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PRZEDMOWA

Teoria różnic skończonych znajduje w mechanice budowli zastosowa­
nie do dwóch grup zagadnień.

Pierwsza z tych grup dotyczy procesów posiadających charakter nie­
ciągły. W tym wypadku chodzi o nadanie otrzymanym wynikom obliczeń 
postaci wzorów zamkniętych. Typowym dla tego rodzaju zagadnień jest 
zagadnienie belek wieloprzęsłowych, w szczególności równanie trzech mo­
mentów, które С 1 e b s c h jeszcze w r. 1862 potraktował jako równanie 
różnicowe i jako takie scałkował. Do tego rodzaju zagadnień należy mię­
dzy innymi zagadnienie dźwigara ciągłego załamanego w planie, które 
doprowadziło autora niniejszej pracy do równania pięciu momentów skrę­
cających, dającego się scałkować jako równanie różnicowe.

Drugą grupę zagadnień, do rozwiązania których pomocna jest teoria 
różnic skończonych, stanowią zagadnienia dotyczące procesów z natury 
swojej ciągłych, lecz rozpatrywanych jako nieciągłe w celu uproszczenia 
lub umożliwienia obliczeń numerycznych. Trudno jest ustalić, kiedy zro­
dził się pomysł takiego postępowania, został on jednak niewątpliwie roz­
powszechniony dzięki pracy N. J. Nielsena z 1920 r. i pracom 
H. Marcus a z okresu lat 1919-1924.

Treścią niniejszej pracy jest zastosowanie tego ostatniego pomysłu do 
badania dwukierunkowych stanów naprężeń w układach nieprętowych 
(pełnych), a więc przede wszystkim w płytach, belkach o znacznej wyso­
kości i zaporach.

Autor wyzyskał tu dawniejsze swoje publikacje, w szczególności zaś 
następujące:

(1) Rozkład naprężeń w murach szczelnych, Przegląd Techniczny. 
Warszawa 1928,

(2) Wyznaczenie linii izostatycznych, Czasopismo Techniczne, Lwów 
1932,

(3) Obliczenie płyty wspornikowej za pomocą równań różnicowych, 
Wyd. Warsz. Tow. Politechn., Warszawa 1934,

(4) W sprawie metod obliczenia płyt żelbetowych, Czasopismo Tech­
niczne, Lwów 1934.
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Mówiąc o różnicach skończonych ma się tu na widoku wszelkie sposo­
by obliczeń statycznych, w których różniczki d x i d у są zastąpione przez 
małe wielkości skończone /1 x lub Л у .

Obliczenie naprężeń i odkształceń w płytach doprowadza do liniowych 
równań różnicowych, a wyznaczenie linii izostatycznych do równań nie­
liniowych. Stąd ze względu na typy omawianych tu budowli pierwsza 
część pracy poświęcona jest teorii płyt, a druga wysokim belkom i zapo­
rom, przy obliczaniu których linie izostatyczne odgrywają szczególnie po­
ważną rolę. W ten sposób podział pracy z punktu widzenia metody obli­
czenia odpowiada podziałowi z punktu widzenia rodzaju konstrukcji.

AUTOR
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I. ZASTOSOWANIE RÓWNAŃ RÓŻNICOWYCH LINIOWYCH

1. Znaczenie różnic skończonych w teorii płyt

Omówione tu zostaną różne możliwości zastosowania równań różnico­
wych liniowych do obliczenia odkształceń i naprężeń w płytach izotropo­
wych oraz w płytach ortotropowych, w szczególności z punktu widzenia 
obliczenia płyt żelbetowych.

Całkowanie równania różniczkowego odkształconej środkowej po­
wierzchni płyty, tj. równania

E_ 
1—12

/ d4 w d4 w ó4 w \ _
W + 2” 9 (1)

w którym w oznacza ugięcie płyty 
w punkcie o współrzędnych х, у (rys 1), 
E współczynnik sprężystości, h. grubość 
płyty, у współczynnik P o i s s o n a, 
q obciążenie na jednostkę powierzchni 
płyty, nastręcza dla wielu przypadków 
podparcia płyty trudności nie do prze­
zwyciężenia.

Stąd zrodził się pomysł zastąpienia 
równania różniczkowego (1) przez od­
powiednie równanie różnicowe. Po­
mysł ten został prawie jednocześnie 
ogłoszony przez N. J. Nielsena 
i H. Marcusa; doprowadza on do 
równania 

E h* / zl4 w

Rys. 1

Ąy w i
1— y2 12 Zl X4 zl X2 zl y2 zl y4 (2)

gdzie zl x i zl у są to skończone, lecz możliwie małe w stosunku do wy­
miarów płyty przyrosty współrzędnych, zl4w jest różnicą czwartego rzę­
du w kierunku osi X-ów, zl4w różnicą czwartego rzędu w kierunku osi 
Y-ów, a Zl4 v w różnicą drugiego rzędu w kierunku osi Y-ów różnicy dru­
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giego rzędu w kierunku osi X-ów lub równą jej różnicą drugiego rzędu 
w kierunku osi X-ów różnicy drugiego rzędu w kierunku osi Y-ów.

W związku z oznaczeniami na rys. 1, na którym przedstawicne jest poło­
żenie pewnego punktu o współrzędnych х, у w stosunku do punktów 
sąsiednich, mamy

Zł* W = 6 Wij — 4 (w, + lj + W/-1,/) 4- (Wi+2J 4- Wi-2j) ,

Ay W = 6 Wij -- 4 (WiJ+l + Wij-i) + (WiJ+2 + Wij-2) ,

Axy w = 4 Wij — 2 (wi+ij + Wi-u + Wij+1 + Wij-i) +

+ (wz +l,;+l 4“ Wi—ij 4“ Wz—1,7+1 4" Wt—tj—i) ,

gdzie znaczki i, j zastępują znaczki x, у zgodnie ze związkami x — i • A x 
oraz у = j • А у .

W podobny sposób dla drugich różnic mamy

AxW = Wi+ij — 2 wij 4- Wi-ij,

Ay w = wij+x — 2 Wij + Wij-i, 
.2 iAxyw = Wi+ij+i — Wi+ij— Wij+i 4- wij .

(4)

Dla płyt ortotropowych równanie różniczkowe cdkształccnej środkowej 
powierzchni płyty ogłcszcne po raz pierwszy przez Gehringa w 1860 r. 
posiada postać

d^w ó4w d4u
+ дх2ду2 + В2 dy* (5)

gdzie
= E' в,— E* —

1 Ух. У2 12 1 Ух y% 12

a gdzie z kolei i y, odpowiadają kierunkowi osi X-ów, a E2 i y2 
kierunkowi osi Y-ów.

H. Marcus korzysta z równania (5) specjalnie dla płyt żelbetowych 
i dlatego wielkości B, i B2 różnią się w jego pracach cd siebie tylko 
wskutek różnego uzbrojenia płyty w dwóch prostcpadlych kierunkach, nie 
różnią się natcmiast wielkościami y. Z tego pcwcdu decydując się na małą 
zresztą nieścisłość w całkowaniu, nie mającą znaczenia praktycznego, otrzy­
muje on

2H = B1 + B2. (6)

Takie postawienie sprawy pozwoliło Marcusowi zastosować do 
płyt ortotropowych pewne uproszczenia wprowadzone przez niego do roz­
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wiązywania równania płyty izotropowej. Uproszczenie to oparte jest na 
spostrzeżeniu, że jeżeli wprowadzimy oznaczenie

E hxld2w , d2w\~T^^12\дx2+~дy2)~M, (7)

to równaniu (1) będziemy mogli nadać postać

д2М д2 M _
dx2 + dy2 -q’ (8)

przy czym zależność między wielkością M a wielkościami i M2 przed­
stawiającymi jednostkowe momenty zginające w danym punkcie płyty, 
działające w płaszczyznach pionowych równoległych do osi współrzęd­
nych, wyraża się tu wzorem

M = (9)
1 + у

Należy zauważyć, że równania (6) i (7) odpowiadają równaniom

„rd2y „„ d2M— EJ -Ą — M i -у—у = qdx~ dx2 (10)

z teorii zginania belki prostej.
Podobnie jak równaniom (10) odpowiada równanie krzywej sznurowej

№y _  p 
Tr! — H ’ (U)

w którym у oznacza rzędne liny zwisającej, p obciążenie ciągłe, a H siłę 
poziomą rozciągającą linę, równaniom (7) i (8) odpowiada w układzie prze­
strzennym następujące równanie błony sprężystej (die elastische Haut), 
rozciąganej równomiernie siłami poziomymi H i obciążonej pionowo siła­
mi ciągłymi o natężeniu p:

d2^ d2y   p 
d^2 + dy’ H ' (12)

Obliczenie odkształceń płyt sprężystych na podstawie analogii między 
równaniem (12) a równaniami (7) i (8) znajduje odpowiednik w teorii be­
lek prostych w metodzie momentów wtórnych. Podobnie jak metoda mo­
mentów wtórnych pozwala zarówno na wykreślne, jak i na analityczne 
obliczenie odkształceń, tak samo i teoria błony sprężystej M a r c u s a po­
zwala na stosowanie tych obydwóch sposobów obliczenia.

Aby umożliwić wykreślne obliczenie ugięć płyty sprężystej oraz zasto­
sowanie do tego celu równań różnicowych, wprowadził Marcus pojęcie 
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siatki sprężystej (das elastische Gewebe). Pojęcie to odgrywa w danym 
wypadku rolę podobną do roli wieloboku sznurowego, który zastępuje 
w obliczeniach wykreślnych układów płaskich krzywą sznurową. Gdy 
chodzi o obliczenie analityczne ugięć płyty, to można tu zastąpić równa­
nia różniczkowe (7) i (8) przez odpowiednie równania różnicowe. Można 
to zrobić również i w przypadku płyty ortotropowej, kiedy równanie (7) 
musi być zastąpione przez równanie

„ d2w , „ d2wВ, -д—o—h B2 a — — M (13)ó.r dy

lub ściślej przez równanie

в^^^ + B2^ =~M, (14)
Ar A y-

jeżeli tylko przyjmiemy, że w równaniu (5) mamy 2 H — + B2.
Marcus przypisuje chyba zbyt wielką rolę analogii zachodzącej 

między równaniami (7) i (8) a równaniem (12). Pomysł jego może wpraw­
dzie oddać ważne usługi w przypadkach, gdy wielkości ugięć w i wiel­
kości M stają się równe zeru w tych samych punktach płyty, gdy to jed­
nak miejsca nie ma, znikają korzyści wypływające z zalecanej analogii.. 
Pochodzi to stąd, że gdy w i M stają się równe zeru w tych samych punk­
tach płyty, co ma miejsce przede wszystkim w obliczeniu płyt swobodnie 
podpartych na całym obwodzie, to możemy równanie (8) rozwiązać nieza­
leżnie od równania (7), a potem dopiero rozwiązać równanie (7) i na pod­
stawie otrzymanych wielkości w obliczyć jednostkowe momenty zginają­
ce M, i M2 w danym punkcie płyty:

/ A2 w A2 w \M, = - B, 4^ + № 2~ , 15)\ A x2 Ay^ I

„„ „ / A2 w , A2 w \ „- B2 ^2 + ), (16)

przy czym dla płyty izotropowej Br = B2.
Tego rodzaju tok postępowania nie jest możliwy, gdy w i M nie są je­

dnocześnie równe zeru; toteż sam Marcus ucieka się w tych wypadkach 
do rozwiązywania układu równań typu (2). Można więc, na ogół bez szcze­
gólnych strat w czasie, nie korzystać w obliczeniach analitycznych płyi 
z analogii między równaniami (7) i (8) a równaniem (12); należy jednak 
stwierdzić, że analogia ta daje szereg ważnych zależności, pozwalających 
się wyzyskać w różnych działach statyki budowli.

Bezpośrednie zastosowanie znajduje schemat siatki sprężystej w przy­
padku wykreślnego sposobu całkowania równania odkształconej po­
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wierzchni płyty. Stosowanie jednak wykreślnego sposobu obliczenia przy 
tak precyzyjnej czynności matematycznej, jaką jest całkowanie równania 
różniczkowego czwartego rzędu w pochodnych cząstkowych, aczkolwiek 
interesujące w swym ujęciu, nie może być uważane za dostatecznie ścisłe. 
Toteż nie znalazło ono na ogół zastosowania.

Z powyższych rozważań zdaje się wyraźnie wynikać, że najwłaściw­
szym sposobem zastosowania teorii różnic skończonych do obliczenia płyt 
jest bezpośrednie wyzyskanie równania (2).

Ponieważ płyty jako konstrukcje budowlane wykonane są przeważnie 
z żelbetu, powstaje pytanie, czy należy płyty takiej konstrukcji uważać za 
płyty izotropowe, czy też za płyty ortotropowe.

Teoria płyty sprężystej w ogóle, a teoria płyty ortotropowej w szcze­
gólności, oparta jest na założeniu, że materiał płyty szczelnie wypełnia 
całą jej objętość. Toteż zastosowanie teorii płyty ortotropowej do płyty 
żelbetowej powinno dotyczyć tej fazy odkształcenia, przy której płytę na 
całej grubości można uważać za sprężystą. Płyty obliczone dla tej fazy wy­
kazują małe różnice w sztywnościach B, i B2 przy znacznych nawet róż­
nicach w uzbrojeniu w dwóch prostopadłych do siebie kierunkach. Tak 
więc np. przy stosunku przekroju wkładek stalowych uzbrojenia 1 : 4,45 
momenty bezwładności na 1 m długości przekroju mają się jak 1 : 1,06. 
Z tego wynikałoby, iż obliczanie płyty żelbetowej jako płyty ortotropowej 
nie jest w tych warunkach potrzebne.

W fazie odkształcenia, kiedy w płycie powstają rysy, stosunek momen­
tów bezwładności równa się w przybliżeniu stosunkowi przekrojów wkła­
dek stalowych uzbrojenia. W tych jednak wypadkach nawet przy znacz­
nych różnicach w jednostkowych momentach bezwładności w dwóch kie­
runkach do siebie prostopadłych momenty zginające obliczone dla płyty 
izotropowej i ortotropowej różnią się od siebie nie tak wiele. A więc np. 
według M a r c u s a dla płyty prostokątnej swobodnie podpartej przy sto­
sunku boków 1 : 2 i stosunku momentów bezwładności 4 : 1 różnica ta 
wynosi 22%. Podobna różnica uzasadniałaby wprawdzie konieczność 
wzięcia pod uwagę okoliczności, że sztywność płyty jest w dwóch kierun­
kach do siebie prostopadłych różna, gdyby nie wzgląd na to, że znaczne 
różnice w tych sztywnościach dotyczą tylko fazy tworzenia się rys, a więc 
takiego stanu rzeczy, przy którym przewidziane jest pękanie betonu. 
W ten sposób (rys. 2) pasmo wyjęte w kierunku uzbrojenia znajduje się 
w różnych punktach swej długości w różnych warunkach dotyczących 
sztywności, gdyż powstałe rysy zmniejszają przekrój poprzeczny pasma 
w różnych jego miejscach w różnym stopniu.

A więc przekrój poprzeczny pasma wyjętego z płyty o stałej grubości 
nie może być uważany za stały na całej długości pasma, ponieważ zaś pa­
smo takie musi być uważane za układ statycznie niewyznaczalny, więc 
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momenty zginające muszą tu być uzależnione od stopnia zmienności prze­
kroju. Tej zmienności nie jesteśmy jednak w stanie uwzględnić.

Ponieważ zmienność przekrojów poprzecznych w belkach prostych 
może mieć na momenty zginające wpływ wyrażający się w kilkudziesięciu 
procentach, należy więc oczekiwać, że rysy wywołane w płycie przez pęk-

Rys. 2

nięcie betonu w podobnym stopniu 
wpływają na momenty zginające 
w poszczególnych punktach płyty. 
Staje się wobec tego rzeczą wątpli­
wą, czy w tych warunkach warto 
w każdym posaczególnym wypadku 
uwzględniać wpływ na momenty 

zginające anizotropii płyty, tym bardziej, że uwzględnienie skręcania 
w betonie, które ma wpływ na ściślejszą wartość współczynnika 2 H, na­
trafia wciąż na poważne trudności.

Wobec przytoczonych okoliczności należy uważać za słuszne, aby pro­
stokątne płyty żelbetowe o stałej grubości były obliczane jako sprężyste 
płyty izotropowe z tym, że przy wyznaczaniu dopuszczalnych naprężeń 
ortotropia tych płyt zostanie uwzględniona.

Jak widać z powyższych rozważań, stosowanie teorii różnic skończo­
nych do obliczenia płyt może być wyzyskane zarówno w przypadkach płyt 
izotropowych, jak i ortotropowych, a więc w każdym wypadku płyty żel­
betowej.

Na tle rozważań tego paragrafu jako przykład zostanie niżej podane 
obliczenie płyty-wspornika.

2. Obliczenie płyty-wspornika

Przedstawione niżej obliczenie płyty-wspornika ma za zadanie, poza 
rozwiązaniem konkretnego zagadnienia technicznego, zobrazowanie na
przykładzie tych metod postępowania, 
które mają w danym zakresie również 
znaczenie ogólniejsze.

Weźmy więc pod uwagę prostokąt­
ną płytę-wspornik А В C D obciążoną 
trzema siłami P, których rozmieszczenie 
podane jest obok (por. rys. 3). Jako 
wspornik płyta jest utwierdzona wzdłuż 
jednej krawędzi, a jej ugięcia wzdłuż 
trzech pozostałych. Płytę uważamy za 
poziomą, a jej ugięcia za pionowe.

Podobnie jak belkę-wspornik AB (rys 4), obciążoną siłą P na końcu, 
można rozpatrywać z punktu widzenia odkształceń jako połowę belki 
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В В' podpartej w punkcie A i obciążonej symetrycznie dwiema siłami P, 
tak samo i płytę-wspornik AB C D można rozpatrywać jako połowę pły­
ty В В' С' C podpartej wzdłuż krawędzi 
A D i obciążonej w sposób symetryczny 
względem tej krawędzi (rys. 5).

Przeprowadzamy na rys. 5 przed­
stawiającym w planie płytę-wspornik 
szereg prostych a, b, c ... j . . . równo­
ległych od osi О X i oddalonych jed­
na od drugiej o równe odcinki А у oraz szereg prostych 0, 1, 2, .. . i . . .
równoległych do osi i O Y i oddalonych od siebie o odcinki A x.

W ten sposób powstanie na 
powierzchni płyty szereg punk­
tów przecięcia dwóch układów 
prostych, a więc ogólnie mó­
wiąc prostej j i prostej i; będą 
to punkty i, j lub ogólnie punk­
ty x, y; ugięcia płyty w tych 
punktach będziemy oznaczali 
przez Wij lub prościej przez ji.

Odcinki A x i А у uważamy 
za przyrosty współrzędnych 
x i у i przyjmujemy, że Ax = 
— А у =i lz3 l, gdzie l jest to 
mniejszy wymiar wspornika, 
a 2 l większy.

Równanie (2) przybiera 
w tych warunkach postać na­
stępującą:

20 Wij — 8 (wi+ij + Wi-\j + Wij+i +wij-i) + (17)

+ 2 (w/+i,/+i + wi ^j-i + Wi— ij+i + Wi—\j—i) -j-

+ (Wi + 2J + Wi—2J + Wij+ 2 + Wij—2)  --- £---- •

1—/г 12

Poza prostymi a, b, c, d, e równoległymi do osi X-ów oraz prostymi 
0, 1, 2, 3, 4 równoległymi do osi Y-ów, przeprowadzamy między prostymi 
obydwóch tych grup jeszcze proste odległe od wymienionych prostych 
o A x/2 i przedstawione jako punktowane linie na rys. 6. Punkty (i, j) 
znajdują się w środkach ciężkości otrzymanych tą drogą kwadratów. Siły

11



zaczepione w punktach (i, j) zastępujemy przez obciążenie równomiernie 
rozłożone na powierzchni tych kwadratów.

Rys. 6

Reakcję płyty А В C D obciążonej symetrycznie względem osi О X 
w punktach (a, 0), (a, 1), (a, 2), (a, 3) oznaczamy odpowiednio przez 
Ro, Rn R2, R3. Dzieląc te wielkości kolejno przez A x2 będziemy otrzy­
mywali wielkości oznaczone jako q w równaniach (1) i (2).

Wprowadzamy oznaczenia

q A x‘
E H?

R , 4 , 2 A xiA x2
E hs (18)

lub też ogólniej

1—/z2 12

RAx2
Г В (19)

1 — ц2 12
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gdzie В przedstawia jednostkową sztywność płyty i gdzie dla liczby 
Poissona przyjmujemy ц = 0,2.

W punktach (a, 1'), (a, 2'), (a, 3') występują odpowiednio te same reakcje 
co w punktach (a, 1), (a, 2), (a, 3).

Siły P uważamy za zaczepione w punktach (d, 0), (d, 1), i (d, 1') rozpa­
trywanej płyty-wspornika lub w punktach (d, 0), (d, 1) i (d, Г) płyty 
А В' C' D.

Wobec symetrii płyty względem osi О X i O Y wyznaczenie ugięć ogra­
niczyć można do punktów położonych wewnątrz obwodu O D C F, w da­
nym wypadku do 12. Niezależnie od tego musimy obliczyć pionowe prze­
sunięcia pewnych punktów poza obwodem ograniczającym płytę. Jest to 
konieczne do wyznaczania różnic skończonych, wyrażonych wzorami (3) 
i (4) dla punktów położonych na obwodzie płyty. Wyznaczenie przesunięć 
punktów położonych poza obwodem płyty należy rozumieć w ten sposób, 
że odkształcona środkowa powierzchni płyty, odpowiadająca równaniu róż­
niczkowemu (1), nie jest z geometrycznego punktu widzenia ograniczona 
obwodem płyty, możemy więc wyznaczyć jej rzędne nie tylko dla punk 
tów położonych wewnątrz obwodu, ale i poza nim. Punktów takich będzie 
w danym przypadku 8. Są to mianowicie punkty (e, 0), (e, 1) (e, 2), (e, 3), 
(d, 4), (c, 4), (b, 4) i (a, 4).

Ustawiamy równania (17) dla następujących 9 punktów płyty:

(a, 0), (a, 1), (a, 2), 
(b, 0), (b, 1), (b, 2), (20)
(c, 0), (c, 1), (c, 2).

Są to równania następujące:
dla punktu (a, 0)

— 16b0 + 8 b, + 2cn = r0, (I)

dla punktu (a, 1)
4 b0—16 b4 + 4b3 + 2 Cj =7, , (II)

dla punktu (a, 2)
4 b,—16bj 4-4b3 + 2c2 = r2, (III)

dla punktu (b, 0)
21 b,, — 16 b, 2 b2 — 8 cn + 4 c, + dn = 0 , (IV)

dla punktu (b, 1)

— 8 b0 + 22 b1 — 8 b3 + b3 + 2 c0 — 8 c, + 2 c2 + d, = 0 , (V)
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dla punktu (b 2)
b0 — 8 bł + 21 b2 — 8 b3 + b4 + 2 C] — 8 c3 + 2 c3 + d2 = O , (VI) 

dla punktu (c, 0)
— 8b0 + 4b1 + 20c0—16C1 + 2c2 —8do + 4d1 + eo = O, (VII) 

dla punktu (c, 1)
2b0 — 8b, + 2b2 — 8c0 + 21 c, — 8c2 + c3 + 2d0 — 8dt + 2d3 + e, = O , (VIII)

dla punktu (c 2)
2b। — 8b3 + 2 b2 + c0 — 8 Cj + 20c2—8c3 -kc4 4- 2 d, — 8 d2 + 2 d3-|- e2=O . (IX)

Przy ustawianiu równań (I)-(IX) brano pod uwagę, że przesunięcia 
punktów położonych symetrycznie względem osi О X lub osi O Y są sobie 
równe.

Następną grupę równań, potrzebnych do wyznaczenia ugięć w, otrzy­
mamy przyrównując do zera naprężenia normalne prostopadłe do pła­
szczyzn pionowych А В, В С, C D (rys. 1), czyli ustawiając równania

ax=0, &з, = 0. (21)

Naprężenia te wyrażają się wzorami

°x 1—/^( dx2 +/'dy2f

E Id2w , d2w\
°у-~ Z ( d^ +11 d ’

(22)

w których z oznacza odległość pewnego punktu przekroju od osi obo­
jętnej.

Po zastąpieniu we wzorach (22) i (23) pochodnych przez odpowiednie 
ilorazy różnicowe znajdujemy

°x = ~ --g [wi+ij — 2 Wij + Wi-u + (24)
J. 1л ZA vC

+ у (Wć/+1 — 2 Wij + Wz,/_i)],
E z

ay = — lwiJ+i — 2 Wij + Wij-i + (25)

+ (i (wi+ij — 2 Wij + w/—i,/)] .

Równania (21) przybierają w tych warunkach postać: 
dla punktu (a, 3) (równanie cx = 0)

a, + 0,4 bs = 0, (X)
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dla punktu (b, 3) (równanie 
b2 —2,4

Ox — 0)
b2 + b4 r 0,2 c3 = 0, (XI)

dla punktu (c, 3) (równanie 
0,2 b3 + c2 —

ax = 0)
2,4 c3 + c4 + 0,2 d3 = 0, (XII)

dla punktu (d, 3) (równanie 
0,2 c3 + d2 —

Ox = 0)
■ 2,4 d3 -|- d4 4“ 0,2 e3 = 0, (XIII)

dla punktu (d, 0) (równanie 
c0 — 2,4 d.

oy = 0)
u + 0,4 dj + e0 = 0. (XIV)

dla punktu (d, 1) (równanie 
c, + 0,2 d0 —

Oy = 0)
- 2,4 d1 + 0,2 d2 + e, = 0, (XV)

dla punktu (d, 2) (równanie 
c2 + 0,2 d1 —

<Ty = 0)
- 2,4 d2 + 0,2 d3 + e2 = 0. (XVI)

dla punktu (d, 3) (równanie 
c3 + 0,2 d2 —

o> = 0)
- 2,4 d3 + 0,2 d4 + e3 = 0. (XVII)

Naprężenia styczne rz występujące w płycie w kierunku poziomym 
w płaszczyznach pionowych równoległych do osi współrzędnych wyra­
żają się dla punktu oddalonego o z od powierzchni obojętnej za pomocą 
.vzoru

тг = — 2Gz-2^, (26)
дхду v

gdzie G oznacza współczynnik sprężystości przy przesuwaniu.
Zastępując w równaniu (26) pochodne przez odpowiednie ilorazy róż­

nicowe znajdujemy w związku ze wzorami (4)

тг = — 2 G (w' + i,/+i — Wi+i.j — Wija + Wij). (27)

Wobec symetrii płyty i jej obciążenia względem osi Y-ów naprężenia 
styczne rz powinny być w poszczególnych punktach tej osi równe zeru, 
powinna więc mieć miejsce zależność

rz = 0 , (28)

czyli zależność

wz+ij+i — wi+ij — wtj+i + Wij = 0 . (29)
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Równanie (29) ustawiamy dla punktów następujących:
(a, 0), (b, 0), (c, 0), (d, 0). (30)

Ponieważ pionowe przesunięcia punktów znajdujących się nad pod­
porą równe są zeru, więc

a0 = 0, a, — 0. (31)

Stąd równanie (29) ustawione dla punktu (a, 0) da nam 
bn (XVIII)

dla punktu (b, 0)
Co Ci, (XIX)

dla punktu (c, 0)
do = d1( (XX

dla punktu (d, 0)
e0 = Ci- (XXI)

Wobec tego że zarówno płyta, jak i jej obciążenie są symetryczne 
względem osi X-ów i У-ów oraz wobec tego że siły, działające na płytę, 
są prostopadłe do płaszczyzny X О Y, sześć równań równowagi bryły 
w przestrzeni sprowadza się w danym razie do jednego równania

£Z = 0, (32)

gdzie Z oznacza rzuty sił na kierunek osi Z-ów (kierunek prostopadły do 
płaszczyzny X O Y).

Równanie (32) przybiera w zastosowaniu do płyty В В' С' C (rys. 5) 
postać

Ry 2 Rj P 2 Ro "P 2 R^ 6 P . (33)

Po wprowadzeniu oznaczenia (19) znajdujemy

r0 P 2r, P 2r„ P 2r3 = 6 p . (XXII)

Aby uzyskać dwa brakujące równania potrzebne do wyznaczenia ugięć 
płyty, ustawiamy równania wyrażające warunki równowagi części А В C D 
(rys. 3) oraz F F' С’ C (rys. 5) płyty-schematu В В' С' C, mianowicie wa­
runki, że sumy momentów sił działających na te części płyty względem 
osi Х-ów oraz względem osi Y-ów równe są zeru.

Moment sił zewnętrznych działających na bryłę А В C D względem 
osi X-ów równa się

Mt = 3Pl=9PAx; (34)
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Moment sił wewnętrznych działających w płaszczyźnie pionowej A D 
płyty А В C D, w założeniu, że oś О X pokrywa się z osią obojętną prze­
kroju A D, równa się

Mwx — I Mxdx, (35)

gdzie M'x oznacza moment sił wewnętrznych przypadających na jednostkę 
bieżącą przekroju A D.

Moment Mx w związku z równaniami (22) i (23) przybiera postać na­
stępującą:

Л/2
, { , E h3 / d-w , d2w \Mx = zavdz =— ,------5 , „ ji •• ’J y 1 — 12 \ dy2 ' d x2 /

-Л/2

Przyjmujemy dalej, że naprężenia ay i momenty Mx obliczone dla 
punktów (a, 0), (a, 1), itd. (rys. 6) przekroju A D płyty (rys. 5) nie ule­
gają zmianie na przestrzeni dx/2 w obie strony od tych punktów. Wobec 
tego że na podporze wszystkie przesunięcia płyty równe są zeru [punkt 
(a, 4) leży już poza podporą, jednak na powierzchni wyrażającej się rów­
naniem (1)], równanie (35) przybiera postać

P КЗ 4 у 1
Mwx = — -^(2Ь0 + 4Ь,+4Ь2 + 4Ь3 + 2ла4). (37)

[A ) Al X

Stąd równanie momentów sił działających na bryłę А В C D wzglę­
dem osi OX (A O), czyli równanie

ZM = Mx + Mw = 0 (38)

przybiera, po wprowadzeniu oznaczenia (19), postać

b„ + 2 bt + 2 b2 + 2 b3 + 0,2 at = 4,5 p. (XXIII)

Moment sił zewnętrznych działających na część płyty F F' С' C wzglę­
dem osi O Y równa się

My = 2 PA x — Rj di — R2 • 2 A x — Rs - 3 Л r .

Odpowiedni moment sił wewnętrznych wynosi

gdzie

M.^^ — I My d у ,

E h3 i d2w d2 w 1
1 — у2 12 ’ d x2 d y2 '

(39)

(40)

(41)
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Zastępując w dalszym ciągu w wyrażeniu (41) pochodne przez odpo­
wiednie ilorazy różnicowe i przyjmując, podobnie jak wyżej, że na od­
cinkach zlx przekroju F F' (rys. 5) momenty My zmianie nie ulegają, na- 
'dajemy równaniu (40) postać

E /1 x 1
~ (1 " /г) (a’ — 2 a0 + at) + 2 (bt — 2 b0 + bj + (42)

+ 2 (c, — 2 c0 + ct) -)- 2 (dx — 2 d0 + dj + fi (b0 — 2 a0 + b0) 4-
+ 2p (Go — 2 b0 4- c0) 4- 2 fi (b0 — 2 c0 4- d0) 4- 2 fi (c0 -— 2 d0 4~ c0) —

EW Дх 
12(1—/?) (—2d04~2e0).

Stąd równanie momentów У M = 0 , czyli równanie

My — Mw = 0

przybiera postać

— 0,4 d0 4~ 0,4 e0 = 2 p — r, — 2 r2 — 3 r3.

(43)

(XXIV)

Równania (I)-(XXIV) tworzą układ 24 równań liniowych z taką samą 
liczbą niewiadomych, co pozwala na wyznaczenie wszystkich reakcji pły­
ty i pionowych przesunięć wszystkich potrzebnych do obliczenia punktów 
płyty. Po rozwiązaniu tego układu znajdujemy

a4 = 0,59967 p,
bo = bt = 0,24033 p, b,= 0,45028p, 
c0 = c1 ==1,36093 p, c2 = l,78112 p, 
d0=d1 = 3,34183 p, d2 = 3,34145p, 
€0 = e1 =5,32270 p, e2 = 3,14643 p, 

r0 = 0,79922 p, rt = l, 63890 p,

b3 = 1,49917 p, 
c3= 5,14316p, 
d3 = 12,11767 p, 
e3 = 19,09226 p, 
r2= 3,31575p,

b4 = 2,11916 p, 
c4 = 7,83913p, 
d4 = 20,89392p,

r3 = —2,35425р.

(44)

Wprowadzając tu oznaczenie (19) oraz przyjmując Ax =—1/3 znaj­
dujemy dla ugięcia płyty w środku jej krawędzi В C:

PI2
2,693 В ' (45)

Do obliczenia naprężeń normalnych korzystamy ze wzorów (24) i (25). 
W punkcie (a, 0) mamy

ау = 1_ 2 ,-^[b0 —2a04- b0+.p(a1 —^do-l- aj)], (46)
1 jt/- z I JL
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co dla zl x = 1/3 i z = ± h/2 daje

Ścisłość otrzymanych wyników zwiększa się w miarę zmniejszania się 
odcinków A x. Dla porównania ugięcia (45) płyty z ugięciem odpowied­
niej belki-pasma, obciążonej na swobodnym końcu siłą P, mnożymy w wy­
rażeniu dla d„ licznik i mianownik przez A x oraz bierzemy pod uwagę, 
że B= [E/(l—/z2)] (h3/12) i BAx = EJ/(l—fp). Znajdziemy w ten sposób 
dla d0 wyrażenie

, PPAx PP PP .
d°~ 2,693 B I x ~ 8,079 В/1 x 8,416 EJ ' 1

Ponieważ w odpowiednim wzorze na ugięcie belki-pasma mielibyśmy 
przy E J współczynnik 3, więc wzór (48) podkreśla znaczenie tzw. «pły- 
towatości».

II. ZASTOSOWANIA RÓWNAŃ RÓŻNICOWYCH NIELINIOWYCH

1. Linie i kierunki naprężeń a linie izostatyczne

Nieliniowe równania różnicowe występują w statyce budowli przede 
wszystkim jako przetransponowane na różnice skończone równania róż­
niczkowe linii izostatycznych, które w znacznym stopniu charakteryzują 
poszczególne stany naprężeń.

Jeżeli wyobrazimy sobie ciało sprężyste o kształcie graniastosłupa lub 
walca, obciążone w kierunku prostopadłym do wysokości, to linią izosta­
tyczną będziemy nazywali krzywą wykreśloną na przekroju poprzecznym 
graniastosłupa i posiadającą tę własność, że styczna do niej w pewnym 
punkcie ciała sprężystego wskazuje kierunek jednego z naprężeń 
głównych.

Poza ogólną charakterystyką warunków pracy poszczególnych bu­
dowli i wskazaniem w nich miejsc niebezpiecznych, linie izostatyczne są 
wielokrotnie pomocne przy rozmieszczaniu niektórych elementów kon­
strukcyjnych, np. stalowych wkładek ukośnych w belkach żelazo-beto- 
nowych, kątowników usztywniających konstrukcje w pionowych blachach 
belek stalowych itd. Ostatnio odgrywają one poważną rolę przy projekto­
waniu belek wstępnie sprężonych.

Przy wyznaczeniu linii izostatycznych bądź drogą ustawienia równań 
tych krzywych, bądź za pomocą obliczenia współrzędnych poszczególnych 
jej punktów, niezbędne jest wprowadzenie pewnego płaskiego układu 
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osi współrzędnych. Z drugiej strony, kierunki naprężeń głównych w pew­
nych punktach ciała sprężystego zależą od wielkości tych naprężeń. Z te­
go wynika konieczność analizy zarówno linii jednakowych naprężeń, jak 
i kierunków naprężeń, zwłaszcza kierunków naprężeń głównych.

Pojęcie naprężenia w danym
punkcie o ciała sprężystego 
sprecyzujemy tu w sposób na­
stępujący.

Bierzemy pod uwagę walec 
sprężysty o przekroju dowolnym 
(rys. 7) i o wysokości 1. Niech 
walec ten będzie przecięty po­
wierzchnią cylindryczną a a 
przechodzącą przez punkt o. 
Oddziaływanie odrzuconej czę­
ści В walca na część jego A od­
dzieloną od tamtej powierzch­
nią aa może być zastąpione 
przez układ sił rozłożonych 
w sposób ciągły na tej po­
wierzchni, których wypadkową
oznaczymy przez p.

Przyjmujemy pewien układ współrzędnych X O Y i zakładamy, że

P = f (х, У)- (49)
W odległości nieskończenie małej od punktu o, na przestrzeni odcinka 

b c, zwanego elementem izostatycznym, uważamy powierzchnię cylin­
dryczną za płaszczyznę nachyloną do osi OX pod kątem q>, a siły p za 
stałe i nachylone do b c pod stałym kątem fi.

Naprężeniem w punkcie o będziemy w tym wypadku nazywali po­
chodną

f d A ' '
gdzie A oznacza pole przekroju.

Ponieważ siły ciągłe o natężeniu p możemy rozłożyć na kierunek pro­
stopadły do powierzchni b c i do niej styczny, więc i naprężenie w punkcie 
o działające na płaszczyznę b c możemy rozłożyć na naprężenie normalne a 
i styczne t.

Aby można było porównywać ze sobą naprężenia a i r odpowiadające 
różnym elementom izostatycznym, przechodzącym przez punkt o, ustala 
się zależność między naprężeniami działającymi na element b c, nachylony 
względem osi О X pod dowolnym kątem tp, a naprężeniami działającymi 
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na elementy xx oraz у у odpowiednio równoległe do osi О X i О У (rys. 8). 
Zależność tę otrzymujemy z warunków równowagi graniastosłupa wy­
ciętego z omawianego walca i posiadającego podstawę w kształcie 
trójkąta ab c o wymiarach nie­
skończenie małych (rys. 9). Ponie­
waż odległość płaszczyzny b c od 
punktu a jest wielkością nieskoń­
czenie małą, naprężenia w tej pła­
szczyźnie oraz naprężenia w pła­
szczyźnie do niej równoległej, 
przechodzącej przez punkt a, róż­
nią się od siebie o wielkości nie­
skończenie małe i muszą być wo­
bec tego uważane za równe.

Przy kierunkach naprężeń 
przyjętych na rys. 9 i przy przy­
jętym tam sposobie odmierzania 
kątów ę> zależność między naprę­
żeniami a, r, ax i oy wyraża się za 
pomocą równań

a — ax sin2 ę? + ay cos2

Rys. 8

o + 2 Tn sin ę; cos <p , (51

t = °X~2 °y + -ay-—-x cos 2 у + тп sin 2 , (52)

T — 2ę> + T^COS 2ę). (53)

Największą wartość Oj otrzy­
ma naprężenie cr (naprężenie głów­
ne pierwszego rodzaju) w tzw. 
przekroju głównym, tj. wówczas 
gdy płaszczyzna b c nachylona bę­
dzie względem osi О X pod kątem 
<p = <pl odpowiadającym równaniu

tg2®„= ----(54)(T p O x

lub też równaniu

(55)
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Drugi z kątów <p odpowiadający równaniom (54) lub (55) dotyczy na­
chylenia <p = (p2 elementu izostatycznego, w którym naprężenie u (naprę­
żenie główne drugiego rodzaju) osiąga wartość najmniejszą <rn.

Przy danym sposobie znakowania dla wielkości naprężeń głównych 
otrzymujemy więc wzór

(56)

Wyrażenie (53) daje przy <p = <pi oraz przy <p = <p2 wartość r = 0.
Przy badaniu stanu naprężeń stosujemy wykresy naprężeń typu bie­

gunowego i elipsę naprężeń.

Rys. 10

Wykres biegunowy wyraża 
wzór (51) i ma kształt przedsta­
wiony na rys. 10 i 11. Tu pewien 
wektor cg, przedstawia naprężenie 
normalne działające na element 
izostatyczny nachylony względem 
jednego z naprężeń głównych 
(oś О X) o kąt 95; naprężenia ffj i an 
odpowiadają naprężeniom głów­
nym. Zaletą tego wykresu jest 
znaczna przejrzystość przy przed­
stawieniu naprężeń jako funkcji 
kąta tp.

Elipsa naprężeń (rys. 12) jest 
odniesiona do osi współrzędnych 
pokrywających się z kierunkami 
naprężeń głównych. Równanie jej 
będące przekształceniem równania 
(51) posiada postać

Tu x i у oznaczają współrzęd­
ne końca odcinka а В (rys. 12) wy­
rażającego naprężenia wypadko­
we ov naprężeń a i t, działających
w punkcie o na pewien przekrój, 

czyli element izostatyczny przeprowadzony przez ten punkt, a cą i un wiel­
kości naprężeń głównych równoległych do osi współrzędnych O Y i О X. 
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Omawiany przekrój może być uważany za identyczny z elementem b c 
według oznaczeń na rys. 9.

Budujemy w dalszym ciągu w tym samym co wyżej układzie współ­
rzędnych elipsę odpowiadającą równaniu (rys. 13)

i zauważamy, iż kierunki a B{ i a C nachylone tu względem osi a X pod 
kątami y> i (p będą dla tej elipsy kierunkami sprzężonymi, o ile zostanie 
spełniony warunek

Z budowy elipsy (57) wynika, że tangens kąta nachylenia prostej Bt 
względem osi a X równa się

tgV' = ^> (60)

czyli że

tgv = ~ctgę>. (61)
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Z równania mamy

tg^ tgy-= — , (62)<h

czyli że kierunek a B, naprężenia wypadkowego w punkcie a i kierunek 
elementu izostatycznego, na którym to naprężenie występuje, są istotnie 
kierunkami sprzężonymi elipsy (58).

Gdy chcemy na podstawie elipsy naprężeń dowiedzieć się, jakie na­
prężenie działa na element izostatyczny nachylony względem osi a X pod 
kątem qj, wówczas przeprowadzamy średnicę a C elipsy (58) nachyloną 
względem osi aX pod wymienionym kątem i znajdujemy kierunek aB\ 
sprzężony z kierunkiem a C. Średnica a Br elipsy (57) przeprowadzona 
równolegle do prostej a B( da wielkość poszukiwanego naprężenia. Gdy 
obie elipsy wykonane są na jednym rysunku, konstrukcja geometryczna 
ulega uproszczeniu.

Dotąd liczyliśmy się, zgodnie z rys. 9, jedynie z naprężeniami rozcią­
gającymi i un. Gdyby oba te naprężenia były ściskające, sposób odczy­
tywania z elipsy (57) wielkości naprężeń wypadkowych o? nie uległby 
zmianie. Gdybyśmy natomiast mieli do czynienia z naprężeniami u, i 
różniącymi się co do znaków, wówczas elipsa (58) musiałaby być zastąpio­
na przez hiperbolę (rys. 14 lub 15) odpowiadającą równaniu

V“— =1. (62)
<hi

Poza tym sposób odczytywania naprężeń pozostaje tu ten sam co 
wyżej. Elipsa (58) i hiperbola (62) noszą nazwę krzywych kierunków. 
Przy wykreślaniu kierunków sprzężonych jest w danym razie najwłaściw­
sze skorzystanie z warunku, że każda ze średnic sprzężonych elipsy lub 
hiperboli jest równoległa do stycznej przeprowadzonej przez punkt prze­
cięcia z krzywą średnicy sprzężonej.

O ile naprężenia i an są tego samego znaku, to i naprężenie o(f bę­
dzie tegoż znaku. Wynika stąd, że w tym wypadku kierunek naprężenia 
(aB) na rys. 13) i kierunek odpowiedniego elementu izostatycznego (a C) 
tworzą jako średnice sprzężone elipsy zawsze kąt rozwarty.

Naprężenia oy wyrażone przez długości promieni wykresu biegunowe­
go odniesionego do jednego z kierunków głównych układają się w danym 
wypadku według rys. 10.

Kąty zawarte między sprzężonymi średnicami hiperboli są kątami 
ostrymi, przy tym, o ile kierunek elementu izostatycznego a C znajduje

24



się w jednym z kątów utworzonych przez asymptoty W, S, i S? (rys. 14 
i 15), to kierunek naprężenia wypadkowego a B' będzie znajdował się 
w drugim sąsiednim kącie.

Przypuśćmy, iż naprężenie główne jest naprężeniem ściskającym 
(rys. 16), naprężenie zaś główne cą naprężeniem rozciągającym. Wówczas 
przy (p= 0, gdy element izostatyczny bc pokryje się z elementem a c, 
będziemy mieli — crn .

Jeżeli kierunek naprężenia wypadkowego a<f odchyli się od kierunku 
a Y i zajmie w kącie S2 a S, położenie a Bź (rys. 14), wówczas odpowiedni 
element izostatyczny pokryje się z kierunkiem sprzężonym a C, przecho­
dzącym przez kąt S2 a N, i identycznym lub równoległym do b c. W tych 
warunkach element b c lub przekrój a C w punkcie a będzie ściskany

Gdy kierunek a B' naprężenia wypadkowego pokryje się z kierun­
kiem S2 N2 asymptoty, wówczas pokryje się z nim.i kierunek aC odpo-
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wiedniego elementu izostatycznego. Naprężenie av będzie w tym przy­
padku naprężeniem stycznym t.

Skoro kierunek a B' naprężenia wypadkowego а у przejdzie przez kąt 
S2 a Ni (rys. 15), wówczas kierunek odpowiedniego elementu izostatyczne­
go a-C (lub b c) znajdzie się w kącie Sj a S2. Naprężenie występujące 

w~ płaszczyźnie b c będzie dążyło do odda­
lenia tej płaszczyzny od punktu a, będzie 
więc naprężeniem rozciągającym.

Z powyższego wynika, że naprężenia 
aP odpowiadające kierunkom zawartym 
w kątach Sj a S2 i Ni a N2 będą napręże­
niami ściskającymi, a naprężenia odpo­
wiadające kierunkom zawartym w kątach 
Nt a S2 i N2 a Si będą naprężeniami roz­
ciągającymi. Rzecz będzie się miała od- 

"y wrotnie, gdy naprężenie główne au bę­
dzie ściskającym, a naprężenie główne a, 
rozciągającym.

Wykres biegunowy odpowiadający wykresowi na rys. 10 przybiera tu 
postać przedstawioną na rys. 11.

Rys. 17

Przy badaniu warunków pracy konstrukcji nieprętowych (pełnych) 
interesują nas nie tylko wykresy naprężeń w danym punkcie układu sprę­
żystego, ale również krzywe charakteryzujące rozkład naprężeń w całej 
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konstrukcji. W ten sposób dochodzimy do pojęcia linii równych naprę­
żeń głównych, których budowa oparta jest na równaniu

ax + о у '-t/ i °*— Oy V
2 — j \ 2 / (63)+ ^ = ,

gdzie or wyraża wartość naprężenia głównego we wszystkich punktach 
leżących na krzywej (63). Mając na uwadze, że naprężenie główne sta­
nowi pewną funkcję współrzędnych x, y, możemy dla poszczególnych war­
tości ar znaleźć szereg punktów czyniących zadość równaniu (63) i wy­
kreślić na tej podstawie linię równych naprężeń głównych стах lub ат,п. 
W podobny sposób postępując z równaniem

= (64)

znajdziemy linie równych naprężeń rmax lub ттт dla największych lub naj­
mniejszych naprężeń stycznych.

Na rysunkach 17 i 18 podane są dla przykładu, wykonane przedstawio­
nym sposobem, linie równych naprężeń amax i t,™ dla zapór, a więc kon­
strukcji pełnych, w których naprężenia ax i ay są wielkościami tego sa­
mego rzędu. Rysunki 17 i 18 dotyczą zapory w przekroju poprzecznym 
trójkątnej, o wysokości h = 30 m, o kącie <p~ 30° i ciężarze jednostko­
wym muru у = 2,4 t/m:!. Wartości naprężeń wyrażone w kg/cm'2 wy­
pisane zostały na rysunkach na obwodzie przekroju poprzecznego zapo-
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ry. Na rysunkach 19 i 20 przedstawione są linie równych naprężeń dla zapory 
o przekroju prostokątnym i o wymiarach poprzecznych 18 m na 30 m. 
W szczególności na rys. 19 podane są linie równych naprężeń amax, a na

rys. 20 linie równych naprężeń 
tmax- Wreszcie na rys. 21 i 22 
podane są linie równych naprę­
żeń dla zapory o przekroju po­
przecznym w kształcie trapezu 
o podstawach równych 12 m 
i 24 m i o wysokości 30 m. Li­
nie przedstawione na rys. 21 do­
tyczą naprężeń amax, a przedsta­
wione na rys. 22 naprężeń ттах.

Przy wyznaczaniu położenia 
przekrojów głównych w danym 
punkcie, a więc tym samym osi 
elipsy naprężeń, natrafiamy 
nieraz na pytanie, które z dwu 
rozwiązań równania (54) odpo­
wiada któremu z naprężeń

tę rozstrzygnąć, wstawiamy oba rozwiązaniagłównych. Aby kwestię 
<p, i tp2 równania (54) w 
odpowiadająca kątowi

równanie 
musi

być odłożona prostopadle do 
przekroju nachylonego wzglę­
dem osi О X na rys. 9 pod ką­
tem tpt, a wartość a odpowiada­
jąca kątowi <p2 prostopadle do 
przekroju nachylonego wzglę­
dem tej osi pod kątem <p2.

Inne kryterium ustalenia 
kierunków naprężeń głównych 
możemy uzyskać z warunków 
równowagi graniastosłupa w ro­
dzaju graniastosłupa ab c na 
rys. 9 w przypadku, gdy naprę­
żenie a jest jednym z naprężeń 
głównych a, lub un. Rzutując na 
oś О У siły działające w tym

(51) lub (52); przy tym wartość o

Rys. 22

wypadku na graniastosłup ab c otrzymujemy równanie

— t„ d A sin (p + a d A cos 7. — oy d A cos q> = 0 , (65)
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gdzie d A przedstawia pole ściany b c. Znajdujemy stąd

o — ay 
tg 7' =—<0

W belkach, gdy możemy przyjąć, że oy = 0, otrzymujemy

tg 9’ = —

(66)

(67)

W tym więc przypadku kąt ostry y= ęj związany równaniem (66) lub 
(67) z naprężeniem głównym о = о} jest kątem nachylenia względem osi 
X-ów przekroju głównego poddanego temu właśnie naprężeniu. W ten 
sam sposób kątowi ostremu <р — д>2 odpowiada naprężenie główne а=аи

Należy zauważyć, że wpraw­
dzie przy ustalaniu wzorów (54) 
i (55) przeznaczonych do wy­
znaczenia położenia przekrojów 
głównych liczyliśmy się ze 
schematem statycznym przyję­
tym na rys. 9, jednak przy ko­
rzystaniu z tych wzorów jest 
rzeczą obojętną, jakie położenie 
graniastosłupa a b c względem 
osi współrzędnych będziemy 
mieli na uwadze, byleby znaki 
naprężeń, osi współrzędnych 
i kąty o? były uzgodnione ze 
schematem zasadniczym- Łatwo przekonać się np., że dla punktu a (x = 7, 
у = 1,5) otrzymamy tu nachylenie przekroju głównego (p = 21° nieza­
leżnie ani od przyjętego układu współrzędnych, ani od przyjętego prze­
kroju poprzecznego (aa lub aja^, ani też od przyjętego położenia elemen­
tarnego graniastosłupa (rys. 23).

Rozważania nad kierunkami naprężeń głównych doprowadzają do 
ustawienia równania różniczkowego linii izostatycznych.

Istotnie, ponieważ w pewnym punkcie ciała pryzmatycznego oba na­
prężenia główne a, i an , jak również oba odpowiadające im przekroje 
główne, są do siebie prostopadłe, więc kąt rp określający według równania 
(66) lub (67) położenie elementu izostatycznego, odpowiadającego jedne­
mu z naprężeń głównych — przypuśćmy naprężeniu af — tym samym 
określa kierunek drugiego naprężenia głównego an, a więc i kierunek 
stycznej w danym punkcie do krzywej izostatycznej dla tego naprężenia.
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Wyobraźmy sobie, że krzywe izostatyczne, odniesione do pewnego 
układu osi współrzędnych OX i O Y, związanych z pryzmatycznym cia­
łem sprężystym, wyrażają się za pomocą równania

y = F(x), (68)
przy czym

^ = tg9’> (69)

gdzie у jest to kąt nachylenia względem osi О X stycznej do linii izosta­
tycznej w danym punkcie. Wobec znakowania kątów przyjętego na rys. 9 
równanie (69) przybiera postać

(70)

Po uwzględnieniu wyrażenia (55) dochodzimy do równania

dy = oy — ox // ay — ax V2 
dx 2т0 |/ \ 2r0 / ’

które jest równaniem różniczkowym linii izostatycznej.

2. Całkowanie równania linii izostatycznej

Całkowanie równania linii izostatycznej (71) tylko w rzadkich wy­
padkach może być wykonane ściśle. Musimy tu się na ogół uciekać do me­
tod numerycznych lub wykreślnych.

Równanie linii izostatycznej (równanie 68) może być rozpatrywane ja­
ko całka równania (71). Całka ta może być ściśle otrzymana tylko w przy­
padkach zupełnie wyjątkowych i drogą obliczeń dość żmudnych.

Proponuje się tu wyznaczenie krzywej izostatycznej drogą przybli­
żonego całkowania równania (71).

Przy numerycznym wyznaczaniu linii izostatycznych korzystamy 
z metody R u n g e g o. Metoda ta znajduje punkt wyjścia w propozycji 
Eulera polegającej na tym, aby krzywą wyrażającą całkę danego rów­
nania różniczkowego budować na podstawie współrzędnych jej poszcze­
gólnych punktów, wyznaczonych w sposób przybliżony, a więc przez za­
stąpienie różniczek przez różnice skończone.

Na tle sposobu obliczenia poszczególnych współrzędnych krzywej (68) 
zaleconego przez Eulera powstało kilka różnych sposobów takiego ob­
liczenia, z których najściślejszym jest właśnie sposób R u n g e g o.

Podamy tu kryterium, na mocy którego poszczególne sposoby oblicze­
nia współrzędnych równania (68) mogą być ze sobą porównywane,

(71)
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w szczególności gdy chodzi o nieliniowe równanie różniczkowe pierwsze­
go rzędu, a więc i o równanie różniczkowe linii izostatycznej (71).

Przypuśćmy, że krzywa AB na rys. 24 przedstawia wykres poszuki­
wanej funkcji (68). Na podstawie warunków zadania ustalamy pewien 
punkt początkowy Ao (x0, y„), przez 
Nadając odciętej x„ dowolny ma­
ły przyrost skończony Лх oblicza­
my przyrost zly odpowiadający 
nowemu punktowi krzywej AB, 
a więc punktowi A, o współrzęd­
nych

x,=x0+/1x, У^Уо+Лу. (72)

W podobny sposób przechodzi­
my od punktu A, do punktu A2 
(r2, yd itd.

Tą drogą otrzymujemy szereg 
punktów krzywej (68), które połą­
czone ze sobą odcinkami prostych dają nam linię łamaną, zastępującą
z potrzebną dokładnością poszukiwaną krzywą.

Równanie różniczkowe (71), o które tu chodzi, posiada ogólną postać

(73)

Stąd przyrost Д у może być obliczony za pomocą szeregu Taylora 
dla dwóch zmiennych niezależnych w sposób następujący:

dy = f(x,y)/lT + (f, + f2f)-^~ + (74)

+ Ifn + 2 f12:f + f22f2 + fa (fi + faf)l 1.2.3 +

gdzie

_df(x,y) _df(x,y) 
dx ’ j2~ dy ’

_d2f(x,y) _d2f(x,y) _d2f(x,y)
hl~ dx2 ! h2~ dy- ’ 112 dxdy'
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Euler stosował dla d у wyrażenie 

d у = f (x,y) 1 x, (75)

skąd wynika, że tylko jeden wyraz przybliżenia Eulera pokrywa się 
z rozwinięciem (74).

Dla uzyskania większej dokładności obliczamy wyrażenia

А, у = f (x , y) 4 X, (76)

А2у = Цх 4- 1x, у + Aty) Ax , (77)

]ay = f(x + Ax, у + A2y) Ax , (78)

ly=h3L±^V = Ns. (79)

Po rozwinięciu wyrażeń (77) i (78) według szeregu Taylora znaj- 
dziemy, iż wyrażenie (79) różni się od ścisłego wyrażenia'(74) dla А у 
dopiero w wyrazie trzecim zawierającym A Xs i następnych.

Runge proponuje dla przyrostu x wyrażenie 

ly = Wr+ ^(Ns — Nr), 
O (80)

w którym Ns oblicza się według wzoru (79), Nt zaś jako pierwsze przy­
bliżenie dla przyrostu А у nie według wzoru (76), lecz według wyrażenia

NT = f (x+ ~ .D, y+ | /I, y) Ax. (81)
Z z

Po rozwinięciu w szereg wielkości wchodzących w skład wyrażenia 
(80) znajdziemy, że wyrażenie to różni się od ścisłej wartości А у dopiero 
w wyrazach zawierających А x w potędze trzeciej i wyższych.

Sposób R u n g e g o został sprawdzony drogą przybliżonego całko­
wania pewnych równań, posiadających rozwiązania ścisłe. W przypadku 
przybliżonego obliczenia rozwiązania równania linii izostatycznej (71) 
najlepszym sposobem określenia ścisłości otrzymanego rozwiązania jest 
porównanie ze sobą kolejnych przybliżeń otrzymanych ze wzorów (79) 
i (80). Łatwo przekonać się, iż drogą zmniejszania wielkości odcinka А x 
różnicę tę możemy uczynić dowolnie małą.

Sposób wyznaczenia linii izostatycznych drogą całkowania zobrazuje­
my tu na przykładzie belki utwierdzonej w jednym końcu oraz zapory 
trójkątnej znajdującej się pod działaniem parcia wody.

Bierzemy pod uwagę belkę przedstawioną na rys. 25, a więc belkę 
w jednym końcu utwierdzoną, a na drugim obciążoną siłą P, i przyj mu je­
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my za początek współrzędnych środek ciężkości końcowego przekroju В В' 
danej belki. Aby wyznaczyć w przyjętym układzie współrzędnych linię 
izostatyczną, robimy tu przekrój aa i bierzemy omówiony wyżej (rys. 9) 
nieskończenie mały graniastosłup ab c .

Przystępujemy do ustawie­
nia równania różniczkowego 
(71) linii izostatycznej w danym 
przypadku szczególnym, a więc 
dla belki o rozpiętości l = 12 
i wysokości h — 6. Wobec tego, 
że obliczenie prowadzimy we­
dług ogólnie rozpowszechnio­
nej w praktyce uproszczonej 
teorii zginania, przyjmujemy 
więc, że dla belki ay — 0 .

Niech będą х, у współrzęd­
nymi pewnego punktu a, leżą­
cego w przekroju aa (rys. 25) lub też nieskończenie do niego zbliżonego 
punktu o. W tych warunkach naprężenie ax w wymienionym punkcie 
wyrazi się wzorem

M у (82)

gdzie M oznacza moment zginający w przekroju aa, a J moment bez­
władności tego przekroju.

Ponieważ równanie (71) oparte jest na schemacie statycznym przyję­
tym na rys. 9, uważamy tu naprężenie ax za dodatnie, gdy jest ono naprę­
żeniem rozciągającym. Moment M = P x nie ulega zmianie znaku na ca­
łej długości belki, będziemy więc go stale uważali za dodatni. Stąd otrzy­
mamy dla naprężenia ax wyrażenie

P xy
J (83)

Dla naprężenia stycznego тп otrzymujemy odpowiednio wzór 

p
2J

lh2 (84)

gdzie znak dodatni przed prawą częścią równania tłumaczy się zgodnością 
kierunku naprężenia t0 w danym przypadku ze schematem przyjętym 
na rys. 9.
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Nadajemy wreszcie równaniu (71) postać następującą:

(85)

W myśl uwag wypowiedzianych na wstępie tego rozdziału i w myśl 
równania (67) znak + odpowiada tu równaniu różniczkowemu linii izo­
statycznej dla większego z naprężeń głównych, znak zaś — dla mniejsze­
go z nich.

Przy znakowaniu przyjętym na rys. 9 w wyrażeniu (56) znak + odpo­
wiada naprężeniu rozciągającemu, a znak — ściskającemu. Wobec przy­
jętego sposobu obliczania kątów tp musieliśmy, wstawiając w równanie 
(70) zamiast tgę> wartość jego ze wzoru (55), znak w prawej części tego 
wyrażenia zmienić na odwrotny. Stąd wynika, iż linia izostatyczna dla 
naprężenia rozciągającego będzie miała w danym razie następujące rów­
nanie różniczkowe:

(86)

Przy у ujemnym pierwszy wyraz prawej części równania (85) staje się 
dodatnim. Wówczas znak + przy pierwiastku odpowiadać będzie linii 
izostatycznej mniejszego z naprężeń głównych (0^), w danym razie do­
datniego, czyli rozciągającego, znak zaś — odpowiadać będzie linii izo­
statycznej większego z naprężeń głównych (uj), w danym razie ściskają­
cego.

Jeżeli chodzi o to, aby dana linia izostatyczna wskazywała na ca­
łej swej długości kierunek głównych naprężeń rozciągających, wówczas 
dla części belki poniżej osi О X odpowiednikiem równania (86) będzie rów­
nanie następujące:

du xy / / х у \2 , ,
+ 1/ p2L7 <87>

4 y I \ 4 ,/

Z zestawienia równań (86) i (87) wynika, że o ile linia izostatyczna od­
powiadająca tym równaniom ma kształt przedstawiony na rys. 26 za po­
mocą krzywej А В C, to część jej AB odpowiada równaniu (86), część zaś 
В C równaniu (87).
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Styczne do linii ABC wskazują kierunek naprężeń głównych rozcią­
gających. Gdybyśmy chcieli mieć linię izostatyczną dla naprężeń głównych 
pierwszego rodzaju (o-j), niezależnie od znaku, wówczas zamiast gałęzi 
В C otrzymalibyśmy tu gałąź А' В, a krzywa А В A' byłaby linią po­
szukiwaną. Gałąź А В wskazywałaby wówczas kierunki naprężeń głów­
nych ujemnych.

i Y *

Rys. 27

Dla przykładu wyznaczymy tu linię izostatyczną przechodzącą na 
rys. 27 przez punkt przekroju utwierdzenia o współrzędnych x0 = 12 
i = 1.5 i dla Ax = — 2. A więc mamy

12-1,5 /12-1,5f (x0, yj = - 3^52 + ]/ +1 = 0,178 ,
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у = — 2.0,178 = — 0,356,

10-1 144 ■/________
f (x0 + A x, у + d, y)= - - — ; - + pl,4882 + 1 = 0,304 ,

у i.ouy
ł

A2 у = -2-0,304 = 0,608,

Hx0 + Ax, у + A2 y)~ - + I'lW+l = 0,400 ,
У V , I У *J

As у = — 2 • 0,400 = — 0,800 ,

А1У + А2у -0,356-0,800 _
/V c =  _ =---------------- ---------------- ----- -----  и,э / О .

f (x0 + I Ax, уй +1A y) = - q1'1/3^ + ]/ 2,0052+1 = 0,236 , 
Z Z У  1,14:0

NT = — 2 • 0,236 = — 0,472,

j у = NT + 4 (Ns — Nr) = — 0,472 — 0,035 = — 0,507 , 
О

xl=10, yt = 0,993,

Дх1,у1) = 0,342, Ax= — 1, Л1У= —0,342,

f (xj + A x, y, + Asy) = 0,528, A2 у = — 0,528,

f (x^ + Ax,yt + A2y) = 0,631, A3y =— 0,631,

Ns= —0,486, Дх, 4- ~ Ax, у, + у Aty) = 0,635 Z z

Nt= — 0,635, Ay = — 0,586, 

x2 = 9 , y2 = 0,402,

Дх2, y2) = 0,804, Ax — — 1, d,y = — 0,804, 

f (x2 А-Ах^у. + А.^^- o8!0’4.03 + । l,390a+l = 1,539. 
?7 V/ - JL U V/

Należy zauważyć, iż w punkcie odpowiadającym współrzędnym 
xa = 9, y2 = 0,402 — 0,804,= — 0,402 wobec zmiany znaku przy у linia 
izostatyczna odpowiada już naprężeniu drugiego rodzaju <rr[, które jest 
jednak w dalszym ciągu naprężeniem rozciągającym. A więc

d2 у = — 1,539 , f(x2 + Ax,y2 + A2y)= 1,546, 

d3 у = — 1,546, Ns= — 1,175,
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X2 + ^ dx,y + у = 1, Nr— — 1, Лу = — 1,058,

x3 = 8, y3— — 0,656,

Дх8, уд) = 1,784, dx = —0,500, А.у = — 0,892,

f(x3 + dx, у3+ di у) = 3,775, d2y = — 1,887,

f(x3 + dx, у3 + d2y) = 5,388, d8y= — 2,694,

Ns— — 1,793, fLg + ydx, Уз + — dtyj = 2,515,

Nr= —1,257, dy = —1,332,
x4 = 7,5, y4 = — 1,988.

Na podstawie obliczonych współrzędnych linii izostatycznej wykreśla­
my krzywą przedstawioną na rys. 27 za pomocą grubej linii pełnej. Linia 
ta jest normalną do dolnej powierzchni belki. Wynika to z równań (54) 
i (51). Skoro bowiem na krawędzi belki r0=0 i oy = 0, to otrzymujemy 
z równania (54) dla kąta tp wartości 0 i 90°, które wstawione do rów­
nania (51) uzasadnią taki wniosek.

Rys. 28

Dla innych punktów linii izostatycznej kąty nachylenia stycznych 
otrzymujemy z równania (86) bądź (87) mając na uwadze, iż dy/dx — tgę>. 
Wstawiając otrzymane tą drogą kąty w równanie (51) znajdujemy na ca­
łej długości linii izostatycznej wartości tego naprężenia głównego, w da­
nym razie rozciągającego, dla którego została ona zbudowana. Odkładając 
te wartości normalnie do linii izostatycznej ABC (rys. 28) otrzymujemy 
wykres а Ъ C tego naprężenia.
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Jeżeli zaczepimy do belki przedstawionej na rysunkach 27 - 28 za­
miast obciążenia skupionego obciążenie ciągłe równomiernie rozłożone 
o natężeniu q, to wyrażenia (83), (84), (86) i (87) przybiorą odpowiednio 
postać

Obliczenie przeprowadzone na podstawie wzorów (88| - (90) doprowa­
dza do krzywej izostatycznej przedstawionej linią grubą pełną na rys. 29

Rys. 29

Po obliczeniu analogicznym do wykonanego dla belki przedstawionej 
na'rys. 25 znajdujemy dla belki, w której l = 25 i h = 10, obciążonej na 
końcu siłą skupioną, linię izostatyczną przedstawioną grubą linią pełną 
na rys. 30.

Zastosujemy dalej sposób przybliżonego całkowania równania (71) do 
wyznaczenia linii izostatycznej w zaporze o przekroju poprzecznym trój­
kątnym.
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Dla zapory przedstawionej na rys. 31 i dla podanego tam układu 
współrzędnych wyrażenia dla naprężeń ax, ay i r0 równoległych do osi 
współrzędnych, przybierają postać następującą:

r0=Tctg2w, (91)

Ох = У, (92)

ay = ax + by , (93)

Rys. 30

gdzie
a = b = у — ctg2 w, (94)tg3 w

у zaś oznacza ciężar jednostkowy muru zapory 
przy ciężarze jednostkowym wody wynoszącym 
1 t/ms.

Przy wyznaczaniu naprężeń w zaporach 
uważamy zwykle naprężenia ściskające za do­
datnie, wobec czego przyjmujemy dodatnie kie­
runki naprężeń według rys. 31. Ponieważ 
wszystkie naprężenia przyjmujemy tu ze zna­
kiem odwrotnym w porównaniu do schematu 
z rys. 9, więc znak przed wyrażeniem (71) zmia­
nie nie ulega.

Wyznaczymy dla zapory, w której h = 24 m, 
w = 30° i y= 2,4 t/m3 linię izostatyczną prze­
chodzącą przez punkt o współrzędnych x<, = 0, 
У o =10.

W tym wypadku
Rys. 31

a = 6,460, b = 0,600, c = b — 1= — 1,600.
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wobec czego równanie (71) przybiera postać

dy _ 6,460a?—l,600y / /6,460x— l,60Óy\2
~d^~~ 6x + У 6x ) (95)

Aby zdecydować się na znak przed pierwiastkiem w równaniu (95), 
należy uciec się do wzorów (66) i (70) i nadać temu równaniu postać

dy _ a — ay
dx t0

(96)

a w dalszym ciągu postać

dy 
dx

1
(97)

Z rozważań przytoczonych na początku tego rozdziału oraz z uwag do­
tyczących równania (85) wynika, iż znak — w równaniu (97) odpowiadać 
będzie linii izostatycznej naprężenia o większej bezwzględnej wartości, 
w danym razie naprężenia ściskającego o = a1. Stąd dochodzimy do zna­
ku + przed pierwiastkiem w równaniu (95).

Drogą takiego samego obliczenia, jakie zastosowaliśmy wyżej do belki 
w jednym końcu utwierdzonej, a w drugim swobodnej, znajdujemy nastę­
pujące współrzędne poszczególnych punktów linii izostatycznej:

x0= 0, Уо = 10,000, dx = 1,
X1= 1, У1 = 10,120, dx = 1,

7=2 2, У2 = 10,591, Ах — 2,
x3= 4, Уз = 12,593, Ах = 2, (98)
x4 = 6, У^ = 15,289, Ах = з,
x6= 9, Уз = 19,999, Ах — 2.
xe= 11, Уб = 23,665.

Odpowiednia krzywa przedstawiona jest grubą linią pełną na rys. 32. 
W punkcie x0 = 0, y0= 10 krzywa ta jest normalna do powierzchni muru 
wobec tego, że naprężenie styczne r0 = 0.

Wykreślne wyznaczenie linii izostatycznych opiera się na budowie linii 
izoklinicznych.

Linie izokliniczne są to krzywe posiadające tę własność, że we wszyst­
kich punktach jednej z nich naprężenia główne tego samego rodzaju są 
względem osi współrzędnych jednakowo nachylone.

Poszczególne elementy poszczególnych linii izostatycznych są więc dla 
danego rodzaju naprężenia głównego w miejscach przecięcia ich z liniami 
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izoklinicznymi do siebie równoległe. Linie izokliniczne (izokhny) są z te­
go powodu pomocne przy budowie linii izostatycznych.

Rolę równań linii izoklinicznych odgrywają równania (54) i (55), o ile 
kąty <p będziemy uważali w nich za wielkości stałe. Gdy chcemy więc spo­
rządzić linię izokliniczną dla danej 
wartości kąta nachylenia danego na­
prężenia głównego, wstawiamy war­
tość tę w lewą część wyrażenia (55), 
prawą zaś przedstawiamy jako funk­
cję x i y, wyrażając naprężenie ax i oy 
w ten sposób jak poprzednio.

Tym sposobem równania izokli­
niczne stają się równaniami typu

tgę>=const, czyli F(x,y)=const. (99)

Dla przykładu omówimy spo­
sób powstawania linii izoklinicznych 
w przypadkach przedstawionych na 
rysunkach 27, 28, 30 i 31.

Dla łatwiejszego wykreślenia linii 
izoklinicznych wskazane jest, aby 
równania ich były rozwiązane wzglę­
dem jednej ze współrzędnych. W tym 
celu nieraz wygodniej jest korzy­
stać nie z równania (55), lecz bezpo­
średnio z równania (54).

Ustawmy równanie linii izokli- 
nicznej dla belki przedstawionej na 
rys. 27.

Zastępujemy przede wszystkim ró

Rys. 32

(54) przez równanie

2 г»tg 2 v = (100)

które przybiera w danym przypadku postać

tg 2 <p = — 2

P
2J

Pxy xy (101)

lub postać

y2 — ух1§2<р — — = 0. (102)
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skąd po rozwiązaniu równania otrzymujemy

x tg 2 m Л / x tg 2 m V , h2y = -2^-±]/ H2 ) + У <103>

Dla belki obciążonej w sposób ciągły odpowiednio znajdujemy
h2 2
а~уtg2y = —2-- (104)у

y2—y^-tg2<p—^ = Q, (105)
Zt TE

'T'7 I T (106)

Wstawiamy dalej we wzory (103) i (106) np. tp — 60° oraz x równe ko­
lejno 2, 4, 6 itd. i tą drogą dochodzimy do linii izoklinicznych oznaczonych 
liczbą 60° na rysunkach 27 i 29. Liczba 60° wyraża tu, iż w każdym punkcie 
danej krzywej jeden z przekrojów głównych nachylony jest względem 
osi OX pod kątem 60°.

Ponieważ wiemy, że większe naprężenie główne na górnej powierzch­
ni belki ma kierunek poziomy, czyli równoległy do osi belki, co odpowia­
da ę) = SO° i y= + h/2, więc przyjmujemy w równaniach (103) i (106) 
przed pierwiastkiem znak + . Dla podobnych powodów w dolnej części 
belki przyjmujemy znak —.

Przy ę>=45° otrzymujemy zarówno z równania (103), jak i z równa­
nia (106) dla у wyrażenie nieokreślone oo — oo, którego wartość rzeczy­
wista równa się 0. Oś belki jest więc linią izokliniczną dla kąta tp= 45°

Na rysunkach 27, 29 i 30 krzywe izokliniczne dla różnych kątów 
przedstawione są za pomocą cienkich linii pełnych.

Aby otrzymać linie izokliniczne dla zapory przedstawionej na rys. 32, 
nadajemy równaniu (54), w związku z oznaczeniami (94) i (95), postać na­
stępującą:

(Ю7) 
oy — Ox cy + a x

Rozwiązując równanie (107) względem x otrzymujemy
_ =____ Hctg2l?> = _ 1,6 7/ tg2у

2ctg2 co — a tg 2q> 6 — 6,46 tg2(p ' 1 ’

Wstawiając w równanie (108) poszczególne wartości kąta q dochodzimy 
do pęku prostych izoklinicznych wskazanych na rys. 32 za pomocą cien­
kich linii pełnych.
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Pęki linii izoklinicznych służą do budowy linii izostatycznych.
Przypuśćmy więc, że mamy pęk linii izoklinicznych (rys. 33) odpo­

wiadających kątom ęą, <ps, <рл itd.
“2

Rys. 33

Jeżeli linia izostatyczna ma przejść przez punkt a leżący na izokli- 
nie ę>,, to przeprowadzamy z tego punktu prostą aa równoległą do 
osi О X i odkładamy od niej kąt ę)1=<a1aa, w sensie schematu na rys. 7. 
Prosta a a2 będzie tu kierunkiem przekroju (elementu izostatycznego), na 
który działa naprężenie główne odpowiadające danemu pękowi linii izo­
klinicznych. Przeprowadzając prostą a b prostopadłą do prostej a a2 znaj­
dujemy kierunek odcinka linii izostatycznej zawarty między izoklina- 
mi w i <p2.

W punkcie b przeprowadzamy prostą b b2 nachyloną pod kątem <p3 
względem osi X-ów oraz prostą b c do niej prostopadłą i stanowiącą odci­
nek linii izostatycznej między izoklinami <p2 i q>3. W ten sam sposób budu­
jemy pozostałe odcinki poszukiwanej linii izostatycznej, Kąty , <p2, «Ря 
itd. odkładamy od osi X-ów na podstawie tangensów.

Wyznaczenie linii izostatycznej na podstawie izoklinów można upro­
ścić sobie w sposób następujący.

Przeprowadzamy prostą О К równoległą do osi X-ów i prostą Ke do 
niej prostopadłą. Na tej ostatniej prostej odkładamy odcinki КЪ', Ko itd 
w ten sposób, aby

К Ъ' =tg(9O°;— ę>,)=Ctgę>j,U /X.
(109)

К c„ =tg(90°—7>2) = ctgy3 itd.U rX
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Łącząc ze sobą punkt O, z punktami b', c, d'... znajdujemy kierun­
ki Oi b'|| ab, О^с'ЦЬс itd. Dla wyznaczenia więc linii izostatycznej 
ab c de przeprowadzamy z punktu a prostą równoległą do O, b', z punk­
tu b równoległą do Oj c’ itd. Mamy w ten sposób do czynienia z pewną 
analogią wieloboku sznurowego (rys. 33).

Gdyby linie izokliniczne były do siebie nieskończenie zbliżone, wów­
czas odcinki a b, b с, c d itd. byłyby nieskończenie małe i dałyby w rezulta­
cie ścisłą linię izostatyczną a A. Ponieważ jednak wymienione odcinki mają 
długość skończoną, linia łamana a b c d ... odsunie się na rys. 33 względem 
odpowiedniej krzywej w kierunku do początku współrzędnych.

Jeżeli przeprowadzimy przez punkt a zamiast prostej a b równoległą 
do niej prostą О I, a następnie zamiast prostej b e równoległą do niej 
prostą III itd., nowa linia łamana 0 III III... byłaby przesunięta wzglę­
dem linii łamanej a b c ... w kierunku dodatnich X-ów. Dwie wymienione 
"tu linie łamane tym różnią się od siebie, że każdy element linii a b c ... 
zawarty między izoklinem у a izoklinem ę>,+i nachylony jest względem 
osi X-ów pod kątem 90°—(pi, a każdy element linii 0 III... zawarty mię­
dzy tymi samymi izoklinami nachylony jest względem osi X-ów pod kątem 
90°—(pi +i. Krzywa a A jako ściśle przeprowadzona linia izostatyczna,

przechodzi między liniami łama­
nymi a b c... i 0 I II... i odgry­
wa dla nich obu rolę przy nieskoń­
czenie zwiększającej się liczbie 
izoklinów.

Aby możliwie jak najlepiej za­
stąpić linię a A (rys. 33) przez li­
nię łamaną, można przeprowadzać 
tę ostatnią w ten sposób, aby jej 
odcinek przecinający linię izo- 
kliczną (pi i nachylony względem 
osi X-ów pod kątem yi znajdował 

się częściowo między izoklinami _i a g>i, częściowo zaś między izoklina- 
nami q>i i (rys. 34). W tym wypadku wierzchołki linii łamanej В, C, D 
itd. powinny znajdować się w jednakowej odległości od izoklinów, między 
którymi są zawarte. Linia izostatyczna tą drogą wyznaczona wskazana jest 
na rys. 27 jako linia I, przy czym, jak widać, linia ta dobrze zgadza się 
z krzywą otrzymaną drogą przybliżonego całkowania równania (71). Na 
tym samym rysunku linia II została zbudowana na podstawie linii izokli- 
nicznych przeprowadzonych co 5°, a linia III na podstawie linii izoklinicz- 
nych przeprowadzonych co 10°.

Na rys. 29,33 i 32 liniami punktowanymi uwidocznione są linie wykona­
ne na podstawie linii izoklinicznych według schematu linii abc... z rys. 33.
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Budowanie linii izostatycznej według schematu А В C ... z rys. 34 na­
stręcza trudności przy określaniu położenia punktów В, C, D jednakowo 
odległych od obejmujących je izoklinów. To powoduje dowolności i dlate­
go przy korzystaniu z wymienionego schematu konieczne jest celem usta­
lenia granic błędu jednoczesne sporządzenie linii izostatycznej według 
schematów a b c ... i 0 I II ... z rys. 33.

Porównanie sposobów wyznaczenia linii izostatycznych na podstawie 
linii izoklinicznych ze sposobem przybliżonego całkowania równania róż­
niczkowego linii izostatycznej doprowadza do poniższych wniosków.

Przy całkowaniu równania krzywej izostatycznej dokładność oblicze­
nia może być łatwo ustalona drogą porównania ze sobą kolejnych przy­
bliżeń. Dokładność, jaka może być uzyskana przez zmniejszenie do­
wolnych przyrostów, jest dostateczna dla wszelkich zagadnień o charak­
terze technicznym.

Przy wyznaczeniu linii' izostatycznych na podstawie izoklinów do­
kładność tego wyznaczenia zależy od takich okoliczności, jak skala rysun­
ku, ścisłość rysunku, ilość wyznaczonych linii izoklinicznych itd., które 
nie zawsze są łatwo uchwytne i które nie pozwalają wobec tego łatwo 
ustalić granic błędu obliczenia.

Z drugiej strony, wyznaczenie jednej linii izostatycznej drogą przybli­
żonego całkowania wymaga znacznego natężenia uwagi wobec tego, że zwią­
zana z tym całkowaniem praca rachunkowa nie daje się zmechanizować.

Samo wyznaczenie linii izostatycznej na podstawie danego pęku izo­
klinów jest rzeczą bardzo prostą. Wyznaczenie linii izoklinicznych wyma­
ga wprawdzie dość znacznej ilości działań arytmetycznych, lecz działań 
powtarzających się i dających się ująć w tablice. Przy tym pęk izoklinów 
pozwala na przeprowadzenie linii izostatycznych przez dowolną liczbę 
punktów.

Dopóki więc chodzi o wyznaczenie linii izostatycznej dla celów ogól­
nego zorientowania się w pracy danej konstrukcji, wyznaczenie tych linii 
na podstawie linii izoklinicznych jest całkowicie wskazane, gdy jednak 
chodzi o dokładne wskazanie miejsca w danej konstrukcji, które powinno 
być wzmocnione, lub w którym należy oczekiwać pęknięć, należy wówczas 
uciec się do numerycznego całkowania równania linii izostatycznej.

Резюме

ПРИМЕНЕНИЕ МЕТОДА КОНЕЧНЫХ РАЗНОСТЕЙ К СЛУЧАЯМ ПЛОСКОГО 
НАПРЯЖЕННОГО СОСТОЯНИЯ В СООРУЖЕНИЯХ

В работе рассматриваются проблемы строительной механики, каса­
ющиеся процессов, являющихся, по своей природе, непрерывными, ко­
торые, однако, для упрощения обсуждаются как прерывные.
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В области строительных конструкций, в которых выступают пло­
ские напряженные состояния, подобный образ действия находит пре­
имущественно применение к железобетонным плитам, балкам значи­
тельной высоты и плотинам.

В первой главе рассматривается применение разностных линейных 
уравнений в теории пластинок.

В этой теории, особенно в случае железобетонных плит, которые 
в строительных конструкциях защемляются и нагружаются самым 
различным образом, теория линейных разностных уравнений находит 
широкое применение. В первом параграфе второй главы приведены 
различные возможности применения метода конечных разностей к рас­
чету плит. Здесь обосновывается мнение, что расчет железобетонных 
плит следует производить таким-же образом, как и изотропных пла­
стинок. Второй параграф этой главы содержит пример применения 
линейных разностных уравнений к расчету изотропной плиты-консоли.

Вторая глава работы посвящается изостатическим линиям в балках 
и плотинах.

В первом параграфе той-же главы приведен вывод дифферен­
циальных уравнений изостатических линий, в связи с уравнениями, 
выражающими направления напряжений, и с графиками напряжений. 
Приводятся линии одинаковых напряжений для различных форм 
плотин, вычисленные на основании напряжений, выступающих в от­
дельных пунктах.

Во втором параграфе второй главы приведено интегрирование урав­
нений изостатических линий типа (71). Уравнение сводится к нелиней­
ному дифференциальному уравнению, а затем к нелинейному разност­
ному уравнению. Решение уравнения производится числовым методом 
Р у н г э. Определены изостатические линии для целого ряда случаев. 
Рассматривается также способ решения уравнений (71) графическим 
методом и приводится сопоставление обоих образов действия.

Summary

THE APPLICATION OF FINITE DIFFERENCES IN TWO-DIMENSIONAL 
STATES OF STRESS IN STRUCTURES

This is a discussion of problems of structural mechanics concerning 
processes essentially continuous but assumed uncontinuous for the sake 
of simplicity or for mathematical reasons.

In structures characterized by two-dimensional states of stress this 
procedure is applied principally to reinforced concrete plates, girders of 
finite height and dams.
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Chapter I concerns application of linear difference equations to the 
theory of plates, in which the theory of linear difference equations is 
commonly used, especially in reinforced concrete plates subjected to 
various kinds of load and supported in various manners. Sec. 1 of Chap­
ter I contains a discussion of the various ways, in which finite differen­
ces may be applied to plate computation. The assumption that reinforced 
concrete plates should be treated as isotropic plates is justified. Sec. 2 
brings an example of the application of linear difference equations to an 
isotropic cantilever plate.

In Chapter II the problem of isostatic lines in girders and dams is 
discussed. Sec. 1 contains the derivation of differential equations of iso­
static lines taking into consideration the expressions for stress directions 
and stress diagrams. Lines of equal stresses are represented for dams of 
various shapes, computed on the basis of stresses in separate points. In 
sec. 2 the equations of isostatic line of the type (71) are integrated. This 
type of equation is reduced to a nonlinear differential equation and then 
to a nonlinear difference equation. The equation is solved by means of 
R u n g e’s numerical method. The isostatic lines are determined in 
several cases. A graphical method of solution of Eqs. (71) is duscussed 
and both methods are compared.

Praca została złożona w Redakcji dnia 5 czerwca 1954 r.
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