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1. TEORIA PROFILI CIENKOSCIENNYCH STOSOWANYCH
W OKRETOWNICTWIE

1.1. Srodek §cinania i powierzchnia wycinkowa przekrojow zlozonych

Zagadnienie skrepowanego skrecania kadluba okretu na fali skoénej
poprzedzimy oméwieniem wlasno$ci przekrojow geometrycznie uproszezo-
nych — tj. takich, ktérych kontur sktada sie z odcinkéw prostych — lecz
zachowujacych pewne podobienstwo z rzeczywistymi przekrojami okre-
towymi.

Przekroje te sa bardziej zlozone od dotychczas teoretycznie zbadanych
przekrojow otwartych i zamknietych, dlatego bedzie rzecza wskazang
przeprowadzenie na wstepie krétkich rozwazan dotyczgcych wyznaczania
powierzchni wycinkowych wspomnianych profilow.

Jak wiadomo, spaczenie preta cienkos$ciennego o otwartym profilu,
poddanego skrecaniu, powstate miedzy dwoma punktami A i B linii $rod-
kowej konturu, wyraza sie nastepujaco:

(1.1.1) Cp—Clp=—¢ 0,4,
gdzie ¢’ jest katem skrecenia przypadajacym na jednostke dtugosci, a D 4p
polem powierzchni wycinkowej (wzgledem $rodka zginania czyli $cinania

przekroju otwartego) zawartym pomiedzy punktami A i B.
Spaczenie preta o profilu zamknietym wyraza sie wzorem

(11.2) é-B—CA:—(p‘a)AB)

gdzie ,, jest polem powierzchni wycinkowej (wzgledem $rodka zginania
przekroju zamknietego), zawarty miedzy punktami A i B.
Powierzchnie wycinkowe w,, i ®,, réznia sie od siebie o wielko$é

@ (ds
ds d°
5 . AB

Wyrazenia okre$lajace spaczenie odpowiednich przekrojéow zostaly
wyprowadzone z zalezno$ci, wyznaczajacych posuniecie elementu lezgce-
go w plaszezyznie linii $§rodkowej konturu. Réznica polega na przyjeciu
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kata odksztalcenia postaciowego y dla profilu otwartego jako réwnego
zeru, natomiast dla profilu zamknietego jako réznego od zera (y = q/G d).

Wzory (1.1.1) i (1.1.2) pozwalaja wnioskowaé, ze spaczenie dowolnego
profilu wyraza sie jako iloczyn wielko$ci ¢’ przez odpowiednie pole po-
wierzchni wycinkowej, Scisle zaleznej od ksztaitu przekroju.

Na podstawie powyzszego mozemy twierdzi¢, ze w przypadku profilu
zlozonego z elementdéw otwarto-zamknietych spaczenie przekroju pomie-
dzy dwoma dowolnymi punktami A i B linii $rodkowej konturu wyraza
sie wzorem ‘

(1.1.3) g =g oy,

gdzie ,, jest polem powierzchni wycinkowe]j przekroju otwarto-zamk-
nietego, zawartym pomiedzy punktami A i B, obliczonym wzgledem $rod-
ka zginania.

Nalezy podkresli¢, ze mamy tu do czynienia z zagadnieniem wielopa-.
rametrowym, a w przypadku profilu podanego mna rys. 1 — ze wzgledu
na symetrie przekroju — dwuparametrowym, gdyz o jest zalezne od
dwoch parametrow o i w. Wielko$é o jest parametrem przedstawiajg-
cym pole powierzchni wycinkowej, dotyczgcej profilu zlozonego w obre-
bie zamknietym, natomiast w jest drugim parametrem przedstawiajacym
pole powierzchni wycinkowe] w cze$ci otwartej. Parametry o i o sa
wielkosciami statycznie niewyznaczalnymi dla danego typu profilu otwar-
to-zamknietego; mozemy je obliczy¢ jedna ze znanych metod, mianowicie
metodg energetyczng lub metodg przyréwnania odksztalcen. W dalszych
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rozwazaniach obrano metode drugg, tzn. przyréwnano do siebie spaczenia
w punkcie granicznym cze$ci przekroju zamknietej i otwartej.’ :

Ta drogg bedziemmy postepowali przy dalszych w1eloparametrowych
profilach.

Szczegblowy analize rozpoczniemy od rozpatrzenia przekroju przed-
stawionego na rys. 1. Przekroj ten obcigzony sitg @ jest najprostszym prze-
krojem otwarto-zamknietym. Brak podwojnej symetrii przekroju stwarza
konieczno$é znalezienia poziomej wspoirzednej $rodka zginania. Dokonu-
jemy w mys$li rozciecia przekroju w punktach 1 i 4; wskutek tego w obu
ceownikach 1 23 415 14 6 jako profilach otwartych powstang strumie-
nie napie¢ stycznych q, pochodzacych od sity poprzecznej Q. W celu zlikwi-
dowania posuniecia wzglednego, powstatego wskutek rozciecia, wprowa-
dzamy strumien stalych napie¢ stycznych gq, plynacych w obwodzie
zamknietym 12 3 4 1. Wielko$¢ strumienia g, w kazdym punkcie przekro-
ju mozna bez trudnosci wyznaczy¢ ze wzoru

Qs.

(1.1.4) Qq —— I )
X

gdzie S, jest momentem statycznym czesci przekroju znajdujacej sie po-
nad warstwa, w ktorej obliczamy wielko$¢é napie¢ stycznych.

Dla okre$lenia q, postugujemy sie dodatkowym warunkiem stwierdza+
jacym, ze suma przesunie¢ poszczegdlnych elementéw przekroju zamknie-
tego musi sie réwnaé zeru:

(1.1.5) cyé'y-l-ds=o.
Poniewaz
e 9 _ 971 Go
2 Go Gs
to
(1.1.6) f q"(;raq"d — 0.

Uktadajac rownanie dla czeéci zamknietej przekroju oraz uwzglednia-
iac warto$¢ qq ze wzoru (1.1.4) otrzymujemy

Q &cis_ ds Q f'Sxds q " ds Q Syds

I.G + ’ +IG 0 +GJ 6 LG 0 +

12 23 34

Qo @ Sxds_ 9o (_1_3_
= J { g +Gf5-;".f°%

41
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Warto$ci momentéw statycznych w sktadnikach powyzszego rownania
sg nastepujace:

h boh (h gy
Sx,, =xd ~2 s S,\-“ == D) (\- 9 ) d Y,
boh h B N A
S ="y~ —T, 05, Sr,=cd5 + ( s )6,y.

Po skroceniu przez G i przeprowadzeniu odpowiednich catkowan réwna-
nia (1.1.6) zapisujemy w postaci

(1.1.7) %@g"}+w)+g[C:%ﬁ(yz+ﬁ)*

b? h\’ (ch“ \
P (s B
4 34 "

l

skad
b%h\ bh? h*! (b*h ‘ch® o h?
L @ R e
= b _h o
o

Moment strumienia q, wyraza sie wzorem

b h bh® h® b*h ch® ¢ h?!
( 4 )12jl(j2ﬁ + ~-) 2_{» (—4—)%4—— ( 2 7i+ _,

(1.1.8) m:?ﬂﬂ

h h
2yt
gdzie Q =2bh. Moment strumienia g, wzledem punktu B jest

(1.1.9) M,= ?(f&m&+f&wyL’&m%

12 51

oot [ Seots)m— Q[(sBR £ (5B
e foomp= 2 o578

46

*h* (. Cc*h? b2 R bh?
Palia I PRaLoh BN PR AR
o (\, 8 ,)51 - ((S 8 )4(5+ ( 2 12 )

Odleglo$¢ Srodka Scinania od punktu B otrzymujemy z warunku roéw-
nowaznos$ci momentédw napie¢ stycznych i momentu zewnetrznego (a nie,
co pragniemy podkresli¢, z réwnania réwnowagi momentéw):

(1.1.10) w::%;%.
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Za dodatni uwazamy moment powodujacy obrét zgodny z ruchem
wskazowek zegara. W oparciu o oznaczenia podane na rys. 1 i na podsta-
wie wzoru (1.1.10) mozna stwierdzi¢, ze moment M, jest ujemny, za§ mo-
ment M, dodatni.

Zapiszemy wzér na §rodek $cinania w postaci catkowej:

béh |d
Jeog G+ ][5 (=)ol
(1.1.11) %=isf L
2F+F+E
Y. h h)dx h[cdh ( y) dyJ
o i 1k L i U ek
sty

b b
h h h h\ h bdh
fxé—é— 7dx—f<b6— —x; 6 2) B dx f[—i——}-
0 0 0
h y\ h\ h
+(2—-2v)]bdy——fx6 5 dx—f(cé———x16~)—d

Natomiast wzér na Srodek §cinania wzgledem dowolnego bieguna przy
wprowadzeniu powierzchni wycinkowych jest

(1.1.12) am==%— oydA,

lub w postaci uwzgledniajacej kazdy element rozpatrywanego przekro-
ju (rys. 1)

(1.1.13) aw:*%(f@ydA%~fdydA4~f@ydA+~
X 23 34

12
+~]@ydA+—fwydA4—fwydAy
1 51 46 _
We wzorze (1.1.11) podobnie jak i we wzorze (1.1.13) mozna wydzielié

czes¢ odpowiadajgcg momentowi statycznemu ydA; pozostata cze$é powin~
na odpowiada¢ powierzchni wycinkowej.
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Majac na uwadze, ze powierzchnia wycinkowa dowolnego odcinka

n-tego konturu zamknietego ma postaé

(1.1.14)

lub

My == — @, — Wy~ ...

gdzie

Oy =

. . Q sy
0= Op-1— Oy + — —
S() B all
Ony + _(i A,:SI 1 Sa | \Sn—1 ) D] Q Sn
n- o e e T p T T TR vy
Sy \ (SI (3._;_ On—1 |+ Sy On'
— , ) Qs 8 s,,,,1)
= Dy My T Mgt T e ;e
! $o- \ 0, 0s On-1l’

powierzchnie wycinkowe wystepujace we wzorze (1.1.11) przedstawimy

w postaci

(1.1.15)

h2
- Q dax Q h
=5 | 5 = 25 o =0,
25 T Ty, b
b b
- - Q “dx " h < Qb
O = 0, + 5 h ‘af——‘ idx: my - o e T @iz
R0 TR L L ; 0
26 o 6 L
n h
" . Q ‘dy ' e Q h
Dda = @p: 7 == = = - —f — = @)y -+ —= — Wy
Moy == M 2}2 h_I_E_, 5 ‘ bdy = o, s 8 My
o 8 8,0 0
12 b
< < Q ‘dx [T h = Qb v
Gu= bty g w ) s | BT A e
2y TR
. hj2
N Q Cdx. Q h
L === (& 2 = — il '} S ] e
O (>,+2£+£+ h.j 5, 0, 5% 20, (0, 0)
d o 16,0
My == ('\)l ;!“ f "5(11‘1 (7)] 1 W5,
0
Wy == Oy — f ‘Zfdx: g — Wy«
0
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Jak wida¢ ze wzoréw (1.1.15), sktadowe wyrazehn dla powierzchni wy-
cinkowych w postaci (2/sy) (b/6) lub (2/s)) (h/26) nie zaleza od polozenia
pomocniczego bieguna B, natomiast wplyw tego bieguna uwidacznia sie
w wyrazeniach [hdax i [ bdax.

Ten wniosek znajduje potwierdzenie we wzorach (1.1.8) i (1.1.9) okre-
slajacych momenty M, i M,. Wielko§¢ momentu M, zwigzanego z profilem
otwartym zaleZy od umiejscowienia bieguna, natomiast- moment M, ma
warto$c¢ stata bez wzgledu na potozenie bieguna.

tatwym sprawdzeniem stuszno$ci wyprowadzonych wzoréw (1.1.15)
jest obliczenie wyrazenia

jako symbolicznie zapisanego licznika ilorazu we wzorze (1.1.11) odpo-
wiadajacego [ wydA, tzn. wycinkowemu liniowemu momentowi, ktéry
dla $rodka zginania jako gléwnego bieguna powi-
nien réwnac sie zeru.

2 1 5
Dla wiekszej przejrzysto$ci rozumowan poda- 1]
jemy nastepujacy przyktad liczbowy. ‘
Dany jest przekrdj z «wypustkami» o wymia- |
: - Lo < A0 48
rach jak podano na rys. 2; grubo$¢ przekroju jest ¥ 1 . T
stata i réwna 6 = 0,01 m. Moment bezwladno$ci 0
wzgledem osi x jest ;
. 168 3 4 3
L=2 Q’Oi?l‘g +2-16-0,01- 8 — b8 J
=6,83 + 20,48 =— 27,31 m". Rys. 2

Srodek $cinania obliczamy za pomoca momentéw strumieni naprezen
styeznych:

—64-4— 256 m® S—?: ] §?§=682,67 m?,
C

1B 24

(Sds_ bR
J o 4

)

rSds 1 (bh* R*\ 1 (8.256  16® ,
el I L SR e e i e 3.
’ - 2(2 #12) 2( . 12) 512 170,67 — 682,67 m®;
o
stad
Q (" Sds Q_ 5@
- = 22565 = 512F

12341



oraz

ds 6 . 8\
fa (2001 2——0’01)—4800.

Na podstawie wzoru (1.1.7) obliczymy g, :
4800 q, +Q-512—0 qo = — 0,107 g_t/m.

Moment M, jest rowny

M,=0,107 -~ Q Q2=0,107- 256 — Q ——274-Q— tm.
t Ix I\f
Obliczamy moment M, wzgledem punktu B:

Q Spds=—256-0,01-8-~ Q ——-20,48~@,
I I, I,

51
Q Sgds-—68267 0,01 SQ —54,622,
I I, I,

24

M,=(—4-20,48—2-54,62) —I@ =—191,16 —?~ .
X X

Majac wartosci obu momentéw obliczymy polozenie Srodka Scinania:

- — 191,16 + 27,40
By = o = 27,31

~ 6,00 m.

Powierzchnie wycinkowe wzgledem $rodka Scinania obliczamy na pod-
stawie wzoréw (1.1.15):

Q 256 . 0
'= " . 800 =42 R =g =——48+426=—54
- s 2300 800=142,6, D wg, + s, s 48 -+ 42,6 54,
@y5 = Oy + wyg=—D5,4 + 64==58,6,
o e Q ,
W4y = Wp; — Wyy T+ TS)_S =—5,4—64 4 42,6 =— 26,8,
Boa= 0y = — 26,8160+ 42,6~0.

Sprawdzenie obliczenia sprowadza sie do obliczenia calek [ waxdA oraz
[ @ ydA, ktére, jak wiadomo, dla $rodka $cinania jako bieguna maja war-
toSci zerowe.
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Pierwsza catka rowna sie zeru, co wynika z symetrii powierzchni wy-
cinkowych wzgledem osi x; catke [ @ydA rozbijamy na nastepujace po-
szczegoblne elementy dla jednej potowy profilu:

f6ydA:—-l—5,4-838-0,01:-7 1,15,
51 2 3
[ &yaa= —%0,675 +5,4-8-0,01 = —0,1084,
11
[@yda= % 7,325 - 58,68 0,01 = 17,1698,
1'S
[ &yda 2%(26,8 1 54)-8-8-0,01=—10,304,
12
N 1 2
[ Gyda—=--268-8=8.0,01=—5711,
) 2 3

?12— f oydA= —1,15—0,1084 — 10,304 — 5,717 + 17,1698 = —0,1112~=0.

Jest rzeczg oczywista, ze dla
drugiej polowy profilu otrzy-
mamy wynik identyczny.

Omoéwimy teraz przekroj
dwuspéjny.

Przez dodanie boku zamyka-
jacego 56 z przekroju jedno-
spojnego z «wypustkami» otrzy-
mamy przekréoj dwuspojny.

Okreslamy z kolei $rodek
$cinania. Rozciecia dokonujemy
w punktach 1 i 5, co powoduje
automatycznie rozcigcia w punk-
tach 4 i 6 (rys. 4).

Azeby znalezé strumienie za-
mykajace gy 1 gye, nalezy ulozyé

AR,

100,08

Rys. 3

warunki typu f yds = 0, przedstawiajgce odrzucenie posuniecia |por. wzor

(1.1.5)] dla obu konturéw zamknietych I i II; trzeba réowniez rozwigzaé

otrzymane réwnania wzgledem qo; 1 Q.
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Wprowadzamy oznaczenia

“ds h  2b  h ds h 2c , h
EREART TR S 5o RT et Ty
I 11
" Seds b*h  bh®* ch® ¢
(1.1.16) % = +( s T —5):—@1,
I
"Sids __[(c*h | ch® 4\
} F) (2 Ty 5.)— P -
11
S — C o
B |
i 7 P
2 Qa I /// I e |
1 - 5 1
o o [ -l I/
H 9or T 'Il l’; Qo2 T’
oo I ¢
N R R
+ fe T ‘1 T* - 1=
< L?L i (A7 _._;_ o
' | It
-0 i '
b4 | t <
e 1 M hee
Mol e e e o = M
3 4 6
Rys. 4
Otrzymujemy nastepujacy uklad réwnan:
Iy h I h I, I,
(1.1.17) Pta%l“"al‘ ~ Qo2 = Py, —6—1‘(2‘%1‘*‘1026%2:@21
stad
h
o ¢1P2“¢2(—a— I, P21 — @y _a—)
(1,1,78) gy em———— L S e
Q Q

e
plpz—(a—)
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Srodek $cinania okre$lamy analogicznie jak we wzorze (1.1.10):

M]‘*‘Mg Ml "‘,_ .(21 QW] quqg
1'1.19 XX — - = y

gdzie

Q,=2bh, Q,=2ch.

Z poprzednich rozwazan dotyczacych okreélenia powierzchni wycin-
kowych wynika, Ze w wyrazeniach na moment M, strumieni naprezen
stycznych, pochodzgcych od «otwarcia» profilu, zawarta jest cze$é pola
wycinkowego o przynalezna do przekroju
otwartego. Zatem dla kazdego profilu roz-
cietego znalezienie pola wycinkowego o
nie napotyka na trudnosci, gdyz okresla
sie je tak samo, jak dla najprostszych
ksztalttownikéw, np. dla ceownika lub

dwuteownika. ' ) :
Natomiast w miare wzrostu spdjnosci e e
profilu wyrazy okreS§lone dla przekroju Rys. 5

jednospéjnego jako Qs’/s, przybieraja
bardziej skomplikowang posta¢ i wyznaczenie ich przeprowadza sie w spo-
sob podobny jak dla profilu otwarto-zamknietego. Dla tego ostatniego
przekroju omawiane wyrazenie skladalo si¢ z czesci stalej dla wszystkich
elementéw, tj. Qs,, oraz z czlonu bedacego ilorazem diugosci i jego gru-
bosci. Ta regula jest stuszna dla wszystkich cze$ci przekroju zamknietego.
Przeprowadzajac to samo rozumowanie dla przekroju dwuspo6jnego
w oparciu o wzory (1.1.14) i (1.1.18) otrzymujemy wyrazenia dla zredu-
kowanych wspdélczynnikéw typu Qs'/s,:

- h | h
(gsr)’ 3 Q}.<p2__§lffz (’“‘TT) h

Sy m— h 2 2(51 ¢
Dy P N
1
b A
( 0 Q1 ps + 2, (5}') b (Q 521(?')+sz1 I
L=oicha = AR U e 12
plp?_g— plpz_T)
1 1




Oczywiscie, w elementach nalezacych tylko do obszaru I bierzemy pod
uwage te wyrazy we wzorach (1.1.19) i (1.1.20), w ktérych czynnikiem
jest funkcja @,; podobnie postepujemy z obszarem II zwigzanym z funk-
cja @,. Natomiast w elemencie wspolnym dla obu obszaréw (np. B1)
istotne sg wyrazy, w ktorych wystepuje zaréwno funkcja @,, jak i @,.

W poprzednim przypadku profilu otwarto-zamknietego wzér na $ro-
dek zginania ($cinania) mozna bylo zapisaé w postaci podobnej do wzo-
ru (1.1.10):

M, + M, 2Sopds @
(1.1.21) axx———Q——— o 1S,

gdzie

Dla tego profilu obiegliémy przekr6j w kierunku odwrotnym do ruchu
wskazowek zegara, czemu towarzyszyla ujemna warto$¢ w, ale dodatnia
wartoéé Qs'/s,. Zgodnie z tym weartoé¢ powierzchni wycinkowej na odcinku
zawartym miedzy punktem B i 1 wynosila

2 h

(1.1.22) gy =— o+ 55

OczywiScie, zmiana kierunku obiegu spowoduje zmiane  znaku obu
skladnikéw powyzszego wyrazenia i np. dla odcinka B 4 otrzymuje sie
o

(1.1.23) O = Op— ¢ 95

2 1 5 Odrzucajac chwilowo w prze-

\g=001 kroju dwuspéjnym bok zamyka-

jacy 5 c¢ 6 otrzymamy przekroj

Jd=001 L J=0M z «wyrostkami» cméwiony poprzed-

nio. Strumieniowi @ ze wzoru

Ee—— s —4 (1.1.21) bedzie odpowiadal stru-

—=1,345{= mieA @, o tym samym kierunku,

a powierzchnie wycinkowa bedzie

mozna obliczy¢ tak jak we wzorze

(1.1.15). Zamkniecie profilu, a przez

3 h=6 f‘ c=10 6l  to wprowadzenie na odcinku 1 B4

strumienia @, o kierunku przeciw-

Rys. 6 nym do kierunku @, stwarza ko-

niecznos$¢ zmiany znakéw w wyra-

zach zawierajacych @, [przy obliczeniu powierzchni wycinkowych na pod-
stawie wzorow wyjsciowych (1.1.18) i (1.1.20)].

h=12
>
=
S
)
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Przejdzmy znowu do przykiadu liczbowego biorac pod uwage prze-
kréj przedstawiony na rys. 6.

Okreslmy polozenie $rodka $cinania. Na podstawie wzoréw (1.1.16)
otrzymujemy wartosci funkcji @, i @,:

= (ﬁEJFLL‘lL, }0-2}14_):_72,

100-12 | 10-144) _
_¢>2:( o + 2__\)_1320.

Uktad réwnan (1.1.17) ma teraz postaé

3600 x — 1200y — 72 =0, — 1200 x + 4400y + 1320 =0,
gdzie
h I, I
p; = 3600, p,= 4400, 5 = 1200, T="5 o, y=—é—q02,

r=—0,088, y=—0,324.

Moment M, jest

6M0—Q1x+92y 9,5 0 E Gy G o oo = 144+ 0,088+240+0,324 = 90,43.

Moment M; wzgledem punktu B jest

= %Mlz—(ngds+ngds+fSQdS+fSQdS):
12 24 51 65
S ([ 5o 58 [ 28
o 5 P
12 24 51 ' 65

:—108-6-0,01—288-6-0,01—300-6-0,01+72-10-0,Ql=—38,56 m®,
. 193
Ixx=3%)'1—1212 4+ 2-0,01-62=15,84 m*,
M, —I—M — 69,12 + 20,43
Axx =— —Ixx 15,84 = 1,345 m.

Rozprawy Inzynierskie — 2 431



Powierzchnie wycinkowe wzgledem srodka $cinania sg rowne:

2 QN , .
D g = Wpy —f—(s—“.s )31 = 4 8,07 +

144 (4400 — 1200) + 240 (— 3600 +— 1200) 600 — 3.27 .

!

o  144-10°
Big= iy —;5 + ( SO) s')u—— 432736412 4422;33? 1200 600 — 5,67,
gy == Gy — 2y + (S£ ’)2A:+5,67—44,07+ Ak 44&?12;0 1200600 — o,
Doy = — wgs + (S—fjs)c ST L 123::12;0 13600 650 — 873,
S — cf)5,+(s—!is')1‘:—8,73—60 I 12?2:1204;0 36001 000 —3,27.

Potwierdzeniem stuszno$ci rozumowania jest otrzymanie tych samych
warto$ci liczbowych powierzchni wycinkowych w punktach wspélnych,
liczonych oddzielnie dla konturu I i II.

Sprawdzenie wykonamy podobnie jak dla przekroju z «wyrostkami»,
mianowicie sprawd21my, czy catkd [ mydA dla polowy przekroju jest

réwna zeru.
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Obliczamy kolejno catki dodatnie

[dyda—= %3,27 60,01 i— 6 = 0,01-3,27-12 = 0,392,
Bl o
PR 1 2
| oydA= 5 9:67:6-0,01- 5 -6-—0,01-5,67-12=0,680,
24
j' oydA= %(3,27 +5,67)-6-0,01-6=—28,94-0,01-18=1,609,
12

[byda— %3,27 +2,727-0,01 - 6 =8,917- 0,01 - 3 = 0,268,

11"

ktéorych suma jest 2,949, oraz calki ujemne

[byda—— ; 8,73 -6-0,01 —;—6 ——0,01-8,73-12 = — 1,047,
ChH =
ydA=— ; 8,73-7,273-0,01 - 6 — — 0,01 - 63,493 - 3 — — 1,904,
51"
0 sumie rownej — 2,951,
Stad 2,949 2,951 0.
:17 —va — >-<ﬁ—cv-- B e — |
| 4 i
1 -7 7
' 7 -~
I . fesi | /(_J. 5.~ : 774 Vo
T J —F==g==7F &T_:-Tt:;*v/
‘ if \Go1 yLLb_r' \Go2 v &, o3 T’/Lr
I 1 R i (s St | (71 I L) e
: ,,ﬂ»’ it ?w fﬁ il
PUPZN VI G Y P _Myle mo | o s
i it ) g
1| il It h

Rys. 8

Dla wigkszego uogdlnienia opisanej metody rozpatrzymy jeszcze prze-
kréj tréjspéiny przedstawiony na rys. 8.
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Podobnie jak w przypadkach poprzednich wp‘rowadzimy oznaczenia

ds h 2b  h b*h = bh® ch?
foen—gtF g, —e=F+g 5
ds h  2c, h ¢ h . ch® dh?
1.1.24 G Mnc D= Ll
S g e L T
ds 2d | h d*h |, dh®
f + 0 +?’ —(D:*—”Z' +742_“‘
11
Otrzymujemy nastepujacy uklad réwnanh:
plx—£y+0-2=<1>1,
0,
h h
(1.1.25) —-Fx—}—pzy—gz:(bz,
1 2
h
O~x—?y+pgz=¢73,
2
gdzie
" I, . I _ Le
Q qmv Q QOz, Q qo;y
stad
h h h h h
I. @1P2P3—@1F‘5+¢3 5, 5 +@2P3 6
X == Q‘ Qo1 = - D ——=
h
(1.1.26) I P2 p;Ps + ¢’3p1 3 b o @ipy )
y:iQQ()z:—“'**‘ D ,
. h h h h h
7 @3P1p2+¢’21)14’“¢36 "('3*4‘@1?*
2= X q = 52 &1 2 i a2
Q 03 D
gdzie
h 2 h 2
(1.1.27) D=np, ((T) + Ps (6) —Pi1P2D;-
2 1
Dla $rodka $cinania jest
1
(1.1.28) Oy =— i (M, + Q; qoy + 25 qoa + 25 qos)-
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Zgodnie z regulami znakowania podanymi przy omawianiu przekroju
dwuspdjnego obliczamy powierzchnie wycinkowe profilu przedstawione-
go na rys. 9.

Na podstawie wzoréw (1.1.24) i (1.1.27) obliczymy wielko$ci parame-
trow:

_2h , 2Db b=6 c=10 a=3

Py ="+ =2400 + 1200 =3600, : e
p2=¥+%€=2400+2000=4400,
S S [ IY:| IR A ]
p3=7+722400+600=3000, < 4057
D= 6600- 12002 — 1
—3600-4400- 3000 =— 38016 10°, 3 4\ sonst-gor &8
0N,=144, 0,=240, Q,="12. Rys. 9

Powierzchnie wycinkowe [na podstawie wzoréow (1.1.26) i (1.1.28)] sa

A Qo , 400- — - .12
wm:_wﬁ(ﬂ):6.4,03”(_1444093001}00 30001200

& —38016-10°
—3600- 2000 + 30001200, — 36001200 + 1200%\ .
T 55016 100 2 38016-10° )600—12’222’
3 — Qg — _ __1444400-3000—1200°
W19 = O w12+(803)10—12,222 36+( 144 —38016-10°
3000 - 1200 1200°
2480 35016 10° " “—38 OTW) P00:= 18,222,

Wy = Wy — 0y, + (%s')u —18,222—10,037-6 + 42=0,

—1200” + 30001200

Q,
Bes=— 05 + (S—os )C5=—6-5,963(—144

—38016-10°
ou 3600-?330—13256{0100;1200 B
_ 72_3600;4;12%;?‘;%8' 12002) 600=—17,718,
on — oy (S—QJ s’)51 — 17,778 — 60 (—144 :3%22_0100_6 —
3600 - 3000 3600 - 1200 |

— 240

72

)1000:12,222,

—38016-10° “—38016-10°
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1200°

o wm+(s£s')y—_:—8,963-6—r( 144 —

: —38016-10°
3600-1200 3600~3000——12002) -
— 280 5016100 "2 —sgote-100 |00 T
(2 ) -
(1)7,,=w7-—w75—f—(——s) — 17978 — 18418 = — 17,778.
{50 g

Sprawdzamy obliczenia na podstawie warunku, ze [wydA=0_dla jed-
nej polowy symetrycznego przekroju. ’

Otrzymujemy kolejno dodatnie wartosci calek:

[wydA—_——G 18,222 - 0012 —0,01-12-18,222 — 2,187,
A2

- 1 2

[ Gyda=—6-12,222-0015-6=0,01-12-12,222 — 1,467,
B1

[ oyda= —; (18,222 + 12,222)-6-0,01 - 6 = 0,01 - 30,444 - 18 = 5,480,
12

[ oyda= %4,017 12,222 0,01 -6 == 0,01 - 49,096+ 3 = 1,473,
11’
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ktérych suma rowna sie 10,607, oraz wartosci ujemne catek

“[ & ydA=—— % 6-17,778- 0,01 _§_ 6——0,01-17,778- 12 — — 2,133,

[ byda=— -i—6-17,778-0,01—§—6:~0,01 17,778 12 = — 2,133,

C5 &

[ bydA——17,778-3-0,01-6 = 17,778 0,18 = — 3,200,

S7

I} G ydA—— % 5,983 - 17,778 - 0,01 - 6 = — 0,01 - 3 - 106,365 — — 3,191,

17

ktérych suma rowna sie — 10,657; stad
[ (& ydA=10,603— 10,657~ 0.

Jednym z ciekawszych przekrojéw, majacym zastosowanie w okretow-
nictwie, jest przekr6j ztozony z elementéow otwarto-zamknietego i zamk-
nietego dwuspdjnego.

Ksztalt profilu, sposoéb

rozciecia oraz bieg strumie- 5 7 ‘
ni napie¢ stycznych uwi- - - - e e
: ; } jf * i ot
doczniony jest na rys. 11. l Yoz 4 ‘l oz [4
Na podstawie wzordéw i : i, | b i)
(1.1.17)  napiszemy uktad ”}:: " 5 | ;i{ =
réwnan dla czesei dwuspéj- |7 7;?9 } T B
nej: L ot ‘: ! " %or ":
OO0 e e
pl qu (S Qoo — 1 Ix ’ +§ 2 *
1

e i pa—0. Q. | ’
) Qo1 T P2gs = Py 1.’ i % | :
stad okreslimy strumienie i | 4
napie¢ zamykajacych g, i i !
: oz . . —,—>A>—>—1>-ﬁg—>—»<v-->~>—>o*
Qoe- Strumien qo; znajdzie- §fFE—Fr————"T=T === =
my podobnie jak dla prze- 6l ] N\ 9as “
kroju jednospéjnego z «wy- 1|' Ao |

pustkami»: 10 P

_Q
Ps Qo — I_x@a. Rys. 11

Majac dane qgq, Qe 1 qo3 mozemy obliczy¢ polozenie $rodka Scinania oraz,
w dalszej kolejnosci, powierzchnie wycinkowe, ktére bedziemy okreslali

437



korzystajgc ze wzoru ogdlnego

Oxx

M
=?Ql+ Q,

D, pp—

e BV
pl P2 F}

D, 1 1
27

oo — () B | L
F} i

napisanego na podstawie rozumowan analogicznych jak w przypadkach

poprzednich.

Przyktad liczbowy. W odréznieniu od ostatniego przyktadu rachunek

przeprowadzimy teraz

szczegblowiej, uwzgledniajac przede wszystkim

obliczenie wspoéirzednej S$rodka zginania. Obliczenie naprezen qu, Qo
i qo3 wiaze sie bezposrednio z okre$leniem funkcji @,, @, i @,:

o, — des des [Sds [Sds

T

Sds

Sds  (Sds
6 b
36

_ Sds+{Sds+®+des

810

1011

Naleiy zwroci¢ uwage, ze momenty statyczne sa obliczone od punktéow
rozciecia (punkty 7, 3 i 8 na rys. 12), co schematycznie jest przedstawio-

Tablica 1
Moment
lejne statyczn ds
elfeoménty poprzyedm}éh i(;* fSpds *)
elementow
7-2 0,000 22,5 0,675
2-3 0,135 33,0 ‘ 0,99
3-6 0,195 765 | 3,825
3-4 0,000 6,0 0,18
4-5 0,060 36,0 2,52
5-6 0,195 51,0 3,06
6-7 0,645 141.0 8,46
7-8 0,765 256,5 15,39
8-9 0,945 639,0 0,00
8-10 0,000 3,0 0,18
10-11 0,060 108,0 1,08

*) Biegun pomocniczy w punkcie B.

ne na rys. 13. Natomiast
w calce

Sds
0

67

moment statyczny S
sktada sie z elementu
biezgcego na odcinku
6-7 oraz z sumy mo-
mentéw  poprzednich
elementow zbiegaja-
cych sie w punkcie
6 : S73s + Ssas6 -
Wynika z tego, ze
w punktach wezlowych,
ktére nie sg punktami
rozciecia ani symetrycz-

nymi wzgledem nich, nalezy sumowaé momenty statyczne poprzednich

elementow.
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Korzystajac z tablicy 1 obliczamy parametry réwnan:

il
pL= P2—601(512+333+S36+S67) 001(3+2_{-3+2)_1000
h 3
O, =— (22,5 + 33 + 76,5 + 141) = — 2173, = _0"(5’{—300
®, = — (6 + 36 + 51 —76,5) = — 16,5.
3 B
; O
L 3 ! ,
‘}E 7 ? ‘ '
o~ d=const.= 0,01 { ‘
|
8t Qi , Hl” I thwlu‘ ?:;[ Lw\wtmn"ul |
10 " Il H Il I
7] .
Rys. 12 Rys. 13

Po uwzglednieniu tych wartosci uklad réwnan otrzymuje postac

—Qy65,

1000 o1 — 300 Qoo — — "Q* 273 ’ — 300 Qo1 + 1000 Jos =— 1

a jego pierwiastki sg réwne

Qo; = — 0,2054 ? Qos = — 0,108 - Q
Strumien q,; obliczymy na podstawie wzoru (1.1.7):
1300 q03=—12(3 + 108 — 639), q03=0,40612.
X X
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Po okresleniu wszystkich wartoSci strumieni napie¢ stycznych obliczamy
momenty:

Q (0,675+0,99- 3,825+ 0,18 — 2,52 —

M, =2

— 3,06 — 8,46 —15,39 0,18 —1,08) = — 2- 32,67 12
X

My =2 (20,4 +200ua+ 2, quu) =2

X X

(—0,2054-12 —
— 0,108 - 12+ 0,406 - 12):2? 0,084.

Z kolei okredlamy potozenie $rodka zginania przy I.= 13,14 m*. Otrzy-
mamy

M, +M, —6534+0,168
Q 13,14
Powierzchnie wycinkowe wyznaczamy zgodnie z poprzednimi rozwa-
zaniami:

=—4,96 m.

g = — g + (% s') 4,966 2. 600 — — 24,222,
P Jo 2600
D 10== g — g 1+ ( 2, s') = — 24,222 — 6+ 0,923 = — 29,299,
' ’ Ps /g0
"ﬁm,n = ‘:N’m — Wy T (%’ s')w ) —=—29,299+3,96-6 +5,538 ~ 0 ;
g 7 == Oy + g, =— 24,222 + 18 = — 6,222,

D=0, + s+ (% s') —=— 6,222 + 12— 3,428 — 2,353,
16

1

h ‘'h
. . P:—\5 pi— (g
Z;ﬂ:’» - $1§ + Wgs + 91 S 5 + !22 e e h,i o s' —
D1 P2 — (?) Pi P2 — (X) 68

—2,353 + 9,96 - 3 + 0 = 32,233,

Wy = 3 — Wy + (‘—31 s') = 32,233 — 6 — 3,428 — 22,805,
1 /32
EJ) ~ [)] I-
W AR 2 ) — 92,805 — 7,963 — 5,143 — — 6,218,
b1/,

gy = Wy + 0, + (92 s') — 2,353 + 12— 3,428 = 10,925,
\ 65



D5y = W5 + w5, + (32 s’) = 10,925 + 11,96 - 3— 5,143 — 41,662,
54

2

as) — 41,662 — 6 — 3,428 — 32,934
43

P

W4y = W) — Wy3 T (

Kontrole przeprowadzamy podobnie jak w poprzednich przypadkach
sprawdzajac, czy catka fwydA dla symetrycznej polowy przekroju jest
Téwna zeru. Suma catek ujemnych

[ &ydA——24222-61 26.001—— 290664,

A 203

[ &yda— —% (24,222 -+ 29,299)-1-6-0,01 = — 1,60563,
8,10

A 1 2

| SydA=-—29,299-6- = 6-0,01 = — 3,5158,
10,11 2 3

[ &yda= ~%(24,222 1 6,222)-3-6-0,01 — — 2,73996,

87
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yd A =—6,222-1,4511 %6 -0,01 = —0,27862,

e

-1

6

ev

ydA=—6,222-0,643 % (3 + 2,337 + —;— 0,643}-0,01 =—0,115734,

-3
oo

jest r6wna — 11,16238.

Suma catek dodatnich

[ &yda=2353-0,5489 ; 6-0,01 = 0,638747,
76

[& ydA=%(41,662 +32,234)-2-3-0,01 = 2,21688,
34

1 (41,662 + 10,925)-3-(3 + 1,20775)- 0,01 = 3,31909,

ot
-

=
oydA :%(2,353 1 32,233)6(3 4+ 1,06803) - 0,01 = 2,11046,,

®ydA= 2280524511 % (3 + % 2,4511) -0,01 =1,0668,

[ Syda= —‘2—(2,353 410,925+ 2-6-0,01 = 0,79668,
65
1

o
w

jest rowna 11,19982.
Stad [@ydA=11,19982 — 11,16238 =~ 0, jak by¢ powinno.

1.2. Rownanie rézniczkowe skrecania w przypadku przekrojow zlozonych.
Rozklad napre¢zen

Dotychczasowe rozwazania doprowadzity nas do znalezienia powierzch~
ni wycinkowych dowolnych profilow, dla ktérych za glowny biegun
przyjeto $rodek zginania.

Otrzymane powierzchnie wycinkowe umozliwiajg obliczenie para-
metréw przekrojéw wchodzacych do réwnan teorii skrecania.

Przy rozpatrywaniu profiléw otwartych opieramy sie na znanym réw-
naniu teorii skrecania przekrojéow cienkosciennych

(1.2.1) PV —k?¢"=Cm,
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gdzie przyjeto mastepujace oznaczenia:

GI; 1 so®

K= ‘TEL’ kT2 3

Lu:fa)zd.

Ostatnie symbole I oraz I, oznaczaja odpowiednio moment bezwladnosci
Saint-Venanta przy skrecaniu oraz wycinkowy moment bez-
wiladno$ci.

Calka powyzszego réwnania znaleziona za pomoca metody giéwnych
parametréow Cauchy’ ego ma posta¢ nastepujaca (w przypadku braku
obcigzen):

B 1l ,.. kxr B, kx
(1.2.2) ¢=g + 7 @ sinh— GIS(COSh zs 1)

.
GI;

l . kx
Msk,(?smh—l——x).
Nie bedziemy sie zajmowali obecnie blizsza analizg tej catki. Przej-
dziemy do wyprowadzenia analogicznego réwnania dla przekrojow zto-
zonych z elementow otwartych i zamknig-

N ‘ N
tych. 2 NS
Podobnie jak w p. poprzednim poczat-
kowe rozwazania przeprowadzimy dla 7

przekroju jednospdjnego posiadajgcego
«wyrostKi».

Element wytniemy w taki sposoéb, <
azeby jego dolna krawedz biegta wzdluz
zerowej linii deplanacji, bowiem w prze-

B
-

|~

[

1

|

o
1
A\

kroju poprzecznym w tych punktach na-

prezenia normalne sg réwne zeru, a istnie- . |~ Z

ja jedynie naprezenia styczne q,. 3 4 6
Szczegbélowy rozklad naprezen nor- Rys. 15

malnych i stycznych wplywajacych na
rownowage elementu przedstawiony jest na rys. 16. Strumien napieé
stycznych na odcinku 14 jest nastepujacy:

: do~
(1.2.3) q1=qo + fﬁdwzw_ dds.
0
Ten sam strumien na odcinku 12 3 4 wynosi

: doy doy : Oor
(12.4) gd;—qp + ——a—z—éds—{— a‘éédszqo"*— qs + —afz'-adsr
0 0



gdzie

T doy
q, = —-—()ds

oznacza strumien napie¢ stycznych w obrebie wyrostka 5 1.

LSS W W W

BN

Jak wiadomo, naprezenie deplanacyjne mormalne wyraza sie wzorem

o i

(1.2.5) o~x=—FE¢" o,

Oznaczmy przez o, naprezenia normalne odpowiadajace stalej wartosci
o = 1; woéwezas

(1.2.6) op=--Eq",
a strumienie napie¢ stycznych okre$lonych wzorem (1.2.3) beda

S

do, {7 ~
(1.2.7) Qi =q, + _d?OJ odA,
0
(1.2.8) Qi23a =qo + % Oj ndA + Ci;?‘ odA.

i

ot

0
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Mozemy obecnie wyznaczy¢ moment skrecajgcy:

S S
(1.2.9) M:J gds(q,,+id‘—’}/ (7>dA)+ fgds(qo ‘i‘;“ {MA+
11 T 1934 0

d . . L 5 ,fw
+B?J (')dA)—f‘J hds dd(;o mdAZ?(QdSQH-%’(} stj odA+

51 51 0 14 0
3

Sl

o gezs}adAJr ods [ GdA+ hds‘(T)dA).

1234 0 1234 51

o

0

v

Stad obliczamy niewiadome napiecia

M do, 1/ - . .
(1.2.10) g, =~ - ( ods | wdA+ [ods| odA -+
"0 dz 0 % Oj ) J

o 1234 51

+ [nas [adal.
51 0 /
Dla ilustracji przytoczymy wzér na g, dla profilu zamknietego:

'gdsf[;dA
__-_Z_WA_@O N 0
074 0

(1.2.11)

Ten sam wynik otrzymamy ze wzoru (1.2.10) pomijajac wplyw «wy-
rostkow».

W celu uproszczenia wzoru (1.2.10) oznaczmy wyrazenie w klamrze
przez ff. Wymiar tego wyrazenia jest cm?. Wéweczas

. M dan

a odpowiednie strumienie napieé¢ stycznych na odcinku 14 i 1234 beda

M dO’n M dUﬂ

(1.2.13) i — 5 iz B+ 0)= vl ,d;,(j)7
M dO‘o do,
(12,14 =L %51 g4 g S,

gdzie przyjeto oznaczenia

e f('(DdA, y:f(sz.
0 0



Okre$limy z kolei energie potencjalng magromadzong w badanym
elemencie podczas odksztalcenia.

Energia catkowita bedzie sie sktadala z energii naprezen normalnych
o~ 1 energii naprezen stycznych.

Energia naprezen normalnych wynosi

o~ dA a2 -
(1215 Upde=|| 275 dz=5) jfwszJrz a2dAldz,
51

a energia naprezen stycznych

B qids f"qus fqus) B
(1.2.16) U,,dzu(sza—}—. 2G5 +2 5Go dz=

14 1234 51
M __dag, )2 [g do, ]2
f(.Q dijfls+f!2 dz(+y)ds+
o 2G o 2Go
14 1234
Sy 2 B
(%‘;"f?udA) ds I TV
0 . e Raliedel
i f Go gz 2G{f[(9) 20 a2t
51 - 14
do,\2_,]ds M\* M do
+(dz)@Jé+. [(Q 29 4z @tV
1234

gdzie Z=fc3dA.
0

Energia catkowita ukladu jest suma obu calek:
L
U:f U, +U,)dz.
0

Réwnanie Eulera w tym przypadku posiada posta¢

OUo+Up) __ d [0W+TUp]_,

(1.2.17) 0o, dz a(gﬁ)

dz
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Skladnik pierwszy wyrazenia powyzszego jest

(1.2.18) (U(%LUK) ‘;J (?(E?dA—!—Z fmdA)'—_—ﬂF"-I;,
0 : / s

51
za$§ skladnik pozostaty
{1.2.19) 4 Q(UO +Ull):i{ {(_ 2%@_’_2 d‘70 )d_3+

dz d(% dz Q 0
‘dz

11

. do,
+ ”—2 0@+ +2 2@+ P

1ds dUO
=+ f Lt }

1234 51
Po dalszych przeksztalceniach otrzymamy

d“ o, G

— 0y 7+ =
2’ E [ . pds | [ ds
f@ £y f(p+ - f .

(1.2.20)

14 1234

m
2 fd)?%ivt [(@w)z fﬁ%s

14 1284 51

Wzbr powyzszy mozna napisaé w postaci uproszczonej

2
(1.2.21) C(lizio——aokzszf,
gdzie
=G _ 13
Ef —I-j(@'y“ +fzzds
14 1234

fﬁb?Jr f‘(@ww)c—l—s

11 1934
Qf ds+f<p+y +[

14 1234

&=

Rozprawy Inzynierskie — 3



Poréwnujgc wyrazenie (1.2.21) z (1.2.1) dotyczacym skrecania preta
mozemy powiedzie¢, ze odpowiednikiem momentu bezwladnosci Saint -
Venanta I; bedzie wielkos¢

Iz
I~ = Q cm?,

s ds ds

14 1234

za$§ wycinkowego momentu bezwladnosci I3 wielko$é

2 ds . ds 2 ds
f@ 6+f(@+y) e

14 1234 51
T ds ds
Jesy+ f@ﬂ)g.

14 1234

2 cm®.

Ia; —

Podstawiajac wartosci ze wzoru (1.2.6) otrzymamy réwnanie czwartego
rzedu w postaci

(1.2.22) PV —k2 ¢ =Cm,
gdzie { =¢/E

lub

(1.2:23) PV —Kk*¢" =f(2),

gdzie {m(z)=f(z).

Rozwigzaniem réwnania (1.2.23) jest funkcja
(1.2.24) @=C,+Cyz+C,;sinhkz-+C,coshkz-+ f plz—1t)f(t)dt
0
lub po wyznaczeniu statych

. %
(12.25)  g=gq,+qhz + E‘;—(coshkz— 1)+

" z

<p(; (sinh kz—kz)+f¢(z—t)f(t)dt.

+ = .

Funkcje te mozna napisa¢ w postaci krotsze] ¢=¢ + @ przy oznaczeniu

- ; P @
(1.2.26) @=g,+gyz+ T(L(cosh kz— 1)+ k‘;

(sinh kz—kz2),

z

(1.2.27) 5:f¢(z—t)f(t)dt.
0

448



Spelniajac warunki Cauchy’ego otrzymujemy

z

_ sinh kz—kz =
g=—— =0, ¢=[e—970dt,
0
m(t)
f(t)ZCm(t)————E—IN—;
stad
" [sinh k (z—1) | m@© :
=_ [ [sinhk(z—t —k(z—1) »m(tr e . / :
(p——f & El dt= Fen [sinh k(z — t)
0 0

—k(z—t)]m(t)dt.

Uwzgledniajac powyzsze, réwnanie (1.2.24) mozna napisa¢ w postaci

) q)l! (p”’
=@, + g2 + *k% (eashiz—1) k‘l

(sinh kz —kz) -+

z

1 P
+ KGL J [sinh k (z —t) — k (z —t)] m (t) dt.
0
Biorgc pod uwage, ze
p=—EI3¢", EIJS(])"'—GI;”(]J':—MS,
adlaz=20
vl:__ Q_ rn= GI;‘vq)z)_MSQ :
%o EI’;’ ) Po EIJS )
otrzymamy ostatecznie
. . sinh kz B, M, sinh kz)
(1.2.28) @=g¢,+ @, . + GI 7 (1— cosh kz) + GI?(\Z . +
+ - S [sinh k (z —t)—k(z —t)] m(t) dt
kGIy ' ’

0

gdzie nowy parametr #=1I5/I5, okresla stosunek wiasciwego wycinko-
wego momentu bezwladnosci do sprowadzonego wycinkowego momentu
bezwladnoéci I5,. W rezultacie przekr6j skrecany jest scharakteryzowa-
ny w réwnaniu dwoma parametrami k i 1.
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Ostatni wyraz réwnania (1.2.28) w zaleznosci od rodzaju obcigzenia
bgdzie przyjmowal nastepujaca postaé:

(1) dla réwnomiernie rozlozonego momentu skrecajacego m(t) =m
dzialajacego na odcinku preta a <2< b

—coshk(z—a)+1+ - kz—a) ],

-m
k*GIs 2

(2) dla momentu M;, dzialajgcego w przekroju z = ¢

M
[kGL [sinh k(z—¢) —k(z—¢)];

(3) w przypadku przylozenia w przekroju z = d bimomentu B,

— 51”‘3; [cosh k(z—d) —1].

Ostatecznie wiec, gdy pret (utwierdzony na jednym koficu a na dru-
gim swobodny) jest obcigzony momentem skupionym Ms, w przekroju
z = ¢, bimomentem By w przekroju z = d oraz momentem réwnorniernie
rozlozonym w przedziale n <z < b, wyrazenie dla ¢ przybiera posta¢

1 ., . B,
(1.2.29) <p—<p0+?%smhkz~——GIS (cosh kz—1) —

—M~—(smh kz— )—-»Bii— [cosh k(z—d)—1] ~ﬂ—f [sinh k(z—c) —
kG- GI= kG,

k?(z—a)?]

—k(z—0)]— 9

—|coshk(z—a)—1 —

kGI

Pierwsza pochodna kata skrecenia wyraza sie wzorem

(1.2.30) ¢’ =g,cosh kz— B, sinh kz-—éd;l(coshkz—l)——

_k
Gy
k M;,
— —-—Bysinhk(z—d) ——=- [cosh k(z—c)—1] -
GI>

kGI [smh k(z—a)—k(z—a)].

Druga pochodna, przy uwzglednieniu B =EJ5¢”, jest

nGly . cosh kz -+ 77 ® sinh kz+

(1.2.31) B=—gq|—

+ #Bacosh k (z—d) +

(z—c)+ Z?l;mz‘ [cosh k (z—a) —1].
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Wreszcie moment gietno-skretny wyniesie
= ——=—gynGI cosh kz+ Biksinh kz+y M, coshkz +
+ 1 Bak sinh k (z2—d) + 9 M, cosh k (z—c) + ~— ’1 - [sinh k (z—a)].

Wzory powyzsze pozwalaja wyznaczy¢ odksztalcenie profilu o nie-
zmiennym przekroju przy dowolnym stanie obcigzenia.

W podobny sposdéb mozna ulozyé réwnania dla przekrojéw bardziej
zlozonych, rozpatrywanych w poprzednim p. niniejszej pracy. Mozna prze-
widzie¢, ze budowa wzoréw bedzie w tych przypadkach podobna do wy-
zej wyprowadzonych, a jedynie istotne réznice wystapia w wielkosciach
parametrow k i 5. Z tego wzgledu ograniczymy sie do podania wspom-
nianych wzoréw w czesci drugiej tej pracy przy rozwazaniu przykladu
liczbowego.

Korzystajac ze wzoréw (1.2.31) i (1.2.32) mozna wyznaczyé naprezenia

B o M3 S
g~ =— y T~ = — —Al
o - ® ~3
I I~ 6

Wzory (1.2.29), (1.2.30) i (1.2.31) w przypadku braku obcigzenia ze-
wnetrznego beda mialy postaé

]

(1.2.33) o=@, + - . @, Sinh kz—— (cosh kz—~1)--~—1\4 *— (sinh kz—1),

k7 GI Gl k
(1.2.34) ¢ = hkz— K B sinhkz — ~(coshkz )3
¢ = @, coshkz iGI 0 "~ GIL-
o GI~ M’
(1.2.35) B=—¢q, — . -sinh kz 4 B, cosh kz 47 k° sinh kz.
Rozpatrzmy z kolei pret zamocowany 4 Ms, M
na jednym koncu. Zalézmy, ze przekroj #\
swobodny z = | nie moze sie deplanowaé. /;,—':00 ;Z‘U
Wtedy mamy dwa warunki
Rys. 17

(p;)——“O i (p'z:,=0.

Warunek pierwszy wynika z utwierdzenia przekroju. Warunek drugi
wynika z réwnania

k M
0 =Gl B, sinh kz-—al— (coshkz —1).
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Z rownania tego znajdziemy

_ Ms,n coshkl—1
k sinh kl

B, =

Podstawiajgc warto$é B, do réwnania (1.2.35) otrzymamy

__ Ms,m coshkl—1

B=—=" ~simhm X
x cosh kz + Mlzm sinh k2
lub
(1.2.36) B— M;C”? X
(%hszlkl cosh kz - sinh kz) .

Ze wzoru (1.2.36) widag¢, iz dla
z2=0 i z=1 warto$ci bezwzgledne bimomentéw sg réwne odpowiednio

M;,n coshkl—1  M;n 1—coshkl

By sehklT . F Embhkl
B, — — Msn 1—coshkl _.Msn cosh kl—1
k= k  sinhkl = k  sinhkl

Réwnanie (1.2.34) po zastapieniu B, przez znalezione wyzej na te wiel-
ko$¢ wyrazenie bedzie sie przedstawialo mastepujaco:
,__ Msn[ 1—-coshkl
G GI~ sinh kl

sinhkz + 1 — cosh kz) .

Warto$¢é bimomentu dla przekroju $rodkowego (z = 1/2) wynosi

__ M, n{1—ceshkl kl .kl
Bi="% ( sinh kl °°Sh2+smhz)_
— Ms,m klly__ 2 Kl inh? Y —
=% cosh2(2 2 cosh 2 -+ 2 sinh 5 = 0.

Otrzymane wzory sa podobne do wzoréw dla otwartych profili; rézni-
ca polega na zastgpieniu M przez Ms, oraz GI; przez GI5 .

Mozemy wiec powiedzie¢, ze pret bedzie sie zachowywal jak pret
o profilu otwartym skrecany momentem M;s, i posiadajacy sztywno$é za-
stepcza GI5, mozna go przeto potraktowac¢ jako pret zastepczy o otwar-
tym profilu.
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2. SKRECANIE KADLUBA OKRETU NA FALI SKOSNEJ
2.1. Uwagi o cienko$ciennych przekrojach zloZonych kadiuba okretowego

Teoria cienkosciennych przekrojow ztozonych znajduje duze zastoso-
wanie przy obliczeniach kadluba okretu pracujacego na skrecanie, kadlub
statku bowiem z powodu specyficznych wiasciwosci konstrukeyjnych moz-
na rozpatrywaé jako powloke cienkoscienna, tj. jako ustréj konstrukeyj-
ny, ktérego grubosé¢ jest znacznie mniejsza od wymiaru obrysu. Stosowa-
nie w tym przypadku metod obliczen dla konstrukeji cienkoSciennych
prowadzi do dokladniejszych wynikéw niz stosowanie metod opartych na
elementarnej teorii wytrzymatoSci.

Pierwsze przyblizenie obliczen uzyskuje sie rozpatrujac sama powtlo-
ke niezbiezna, bez zeber usztywniajacych i przegréd poprzecznych. Przy
tych zalozeniach przekroje okretowe dadza sie¢ poréwnaé z przekrojami
typowymi rozpatrzonymi w p. 1, dla ktérych wyznaczono $rodki zginania
oraz powierzchnie wycinkowe. Wzory (1.2.29)-(1.2.32) pozwalaja wyzna-
czyé odksztalcenia i naprezenia tylko dla profilu otwarto-zamknietego.
Jednakze mozna przewidzieé¢, ze dla pozostaltych przekrojow typowych
struktura wzoréw (1.2.29)-(1.2.32) bedzie podobna do struktury wzoréw
uprzednio wyprowadzonych, a réznice beda dotyczyly jedynie parametrow
charakteryzujgcych przekrdj geometrycznie.

Te parametry obliczymy dla najprostszego przyktadu przekroju wielo-
sp6jnego w celu zobrazowania toku postepowania w przypadku przekro-
i6w bardziej zlozonych.

2.2. Roéwnanie skrecania przekroju dwuspojnego
Strumienie naprezen w poszczegblnych czeSciach przekroju sa naste-

pujace:
w przekroju K - K

0o?
(2211) q1:q01'—'q02‘+‘ f—az—éds,
BK
w przekroju L - L

4
BL C51

dop 0o} doj
(2.2.1.2) gs=0qp1— Qo2 T+ fa—éds=q01+ .f—wéds—i— fwéds,
BL

w przekroju M - M

do}
(2.2.1.3) Qs = Qo2 T f 5, 0ds.

453



Wprowadzajac oznaczenia jak dla przekroju
otrzymamy
d g ) A
g1 = qo1 — G2 + dz ‘ w dA,
B‘/\'
d O i A d (o) > %
(2.2.2) qs == Qo1 1 d_; ’ o dA + TZ( ’ ndA,
% BI
g; = Qos T wdA.

cM

Moment skrecajacy wynosi

M-verfodqu . j edsqs + J QdSQs“deS qm Qoo

14

T3

1234

d o,

2 : ' do 2
Lo [ wdA)Jr J st(qm—kgzﬁfwdA 49

Y
BK

4651

4651

1234

€51

14

otwarto-zamknietego

d o,
dz

f' (f)dA)

BL

d o, 2
+ fgds(q02+~d%fwdA)=j odsqo,——f‘gdsqm—,L
! cM

#J od %%‘ f odA + J odsqy + ‘st——J
14 BR 1934 1234 C51
- doy [ : ’ | doy [ s
+ J ods® }udAJr fgdsq.\g—hfgdsdz J HdA .
1234 Bl 1651 4651 cm
Stad otrzymujemy wzér
(2.2.3) Mo = Q, qo; + 25 qos + %( ’ QdSJ wdA -+ J stj wdA +
11 BK 1934 st
4 stj &dA -+ sfu‘)dA}.
1934 BI 4651 M
Po wprowadzeniu oznaczenia
:<f‘gdsfri}dAl— fgds fa‘)dAJr fgdsf(ﬁdA
T BK 1934 Bl 1651 cm
znajdziemy
i ‘ dan
(2.2.4) Q1 qor -+ Do Qog = Mepr— 200
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W celu wyznaczenia g, 1 o, potrzebny jest jeszcze drugi warunek.
Skorzystamy z tego, ze suma przemieszczen na cbwodzie zamknietym jest
réowna zeru; dzieki temu dla konturu pierwszego mozna napisa¢

T q,ds " g.ds
(225) 11‘ - ,1 g—,,,,_ — (.
;G o ] GO
11 1234
Poniewaz
d o, : do, | :z doy, { =z
= —_— - — ey S . ! St [ £
Gi=qu —Gozt g ‘ odA, Qs == Gy + 3 o dA e ‘ o dA
BK C’51 Bl
to otrzymamy
: ds i ds  do “ds oz *ds {2
22.6) $au—— | Gugt+ 2| | 5 | 0dA+ f | ddAa)=0
( ) . Qo o oz 5 dz o) : )
I 11 1234 C51 I BI
05
a L o & & o7 (5
s o
Qz / //' 1 // M o
r’ »7 /'/ o
/ g . 5 -
L;)» » ;)',) ,/’)]g Al A s v
A2 a6 o’
K‘; 05+ Ozu ) a A
s 2 E = e iy
-~ 2 » - k;
» 4 p
“ A 2 - i~
[ . v 901902 n 4 77 Qo2
P L 4 '
_ =5 o ) A
G c
b

Rys. 19

2.2.6) przez ¥ oraz

Oznaczamy wyrazenie w nawiasie w réwnaniu (



Wowezas

da(,yl

{2.2.7) D1 Por — S14 Qo2 — =

Réwnania (2.2.4) i (2.2.7) tworza uklad

do
' -Q1 qu‘, Q Qoo =— = Mspr — Oq),

(2.2.8) dz
] s __day
P1 Qos 14 Qo2 = dz
ktérego rozwiagzaniami sa
d o, Un
Msrr 814 —‘d;((psm‘*‘ vQ,) Msgrpr+—— (-Q Y—p D)
Qou == W—?QHQT—“_ ' Ho= " Q] Si4 + Q, py
WprowadZzmy oznaczenia:
= Si4 p— P
91314+~sz1 Q8,1+ 2,p,
— P8t ¥R, PO —Op
Q514+ 25p, Q84+ p
Wowczas
(229) o, :Mslor,u_%;gx, 02 = Mserv + dU()U

Strumienie naprezen stycznych (2.2.2) po podstawieniu (2.2.9) i wprowa-
dzeniu nastepujacych oznaczen:

n=y+0— [6dA, O=y— [bdAa— [bda, E=0+ [bada,
BK Cs51 BL cM
sa
do
q,ZMskr(/L—v)—d—zon,
d

(2.2.10) Qo = Mapr pt— d‘;"@,

—Makrl‘!‘daog

Obliczmy catkowita energie potencjalng profilu
U = UO "_ Up .

456



Energia naprezent normalnych wyrazi sie wzorem

2
- oc*dA O'2 2 ) 0'2
Updz= | Zo%2 4, _ % ) %
0 J g 2= (fa dA)dz= 513 dz,
A A

a energia naprezen stycznych wzorem

P fzca

:%—{I[Mskr(}l—i’ —d—a—o ] == ar f(Mskr,u dGOO %
14

1234

2G6 2G6

%‘ (lyzckr V4 4‘ E%__g ;:) Ei*'} Clz =
dz )

4651

L (] e — 2890 0 ey (S0 2] B
—-—2G{.f|M5kr(,u 7) 2 dz Mskr(l/- V)ﬂ+(dz) 7'5] S +
14

o do d o,\? ds -~
+ ‘ [M}k,-/,tz——z dz M:kr/l@’*‘( 00) 02]§+

1934

2 d o 2 4 (200)\* 2] ds
-+ f[M.vkrV +2 0z Mskrvu+(dz) = ] y; }dz

4651

Roéwnanie Eulera w postaci

« 0(Us+Up) _ d [0(Uy+ Up)
(2.2.11) oY mE _a(dao)

dz
dla funkcji U bedzie nastepujace:

Gogr 1 — (— d oy ads

14

[l_mskrli@+ (déziO)@z‘l f (mskr'VE“l‘(il:;) :2) das},
1234 4651

gdzie przyjeto oznaczenie

d Mskr
Mskr = .
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Po uporzadkowaniu otrzymamy

. . . " 5
(2.2.12) d g i(angf—}- {QB%S 3 IEZQ)_ glo

dz®? G 8 kY E
14 1234 4651
1 | d T _ds
- - = —_— 5" =—
Gmckrlf</l v) 7 5 T e - f,,u 3 0
lub 1 1234 4651
d*o, G 12 -
S T N
~ é J 0 T8
14 1234 465
B ds ~o_ds]
{[(ﬂ—v)ﬂ jﬂ@?—-\} vz?-'
== Mgy — 1224 4651
fn dS j@ -_+ fﬂz
14 1234 . 4651
Wykonujgce podstawienie o,=-—E¢"” otrzymamy réwnanie rézniczkowe
skrecania
, G 12
(2.2.14) 'V (]7 s S N
E {ngig+f@3@+[5a§
a & b
1 1234 1651
ds ds
[f(/'l‘_v 75—_1‘} ﬂ@g—{* {VE*(S
— _ Mskr 14 1934 4651
E 5 ,ds —p 0S8 )
J e . 4+ f@ 5 + [_ :
11 1934 4651

Poréwnujgc je z nastepujacym réwnaniem rézniczkowym skrecania preta
otwartego lub otwarto-zamknietego

(pIV - kz (P” = _é—msk/' (k‘j == g II\ )
okreslamy parametry ki &: ‘ “
o G Io: o
k - E f‘ 2 f {,—)
Al =y
(2 2‘15) ' 14 1934 4651
' ' -ds
[ [ [1s8
£ 11 133 4()31
s 2 s
[#5+ [l |22
14 1234 4651
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Stad zastepcza sztywno$¢ skrecania Saint-Venanta i wycinkowa
podana jest wzorami

2 I i
N PR e Ty
J (u—v)m— -+ j M@F+ ‘ g
(2.2.16) 14 _ 1534 4651
ds to.ds ds
g &S wds | 08
[‘ 6 ‘9 0 'f“ P)
I — 1 193 465t
S ds _ds
j(/l*v)v 5T {/«t()?%— [vug
11 234 1651

2.3. Obciazenie i warunki brzegowe dla statku o przekroju nieciagle zmiennym

OkresSlenie parametréw I, i I,, przekroju zlozonego pozwala wy-
znaczy¢ stan naprezenia i odksztalcenia cienko$ciennego preta skrecane-
go o dowolnym przekroju poprzecznym stalym. W celu uzyskania dosta-
tecznego przyblizenia dla kadiuba barki lub statku nalezatoby uwzglednié
niecigglo$ci przekroju spowodowane otworami w pokladzie, nadbudow-
kami itp.

Dla elementu o przekroju stalym wzér wyjsciowy dla kata skrecania
jest nastepujacy:

v/ e

(231) g=gy+gpz + 15 (cosh kz—1) + 0

X (sinhkz—kz)+

+

ké]s ] [sinh k(z —t) — k(z— t)] msz-(t)dt;
0
przedstawia on calke znanego réwnania rézniczkowego
{2.3.2) PV —Kk2 9" = mg,.
Przyjmujemy rozklad sinusoidalny momentu skrecajacego
Mgk, (t) = M, sin 2—; t.

‘Woéwecezas roéwnanie kgta skrecania bedzie

{2.3.3) qo—qoo-{—rpoz—}— (cosh kz—1)+ %%—(sinh kz—kz)+

2 1 . 2

m, T sinhka—psin Tz L\ . 2z

BT |
Lk

;gdzie §= GIS.
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Pochodne kata skrecania wynosza odpowiednio

22 lll

(2.3.4) <P':<P6+q;c sinhkz + ,(coshkz )—l——km—;x
2x 27
LIECOShkz_'L%CS T? kL, kL _2a
ax  2a T 2m S TLE
1+ JT T JT
Lk
(2.3.5) ¢ »Aqoocoshkz%———smhkz—i— é
(gjf)zl i 371z+-~s,1 hkz
L/ k n 27
5 — k sin — i 21,
L+
Lk’
(2.3.6) ¢ =g, ksinh kz + ¢ coshkz+ -Zbé X
27\°1  2a
(f)-k_ Z+——kCOSth _Ekcosgi'_tz
L L

1+(Lk)‘

Wzory powyzsze pozwolg okreéli¢ bimoment i moment gigtno-skreca-
jacy za pomocg zaleznosci

(2.3.7) B=—El.,¢", Mo=—El,¢"

Dwie niewiadome stale ¢; i ¢, wystepujace w réwnaniach (2.3.5)
i (2.3.6) muszg byé tak dobrane, aby byl spelniony warunek cigglosci
naprezen normalnych i stycznych w przekrojach granicznych; np. miedzy
profilami A i B:

(2'3'8) [O‘A]z—z, [0'131227 ’ [TA]z:zl = [’L—B]z:zx -
2.4. Ciaglo$é naprezei w miejscach zetknigcia si¢ dwach réznych profili

Rozpatrujgc zagadnienie cigglo$ci naprezen w miejscach zetknigcia sig
dwéch réznych typow profili nalezy zwrdcié uwage na dwa zjawiska:

(1) przekroje graniczne (lewy, prawy) posiadaja roézne powierzchnie
wycinkowe i wobec tego w przekroju tym nastapi¢ moze skok naprezen;

(2) takze podobna nieciaglo$¢ wystepuje na powierzchni swobodne]
jednego z przekrojow.
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Stad wniosek, ze w przekroju granicznym musi by¢ przylozony zréw-
nowazony uktad obcigzen, ktéry zniweluje skok naprezenn w elementach
wspollnych obu profili oraz sprowadzi do zera naprezenia w swobodnych
czeSciach przekroju (tj. w czedciach nie stykajacych sie z przekrojem sa-
siednim).

Zamiast ukladu naprezeri wprowadzamy fikcyjny przekrdj posiadaja-
cy powierzchnie wycinkowsa spelniajgca powyzsze postulaty. Ten fikeyj-
ny przekrdj powinien spzalniaé
warunki

fwdA:
A

241) | [oyda=o,
A

Jozda=o.
4

Mozna go traktowaé¢ jako
przekréj redukujacy roéznice
powierzchni  wycinkowych
obu sasiednich przekrojow A
i B, dla ktérych maja byé
spelnione przytoczone wa-
runki. Wzory (2.4.1) mozna
takze zapisa¢ w postaci na-
stepujgcej:

é[,)a

‘f wp—w,)JdA=0,

24.2) | [(w;—o )ndA =0,
A

| { (wp—w, )xdA=0.
A

Rozpatrzmy styk przekro-
ju zamknietego A i otwartego
B (rys. 20). W celu uzyskania Rys. 20
cigglosci naprezen zgodnie ze
wzorem (2.3.8) stworzmy przekroj zastepcezy W, ktérego powierzchnia wy-
cinkowa stanowié¢ bedzie réznice powierzchni wycinkowych obu profili
sgsiednich. Jest rzeczg oczywista, ze z zaleznoSci

(2.4.3) Wy =Wy — W,
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wyplywa nowy zwigzek
(244) S‘”W: SmB"—SmA .

Woéwezas dla dowolnego elementu swobodnego np. w przekroju A
mozemy napisaé

voton—Ba9s  Brwow  Bios By
4 w Io)A Iw”,' Io)A Itow ?
(2.4.5) '
v g MoaSos | MoySey  MaySoy Moy So
4 W I(L)A o) I"’W 1) IO)A é I”W é '

przy spelnieniu warunku
B, By M

Mo,y

w4

(2.4.6.1) Ak Ced .
Toy o Io, Io,

Stad wyplywaja zaleznosci
(2.4.6.2) Py= P, Py =Py

Podobny wynik otrzymamy dla elementu wspélnego obu przekro-
jom A i B:
(2.4.7) o+ oy =0y, 1t rp=15.

Podstawiajgc warto$ci naprezen oraz korzystajac z zaleznoSci (2.4.3)
i (2.4.4) otrzymamy:

B,w, Byow, Byo,

Io, Loy, - Log '
(2.4.8.1)
Moy Suy | Moy Sy _ Moy
Io, 0 Ioy 8 TIogd '’
lub
B,w B, Bg
B P =
(2.4.8.2) . Y ’
I MwASmA MwW Sa)A-Sw‘{: M“’B SwB
| 1.0 To,y P I, o6 °

Rownosci (2.4.8) bedg spelnione, gdy

B, B, B, Moy _ Moy

(2.4.9.1) To, Iy lag

Moy

Stad wyplywaja zalezno$ci podobne do (2.4.6.2)

e

(2.4.9.2) i=0n &=l
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Wynika stad wniosek, ze przy przejsciu od jednego przekroju do drugie-
go skok bimomentu i momentu gietno-skrecajgcego jest proporcjonalny
do wzrostu wycinkowego momentu bezwladnosci.

2.5. Rozklad naprezen stycznych w przekrojach zlozonych

Dla przekrojow zamknietych i otwarto-zamknietych podanie wycinko-
wego momentu statycznego S» nie jest jednoznaczne z okre$leniem roz-
kladu naprezen stycznych pochodzacych od momentu gietno-skrecajgce-
go M,. Mianowicie na skutek rozciecia profilu zamknietego powstanie do-
datkowy strumien q zalezny wylacznie od wyboru miejsca rozeiecia,
a przez to samo od wyboru poczatku liczenia So. Dlatego w dalszych roz-
wazaniach postuzymy "sie sprowadzonym wycinkowym momentem sta-
tycznym S, skladajagcym sie z momentu S, utworzonego jak dla profilu
otwartego, oraz ze stalej wartosci S,,, charakteryzujacej strumien napiegé
zamykajgcych.

Wycinkowy moment statyczny dla danego przekrOJu przyktadowo wy-
znaczymy dla elementu dwuspéjnego rozpatrzonego juz w p. 2.2. Rozcie-
cie tego przekroju w punktach B i C lezgcych na gléwnym promieniu po-
woduje powstanie napie¢ zamykajacych qq; i gge.

W celu okreslenia tych napieé utézmy drugie rownanie typu (2.2.5)

fq3ds+fq1d8_f ~+®fdsf(odA JQO1

4651 4651
i ds dUO *ds 2 .
+ fantite % [ aan
12 14 BK
i rozwigzmy uklad réwnan
do : do
(2.5.1)  pPi1qy—814Qpe=— dz”‘ll’r — 8$14G0 + P22 =— dz()('v'
gdzie
(PZJ 'Cf; j o dA— ’ dT:—J wdA.
1651 CM 14 B
Stad
_ do’o YP2+ Sy _ dUo PP ysy 1/’314
12.5.2) =74 ppy—s, 2= 0 o pa—
Poniewaz
da(, __d[Bow _ Mo

(sl dz dz[ I ] 4 L

Rozprawy Inzynierskie — 4 463



to wzory (2.5.2) mozna zapisaé w postaci

; Mo M,
(254) Qi == =z Smm . Qoo ==y Sm(, y
Lo Lo
gdzie
(2.5.5) S, — _ ¥P:t@Su quu S, — PP ersn
” P1P— ’ - Pi1D:—

Podobny rezultat otrzymamy dla profilu otwarto-zamknietego:
8 N
a0+ d“"f BdA,  q=q, %f A+ fadA.
0 0 51

Warunek analogiczny do (2.2.5) dla czeSci zamknietej przekroju ma
postaé

‘A%ds 4+ g.ds == ).

Gé Go
14 1234
Stgd znajdziemy
j( deA-{—J——deA
__dg” SRS
(2'5'6) Qo = dz dS )

F)
a dla profilu prostokatnego bez «wypustek»
S

jf %ﬁ J A
0

(2.5.7) g — 28

dz o j{"d; o

2.6. Przyklad liczhowy

Opierajac sie na wynikach zawartych w pieciu poprzednich punktach
obliczymy naprezenia 6o i 7o W barce o szerokosci 12 m i diugo$ci 100 m.

Cate obliczenie mozna podzieli¢é na pie¢ nastepujacych etapédw:

(1) obliczenie $rodkdéw zginania i powierzchni wycinkowych wszystkich
przekrojow barki oraz ustalenie obcigzenia zewnetrznego;

(2) okreSlenie parametrow lo, Iy, I, i k dla kazdego przekroju i pod-
stawienie ich do réwnan (2.3.5) i (2.3.6);

(3) wyznaczenie dla otrzymanych w ten sposéb 10 réwnan 10 stalych
calkowania ¢, i ¢, z ustalonych warunkéw brzegowych (rys. 21);
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(4) rozwigzanie otrzymanego ukladu réwnan i okreslenie bimomentu
i momentu gietno-skrecajgcego, pochodzacych od obcigzenia w dowolnym
przekroju kadluba;

(5) uzyskanie ciggloSci naprezen w przekrojach granicznych przez
przytozenie wtoérnych ukladéw samozréwnowazonych na podstawie wzo-
réw (2.4.6.1) i (2.4.9.1).

)

nop

o<
Oy

)
N
o
Or—
a
hon
oS
8\ R
0o
oo

0=0 A 8 (X I
T

o

o

Rys. 21

Stosujac ten tok postepowania podamy uzyskane rezultaty.

Linia $rodkéw zginania podana jest na rys. 22b. Powierzchnie wycin-
kowe wszystkich przekrojéw podane sg na rys. 22¢, a na rys. 22d wycin-
kowe momenty statyczne S, i S3. Zalozono, ze rozklad momentu skreca-
jacego jest sinusoidalny o amplitudzie m, = 42,5 tm/m, co odpowiada skos-

nemu ustawieniu bar-

Tablica 2 ki na fali o dlugosci
- i =1L
l I, (m?°) ‘ I (m?) ? I, (m° [ k(m™?) 4 .

I M . N Obliczone para-
Przekroj A 4,32 5,75 1 0.211 metry lo, Is, Io, 1 k
Przekroj B 22,68 9.10 ¢ 0,000389 podano w tablicy 2,
Przekroj C 2.856 | 8,185 58,148 | 0,242 przy czym parame-
Przekro6j D 2343 0,236 ’ 0,0508

try charakteryzujace
przekréj C wyzna-
czono na podstawie wzoréow (2.2.15), przekrdj D na podstawie wzo-
réw dla profilu otwarto-zamknietego czesci poprzedniej niniejszej pracy.

Po wstawieniu parametréw do wzoréow (2.3.5) i (2.3.6) otrzymamy na-
stepujacy uklad réwnan:

ur

(2.6.1) Pa, == @g4, c08h 0,211 2 + - 0 211
0,00394786 sin 0,062832 2 +0,0132575 sinh 0,221 2 .
y ( 0,048469 —-sm0,062832z),

@y =@ 4.+ 0,211 sinh 0,211 2 + ¢, cosh 0,211 z + 0,05795 - 10~6

0,00394786 cos 0,062832 z + 0,211% cosh 0,211 2z
X( : 0,048469 ———00500028322)
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5521

fA) (8) () (0) (A)
} l |
l ! |
: .
1 ‘ I
| | |
| | ‘ 5
[ T L-5r20-100 B |
| i
Szerokodc barki B=12m. wysokos¢ boczna H=6m; grubasé poszycia stala $=0,01m,
| Luna Srodkdw zginama | l:ﬁjq | l
: = :
! / | ! f ;
. : L
» S N IR spvonss msppessny s S SN SN SN |
il i ‘ S — — '

-4.02 +4,02

243
Y

» ' NI
27 -1305

-572 ‘2?72

Rys. 22

= B
i nogag 0,045
02138 0135



T . . g
@5 =@,z cosh 0,000389 z 4 0 000389 -sinh 0,000389 z 4 0,59027 x

x 0,00394786 sin 0,062832 z -+ 0,00002442 sinh 0,000389 2
0,00394801

— sin 0,062832 z) ,

@5 = @y 5 0,000389 sinh 0,000389 z 4 ¥y €0sh 0,000389 z - 0,037088

0,00394786 cos 0,062832 z - 0,0003892 cosh 0,000389 2
( = = “=F 05 0,062832 z)

n;

9 e . —6
= @y cosh 0,242 z—}—024251nh0242z—l—0649 10-5x

” 0,00394786 sin 0,062832 z -+ 0,0152053 sinh 0.242 2
0,0625118

—sin 0,062832 z) ;

9¢ = 9y 0,2425inh 0,242 2 + ;. cosh 0,242 z + 0,040778 - 106

0.00394786 cos 0,062832 z + 0,2422 cosh 0,242 »
S - e ) ) el e 9
( 00625118 cos 0,062832 z),

1

Pon —6
= @y cosh 0,0508 2 + o0 sinh 0,0508 2 + 22,501 100
. (0:00394786 sin 0,062832 = -+ 0,00319186 sinh 0.05082 0,06283 2
| ( 0,0065313

e

®p = Py p0,0508 sinh 0,0508 z + ®op cosh 0,0508 z - 1,43783 - 10— 6 x

(O .00394786 cos 0,062832 z + 0, 05082 cosh 0,0508 2

0,0065313 — cos 0,062832 z) ,

yvl

¢4, =@, 4 cosh 0,211z 4+ —

0211

0,00394786 sin 0,062832 z + 0,0132575 sinh 0,211 2z
0,048469

—sin 0,062832 z) s

"

P, —%,1 0,211 sinh 0 2112+(p0A cosh 0,211z 4 0,05795- 106 x

—co0s 0,062832 z) .

0 00394786 cos 0,062832 z + 0,2112 cosh 0,211 2z
0,048469

Wzory (2.4.6.2) i (2.4.9.2) okre$laja osiem warunkoéw dla przekrojéw
przejsciowych, ktére razem z warunkami uzyskanymi z przyréwnania do
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zera bimomentu na koncach statku stworza nastepujacy uklad réwnan
pozwalajacy wyznaczy¢ stale gy 1 ¢’

rn "
‘PA‘:—ao:()’ ‘PA,::+50:0'
" " "nr e
Pa,——20" PB=—30" Pa,—-—30— Pp=—30"
£ " e ree
(2.6.2) Pp——10 — Pc—=-10" Pp——10 = Pc=—10"
(2 " e ry
Pe— 110 = PD=+10? Pe=110 — PD=110"
" 144 mnr rr
Pp—y30 = Pa,=+300 Pp— 150 = Pa,=+30"

Wstawiajac otrzymene wartoéci ¢ i @, do réwnan (2.6.1) orez stosu-
jac wzory B=—El.¢"", Mo=—Els¢"" okretlemy bimcment i mcmént
gietno-skretny crez funkcje ¢ i ¢ w dowolnym przekroju kadluba.
Nastepnie z prostych wzorow

Bw Mw Sm
(2.6.3) o= r="10

otrzymamy wartosci naprezen.

Bimomenty i momenty gietno-skretne otrzymane na podstawie wzo-
réw (2.6.1) i (2.6.2) okreslaja tzw. obcigzenie pierwotne, nie dajace cig-
glcéci naprezen w przekrojach granicznych (rys. 23a). Konieczne jest
w tym przypadku przylozenie bimomentéw i momentow gietno-skretnych
wtornych w kazdym przekroju nieciagiosci dla spelnienia zalezno$c: (2.4.5)
i (2.4.7), (rys. 23b).

Iy

-, 1 .5, ws
GRS rBamBhTy,

——]

Rys. 23

Wzory (2.4.6) i (2.6.2) prowadza do zaleznosci

"

(2.6.4) P =Py =Pp» P4 =@ =g -

Wzory (2.6.4) sa jednoczeénie jednostronnymi warunkami brzegowymi
dla obcigzen wtérnych.
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Dla obliczenia rozkladu naprezen wtérnych mozna by, jak sie wydaje,
zastesowa¢ teorig uktadéw zerowych (samozréwnowazonych) J. N o w i a-
skiego.

W tym przypadku catkowite naprezenia mozna zapisaé w postaci na-
stepujacej:

=20+ 2o,
(2.6.5) r =10 X,
gdzie ¢° i 7' odpowiadaja wyzej obliczonym naprezeniom pierwotnym,
za$ ¢’ i 7' s to naprezenia tworzace w ogélnym przypadku nieskoficzo-
ny zbior ukladéw zerowych.

Dopiero uklady okres$lone wzorami (2.6.5) dadza calkowity obraz napre-
zen w kadlubie skrecanym barki.

‘p” (p "
8109 2409

61978 ’

-410°% -1107°8

@O -9 =Fiy
-6107¢ "
@ — ¥t =F ()

-8107% 2492

Rys. 24

Pomimo Ze obliczone wartosei ze wzoréow (2.6.3) nie daja dokladnego
przebiegu naprezen we wszystkich przekrojach barki, to jednakze mozna
sig¢ nimi postuzyé w celu oszacowania naprezen maksymalnych. Jak widaé
z rys. 24, najwieksze wartoSci naprezen (szczegélnie normalnych) wyste-
puja w pewnej odlegtoici od przekrojéw granicznych w miejscach, gdzie
mozna si¢ spodziewaé raczej niewielkiego wplywu obcigzen wtérnych;
np. naprezenia maksymalne w przekroju B réwne o, = 395 kG/cm2,
7o = 105 kG/cm? nalezaloby uwazaé za doéé doktadne.

Przyjmujgc istnienie przegréd poprzecznych w miejscach Zmiany pro-
filu rezygnujemy tym samym z ciaglosci naprezen stycznych na poszy-
ciu barki w przekrojach granicznych. Wéweczas warunki beda nastepujace:
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‘P;,:—su:()! ‘P’/;,: ve0=—0,
‘PA,,—. = @p__g0 [TA 0+ 74573 L) P
[}‘TA,BaABQdS]z:%:O’
Pp——10= Pc——t0" (2505t 75¢05c="cOcl:— 10
(2.6.6)
[)(TBC dpc QdS]z:—w:Ov
Pee s 10=Pp—s 10’ [tcct Tcpdcp=Tp0pl.— 100
[f"codcn QdS]z:.;-m:O)
‘PD +30 ‘PA,:;so’ [TDéD—I—TDAQ(SDAzZTA26142]Z:+307

[:](TDA2 Opa, 9ds]z:+3o =0,

gdzie 7,5, Tzer Tepr Tpa,r Oans 0p¢r Ocps Opy, Sa to naprezenia styczne
oraz grubosci blach przegréod w odpowiednich przzkrojach. Jak widag,
w tym przypadku nieciggloéci naprezen stycznych na poszyciu wyréwnujj
naprezenia styczne panujace na obwodzie przegrody.

Na zakonczenie przeprowadzimy krotkie rozwazania dotyczace do-
kladniejszego okreslenia przebiegu naprezen w poblizu przekrojow gra-
nicznych. Mianowicie, aby uzyska¢ funkcje ciagta okreslajgcag naprezenia,
dodamy jeden wyraz ukladu wtérnego, zawierajacy dostateczng ilos¢ sta-
tych do wyznaczenia warunkéw brzegowych oraz réwnowagi (2.4.5).

2.7, Uklady wyréwnujace naprezenia w przekrojach granicznych

Przyjmijmy pierwszy wyraz ukladu wtérnego w nastepujace] postaci:

e

1

(271) ¢ =gjcosh kz + "L sinh kz + goos | 2 Fopsin Tz +

W 2m o 2W
—|—<pogcos T2+ gy 8in -
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Pochodng tej funkeji jest

2.72) "= gy k sin kz + gy cosh kz—¢gz—7lz~sin —7{—2 -

e JC TT " 27 . 27 ,,,271 27'[
+¢02——l—COS ‘l—Z’—(pOS“l—Sln TZ + (]703T COoS —l—Z

Poczatek ukladu umieszczamy w przekroju granicznym.
Uwzgledniajac wplyw naprezen Saint-Venanta musimy znalez¢
pierwszg pochodng kata skrecenia:

’ " 1 . " 1 " l -
(2.7.3) ¢ =g} sinh kz + g 35 cosh kz + g, —~sin %z—

" l

ﬂ n l . zn nr l
—qnoz—n—cos Tz + ¢03ﬂsm =

27
1 z—-%gﬂcos—l——{—c.

W funkeji powyzszej wystepuje siedem statych dowolnych:
Tor Do Yoo P P oy C-
Mozemy jednakze podaé sze$¢ warunkéw brzegowych, z ktérych na-

stepujace cztery odnosza sie do bimomentu gietno-skrecajacego na kon-
cach przedziatu:

" BW " Mm
U e T
(2.7.4)
7=l B,=¢y=0, Mo=gp=0.

Pozostate dwa warunki otrzymamy zakladajac, ze dla ukladoéw wtér-
nych nie istnieje obcigzenie zewnetrzne w kazdym przekroju rozpatrywa-
nego przedziatu, czyli ze

z=0, Mo+ My= Msr =0,
(2.7.5.1) {

z=1, Mo+ My= M= 0.
Wobec tego mamy

220, kz(pl__{p/n:()'
(2.7.5.2) {

z=1, K¢ —¢ =0.
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Podstawiajac do tych réwnan odpowiednie wartosci ze wzordw (2.7.1)-
(2.7.3) do (2.7.4) i (2.7.5.2) otrzymamy uklad réwnan

w (K21 m (k2L 2 ’
%2(7_{“1) ‘*‘%3(*4“—”)—’53(—‘:0,

l 27 4
w (k21 & w (K2l 27
?’02(?‘*‘*1—)”"7’03(2”‘{——1—)4- k*C=0,

i =901 + Py + ¥os»
(2.7.6)

IV— " nr n mnr 2n
P = Po1 T Py T = Poz 7>

" rr 1' . "
@oy cosh kl -+ ¢ & sinh kl — @g, + @p =0,

e T

" . rr n 2
9 fe sinh el + g cosh kl—gp; -+ g3 57 = 0.

Obierzmy stala C za parametr niezalezny i pozostale stale okreslmy
jako funkcje C. Znajdziemy wtedy

w __C coshkl—1 ,, coshkl
T00= " "ksinhkl " ksinhkl ’
w1 5 o 1 W ] C coshkl—1
Yo ="y %% T 3 Lsinn k1 (Coshkl—1) 7 ksinhkl
(2.7.7) . : o
n___+ n o w
Pos = 5 oy + 2 Tesinhkl (cosh k1 + 1),
" ne C " S e I C l
9’01=¢’W'—7» Por =0, ‘Pos‘—';ﬂr
gdzie
— 1 =
T
4 7> k?

Brakujace siédme réwnanie otrzymamy z warunku minimum energit
potencjalnej.

Energia catkowita obliczona dla jednego przedzialu jest

i
*dA dA | M
7. —[ (Gt [gea, )a,
4278) w f( SE f2G6+2GIs dz
0 A A
Zastepujac naprezenia odksztalceniami otrzymamy

: E[S.dA [’

__EI&) 09 A
(2.7.9) W= f(gn Pz +—ma—
0 0

{
177\9 GI na
5 (@ )zd2+7€f(¢)“d2-
Q
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Podstawmy wartosci statych (2.7.7) do wzoréw (2.7.1)-(2.7.3) i wpro-
wadzmy nastepujace oznaczenia:

_ leoshkl—1 . 1 sinhkz 1 coshkl—1 &
H= " Tksinhkl : k 4 ksinhkl 1
L
= 27y T
w coshkl . sinhkz 1 .,
S P bkl R B
2x 1 Py 2n
% [cos 27 ) 1 _ 9w ( 2 _“:’z>
cos ] 2 + cos ] z’ -+ 5 ksinthCOShkl cosl 2 -+ cos ] +
+1——-£W,/—( sz—nz——coszz)
2 ksinhkl\“° 7
ﬂ:lgs—b—ki——lsinhkz—icoshkz—%
y  sinhkl Z
1 ccshkl—1 = 7 1 27
(2.7.10) 1« e L e
S smhsT T e
. . coshkl . 1 ., =
o= —9v okl s1nhkz+<pu,coshkz—~_2_q,u77>g
' 27 1 ‘P,p't:/ 7
X(sm 2z -+ 2sin— ] z)+ B ksmhkl 1 bed
[(coshkl——1)s1n—z+2(coshkl+ sm ]
1 cosh kl— 1981
x——x— Ej—sﬁlh_lﬁ—SI hkz——;ic—,coshkz——
leoshkl—11l w1 F
y ksinhkl =« l y 4a*
wm  coshkl l
A=—0qy 1 sinh ki smhkz+<pw,k coshkz+ (pu, X

2 > 1 oy 1,
2 ksinhkl =

1
(sm 1 z—{———smTz
[(cosh kl—1) Sinez— = (cosh kl1-+1)sin ZT z]
W wyrazeniach na pochodne kata skrecenia wyréznijmy skladniki za-
wierajace C i skladniki nie zawierajgce tej statej. Znajdziemy wzory

{2.7.11) ¢'=Cutv, ¢"=COo+0, ¢=Cux+4i.
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W wyrazeniu na energie (2.7.9) wprowadzimy jeszcze dodatkowe ozna-
czenia:

a=El,, f= géfsm y=GlI;,

A
a nastepnie wzor (2.7.9) zrézniczkujemy i otrzymane wyrazeme przyrow-
namy do zera:

{ ! !

. ¢
(2.7.12) %Vg—=a<ny2dz—i— [yvdz)—}-ﬁ(sz?zdz—l—fﬁ(bdz)—l—
0 ' 0 0

0

!

‘
+y<Cfx2dz+fxldz)=0;
b 0

tm*  un

4000- 1500

3000
1000

20004 @
5001

1000 -

2000 @D~ 8 =fu

1000 { - =
_— Q@ - M =Fx
000 1500

Rys. 25

W ten sposdb otrzymali$my réwnanie do wyznaczenia sidbdmej stalej:

f! { !
afuvdz—f—ﬂfﬁ(bdz+yf21dz
(2.7.13) C=—"2 g .

l i 7
af;fdz+ﬂfz9"’dz %—yfxgdz
0 0 0

Obliczenie wptywu zbieznosci poszycia statku na dziobie i rufie zawie—
ra dalsza cze$¢ niniejszej pracy.
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3. OBLICZENIE KADLUBA OKRETOWEGO JAKO KRATOWNICY PRZESTRZENNEJ

Zagadnienie skrecania kadluba okretowego, mimo swej doniostosci
dla ogdlnej teorii wytrzymatoSci kadluba, znajduje w literaturze stosun-
kowo nikle odzwierciedlenie. Przyczyn tego nalezy szukaé w trudnosciach
zagadnienia i w skomplikowanych obliczeniach, ktére powinny uwzgled-
niaé zar6wno zmienny przekr6j kadtuba okretowego, jak i zmienny roz-
ktad momentu skrecajacego wzdluz diugosci statku. Jednoczesnie oblicze-
nia, aby przedstawiaty faktyczny stan rzeczy, nie moga opieraé sie na hi-
potezie plaskich przekrojow, lecz musza uwzglednia¢ wystepujgce w rze-
czywistosei paczenie sie przekrojow. Wreszcie obliczenia powinny
uwzgledniaé wspolprace poszezegbélnych wigzan okretowych przy pracy

" kadtuba jako calo$ci.

Je$li jednak zwrécimy uwage, ze jedng z najczeSciej wystepujacych
awarii okretowych jest pekanie narozy lukowych (rys. 26), ktérego to zja-
wiska nie mozna przypisaé¢ dzialtaniu momentu gnacego kadiub na fali, fo
dojdziemy do wniosku, ze donioslo$¢ teoretycznego opracowania zagad-
nienia o skrecaniu okretu nie budzi watpliwo$ei. ‘

Poklad . Zrebnica lukowa Poklad  Zrebnica lukowa
—— 4
. i F—r ]L
i ‘ L. Burta i Burla
N Broti Dno | Orodz 1 I
| ! Ono
—

| —
> Zrgbnica ltufrawa

i
B i | ‘
' : |
| l ]
B :ﬁ Luk . ladunkowy :
| e b e e R e & e T
' ! Rys. 26
I | | Schemat okretowego luku ta-
: | dunkowego. Pola zakreskowa-
.
| |

ne — obszar najczeScie] wy-
stepujacych peknie¢ poktadu
przy narozach lukowych

Praca niniejsza zasadniczo zajmuje sie metodg wyznaczania sit dziala-
jacych w narozach lukowych. W tym celu kadtub jest rozpatrywany jako
kratownica przestrzenna, przedstawiona na rys. 27. Jak wynika z rysunku,
przyjeto uproszezony ksztalt kadtuba o stalym przekroju prostokgtnym.
Zaltozenie to niczym nie wplywa na zasadniczy tok rozumowania, a znacz-
nie upraszcza obliczenia. Jednoczesnie pozwala na poréwnanie otrzyma-
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nych wynikéw z wynikami rozwazan nad kadlubem okretowym traktowa-
nym jako skrecana powloka cienkoscienna, dla ktérej wplyw zmiennego
przekroju kadluba znacznie bardziej komplikuje obliczenia, niz ma to
miejsce przy kratownicy przestrzennej. Z tego powodu ograniczono sie
do kratownicy statycznie wyzraczalnej, tj. do kraty posiadajacej przekat-
nie tylko w skrajnych grodziach (0 i 5) i $cianach zewnetrznych. Grodzie
wewnetrzne (1, 2, 3, 4) sg pozbawione przekatni, a wigec zakladamy, ze
grodzie te nie moga przenosi¢ naprezen stycznych, jak to zdarza sie w rze-
czywistosci przy niedostatecznie usztywnionych tzw. grodziach falistych.

Rys. 27

W odréznieniu od terminologii stosowanej przy kratownicach lotni-
czych bedziemy stosowali terminy okretowe: gr6dz oznaczaé bedzie
plaszezyzne przechodzgceg przez wezly kratownicy i prostopadia do osi ka-

tuba (w lotnictwie — przegroda); przedzial — odcinek kratownicy prze-
strzennej zawarty miedzy dwiema sgsiednimi grodziami (w lotnictwie —
grodz).

Poklad w przedziatach 1-2 i 3-4 posiada tzw. luki ladunkowe, tj. otwory
obramowane ramga. Je$li wiec potrafimy obliczy¢ sily dzialajace w gér-
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nych przekatniach 1-2 i 3-4 i sily te potraktujemy jako obcigzenia ze-
wnetrzne wspomnianych ram, to obliczenie momentéw naroznikowych
w ramach daje, lgcznie ze znajomoscig sit w otaczajgcych poklad podiuz-
nicach i poprzecznicach, realne podstawy do obliczenia naprezen w naroz-
nikach lukowych. Przedzial 2-3 posiada nadbudowke nad calym poktadem.
Obcigzeniem zewnetrznym dla nadbudéwki bedzie cze$¢ sity dziatajacej
w gornej przekatni poktadu w przedziale 2-3.

Wartos$ci sit w pretach naszej kratownicy przestrzennej obliczamy jako
funkcje maksymalnego momentu skrecajacego. Rozklad momentu skreca-
jacego wzdluz statku nie wplywa na tok rozumowania. Dla naszego przy-
padku przyjeto na podstawie bardzo nielicznych danych w literaturze roz-
ktad momentu skrecajgcego w postaci

1 2nx
(3.1) M:?(I—CO ‘—'L )M]na\ .
Dla konkretnego kadluba okretowego mozna My wyliczy¢ Scisle lub tez
stosowaé podany przez Siwierciewa, [17], przyblizony wzér na ma-
ksymalny moment skrecajacy na owrezu

(3.2) Mmax=k}/TBzL,

gdzie k oznacza wspélczynnik bedacy funkejg stosunku diugosci kadtuba
i dtugosei fali L/4, dlugosci kadiuba do jego szerokoéei L/B oraz wsp6l-
czynnika pelnotliwo$ci wodnicy a, y oznacza ciezar wilasciwy wody,
r polowe wysokosci fali (w praktyce r = L/40), B szeroko$¢ kadluba
i L diugos¢ kadtuba.

W naszym przypadku przyjeto poczatkowo Muax = 1 oraz uwzglednia-
jac, ze prety kratownicy moga przenosi¢ tylko sily osiowe (a wiec obcig-
zenie zewnetrzne moze dziala¢ tylko na wezly kratownicy), zastgpiono
krzywoliniowy rozk!ad momentu skrecajgcego lamang linig schodkowsg ze
skokami na grodziach. Wielko$ci skokéw na kolejnych przegrodach i, k
okreslono z zaleznosci

.fk
3 2nx
‘ (.1 — cos —AL-—‘ dx

xi

(33) Ma= - J Mdx== ]

Obliczenie momentu skrecajacego poszczegélne przedzialy zawiera ta-
blica 3.

Rozwiazemy zagadnienie kratownicy przestrzennej metodg niewiado-
mych sit deplanujacych, oparta na rozwazaniach Wagnera, [18], a roz-
powszechniong w piSmiennictwie polskim przez Grzedzielskiego,
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19]. Nalezy zwréci¢ uwage, ze dzieki ptaskosci wszystkich czterech $cian
kratownicy podstawowej (jako kratownice podstawows traktujemy sam
kadlub bez nadbudéwki) mozna metode Grzedzielskiego stoso-
waé bez zastrzezen. W przypadku istnienia zalamanych $cian bocznych

Tablica 3

M, = I L 1—-«cosw~)dx——1»[a~i(sin ﬁac - si 2= )]—
L L “2a 27 L RSB T
.k’I'
. 27 . 2a
=0,5—0,397888 (s:n—L— xp, — smTJ- xi) .
k ‘ 0 i 1o 2 | 3 ‘ 4 ’ 5
I | ; .
x, =20k 0,00 :20,00 ‘ 40,00 60,00 80,00 100,00
.’L‘k 2, 1

A = 1*0% XLy, 0,0000 i 1,256638 2,153272 3,769908 5,026544 | 6,28318

|
: Xy, | .5
sin2z I 0,000000 ' 0,95106 . 0,58779 |—0,58779 |—0.55106 0,0000
. Ly : Xy ; ;
sin 2z 5N --sin2z A 0,00000 : 0,95106 —0,36327 |—1,17558 | —0,36327 0,95106
X, 1
0,397888 (sm 27—~ — | |
L ; | i
2 |
sin2#z fl) 0,00000 . 0,378415 ‘ -—0,144541 | —0,467749 | —0,144541 0,378415

|
i 0,644541 0,967749 | 0,644541 | 0,121585

M, 0,000000 | 0,121585

kadluba metoda Grzedzielskiego nie daje dokladnych wynikéw,
gdyz pomija wystepujace w tym przypadku dodatkowe sily w narozni-
kach grodzi. Sity te moga znacznie wplynaé na catkowitg wartosé sit w pre-
tach grodzi. Na fakt ten zwrocil uwage w swej nieopublikowanej jeszeze
pracy Mierzejewski, [20]. Prawidlowa metode rozwigzywania za-
gadnienia kratownic przestrzennych w przypadku zalamanych Scian bocz-
nych podaje Ebner, [21]. Metoda jego oparta jest rowniez na rozwaza-
niach Wagnera.

Zasady zastosowanej metody sg nastepujgce.

Pojedynczy przedzial szeScio$cienny ograniczony grodziami i, k kra-
townicy przestrzennej, poddany dzialaniu przylozonego na grodziach i i k
momentu skrecajacego M, ulegnie odksztalceniu, w szczegdlnosei ulegng
deplanacji plaskie poczatkowo grodzie skrajne (rys. 28). Deplanacja ta
powstaje pod wplywem dzialania bimomentu sit A, sil! deplanujgcych
wywolanych momentem skrecajgcym. Jesli teraz zlgezymy nasz przedzial
ik z nastepnym przedzialem k1 (w naszym przypadku oba przedzialy sa
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identyczne pod wzgledem ksztattu i wymiaréw, co jednak nie jest warun-
kiem koniecznym), réwniez obcigzonym na grodziach k i I momentem
My = M, to grédz k ulegnie rowniez deplanacji na ogét odmiennej co
do wielkosci i kierunku od deplanacji wywolanej momentem M;,. Waru-
nek nierozdzielno$ci wymaga jednak jednoznacznie okreslonego wspélne-
go dla przedziatéw ik i kl odksztalcenia grodzi k.

Analogiczne rozumowanie przeprowadzamy w stosunku do dalszych
przedzialow (na ogdét o dowolnych ksztaltach i wymiarach) I m, mn, ...,
obcigzonych momentami skrecajacymi M;,, Mo, ... .

Uwzgledniajac warunek nierozdzielnosci oraz warunki réwnowagi naj-
pierw poszczegblnych grodzi, nastepnie poszczegélnych pretéw w grodzi,
dechodzimy do réwnania trzech bimomentéw

(3.4) e, A+ kA Fel A =N,,

gdzie &), &f i ¢, s3a funkcjami parametréw okreslajacych wylacznie geo-

metryczne ksztalty kratownicy, za§ wyraz wolny N, jest funkcja obciaze-
nia zewnetrznego sasiadujacych przedziatéw ik oraz k1. Wielkosée N,
okreslona jest wzorem

(3.5) . N,=uM,,— i, Mir,

przy czym wspblczynniki gl i 4}, sg réwniez zalezne wylgcznie od wiel-
kosci okreslajgcych geometryczne ksztalty kratownicy.

Oznaczmy przez b;, by, .. szeroko$¢ kadiuba na odpowiednich gro-
dziach i, k, ..., przez c;, ci, .. wysokosci kadtuba na odpowiednich gro-
dziach, przez ai, ay, ... kolejne odleglosci sasiednich grodzi.
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Wprowadzmy poza tym oznaczenia
(3.6) Fi=b;c;, Kiri=Db;cp+bre:.

Wéwezas mozemy wyrazié wspotczynniki wystepujace w réwnaniach
(3.4) i (3.5) przez wymienione wyze] wielkosci w sposéb nastepuigcy:

P e | [1— Fey 1 1_,Fl, 1
e Ry’ LI} Kpi) ax: ' ( K | a

B = Kuwar' Mo Kribe ' He = Kb

3

(3.7

Uwzgledniajge, ze w naszym przykladzie
bi:bk:“':b:IZm, ci:Ck:'...:—_-C::va
Qir =0p;=="--=a =20 m,

otrzymamy réwniez roéwnos$é wyrazen

Fi=Fp=---=F=bc=12-6 = 72 m?
Kii=Kp=-=K=2F =2.72 = 144 m?,
1 1
k: l:-~~:_—_ == —— == ———— —= 5
wi =, n=x Tad 0,006944 e

Nalezy zwroci¢é uwage, ze z samego fizycznego charakteru zjawiska wyni-
ka, ze grodzie skrajne jako umownie zamocowane przegubowo w naroz-
nikach mogg deplanowa¢ sie swobodnie, skad bezposrednio wynika, Ze sily
deplanujace w grodziach skrajnych sa réwne zeru, tj. w naszym przypad-
ku mamy A,=A,=0.

Po wstawieniu wartosci liczbowych do wyrazen na wspdlezynniki
w réwnaniach trzech bimomentéw otrzymamy uktad czterech réwnan
z czterema niewiadomymi:

—05 A, + 0,025 A4, — —0,003632,
0,025 A, —0,05 A, + 0,025 A, — —0,002244,
0,025 A, — 0,05 A, + 0,025 A, =  0,002244,
 0,0954,—005 A,—  0,003632.

Rozwigzanie tego ukladu réwnan daje sity deplanujgce A, =0, A; =
=—0,105122, 4, = — 0,064958, A, =0,064958, A, = 0,105122, 4, =0.

Sity te wyrazone sg w takich samych jednostkach, w jakich byla wy-
razona sila wchodzaca do wielkos$ci momentu skrecajgcego, i obliczone sa
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dla Muma: = 1. Sity we wszystkich pretach kratownicy mozemy teraz okre-
sli¢ jako funkcje znalezionych sit deplanujacych. Nie bedziemy jednak od
razu wyznaczali catkowitych sit w pretach, lecz sily jednostkowe, tj. sity
w pretach odniesione do diugosci preta,

S

Uzasadnienie takiego postepowania mozna znalezé w ogélnych rozwa-
zaniach teoretycznych. Korzysci stad wynikajgce sa widoczne, zwlaszcza
przy obliczaniu sit w podtuznicach i ukosnicach $cian bocznych kratow-
nicy.

Jednostkowe sily w pretach grodzi posrednich obliczamy z zaleznosci

By = M b | A F;
(391) b;a - Kki bk + Ap; Kkl Ak (AI + Ak)
lub

B:  _ Mwi bx _ A:  F
(3.9.2) by Ku b am | Kudn (Ai + Ax),

Ck Mkl C; Ak Fi
3.10. U R LY
0.1 Ck Kri ¢ ag Kri Qi Ly Al
lub

C,‘ Mk, Ck Ai Fk

.10. = = s (A + Ar).

(Sa40.2] Ci Ke ¢ ari  Kriapi (4i + 44

Sity B, Bi, Cr i C; oznaczajg calkowite sity w odpowiednich poprzecz-
nicach i stupach grodzi. Wzory (3.9) i (3.10) sa stuszne, je$li na grodzi nie
dziala obcigzenie zewnetrzne. Jezeli grodzie sg obcigzone parg sit pozio-
mych, to réznica sit obliczonych np. dla grodzi k ze wzoréw (3.9.1) i (3.9.2)
musi byé réwna przyrostowi zewnetrznego momentu skrecajacego na gro-
dzi k, tj.

i Me Mg A Mg
3.11 el M ANy
S lbk A l b l, Fy Fy Fr

Analogicznie, jeSli obcigzenie zewnetrzne w postaci pary sil piono-
wych dziata na grédz, jak ma to miejsce w naszym przypadku, to

O _fleq . am,
Cr |y '

(3.12)




Dla obliczenia sil jednostkowych w pretach podluznic i przekatni
wprowadzamy pomocnicze funkcje parametréw okreslajgcych geometrycz-
ne ksztalty kratownicy:

(3.13) Wﬁi:f?:{;%;r
(3.14) G:i:_i{i/;; z_;,
(3.15) W;:k:_K_f;iE; %:,,
(3.16) Gt = Kf:la;: %;:

Fatwo zauwazyé, ze w przypadku naszego kadluba zachodzi réwnose

Wzl == G,}zl — W;-k = Gik = _I{? == 0,025 % .

W ogélnym przypadku jednostkowe sity w pretach podiuznic i przekatni,
np. dla przedzialu ik, obliczamy wedlug nizej podanego schematu:

| =WEA,— WA,
(3.17) (S) — ¢ i%—’;.
ki + Gi:k A[. — G;‘(k Ak hi

Podluznice obliczamy wedlug schematu W +- G albo G -+ W, przekat-
nic wedlug schematu W + W lub G + G. O zastosowaniu tego lub innego
schematu decyduje przynalezno$é podiuznicy do $ciany gérnej lub bocz-
nej, przy czym kierujemy sie umowa, ze podituznica nalezy do tej sciany,
w ktoérej lezy przekatnia, schodzaca sie z ta podluznicg w grodzi nieobcia-
zonej.

Obliczenie sit jednostkowych i catkowitych w pretach naszej kratow-
nicy podstawowej dla Mmex = 1 podaje tablica 4, odpowiednie za$ wykre-
sy przedstawione sg na rysunkach 29 i 30. Obliczenia te jednak nie
uwzgledniajg istnienia nadbudéwki, ktéra obcigzona jest czeScig reakcji
gbérnej ukosnicy Ug.

Jesli jednak wezmiemy pod uwage, ze na 0g6t w obrebie nadbudéwki
istniejag w pokladzie kadluba podstawowego otwory, jak szyb maszy-
nowy, szyb kotlowy itp., oraz ze otwory te sa stosunkowo stabo obramo-
wane (w kazdym razie bez poréwnania stabiej niz luki fadunkowe), to mo-
zemy przyjaé, ze partia pokladu w przedziale 2 - 3 nie moze przenosi¢ na-
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Tablica 4. Obliczenie sif jednostkowych w pretach. Uklad statycznie wyznaczalny

k | 1 i 2 3 4 | 5
o |
|
A, —0,105122 | —0,064958 |  0,064958 0,105122 0,00000
1 !
M), 0,121585 0,644541 |  0,967749 0,644541 0,121585
. |
% 0,000844 0,004476 0,006720 0,004476 0,000844
F
g AitAr) | —0.002628 | —0,004252 0,000000 0,004252 0,002628
Ay |
Zk —0,005256 | —0,003248 0,003248 0,005256 0,000000
a
Cr
. 0,001784 | —0,005480 | — 0,009968 | — 0,005480 0,001784
Cr
A;
B 0,000000 | —0,005256 | — 0,003248 0,003248 0,005256
a
C; j
e 0,001784 | —0,005480 | --0,009968 | —0,005480 |  0,001784
Ci i
B,
,b --0,003472 | --0,003472 | —0,003472 | —0,003472 | —0,003472
B, |
— | —0,003472 | —0,003472 | -0,003472 | —0,003472 | —0,003472
wh a, [ 0,000000 @ —0,002628 | —0,001624 0,001624 0,002628
‘ \
|
i | —0,002628 | —0,001624 0,001624 0,002628 0,000000
Wk A,‘, |
PR :
i, | 0001784 | -—0,000224 | —0,006720 | —0,008728 | —-0,003472
b |
pig :
ki . —0,003472 | —0,008728 —0,006720 | —0,600224 0,001784
P ‘
usd ‘
- z:z ¢ 0,003472 0,003472 0,003472 0,003472 0,003472
W !
Ut i i
ki | 0,001784 0,005480 ;  0,009968 0,005480 | -—0,001784
pi !
w ‘! "

prezen stycznych. W takim przypadku nadbuddéwka nad tak okreslona
partig pokladu jest wigzaniem koniecznym dla zapewnienia calej kon-
strukcji dostatecznej sztywno$ci. Wowezas nadbuddéwka spelnia role
brakujacej przekatni, a caty przedzial 2 - 3 tgcznie z nadbudéwka mozemy
traktowaé jako kratownice przestrzenng statycznie wyznaczalng, obciagZzo-
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na czescig obliczonej uprzednio sily dziatajacej w gornej przekatni prze-
dzialu 2 - 3 (rys. 31).

0,005 003

0005-4-0,05

0010-5-010

g llggs

Rys. 29

Rys. 30

Dla obliczenia sit w pretach nadbudoéwki posiuzymy sie metoda Gr z e-
dzielskiego i Kostki, [22], opartg réwniez na rozwazaniach
Wagnera i wykorzystujgea znane juz zaleznosei (3.9) i (3.10).
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Oznaczamy przez U cze$¢ sily w przekatnej U$Y przenoszong przez
nadbudéwke, przez Uy cze$é sity przenoszong przez kadtub. Stosujge wpro-
wadzone juz oznaczenia oraz oznaczajac jeszeze wysoko$¢ nadbudowki
nrzez h, za$ poszukiwane sity w stupach nadbudéwki przez X otrzymamy
z zaleznosei (3.9) 1 (3.10)

%3
(3.18) Ko - = 0,020838.

rr 1 ab
gd | _— 4 — __T7
s [2(: " h bhiatb)
Majgc okreslona sile X mozna obliczyé sity w pozostatych pretach nadbu-
déwki skrecanej momentem

(3199 M=Xb= Y%
= 0,020838 - 12 = 0,230056. /-

Przyjmujgc warto$¢ maksy- ]
malnego momentu wediug. poda- e A
nego przez Siwierciewa
wzoru (3.2), gdzie przyjeto $rednia o
wartosé wspoétczynnika k = 0,0375.
otrzymujemy U

I
)
i
(320) Mma.\‘:k}/TBzL:1350 tm. X At

Mnozac wielkos$ei sit jednostko- =
wych w pretach, obliczone w ta- 7
blicy 4, przez 1350 otrzymamy oo
wielkosei catkowitych sit! w pre-
tach wyrazone w tonach. Rys. 31

Wykaz tych sit podaje tablica 5.

W tablicy tej uwzgledniono dlugosci przekatni réwne odpowiednio

ufd = )a? + b2=23,3238 m, u” =} a® -+ c*= 20,8806 m.

Obliczone w powyzszy sposoéb sily w poszczegblnych pretach dajg pei-
ny obraz obcigzenia poszczegdlnych partii i wiagzan kadtuba podezas skre-
cania. Wyniki obliczen mogg by¢ wyzyskane do dokladnego obliczenia roz-
ktadu naprezen metodami Scistej teorii sprezystosci. W przypadkach bar-
dziej skomplikowanych, w ktérych metody Sciste bylyby zbyt zmudne
lub klopotliwe, mamy konkretne podstawy do przeprowadzenia racjo-
nalnych préb modelowych np. elastooptycznych.

Sity w pretach nadbudéwki obcigzonej tylko obliczonym uprzednio
momentem skrecajgcym

Mz\’ == 0,230056 = Mmax - 3107574 tm



obliczymy z prostej zaleznosci sil jednostkowych we wszystkich pretach
nadbuddéwki

(3.21)

Zaleznos¢ ta wynika ze wzoréw (3.9) i (3.10), jesli zwrécimy uwage, ze dla
nadbuddowki

b; = b, = b = 12,00 m, ci =c,=h=300m
oraz ze na nadbuddéwke oprécz momentu skrecajacego nie dzialajg sily
deplanujgce A.

Stad
Ky==2bh=172 m?

zas jednostkowe sity

(f) == +4,31353 t/mb.
N

Obliczywszy uprzednio jeszcze dlugos$é bocznych ukosnic nadbudéwki

mozemy obliczy¢ sity calkowite w pretach nadbudéwki. Sity te wynosza

w stupach Cpy = —4,31353-3 = — 12,9406 t,
W poprzecznicach By = —4,31353-12 =-—51,7624 t,
w podtuznicy P, = —4,31353-20 = — 86,2706 t,

w uko$nicy bocznej Uf’\f = -+ 4,31353-20,2238 == - 87,2360 t.
w ukodnicy goérnej U§, = 4,31353-23,3238 = - 100,608 t.

Oczywiscie w pretach nalezgcych zaré6wno do kadtuba podstawowego, jak
i do nadbud6éwki panuja sumaryczne sity, réwne uprzednio obliczonym
w tablicach 4 i 5. Zakladamy, Ze cze$¢ sil obliczona powyzej przenosi nad-
budéwka.

Jak wynika z tych krétkich rozwazan, rozpatrzenie kadiuba okretowe-
go jako kratownicy przestrzennej moze oddaé¢ pewne ustugi przy okresle-
niu sit powstajgcych przy skrecaniu. Poniewaz w warunkach normalnej
pracy statku prawie nigdy nie powstaje samo skrecanie, lecz niemal zaw-
sze polaczone jest ono ze zginaniem, wiec sily calkowite w pretach beds
sumg sit powstajacych przy skrecaniu i przy zginaniu. Obliczanie kratow-
nicy na zginanie nie przedstawia juz specjalnych trudnosci, gdyz przy zgi-
naniu pracujg tylko Sciany pionowe, a wiec kraty plaskie, ktére oblicza
sie elementarnymi metodami.
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Tablica 5. Obliczenie sil calkowitych w pretach

k 0 1 2 3 4 5
Stupy {C,C(M,,m_‘.) - 0,010704 , - 0,032880 | — 0059814 | — 0,059814 | o000 0,010704
Cy t 14,450 | 44388 | — 80,749 — 80,749 |~ 44388 14,450
S e _ - | -
B (M) — 0,041664 | -— 0041664 | — 0,041664 | __ - -
Poprzeczmce[ e (Mg, | 0,041664 0,041664 0,041664
\Bk t -— 56,246 — 56,246 - 56,246 - 56,246 ‘ — 56,246 — 56,246
N—— —- = ‘i
Podluznice [ ‘
prawe gorne | P¥5(M,,,.) 0,035680 | - 0,004480 | — 0,134400 ; -~ 0,174560 | — 0,069440
i lewe dolne | P#§ t 48,168 — 6,048 — 181,440 | —- 235,656 — 93,744
| 1
prawe dolne (P2 (M,,,,) | — 0069440 | — 0,174560 | — 0,134400 | — 0,004480 0,035680
i lewe gorne | PX 1 1 L —93,744 — 235,656 — 181,440 — 6,048 48,168
|
. e I ) e S N S N
‘ i
Uko$nice
U (M) 0,080980 0,080980 0,080980 0,030980 0,080980
gorne i dolne |
U t | 109,323 109,323 109,323 109,323 109,323
UPE (M) i - 0,037251 0,114426 0,208138 0,114426 | — 0,037251
prawe ilewe | '
Ul t | — 50,289 154,475 280,986 154,475 — 50,289




Nalezy jeszcze raz podkres$lié, ze w przykladzie powyzszym rozpatry-
waliSmy kratowrice statycznie wyznaczalng, w ktorej sily powstajgce
w pretach sg zalezne tylko od obcigzenia zewnetrznege i ksztaltéw kra-
townicy, nie zalezg za$ od sztywnos$ci poszczegbélnych pretéw w odréznie-
niu od kratownicy statycznie niewyznaczalnej (np. w przypadku gdy gro-

dzie moga przenosi¢ naprezenia
e tngce), dla ktérej sztywnosé

___ pretéw odgrywa istotna role.
[ Powyzszy przyklad obrazuje

/ A 4
& v /// W,y wiec jeden przypadek skrajny
e e 7 A d iacajgcy kadtubowi o bar-
] = odpowiadajacy
/ // =z Moo= dzo wiotkich grodziach, nie
! e ! przenoszacych zadnych sil $ci-
» / /// : najacych.
N e o s s e Zajmiemy sie obecnie dru-
] gim skrajnym przypadkiem od-
,AEL,_, — & . powiadajgcym kadlubowi, w kto-
Rys. 32 rym grodzie mogg przenosié si-

ty &cinajgce. Istotnym zagad-
nieniem w tym przypadku bedzie przejscie od modelu cienko$ciennego do
kratowego. W rozwazaniach niniejszych zastepcze sztywnosci ukosnic do-
bierzemy w ten sposob, aby wydluzenie przekatnej blachy, znajdujac sie
rzeczywiscie pod wplywem dzialajacych na nig sit tngcych, rowne bylo
wydtuzeniu preta zastepczego pod wpltywem sily osiowej.
Stosujac oznaczenia podane na rys. 32 zalozenie powyzsze mozemy
wyrazi¢ wzorem

(3.22) Al==Abcosa.

Ze znanych zaleznosci y=1,G, Al=PlEF oraz przyjmujac, ze sily
tngce na krawedziach blachy wyrazajg si¢ wzorami B=bdr, H=hdr,
mozemy wyzhaczy¢ sile P:]/B2 + H2=1dr oraz przekrdj preta za-
stepczego

GV BBy
" Erb  2(1+»hb’

(3.23) Fu

Przyjmujgc stala grubo$é¢ blachy ¢= 10 mm = 0,01 m oraz liczbe Pois-
sona »= 0,3 otrzymujemy

l3
(3.24) F,=0,003846 e
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Dla podiuznic przekroje pretow zastepczych dobieramy w ten sposob, ze
przekrd] przenoszacy sily osiowe obejmie po /4 szerokosci pokladu i wy-
soko$ci burt dla kazdej podiuznicy, a wiec przekrdj jednej podiuznicy
wyniesie

(b g)
FV—“—#46—QM5m.

Wymiary przekrojéow zastepczych ukosnic i podiuznic podaje tablica 6.

Tablica 6. Funkcje charakterystyk sztywnosSci pretow
nkladu statycznie niewyznaczalnego

Podtuznice 1==20,00 m, F=0,045 m? @ = 0,084656
Ukos$nice poktadu i dna 1=23,32 m, F=0,2032 m®. & = 0,029716
Ukosnice burtowe 1=20,88 m, F=0,2918 m* & = 0,014858
S0 0,338624 oGty 0, 0,000124
26 0,089148 Sp.n 0,0005348
Say 0228744 8 & 0,0001559
W2wy 0,005719
Jo 0,199028
_£ R Glw 0,004976
Sw—2d 0249440 &

1 "
W:Z oy  0,000143 i (WEow - G2ag) 00,5159

Sita w precie ukladu statycznie niewyznaczalnego s, jest rowna su-
mie sity w ukladzie statycznie wyznaczalnym s,, oraz sit s,,, powstalych
pod wplywem dzialania sil X; wzdluz krawedzi przegréd s, bedacych
sktadowymi sit w ukoénicach grodzi X. Przechodzge do sit jednostkowych,
odniesionych do diugosci preta, mozemy to przedstawié jako

n
(3.25) Sp = Sop + Z Sps Xs.
s=1
Energia potencjalna wszystkich pretéw kratownicy wynosi
(3.26) U= L s
. ) 2 Wp Sp,
gdzie wzlf)/Ep Fp jest charakterystyka sztywnosci preta, a litera p nu-
merem kolejnym preta.

Zgodnie z zasada minimum energii w polozeniu réwnowagi musi byé¢

9oV _ (Pp=1,2,3,..,n).

(3.27) 0X,
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Tozna dowiesé, ze sity deplanujgce sa liniowo zalezne od sit w pretach
nadliczbowych:
(3.28) N e A = X

e
i

Uwzgledniajgc te wlasno$é¢ i wykorzystujac metody z teorii rownan linio-
wych i rachunku wyznacznikéw po pewnych przeksztalceniach dochodzi-
my do wyrazenia ré6wnania

<
(3.29) -Y Z Mp S;),’ S,)/.' 44,’ ﬁl 2 (/)p Sop S‘v;k === O

» H

We wzorze tym s,; i spr oznaczaja sily jednostkowe w precie p powsta-
jace pod wplywem sity deplanujacej 4; lub A,.

Jesli rozpatrzymy tutaj przypadek catkowitej sztywnosci grodzi (a wiec
biegunowo przeciwny do rozpatrzonego ukladu statycznie wyznaczalne-
go), to mozemy z dokladnosciag wystarczajgaca dla celéw praktycznych po-
mingé wyrazy, dla ktérych |i—k|>1. Otrzymujemy woéwczas n réwnan
z n niewiadomymi, a zadne z réwnan nie bedzie zawieralo wiecej niz
trzy niewiadome.

Wprowadzmy oznaczenia

(3.30) 2 Wp Sop Spk == O, & 3
r

(3.31) Z & 81 3o ==L & ,
P

(332) Z ap (3/173)2 = (Skl.
P

Uklad réwnan bedzie wiec przedstawial wyrazenia typu
(3.33) Ok,i Ai + 0,6 Ar + et Al =— b0,

Wspolezynniki 8 obliczamy z zaleznosci (3.13) - (3.17), skad po licznych
przeksztalceniach otrzymujemy

F;Fy

(3.34) in =gz o= (T — T ok,
Kkl /;l
(335) = kal ( > lUu - le Z o )k[l M[k
| . Ms,
— (W (B o), —GF (3 wz')’”'l >K%i A
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We wzorach (3.34) i {(3.35) X o oznacza sume charakterystyk sztywnoscl
ukosnic, Y& sume charakterystyk sztywnosci podiuznic, Yw, sume
charakterystyk sztywnosci pretéw zastepczych dna i pokladu, Yo, sume
charakterystyk sztywnosci pretéw zastepczych burt.

Jesli wziaé pod uwage, ze wyraz zawierajgcey sily jednostkowe w ukla-
dzie statycznie wyznaczalnym jest rowny

(336) Sop = Spi Ai + Spk Ak ¢ Spi A;,
to rownanie (3.33) przybierze postaé
(3.37) O, i (Ai + Al) + Ok1 (Ar + Ak) + On,i (A1 4 AD) = — b0, -

Sity Ai, A, i A; sg silami deplanujgcymi dla uktadu statycznie wyzna-
czalnego.

Dalszy tok postepowania jest identyczny jak dla kadiuba statycznie
wyznaczalnego: obliczamy sily deplanujgce (w naszym jprzypadku za nie-
wiadome przyjmujemy sumy A;+ A;), a nastepnie z zaleznosci i wzoréw
(3.9), (3.10) i (3.17) wyznaczamy sity w pretach kratownicy. Obliczenia te
zawiera tablica 7. ' '

Nadbudoéwke w przypadku kadtuba statycznie niewyznaczalnego obli-
czamy wychodzac réwniez ze wzoru (3.18) lub tez, je$li nadbuddéwka przed-
stawia ustr6j statycznie niewyznaczalny, stosujac omoéwiong wyzej me-
tode energetyczng.

Jesli przejdziemy teraz do naszej kratownicy, to na podstawie statego
przekroju prostokatnego latwo stwierdzimy, ze wspbtczynniki

2

Oi k= — F:d—; (Y o— Y »)y=0,0001559,
K a”

Ore=2(W*3X w,,—G* Y wy) = 0,0005348,
za$ roézne wyrazy wolne do,» beda
8o,k =m (- Mp; + Mrs),

gdzie

me—-L
K

W3X¥w, —G XY owg)=0,0,5159.
Ze wzgledu na symetrie kratownicy i obcigZenia jest
001 =— 004 ==0,04 27,
doo2==—do3=10,04 17.
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Otrzymujemy wigc uklad czterech réwnan z czterema niewiadomymi:

0,0005348 A, + 0,0001559 A, = —0,0000027,
0,0001559 A, + 0,0005348 A, + 0,0001559 A, =—20,0000017,
0,0001559 4, - 0,0005348 A, 4 0,0001559 A, =  0,0000017,
0,0001559 A, + 0,0005348 A, =  0,0000027,
Tablica ?. Obliczenie sil jednostkowych w pretach
uktadu statycznie niewyznaczalnego
|
k 1 ; 2 3 4 5
— iy, P E— | o = e PSP e SR S SRS
A, -0,004251 | -—0,002737 0,002737 ' 0.004251 0,0000
My . 0,121585 0,644541 0,967749 0,644541 0,121585
M; !' ‘
f{l"k' 0,000844 | 0,004476 0,006720 0,004476 0,000844
| |
P ‘
Ra (A;+A,) | - -0,000106 , —0,000175 0,0000 0,000175 0,000106
|
Ay |
a -0,000213 | —0,000137 0,000137 0,000213 0,00000
't f
- --0,000737 | - 0,004514 --0,006857 ' —0,004514 | —0,000737
4;
a 0,00000 —0,000213 —0,000187 i  0,000137 0,000213
| !
C; ? ;
. -—0,000737 —0,004514 —0,006857 | —0,004514 | —0,00737
B, ;
s - 0,000950 --0,004438 —0.006583 | —0,004438 | —0,000950
B; i | i
b -~0,000950 | —0,004438 --0,006583 | -—0,004438 | -—0,000950
WA, 0,00000 —0,000106 -—0,000068 0,000068 0,000106
wia,  --0,000106 ‘ —0,000068 0,000068 .  0,000106 0,000000
1
pPE ‘ i
i —0,000738 ! ~-0,004302 ~0,006720 | —0,004650 | — 0,000950
D ‘
Pl g :
i | --0,000950 | -+0,004650 —-0,006720 —0,004302 —0,000738
p . ‘ ]
Usd ! |
"Zy | 0,000950 | 0,004438 0.006584 0,004438 0,000950
U ! ;
uf) | |
h_" i 0,000738 | 0,004514 0,006856 0,004514 0,000738
pl




Rozwigzanie tego ukladu réwnan daje sily deplanujgce ukladu statycznie
niewyznaczalnego: A,= — 0,004251, A, = — 0,002737, A4, = 0,002737,
A, = 0,004251.

Warto zwroci¢é uwage, ze przyjecie grodzi catkowicie sztywnych spo-
wodowato okolo 25 - krotne zmniejszenie sie sit deplanujgcych w pordw-
naniu z ukladem statycznie wyznaczalnym o grodziach zupelnie wiotkich.

Sity jednostkowe w pretach kratownicy statycznie niewyznaczalnej,
obliczone w tablicy 7, wskazuja na znaczne wyrdwnanie sit w tym przy-
padku. Prety slabo obcigzone w uktadzie statycznie wyznaczalnym sg
silniej obcigzone w ukladzie statycznie niewyznaczalnym, natomiast zau-
wazy¢ mozna spadek obcigzenia w pretach uprzednio najsilniej obcia-
zonych.

04 A
W AR

0,05
+A

! Kr st niewyzn |

! [

i
-A
-0,05

Rys. 33

-a,4| Sity deplanujace A

Tablica 8 zawiera obliczenie sit w pretach plaszeza kratownicy statycz-
nie niewyznaczalnej, za$ rysunki 33-38 przedstawiaja poréwnanie rozkta-
du sil w pretach poszczegélnych typéw dla obu rodzajéw kratownic.

Poréwnujge wyniki dla modelu kadluba statycznie wyznaczalnego
z wynikami dla modelu kadluba statycznie niewyznaczalnego nie nalezy
sie nimi sugerowaé, a tym bardziej je uogdlniaé. Tak np. w rozpatrywa-
nym modelu ze sztywnymi grodziami otrzymaliSmy w uko$nicy pokiadu
w przedziale 2-3 niemal dwukrotnie wieksza sile niz dla modelu bez gro-
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Tablica 8. Obliczenie sil calkowitych w ukladzie statycznie niewyznaczalnym

|

‘ |
k i 0 1 | 2 \ 3 | 4 5
{ |
| | i
| - | |
Cp (M. | — 0,004422 | — 0,027084 0,041142 | — 0,041142 | — 0,027084 | — 0004422
Stu | ! !
» Cpt — 5,970 - 36,563 | — 55,542 — 55,542 — 36563 — 5,970
| |
| ! 3 |
B, (M, 1 — 0011400 | — 0053256  — 0,0789%6 | — 0,078996 | 0,053256 | — 0,011400
Pcprzecznice ! ‘ ;
et | —15,390 — 171,896 | — 106,645 | — 106645 ~ 71,896 — 15,390
| |
| | | f
Podluznice 1 ! | \
| : : |
prawa gérna [ P25 (M, | — 0,014760 - -—- 0,086040 | — 0,134400 @ — 0,093000 | — 0,019000
I i
i lewa dolna | P}% t ‘ - 19,926 | —-116,154 | — 181,440 — 125,550 —- 25,650
lewa gérna [ P (Mg, i — 0,019000 i — 0,093000 ‘ 0,134400 | — 0,086040 : — 0,014760
! i
i prawa dolna | P8 t j — 25,650 . —125,550 | — 181440 --116,154 — 19,926
| — - o ! |
| e 1
Uko$nice ‘ <
USY (M) 0,022158 0,103511 0,153564 0,103511 0,022158
gorne 1 dolne d
Us? ¢ 29,913 139,740 207,311 139,740 29,913
URE (M0, 0,015410 0,094255 0,143157 0,094255 0,015410
prawe i lewe ; ? !
Uns t 20,804 b 127,244 193,262 127,244 20,804




+QMN+100t Rys. 34
Poprzecznice. Linie ciagle — sily jednostkowe, linie
przerywane — sily calkowite, linie cienkie — sily
krytyczne statycznie wyznaczalne, linie grube —
sity krytyczne statycznie niewyznaczalne
8
* — +
b ;]
1!
[/ 1 .z | 4 5
| T T T T a
' .
. _Q -8 \\\\ ///
b N g /
\ 7
Ay
\ \\\ // //
\ ~ -7 /
~ = £,
\ =3 e /7
\ N s & /
N P4
~ //
\\ 7
\\ e
-0.01 V- 100t
SN’
+ 0.4 [\+100t Rys. 35
Stupy. Linie ciagle — sily jednostkowe, linie prze-
rywane — sily catkowite, linie cienkie — sily kry-
tvezne statycznie wyznaczalne, linie grube — sily
krytyczne statycznie niewyznaczalne
.L
C
L
[
i
—D,U{I

Rozprawy Inzynierskie — 6
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Rys. 36

+0.01 [} + 2501
Podluznice prawe gdrne i lewe dolne (lewe gorne
i prawe dolne w lustrzanym odbiciu). Linie ciagle -
sity jednostkowe, linie przerywane — sity calkowite,
linie cienkie — sily krytyczne statycznie wyznaczal-
ne, linfe grube — sily krytyczne statycznie nie-
wyznaczalne
P
i | +P
P
Py )
B hop
P
-0 Lzaoc
« 01+ 2508
”
/’ SN
P ~
’ P N
/, P \\\ \\
Ve ~. 0
/7| 7 ~ |\
ya AY
N\
£ B N 1
U /i/ N
+ +{/ Vs SN
u 7 NN
f T b’/ N
v . 2 3 q i 5
|
AR
R/
i u
Rys. 37
Ukoénice pokladu i dna. Linie ciggle — sily jednost-
kowe, linie przerywane — sily calkowite, linie cien-
~p.01 k250t kie — sily krytyczne statycznie wyznaczalne, linie
! grihe — sity krytvezne statyveznie niewyznaczalne
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dzi. Zjawisko to nie zawsze wystepowaé bedzie w analogiczny sposéb
w kazdym kadlubie o zwiekszonej sztywnoS$ei grodzi.

Nie nalezy zapominaé, ze sity w pretach kratownicy przestrzennej
statycznie niewyznaczalnej zalezg od jej ksztaltdw, rozkladu obcigzenia
oraz od sztywnosci pretéw, a wiec dla rzeczywistego kadluba — od jego
konstrukeji. Dlatego tez przenoszenie otrzymanych wynikéw na dowolny
kadiub jest nieshuszne.

- 0,011+ 500t
N
g ]
U
i u
Rys. 38

Ukosnice burtowe. Linie ciggle — sily jednostkowe,

linie przerywane -~ sily calkowite, linie cienkie —

sity krytyezne statycznie wyznaczalne, linie grube —
-0.011- 500t sityv krytvezne statycznie niewyznaczalne

Jednakze zastosowana w tej pracy metoda, uzyta do kadluba, pozwala
‘nia okreélenie w stosunkowo prosty sposob obcigzen dzialajacych na ramy
utworzone z obramowan duzych otworéw w kadlubie okretowym.
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Peswme

HNPEABAPHUTEJIbHBIE HCCJTIEJOBAHUA HKPYUYEHHUA KOPIIYCA HKOPABJIA
I[NIPU HYPCE CRVYJIOM K BOJIHE

PaccmaTpuBaerca cTeCHEHHOE KPy4eHME CTEPIKHA YIPOILEHHOro ceye-
Hus, obJIalalolero OZHAKO TEMM K€ OCHOBHBIMM CBOMCTBAMM CBS3HOCTH.
KaK ¥ KOpHOyca CyINeCTBYHIOILUMX CYJOB. Takue cedeHMA NpPUBELEHbI Ha
puc. 1-14. JIna yOopolIeHHBIX CEYEeHMI IIPUBOASATCH BEJIMYMHBI, XapakTe-
pusymolue cedeHMe B OTHOIIEHMM K «MHIKEHEPHON TeOpMM» CTECHEHHOTO
Kpy4eHnA. BeIBoANTCA ypaBHEeHME CTECHEHHOIO KPYYEHNs COIJIaCHO TO Ke
Teopun. IlonydaeTcd ypaBHEHMe, BUA KOTOPOTO HATIOMMHAET YpPaBHEHME
Kpy4eHusa 0aJiky OTKPBITOTO MPOOuUIIA.

B caenyromert riiaBe paccmartpmBaerca KpydeHue kopryca Oapxm 1m-
JMHAPUYECKON (hOpMEI, 00JIafaiolielf IIATHI0 Pa’3HLIMM CEYEeHMAMM: IBY-
CBSA3HBIM (3aKPBITBIM), OTKPBITHIM, OJHOCBA3HBIM (C OTBEPCTUEM JIIOKA),
B CepeayuHE 3aKPBITHIM TPEXCBA3HBIM (C HAACTPOIKON), 3aKpPBITO-OTKPHI-
TBIM [BYCBS3HBLIM (C OTBEPCTMEM JIIOKA ¥ JBOMHBIM [HOM) M 3aKPBITBIM
TPEXCBA3HBIM (C IBOMHBIM HHOM). IIpMMep XapakTepusyercsa OTCYTCTBUEM
nepebopoxr. PBOPMyJIHI I8 KPYUEHUA OTPE3KOBR DapikM JIETKO BBLIBOLSTCA
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Ha OCHOBaHMM PE3yJILTATOB, IOJYYEHHBIX B IIPeABIAYIUENl IJaBe, 31ech,
OHAKO, BO3HMKAET HOBOE 3aTpyZHEHMe, COCTOAIee B TAKOM Ioabope rpa-
HMYHBIX yCJIOBMI B KOHLEBBIX CEYEHMAX, AJIA KOTOPBLIX ObLIa GBI coBirio-
A€HA HENpPepBIBHOCTL NedOopMaIii B 9TUX cedeHusax. YToObI mpeonosers
9TO 3aTPyAHEHME, BBOAATCA CaMOYPABHOBEILUEHHBIE CUCTEMLI B KaXKIOM
OTpe3ke Kopuyca. B 3akiouennue riaBbl cocTaBieHbl hOPMYJBI AJA Mapa-
METPOB TAKMX CaMOYPABHOBEINIEHHEIX CHCTEM.

B nocnenneit rmaBe — p%s pacdera Kopmyca cyAHA — IIPUMEHSETCA Me-
TOJ{ BCIIOMOTaTENIBHBIX NPOCTPAHCTBEHHLIX (hepM. DTO NO3BOJAET NpUBIN-
YKEHHO OTPeJeSITh HANpAXKeHMA B oOIIMBKe M yIjIaX OTBePCTMIl JIIOKA.
PaccmaTpusarores Ba KpaifHux ciydasd: KOTHa nepefoPKY MOIKHO CUMTATH
upeanbHo MMOKMMM B MX IIJIOCKOCTSX, a TAK¥Ke KOTHA MOYKHO MX CUMTATH
MIeanbHO XKECTKUMMM. B IepBoM ciydae KOPHyC CTAHOBUTCS CTATHUECKMN
OmpenenuMoii hbepMoit, BO BTOPOM — CTATHYECK) HEONPENeMMOil, HO HaM-
foznee mpocroi B cMBICTE MPOM3BOACTBA pacueTa U3 BCEX CTATUYCCKM He-
onpenesmMbIx depm. Oba caydas npencTaBiasioT coboil OrpaHMYeHNA 3Ha-
YEeHMI BCeX HANPAMXKEHMUH B KOpPIIyCe, YTO SABJAETCH MHTEPECHBIM IIOIOJ-
HEeHMEeM PacyeToB IpenbIAylleli IJIaBbl.

B paGore npuBogATcs semMeHTapHbIE METO/BI NPUOIIMKEHHOTO PaCcYeTa
IMIMHIPUYIECKUX CYA0B Ha KpPydeHMe, NPOABJSIOIIEECHd HPYM IOJO0KCHUK
¢ynHa ckyJo# K BonHe. Takum 00pazoM OHM SABJAIOTCA OCHOBAaHMEM IS
AanbHeHIX paboT mo NpubaMKeHHBIM, HO GoJiee TOYHLIM METOXAM pac-
4YeTa CyJOBBIX KOPILYCOB.

HucnoBoil npMMep, NPUMMEHEHHBIT KO BceM NMpPMOJIMIKEHHBIM METOMaM,
ABJACTCA HATJIANHON MILJIIOCTPAIMell METOAOB, MCIIOJIL30BAHHSIX B paboTe

Summary

PRELIMINARY INVESTIGATION OF TORSION OF A HULL
OF A SHIP CAUSED BY AN OBLIQUE WAVE

To begin with, the problem of torsion with axial constraints of a bar of
simplified cross-section is considered, the principal characteristics con-
cerning the connectivity of cross-section being the same as for the hull
of the real ship. These simplified cross-sections are shown in Figs. 1 to 14.
Quantities characterizing these cross-sections for torsion with axial con-
straints and obtained on the basis of the «engineer’s» theory are repre-
sented. Next, the equation of torsion with axial constraints is derived
according to the same theory. The form of the equation obtained is similar
to that of the equation of torsion of a beam with open cross-section.

In the next section the torsion of a cylindrical hull of a bark, composed
of 5 segments of different cross-sections: closed doubly connected, open,
simply connected (due to a hatchway), closed triply connected (the bridge-
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house being in the middle portion of the hull), closed-open doubly con-
nected (with hatchway and double bottom) and finally, closed triply
connected (with a double bottom). The example is characterized by the
lack of diaphragms. The formulas of torsion of different portions of the
hull are simple to derive on the basis of the results of the foregoing
section, but a new difficulty is encountered in the necessity of choosing
the boundary conditions in such a way that the deformations be continuous
in the planes where the cross-section changes. To overcome this difficulty
equalizing self-equilibrating stress systems are introduced in each
segment of the hull. Finally, equations for the parameters of the self-
equilibrating systems are derived.

In the last section the method of substitute space lattices is used for
the determination of approximate values of stresses in the skin and the
corners of the hatchways. Two extreme cases are considered: (1) the
diaphragms may be considered to be perfectly flexible in their planes,
(2) they are assumed absolutely rigid. In the first case the hull becomes
a statically determinate lattice, in the second — a statically indeterminate
lattice of a special type (i. e. the most simple from the point of view of
computation). The values obtained for these cases determine the limits of
all stresses in the hull which is an interesting complement of the compu-
tations of the preceding section.

Some elementary methods of approximate strength computations of
cylindrical vessels for torsion caused by an oblique'wave are explained.
These may constitute starting points for further improvements of appro-
ximate methods of strength computation in hulls of ships.

Each of the discussed approximate methods is applied to the same
numerical example thus illustrating the features of each method.

ZAKEAD MECHANIKI OSRODKOW CIAGLYCH
IPPT PAN

Praca zostala ztozona w Redakcji dnia 11 grudiia 1954 r.
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Uwagi dotyczace oznaczen*)

Wektory oznaczaé¢ bedziemy drukiem poélgrubym; skltadowe wektora
oznacza¢ bedziemy zwyklym drukiem, dopisujac do symbolu wskaznik
tacinski np. u;,a: (i = 1, 2, 3), gdzie i = 1 odpowiada skladowej wektora
na osi x, i=2 na osi y, i =3 na osi z. Powtorzenie wskaznika ozna-
cza sumowanie od 1 do 3. Tak np. iloczyn skalarny a-b dwdéch wektordéw
aib zapisywaé bedziemy takze w postaci

3
a; bi = Z a; bi.
i=1

Przecinkiem oznaczaé¢ bedziemy rézniczkowanie wzgledem wspébirzed-
nej x; (i =1, 2, 3) polozenia. Tak np.

Ll:axi, ut,]:dxj,
Ouk_ 3 Ouk .
Uk k=5 :kg;a—xk (=divu)

Wyrazenia 0f'0x(==gradf) oraz 0f/0§ oznaczaé bedg wektory o skla-
dowych odpowiednio

(’70;‘; (=1,1) oraz gg_.

: (i=1,2,3).
3

Wektory w przestrzeni 3N wymiarowej (tj. wektory o 3N wspolrzed-
nych) oznacza¢ bedziemy symbolami typu xV, a skladowe tego wektora
symbolami x;, ¥, 2;, T3, Ys, Za2s o, TN, YN, ZN.

Tensory i iloczyny diadyczne zapisywac bedziemy zawsze za pomoca
pisowni wskaznikewej np.

Dijy, Ui (: auj/()xj), tifkr 51‘ Ef (7': j’ k= 1; 2; 3)*

*) Praca zostata przedstawiona na Kursie Naukowym Zakladu Mechaniki O$rod-
kéw Cigglych IPPT PAN w_ Miedzyzdrojach w sierpniu 1954 r.
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Operacje symetryzacji tensora drugiego rzedu oznacza¢ bedziemy za
pomoca wezyka nad symbolem, np.

~~

e 1 1
tyy = o (tij + tyi), Uiy = 5 (i) + 0.

Operacje tworzenia tensora bezzrédlowego oznacza¢ bedziemy za po-
moca kétka nad symbolem, np.

. 1 . 1
Pij==Pij — 5 Oij Prks Ui j =Uij— 5 Oij Uk,

° 1
SiEjZEiEj—géijfkék
itp., gdzie symbol Kroneckera J; okreflajg rownania

. {0, jezeli i1,
UL, jezeli i—j.

Niekiedy wystapi konieczno$é uzycia obu tych operacji kolejno, np.

s by 1 o ) 1
eij =, (e + ey) — 3 0 er, Ui j =5 (wi.j +uj ) — 5 0ij Unr -

Calki wielokrotne zapisywaé¢ bedziemy w postaci calki pojedynczej
piszgc krotnosé calkowania przy znaku rézniczki. Opuszczenie granic cal-
kowania oznaczaé bedzie catkowanie w calym zakresie zmienno$ci. Réz-
niczke pod znakiem calki pisaé bedziemy zawsze przed funkeja podcal-
kowa. Tak wiec np. oznaczenie [d,&f(5) oznacza calke potréjng funkcji
f &) =F(&, &y, &) po calej przestrzeni (&, &y, &2).

Kreska nad symbolem oznacza¢ bedzie $rednia wielko$el fizycznej.
Np. symbol ¢? oznacza $rednig wielkosei c2. Pojecie éredniej okreslone
zostanie w p. 2.

W rachunkach operowaé¢ bedziemy najcze$ciej funkcjami polozenia
w przestrzeni x, predkoéci § i czasu t, a wiec funkcjemi postaci f(x,§,1).

Wielko$ci miezalezne od zadnej z tych wspéirzednych nazywaé be-
dziemy «stalymi». Wielkosci niezalezne od potozenia x w przestrzeni na-
zywaé bedziemy «jednorodnymi», wreszcie wielkoéei niezalezne od cza-
su t «stacjonarnymi».

Uwagi wstepne

Rozwazania nasze ograniczaé sie beda do gazéw zlozonych z molekut
elektrycznie obojetnych o trzech stopniach swobody (gazy jednoatomowe),
dzialajacych ma siebie sitami centralnymi wedlug praw fizyki klasycznej
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(ti. niekwantowej). Poza ramami niniejszego artykulu znajdy si¢ wiec
zagadnienia zastosowania réwnania B oltzm anmna do zjawisk na-
tury elektrycznej w gazach, teoria plazmy elektronowej, zjawiska zwia-
zane z wymiana kretu molekut oraz wszelkie kwantowe uogdlnienia row-
nania Boltzmanna i hydrodynamiki wraz z ich ewentualnym!
zastosowaniami do badan wiasnosci nadcieklego helu.

1. Roéine ujecia teorii gazow

Zjawiska zachodzace w gazach i cieczach bada¢ mozemy na ogoéi roz-
nymi metodami. Do badania ogélnych praw wlasciwych gazom oraz do
przewidywania mowych zjawisk dotychczas nieznanych stuza rézne teo-
rie gazdéw. Postugujac sie réznorodnymi modelami gazu teorie te usiiuja
raniej lub bardziej glgboko wyjaénia¢ zjawiska fizyczne zachodzace w ga-
zach. Istniejg trzy podstawowe mozliwosci ujecia teorii gazéw. Sa to uje-
cia: (1) hydrodynamiki o§rodkow ciaglych. ktéra w dalszym ciggu nazy-
waé hedziemy hydrodynamiks klasyczna, (2) kinetycznej teorii gazdw.
(3) mechaniki statystycznej. Oméwimy je pokrotce.

Hydrodynamika klasyczna jest teorig oparta o hipoteze ciagtosci oérod-
ka. Spoéréd trzech wymienionych teorii daje ona stosunkowo najlatwiej-
sze metody obliczen. W zwigzku z tym bardzo wiele zagadnien o pod-
stawowym znaczeniu w technice, takich jak np. zagadnienie sit dzialaja-
cych na samolot w locie lub zjawiska zwigzane z przeptywami przez rury,
znajduje wyttumaczenie wylacznie na gruncie hydrodynamiki klasycz-
nej. Teoria ta w swym rozwoju przechodzita szereg kolejnych etapow.
Poczynajac od prymitywnego modelu tzw. «gazu idealnego», poprzez stop-
niowe uwzglednianie $cisliwoscei, lepkosei, zaleznosci lepkosci od tempe-
ratury itd. otrzymywano coraz to lepszy obraz rzeczywistosci. Warto tu
zauwazyé, ze wspblczesna hydrodynamika klasyczna przestala by¢ teorig
o charakterze wylacznie mechanicznym i zawiera w sobie takze elemen-
ty termodynamiki — nauki o cieple.

Réwnania hydrodynamiki klasycznej opierajg sie na trzech grupach
ralozen: (1) na prawach podstawowych mechaniki, (2) na prawach termo-
dynamiki, (3) na szeregu dodatkowych zaleznoéci do$wiadczalnych, ktore
nazwiemy prawami fenomenologicznymi.

Stosujac do matej czesci ofrodka ciaglego (czyli — jak bedziemy mo-
wili — do «elementu» o$rodka) zasade zachowania masy !) otrzymujemy
znane réwnanie cigglosei '

(1.1 %%—{—(Qu,-),i:(),
gdzie ¢ oznacza gesto$¢ oérodka, za$ u; wektor predkosci przeplywu.

1y Efekty relatywistyczne bedziemy oczywiscie pomijali.
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Stosujac zasade zachowania pedu do elementu oérodka cigglego otrzy-
mujemy réwnanie wektorowe, znane pod nazwa réwnania ruchu

0 U;

(1.2) g(dt +ui’LLi,j):QFi_“pij,jy
gdzie F; oznacza wektor sity odniesionej do jednostki masy osrodka, za$
pij tensor napie¢ powierzchniowych o dowolnym punkecie osrodka. Wy-
razenie znajdujace sig z lewej strony réwnania (1.2) nosi, jak wiadomo,
nazwe ilorazu substancjalnego, ktéry oznaczaé bedziemy duzg literg D;
a wiec

D 0 d

Dy 9t T Wam

Do czterech réwnan (1.1) oraz (1.2) dolacza sie zwykle réwnania ter-
modynamiki. Jednym z tych réwnan jest pierwsza zasada termodynamiki
(zasada zachowania energii), ktéra zapisuje sie na ogét2) w postaci
(1.3) @D*(I;vtjl) +Q§E (%)ZQFiui-(pij Wi)j—qii,
gdzie ¢, oznacza cieplo wlasciwe osrodka przy stalej objetosci, zag q:
wektor strumienia ciepta. Pierwszy wyraz z lewej strony réwnania (1.3)
oznacza wzrost energii wewnetrznej gazu, drugi za$ wzrost energii kine-
tycznej. Trzy wyrazy z prawej strony réwnania (1.3) oznaczajg kolejno
prace sit objetosciowych w jednostce czasu, prace sit powierzchniowych
w jednostce czasu oraz cieplo wyplywajace w jednostce czasu.

Drugim réwnaniem o podlozu termodynamicznym jest tzw. rdéwnanie
stanu gazow

(1.4) P _Rrr.

W tym wzorze R oznacza staly gazowa, za§ T temperature gazu. Ciénie-
nie p okresla sie za pomocg tensora napieé przez zaleznosé

1
(1.5) ‘p—“3“pii.

Réwnania (1.1) - (1.4) wraz z dodatkowym warunkiem (1.5) stanowig
ukfad 7 réwnan dla 18 nastepujacych niewiadomych funkeji miejsca x
iczasu t: g(x,1), 3 sktadowe w;(x,t), 9 sktadowych p;(x,t),T(x,1),p(X,t)
3 skiladowe q; x,1).

%) Por. np. [31].
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Do wyznaczenia tych funkcji potrzeba zatem jeszcze 11 dodatkowych
rownan fenomenologicznych. Wyliczymy je po kolei:
(1) zalozenie symetrii tensora napieé¢ (3 réwnania)

(1.6) Pij = pji;
(2) prawo Newtomna dotyczgce lepkosci
Au
Y=

ktore przy pewnych zatozeniach daje pieé¢ réwnan %)
{1.7) pij=pdij—2pu 17:7,

(3) prawo przewodnictwa cieplnego (3 réwnania)
(1.8) qgi=—24T,;,

gdzie A jest wspolczynnikiem przewodnictwa cieplnego.

Tych jedena$cie dodatkowych réwnan tworzy lgcznie z rownaniami
(1.1) - (1.5) uktad osiemnastu réwnan skalarnych dla osiemnastu niewia-
domych funkeji. Ten uklad réwnan stanowi jedng z najogélniejszych
metod ujecia hydrodynamiki klasycznej?). Istniejg tu oczywiscie mozli-
wo$ci wprowadzania daleko idacych uproszezen, np. zalozenie stalej ge-
stogci (p = const) prowadzi do bardziej abstrakcyjnego pojecia gazu nie-
écisliwego. Podobnie odrzucenie wspoétczynnika lepkosci (¢ = 0) daje mo-
del gazu nielepkiego. Dodatkowe za$§ zalozenie nieprzewodnictwa (4=0)
pozwala po prostych rachunkach na zastgpienie réwnania (1.3) przez réw-
nanie adiabaty itd.

Dlaczego rozwigzania przytoczonych powyzej réwnan daja wyniki nie-
zawsze zgodne z doswiadczeniem?

Aby odpowiedzie¢ na to pytanie, malezy zrewidowa¢ zatozenia, na
ktérych opiera sie hydrodynamika klasyczna. Praw (1.1) - (1.4) bedacych
zasadami dynamiki i termodynamiki kwestionowaé nie bedziemy. Nato-
miast wszystkie pozostale zalozenia (1.6)-(1.8) wymagaja szczegoblowe]
analizy. Te analize mozna jednak konsekwentnie przeprowadzi¢ jedynie
wtedy, jezeli wyjdzie sie poza ramy hydrodynamiki klasycznej opartej na
pojeciu of$rodka cigglego. Mozna to uczyni¢ na gruncie kinetycznej teo-
rii gazéw.

Kinetyczna teoria gazéw oparta jest na modelu gazu zloZonego z wiel-
kiej ilosci drobnych molekut znajdujgcych sie w ustawicznym ruchu. Za-

3) Mamy tu wlasciwie 6 rownan, ze wzgledu jednak na warunek (1.5) tylko
5 z nich jest niezaleznych.

4 Mozna by tu podac¢ dalsze uogdblnienia polegajace np. na uzaleznieniu wspol-
czynnikéw c,, ¢, 4 od innych wielko$ci.
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miast osiemnastu makroskopowych funkeji (w dalszym ciggu nazywac je
bedziemy funkcjami hydrodynamicznymi), ktérymi operuje hydrodyna-
mika klasyczna, w teorii kinetycznej uzywa sie jednej funkcji siedmiu
zmiennych f(x,%,t) (gdzie x oznacza wektor polozenia, 3 wektor pred-
kosci molekuty, a t czas), ktéra nazywaé bedziemy w dalszym ciagu funk-
cja rozktadu lub, gdy zajdzie tego potrzeba, dokiadniej — kinetycznag
funkcja rozkltadu. Znaczenie fizyczne tej funkeji jest nastepujace. Wez-
my pod uwage element objeto$ci w przestrzeni 0, x otaczajacy punkt x oraz
tréjwymiarowy przedzial predkosci d, & otaczajacy warto$é predkosci 3.
Wyrazenie f(x,§,t)d,xd,& daje ilos¢é molekul zawartych w chwili t
w elemencie objetosci 8, x o predkosciach zawartych w przedziale §,&. Ele-
ment d§,x oraz przedzial §,£ sa to wielkoSci mate z makroskopowego punktu
widzenia. W my$l jednak podstawowego zalozenia teorii kinetycznej ilosé
molekul zawartych w elemencie d; x o predkosciach z przedziatu 6, & jest
bardzo duza. To zalozenie stanowi ograniczenie z dotu dla wymiardéw ele-
mentu d,x oraz przedziatu ¢,&. Pamietajae o tym ograniczeniu mozemy
jednak zastapi¢ je przez rézniczkowe wielkosel dy x oraz d, &, a samg funk-
cje f uwaza¢ za funkcje ciagla (i rézniczkowalng) swoich argumentéw.
Do wyznaczenia tej funkecji teoria kinetyczna podaje rézniczkowo-catko-
we rownanie Boltzmanna

of
(1.9 g1
gdzie d,;0t oznacza pewien operator calkowy, zas F; wektor sily (na
jednostke masy) dzialajacej na molekuly, ktérego postaé podamy pdzniej.
Wszystkie funkcje hydrodynamiczne otrzymujemy z funkeji rozkitadu f
przeprowadzajgc proces «usrednienia». Znajomos$¢ funkeji rozkladu po-
zwala wiec automatycznie poznaé caly hydrodynamiczny obraz zjawisk.
Znajomo$é funkeji rozkladu dostarcza jednak znacznie wigcej informacii
o stanie gazu. Istotnie, hydrodynamika klasyczna pozwala na okre$lenie
ruchu elementu gazu jako caloéci przez wyznaczenie gestosci, predkosci,
temperatury itp. wielko$ci odnoszgcych sie do tego elementu. Teoria
kinetyczna natomiast dostarcza ponadto wiadomoscei o wewnetrznej struk-
rurze tego elementu. Znajomo$¢ funkeji rozkltadu pozwala np. na okreéle-
nie, ile molekul spo$réd wszystkich molekut w danym elemencie posiada
z géry okreslong predkosé, np. predkosé z przedziatu d,& otaczajacego wek-
tor §. Z drugiej jednak strony rozwigzanie rownania Boltzmanna
stwarza na ogo6t znacznie wieksze trudnosci od rozwiazywania réwnan hy-
drodynamiki klasycznej. Przemawia to z kolei na niekorzy$é¢ kinetycznej
teorii. W wielu jednak przypadkach rozwiagzanie réwnania B o 1 t z-
m a n n a sprowadza sie do rozwiazania réwnan hydrodynamiki kla-
sycznej.
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Trzecim wreszcie, znacznie bardziej precyzyjnym, lecz takze znacznie
trudniejszym ujeciem teorii gazéw jest ujecie mechaniki statystycznej.
W mechanice statystycznej operuje sie jedna funkcja P zalezna od wspol-
rzednych i pedéw wszystkich wchodzacych w gre molekut oraz od czasu.
Jezeli przez N oznaczymy ilos¢ wszystkich molekul, to funkcja P zalezy
od 6N + 1 zmiennych, mianowicie od 3N wspéirzednych tworzgcych
wektor xV, od 3N skladowych pedéw tworzgcych wektor p* oraz od czasu t.

Zapiszemy to krotko w postaci P (xV, p%, t).

Znaczenie fizyczne tej funkeji jest nastepujace. Wezmy pod uwage
elementy objetosci d,x;, d,x,, dyx,, ..., dyxn otaczajace odpowiednio
punkty X,, X,, ..., Xy oraz przedzialy pedéw d,p,, d;p,, .., d; pv otaczajace
pedy pi, P2, - Pr- lloczyny tych elementoéw objetosci i przedzialow pedow
oznaczymy przez divx oraz davp. Wielko$é rozniczkowa

(1.10) P(x¥,pY,tid,y xdynp

okre§lamy jako prawdopodobienstwo tego, Zze jednocze$nie

molekuta «1» zajmuje polozenie wewnatrz elementu dzx; okolo x; oraz posiadu
ped w przedziale dyp; okolo py,

molekuta «2» zajmuje polozenie wewnatrz elementu dix. okolc x, oraz posiada
ped w przedziale dsp> okolo po,

molekuta «N» zajmuje polozenie wewnatrz elementu dgxy, okotlo X,y oraz posiada
ped w przedziale d3pN okolo Dy

Funkcja P (xV,p™,t) stanowi wiec gestos¢ prawdopodobienstwa
w chwili t w przestrzeni 6N-wymiarowej.

Jak widaé z powyzszego okreslenia, znajomo$é funkcji P dostarcza
znacznie wiecej wiadomosci o stanie gazu w pordéwnaniu ze znajo-
moésciag kinetycznej funkeji rozkladu. Znajomo$é gestosci prawdopodo-
biefistwa P daje mianowicie mozno$¢ okreslenia jednoczesnego praw-
dopodobienstwa potozen i predkosci wszystkich N réznych molekul. Praw-
dopodobiefistwo tego, ze wszystkie molekuty majg jakiekolwiek poltozenia
w przestrzeni i jakiekolwiek predko$ci wyrazi sie catky wielko$ei (1.10) po
calej przestrzeni 6N-wymiarowej. To prawdopodobienstwo jest oczywiscie
pewnoscia. Daje to tzw. warunek normalizacji dla gesto$ci P

(1.11) .J'dngJ.dg,pr(x‘V,pN,t):1.

Zmiang funkeji P w czasie i przestrzeni rzadzi tzw. twierdzenie Liou-
ville’a bedgce prosta konsekwencja jedynie praw mechaniki:

N s e
(1.12) P oy S (pufl B DB,
1

0 Peai Me ai‘rai
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gdzie Fq; oznacza wektor sily (na jednostke masy) dzialajacej na moleku-
1€ a, za§ m. oznacza mase tejze molekuty (sumowanie takze okresla wskaz-
nik i, przy czym i = 1, 2, 3).

Nalezy tu podkrefli¢, ze funkcja P ma znaczenie jedynie teoretyczne
z powodu wielkiej iloSci zmiennych, od ktérych zalezy. Z tej przyczyny
nie tylko znalezienie, ale nawet samo wyrazne napisanie zaleznosci P od
6N -+ 1 zmiennych jest oczywiécie technicznie niemozliwe?d). Z tego
wzgledu metody mechaniki statystycznej ograniczone sa na razie jedynie
do badania gazéw w stanie réwnowagi. Jak sie okazuje, w tym prostym
przypadku iloé¢ zmiennych wchodzacych do funkcji P moze sie zreduko-
wa¢ do kilku zaledwie podstawowych statych ruchu takich, jak energia, -
ped calkowity i kret catkowity ukladu ©), .

Precyzyjne metody mechaniki statystycznej nie znalazly natomiast
na razie szerszego zastosowania w teoril gazéw, nie znajdujacych sie
w stanie réwnowagi.

Reasumujgc mozemy twierdzi¢, ze najdokladniejszg i najbardziej ogél-
ng formg teorii gazéw jest mechanika statystyczna. W dalszej kolejnoéci
nalezy wymieni¢ teorie kinetyczna, w koficu za§ — hydrodynamike kla-
syczng. Z drugiej strony rozwigzywanie konkretnych zagadnien rachun-
kowych metodami hydrodynamiki klasycznej, aczkolwiek niekiedy bar-
dzo trudne, jest stosunkowo latwiejsze w pordwnaniu z zastosowaniem
metod teorii kinetycznej. Natomiast operowanie precyzyjnym aparatem
matematycznym mechaniki statystycznej w odniesieniu do teorii gazéw
stanowi nieporéwnanie jeszcze wiekszg trudnoseé.

Rownanie podstawowe (1.12) mechaniki statystycznej wynika $cisle
z praw mechaniki. Jak wykazaly niedawne prace (ktére omé6wimy szcze-
gdlowiej w p. 9 niniejszego artykutu), dodajac do tego réwnania szereg
zalozen upraszezajgcych mozna otrzymaé réwnanie Boltzmann a
(1.9) jako przypadek szezegdlny. Tak wiec oparta na réwnaniu B o l1t z-
manna kinetyczna teoria gazéw stanowi w pewnym sensie przypadek
szczegblny mechaniki statystycznej. Dalsze zalozenia ograniczajace teorie
kinetyczng prowadza do hydrodynamiki klasycznej. Rozpatrzymy to mie-
dzy innymi w dalszym ciggu tej pracy.

2, Kinetyczna teoria gazow

Rozpatrzymy obecnie elementarne pojecia i zaleznosci kinetycznej
teorii gazéw.

Przypu$émy, ze znana jest kinetyczna funkeja rozkladu f{(x,§,1)
gazu zlozonego z jednakowych molekul o masach m. Jezeli p(x,t) oznacza

%) Tak np. ilo§¢ molekul zawartych w 1 molu, N jest rzedu 102,
%) Por. np. [32].
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gesto$c gazu w miejscu x w czasie t, to wielkose

_e(x1)
(21) » n(x,t)-—T

zwana gestoéciag molekularna oznacza $rednig liczbe molekul na jednost-
ke objetosci w otoczeniu punktu x w chwili t. Funkcja ta jest ciggla
(i rézniczkowalng) funkcja miejsca i czasu.

Wezmy pod uwage element objetoéei dy;x otaczajacy punkt x. Jak
wiemy z p. 1 funkcja rozkladu f(x,§,t) pomnozona przez d,x oraz przez
d;¢ daje ilo$¢ molekul zawartych w objetosci dy,x o predkoéciach za-
wartych w otoczeniu d, & preckosci §. Catkowitg ilo§é molekul zawartych
w dyx (0 dowolnych predkosciach) otrzymamy przez calkowanie wyraze-
nia fd,xd,& po calym obszarze predkosci §. Z drugiej jednak strony
z definicji gestosci molekularnej n wynika, ze ilo§¢ ta wynosi nd,x. Ma-
my wiec nastepujgcg podstawowsg zaleznos$c:

nd3x=d3l‘ {d3§f(Xy§,t)»

skad
(2.2) n(x,t)zfd3£f(x,§,t)
lub w innej postaci

(2.2.1) g(x,t)szd3£f(x,§,t).

Weimy dowolng skalarng, wektorowa lub tensorowa wielkoé¢ fizycz-
ng @ (x,§ t) zalezng od predkosci & i polozenia x molekuly oraz od czasu t
(moze to byé np. ped lub energia molekuly). Taky wielkos¢ fizyczng na-
zwiemy wielko$cig molekularng. Znajomos$é funkeji rozkladu f(x,§,1)
pozwala na obliczenie wartosci Sredniej wielkosei @ w obszarze prze-
strzennym d;x otaczajgcym punkt x. Oznaczajge poszukiwang wartoéé
Srednig przez 1) mamy réwnanie

SO=nd,x®,
gdzie symbol 2@ oznacza sume warto$ci @, odpowiadajacych wszystkim
molekutom zawartym w obszarze d,x. Wyrazenie nd,xr jest to oczywiscie

catkowita liczba molekut znajdujacych sie w obszarze d,x. Dla obliczenia
2@ mozemy postuzyé sie prosta zaleznoscig

2@=d3xfd3E@(X,E,t))‘(x,g,t).

Rozprawy Inzynierskie — 7 511



Z tego réwnania wraz z réwnaniem poprzednim otrzymujemy wzér
zasadniczy

(2.3) @(x,t)z%—f%rf(D(x,g,t)f(x,S,t).

Pokazemy obecnie, w jaki sposéb wprowadza sie do teorii kinetycznej
rézne funkcje hydrodynamiczne jako wartosci $rednie pewnych wielkosci
molekularnych. Predko$é¢ przeplywu w sensie hydromechaniki u (x,t)
ckre$lamy jako $rednig wielkosci

O=E.
Mamy wtedy

(2.4) u(x,t):é:%-fd3§§f(x,§,t).

Oprécz predkosci molekularnej § czesto bardzo uzywa sie w teorii ki-
netycznej wzglednej predkosci molekularnej e¢(x,§,t) wyrazajgcej sie
wzorem

(2.5) c(x,8,t)=§—u(x,t).

Znaczenie fizyczne predkosci wzglednej ¢ jest bardzo proste: oznacza
ona predko$¢ molekuty okre§lona w ukladzie wspéirzednych (lokalnym),
poruszajacym sie wraz z elementem gazu z predkoscia u(x,t). Mozna
powiedzieé, ze predkosci c charakteryzujg ruchy «wewnetrzne» molekut
w elemencie objetosci. Oczywiscie mamy

(2.6) Ez—i—‘j‘ds,é(g—u)fdgc:é—%uf‘d3§fd3£=u—uzo.

Obliczajgc $redni ped w kierunku osi x;(j = 1, 2, 3) przenoszony w jed-
nostce czasu przez molekuly na jednostke powierzchni d, ¢ prostopadls do
osi x; otrzymujemy (szczegélowe rachunki podane sg w pracy [1] na
str. 31) tensor napieé¢ w postaci

(2.1 pij=mnfcj2mfd3§cicjf‘

W przypadku gazu w stanie réwnowagi p:; staje sie — jak sie pdzniej
przekonamy — tensorem diagonalnym o postaci

(2.8) , pij=p0ij.
Stad oczywiscie

1
(29) p'——?p”’!
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gdzie p oznacza ci$nienie gazu. Definicje (2.9) ciSnienia gazu rozszerzamy
na przypadek dowolnego ruchu gazu. Z wzoréw (2.9) oraz (2.7) wynika
zaleznosé

(2.10) p =—:13—Qc§-

Obliczymy teraz energie kinetyczng ukladu nd,x molekut znajduja-
cych sie w elemencie objetosci d;x w otoczeniu punktu x. Wyrazi sig ona
wielko$cig

1 o
ndgac—2—m§“.

Poniewaz jednak

—é'o:(mgz <2 .*_uTZ’
to tylko co napisana warto$¢ energii jest

d,xc? d, xu? .
A B = (B + B d, %,

iy % mEl=
gdzie E.=E.=pu?%2 oznacza gesto$é energii kinetycznej elementu gazu
jiako catosci, czyli gestosé energii kinetycznej «zewnetrznej». Drugi wy-
raz za$ E;:géz/’Z oznacza gesto$é energii kinetycznej ruchéw wewnetrz-
nych molekut gazu. W przypadku gazu zlozonego z molekut jednoatomo-
wych nie dziatajgcych na siebie (poza zderzeniami) wielko$¢ te utozsamia
sie z gestoscia erlergii wewnetrznej (w sensie termodynamiki).
Temperature okres$la sie w teorii kinetycznej jako wielko$¢ proporcjo-
nalng do gestosci energii wewnetrznej przypadajacej na jeden stopien
swobody molekuly. Oznaczajgc staly wspoélczynnik proporcjonalnosci
przez k/2 (gdzie k nazywa sie stala Boltzmanna; k=138-10"1
erg/stopien), mamy wiec réwnanie okreslajace temperature

(2.11) -é—kT:%(%m?).

Zestawiajac ten wzoér ze wzorem (2.10) otrzymujemy réwnanie sta-
nu gazéw

(2.12) “~~=RT,

gdzie stata gazowa R rdéwna jest k/m.

Mozemy wreszcie na gruncie teorii kinetycznej wprowadzi¢ pojecie
strumienia ciepla (, przeplywajacego w jednostce czasu przez jednostke
powierzchni, jako warto$é srednig iloczynu predkosci ¢ przez gestosé¢ ener-
gii wewnetrznej Eu:

(2.13) q=nﬁﬁz=%‘fd3gc?f.
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W teorii kinetycznej bardzo duzg role odgrywaja zderzenia molekut.
Najprostszym zalozeniem byloby przyjecie modelu gazu zlozonego z nie-
oddziatywajacych na siebie gladkich, sztywnych i doskonale sprezystych
kulek. Glebsze wyjasnienie natury i wlasnosci sit miedzymolekularnych
moze nam da¢ jedynie mechanika kwantowa. Wszystkie te sily sg oczy-
wiscie pochodzenia elektromagnetycznego, gdyz pola grawitacyjne i me-
zonowe nie mogg byé brane w rachube.

Potencjaly tych si wyrazane bywaja na ogdét?) za pomocg réinych
przyblizonych wzoréw typu

D(r)=—DMe /9 - Ne—'le

lub tez
O (r)=—pr %+ Ne— 7.

W zwigzku z tym, ze bardzo wiele efektéow fizycznych — jak sie prze-
konano — nie wykazuje zbyt wielkiej wrazliwosci na rodzaj si! oddziaty-
wania, mozna z powodzeniem uzywa¢ jeszcze mniej dokladnych przybli-
zen. Przykladem takiego niedokladnego przyblizenia stluzyé moze wzér

Or)=—pur—S—4pr—m,

Jest on bardzo dogodny w wielu rachunkach. Za jeszcze mniej doklad-
ne przyblizenie uwazaé mozna potencjal typu

O(ry=pur—"

bardzo czesto uzywany w rachunkach. Juz M a x well zauwazyl, ze
obliczenia réznych wielkoSci metodami teorii kinetycznej stajg sie znacz-
nie prostsze przy zalozeniu, Zze molekuly odpychajg sie sita odwrotnie
proporcjonalng do pigtej potegi odleglo$ci wzajemnej (w ostatnim wzorze
odpowiada to wartoéci m = 4). Taki model oddzialywania molekul nosi
nazwe maxwellowskiego. '

Uwzgledniajac fakt stosunkowo kroétkiego zasiegu wszystkich omo-
wionych powyzej sil mozna uwazaé, ze jedynym okresem, podczas ktérego
istnieje wzajemne oddzialywanie molekul, jest zderzenie tych molekul.
Srednia droge, jakg molekula przebywa od zderzenia do zderzenia, nazy-
wamy droga swobodng. W normalnych warunkach cisnienia i temperatury
w gazach $rednia droga swobodna jest rzedu I = 10~% cm. Wymiary mo-
lekuly natomiast sg na ogét rzedu o~~10—8 cm.

Pierwiastek ze $redniego kwadratu predkosci jest wielkoscig rzedu
predkosci dzwieku w gazie. Teoria kinetyczna pozwala np. na wyprowa-

7) Bardziej szczegdéltowe omoéwienie tej kwestii znalezé mozna w pracy [2]
na str. 82.
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dzenie prostego wzoru lgczacego te wielkosci (por. np. [4]) w stanie row-
nowagi gazu:

(2.14) 'l/c2 — ]/ia,
V<4

gdzie a jest predkoscig dzwieku, » wykladnikiem adiabaty.

Z elementarnych rozwazan teorii kinetycznej mozna réwniez otrzy-
ma¢ bez wnikania w strukture funkcji rozkladu prowizoryczne wzory dla
wspotezynnikéw kinetycznych: lepkosci i przewodnictwa cieplnego. Nie

wchodzac w metody otrzymywania tych wzoréw (znalezé je mozna w V
rozdziale pracy [3] lub w VI rozdziale pracy [1]) wspomnimy tylko, ze zja-
wiska lepkosci i przewodnictwa cieplnego ttumaczy sie tu istnieniem
chaotycznego ruchu molekut, wywolujacego przenoszenie pedu i energii
w polu przeplywu gazu. Wspélezynniki kinetyczne otrzymane tg droga
s proporcjonalne do $redniej drogi swobodnej I:

(2.15) gl Al

Wspotezynniki proporcjonalnosci jednak nie odpowiadaja zbyt doktad-
nie wartosciom rzeczywistym. Dokladniejsza teorig obliczania wspdiczyn-
nik6w kinetycznych zajmiemy sie nizej (w p. 5).

W oparciu o powyzsze rozwazania postaramy sie obecnie podaé pobiez-
na analize zakresu stosowalno$ci hydrodynamiki klasycznej oraz szkicowy
przeglad tych efektéw fizycznych, w ktérych niezbedne staje sie stosowa-
nie metod kinetycznej teorii gazéw. Hydrodynamika klasyczna opiera sie
na szeregu praw fenomenologicznych (1.6)-(1.8), ktére teoria kinetyczna
w jednych przypadkach potwierdza, w innych za$§ odrzuca. Nawet w tych
przypadkach, w ktérych te prawa fenomenologiczne sa przez kinetyczng
teorie¢ potwierdzone, hydrodynamika klasyczna nie jest w stanie podaé
metod obliczania wspdélczynnikéw kinetycznych. Teoria kinetyczna nato-
miast daje w tym wzgledzie zupelnie zadowalajace rezultaty (por. p. 5).
Schemat rachunkowy hydrodynamiki klasycznej wymaga zakladania do-
datkowych warunkéw brzegowych (np. warunku znikania sktadowej stycz-
nej predkosci na powierzchni ciata stalego zanurzonego w gazie), ktérych
ogoélna prawdziwo$¢ nie jest absolutnie pewna we wszystkich przypad-
kach. Wyjasnienia tej sprawy nalezy sie spodziewaé tylko na gruncie
teorii kinetycznej.

Hydrodynamika klasyczna nie jest jednolita i konsekwentng teorig
fizyczng, gdyz prawa mechaniki, termodynamiki i prawa fenomenologicz-
ne nie znajduja na gruncie tej teorii jednolitego wyjasnienia. Hydrodyna-
mika klasyczna opierajaca sie na pojeciu o$rodka cigglego nie jest w sta-
nie opisa¢ zjawisk takiego typu, w ktérych istotnym czynnikiem jest
ziarnista budowa substancji gazowej. Tak np. metody hydrodynamiki za-
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wodzg w przypadku opisu zjawisk dyfuzji gazéw, w przypadku gdy wyste-
pujg wielkie gradienty przestrzenne, np. ciSnienia lub temperatury (od-
nosi sie to takze do fal uderzeniowych), w przypadku wreszcie, gdy droga
swcbodna staje sie rzedu wielkoéei wymiaréw cial oplywanych 8). Réwniez
w przypadku wielkich gestosci lub bardzo niskich temperatur réwnania
hydrodynamiki klasycznej zawodzg. Wchodzg wtedy w gre silniejsze od-
dzialywania molekut lub tez zmienione prawa oddziatywania. Ma to szcze-
golnie duze znaczenie w rozwijajacej sie obecnie teorii cieczy oraz w teorii
nadciektego helu.

Mozemy wiec stwierdzié, ze zagadnienia takie jak loty na wielkich
wysokos$ciach, konstrukeja i dziatanie aparatéw prozniowych, rozdzielanie
izotopé6w metodami dyfuzji i termodyfuzji, badanie przeplywoéw gazow
zjonizowanych, wytadowania elektryczne w gazach rozrzedzonych, bada-
nia nadcieklego helu, badania optywéw cial silnie rozgrzanych, badania
struktury fal uderzeniowych — wymagaja bezwarunkowo modyfikacji
réwnan hydrodynamiki klasycznej. Mozna to przeprowadzi¢ jedynie na
gruncie teorii kinetycznej.

3. Réwnanie Boltzmanna i rownania przenoszenia

Podamy obecnie szkic wyprowadzenia réwnania Boltzmanna dla
funkecji rozktadu. Rownanie to jest podstawa kinetyczne]j teorii gazow.

Jezeli f(x,§,t) oznecza funkcje rczkladu, top wyrazenie fd,éd,x ozna-
cza, jak wiemy, iloé¢ molekul zewartych w objetoéci d; x oteczejgcej punkt
X, ktérych predkosci zewarte sg w tréjwymiarowym przedziele preckofci
d, & otzczajgcym preckoéé & Zbedajmy zmiane tej iloéci molekul po uptywie
czasu dt. Gdyby nie zechcdzily zderzenia molekul, to calkowita zmiana
ilosci molekut wyniostaby

of )
<6t+5’0 )d;;$d3§dt

(gdyz w ciggu czasu dt wektor x przechcdzi w wektor x+5§dt, za$ wek-
tor § w &+ I dt). Jezeli zmizne iloSci molekut wskutek zderzen w ciggu
czasu dt oznaczymy przez

0. f

atdxdfdt

8) Tak np. na wysokosci 123 km nad ziemig $rednia droga swobodna jest rzedu
30 cm, na wysokoéci 184 km | &~ 27 m; na wysoko$ci 245 km 1l =~ 450 m. Przykiady
te zostaly zaczerpniete z ksigzki [33].

516



{gdzie operator 0./dt nie oznacza oczywiscie rézniczkowania), to réwna-
nic Boltzmanna zapisaé mozemy w postaci

0f 0f 0f _ 0§

(3.1) @t+£ia?f+Fi52}_0t'

Pozostaje do okreslenia postaé operatora 0./0f. W tym celu zanalizo-
waé musimy blizej przebiegi zderzen molekul. Konieczne jest przyjecie
dwoch podstawowych zatozen:

(1) zachodza jedynie podwéjne zderzenia molekul (tzn. zderzenia
3, 4, ... moleku! na raz mogg by¢ pominiete),

(2) czas trwania zderzenia jest krotki w poréwnaniu z czasem, w cig-
gu ktérego molekula jest swobodna.

Zakladajac, ze sity wzajemnego oddzialywania molekut sg silami krét-
kiego zasiegu w poréwnaniu ze $rednig drogg swobodng [co jest réwno-
wazne z zalozeniem (2)], mozemy przyjaé, ze przed zderzeniem i po zde-
rzeniu molekula porusza sie po prostych. Oznaczajac przez & i & od-
powiednio predkosci pierwszej molekuly (molekuly «1») przed zderzeniem
i po zderzeniu, za$ przez § i § — odpowiednie predkoéci drugiej mole-
kuty (molekuly «0»), mozemy napisaé zasade zachowania pedu i energii
w zderzeniu w postaci

14§ — & 48
- £+ Sk
84 p—E24

Wynika stad réwnanie
(3.3) g=g,

gdzie g oraz g’ oznaczajg moduly predkosci wzglednych:

’

’ &'
g =5 —5.

g=§8—§,
(3.4) {

Jezeli znamy predkosci & i §, obu molekul przed zderzeniem, to réw-

nania (3.2) mozemy traktowac¢ jako uklad 4 réwnan dla 6 niewiadomych
& i &]. Predkosci & i & po zderzeniu sg zatem funkcjami dwéch do-
datkowych parametréw skalarnych. Te parametry charakteryzuja geo-
metrie zderzenia. WeZmy pod uwage uklad wspélrzednych, w ktérym
molekuta «0» spoczywa (przed i po zderzeniu). Przed zderzeniem moleku-
'a «1» porusza sie po pewnej prostej PS (rys. 1) z predkoscia g=E§, —&.
Wzajemne potozenie molekul przed zderzeniem (a wiec i caly przebieg
zderzenia) jest scharakteryzowane przez dwa parametry geometryczne:
b oraz &.Tzw. «odleglos$¢ przycelowa» b okre$lamy jako odlegtos¢ punktu O
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od prostej PS. Litera ¢ natomiast oznacza kat (nie uwidoczniony na rys. 1),
okreslajacy polozenie plaszezyzny PSO wzgledem dowolnej plaszezyzny
przesunietej przez prosta OR obrang za plaszczyzne odniesienia. Kat y
okreslajacy zmiane kierunku ruchu molekuly
«1» wzgledem molekuty «0» jest funkcja zmien-
nych b oraz g:

(3.5) xr=1zx(b,g).

Charakter tej funkcji zwigzany jest z kon-
kretng postaciag wyrazenia okreslajgcego od-
dzialywanie molekul. Predkosci & i & mole-
kul po zderzeniu sa zatem funkcjami predkoéci
przed zderzeniem § i & oraz parametréw b i e

Rys. 1 charakteryzujacych zderzenie pod wzgledem

geometrycznym. Zamiast tych dwéch parame-

trow mozna wzia¢ réownie dobrze wektor jednostkowy k (rys. 1) w kie-

runku prostej SO laczacej molekuly w chwili ich najwiekszego zblize-

nia. Przy pomocy wektora k mozna latwo wyznaczyé predkoscei & i &

molekut po zderzeniu. Z prostych rozwazan geometrycznych otrzymu-
jemy mianowicie

(3.6) =5+ (kgk, fi=i—(kgk,
gdzie, jak poprzednio, g=2§, —§.

Wplyw zderzen na zmiane ilo$ci molekul fd,&d,x bedzie dwojaki:

(1) pewne molekuly «znikng», tzn. zmienig swe predkosci na inne nie
nalezgce juz do przedzialu d, & otaczajacego wektor §,

(2) pewne molekuly «pojawig sie», tzn. molekuly o predkosciach nie
nalezacych do przedziatu d, & otrzymajg wskutek zderzen predkosci nale-
zgce do przedziatu d, &.

Z rozwazan nad funkcja rozkladu wynika (patrz np. praca [1], str. 59).
ze ilo$¢ molekul, ktére «znikng» w ciggu czasu dt wyrazi sie wielkoécig

dtd,xd, & [dé, [ bdb [degf(x,§Df(x,&,0),
0

—0

w ktorej § jest zmiennag catkowania. Podobnie dla ilosci molekul, ktére
sie «pojawiajg», mozemy napisaé wyrazenie
oo 2n
dtd:;xd:ifffdgfl f bdbf degf(x,8,t)f(x,8,¢),
0

—0
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gdzie wielkosci & i & dane sg przez wzory (3.6). W dalszym ciagu uzy-
waé bedziemy oznaczen skréconych:

f = (X,g,t>, ,E.f(x7§,’t)’
flEf(X7§J7t)r fl“f( gl;

Calkowanie po b oraz ¢ mozna drogg zmiany zmiennych pod calky za-
stapi¢ przez calkowanie po wszystkich mozliwych poltozeniach wektora k
(tworzgcych pétkule — jak latwo sie przekonaé¢ z rys. 1). Odpowiedni ja-
kobian pomnozony przez gb otrzyma wtedy postaé

(3.7) ow=o0(g,b=-—"""—,

gdzie y jest okreslong przez (3.5) funkcja g oraz b°). Posta¢ funkcji w
zalezy zatem od postaci funkcji oddziatywania molekut.

Reasumujac powyzsze mozemy zmiane rozwazonej iloSci molekut
wskutek zderzen zapisaé w postaci

0-f

ot d,xd, Edt=d, xd, Sdt_jdgﬂjd ko (f fi — ).

Rownanie Boltzmanna (3.1) otrzymuje zatem posta¢ ostateczna

of 0f
S+ ofx’+F,051 [dyé [dako(f fi—Ff).

(3.8)

Lewa strona tego réwnania wyraza zmiane funkeji rozktadu wskutek:
(1) niestacjonarno$ci ruchu (pierwszy wyraz), (2) zmiany polozenia mole-
kutl (drugi wyraz) oraz (3) dzialania sit zewnetrznych (trzeci wyraz). Pra-
wa strona tego rownania wyraza zmiane funkeji rozkladu wywolang przez
zderzenia molekul.

Z matematycznego punktu widzenia réwnanie (3.8) przedstawia zawite
rownanie funkcjonalne. Lewa strona tego réwnania ma wprawdzie sto-
sunkowo prosta strukture liniowego réwnania rozniczkowego pierwszego
rzedu o pochodnych czgstkowych. Jednakze prawa strona jest bardzo
skomplikowana. Jest to wyrazenie, w ktérym niewiadoma funkcja wyste-
puje nieliniowo pod caltkg wielokrotng z argumentami poddanymi trans-
formacji liniowej (3.6) wzgledem parametréow, ktorej réwniez wykonane
ma byé¢ catkowanie. Z tego wzgledu rozwigzywanie réwnia Boltz-

%) Warto tu zauwazyé, ze dla molekut maxwellowskich, odpychajacych sie si-
tami odwrotnie proporcjonalnymi do piagtej potegi odlegtosci, wyrazenie w jest nie-
zalezne od g. Na tym wtadnie polega znaczne uproszczenie, do jakiego prowadzi ten
model.
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manna jest problemem bardzo trudnym. Ograniczamy sie na razie je-
dynie do ustalenia metody kolejnych przyblizen, rozwiniecia na szereg
lub wreszcie dowodu istnienia w prostych przypadkach szezegéinych.

Nie wchodzae na razie w szczegdly metod rozwigzywania réwnania
Boltzmanna zastandéwmy sie nad tym, jakie zaleznosci dla makrosko-
powych funkeji hydrodynamicznych, okreslonych wzorami (2.1) - (2.13),
wynikajg z tego réwnania.

Niech o (x,§&,t) cznecza dowolng wielko$é molekularng. Jezeli spelniona
jest zaleznosce

(3.9) v Hyi=y 4+,

gdzie jak poprzednio 3" = (x,%, 1), 91— p(x,85i,1t) itd., to wielko$¢ ¢ na-.
zywamy niezmiennikiem zderzen.

Prawa strona réwnania (3.9) oznacza sume wielkosci » dla obu mo-
lekut przed zderzeniem, lewa strona za§ — sume wielkosci » po zde-
rzeniu. Réwnanie (3.9) ma wigc sens zasady zachowania wielkoSei #
podczas elementarnego procesu zderzenia dwoéch molekul.

Istnieje pie¢ podstawowych skalarnych niezmiennikéw zderzen:

(3.10.1) ) =1 10),
(3.10.2) (p?, @ p¥) =§,
(3.10.3) P =g,

Podstawienie wyrazenia (3.10.1) do r6éwnania (3.9) daje banalng
ré6wnosé
1+1=1+1,

ktora jest wyrazem fizycznego faktu niezmiennos$ci iloSei molekut podczas
zderzenia. Podstawienie wielko$ci (3.10.2) oraz (3.10.3) do réwnania (3.9),
mozliwe ze wzgledu na réwnania (3.6), jest wyrazem zasad zachowania
pedu i energii przy zderzeniach.

Roéwnanie Boltzmanna (3.8) pomnézmy teraz przez dowolng wiel-
kos¢ molekularng »(x, §,t) i scalkujmy obie strony wzgledem predkosci &.
Otrzymamy

[ gqu(5{+é—f——1—F,df) [dyéy [ds&i [dako (f' fi —FF0).

Prawg strone tego réwnania oznaczmy przez Aw. Przeksztalcajge le-
wa strone tego réwnania otrzymujemy tzw. réwnanie przenoszenia (czyli

10) Mozna by tu oczywiScie przyjaé¢ ogélniej (1) = const. To uogélnienie nie przy-
nosi zadnych dodatkowych korzysci.
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transportu) Maxwella (zwykle przechodzimy do zmiennych ¢ za-
miast zmiennych §)

311)  2@mp=—@mpos—n

_ Dy =
D1 Il’uk,k—’j’_‘cklp,k—(Fk“’“ _

Dt

Dug| — _ 0 E
o Dutk)?/’,k—gé/f Cruin|+ ndy.

Jezeli p jest niezmiennikiem zderzen, to Ap=0.
Dowdd tej rownosci podany jest w pracy [1], w rozdziale 3.
Przyjmujac najpierw p=y=1 (zasada zachowania ilosci molekul)
otrzymujemy z réwnania (3.11) réwnanie cigglosci
on
(3.12) *a't* + (n ul—),,- = 0,

co po pomnozeniu przez mase molekuty m daje réwnanie (1.1).
Przyjmujac dalej

p=ms§,

(zasada zachowania pedu) otrzymujemy rownanie

D u,-‘

(313) Pij,j — Q(F:’—Ht)zo
identyczne z réwnaniem (1.2).

Przyjmujac wreszcie

p=yP= *;* mc?,
otrzymujemy réwnanie
DT 2

(3.14) Dt—  3kn lpijui; + qii)

réwnowazne przy uwzglednieniu (3.12) oraz (3.13) réwnaniu (1.3).

Jak wiec widzimy, teoria kinetyczna potwierdza podstawowe réwna-
nia hydrodynamiki klasycznej (1.1) - (1.4) [wraz z warunkiem (1.5)]. Otrzy-
manie dalszych zaleznosci, ktére bylyby odpowiednikiem praw fenomeno-
logicznych, wymaga juz znajomosci struktury rozwigzan réownania
Boltzmanna W ogélnym przypadku zaleznosci te nie beda juz mia-
ly postaci réwnan (1.6) - (1.8). W tych natomiast przypadkach, w ktérych
réwnania te zostang przez teorie kinetyczng potwierdzone, bedziemy w sta-
nie ponadto podaé¢ ocene bledu wyniklego z przyjecia takiego przyblizenia
oraz obliczyé wartoéci wspbiczynnikéw kinetycznych. '
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4. Maxwellowskie rozwiazanie rownania Boltzmanna. Aerodynamika molekularna

Rozpatrzmy najprostszy przypadek réwnania Boltzmanna od-
powiadajacy stacjonarnemu i jednorodnemu polu przeplywu gazu bez
dzialania sit zewnetrznych. Mamy wtedy

of __ of _

0t =% gm—

0, F=0.

Réwnanie (3.8) Boltzmanna przyjmie zatem posta¢
(4.1) fd:s‘flfdzk")(flﬁ“‘ff1):0~

Warunkiem wystarczajgcym rozwigzania tego rownania jest spelnienie
zaleznos$ci

(4.2) ffi=ff,.
W tym przypadku mozna natychmiast odgadnaé rozwiazanie:
(4.3) f= Ae B&—Dr

gdzie A, B, D jest to pie¢ stalych dowolnych.
Korzystajac z réwnan (2.2), (2.4) oraz (2.11) mozemy tym stalym nadaé
sens fizyczny. Okazuje sie wtedy, ze

(4.4) A:n( m )3 =

2akT
gdzie n, u, T oznaczajg odpowiednio: gesto$¢ molekularng, predkosé i tem-
perature stacjonarnego jednorodnego przeplywu. Podstawiajac wyrazenia
(4.4) do wzoru (4.3) otrzymujemy ostatecznie

m |82 _ me
(4_5) f:n(;——) e 2r7T,

Wz6ér ten przedstawia tzw. maxwellowski rozklad predkosci. Stanowi
on podstawe wielkiej iloéci obliczen kinetycznych. Funkeja rozkladu dana
réwnaniem (4.5) opisuje wiasciwie rozklad predkosci molekut w stanie spo-
czynku gazu. Zagadnienie istnienia statej predkosci u mozna bowiem za-

sze sprowadzi¢ do zagadnienia zmiany inercyjnego ukladu wspdlrzed-
nych.

To najprostsze i podstawowe rozwiazanie réwnania Boltzmann a
mozna ponadto uogélni¢ na przypadek istnienia sil zewnetrznych.

Znajomo$¢ maxwellowskiej funkeji rozktadu (4.5) pozwala na oblicze-
nie calego szeregu wielkosci takich, jak czesto$é zderzen molekul, $rednia
droga swobodna, prawdopodobienstwo przebycia okreslonej drogi swo-
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bodnej, czestdsé zderzen i droga swobodna molekut o okreslonej pred-
kosci itp. Przykladowo wymienimy tu wzoér dla $redniej drogi swobodnej

1
(4.6) l .’7'6]/271,0'2’
gdzie o jest $rednica molekuly, n gestoscia molekularng. Na maxwellow-
skiej funkeji rozkladu (4.5) opiera sie takze teoria obliczen wspdlczynni-
kéw kinetycznych. Prowadzi ona jednak jedynie do zaleznosci postaci
(2.15), nie dajac zatem zbyt dokladnych rezultatow.

Z punktu widzenia teorii optywdédw rozwigzanie (4.5) mozna uwazac za
kinetyczny opis niezaburzonego przeplywu w dali od oplywanego ciala
statego.

Maxwellowskie rozwigzanie (4.5) moze stuzyé za narzedzie obliczen
jedynie w przypadkach zbliZzonych bardzo do stanu réwnowagi, gdy zabu-
rzenie przeplywu jest pomijalnie mate. W szczegélnosci w gazach bardzo
rozrzedzonych molekuly odbijajace sie od powierzchni ciata stalego nie-
znacznie tylko wplywajg na rozklad predkosci. Mozna zatem w tym przy-
pvadku zbudowaé teorie aerodynamiczna opartg na maxwellowskiej funk-
cji rozktadu. Ten dzial aerodynamiki nosi nazwe aerodynamiki moleku-
larnej (takze niekiedy superaerodynamiki lub teorii wolnej molekuty).
Rozwingl sie on gléwnie dzieki pracom Rocarda, [8], Lunca, [4],
[5], [6], [7], Tsiena, [9],iinnych.

Dla uwzglednienia sposobu wzajemnego oddzialywania molekutl i po-
wierzchni ciala stalego wprowadzony zostal przez Smoluchowskie-
go i Knudsena tzw. wspdlczynnik akomodacji. Okazato sie miano-
wicie, ze wiekszo$¢ molekutl uderzajgcych o powierzchnie ciala statego nie
ocbija sie bezposrednio od niej, lecz zostaje przez nig na pewien czas za-
absorbowana, nastepnie za$ emitowana ze $rednig energia odpowiadajaca
temperaturze $cianki. Wspdleczynnik akomodacji okresla sie zalezno$cig

(4.7) 90:(1_0') €y + aeSy

gdzie e, jest $rednig energia odpowiadajgcg temperaturze molekul odhbi-
tvch, e, Srednia energia odpowiadajacg temperaturze molekul uderzajg-
cych, eg §rednig energia odpowiadajaca temperaturze $cianki.

Dla powierzchni metalicznych warto$¢ wspoélczynnika akomodacji wa-
ha sie na ogét w granicach 0,87 - 0,97.

Przyjmujac, ze nier6wnos$ci na powierzchni Scianki majg charakter
chaotyczny, dochodzimy do nastepujacego prawa rozktadu molekut emito-
wanych przez Scianke:

(4.8) dﬂt:%da‘i";—"’dw.
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We wzorze tym d 0 oznacza ilo$¢ molekut emitowanych ‘przez element
powierzchni $cianki d ¢ w kacie brylowym d o, tworzacym kat ¢ z nor-
malng do powierzchni na jednostke czasu; I oznacza ilo$¢ molekul absor-
bowanych przez $cianke na jednostke powierzchni i jednostke czasu.

075 T\
50"
2
D,
60°
60°
0.50

7°
a
b
0° C
| ,00 4 k“
025 10° /\ 80°
- -

0 05 10 5 2.0 X

Rys. 2

Wzor jest analogiczny do wzoru Lamberta z optyki. Prowadzi on
do wniosku, ze rozklad molekut emitowanych przez Scianke ma charakter
rozkladu maxwellowskiego dla temperatury odpowiadajacej temperatu-
rze $cianki. Scianke mozna wiec zastapi¢ gazem fikcyjnym o temperatu-
rze T,, ktérego rozklad jest takze maxwellowski. Powierzchnia zetknigcia
sie gazu ze $cianka jest zatem vpowierzchnig niecigglo$ci temperatury
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oraz — jak latwo przekona¢ sie — takze ci$nienia i predkosci. Dla skoku
ciénien otrzymujemy np.

_Polyg__ | 'Fi)
(4.9) p‘—' 2 (2 a }—a]/Tgv )

gdzie p oznacza ciénienie gazu na Scianke, p, ciSnienie w gazie obok Scian-
ki, T, temperature gazu.
Dla a = 0 lub tez dla Ty = T, wzér ten przechodzi w réwnos¢ p = p..
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Rys. 3

Jezeli mamy do czynienia z cialem oplywanym przez gaz rozrzedzony,
wowczas zakladajae, ze rozklad predkosci jest maxwellowski mozemy ob-
liczy¢ ped, ktéry jest przekazywany cialu przez molekuly. Prowadzi to do
wzoréw na wspolczynniki oporu i nosnosci skrzydla w gazach rozrzedzo-
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nych. Szczegbélowe rachunki wykonane zostaly przez Lunca, Sdnge-
ra i Tsiena. Biegunowe plata plaskiego otrzymane przez Liunca,
[4], podajemy na rys. 2. Na rys. 3 pcdajemy wykresy oporu walcéow elip-
tycznych w funkeji stosunku obu pétosi elipsy dla réznych liczb Mach a,
znalezione réwniez przez YL unca, [4]. Na rys. 4 podane sg biegunowe
plaskiej ptytki, otrzymane przez Sédngera (cytujemy za Tsienem, [9]).
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0 1.0 12 14 (e

Rys. 4

Nalezy podkresli¢, ze rozwazania aerodynamiki molekularnej zacho-
wuja swg waznos$¢ jedynie w przypadku gazéw bardzo rozrzedzonych, gdy
$rednia droga swobodna jest znacznie wicksza od wymiaréw cial opty-
wanych.

5. Rozwiazanie rownania Boltzmanna metoda Enskoga-Chapmana-Burnetta

Rownania aerodynamiki molekularnej stuszne sg w przyblizeniu jedy-
nie dla gazéw bardzo silnie rozrzedzonych. Aby znaleZé ogblniejszy i do-
ktadniejszy obraz przeplywu, nalezy powré6eié do réwnania Boltz-
manna iszukaé dalszych jego rozwigzan. Uczynili to niezaleznie od sie-
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bie D.Enskog (1917) i S. Chapman (1912). Teorie te rozwingl i uza-
sadnil pod wzgledem matematycznym Burnett (1935). Teoria En-
skoga-Chapmana - Burnetta (w skrocie ECB) moze by¢ dzi$
uwazana za klasyczny dorobek kinetycznej teorii gazéw. Zasadnicza my-
§lg tej teorii jest rozwiniecie funkceji rozkladu w szereg potegowy wzgle-
dem parametru odwrotnie proporcjonalnego do gesto$ci molekularnej ga-.
zu. Ze wzgledu na wzoér (4.6) mozna réwniez to rozwiniecie uwazaé za roz-
winiecie wedlug poteg drogi swobodnej. Zwarty lecz pelny obraz teorii
ECB podany jest w pracy [1].
Dla funkeji rozktadu mozemy zatem napisa¢ rozwiniecie

(5.1) f=nf+f+-

Drugim podstawowym zalozeniem teorii jest przyjecie, ze funkcja roz-
kladu f(x,§,t) zalezy od czasu wylgcznie za posrednictwem funkeji hydro-
dynamicznych n (x,t),u(x,t) i T (x,t). Otrzymujemy stad wzér
, 0f O0fdn Of du b6 0f 0T
:2] 0t —9m dt "ou dt TOT 0t

Trzecim wreszcie podstawowym rachunkowym zalozeniem teorii ECB
jest przyjecie pewnego charakterystycznego sposobu rozlozenia na szereg
wystepujacego w rownaniu Boltzmanna operatora rézniczkowania
wzgledem czasu. Napiszmy mianowicie rownanie Boltzmanna (3.8)
w postaci

(5.3) Df=I(ff,
gdzie
. 0 . - .0 L0
D—a—t—f‘R, sz'x+i‘dg,
#5S

I(‘P’Pl):"-d;sffdg ko(g vyi —@p,).

We wzorach tych daszek nad symbolami oznacza operator.
Podstawiajac rozwiniecie (5.1) do prawej strany réwnania (5.3) otrzy-
mujemy
) 00 0t ) 10 02 11 20
(5.4) 1(ff)=n*I(ff) +nI(ffi +Fff)+I1Gfi +ffi+Ff)+..=

1 2 1 3

0
:’—:n2[+nl—!—l+;1+....
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Dla operatora Dz lewej strony réwnania (5.3) Enskog i Chap-
man przyjmuja rozwiniecie

(5.5) h— V) }7 LE )

r—=

gdzie 0,/0t oznacza r-ty wyraz rozwiniecia operatora 6/0t w szereg. Aby
okreéli¢ dziatanie operatora 0,/0t na funkcje rozkladu wprowadzmy na-
stebujace oznaczenie:

r . r
(5.6) ()] ::J d, £Df,
gdzie @ (x,§,t) jest dowolng wielkoscia molekularng. Na mocy roéwnania

(2.3) otrzymamy teraz nastepujgce rozwiniecie wartosci $redniej:

oo

(5.7) o= Y cp(i)

W szczegblnos$ci dla tensora mapie¢ i strumienia ciepla otrzymamy

< 1 = ;4
pi= D pi s, @= D &
r=0 r=10
gdzie
r r r . r
p,jzgfd3§cicjf oraz q,'::gjczc,-fd;s&

Réwnania przenoszenia (3.12) - (3.14) przyjma wtedy postaé

on
[W*‘_(nui).i,
0uj 1 <1 7 1
(5.8) {“’5t'z—(ufU/.i) + Fj— o iji %7),[,
= ‘r=0 /
IOT_‘ i 2 (Vpyuw,, \ P,l)
op - b Skn(,;(, w2y iz

Przystapimy obecnie do okreslenia -dzialania operatora 0,/0t na funk-
cje rozkladu. Ze wzgledu na zalozenie (5.2) mozemy napisaé

o-f 0rmof
ot 0t On

rui aj: QrT _()ji 11)
0t du;, Ot 0T '

-+

(5.9)

11) Je$li funkcja f zalezy ponadto od gradientéw funkeji hydrodynamicznych np
od U i to piszemy wzdr (5.9) uzupelniajac go dodatkowymi wyrazami np.

o 0uy  0f (0,
du; ; 0t s ﬁu at | ;-
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Okreslenie dzialania operatora 0,/0t na funkcje rozkladu sprowadza
sie zatem do okreslenia dzialania tego operatora na funkcje hydrodyna-
miczne n, u;, T. Dzialanie to okreéla sie nastepujgco:

0 0,
(5.10) S =—un.., =0 (r = 0);
dﬂuj___ ) o ] ‘71 0” arUJ_ 1 r“ ) .
(5.11) ot uiuj,i + Fj 0 Dji, i, 9t p DPji.i (r=0);
0, T 2 0 0
512 o = —WTi— g3 Py ui+aii,
' 1o, 2 s ;
0f = 3kn \Pu Uit Qi

Ze wzorow tych widaé przy uwzglednieniu réwnan (5.8), ze
rths  Ou; w1l 0T 0T
ot  o0t’ g(;nrat—at'

Na mocy wzoréw (5.9), (5.2) i (5.13) widzimy, ze takze

7]

« 1 0n_ dn
(5.13) ’%’?7{_5, .

l\ﬂg

g
e

or

_9
T ot

1
n’

)

o7
-

r=u

Stosujac teraz operator Dw postaci podanej wzorem (5.5) do rozwi-
niecia (5.1) otrzymujemy

2 1 2 3
(5.14) Df=nD+D+%D+-.-,
gdzie
1 d}’ 0
__Yo0J). 2
D=-5-+Rf,
> 9.f 0 f 4l
(5.15) D=3+, + RS,
ar:’:—l or?Q a (] .
__ Y J Y] B r ~ T
D="9 T "9¢ T Ftor TR
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'Przyréwnujac do siebie odpowiednie wspotczynniki rozwinieé¢ (5.4)
oraz (5.15) otrzymujemy ciag kolejnych réwnan

00
(516.1) 1) =0,
0
(5162 165+ £5 =% + &7,

ot
(5.16.3)

lub ogodlnie
(5.17) I=D.

Uklad (5.16) daje mozliwo$¢ kolejnego wyznaczania przyblizen funkecji

0
rozkladu. Z. réwnania (5.16.1) odgadng¢é mozemy latwo funkcje f ze
wzgledu na analogie tego réwnania do réwnania (4.1). Mamy wiec

0
(5.18) f=A(x, t) e~ Bx0E=Dx -

Rozwigzanie to przypomina maxwellowski rozktad predkosci (4.3). Za-
chodzi tu jednak bardzo istotna réznica polegajaca na tym, ze wspodlczyn-
niki A, B, D zaleza obecnie od miejsca i czasu. Rozklad ten mozna by na-
zwac quasimaxwellowskim. Metoda przyblizania nie narzuca zadnego wa-
runku na wspétezynniki A, B, D: sg one dowolnymi funkcjami x oraz t.
Jako «warunek poczatkowy» Enskog i Chapman przyjmujg

m 3/2 m
5.1 = (_ - S -~ = .
(Gild) 4 \2nkT(x,t)) s B gprmg DoAY
0

Przy tak dobranych funkcjach A,B,D pierwsze przyblizenie nf funkecji
rozktadu pokrywa sie z rozkladem maxwellowskim w przypadku jedno-
rodnym i stacjonarnym (p. 4).

Réwnania (5.16.2), (5.16.3) i wszystkie nastepne sg liniowymi réwna-

12

niami wzgledem funkcji f, f, ..., dajacymi sie sprowadzi¢ do liniowych réw-
nan catkowych. Rozwigzujac te rdwnania otrzymuje sie dalsze przyblize-
nia funkeji rozkadu. ’ "

Zajmiemy sie obecnie drugim przyblizeniem funkeji rozkladu danym

0 1 1
przez wyrazenie n f + f. Dla znalezienia funkcji f mamy réwnanie (5.16.2).
1 10 ‘ 1

Przyjmujac f = @ f sprowadzamy zagadnienie do znalezienia funkecji @.
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Rownanie (5.16.2) mozna po przekszta{ceniach zapisa¢ w postaci
1

(5.20) fdffd kwffl(q) +(_z>1 51)=

B 5\ dlogT m \ o
AN x  ON CHEL g BE Yo
f[(Z nk T 2 )C, d x; (nk T\)cl ¢ uw] )

" .
Traktujac @ jako funkcje x,c, t oraz korzystajgc z liniowosci réwnania
(5.20) mozemy poszukiwaé jego rozwigzania w postaci ?)

) — Bijui;.

Xi

(ﬂcz‘)“ 0 (log T)

Wektor A; oraz tensor B sa funkcjami e, Znalezienie rozwigzania
sprowadza sie wiec do wyznaczenia tych wielkosci. W tym celu najdogod-
niej jest uzy¢ rozwinie¢ A; oraz B;; na szeregi wielomianéw Sonina.
W szczegély tych rachunkéw wehodzi¢ nie bedziemy (zwarty ich obraz
podany jest w pracy [1]).

0 1

Znajac f oraz f mozemy wreszcie otrzymac trzecie przyblizenie funk-

2
cji rozktadu, znajdujac f z rownania (5.16.3). Te do$¢ zmudne rachunki
wykonat Burnett (1935).

W $Swietle oméwionej teorii ECB rozpatrzmy obecnie zastosowanie
réwnania Boltzmanna do hydrodynamiki.

Rozpatrzmy najpierw hydrodynamike oparta na pierwszym przyblize-

0 0

niu funkeji rozkladu nf, gdzie f dane jest przez wzory (5.18) i (5.19). Za-
dang hydrodynamike otrzymujemy odrzucajac w szeregach wystepujacych
w réwnaniach przenoszema (5.8) wszystkie nastepne wyrazy po plerwszym

0
oraz wyznaczajac p;; i q, ze wzorow (2.7) i (2.13) w oparciu o funkcje nf
Otrzymamy wtedy

0 0 ) 0
p‘.jzgfcicj'fd3§=knT(5,'j=—3—gC“5[j=p(5fj, qi=gfd3§C2Cif_"—‘—0.

Po podstawieniu do réwnan przenoszenia (5.8) mamy

on ou; 1
at—!—(nu) =0, 7 +u,u,,——F,—Q—P,z,
(5.21) .
T 2
at +u T,—--?Tu,-,,».

' 12y Do tego rozwigzania nalezaloby doda¢ dowolne rozwigzanie réwnania jedno-
rodnego, tj. réwnania, po prawej stronie ktoérego znajduje sie zero, i sprawdzi¢ tzw.
warunek ortogonalno$ci (por. [33], str. 107). Nie wchodzgc w :szczegoly stwierdzimy.
#e warunek fen jest speilniony.
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Jak wida¢ pierwsze dwa réwnania stanowia: rownanie cigglosci i row-
nanie Eulera. Trzecie z tych rownan sprowadza sie latwo do postaci

D/[/n
E(T“): 0.

Okresla wiec ono adiabatyczng przemiane gazu. Reasumujac mozemy po-
wiedzie¢, ze hydrodynamika oparta na pierwszym przyblizeniu funkcji
rozkladu jest hydrodynamiks gazu $cisliwego, lecz nielepkiego i nie prze-
wodzacego ciepla, podlegajacego zatem przemianie adiabatycznej.

Przejdzmy z kolei do hydrodynamiki zbudowanej na drugim przybli-
zeniu funkeji rozkladu

0o 1
f=nf+f
Obliczajgc ze wzordéw (2.13) 1 (2.7) wektor strumienia ciepla i tensor
napie¢ otrzymujemy

m 5 2Kk2T
(5.22) qj-_——n—q].=?fd3£cj0“f=—— 5 4, Al T,

oraz
0 - 11 . 1 A
(5.23) p,=p,+ —Py=m ‘j dyécicif=pdj— kT [Bes, Bix| i/,
gdzie
1 00
|4, Al =~ [dy€ [dy & [doko £, (Ai + Ari—
— Ai— Al) (Ai + Au— Al — Ay,

za$ [By, Byi] jest okreSlone zupelnie analogicznie. Przyjmujac

2k*T

(5.24) A== A Al
oraz

1
(5.25) =1 k T [Bet, Bix|

otrzymujemy zamiast réwnan (5.22) i (5.23)
(5.26) g=—A4T,;,
(5.27) Py =1pd;—2uig.
Podstawiajac te wyrazenia do réwnan przenoszenia (5.8) otrzymujemy

()n _ ()uj 1 2 i
4 (nu,),,—O, 'a’t‘—i—uiuj,i—Fj‘-?P,j +—9‘(,uuz‘.j).h

(5.28) ot
oT 2 i -
_(F—*—uiT'i:_m[(an 2 Ui ) Ui, j (AT,]')I-]“'
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Jak wida¢, hydrodynamika oparta na drugim przyblizeniu funkcji roz-
kladu prowadzi do réwnania cigglosci, rownan Naviera - Stokesa
(ze zmienng lepko$cig) i réwnania zachowania energii przy uwzglednieniu
przewodnictwa cieplnego cieczy.

Przechodzimy wreszcie do trzeciego przyblizenia funkcji rozktadu

0 1 1 2
f=nf+f+_-f.

Z wykonanych przez Burnetta rachunkéw wynikajg nastepujace
zaleznosci pomiedzy wektorem gq; i tensorem p;; z jednej strony, a funk-
cjami n, u;, T — z drugiej:

s 2 2
(5.29) q,-=~—/T,+O u,,T + 0, - TlB(Tu/,j),i-#Zuj,iT,jJ%
o lpsral L Lo “ iy
pp/ Uy ax, 5 T

(5.30) py=po;—2uui;+ Kl%uk,kﬁ:j “

w2 1 T
+ Ky —|— *p,/),f-—uk.iuj.k——2 Ui ke Wik |

u ~°~~ 2 ~~R~a~ PR .
+'K QTTIJ+K4Qpr +K5 TS-T'iT'j—}_KG% Uk Uk,j -

Bezwymiarowe wspélezynniki O@,, 0,, ..., O, oraz k., k,, ..., k; okreslo-
ne sg wzorami przyblizonymi

15 T d
0,= (——— “) 0,=2, 0,=—3, 0,=3,

4\ 2 u aT 8’ i
(5.31)
_3 _}'_du)
By= 2 ( u dT)’
_ 4 (1 _T dp _
K1—3 (2 7 dT)’ K,=2, K;=3, K,=0
(5.32)
_ 3T dp .
K:)— u d ) KG_8

Ze wzorow (5.29) i (5.30) widaé, ze w trzecim etapie przyblizenia po-
jawiajg sie w rownaniach wyrazy okreslajace wzajemny wplyw napieé na
przeplyw ciepta oraz wplyw wyrazéw «cieplnych» na napiecia..
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Przeptyw gazu opisany tymi réwnaniami Burnetta nazywamy
poslizgowym. '

. Pelny uktad réwnan Burnetta otrzymujemy podstawiajac wyra-
zenia (5.29) i (5.30) do réwnan przenoszenia (5.8).

Poprawki we wzorach (5.29) i (5.30), charakterystyczne dla trzeciego
przyblizenia, mogg byé oczywiscie pominiete w przypadku przeplywu ga-
z0w o gestosciach zwyklych (tj. zhliZonych do atmosferycznych) z niezbyt
wielkimi predkosciami. Co sie tyczy wektora strumienia ciepla, to znacze-
nie poprawek burnettowskich nie jest zbyt duze. Poprawki te mianowicie
odnoszg sie wylgcznie do stanu ruchu gazu i znikajg w stanie spoczynku.
Jednakze w stanie ruchu przenoszenie ciepla w gazie odbywa sie w prze-
wazajgcej mierze drogg konwekeji (makroskopowej). Przewodnictwo na-
tomiast nie odgrywa tu wiekszej roli.

Dla zbadania wplywu poprawek burnettowskich na tensor napieé po-
réwnajmy np. trzeci i drugi wyraz ze wzorow (5.30). Wplywu drugiego
wyrazu nie da sie pomina¢, je$li wyrazenie uusx/p nie jest male. Ponie-
waz jednak p jest proporcjonalne do 1/2 pc? za§ u~ gcl, wiec wyrazenie'
roczwazane jest rzedu

—_ Srednia d}'gga ’swobodna
' predkos¢é dzwieku

Wyrazenie to trzeba wiec uwzgledniaé dla opisania ruchu gazu w tych
przypadkach, w ktérych zmiana predkosci na diugosci drogi swobodnej
jest znaczng czedcia predkosei dzwieku. Warunki takie istniejg np. w fali
uderzeniowej. Poza falg uderzeniows rozpatrywane wyrazenie ma zna-
czenie jedynie przy bardzo malych ci$nieniach, rzedu 10—¢ atm. Napiecia
cieplne [wyrazy zawierajace we wzorze (5.30)] w tensorze napieé¢ odgry-
wajg réwniez pewna role. Poréwnujac np. wyraz

R
3 0 T Xy
z wyrazem
—2pui;
mozna obliczy¢, ze przy
vaN 1
"7 sec
oraz
m~  1lstop
o cm?

stosunek obuvaraz()w jest rzedu 0,1%,.
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" Analizujac wielkosci poprawek burnettowskich Tsien, [9], docho-
dzi do wniosku, Ze majg one znaczenie przy duzych wartosciach stosunku
‘M2/Re, gdzie M jest liczbg Macha, Re liczbg Reynoldsa.

Oznaczaloby to, ze w zakresie malych predkoéci mozna zastapi¢ uktad
rownai Burnetta przez uklad Naviera-Stokesa Nawet jed-
nak w tym uproszczonym przypadku obraz ruchu poslizgowego zachowa
w pewnej mierze swoje charakterystyczne wiasnosci ze wzgledu na spe-
eyfliczne warunki brzegowe.

Problem nalezytego sformulowania warunkéw brzegowych w przy-
padku ruchu poslizgowego nie znalazl dotychcezas wlasciwego rozwigzania.
Rzecz zatem zrozumiala, ze i kwestia istnienia rozwigzan réwnan Bur-
netta pozostaje calkowicie otwarta. Kwestia ta stanowi centralne za-
gadnienie aerodynamiki ruchu poslizgowego.

W zakresie ruchu poslizgowego nie mozna dluzej utrzymaé zalozenia
znikania stycznej sktadowej predkosci na powierzchni ciala oplywanego
(stad nazwa: ruch «po$lizgowy»). Jako swojego rodzaju warunek brzego-
wy moze tu stuzy¢ réwnanie

laczace predkosé przy $cianie u z jej gradientem normalnym Jdu/dy wraz
ze stycznym gradientem temperatury 0T/dx (B oznacza tu wspdlczynnik
tarcia gazu o $ciane i zalezy od rodzaju powierzchni Sciany).

Rozwigzania kwestii warunkow brzegowych nalezaloby szukaé¢ raczej
przez ich okre$lenie dla samej funkcji rozkladu. Ten sam punkt widzenia
przyjat w swej pracy, [11], H. Grad, czym zajmiemy sie nieco péz-
niej (p. 7).

Tablica 1 Tablica 2
Tempera- 107w 107 dy 107-2 107-4
tura (°C) dosw. teoret. helu dosw. teoret.
|
—176,3 1275 1269 0 (390) | 390
—31,9 1465 1469 27 741 | 724
16,1 1728 1728 454 1077 1053
51,6 1880 1884 847 9390
1002 2084 2086 ; Badl
200 2461 2461 94,61 2939 2943
250,1 2629 2633 100 (3360) 3360

Teoria ECB daje nie tylko mozliwos¢ ukladania réwnan hydrody-
namicznych. Wzory (5.24) i (5.25) pozwalaja na obliczenie wspodlczynni-
kow kinetycznych: lepkoéei i przewodnictwa. Mozna tez poda¢ podobny
wzor dla wspbtezynnika dyfuzji w przypadku mieszaniny gazéw. Cha p-
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man i Cowling, [1], podajg rozbudowany aparat matematyczny stu-
zgcy do obliczania tych wspoélezynnikéw. Wyniki tych obliczen przepro-
wadzone dla réznych modeli oddzialtywan molekul sg na ogét w bardzo
dobrej zgodnosci z do$wiadczeniem. Przykladowo podamy tu kilka war-
tosci liczbowych (dane zaczerpniete sg z pracy [1], str. 226 oraz 243).

W tablicy 1 podany jest wspélczynnik lepkosci azotu (N,) w réznych
temperaturach. W tablicy 2 podany jest wspodlczynnik przewodnictwa
mieszaniny helu (He) z argonem (A) przy réznych sktadach procentowych
mieszaniny.

6. Zagadnienie nieodwracalno$ci a ré6wnanie Boltzmanna

Mechanika klasyczna opisuje jedynie odwracalne procesy fizyczne. Tak
np. ruch punktu materialnego w polu sit niezaleznych od czasu, zgodny
z prawami Newtona, jest typowym przykladem zjawiska odwracalne-
go. Zjawisko nazywamy odwracalnym, jezeli moze ono przebiegaé¢ réownie
dobrze w obu kierunkach. Wyjasnijmy blizej, o co tu chodzi. Przyousémy,
ze jaki$ uklad materialny A znajdujacy si¢ w chwili t = 0 w pewnym
stanie «0» przeszed! po czasie t do innego stanu np. stanu «1». Wezmy te-
raz pod uwage inny uklad materialny B znajdujgcy sie w stanie roéznig-
cym si¢ od «1» ukladu A jedynie tym, ze kierunki predkosci zostaly zamie-
nione na przeciwne. Jezeli uklad B przejdzie w ciagu czasu t w stan, ktéry
sig rézni od stanu «0» uktadu jedynie kierunkami predkosci, to méwimy,
ze przejscie uktadu A od stanu «0» do stanu «1» jest zjawiskiem odwracal-
nym. Zagadnieniu odwracalno$ci mozna by nadaé nastepujaca postaé ma-
tematyczng. Przypusémy, ze y.(t) (v=1,2,...) sa rozwigzaniami pewnych
réwnan ruchu opisujacych zjawisko. Zjawisko jest odwracalne wéwezas,
gdy réwniez funkcje

7y (1) = D o (—1)

sg rozwigzaniami réwnan ruchu. D oznacza tu symbolicznie operacje zmia-
ny znaku wszystkich wystepujgcych predkosci.

Odwracalno$¢ zjawisk opisywanych przez mechanike klasyczng wyni-
ka z niezmienniczoéci réwnan ruchu wzgledem zmiany znaku czasu. Istot-
nie, réwnanie dynamiczne Lagrange’a

mozemy takze zapisaé w postaci 13)
OL_ d 0L _,
dqi d(—1) 0(-@1) )

13) Nalezy tu podkres$li¢, ze cale rozumowanie przytoczone stuszne jest w przy-
padku funkcji Lagrange’a L niezaleznej explicite od czasu. Rozumowanie nasze
odnosi sie wiec jedynie do ukladu izolowanego, zamknigtego i skonczonego.
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Zupelnie podobnie mozemy sie przekona¢, ze procesy opisywane przez
twierdzenie Liouville’ a (1.12) sg procesami odwracalnymi. Istotnie,
réwnanie (1. 12) mozemy tez zapisa¢ w postaci

(=pa) OP
(‘—t 5 Z [FC“() pat)_l— Mea oxat] =¥

Inaczej méwiac, jezeli funkcja P(xY, p¥,t) jest rozwigzaniem réowna-

nia Liouville a, to takze funkcja
PlzDP(xN, pY,—t)=P xV,—p",—1)
jest rozwigzaniem réwnania Liouville’ a.

Ruch gazu nielepkiego opisany rownaniami Eulera (5.12) jest row-
niez odwracalny. Natomiast ruch gazu lepkiego opisany rownaniami (5.28)
nie jest juz zjawiskiem odwracalnym ).

Roéwnanie Boltzmanna, jak sie zaraz przekonamy, opisuje proce-
sy nieodwracalne. Fakt ten wiaze sig $ciSle z zatozeniem chaosu moleku-
larnego koniecznym do wyprowadzenia réwnania Boltzmanna. Nie-
odwracalno$é zjawisk opisanych réwnaniem Boltzmanna sprowadza
sie do tego, ze dowolny stan gazu wywolany np. jakim$ zaburzeniem zbli-
73 sie w miare uplywu czasu do stanu réwnowagi opisanego przez funkcje
rozkladu maxwellowskiego.

Fakt nieodwracalnosci zjawisk zwigzanych z réwnaniem Boltz-
manna mozna wykazaé bardzo prosto bez rozwigzywania rownania
w przypadku rozkladu jednorodnego bez dziaiania sit zewnetrznych, do
ktérego to przypadku ograniczymy sie. W tym celu wyprowadzamy tzw.
funkcje Boltzmanna

(6.1) H=nlogf—[d,&flog].

Funkcja H jest wiec jedynie funkcjg czasu, a zarazem funkcjonatem f.
Obliczmy pochodng 0 H,0t. Memy
0H of
(6.2) Sr=Jdsa+mngg.
Te pochodng mozna przeksztalci¢ 15) do postaci

aH Th

lfd £fd, 6 [dko fi—Ff)n £

W tym wzorze wystepuja dwa wyrazy, ktére majg zawsze przeciwne
znaki

fy
f’ 7

log oraz ffi—ff,.

14y Zob. np. [35].
15) Zob. praca [11], str. 343 lub [1], rozdzial 3 (zakonczenie).



Stad wnosimy wiec, ze zawsze
0H __

(6.3) 3t =

Zatem funkcja H Boltzmanna stale maleje. Mozna jednak latwo
wykaza¢, ze wielko$¢ H(t) jest ograniczona z dolu (czego tu nie bedziemy
dowodzi¢). Zatem funkcja H maleje do pewnego minimum. Tym minimum
jest oczywiscie rozklad maxwellowski (4.5). Powyzisze twierdzenie nosi
nazwe «twierdzenia H» Boltzmanna i odgrywa w teorii kinetycznej
desé duzg role. Jest ono kinetycznym wyrazem drugiej zasady termodyna-
miki. Istotnie, jak mozna wykazaé, funkcja H wiaze sie z entropig za-
leznoscig
(6.4) S=-—koH,

gdzie S oznacza entropie jednostki masy, zas k stalg Boltzmanna.
Wzér ten moze stuzy¢ za uogélnienie pojecia entropii na przypadek gazu
nie znajdujgcego sie w réwnowadze. Twierdzenie H Boltzmann a mo-
ze byé uogélnione réwniez na przypadek niejednorodnych stanéw gazu.

WykazaliSmy nieodwracalno$é proceséw zwiagzanych z rdéwnaniem
Boltzmanna bez jego rozwigzywania. Nadmienimy jednak, ze nie
brak bylo préb rozwigzywania réwnania Boltzmanna w celu wy-
raznego wyznaczenia zmiennoéci funkeji rozkladu f w czasie. Takie roz-
wigzanie okresliloby catkowicie proces przejécia gazu do stanu réwnowagi.
Wspomniane préby ograniczaly sie zazwyczaj do przypadku jednorodnego
rozkladu opisanego funkcja f «izotropowa» wzgledem § (tj. zalezna je-
dynie od modutu §|).Najpowazniejszg z tych préb byta praca Carle-
manna (1933), ktéory pod powyzszymi zalozeniami dowidd! istnienia
rozwigzania réwnania Boltzmanna przy danych warunkach poczat-
kowych i wykazal przechodzenie tego rozwigzania w rozwigzanie max-
wellowskie. Byly oprécz tej pracy i inne préby dowodzenia istnienia roz-
wigzania réwnania Boltzmanmna, [13]. Opieraly sie one jednak zaw-
sze na zatozeniu jednorodnosci i izotropowosci.

Na znacznie ogélniejszych zatozeniach oparta jest praca E. Wilda,
[14]. Wild sprowadza rozniczkowo-calkowe réwnanie Boltzmanna
do postaci réwnania catkowego dajacego sie rozwiazywaé, jesli znana jest
liczba zderzeh

(6.5) v(x,80=[d, & [dikwf(x,&,1).

W przypadku zalozenia maxwellowskiego oddzialywania molekut wiel-
kos¢ ta staje sie proporcjonalna do gestosci gazu. Wild podaje metode
kolejnych przyblizen, stuzaca do rozwiazywania przeksztalconego przez
siebie réwnania Boltzmanmna. .

Ciag kolejnych przyblizen jest zbiezny, jesli zalozy¢, ze rozwigzanie
w ogole istnieje. Operujgc molekulami maxwellowskimi W i 1 d bada,

0.

/1
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przy jakich zalozeniach dowolny jednorodny rozklad przechodzi w rozkiad
maxwellowski. Praca Wilda nosi jednak charakter formalistyczny,
gdyz brak w niej wynikow fizycznych. )
Ostatnio co prawda M. Klein, [15], zastosowal te metode do zbada-
nia, jak zachowuje sie¢ jako funkcja czasu wyrazenie & & (i#3j) w jedno-
rodnym stanie gazu.
Okazalo sie, ze wyrazenie to maleje proporcjonalnie do funkeji

e—fr

’

gdzie 7 jest to tzw. czas relaksacji. Wynik ten byl jednak znany juz po-
przednio Maxwellowi i wyprowadzony byl na prostszej drodze.

Fakt nieodwracalnoéci zjawisk zwigzanych z réwnaniem Boltzm an-
na moze sie wydawaé paradoksalny. Rownanie to wynika bowiem z «od-
wracalnego» twierdzenia Liouville’a opartego na odwracalnych pra-
wach mechaniki. Cze$ciowym wyttumaczeniem tego faktu moze by¢ to, ze
do wyprowadzenia réwnania Boltzmanna z twierdzenia Liou-
ville a potrzebne jest dodatkowe zalozenie chaosu molekularnego. Nie-
odwracalnosé kinetycznej teorii oraz jej stosunek do mechaniki statystycz-
nej jest jeszcze stale przedmiotem zywej polemiki w literaturze naukowej
(por. prace [16]). Zagadnienie to mozna wiec nadal uwazac za otwarte. Nie-
ktére aspekty tej sprawy oméwimy jeszcze pokrotce w p. 9.

Nieodwracalno$é proceséw opisanych réwnaniem Boltzmanna
stala sie szczeg6lnie aktualng sprawa w ostatnich czasach w zwiazku z roz-
wojem termodynamiki proceséw nieodwracalnych. Miedzy innymi wyko-
nane zostaly proby oparcia tej nowej teorii fenomenologicznej na gruncie
kinetycznej teorii gazow 19).

7. Metoda trzynastu momentow

Klasyczna teoria ECB daje potwierdzenie rownan N a vier a-
Stokesa, proby wyjécia poza te rownania oraz bardzo dobry schemat
rachunkowy obliczenia wspélczynnikéw kinetycznych.

Pomimo tych niewatpliwych sukceséw rozwigzanie ECB jest dalekie
od ogblnosci i obarczone szeregiem brakow. Najpowazniejszym z tych bra-
kow teorii ECB jest ograniczenie rozwigzania réwnania Boltzmanna
do tzw. rozwigzan normalnych, tj. takich, w ktérych funkecja rozkladu f
zalezy od swych argumentéw jedynie za posrednictwem pieciu funkeji
hydrodynamicznych n(x,t), u(x,t), T (x, t) oraz ich gradientow. Jak juz
stwierdziliémy (w p. 1), opis ruchu gazéw, ktérego dostarcza nam teoria’
kinetyczna (a wiec rownanie Boltzmann a), jest znacznie bogatszy od
opisu hydrodynamiki klasycznej. Tak wiec ograniczenie sig do funkeji roz-

18) Por. [36].
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ktadu danej jedynie poprzez funkcje hydrodynamiczne zacie$nia znacznie
teorie i, by¢ moze, pozbawia nas mozliwo$ci opisania catego szeregu efek-
tow fizycznych o podlozu molekularnym.

W catym dosé¢ skomplikowanym formalizmie ECB brak jest bezpo$red-
niodci i prostoty, co moze nasuwacé podejrzenie, ze np. trzecie burnettow-
skie przyblizenie rozwigzania nie do$¢ dokladnie przedstawia rzeczywisty
przebieg zjawiska.

Bardzo powaznym brakiem teorii ECB wlasciwie nieprzezwyciezo-
nym dotychczas przez zadng inna teorie jest nieznajomos$é warunkéw brze-
gowych. Jak juz wspominaliSmy, warunki te nie zostaly nawet sformulo-
wane. Jednak wtlasnie teoria kinetyczna powinna przynie$¢é wyjasnienie
tych spraw. Zagadnienie to komplikuje sie jeszcze o tyle, ze jak wykazaly
wnikliwe rozwazania Rocarda, [8], molekuly gazu znajdujgce sie
w poblizu powierzchni ciala stalego tworza wraz z nim — wskutek od-
dzialywan wzajemnych — pewna calos¢, gaz + cialo stale, niezwykle trud-
ng do ujecia matematycznego.

Ciekawg proba przezwyciezenia przynajmniej czeéci omdéwionych tu
brakow teorii ECB jest praca H. Grada, [11]. Gldéwng koncepcjg metody
Grada jest rozwiniecie funkeji na szereg tréjwymiarowych wielomia-
now Hermite’a, [10]. Postugujac sie wielko$ciami bezwymiarowymi

¢ \32
(7.1) V= . ) kT)
/KT g(x,v,1) g(m

mozemy dla bezwymiarowej funkecji rozktadu g napisaé rozwiniecie

oo

e 1 ,
e D) oy A R (),

n=0

i 1
7.2 =
(2l 97 @2n
gdzie K{"(v) oznacza tréojwymiarowy wielomian Hermite a n-tego
stopnia. Jest to zarazem symetryczny tensor n-tego rzedu, ktéry w przy-
padku jednowymiarowym sprowadza sie do zwyklego wielomianu H e r-
mite’ a. Podajemy ponizej kilka pierwszych wielomianéw Hermite’a
K" (v):

KO =1
KW =,
(7.3) KS) = 0; V; — 0/,
K&, = 00y s — (0 00+ 0 O + 08 81y),
K, =i v 0r 01 — (0 V) Opr + i U 81+ v V1 i+ v) Vr b1y +-

b v v dir + VeV 8if) + (84 Orr + Sin is + 811 Oz
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Wspétczynniki rozwiniecia ze wzoru (7.2) a!” (x,t) sa funkcjami miej-
sca i czasu. Sg to takze tensory n-tego rzedu, a mnozenie symboliczne
al? K" nalezy uwaza¢ jako m-krotng sume po wszystkich wskaZnikach
tensorowych. Ze wzgledu na ortonormalno$¢ ukladu wielomianéw K
otrzymujemy nastepujacy wzor dla wspoiczynnikéw a;:

(7.4) al) = f gK"d,v.

Wsp6lczynniki te sg Sci$le zwigzane z momentami funkcji f okreslo-
nymi przez wzory

(7.5) QY = [d,E& .7,

Momenty te sa wielko$ciami o okreslonym znaczeniu fizycznym. Mia-
nowicie

1
0) — 1] — 7=
Q() n, ;:Q(,-’-—u,f

Przy obliczaniu dalszych momentéw wygodniej jest zmieni¢ definicje
(7.4) w nastepujacy sposob:

QY = Jdikcici...f.

Wtedy
m QY = pij,

zwezenie zas momentu trzeciego rzedu

Qg)k :fd3£C[CjCkf
daje
m m [ 2
=" Q=" Jdicas,

1;. wektor strumienia ciepta.

Z rozwiniecia (7.2) widaé od razu, ze zalezno$¢ funkeji rozkladu f nie
moze sie ograniczaé do samych tylko pieciu funkeji hydrodynamicznych
o, u, T stanowiacych zaledwie pierwsze jej momenty. Funkcja f zalezy
od nieskonczenie wielu swych momentéw, ktére sg funkcjami miejsca
i czasu. Dla tych nieskoneczenie wielu momentéw [lub, co na jedno wycho-
dzi, dla nieskoriczenie wielu wspoélczynnikéw al® rozwiniecia (7.2)] nalezy
poda¢ uktad nieskoniczenie wielu réwnan rézniczkowych. Ten uklad réw-
nan uzyskuje sie przez podstawienie rozwiniecia (7.1) do réwnania
Boltzmanna. Po rozlozeniu otrzymanych w ten sposéb wyrazen na
szeregi wielomiané6w Hermite’a przyrownujemy wspodlezynniki przy
odpowiednich wielomianach do siebie. Nie wchodzac w ogdlng tecrie roz-
winiecia (7.2) przedstawiong w pracy [11] zatrzymamy sie nieco nad szcze-
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g6lnym jej przypadkiem, polegajgcym na zachowaniu w rozwinieciu trzech
pierwszych wyrazow

(7.6) =50 (1 af®), KO)

1_/k l_]k)
W rozwinieciu tym wystepuje 20 momentéw: p, u;, pij, @ix. Dalsze upro-
szczenie polegajace na zwezeniu ostatniego wielomianu

K® = K@,

ij

1
— al? K@ +
g 4 K

prowadzi réwniez do zwezenia trzeciego wspélezynnika we wzorze (7.6).
Przy uwzglednieniu wzorow (7.3) otrzymujemy wiec ostatecznie rozklad

: 0 . o -
: D, qiCi c”
— {0 et B et o
(D) f=1 lH 2pRT ““" pRT (1 5RT>J‘
Jak widaé¢ z tego wzoru, funkecja f zalezy od trzynastu wielkosei
o, ui, T, Py, qi,
gdzie

0
Py =Py —0yP

daje pie¢ niezaleznych wielkoSci, za$ cisnienie p==1/3p:; zwigzane jest
z temperaturg T i gestoscia p za posrednictwem réwnania (2.12). Stad po-
chodzi nazwa «metoda trzynastu momentéwn».

Metoda ta, jak widaé¢, stanowi znacznie ogblniejszy schemat rachunko-
wy od klasycznej metody ECB, ktérag mozna by nazwaé metodg pieciu mo-
mentéw (o, ui, T).

Dla trzynastu wymienionych wielko$ci — przez podstawienie do réow-
nania Boltzmanna — otrzymuje sie nastepujacy uklad réwnan réz-
niczkowych:

()Q . . Dul

5t_+(9 u;),i =20, *DT‘*‘ pU/—O

D (3 kT 1o

(78) ‘ Dt(Z m) —é'(pij ui.i+ q,‘,i)zo,

apu 4 i T . I
+(u rp +€qt'_j +2p,u, + puz,j*’"ﬁ 1 2P, =Y,

0q 7 kT,

dt —f—(uer)r“{"?(Jru[.r Eake 3 Qrurz‘,_ 5 ~qiUrrt+—— p,r,+

7 k o i)ir 5 k

4
LAy g R Sy ot BB e
+ m plr T,r 0 prs,s—f— 2 p T1+m Bl Qq, 0'

2 m

oraz dodatkowo p/o =kT/m.
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We wzorach tych E(® jest wielkoScig zalezng od zderzen; dla sil mie-
dzymolekularnych proporcjonalnych do 1/rs

§—d

B(l-z) =g (s) T25—2 )

za$ ¢(s) jest zalezne od s i innych statych molekularnych.

Najbardziej charakterystyczng cechg tego schematu jest wystepowanie
w rownaniach (7.8) wielko$ci p; oraz q; zupelnie niezaleznie od pozosta-
tych funkcji g, u;, T. Wymaga to jednoczesnie okreslenia dodatkowych
warunk6éw poczatkowych na napiecia i strumien ciepla, co znacznie zwiek-
sza 0g6lnos¢ rozwiazan w poréwnaniu z teorig ECB.

Grad wykazuje w dalszym ciggu, ze dla niektérych wolno-zmien-
nych przeplywoéw ogélny schemat (7.8) sprowadza sie do réwnan Navie-
ra - Stokesa. Przykladami takiego ruchu moga byé przedstawione
w pracy [11] nastepujace przypadki szczegblne:

(1) przeplyw ze statymi funkcjami g, u, T oraz jednorodnymi py, q;,

(2) stacjonarny jednowymiarowy przeplyw ciepla w gazie nierucho-
mym,

(3) plaski stacjonarny przeptyw Couette a (ur#0, uy=u,=0,
du/0x=0u,/0z=0, Cu,/0y=+0, q=0.

Wyrazenia otrzymane dla wspblezynnikéw kinetycznych w tej teorii
zgadzajg sie z wyrazeniami otrzymanymi z teorii ECB, sg wiec takze zgod-
ne z doSwiadczeniem.

Interesujace stanowisko zajmuje Grad w sprawie warunkéw brze-
gowych. Ustalajac pewien warunek brzegowy dla funkcji rozkladu otrzy-
muje sie nieskonczenie wiele warunkéw brzegowych dla nieskonczenie
wielu momentéw funkeji f.

Program zapowiedziany w pracy [11] przez Grada zawiera zastoso-
wanie metody 13 momentéw dla szczegélowego zbadania nastepujgcych
zagadnien:

(1) przeplywu Poiseuille a,

(2) przeptywu Couettea,

(3) dyspersji ptaskich fal dzwiekowych,

(4) stacjonarnej ptaskiej fali uderzeniowej.

Z tego programu zostalo juz zrealizowane zagadnienie (4) (w pracy
"12]), ktére omdéwione zostanie w nastepnym punkcie.

Pomimo powaznych trudnosci rachunkowych teorie rozwiniecia na sze-
reg wielomianéow Hermite’ a mozna uwazaé za otwarcie przed teorig
kinetyczng gazéw nowych horyzontow.
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8. Rownanie Boltzmanna a fala uderzeniowa

Badanie struktury uderzeniowej zapoczatkowane jeszeze w XIX wie-
ku przez Rankine’a?) i Rayleigha na gruncie hydrodynamiki
oraz przez Beckeral®) na gruncie rownan Naviera - Stokesa
doprowadzity do wniosku, ze grubosé¢ fali uderzeniowej jest rzedu kilku
drég swobodnych!?).

Prowadzi to do wniosku, ze hydrodynamika klasyczna nie jest w sta-
nie dostarczyé dokladnego opisu zjawisk zwigzanych z istnieniem fali
uderzeniowej.

Zajmiemy sie tu krotko zagadnieniem ujecia kwestii fali uderzeniowe;]
z punktu widzenia rozszerzonej hydrodynamiki. Poprzestaniemy jedynie
na przedstawieniu samych koncepcji nie wchodzac w szczegdly rachun-
kowe. Omoéwienie wynikow poruszonych tu teorii bedzie tematem od-
dzielnego referatu 29).

Istnieja zasadniczo dwie mozliwosci rozszerzenia zagadnienia fali ude-
rzeniowej poza hydrodynamike Naviera - Stokesa. Jedna z nich
polega na zastapieniu rownan Naviera - Stokesa przez inny, lepiej
dostosowany do zagadnienia uklad réwnan hydrodynamicznych, oparty
o jedna z oméwionych uprzednio teorii rozwiniecia funkeji rozkiadu
w szereg. Taka metode ujecia mozna by nazwaé quasiklasyczna. Druga
mozliwosécia badania fali uderzeniowej jest bezposrednie poszukiwanie
funkeji rozkladu, ktéra by opisywala zjawisko. Te metode mozna by na-
zwaé¢ molekularng.

Quasiklasyczne ujecie zjawiska fali uderzeniowej stalo sie tematem
kilku prac, z ktérych oméwimy tu dwie: prace Zollera, [17], oraz pra-
ce Grada, [12].

Metoda Zollera opiera sie na rozszerzeniu teorii Enskoga -
Chapmana  dokonanym przez Burnetta. Zoller rozwija
funkcje rozktadu f w szereg wielomianéw Sonina i ustalaza Bur-
nettem rdéwnania przenoszenia wigzace gestos¢ p, temperature T pred-
ko$ci oraz dwie dodatkowe wielko$ci By; i B, odpowiadajgce zaburzeniu
stanu réwnowagi (zwigzane $cisle z istnieniem napiec i przeptywu ciepta).
W przypadku ptaskiej fali uderzeniowej wszystkie te funkecje zaleza od
jednej tylko zmiennej x. Uklad réwnan przenoszenia sprowadza sie wiec
do ukladu (nieliniowego) réwnan rézniczkowych zwyczajnych. Dla tegoe

17y Por. [37].

18) Por. [38].

19) Dokladne omodwienie tego zagadnienia na poziomie wspolczesnym z uwzgled-
nieniem wynikéw otrzymanych w Zwigzku Radzieckim znalezé mozna w cytowanej
ksigzee L. Lojcjanskiego [31], str. 510.

20y Por. [38].
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ukladu postawione jest nastepujace zagadnienie brzegowe: znaleZé takie
rozwigzanie, przy ktérym

(1) dla x=-—co jest p=¢,, T=T,, u=u,, Bj;=DByp,=0 (zdala
od fali przeptyw jest bowiem niezaburzony),

(2) dla x=+4 o0 jest p=90,, T=T4, u=u,, By=DB,;=0.

To zagadnienie brzegowe rozwigzane jest nastepnie metodami nume-
rycznymi. Zoller ograniczyl sie w nowej pracy wylacznie do maxwel-
lowskiego modelu oddzialywania molekut.

O ile praca Zollera oparta jest na schemacie ECB, o tyle praca
Grada, [12], opiera sie na ogblniejszej metodzie trzynastu momentow.
Rieg rozumowania jest tu bardzo prosty. Ogélne réwnanie (7.8) hydrody-
namiki 13 momentéw pisze sie w przypadku jednowymiarowego stacjo-
narnego przeplywu. Sprowadzajg sie one do ukiadu 5 réwnan rézniczko-
wych zwyczajnych z piecioma niewiadomymi funkcjami g, u, T, Prv, Q«.

Ten nieliniowy uklad réownan jest nastepnie catkowany numerycznie.

Molekularne ujecie zjawiska fali uderzeniowej znalazlo swe odbicie
w jednej tylko pracy Motta - Smitha, [18]. Zasadniczym zalozeniem
tej pracy jest przyjecie funkeji rozkladu dla fali uderzeniowej w postaci
superpozycji dwoch rozkladéw maxwellowskich o statych parametrach T
oraz u, natomiast o zmiennych gestosciach. Fala uderzeniowa jest wiec
rozpatrywana z punktu widzenia tej teorii jako wynik wzajemnego od-
dzialywania (jak gdyby «reakcji chemicznej») dwdch gazdéw: poddzwieko-
wego i naddzwiekowego. Przyjeta za punkt wyjscia funkcja rozkladu ma
postaé

mE—iug)?

2T,

8.1 i e
(8.1) T—f“Jf_fﬂ-"n“(x)(znkTa) & + m(§—iug)

+ ng (x) (‘2"7:;2—“)29 s I
gdzie i oznacza jednostkowy wektor w kierunku osi x. W tym wzorze wy-
stepuja tylko dwie niewiadome funkcje: mn. (x) oraz ng (x). Wielkosci
Te, Ts, ue«, ug sg natomiast przyjete za stale. Aby calkowicie okreslié¢
funkcje f z réwnania (8.1), napiszemy oparte na réwnaniu B o 1 t z-
manna réwnanie przenoszenia dowolnej wielkosci molekularnej @ (8):

0

(8.2) %fdgwf 1 -5;<fd3£®fa§x e fdgf@fﬂfx)zlaﬁma;

w réwnaniu tym

Ia{),:jd3fj d3§1J do ko (D — D) fufpr
oraz

Tpe =] dy & | dy &, | dk o2 (&' — D) g far



Przyjmujac kolejno @ (§) =1, &, oraz E (E oznacza tu energie moleku~
ly) otrzymujemy po scalkowaniu uklad trzech réwnan algebraicznych dla
dwoéch niewiadomych funkeji ne(x), ng(x) oraz czterech statych T, Tg,
Ue, Ug. Z faktu, ze rownania te musza by¢ speinione dla kazdego x, wno-
simy, ze muszg one byé¢ rownowazne jednemu réwnaniu. Prowadzi to do
ustalenia zwigzku pomiedzy stanem gazu w przeptywie poddzwiekowym
i naddzwiekowym. Zwiazki te stanowig analogie do réwnan Ranki-
ne’a-Hugoniota znanych z dynamiki gazéw doskonaltych. Dla wy-
znaczenia gestosci ng(x), ng(x) mamy zatem jedno réwnanie algebraicz-
ne. Drugie réwnanie lgczgce te wielkosei moze by¢ otrzymane z réwna-
nia (8.2) przez przyjecie dla @ (§) dowolnej funkeji nie bedgcej niezmien-
nikiem zderzen. Wykonane zostaly obliczenia dla @ =§&. oraz dla
©=¢§. Wyniki tych obliczer dajg niewielkie réznice. Wigze sie to z fak-
tem, ze funkcja (8.1) nie stanowi dokladnego rozwigzania réwnania
Boltzmanna. Rdznice wynikow otrzymanych przy przyjmowaniu
dowolnych funkcji @ moga by¢ miarg dokladnosci przyblizenia (8.1). Dla
® = ¢} otrzymuje sie dla gestosci wyrazenia typu

S Ny ny
te T T etst Mg =T B

(gdzie | jest $rednig droga swobodng), znikajace odpowiednio dla
x—> + co oraz dla x —— oo,

O ile quasiklasyczne ujecie teorii fali uderzeniowej, oparte o zmody-
fikowanie hydrodynamiki, wiaze sie zawsze z zalozeniem niewielkich od-
stepstw od stanu réwnowagi, o tyle metoda Motta - Smitha wolna
iest od tego zatozenia. Tak wiec dwie pierwsze metody mogg by¢ uzyte je-
dynie do obliczania stabych fal uderzeniowych. Metoda Motta - Smi-
tha za$ moze sie rowniez nadawa¢ do badania fal silnych.

Niezaleznie od wynikéw teorii Motta - Smitha w dziedzinie fal
uderzeniowych teoria ta stanowi odrebny i ciekawy sposéb podejscia do
réwnania Boltzmanna. Mozna przypuszczaé, ze otworzy ona nowe
mozliwosei dla szeregu réznych obliczen teorii kinetycznej.

9. Granice stosowalnoéci teorii kinetycznej oraz préby ich rozszerzenia

Zarys teorii kinetycznej przedstawiony w poprzednich rozdziatach
w zwigzku z rownaniem Boltzmanna jest oczywiScie ograniczony
w swej stosowalno$ci. Gl6wnym brakiem réwnania Boltzmanna jest
nieuwzglednienie wzajemnego przyciggania molekut dzialajacego na mo-
lekuly poza chwilami ich zderzen. To uproszczenie ogranicza teorig opar-
ta3 o rOwnanie Boltzmanna dogazéw doskonatych, speiniajgeych
réwnanie stanu postaci (1.4) p/e = RT.
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Jak wiadomo, gazy rzeczywiste nie speiniaja dokladnie tego réwnania.
Podaje sie w zwigzku z tym inne, poprawione réwnania stanu jak np.
réwnanie Van der Waalsa

(9.1) (p+ fi;z)(v—b):RT,

w ktorym wv=1/p jest objetoScia wilasciwa, lub ogolniejsze réwnanie
Ursell-Meyera

P, _eB_ 20°B
(9.2) Rl = S

Réwnanie Boltzmanna nie moze wiec opisywac ruchu gazéw ge-
stych. OczywisScie tym bardziej bedzie ono nieprzydatne do badan ru-
choéw cieczy. Wspélezynniki kinetyczne lepkos$ci i przewodnictwa cieplne-
go, obliczone na podstawie réwnania Boltzmanna, uwzgledniajg za-
leznos$¢ pochodzacag — jak o tym wspominaliSmy — z wymiany pedu
i energii wewnetrznej molekul gazu. Jednakze w przypadku gazow zge-
szczonych lub w przypadku cieczy nalezy oczekiwaé wplywu sit miedzy-
molekularnych na te wepdtezynniki. Jest dobrze znanym faktem, ze wspét-
czynniki kinetyczne cieczy maja na ogdél wartosci wielokrotnie wieksze
w poréwnaniu ze wspélczynnikami kinetycznymi gazéw. Faktu tego nie
da sie oczywiscie wyjasnié na gruncie rownania Boltzmanna. Obok
nieuwzglednienia przyciaggania molekul réwnanie Boltzmann a
oparte jest bowiem na drugim zatozeniu upraszczajacym: na hipotezie zde-
rzen podwdéjnych.

Niewyjasniona kwestia nieodwracalnosci zjawisk ujetych réwnaniem
Eoltzmanna, o ktérej méwiliSmy w p. 6, nasuwa koniecznosé zana-
lizowania zwigzku tego réwnania z teorig ogélniejsza: mechaniky staty-
styczng.

Wreszcie odkrycie zjawiska nadcieklosci helu II, dajgcego sie wyttuma-
czy¢ przyjeciem kwantowej struktury réwnan hydrodynamiki, wymaga
szczegblowego uporzadkowania podstawowych zalozen hydrodynamiki, co
wigze sig z koniecznoécig poszukiwania mozliwie najogélniejszych kon-
cepcji.

Omoéwione tu sprawy s3 przyczyna powstania nowych teorii uogdél-
niajacych réwnanie Boltzmanna i rewidujgcych jego stosunek do
mechaniki statystycznej. '

W 1946 roku ogloszone zostaly niezaleznie od siebie trzy nowe teorie
kinetyczne oparte na twierdzeniu Liouville’ a. Sa to teorie:

(1) Bogolubowa-Gurowa, [19]-[21] i [23],

(2) Borna-Greena, [2]i[24],

3) Kirkwooda, [27] - [30].
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Aby zrozumie¢ podstawowe zalozenia tych trzech teorii, wroémy do
wprowadzonej w p. 1 gestosci prawdopodobieristwa

PA/(X P 7t)

rozkladu N réznych molekul o polozeniach x" i pedach p*. Przez czeScio-
we catkowanie tej funkeji mozna otrzymaé gestosci prawdopodobienstwa
rozktadu okreslonych pedéw i polozenn dowolnych podzespoléw (np. pod-
zespotu h) z zespolu N réznych molekul. Otrzymamy w ten sposéb nowe
funkcje typu

(9.3) Pp= j da(N—n) X+ dg(N—n) P * Px.

Jezeli nie chcemy odrézniaé poszczegolnych molekul, to mozemy wpro-
wadzié¢ funkecje rozkladu dowolnych rzedow. Tak np. dla ukiadu h mo-
lekut funkcja rozktadu, ktérg oznaczaé bedziemy przez fu(x",p” t), wyrazi

sie wzorem
]

\ N! ,
(94) fh (xh7 ph’ t) - (N7;45)| Ph (xh; Pi ’ t)

O ile wiec P, daje gesto$¢ prawdopodobienstwa rozkladu pedoéw i po-
lozenn uktadu h réznych molekul, o tyle f, daje gesto$¢ prawdopodobien-
stwa rozktadu pedéw i potozen h jakichkolwiek molekul z podzespolu h
(tj. daje gestosé prawdopodobienstwa tego, ze jedna z dowolnych molekul
ma ped i polozenie x', p!, druga dowolna molekuta ma polozenie i ped
x2 -p? itd). Oczywiscie
(9.5) fi(x,p,t)= NP, (x',p, t) = N.f ds(n—1)xdan—1yPPx,

(9.6) fv=N!Py.

Ze wzoru (9.6) widzimy natychmiast, ze funkeja fy speinia takze twier-
dzenie Liouville’a (1.12). Centralnym zagadnieniem uogélnionej
teorii kinetycznej jest znalezienie réwnan wiazacych z soba funkcje roz-
ktadu réznych stopni.

W teorii Borna- Greena uzyskuje sie to z bezposrednich roz-
wazan dynamicznych. W my#$l podstawowego zaltozenia tej teorii sita dzia-
lajaca na grupe, nalezgca do podzespotu h, réwna jest iloczynowi masy
przez przyépieszenie molekuly &rednie dla podzespolu h. To dos¢ do-
wolne zreszta zalozenie modelowe prowadzi do zwigzku pomiedzy funkeja
fre1 a funkcjami fi, fa, ..., fr- Szczegdlnym przypadkiem takiej zaleznoScl
jest twierdzenie Liouville a dla funkcji fy. Kinetyczng funkcje roz-
ktadu identyfikuje sie z funkcja f, podana wzorem (9.5). Rownanie dla
okreslenia tej funkeji ma postaé

(97) O f1 ‘I" § () a f1‘ F a fl === [ d% x(g) f dg 5(2) OOX({)I) g{if(zﬂ ’

ox( ™" m g&m
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gdzie @ oznacza potencjal sit miedzymolekularnych, zas f,(x™M, x®, &,
&2, t) jest funkcja rozktadu par molekul. Réwnanie Boltzmanna
otrzymuje sie z rdwnania (9.7) przy nastepujacych zatozeniach:

(1) podwéjnych zderzen,

(2) przy |rs|—>00, fa= fu)fe oraz fa=fufe-

Drugie z tych zalozen nie jest wlasciwie zbyt jasne. Ma ono zastgpié
zatozenie chaosu molekul.

Teoria Borna-Greena uzyta byla do obliczenia wspdiczynnikéw
kinetycznych cieczy, do otrzymania réwnan ruchu cieczy uwzgledniajg-
¢ych oddzialtywanie molekut oraz do obliczen dotyczacych nadcieklosci.

Teoria Bogolubowa-Gurowa jestzasadniczo bardzo zblizona
do teorii Borna - Greena. W teorii tej dla ustalenia zalezno$ci po-
miedzy funkcjami rozkladu dowolnych rzedé6w pominiete sa jednak mode-
lowe rozwazania nad dynamikg molekuly. Zamiast tego wychodzi sie bez-
posrednio z twierdzenia Liouville’a, co stanowi pewniejszg podsta-
we teorii. Dla funkecji rozkladu rzedu h wprowadza sie rozwiniecie na
szereg

. 1 1 1 2
fa="Fn+ ?fh + ;gfh s
wzgledem parametru 1/v proporcjonalnego do gesto$ci gazu. To ujecie za-
pewnia teorii Bogolubowa-Gurowa przewage nad teoriag Bor-
na-Greena, gdyz pozwala na fizykalne oszacowanie btedéw po-
wstatych przy obcinaniu szeregéw.

Teoria ta byla stosowana do obliczen rozkladu energii w gazach przy
istnieniu reakeji chemicznych, [22], oraz do teorii nadcieklo$ei, [21]. G u-
row podal zastosowanie teorii do kwantowania réwnan hydrodynamiki,
[23]. Teoria ta daje réwniez poprawke do réwnania Boltzmanna
uwzgledniajacg taki model oddziatywania molekul, ktéry prowadzi jedno-
cze$nie do zastgpienia rownania stanu gazéw doskonatych przez réwnanie
(9.2), [19].

Nieco inny punkt widzenia przyjal w swych rozwazaniach K i r k-
w 0 0 d. Analizujgc proces pomiaru wielkoéci fizycznych na ukladzie
ztozonym z wielkiej ilo$ci molekut dochodzi on do wniosku, Ze mierzone
wielko$ci makroskopowe sa wynikiem wprowadzenia $redniej nie tylko
dla zespotu moleku?, lecz takze wprowadzenia $redniej w okresie czasu,
co jest zwigzane z bezwladnoscia kazdego makroskopowego przyrzadu po-
miarowego. Prowadzi to bezpos$rednio do wniosku, ze funkcja f, podana
wzorem (9.5) nie pokrywa sie z kinetyczng funkcja rozkiadu. Te ostatnig
uwaza¢ nalezy za warto$¢ Srednig funkeji f; w ciggu pewnego czasu 7

f:%ff] (x, &t + s)ds.
0
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To zalozenie Kirk wooda okazato sie bardzo trafne. Pozwolito ono
przynajmniej czeSciowo wyjasni¢ zagadnienie nieodwracalnosci zjawisk.
Przy zalozeniu zderzen jedynie podwojnych dla standéw mato réznych od
stanu réwnowagi otrzymuje sie z tej teorii rownanie Boltzmanna dla
kinetycznej funkeji rozkladu. Teoria Kirkwooda zostala réwniez
z powodzeniem zastosowana do badania ruchéw B r o w n a. Poza tym
stworzyla ona realne mozliwosci obliczen wspoéiczynnikéw lepkosci cie-
czy, [29], oraz uwzglednienia oddzialywan miedzymolekularnych w réw-
naniach hydrodynamiki, [30].

Powaznym sukcesem teorii Kirkwooda jest rzucenie $wiatla na
zagadnienie nieodwracalnosci. Uzyskanie mnieodwracalnego roéwnania
Beltzmanna z odwracalnego réwnania Liouville’a wigze sie
tu wyraznie z przejSciem od drobnoziarnistej funkcji rozktadu f, do gru-
boziarnistej kinetycznej funkcji rozkladu f. Teoria Borna - Greena,
w ktoérej brak tego istotnego rozrdznienia, moze wiec budzié zastrzezenia.
Juz de Boer, [16], wyrazil watpliwosé, czy teoria Borna - Greena
oparta wylgcznie na odwracalnym twierdzeniu Liouville’a jest w sta-
nie opisa¢ procesy nieodwracalne w gazach. G. Klein i J. Prigogi-
ne, [25] i [26], potwierdzili to przypuszczenie drogg rachunku wykonane-
go dla najprostszego ukladu molekut roztozonych wzdtuz linii prostej.

Wszystkie trzy oméwione powyzej teorie podlegajg jeszcze opracowa-
niu 1 dlatego nie moga by¢ uwazane za ostateczne i wykoniczone.
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Peswwme

YPABHEHUE BOJIbIIMAHHA H ETO 3HAYEHUE B TEOPHUH T'A30B

PaCCManI/IBa}OTCH TPM HapaBJIEHMA MCCJEeO0BaHMUA HBJIeHMfI, mpounc-
XO0oAIIMX B ra3ax: (bEHOMeHOJIOI‘I/I‘-IeCKaH TUAPOOVMHaMMKAa, KMHEeTUYeCcKas
TEeOpPMA M CTAaTUCTHUYECKaA MEeXaHMKa. HpI/IBO}IMTCH B3aMMOOTHOIUIEHME 93TUX
pex Teopm‘/'[. Hpe,[[CTaBJTeHI:I OCHOBHBIE€ IOHATUA M IIOJIOKEHUA KUHSTHU-

YeCKOVi Teopuy ra30B, ONMpPaACh HA TaK HAa3BbIBAEMYI0 KMHETUYECKYIO
GYHKLMIO pacnpefesieHns. 1ipMBOIUTCA 3JIEMEHTAPHbI BBIBOJ, ypasHEeHMU:A
DoanpumMmaHHAa u obcy)RAeHMEe MATEMATUUECKOTO M (PUINIECKOTO
CMBICJIa 9TOTO YpPaBHEHMUA.

B cnenyromieir ryaBe jpgaeTca caMoe IIPOCTOE peIlIeHME ypPaBHEHMUS
BoarsrumanHna: MakcBeaIoBO pacmpeneneHyue ckopocry. Ommpasich
Ha 9TO pelleHKe, PacCMaTPUBAIOTCA OCHOBBI MOJIEKYJIAPHON aspOAMHAMUKA.
Ilanee npuBoAATCA pacdeTbl Teopuum OHcKora-4Yasnmena-Boap-
HeTTa, BegylMe K OIpefeseHMI0 KUHETHYECKNX K0I(PPUIMEHTOR
U K TaK Ha3bIBAEMBIX YPABHEHMII TPETHETC «IMIPUOIMKEHU».

Cuaenyromasa rJjiaBa IIOCBAIIEHa BONpPOcaM HeoOpaTMMOCTM IIPOLIECCOB
B razax. Popmynupyercs Teopema «<H» B oI b IIM a H H a BMECTe C ee
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KpaTKuM jioKazaTeabeTBoM. IIpejcTaBieHa OCHOBHaA IpobJsema HeoOpaTm-
MOCTM ypaBHEHMII KMHETHYECKO) TeOpMy ra30B B CBA3M C OOPATUMOCTHIO
ypaBHeHMII MeXaHMKY M TIONBITKAMM MCTOJKOBAHMA 3TOV NpOGJeMbl

Iamee mpusoruTesa Meton I'p aja peueHua ypasHeHw/ A B o a b I-
MaHHAa NpyM NOMOIIM Pa3iOXKeHMA B PAA TPEXMEPHBIX IOJMHOMOB
OpmMura.

Crnepyoujas IyiaBa 3aHMMAETCA IPMMEHEHMeM ypaBHeHus b o a1 b 1-
M a HH a 14 MCCJIEeAOBAHMA yIOAPHBIX BOJH. 374ech paccMaTpuUBaroTcA
KPATKO IJIaBHbIE KOHIEMIMM (POPMYJIMPOBKM SABJEHMS YAAPHBIX BOJH IIPU
[IOMOILM METONOB KMHETUUIECKOM TEOPUM.

B mocJieHeil TyIaBe paccMaTPUBAIOTCS IMONBITKM 00001IEeHNA ypaBHEHNUA
BoasunMaHHAa M KMHETUIECKON Teopun. IIpeacraBieHsl npobieMbl
B3aMMOOTHOLIIEHNS KMHETMYECKOM TEeOpUM ¥ CTaTUCTMYECKON MEeXaHVWKN.
OTM NONBLITKU CBOAATCH, TJIABHBIM 00pa3oM, K AaJbHENIIEMYy paclpocTpa-
HeHuio dpopMasM3Ma Ha CTyLeHHBbIE Tas3bl M XUAKOCTM. PaccmarpuBaioTcs
Tpu BazKHeimMx BapuaHTa Teopuu: BopHa-I'pwwua Boroaio-
6oBa-I'yposa m KoapxgBynzxa.

Summary

BOLTZMANN’S EQUATION AND ITS ROLE IN THE THEORY OF GASES

Three ways of studying phenomena occuring in gases represented by
phenomenological hydrodynamics, kinetic theory and statistical mecha-
nics are discussed as well as the relations between them. Next, funda-
mental notions and assumptions of the kinetic theory of gases are repre-
sented on the basis of the so called kinetic distribution function. Boltz-
mann’s equation is derived in an elementary way and its mathematical
and physical sense is discussed.

The following section is devoted to the most simple solution of
Boltzmann's equation represented by M a x wells velocity
distribution law. On the basis of this solution the principles of molecular
aerodynamics are discussed. Next, the' calculations of the theory of
Enskog - Chapman - Burnett, leading to the determination
of kinetic coefficients and to the so called equations of the third «appro-
ximation», are represented.

In the next section the problem of irreversibility of the processes
in gases is discussed. B ol tz m an n's «<H» theorem is shown in an
abridged manner. The principal problem of irreversibility of equations
of the kinetic theory of gases in connection with the reversibility of equa-
tions of mechanics is discussed. Further, Grad’s method of solution
of Boltzmann’s equation by means of expansion in a series of
Hermite's three-dimensional polynomials is represented.
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The next section is concerned with the application of B ol 1t z-
mann’s equation to shock wave investigation. Principal ways of treating
the phenomenon of shock wave by means of the methods of the kinetic
theory are examined.

The last section is devoted to the efforts to generalize B o1t z-
mann’s equation and the kinetic theory. The problems of relations
between the kinetic theory and statistical mechanics are also discussed.
These efforts consist in a formal generalization extended to compressed
gases and liquids. Three principal variants of the theory (due to Born -
Green, Bogolubov-Gurov and Kirkwood) are discussed.

ZAREAD MECHANIKI OSRODKOW CIAGLYCH
IPPT PAN

Praca zostala zlozona w Redakcji dnia 13 stycznia 1955 r.
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Przedmowa

Obliczenia mechaniczne konstrukeji budowlanych dotycza obiektéw
znajdujacych sie w spokoju. Z tego powodu wszystkie rozwazania me-
chaniki budowli opierajg sie przede wszystkim na statyce. Zagadnienia
dynamiczne wystepuja tu dopiero wédwcezas, gdy obcigzenia budowli na-
bieraja charakteru dynamicznego. Ma to miejsce w nowoczesnym bu-
downictwie przemystowym w zwigzku z obcigzeniem budynkéw maszy-
nami w ruchu, a w budownictwie komunikacyjnym w zwiazku z duzym
wzrostem szybkosei ruchu pociggédw i samochodow.

Oddzialtywanie maszyn i pociagéw na obiekty budowlane sprowadza
sie w zasadzie do uderzen i drgan.

Zagadnienie uderzen w pracy konstrukcji budowlanych polega glow-
nie na ustaleniu punktu zaczepienia do budowli sit zaczepionych w sposéb
nagly, przede wszystkim sil hamowania.

Zagadnienie drgan polega tu na zastosowaniu takich metod oblicze-
niowych, ktére pozwolilyby przy opracowaniu szeregu odmian projektéow
budowli na szybkie sprawdzenie, w jakim stopniu grozi budynkom re-
zonans miedzy drganiami wlasnymi a zmianami sit wymuszajacych.

Zagadnienia uderzen i drgan lacznie wystepuja w interpretacji dyna-
micznej przyblizonej metody Ritza i Timoszenki wyznaczania
odksztalcen i sit krytycznych.

Rozprawa niniejsza jest poswiecona oddzialywaniom dynamicznym
obcigzen ma budowle, oddzialywaniom rozumianym w spos6éb wyzej
przedstawiony.

Przy opracowaniu rozprawy korzystalem z moich dawniejszych obli-
czen zawartych przede wszystkim w nastepujacych publikacjach:

(1) Interpretacja dynamiczna przyblizonej metody wyznaczania od-
ksztalcenn sprezystych w konstrukcjach budowlanych, Przeglad
Techniczny, 1928,

(2) Dzialanie ruchu pociggu na przyczotki ¢ filary mostowe,
Sprawozdania i Prace Warsz. Tow. Pol., 1930,

(8) Z dziedziny odksztalcenia i statecznodci ukladéw pretowych,
Sprawozdania i Prace Warsz. Tow. Pol., 1933,
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(4) Obliczenia drgan wlasnych belek za pomocq momentéw wtor-
nych, Inzynieria i Budownictwo, 1948.

Doceniajgc catkowicie wage dyskusji prowadzonej na terenie Poli-
techniki Warszawskiej na temat podstawowych pojeé mechaniki, nie mo-
glem tu wynikow tej dyskusji w calosci uwzglednié obawiajgc sie, ze
nowa, niedostatecznie spopularyzowana jeszcze maniére de parler mo-
glaby w pracy o charakterze technicznym spowodowaé szereg nieporo-
zumien.
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t. Punkt zaczepienia sil hamowania

Przy badaniu stateczno$ci i wytrzymato$ei przyczotkéw i filar6w mo-
stowych musza by¢ brane pod uwage zaréwno sity pionowe, jak i pozio-
me. Sily poziome wystepuja tu pod postacig sit wywolanych hamowaniem
pociggu na moscie lub tez pod postacia sity pociggowej lokomotywy. Sity
te maja charakter obcigzen dynamicznych. )

Dzialanie ruchu pociggu na przyczotki i na filary jest w zasadzie ta-
kie samo. Przy badaniu stateczno$ci przyczotkéw zadanie komplikuje
jednak parcie ziemi i dlatego w dalszych obliczeniach méwige o podpo-
rach mostowych bedziemy mieli przede wszystkim na widoku filary
pomimo to, ze szeroko$¢ filara liczona wzdluz osi mostu moze byé
miekiedy niedostateczna, aby pomiesci¢é choéby dwie osie taboru.
W zwigzku z tym zastosowanie wynikow dalszych obliczen do poszcze-
g6lnych rodzajéw konstrukeji zostanie oméwione oddzielnie.

Poniewaz posadowienie podp6ér mostowych nie :
ma wplywu na sposéb dzialania na nie pociggu,
bedziemy zakladali w schematach obliczeniowych,
ze przyczotki i filary przedstawiajg bryty w dwoch
punktach swobodnie podparte, inaczej moéwiac
bryty podparte liniowo.

Hamowanie jednostek taboru kolejowego po-
lega na tym, ze klocki hamulcowe wywierajg na-
cisk N na kota powodujac tarcie potoczyste na obwodach két i stwarzaja
w ten sposéb dodatkowy opér pociggu (rys. 1). Opér hamowania wyraza
sie wzorem

(1.1) H=fN,

gdzie f, oznacza wspolczynnik tarcia stali po stali w ruchu.

Kota wagonu toczg sie pomimo hamowania dotad, dopoki tarcie klocka
hamulcowego o kolo jest mniejsze od tarcia posuwistego w spokoju kota
po szynie. Z chwilg unieruchomienia kot

gdzie C oznacza nacisk na kolo, a f; wspblezynnik tarcia stali po stali
w spokoju. Sity hamowania staja sie wiec w tym wypadku réwne silom

Rys. 1
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tarcia unieruchomionych ko6t taboru po szynach. Sily te odgrywaja
przewaznie decydujaca role w dziataniu ruchu pociagu na podpory mo-
stowe.

Zajmiemy sie przede wszystkim przypadkiem, gdy jednostka taboru
znajdujaca sie bezposrednio na filarze ulega zahamowaniu z unierucho-
mieniem kol. Jest to przypadek najniebezpieczniejszy dla podpdér mosto-
wych. Schemat tego przypadku przedstawiony jest na rys. 2. Tu bryta
ABCD podparta w punktach A i B i oznaczona na rysunku liczbg II przed-
stawia filar mostu. Jednostke taboru o kolach unieruchomionych przed-

stawiamy sobie jako bryle abcd przesu-
c d wajacg sie po bryle ABCD w kierunku
I CD (na rysunku brytla I).
gi A I Zakladamy, ze nagle zatrzymanie sie

Ay, T" X na fllrar.ze' bryty abcd nie moze spowo-
lb 2 )] dowa¢ jej obrotu dookota punktu a, co
RbL_l LRa zostanie oméwione dalej. Wobec takie-

L2y N go zalozenia wylaczamy mozno$é prze-

n 7 _ suwania sie $rodka ciezko$ci bryly abed

l w stosunku do plaszczyzny CD w Kkie-
runku osi CY.

Poniewaz przyjeliSmy, ze jednostka
taboru przedstawiona na rys. 2 jako
bryta abed ulega zahamowaniu z unie-

Rys. 2 ruchomieniem két i zatrzymaniu, moze-

my uwaza¢, ze dwie brylty abed i ABCD-

tworza uklad materialny, miedzy elementami ktorego dzialajg wiezy da-

jace reakcje rowna wypadkowej sit tarcia H, wystepujacych w plaszczyz-
nie ab i zaczepionych w punktach a i b.

Dla ukladu osi wspolrzednych BX i BY ustewiamy réwnanie momen-
t6w ilogci ruchu w chwili rozpoczynania sie ruchu ukladu materialnego
ztozonego z bryt abed i ABCD wzgledem punktu A dla $rodkéw ciezkosci
tych bryl

W ogblnej postaci rownanie momentdw ilosci ruchu ukladu material-
nego przedstawia sie, jak wiadomo, w spos6b nastepujgcy:

o
AT
g

xﬁm

d d : .
L.3) azZm(? a%—y‘aT)‘:-ZZW—yX%

gdzie m oznacza mase poszczegélnych elementéw ukladu materialnego,
a X i Y rzuty sit zewnetrznych, dzialajacych na uklad, na osie wspétrzed-
nych BX i BY. Tu sumowanie po lewej stronie réwnania dotyczy wszyst-
kich elementéw ukladu materialnego, a sumowanie po prawej stronie
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rownania dotyczy, z jednej strony, wszystkich sit zewnetrznych dziata-
jacych na uklad, a z drugiej — wszystkich elementéw uktadu.

Stosujac réwnanie (1.3) w naszym wypadku, oznaczamy przez x" i y
wspbirzedne Srodka ciezkos$ei bryly abed, a przez x” i y” wspblrzedne
$rodka ciezkosci bryly ABCD. Sily dzialajgce na uklad materialny i ich
ramiona podane sg na Tys. 2; w szczeg6lnosci P; oznacza tu ciezar bryly
abed, a P, ciezar bryly ABCD. W ten sposob znajdujemy

d iy/ E‘: \) dy” Li dxll .
(1.4) dt [m‘<dt gt gg & +m”( dt 2 de 1

L
—=RsL—P," —Pig,,

gdzie Rp oznacza reakcje pionowa bryly ABCD w punkcie B, a symbole
m, i m, dotycza odpowiednio mas bryt ebed i ABCD.

Poniewaz przyjeliSmy, Zze bryla abcd nie moze sie obréci¢ wzgledem
punktu A, wiec dy’/dt =0. Rowniez nieprzesuwno$é¢ $rodka ciezkosci
bryly ABCD w kierunku osi BX i BY uwazamy za zabezpieczong, a tym
samym dx”/dt =01 dy”/dt = 0.

W tych warunkach réwnanie (1.4) przybiera postaé

2.
(1.5) RBL—PZ—;L—Rg‘—m,%t%s]:o.

Ostatni dodajnik lewej strony réwnania przedstawia moment wzgle-
dem punktu A sily bezwtadno$ci bryly abed. Z drugiej strony, ustawiajgc
dla bryty abcd réwnanie rzutéw ilosci ruchu na 0§ CX znajdujemy

d?x’

Wstawiajac wynik (1.6) w réwnanie (1.5) mamy
L
(1.7) RBL—Pg-z——PIQI—!—Hsl:O.

Réwnanie (1.7) nalezy uwazaé¢ za warunek réwnowagi filara w chwili
zatrzymania sie na nim jednostki taboru. Natomiast przy

(1.8) RBL—PZfIzJ——ng1+Hsl<O

bryta ABCD rozpoczyna wraz ze zwigzang z nig tarciem brylg abed ruch
obrotowy wzgledem punktu A.

Ze wzoréw (1.7) i (1.8) wynika, ze przy badaniu stateczno$ei 1 wytrzy-
matosci filara, na ktérym zatrzymala sie mieszczgca sie na nim catkowi-
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cie jednostka taboru przy hamowaniu z unieruchomieniem koél, malezy
przyjmowa¢ ramie momentu sity hamowania taboru na filarze jako réwne
odleglosci bieguna (na rys. 2 punkt A) od linii poziomej przechodzacej
przez $rodek ciezko$ci taboru. Potwierdza to zreszta prymitywne doswiad-
czenie z czlowiekiem wskakujacym z rozpedem na stolek.

Gdy chcemy powyzsze rozumowania zastosowaé¢ do przyczélkéw mo-
stowych, musimy w réwnaniu (1.7) uwzgledni¢é moment parcia ziemi
wzgledem punktu A. Wobec tego, Ze hamowanie pociggu na przyczétku
moze spowodowa¢ znaczne odksztalcenia sprezyste przyczotka i tym wy-
wolaé ryse miedzy przyczolkiem a ziemig nasypu wywolujaca parcie geo-
dynamiczne, wydaje sie stosowanie teorii Coulomba parcia ziemi
w tym wypadku bardziej uzasadnione niz w innych. Bedzie si¢ to wpraw-
dzie dzialo na niekorzy$¢ bezpieczenstwa, bedzie jednak uzasadnione wobec
jednoczesnego uwzglednienia hamowania pociggu w sposéb najbardziej
niekorzystny dla statecznosci przyczéika.

Warunek (1.7) moze by¢ zastagpiony przez warunek

(1.9) My = M.y + Hs,

gdzie 9,, oznacza moment powstrzymujacy, czyli moment sit dziatajacych
na podpore mostowa i dazacy do obrdcenia jej wzgledem punkiu A
(na rys. 2) na lewo, a M., wyraza moment wywracajacy, czyli moment sit
dziatajgcych na podpore w kierunku odwrotnym do poprzednich, bez sity
hamowania i reakeji Rp symbolizujagcej w danym razie reakcje podloza.
Warunkowi temu mozemy nadaé postaé

¢y — v_?)tpz L~
c[ d (1.10) n——s.mzp LR 1,
3 E__ g, — gdzie m oznacza wspoiczynnik statecz-
T noéci podpory mostowej na wywroce-
¢ ) .
H b | H a nie.
‘ W chwili naglego zatrzymania sie
g taboru na podporze powstaje moment
5 A Hh, (rys. 3) zaczepiony do bryly 1. Wa-
N runek réwnowagi 3 M = 0 dla bryly I
I [ rzybiera postaé
T2 7 . przy p
& AT 1) Rel—P, b4 HR,=0.
R, R 2
8 A

Rys. 3 Moment Hh, odgrywa w danym wy-

padku role momentu wzajemnego od-

dziatywania na siebie dwoéch elementéw tego samego uktadu material-
nego ztozonego z bryt I i II i wyraza postulat, aby jednostka taboru nie
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ulegta obrotowi wzgledem punktu a; mozliwos¢ takiego obrotu wytaczy-
lifmy wyZzej w naszych rozumowaniach. Postulatowi temu mozemy nadaé
posta¢ podobng do wzoru (1.10):

N,

(1.12) Wop+ Hhy~ L

gdzie Mip: i Wz, oznaczaja odpowiednio moment powstrzymujacy i mo-
ment wywracajacy dla bryty I.

Wszystkie rozwazania dotyczace przypadku, gdy na podporze mostowej
ulegly catkowitemu zahamowaniu dwie osie pewnej jednostki taboru, za-
chowuja swa moc oczywiscie i woéwczas, gdy liczba tych osi jest wieksza
od dwoch.

Przechodzimy z kolei do przypadku, gdy zahamowanie jednostki tabo-
ru na filarze przy catkowitym unieruchomieniu két nastepuje w ten spo-
sob, ze jedna o$ znajduje sie na filarze, a druga na dzwigarze (rys. 4).

Rownanie (1.3) ustawione
dla ukladu materialnego I, II
przybiera w danych warunkach
i przy przyjetych wyzej ozna-
czeniach posta¢

d*x’
(1.13) My~ g §15=

gdzie d%x’/dt? oznacza czesé
sity bezwtadnosci bryly I wy-
wierajaca wplyw na statecznosé
bryly II.

Moment Hj h, odgrywa w tym wypadku w stosunku do bryty I role
momentu zewnetrznego. Moment ten powstaje w sposéb nastepujgcy.

Roéwnanie rzutéw ilo$ci ruchu na kierunek poziomy daje w rozpatry-
wanym przypadku

d*x’
(1.14) m1*dt.“;'"::““Hb'_Ha7

gdzie H, i H, oznaczaja odpowiednio sily tarcia w punktach a i b bryty I,
tzn. sily tarcia miedzy brylg I a brylg II, z jednej strony, i miedzy bryla I
3 brytg III, z drugiej strony.

Sita bezwladnosci m,d*x’/dt* oraz suma sit tarcia Hy+ H, tworza lgcznie
pare (H, + H,) h,, ktéra mozna uwazaé za sume dwoch momentéw H, h,
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oraz Hohy, z ktorych pierwszy dziala na uklad materialny I, II, a drugi
na uktad II, III.
Nadajemy rownaniu (1.13) postaé

L
(115) Hbs]:Rbg]_Pl?_Fthov
co doprowadza do rownania
L
(1.16) —Hz,h—}—Rbgl—Pl—z—:O,

gdzie h =s; — h, wyraza odleglo$¢ pionowsg od bieguna A do poziomu
szyny.
Réwnanie (1.16), jak w poprzednim wypadku, mozemy zastapi¢ przez
nieré6wnosé
Mp2

(1.17) n— ?J)Ezp + Hh

=>1.

Z rozpatrzonych wyzej dwéch przypadkéw hamowania pociagu na pod-
porze mostowej wynika, ze w razie gdy na podporze zatrzymuja sie przy-
najmniej dwie osie pewnej jednostki taboru, przy badaniu statecznosci
podpory nalezy przyjmowa¢, ze sily hamowania zaczepione sg w $rodku
ciezkosci tej jednostki, w razie za$ gdy tylko jedna o$ zatrzymuje sie
na podporze, sila hamowania powinna by¢ uwazana za zaczepiong w po-
ziomie szyn. '

Rozpatrzmy wreszcie przypadek, kiedy jednostka taboru zostaje zaha-
mowana z unieruchomieniem ko6t na diwigarze swobodnie podpartym na
dwéch podporach mostowych (rys. 5).

Stosujac réwnanie (1.3) do bry! I (jednostka taboru) i II (dzwigar) oraz
do bryl I, II, III (podpora) i powtarzajgc rozwazania przytoczone wyzej
dochodzimy do wniosku, ze sila hamowania

dzx’

jednostki taboru powinna by¢ zaczepiona do podpory mostowej w pozio-
mie podpory dzwigara. Jezeli podpora jest nieprzesuwna, sila ta be-
dzie réwna H, jezeli za$ przesuwna, sila hamowania w ogéle nie bedzie
dziatata na podpore.

Taki stan rzeczy jest calkowicie zrozumiaty, gdyz dzwigar, na ktérym
odbywa sie hamowanie, i przyczolek lub filar maja tu jeden tylko punkt
wspodlny.

W chwili catkowitego zahamowania taboru na dzwigarze tabor i dzwi-
gar beda tworzyly dzigki sitom tarcia niejako jedna bryte, do ktérej na po-
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ziomie $rodka ciezkosci taboru bedzie zaczepiona sita hamowania H. Sila
ta spowoduje powiekszenie nacisku pionowego na jedng podpore dzwigara
i odcigzenie drugiej podpory.

Wielkoéci dodatkowego obciazenia podpory B’ (rys. 5) obliczamy z row-
nania momentéw sit dzialajacych na dzwigar wzgledem punktu A”:

(1.19) Rzl+ Hh, =0,

gdzie Rz oznacza poszukiwane przecigzenie podpory Rz, a h, odleglosé
pionowa podpér dzwigara od plaszezyzny poziomej przechodzacej przez
$rodek ciezkosci taboru.

W podobny sposéb z réwnania
(1.20) R4sl—Hh, =0

znajdujemy spowodowane przez hamowanie odcigzenie R, podpory A’

r*‘ T
i

Rys. 5

Wyzej udowodniliémy, iz sita H tarcia unieruchomionych ko6t taboru
kclejowego po szynach przyczotka lub filara (sita hamowania) powinna
byé zaczepiona w obliczeniu statycznym podpory mostowej w poziomie
érodka ciezkosci danej jednostki taboru, o ile jednostka ta dotyka podpo-
ry co najmniej w dwdch punktach, w poziomie gléwki szyny, o ile dotyka
ona podpory mostowej w jednym tylko punkcie, wreszcie w poziomie
przegubu podpory dzwigara, o ile hamowany tabor znajduje sie na prze-
gubowo podpartym dzwigarze.

Poréwnajmy tu w $wietle tych twierdzen poszczeg6lne rodzaje przy-
czotkéw.

Wzér (1.10) wyprowadzony zostal dla przyczotkéw w rodzaju przedsta-
wionego na rys. 6, tj. takich, na ktérych tor ulozony jest bezposrednio na
murze przyczotka.
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Jezeliby$Smy ze $rodka bryly przyczoétka usuneli cze$¢ muru i zapemili
otrzymang w ten sposéb studnie ziemis, to otrzymaliby$my przyczdlek
w rodzaju przedstawionego na rys. 7. O ile by tabor hamowany na takim
przyczo6iku opierat sie na nim w dwéch punktach, to wzoér (1.10) przy obli-
czeniu takiego przyczéika zacho-
walby swoja moc.

H
M , v
[ 22777 7 [
7 v
7 7 |
7 Z )
3 7
7 I 5 0 D
7 4 ' % C
71 N Z '
7 Z
R 7
L - - - — — L ——
Rys. 6 Rys. 7

Usuniecie tylnej $ciany MN przyczotka przedstawionego na rys. 6 nie
spowodowatloby zadnej zmiany zasadniczej w warunkach jego pracy (rys. 7
i 8), gdyz ziemia zapelniajgca jego wnetrze pozostalaby w réwnowadze,
podirzymywana przez ziemie nasypu za przyczoétkiem. W tym wiec przy-
padku wzér (1.10) powinien mie¢ réwniez zastosowanie, tym bardzie] ze
przestrzen miedzy murami przyczoétka typu przedstéwionego narys. 718
(widok od tylu) jest zwykle mata i wypelniona ziemig ze szczegbdlng sta-
rannoscig.

|7

7
A
0

7
7 7
Gz 0002527

Rys. 8 Rys. 9

Usunigcie wspo6lnego fundamentu pod skrzydiami i przednim murem
przyczotka tez nie powoduje zmian istotnych w warunkach réwnowagi
przyczétka jako caloéci, w szczegolnosci pod wzgledem sposobu zaczepie-
nia sily H (rys. 9). W tym wypadku nacisk taboru znajdujacego sie nad
przyczolkiem przekazuje sie za pomoca ziemi murom przyczélka prawie
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calkowicie lub w razie ziemi spoistej nawet calkowicie, tym bardziej
ze przestrzen mn wolna od fundamentu jest na og6l mala. Uwazamy

iec przyczétki przedstawione na rys. 7 i 8 niejako za bryly zlozone z mu-
row i ziemi zapelniajgcej przestrzen miedzy nimi.

Wezmy teraz pod uwage przyczélek w po-
staci muru o przekroju poprzecznym przedsta-
wionym na rys. 10. Na murze przyczétka stoi
bezposrednio jedna tylko o$ taboru, druga zas
os$ tej samej jednostki taboru opiera sie na na-
sypie za przyczolkiem i nie pozostaje z nim
w lacznosci. W tym wypadku sila tarcia mie-
dzy hamowanym na przyczétku taborem (jedna
08) a szyna powinna by¢ zaczepiona do przy-
czolka w poziomie punktu K, jak to zostato
przedstawione we wzorze (1.17).

Inaczej rzecz sie ma w przypadku przycz6l-
ka przedstawionego na rys. 11. Tu nacisk lewej
(na rysunku) osi znajdujacej sie na przyczotku
jednostki taboru przekazuje sie za po$redni-
ctwem szyn, podkladow i podsypki na ziemie za przyczotkiem, a przez nia
wywiera ci$nienie w kierunku pionowym na odsadzki przyczotka. Wobec
tego jednostka taboru stojgca dwiema przynajmniej osiami nad funda-
mentem przyczotka, w szczegd6lnosci nad jego
cze$cia L, moze by¢ rozpatrywana, zgodnie ze
schematem na rys. 2, jako brylta abcd posuwa-
jaca sie po bryle ABCD, a wiec sita H powinna
byé w obliczeniu przyczoétka zaczepiona w jego
$rodku ciezko$ci. Jezeli tylna powierzchnia
przyczoétka nie posiada odsadzek, lecz jest po-
chylona, w przekazywaniu pionowego ciénie-
nia taboru na przyczoétek odgrywa role tarcie
miedzy ziemig a murem, dzieki czemu nie zmie-
nia sie zasadniczo spos6b zaczepienia do przy-
_, czétka sity hamowania pociggu w pordéwnaniu
"z przypadkiem poprzednim.

Wezmy teraz pod uwage przyczétek o pio-
Rys. 11 nowej powierzchni tylnej oraz o waskim para-

pecie mieszczagcym na sobie jedng tylko o$ po-

ciagu i przypusémy, ze z parapetu zostala przerzucona na nieprzesuwny ko-
niec dzwigara beleczka MN (rys. 12), potgczona z nim w sposéb nieprze-
suwny. Mamy wiec w ten sposéb do czynienia z ukladem niezmiennym
MNK sztywno zlgczonym z przyczétkiem, wobec czego jednostka taboru
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znajdujaca sie na belce MN odpowiada schematowi rys. 2 i silta H powinna
byé tu w obliczeniu przyczotka zaczepiona do $rodka ciezkosci taboru.
Role beleczki MN spelnia w wielu wypadkach szyna przerzucona z para-
petu przyczétka na dzwigar.

Wreszcie moze sie zdarzy¢ w okolicznosciach
podobnych do przedstawionych wyzej, ze chociaz
parapet nie miesci na sobie wiecej ponad jedng o$
pociagu, to jest jednak dosy¢ szeroki na to, aby
szyna podparta za pomoca dwoéch przynajmniej
podkladéow mogla wspornikowo utrzymaé dwie
osie pociggu (rys. 13). W ten sposéb powstatyby
znowu okolicznoéci odpowiadajace warunkom
schematu 2.

Z powyzszego zestawienia widzimy, ze dla po-
szezegblnych typow murdéw przyczoétkowych nale-
zy przyjmowa¢ odcinek L za pewnego rodzaju
sprowadzong dlugos$é przyczotka posiadajgcg te
wlasno$é, ze jednostka taboru stojgca na tej diu-
gosci dwiema osiami znajduje sie w warunkach
bryly abcd w schemacie na rys. 2 i sita H powinna tu by¢ zaczepiona
w obliczeniu statycznym przyczolka w $rodku ciezkosci taboru. Poniewaz
dfugosé L jest prawie zawsze wieksza od rozstawu osi parowozu, nalezy
przy obliczaniu przyczétkow uwzgledniaé
wplyw hamowania na przyczo6iki znajdujgcego y

Rys. 12

sie na nim taboru zawsze wedlug wzoru (1.10). T

Jezeli przyczolki lub filary mostowe pod- £ e 2
trzymujg dzwigary przegubowo, to, jak uzasad- f
niono wyzej, sita H musi by¢ zaczepiona w tych | ‘ "’T‘\
wypadkach w obliczeniu statycznym w pozio- ﬁ ‘ a

mie przegubow podpédr nieprzesuwnych.

W razie gdy przyczolki i filary podirzymuja
inne rodzaje dzwigaréw, poza przegubowymi
dzwigarami belkowymi, hamowanie pociggu na <
dzwigarach odbija sie na statecznosci podpér f_//f/”// T
w rézny sposéb w zaleznosci od typu diwiga-
réw lub ukladu catej konstrukcji mostowej.

A wiec w mostach wspornikowych (rys. 14) wsporniki nie mogg sig na
0g6l obracaé¢ wzgledem filardow, tak Ze stanowig one z nimi jakby jedng
calo$é. W mostach tego typu jednostka taboru stojaca dwiema osiami na
wsporniku i zahamowana z unieruchomieniem két znajduje sie w warun-
kach bryty abed z rys. 2 i w obliczeniu statecznosci filara (lub przyczéika)
sita H powinna by¢ tu zaczepiona w Srodku ciezkosci taboru.

a
\

7% J//i

/////

\\Q"

Rys 13
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Wsporniki miewajg jednak zastosowanie przewaznie w mostach du-
zych, dla ktérych sita hamowania ma maly wplyw na statecznos¢ podpér,
z mostéw za$ o matych rozpieto$ciach zdarzaja sie one prawie tylko w mo-
stach zelbetowych typu belki zawie-
szonej.

Filary (stlupy) mostéw ramowych
réwniez nie w jednakowy spos6b pod-
legajg dzialaniu sily hamowania. Spo-
s6b zaczepienia sity H zalezy tu od ty- }
pu ram danego mostu.

Przypusémy wiec, iz mamy do czy-
nienia z ramg dwuprzegubowsg przed-
stawiong na rys. 15. Rama ta pod
wzgledem statecznosci odpowiada wa-
runkom bryty AECD z rys. 2. Wynika
stad, ze sity hamowania nalezy tu za-
czepia¢ w $rodku ciezkoéci hamowa-
nego na ramie taboru. Moment Hs;
réwnowazac sie tu z momentem Rl wywoluje dodatkowe (poza reakcjami
sit pionowych) reakcje podpér R i dodatkowe naprezenia Sciskajace
w stupach.

Rama bezprzegubo-

H wa w stosunku do dzia-
I, tajacych na nig sil ha-
\j mowania znajduje sig
—U_ B c =]_[— w tych samych warun-
7, | ; kach co rama poprzed-
i \ <,|; nia. Odpowiada ona
‘ | = rowniez schematowi na
i | rys. 2, nalezy wiec i w
[ \_/ tym wypadku przyjmo-
iz P ; g waé punkt zaczepienia
v«;——— l Qk*j A sit H w $rodku ciezkosci

taboru.
Rys. 15 W ukladzie przed-

stawionym na rys. 16
dwa stupy polaczone bezprzegubowo z fundamentem podtrzymuja dzwigar
podparty na obydwoch stupach w sposéb przegubowy, lecz nieprzesuwny.
Sila H spowodowana hamowaniem taboru poruszajacego sie po rozporze
BC powinna byé w tym wypadku zaczepiona do stupéw AB i CD w po-
ziomie przegubdéw B i C, gdyz rozpora znajduje si¢ tu w warunkach po-
dobnych do dzwigara z rys. 5. Jezeli oba przeguby sg nieprzesuwne, a roz-
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pora ramy jest niesciSliwa, to mozna przyjmowaé, ze w punktach B i C
dzialaja rowne sobie sity poziome H/2.

W warunkach podobnych do rozpory BC z rys. 16 znajdujg sie dzwiga-
ry belkowych mostéw zelbetowych, jezeli na skutek duzego tarcia na
podporach ich konce nie moga sie przesuwaé po przyczétkach. W tych
wypadkach mozna sil¢ hamowania na dzwigarze rozlozy¢ na dwa przy-
czo6tki.

:

ief

—— 8

U200, 7,////%/

Rys. 17

Wezmy dla przykladu uklad ramowy przedstawiony na rys. 17. Pod-
pora C jest tu podpora przegubowo przesuwng. Uklad posiada jedng
wielkoéé statycznie niewyznaczalng, za ktorg przyjmujemy zwykle reak-
cje R, podpory C. Po wpro-
wadzeniu tej wielko$ei uwa-
zamy belke BC za wspornik,
a sile hamowania (sile H)
przechodzacego po niej tabo-
ru za zaczepiong w S$rodku
ciezkosci taboru.

Most tukowy bezprzegu-
bowy przedstawiony na rys.
18 znajduje sie pod wzgle-

dem dziatania na niego sil

2 e //B —> hamowania w warunkach

Rys. 18 analogicznych do warunkéw

ramy bezprzegubowej, a wiec

i w tym wypadku nalezy sile hamowania zaczepiaé w $rodku ciezkosci
poszezegblnych jednostek taboru.

Przypuéémy wreszcie, ze hamowanie pociggu odbywa sie na moScie
drewnianym typu lezajowego przedstawionym na rys. 19. Poniewaz pod-

T
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pory takiego mostu uwazamy za przegubowe, to bedziemy tu mieli do
czynienia z tym samym schematem co na rys. 16 i wobec tego przy obli-
czeniu stupéw sile hamowania nalezy uwaza¢ w danym razie za zaczepio-
na w poziomie legara (na wysokosci h,).

N " N
=
’ |
> Ll /,/A/i/ﬁ"/ !7/////0 7
Rys. 19 Rys. 20

W drewnianym moscie zastrzalowym (rys. 20) trojkaty A'BE i ECD’
tworza niejako geometrycznie niezmienne wsporniki, wobec czego, zgod-
nie ze schematem na rys. 2, powinni$my przyjmowa¢ tu site hamowania
za zaczepiong w $rodku ciezkosSci pociggu.

W razie gdy hamowanie pociggu ma miejsce na kratowym filarze sta-
lowym (rys. 21), nalezy w obliczeniu statycznym przy dwbch przynaj-
mniej kotach unieruchomionych przyjmowac
site hamowania w $rodku ciezko$ci taboru. Do-
tyczy to zaréwno obliczenia wspoéiczynnika sta-
tecznosci, jak i obliczenia sit w pretach filara.

Przypus$émy, ze na przyczétku belkowego
mostu przegubowego stoi kolami napedowymi
parowdz (rys. 22). Cisnienie pary w cylindrach
parowozu przeniesione w postaci sily pociago- 1
wej na obwo6d kol napednych wywoluje nie- ‘,
jako odpychanie si¢ parowozu od przyczoika.
Sita pociggowa odpycha parow6z od nierucho-
mego przyczélka powodujgc przesuwanie sie ,
parowozu i wywolujac w kierunku przeciwnym
nacisk poziomy na przyczoélek réwny sile po-
ciggowe]. M N

Poniewaz w tym wypadku parow6z i przy-
czétek stykaja sie w poziomie szyn, sila pocia-
gowa bedzie zaczepiona w tym wlaénie poziomie. Odp0w1edm moment
wywracajacy bedzie tu rowny Sh.

Sita pociggowa dosiega swej wartosci najwieksze]

(1.21) S=fC

Rys. 21



o0 ile,za parowozem znajduje sie pociag, zwlaszcza pociag posuwajacy sie
po wzniesieniu (rys. 23).

Moze sie zdarzyé¢, ze pociag ulegt zatrzymaniu i ze wagony utrzymy-
wane sg na spadku tylko dzieki tarciu miedzy unieruchomionymi kolami
parowozu a szynami przytwierdzonymi do przyczétka. W tych warunkach
sita tarcia miedzy parowozem a przyczélkiem stwarza z nich jak gdyby
jedna bryte. Sila ta réwna sie w danym wypad-
ku skladowej S sity ciezkosci, ktéra wywolywa-
laby ruch wagonéw w kierunku spadku w razie,
gdyby nie byly one utrzymywane w spokoju
przez zahamowany na przyczétku parow6z. Po-
niewaz jedynym punktem wspélnym dla wago-
noéw i parowozu jest w danym razie S$rodek
sprzegla parowozu, nalezy uwazaé, ze sila
S = f; C powinna by¢ w tym wypadku przyj-
mowana w obliczeniu statycznym przyczoétka
W poziomie sprzegla parowozu.

Sy ‘.;' Przy sprawdzaniu statecznogei przyczotka na
' Rys. 29 wywracanie nalezy we wzdér (1.10) wstawiaé ten
z momentow Hs, lub Sh, ktéry jest wiekszy.

Sita hamowania oraz sila pociggowa niezaleznie od tego, czy tabor
znajduje sig na samym przyczolkuy, czy tez na dZwigarze lub na przyle-
gajacym do przyczolka nasypie, sa sitami zaczepionymi do konstrukeji

A E/// S0 //7,//
4 Vz
77 Zida

7
E T

N

Rys. 23

w spos6b wyraZznie nagly, gdyz w sposéb nagly zostaja unieruchamiane
kota pociggu. Poniewaz wszystkie wzory mechaniki budowli wyprowa-
dzone sa w zalozeniu, ze sily zaczepione do budowli wzrastaja w spos6b
ciagly i nieskonczenie powolny, jest rzecza konieczng dla korzystania
z tych wzoréw w przypadku sit zaczepionych nagle mnozy¢ te sily przez
pewien wspolczynnik dynamiczny 9.

Rozwazania tego rozdzialu stwarzaja podstawe do ustalenia tego
wspoéiczynnika w réznych warunkach pracy konstrukeji. b
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2. Arytmetyzacja zagadnienia drgan

Przez arytmetyzacje rozumiemy taka metode obliczen przyblizonych,
przy ktérej przejscie od postawienia zagadnienia do rachunkéw liczbo-
wych odbywa sie w drodze jak najkrétszej i kiedy na te obliczenia prze-
rzuca sie gléwny ciezar calego obliczenia statycznego.

Wymiarowanie konstrukeji podtrzymujacych pociagi lub maszyny
w ruchu wymaga nieraz dlugiego szeregu préb w dziedzinie obliczen tych
konstrukcji. Z tego powodu wazna jest mozno$¢ przeprowadzenia obli-
czeri predko, choéby mniej dokladnie. Taka mozno$¢ daje arytmetyzacja
zagadnienia drgan, znajdujaca wyraz w stosowaniu tzw. metody kolej-
nych przyblizen, metody momentéw wtérnych i réznic skonezonych.
Gloéwny ciezar obliczen przypada na drgania wlasne, ktérych poznanie po-
zwala zabezpieczy¢é budowle przed rezonansem.

Ustalimy przede wszystkim zakres stosowalno$ci metod przyblizonych
w teorii drgan.

Czestotliwo$é wahan c sity wymuszajacej drgania w konstrukeji zmie-
nia sie z czasem i jest najmniejsza przy puszczaniu maszyny w ruch i przy
jej zatrzymywaniu, czestotliwo$é n drgan wlasnych konstrukeji natomiast
od czasu nie zalezy. Przedstawione to jest schematycznie na rys. 24, gdzie
krzywa Osg przedstawia zaleznos¢ c od t, a prosta AB czestotliwose drgan
wlasnych; czestotliwoéci odkladane sa tu réwnolegle do osi Of.

Przy projektcwaniu konstrukeji podtrzymujacej pociag lub maszyne
w ruchu musimy dla unikniecia niebezpieczenstwa rezonansu dba¢ o to,
aby

(2.1) n = (I + 2) max c,

gdzie liczba z oparta na obserwacjach wymnosi od 0,30 do 0,50. W tych wa-
runkach znajdujemy sie jeszeze daleko od tzw. sfery rezonansu i mozemy
sobie pozwoli¢ przy obliczaniu cze-
stotliwosci drgan wlasnych konstruk-
¢ji na niedokladnoéci dochodzace do
5%, co moze mie¢ miejsce przy sto-
sowaniu metody kolejnych przybli-
zen i sposcbu momentéw wtérnych.
Jezeli dla tych lub innych powodéw
n zbliza sie do ¢, to dokladno$é obli- Rys. 24

czeh przyblizonych moze sie okazac

niedostateczna; takich wypadkéw przy projektowaniu konstrukeji sta-
ramy sie jednak unikaé. Podobne rozumowanie mozemy przepro-
wadzié¢ i dla przypadku, gdy (rys. 24) krzywa Osg zostanie zastgpiona
przez krzywa Os, g. '

Fi
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Badanie drgan konstrukcji budowlanych polega na ustaleniu typu
drgan, ich czestotliwo$ci i amplitud. Sposoby badania zalezg od stopni
swobody ukladu drgajacego. Rozrézniamy wiec uklady o jednym stopniu
swobody, o wiekszej, lecz skoriczonej liczbie stopni swobody i o nieskoni-
czenie wielkiej liczbie stopni swobody.

Przez uklad o » stopniach swobody rozumiemy taki uklad, ktérego
polozenie w danym momencie czasu okre$la » parametréw. Uklad o »
stopniach swobody mozemy sobie przedstawié jako niewazki uktad spre-
zysty z zaczepicnymi co niego w réznych prnktech réznymi masemi skupio-
nymi, kazda w jednym punkcie. Liczba réznych mozliwych czestotliwosei
drgan takiego ukladu rowna sie liczbie jego stopni swobody dynamiczne;.

Sila wymuszajaca zaczepiona do pewnego ukladu sprezystego wywo-
luje w nim drgania wymuszone, a jednoczesnie staje sie przyczyna po-
wstawania drgan wlasnych. Z tego powodu amplituda drgan uktadu spre-
zystego, wywolanych przez sile wymuszajaca, moze byé przedstawiona ja-
ko suma amplitud drgan wlasnych y.:i drgan wymuszonych wyym, czyli

(2.2) Y = Ywi + Ywym .

Na skutek oporéw wewnetrznych w materiale lub oporéw zewnetrz-
nych drgania wlasne szybko zanikajg i amplituda drgan wymuszonych
rowna sie wowczas

(23) Ywym = J Yst,

gdzie y, jest ugieciem wywolanym dmaiamem statyecznym sily réwne;j
najwiekszej warto$ci sity wymuszajacej.

Wspoéltezynnik & jest to wspétezynnik dynamiczny, ktéry w razie bra-
ku przyczyn tlumigcych drgania wyraza sie dla ukladéw o jednym stop-
niu swobody wzorem

(2.4) &

gdzie c oznacza czestotliwo$¢ wahan sity wymuszajgcej, a n czestotli-
wos$¢ drgan wlasnych ukladu sprezystego.

W przypadku gdy drgania doznajg tlumienia w ten sposéb, ze opor
stawiany drganiom mozna uwazaé za proporcjonalny do predkosci ruchu
ukladu drgajacego, wspodlczynnik dynamiczny wyraza sie wzorem

1

2\ 4cth?’
Vi o

gdzie wielko$¢ h charakteryzuje opér stawiany drganiom.

(2.5) 9=

574



Znajgc wspoétezynnik ¢, mozemy na podstawie ze wzoru (2.3) wyznaczyé
odksztalcenia i naprezenia wywolane w konstrukeji przez sile wymusza-
jaca. Do wyznaczenia wspétczynnikéw dynamicznych i unikniecia rezo-
nansu potrzebna jest znajomos¢ wielkosci n, ktérg obliczamy na podstawie
teorii drgan wilasnych. Tu oddaja duze ustugi metody arytmetyzacyjne,
w szczegblnosci metoda momentéw wtérnych.

Réwnanie rézniczkowe drgan wilasnych preta prostego w dwoéch punk-
tach swobodnie podpartego ma posta¢
(2.6) %g +nig=0,
gdzie n oznacza czestotliwo$¢ kolows, a » odchylenia poszczegdinych
punktéw preta od polozenia réwnowagi, za ktére przyjmujemy dla preta
ustawionego pionowo polozenie wyjsciowe (rys. 25), a dla preta
poziomego krzywsg odksztalcong ugiecia statycznego (krzywa 3
AO, na rys. 26). @
Réwnanie (2.6) jest z matematycznego punktu widzenia
identyczne z ro6wnaniem dotyczacym wyboczenia preta prostego

d’y

(2.7) EJ-——5 +Py=0.
dx?® 0 )
Nasuwa to mozliwo$é zastosowania do wyznaczenia cze-

stotliwoéci drgan wlasnych sposobu momentéw wtérnych. Nie-
ktére z obliczen wykonanych tym sposobem maja charakter
obliczen $cistych, a niektére przyblizonych.

Aby w tym ostatnim wypadku wyznaczyé¢ czestotliwosé ko-
lowa m, przyjmujemy dla osi preta wygietego pod wplywem Ing
sil bezwltadno$ci pewna czynigcg zado$¢ warunkom brzegowym gy 95
dowolng krzywa, ktérej rownanie zawiera nieznang amplitu-
de 6 jako parametr. Na podstawie tej krzywej wyznaczamy odchylenia
belki 5 od polozenia réwnowagi, a na podstawie odchylenn odpowiadajgce
im sitly bezwladnosci. Na podstawie wyznaczonych w ten sposob sit obli-
czamy sposobem momentéw wtoérnych
rzedne nowej krzywej odksztatconej osi
preta i poréwnujemy te krzywg z krzy-
wg przyjeta a priori. Przyréwnujac,
mianowicie, badZz najwieksze rzedne
obydwoéch krzywych, badz tez pola
ograniczone przez te krzywe, znajdujemy poszukiwang czestotliwosé
z rbwnania

n
Rys. 26

(2.8) max Y, = max ¥s,
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badz z réwnania
(2.9) Q,=0,,

gdzie znaczki 1 i 2 dotycza dwéch kolejnych krzywych.

Otrzymamy w ten sposéb czestotliwo$é n w pierwszym przyblizeniu.
Drugie przyblizenie znajdziemy powtarzajgc przytoczony schemat obli-
czenia z tym, ze role krzywej przyjetej a priori odegra¢ ma tu druga
z wymienionych krzywych. Tak samo postgpujemy przy poszukiwaniu
dalszych przyblizen.

Przedstawiony schemat postepowania bywa nazywany metoda kolej-
nych przyblizen, chociaz nazwa powyzsza nie charakteryzuje go dobrze,
gdyz nieraz juz pierwsze przyblizenie daje wynik $cisty. Istote metody
stanowi wilasciwie okreslanie tej samej wielkosci przez te samg (idem per
idem).

Przyblizony sposob obliczenia drgan wlasnych nie pozwala na jedno-
czesne wyznaczenie czestotliwodci pierwszego, drugiego, ‘trzeciego i dal-
szych rzedoéw. Do wyznaczania czestotliwosei kazdego rzedu nalezy przyj-
mowa¢ inng krzywa jako pierwszg postaé drgan wlasnych. Nie jest to
duza wada metody, gdyz do niedawna predkoéci ruchu pociagéw i maszyn
nie dawaly podstaw do oczekiwania rezonansu wahat sit wymuszajacych
z drganiami wlasnymi wyzszego rzedu niz pierwszy. Obecnie wobec du-
zych predkosci pociaggéw i ruchu maszyn wahania sil wymuszajgcych moga
wprawdzie latwo wpa$¢ w rezonans z drganiami wlasnymi konstrukeji
podtrzymujacych drugiego rzedu, ma to juz jednak rzadko miejsce z drga-
niami trzeciego rzedu. '

Nizej oméwione beda przypadki drgan wlasnych 1 i 2 rzedu ukladéw
o 1 do 4 stopni swobody i ciat sprezystych. Odchylenia 7 od polozenia
réwnowagi bedg odkladane dla uproszczenia rysunkéw od nieodksztalco-
nej osi preta, niezaleznie od tego czy o$ ta jest pionowa, ezy pozioma.

Bierzemy pod uwage pret niewazki w dwoéch punktach swobodnie
podparty z zaczepionym w jego $rodku C ciezarem o masie m (rys. 27).
Prosta AB w mys$] tego, co powiedzieliSmy wyzej, uwazamy za potozenie
réwnowagi, a mieznang amplitude drgan wiasnych ukladu w punkcie C
oznaczamy przez d. Wobec tego odchylenie » cigzaru C od polozenia réw-
nowagi wyraza sie wzorem

(2.10) n=2d0sinnt,

gdzie n oznacza czestotliwos$é drgan wtasnych, a ¢ czas liczony od chwili,
kiedy pret zaczyna sie wyginaé w stosunku do polozenia réwnowagi.
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Sita bezwladnosci ciezaru C odpowiadajaca odchyleniu % wynosi
(P/g) (d*n/dt?) dla P = mg; przy najwiekszym odchyleniu 6, tzn. przy
sin nt = 1, sita bezwladnosci

(2.11) PC‘—‘ g n (S- “qq/l »
{ K ]

Sita (2.11) wywoluje w $rodku ho 2 ~ 7"
preta moment zginajgcy 4 ¢ B
) R 3
(2.12)  M.=-- P, ¢
4 Rys. 27

czemu odpowiada wykres momentéw zginajacych, czyli wykres obcigzen
wtornych w precie AB, przedstawiony na rys. 27 jako trojkat ABC'.
Pole wykresu obcigzen wtérnych

(2.13) ' p:%Mcl,

a odpowiedni moment wtérny w punkcie C

1 P
N o = 2 sy
(2.14) “(C_A 8 g ntol>.

Dzielac ten moment przez sztywno$¢ preta EJ znajdujemy, Ze naj-
wieksze odchylenie ciezaru C
N,

(2.15) maxn:--Ef.

A wiec przyjawszy za punkt wyjs$cia do obliczen amplitude 8 drgan
wlasnych ciezaru C doszliSmy do nowej warto$ci amplitudy, tzn. ze
(2.16) maxn=24.

Z roéwnania tego znajdujemy poszukiwang czestotliwosé kolowa n
drgan wiasnych ciezaru C:
48EJg

(2.17) n= PI3

Otrzymany wynik jest w tym wypadku wynikiem $cistym.

Przechodzac do ukladéw o dwdch stopniach swobody dynamicznej bie-
rzemy pod uwage pret niewazki AB, na ktérym w punktach C i D roz-
mieszczonych wedlug rys. 28 zaczepione sa dwa ciezary o réwnych ma-
sach m.
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Poniewaz mamy do czynienia z ukladem o dwoch stopniach swobody,
beda tu mialy miejsce dwa rézne rodzaje drgan wlasnych o réznych cze-
stotliwosciach (rys. 28b i 28c).

W przypadku przedstawionym na rys. 28b oznaczamy przez ¢ naj-
wieksze odchylenia rozpatrywanego ukiadu w punktach C i D. Odpowia-

daja temu dwie sily bezwtadno$ci cie-

T A 5 — 5 jar6w CiD
P S P N P BN p
. 4 2 4 | (2.18) P.— P, = —n%é
) C D
b ‘ l g
§ d
w/i oraz wykres momentéw zginajacych
c D w precie CD przedstawicny na
I i D rys. 28d.
A /‘@"\g Przyjmujsc wykres AC'D'B za
d N‘Eé/ g = wykres ckecigzen wi¢rnych znajdujemy
A C ) g mcmenty wtérne M,.=IMN, w punk-
Nyo s tach C i D i odpowiednie odchylenia
\I c -
0 C' D’D, M.
~ (2.19) max,.= maxn, = = .
A C .8 B

\V b Poniewaz odchylenia te rowne sz

przyjetym z géry amplitudom punk-
tow C i D, wiec max n,=4, skad
mozna obliczy¢ czestotliwo$¢ kotowa pierwszego rzedu rozpatrywanego
uktadu

o ZI_SEjg
(2.20) n, = /71313_ :

Aby wyznaczy¢ czestotliwo$e drugiego rzedu tego ukladu, odpowiada-
jaca typowi drgan przedstawionemu na rys. 28¢, przyjmujemy, ze ampli-
tudy drgan punktéw C i D sg réwne J i odlozone w przeciwne strony.
W zwiazku z tym zaczepiamy w tych punktach dwie sity wyrazone wzo-
rem (2.18) i skierowane w przeciwne strony. Odpowiedni wykres momen-
tow zginajacych przedstawiony jest na rys. 28e. Uwazajgc ten wykres za
wykres obcigzenia wtérnego znajdujemy ugiecia preta AB w punktach
C i D a tym samym najwieksze odchylenia od polozenia réwnowagi:

_ BB

192EJ

Przyréwnujac do siebie dwa rézne wyrazenia na to samo odchylenie znaj-
dujemy z rownania max 7, =90

192EJ g
(2.22) nz:gv/ﬂ,PUj?

Rys. 28

(2.21) max 1. =
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Z poréwnania czestotliwo$ci pierwszego i drugiego rzedu widzimy, ze
czestotliwoéé n, jest dwa razy wieksza od czestotliwosci n;.

Dalej podamy ogélniejsze rozwigzanie zadania podobnego do poprzed-
niego.

Bierzemy mianowicie pod uwage pret niewazki AB w dwoch punktach
swobodnie podparty, do ktérego w punkcie C w odlegloSciach réwnych
/3 od podpér zaczepione sa

dwa ciezary o dwu réwnych z 1, 1” /cli_‘_\ .
masach, 1 wyznaczamy czesto- Ar-“ s ¥ @ o B _X
tliwosé drgan drugiego rzedu ‘\K" R ‘
rys. 29a). 1 1

(ry l [ ?l T 3[

1
Przyjmujemy w pierwszym ‘” 3 p
przyblizeniu, ze przy drg‘aniac.h b A c [
drugiego rzedu pret wygina sie ' , 72\
wedtug sinusoidy c A\g@ \ %‘
. 2nx
(2.23) 7n==90sin »7:—'7 , Rys. 29

gdzie ¢ oznacza amplitude w punkcie S polozonym w odlegtosci /4 od
podpory.

Najwieksze sity bezwladnosci mas ciezaréw zaczepionych w punktach
C wynoszg

(2.24) P'=-—-n*y;.

gdzie 7, sa ugieciami (amplitudami) odpowiadajgcymi najwigekszym sitom
bezwladnoéei. Sity te sa zwrécone w kazdym z punktéw C w przeciwne
strony. Ugiecia 7, otrzymamy wstawiajac w réwnanie (2.23) x = 1/3:

(2.25) e == 0,86603 8 .

Wykres momentoéw zginajagcych w belce AB, odpowiadajacy dziataniu
dwéch sit P’ skierowanych w przeciwne strony, przedstawiony jest na
rysunku 29b. Uwazajac wykres ten za wykres obcigzenia wtornego znaj-
dujemy reakcje ¥ podpory A belki AB od tego obcigzenia:

P
81

(2.26) A=

Moment wtérny w punkeie S wynosi w tych warunkach

. Pl Pl 1,11
Pt B 8 28 Sg 2
(227} b= 412 4'2 4

1— =0,00192 P’ 1%

w| =
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Ugiecia w punktach S réwne sobie, lecz skierowane w przeciwne stro-
ny réwnaja sie

M; _ 0,00192P' 1 0,001921° P \
BRI By T gy g 0866030,

(2.28)
Przyréwnujac ugiecia 6 do zalozonego z gory ugigcia #s; dochodzimy
do réwnania

(2.29) 7.==0,

z ktérego znajdujemy
057/ EJY
Dalsze przyblizenie dla n moglibysSmy otrzymac przez powtérzenie
przytoczonego toku obliczenia przyjmujac w nim zamiast 6 ugiecie 1),

i zastepujac przyjeta wyzej sinusoide krzywa odksztalcong belki, wy-
znaczona na podstawie wykresu obciazen wtérnych.

Przypadek drgan ukladu o trzech stopniach swobody rozwazymy na
przykladzie przedstawionym na rys. 30. Obliczymy mianowicie czesto-
tliwo$¢ drgan podstawowych uktadu.

Bierzemy dla przykladu belke w dwdéch punktach swobodnie podparts
o rozpietosci I = 10 m. W punktach 1, 2, 3 zaczepione sg ciezary P, = 10 t,
P, = 20 t, P, = 10 t. Belka jest nie-

A A
=2 aJ—1—3 B, U ? -.p"Lg wazka.
C ] [ y 8 x . L
Wobec tego, ze obcigzenie preta
N_——-/;T niezbyt odbiega od symetrycznego
1 B wzgledem S$rodka belki, przyjmuje-
Rys. 30 my za o$ odksztalcong krzywa
(2.31) 5= 0 sin i’-f

gdzie d oznacza ugiecie belki w $rodku. Podobnie jak w przypadkach roz-
patrzonych wyzej przyjmujemy

i Py
(2.32) 1)1 = ~;— na’l’}, :_-_s] 1)1
craz odpowiednio
(2.33) B8y, P =g, .

Wstawiajage w réwnanie (2.31) kolejno & = 0,21, x =05( i x = 0,71
znajdujemy

(2.34) 7 ==05888,  y,=2o, vs = 0,808 6 .
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Reakcja podpory A spowodowana przez sity P’ wynosi

2

(2.35) Ri—0,8P,+ 0,5P, + 0,3 P,— 17,12 1;, 5,

a wobec tego momenty zginajace pod poszczegblnymi ciezarami beda
réwne

n?
(2.36) M,= 34,24 p

9

n?
g

0.

2
s, M2:67,967;L~6, M, = 50,40
Rozklad momentéw zginajacych przyjmujemy dalej wedlug prawa

(2.37) M = M, sin 1’13".

Wobec malej liczby ciezaréw skupionych na belce rzeczywisty wykres
momentéw zginajacych jest bardziej stromy niz wykres (2.37) przy
M, = My,. Aby to nie odbilo sie na momentach wtérnych, bierzemy pod
uwage, ze srednia z rzeczywistych momentéw powinna sig réwnaé Sred-
niej z momentéw w tych samych punktach obliczonych wedlug wzoru
(2.37). Stosunek Sredniej momentéw (2.36) do momentu M, wynosi 0,74,
a stosunek $redniej odpowiednich rzednych krzywej (2.37) do My, réwna
sie 0,80. Wobec tego zastepuje- ‘
my rownanie (2.37) przez réw-

5 1 2 3 4
[l

ax s iy
(2.38) M= %%g Mg, sin jl‘? . "’Sngae——zm et Y160 —oi 145 ~1
’ S ‘° b3
Moment Mg, bedzie w tych 5 § § 8 §
A = = <
warunkach réwny . =T ]] T I
(239)  Mey=0,93Ms, -, —

ﬂz | gl pz: l%’ lal
n? c

=63,80—96.
' S = 5 =
Dzielac ten moment przez @ = g € v
EJ i przyréwnujgc iloraz do 4 e S [ L=
znajdujemy
Rys. 31

(2.40) n=0,0398EJg

wobec dokladnej warto$ci wspoétezynnika przy pierwiastku 0,0401 poda-
nej przez K. S. Zawriewa.

Wyznaczenie czestotliwos$ei drgan wlasnych uktadu o czterech stop-
niach swobody dynamicznej przeprowadzamy dla przypadku przedstawio-
nego na rys. 31, gdzie P,=P,=451ti P,=P,=3 t oraz | =775 m.
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Za rownanie pierwszej przyblizonej postaci osi odksztalconej przyj-
mujemy réwnanie
(2.41) ‘ n==04sin Eif ;
gdzie 0 oznacza nieznane ugiecie belki w $rodku, mierzone wzgledem po-
lozenia rownowagi (wzgledem t¥w. poziomu statycznego). Rysunek 31b
przedstawia wykres sinusoidy (2.41) ze wskazaniem rzednych wyrazaja-
cych przesuniecia punktéw zaczepienia poszczegdlnych ciezaréw P. Po-
le Q, zawarte miedzy sinusoida a osig odcietych wynosi

(2.42) g =215
A

Najwieksze wartosci sit bezwiadnosci znajdujemy ze wzoru

(2.43) P'= ‘I)£n2 ;
9
a wiec
] P,—2,26 %‘i, P,—291°"
(2.44)
I P,—295°" P,=2,50°"

Po sporzadzeniu wykresu momentéw zginajacych dla sil (2.44) i po
znalezieniu odpowiednich momentéw wtornych dochodzimy do nowej
odksztalconej, przedstawionej na rysunku 31d; znajdujemy nowe pole za-
warte miedzy ta krzywa a osia odcietych

o n?
. 0, —=384,40 —— .
(2.45) , = 384,40 Big

Przyréwnanie pol &, i £, zastepujemy w tym wypadku przez przy-
réwnanie Srednich rzednych obydwoch krzywych; znajdujemy w ten
sposob

(2.46) n=20,113yEJg.

Przechodzgc do obliczenia czestotliwosci drgan wilasnych cial sprezy-
stych, a wiec ukladéw o nieskonczenie wielkiej liczbie stopni swobody,
wykazemy przede wszystkim, ze najnizszej czestotliwosci odpowiada
w tych wypadkach najwieksza amplituda. co ma miejsce przy drganiach
podstawowych.
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Jezeli belka sprezysta ma staly przekroj poprzeczny, to zaleznos¢ mie-
dzy odchyleniem 7 pewnego punktu jej osi od pofozenia réwnowagi
a czasem t wyraza sie réwnamiem

(2.47) Bl g+ p =0

gdzie @ oznacza odcietg punktu, kiérego odchylenie jest ».

Po ustaleniu warunkéw brzegowych dla belek w dwoéch punktach
swobodnie podpartych, belek utwierdzonych na koncach i belek-wspor-
nikéw wyznaczamy czestotliwosei drgan wiasnych tych trzech rodzajow
belek odpowiednio z réwnan

(2.48) sinul=20,
(2.49) cosulcoshul=1,
(2.£0) cosul coshul=—1,
gdzie

I/ n ]/ EJg
u=1,/ — oraz a= —.
a q
Kazdej wartoéci ul odpowiada inna czestotliwosé n i inne réwnanie
fali stojacej:
(2.51) X(x) = D, sinux + D, cosux + D, sinhux + D, coshuzx.

Przyjmujac jedng ze stalych catkowania D za réwna 1 otrzymujemy
dla kazdej z wymienionych wyzej belek wykresy ugie¢ odpowiadajgcych
réznym czestotliwo$ciom drgan, obliczonym z rownan (2.48)-(2.50).

Rys. 32

A wiec np. dla belki-wspornika po uwzglednieniu warunkow brzego-
wych mamy

(2.52) X(x)=D, [(cosux — coshux)+ 0,731 (sinux  sinhux)|,
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co doprowadza do wykresu na rys. 32, na ktérym krzywa I odpowiada
ul = 1,875, krzywa II ul = 4,694, krzywa III ul = 7,855. Z wykresu wy-
nika, ze najwieksze amplitudy odpowiadaja drganiom podstawowym, co
potwierdzaja obliczenia dla dalszych, wyzszych czestotliwosei i dla in-
nych typéw belek. Pozwala to na ograniczenie sie¢ w wielu wypadkach
rgan konstrukcji budowlanych do badania samych tylko drgan podsta-
wowych. Mozemy to wykonaé¢ sposobem momentéw wtérnych. Podajemy
dwa przypadki tego rodzaju obliczenia.

Bierzemy pod uwage pret utwierdzony w przekroju A i swobodny
w przekroju B; ciezar wlasny preta q kG/em (kilograméw na centymetr
biezacy), EJ = const (rys. 33).

Oznaczamy przez ¢ amplitude drgan podstawowych w punkcie B

i przyjmujemy dla osi odksztzlecnej
preta w czasie drgan réwnanie pa-
X raboli

(2.53) y=10

x‘z

-

Wykres obcigzen preta sitami
bezwladnosci bedzie sie wyrazal
wzorem

2
(2.54) q':sa%.
Najwigkszy moment zginajacy, spowodowany przez sity bezwtladnosc:,
wystepuje w przekroju A i wynosi
612 2 3
(2.55) My==s —~—?az§z) =

sél?
5 )

4

Gdyby chodzilo o sile bezwladno$ci jednego ciezaru zaczepionego
w koncu B preta, mielibyémy do czynienia z nastepujacym rozkladem
obcigzen wtérnych (rys. 33b):
(2.56) M = MA-‘?.
Odpowiadalby temu nastepujacy moment statyczny obcigzenia wtor-
nego preta wzgledem punktu B:
l:l
3

(2.57) Mg ==Ma

Poniewaz glowna czesé sit bezwladnosci preta, jak to wynika z postaci
krzywej odksztalconej, bedzie skupiona okolo punktu B, moment sta-
tyczny Mz w danym zadaniu bedzie mial wartosé zblizong do war-
tosei (2.57).
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Wobec tego przyjmujemy, ze

M

(2.58) 773-— m

Przyréwnujac to nowe wyrazenie na ugiecie preta w punkcie B do
pierwotnie przyjetego 6 znajdujemy

7 /EJg
(2.59) m (1,691) V";-

Wynik $cisty réznitby sie od powyzszego tylko tym, ze wspolczynnik
przy 1 bylby tu réwny 1,67.

Omoéwimy dalej obliczenie czestotliwos$ei drgan wlasnych w kolej-
nych przyblizeniach. Wykonamy to na przypadku drgan podstawowych
preta o ksztalcie klina utwierdzonego w punkcie A i swobodnego w punk-
cie B, o wysokosci w przekroju utwierdzenia 2b, o szerokosci 1 i o cigza-
rze jednostkowym y (rys. 34).

Dzielimy pret na odcinki dx=

: . . a  Ad- 8 X
= 0,21 i w granicach tych odcin- e ———— e
kow zastepujemy w przekroju T ~~J

podiuznym trapezy prostokatami.

Poszczeg6lne odcinki Ax rozpatry- b
wanego preta majg w tych warun- y
kach nastepujace ciezary (rys. 34c):

[ P,=0,18-2bly,

| P.=0,14-2b1y, c
(2.60) i P,—0,10-2bly,

l P,=0,06-2bly,

P,=0,02-2bly. Rys. 34

Przejscie od sit P do najwiekszych dzialajgcych na pret sit bezwtadnos-
ci odbywa sie na podstawie wzoru

2

n
(2.61) P=P L9,
g

gdzie # oznacza przesuniecie punktéw zaczepienia sit, ktére obliczamy
w pierwszym przyblizeniu wedtug paraboli

(2.62) n=0—
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Mnozgc sily (2.60) przez przesuniecia #=0,014, #5=0,090 itd. znaj-
dujemy:

n3 o
P;=0,0018 - 2b1y»—g—
n? , ni o
(2.63) P5=0,0126 - 2bly~?—, Py==10,0294-2bly
2 2

%= 0,0250 - 2bl y

, nid

Silty P* wywoluja nastepujace momenty zginajace w poszczegblnych
przekrojach 1,2, 3,4 1 5:

2
1

l Mi=0,04312-2bly

| ) 2
J ’ 1 n
(2.64) | M5 0,02648 - 2bly o l,
| ) .
ns o n2s
| n;= 0,01236 - 2bly M=,

Wobec zmiennosci przekroju poprzecznego rozpatrywanego preta znaj-
dujemy jego obcigzenie wtdérne na podstawie wykresu momentéw M’
zmieniajac rzedne (2.64) w stosunku odwrotnym do trzecich poteg wyso-
ko$ci klina. W ten spos6b dochodzimy do nastepujacych rzednych wykre-

su obcigzen wtérnych:
2

I Mi = 0,05933 - 2bl

1o n?é
(2.65) ! My =0,07719 - 2bly l, Mi':0,11988-2bly—?;—l,
|
i . nid y )
M3 = 0,09888 - "blﬂ/wa —1, M; = 0,405

Przyjmujemy, ze na powierzchni poszczegélnych odcinkéw momenty
M” nie ulegna zmianie, i znajdujemy nastepujace warto$ci powierzchni
pol obciazenia wtérnego na tych odecinkach:

n?
[, ==0,01187 - 2bly ——12,
|
! nio n3 o
(2.66) P, =0,01544 - 2bly—g—l’, ‘154:0,02398-2bly—g—#lz,
ll nio ni o
D, = 0,01978 - 2bly- 5 *, \l‘5:0,08100-2bly43~~l".
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Pola P przyjmujemy dalej za sity skupione w punktach 1, 2, 3, 4 i 5,
wobec czego moment statyczny tych sit wzgledem punktu B wynosi
n?é
(2.67) Mp = 0,04667 - 2bly —;v .
Wreszcie z réwnania
(2.68) Ny =20,

czyli z réwnania

Y
(2.69) 8

g7
gdzie J dotyczy przekroju utwierdzenia, dochodzimy do nastepujacej czg-
stotliwoéci kotowej drgan wilasnych klina w pierwszym przyblizeniu:

} _ 46%9b  /Eg
(2.70) w==F V35,

Aby znalezé czestotliwosé drgan podstawowych w drugim przyblize-
niu, musimy przede wszystkim wyznaczy¢ na podstawie otrzymanej cze-
stotliwosci drgan w pierwszym przyblizeniu nowe wartosci amplitud preta
w czasie drgan podstawowych. W tym celu obliczamy kolejno momenty
statyczne M’ dla poszczegdlnych punktow preta:

2

nié
M5==0,00030-2by g -1,

9\

n‘fé , n;O

(2.71) i Ms=0,00237 - 2by - g ", My =0,01724-2by ra ",
§ n‘ié 1125

[ 95— 0,00782 - 2by— -1, M5 =0,03144 - 2by *g*l“

Stad majac na uwadze, ze w przekroju utwierdzenia J = (2b)?/12, znaj-
dujemy poszukiwane ugiecia:

’71:%),%;3—0 2by-%5—l‘::0000452yEg:l
ﬂz-O—OEO?Z_ 2byf;—bl4#00035622 ,‘”,
(2.72) n= 202 2by nia 1420,0117321 bT"
G —0;()1;;% *2by 32_5_ 11=10,02586 gnff ;
- 00E3}44 2by1?l4=o,q471622 1:214
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Odpowiednio najwigksze sily bezwladno$ci w drugim przyblizeniu wy-
niosg (n, oznacza tu czestotliwo$¢ pierwszego rzedu w drugim przyblize-
niu):

. o 4y’ nidl?
P{=P; = 0,0000810 mj o,
.. n; , dyiniol
Py=P, *1, = 0,0004984 1 Eb -
(2.73) P,—p, "™y — 00011730 27 T O¥
3= 2Eb ’
, n2 L 4yinldl?
P{=P, = 00015516 —
PP, — 00009432 L O
5 5 g s ) 2" 2 Eb

Sity te wywoluja nastepujace momenty zginajace w poszczegblnych
przekrojach 1, 2, 3, 4 i 5:
4y n2éls
9°Eb
49202618
g°Eb ~’
49°n7 18
g*Eb ’
M, =0,0001886 n? 2y ov
=Y, n, —QQT,
4y2:n?6l°'
9°EDb

=0,0022545n —

M, = 0,0014209 n2

(2.74) M= 0,0006876 n

= 0,0000236 n?

Zmieniajac te momenty odwrotnie proporcjonalnie do trzecich poteg
wysokosci klina dochodzimy do nastepujacych rzednych nowego wykresu
obcigzen wtérnych:

o M P L L
My =329 3092w T gEb

M, y2 n2ols

VV: - 2

My = gy = 0004142 m) — o,

LM 492280
(2.75) M; = 5755 = 0008500 ——,

= 0.006985 n2 7 ™3V
4 -0_@_ g g‘Eb oo

M M, 0,023600n2 ~7- T2
_Ha)rll n _—TEb“ :
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Znajdujemy dalej nowe wartosci p6l nowego obcigzenia widrnego dla
poszczegblnych odeinkéw preta:

P, =M, -0,21=0,000618 nZM
1 1Y ) 2 ngb ,
P, =M, -0,21==10,000828 n2 Ml—
2 2 ’ ’ 2 gz Eb ’
(2.76) P, =M, -0,21=0,001100 n} -~%_,7;§§l' ,
P, =M, -0,21=0,001397 n2 é—yjlﬁ or
4 4 ’ ’ 2 ggEb ’
P. =M -021= 0004720n?74—yj?3ﬂ .
5 5 ’ ) 2 g_' Eb

Uwazajac znowu pola ¥ za sily skupione w punktach 1, 2, 3, 4 i 5 obli-
czamy nowy moment statyczny tych sit wzgledem punktu B:
v 5 497 niol*

Daje to nowa warto$é amplitudy drgan podstawowych w punkcie B:

0,002577 , 4y°n3ol°
(2.78) 1) = ol n; o b ,

dzieki czemu réwnanie (2.68) przybiera postaé

0,002577 , 4¥*midl _ o,04667 ,, nidV

(2.79) R g T e S A

Stad znajdujemy n, czestotliwo$é drgan podstawowych w drugim
przyblizeniu:

_52109b_ /Eg
(2.80) | My =—""75 T

Czestotliwo$¢ drgan podstawowych w trzecim przyblizeniu n, otrzy-
ma¢é¢ mozemy wedlug amplitud wyznaczonych na podstawie czestotliwosci
w drugim przyblizeniu; wynosi ona

5,374 b Eg
(2.81) ‘n3 == ———lz—- v 3 y s

obliczenie za$ Sciste wykonane przy uzyciu funkcji Bessela daje w tym
wypadku

(2.82) g, SR o f B
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W przypadku podiuznych podstawowych drgan wlasnych pretow pro-
stych role poprzednio przyjmowanych a priori krzywych odksztatconych
b przy zginaniu odgrywaja krzywe wyrazajace za-

. A , leznos¢ przesuniet sprezystych v poszczegélnych
przekrojow preta od ich polozen poczatkowych.

' x Omoéowimy to w przypadku przedstawionym na
l% N rys. 35.

Oznaczamy przez 6 pionowe przesuniecie prze-
‘l kroju B i przyjmujemy, ze przesuniecia v po-
% szczegbdlnych przekrojéw preta wzdiluz jego dtu-
= gosci bedsg sie zmieniatly wedlug réwnania (rys.
T 35b)
|

aTx

(2.83) v=¢ sIn - 2,1 .

Na element I preta (na rysunku zacieniowany
uko$nie) dziata sila rozciggajgca S, na ktérg skta-
dajg sie sity bezwladnosci elementéw II (na
rysunku zacieniowanie poziome) zawartych w granicach od = = x, do
x=1L

Masa jednego elementu II wynosi (A/g) dx, a odpowiednia najwieksza
warto$é sity bezwladnosci A ydxn*v. W zwigzku z tym

Rys. 35

!
(2.84) == {él n?é sin T % dxziqlnzéﬁ p—
g 21 g pe

TX,
21 °

o/

X,
Wydluzenie elementu I pod dzialaniem sily S réwna sie

__Sdx,
(2.85) Adx,= EA

W tych warunkach calkowite najwieksze wydtuzenie preta AB wynosi

1 [
(2.86) vB--—f/lde: r‘%”ﬂnzaﬂ L oos PG

n EA 21
_ Y oas (2001
_gné(n)E'

Przyréwnujac to wydluzenie do przyjetego z gory najwiekszego prze-
suniecia 6 znajdujemy

7 2
(2.87) lnﬂa(zl) Ly
g
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skad

e % S Eg
(2.88) n 91 l/y )

Aby znalezé warto$é czestotliwosei m w drugim przyblizeniu, nalezy
granice calkowania we wzorze (2.86) «od 0 do I» zastapié przez granice
«od 0 do x», dzieki czemu wzér ten da warto$ci v przesunie¢ poszczegdl-
nych przekrojow poprzecznych wyrazone przez czestotliwo$é n w pierw-
szym przyblizeniu. W ten sposéb zamiast krzywej rys. 35b bedziemy
megli zbudowa¢ nowg krzyws. Postepujac z niag w ten sam sposéb jak po-
przednio dojdziemy do nowej wartosci n. W danym wypadku szczegol-
nym czestotliwosci n w pierwszym i w drugim przyblizeniu sa sobie
réwne.

Obliczenia czestotliwosci drgan wlasnych sposobem arytmetyzacji
tych obliczen w przypadkach wymagajacych dtuzszych rachunkéw omé-
wione sg w zbiorze zadan autora.

5. Interpretacja dynamiczna metody Ritza i Timoszenki

Analiza zjawisk dynamicznych w pracy konstrukeji inzynierskich mo-
ze by¢ wyzyskana do wyjasnienia i poglebienia niektérych teorii statycz-
nych, w szczegélnosci przyblizonej metody Ritza i Timoszenki
wyznaczenia odksztalcen uktadéw sprezystych i sit krytycznych.

W zastosowaniu do wyznaczenia odksztalcen ogloszony przez
W. Ritza w 1909 roku pomyst matematyczny polega na szukaniu takiej
funkcji w = F (x) wyrazajacej odksztalcenie, aby catka

(3.1) U= | flz,ww,..)dx

w granicach od a do b czynita zado$¢ warunkowi extremum.
Aby znalez¢ funkcje w = F (x), nalezy przede wszystkim przedstawié
ja w postaci szeregu

(3.2) w=y(x) + A, p; (x) + Az, (X) ...

o skonczonej liczbie wyrazéw, w ktérym symbole v oznaczaja pewne
znane funkcje x odpowiadajace tym samym warunkom brzegowym co
tunkcja w, a A,, A, A,, ... pewne nieznane i od x niezalezne wspbélczyn-
niki (parametry).

Wstawiamy nastepnie we wzor (3.1) zamiast w i jej pochodnych szereg
(3.2) lub szereg odpowiednio zrézniczkowany i po wykonaniu catkowania
591
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otrzymanej w ten sposéb funkcji f (x) przedstawiamy catke U jako funk-
cje wspoteczynnikow A, A, 4s, ...t

(3.3) U= ff x)dx=F(4,, Ay As,..).
Wspolezynniki A,, A, A;, ... konieczne do nalezytego okreSlenia od-
ksztalcen za pomoca szeregu (3.2) powinny by¢ wyznaczone z réwnan
ou ou oU
(3:4) o Al_o’ 04, =0, 04,’

wyrazajacych warunek extremum funkeji F (A, A, As, ..), a tym samym
i extremum calki U. '
S. Timoszenko w 1910 roku wprowadzit jako szereg (3.2) szereg
Fouriera, dzieki czemu omawiana tu metoda znalazla szerokie zasto-
sowanie przy obliczeniu odksztalcen belek, plyt, zbiornikéw itd.; w szcze-
gblnosci stosuje on czesto tatwe w uzyciu szeregi sinusowe typu
(3.5) w= A, sin ?fof + A, sin EJF 3,
W konkretnych obliczeniach statycznych role catki U odgrywa catko-
wita energia potencjalna uktadu. A
Istote zagadnienia, ktére ma by¢ w tym rozdziale omoéwione, przed-
stawimy na najprostszym przypadku zastosowania metody Ritza i Ti-
moszenki do belki w dwéch punktach

P swobodnie podpartej i obcigzonej w $rod-
A lC g x ku sila skupiona P (rys. 36). Przebieg obli-
T L | L f czenia jest tu nastepujacy.
w2 T2 Przyjmujemy dla ugigcia belki v = w
Rys. 36 wyrazenie
(3.6) = A sin nE

l

przedstawiajace pierwszy wyraz szeregu (3.5).
Energie sprezysta uktadu obliczamy ze wzoru

de
3-7 _——
(3.7) 1% o EJ

0

gdzie M oznacza moment zginajacy w przekroju poprzecznym belki odda-
lonym o x od podpory 4, a prace sil zewnetrznych ze wzoru

(3.8) T == Pye.

592



W tych warunkach
3.9 flx,ww,.)de=dV —dT=d(\V—T)=

Wstawiamy we wzér (3.7) wyrazenie
(3.10) M=EJy",

gdzie z kolei y” obliczamy na podstawie réwnania (3.6). Réwniez na pod-
stawie réwnania (3.6) znajdujemy ys-. W ten sposdb dochodzimy do naste-
pujacych wyrazen na Vi T orazna U=V —T:

. EJa*
(3.12) T=PA,
(3.13) U:,E,Zi’ff A*— PA.

Wielko$é U posiada w danym wypadku ten sam sens co we wzorach
(3.1) i (3.3), gdyz

1 {

(3.14) U:ff(x)dx:fd(v—:r).
0 0

Aby znalezé wspé6lczynnik A we wzorze (3.6), ustawiamy réwnanie
oU

(3.15) A 0,

skad znajdujemy, ze

(3.16) A= A

o ~ 48TEJ

Przebieg przytoczonego obliczenia narzuca pytanie, dlaczego korzysta-
lismy wyzej ze wzoru (3.7) na energie sprezysta, ustawionego w zalozeniu,
ze sitla P wzrasta od 0 do swej wartosci ostatecznej w sposob ciagly i nie-
skohczenie powolny, podczas gdy zastosowany jednoczes$nie wzdr (3.8) na
prace sit zewnetrznych przewiduje nagle zaczepienie sity P, tzn. zacze-
pienie sily o jej wartosci ostatecznej. Do wyjasnienia tej sprawy zmierzaé
bedziemy dwiema drogami, podajac, z jednej strony, formalne uzasadnie-
nie réwnania

(3.17) d(V—-T) =0,
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ktorego bezposrednig konsekwencja jest rownanie (3.15), oraz hadajac,
z drugiej strony, przebieg zginania belki w przypadku szczegélnym dopie-
ro co omowionym (rys. 36).

Uzasadnienie wzoru (3.17) przeprowadzamy dla zwiezlo$ci na sprezy-
stym ukladzie kratowym i rozpowszechniamy je na wszystkie uklady
sprezyste.

O ile kratownica znajduje sie w polozeniu réwnowagi, musi byé spel-
nione réwnanie

X .

(3.18) va Zsm:—o,

1 1

gdzie k oznacza liczbe wezléw w kratownicy, r liczbe pretow, P sily za-
czepione do poszczegélnych wezlow, S sily w poszezegdlnych pretach,
v przesuniecia poszczegblnych wezlow i Al sprezyste wydtuzenia lub skro-
ty (zmiany dlugo$ci) poszczegélnych pretéw. Réwnanie (3.18) wyraza
w przypadku kraty zasade prac wirtualnych.

Jezeli sity P wzrastajg od zera do swych wartosci ostatecznych w spo-
s6b ciggly i nieskonczenie powolny, otrzymuja one w kazdej chwili doko-
nywajacego sie odksztalcenia takie wartosci, ze sg w stanie zrownowazy¢
powstajace w ukladzie sily wewnetrzne, lecz nie mogg spowodowa¢ drgan
ukladu. W ten sposéb praca sit zewnetrznych zamienia sie catkowicie
w energie sprezysta uktadu, czyli Ze ma tu miejsce zaleznosé

(3.19) V="T.,

gdzie T, oznacza prace sit zewnetrznych w zalozeniu, ze sily te wzrastaig
w sposdb ciggly i nieskonczenie powolny od zera do swej warto$ci osta-
tecznej. ’

Jezeli natomiast sily P posiadaja wartosci state i skonczone, wowczas
przewaga pracy sit zewnetrznych nad energia sprezystg przetworzy sie
w energie kinetyczng i uklad dozna drgan, przy czym poszczegdlne jego
punkty beda ulegaly wahaniom wzgledem pewnych polozen réwnowagi,
ktdre sie ostatecznie ustalg jako odpowiadajace danemu obcigzeniu.

Iloé¢ energii sprezystej nagromadzonej w danym ukladzie po ustale-
niu sie stanu rownowagi nie jest zalezna od drog, ktorymi uktad zmierza
do tego stanu. Istotnie, wyrazenia na energie sprezysta jednostkows, tzn.
nagromadzona w szeécianie o wymiarach 1 X 1 X 1 maja postaé

1 ., 1,
(3.20) V,= 2'(7“E,, Vr——’f:fzfa“E,
gdzie o oznacza naprezenie normalne wystepujace na ptaszczyznach ogra-
niczajacych szeScian, a & wydluzenie jednostkowe jego krawedzi; energia
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sprezysta nagromadzona w catlym ukladzie sprezystym wyraza sie wobec
tego wzorem

(3.21) V= [[[Vdxdydz,

gdzie calkowanie dotyczy objetosci rozpatrywanego ciala.

Ze wzoréw (3.20) i (3.21) wynika, ze energia sprezysta ukladu wzrasta
w sposoéb ciagly, o ile w ten sam sposéb wzrastaja wydluzenia jednostko-
we e, a wiec i odksztalcenia. Poniewaz z do$wiadczenia wiemy, ze ciato
sprezyste odksztalca sie w sposob ciagly niezaleznie od tego, czy sity ze-
wnetrzne zostaly zaczepione jako wzrastajace w sposéb ciagly i nieskon-
czenie powolny, czy tez nagle, o swej wartosci ostatecznej, mozemy wiec
twierdzié, ze nie zalezy od tego réwniez i sposob, w jaki wzrasta energia
sprezysia ukiadu. A wiec ilo§¢ energii sprezystej nagromadzonej w danej
chwili w odksztalconym elemencie konstrukeyjnym zalezy wylacznie od
stanu jego wygiecia w tym czasie.

Poniewaz przy zaczepieniu do kratownicy sit P o wartoSciach statych
i przy zwiazanych z tym drganiach uktadu poszczegdlne prety beda do-
znawaly okresowych zmian dlugosci w sposéb ciggly, wiec 1 sily w nich
wystepujace beda, w mysl prawa H o o k e’ a, réwniez zmieniaty sie w spo-
sOb ciggly.

Po uspokojeniu sie drgan ukladu w stanie rownowagi ustala sie takie
samo odksztalcenie ukladu, jakie mialoby miejsce, gdyby sily P zostaly
zaczepione jako wzrastajgce od zera do swej ostatecznej wartoSci w spo-
s6b ciagly i nieskonczenie powolny. Réwniez i energia sprezysta ukladu
jest w obydwéch wypadkach ta sama, jednak w poszczegdlnych stadiach
dokonywajacego sie odksztalcenia zaleznos¢ miedzy energia sprezysta
uktadu a praca sit zewnetrznych nie odpowiada rownaniu (3.19).

Wobec tego, ze w rownaniu (3.18) w postaci ogélnej wielkosci v zalezg
tylko od wielkoéci A1i odwrotnie, mozemy wstawi¢ w nie zamiast v i Al
nieskonczenie mate przesuniecia dv weztéw kratownicy z polozenia roéw-
nowagi i odpowiadajace im nieskonczenie male przyrosty zmian diugosci
d (A1) pretow. W ten sposob znajdujemy, ze

(3.22) N Pdo— N Sdiil)=0.

Nieskoniczenie matym przyrostom d(41) zmian diugosci poszczeg6l-
nych pretéw kratownigy odpowiadaja nieskonczenie mate przyrosty sit
w tych pretach, tzn. ze

: dSli
(3.2 A =-_—
(3.23) d(Aal) EA’
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wobec czego prawy skladnik lewej strony réwnania (3.22) przybiera
postac

! dSl

(3.24) VMsduan= S
b) >
lub postaé
(3.25) 2 (A1) =d Z EEZ’
skad
(3.26) V' Sd(A)=adv,
T

gdyz suma po prawej stronie wyrazenia (3.25) przedstawia energie spre-
zysta ukladu kratowego.

Podczas odchylania sie ukltadu kratowego od polozenia réwnowagi si-
ly P jako niezmienne pozwalaja na nastepujace przeksztalcenia lewego
dodajnika w réwnaniu (3.22):

I
j p— -
(3.27) % Pdv=d Z Pu;
skad
-3
(3.28) 2 Pdv==dT,

gdzie przez T rozumiemy prace sit zewnetrznych jako sume iloczynéw
przesunie¢ poszczegdlnych weztéw kratownicy przez odpowiednie sity.
Roéwnanie (3.22) przybiera w tych warunkach postaé

(3.29) dV—dT=0;
skad

(3.30) d(V—T) =0
lub

(2.31) dU =0,

gdzie U = V — T jest funkcjg parametréow A.
Roéwnanie (3.31) wyprowadzone dla ukladéw kratowych moze byé¢ roz-
szerzone i na uklady pelne. Wyraza ono, ze o ile uklad sprezysty pod dzia-
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taniem sit zaczepionych jako sily stale, a nie jako wzrastajace od zera do
swej ostatecznej wartoSei w sposéb ciagly i nieskoficzenie powolny —
znajdzie sie, po zaniku drgan, w stanie réwnowagi — to funkcja U przy-
bicra wartos$é extremalng.

Catkowanie réwnania (3.31) daje

(3.32) V—T=g,

Przy C > 0 mamy V > T i réwnowaga ukladu sprezystego jest stateczna,
a przy C <0 mamy V <T i réwnowaga jest niestateczna. Przy V = T na-
stepuje przejécie ze stanu réwnowagi statecznej do stanu réwnowagi nie-
statecznej i réwnanie

(3.33) V=T

stuzy wowezas do wyznaczenia sit krytycznych.

Réwnanie (3.33) rozni sie od réwnania (3.19), poniewaz tu mamy na
widoku sily zaczepione w sposéb nagly, a tam w sposéb ciggly i nieskon-
czenie powolny.

Metode Ritza i Timoszenki stosujemy do wyznaczenia od-
ksztalcen pewnego elementu konstrukcyjnego lub do badania jego wy-
boczenia. Interesuja tu nas woéweczas przypadki, gdy V> T igdy V =T.

Wyznaczenie odksztalcenia moze mie¢ tez miejsce i na podstawie row-
nania (3.19), czyli tzw. rownania Clapeyrona, ale w zasadzie tylko
wowezas, gdy poszukiwane uogoélnione przesuniecie wystepuje w punkcie
zaczepienia uogoélnionej sity i gdy chodzi o wyznaczenie odksztalcenia
w tym wlasnie punkcie. Przy wiekszej liczbie sit uogélnionych mozemy
wyznaczyé odksztalcenie ukladu na podstawie twierdzenia Clapeyro-
n a tylko woweczas, kiedy sie zadowolimy w réwnaniach typu (3.5) jednym
wspolezynnikiem A i obliczymy go z réwnania (3.19). Przy wiekszej licz-
bic wspolezynnikéw A nie daje sie to juz wykona¢ i musimy wowczas sko-
rzystaé z zalezno$ci miedzy energia sprezysta ukiadu a praca sit zewnetrz-
nych w ujeciu dynamicznym znajdujacym wyraz w réwnaniu (3.31).

Przechodzac do zbadania zginania belki w dwoéch punktach swobodnie
podpartej i obcigzonej w $rodku jedng sitg skupiona zaczepiong w sposob
nagly, tzn. od razu przy jej wartosci ostatecznej, interesujemy sig przede
wszystkim jakoSciowa strong zjawiska i nie badamy charakteru drgan,
ktore wystepuja i z czasem zanikaja.

Sila P zaczepiona do belki w sposob nagly wykonywa prace, ktéra zo-
staje czeéciowo zuzyta na odksztalcenie belki, czeSciowo za$ na nadanie
poszczegdlnym jej punktom pewnych predkosci, czyli przechodzac w ener-
gie kinetyczna znajdujaca wyraz w drganiach belki okolo pewnego poto-
zenia réwnowagi. W ten sposéb o$ odksztalcona belki bedzie zajmowatla
kolejno nieskonczenie bliskie do siebie polozenia (rys. 37). Potozenie roOw-
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nowagi bedzie tym polozeniem, ktére zajelaby o$ odksztalcona belki, gdy-
by sita P wzrastata w sposéb ciggly i nieskonczenie powolny od zera do
swej wartosci ostatecznej; ugiecie belki pod ciezarem oznaczamy w tym
wypadku przez y,, a najwieksze jej
ugiecie przez y,. Wielkosé vy,, ktorg
uwazamy za ostateczne ugiecie belki,
nie zalezy wiec od sposobu, w jaki
zostala zaczepiona sila P. Potwierdza
to zresztg doswiadczenie.
Zaczepienie do belki sity P w spo-
so6b nagly nalezy uwaza¢ za réwno-
znaczne z zetknieciem sie z belkg ciezaru P posiadajgcego predkosé 0, czyli
ze szczegblnym przypadkiem uderzenia. Z tego powodu najwieksze ugie-
cie belki pod dzialaniem nagle zaczepionej sily wynosi vy, = 2y,. Daje
to podstawe do porownania ze soba zaleznos$ci, jakie zachodza miedzy
energig sprezysta nagromadzong w belce, a pracg sit zewnetrznych —
z jednej strony, w przypadku zaczepienia sit w sposéb ciggly i nieskoncze-
nie powolny i, z drugiej strony, w spos6b nagly.
Robimy to poréwnanie na wykresach rys. 38 ° B
1 39, na ktérych na osi pionowej odkladamy I
zmienne wartosci sity P, a na osi poziomej od-
powiednie ugiecia y belki w $rodku. i dy
Przy ciaglym i nieskonczenie powolnym 17I 7 "/‘ 4
wzroscie sit P od zera do ich wartosci ostatecz- L Up ’ ..;
nej zalezno$¢ miedzy P a y wyraza sie za pomo-
ca linii prostej OB. Na rys. 38 nieskonczenie Bys. 38
mate po.le fzbcd przedstawia przyrost pracy sit zewnetrznych d T, a tym
Samym 1 rowny mu przyrost energii sprezystej d V. Podobnie i pole troj-
kata OBC wyraza tu zgodnie z réwnaniem (3.19) jednoczeénie prace sit
) g zewnetrznych 1 energie sprezy-
[ sta nagromadzong w belce.
Przy nagltym zaczepieniu si-
1y P, jak wykazano wyzej, ener-
gia sprezysta nagromadza sie
w ten sam sposéb, jak przy cig-
& glym i nieskoniczenie powolnym

e yg e fy

Um . wzroscie tej sily, a wiec w spo-
sob ciggly. Zalezno$¢ miedzy P
a y bedzie sig tu wyrazata za po-
mocg tej samej prostej OB’ (rys. 39) zaréwno przed przekroczeniem potozenia
rownowagi, jak i po tym przekroczeniu, a wiec zaréwno przy y <<y, , jak
1 przy y >y, . Przy y = 2 y, energia nagromadzona w belce bedzie réwna

Rys. 39

598



tej energii, ktéra by sie tu nagromadzita przy sile P wzrastajacej w spo-
s6b ciagly i nieskonczenie powolny od zera do 2P, a wiec energii sprezy-
stej réwnej polu OB'C’, a przy y = y, bedzie sie ona wyrazala polem Oab
réwnym polu OBC na rys. 38.

Praca sily zewnetrznej P, niezmiennej podczas odksztalcenia belki,
wyraza sie za pomocg prostokata ODD’C’. Réznica pél OB'C’ i ODD'C’,
czyli pola tréjkatéow ODb i bB’D” wyrazaja réznice V. — T, a wiec ilosé
energii potencjalnej, ktéra w czasie odksztalcenia belki przechodzi w ener-
gie kinetyczna.

Przyrost d V energii sprezystej belki przy nieskonczenie matym przy-
roscie dy ugiecia w stosunku do ugiecia odpowiadajacego polozeniu réw-
nowagi réwna sie na rys. 39 polu trapezu adfb, a odpowiedni przyrost dT
pracy sily zewnetrznej P polu prostokata adcb. Réznica tych pdl, czyli
réznica d V —d T wyraza sie za pomocg tréjkata bfc; rowna sie ona iloczy-
nowi Y2 dy dP, ktory przedstawia wielko$¢ nieskonczenie mata drugiego
rzedu, i musi byé przyjmowana za zero. Wynika stad, ze przy nieskoncze-
nie matym odchyleniu belki od polozenia réwnowagi dV = d T, czyli

d(V—T)=0.

Przy wszystkich innych wartosciach ugiecia, poza ugieciem odpowia-
dajgcym polozeniu réwnowagi, przyrosty d V i d T nie beda sobie réwne,
wobec czego otrzymane réwnanie, jak to zostalo juz udowodnione w inny
sposob, moze byé¢ podstawa do ustalenia ugiecia odpowiadajacego stanowi
réwnowagi, czyli ugiecia majacego miejsce przy ciggtym i nieskonczenie
powolnym wzroscie sity P od zera do jej wartosci ostatecznej, o ktére
wtlasnie chodzi w zwyklych obliczeniach wytrzymato$Sciowych.

Interpretacja dynamiczna réwnania (3.17), na ktérym opiera sic meto-
da Ritzai Timoszenki wyznaczenia odksztalcen i sit krytycznych,
polega na podstawie rozwazan tego rozdzialu na nastepujgcym rozumo-
waniu. »

Sity P zaczepione do danej konstrukeji uwazamy za zaczepione w spo-
s6b nagly. Sily te wprowadzaja belke w ruch wahadlowy zanikajacy.

Energia sprezysta V bedzie sig¢ tu nagromadzala w ten sposéb, jak gdy-
by kazda z sit P wzrastala w sposdb ciagly i nieskonczenie powolny od zera
do tej wartosci, ktorej odpowiada najwieksze mozliwe odksztalcenie uktadu.

Praca sit zewnetrznych T bedzie sie ré6wnatla w kazdym momencie do-
konywajgcego sie odksztalcenia sumie iloczynéw poszczegélnych sit P
przez przesuniecia ich punktéw zaczepienia.

Roéznica U = V — T, calkowita energia potencjalna uktadu, zmienia
sie jako funkcja parametréw A dla poszczegbélnych stadiéw odksztalcenia
ukladu i osigga maksimum po zaniku drgan w chwili nastania réwno-
wagi stalej.

599



Pesgmwwme

JUHAMUYECKHWE BOIIPOCH! B CTATHYECKEHUX PACYETAX COOPYHIEHHHK

B riase I paccMaTpMBaeTCs BOIPOC, Tje ClaefyeT, mpu pacdyere Gepero-
BLIX yCTOEB ¥ MOCTOBBIX OBIKOB, IIPMHUMATH TOYKY IPUIIOZKEHNA TOPMO3-
FBIX yCMAMIT 3 TATOBOM CWJBI MapoBo3a. JoxrasblEaercd, 49To, B CIydae
3aTOPMOYKEHMs Ha OIope JIByX Oceli IOJBMIKHOILO COCTaBa, TOUKY IPHMJIO-
SKeHMA cUJI TOPMOIKEHUS cjefyeT NMPUHMMATHL Ha BBICOTE LIEHTPA TAXKECTU
[OJBVKHOTO COCTABa; B CIydae K€ TOPMOXKEHMA TOJLKO OJHON OCK — Ha
YPOBHE TOJIOBKM peiibca. TArOBYIO CHUIy cleqyeT MPUKJIaJbIBATL BOOOILE
Ha ypOBHe TOJIOBKM penbca. OnHaxo, OBIBAIOT Ciydam, KOTAa CIENyeT MX
OPMHMMATEL Ha BBICOTE COEIMHMUTENIBHON My(QTBI; 9TO MOXKET CIIYy4UTCA
ocofeHHO, KOT[a 3a MOCTOM JIMHMA KeJIe3HOM AOPOrM HaXOaMTCs Ha Ha-
KJIOHe. IIpMBOAMTCA aHAJM3 MOCTOBBIX KOHCTPYKIMII C TOUKM 3PEHMUA
onpeneseHUsA AJS HUX, B CTATUYECKMX pacdeTaxX, MeCTa MMPUJIOZKEHUd TOp-
MO3ZHBIX YCHUJIINIA.

Tnasa II comepzkuT NpuOIMKEHHBII pacyeT cOOCTBEHHBIX KoJebaHMil.
Iyt 9TOTO IIPUMEHSETCS METOJ, OCHOBAaHHBI/ Ha IIOCJIENOBAaTEJIBHBIX IIPU-
6mkeHuax M Ha crnocobe BTOpuYHBIX MomeHToB Mo pa. Pacemarpu-
BaroTca koJgebaumsa cucrem objamarommx 1, 2, 3 u 4 cremeHAM¥ CBOJOIEI,
a TakxKe KoJebaHMA YNPYTMX TeJ, IIPOJOJLHBIE I IIONepedrble. Boram-
CJISAIOTCA YacTOThI KOJEebaHMiI IIEPBOTO M BTOPOTO MOPAAKOB M IIEPBBIC
Vi BTOpble NpUOIMIKEHUA 9TUX HFaCTOT.

Tnasa III mnocBAieHa [AMHAMMYECKON MHTepIpeTanmyu ypaBHEHMUA
d (V—T) = 0, ABJAIOLIEroCs OCHOBO} MeToja NpubJNzKEeHHOTro oOIpesne-
Jemna pedopmanmii; 3meck V. obo3HawaeT ynpyryio SHEPIMIO SJIEMEHTa,
a T — pafory BHELIHMX CMJI, NIPEACTaBJIAEMYI0 B BUIE CYMMBl IPOM3BE-
LeHuil cuy P Ha COOTBETCTBEHHBIE NepeMelleHMs MX TOYEK IMPUJIOKEeHMNd.
Iyaammdeckad uaTepnperaunsa ypasHenus d (V—T) = 0 cocTout B TOM,
4TO CIJIBI P CcYmMTAIOTCA MPUJIOKEHHBIMM BHE3aIHO, YTO BBI3ZbIBAET 3aTy-
xampllee KoJsebaTesnHOe ABMIKEHME KOHCTPYKUMM. BBUAY 9TOro, MCCIERY-
eMoe ypaBHEHNMe BBbIpaxkaeT ycjoBue skcTpemyma yHrumn U = V—T,
COOTBETCTBYIOILIETO COCTOAHMIO PaBHOBECHA KOHCTPYKLMM, T. €. ee CTaTu-
yeckolt medpopMaiinu.

Summary

DYNAMICAL PROBLEMS IN STRUCTURAL ANALYSIS

In Sec. I the problem of the attachment points of braking force and
tractive force of a locomotive in computation of bridge abutments and
piers is considered. It is shown that if two axles are braked over the con-
sidered support, the centre of gravity of rolling stock should be assumed
as the attachment point of the force. In the case when only one axle is
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braked, the attachment should be taken at the level of the rail head.
In general, the tractive force should be taken as acting at the level
of the rail head. There are cases, however, in which it should be assumed
to act at the level of the couplers. This is, for instance, the case when the
track beyond the bridge runs down an incline. An analysis of bridge struc-
tures is given, from which attachment points of braking forces can be
established in statical computations.

Sec. II contains approximate calculation of free vibration. A method
based on successive approximations and on the method of secondary
moments is used. Vibrations of 1, 2, 3 and 4 degrees of freedom are
discussed as well as transversal and longitudinal vibrations of elastic
bodies. The frequencies of vibrations of first and second order as well as
first and second approximations of those frequencies are calculated.

Sec. III is devoted to the dynamic interpretation of the equation
d (V — T) = 0, which constitutes the basis of the method of approximate
determination of deformations. V denotes here the elastic energy of the
element and T the work of external forces, assumed in the form of a sum
of products of forces P and the corresponding displacements of their
attachment point. The dynamic iaterpretation of the eqation
d (V —T) = 0 consists in that the forces P are considered to be attached
in a sudden manner which provokes damped vibration of the structure. It
follows therefore that this equation expresses te condition for a mini-
mum of the function U = V —T, corresponding to the state of equili-
brium of the structure — in other words — to its static deformation.

Praca zostata ztozona w Redakcji dnia 2 marca 1955 r.
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