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PRZEDMOWA

Obliczenie statyczne tukéw nastrecza na ogdét wieksze trudnosci niz
obliczenie ram lub statycznie niewyznaczalnych ukladéw kratowych. Przy-
czyna tego jest okoliczno$é¢, ze tuki musza by¢ w obliczeniach statycznych
bardziej indywidualizowane niz ramy i Kkraty, dla ktérych latwiej jest
utozy¢ wzory ogélne ze wzgledu na prostoliniowy ksztalt ich elementéw.

Stad pochodzi zrozumiala tendencja do mozliwych usprawnien w obli-
czeniach tukéw sprezystych.

Usprawnienia te moga po6js¢ w trzech réznych kierunkach, a wiec
przede wszystkim w kierunku poszukiwania prostych sposob6éw catkowania
wyrazen wchodzacych jako wspolezynniki do réwnan tuku sprezystego,
nastepnie w kierunku badan nad mozliwoscia pomijania pewnych okolicz-
nosSci pracy tuku bez narazania obliczen na praktyczne zmniejszenie do-
ktadnosci, wreszcie w kierunku przedstawiania za pomocg tablic i wykreséw
posrednich etapéw obliczen.

Zagadnienie calkowalnosci wspotezynnikéw réwnan liniowych tuku po-
siada szczegodlnie wazne znaczenie w tukach parabolicznych, gdyz przy innych
ksztaltach tukéw uciekaé sie musimy najczeSciej do zastepowania nieskon-
czenie malych odcinkéw osi przez skonczone i w ten sposoéb catkowanie
tu czesto odpada.

Przy obliczaniu wyniostych tukéw eliptycznych odgrywajacych role
schematéow statycznych dla sklepien przepustow powstaje zagadnienie,
w jakim stopniu nalezy uwzglednia¢ okolicznos$¢, ze tuki eliptyczne sg tu-
kami o duzej krzywiznie; totez w tym wypadku szczegélnie jaskrawo
wystepuje kwestia moznosci pomijania w obliczeniach tukéw pewnych
okolicznosci ich pracy.

Luki koliste ze wzgledu na swa stalg krzywizne daja w wielu przy-
padkach mozno$¢ obliczania ich za pomoca tablic i wykreséw, co prowadzi
nieraz do daleko posunietego usprawnienia obliczen.

Rozpatrujgc przedstawiona specyfike obliczen statycznych poszezegdlnych
rodzajow lukow na tle tych drég, ktérymi zmierzamy do usprawnienia
obliczen, dochodzimy do wniosku, ze trzy rézne kierunki mozliwych uspraw-
nieh w obliczeniach tukéw odpowiadaja z grubsza trzem wymienionym
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tu réznym ksztattom lukéw. Stad prace niniejsza dzielimy na trzy rozdziaty
poswiecone odpowiednio tukom parabolicznym, eliptycznym i kolistym
z tym, ze w poszczegbélnych rozdzialach bedziemy w miare potrzeby zaha-
czaé o wszystkie mogace tu w gre wchodzi¢ kierunki usprawnien.
Rozprawa niniejsza oparta jest przede wszystkim na pieciu nastepujacych
moich publikacjach:
(1) Badania mad wytrzymalosciq przepustow sklepionych, Przeglad Tech-
niczny, Warszawa 1930,
(2) Mozliwe uproszczenia w obliczaniu statycznym tuku, Przeglad Tech-
niczny, Warszawa 1934,
(3) Parabola szescienna jako o$ tuku, Czasopismo Techniczne, Lwow 1934,
(4) Application de la méthode des moindres carrés au calcul des arcs,
Association Internationale des Ponts et Charpentes, Mémoires,
Zurych 1938,
(5) Przyczynek do obliczenia statycznego sprezystych tukéw kolistych,
Inzynier Kolejowy, Warszawa 1938,
oraz na doswiadczeniach zdobytych przy stosowaniu wynikéow tych publi-
kacji w praktyce.
AUTOR



I. LUKI PARABOLICZNE

1. Luki o ksztalcie paraboli 2 stopnia

Wyznaczenie wielkosei statycznie niewyznaczalnych w tukach sprezystych
opiera sie na wzorach na odksztalcenia pretéow zakrzywionych. Skiadowe
przesuniecia punktu K preta zekrzywionego AK, utwierdzonego w prze-
kroju poprzecznym A i swobodnego w punkcie K (rys. 1), wyrazaja sie za
pomocg tzw. wzorow Bresse’a, ktére przybieraja w tym wypadku postaé¢:

s a b

u=— [ Adscosg— [ (o—y)Adg+ [etdx + [pdy—wdb (D)
0 0 0 0
! : 2 ¢
v:—.f Adssing -+ J (a—x) Adq;j—‘_j ertdy — } gdx + w,a, (2)
0

0 0 0

S

o = W L ’ A d(/‘, (3)
0
gdzie
diugosé odcinka osi tuku,

ds dlugos¢ nieskonczenie ma-
lego odcinka preta zakrzy-

wionego, S

Ads przyrost dlugosci ds spo- e e
wodowany odksztalceniem — a
preta, Rys. 1

d¢ kat nachylenia wzgledem
siebie dwoch przekrojow poprzecznych preta znajdujgcych sie od
siebie w odlegtosci ds,
Ad¢ - przyrost kata d ¢ spowodowany odksztalceniem preta,
o obrét przekroju poprzecznego K,
@ kat nachylenia pewnego przekroju poprzecznego tuku do pla-
szczyzny pionowej,

(57}



w, skonczony obrét przekroju A,
¢+ wydluzenie jednostkowe przy roéznicy temperatur t,
f przesuwanie jednostkowe.

Wyznaczenie wielkosci nad-
liczbowych w tuku AB (rys. 2)
odbywa sie, jak wiadomo, w ten
sposob, ze wielkosci up, vp i1 ws
wyrazajace odpowiednio przesu-
niecie punktu B w kierunku
rownoleglym do osi X-6w, prze-
suniecie w Kkierunku roéwnoleg-
lym do osi Y-6w oraz obrot
przekroju poprzecznego w B przedstawiamy sobie jako funkcje fi, f. 1 f;
nieznanego momentu M, , parcia poziomego H i reakcji R4 w punkcie A
i ustawiamy réwnania: '

fl(MA:RAvH):Ov f2(MA,RA,H):()7 fR(MArRAiH):Ov (4)

z ktérych wyznaczamy wymienione wielko$ci nadliczbowe Ma, H i Ra.
W przypadku luku dwuprzegubowego mamy do rozwigzania tylko
pierwsze z réwnan (4), a mianowicie réwnanie

up =20 lub f(H)=0. (5)

W roéwnaniach typu (4) mozemy przyjmowaé we wszystkich przypad-
kach lukéw sprezystych, z wyjatkiem przypadkéw bardzo wyniostych
przepustow, ze

Nds Mds T
Ads= TA’ ,x’ldq)———~m~. =GA’ (6)
gdzie N i T oznaczaja odpowiednio sile¢ podtuzng i site poprzeczng w da-
nym przekroju poprzecznym luku, a M moment zginajagcy w tym prze-
kroju.

Po uwzglednieniu wzoréow (6) na wielkosci Ads, Adg i f nadajemy
rownaniom (4) za pomocg wzorow (1)-(3) postaé ukladu trzech réwnan
liniowych

alMA—i—b,RA—kclH—)—d,:O,'
ayMas+byRa+c,H+dy =0, (7)
aSM_4+b3RA+C3H+d3:O.I

W roéwnaniach tych wspolezynniki a, b, ¢ i d przedstawiajg pewne catki
oznaczone, przy ktérych obliczeniu powazna niedogodno$é nastrecza oko-
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liczno$é, ze rézniczke ds trudno jest przedstawi¢ w postaci nadajgcej sie
do wygodnego calkowania.

W szczegblnym wypadku, gdy tuk bezprzegubowy jest malo wyniosty
i gdy mozna przyja¢, ze cosg=1, a sing=0, znajdujemy

j My'ds }“i Ma'ds f Mds
N b 1T T
—— = Ra="——, My= (®)
e Shcs J ds
o 7 b J 0 7
gdzie M% =M, +R,1/2—Hy, oraz
fuds
J
Yo — OS - ‘9)
"as
T

0

i gdzie =’ i y' oznaczaja wspolrzedne pewnego punktu osi tuku w ukila-
dzie wspélrzednych X, 0Y, (rys. 3), a I moment sit zewnetrznych d21a—
tajgsych na tuk na lewo od prze-
kroju aa wzgledem $rodka cigz-
koéci tego przekroju.

Momenty I przedstawiajg we-
przypadku ciezaréw skupionych
funkcje liniowa x, ‘a w przypad
ku obcigzenia ciaglego i réwno-
miernego funkcje drugiego stop-
nia x. Ogoblnie

M= 268 (10)

gdzie i jest to pewna liczba cala i dodatnia, a wspoétczynniki a od x nie

zalezg.
Odpowiednio dla tuku dwuprzegubowego zakladamy, ze w punktach

A i B (rys. 2) sa przeguby, wobec czego mamy

"M ~Yyds
f OJ—

H=2 (11)

f yhds
7

0

gdzie My, wyraza sie za pomocg funkeji typu (10).



W przypadku tuku symetrycznego o ksztalcie parabolicznym, osi tuku
w ukladzie wspolrzednych XAY (rys. 3) odpowiada réwnanie

4f

Yy=x(l—x) Rt

(12)

gdzie | jest to rozpieto$¢ tuku, a f jego strzalka.

Dla osi tuku wyrazajacej sie rownaniem (12) calki (8) przybieraja postaé¢
{

S— [(Tazhds, (13)

0

gdzie a nie zalezy od x, a k jest pewna liczbg calg i dodatnig.

Srodkiem do ulatwienia sobie obliczenia calek typu (13) jest wyzyskanie
metody najmniejszych kwadratéw, dzieki ktérej mozemy przedstawié réz-
niczke ds w postaci funkcji wymiernej x, a wiec w postaci funkeji typu

7/:Em5"’, ; (14)

gdzie m nie jest od x zalezne i gdzie & oznacza stosunek x/l.
W tym celu nadajemy przede wszystkim réwnaniu (12).postaé¢

y=§&(1—g)-4f. (15)
Dla ro6zniczki osi luku ds mamy znény wzor

ds=ydx®+ dy’ (16)
Poniewaz ze wzoru (15) wynika, ze

dy=(1—28)-4f-d&, (17}
wiec
ds=—)14+ 1682 (1—2¢&d, (18

gdzie { oznacza stosunek f/l. Rownaniu (18) mozna tez nadaé¢ postac

ds—)/a& +bé+c du, (19)
gdzie
! a==64C% bi——6412" c=1+16¢*
lub tez ogolnie postaé
ds—F, (&) dx. (20)



Poszukujac wygodnego do catkowania ksztaltu funkcji

7 =Fy (&) (21)

przedstawiamy » jako iloraz
ds

1 budujemy wykres 7 odkiadajac na osi odcietych O¢ kolejno wartosci
§=0,05, £=0,10, £=0,15 itd., a na osi rzednych O n wartoéci # otrzy-
mane ze wzorow (22) i (19). Wykres ten dla pewnej wyniostosci tuku ¢
otrzyma ksztalt krzywej A BC
przedstawionej na rys. 4.

Na wykresie funkcji (21) przed- 4

(£
stawionej na rys.4 wartosci zmien-
nej niezaleznej £§=0,00 i &=1,00 ki 8 {

odpowiadaja koncom tuku, a war- 1L

tosé £=0,50 jego érodkoYvi. W $rod- -;— -‘ ‘; 1 -
ku luku wartos¢é funkeji F,(&) jest 0 S o
n=1 niezaleznie od wyniostosci Rys. 4

tuku C.

Uzyskana liczba 21 punktéw krzywej 7 = F,(§) dobrze ockresla ksztalt
same]j zaleznosci, nie daje jednak podstawy do przedstawienia funkecji F, (&)
w postaci wygodnej do catkowania, w szczeg6lnosci w postaci (14).

Aby zastapi¢ funkcje F, (&) przez funkcje typu (14), zwracamy przede
wszystkim uwage na fakt, ze krzywa ABC na rys. 4 zblizona jest ksztaltem
do paraboli, wobec czego narzuca sie tu mysl zastapienia tej krzywej przez
parabole.

Na rysunku 5 przedstawiona jest lgcznie krzywa ABC z rys. 4 i para-
bola a Be, ktéra odniesiona do osi wspodirzednych &, By, wyraza sie rowna-
niem

nm=g&. (23)

Miedzy wspotrzednymi ukladow £Ow i & B, istnieja zaleznosci (rys. 5)
59 &= n—mn —1, (24)

a g przedstawia najwieksza rzedna krzywej a Bc.

Wybdr parametru g jest uzalezniony od tych postulatow, ktérym bedzie-
my chcieli podporzadkowaé krzywa a Bc i jej stosunek do krzywej A BC.

Bierzemy tu pod uwage trzy mozliwe postulaty nastepujace:

(1) algebraiczna suma roéznic miedzy rzednymi krzywej A BC a rzed-
nymi krzywej a Bc réowna sie 0;



(2) suma kwadratéw roznic miedzy rzednymi krzywej ABC a rzedny-
mi krzywej a Bc odpowiada warunkowi minimum;

(3) rzedne krzywej A BC stanowig S$rednie arytmetyczne rzednych
krzywych a Bc obliczonych w mys$l postulatow (1) i (2).

Oznaczajac przez 7’ rzedne krzy-
wej ABC odniesionej do ukta-
du & By, badamy dla danego {
sume

D=2 (==} (25)

gdzie 7' — 7, wyraza roznice mie-
dzy odpowiadajacymi danej odcig-
tej &, rzednymi krzywych ABC
i aBc (rys. 5) i gdzie liczba roz-
Rys:> nic 5’ — #, tworzacych sume odpo-
wiada liczbie punktéow krzywej
A BC, ktorych rzedne zostaly obliczone ze wzoréw (18), (21) i (22). Roéz-
nice 7' —m, dotycza wlasnie tych punktéw, dla ktérych obliczyliSmy
rzedne 7.
Warunki matematyczne odpowiadajace trzem wymienionym postulatom
w stosunku do rzednych 7, powinny by¢ tego rodzaju, aby, z jednej stro-
ny, byly zagwarantowane jak najlepsze wyniki obliczenia tukéw, z drugiej
za$, aby obliczenie nie bylo zbyt kilopotliwe.
W zwigzku z rownaniem (23) wyrazenie (25) przybiera postaé

D= X0 —g&). (26)

Wyrazem matematycznym pierwszego z wymienionych postulatow be-
dzie wobec tego réwnanie

Zm—g&)=0, (27)
skad
_Zn
9="Fe - (28)

W dalszym ciggu tworzymy sume
D,= 2 (n' —g &), (29)

wobec czego wyrazem matematycznym postulatu (2) bedzie rownanie

— =2 0, (30)
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ktore doprowadza do nastepujgcego wyrazenia na g:

Zn &
g= *W (31)
GdybySmy zamiast sumy (29) utworzyli sume
D,=Z(n—g&)" (32)

gdzie n = 3, wowczas wyrazenie na g wyplywajace z warunku minimum

tej sumy na podstawie rownania

dD,

o =0 (33)

nastreczaloby tak duze trudnosci rachunkowe w uzyciu, ze unicestwilyby
one korzys$ci wynikajace z nadania funkeji podcatkowej w wyrazeniach (8)
i (11) postaci (14). Musimy sie wiec tu ograniczy¢ do n = 2.

Warunek, ze funkcja D, ma uzyska¢ wartos¢ minimum, doprowadza
wiec do metody najmniejszych kwadratéw. Aby to wykazaé, nadajemy
sposobowi postepowania zmierzajacemu do wyznaczenia parametru g utarty
schemat metody najmniejszych kwadratow.

Zastepujemy wzor (29) przez wyrazenie

T i (’;Z? g) : (34)
w ktorym g uwazamy za nieznang warto$¢ Scista parametru réwnania (23).
Wprowadzamy dalej oznaczenia g, =1#'/& jako znang wartos¢ przybli-
zong parametru g oraz p;— ¢} jako wage poszczegélnych wartosci g,

czyli ze
D,= X pi(gi—9g)°. (35)

Gdyby krzywe ABC i aBc byly identyczne, mielibySmy 7 =1, i blad
(odchylenie) g:;—g bylby réowny zeru. Przyrost wag p:; odpowiada tu
przyrostowi wspoéirzednych #,. Z postulatu $redniej arytmetycznej wynika

_2Digi (36)

9="50

Wyrazenie to mozemy otrzymaé¢ rowniez i z warunku minimum funkcji
(35). Jest ono identyczne z wyrazeniem (31).
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Jezeli przez g, i g, oznaczymy wielkosci parametréw g otrzymane od-
powiednio ze wzoréw (28) i (31), woéwczas postulatowi wymienionemu
pod (3) bedzie czynita zados$¢ krzywa a Bc o parametrze g rownym

g:{:glﬂg g:_ (37)

Oznaczamy przez ¢ najwieksza, wyrazona w procentach réznice miedzy
rzednymi krzywej ABC, z jednej strony, a rzednymi krzywej aBec, z dru-
gie]. Dla poszczegélnych parametréw ¢,, ¢», g; i dla roznych ¢ wielko$-
ci &, &, & przybieraja odpowiednie wartosci zawarte w tablicy 1.

Jak wynika z przytoczonej tablicy, sposrod bledow e, &,, &, bledy e,
sg na ogol najmniejsze, bledy zas &, roznig sie od nich przewaznie nie-
wiele. Gdy poroéwnamy ze soba we wszystkich trzech wypadkach prze-
widzianych w tablicy potozenie tych punktow & =0,1, 0,2, 0,3..., dla
ktorych majag miejsce bledy najwieksze, to zauwazymy, ze najwieksze
bledy e, wystepuja na koncach tuku, podczas gdy najwieksze bledy e,
1 &, majg miejsce okoto srodka kazdej potowy tuku, przy czym przy sto-
sowaniu paraboli o parametrze g, bledy sa na ogdt roztozone najbardziej
rownomiernie na calym tuku.

Oznaczamy w dalszym ciggu przez J,, ¢, i J, bledy przecietne odpo-
wiadajgce bledom najwiekszym e, &, e, 1 uktadamy tablice tych btedow
(tablica 2).

Tablica 1 Tablica 2
|

< | &b €9 % 3% & | b b d3 b
0,100 . 03 0,3 0.3 0,00 | 02 02 | 02
0125 | 03 03 | 03 0,125 | 0.2 0,2 0,2
0,150 04 03 | 03 0,150 , 0,3 0,3 0,2
0,175 | 1,0 06 | 0,6 0,175 | 0,4 04 0,3
0,200 1,2 08 | 1,0 0,200’ 04 | 04 | 04
0225 | 12 10 | 10 0225 | 04 | 04 0,4
0250 18 1,4 | 1,2 0,250 | 0,7 |08 0,6
0275 | 24 1,5 | 18 0275 09 | 0,8 0,8
0300 | 29 L7 23 0,300 10 ‘ 1,1 1.0

Obliczenie Sredniego bledu nie jest w danym razie potrzebne, gdyz
znane sa nam bledy najwieksze.

W roéwnaniach (4), z ktérych obliczamy wielkosci statycznie niewy-
znaczalne w luku, wyrazami najwiekszymi co do wartos$ci bezwzglednej

S

sg zawsze wyrazy typu  [upyds/EJ i [y’ds/EJ, gdzie u oznacza

0 0
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badz M, — moment zginajacy w danym przekroju aa tuku, badz tez
M, — moment sit dzialajacych miedzy podpora a przekrojem aa wzgle-
dem srodka tego przekroju.

Jezeli poczatek wspodlrzednych odniesiony jest do Srodka podpory
(rys. 2), wowczas funkcje py® oraz y*® maleja w kierunku ku koncom
tuku. W tym wypadku zastosowanie, zamiast funkeji » =ds/dx, paraboli
o parametrze g,, dajacej najwieksze bledy w przekrojach zblizonych do
koncow tuku byltoby najwlasciwsze. Jezeli jed- .

; ] . Tablica 3
nak poczatek wspoirzednych przyjety jest na :
przechodzgcej przez zwornik osi symetrii tuku, ¢ ‘ g I z
wowczas wlasciwsze staje sie zastosowanie pa- ’
raboli o parametrze g, lub g,. Poniewaz trudno

g

%
0,100 ’ 0,077 | 0,225 l 0,358

jest stale pamieta¢ o wlasciwosciach btedow e, 0,125 | 0,120 0,250 | 0,430
wiec nalezy uwaza¢ za najwilasciwsze stoso- 0,150 ‘ 0,170 I 0,275 | 0,518
wanie tej ostatniej paraboli w kazdym wy- 0,175‘ 0,220 | 0,300 | 0,598
packu. Odpowiednie parametry podane sa 0,200, 0,290 |

w tablicy 3.

Zalezno$¢ parametru g od stosunku { daje sie wyrazi¢ za pomocg wy-
kresu na rys. 6, z ktérego wynika, ze dla posrednich wielkosci ¢ mozna
otrzymac¢ parametry g droga inter-
polacji liniowej.

«Q

Blad, ktory powstat przy obli-

8 ! czeniu catek typu
S |
l 8 24 S 2
YT i
N I I ) EJ gz e
§ § | © 8 e 8 & ) 0 0
S l S g] S Ql S S Q}

§ z powodu zastgpienia wielkosci

Rys. 6 Scistej #n=ds/dx przez wielkosci

przyblizone 1,, musi by¢ ze wzgledu

na charakter funkcji py® oraz y* mniejszy od bledu przecietnego ¢ odpo-
wiadajacego danej wielkosci (.

Zdecydowawszy sie na Kkorzystanie z parametru g obranego na podsta-

wie postulatu 2 nadajemy réwnaniu (23) w ukladzie wspoélrzednych &0y

postac

n=1+g(l—4&+48&), (38)

skad, o ile funkcje (38) bedziemy w dalszym ciagu oznaczali jako funkcje @,
otrzymamy na podstawie wzoru (22)

ds—@dax. (39)
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Jako przyklad zastosowania funkeji @ i parametru g do obliczenia tu-
kow rozpatrzmy przypadek wyznaczenia pionowego przesuniecia v konca B
luku AB utwierdzonego w przekroju A, posiadajacego ksztalt paraboliczny
i obcigzonego jedng silg P (rys. 7).

Moment zginajacy M, w pew-
nym przekroju aa roéwna sie

Y

M,=Pl(1—9). (40)

Zalezno$¢ miedzy ro6zniczkami
B8 X ds a dx przyjmujemy zgodnie ze
wzorem (39)

B 2 ds=®ldé, (41)
ys.

a rownaniu osi preta nadajemy
w przedstawionym na rysunku ukladzie wspétrzednych X AY postaé

y==&(1 —§&)-47. (42)

Korzystamy w dalszym ciggu ze wzoru (2), pomijamy jednak wplyw
na pionowe przesuniecie punktu B sit podluznych i sit poprzecznych.
Przyjmujac A4dg = Mds/EJ znajdujemy, ze

; Md
vB=6[(l—x)—ETS. (43)

Uwzgledniajac tu wyrazenia (41) i (38) na funkcje @ i dokonujgc cat-
kowania dla catej rozpietosci tuku znajdujemy

Pl3 3
%=5 (1—epode="". ;(1+ g). (44)

Scista ocena btedow wynikajacych z zastapienia we wzorach na obli-
czenie lukéw roézniczek ds przez wyrazenie (41) wymaga analizy wynikéw
poszczegblnych dzialan. Na podstawie jednak szeregu obliczen przeprowa-
dzonych dla réznych wyniosto$ci tuku mozna oceni¢ rzad wielkoSci tych
btedow. Blad ten dla wzoréw typu (8) dojs¢é moze do 49/3, gdzie pod ¥
rozumiemy blad przecietny spowodowany zastgpieniem rzednych ' przez
rzedne krzywej 7, . Blad zawarty w samych licznikach wzoréw (8) waha
sie okoto 29, 3. Porownamy tu dla przyktadu liczniki wzoru (11) na par-
cie poziome tuku dwuprzegubowego obcigzonego w sposob ciggly i rowno-
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mierny obliczone, z jednej strony, $ciSle, z drugiej za$, przez wprowadze-
nie funkcji @. Otéz w pierwszym wypadku otrzymujemy wynik

M yds 2qgl*
J ol =008 EJ (45)
a w drugim wynik
f Myds 2q00
[ oy = (0,0333+0,0053g) =5~ (46)

0

Przy (= 0,250 mamy g = 0,430 i réznica miedzy wynikami (45) i (46)
wynosi 0,56°/,, czyli okoto 2/3 bledu ¥, podanego w tablicy 2.

W przypadku sit skupionych funkcja Mo. zachowuje te¢ wlasnos$¢, ze
wartos$ci jej sa mniejsze w okolicy podpér tuku niz w okolicach s$rodka,
wobec czego wartosci catki

S
f yds
0

obliczone wedlug wzoréw Scistego i przyblizonego, beda wykazywaly r6znice
mniejsze od wielkos$ci zawartych w tablicy 2.

Dla tuku bezprzegubowego funkcja I, ktora zastgpi tu funkcje Mo,
bedzie tak samo jak i ta ostatnia malala w kierunku ku podporom tuku,
a wiec i w tym wypadku wartosci calxi

fMO“,y ds

EJ

’

0

obliczone wedlug wzoru Scislego i przyblizonego, beda wykazywaly réznice
mniejsze od wielko$ci zawartych w tablicy 2.

Wobec tego, ze inne caltki wchodzgce w wyrazenia dla wielkosci sta-
tycznie niewyznaczalnych w tukach badZz posiadajg te same wlasnosci co
calki omowione, badz tez odgrywaja w tych wyrazeniach mniejsza role,
twierdzi¢ mozna, ze stosujac dla ds wzoér (38) otrzymamy przy parame-
trach g wzietych z tablicy 3 biledy nie wieksze od zawartych w tablicy 2.

W przypadkach gdy nie mozna przyja¢, ze cosp=1 a sing=0,
nalezy przy wyznaczeniu wspélezynnikéw a, b, ¢, d we wzorach (7) roz-
lozyé cosinusy i sinusy w szeregi algebraiczne.

Trudnosci podobne do tych, jakie mamy z r6zniczka ds przy catkowa-
niu wspodtczynnikéw réwnan (4), wystepuja réwniez i przy uwzglednieniu

zmienno$ci momentow bezwladnosci tuku J.
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Luki stalowe posiadaja zwykle na calej swej rozpietosci staty przekroj
poprzeczny. Luki betonowe i kamienne maja natomiast przewaznie prze-
kroje poprzeczne zmienne, nie powoduje to bowiem w tych wypadkach
trudnos$ei konstrukeyjnych, pozwala zas na pewna oszczedno$é na materiale.
Wreszcie wchodzg tu réowniez w gre i wzgledy estetyczne. W podobnych
warunkach znajduja sie i tuki zelbetowe.

Dla ulatwienia sobie wyznaczenia wspoiczynnikéw réwnan liniowych
tuku sprezystego niektérzy autorowie doradzaja przyjmowanie w oblicze-
niach statycznych przy obliczaniu calek oznaczonych zamiast rzeczywi-
stego przekroju zmiennego, przekréj o stalym momencie bezwtadno$ci row-
nym S$redniej arytmetycznej momentéw bezwladnosci w wezglowiach
i w zworniku: ' '

J— ; (T +J2). (47)

Podobny sposoéb postepowania jest Zréodlem znacznych bledow, ktorych
granice zalezne sg od prawa zmienno$ci przekrojéw poprzecznych w tuku,
wyniosiosci tuku itd. i wobec tego nie moze by¢ uwazany za uzasadniony.

Znaczne ulatwienie w catkowaniu wsp6lczynnikow rownan (8) sprowa-
dza przyjecie, ze moment bezwladnosci w dowolnym przekroju tuku uza-
lezniony jest od momentu bezwladnos$ci w zworniku za pomocg prawa

J:
Jy= ; (48)
cos @
gdyz w tym wypadku iloraz
ds cosgp dx  dx
T = 7, csp T )

Sposréd regul zmiennosci przekrojéw prostokatnych o wysokoS$ci zmien-
nej h tuku na ogdl najlepiej wyréwnujg naprezenia w luku przekroje
zmieniajace sie wedlug wzordéw

he -
h =
cos g’ f20)
h:m+m~m&, (51)

S

gdzie s. oznacza dlugos¢ odcinka osi tuku miedzy pewnym przekrojem
a wezglowiem, s catkowita dlugos¢ osi tuku, h. wysoko$é przekroju po-
przecznego w zworniku, he wysoko$é przekroju poprzecznego w wezglowiu;
pierwszy ze wzorow (50)-(51) moze byé stosowany tylko do tukow
o matej wyniostosci, drugi za§ wyraza liniowa zmiennos$¢ przekrojow.
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Jednoczesne stosowanie dla luku zaleznosci (48) i (50) utatwia wprawdzie
obliczenia, nie jest jednak niczym uzasadnione.

W przypadku ogélnym istotne uproszczenie w obliczeniach calek ozna-
czonych réwnan luku sprezystego, z punktu widzenia zmienno$ci prze-
krojow, polegeé moze na przedstawieniu stosunku 1/J w postaci mozliwie
najprostszej funkeji algebraicznej, a wiec przede wszystkim w postaci

3 =Xamé&™”. (52)
J

Funkeji takiej poszukujemy tu sposobem analogicznym do przedstawio-
nego wyzej dla rézniczki ds, przy czym mamy na uwadze, ze regula-
zmienno$ci przekrojow nie wplywa zbyt silnie na warto$¢ wielko$ci sta-
tycznie niewyznaczalnych.

Przyjmujemy wiec dla zmiennosSci przekroju réwnanie (51), a dla
stosunku hg/h, liczby w granicach 1,25-1,75 i obliczamy dla r6znych
warto$ci ¢ i przekrojow tuku od-
dalonych od siebie co 0,1 s mo- 3

menty bezwladnosci poszczegélnych
przekrojéw oraz ich odwrotnosci.

I
|
{
e

W ten sposéb dochodzimy do wy- 5 1
kreséw typu przedstawionego na : ;Jz
rys. 8, na ktorych krzywe ]1' ) 1E

1 S—S——

F=F® (B3). . s

zawarte s miedzy prostymi AmB Rys. 8

a parabolami An B.

Przy Juo/J.= 1,25 krzywe Ap B zblizone sa do prostych w ten sposob,
ze przecietna réznica rzednych wynosi tu okoto 3°/, a przy Ju/J:=1,75
krzywe te zblizone sg do paraboli, przy czym przecietna réznica rzednych
wynosi okoto 49/

Majac na widoku takie granice btedu mozemy przyjac¢, ze przy warto-
Sciech stosunku J/J. zawartych miedzy 1,25 i 1,75 rzedne krzywych (53)
beda stanowily S$rednie aryimetyczne rzednych krzywych AmB i AnB.
Stad dochodzimy do réwnania

1 1 1 2
= +(w-— 1)|n$f Fl—n) &), (54)

gdzie wielkosci n otrzymujemy droga interpolacji liniowej w granicach
0-1 dla wielko$ci 1,25-1,75 i gdzie &, = x/(1/2).
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Dla odcietych &= x/l réwnanie (54) przybiera posta¢

1 1 2
7 Jw+2( .]—w)[znf“‘F(l—n)fl (55)

dla cze$ci tuku od x =0 do x=1/2 oraz posta¢:

1 1
T= ‘+2('J§‘E)'2 (1 — &P —mn) (1 —&)] (56)

dla drugiej potowy tuku.

2. Luki o ksztalcie paraboli 3 stopnia

Wiekszoé¢ obecnie projektowanych lukéw bezprzegubowych posiada
osie o ksztalcie krzywej, ktérej rzedne stanowia S$rednie arytmetyczne
miedzy rzednymi paraboli 2
a rzednymi paraboli 4 stopia.
Tego rodzaju krzywe sa bardzo
zblizone do paraboli 3 stopnia.
Wida¢ to z rys. 9, na ktérym
liniami przerywanymi przedsta-
wiona jest parabola 4 stopnia
(na rysunku goérna) i parabola
2 stopnia (na rysunku dolna),
a linig pelna parabola 3 stop-
nia.

Obliczenie statyczne tukéw posiadajacych ksztalt paraboli 3 stopnia
nastrecza pewne trudno$ci wyplywajace z wlasnosci geometrycznych tej
krzywej.

Parabola szeScienna wyraza sie, B’
mianowicie, w ukladzie wspoéirzed- /
nych X,CY, odniesionych do $rod- TY ///
ka zwornika C luku ACB (rys. 10) %
réwnaniem

N~

Rys. 9

8
Yy = lg 3 (57)

gdzie | i f oznaczaja odpowiednio

rozpietosé i strzatke luku. - %
Przy odcietych dodatnich (tj. Rys. 10

przy x,>0) rownanie (57) daje

galaz AC przedstawiajaca polowe osi tuku. Przy odcietych ujemnych (a wiec

przy x,< 0) galaz C B’ krzywej (57) nie moze odegra¢ roli osi tuku na odcin-
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ku CB, role te natomiast odegra¢ moze odpowiednia galagz paraboli 3 stopnia
Yo== 7 13 x;. (58)

Brak moznosci przedstawienia osi tuku za pomocg jednego rownania
stanowi pierwsza trudnos¢ przy obliczeniu calek wchodzacych w wyrazenia
dla wielkoSci statycznie niewyznaczalnych w tuku o ksztalcie paraboli 3
stopnia.

Druga trudno$é przy wyzyskaniu paraboli szesciennej jako osi tuku
przedstawia okolicznosé, ze funkcja n =ds/dx, tzn. stosunek nieskonczenie
malego . odcinka osi luku do jego rzutu na cieciwe ma ksztalt bardzo
ztozony, nie pozwalajacy na tatwe calkowanie.

O$ o ksztalcie paraboli 3 stopnia nadaje sie bardziej dla lukéw
wynioslejszych niz dla lukéw bardzo plaskich, ktérym lepiej odpowiada
parabola drugiego stopnia. W przypadku lukéw wynioslejszych, np. powy-
zej wartoéci 0,08 dla stosunku (=f/l wplyw sil osiowych (podiuznych)
na wielko$ei statycznie niewyznaczalne w tuku moze by¢ pominiety. W tych
wypadkach stuza nam do obliczenia wielkosci statycznie niewyznaczalnych
w tukach bezprzegubowych wzory (8) i (9) podane w paragrafie poprzednim.

Przygladajac sie wzorom (8)-(9) spostrzegamy, ze rzedne osi tuku wcho-
dzg tylko we dwa sposréd nich. Ponadto we wzorze (9) wobec symetrii
tuku calkowanie zaréwno w liczniku, jak i mianowniku nalezy wykonaé
tylko w granicach od 0 do s/2. Stad jedynie we wzorze na H calkowanie od
0 do s trzeba zastapi¢ przez kolejne calkowanie od 0 do s/2 i od s/2 do s,
przy czym w pierwszym wypadku nalezy bra¢ pod uwage jako o$ tuku
krzywa (57), a w drugim krzywa (58). Mozna wiec przyja¢ symbolicznie, ze

s 5/2

[=[—]. )

0 0 $/2

Podobny sposoéb ujecia dotyczyé musi tylko licznika wzoru na H, gdyz
jego mianownik zawiera rzedna y’ w kwadracie.
0% luku przedstawia sie w ukladzie wspolrzednych X AY (rys. 10) przy
& =/l pod postaciag
y=2f(2E—6£& + 48 (60)

dla lewej czesci tuku (A C) i pod postacig

y=2f(1—3&+ 68 —48 (61)

dla jej prawej czesci (C B).
Usuniecie wiec trudnosei wynikajacych stad, ze wykladnik potegi w pa-
raboli sze§ciennej jest nieparzysty, jest stosunkowo latwe, o ile dadzg sie
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opanowa¢ trudnosci wynikajace z przedstawienia rézniczki tuku ds jako
funkcji wspoélrzednej x, wzglednie §.

Dla ulatwienia sobie wyznaczenia catek wchodzgcych w wyrazenia
(8)-(9) dazyé musimy, podobnie jak w przypadku osi tuku w ksztalcie pa-
raboli 2 stopnia, do przedstawienia stosunku #=ds/dx pod postacia

1’/275::2(1.%’”. (62)

W tym celu uciekamy sie tu do metody analogicznej do metody za-
stosowanej w paragrafie poprzednim.

Wstawiajac w wyrazenie (16) dla rézniczki tuku ds zamiast rozniczki
dy jej warto$é obliczong z réwnan (60) i (61) i majac na uwadze, ze
dx =1d ¢ znajdujemy

;% =11+3602(1—4&+ 482, (63)

co doprowadza do wzoru
ds=F,(§)dx (64)

analogicznego do wzoru (20) paragrafu poprzedniego lub do wzoru

f= Fy (£). (65)

Wstawiajac dla poszczegélnych wartosci ¢ w wyrazenie (63) kolejno
&= 0,05, 0,10, 0,15, ... znajdujemy szereg wykresow typu przedstawionego
na rys. 11, na ktérym krzywa ABC
przedstawia funkcje (63).

Jezeli umiescimy na wykresie
- rys. 11 poza krzywag A BC galaz
paraboli szesSciennej a B odpowia-
= dajaca w lewej czeSci wykresu
w ukladzie wspoirzednych & By,
rownaniu paraboli szesciennej

Rys. 11 7, =g 5;3, (66)

L 8

a w prawej galagz Bc odpowiadajacg rownaniu

n=—g8&, (67)
woéwczas zauwazymy, iz przy nalezytym wyborze parametru g rzedne
krzywych (66) i (67) malo réznig sie od rzednych krzywej (63).

Opierajac sie na rozwazaniach dotyczacych lukéw o ksztalcie paraboli
2 stopnia uciekamy sie tu przy wyznaczaniu parametru g w réwnaniach
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(66) i (67) do metody najmniejszych kwadratow, ktora w naszym wypadku
sprowadza sie do postulatu, aby suma roéznic miedzy rzednymi krzywej AB
a rzednymi krzywej a B odpowiadata warunkowi minimum, czyli aby

"0133 _o, (68)
gdzie (rys. 11)
Dy= (i, —m) =2 (n,— g £ (69)

Rownanie (68) doprowadza do nastepujacego wzoru dla parametru g:

2y, &8
_ 11 51 (70)

Najwieksze wyrazone w procentach bledy ¢ miedzy rzednymi Kkrzy-
wych AB i aB, odpowiadajgce poszczegélnym wartosciom ¢ ujete sg
w tablice 4.

Bledy przecietne ¢ powstate wskutek zastgpienia krzywych A B przez
krzywe a B podane sa w tablicy 5.

W odniesieniu do ukladu &0y (rys. 11) przybierajg krzywe (66) i (67)

posta¢ nastepujaca:

=2 =1+g (—-—5) (71)

na odcinku od £=0 do £=1/2 9

i posta¢ \\
ds ~~1—g(~1-—5)3 (72) ™

" dx 2

/

/

na odcinku od §=1/2 do é=1.

Funkcje (71) i (72) bedziemy
oznaczali jako funkcje @, i @,, ~
a0 s : b= (<) b= o [ [ '3 (=
tak iz na odcinku lu‘ku miedzy & § & g § § g g 8
r=0 a x =1/2 bedzie $
ds=0,dx, (73) Rys. 12

a na odcinku miedzy x=1/2 a x =1 bedzie
ds=@,dx. (74)

Parametry g obliczone dla poszczegélnych wartoSei ¢ ze wzoru (70)
daja sie uja¢ w tablice 6.
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Tablica 4 Tablica 5 Tablica 6

§ | &b & | & § | 96| & | 9% ¢ g ¢ g
0,100 1.2 |0,225| 24 0,100 | 0,5 | 0,225| 1,2 0,100 | 1,240,225 5,20
0,125 2,0 [0,250| 2,5 0,125| 0,8 [0,250| 1,2 0,125| 1,81]0.250 | 6,21
0,150 | 2,1 |0,275| 2,6 0,150 | 0,9 |0,275| 1,3 0,150 | 2,680,275 | 7,27
0,175| 2,2 |0,300| 2,8 . 0,175 1,0 |0,300| 1,4 0,175 | 3,45|0,300 | 8,30
0,200 | 2,4 0,200 1,1 0,200 | 4,30

Zaleznos¢ parametru g od stosunku { wyraza sie za pomocg wykresu
na rys. 12, z ktérego wynika, ze dla po$rednich wartosci { mozna otrzy-

mywa¢ parametry g drogg interpo-
lacji liniowej.

Gdy chodzi o btedy, jakie moze
spowodowaé¢ w-obliczeniu statycz-
nym lukéw o ksztalcie parabol
3 stopnia wprowadzenie dla réz-
niczki ds wyrazen (73) i (74),
znajduja tu zastosowanie uwagi po-
dane w paragrafie poprzednim dla
tukéw o ksztalcie paraboli 2 stop-

nia.

Jako przyklad zastosowania wzoréw (73) i (74) na rozniczke ds, a wiec
zastosowania funkcji @, i @, oraz parametru g do obliczenia tukéw, bie-
rzemy pod uwage luk symetryczny dwuprzegubowy obcigzony w sposéb
ciggly i rownomierny i posiadajacy ksztalt paraboli 3 stopnia (rys. 13).

Moment zginajacy wyraza sie tu wzorem

D) (75)
gdzie q jest to obcigzenie jednostkowe.
Stosujac tu wzor (11) oraz funkcje @, i @, znajdujemy
s 2 12
[Moyds = | —92—5(1—5)-2f(35~6§2+453)¢11de+ (76)
0 0

l D
i f%lif(l—5)-2f(1~3£+6£2——4E3)<1>2ld5,

12
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s 12
[yPds= [ 4f (86 —6&+48P0,1dE + (17)

0 0

{
+ [4P(1—38+68— 48 0,ld¢,

12

skad dla wartosci £ = 0,175 wzietej z tablicy 6 znajdujemy H = 0,1128 ql*/f.

II. LUKI ELIPTYCZNE

Luki eliptyczne o pionowej wigkszej osi elipsy wystepuja jako kon-
strukcje budowlane przede wszystkim w postaci sklepien przepustéw ko-
lejowych i drogowych.

Zasadniczg roznicg miedzy sklepionym mostem a sklepionym przepu-
stem, z punktu widzenia statyki budowli, stanowi grubo$¢ warstwy nad-
sypki nad sklepieniem. Grubos$¢ ta wynosi dla mostéw zaledwie kilka-
dziesigt centymetrow, dla przepustow za$ dochodzi¢ moze do kilkunastu
metrow. Przy malych grubosciach warstwy nadsypki mozemy nie liczy¢
sie z jej parciem poziomym na sklepienie, co nie moze jednak mie¢ miej-
sca przy grubej warstwie nadsypki.

W zalezno$ci od zaglebienia sklepienia pod torem kolejowym lub dro-
gg znajduje sie dlugos$¢ sklepienia liczona w kierunku réwnolegtym do
jego tworzacej. Dlugosé ta niewiele rozni sie od szerokos$ci drogi, gdy cho-
dzi o mosty, i o wiele przekra-
cza te szeroko$¢, gdy chodzi o
przepusty pod wysokimi nasy-
pami. Wobec znacznej diugosci
sklepien przepustow grubosé
ma wiekszy wplyw na ogélny
koszt przepustu niz grubosé
sklepienia mostowego na catko-
wity koszt mostu. Tym tez ttu- Rys. 14
maczy sie usilne dazenie
w technice budowlanej do jak najwiekszego ograniczenia grubosci skle-
pien przepustow.

Najwiekszg oszczedno$¢ w murze przepustoOw osiagngé mozna droga
nadania osi sklepienia ksztaltu odpowiedniej linii sznurowej, co prowa-
dzi do zastgpienia przekroju poprzecznego przepustu typu przedstawio-
nego na rys. 14 o wyraznie zaakcentowanych przyczoétkach przez przekro-
je podane na rys. 15 (typ I), 16 (typ II) lub 17 (typ III). Teoretyczny ksztalt
osi przepustéw przedstawionych na tych rysunkach powinien odpowiadac
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(przy wysokich nasypach elipsie, przy wyznaczeniu jednak takiego ksztai-
tu sklepienia grubo$¢ jego uwaza¢ musimy za nieskonczenie malg. Ponie-
waz w rzeczywistosci sklepienie przepustu posiada pewna grubos$¢ skon-
czong, powstaja w nim momenty zginajace, wywolujace nieraz napre-
zenie rozciagajace, dla przepustéw kamiennych na og6l niebezpieczne.

Przy wyznaczaniu naprezen w sklepieniach o ksztalcie polowy elipsy
nalezy mie¢ ma uwadze, ze o$ tych sklepien ma w pewnych swych cze-
§ciach znaczng bardzo krzywizne charakteryzujaca sie stosunkiem pro-
mienia krzywizny osi sklepie-
nia na danym odcinku do gru-
bosci sklepienia w tym samym
miejscu.

Na rys. 18 przedstawione
jest, w jaki sposob stosunek
promienia krzywizny do grubo-
$ci sklepienia, tj. stosunek 7 : e,
zmienia sie wzdluz osi sklepie-
nia. Punkty 1,2,3,..8 na osi
odcietych wykresu odpowiada-
ja $rodkom diugosci klinéw, na

Rys 17 ktore dzielimy polowe sklepie-

nia miedzy wezglowiem a zwor-

nikiem (punkty w i 2). Szerokos¢ stupkow wykresu odpowiada tu diugo-

Sci klinéw, a wzdluz osi rzednych odczytujemy wartosei poszukiwanych

stosunkow 7 : e, przy czym linie przerywane dotycza tu typu I przepustu

(rys. 15), linie pelne typu II (rys. 16), a linie przerywano-punktowe
typu III (rys. 17).

Poniewaz z wykresu wynika, ze stosunek r : e spas¢ moze nawet do 2.
‘powstaje pytanie, czy dopuszezalny jest tu sposob obliczenia statycznego
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sklepienia przepustu stosowany w przypadku tukéw mostowych, a wige
schemat obliczenia pretéw o krzywiznie matej, ktory w praktyce inzy-
nierskiej przewaznie bywa stosowany.

Odpowiedz na to pytanie oparta by¢ moze tylko na poréwnaniu ze
sobg wyniku obliczenn przeprowadzonych, z jednej strony, dla pretéw
o duzej krzywiznie, a z drugiej, dla pretéw o malej krzywiZznie. Poré6w-
nanie wykonamy dla trzech przedstawionych na rys. 15, 16 i 17 typach
przepustow.

T
£
€
151
Iﬂ .
I~ SR
10+ 1l
5+ ! I
— i
[
1
0l ~—+—~——i—-‘—-f——~—*f—]—: S— =
w1 2 3 4 5 6 7 8 Z

Rys. 18

Przystepujac do poréwnania obliczen sklepienia przepustu eliptycz-
nego, jako preta o matej i o duzej krzywiznie, zauwazamy przede wszyst-
kim, ze geometryczne dodawanie odksztalcen iuku, jako podstawa do
wyvznaczenia wielkos$ci statycznie niewyznaczalnych zadania, doprowa-
dzajgca do tzw. wzorow B r e s s € a, odbywa sie w obydwéch wypad-
kach jednakowo i ze zasadniczg réznica obydwoéch obliczen jest tylko
spos6b wyznaczenia odksztalcen nieskonczenie matego odcinka (klina)
tuku sprezystego. Chodzi tu, -mianowicie, o przyrost Ads (Scislej skroét)
dtugosci ds tego odcinka i o przyrost Adg kata dg miedzy dwiema ogra-
niczajacymi go ptaszczyznami.

Przy rozpatrywaniu tuku sprezystego, jako preta o duzej krzywiz-
nie, wzory na Ads oraz Adg¢ przybieraja postaé nastepujaca:

N M

L‘ds:EAds+rEAds' (78)
M N M '
Ad(r———Ei,?dS +TEAdS+T2EAd‘S' (79)
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czemu odpowiada wzoér na naprezenia w danym przekroju tuku

0::__#_,,,_‘_%._.?_ (80)

We wzorze tym symbole M i N oznaczaja moment zginajacy i sile
podtuzng w danym przekroju tuku, A i r odpowiednio pole przekroju
i promien krzywizny osi tuku, wreszcie Y caltke

r
Y= |22 ——
,4fz A, (81)
gdzie z jest to odleglos¢ pewnego punktu przekroju od osi tuku.

Wzory (78)-(80) wyprowadzone sa na podstawie zalozenia plaskich
przekrojow, nie doprowadzaja jednak, jak widaé, do liniowego rozkiadu
naprezen.

W przypadku tukéw sprezystych o malej krzywiznie przyjmujemy, ze

1 T

wobec czego wzory (78)-(80) zostaja zastgpione przez wzory

N (g — M
'dS——E—AdS, ]d(}’/—EJdS, (83)
N M 2z
G= (89

Sposrod odksztalcen skonczonego odcinka tuku (rys. 19) interesuje tu
nas przede wszystkim poziome (tj. rownolegle do osi A X) przesuniecie uy
punktu K (o wspoéirzednych a i b) oraz obrét wy przekroju poprzecznego
sklepienia w tym punkcie.

Odksztalcenia te wyznaczamy ze wzoro6w B r e ss e’ a, ktore w da-
nym razie przybieraja posta¢

s/2 32
ukz—f Adscosg— [ (b—y) Adg, (85)
0 0
s/2

(')sz Ad(]), (86)
0

gdzie x i y oznaczaja wspolrzedne poszczeg6lnych punktéw D osi tuku,
a ¢ — katy nachylenia wzgledem pionowej osi symetrii tuku przekroju
poprzecznego w tych punktach.
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Ograniczajac sie do rozpatrywania réwnowagi przepustéw przy ob-
cigzeniu symetrycznym wzgledem ich osi pionowej i przyjmujac za

punkt K srodek przekroju zworniko- LY
wego otrzymujemy z warunkéw sy- K__
metrii, ze \\\\
ur =20 i wr =20, (87) \\
9 \
gdzie ug i wr sa funkcjami M i N. v \ a \
Uwazajac tuk eliptyczny za pret S \
sprezysty o duzej krzywiznie wsta- \ﬁ X
wiamy w réwnania (85) i (86) warto- ] 8

$ci Ads i Adg ze wzorow (78) i (79), Rys. 19

w ktorych M i N dla danego punktu

osi tuku wyrazone sa odpowiednio dla obcigzenia pionowego (litery kre-
skowane pionowo) i dla poziomego parcia ziemi (litery kreskowane pozio-
mo), za pomocg wzoréw nastepujacych:

N =R/, sing + H' cos¢p — I, (88(
M=M,+R,x—H y—N, (89)
N =Hcosgp— N, (90)
M=M,+Hy—MN. (91)

We wzorach (88)-(91) R, i M, oznaczajg odpowiednio pionowa skia-
dowa reakcji podpory A roéwna w danym wypadku polowie obcigzenia
oraz moment podporowy, H parcie poziome w tuku, 3t i I odpowiednio
sume rzutéw na styczna do osi tuku sit dziatajacych na tuk z jednej stro-
ny danego przekroju oraz moment tych sit wzgledem Srodka przekroju.

W poszczegdélnych przekrojach tuku bedzie wiec

N=N'+ N, (92)

M=M +M. (93)

Wplyw sil poprzecznych na odksztalcenie sie tuku, a roéwniez wplyw

wahan temperatury pomijamy tu we wszystkich obliczeniach poréwnaw-
czych.

Rownania (87) w zwigzku ze wzorami (88)-(91) przybierajag w ten spo-
s6b postaé dwu réwnan liniowych:

Maa, + Hb, + (Rac, +d,) =0,

(94)
Maa, + Hb, + (Racy + dy) =0,
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o wspotczynnikach wyrazonych za pomoca wzorow

4= 95 S

—- S SN - I H- I I o

_ Z xy+2 ysm(p L g_%__fsmq;lcos«p E x:cA):(p, 97)

d1——~—2-”if%’—2 A IE ST @

1 il
w=2 5t 2 e o9

Yy 5’93~—23y;4' (100)
W=35 33 a0

M
:—E 2 ’—erA' (102)

We wzorach tych sumy zastepuja catki wzoréw (85) i (86); nieskoncze-
nie male odcinki ds osi tuku po zastgpieniu ich przez odcinki skonczo-
ne 4s, jako wchodzace w jednakowy sposéb we wszystkie sktadniki row-
nan (94) ulegaja tu redukeji. Sumy dotycza w danym razie polowy tuku.

Wyznaczenie sum 5 powinno na ogél odbywac¢ sie za pomoca wzoru
Simpsona lub Cotesa, jednak probne obliczenie sum z jednej
strony wedlug sposobu Simp s ona iz drugiej drogg zwyktego do-
dawania wykazalo malg tylko réznice w naprezeniach decydujgcych
o wytrzymatosci przepustu.

We wzorach (95)-(102) zostato przyjete wreszcie, ze Y = J, gdyz réznica
miedzy tymi wielko$ciami nie przekracza dla przepustow, jak to wynika
z omowionych dalej obliczen poréwnawczych, nawet jednego procentu.

Wielkosci 3t i I zaleza w sposéb wyrazny od obcigzenia sklepienia,
wobec czego oddzielnie powinny by¢ wyznaczane dla sit pionowych i od-
dzielnie dla poziomego parcia ziemi. W zwiazku z tym dla kazdego z wy-
mienionych rodzajow obcigzen w rownaniach (88)-(91) wspdtezynniki
(95)-(102) zawierajgce I i M sg inne.

Obcigzenie pionowe sklepienia w omawianych obliczeniach poréw-
nawczych wyznacza sie w ten sposéb, iz o$ sklepienia zostaje podzielona

M
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na 8 réwnych czesci dla kazdej polowy iuku, a ciezar kazdego z otrzy-
manych w ten spos6b klinéw sklepienia wraz z ciezarem przypadajacego
na ten klin stupa nadsypki i sprowadzonego do ciezaru ziemi obcigzenia
ruchomego zostaje zaczepiony do Srodka diugosci klina i uwazany jest
za sile P skupiong w tym punkcie (rys. 20 i 21). Wobec tego

EW’::QS’P'shlqg (103)
1

gdzie suma zawiera rzuty na styczng do osi sklepienia w Srodku klina
sit pionowych P’ zaczepionych w $rodku klinéw zawartych miedzy tym
klinem a lewym wezglowiem tuku.

Przy obliczaniu sit 3t od parcia poziomego, sity P uwazamy za sity
poziome, przy czym przyjmujemy, ze

P:cy(h+h’)tg‘~’(45°— 'éi) (104)
gdzie y jest to ciezar jednostkowy ziemi, h zaglebienie Srodka danego
klina pod nadsypka, ¢ rzut osi klina na o$ pionowa, a h” wysoko$é¢ obcig-
zenia nasypu sprowadzona do ciezaru jednostkowego ziemi; M réowna sie
w tym wypadku

f)fi:~2ﬁcos @ . (105)
1
Odpowiednio do tego

Wi=NPigi, M=) Pk, (106)
1 1

gdzie g; wzglednie k; oznaczaja

odleglos¢ linii dziatania sil od

Srodka klina i (rys. 20).

W przypadku obliczenia skle-
pien przepustéw jako pretéw spre-
zystych o krzywiznie matej nale-
zy we wzorach (95)-(102) uwzgled-
ni¢ uproszczenia podane we wzo-
rach (82); oparte jednak na tych
samych  uproszczeniach  wzory
Morscha, Schonhofer a,
M elan a itd nie mogag w danym razie mie¢ bezpoSredniego zastoso-
wania, poniewaz dotyczg jedynie obcigzen pionowych nie uwzgledniajac
poziome]j skladowej parcia ziemi na przepusty.




Po przeprowadzeniu obliczen trzech oméwionych wyzej przepustéw
jako lukéw o duzej i o malej krzywiznie zestawiamy uzyskane wyniki
na wykresach przedstawionych na rysunkach 22, 23 i 24.

Kazdy z powyzszych wykre-
sow zawiera dla pordéwnania
dane dotyczace wszystkich
trzech rozpatrywanych przepu-
stow, co pozwala na wykazanie
wplywu rozpieto$ci sklepienia
na naprezenia i momenty zgi-
najace.

Linie odpowiadajgce prze-
pustom I, IT i III sg oznaczone
na rysunkach odpowiednio ty-
mi cyframi.

Rysunek 22 przedstawia wykres momentéow zginajacych w wyniostych
tukach eliptycznych. Odciete wykresu wyrazaja odlegto$ci od zwornika
liczone wzdluz osi tukéw. Linie pelne odpowiadaja obliczeniu lukéw jako

+.tm

M
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colwlt_
Uil 7
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T s
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21 14y
Pal
I
Stm
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- itm

Rys. 22

pretéw o duzej krzywiznie, a przerywane dotycza obliczen przeprowa-

dzonych w zalozeniu matej krzywizny.

Rysunek 23 przedstawia wykres naprezen o, w skrajnych zewnetrznych
wléknach tukéw, a rys. 24 wykres naprezen o, w skrajnych witéknach we-

30



wnetrznych. Podobnie jak na rys. 22, linie peilne odpowiadaja tu zaloze-
niu duzej, a przerywane matej krzywiznie tukéw.

+ kg/em?®
15

[y

10+~

1

- kg/cm?

Rys. 24

Z podanych w‘ykres()w wida¢, ze najwigksza dla wszystkich punk-
tow sklepienia réznica w wynikach obydwu sposob6w obliczen jest nie-
wielka. Momenty podporowe M , obliczone w obydwu zalozeniach roz-
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nig sie, mianowicie, od siebie nie wiecej niz o 4%, przy czym zarowno
momenty M, jak i parcia H sg wieksze przy obliczaniu tuku jako preta
o duzej krzywiznie niz o matej.

év_tiﬂ
M

o

N @
Q
No|e

I omy
0+ W
51
-+ H 8
- ky/em? 2 =
Rys. 26

Poniewaz, z drugiej strony, wiemy, iz zaréwno wspotczynnik sprezy-
sto$ci, jak 1 inne cechy wytrzymatosciowe betonu wahajg sie dla tego
samego materialu zwykle w szerszych granicach niz wspomniane 4%,
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wynika stad, ze nie jest rzeczq stuszng, aby w obliczeniach przeznaczo-
nych dla celéw praktycznych rozpatrywaé sklepienia przepustow elip-
rycznych jako tuki o duzej krzywiZnie. Dotyczy to tym bardziej przepu-
stow wykonywanych z kamienia.

W dazeniu do uproszczenia obliczenia sklepien przepustéw eliptycz-
nych mozna i§¢ jeszcze dalej i we wzorach (95)-(102) przyjmowac stale,
ze cos ¢ =1, a sin ¢ = 0, przy czym uproszczenia te zmniejszaja momen-
ty M, oraz parcia poziome H. Wplyw ich na momenty w poszczego6lnych
przekrojach tuku przedstawiony jest dla przepustu o rozpietosci I = 3,74 m
(typ II) na rys. 25 linig przerywano-punktowang.

Odpowiednie wykresy dla o, i o, podane sa na rys. 26 i rys. 27.

+ | kg/em?

Znaczne wreszcie uproszezenie wprowadza w obliczenia zatozenie, ze
0$ sklepienia nie ulega skrétowi, tj. ze we wzorze (85) Ads==0, co sto-
sowane jest np. prawie zawsze w obliczeniu ram zelbetowych.

Wielkosci momentéw M, przy pominieciu Ads i bez tego pominiecia
rowne sa dla kolejnych rozpietoSci:

I Ms=—0,80 tm, Ms=—0,76 tm,
II Mj,=——8,61 tm, Ms=—28,52 tm, (107)
IIT Mjs=-—9,41 tm, My,=—9,58 tm.
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Odpowiednio do tego dla parcia poziomego H otrzymujemy tu:

I H=—449t, H=—431t,
II H=—491t, H=—4,46 t, (108
II1 H= + 6,36 t, He= N6 008 I

Z powyzszego wynika, ze zalozenie A4ds=0 w obliczeniu statycznym
sklepienia eliptycznego daje bledy do 10%, co odpowiada wielkoSci bie-
déw wyplywajacych z podobnej przyczyny w obliczeniach ramownic.
Zalozenie to usuwajace jednocze$nie z zadania wielkos$ci sin ¢ i cos ¢ po-
woduje na ogél mniejsze btedy niz samo zalozenie sin ¢ =0 i cos ¢ =1;
wobec tego stosowanie samodzielne tego ostatniego zalozenia nie jest rze-
czg celowa.

Z powodu znacznego zaglebienia przepustow pod torem kolejowym
lub drogg spo$réd dziatajgcych na nie obciazen gléwna role odgrywa
parcie ziemi.

Przepust [=2,14
+ kg/em? 6,

400
509 ——— 6
i \\ 2

10
1352
1 35°%

40°
35°

Rys. 28

Z punktu widzenia statyki budowli ziemia jest materialem bardzo
roznorodnym, przy czym poszczegélne gatunki ziemi charakteryzujg sie

w przypadku parcia geodynamicznego przede wszystkim katem tarcia
wewnetrznego .

34



Wykresy na rys. 28-30 zawierajg wyniki obliczenia momentéw zgi-
najacych i naprezen w poszczego6lnych przekrojach poprzecznych dla prze-
pustéw typu I, IT i III i dla katéw tarcia wewnetrznego = 30°, » = 35°,
v = 40°.
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Rys. 29

Z wykresow tych wynika, ze wielkos¢ kata y ma bardzo znaczny
wplyw na naprezenia krawedziowe w przepustach. Wida¢ z nich poza
tym, ze wplyw ten odbija sie na naprezeniach nie zawsze w tym samym
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kierunku. O ile, mianowicie, w przepuscie o rozpieto$ci ! = 5,870 m
zmniejszenie kata » wywoluje zwiekszenie decydujacego w danym razie
najwiekszego w przepuscie naprezenia rozciggajacego, o tyle w przepu-

2
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Rys. 30

stach o rozpietos$ciach I = 2,140 m i | = 3,740 m zauwazymy zjawisko od-
wrotne, czyli ze zmniejszenie kata ¢ wywoluje tu zmniejszenie najwiek-
szego naprezenia rozciggajgcego.

Podobne zjawisko jest grozne dla bezpieczenstwa przepustéw elip-
tycznych, gdyz katy » ulegaja powaznym wahaniom w zalezno$ci od ro-
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dzaju ziemi oraz od stopnia jej jednorodnosci i wilgotnosci, a wobec po-
wyzszych zestawien nie zawsze przyjecie w obliczeniach mniejszego o
zwieksza jego bezpieczenstwo. Mozna to sobie w ten sposob wytluma-
czy¢, ze ziemia wywierajac parcie poziome na sklepienie do pewnego
stopnia podirzymuje je i pomaga mu niejako utrzymaé pionowe cis$nie-
nie ziemi; w tych warunkach parcie najwieksze odpowiadajace min. ¢ nie-
koniecznie musi by¢é najgrozniejsze dla sklepienia.

Spos6b dziatania parcia ziemi na sklepienia przepustéow eliptycznych
jest do$é nieokres$lony rowniez z tego powodu, ze parcie na sklepienia
moze by¢ przewaznie tylko wyznaczone dla stanu réwnowagi granicznej,
tj. jako parcie geodynamiczne. W przypadku za$§ parcia geostatycznego
moze ci$nienie ziemi w kierunku pionowym zgota inaczej ustosunkowac
sie do parcia poziomego, nizby to mozna bylo ustali¢ z obliczen dla da-
nego kata .

Z powyzszych rozwazan wynika, ze przy projektowaniu przepustéw
eliptycznych nalezy szczeg6lna uwage zwroéci¢ na ustalenie sposobu par-
cia ziemi na sklepienie. Natomiast obliczenie przepustéw eliptycznych
jako tukoéw o matej krzywiznie jest tu caltkowicie dopuszczalne.

II1. LUKI KOLISTE

0§ luku w ksztalcie odcinka ma znaczne zalety artystyczne i bu-
dowlane. :

Ze statycznego punktu widzenia tuk kolisty nie jest na ogét wygodny,
gdyz réwnanie odcinka kolowego odniesione do jego cieciwy jako do
osi X-6w i do prostej do niej prostopadiej jako do osi Y-6w jest trudne
do catkowania, taki za§ wiasnie uktad wspoélrzednych narzuca zwykle ob-
cigzenie tuku.

W tych warunkach catki wchodzace do obliczenia statycznego tuku
kolistego musza by¢ przewaznie wyznaczane w sposoéb przyblizony droga
zastgpienia mieskonczenie matych odcinkéw osi tuku d s przez mate odcin-
ki skonczone.

Kolista 0§ tuku ma jednak wysoce uzyteczna, w danym razie wazna,
wlasnosé geometryczng w postaci statosci promienia krzywizny. Wilasnose
ta pozwala na daleko posuniete usprawnienia w obliczaniu statycznym,
w szczegdlnosci na sprowadzenie obliczenia droga ujecia wynikéw w ta-
blice i sporzadzenia odpowiednich wykreséw do niewielu kroétkich i pro-
stych manipulacyj.

Bedziemy tu rozpatrywali tylko tuki o stalym przekroju poprzecznym
pomijéjac wplyw sit podtuznych na wielkosci statycznie niewyznaczalne,
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poniewaz luki koliste majg przewaznie badz przekroj staty (fuki stalowe),
badz stabo sie zmieniajacy (tuki zelazo-betonowe), a wpltyw sit podtuznych
na wielkoSci statycznie nadliczbowe ujawnia sie wyrazniej tylko przy
matych wyniosto$ciach; tak wiec np. przy {=0,300 wplyw ten wyraza
sie juz zaledwie liczba 0,1%. Zreszta przytoczone nizej sposoby postepo-
wania moga by¢ rozszerzone réwniez i na tuki o przekroju zmiennym
oraz na tuki, w ktérych obliczenia sit podtuznych pomijane byé nie moga.

Mozna tu rowniez positkowa¢ sie funkcjami @ i parametrami g omo-
wionymi w rozdziale I i ustawionymi dla tuku kolistego *).

Bierzemy pod uwage odcinek AB preta kolistego utwierdzony w punk-
cie A plaszczyzny AO normalnej do jego osi (rys. 31). Prostg AO przyjmu-
jemy za os X-6w, a prosta do niej prostopadla i przechodzacg przez punkt
A za 0§ Y-6w. W odlegtosci AO réwne]
promieniowi osi preta r przeprowadza-
my prosta OK réwnolegta do osi Y-6w.
Kat ¢ miedzy prosta OK a dowolnym pro-
mieniem odcinka kola oraz promien r
odgrywaja tu role wspolrzednych bie-
gunowych zadania. W danym przypad-
ku r = const.

Przez uw i v (rys. 32) przedstawiamy
(w skali mocno skazonej) dodatnie prze-
suniecia punktu B w kierunkach réw-
noleglych do osi wspolrzednych AX
i AY. Przez o oznaczamy tu dodatni obroét przekroju poprzecznego preta
w punkcie B (zwrot strzatki).

Przyjmujemy dalej, ze w punkcie B zaczepione sg dwie sily réwno-
legle do osi wspoéirzednych N, i N, oraz moment Mp, przy czym zwroty
tych wielko$ci wskazane sa na rys. 33. Wskazane tu sa roéwniez zwroty
dwu sit P, i P, zaczepionych w punkcie C i réwnolegtych do osi wspol-
rzednych.

Wielkosci u, v i @ obliczamy ze wzorow Bresse’a, ktore w danym
przypadku przybieraja postac

Rys. 31

u::-:——"(b——yi Ideg, (109

0

&y

v=[(a—x)Ady (110}
0

*) Por.J. Czulak, Eukikoliste we wspotrzednych prostokagtnych, Arch. Mech
Stos., 1950.
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o= [Addg, (111)
J

gdzie s oznacza diugosé tuku.

Znaki algebraiczne wzorow (109) - (111) odpowiadaja kierunkom prze-
sunie¢ i obrotéow przedstawionych na rys. 32. Katy Ad¢ przedstawiajace
wzajemne obroty dwu plaszezyzn ograniczajacych nieskonczenie maty
odcinek osi tuku d s majg te same zwroty co katy .

Rys. 32 Rys. 33

Dla katow |dg¢ przyjmujemy uproszczone wyrazenia

qur:M (112)

By 9s,

nadajace sie jednak zawsze do obliczenia tukéw o matej krzywiznie, tzn.
o duzym stosunku 7 : e promienia do grubosci tuku.

Do wzoréw (109)-(111) wstawiamy ds=rd . Poniewaz tu promief r
jest wielkosScig stalg, wiec granice calkowania od 0 do s powinniSmy za-
stgpié przez granice od ¢, do w/2 (rys. 31).

W przypadku zaczepienia w punkcie B sity N, moment zginajacy
w pewnym punkcie preta kolistego (przy wspoirzednych x, y) réwna sie

M= N,(b—1y). (113)
Odpowiednio dla sity N, mamy

M=—Ny(a—x). (114)
Wreszcie, przy obcigzeniu preta w punkcie B momentem Mg,

M = Mg . (115)
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Wobec przyjetego znakowania sit i momentéw zalezno$¢ miedzy zwro-
tami sit i momentéw, z jednej strony, a zwrotami przesunie¢ i obrotow,
z drugiej, przybierze posta¢ przedstawiong na rys. 33.

2
¥

Rys. 34

Po wstawieniu momentéow (113), (114) i (115) we wzory (109)-(111)
1 po wykonaniu catkowania w granicach wskazanych wyzej otrzymujemy
dla przesunie¢ u i v oraz obrotéw o w przypadkach przedstawionych na

rys. 34 wzory nastepujce:
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Przypadek 34a

er3 1 Tt 3 >
N __ e . e
Y =""EJ [2 (,2 7o) + g sin 29,
Tt ¢ ’ N Td
— 2 cos @, + (E — (po) cos® rpﬂl = — U I;J .
Przypadek 34b
s 1 ) ‘
vV = E; lsin P05 (% ——(po) sin 2 ¢, +
= e o [0 it
€S 2@y — -5 COS” o | =V~
Przypadek 34c
era [ : T rNx TZ
e I R = el e==al 28
0y ="p7 sing, —1 + ( 9 (pO)COS(pO O g g
Przypadek 34d
) I\Iy'r3
W=Ypy
Przypadek 34e
Ny |1 . . , Nyr?
o= E{'J -2«(323 %\)-— —sin 2 g, + sin® %' =—uv, —é’—j
Przypadek 34f
J Ny rd . ' Nyrd
VTR e — . e el
i = £ |9 ( 9 (po) sin g, 57

Przypadek 34g

u ==, M; Jr
Przypadek 34h
) MBTZ
% =9 gy
Przypadek 34i
N_Mpr(=n : » Mp7
0= (2 T

(116}

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)
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Ze wzorow (116)-(124) wynika, ze kazde z przesunie¢ uogoélnionych
ujetych w schemat na rys. 34 moze by¢ przedstawione jako wziety ze
znakiem -+ lub — iloczyn odpowiedniej sity uogélnionej przez jedng
z wielko$ci o 2 )
EJ]’ EI'  EJ (125)
i przez jeden z 6 wspolczynnikow u, v, o, v,
od kata ¢,. '

Jezeli sily zaczepione sa nie do koncowego przekroju preta koliste-
go B, lecz do ktérego$ z przekrojow posrednich C i jezeli kierunki tych
sil (sity Py i P,) sa takie, jak to jest
wskazane na rys. 35, wéwczas zwroty
przesunie¢ i obrotéw przekroju C mo-
o ga by¢ ujete w schemat przedstawiony

na rysunkach 36a do 36f.

Na rysunkach 34 i 36 przesuniecia
zostaly podane wraz z ich znakami alge-
braicznymi.

}, % Wyznaczenie przesunie¢ i obrotéow

0 przekroju C odbywa sie wedlug tych

Rys. 35 samych réwnan co wyznaczenie prze-

sunie¢ i obrotéw przekroju B, przy

czym calki oznaczone (109), (110) i (111) musza by¢ obliczane w granicach
od ¢a do 7/2 (rys. 35). Ta droga dochodzimy do wzoréw nastepujacych:

w,, w, zaleznych tylko

=k

Przypadek 36a

P 7 (126
Uy = U s )
Przypadek 36b
pP— g Ex (127)
A “EJ
Przypadek 36¢
i (u;r PE ;- (128)
Przypadek 36d
. , NyT:‘ s
u‘(, =, 2+ (129)
Przypadek 36e
, , Py rli .
v! = —v), i (130)
Przypadek 36f 2
Py By (131)
() — WRT
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Wspolczynniki u,, v, o, i w"v, w, wchodzace we wzory (126)-(131)
tym réznig sie tylko od wspolczynnikow we wzorach (116)-(124) oznaczo-
nych w ten sposob, ze przy obliczeniu pierwszych byly wstawione w row-
nania (116), (117), (118), (120), (121) i (124) zamiast katow ¢, katy ¢, Po-
niewaz wielkosci ¢, i ¢, sa tylko pewnymi wartoSciami szczegblnymi kata ¢
(rys. 31 i 35) zawartego miedzy 0 a /2, przeto wspdlezynniki ul, v
Wy U, w'y, oy, zardbwno wchodzace we wzory (126)-(131), jak i wchodzace
we wzory (116)-(124), wyrazaja te same funkcje tego samego kata ¢ od-
powiadajacego odcinkowi kota KB lub KC (rys. 31). Przy ujeciu wymie-
nionych wspodlczynnikéw w tablicy wygodniej jest przedstawié je nie jako
funkcje kata ¢, lecz jako funkcje kata @ = (7/2) — ¢.

Potwierdzaja to zreszta dalsze rozwazania.

Zakladajac kolejno @ = 0°, 5°, 10°, 15°, ..., 100° otrzymujemy na pod-
stawie rownan (116), (117), (118), (120), (121) i (124) tablice 7 i 8.

Tablica 7 Tablica 8
’ ' 1 I ' ' | ’
a° U, Vi o [CXN i v, w, ! W

0 0,00000 | 0,00000 0,00000 0 0,00000 0,00000 0,00000
5 0,00022 0,00001 0,00380 5 ‘ 0,00000 0,00022 0.,08727
10 0,00175 | 0,00019 0,01512 10 } 0,00001 0,00177 0,17453
15 0,00580 | 0,00097 0,03369 15 | 0,00016 0,00594 0,26180
20 0,01342 0,00297 0,05908 20 | 0,00068 0,01400 0,349017
29 0,02539 0,00711 0,09071 25 [ 0,00203 0,02717 0,43633
30 0,04222 | 0,01430 0,12783 30 I 0,00498 0,04655 0,52360
35 0,06402 0,02563 0,16953 35 0,01056 0,07319 0,61087
40 0,09055 0,04205 } 0,21479 40 0,02013 ‘ 0,10799 0,69813
45 0,12118 0,06441 | 0,26247 45 | 0,03540 | 0,15175 0,78540
50 0,15495 0,09332 0,31128 50 | 0,05829 | 0,20510 0,87266
55 0,19056 0,12908 0,35991 55 0,09100 | 0,26855 0,95993
60 0,22646 0,17155 0,40691 60 0,13588 0,34243 1,04720
65 0,26099 0,22020 0,45079 65 | 0,19531 0,42686 1,13446
70 | 0,29239 0,27389 0,49007 70 0,27169 0,52183 1,22173
75 | 0,31896 | 0,33110 0,52322 75 0,36718 0,62713 1,30900
80 | 0,33919 0,38966 0,54870 80 0,48371 0,74235 1,39626
85 | 0,35187 0,44694 0,56504 85 0.62281 0.,86689 1,48353
90 | 0,35620 | 0,50000 0,57080 90 0,78540 1,00000 1,57080
95 | 035185 0,54539 0,56458 95 0.97189 1,14071 1,65806
100 | 0,33923 0,57960 0,54517 100 1,18181 1,28789 1,74533

Zalezno$ciom zachodzacym miedzy poszczeg6élnymi wspoiczynnikami
w,, v, 0, v, o, o, a katami @ mozemy nada¢ posta¢ krzywych przed-
stawionych na rys. 37.
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Przytoczone krzywe wskazuja, ze przy wyznaczaniu wspoiczynnikow
u,, v, o, v;, ), w, dla wielkosci kata @ nie zawartych w tablicach 7 i 8
interpolacja liniowa miedzy warto$ciami podanymi w nich jest uzasadniona.

Wezmy dalej dla przykladu tuk kolisty w dwéch koncach utwierdzo-
ny (rys. 38), obciazony sita skupiong P zaczepiona w punkcie C i skiero-
wang prostopadle do cigciwy tuku
tgczacej srodki podpdr.

Na rys. 39a przedstawiony jest
zastepczy schemat statycznie wy-
znaczalny tuku. Jest nim pret ko-
listy utwierdzony w koncu A i ob-
cigzony poza sila P sitami H i Rp
oraz momentem Mp zaczepionymi
w punkcie B na swobodnym kon-
cu preta. Sita H dziala tu w kierunku cieciwy AB, a sila Ry w kierunku
do tej cieciwy prostopadiym.

Na rys. 39b przedstawione sg przesuniecia ug i vg konca B preta AB
i odpowiedni obrét wp przekroju poprzecznego tego preta w punkcie B.
Wielkosci te sa wszystkie, z jednej strony, znanymi funkcjami sit H i Rg
oraz momentu Mp, z drugiej zas ro6wne sg zeru.

w

Rys. 38

p Uklad przedstawiony na rys
39 moze by¢ uwazany nie tylko
za schemat zastepczy tuku bez-
przegubowego (rys. 38), lecz
rowniez za schemat zastepczy
wielu innych uktadéw iuko-
wych, np. luku dwuprzegubo-
wego (rys. 40a) lub tuku w jed-
nym koncu utwierdzonego, a w
drugim swobodnie podpartego
(rys. 40D).

Na przesuniecia uog6lnione
up, vg 1 wp skladaja sie przesu-
niecia punktu B, ktére sa spo-
wodowane zaréwno przez sile P,
jako tez i przez sity uogblnione
H, Rp i Mp.

Aby nawigza¢ do schematéw podanych mna rys. 36 rozkladamy site P
zaczepiong w punkcie C na sily P i P, rownolegle do osi wspéirzednych
na tych schematach.

Bedziemy w dalszym ciagu zgodnie z rys. 31 oznaczali warto$¢ kata 6,
odpowiadajaca tukowi AB, przedstawionemu na rys. 38 przez ©,, a warto$é

Rys. 39
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kata @, odpowiadajaca odcinkowi tuku AC, przez 6,; w razie wiekszej licz-
by sit P i punktéw C bedziemy odpowiednio stosowali oznaczenia @,,0,,0,
itd., ogdlnie 6O,.

Przy podobnych oznaczeniach
znajdujemy (rys. 41)

.P\ — P COS%Uy (132}
. psm%’, (133)

odpowiednie za$ przesuniecia punk-
tu C, przesunigcia uf i u) réwnolegle
do osi X-6w i Y-6w mozemy tu obli-
czyt ze wzorow (126)-(131).

Na przesuniecia s/ i s) punktu B
spowodowane dziataniem sity P skta-
daja sie ro6wnolegte do osi wspdirzed-

Rys. 40 nych przesuniecia punktu C oraz

przesuniecia punktu B powstale

przez obro6t odcinka tuku CB wzgledem punktu C o kat obrotu przekroju
poprzecznego w C, wywotany przez sity P. Mamy wiec (rys. 42)

sp=ul+ul —(of + ) (b—y,), (134)
si=wvE ol L (w! Soliilc—a )t (135)

Przed wyznaczeniem przesunie¢ punktu B spowodowanych przez si-
ly Hi Rp oraz moment Mp, zaczepione w tym punkcie, nalezy obliczy¢ si-
ty N. i Ny i odpowiednie przesunigcia rownolegte do osi X-6w i Y-6w,
przewidziane we wzorach (116)-(124). Sity N i N, znajdujemy droga rzu- ;
towania na ich kierunki sit H i Rp dzialajacych wzdtuz cieciwy AB i do
niej prostopadle. Otéz z rys. 43 wynika, ze

Nx=Hsin%+RB cos%, (136)
Nyr—Hcos%—f— RBsin%. . (137)

46



Rozumiejac, jak poprzednio, odpowiednio przez s i s) sumy roéwnoleg-
lych do osi X-6w i Y-O0w przesunie¢ punktu B (w sensie schematéw rys.
32 i 34) znajdujemy, ze

N uN Ly gy
sy =uy + u) + uf, (138)

sy = vy + ol 4-of. (139)

1(r-6,) ®

v / l
@ | ™~ :
'r \ X | ’/ \

A

Rys. 41 Rys. 42

v Ly

T

W rezultacie przesuniecia s, i sy punktu B, réwnolegle do osi wspoi-
rzednych, spowodowane przez jednoczesne dziatanie sity P, sit H i Ry
oraz momentu Mp wynoszg

s, = sh+ sV =ul+ul +ul +u) +uy — (0! + o)) (b—y,), (140)
s, =85+ sV =vf Lol Lol ol tof + (0] +of) (@ —a,).  (141)

Przy wiekszej liczbie sit P nalezy tu wstawi¢ zamiast s i s! sumy
2sP i Xs! dotyczace wszystkich sit P.
Do wzorow (140) i (141), jak to wynika z rys. 42, mozemy wprowadzic

b—yc=r(sin®,—sin6,), (142}
a— x.=r7(cos@, —cosB,). (143)

Do wyznaczenia przesunie¢ ug i vg (rys. 39b) tuku w kierunku cieci-
wy AB i w kierunku do niej prostopadlym dojdziemy droga rzutowania

47



na te kierunki przesunie¢ s, i s (uktad osi X, AY,). Na podstawie rys. 44
znajdujemy wiec, ze

. B O
Uy = S, sin '7'2} + sy cosj’, (144)
© o,
VB = — S, COS —29 + sy sin —2‘»’ . (145)

Obrot koncowego przekroju poprzecznego B tuku AB znajdujemy ja-
ko sume katéw obrotu tego przekroju spowodowanych przez sity Py, Py,
N., N, i moment Mg, albo tez przez réwnoznaczny uktad sit H, Rg i Mjp.
Jest to wiec kat obrotu

P

P N
wp = w, + w, + 07+ o

¥t (146)

Rys. 43

Na podstawie wszystkich powyzszych rozwazan mozemy przedsta-
wic przesuniecia ug i vg oraz obrét wp pod postacig

up=f,(H,Rp,Mp), (147)
vp=7F,(H,Rp,Ms), (148)
ws=F,(H,Rs,Mp). (149)

Z warunkow brzegowych tuku bezprzegubowego (rys. 38) wynika, ze
ug=0, . wvp=0, wp =0, (150)

skad mamy trzy roéwnania do wyznaczenia wielkos$ci statycznie niewy-
znaczalnych H, Rg i Mp.
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Wobec catkowitego utwierdzenia przekroju B (rys. 38) moglibySmy
tu zastgpi¢ dwa pierwsze z réwnan (150) przez réwnania

Su ::0, 31‘:0, (151

dzieki czemu odpadiaby konieczno$¢ zastosowania operacji wyrazonej
wzorami (144) i (145).

Aby jednak zachowa¢ ogélno$¢ schematu rys. 39, nie bedziemy sie tu
uciekali do takiego uproszczenia. :

Aby wyznaczy¢ wspélczynniki réwnan liniowych (150), musimy,
z jednej strony, ustali¢ zalezno$¢ miedzy wyniostoscia tuku a katem @,
z drugiej za$, zalezno$¢ mie-
dzy odcieta punktu C zacze-
pienia sity P w uktadzie
wspo6irzednych X, AY, a ka-
tem 6,.

Pierwsza z wymienionych

zalezno$ci wyplywa bezpo- ) Ot T 3"5 T
srednio z rys. 45 i przedsta- ~— < — 7/_,
wia sie w sposéb nastepujacy: NG ’v\f;{;f\//:
\ ‘:\‘5//
tg O, =2, (152)
E Rys. 45

gdzie { = f/l, tzn. rowna sie stosunkowi strzatki tuku do jego rozpieto-
$ci (wyniostose tuku).

Druga zalezno$¢ otrzymujemy réwniez z rys. 45 majac na uwadze,
ze kat CAC’ réwna sie 1/2 (@,— 6,). Zaleznos¢ ta ma postaé

x,= 27 sin L cos 9y —6x
By = ; =1

(153)
gdzie x, = AC’ jest odcieta punktu zaczepienia sity prostopadiej do cie-
ciwy tuku w ukladzie X, AY,.

Przy rozwiazywaniu réwnania (153) zwykle wielkosci x, i @, sg zna-
ne, wielko$¢ za$ O, niewiadoma. Z wykresu O, = F (x) wynika, ze nie
rozni sie ona wiele od linii prostej, wobec czego mozna przyja¢ poczat-
kowo, ze

0. =0, 11'

. (154)

po czym wstawiajagc wartosci (154) w rownanie (153) znalezé dokladniej-
sza warto$¢ O .
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Zaleznos$¢ (153) jest ujeta w tablice 9 i 10 utozone dla katow €., zmie-
niajacych sie co 5° i dla katéow 6, zmieniajacych sie co 10°. Ostatnie
ttumaczy sie tym, ze krzywe 6@, = F (x) odpowiadajgce réznym katom &,
przechodza blisko siebie i tworza katy bardzo ostre. Stosunek x,/2r mo-
ze byé dla katéw 6@, i O, nie zawartych w tablicach 9 i 10 otrzymany
droga interpolacji w dwoch- kierunkach.

Tablica 9 Tablica 10
Stosunek X : 27 Stosunek x;:2r
dla katow Oy i 6, réwnych: dla katow 6Gx i 6, rownych
N % 500 | 60 70° o g 30 100
0, S i -~ \'\\

0 ‘ 0,0000 0,0000 0,0000 0 | 0,0000 0.0000 0.0000

5 0,0403 0,0387 0,0368 & 0,0346 0,0322 0,0295
10 0,0820 ' 0.07%0 0,0755 10 0,0714 0,0668 0,0617
15 0,1244 0,1203 0,1158 15 0.1102 0,1036 0,0956
20 0,1677 0,1631 0,1573 20 0,1503 0,1421 0,1330
25 0,2113 0,2065 | 0,2000 25 | 0,1921 | 10,1827 0,1718
30 0,2549 0,2502 0,2430 30 0.2345 0.2243 0,2120
35 0,2979 0,2934 0,2866 35 0.2774 0,2665 0,2535
40 0,3410 0,3365 0,3303 40 | 0,3213 0,3100 0,2561
45 0,3823 0,3791 0,3739 45 0,3651 0,3535 0,3392
50 0.4226 0,4210 0,4160 50 0.4085 0,3971 0,3829
544) 0,4613 0,4580 55 0.4516 0,4403 | 0,4270
60 0,5000 | 0,4981 60 0,4924 0,4829 0,4698
65 0,5368 65 0,5325 0,5250 0,5125
70 . 0.5736 70 00,5715 0.5650 0.5548
75 75 0,6081 0,6035 0,5945
80 80 0,6428 0,6396 0,6320
85 85 0,6749 0,6698
S0 90 0,7071 0,7048
95 95 0,7365
100 100 0,7660

Aby doprowadzi¢ réwnania (150) do ogélnej postaci réwnan linio-
wych, musimy kolejno wykonaé¢ czynnosci nastepujace:

(1) wprowadzi¢ we wzory dla przesunie¢ (116)-(124) zamiast sit N, i N,
ich warto$ci ze wzorow (136) i (137), a we wzory (126)-(131) zamiast sit
P; i P, ich wartosci ze wzoréw (132) i (133),

(2) przeksztalcone w ten spos6b wyrazenia na przesuniecia wstawic
we wzory (134), (135), (138) i (139), a otrzymane stad wyrazenia dla
s, sl’, sY 1 s) we wzory (140) i (141),

(3) na podstawie wielkosci s”, s/, sV i s ustawi¢ wyrazenia (144)
i (145) dla up i v?,
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(4) wyrazenia na obroty otrzymane w spos6b podany pod (1) wsta-
wié we wzér (146) dla kata obrotu ¢4,

(5) wreszcie ustawié trzy réwnania (150).

Dochodzifny w ten spos6b do nastepujgcego ukladu réwnan:

a,H+b,Rpg+c¢,K+4d,P=0, (155)
a&H+b,Re+c, K+d,P=0, (156)
a,H+b,Rg+c, K+d,P=0, (157)

gdzie K = Mp/r.
Wspotezynniki a, b i ¢ otrzymuja tu wyrazenia nastepujace:

' (. r { 9 o )
a, = — u, sin? ,,)2;) + u,sin@;— v, cos® Oé‘ ; (158)
. b D
b,=u,cos O, + 9 (v, —u,)sin@,, (159)
D Og
¢, =—w, sin 3" +,cos ,2,L . (160)
a—=—b,, (161)
b, =u/, cos* %' +v, sin @, +v, sin® %’ . (162)
¢, = o, oS %’ + o) sin O ; (163)
a,=——c¢,, (164)
b.’& - c2 ) (165)
CE— (u;, . (166)

3

We wszystkich wyrazeniach (158)-(166) funkcje kata @, jakimi sg
wspblezynniki u,, v,, w,, v,, 0, i ©, powinny by¢ obliczone przy @ =6,
Wspolezynniki d,, d, i d, przybieraja posta¢ nastepujaca:

d,—=—t—m/(cos ® —cos @,) + n(sin @, — sin ), (167)

gdzie

: L o 0N
t=v, cos6+ (v,—u,)sin@,,
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' o I
m= o, cosZE0 + 5 ©,sin6,,

1 ’ ! @
—_ in 6 in2 =2
n w, sin' @, + o, sin* =,

2
dy =—2—n(cos Oy —cos@,) — m (sin®, —sin O,) , (168)
gdzie
. - o0 . )
z=u, cos® 5" + v, sin6, +v| sin
oraz
d;=— w cos O o, sin 2o, (169)
3 7 92 ! 2
18 s W  wyrazeniach (167), (168)
s e LT T T 7 i (169) funkeje ul, v, o), v, o
17|— Skala dia | Skatz dia Agn  » S dunkeleiu,, v, @, v, 0,
Ne; | by=-a, 4 i w, powinny by¢ obliczone dla
16— 2)c,=-a t——t—-r— 0)p /i 4322 7 o
ST e 7 1 kata ©® =0,, w szczegdlnosci przy
YT s T T A / ¥ jednej sile P dla kata @ =06),.
1 Dla tukéw o r6znych warto-

Sciach | i {, a wiec i réznych 6,,
wspoélczynniki @, b, ¢ moga byé
uwazane za funkcje jednej zmien-
nej 0O, (kata srodkowego tuku),
wspolezynniki za§ d za funkcje
dwoéch zmiennych @ i 6..

Tablice 11 i 12 zawieraja
wspoblczynniki a, b, ¢ dla kgtow 6,
zmieniajgcych sie co 5° w granicach
od 45° do 100°.

. Zaleznos¢ wspolczynnikow a, b, ¢
od kata 6@, przedstawiona jest na
rys. 46.

Z wykresu tego wynika, ze
interpolacja liniowa miedzy tabli-
cowymi wartoSciami kata- @, daje
dla zagadnien praktycznych wyniki
dostatecznie Sciste.

Przypusémy, ze w pewnym przypadku luku kolistego bezprzegubo-
wego { = 0,175, a odcieta punktu zaczepienia sity x = 1/4.

Ze wzoru (152) znajdujemy © =T7°10".
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Z tablic 9 i 10 badz ze wzoru (153) otrzymujemy &, = 20°25".

Tablica 11 Tablica 12
T : T
6, a; b, Cy 6y b, | Cy ‘ C;

— e o - ,IA e ~ V“‘ —_— 77} e e T L e 7‘ —
45 — 0,00243 | 0,01521 0,03976 45 ‘ 0,15415 [ 0,30056 | 0,78540
50 — 0,00407 | 0,02297 0,05433 50 y 0,20917 | 0,36880 0.,87266
55 0,00649 0,03326 0,07202 55 | 0,27507 ‘ 0,44324 0,95993
60 0,00996  0,04656 0,09309 60 | 0,35239 | 0,52362 | 1,04720
65 —0,01471 | 0,06330 0,11780 65 } 0,44158 | 0,60954 | 1,13446
70 |—0,02113 | 0,08395 | 0,14637 70 - 0,54295 ‘ 0,70075 | 1.22173
75 —0,02949 | 0,10899 1 0,17901 75 | 0,65665 | 0,79687 ‘ 1,30900
80 —0,04026 | 0,13882 | 0,21597 80 | 078264 | 0,89751 ‘ 1,39626
85 — 0,05391 | 0,17391 0,25740 85 | 0,92077 ‘[ 1,00225 | 1,48353
90 —0,07080 ‘ 0,21460 J 0,30349 90 | 107080 | 1,11073 | 1,57080
95 — 0,09154 | 0,26130 0.35440 95 1,23220 i 1,22244 | 1,65806

100 —0.11657  0,31424 , 0,41022 100 140447 | 1,33701 1,74533

| | |
! | |

Wyznaczamy z tablic 7 i 8 wspétezynniki u, v, o dla @ =06, —=T7°10":

u, = 0,3286, vf‘,:0,4140, ]
v, = 0,3564, m_;, —0,6759, (170)
o —1.5353" w, = 1,3468 . '

W dalszym ciggu wyznaczamy z tych samych tablic 71 8 wspoéiczyn-
niki w, v, o dla @ =6, = 20°25":

w, = 0,01421, v), == 0,00069,

v, =0,00333,  o,=0,01493, (171)
o, = 0,06148, wp = 0,35633 I '
Z tablic 9 i 10 znajdujemy:
4, =—0,0339, @, =0,1213,  a,=0,1945,
b, =0,1213, b,=0,7097, b, = 0,8400, (172)
¢, = 0,1945 , c, = 0,8400,  c,— 1,3468.

Wchodzace we wzory (167), (168) i (169) funkcje katowe przybieraja
w danym razie wartoSci nastepujace:

sin @, = 0,97502 , sin 62" = 0,62365 , |

G
sin? ;ﬁ: 0,38894 | cos @, = 0,22212, ! (173)
cos (;vo — 0,78170, cos® (;" —0,61105.



Poniewaz (sin 6, — sin 6,) = 0,62617, a (cos &, — cos O,) = 0,71506, wiec
znajdujemy:

t==-—10,00587  m=0,04485, n = 0,03578 (174)
d, = —0,00380,
z=0,01210, (175)
d, = 0,06576
d, = — 0,05737 . (176)

W ten sposéb nadajemy rownaniom (155), (156) i (157) postaé:

—0,03390 H -+ 0,12130 R + 0,19450 K — 0,00380 P = 0, l

—0,12130 H +0,70970 R -+ 0,84000 K — 0,06576 P — 0, (177)
0,19450 H -+ 0,84000 R + 1,34680 K — 0,05737 P = 0. '
Z rownan tych otrzymujemy:
H=0,7726 P, Rz =0,1612 P, Mp=Kr—=0,0430 PL. (178)
Na podstawie réwnan réwnowagi obliczamy w dalszym ciagu
Ra=—P—Rp=0,8388P, (179)
Ma= Mg+ Rpl =—0,0458 PL. (180)

W przypadku luku dwuprzegubowego o tym samym obcigzeniu, roz-
pieto$ci i wyniostosci co wyzej omowiony tuk bezprzegubowy bedzie-
my mieli ten sam schemat zastepczy rys. 39, co w przypadku poprzed-
nim. Tu jednak, jak to wynika z roéwnan statyki, K =0 a Rz = 0,25 P.

W przypadku tuku dwuprzegubowego z trzech rownan (150) potrzeb-
ne nam jest tylko pierwsze, tj. rownanie ug = 0.

Z roéownan (155), (156) i (157) zachowuje wiec moc w danym przypad-
ku tylko réwnanie (155). Wstawiajac tu przytoczone wyzej wartosci dla
K i Rp znajdujemy’ :

—0,03390 H +0,12130 - 0,25 P—0,00380 P =0, (181

skad otrzymujemy, ze H = 0,782 P.
Latwo sie zorientowa¢, ze tablice i wykresy tego rozdziatu, uspraw-
niajace obliczenie statyczne tukéw o stalym przekroju, moga by¢ roz-

szerzone i na tuki koliste o przekrojach zmiennych, o ile tylko zmien-
no$¢ przekroju poddana jest pewnej okreslonej regule.
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PeswomMme
HAITPABJIEHUA BO3MOMHBIX YIIPOIIIEHUH B PACYHETAX APOH

Hacrosamas pabora moCBAIIEHA YIPOLIEHMAM B O00JACTM CTATUIECKUX
pacueToB, KacaOLIMXCA CAMbIX BAXKHBIX, C TOYKM 3PEHMSA CTPOUTEJIHHON
MeXaHMKM, (POPM apoK, a MMEHHO: MapaboMdecKyX, SFIMITIYECKUX ¢ Bep-
TUKAJIBHON OOJIBIIET OCBIO 9JIJIMIICA M KPYTNOBBIX,

CraTuyeckyue pacdeThl apok B hopMe mapabossl BrOPOTO MM TPETHETO
nopsgKa MPUBOAAT K OIPE/IeJIEHHBIM MHTErpajaM, HeTPYOHBIM AJIA BBIUM-
CJICHWS, eCJIV TIOJIOXKNUTD, 4T0 I depeHnmal JIMHbI 0c apKy d S paBeH ee
npoexkiyy dx Ha ock X-0b, MAM-3Ke, HAXOAUTCA B IPOCTOM 3aBUCUMOCTH
OT 9TOI MPOEKIM, 3aBUCUMMOCTh (S OT dx yCTAaHOBIEHHAA 3][€Ch Ha OCHO-
PAHMY METOJa HAVMEHBIIMX KBaJpPATOB BbIpAXKaeTcd JJA apok B copme
napabosbl BTOporo nopsgka mnpu momomm dopmyar (22), (38) n (41), a mnsa
apu B ¢popMe mapaboJibl TPeThero nopanara — mpy nomoum dopmya (72),
(73 m (74). IlpuBomATCcA 3HAYEHMA IMAPaMETPOB § B 3aBUCUMOCTHY OT BBI-
corbl apkyu {=7f:1 (Tabimunr 3 m 6). PaccmarpuBaercsa TakxXKe ciydai ma-
pabomIecKoil apKyu C TIOMEePEeYHbIMM CeYeHMAMM MIMEHAIOIMMUCA TI0 Ji-
HEMHOMY 3aKOHY ¥ IPUBOANUTCH BhIpazxkeHue (54) ana orHomrenna 1:J, mpen-
CTaBJICHHOE B BYJe anaredpanyeckoi (OyHKIWNA.

DN TUYIECKe apKM ¢ BEPTUMKAJBHOM OO0JIbLIEN OCbIO 9SJIMIICa Ipei-
CTaBJIAIT cOBOJ CTATMYECKYH) CXEeMy KaMEHHOM My OeTOHHOM TPYOBL
BepxHue 4acTy 9T0 apKU MPEJCTABIAT KpUBble OpyChA T. €. 0OTBEYarolIe
OOJIBILIMM 3HAYEHMEM OTHOILIEHMA T : €. JTO II0Ka3aHo Ha puc. 18. Boznukaer
BOTIPOC, CJIEYET-JIM OSJIMIITHYeCKue TPyObl paccuMThIBaTh Kak Opychbd
HoJIBIIION MM Ke KakK Opychbsa Masoi KpuBU3HBI. Pabora comepzkur cpas-
HUTEJIbHbIE PaccyeThl, Pe3yJibTaThl KOTOPBIX TPEACTaBJIEHBI Ha rpadurax
22 - 24. VI3 HMX cJieAyeT, YTO IpPM IPaKTUYECKMX CTATUYECKMX paccdeTrax
TN TUYIECKMI CBOJl TPYObI MOKHO paccMaTpyBaTh, KaK CTePZKEeHb MaJoi
KpMBMU3HBL PaccmarpuBaercsa TakiKe 3aBMUCUMMOCTH MEIKAY HATIPAKEHVIAMNI
B SJIMMITUYECKMX TPpyDax M yrjamMy BHYTPEHHETO TPeHMA B 3eMJle, Ipe-
CTaBJAOILIEN HArPy3KYy TPYOBL.

B rsnaBe, mocBAILIEHHO KPYroBbIM apkKaM, IpHUBeAeHBI Tabiauibl M Ipa-
omry, corysRalpe a4 00JIerieHna CTaTUIeCKMX PacCYeToB 9TUX apok. Ve
XOIOHBIM IIYHKTOM JAJA OIpeeseHNa Ko9(MUIMEeHTOB KaHOHWYEeCKUX YpaB-
Hermit (155) - (157) KPyroBbIX apoK ABJIAIOTCA AeopMalmy OTpe3Kka KDy-
TOBOTO CTEPZKH#A, 3alleMJIEHHOrO Ha OJHOM KOHIlE, ¥ CBODOJHOTO Ha ApY-
rOM, IIOJ[ ZJeMCTBMEM CMUJI, HapaJileJbHbIX OChAM KOOPAWMHAT ¥ TIPUJIOZKEH-
HBIX B KOHIIe CTEP>KHs ¥ B HEKOTOPOM IIPOMEZKYTOUHOM Touke (puc. 34 u 36).
Ot gedopMalyy IpeACTaBIeHbl B BUE IPOM3BEAECHNI HEKOTOPBIX TOCTO-
AHHBIX BeamanH (125) Ha K03(dMUMEHTRI, ABIAOLNecT (QOYHKIMAMI yI-
J10B O, opefeJIeHHBIX Ha PUC. 35 ¥ MPUBEAEHHLIX B Tabmuax 7 i 8. IIyrem

55



TeOMEeTPUYECKOT0 CJIOXKEHNMA ITUX AechopMarymy, Mbl HPUXOAMM K IE€peMere-
Huam (150), onpegensrommM ycaoBuA Oe3LIapHUPHON apKy HA KOHIAX AJIA
3aMEHAIIE) CTaTUYeCTH ONPEeJeaMMOil CXeMbl, IIPUBEIEHHOI Ha puc. 39b.
B pesynbrate — dopmyaer (150) mpusoaar x ypaBHenusam (155) - (157).
K09 UIMEeHTBI KOTOPBIX NpYUBeAeHbI Ha Tabmmuax 11 11 12,

ITpobeMb! BIMAHMA TPOJOJBHBIX CUJI APKY Ha CTATUYECKU HEOIpeze-
JIMMBIE BEJIMYMHBI aPKY PACCMOTPEHBI B OTAEJIBHBIX IJ1aBaxX PaboThl, B CBA-
31 C OTHEJBHBIMM (DOPMaMM OCI APKMA.

Summary

THE POSSIBILITIES OF IMPROVEMENT OF ARCH COMPUTATION

This paper discusses the possible improvements in the statical com-
putation of three main types of arches from the point of view of engi-
neering practice. These are parabolic, elliptic (with vertical major axis)
and circular arches.

The statical computation of arches representing parabolas of the
second or third order leads to indefinite integrals, which are easy to
calculate, if one assumes that the differential of the arch length, ds, is
equal to its projection, dx, on the X-axis, or depends on this projection
in a simple manner. The dependence between ds and dx is determined
here by means of the method of least squares, and is expressed for a se-
cond order parabolic arch by Egs. (22), (38) and (41), and for a third
order parabolic arch by Egs. (72), (73) and (74). The values of parame-
ters g in function of rise-to-span ratio {= f:l are gathered in Tables 3
and 6. In addition, the case of a parabolic arch with a linear variability
of cross-section is discussed. Eq. (54) represents the ration 1 :J expressed
in the form of an algebraic function.

Elliptic arches with vertical major axis are used in the design of

“arched culverts. Upper portions of these arches can be considered as
curved beams of great curvature, i. e. of high r : e ratio. This is illustrated
in Fig. 18. The question arises, whether elliptic arches should be treated as
beams of great or of small curvature. The paper contains comparative
computations, the results of which are represented graphically in Figs.
22-24. It can be seen from these graphs, that for practical calculations
an elliptic arch of a culvert can be considered as a beam of small cur-
vature. The dependence between the stresses in a lliptic culvert and the
angle of internal friction of the loading soil is considered.

The chapter, in which circular arches are discussed, contains tables
and graphs facilitating the calculation of these arches. The basis for
the determination of coefficients of the canonical equations of circular
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arches, (155)-(157) is the deformation of a bar representing a circular
arch, built in at one end and free at the other, undasr the action of forces
parellel to the axes of co-ordinates and located at the end and at an
intermediate point of the bar (Figs. 34 and 36). These deformations are
expressed as products of certain constants, (125), and coetficients depen-
ding on the angles @ defined in Fig. 35. They are represented in Tables 7
and 8. By geometric addition of these deformations one obtains the dis-
placements (150) determining the boundary conditions for an arch without
articulations, of the auxiliary system represented in Fig. 39b. Equations
(150) lead to Egs. (155)-(157), the coefficients of which are tabulated in
Tables 11 and 12.

The problems of the influence of longitudinal forces on statically
indeterminate quantities of an arch are discussed for each arch from in
the corresponding chapters.
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