 19
katem xpf.

Sile poprzeczng w wezle x znajdziemy droga rzutowania sit H i R
na kierunek normalny do osi przedziatu x —1, x:

[ — H sin'xip=—"PCosiE p: (132)
Moment zginajgcy w punkcie & wynosi
M,\':Hhx"—ka, (133)

gdzie h¢ i k. (rys. 19) oznaczajag odpowiednio ramiona momentéow sit H
i R=P.
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Poniewaz h, rowna sie sumie rzutéw na kierunek pionowy poszczegél-
nych przedzialéw ramy zawartych miedzy wezlem x i n, wiec mamy

hy=1|sin(x + 1) + sin(x + 2) +---+ sinnp| = (134)
el PO = g e
2 2 . p
- sin
2
=—~l = (cosxﬁcosﬁ~sinxﬁsinﬁ— co sz—ni:lﬂ
. p 2 2
2 sin
D)
Odpowiednio dla k. otrzymujemy
ky=1[cos(x + 1)+ cos(x + 2)p +---+ cosnp] = (135)
=l cos [( +1)8 L= ﬁ n—;x ,i,!;
- sin o,
:—l —fsinx/icos P Sl cosxﬁsinﬁ—sinzn ﬂﬁ‘ :
. p 2 2 2
2AsinE=a
2
Wyrazenie (121) przybiera wobec tego postac¢
px=FflHsinxf—flPcosaxf— (136)
_jig cos xﬁcosﬁ—sinxﬁsin ﬂf—cos2ﬁ il—ﬁ
o [P 2 2
sin -
2
= fl}; (smxﬁcosﬁ + cos x f sin g——sm 2£+71 (3) =
ST
2
=asinxf +bceosxp + c,
gdzie
— L S %Z’Lﬂ pantly
f=5p c=— ﬁ(Hco R ﬁ)l
sing (137)
a=fchtgé, b:lectgén ]
2 2
Dochodzimy w ten sposéb do.réwnania réznicowego
wx—wx—1=asinxf +becosxf 4 c. (138)

Dyskusje tego réwnania pomimo jego prostoty przeprowadzimy nizej
w sposob og6lny.
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Calka rownania (138) przedstawia sume
w,=224+2, (139)

gdzie 2 oznacza pewne dowolne rozwigzanie szczegoélne, z, za$ rozwigzanie
odpowiedniego réownania bez wyrazu wolnego.

Rownanie charakterystyczne réwnania réznicowego (138) bez wyrazu
wolnego, czyli rownania

Wy —wy—1=20 (140)
ma postaé
¥ —r =0, r—1=0, (141)
skad r=1 1
e Bk == D), (142)

gdzie D jest dowolna wielkos$cig stalg.
Calki szczegblnej 2 réwnania (138) poszukujemy w postaci

2=Asinzf + Bcecosxf + Cx, (143)

gdzie A, B, C sa to stale calkowania. Ostatni wyraz wzoru (143) ma
wlasciwie posta¢c Cx-1%, co oznacza, ze cala funkcja poprzedzajaca 1% po-
siada potege o 1 wyzsza od potegi odpowiedniej funkcji przy wyrazie c
réwnania (138). Tlumaczy sie to tym, ze 1 jest w danym razie pierwiast-
kiem réwnania charakterystycznego (141), co nie ma miejsca w zastoso-
waniu do dwoch pozostatych wyrazow calki (143).

Wstawiajac wyrazenie (143) w réwnanie (138) znajdujemy

oy = Asinxf + Bcosafp + Cx, ]
ws—1=Asin(x—1)f + Beos(x —1)f + C(x —1), |
sinxf (A—Acosp —Bsinf) +cosxf(B+Asinf—Bcosp) + C = (L)
=asinxpf + bcosxf + c,
skad przez przyréwnanie wspolczynnikéw przy tych samych funkcjach
trygonometrycznych znajdujemy

fip B fLH . f

A=- 9 Ctg *2* = 2 Ctg" i’, (145)
_ftH o p_ fIP B
="y ctg 9 5 ctg o (146)
e QIm&aﬁiJfJ#Pﬂnzn%lﬁy (147)
. P 2 2
Sin 9
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Ostatecznie otrzymujemy nastepujgce rozwigzanie réwnania (138):
wy = Asinxf +Bcosxf +Cx +D. (148)

Warunki brzegowe wskazujg, ze przy * =0, w, =0, a wiec 0 =B + D,
D =— B; wynika to stad, ze wobec symetrii ramy przekrdj 0 nie ulega
obrotowi przy odksztalceniu sie ramy.

Poniewaz mamy do czynienia z ramg dwuprzegubowa, wiec wielkosé
statycznie niewyznaczalng zadania, sile H, otrzymujemy z réwnania (129),
przy czym u, wyrazamy za pomoca wzoru (127). Pierwsza cze$¢ otrzyma-
nego w ten spos6b wyrazenia przybiera postac

n n—1 =1

Z(Z)—\_d y(uglsm(ac—l—l[)’ 2Asmx/’+Bcos7cﬂ—l—

n—1

+Cx—B) (sinx S cos f + cos xf sin f) = ~cos;32 (1—cos 2 x8)+

n—1 n—1

_.B_cos,g S‘SInzxﬁ+—s1nﬁ Nsin2xp+ | (149)
1

n—1 n—1

BEnp V(IJ—COSZxﬁ +Ccosp’2xsmx[3—{—

Ty

n—1
+CsinﬁZxcosxﬁ~Bsin(x+l)ﬂ.
T

Wystepujace tu sumy réwnajg sie odpowiednio:
n—1

len—l,

n~1

Zcostﬂ*—cos (n—1)Bsinnf—— n/f =1l

n—l
. o . 1
25m2xﬁ—s1n(n 1) B sin nﬂ?inﬂ '
n—1 1 . (150)

21: X cosxf = 5(1——cosﬂ) [ncos(n—1) p—(n—1) cosnf—1],
n—1

szinxﬂzm_lTsﬁ)[sin(n—l)ﬁ—(n— 1) sinnp],

n—1
5 o4 —sin 14 "5 2 s, 8

1
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Drugi wyraz wzoru (127) przybiera postaé

n n
Z Ue— ‘/TV: Yy sin xf, (151)
1

gdzie
T,.I! MUV 2,
st e e T (152)

Wobec zaleznosci (132)-(135) wyrazenie (152) przeksztalca sie w na-
stepujace:

yx:; flH sinxﬁ——?ﬂcos xp + A (153)
St f”i— (cos xf cos g — sin xf sin # — cos 2—]12+—1 ,8) S
2iSins=
2
I flp (51n xf cos f{ +-cos xf sin %—— sin 2 n2+ 1 ﬁ) =
2 sin —
2
= Fsinxf + Geosxf + K,
gdzie
F=0,167flH + 0,500 fLP ctg%, (154)
G=—0,167LP + 0,500 1 H ctg L., (155)
K:___ﬂﬁ,- Hcosz—nLﬂ+P 2"';_1/3 i (156)
2cos§
Wreszcie

Syngyxsinxﬂ:;’(FSinxﬂ—{—Gcosxﬁ+K)sinxﬁz (157)
1

F %1(1-—00521‘& Gi‘stxb’—}—KZsmxp’

9 2

1

Sumy wchodzace w wyrazenie (157) obliczamy ze wzorow (150) wsta-
wiajac w nie zamiast m wielko§¢ n + 1, co odpowiada zmianie granic
sumowania. :
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Za pomoca wyrazen (145)-(147) dla wspolczynnikéw A, B, C oraz wy-
razen (154)-(156) dla wspétczynnikéw F,G, K moglibySmy nadaé réwnaniu
up, =0, czyli

n—1 n
S oxlsin@+ 1)+ Y yesin f=0 (158)
1

)

posta¢ bardziej zwartg, nie byloby to jednak celowe, gdyz wprowadzaloby
funkcje trygonometryczne nowych katow i nowe wielko$ci do obliczenia.
Nalezy wiec zaleci¢ korzystanie z wyrazen (149) i (157) bezpoSrednio
obliczajac je za pomocg wzoréw (150) i wstawiajgc otrzymane wielkosci
w réwnanie (158), z ktérego zostanie wyznaczona wielko$é nadliczbowa
zadania.

Dla przyktadu zakladamy p=9 i n=10, po czym obliczamy
sumy (150):

n—1

N 1=9,000,
-
n—1 n—1
S‘sin2xp‘=6,320, VCoszxp’zo,
= -
n—1 _ n—i
V' xsin 2 p= 35,700, V' x cosxf=22,910, (159)
= T
n n—1
Mceos2xp=—1, V' sin(x+1)8=6,721,
T =T
Esinxﬁ=6,741, N'sin2xf=6,314.

1 1
Wspolezynniki A, B, C, F, G, K otrzymajg tu wartosci nastepujace:
A=280,650f1H + 6,353 fLP,

B= 6,353flH — 80,650 flP,

C= 1,000flH— 12,706 fLP,

F= 0,167flH + 6,353fLP, 6m
G= 6,353flH— 0,167fLP,
K=—0,039F1 H + 0,500 {1 P.
Suma (149) rowna sie wiec
51 wxlsin(x 4+ 1) =605,1 flH —457,4f1 P, (161)

1
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a suma (157)

N yusinxp=20,71f1H + 32,08fLP. (162)
1

Rownanie (158), a wiec takze (129), przybiera wobec tego postac

625, 7TflH—4253flP=0, (163)
skad
H=0682P. (164)

Zauwazy¢ nalezy, ze dla tuku kolistego w ten sam sposoéb obcigzonego
co rozpatrzona rama i opisanego dookola tej ramy otrzymalibySmy

H = 0,636 P, (165)

tj. parcie poziome mniejsze.

Przypuéémy dalej, ze do omawianej wyzej ramy zaczepiono w po-
szczegblnych wezlach x réwne sobie sity P. W zwigzku z takim cbcia-
zeniem nalezy uzupelni¢ wzory
(132) i (133).

Sita poprzeczna w przeslex 1, x
w zaleznos$ci od samych tylko sit P
wyrazi sie wzorem (rys. 20)

Tl—(n—xjPcosxzf. (166)

Niech bedzie P, silg zaczepio-
ng do jednego z weztéow zawartych
miedzy wezlami x i n, a k ramie-
niem momentu tej sity wzgledem
punktu x; w tych warunkach cze$¢ momentu zginajacego M . zalezna od
sit P, bedzie réwna

Rys. 20

n—1 n—1
M,= M Pik;=P _V ks, (167)

x+1 X+1
gdzie dla k, mozemy skorzysta¢ ze wzoru (135) przyjmujac n = s:

% -+ cos xp sinﬁ — &l

2s+1
2 2

I5s z;(sin xf cos — ]| (168)

p

2 sin 5 y

Aby obliczy¢ sume (167), nalezy pierwsze dwa wyrazy ujete w na-
wias we wzorze (168) powtéorzy¢ (n—1—x—1+ 1), czyli (n—x—1)
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razy; wyraz ostatni bedzie tu przedstawial sume, w ktérej s zmienia sie
od x + 1 do n—1, tzn.

o L 25+ [ 1 1. . [(1 '
Zsm——z—ﬁzsm o tx|f+p|Fsin](5+x)p+H2p|+ .. (169)
x+1 - -

Do wyznaczenia sumy (169) mozemy korzysta¢ ze wzoru (134).
Latwo stad wysnué¢ wniosek, ze moment M bedzie mial postaé

M,=a, xsin xf+b, xcosxf +c, sinxf+d, cosxf+ e;. (170)

Wyrazenia dla sitl poprzecznych i momentéw zginajacych otrzymamy
dodajac do wyrazen (132) i (133) wyrazenia (166) i (170), wobec czego
zamiast rownania roéznicowego typu (138) otrzymamy przy danym obcig-
zeniu ramy rownanie typu

Wy —wy—1=axsinxf+bxcosxft+csinxf+dcosxpf+e. (171)

Catkowanie réwnania (171) odbywa sie wedlug tego samego schematu
co w zadaniu poprzednim.

Poniewaz lewe strony réwnan (138) i (171) sa w obydwoch wypad-
kach te same, rozwigzanie 2, réwnania bez wyrazu wolnego jest rowniez
w obydwdéch wypadkach to samo.

Rozwigzanie szczegélne rownania (171) znajdziemy tu w postaci

zfz_:Axsinxﬁ%—Bx cosxfp+Csinxf+Dcosxp+Ex, (172)

gdzie wielkosci A, B, C, D, E zostang wyznaczone przez przyrownanie
do siebie wspolczynnikéw réwnania (171) przy tych samych funkcjach
zmiennej x po obydwoch stronach réwnania.

Warunki brzegowe zadania sg tu te same co w zadaniu poprzednim.

Gdy kat f nie jest wielkoscig stala, lecz pewna funkcjg zmiennej x,
lub gdy sily P nie sa sobie réwne, stowem gdy prawa strona réwna-
nia (123) badz jest bardzo zlozZong funkcja x, badz tez nie daje sie przed-
stawi¢ bezpoSrednio jako funkcja a, musimy* uciec sie do przyblizonego
rozwigzania wspomnianego réwnania droga zastapienia prawej jego czeSci
przez pewna funkcje catkowita wymiernag.

Prawa czes¢ réwnania (123) przedstawia wyrazenie

P

[ M.
=9 gy

RE Y

(173)
w ktéorym T, oraz M. zalezg zar6wno od nieznanego parcia poziomego FH,
jak i od danych sil P. Niech bedzie wobec tego

I =11 =5 0, (174)
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My=M,+ M,, (175)
T U M, 1 T,l M, 1 ;
@i e e (176)
pdzie wielko$ci T, i M, sg pro-
porcjonalnie do H, a T, i M.

zalezg od P.
. Funkcje
I v M 1
Fi=pyogstu grr 17
i IE M,1
Fo=3gr T BJ (178)

mozemy przedstawi¢ na wykre-
sie za pomocg wzorow (132)
i(133); dla przykladu na rys. 22
przytoczone sa krzywe wyra-
zajace momenty Hh,, Rk, oraz
momenty M . zalezne wylacznie
od obcigzenia P dla ramy, kt6- Rys. 21
rej polowa przedstawiona jest
na rys. 21. Otrzymane w ten sposob krzywe zastepujemy przez krzywe
interpolacyjne drugiego, trzeciego i wyzszych stopni w zaleznosci od ksztal-
tu wykreséw i od pozadanej do-
My kladnosci obliczenia. Krzywe
te zawieraja odpowiednio trzy,
cztery i wiece]j niewiadomych
wspotezynnikow.

Wybieramy na wykresie
szereg punktow charaktery-
stycznych i wyznaczamy nie-
znane wspotczynniki wzoréw in-
terpolacyjnych w ten sposob,
aby te wzory czynily zados¢
wartosciom wspoirzednych dla
obranych trzech, czterech lub
odpowiednio wiekszej liczby

- punktéw wykresu. Otrzymane
Bys: 2 tg droga przyblizone funkcje F,

i F, nakladamy rysunkowo na funkcje bezposrednio otrzymane i spraw-
dzamy, czy oba rodzaje krzywych pokrywajg sie z dostateczng doktad-
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noécig, przy czym doktadnos$é 2-3°0 moze tu by¢ uwazana za wystarcza-

jaca.
Przedstawiamy wiec np. w nastepujacy sposob funkcje F, i F.:

Fi=a,2*+b,x2?+c,x+4d,, (179)
Fo=a,x®+byx*+c,x + d,, (180)

skad dla funkcji ¢. dochodzimy do wyrazenia typu

gr=ax’+bx’+cx+d, (181)
gdzie
a—Ha a5, =Hb; +b,, (182)
c—JHie¥-l=c3® d=Hd;+ d.

Roéwnanie (123) przybiera w tym przypadku postac
Oyr—wr—1=ax®+bx’>tcx +d. (183)

Rozwiazanie tego rownania jako réwnania bez wyrazu wolnego podaje
cmowiony wyzej wzor (142). Gdy chodzi zas o catke szezegdlng réwna-
nia calkowitego (183), to powinnisémy jej poszukiwaé w postaci

a)

20 =(Ax* +Bx?+Cx*+ Dx)- 1*. 184
AJ, B 3, 0 J, F I H G i S S {18

lp “ 7 : B : T 'lj’*r ;I Funkcja catkowita wymierna stano-

! cg 4t 3 Hs 6 H [R5 wiaca poszukiwane rozwigzanie posiada

!R lR . stopien o jedno$¢ wyzszy niz funkcja

b ) 2 9 ‘4 przedstawiajaca ostatni wyraz réwnania

(183), gdyz 1 jest w danym razie jed-

? [ i T nokrotnym pierwiastkiem réwnania cha-
& Hy H, 1Rs rakterystycznego.

: o T Dalsze obliczenie ramy wielobocz-

‘,res nej odbywa sie wedlug schematu po-

Rys. 23 danego wyzej i sprowadza sie do sumo-

wania szeregow X xf, Y a®, Ya® M.
Wezmy wreszcie pod uwage czteroprzestowa rame prostokatng
(rys. 23a). Obliczajgc ja droga dodawania odksztalcen przyjmujemy za
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wielko$ci statycznie niewyznaczalne 5 skladowych reakeji Ry, R,, Hy, HyiR;
(rys. 23b), wobec czego zastepczym schematem statycznie wyznaczalnym
staje sie rama dwustupowa CBFG (rys. 24a) o jednej podporze przegubo-
wej, a drugiej przegubowo-przesuwnej.

Jezeli wynikiem obliczenia majg by¢ linie wplywowe dla momentd5w
zginajacych w ramie, jak to zwykle bywa w przypadkach prostokatnych
ram wieloprzestowych, umieszeczamy w przedziale AB sile P =1 w od-
legio$ci zmiennej x od punktu A, nastepnie za$ przenosimy ja na przcsio
BD ustawiajac w zmiennej od- 1P
legtosci & od punktu B. W.prze- a) 7:11-
stach DF i FH otrzymamy rzed- T c - : -
ne linii wplywowych na pod- T;’*‘ ——— J»f J
stawie symetrii ramownicy bio- Tl P L Rs
rac pod uwage, ze sila P usta-
wiona w przesle DF lub FH wy- R3
woluje reakcje Ry, Ry, Ry, Ho, Hy @* b) o d) -
réwne odpowiednio reakcjom ‘ 21 D !
R., R,, — H,, — H; wywolanym =
przez site P ustawiong syme-
trycznie w przesle BD lub AB.

| 8 F
Przesuniecia punktéw od- 1 r ‘ <
R.
C ’ LG L‘J JG

D F H

rzuconych podpo6r mnadliczbo-
wych, a wiec punktéw zacze-
pienia sit R,, Ry, H;, H, i R,
w kierunku ich dziatania, ozna-
czamy odpowiednio przez v,, vs;, V5, us; u,. Wielkosci tych przesunie¢ jako
funkcje wielkosci statycznie nadliczbowych wyznaczamy rozpatrujac od-
ksztalcenie ramy dwuslupowej przedstawionej na rys. 24b, kolejno pod
dzialaniem poszczegolnych sit obcigzajacych rame zgodnie ze schematami
uwidocznionymi na rysunkach 24b-24d. Na rysunkach tych przez
M,, M; i M3 oznaczone zostaly, dla uproszczenia obliczen, momenty sit
niewiadomych zaczepione w odpowiednich wezlach, tak ze np. Mng:, h.

Dla danego polozenia sity P oraz dla 5 wielko$ci nadliczbowych wy-
znaczamy przesuniecia v;, vs, U;, Uy 1 U, Sposobem momentéw wtérnych.

W ten sposéb otrzymujemy kazde z przesunie¢ vy, v,, v;, us i uy jako
inna funkcje tych samych wielkosci x, M,, M, M:,,, R,, H, dla obliczenia
za$ pieciu wielkosci statycznie niewyznaczalnych ustawiamy pie¢ réwnan:

Rys. 24

v,=0, v,=0, v,=0, u;=0, wu=0, (185)

z ktorych wyznaczamy wartosci rzednych linii wplywowych poszczegol-
nych wielko$ci statycznie niewyznaczalnych.
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Roéwnania te dla sity P zaczepionej np. w przesle AB przybieraja postaé:
nastepujaca:

3R —3P(, —x)-F3R |~ 2RI—6H h—3H h=—0,

2%h2(H3+2H‘,)—3l[2R511+2R111—
3
—2P(l,—x,)—Ryl—2H,h—4H,h| =0,

Jal oo
4 J2"h—(H3 e H4) S &l
3

2 2B, — 31[R,1, +
Ji
+3R,l,—3P(,—x,)—3H,h—H,h—R,1—4H,h] =0, | (186)
Js 5
27‘1—[2Rllf—2P(ll—xl)3—3Px1(lJ—x1)~] +1,1[4R,1, +

+ 8R,l, — 8P(l, — x}) — 8H,h— 3 R,1—12H,h— H,h] =0,

Jo

4 7,

R,Z+1[4R,1,—4P(1,—x)—4H,h+

+8R,1,—3R,1—12H,h + H,h] =0.

Podobne uklady réwnan otrzymujemy dla sity P zaczepionej w przesle
BD oraz dla wahan temperatury.

Uktady te rozwiazujemy droga kolejnego rugowania niewiadomych,
po czym rozwiazania dla wielkos$ci statycznie niewyznaczalnych moga by¢
przedstawione jako funkcje odcietych punktu zaczepienia sity P.

IV. O ROWNANIACH ENERGII SPREZYSTEJ
1. Rozwazania ogoélne

Zastosowanie geometrycznych sposobéw badania konstrukeji preto-
wych, oméwione w rozdziatach II i III dla przypadkéw pretéw rozciggano-
Sciskanych i zginanych, znajduje uogélnienie w omoéwieniu réwnan energii
sprezystej. Chodzi tu w szczego6lnosci o wykazanie mozliwosci stosowania
do uktadow pelnych twierdzen wyprowadzonych dla belek kratowych.

Moéwiac o rownaniach energii sprezystej mamy na widoku réwnania
wyrazajace zalezno$¢ miedzy nastepujacymi trzema rodzajami wielkosci
lub przynajmniej miedzy dwiema sposrod nich, a wiec

(1) miedzy uogoélnionymi sitami @ wzrastajagcymi w sposob ciagly
i nieskonczenie powolny,

(2) miedzy uog6lnionymi przesunieciami (wspo6irzednymi) q punktéw-
zaczepienia sit @ i
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(3) miedzy energia sprezysta V nagromadzong w danej konstrukeji
w czasie wzrastania sil @ od zera do ich wartosci ostatecznej.

Réwnania dotyczace energii sprezystej sa uzytecznym $rodkiem przy
rozwigzywaniu szeregu zagadnien statyki budowli i stanowia ulubiong
metode pracy wielu uczonych, przede wszystkim statykéw niemieckich.
Sprecyzujemy przeznaczenie tych réwnan.

Do obliczenia energii sprezystej nagromadzonej w danym ciele korzy-
stamy z rownania Clapeyrona

Vz—é—ZQq. (187)

Réwnanie to doprowadza w sposob prosty do przedstawienia energii
potencjalnej ciata sprezystego w postaci jednorodnej funkcji sit drugiego
stopnia :

V=2Im, Q'+ 2Im;QQ, (188)

gdzie wspoélczynniki m; i m; nie sg zalezne od sil.
Z drugiej strony, ilo$¢ energii sprezystej nagromadzonej w danej kon-
strukeji wyrazi¢ mozna za pomocg wzoru

szv'dxdydz, (189)

gdzie V' wyraza ilo$¢ energii magromadzonej w szeScianie o krawedzi
réwnej 1, wyjetym z ciala odksztatcanego, a wielkosci dx, dy, dz wy-
razajg dilugosci krawedzi nieskonczenie matego prostopadioscianu.

Réwnanie (189) wyplywa bezposrednio z okreslenia energii sprezystej
jednostkowej i z przyjetego na ogéot w statyce, a omowionego wyzej spo-
sobu wzrastania sit @ i wobec tego wlasciwie nie nalezy do grupy oma-
wianych tu rownan. Lagcznie jednak z rownaniem Clapeyrona przez
zestawienie dwoch réznych wyrazen dla energii sprezystej daje ono moz-
noéé latwego obliczenia odksztalcen w razie, gdy mamy do wyznaczenia
przesuniecie w punkcie zaczepienia i w kierunku dziatania sity skupionej,
lub gdy mamy do wyznaczenia obroét w punkcie zaczepienia momentu.
Zestawienie dwoch wspomnianych wyrazen dla energii sprezystej przed-
stawia wlasciwie tylko odmienng forme réwnania Clapeyrona.

Do wyznaczenia odksztalcen stuzy najczesciej twierdzenie Casti-
gliano.

~al:q. (190)
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Do wyznaczenia wielko$ci statycznie niewyznaczalnych korzystamy
z twierdzenia Menabrei

ov
o0 =" (191)

lub tez z twierdzenia Bettiego zwanego twierdzeniem o wzajem-
nosci przesuniec

: _\:Q’qu:: Q" 0y (192)

gdzie wielkosci Q" i 4, odpowiadaja jednemu, a @ i g, drugiemu ukla-
dowi sil zaczepionych do tej samej konstrukcji.

Szczeg6lny przypadek twierdzenia Bettiego przy jednej sile @
nazywamy twierdzeniem Maxwella.

Wzory (187) - (192) dotycza w rownej mierze ukladéw pelnych jak
kratowych.

Nie wdajgc sie w historie powstawania omawianych rownan zauwa-
zy¢ jednak nalezy, ze niektére z nich zostaly pierwotnie ustawione dla
uktadow kratowych, nastepnie za$ rozpowszechnione i na uktady pelne
(np. twierdzenie Menabrei, inne zas, na odwrdt, udowadniane byly
z poczatku dla ukiladéw pelnych, pdzniej za$ dopiero byly zastosowane
i do uktadow kratowych (np. twierdzenie Clapeyron a).

Uzasadnienie twierdzen dotyczacych energii sprezystej w przypadku
cial pelnych opiera sie w zasadzie na rownaniach ogoélnych teorii spre-
zystosci, wyprowadzenie za$ tych réwnan dla kratownic odbywa sie na
podstawie wzoru (1), czyli wzoru Maxwella i Mohra.

Wyprowadzenie rownan energii sprezystej dla ciat pelnych jest znacz-
nie bardziej zlozone niz uzasadnienie tych samych réwnan dla ukladow
kratowych. Wobec tego zmierzajac do uproszczenia wyktadu réwnan
energii sprezystej dla cial pelnych, autorowie wspoétczesnych podreczni-
kow statyki ida w dwoch kierunkach. Jedni, mianowicie, upraszczaja bez-
posrednio uzasadnienie pierwotne odrzucajac pewne subtelnosci w rozu-
mowaniu i dbajac raczej o algebraiczng poprawno$é¢ dowodzenia, drudzy
korzystaja rowniez i w danym wypadku z wywodow przeznaczonych dla
uktadow kratowych.

Pierwsi nie odbiegaja wprawdzie, lub przynajmniej nie odbiegaja
pozornie, od schematu statycznego ciala pelnego, zmuszeni jednak do ko-
nieczne] w podrecznikach zwiezlo$ci decydujg sie nieraz na pewne nie-
jasnos$ci wyktadu.

Drudzy idgc za przykladem Mohra i wyrzekajac sie przy wypro-
wadzaniu réwnan energii sprezystej schematu ciala pelnego na korzysé
kratownicy, uogélniajg nastepnie swe wywody droga twierdzenia, ze
kazde cialo pelne moze by¢ uwazane za kratownice przestrzenng o nie-
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skonczenie wielkiej liczbie pretéw nadliczbowych i ze wobec tego row-
nania energii sprezystej wyprowadzone dla kratownicy moga byé bez dal-
szych dowodéw rozpowszechnione i na konstrukcje pelne.

To ostatnie twierdzenie oparte jest na przedstawieniu ciata sprezy-
stego jako zbioru punktéw materialnych, miedzy ktéorymi dzialajg sily
proporcjonalne do wzajemnych przesunie¢ tych punktéw i skierowane
wzdtuz lgczacych je prostych. W ten sposéb pomyslany schemat ciala
sprezystego nie przeczy wprawdzie prawu H oo k e’ a, nie spetnia jednak
charakterystycznego dla pracy sprezystego ciata pelnego warunku, mia-
nowicie nie cdpowiada mu co do liczby statych sprezystosci.

Chodzi o to, ze w razie przyjecia dla ciata sprezystego schematu kra-
townicy mamy do czynienia z jedna tylko stala sprezysto$ci, ze wspoi-
czynnikiem E, w danym razie charakteryzujacym zalezno$¢ miedzy prze-
_suwaniem sie wezlow kratownicy a sitami dzialajagcymi miedzy nimi.
W przeciwienstwie do tego w ciele sprezystym jednorodnym pelnym,
uwazanym za sprezyste continuum, mamy do czynienia w ukladzie pla-
skim z dwiema niezaleznymi od siebie wielkosciami stalymi, a wiec poza
wspoéiczynnikiem E jeszcze ze wspoélczynnikiem Poissona pu.

Poglad na ciato sprezyste jako na zbiér punktéw materialnych, a wiec
poglad doprowadzajacy do schematu kratowmicy, czyli do tak zwanego
modelu Naviera, jest obecnie pogladem przestarzatym, gdyz wszyst-
kie nowoczesne badania maukowe w zakresie teorii sprezystosci oparte
sy na zalozeniu sprezystego continuum, czyli modelu Cauchy’ego.

Stad wyplywa nie dajacy sie w zasadzie odeprze¢ zarzut niewspoi-
czesnosci, jaki mozna by postawi¢ sposobom wyprowadzenia réwnan
energii sprezystej, opartej na teorii kraty. Nie wydawaloby sie tez stusz-
nym odpieranie tego zarzutu przez powolywanie sie na najnowsze badania
z zakresu budowy materii, gdyz badania te stoja jeszcze do$¢ daleko
od potrzeb praktycznej teorii sprezystosci.

Z drugiej strony, proste a jednak Sciste i pozbawione niedomowien
uzasadnienie wzoréw (187) - (192), tak nieraz uzytecznych w pracy inzy-
niera, jest rzeczg konieczna.

Z tego powodu nalezy sie zastanowi¢ nad tym, czy nie mozna by w ten
sposob praktycznie ograniczy¢ obszaru stosowalnoséci réwnan dotyczacych
energii sprezystej, aby w tym obszarze wyprowadzenie ich na podstawie
teorii kraty bylo zgodne z ogélnie przyjetymi zalozeniami mechaniki
budowli i dotyczylo w réwnej mierze ukladéw pelnych jak kratowych.

Ograniczenia, o ktérych mowa, dotycza po pierwsze typu odksztalcen,
po wtére rodzaju naprezen i po trzecie sposobu zaczepienia sit zewnetrz-
nych.

Zestawiajac przypadki, w ktérych rownania energii sprezystej znajduja
zastosowanie, z rodzajami konstrukcji pelnych, dla ktérych to zastoso-
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wanie jest korzystne, latwo spostrzegamy, ze wchodza tu w gre przede
wszystkim przypadki zginania zaréwno elementéow konstrukcyjnych pro-
stoliniowych, jak i krzywoliniowych. Mamy tu wiec przede wszystkim
na widoku belki proste, na ktére zadne sity podtuzne nie dzialaja, nastep-
nie ramy, w ktorych obliczeniu statycznym rzadko tylko sity podiluzne
brane sa pod uwage, wreszcie tuki, w ktorych obliczeniu wprawdzie sity
podiuzne zwykle uwzgledniamy, w ktorych jednak wplyw decydujacy na
naprezenia maja zwykle momenty zginajace. W przypadkach samego
tvlko rozciggania lub $ciskania wyprowadzenie rownan energii sprezy-
stej nie nastrecza zadnych trudnosci.

Dalej nalezy stwierdzi¢, ze w wyjatkowych tylko przypadkach przy
wyznaczeniu odksztalcen konstrukecyj budowlanych lub tez wielko$ci sta-
tycznie niewyznaczalnych uwzgledniamy wplyw naprezen stycznych na
obliczane wielko$ci, czyli liczymy sie z przesuwaniem wewnatrz ciat od-
ksztatcanych.

Wreszcie ogromng wiekszos¢ konstrukecyj budowlanych i wszystkie
nieomal konstrukcje mostowe rozkladamy zwykle w obliczeniu statycznym
na elementy plaskie. W obliczeniach za$ dotyczacych konstrukeyj prze-
strzennych zwykle wymagania co do Scistosci bywaja niezbyt surowe.

Twierdzi¢ mozna z calg Smialtoscia, ze poza ograniczonym w ten spo-
s6b zakresem pozostaje juz tylko bardzo niewiele praktycznych zagadnien
statyki konstrukeyj pelnych, zagadnienia za$§ o charakterze badawczym
nie bywaja na ogo6! rozwiazywane za pomoca réwnan energii sprezystej.
Dla takiego zakresu konstrukeyj, jak to zostanie omoéwione nizej, rOwnania

energii sprezystej moga by¢ wy-

__,,‘7‘2,,,__.1 prowadzone na podstawie teo-
d, _|A k A rii kraty juz bez zadnych za-
y strzezen.
Poniewaz ograniczyliSmy
< . 5 -
rozwazania do uktadéw pta-

skich, nie ma potrzeby trwa¢ tu

przy opisanym wyzej modelu

Rys. 25 ciala sprezystego jako kratow-

nicy przestrzennej, lecz moze-

my przejs¢ do prostszego schematu kratownicy ptaskiej, co znacznie uta-
twia rozumowania.

Dla uproszczenia przerébek matematycznych, nie wzbudzajacych
zreszta w danym zadaniu wiekszego zainteresowania, obszerniej omawia-
my tu tylko najprostszy, lecz zarazem i najwazniejszy schemat kratow-
nicy o pasach rownoleglych, przedstawiajacy niejako model pelno$ciennej
belki pryzmatycznej w dwoch punktach swobodnie podpartej. Kratownice
te bedziemy uwazali w dalszym ciggu za statycznie wyznaczalng, posia-

TN
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dajaca np. krate w rodzaju przedstawionej na rys. 25, cho¢ bardzo gesta.
Przez podobne przyjecie oddalamy sie jeszcze bardziej od modelu N a -
viera, w ktorym kazdy wezel powinien byé¢ polaczony ze wszystkimi
innymi wezlami; powstajacy w ten sposéb nowy model lub schemat sta-
tyczny, aczkolwiek bardziej ograniczony co do swej ogélnosci, nadaje sie
jednak z powodzeniem do obliczenia ugie¢ belki pelnosciennej.

Stosujac dalsze rozwazania do belki w dwoéch punktach swobodnie pod-
nartej lub belki utwierdzonej w jednym koncu i swobodnej w drugim
zauwazamy przede wszystkim, ze wszystkie rownania energii sprezystej
mozna ujaé w jedno réwnanie symboliczne

F(@,q,V) =0, (193)

w ktérym zreszta wielko$¢ V nie zawsze wystepuje w sposéb wyrazny.

Aby uzasadni¢ stosowanie kratownicy jako modelu statycznego belki
pelnosciennej, ustalamy (przede wszystkim) warunki, ktérym odpowiadac¢
powinna kratownica przedstawiona na rys. 25, aby te same wartosci
Q, 0 i V czynily zado$é réwnaniu (193) zaréwno dla kratownicy, jak
i dla belki pelnosciennej o tej samej rozpietosci i o tym samym sposobie
podparcia (rys. 26). Zakladamy tu oczywiscie, ze funkcja F zachowuje ten
sam ksztalt w obydwoéch wypadkach.

Kratownice przedstawiona na rys. 25 uwazamy za przegubowa oraz
odpowiadajgcg wszystkim zalozeniom teorii kraty i zaczepiamy do niej,
np. do jej gornych wezlow, szereg

sit P dzialajacych prostopadle do .

osi paséw i oddalonych od lewe] dienl k

podpory belki o d. Z drugiej stro- O 10'

ny, na gérnej powierzchni belki J=. 10 < — el
pelnosciennej przedstawionej na o

rys. 26 i wykonanej z tego samego |, /0 Af
materialu ustawiamy sily réwne e

omowionym silom P i ustawione
od lewej podpory belki w tych samych odleglo$ciach d co i tamte. Tego
rodzaju obcigzenia obydwoéch belek mozemy uwaza¢ za identyczne, gdyz
zardwno wykresy momentow zginajacych, jak i wykresy sit poprzecznych
w obydwoch wypadkach sa te same. Ma to miejsce w danym wypadku
niezaleznie od Kksztaltu i wymiarow poprzecznych obydwoch belek. Przy
pominigciu wplywu naprezen stycznych na zginanie, ksztalt przekroju po-
przecznego belki pelno$ciennej pozostaje bez znaczenia dla dalszych roz-
wazan.

W mys$l zasady zesztywnienia ani w obliczeniu statycznym kratownic,
ani tez w obliczeniu belek peinosciennych nie bierzemy pod uwage wpty-
wu odksztalcen poprzecznych na naprezenia normalne, nie mamy wiegc
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powodu uwzglednia¢ go tez i przy obliczaniu energii sprezystej nagroma-
dzonej w tych konstrukcjach; pomijajac za$ te odksztalcenia przyjmu-
jemy tym samym, ze wspélczynnik Poissona réwna sie 0 w oby-
dwoch wypadkach. Ma to miejsce w belkach o matej szerokosci i nie do-
tyczy plyt.

2. Obliczenia poréwnawcze

Obliczenie ugiecia belki pelnosciennej w pewnym punkcie D (rys. 26),
czyli prostopadlego do osi belki przesuniecia punktu D (przesuniecia
qg==wv,) lezacego na osi belki odbywa sie w zasadzie na podstawie réw-
nania rézniczkowego osi odksztalconej.

Wyprowadzenie ogdlnego réwnania tej osi

iy

E] o=M (194)

opiera sie miedzy innymi na dwoéch zatozeniach nastepujacych:

(1) na zalozeniu, ze réwnolegte do siebie warstwy belki pelnej nie wy-
wierajag wzajemnie na siebie nacisku w kierunku prostopadlym do osi
belki,

(2) na zatozeniu, ze warstwy te nie przesuwaja sie wzgledem siebie, co
odpowiada tak zwanemu zalozeniu plaskich przekrojéw; wobec tego, ze
miedzy naprezeniami stycznymi a przesunieciami jednostkowymi istnieje
zaleznos¢

7= G g, (195)

gdzie G oznacza wspoiczynnik sprezystosci przy przesuwaniu, a f prze-
suniecie jednostkowe, zafozenie to odpowiada przyjeciu, ze stata sprezy-
stosci G rowna sie nieskonczonosci (G = c0).

W konsekwencji powyzszych zalozen uwazamy, ze punkt D’ na gérnej
i punkt D” na dolnej powierzchni belki, lezgce na prostej prostopadiej do
osi belki i przechodzgcej przez punkt D nie odsung sie po odksztalceniu
belki od tego punktu ani w kierunku réwnolegtym do stycznej do osi, ani
w kierunku prostej D” D”. Mamy wiec

V= Vp =0, (196)

W belce kratowej (rys. 27a) role punktéw D’, D”'i D odgrywaja: punkt N
polozony w $rodku wysokosci kratownicy oraz wezlty N” i N”, ktérych
odlegtosci od lewej podpory belki odpowiadaja odlegloSciom punktow D.
Powstaje pytanie, jakim warunkom odpowiadaé¢ powinna belka kratowa,
aby wzajemna nieprzesuwalno$¢ weztow N” i N” odpowiadajaca nieprze-
suwalnosci punktow D" i D” belki pelnosciennej byla zabezpieczona.
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Ot6z zalozenie nieprzesuwalnosci punktéow D’ i D” w kierunku normal-
nej do osi odksztalconej moze by¢ zastapione w sposob dostateczny przez
warunek nieodksztalcalno$ei pretow kraty, ktéry jest réwnoznaczny
z pozbawieniem wezlow N’ i N” moznosci przesuwania sie wzgledem
siebie. Przyjecie, iz stala sprezystos¢ G réwna sie nieskonczonosei jest
réwnoznaczne z odrzuceniem wplywu sit poprzecznych na wyginanie sie
belek pelnosciennych, natomiast w przypadku kratownicy pominiccie
wplywu sil poprzecznych na

przesuwanie sie wezl6w moze a)
byé wyrazone przez przyjecie X 1 de,
nieodksztatcalnosei  podiuzne] m_K' 48
pretow kraty poza pretami pa- ol \Y NAANS yivil
s6w. Tlumaczy sie to w ten spo- B N/ VYV ,'
so6b, ze w kratownicy o pasach X K" N AN
rownolegtych sity w pretach P~
kraty sa wprost proporcjonalne b) /1/ S
do sit poprzecznych, a wiec = \

v —

przyjmujac, ze prety te nie ule-
gaja wydluzeniu ani skréceniu,
czyli ze ich wspoiczynnik spre- C)
zystosci réwna sie Eprzy:= o0, =
odrzucamy tym samym wplyw I
sit poprzecznych na wyginanie

sie belek kratowych.

Innymi slowami, zalozenie nieodksztalcalnosci pretéw kraty przy jed-
noczesnym zalozeniu, ze oba pasy kratownicy maja te same wymiary
i s3 wykonane z tego samego materiatu, catkowicie zabezpiecza wzajem-
ng nieprzesuwalno$é weztow N i N” w kierunku normalnej do osi belki
oraz w kierunku réwnolegtym do stycznej do osi belki i odgrywa role
zalozenia G = co przy obliczeniu ugie¢ belki pelnosciennej.

Przy obliczeniu odksztalcen porownywanych belek, pelnosciennej
i kratowej, przyjmujemy w my$l powiedzianego wyzej:

(1) ze sily zewnetrzne P sg w obydwoch wypadkach zaczepione jed-
nakowo,

(2) ze wspotezynnik Poissona u =0,

(3) ze sily poprzeczne w obydwoch wypadkach nie maja wplywu na
odksztalcenia, czyli ze G = oo lub Eg;.y: = co.

Rys. 27

Stosujac do wyznaczenia ugiecia belki pelno$ciennej w punkecie D
spos6b momentéow wtoérnych otrzymujemy wedlug wzoru (60)

M
g (197)

a
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gdzie M, wyraza moment wtérny w przekroju D belki, a EJ oznacza
iloczyn wspoblczynnika sprezystosci przez moment bezwtadnosci przekroju
poprzecznego belki.
Z drugiej strony, obliczajac dla belki kratowej przesuniecie punktu
D w kierunku prostopadlym do osi belki réwne przesunieciu punktéw
N’ i N” otrzymujemy ze wzoru Maxwella i Mohra, ze
~ ZS A

vy— Y= (198)

gdzie S oznacza sity w poszczegbélnych pretach kratownicy, Z sily, ktore
dziatalyby w tych pretach, gdyby w wezle N’ byta zaczepiona sita 1 ma-
jaca kierunek przesuniecia vy, wreszcie A diugo$¢ jednego przedziatu
pasa. Wobec tego, ze stupy i krzyzulce kratownicy uwazamy za nieskori-
czenie sztywne, czyli za nieodksztalcalne, sumowanie dotyczy tylko sa-
mych pasow obejmujacych wszystkie przedzialy belki kratowej.

Oznaczamy przez M, momenty zginajace wywolane przez rzeczywiste
ohcigzenie zewnetrzne w poszczegolnych weztach kratownicy k” oddalo-
nych od lewej podpory o x i przedstawiamy na rys. 27c¢ wykres tych mo-
mentow. Odpowiednio sity podiuzne powstajace w polozonych naprzeciw-
ko wezléw k” poszczegdlnych przedzialach m k” paséw belki kratowej be-
da sie wyrazaty za pomoca wzoru

§==*, (199)

Ciezar rowny 1t zaczepiony mad punktem N, ktoérego przesuniecie
wyznaczamy, wywoluje zaré6wno w rozpatrywanej belce kratowej, jak
i w odpowiedniej belce pelno$ciennej momenty zginajgce, zmieniajgce sie
wedlug wykresu momentéw przedstawionego na rys. 27b.

Oznaczajac przez M, rzedne wykresu 27b w punktach oddalonych
o x od lewej podpory belki kratowej otrzymujemy nastepujaca wartosé
sity wywolanej w przedziale m k’ pasa przez site 1 zaczepiong w wezle N:

Z, =, (200)

W zwigzku z tym wzoér (198) przybiera postac
M. M. 2
Bl X 55
V=2 \ W h EA (201)

Sumowanie dotyczy, jak wyzej, dwéch pasow Kkratownicy, kazdy
o dlugosci L.
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Przyjmujemy dalej, ze przedziaty belki kratowej malejg w sposob nie-
ograniczony, czyli ze A=dx. W zwigzku z tym suma (201) przeksztal-
ca sie w catke

"M, M, dx -

T2 h h EA (202)
Wracajgc do wykresu 27b obliczamy rzednag jego dla punktu N. Po-
niewaz ciezar 1 wywoluje reakcje belki ré6wne 1 — a/l oraz «a/l, wiec

moment zginajacy, wywolany przez ten ciezar w punkcie N, wynosi
Ny = (1— (ll) a. (203)

Wyrazenie dla 1,, jak wida¢, przedstawia rzedng linii wplywowej
momentu zginajacego w punkcie N dla belki w dwoéch punktach swo-
bodnie podpartej.

Wobec tego, ze wykres 27b jest linia wplywowa momentu zginajacego
w punkcie D (o rzednych 5 =M,) i wobec tego, ze wykres 27c dla mo-
mentéw M. uwaza¢ mozemy za wykres obcigzenia wtérnego (= M,,
powinnismy dla wyznaczenia momentu wtoérnego I w punkcie N wy-
kona¢ catkowanie

[ /

MWy,=My= [0, M, dx= [M M dz. (204)

0 0
Ze wzorow (202) i (204) otrzymujemy wiec
- e B e
N~ 2 = [ 2 *
" e

2 (205)

Iloczyn 2 (h/2)* A wyraza moment bezwladno$ci belki kratowej,
ktérej catly material zostat skupiony na osiach pasow.

7 zestawienia wzorow (197) i (205) wynika, ze na to, aby belka kra-
towa o tej samej rozpieto$ci, obcigzeniu i sposobie podparcia co pewna
belka pelno$cienna dawala przy wszystkich poczynionych wyzej za-
strzezeniach te same ugiecia, potrzeba, aby czynita ona zado$¢ nastepu-
jacym warunkom:

(1) caty materiat belki skupiony by¢ musi na osiach paséw, przy czym
momenty bezwladnosci belki kratowej i belki pelno$ciennej majg by¢
sobie rowne, tj.

2 (ﬂ)z A=1J, (206)
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z tym ze pominiete sa momenty bezwladnoSci pasow wzgledem wiasnej
osi,

(2) przedziaty belki kratowej powinny by¢ nieskonczenie male,

(8) krzyzulce i stupy kraty nie moga ulega¢ odksztalceniu podiuz-
nemu.

Ugiecie belki pelno$ciennej w pewnym punkcie D na osi belki réwna
sie wiec odpowiedniemu przesunieciu wezta kratownicy, odpowiadajacej
wymienionym wyzej warunkom, i polozonego w tej samej odlégloéci
od poczatku belki co punkt D.

Poczynione wyzej zalozenia upraszczajace maja ten sam sens fizyczny
dla belki kratowej co i dla pelnosciennej, w jednakowym wiec, na og6t
dopuszczalnym stopniu, wplywaja one mna dokladno$¢é obliczen sta-
tycznych.

Poniewaz przedzialy belki kratowej uwazamy za nieskonczenie mate,
mozemy wiec sily zewnetrzne zaczepia¢ we wszystkich punktach diu-
gosci belki nie bedac przez to w sprzecznoscei z teorig kraty i mogac dzie-
ki temu rozpowszechnia¢ wszystko, co powiedzieliSmy wyzej réwniez na
obcigzenia cigglte. Nie mamy potrzeby robi¢ zadnych zastrzezen co do ob-
ciazenia momentowego, gdyz co do ksztalttu wykresu na rys. 27c¢ nie wpro-
wadzaliSmy zadnych ograniczen.

Przechodzac do obliczenia obrotéw sprezystych poszezegoélnych prze-
krojow belki pelnosciennej ustawiamy dla obrotu jej pewnego przekroju
D wzor

Pp = " (207)

gdzie Tp oznacza sile poprzeczng w przekroju D, wywolang obciazeniem
wtornym (.= M, (rys. 26).

Wyznaczenie obrotu przekroju D belki kratowej wykonujemy na
podstawie wzoru Maxwella i Mohra

!
ZS A
<pN-——2§~EAf, (208)

w ktorym S, 4 1 EA ma to samo znaczenie co we wzorze (198), a Z
oznacza sily powstajgce w poszczegélnych pretach paséw kratownicy pod
dzialaniem momentu réwnego 1 i zaczepionego w przekroju D, ktorego
obrét obliczamy (rys. 28).

Moment réowny 1 zaczepiony w przekroju N belki wywoluje momenty
zginajgce MY, ktorych wykres przedstawiony jest na rys. 28b. W zwiaz-
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ku z tym sily Z powstajace w poszczegolnych przedziatach pasa kratow-
nicy wyrazajg sie wzorem
My

2=

(209)

analogicznym do wzoru (200), sily za$ S za pomocag wzoru (199).

Wykres na rys. 28b przedstawia, jak wida¢, rowniez linie wplywowa
dla sily poprzecznej w przekroju N belki swobodnie podpartej. Wobec
tego mozemy dokona¢ przeksztalcenia wzoru (208) analogicznego do
wyze] oméwionego przeksztalcenia wzoru (198). Sita poprzeczna Ip=3y
od obcigzenia wtoérnego w punkcie N bedzie wdéwczas réwna

It 14
v=[IMidx= [M.Midx, (210)
0 0

a wiec dla kata obrotu ¢, otrzymamy

&
D\

Py — h\2 . (211)
2 (?) EA

Poréwnujgc wzory (207) i (211) mozemy twierdzi¢, ze w tych samych
przypadkach, kiedy wyznaczenie ugie¢ belek pelnosciennych moze byé
zastapione przez obliczenie prze-
sunie¢ odpowiednich weztow belek a)

kratowych, réwniez i obroty po- Nl-

szczegblnych przekrojow belek mo-

ga by¢ w podobny sposéb obliczone. 07 A
Inaczej moéwiac wzér M a x-

wellaiMohrawyprowa—b) “/l

dzony w rozdziale II dla ukladow . . »

kratowych moze by¢ zastosowany

i do ukladow pelnych; przybiera I/

on woéwczas postaé

= Z‘fgfg/[dx, (212)

M,

gdzie q oznacza uogé6lnione prze-
suniecie belki zginanej, M mo- Rys. 28

ment zginajacy wywolany w po-

szczeg6lnych przekrojach belki przez dane obcigzenia, a M moment Zgi-
najgcy w tych samych punktach, spowodowany badZ przez site réwng 1
dzialajacg wzdluz poszukiwanego przesuniecia, bgdZ przez moment réw-
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ny 1, odpowiadajacy poszukiwanemu obrotowi przekroju poprzecznego
belki.

W sposob rownie prosty jak poprzednio mozna wykazaé¢, Ze energia
sprezysta, nagromadzona przy zginaniu belki pelnosciennej, wyraza sie
za pomoca tego samego wzoru co energia sprezysta, nagromadzona w kra-
townicy odpowiadajacej warunkom omoéwionym wyzej.

Dla belek peinych o dowolnym sposobie podparcia energia sprezysta

wyraza sie wzorem
!

" M*dx
V= ‘ = (213)
0
Dla odpowiedniej belki kratowej mamy wzor nastepujacy:
4
Stidx .
V#2{2EA’ (214)

0

gdzie d x = 4 oznacza dlugos¢ przedzialu pasa kratownicy.
Wobec tego, ze sily S w poszczegbélnych pretach pasa wyrazaja sie,
w zaleznosci od momentu zginajgcego wzorem

M.
SE= o (215)
wzor (214) przybiera postac
l [ 1/
TIM\? dx ~ Mdx "Mida
V=2 f (h) 2= | | TEr (216}
b o 2o EA

to znaczy postac¢ (213).

Wszystko, co powiedzielidSmy o odksztalceniu belki w dwoéch punktach
swobodnie podpartych, moze by¢ zastosowane bez zadnych zastrzezen i do
innych ukltadéw zlozonych z prostych elementéw zginanych, a wiec do
konstrukcyj ramowych i tukowych przede wszystkim.

Poniewaz zostalo tu dowiedzione, ze dla belek petnosciennych od-
ksztalcenia i nagromadzona w czasie tych odksztalcen energia sprezysta
mogg by¢ obliczone wedlug tej samej metody co dla belek kratowych,
mozemy twierdzi¢, ze o ile réwnania (187) - (192) zostana wyprowadzo-
ne dla pewnej konstrukecji kratowej, to pozostana one stuszne w tym
samym stopniu i dla konstrukeji pelnej.

Stosowanie schematu kratownicy ptaskiej do wyprowadzenia réwnan
(187) - (192) dla uktadow ptaskich nie moze by¢ uwazane za nawrét do
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dawnych pogladéw na budowe cial sprezystych przede wszystkim dla-
tego, ze przy tym wyprowadzeniu brane sg pod uwage w sposob posredni
lub bezposredni obie niezalezne od siebie stale sprezystosci E i p, tak
jak wchodza one we wszystkie zadania plaskie mechaniki budowli.

Omawiana wyzej kratownica ptaska odgrywa w danym razie role
przyblizonego schematu, sluzacego do obliczenia tak zlozonego ukladu
statycznie niewyznaczalnego, jakim jest pod wzgledem rozkladu naprezen
kazda belka pelnos$cienna choc¢by podparta w sposob statycznie wyzna-
czalny, a ktorego innym uproszczeniem, ogoélnie przyjetym, jest belka od-
powiadajaca zalozeniu plaskich przekrojow. Wyzej zostalo wykazane, ze
oba te schematy upraszczajgce zapewniajg ten sam stopien dokladnosci
obliczen.

Uzasadnienie stusznos$ci stosowania schematu belki kratowej przy
wyprowadzeniu réwnan energii sprezystej i wzajemnosci przesunie¢ dla
plaskich belek pelnosciennych moze by¢ z latwoscia rozpowszechnione
i na uklady zlozone z elementéw zginanych o przekroju zmieniajgcym
sie w sposob ciggly i powolny.

Przechodzac do belek o przekroju zmieniajacym sie w sposéb nie-
ciggly (rys. 29) wyobrazamy sobie, ze odcinki belki o réznych momentach
bezwladnosci przekroju poprzecznego stykaja sie podiug pewnych nie-
odksztalcalnych plaszczyzn normalnych do osi belki. Nic nie stoi w da-
nym wypadku na przeszkodzie, aby zastapi¢ odcinki peinos$cienne o zmien-
nym przekroju przez odpowiednie odcinki kratowe (rys. 29) odpowiadajg-
ce omoéwionym wyzej warunkom (1) - (3).

Rys. 29

Zakrzywione prety zginane moga byc¢ rozpatrywane jako zloZzone
7z nieskonczenie matych elementow prostych, a wiec rowniez ich doty-
cza wszystkie przytoczone wyzej rozwazania.

Pozostaje jeszcze podkresli¢, ze energia sprezysta nagromadzona
w elementach konstrukcyjnych zginano-Sciskanych, obliczanych na pod-
stawie rownan energii sprezystej, nieomal zawsze bywa wyznaczana ze

Wzoru
N2
V= {(?EJ+ 2EA)dx, (217)

gdzie czesci jej wywolane przez zginanie i przez Sciskanie moga by¢ ob-
liczone niezaleznie od siebie, a wiec na podstawie omoéwionych wzorow
(213) i (214).
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Mozemy ostatecznie stwierdzi¢, ze zastosowanie do wyprowadzenia
rownan energii sprezystej (187)-(192), dotyczacych belki pelnej, sche-
matu kratownicy plaskiej o tym samym momencie bezwladnosci nalezy
uwaza¢, przy zachowaniu zwyklej dokladnosci obliczen statycznych, za
stuszne dla wszystkich ukladow sprezystych mogacych uchodzi¢ za pta-
skie. Dla przykladu przytoczymy wyprowadzeme wzoru Clapeyrona,
czyli wzoru (187).

Stosujemy tu ogélne réwmanie kraty (50).

Poniewaz mamy w danym razie do czynienia z kratownica sprezysta
odpowiadajaca prawu H o o k e’ a, jest wiec

S1
A=, (218)

gdzie S oznacza sily powstajace w pretach pod dzialaniem zewnetrznych
sit P, wzrastajacych w sposob ciggly i nieskonczenie powolny W ten
sposéb réwnanie (50) przybiera postaé

k r Sl
ZPU—L ==t (219)
1 i
lub tez postac
o ‘ 127 — Yr‘ . =) (220)
2 21: —~ 2EA

Poniewaz drugi skladnik lewej strony réwnania (220) wyraza w mysI
réwnania (214) energie sprezysta nagromadzong w kratownicy, mamy

wiec
1
‘"';‘2‘2 Pv. (221)

Prawa strona réwnania (221) wyraza prace sil zewnetrznych P przy
cigglym i nieskonczenie powolnym wzrastaniu ich od 0 do wartosci
ostatecznej. Jezeli wielko$¢ te oznaczymy przez T¢, wowczas znajduje-
my, ze

=Tl (222)

Roéwnanie (221) mozemy rozszerzy¢ na uogdlnione sily i na uogélnione
przesuniecia.
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V. WNIOSEK

Moznoé¢ zastosowania metod mechaniki budowli opartych na regule
rownolegltoboku sit w teorii ukladéw pretéow rozciggano-$ciskanych
i zginanych oraz w teorii energii sprezystej doprowadza do wniosku, ze
regula réwnolegloboku sit i wyplywajace z niej metody geometrycznego
badania odksztalcen pozwalajg na wykonanie wszelkich technicznie waz-
nych obliczen statycznych.

Peswwme

O T'EOMETPHYECHKHUX METO/IAX HCCIIEJOBAHHA
CTEPH{HEBBIX HOHCTPYRIIUHA

@DyHIZaMEHTOM CTPOMUTENIBHOM MeXaHMKM, KpOoMe 3aKOHa ! yKa MM
IPYTOoro IOJIOZKEHMS, KOTOPOe 2aMelllaeT 9TOT 3aKOH, MOXKHO INPWHATH OJWMH
U2 JABYX OPUHUUIIOB OOIIE)i MEXaHMKM — MIPMHLMII BO3MOZKHBIX IIepeMe-
LIeHNY MM TPaBMJIO TIapaJijesiorpaMma CuilL

Uernpro macrosamieitr paboThl ABJAETCA II0Ka3aTb, KaKMM 0Dpa3om riab-
HbIE 3384}l CTPOUTENHHOJ MEXaHMKM MOIryT OBITH peLIeHBI MNPy IIOMOILM
METOJOB, MCXONALIMX M3 IIpaBuJia napaJsiesorpamMma cuia (rnrasa I).

TnaBa II paBoThl COXEPZUT TeoMeTpuHeckoe 0OGOCHOBaHMe (OPMYJIbI
Makceenaa u Mopa J1a nepeMelleHmi? y3J0B (pepMbl 1 COCTaB-
JleHue 00ILero ypaBHEHMS PEILIeTKIN.

B raase III npuBoauTca obocHOBaHMe (POPMYJIBI AJA NMPOrunda KOHCOIN
METOZOM BTOPMYHBIX MOMEHTOB, He Ipuierasd K IPeIIoJIOXKeHNI0, YT0 KOH-
cosib 3alleMJsieHa Ha cBobomHoM KoHIE. IlpencraBisaerca BAMAHME Ilepe-
MEHHOro cedeHyus DasloK Ha CTAaTMYECKM HEONpeJeJMMble BEeJIMYMHBI, pac-
CMaTPUBAIOTC (DOPMYJIbI JJIA TEOMETPMYECKOro CJIOZKEHMA JedopManuii
M NpUMEHEHBI K pacyeTy PaMOYHBIX CHCTEM; PelIaeTcsd MHOTOYTOJIbHaA
pama myTeM IpVMEeHEHMs MeTO[a KOHEYHBIX Pa3HOCTEN.

B rmase IV porasbiBaeTcd, YTO (QOPMYyJIbI Ha IPYIMEHEHue ITOHATHA
YOPYTO¥ SHEPIMM K PELIeHMIO BOIPOCOB CTPOMUTEIBbHOII MEXaHVMKM, BbIBe-
JIEHHBIE Ha OCHOBAHMY TEOPMM PEIIETKY, MOTYT NPUMEHATHCA M K IIOJTHLIM
cycTeMaM.

Paccyzxpenna, npuBeeHHble B padoTe, BeAyT K 3aKJIOYEHMIO, YTO IIpa-
BUJIO TIapasljiejiorpaMMa CUJI ¥, BBITEKAIOI[Me M3 HEro, MeTOAbl IeOMeTpiu-
YECKOTO MCCJIEeI0BaHMuA gedhopMaliil IT03BOJIAT IPOMU3BOAUTE BCAKOIO Poia
TEXHMYECK) BasKHbIe CTaTM4YecKle PacyeThl.
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Summary

GEOMETRICAL METHODS OF INVESTIGATION OF LATTICE STRUCTURES

Structural mechanics can be based, beside Hooke’s law or any
other assumption replacing that law, on one of two fundamental princi-

ples of theoretical mechanics: the principle of virtual work and that of
the parallelepiped of forces. The object of this paper is to indicate how

the principal problems of structural mechanics can be solved by methods
based on the principle of the parallelepiped of forces (Sec. I).

Sec. IT of the paper contains a geometrical proof of the Maxwell -
Mohr equation, determining the displacements of lattice knots and
a derivation of the general equation of a lattice.

In Sec. IIT the formula for the deflection of a cantilever beam is
demonstrated by the method of «secondary moments», without having
recourse to the assumption of a fastening at the free end; the influence of
variability of cross-section on the statically indeterminate quantities is
shown; equations for geometrical addition of deformations are discussed
and used for frame computation; a solution of the problem of a polygonal
frame, using the method of finite differences is given.

In Sec. IV it is shown, that the equations, in which the notion of elastic
energy is used ito solve problems of structural mechanics, and which are
derived on the basis of the theory of lattices, can be used also for solid
systems.

The considerations of the present paper lead to the conclusion that the
principle of the parallelepiped and the resulting methods of geometrical
investigation of the deformations, can be used in all technically important
statical computations.

Praca zostata zlozona w Redakcji dnia 23 paZdziernika 1954 r.
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