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I. ISTOTA ZAGADNIENIA

Mechanikę budowli można oprzeć — poza prawem H o o k e ’ a lub 
innym założeniem zastępującym to prawo — na jednej z dwóch podsta­
wowych zasad mechaniki ogólnej — na zasadzie prac wirtualnych lub na 
regule równoległoboku sił.

Pierwszej z tych zasad brak niewątpliwie sugestywności, cechuje ją 
za to całkowita ogólność, druga natomiast jest bardzo przekonywająca 
swoją prostotą, przejrzystością i oczywistością, ogólność jej jest jednak 
mniej wyraźna. Aby uznać regułę równoległoboku sił za możliwy punkt 
wyjścia wszystkich poczynań mechaniki budowli, należy zdać sobie sprawę 
z tego, że na równoległoboku sił oparta jest teoria yieloboku sznurowego, 
z której wywodzą się z kolei wszystkie nieomal wchodzące tu w grę twier­
dzenia mechaniki ciał sztywnych, a więc reguła momentów, równanie 
krzywej sznurowej itd.

Zasada prac wirtualnych prowadzi bezpośrednio do metod analitycz­
nych, reguła równoległoboku sił — do geometrycznych sposobów obliczeń. 
W dalszym rozwoju metod mechaniki budowli podobny podział staje się 
już mniej wyraźny.

Celem niniejszej pracy jest wykazać, w jaki sposób główne zadania 
mechaniki budowli mogą być rozwiązywane za pomocą metod wywodzą­
cych się z reguły równoległoboku sił.

W układach prętowych w znacznie większym stopniu niż w układach 
pełnych występują różnice w stosowaniu metod opartych na zasadzie prac 
wirtualnych i w stosowaniu geometrycznych sposobów badania konstruk­
cji. Stąd w pracy niniejszej omawiane są właśnie konstrukcje prętowe.

Spośród czynników obliczeniowych dotyczących konstrukcji wykona­
nych z materiałów sprężystych główne miejsce w mechanice budowli zaj­
mują obliczenia odkształceń i wielkości statycznie niewyznaczalnych. 
Toteż o nich td przede wszystkim będzie mowa. W związku z tym dalej 
omówione zostaną, z jednej strony, przesunięcia węzłów kratownicy 
i odkształcenia belek i ram, z drugiej zaś, wyznaczenie wielkości nadlicz­
bowych w belkach i ramach. Wyznaczenie wielkości nadliczbowych w kra­
townicach nie jest poruszane wobec tego, że odbywa się ono często na pod­
stawie wzoru M a x we 11 a i Mohra, do którego w ten sam sposób 

3



doprowadza traktowanie zagadnień mechaniki budowli z punktu widzenia 
zasady prac wirtualnych, jak i z punktu widzenia reguły równoległoboku 
sił. Przedstawione jest tu natomiast zastosowanie wyników otrzymanych 
przy badaniu odkształceń kratownic do wyprowadzenia równań energii 
sprężystej używanych w mechanice budowli.

Rozprawa niniejsza oparta' jest w znacznym stopniu na następujących 
publikacjach autora:

(1) Geometryczne uzasadnienie wzoru na przesunięcia węzłów kra­
townic, Przegląd Techniczny, Warszawa 1930,

(2) Obliczenie ramownicy czteroprzęsłowej o końcach przesuwnych, 
Przegląd Techniczny, Warszawa. 1930,

(3) Rozwiązanie ramy wielobocznej przy zastosowaniu równań różni­
cowych, Czasopismo Techniczne, Lwów 1932,

(4) O zastosowaniu teorii kraty do wyprowadzenia równań energii 
sprężystej, Lwów 1932,

(5) W sprawie wyznaczania ugięć wspornika sposobem momentów 
wtórnych, Prace Warsz. Tow. Pol., 1933,

(6) Zagadnienie zmienności przekrojów w konstrukcjach żelbetowych, 
Cement, Warszawa 1933.

Przed zastosowaniem tych publikacji do dalszych wywodów zostały 
one zanalizowane z punktu widzenia dzisiejszych potrzeb budownictwa.

II. UKŁADY PRĘTÓW ROZCIĄGANO-ŚCISKANYCH

1. Uzasadnienie wzoru Maxwella i Mohra dla kratownic

Przesunięcia węzłów kratownic przegubowych znajdujących się pod 
działaniem pewnych sił zewnętrznych bywają wyznaczane bądź bezpo­
średnio jednym ze sposobów wykreślnych (najczęściej sposobem Wil­
li o t a), bądź też ze wzoru M a x w e 11 a i Mohra 

vm = y SZl
EA’ 

i
(1)

w którym vm oznacza przesunięcie węzła m w pewnym kierunku, S siły 
w poszczególnych prętach kratownicy, Z siły, które działałyby w tych 
prętach, gdyby w węźle m była zaczepiona siła równa 1 i mająca kieru­
nek przesunięcia vm, wreszcie EA iloczyn współczynnika sprężystości przez 
pole przekroju pręta i l długość pręta. Suma dotyczy wszystkich prętów 
kratownicy.

Wzór (1) zostanie niżej uzasadniony na podstawie rozważań o charak­
terze geometrycznym. Ogólny bieg postępowania będzie następujący.
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Zakładamy, że jeden tylko z prętów kratownicy (pręt i j) uległ zmianie 
długości, i twierdzimy, że wówczas przesunięcie węzła m wyraża się 
wzorem

Vm == Zij A lij , (2)

gdzie przez Ahy oznaczamy przyrost długości pręta ij nie robiąc przy tym 
żadnych założeń co do natury tego przyrostu.

Przyjmujemy taki układ współrzędnych, aby jedna z osi była równo­
legła do poszukiwanego przesunięcia vm i ustawiamy dwa następujące 
układy równań liniowych: układ równań

f12 (dr, Ay ...) = 0, 
(dr, dy...) = 0, (3)

wyrażający zależność między przyrostami współrzędnych węzłów kratownicy, 
obejmujących poszczególne pręty 12, 23 itd., oraz układ

F,(Z12,Z23...) = 0,
F2 (Z]2, Z23...) s= 0, (4)

wyrażający warunki równowagi poszczególnych węzłów.
Rozwiązując układ równań (3) względem vm, równego w przyjętym 

układzie współrzędnych jednemu z przyrostów /la? lub Ay, oraz rozwią­
zując układ (4) względem siły Z,7 działającej w pręcie ij znajdujemy 
z dyskusji obu rozwiązań, że

= Zy, czyli vm = Z,j Zl ty. (5)
zj Lij

Ponieważ zmiana długości każdego z prętów kratownicy wywoła po­
dobne przesunięcie węzła m, dochodzimy do wzoru

vm=^ZAl (6)
1

lub przyjmując, że wydłużenia Al są to wydłużenia sprężyste kratownicy 
równe Al — Sl/EA, do wzoru (1).

Przystępując do obliczeń zauważamy przede wszystkim, że zależność 
między współrzędnymi węzłów kratownicy a długością pręta wyraża się 
znanym wzorem geometrii

ll = (xt — Xj)2 + (y i — yjY (?)
lub też wzorem

fij = (xi — Xj)2 + (yi — yjY — ly = 0. (8)
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Pochodne cząstkowe funkcyj fy względem współrzędnych 
postać

~hi = 2(x,— Txj=~2(Xi~Xj^

przybierają

(9)

Wyznaczając przyrost Aly z równania (7) i pomijając wyrazy 2 rzędu 
dochodzimy do równania

lijAly — (Xi — x/) Axi — (xi — Xj} Axj + (10)
+ (y/ — yh A yi — (yi — yj) A yj.

Po uwzględnieniu zależności (9) otrzymujemy

dfy
dxi dxj JJ \ dy, J y‘ + dyj Ayj~2 Ail> • (11)

Liczba równań typu (11) równa się liczbie prętów kratownicy r, która 
wynosi dla kratownicy statycznie wyznaczalnej o k węzłach 2 k — 3. Liczba 
niewiadomych przyrostów współrzędnych wynosi również 2 k — 3, gdyż 
wprawdzie całkowita liczba przyrostów równa się podwójnej liczbie węzłów, 
jednak dwa przyrosty odpowiadające przegubowo-nieprzesuwnej podporze 
kratownicy i jeden odpowiadający jej podporze przegubowo-przesuwnej 

układu współrzędnych.
Aby móc korzystać przy dysku­

towaniu równań (11) z ogólnej teorii 
równań liniowych, nadajemy im po­
stać ogólną. W tym celu wprowadza­
my do każdego z nich wszystkie nie­
wiadome przyrosty Axi, Jy,, Axj, Ayj 
oznaczając je niezależnie od ich kie­
runku przez A z z odpowiednim nume-

0 ' " ‘ rem porządkowym I, II,..., h, przy
Rys. 1. czym z z właściwym znaczkiem wy­

rażać będzie współrzędne Xi, yi, xj, yj 
odpowiednich węzłów, tzn. że np. przesunięcie Azx odpowiadać będzie 
współrzędnej zx (rys. 1).

Współczynnikami przy niewiadomych Azx przekształconych w ten spo­
sób równań będą pochodne djij{dzx, które, jak to wynika ze wzorów (9), 
będą różne od zera jedynie dla przyrostów Az współrzędnych węzłów i i j 
obejmujących dany pręt i j.

równe są stale 0, niezależnie od
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Możemy więc nadać równaniom (11) postać
df,y dz! df/lżlZn , ,äfijAzr_
dzt 2l,j dzH 2ly- dzx 2ly dzr 2ly 11' 1 /

Przypuśćmy w dalszym ciągu, że do poszczególnych węzłów i kratownicy 
zaczepione zostały siły zewnętrzne PiX i Piy skierowane równolegle do 
osi współrzędnych i wywołujące w prętach u siły Sy (rys. 1).

Z warunków równowagi węzła i otrzymamy w ten sposób równania
^ + ^S«=0,| 
P„+rSj,-O, I

gdzie symbol Sy ze znaczkiem x, y lub ogólnie z wyraża rzut siły dzia­
łającej w danym pręcie na kierunek jednej z osi współrzędnych, a sumy 
dotyczą sił we wszystkich prętach Sy zbiegających się w danym węźle i.

Mając na widoku zależności

Syx = Sy^^, . Syy^Sy^^- (14)

jako rezultaty rzutowania sił S na osi współrzędnych oraz rozważania przy­
toczone przy wyprowadzeniu równania (12), nadajemy równaniom (13) postać

. fi 2 12 i ^/23 ^23 I ... I d Id । (151
dzx 2112 dzx 2l23 dzx 2ly 

gdzie symbol Pz oznacza siłę zewnętrzną mającą kierunek przesunięcia 
vm = A zx i zaczepioną do węzła, który tego przesunięcia doznał.

Liczba równań typu (15) równa się tak samo, jak liczba równań typu 
(12) liczbie r prętów kratownicy.

Przystępując do rozwiązania układu (12) r równań z r niewiadomymi 
typu Azx/2ly oraz układu (15) r równań z r niewiadomymi typu Syl2ly 
wprowadzamy następujące symbole dla wyznaczników tych równań:

/12 

dz{
df12 

d Zn
df,2 . 
dzx

dfi2 
d zr

df23 
ÓZl

d /23 

d zn dzx
df23 
d zr

Dz =
djy 
d z^

d iu 
dzn

dfy 
dzz

ŹtlL 
d zr

(16)

d]r-\.r dfr-i.r dfr-i.r dfr-i.r
d zv d zl{ dzx . d zr
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dfl2 
d z.

df23 ... dfu dfr-i.r 
d z, d z{ d z.

/12 

d zn
d f23 ... d fjj d fr-i.r 
dzu d z[{ dzn

Ds =
dfi2 ^f23 dfij d fr-i.r

(17)

dzx dzx dzx dzx

dfi2 
d zr

d f23 ijj d fr—i,r
d zr d zr d Zr

ÓJ12 
d z(

dfi2 
d zxl

Ó fl2 । fl2
dzx-i /,t12 dzx.l

dfi2 
d zr

df23 
d z}

djl3 
dzu

» /23 Ą 1 fż3
dzx-i 71123 dzx.l

df^ 
d zr

d 
d Zł

dfg 
dz„

a 1 d^J
dzx-i Al,J dzx+i' df‘L 

d zr

, (18)

df,—l.r d fr—l.r A 1 d fr-l.r
dzx-i ^lr-' r dzx,i

^fr— f.r
dz. d zr

d z, d z.

dft-i.j p.^ dfi+i,j dfr-1
d z{ d zx d z.

r

^/i2 df23 
d z{[ d zn

d fl2 f23 
d zx dzx

d fi-L, p„ dfi+i.j dfr-i
d 0 Zn ó z^\

ŻŹi-zW p'- df‘ i-i... dfr-i 
dzx d zz dzx

r

r
(19)

ifią H23 
d zr d zr

dfj-i.j prz dfi+i.j dfr_x
d zr z d zr d zr

r

Wobec przyjętych oznaczeń otrzymujemy na podstawie teorii równań 
liniowych rozwiązania następujące:

d z* Dż
2 lij Dz

S'L = Pi
2 lij Ds

(20)

(21)

8



Rozpatrzmy obecnie otrzymane rozwiązania w założeniu:
(1) że w omawianej kratownicy jedynie długość pręta hj ulega zmia­

nie, że więc przyrosty zł l dla pozostałych prętów równe są zeru,
(2) że do kratownicy zaczepiona została jedna tylko siła równa 1 i za­

czepiona w kierunku przesunięcia A zz,
(3) że zmiana długości pręta lij powstała nie na skutek działania 

siły 1, lecz niezależnie od niej, w sposób zresztą zupełnie dowolny.
W związku z powyższymi założeniami w wyznaczniku (18) wszystkie 

wyrazy kolumny zawierającej przyrosty A l równe są zeru z wyjątkiem 
wyrazu A lij. Podobnie w wyznaczniku (19) w kolumnie zawierającej 
siły Pz jedynie P* = 1 różni się od zera. Mając to na widoku przesta­
wiamy w wyznaczniku (18) kolumnę zawierającą Al na miejsce pierwsze, 
a w wyznaczniku (19) przestawiamy w ten sam sposób kolumnę zawiera­
jącą siły Pz. Tego rodzaju przestawienie wywołuje, jak wiadomo, zmianę 
znaków w wyznacznikach. Otrzymujemy więc

0 ^'2 d df12 ^f]2 dfi2
d z( dz„ dzz_i dzz+i d zr

o (> ^2S df23 df23 df2S
d z. dzH dzx-i dzx+i d zr

D)=(-l) , (22)
Al diij dfu d f/j d fij d fu
Al,J dz. dzn dzz-i dzz+i d zr

dfr-i.r dfr-i.r d fr-i.r dfr-i.r
dzj dzn dzx-i dzx+i d Zr

o dfl2 d f23 d fi-t.j d fi +U dfr-tr
d z. d Z( d z1 d z1 dzt

o df23 d fi-ij dft^.j dfr-i.r
dzn d Zn d zn d z„

D'/ = (—1) (23)
1 ^/12 d fs3 d f,-i,j d fi ri,j dfr-i.r

d zz dzz dzx dzx d zx

df28 dfi-i,jdfi+i,j dfr-i.r
0 dzr d zr dzr d zr d zr
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Wyznaczniki (22) i (23) obliczamy według ogólnego wzoru

D = £ (—l)k^akAk,
*=i

(24)

w którym ak oznacza kolejne wyrazy pierwszej kolumny wyznacznika, 
Ak zaś odpowiednie podwyznaczniki, przy czym znak sumy dotyczy wszyst­
kich wyrazów pierwszej kolumny wyznacznika. Mamy więc

dzL d zn dzx-\ dzx^
d^2 
d zr

-

d /23 d /23

d z{ d za
; d f23 fas 

dzx-i d zx^
.. łh3 

d zr

Z>J = (—ijdly djt-^ d ft-tj 
d Zy d z{l

d fi-u dfj-ij 
dzz_i dzx+i

d fi-i.j 
_d zr (25)

dfi W df‘+'d 
d z, d zn

dfai.j dfi y.L 
dzx-i dzx+\

.. ^‘±1’1 
d Zr

■ dfr-i.r dfr-i.r 
dz[ d zn

dfr-i.r dfr-i.r 
dzz_i dzx+i

(Lfr-^ 
d zr

df12 df2s 
dzy d Z[

d fi-i.j d fi+u 
d Zy d Zj

. dfr-^r 
dzy

Łfią dh* 
d Zn d zn

fi-i.j dfi + i.j 
d Zn d zu

dfr-i.r 
dzn

D^=(-l) d fis d f23 

dzx-y dzz_t

dfi-i.j dfi+ij _ 
d zz-i dzz~i d zx-\ (26)

& fl2 d f23 

dzx+i dzx+i
łJl±Li 

dzx y dzx + i dzx+i

Ó fi a d faa 

d zr d zr
łJl^LŁ df‘+U 

d zr dzr
dfr-i.r 

d zr
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Porównując ze sobą wyznaczniki (16) i (17) zauważamy, że kolumny 
pierwszego z nich odpowiadają wierszom drugiego i na odwrót, wobec 
czego

DZ = DS. (27)

To samo dotyczy wyznaczników (25) i (26), czyli że

21 = D^. (28)
A hj

Ogólne rozwiązania (20) i (21) układów równań (12) i (15) przybierają 
wobec tego postać (tu będzie Sij = Zy)

= Dj ,
2 by Dz

Zlj __ Dz
2 ly Z lij Dz 

skąd mamy
. I —— Zij A lij ,

co było do dowiedzenia. Przejście od wzoru (31) do wzoru (1) było już 
omówione wyżej.

(29)

(30)

(31)

W wielu przypadkach szczególnych, mających znaczenie praktyczne 
dla budowy mostów i budynków, łatwo można uzasadnić wzór (31) rów­
nież bez nadawania równaniom 
przesunięć oraz równaniom rów­
nowagi postaci ogólnych (12) 
i (15).

Ponieważ większość kra­
townic mostowych składa się 
z dwóch pasów i kraty, więc 
damy tu uzasadnienie wzoru (31) 
w przypadku zmiany długości 
jednego z prętów w pasie kra­
townicy tego rodzaju (rys. 2).

Rys. 2

Przypuśćmy, że skrótu A l doznał pręt 34 górnego pasa i że chodzi 
o wyznaczenie pionowego przesunięcia węzła 8.

Zaczepiamy w węźle 8 pionową siłę 1 i wyznaczamy wywołaną przez 
nią siłę Z34 sposobem momentów (Rittera):

Z34
h ’ (32) 
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gdzie Mlo oznacza moment zginający w punkcie 10, a h odległość punktu 10 
od pręta 34.

Przyjmujemy na razie, że pręt 1, 11 przylegający do podpory nieprze- 
suwnej nie ulega obrotowi. W związku z tym założeniem uważamy za 
nieruchomą również część kratownicy 1, 2, 3, 10, 11, której pręty żadnych 
zmian długości nie doznały.

Na skutek skrócenia się pręta 34 o A l część kratownicy 4, 5, 6, 7, 8,. 
9, 10 dozna obrotu względem punktu 10, przy czym węzeł 7 uniesie się 
nad odpowiednią podporą. Kąt tego obrotu wynosi

0^tg0 = ^, (33>

wobec czego przesunięcie pionowe węzła 7 będzie równe
»>04 (34>

Jednocześnie węzeł 8 dozna przesunięcia pionowego 
^ = 02. (35)

Ponieważ węzeł 7 w rzeczywistości nie może unieść się nad podporą 
i pręt 1, 11 ulega wobec tego obrotowi, należy więc od przesunięcia u' 
odjąć przesunięcie wywołane przez obrót kratownicy względem punktu 1 
o kąt

«7 
a> = -. (36)Li

Nowe przesunięcie węzła 8 wyniesie 
= o (x10 + 2), (37)

a więc całkowite jego przesunięcie będzie równe

i u ^4 ^4 *^10
— ----------- ^^^-(^10 + ^) = (38)ft ilLi

_  ^34 / ;   ' ^10 + źj     Mlo ..
xh \ 10 L / h^34'

Porównując ze sobą wzory (32) i (38) otrzymujemy wreszcie

vs = • Zl l34. (39 ]

Rozpatrzymy w dalszym ciągu przypadek mający duże znaczenie 
w budownictwie, mianowicie przypadek belki kratowej o pasach równo­
ległych (rys. 3). Przypuśćmy, iż wydłużeniu uległ tu krzyżulec 3 b i że 
chodzi o wyznaczenie pionowego przesunięcia węzła 5.
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Zaczepiwszy w węźle 5 pionową siłę równą 1, skierowaną ku górze,
wyznaczamy odpowiednią siłę w

Zs6= 4° . (40)
L sin cp

Za nieruchomy przyjmujemy 
na razie pręt 23 dolnego pasa, 
co pociąga za sobą obrót czę­
ści 1 ab 2 kratownicy względem 
węzła 2 i części 3 cg 7 wzglę­
dem węzła 3 o kąty równe

(41) 
h l23 sm ip

pręcie 3 b ze wzoru

oraz wywołuje przesunięcia pionowe v\ oraz v7 węzłów 1 i 7 względem 
odpowiednich podpór.

Na podstawie rys. 3 znajdujemy, że

u'=0r,, v'7 — 0r2. (42)

Aby kratownica, którą myślowo oddzieliliśmy od podpór, z powrotem 
znalazła się na podporach, należy ją jako całość przesunąć w kierunku 
pionowym o v\ i obrócić względem punktu 1 o kąt

co =--------- =-------------- = ——-----;------ . 43L L Ll23sm<p

Węzeł 5 dozna wskutek obrotu części kratownicy 3 cg 7 względem 
-węzła 3 przesunięcia w kierunku ku dołowi równego

ul = 02. (44)

Przesunięcie pionowe całej kratownicy o wywołuje równe u, prze­
sunięcie węzła 5 ku dołowi. Wreszcie, obrót całej kratownicy o kąt co 
-względem podpory 1 powoduje przesunięcie węzła 5 ku górze równe

v" = wo;10.

Całkowite pionowe przesunięcie węzła 5 wynosi wobec tego
V5 = ^5 + + 0rl----- WX10 =

dis* /T I ZUs*^^ + r2)
— 1i r i /---------75-----:--------- —

l23 sm cp Ll23 sm <p

(45)

(46)

l23 sin cp
(3*__ / ^10 ri ।

l23 sin cp \ L
xio r2

L

13



Ponieważ
^10 Xw(rt + l23)

L L (47>

więc równanie (46) przybiera posltać

Lsin <p Alu, (48)

skąd porównując wzór ten ze wzorem (40) dochodzimy do zależności

= Zu d lu ■ (49>

W podobny sposób może być wyprowadzony wzór (49) i dla innych 
typów kratownic o pasach równoległych.

2. Ogólne równanie kraty

Geometryczne i kinematyczne własności kraty ujmuje w sposób naj­
bardziej ogólny i zwięzły następujące równanie:

* r

Pv — S dl = 0; 
1 1

(50)

tu v oznacza rzuty przesunięć poszczególnych węzłów kratownicy od I-go 
do k-go na kierunki sił P zaczepionych do tych węzłów, S siły w poszcze­
gólnych prętach kratownicy od I-go do r-go, a d l zmiany długości odpo­
wiednich prętów.

Uzasadnięnie równania (50) oparte jest na wzorze (6), który dla po­
szczególnych węzłów daje wyrażenia następujące:

Uj = 2^ d l^ ~F 22 d l2 ~F ■ * ■ ~F 21 dl,- -F ■ * ■ ~F 2^. d lr,

= 2“ d + 2“ d l2 -F • • • + 2” d H------ F Z}' d lr,

...................................................................................... } (51> 
ve = ZJdl( + Z2 d l2 H------ FZfdl, H------ F2^dlf,

vk = Z* d lt + 2* d l, H------ F 2f d 1,- + • • • + 2* d lr.
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Wyrażenia te mnożymy kolejno przez siły PI; Pn,.... Pe...... P* zaczepione 
odpowiednio w węzłach I, II, ...,e,..., k i dodajemy je do siebie kolumnami:

Pj + P„ vn + • • • + Pe «, + •■• + Pk vk =

= (z; p, + z” piT + • • • + zj ą + ■ ■ ■ + pj j it+ 
+ (z’p, + zy pn + ■ ■ • + Z' pe + • • • + z^pj d i, +

+ (z;, p, + zy pn + • ■ ■ + z? pe + • • • + zy Pk) a +

(52)

+ (Z' P, + zy P„ + • • ■ + z*’ Pe + ■ • • + Z? Pk) A lr.

Sumy zawarte tu w nawiasach wyrażają siły w prętach kratownicy
1, 2, .... i,r (por. p. 2 tego rozdziału), a więc

Z\PI + Z"PII+--- + Z;Pe + - + Z*Pk=S1,

z;p1 + zypII + --- + z^pe + --- + zjp/; = s2, (53)

W ten sposób wyrażenie (52) przybiera postać

k
Pv = P[ Vi + Pn + • • • + Pe Ve + * * * + Pk Vk = (54)

1

= S, A li + s2 dl2 + • • • + S7 A li H------ F Sr A lr = S A l, 
i

czyli postać poszukiwanego równania (50), które w mechanice ogólnej od­
powiada równaniu prac wirtualnych.

Podkreślić należy, że w równaniu tym ani wielkości A l, ani wielkości 
v nie są w ogólnym wypadku zależne od sił P lub S; wielkości A l mogą 
więc np. mieć charakter termiczny, sprężysty lub też mogą wyrażać róż­
nicę długości dwóch prętów, z których jeden zastąpił drugi w układzie 
kratowym. Natomiast siły P i S tworzą tu układy sił od siebie zależne, 
a również przesunięcia v i A l są od siebie wzajemnie uzależnione.

W pierwszej sumie równania (50) zwroty sił P odpowiadają zwrotom 
przesunięć u, a w drugiej, podobnie jak we wzorze (6) poprzedniego pa­
ragrafu, siły rozciągające odpowiadają wydłużeniom A l, a siły ściskające 
skróceniom.
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III. UKŁADY PRĘTÓW ZGINANYCH

1. Metoda momentów wtórnych

Wywodząca się z reguły równoległoboku sił teoria wieloboku sznuro­
wego doprowadza do równania różniczkowego krzywej sznurowej

d2^ 
dx2

Q
H ’ (55)

gdzie H oznacza odległość biegunową wieloboku sił odpowiadającego krzy­
wej sznurowej.

Krzywą sznurową, szczególny przypadek wieloboku sznurowego, trak­
tujemy w danym razie jako krzywą zamkniętą, gdyż belka pod działaniem

ną krzywej sznurowej. Odcinek ,7 
pomnożony przez H wyraża moment

obciążenia q i reakcji podpór znaj­
duje się w równowadze. Jeżeli za 
prostą zamykającą będziemy uwa­
żali oś belki, to otrzymamy układ 
przedstawiony na rys. 4, gdzie q 
oznacza obciążenie jednostkowe 
w dowolnym punkcie belki, y rzęd- 
w pewnym przekroju aa belki 

sił zaczepionych do belki na prze-
strzeni Aa, czyli moment zginający Mn; a więc

Ma = yH. (56)

Gdybyśmy wykresowi obciążeń jednostkowych q nadali kształt wykresu 
momentów zginających M podzielonych przez 1 cm2, a odległości biegu­
nowej H wartość EJ podzieloną również przez 1 cm2, co odpowiadałoby 
wymiarom wielkości q i M, wówczas równanie (55) otrzymałoby postać

d2 y M
dx2 EJ’ (57)

czyli byłoby identyczne z równaniem różniczkowym osi odkształconej belki 
w założeniu, że y wyraża ugięcia belki w poszczególnych przekrojach, czyli 
że y = y. Stąd wynika, że stosując wzór (56) do krzywej wyrażonej rów­
naniem różniczkowym (57), a więc do obciążenia q = M/l cm2 znajdujemy

lub

EJ
Ma=y . 21 cm“

Wa=yEJ,

(58)

(59)
gdzie 5№a = M'a ■ 1 cm2 nazywamy momentem wtórnym.
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Ze wzoru (59) wypływa bezpośrednio wzór na ugięcia belki

y = V7- (6°)Ej J

Różniczkując wzór ten względem x znajdujemy, że

1 d5R
EJ dx ’ (61)

skąd wynika, że kąt obrotu przekroju poprzecznego belki odpowiadającego 
ugięciu y, czyli kąt (p = co tg cp = y' równa się

^~EJ’ (62)

gdzie 3 oznacza siłę poprzeczną w pewnym przekroju poprzecznym belki 
pomnożoną przez 1 cm2 i nosi nazwę siły poprzecznej wtórnej. Dla ujedno­
stajnienia sposobu wyrażania się nazywamy moment zginający M obciąże­
niem wtórnym i oznaczamy to obciążenie literą q (dla uniknięcia niepo­
rozumień niżej stosujemy tu symbol q~.

Metodę momentów wtórnych, nie używając zresztą tej nazwy, zastoso­
wał do belek w dwóch punktach swobodnie podpartych pierwszy O. Mohr. 
Wzory (60) i (62) zawodzą jednak, gdy chodzi o wspornik, tzn. o belkę 
w jednym końcu utwierdzoną, a w drugim swobodną (rys. 5). W tych 
wypadkach wzory (60) i (62) oowinny być zastąpione przez wzory

EJ ’

37'
^EJ’

(63)

(64)

gdzie dli' oznacza moment statyczny obciążenia wtórnego zawartego między 
podporą A a danym przekrojem aa względem środka tego przekroju, 
a 3' — wypadkową tegoż obciążenia.

Podajemy niżej uzasadnienie wzorów (63) 
i (64) dla dowolnego obciążenia wspornika.

Przypuśćmy, że dla belki przedstawionej 
na rys. 6a, w dowolny sposób obciążonej, 
został sporządzony wykres momentów zgina­
jących i że uważając ten wykres za wykres obciążenia sporządziliśmy dla 
odległości biegunowej EJ krzywą sznurową A'mb (rys. 6b), której rzęd­
ne y liczone są od prostej ab, stycznej do tej krzywej w punkcie b.
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Rzędne tej samej krzywej liczone od prostej A'B', stycznej w punkcie A', 
oznaczamy przez y.

O ile krzywa A'mb ma wyrażać ugięcia belki, musi być ona umie­
szczona w ten sposób, aby 
styczna A' B' pokryła się 
z nieodkształconą osią belki 
(rys. 6c); rzędne y byłyby 
wówczas rzędnymi osi od­
kształconej.

Ponieważ możemy przyjąć, 
że cos < AKa = 1, więc

tg< AKa— — yA
i (65)

Va = —

gdzie yA oznacza wartość po­
chodnej funkcji y w punk­
cie A.

W tych warunkach dla pewnego punktu n (rys. 6 c) będzie

y—y = nn0 = —(g — x)yA. (66)

Mnożąc wszystkie wyrazy równania (66) przez EJ mamy

yEJ — yEJ = yaEJ + xyAEJ . (67)

Ponieważ y jest odcinkiem zawartym między skrajnymi bokami wielo- 
boku sznurowego zbudowanego dla danej belki i dla obciążenia q =M przy 
odległości biegunowej EJ, będzie więc iloczyn yEJ równał się momentowi 
zginającemu od tego obciążenia, a więc momentowi wtórnemu S)łx:

yEJ = ^x i yAEJ = WA. (68)

Stąd wynika, że

V'EJ i yAEJ = 51, (69)dx A

gdzie oznacza siłę poprzeczną i 51 reakcję podpory A od obciążenia 
wtórnego q = M .

W ten sposób równanie (67) przybiera postać

= Tu + 51 x + yEJ. (70)
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Z drugiej strony, wyrażenie dla momentu zginającego w dowolnym 
przekroju nn belki AB od obciążenia q przybiera postać

+ (71)

gdzię oznacza moment statyczny obciążenia wtórnego zawartego między 
podporą A a danym przekrojem, względem środka tego przekroju.

Zestawiając ze sobą wzory (70) i (71) znajdujemy, że

y ~ EJ’ 
co było do dowiedzenia.

Różniczkując wyrażenie (72) względem n znajdujemy

(72)

(73)

gdzie oznacza wypadkową obciążenia wtórnego if znajdującego się 
między danym przekrojem a przekrojem utwierdzenia.

Sposób momentów wtórnych można zastosować i bezpośrednio do wy­
kreślenia odkształconej; powiązanie z regułą równoległoboku jest w tym 
wypadku już całkowicie bezpośrednie.

Metoda momentów wtórnych może być wyzyskana nieraz do wycią­
gnięcia pewnych wniosków ogólnych z obliczeń statycznych. Wyzyskamy 
tu tę metodę do oceny'wpływu zmienności przekroju poprzecznego belek 
statycznie niewyznaczalnych na wielkości nadliczbowe. Chodzi o belki 
mało odbiegające od kształtu pryzmatycznego.

Mówiąc o belkach o kształcie zbliżonym do pryzmatycznego mamy na 
widoku bądź belki o przekroju stałym, przystosowanym do momentów 
zginających przez odpowiednie uzbrojenie, bądź belki mające w widoku 
kształt prostokąta z poszerzeniami na podporach, powstałymi przez na­
chylenie dolnej krawędzi belki do poziomu pod kątem nie większym od 
arc tg • 1/3.

Zbadamy teraz wpływ zmienności przekroju w takich belkach na wiel­
kości statycznie niewyznaczalne. Spośród różnych konstrukcji tego rodzaju 
zatrzymamy się na belce jednoprzęsłowej, jako na przypadku pozwalają­
cym przy różnym stopniu sprężystości utwierdzenia na wyciągnięcie wnio­
sków najbardziej ogólnych.

Niech będzie rozpiętość belki AB — l i niech obciążenie belki składa 
się z 5 sił równych P i zaczepionych w odległościach a = 16 jedna od 
drugiej (rys. 7a).

Momenty bezwładności zwiększają się w belkach utwierdzonych zwykle 
od środka ku końcom. Zmiana momentu bezwładności następuje tu w spo­
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sób dość szybki, lecz mniej więcej ciągły; ponieważ jednak uwzględnienie 
tej ciągłości natrafiałoby przy obliczaniu odkształceń na trudności bardzo 
poważne, zakładamy, że belka podzielona jest na odcinki o stałej długości, 
lecz o różnych momentach bezwładności. Tego rodzaju założenie nie może 
spowodować znaczniejszych błędów, w każdym razie błędów większych 
niż te, na które decydujemy się w różnych działach statyki budowli za­
stępując ciągłą zmienność funkcji przez zmienność nieciągłą, np. przy sto­
sowaniu równań różnicowych lub przy wyznaczaniu odkształceń łuków 
sposobem Bresse’a.

Przypuśćmy, że na odcinku 23 iloczyn momentu bezwładności przez 
współczynnik sprężystości równa się EJ=ia, a na odcinkach 12 i Al

Rys. 7.

odpowiednio ir = i3/k1 oraz 
i2 = i3/ka i że w części belki 
3B wielkości i zmieniają się 
w sposób symetryczny wzglę­
dem środka belki.

Celem obliczeń statycz­
nych jest tu wykazanie, w ja­
kim stopniu powiększenie 
przekrojów poprzecznych bel­
ki około podpór wpływa na 
momenty podporowe Ma^Mb.

Przyjmujemy za statycz­
nie wyznaczalny schemat za­
stępczy belkę w dwóch punk­
tach swobodnie podpartą 
(rys. 7b i 7c). Wykres mo­
mentów zginających od ob­

ciążenia P ma kształt linii łamanej Al0 2° 3° 4° 5° B, przy czym momenty 
zginające w poszczególnych punktach belki równają się odpowiednio:

M, =11° = 2,5 Pa, 
= 22° = 4,0 Pa, 

M3 = 33° = 4,5 Pa.
(74)

Jest to więc wykres obciążeń wtórnych q.
Kąt obrotu przekroju A belki swobodnie podpartej AB wynosiłby przy 

stałym momencie bezwładności
31

<Pa = — - (75)

gdzie 31 oznacza reakcję podpory A belki od obciążenia wtórnego. Wobec 
tego, że momenty bezwładności belki nie są stałe, należy rzędne wykresu 
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obciążeń wtórnych zmienić odpowiednio do momentów bezwładności w da­
nym odcinku, skąd dojdziemy do rzędnych:

11" — k} • 11° = kt • 2,5 Pa,

11' = k2 • 11° = k2 • 2,5 Pa, 

22' = k2 • 22° = k2 • 4 Pa.

(76)

W związku z tym otrzymamy dla reakcji od obciążenia wtórnego 
wyrażonego polem A 1" 1' 2' 2° 3° 3 wzór

?(p = (l,25k1 + 3,25 k2 + 4,25) Pa2. (77)
Stąd

p s 
^=1 (78)

Zaczepiamy w dalszym ciągu do belki swobodnie podpartej momenty Ma 
do jej końców. Odpowiedni wykres momentów zginających przedstawiony 
jest na rys. 7c za pomocą prostokąta AAnB"B, którego rzędne powinny 
być zmienione ze względu na zmienność momentów bezwładności przekro­
jów, podobnie jak rzędne wykresu na rys. 7b. Zmienione rzędne wykresu 
równe są odpowiednio:

AA" = k, ■ AA°=k{MA,
11" = k, • 
11' = k2 • 
2 II' = k„ •

1 I = k, Ma , 

U = k2MA, 
2 II = k2 MA,

(79)

a kąt obrotu końcowych przekrojów spowodowany przez moment MA wynosi 
i

51^
(8°)

l3

gdzie 3P1 oznacza pole .4.4" I" I'II'II III 3, tzn. że

21^ = (k, MA + k2 MA + MA) a. (81)

W drodze przyrównania odkształceń otrzymujemy równanie

<PPA = <fl, (82)

z którego wyznaczamy moment podporowy MA:

1,25 k, + 3,25 k, + 4,25 Pa,_ „/. + ^ +1 (83)

^=!,25^+3^± 4,25^
k, + k2 + 1
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Wstawiając w wyrażenie (84) wartości kt i k2 odpowiadające różnym 
momentom bezwładności przekroju na różnych odcinkach belki ustalamy 
wpływ zmienności przekroju na wielkość momentu podporowego Ma- 
Uwzględniamy tu wahania stosunku momentów bezwładności w środku 
i na końcu belki w granicach od 1:1 do 1: 3, co uzasadnia się praktyką 
budowlaną. Stąd otrzymujemy tablicę 1.

Tablica 1

ii i2 h k, 7^2 ki -4- k2 + 1 | 1,25 kj + 3,25 k2 + 4,25

1 1 1 1 1 3 8,75 2.92 Pa
2 1 1- 0,50 1 2,5 8,12 3,25 Pa
2 2 1 0,50 0,50 2 6,50 3,25 Pa
3 1 1 0,33 1 2,33 7,92 3,40 Pa
3 2 1 0,33 0,50 1,83 6,30 3,45 Pa
3 3 1 0,33 0,33 1,66 5,75 3A1 Pa

Z tablicy 1 widać, że wahania w momencie Ma dochodzą do blisko 20%, 
przy czym zmienność przekrojów wpływa na powiększenie momentu pod­
porowego.

Jeżeli porównać ze sobą momenty zginające w środku belki przy mo­
mencie Ma odpowiadającym stałemu momentowi bezwładności na całej 
długości belki i przy największym z momentów Ma tablicy 1, to znajdziemy, 
że w pierwszym przypadku

Mśr = (2,5-3 2,92 — 1-1 — 1-2) Pa =1,58 Pa, (85)

Rys. 8

(rys. 8 a). Wykres momentów zginających

w drugim zaś

Msr = (2,5-3—3,47 —3)Pa =
= 1,03 Pa, (86)

co daje różnicę wynoszącą z gó­
rą 50%.

Aby zorientować się, jakim 
wahaniom podlega w belce 
o zmiennym przekroju mo­
ment Ma w razie niesymetrycz­
nego obciążenia, weźmy pod 
uwagę belkę obciążoną jedną si­
łą P zaczepioną w odległości 
2a = l/3 od lewej podpory 
wywołanych siłą P ma kształt

trójkąta A 2° B (rys. 8 b). Aby uwzględnić w obliczeniu momentów pod-
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porowych zmienność przekroju belki, zastępujemy wymieniony wykres 
przez wielobok A 1" 1' 2' 2° 3° 4° 4' 5' 5" B, którego rzędne równają się
(rys. 8 b):

„ 2U = wPak1, O
, 411 = -= Pak2, O

22' = Pak2,

44' = 2- Pak2, ó

55" = 2 Pak.,, O (87)

55' = w Paki • o

Wielkości 'Лр i reakcji obciążenia wtórnego wyrażonego przez wie­
lobok A 1" 1'2' 2° 3° 4° 4' 5' 5" В znajdujemy z równań

+ i'p= pole A 1" Г 2' 2° 3" 4° 4' 5' 5" В, (88)

',)Г1 = 'Л^.6а=Гр-г, (89)

gdzie p oznacza pola trapezów A 1" 1, 1Г 2' 2, 22° 3° 3 itd., składających
się na pole A 1" 1 2' 2° 3° 4° 4' 5' 5" В, a r odległości środków ciężkości tych
trapezów od podpory B. Z równań tych znajdujemy

!»lp = (0,317 ki + 0,870 k2 + 1,045) Pa3, (90)

(0,192 ki + 0,630 k2 + 0,955) Pa3. (91)

Wykres momentów zginających wywołanych w belce przez momenty 
podporowe Ma i Mb ma kształt trapezu AA°B°B (rys. 8c). Wobec różnicy 
w momentach bezwładności przekrojów na poszczególnych odcinkach belki 
trapez ten zastępujemy przez wielobok AA" 1" Г 2' 2° 3° 4° 4' 5' 5" В w ten 
sposób, że poszczególne rzędne wynoszą:

У1A — Ma ,

П" = ~(5Мл + Мв)к1, 6
44' = -^(2 Мд + 4MB)ks, 

0

И' =~(5Мд + Мв)к2, 6
55' = ^(MA +5MB)kt , 

O (92)

22' =-|- (4 Ma + 2Мв)к2, 
О

55" = 4 Wa + 5 Mb) k2, 
0

33° =4-(3 Ma + Mb), 
6 BB" =Mb ■ ki.
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(95)

(96)

(97)

(98)

(99)

Korzystając w dalszym ciągu ze wzorów analogicznych do wzorów (88) 
i (89) znajdujemy dla reakcji podpór belki AB od obciążenia wtórnego 
AA" 1" 1' 2' 2° 3° 4° 4' 5' 5" B wyrażenia następujące:

CL^
3(41 = (30>673 + 22,671 k2 + 18,760) + (93)

uO

+ MB (5,334 k, + 13,836 k., + 17,337)],

[Ma (5,327 + 13,329 k2 + 17,330) + (94)
o O

+ Mb(30,666 k} + 22,164 k2 + 18,663)].

Równania analogiczne do równania (82) 
„p--  m — „Af
Va (fA ' Vb — Pb 

przybierają w danym razie postać 

czyli postać

mMA + tt-Mb — s, । 

m1 Ma + «i Mb = J 
gdzie

m = 30,673 kj + 22,671 k2 + 18,670 , 

n = 5,334 ki + 13,836 k2 + 17,337 , 

s =(11,412 ki + 31,320 k2 + 37,620) Pa, 

m,= 5,327 k, + 13,329 k2 + 17,330, 

n, = 30,666 ki + 22,164 k2 + 18,663 , 

st = (6,912 + 22,680 ka + 34,380) Pa

i skąd

^ ==—Sin . 
mni—rrii n

Dla momentów bezwładności przekrojów wahających się w granicach 
omówionych wyżej współczynniki (98) przybierają wartości zawarte 
w tablicach 2 i 3.
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Tablice 2 i 3 dowodzą, że w razie niesymetrycznego obciążenia belki 
wpływ zmienności przekroju na wartość momentu podporowego może 
dosięgnąć w przyjętych granicach zmienności 44%.

W przypadku belki utwierdzonej na końcach w sposób sprężysty, 
względnie belki poziomej w ramownicy, wpływ zmienności przekroju na 
wielkość momentów podporowych ulega pewnemu zmniejszeniu. Wynika 
to między innymi bezpośrednio z równania (83), które musi być w tym 
wypadku uzupełnione przez wstawienie do prawej jego części dodajnika 
<p = M!n wyrażającego kąt obrotu sprężyście utwierdzonego końca belki..

Tablica 2

Przypadek i, io kj k2 m n s/Pa

I 1 1 1 1 1 .72,014 36,507 80,352
H 2 1 1 0,500 0,333 56,777 33,840 74.646

III 2 2 1 0,500 0,500 45,341 26,922 58,986
IV 3 1 1 0,333 1 51,555 32,949 72,940
V 3 2 1. 0,333 0,500 40,219 26.031 56,080

VI 3 3 1 0.333 0,333 36,433 23,721 51,850

Tablica 3

Przypadek ii h - k2 ?71i n. st/Pa MA

I 1 1 1 1 1 35,986 71,493 63,972 0,148 PI
II 2 1 1 0,500 0,333 51,979 108.990 90,108 0,191 PI

III 2 2 1 0,500 0,500 45,315 97,908 78,768 0,189 PI
IV 3 1 1 0,333 1 51,089 103,869 88,954 0,211 PI
V 3 2 1 0,333 0,500 44,425 92,787 77,614 0,206 PI

VI 3 3 1 0,333 0,333 42,198 89,086 73,826 0,213 PI

Z przytoczonych obliczeń wynika, że wpływ zmienności przekrojów 
belek na wielkości nadliczbowe może być bardzo znaczny i że całkowite 
pomijanie go w obliczeniach nie jest właściwe. Widać stąd również, jak 
poważną rolę przy badaniu pracy konstrukcji odegrać może sposób mo­
mentów wtórnych.

2. Geometryczne dodawanie odkształceń

Równaniu (82), z którego korzystaliśmy w p. poprzednim do wyzna­
czenia wielkości statycznie niewyznaczalnych, możemy nadać postać

^-^=0 (100)
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lub postać 
q —f = 0, (101)

gdzie q oznacza odkształcenie w pewnym punkcie układu danego (w przy­
padku przedstawionym w p. poprzednim równe 0), a f odkształcenie sche­
matu zastępczego (w przypadku omówionym wyżej wynoszące <p?— <p%).

Równania typu (101) są w tych warunkach wyrazem dodawania od­
kształceń lub przyrównania odkształceń. Równania te mogą być usta­
wione w przypadkach belek prostych za pomocą sposobu momentów 

wtórnych, w przypadku jednak ogól­
nym, gdy w płaszczyźnie działania sił 
układ stanowi linię łamaną, doda­
wanie odkształceń w równaniach ty­
pu (101) musi mieć charakter doda­
wania geometrycznego. Chodzi więc 
przede wszystkim o geometryczne 
dodawanie odkształceń układów ra­
mowych płaskich.

Poszczególne pręty każdej ramy 
znajdującej się pod działaniem sił 
zewnętrznych doznają odkształceń 
w postaci ugięć i obrotów przekrojów

poprzecznych. Odkształcenie ramy jako całości możemy wyznaczyć drogą 
geometrycznego dodawania do siebie odkształceń jej poszczególnych prę­
tów. Z kinematycznego punktu widzenia zadanie sprowadza się do nada­
nia takich obrotów i przesunięć poszczególnym prętom ramy w jej postaci
niedokształconej (rys. 9b), aby 
ta postać mogła się pokryć z 
odkształconą postacią ramy 
rys. 9a).

Weźmy pod uwagę fragment 
ramy przedstawionej na rys. 10. 
Niech j—1, j, ..., i, ..., n oznacza­
ją kolejne węzły ramy, a pewna 
cyfra j niech odpowiada rów­
nież prętowi zawartemu między 
węzłami j — la j,

Robimy w węźle j przekrój poprzeczny prostopadły do pręta j — 1, j 
i zastępujemy oddziaływanie części j n na część A j ramy przez siłę T, 
i moment Mj. Wpływ siły Nj na odkształcenia pomijamy, gdyż oblicze­
nie odkształceń stanowi w teorii ram przeważnie tylko etap pośredni do 
wyznaczenia wielkości statycznie niewyznaczalnych, a wówczas siły po­
dłużne nie są zwykle brane pod uwagę.
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Każdy pręt j — 1, j możemy tu uważać za pręt utwierdzony w przekro­
ju j — 1, swobodny w przekroju j i obciążony siłą Tj i momentem Mj
(rys. 11). Oznaczamy przez yj przesunięcie punktu j takiego pręta prosto­
padłe do nieodkształconej jego osi, a przez obrót przekroju poprzecznego 
w j i uważamy za dodatnie wielkości yj i <pj spowodowane przez dodatni 

Rys. 11

moment Mj. Wówczas będzie

V’ M,. P 
1 J J „,0

Uj

<Pi = —

3EJ

2 EJ

1 2 EJ yj’
M,1, 
EJ

(102)

gdzie y° i oznaczają odpowiednio ugięcie i kąt obrotu w punkcie j 
wywołane przez siły P zaczepione do pręta j — 1 między jego końcami.

Aby pręt j — 1, j ramy, a właściwie je-

Rys. 12

go cięciwa (rys. 12, położenie a), mógł za­
jąć pewne położenie b, należy mu nadać 
obrót o pewien kąt co i pewne przesunię­
cie c.- Wobec tego geometryczne dodawa­
nie odkształceń ramy przeprowadzamy 
w etapach następujących:

(1) ustalamy obroty co poszczególnych 
prętów,

(2) znajdujemy przesunięcia poszczególnych węzłów ramy, wywołane 
obrotami prętów o kąty co,

(3) znajdujemy przesunięcia węzłów, spowodowane ugięciami poszcze­
gólnych prętów,

(4) dodajemy przesunięcia wymienione pod (2) i (3).
Zakładamy na razie, że odkształcenie ramy przedstawionej na rys. 10 

odbywa się w ten sposób, że każdy z prętów j — 1, j pozostaje prosty 
i tylko końcowy przekrój j ulega obrotowi.

Przypuśćmy, że linia łamana A 1 2 3 4 (rys. 13) przedstawia (w ska­
żeniu) część ramy pokazanej na rys. 10, przylegającą do podpory A.

Płaszczyzna przekroju poprzecznego pręta Al w punkcie 1 przed od­
kształceniem zajmuje położenie oznaczone przez 0. Pod działaniem siły Tt 
i momentu M, oraz odpowiednich sił P przekrój poprzeczny w punkcie 1 
doznaje obrotu o kąt <p, w związku z czym i cała część ramy położona 
na rysunku na prawo od przekroju 1 obraca się również o kąt gy (kąt 011) 
i zajmuje położenie 1 2, 3! 4].

Nowe położenia przekrojów poprzecznych w punktach 1, 2 i 3 ozna­
czone są na rysunku znaczkiem I.
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Z kolei siła T2 i moment M2 oraz odpowiednie siły P wywołują obrót 
końcowego przekroju poprzecznego 2 pręta 1 2 o kąt <p2 (już w położeniu. 
1 2j), co pociąga za sobą odpowiedni obrót części ramy położonej na prawo

Rys. 13

od punktu 2j względem tego punktu 
i zajęcie przez nią położenia 2, 32 42.

Odpowiednie położenie przekroju 
poprzecznego w punkcie 2 ozna­
czone jest przez II, a przez 0 oznacza­
my tu położenie płaszczyzny prze­
chodzącej przez punkt 22 i prosto­
padłej do pierwotnego położenia prę­
ta 1 2.

A więc kąt między płaszczyzna­
mi 0 i II równa się

w2 = cp} + <p2. (103)

W podobny sposób siła T3 i moment M3 oraz odpowiednie siły P wywo­
łują obrót końcowego przekroju poprzecznego 3 pręta 2 3 o kąt <p3 (już 
w położeniu 2, 32), czemu będzie odpowiadało położenie 32 43 części ramy 
położonej na prawo od punktu 3. Prosta oznaczona przez 0 wyobraża 
położenie końcowego przekroju pręta 2 3 przed odkształceniem ramy, 
prosta I położenie tegoż przekroju po odkształceniu pręta 01, prosta II 
po odkształceniu pręta 1 2, a prosta III po odkształceniu pręta 2 3.

W tych warunkach mamy

fJs = + 9^2 + ^ • (104)

Rozumując w podobny sposób w dalszym ciągu znajdujemy dla kątów 
nachylenia an przekrojów poprzecznych poszczególnych prętów względem 
ich położenia pierwotnego wyrażenie następujące:

(I) Mi

A

(105)

Gdyby przekrój poprzeczny w punkcie A obrócił się o kąt w®,, wówczas 
wyrażenie (105) przybrałoby postać

Mi= <pj + m^, (106)
A

gdyż wówczas wszystkie przekroje poprzeczne ramy uległyby obrotow
o kąt co^.
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Obrót przekroju poprzecznego w punkcie 1 o kąt co1 = ę>1 wywołuje obrót 
o ten sam kąt pręta 12 (ściślej jego cięciwy). Wskutek tego obrotu punkt 2 
doznaje przesunięcia 2 21 = co1l2 (rys. 14), które uważamy za prostopadłe 
do osi pręta 1 2 wobec tego, że kąt 2 12 jest bardzo mały.

Z powodu przesunięcia 2 2, część ramy położona na prawo od węzła 2
zajmuje położenie 2, 3, 4j w ten 
sposób, że jest 2t 2,3, 3||4, 4 oraz 
2131||2 3 i 3,4^34.

Wskutek obrotu pręta 2 3 o 
kąt oj2 węzeł 3 doznaje przesu­
nięcia 3j 32 = w2l3 prostopadłego do 
nowego położenia tego pręta 23 33. 
Odpowiednio do tego część ramy 
położona na rysunku na prawo od 
węzła 3 zajmie położenie 3242, 
gdzie 4142||3132, a 3242|j31 4j.

Odcinek 4243 prostopadły do 3242 
oznacza przesunięcie punktu 4 spo­
wodowane obrotem pręta 3 4 
i równe co3 l4.

Rys. 14

W ten sposób na skutek przesunięć typu w/—i lj punkt 4 ramy zajmie 
położenie 43, czyli że punkt ten dozna przesunięcia w kierunku osi Y-ów 
i przesunięcia u0 w kierunku równoległym do osi X-ów, lecz o zwrocie 
ujemnym.

Z wieloboku 4 4, 4a 43 4' mamy

(cĄ l2) (^2 I3) («3 ^4) >

vo = («i hY + (®2 hY + (w3 kY>
(107)

gdzie kreski poziome oznaczają rzuty przesunięć na oś X-ów, a kreski 
pionowe na oś Y-ów. Uogólniając wzory (107) znajdujemy

(108)

Zauważyć należy, że zarówno na rys. 13, jak i na rys. 14 przedstawione 
są położenia węzłów ramy wywołane obrotami poszczególnych prętów, 
a więc w rzeczywistości oba rysunki powinny by być identyczne. Różnica 
w położeniu poszczególnych węzłów na obydwóch rysunkach pochodzi 
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stąd, że przesunięcia w/_i lj można uważać za prostopadłe do osi prętów 
j—1J tylko wówczas, gdy są one bardzo małe, natomiast na rys. 14 przesu­

nięcia te są z konieczności skażone.
Ugięcia y- poszczególnych prę­

tów pod działaniem sił Ty i mo­
mentów Mj oraz odpowiednich sił 
P dodajemy do siebie w podobny 
sposób jak przesunięcia cy-i lj. Do­
dawanie to przedstawione jest na 
rys. 15, na którym

= 2]22 = y3,

^2 33 = y8, 43 44 = y4.

Z wieloboku 4 4, 42 43 44 4' znaj­
dujemy, podobnie jak na rys. 14,

że przesunięcia uv i vy punktu 4 (rys. 15) w kierunkach równoległych do 
osi współrzędnych odpowiednio wynoszą

uy = — — y2 — y* — y,, 1
Vy = y\ + y2 + y\+ y\, I

(109)’

gdzie kreski poziome i pionowe mają takie samo znaczenie jak we wzo­
rach (107). Uogólnienie wzorów (109) daje

(110)

W wyniku dodawania do siebie dla danego węzła i przesunięć wy­
wołanych zarówno obrotami (przesunięcia u„ i v0), jak i ugięciami (prze­
sunięcia uy i vy) prętów j—1, j w punktach j dochodzimy do wzorów 
następujących:

(II) U. = — V &j^ilj) — V y},
A A

(Ul)
(iii) vt= y y'

A ’ A
O ile pręt jest 

we wzorach (111)
całkowicie utwierdzony w punkcie A, wówczas należy 
korzystać dla kątów w z wyrażenia (105) przyjmując.
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że i = j — 1; o ile zaś możliwy jest obrót przekroju A, wówczas należy 
korzystać z wyrażenia (106).

W przypadku prętów zakrzywionych rozumowania podobne do poprzed­
nich doprowadzają do tzw. wzorów B r e s s e ’ a, służących do obliczeń sta­
tycznych łuków.

Ponieważ belkę prostą możemy uważać za przypadek szczególny pręta 
o kształcie linii łamanej, więc wzory (111) mogą być i w tym 
zastosowane.

Dla belki przedstawionej na rys. 16 drugi ze wzorów (111) 
postać

vc= Vb 1bc + y» + yc’ - 
skąd wobec

T(:=P2, Mc=0, t/; = p, + p.2) MB= — P2lBC

mamy
(Pl+P^B (-P-^^AB

Vb 3EJ ' 2EJ
__ Pi ^BC !

Vc — ' 3E J ’
(Pi + P2) PAB ( P2 ^AB

— 2EJ 1 “ EJ

wypadku 

przybiera

(112)

(113)

(114)

gdzie EJ jest w obydwóch częściach belki stałe.
Przesunięcie vc = yc prostopadłe do osi belki wynosi więc ostatecznie

_ Pi ^ab P' ^ab ^bc ____^s_ \\ lbc
Vc~ JEJ 2EJ f T

--------- 4----- — c
_ Pj ^ab^bc^ H 1 g. V 

3EJ • ( } Rys. 16

Wzory I, II i III na geometryczne dodawanie odkształceń znajdują 
przede wszystkim zastosowanie dla trzech następujących rodzajów ram:

(1) dla jednoprzęsłowych ram prostokątnych,
(2) dla jednoprzęsłowych ram wielobocznych,
(3) dla ram wieloprzęsłowych.
Omówimy te trzy przypadki na przykładach.

Bierzemy pod uwagę ramę prostokątną bezprzegubową obciążoną pio­
nową siłą skupioną P (rys. 17). Rama ta jest trzykrotnie statycznie nie- 
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wyznaczalna, gdyż dwom płaskim podporom A i D odpowiada tu liczba 
.składowych reakcji sześć przy trzech równaniach równowagi.

Za schemat zastępczy statycznie wyzna- 
czalny przyjmujemy w tym wypadku pręt 
o kształcie linii łamanej ABCD, utwierdzony 
całkowicie w punkcie A i obciążony poza siłą P 
niewiadomymi siłami H, R.D i Mn równymi 
składowym reakcji odrzuconej płaskiej pod­
pory D (na rys. 17 strzałki przerywane).

Wielkości nadliczbowe zadania wyznacza­
my z równań oznaczonych wyżej liczbami, 
mianowicie:

(I) = 0 ,

(II) uD = 0 ,

(III) Wj=°-

(116)

Równania te wyrażają równość składowych przesunięcia punktu D 
w schemacie danym i w schemacie zastępczym.

Za wielkości nadliczbowe zadania przyjmujemy składowe reakcji pod­
pory A mianowicie MA, RA i HA, które związane są z siłami Mn, RD i HD 
za pomocą równań równowagi.

Kąty nachylenia cp poszczególnych prętów ciągu ABCD wynoszą

dla pręta AB <p = 90 ,
BC <^ = 0,
CD cp^ 90°,

wobec czego wzory I, II i III przybierają postać

^c^b + ^c i ^b^Wb’

(I) MD — Vc + D ’

(II) = wch yDd’ (117

(III) = MB Vc ’

przy czym

gdzie kąty <pB i <pc obliczamy z drugiego ze wzorów (102).
Wielkości y°c i q>°c wynoszą tu

P(l— b)2(2l + b) n _P(1—b)2 
6 E Jb ’ 2 E Jb (118)
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Po wstawieniu uogólnionych przesunięć (117) w równania (116) znaj­
dujemy stąd wielkości nadliczbowe zadania.

Ogólny schemat rozwiązania ramy wielobocznej (rys. 18) przy pomi­
nięciu wpływu sił podłużnych na wielkości statycznie niewyznaczalne jest 
następujący.

Odrzucamy utwierdzenie jed­
nego z końców ramy np. B 
i zaczepiamy tu dwie niewia­
dome siły Hb (poziomą), Rb (pio­
nową) oraz moment Mb, które 
uważamy za wielkości statycznie 
nadliczbowe.

Na podstawie wymienionych 
sił oraz sił bezpośrednio do ra­
my zaczepionych obliczamy 
przesunięcia yx punktów x 
względem punktów x — 1 
obroty <px przekrojów normalnych x 
nych x— 1 .

Jeżeli wprowadzimy oznaczenia

Rys. 18

w kierunku prostopadłym do x—l,x oraz 
ramy względem przekrojów normal-

(119)

to otrzymamy w ten sposób zależność

mx — tO.r—i = <px. (120)

Wyobrażamy sobie w dąlszym ciągu, że poszczególne odcinki ra­
my x — 1, x są sobie równe i że zmiana kątów /3, które tworzą osie kolej­
nych odcinków x — 1, x oraz x, x + 1 między sobą, podlegają pewnej 
regule, są więc znanymi funkcjami wielkości x określającej położenie 
danego odcinka w ramie.

Wielkości momentów zginających Mx w danym punkcie ramy oraz 
odpowiednich sił poprzecznych Tx (normalnych do odcinka ramy x—l,x) 
zależą od położenia danego węzła ramy, wobec czego kąty <px, wyraża­
jące się wzorem

TU2 , Mxl 
2EJ + EJ (121)
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gdzie E, J i l oznaczają odpowiednio współczynnik sprężystości materiału 
ramy, moment bezwładności jej przekroju poprzecznego oraz długość prze­
działu, są funkcjami x, czyli że

Vx = F(x). (122)

W ten sposób równanie (120) przybiera postać

a>x— ox~t = F{x), (123)

a więc dochodzimy do równania różnicowego pierwszego rzędu.
Po scałkowaniu równania (123) dojdziemy do wyrażenia typu

cox = F,(x). (124)

Wstawiając tu x=n, co odpowiada zwolnionemu końcowi ramy, przed­
stawiamy kąt obrotu tego przekroju w zależności od wielkości HB, Rb i Mg

(on = F.^H^, Rb,]^^ . (125)

Zależność

vB = Q, czyli F2(HB,RB,MB) = 0 (126)

da nam pierwsze równanie do wyznaczenia wielkości nadliczbowych 
zadania.

Dla znalezienia poziomych (tj. równoległych do kierunku AB) 
nięć poszczególnych węzłów ramownicy uciekamy się do wzoru

ux= V (wv—i yX ’
i i

gdzie yx oznacza poziome składowe przesunięć yx równych

_ TXF M^ 
yx~ 3EJ + 2EJ’

przesu-

(127)

(128)

wywo-a iloczyn (a>x-il) oznacza poziome składowe przesunięć węzłów x, 
łanych obrotami przekrojów x— 1 ramy o kąty cox-i.

Przy x — n dochodzimy do drugiego równania służącego do wyznaczenia 
wielkości nadliczbowych:

uB = 0, czyli F3 (Hb, Rb, Mb) = 0. (129)
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Wreszcie w sposób analogiczny do wyrażeń (127) i (129) znajdujemy

vb = 0,

(co^-il)' 4- y'x, 
i i

(130)

czyli F, (Hb, RB, Mb) = 0, (131)

gdzie vx oznacza pionowe przesunięcie węzła x, a wielkości (co*—11)' i y’x 
oznaczają pionowe składowe odpowiednich przesunięć całkowitych.

Równania (126), (129) i (131) łącznie rozwiązują zadanie.

Zastosujemy przytoczony wyżej schemat ogólny do obliczenia ramy 
wielobocznej przegubowej obciążonej symetrycznie.

Przypuśćmy, że rama posiada kształt wieloboku wpisanego w odcinek 
koła i jest obciążona w środku siłą 2 P (rys. 19).

Wobec tego, że rama jest symetryczna i symetrycznie obciążona względem 
punktu środkowego O, możemy 
jej połowy AO przyjmując, że 
a w punkcie A swobodna i obcią­
żona znaną siłą R = P i niezna­
ną H. Numerację węzłów bę­
dziemy prowadzili od środka 
ramy do punktu A, czyli od O 
do n. Długość l poszczególnych 
przęseł ramy x—l,x jest, jak 
wyżej, wielkością stałą. W danym 
razie również i ^x = P = const. 
Poszczególne przęsła x — 1, x ra­
my będą nachylone względem 
poziomego kierunku A B pod 
kątem x@.

Siłę poprzeczną w węźle x 

rozpatrywać równowagę tylko 
ona w punkcie O utwierdzona,jest

sił H i Rznajdziemy drogą rzutowania
na kierunek normalny do osi przedziału x — 1, x\

Tx = H sin x ß — P cos x ß.

Moment zginający w punkcie x wynosi

Mx — Hhx — Pkx,

(132)

(133)

gdzie hx i kx (rys. 19) oznaczają odpowiednio ramiona momentów sił H 
i R = P.
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Ponieważ hx równa się sumie rzutów na kierunek pionowy poszczegól­
nych przedziałów ramy zawartych między węzłem x i n, więc mamy

hx = l [sin (x + 1) p + sin (x + 2) (8 ------ 1- sin n /5] = (134)
n — X 1= l sin (x + l)/3 + ~— x — 1 . i

2 Sm ■ /9sm 22

l / „ V ■ „ • P 2n + 1a---- j coscos -----sinxpsinJ„ cos—-—p
c, ■ P \2sin-

Odpowiednio dla kx otrzymujemy

kx = l [cos (x + 1) /3 + cos (x + 2) fi 4------F cos n /5] = (135)

= l cos (x + l)/? + — fi sin n —x 
2^

1
• P sm 2

l / • p , a ■ P------- - sm x p cos 4 cos x p sin 4- —sm
„ . p \ 2 2
2sm2

2 n + 1 4
2~^l

Wyrażenie (121) przybiera wobec tego postać
<px = f l H sin x fi — f l P cos x fi — (136)

gdzie

J 2EJ

flH 

sm 2 

flP

sin

„ /8 . . . /3 2 n 4 1cos x p cos 4- — sm x fi sm - —cos ----- z z z

. ' P , a . P . 2 n + 1 \ sm x p cos — 4- cos x p sm —sin —-—p|Z z z /

= a sin x /3 4- b cos x fi + c,

C •
sm 2

2n + 12n-Hcos—----- /3 4- Psin —-Z z
(137)

13
2

a = f l P ctg , Z
b = flHctg|

Z
Dochodzimy w ten sposób do. równania różnicowego 

mx — mx-i = a sin x fi + b cos x fi 4- c. (138)

Dyskusję tego równania pomimo jego prostoty przeprowadzimy niżej 
w sposób ogólny.
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Całka równania (138) przedstawia sumę
+ Zr’ (139)

gdzie z” oznacza pewne dowolne rozwiązanie szczególne, zx zaś rozwiązanie 
odpowiedniego równania bez wyrazu wolnego.

Równanie charakterystyczne równania różnicowego (138) bez wyrazu
wolnego, czyli równania

Mx---- U>x— 1 — 0 (140)
ma postać

r' — rx—1 = 0 , r — 1=0, (141)

skąd r = 1 i
zx = D-V = D, (142)

gdzie D jest dowolną wielkością stałą.
Całki szczególnej z° równania (138) poszukujemy w postaci

z® = A sin xfi + B cos 4- Cx , (143)

gdzie A, B, C są to stałe całkowania. Ostatni wyraz wzoru (143) ma 
właściwie postać Cx-lx, co oznacza, że cała funkcja poprzedzająca lx po­
siada potęgę o 1 wyższą od potęgi odpowiedniej funkcji przy wyrazie c 
równania (138). Tłumaczy się to tym, że 1 jest w danym razie pierwiast­
kiem równania charakterystycznego (141), co nie ma miejsca w zastoso­
waniu do dwóch pozostałych wyrazów całki (143).

Wstawiając wyrażenie (143) w równanie (138) znajdujemy

mx = A sin xfi 4- B cos xfi -(- Cx,
= A sin (x — 1) fi 4- B cos (x — 1) 4- C (x — 1), 

sin xfi (A — A cos (i — Bsin fi) 4- cos xfi (B 4- A sin fi — B cos fi) 4- C = 
— a sin xfi + b cos xfi + c,

(144)

skąd przez przyrównanie współczynników przy tych samych funkcjach 
trygonometrycznych znajdujemy

A flP A /3 , flH t n fiA = + 2 ctg*-, (145)

D fl H fi flP + p
B= 2 2 Ct§ 2’ (146)

C=c =------Ą^Hcos-^^ć + Psin-^^ (147)
• p \ “ Ism 2 ' '
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Ostatecznie otrzymujemy następujące rozwiązanie równania (138):

Mx = A sin xp + B cos xp + Cx + D . (148)

Warunki brzegowe wskazują, że przy x = 0 , wx = 0 , a więc 0 = B + D , 
D = — B; wynika to stąd, że wobec symetrii ramy przekrój 0 nie ulega 
obrotowi przy odkształceniu się ramy.

Ponieważ mamy do czynienia z ramą dwuprzegubową, więc wielkość 
statycznie niewyznaczalną zadania, siłę H, otrzymujemy z równania (129), 
przy czym uB wyrażamy za pomocą wzoru (127). Pierwsza część otrzyma­
nego w ten sposób wyrażenia przybiera postać

y (cox-il)= y coxl sin (x + 1) /3 = y (A sin xp + B cos x p -f- 
2 1 1

AA-Cx—B) (sinx/3cos/3 + cos xP sin/3) = 2 cos/8 V (1—cos2x/3)+ 
i

+ — cos /3 sin 2 + — sin p sin 2 x fi +
i i

+ (1 + cos 2 xfi) + C cos /3 x sin xfi +
i i

n—1

+ C sin fi x cos xfi — B sin (x + 1) fi.
i

Występujące tu sumy równają się odpowiednio:

£ l=n-l, 
1

1y cos 2x8 = cos (n — 1) B sin nB —-— 1, sm p
n-i i
y sin 2xB = sin (n—1) B sin nB~;——, sin p
»-i iy x cos xB = —--------- — In cos (n — 1) B—(n — 1) cos nB— 11, 2(1—cos/8)
«-i i
y x sin xp = —--------- — [sin (n — 1) p — (w — 1) sin np] , Ł (1 cosp)

(149)

(150)

V1 sin (x4-1) p = sin Ip -j- ^2^ (n-l)p _1_ 
2 sm 2

38



Drugi wyraz wzoru (127) przybiera postać

gdzie

n n
JT y* = JT yxSinx/9, 
i i

TAl^ MXF 
3EJ + 2 EJ

2
= ~fl2 Tx + flMx.

O

(151)

(152)

Wobec zależności (132)-(135) wyrażenie (152) przekształca się w na­
stępujące:

2 2yx = flH sin xfi — fl cos x/3 + O o (153)

, na i . P . a . 2 n + i \4------- —— cos xp cos' —smxpsinp— cos P +
c ■ P \ 2 2 /żsm^ ■

4-----/sin x/3 cos — 4-cos xfi sin 4------------ sin =
„ . P \ 2 2 22 Sin — ' '

= F sin xfi 4- G cos xfi + K, 
gdzie

F = 0,167 flH 4- 0,500 flP ctg , (154)

G = —0,167 fl P 4~ 0,500 f l H ctg(155)

K =------- (a cos 2 W -- fi 4- P sin 1'^) ■ (156)
„ P \ 2 2 /2cos-

Wreszcie

V yx= V yx sin V (Fsinx/3 4- G cosx fi 4- K)sinx/J = (157) 
i i i

p a n n
v d — cos 2 x /3) 4- -g- y sin 2 x fi 4- K y sin x fi.

2 “T i i

Sumy wchodzące w wyrażenie (157) obliczamy ze wzorów (150) wsta­
wiając w nie zamiast n wielkość n 4- 1 , co odpowiada zmianie granic 
sumowania.
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Za pomocą wyrażeń (145)-(147) dla współczynników A, B, C oraz wy­
rażeń (154)-(156) dla współczynników F,G,K moglibyśmy nadać równaniu 
u8 = 0, czyli

2^ oj śm (x + 1) + V yx sin x /3 = 0 
i i

(158)

postać bardziej zwartą, nie byłoby to jednak celowe, gdyż wprowadzałoby 
funkcje trygonometryczne nowych kątów i nowe wielkości do obliczenia. 
Należy więc zalecić korzystanie z wyrażeń (149) i (157) bezpośrednio 
obliczając je za pomocą wzorów (150) i wstawiając otrzymane wielkości 
w równanie (158), z którego zostanie wyznaczona “wielkość nadliczbowa 
zadania.

Dla przykładu zakładamy /3 = 9 i n=10, po czym obliczamy 
sumy (150):

n—i

K otrzymają tu wartości następujące:

y 1 = 9,000,
ZZ

1
/1—1

V sin2x^ = 6,320 , 
1 n_1

n—1
V cos 2 x fl = 0 , 

1 n_ ।
V xsinx^= 35,700, V x cos xfl = 22,910, (159)
i i n।
V cos 2 x fl = — 1, y sin (x + D /3=6,721,
i 1

V sin x fl = 6,741 , 
i

V sin 2x fl = 6,314 .
i

Współczynniki A, B, C, F, G,

A = 80,650 fl H + 6,353flP, 

B= 6,353 f l H — 80,650 j 1P, 

C = 1,000/1 H — l 2,706 flP, 

F = 0,167 flH + 6,353flP, 

G= 6,353flH — 0,167/ZP, 

K = — 0,039 fl H + 0,500 f l P.

Suma (149) równa się więc
n—i

V W.vlsin(x + 1)/3 = 605,1 flH— 457,4 fl P,
i

(1601

(161)
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a suma (157)

V yxsinx0 = 20,11 flH + 32,08flP.

Równanie (158), a więc także (129), przybiera wobec tego postać

skąd
625,7 H — 425,3 f l P = 0 , 

H = 0,682 P.

(162)

(163)

(164)

Zauważyć należy, że dla luku kolistego w ten sam sposób obciążonego 
co rozpatrzona rama i opisanego dookoła tej ramy otrzymalibyśmy

H = 0,636 P, (165)

tj. parcie poziome mniejsze.
Przypuśćmy dalej, że do omawianej wyżej ramy zaczepiono w po­

szczególnych węzłach x równe sobie siły P. W związku z takim obcią­
żeniem należy uzupełnić wzory 
(132) i (133).

Siła poprzeczna w przęśle x l,x 
w zależności od samych tylko sił P 
wyrazi się wzorem (rys. 20)

T* = (n— x)Pcosx0. (166)

Niech będzie Ps siłą zaczepio­
ną do jednego z węzłów zawartych 
między węzłami x i n, a k ramie­
niem momentu tej siły względem 
punktu x; w tych warunkach część 
sił Ps będzie równa

tl—1

m; = y Ps

momentu zginającego Mx zależna od

n—i

■, = P Vks, (167)
X 1

gdzie dla ks możemy skorzystać ze wzoru (135) przyjmując n = s:

ks — ,
2 sin-~

cos - + cos x0 sm ---- sin -0 . (168)
Z Z Z I

Aby obliczyć sumę (167), należy pierwsze dwa wyrazy ujęte w na­
wias we wzorze (168) powtórzyć (n—1—x—1 + 1), czyli (n — x — 1)
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razy; wyraz ostatni będzie tu przedstawiał sumę, w której s zmienia się 
od x + 1 do n — 1, tzn.
V • 2s+i

sin — -- p = sin 

jr+l

+ sin 4 + ^ + 2/? +... 
ZJ / (169)

Do wyznaczenia sumy (169) możemy korzystać ze wzoru (134). 
Łatwo stąd wysnuć wniosek, że moment M'v będzie miał postać

M'x = atx sin x^ + b, x cos x$ + c, sin xp + d^ cos x^ + e,. (170)

Wyrażenia dla sił poprzecznych i momentów zginających otrzymamy 
dodając do wyrażeń (132) i (133) wyrażenia (166) i (170), wobec czego 
zamiast równania różnicowego' typu (138) otrzymamy przy danym obcią­
żeniu ramy równanie typu

- a>x — cm-i = a x sin xfi + b x cos xfl + c sin x/3 + d cos xf) + e. (171)

Całkowanie równania (171) odbywa się według tego samego schematu 
co w zadaniu poprzednim.

Ponieważ lewe strony równań (138) i (171) są w obydwóch wypad­
kach te same, rozwiązanie zx równania bez wyrazu wolnego jest również 
w obydwóch wypadkach to samo.

Rozwiązanie szczególne równania (171) znajdziemy tu w postaci

zx = Aa? sin a?/3 + Bx cos xf) + C sin + D cos xfi + Ex, (172)

gdzie wielkości A, B, C, D, E zostaną wyznaczone przez przyrównanie 
do siebie współczynników równania (171) przy tych samych funkcjach 
zmiennej x po obydwóch stronach równania.

Warunki brzegowe zadania są tu te same co w zadaniu poprzednim.
Gdy kąt fi nie jest wielkością stałą, lecz pewną funkcją zmiennej x, 

lub gdy siły P nie są sobie równe, słowem gdy prawa strona równa­
nia (123) bądź jest bardzo złożoną funkcją x, bądź też nie daje się przed­
stawić bezpośrednio jako funkcja x, musimy uciec się do przybliżonego 
rozwiązania wspomnianego równania drogą zastąpienia prawej jego części 
przez pewną funkcję całkowitą wymierną.

Prawa część równania (123) przedstawia wyrażenie

Txl2 , Mxl
2EJ + EJ (173)

w którym Tx oraz Mx zależą zarówno od nieznanego parcia poziomego PI, 
jak i od danych sił P. Niech będzie wobec tego

(174)
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Mx = Mi + M2, (175)

^a =
T, l2
2EJ EJ

T2P M.^
2 EJ 1 EJ

gdzie wielkości T, i M2 są pro­
porcjonalnie do H, a T2 i M2 
zależą od P.

, Funkcje

T, l~ M, l_
H 2 EJ + H EJ’ (177)

, _ T212 M.,1
2~~ 2EJ EJ (178)

możemy przedstawić na wykre­
sie za pomocą wzorów (132) 
i (133); dla przykładu na rys. 22 
przytoczone są krzywe wyra­
żające momenty Hhx, Rkx oraz 
momenty Mx zależne wyłącznie

(176)= HF} +F2,

od obciążenia P dla ramy, któ- Rys. 21
rej połowa przedstawiona jest
na rys. 21. Otrzymane w ten sposób krzywe zastępujemy przez krzywe 
interpolacyjne drugiego, trzeciego i wyższych stopni w zależności od kształ­

tu wykresów i od pożądanej do­
kładności obliczenia. Krzywe 
te zawierają odpowiednio trzy, 
cztery i Więcej niewiadomych 
współczynników.

Wybieramy na wykresie 
szereg punktów charaktery­
stycznych i wyznaczamy nie­
znane współczynniki wzorów in­
terpolacyjnych w ten sposób, 
aby te wzory czyniły zadość 
wartościom współrzędnych dla 
obranych trzech, czterech lub 
odpowiednio większej liczby 
punktów wykresu. Otrzymane 
tą drogą przybliżone funkcje F, 

i F2 nakładamy rysunkowo na funkcje bezpośrednio otrzymane i spraw­
dzamy, czy oba rodzaje krzywych pokrywają się z dostateczną dokład­
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nością, przy czym dokładność 2-3°/o może tu być uważana za wystarcza­
jącą.

Przedstawiamy więc np. w następujący sposób funkcje F, i F2:

F, = a, x3 + b1 x2 + C] x + d] , (179)

F2 = a2 + b2 x2 + c2 x + d2, (180)

skąd dla funkcji <px dochodzimy do wyrażenia typu

<px = a x3 b x2 + c x + d , (181)

gdzie

a = Ha,+a2, b = H b, + b2, 1 (lg2)
c = Hc, + c2, d = H dt + d,. I

Równanie (123) przybiera w tym przypadku postać

wx — wx-i = a x8 + b x2 + c x J- d . (183)

Rozwiązanie tego równania jako równania bez wyrazu wolnego podaje 
omówiony wyżej wzór (142). Gdy chodzi zaś o całkę szczególną równa­
nia całkowitego (183), to powinniśmy jej poszukiwać w postaci

Rys. 23

a) z°x=(Axi +Bx3 + CxH Dx)- 1'. (184)

Funkcja całkowita wymierna stano­
wiąca poszukiwane rozwiązanie posiada 
stopień o jedność wyższy niż funkcja 
przedstawiająca ostatni wyraz równania 
(183), gdyż 1 jest w danym razie jed­
nokrotnym pierwiastkiem równania cha­
rakterystycznego.

Dalsze obliczenie ramy wielobocz- 
nej odbywa się według schematu po­
danego wyżej i sprowadza się do sumo­
wania szeregów £ x4, Vx3, 2x2,

Weźmy wreszcie pod uwagę czteroprzęsłową ramę prostokątną 
(rys. 23a). Obliczając ją drogą dodawania odkształceń przyjmujemy za
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vs, u3, u4. Wielkości tych przesunięć jako

wielkości statycznie niewyznaczalne 5 składowych reakcji R,, R3,H3,H4iR5 
(rys. 23b), wobec czego zastępczym schematem statycznie wyznaczalnym 
staje się rama dwusłupowa CBFG (rys. 24a) o jednej podporze przegubo­
wej, a drugiej przegubowo-przesuwnej.

Jeżeli wynikiem obliczenia mają być linie wpływowe dla momentów 
zginających w ramie, jak to zwykle bywa w przypadkach prostokątnych 
ram wieloprzęsłowych, umieszczamy w przedziale AB siłę P = 1 w od­
ległości zmiennej x od punktu A, następnie zaś przenosimy ją na przęsło 
BD ustawiając w zmiennej od­
ległości x od punktu B. W.przę­
słach DF i FH otrzymamy rzęd­
ne linii wpływowych na pod­
stawie symetrii ramownicy bio- 
rąc pod uwagę, że siła P usta­
wiona w przęśle DF lub FH wy­
wołuje reakcje Rn R2, R3, H2, H3 
równe odpowiednio reakcjom 
R5, R4, — H4, -— H3 wywołanym 
przez siłę P ustawioną syme­
trycznie w przęśle BD lub AB.

Przesunięcia punktów od­
rzuconych podpór nadliczbo­
wych, a więc punktów zacze­
pienia sił Rn R3, H3, H4 i RB 
w kierunku ich działania, ozna­
czamy odpowiednio przez v„ v3, 
funkcje wielkości statycznie nadliczbowych wyznaczamy rozpatrując od­
kształcenie ramy dwusłupowej przedstawionej na rys. 24b, kolejno pod 
działaniem poszczególnych sił obciążających ramę zgodnie ze schematami 
uwidocznionymi na rysunkach 24b-24d. Na rysunkach tych przez 
M2, Mi i M3 oznaczone zostały, dla uproszczenia obliczeń, momenty sił 
niewiadomych zaczepione w odpowiednich węzłach, tak że np. M3 = H3 h.

Dla danego położenia siły P oraz dla 5 wielkości nadliczbowych wy­
znaczamy przesunięcia v3, v3, u3 i u4 sposobem momentów wtórnych.

W ten sposób otrzymujemy każde z przesunięć v3, u5, u3 i u4 jako 
inną funkcję tych samych wielkości x,'M2, Mi, M3, R3, H4 dla obliczenia 
zaś pięciu wielkości statycznie nie wyzna czalnych ustawiamy pięć równań:

= 0, u3 = 0, v5 = 0, u3 = 0, u4 = 0, (185)

z których wyznaczamy wartości rzędnych linii wpływowych poszczegól­
nych wielkości statycznie niewyznaczalnych.
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Równania te dla siły P zaczepionej np. w przęśle AB przybierają postać 
następującą:

3 Ri l, — 3 P (l, — Xj) + 3 R5 l, — 2 Rs1 — 6 Hi h — 3 H3 h = 0 ,

2 h2 (H3 + 2 — 3 l [2 R5 + 2 R} —

— 2P(l1 — xj — R3l — 2H3h — 4 H4h\ = 0,

4 J2 h2 (H3 + HJ + 4 h2 H3 — 3l [R, l, +
J3

+ 2Ril1 — 3P(l1 — x1) — 3H3h — H3h—R3l — 4Hih] = 0,

2^-[2Rill — 2P(li — xl)3 — 3Px1(l1—xi)2] +l1l[4R5l1 +
J1

+ 8RA — BP^ — a^i)- 8H3h—3R3l—12H4h—H3h] = 0,

4 R. + l [4 R, lt — 4 P (lt — r,) — 4 Ha h +
A

+ 8R51,-3 R31—12 H4h + H3h] = 0.

(186)»

Podobne układy równań otrzymujemy dla siły P zaczepionej w przęśle 
BD oraz dla wahań temperatury.

Układy te rozwiązujemy drogą kolejnego rugowania niewiadomych, 
po czym rozwiązania dla wielkości statycznie niewyznaczalnych mogą być 
przedstawione jako funkcje odciętych punktu zaczepienia siły P.

IV . O RÓWNANIACH ENERGII SPRĘŻYSTEJ

1. Rozważania ogólne

Zastosowanie geometrycznych sposobów badania konstrukcji pręto­
wych, omówione w rozdziałach II i III dla przypadków prętów rozciągano- 
ściskanych i zginanych, znajduje uogólnienie w omówieniu równań energii 
sprężystej. Chodzi tu w szczególności o wykazanie możliwości stosowania 
do układów pełnych twierdzeń wyprowadzonych dla belek kratowych.

Mówiąc o równaniach energii sprężystej mamy na widoku równania 
wyrażające zależność między następującymi trzema rodzajami wielkości 
lub przynajmniej między dwiema spośród nich, a więc

(1) między uogólnionymi siłami Q wzrastającymi w sposób ciągły 
i nieskończenie powolny,

(2) między uogólnionymi przesunięciami (współrzędnymi) q punktów - 
zaczepienia sił Q i
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(3) między energią sprężystą V nagromadzoną w danej konstrukcji 
w czasie wzrastania sił Q od zera do ich wartości ostatecznej.

Równania dotyczące energii sprężystej są użytecznym środkiem przy 
rozwiązywaniu szeregu zagadnień statyki budowli i stanowią ulubioną 
metodę pracy wielu uczonych, przede wszystkim statyków niemieckich. 
Sprecyzujemy przeznaczenie tych równań.

Do obliczenia energii sprężystej nagromadzonej w danym ciele korzy­
stamy z równania Clapeyrona

V= £ (187)

Równanie to doprowadza w sposób prosty do przedstawienia energii 
potencjalnej ciała sprężystego w postaci jednorodnej funkcji sił drugiego 
stopnia

V = X m. • Q? + Z m^ Q, Qy, (188)

gdzie współczynniki mi i my nie są zależne od sił.
Z drugiej strony, ilość energii sprężystej nagromadzonej w danej kon­

strukcji wyrazić można za pomocą wzoru

V = Vdxdydz, (189)

gdzie V wyraża ilość energii nagromadzonej w sześcianie o krawędzi 
równej 1, wyjętym z ciała odkształcanego, a wielkości dx, dy, dz wy­
rażają długości krawędzi nieskończenie małego prostopadłościanu.

Równanie (189) wypływa bezpośrednio z określenia energii sprężystej 
jednostkowej i z przyjętego na ogół w statyce, a omówionego wyżej spo­
sobu wzrastania sił Q i wobec tego właściwie nie należy do grupy oma­
wianych tu równań. Łącznie jednak z równaniem Clapeyrona przez 
zestawienie dwóch różnych wyrażeń dla energii sprężystej daje ono moż­
ność łatwego obliczenia odkształceń w razie, gdy mamy do wyznaczenia, 
przesunięcie w punkcie zaczepienia i w kierunku działania siły skupionej, 
lub gdy mamy do wyznaczenia obrót w punkcie zaczepienia momentu. 
Zestawienie dwóch wspomnianych wyrażeń dla energii sprężystej przed­
stawia właściwie tylko odmienną formę równania Clapeyrona.

Do wyznaczenia odkształceń służy najczęściej twierdzenie Casti- 
g 1 i a n o.

dV
dQ 11'
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Do wyznaczenia wielkości statycznie niewyznaczalnych korzystamy 
z twierdzenia Mena b rei

-^ = 0 
dQ (191)

lub też z twierdzenia Bettiego zwanego twierdzeniem o wzajem­
ności przesunięć

' 2Q'qn=2Q"qi , (192)

gdzie wielkości Q' i q( odpowiadają jednemu, a Q" i qu drugiemu ukła­
dowi sił zaczepionych do tej samej konstrukcji.

Szczególny przypadek twierdzenia Bettiego przy jednej sile Q 
nazywamy twierdzeniem M a x w e 11 a.

Wzory (187) - (192) dotyczą w równej mierze układów pełnych jak 
kratowych.

Nie wdając się w historię powstawania omawianych równań zauwa­
żyć jednak należy, że niektóre z nich zostały pierwotnie ustawione dla 
układów kratowych, następnie zaś rozpowszechnione i na układy pełne 
(np. twierdzenie Menabrei, inne zaś, na odwrót, udowadniane były 
z początku dla układów pełnych, później zaś dopiero były zastosowane 
i do układów kratowych (np. twierdzenie C 1 a p e y r o n a).

Uzasadnienie twierdzeń dotyczących energii sprężystej w przypadku 
ciał pełnych opiera się w zasadzie na równaniach ogólnych teorii sprę­
żystości, wyprowadzenie zaś tych równań dla kratownic odbywa się na 
podstawie wzoru (1), czyli wzoru Max well a i Mohra.

Wyprowadzenie równań energii sprężystej dla ciał pełnych jest znacz­
nie bardziej złożone niż uzasadnienie tych samych równań dla układów 
kratowych. Wobec tego zmierzając do uproszczenia wykładu równań 
energii sprężystej dla ciał pełnych, autorowie współczesnych podręczni­
ków statyki idą w dwóch kierunkach. Jedni, mianowicie, upraszczają beż- 
pośrednio uzasadnienie pierwotne odrzucając pewne subtelności w rozu­
mowaniu i dbając raczej o algebraiczną poprawność dowodzenia, drudzy 
korzystają również i w danym wypadku z wywodów przeznaczonych dla 
układów kratowych.

Pierwsi nie odbiegają wprawdzie, lub przynajmniej nie odbiegają 
pozornie, od schematu statycznego ciała pełnego, zmuszeni jednak do ko­
niecznej w podręcznikach zwięzłości decydują się nieraz na pewne nie­
jasności wykładu.

Drudzy idąc za przykładem Mohra i wyrzekając się przy wypro­
wadzaniu równań energii sprężystej schematu ciała pełnego na korzyść 
kratownicy, uogólniają następnie swe wywody drogą twierdzenia, że 
każde ciało pełne może być uważane za kratownicę przestrzenną o nie­
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skończenie wielkiej liczbie prętów nadliczbowych i że wobec tego rów­
nania energii sprężystej wyprowadzone dla kratownicy mogą być bez dal­
szych dowodów rozpowszechnione i na konstrukcje pełne.

To ostatnie twierdzenie oparte jest na przedstawieniu ciała spręży­
stego jako zbioru punktów materialnych, między którymi działają siły 
proporcjonalne do wzajemnych przesunięć tych punktów i skierowane 
wzdłuż łączących je prostych. W ten sposób pomyślany schemat ciała 
sprężystego nie przeczy wprawdzie prawu H o o k e ’ a, nie spełnia jednak 
charakterystycznego dla pracy sprężystego ciała pełnego warunku, mia­
nowicie nie odpowiada mu co do liczby stałych sprężystości.

Chodzi o to, że w razie przyjęcia dla ciała sprężystego schematu kra­
townicy mamy do czynienia z jedną tylko stałą sprężystości, ze współ­
czynnikiem E, w danym razie charakteryzującym zależność między prze­
suwaniem się węzłów kratownicy a siłami działającymi między nimi. 
W przeciwieństwie do tego w ciele sprężystym jednorodnym pełnym, 
uważanym za sprężyste continuum, mamy do czynienia w układzie pła­
skim z dwiema niezależnymi od siebie wielkościami stałymi, a więc poza 
współczynnikiem E jeszcze ze współczynnikiem Poissona /z.

Pogląd na ciało sprężyste jako na zbiór punktów materialnych, a więc 
pogląd doprowadzający do schematu kratownicy, czyli do tak zwanego 
modelu N a v i e r a, jest obecnie poglądem przestarzałym, gdyż wszyst­
kie nowoczesne badania naukowe w zakresie teorii sprężystości oparte 
są na założeniu sprężystego continuum, czyli modelu Cauchy’ego.

Stąd wypływa nie dający się w zasadzie odeprzeć zarzut niewspół- 
czesności, jaki można by postawić sposobom wyprowadzenia równań 
energii sprężystej, opartej na teorii kraty. Nie wydawałoby się też słusz­
nym odpieranie tego zarzutu przez powoływanie się na najnowsze badania 
z zakresu budowy materii, gdyż badania te stoją jeszcze dość daleko 
od potrzeb praktycznej teorii sprężystości.

Z drugiej strony, proste a jednak ścisłe i pozbawione niedomówień 
uzasadnienie wzorów (187) - (192), tak nieraz użytecznych w pracy inży­
niera, jest rzeczą konieczną.

Z tego powodu należy się zastanowić nad tym, czy nie można by w ten 
sposób praktycznie ograniczyć obszaru stosowalności równań dotyczących 
energii sprężystej, aby w tym obszarze wyprowadzenie ich na podstawie 
teorii kraty było zgodne z ogólnie przyjętymi założeniami mechaniki 
budowli i dotyczyło w równej mierze układów pełnych jak kratowych.

Ograniczenia, o których mowa, dotyczą po pierwsze typu odkształceń, 
po wtóre rodzaju naprężeń i po trzecie sposobu zaczepienia sił zewnętrz­
nych.

Zestawiając przypadki, w których równania energii sprężystej znajdują 
zastosowanie, z rodzajami konstrukcji pełnych, dla których to zastoso­
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wanie jest korzystne, łatwo spostrzegamy, że wchodzą tu w grę przede 
wszystkim przypadki zginania zarówno elementów konstrukcyjnych pro­
stoliniowych, jak i krzywoliniowych. Mamy tu więc przede wszystkim 
na widoku belki proste, na które żadne siły podłużne nie działają, następ­
nie ramy, w których obliczeniu statycznym rzadko tylko siły podłużne 
brane są pod uwagę, wreszcie łuki, w których obliczeniu wprawdzie siły 
podłużne zwykle uwzględniamy, w których jednak wpływ decydujący na 
naprężenia mają zwykle momenty zginające. W przypadkach samego 
tylko rozciągania lub ściskania wyprowadzenie równań energii spręży­
stej nie nastręcza żadnych trudności.

Dalej należy stwierdzić, że w wyjątkowych tylko przypadkach przy 
wyznaczeniu odkształceń konstrukcyj budowlanych lub też wielkości sta­
tycznie niewyznaczalnych uwzględniamy wpływ naprężeń stycznych na 
obliczane wielkości, czyli liczymy się z przesuwaniem wewnątrz ciał od­
kształcanych.

Wreszcie ogromną większość konstrukcyj budowlanych i wszystkie 
nieomal konstrukcje mostowe rozkładamy zwykle w obliczeniu statycznym 
na elementy płaskie. W obliczeniach zaś dotyczących konstrukcyj prze­
strzennych zwykle wymagania co do ścisłości bywają niezbyt surowe.

Twierdzić można z całą śmiałością, że poza ograniczonym w ten spo­
sób zakresem pozostaje już tylko bardzo niewiele praktycznych zagadnień 
statyki konstrukcyj. pełnych, zagadnienia zaś o charakterze badawczym 
nie bywają na ogół rozwiązywane za pomocą równań energii sprężystej. 
Dla takiego zakresu konstrukcyj, jak to zostanie omówione niżej, równania 

energii sprężystej mogą być wy­
prowadzone na podstawie teo­
rii kraty już bez żadnych za­
strzeżeń.

Ponieważ ograniczyliśmy 
rozważania do układów pła­
skich, nie ma potrzeby trwać tu 
przy opisanym wyżej modelu

Rys 25 ciała sprężystego jako kratow­
nicy przestrzennej, lecz może­

my przejść do prostszego schematu kratownicy płaskiej, co znacznie uła­
twia rozumowania.

Dla uproszczenia przeróbek matematycznych, nie wzbudzających 
zresztą w danym zadaniu większego zainteresowania, obszerniej omawia­
my tu tylko najprostszy, lecz zarazem i najważniejszy schemat kratow­
nicy o pasach równoległych, przedstawiający niejako model pełnościennej 
belki pryzmatycznej w dwóch punktach swobodnie podpartej. Kratownicę 
tę będziemy uważali w dalszym ciągu za statycznie wyznaczalną, posia­
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dającą np. kratę w rodzaju przedstawionej na rys. 25, choć bardzo gęstą. 
Przez podobne przyjęcie oddalamy się jeszcze bardziej od modelu Na­
vi e r a, w którym każdy węzeł powinien być połączony ze wszystkimi 
innymi węzłami; powstający w ten sposób nowy model lub schemat sta­
tyczny, aczkolwiek bardziej ograniczony co do swej ogólności, nadaje się 
jednak z powodzeniem do obliczenia ugięć belki pełnościennej.

Stosując dalsze rozważania do belki w dwóch punktach swobodnie pod­
partej lub belki utwierdzonej w jednym końcu i swobodnej w drugim 
zauważamy przede wszystkim, że wszystkie równania energii sprężystej 
można ująć w jedno równanie symboliczne

F (Q, ‘I, V) = O, (193)

w którym zresztą wielkość V nie zawsze występuje w sposób wyraźny.
Aby uzasadnić stosowanie 'kratownicy jako modelu statycznego belki 

pełnościennej, ustalamy (przede wszystkim) warunki, którym odpowiadać 
powinna kratownica przedstawiona na rys. 25, aby te same wartości 
Q, q i V czyniły zadość równaniu (193) zarówno dla kratownicy, jak 
i dla belki pełnościennej o tej samej rozpiętości i o tym samym sposobie 
podparcia (rys. 26). Zakładamy tu oczywiście, że funkcja F zachowuje ten 
sam kształt w obydwóch wypadkach.

Kratownicę przedstawioną na rys. 25 uważamy za przegubową oraz 
odpowiadającą wszystkim założeniom teorii kraty i zaczepiamy do niej, 
np. do jej górnych węzłów, szereg 
sił P działających prostopadle do 
osi pasów i oddalonych od lewej 
podpory belki o d. Z drugiej stro­
ny, na górnej powierzchni belki 
pełnościennej przedstawionej na 
rys. 26 i wykonanej z tego samego 
materiału ustawiamy siły równe 
omówionym siłom P i ustawione 
od lewej podpory belki w tych samych odległościach d co i tamte. Tego 
rodzaju obciążenia obydwóch belek możemy uważać za identyczne, gdyż 
zarówno wykresy momentów zginających, jak i wykresy sił poprzecznych 
w obydwóch wypadkach są te same. Ma to miejsce w danym wypadku 
niezależnie od kształtu i wymiarów poprzecznych obydwóch belek. Przy 
pominięciu wpływu naprężeń stycznych na zginanie, kształt przekroju po­
przecznego belki pełnościennej pozostaje bez znaczenia dla dalszych roz­
ważań.

W myśl zasady zesztywnienia ani w obliczeniu statycznym kratownic, 
ani też w obliczeniu belek pełnościennych nie bierzemy pod uwagę wpły­
wu odkształceń poprzecznych na naprężenia normalne, nie mamy więc 

Rys. 26
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powodu uwzględniać go też i przy obliczaniu energii sprężystej nagroma­
dzonej w tych konstrukcjach; pomijając zaś te odkształcenia przyjmu­
jemy tym samym, że współczynnik P o i s s o n a równa się 0 w oby­
dwóch wypadkach. Ma to miejsce w belkach o małej szerokości i nie do­
tyczy płyt.

2. Obliczenia porównawcze

Obliczenie ugięcia belki pełnościennej w pewnym punkcie D (rys. 26), 
czyli prostopadłego do osi belki przesunięcia punktu D (przesunięcia 
0 = ^) leżącego na osi belki odbywa się w zasadzie na podstawie rów­
nania różniczkowego osi odkształconej.

Wyprowadzenie ogólnego równania tej osi

EJ = M (194)dx“

opiera się między innymi na dwóch założeniach następujących:
(1) na założeniu, że równoległe do siebie warstwy belki pełnej nie wy­

wierają wzajemnie na siebie nacisku w kierunku prostopadłym do osi 
belki,

(2) na założeniu, że warstwy te nie przesuwają się względęm siebie, co 
odpowiada tak zwanemu założeniu płaskich przekrojów; wobec tego, że 
między naprężeniami stycznymi a przesunięciami jednostkowymi istnieje 
zależność

t=G0, (195)

gdzie G oznacza współczynnik sprężystości przy przesuwaniu, a 0 prze­
sunięcie jednostkowe, założenie to odpowiada przyjęciu, że stała spręży­
stości G równa się nieskończoności (G = oo).

W konsekwencji powyższych założeń uważamy, że punkt D' na górnej 
i punkt D" na dolnej powierzchni belki, leżące na prostej prostopadłej do 
osi belki i przechodzącej przez punkt D nie odsuną się po odkształceniu 
belki od tego punktu ani w kierunku równoległym do stycznej do osi, ani 
w kierunku prostej D' D". Mamy więc

vD, = vD,, = vD. (196)

W belce kratowej (rys. 27a) rolę punktów D', D". i D odgrywają: punkt N 
położony w środku wysokości kratownicy oraz węzły N' i N", których 
odległości od lewej podpory belki odpowiadają odległościom punktów D. 
Powstaje pytanie, jakim warunkom odpowiadać powinna belka kratowa, 
aby wzajemna nieprzesuwalność węzłów N' i N" odpowiadająca nieprze- 
suwalności punktów D' i D" belki pełnościennej była zabezpieczona.

52



Otóż założenie nieprzesuwalności punktów D' i D" w kierunku normal­
nej do osi odkształconej może być zastąpione w sposób dostateczny przez 
warunek nieodkształcalności prętów kraty, który jest równoznaczny 
z pozbawieniem węzłów N' i N" możności przesuwania się względem 
siebie. Przyjęcie, iż stała sprężystość G równa się nieskończoności jest 
równoznaczne z odrzuceniem wpływu sił poprzecznych na wyginanie się 
belek pełnościennych, natomiast w przypadku kratownicy pominięcie 
wpływu sił poprzecznych na 
przesuwanie się węzłów może 
być wyrażone przez przyjęcie 
nieodkształcalności podłużnej 
prętów kraty poza prętami pa­
sów. Tłumaczy się to w ten spo­
sób, że w kratownicy o pasach 
równoległych siły w prętach 
kraty są wprost proporcjonalne 
do sił poprzecznych, a więc 
przyjmując, że pręty te nie ule­
gają wydłużeniu ani skróceniu, 
czyli że ich współczynnik sprę­
żystości równa Się Ekrzyż = oo, 
odrzucamy tym samym wpływ 
sił poprzecznych na wyginanie 
się belek kratowych.

a)

Rys. 27

Innymi słowami, założenie nieodkształcalności prętów kraty przy jed­
noczesnym założeniu, że oba pasy kratownicy mają te same wymiary 
i są wykonane z tego samego materiału, całkowicie zabezpiecza wzajem­
ną nieprzesuwalność węzłów N' i N" w kierunku normalnej do osi belki 
oraz w kierunku równoległym do stycznej do osi belki i odgrywa rolę 
założenia G = oo przy obliczeniu ugięć belki pełnościennej.

Przy obliczeniu odkształceń porównywanych belek, pełnościennej 
i kratowej, przyjmujemy w myśl powiedzianego wyżej:

(1) że siły zewnętrzne P są w obydwóch wypadkach zaczepione jed­
nakowo,

(2) że współczynnik P o i s s o n a /< = 0,
(3) że siły poprzeczne w obydwóch wypadkach nie mają wpływu na 

odkształcenia, czyli że G = oo lub E^rzyż = oo.
Stosując do wyznaczenia ugięcia belki pełnościennej w punkcie D 

sposób momentów wtórnych otrzymujemy według wzoru (60)

EJ ’ (197)



gdzie wyraża moment wtórny w przekroju D belki, a EJ oznacza 
iloczyn współczynnika sprężystości przez moment bezwładności przekroju 
poprzecznego belki.

Z drugiej strony, obliczając dla belki kratowej przesunięcie punktu 
D w kierunku, prostopadłym do osi belki równe przesunięciu punktów 
N' i N" otrzymujemy ze wzoru Max well a i Mohra, że

^=2^ w

gdzie S oznacza siły w poszczególnych prętach kratownicy, Z siły, które 
działałyby w tych prętach, gdyby w węźle N' była zaczepiona siła 1 ma­
jąca kierunek przesunięcia vN, wreszcie A długość jednego przedziału 
pasa. Wobec tego, że słupy i krzyżulce kratownicy uważamy za nieskoń­
czenie sztywne, czyli za nieodkształcalne, sumowanie dotyczy tylko sa­
mych pasów obejmujących wszystkie przedziały belki kratowej.

Oznaczamy przez Mx momenty zginające wywołane przez rzeczywiste 
obciążenie zewnętrzne w poszczególnych węzłach kratownicy k" oddalo­
nych od lewej podpory o x i przedstawiamy na rys. 27c wykres tych mo­
mentów. Odpowiednio siły podłużne powstające w położonych naprzeciw­
ko węzłów k" poszczególnych przedziałach m k' pasów belki kratowej bę­
dą się wyrażały za pomocą wzoru

M,-5 = “. (199)

Ciężar równy 1 t zaczepiony nad punktem N, którego przesunięcie 
wyznaczamy, wywołuje zarówno w rozpatrywanej belce kratowej, jak 
i w odpowiedniej belce pełnościennej momenty zginające, zmieniające się 
według wykresu momentów przedstawionego na rys. 27b.

Oznaczając przez M'x rzędne wykresu 27b w punktach oddalonych 
o x od lewej podpory belki kratowej otrzymujemy następującą wartość 
siły wywołanej w przedziale m k' pasa przez siłę 1 zaczepioną w węźle N:

M’x
Zm=^- (200)

W związku z tym wzór (198) przybiera postać

Sumowanie dotyczy, jak wyżej, dwóch pasów kratownicy, każdy 
o długości l.
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Przyjmujemy dalej, że przedziały belki kratowej maleją w sposób nie­
ograniczony, czyli że X — dx. W związku z tym suma (201) przekształ­
ca się w całkę

C NI M' dx
V‘V = 2J h i! EA' (202)

Wracając do wykresu 27b obliczamy rzędną jego dla punktu N. Po­
nieważ ciężar 1 wywołuje reakcje belki równe 1 — a/l oraz a/l, więc 
moment zginający, wywołany przez ten ciężar w punkcie N, wynosi

(203)

Wyrażenie dla yN, jak widać, przedstawia rzędną linii wpływowej 
momentu zginającego w punkcie N dla belki w dwóch punktach swo­
bodnie podpartej.

Wobec tego, że wykres 27b jest linią wpływową momentu zginającego 
w punkcie D (o rzędnych y = M'x) i wobec tego, że wykres 27c dla mo­
mentów Mx uważać możemy za wykres obciążenia wtórnego i] = Mx, 
powinniśmy dla wyznaczenia momentu wtórnego Wi w punkcie N wy­
konać całkowanie

i i
= = J (frMrdx = J MxM'xdx.

o o
(204)

Ze wzorów (202) i (204) otrzymujemy więc

vn 2 h!EA ih\2
2 V EA

(205)

Iloczyn 2 (h/2)2 A wyraża moment bezwładności belki kratowej, 
której cały materiał został skupiony na osiach pasów.

Z zestawienia wzorów (197) i (205) wynika, że na to, aby belka kra­
towa o tej samej rozpiętości, obciążeniu i sposobie podparcia co pewna 
belka pełnościenna dawała przy wszystkich poczynionych wyżej za­
strzeżeniach te same ugięcia, potrzeba, aby czyniła ona zadość następu­
jącym warunkom:

(1) cały materiał belki skupiony być musi na osiach pasów, przy czym 
momenty bezwładności belki kratowej i belki pełnościennej mają być 
sobie równe, tj.

(206) 
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z tym że pominięte są momenty bezwładności pasów względem własnej 
osi,

(2) przedziały belki kratowej powinny być nieskończenie małe,
(3) krzyżulce i słupy kraty nie mogą ulegać odkształceniu podłuż­

nemu.
Ugięcie belki pełnościennej w pewnym punkcie D na osi belki równa 

się więc odpowiedniemu przesunięciu węzła kratownicy, odpowiadającej 
wymienionym wyżej warunkom, i położonego w tej samej odległości 
od początku belki co punkt D.

Poczynione wyżej założenia upraszczające mają ten sam sens fizyczny 
dla belki kratowej co i dla pełnościennej, w jednakowym więc, na ogół 
dopuszczalnym sltopniu, wpływają one na dokładność obliczeń sta­
tycznych.

Ponieważ przedziały belki kratowej uważamy za nieskończenie małe, 
możemy więc siły zewnętrzne zaczepiać we wszystkich punktach dłu­
gości belki nie będąc przez to w sprzeczności z teorią kraty i mogąc dzię­
ki temu rozpowszechniać wszystko, co powiedzieliśmy wyżej również na 
obciążenia ciągłe. Nie mamy potrzeby robić żadnych zastrzeżeń co do ob­
ciążenia momentowego, gdyż co do kształtu wykresu na rys. 27c nie wpro­
wadzaliśmy żadnych ograniczeń.

Przechodząc do obliczenia obrotów sprężystych poszczególnych prze­
krojów belki pełnościennej ustawiamy dla obrotu jej pewnego przekroju 
D wzór

Vd = ~e~j, (207)

gdzie Zd oznacza siłę poprzeczną w przekroju D, wywołaną obciążeniem 
wtórnym = Mx (rys. 26).

Wyznaczenie obrotu przekroju D belki kratowej wykonujemy na
podstawie wzoru M ax w eI1 a i Mohra

EA o
(208)

w którym S, A i EA ma to samo znaczenie co we wzorze (198), a Z 
oznacza siły powstające w poszczególnych prętach pasów kratownicy pod 
działaniem momentu równego 1 i zaczepionego w przekroju D, którego 
obrót obliczamy (rys. 28).

Moment równy 1 zaczepiony w przekroju N belki wywołuje momenty 
zginające Mx , których wykres przedstawiony jest na rys. 28b. W związ­
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ku z tym siły Z powstające w poszczególnych przedziałach pasa kratow­
nicy wyrażają się wzorem

Z = (209)

analogicznym do wzoru (200), siły zaś S za pomocą wzoru (199).
Wykres na rys. 28b przedstawia, jak widać, również linię wpływową 

dla siły poprzecznej w przekroju N belki swobodnie podpartej. Wobec 
tego możemy dokonać przekształcenia wzoru (208) analogicznego do 
wyżej omówionego przekształcenia wzoru (198). Siła poprzeczna 
od obciążenia wtórnego w punkcie N będzie wówczas równa

i i
J cjM"dx= jMxMxdx, (210)
o o

a więc dla kąta obrotu otrzymamy

^ = - 
2

(211)

Porównując wzory (207) i (211) możemy twierdzić, że w tych samych 
przypadkach, kiedy wyznaczenie ugięć belek pełnościennych może być
zastąpione przez obliczenie prze­
sunięć odpowiednich węzłów belek 
kratowych, również i obroty po­
szczególnych przekrojów belek mo­
gą być w podobny sposób obliczone.

Inaczej mówiąc wzór M ax- 
well a i Mohra wyprowa­
dzony w rozdziale II dla układów 
kratowych może być zastosowany 
i do układów pełnych; przybiera 
on wówczas postać 

MM , 
EJ dX ’ (212)

gdzie q oznacza uogólnione prze-
sunięcie belki zginanej, M mo- Rys. 28
ment zginający wywołany w po­
szczególnych przekrojach belki przez dane obciążenia, a M moment zgi­
nający w tych samych punktach, spowodowany bądź przez siłę równą 1 
działającą wzdłuż poszukiwanego przesunięcia, bądź przez moment rów­
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ny 1, odpowiadający poszukiwanemu obrotowi przekroju poprzecznego 
belki.

W sposób równie prosty jak poprzednio można wykazać, że energia 
sprężysta, nagromadzona przy zginaniu belki pełnościennej, wyraża się 
za pomocą tego samego wzoru co energia sprężysta, nagromadzona w kra­
townicy odpowiadającej warunkom omówionym wyżej.

Dla belek pełnych o dowolnym sposobie podparcia energia sprężysta 
wyraża się wzorem

V . (213)
Ó

Dla odpowiedniej belki kratowej mamy wzór następujący:

o

gdzie d x = A oznacza długość przedziału pasa kratownicy.
Wobec tego, że siły S w poszczególnych prętach pasa wyrażają się, 

w zależności od momentu zginającego wzorem

Ylx
TT (215)

wzór (214) przybiera postać
i i i
C /MY2 dx   E M2 dx   /’ M2 dx

J EA lh\* J 2EJ 
0 0^9 0

(216)

to znaczy postać (213).
Wszystko, co powiedzieliśmy o odkształceniu belki w dwóch punktach 

swobodnie podpartych, może być zastosowane bez żadnych zastrzeżeń i do 
innych układów złożonych z prostych elementów zginanych, a więc do 
konstrukcyj ramowych i łukowych przede wszystkim.

Ponieważ zostało tu dowiedzione, że dla belek pełnościennych od­
kształcenia i nagromadzona w czasie tych odkształceń energia sprężysta 
mogą być obliczone według tej samej metody co dla belek kratowych, 
możemy twierdzić, że o ile równania (187)-(192) zostaną wyprowadzo­
ne dla pewnej konstrukcji kratowej, to pozostaną one słuszne w tym 
samym stopniu i dla konstrukcji pełnej.

Stosowanie schematu kratownicy płaskiej do wyprowadzenia równań 
(187) - (192) dla układów płaskich nie może być uważane za nawrót do 
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dawnych poglądów na budowę ciał sprężystych przede wszystkim dla­
tego, że przy tym wyprowadzeniu brane są pod uwagę w sposób pośredni 
lub bezpośredni obie niezależne od siebie stałe sprężystości E i p, tak 
jak wchodzą one we wszystkie zadania płaskie mechaniki budowli.

Omawiana wyżej kratownica płaska odgrywa w danym razie rolę 
przybliżonego schematu, służącego do obliczenia tak złożonego układu 
statycznie niewyznaczalnego, jakim jest pod względem rozkładu naprężeń 
każda belka pełnościenna choćby podparta w sposób statycznie wyzna- 
czalny, a którego innym uproszczeniem, ogólnie przyjętym, jest belka od­
powiadająca założeniu płaskich przekrojów. Wyżej zostało wykazane, że 
oba te schematy upraszczające zapewniają ten sam stopień dokładności 
obliczeń.

Uzasadnienie słuszności stosowania schematu belki kratowej przy 
wyprowadzenia równań energii sprężystej i wzajemności przesunięć dla 
płaskich belek pełnościennych może być z łatwością rozpowszechnione 
i na układy złożone z elementów zginanych o przekroju zmieniającym 
się w sposób ciągły i powolny.

Przechodząc do belek o przekroju zmieniającym się w sposób nie­
ciągły (rys. 29) wyobrażamy sobie, że odcinki belki o różnych momentach 
bezwładności przekroju poprzecznego stykają się podług pewnych nie- 
odkształcalnych płaszczyzn normalnych do osi belki. Nic nie stoi w da­
nym wypadku na przeszkodzie, aby zastąpić odcinki pełnościenne o zmien­
nym przekroju przez odpowiednie odcinki kratowe (rys. 29) odpowiadają­
ce omówionym wyżej warunkom (1) - (3).

wafgpaii
Rys. 29

Zakrzywione pręty zginane mogą być rozpatrywane jako złożone 
z nieskończenie małych elementów prostych, a więc również ich doty­
czą wszystkie przytoczone wyżej rozważania.

Pozostaje jeszcze podkreślić, że energia sprężysta nagromadzona 
w elementach konstrukcyjnych zginano-ściskanych, obliczanych na pod­
stawie równań energii sprężystej, nieomal zawsze bywa wyznaczana ze 
wzoru

2 EJ
N2

2EA dx, (217)

gdzie części jej wywołane przez zginanie i przez ściskanie mogą być ob­
liczone niezależnie od siebie, a więc na podstawie omówionych wzorów 
(213) i (214).
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Możemy ostatecznie stwierdzić, że zastosowanie do wyprowadzenia 
równań energii sprężystej (187) - (192), dotyczących belki pełnej, sche­
matu kratownicy płaskiej o tym samym momencie bezwładności należy 
uważać, przy zachowaniu zwykłej dokładności obliczeń statycznych, za 
słuszne dla wszystkich układów sprężystych mogących uchodzić za pła­
skie. Dla przykładu przytoczymy wyprowadzenie wzoru C 1 a p e y r o n a, 
czyli wzoru (187).

Stosujemy tu ogólne równanie kraty (50).
Ponieważ mamy w danym razie do czynienia z kratownicą sprężystą 

odpowiadającą prawu H o o k e’ a, jest więc

(218)

gdzie S oznacza siły powstające w prętach pod działaniem zewnętrznych 
sił P, wzrastających w sposób ciągły i nieskończenie powolny. W ten 
sposób równanie (50) przybiera postać

(219)

lub też postać

(220)

Ponieważ drugi składnik lewej strony równania (220) wyraża w myśl 
równania (214) energię sprężystą nagromadzoną w kratownicy, mamy 
więc

v = | Vp». (221)

Prawa strona równania (221) wyraża pracę sił zewnętrznych P przy 
ciągłym i nieskończenie powolnym wzrastaniu ich od 0 do wartości 
ostatecznej. Jeżeli wielkość tę oznaczymy przez Tc, wówczas znajduje- 
my, że

V=TC. (222)

Równanie (221) możemy rozszerzyć na uogólnione siły i na uogólnione 
przesunięcia.
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V. WNIOSEK

Możność zastosowania metod mechaniki budowli opartych na regule 
równoległoboku sił w teorii układów prętów rozciągano-ściskanych 
i zginanych oraz w teorii energii sprężystej doprowadza do wniosku, że 
reguła równoległoboku sił i wypływające z niej metody geometrycznego 
badania odkształceń pozwalają na wykonanie wszelkich technicznie waż­
nych obliczeń statycznych.

Резюме

О ГЕОМЕТРИЧЕСКИХ МЕТОДАХ ИССЛЕДОВАНИЯ 
СТЕРЖНЕВЫХ КОНСТРУКЦИЙ

Фундаментом строительной механики, кроме закона Гука или 
.другого положения, которое замещает этот закон, можно принять один 
из двух принципов общей механики — принцип возможных переме­
щений или правило параллелограмма сил.

Целью настоящей работы является показать, каким образом глав­
ные задачи строительной механики могут быть решены при помощи 
методов, исходящих из правила параллелограмма сил (глава I).

Глава II работы содержит геометрическое обоснование формулы 
Максвелла и Мора для перемещений узлов фермы и состав­
ление общего уравнения решетки.

В главе III приводится обоснование формулы для прогиба консоли 
методом вторичных моментов, не прибегая к предположению, что кон­
соль защемлена на свободном конце. Представляется влияние пере­
менного сечения балок на статически неопределимые величины; рас­
сматриваются формулы для геометрического сложения деформаций 
и применены к расчету рамочных систем; решается многоугольная 
рама путем применения метода конечных разностей.

В главе IV доказывается, что формулы на применение понятия 
упругой энергии к решению вопросов строительной механики, выве­
денные на основании теории решетки, могут применяться и к полным 
системам.

Рассуждения, приведенные в работе, ведут к заключению, что пра­
вило параллелограмма сил и, вытекающие из него, методы геометри­
ческого исследования деформаций позволяют производить всякого рода 
технически важные статические расчеты.
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Summary

GEOMETRICAL METHODS OF INVESTIGATION OF LATTICE STRUCTURES

Structural mechanics can be based, beside Ho Dike’s law or any 
other assumption replacing that law, on one of two fundamental princi­
ples of theoretical mechanics: the principle of virtual work and that of 
the parallelepiped of forces. The object of this paper is to indicate how 
the principal problems of structural mechanics can be solved by methods 
based on the principle of the parallelepiped of forces (Sec. I).

Sec. II of the paper contains a geometrical proof of the Maxwell- 
M o h r equation, determining the displacements of lattice knots and 
a derivation of the general equation of a lattice.

In Sec. Ill the formula for the deflection of a cantilever beam is 
demonstrated by the method of «secondary moments», without having 
recourse to the assumption of a fastening at the free end; the influence of 
variability of cross-section on the statically indeterminate quantities is 
shown; equations for geometrical addition of deformations are discussed 
and used for frame computation; a solution of the problem of a polygonal 
frame, using the method of finite differences is given.

In Sec. IV it is shown, that the equations, in which the notion of elastic 
energy is used to solve problems of structural mechanics, and which are 
derived on the basis of the theory of lattices, can be used also for solid 
systems.

The considerations of the present paper lead to the conclusion that the 
principle of the parallelepiped and the resulting methods of geometrical 
investigation of the deformations, can be used in all technically important 
statical computations.

Praca została złożona w Redakcji dnia 23 października 1954 r.
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