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WSTĘP

Zagadnienia stateczności ruchu występują w licznych dziedzinach 
fizyki i techniki. Celem niniejszej pracy jest przedstawienie podstawo­
wych twierdzeń teorii stateczności ruchu. Wydaje się bowiem, że mimo 
znajomości przez ogół fizyków i inżynierów metod badania stateczności 
w pewnych szczególnych przypadkach, ogólne matematyczne podstawy 
tej teorii (obejmującej także i stateczność równowagi) są mniej znane 
i w naszej literaturze prawie nie poruszane.

Ograniczono się tu głównie do rozważenia stateczności w sensie L a- 
punowa oraz do podania zarysów jego teorii jako najbardziej pod­
stawowej i najlepiej opracowanej pod względem matematycznym.

I. PODSTAWOWE POJĘCIA I DEFINICJE

1. Określenie stateczności ruchu

Zagadnienia stateczności ruchu można w sposób poglądowy scharak­
teryzować następująco. Dana jest na przykład pewna postać ruchu układu 
materialnego. Ruch ten może być określony równaniami dynamiki przy 
danych siłach działających na układ oraz ustalonych warunkach począt­
kowych układu. Chodzi o zbadanie, jaki wpływ na daną postać ruchu wy­
wierają małe siły oraz małe zmiany warunków początkowych, nie 
uwzględniane przy określaniu ruchu i często nieznane. Jeżeli pod wpły­
wem małych sił postać ruchu niewiele różni się od postaci pierwotnej — 
ruch nazywamy statecznym. Jeżeli małe siły wywołują duże zmiany 
postaci ruchu — ruch nazywamy niestatecznym.

Teoria stateczności ruchu zajmuje się badaniem ruchu pod względem 
jego stateczności lub niestateczności. Z powyższego sformułowania wy­
nika doniosłość praktyczna zagadnień stateczności ruchu. Pisząc bowiem 
równania ruchu najczęściej uwzględnia się tylko siły duże, pomija nato­
miast małe z powodu ich nieznajomości lub dla uproszczenia obliczeń. 
Ocena więc, jaki wpływ na ruch mają pominięte czynniki, jest ważna, 
gdyż decyduje o zgodności rozwiązania z rzeczywistym przebiegiem zja­
wiska.
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Zajmiemy się teraz ścisłym sformułowaniem pojęcia stateczności 
ruchu.

Przyjmujemy, że ruch układu materialnego jest określony za pomo­
cą n równań różniczkowych rzędu pierwszego, które zapiszemy w postaci

(1.1) ^- = 2* (zuz2, ...,zn,t) (k = 1, 2,..., n).

Funkcje zx, z2,..., z*,..., zn zmiennej t (czasu) są parametrami określają­
cymi stan układu, jak na przykład współrzędne, prędkości itp. Rozpatrz­
my pewne rozwiązania szczególne układu równań (1.1)

(1.2) Zi = fi (i), z2 = f2 (t)

spełniające warunki początkowe: dla t = 0

(1-3) Zio = fi(O), z20 = f2(0)

z„ = f„(t),

ZnO fn (0) .

Ruch określony rozwiązaniami (1.2) nazywać będziemy ruchem nieza­
kłóconym układu materialnego. Inną postać ruchu odpowiadającą 
równaniu (1.1) i warunkom brzegowym, różniącym się od warunków' (1.3) 
o pewne wielkości Xko, tj. warunkom: dla t —0

(1.4)

zio = zlo k ^0 = ^(0) + xt0, 

zró = z20 + x20 = f2 (0) + x20,

zńo=zHo + x,(o=f»(O) + r„o,

nazywać będziemy ruchem zakłóconym. Funkcje określające ruch za­
kłócony można napisać w postaci

(1.5)

zi = fi (t) + (t),
z2 = f2 (t) + x2 (t) ,

Zn = f„(t) + Xn(t).

Funkcje Xk (t) określają zakłócenia ruchu, a wielkości Xko zmiany warun­
ków początkowych.

Ponieważ (1.5) i (1.2) są rozwiązaniami równania (1.1), to możemy 
napisać

(1-6) dxk dfk , , , . , , +.
(a?] -- j1, x2 -|- j2,..., xn -f Jn, t)

328



oraz 

(1-7)

gdzie k = 1, 2, ..., n.
Odejmując (1.7) od (1.6) otrzymamy

(1.8) = Z* (Zj + j\, x2 + fa>xn + fn, t) — Zk (h, f2,fn, t).

Wprowadzając oznaczenie

(1.9) Xk (*r,, x2 ,..., Xn, t) — Zk (Xj “I-fi, x24-J2, Xn4-fn r t) Zk (fi , /2, •••> fn>

możemy równania (1.8) napisać

(1.10) ^^- = Xk(x1,x2, ...,xn,t) (k = 1,2,n).

Układ równań typu (1.10) służy do wyznaczenia funkcji xk (t), tj. do 
określenia zakłóceń ruchu. Funkcje xk spełniają warunki początkowe dla

(1.11) t = 0, xk = Xko.

Równania (1.10) nazywać będziemy w dalszym ciągu równaniami ru­
chu zakłóconego, mimo że, ściśle rzecz biorąc, określają one zakłócenia 
ruchu, natomiast ruch zakłócony określają równania (1.5).

Możemy teraz podać następującą definicję, [1]: ruch niezakłócony, 
określony równaniami (1.2), jest stateczny, jeżeli dla każdej dodatniej 
liczby e dowolnie małej można tak dobrać dodatnią liczbę »/, że przy 
wszelkich Xko, określających zakłócenia początkowe i spełniających nie­
równości

(1.12) kUS»?

przy dowolnym t > 0, spełniona jest nierówność

(1.13) \zk(t) — zk(t)\<e,

czyli

(1.14) |%(t)|<e.

Ruchy nie spełniające powyższych warunków są niestateczne. Jeżeli 
oprócz nierówności (1.14) mamy również

(1.15) lim (t) = 0,
t —>oo 
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to ruch niezakłócony (1.2) nazywać będziemy asymptotycznie statecznym. 
Powyższe definicje określają stateczność ruchu w sensie Lapunowa.

Jak widać, określenie L a p u n o w a odnosi się tylko do zakłó­
ceń początkowych. Istnieje uogólnienie tego określenia także dla zakłó­
ceń ciągłych w czasie trwania ruchu. Jak się jednak okaże, przynajmniej 
w praktycznie ważnych przypadkach, stateczność w sensie L a p u n o- 
wa określa ruch stateczny dla wszystkich rodzajów zakłóceń.

Pojęcie stateczności w sensie Lapunowa nie jest jedynie moż­
liwym pojęciem stateczności. Na przykład doniosłą rolę odgrywa rów­
nież pojęcie stateczności orbitalnej (Poincarego). Mianowicie 
ruch ciała nazywamy orbitalnie statecznym, jeżeli parametry określa­
jące zakłócenia s*o i spełniające warunek

Kol ^»7

wywołują wychylenia sk (od toru niezakłóconego), spełniające dla do­
wolnego t warunek

Kl<e-
Przy stateczności w sensie Lapunowa warunek drugi powinny 
spełniać nie tylko wychylenia od toru, lecz w ogóle różnice współrzędnych 
między ruchem niezakłóconym i ruchem zakłóconym.

Wyróżnić można jeszcze tzw. stateczność warunkową. W tym 
przypadku dla małych zakłóceń początkowych (\xko. < <.-rjgr) ruch jest 
stateczny, natomiast dla zakłóceń dużych (jx*o| |x/jo| >%r) ruch jest 
niestateczny. Pojęcie stateczności bezwarunkowej jest przy tym oczy­
wiste.

Podane w tym paragrafie sformułowania dotyczyły, jak widać, sta­
teczności bezwarunkowej.

2. Metody badania stateczności ruchu. Przykłady

Jak wspomniano, pierwsza kompletna teoria stateczności ruchu po­
chodzi od A. M. Lapunowa. Sposoby rozwiązywania zagadnień 
stateczności dzieli Lapunow na dwie grupy. Do pierwszej grupy 
należą sposoby polegające na bezpośrednim badaniu ruchów zakłóco­
nych, tzn. wymagających rozwiązania układu równań (1.10). Sposoby 
te noszą nazwę pierwszej metody Lapunowa. Do drugiej grupy 
należą sposoby, które nie wymagają poszukiwania całek szczególnych lub 
ogólnych równań (1.10), lecz polegają na badaniu własności pewnych 
funkcji V (xt, x2,..., xn, t), (tzw. funkcji Lapunowa). Sposób ten 
jest podstawowy w teorii stateczności ruchu i nosi nazwę drugiej metody 
Lapunowa.
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Zagadnienia stateczności nie nastręczają trudności, jeżeli równania 
ruchu są liniowe, tzn. mają postać

(2 .1) ■^- = a1zi+a2z2 + ...+anzn.

W tym przypadku również równania ruchu zakłóconego są liniowe:

2. 2) = aj + a2 x2 + ... +

się rozwiązać.
. zeczywistości równania liniowe występują bardzo rzadko; regułą 

- równania nieliniowe. Jednak dla zagadnień nieliniowych można usta­
lić pewne równania przybliżone, liniowe, z których własności można 
wysnuć wnioski co do stateczności ruchu (metody linearyzacji). Te spo­
soby badania stateczności w pierwszym przybliżeniu były stosowane przez 
Thomsona, Taita, Routha, Żukowskiego. Ścisłą 
podbudowę znalazły w twierdzeniach Lapunowa.

Dla lepszego wyjaśnienia definicji podanych w p. 1 rozpatrzmy na­
stępujący przykład, [3].

Ruch określony jest układem równań

(2.3)

A-^ + (C B)z2z3 = 0, 

B ~ + (A -C)z1z3 = 0, 

C^ + (B ^)ZjZ2 = 0.

Jest to ruch ciała sztywnego dookoła punktu, przy czym zlt z2, z3 oznacza­
ją składowe wektora prędkości kątowej wzdłuż ruchomych osi układu 
współrzędnych, pokrywających się z głównymi osiami bezwładności ciała, 
a A, B, C są to momenty bezwładności względem tychże osi.

Równania (2.3) mają następujące rozwiązanie:

(2.4)

Zj = fi (t) — a) = const,
Z2 = fa (0 = 0 , 
z3 = f3 (t) = 0 •

Dla zbadania stateczności tego ruchu należy napisać równania ruchu 
zakłóconego (1.10).
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Oznaczając funkcje określające 
podstawie (1.8) otrzymamy

A + (C

(2.5) B

c

zakłócenia ruchu przez x.. na

B) x2 x3 = 0,

C) 4-to) — 0,

A) (xt + co) x2 = 0 .

W wielu przypadkach równania ruchu zakłóconego można napisać 
bezpośrednio, badając zachowanie się układu przy wychyleniach od ru­
chu, który uważamy za ruch niezakłócony.

II. TWIERDZENIA LAPUNOWA

3. Założenia i definicje pomocnicze

Ruch zakłócony nazywamy ustalonym, jeżeli równania (1.10) ruchu 
zakłóconego mają postać

(3.1) = Xk(xl,x2, ...,xn) (k=l, 2,..., n), 

tzn. funkcje Xk nie zależą od czasu t. Przyjmujemy, że spełnione są pew­
ne warunki w obszarze \xk (H jest stałą), przy których równania 
(3.1) posiadają w tym obszarze jednoznaczne i ciągłe rozwiązania.

Ruch zakłócony nazywamy nieustalonym, jeżeli jego równania mają 
postać 

(3.2) (t,X„X2, ...,Xn), 
dt

czyli że funkcje Xk zależą także od czasu t.
Wprowadzamy pewną funkcję V (arj, x2, ..., xn) określoną w otoczeniu 

początku współrzędnych. Przyjmijmy, że funkcja jest jednoznaczna, dla 
xL = x2 = ... = xn = 0 jest równa zeru oraz posiada ciągłe pochodne 
cząstkowe. Funkcję V (xu x2, ..., xn) nazywać będziemy na pół oznaczoną 
dodatnio (na pół oznaczoną ujemnie), jeżeli w obszarze 0 < | xk | = h, gdzie 
h jest dostatecznie małą liczbą dodatnią, przyjmuje tylko wartości do­
datnie lub równe zeru (ujemne lub równe zeru). Funkcję V (xu x2, ..., xn) 
nazywać będziemy nieoznaczoną, jeżeli w obszarze 0 < | xk | h dla do­
wolnych małych h przyjmuje wartości dodatnie i ujemne. Funkcję 
V (xlt x2, ..., xn) nazywać będziemy oznaczoną dodatnio (ujemnie), jeżeli
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w obszarze 0 < | xk | h dla dostatecznie małych h przyjmuje wartości 
tylko dodatnie (tylko ujemne). Zauważmy jeszcze, że pochodną zupełną 
funkcji V (xlt x2, xn) po uwzględnieniu równań (3.1) możemy wyrazić 
w sposób następujący:

(3.3) dV 
dt

V dv dxk dv v
7 “5----- yr = Z --- Xk = W (x1, x2, dxk dt dxk*=i *=i

...,xn).

Nosi ona nazwę pochodnej funkcji V ze względu na równani u za­
kłóconego. Dla badania ruchów nieustalonych wprowadza 'em
funkcję V (t, xu x2, xn). Podobnie nazywamy ją na pół c je­
żeli w obszarze | xk | < h przyjmuje tylko wartości jedr ^ku lub 
równa się zeru dla dowolnego t. Nazywamy ją oznaczon jdatnio lub 
ujemnie, jeżeli w obszarze h spełnia warunek

(3.4) V (t, X, , x2,Xn) W

lub

(3.4.1) V (t,x} ,x2,xn)^ — W (x1,x2,xn), 

gdzie W (xlt x2, ..., xn) jest funkcją oznaczoną dodatnio i nie zależy od' 
czasu.

Pochodna zupełna funkcji V (t, xu x2, ..., xn) ze względu na równania 
ruchu zakłóconego ma postać

n

(3.5) dV 
d t

dV 
d t

k=l

4. Twierdzenia Lapunowa dla ruchów ustalonych

Twierdzenie 1. Jeżeli dla równań różniczkowych ruchu zakłóconego 
można znaleźć funkcję oznaczoną dodatnio (ujemnie) V (®1; x2, xn), któ­
rej pochodna dV/dtze względu na równania ruchu zakłóconego jest funk­
cją na pół oznaczoną ujemnie (dodatnio), to ruch niezakłócony jest sta­
teczny.

Dowód. Przyjmijmy bez ograniczenia ogólności, że funkcja 
V (x1( x2, xn) jest funkcją oznaczoną dodatnio we wszystkich punktach 
obszaru

(4.1) \xk\^h^H

z wyjątkiem początku układu.
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Stosownie do założeń twierdzenia musi być w tym obszarze

Oznaczamy przez s dowolnie małą liczbę dodatnią. Dolny kres funk­
cji V dla wartości |x,|, |x»|,..., |x„| takich, że największa z nich jest 
równa e, oznaczamy przez l.

Możemy to zapisać tak

(4.3) Vx2, ■■■,

jeśli

(4.4) max {|a?j|, |x2|,xn\}=e.

Rozpatrzmy teraz dowolną funkcję xk (t), dla której wartość początko­
wa Xko spełnia warunek

(4.5) |x*0|Sł?,

przy czym liczba 7/ spełnia nierówność r] < e oraz jest tak mała, że 
V(x10, x20, xno) <1. Liczbę taką można dobrać, gdyż V jest funkcją 
ciągłą i V(0, 0,..., 0) = 0.

Ponieważ na podstawie (4.2) funkcja V nie rośnie z upływem czasu, 
więc w dowolnej chwili t jest

(4.6) V [^(t),^^),...,^^)] SV (xto,x2o,...,xno) <1.

Stąd wynika, że dla dowolnego t > t0 jest spełniony warunek

(4.7) \xk\<e.

Gdyby bowiem powyższy warunek nie był spełniony, to w pewnej chwi­
li t = T, w której | xk | osiągnęłoby wartość e, musiałyby być równocześnie 
spełnione warunki (4.3) oraz (4.6), co jest niemożliwe.

Spełnianie warunku (4.7) przy założeniu (4.5) dowodzi stateczności ru­
chu przy przyjętych założeniach co do V i dV/dt.

Twierdzenie 2. Jeżeli dla równań różniczkowych ruchu zakłóconego 
można znaleźć funkcję oznaczoną dodatnio (ujemnie) V (xlt x2, ..., xn), 
której pochodna dV/dt ze względu na równania ruchu zakłóconego jest 
funkcją oznaczoną ujemnie (dodatnio), to ruch niezakłócony jest asympto­
tycznie stateczny.
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Dowód. Nie ograniczając ogólności dowodu zakładamy, że V jest funk­
cją oznaczoną dodatnio, natomiast dV/dt — oznaczoną ujemnie w obsza­
rze (4.1). W obszarze tym są spełnione warunki

(4.7) V^0, 4t-°’
przy czym znak równości jest możliwy tylko w punkcie xt = x2 = ... = xn = 0.

Na podstawie twierdzenia 1 wiemy, że przy tych założeniach ruch 
musi być stateczny, tzn. że jeżeli | Xko | < r) (e), to | (t) i < a, przy czym e
jest dodatnią liczbą mniejszą od h, a »7 jest liczbą dodatnią zależną od e.

Przy założeniach twierdzenia 2, które są silniejsze od założeń twier­
dzenia 1, udowodnimy ponadto, że jest

(4.8) lim (t) = 0 ,

tzn. że ruch jest asymptotycznie stateczny.
Ponieważ przy warunkach początkowych | Xko | 0 rozwiązania

xt, x2, ..., xn nie mogą być wszystkie równe zeru, zatem funkcja dV!dt 
jest w każdej chwili ujemna. Wynika stąd, że funkcja V jest monofonicz­
nie malejąca i przy t-> 00 dąży do pewnej granicy a będąc jednak zaw­
sze większa od a, tj.

lim V = a, V [a?! (t), (t),..., xn (t)] > a.

Otóż musi być a — 0, zatem

lim V = 0 .

Wynika stąd, że musi być również

lim Xk (t) = 0.

Gdyby bowiem xk (t) nie dążyło do zera, byłoby dV/dt stale ujemne tak­
że dla t -> 00.

A więc byłoby dV/dt — b, gdzie b jest liczbą dodatnią. Zatem dla 
t > to

V (t), x2 (t),..., xn (t)] = V (x10, x20,..., x,(o) + 
t 

;dV— dt SV(x10,x20, ...,xn0) b(t t0), 
t,

czyli przyjmowałoby wartości ujemne dla dużych t V, co jest sprzeczne 
z założeniem twierdzenia.
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Twierdzenie 3. Jeżeli dla równań różniczkowych ruchu zakłóco­
nego można znaleźć funkcję V (xu x2,xn), której pochodna dV/dt ze 
względu na równania ruchu zakłóconego jest funkcją oznaczoną dodatnio 
(ujemnie), a sama funkcja V nie jest na pół oznaczona ujemnie (dodatnio), 
to ruch niezakłócony jest niestateczny.

D o w ó d. Przyjmujemy, że funkcja dV/dt jest oznaczona dodatnio 
w obszarze

(4.9) 0 < । Xk | H.

Wykażemy, że nawet przy dowolnie małych liczbach można znaleźć 
zbiór wartości początkowych xk0 spełniających warunki

(4.10)

przy których rozwiązania xk (t) w pewnej chwili przekroczą obszar (4.9); 
tym samym zostanie wykazana niestateczność ruchu. Wartości xk0 do­
bieramy tak, aby spełniony był warunek (4.10) oraz aby

V(x10, x2o,...,xnO)>O,

co jest możliwe, gdyż funkcja V według założeń twierdzenia nie jest na 
pół oznaczona ujemnie i w otoczeniu początku układu współrzędnych 
może przyjmować wartości dodatnie. Gdyby xk (t) nie przekroczyło gra­
nic obszaru (4.9), to pochodna dV/dt byłaby zawsze dodatnia, czyli byłaby 
dV/dt 21 l, gdzie l jest stałą większą od zera. Zatem w chwili t> t0

V (t), x2 (t),..., xn (t)] = V (x10, x20,..., xn0) + 
t

\ dt = V ^X10’ X-°’ Xn°) ^l(t tj,

skąd wynika, źe V rośnie nieograniczenie, co jest niemożliwe, gdyż w ob­
szarze domkniętym (4.9) funkcja V jest ciągła, a zatem ograniczona.

Twierdzenie 4. Jeżeli istnieje funkcja V, której pochodna dV/dt ze 
względu na równania ruchu zakłóconego posiada w obszarze (4.9) postać

dV -
(4.11) “dt ?V + V’ 

gdzie y jest liczbą dodatnią, a V jest stale równa zeru lub jest funkcją 
na pół oznaczoną, i jeśli przy V na pół oznaczonej V nie jest na pół ozna­
czoną o znaku przeciwnym niż V, to ruch niezakłócony jest niestateczny.
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Dowód. Przyjmujemy, że funkcja V jest nieujemna. Zatem z (4.11) 
wynika

Podobnie jak w poprzednim dowodzie wykażemy, że dla pewnych war­
tości x*o, spełniających warunki

|x*o|<łb V(xl0,x20, ...,x„o)>O

dla dowolnie małych rj, wartości xk (t) przekraczają obszar (4.9), co jest 
dowodem niestateczności ruchu. Gdyby bowiem xk (t) nie przekraczało 
obszaru (4.9), byłaby funkcja V rosnąca i zachodziłaby nierówność

— > yV [x, (t), X2 (t), ..., X„ (t)] > yV (x10, X20, ..., x,i0),

czyli

— ^yV(xlo,x2o,...,x„o),

skąd
V y V (Xio, x20,..., x„o) (t —10) •

Zatem funkcja V rosłaby nieograniczenie, co jest sprzeczne z założeniem 
ciągłości funkcji w obszarze domkniętym (4.9).

5. Twierdzenia Lapunowa dla ruchów nieustalonych

Twierdzenie 5. Jeżeli dla równań różniczkowych ruchu zakłóconego 
(3.2) można znaleźć oznaczoną dodatnio (ujemnie) funkcję V (t, xlt x2, ..., xn), 
dla której pochodna ze względu na równania ruchu zakłóconego jest na 
pół oznaczona ujemnie (dodatnio), to ruch niezakłócony jest stateczny.

Dowód. Nie ograniczając ogólności rozważań możemy przyjąć, że V 
jest funkcją oznaczoną dodatnio. Zatem dla dostatecznie wielkich t oraz 
dostatecznie małych h (h H) w obszarze

(5.1) |x* | S h

jest spełniona nierówność

(5.2) V (t, x]( x2, ...,xn) > W (x1; x2,..., x„),

gdzie W jest funkcją oznaczoną dodatnio i niezależną od czasu. Weźmy 
pod uwagę liczbę e dowolnie małą dodatnią mniejszą od h. Oznaczamy 
przez l dolny kres funkcji W dla wartości xk spełniających warunek

max {| xt | x21,..., | xn |} = e.
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Na podstawie (5.2) jest dla tych wartości

V (t, xlt x2,xn) r? I •

Jeżeli wartości początkowe xk0 spełniają warunek

(5.3)

przy czym r] jest tak małe, że

(5.4) V (t0, x10, x20, ...,xn0)Cl

oraz r;<e, to jest rzeczą oczywistą, że dla t dostatecznie mało przewyż­
szającego t0 jest spełniony warunek

(5 5) | xk | < e •

Należy teraz udowodnić, że warunek (5.5) jest spełniony dla t dowolnego.
Przyjmijmy, że w pewnej chwili nierówność (5.5) nie jest spełniona, 

lecz jest

max {| xx (t,) |, | x2 |,..., | xn (tj |} = e.

Wtedy przy t — musiałoby być

V (tn xu x2,xn) l,

skąd na podstawie (5.4) wynika

V(tj, x}, x2,xn)> V (t0, xiy x2, xn),

co jest sprzeczne z założeniem, że dV/dt g 0.
Twierdzenie 6. Jeżeli dla równań ruchu zakłóconego (3.2) można 

znaleźć oznaczoną dodatnio (ujemnie) funkcję V (t, xv x2, xn), dla któ­
rej pochodna ze względu na równania ruchu zakłóconego jest oznaczona 
ujemnie (dodatnio), oraz funkcja V posiada własność, że dla dowolnej 
liczby dodatniej ź można dobrać taką liczbę /z, że przy

(5.6)

jest spełniona nierówność

(5.7) i V (t, xu x2,x„) | tg 2,

to ruch niezakłócony jest asymptotycznie stateczny.
Dowód. Przyjmujemy, że V jest oznaczona dodatnio, a zatem dV/dt 

jest oznaczona ujemnie.
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W obszarze (5.1) spełniona jest nierówność (5.2) oraz nierówność 

dV_  ,(5.8)
dt

gdzie Wi jest funkcją oznaczoną dodatnio.
Jeżeli funkcja V jest oznaczona dodatnio, a przy tym monotonicznie 

malejąca (co wynika z dV/dt < 0), to dla t->oo dąży do pewnej granicy. 
Granica ta jest równa zeru. Gdyby bowiem granica ta (oznaczamy ją 
przez a) była różna od zera, to byłoby dla t > t0

(5.9) V (t, xx, x2,xn) > a.

Ponieważ założyliśmy, że V posiada własność (5.7) dla warunków 
(5.6), to (5.9) pociąga za sobą

(5.10) max j | xx |, | x2 j,..., | xn |} y,

gdzie y oznacza dostatecznie małą liczbę dodatnią.
Z (5.8) wynika, że 

przy czym jest liczbą dodatnią, równą dolnej granicy funkcji W, dla 
wartości xk spełniających warunek (5.10). Całkując nierówność (5.11) 
otrzymujemy dla t > t0

V (t, xu x2,xn) S V (t0, x10, x20,..., X„o)' lx(t

co jest sprzeczne z założeniem (5.9). Zatem granicą funkcji V dla t -> oo 
może być tylko zero, a tym samym również funkcja W (x1; x2, ..., xn) dąży 
do zera dla t->oo. Wynika stąd, że

lim Xk = 0 , 
t~CXi

co dowodzi słuszności twierdzenia.
Twierdzenie 7. Jeżeli istnieje funkcja V (t, xx, x>, ..., xn) posiadająca 

tę własność, że dla dowolnej liczby dodatniej 2 można dobrać taką liczbę 
/(, iż przy

t , l Xk | /z

jest spełniona nierówność

| V (t, Xx, X2, Xn) | S ż
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oraz pochodna dV/dt ze względu na równania ruchu zakłóconego 
jest funkcją oznaczoną, natomiast sama funkcja V przy dowolnie ma­
łych xk i dowolnie dużym t może przyjmować wartości tego samego zna­
ku co pochodna dV/dt, to ruch niezakłócony jest niestateczny.

Dowód. Przyjmujemy, że dV/dt jest funkcją oznaczoną dodatnio,, 
czyli w obszarze

(5.12) | Xk | h

spełniona jest nierówność

(5.13) W(x„x2, ...,xn),

gdzie W (x1, x2, xn) jest funkcją oznaczoną dodatnio niezależną od 
czasu. Wartości początkowe xko dobieramy tak, aby spełnione były warunki

V (t0, x10, x20, xn0) > 0,

przy czym Tj jest dowolnie małą liczbą dodatnią. Dobór wielkości xk<> 
spełniających te warunki jest możliwy, o ile V spełnia założenia twier­
dzenia.

Wykażemy, że rozwiązania xk (t) odpowiadające tym wartościom po­
czątkowym nie należą do obszaru (5.12), co świadczy o niestateczności 
ruchu. Gdyby bowiem było stale | xk | h, to, ponieważ dV/dt jest stale 
dodatnią, musiałoby być

V (tj, xn x2,..., xn) > V (t0, x10, x20,..., xn0) •

Z własności (5.6) i (5.7) wynika, że

(5.14) max {| xt |, | x21,..., | xn |} y,

gdzie y jest dostatecznie małą liczbą dodatnią. Zatem na podstawie (5.13)‘ 

przy czym l jest liczbą dodatnią, równą dolnemu kresowi funkcji W przy 
wartościach xk spełniających warunek (5.14). Całkując (5.15) otrzymujemy

V (t, xit x2,..., xn) V (t0, x10, x20,..., Xno) + l (t — t0).

Z ostatniej nierówności wynika, że dla t -> oo funkcja V rośnie nieograni- 
czenie, co jest sprzeczne z założeniami twierdzenia.
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6. Przykłady

Rozpatrzmy dwa przykłady stosowania twierdzeń L a p u n o w a.
Dla pewnego równania ruchu niezakłóconego znaleziono równania 

ruchu zakłóconego w postaci

(6.1)

dxi 
dt

। 3- «11,

x1 + aa?2.

Należy zbadać stateczność ruchu niezakłóconego.
Funkcję V przyjmujemy w postaci 

(6.2) V = Kxl +z2).

Wyznaczamy pochodną zupełną tej funkcji ze względu na równa­
nia (6.1)

(6.3)
= V j ( ^2 + (Xi+axl = a (a^+zf).

CL L (/ CCk

Możliwe są tutaj trzy przypadki.
(1) Przy a > 0 ruch na podstawie twierdzenia 3 jest niestateczny 

(bo V 0 oraz dV/dt 0).
(2) Przy a < 0 ruch na podstawie twierdzenia 2 jest stateczny asymp­

totycznie (bo V 0, natomiast dV/dt 0, przy czym znak równości możli­
wy jest tylko w punkcie — z2 = 0).

(3) Przy a = 0 ruch na podstawie twierdzenia 1 jest stateczny (bo 
V 0, natomiast dV/dt = 0).

Należy zwrócić uwagę na fakt, że o stateczności ruchu decydują nie 
wyrazy liniowe równań (6.1), lecz wyrazy wyższych stopni.

Przy zastosowaniach praktycznych ważną rolę odgrywa zagadnienie 
wyboru funkcji V (xlt x2,..., xn). Ogólnych reguł pozwalających wyznaczyć 
tę funkcję w każdym przypadku nie ma.

Przejdźmy teraz do następnego przykładu.
Rozpatrzmy ruch pocisku obracającego się wokół własnej osi po tra­

jektorii zbliżonej do linii prostej.
Dla rozważenia zagadnienia stateczności możemy przyjąć, że ruch 

środka masy pocisku jest jednostajny i prostoliniowy. Ponadto przyjmu­
jemy, że niektóre siły można pominąć (np. siły aerodynamiczne — uno­
szącą i Magnusa).
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Wprowadzimy następujące oznaczenia: d jest kątem pomiędzy osią 
pocisku a jej rzutem na płaszczyznę pionową trajektorii (rys. 1), a kątem
pomiędzy trajektorią a rzutem osi pocisku na płaszczyznę trajektorii, 

C osiowym momentem bezwładności 
pocisku, A momentem bezwładności 
względem osi poprzecznej przecho­
dzącej przez środek ciężkości, n mia­
rą rzutu prędkości kątowej obrotu 
pocisku na jego oś, R wypadkową si­
łą oporu ośrodka, e odległością środ­
ka masy pocisku od punktu zaczepie­
nia wypadkowej oporu ośrodka, przy 
czym środek leży za punktem zacze­
pienia siły oporu.

Przy tych oznaczeniach równanie ruchu ma postać *)

(6.4)
Ad + Ar? sin d cos d Cna cos d = eR sin d cos a , 

Aa cos d — 2 AafJ sin d + Cnfl = eR sin a.

Równania powyższe można sprowadzić do czterech równań rzędu 
pierwszego

(6.5)
d = « = «i>
Adi = — Aa[ sin d cos d + Cna, cos d + eR sin d cos a, 

Aa, cos d — 2 Aa, fi, sin d — Cnfi, + eR sin a .

Jeżeli chcemy zbadać stateczność ruchu, przy którym oś pokrywa się 
z kierunkiem trajektorii, to uważamy, że wielkości a, d, a1( di, czyli a, d, a, d 
określają ruchy zakłócone, a równania (6.5) są równaniami ruchu za­
kłóconego.

Znajdziemy warunek, jaki muszą spełniać parametry pocisku, aby 
ruch był stateczny. Uczynimy to za pomocą twierdzeń L a p u n o w a. 
Jako funkcje L a p u n o w a przyjmujemy

(6.6) V = F, — /zF2 ,

przy czym F, jest energią układu:

(6.7) F, = | A (d?+ cos2 d) + eR (cos a cos d — 1), 

natomiast F2 jest momentem ilości ruchu układu względem osi pocisku:

(6.8) F., = A (dj sin a — a, cos d sin d cos a) + Cn (cos a cos d — 1).

i) Por. [11], t. 2, str. 387.
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Pochodna funkcji V (a, (i, an fij ze względu na równania (6.5) jest, jak 
łatwo sprawdzić, równa zeru:

(6.9) dV = dF, dF., 
dt dt dt

Wykażemy teraz, że można tak dobrać liczbę /z, iż funkcja V będzie 
funkcją oznaczoną. W tym celu rozwiniemy funkcję V na szereg Tay­
lora, przy czym zachowamy tylko wyrazy pierwszego i drugiego stopnia:

(6.10) V = j[Aa2 + (Cny~eR)p2 + 2Aya}p] +

4- | {Aft + (Cn/z — eR) a- — 2 Ayfta] + ....

Jeżeli obie formy kwadratowe w wyrażeniu (6.10) będą oznaczone do­
datnio, to funkcja V będzie również oznaczona dodatnio. Jak wiadomo, 
warunkiem aby obie postacie były oznaczone dodatnio jest to, aby wy­
różniki tych form spełniały nierówność

(6.11) A(Cn/i- eR) A2 y2 > 0 ,

gdyż formę typu ctl x2 + 2 c12 xy + c22 y~ można doprowadzić (przy zało­
żeniu cn>0 i c22 > 0) do postaci b25- + a-y2, jeżeli cu c22 — c^2>0.

Aby warunek (6.11) był spełniony, równanie kwadratowe na у

(6.12) - A2 y2+A(Cny — eR) = 0

musi posiadać dwa różne pierwiastki. Musi być zatem

A2 C- n2 — 4 A3 eR > 0, 
czyli

(6.13) C2n2>4AeR.

Jeżeli spełniony jest warunek (6.13), można dobrać takie y, że funkcja V 
jest oznaczona dodatnio, a jej pochodna ze względu na dany układ rów­
nań ruchu zakłóconego jest tożsamościowo równa zeru [por. (6.9)]. Zatem 
na podstawie twierdzenia I z p. 4 ruch jest stateczny.

Warunek (6.13) określa minimalną prędkość ruchu obrotowego po­
cisku potrzebną do tego, aby jego oś «trzymała się» w sposób stateczny 
trajektorii.

Przypominamy, że rozwiązanie powyższe dotyczy tylko trajektorii 
mało różniących się od prostej, jeżeli bowiem chcemy, aby w przypadku 
trajektorii silnie zakrzywionych oś pocisku pokrywała się ze styczną do 
trajektorii, należy ustalić warunek ograniczający prędkość obrotu pocisku.
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III. TWIERDZENIA O STATECZNOŚCI W PIERWSZYM PRZYBLIŻENIU

7. Równania pierwszego przybliżenia dla ruchów ustalonych

Równania ruchu zakłóconego (3.1) w przypadku ruchu ustalonego 
możemy napisać w postaci

(7.1) ^^- = pkix1+pk2X2+...+pknXn+Xk(x1,x2,...,xn) (k = l,2,...,n).

Uważając prawą stronę równania (7.1) za rozwinięcie funkcji 
Xk C»!, x2, ..., xn) z równań (3.1) na szereg potęgowy otrzymamy

Rozwinięcie funkcji Xk (xt, x2, xn) na szereg potęgowy nie zawiera wy­
razów stopnia niższego niż pierwszy, tj. nie zawiera wyrazów stałych, 
gdyż, jak wynika z tożsamości (1.9), jest

(7.3) [X*(x1; x2,x„)] . =Xn=o = O.

Równania

(7.4) = pkixi + ph2X., +-+ PknXn (k= 1, 2,..., n)

nazywać będziemy równaniami pierwszego przybliżenia. Są to równania 
różniczkowe liniowe rzędu pierwszego.

Równanie stopnia n-tego

Ptl — P12 - Pl"
p2l p22 A ... p2n

(7.5) D(X)=...................................................... =0

Pnl P«2 ••• Pnn A

nazywa się równaniem charakterystycznym, a wyznacznik D (2) — wy­
znacznikiem charakterystycznym.

Jeżeli h jest dowolnym pierwiastkiem tego równania, to wyrażenie

(7.6) xk = Akeit
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jest całką szczególną układu (7.4). Stałe Ak wyznacza się z układu równań 
liniowych

(7.7) pkt A.j +... + (pkk A/) Ak +... + pim An = 0 (k = 1, 2, ..., n),

posiadających rozwiązania nie wszystkie równe zeru ze względu na (7.5)2). 
Jeżeli równanie charakterystyczne (7.5) posiada wszystkie pierwiastki 
pojedyncze, to podstawiając w wyrażenie (7.6) i = 1, 2, ..., n otrzymamy 
n rozwiązań na każdą funkcję xk, czyli n rozwiązań niezależnych układu 
równań (7.4). Jeżeli równanie charakterystyczne posiada pierwiastki wie­
lokrotne i takim pierwiastkiem wielokrotnym jest At, to oprócz rozwią­
zania (7.6) temu pierwiastkowi odpowiadają jeszcze inne rozwiązania 
typu

2) Przy założeniu, że nie wszystkie podwyznaczniki rzędu n—1 wyznacznika D (Aj) 
są zerami, możemy stałe Ak wyrazić w postaci Ak = lDjk, gdzie l jest dowolnym pa­
rametrem, zaś DJk jest podwyznacznikiem elementu pJk w wyznaczniku D (2) okre­
ślonym równością (7.5), gdzie j jest stałe.

(7.8) xk = fk (t) e'‘‘,

gdzie fk (t) jest pewnym wielomianem zmiennej t stopnia co najwyżej 
o 1 niższego niż krotność pierwiastka Az, przy tym wielomiany te są róż­
ne dla różnych k.

W przypadku jeżeli pierwiastek Az jest zespolony, tj.

Az = p + iv,

to w rozwiązaniach (7.6) i (7.8) stałe Ak oraz funkcje jk są także zespolone:

Ak = Pk + iQk, fk = <pk~\~itPk-

Te same rozwiązania odpowiadają pierwiastkowi p iv.

Biorąc z rozwiązań 
pierwiastka p 4- iv

(7.6) i (7.8) tylko części rzeczywiste otrzymamy dla 
dwa rozwiązania:

(7-9)
Xk = (Pkcosvt Qk sin rt) e" ‘, 

Xk = (Pk sin vt + Qk cos rt) e>'1

lub

(7.10)
xk = (<pk cos v t — i/<k sin vt) e" ‘, 

Xk = (cpk sin vt + cos vt) ef11.
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Całkę ogólną układu równań (7.4) wyrażamy za pomocą całek szcze­
gólnych typu (7.6) lub (7.8). Oznaczając całki szczególne przez 
xkl, xk2, xkn, otrzymamy całkę ogólną

(7.11) xk = C\ Xkt + Co xki + ... + Cn xkn ■

Stałe C3, C2,..., Cn wyznaczamy z warunków początkowych. Dyskusja 
stateczności w przypadku równań liniowych, tj. w przypadku gdy równa­
nia pierwszego przybliżenia są zarazem równaniami ścisłymi ruchu, jest 
bardzo prosta. Wynika to stąd, że w całkach szczególnych występuje 
wyraz

Otóż jasne jest, co następuje.
Jeżeli rzeczywiste części pierwiastków równania charakterystycznego 

są wszystkie ujemne, to ruch niezakłócony jest stateczny i to asympto­
tycznie (gdyż wtedy xk (t) -> 0 przy t —> co). Jeżeli wśród pierwiastków 
równania charakterystycznego znajdują się pierwiastki z zerowymi czę­
ściami rzeczywistymi i jeżeli tym pierwiastkom odpowiadają rozwiązania 
typu tylko (7.6) lub (7.9) (Ak, Pk, Qk są stałymi), to ruch jest stateczny, 
lecz nie asymptotycznie; natomiast jeżeli tym pierwiastkom odpowiadają 
rozwiązania typu (7.8) lub (7.10), to ruch jest niestateczny. Zagadnienie 
stateczności dla przypadków, gdy równania ruchu są nieliniowe [czyli 
funkcja Xk z równania (7.1) nie jest tożsamościowo równa zeru], rozwią­
zać można za pomocą twierdzeń Lapunowa podanych w następ­
nym punkcie.

8. Twierdzenia Lapunowa o stateczności w pierwszym przybliżeniu

Twierdzenie 8. Jeżeli wszystkie pierwiastki równania charaktery­
stycznego układu równań pierwszego przybliżenia (7.4) mają ujemne 
części rzeczywiste, to ruch niezakłócony jest asymptotycznie stateczny 
dla dowolnych wyrazów wyższych rzędów równania ruchu zakłóconego 
(7.1).

Dowód. Jako funkcję Lapunowa przyjmujemy funkcję 
V (xt, x2,xn) określoną równaniem

(8.1) y (p*i + ... + pkn xn) 7? U,

przy czym U oznacza jednorodną formę kwadratową względem ... xn:

(8-2) U = - (x* + x* + ... + x?) .
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Przy założeniach twierdzenia równanie różniczkowe (8.1) o pochod­
nych cząstkowych liniowe niejednorodne posiada jednoznacznie okre­
ślone rozwiązanie, spełniające warunek

(8.3) [V]^=o=O.

Wykażemy, że dla dowolnych wartości x10, x20, xn0, nierównych 
równocześnie zeru funkcja V przyjmuje tylko wartości dodatnie, czyli 
jest oznaczona dodatnio. Mianowicie wartości Xk>,..., xn0 możemy uważać 
za wartości początkowe funkcji xk (t) określonych równaniami

(8.4) dxk 
dt P*1 Xl + p*2 X2 + ... + Pkn xn (k = 1,2, ..., n).

Na podstawie (3.5) wyznaczamy pochodną zupełną funkcji V względem 
czasu:

dV 
dt

czyli

(8.5)

2 te? a r = 2 ' x‘ + ■■ + &) ■k = l kr l

4^. 
dt

Funkcja V nie może przyjmować wartości ujemnych, gdyż na podstawie 
twierdzenia 3 z p. 4 ruch niezakłócony odpowiadający równaniom (8.4) 
byłby niestateczny, co jest sprzeczne z założeniem, że równanie charak­
terystyczne układu (8.4) posiada pierwiastki tylko z ujemnymi częściami 
rzeczywistymi. Ponieważ, jak wynika z (8.5) i (8.2), funkcja V jest mono­
fonicznie malejąca, to nie może być równą zeru, gdyż pociągałoby to istnie­
nie wartości ujemnych. Zatem funkcja V jest oznaczona dodatnio dla 
wszystkich wartości xk (t). Z ciągłości funkcji V wynika, że również 
w dowolnym punkcie xJ0,..., x„0 jest ona dodatnia.

Zbadamy teraz znak pochodnej zupełnej dV/dt dla wartości xk (t) 
określonych równaniami ruchu zakłóconego

(8.6) dxk . . . —— p*l Xi + ... + pkn xn + Xk ■

Na podstawie (3.5) i (8.6) jest

dV _ y dV dxk _ 
dt —« dxk dt

*=i

n 

X. k 1

dV 
dxk

n _
(p*i X1 + ... + Pkn xn) + y Xk 

& dxk
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•czyli

(8-7)
dV 
dt

Й=1

dV 
dxk Xk.

.Funkcja U jest według (8.2) oznaczona ujemnie. Rozwinięcie wyrażenia

na szereg Taylora nie zawiera wyrazów rzędu niższego niż trzeci. 
Zatem w obszarze | xk | < h przy dostatecznie małym h jest spełniona 
nierówność

дУ у , 
dxk k

Wynika stąd, że jeżeli U jest funkcją oznaczoną ujemnie, to również

dxk к dt
*=i

jest funkcją oznaczoną ujemnie. Jak widać, funkcja V spełnia założenia 
twierdzenia 2 z p. 4, w konsekwencji czego ruch niezakłócony jest asymp­
totycznie stateczny.

Twierdzenie 9. Jeżeli wśród pierwiastków równania charakterystycz­
nego układu równań pierwszego przybliżenia (7.4) przynajmniej jeden 
ma dodatnią część rzeczywistą, to ruch niezakłócony jest niestateczny 
dla dowolnych wyrazów wyższych rzędów równania ruchu zakłóco­
nego (7.1).

D o w ó d. Przyjmujemy funkcję Lapunowa V (xlt x2, ..., x„) 
określoną równaniem

(8.8) (p*i + ... + pk„ xn)-^- = U ,
k=\

gdzie

(8.9) U = - (xf + x2 + ... + x^.

Pochodna ze względu na układ równań

(8.10) X1 + P*2^2 + P*"x"
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wyraża się wzorem

(8.11) ^ = U. 
dt

Funkcja V jest zatem monofonicznie malejąca.
Wykażemy, że istnieją wartości x10,xn0, dla których funkcja V przyj­

muje wartość ujemną. Gdyby bowiem funkcja V była oznaczona dodatnio, 
to na podstawie twierdzenia 2 ruch niezakłócony odpowiadający równa­
niom (8.10) byłby asymptotycznie stateczny, co jest sprzeczne z zało­
żeniami.

Funkcja V przyjmuje zatem wartości zerowe, a ponieważ jest monoto- 
niczna, przyjmuje również wartości ujemne. Pochodna funkcji V ze wzglę­
du na układ równań

(8.12) 

jest

(8.13)

dx* 
dt = P*1 + ... + pkn Xn + Xk

dV 
dt dxk Xk’

czyli, podobnie jak w poprzednim twierdzeniu, jest oznaczona ujemnie 
dla | xk | < h przy dostatecznie małym h.

Jak widać, funkcja V spełnia założenia twierdzenia 3, co w konsekwen­
cji pociąga za sobą to, że ruch jest niestateczny.

Dowód powyższy wymaga pewnego uzupełnienia. Mianowicie, jeżeli 
wśród pierwiastków równania charakterystycznego znajduje się jeden 
pierwiastek zerowy, to równanie (8.8) może nie mieć jednoznacznie okre­
ślonego rozwiązania. W tym przypadku funkcję Lapunowa przyj­
mujemy jako funkcję określoną równaniem

(8.14) " dV
Y (psi xt + ... + pkn = W + U’

k=l

gdzie

(8.15) U = — (xj + xf + ... + x2n)

oraz y jest liczbą dodatnią. Łatwo wykazać, że V przyjmuje również war­
tości ujemne. Pochodną funkcji V ze względu na równania (8.12) jest

(8.16) dV tz-u n u. V V-7 = rV + t/+2^X* 
k=l
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i jest, przy dostatecznie małym y i h, funkcją oznaczoną ujemnie. Zatem 
i w tym przypadku na podstawie twierdzenia 4 ruch jest niestateczny.

Funkcja V w (4.11) jest tutaj równa

V = U +
*=i

Twierdzenie 10. Jeśli równanie charakterystyczne układu równań 
pierwszego przybliżenia nie posiada pierwiastków z rzeczywistymi czę­
ściami dodatnimi, natomiast posiada pierwiastki z częściami rzeczywi­
stymi równymi zeru, to wyrazy wyższych rzędów równania ruchu za­
kłóconego (7.1) można tak dobrać, aby otrzymać ruch stateczny albo nie­
stateczny. Przykładem może być tutaj zadanie rozwiązane w p. 6 [rów­
nania ruchu zakłóconego (6.4)].

9. Kryterium Routha-Hurwitza

Z poprzedniego p. wynika, że dla badania zagadnień stateczności ko­
nieczna jest znajomość znaków rzeczywistych części pierwiastków rów­
nań algebraicznych. W szczególności ważne są warunki, przy których 
pierwiastki mają części rzeczywiste ujemne. Zagadnieniem tym zajmo­
wali się R o u t h i H u r w i t z. Ustalili oni warunki konieczne i wy­
starczające, przy których wszystkie pierwiastki równania charaktery­
stycznego mają rzeczywiste części ujemne. Warunki te znane są pod naz­
wą kryterium Routha-Hurwitza. Podamy je tutaj bez do­
wodu w formie przedstawionej przez H u r w i t z a.

Twierdzenie 11. Dane jest równanie n-tego stopnia

(9.1) a„ x" + a, x"~l + ... + a«_i x + an = 0 .

Ze współczynników ustawiamy wyznaczniki
a, au 0

O| o0
Di=ot, d2 = Ds = a8 a, a 1

a., a2
ai a4 o3

a, a„ 0 0 ... 0
a3 a2 aj a„ ... 0

D„ = =— cin Dn

O2n—1 O2«—2 02«- 3 02«—4 . . . a«
przy czym a/ = 0, jeśli i > n .
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Wszystkie pierwiastki równania (9.1) mają części rzeczywiste ujemne, 
jeżeli wszystkie wyznaczniki są dodatnie, czyli jeśli

Dt > 0, D2>0, ..., D„_1>0, D„>0

(lub prościej

D,>0, D2>0, ..., Dn-i > 0 , a„>0).

Warunek ten jest konieczny i wystarczający. 
W przypadku równania stopnia trzeciego

a0 x3 + x2 + a2 x + a3 = 0 (a0 > 0)

otrzymamy warunki

(9.2) at >0,
a. a0

= a,a2 — a3ao>0, a3>0.
a2

Dla równania stopnia czwartego

au X1 + a] x3 + a2 x2 + a3 x + at = 0 (a0 > 0)

otrzymamy warunki następujące:

Ol 0,
Oi

a3

“o

a2
a4 > 0,

czyli
aj 0, (Z4 Cto a3 a0 0,

a3 (a, a2 — a0 a3) — a, af > 0 , a4 > o.

Na podstawie warunku czwartego wynika z warunku trzeciego

a3 (a, a2 — a0 a3) > a4 ai > 0 .

Zatem drugi warunek może być zastąpiony warunkiem a3 > 0. Ostatecznie 
dla równania stopnia czwartego mamy warunki

(9.3) a!>0, a3>0, a3 (a4a2 — aoa3) — a4ai>0, a4>0.
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10. Inne kryteria

W związku z badaniem pewnych układów elektrycznych Nyquist,. 
[.13], wyprowadził kryterium stateczności w pierwszym przybliżeniu nie 
wymagające obliczania wyznaczników H u r w i t z a. Kryterium to- 
zostało uzupełnione i rozszerzone na układy automatycznej regulacji ma­
szyn przez M i c h a j ł o w a. Podamy je tutaj w formie różniącej się 
nieznacznie od formy spotykanej w literaturze.

Rozpatrzmy funkcję

doź" + a, P1 1 a«—1ź + an ’

przy czym
d0 ż” -f- 2” -1 + ... + an - i 2 + an

jest lewą stroną równania charakterystycznego pierwszego przybliżenia
(7.5). Funkcję K(2) będziemy uważali za pewną funkcję w (z) zmiennej 
zespolonej z = x + i y

(10.2) w(z) =----—-----  ± 1---------------- ,---- .
aozn + 1 + ... + an-i z + an

y Jak wiemy, koniecznym warunkiem statecz­
ności układu są ujemne części rzeczywiste pier-

—P wiastków równania

\ (10.3) a0 z" + di z"-1 4-... + an-i z + a„ = 0 .
V \
/ I K _ ,

------  I Wynika z tego bezpośredni wniosek, że funk- 
/ cja w (z) w przypadku układu statecznego nie
/ posiada biegunów w prawej półpłaszczyźnie x y.

A zatem jeżeli weźmiemy pod uwagę kontur r 
na płaszczyźnie x y (rys. 2), to przy przejściu 

Rys. 2 wzdłuż tego konturu argument zmiennej w nie
zmienia się.

Odwzorowanie konturu P na płaszczyznę w = u + i v otrzymamy 
w formie krzywej S określonej równaniem

1(10.4) w(iy) =
«o (i UY + ai^y')n 1 + • • • + i y + an

Ponieważ przyrost argumentu w wzdłuż krzywej S musi być równy zeru„ 
warunkiem stateczności jest położenie punktu w = 0 poza obszarem, 
ograniczonym konturem S.
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Na rysunku 3a przedstawiona jest krzywa £ dla układu niestatecznego, na 
rys. 3b — krzywa S dla układu w stanie krytycznym; rys. 3a i 3b przed­
stawiają krzywe >S dla układów statecznych. Linie ciągłe odpowiadają war­
tościom y > 0, linie przerywane odpowiadające y < 0 są do nich syme­
tryczne.

Rys. 3

Niezależnie od powyższego w r. 1938 Micha jłow wypro­
wadził inaczej sformułowane kryterium w zastosowaniu do układów 
automatycznej regulacji. Znaleźć je można nie tylko w wymienionej pracy 
Michajlowa, lecz również na przykład w podręczniku [12].

11. Przykłady

Rozpatrzmy najpierw najprostszy typ regulatora przedstawiony sche­
matycznie na rys. 4.

Oznaczając przez cp odchylenie prędkości kątowej wału silnika od sta­
nu ustalonego oraz przez y odchylenie tachometru możemy napisać 
równania ruchu zakłóconego w postaci

(11.1) Try + Tky + öy — tp, Ta<p + 0<p — — y, 
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przy czym parametry T2, T*, Ó charakteryzują dynamiczne własności ta­
chometru, natomiast Ta,& własności silnika.

Rys. 4

Równanie charakterystyczne ma 
postać

(11.2) ^rTa^+ {TaTk + Tir(~)VA2 +

+ (d Ta + 0 T*) 2 + <5 0 + 1 = 0 .

Warunki Routha-Hurwitza 
są następujące (por. p. 9):

(11.3)
I T2 Ta > 0 , (Ta Tk + T? 0) > 0 , 
I (dTa + 0T*)>O, Ó0>O 

oraz

(11.4) T2 Tk Ó + Ta Tl Q + 02 Tl Tk — TlTa>^.

Nierówności (11.3) są spełnione zawsze. Z nierówności (11.4) otrzy­
mamy następujące określenie granicy stateczności:

(11.5) Tg Tkd Tle 02 Tk
T2r Tl Ta

Wynika z niego, że należytą stateczność układu można uzyskać przez do­
bór dużych wartości ó i Tk (to znaczy zmniejszenie czułości regulatora 
i zwiększenie tłumienia) oraz małych T2 (tzn. małej bezwładności tacho­
metru). Zbadamy jeszcze, jaki wpływ na stateczność ma parametr Ta 
(«czas rozbiegu» silnika). Traktując lewą stronę równania (11.5) jako 
funkcję Ta znajdziemy przez różniczkowanie, że osiąga ona minimum przy 

(11.6) Tl=^.

W celu zwiększenia stateczności należy wielkość Ta dobrać tak, aby moż­
liwie dużo różniła się od wartości (11.6).

Rozpatrzmy teraz układ z siłownikiem regulacyjnym bez odwodzenia 
(rys. 5).

Równania ruchu zakłóconego mają postać

(11.7) T2rr] + Tkr/+ Ór] = (p, Tsj‘l = r], Tay + ey^-- p..

Oznaczenia przyjęto takie same, jak w przykładzie poprzednim, a po­
nadto Ts i p. oznaczają parametr i argument siłownika.

Równanie charakterystyczne jest

(11.8) TaTiT2ź4 + T5(0T2 + TaT^Ż3 + T4dTa + 0W2 + d0TU + l==O.
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Warunki Routha-Hurwitza będą spełnione, jeżeli spełniona 
będzie nierówność

<11.9) (0T? + TaTft)x

*[d0Ts(dTa + 0Tk) —

— (0Tr + TaTk)] — 

— d2&2TsTaT^>o.
Wynikają z niej dwa 

wnioski:
(a) aby układ był statecz­

ny, musi być koniecznie 
Tk 0 i możliwie duże,

(b) w przypadku gdy 0=0, 
co oznacza, że silnik nie po- 
.siada zdolności samoczynnego 
wyrównania prędkości kąto-

Rys. 5

wej ruchu, układ regulacyjny jest niestateczny przy dowolnych wartościach

Przy silnikach, dla których 0 = 0, jedynie statecznym typem regu­
latora jest układ z odwodzeniem (rys. 6).

Z równań ruchu zakłóconego

(11.10)

Trij + Tk^ ÓT] = (p,

Ts /Ll+ /2 = ^, 

Taq> — — (i
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można wyprowadzić równanie charakterystyczne

/ । / Tl . Tk \ 3 , Tk L
z +----- -------------- Z H-----------2 1

\dTr Tsó] dTr\(11.11)
rp \ rp- rp rp rp- rp1 k \ -2 . + k lk , . 1 k i k 1 k

~ Z I-------- 2------- Z I------------------2-------
ótJ ót; óts óTsdT2róTa

oraz warunek stateczności

[n(11.12) TA
ÓTJ

Tl
d2 T2 T

n , Tk
ÓT2T ÓTJ[ÓT2

I Tl T„ \Zc । k | 
+ ~żrj

Ti
S^TT

T«
- * ->0 
^4 J'4 y2 '

Jak widać, koniecznym warunkiem stateczności jest istnienie tłu­
mienia Tk.

Wszystkie powyższe rozważania dotyczące stateczności układów me­
chanicznych oraz wyprowadzone kryteria mogą być rozszerzone na ukła­
dy elektryczne. Rozpatrzmy tu najprostszy przykład generatora triodo- 
wego o sprzężeniu zwrotnym. Schemat generatora przedstawiony jest na 
rys. 7. Układ rezonansowy włączony jest w obwód siatki.

Charakterystykę lampy przyjmujemy w postaci
(11.13) ia = Sug + f (Ug) ,

Rys. 7

przy czym f (Ug) nie zawiera w swoim roz­
winięciu wyrazów stopnia niższego niż 
drugi. Zatem przy rozpatrywaniu zagad­
nienia w pierwszym przybliżeniu f (ug) 
może być pominięte. Potencjał siatki us 
wyrażamy przez ładunek kondensatora q

(11.14) u^=c-

Zmiana natężenia prądu anodowego ia powoduje w obwodzie rezonanso­
wym siłę elektromotoryczną o wielkości 

(11.15) dia 
dtM

Zatem równanie drgań w obwodzie rezonansowym ma postać

(11.16) Lq + Rq+-^ = -M^

Wykorzystując liniową część równania (11.13) oraz zależność (11.14) otrzy­
mamy
(11.17) Lq + /R+^-jq+^q=O.
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Równanie charakterystyczne ma postać

(11.18) Lż2 + (r +

Kryteria stateczności stanu q = 0 są więc

(11.19) R+^->0, CL>0.

Drugi z tych warunków jest zawsze spełniony. Zatem, aby układ był ge­
neratorem drgań, musi być

(11.20) RC + MS<0.

Stąd wniosek, że musi być M < 0 oraz musi być M S dostatecznie duże 
co do bezwzględnej wartości

(11-21)

Warunek ilustruje rys. 8a i 8b. Układ na rys. 8a nie jest generatorem, 
gdyż M > 0; natomiast układ na rys. 8b może być generatorem, gdyż 
M<Q.
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Резюме
МЕТОДЫ ТЕОРИИ УСТОЙЧИВОСТИ ДВИЖЕНИЯ

В работе приводятся основные теоремы и методы теории устойчи­
вости движения, ограничиваясь при этом устойчивостью в смысле 
Ляпунова и приведением очерка его теории.

В отдельных главах работы рассматриваются следующие вопросы:
(1) основные понятия и дефиниции, а также общая характерис­

тика методов исследования устойчивости;
(2) теоремы Ляпунова для установившихся и неустановив- 

шихся движений. Эти теоремы приводятся в некотором сокращении, 
основываясь на фундаментальном труде Ляпунова с 1892 г.;

(3) теоремы об устойчивости в первом приближении, критерии 
Рауса и Гурвица и критерий Никвиста; приводится не­
сколько примеров исследования устойчивости в первом приближении 
и при помощи общих теорем Ляпунова.

Summary

METHODS OF THE THEORY OF STABILITY OF MOTION

Basic theorems and methods of the theory of stability of motion are 
discussed. The considerations are confined chiefly to stability as presented 
by Lyapunov and to the principles of this theory.

The following problems are treated in the successive sections.
(1) Basic notions, definitions and general characteristics of investiga­

tion methods of stability.
(2) Lyapunov’s theorems for steady and unsteady motion. These 

are treated somewhat briefly, on the basis of the fundamental work of 
Lyapunov (1892).

(3) The stability theorems in the first opproximation, the criteria of 
Routh and Hurwitz and the criterion of Nyquist are discussed. 
Also some examples are given of stability investigations in the first 
approximation and by means Lyapunov’s general theorems.

Praca została złożona w Redakcji dnia 25 maja 1954 r.
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Celem niniejszej pracy jest przedstawienie aktualnego stanu wiado­
mości o płaskiej, ustalonej fali uderzeniowej, występującej w gazie lep­
kim i przewodzącym ciepło *).

*) Praca przedstawiona na Kursie Naukowym Zakładu Mechaniki Ośrodków 
Ciągłych IPPT PAN w Międzyzdrojach w sierpniu 1954 r.

Szczególną uwagę zwrócono na wyniki uzyskane na gruncie mecha­
niki ośrodków ciągłych, ponieważ nadają się one do przedyskutowania ze 
względu na swą przejrzystość, zaś jakościowo są najzupełniej pra­
widłowe — zwłaszcza w przypadku fal słabych. Wyniki otrzymane w opar­
ciu o teorię kinetyczną gazów oraz prace doświadczalne omówiono bardziej 
pobieżnie, traktując je — w istocie — jako podstawę do krytyki wyników, 
jakie daje mechanika ośrodków ciągłych.

1. Wstęp

Zjawisko fali uderzeniowej polega na pojawieniu się w obszarze wypeł­
nionym przepływającym gazem bardzo cienkich warstw, w których ule­
gają gwałtownej zmianie parametry hydrodynamiczne gazu, takie jak 
prędkość, ciśnienie i temperatura. Grubość tych warstw — jak zobaczy­
my — jest rzędu swobodnej drogi cząsteczki gazu i z tego względu 
wspomniana warstwa bywa często traktowana jako powierzchnia niecią­
głości parametrów.

Na zjawisko pojawiania się nieciągłości w gazie ściśliwym, nielepkim 
i nieprzewodzącym ciepła wskazały przede wszystkim badania teoretyczne, 
przeprowadzone mniej więcej 100 lat temu przez R i e m a n n a, [1]. 
Badając zjawisko rozchodzenia się w gazie nielepkim fal płaskich o skoń­
czonej amplitudzie R i e m a n n dowiódł, że rozwiązanie określające 
ruch fal zgęszczeniowych jest jednoznaczną funkcją drogi (x) tylko 
w skończonym przedziale czasu 0<t<T (rys. 1).

Poczynając od chwili t=T w gazie pojawia się nieciągłość, na co wska­
zuje nieskończenie wielki gradient parametrów ruchu gazu (np. gradient 
prędkości du/dx=oo na rys. 1). Dla t>T rozwiązanie staje się wielowarto- 
ściowe tracąc tym samym sens fizyczny i świadcząc, że po czasie T prze­
bieg zjawiska staje się jakościowo odmienny.
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Od 1870 roku ukazuje się wiele prac teoretycznych, poświęconych ba­
daniu wspomnianej nieciągłości, przy czym -—■ w miarę rozwoju mecha­
niki płynów — uwzględniano w coraz to wyższym stopniu rzeczywiste 
właściwości gazu, uzyskując coraz bliższy rzeczywistości obraz zjawiska.

Najprostszy model fali uderzeniowej, podany przez H u g o n i o t ar 
przedstawia ją jako powierzchnię nieciągłości, na której zachodzi «skok» 
parametrów ruchu gazu, między innymi skok temperatury (rys. 2). Model 
ten obowiązuje tylko dla gazu doskonałego, tzn. nielepkiego i nieprzewo- 
dzącego ciepła; zasługuje on jednak na szczególną uwagę, ponieważ ze 

względu na swą prostotę jest 
bardzo wygodny w praktycz- 

* I gaz dastoia^,_________________ nych obliczeniach, a prócz
Gaz lepki i prze- tego nje stoi bynajmniej1 "otiząai ciepło ° j j j

u [_____________________L _ —. 1^7 w sprzeczności z wynikami,
prostszych doświadczeń, po- 

0 * legających np. na obserwo-
Rys. 2 waniu fali metodą cieniów,

metodą T ó p p 1 e r a lub inną.
Jednak już bardzo wcześnie, bo w 1870 r. R a n k i n e, [2], zauwa­

żył, że w gazie przewodzącym ciepło nie może występować nieciągłość 
temperatury. Przypadek ten (gaz nielepki, ale przewodzący ciepło) zo­
stał szczegółowiej zbadany przez P r a n d t 1 a, [4], który istotnie 
stwierdził ciągłość zmian parametrów określających ruch gazu w fali 
uderzeniowej, a ponadto oszacował grubość warstwy, w której zachodzi 
najbardziej gwałtowna zmiana parametrów (tzw. «grubość fali uderzenio­
wej»). Oszacowana na 0,0005 mm grubość fali uderzeniowej stanowiła 
teoretyczne potwierdzenie trafności nieciągłego modelu fali.

Po Prandtlu podał R a y 1 e i g h, [5], rozwiązanie w postaci 
skończonej dla gazu lepkiego, ale nieprzewodzącego ciepła, a ponadto do­
wiódł w sposób przybliżony istnienia rozwiązań ciągłych dla gazu lepkie­
go i przewodzącego ciepło (stałe współczynniki lepkości i przewodności). 
Prawie równocześnie z nim, bo również w r. 1910, opublikował T a y- 
1 o r, [6], rozwiązanie przybliżone uwzględniające zarówno lepkość, jak 
i przewodność cieplną gazu, ale obejmujące tylko zakres słabych fal 
uderzeniowych. Po nim — w kolejności chronologicznej — ogłosili swe 
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prace Beck e r, [8], który podał rozwiązanie w formie skończonej 
dla stałych współczynników lepkości i przewodności cieplnej przy 
szczególnej wartości liczby P r a n d 11 a Pr ~ 3A; Thomas, [10], 
który pierwszy uwzględnił zmienność współczynników lepkości n i prze­
wodności 2 z temperaturą ~ ]/T, 2— ]/T), nie podając jednak rozwiązania 
w formie skończonej, lecz tylko dyskutując jego istnienie, i wreszcie 
M o r d u c h o w i L i b b y, [11], którzy zbadali przypadek stałej 
liczby Prandtla Pr=3/4 i zmiennych współczynników lepkości, 
i przewodności według prawa ^~T", z ~ Tn, gdzie Ogn^l. Najnowsze 
prace (M i s e s a, [13], i G r a d a, [18]) dotyczą bardziej ogólnego 
przypadku, mianowicie dowolnej wartości liczby Prandtla.

Wszystkie wymienione prace (nie wspominamy tu o mniej ważnych, 
których obszerny wykaz zamieszczony jest na końcu publikacji) opierają 
się na równaniach mechaniki ośrodka ciągłego i odnoszą się do fali uderze­
niowej ustalonej i płaskiej. Wspólny ich wynik można zamknąć w dwu 
następujących stwierdzeniach: (1) funkcje opisujące falę uderzeniową 
w gazie lepkim i przewodzącym ciepło są ciągłe wraz ze swymi pierw­
szymi pochodnymi względem drogi; (2) grubość fali uderzeniowej, tzn. gru­
bość warstwy, w której zachodzi głównie zmiana parametrów ruchu gazu, 
jest rzędu swobodnej drogi cząsteczki gazu.

Ten drugi wynik świadczący o tym, że nieciągły model fali uderzenio­
wej stanowi bardzo dobre przybliżenie rzeczywistości, nasunął jednak 
już Beckerowi zrozumiałą wątpliwość co do stosowalności równań me­
chaniki ośrodka ciągłego do opisu zjawiska fali uderzeniowej *).

*) Równania oparte na założeniu ciągłości gazu nie nadają się oczywiście do opisu 
zmian zachodzących na odległościach rzędu drogi swobodnej.

Wątpliwość ta stała się — z kolei — impulsem do badań fali uderze­
niowej metodami teorii kinetycznej, uwzględniającymi «ziarnistą», mo­
lekularną strukturę gazu. Stosunkowo nieliczne prace, [16], [17], [18], 
z wynikami takich badań ukazują się dopiero od r. 1950, przy czym — 
w zakresie fal słabych — potwierdzają one na ogół wyniki otrzymane przy 
założeniu ciągłości gazu.

Jedyną znaną dzisiaj podstawą sprawdzenia wyników wspomnianych 
wyżej prac teoretycznych drogą ich konfrontacji z doświadczeniem sta­
nowią pomiary grubości fali uderzeniowej, przeprowadzone przez C o- 
w a n a i Horniga, [19] i [20]. Z tego względu — choć obarczone 
są one błędem około 25°/o i nic nie mówią o samej strukturze fali — za­
sługują na bliższą wzmiankę. Jak zobaczymy, wyniki pomiarów potwier­
dzają wyniki prac teoretycznych, przynajmniej w zakresie fal słabych.
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2. Struktura fali uderzeniowej w świetle równań mechaniki płynu ciągłego

Jako podstawę do rozważań niniejszego p. przyjmiemy znane równa­
nia mechaniki gazu ciągłego, lepkiego i przewodzącego ciepło, odniesio­
ne do przypadku ruchu ustalonego, jednoparametrowego, prostoliniowego, 
o równoległych liniach prądu, [12]. Dla uproszczenia założymy, że rów­
nanie stanu gazu doskonałego pozostaje w mocy. Ponadto wprowadzimy 
znany z termodynamiki związek między lepkością i temperaturą, albo — 
co na jedno wychodzi wobec cp = const, x = const — między lepkością 
i entalpią. Otrzymamy następujący układ równań:

równanie ciągłości 

(2.1)

równanie zachowania pędu (równanie N aviera-Stokesa)
. du dp 4 d / du\

!) Qu~j— — j- + "w-j- I pdx dx 3 dx \ dx

równanie zachowania energii

o d /• । u2\ dli 4 ^\1
o H—A* j— ”E> F “ó“ o —dx \ 2 / dx \Pr 3 2 /

równanie stanu gazu doskonałego 

(2.4) p x — 1 . 
— —---------1
Q X

i związek między lepkością i entalpią

>) ^=uy'.
fh \ h /

W równaniach tych oznaczają: 
q gęstość gazu, 
u prędkość gazu, 
p ciśnienie gazu, 
p lepkość dynamiczną gazu (zależną od temperatury),

Pr liczbę P r a n d t 1 a (niezależną od temperatury), 
ż współczynnik przewodności cieplnej (zależny od temperatury), 

cp ciepło właściwe gazu przy stałym ciśnieniu (niezależne od tem­
peratury),

x wykładnik izentropy,
i entalpię, 

n wykładnik określający zależność lepkości od entalpii (lub'tem­
peratury).
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Znajdziemy obecnie rozwiązanie szczególne układu równań (2.1)-(2.5) od­
powiadające następującym warunkom: (1) dla x ------ oo przepływ ma dą­
żyć asymptotycznie do prądu jednostajnego określonego wartościami ut, 
Pi, 9i, h, /^i, (2) dla + oo przepływ ma również dążyć asymptotycznie 
do prądu jednostajnego, określonego wartościami w2, p2 ,p2, i2, P2 różnymi 
od poprzednich, (3) rozwiązanie ma być ograniczone w obszarze 
— 00 < x < + 00 .

Żądane rozwiązanie znaleźć można drogą następującego postępowania.
Równanie (2.1) posiada widoczną całkę

(2-6) O U = COnst = Pj Uj.

Podstawiamy (2.6) do (2.2) i całkujemy otrzymując

(2.7)
1 4 du 1

= + —+ C,.

Następnie wstawiamy (2.6) do 
przekształceniach dochodzimy do

(2.3), całkujemy (2.3) jednokrotnie i po 
wyrażenia 

(2.8) 4 „ u2\ż

Cp Oj UA

Liczba Prandtla przybiera dla gazów, których stan jest od­
legły od punktu skroplenia, wartości od około 0,66 do około 0,9 i jest dla 
takich gazów prawie stałą funkcją temperatury. Dla przykładu podamy, iż 
dla powietrza o temperaturze 0°C wartość Pr = 0,720, zaś dla powietrza 
o temperaturze 1000°C — Pr = 0,727, [12].

Przyjmując Pr = cost = 3/4, co jest w pełni usprawiedliwione w świe­
tle powyższych danych, otrzymujemy równanie (2.8) w postaci umożli­
wiającej rozdzielenie zmiennych i znajdujemy jego całkę ogólną

(2.9)
„2 f dx

i+^ = C2 + C3 ecP9'a'ij-

Całka ta została podana po raz pierwszy przez Mor duchowa 
i L i b b y ’ e g o, [11]; poprzedni badacze ograniczali się do całki 
szczególnej bez członu ostatniego zawierającego C3.

W oparciu o sformułowane uprzednio warunki wyznaczymy obecnie 
stałe C1; C2, C3.

Ponieważ dla x — — 00 musi być u = u1, zaś du/dx=0, więc 
z równania (2.7), odniesionego do x =— 00, wypada

(2.10) Cj = Pi + Oj U\ .
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Do określenia stałej C3 posłużymy się warunkiem ograniczoności roz­
wiązania. W równaniu (2.9) funkcja jest ograniczona i dodatnia, wo­
bec czego całka w wykładniku

gdy x -> + oo, a to pociąga za sobą zdążanie całej prawej strony równa­
nia (2,9) do nieskończoności, i — odpowiednio do tego —■ sprzeczny z za­
łożonym warunkiem nieograniczony wzrost funkcji i oraz u. Musi być 2) 
zatem

2) Przypadki C3>0 i C3<0 są szczegółowo przedyskutowane w [11]; odpowiada­
jące im rozwiązania mają sens fizyczny tylko w ograniczonym obszarze zmienności

C3 = 0.

Stałą C2 określamy — podobnie jak Ct — z warunków dla x = — oo 

otrzymując

(2.11) c2 = i1+-^.

Rugujemy obecnie z (2.7) wszystkie funkcje oprócz u, wykorzystując 
przy tym zależność (2.4) i (2.11) i otrzymując jako wynik tych przekształ­
ceń równanie

4 u. / u? u2? du x + 1
(2.12) - ----— 1 + -4- — —- u —= ——u  —23 Uj \ 2 i, 2 / dx 2 x

Równanie (2.12) doprowadzamy do postaci bezwymiarowej przyjmując 
jako skalę prędkości wielkość a jako skalę długości wielkość

(2.13) l, = 1,255 l/x—,
gifli

przedstawiającą średnią drogę swobodną cząsteczki gazu, [12], w wa­
runkach odpowiadających x —— oo .

Wprowadzając nowe funkcje i wielkości bezwymiarowe U = u/u1;

X = ~, Ma^^,
li «i

(x— l)i1 = a2, gdzie a, jest prędkością dźwięku
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w warunkach odpowiadających x = — oo, otrzymamy ostatecznie

‘(2.14) 4_
3 -1,255 ] x Mai Mai (! — u2)

dU 
dX

x — 1
2

7-- U3 — /1+ 1 i u 4- I----- - 4---- -—
2 x \ z Mdl/ \ 2 z ^Maj

Przedyskutujmy obecnie równanie (2.14).
Zauważymy przede wszystkim, ze wyróżnik trójmianu kwadrato­

wego stanowiącego prawą stronę równania

(2.15) 1 2

J z2 7Mai1 z

Wobec tego trójmian można — niezależnie od wartości z oraz Mai — 
rozłożyć na czynniki rzeczywiste i przedstawić go w postaci

(2.16) -~(U-UAUU-U2),

przy czym

(2.16.1)

zaś

(2.16.2)

^ = 1,

Ma\ (z —1) + 2
Ma2 (z 4- 1)

Rozpatrywany trójmian kwadratowy jest ujemny przy wartościach Z7 
zawartych między pierwiastkami U1 i U2, natomiast współczynnik przy 
dUdX na lewej stronie równania (2.14) jest dodatni, jeśli tylko 
U2< 1 4~ [*/(*;—l)Ma^], co jest oczywiście spełnione zawsze przy U S 1 , 
a także w dostatecznie małym zakresie U>1. Wobec tego pochodna 
dU/dX<0 między pierwiastkami i jest w tym obszarze ograniczona. 
Zauważymy ponadto, że dU/dX-+O(dX/dU—>------oo) dla U->U1,U->U2• 
Z tych właściwości pochodnej wynika, że U} odpowiada punktowi 
X = — oo , U2 — punktowi X = 4- oo , funkcja U (X) jest stale malejąca 
i wobec tego

(2.17) U2 < U i = 1 .

Równanie (2.14) daje więc funkcję U(X) odpowiadającą postawionym 
warunkom (1), (2) i (3). Jej przebieg podany jest na rys. 2 linią ciągłą.
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Podstawiając do nierówności (2.17) obliczoną uprzednio wartość Uz 
i rozwiązując otrzymaną nierówność względem Ma± stwierdzimy, iż musi 
być

(2.18) Ma, > 1.

Znaczy to, że przepływ o właściwościach określonych przyjętymi wa­
runkami, asymptotycznie zdążający do jednostajnego przy x-^ — oo- 
oraz dla x -> + oo i przy tym różny od banalnego przepływu, określonego' 
przez u(x) = const, p(x) = const, o (x) = const..., istnieje tylko wtedy, gdy 
jest początkowo (tzn. dla = — oo) naddźwiękowy.

Znajdziemy obecnie zależność między liczbami Macha Ma, i Ma2 
określającymi przepływ — odpowiednio — przy x = — oo oraz x = + oo. 

Korzystając z równania (2.9) spełnionego dla x=4-oo i uwzględniając 
C3 = 0 oraz (2.11) otrzymujemy po podzieleniu przez u2

h 1 =2i 21 . JL 21
u2 2 u2 u2 2 ul ’

a następnie podstawiając 
Ma, = u2/a2

(x — 1) = aj , (x — 1) i2 = a2, Maj = uja

(x — 1) + 2
1

(x — l)Ma2 + — U2 r 2

Rozwiązując względem Ma2 po uprzednim wstawieniu wartości U2 z (2.16.2) 
otrzymujemy ostatecznie

1 + Mai
(2.19) Ma2 =------------ —.

Łatwo sprawdzić, że dla Max > 1 zgodnie z warunkiem (2.18) wypad- 
nie Ma2 <1, co świadczy o tym, że rozpatrywany przepływ ma charakter 
fali uderzeniowej zgęszczeniowej.

Należy podkreślić, że wniosek ten wysnuliśmy bez stosowania drugiego 
prawa termodynamiki, co było natomiast rzeczą niezbędną w przypadku 
badania fal uderzeniowych w gazie nielcpkim i nieprzewodzącym ciepła. 
Z samych bowiem tylko równań hydrodynamicznych, gazu doskonałego 
wynikała -— wskutek ich odwracałności — możliwość istnienia zarówno 
zgęszczeniowych, jak i rozrzedzeniowych fal uderzeniowych, co wymagało 
wzięcia pod uwagę dodatkowych kryteriów termodynamicznych.
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Zależność (2.19) jest znana z teorii fali uderzeniowej w gazie nielep- 
kim i nieściśliwym; podobnie moglibyśmy wykazać, że między wszystkimi 
parametrami ruchu gazu dla x = — oo (wskaźnik 1) oraz dla x = + oo- 
(wskaźnik 2) zachodzą w przypadku gazu lepkiego i przewodzącego cie­
pło związki identyczne ze znanymi z teorii fali uderzeniowej w gazie 
nielepkim i nieściśliwym, w szczególności że związki Rankine’ a - 
Hugoniota pozostają ważne. Widać więc, że uwzględnienie lepkości 
i przewodności cieplnej powoduje ciągłość przejścia parametrów od 
jednej wartości granicznej (dla x = — oo) do drugiej (dla x = + oo), nie 
zmieniając jednak samych wartości granicznych (rys. 2, linia przerywana).

Na podstawie równania (2.19) możemy ocenić wpływ, jaki wywiera 
wartość n na przebieg U(X).

Wykładnik n jest dodatni i waha się w granicach 0,64 - 0,95 dla gazów 
rzeczywistych, [12], jest przy tym prawie niezmienny z temperaturą. 
Z teorii kinetycznej gazów wynika n = V2, zaś założenie n = 0 jest rów­
noważne z założeniem stałych, niezależnych od temperatury współczyn­
ników lepkości i przewodności cieplnej.

Traktując w równaniu (2.14) pochodną dU/dX jako funkcję n, a pozo­
stałe wielkości jako stałe, stwierdzimy łatwo, iż 

d 
dn

ldU\\dx) dU\, 
dX/ln 1 + * „ 1 Md((l —U2) >0

dla U 2 < U < 1, a zatem dla rosnącego n linia U(X) staje się mniej stro­
ma, co widać wyraźnie na rys. 4 (przypominamy, że dU/dX < 0).

Kończąc omówienie równania (2.14) zauważymy jeszcze tylko, że nie 
nadaj e się ono do przedyskutowania wpływu samej tylko lepkości 
(/z 0 , 2 = 0) lub samej tylko przewodności cieplnej (^ = 0 , 2 7^ 0) 
na przebieg funkcji U(X). Dzieje się tak dlatego, że oraz 2 są związane 
ze sobą liczbą Prandtla, Pr = 3/i, i nie można ich w równaniu (2.14) 
oddzielić od siebie.

Wpływ samego tylko /.z bądź samego tylko 2 przedyskutujemy wpro­
wadzając od razu do równań (2.1) - (2.5) /z = 0 albo 2=0, przy czym po 
przeprowadzeniu przeróbek i przekształceń analogicznych do tych, które 
posłużyły do wyprowadzenia równania (2.14), otrzymamy
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dla przypadku ź = O, u O i zmiennego z temperaturą, oraz

ź
cp ?i ui h

<2.14.2) 2U \1+ xMa[] dX ^(u-i)(u-u2)
Zł X

dla przypadku A 7^ 0 , /z = 03).

3) W równaniu (2.14.2) uzyskano zmienną bezwymiarową X dzieląc x przez l,, 
podobnie jak to miało miejsce w przypadku równań (2.14) i (2.14.1.). Wielkość i, należy 
tu jednak traktować — odmiennie niż poprzednio — jako dowolną długość porów­
nawczą, a nie jako średnią drogę swobodną, bo ta ostatnia jest — formalnie rzecz 
biorąc — zerem wobec = 0. Nie wpływa to oczywiście na wyniki dyskusji rów­
nania (2.14.2).

Prędkość U występująca we wszystkich trzech równaniach [(2.14), 
(2.14.1) i (2.14.2)] wyraża się wzorem (2.16.1).

Trójmian kwadratowy po lewej stronie równania (2.14.1) jest dodatni, 
jeśli tylko Maf>(x— l)^«^1/?, co łatwo stwierdzić badając jego wy­
różnik. Wobec tego w interesującym nas zakresie Mat > 1 pochodna 
dU/dX <7 0 i funkcja U (X) ma przebieg identyczny z przedstawionym na 
rys. 2, wynikłym z dyskusji równania (2.14). Uwzględnienie samej tylko 
lepkości /u 0 wystarcza więc do uzyskania ciągłości parametrów hydro­
dynamicznych opisujących falę uderzeniową i to zarówno dla przypadku 
.słabych, jak i mocnych fal.

Nieco inaczej przedstawia się sprawa w przypadku uwzględnienia sa­
mej tylko przewodności cieplnej A 7^ 0.

Wprowadzając oznaczenie

(2.20) u0=4(i+ \
1 \ 

xMa^l

możemy przepisać równanie (2.14.2) w postaci

(2.21) d U _ x + 1 cp g, u, (U — 1) (U — U2) 
dX — 27 2Z U— Uo

Jeśli w zakresie U2<U< 1 ma być dU/dX < 0, podobnie jak to mia<- 
ło miejsce w równaniach (2.14) i (2.14.1), to musi być

U — Uo > 0

w tym zakresie, co pociąga za sobą w sposób oczywisty warunek

(2.22) Uo^U2.
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Podstawiając do (2.22) wartości (2.20) i (2.16.1) otrzymamy po rozwią­
zaniu względem Mar

(2.22.1) x(3—x)

co daje Mat S 1,195 dla x = 1,4.
Stąd wniosek, że uwzględnienie samej tylko przewodności cieplnej 

ż 0 wystarcza również do uzyskania ciągłości parametrów (wraz z ich 
pierwszymi pochodnymi), opisujących falę uderzeniową, ale tylko w za­
kresie fal słabych

Dla dostatecznie mocnych fal warunek (2.22) nie jest spełniony, wskutek 
czego pochodna (2.21) zmienia znak w punkcie Uo, przypadającym wówczas 
między i U2, stając się w tymże punkcie nieskończenie wielka. W kon­
sekwencji funkcja U(X) ma przebieg podany na rys. 3 linią ciągłą, jest 
więc dwuwartościowa i nie istnieje w całym obszarze — oo < X < -F oo.

Warto nadmienić, że przy bardziej subtelnym rozpatrzeniu zagadnienia 
(polegającym na przejściu z lepkością do granicy równej zeru zamiast 
przyjęcia wprost /z = 0) otrzymuje się, [18], w przypadku Ż^O graniczną

istniejącą w całym obszarze zmienności X. Funkcja ta jestfunkcję U(X) 
przedstawiona na rys. 3 linią 
przerywaną.

W świetle powyższych wy­
wodów słuszne wydaj e się 
stwierdzenie, że wpływ lepko­
ści jest «mocniejszy» od wpły­
wu przewodności cieplnej, jeśli 
chodzi o uzyskanie ciągłości pa­
rametrów opisujących falę ude­

X*0

Rys. 3

rzeniową.
Całkę równania (2.14) można podać w postaci skończonej tylko dla 

pewnych szczególnych wartości wykładnika n, a mianowicie dla n = 0, 
n = 1/a, [18], oraz n = 1. Dla wartości n innych niż podane trzeba prze­
prowadzić całkowanie numeryczne.

Ponieważ wartość n nie ma wpływu jakościowego na przebieg funkcji 
U(X), zaś wpływ ilościowy określiliśmy już uprzednio, więc podamy — 
dla przykładu — tylko całkę dla n = 0. Ma ona postać.

(2.23)
3-1,255

4 x
Mai i1 Ma^ X ln Ci (U — U2)^ ’
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gdzie C4 zależy od wyboru układu odniesienia i dla przepływu o zadanych 
uprzednio warunkach brzegowych musi być dodatnia. (Przypadek Ci < 0 
został przedyskutowany w [11]; nie ma on sensu fizycznego, ponieważ 
dla x-> + oo również U^ + c«, zaś ----oo; ponadto entropia maleje 
tu ze wzrostem x).

Stałą Ci określimy przyjmując początek układu odniesienia w punkcie 
przegięcia diU/dX- = 0; punkt ten odpowiada wartości U = j/U2.

Otrzymamy

3-1,255^ z / 1 \ /

(2.24)
1-1 u2

Łatwo sprawdzić, że całka (2.23) posiada istotnie właściwości prze­
widziane na podstawie analizy równania (2.14).

Znając U(X) możemy z łatwością znaleźć pozostałe niewiadome funk­
cje, a więc p(x), gW, oraz ^(a?). Powiadamy często, że zespół tych
wszystkich funkcji przedstawia (opisuje) strukturę fali uderzeniowej.

Rys. 4 Rys. 5 Rys. 6

Rysunek 4, [11], przedstawia wykres U(X) wykonany dla dwu różnych 
liczb Macha i dwu różnych wartości n. Należy zaznaczyć, że dla 
n = 0,768 (powietrze) znaleziono U(X) drogą całkowania numerycznego.

Rysunki 5 i 6, zaczerpnięte z tego samego źródła, przedstawiają roz­
kład ciśnień oraz przebieg entropii w fali uderzeniowej dla tych samych 
wartości n i Ma^
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Jako podstawa do wykonania wykresu ciśnień posłużył wzór

(2.25) 1 + ^1 Ma[(l — U2)

stanowiący przekształcenie wzoru (2.4) za pomocą zależności (2.6), (2.9) 
i (2.11). U oznacza tu funkcję otrzymaną w wyniku scałkowania równa­
nia (2.14).

Wzór służący do wykonania wykresu entropii wyprowadza się na pod­
stawie znanej z termodynamiki zależności

i oS — St = Cp In .---- (cp — c^jln--“, 
h--------------------Pi

która po uwzględnieniu (2.6), (2.9) i (2.11) przybiera postać

(2.26)
Cv

In (J^-\ = ln
\ Pt / \ h /

Podstawiając (2.25) do (2.26) otrzymujemy ostatecznie

(2.26.1) S-S, 
Cv

= In l + ^MaJd-U2)

S —S

Obrazem funkcji (2.26.1) jest rys. 6, na którym zwraca uwagę fakt 
spadku entropii w zakresie X > 0, co wydaje się na pierwszy rzut oka po­
gwałceniem drugiej zasady termodynamiki.

M o r d u c h o w i Libby, [11], którzy — o ile wiemy — 
pierwsi stwierdzili ten fakt, wyrazili przypuszczenie, iż może on świad­
czyć o braku równowagi termicznej gazu w pewnych obszarach, nie zaj­
mowali się nim jednak bliżej.

W gruncie rzeczy zaobserwowany spadek entropii nie stoi bynajmniej 
w’ sprzeczności z drugą zasadą termodynamiki, ponieważ elementy gazu 
nie mogą być — wobec źy^O— traktowane jako układy odosobnione. Spa­
dek entropii w obszarze X > 0 świadczy jedynie o tym, że każdy element 
gazu, znajdujący się w tym obszarze, oddaje drogą przewodnictwa więcej 
ciepła elementowi sąsiedniemu, położonemu «przed nim» (tzn. bliżej po­
czątku układu odniesienia na rys. 6), niż go otrzymuje od elementu po­
łożonego «za nim» (tzn. dalej od początku układu)4).

4) Do -wniosku tego doszliśmy wspólnie z Z. Szymańskim. Podczas przygo­
towywania niniejszej pracy do druku stwierdziliśmy, że identyczny pogląd wyraził 
H. C. Levey, [21], nie badając go jednak bliżej.

Potwierdzimy prawdziwość powyższego rozumowania wykazując, że 
dla przypadku /z 0, 2 = 0 wspomniany spadek entropii nie występuje.
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Przyjmując mianowicie w równaniu (2.3) 2 = 0 albo — co na jedno 
wychodzi — Pr = oo i całkując je jednokrotnie otrzymamy

(2.27) u~
2

4 du_
3 ^Udx~C2’

gdzie C2 określone z warunków dla x —— 00 ma wartość (2.11) iden­
tyczną jak dla przypadku n 0 , 2 0 .

Rugujemy następnie z (2.7) p oraz o korzystając z zależności (2.6) i (2.4); 
wszystkie te trzy zależności pozostają prawdziwe w przypadku 2 = 0, co łat- 
two spostrzec. Jako wynik rugowania wypada

x — 1
xgj u1 u =(2.28) i 4 du

u 3 dx

Dodając do (2.27) równanie (2.28) po uprzednim pomnożeniu go przez 
u otrzymamy

i _ u2 C2 C, u
x 2 Ot u, o, Uj ’

skąd po podstawieniu (2.10) i (2.11) wynika

(2.20) -j- —x(x —l)Ma«{——u(l + -^+ y + (x —DMa2 }'

Wreszcie — po podstawieniu (2.29) do (2.26) i zróżniczkowaniu otrzy­
manej zależności względem X — otrzymujemy:

1

(2.30) dS _ dU 
dX~ dX

U— 1 +

lub

(2.30.1) dS dU
U2

U2
2

1 1 
xMa?

x Mai)

- — 4--- ---
2 (x — l)Ma2 J

Z_(U —1)(U-U2)

U 2 U^ + xMa2.
(x — l)Maj

x — 1

2
£ 
2

1

Z dyskusji równania (2.14.1) wynikało, że dU/dX<0 w obszarze
U2 < U < 1, zaś wyrażenie w nawiasie kwadratowym tegoż równania 
[wyrażenie to występuje również w mianowniku równania (2.30.1)] jest 
większe od zera dla Ma 2>77. Ponieważ licznik (2.30.1) jest w obszarze 
U2 < U < 1 stale ujemny, więc z zestawienia tych faktów wynika 
dS/dX>0; wobec tego dla 2 = 0, p^0 entropia jest funkcją stale rosnącą, 
co właśnie chcieliśmy wykazać.
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Na zakończenie niniejszego rozdziału zauważymy, że przedstawiona 
w nim struktura fali uderzeniowej w gazie lepkim i przewodzącym ciepło 
została otrzymana dla szczególnej wartości liczby P r a n d t 1 a, 
Pr = 3/4. Obraz jej pozostaje jednak prawdziwy (w sensie jakościowym) 
również dla innych liczb Prandtla, jak o tym świadczą prace 
Mises a, [13], i G r a d a, [18]. Obaj autorzy ograniczyli się do 
czysto jakościowej analizy układu równań (2.1) - (2.5).

5. Grubość fali uderzeniowej w świetle równań mechaniki ośrodków ciągłych

Grubością fali uderzeniowej 5) nazywamy grubość warstwy, w której 
zachodzi najbardziej gwałtowna zmiana parametrów hydrodynamicznych 
gazu. Oczywiście, grubość fali uderzeniowej musi być określona umow­
nie; rys. 7 przedstawia najczęściej stosowane definicje.

________

5) Zdajemy sobie sprawę z niewłaściwości tej nazwy: fala uderzeniowa jest zjawi­
skiem fizycznym, rozciągającym się w dodatku na obszar nieskończony, nie ma więc 
sensu mówić o jej «grubości». Nazwę podaną zachowujemy jednak z braku lepszej. 
Analogiczne nazwy stosowane w literaturze obcojęzycznej (np. Stossdicke, shock 
front thickness) również nie są zadowalające i nie dają wobec tego podstaw do utwo­
rzenia nazwy prawidłowej.

Definicja di pochodzi od Prandtla, [4], definicja d2 od Tay- 
1 o r a, [6], definicję d3 spotykamy u Ł o j c j a n s k i e g o, [12], 
i G r a d a, [18]. Należy podkreślić, że obliczając grubość pewnej fali 
uderzeniowej na podstawie każdego z podanych trzech schematów docho­
dzi się do wyników mało różniących się od siebie ([11] i [18]).

Najwygodniejszy w zastosowaniu praktycznym jest jednak schemat 
Prandtla, ponieważ w oparciu o niego można określić grubość fali 
uderzeniowej bez potrzeby znajdowania całki równania (2.14). Wystarczy 
w tym celu obliczyć [dU/dX]max z warunku d~UldX2 = 0; otrzymamy 
wówczas
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Nadmienimy, że warunek d2U/dX2 = O daje łatwe do rozwiązania rów­
nanie tylko w przypadku n = 0; dla n 0 prowadzi on do równania

(3.2I u.(n_|)_D.„(1 + U!) + u.^ + _]_ + ^ (.+

U* 2 + (x—l)MaJ ° 
o budowie dość złożonej.

Obliczoną na podstawie wzoru (3.1) grubość fali uderzeniowej przed­
stawiają wykresy na rys. 8, [11].

Linie ciągłe na tym rysunku oznaczają grubość fali uderzeniowej, od­
niesioną do średniej swobodnej drogi cząsteczki w warunkach odpowiada­

jących X =— oo. Linia prze­
rywana przedstawia grubość 
fali, odniesioną do średniej 
swobodnej drogi cząsteczki 
w warunkach odpowiadających 
punktowi przegięcia linii U(X); 
w tym drugim przypadku gru­
bość fali uderzeniowej wypada 
nieco większa.

Jak widać, przy n = 0 (lep­
kość i przewodność cieplna 2 
niezależne od temperatury) 
grubość fali uderzeniowej dąży 
do zera przy rosnącej liczbie 
Ma{, co doprowadziło B e c k e- 
r a, [8], który badał to zjawi­
sko, do stwierdzenia, że w przy­
padku dostatecznie silnych 
fal uderzeniowych grubość ich 
staje się mniejsza już nie tylko 
od średniej drogi swobodnej, ale 
nawet od średniej odległości 
między cząsteczkami. Wniosek 
ten został zakwestionowany 

przez Thomasa, [10], który stwierdził, że przyjęcie bardziej zbliżo­
nego do rzeczywistości modelu gazu, odznaczającego się współczynnikami 
lepkości i przewodności cieplnej zmiennymi z temperaturą według zależ­
ności | T, 2~ ]/T, prowadzi do wniosków zupełnie odmiennych, mia­
nowicie (dla n = V2 grubość fali uderzeniowej dąży przy Ma,-> co do 
wartości stałej, różnej od zera; przy tym wartość ta pozostaje rzędu śred­
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niej swobodnej drogi cząsteczki gazu. Późniejsze badania wykazały po­
nadto, że dla V2 < n < 1 grubość fali uderzeniowej jest niemonotonicz- 
ną funkcją liczby Mar, że, mianowicie, grubość fali dąży do nieskończo­
ności dla Ma^ -> oo po przejściu przez minimum, które leży w okolicy 
Ma^ = 5 i którego wielkość jest rzędu drogi swobodnej. Widać to wy­
raźnie na rys. 4.

Wyniki obliczeń grubości fali uderzeniowej są może najważniejszym 
osiągnięciem przedstawionej powyżej teorii. Z jednej strony potwierdzają 
one, jak już wspomniano, trafność nieciągłego modelu fali uderzeniowej, 
świadczą bowiem, że grubość fali jest rzędu swobodnej drogi cząsteczki 
gazu. Z drugiej strony jednak nasuwają pewne zastrzeżenie.

Zastrzeżenie to — niezwykle istotne — dotyczy stosowalności równań 
mechaniki ośrodków ciągłych do opisu zjawiska fali uderzeniowej, podwa­
żając tym samym przedstawione wyżej wnioski; wynika ono z rozważań 
następujących.

Założenie ciągłości ośrodka jest równoważne warunkowi postulujące­
mu, że skończone zmiany parametrów hydrodynamicznych gazu zachodzą 
na odległościach dużych w porównaniu z długością średniej swobodnej 
drogi cząsteczki gazu. Jednak warunek ten, jak widać z rys. 8, jest speł­
niony tylko dla bardzo słabych (małe Maj) fal uderzeniowych, wobec cze­
go wiadomości o strukturze fali uderzeniowej, otrzymane na podstawie 
równań (2.1) - (2.5) mechaniki ośrodków ciągłych, mogą być bez dal­
szych zastrzeżeń uznane za prawdziwe tylko dla przypadku dostatecznie 
słabych fal (np. dla fal określonych przez Ma^ 1, 2, jeśli — w sposób 
dość dowolny — założymy, że grubość fali równa 10 długościom drogi 
swobodnej wystarcza do spełnienia warunku ciągłości ośrodka). Natomiast 
w zakresie Maj > 1, 2, traktować należy strukturę fali uderzeniowej, wy­
nikającą z równań mechaniki ośrodków ciągłych, jako niepewną — przy­
najmniej pod względem ilościowym.

Nawiasem mówiąc na rys. 8 widać, że grubość fali uderzeniowej staje 
się znowu duża dla liczb Man tzn. dla silnych fal uderzeniowych. Wyda­
wać by się więc mogło, że dla takich fal założenie ciągłości jest utrzyma­
ne, a więc ich struktura, wynikająca z równań opartych na tym założeniu, 
odpowiada rzeczywistości. Wniosek taki byłby oczywiście nadzwyczaj nie­
pewny. Wspomniany obszar bardzo dużych liczb Ma, leży za zakresem 
średnich liczb Malt w którym założenie ciągłości na pewno nie obowiązu­
je; w obszarze tym równania mechaniki ośrodków ciągłych mogły stracić 
słuszność nawet z punktu widzenia jakościowego opisu zjawiska, trzeba 
zatem traktować z dużym zastrzeżeniem zarówno obserwowany na rys. 8 
fakt ponownego wzrostu grubości fali w zakresie dużych Maj, jak i —- 
tym bardziej — wypływający zeń wniosek, iż równania «odzyskują» słu­
szność w tym zakresie Max.

377



4. Struktura fali uderzeniowej w świetle teorii kinetycznej gazów

Teoretyczne zbadanie zjawiska fali uderzeniowej poza zakresem sto­
sowalności równań mechaniki ośrodka ciągłego i wyjaśnienie tą drogą 
wątpliwości, sformułowanych w p. poprzednim, mogło być dokonane tylko 

w oparciu o teorię kinetyczną, nie korzystającą 
z założenia ciągłości gazu i uwzględniającą jego 
«ziarnistą» strukturę.

W punkcie niniejszym zostaną omówione wy­
niki trzech prac, [16], [17] i [18], opartych na 
teorii kinetycznej 6). Dwie z tych prac, mianowicie 
[16] i [18], opierają się na rozszerzonych równa­
niach hydrodynamiki, otrzymanych w oparciu 
o pewne rozwinięcia funkcji rozkładu na szereg 
i odniesionych do przypadku płaskiej ustalonej 
fali uderzeniowej. Trzecia praca natomiast spro­
wadza się do bezpośredniego wyznaczenia funkcji 
rozkładu jako szczególnego rozwiązania równania 
Boltzmanna, rozwiązania odpowiadającego 
zjawisku płaskiej fali uderzeniowej.

Praca Z o 1 1 e r a, [16], stanowi zastosowa­
nie metody Enskoga-Chapmana-Bur- 
netta; funkcja rozkładu jest tu rozwinięta 
na szereg wielomianów S o n i n a. Otrzymany 
układ równań różniczkowych zwyczajnych został 
scałkowańy numerycznie dla przypadków p2/pi — 
= 1,5; 4 i 6,5, co odpowiada liczbom Macha 

1,2; 1,89 i 2,4. Wyniki całkowania dla przy­
padku p2/pi = 6,5 przedstawia rys. 9.

Wprowadzone przez Z o 1 1 e r a wielkości bezwymiarowe są związa­
ne z wielkościami stosowanymi w mniejszym artykule zależnościami na­
stępującymi:

M = l+xMa2r U ’

_ “Mai /2R
1 + x Md^ |/ 1 ’

_ 3 • 1,255 x2 Ma*
4j/x (l + xMa[)2

6) Na Kursie Naukowym w Międzyzdrojach (sierpień 1954 r.) strona teoretyczna 
tych prac została omówiona w referacie Z. Szymańskiego Równanie Boltz- 
manna i jego znaczenie w teorii gazów.
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Na rysunku 9 zwraca uwagę niemonotoniczność funkcji r(C) [dotyczy 
to również funkcji w (C)]. Z o 1 1 e r faktu tego nie wyjaśnia. Fakt ten 
obserwuje się, [16], również w przypadku słabszej fali określonej przez 
p2/pj = 4,0, jednak występuje on w słabszym stopniu. Natomiast dla naj­
słabszej fali (p2/Pi = 1,5) funkcje oj i r są monofoniczne i linia 
ma przebieg zupełnie identyczny jakościowo z przedstawionym na rys. 4 
przebiegiem U(X).

Zauważmy jeszcze, że grubości fali uderzeniowej, wynoszące odpo­
wiednio d C = 5,29, 1,850 i 1,438 dla p2/Pi = 1,5; 4 i 6,5 są znacznie więk­
sze od otrzymanych na podstawie równań mechaniki ośrodków ciągłych. 
Po przeliczeniu na oznaczenia stosowane w p. poprzednich wynoszą one: 
A = 17,5; 6,36 i 5,5, podczas gdy według rys. 8 wyniosłyby dla tych sa­
mych Maj około 10, 3 i 2.

Rys. 10

Drugi z cytowanych, [18], autorów, Gra d, oparł się na swej me­
todzie trzynastu momentów, która ostatecznie prowadzi w przypadku pła­
skiej fali uderzeniowej do układu pięciu równań różniczkowych zwyczaj­
nych.

W wyniku numerycznego całkowania tego układu dla Maj = 1,611 
otrzymano wykres prędkości podany na rys. 10 linią ciągłą.

Porównanie go z analogicznym wykresem uzyskanym w oparciu o rów­
nania mechaniki ośrodków ciągłych (linia przerywana) wykazuje zupełną 
zgodność jakościową oraz niewielkie ilościowe różnice, wyrażające się 
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bardziej łagodnym przebiegiem wykresu otrzymanego na podstawie me­
tody trzynastu momentów.

Grubości fali uderzeniowej, obliczane na podstawie metody trzynastu 
momentów, także nie różnią się wiele od obliczonych na podstawie rów­
nań mechaniki ośrodka ciągłego. Liczbowe różnice wynoszą ok. 2% dla 
Ma, = 1,18 i 15% dla Ma, = 1,61 z tym, że metoda trzynastu momen­
tów daje grubości większe.

Dla silniejszych fal uderzeniowych (tzn. dla Маг > 1,65) Grad nie 
przeprowadzał obliczeń, ponieważ stwierdził drogą bardzo wnikliwej 
i drobiazgowej analizy jakościowej wspomnianego układu pięciu równań 
różniczkowych, że równania te dają jedyne rozwiązanie na falę uderzenio­
wą tylko dla Ma^ S 1,65. Powyżej tej wartości Ma, istnieje mianowicie 
nieskończenie wiele linii całkowych łączących punkty osobliwe, odpowia­
dające stanowi gazu w + oo i —oo. Wykresy prędkości dla Ma^ > 1,65 
stają się niemonotoniczne, co pokrywa się z wynikiem Z o 1 1 e r a.

Praca [17] Mott-Smitha zajmuje się wyznaczeniem funkcji 
rozkładu, będącej sumą dwu makswellowskich funkcji rozkładu, z któ­
rych jedna określa stan gazu w — oo (przed falą uderzeniową), druga 
w + oo (tzn. za falą). Wyniki ograniczają się do obliczeń grubości fali ude- 
rzeniowej w funkcji liczby Mac h a dla dwu różnych równań 

transportu. Obliczone grubości fali 
wypadają tu znacznie większe od u- 
zyskanych na podstawie równań me­
chaniki ośrodków ciągłych (por. rys. 
11); różnice wynoszą kilkadziesiąt 
procent.

Reasumując wyniki p. 4 stwier­
dzamy, że teoria kinetyczna potwier­
dza rezultaty otrzymane dla przypad­
ku słabej płaskiej fali uderzeniowej 
na podstawie równań mechaniki 
ośrodków ciągłych: jakościowa zgod­
ność jest zupełna, ilościowo zaś teo­
ria kinetyczna daje większe grubości 
fali uderzeniowej.

W zakresie silnych fal uderzeniowych teoria kinetyczna daje niemono­
toniczne parametry hydrodynamiczne, co stanowi już jakościową różnicę 
w porównaniu z wynikami mechaniki ośrodków ciągłych. Fakt ten trakto­
wać jednak należy z dużą ostrożnością, zważywszy że funkcje rozkładu, 
zastosowane w omówionych wyżej pracach, [16], [18], obowiązują przy 
założeniu małych odstępstw gazu od stanu równowagi, które nie jest speł­
nione w fali uderzeniowej (i to tym mniej, im silniejsza jest fala). Być 
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może zatem, że funkcje te w ogóle nie nadają się do badania fal silnych. 
Co prawda, funkcja rozkładu otrzymana przez Mott-Smitha jest 
wolna od wspomnianego założenia, niestety jednak autor nie podał odpo­
wiadającego jej rozkładu prędkości, nie wiemy zatem, czy byłby on — 
dla dostatecznie silnych fal -—■ również niemonotoniczny.

5. Pomiary grubości fali uderzeniowej

Wyniki przedstawionych wyżej równań teoretycznych nie mogą być 
oczywiście uznane za pewne, dopóki nie potwierdzi ich doświadczenie. Nie­
stety, nie znamy dotychczas metod, które pozwoliłyby zbadać doświad­
czalnie strukturę fali uderzeniowej w całej rozciągłości, a więc uzyskać 
obraz prędkości, temperatury i innych parametrów hydrodynamicznych 
gazu. Istnieje natomiast metoda pozwalająca zmierzyć grubość fali ude­
rzeniowej i przynajmniej pod tym jednym względem (w pewnym sensie 
«z grubsza») skonfrontować wyniki teorii z rzeczywistością.

Metoda, o której mowa, opiera się na zastosowaniu tzw. «rury uderze­
niowej» i została opublikowana w pracy Cowana i Horniga, 
[19], z 1950 r. Praca następna, [20], z 1951 r. zawiera konkretne wyniki 
pomiarów grubości fali uderzeniowej w argonie i azocie dla liczb 
Ma. 1,4.

Wyniki tych pomiarów przedstawia rys. 12, zaczerpnięty z [20]. Po­
twierdzają one, jak widać, wyniki uzyskane na drodze teoretycznej, przy 
czym najlepszą zgodność z doświadczeniem daje teoria Mott-Smi­
tha. Należy podkreślić, że wyniki pomiarów obarczone są błędem do­
chodzącym do 25°/o.
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Niestety, pomiary obejmują zakres małych liczb Ma,, w którym roz­
bieżności między poszczególnymi teoriami nie są duże, jeśli chodzi o gru­
bość fali uderzeniowej. Byłoby rzeczą o dużym znaczeniu przeprowadze­
nie pomiarów grubości fal, charakteryzujących się większymi liczbami 
Macha, i — tym samym — sprawdzenie wyników poszczególnych teo­
rii w zakresie ich większej rozbieżności.
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Резюме

СТРУКТУРА ПЛОСКОЙ УДАРНОЙ ВОЛНЫ

Работа является сводкой результатов испытаний структуры плос­
кой установившейся ударной волны в вязком и проводящем тепло 
газе.

В п. 2-ом, являющемся основной частью работы, рассмотрены ре­
зультаты, полученные на основании уравнений механики сплошной 
среды. Обсуждается влияние различных факторов на характер из­
менчивости гидродинамических параметров, между прочим и влияние 
одной только вязкости и одной только теплопроводности.

Особенное внимание обращается на факт, что в вязком и прово­
дящем тепло газе, на фоне общего повышения энтропии, выступает 
ее локальное уменьшение, [11]. Это ни в коем случае не противо­
речит второму принципу термодинамики, так как элементы проводя­
щего тепло газа не являются изолированными системами. Косвенным 
подтверждением является доказанный нами факт, что ударная волна — 
в вязком и непроводящем тепло газе — отличается монотонным по­
вышением энтропии.

Результаты, полученные методами механики сплошной среды, со­
поставляются затем с результатами кинетической теории и данными 
экспериментов.

Установлено, что механика сплошной среды дает, в области доста­
точно слабых волн (до Ма^ 1,6), правильную качественно изменчи­
вость гидродинамических параметров; впрочем количественные разни­
цы невелики и выражаются более отвесными формами кривых соответ­
ствующих функций, чем это вытекает из кинетической теории. Весьма 
вероятно, что в области довольно сильных волн будут выступать каче­

383



ственные разницы; кинетическая теория, [16], дает здесь — в противо­
положности механике сплошной среды — немонотонные изменения 
гидродинамических параметров. Однако результаты кинетической тео­
рии, [16] и [18], в области сильных волн ненадежны, так как состояние 
газа может здесь сильно отклоняться от состояния термического рав­
новесия. Кроме того эти результаты слишком отрывочны, чтобы на 
их основании можно было бы принять представление о структуре силь­
ной ударной волны и провести критику результатов рассуждений ме­
ханики сплошоой среды (например [17] не содержит образа структуры, 
а только лишь вычисление толщины волны).

Измерения толщины ударной волны, [20], произведенные для 
Mat = 1,4, являющиеся единственным и несовершенным основанием 
для сопоставления теории и эксперимента, подтверждают результаты 
теории.

Summary

TWO-DIMENSIONAL SHOCK WAVE STRUCTURE

This paper constitutes a summary of results of investigations of steady 
plane shock wave in a viscous heat conducting gas.

Sec. 2 the principal part of the paper contains a discussion of the 
results obtained on the basis of the equations of mechanics of continuous 
media. The influence of various factors on the type of variability of 
hydrodynamic parameters are discussed, including the influence of 
viscosity and of heat conductivity.

Special consideration has been given to the phenomenon of local 
decrease of entropy, [11], accompanying the overall increase of entropy. 
This phenomenon is not contrary to the second law of thermodynamics, 
because the elements of a heat conducting gas do not constitute isolated 
systems. This is confirmed indirectly by the fact that the shock wave in 
a viscous non conducting gas is characterized by a monotonic increase of 
entropy.

Next, the results based on the principles of mechanics of continuous 
media are compared to those of the kinetic theory and to experimental 
data.

It was found that the principles of mechanics of continuous media 
yield, for a sufficiently weak shock wave (up to Mai 1,6), .a qualitatively 
correct variability of hydrodynamic parameters, the quantitative 
differences being insignificant and consisting in steeper curves than those
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resulting from the kinetic theory. On the other hand, it appears that in 
the range of sufficiently strong waves qualitative differences will appear: 
the kinetic theory, [16], indicates here contrarily to the principles of 
mechanics of continuous media — nonmonotonic variations of hydrody­
namic parameters. The results of the kinetic theory, [16] and [18], are 
uncertain, however, in the range of strong waves, because in this case 
the state of gas can be different from that of thermal equilibrium; 
moreover, these results are too fragmentary to be taken as a basis for an 
opinion on the structure of a strong wave and to allow the results of the 
mechanics of continuous media to be discussed ([17] does not present any 
information on the structure, but only calculations of wave thickness).

Measurements of shock wave thickness, [20], for Mai = 1,4, which 
constitute the unique and imperfect basis of comparison between theory 
and practice, confirm the results of the theory.
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1. Istota zagadnienia

Niejednorodność, a zwłaszcza anizotropia drewna jako materiału bu­
dowlanego, bądź wywołuje potrzebę stosowania przy obliczaniu naprężeń 
w (konstrukcjach wzorów specjalnie ustawianych dla drewna, bądź też wy­
maga wprowadzenia przy ustalaniu naprężeń dopuszczalnych pewnych 
współczynników wziętych z doświadczenia. Gdy zaś chodzi o wyznaczenie 
wielkości statycznie niewyznaczalnych lub o wyznaczenie sił krytycznych 
przy wyboczeniu słupów drewnianych, rozpatrujemy drewno jako ma­
teriał podlegający prawu H o o k e’ a licząc się jednak wówczas ze spe­
cjalnymi warunkami pracy konstrukcji drewnianych.

Ze względu na rzeczywiste własności fizyczne i technologiczne drewna 
typ konstrukcji z tego materiału, a również typ wykonanych z niego ele­
mentów budowlanych, różni się od konstrukcji wykonanych z materiałów 
jednorodnych i izotropowych. Z tego powodu mamy tu do czynienia ze 
schematami statycznymi odmiennymi od występujących w tamtych wy­
padkach. Typowymi w tym sensie dla konstrukcji drewnianych schema­
tami statycznymi są słupy o kształcie stożków, belki klinowane i układy 
zastrzałowo-rozporowe.

Analiza tych schematów obliczanych na podstawie prawa H o o k e’ a, 
lecz pod kątem widzenia rzeczywistych warunków pracy konstrukcji 
drewnianych, stanowi główną treść niniejszej rozprawy.

Obliczenia omówionych wyżej schematów muszą, z jednej strony, czy­
nić zadość wymaganiom ostrożności ze względu na niedoskonałość danych 
materiałowych i na mniejszą zwykle niż w innych wypadkach kompeten­
cję projektantów — z drugiej jednak dopuszczają śmiałe koncepcje tech­
niczne ze względu na stosunkową taniość materiału i krótki okres pracy 
konstrukcji. Te okoliczności odróżniają omawiane tu obliczenia od obli­
czeń konstrukcji z innych materiałów i dają podstawę do zalecanych da­
lej uproszczeń w obliczeniach statycznych konstrukcji z drewna.

Przy opracowaniu tej rozprawy autor korzystał z następujących swoich 
dawniejszych publikacji:

(1) Wielokrotne dźwigary drewniane jako układy hiperstatyczne, War­
szawa 1931,
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(2) Sprawa wymiarowania drewnianych mostów zastrzałowych, War­
szawa 1933,

(3) Sposób momentów wtórnych w zastosowaniu do wyznaczenia siły 
krytycznej, Łódź 1946,

(4) Wybaczenie niesprężyste prętów podpartych w sposób statycznie 
wyznaczalny, Warszawa 1947.

2. Słupy stożkowate

Najczęstszym przypadkiem działania sił podłużnych na elementy kon­
strukcyjne z drewna jest przypadek osiowego ściskania słupów stożkowa­
tych. Dopóki siła krytyczna działająca na słup drewniany nie wywołuje

w nim naprężeń krytycznych
“ przekraczających granicę sprę-

p ____  j _ ag„ y żystości drewna, dopóty wybo-
czenie słupów stożkowatych jest

______ -__L----------------J wyboczeniem sprężystym, do
którego oceny służą wzory 

Rys. i typu Eulerowskiego. Dopiero po
przekroczeniu przez naprężenia 

krytyczne granicy sprężystości drewna na ściskanie powstaje trudność 
rozwiązania zagadnienia siły krytycznej w słupie drewnianym. Do roz­
wiązania tego pomocna jest teo­
ria K a r m a n a dotycząca 
wyboczenia niesprężystego, któ­
ra była wprawdzie kwestiono­
wana w szczegółach, nie wzbu­
dza jednak istotnych zastrzeżeń 
i jest przejrzysta w ujęciu. Pod­
stawy tej teorii są następujące.

Bierzemy pod uwagę pręt 
pryzmatyczny w dwóch punk­
tach swobodnie podparty, ści­
skany siłami podłużnymi P 
(rys. 1). W chwili wyboczenia, 
kiedy oś pręta wybaczanego do­
piero zaczyna się zakrzywiać, 
rzędne jej są tak małe, że roz­
kład naprężeń w poszczególnych 
przekrojach pręta, niezależnie od położenia w stosunku do podpór, od­
powiada typowi wykresu przedstawionego na rys 2, przy czym położenie 
punktu O jest we wszystkich przekrojach pręta w stosunku do krawędzi 
to samo.
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Przyjmujemy, że w rozpatrywanym przypadku założenie płaskich 
przekrojów moc swoją zachowuje i oznaczamy odpowiednio przez C± i C2 
współczynniki proporcjonalności między odkształceniami i naprężeniami 
w dwóch częściach przekroju rozdzielonych punktem O. Wobec tego na­
prężenia spowodowane zginaniem wynoszą w poszczególnych przekrojach 
w odległości 77 od punktu O odpowiednio 

(2.1) O ---- Cz ]
e

od strony wypukłej wygiętego pręta (między A i O) i

(2.2) a = C2—-“ Q

od strony wklęsłej (między O i B).
Tu q oznacza promień krzywizny osi pręta przy wyboczeniu, przy 

czym przyjmujemy dalej, że

Z warunków równowagi Z X = 0 i Z M — 0 części pręta zawartej 
między jedną z podpór a przekrojem aa wynika, że

(2.4) i (fi* + C, —\dA + ( /«* + C2^\dA=P,
J \ 5 I J \ S /
A B

(2.5) I + -^\t]dA+ nR>t + C2-^-\vdA = P(y + e),

A B

skąd

(2.6) C,SA + C2 Sb = 0

oraz

(2.7) (Cj Ja + C2Jb) ^2 = — py ,
dx2

gdzie SA i SB oznaczają momenty statyczne pól części przekroju, położo­
nych na rysunku na lewo i na prawo od punktu O względem osi przecho­
dzącej przez ten punkt prostopadle do płaszczyzny rysunku, JA i JB są 
momentami bezwładności tych samych pól, Rk naprężeniem krytycznym, 
e odległością punktu O od osi.
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O ile wielkości Ci i C2 są znane, z równania (2.6) możemy wyznaczyć 
położenie punktu O, po czym wyznaczamy Ja i J b oraz J, moment bezwład­
ności pola całego przekroju poprzecznego pręta względem osi środkowej.

Wprowadzając oznaczenie

(2.8) N C,JA -C2Jlt

możemy równaniu (2.7) nadać postać

(2-9) NJ^ = -Py.

Ponieważ równanie (2.9) z matematycznego punktu widzenia nie róż­
ni się od równania

(2.10) —P«,

z którego może być wyprowadzony wzór Eulera na siłę krytyczną 
przy wyboczeniu sprężystym pręta przedstawionego na rys. 1, tj. wzór

(2.11) Pk = -~,

musi ono doprowadzić do wzoru na siłę krytyczną 

który różni się od wzoru (2.11) tylko tym, że tu wielkość N zastępuje 
współczynnik sprężystości E.

Spośród słupów drewnianych narażonych na wyboczenie niesprężyste 
najczęściej mamy do czynienia ze słupami służącymi do obudowy kory­
tarzy w kopalniach. Słupy o takim przeznaczeniu posiadają zwykle dłu­
gość zawartą w granicach od 1,8 m do 2,8 m i średnicę wahającą się w gra­
nicach od 15 cm do 30 cm. Wobec trudności wyznaczenia w sposób ogól­
ny siły krytycznej dla słupów tego rodzaju dalsze rozważania opieramy 
na obliczeniu przypadku szczególnego, możliwie najbardziej miarodajnego. 
Za taki uważamy przypadek słupa o długości 2 m mającego kształt stożka 
o podstawach eliptycznych przy średnicach elipsy równych 15 cm i 17 cm 
w cieńszym końcu słupa i o średnicach odpowiednio równych 17 cm. 
i 19 cm w jego grubszym końcu. Przyjmujemy, że średnice elipsy zmie­
niają się wzdłuż pręta w sposób liniowy (rys. 3). Końce słupów uważa­
my za podparte w sposób przegubowy.
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Aczkolwiek dla przyjętych w ten sposób wymiarów słupa wyboczenie 
jest niesprężyste, wyznaczymy tu przede wszystkim siłę krytyczną w za­
łożeniu, że mamy do czynienia z wyboczeniem sprężystym. Poszukujemy 
więc wzoru dla siły krytycznej Pk w postaci wzoru Eulera

(2.13) n2EJ
W ’

gdzie /u oznacza współczynnik długości.

Rys. 3

W tym celu dzielimy wyżej omówiony pręt na odcinki po 25 cm (punk­
ty podziału 1, 2, 3, ...) i obliczamy w środkach tych odcinków (punkty I, 
II, III, ...) najmniejsze momenty bezwładności poszczególnych elips prze­
kroju poprzecznego (rys. 4) oraz stosunki 

(2.14) 

gdzie J jest to najmniejszy moment bezwładności przekroju poprzecznego 
oddalonego o x od cienkiego końca pręta, a Jc = 2820 cm4 najmniejszy mo­
ment bezwładności na cienkim końcu B.

12,5 . 25 25 ,^25 25 ^25 , ,25 r ., 25 t,125^

I i ■ - . I . ! . । , I
A^I1U 2 DI 3 IV 4 V 5 VI 6 VI! 7 YIU

!=8><25 =200cm

Rys. 4

Przyjmujemy jako pierwszą przybliżoną postać osi odkształconej pręta 
po wyboczeniu linię łamaną A'B'C' (rys. 5b) o największej nieznanej 
rzędnej <5 i sporządzamy odpowiedni wykres momentów zginających M 
(rys. 5c). Rzędne wykresu na rys. 5c zmieniamy w punktach 1, 2, 3, ... 
w stosunku 1 : k (rys. 5d) i przyjmujemy otrzymany w ten sposób wykres 
za wykres jednostkowego obciążenia wtórnego pręta ą = M : k. Dla ob­
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ciążenia q znajdujemy moment zginający w środku pręta (moment wtór­
ny Sbji dochodzimy w ten sposób do nowego wyrażenia na ugięcie pręta 
w środku po wyboczeniu
(2-15) yir = ^.

Ł, J c

a

P 1 4 5 ? 7 B P

Rys. 5

Przyjmujemy dalej jako drugą postać odkształconej osi pręta po wy­
boczeniu sinusoidę o największej rzędnej yśr

(2.16)
7t k 

y = yśr Sin — .

Przyrównując do siebie średnią rzędną osi odkształconej pierwszego 
przybliżenia do średniej rzędnej osi drugiego przybliżenia, czyli przyrów­
nując do siebie pole A'B'C' i pole ograniczone krzywą (2.16), docho­
dzimy do następującego wzoru na siłę krytyczną rozpatrywanego pręta:

(2-17)
n^EJc

(0,921)2 '

Przechodząc do niesprężystego wyboczenia słupów drewnianych opie­
ramy się na wzorze doświadczalnym Tetmajera-Jasińskie- 
g o, który dla drewna wszelkich gatunków przybiera postać 

(2.18) Pk = A (293 — 1,94 A),
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gdzie A oznacza pole przekroju poprzecznego ściskanego słupa pryzma­
tycznego, a ż jego smukłość.

Aby wyzyskać materiał doświadczalny, zawarty we wzorze (2.18) do 
obliczenia siły krytycznej ze wzorów typu (2.12), ustalamy wartości 
współczynnika N drogą przyrównania do siebie sił krytycznych obliczo­
nych ze wzorów (2.12), a więc z równania

(2.19) A (a — b ż) n2NJ 
l2

skąd

(2.20)
02

W = , (a — b ż). 
71

Wyniki obliczeń przedstawione są na wykresie rys. 6 i w tablicy 1, 
gdzie wielkości IV wyrażone są w kilogramach na cm2.

Rys. 6

Wracając do wyznaczenia siły krytycznej w przypadku niesprężystego 
wyboczenia słupa drewnianego stożkowatego ustalamy, że według wzo­
rów (2.11) i (2.17) stosunek siły krytycznej pręta stożkowatego o podsta­
wie eliptycznej i słupa walcowatego o tej samej podstawie wynosi

(2.21) Pk - 1
Pf 0,84 ’
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Ze względu na słabą zmienność przekrojów słupów drewnianych mo­
żemy stosować tu bez zastrzeżeń zarówno równanie (2.10) jak i równanie 
(2.9), a ze względu na matematyczną identyczność tych równań możemy

Tablica 1
uważać zależność (2.21) za słuszną nie 
tylko dla słupów sprężystych, lecz i dla
niesprężystych.

Z N Z N Ponieważ smukłość omawianego słu-
— pa walcowatego o podstawie eliptycznej

10 2 772 60 64 413 wynosi w danym wypadku
20 10 301 70 78 042
30 21410 80 89 353 ż = — -__  = 53,3 ,
40 34 917 90 97 167 J J: A
50 49 645 100 100 303

------- !---------------------------------- znajdujemy z tablicy lub z wykresu od­
powiednią wartość N = 54 515.

Stosując wzór (2.12) na siłę krytyczną dla wyboczenia niesprężystego 
słupa walcowatego o podstawie eliptycznej znajdziemy

_7r2NJ_ 54 515 • 2820
p — 2002 — 38

skąd dla słupa stożkowatego na podstawie wzoru (2.21) znajdujemy

(2.23) Pk = 38- = 45 2 t
F 0,84 Ł

Możemy obliczyć siłę krytyczną w tym ostatnim wypadku również 
bezpośrednio ze wzoru (2.17) wstawiając N zamiast E:

(2.24) Pk
n2 54 515 • 2820 

(0,92 • 200)2 45,2 t.

Sposób użyty przy wyprowadzeniu wzoru (2.17) może być zastosowany 
dla dowolnych wymiarów słupa ściskanego, a więc może być wyzyskany 
i w przypadku słupów podlegających wyboczeniu sprężystemu.

5. Dźwigary wielokrotne

Typowym dla konstrukcji drewnianych schematem belki zginanej jest 
dźwigar wielokrotny. Powstaje on w drodze nakładania na siebie szeregu 
belek z drewna kantowego lub okrągłego. Poszczególne belki dźwigara 
wielokrotnego bądź położone są bezpośrednio jedna na drugiej, bądź też 
za pośrednictwem klinów.

Kliny łączące poszczególne belki dźwigara wielokrotnego mają dwoja­
kie znaczenie: służą one, mianowicie, albo do uniemożliwienia przesuwa­
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nia się po sobie poszczególnych belek dźwigara i do wytworzenia z nich 
w ten sposób dźwigara, który by można, z pewnymi zresztą zastrzeżenia­
mi, uważać za dźwigar jednolity, albo też do wytworzenia wolnej prze­
strzeni między poszczególnymi belkami dźwigara dla zabezpieczenia im 
potrzebnego przewiewu i zapobieżenia w ten sposób gniciu drewna (rys. 7).

Kliny wykonane w ten sposób, iż mogą zabezpieczyć dźwigarowi zło­
żonemu niezmienność płaskiego przekroju poprzecznego, powodują znacz­
ne koszta i wymagają stałej konser­
wacji. Niewielkie nawet niedokładno- | _ [
ści w działaniu takich klinów, wywo- tJ^^O □
lane niepoprawnym wykonaniem lub ' Ł
zużyciem, powodują przesuwanie się Rys 7
po sobie poszczególnych belek dźwi­
gara i nie pozwalają go już uważać za jednolity. Poza tym w dźwigarach 
silnie obciążonych już samo rozmieszczenie klinów natrafia na trudności 
z powodu powstających w nich wielkich sił ścinających.

W ten sposób celowość zastosowania dźwigarów wielokrotnych, pracu­
jących jako jednolite, staje się w wielu wypadkach wątpliwa i dlatego 
w budowlach bardziej odpowiedzialnych właściwsze jest rozpatrywać 
belki dźwigara jako pracujące samodzielnie, a kliny uważać jedynie za 
urządzenia zabezpieczające przed szkodliwym ze względu na trwałość 
konstrukcji drewnianej bezpośrednim stykaniem się poszczególnych be­
lek na całej ich długości. Kliny mające takie przeznaczenie mogą dopu­
szczać wzajemne przesuwanie się belek, a rozstaw ich jest przeważnie rów­
nomierny.

Podstawowym schematem statycznym dźwigara wielokrotnego, np. po­
dwójnego o klinach mogących się przesuwać, jest więc belka ciągła na 
podporach a, b, c itd. spoczywających na drugiej belce sprężystej w dwóch 
punktach swobodnie podpartej (rys. 8).

W utartych obliczeniach dźwigarów wielokrotnych niejednolitych 
przyjmujemy zwykle, że moment zginający rozkłada się między poszcze­

gólne belki proporcjonalnie do wskaź- 
^[a t> c d e F\^° ników wytrzymałości przekrojów po-

------ —---- —----- —------=-----r przecznych poszczególnych belek, a
4 A i fi więc przy tych samych przekrojach

8 belek przypada w jednakowych czę­
ściach na każdą z nich. Dalej wykaże- 

my, że rozkład momentu zginającego pomiędzy poszczególne belki dźwi­
gara jest inny i że wobec tego naprężenia w belkach dźwigara mogą być 
znacznie większe, niżby to wynikało z powyższego układu.

Punktem wyjścia do rozważań nad rozkładem momentów zginających 
między poszczególne belki dźwigara wielokrotnego o klinach przesuw­
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nych lub bez klinów są doświadczenia, które miały zresztą za cel raczej 
ustalenie jakościowej niż ilościowej strony zjawiska. Chodziło mianowi­
cie o przekonanie się, czy w przypadku podwójnego dźwigara drewnia­
nego nieklinowanego poszczególne belki jego nie znajdują się jednak 
w warunkach pod względem wytrzymałościowym korzystniejszych niż 
dwie belki obok siebie położone. Jako przyczynę oczekiwanego faktu bra­
no pod uwagę tarcie między poszczególnymi belkami dźwigara, pewnego 
rodzaju wgniatanie się ich jedna w drugą itd.

Doświadczenie wykonano w sposób następujący.
Beleczki o długości wynoszącej w świetle między podporami cylin­

drycznymi 600 mm obciążano w środku naczyniem z wodą przy tempera­
turze 4°. Przekrój poprzeczny beleczek drewnianych miał kształt kwa­
dratu o wymiarach 15 mm X 15 mm. Beleczki były wykonane z drewna 
skrupulatnie dobranego, bez sęków.

Złamano przede wszystkim 3 beleczki pojedyncze, przy czym średnia 
siła łamiąca wynosiła 19,5 kG (kilogramów), następnie łamano po dwie 
beleczki położone obok siebie, co dawało średnią siłę łamiącą 38,9 kG.

Wreszcie przystąpiono do łamania beleczek ułożonych jedna na drugiej 
po dwie, przy czym w dwóch wypadkach układano beleczki bezpośrednio 
jedna na drugiej, w trzech zaś układano je za pośrednictwem kawałków 
grubego drutu, mających za zadanie usunięcie bezpośredniego stykania 
się beleczek na całej ich długości, odgrywających więc w ten sposób rolę 
przesuwnych klinów.

Siła łamiąca wyniosła w pierwszych dwóch wypadkach 39,1 kG oraz 
39,3 kG, w trzech zaś następnych odpowiednio 38,1 kG, 38,3 kG i 38,8 kG, 
przy czym w tych ostatnich wypadkach zawsze jako pierwsza pękała be- 
leczka górna.

Opisane doświadczenia, aczkolwiek wykonywane niezbyt dokładnie 
oraz w małej liczbie, nasuwają jednak pewne wnioski, które narzucają się 
v/ sposób dość wyraźny.

Przede wszystkim więc wytrzymałość dwóch beleczek położonych bez­
pośrednio jedna na drugiej mało różni się od wytrzymałości takich sa­
mych beleczek położonych obok siebie, co należy zapewne wytłumaczyć 
faktem, że tarcie między beleczkami było małe zarówno ze względu na 
ich staranne wy heblowanie, jak i wskutek zwilżenia ich wodą.

Następnie wytrzymałość dwóch beleczek położonych jedna na drugiej 
za pośrednictwem podpórek (drutów) jest na ogół cokolwiek mniejsza od 
wytrzymałości beleczek położonych obok siebie, co można wytłumaczyć 
tym, że moment zginający nie rozkłada się równomiernie między obie be­
leczki i że ta z nich, na którą przypada więcej niż połowa momentu, ła­
mie się prędzej i wywołuje w ten sposób zniszczenie dźwigara mniejszą 
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siłą niż przy bardziej równomiernym rozkładzie momentu zginającego na 
beleczki położone obok siebie.

Dalsze obliczenia oparte są na wskazówkach ustalonych na podstawie 
doświadczenia. Dotyczą one dźwigarów wielokrotnych o klinach prze­
suwnych.

Statycznie wyznaczalny schemat zastępczy dźwigara wielokrotnego 
przyjmujemy w sposób następujący.

Odrzucamy podpory pośrednie b, c, d, ... (rys. 8) i zastępujemy działa­
nie ich na dolną i górną belkę dźwigara przez siły wzajemnego oddziały­
wania na siebie tych belek Xb, Xc, 
Xd, ... (rys. 9). Uważamy, że belki są 
nieściśliwe w kierunku działania sił 
zewnętrznych i że wobec tego osie ich 
można uważać za równoległe do kra­
wędzi również i po ich odkształceniu. 
Przesunięcia pionowe punktów b, c, 
d, ... zarówno górnej AB, jak i dol­
nej Ao Bo belki dźwigara oznaczone 
są na rys. 10 literami u.

Ponieważ w rzeczywistości w punktach podpór b, c, d, ... odległości 
pionowe osi obydwóch belek (tzn. prostopadłe do osi belki) nie mogą wsku­

Rys. 10

tek przyjętych założeń 
i wobec nieodkształcalności 
klinów ulec zmianie, do­
chodzimy więc do równań

(3.1)

v'b + v!> = 0 , 

uć + = 0 ,

Va + Va = o ,...,
gdzie przesunięcia (ugięcia) pionowe belek AB i A0B0 wyobrażamy sobie 
jako funkcje sił Xb, Xc, Xd ... i oznaczamy odpowiednio przez v' i v".

W przypadku przylegania górnej belki do dolnej na całej jej długości 
liczba równań (3.1) staje się nieskończonością. Całkowite przyleganie obu
belek byłoby jednak możliwe tyl­
ko w tym wypadku, gdyby były 
one ze sobą połączone w ten spo­
sób, żeby nie mogły się oddzielać. 
Ponieważ jednak śruby dźwigara 

Rys. 11

wielokrotnego takiego połączenia nie zabezpieczają, powstają więc w belce 
górnej odcinki oddzielające się od belki dolnej (rys. 11). Obliczenie długo­
ści tych odcinków natrafia na duże trudności.
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W dźwigarach klinowanych nie natrafiamy na podobne trudności, gdyż 
w tym wypadku łatwo możemy doprowadzić do tego, aby poszczególne 
belki dźwigara, dotykające się wzajemnie tylko w miejscach klinów, były 
zabezpieczone przed oddzieleniem się od siebie. Ograniczymy się do zba­
dania rozkładu momentów zginających między belki dźwigara wielokrot­
nego tylko w tych warunkach.

Wyznaczenie sił X w dźwigarze wielokrotnym klinowanym odbywa się 
na podstawie równań (3.1), w których przesunięcia v są funkcjami sił X. 
Przedstawienie przesunięć v w postaci funkcyj X stanowi główną trud­
ność rachunkową zadania, którą przezwyciężamy stosując przybliżoną me­
todę wariacyjną R i t z a i T i m o s z e n k i.

Przesunięciom v" dolnej belki AB dźwigara (rys. 10) w punktach pod 
klinami b, c, d, ... nadaj emy postać

(3.2)

v>-Xft^-Xcd^-Xd^...,
Ą = — Xb óc -Xc^~ xd

<i = -Xb^-Xc^~Xd^-,

gdzie symbol <5£ oznacza np. ugięcie spowodowane w punkcie b przez siłę 1 
zaczepioną w punkcie c.

Jeżeli oznaczymy przez vb, vc, vd, ... ugięcia górnej belki A0B0 dźwi­
gara pod działaniem sił zewnętrznych bezpośrednio zaczepionych P, wów­
czas dla całkowitych przesunięć pionowych tej belki w miejscach klinów 
znajdziemy wzory

(3.3)

vb = vb — Xhóbb — Xcócb—Xdób..., 

v'c = W — xb % — Xc — xdóc-’ 

v'd = vd-Xbdbd-Xcdbd-Xd^d.;..

W związku z wyrażeniami (3.2) i (3.3) równania (3.1) przybierają po­
stać kanoniczną

(3.4)

Xb^ + Xc rb + xd^b-
2

X„ % + Xc + xdv-
Vc

■= T

Xb^+Xc ^d + xd^-
_vd

■ 2
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Stosując dalej sposób R i t z a i Ti m o s z e n ki będziemy po­
szukiwali odkształconej górnej belki A0B0 pod postacią sumy sinusoid

(3.5) y — / Az sm ——,
i

odkształconej zaś dolnej belki AB pod postacią

(3.6) y = V A?sin“i"
gdzie n oznacza liczbę przyjętych w obliczeniu sinusoid i przedstawia 
liczbę tym większą, im większa jest wymagana dokładność obliczenia. 
W razie symetrycznego obciążenia belki odkształcona jej będzie również 
symetryczna względem środka, wobec czego przyjmujemy dla i tylko licz­
by nieparzyste 1, 3, 5, ... Odległości x odmierzamy od lewej podpory dźwi­
gara.

Do obliczenia energii sprężystej belek korzystamy z równania

(3.7)
/' M'[ dx

J 2EJ 
o

V =
EJ f— I (y")2dx, 

o

gdzie Mx oznacza moment zginający w danym przekroju belki, a y" drugą 
pochodną ugięcia y. Stąd otrzymujemy dla energii sprężystej górnej i dol­
nej belki dźwigara odpowiednio

(3.8) EJ^4
4l3

(3.9) EJ 7?
4l3

n
V i4 A'.2 ,

Dla pracy sił X, które możemy uważać za zewnętrzne w stosunku do 
belek A0B0 i AB, znajdujemy odpowiednio wyrażenia

_ ~ \ W \ a l Ż 71 Xj \ A \ . i 71 Ua(3.10) T = V Pj V A, sm—- — ' Xg X A, sm—~ , 
ii ii

(3.11) T" = — v Xg V A't sin ~s, 
1 '1
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w których Pj oznacza jedną z sił zaczepionych w liczbie m do dźwigara 
wielokrotnego, Xj odległość tej siły od lewej podpory dźwigara, Xs jedną 
z sił wzajemnego oddziaływania na siebie belek dźwigara, ag odległość 
punktów zaczepienia tych sił od lewej podpory dźwigara i s liczbę klinów.

Znajdujemy dalej różnicę między energią sprężystą V a pracą sił ze­
wnętrznych
(3.12) U = V— T

i przyrównując do zera pochodne funkcji U względem parametrów A, 
czyli ustawiając równania typu 

obliczamy z nich wszystkie potrzebne wielkości Aź i AZ :

U?p'sul^“2x«s‘n— 

\ 1 1

(3.15) A, - - 2 X‘ '

Wstawiamy wyrażenia (3.14) i (3.15) w równania (3.5) i (3.6):
tl - n m , ni . 5 \ -17^ 2r / \ . 17lXj K-’ . 171 aa\ . I 71 X(3.16) y=Y ^pjSm - 2 Xgsm-r- sir. . .
1 X 1 1 /

, x \ / 213 \ . i 7i aa \ . i 7t x(3,i7) »=-2 „,.,.2^”-)' ” t ■.
1 > 1 '

Aby otrzymać stąd przesunięcia vb i v"b, należy np. wstawić we wzory 
(3.16) i (3.17) x = ab, gdzie ab oznacza odległość klina b od lewej podpory 
dźwigara; w podobny sposób dochodzimy do wyrażeń dla v'c, v"c , v'd, v"d itd. 
W związku z tym równania układu (3.1) przybierają postać

(3.18)

n / m . \V / V n • n V1 v inaA . 1ab „2 2 Pj sm —i —2 ?.sm )sm ~ i— = 0 ’

V / V n ■ o V . ^nac nX X P/sm—:----- 2 X Xg sm—- — sm—;— = 0,
1 \ 1 1 /

/ VI n ■ *77 XJ o V • i7ias\ . i Tl ad „' ' P/sm —2 X X?sm—,- sm—;— = 0,‘ l s l l
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Bierzemy jako przykład obliczenie dźwigara przedstawionego na 
rys. 12. Dźwigar ten jest obciążony symetrycznie siłami zaczepionymi
w odległości 0,2 l jedna od dru­
giej, przy czym' kliny dźwigara 
rozstawione są również w odle­
głości 0,2 l od siebie. Sztywność 
belki EJ jest taka sama dla 
obydwóch belek dźwigara.

Przyjmujemy dla osi od­
kształconej górnej belki dźwiga­
ra postać

,, . nx , . 3 ti x , . 5 x , . 7tix(3.19) y^AjSin j—A3 sm— -----1- A- sin—-—|-Asm - , 

dla dolnej zaś postać

(3.20) A„ . ti x , . 3tiX , . 5tix , . 7tixy = At sm j 4-A3 sm—- - + A- sin — +Ąsin—-—

Energia sprężysta nagromadzona w obydwóch belkach dźwigara wyra­
ża się w tych warunkach wzorami:

(3.21) V' = ^^(^2 +34A;2 + 54A'2+7%2),

(3.22) V" = (4i2 + 34 4? + 54 4? + 74 4?) •

Dla pracy sił P i X zaczepionych do górnej belki i dla pracy sił X za­
czepionych do dolnej belki znajdujemy odpowiednio wyrażenia:

(3.23) T' = 2 P (Aj sin 0,1 ti + Aj sin 0,3 n + Aj sin 0,5 + Aj sin 0,7 n) +

2 P (Aj sin 0,3 7i + Aj sin 0,9 ti + A j sin 1,5 n + Aj sin 2,1 tt) + 

+ P (Aj sin 0,5 Ti + Aj sin 1,5 w + Aj sin 2,5 ti + Aj sin 3,5 a) — 

— X{ (Aj sin 0,2 ti 4- Aj sin 0,6 ti + Aj sin 1,0 + Aj sin 1,4 n) —

— X, (Aj’sin 0,4 ti + Aj sin 1,2 ti + Aj sin 2,0 ti + Aj sin 2,8 n),

(3.24) T" = — X, (Aj sin 0,2 n + Aj sin 0,6 n + A j sin 1,0 n + Aj sin 1,4 ti) — 

— X., (Aj sin 0,4 + Aj sin 1,2 n + Aj sin 2,0 n + Aj sin 2,8 n).
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Ze wzorów (3.14) i (3.15) obliczamy współczynniki A:

A' = —— (1,61804 P — 0,58779 Xa — 0,95106 X*), hi J ti

A'3 = (0,61804 P — 0,95106 Xa — 0,58779 Xb),oi łjh

, 2 Z3
As ~ 625 E J ,-r1 0,5 P ’

2P
A7 = f t 4 (0,61804 P + 0,95106 Xa — 0,58779 Xb'), 1 hi J TT

2 l3
A\ = FT7 (— 0,58779 Xa — 0,95106 Xb), hi J tc

2 l3
A" = o4~f T • 4 (— 0,95106 Xa + 0,58779 Xb),Ol Ł J 71

a"=o,o ’
2 P

= 9^1 f r 4 (0,95106 Xa — 0,58779 X.).Z~r U J. hi J Tl

Zakładając kolejno ag — 0,2 l i ag — 0,4 l oraz biorąc pod uwagę, że Xj 
przybiera tu wartości 0,1 l, 0,3 l i 0,5 l ustawiamy równania typu (3.18):

(3.26) (1,61804 P — 2 • 0,58779 Xa — 2 • 0,95106 X6) sin 36° +
cin 72°+ (0,61804 P — 2 • 0,95106 Xa + 2 • 0,58779 Xb) + ol

cin 72°
+ (— 0,61804 P — 2 • 0,95106 Xa + 2 • 0,58779 Xb) = 0,Z TI V 1

(3.27) (1,61804 P — 2 • 0,58779 Xa — 2 • 0,95106 Xb) sin 72° —

— (0,61804 P — 2 • 0,95106 Xa + 2 • 0,58779 Xb) +81

+ (— 0,61804 P — 2 • 0,95106 Xa + 2 • 0,58779 Xb)

czyli równania:

(3.28)

(3.29)

0,71331 Xa + 1,10378 Xb — 0,95808 P = 0,

1,10378 Xa + 1,81786 Xb— 1,53451 P = 0.
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Z równań tych znajdujemy następujące wartości sił X wzajemnego od­
działywania na siebie górnej i dolnej belki dźwigara wielokrotnego:

(3.30) Xa = 0,610 P, Xb = 0,473 P.

Reakcja na podporze A górnej belki dźwigara równa się wobec tego

5 P(3.31) = — — 0,610 P— 0,473 P = 1,42 P,

dolnej zaś

(3.32) 0,610 P R 0,473 P = 1,08 P.

Moment zginający w środku całego dźwigara i odpowiednie momenty 
zginające w górnej i dolnej belce wynoszą w tych warunkach:

5 P(3.33) Msr = “<^0,5 l— P • 0,41 — P • 0,21 = 0,65 PI,

(3.34) Mfr= 1,42 P- 0,5 l — P • 0,41 + 0,61 P-0,3 1 —

— P • 0,2 l + 0,47 P • 0,1 l = 0,34 PI,

(3.35) 1,08 P • 0,51—0,61 P ■ 0,3 1 — 0,47 P • 0,1 i = 0,31 PI,

skąd wynika, że moment M$r większy jest od momentu M^r o 10%. Dla in­
nych przekrojów dźwigara różnica między momentem zginającym w gór­
nej i dolnej belce dochodzi do 30%.

W ten sposób wynik obliczeń statycznych potwierdza spostrzeżenia 
zdobyte drogą doświadczeń.

Fakt, że w dźwigarze wielokrotnym naprężenia zginające wypadają 
w górnej belce większe niż w dolnej w tym samym przekroju poprzecz­
nym obydwóch belek, wskazuje na celowość umieszczania gorszych pod 
względem gatunku drewna belek w dolnym piętrze dźwigara wielokrot­
nego, a lepszych w górnym.

4. Układy zastrzałowe

Konstrukcje rozporowe, a więc konstrukcje podlegające w zasadzie 
jednoczesnemu zginaniu i ściskaniu, są reprezentowane wśród konstruk­
cji z drewna przez układy zastrzałowe. Spośród układów zastrzałowych 
mają najczęstsze zastosowanie w budownictwie układy jednozastrzałowe, 
czyli trójkątno-zastrzałowe. Bardziej skomplikowane układy zastrzałowe 
znajdują zastosowanie tylko w przypadkach, gdy mamy zapewniony bar­
dzo dobry materiał drzewny i dobrą robociznę.
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Aby móc mówić o możliwych uproszczeniach w obliczeniu konstrukcji 
zastrzałowych, należy się zastanowić nad schematem ścisłego obliczenia 
układu zastrzałowego.

Na rysunku 13 proste a A i c C oznaczają słupy układu zastrza­
łowego, A C belkę główną, a E B 
i B D zastrzały.

Przyjmujemy, że zastrzały pod­
trzymujące belkę główną układu 
w punkcie B są rozmieszczone wzglę­
dem tego punktu w sposób syme­
tryczny. Ze względu na właściwości 
połączeń drzewnych nie możemy 
uważać połączeń w punktach B, E i 
D za sztywne, wobec czego zakłada­
my tu istnienie przegubów.

O ile belka główna ma położenie poziome, to pionowe obciążenie jej 
wywołuje w obu zastrzałach siły równe

(4.1) s — 2 sin co ’

gdzie RB oznacza reakcję belki głównej w punkcie zbiegania się zastrza­
łów.

Siły £ działające w zastrzałach powodują ich skróty równe

(4.2) Rb s
2 E A sin w ’

gdzie s oznacza długość zastrzału, A pole jego przekroju poprzecznego, 
E zaś współczynnik sprężystości drewna przy ściskaniu.

W związku ze skrótem (4.2) punkt B doznaje pionowego przesunięcia

(4.3) VB
As _ Rb s 

sin oj 2E A sin3 co ’

Belkę główną układu A C możemy rozpatrywać jako belkę swobodnie 
podpartą w punktach A i C i obciążoną poza ciężarami znajdującymi się 
na belce AC jeszcze siłą RB, zaczepioną w jej środku i skierowaną ku gó­
rze. Ugięcie w punkcie B tej belki wyniesie

(4.4) RbI3 
yB y° 48 EJ ’

gdzie y0 oznacza ugięcie, jakiego doznałaby w punkcie B belka swo­
bodnie podparta w dwóch punktach A i C, gdyby na nią działały tylko 
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ciężary znajdujące się na belce, drugi zaś dodajnik prawej części równa­
nia (4.4) dotyczy zginania belki A C siłą RB.

Również i po odkształceniu układu między zastrzałami a belką główną 
przerwy być nie może, wobec czego pionowe przesunięcie się punktu prze­
cięcia zastrzałów musi być równe ugięciu w środku belki, skąd mamy za­
leżność

(4.5) vB = yB ,

która doprowadza do wyrażenia

(4.6) a * —.

2 AE sin2 co 1 48 E J

Wyrażenie to uwzględnia wpływ sprężysty skrótu zastrzałów na wiel­
kość RB i wobec tego traci sens dla zastrzałów nie ulegających skrótowi, 
gdyż wówczas mamy do czynienia z belką ciągłą na podporach sztywnych. 
Wyrażenie to nie uwzględnia, jak widać, niesprężystego przesunięcia pio­
nowego punktu B.

Mówiąc o obliczaniu belek konstrukcji zastrzałowych przyjmujemy, że 
skrajne punkty układu A i C podparte słupami nie ulegają pionowym prze­
sunięciom ani sprężystym, ani też trwałym. Założenie to nie jest na ogół 
dalekie od rzeczywistości; gdybyśmy jednak pionowe przesunięcie punk­
tów A i C chcieli w obliczeniu uwzględnić, to otrzymalibyśmy, jak tego 
dowodzą obliczenia, różnicę w reakcji RB dochodzącą do 13%.

Po wyznaczeniu reakcji RB ze wzoru (4.6) dalsze sprawdzenie wymia­
rów głównej belki układu odbywa się na podstawie momentu zginającego, 
obliczonego ze wzoru

(4.7) Mx = MOx — ~x, 

gdzie x oznacza odległość pewnego przekroju belki A C od podpory A, 
Mox zaś moment zginający, który by w tym przekroju miał miejsce, gdyby 
belka była swobodnie podparta w punktach A i C.

Wpływ sprężystego skrótu zastrzałów E B i B D na wielkość reak­
cji RB jest niewielki, nie dochodzi zwykle do 20%. Wpływ ten może być 
śmiało pominięty przy korzystaniu z tego rodzaju materiału budowlanego 
jak drewno, którego właściwości sprężyste nie są jednorodne.

Pominięcie sprężystości zastrzałów sprowadza schemat statyczny belki 
głównej układu przedstawionego na rys. 13 do schematu belki ciągłej dwu­
przęsłowej na trzech podporach niesprężystych A, B, C.

407



Moment zginający MB nad podporą B może być wyznaczony z równa­
nia trzech momentów, które w danym wypadku przybiera postać

(4-8) 4MBa = — 6(i\ + 'Ą),

gdzie i wyrażają odpowiednio reakcje wtórne podpory B belek AB 
i BC.

Zachodzi tu pytanie, czy nie można by zastąpić obliczenia belki A C 
według równania (4.8) przez obliczenie jej jako belki rozciętej w punk­
cie B.

Obliczanie belek układu zastrzałowego jako ciągłych zmniejsza wpraw­
dzie momenty zginające i pozwala na stosowanie poprzecznych wymiarów 
belki mniejszych niż przy obliczaniu jej jako rozciętej w punkcie B, na­
suwa jednak wątpliwość, czy punkt B może być uważany, pomimo zało­

żenia niesprężystości zastrzałów, za 
nieprzesuwny w kierunku pionowym, 
co jest warunkiem koniecznym, aby 
belkę A C można było uważać za bel­
kę ciągłą na podporach sztywnych.

Zestawmy na przykładzie mają­
cym ogólniejsze znaczenie wyniki 
obydwóch sposobów obliczenia.

Weźmy więc pod uwagę układ 
przedstawiony na rys. 13 i wyobraź­
my sobie, że przęsło A B belki głów­

nej A C obciążone jest w środku siłą skupioną P (rys. 14) i że ciężar wła­
sny belki może być w porównaniu z tą siłą pominięty.

Gdybyśmy uważali, że belka A B jest rozcięta nad podporą B, wówczas 
moment zginający w środiku tej belki wyniósłby

(4.9) M, = ——= 0,250 Pa, 4

reakcja zaś podpory B

(4.10) Rb = —.

Gdyby belka A C była belką ciągłą na podporach sztywnych, nad pod­
porą B działałby moment zginający, obliczony ze wzoru (4.9) i równy

(4.11) MB = 0,094 Pa,

a wówczas w przęśle A B działałby największy moment

(4.12) 0,203 Pa,
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a w przęśle B C moment

(4.13) M2 = 0,047 Pa,.

który miałby tendencję do wyginania tego przęsła ku górze.
Odpowiednio reakcja podpory B wyniosłaby w danym razie

(4.14) R^ = ^ + 2^ = o,688P.
"2 a

Z porównania momentów zginających, podanych we wzorach (4.9), 
(4.11), (4.12) i (4.13) widać, że moment zginający w środku przęsła AB, 
obliczanego jako belka swobodnie podparta w punktach A i B, jest więk­
szy od największego z momentów powstających w tym samym przęśle 
rozpatrywanym jato przęsło belki ciągłej A C. Stąd wynika, że obliczenie 
momentów zginających w belce głównej dźwigara trójkątno-jednozastrza- 
łowego, jako w belce rozciętej w punkcie zbiegania się zastrzałów, daje pe­
wien zapas bezpieczeństwa pociągając za sobą jednocześnie dodatkowy na­
kład materiału.

Rzecz ma się inaczej, gdy chodzi o wyznaczenie wartości reakcji Rb 
w punkcie B zbiegania się zastrzałów. Jak widać z porównania wzorów’ 
(4.10) i (4.14), większą wartość tej reakcji otrzymamy przy obliczeniu głów­
nej belki dźwigara jako ciągłej.

Ponieważ siły w zastrzałach dźwigara trójkątno-jednozastrzałowego, 
jak to wynika ze wzoru (4.1), są proporcjonalne do reakcji Rb, większy 
więc zapas bezpieczeństwa w zastrzałach otrzymamy obliczając reakcję tę 
w założeniu, że belka A C nie jest w punkcie B rozcięta.

Zdawać by się mogło, że stoimy jedynie przed kwestią, czy warto jest 
poświęcić pewną ilość materiału dla uzyskania uproszczeń w obliczeniu 
statycznym konstrukcji zastrzałowej. Kwestia ta przestaje być jednak 
kwestią czysto ekonomiczną i staje się kwestią bezpieczeństwa, jeżeli weź- 
miemy pod uwagę okoliczność, że punkt B na rys. 13 może ulec przesu­
nięciu w kierunku pionowym i że wówczas stosowanie równania trzech 
momentów do obliczenia momentów zginających w belkach głównych 
układów zastrzałowych staje się już ryzykowne.

Jeżeli przesunięcia pionowe punktów B wywołane przez sprężyste 
skróty zastrzałów mogą być pominięte, pozostają jednak przesunięcia nie- 
sprężyste. Przesunięcia te powstają wskutek wysychania drewna, wsku­
tek nieścisłości roboty ciesielskiej itp. Zastanówmy się nad ich wpływem 
na wielkość momentów zginających i reakcyj belki głównej mostu zastrza­
łowego.

Przypuśćmy, że w układzie przedstawionym na rys. 14 rozpiętość A B 
belki głównej wynosi a = 2 m, ciężar P = 5000 kG, moment bezwładności 
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belki J — 25 000 cm4. Współczynnik sprężystości przy ściskaniu drewna 
przyjmujemy za równy E = 100 000 kG/cm2.

Przy obliczeniu belki A B jako swobodnie podpartej w punktach A i B 
wykres momentów zginających miałby kształt przedstawiony na rys. 15

linią pełną. Tu rzędna wykresu

Rys. 15

w środku odcinka A B belki 
głównej wynosi w myśl wzoru 
(4.9) 00' = 0,250 P a. Przy obli­
czeniu belki głównej jako bel­
ki ciągłej otrzymaliśmy wykres 
przedstawiony na rys. 15 linią 
przerywaną, przy czym środko­

wa rzędna wykresu wyniosłaby, w myśl wzoru (4.12) 00" = 0,203 Pa, 
rzędna zaś nad podporą B w myśl wzoru (4.11) Sb = 0,094 P a.

Skoro podpora B osiądzie, belka główna dozna dodatkowego ugięcia ku 
dołowi, które zmniejszy wygięcie belki wypukłością do góry.

Równanie trzech momentów dla belki ciągłej na podporach sprężystych
przybiera w danym razie postać 

(4.15) 4MBa — A + 6EJf

gdzie f oznacza osiadanie belki w punkcie B.
Ze wzoru (4.15) możemy obliczyć tę wartość f, przy której moment MB 

nad podporą B równy jest zeru. W danym razie f = 0,5 cm.
Zmniejszenie momentu podporowego powoduje jednocześnie zwiększe­

nie momentu zginającego w środku przęsła AB, zmniejsza więc bezpie­
czeństwo głównej belki dźwigara zastrzałowego obliczonej jako belka 
ciągła.

Jak widać ze wzoru (4.14), zmniejszenie momentu zginającego MB 
wpływa na zmniejszenie reakcji RB.

Osiadanie f belki głównej w punkcie B, otrzymane w rozwiązanym 
poprzednio przykładzie, nie jest dla belki o przyjętych wyżej wymiarach 
bynajmniej niemożliwe, z wykresu zaś przedstawionego na rys. 15 oraz ze 
wzoru (4.15) wynika, że również osiadanie mniejsze od 0,5 cm powoduje 
zwiększenie momentu zginającego w środku przęsła AB belki głównej 
oraz zmniejszenie reakcji R. Zwiększenie osiadania belki ponad wartość j 
otrzymaną z równania (4.15) jest zazwyczaj łatwe już do zauważenia i mu­
si być usuwane drogą wprowadzenia podkładki między zbiegające się 
w punkcie B zastrzały i belkę.

Z powyższego wynika, że reakcja RB będzie większa wówczas, gdy bel­
ka główna osiadać nie będzie, moment zaś zginający w środku A B przę­
sła, przeciwnie, będzie większy w razie osiadania belki. Należy więc uwa­
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żać za bezpieczniejsze, lecz zgoła nie za przesadnie bezpieczne, obliczanie 
momentów zginających w środku belki jak dla belki swobodnie podpar­
tej w punktach A i B, a reakcji RB jak dla belki ciągłej A C nierozciętej 
w punkcie B.

Ponieważ wielkość Rr jest głównie potrzebna do wymiarowania 
zastrzałów, które podlegają ściskaniu, a więc mogą się znaleźć w niebez­
pieczeństwie wyboczenia, pewien zapas bezpieczeństwa jest tu pożyteczny. 
Na podstawie przytoczonych przykładów można ustalić liczbę 4O°/o jako
wielkość, o którą należy przy 
wymiarowaniu zastrzałów po­
większyć reakcję Rb w stosun­
ku do reakcji belki A B podpar­
tej swobodnie w punktach A i B.

Gdybyśmy układ jednoza- 
strzałowy obciążyli symetrycz­

Rys. 16

nie z dwóch stron punktu B, otrzymalibyśmy zamiast wykresu na rys. 15 
wykres przedstawiony na rys. 16, wzory zaś (4.9)-(4.14) dałyby wartości 
następujące:

(4.16)
M, = 0,250 Pa,

M,.= 0,188 Pa, D
M\ =0,156 Pa,

M2 = 0,156 Pa,

R/; = P, 

R'a = 1,376 P.

Przesunięcie pionowe punktu B, przy którym moment MB obliczony dla 
belki ciągłej o jednej podporze obniżonej równa się zeru, otrzymamy 
z równania trzech momentów dla belki na podporach sprężystych:

(4.17) _6/Ł« “ J_=o
'44 44/ a

skąd znajdziemy f = 0,25 cm.
Jeżeli ciężary P zaczepione w środku przęseł A B i B C belki głównej 

Rys. 17

= 0,125 qa2

(4.18) M„ = 0,125 qa2

R„ = 1,000 aa,Zł 7 i '

rozłożymy w sposób równomierny 
na całym przęśle, wówczas otrzy­
mamy wykres momentów zginają­
cych przedstawiony na rys. 17.

Zamiast wartości (4.9) - (4.14) 
otrzymamy wówczas wartości:

M; = 0,070 qa2,

M; = 0,070 qa2,

R'r = 1,250 aa,
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a odpowiednie równanie trzech momentów przybiera postać

(449) + +

skąd wyznaczymy tę wartość osiadania f, dla której moment M = 0; wy­
nosi ona 0,12 cm.

Jak widzimy, obliczenia porównawcze doprowadzają do wniosku, że 
wyznaczeńie momentów zginających w poszczególnych przęsłach belki 
głównej układu zastrzałowego powinno być wykonywane w założeniu, że 
przęsła te są belkami w dwóch punktach swobodnie podpartymi, wyzna­
czenie zaś reakcji belki głównej w punkcie przecinania się zastrzałów 
wr założeniu, że mamy do czynienia z belką na podporach stałych.

Резюме
АНАЛИЗ СТАТИЧЕСКИХ СХЕМ ДЕРЕВЯННЫХ КОНСТРУКЦИЙ

Определение статически неопределимых величин в деревянных 
конструкциях и определение критических сил в деревянных стойках 
хотя и требует обоснования на законе Гука, но, одновременно, при­
нуждает учитывать специальные условия работы деревянных кон­
струкций, а также неоднородность и анизотропию древесины. Поэтому 
статические схемы деревянных конструкций разнятся от схем других 
конструкций. Работа посвящена анализу трех, самых характерных для 
древесины, конструкционных элементов: непризматических стоек, со­
ставных балок и раскосных систем. Анализ приводит к установлению 
ряда конструкционных свойств упомянутых систем, а в частности:

в главе II — приводится вычисление деревянных конусообразных 
стоек, между прочим и крепежного леса;

в главе III -— обосновывается, что верхние балки составных балок 
должны быть изготовлены из лучшей древесины, чем нижние;

в главе IV — объясняется, при какой, именно, точности вычислен­
ные балки раскосных систем можно трактовать как разрезные — при 
определении изгибающих моментов, и как неразрезные балки — при 
определении реакции.

Summary

AN ANALYSIS OF STATICAL COMPUTATION METHODS
OF TIMBER STRUCTURES

The computation of redundat quantities in timber structures and the 
determination of critical forces in timber struts are based on H о о ke’s 
law. It is necessary, however, to take into consideration, at the same 
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time, the special conditions for timber structures, as well as the hetero­
geneity and the anisotropy of wood. The methods of statical computation 
of timber structures differ therefore from those for other materials. This 
paper is concerned with the analysis of the three most typical elements 
for timber structures. These are: nonprismatic struts, built-up girders 
and brace structures. The analysis results in the determination of a num­
ber of structural properties of those systems.

Sec. II contains a description of a calculation method of conical timber 
struts, in particular pit-props.

In Sec. Ill a conclusion is reached that upper beams of built-up gir­
ders should be made of better material than the lower ones.

In Sec. IV the degree of exactness is determined, for which the beams 
of brace systems can be treated as composed of segments, for the deter­
mination of bending moments, and as continuous beams, for the determi­
nation of the reactions.

Praca została złożona w Redakcji dnia 10 grudnia 1954 r.
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