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1. TEORIA PROFILI CIENKOŚCIENNYCH STOSOWANYCH 
W OKRĘTOWNICTWIE

1.1. Środek ścinania i powierzchnia wycinkowa przekrojów złożonych

Zagadnienie skrępowanego skręcania kadłuba okrętu na fali skośnej 
poprzedzimy omówieniem własności przekrojów geometrycznie uproszczo­
nych — tj. takich, których kontur składa się z odcinków prostych — lecz 
zachowujących pewne podobieństwo z rzeczywistymi przekrojami okrę­
towymi.

Przekroje te są bardziej złożone od dotychczas teoretycznie zbadanych 
przekrojów otwartych i zamkniętych, dlatego będzie rzeczą wskazaną 
przeprowadzenie na wstępie krótkich rozważań dotyczących wyznaczania 
powierzchni wycinkowych wspomnianych profilów.

Jak wiadomo, spaczenie pręta cienkościennego o otwartym profilu, 
poddanego skręcaniu, powstałe między dwoma punktami A i B linii środ­
kowej konturu, wyraża się następująco:

(l-l.l) CA — (p >

gdzie tp' jest kątem skręcenia przypadającym na jednostkę długości, a <bad 
polem powierzchni wycinkowej (względem środka zginania czyli ścinania 
przekroju otwartego) zawartym pomiędzy punktami A i B.

Spaczenie pręta o profilu zamkniętym wyraża się wzorem

(1-1-2) Cg — <p v)AB,

gdzie wAB jest polem powierzchni wycinkowej (względem środka zginania 
przekroju zamkniętego), zawarty między punktami A i B.

Powierzchnie wycinkowe mab i ó)AB różnią się od siebie o wielkość

Q f ds
C ds d 

J T AB
Wyrażenia określające spaczenie odpowiednich przekrojów zostały 

wyprowadzone z zależności, wyznaczających posunięcie elementu leżące­
go w płaszczyźnie linii środkowej konturu. Różnica polega na przyjęciu 

419



kąta odkształcenia postaciowego y dla profilu otwartego jako równego 
zeru, natomiast dla profilu zamkniętego jako różnego od zera (y = q/G d).

Wzory (1.1.1) i (1.1.2) pozwalają wnioskować, że spaczenie dowolnego 
profilu wyraża się jako iloczyn wielkości (p przez odpowiednie pole po­
wierzchni wycinkowej, ściśle zależnej od kształtu przekroju.

Na podstawie powyższego możemy twierdzić, że w przypadku profilu 
•złożonego z elementów otwarto-zamkniętych spaczenie przekroju pomię­
dzy dwoma dowolnymi punktami A i B linii środkowej konturu wyraża 
się wzorem

(1.1.3) ^/S — CA=

gdzie w4j5 jest polem powierzchni wycinkowej przekroju otwarto-zamk- 
niętego, zawartym pomiędzy punktami A i B, obliczonym względem środ­
ka zginania.

Należy podkreślić, że mamy tu do czynienia z zagadnieniem wielopa­
rametrowym, a w przypadku profilu podanego na rys. 1 —-ze względu 
na symetrię przekroju — dwuparametrowym, gdyż ćo jest zależne od 
dwóch parametrów co i co. Wielkość w jest parametrem przedstawiają­
cym pole powierzchni wycinkowej, dotyczącej profilu złożonego w obrę­
bie zamkniętym, natomiast co jest drugim parametrem przedstawiającym 
pole powierzchni wycinkowej w części otwartej. Parametry co i co są 
wielkościami statycznie niewyznaczalnymi dla danego typu profilu otwar- 
to-zamkniętego; możemy je obliczyć jedną ze znanych metod, mianowicie 
metodą energetyczną lub metodą przyrównania odkształceń. W dalszych’ 

420



rozważaniach obrano metodę drugą, tzn. przyrównano do siebie spaczenia 
w punkcie granicznym części przekroju zamkniętej i otwartej. •

Tą drogą będziemy postępowali przy dalszych wieloparametrowych 
profilach.

Szczegółową analizę rozpoczniemy od rozpatrzenia przekroju przed­
stawionego na rys. 1. Przekrój ten obciążony siłą Q jest najprostszym prze­
krojem otwarto-zamkniętym. Brak podwójnej symetrii przekroju stwarza 
konieczność znalezienia poziomej współrzędnej środka zginania. Dokonu­
jemy w myśli rozcięcia przekroju w punktach 1 i 4; wskutek tego w obu 
ceownikach 1 2 3 4 i 5 1 4 6 jako profilach otwartych powstaną strumie­
nie napięć stycznych qQ pochodzących od siły poprzecznej Q. W celu zlikwi-i 
dowania posunięcia względnego, powstałego wskutek rozcięcia, wprowa­
dzamy strumień stałych napięć stycznych q0, płynących w obwodzie 
zamkniętym 1 2 3 4 1. Wielkość strumienia qQ w każdym punkcie przekro­
ju można bez trudności wyznaczyć ze wzoru 

gdzie S* jest momentem statycznym części przekroju znajdującej się po­
nad warstwą, w której obliczamy wielkość napięć stycznych.

Dla określenia q0 posługujemy się dodatkowym warunkiem stwierdza­
jącym, że suma przesunięć poszczególnych elementów przekroju zamknię­
tego musi się równać zeru:

(1.1.5)

Ponieważ

> y • 1 • ds = 0 .

= g +qo
’ Gd Gd

to

(1.1.6) ;jt^Lds=0. 
G o

Układając równanie dla części zamkniętej przekroju oraz uwzględnia­
jąc wartość q? ze wzoru (1.1.4) otrzymujemy

Q f Sxds q0 i'ds Q । 9» fds Q fSxds
IXG I d + G I d ' IXG J d ' G J d. IXG J d +

12 12 23 23 34

q0 f ds Q C Sxds q0 f ds _
+ G J d~IxGJ ó, + G J

34 41 41
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Wartości momentów statycznych w składnikach powyższego równania 
są następujące:

Po skróceniu przez G i przeprowadzeniu odpowiednich całkowań równa­
nia (1.1.6) zapisujemy w postaci

a,,' /o b , h , M , Q , ibh’ , h*\ ,(1.1.7) q0 (2 - + - + ^)i2+ (“T + 12)2/

/b2h\ Ich2 ó , h3\ I’ 4 L 12 it+ 4J-°-
skąd

Moment strumienia q0 wyraża się wzorem

(1.1.8)

/b2h\ , /b h2 h3\ Ib2 hi Ich2 d
Q \T/12+ \ + 12/23 \~4~/si ~ \i; + 12/u

s“^ 2±+a+a ■
d <5^0,

.gdzie Q = 2bh. Moment strumienia qQ wzlędem punktu B jest

(1.1.9) = Sxods+ SxQds+ isx(>ds4-

12 34 51

+ j S^ds-V J s<e<iS) = —^(<5-^-)^+ (« AH,4 
46 23

Odległość środka ścinania od punktu B otrzymujemy z warunku rów­
noważności momentów napięć stycznych i momentu zewnętrznego (a nie, 
co pragniemy podkreślić, z równania równowagi momentów):

(1.1.10) axx
— Mt + M3
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Za dodatni uważamy moment powodujący obrót zgodny z ruchem 
wskazówek zegara. W oparciu o oznaczenia podane na rys. 1 i na podsta­
wie wzoru (1.1.10) można stwierdzić, że moment jest ujemny, zaś mo­
ment M2 dodatni.

Zapiszemy wzór na środek ścinania w postaci całkowej:

Natomiast wzór na środek ścinania względem dowolnego bieguna przy 
wprowadzeniu powierzchni wycinkowych jest

(1.1.12) axx—^-Ja)ydA,

lub w postaci uwzględniającej każdy element rozpatrywanego przekro­
ju (rys. 1)

(1.1.13) axx — — H m y d A + Ja>ydA + Ja>ydA +
*x \12 23 34

+ J a>ydA+ J a>ydA-J- f(oydA\.
41 61 46 I

We wzorze (1.1.11) podobnie jak i we wzorze (1.1.13) można wydzielić 
część odpowiadającą momentowi statycznemu ydA; pozostała część powin- 
na odpowiadać powierzchni wycinkowej.
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Mając na uwadze, że powierzchnia wycinkowa dowolnego odcinka 
n-tego konturu zamkniętego ma postać

/1 i ■ - - s"(1.1.14) <') = <’>„ 1 ----- <O„ --- ------------—
s0 on

lub

12 / 8 j Sg Sn—j \ 12 S„
o„ =----o,.----W2---- ... (O«-1 + —- ... +  ----- ■— (O„ 4-------- ,

$0 \ b] On On—1 / \ S„ On ' '

gdzie 

powierzchnie wycinkowe występujące we wzorze (1.1.11) przedstawimy 
w postaci

/1,2
12 f dx 12 h

C'^ ~ £TT J ‘C ~ ~ '
d ó ó, 0

b b

/1 h

(1.1.15)
b b

hf-2
■ _ Q dx ^2 h

<04 B = W ' + , A L h J '

0 + ó ■! v

W-4 li ----
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Jak widać ze wzorów (1.1.15), składowe wyrażeń dla powierzchni wy­
cinkowych w postaci (Q/s0) (b/d) lub (Ą's0)(h/2ó) nie zależą od położenia 
pomocniczego bieguna B, natomiast wpływ tego bieguna uwidacznia się 
w wyrażeniach f hdx i / bdx.

Ten wniosek znajduje potwierdzenie we wzorach (1.1.8) i (1.1.9) okre­
ślających momenty i M2. Wielkość momentu związanego z profilem 
otwartym zależy od umiejscowienia bieguna, natomiast moment M2 ma 
wartość stałą bez względu na położenie bieguna.

Łatwym sprawdzeniem słuszności wyprowadzonych wzorów (1.1.15) 
jest obliczenie wyrażenia

12 d Sds
sn J d S q ds

jako symbolicznie zapisanego licznika ilorazu we wzorze (1.1.11) odpo­
wiadającego f wydA, tzn. wycinkowemu liniowemu momentowi, który
dla środka zginania jako głównego bieguna powi­
nien równać się zeru.

Dla większej przejrzystości rozumowań poda- 
jemy następujący przykład liczbowy.

Dany jest przekrój z «wypustkami» o wymia­
rach jak podano na rys. 2; grubość przekroju jest 
stała i równa <5 = 0,01 m. Moment bezwładności 
względem osi x jest

2 1 5r~i--- ---

Ir =2 0,01 • 163
12 + 2 • 16 ■ 0,01 ■ 82 =

i

Rys. 2= 6,83 + 20,48 = 27,31 m4.

Środek ścinania obliczamy za pomocą momentów strumieni naprężeń
stycznych:

dSdsJ ó
12

^=64 4 = 256 m8, (’Sds_ i
J *

IB 2.4

-f- = 682,67 ms,

.stąd

1 /bh2 h^\ _ 1 / 8 • 256
2 \ 2 + 12/ 2 \ 2

16^\
12 ) = 512 + 170,67 = 682,67 m3;

Q
Ix

Sds 
~d~

2- 256“ = 512-^ 
lx lx

12341
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oraz
{ — = /2- 16~+ 2 —$ j = 4800.
J d \ 0,01 0,01 /

Na podstawie wzoru (1.1.7) obliczymy q0 :

4800 q0 + y~ 512 —°, q0 = — 0,107 y-t/m .

Moment M2 jest równy

M2 = 0,107-^£==0,107- 256-^-=27,4-®- tm . 
XX lx At

Obliczamy moment względem punktu B:

i Sgds = —256 • 0,01 • 8 y- = — 20,48-y,

51

s Q ds = — 682,67 • 0,01 • 8 — 54,62
lx At

M, = (— 4 • 20,48 — 2 • 54,62) = — 191,16 ~.
ix lx

Mając wartości obu momentów obliczymy położenie środka ścinania:

B^ --  O. XX --
— 191,16 + 27,40 

27,31 ’ 6,00 m.

Powierzchnie wycinkowe względem środka ścinania obliczamy na pod­
stawie wzorów (1.1.15):

— s' = 2^1.800 = 42,6 , — + —/ = —48 + 42,6 = —5,4,.
s0 4800 m 111 s0

w15 = a)Bi + ćo15 = — 5,4 + 64 = 58,6,

— co19 d s' = — 5,4 — 64 + 42,6 = — 26,8 , Dl La r»

W = A — M +^LS' = — 26,8 — 16,0 + 42,6 0 .. a A 14 aA n
b0

Sprawdzenie obliczenia sprowadza się do obliczenia całek J SrdA oraz 
/ co ydA, które, jak wiadomo, dla środka ścinania jako bieguna mają war­
tości zerowe.
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Pierwsza całka równa się zeru, co wynika z symetrii powierzchni wy­
cinkowych względem osi x; całkę / <wydA rozbijamy na następujące po­
szczególne elementy dla jednej połowy profilu:

r 12J ajydA = — -~5,4-8-=-8 0,01 =— 1,15,

f oj ydA = — v 0>675 • 5,4 • 8 ■ 0,01 = — 0,1084 , 
ii 2

J Z ydA = 7,325 • 58,6 • 8 • 0,01 = 17,1698 ,
1'5

J ćoydA =~(26,8 + 5,4) • 8 • 8 • 0,01== —10,304, 
12

r 12J nydA = --26,8 • 8 — 8-0,01= — 5,717, 

y J wydA = — 1,15 — 0,1084— 10,304 — 5,717 + 17,1698 = —0,1112^0.

Jest rzeczą oczywistą, że dla 
drugiej połowy profilu otrzy­
mamy wynik identyczny.

Omówimy teraz przekrój 
dwuspójny.

Przez dodanie boku zamyka­
jącego 5 6 z przekroju jedno- 
spójnego z «wypustkami» otrzy­
mamy przekrój dwuspójny.

Określamy z kolei środek 
ścinania. Rozcięcia dokonujemy 
w punktach 1 i 5, co powoduje 
automatycznie rozcięcia w punk­
tach 4 i 6 (rys. 4).

Ażeby znaleźć strumienie za­
mykające q01 i qu2, należy ułożyć Rys. 3

warunki typu yds — 0 , przedstawiające odrzucenie posunięcia |por. wzór

(1.1.5)] dla obu konturów zamkniętych I i II; trzeba również rozwiązać 
otrzymane równania względem q01 i q02.
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Wprowadzamy oznaczenia

Otrzymujemy następujący układ równań:

(1.1.17) Ix h Ix _
P1 Q q°’ ót VQo2”0 A

<5i n 9oi + Pi n Qo2 ---- $2

stąd

(1.1.18)
</>1 P2 — <^2Łx

Qq°'
02 pt

U1
2O *202

Pi P2
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Środek ścinania określamy analogicznie jak we wzorze (1:1.10):

(1119) axx — + ^2 9o2
, Q Q
gdzie

Q1 = 2bh, Q2 = 2ch.

Z poprzednich rozważań dotyczących określenia powierzchni wycin­
kowych wynika, że w wyrażeniach na moment Mi strumieni naprężeń 
stycznych, pochodzących od «otwarcia» profilu, zawarta jest część pola 
wycinkowego a przynależna do przekroju 
otwartego. Zatem dla każdego profilu roz­
ciętego znalezienie pola wycinkowego w 
nie napotyka na trudności, gdyż określa 
się je tak samo, jak dla najprostszych 
kształtowników, np. dla ceownika lub 
dwuteownika.

Natomiast w miarę wzrostu spójności 
profilu wyrazy określone dla przekroju 
jednospójnego jako Qs’/s3 przybierają 
bardziej skomplikowaną postać i wyznaczenie ich przeprowadza się w spo­
sób podobny jak dla profilu otwarto-zamkniętego. Dla tego ostatniego 
przekroju omawiane wyrażenie składało się z części stałej dla wszystkich 
elementów, tj. oraz z członu będącego ilorazem długości i jego gru­
bości. Ta reguła jest słuszna dla Wszystkich części przekroju zamkniętego.

Przeprowadzając to samo rozumowanie dla przekroju dwuspójnego 
w oparciu o wzory (1.1.14) i (1.1.18) otrzymujemy wyrażenia dla zredu­
kowanych współczynników typu Qs'/s0:

Rys. 5
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Oczywiście, w elementach należących tylko do obszaru I bierzemy pod 
uwagę te wyrazy we wzorach (1.1.19) i (1.1.20), w których czynnikiem 
jest funkcja ; podobnie postępujemy z obszarem II związanym z funk­
cją 02. Natomiast w elemencie wspólnym dla obu obszarów (np. B 1) 
istotne są wyrazy, w których występuje zarówno funkcja 0,, jak i 02.

W poprzednim przypadku profilu otwarto-zamkniętego wzór na śro­
dek zginania (ścinania) można było zapisać w postaci podobnej do wzo­
ru (1.1.10):

(1.1.21)

gdzie

MA+M2^_ £Seds , 0 
axx~ Q “ Q + ISX’

Sds 
Ó

Dla tego profilu obiegliśmy przekrój w kierunku odwrotnym do ruchu 
wskazówek zegara, czemu towarzyszyła ujemna wartość m, ale dodatnia 
wartość Qs'/sd. Zgodnie z tym wartość powierzchni wycinkowej na odcinku 
zawartym między punktem Bil wynosiła

(1.1.22)
, D h 

^bi- S) 2 0/

Oczywiście, zmiana kierunku obiegu spowoduje zmianę znaku obu 
składników powyższego wyrażenia i np. dla odcinka B 4 otrzymuje się 

(1.1.23)
Q h
sd 2/MBi — ^Bi

2 1 5 Odrzucając chwilowo w prze­
kroju dwuspójnym bok zamyka­
jący 5 c 6 otrzymamy przekrój 
z «wyrostkami» cmówiony poprzed­
nio. Strumieniowi 0 ze wzoru Q

- (1.1.21) będzie odpowiadał stru­
mień 0j o tym samym kierunku, 
a powierzchnię wycinkową będzie 
można obliczyć tak jak we wzorze 
(1.1.15). Zamknięcie profilu, a przez 
to wprowadzenie na odcinku 1 B 4 
strumienia 02 o kierunku przeciw­
nym do kierunku 0t stwarza ko­
nieczność zmiany znaków w wyra­

zach zawierających 03 [przy obliczeniu powierzchni wycinkowych na pod­
stawie wzorów wyjściowych (1.1.18) i (1.1.20)].
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Przejdźmy znowu do przykładu liczbowego biorąc pod uwagę prze­
krój przedstawiony na rys. 6.

Określmy położenie środka ścinania. Na podstawie wzorów (1.1.16) 
otrzymujemy wartości funkcji i 02:

= — 72,

= 1320.

_ /36 • 12 . 6 • 144 10 • 144
1 \ 2 + 2 • 2

/100-12 , 10-144 
Z“+ —2—

Układ równań (1.1.17) ma teraz postać

3600 a? — 12C0 y — 72 = 0 , — 1200 x + 4400 y + 1320 = 0 ,

gdzie

Pj = 3600 , p2 = 4400 , A^OO, x = Aqoi)
U ty ty

x = — 0,088, y = —0,324.

Moment M2 jest

Q
M2=Q1x+Q2y=Q1 Aq0i+ß2A Qo2 = ł44.0,088+240+0,324 = 90,43.

S' S?

Moment względem punktu B jest

= — 108 • 6 • 0,01 — 288 • 6 • 0,01 — 300 ■ 6 • 0,01 + 72 ■ 10 • 0,01 = — 38,56 m5,

0 01 • 123
Ixx= 3 -----+ 2 • 0,01 • 62 = 15,84 m4,1 z

_M.+M2 
o. XX — — ---------

— 69,12 + 90,43 
15,84 = 1,345 m.
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Powierzchnie wycinkowe względem środka ścinania są równe:

144 (4400 — 1200) + 240 (— 3600 + 1200)
144- 105

600 = 3,27 ,

w,2 = ój— s* j = + 3,27-—36
\ so /12

144-4400 +240-1200------- -- --- ------------- ouu
144-10’

5,67,

«,,= „ — w —s'j = + 5,67 — 44,07 +
\ S0 I2A

144 • 4400 + 240 • 1200
144 • 105

600=0,

^C5 = ~ WC5 + — s'j =—51,93 +
/ S0 /c5

144-1200 +240-3600 
144-10’

600 = — 8,73 ,

8,73 — 60 +
144-1200 +240-3600

144 ■ 105
1000 = 3,27.

Potwierdzeniem słuszności rozumowania jest otrzymanie tych samych 
wartości liczbowych powierzchni wycinkowych w punktach wspólnych, 
liczonych oddzielnie dla konturu I i II.

Sprawdzenie wykonamy podobnie jak dla przekroju z «wyrostkami», 
mianowicie sprawdzimy, czy całka f mydA dla połowy przekroju jest 
równa zeru.

432



Obliczamy kolejno całki dodatnie

f- ' 1 2
J = ~ 3,27 • 6 • 0,01 — 6 = 0,01 ■ 3,27 • 12 = 0,392 ,

BI 2 3.

r - 1 2I u) ydA = — 5,67 • 6 • 0,01 • — • 6 = 0,01 • 5,67 • 12 = 0,680 , 
24 3

J w ydA = — (3,27 + 5,67) • 6 • 0,01 • 6 = 8,94 • 0,01 ■ 18 = 1,609 ,

I w ydA= -—3,27-2,727 -0,01 -6 = 8,917-0,01-3 = 0,268, 
ir

których suma jest 2,949, oraz całki ujemne

C . i 2
J oydA= — -8,73-6-0,01—6 = —0,01-8,73-12 = — 1,047,

C5

J w yd A = — * 8,73 • 7,273 • 0,01 • 6 = — 0,01 ■ 63,493 • 3 = — 1,904 , 
51’ 2

o sumie równej — 2,951.
Stąd 2,949 2,951^0.

Rys. 8

Dla większego uogólnienia opisanej metody rozpatrzymy jeszcze prze­
krój trójspójny przedstawiony na rys. 8.
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Podobnie jak w przypadkach poprzednich wprowadzimy oznaczenia

(1.1.24)

iii

n 

I
= P1 =

h 
ó + -4--, ^0,: b2 h 

2 + bh2 
2

ch2 
2

Jr
= p2=

h
d ó3’

— 02 =
c2h 

2 4-
ch2_ 

2
dh2

2
11

Jr
= p3=

h. 
^2

2d h
+ T + T’ -08 _ d2h 

“■“2 4-
dh2
2 '

Otrzymujemy następujący układ równań:

(1.1.25)

gdzie

h , „ .PiX —yy + O-Z = 01(

h , h---- -x + p2y — -^z = 02,
Oj o2

0 • x — ~ y + ps z = 08, 
0-2

Ix Ix _
x “ Q q°’ ’ y Q q°2 ’ 2 Q q°3 ’

stąd

(1.1.26)

gdzie

(1.1.27)

, h h , h h : . h
lx

X = -Q^ =------------------------------- D----------------------

lx ^2 Pi Pi + 03 Pi + 01 Pi

, , h h h , h h
Ł + s^+^-a,

Z Q q°8 D

D = pi — Pi Pa Pi-

Dla środka ścinania jest

(1.1.28) O.XX---- J (^1 4“ ^1 doi 4“ ^2 9o3 4- ^3 Qog)‘
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Zgodnie z regułami znakowania podanymi przy omawianiu przekroju 
dwuspójnego obliczamy powierzchnie wycinkowe profilu przedstawione­
go na rys. 9.

Na podstawie wzorów (1.1.24) i (1.1.27) obliczymy wielkości parame­
trów:

P1 = -s- + -b = 2400 + 1200 = 3600, 
O o

p3 = -„- + ^- = 2400 + 2000 = 4400, 
o o

p3 = ^+ ó- = 2400 +600 = 3000,

D= 6600- 12O02 —
— 3600-4400-3000 = — 38 016-10®,

$t = 144, $a = 240, $3 = 72.

Powierzchnie wycinkowe [na podstawie wzorów (1.1.26) i (1.1.28)] są

i JO A „ , , ,4409-300 —1200’—3000-1200
4,037 + 1^ 144 — 38016-10®

- 3600-3000 + 3000-1200 —3600-1200 + 12003\ _
240----------—38 016-10® 72 - 38 016-10® )600 “ 12,2‘

"12 = "1----  "12 +
— s'\ = 12,222 — 36 + (—144
+» /12 \

4400-3000 — 12002 
— 38 016-10®

_240 JOOO^OO___
— 38 016-10®

12O02 
— 38 016 • 10® 600 = 18,222,

M2A
,/ $ , 

= "2 — "2/ + H S 
\

| =18,222-10,037-6 + 42 = 0,
2A

* _ <1® A - « rQeJ 1^ — 12002 + 3000-1200"es— "ca + ( So s )cb — 6-5,963144 _38016-10®

3600-3000 — 3600-1200
240 -38 016-10®

— 3600-4490 + 3600-1200279--------------------------------------- -------------------
- 38 016-10®

600=—17,778,

"51 = "5 — "51 + —S 
\

| = — 17,778 — 60 —144 
51 \

3000 • 1200 
— 38 016 • 10®

_ 240 3600'3000 - 72 -l600!1  ̂J 1000 = 12 222
240 _ 38 016-10® 7 — 38 016-10®/1U
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Mm— wo?+ (Sq 8,963 ’ 6 + ( 144— 38 016-10»

S- 3600'1200
— 38 016 -10G 72

3600-3000 —1200“\
-38 016-10* /

600 = — 17,778,

w75 = w7 — co75 + (—s') = — 17,778 —18 +18 = — 17,778. 
\ s° In

Sprawdzamy obliczenia na podstawie warunku, że ) wyd A = 0_dla jed­
nej połowy symetrycznego przekroju.

Otrzymujemy kolejno dodatnie wartości całek:

r i i 9
I m ydA = — 6 ■ 18,222 • 0,01 — 6 = 0,01 • 12 • 18,222 = 2,187,

rai 2
J w ydA= -*-6 -12,222 -0,01 — 6 = 0,01 • 12 ■ 12,222 = 1,467,

Bi 2 3

f w ydA = 2- (18,222 + 12,222) • 6 ■ 0,01 ■ 6 = 0,01 • 30,444 • 18 = 5,480, 
12

f OJ yd A = 2-4,017 • 12,222 • 0,01 ■ 6 = 0,01 • 49,096 ■ 3 1,473 ,
ii' 2
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których suma równa się 10,607, oraz wartości ujemne całek

r « 1 2J m ydA = — — 6 • 17,778 ■ 0,01 6 = — 0,01 • 17,778 • 12 = — 2,133,
Dl 2 3

J w y d/1 = — 4 6 • 17,778 • 0,01 4 6 = — 0,01 • 17,778 ■ 12 = — 2,133,
C5 “ 3

J coydA = — 17,778-3-0,01-6 = 17,778 0,18 = —3,200, 
57

J MydA —-----5,983 - 17,778-0,01-6 = — 0,01 • 3 • 106,365 = —3,191,
1'7 2

których suma równa się — 10,657; stąd

f a>ydA = 10,603 10,657^0.

Jednym z ciekawszych przekrojów, mającym zastosowanie w okrętow-
nictwie, jest przekrój złożony 
niętego dwuspójnego.

Kształt profilu, sposób 
rozcięcia oraz bieg strumie­
ni napięć stycznych uwi­
doczniony jest na rys. 11.

Na podstawie wzorów 
(1.1.17) napiszemy układ 
równań dla części dwuspój- 
nej:

h , Q
Pi <101 Qo2---- ^1 "j _,

h Q
901 Pt 92 ---- ^2 "j- >

stąd określimy strumienie 
napięć zamykających qn i 
q02. Strumień q03 znajdzie- 
my podobnie jak dla prze­
kroju jednospójnego z «wy­
pustkami»:

Q r
Pa Qo3 =

z elementów otwarto-zamkniętego i zamk-

Mając dane q01, q02 i q08 możemy obliczyć położenie środka ścinania oraz, 
w dalszej kolejności, powierzchnie wycinkowe, które będziemy określali 
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korzystając ze wzoru ogólnego

Q

h h
&1P2 ~.^2 Pi (h

Q} Tl. \ 2---- 1~ ^2------------------ , , . „-----H ^3----31 h\2 2 h\ P-i
P1P2— y P1P2 — y

napisanego na podstawie rozumowań analogicznych jak w przypadkach 
poprzednich.

Przykład liczbowy. W odróżnieniu od ostatniego przykładu rachunek 
przeprowadzimy teraz szczegółowiej, uwzględniając przede wszystkim 
obliczenie współrzędnej środka zginania. Obliczenie naprężeń q01, q02 
i q03 wiąże się bezpośrednio z określeniem funkcji 01( 02 i 03:

Należy zwrócić uwagę, że momenty statyczne są obliczone od punktów 
rozcięcia (punkty 7, 3 i 8 na rys. 12), co schematycznie jest przedstawio­

Tablica 1
ne na rys. 13. Natomiast 
w całce

Moment CSds
Kolejne statyczny f Sds fSpds *) s
elementy poprzednich J <5 J ó

elementów 67

0,675 
0.99

moment statyczny S
7-2
2-3

0,000
0,135

22,5
33,0 składa się z elementu

3-6 0,195 76,5 3,825 bieżącego na odcinku
3-4 0,000 6,0 0,18 6-7 oraz z sumy mo-
4-5 0,060 36,0 2,52 mentów poprzednich
5-6 0,195 51,0 3,06 elementów zbiegają-
6-7
7-8

0,645
0,765

141,0
256,5

8,46
15,39 cych się w punkcie

8-9 0,945 639,0 0,00 6 : $7236 + S3456 •

8-10 0,000 3,0 0,18 Wynika z tego, że
10-11 0,060 108,0 1,08 w punktach węzłowych,

*) Biegun pomocniczy w punkcie B. które nie są punktami
rozcięcia ani symetrycz-

nymi względem nich, należy sumować momenty statyczne poprzednich 
elementów.
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Korzystając z tablicy 1 obliczamy parametry równań:

Pi “ P2 — gy (S12 + S23 + S38 + S67) = ■q'qJ (3 + 2 + 3 + 2) = 1000,

= — (22,5 + 33 + 76,5 + 141) = — 273, 4 = i = 300,
o 0,01

^2 = — (6 + 36 + 51 — 76,5) = — 16,5.

Po uwzględnieniu tych wartości układ równań otrzymuje postać

1000 q01 —300 qn3 =-----^273, — 300 qM + 1000 q03 =---- 16,5 ,
^X lx

a jego pierwiastki są równe

qOi = 0,cÓ54 , q03 = 0,108 ——.
Łx Łx

Strumień q03 obliczymy na podstawie wzoru (1.1.7):

1300 q03 = — 4- (3 + 108 — 639), q03 = 0,406 .
Lx Lx
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Po określeniu wszystkich wartości strumieni napięć stycznych obliczamy 
momenty:

M, = 2y- (0,675 + 0,99-3,825 + 0,18 —2,52 —

— 3,06 — 8,46—15,39 - 0,18 —1,08) = — 2 • 32,67 ,

M2 = (2^ qni+2122q02 + «3 q03) = 2 (—0,3054 ■ 12 —

— 0,108-12+ 0,406-12) = 2-7- 0,084.

Z kolei określamy położenie środka zginania przy Ix = 13,14 m4. Otrzy­
mamy

axx
M,+M2 

Q
— 65,34 + 0,168

13,14 = — 4,96 m.

Powierzchnie wycinkowe wyznaczamy zgodnie z poprzednimi rozwa­
żaniami:

Ś98 = — w9R + s'j = — 4,96 • 6 ± • 600 = — 24,222 ,
\P3 /98 2600

A A I
10= o, — w8w + — s = — 24,222 — 6 + 0,923 = — 29,299,

’ Ps /8,10

A A I ,\
^io ii *+o — ^io u + I — $ ) — 29,299 + 3,96 • 6 4-5,538 0 ;

\ Pa /10,11

<oS7 = Ś„ + w87 = —24,222 + 18 = — 6,222, O, < O O < ' ’ '

A / O, \+ W16+ —M = — 6,222 + 12 — 3,428 = 2,353, 
' P' /ie

= 2,353 + 9,96 ■ 3 + 0 = 32,233,
A a /£?, ,\
«32 = 03—wa2+ —s' =32,233 — 6 — 3,428 = 22,805,

\P1 /32

A A / ,\
w27=<02—««+ — S = 22,805 —7,96-3 —5,143 = —6,218, 

, Pi /27 ■

A A / ,\
=«« + «65 + — S = 2>353 + 12 — 3,428 = 10,925,

'PS /65
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~ A. I
<o54=«5 + «54 + —s' = 10,925 + 11,96-3 — 5,143 = 41,662,

\Pa I5i

w43 —Ś4 — «43 + (—8'1 =41,662 — 6 — 3,428 = 32,234. 
' Pa /43

Rys. 14

Kontrolę przeprowadzamy podobnie jak w poprzednich przypadkach 
sprawdzając, czy całka fcoydA dla symetrycznej połowy przekroju jest 
równa zeru. Suma całek ujemnych

J wydA= —24,222-6^ 6 • 0,01 = —2,90664,

f ŹydA = — -J-(24,222 + 29,299)- 1-6-0,01 = — 1,60563, 
«,io

J MydA = —29,299-6— 6 • 0,01 = — 3,5158,
1041

f wydA= —^-(24,222 + 6,222) • 3 • 6 ■ 0,01 = — 2,73996, 
«7
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f uydA — — 6,222 • 1,4511 6 • 0,01 = — 0,27862 ,
76

Ta 1 / 2 \
I Z ydA = — 6,222 • 0,643 — 3 + 2,357 + -w 0,643 • 0,01 = — 0,115734 ,

72 2 \ 2 /

jest równa — 11,16238.

Suma całek dodatnich

f m ydA — 2,353 • 0,5489 6 • 0,01 = 0,038747 ,

f & ydA — -^-(41,662 + 32,234) • 2 • 3 • 0,01 = 2,21688,
34 2

f m ydA=~ (41,662 + 10,925) • 3 • (3 + 1,20775) • 0,01 = 3,31909,
54 2

f w ydA = ^-(2,353 + 32,233) • 6 (3 + 1,06803) • 0,01 = 2,11046 ,
63 2

f u ydA = 22,805 • 2,4511 J- (3 + v 2,4511\ ■ 0,01 = 1,0668,
72 \ /

f v ydA = ~(2,353 + 10,925) • 2 • 6 • 0,01 = 0,79668,
65 2

f w ydA = -^-{32,234 + 22,805)- 2-3 -0,01 = 1,65117
23 2

jest równa 11,19982.
Stąd / m ydA = 11,19982 — 11,16238 0, jak być powinno.

1.2. Równanie różniczkowe skręcania w przypadku przekrojów złożonych. 
Rozkład naprężeń

Dotychczasowe rozważania doprowadziły nas do znalezienia powierzch­
ni wycinkowych dowolnych profilów, dla których za główny biegun 
przyjęto środek zginania.

Otrzymane powierzchnie wycinkowe umożliwiają obliczenie para­
metrów przekrojów wchodzących do równań teorii skręcania.

Przy rozpatrywaniu profilów otwartych opieramy się na znanym rów­
naniu teorii skręcania przekrojów cienkościennych

(1.2.1) <pIV — k2ip" = Cm ,
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gdzie przyjęto następujące oznaczenia:

k = Si. 7 — V —
ls a Zj 3 ’El.

Ostatnie symbole Is oraz Io oznaczają odpowiednio moment bezwładności 
Saint-Venanta przy skręcaniu oraz wycinkowy moment bez­
władności.

Całka powyższego równania znaleziona za pomocą metody głównych 
parametrów Cauchy’ego ma postać następującą (w przypadku braku 
obciążeń):
, „ „. , l , . , kx Ba I , kx \(1.2.2) <p =<p0 + -^-ę?osmh—----- cosh —— ! — 

1 
Gis

.. I . ,kx MSftr -y-smh—z-----  
\ k l

x

Nie będziemy się zajmowali obecnie bliższą analizą tej całki. Przej­
dziemy do wyprowadzenia analogicznego równania dla przekrojów zło­
żonych z elementów otwartych i zamknię­
tych.

Podobnie jak w p. poprzednim począt­
kowe rozważania przeprowadzimy dla 
przekroju jednospójnego posiadającego 
«wyrostki».

Element wytniemy w taki sposób, 
ażeby jego dolna krawędź biegła wzdłuż 
zerowej linii deplanacji, bowiem w prze­
kroju poprzecznym w tych punktach na­
prężenia normalne są równe zeru, a istnie­
ją jedynie naprężenia styczne q0.

Szczegółowy rozkład naprężeń nor­
malnych i stycznych wpływających na 

16. Strumień napięćrównowagę elementu przedstawiony jest na rys.
stycznych na odcinku

(1.2.3)

14 jest następujący:

9i = 9o

Ten sam strumień na odcinku 1 2 3 4 wynosi

C d a~ Cd a~ f d a~
(1.2.4) q3 = q0 + J ~^^s + J <5 ds = q0 + q3 + J 

0 51 0
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gdzie

oznacza strumień napięć stycznych w obrębie wyrostka 5 1.

Jak wiadomo, naprężenie deplanacyjne normalne wyraża się wzorem

(1.2.5) <r~ = — E<p" co.

Oznaczmy przez o„ naprężenia normalne odpowiadające stałej wartości 
co = 1; wówczas

(1.2.6) = - E (p”,

a strumienie napięć stycznych określonych wzorem (1.2.3) będą

(1.2.7)

(1.2.8)

g0 I 
dz J 

o

ćo d A

s 
cl

H---- , — I odA 
dz J dz J 

51

ćo d A.

= +

Ql234 —
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Możemy obecnie wyznaczyć moment skręcający:

Stąd obliczamy niewiadome napięcia

n „ in. M dan 1 / f , r ~ r ~(1.2.10) q„ — & — — | | o ds J co dA -J- J gds j co dA +
'■ 0 1234 51

b I hds [ co d A1
51 O /

Dla ilustracji przytoczymy wzór na q0 dla profilu zamkniętego:

(1.2.11) M 
q° = ~Q

L gds I cod A
da0 o
dz Q

Ten sam wynik otrzymamy ze wzoru (1.2.10) pomijając wpływ «wy­
rostków».

W celu uproszczenia wzoru (1.2.10) oznaczmy wyrażenie w klamrze 
przez 0. Wymiar tego wyrażenia jest cm4. Wówczas

(1-212> ■■

a odpowiednie strumienie napięć stycznych na odcinku 1 4 i 1 2 3 4 będą

(1.2.14) gi = ^_^tf + 4+r) = q,_^r,

gdzie przyjęto oznaczenia

d i cod A, 
o

y — I co d A.
o
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Określimy z kolei energię potencjalną nagromadzoną w badanym 
elemencie podczas odkształcenia.

Energia całkowita będzie się składała z energii naprężeń normalnych 
g~ i energii naprężeń stycznych.

Energia naprężeń normalnych wynosi

(1.2.15) Uodz =
51

a energia naprężeń stycznych

(1.2.16)

, \2da0 \
— 0 dsdz /

2Gó 2Gd

gdzie = J m dA. 
o

Energia całkowita układu jest sumą obu całek:

L
U = f (U0 + UP)dz.

o

Równanie Eulera w tym przypadku posiada postać

(1.2.17) d(U0+Up) 
da0

d p (Un + Up) 
dz d(~—

I dz

= 0.
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Składnik pierwszy wyrażenia powyższego jest

(1.2.18) d ^0 +^ = £1 / f s2 d A + 2 f S2 d a\ = 1Z,
d<T0 E \J J / E

51

zaś składnik pozostały

(1.2.19) d d(U0 + UP) = d ( f /_ 2 jW doo \ ds
dz / da0\ dz j ' ’ 12 dz / ó

(^7/ 14

_ M ,, , . . „ do0/. , X21 ds-2e(« + r) + 2-dT(0+^ i 4 d°o 12 d $ |
I dz S j’

Po dalszych przekształceniach otrzymamy

(1.2.20)

Wzór powyższy można napisać w postaci uproszczonej

(1.2.21) — a0k2 = m^, dz-

gdzie

8
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Porównując wyrażenie (1.2.21) z (1.2.1) dotyczącym skręcania pręta 
możemy powiedzieć, że odpowiednikiem momentu bezwładności Saint- 
V e nan t a Is będzie wielkość

---------------—--------------- Q
f ^ds , f , .ds ‘J + J

14 1234

zaś wycinkowego momentu bezwładności ly wielkość

14 1234

Podstawiając wartości ze wzoru (1.2.6) otrzymamy równanie czwartego 
rzędu w postaci

(1.2.22) <pn— k^Cm,

gdzie C = f/E

lub

(1.2.23) <pw — k2(p'' = f(z),

gdzie £ m(z)= f(z).

Rozwiązaniem równania (1.2.23) jest funkcja

(1.2.24) <p = C1 + C2z + C3sinhkz + C4coshkz+ J tp(z— t)f(t)dt 
o

lub po wyznaczeniu stałych

(1.2.25) = +-^-(coshkz—1) +

rrr Z
4- -^-(sinh kz— kz) + J<p (z—t)f (t)dt.

K n

Funkcję tę można napisać w postaci krótszej <p — <p + <p przy oznaczeniu

(1.2.26) <p = <pQ +tp^z + -^(cosh kz— 1) + (sinh kz — kz),

(1.2.27) cp — Jiptz — t)f(t)dt. 
o
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Spełniając warunki Cauchy’ ego otrzymujemy

_ sinh kz — kz
V =-------- k3----------- = 9’4, <P = f — 

0

f (t) = c m (t) =
& Łwq

stąd

= f [sinh Hz — t)— k(z— t)]<p-j 

0

E1~ dt=TG^f

— k(z— t)] m (t) dt.

Uwzględniając powyższe, równanie (1.2.24) można napisać w postaci

<p = <p0 + <p'oz + -^-(cosh z— 1) + (sinh kz — kz) +

Z

+ ( [sinh k (z — t) — k(z — t)] m^dt.
kGIs j

ó

Biorąc pod uwagę, że

fi = — E la (p" , E Ias fp" — GI7W — — Ms,

a dla z = 0

„ Bo — ■
Vo— EL ’ <P° EIasCU s

otrzymamy ostatecznie

- sinh kz , -Bo ,, , , \ । l~ sinh kz\
(1.2.28) <p = <p0 + Vo-----QJ?—d- cosh k2> + GI~(z--------------------k----)+

+ — i [sinh k(z — t) —k (z —t)]m(t)dt, 
k G17 J

gdzie nowy parametr rj = 17il7s określa stosunek właściwego wycinko­
wego momentu bezwładności do sprowadzonego wycinkowego momentu 
bezwładności I7S. W rezultacie przekrój skręcany jest scharakteryzowa­
ny w równaniu dwoma parametrami ki i].
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Ostatni wyraz równania (1.2.28) w zależności od rodzaju obciążenia 
będzie przyjmował następującą postać:

(1) dla równomiernie rozłożonego momentu skręcającego m (t) = m 
działającego na odcinku pręta a z S b

m u i / , k2(z—a)2“H1 H----~2—~ ’
(2) dla momentu MSc działającego w przekroju z — c

r — [smhk(z— c) — k(z—c)];

(3) w przypadku przyłożenia w przekroju z = d bimomentu Bd

— 7^- [cosh k(z — d) — 1].
Cr ls

Ostatecznie więc, gdy pręt (utwierdzony na jednym końcu a na dru­
gim swobodny) jest obciążony momentem skupionym MSc w przekroju 
z — c, bimomentem Bd w przekroju z = d oraz momentem równomiernie 
rozłożonym w przedziale n S z b, wyrażenie dla ę? przybiera postać

(1.2.29) <p = <pv + -y-<p'osinh kz— (cosh kz— 1) — 
K G ls 7]

---- {sinh kz —kz) — -^^ [cosh k(z —d) —1] — [sinh k(z—c) —
'v 5 /v Cr 1 s

7 / m r . k2 (z—a)2]— k (z — c)J — [cosh k (z — a) — 1------- ---------- i.

Pierwsza pochodna kąta skręcenia wyraża się wzorem

(1.2.30) / r /c AZV = ę>ó cosh kz — ■ Bo sinh kz — - (cosh kz — 1) —

k Ms
yyy- Bd sinh k (z — d) — ——- [cosh k (z — c) — 11 —
GL? Crl~

TTL
[sinh k (z — a) — k(z — a)].

Druga pochodna, przy uwzględnieniu B =EJ^<p", jest

(1.2.31) B = — m'sinh kz + Bo cosh kz+sinhfcZ +u k k

+ Bd cosh k (z—d) + sinh k (z - c) + [cosh k (z — a) — 1 [. 
rv rC
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Wreszcie moment giętno-skrętny wyniesie

(1.2.32) M~=-~ = — <p0T]GIs cosh kz + Boksinh kz + r]Mscoshkz +

+ r] Bdk sinhk (z — d) + T] MSccoshk (z — c) + ^- [sinh k (z— a)].

Wzory powyższe pozwalają wyznaczyć odkształcenie profilu o nie­
zmiennym przekroju przy dowolnym stanie obciążenia.

W podobny sposób można ułożyć równania dla przekrojów bardziej 
złożonych, rozpatrywanych w poprzednim p. niniejszej pracy. Można prze­
widzieć, że budowa wzorów będzie w tych przypadkach podobna do wy­
żej wyprowadzonych, a jedynie istotne różnice wystąpią w wielkościach 
parametrów k i 7]. Z tego względu ograniczymy się do podania wspom­
nianych wzorów w części drugiej tej pracy przy rozważaniu przykładu 
liczbowego.

Korzystając ze wzorów (1.2.31) i (1.2.32) można wyznaczyć naprężenia

B oj 
~T^

M-S-CO <

Wzory (1.2.29), (1.2.30) i (1.2.31) 
wnętrznego będą miały postać

w przypadku braku obciążenia ze-

(1.2.33) 1 , * B M ■
V—V0 + y-^ósinh kz— —(coshkz— 1)—(sinh kz—1),K Cr Tj Cr K,

(1.2.34) k M<p — cp'n cosh kz —---- B^ sinh kz\— _ s°- (cosh kz — 1), 
‘ GI~t)-------------------- GI~

(1.2.35)
, r] GI~ ms ’

B =—<p0 sinh kz + Bl} cosh kz + 7]—~ sinh kz.
K. k f

Rozpatrzmy z kolei pręt zamocowany 
na jednym końcu. Załóżmy, że przekrój 
swobodny z = Z nie może się deplanować. 
Wtedy mamy dwa warunki

= 0 i = 0 •

z=0 
s'=0

Z=
s‘-0

Rys. 17

Warunek pierwszy wynika z utwierdzenia przekroju. Warunek drugi 
wynika z równania

0 =---- — — Bo sinh kz — (cosh kz — 1).GI~T] GI~
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Z równania tego znajdziemy

Bo
Ms„T) coshkl—1 

k sinh kl

Podstawiając wartość Bo do równania (1.2.35) otrzymamy

Rys. 18

B_ __ Ms„7] coshkl — 1 
k sinh kl x

77
X cosh kz 4---- ---  sinh kzk

lub

(1.2.36) B = ^^x 
k

/1—ccsh kl , , , . , , \X -—. , ,,— cosh kz + sinh kz . ( sinh kl ]

Ze wzoru (1.2.36) widać, iż dla
z = 0 i z = l wartości bezwzględne bimomentów są równe odpowiednio

MSor] cosh kl — 1 Ms^ 1 — cosh kl 
k sinh kl k sinh kl

Ms„ r/ 1 — cosh k I-MSor) cosh k I — 1 
k sinh kl k sinh kl

Równanie (1.2.34) po zastąpieniu Bo przez znalezione wyżej na tę wiel­
kość wyrażenie będzie się przedstawiało następująco:

1—coshkl \
---- . . T ,— sinhkz + 1 — coshkz] sinh kl /

Wartość bimomentu dla przekroju środkowego (z = 1/2) wynosi

1 — cosh kl 
sinh kl

, kl . . , kl cosh — + sinh —
Z z

kl/ zkl . ., k l\—r-2 cosh — 2 — 2 cosh2 — + 2 sinh2 — = 0. k 2 ( 2 2 /

Otrzymane wzory są podobne do wzorów dla otwartych profili; różni­
ca polega na zastąpieniu M przez MSa oraz GIS przez GIT-

Możemy więc powiedzieć, że pręt będzie się zachowywał jak pręt 
o profilu otwartym skręcany momentem Ms„ i posiadający sztywność za­
stępczą GIT, można go przeto potraktować jako pręt zastępczy o otwar­
tym profilu.
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2. SKRĘCANIE KADŁUBA OKRĘTU NA FALI SKOŚNEJ

2.1. Uwagi o cienkościennych przekrojach złożonych kadłuba okrętowego

Teoria cienkościennych przekrojów złożonych znajduje duże zastoso­
wanie przy obliczeniach kadłuba okrętu pracującego na skręcanie, kadłub 
statku bowiem z powodu specyficznych właściwości konstrukcyjnych moż­
na rozpatrywać jako powłokę cienkościenną, tj. jako ustrój konstrukcyj­
ny, którego grubość jest znacznie mniejsza od wymiaru obrysu. Stosowa­
nie w tym przypadku metod obliczeń dla konstrukcji cienkościennych 
prowadzi do dokładniejszych wyników niż stosowanie metod opartych na 
elementarnej teorii wytrzymałości.

Pierwsze przybliżenie obliczeń uzyskuje się rozpatrując samą powło­
kę niezbieżną, bez żeber usztywniających i przegród poprzecznych. Przy 
tych założeniach przekroje okrętowe dadzą się porównać z przekrojami 
typowymi rozpatrzonymi w p. 1, dla których wyznaczono środki zginania 
oraz powierzchnie wycinkowe. Wzory (1.2.29)-(1.2.32) pozwalają wyzna­
czyć odkształcenia i naprężenia tylko dla profilu otwarto-zamkniętego. 
Jednakże można przewidzieć, że dla pozostałych przekrojów typowych 
struktura wzorów (1.2.29)-(1.2.32) będzie podobna do struktury wzorów 
uprzednio wyprowadzonych, a różnice będą dotyczyły jedynie parametrów 
charakteryzujących przekrój geometrycznie.

Te parametry obliczymy dla najprostszego przykładu przekroju wielo- 
spójnego w celu zobrazowania toku postępowania w przypadku przekro­
jów bardziej złożonych.

2.2. Równanie skręcania przekroju dwuspójnego

Strumienie naprężeń w poszczególnych częściach przekroju są nastę­
pujące:

w przekroju K - K
C da*

(2.2.1.1) Qi — Qoi q<>2 + I z d ds,
BK

w przekroju L - L
r d a5 C d a« C da*

(2.2.1.2) q2 = qoi— Qo2+ j-^-^ds = q01+ j -^-<3 ds + J ~dz~3ds’
BL C51 BL

w przekroju M-M
f do;

(2.2.1.3) q3=qo2+ J z <5 ds.
CM
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Wprowadzając oznaczenia jak dla przekroju otwarto-zamkniętego 
otrzymamy

. d o{} / Qoa+dzJ 
BK

codA,

(2.2.2) q2 = w dA
C5

da„ / ; , „ —co dA , dz J
BI

q3= Qo3 + J cod A.
CM

Moment skręcający wynosi

J pdsq, + J 
14 1234

I edsq3=J 
4651 14

Qoa

, d a0 4 i \ 4—z— I co d AI dz / /
ii । d o q / 3 . . . d (7n / . \

q d s l q0 j H——— I a> d A ——— I o d A |
\ dz J dz J I

C51 BL

+ I o ds <|J—0 i co d A + I 

14 BK 1234

pdsq01+ | ^ds~d<^j codA : 

1234 C51

Stąd otrzymujemy wzór

(2.2.3) MXkr — Q, qm + T22 q02 + j gds J cod A H j gds J wdA + 

14 BK 1234 C51

znajdziemy

(2.2.4) O, q0, 4 qn2 = Ms/;r — d>. 
dz
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celu wyznaczenia qul i q02 potrzebny jest jeszcze drugi warunek. 
Skorzystamy z tego, że suma przemieszczeń na obwodzie zamkniętym jest 
równa zeru; dzięki temu dla konturu pierwszego można napisać

14 1234

Ponieważ

do,, d ; , , d o,, d x . d o„ /' ;
Qi On Q.:- ; | <odA, qs = q,>, - odA^^ f wdA

/A C51 dl

to otrzymamy

„ , r ds d ds t da., i d ds d : , . . /' ds d ; A ,(2.2.6) + tJ + J codAj—0.
1 14 1234 051 1 dl

Oznaczamy wyrażenie w nawiasie w równaniu (2.2.6) przez '/y oraz
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Wówczas

(2.2.7) d a« m
Pi Poi $14 Qo2 —

Równania (2.2.4) i (2.2.7) tworzą układ

(2.2.8)
q01 + Q2 ql)2 = Mskr —

Pi Qoi — Si4q02 = —

którego rozwiązaniami są

M^s14-^(0Sl4+^2) 

qo1 = ^s^+^P?'

^rPl+^^l^-Pl^

^1 $14 d- ^2 Pi

Wprowadźmy oznaczenia:

_ ________ £|4_______

^Sh + ^Pi ’

= _0$,4+_^^a_

$i4 d- ^2 Pi

= Pi________
■^1 $14 4~ ^2 Pi

 yp1-0p1
$14 ~b ^2 Pi

Wówczas

(2.2.9) q01 = q02-M^ + ^d.
Cl i Cl li

Strumienie naprężeń stycznych (2.2.2) po podstawieniu (2.2.9) i wprowa­
dzeniu następujących oznaczeń:

n = d~d— fcodA, 0 = X—J ćbdA — JódA, 3 = d + fcodA,
BK C 51 BI. CM

są
_ _ . v d Cn

qt = Mskr {// v) dz TT

(2.2.10) _ _ d (j (\
q2 MSkr/.i

.. , dern
q3 - Mskr v d- a ■

Obliczmy całkowitą energię potencjalną profilu

u = u0 + uP.
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Energia naprężeń normalnych wyrazi się wzorem

, a ^d A an I f 2 \

A A
a energia naprężeń stycznych wzorem

ao - dz = -^l<^ dz,

14
J 2G o J 

1234 4651

ijds 
'--dz =

14

dag 
dz

1234

n/r da^
Mskr[l dz

2 ds
T

Mskr v 4- -J— dz
4651

2c{ J
14

M2kr([i-vY-2d^ i rl \
Mskr ([*--- r) n + I —I n‘2 91 ds ---

<5

II CL \iLAi
1234

2
| 02,1 ds 

y

i*r V2 + 2 -1' Mskr v 3 + dz
2

4651

Równanie Eulera w postaci

<2.2.11) d (Uo + Up) = _d
dz

d(U0+UP)l

dla funkcji U będzie następujące:

, i i d2°o — mskr (/i —v) 7i + —3
ds
T

14

1234

— mskr [10 +

gdzie przyjęto oznaczenie

dMskr 
mskr = —, — dz

4651

„ , d2aa„9\ds+ 1-

da0

gp

E

ó
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Wykonując podstawienie a0 — — E <p" otrzymamy równanie różniczkowe 
skręcania

Porównując je z następującym równaniem różniczkowym skręcania pręta 
otwartego lub otwarto-zamkniętego

— k V' = 4- (ka = ~ ,

określamy parametry k i f'

(2.2.15)
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Stąd zastępcza sztywność skręcania Saint-Venanta i wycinkowa 
podana jest wzorami

2.3. Obciążenie i warunki brzegowe dla statku o przekroju nieciągłe zmiennym

Określenie parametrów Is i las przekroju złożonego pozwala wy­
znaczyć stan naprężenia i odkształcenia cienkościennego pręta skręcane­
go o dowolnym przekroju poprzecznym stałym. W celu uzyskania dosta­
tecznego przybliżenia dla kadłuba barki lub statku należałoby uwzględnić 
nieciągłości przekroju spowodowane otworami w pokładzie, nadbudów­
kami itp.

Dla elementu o przekroju stałym wzór wyjściowy dla kąta skręcania 
jest następujący:

, % Фа
(2.3.1) у = + y0 z vy(cosh kz—1) + -^(sinhkz— kz)+

/v rC
z

+ 7-.^T i |sinhk(z — t) — k(z— t)]mSkr(t)dt;
К (_T 1 5 /

0
przedstawia on całkę znanego równania różniczkowego

(2.3.2) ę4v— k2(p" C = mSkr.

Przyjmujemy rozkład sinusoidalny momentu skręcającego

mSkr (t) = m0 sin — t.

Wówczas równanie kąta skręcania będzie

(2.3.3) = ^0 + Уо2 + (cosh kz — 1) 4- (sinh kz — kz) +

.gdzie f = GIS.

k^

2 n ... 1 .■T , ., sinh kz---- =- sm — zLk" к L kL
2 71

IL\2 
12 л/

. 2 л sm ~ zLiz + к
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Pochodne kąta skręcania wynoszą odpowiednio

(2.3.4) <p' = <p'o + ^ sinh kz + “p" (cosh kz — 1) + yy x

2n , , 2?r 2ttT -coshkz--- — cos—z . T , , „Lk Lk L kL , kL 2%
X --------------------------------------- : ---------- ----------------------- 1- - - COS -----

2 71 
Lk

2 2 tt 2 Ti L ’

(2.3.5)
„ <p0

tp = <pQ cosh kz H—— sinh kz + K,

1,2 tt . 2 tt ...
-- sm — z + ~r smh k zk L L , . 2n

2 71
Lk

„ ,,, m
(2.3.6) <p =<p0 k sinh kz + <p0 cosh kz + x

2 TT . 2 7tk cos zL L

Wzory powyższe pozwolą określić bimoment i moment giętno-skręca- 
jący za pomocą zależności

(2.3.7) B = — EIu<p", M„ = — Ela<p".

Dwie niewiadome stałe tp^ i (p^ występujące w równaniach (2.3.5) 
i (2.3.6) muszą być tak dobrane, aby był spełniony warunek ciągłości 
naprężeń normalnych i stycznych w przekrojach granicznych; np. między 
profilami A i B:

(2.3.8) TA lz = z, lz = z, '

2.4. Ciągłość naprężeń w miejscach zetknięcia się dwóch różnych profili

Rozpatrując zagadnienie ciągłości naprężeń w miejscach zetknięcia się 
dwóch różnych typów profili należy zwrócić uwagę na dwa zjawiska:

(1) przekroje graniczne (lewy, prawy) posiadają różne powierzchnie 
wycinkowe i wobec tego w przekroju tym nastąpić może skok naprężeń;

(2) także podobna nieciągłość występuje na powierzchni swobodnej 
jednego z przekrojów.
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Stąd wniosek, że w przekroju granicznym musi być przyłożony zrów­
noważony układ obciążeń, który zniweluje skok naprężeń w elementach 
wspólnych obu profili oraz sprowadzi do zera naprężenia w swobodnych 
częściach przekroju (tj. w częściach nie stykających się z przekrojem są­
siednim).

Zamiast układu naprężeń wprowadzamy fikcyjny przekrój posiadają­
cy powierzchnię wycinkową spełniającą powyższe postulaty. Ten fikcyj­
ny przekrój powinien spełniać 
warunki

(2.4.1)

J m d A = 0 ,
A

J co ydA = 0 ,
A

J mxdA = 0 .
A

Można go traktować jako 
przekrój redukujący różnicę 
powierzchni wycinkowych 
obu sąsiednich przekrojów A 
i B, dla których mają być 
spełnione przytoczone wa­
runki. Wzory (2.4.1) można 
także zapisać w postaci na­
stępującej:

(2.4.2)

J ^b— o)A)dA — 0,
A

f (coB — mJt]dA=0,
A

f (a)B — coA)xdA=0.
A

Rozpatrzmy styk przekro­
ju zamkniętego A i otwartego 
B (rys. 20). W celu uzyskania Rys. 20
ciągłości naprężeń zgodnie ze
wzorem (2.3.8) stwórzmy przekrój zastępczy W, którego powierzchnia wy­
cinkowa stanowić będzie różnicę powierzchni wycinkowych obu profili 
sąsiednich. Jest rzeczą oczywistą, że z zależności

(2.4.3) MA
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wypływa nowy związek

(2. 4.4) S w gz == S a y SaA ’

Wówczas dla dowolnego elementu swobodnego np. w przekroju A 
możemy napisać

aA + an- =
Ba ^a BfyWfy

1 + 1
i^A

B_amA _ 

B>a

Btr ^A __ Q

(2.4.5)

rA + IaA Ó + L,IV <5
A Mu)y SuA

B>A Ó

przy spełnieniu warunku
Ej __

I a A B^y ^^A
(2.4.6.1)

Stąd wypływają zależności

(2.4.6.2) •Pa = (Ph'>

Podobny wynik otrzymamy dla 
jom A i B:

(2.4.7) o 'k &jy — >

•Pa = •Pw ■
elementu wspólnego obu przekro

ta + tif “ tb ■

Podstawiając wartości naprężeń 
i (2.4.4) otrzymamy:

oraz korzystając z zależności (2.4.3)

(2.4.8.1)

lub

(2.4.8.2)

Ba ma Biv o)w__ BB a>B

Ig A

SaA IMgyySajy
lujf Igfid

BA o>a 
^A

BB 

I^B

MuA B^a Mg^y B^a Bo>a Bgg
I^A IaB

Równości (2.4.8) będą spełnione, gdy

Ma a Majy Mag
^^A

Stąd wypływają zależności podobne do (2.4.6.2)

(2.4.9.2) •Pa = <PB ’ <Pa = •Pb-
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Wynika stąd wniosek, że przy przejściu od jednego przekroju do drugie­
go skok bimomentu i momentu giętno-skręcającego jest proporcjonalny 
do wzrostu wycinkowego momentu bezwładności.

2.5. Rozkład naprężeń stycznych w przekrojach złożonych

Dla przekrojów zamkniętych i otwarto-zamkniętych podanie wycinko­
wego momentu statycznego Su nie jest jednoznaczne z określeniem roz­
kładu naprężeń stycznych pochodzących od momentu giętno-skręcające­
go Mu. Mianowicie na skutek rozcięcia profilu zamkniętego powstanie do­
datkowy strumień q zależny wyłącznie od wyboru miejsca rozcięcia, 
a przez to samo od wyboru początku liczenia S«. Dlatego w dalszych roz­
ważaniach posłużymy' się sprowadzonym wycinkowym momentem sta­
tycznym Su, składającym się z momentu Sa, utworzonego jak dla profilu 
otwartego, oraz ze stałej wartości S^, charakteryzującej strumień napięć 
zamykających.

Wycinkowy moment statyczny dla danego przekroju przykładowo wy­
znaczymy dla elementu dwuspójnego rozpatrzonego już w p. 2.2. Rozcię­
cie tego przekroju w punktach B i C leżących na głównym promieniu po­
woduje powstanie napięć zamykających q01 i q02.

W celu określenia tych napięć ułóżmy drugie równanie typu (2.2.5)

, do0
SH Qoi + P’Qir2 —

4651 CM 14 BK

Stąd

(2.5.2) q01 _ dg0 y>p2 + ys,4 =_ dg0 ypt + ySu 
dz PtPi — s^’ q"2— dz PiPa — s^'

i rozwiążmy układ równań

(2.5.1) Piq01—s14q02 = — —

gdzie

Ponieważ

(2.5.3) d a0 d IB w _  Mu 
dz dz Io . lu ’L _ O>—1
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to wzory (2.5.2) można zapisać w postaci

(2.5.4) ___ ę, 
Фи — J

Мы 402=^-^ 
la)

gdzie

(2.5.5) У Pa 4- У S14 s =  УР| + У sn
Pi Pa — 8'1/ "" Pi Pa — 8^ '

Podobny rezultat otrzymamy dla profilu otwarto-zamkniętego:

qi = qe+S J “dA’ 
0

42 = 4o Sd A.
61

Warunek analogiczny do (2.2.5) dla części zamkniętej przekroju ma 
postać

14

i'
J Gd

f 5^ = 0.I Gd
1234

Stąd znajdziemy

(2.5.6) q° dz

J TJ ZdA 

1254 51

a dla profilu prostokątnego bez «wypustek»

(2.5.7) q°~ dz

j udA 
o_____  

• ds
”<5

2.6. Przykład liczbowy

Opierając się na wynikach zawartych w pięciu poprzednich punktach 
obliczymy naprężenia aa i rM w barce o szerokości 12 m i długości 100 m.

Całe obliczenie można podzielić na pięć następujących etapów:
(1) obliczenie środków zginania i powierzchni wycinkowych wszystkich 

przekrojów barki oraz ustalenie obciążenia zewnętrznego;
(2) określenie parametrów Ia, Is, I<os i k dla każdego przekroju i pod­

stawienie ich do równań (2.3.5) i (2.3.6);
(3) wyznaczenie dla otrzymanych w ten sposób 10 równań 10 stałych

całkowania % i tp'^ z ustalonych warunków brzegowych (rys. 21);

o

o
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(4) rozwiązanie otrzymanego układu równań i określenie bimomentu 
i momentu giętno-skręcającego, pochodzących od obciążenia w dowolnym 
przekroju kadłuba;

(5) uzyskanie ciągłości naprężeń w przekrojach granicznych przez 
przyłożenie wtórnych układów samozrównoważonych na podstawie wzo­
rów (2.4.6.1) i (2.4.9.1).

Rys. 21

Stosując ten tok postępowania podamy uzyskane rezultaty.
Linia środków zginania podana jest na rys. 22b. Powierzchnie wycin­

kowe wszystkich przekrojów podane są na rys. 22c, a na rys. 22d wycin­
kowe momenty statyczne i SZ. Założono, że rozkład momentu skręca­
jącego jest sinusoidalny o amplitudzie m, = 42,5 tm/m, co odpowiada skoś-

Tablica 2
nemu ustawieniu bar­
ki na fali o długości 
Ż = L.

Obliczone para-
L (m1) k (m ')

Przekrój A 4,32 5,75 0.211 metry Ia, Is, Ias i k
Przekrój B 22,68 9.10" ó 0,000389 podano w tablicy 2,
Przekrój C 2.856 8,185 58,148 0,242 przy czym parame-
Przekrój D 23,43 0,236 0,0508 try charakteryzujące

przekrój C wyzna-
czono na podstawie wzorów (2.2.15), przekrój D na podstawie wzo­
rów dla profilu otwarto-zamkniętego części poprzedniej niniejszej pracy.

Po wstawieniu parametrów do wzorów (2.3.5) i (2.3.6) otrzymamy na­
stępujący układ równań:

(2.6.1) yA = <p'0A cosh 0,211 z 4- sinh 0,211 z + 0,9223 • 10-6X 1 1 U .Z 1 1

0,00394786 sin 0,062832 z+o,0132575 sinh 0,221 z . „„„„„„„ \
---------------------------- 0^48469---------------------------------sin 0,062832 2,

(p"^ = <PqAi • 0,211 sinh 0,211 z + <p'qA cosh 0,211 z + 0,05795 ■ 10 eX

0,00394786 cos 0,062832 z + 0,21l2 cosh 0,211 z
0,048469

cos 0,032832 z
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(А) (в) ID) (Л)

а

Т
i

L = 5-20=100

Rys. 22



Vb = v'ob cosh 0,000389 z + - sinh 0,000389 z + 0,59027 x
UjUUUooy

0,00394786 sin 0,062832 z + 0,00002442 sinh 0,000389 z . \
0,00394801 sm 0>062832 zj,

<Pb = Vob 0,000389 sinh 0,000389 z + cosh 0,000389 z + 0,037088 x

.0,00394786 cos 0,062832 z + 0,000389s cosh 0,000389 
0,09394801 — cos 0,062832 z

Vc = <Z>0C cosh 0,242z + „;sinh 0,242 z + 0,649- 10“6>

0,00394786 sin 0,062832 z + 0,0152053 sinh 0,242 
0,0625118

z \
----- sin 0,062832 z

TV4- cosh 0,242 z + 0,040778 • 10~6 X

■ . I 0.00394786 cos 0,062832 z + 0,2422 cosh 0 242 z \
. i -------------- ----- cos 0,062832 z ,0,0625118

" " ^0 D
9V) ^’oocosh 0,0508 z + sinh 0,0508 z + 22,501 • 10~6x 0,0508

.. / 0.0039478£sin 0,062832 z vF 0,00319186 sinh 0,0508 z
0,0065313 sin 0,06283 z

TV^T’oo0,0508 sinh 0,0508 z + cosh 0,0508 z + 1,43783- 10~6x

0.00394786 cos 0,062832 z + 0,05082 cosh 0,0508 z
0,0065313 — cos 0,062832 z ,

^"a, = ‘T’oa cosh 0,211 z + sinh 0,211 z + 0,9223 • 10’ 6 x

0,00394786 sin 0,062832 z + 0,0132575 sinh 0,211 z
----------------------------------------------------- —sin 0,062832 z0,048469

Va, = Vqa, °)211 sinh 0,211 z + 92''^ cosh 0,211 z + 0,05795 • IO“6 x

0,00394786 cos 0,062832 z + 0,2112 cosh 0,211 z
0,048469 cos 0,062832 z

Wzory (2.4.6.2) i (2.4.9.2) określają osiem warunków dla przekrojów 
przejściowych, które razem z warunkami uzyskanymi z przyrównania do
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zera bimomentu na końcach statku stworzą następujący układ równań
pozwalający wyznaczyć stałe ę>” i Wo :

(2.6.2)

^, = — 60 ® ’ ^A^ + 50 ~ ’

— 30 = fB =-■ 30 ’ ^A^ — so = 'Pb = --30’

^ = -10 =-<Pc=- 10 ’ Vb^--10 = Wc^--10’

<Pc= MO = 1 10’ mo = (Pd=\ 10 ’

'Pd-- + 30 = k 30’ ; so “ 'l a 1 30

Wstawiając otrzymane wartości i <p„ do równań (2.6.1) oraz stosu­
jąc wzory B = — ELap", Ma = — EIu<p" określamy bimcment i mement 
giętno-skrętny craz funkcję <p" i y" w dowolnym przekroju kadłuba. 
Następnie z prostych wzorów 

(2.6.3) 
M <0 S M

otrzymamy wartości naprężeń.
Bimomenty i momenty giętno-skrętne otrzymane na podstawie wzo­

rów (2.6.1) i (2.6.2) określają tzw. obciążenie pierwotne, nie dające cią­
głości naprężeń w przekrojach granicznych (rys. 23a). Konieczne jest 
w tym przypadku przyłożenie bimomentów i momentów giętno-skrętnych' 
wtórnych w każdym przekroju nieciągłości dla spełnienia zależności (2.4.5) 
i (2.4.7), (rys. 23b).

Wzory (2.4.6) i (2.6.2) prowadzą do zależności

(2.6.4) —VB’ W W Wb ■

Wzory (2.6.4) są jednocześnie jednostronnymi warunkami brzegowymi 
dla obciążeń wtórnych.
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Dla obliczenia rozkładu naprężeń wtórnych można by, jak się wydaje, 
zastosować teorię układów zerowych (samozrównoważonych) J. Nowiń­
skiego.

W tym przypadku całkowite naprężenia można zapisać w postaci na­
stępującej:

(2.6.5)
o = a° Zo', 

t = r° +
gdzie o° i t° odpowiadają wyżej obliczonym naprężeniom pierwotnym, 
zaś a1 i P są to naprężenia tworzące w ogólnym przypadku nieskończo­
ny zbiór układów zerowych.

Dopiero układy określone wzorami (2.6.5) dadzą całkowity obraz naprę­
żeń w kadłubie skręcanym barki.

Rys. 24

Pomimo że obliczone wartości ze wzorów (2.6.3) nie dają dokładnego 
przebiegu naprężeń we wszystkich przekrojach barki, to jednakże można 
się nimi posłużyć w celu oszacowania naprężeń maksymalnych. Jak widać 
z rys. 24, największe wartości naprężeń (szczególnie normalnych) wystę­
pują w pewnej odległości od przekrojów granicznych w miejscach, gdzie 
można się spodziewać raczej niewielkiego wpływu obciążeń wtórnych; 
np. naprężenia maksymalne w przekroju B równe aa = 395 kG/cm2, 
to = 105 kG/cm2 należałoby uważać za dość dokładne.

Przyjmując istnienie przegród poprzecznych w miejscach zmiany pro­
filu rezygnujemy tym samym z ciągłości naprężeń stycznych na poszy­
ciu barki w przekrojach granicznych. Wówczas warunki będą następujące:
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Va^= I 50 O’

(2.6.6)

^, = -60 = °’

—30 (Pb = —30’

9’b = —io 7’c= —to ’

<Pc= + io Vd= + io >

| 9’d= + 3o ^,= + 30’

AB BuB\z

z = 30 O’

B C ^B c cudz=-io ’

CD^CD ^Z>lz = +10’

da. & da, A,iz = + 30 ’

gdsjz—+ 30 O’

30 ’

s

z = —10 ® ’

10 0 ’

gdzie TJ1B, TBC, tcd, TDA^ ÓAR, ÓBC, 6CD, óDA2 są to naprężenia styczne 
oraz grubości blach przegród w odpowiednich przekrojach. Jak widać, 
w tym przypadku nieciągłości naprężeń stycznych na poszyciu wyrównują 
naprężenia styczne panujące na obwodzie przegrody.

Na zakończenie przeprowadzimy krótkie rozważania dotyczące do­
kładniejszego określenia przebiegu naprężeń w pobliżu przekrojów gra­
nicznych. Mianowicie, aby uzyskać funkcję ciągłą określającą naprężenia, 
dodamy jeden wyraz układu wtórnego, zawierający dostateczną ilość sta­
łych do wyznaczenia warunków brzegowych oraz równowagi (2.4.5).

2.7. Układy wyrównujące naprężenia w przekrojach granicznych

Przyjmijmy pierwszy wyraz układu wtórnego w następującej postaci:

t* TT . t" . i
(2.7.1) tp" = %, cosh kz + -z— sinh kz + <?02cos z + <p02 sin - z + rC l *

2% ,, 2n
+ V 03cos Y Z + ’’ós sin T Z'
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Pochodną tej funkcji jest

TC TC
z2.7.2) k sin kz + cos^ kz— ^02 s^n ~^z +

m ff 2 tc . 2 tc . m 2 tc 2 tc
+%2 f cos T 2 ~ r%, sm t 2 + 9,03 T cos T 2 ■

Początek układu umieszczamy w przekroju granicznym.
Uwzględniając wpływ naprężeń Saint-Yenanta musimy znaleźć 

pierwszą pochodną kąta skręcenia:

1 „ 1 „ l n
(2.7.3) w = — sinh kz + cosh kz + %2 V Sm T * ~

tu l tc . u l . 2 tc m l 2 tc .

W funkcji powyższej występuje siedem stałych dowolnych:

fl fit II lir II "r S'!
Yoi> T’oi* ^02 ’ ^02 ’ Y()3’ «’os > •

Możemy jednakże podać sześć warunków brzegowych, z których na­
stępujące cztery odnoszą się do bimomentu giętno-skręcającego na koń­
cach przedziału:

2 = 0, ‘Pw —
Biy
EIa ’

Ma
(Pa'~ EI<a

(2.7.4)
2 = 1, <P^ = 0, Mn — <p"w = 0

Pozostałe dwa warunki otrzymamy zakładając, że dla układów wtór­
nych nie istnieje obciążenie zewnętrzne w każdym przekroju rozpatrywa­
nego przedziału, czyli że

(2.7.5.1)
2 = 0,

2 = 1,

Ma -Jr M V— Mskr — 0,

Ma + Mv=Mskr = 0-

Wobec tego mamy

( z = 0, 
(2.75.2)

l 2 = 1,

k2 cp' — <p'" = 0, 

k2 <p — cp"' = 0.
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Podstawiając do tych równań odpowiednie wartości ze wzorów (2.7.1)- 
(2.7.3) do (2.7.4) i (2.7.5.2) otrzymamy układ równań

,,.lk2l , 
^02 „ + 7

k2l 2n 
2% l (

k2l 2
2 n l

= 0,

= 0,

(2.7.6)
— ^Ol + Vo2 + ^3 ’

iy . w ß . tn 2 71
(Pw= +7’02-f+ 9,03 l ’

T’oi cosh kl + <rói sinh kl — + ^ = 0 ,

k sinh kl + cosh kl - -+ + = 0 .
i i

Obierzmy stałą C za parametr niezależny i pozostałe stałe określmy 
jako funkcje C. Znajdziemy wtedy

■1  C coshkl—1 coshkl 
% k sinh kl k sinh kl ’

"   1 " , 1 / u 7 7 7\ C coshkl — 1
^02 — “o- Vw + “ö" "7—■ u 7 7 (cosh kl — 1)---------- -—- - - ,

(2 7 7j 2 2 ksinhJcZ z ksinhkl
rr 1 U 1 IV

^03 = T (cosh kl + 1) ,

"• >” C ,,, C l
T’oi “ ~ > 9’02 = 0 > T’os = ~ >

gdzie
1

Z — v 1 •
4^’ + k2

Brakujące siódme równanie otrzymamy z warunku minimum energii 
potencjalnej.

Energia całkowita obliczona dla jednego przedziału jest

(2.7.8) w= U C + J^Ljd2
J \J 2E J 2Gd 2GIS
0 A A

Zastępując naprężenia odkształceniami otrzymamy

/ E2fsldA / /
(2.7.9) W = (9,ydz + —^Gó J + I (<pydz_

0 0 o
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Podstawmy wartości stałych (2.7.7) 
wadźmy następujące oznaczenia:

do wzorów (2.7.1)-(2.7.3) i wpro-

1 cosh kl— 1 , ,
U =-------- 7—-V 7 71 C0Sh kZ ~X k sinh kl

sinh kz 
~k

1 coshkl—1 n-----—- cos — z +
/ ksmhkl l

l . 2?T sm -y z

1
X

coshkl , , . sinhkz i „
v— — (Pw']^n^klCOshkz + (|,^ k +^(Pw^

(2.7.10)

/ tt । 2 TTx I COS Z + ces — z
1 Vw , 7 7 / 
— -—. , — cosh kl
2 k sinh kl \ 

, 1 T’r

TT . 2 TT w \ ।cos— z + cos — z I + Ł v /
/ 2 tt TT i

2 ksinhkl\
cos- - z—COS y z , Ł * /

„ 1 ccsh kl—■ 1 . , , 1 , , .# =---------- ——— smh kz--------cosh kz +
X sinh kl x

1 ccsh kl — 1 7t . TT 1_ 2 n 
■ U 7 7 VSmV2 + ~COS^-2:’X ksmhkl l l

ni coshkl । m i? 1 ’i n= s:nhkT smh kz + cosh kz — —X

/ . TT , „ . 2?T \ , 1 Vir w x/ 
x^sinyz + 2smTz) + T><

I 2 71
X (cosh kl — 1) sin -y- z + 2 (cosh kl + 1) sin-y z ,Ł Ł

1 1 coshkl — 1 . , , 11 ,
^ = — T2 —iTTT“ smh kz------- tacosh kz —

X kJ smh kl x
1 coshkl — 1 l . tt 11 — sm — z-------- -.—.

tt l x 7TX k sinh kl
2 tt-5 COS -y- Z + 1 ,

■“ l

ccsh kl . , 7 , 1 , , 1 „ l
“ T^sinh kT smh kZ + (Pwk^C0Sh +

In . 1 . 2 ?r \ 1 Vw l
x^m-j-z + ysin--z^ 2 ksinhkl „

[
tt 1 \ . 2 tt

(coshkl — 1) siny z---- — (coshkl+ l)sm — z . Ł----------- *

W wyrażeniach na pochodne kąta skręcenia wyróżnijmy składniki za­
wierające C i składniki nie zawierające tej stałej. Znajdziemy wzory

(2.7.11) ę/' = C/z + r, ę/" = C79 + 0, ę>' = C«+2.

2 =

X l
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W wyrażeniu na energię (2.7.9) wprowadzimy jeszcze dodatkowe ozna­
czenia:

« EIa, fi— §S^dA, y— Gis,

A

a następnie wzór (2.7.9) zróżniczkujemy i otrzymane wyrażenie przyrów­
namy do zera:

Rys. 25

W ten sposób otrzymaliśmy równanie do wyznaczenia siódmej stałej:

(2.7.13)

i i i
a J jurdz + p j~ dd>dzAy J nXdz 

o_____________o______________ o________
i i z

a J /a2 dz + fi j &2 dz 1- y j x~dz 
ooo

Obliczenie wpływu zbieżności poszycia statku na dziobie i rufie zawie­
ra dalsza część niniejszej pracy.
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3. OBLICZENIE KADŁUBA OKRĘTOWEGO JAKO KRATOWNICY PRZESTRZENNEJ

Zagadnienie skręcania kadłuba okrętowego, mimo swej doniosłości 
dla ogólnej teorii wytrzymałości kadłuba, znajduje w literaturze stosun­
kowo nikłe odzwierciedlenie. Przyczyn tego należy szukać w trudnościach 
zagadnienia i w skomplikowanych obliczeniach, które powinny uwzględ­
niać zarówno zmienny przekrój kadłuba okrętowego, jak i zmienny roz­
kład momentu skręcającego wzdłuż długości statku. Jednocześnie oblicze­
nia, aby przedstawiały faktyczny stan rzeczy, nie mogą opierać się na hi­
potezie płaskich przekrojów, lecz muszą uwzględniać występujące w rze­
czywistości paczenie się przekrojów. Wreszcie obliczenia powinny 
uwzględniać współpracę poszczególnych wiązań okrętowych przy pracy 
kadłuba jako całości.

Jeśli jednak zwrócimy uwagę, że jedną z najczęściej występujących 
awarii okrętowych jest pękanie naroży lukowych (rys. 26), którego to zja­
wiska nie można przypisać działaniu momentu gnącego kadłub na fali, to 
dojdziemy do wniosku, że doniosłość teoretycznego opracowania zagad­
nienia o skręcaniu okrętu nie budzi wątpliwości.

Praca niniejsza zasadniczo zajmuje się metodą wyznaczania sił działa­
jących w narożach lukowych. W tym celu kadłub jest rozpatrywany jako 
kratownica przestrzenna, przedstawiona na rys. 27. Jak wynika z rysunku, 
przyjęto uproszczony kształt kadłuba o stałym przekroju prostokątnym. 
Założenie to niczym nie wpływa na zasadniczy tok rozumowania, a znacz­
nie upraszcza obliczenia. Jednocześnie pozwala na porównanie otrzyma­
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nych wyników z wynikami rozważań nad kadłubem okrętowym traktowa­
nym jako skręcana powłoka cienkościenna, dla której wpływ zmiennego 
przekroju kadłuba znacznie bardziej komplikuje obliczenia, niż ma to 
miejsce przy kratownicy przestrzennej. Z tego powodu ograniczono się 
do kratownicy statycznie wyznaczalnej, tj. do kraty posiadającej przekąt­
nie tylko w skrajnych grodziach (0 i 5) i ścianach zewnętrznych. Grodzie 
wewnętrzne (1, 2, 3, 4) są pozbawione przekątni, a więc zakładamy, że 
grodzie te nie mogą przenosić naprężeń stycznych, jak to zdarza się w rze­
czywistości przy niedostatecznie usztywnionych tzw. grodziach falistych.

Rys. 27

W odróżnieniu od terminologii stosowanej przy kratownicach lotni­
czych będziemy stosowali terminy okrętowe: grodź oznaczać będzie 
płaszczyznę przechodzącą przez węzły kratownicy i prostopadłą do osi ka­
dłuba (w lotnictwie — przegroda); przedział —- odcinek kratownicy prze­
strzennej zawarty między dwiema sąsiednimi grodziami (w lotnictwie — 
grodź).

Pokład w przedziałach 1-2 i 3-4 posiada tzw. luki ładunkowe, tj. otwory 
obramowane ramą. Jeśli więc potrafimy obliczyć siły działające w gór-
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nych przekątniach 1-2 i 3-4 i siły te potraktujemy jako obciążenia ze­
wnętrzne wspomnianych ram, to obliczenie momentów narożnikowych 
w ramach daje, łącznie ze znajomością sił w otaczających pokład podłuż- 
nicach i poprzecznicach, realne podstawy do obliczenia naprężeń w naroż­
nikach lukowych. Przedział 2-3 posiada nadbudówkę nad całym pokładem. 
Obciążeniem zewnętrznym dla nadbudówki będzie część siły działającej 
w górnej przekątni pokładu w przedziale 2-3.

Wartości sił w prętach naszej kratownicy przestrzennej obliczamy jako 
funkcję maksymalnego momentu skręcającego. Rozkład momentu skręca­
jącego wzdłuż statku nie wpływa na tok rozumowania. Dla naszego przy­
padku przyjęto na podstawie bardzo nielicznych danych w literaturze roz­
kład momentu skręcającego w postaci

(3.1) „„ 1 i.M = — 1 ■— cos Mmax •

Dla konkretnego kadłuba okrętowego można Mmax wyliczyć ściśle lub też 
stosować podany przez Siwierciewa, [17], przybliżony wzór na ma­
ksymalny moment skręcający na owrężu

(3.2) Mmax — kyrB2L,

gdzie k oznacza współczynnik będący funkcją stosunku długości kadłuba 
i długości fali L/A, długości kadłuba do jego szerokości L/B oraz współ­
czynnika pełnotliwości wodnicy a, y oznacza ciężar właściwy wody, 
r połowę wysokości fali (w praktyce r = L/40), B szerokość kadłuba 
i L długość kadłuba.

W naszym przypadku przyjęto początkowo Mmax = 1 oraz uwzględnia­
jąc, że pręty kratownicy mogą przenosić tylko siły osiowe (a więc obcią­
żenie zewnętrzne może działać tylko na węzły kratownicy), zastąpiono 
krzywoliniowy rozkład momentu skręcającego łamaną linią schodkową ze 
skokami na grodziach. Wielkości skoków na kolejnych przegrodach i, k 
określono z zależności

xk __ ___ xk
(3.3) Mik= 1 - f Mdx = l/-7—-------r I (1 - cos-y— )dx.

Obliczenie momentu skręcającego poszczególne przedziały zawiera ta­
blica 3.

Rozwiążemy zagadnienie kratownicy przestrzennej metodą niewiado­
mych sił deplanujących, opartą na rozważaniach Wagnera, [18], a roz­
powszechnioną w piśmiennictwie polskim przez Grzędzielskiego, 
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[19]. Należy zwrócić uwagę, że dzięki płaskości wszystkich czterech ścian 
kratownicy podstawowej (jako kratownicę podstawową traktujemy sam 
kadłub bez nadbudówki) można metodę Grzędzielskiego stoso­
wać bez zastrzeżeń. W przypadku istnienia załamanych ścian bocznych

Tablica 3

x k
1 f 1 , 2ttx\ , 1 r L I . 2n . \]------------— 1 —cos—— dx = — a——- sin -— xk - sin — x;IK xk — xi J 2 \ L / 2a l 2n \ L * L '/1

k 0 1

= 0,5—0,397888 (s \

2 3 4 5

xk = 20 k 0,00 20,00 40,00 60,00 80,00 100,00

2^ = 2jLx
L 100 '' 0,0000 1,256638 2,153272 3,769908 5,026544 6,28318

xh sin 2 n -~
L 0,000000 0,95106 0,58779 —0,58779 —0,95106 0,0000
Xk X:sin 2?t — - sin 2 .-t —
L L 0,00000 0,95106 — 0,36327 —1,17558 -0,36327 0,95106

0,397888 (sin 2«^ — 
' L

sin 2^) 0,00000 0,378415 —0,144541 —0,467749 —0,144541 0,378415

Mik 0,000000 0,121585 0,644541 0,967749 0,644541 0,121585

kadłuba metoda Grzędzielskiego nie daje dokładnych wyników, 
gdyż pomija występujące w tym przypadku dodatkowe siły w narożni­
kach grodzi. Siły te mogą znacznie wpłynąć na całkowitą wartość sił w prę­
tach grodzi. Na fakt ten zwrócił uwagę w swej nieopublikowanej jeszcze 
pracy Mierzejewski, [20]. Prawidłową metodę rozwiązywania za­
gadnienia kratownic przestrzennych w przypadku załamanych ścian bocz­
nych podaje E b n e r, [21]. Metoda jego oparta jest również na rozważa­
niach Wagnera.

Zasady zastosowanej metody są następujące.
Pojedynczy przedział sześciościenny ograniczony grodziami i, k kra­

townicy przestrzennej, poddany działaniu przyłożonego na grodziach i i k 
momentu skręcającego Mik, ulegnie odkształceniu, w szczególności ulegną 
deplanacji płaskie początkowo grodzie skrajne (rys. 28). Deplanacja ta 
powstaje pod wpływem działania bimomentu sił A, sił deplanujących 
wywołanych momentem skręcającym. Jeśli teraz złączymy nasz przedział 
i k z następnym przedziałem k l (w naszym przypadku oba przedziały są 
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identyczne pod względem kształtu i wymiarów, co jednak nie jest warun­
kiem koniecznym), również obciążonym na grodziach k i Z momentem 
^kt Mik, to grodź k ulegnie również deplanacji na ogół odmiennej co 
do wielkości i kierunku od deplanacji wywołanej momentem Mik. Waru­
nek nierozdzielności wymaga jednak jednoznacznie określonego wspólne­
go dla przedziałów ik i kl odkształcenia grodzi k.

Analogiczne rozumowanie przeprowadzamy w stosunku do dalszych 
przedziałów (na ogół o dowolnych kształtach i wymiarach) Im, mn, 
obciążonych momentami skręcającymi Mtm, Mmn, ... .

Uwzględniając warunek nierozdzielności oraz warunki równowagi naj­
pierw poszczególnych grodzi, następnie poszczególnych prętów w grodzi, 
dochodzimy do równania trzech bimomentów

(3.4) ^A^ĄA. + ĄA^N,,

gdzie ej., ej i ej są funkcjami parametrów określających wyłącznie geo­
metryczne kształty kratownicy, zaś wyraz wolny Nk jest funkcją obciąże­
nia zewnętrznego sąsiadujących przedziałów i k oraz k l. Wielkość Nk 
określona jest wzorem

(3.5) Nh = lull!Mk/— [ĄMtk,

przy czym współczynniki /<j i yj są również zależne wyłącznie od wiel­
kości określających geometryczne kształty kratownicy.

Oznaczmy przez bt, bk, ... szerokość kadłuba na odpowiednich gro­
dziach i, k, ..., przez a, ck, ... wysokości kadłuba na odpowiednich gro­
dziach, przez aik, aki, ... kolejne odległości sąsiednich grodzi.
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Wprowadźmy poza tym oznaczenia

(3.6) Ft = bi a , Kki = bi ck + bk Ci.

Wówczas możemy wyrazić współczynniki występujące w równaniach 
(3.4) i (3.5) przez wymienione wyżej wielkości w sposób następujący:

(3.7)

i _ F‘
'k Kkiaki ’

* Ktkaik

Uwzględniając, że w naszym przykładzie

b, = b& = • • • = b = 12 m, a = ck = ■ • • = c = 6 m,

a,k = aki = • • • = a = 20 m,

otrzymamy również równość wyrażeń

Fi = Fk = •; ■ = F = b c = 12 • 6 = 72 m2,

Kki = Kik = ■ • • = K - 2 F = 2 ■ 72 = 144 m2,

P= = TTT = 0,006944 -4.
K 144 m“

Należy zwrócić uwagę, że z samego fizycznego charakteru zjawiska wyni­
ka, że grodzie skrajne jako umownie zamocowane przegubowo w naroż­
nikach mogą deplanować się swobodnie, skąd bezpośrednio wynika, że siły 
deplanujące w grodziach skrajnych są równe zeru, tj. w naszym przypad­
ku mamy Ao = A5 = 0 .

Po wstawieniu wartości liczbowych do wyrażeń na współczynniki 
w równaniach trzech bimomentów otrzymamy układ czterech równań 
z czterema niewiadomymi:

— 0,5 Aj + 0,025 Ą, = — 0,003632,

0,025 4,-0,05 A2 + 0,025 4S = — 0,002244,
0,025 42 —0,05 A3 + 0,025 A, = 0,032244,

0,025 43 —0,05 44 = 0,003632.

Rozwiązanie tego układu równań daje siły deplanujące Au =0, At = 
= — 0,105122, A2 = — 0,064958, 43 = 0,064958, 44 = 0,105122, 43 = 0.

Siły te wyrażone są w takich samych jednostkach, w jakich była wy­
rażona siła wchodząca do wielkości momentu skręcającego, i obliczone są 
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dla Mmax = 1. Siły we wszystkich prętach kratownicy możemy teraz okre­
ślić jako funkcje znalezionych sił deplanujących. Nie będziemy jednak od 
razu wyznaczali całkowitych sił w prętach, lecz siły jednostkowe, tj. siły 
w prętach odniesione do długości pręta,

(3.8) Si

Uzasadnienie takiego postępowania można znaleźć w ogólnych rozwa­
żaniach teoretycznych. Korzyści stąd wynikające są widoczne, zwłaszcza 
przy obliczaniu sił w podłużnicach i ukośnicach ścian bocznych kratow­
nicy.

Jednostkowe siły w prętach grodzi pośrednich obliczamy z zależności

(3.9.1) Bft _ 
bk

Mki bi

Kki bk

. Ak
"b----

aki
rr (żłl + żlfc)
Kki aki

lub

Bi Mki bk Ai , Fk
(3.9.2)

bi ~ Kki bi
&ki

(A,- 4- A ,̂ 
Kki aki

Ck Mki c, Fi(3.10.1) r-r (A/ 4
Ck Kki Ck aki Kki aki

lub

(3.10.2) Mki Ck i 4* (Ai + Ak).
Ci Kki Ci aki Kki aki

Siły Bk, Bt, Ck i Ci oznaczają całkowite siły w odpowiednich poprzecz- 
nicach i słupach grodzi. Wzory (3.9) i (3.10) są słuszne, jeśli na grodzi nie 
działa obciążenie zewnętrzne. Jeżeli grodzie są obciążone parą sił pozio­
mych, to różnica sił obliczonych np. dla grodzi k ze wzorów (3.9.1) i (3.9.2) 
musi być równa przyrostowi zewnętrznego momentu skręcającego na gro­
dzi k, tj.

(3.11) Bd _ B/
* b‘

MkL Mik _  Zl Mk
Fk Fk

Analogicznie, jeśli obciążenie zewnętrzne w postaci pary sił piono­
wych działa na grodź, jak ma to miejsce w naszym przypadku, to

(3.12) CJ _ Ci_ _AMk
<4 lc4~ F*
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Dla obliczenia sił jednostkowych w prętach podłużnie i przekątni 
wprowadzamy pomocnicze funkcje parametrów określających geometrycz­
ne kształty kratownicy:

(3.13) Wkt =__—-----
k Kk/aki bk’

(3.14) Gki = - Fk — -- 
k Kktaki c* ’

(3.15) y/ik = ---Ii-----
‘ Kkiati b,- ’

(3.16) pik =__Ii.__
‘ Kkiaki et

Łatwo zauważyć, że w przypadku naszego kadłuba zachodzi równość

F 1
= G1“ = W'k = G'* = = 0,025 — .n /1 i i m

W ogólnym przypadku jednostkowe siły w prętach podłużnie i przekątni*
np. dla przedziału ik, obliczamy według niżej podanego schematu:

(3.17) /S\
\ /ki

±W‘k Ai~^±WkiAk 

± GikAl ^±GikAk
■ Mki 
±K^i'

Podłużnice obliczamy według schematu W + G albo G + W, przekąt­
nie według schematu W + W lub G + G. O zastosowaniu tego lub innego 
schematu decyduje przynależność podłużnicy do ściany górnej lub bocz­
nej, przy czym kierujemy się umową, że podłużnica należy do tej ściany, 
w której leży przekątnia, schodząca się z tą podłużnicą w grodzi nieobcią- 
żonej.

Obliczenie sił jednostkowych i całkowitych w prętach naszej kratow­
nicy podstawowej dla Mmax = 1 podaje tablica 4, odpowiednie zaś wykre­
sy przedstawione są na rysunkach 29 i 30. Obliczenia te jednak nie 
uwzględniają istnienia nadbudówki, która obciążona jest częścią reakcji 
górnej ukośnicy .

Jeśli jednak weźmiemy pod uwagę, że na ogół w obrębie nadbudówki 
istnieją w pokładzie kadłuba podstawowego otwory, jak szyb maszy­
nowy, szyb kotłowy itp., oraz że otwory te są stosunkowo słabo obramo­
wane (w każdym razie bez porównania słabiej niż luki ładunkowe), to mo­
żemy przyjąć, że partia pokładu w przedziale 2-3 nie może przenosić na-
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Tablica 4. Obliczenie sil jednostkowych w prętach. Układ statycznie wyznaczalny

k 1 2 3 4 5

Ak — 0,105122 — 0,064958 0,064958 0,105122 0,00000

Mik 0,121585 0,644541 0,967749 0,644541 0,121585

0,000844 0,004476 0,006720 0,004476 0,000844
k

Ka^Ai+Ak} — 0,002628 — 0,004252 0,000000 0,004252 0,002628

Ak — 0,005256 — 0,003248 0,003248 0,005256 0,000000
a

0,001784 — 0,005480 — 0,009968 — 0,005480 0,001784
ck

Ai 0,000000 — 0,005256 — 0,003248 0,003248 0,005256
a
c, 0,001784 — 0,005480 — 0,009968 — 0,005480 0,001784
ci

— 0,003472 --0,003472 — 0,003472 — 0,003472 — 0,003472
b

B, — 0,003472 — 0,003472 — 0,003472 — 0,003472 — 0,003472
b

Wk Ai 0,000000 — 0,002628 — 0,001624 0,001624 0,002628

W*Ak — 0,002628 — 0,001624 0,001624 0,002628 0,000000

P™
0,001784 — 0,000224 — 0,006720 — 0,008728 — 0,003472

P

— 0,003472 — 0,008728 -0,006720 — 0,G00224 0,001784
p

Tl^(l uki 0,003472 0,003472 0,003472 0,003472 0,003472
ugd ■

— 0,001784 0,005480 0,009968 0,005480 -0,001784
upl

prężeń stycznych. W takim przypadku nadbudówka nad tak określoną 
partią pokładu jest wiązaniem koniecznym dla zapewnienia całej kon­
strukcji dostatecznej sztywności. Wówczas nadbudówka spełnia rolę 
brakującej przekątni, a cały przedział 2-3 łącznie z nadbudówką możemy 
traktować jako kratownicę przestrzenną statycznie wyznaczalną, obciążo­
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ną częścią obliczonej uprzednio siły działającej w górnej przekątni prze­
działu 2-3 (rys. 31).

Rys. 30

Dla obliczenia sił w prętach nadbudówki posłużymy się metodą G r z ę- 
dzielskiego i Kostki, [22], opartą również na rozważaniach 
Wagnera i wykorzystującą znane już zależności (3.9) i (3.10).
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Oznaczamy przez Ug część siły w przekątnej przenoszoną przez 
nadbudówkę, przez Ud część siły przenoszoną przez kadłub. Stosując wpro­
wadzone już oznaczenia oraz oznaczając jeszcze wysokość nadbudówki 
przez h, zaś poszukiwane siły w słupach nadbudówki przez X otrzymamy 
z. zależności (3.9) i (3.10)

Ug'
(3.18) X ,------ , , == 0,020838.

. r 1 , 1 ab 1
23 [2c h bh(a + b)J

Mając określoną siłę X można obliczyć siły w pozostałych prętach nadbu­
dówki skręcanej momentem

(3.19) M = Xb =
= 0,020838-12 = 0,230056.

Przyjmując wartość maksy­
malnego momentu według, poda­
nego przez Siwierciewa 
wzoru (3.2), gdzie przyjęto średnią 
wartość współczynnika k = 0,0375. 
otrzymujemy

(3.20) Mmov = kyrB2L = 1350 tm.

Mnożąc wielkości sił jednostko­
wych w prętach, obliczone w ta­
blicy 4, przez 1350 otrzymamy 
wielkości całkowitych sił w prę­
tach wyrażone w tonach.

Wykaz tych sił podaje tablica 5.
Rys. 31

W tablicy tej uwzględniono długości przekątni równe odpowiednio

= [a2 +b2 = 23,3238 m, up> = j/a- + c2 = 20,8806 m.

Obliczone w powyższy sposób siły w poszczególnych prętach dają peł­
ny obraz obciążenia poszczególnych partii i wiązań kadłuba podczas skrę­
cania. Wyniki obliczeń mogą być wyzyskane do dokładnego obliczenia roz­
kładu naprężeń metodami ścisłej teorii sprężystości. W przypadkach bar­
dziej skomplikowanych, w których metody ścisłe byłyby zbyt żmudne 
lub kłopotliwe, mamy konkretne podstawy do przeprowadzenia racjo­
nalnych prób modelowych np. elastooptycznych.

Siły w prętach nadbudówki obciążonej tylko obliczonym uprzednio 
momentem skręcającym

0,230056 • -= 310,574 tm
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obliczymy z prostej zależności sił jednostkowych we wszystkich prętach 
nadbudówki 

(3.21) / S j , Mn
[ l ' Kn'

Zależność ta wynika ze wzorów (3.9) i (3.10), jeśli zwrócimy uwagę, że dla 
nadbudówki

b, — bk — b — 12,00 m, с, = ck = h = 3.00 m

oraz że na nadbudówkę oprócz momentu skręcającego nie działają siły 
deplanujące A.

Stąd
K.\ 2bh 72 m".

zaś jednostkowe siły

( J 4,31353 t mb.
' 1 In

Obliczywszy uprzednio jeszcze długość bocznych ukośnie nadbudówki 

un = |/a2 + ± = 20,2238 m,

możemy obliczyć siły całkowite w prętach nadbudówki. Siły te wynoszą

w słupach Cn = -4,31353-3 = —12,9406 t,
w poprzecznicach BN = — 4,31353-12 = —51,7624 t,
w podłużnicy Рл =-4,31353-20 = —86,2706 t,
w ukośnicy bocznej = ±4,31353-20,2238 -= -]-87,2360 t.
w ukośnicy górnej = ±4,31353-23,3238 = + 100,608 t.

Oczywiście w prętach należących zarówno do kadłuba podstawowego, jak 
i do nadbudówki panują sumaryczne siły, równe uprzednio obliczonym 
w tablicach 4 i 5. Zakładamy, że część sił obliczoną powyżej przenosi nad­
budówka.

Jak wynika z tych krótkich rozważań, rozpatrzenie kadłuba okrętowe­
go jako kratownicy przestrzennej może oddać pewne usługi przy określe­
niu sił powstających przy skręcaniu. Ponieważ w warunkach normalnej 
pracy statku prawie nigdy nie powstaje samo skręcanie, lecz niemal zaw­
sze połączone jest ono ze zginaniem, więc siły całkowite w prętach będą 
sumą sił powstających przy skręcaniu i przy zginaniu. Obliczanie kratow­
nicy na zginanie nie przedstawia już specjalnych trudności, gdyż przy zgi­
naniu pracują tylko ściany pionowe, a więc kraty płaskie, które oblicza 
się elementarnymi metodami.
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Tablica 5. Obliczenie sił całkowitych w prętach

k 0 1 2
1

3 4 5

Słupy J max
t

0,010704
14,450

0,032880
— 44,388

— 0,059814
— 80,749

— 0,059814
— 80,749

— 0,032880
— 44,388

0,010704
14,450

tPoprzecznice ł
l BA t

— 0,041664
— 56,246

— 0,041664
— 56,246

— 0,041664
- 56,246

— 0,041664
— 56,246

— 0,041664
— 56,246

— 0,041664
— 56,246

Podłużnice

prawe górne Pl^ wmax) 0,035680 — 0,004480 — 0,134400 — 0,174560 - 0,069440

i lewe dolne 48,168 — 6,048 — 181,440 — 235,656 — 93,744

prawe dolne P1̂ — 0,069440 — 0,174560 — 0,134400 — 0,004480 0,035680

i lewe górne Pil t — 93,744 — 235,656 — 181,440 — 6,048 48,168

Ukośnice

górne i dolne
Wmax)

t

0,080980

109,323

0,080980

109,323

0,080980

109,323

0,080980

109,323

0,080980

109,323

prawe i lewe
Uf*

t

— 0,037251

— 50,289

0,114426

154,475

0,208138

280,986

0,114426

154,475

— 0,037251

- 50,289



Należy jeszcze raz podkreślić, że w przykładzie powyższym rozpatry­
waliśmy kratownicę statycznie wyznaczalną, w której siły powstające 
w prętach są zależne tylko od obciążenia zewnętrznego i kształtów kra­
townicy, nie zależą zaś od sztywności poszczególnych prętów w odróżnie­
niu od kratownicy statycznie niewyznaczalnej (np. w przypadku gdy gro­

dzie mogą przenosić naprężenia 
tnące), dla której sztywność 
prętów odgrywa istotną rolę.

Powyższy przykład obrazuje 
więc jeden przypadek skrajny 
odpowiadający kadłubowi o bar­
dzo wiotkich grodziach, nie 
przenoszących żadnych sił ści­
nających.

Zajmierny się obecnie dru­
gim skrajnym przypadkiem od­
powiadającym kadłubowi, w któ­
rym grodzie mogą przenosić si­
ły ścinające. Istotnym zagad­

nieniem w tym przypadku będzie przejście od modelu cienkościennego do 
kratowego. W rozważaniach niniejszych zastępcze sztywności ukośnie do- 
bierzemy w ten sposób, aby wydłużenie przekątnej blachy, znajdując się 
rzeczywiście pod wpływem działających na nią sił tnących, równe było 
wydłużeniu pręta zastępczego pod wpływem siły osiowej.

Stosując oznaczenia podane na rys. 32 założenie powyższe możemy 
wyrazić wzorem

(3.22) d l = zl b cos a.

Ze znanych zależności y = rjG, Al^PEEF oraz przyjmując, że siły 
tnące na krawędziach blachy wyrażają się wzorami B = bór, H = hór, 
możemy wyznaczyć siłę P = j/B2 + H2 = l dr oraz przekrój pręta za­
stępczego

(3.23)
GFó _ PÓ 
Ehb ~ 2(1 +r)hb '

Przyjmując stałą grubość blachy Ó = 10 mm = 0,01 m oraz liczbę P o i s- 
sona v = 0,3 otrzymujemy

(3.24)
P

F„ = 0,003846 —
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Dla podłużnie przekroje prętów zastępczych dobieramy w ten sposób, że 
przekrój przenoszący siły osiowe obejmie po szerokości pokładu i wy­
sokości burt dla każdej podłużnicy, a więc przekrój jednej podłużnicy 
wyniesie

/ b c \
fp=t + t U-0,045 m2.

\ 4 4 /

Wymiary przekrojów zastępczych ukośnie i podłużnie podaje tablica 6.

Tablica 6. Funkcje charakterystyk sztywności prętów 
układu statycznie niewyznaczalnego

Podłużnice l = 20,00 m, F = 0,045 m2, w = 0,084656
Ukośnice pokładu i dna l = 23,32 m, F = 0,2032 m2. <5 = 0,029716
Ukośnice burtowe l = 20,88 m, F = 0,2918 m2, co = 0,014858

2 co 0,338624 G2 S m^ 0,000124
Sm 0,089148 h.k 0,0005348
2 co 0,228744 «i.k 0,0001559

2 ^g
2 co — 2 co

0,199028
0,249440

^Smw

GS Mg
1

0,005719
0,004976

W2 S m w 0,000143 -
K

G S 0,035159

Siła w pręcie układu statycznie niewyznaczalnego sp jest równa su­
mie siły w układzie statycznie wyznaczalnym sOp oraz sił sps, powstałych 
pod wpływem działania sił Xs wzdłuż krawędzi przegród s, będących 
składowymi sił w ukośnicach grodzi X. Przechodząc do sił jednostkowych, 
odniesionych do długości pręta, możemy to przedstawić jako

(3.25) Sp — Sop -|- Sps Xs .

Energia potencjalna wszystkich prętów kratownicy wynosi

(3.26) u = y (»p^p,

gdzie a> — TplEpFp jest charakterystyką sztywności pręta, a litera p nu­
merem kolejnym pręta.

Zgodnie z zasadą minimum energii w położeniu równowagi musi być

(3.27) U 
dXP

(p — 1, 2, 3,..., n).
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Można dowieść, że siły deplanujące są liniowo zależne od sił w prętach 
nadliczbowych:

(3.28) V ^A:-- Xh.
i

Uwzględniając tę własność i wykorzystując metody z teorii równań linio­
wych i rachunku wyznaczników po pewnych przekształceniach dochodzi­
my do wyrażenia równania

(3.29) \\ op Spi Spk A/ -r cop Sop Spk O.
p '

We wzorze tym spi i sPk oznaczają siły jednostkowe w pręcie p powsta­
jące pod wpływem siły deplanującej At lub Ak.

Jeśli rozpatrzymy tutaj przypadek całkowitej sztywności grodzi (a więc 
biegunowo przeciwny do rozpatrzonego układu statycznie wyznaczalne- 
go), to możemy z dokładnością wystarczającą dla celów praktycznych po­
minąć wyrazy, dla których |i — k|>l. Otrzymujemy wówczas n równań 
z n niewiadomymi, a żadne z równań nie będzie zawierało więcej niż 
trzy niewiadome.

Wprowadźmy oznaczenia

(3.30) ' (Op sop spk — — ,
p

(3.31) ' OpSpiSph ,
p

(3.32) V ^p (^ppy^ fik.it •
p

Układ równań będzie więc przedstawiał wyrażenia typu

(3.33) fik. i Ai + Au + fik.iAi = — <5o. i; •

Współczynniki <5 obliczamy z zależności (3.13) - (3.17), skąd po licznych 
przekształceniach otrzymujemy

F; Fk(3.34) =
akt

(3.35) óo.* =|W« (2
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We wzorach (3.34) i (3.35) £ m oznacza sumę charakterystyk sztywności 
ukośnie, 2 w sumę charakterystyk sztywności podłużnie, Z a>w sumę 
charakterystyk sztywności prętów zastępczych dna i pokładu, sumę 
charakterystyk sztywności prętów zastępczych burt.

Jeśli wziąć pod uwagę, że wyraz zawierający siły jednostkowe w ukła­
dzie statycznie wyznaczalnym jest równy

(3.36) S()p — Spi At 4“ Spk Ak Sp/ Al,

to równanie (3.33) przybierze postać

(3.37) 8k,i(Ai + A'i) + dk.k (Ak + A'k) + dkJ (A/ 4- Aź) = — Ó0,k .

Siły A't, A'k i A'i są siłami deplanującymi dla układu statycznie wyzna- 
czalnego.

Dalszy tok postępowania jest identyczny jak dla kadłuba statycznie 
wyznaczalnego: obliczamy siły deplanujące (w naszym przypadku za nie­
wiadome przyjmujemy sumy Ai + AŹ), a następnie z zależności i wzorów 
(3.9), (3.10) i (3.17) wyznaczamy siły w prętach kratownicy. Obliczenia te 
zawiera tablica 7.

Nadbudówkę w przypadku kadłuba statycznie niewyznaczalnego obli­
czamy wychodząc również ze wzoru (3.18) lub też, jeśli nadbudówka przed­
stawia ustrój statycznie niewyznaczalny, stosując omówioną wyżej me­
todę energetyczną.

Jeśli przejdziemy teraz do naszej kratownicy, to na podstawie stałego 
przekroju prostokątnego łatwo stwierdzimy, że współczynniki

F2
di k = - (S o — 2 w) = 0,0001559 , K“ a-

ók.k = 2 (W2 2 G2 5) mg) = 0,0005348 ,

zaś różne wyrazy wolne do,k będą

8o,k = m (- Mki 4- Mki}, 

gdzie

m = ~ (W £ m ltz — G E = 0,05 5159.

Ze względu na symetrię kratownicy i obciążenia jest

Jo.i = — Jo,4 = 0,04 27 ,

Jo,2 = — Joa = 0,04 17 .
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Otrzymujemy więc układ czterech r awnań z czterema niewiadomymi:
0,0005348 Ar + 0,0001559 A2 — • -0,0000027,
0,0001559 At + 0,0005348 A2 + 0,0001559 As =

0,0001559 A3 + 0,0005348 A3 + 0,0001559 At =

0,0001559 A3 + 0,0005348 A4 =

Tablica 7. Obliczenie sił jednostkowych w piętach 
układu statycznie niewyznaczalnego

-0,0000017, 
0,0000017, 
0,0000027,

k 1 2 3 4 5

Aii — 0,004251 — 0,002737 0,002737 0,004251 0,0000

Mik 0,121585 0,644541 0,967749 0,644541 0,121585

Mik

K
0,000844 0,004476 0,006720 0,004476 0,000844

F
-0,000106 — 0,000175 0,0000 0,000175 0,000106

a

Ck

- 0,000213 — 0,000137 0,000137 0,000213 0,00000

c

At

— 0,000737 - 0,004514 -0,006857 — 0,004514 — 0,000737

a
Ci

0,00000 — 0,000213 — 0,000137 0,000137 0,000213

c
Bk

— 0,000737 — 0,004514 — 0,006857 — 0,004514 — 0,00737

b
B,

- 0,000950 -0,004438 — 0,006583 — 0,004438 — 0,000950

b -0,000950 — 0,004438 — 0,006583 — 0,004438 — 0,000950

0,00000 — 0,000106 — 0,000068 0,000068 0,000106

-0,000106 — 0,000068 0,000068 0,000106 0,000000

p
— 0,000738 — 0,004302 0,006720 — 0,004650 — 0,000950

p
-0,000950 0,004650 - 0,006720 — 0,004302 — 0,000738

Ug«
0,000950 0,004438 0.006584 0,004438 0,000950

upl
0,000738 0,004514 0,006856 0,004514 0,000738
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Rozwiązanie tego układu równań daje siły deplanujące układu statycznie 
niewyznaczalnego: A. = — 0,004251, A2 — — 0,002737, A3 = 0,002737. 
A4 = 0,004251.

Warto zwrócić uwagę, że przyjęcie grodzi całkowicie sztywnych spo­
wodowało około 25 - krotne zmniejszenie się sił depłanujących' w porów­
naniu z układem statycznie wyznaczalnym o grodziach zupełnie wiotkich.

Siły jednostkowe w prętach kratownicy statycznie niewyznaczalnej, 
obliczone w tablicy 7, wskazują na znaczne wyrównanie sił w tym przy­
padku. Pręty słabo obciążone w układzie statycznie wyznaczalnym są 
silniej obciążone w układzie statycznie niewyznaczalnym, natomiast zau­
ważyć można spadek obciążenia w prętach uprzednio najsilniej obcią­
żonych.

Tablica 8 zawiera obliczenie sił w prętach płaszcza kratownicy statycz­
nie niewyznaczalnej, zaś rysunki 33-38 przedstawiają porównanie rozkła­
du sił w prętach poszczególnych typów dla obu rodzajów kratownic.

Porównując wyniki dla modelu kadłuba statycznie wyznaczalnego 
z wynikami dla modelu kadłuba statycznie niewyznaczalnego nie należy 
się nimi sugerować, a tym bardziej je uogólniać. Tak np. w rozpatrywa­
nym modelu ze sztywnymi grodziami otrzymaliśmy w ukośnicy pokładu 
w przedziale 2-3 niemal dwukrotnie większą siłę niż dla modelu bez gro-
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Tablica 8. Obliczenie sił całkowitych w układzie statycznie nie wyznacz alnym

k 0 1 2 3 4 5

py ta t
— 0,004422
— 5,970

— 0,027084
— 26,563

- 0,041142
— 55,542

— 0,041142
— 55,542

— 0,027084
— 36,563

— 0,004422
— 5,970

Pcprzecznice | Wmax} 
t

— 0,011400
— 15,390

— 0,053256
— 71,896

— 0,078996
—106,645

— 0,078996
— 106,645

— 0,053256
— 71,896

— 0,011400
— 15,390

Podlużnice

prawa górna pP? (M )* kz ^Xniax' — 0,014760 — 0,086040 — 0,134400 — 0,093000 — 0,019000

i lewa dolna — 19,926 — 116,154 — 181,440 —125,550 — 25,650

lewa górna p1^. (M ) rki \vamax' — 0,019000 — 0,093000 — 0,134400 — 0,086040 — 0,014760

i prawa dolna pls.1 — 25,650 — 125,550 — 181440 — 116,154 — 19,926

Ukośnice

0,022158 0,103511 0,153564 0,103511 0,022158
górne i dolne ■

29,913 139,740 207,311 139,740 29,913Mf t

0,015410 0,094255 0,143157 0,094255 0,015410
prawe i lewe ■

20,804 127,244 193,262 127,244 20,804



Rys. 34
Poprzecznice. Linie ciągłe — siły jednostkowe, linie 
przerywane — siły całkowite, linie cienkie — siły 
krytyczne statycznie wyznaczalne. linie grube — 

siły krytyczne statycznie niewyznaczalne

— siły całkowite, linie cienkie — siły kry- 
statycznie wyznaczalne. linie, grube — siły 
krytyczne statycznie niewyznaczalne

Rys. 35
Słupy. Linie ciągłe — siły jednostkowe, linie prze-
rywane 
tyczne

Rozprawy Inżynierskie — 6 1495]



Rys. 36
Podłuźnice piawe. górne i lewe dolne (lewe górne 
i prawe dolne w lustrzanym odbiciu). Linie ciągłe - 
Siły jednostkowe, linie przerywane — siły całkowite, 
linie cienkie — siły krytyczne statycznie wyznaczal- 
ne. line grube — siły krytyczne statycznie nie- 

wyznaczalno
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dzi. Zjawisko to nie zawsze występować będzie w analogiczny sposób 
w każdym kadłubie o zwiększonej sztywności grodzi.

Nie należy zapominać, że siły w prętach kratownicy przestrzennej 
statycznie niewyznaczalnej zależą od jej kształtów, rozkładu obciążenia 
oraz od sztywności prętów, a więc dla rzeczywistego kadłuba — od jego 
konstrukcji. Dlatego też przenoszenie otrzymanych wyników na dowolny 
kadłub jest niesłuszne.

Rys. 38
Ukośnice burtowe. Linie ciągłe — siły Jednostkowe, 
linie przerywane — siły całkowite, linie cienkie — 
siły krytyczne statycznie wyznaczalne, linie grube — 

siły krytyczne statycznie niewyznaczalne

Jednakże zastosowana w tej pracy metoda, użyta do kadłuba, pozwala 
na określenie w stosunkowo prosty sposób obciążeń działających na ramy 
utworzone z obramowań dużych otworów w kadłubie okrętowym.
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Резюме

ПРЕДВАРИТЕЛЬНЫЕ ИССЛЕДОВАНИЯ КРУЧЕНИЯ КОРПУСА КОРАБЛЯ 
ПРИ КУРСЕ СКУЛОЙ К ВОЛНЕ

Рассматривается стесненное кручение стержня упрощенного сече­
ния, обладающего однако теми же основными свойствами связности, 
как и корпуса существующих судов. Такие сечения приведены на 
рис. 1-14. Для упрощенных сечений приводятся величины, характе­
ризующие сечение в отношении к «инженерной теории» стесненного 
кручения. Выводится уравнение стесненного кручения согласно той же 
теории. Получается уравнение, вид которого напоминает уравнение 
кручения балки открытого профиля.

В следующей главе рассматривается кручение корпуса баржи ци­
линдрической формы, обладающей пятью разными сечениями: дву­
связным (закрытым), открытым, односвязным (с отверстием люка), 
в середине закрытым трехсвязным (с надстройкой), закрыто-откры­
тым двусвязным (с отверстием люка и двойным дном) и закрытым 
трехсвязным (с двойным дном). Пример характеризуется отсутствием 
переборок. Формулы для кручения отрезков баржи легко выводятся 
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на основании результатов, полученных в предыдущей главе; здесь, 
однако, возникает новое затруднение, состоящее в таком подборе гра­
ничных условий в концевых сечениях, для которых была бы соблю­
дена непрерывность деформаций в этих сечениях. Чтобы преодолеть 
это затруднение, вводятся самоуравновешенные системы в каждом 
отрезке корпуса. В заключение главы составлены формулы для пара­
метров таких самоуравновешенных систем.

В последней главе — для расчета корпуса судна — применяется ме­
тод вспомогательных пространственных ферм. Это позволяет прибли­
женно определить напряжения в обшивке и углах отверстий люка. 
Рассматриваются два крайних случая: когда переборки можно считать 
идеально гибкими в их плоскостях, а также когда можно их считать 
идеально жесткими. В первом случае корпус становится статически 
определимой фермой, во втором — статически неопределимой, но наи­
более простой в смысле производства расчета из всех статически не­
определимых ферм. Оба случая представляют собой ограничения зна­
чений всех напряжений в корпусе, что является интересным попол­
нением расчетов предыдущей главы.

В работе приводятся элементарные методы приближенного расчета 
цилиндрических судов на кручение, проявляющееся при положении 
судна скулой к волне. Таким образом они являются основанием для 
дальнейших работ по приближенным, но более точным методам рас­
чета судовых корпусов.

Числовой пример, примененный ко всем приближенным методам, 
является наглядной иллюстрацией методов, использованных в работе

Summary

PRELIMINARY INVESTIGATION OF TORSION OF A HULL 
OF A SHIP CAUSED BY AN OBLIQUE WAVE

To begin with, the problem of torsion with axial constraints of a bar of 
simplified cross-section is considered, the principal characteristics con­
cerning the connectivity of cross-section being the same as for the hull 
of the real ship. These simplified cross-sections are shown in Figs. 1 to 14. 
Quantities characterizing these cross-sections for torsion with axial con­
straints and obtained on the basis of the «engineer’s» theory are repre­
sented. Next, the equation of torsion with axial constraints is derived 
according to the same theory. The form of the equation obtained is similar 
to that of the equation of torsion of a beam with open cross-section.

In the next section the torsion of a cylindrical hull of a bark, composed 
of 5 segments of different cross-sections: closed doubly connected, open, 
simply connected (due to a hatchway), closed triply connected (the bridge­
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house being in the middle portion of the hull), closed-open doubly con­
nected (with hatchway and double bottom) and finally, closed triply 
connected (with a double bottom). The example is characterized by the 
lack of diaphragms. The formulas of torsion of different portions of the 
hull are simple to derive on the basis of the results of the foregoing 
section, but a new difficulty is encountered in the necessity of choosing 
the boundary conditions in such a way that the deformations be continuous 
in the planes where the cross-section changes. To overcome this difficulty 
equalizing self-equilibrating stress systems are introduced in each 
segment of the hull. Finally, equations for the parameters of the self­
equilibrating systems are derived.

In the last section the method of substitute space lattices is used for 
the determination of approximate values of stresses in the skin and the 
corners of the hatchways. Two extreme cases are considered: (1) the 
diaphragms may be considered to be perfectly flexible in their planes, 
(2) they are assumed absolutely rigid. In the first case the hull becomes 
a statically determinate lattice, in the second — a statically indeterminate 
lattice of a special type (i. e. the most simple from the point of view of 
computation). The values obtained for these cases determine the limits of 
all stresses in the hull which is an interesting complement of the compu­
tations of the preceding section.

Some elementary methods of approximate strength computations of 
cylindrical vessels for torsion caused by an oblique wave are explained. 
These may constitute starting points for further improvements of appro­
ximate methods of strength computation in hulls of ships.

Each of the discussed approximate methods is applied to the same 
numerical example thus illustrating the features of each method.
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Uwagi dotyczące oznaczeń *)

*) Praca została przedstawiona na Kursie Naukowym Zakładu Mechaniki Ośrod­
ków Ciągłych IPPT PAN w Międzyzdrojach w sierpniu 1954 r.

Wektory oznaczać będziemy drukiem półgrubym; składowe wektora 
oznaczać będziemy zwykłym drukiem, dopisując do symbolu wskaźnik 
łaciński np. U/, a, (i = 1, 2, 3), gdzie i = 1 odpowiada składowej wektora 
na osi x, i = 2 na osi y, i = 3 na osi z. Powtórzenie wskaźnika ozna­
cza sumowanie od 1 do 3. Tak np. iloczyn skalarny ab dwóch wektorów 
a i b zapisywać będziemy także w postaci

3

a,- bt = a, b;.
/=i

Przecinkiem oznaczać będziemy różniczkowanie względem współrzęd­
nej Xi (i = 1, 2, 3) położenia. Tak np.

dxi
dui 

u/j = u— dxj

Uk,k
duk 
dxk

3— (= div u). dxk

Wyrażenia df dx(=gradf) oraz df/dt oznaczać będą wektory o skła­
dowych odpowiednio

°raZ (i = l>2,3).

Wektory w przestrzeni 3N wymiarowej (tj. wektory o 3N współrzęd­
nych) oznaczać będziemy symbolami typu X", a składowe tego wektora 
symbolami x{, ylt x2, y2, z2, ..., x.\, y^, z w

Tensory i iloczyny diadyczne zapisywać będziemy zawsze za pomocą 
pisowni wskaźnikowej np.

ptj, u‘.j (=dui/dxj), tijk, SiSj (i, j, k = 1, 2, 3).
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Operację symetryzacji tensora drugiego rzędu oznaczać będziemy za 
pomocą wężyka nad symbolem, np.

tu — 2' (1// + t/i)> u7.j = — (Ul,/ + Uj.i).

Operację tworzenia tensora bezźródłowego oznaczać będziemy za po­
mocą kółka nad symbolem, np.

P'j-- Pu 3 ^l/Pkh, tlij ----Ui.j q dijUidt.
O

o 1
Si Sj = Si Sj —5- bij Sk Sk o

itp., gdzie symbol Kroneckera da określają równania

bij —
0,
1 ,

jeżeli
jeżeli i = j .

Niekiedy wystąpi konieczność użycia obu tych operacji kolejno, np.

^ij — {^ij + G lj) bij 6kk , Uj.j — — (Ui, j Uj, i) bij Ukh .
o

Całki wielokrotne zapisywać będziemy w postaci całki pojedynczej 
pisząc krotność całkowania przy znaku różniczki. Opuszczenie granic cał­
kowania oznaczać będzie całkowanie w całym zakresie zmienności. Róż­
niczkę pod znakiem całki pisać będziemy zawsze przed funkcją podcał­
kową. Tak więc np. oznaczenie J d3 Sf (§) oznacza całkę potrójną funkcji 
J (i) f (Sx, Sy, Sz) po całej przestrzeni (Sx,Sy,Sz).

Kreska nad symbolem oznaczać będzie średnią wielkości fizycznej. 
Np. symbol c2 oznacza średnią wielkości ca. Pojęcie średniej określone 
zostanie w p. 2.

W rachunkach operować będziemy najczęściej funkcjami położenia 
w przestrzeni x, prędkości i i czasu t, a więc funkcjami postaci f(x,ł, t).

Wielkości niezależne od żadnej z tych współrzędnych nazywać bę­
dziemy «stałymi». Wielkości niezależne od położenia x w przestrzeni na­
zywać będziemy «jednorodnymi», wreszcie wielkości niezależne od cza­
su t «stacjonarnymi».

Uwagi wstępne

Rozważania nasze ograniczać się będą do gazów złożonych z molekuł 
elektrycznie obojętnych o trzech stopniach swobody (gazy jednoatomowe), 
działających na siebie siłami centralnymi według praw fizyki klasycznej 
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(tj. niekwantowej). Poza ramami niniejszego artykułu znajdą się więc 
zagadnienia zastosowania równania Boltzmanna do zjawisk na­
tury elektrycznej w gazach, teoria plazmy elektronowej, zjawiska zwią­
zane z wymianą krętu molekuł oraz wszelkie kwantowe uogólnienia rów­
nania Boltzmanna i hydrodynamiki wraz z ich ewentualnymi 
zastosowaniami do badań własności nadciekłego helu.

I. Różne ujęcia teorii gazów

Zjawiska zachodzące w gazach i cieczach badać możemy na ogół róż­
nymi metodami. Do badania ogólnych praw właściwych gazom oraz do 
przewidywania nowych zjawisk dotychczas nieznanych służą różne teo­
rie gazów. Posługując się różnorodnymi modelami gazu teorie te usiłują 
mniej lub bardziej głęboko wyjaśniać zjawiska fizyczne zachodzące w ga­
zach. Istnieją trzy podstawowe możliwości ujęcia teorii gazów. Są to uję­
cia: (1) hydrodynamiki ośrodków ciągłych, którą w dalszym ciągu nazy­
wać będziemy hydrodynamiką klasyczną, (2) kinetycznej teorii gazów. 
(3) mechaniki statystycznej. Omówimy je pokrótce.

Hydrodynamika klasyczna jest teorią opartą o hipotezę ciągłości ośrod­
ka. Spośród trzech wymienionych teorii daje ona stosunkowo najłatwiej­
sze metody obliczeń. W związku z tym bardzo wiele zagadnień o pod­
stawowym znaczeniu w technice, takich jak np. zagadnienie sił działają­
cych na samolot w locie lub zjawiska związane z przepływami przez rury, 
znajduje wytłumaczenie wyłącznie na gruncie hydrodynamiki klasycz­
nej. Teoria ta w swym rozwoju przechodziła szereg kolejnych etapów. 
Poczynając od prymitywnego modelu tzw. «gazu idealnego», poprzez stop­
niowe uwzględnianie ściśliwości, lepkości, zależności lepkości od tempe­
ratury itd. otrzymywano coraz to lepszy obraz rzeczywistości. Warto tu 
zauważyć, że współczesna hydrodynamika klasyczna przestała być teorią 
o charakterze wyłącznie mechanicznym i zawiera w sobie także elemen­
ty termodynamiki — nauki o cieple.

Równania hydrodynamiki klasycznej opierają się na trzech grupach 
założeń: (1) na prawach podstawowych mechaniki, (2) na prawach termo­
dynamiki, (3) na szeregu dodatkowych zależności doświadczalnych, które 
nazwiemy prawami fenomenologicznymi.

Stosując do małej części ośrodka ciągłego (czyli — jak będziemy mó­
wili — do «elementu» ośrodka) zasadę zachowania masy ') otrzymujemy 
znane równanie ciągłości

(l.D + (ff «/),/ = o,

gdzie q oznacza gęstość ośrodka, zaś u, wektor prędkości przepływu.

i) Efekty relatywistyczne będziemy oczywiście pomijali.
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Stosując zasadę zachowania pędu do elementu ośrodka ciągłego otrzy­
mujemy równanie wektorowe, znane pod nazwą równania ruchu

(1.2)
/ Ui ,

Q I Ui ui.j oFi — pij.j,

gdzie Fi oznacza wektor siły odniesionej do jednostki masy ośrodka, zaś 
pa tensor napięć powierzchniowych o dowolnym punkcie ośrodka. Wy­
rażenie znajdujące się z lewej strony równania (1.2) nosi, jak wiadomo, 
nazwę ilorazu substancjalnego, który oznaczać będziemy dużą literą D; 
a więc

D d d
bt> dt Uj dxj'

Do czterech równań (1.1) oraz (1.2) dołącza się zwykle równania ter­
modynamiki. Jednym z tych równań jest pierwsza zasada termodynamiki 
(zasada zachowania energii), którą zapisuje się na ogół2) w postaci

(1.3) D(cvT) D /u2\
D^.----- r Q — - I y I = e Fi m — {ptj Ui),j — qz, i,

gdzie c? oznacza ciepło właściwe ośrodka przy stałej objętości, zaś q, 
wektor strumienia ciepła. Pierwszy wyraz z lewej strony równania (1.3) 
oznacza wzrost energii wewnętrznej gazu, drugi zaś wzrost energii kine­
tycznej. Trzy wyrazy z prawej strony równania (1.3) oznaczają kolejno 
pracę sił objętościowych w jednostce czasu, pracę sił powierzchniowych 
w jednostce czasu oraz ciepło wypływające w jednostce czasu.

Drugim równaniem o podłożu termodynamicznym jest tzw. równanie 
stanu gazów

(1-4) — = RT.
e

W tym wzorze R oznacza stałą gazową, zaś T temperaturę gazu. Ciśnie­
nie p określa się za pomocą tensora napięć przez zależność

(l'5) p = ~pu.O

Równania (1.1)-(1.4) wraz z dodatkowym warunkiem (1.5) stanowią 
układ 7 równań dla 18 następujących niewiadomych funkcji miejsca x 
i czasu t: p(x,t), 3 składowe u,(x,t), 9 składowych p,y(x, t),T (x, t), p (x, t) 
3 składowe q; x,t).

-) Por. np. [31].
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Do wyznaczenia tych funkcji potrzeba zatem jeszcze 11 dodatkowych 
równań fenomenologicznych. Wyliczymy je po kolei:

(1) założenie symetrii tensora napięć (3 równania)

(1.6) pzy = p/7;

(2) prawo Newtona dotyczące lepkości

A u 
r = u , ' An

które przy pewnych założeniach daje pięć równań 3)

3) Mamy tu właściwie 6 równań, ze względu jednak na warunek (1.5) tylko 
5 z nich jest niezależnych.

'4) Można by tu podać dalsze uogólnienia polegające np. na uzależnieniu współ­
czynników cv, fi, ż od innych wielkości.

(1.7) Pij = P^tj—

(3) prawo przewodnictwa cieplnego (3 równania)

(1.8) q, = —AT,,,

gdzie A jest współczynnikiem przewodnictwa cieplnego.
Tych jedenaście dodatkowych równań tworzy łącznie z równaniami 

(1.1)-(1.5) układ osiemnastu równań skalarnych dla osiemnastu niewia­
domych funkcji. Ten układ równań stanowi jedną z najogólniejszych 
metod ujęcia hydrodynamiki klasycznej4). Istnieją tu oczywiście możli­
wości wprowadzania daleko idących uproszczeń, np. założenie stałej gę­
stości (g = const) prowadzi do bardziej abstrakcyjnego pojęcia gazu nie­
ściśliwego. Podobnie odrzucenie współczynnika lepkości (/z = 0) daje mo­
del gazu nielepkiego. Dodatkowe zaś założenie nieprzewodnictwa (A = 0) 
pozwala po prostych rachunkach na zastąpienie równania (1.3) przez rów­
nanie adiabaty itd.

Dlaczego rozwiązania przytoczonych powyżej równań dają wyniki nie- 
zawsze zgodne z doświadczeniem?

Aby odpowiedzieć na to pytanie, należy zrewidować założenia, na 
których opiera się hydrodynamika klasyczna. Praw (1.1) - (1.4) będących 
zasadami dynamiki i termodynamiki kwestionować nie będziemy. Nato­
miast wszystkie pozostałe założenia (1.6) - (1.8) wymagają szczegółowej 
analizy. Tę analizę można jednak konsekwentnie przeprowadzić jedynie 
wtedy, jeżeli wyjdzie się poza ramy hydrodynamiki klasycznej opartej na 
pojęciu ośrodka ciągłego. Można to uczynić na gruncie kinetycznej teo­
rii gazów.

Kinetyczna teoria gazów oparta jest na modelu gazu złożonego z wiel­
kiej ilości drobnych molekuł znajdujących się w ustawicznym ruchu. Za­
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miast osiemnastu makroskopowych funkcji (w dalszym ciągu nazywać je 
będziemy funkcjami hydrodynamicznymi), którymi operuje hydrodyna­
mika klasyczna, w teorii kinetycznej używa się jednej funkcji siedmiu 
zmiennych f(x,S,t) (gdzie x oznacza wektor położenia, ś wektor pręd­
kości molekuły, a t czas), którą nazywać będziemy w dalszym ciągu funk­
cją rozkładu lub, gdy zajdzie tego potrzeba, dokładniej — kinetyczną 
funkcją rozkładu. Znaczenie fizyczne tej funkcji jest następujące. Weź- 
my pod uwagę element objętości w przestrzeni Ó3 x otaczający punkt x oraz 
trójwymiarowy przedział prędkości ó3 f otaczający wartość prędkości 5. 
Wyrażenie f (x, i, t) Ó3 x ó3 £ daje ilość molekuł zawartych w chwili t 
w elemencie objętości <53 x o prędkościach zawartych w przedziale ó3 f. Ele­
ment <53x oraz przedział ó3f są to wielkości małe z makroskopowego punktu 
widzenia. W myśl jednak podstawowego założenia teorii kinetycznej ilość 
molekuł zawartych w elemencie ó3 x o prędkościach z przedziału Ó3 £ jest 
bardzo duża. To założenie stanowi ograniczenie z dołu dla wymiarów ele­
mentu d3 x oraz przedziału Ó, f. Pamiętając o tym ograniczeniu możemy 
jednak zastąpić je przez różniczkowe wielkości d3x oraz d, f, a samą funk­
cję j uważać za funkcję ciągłą (i różniczkowalną) swoich argumentów. 
Do wyznaczenia tej funkcji teoria kinetyczna podaje różniczkowo-całko- 
we równanie Boltzmanna

(1.9)
dl>t.dA . dJ ^di-J 

di d x ‘dli d t

gdzie d^Ó t oznacza pewien operator całkowy, zaś Fi wektor siły (na 
jednostkę masy) działającej na molekuły, którego postać podamy później. 
Wszystkie funkcje hydrodynamiczne otrzymujemy z funkcji rozkładu f 
przeprowadzając proces «uśrednienia». Znajomość funkcji rozkładu po­
zwala więc automatycznie poznać cały hydrodynamiczny obraz zjawisk. 
Znajomość funkcji rozkładu dostarcza jednak znacznie więcej informacji 
o stanie gazu. Istotnie, hydrodynamika klasyczna pozwala na określenie 
ruchu elementu gazu jako całości przez wyznaczenie gęstości, prędkości, 
temperatury Łtp. wielkości odnoszących się do tego elementu. Teoria 
kinetyczna natomiast dostarcza ponadto wiadomości o wewnętrznej struk­
turze tego elementu. Znajomość funkcji rozkładu pozwala np. na określe­
nie, ile molekuł spośród wszystkich molekuł w danym elemencie posiada 
z góry określoną prędkość, np. prędkość z przedziału otaczającego wek­
tor i. Z drugiej jednak strony rozwiązanie równania Boltzmanna 
stwarza na ogół znacznie większe trudności od rozwiązywania równań hy­
drodynamiki klasycznej. Przemawia to z kolei na niekorzyść kinetycznej 
teorii. W wielu jednak przypadkach rozwiązanie równania Boltz­
manna sprowadza się do rozwiązania równań hydrodynamiki kla­
sycznej.
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Trzecim wreszcie, znacznie bardziej precyzyjnym, lecz także znacznie 
trudniejszym ujęciem teorii gazów jest ujęcie mechaniki statystycznej. 
W mechanice statystycznej operuje się jedną funkcją P zależną od współ­
rzędnych i pędów wszystkich wchodzących w grę molekuł oraz od czasu. 
Jeżeli przez N oznaczymy ilość wszystkich molekuł, to funkcja P zależy 
od 6N + 1 zmiennych, mianowicie od 3N współrzędnych tworzących 
wektor x‘v, od 3N składowych pędów tworzących wektor p v oraz od czasu t.

Zapiszemy to krótko w postaci P p^ t).
Znaczenie fizyczne tej funkcji jest następujące. Weźmy pod uwagę 

elementy objętości d3xlt d3x2, d3x3, d3xx otaczające odpowiednio 
punkty x,, x2, ..., x^ oraz przedziały pędów d3pit d3p2, d3p.v otaczające 
pędy pt, p2, ..., pa . Iloczyny tych elementów objętości i przedziałów pędów 
oznaczymy przez d3yx oraz ds^p. Wielkość różniczkową

(1.10) P (x'Y, p Y. t) d3 a- x d3 a- p

określamy jako prawdopodobieństwo tego, żę jednocześnie

molekuła «1» zajmuje położenie wewnątrz elementu d3X[ około xt oraz posiada 
pęd w przedziale d3Pi około pj,

molekuła zajmuje położenie wewnątrz elementu d3x2 około x2 oraz posiada 
pęd w przedziale d3p2 około p3,

molekuła 1V» zajmuje położenie wewnątrz elementu d3xN około xv oraz posiada 
pęd w przedziale d3pN około p^.

Funkcja P (x;V, p^t) stanowi więc gęstość prawdopodobieństwa 
w chwili t w przestrzeni 61V-wymiarowej.

Jak widać z powyższego określenia, znajomość funkcji P dostarcza 
znacznie więcej wiadomości o stanie gazu w porównaniu ze znajo­
mością kinetycznej funkcji rozkładu. Znajomość gęstości prawdopodo­
bieństwa P daje mianowicie możność określenia jednoczesnego praw­
dopodobieństwa położeń i prędkości wszystkich N różnych molekuł. Praw­
dopodobieństwo tego, że wszystkie molekuły mają jakiekolwiek położenia 
w przestrzeni i jakiekolwiek prędkości wyrazi się całką wielkości (1.10) po 
całej przestrzeni 6IV-wymiarowej. To prawdopodobieństwo jest oczywiście 
pewnością. Daje to tzw. warunek normalizacji dla gęstości P

(1.11) J d3Nxj d3.\pP(xs,pN,t) = 1.

Zmianą funkcji P w czasie i przestrzeni rządzi tzw. twierdzenie L i o u- 
v i 11 e’ a będące prostą konsekwencją jedynie praw mechaniki:
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gdzie F„i oznacza wektor siły (na jednostkę masy) działającej na moleku­
łę a, zaś ma oznacza masę tejże molekuły (sumowanie także określa wskaź­
nik i, przy czym i = 1, 2, 3).

Należy tu podkreślić, że funkcja P ma znaczenie jedynie teoretyczne 
z powodu wielkiej ilości zmiennych, od których zależy. Z tej przyczyny 
nie tylko znalezienie, ale nawet samo wyraźne napisanie zależności P od 
6N + 1 zmiennych jest oczywiście technicznie niemożliwe5). Z tego 
względu metody mechaniki statystycznej ograniczone są na razie jedynie 
do badania gazów w stanie równowagi. Jak się okazuje, w tym prostym 
przypadku ilość zmiennych wchodzących do funkcji P może się zreduko­
wać do kilku zaledwie podstawowych stałych ruchu takich, jak energia, 
pęd całkowity i kręt całkowity układu 6).

s) Tak np. ilość molekuł zawartych w 1 molu, N jest rzędu 1023.
6) Por. np. [32].

Precyzyjne metody mechaniki statystycznej nie znalazły natomiast 
na razie szerszego zastosowania w teorii gazów, nie znajdujących się 
w stanie równowagi.

Reasumując możemy twierdzić, że najdokładniejszą i najbardziej ogól­
ną formą teorii gazów jest mechanika statystyczna. W dalszej kolejności 
należy wymienić teorię kinetyczną, w końcu zaś — hydrodynamikę kla­
syczną. Z drugiej strony rozwiązywanie konkretnych zagadnień rachun­
kowych metodami hydrodynamiki klasycznej, aczkolwiek niekiedy bar­
dzo trudne, jest stosunkowo łatwiejsze w porównaniu z zastosowaniem 
metod teorii kinetycznej. Natomiast operowanie precyzyjnym aparatem 
matematycznym mechaniki statystycznej w odniesieniu do teorii gazów 
stanowi nieporównanie jeszcze większą trudność.

Równanie podstawowe (1.12) mechaniki statystycznej wynika ściśle 
z praw mechaniki. Jak wykazały niedawne prace (które omówimy szcze­
gółowiej w p. 9 niniejszego artykułu), dodając do tego równania szereg 
założeń upraszczających można otrzymać równanie Boltzmanna 
(1.9) jako przypadek szczególny. Tak więc oparta na równaniu Boltz­
manna kinetyczna teoria gazów stanowi w pewnym sensie przypadek 
szczególny mechaniki statystycznej. Dalsze założenia ograniczające teorię 
kinetyczną prowadzą do hydrodynamiki klasycznej. Rozpatrzymy to mię­
dzy innymi w dalszym ciągu tej pracy.

2. Kinetyczna teoria gazów

Rozpatrzymy obecnie elementarne pojęcia i zależności kinetycznej 
teorii gazów.

Przypuśćmy, że znana jest kinetyczna funkcja rozkładu f(x,i,t) 
gazu złożonego z jednakowych molekuł o masach m. Jeżeli q (x,t) oznacza
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gęstość gazu w miejscu x w czasie t, to wielkość

(2.1) n(x,t) = g ^X’
m

zwana gęstością molekularną oznacza średnią liczbę molekuł na jednost­
kę objętości w otoczeniu punktu x w chwili t. Funkcja ta jest ciągłą 
(i różniczkowalną) funkcją miejsca i czasu.

Weźmy pod uwagę element objętości d3x otaczający punkt x. Jak 
wiemy z p. 1 funkcja rozkładu f(x,i,t) pomnożona przez d3x oraz przez 
d3ś daje ilość molekuł zawartych w objętości d3x o prędkościach za­
wartych w otoczeniu d3 £ prędkości 1 Całkowitą ilość molekuł zawartych 
w d3x (o dowolnych prędkościach) otrzymamy przez całkowanie wyraże­
nia fd3xd3£ po całym obszarze prędkości i. Z drugiej jednak strony 
z definicji gęstości molekularnej n wynika, że ilość ta wynosi ndsx. Ma­
my więc następującą podstawową zależność:

n d3 x = d3 x f d3 (x ,i, t),

skąd

(2.2) n(x,t) = Jd3£f(x,Ź,t)

lub w innej postaci

(2.2.1) o (x,t) = m J d3 g f(x,£, t).

Weźmy dowolną skalarną, wektorową lub tensorową wielkość fizycz­
ną 0(x,i, t) zależną od prędkości t i położenia x molekuły oraz od czasu t 
(może to być np. pęd lub energia molekuły). Taką wielkość fizyczną na- 
zwiemy wielkością molekularną. Znajomość funkcji rozkładu f(x,^,t) 
pozwala na obliczenie wartości średniej wielkości (P w obszarze prze­
strzennym d3x otaczającym punkt x. Oznaczając poszukiwaną wartość 
średnią przez (P mamy równanie

£$ = nd3x0,

gdzie symbol Sd> oznacza sumę wartości (P, odpowiadających wszystkim 
molekułom zawartym w obszarze d3x. Wyrażenie nd3x jest to oczywiście 
całkowita liczba molekuł znajdujących się w obszarze d,x. Dla obliczenia 
27 <P możemy posłużyć się prostą zależnością

Zdi = d3x J'd3^(x,^,t)f(x,§,t).
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Z tego równania wraz z równaniem poprzednim otrzymujemy wzór 
zasadniczy

(2.3) 0(x,t) = — I d3$@(x,§,t)f(x,§,t).

Pokaźemy obecnie, w jaki sposób wprowadza się do teorii kinetycznej 
różne funkcje hydrodynamiczne jako wartości średnie pewnych wielkości 
molekularnych. Prędkość przepływu w sensie hydromechaniki u (x, t) 
określamy jako średnią wielkości

Mamy wtedy

(2.4) u(x,t) = l = ~J'd3Hf(x,§,t).

Oprócz prędkości molekularnej i często bardzo używa się w teorii ki­
netycznej względnej prędkości molekularnej c(x,i,t) wyrażającej się 
wzorem

(2.5) c(x,§,t) = §— u(x,t).

Znaczenie fizyczne prędkości względnej c jest bardzo proste: oznacza 
ona prędkość molekuły określoną w układzie współrzędnych (lokalnym), 
poruszającym się wraz z elementem gazu z prędkością u(x,t). Można 
powiedzieć, że prędkości c charakteryzują ruchy «wewnętrzne» molekuł 
w elemencie objętości. Oczywiście mamy

(2.6) c=-~J d3ś(§ — u)fd3c = f — J d3ffd3f = u— u = 0.

Obliczając średni pęd w kierunku osi Xj(j = 1, 2, 3) przenoszony w jed­
nostce czasu przez molekuły na jednostkę powierzchni d2 a prostopadłą do 
osi Xt otrzymujemy (szczegółowe rachunki podane są w pracy [1] na 
str. 31) tensor napięć w postaci

(2.7) p;y = mn^ = m j d3^ct c. f .

W przypadku gazu w stanie równowagi pa staje się — jak się później 
przekonamy — tensorem diagonalnym o postaci

(2.8) p,j = p8ij.

Stąd oczywiście

(2.9) p = y pa,
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gdzie p oznacza ciśnienie gazu. Definicję (2.9) ciśnienia gazu rozszerzamy 
na przypadek dowolnego ruchu gazu. Z wzorów (2.9) oraz (2.7) wynika 
zależność

(2.10) p = vec3-

Obliczymy teraz energię kinetyczną układu nd3x molekuł znajdują­
cych się w elemencie objętości d3x w otoczeniu punktu x. Wyrazi się ona 
wielkością

n d3 x m f2.

Ponieważ jednak
f3 = (c + u)2 = C2 + U2 ,

to tylko co napisana wartość energii jest

, 1 ł« n d> x c q d3 x u“ . „ . ,
n d3 x ~ m -------F —y---- = (Ew + Ez) d3 x ,zu Zj zu

gdzie Ez=Ez = o u2/2 oznacza gęstość energii kinetycznej elementu gazu 
jako całości, czyli gęstość energii kinetycznej «zewnętrznej». Drugi wy­
raz zaś Ew=qc2/2 oznacza gęstość energii kinetycznej ruchów wewnętrz­
nych molekuł gazu. W przypadku gazu złożonego z molekuł jednoatomo- 
wych nie działających na siebie (poza zderzeniami) wielkość tę utożsamia 
się z gęstością energii wewnętrznej (w sensie termodynamiki).

Temperaturę określa się w teorii kinetycznej jako wielkość proporcjo­
nalną do gęstości energii wewnętrznej przypadającej na jeden stopień 
swobody molekuły. Oznaczając stały współczynnik proporcjonalności 
przez k/2 (gdzie k nazywa się stałą Boltzmanna; k = 1,38-10“10 
erg/stopień), mamy więc równanie określające temperaturę

(2.11) =

Zestawiając ten wzór ze wzorem (2.10) otrzymujemy równanie sta­
nu gazów
(2.12) ^ = RT,

Q

gdzie stała gazowa R równa jest kim.
Możemy wreszcie na gruncie teorii kinetycznej wprowadzić pojęcie 

strumienia ciepła q, przepływającego w jednostce czasu przez jednostkę 
powierzchni, jako wartość średnią iloczynu prędkości c przez gęstość ener­
gii wewnętrznej Ew:

----- 771 C —(2.13) q = nEwc—~ I d3fcc2f.
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W teorii kinetycznej bardzo dużą rolę odgrywają zderzenia molekuł. 
Najprostszym założeniem byłoby przyjęcie modelu gazu złożonego z nie- 
oddziaływających na siebie gładkich, sztywnych i doskonale sprężystych 
kulek. Głębsze wyjaśnienie natury i własności sił międzymolekularnych 
może nam dać jedynie mechanika kwantowa. Wszystkie te siły są oczy­
wiście pochodzenia elektromagnetycznego, gdyż pola grawitacyjne i me­
zonowe nie mogą być brane w rachubę.

Potencjały tych sił wyrażane bywają na ogół7) za pomocą różnych 
przybliżonych wzorów typu

7) Bardziej szczegółowe omówienie tej kwestii znaleźć można w pracy [2] 
na str. 82.

0 (r) = — M e~ ra + Ne~

lub też

0 (r) = — /z r 6 + Ne~r/e.

W związku z tym, że bardzo wiele efektów fizycznych — jak się prze­
konano — nie wykazuje zbyt wielkiej wrażliwości na rodzaj sił oddziały­
wania, można z powodzeniem używać jeszcze mniej dokładnych przybli­
żeń. Przykładem takiego niedokładnego przybliżenia służyć może wzór

0(r) — — ^r“6 + v r~m.

Jest on bardzo dogodny w wielu rachunkach. Za jeszcze mniej dokład­
ne przybliżenie uważać można potencjał typu

0 (r) = /z r~

bardzo często używany w rachunkach. Już Maxwell zauważył, że 
obliczenia różnych wielkości metodami teorii kinetycznej stają się znacz­
nie prostsze przy założeniu, że molekuły odpychają się siłą odwrotnie 
proporcjonalną do piątej potęgi odległości wzajemnej (w ostatnim wzorze 
odpowiada to wartości m = 4). Taki model oddziaływania molekuł nosi 
nazwę maxwellowskiego.

Uwzględniając fakt stosunkowo krótkiego zasięgu wszystkich omó­
wionych powyżej sił można uważać, że jedynym okresem, podczas którego 
istnieje wzajemne oddziaływanie molekuł, jest zderzenie tych molekuł. 
Średnią drogę, jaką molekuła przebywa od zderzenia do zderzenia, nazy­
wamy drogą swobodną. W normalnych warunkach ciśnienia i temperatury 
w gazach średnia droga swobodna jest rzędu I 10'5 cm. Wymiary mo­
lekuły natomiast są na ogół rzędu cr«=>10-8 cm.

Pierwiastek ze średniego kwadratu prędkości jest wielkością rzędu 
prędkości dźwięku w gazie. Teoria kinetyczna pozwala np. na wyprowa-
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dzenie prostego wzoru łączącego te wielkości (por. np. [4]) w stanie rów­
nowagi gazu:

(2.14) 

gdzie a jest prędkością dźwięku, « wykładnikiem adiabaty.
Z elementarnych rozważań teorii kinetycznej można również otrzy­

mać bez wnikania w strukturę funkcji rozkładu prowizoryczne wzory dla 
współczynników kinetycznych: lepkości i przewodnictwa cieplnego. Nie 
wchodząc w metody otrzymywania tych wzorów (znaleźć je można w V 
rozdziale pracy [3] lub w VI rozdziale pracy [1]) wspomnimy tylko, że zja­
wiska lepkości i przewodnictwa cieplnego tłumaczy się tu istnieniem 
chaotycznego ruchu molekuł, wywołującego przenoszenie pędu i energii 
w polu przepływu gazu. Współczynniki kinetyczne otrzymane tą drogą 
są proporcjonalne do średniej drogi swobodnej ?:

(2.15) 2-1.

Współczynniki proporcjonalności jednak nie odpowiadają zbyt dokład­
nie wartościom rzeczywistym. Dokładniejszą teorią obliczania współczyn­
ników kinetycznych zajmiemy się niżej (w p. 5).

W oparciu o powyższe rozważania postaramy się obecnie podać pobież­
ną analizę zakresu stosowalności hydrodynamiki klasycznej oraz szkicowy 
przegląd tych efektów fizycznych, w których niezbędne staje się stosowa­
nie metod kinetycznej teorii gazów. Hydrodynamika klasyczna opiera się 
na szeregu praw fenomenologicznych (1.6)-(1.8), które teoria kinetyczna 
w jednych przypadkach potwierdza, w innych zaś odrzuca. Nawet w tych 
przypadkach, w których te prawa fenomenologiczne są przez kinetyczną 
teorię potwierdzone, hydrodynamika klasyczna nie jest w stanie podać 
metod obliczania współczynników kinetycznych. Teoria kinetyczna nato­
miast daje w tym względzie zupełnie zadowalające rezultaty (por. p. 5). 
Schemat rachunkowy hydrodynamiki klasycznej wymaga zakładania do­
datkowych warunków brzegowych (np. warunku znikania składowej stycz­
nej prędkości na powierzchni ciała stałego zanurzonego w gazie), których 
ogólna prawdziwość nie jest absolutnie pewna we wszystkich przypad­
kach. Wyjaśnienia tej sprawy należy się spodziewać tylko na gruncie 
teorii kinetycznej.

Hydrodynamika klasyczna nie jest jednolitą i konsekwentną teorią 
fizyczną, gdyż prawa mechaniki, termodynamiki i prawa fenomenologicz­
ne nie znajdują na gruncie tej teorii jednolitego wyjaśnienia. Hydrodyna­
mika klasyczna opierająca się na pojęciu ośrodka ciągłego nie jest w sta­
nie opisać zjawisk takiego typu, w których istotnym czynnikiem jest 
ziarnista budowa substancji gazowej. Tak np. metody hydrodynamiki za­
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wodzą w przypadku opisu zjawisk dyfuzji gazów, w przypadku gdy wystę­
pują wielkie gradienty przestrzenne, np. ciśnienia lub temperatury (od­
nosi się to także do fal uderzeniowych), w przypadku wreszcie, gdy droga 
swobodna staje się rzędu wielkości wymiarów ciał opływanych 8). Również 
w przypadku wielkich gęstości lub bardzo niskich temperatur równania 
hydrodynamiki klasycznej zawodzą. Wchodzą wtedy w grę silniejsze od­
działywania molekuł lub też zmienione prawa oddziaływania. Ma to szcze­
gólnie duże znaczenie w rozwijającej się obecnie teorii cieczy oraz w teorii 
nadciekłego helu.

8) Tak np. na wysokości 123 km nad ziemią średnia droga swobodna jest rzędu 
30 cm, na wysokości 184 km l 27 m; na wysokości 245 km l 450 m. Przykłady 
te zostały zaczerpnięte z książki [33].

Możemy więc stwierdzić, że zagadnienia takie jak loty na wielkich 
wysokościach, konstrukcja i działanie aparatów próżniowych, rozdzielanie 
izotopów metodami dyfuzji i termodyfuzji, badanie przepływów gazów 
zjonizowanych, wyładowania elektryczne w gazach rozrzedzonych, bada­
nia nadciekłego helu, badania opływów ciał silnie rozgrzanych, badania 
struktury fal uderzeniowych — wymagają bezwarunkowo modyfikacji 
równań hydrodynamiki klasycznej. Można to przeprowadzić jedynie na 
gruncie teorii kinetycznej.

3. Równanie Boltzmanna i równania przenoszenia

Podamy obecnie szkic wyprowadzenia równania Boltzmanna dla 
funkcji rozkładu. Równanie to jest podstawą kinetycznej teorii gazów.

Jeżeli f(x3, t) oznacza funkcję rozkładu, to^wyrażenie fd:^dsx ozna­
cza, jak wiemy, ilość molekuł zawartych w objętości dRx otaczającej punkt 
x, których prędkości zawarte są w trójwymiarowym przedziale prędkości 
d3£ otaczającym prędkość i. Zbadajmy zmianę tej ilości molekuł po upływie 
czasu d t. Gdyby nie zachodziły zderzenia molekuł, to całkowita zmiana 
ilości molekuł wyniosłaby

Idf 
\d t

+ F;dl ds x d3 S dt

(gdyż w ciągu czasu dt wektor x przechodzi w wektor x + §dt, zaś wek­
tor i w H F dt). Jeżeli zmianę ilości molekuł wskutek zderzeń w ciągu 
czasu dt oznaczymy przez

~~ d. xd.,£dt 
dt 3 3
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(gdzie operator djdt nie oznacza oczywiście różniczkowania), to równa­
nie B o 11 z ma nna zapisać możemy w postaci

(3.1) df . ।
d t ‘ d xt ‘ d^i dt'

Pozostaje do określenia postać operatora de/dj. \N tym celu zanalizo­
wać musimy bliżej przebiegi zderzeń molekuł. Konieczne jest przyjęcie 
dwóch podstawowych założeń:

(1) zachodzą jedynie podwójne zderzenia molekuł (tzn. zderzenia 
3, 4, ... molekuł na raz mogą być pominięte),

(2) czas trwania zderzenia jest krótki w porównaniu z czasem, w cią­
gu którego molekuła jest swobodna.

Zakładając, że siły wzajemnego oddziaływania molekuł są siłami krót­
kiego zasięgu w porównaniu ze średnią drogą swobodną [co jest równo­
ważne z założeniem (2)], możemy przyjąć, że przed zderzeniem i po zde­
rzeniu molekuła porusza się po prostych. Oznaczając przez ii i i{ od­
powiednio prędkości pierwszej molekuły (molekuły «1») przed zderzeniem 
i po zderzeniu, zaś przez iii' — odpowiednie prędkości drugiej mole­
kuły (molekuły «0»), możemy napisać zasadę zachowania pędu i energii 
w zderzeniu w postaci 

(3.2)

Wynika stąd równanie

(3.3) 

+ i = i( + i', 
+ = +

9 = 9 ,

gdzie g oraz g oznaczają moduły prędkości względnych:

(3.4)
g =ii —i , 
g'=s;--r.

Jeżeli znamy prędkości i i it obu molekuł przed zderzeniem, to rów­
nania (3.2) możemy traktować jako układ 4 równań dla 6 niewiadomych 
i' i i[. Prędkości i' i i[ po zderzeniu są zatem funkcjami dwóch do­
datkowych parametrów skalarnych. Te parametry charakteryzują geo­
metrię zderzenia. Weźmy pod uwagę układ współrzędnych, w którym 
molekuła «0» spoczywa (przed i po zderzeniu). Przed zderzeniem moleku­
ła «1» porusza się po pewnej prostej PS (rys. 1) z prędkością g = ii — f. 
Wzajemne położenie molekuł przed zderzeniem (a więc i cały przebieg 
zderzenia) jest scharakteryzowane przez dwa parametry geometryczne: 
b oraz s. Tzw. «odległość przycelową» b określamy jako odległość punktu O 
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od prostej PS. Litera e natomiast oznacza kąt (nie uwidoczniony na rys. 1), 
określający położenie płaszczyzny PSO względem dowolnej płaszczyzny 
przesuniętej przez prostą OR obraną za płaszczyznę odniesienia. Kąt /

Rys. 1

określający zmianę kierunku ruchu molekuły 
«1» względem molekuły «0» jest funkcją zmien­
nych b oraz g:

<3-5) % = z(ö,p).

Charakter tej funkcji związany jest z kon­
kretną postacią wyrażenia określającego od­
działywanie molekuł. Prędkości ł' i sj mole­
kuł po zderzeniu są zatem funkcjami prędkości 
przed zderzeniem i i oraz parametrów b i e 
charakteryzujących zderzenie pod względem 
geometrycznym. Zamiast tych dwóch parame­

trów można wziąć równie dobrze wektor jednostkowy k (rys. 1) w kie­
runku prostej SO łączącej molekuły w chwili ich największego zbliże­
nia. Przy pomocy wektora k można łatwo wyznaczyć prędkości i' i 
molekuł po zderzeniu. Z prostych rozważań geometrycznych otrzymu­
jemy mianowicie

(3-6) s' = s + (kg)k, = i — (kg)k,

gdzie, jak poprzednio, g = ł1—i.

Wpływ zderzeń na zmianę ilości molekuł fd3fd3;r będzie dwojaki:
(1) pewne molekuły «znikną», tzn. zmienią swe prędkości na inne nie 

należące już do przedziału d3f otaczającego wektor ł,
(2) pewne molekuły «pojawią się», tzn. molekuły o prędkościach nie 

należących do przedziału d3£ otrzymają wskutek zderzeń prędkości nale­
żące do przedziału d, .

Z rozważań nad funkcją rozkładu wynika (patrz np. praca [1], str. 59). 
że ilość molekuł, które «znikną» w ciągu czasu dt wyrazi się wielkością

+ 2 n
dtd3xda£ I djfj J bdb J d e gf (x,», t) f (x, , t), 

-o o

w której łj jest zmienną całkowania. Podobnie dla ilości molekuł, które 
się «pojawiają», możemy napisać wyrażenie

r co 2 n
dtd3xd.3§ Jd^ J bdbj d s gf (x,ś' , t) f (xjj, t),

—n n
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gdzie wielkości I' i dane są przez wzory (3.6). W dalszym ciągu uży­
wać będziemy oznaczeń skróconych:

f = f(x,i,t), f = f(x,§',t), 

f1 = f(xj1,t), fi = f(x,il,t).

Całkowanie po b oraz e można drogą zmiany zmiennych pod całką za­
stąpić przez całkowanie po wszystkich możliwych położeniach wektora k 
(tworzących półkulę — jak łatwo się przekonać z rys. 1). Odpowiedni ja- 
kobian pomnożony przez gb otrzyma wtedy postać

(3.7) a) = OJ (g, b) 2gb
^cos A 
dbC0S 2

gdzie % jest określoną przez (3.5) funkcją g oraz b9). Postać funkcji w 
zależy zatem od postaci funkcji oddziaływania molekuł.

9) Warto tu zauważyć, że dla molekuł maxwellowskich, odpychających się si­
łami odwrotnie proporcjonalnymi do piątej potęgi odległości, wyrażenie w jest nie­
zależne od g. Na tym właśnie polega znaczne uproszczenie, do jakiego prowadzi ten 
model.

Reasumując powyższe możemy zmianę rozważonej ilości molekuł 
wskutek zderzeń zapisać w postaci

dx x d3 £ d t = d3 x d3 £ d t I d3 f, I da k w (f fi — f f,). Ot J J

Równanie Boltzmanna (3.1) otrzymuje zatem postać ostateczną

(3.8) ^ + f,^t+F,(|X=(d3^fd3k£o(f'fi-H1).
Ul U Ki U ęi J J

Lewa strona tego równania wyraża zmianę funkcji rozkładu wskutek: 
(1) niestacjonarności ruchu (pierwszy wyraz), (2) zmiany położenia mole­
kuł (drugi wyraz) oraz (3) działania sił zewnętrznych (trzeci wyraz). Pra­
wa strona tego równania wyraża zmianę funkcji rozkładu wywołaną przez 
zderzenia molekuł.

Z matematycznego punktu widzenia równanie (3.8) przedstawia zawiłe 
równanie funkcjonalne. Lewa strona tego równania ma wprawdzie sto­
sunkowo prostą strukturę liniowego równania różniczkowego pierwszego 
rzędu o pochodnych cząstkowych. Jednakże prawa strona jest bardzo 
skomplikowana. Jest to wyrażenie, w którym niewiadoma funkcja wystę­
puje nieliniowo pod całką wielokrotną z argumentami poddanymi trans­
formacji liniowej (3.6) względem parametrów, której również wykonane 
ma być całkowanie. Z tego względu rozwiązywanie równia B o 11 z- 

519



manna jest problemem bardzo trudnym. Ograniczamy się na razie je­
dynie do ustalenia metody kolejnych przybliżeń, rozwinięcia na szereg 
lub wreszcie dowodu istnienia w prostych przypadkach szczególnych.

Nie wchodząc na razie w szczegóły metod rozwiązywania równania 
Boltzmanna zastanówmy się nad tym, jakie zależności dla makrosko­
powych funkcji hydrodynamicznych, określonych wzorami (2.1) - (2.13), 
wynikają z tego równania.

Niech 7/>(x,l,t) oznacza dowolną wielkość molekularną. Jeżeli spełniona 
jest zależność

(3.9) ’/>' + 71 = 1/’ + ^!,

gdzie jak poprzednio (x, s', t), yi — y(x,^l, t) itd., to wielkość na-, 
zywamy niezmiennikiem zderzeń.

Prawa strona równania (3.9) oznacza sumę wielkości ip dla obu mo­
lekuł przed zderzeniem, lewa strona zaś — sumę wielkości y po zde­
rzeniu. Równanie (3.9) ma więc sens zasady zachowania wielkości 
podczas elementarnego procesu zderzenia dwóch molekuł.

Istnieje pięć podstawowych skalarnych niezmienników zderzeń:
(3.10.1) VJ(i) = lio);

(3.10.2) ty'2»,^3),^))^,

(3.10.3)

Podstawienie wyrażenia (3.10.1) do równania (3.9) daje banalną 
równość

1 + 1 = 1 + 1,

która jest wyrazem fizycznego faktu niezmienności ilości molekuł podczas 
zderzenia. Podstawienie wielkości (3.10.2) oraz (3.10.3) do równania (3.9), 
możliwe ze względu na równania (3.6), jest wyrazem zasad zachowania 
pędu i energii przy zderzeniach.

Równanie Boltzmanna (3.8) pomnóżmy teraz przez dowolną wiel­
kość. molekularną ip (x, i, t) i scałkujmy obie strony względem prędkości ł. 
Otrzymamy

/d3 f V + Fi = J d3 Mds ^fd2k m (f fi -).

Prawą stronę tego równania oznaczmy przez A . Przekształcając le­
wą stronę tego równania otrzymujemy tzw. równanie przenoszenia (czyli

10) Można by tu oczywiście przyjąć ogólniej = const. To uogólnienie nie przy­
nosi żadnych dodatkowych korzyści.
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transportu) Maxwella (zwykle przechodzimy do zmiennych c za­
miast zmiennych I)

(3.11)
_ Dtp

-- (n = — (n ip Ckl.k---- n Ck ^.k — (Fk —

Duk\
Dt ) ip, k —

d ip 
dc. Ck ^i,k + n A y.

Jeżeli y jest niezmiennikiem zderzeń, to A y = 0.
Dowód tej równości podany jest w pracy [1], w rozdziale 3.
Przyjmując najpierw y> = = 1 (zasada zachowania ilości molekuł)

otrzymujemy z równania (3.11) równanie ciągłości

(3.12)
d n , .■j-- + (nu,)„ = 0,

co po pomnożeniu przez masę molekuły m daje równanie (1.1).
Przyjmując dalej

= mi,

(zasada zachowania pędu) otrzymujemy równanie

(3.13) Pij.j — Q (f, — j - 0

identyczne z równaniem (1.2).
Przyjmując wreszcie

... 1 y> = yt0' = — m C",

otrzymujemy równanie
D T 2

<«« D,=—+

równoważne przy uwzględnieniu (3.12) oraz (3.13) równaniu (1.3).
Jak więc widzimy, teoria kinetyczna potwierdza podstawowe równa­

nia hydrodynamiki klasycznej (1.1) - (1.4) [wraz z warunkiem (1.5)]. Otrzy­
manie dalszych zależności, które byłyby odpowiednikiem praw fenomeno­
logicznych, wymaga już znajomości struktury rozwiązań równania 
Boltzmann a. W ogólnym przypadku zależności te nie będą już mia­
ły postaci równań (1.6) - (1.8). W tych natomiast przypadkach, w których 
równania te zostaną przez teorię kinetyczną potwierdzone, będziemy w sta­
nie ponadto podać ocenę błędu wynikłego z przyjęcia takiego przybliżenia 
oraz obliczyć wartości współczynników kinetycznych.
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4. Maxwellowskie rozwiązanie równania Boltzmanna. Aerodynamika molekularna

Rozpatrzmy najprostszy przypadek równania Boltzmanna od­
powiadający stacjonarnemu i jednorodnemu polu przepływu gazu bez 
działania sił zewnętrznych. Mamy wtedy

Równanie (3.8) Boltzmanna przyjmie zatem postać

(4.1) fd, ^fd2kco(f'f{—ffj = 0.

Warunkiem wystarczającym rozwiązania tego równania jest spełnienie 
zależności 
(4.2)

W tym przypadku można natychmiast odgadnąć rozwiązanie: 

(4.3) 

gdzie A, B, D jest to pięć stałych dowolnych.
Korzystając z równań (2.2), (2.4) oraz (2.11) możemy tym stałym nadać 

sens fizyczny. Okazuje się wtedy, że 

gdzie n, u, T oznaczają odpowiednio: gęstość molekularną, prędkość i tem­
peraturę stacjonarnego jednorodnego przepływu. Podstawiając wyrażenia 
(4.4) do wzoru (4.3) otrzymujemy ostatecznie

Wzór ten przedstawia tzw. maxwellowski rozkład prędkości. Stanowi 
on podstawę wielkiej ilości obliczeń kinetycznych. Funkcja rozkładu dana 
równaniem (4.5) opisuje właściwie rozkład prędkości molekuł w stanie spo­
czynku gazu. Zagadnienie istnienia stałej prędkości u można bowiem za­
wsze sprowadzić do zagadnienia zmiany inercyjnego układu współrzęd­
nych.

To najprostsze i podstawowe rozwiązanie równania Boltzmanna 
można ponadto uogólnić na przypadek istnienia sił zewnętrznych.

Znajomość maxwellowskiej funkcji rozkładu (4.5) pozwala na oblicze­
nie całego szeregu wielkości takich, jak częstość zderzeń molekuł, średnia 
droga swobodna, prawdopodobieństwo przebycia określonej drogi swo­
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bodnej, częstość zderzeń i droga swobodna molekuł o określonej pręd­
kości itp. Przykładowo wymienimy tu wzór dla średniej drogi swobodnej 

gdzie u jest średnicą molekuły, n gęstością molekularną. Na maxwellow- 
skiej funkcji rozkładu (4.5) opiera się także teoria obliczeń współczynni­
ków kinetycznych. Prowadzi ona jednak jedynie do zależności postaci 
(2.15), nie dając zatem zbyt dokładnych rezultatów.

Z punktu widzenia teorii opływów rozwiązanie (4.5) można uważać za 
kinetyczny opis niezaburzonego przepływu w dali od opływanego ciała 
stałego.

Maxwellowskie rozwiązanie (4.5) może służyć za narzędzie obliczeń 
jedynie w przypadkach zbliżonych bardzo do stanu równowagi, gdy zabu­
rzenie przepływu jest pomijalnie małe. W szczególności w gazach bardzo 
rozrzedzonych molekuły odbijające się od powierzchni ciała stałego nie­
znacznie tylko wpływają na rozkład prędkości. Można zatem w tym przy­
padku zbudować teorię aerodynamiczną opartą na maxwellowskiej funk­
cji rozkładu. Ten dział aerodynamiki nosi nazwę aerodynamiki moleku­
larnej (także niekiedy superaerodynamiki lub teorii wolnej molekuły). 
Rozwinął się on głównie dzięki pracom R o c a r d a, [8], Ł u n c a, [4], 
[5], [6], [7], T s i e n a, [9], i innych.

Dla uwzględnienia sposobu wzajemnego oddziaływania molekuł i po­
wierzchni ciała stałego wprowadzony został przez Smoluchowskie- 
go i Knudsena tzw. współczynnik akomodacji. Okazało się miano­
wicie, że większość molekuł uderzających o powierzchnię ciała stałego nie 
odbija się bezpośrednio od niej, lecz zostaje przez nią na pewien czas za­
absorbowana, następnie zaś emitowana ze średnią energią odpowiadającą 
temperaturze ścianki. Współczynnik akomodacji określa się zależnością

(4.7) e0 = (1—a)e„ + aes,

gdzie e0 jest średnią energią odpowiadającą temperaturze molekuł odbi­
tych, eu średnią energią odpowiadającą temperaturze molekuł uderzają­
cych, es średnią energią odpowiadającą temperaturze ścianki.

Dla powierzchni metalicznych wartość współczynnika akomodacji wa­
ha się na ogół w granicach 0,87 - 0,97.

Przyjmując, że nierówności na powierzchni ścianki mają charakter 
chaotyczny, dochodzimy do następującego prawa rozkładu molekuł emito­
wanych przez ściankę:

(4.8) d9l = 9łda^dco.
TT
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We wzorze tym d^t oznacza ilość molekuł emitowanych przez element 
powierzchni ścianki da w kącie bryłowym d m, tworzącym kąt tp z nor­
malną do powierzchni na jednostkę czasu; Di oznacza ilość molekuł absor­
bowanych przez ściankę na jednostkę powierzchni i jednostkę czasu.

Wzór jest analogiczny do wzoru Lamberta z optyki. Prowadzi on 
do wniosku, że rozkład molekuł emitowanych przez ściankę ma charakter 
rozkładu maxwellowskiego dla temperatury odpowiadającej temperatu­
rze ścianki. Ściankę można więc zastąpić gazem fikcyjnym o temperatu­
rze Ts, którego rozkład jest także maxwellowski. Powierzchnia zetknięcia 
się gazu ze ścianką jest zatem powierzchnią nieciągłości temperatury
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oraz — jak łatwo przekonać się — także ciśnienia i prędkości. Dla skoku 
ciśnień otrzymujemy np.

(4.9) 

gdzie p oznacza ciśnienie gazu na ściankę, p0 ciśnienie w gazie obok ścian­
ki, Te temperaturę gazu.

Dla a = 0 lub też dla Tg = Ts wzór ten przechodzi w równość p = p„.

Jeżeli mamy do czynienia z ciałem opływanym przez gaz rozrzedzony, 
wówczas zakładając, że rozkład prędkości jest maxwellowski możemy ob­
liczyć pęd, który jest przekazywany ciału przez molekuły. Prowadzi to do 
wzorów na współczynniki oporu i nośności skrzydła w gazach rozrzedzo­
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nych. Szczegółowe rachunki wykonane zostały przez Łunca, S a n g e- 
ra i Tsiena. Biegunowe płata płaskiego otrzymane przez Łunca, 
[4], podajemy na rys. 2. Na rys. 3 podajemy wykresy oporu walców elip­
tycznych w funkcji stosunku obu półosi elipsy dla różnych liczb Mach a, 
znalezione również przez Łunca, [4]. Na rys. 4 podane są biegunowe 
płaskiej płytki, otrzymane przez Sangera (cytujemy za Tsienem, [9]).

Rys. 4

Należy podkreślić, że rozważania aerodynamiki molekularnej zacho­
wują swą ważność jedynie w przypadku gazów bardzo rozrzedzonych, gdy 
średnia droga swobodna jest znacznie większa od wymiarów ciał opły­
wanych.

5. Rozwiązanie równania Boltzmanna metodą Enskoga-Chapmana-Burnetta

Równania aerodynamiki molekularnej słuszne są w przybliżeniu jedy­
nie dla gazów bardzo silnie rozrzedzonych. Aby znaleźć ogólniejszy i do­
kładniejszy obraz przepływu, należy powrócić do równania Boltz­
manna i szukać dalszych jego rozwiązań. Uczynili to niezależnie od sie­

526



bie D. E n s k o g (1917) i S. C h a p m an (1912). Teorię tę rozwinął i uza­
sadnił pod względem matematycznym Burnett (1935). Teoria E n- 
skoga - Chapmana - Burnetta (w skrócie ECB) może być dziś 
uważana za klasyczny dorobek kinetycznej teorii gazów. Zasadniczą my­
ślą tej teorii jest rozwinięcie funkcji rozkładu w szereg potęgowy wzglę­
dem parametru odwrotnie proporcjonalnego do gęstości molekularnej ga­
zu. Ze względu na wzór (4.6) można również to rozwinięcie uważać za roz­
winięcie według potęg drogi swobodnej. Zwarty lecz pełny obraz teorii 
ECB podany jest w pracy [1].

Dla funkcji rozkładu możemy zatem napisać rozwinięcie

(5.1)
<i i x 2 ! ;s

n n-

Drugim podstawowym założeniem teorii jest przyjęcie, że funkcja roz­
kładu f (x,», t) zależy od czasu wyłącznie za pośrednictwem funkcji hydro­
dynamicznych n (x, t), u (x, t) i T (x, t). Otrzymujemy stąd wzór

df_ df dn df du df dT
1 dt dn dt^ du dt^ dT df

Trzecim wreszcie podstawowym rachunkowym założeniem teorii ECB 
jest przyjęcie pewnego charakterystycznego sposobu rozłożenia na szereg 
występującego w równaniu Boltzmanna operatora różniczkowania 
względem czasu. Napiszmy mianowicie równanie Boltzmanna (3.8) 
w postaci

(5.3) Df^Kffd,

gdzie 

zaś

I ({pip d — I d3 f J d2ka> dy yj — (f y,).

We wzorach tych daszek nad symbolami oznacza operator.
Podstawiając rozwinięcie (5.1) do prawej strony równania (5.3) otrzyj 

mu jemy

00 01 10 02 11 20
(5.4) 7(H1)=n2I(ff1) + nl(ff1+ff1) + Z(H1+ff1 + f/1) + ...^

0 12 13
^fl f ni f I 4----- 1 ....n
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Dla operatora D z lewej strony równania (5.3) Enskog i Chap­
man przyjmują rozwinięcie

(5.5) Ó=y_1^ + Rj
ZJ nr otr = 0

gdzie dr/d t oznacza r-ty wyraz rozwinięcia operatora d/d t w szereg. Aby 
określić działanie operatora dr/d t na funkcję rozkładu wprowadźmy na­
stępujące oznaczenie:
(5.6) i = fds^j,

gdzie 0(x, t) jest dowolną wielkością molekularną. Na mocy równania 
(2.3) otrzymamy teraz następujące rozwinięcie wartości średniej:

(5.7) 0 =
r — Q \

W szczególności dla tensora napięć i strumienia ciepła otrzymamy

r = 0 r <1
gdzie

Pij = e JdgŚCiCjf oraz q, = q J c2dfd3Ś.

Równania przenoszenia (3.12) - (3.14) przyjmą wtedy postać

Przystąpimy obecnie do określenia-działania operatora dr^dt na funk­
cję rozkładu. Ze względu na założenie (5.2) możemy napisać

drJ_ — ^rn t । Ui L । T Ź u
dt dt dn dt dii, ' dt dT

”) Jeśli funkcja f zależy ponadto od gradientów funkcji hydrodynamicznych np. 
od Uj j, to piszemy wzór (5.9) uzupełniając go dodatkowymi wyrazami np.

df drUjj df ldrUj' 
ii u, / dt 3 Uf y ( d t
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Określenie działania operatora drjdt na funkcję rozkładu sprowadza 
się zatem do określenia działania tego operatora na funkcje hydrodyna­
miczne n, m, T. Działanie to określa się następująco:

Ze wzorów tych widać przy uwzględnieniu równań (5.8), że

(5.10) don
«7 = 4f=<> 

d t (r>0);

(5.11)
dp Uj _ 
d t

1 o
= — UiUj,i +Fj------pju

Q
dr Uj 1 r

' dt~ (t> 0);

(5.12)

(^T m 2 .o 0
dt- u>Tl 3kn

lo -u i+a./!

(5.13) 1 drn dn
nr dt dt’r—0

1 drut dut
—j nr dt dt ’ 
r=0

y 1 drT 
2 nr dt
rO

dT 
dt

Na mocy wzorów (5.9), (5.2) i (5.13) widzimy, że także

y? 1 d^_ d 
2j nr dt dt'

Stosując teraz operator D w postaci podanej wzorem (5.5) do rozwi­
nięcia (5.1) otrzymujemy

(5.14)
, 1 2 1 3
Df = nD+Dd---- D + --,n

gdzie

(5.15)

r—2 
d, f
dt

o 
drf 
dt

1 d f -0

f ■
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Przyrównując do siebie odpowiednie współczynniki rozwinięć (5.4) 
oraz (5.15) otrzymujemy ciąg kolejnych równań 

(5.16.1)

(5.16.2)

(5.16.3) 

02 11 20
1(H1 +H, = PRf

lub ogólnie

(5.17)

Układ (5.16) daje możliwość kolejnego wyznaczania przybliżeń funkcji 
o

rozkładu. Z równania (5.16.1) odgadnąć możemy łatwo funkcję f ze 
względu .na analogię tego równania do równania (4.1). Mamy więc

o
(5.18) f = ył(x,t)e-B(x-zH«-D(x-W-

Rozwiązanie to przypomina maxwellowski rozkład prędkości (4.3). Za­
chodzi tu jednak bardzo istotna różnica polegająca na tym, że współczyn­
niki A, B, D zależą obecnie od miejsca i czasu. Rozkład ten można by na­
zwać quasimaxwellowskim. Metoda przybliżania nie narzuca żadnego wa­
runku na współczynniki A, B, D: są one dowolnymi funkcjami x oraz t. 
Jako «warunek początkowy» Enskog i Chapman przyjmują

(5'19) ®= Wtf’ D = n<*’ •>'
0

Przy tak dobranych funkcjach A, B, D pierwsze przybliżenie n f funkcji 
rozkładu pokrywa się z rozkładem maxwellowskim w przypadku jedno­
rodnym i stacjonarnym (p. 4).

Równania (5.16.2), (5.16.3) i wszystkie następne są liniowymi równa- 
1 2

niami względem funkcji f, f, ..., dającymi się sprowadzić do liniowych rów­
nań całkowych. Rozwiązując te równania otrzymuje się dalsze przybliże­
nia funkcji rozkładu.

Zajmierny się obecnie drugim przybliżeniem funkcji rozkładu danym 
o i i

przez wyrażenie nf + f. Dla znalezienia funkcji f mamy równanie (5.16.2).
110 i

Przyjmując f — (pf sprowadzamy zagadnienie do znalezienia funkcji <?.
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Równanie (5.16.2) można po przekształceniach zapisać w postaci
001 i i i

(5.20) fd^ jd2kcoff1(&' + &'i — 0 — 0J =
o

= f
Z __ 2
\2^nk TC

d log T 
Ci d xt

m 
nkT

Cf Cj Uirj
5 \
2 /

1
Traktując 0 jako funkcję x,c, t oraz korzystając z liniowości równania 

(5.20) możemy poszukiwać jego rozwiązania w postaci12)

I2) Do tego rozwiązania należałoby dodać dowolne rozwiązanie równania jedno­
rodnego, tj. równania, po prawej stronie którego znajduje się zero, i sprawdzić tzw. 
warunek ortogonalności (por. [33], str. 107). Nie wchodząc w szczegóły stwierdzimy, 
że warunek ten jest spełniony.

l2kT\^ „ d(logT) o 
\ m ) Ai~^i BijUiJ'

Wektor Ai oraz tensor Bij są funkcjami c. Znalezienie rozwiązania 
sprowadza się więc do wyznaczenia tych wielkości. W tym celu najdogod­
niej jest użyć rozwinięć Ai oraz Bij na szeregi wielomianów S o n i n a. 
W szczegóły tych rachunków wchodzić nie będziemy (zwarty ich obraz 
podany jest w pracy [1]). 

o i
Znając f oraz f możemy wreszcie otrzymać trzecie przybliżenie funk- 

2
cji rozkładu, znajdując f z równania (5.16.3). Te dość żmudne rachunki 
wykonał Burnett (1935).

W świetle omówionej teorii ECB rozpatrzmy obecnie zastosowanie 
równania Boltzmanna do hydrodynamiki.

Rozpatrzmy najpierw hydrodynamikę opartą na pierwszym przybliże- 
o o

niu funkcji rozkładu nf. gdzie f dane jest przez wzory (5.18) i (5.19). Żą­
daną hydrodynamikę otrzymujemy odrzucając w szeregach występujących 
w równaniach przenoszenia (5.8) wszystkie następne wyrazy po pierwszym 

o o o
oraz wyznaczając p^- i ze wzorów (2.7) i (2.13) w oparciu o funkcję nf. 
Otrzymamy wtedy

_ o
q c2dij —=p dij, di— o [ dg ś c2 d f = 0.

o r 0 1
Py= Q JciCjfd3^ = knT Sij = y

Po podstawieniu do równań przenoszenia (5.8) mamy

(5.21)
™ + (nud.i^O, dUi I „ 1 „-w- + Uj Ui.j = Fi P. i, 

Ot O

dT , 
dF + UiTi -^-Tuu

O
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Jak widać pierwsze dwa równania stanowią: równanie ciągłości i rów­
nanie Eulera. Trzecie z tych równań sprowadza się łatwo do postaci

Określa więc ono adiabatyczną przemianę gazu. Reasumując możemy po­
wiedzieć, że hydrodynamika oparta na pierwszym przybliżeniu funkcji 
rozkładu jest hydrodynamiką gazu ściśliwego, lecz nielepkiego i nie prze­
wodzącego ciepła, podlegającego zatem przemianie adiabatycznej.

Przejdźmy z kolei do hydrodynamiki zbudowanej na drugim przybli­
żeniu funkcji rozkładu 

o i 
f = nf + f.

Obliczając ze wzorów (2.13) i (2.7) wektor strumienia ciepła i tensor 
napięć otrzymujemy

(5.22) q • = <2; = y f da c2 f = - [A, A] T;
i C ó O 11L

oraz

(5.23) p(7 = p(7 + — = m I d3 f ctCj f = pdtj---- k T [B*/, E/J u^i,

gdzie
i o o

l A, A,] d3 ^fd2kcof f, (At + Ai j -

— A — Al i) (At + Ali — Ai — AL),
zaś (Bkh Bzfc] jest określone zupełnie analogicznie. Przyjmując

o na T(5-24) Ź = ^IA,A]

oraz
(5.25) p=^kT[Bkt, Bik\ 

otrzymujemy zamiast równań (5.22) i (5.23)

(5.26)

(5.27)

9/ — T, / >

Pij == p 2 p ^ij •

Podstawiając te wyrażenia do równań przenoszenia (5.8) otrzymujemy

(5.28)

dn , , . n duj , _ 1 .2— + (nui),i = 0 , + uiUj,i = Fj-------p.j +—(p.Ui,j).i,
Ul (J l Q 0

dT 2
dt +uiT-‘= 2puij)ui,j UT,j)f].
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Jak widać, hydrodynamika oparta na drugim przybliżeniu funkcji roz­
kładu prowadzi do równania ciągłości, równań N a v i e r a - Stokesa 
(ze zmienną lepkością) i równania zachowania energii przy uwzględnieniu 
przewodnictwa cieplnego cieczy.

Przechodzimy wreszcie do trzeciego przybliżenia funkcji rozkładu
0 1 12

f=nf + f + -f.

Z wykonanych przez Burnetta rachunków wynikają następujące 
zależności pomiędzy wektorem q, i tensorem pa z jednej strony, a funk­
cjami n, ui, T — z drugiej:

(5.29) q, — — A T. i + ^UJ jT i+0.-^ 
qT “ qT

2
O

3
-p.y + 04— X + 05

QP Q d Xj 5 qT j

(5.30) pij = p dij — 2 /z uij + Kx — uk, k Uij +

P,/j, i ^k,i ^j.k 2 Ui, k Uj.k +

Q /

2 ° ° 2 ° 2
+ K3 + K4p~T~ + K5T~t~ + KouZ7 •

Bezwymiarowe współczynniki 0lt 02, ..., 05 oraz k4, k2, ..., ke określo-
ne są wzorami przybliżonymi

(5.31)

_ 15 p Z. dP
1- 4

45
02 = —, 03 = —3, 04 = 3, O2 p dT ’

05 =
T dp\ 
p dT / ’

(5.32)
Ks==2> K3 = 3’ K4==°’ o \ U /

Ze wzorów (5.29) i (5.30) widać, że w trzecim etapie przybliżenia po­
jawiają się w równaniach wyrazy określające wzajemny wpływ napięć na 
przepływ ciepła oraz wpływ wyrazów «cieplnych» na napięcia.
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Przepływ gazu opisany tymi równaniami Burnetta nazywamy 
poślizgowym.

Pełny układ równań Burnetta otrzymujemy podstawiając wyra­
żenia (5.29) i (5.30) do równań przenoszenia (5.8).

Poprawki we wzorach (5.29) i (5.30), charakterystyczne dla trzeciego 
przybliżenia, mogą być oczywiście pominięte w przypadku przepływu ga­
zów o gęstościach zwykłych (tj. zbliżonych do atmosferycznych) z niezbyt 
wielkimi prędkościami. Co się tyczy wektora strumienia ciepła, to znacze­
nie poprawek burnettowskich nie jest zbyt duże. Poprawki te mianowicie 
odnoszą się wyłącznie do stanu ruchu gazu i znikają w stanie spoczynku. 
Jednakże w stanie ruchu przenoszenie ciepła w gazie odbywa się w prze­
ważającej mierze drogą konwekcji (makroskopowej). Przewodnictwo na­
tomiast nie odgrywa tu większej roli.

Dla zbadania wpływu poprawek burnettowskich na tensor napięć po­
równajmy np. trzeci i drugi wyraz ze wzorów (5.30). Wpływu drugiego 
wyrazu nie da się pominąć, jeśli wyrażenie nUk.k'p nie jest małe. Ponie­
waż jednak p jest proporcjonalne do 1/2 o ć2, zaś p ~ qcI, więc wyrażenie' 
rozważane jest rzędu

średnia droga swobodna 
Uk’k prędkość dźwięku

Wyrażenie to trzeba więc uwzględniać dla opisania ruchu gazu w tych 
przypadkach, w których zmiana prędkości na długości drogi swobodnej 
jest znaczną częścią prędkości dźwięku. Warunki takie istnieją np. w fali 
uderzeniowej. Poza falą uderzeniową rozpatrywane wyrażenie ma zna­
czenie jedynie przy bardzo małych ciśnieniach, rzędu 10_(i atm. Napięcia 
cieplne [wyrazy zawierające we wzorze (5.30)] w tensorze napięć odgry­
wają również pewną rolę. Porównując np. wyraz

3 QT 
z wyrazem

2 p Uij

można obliczyć, że przy
1 

Ui.j «3----  sec

oraz

~ 1 stoP 1 , ij ~ >cm-

stosunek obu wyrazów jest rzędu 0,1%.
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Analizując wielkości poprawek burnettowskich Tsien, [9], docho­
dzi do wniosku, że mają one znaczenie przy dużych wartościach stosunku 
M2/Re, gdzie M jest liczbą Macha, Re liczbą Reynoldsa.

Oznaczałoby to, że w zakresie małych prędkości można zastąpić układ 
równań Burnetta przez układ Naviera-Stokesa. Nawet jed­
nak w tym uproszczonym przypadku obraz ruchu poślizgowego zachowa 
w pewnej mierze swoje charakterystyczne własności ze względu na spe­
cyficzne warunki brzegowe.

Problem należytego sformułowania warunków brzegowych w przy­
padku ruchu poślizgowego nie znalazł dotychczas właściwego rozwiązania. 
Rzecz zatem zrozumiała, że i kwestia istnienia rozwiązań równań Bur­
netta pozostaje całkowicie otwarta. Kwestia ta stanowi centralne za­
gadnienie aerodynamiki ruchu poślizgowego.

W zakresie ruchu poślizgowego nie można dłużej utrzymać założenia 
znikania stycznej składowej prędkości na powierzchni ciała opływanego 
(stąd nazwa: ruch «poślizgowy»). Jako swojego rodzaju warunek brzego­
wy może tu służyć równanie

_ /< du J5 jt d T 
u~Jdy ' T dir ’

łączące prędkość przy ścianie u z jej gradientem normalnym du'dy wraz 
ze stycznym gradientem temperatury dTjdx (ß oznacza tu współczynnik 
tarcia gazu o ścianę i zależy od rodzaju powierzchni ściany).

Rozwiązania kwestii warunków brzegowych należałoby szukać raczej 
przez ich określenie dla samej funkcji rozkładu. Ten sam punkt widzenia 
przyjął w swej pracy, [11], H. Grad, czym zajmiemy się nieco póź­
niej (p. 7).

Tablica 1 Tablica 2

Tempera­
tura (°C)

lO7-^ 
dośw.

lO7-^ 
teoret.

do 
helu

107-J 
dośw.

107U 
teoret.

— 76,3 1275 1269 0 (390) 390
— 37,9 1465 1469 27 741 724

16,1 1728 1728 45,4 1077 1053
51,6 1880 1884 84,7 2320 2347100,2 2084 2086

200 2461 2461 94,61 2939 2943
250,1 2629 2633 100 (3360) 3360

Teoria ECB daje nie tylko możliwość układania równań hydrody­
namicznych, Wzory (5.24) i (5.25) pozwalają na obliczenie współczynni­
ków kinetycznych: lepkości i przewodnictwa. Można też podać podobny 
wzór dla współczynnika dyfuzji w przypadku mieszaniny gazów. C h a p- 
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man i Cowling, [1], podają rozbudowany aparat matematyczny słu­
żący do obliczania tych współczynników. Wyniki tych obliczeń przepro­
wadzone dla różnych modeli oddziaływań molekuł są na ogół w bardzo 
dobrej zgodności z doświadczeniem. Przykładowo podamy tu kilka war­
tości liczbowych (dane zaczerpnięte są z pracy [1], str. 226 oraz 243).

W tablicy 1 podany jest współczynnik lepkości azotu (N2) w różnych 
temperaturach. W tablicy 2 podany jest współczynnik przewodnictwa 
mieszaniny helu (He) z argonem (A) przy różnych składach procentowych 
mieszaniny.

6. Zagadnienie nieodwracalności a równanie Boltzmanna

Mechanika klasyczna opisuje jedynie odwracalne procesy fizyczne. Tak 
np. ruch punktu materialnego w polu sił niezależnych od czasu, zgodny 
z prawami Newtona, jest typowym przykładem zjawiska odwracalne­
go. Zjawisko nazywamy odwracalnym, jeżeli może ono przebiegać równie 
debrze w obu kierunkach. Wyjaśnijmy bliżej, o co tu chodzi. Przypuśćmy, 
że jakiś układ materialny A znajdujący się w chwili t = 0 w pewnym 
stanie «0» przeszedł po czasie t do innego stanu np. stanu «1». Weźmy te­
raz pod uwagę inny układ materialny B znajdujący się w stanie różnią­
cym się od «1» układu A jedynie tym, że kierunki prędkości zostały zamie­
nione na przeciwne. Jeżeli układ B przejdzie w ciągu czasu t w stan, który 
się różni od stanu «0» układu jedynie kierunkami prędkości, to mówimy, 
że przejście układu A od stanu «0» do stanu «1» jest zjawiskiem odwracal­
nym. Zagadnieniu odwracalności można by nadać następującą postać ma­
tematyczną. Przypuśćmy, że (r=l,2,...) są rozwiązaniami pewnych 
równań ruchu opisujących zjawisko. Zjawisko jest odwracalne wówczas, 
gdy również funkcje

Kv (t) = D ipv (— t)

są rozwiązaniami równań ruchu. D oznacza tu symbolicznie operację zmia­
ny znaku wszystkich występujących prędkości.

Odwracalność zjawisk opisywanych przez mechanikę klasyczną wyni­
ka z niezmienniczości równań ruchu względem zmiany znaku czasu. Istot­
nie, równanie dynamiczne Lagrange’a

dL d dL _ Q
dq,- dt dqt

możemy także zapisać w postaci13) 
dL d dL 
dqi d(—t) d(—qd —

13) Należy tu podkreślić, że całe rozumowanie przytoczone słuszne jest w przy­
padku funkcji Lagrange’a L niezależnej explicits od czasu. Rozumowanie nasze 
odnosi się więc jedynie do układu izolowanego, zamkniętego i skończonego.
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Zupełnie podobnie możemy się przekonać, że procesy opisywane przez 
twierdzenie Liouville’a (1.12) są procesami odwracalnymi. Istotnie, 
równanie (1.12) możemy też zapisać w postaci

dp , y |F___ŹZ___ l. ŁzPjlL _ŹZ_1 = o .
dl—t) r zL a‘d(—pai) ma dxai

CC=1

Inaczej mówiąc, jeżeli funkcja P(xN, pv, t) jest rozwiązaniem równa­
nia L i o u v i 11 e’ a, ■ to także funkcja

P{ = DP (x^ pv, — t) = P (xN, — pv, — t)

jest rozwiązaniem równania Liouville’a.
Ruch gazu nielepkiego opisany równaniami Eulera (5.12) jest rów­

nież odwracalny. Natomiast ruch gazu lepkiego opisany równaniami (5.28) 
nie jest już zjawiskiem odwracalnym 14).

14) Zob. np. [35],
15) Zob. praca [11], str. 343 lub [1], rozdział 3 (zakończenie).

Równanie B o 11 z m a n n a, jak się zaraz przekonamy, opisuje proce­
sy nieodwracalne. Fakt ten wiąże się ściśle z założeniem chaosu moleku­
larnego koniecznym do wyprowadzenia równania Boltz mann a. Nie­
odwracalność zjawisk opisanych równaniem Boi t zmanna sprowadza 
się do tego, że dowolny stan gazu wywołany np. jakimś zaburzeniem zbli­
ża się w miarę upływu czasu do stanu równowagi opisanego przez funkcję 
rozkładu maxwellowskiego.

Fakt nieodwracalności zjawisk związanych z równaniem Boltz- 
manna można wykazać bardzo prosto bez rozwiązywania równania 
w przypadku rozkładu jednorodnego bez działania sił zewnętrznych, do 
którego to przypadku ograniczymy się. W tym celu wyprowadzamy tzw. 
funkcję Boltzmanna

(6.1) H = n log f = f d:sŚ f log f.

Funkcja H jest więc jedynie funkcją czasu, a zarazem funkcjonałem f. 
Obliczmy pochodną dH,dt. Mamy
(6.2) ^ = JcU(l + lnf)^.

Tę pochodną można przekształcić 15) do postaci

ddHt “ W •

W tym wzorze występują dwa wyrazy, które mają zawsze przeciwne 
znaki

!og|^ oraz ffi — ffi-
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Stąd wnosimy więc, że zawsze

Zatem funkcja H Boltzmanna stale maleje. Można jednak łatwo 
wykazać, że wielkość H(t) jest ograniczona z dołu (czego tu nie będziemy 
dowodzić). Zatem funkcja H maleje do pewnego minimum. Tym minimum 
jest oczywiście rozkład maxwellowski (4.5). Powyższe twierdzenie nosi 
nazwę «twierdzenia H» Boltzmanna i odgrywa w teorii kinetycznej 
dość dużą rolę. Jest ono kinetycznym wyrazem drugiej zasady termodyna­
miki. Istotnie, jak można wykazać, funkcja H wiąże się z entropią za­
leżnością
(6.4) S = — keH,

gdzie S oznacza entropię jednostki masy, zaś k stałą Boltzmanna. 
Wzór ten może służyć za uogólnienie pojęcia entropii na przypadek gazu 
nie znajdującego się w równowadze. Twierdzenie H Boltzmanna mo­
że być uogólnione również na przypadek niejednorodnych stanów gazu.

Wykazaliśmy nieodwracalność procesów związanych z równaniem 
Boltzmanna bez jego rozwiązywania. Nadmienimy jednak, że nie 
brak było prób rozwiązywania równania Boltzmanna w celu wy­
raźnego wyznaczenia zmienności funkcji rozkładu f -w czasie. Takie roz­
wiązanie określiłoby całkowicie proces przejścia gazu do stanu równowagi. 
Wspomniane próby ograniczały się zazwyczaj do przypadku jednorodnego 
rozkładu opisanego funkcją f «izotropową» względem § (tj. zależną je­
dynie od modułu , i j). Najpoważniejszą z tych prób była praca C a r le­
rn a n n a (1933), który pod powyższymi założeniami dowiódł istnienia 
rozwiązania równania Boltzmanna przy danych warunkach począt­
kowych i wykazał przechodzenie tego rozwiązania w rozwiązanie max- 
wellowskie. Były oprócz tej pracy i inne próby dowodzenia istnienia roz­
wiązania równania Boltzmanna, [13], Opierały się one jednak zaw­
sze na założeniu jednorodności i izotropowości.

Na znacznie ogólniejszych założeniach oparta jest praca E. Wilda, 
[14]. Wild sprowadza różniczkowo-całkowe równanie Boltzmanna 
do postaci równania całkowego dającego się rozwiązywać, jeśli znana jest 
liczba zderzeń
(6-5) v (x, i, t) = J d3 ft f d2k co f (x, , t).

W przypadku założenia maxwellows'kiego oddziaływania molekuł wiel­
kość ta staje się proporcjonalna do gęstości gazu. Wild podaje metodę 
kolejnych przybliżeń, służącą do rozwiązywania przekształconego przez, 
siebie równania Boltzmanna.

Ciąg kolejnych przybliżeń jest zbieżny, jeśli założyć, że rozwiązanie 
v/ ogóle istnieje. Operując molekułami maxwellowskimi Wild bada„ 
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przy jakich założeniach dowolny jednorodny rozkład przechodzi w rozkład 
maxwellowski. Praca Wilda nosi jednak charakter formalistyczny, 
gdyż brak w niej wyników fizycznych.

Ostatnio co prawda M. Klein, [15], zastosował tę metodę do zbada­
nia, jak zachowuje się jako funkcja czasu wyrażenie ijżj (i^j) w jedno­
rodnym stanie gazu.

Okazało się, że wyrażenie to maleje proporcjonalnie do funkcji

e~tT ,

gdzie t jest to tzw. czas relaksacji. Wynik ten był jednak znany już po­
przednio Maxwello wi i wyprowadzony był na prostszej drodze.

Fakt nieodwracalności zjawisk związanych z równaniem B o 11 z m a n- 
n a może się wydawać paradoksalny. Równanie to wynika bowiem z «od­
wracalnego» twierdzenia L i o u v i 11 e’ a opartego na odwracalnych pra­
wach mechaniki. Częściowym wytłumaczeniem tego faktu może być to, że 
do wyprowadzenia równania Boltzmanna z twierdzenia Li ou- 
v i 11 e’ a potrzebne jest dodatkowe założenie chaosu molekularnego. Nie­
odwracalność kinetycznej teorii oraz jej stosunek do mechaniki statystycz­
nej jest jeszcze stale przedmiotem żywej polemiki w literaturze naukowej 
(por. pracę [16]). Zagadnienie to można więc nadal uważać za otwarte. Nie­
które aspekty tej sprawy omówimy jeszcze pokrótce w p. 9.

Nieodwracalność procesów opisanych równaniem Boltzmanna 
stała się szczególnie aktualną sprawą w ostatnich czasach w związku z roz­
wojem termodynamiki procesów nieodwracalnych. Między innymi wyko­
nane zostały próby oparcia tej nowej teorii fenomenologicznej na gruncie 
kinetycznej teorii gazów16).

16) Por. [36].

". Metoda trzynastu momentów

Klasyczna teoria ECB daje potwierdzenie równań N a v i e r a -. 
Stokesa, próby wyjścia poza te równania oraz bardzo dobry schemat 
rachunkowy obliczenia współczynników kinetycznych.

Pomimo tych niewątpliwych sukcesów rozwiązanie ECB jest dalekie 
od ogólności i obarczone szeregiem braków. Najpoważniejszym z tych bra­
ków teorii ECB jest ograniczenie rozwiązania równania Boltzmanna 
do tzw. rozwiązań normalnych, tj. takich, w których funkcja rozkładu j 
zależy od swych argumentów jedynie za pośrednictwem pięciu funkcji 
hydrodynamicznych n(x, t), u(x, t), T(x, t) oraz ich gradientów. Jak już 
stwierdziliśmy (w p. 1), opis ruchu gazów, którego dostarcza nam teoria' 
kinetyczna (a więc równanie Boltzmanna), jest znacznie bogatszy od 
opisu hydrodynamiki klasycznej. Tak więc ograniczenie się do funkcji roz­
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kładu danej jedynie poprzez funkcje hydrodynamiczne zacieśnia znacznie 
teorię i, być może, pozbawia nas możliwości opisania całego szeregu efek­
tów fizycznych o podłożu molekularnym.

W całym dość skomplikowanym formalizmie ECB brak jest bezpośred­
niości i prostoty, co może nasuwać podejrzenie, że np. trzecie burnettow- 
skie przybliżenie rozwiązania nie dość dokładnie przedstawia rzeczywisty 
przebieg zjawiska.

Bardzo poważnym brakiem teorii ECB właściwie nieprzezwyciężo­
nym dotychczas przez żadną inną teorię jest nieznajomość warunków brze­
gowych. Jak już wspominaliśmy, warunki te nie zostały nawet sformuło­
wane. Jednak właśnie teoria kinetyczna powinna przynieść wyjaśnienie 
tych spraw. Zagadnienie to komplikuje się jeszcze o tyle, że jak wykazały 
wnikliwe rozważania R o c a r d a, [8], molekuły gazu znajdujące się 
w pobliżu powierzchni ciała stałego tworzą wraz z nim — wskutek od­
działywań wzajemnych — pewną całość, gaz + ciało stałe, niezwykle trud­
ną do ujęcia matematycznego.

Ciekawą próbą przezwyciężenia przynajmniej części omówionych tu 
braków teorii ECB jest praca H. G r a d a, [11]. Główną koncepcją metody 
Gra da jest rozwinięcie funkcji na szereg trójwymiarowych wielomia­
nów H e r m i t e’ a, [10]. Posługując się wielkościami bezwymiarowymi

(7.1) p(x, v,t) 1 /kT\32 
q \ m /

możemy dla bezwymiarowej funkcji rozkładu g napisać rozwinięcie

(7.2) 9 - e— ’ j -1, «!■> (x, I) Kf< (v).

gdzie K("> (v) oznacza trójwymiarowy wielomian H e r m i t e’ a n-tego 
stopnia. Jest to zarazem symetryczny tensor n-tego rzędu, który w przy­
padku jednowymiarowym sprowadza się do zwykłego wielomianu Her- 
mite’a. Podajemy poniżej kilka pierwszych wielomianów Hermiteh 

(v):

(7.3)

= 1.
K'1’ = v„

= vivj — óiJ,

~ vi vk (Vi Ójk Vj Óik -j- Vh Óij),

VJ Vk Vl — (Vi Vj 8kl + V{ Vk Sjl + Vi Vl Ójk + Vj Vk di, + 

F Vj Vi d,k + Vk Vi dij} + (óg dki + óik Sn Sn ójk).
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Współczynniki rozwinięcia ze wzoru (7.2) a’"* (x, t) są funkcjami miej­
sca i czasu. Są to także tensory n-tego rzędu, a mnożenie symboliczne 

należy uważać jako n-krotną sumę po wszystkich wskaźnikach 
tensorowych. Ze względu na ortonormalność układu wielomianów 
otrzymujemy następujący wzór dla współczynników en:
(7.4) aj"1 = f g d3 v.

Współczynniki te są ściśle związane z momentami funkcji f określo­
nymi przez wzory

(7.5) Q^ = fd3^^j...f.

Momenty te są wielkościami o określonym znaczeniu fizycznym. Mia­
nowicie

Q(°>=n, ” Qi1’ =Ui. n

Przy obliczaniu dalszych momentów wygodniej jest zmienić definicję 
(7.4) w następujący sposób:

QW,= fd^ciCj...f.

Wtedy

zwężenie zaś momentu trzeciego rzędu

= f d-^acjCki

daje

tj. wektor strumienia ciepła.
Z rozwinięcia (7.2) widać od razu, że zależność funkcji rozkładu f nie 

może się ograniczać do samych tylko pięciu funkcji hydrodynamicznych 
q, u, T stanowiących zaledwie pierwsze jej momenty. Funkcja f zależy 
od nieskończenie wielu swych momentów, które są funkcjami miejsca 
i czasu. Dla tych nieskończenie wielu momentów [lub, co na jedno wycho­
dzi, dla nieskończenie wielu współczynników ap) rozwinięcia (7.2)] należy 
podać układ nieskończenie wielu równań różniczkowych. Ten układ rów­
nań uzyskuje się przez podstawienie rozwinięcia (7.1) do równania 
Boltzmann a. Po rozłożeniu otrzymanych w ten sposób wyrażeń na 
szeregi wielomianów Hermite’a przyrównujemy współczynniki przy 
odpowiednich wielomianach do siebie. Nie wchodząc w ogólną teorię roz­
winięcia (7.2) przedstawioną w pracy [11] zatrzymamy się nieco nad szcze­
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gólnym jej przypadkiem, polegającym na zachowaniu w rozwinięciu trzech 
pierwszych wyrazów

(7.6)

W rozwinięciu tym występuje 20 momentów: o, u,, p.j, Dalsze upro­
szczenie polegające na zwężeniu ostatniego^ wielomianu

K™

prowadzi również do zwężenia trzeciego współczynnika we wzorze (7.6).
Przy uwzględnieniu wzorów (7.3) otrzymujemy więc ostatecznie rozkład

°
(™) f = ^^RT •

Z p łi 1 prCl \ ort! /

Jak widać z tego wzoru, funkcja f zależy od trzynastu wielkości

q, ut, T, Pij, qi, 
gdzie

o
Pij = Pij — óiJ p

daje pięć niezależnych wielkości, zaś ciśnienie p = l/3pa związane jest 
z temperaturą T i gęstością q za pośrednictwem równania (2.12). Stąd po­
chodzi nazwa «metoda trzynastu momentów».

Metoda ta, jak widać, stanowi znacznie ogólniejszy schemat rachunko­
wy od klasycznej metody ECB, którą można by nazwać metodą pięciu mo­
mentów (p, ut, T).

Dla trzynastu wymienionych wielkości — przez podstawienie do rów­
nania Boltzmann a — otrzymuje się następujący układ równań róż-, 
niczkowych:

(7.8)

d o D m . 1 „^ + («M,/ = 0, __ + _pzy,y==0,

D / 3 kT\ , 1 r '
Dt(T +

+ (ur p^. r + y q ~ + 2 u~r + 2 p u~ 4- y o pir = 0 , 

+ (Ur Qi\ r + y qr Ui. r + y qr Ur. i + y q, UrA^ p^ r +

+ V — Pir T r - pr, s + 4 P k T i + — P qz = 0, 
2 m ' r o rs-s 2 m m 1

oraz dodatkowo p/o = kTim.
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We wzorach tych jest wielkością zależną od zderzeń; dla sił mię- 
dzymolekularnych proporcjonalnych do l/rs

5—5
B® = <P (s) T21^ ,

zaś 99 (s) jest zależne od s i innych stałych molekularnych.
Najbardziej charakterystyczną cechą tego schematu jest występowanie 

w równaniach (7.8) wielkości py oraz q, zupełnie niezależnie od pozosta­
łych funkcji o, u,, T. Wymaga to jednocześnie określenia dodatkowych 
warunków początkowych na napięcia i strumień ciepła, co znacznie zwięk­
sza ogólność rozwiązań w porównaniu z teorią ECB.

Grad wykazuje w dalszym ciągu, że dla niektórych wolno-zmien- 
nych przepływów ogólny schemat (7.8) sprowadza się do równań N a v i e- 
ra - Stokesa. Przykładami takiego ruchu mogą być przedstawione 
w pracy [11] następujące przypadki szczególne:

(1) przepływ ze stałymi funkcjami q, u, T oraz jednorodnymi py, qz,

(2) stacjonarny jednowymiarowy przepływ ciepła w gazie nierucho­
mym,

(3) płaski stacjonarny przepływ C o u e t t e’ a (u^O, uy = uz — 0, 
d ux/d x = d ux/d z = 0, dux/d y 0, q = 0.

Wyrażenia otrzymane dla współczynników kinetycznych w tej teorii 
zgadzają się z wyrażeniami otrzymanymi z teorii ECB, są więc także zgod­
ne z doświadczeniem.

Interesujące stanowisko zajmuje Grad w sprawie warunków brze­
gowych. Ustalając pewien warunek brzegowy dla funkcji rozkładu otrzy­
muje się nieskończenie wiele warunków brzegowych dla nieskończenie 
wielu momentów funkcji f.

Program zapowiedziany w pracy [11] przez Gra da zawiera zastoso­
wanie metody 13 momentów dla szczegółowego zbadania następujących 
zagadnień:

(1) przepływu P o i s e u i 1 1 e’ a,
(2) przepływu C o u e t t e’ a,
(3) dyspersji płaskich fal dźwiękowych,
(4) stacjonarnej płaskiej fali uderzeniowej.
Z tego programu zostało już zrealizowane zagadnienie (4) (w pracy 

[12]), które omówione zostanie w następnym punkcie.
Pomimo poważnych trudności rachunkowych teorię rozwinięcia na sze­

reg wielomianów H e r m i t e’ a można uważać za otwarcie przed teorią 
kinetyczną gazów nowych horyzontów.
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8. Równanie Boltzmanna a fala uderzeniowa

Badanie struktury uderzeniowej zapoczątkowane jeszcze w XIX wie­
ku przez Rankine’a1;) i Rayleigha na gruncie hydrodynamiki 
oraz przez Beckera18) na gruncie równań N a v i e r a - Stokesa 
doprowadziły do wniosku, że grubość fali uderzeniowej jest rzędu kilku 
dróg swobodnych19).

o) por. [37].
18) Por. [38].
I9) Dokładne omówienie tego zagadnienia na poziomie współczesnym z uwzględ­

nieniem wyników otrzymanych w Związku Radzieckim znaleźć można w cytowane] 
książce Ł. Łoje j ans kiego [31], str. 510.

M) Por. [38].

Prowadzi to do wniosku, że hydrodynamika klasyczna nie jest w sta­
nie dostarczyć dokładnego opisu zjawisk związanych z istnieniem fali 
uderzeniowej.

Zajmiemy się tu krótko zagadnieniem ujęcia kwestii fali uderzeniowej 
z punktu widzenia rozszerzonej hydrodynamiki. Poprzestaniemy jedynie 
na przedstawieniu samych koncepcji nie wchodząc w szczegóły rachun­
kowe. Omówienie wyników poruszonych tu teorii będzie tematem od­
dzielnego referatu 20).

Istnieją zasadniczo dwie możliwości rozszerzenia zagadnienia fali ude­
rzeniowej poza hydrodynamikę Naviera - Stokesa. Jedna z nich 
polega na zastąpieniu równań N a v i e r a - Stokesa przez inny, lepiej 
dostosowany do zagadnienia układ równań hydrodynamicznych, oparty 
o jedną z omówionych uprzednio teorii rozwinięcia funkcji rozkładu 
w szereg. Taką metodę ujęcia można by nazwać ąuasiklasyczną. Drugą 
możliwością badania fali uderzeniowej jest bezpośrednie poszukiwanie 
funkcji rozkładu, która by opisywała zjawisko. Tę metodę można by na­
zwać molekularną.

Quasiklasyczne ujęcie zjawiska fali uderzeniowej stało się tematem 
kilku prac, z których omówimy tu dwie: pracę Zoliera, [17], oraz pra­
cę Gra da, [12].

Metoda Z o 11 e r a opiera się na rozszerzeniu teorii E nskog a - 
Chapmana dokonanym przez Burnetta. Zoller rozwija 
funkcję rozkładu f w szereg wielomianów S o n i n a i ustala za Bur­
nettem równania przenoszenia wiążące gęstość q, temperaturę T pręd­
kości oraz dwie dodatkowe wielkości Bu i BJ2, odpowiadające zaburzeniu 
stanu równowagi (związane ściśle z istnieniem napięć i przepływu ciepła). 
W przypadku płaskiej fali uderzeniowej wszystkie te funkcje zależą od 
jednej tylko zmiennej x. Układ równań przenoszenia sprowadza się więc 
do układu (nieliniowego) równań różniczkowych zwyczajnych. Dla tego 
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układu postawione jest następujące zagadnienie brzegowe: znaleźć takie 
rozwiązanie, przy którym

(1) dla # = — co jest g = q0, T = T0, u = utl, Bu = Bo2 = 0 (zdała 
od fali przepływ jest bowiem niezaburzony),

(2) dla a;= + co jest g = gi, T = Tn u = u1, Bn = Bo2 = 0.

To zagadnienie brzegowe rozwiązane jest następnie metodami nume­
rycznymi. Z o 11 e r ograniczył się w nowej pracy wyłącznie do maxwel- 
lowskiego modelu oddziaływania molekuł.

O ile praca Zollera oparta jest na schemacie ECB, o tyle praca 
G r a d a, [12], opiera się na ogólniejszej metodzie trzynastu momentów. 
Bieg rozumowania jest tu bardzo prosty. Ogólne równanie (7.8) hydrody­
namiki 13 momentów pisze się w przypadku jednowymiarowego stacjo­
narnego przepływu. Sprowadzają się one do układu 5 równań różniczko­
wych zwyczajnych z pięcioma niewiadomymi funkcjami q, u, T, pXx,

Ten nieliniowy układ równań jest następnie całkowany numerycznie.
Molekularne ujęcie zjawiska fali uderzeniowej znalazło swe odbicie 

w jednej tylko pracy Motta - Smitha, [18]. Zasadniczym założeniem 
tej pracy jest przyjęcie funkcji rozkładu dla fali uderzeniowej w postaci 
superpozycji dwóch rozkładów maxwellowskich o stałych parametrach T 
oraz u, natomiast o zmiennych gęstościach. Fala uderzeniowa jest więc 
rozpatrywana z punktu widzenia tej teorii jako wynik wzajemnego od­
działywania (jak gdyby «reakcji chemicznej») dwóch gazów: poddźwięko- 
wego i naddźwiękowego. Przyjęta za punkt wyjścia funkcja rozkładu ma 
postać

(8. 1) + +

+ n? •y Zj TT K, x p

gdzie i oznacza jednostkowy wektor w kierunku osi x. W tym wzorze wy­
stępują tylko dwie niewiadome funkcje: n« (a?) oraz np Wielkości 
T„, Tp, ua, up są natomiast przyjęte za stałe. Aby całkowicie określić 
funkcję f z równania (8.1), napiszemy oparte na równaniu B o 1 t z- 
manna równanie przenoszenia dowolnej wielkości molekularnej (Ś):

(8. 2) ~fd3^f + + {dg^f^^Ian + I^ 

w równaniu tym
łap = J d3fj d3^ j d2k w (&' — 0) fa

oraz
Ipa = J dg^J d3 ^Jd2k co (0' — 0) fal -
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Przyjmując kolejno 1, oraz E (E oznacza tu energię moleku­
ły) otrzymujemy po scałkowaniu układ trzech równań algebraicznych dla 
dwóch niewiadomych funkcji na(x}, np(x) oraz czterech stałych Ta, T^, 
ua, u^.Z faktu, że równania te muszą być spełnione dla każdego x, wno­
simy, że muszą one być równoważne jednemu równaniu. Prowadzi to do 
ustalenia związku pomiędzy stanem gazu w przepływie poddźwiękowym 
i naddźwiękowym. Związki te stanowią analogię do równań Ranki- 
n e’ a - Hugoniota znanych z dynamiki gazów doskonałych. Dla wy­
znaczenia gęstości na(x), np(x) mamy zatem jedno równanie algebraicz­
ne. Drugie równanie łączące te wielkości może być otrzymane z równa­
nia (8.2) przez przyjęcie dla 0(§) dowolnej funkcji nie będącej niezmien­
nikiem zderzeń. Wykonane zostały obliczenia dla 0 = oraz dla 
0 = . Wyniki tych obliczeń dają niewielkie różnice. Wiąże się to z fak­
tem, że funkcja (8.1) nie stanowi dokładnego rozwiązania równania 
Boltzmann a. Różnice wyników otrzymanych przy przyjmowaniu 
dowolnych funkcji 0 mogą być miarą dokładności przybliżenia (8.1). Dla 
0 = ^ otrzymuje się dla gęstości wyrażenia typu

_ n< _ n» 
na~l + e^^ nf-1+e-BXl

(gdzie l jest średnią drogą swobodną), znikające odpowiednio dla 
+ oo oraz dla x ->—oo.

O ile quasiklasyczne ujęcie teorii fali uderzeniowej, oparte o zmody­
fikowanie hydrodynamiki, wiąże się zawsze z założeniem niewielkich od­
stępstw od stanu równowagi, o tyle metoda Motta - Smitha wolna 
jest od tego założenia. Tak więc dwie pierwsze metody mogą być użyte je­
dynie do obliczania słabych fal uderzeniowych. Metoda M ot t a - Smi­
tha zaś może się również nadawać do badania fal silnych.

Niezależnie od wyników teorii Motta - Smitha w dziedzinie fal 
uderzeniowych teoria ta stanowi odrębny i ciekawy sposób podejścia do 
równania Boltzmann a. Można przypuszczać, że otworzy ona nowe 
możliwości dla szeregu różnych obliczeń teorii kinetycznej.

9. Granice stosowalności teorii kinetycznej oraz próby ich rozszerzenia

Zarys teorii kinetycznej przedstawiony w poprzednich rozdziałach 
w związku z równaniem Bołtzmanna jest oczywiście ograniczony 
w swej stosowalności. Głównym brakiem równania Bołtzmanna jest 
nieuwzględnienie wzajemnego przyciągania molekuł działającego na mo­
lekuły poza chwilami ich zderzeń. To uproszczenie ogranicza teorię opar­
tą o równanie Bołtzmanna do gazów doskonałych, spełniających 
równanie stanu postaci (1.4) p/g = RT.
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Jak wiadomo, gazy rzeczywiste nie spełniają dokładnie tego równania. 
Podaje się w związku z tym inne, poprawione równania stanu jak np. 
równanie Van der W a a 1 s a

(9.1) p + -\\{v-b) = RT,

w którym v = l/g jest objętością właściwą, lub ogólniejsze równanie 
Ur sel 1-Meyera

(9.2) P_ = i 2^2^
qRT 2 3

Równanie Boltzmanna nie może więc opisywać ruchu gazów gę­
stych. Oczywiście tym bardziej będzie ono nieprzydatne do badań ru­
chów cieczy. Współczynniki kinetyczne lepkości i przewodnictwa cieplne­
go, obliczone na podstawie równania Boltzmanna, uwzględniają za­
leżność pochodzącą — jak o tym wspominaliśmy — z wymiany pędu 
i energii wewnętrznej molekuł gazu. Jednakże w przypadku gazów zgę- 
szczonych lub w przypadku cieczy należy oczekiwać wpływu sił między- 
molekularnych na te współczynniki. Jest dobrze znanym faktem, że współ­
czynniki kinetyczne cieczy mają na ogół wartości wielokrotnie większe 
w porównaniu ze współczynnikami kinetycznymi gazów. Faktu tego nie 
da się oczywiście wyjaśnić na gruncie równania Boltzmanna. Obok 
nieuwzględnienia przyciągania molekuł równanie Boltzmanna 
oparte jest bowiem na drugim założeniu upraszczającym: na hipotezie zde­
rzeń podwójnych.

Niewyjaśniona kwestia nieodwracalności zjawisk ujętych równaniem 
Boltzmanna, o której mówiliśmy w p. 6, nasuwa konieczność zana­
lizowania związku tego równania z teorią ogólniejszą: mechaniką staty­
styczną.

Wreszcie odkrycie zjawiska nadciekłości helu II, dającego się wytłuma­
czyć przyjęciem kwantowej struktury równań hydrodynamiki, wymaga 
szczegółowego uporządkowania podstawowych założeń hydrodynamiki, co 
wiąże się z koniecznością poszukiwania możliwie najogólniejszych kon­
cepcji.

Omówione tu sprawy są przyczyną powstania nowych teorii uogól­
niających równanie Boltzmanna i rewidujących jego stosunek do 
mechaniki statystycznej.

W 1946 roku ogłoszone zostały niezależnie od siebie trzy nowe teorie 
kinetyczne oparte na twierdzeniu L i o u v i 11 e’ a. Są to teorie:

(1) Bogolubowa-Gurowa, [19] - [21] i [23],
(2) B o r n a - G r e e n a, [2] i [24],
(3) K i r k w o o d a, [27] - [30].
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Aby zrozumieć podstawowe założenia tych trzech teorii, wróćmy do 
wprowadzonej w p. 1 gęstości prawdopodobieństwa

P„(x"p" t)
rozkładu N różnych molekuł o położeniach xA' i pędach p v. Przez częścio­
we całkowanie tej funkcji można otrzymać gęstości prawdopodobieństwa 
rozkładu określonych pędów i położeń dowolnych podzespołów (np. pod­
zespołu h) z zespołu N różnych molekuł. Otrzymamy w ten sposób nowe 
funkcje typu
(9.3) Ph = J d3 x • d3 p • Pa -

Jeżeli nie chcemy odróżniać poszczególnych molekuł, to możemy wpro­
wadzić funkcje rozkładu dowolnych rzędów. Tak np. dla układu h mo­
lekuł funkcja rozkładu, którą oznaczać będziemy przez f^x^p'1, t), wyrazi 
się wzorem

N'
(9.4) fh (x\ p", t) = i (x"> P > V-

O ile więc Ph daje gęstość prawdopodobieństwa rozkładu pędów i po­
łożeń układu h różnych molekuł, o tyle fh daje gęstość prawdopodobień­
stwa rozkładu pędów i położeń h jakichkolwiek molekuł z podzespołu h 
(tj. daje gęstość prawdopodobieństwa tego, że jedna z dowolnych molekuł 
ma pęd i położenie x1, p1, druga dowolna molekuła ma położenie i pęd 
x2, p2 itd). Oczywiście
(9.5) (x, p, t) = NP, (x1, p1, t) = W f d3(,v—i)icd3(;v-i)pP.v,

(9.6) = NI Pn.

Ze wzoru (9.6) widzimy natychmiast, że funkcja spełnia także twier­
dzenie Liouville’a (1.12). Centralnym zagadnieniem uogólnionej 
teorii kinetycznej jest znalezienie równań wiążących z sobą funkcje roz­
kładu różnych stopni.

W teorii Born-a - Greena uzyskuje się to z bezpośrednich roz­
ważań dynamicznych. W myśl podstawowego założenia tej teorii siła dzia­
łająca na grupę, należącą do podzespołu h, równa jest iloczynowi masy 
przez przyśpieszenie molekuły średnie dla podzespołu h. To dość do­
wolne zresztą założenie modelowe prowadzi do związku pomiędzy funkcją 
fń+i a funkcjami flt f2, ..., fh. Szczególnym przypadkiem takiej zależności 
jest twierdzenie L i o u v i 11 e’ a dla funkcji fN. Kinetyczną funkcję roz­
kładu identyfikuje się z funkcją f, podaną wzorem (9.5). Równanie dla 
określenia tej funkcji ma postać

(9.7) |^+g(i)^ + Z ^fi j d fd
dt m ds(1> J •' dw' ds1 ' 
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gazie 0 oznacza potencjał sił międzymolekulamych, zaś f2 (x(1>, x(2>, 
ł(2), t) jest funkcją rozkładu par molekuł. Równanie Boltzmanna 
otrzymuje się z równania (9.7) przy następujących założeniach:

(1) podwójnych zderzeń,
(2) przy |r12j->co, f2 = f(1)f(3) oraz fź = f^-,.
Drugie z tych założeń nie jest właściwie zbyt jasne. Ma ono zastąpić 

założenie chaosu molekuł.
Teoria Borna-Greena użyta była do obliczenia współczynników 

kinetycznych cieczy, do otrzymania równań ruchu cieczy uwzględniają­
cych oddziaływanie molekuł oraz do obliczeń dotyczących nadciekłości.

Teoria B o g o 1 u b o w a-Gur o wa jest zasadniczo bardzo zbliżona 
do teorii Borna-Greena. W teorii tej dla ustalenia zależności po­
między funkcjami rozkładu dowolnych rzędów pominięte są jednak mode­
lowe rozważania nad dynamiką molekuły. Zamiast tego wychodzi się bez­
pośrednio z twierdzenia L i o u v i 11 e’ a, co stanowi pewniejszą podsta­
wę teorii. Dla funkcji rozkładu rzędu h wprowadza się rozwinięcie na 
szereg

1 1 1 2 
fil --  fil H----- fil H----- 5 fil + — V . U

względem parametru l/v proporcjonalnego do gęstości gazu. To ujęcie za­
pewnia teorii Bogolubowa-Gurowa przewagę nad teorią Bor­
na-Greena, gdyż pozwala na fizykalne oszacowanie błędów po­
wstałych przy obcinaniu szeregów.

Teoria ta była stosowana do obliczeń rozkładu energii w gazach przy 
istnieniu reakcji chemicznych, [22], oraz do teorii nadciekłości, [21]. G u- 
r o w podał zastosowanie teorii do kwantowania równań hydrodynamiki, 
[23]. Teoria ta daje również poprawkę do równania Boltzmanna 
uwzględniającą taki model oddziaływania molekuł, który prowadzi jedno­
cześnie do zastąpienia równania stanu gazów doskonałych przez równanie 
(9.2), [19].

Nieco inny punkt widzenia przyjął w swych rozważaniach K i r k- 
w o o d. Analizując proces pomiaru wielkości fizycznych na układzie 
złożonym z wielkiej ilości molekuł dochodzi on do wniosku, że mierzone 
wielkości makroskopowe są wynikiem wprowadzenia średniej nie tylko 
dla zespołu molekuł, lecz także wprowadzenia średniej w okresie czasu, 
co jest związane z bezwładnością każdego makroskopowego przyrządu po­
miarowego. Prowadzi to bezpośrednio do wniosku, że funkcja fj podana 
wzorem (9.5) nie pokrywa się z kinetyczną funkcją rozkładu. Tę ostatnią 
uważać należy za wartość średnią funkcji fi w ciągu pewnego czasu r:

f = — f fi (x,i,t + s)ds.
T o
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To założenie Kirkwooda okazało się bardzo trafne. Pozwoliło ono 
przynajmniej częściowo wyjaśnić zagadnienie nieodwracalności zjawisk. 
Przy założeniu zderzeń jedynie podwójnych dla stanów rnało różnych od 
stanu równowagi otrzymuje się z tej teorii równanie Boltzmanna dla 
kinetycznej funkcji rozkładu. Teoria Kirkwooda została również 
z powodzeniem zastosowana do badania ruchów Browna. Poza tym 
stworzyła ona realne możliwości obliczeń współczynników lepkości cie­
czy, [29], oraz uwzględnienia oddziaływań międzymolekularnych w rów­
naniach hydrodynamiki, [30].

Poważnym sukcesem teorii Kirkwooda jest rzucenie światła na 
zagadnienie nieodwracalności. Uzyskanie nieodwracalnego równania 
Boltzmanna z odwracalnego równania Liouville’a wiąże się 
tu wyraźnie z przejściem od drobnoziarnistej funkcji rozkładu do gru­
boziarnistej kinetycznej funkcji rozkładu f. Teoria Borna - Green a, 
w której brak tego istotnego rozróżnienia, może więc budzić zastrzeżenia. 
Już de B o e r, [16], wyraził wątpliwość, czy teoria Borna - Greena 
oparta wyłącznie na odwracalnym twierdzeniu L i o u v i 11 e’ a jest w sta­
nie opisać procesy nieodwracalne w gazach. G. Klein i J. P r i g o g i- 
n e, [25] i [26], potwierdzili to przepuszczenie drogą rachunku wykonane­
go dla najprostszego układu molekuł rozłożonych wzdłuż linii prostej.

Wszystkie trzy omówione powyżej teorie podlegają jeszcze opracowa­
niu i dlatego nie mogą być uważane za ostateczne i wykończone.
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Резюме

УРАВНЕНИЕ БОЛЬЦМАННА И ЕГО ЗНАЧЕНИЕ В ТЕОРИИ ГАЗОВ

Рассматриваются три направления исследования явлений, проис­
ходящих в газах: феноменологическая гидродинамика, кинетическая 
теория и статистическая механика. Приводится взаимоотношение этих 
трех теорий. Представлены основные понятия и положения кинети­
ческой теории газов, опираясь на так называемую кинетическую 
функцию распределения. Приводится элементарный вывод уравнения 
Больцманна и обсуждение математического и физического 
смысла этого уравнения.

В следующей главе дается самое простое решение уравнения 
Больцманна: максвеллово распределение скорости. Опираясь 
на это решение, рассматриваются основы молекулярной аэродинамики. 
Далее приводятся расчеты теории Энскога-Чэпмена-Бэр- 
н е т т а, ведущие к определению кинетических коэффициентов 
и к так называемых уравнений третьего «приближения».

Следующая глава посвящена вопросам необратимости процессов 
в газах. Формулируется теорема «Ня Больцманна вместе с ее 
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кратким доказательством. Представлена основная проблема необрати­
мости уравнений кинетической теории газов в связи с обратимостью 
уравнений механики и попытками истолкования этой проблемы.

Далее приводится метод Града решения уравнений Больц- 
манна при помощи разложения в ряд трехмерных полиномов 
Эрмита.

Следующая глава занимается применением уравнения Больц- 
манна для исследования ударных волн. Здесь рассматриваются 
кратко главные концепции формулировки явления ударных волн при 
помощи методов кинетической теории.

В последней главе рассматриваются попытки обобщения уравнения 
Больц манн а и кинетической теории. Представлены проблемы 
взаимоотношения кинетической теории и статистической механики. 
Эти попытки сводятся, главным образом, к дальнейшему распростра­
нению формализма на сгущенные газы и жидкости. Рассматриваются 
три важнейших варианта теории: Борна-Грина, Боголю­
бова-Гурова и Кэрквуда.

Summary

BOLTZMANN’S EQUATION AND ITS ROLE IN THE THEORY OF GASES

Three ways of studying phenomena occuring in gases represented by 
phenomenological hydrodynamics, kinetic theory and statistical mecha­
nics are discussed as well as the relations between them. Next, funda­
mental notions and assumptions of the kinetic theory of gases are repre­
sented on the basis of the so called kinetic distribution function. Boltz- 
m a n n’s equation is derived in an elementary way and its mathematical 
and physical sense is discussed.

The following section is devoted to the most simple solution of 
Boltzmann’s equation represented by Maxwell’s velocity 
distribution law. On the basis of this solution the principles of molecular 
aerodynamics are discussed. Next, the' calculations of the theory of 
Enskog - Chapman - Burnett, leading to the determination 
of kinetic coefficients and to the so called equations of the third «appro­
ximation», are represented.

In the next section the problem of irreversibility of the processes 
in gases is discussed. Bol tzman n’s «H» theorem is shown in an 
abridged manner. The principal problem of irreversibility of equations 
of the kinetic theory of gases in connection with the reversibility of equa­
tions of mechanics is discussed. Further, G r a d’s method of solution 
of Boltzmann’s equation by means of expansion in a series of 
H e r m i t e’s three-dimensional polynomials is represented.
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The next section is concerned with the application of B o I t z- 
m a n n’s equation to shock wave investigation. Principal ways of treating 
the phenomenon of shock wave by means of the methods of the kinetic 
theory are examined.

The last section is devoted to the efforts to generalize Boltz- 
m a n n’s equation and the kinetic theory. The problems of relations 
between the kinetic theory and statistical mechanics are also discussed. 
These efforts consist in a formal generalization extended to compressed 
gases and liquids. Three principal variants of the theory (due to B o r n - 
Green, Bogolubov-Gurov and Kirkwood) are discussed.

ZAKŁAD MECHANIKI OSRODK0W CIĄGŁYCH
IPPT PAN

Praca została, złożona w Redakcji dnia 13 stycznia 1955 r.
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Przedmowa

Obliczenia mechaniczne konstrukcji budowlanych dotyczą obiektów 
znajdujących się w spokoju. Z tego powodu wszystkie rozważania me­
chaniki budowli opierają się przede wszystkim na statyce. Zagadnienia 
dynamiczne występują tu dopiero wówczas, gdy obciążenia budowli na­
bierają charakteru dynamicznego. Ma to miejsce w nowoczesnym bu­
downictwie przemysłowym w związku z obciążeniem budynków maszy­
nami w ruchu, a w budownictwie komunikacyjnym w związku z dużym 
wzrostem szybkości ruchu pociągów i samochodów.

Oddziaływanie maszyn i pociągów na obiekty budowlane sprowadza 
się w zasadzie do uderzeń i drgań.

Zagadnienie uderzeń w pracy konstrukcji budowlanych polega głów­
nie na ustaleniu punktu zaczepienia do budowli sił zaczepionych w sposób 
nagły, przede wszystkim sił hamowania.

Zagadnienie drgań polega tu na zastosowaniu takich metod oblicze­
niowych, które pozwoliłyby przy opracowaniu szeregu odmian projektów 
budowli na szybkie sprawdzenie, w jakim stopniu grozi budynkom re­
zonans między drganiami własnymi a zmianami sił wymuszających.

Zagadnienia uderzeń i drgań łącznie występują w interpretacji dyna­
micznej przybliżonej metody Ritza i Timoszenki wyznaczania 
odkształceń i sił krytycznych.

Rozprawa niniejsza jest poświęcona oddziaływaniom dynamicznym 
obciążeń na budowle, oddziaływaniom rozumianym w sposób wyżej 
przedstawiony.

Przy opracowaniu rozprawy korzystałem z moich dawniejszych obli­
czeń zawartych przede wszystkim w następujących publikacjach:

(1) Interpretacja dynamiczna przybliżonej metody wyznaczania od­
kształceń sprężystych w konstrukcjach budowlanych, Przegląd 
Techniczny, 1928,

(2) Działanie ruchu pociągu na przyczółki i filary mostowe, 
Sprawozdania i Prace Warsz. Tow. Pol., 1930,

(3) Z dziedziny odkształcenia i stateczności układów prętowych, 
Sprawozdania i Prace Warsz. Tow. Pol., 1933,
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(4) Obliczenia drgań własnych belek za pomocą momentów wtór­
nych, Inżynieria i Budownictwo, 1948.

Doceniając całkowicie wagę dyskusji prowadzonej na terenie Poli­
techniki Warszawskiej na temat podstawowych pojęć mechaniki, nie mo­
głem tu wyników tej dyskusji w całości uwzględnić obawiając się, że 
nowa, niedostatecznie spopularyzowana jeszcze maniere de parler mo­
głaby w pracy o charakterze technicznym spowodować szereg nieporo­
zumień.
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1. Punkt zaczepienia sił hamowania

Przy badaniu stateczności i wytrzymałości przyczółków i filarów mo­
stowych muszą być brane pod uwagę zarówno siły pionowe, jak i pozio­
me. Siły poziome występują tu pod postacią sił wywołanych hamowaniem 
pociągu na moście lub też pod postacią siły pociągowej lokomotywy. Siły 
te mają charakter obciążeń dynamicznych.

Działanie ruchu pociągu na przyczółki i na filary jest w zasadzie ta­
kie samo. Przy badaniu stateczności przyczółków zadanie komplikuje 
jednak parcie ziemi i dlatego w dalszych obliczeniach mówiąc o podpo­
rach mostowych będziemy mieli przede wszystkim na widoku filary 
pomimo to, że szerokość filara liczona wzdłuż osi mostu może być 
tniekiedy niedostateczna, aby pomieścić choćby dwie osie taboru. 
W związku z tym zastosowanie wyników dalszych obliczeń do poszcze­
gólnych rodzajów konstrukcji zostanie omówione oddzielnie.

Ponieważ posadowienie podpór mostowych nie 
ma wpływu na sposób działania na nie pociągu, 
będziemy zakładali w schematach obliczeniowych, 
że przyczółki i filary przedstawiają bryły w dwóch 
punktach swobodnie podparte, inaczej mówiąc 
bryły podparte liniowo.

Hamowanie jednostek taboru kolejowego po­
lega na tym, że klocki hamulcowe wywierają na­ Rys. 1

cisk N na koła powodując tarcie potoczyste na obwodach kół i stwarzają 
w ten sposób dodatkowy opór pociągu (rys. 1). Opór hamowania wyraża 
się wzorem

(1.1) H = frN,

gdzie fr oznacza współczynnik tarcia stali po stali w ruchu.
Koła wagonu toczą się pomimo hamowania dotąd, dopóki tarcie klocka 

hamulcowego o koło jest mniejsze od tarcia posuwistego w spokoju koła 
po szynie. Z chwilą unieruchomienia kół

(1.2) H = fsC,

gdzie C oznacza nacisk na koło, a fs współczynnik tarcia stali po stali 
w spokoju. Siły hamowania stają się więc w tym wypadku równe siłom
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tarcia unieruchomionych kół taboru po szynach. Siły te odgrywają 
przeważnie decydującą rolę w działaniu ruchu pociągu na podpory mo­
stowe.

Zajmiemy się przede wszystkim przypadkiem, gdy jednostka taboru 
znajdująca się bezpośrednio na filarze ulega zahamowaniu z unierucho­
mieniem kół. Jest to przypadek najniebezpieczniejszy dla podpór mosto­
wych. Schemat tego przypadku przedstawiony jest na rys. 2. Tu bryła 
ABCD podparta w punktach A i B i oznaczona na rysunku liczbą II przed­
stawia filar mostu. Jednostkę taboru o kołach unieruchomionych przed­

stawiamy sobie jako bryłę abcd przesu­
wającą się po bryle ABCD w kierunku 
CD (na rysunku bryła I).

Zakładamy, że nagłe zatrzymanie się 
na filarze bryły abcd nie może spowo­
dować jej obrotu dookoła punktu a, co 
zostanie omówione dalej. Wobec takie­
go założenia wyłączamy możność prze­
suwania się środka ciężkości bryły abcd 
w stosunku do płaszczyzny CD w kie­
runku osi CY.

Ponieważ przyjęliśmy, że jednostka 
taboru przedstawiona na rys. 2 jako 
bryła abcd ulega zahamowaniu z unie­
ruchomieniem kół i zatrzymaniu, może­
my uważać, że dwie bryły abcd i ABCD 
elementami którego działają więzy da­

jące reakcję równą wypadkowej sił tarcia H, występujących w płaszczyź­
nie ab i zaczepionych w punktach a i b.

Dla układu osi współrzędnych BX i BY ustawiamy równanie momen­
tów ilości ruchu w chwili rozpoczynania się ruchu układu materialnego 
złożonego z brył abcd i ABCD względem punktu A dla środków ciężkości 
tych brył.

W ogólnej postaci równanie momentów ilości ruchu układu material­
nego przedstawia się, jak wiadomo, w sposób następujący: 

(1.3)

gdzie m oznacza masę poszczególnych elementów układu materialnego, 
a X i Y rzuty sił zewnętrznych, działających na układ, na osie współrzęd­
nych BX i BY. Tu sumowanie po lewej stronie równania dotyczy wszyst­
kich elementów układu materialnego, a sumowanie po prawej stronie 
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równania dotyczy, z jednej strony, wszystkich sił zewnętrznych działa­
jących na układ, a z drugiej — wszystkich elementów układu.

Stosując równanie (1.3) w naszym wypadku, oznaczamy przez x i y' 
współrzędne środka ciężkości bryły abcd, a przez x" i y" współrzędne 
środka ciężkości bryły ABCD. Siły działające na układ materialny i ich 
ramiona podane są na rys. 2; w szczególności oznacza tu ciężar bryły 
abcd, a P2 ciężar bryły ABCD. W ten sposób znajdujemy

(1.4)
d 
dt

dy” L 
dt 2

dx" 
dt

— RbL P2

gdzie RB oznacza reakcję pionową bryły ABCD w punkcie B, a symbole 
m1 i m2 dotyczą odpowiednio mas brył abcd i ABCD.

Ponieważ przyjęliśmy, że bryła abcd nie może się obrócić względem 
punktu A, więc dy'/dt =0. Również nieprzesuwność środka ciężkości 
bryły ABCD w kierunku osi BX i BY uważamy za zabezpieczoną, a tym 
samym dx"ldt = 0 i dy"/dt = 0.

W tych warunkach równanie (1.4) przybiera postać
7

(1.5) RbL — P2 -x~P}gt—
CL Z

Ostatni dodajnik lewej strony równania przedstawia moment wzglę­
dem punktu A siły bezwładności bryły abcd. Z drugiej strony, ustawiając 
dla bryły abcd równanie rzutów ilości ruchu na oś CX znajdujemy

(1.6) d2 x'
1 dP = — H.

Wstawiając wynik (1.6) w równanie (1.5) mamy

(1-7) RbL-P^—P^ +HSl=G. 
Ci

Równanie (1.7) należy uważać za warunek równowagi filara w chwili 
zatrzymania się na nim jednostki taboru. Natomiast przy

(1.8) RbL — P2 — Pj g. + Hst < 0 Cl

bryła ABCD rozpoczyna wraz ze związaną z nią tarciem bryłą abcd ruch 
obrotowy względem punktu A.

Ze wzorów (1.7) i (1.8) wynika, że przy badaniu stateczności i wytrzy­
małości filara, na którym zatrzymała się mieszcząca się na nim całkowi­
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cie jednostka taboru przy hamowaniu z unieruchomieniem kół, należy 
przyjmować ramię momentu siły hamowania taboru na filarze jako równe 
odległości bieguna (na rys. 2 punkt A) od linii poziomej przechodzącej 
przez środek ciężkości taboru. Potwierdza to zresztą prymitywne doświad­
czenie z człowiekiem wskakującym z rozpędem na stołek.

Gdy chcemy powyższe rozumowania zastosować do przyczółków mo­
stowych, musimy w równaniu (1.7) uwzględnić moment parcia ziemi 
względem punktu A. Wobec tego, że hamowanie pociągu na przyczółku 
może spowodować znaczne odkształcenia sprężyste przyczółka i tym wy­
wołać rysę między przyczółkiem a ziemią nasypu wywołującą parcie geo- 
dynamiczne, wydaje się stosowanie teorii Coulomba parcia ziemi 
w tym wypadku bardziej uzasadnione niż w innych. Będzie się to wpraw­
dzie działo na niekorzyść bezpieczeństwa, będzie jednak uzasadnione wobec 
jednoczesnego uwzględnienia hamowania pociągu w sposób najbardziej 
niekorzystny dla stateczności przyczółka.

Warunek (1.7) może być zastąpiony przez warunek

(1.9)

gdzie oznacza moment powstrzymujący, czyli moment sił działających 
na podporę mostową i dążący do obrócenia jej względem punktu A 
(na rys. 2) na lewo, a wyraża moment wywracający, czyli moment sił 
działających na podporę w kierunku odwrotnym do poprzednich, bez siły 
hamowania i reakcji RB symbolizującej w danym razie reakcję podłoża. 
Warunkowi temu możemy nadać postać 

działywania na siebie

(1.10) _ i
n 9)lip + Hs^

gdzie n oznacza współczynnik statecz­
ności podpory mostowej na wywróce­
nie.

W chwili nagłego zatrzymania się 
taboru na podporze powstaje moment 
Hha (rys. 3) zaczepiony do bryły I. Wa­
runek równowagi 2 M = 0 dla bryły I 
przybiera postać

(1.11) Rbl- % +Hho^O.

■Moment Hh0 odgrywa w danym wy­
padku rolę momentu wzajemnego od­

dwóch elementów tego samego układu material­
nego złożonego z brył I i II i wyraża postulat, aby jednostka taboru nie 
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uległa obrotowi względem punktu a; możliwość takiego obrotu wyłączy­
liśmy wyżej w naszych rozumowaniach. Postulatowi temu możemy nadać 
postać podobną do wzoru (1.10):

(1-12) ____
+ Hh0

gdzie ^pz i oznaczają odpowiednio moment powstrzymujący i mo­
ment wywracający dla bryły I.

Wszystkie rozważania dotyczące przypadku, gdy na podporze mostowej 
uległy całkowitemu zahamowaniu dwie osie pewnej jednostki taboru, za­
chowują swą moc oczywiście i wówczas, gdy liczba tych osi jest większa 
od dwóch.

Przechodzimy z kolei do przypadku, gdy zahamowanie jednostki tabo­
ru na filarze przy całkowitym unieruchomieniu kół następuje w ten spo­
sób, że jedna oś znajduje się na filarze, a druga na dźwigarze (rys. 4).

Równanie (1.3) ustawione 
dla układu materialnego I, II 
przybiera w danych warunkach 
i przy przyjętych wyżej ozna­
czeniach postać

cc' (1.13) ^ld^s,=

“RfcPi ~2 >

gdzie d2x/dt2 oznacza część 
siły bezwładności bryły I wy­
wierającą wpływ na stateczność 
bryły II.

Moment Hj, h0 odgrywa w tym wypadku w stosunku do bryły I rolę 
momentu zewnętrznego. Moment ten powstaje w sposób następujący.

Równanie rzutów ilości ruchu na kierunek poziomy daje w rozpatry­
wanym przypadku

(1.14)
d x u u

m, = —Hb — Ha ,dtr

gdzie Hb i Ha oznaczają odpowiednio siły tarcia w punktach a i b bryły I, 
tzn. siły tarcia między bryłą I a bryłą II, z jednej strony, i między bryłą I 
a bryłą III, z drugiej strony.

Siła bezwładności mld3x'/dt2 oraz suma sił tarcia Hb + Ha tworzą łącznie 
parę (Hb J- h.„ którą można uważać za sumę dwóch momentów Hb ho 
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oraz Haho, z których pierwszy działa na układ materialny I, II, a drugi 
na układ II, III.

Nadajemy równaniu (1.13) postać

(1.15) Hb Sj — Rb ęh Pi 4 Hb z

co doprowadza do równania

(1.16) — Hbh + Rb91 — pA = 0,
Cl

gdzie h = Si — h0 wyraża odległość pionową od bieguna A do poziomu 
szyny.

Równanie (1.16), jak w poprzednim wypadku, możemy zastąpić przez 
nierówność

(1.17)
3)^

^P + Hh

Z rozpatrzonych wyżej dwóch przypadków hamowania pociągu na pod­
porze mostowej wynika, że w razie gdy na podporze zatrzymują się przy­
najmniej dwie osie pewnej jednostki taboru, przy badaniu stateczności 
podpory należy przyjmować, że siły hamowania zaczepione są w środku 
ciężkości tej jednostki, w razie zaś gdy tylko jedna oś zatrzymuje się 
na podporze, siła hamowania powinna być uważana za zaczepioną w po­
ziomie szyn.

Rozpatrzmy wreszcie przypadek, kiedy jednostka taboru zostaje zaha­
mowana z unieruchomieniem kół na dźwigarze swobodnie podpartym na 
dwóch podporach mostowych (rys. 5).

Stosując równanie (1.3) do brył I (jednostka taboru) i II (dźwigar) oraz 
do brył I, II, III (podpora) i powtarzając rozważania przytoczone wyżej 
dochodzimy do wniosku, że siła hamowania

(1.18) H = m-^-
dt-1

jednostki taboru powinna być zaczepiona do podpory mostowej w pozio­
mie podpory dźwigara. Jeżeli podpora jest nieprzesuwna, siła ta bę­
dzie równa H, jeżeli zaś przesuwna, siła hamowania w ogóle nie będzie 
działała na podporę.

Taki stan rzeczy jest całkowicie zrozumiały, gdyż dźwigar, na którym 
odbywa się hamowanie, i przyczółek lub filar mają tu jeden tylko punkt 
wspólny.

W chwili całkowitego zahamowania taboru na dźwigarze tabor i dźwi­
gar będą tworzyły dzięki siłom tarcia niejako jedną bryłę, do której na po­
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ziomie środka ciężkości taboru będzie zaczepiona siła hamowania H. Siła 
ta spowoduje powiększenie nacisku pionowego na jedną podporę dźwigara 
i odciążenie drugiej podpory.

Wielkości dodatkowego obciążenia podpory B' (rys. 5) obliczamy z rów­
nania momentów sił działających na dźwigar względem punktu A':

(1.19) Rśl + Hh^O,

gdzie Rś oznacza poszukiwane przeciążenie podpory Rb , a hi odległość 
pionową podpór dźwigara od płaszczyzny poziomej przechodzącej przez 
środek ciężkości taboru.

W podobny sposób z równania

(1-20) RAl — Hh, = 0

znajdujemy spowodowane przez hamowanie odciążenie R' A podpory A .

Wyżej udowodniliśmy, iż siła H tarcia unieruchomionych kół taboru 
kolejowego po szynach przyczółka lub filara (siła hamowania) powinna 
być zaczepiona w obliczeniu statycznym podpory mostowej w poziomie 
środka ciężkości danej jednostki taboru, o ile jednostka ta dotyka podpo­
ry co najmniej w dwóch punktach, w poziomie główki szyny, o ile dotyka 
ona podpory mostowej w jednym tylko punkcie, wreszcie w poziomie 
przegubu podpory dźwigara, o ile hamowany tabor znajduje się na prze­
gubowo podpartym dźwigarze.

Porównajmy tu w świetle tych twierdzeń poszczególne rodzaje przy­
czółków.

Wzór (1.10) wyprowadzony został dla przyczółków w rodzaju przedsta­
wionego na rys. 6, tj. takich, na których tor ułożony jest bezpośrednio na 
murze przyczółka.
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Jezelibyśmy ze środka bryły przyczółka usunęli część muru i zapełnili 
otrzymaną w ten sposób studnię ziemią, to otrzymalibyśmy przyczółek 
w rodzaju przedstawionego na rys. 7. O ile by tabor hamowany na takim 
przyczółku opierał się na nim w dwóch punktach, to wzór (1.10) przy obli­

Rys. 6

czeniu takiego przyczółka zacho­
wałby swoją moc.

Rys. 7

Usunięcie tylnej ściany MN przyczółka przedstawionego na rys. 6 nie 
spowodowałoby żadnej zmiany zasadniczej w warunkach jego pracy (rys. 7 
i 8), gdyż ziemia zapełniająca jego wnętrze pozostałaby w równowadze, 
podtrzymywana przez ziemię nasypu za przyczółkiem. W tym więc przy­
padku wzór (1.10) powinien mieć również zastosowanie, tym bardziej że 
przestrzeń między murami przyczółka typu przedstawionego na rys. 7 i 8 
(widok od tyłu) jest zwykle mała i wypełniona ziemią ze szczególną sta­
rannością.

Rys. 8 Rys. 9

Usunięcie wspólnego fundamentu pod skrzydłami i przednim murem 
przyczółka też -nie powoduje zmian istotnych w warunkach równowagi 
przyczółka jako całości, w szczególności pod względem sposobu zaczepie­
nia siły H (rys. 9). W tym wypadku nacisk taboru znajdującego się nad 
przyczółkiem przekazuje się za pomocą ziemi murom przyczółka prawie 
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całkowicie lub w razie ziemi spoistej nawet całkowicie, tym bardziej 
że przestrzeń mn wolna od fundamentu jest na ogół mała. Uważamy 
więc przyczółki przedstawione na rys. 7 i 8 niejako za bryły złożone z mu­
rów i ziemi zapełniającej przestrzeń między nimi.

Weźmy teraz pod uwagę przyczółek w po­
staci muru o przekroju poprzecznym przedsta­
wionym na rys. 10. Na murze przyczółka stoi 
bezpośrednio jedna tylko oś taboru, druga zaś 
oś tej samej jednostki taboru opiera się na na­
sypie za przyczółkiem i nie pozostaje z nim 
w łączności. W tym wypadku siła tarcia mię­
dzy hamowanym na przyczółku taborem (jedna 
oś) a szyna powinna być zaczepiona do przy­
czółka w poziomie punktu K, jak to zostało 
przedstawione we wzorze (1.17).

Inaczej rzecz się ma w przypadku przyczół­
ka przedstawionego na rys. 11. Tu nacisk lewej 
(na rysunku) osi znajdującej się na przyczółku 
jednostki taboru przekazuje się za pośredni­

Rys. 10

ctwem szyn, podkładów i podsypki na ziemię za przyczółkiem, a przez nią 
wywiera ciśnienie w kierunku pionowym na odsadzki przyczółka. Wobec
tego jednostka taboru stojąca dwiema przynajmniej osiami nad funda-

Rys. 11

mentem przyczółka, w szczególności nad jego 
częścią L, może być rozpatrywana, zgodnie ze 
schematem na rys. 2, jako bryła abcd posuwa­
jąca się po bryle ABCD, a więc siła H powinna 
być w obliczeniu przyczółka zaczepiona w jego 
środku ciężkości. Jeżeli tylna powierzchnia 
przyczółka nie posiada odsadzek, lecz jest po­
chylona, w przekazywaniu pionowego ciśnie­
nia taboru na przyczółek odgrywa rolę tarcie 
między ziemią a murem, dzięki czemu nie zmie­
nia się zasadniczo sposób zaczepienia do przy­
czółka siły hamowania pociągu w porównaniu 
z przypadkiem poprzednim.

Weźmy teraz pod uwagę przyczółek o pio­
nowej powierzchni tylnej oraz o wąskim para­
pecie mieszczącym na sobie jedną tylko oś po­

ciągu i przypuśćmy, że z parapetu została przerzucona na nieprzesuwny ko­
niec dźwigara beleczka MN (rys. 12), połączona z nim w sposób nieprze­
suwny. Mamy więc w ten sposób do czynienia z układem niezmiennym
MNK sztywno złączonym z przyczółkiem, wobec czego jednostka taboru
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znajdująca się na belce MN odpowiada schematowi rys. 2 i siła H powinna 
być tu w obliczeniu przyczółka zaczepiona do środka ciężkości taboru. 
Rolę beleczki MN spełnia w wielu wypadkach szyna przerzucona z para­
petu przyczółka na dźwigar.

Wreszcie może się zdarzyć w okolicznościach
podobnych do przedstawionych wyżej, że chociaż 
parapet nie mieści na sobie więcej ponad jedną oś 
pociągu, +o jest jednak dosyć szeroki na to, aby 
szyna podparta za pomocą dwóch przynajmniej 
podkładów mogła wspornikowo utrzymać dwie 
osie pociągu (rys. 13). W ten sposób powstałyby 
znowu okoliczności odpowiadające warunkom 
schematu 2.

Z powyższego zestawienia widzimy, że dla po­
szczególnych typów murów przyczółkowych nale­
ży przyjmować odcinek L za pewnego rodzaju 
sprowadzoną długość przyczółka posiadającą tę 
własność, że jednostka taboru stojąca na tej dłu­
gości dwiema osiami znajduje się w warunkach

bryły abcd w schemacie na rys. 2 i siła H powinna tu być zaczepiona 
w obliczeniu statycznym przyczółka w środku ciężkości taboru. Ponieważ 
długość L jest .prawie zawsze większa od rozstawu osi parowozu, należy 
przy obliczaniu przyczółków uwzględniać 
wpływ hamowania na przyczółki znajdującego 
się na nim taboru zawsze według wzoru (1.10).

Jeżeli przyczółki lub filary mostowe pod­
trzymują dźwigary przegubowo, to, jak uzasad­
niono wyżej, siła H musi być zaczepiona w tych 
wypadkach w obliczeniu statycznym w pozio­
mie przegubów podpór nieprzesuwnych.

W razie gdy przyczółki i filary podtrzymują 
inne rodzaje dźwigarów, poza przegubowymi 
dźwigarami belkowymi, hamowanie pociągu na 
dźwigarach odbija się na stateczności podpór 
w różny sposób w zależności od typu dźwiga­
rów lub układu całej konstrukcji mostowej.

A więc w mostach wspornikowych (rys. 14) wsporniki nie mogą się na 
ogół obracać względem filarów, tak że stanowią one z nimi jakby jedną 
całość. W mostach tego typu jednostka taboru stojąca dwiema osiami na 
wsporniku i zahamowana z unieruchomieniem kół znajduje się w warun­
kach bryły abcd z rys. 2 i w obliczeniu stateczności filara (lub przyczółka) 
siła H powinna być tu zaczepiona w środku ciężkości taboru.
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Wsporniki miewają jednak zastosowanie przeważnie w mostach du­
żych, dla których siła hamowania ma mały wpływ na stateczność podpór, 
z mostów zaś o małych rozpiętościach zdarzają się one prawie tylko w mo­
stach żelbetowych typu belki zawie­
szonej.

Filary (słupy) mostów ramowych 
również nie w jednakowy sposób pod­
legają działaniu siły hamowania. Spo­
sób zaczepienia siły H zależy tu od ty­
pu ram danego mostu.

Przypuśćmy więc, iż mamy do czy­
nienia z ramą dwuprzegubową przed­
stawioną na rys. 15. Rama ta pod 
względem stateczności odpowiada wa­
runkom bryły ABCD z rys. 2. Wynika 
stąd, że siły hamowania należy tu za­
czepiać w środku ciężkości hamowa­
nego na ramie taboru. Moment Hst 
równoważąc się tu z momentem Rl wywołuje dodatkowe (poza reakcjami 
sił pionowych) reakcje podpór R i dodatkowe naprężenia ściskające
w słupach.

Rama bezprzegubo- 
wa w stosunku do dzia­
łających na nią sił ha­
mowania znajduje się 
w tych samych warun­
kach co rama poprzed­
nia. Odpowiada ona 
również schematowi na 
rys. 2, należy więc i w 
tym wypadku przyjmo­
wać punkt zaczepienia 
sił H w środku ciężkości 
taboru.

W układzie przed­
stawionym na rys. 16

dwa słupy połączone bezprzegubowo z fundamentem podtrzymują dźwigar 
podparty na obydwóch słupach w sposób przegubowy, lecz nieprzesuwny. 
Siła H spowodowana hamowaniem taboru poruszającego się po rozporze 
BC powinna być w tym wypadku zaczepiona do słupów AB i CD w po­
ziomie przegubów B i C, gdyż rozpora znajduje się tu w warunkach po­
dobnych do dźwigara z rys. 5. Jeżeli oba przeguby są nieprzesuwne, a roz­
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pora ramy jest nieściśliwa, to można przyjmować, ze w punktach B i C 
działają równe sobie siły poziome H/2.

W warunkach podobnych do rozpory BC z rys. 16 znajdują się dźwiga­
ry belkowych mostów żelbetowych, jeżeli na skutek dużego tarcia na 
podporach ich końce nie mogą się przesuwać po przyczółkach. W tych 
wypadkach można siłę hamowania na dźwigarze rozłożyć na dwa przy­
czółki.

Weźmy dla przykładu układ ramowy przedstawiony na rys. 17. Pod­
pora C jest tu podporą przegubowo przesuwną. Układ posiada jedną 
wielkość statycznie niewyznaczalną, za którą przyjmujemy zwykle reak­

cję Rc podpory C. Po wpro­
wadzeniu tej wielkości uwa­
żamy belkę BC za wspornik, 
a siłę hamowania (siłę H) 
przechodzącego po niej tabo­
ru za zaczepioną w środku 
ciężkości taboru.

Most łukowy bezprzegu- 
bowy przedstawiony na rys. 
18 znajduje się pod wzglę­
dem działania na niego sił 
hamowania w warunkach 
analogicznych do warunków 
ramy bezprzegubowej, a więc

i w tym wypadku należy siłę hamowania zaczepiać w środku ciężkości 
poszczególnych jednostek taboru.

Przypuśćmy wreszcie, że hamowanie pociągu odbywa się na moście 
drewnianym typu leżajowego przedstawionym na rys. 19. Ponieważ pod-
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pory takiego mostu uważamy za przegubowe, to będziemy tu mieli do 
czynienia z tym samym schematem co na rys. 16 i wobec tego przy obli­
czeniu słupów siłę hamowania należy uważać w danym razie za zaczepio­
ną w poziomie legara (na wysokości hj.

W drewnianym moście zastrzałowym (rys. 20) trójkąty A'BE i ECD 
tworzą niejako geometrycznie niezmienne wsporniki, wobec czego, zgod­
nie ze schematem na rys. 2, powinniśmy przyjmować tu siłę hamowania 
za zaczepioną w środku ciężkości pociągu.

W razie gdy hamowanie pociągu ma miejsce na kratowym filarze sta­
lowym (rys. 21), należy w obliczeniu statycznym 
mniej kołach unieruchomionych przyjmować 
siłę hamowania w środku ciężkości taboru. Do­
tyczy to zarówno obliczenia współczynnika sta­
teczności, jak i obliczenia sił w prętach filara.

Przypuśćmy, że na przyczółku belkowego 
mostu przegubowego stoi kołami napędowymi 
parowóz (rys. 22). Ciśnienie pary w cylindrach 
parowozu przeniesione w postaci siły pociągo­
wej na obwód kół napędnych wywołuje nie­
jako odpychanie się parowozu od przyczółka. 
Siła pociągowa odpycha parowóz od nierucho­
mego przyczółka powodując przesuwanie się 
parowozu i wywołując w kierunku przeciwnym 
nacisk poziomy na przyczółek równy sile po­
ciągowej.

Ponieważ w tym wypadku parowóz i przy- Rys 21
czółek stykają się w poziomie szyn, siła pocią­
gowa będzie zaczepiona w tym właśnie poziomie. Odpowiedni moment 
wywracający będzie tu równy Sh.

Siła pociągowa dosięga swej wartości największej

(1.21) S - fs C, 
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o ile.za parowozem znajduje się pociąg, zwłaszcza pociąg posuwający się 
po wzniesieniu (rys. 23).

Może się zdarzyć, że pociąg uległ zatrzymaniu i że wagony utrzymy­
wane są na spadku tylko dzięki tarciu między unieruchomionymi kołami 
parowozu a szynami przytwierdzonymi do przyczółka. W tych warunkach 
siła tarcia między parowozem a przyczółkiem stwarza z nich jak gdyby 

Siła hamowania oraz

jedną bryłę. Siła ta równa się w danym wypad­
ku składowej S siły ciężkości, która wywoływa­
łaby ruch wagonów w kierunku spadku w razie, 
gdyby nie były one utrzymywane w spokoju 
przez zahamowany na przyczółku parowóz. Po­
nieważ jedynym punktem wspólnym dla wago­
nów i parowozu jest w danym razie środek 
sprzęgła parowozu, należy uważać, że siła 
S ~ fsC powinna być w tym wypadku przyj­
mowana w obliczeniu statycznym przyczółka 
w poziomie sprzęgła parowozu.

Przy sprawdzaniu stateczności przyczółka na 
wywracanie należy we wzór (1.10) wstawiać ten 
z momentów Hst lub Sh, który jest większy.
siła pociągowa niezależnie od tego, czy tabor 

znajduje się na samym przyczółku, czy też na dźwigarze lub na przyle­
gającym do przyczółka nasypie, są siłami zaczepionymi do konstrukcji 

w sposób wyraźnie nagły, gdyż w sposób nagły zostają unieruchamiane 
koła pociągu. Ponieważ wszystkie wzory mechaniki budowli wyprowa­
dzone są w założeniu, że siły zaczepione do budowli wzrastają w sposób 
ciągły i nieskończenie powolny, jest rzeczą konieczną dla korzystania 
z tych wzorów w przypadku sił zaczepionych nagle mnożyć te siły przez 
pewien współczynnik dynamiczny &.

Rozważania tego rozdziału stwarzają podstawę do ustalenia tego 
współczynnika w różnych warunkach pracy konstrukcji.
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2. Arytmetyzacja zagadnienia drgań

Przez arytmetyzację rozumiemy taką metodę obliczeń przybliżonych, 
przy której przejście od postawienia zagadnienia do rachunków liczbo­
wych odbywa się w drodze jak najkrótszej i kiedy na te obliczenia prze­
rzuca się główny ciężar całego obliczenia statycznego.

Wymiarowanie konstrukcji podtrzymujących pociągi lub maszyny 
w ruchu wymaga nieraz długiego szeregu prób w dziedzinie obliczeń tych 
konstrukcji. Z tego powodu ważna jest możność przeprowadzenia obli­
czeń prędko, choćby mniej dokładnie. Taką możność daje arytmetyzacja 
zagadnienia drgań, znajdująca wyraz w stosowaniu tzw. metody kolej­
nych przybliżeń, metody momentów wtórnych i różnic skończonych. 
Główny ciężar obliczeń przypada na drgania własne, których poznanie po­
zwala zabezpieczyć budowlę przed rezonansem.

Ustalimy przede wszystkim zakres stosowalności metod przybliżonych 
w teorii drgań.

Częstotliwość wahań c siły wymuszającej drgania w konstrukcji zmie­
nia się z czasem i jest najmniejsza przy puszczaniu maszyny w ruch i przy 
jej zatrzymywaniu, częstotliwość n drgań własnych konstrukcji natomiast 
od czasu nie zależy. Przedstawione to jest schematycznie na rys. 24, gdzie 
krzywa Osg przedstawia zależność c od t, a prosta AB częstotliwość drgań 
własnych; częstotliwości odkładane są tu równolegle do osi Of.

Przy projektowaniu konstrukcji podtrzymującej pociąg lub maszynę 
w ruchu musimy dla uniknięcia niebezpieczeństwa rezonansu dbać o to, 
aby

(2.1) n = (1 + z) max c.

gdzie liczba z oparta na obserwacjach wynosi od 0,30 do 0,50. W tych wa­
runkach znajdujemy się jeszcze daleko od tzw. sfery rezonansu i możemy
sobie pozwolić przy obliczaniu czę­
stotliwości drgań własnych konstruk­
cji na niedokładności dochodzące do 
5°/o, co może mieć miejsce przy sto­
sowaniu metody kolejnych przybli­
żeń i sposobu momentów wtórnych. 
Jeżeli dla tych lub innych powodów 
n zbliża się do c, to dokładność obli­
czeń przybliżonych może się okazać 

Rys. 24

niedostateczna; takich wypadków przy projektowaniu konstrukcji sta­
ramy się jednak unikać. Podobne rozumowanie możemy przepro­
wadzić i dla przypadku, gdy (rys. 24) krzywa Osg zostanie zastąpiona 
przez krzywą Osj g.
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Badanie drgań konstrukcji budowlanych polega na ustaleniu typu 
drgań, ich częstotliwości i amplitud. Sposoby badania zależą od stopni 
swobody układu drgającego. Rozróżniamy więc układy o jednym stopniu 
swobody, o większej, lecz skończonej liczbie stopni swobody i o nieskoń­
czenie wielkiej liczbie stopni swobody.

Przez układ o r stopniach swobody rozumiemy taki układ, którego 
położenie w danym momencie czasu określa v parametrów. Układ o v 
stopniach swobody możemy sobie przedstawić jako nieważki układ sprę­
żysty z zaczepionymi do niego w różnych punktach różnymi masami skupio­
nymi, każda w jednym punkcie. Liczba różnych możliwych częstotliwości 
drgań takiego układu równa się liczbie jego stopni swobody dynamicznej.

Siła wymuszająca zaczepiona do pewnego układu sprężystego wywo­
łuje w nim drgania wymuszone, a jednocześnie staje się przyczyną po­
wstawania drgań własnych. Z tego powodu amplituda drgań układu sprę­
żystego, wywołanych przez siłę wymuszającą, może być przedstawiona ja­
ko suma amplitud drgań własnych yw/ i drgań wymuszonych wwym, czyli

(2.2) y = ywi -f- y^ym .

Na skutek oporów wewnętrznych w materiale lub oporów zewnętrz­
nych drgania własne szybko zanikają i amplituda drgań wymuszonych 
równa się wówczas

(2-3) ywym d yst,

gdzie yst jest- ugięciem wywołanym działaniem statycznym siły równej 
największej wartości siły wymuszającej.

Współczynnik d jest to współczynnik dynamiczny, który w razie bra­
ku przyczyn tłumiących drgania wyraża się dla układów o jednym stop­
niu swobody wzorem

0 —___ 1-----
(2-4) ’

n2

gdzie c oznacza częstotliwość wahań siły wymuszającej, a n częstotli­
wość drgań własnych układu sprężystego.

W przypadku gdy drgania doznają tłumienia w ten sposób, że opór 
stawiany drganiom można uważać za proporcjonalny do prędkości ruchu 
układu drgającego, współczynnik dynamiczny wyraża się wzorem

gdzie wielkość h charakteryzuje opór stawiany drganiom.
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Znając współczynnik i), możemy na podstawie ze wzoru (2.3) wyznaczyć 
odkształcenia i naprężenia wywołane w konstrukcji przez siłę wymusza­
jącą. Do wyznaczenia współczynników dynamicznych i uniknięcia rezo­
nansu potrzebna jest znajomość wielkości n, którą obliczamy na podstawie 
teorii drgań własnych. Tu oddają duże usługi metody arytmetyzacyjne, 
w szczególności metoda momentów wtórnych.

Równanie różniczkowe drgań własnych pręta prostego w dwóch punk­
tach swobodnie podpartego ma postać

(2.6) + n~ V = 0 , dtJ

gdzie n oznacza częstotliwość kołową, a y odchylenia poszczególnych 
punktów pręta od położenia równowagi, za które przyjmujemy dla pręta 
ustawionego pionowo położenie wyjściowe (rys. 25), a dla pręta 
poziomego krzywą odkształconą ugięcia statycznego (krzywa u 
AO0 na rys. 26). T

Równanie (2.6) jest z matematycznego punktu widzenia 
identyczne z równaniem dotyczącym, wyboczenia pręta prostego

(2.7) EJ-^-yr + Py = ®- 
dr a 0 S

Nasuwa to możliwość zastosowania do wyznaczenia czę­
stotliwości drgań własnych sposobu momentów wtórnych. Nie­
które z obliczeń wykonanych tym sposobem mają charakter 
obliczeń ścisłych, a niektóre przybliżonych.

Aby w tym ostatnim wypadku wyznaczyć częstotliwość ko­
łową n, przyjmujemy dla osi pręta wygiętego pod wpływem 
sił bezwładności pewną czyniącą zadość warunkom brzegowym 
dowolną krzywą, której równanie zawiera nieznaną amplitu­

Rys. 25

dę <5 jako parametr. Na podstawie tej krzywej wyznaczamy odchylenia 
belki y od położenia równowagi, a na podstawie odchyleń odpowiadające 
im siły bezwładności. Na podstawie wyznaczonych w ten sposób sił obli-

Rys. 26

czarny sposobem momentów wtórnych 
rzędne nowej krzywej odkształconej osi 
pręta i porównujemy tę krzywą z krzy­
wą przyjętą a priori. Przyrównując, 
mianowicie, bądź największe rzędne 
obydwóch krzywych, bądź też pola 

ograniczone przez te krzywe, znajdujemy poszukiwaną częstotliwość 
z równania

(2.8) max yt = max y2,
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bądź z równania

(2.9)

gdzie znaczki 1 i 2 dotyczą dwóch kolejnych krzywych.
Otrzymamy w ten sposób częstotliwość n w pierwszym przybliżeniu. 

Drugie przybliżenie znajdziemy powtarzając przytoczony schemat obli­
czenia z tym, że rolę krzywej przyjętej a priori odegrać ma tu druga 
z wymienionych krzywych. Tak samo postępujemy przy poszukiwaniu 
dalszych przybliżeń.

Przedstawiony schemat postępowania bywa nazywany metodą kolej­
nych przybliżeń, chociaż nazwa powyższa nie charakteryzuje go dobrze, 
gdyż nieraz już pierwsze przybliżenie daje wynik ścisły. Istotę metody 
stanowi właściwie określanie tej samej wielkości przez tę samą {idem per 
idem).

Przybliżony sposób obliczenia drgań własnych nie pozwala na jedno­
czesne wyznaczenie częstotliwości pierwszego, drugiego, trzeciego i dal­
szych rzędów. Do wyznaczania częstotliwości każdego rzędu należy przyj­
mować inną krzywą jako pierwszą postać drgań własnych. Nie jest to 
duża wada metody, gdyż do niedawna prędkości ruchu pociągów i maszyn 
nie dawały podstaw do oczekiwania rezonansu wahań sił wymuszających 
z drganiami własnymi wyższego rzędu niż pierwszy. Obecnie wobec du­
żych prędkości pociągów i ruchu maszyn wahania sił wymuszających mogą 
wprawdzie łatwo wpaść w rezonans z drganiami własnymi konstrukcji 
podtrzymujących drugiego rzędu, ma to już jednak rzadko miejsce z drga­
niami trzeciego rzędu.

Niżej omówione będą przypadki drgań własnych 1 i 2 rzędu układów 
o 1 do 4 stopni swobody i ciał sprężystych. Odchylenia i] od położenia 
równowagi będą odkładane dla uproszczenia rysunków od nieodkształco- 
nej osi pręta, niezależnie od tego czy oś ta jest pionowa, czy pozioma.

Bierzemy pod uwagę pręt nieważki w dwóch punktach swobodnie 
podparty z zaczepionym w jego środku C ciężarem o masie m (rys. 27). 
Prostą AB w myśl tego, co powiedzieliśmy wyżej, uważamy za położenie 
równowagi, a nieznaną amplitudę drgań własnych układu w punkcie C 
oznaczamy przez ó. Wobec tego odchylenie p ciężaru C od położenia rów­
nowagi wyraża się wzorem

(2.10) ?/ = <5 sin nt,

gdzie n oznacza częstotliwość drgań własnych, a t czas liczony od chwili, 
kiedy pręt zaczyna się wyginać w stosunku do położenia równowagi.
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Siła bezwładności ciężaru C odpowiadająca odchyleniu rj wynosi 
(P/g^d^/dt2) dla P — mg; przy największym odchyleniu <5, tzn. przy 
sin nt = 1, siła bezwładności

a
(2.11) P^ — n2#.

9

Siła (2.11) wywołuje w środku 
pręta moment zginający

(2.12) Me = Ą-P'cl, 
Rys. 27

czemu odpowiada wykres momentów zginających, czyli wykres obciążeń 
wtórnych w pręcie AB, przedstawiony na rys. 27 jako trójkąt ABC'.

Pole wykresu obciążeń wtórnych 

(2.13) 

a odpowiedni moment wtórny w punkcie C

(2.14) _1_
48 ~n2ÓB. 

g

Dzieląc ten moment przez sztywność pręta EJ znajdujemy, że naj­
większe odchylenie ciężaru C

9.W(2.15) max ri = -- - .' EJ

A więc przyjąwszy za punkt wyjścia do obliczeń amplitudę <5 drgań 
własnych ciężaru C doszliśmy do nowej wartości amplitudy, tzn. że 

(2.16) max t] = ó .

Z równania tego znajdujemy poszukiwaną częstotliwość kołową n 
drgań własnych ciężaru C:

n =
/48 EJg

V PP

Otrzymany wynik jest w tym wypadku wynikiem ścisłym.

Przechodząc do układów o dwóch stopniach swobody dynamicznej bie- 
rzemy pod uwagę pręt nieważki AB, na którym w punktach C i D roz­
mieszczonych według rys. 28 zaczepione są dwa ciężary o równych ma­
sach m.
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Ponieważ mamy do czynienia z układem o dwóch stopniach swobody, 
będą tu miały miejsce dwa różne rodzaje drgań własnych o różnych czę-
stotliwościach (rys. 28b i 28c).

W przypadku przedstawionym a 
większe odchylenia rozpatrywanego

Rys. 28

można obliczyć częstotliwość 
układu

la rys. 28b oznaczamy przez Ó naj- 
układu w punktach C i D. Odpowia­
dają temu dwie siły bezwładności cię­
żarów C i D

(2.18) P’=P’ = —n2ó
g

oraz wykres momentów zginających 
w pręcie CD przedstawiony na 
rys. 28d.

Przyjmując wykres AC'D'B za 
wykres obciążeń wtórnych znajdujemy 
momenty wtórne 9J(c = 9}in w punk­
tach C i D i odpowiednie odchylenia 

®ic
(2.19) max ri(. = max y n = — T. E J

Ponieważ odchylenia te równe są 
przyjętym z góry amplitudom punk­
tów C i D, więc max ->]c = d, skąd 

rą pierwszego rzędu rozpatrywanego

(2.20) n,
/48 EJp

| PI3

Aby wyznaczyć częstotliwość drugiego rzędu tego układu, odpowiada­
jącą typowi drgań przedstawionemu na rys. 28c, przyjmujemy, że ampli­
tudy drgań punktów C i D są równe <5 i odłożone w przeciwne strony. 
W związku z tym zaczepiamy w tych punktach dwie siły wyrażone wzo­
rem (2.18) i skierowane w przeciwne strony. Odpowiedni wykres momen­
tów zginających przedstawiony jest na rys. 28e. Uważając ten wykres za 
wykres obciążenia wtórnego znajdujemy ugięcia pręta AB w punktach 
C i D a tym samym największe odchylenia od położenia równowagi: 

(2.21) PI3

Przyrównując do siebie dwa różne wyrażenia na to samo odchylenie znaj­
dujemy z równania max = ó

(2.22) n2 =
/192 E Jg 

|/ PI3
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Z porównania częstotliwości pierwszego i drugiego rzędu widzimy, że 
częstotliwość n2 jest dwa razy większa od częstotliwości n^.

Dalej podamy ogólniejsze rozwiązanie zadania podobnego do poprzed­
niego.

Bierzemy 
swobodnie podparty, do którego w 
1/3 od podpór zaczepione są 
dwa ciężary o dwu równych 
masach, i wyznaczamy często­
tliwość drgań drugiego rzędu 
(rys. 29a).

Przyjmujemy w pierwszym 
przybliżeniu, że przy drganiach Ó 
drugiego rzędu pręt wygina się 
według sinusoidy 

„ . 2 x 
(2.23) ~ ósin — — ,

mianowicie pod uwagę pręt nieważki AB w dwóch punktach 
punkcie C w odległościach równych

Rys. 29

gdzie <5 oznacza amplitudę w punkcie S położonym w odległości 1/4 od 
podpory.

Największe siły bezwładności mas ciężarów zaczepionych w punktach 
C wynoszą

(2.24) P' = n2 , 
9

gdzie rjc są ugięciami (amplitudami) odpowiadającymi największym siłom 
bezwładności. Siły te są zwrócone w każdym z punktów C w przeciwne 
strony. Ugięcia r/c otrzymamy wstawiając w równanie (2.23) x = 1/3:

(2.25) r/c = 0,86603 <5 .

Wykres momentów zginających w belce AB, odpowiadający działaniu 
dwóch sił P' skierowanych w przeciwne strony, przedstawiony jest na 
rysunku 29b. Uważając wykres ten za wykres obciążenia wtórnego znaj­
dujemy reakcję S?1 podpory A belki AB od tego obciążenia:

(2.26)
PT
81 ’

Moment wtórny w punkcie S wynosi w tych warunkach

(2 27) = - - — — — — l — - 14“ = 0,00192 P' .
( ' 81 4 12 4 2 4 3
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Ugięcia w punktach 5 równe sobie, lecz skierowane w przeciwne stro­
ny równają się

(2.28)
EJ

0,00192 P' P 
' EJ~

0,0019213
EJ

P
n‘2 • 0,86603 ó .

9

Przyrównując ugięcia <5 
do równania 

(2.29)

z którego znajdujemy

(2.30)

do założonego z góry ugięcia dochodzimy

Dalsze przybliżenie dla n moglibyśmy otrzymać przez powtórzenie 
przytoczonego toku obliczenia przyjmując w nim zamiast <5 ugięcie r)s 
i zastępując przyjętą wyżej sinusoidę krzywą odkształconą belki, wy­
znaczoną na podstawie wykresu obciążeń wtórnych.

Przypadek drgań układu o trzech stopniach swobody rozważymy na 
przykładzie przedstawionym na rys. 30. Obliczymy mianowicie często­
tliwość drgań podstawowych układu.

Bierzemy dla przykładu belkę w dwóch punktach swobodnie podpartą 
o rozpiętości l 10 m. W punktach 1, 2, 3 zaczepione są ciężary Pt = 10 t,

Rys. 30

P2 — 20 t, P3 = 10 t. Belka jest nie­
ważka.

Wobec tego, że obciążenie pręta 
niezbyt odbiega od symetrycznego 
względem środka belki, przyjmuje­
my za oś odkształconą krzywą 

(2.31) s . nx 
= o sin ——,

gdzie <5 oznacza ugięcie belki w środku. Podobnie jak w przypadkach roz­
patrzonych wyżej przyjmujemy

(2.32) P) = n2 = Sj

oraz odpowiednio

(2-33) P' = s2 %, P3 = s3 %.

Wstawiając w równanie (2.31) kolejno x ~ 0,2 l, x = 0,5 li x = 0,7 l 
znajdujemy

(2.34) ł)2 = Ó, % = 0,808 <5.— 0,588 ó ,
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Reakcja podpory A spowodowana przez siły P' wynosi

(2.35) ra = o,8 p; + 0,5 p; + 0,3 p; = 1742 ~ 0,

a wobec tego momenty zginające pod poszczególnymi ciężarami będą 
równe

(2.36) M, = 34,24 — 0, M. = 67,96 —ó, M. = 50,40 — ó.
9 9 ' 9

Rozkład momentów zginających przyjmujemy dalej według prawa 

(2.37) ™ ■ 71 xM = Mśr sm — - .

Wobec małej liczby ciężarów skupionych na belce rzeczywisty wykres 
momentów zginających jest bardziej stromy niż wykres (2.37) przy 
M2 = Mśr- Aby to nie odbiło się na momentach wtórnych, bierzemy pod 
uwagę, że średnia z rzeczywistych momentów powinna się równać śred­
niej z momentów w tych samych punktach obliczonych według wzoru 
(2.37). Stosunek średniej momentów (2.36) do momentu M2 wynosi 0,74, 
a stosunek średniej odpowiednich rzędnych krzywej (2.37) do Mśr równa 
się 0,80. Wobec tego zastępuje­
my równanie (2.37) przez rów- 
nanie i 11 1

0,74 ,, . 7i x(2.38) M= --Mśr sm~ - .
U,oU Ł

Moment 91?sr będzie w tych 
warunkach równy

(2.39) = 0,93 Mśr ~ =

-n2 f*
= 63,80 — 0.

9
Dzieląc ten moment przez i 

EJ i przyrównując iloraz do <5 
znajdujemy

(2.40) n = 0,0398 l EJg 

wobec dokładnej wartości współczynnika przy pierwiastku 0,0401 poda­
nej przez K. S. Z a w r i e w a.

Wyznaczenie częstotliwości drgań własnych układu o czterech stop­
niach swobody dynamicznej przeprowadzamy dla przypadku przedstawio­
nego na rys. 31. gdzie P, = P4 = 4,5 t i P3 = P- = 3 t oraz l = 7,75 m.
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Za równanie pierwszej przybliżonej postaci osi odkształconej przyj­
mujemy równanie

(2.41) >/=dsin---,

gdzie <5 oznacza nieznane ugięcie belki w środku, mierzone względem po­
łożenia równowagi (względem ttw. poziomu statycznego). Rysunek 31b 
przedstawia wykres sinusoidy (2.41) ze wskazaniem rzędnych wyrażają­
cych przesunięcia punktów zaczepienia poszczególnych ciężarów P. Po­
le Q{ zawarte między sinusoidą a osią odciętych wynosi

(2.42) (i = — 18. 
n

Największe wartości sił bezwładności znajdujemy ze wzoru 

(2.43) , Pp — n — n1, 
9

a więc

(2.44)
p;=2,26—p;=2,9i —, 

9 9

P; = 2,95—, P;=2,50—n’.
9 4 9

Po sporządzeniu wykresu momentów zginających dla sił (2.44) i po 
znalezieniu odpowiednich momentów wtórnych dochodzimy do nowej 
odkształconej, przedstawionej na rysunku 31d; znajdujemy nowe pole za­
warte między tą krzywą a osią odciętych

(2.45) IZ, = 384,40. 
EJg

Przyrównanie pól 12 j i zastępujemy w tym wypadku przez przy­
równanie średnich rzędnych obydwóch krzywych; znajdujemy w ten 
sposób

(2.46) n — 0,113 f/EJg .

Przechodząc do obliczenia częstotliwości drgań własnych ciał spręży­
stych, a więc układów o nieskończenie wielkiej liczbie stopni swobody, 
wykażemy przede wszystkim, że najniższej częstotliwości odpowiada 
w tych wypadkach największa amplituda, co ma miejsce przy drganiach 
podstawowych.
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Jeżeli belka sprężysta ma stały przekrój poprzeczny, to zależność mię­
dzy odchyleniem rj pewnego punktu jej osi od położenia równowagi 
a czasem t wyraża się równaniem

„ r ri . q d2ł)
(2.47) +

gdzie o: oznacza odciętą punktu, którego odchylenie jest //.
Po ustaleniu warunków brzegowych dla belek w dwóch punktach 

swobodnie podpartych, belek utwierdzonych na końcach i belek-wspor- 
ników wyznaczamy częstotliwości drgań własnych tych trzech rodzajów 
belek odpowiednio z równań

(2.48) sin ul = 0 ,
(2.49) cos ul cosh ul= 1 ,

(2.50) cos ul cosh ul = —1,

gdzie
/ n / EJ g

V a k q

Każdej wartości ul odpowiada inna częstotliwość n i inne równanie 
fali stojącej:

(2.51) X(x) = sin ux + D2 cosux + D3 sinhux + D4 coshux.

Przyjmując jedną ze stałych całkowania D za równą 1 otrzymujemy 
dla każdej z wymienionych wyżej belek wykresy ugięć odpowiadających 
różnym częstotliwościom drgań, obliczonym z równań (2.48)-(2.50).

A więc np. dla belki-wspornika po uwzględnieniu warunków brzego­
wych mamy

(2.52) X(x) = D2 [(cosux — coshur) + 0,731 (sinux sinhux)|, 

583



co doprowadza do wykresu na rys. 32, na którym krzywa I odpowiada 
ul = 1,875, krzywa II ul = 4,694, krzywa III ul = 7,855. Z wykresu wy­
nika, że największe amplitudy odpowiadają drganiom podstawowym, co 
potwierdzają obliczenia dla dalszych, wyższych częstotliwości i dla in­
nych typów belek. Pozwala to na ograniczenie się w wielu wypadkach 
drgań konstrukcji budowlanych do badania samych tylko drgań podsta­
wowych. Możemy to wykonać sposobem momentów wtórnych. Podajemy 
dwa przypadki tego rodzaju obliczenia.

Bierzemy pod uwagę pręt utwierdzony w przekroju A i swobodny 
w przekroju B; ciężar własny pręta q kG/cm (kilogramów na centymetr 
bieżący), EJ = const (rys. 33).

Oznaczamy przez S amplitudę drgań podstawowych w punkcie B 
i przyjmujemy dla osi odkształconej 

G__________________________________ pręta w czasie drgań równanie pa­
x' A _________ Ą___ £ raboli

--------------------"^4 (2.53) y=ó .

Wykres obciążeń pręta siłami 
bezwładności będzie się wyrażał 
wzorem

Największy moment zginający, spowodowany przez siły bezwładności, 
występuje w przekroju A i wynosi

(2.55) Ma = s i dl2 
ł 2

sól2
4

2 A7 3

Gdyby chodziło o siłę bezwładności jednego ciężaru zaczepionego 
w końcu B pręta, mielibyśmy do czynienia z następującym rozkładem 
obciążeń wtórnych (rys. 33b):

(2.56) M = MA

Odpowiadałby temu następujący moment statyczny obciążenia wtór­
nego pręta względem punktu B:

(2.57) =
O

Ponieważ główna część sił bezwładności pręta, jak to wynika z postaci 
krzywej odkształconej, będzie skupiona około punktu B, moment sta­
tyczny K w danym zadaniu będzie miał wartość zbliżoną do war­
tości (2.57).
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Wobec tego przyjmujemy, że 

(2.58)
_ MA l2

Vb 3 EJ ‘

Przyrównując to nowe wyrażenie na ugięcie pręta w punkcie B do 
pierwotnie przyjętego <5 znajdujemy

(2.59) _ /EJg
n'~ (1,69 l)2 y q

Wynik ścisły różniłby się od powyższego tylko tym, że współczynnik 
przy l byłby tu równy 1,67.

Omówimy dalej obliczenie częstotliwości drgań własnych w kolej­
nych przybliżeniach. Wykonamy to na przypadku drgań podstawowych 
pręta o kształcie klina utwierdzonego w punkcie A i swobodnego w punk­
cie B, o wysokości w przekroju utwierdzenia 2b, o szerokości 1 i o cięża­
rze jednostkowym y (rys. 34).

Dzielimy pręt na odcinki Ax = 
= 0,2 l i w granicach tych odcin­
ków zastępujemy w przekroju 
podłużnym trapezy prostokątami. 
Poszczególne odcinki A x rozpatry­
wanego pręta mają w tych warun­
kach następujące ciężary (rys. 34c):

Rys. 34

5 
S

 

C
M 

C
M

 

coo" o" 
l 

'L

(2.60) Pa = 0,10- 2 bly
P4 = 0,06-2bly
P5 = 0,02-2bly

Przejście od sił P do największych działających na pręt sił bezwładnoś­
ci odbywa się na podstawie wzoru 

(2.61) 
, n2

P = P — V - 
g

gdzie t} oznacza przesunięcie punktów zaczepienia sił, które obliczamy 
w pierwszym przybliżeniu według paraboli

(2.62) ^ = <5-^.
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Mnożąc siły (2.60) przez przesunięcia ł?=0,01ó, r/ = 0,09 0 itd. znaj-
dujemy:

ni 8 
Pj= 0,0018-2 bly—, 

g
ni 8 ni 8

(2.63) P-)= 0,0126 • 2bly --, Pi = 0,0294-2bly--.
g g

ni 8 ni 8
Pś= 0,0250 ■ 2bly-~- , Pś= 0,0162- 2bly-ł— . 

g g

Siły P' wywołują następujące momenty zginające w poszczególnych 
przekrojach 1, 2, 3, 4 i 5:

Mi = 0,04312-2bly
n2 8 

g
i,

(2.64) m;= 0,02648 • 2bly
nl 8 

g
i, 0,00324-2bly

nl 8 
-^-l,

g

< = 0,01236 • 2bly
nl ó 

g
i, M'5 = 0,00041 • 2bly

nl 8
—— l. 

g

Wobec zmienności przekroju poprzecznego rozpatrywanego pręta znaj­
dujemy jego obciążenie wtórne na podstawie wykresu momentów M' 
zmieniając rzędne (2.64) w stosunku odwrotnym do trzecich potęg wyso­
kości klina. W ten sposób dochodzimy do następujących rzędnych wykre-
su obciążeń wtórnych:

Mi = 0,05933 • 2bly
n'l 8 

g
i,

(2.65) Mi = 0,07719 • 2bly
n2t 8 

g
i,

M'ż = 0,09888 -2bly
nl 8 

g
i,

nl 8
M" = 0,11988 • 2bly —— l, 

g
n] 8 

M’5' = 0,40500 • 2bly——l. 
g

Przyjmujemy, że na powierzchni poszczególnych odcinków momenty 
M" nie ulegną zmianie, i znajdujemy następujące wartości powierzchni 
pól obciążenia wtórnego na tych odcinkach:

n? <5 
=0,01187 • 2bly-^—l2 , 

g

(2.66)
ni 8

= 0,01544- 2bly—~l2 ,

nl <5
jb, = 0,01978 -2 bly - l2 , 

g

ni 8 
'E = 0,02398-2bly^—l2, 

g
ni 8 

= 0,08100 -2bly ~~l2 . 
g
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Pola ']) przyjmujemy dalej za siły skupione w punktach 1, 2, 3, 4 i 5, 
wobec czego moment statyczny tych sił względem punktu B wynosi

n2 <5
(2.67) 4)^ = 0,04667 • 2bly— l3.

d
Wreszcie z równania

(2.68) 9« = <5,

czyli z równania 

(2.69) EJ

gdzie J dotyczy przekroju utwierdzenia, dochodzimy do następującej czę­
stotliwości kołowej drgań własnych klina w pierwszym przybliżeniu:

(2.70) n
4,629 b /Eg 

y 3 y

Aby znaleźć częstotliwość drgań podstawowych w drugim przybliże­
niu, musimy przede wszystkim wyznaczyć na podstawie otrzymanej czę­
stotliwości drgań w pierwszym przybliżeniu nowe wartości amplitud pręta 
w czasie drgań podstawowych. W tym celu obliczamy kolejno momenty 
statyczne 9)1' dla poszczególnych punktów pręta:

n? <5
$15 = 0,00030-2by - V , 

g

(2.71) 9)12 =
n2. ó

0,00237-2by - 
g

V, 4)u= 0,01724-2by
n'| ó 
--14, 
g

=
n2. <5 

0,00782 ■ 2by — - 
g

l4, 4)1'5= 0,03144-2b y
n2. <5
—-1* .

g
Stąd mając na uwadze, że w przekroju utwierdzenia J — (2b)3/12, znaj­

dujemy poszukiwane ugięcia:
0,00030—— • 2 b y------

EJ 9
v= 0,00045

2 y nl Ó l4 
“Egb2-

% =
0.00237
—’ 2 b y------EJ . 9
0,00782 o, «P

EJ 9

v =

E =

0,00356

0,01173

2ynlólĄ 
Egb2 

2yn2ól4
(2.72) Egb2

m = 0.01724
EJ *g

0,02586
2yn2dl4 
~Egb^

V: =
0,03144 nP
—„ -— • 2 b y-----

EJ g
l4 = 0,04716

2yn2ól4 
'Egb2
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Odpowiednio 
niosą (n2 oznacz; 
niu):

największe siły bezwładności 
i tu częstotliwość pierwszego

n2
P'i=P1 = 0,0000810 n2

w drugim przybliżeniu wy- 
rzędu w drugim przybliże-

4 y2 n2 <5 P
g2 Eb ’

P2 = P2 ?/2 = 0,0004984 n2
4 y2 <5 P 

g2Eb ’

(2.73) n2
P* = P^ — % = 0,0011730 n2

4y2n2ó P 
g2Eb ’

P^ = P4 y = 0,0015516 n2
4 y2 n2 S P 

g2Eb ’
, n2

Pi = P. - — % = 0,0009432 n2U a g tul &
4 y2 n2 ó P

g2Eb
Siły te wywołują następujące momenty zginające w poszczególnych 

przekrojach 1, 2, 3, 4 i 5:

1W; = 0,0022545 n*
4 y2 <5 V‘ 
^g2Eb~

0,0014209 n2
4y2n2d P

g2Eb
4 y2 n2 S P

M' = 0,0006876(2.74) g2Eb 
4y2n2SP 

g-Eb
M; = 0,0001886 n|

Ml = 0,0000236
4 y2 n2 <5 P ------- -------

g2Eb

Zmieniając te momenty odwrotnie proporcjonalnie do trzecich potęg 
wysokości klina dochodzimy do następujących rzędnych nowego wykresu 
obciążeń wtórnych:

m; 0,729 0,003092 ń2
4y2nldP 

g2Eb

M”
m;

0,343 0,004142 n2
4 y2 n2 <5 P 

g2Eb

(2.75) M3
M'

0,005500 n2
4 y2 n2 6 P

0,125 g2Eb
m:

0,006985 n2
4 y2 n2 ó P

0,027 g2 E b
_ M'5

0,023600 n2
4 y2 n2 d P

0,001 g2Eb
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Znajdujemy dalej nowe wartości pól nowego obciążenia wtórnego dla
poszczególnych odcinków pręta:

= M” • 0,21 = 0,000618 ni
4 y2 nl <5 l7 

p2Eb

(2.76)

= M2-Q,2l = 0,000828 n2

= M"-0,21= 0,001100 n2

4 y2 n2 ó l" 
g2Eb

4 y2 n92 <517
g2Eb

= MU 0,2 1= 0,001397 n2
4y2n2<3l7 
“p^Eb“

= M)'-0,21= 0,004720 n;
4y2n2ól7
^2Eb~

Uważając znowu pola za siły skupione w punktach 1, 2, 3, 4 i 5 obli­
czamy nowy moment statyczny tych sił względem punktu B:

(2.77) 0,002577 n2
4 y2 nl <5 U 

p2Eb

Daje to nową wartość amplitudy drgań podstawowych w punkcie B:

(2.78)
0,002577 „ 4y2n2ól3

EJ g2Eb

dzięki czemu równanie (2.68) przybiera postać

(2.79)
0,002577 , 4/n2óls

EJ 2 g2Eb
0,04667 ^óE 
~EJ~2b^

Stąd znajdujemy 
przybliżeniu:

(2.80)

n2 częstotliwość drgań podstawowych w drugim

n2
5,2109 b 

l2
Eg 
3/

Częstotliwość drgań podstawowych w trzecim przybliżeniu n3 otrzy­
mać możemy według amplitud wyznaczonych na podstawie częstotliwości 
w drugim przybliżeniu; wynosi ona

(2.81)
_ 5,374 b ^Eg

l2 r 3y’

obliczenie zaś ścisłe wykonane przy użyciu funkcji B e s s e 1 a daje w tym
wypadku 

(2.82) 5,315 b 
n- p
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W przypadku podłużnych podstawowych drgań własnych prętów pro­
stych rolę poprzednio przyjmowanych a priori krzywych odkształconych 

Rys. 35

przy zginaniu odgrywają krzywe wyrażające za­
leżność przesunięć sprężystych v poszczególnych 
przekrojów pręta od ich położeń początkowych. 
Omówimy to w przypadku przedstawionym na 
rys. 35.

Oznaczamy przez <3 pionowe przesunięcie prze­
kroju B i przyjmujemy, że przesunięcia v po­
szczególnych przekrojów pręta wzdłuż jego dłu­
gości będą się zmieniały według równania (rys. 
35b)

(2.83) u = ó sin .

Na element I pręta (na rysunku zacieniowany 
ukośnie) działa siła rozciągająca S, na którą skła­
dają się siły bezwładności elementów II (na 

rysunku zacieniowanie poziome) zawartych w granicach od a? = a?0 do 
x = l.

Masa jednego elementu II wynosi (A/g) dx, a odpowiednia największa 
wartość siły bezwładności A y dxn"v. W związku z tym

(2.84) S = —-n ó sm— dx = —— ird—cos—
J g 21 g n 2 Z

Wydłużenie elementu I pod działaniem siły S równa się

(2.85) Adx„=-^.

W tych warunkach całkowite największe wydłużenie pręta AB wynosi

Przyrównując to wydłużenie do przyjętego z góry największego prze­
sunięcia Ó znajdujemy 

(2.87)
9
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skąd

(2.88)

Aby znaleźć wartość częstotliwości n w drugim przybliżeniu, należy 
granice całkowania we wzorze (2.86) «od 0 do 1» zastąpić przez granice 
«od 0 do x», dzięki czemu wzór ten da wartości v przesunięć poszczegól­
nych przekrojów poprzecznych wyrażone przez częstotliwość n w pierw­
szym przybliżeniu. W ten sposób zamiast krzywej rys. 35b będziemy 
mogli zbudować nową krzywą. Postępując z nią w ten sam sposób jak po­
przednio dojdziemy do nowej wartości n. W danym wypadku szczegól­
nym częstotliwości n w pierwszym i w drugim przybliżeniu są sobie 
równe.

Obliczenia częstotliwości drgań własnych sposobem arytmetyzacji 
tych obliczeń w przypadkach wymagających dłuższych rachunków omó­
wione są w zbiorze zadań autora.

’• Interpretacja dynamiczna metody Ritza i Timoszenki

Analiza zjawisk dynamicznych w pracy konstrukcji inżynierskich mo­
że być wyzyskana do wyjaśnienia i pogłębienia niektórych teorii statycz­
nych, w szczególności przybliżonej metody Ritza i Timoszenki 
wyznaczenia odkształceń układów sprężystych i sił krytycznych.

W zastosowaniu do wyznaczenia odkształceń ogłoszony przez 
W. Ritza w 1909 roku pomysł matematyczny polega na szukaniu takiej 
funkcji w = F (x) wyrażającej odkształcenie, aby całka

(3.D
b

U=l f (x,w,w',...) dx
a

w granicach od a do b czyniła zadość warunkowi extremum.
Aby znaleźć funkcję w = F (x), należy przede wszystkim przedstawić 

ją w postaci szeregu

(3.2) w = y>(x) + A, y^(x) + A„% (x)...

o skończonej liczbie wyrazów, w którym symbole y> oznaczają pewne 
znane funkcje x odpowiadające tym samym warunkom brzegowym co 
funkcja w, a A2, A3, ... pewne nieznane i od x niezależne współczyn­
niki (parametry).

Wstawiamy następnie we wzór (3.1) zamiast w i jej pochodnych szereg 
(3.2) lub szereg odpowiednio zróżniczkowany i po wykonaniu całkowania
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otrzymanej w ten sposób funkcji f (x) przedstawiamy całkę U jako funk­
cję współczynników Ą, A3, A3, ... :

*
(3.3) U — (x) dx = F(A], A2,A3,...).

a

Współczynniki A,, A2, A3, ... konieczne do należytego określenia od­
kształceń za pomocą szeregu (3.2) powinny być wyznaczone z równań

(3.4) ^Ł = o = o
0 A, ’ d A2 ’ dA3’

wyrażających warunek extremum funkcji F (Ax, A2, A3, ...), a tym samym 
i extremum całki U.

S. Timoszenkow 1910 roku wprowadził jako szereg (3.2) szereg 
Fouriera, dzięki czemu omawiana tu metoda znalazła szerokie zasto­
sowanie przy obliczeniu odkształceń belek, płyt, zbiorników itd.; w szcze­
gólności stosuje on często łatwe w użyciu szeregi sinusowe typu

(3.5)
„ . nx , . . 2nxw — Ai sin - + A2 sm — j---- (-....

W konkretnych obliczeniach statycznych rolę całki U odgrywa całko­
wita energia potencjalna układu.

Istotę zagadnienia, które ma być w tym rozdziale omówione, przed­
stawimy na najprostszym przypadku zastosowania metody R i t z a i T i- 

moszenki do belki w dwóch punktach 
swobodnie podpartej i obciążonej w środ-

 |c________  B / ku siłą skupioną P (rys. 36). Przebieg obli- 
~_ ~ ~' T czenia jest tu następujący.

P 2 2 Przyjmujemy dla ugięcia belki v = w
Rys. 36 wyrażenie

(3.6) y — A sin n , 

przedstawiające pierwszy wyraz szeregu (3.5).
Energię sprężystą układu obliczamy ze wzoru

(3.7)
r M~dx

J
gdzie M oznacza moment zginający w przekroju poprzecznym belki odda­
lonym o x od podpory A, a pracę sił zewnętrznych ze wzoru

(3.8) T - P y^r ■
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W tych warunkach

(3.9) f (x,w,w',...) dx = dV dT~d(V— T) =

= d
f M2dx

J 2 EJ 
ó

Wstawiamy we wzór (3.7) wyrażenie

(3.10) M = EJ y",

gdzie z kolei y" obliczamy na podstawie równania (3.6). Również na pod­
stawie równania (3.6) znajdujemy ySr- W ten sposób dochodzimy do nastę­
pujących wyrażeń na V i T oraz na U = V — T :

(3.11)
EJtt4

A1, A-, 4?

(3.12) T = PA,

(3.13) u = EJ:t4 A2 —PA.
4P

Wielkość U posiada w danym wypadku ten sam sens co we wzorach 
(3.1) i (3.3), gdyż

/ i
(3.14) U = ff(x)dx = Jd(V—T).

o o

Aby znaleźć współczynnik A we wzorze (3.6), ustawiamy równanie 

skąd znajdujemy, że

Przebieg przytoczonego obliczenia narzuca pytanie, dlaczego korzysta­
liśmy wyżej ze wzoru (3.7) na energię sprężystą, ustawionego w założeniu, 
że siła P wzrasta od 0 do swej wartości ostatecznej w sposób ciągły i nie­
skończenie powolny, podczas gdy zastosowany jednocześnie wzór (3.8) na 
pracę sił zewnętrznych przewiduje nagłe zaczepienie siły P, tzn. zacze­
pienie siły o jej wartości ostatecznej. Do wyjaśnienia tej sprawy zmierzać 
będziemy dwiema drogami, podając, z jednej strony, formalne uzasadnie­
nie równania

(3 17) d(V —T) = 0,
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którego bezpośrednią konsekwencją jest równanie (3.15), oraz badając, 
z drugiej strony, przebieg zginania belki w przypadku szczególnym dopie­
ro co omówionym (rys. 36).

Uzasadnienie wzoru (3.17) przeprowadzamy dla zwięzłości na spręży­
stym układzie kratowym i rozpowszechniamy je na wszystkie układy 
sprężyste.

O ile kratownica znajduje się w położeniu równowagi, musi być speł­
nione równanie

k r
<3.18) Tlpv ySAl = Q,

i i

gdzie k oznacza liczbę węzłów w kratownicy, r liczbę prętów, P siły za­
czepione do poszczególnych węzłów, S siły w poszczególnych prętach, 
u przesunięcia poszczególnych węzłów i Al sprężyste wydłużenia lub skró­
ty (zmiany długości) poszczególnych prętów. Równanie (3.18) wyraża 
w przypadku kraty zasadę prac wirtualnych.

Jeżeli siły P wzrastają od zera do swych wartości ostatecznych w spo­
sób ciągły i nieskończenie powolny, otrzymują one w każdej chwili doko­
nywaj ącego się odkształcenia takie wartości, że są w stanie zrównoważyć 
powstające w układzie siły wewnętrzne, lecz nie mogą spowodować drgań 
układu. W ten sposób praca sił zewnętrznych zamienia się całkowicie 
w energię sprężystą układu, czyli że ma tu miejsce zależność

(3.19) V = TC,

gdzie Tc oznacza pracę sił zewnętrznych w założeniu, że siły te wzrastają 
w sposób ciągły i nieskończenie powolny od zera do swej wartości osta­
tecznej.

Jeżeli natomiast siły P posiadają wartości stałe i skończone, wówczas 
przewaga pracy sił zewnętrznych nad energią sprężystą przetworzy się 
w energię kinetyczną i układ dozna drgań, przy czym poszczególne jego 
punkty będą ulegały wahaniom względem pewnych położeń równowagi, 
które się ostatecznie ustalą jako odpowiadające danemu obciążeniu.

Ilość energii sprężystej nagromadzonej w danym układzie po ustale­
niu się stanu równowagi nie jest zależna od dróg, którymi układ zmierza 
do tego stanu. Istotnie, wyrażenia na energię sprężystą jednostkową, tzn. 
nagromadzoną w sześcianie o wymiarach 1X1X1 mają postać

(3.20) V,= ^E,.

gdzie a oznacza naprężenie normalne występujące na płaszczyznach ogra­
niczających sześcian, a e wydłużenie jednostkowe jego krawędzi; energia 
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sprężysta nagromadzona w całym układzie sprężystym wyraża się wobec 
tego wzorem

(3.21) V = I I | V]dxdydz.

gdzie całkowanie dotyczy objętości rozpatrywanego ciała.
Ze wzorów (3.20) i (3.21) wynika, że energia sprężysta układu wzrasta 

w sposób ciągły, o ile w ten sam sposób wzrastają wydłużenia jednostko­
we e, a więc i odkształcenia. Ponieważ z doświadczenia wiemy, że ciało 
sprężyste odkształca się w sposób ciągły niezależnie od tego, czy siły ze­
wnętrzne zostały zaczepione jako wzrastające w sposób ciągły i nieskoń­
czenie powolny, czy też nagle, o swej wartości ostatecznej, możemy więc 
twierdzić, że nie zależy od tego również i sposób, w jaki wzrasta energia 
sprężysta układu. A więc ilość energii sprężystej nagromadzonej w danej 
chwili w odkształconym elemencie konstrukcyjnym zależy wyłącznie od 
stanu jego wygięcia w tym czasie.

Ponieważ przy zaczepieniu do kratownicy sił P o wartościach stałych 
i przy związanych z tym drganiach układu poszczególne pręty będą do­
znawały okresowych zmian długości w siposób ciągły, więc i siły w nich 
występujące będą, w myśl prawa H o o k e’ a, również zmieniały się w spo­
sób ciągły.

Po uspokojeniu się drgań układu w stanie równowagi ustala się takie 
samo odkształcenie układu, jakie miałoby miejsce, gdyby siły P zostały 
zaczepione jako wzrastające od zera do swej ostatecznej wartości w spo­
sób ciągły i nieskończenie powolny. Również i energia sprężysta układu 
jest w obydwóch wypadkach ta sama, jednak w poszczególnych stadiach 
dokonywającego się odkształcenia zależność między energią sprężystą 
układu a pracą sił zewnętrznych nie odpowiada równaniu (3.19).

Wobec tego, że w równaniu (3.18) w postaci ogólnej wielkości v zależą 
tylko od wielkości J l i odwrotnie, możemy wstawić w nie zamiast v i /11 
nieskończenie małe przesunięcia dv węzłów kratownicy z położenia rów­
nowagi i odpowiadające im nieskończenie małe przyrosty zmian długości 
d(-ll) prętów. W ten sposób znajdujemy, że

(3.22) V Pdu— V Sd(..ll) = 0.

Nieskończenie małym przyrostom d(J 1) zmian długości poszczegól­
nych prętów kratownięy odpowiadają nieskończenie małe przyrosty sił 
w tych prętach, tzn. że

dSl
(3.23) d(dl)=

Ej
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wobec czego 
postać

prawy składnik lewej strony równania (3.22) przybiera

(3.24)
1 1

lub postać

(3.25)
1 1

skąd

(3.26) y Sd(A l) = dV, 
1

gdyż suma po prawej stronie wyrażenia (3.25) przedstawia energię sprę­
żystą układu kratowego.

Podczas odchylania się układu kratowego od położenia równowagi si­
ły P jako niezmienne pozwalają na następujące przekształcenia lewego 
dodajnika w równaniu (3.22):

skąd

(3.27)
k k

Pdv = d y Pv;
1 1

(3.28)
k
y Pdv = dT,
1

gdzie przez T rozumiemy pracę sił zewnętrznych jako sumę iloczynów 
przesunięć poszczególnych węzłów kratownicy przez odpowiednie siły.

Równanie (3.22) przybiera w tych warunkach postać

(3.29) 

skąd

d V — dT = 0 ;

(3.30) 

lub

d (V — T) = 0

(3.31) dU = 0 ,

gdzie U = V — T jest funkcją parametrów A.
Równanie (3.31) wyprowadzone dla układów kratowych może być roz­

szerzone i na układy pełne. Wyraża ono, że o ile układ sprężysty pod dzia­
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łaniem sił zaczepionych jako siły stałe, a nie jako wzrastające od zera do 
swej ostatecznej wartości w sposób ciągły i nieskończenie powolny — 
znajdzie się, po zaniku drgań, w stanie równowagi — to funkcja U przy­
biera wartość extremalną.

Całkowanie równania (3.31) daje

(3.32) V — T = C.

Przy C > 0 mamy V> T i równowaga układu sprężystego jest stateczna, 
a przy C < 0 mamy V < T i równowaga jest niestateczna. Przy V = T na­
stępuje przejście ze stanu równowagi statecznej do stanu równowagi nie­
statecznej i równanie

(3.33) V = T

służy wówczas do wyznaczenia sił krytycznych.
Równanie (3.33) różni się od równania (3.19), ponieważ tu mamy na 

widoku siły zaczepione w sposób nagły, a tam w sposób ciągły i nieskoń­
czenie powolny.

Metodę Ritza i Timoszenki stosujemy do wyznaczenia od­
kształceń pewnego elementu konstrukcyjnego lub do badania jego wy- 
boczenia. Interesują tu nas wówczas przypadki, gdy V > T i gdy V = T.

Wyznaczenie odkształcenia może mieć też miejsce i na podstawie rów­
nania (3.19), czyli tzw. równania C 1 a p e y r o n a, ale w zasadzie tylko 
wówczas, gdy poszukiwane uogólnione przesunięcie występuje w punkcie 
zaczepienia uogólnionej siły i gdy chodzi o wyznaczenie odkształcenia 
w tym właśnie punkcie. Przy większej liczbie sił uogólnionych możemy 
wyznaczyć odkształcenie układu na podstawie twierdzenia Clapeyro- 
n a tylko wówczas, kiedy się zadowolimy w równaniach typu (3.5) jednym 
współczynnikiem A i obliczymy go z równania (3.19). Przy większej licz­
bie współczynników A nie daje się to już wykonać i musimy wówczas sko­
rzystać z zależności między energią sprężystą układu a pracą sił zewnętrz­
nych w ujęciu dynamicznym znajdującym wyraz w równaniu (3.31).

Przechodząc do zbadania zginania belki w dwóch punktach swobodnie 
podpartej i obciążonej w środku jedną siłą skupioną zaczepioną w sposób 
nagły, tzn. od razu przy jej wartości ostatecznej, interesujemy się przede 
wszystkim jakościową stroną zjawiska i nie badamy charakteru drgań, 
które występują i z czasem zanikają.

Siła P zaczepiona do belki w sposób nagły wykonywa pracę, która zo- 
staje częściowo zużyta na odkształcenie belki, częściowo zaś na nadanie 
poszczególnym jej punktom pewnych prędkości, czyli przechodząc w ener­
gię kinetyczną znajdującą wyraz w drganiach belki około pewnego poło­
żenia równowagi. W ten sposób oś odkształcona belki będzie zajmowała 
kolejno nieskończenie bliskie do siebie położenia (rys. 37). Położenie rów­
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no wagi będzie tym położeniem, które zajęłaby oś odkształcona belki, gdy­
by siła P wzrastała w sposób ciągły i nieskończenie powolny od zera do
swej wartości ostatecznej; ugięcie

Rys. 37

belki pod ciężarem oznaczamy w tym 
wypadku przez y0, a największe jej 
ugięcie przez ym. Wielkość y„, którą 
uważamy za ostateczne ugięcie belki, 
nie zależy więc od sposobu, w jaki 
została zaczepiona siła P. Potwierdza 
to zresztą doświadczenie.

Zaczepienie do belki siły P w spo­
sób nagły należy uważać za równo­

znaczne z zetknięciem się z belką ciężaru P posiadającego prędkość 0, czyli
ze szczególnym przypadkiem uderzenia. Z tego powodu największe ugię­
cie belki pod działaniem nagle zaczepionej siły wynosi ym = 2 yn. Daje 
to podstawę do porównania ze sobą zależności, jakie zachodzą między 
energią sprężystą nagromadzoną w belce, a pracą sił zewnętrznych — 
z jednej strony, w przypadku zaczepienia sił w sposób ciągły i nieskończe­
nie powolny i, z drugiej strony, w sposób nagły. 
Robimy to porównanie na wykresach rys. 38 
i 39, na których na osi pionowej odkładamy 
zmienne wartości siły P, a na osi poziomej od­
powiednie ugięcia y belki w środku.

Przy ciągłym i nieskończenie powolnym 
wzroście sił P od zera do ich wartości ostatecz­
nej zależność między P a y wyraża się za pomo­
cą linii prostej OB. Na rys. 38 nieskończenie 
małe pole abcd przedstawia przyrost pracy sił zewnętrznych d T, a tym 
samym i równy mu przyrost energii sprężystej d V. Podobnie i pole trój­
kąta OBC wyraża tu zgodnie z równaniem (3.19) jednocześnie pracę sił

zewnętrznych i energię spręży­
stą nagromadzoną w belce.

Przy nagłym zaczepieniu si­
ły P, jak wykazano wyżej, ener­
gia sprężysta nagromadza się 
w ten sam sposób, jak przy cią­
głym i nieskończenie powolnym 
wzroście tej siły, a więc w spo­
sób ciągły. Zależność między P 
a y będzie się tu wyrażała za po­

mocą tej samej prostej OB' (rys. 39) zarówno przed przekroczeniem położenia 
równowagi, jak i po tym przekroczeniu, a więc zarówno przy y < y„, jak 
1 PrzY y > V« • Przy y = 2 y„ energia nagromadzona w belce będzie równa 
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tej energii, która by się tu nagromadziła przy sile P wzrastającej w spo­
sób ciągły i nieskończenie powolny od zera do 2P, a więc energii spręży­
stej równej polu OB'C', a przy y = yu będzie się ona wyrażała polem Oab 
równym polu OBC na rys. 38.

Praca siły zewnętrznej P, niezmiennej podczas odkształcenia belki, 
wyraża się za pomocą prostokąta ODD'C'. Różnica pól OB'C' i ODD'C', 
czyli pola trójkątów ODb i bB'D' wyrażają różnicę V — T, a więc ilość 
energii potencjalnej, która w czasie odkształcenia belki przechodzi w ener­
gię kinetyczną.

Przyrost d V energii sprężystej belki przy nieskończenie małym przy­
roście dy ugięcia w stosunku do ugięcia odpowiadającego położeniu rów­
nowagi równa się na rys. 39 polu trapezu adfb, a odpowiedni przyrost dT 
pracy siły zewnętrznej P polu prostokąta adcb. Różnica tych pól, czyli 
różnica d V •—d T wyraża się za pomocą trójkąta bfc; równa się ona iloczy­
nowi 1/2 dy dP, który przedstawia wielkość nieskończenie małą drugiego 
rzędu, i musi być przyjmowana za zero. Wynika stąd, że przy nieskończe­
nie małym odchyleniu belki od położenia równowagi d V = d T, czyli

d (V — T) = 0 .

Przy wszystkich innych wartościach ugięcia, poza ugięciem odpowia­
dającym położeniu równowagi, przyrosty d V i d T nie będą sobie równe, 
wobec czego otrzymane równanie, jak to zostało już udowodnione w inny 
sposób, może być podstawą do ustalenia ugięcia odpowiadającego stanowi 
równowagi, czyli ugięcia mającego miejsce przy ciągłym i nieskończenie 
powolnym wzroście siły P od zera do jej wartości ostatecznej, o które 
właśnie chodzi w zwykłych obliczeniach wytrzymałościowych.

Interpretacja dynamiczna równania (3.17), na którym opiera się meto­
da Ritza i Timoszenki wyznaczenia odkształceń i sił krytycznych, 
polega na podstawie rozważań tego rozdziału na następującym rozumo­
waniu.

Siły P zaczepione do danej konstrukcji uważamy za zaczepione w spo­
sób nagły. Siły te wprowadzają belkę w ruch wahadłowy zanikający.

Energia sprężysta V będzie się tu nagromadzała w ten sposób, jak gdy­
by każda z sił P wzrastała w sposób ciągły i nieskończenie powolny od zera 
do tej wartości, której odpowiada największe możliwe odkształcenie układu.

Praca sił zewnętrznych T będzie się równała w każdym momencie do- 
konywającego się odkształcenia sumie iloczynów poszczególnych sił P 
przez przesunięcia ich punktów zaczepienia.

Różnica U = V •—• T, całkowita energia potencjalna układu, zmienia 
się jako funkcja parametrów A dla poszczególnych stadiów odkształcenia 
układu i osiąga maksimum po zaniku drgań w chwili nastania równo­
wagi stałej.
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P e 3 ю m e

ДИНАМИЧЕСКИЕ ВОПРОСЫ В СТАТИЧЕСКИХ РАСЧЕТАХ СООРУЖЕНИИ

В главе I рассматривается вопрос, где следует, при расчете берего­
вых устоев и мостовых быков, принимать точку приложения тормоз­
ных усилий и тяговой силы паровоза. Доказывается, что, в случае 
заторможения на опоре двух осей подвижного состава, точку прило­
жения сил торможения следует принимать на высоте центра тяжести 
подвижного состава; в случае же торможения только одной оси — на 
уровне головки рельса. Тяговую силу следует прикладывать вообще 
на уровне головки рельса. Однако, бывают случаи, когда следует их 
принимать на высоте соединительной муфты; это может случится 
особенно, когда за мостом линия железной дороги находится на на­
клоне. Приводится анализ мостовых конструкций с точки зрения 
определения для них, в статических расчетах, места приложения тор­
мозных усилий.

Глава II содержит приближенный расчет собственных колебаний. 
Для этого применяется метод, основанный на последовательных при­
ближениях и на способе вторичных моментов Мора. Рассматри­
ваются колебания систем обладающих 1, 2, 3 и 4 степенями свободы, 
а также колебания упругих тел, продольные и поперечные. Вычи­
сляются частоты колебаний первого и второго порядков и первые 
и вторые приближения этих частот.

Глава III посвящена динамической интерпретации уравнения 
(1 (V — Т) = 0, являющегося основой метода приближенного опреде­
ления деформаций; здесь V обозначает упругую энергию элемента, 
а Т — работу внешних сил, представляемую в виде суммы произве­
дений сил Р на соответственные перемещения их точек приложения. 
Динамическая интерпретация уравнения <1 (V—Т) = 0 состоит в том, 
что силы Р считаются приложенными внезапно, что вызывает зату­
хающее колебательное движение конструкции. Ввиду этого, исследу­
емое уравнение выражает условие экстремума функции и = V — Т, 
соответствующего состоянию равновесия конструкции, т. е. ее стати­
ческой деформации.

Summary

DYNAMICAL PROBLEMS IN STRUCTURAL ANALYSIS

In Sec. I the problem of the attachment points of braking force and 
tractive force of a locomotive in computation of bridge abutments and 
piers is considered. It is shown that if two axles are braked over the con­
sidered support, the centre of gravity of rolling stock should be assumed 
as the attachment point of the force. In the case when only one axle is 
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braked, the attachment should be taken at the level of the rail head. 
In general, the tractive force should be taken as acting at the level 
of the rail head. There are cases, however, in which it should be assumed 
to act at the level of the couplers. This is, for instance, the case when the 
track beyond the bridge runs down an incline. An analysis of bridge struc­
tures is given, from which attachment points of braking forces can be 
established in statical computations.

Sec. II contains approximate calculation of free vibration. A method 
based on successive approximations and on the method of secondary 
moments is used. Vibrations of 1, 2, 3 and 4 degrees of freedom are 
discussed as well as transversal and longitudinal vibrations of elastic 
bodies. The frequencies of vibrations of first and second order as well as 
first and second approximations of those frequencies are calculated.

Sec. Ill is devoted to the dynamic interpretation of the equation 
d (V _ T) = 0, which constitutes the basis of the method of approximate 
determination of deformations. V denotes here the elastic energy of the 
element and T the work of external forces, assumed in the form of a sum 
of products of forces P and the corresponding displacements of their 
attachment point. The dynamic interpretation of the equation 
d (V — T) = 0 consists in that the forces P are considered to be attached 
in a sudden manner which provokes damped.vibration of the structure. It 
follows therefore that this equation expresses te condition for a mini­
mum of the function U = V — T, corresponding to the state of equili­
brium of the structure — in other words — to its static deformation.

Praca została złożona w Redakcji dnia 2 marca 1955 r.
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