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PRZEDMOWA

Obliczenie statyczne łuków nastręcza na ogół większe trudności niż 
obliczenie ram lub statycznie niewyznaczalnych układów kratowych. Przy­
czyną tego jest okoliczność, że łuki muszą być w obliczeniach statycznych 
bardziej indywidualizowane niż ramy i kraty, dla których łatwiej jest 
ułożyć wzory ogólne ze względu na prostoliniowy kształt ich elementów.

Stąd pochodzi zrozumiała tendencja do możliwych usprawnień w obli­
czeniach łuków sprężystych.

Usprawnienia te mogą pójść w trzech różnych kierunkach, a więc 
przede wszystkim w kierunku poszukiwania prostych sposobów całkowania 
wyrażeń wchodzących jako współczynniki do równań łuku sprężystego, 
następnie w kierunku badań nad możliwością pomijania pewnych okolicz­
ności pracy łuku bez narażania obliczeń na praktyczne zmniejszenie do­
kładności, wreszcie w kierunku przedstawiania za pomocą tablic i wykresów 
pośrednich etapów obliczeń.

Zagadnienie całkowalności współczynników równań liniowych łuku po­
siada szczególnie ważne znaczenie w lukach parabolicznych, gdyż przy innych 
kształtach łuków uciekać się musimy najczęściej do zastępowania nieskoń­
czenie małych odcinków osi przez skończone i w ten sposób całkowanie 
tu często odpada.

Przy obliczaniu wyniosłych łuków eliptycznych odgrywających rolę 
schematów statycznych dla sklepień przepustów powstaje zagadnienie, 
w jakim stopniu należy uwzględniać okoliczność, że łuki eliptyczne są lu­
kami o dużej krzywiźnie; toteż w tym wypadku szczególnie jaskrawo 
występuje kwestia możności pomijania w obliczeniach łuków pewnych 
okoliczności ich pracy.

Łuki koliste ze względu na swą stałą krzywiznę dają w wielu przy­
padkach możność obliczania ich za pomocą tablic i wykresów, co prowadzi 
nieraz do daleko posuniętego usprawnienia obliczeń.

Rozpatrując przedstawioną specyfikę obliczeń statycznych poszczególnych 
rodzajów łuków na tle tych dróg, którymi zmierzamy do usprawnienia 
obliczeń, dochodzimy do wniosku, że trzy różne kierunki możliwych uspraw­
nień w obliczeniach łuków odpowiadają z grubsza trzem wymienionym 
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tu różnym kształtom łuków. Stąd pracę niniejszą dzielimy na trzy rozdziały 
poświęcone odpowiednio łukom parabolicznym, eliptycznym i kolistym 
z tym, że w poszczególnych rozdziałach będziemy w miarę potrzeby zaha­
czać o wszystkie mogące tu w grę wchodzić kierunki usprawnień.

Rozprawa niniejsza oparta jest przede wszystkim na pięciu następujących 
moich publikacjach:

(1) Badania nad wytrzymałością przepustów sklepionych, Przegląd Tech­
niczny, Warszawa 1930,

(2) Możliwe uproszczenia w obliczaniu statycznym luku, Przegląd Tech­
niczny, Warszawa 1934,

(3) Parabola sześcienna jako oś łuku, Czasopismo Techniczne, Lwów 1934,
(4) Application de la methode des moindres carres au calcul des arcs, 

Association Internationale des Ponts et Charpentes, Memoires, 
Zurych 1938,

(5) Przyczynek do obliczenia statycznego sprężystych łuków kolistych, 
Inżynier Kolejowy, Warszawa 1938,

oraz na doświadczeniach zdobytych przy stosowaniu wyników tych publi­
kacji w praktyce.
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I. ŁUKI PARABOLICZNE

1. Łuki o kształcie paraboli 2 stopnia

Wyznaczenie wielkości statycznie niewyznaczalnych w lukach sprężystych 
opiera się na wzorach na odkształcenia prętów zakrzywionych. Składowe 
przesunięcia punktu K pręta zakrzywionego AK, utwierdzonego w prze­
kroju poprzecznym A i swobodnego w punkcie K (rys. 1), wyrażają się za 
pomocą tzw. wzorów B r e s s e’a, które przybierają w tym wypadku postać:

5 5 a b

u = — I ddscos^ — J (b— y) A dcp± j et td x + J fidy — wob, (1) 
o o oo
5 s ba

v = — [ d dssintp + J (a — x) d dcp± J et tdy — J pdx + a, (2) 
oo

.V

m = <o0 4- J /1 dtp, (3)
o

gdzie
s długość odcinka osi łuku, 

ds długość nieskończenie ma­
łego odcinka pręta zakrzy­
wionego, 

d d s przyrost długości d s spo­
wodowany odkształceniem 
pręta, 

d <p kąt nachylenia względem
siebie dwóch przekrojów poprzecznych pręta znajdujących się od 
siebie w odległości ds,

A d (p przyrost kąta d <p spowodowany odkształceniem pręta,
w obrót przekroju poprzecznego K,
cp kąt nachylenia pewnego przekroju poprzecznego łuku do pła­

szczyzny pionowej,
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<o0 skończony obrót przekroju A, 
et wydłużenie jednostkowe przy 
fi przesuwanie jednostkowe.

różnicy temperatur t,

Wyznaczenie wielkości nad­
liczbowych w luku AB (rys. 2) 
odbywa się, jak wiadomo, w ten 
sposób, że wielkości ub, vb i (ob 
wyrażające odpowiednio przesu­
nięcie punktu B w kierunku 
równoległym do osi X-ów, prze­
sunięcie w kierunku równoleg­
łym do osi Y-ów oraz obrót

przekroju poprzecznego w B przedstawiamy sobie jako funkcje fu f2 i f3 
nieznanego momentu Ma , parcia poziomego H i reakcji Ra w punkcie A 
i ustawiamy równania:

J1(Ma,Ra,H) = 0, Jz(Ma ,Ra ,H) — 0, f3(MA,RA,H) = 0, (4) 

z których wyznaczamy wymienione wielkości nadliczbowe Ma, H i RA .
W przypadku łuku dwuprzegubowego mamy do rozwiązania tylko 

pierwsze z równań (4), a mianowicie równanie

ub = 0 lub f (H) — 0 . (5)

W równaniach typu (4) możemy przyjmować we wszystkich przypad­
kach łuków sprężystych, z wyjątkiem przypadków bardzo wyniosłych 
przepustów, że

. , N ds Ads = ■ „ . , EA
, , Mds „ TV GA (6)

gdzie N i T oznaczają odpowiednio siłę podłużną i siłę poprzeczną w da­
nym przekroju poprzecznym łuku, a M moment zginający w tym prze­
kroju.

Po uwzględnieniu wzorów (6) na wielkości Ads, A dtp i fi nadajemy 
równaniom (4) za pomocą wzorów (l)-(3) postać układu trzech równań 
liniowych

aj MA + ój Rx cx H + d3 = 0,

a2 MA + b2 Ra + c2 H + d2 — 0 , (7)

a3 MA 4~ b3 Rz 4- c3 H 4- d3 — 0 .

W równaniach tych współczynniki a, b, c id przedstawiają pewne całki 
oznaczone, przy których obliczeniu poważną niedogodność nastręcza oko­
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liczność, że różniczkę ds trudno jest przedstawić w postaci nadającej się 
do wygodnego całkowania.

W szczególnym wypadku, gdy łuk bezprzegubowy jest mało wyniosły 
i gdy można przyjąć, że cos cp — 1 , a sin cp = 0 , znajdujemy

gdzie M°A=MA + RAl/2 — Hy0 oraz

$ .j uk yds

h--— x---  , 
y'" ds

o J

j x' ds j d s

RA-" s - M°A~0 s - W
x2ds j- ds

0 0

d s
(9)

i gdzie x i y oznaczają współrzędne pewnego punktu osi łuku w ukła­
dzie współrzędnych O Yt (rys. 3), 
łają«ych na łuk na lewo od prze­
kroju aa względem środka cięż­
kości tego przekroju.

Momenty SDi przedstawiają w- 
przypadku ciężarów skupionych 
funkcję liniową x, a w przypad 
ku obciążenia ciągłego i równo­
miernego funkcję drugiego stop­
nia x. Ogólnie

^i — Xax‘, (10)

a 3)? moment sił zewnętrznych dzia-

\|
Rys. 3

gdzie i jest to pewna liczba cała i dodatnia, a współczynniki a od x nie 
zależą.

Odpowiednio dla łuku dwuprzegubowego zakładamy, że w punktach 
A i B (rys. 2) są przeguby, wobec czego mamy

MOayds 
J 

r y’ds
• U)

gdzie Mt>„ wyraża się za pomocą funkcji typu (10).
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W przypadku łuku symetrycznego o kształcie parabolicznym, osi luku 
w układzie współrzędnych XAY (rys. 3) odpowiada równanie

4 fy = x (l— x)p> (12)

gdzie l jest to rozpiętość łuku, a f jego strzałka.

Dla osi łuku wyrażającej się równaniem (12) całki (8) przybierają postać
i

S — J (X a xk) ds, (13)
o

gdzie a nie zależy od r, a k jest pewną liczbą całą i dodatnią.
Środkiem do ułatwienia sobie obliczenia całek typu (13) jest wyzyskanie 

metody najmniejszych kwadratów, dzięki której możemy przedstawić róż­
niczkę d s w postaci funkcji wymiernej x, a więc w postaci funkcji typu

r/ = Xm^k, (14)

gdzie m nie jest od x zależne i gdzie f oznacza stosunek x/l.
W tym celu nadajemy przede wszystkim równaniu (12) postać

y = ^(l — f)-4f. (15)

Dla różniczki osi łuku ds mamy znany wzór

ds=l/dx2 + dy2. (16)

Ponieważ ze wzoru (15) wynika, że

d y = (1 — 2 f) • 4 f • d (17)
więc

ds = j/l”+ 16 ?(1 — 2 f)2 d x, (18)

gdzie C oznacza stosunek jjl. Równaniu (18) można też nadać postać

ds=|/af2 + bf + c-da:, (19)
gdzie

a = 64C2, b = — 64 C2, c=l + 16C2

lub też ogólnie postać

ds=F2(S)dx. (20)
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Poszukując wygodnego do całkowania kształtu funkcji

v = f2w

przedstawiamy jako iloraz

V =* ar

(21)

(22)d s

i budujemy wykres 77 odkładając na osi odciętych O i kolejno wartości 
£ = 0,05, £=0,10, £ = 0,15 itd., a na osi rzędnych O/7 wartości r/ otrzy­
mane ze wzorów (22) i (19). Wykres ten dla pewnej wyniosłości łuku C
otrzyma kształt krzywej ABC 
przedstawionej na rys. 4.

Na wykresie funkcji (21) przed­
stawionej na rys. 4 wartości zmien­
nej niezależnej £ = 0,00 i £=1,00 
odpowiadają końcom łuku, a war­
tość £ = 0,50 jego środkowi. W środ­
ku łuku wartość funkcji jest 
»7=1 niezależnie od wyniosłości 
łuku C.

Rys. 4

Uzyskana liczba 21 punktów krzywej r/ = F2(£) dobrze określa kształt 
samej zależności, nie daje jednak podstawy do przedstawienia funkcji F2(£) 
w postaci wygodnej do całkowania, w szczególności w postaci (14).

Aby zastąpić funkcję F2(£) przez funkcję typu (14), zwracamy przede 
wszystkim uwagę na fakt, że krzywa ABC na rys. 4 zbliżona jest kształtem 
do paraboli, wobec czego narzuca się tu myśl zastąpienia tej krzywej przez 
parabolę.

Na rysunku 5 przedstawiona jest łącznie krzywa ABC z rys. 4 i para­
bola a B c, która odniesiona do osi współrzędnych £, Br], wyraża się równa­
niem

^=9^- (23)

Między współrzędnymi układów ^Or/ i ^,Bg, istnieją zależności (rys. 5) 

f + —’71=1, (24)

a g przedstawia największą rzędną krzywej a B c.
Wybór parametru g jest uzależniony od tych postulatów, którym będzie­

my chcieli podporządkować krzywą aBc i jej stosunek do krzywej ABC.
Bierzemy tu pod uwagę trzy możliwe postulaty następujące:
(1) algebraiczna suma różnic między rzędnymi krzywej ABC a rzęd­

nymi krzywej aBc równa się 0;
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(2) suma kwadratów różnic między rzędnymi krzywej ABC a rzędny­
mi krzywej aBc odpowiada warunkowi minimum;

(3) rzędne krzywej ABC stanowią średnie arytmetyczne rzędnych 
krzywych aBc obliczonych w myśl postulatów (1) i (2).

Rys. 5

Oznaczając przez rzędne krzy­
wej ABC odniesionej do ukła­
du ^Br^ badamy dla danego C 
sumę «

Dj = 27 (łf — ł/J , (25)

gdzie r\ — wyraża różnicę mię­
dzy odpowiadającymi danej odcię­
tej f, rzędnymi krzywych A B C 
i aBc (rys. 5) i gdzie liczba róż­
nic t/ — r/j tworzących sumę odpo­
wiada liczbie punktów krzywej

ABC, których rzędne zostały obliczone ze wzorów (18), (21) i (22). Róż­
nice tj' — 7), dotyczą właśnie tych punktów, dla których obliczyliśmy 
rzędne tj'.

Warunki matematyczne odpowiadające trzem wymienionym postulatom 
w stosunku do rzędnych powinny być tego rodzaju, aby, z jednej stro­
ny, były zagwarantowane jak najlepsze wyniki obliczenia łuków, z drugiej 
zaś, aby obliczenie nie było zbyt kłopotliwe.

W związku z równaniem (23) wyrażenie (25) przybiera postać

(26)

Wyrazem matematycznym pierwszego z wymienionych postulatów bę­
dzie wobec tego równanie

27 9^) = 0, (27)
skąd

27 T] (28)

W dalszym ciągu tworzymy sumę

O2 = Z h] — g ,

wobec czego wyrazem matematycznym postulatu (2) będzie równanie

ÓD 
dg

(29)

(30)— = 0 ,
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które doprowadza do następującego wyrażenia na p:

2^
9 ‘ (31)

Gdybyśmy zamiast sumy (29) utworzyli sumę

(32)

gdzie n 3 , wówczas wyrażenie na g wypływające z warunku minimum 
tej sumy na podstawie równania

^ = 0 
dg

(33)

nastręczałoby tak duże trudności rachunkowe w użyciu, że unicestwiłyby 
one korzyści wynikające z nadania funkcji podcałkowej w wyrażeniach (8) 
i (11) postaci (14). Musimy się więc tu ograniczyć do n = 2.

Warunek, że funkcja ma uzyskać wartość minimum, doprowadza 
więc do metody najmniejszych kwadratów. Aby to wykazać, nadajemy 
sposobowi postępowania zmierzającemu do wyznaczenia parametru g utarty 
schemat metody najmniejszych kwadratów.

Zastępujemy wzór (29) przez wyrażenie

, (34)

w którym g uważamy za nieznaną wartość ścisłą parametru równania (23).
Wprowadzamy dalej oznaczenia gx = ■g'/^ jako znaną wartość przybli­

żoną parametru g oraz p; = jako wagę poszczególnych wartości g, 
czyli że

D2 = X pi (g,— gY. (35)

Gdyby krzywe ABC i aBc były identyczne, mielibyśmy 7/ = ^ i błąd 
(odchylenie) gt— g byłby równy zeru. Przyrost wag p, odpowiada tu 
przyrostowi współrzędnych . Z postulatu średniej arytmetycznej wynika

Wyrażenie to możemy otrzymać również i z warunku minimum funkcji 
(35). Jest ono identyczne z wyrażeniem (31).



Jeżeli przez gy i g2 oznaczymy wielkości parametrów g otrzymane od­
powiednio ze wzorów (28) i (31), wówczas postulatowi wymienionemu 
pod (3) będzie czyniła zadość krzywa a B c o parametrze g równym

+ g2
' 2 (37)

Oznaczamy przez e największą, wyrażoną w procentach różnicę między 
rzędnymi krzywej ЛВС, z jednej strony, a rzędnymi krzywej aBc, z dru­
giej. Dla poszczególnych parametrów gt , g2, g3 i dla różnych £ wielkoś­
ci , e2, e3 przybierają odpowiednie wartości zawarte w tablicy 1.

Jak wynika z przytoczonej tablicy, spośród błędów e, , e2, e3 błędy e2 
są na ogół najmniejsze, błędy zaś e3 różnią się od nich przeważnie nie­
wiele. Gdy porównamy ze sobą we wszystkich trzech wypadkach prze­
widzianych w tablicy położenie tych punktów = 0,1, 0,2 , 0,3 ..., dla 
których mają miejsce błędy największe, to zauważymy, że największe 
błędy występują na końcach łuku, podczas gdy największe błędy e3 
i b3 mają miejsce około środka każdej połowy łuku, przy czym przy sto­
sowaniu paraboli o parametrze g3 błędy są na ogół rozłożone najbardziej 
równomiernie na całym łuku.

Oznaczamy w dalszym ciągu przez , #2 i 03 błędy przeciętne odpo­
wiadające błędom największym e, , e2, es i układamy tablicę tych błędów 
(tablica 2).

Tablica 1 Tablica 2

ś % «2 % €3 % % яхГ2 /0 #3%

0,100 . 0,3 0,3 0,3 0,100 0,2 0,2 0,2
0,125 0,3 0,3 0.3 0,125 0.2 0,2 0,2
0,150 0,4 0,3 0,3 0,150 0,3 0,3 0,2
0,175 1,0 0,6 0,6 0,175 0,4 0,4 0,3
0,200 1,2 0,8 1,0 0,200 0,4 0,4 0,4
0,225 1,2 1,0 1,0 0,225 0.4 0,4 0,4
0,250 1,8 1,4 1,2 0,250 0,7 0,8 0,6
0,275 2,4 1,5 1,8 0,275 0,9 0,8 0,8
0,300 2,9 1,7 2,3 0,300 1,0 1,1 1,0

Obliczenie średniego błędu nie jest w danym razie potrzebne, gdyż 
znane są nam błędy największe.

W równaniach (4), z których obliczamy wielkości statycznie niewy- 
znaczalne w łuku, wyrazami największymi co do wartości bezwzględnej

są zawsze wyrazy typu f yyds/EJ i [ y'ds EJ, gdzie /7 oznacza 
o ó 
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bądź — moment zginający w danym przekroju aa łuku, bądź też 
tDu — moment sił działających między podporą a przekrojem aa wzglę­
dem środka tego przekroju.

Jeżeli początek współrzędnych odniesiony jest do środka podpory 
(rys. 2), wówczas funkcje y y2 oraz y2 maleją w kierunku ku końcom 
łuku. W tym wypadku zastosowanie, zamiast funkcji y = ds/dx, paraboli 
o parametrze g}, dającej największe błędy w przekrojach zbliżonych do
końców łuku byłoby najwłaściwsze. Jeżeli jed­
nak początek współrzędnych przyjęty jest na 
przechodzącej przez zwornik osi symetrii łuku, 
wówczas właściwsze staje się zastosowanie pa­
raboli o parametrze g2 lub g3. Ponieważ trudno 
jest stale pamiętać o właściwościach błędów e, 
więc należy uważać za najwłaściwsze stoso­
wanie tej ostatniej paraboli w każdym wy­
padku. Odpowiednie parametry podane są 
w tablicy 3.

Tablica 3

£ g ś g

0.100 0,077 0,225 0,358
0,125 0,120 0,250 0,430
0,150 0,170 0,275 0.518
0,175 0,220 0,300 0,598
0.200 0,290

Zależność parametru g od stosunku C daje się wyrazić za pomocą wy­
kresu na rys. 6, z którego wynika, że dla pośrednich wielkości C można 

otrzymać parametry g drogą inter-

r^ds 
J EJ 0

obli-

wielkości 
wielkościRys. 6 ścisłej y — ds^dx przez

przybliżone y,, musi być ze względu 
na charakter funkcji yy2 oraz y2 mniejszy od błędu przeciętnego ń odpo­
wiadającego danej wielkości f.

Zdecydowawszy się na korzystanie z parametru g obranego na podsta­
wie postulatu 2 nadajemy równaniu (23) w układzie współrzędnych f 0 y
postać 

y=l+y(l —4^ + 4^), (38)

skąd, o ile funkcję (38) będziemy w dalszym ciągu oznaczali jako funkcję 0. 
otrzymamy na podstawie wzoru (22)

ds = <l>dx. (39)
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Jako przykład zastosowania funkcji 0 i parametru g do obliczenia łu­
ków rozpatrzmy przypadek wyznaczenia pionowego przesunięcia v końca B 
łuku AB utwierdzonego w przekroju A, posiadającego kształt paraboliczny 
i obciążonego jedną siłą P (rys. 7).

Moment zginający Ma w pew­
nym przekroju aa równa się

M« = Pl(l —£). (40)

Zależność między różniczkami 
ds a dx przyjmujemy zgodnie ze 
wzorem (39)

ds = 0ldf, (41)

a równaniu osi pręta nadajemy 
w przedstawionym na rysunku układzie współrzędnych XAY postać

y = f(l (42)

Korzystamy w dalszym ciągu ze wzoru (2), pomijamy jednak wpływ 
na pionowe przesunięcie punktu B sił podłużnych i sił poprzecznych. 
Przyjmując 4 dq> = Mds/EJ znajdujemy, że

rn \Mds
o

(43)

Uwzględniając tu wyrażenia (41) i (38) na funkcję i dokonując cał­
kowania dla całej rozpiętości łuku znajdujemy

PI3 t PB 1I 2 \
I + T9 ' <44>

0 ' '

Ścisła ocena błędów wynikających z zastąpienia we wzorach na obli­
czenie łuków różniczek ds przez wyrażenie (41) wymaga analizy wyników 
poszczególnych działań. Na podstawie jednak szeregu obliczeń przeprowa­
dzonych dla różnych wyniosłości łuku można ocenić rząd wielkości tych 
błędów. Błąd ten dla wzorów typu (8) dojść może do 4 d/3, gdzie pod d 
rozumiemy błąd przeciętny spowodowany zastąpieniem rzędnych przez 
rzędne krzywej . Błąd zawarty w samych licznikach wzorów (8) waha 
się około 2d, 3. Porównamy tu dla przykładu liczniki wzoru (11) na par­
cie poziome łuku dwuprzegubowego obciążonego w sposób ciągły i równo­
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mierny obliczone, z jednej strony, ściśle, z drugiej zaś, przez wprowadze­
nie funkcji 0. Otóż w pierwszym wypadku otrzymujemy wynik 

a w drugim wynik

f = (0,0333 + 0,0053p)—^. (46)
0

Przy C = 0,250 mamy g = 0,430 i różnica między wynikami (45) i (46) 
wynosi 0,56%, czyli około 2/3 błędu i93 podanego w tablicy 2.

W przypadku sił skupionych funkcja MOa zachowuje tę własność, że 
wartości jej są mniejsze w okolicy podpór łuku niż w okolicach środka, 
wobec czego wartości całki

ę Mo« yds 
J ' EJ ’

obliczone według wzorów ścisłego i przybliżonego, będą wykazywały różnice 
mniejsze od wielkości zawartych w tablicy 2.

Dla łuku bezprzegubowego funkcja 50?, która zastąpi tu funkcję Mo,, 
będzie tak samo jak i ta ostatnia malała w kierunku ku podporom łuku , 
a więc i w tym wypadku wartości całki

rMo, yds 
J EJ ’

obliczone według wzoru ścisłego i przybliżonego, będą wykazywały różnice 
mniejsze od wielkości zawartych w tablicy 2.

Wobec tego, że inne całki wchodzące w wyrażenia dla wielkości sta­
tycznie niewyznaczalnych w lukach bądź posiadają te same własności co 
całki omówione, bądź też odgrywają w tych wyrażeniach mniejszą rolę, 
twierdzić można, że stosując dla ds wzór (38) otrzymamy przy parame­
trach g wziętych z tablicy 3 błędy nie większe od zawartych w tablicy 2.

W przypadkach gdy nie można przyjąć, że cos (p = 1 a sin <p = 0, 
należy przy wyznaczeniu współczynników a, b, c, d we wzorach (7) roz­
łożyć cosinusy i sinusy w szeregi algebraiczne.

Trudności podobne do tych, jakie mamy z różniczką ds przy całkowa­
niu współczynników równań (4), występują również i przy uwzględnieniu 
zmienności momentów bezwładności łuku J.
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Łuki stalowe posiadają zwykle na całej swej rozpiętości stały przekrój 
poprzeczny. Łuki betonowe i kamienne mają natomiast przeważnie prze­
kroje poprzeczne zmienne, nie powoduje to bowiem w tych wypadkach 
trudności konstrukcyjnych, pozwala zaś na pewną oszczędność na materiale. 
Wreszcie wchodzą tu również w grę i względy estetyczne. W podobnych 
warunkach znajdują się i łuki żelbetowe.

Dla ułatwienia sobie wyznaczenia współczynników równań liniowych 
łuku sprężystego niektórzy autorowie doradzają przyjmowanie w oblicze­
niach statycznych przy obliczaniu całek oznaczonych zamiast rzeczywi­
stego przekroju zmiennego, przekrój o stałym momencie bezwładności rów­
nym średniej arytmetycznej momentów bezwładności w wezgłowiach 
i w zworniku:

J --  2 {J w “F Jz) • (47)

Podobny sposób postępowania jest źródłem znacznych błędów, których 
granice zależne są od prawa zmienności przekrojów poprzecznych w łuku, 
wyniosłości łuku itd. i wobec tego nie może być uważany za uzasadniony.

Znaczne ułatwienie w całkowaniu współczynników równań (8) sprowa­
dza przyjęcie, że moment bezwładności w dowolnym przekroju łuku uza­
leżniony jest od momentu bezwładności w zworniku za pomocą prawa

4 
cos 99

gdyż w tym wypadku iloraz 
ds   cos 99 dx dx
J Jz COS 9' dz

(48)

(49)

Spośród reguł zmienności przekrojów prostokątnych o wysokości zmien­
nej h łuku na ogół najlepiej wyrównują naprężenia w łuku przekroje 
zmieniające się według wzorów

, hx ■ h =----- ,cos (p
. , hw hzh — hz -i- ------sx,s

(50)

(51)

gdzie sx oznacza długość odcinka osi łuku między pewnym przekrojem 
a wezgłowiem, s całkowitą długość osi łuku, hz wysokość przekroju po­
przecznego w zworniku, hw wysokość przekroju poprzecznego w wezgłowiu; 
pierwszy ze wzorów (50)-(51) może być stosowany tylko do łuków 
o małej wyniosłości, drugi zaś wyraża liniową zmienność przekrojów.
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Jednoczesne stosowanie dla luku zależności (48) i (50) ułatwia wprawdzie 
obliczenia, nie jest jednak niczym uzasadnione.

W przypadku ogólnym istotne uproszczenie w obliczeniach całek ozna­
czonych równań luku sprężystego, z punktu widzenia zmienności prze­
krojów, polegać może na przedstawieniu stosunku 1/J w postaci możliwie 
najprostszej funkcji algebraicznej, a więc przede wszystkim w postaci

— = 2amr'. (52)

Funkcji takiej poszukujemy tu sposobem analogicznym do przedstawio­
nego wyżej dla różniczki ds, przy czym mamy na uwadze, że reguła- 
zmienności przekrojów nie wpływa zbyt silnie na wartość wielkości sta­
tycznie niewyznaczalnych.

Przyjmujemy więc dla zmienności przekroju
stosunku hw/hz liczby w granicach

równanie (51), a dla 
obliczamy dla różnych

wartości C i przekrojów łuku od­
dalonych od siebie co 0,1 s mo­
menty bezwładności poszczególnych 
przekrojów oraz ich odwrotności. 
W ten sposób dochodzimy do wy­
kresów typu przedstawionego na 
rys. 8, na których krzywe 

\=F^) (53)
•J

zawarte są między prostymi AmB 

1,25- 1,75 i

a parabolami AnB.
Przy Jw/Jz = 1,25 krzywe ApB zbliżone są do prostych w ten sposób, 

że przeciętna różnica rzędnych wynosi tu około 3%, a przy Jw/Jz = 1,75 
krzywe te zbliżone są do paraboli, przy czym przeciętna różnica rzędnych 
wynosi około 4%.

Mając na widoku takie granice błędu możemy przyjąć, że przy warto­
ściach stosunku JWIJZ zawartych między 1,25 i 1,75 rzędne krzywych (53) 
będą stanowiły średnie arytmetyczne rzędnych krzywych AmB i AnB 
Stąd dochodzimy do równania

, = ¥- + H----- P (1 —-n)fi| , (54)
J J W \ J Z J w /

gdzie wielkości n otrzymujemy drogą interpolacji liniowej w granicach 
0-1 dla wielkości 1,25 - 1,75 i gdzie — x!(U2Y
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Dla odciętych f = x/l równanie (54) przybiera postać

4 = 4+2(f^ “V2nf2 +(1 — n)f| (55)

(na rysunku górna) i parabola
2 stopnia (na rysunku dolna), 
a linią pełną parabola 3 stop­
nia.

Obliczenie statyczne łuków posiadających kształt paraboli 3 stopnia 
nastręcza pewne trudności wypływające z własności geometrycznych tej 
krzywej.

Parabola sześcienna wyraża się, 
mianowicie, w układzie współrzęd­
nych X2CY2 odniesionych do środ­
ka zwornika C łuku ACB (rys. 10) 
równaniem

<57)

gdzie l i f oznaczają odpowiednio 
rozpiętość i strzałkę łuku.

Przy odciętych dodatnich (tj. 
przy x2 > 0) równanie (57) daje 
gałąź AC przedstawiającą połowę 
przy x.

D «W \Jz j WI

dla części łuku od x = 0 do x = 1/2 oraz postać:

4 = ^ + 2^ — |2n(l— ^2 + (l— n)(l — f)| (56)
«/ J w \ J z ^wi

dla drugiej połowy łuku.

2. Łuki o kształcie paraboli 3 stopnia

Większość obecnie projektowanych łuków bezprzegubowych posiada 
osie o kształcie krzywej, której rzędne stanowią średnie arytmetyczne

Rys. 9

między rzędnymi paraboli 2 
a rzędnymi paraboli 4 stopią. 
Tego rodzaju krzywe są bardzo 
zbliżone do paraboli 3 stopnia. 
Widać to z rys. 9, na którym 
liniami przerywanymi przedsta­
wiona jest parabola 4 stopnia 

Rys. 10

osi łuku. Przy odciętych ujemnych (a więc
-<0) gałąź CB' krzywej (57) nie może odegrać roli osi łuku na odcin-

18



ku CB, rolę tę natomiast odegrać może odpowiednia gałąź paraboli 3 stopnia

(58)

Brak możności przedstawienia osi luku za pomocą jednego równania 
stanowi pierwszą trudność przy obliczeniu całek wchodzących w wyrażenia 
dla wielkości statycznie niewyznaczalnych w łuku o kształcie paraboli 3 
stopnia.

Drugą trudność przy wyzyskaniu paraboli sześciennej jako osi łuku 
przedstawia okoliczność, że funkcja y — d s/d x, tzn. stosunek nieskończenie 
małego odcinka osi łuku do jego rzutu na cięciwę ma kształt bardzo 
złożony, nie pozwalający na łatwe całkowanie.

Oś o kształcie paraboli 3 stopnia nadaje się bardziej dla łuków 
wynioślejszych niż dla łuków bardzo płaskich, którym lepiej odpowiada 
parabola drugiego stopnia. W przypadku łuków wynioślejszych, np. powy­
żej wartości 0,08 dla stosunku C = f/l wpływ sił osiowych (podłużnych) 
na wielkości statycznie niewyznaczalne w łuku może być pominięty. W tych 
wypadkach służą nam do obliczenia wielkości statycznie niewyznaczalnych 
w lukach bezprzegubowych wzory (8) i (9) podane w paragrafie poprzednim.

Przyglądając się wzorom (8)-(9) spostrzegamy, że rzędne osi łuku wcho­
dzą tylko we dwa spośród nich. Ponadto we wzorze (9) wobec symetrii 
łuku całkowanie zarówno w liczniku, jak i mianowniku należy wykonać 
tylko w granicach od 0 do s/2. Stąd jedynie we wzorze na H całkowanie od 
0 do s trzeba zastąpić przez kolejne całkowanie od 0 do s,2 i od s/2 do s, 
przy czym w pierwszym wypadku należy brać pod uwagę jako oś łuku 
krzywą (57), a w drugim krzywą (58). Można więc przyjąć symbolicznie, że

5 s/2 s

J=f -f ■ <59'
0 0 s/2

Podobny sposób ujęcia dotyczyć musi tylko licznika wzoru na H, gdyż 
jego mianownik zawiera rzędną y' w kwadracie.

Oś łuku przedstawia się w układzie współrzędnych X AY (rys. 10) przy 
i = x/l pod postacią

y = 2f(2f —6f2 +4^3) (60)

dla lewej części łuku (AC) i pod postacią

y = 2f(l —3^+ 6f2 — 4^) (61)

dla jej prawej części (C B).
Usunięcie więc trudności wynikających stąd, że wykładnik potęgi w pa­

raboli sześciennej jest nieparzysty, jest stosunkowo łatwe, o ile dadzą się 
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opanować trudności wynikające z przedstawienia różniczki luku ds jako 
funkcji współrzędnej x, względnie f.

Dla ułatwienia sobie wyznaczenia całek wchodzących w wyrażenia 
(8)-(9) dążyć musimy, podobnie jak w przypadku osi łuku w kształcie pa­
raboli 2 stopnia, do przedstawienia stosunku = d s/d x pod postacią

ds E a xm.d x (62)

W tym celu uciekamy się tu do metody analogicznej do metody za­
stosowanej w paragrafie poprzednim.

Wstawiając w wyrażenie (16) dla różniczki łuku ds zamiast różniczki 
dy jej wartość obliczoną z równań (60) i (61) i mając na uwadze, że 
d x = l d S znajdujemy

o ,_______________________
~ = ]/l +36C2(1 — + 4f2)3,d x (63)

co doprowadza do wzoru
ds = Fs (i) d x (64)

analogicznego do wzoru (20) paragrafu poprzedniego lub do wzoru

r) = F.A^- (65)

Wstawiając dla poszczególnych
f = 0,05, 0,10, 0,15,... znajdujemy szereg wykresów typu

Rys. u

wartości C w wyrażenie (63) kolejno 
przedstawionego 

na rys. 11, na którym krzywa ABC 
przedstawia funkcję (63).

Jeżeli umieścimy na wykresie 
rys. 11 poza krzywą ABC gałąź 
paraboli sześciennej a B odpowia­
dającą w lewej części wykresu 
w układzie współrzędnych B ł/, 
równaniu paraboli sześciennej

»?i = 9^, (66)

a w prawej gałąź Bc odpowiadającą równaniu

(67)

wówczas zauważymy, iż przy należytym wyborze parametru g rzędne 
krzywych (66) i (67) mało różnią się od rzędnych krzywej (63).

Opierając się na rozważaniach dotyczących łuków o kształcie paraboli
2 stopnia uciekamy się tu przy wyznaczaniu parametru g w równaniach
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(66) i (67) do metody najmniejszych kwadratów, która w naszym wypadku 
sprowadza się do postulatu, aby suma różnic między rzędnymi krzywej AB 
a rzędnymi krzywej a B odpowiadała warunkowi minimum, czyli aby

dD3 
dg = 0, (68)

gdzie (rys. 11)
O3 = E ^2 — r]^2 = X — g ^)2.

Równanie (68) doprowadza do następującego wzoru

(69)

dla parametru g:

9 2$ ' (70)

Największe wyrażone w procentach błędy e między rzędnymi krzy­
wych AB i a B, odpowiadające poszczególnym wartościom C ujęte są 
w tablicę 4.

Błędy przeciętne d powstałe wskutek zastąpienia krzywych AB przez 
krzywe aB podane są w tablicy 5.

W odniesieniu do układu SOr/ (rys. 11) przybierają krzywe (66) i (67) 
postać następującą:

ds 
11 dx

na odcinku od £ = 0 do £ = 1/2 
i postać

"=£“*-»(1— 4' 1721
na odcinku od £ = 1/2 do £=1.

Funkcje (71) i (72) będziemy 
oznaczali jako funkcje i 02, 
tak iż na odcinku łuku między 
x = 0 a x = 1/2 będzie

ds = <Pldx, (73) Rys. 12

a na odcinku między x = l/2 a x = l będzie

ds = 02dx. (74)

Parametry g obliczone dla poszczególnych wartości £ ze wzoru (70) 
dają się ująć w tablicę 6.
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Tablica 5 Tablica 6Tablica 4

f n s g £ g

0,100 1,2 0,225 2,4 0,100 0,5 0,225 1,2 0,100 1,24 0,225 5,20
0,125 2,0 0,250 2,5 0,125 0,8 0,250 1,2 0,125 1,81 0.250 6,21
0,150 2,1 0,275 2,6 0,150 0,9 0,275 1,3 0,150 2,68 0,275 7,27
0,175 2,2 0,300 2,8 . 0,175 1,0 0,300 1,4 0,175 3,45 0,300 8,30
0,200 2,4 0,200 1,1 0,200 4,30

Zależność parametru g od stosunku £ wyraża się za pomocą wykresu
na rys. 12, z którego wynika, że dla pośrednich wartości C można otrzy­

mywać parametry g drogą interpo­
lacji liniowej.

Gdy chodzi o błędy, jakie może 
spowodować w obliczeniu statycz­
nym łuków o kształcie paraboli 
3 stopnia wprowadzenie dla róż­
niczki ds wyrażeń (73) i (74), 
znajdują tu zastosowanie uwagi po­
dane w paragrafie poprzednim dla 
łuków o kształcie paraboli 2 stop­
nia.

Jako przykład zastosowania wzorów (73) i (74) na różniczkę ds, a więc 
zastosowania funkcji i 02 oraz parametru g do obliczenia łuków, bie- 
rzemy pod uwagę łuk symetryczny dwuprzegubowy obciążony w sposób 
ciągły i równomierny i posiadający kształt paraboli 3 stopnia (rys. 13).

Moment zginający wyraża się tu wzorem

Mo. = -^£(1 —£), (75)

gdzie q jest to obciążenie jednostkowe.
Stosując tu wzór (11) oraz funkcje 0, i 02 znajdujemy

fMOayds = f q^(l — ^)-2f(3^ — 6^ + 4^)01ld^+ (76)
o o

+ f^Łf(l—f)-2f (1 — 3 + 6^ — 4^) 02 Id f,
J 2

//2
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V H2

f y2 d s = f 4 f2 (3 f - 6 f2 + 4 ^s)2011 d i +
O o

(77)

+ fłftl — SS + G^ — ł^^ldę, 
1/2

skąd dla wartości C = 0,175 wziętej z tablicy 6 znajdujemy H = 0,1128 ql2/f.

II. ŁUKI ELIPTYCZNE

Łuki eliptyczne o pionowej większej osi elipsy występują jako kon­
strukcje budowlane przede wszystkim w postaci sklepień przepustów ko­
lejowych i drogowych.

Zasadniczą różnicą między sklepionym mostem a sklepionym przepu­
stem, z punktu widzenia statyki budowli, stanowi grubość warstwy nad­
sypki nad sklepieniem. Grubość ta wynosi dla mostów zaledwie kilka­
dziesiąt centymetrów, dla przepustów zaś dochodzić może do kilkunastu 
metrów. Przy małych grubościach warstwy nadsypki możemy nie liczyć 
się z jej parciem poziomym na sklepienie, co nie może jednak mieć miej­
sca przy grubej warstwie nadsypki.

W zależności od zagłębienia sklepienia pod torem kolejowym lub dro­
gą znajduje się długość sklepienia liczona w kierunku równoległym do 
jego tworzącej. Długość ta niewiele różni się od szerokości drogi, gdy cho­
dzi o mosty, i o wiele przekra­
cza tę szerokość, gdy chodzi o 
przepusty pod wysokimi nasy­
pami. Wobec znacznej długości 
sklepień przepustów grubość 
ma większy wpływ na ogólny 
koszt przepustu niż grubość 
sklepienia mostowego na całko­
wity koszt mostu. Tym też tłu­ Rys. 14
maczy się usilne dążenie
w technice budowlanej do jak największego ograniczenia grubości skle­
pień przepustów.

Największą oszczędność w murze przepustów osiągnąć można drogą 
nadania osi sklepienia kształtu odpowiedniej linii sznurowej, co prowa­
dzi do zastąpienia przekroju poprzecznego przepustu typu przedstawio­
nego na rys. 14 o wyraźnie zaakcentowanych przyczółkach przez przekro­
je podane na rys. 15 (typ I), 16 (typ II) lub 17 (typ III). Teoretyczny kształt 
osi przepustów przedstawionych na tych rysunkach powinien odpowiadać
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. przy wysokich nasypach elipsie, przy wyznaczeniu jednak takiego kształ­
tu sklepienia grubość jego uważać musimy za nieskończenie małą. Ponie­
waż w rzeczywistości sklepienie przepustu posiada pewną grubość skoń­
czoną, powstają w nim momenty zginające, wywołujące nieraz naprę­
żenie rozciągające, dla przepustów kamiennych na ogół niebezpieczne.

Rys. 15 Rys. 16

Przy wyznaczaniu naprężeń w sklepieniach o kształcie połowy elipsy 
należy mieć na uwadze, że oś tych sklepień ma w pewnych swych czę­
ściach znaczną bardzo krzywiznę charakteryzującą się stosunkiem pro­

mienia krzywizny osi sklepie­
nia na danym odcinku do gru­
bości sklepienia w tym samym 
miejscu.

Na rys. 18 przedstawione 
jest, w jaki sposób stosunek 
promienia krzywizny do grubo­
ści sklepienia, tj. stosunek r : e, 
zmienia się wzdłuż osi sklepie­
nia. Punkty 1, 2, 3, ... 8 na osi 
odciętych wykresu odpowiada­
ją środkom długości klinów, na 
które dzielimy połowę sklepie­
nia między wezgłowiem a zwor­

nikiem (punkty w i z). Szerokość słupków wykresu odpowiada tu długo­
ści klinów, a Wzdłuż osi rzędnych odczytujemy wartości poszukiwanych 
stosunków r : e, przy czym linie przerywane dotyczą tu typu I przepustu 
(rys. 15), linie pełne typu II (rys. 16), a linie przerywano-punktowe 
typu III (rys. 17).

Ponieważ z wykresu wynika, że stosunek r : e spaść może nawet do 2. 
powstaje pytanie, czy dopuszczalny jest tu sposób obliczenia statycznego 
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sklepienia przepustu stosowany w przypadku łuków mostowych, a więc 
schemat obliczenia prętów o krzywiźnie małej, który w praktyce inży­
nierskiej przeważnie bywa stosowany.

Odpowiedź na to pytanie oparta być może tylko na porównaniu ze 
sobą wyniku obliczeń przeprowadzonych, z jednej strony, dla prętów 
o dużej krzywiźnie, a z drugiej, dla prętów o małej krzywiźnie. Porów­
nanie wykonamy dla trzech przedstawionych na rys. 15, 16 i 17 typach 
przepustów.

Rys. 18

Przystępując do porównania obliczeń sklepienia przepustu eliptycz­
nego, jako pręta o małej i o dużej krzywiźnie, zauważamy przede wszyst­
kim, że geometryczne dodawanie odkształceń łuku, jako podstawa do 
wyznaczenia wielkości statycznie niewyznaczalnych zadania, doprowa­
dzająca do tzw. wzorów B r e s s e’ a, odbywa się w obydwóch wypad­
kach jednakowo i że zasadniczą różnicą obydwóch obliczeń jest tylko 
sposób wyznaczenia odkształceń nieskończenie małego odcinka (klina) 
łuku sprężystego. Chodzi tu, -mianowicie, o przyrost zlds (ściślej skrót) 
długości ds tego odcinka i o przyrost Ady kąta dq> między dwiema ogra­
niczającymi go płaszczyznami.

Przy rozpatrywaniu łuku sprężystego, jako pręta o dużej krzywiź­
nie, wzory na Ads oraz ddę; przybierają postać następującą:

Jds-^ds + ^ds, (78>

M N M^^ds+^-ds+^ds, (79) 

25



czemu odpowiada wzór na naprężenia w danym przekroju łuku

N M Mz r
A + rA + V ' 7+z ’ (80)

We wzorze tym symbole M i N oznaczają moment zginający i siłę 
podłużną w danym przekroju łuku, A i r odpowiednio pole przekroju 
i promień krzywizny osi łuku, wreszcie Y całkę

Y=fz2—r—dA, (81)
a r + z

gdzie z jest to odległość pewnego punktu przekroju od osi łuku.
Wzory (78)-(80) wyprowadzone są na podstawie założenia płaskich 

przekrojów, nie doprowadzają jednak, jak widać, do liniowego rozkładu 
naprężeń.

W przypadku łuków sprężystych o małej krzywiźnie przyjmujemy, że

— = 0, -4—=1. Y = (82)
r r + z

wobec czego wzory (78)-(80) zostają zastąpione przez wzory

lds = -Ą-ds, Ad<p=~~ds, (83)Ł A EJ

Spośród odkształceń skończonego odcinka łuku (rys. 19) interesuje tu 
nas przede wszystkim poziome (tj. równoległe do osi A X) przesunięcie uk 
punktu K (o współrzędnych a i b) oraz obrót wk przekroju poprzecznego 
sklepienia w tym punkcie.

Odkształcenia te wyznaczamy ze wzorów B r e s s e’ a, które w da­
nym razie przybierają postać

5/2 5/2

Uk — — J zł ds cos ę?—j (b— y)Adą>, (85)
n o

s/2

a)k — J Ad (fi, (86)
o

gdzie x i y oznaczają współrzędne poszczególnych punktów D osi łuku, 
a <p — kąty nachylenia względem pionowej osi symetrii łuku przekroju 
poprzecznego w tych punktach.
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Ograniczając się do rozpatrywania równowagi przepustów przy ob­
ciążeniu symetrycznym względem ich osi pionowej i przyjmując za 
punkt K środek przekroju zworniko­
wego otrzymujemy z warunków sy­
metrii, że

u* = 0 i wk = 0, (87)

gdzie uk i co* są funkcjami M i N.
Uważając łuk eliptyczny za pręt 

sprężysty o dużej krzywiźnie wsta­
wiamy <w równania (85) i (86) warto­
ści dds i ddę> ze wzorów (78) i (79), 
w których M i N dla danego punktu 
osi luku wyrażone są odpowiednio dla obciążenia pionowego (litery kre­
skowane pionowo) i dla poziomego parcia ziemi (litery kreskowane pozio­
mo), za pomocą wzorów następujących:

N' = R'A sin <p + H' cos <p — IR', (88(

M' = MA + R'a x — H' y — 9R', (89)

N =H cos</>— IR, (90)

M = MA+Hy-^. (91)

We wzorach (88)-(91) R4 i MA oznaczają odpowiednio pionową skła­
dową reakcji podpory A równą w danym wypadku połowie obciążenia 
oraz moment podporowy, H parcie poziome w łuku, IR i 3R odpowiednio 
sumę rzutów na styczną do osi łuku sił działających na łuk z jednej stro­
ny danego przekroju oraz moment tych sił względem środka przekroju.

W poszczególnych przekrojach łuku będzie więc

N = N' + N, (92)

M = M’ + M . (93)

Wpływ sił poprzecznych na odkształcenie się łuku, a również wpływ 
wahań temperatury pomijamy tu we wszystkich obliczeniach porównaw­
czych.

Równania (87) w związku ze wzorami (88)-(91) przybierają w ten spo­
sób postać dwu równań liniowych:

MA a, -|- H by (Ra Cj + dt) — 0,

MA a2 + H b2 + (Ra c2 + d2) = 0,
(94)
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o współczynnikach wyrażonych za pomocą wzorów

O'=2t+ 2 rA“2 rA ■

V y2 m V ycos'p V y2 viC0S2ę) yf ycosrp 01 “ Z J Z rA r2 A 2j A ^Z rA

^xy ysinę? , sin(pcosip xeosq>
Cl J Z r A ł Z r2 A A r A

= _ V W _ V _ y ^y 4. y cos+ y (98>
Z J -j rA r2 A A L r A '

“’ = 2t + 2^'
^=-2t + 2^-2A-
^=2t+2^-+2^' w»

^11 n 31 VI 3)1— SySrA-S^A- <102’

We wzorach tych sumy zastępują całki wzorów (85) i (86); nieskończe­
nie małe odcinki ds osi łuku po zastąpieniu ich przez odcinki skończo­
ne zls, jako wchodzące w jednakowy sposób we wszystkie składniki rów­
nań (94) ulegają tu redukcji. Sumy dotyczą w danym razie połowy łuku.

Wyznaczenie sum 2 powinno na ogół odbywać się za pomocą wzoru 
Simpsona lub C o t e s a, jednak próbne obliczenie sum z jednej 
strony według sposobu Simpsona iz drugiej drogą zwykłego do­
dawania wykazało małą tylko różnicę w naprężeniach decydujących 
o wytrzymałości przepustu.

We wzorach (95)-(102) zostało przyjęte wreszcie, że Y = J, gdyż różnica 
między tymi wielkościami nie przekracza dla przepustów, jak to wynika 
z omówionych dalej obliczeń porównawczych, nawet jednego procentu.

Wielkości 31 i 3)1 zależą w sposób wyraźny od obciążenia sklepienia, 
wobec czego oddzielnie powinny być wyznaczane dla sił pionowych i od­
dzielnie dla poziomego parcia ziemi. W związku z tym dla każdego z wy­
mienionych rodzajów obciążeń w równaniach (88)-(91) współczynniki 
(95)-(102) zawierające 31 i 3)1 są inne.

Obciążenie pionowe sklepienia w omawianych obliczeniach porów­
nawczych wyznacza się w ten sposób, iż oś sklepienia zostaje podzielona 
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na 8 równych części dla każdej połowy łuku, a ciężar każdego z otrzy­
manych w ten sposób klinów sklepienia wraz z ciężarem przypadającego 
na ten klin słupa nadsypki i sprowadzonego do ciężaru ziemi obciążenia 
ruchomego zostaje zaczepiony do środka długości klina i uważany jest 
za siłę P skupioną w tym punkcie (rys. 20 i 21). Wobec tego

9ł' — P' sin 92, 
i

(103)

gdzie suma zawiera rzuty na styczną do osi sklepienia w środku klina 
sił pionowych P' zaczepionych w środku klinów zawartych między tym 
klinem a lewym wezgłowiem łuku.

Przy obliczaniu sił 9? od parcia poziomego, siły P uważamy za siły 
poziome, przy czym przyjmujemy, że

P = c y (h + h') tg2 ( 45° - (104)

gdzie y jest to ciężar jednostkowy ziemi, h zagłębienie środka danego 
klina pod nadsypką, c rzut osi klina na oś pionową, a h' wysokość obcią­
żenia nasypu sprowadzona do ciężaru jednostkowego ziemi; 91 równa się 
w tym wypadku

9i,=— P cos <p. (105)

Odpowiednio do tego

5RJ = V Pj 9i , 9R, Pj ki, (106)
i i

gdzie gt względnie ki oznaczają 
odległość linii działania sił od 
środka klina i (rys. 20).

W przypadku obliczenia skle­
pień przepustów jako prętów sprę­
żystych o krzywiźnie małej nale­
ży we wzorach (95)-( 102) uwzględ­
nić uproszczenia podane we wzo­
rach (82); oparte jednak na tych 
samych uproszczeniach wzory 
Morscha, Schónhófera,

Rys. 20

M e 1 a n a itd. nie mogą w danym razie mieć bezpośredniego zastoso­
wania, ponieważ dotyczą jedynie obciążeń pionowych nie uwzględniając 
poziomej składowej parcia ziemi na przepusty.
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Po przeprowadzeniu obliczeń trzech omówionych wyżej przepustów 
jako łuków o dużej i o małej krzywiźnie zestawiamy uzyskane wyniki 
na wykresach przedstawionych na rysunkach 22, 23 i 24.

Każdy z powyższych wykre­
sów zawiera dla porównania 
dane dotyczące wszystkich 
trzech rozpatrywanych przepu­
stów, co pozwala na wykazanie 
wpływu rozpiętości sklepienia 
na naprężenia i momenty zgi­
nające.

Linie odpowiadające prze­
pustom I, II i III są oznaczone 
na rysunkach odpowiednio ty­
mi cyframi.

Rysunek 22 przedstawia wykres momentów zginających w wyniosłych 
łukach eliptycznych. Odcięte wykresu wyrażają odległości od zwornika 
liczone wzdłuż osi łuków. Linie pełne odpowiadają obliczeniu łuków jako- 

prętów o dużej krzywiźnie, a przerywane dotyczą obliczeń przeprowa­
dzonych w założeniu małej krzywizny.

Rysunek 23 przedstawia wykres naprężeń o-t w skrajnych zewnętrznych 
włóknach łuków, a rys. 24 wykres naprężeń u2 w skrajnych włóknach we-
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wnętrznych. Podobnie jak na rys. 22, linie pełne odpowiadają tu założe­
niu dużej, a przerywane małej krzywiźnie łuków.

Z podanych wykresów widać, że największa dla wszystkich punk­
tów sklepienia różnica w wynikach obydwu sposobów obliczeń jest nie­
wielka. Momenty podporowe MA obliczone w obydwu założeniach róż­
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nią się, mianowicie, od siebie nie więcej niż o 4°/o, przy czym zarówno 
momenty MA, jak i parcia H są większe przy obliczaniu luku jako pręta 
o dużej krzywiźnie niż o małej.

Ponieważ, z drugiej strony, wiemy, iż zarówno współczynnik spręży­
stości, jak i inne cechy wytrzymałościowe betonu wahają się dla tego 
samego materiału zwykle w szerszych granicach niż wspomniane 4%, 
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wynika stąd, że nie jest rzeczą słuszną, aby w obliczeniach przeznaczo­
nych dla celów praktycznych rozpatrywać sklepienia przepustów elip­
tycznych jako łuki o dużej krzywiźnie. Dotyczy to tym bardziej przepu­
stów wykonywanych z kamienia.

W dążeniu do uproszczenia obliczenia sklepień przepustów eliptycz­
nych można iść jeszcze dalej i we wzorach (95)-(102) przyjmować stale, 
że cos ę> = l, a sin <p = 0, przy czym uproszczenia te zmniejszają momen­
ty MA oraz parcia poziome H. Wpływ ich na momenty w poszczególnych 
przekrojach łuku przedstawiony jest dla przepustu o rozpiętości l — 3.74 m 
(typ II) na rys. 25 linią przerywano-punktowaną.

Odpowiednie wykresy dla o, i a2 podane są na rys. 26 i rys. 27

Znaczne wreszcie uproszczenie wprowadza w obliczenia założenie, ze 
oś sklepienia nie ulega skrótowi, tj. że we wzorze (85) zlds = 0, co sto­
sowane jest np. prawie zawsze w obliczeniu ram żelbetowych.

Wielkości momentów MA przy pominięciu A ds i bez tego pominięcia 
równe są dla kolejnych rozpiętości:

I Ma— — 0,80 tm, MA = — 0,76 tm,

II MA = — 8,61 tm, Ma = — 8,52 tm, (107)

III MA = — 9,41 tm, MA = — 9,58 tm.
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Odpowiednio do tego dla parcia poziomego H otrzymujemy tu:

I H = — 4,49 t, H = — 4,31 t,

II H = — 4,91 t. H = — 4,46 t, (108)

III H = + 6,36 t, H = + 6,90 t.

Z powyższego wynika, że założenie zlds = 0 w obliczeniu statycznym 
sklepienia eliptycznego daje błędy do 10%, co odpowiada wielkości błę­
dów wypływających z podobnej przyczyny w obliczeniach ramownic. 
Założenie to usuwające jednocześnie z zadania wielkości sin tp i cos <p po­
woduje na ogół mniejsze błędy niż samo założenie sin <p = 0 i cos q>— 1: 
wobec tego stosowanie samodzielne tego ostatniego założenia nie jest rze­
czą celową.

Z powodu znacznego zagłębienia przepustów pod torem kolejowym 
lub drogą spośród działających na nie obciążeń główną rolę odgrywa 
parcie ziemi.

- tm

Rys. 28

Z punktu widzenia statyki budowli ziemia jest materiałem bardzo 
różnorodnym, przy czym poszczególne gatunki ziemi charakteryzują się 
w przypadku parcia geodynamicznego przede wszystkim kątem tarcia 
wewnętrznego
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Wykresy na rys. 28-30 zawierają wyniki obliczenia momentów zgi­
nających i naprężeń w poszczególnych przekrojach poprzecznych dla prze­
pustów typu I, II i III i dla kątów tarcia wewnętrznego y = 30°, v, = 35°, 
v- = 40°.

Z wykresów tych wynika, że wielkość kąta y ma bardzo znaczny 
wpływ na naprężenia krawędziowe w przepustach. Widać z nich poza 
tym, że wpływ ten odbija się na naprężeniach nie zawsze w tym samym 
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kierunku. O ile, mianowicie, w przepuście o rozpiętości l = 5,870 m 
zmniejszenie kąta ip wywołuje zwiększenie decydującego w danym razie 
największego w przepuście naprężenia rozciągającego, o tyle w przepu­

stach o rozpiętościach l = 2,140 m i 1 = 3,740 m zauważymy zjawisko od­
wrotne, czyli że zmniejszenie kąta tp wywołuje tu zmniejszenie najwięk­
szego naprężenia rozciągającego.

Podobne zjawisko jest groźne dla bezpieczeństwa przepustów elip­
tycznych, gdyż kąty y> ulegają poważnym wahaniom w zależności od ro­
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dzaju ziemi oraz od stopnia jej jednorodności i wilgotności, a wobec po­
wyższych zestawień nie zawsze przyjęcie w obliczeniach mniejszego 
zwiększa jego bezpieczeństwo. Można to sobie w ten sposób wytłuma­
czyć, że ziemia wywierając parcie poziome na sklepienie do pewnego 
stopnia podtrzymuje je i pomaga mu niejako utrzymać pionowe ciśnie­
nie ziemi; w tych warunkach parcie największe odpowiadające min. cp nie­
koniecznie musi być najgroźniejsze dla sklepienia.

Sposób działania parcia ziemi na sklepienia przepustów eliptycznych 
jest dość nieokreślony również z tego powodu, że parcie na sklepienia 
może być przeważnie tylko wyznaczone dla stanu równowagi granicznej, 
tj. jako parcie geodynamiczne. W przypadku zaś parcia geostatycznego 
może ciśnienie ziemi w kierunku pionowym zgoła inaczej ustosunkować 
się do parcia poziomego, niżby to można było ustalić z obliczeń dla da­
nego kąta y).

Z powyższych rozważań wynika, że przy projektowaniu przepustów 
eliptycznych'należy szczególną uwagę zwrócić na ustalenie sposobu par­
cia ziemi na sklepienie. Natomiast obliczenie przepustów eliptycznych 
jako łuków o małej krzywiźnie jest tu całkowicie dopuszczalne.

III. ŁUKI KOLISTE

Oś łuku w kształcie odcinka ma znaczne zalety artystyczne i bu­
dowlane.

Ze statycznego punktu widzenia łuk kolisty nie jest na ogół wygodny, 
gdyż równanie odcinka kołowego odniesione do jego cięciwy jako do 
osi X-ów i do prostej do niej prostopadłej jako do osi Y-ów jest trudne 
do całkowania, taki zaś właśnie układ współrzędnych narzuca zwykle ob­
ciążenie łuku.

W tych warunkach całki wchodzące do obliczenia statycznego łuku 
kolistego muszą być przeważnie wyznaczane w sposób przybliżony drogą 
zastąpienia nieskończenie małych odcinków osi łuku d s przez małe odcin­
ki skończone.

Kolista oś łuku ma jednak wysoce użyteczną, w danym razie ważną, 
własność geometryczną w postaci stałości promienia krzywizny. Własność 
ta pozwala na daleko posunięte usprawnienia w obliczaniu statycznym, 
w szczególności na sprowadzenie obliczenia drogą ujęcia wyników w ta­
blice i sporządzenia odpowiednich wykresów do niewielu krótkich i pro­
stych manipulacyj.

Będziemy tu rozpatrywali tylko łuki o stałym przekroju poprzecznym 
pomijając wpływ sił podłużnych na wielkości statycznie niewyznaczalne, 

37



ponieważ łuki koliste mają przeważnie bądź przekrój stały (łuki stalowe), 
bądź słabo się zmieniający (łuki żelazo-betonowe), a wpływ sił podłużnych 
na wielkości statycznie nadliczbowe ujawnia się wyraźniej tylko przy 
małych wyniosłościach; tak więc np. przy C = 0,300 wpływ ten wyraża 
się już zaledwie liczbą 0,1%. Zresztą przytoczone niżej sposoby postępo­
wania mogą być rozszerzone również i na łuki o przekroju zmiennym 
oraz na łuki, w których obliczenia sił podłużnych pomijane być nie mogą.

Można tu również posiłkować się funkcjami 0 i parametrami g omó­
wionymi w rozdziale I i ustawionymi dla łuku kolistego *).

*) Por. J. C z u 1 a k. Łuki koliste we współrzędnych prostokątnych, Areh. Mech 
Stos., 1950.

Bierzemy pod uwagę odcinek AB pręta kolistego utwierdzony w punk­
cie A płaszczyzny AO normalnej do jego osi (rys. 31). Prostą AO przyjmu­
jemy za oś X-ów, a prostą do niej prostopadłą i przechodzącą przez punkt

A za oś Y-ów. W odległości AO równej 
promieniowi osi pręta r przeprowadza­
my prostą OK równoległą do osi Y-ów. 
Kąt 99 między prostą OK a dowolnym pro­
mieniem odcinka koła oraz promień r 
odgrywają tu rolę współrzędnych bie­
gunowych zadania. W danym przypad­
ku r = const.

Przez u i v (rys. 32) przedstawiamy 
(w skali mocno skażonej) dodatnie prze­
sunięcia punktu B w kierunkach rów­
noległych do osi współrzędnych AX 

i AY. Przez w oznaczamy tu dodatni obrót przekroju poprzecznego pręta 
w punkcie B (zwrot strzałki).

Przyjmujemy dalej, że w punkcie B zaczepione są dwie siły równo­
ległe do osi współrzędnych Nx i Ny oraz moment MB, przy czym zwroty 
tych wielkości wskazane są na rys. 33. Wskazane tu są również zwroty 
dwu sił Px i Py zaczepionych w punkcie C i równoległych do osi współ­
rzędnych.

Wielkości u, v i co obliczamy ze wzorów B r e s s e’ a, które w danym 
przypadku przybierają postać

u = — I (b — y) d dq>, 
o

v — J (a — x) d dq , 
o

(109)

(110)



(111)W = | /I d , 
o

gdzie s oznacza długość łuku.
Znaki algebraiczne wzorów (109) - (111) odpowiadają kierunkom prze­

sunięć i obrotów przedstawionych na rys. 32. Kąty zł d <p przedstawiające 
wzajemne obroty dwu płaszczyzn ograniczających nieskończenie mały 
odcinek osi łuku d s mają te same zwroty co kąty w.

Dla kątów I d ą przyjmujemy uproszczone wyrażenia

1d?- —ds, (112)

nadające się jednak zawsze do obliczenia łuków o małej krzywiźnie, tzn 
o dużym stosunku r : e promienia do grubości łuku.

Do wzorów (109)-(lll) wstawiamy ds = rdq>. Ponieważ tu promień r 
jest wielkością stałą, więc granice całkowania od 0 do s powinniśmy za­
stąpić przez granice od <p0 do sr/2 (rys. 31).

W przypadku zaczepienia w punkcie B siły Nx moment zginający 
w pewnym punkcie pręta kolistego (przy współrzędnych x, y) równa się

M = Nx(b — y). (113)

Odpowiednio dla siły Nv mamy

M = — Nyla — x). (114)

Wreszcie, przy obciążeniu pręta w punkcie B momentem

M — Mn- (115)
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Wobec przyjętego znakowania sił i momentów zależność między zwro­
tami sił i momentów, z jednej strony, a zwrotami przesunięć i obrotów, 
z drugiej, przybierze postać przedstawioną na rys. 33.

Rys. 34

Po wstawieniu momentów (113), (114) i (115) we wzory (109)-(lll) 
i po wykonaniu całkowania w granicach wskazanych wyżej otrzymujemy 
dla przesunięć u i v oraz obrotów m w przypadkach przedstawionych na 
rys. 34 wzory następujce:
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Przypadek 34a

1 In \ , 3 . „

— 2 cos <p0 + I y — (p0) cos2 <p0 = (116)
EJ '

Przypadek 34b

N N^3
EJ

1 sm <p0 — y (n sin 2 <p0 +

4- cos 2 tpn---- -  cos2 <pn Vx EJ ' (117)

Przypadek 34c

<o
Nxr*
E J sin — 1 + cos <pQ

Nyró
EJ

Nxr
* EJ

(118)

Przypadek 34d

(119)

N

Uv = Vr

Przypadek 34e

vN= y
Nyrs 
EJ

1 / n \ 3 . „ , 2 I ' ^y^
T i-?,or 7sin 2+ sin = — vy ~ej ' (120)

Przypadek 34f

N Nyr2 In \ , Nyr2
My =--------C0S ~ I Sin <A) = — . (121)

Przypadek 34g

N- - 'U0 — Mx EJ (122)

Przypadek 34h

N . MBr2 ^^y-ET' (123)

Przypadek 34i

N Mb r I n \ , MBr
~ ~ET (2 9,0/ W° EJ ' (124)
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Ze wzorów (116)-(124) wynika, że każde z przesunięć uogólnionych
ujętych w schemat na rys. 34 może być przedstawione jako wzięty ze
znakiem + lub 
z wielkości

iloczyn odpowiedniej siły uogólnionej przez jedną

rg r2 r
EJ’ EJ’ EJ (125)

i przez jeden z 6 współczynników uv, vx, mx, v , w , zależnych tylko 
od kąta ę>0.

Jeżeli siły zaczepione są nie do końcowego przekroju pręta koliste­
go B, lecz do któregoś z przekrojów pośrednich C i jeżeli kierunki tych

sił (siły Px i Py) są takie, jak to jest 
wskazane na rys. 35, wówczas zwroty 
przesunięć i obrotów przekroju C mo­
gą być ujęte w schemat przedstawiony 
na rysunkach 36a do 36f.

Na rysunkach 34 i 36 przesunięcia 
zostały podane wraz z ich znakami alge­
braicznymi.

Wyznaczenie przesunięć i obrotów 
przekroju C odbywa się według tych 
samych równań co wyznaczenie prze­
sunięć i obrotów przekroju B, przy 

czym całki oznaczone (109), (110) i (111) muszą być obliczane w granicach 
od <pń do ^/2 (rys. 35). Tą drogą dochodzimy do wzorów następujących:

Przypadek 36a
p ■ Px r3

x EJ (126)

Przypadek 36b
P_ ,PX r3

Vx~ ”x EJ (127)

Przypadek 36c
p ■ Px r2

~ ~EJ ' (128)

Przypadek 36d
p_ , Nyr3

Uy Vx EJ (129)

Przypadek 36e
p_ .PyT3

Vy ~ Vy EJ ■ (130)

Przypadek 36j
p__

EJ ' (131)
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Rys 36

Rys. 37
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Współczynniki ux, v'x, m'x, vy, wy, w0 wchodzące we wzory (126)-(131) 
tym różnią się tylko od współczynników we wzorach (116)-(124) oznaczo­
nych w ten sposób, że przy obliczeniu pierwszych były wstawione w rów­
nania (116), (117), (118), (120), (121) i (124) zamiast kątów <pc kąty <p'Q. Po­
nieważ wielkości <p0 i cp'o są tylko pewnymi wartościami szczególnymi kąta y 
(rys. 31 i 35) zawartego między 0 a n/2, przeto współczynniki ux, v 
<nx, vy, w , co'o, zarówno wchodzące we wzory (126) - (131), jak i wchodzące 
we wzory (116) - (124), wyrażają te same funkcje tego samego kąta tp od­
powiadającego odcinkowi kola KB lub KC (rys. 31). Przy ujęciu wymie­
nionych współczynników w tablicy wygodniej jest przedstawić je nie jako 
funkcje kąta y, lecz jako funkcje kąta 0 = (a/2)— (p.

Potwierdzają to zresztą dalsze rozważania.
Zakładając kolejno 0 = 0°, 5°, 10°, 15 ’,..., 100° otrzymujemy na pod­

stawie równań (116), (117), (118), (120), (121) i (124) tablice 7 i 8.

Tablica 7

8° Ux 0JX

0 0,00000 0,00000 0,00000
5 0,00022 0.00001 0,00380

10 0,00175 0,00019 0,01512
15 0,00580 0,00097 0,03369
20 0,01342 0,00297 0,05908
25 0,02539 0 00711 0,09071
30 0,04222 0,01430 0,12783
35 0,06402 0,02563 0,16953
40 0,09055 0,04205 0,21479
45 0,12118 0.06441 0,26247
50 0,15495 0,09332 0,31128
55 0,19056 0,12908 0,35991
60 0,22646 0,17155 0,40691
65 0,26099 0,22020 0,45079
70 0,29239 0,27389 0,49007
75 0,31896 0,33110 0,52322
80 0,33919 0,38966 0,54870
85 0,35187 0,44694 0,56504
90 0,35620 0,50000 0,57080
95 0,35185 0,54539 0,56458

100 0,33923 0,57960 0,54517

Tablica 8

8° »y "0

0 0,00000 0,00000 0,00000
5 0,00000 0,00022 0,08727

10 0,00001 0,00177 0,17453
15 0,00016 0,00594 0,26180
20 0,00068 0,01400 0,34907
25 0,00203 0,02717 0,43633
30 0,00498 0,04655 0,52360
35 0,01056 0,07319 0,61087
40 0,02013 0,10799 0,69813
45 0,03540 0,15175 0,78540
50 0,05829 0,20510 0,87266
55 0,09100 0,26855 0,95993
60 0,13588 0,34243 1,04720
65 0,19531 0,42686 1,13446
70 0,27169 0,52183 1,22173
75 0,36718 0,62713 1,30900
80 0,48371 0,74235 1,39626
85 0.62281 0,86689 1,48353
90 0.78540 1,00000 1,57080
95 0.97189 1,14071 1,65806

100 1,18181 1,28789 1,74533

Zależnościom zachodzącym między poszczególnymi współczynnikami 
u*, <> v'y> My’ wó a kątam’ ® możemy nadać postać krzywych przed­
stawionych na rys. 37.
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Rys. 38

Przytoczone krzywe wskazują, że przy wyznaczaniu współczynników 
ux> v'x’ v'y> M'y’ wó dla wielkości kąta 0 nie zawartych w tablicach 718 
interpolacja liniowa między wartościami podanymi w nich jest uzasadniona.

Weźmy dalej dla przykładu łuk kolisty w dwóch końcach utwierdzo­
ny (rys. 38), obciążony siłą skupioną P zaczepioną w punkcie C i skiero­
waną prostopadle do cięciwy łuku 
łączącej środki podpór.

Na rys. 39a przedstawiony jest 
zastępczy schemat statycznie wy- 
znaczalny łuku. Jest nim pręt ko­
listy utwierdzony w końcu A i ob­
ciążony poza siłą P siłami H i Rb 
oraz momentem MB zaczepionymi 
w punkcie B na swobodnym koń­
cu pręta. Siła H działa tu w kierunku cięciwy AB, a siła RB w kierunku 
do tej cięciwy prostopadłym.

Na rys. 39b przedstawione są przesunięcia uB i vB końca B pręta AB 
i odpowiedni obrót wb przekroju poprzecznego tego pręta w punkcie B. 
Wielkości te są wszystkie, z jednej strony, znanymi funkcjami sił H i RB 
oraz momentu MB. z drugiej zaś równe są zeru.

Rys. 39

Układ przedstawiony na rys 
39 może być uważany nie tylko 
za schemat zastępczy łuku bez- 
przegubowego (rys. 38), lecz 
również za schemat zastępczy 
wielu innych układów łuko­
wych, np. łuku dwuprzegubo- 
wego (rys. 40a) lub łuku w jed­
nym końcu utwierdzonego, a w 
drugim swobodnie podpartego 
(rys. 40b).

Na przesunięcia uogólnione 
uB, vB i mb składają się przesu­
nięcia punktu B, które są spo­
wodowane zarówno przez siłę P, 
jako też i przez siły uogólnione 
H, RB i MB.

Aby nawiązać do schematów podanych na rys. 36 rozkładamy siłę P 
zaczepioną w punkcie C na siły Px i Py równoległe do osi współrzędnych 
na tych schematach.

Będziemy w dalszym ciągu zgodnie z rys. 31 oznaczali wartość kąta 0, 
odpowiadającą łukowi AB, przedstawionemu na rys. 38 przez 0n, a wartość 
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kąta 0, odpowiadającą odcinkowi luku AC, przez 0^; w razie większej licz­
by sił P i punktów C będziemy odpowiednio stosowali oznaczenia 02,03,04 
itd., ogólnie 0X.

Przy podobnych oznaczeniach 
znajdujemy (rys. 41)

Pv = Pcosy, (132)

Pv = Psin^, (133)

odpowiednie zaś przesunięcia punk­
tu C, przesunięcia i u? równoległe 
do osi X-ów i Y-ów możemy tu obli­
czyć ze wzorów (126)-(131).

Na przesunięcia s? i punktu B 
spowodowane działaniem siły P skła­
dają się równoległe do osi współrzęd­
nych przesunięcia punktu C oraz 
przesunięcia punktu B powstałe 

przez obrót odcinka łuku CB względem punktu C o kąt obrotu przekroju 
poprzecznego w C, wywołany przez siły P. Mamy więc (rys. 42)

<= up + up _ (cop + (b-yc),

s%= + + (cof + aty (a — xc).

(134)

(135)

Przed wyznaczeniem przesunięć punktu B spowodowanych przez si­
ły H i RB oraz moment MB> zaczepione w tym punkcie, należy obliczyć si­
ły Nx i Ny i odpowiednie przesunięcia równoległe do osi X-ów i Y-ów, 
przewidziane we wzorach (116)-(124). Siły Nx i Ny znajdujemy drogą rzu­
towania na ich kierunki sił H i RB działających wzdłuż cięciwy AB i do 
niej prostopadle. Otóż z rys. 43 wynika, że

Nx = H sin + Rb cos , Z z

0 0.
Ny = H cos + Rb sin — Z z

(136)

(137)
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Rozumiejąc, jak poprzednio, odpowiednio przez i sumy równoleg­
łych do osi X-ów i Y-ów przesunięć punktu B (w sensie schematów rys. 
32 i 34) znajdujemy, że

W rezultacie przesunięcia s„ i sv punktu B, równoległe do osi współ­
rzędnych, spowodowane przez jednoczesne działanie siły P, sił H i RB 
oraz momentu MB wynoszą

S„ = + 8% = + u* + — (co^ + (b — ye), (140)

so = sv + s„ =vx +-unv + (wf + (a — xc) . (141)

Przy większej liczbie sił P należy tu wstawić zamiast i sumy 
£ s? i Z s? dotyczące wszystkich sił P.

Do wzorów (140) i (141), jak to wynika z rys. 42, możemy wprowadzić

b — = r (sin 0O — sin0j), (142)

a —xc = r(cos01— cos0fl). (143)

Do wyznaczenia przesunięć uB i vB (rys. 39b) łuku w kierunku cięci­
wy AB i w kierunku do niej prostopadłym dojdziemy drogą rzutowania
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na te kierunki przesunięć su i sv (układ osi X„ AYft). Na podstawie rys. 44 
znajdujemy więc, że

■ ^0UH = s„ sin —y 6>o 
+ Sv COS —- , 

&

&0 , • 6*0vn = — s„ cos — + sv sin .z z

(144)

(145)

Obrót końcowego przekroju poprzecznego B łuku AB znajdujemy ja­
ko sumę kątów obrotu tego przekroju spowodowanych przez siły Px, Py, 
Nx, Ny i moment MB, albo też przez równoznaczny układ sił H, RB i MB 
Jest to więc kąt obrotu

Na podstawie wszystkich powyższych rozważań możemy przedsta­
wić przesunięcia uB i vB oraz obrót a>B pod postacią

uB=fAH,RB, Mb), (147).
vB ~ f2(H , Rb , Mb) , (148)

,Rb,Mb). (149)

Z warunków brzegowych łuku bezprzegubowego (rys. 38) wynika, że

uB — 0, vB — 0, U)B = Q, (150)

skąd mamy trzy równania do wyznaczenia wielkości statycznie niewy- 
znaczalnych H, RB i MB.
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Wobec całkowitego utwierdzenia przekroju B (rys. 38) moglibyśmy 
tu zastąpić dwa pierwsze z równań (150) przez równania

s„ = 0, sv = 0 , (151

dzięki czemu odpadłaby konieczność zastosowania operacji wyrażonej 
wzorami (144) i (145).

Aby jednak zachować ogólność schematu rys. 39, nie będziemy się tu 
uciekali do takiego uproszczenia.

Aby wyznaczyć współczynniki równań liniowych (150), musimy, 
z jednej strony, ustalić zależność między wyniosłością łuku a kątem 0O
z drugiej zaś, zależność mię­
dzy odciętą punktu C zacze­
pienia siły P w układzie 
współrzędnych Xo AY„ a ką­
tem 0j.

Pierwsza z wymienionych 
zależności wypływa bezpo­
średnio z rys. 45 i przedsta­
wia się w sposób następujący:

tg^=2C, (152) 

gdzie £ = j/l, tzn. równa się stosunkowi strzałki łuku do jego rozpięto­
ści (wyniosłość łuku).

Drugą zależność otrzymujemy również z rys. 45 mając na uwadze, 
że kąt CAC' równa się 1/2 (0O— 00. Zależność ta ma postać

o . 0 л 0O —0XT0 = 2rsin — cos---- ----- (153)

gdzie x0= AC' jest odciętą punktu zaczepienia siły prostopadłej do cię­
ciwy łuku w układzie Xo AY0.

Przy rozwiązywaniu równania (153) zwykle wielkości x0 i 0O są zna­
ne, wielkość zaś 0X niewiadoma. Z wykresu 0X= F wynika, że nie 
różni się ona wiele od linii prostej, wobec czego można przyjąć począt­
kowo, że

0X = 0O (154)

po czym wstawiając wartości (154) w równanie (153) znaleźć dokładniej­
szą wartość 0X.
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Zależność (153) jest ujęta w tablice 9 i 10 ułożone dla kątów 0X, zmie­
niających się co 5° i dla kątów 0O zmieniających się co 10°. Ostatnie 
tłumaczy się tym, że krzywe &x = F (x) odpowiadające różnym kątom 
przechodzą blisko siebie i tworzą kąty bardzo ostre. Stosunek x0/2r mo­
że być dla kątów i 0X nie zawartych w tablicach 9 i 10 otrzymany 
drogą interpolacji w dwóch- kierunkach.

Tablica 9

Stosunek Xo : 2r 
dla kątów &x i 0O równych:

\ 0O; 50° 60° 70°

" 0 0,0000 0,0000 0,0000
5 0,0403 0,0387 0,0368

10 0,0820 0.0790 0,0755
15 0,1244 0,1203 0,1158
20 0,1677 0,1631 0,1573
25 0,2113 0,2065 0,2000
30 0,2549 0,2502 0,2430
35 0,2979 0,2934 0,2866
40 0,3410 0,3365 0,3303
45 0,3823 0,3791 0,3739
50 - 0.4226 0,4210 0,4160
55 0,4613 0,4580
60 0,5000 0,4981
65 0.5368
70 0.5736
75
80
85
90
95

100

Tablica 10

Stosunek : 2r 
dla kątów &x i 0O równych

X 00 
0* \

80° 90° 100

0 0,0000 0,0000 0.0000
5 0,0346 0,0322 0,0295

10 0,0714 0,0668 0.0617
15 0.1102 0,1036 0,0956
20 0,1503 0.1421 0,1330
25 0,1921 0,1827 0.1718
30 0.2345 0.2243 0.2120
35 0.2774 0,2665 0,2535
40 0,3213 0,3100 0,2961
45 0,3651 0,3535 0,3392
50 0.4085 0,3971 0,3829
55 0.4516 0,4403 0,4270
60 0,4924 0,4829 0,4698
65. 0.5325 0,5250 0,5125
70 ’0,5715 0.5650 0,5548
75 0,6081 0,6035 0,5945
80 0,6428 0,6396 0,6320
85 0,6749 0,6698
90 0,7071 0,7048
95 0,7365

100 0,7660

Aby doprowadzić równania (150) do ogólnej postaci równań linio­
wych, musimy kolejno wykonać czynności następujące:

(1) wprowadzić we wzory dla przesunięć (116)-(124) zamiast sił Nx i Ny 
ich wartości ze wzorów (136) i (137), a we wzory (126)-(131) zamiast sił 
Px i Py ich wartości ze wzorów (132) i (133),

(2) przekształcone w ten sposób wyrażenia na przesunięcia wstawić 
we wzory (134), (135), (138) i (139), a otrzymane stąd wyrażenia dla 
su > sv ' su i we wzory (140) i (141),

(3) na podstawie wielkości s'’, s^, i s^v ustawić wyrażenia (144) 
i (145) dla ub i ,
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(4) wyrażenia na obroty otrzymane w sposób podany pod ( 
wić we wzór (146) dla kąta obrotu MB,

(5) wreszcie ustawić trzy równania (150).
Dochodzimy w ten sposób do następującego układu równań:

a, H + b, Rb + Cj K-) d1P = 0 , 
eto H bo Rb 4“ Cg K 4~ do P = 0 ,
a, H + b,RB + c:;K + d:tP = 0 ,

gdzie K = MBir.
Współczynniki a, b i c otrzymują tu wyrażenia następujące:

' . o Do ' ■ /. ' 9 0Q
a, = — ux sm- —4 uv sin e>0— vv cos- - ,

b| = uv cos 6>0 4~ 2 s™ 0« >

, • 0O . , 0O ct = — a>x sin — 4- cov cos - ,

a2 = — b, ,

b2 = u'x cos2 — 4-v'x sin0O 4- W sin2 “,

0O , - • ©o c2 = mv cos -y 4- cov sm — ,

CLS — --  Cj ,

bj = C2 >

C3 = W0 ■

We wszystkich wyrażeniach (158)-(166) funkcje kąta 0, jakimi są 
współczynniki ux, vx, v'y, oiy i co0, powinny być obliczone przy 0 = 0O.

Współczynniki dr, d2 i d3 przybierają postać następującą:

d, = — t — m(cos<9 cos 0O) 4-«(sin 6>0 — sin 0) , (167)
gdzie

t =v'x cos 0O 4- g — uJ sin 0(i >

(1) wsta-

(155)
(156)
(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)

(165)

(166)
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,00 , 1 ■ ■ m=a)x cos- — + y a>y sin 0O , 

_  1 । ' • ,0o n = — wx sin 0O + %, sm2 -ę- , z * z

d2 = — z — n (cos 0V — cos 0O) — m (sin 0n — sin 0X) , (168)

gdzie

z = u'x cos2 sin 0O + v sin2

oraz
, ' 00 ' ■ 00a, = - «ivcos~-—co„ sin-;r. .i x 2 > 2 (169)

W wyrażeniach (167), (168) 
i (169) funkcje u'x, v'x, m'x, v'y, a> 
i coq powinny być obliczone dla 
kąta 0 — 0X, w szczególności przy 
jednej sile P dla kąta 0 = 0}.

Dla łuków o różnych warto­
ściach l i C, a więc i różnych 0O, 
współczynniki a, b, c mogą być 
uważane za funkcje jednej zmien­
nej 0O (kąta środkowego łuku), 
współczynniki zaś d za funkcje 
dwóch zmiennych 0 i 0X.

Tablice 11 i 12 zawierają 
współczynniki a, b, c dla kątów 0„ 
zmieniających się co 5° w granicach 
od 45° do 100°.

Zależność współczynników a, b, c 
od kąta 0O przedstawiona jest na 
rys. 46.

Z wykresu tego wynika, że 
interpolacja liniowa między tabli­
cowymi wartościami kąta 0„ daje 
dla zagadnień praktycznych wyniki 
dostatecznie ścisłe.

Przypuśćmy, że w pewnym przypadku łuku kolistego bezprzegubo- 
wego C — 0,175, a odcięta punktu zaczepienia siły x = 1/4.

Ze wzoru (152) znajdujemy 0o='77°lO'.
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Tablica 11 Tablica 12

Z tablic 9 i 10 bądź ze wzoru (153) otrzymujemy 0t = 20°25'.

@0 aj bi Cl @0 b2 Cg c8

45 — 0,00243 0,01521 0,03976 45 0,15415 0,30056 0,78540
50 — 0,00407 0,02297 0.05433 50 0,20917 0,36880 0,87266
55 0,00649 0,03326 0.07202 55 0,27507 0,44324 0,95993
60 0,00996 0,04656 0,09309 60 0,35239 0,52362 1,04720
65 — 0,01471 0.06330 0,11780 65 0,44159 0,60954 1,13446
70 — 0,02113 0,08395 0,14637 70 0,54295 0,70075 1.22173
75 — 0,02949 0,10899 0,17901 75 0.65665 0,79687 1,30900
80 — 0.04026 0,13882 0,21597 80 0,78264 0,89751 1,39626
85 : — 0,05391 0,17391 0,25740 85 0,92077 1,00225 1,48353
90 - 0,07080 0,21460 0,30349 90 1,07080 1,11073 1,57080
95 — 0,09154 0.26130 0.35440 95 1,23220 1,22244 1,65806

100 — 0,11657 0,31424 0,41022 100 1.40447 1,33701 1,74533

Wyznaczamy z tablic 7 i 8 współczynniki u, v, a> dla 0 = 0O = 77°10':
u'x = 0,3286 , 

v'x = 0,3564 , 

0,5353 ,

^ = 0,4140, 

My = 0,6759, 

w'=1,3468.

(170)

W dalszym ciągu wyznaczamy z 
niki u, v, co dla 0 = 0,= 20°25':

tych samych tablic 7 i 8 współczyn-

0,01421, 

v'x = 0,00333, 

0,06148,

uj, = 0,00069, 

my = 0,01493, 

co^ = 0,35633.

(171)

Z tablic 9 i 10 znajdujemy:
a, = — 0,0339 , 
bt = 0,1213, 
c, =0,1945 ,

a, =- 0,1213 , 
b2 = 0,7097 , 
c2 = 0,8400 ,

a, = 0,1945, 
b3 = 0,8400 , 
c8 = 1,3468.

(172)

Wchodzące we wzory (167), (168) i (169) funkcje kątowe przybierają
w danym razie wartości następujące:

sin 0„ = 0,97502 ,
• 3©0 sm 2

0o cos 2

= 0,38894,

= 0,78170 ,

sin = 0,62365 ,

cos 0O = 0,22212 ,

cos2 Y = 0,61105 .

(173)
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Ponieważ (sin 0O — sin = 0,62617, a (cos 0, — cos 0O) = 0,71506, więc 
znajdujemy:

t = —0,00587 m= 0,04485, n = 0,03578, (174)

d, = —0,00380, 
z=0,01210, (175)

d2 = 0,06576 ,

d8 = —0,05737. (176)

W ten sposób nadajemy równaniom (155), (156) i (157) postać:

— 0,03390 H + 0,12130 RB + 0,19450 K — 0,00380 P = 0,
— 0,12130 H+ 0,70970 RB + 0,84000 K~ 0,06576 P = 0, (177)

0,19450 H + 0,84000 Rb + 1,34680 K — 0,05737 P = 0.

Z równań tych otrzymujemy:

H = 0,7726 P, Rs = 0,1612P, Mb = Kr = 0,0430 PI. (178)

Na podstawie równań równowagi obliczamy w dalszym ciągu 

Ra — P — R/7= 0,8388 P, (1791
Ma = Mb'+RbI = — 0,0458 PI. (180)

W przypadku luku dwuprzegubowego o tym samym obciążeniu, roz­
piętości i wyniosłości co wyżej omówiony łuk bezprzegubowy będzie­
my mieli ten sam schemat zastępczy rys. 39, co w przypadku poprzed­
nim. Tu jednak, jak to wynika z równań statyki, K = 0 a RB = 0,25 P.

W przypadku łuku dwuprzegubowego z trzech równań (150) potrzeb­
ne nam jest tylko pierwsze, tj. równanie uB = 0.

Z równań (155), (156) i (157) zachowuje więc moc w danym przypad­
ku tylko równanie (155). Wstawiając tu przytoczone wyżej wartości dla 
K i RB znajdujemy

— 0,03390 H + 0,12130 • 0,25 P — 0,00380 P = 0 , (181

skąd otrzymujemy, że H = 0,782 P.

Łatwo się zorientować, że tablice i wykresy tego rozdziału, uspraw­
niające obliczenie statyczne łuków o stałym przekroju, mogą być roz­
szerzone i na łuki koliste o przekrojach zmiennych, o ile tylko zmien­
ność przekroju poddana jest pewnej określonej regule.

54



Резюме

НАПРАВЛЕНИЯ ВОЗМОЖНЫХ УПРОЩЕНИИ В РАСЧЕТАХ АРОК

Настоящая работа посвящена упрощениям в области статических 
расчетов, касающихся самых важных, с точки зрения строительной 
механики, форм арок, а именно: параболических, эллиптических с вер­
тикальной большей осью эллипса и круговых.

Статические расчеты арок в форме параболы второго или третьего 
порядка приводят к определенным интегралам, нетрудным для вычи­
сления, если положить, что дифференциал длины оси арки d s равен ее 
проекции dx на ось Х-ob, или-же, находится в простой зависимости 
от этой проекции. Зависимость ds от dx установленная здесь на осно­
вании метода наименьших квадратов выражается для арок в форме 
параболы второго порядка при помощи формул (22), (38) и (41), а для 
арки в форме параболы третьего порядка — при помощи формул (72), 
(73 и (74). Приводятся значения параметров д в зависимости от вы­
соты арки С = f: I (таблицы 3 и 6). Рассматривается также случай па­
раболической арки с поперечными сечениями изменяющимися по ли­
нейному закону и приводится выражение (54) для отношения 1. J, пред­
ставленное в виде алгебраической функции.

Эллиптические арки с вертикальной большей осью эллипса пред­
ставляют собой статическую схему каменной или бетонной трубы. 
Верхние части этой арки представляют кривые брусья т. е. отвечающие 
большим значением отношения г : е. Это показано на рис. 18. Возникает 
вопрос, следует-ли эллиптические трубы рассчитывать как брусья 
большой или же как брусья малой кривизны. Работа содержит срав­
нительные рассчеты, результаты которых представлены на графиках 
22 - 24. Из них следует, что при практических статических рассчетах 
эллиптический свод трубы можно, рассматривать, как стержень малой 
кривизны. Рассматривается также зависимость между напряжениями 
в эллиптических трубах и углами внутреннего трения в земле, пред­
ставляющей нагрузку трубы.

В главе, посвященной круговым аркам, приведены таблицы и гра­
фики, служащие для облегчения статических рассчетов этих арок. Ис­
ходным пунктом для определения коэффициентов канонических урав­
нений (155) - (157) круговых арок являются деформации отрезка кру­
гового стержня, защемленного на одном конце, и свободного на дру­
гом, под действием сил, параллельных осьям координат и приложен­
ных в конце стержня и в некоторой промежуточной точке (рис. 34 и 36). 
Эти деформации представлены в виде произведений некоторых посто­
янных величин (125) на коэффициенты, являющиеся функциями уг­
лов 0, определенных на рис. 35 и приведенных в таблицах 7 и 8. Путем 
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геометрического сложения этих деформации, мы приходим к перемеше- 
ниям (150), определяющим условия безшарнирной арки на концах для 
заменяющей статичести определимой схемы, приведенной на рис. 39b. 
В результате — формулы (150) приводят к уравнениям (155) - (157), 
коэффициенты которых приведены на таблицах 11 и 12.

Проблемы влияния продольных сил арки на статически неопреде­
лимые величины арки рассмотрены в отдельных главах работы, в свя­
зи с отдельными формами оси арки.

Summary

THE POSSIBILITIES OF IMPROVEMENT OF ARCH COMPUTATION

This paper discusses the possible improvements in the statical com­
putation of three main types of arches from the point of view of engi­
neering practice. These are parabolic, elliptic (with vertical major axis) 
and circular arches.

The statical computation of arches representing parabolas of the 
second or third order leads to indefinite integrals, which are easy to 
calculate, if one assumes that the differential of the arch length, ds, is 
equal to its projection, dx, on the X-axis, or depends on this projection 
in a simple manner. The dependence between ds and dx is determined 
here by means of the method of least squares, and is expressed for a se­
cond order parabolic arch by Eqs. (22), (38) and (41), and for a third 
order parabolic arch by Eqs. (72), (73) and (74). The values of parame­
ters g in function of rise-to-span ratio C = f: I are gathered in Tables 3 
and 6. In addition, the case of a parabolic arch with a linear variability 
of cross-section is discussed. Eq. (54) represents the ration 1 : J expressed 
in the form of an algebraic function.

Elliptic arches with vertical major axis are used in the design of 
arched culverts. Upper portions of these arches can be considered as 
curved beams of great curvature, i. e. of high r : e ratio. This is illustrated 
in Fig. 18. The question arises, whether elliptic arches should be treated as 
beams of great or of small curvature. The paper contains comparative 
computations, the results of which are represented graphically in Figs. 
22-24. It can be seen from these graphs, that for practical calculations 
an elliptic arch of a culvert can be considered as a beam of small cur­
vature. The dependence between the stresses in a lliptic culvert and the 
angle of internal friction of the loading soil is considered.

The chapter, in which circular arches are discussed, contains tables 
and graphs facilitating the calculation of these arches. The basis for 
the determination of coefficients of the canonical equations of circular 
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arches, (155)-(157) is the deformation of a bar representing a circular 
arch, built in at one end and free at the other, under the action of forces 
parellel to the axes of co-ordinates and located at the end and at an 
intermediate point of the bar (Figs. 34 and 36). These deformations are 
expressed as products of certain constants, (125), and coefficients depen­
ding on the angles 0 defined in Fig. 35. They are represented in Tables 7 
and 8. By geometric addition of these deformations one obtains the dis­
placements (150) determining the boundary conditions for an arch without 
articulations, of the auxiliary system represented in Fig. 39b. Equations 
(150) lead to Eqs. (155)-(157), the coefficients of which are tabulated in 
Tables 11 and 12.

The problems of the influence of longitudinal forces on statically 
indeterminate quantities of an arch are discussed for each arch from in 
the corresponding chapters.
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