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WSTEP

Zagadnienia statecznos$ci ruchu wystepuja w licznych dziedzinach
fizyki i techniki. Celem niniejszej pracy jest przedstawienie podstawo-
wych twierdzen teorii statecznosci ruchu. Wydaje sie bowiem, ze mimo
znajomosci przez ogoél fizykéw i inzynieré6w metod badania statecznosci
w pewnych szczegélnych przypadkach, ogélne matematyczne podstawy
tej teorii (obejmujacej takze i stateczno$¢ rownowagi) sa mniej znane
I w naszej literaturze prawie nie poruszane.

Ograniczono sie tu glownie do rozwazenia statecznosci w sensie L a-
punowa oraz do podania zaryséw jego teorii jako najbardziej pod-
stawowe] 1 najlepiej opracowanej pod wzgledem matematycznym.

I. PODSTAWOWE POJECIA I DEFINICJE
1. Okreslenie statecznosci ruchu

Zagadnienia statecznosci ruchu mozna w spos6b pogladowy scharak-
teryzowa¢ nastepujaco. Dana jest na przyklad pewna postaé ruchu ukladu
materialnego. Ruch ten moze by¢ okreslony réwnaniami dynamiki przy
danych sitach dzialajacych na wuklad oraz ustalonych warunkach poczat-
kowych uktadu. Chodzi o zbadanie, jaki wplyw na dana postaé¢ ruchu wy-
wieraja male sily oraz male zmiany warunkéw poczatkowych, nie
uwzgledniane przy okreélaniu ruchu i czesto nieznane. Jezeli pod wply-
wem malych sit posta¢ ruchu niewiele rézni sie od postaci pierwotnej —
ruch nazywamy statecznym. Jezeli mate sily wywoluja duze zmiany
postaci ruchu — ruch nazywamy niestatecznym.

Teoria statecznosci ruchu zajmuje sie badaniem ruchu pod wzgledem
jego statecznosci lub niestateczno$ci. Z powyzszego sformulowania wy-
nika doniosto$¢ praktyczna zagadnien statecznosci ruchu. Piszgc bowiem
rownania ruchu najczesciej uwzglednia sie tylko sity duze, pomija nato-
miast male z powodu ich nieznajomosci lub dla uproszczenia obliczen.
Ocena wiec, jaki wplyw na ruch majg pominiete czynniki, jest wazna,
gdyz decyduje o zgodnosci rozwiazania z rzeczywistym przebiegiem zja-
wiska.
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Zajmiemy sie teraz Scistym sformulowaniem pojecia statecznosc:
ruchu.

Przyjmujemy, ze ruch ukladu materialnego jest okreslony za pomo-
ca n réwnan rézniczkowych rzedu pierwszego, ktore zapiszemy w postaci

dzs

(1.1) 5

= Zr (2, 25, ..o, Zn, 1) (k=1,2,..,n).

Funkcje z4, z,, ..., 2¢, ..., 2, zmiennej t (czasu) sa parametrami okreslaja-
cymi stan ukladu, jak na przyktad wspoéirzedne, predkosci itp. Rozpatrz-
my pewne rozwiazania szczegbélne uktadu réwnan (1.1)

(1.2) zi=F (), 2=Fft ,.., z2=Fflt),
spetniajgce warunki poczatkowe: dlat = 0
(1.3) 2,0=F(0), 250=F:(0) ,.., zwo=7Fa(0)

Ruch okreslony rozwigzaniami (1.2) nazywaé bedziemy ruchem nieza-
kloconym ukladu materialnego. Inng posta¢ ruchu odpowiadajacs
réwnaniu (1.1) i warunkom brzegowym, réznigcym sie od warunkow (1.3)
o pewne wielkosci xro, tj. warunkom: dla t=20

Z{():Zm + xl\]:fl (0) + Ly,
220 = 230 + Tap =2 (0) + s,
\

2n0= Zno + Tno= fu(o -+ Xno,

nazywa¢ bedziemy ruchem zakléconym. Funkcje okre$lajace ruch za-
kl6cony mozna napisaé w postaci

[2i=Ff () + (1),
| §: fa(t) + x5(t),

(1.5) !
|-
l Zu ﬁf/z (t + xn(t

Funkcje x (t) okreslaja zakldcenia ruchu, a wielkosci xro zmiany warun-
kéw poczatkowych.

Poniewaz (1.5) i (1.2) sa rozwiazaniami réwmania (1.1), to mozemy
napisaé

dxi d : n
(16) 7’}’ -+ “fi =Zp (xy + _fu Bs I Jas ves Lot 1 ?cu t)
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oraz

dfe
(17) _at_—zk(fhf:b "')f":t);

gdzie k = 1, 2, ..., n.
Odejmujac (1.7) od (1.6) otrzymamy

o

(1.8) at

= Zp (1 + f1, T2+ fay ooy Tn +Jn, t) — Ze (fy, fa, vouy fr10 T)-

Wprowadzajac oznaczenie
(1'9) Xk (x]yx‘z’-'-y x”,t)ZZk (xl+f17 x2+f2’ "’)xﬂ+fllat)_zk(f|5f2’ "'yfllyt)
mozemy rownania (1.8) napisaé

dl‘k
dt

(1.10) — X (Nt (k=1,2,...,n).
Uktad réwnan typu (1.10) stuzy do wyznaczenia funkeji xi (), tj. do
okreslenia zaklt6cen ruchu. Funkcje x; spetniajg warunki poczatkowe dla

(1.11) t=20, Xp = XTro.

Rownania (1.10) nazywaé bedziemy w dalszym ciggu réwnaniami ru-
chu zakl6conego, mimo ze, $ciSle rzecz biorge, okre§lajag one zakldcenia
ruchu, natomiast ruch zaklécony okreslajg réwnania (1.5).

Mozemy teraz poda¢ nastepujgca definicje, [1]: ruch niezaklécony,
okres§lony réwnaniami (1.2), jest stateczny, jezeli dla kazdej dodatniej
liczby e dowolnie matej mozna tak dobraé dodatnig liczbe 7, ze przy
wszelkich xro, okreslajacych zakl6cenia poczatkowe i spelniajacych nie-
rownosci

(1.12) {xkOISn

przy dowolnym t > 0, spelniona jest nieréwnos¢

(1.13) |2, () — 2, (t)| <e,
czyli
(1.14) loce (B)]| <e.

Ruchy nie spelniajace powyzszych warunkéw sa niestateczne. Jezeli
oprocz nieré6wnosci (1.14) mamy réwniez

(1.15) lim 2, (t) =0,

t—oo
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to ruch niezaktécony (1.2) nazywac bedziemy asymptotycznie statecznym.
Powyzsze definicje okreslajg stateczno$¢ ruchu w sensie Lapunow a.

Jak wida¢, okreslenie L a p un o w a odnosi sie tylko do zaklo-
cen poczatkowych. Istnieje uogo6lnienie tego okres$lenia takze dla zaklo-
cen cigglych w czasie trwania ruchu. Jak sie jednak okaze, przynajmnie]
w praktycznie waznych przypadkach, stateczno$¢ w sensie L a p un o-
wa okre§la ruch stateczny dla wszystkich rodzajow zakidcen.

Pojecie stateczno$ci w sensie L ap unow a nie jest jedynie moz-
liwym pojeciem stateczno$ci. Na przyklad doniosla role odgrywa row-
niez pojecie stateczno$ci orbitalnej (P oin car é g o). Mianowicie
ruch ciala nazywamy orbitalnie statecznym, jezeli parametry okre$la-
jace zaklocenia spo i spelniajace warunek

[Spol =1

wywoluja wychylenia s, (od toru niezakléconego), speilniajace dla do-
wolnego t warunek

Przy stateczno$ci w sensie L a p un o w a warunek drugi powinny
spelnia¢ nie tylko wychylenia od toru, lecz w ogdle r6znice wspoéirzednych
miedzy ruchem niezakl6conym i ruchem zakl6conym.

Wyrézni¢ mozna jeszcze tzw. stateczno$¢ warunkowg. W tym
przypadku dla malych zaklécen poczatkowych (|axro| <<# <) ruch jest
stateczny, natomiast dla zaklécen duzych (|xro|<<#,|aro| = 1gr) ruch jest
niestateczny. Pojecie statecznosci bezwarunkowej jest przy tym oczy-
wiste.

Podane w tym paragrafie sformulowania dotyczyly, jak wida¢, sta-
tecznosci bezwarunkowej.

2. Metody badania statecznosci ruchu. Przyklady

Jak wspomniano, pierwsza kompletna teoria statecznosci ruchu po-
chodzi od A. M. L a p un o w a. Sposoby rozwigzywania zagadnien
statecznos$ci dzieli L a p un ow nadwie grupy. Do pierwszej grupy
nalezg sposoby polegajace na bezposrednim badaniu ruchéw zaki6co-
nych, tzn. wymagajacych rozwigzania ukladu réwnan (1.10). Sposoby
te noszg nazwe pierwszej metody L a p un o w a. Do drugiej grupy
naleza sposoby, ktére nie wymagaja poszukiwania calek szczegdlnych lub
ogb6lnych rownan (1.10), lecz polegaja na badaniu wlasnosci pewnych
funkeji V (a5, s, ..., X, t), (tzw. funkeji L a p un o w a). Sposoéb ten
jest podstawowy w teorii statecznoseci ruchu i nosi nazwe drugiej metody
Lapunowa.
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Zagadnienia stateczno$ci nie nastreczajg trudnos$ci, jezeli rownania
ruchu sa liniowe, tzn. maja postac

d Zr

(2.1) i1

=0a;2+ 0%+ ...+ auzn.

W tym przypadku réwniez réwnania ruchu zaktéconego sa liniowe:

dxp
(2.2) Ti’ =, X + Xy + ... + ann

sie rozwigzac.
- zeczywisto$ci rownania liniowe wystepuja bardzo rzadko; regula
. rébwnania nieliniowe. Jednak dla zagadnien nieliniowych mozna usta-
li¢é pewne roéwnania przyblizone, liniowe, z ktérych wlasnosci mozna
wysnu¢ wnioski co do stateczno$ci ruchu (metody linearyzacji). Te spo-
soby badania statecznosci w pierwszym przyblizeniu byly stosowane przez
Thomsona Taita, Routha Zukowskiego. Scisla
podbudowe znalazly w twierdzeniach L ap un o w a.
Dla lepszego wyjasnienia definicji podanych w p. 1 rozpatrzmy na-
stepujacy przyktad, [3].
Ruch okres$lony jest uktadem rownan

dz, o
'A’H*i—(c B)Z._323—0,
I dz,
(2.3) 4p TA COzz=0,

dz,
dt

C

+ (B A)z,2,=0.

Jest to ruch ciata sztywnego dookota punktu, przy czym z,, 2,, 2; oznacza-
ja sktadowe wektora predkosci katowej wzdluz ruchomych osi ukladu
wspoélrzednych, pokrywajacych sie z gldéwnymi osiami bezwladnosci ciatla,
a A, B, C sa to momenty bezwladnosci wzgledem tychze osi.

Roéwnania (2.3) maja nastepujace rozwigzanie:

2, = f1 (t) = o = const,
(2.4) ' 2,=[ (=0,
Zng;j(t)———O,

Dla zbadania statecznosci tego ruchu nalezy napisa¢ réwnania ruchu
zakléconego (1.10).
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Oznaczajgc funkcje okreslajace zakidcenia ruchu przez wx,, x., x; na
podstawie (1.8) otrzymamy

dx
ATtX‘ (C B).’L'QCC;{:O,
dx,
(2.5) B dt_ +(A—C)(x;+w)x,=0,
dx, .
C ~dt"4+(B A)(x;+w)x;=0.

W wielu przypadkach rownania ruchu zakléconego mozna napisac
bezpo$rednio, badajac zachowanie sie uktadu przy wychyleniach od ru-
chu, ktéory uwazamy za ruch niezaklécony.

II. TWIERDZENIA LAPUNOWA
3. Zalozenia i definicje pomocnicze

Ruch zaklécony nazywamy ustalonym, jezeli réwnania (1.10) ruchu
zakl6éconego maja postac

Vd.’L‘k

(3.1) T

= X (X1, Zgy ovey Tn) k=1, 2,..., n),
tzn. funkcje X nie zalezg od czasu t. Przyjmujemy, ze spelnione sg pew-
ne warunki w obszarze |x,|< H (H jest stala), przy ktérych réwnania
(3.1) posiadaja w tym obszarze jednoznaczne i ciagle rozwigzania.

Ruch zaklocony nazywamy nieustalonym, jezeli jego réwnania maja
postac

(32) ’’’’ ZX/( (t,x,,x-_), "'axll)y

czyli ze funkcje X, zalezg takze od czasu t.

Wprowadzamy pewng funkcje V (x4, x,, ..., x,) okreslong w otoczeniu
poczatku wspéirzednych. Przyjmijmy, ze funkcja jest jednoznaczna, dla
x, = x, = ..=x, = 0 jest rowna zeru oraz posiada ciggle pochodne
czagstkowe. Funkcje V (x,, @, ..., x,) nazywaé¢ bedziemy na pét oznaczong
dodatnio (na p6l oznaczona ujemnie), jezeli w obszarze 0 <<|x;|=< h, gdzie
h jest dostatecznie mala liczbg dodatnia, przyjmuje tylko wartosci do-
datnie lub réwne zeru (ujemne lub réwne zeru). Funkcje V (xy, =, ..., T,)
nazywaé bedziemy nieoznaczona, jezeli w obszarze 0 <|x;|< h dla do-
wolnych malych h przyjmuje wartosci dodatnie i ujemne. Funkcje
V (x4, X3 ..., x,) nazywaé bedziemy oznaczong dodatnio (ujemnie), jezeli
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w obszarze 0 <<|x;|< h dla dostatecznie malych h przyjmuje wartosci
tylko dodatnie (tylko ujemne). Zauwazmy jeszcze, ze pochodnag zupelna
funkcji V (a4, x4, ..., ,) po uwzglednieniu réwnan (3.1) mozemy wyrazic¢
w spos6b nastepujacy:

dv S 0V da QA%
(33) —d“t == S —a;c: dz' = E 65}( Xr=W (.’L’l, Lgy eeey ZL‘") .
k=1 k=1
Nosi ona nazwe pochodnej funkeji V ze wzgledu na réwnani 1 za-
kitoconego. Dla badania ruchéw nieustalonych wprowadza em
funkcje V (t, 2y, ., ..., x,). Podobnie nazywamy ja na p6t o je-
zeli w obszarze |x;|<<h przyjmuje tylko warto$ci jedn «Ku lub

réwna sie zeru dla dowolnego t. Nazywamy ja oznaczon  udatnio lub
ujemnie, jezeli w obszarze |x;|<<h spelnia warunek

(3.4) V(t,x,,Xo, oy Xn) =W
lub
(3.4.1) V(62 By o) s —— WA 115 a5 ey L)y
gdzie W (x,, x,, ..., x,) jest funkcja oznaczong dodatnio i nie zalezy od
czasu.
Pochodna zupeilna funkcji V (t, x4, x., ..., ,) ze wzgledu na réwnania

ruchu zakléconego ma postac

av oV 5 0V
RULVERSSI UL N OOV
13.9) dt ot = — O Xe:

4. Twierdzenia Lapunowa dla ruchow ustalonych

Twierdzenie 1. Jezeli dla réwnan roézniczkowych ruchu zakléconego
mozna znalezé funkcje oznaczong dodatnio (ujemnie) V (x,, ., ..., x,), kto-
rej pochodna dV/dt ze wzgledu na réwnania ruchu zakiéconego jest funk-
cja na pé! oznaczona ujemnie (dodatnio), to ruch niezaklécony jest sta-

teczny.

D o w 6 d Przyjmijmy bez ograniczenia ogélnosci, ze funkcja
V (xy, ., ..., &,) jest funkecjg oznaczong dodatnio we wszystkich punktach
obszaru
(4.1) lxe| =h=H

z wyjatkiem poczatku uktadu.
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Stosownie do zalozen twierdzenia musi by¢ w tym obszarze

av o0V -
(4.2) a7 2 e Xr=0

Oznaczamy przez & dowolnie matg liczbe dodatnia. Dolny kres funk-
cji V dla wartosei ||, |x.|, ..., |x,| takich, ze najwieksza z nich jest
réwna e, oznaczamy przez l.

Mozemy to zapisa¢ tak

(4.3) V{2, Ly, .oy Tn) =11,
jesli
(4.4) max {lay sl Tals o, [ xall —=ex

Rozpatrzmy teraz dowolna funkcje x (t), dla ktorej warto$¢ poczatko-
wa Xro spelnia warunek

(4.5) |Xro| =17,

przy czym liczba 1 spelnia nier6wnos$¢ 7 <_e oraz jest tak matla, ze
V(x10, Togy «..y Tno) <<l. Liczbe taka mozna dobra¢, gdyz V jest funkcja
ciagla i V(0,0,..,0)=0.

Poniewaz na podstawie (4.2) funkcja V nie rosnie z uplywem czasu,
wiec w dowolnej chwili ¢ jest

(46) 4 V [.'131 (t);x2 (t), SoCy) Ln (t)] ; V (xm)x‘lm ey xn()) =< l

Stad wynika, ze dla dowolnego t > t, jest spelniony warunek
(4.7) |xr] << e.

Gdyby bowiem powyzszy warunek nie byl spelniony, to w pewnej chwi-
lit =T, wktoérej |xx| osiagnetoby wartosé e, musiatyby byé rownocze$nie
spelnione warunki (4.3) oraz (4.6), co jest niemozliwe.

Spelnianie warunku (4.7) przy zalozeniu (4.5) dowodzi stateczno$ci ru-
chu przy przyjetych zalozeniach co do Vi dV/dt.

Twierdzenie 2. Jezeli dla réwnan rozniczkowych ruchu zakidconego
mozna znalezé¢ funkcje oznaczona dodatnio (ujemnie) V (xy, &, ..., T,),

ktorej pochodna dV/dt ze wzgledu na réwnania ruchu zakléconego jest

funkcja oznaczong ujemnie (dodatnio), to ruch niezaklécony jest asympto-
tycznie stateczny.
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Dowo6d. Nie ograniczajac ogélnosci dowodu zakladamy, ze V jest funk-
cjg oznaczong dodatnio, natomiast dV/dt — oznaczong ujemnie w obsza-
rze (4.1). W obszarze tym sa speilnione warunki

dv
—~ Y =
(4.7) V=0, L
przy czym znak réwnosdci jest mozliwy tylko w punkcie x,=x,=...=x, =0.

Na podstawie twierdzenia 1 wiemy, ze przy tych zalozeniach ruch
musi byé¢ stateczny, tzn. ze jezeli |axro| << n(e), to |ax(t)| <&, przy czym e
jest dodatnia liczbg mniejsza od h, a 5 jest liczba dodatnia zalezng od e.

Przy zalozeniach twierdzenia 2, ktore sa silniejsze od zalozen twier-
dzenia 1, udowodnimy ponadto, ze jest
(4.8) lim 2, (1) =0,

o
tzn. ze ruch jest asymptotycznie stateczny.
Poniewaz przy warunkach poczatkowych |xxo|# 0 rozwigzania
Xy, Loy ..., T, Nie moga byé wszystkie réwne zeru, zatem funkcja dV/dt
jest w kazdej chwili ujemna. Wynika stad, ze funkcja V jest monotonicz-
nie malejaca i przy t — oo dazy do pewnej granicy a bedac jednak zaw-
sze wieksza od a,tj.
ltisza, Vix, (1), 2a (1), -, % (8] =a.
—c

Ot6z musi by¢ a= 0, zatem

limV=0.

f—>co
Wynika stad. ze musi by¢ réwniez

lim 2 (t) = 0.

[ —>ee

Gdyby bowiem xi (t) nie dazylo do zera, byloby dV/dt stale ujemne tak-
ze dla t —oco.

A wiec byloby dV/dt < —b, gdzie b jest liczba dodatnia. Zatem dla
=ty

\% [xl (t)a Lo (t); cy X (t)l =V (xIO) Logy ey x““) _f_

t
dv
—l—-fdtthV(l‘h,, sz,...,x'uO)' b(t tu)’
r\)

czyli przyjmowatoby wartosci ujemne dla duzych tV, co jest sprzeczne
z zalozeniem twierdzenia.
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Twierdzenie 3. Jezeli dla réwnan roézniczkowych ruchu zakloco-
nego mozna znalezé¢ funkcje V (xy, X, ..., ), ktoérej pochodna dV/dt ze
wzgledu na réwnania ruchu zakléconego jest funkcjg oznaczong dodatnio
(ujemnie), a sama funkcja V nie jest na pot oznaczona ujemnie (dodatnio),
to ruch niezaklocony jest niestateczny.

Do w 6 d Przyjmujemy, ze funkcja dV/dt jest oznaczona dodatnio
w obszarze

(4.9) 0<|ze| =h=H.

Wykazemy, ze nawet przy dowolnie matych liczbach » mozna znalezc
zbiér wartosci poczgtkowych xp, speiniajacych warunki

(4.10) | xro | =1,

przy ktérych rozwiazania x, (t) w pewnej chwili przekrocza obszar (4.9);
tym samym zostanie wykazana niestateczno$¢ ruchu. WartoSci xy, do-
bieramy tak, aby spelniony byl warunek (4.10) oraz aby

14 (xl(n Loy eeey an) =0 y

co jest mozliwe, gdyz funkcja V wedlug zalozen twierdzenia nie jest na
pol oznaczona ujemnie i w otoczeniu poczatku ukladu wspbéirzednych
moze przyjmowac¢ wartosci dodatnie. Gdiyby xi (t) nie przekroczylo gra-
nic obszaru (4.9), to pochodna dV/dt bytaby zawsze dodatnia, czyli bytaby
dV/dt = 1, gdzie 1 jest stalg wieksza od zera. Zatem w chwili t > t,

V [0 (t), 25i(t), -renn (t)] = V (214, X2, -+, Tno) +

i f_dt— xlm x:mu-,xno) = l(t T to)’

skad wynika, ze V ros$nie nieograniczenie, co jest niemozliwe, gdyz w ob-

szarze domknietym (4.9) funkcja V jest ciagla, a zatem ograniczona.
Twierdzenie 4. Jezeli istnieje funkcja V, ktéorej pochodna dV/dt ze

wzgledu na réwnania ruchu zakléconego posiada w obszarze (4.9) posta¢

av =
(4.11) E{:VV 7

gdzie y jest liczba dodatnig, aﬁ‘? jest stale réwna zeru lub jest funkcja
na poét oznaczong, i jesli przy V na p6t oznaczonej V nie jest na p6i ozna-
czong o znaku przeciwnym niz V, to ruch niezaklocony jest niestateczny.
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D ow 6d. Przyjmujemy, ze funkcja v jest nieujemna. Zatem z (4.11)
wynika

ar ="V

Podobnie jak w poprzednim dowodzie wykazemy, ze dla pewnych war-
tosci xro, spelniajacych warunki

|xk01<n, V(x“-,,.’r:”,...,xno).\o

dla dowolnie matych #, warto$ci x, (t) przekraczaja obszar (4.9), co jest
dowodem niestateczno$ci ruchu. Gdyby bowiem xi (t) nie przekraczato
obszaru (4.9), bytaby funkcja V rosnaca i zachodzitaby nieréwnos¢

(il‘i =yV [z, (1), 25 (2), ..., Zn ()] = yV (210, Tags ---, Tno)
czyli
fc%/ = V(@105 X20) 25 Xn0) 5
skad

V 2 ’}'V (xm, xzm svey x/lO) (t - t(l) 0

Zatem funkcja V rostaby nieograniczenie, co jest sprzeczne z zalozeniem
cigglosci funkeji w obszarze domknietym (4.9).

5. Twierdzenia Lapunowa dla ruchow nieustalonych

Twierdzenie 5. Jezeli dla ré6wnan rézniczkowych ruchu zakloéconego
(3.2) mozna znalez¢ oznaczong dodatnio (ujemnie) funkeje V (t, x;, @, ..., Tn),
dla ktorej pochodna ze wzgledu na réwnania ruchu zakléconego jest na
pé! oznaczona ujemnie (dodatnio), to ruch niezakiécony jest stateczny.

D ow6d. Nie ograniczajac ogélnosci rozwazan mozemy przyjac, ze V
jest funkcja oznaczong dodatnio. Zatem dla dostatecznie wielkich t oraz
dostatecznie maltych h (h = H) w obszarze

(5.1) =at0n |ze | =h
jest spelniona nieréwnosé
(5.2) VL, 21, Loy ey Ln) = W (15 Loy 0o, Ln)'s

gdzie W jest funkcja oznaczong dodatnio i niezalezng od czasu. Wezmy

pod uwage liczbe & dowolnie malg dodatnia mniejsza od h. Oznaczamy

przez | dolny kres funkcji W dla wartosci a; spelniajgcych warunek
max{| oyl 5] st — &
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Na podstawie (5.2) jest dla tych wartosSci

V (t, 2y, Ty, eve, Tn) =1
Jezeli warto$ci poczatkowe x;, speilniaja warunek
(5.3) | xR | =,
przy czym 7 jest tak matle, ze
(5.4) V. (05 Z10s Loy -4y Ln0) <11

oraz n<Ze, to jest rzeczg oczywista, ze dla t dostatecznie malo przewyz-
szajacego t, jest spelniony warunek

(55) 1xk‘<£.

Nalezy teraz udowodni¢, ze warunek (5.5) jest spetlniony dla t dowolnego.
Przyjmijmy, ze w pewnej chwili t, nieréwnos$¢ (5.5) nie jest speiniona,
lecz jest

max { |2y &) |, | X2 @) ], oor |2 (t) |} =e.
Wtedy przy t = t; musiatoby by¢
Vot @15 Xgy iey Tn) =1,
skad na podstawie (5.4) wynika
V(815205 oy ooy Tn) == Vo (Cgs L1510y s655En)y

co jest sprzeczne z zalozeniem, ze dV/dt < 0.

Twierdzenie 6. Jezeli dla réownan ruchu zakléconego (3.2) mozna
znalezé oznaczona dodatnio (ujemnie) funkcje V (t, x, s, ..., T,), dla kto-
rej pochodna ze wzgledu na réwnania ruchu zaki6conego jest oznaczona
ujemnie (dodatnio), oraz funkcja V posiada wlasnoé¢, ze dla dowolnej
liczby dodatniej 4 mozna dobra¢ takg liczbe u, ze przy

(5.6) t=1,, x| =p
jest spelniona nieréwnose

(8.7) |V (t, 1, %g; 00y Tp) | =4,

to ruch niezaklécony jest asymptotycznie stateczny.
Dow6d. Przyjmujemy, ze V jest oznaczona dodatnio, a zatem dV/dt
jest oznaczona ujemnie.
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W obszarze (5.1) spelniona jest nieré6wnos$¢ (5.2) oraz nieré6wnos¢
(5.8) — = — W, (xy, x, ..., Tn),

gdzie W, jest funkcja oznaczong dodatnio.

Jezeli funkcja V jest oznaczona dodatnio, a przy tym monotonicznie
malejgca (co wynika z dV/dt < 0), to dla t — co dazy do pewnej granicy.
Granica ta jest réwna zeru. Gdyby bowiem granica ta (oznaczamy ja
przez a) bylta rézna od zera, to byloby dla t > ¢,

(5.9) V (t, 2y, Toy oon, Tn) = a.

Poniewaz zaltozyliSmy, ze V posiada wtasnosé (5.7) dla warunkow
(5.6), to (5.9) pocigga za soba

'(5'10) max:ixl‘)|x‘_‘""yix”i};}’)

gdzie y oznacza dostatecznie malg liczbe dodatnia.
Z (5.8) wynika, ze
dv

(5.11) at

[IA

l1)

przy czym l, jest liczba dodatnig, réwng dolnej granicy funkcji W, dla
warto$ci x; spelniajacych warunek (5.10). Catkujac nieréwnosé (5.11)
otrzymujemy dla t > t,

V(LT Ly oey L) == V(o L5, L Bigsve9 L 0) — Ly ilb—its),

co jest sprzeczne z zalozeniem (5.9). Zatem granica funkcji V dla t — oo
moze by¢ tylko zero, a tym samym réwniez funkcja W (x,, x., ..., x,) dazy
do zera dla t —-oo. Wynika stad, ze

lim 2, =0,

t— o

co dowodzi stusznos$ci twierdzenia.

Twierdzenie 7. Jezeli istnieje funkcja V (t, xy, ., ..., x,) posiadajgca
te wlasno$é, ze dla dowolnej liczby dodatniej 2 mozna dobrac¢ taka liczbe
u, iz przy

t > t,, Te| =
jest spelniona nieréwnosc
] \% (t7 Ly Loy ooy xll) i g A

o .
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oraz pochodna dV/dt ze wzgledu na roéwnania ruchu zakléconego
jest funkcja oznaczona, natomiast sama funkcja V przy dowolnie ma-
tych x; i dowolnie duzym t moze przyjmowa¢ wartosci tego samego zna-
ku co pochodna dV/dt, to ruch niezaklocony jest niestateczny.

Do wo6d Przyjmujemy, ze dV/dt jest funkcja oznaczong dodatnio,
czyli w obszarze

(5.12) t=t,>0, lzx | =h
spelniona jest nieréwnos¢

av _ ‘
(5.13) a7 = W (x,, Xy, ..., Tn),
gdzie W (x,, x., ..., x,) jest funkcja oznaczong dodatnio niezalezna od
czasu. Wartosci poczatkowe xr¢ dobieramy tak, aby speinione byty warunki

| xR0 | = 9, V (ty, T10) Logy -v, Tno) =0,

przy czym 1z jest dowolnie malg liczbg dodatnia. Dobér wielkosci ay,
spelniajgcych te warunki jest mozliwy, o ile V spelnia zatozenia twier-
dzenia.

Wykazemy, ze rozwigzania xi (t) odpowiadajgce tym wartoSciom po-
czatkowym nie naleza do obszaru (5.12), co $wiadczy o niestatecznosci
ruchu. Gdyby bowiem bylo stale |xx|< h, to, poniewaz dV/dt jest stale
dodatnig, musiatoby by¢

V. {815 @15 By ex00 L) = V (g5, L1y Tags o9 L0} s

Z wlasnosci (5.6) i (5.7) wynika, ze

(514) max{ix11;%x2 ;'-':‘x”‘}"/\_{‘y)
gdzie y jest dostatecznie mala liczbg dodatnia. Zatem na podstawie (5.13)

L LY

(5.15) It =

przy czym | jest liczbg dodatnia, réwng dolnemu kresowi funkeji W przy
wartosciach x, spelniajacych warunek (5.14). Catkujac (5.15) otrzymujemy

VL, s By ooy ) == V (L, By By s05Znt) = L =1}«

Z ostatniej nier6wnos$ci wynika, ze dla t — co funkecja V ros$nie nieograni-
czenie, co jest sprzeczne z zalozeniami twierdzenia.
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6. Przyklady

Rozpatrzmy dwa przykiady stosowania twierdzen L ap un o w a.
Dla pewnego rownania ruchu niezakl6conego znaleziono réwnania
ruchu zaktéconego w postaci

dx; .3

[ dt - x2+ax1y
(6.1) I dz, ot
at —— e axs .

Nalezy zbada¢ statecznos$¢ ruchu niezakiéconego.
Funkcje V przyjmujemy w postaci

(6.2) V=71 (x? 4 x2).

Wyznaczamy pochodna zupelna tej funkcji ze wzgledu na réwna-
nia (6.1)
2
(6.3) % =1 ) g—Zka =x, (— &y + ax})+x, (x;+axd) = a(x}+x3).
k=1

Mozliwe sa tutaj trzy przypadki.

(1) Przy « >0 ruch na podstawie twierdzenia 3 jest niestateczny
(bo V 2 0 oraz dV/dt = 0).

(2) Przy a <0 ruch na podstawie twierdzenia 2 jest stateczny asymp-
totycznie (bo V 2 0, natomiast dV/dt =< 0, przy czym znak réwnosci mozli-
wy jest tylko w punkcie x; = x, = 0).

(3) Przy a = 0 ruch na podstawie twierdzenia 1 jest stateczny (bo
V 2 0, natomiast dV/dt = 0).

Nalezy zwroci¢é uwage na fakt, ze o statecznosci ruchu decyduja nie
wyrazy liniowe réwnan (6.1), lecz wyrazy wyzszych stopni.

Przy zastosowaniach praktycznych wazng role odgrywa zagadnienie
wyboru funkeji V (xy, s, ..., ). Ogélnych regut pozwalajacych wyznaczyé
te funkcje w kazdym przypadku nie ma.

Przejdzmy teraz do nastepnego przykladu.

Rozpatrzmy ruch pocisku obracajacego sie wokél wlasnej osi po tra-
jektorii zblizonej do linii prostej.

Dla rozwazenia zagadnienia statecznosci mozemy przyjaé, ze ruch
$rodka masy pocisku jest jednostajny i prostoliniowy. Ponadto przyjmu-
jemy, ze niektore sity mozna pomingé¢ (np. sily aerodynamiczne — uno-
szagca 1 Magnusa).
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Wprowadzimy nastepujace oznaczenia: p jest katem pomiedzy osig
pocisku a jej rzutem na plaszczyzne pionowa trajektorii (rys. 1), a katem
pomiedzy trajektorig a rzutem osi pocisku na plaszczyzne trajektorii,

C osiowym momentem bezwladnosci
pocisku, A momentem bezwladnosci
+_Trajektora 2 ;

pocisku - wzgledem osi poprzecznej przecho-
dzacej przez Srodek ciezko$ci, n mia-
0¢ pocisk rg rzutu predkosci katowej obrotu
\.J/— —  pocisku na jego o$, R wypadkowg si-
1g oporu osrodka, e odlegloscig $rod-
ka masy pocisku od punktu zaczepie-

PL pon trajektord nia wypadkowej oporu os$rodka, przy

Rys. 1 czym Srodek lezy za punktem zacze-
pienia sily oporu.
Przy tych oznaczeniach réwnanie ruchu ma postac?)

| Raut ost

Srodek masy.

(6.4 {AE%—Adgsinﬂcosﬂ -Cnacosff = eRsinfcos a,

Adcosf —2Aafsinp + Cnf=eRsin a.

Rownania powyzsze mozna sprowadzi¢ do czterech réwnan rzedu
pierwszego

B:ﬂl, a ==y,
(6.5) A[S" = — Ad}sinpcos f+ Cna, cos f + eRsin ff cos a,
l Aa,cos =2 Aa, fysinp - Cnp, + eRsina.

Jezeli chcemy zbada¢ stateczno$é ruchu, przy ktérym o$ pokrywa sie
z kierunkiem trajektorii, to uwazamy, ze wielkosci «, f, a;, By, czyli a, f, &,B
okres$laja ruchy zaklécone, a réwnania (6.5) sa rownaniami ruchu za-
kléconego.

Znajdziemy warunek, jaki musza speinia¢ parametry pocisku, aby
ruch byt stateczny. Uczynimy to za pomocg twierdzen L apuno w a.
Jako funkcje L ap unowa przyjmujemy

(6.6) V=F,—uF,,
przy czym F, jest energia uktadu:
(6.7) F, =43 A(f}+ajcos®f)+eR (cosacosf—1),
natomiast F, jest momentem ilo$ci ruchu uktadu wzgledem osi pocisku:
(6.8) F,=A(f;sina—a,cosfpsinfcosa)+Cn(cosacosp —1).
1) Por. [11], t. 2, str. 387.
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Pochodna funkcji V (a, 8, ai, #1) ze wzgledu na réwnania (6.5) jest, jak
tatwo sprawdzi¢, r6wna zeru:

v dF,  dF,
— u -=0.

6.) dt dt dt

Wykazemy teraz, ze mozna tak dobra¢ liczbe u, iz funkcja V bedzie
funkcja oznaczong. W tym celu rozwiniemy funkcje V na szereg Tay-
lora, przy czym zachowamy tylko wyrazy pierwszego i drugiego stopnia:

(6.10) V=3{A2+(Cnu —eR)p+2 Aua, B} +
+ 3 AP+ (Cnp—eR)a*> — 2 Aupra) + ...

Jezeli obie formy kwadratowe w wyrazeniu (6.10) beda oznaczone do-
datnio, to funkcja V bedzie rowniez oznaczona dodatnio. Jak wiadomo,
warunkiem aby obie postacie byly oznaczone dodatnio jest to, aby wy-
rozniki tych form speiniaty nieréwnosc

(6.11) ACnu-——eR) A*u> >0,

gdyz forme typu c,; * + 2¢;, Y + ¢y y° mozna doprowadzi¢ (przy zalo-
zeniu ¢;; =0 i ¢y, > 0) do postaci b*x* 4 a*y*®, jezeli ¢y cpy — ¢}, > 0.
Aby warunek (6.11) byt spelniony, rownanie kwadratowe na u

(6.12) A2 *+A(Cnu—eR)=0
musi posiada¢ dwa rézne pierwiastki. Musi by¢ zatem

A*C?n* - 4 A%eR >0,
czyli

(6.13) C?>n®> > 4 AeR.

Jezeli spelniony jest warunek (6.13), mozna dobra¢ takie u, ze funkcja V
jest oznaczona dodatnio, a jej pochodna ze wzgledu na dany uklad réw-
nan ruchu zakléconego jest tozsamosciowo réwna zeru [por.(6.9)]. Zatem
na podstawie twierdzenia 1:z p. 4 ruch jest stateczny.

Warunek (6.13) okresla minimalng predko$é ruchu obrotowego po-
cisku potrzebng do tego, aby jego o$ «trzymala sie» w sposdb stateczny
trajektorii.

Przypominamy, ze rozwigzanie powyzsze dotyczy tylko trajektorii
mato réznigeych sie od prostej, jezeli bowiem chcemy, aby w przypadku
trajektorii silnie zakrzywionych o$ pocisku pokrywata sie ze styczng do
trajektorii, nalezy ustali¢ warunek ograniczajgcy predkos¢ obrotu pocisku.
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III. TWIERDZENIA O STATECZNOSCI W PIERWSZYM PRZYBLIZENIU

7. Rownania pierwszego przyblizenia dla ruchow ustalonych
Rownania ruchu zakléconego (3.1) w przypadku ruchu ustalonego
mozemy napisa¢ w postaci

d:ck

(1)

= Pr1 Xy + Pr2 Lo + oo + Prn Tn + Xi (21, s, ooy 2n)  (k=1,2,...,0).

Uwazajac prawa strone réwnania (7.1) za rozwiniecie funkeji
Xy (g, 2y ..., ,) z rOWNaN (3.1) na szereg potegowy otrzymamy

o ka
(7.2) B = [ = LO .

Rozwiniecie funkcji Xk (xy, s, ..., x,) na szereg potegowy nie zawiera wy-
raz6w stopnia mizszego niz pierwszy, tj. nie zawlera wyrazoéw statych,
gdyz, jak wynika z tozsamosci (1.9), jest

(7.3) ]Xk (g, 9y ooy xu)l o msy P
1 n
Roéwnania
3 dxk
(74) — = Pr1 X1 + Pr2 Xy + ot Prn Xn (k =11 2, vy n)
dt

nazywaé bedziemy réwnaniami pierwszego przyblizenia. Sg to réwnania
rozniczkowe liniowe rzedu pierwszego.
Roéwnanie stopnia n-tego

‘ Dy 4 Pio Din i
“ Pai Dos— A . P2n ‘
(7.5) DA = . =)
} |
| Pni Dn2 e Pun— 4 |
nazywa sie réwnaniem charakterystycznym, a wyznacznik D (1) — wy-

znacznikiem charakterystycznym.
Jezeli 4; jest dowolnym pierwiastkiem tego réwnania, to wyrazenie

(7.6) xp= Apei’
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jest caika szczeg6lng ukladu (7.4). Stale Ay wyznacza sie z ukladu réwnan
liniowych

(77) Pri A1 + p,,z A: + + (pkk lt) Ak + "’p}m A/z =0 (k: 1, 2, veey 'n) y

posiadajacych rozwigzania nie wszystkie réwne zeru ze wzgledu na (7.5) 2).
Jezeli rownanie charakterystyczne (7.5) posiada wszystkie pierwiastki
pojedyncze, to podstawiajac w wyrazenie (7.6) i = 1,2, ..., n otrzymamy
n rozwigzan na kazda funkcje xi, czyli n rozwigzan niezaleznych uktadu
rownan (7.4). Jezeli rownanie charakterystyczne posiada pierwiastki wie-
lokrotne i takim pierwiastkiem wielokrotnym jest 1;, to oprocz rozwia-
zania (7.6) temu pierwiastkowi odpowiadaja jeszcze inne rozwigzania

typu
(7.8) xp = fu (8) €M,

gdzie fi (t) jest pewnym wielomianem zmiennej t stopnia co najwyzej
o 1 nizszego niz krotno$¢ pierwiastka 4;, przy tym wielomiany te sa réz-
ne dla réoznych k.

W przypadku jezeli pierwiastek 4; jest zespolony, tj.

Ai=u + iv,
to w rozwigzaniach (7.6) i (7.8) state A, oraz funkcje f, sa takze zespolone:
Ar = Pr + iQx, fr = grtiy,.

Biorac z rozwiazan (7.6) i (7.8) tylko czesci rzeczywiste otrzymamy dla
pierwiastka u + i» dwa rozwigzania:

xp = (Prcos ¥t Qg sin »t) e’
(7.9) )

xr = (Py sin »t + Qp cos vt) e’
lub

xr = (@, cos vt — y, sin vt) e"’,
(7.10) ]

xr = (p, sin vt + y, cos vt) et ’.

Te same rezwiazania odpowiadaja pierwiastkowi p— ir.

%) Przy zalozeniu, ze nie wszystkie podwyznaczniki rzedu n—1 wyznacznika D (4;)
sg zerami, mozemy state A, wyrazi¢ w postaci 4, = lek, gdzie | jest dowolnym pa-
rametrem, zas Djk jest podwyznacznikiem elementu Dy W wyznaczniku D (4) okre-
Slonym réwnoscia (7.5), gdzie j jest state.
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Catke ogélng ukladu rownan (7.4) wyrazamy za pomoca catek szcze-
golnych typu (7.6) lub (7.8). Oznaczajac calki szczegélne przez
L1, Thay -y Tin, Otrzymamy catke ogdlna

(7.11) xr=Cy X1 + Cyrs + ... + Cn Xpn.

State C,, C,,...,C, wyznaczamy z warunkéw poczatkowych. Dyskusja
statecznosci w przypadku réwnan liniowych, tj. w przypadku gdy réwna-
nia pierwszego przyblizenia sa zarazem réwnaniami $cistymi ruchu, jest
bardzo prosta. Wynika to stad, ze w caltkach szczegdlnych wystepuje
wyraz

Otéz jasne jest, co nastepuje.

Jezeli rzeczywiste czeSci pierwiastkéw rownania charakterystycznego
sg wszystkie ujemne, to ruch niezaklécony jest stateczny i to asympto-
tycznie (gdyz wtedy xy (t) — 0 przy t— co). Jezeli wérdd pierwiastkow
rownania charakterystycznego znajduja sie pierwiastki z zerowymi cze-
Sciami rzeczywistymi i jezeli tym pierwiastkom odpowiadajg rozwiazania
typu tylko (7.6) lub (7.9) (Ak, Pr, @k sa statymi), to ruch jest stateczny,
lecz nie asymptotycznie; natomiast jezeli tym pierwiastkom odpowiadaja
rozwiazania typu (7.8) lub (7.10), to ruch jest niestateczny. Zagadnienie
statecznosci dla przypadkéw, gdy rownania ruchu sa nieliniowe [czyli
funkcja X, z rownania (7.1) nie jest tozsamosciowo rowna zeru], rozwia-
za¢ mozna za pomocg twierdzen L ap un o w a podanych w nastep-
nym punkcie.

8. Twierdzenia Lapunowa o statecznosci w pierwszym przyblizeniu

Twierdzenie 8. Jezeli wszystkie pierwiastki réwnania charaktery-
stycznego uktadu réwnan pierwszego przyblizenia (7.4) maja ujemne
czeSci rzeczywiste, to ruch niezakldécony jest asymptotycznie stateczny
dla dowolnych wyrazéw wyzszych rzedow rownania ruchu zakléconego
(7.1).

Dowéd Jako funkcje L apunowa przyjmujemy funkecje
V (ay, X, ..., x,) Okreslong réwnaniem

n

ov
(8.1) N (pr1 @1 + .. + Pra x,z)70~~: U,
= %k
przy czym U oznacza jednorodna forme kwadratowa wzgledem x; ... x,:

(8.2) U=—(2}4+ 22 + ... + 2%,
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Przy zalozeniach twierdzenia réwnanie roézniczkowe (8.1) o pochod-
nych czastkowych liniowe niejednorodne posiada jednoznacznie okre-
Slone rozwigzanie, spelniajace warunek

(8.3) [V]y—0=0.

Wykazemy, ze dla dowolnych warto$ci w0, 0, ..., Tpo, nieréwnych
rownoczes$nie zeru funkcja V przyjmuje tylko wartosci dodatnie, czyli
jest oznaczona dodatnio. Mianowicie wartosci ayy, ..., ,, mozemy uwazac

za wartosci poczatkowe funkcji x; (t) okreslonych rownaniami

d
(8.4) %z D (k=1,2, .., 7).

Na podstawie (3.5) wyznaczamy pochodna zupeina funkcji V wzgledem
czasu:

dV._ 1 0V dax _ v OV )
'dt —';—{ ax’ Et ——)_{ Oxk (plnl‘, P oo 5 pknxu),

czyli

dav
(8.5) — =U.

Funkcja V nie moze przyjmowaé¢ wartosci ujemnych, gdyz na podstawie
twierdzenia 3 z p. 4 ruch niezaklécony odpowiadajacy réwnaniom (8.4)
bylby niestateczny, co jest sprzeczne z zalozeniem, ze réwnanie charak-
terystyczne ukladu (8.4) posiada pierwiastki tylko z ujemnymi cze$ciami
rzeczywistymi. Poniewaz, jak wynika z (8.5) i (8.2), funkcja V jest mono-
tonicznie malejaca, to nie moze by¢ rowna zeru, gdyz pociggatoby to istnie-
nie warto$ci ujemnych. Zatem funkcja V jest oznaczona dodatnio dla
wszystkich wartodei x4 (t). Z ciaglosci funkcji V wynika, ze réwniez
w dowolnym punkcie &, ..., ,0 jest ona dodatnia.

Zbadamy teraz znak pochodnej zupeilnej dV/dt dla wartoéci xy (t)
okreslonych réwnaniami ruchu zakléconego

dx

(8.6) at

= Pr1 X1 + ... + PrnTn + Xe.

Na podstawie (3.5) i (8.6) jest

Sa7 v k —
dt k‘:_ll 0xp 2 0%k (Pr121 + .. + Prn Tn) + Y Xk,
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czyli

dv "oV
(8.7) = U+g axkxk.

Funkcja U jest wedlug (8.2) oznaczona ujemnie. Rozwiniecie wyrazenia
n
ov =
Z ox X
i=1 k
na szereg Taylora nie zawiera wyrazéw rzedu nhizszego niz trzeci.

Zatem w obszarze |xi|<<h przy dostatecznie malym h jest spelniona
nieréwnosé

oV -
tU\>>Ya

k=1

Wynika stad, ze jezeli U jest funkcjg oznaczong ujemnie, to rowniez

N0V - dV
U+k%11 ox Xi= dt

jest funkcjg oznaczong ujemnie. Jak wida¢, funkcja V spelnia zalozenia
twierdzenia 2 z p. 4, w konsekwencji czego ruch niezaklécony jest asymp-
totycznie stateczny.

Twierdzenie 9. Jezeli wérdod pierwiastkow réwnania charakterystycz-
nego ukladu réwnan pierwszego przyblizenia (7.4) przynajmniej jeden
ma dodatnig cze$¢ rzeczywista, to ruch niezaklécony jest niestateczny
dla dowolnych wyrazéw wyzszych rzedéw roéwnania ruchu zakléco-
nego (7.1).

Dowo6d Przyjmujemy funkcje Lapunowa V (xy, X, ..., Tp)
okreé$long rownaniem

n OV

(8.8) lg; Pr1 X1 + ... + Pin Xn) 53— O =U,
gdzie
(8.9) U=— (2] + a3 + ... x3).

Pochodna ze wzgledu na uktad réwnan

dxk

(8.10) gr = Pr1 + pr2 X2 + ... + Prna
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wyraza sie wzorem

v

(8.11) 4 =U-

Funkcja V jest zatem monotonicznie malejgca.

Wykazemy, ze istnieja wartosci &y, ..., Tno, dla ktérych funkcja V przyj-
muje wartos¢ ujemna. Gdyby bowiem funkcja V byta oznaczona dodatnio,
to na podstawie twierdzenia 2 ruch niezaklécony odpowiadajacy réwna-
niom (8.10) bylby asymptotycznie stateczny, co jest sprzeczne z zato-
zeniami.

Funkcja V przyjmuje zatem wartosci zerowe, a poniewaz jest monoto-
niczna, przyjmuje réwniez warto$ci ujemne. Pochodna funkeji V ze wzgle-
du na uktad réwnan

d
(8.12) —f—t" = pr1 @1 + ... + Pra Tu + Xi
jest
av 5 0V =
(813) —&?—U‘*‘ s a_a;k‘ Xk:

czyli, podobnie jak w poprzednim twierdzeniu, jest oznaczona ujemnie
dla |xi|<< h przy dostatecznie malym h.

Jak wida¢, funkcja V spelnia zatozenia twierdzenia 3, co w konsekwen-
cji pocigga za sobg to, ze ruch jest niestateczny.

Dowdéd powyzszy wymaga pewnego uzupelnienia. Mianowicie, jezeli
wérod pierwiastkow réwnania charakterystycznego znajduje sie jeden
pierwiastek zerowy, to réwnanie (8.8) moze nie mie¢ jednoznacznie okre-
$lonego rozwigzania. W tym przypadku funkcje L a p un o w a przyj-
mujemy jako funkcje okreslong réwnaniem

n d
{8.14) 112; (pr1x1 + ... + Prn xn)d—;/; =yV+ U,
gdzie
(8.15) U=—@+ 22+ ... +22)

oraz y jest liczba dodatnig. Latwo wykaza¢, ze V przyjmuje rowniez war-
tosci ujemne. Pochodng funkcji V ze wzgledu na réwnania (8.12) jest

dv 5 0V <
(8.16) =V +U+ k;‘ oy X
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i jest, przy dostatecznie matym y i h, funkcja oznaczong ujemnie. Zatem
i w tym przypadku na podstawie twierdzenia 4 ruch jest niestateczny.
Funkcja V w (4.11) jest tutaj réwna
n
v=u+ V%,

Twierdzenie 10. Je$li rownanie charakterystyczne uktadu réwnan
pierwszego przyblizenia nie posiada pierwiastkow z rzeczywistymi cze-
Sciami dodatnimi, natomiast posiada pierwiastki z czeSciami rzeczywi-
stymi réwnymi zeru, to wyrazy wyzszych rzedow rownania ruchu za-
ki6conego (7.1) mozna tak dobra¢, aby otrzymaé¢ ruch stateczny albo nie-
stateczny. Przykladem moze by¢ tutaj zadanie rozwigzane w p. 6 [row-
nania ruchu zakl6conego (6.4)].

9. Kryterium Routha-Hurwitza

Z poprzedniego p. wynika, ze dla badania zagadnieh statecznosci ko-
nieczna jest znajomo$¢ znakéw rzeczywistych czeSci pierwiastkéw réw-
nan algebraicznych. W szczegélnosci wazne sa warunki, przy ktoérych
pierwiastki maja czeSci rzeczywiste ujemne. Zagadnieniem tym zajmo-
wali sie Routh i Hurwitz Ustalili oni warunki konieczne i wy-
starczajace, przy ktorych wszystkie pierwiastki réwnania charaktery-
stycznego majg rzeczywiste cze$ci ujemne. Warunki te znane sg pod naz-
wa kryterium Routha-Hurwitza Podamy je tutaj bez do-
wodu w formie przedstawionej przez Hurwitz a.

Twierdzenie 11. Dane jest rownanie n-tego stopnia

(9.1) e x*+ax" ' +...+a1x+a,=0.
Ze wspoélczynnikéw ustawiamy wyznaczniki
|
} ! ia1 a, 0|
ial a() ‘ |
D, =uq,, DBZ“ [ Ds:‘a:). a, a; ,
|Gy Ay | 1
[ a5 oy Gy
la, a, 0 0 0 i
\
sy a, a, a, 0 ‘
i
|
D/z: . Eaan 1y
|
. . . .
| |
I Q2n—1 A2n—2 A2n--3 A2n— 4 e anp |

przy czym a; =0, jeSli i>n.
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Wszystkie pierwiastki rownania (9.1) maja czeSci rzeczywiste ujemne,
jezeli wszystkie wyznaczniki sg dodatnie, czyli jesli

D, >~0,D,>0,..., D, , =0, D,>0
(lub prosciej
D; >0, D,>0, ..., D,_y=>0, a,==0).

‘Warunek ten jest konieczny i wystarczajacy.
W przypadku réwnania stopnia trzeciego

a, x* + a, 2?4+ ax+a;=0 (a,>0)
otrzymamy warunki

a, a,
(9.2) a, 0, ‘ =aa,—aza,>0, a,>0.

a, a;

Dla réwnania stopnia czwartego
gx'+a,2*+a,x®+a,x+a,=0 (a,=>0)

otrzymamy warunki nastepujace:

( a, a, 0
al au‘
a, >0, I =0, a; a, a,|=>0, a, >0,

ta ag: ‘

0 a, ay
czyli
a, >0, a,a,—aza,>0,
2 -
a;(a,a,—aya;) —a,a1 >0, a;—0.

Na podstawie warunku czwartego wynika z warunku trzeciego
- 2
a, (@, as—ay,a;) >>a,a1=>0.

Zatem drugi warunek moze by¢ zastapiony warunkiem a, > 0. Ostatecznie
dla ré6wnania stopnia czwartego mamy warunki

. 2
(9.3) a, >0, a, >0, a; (@, a—aya;) —a, a1 >0, a,>0.

351



10. Inne kryteria

W zwigzku z badaniem pewnych ukladéw elektrycznych Nyquist,
[13], wyprowadzil kryterium statecznos$ci w pierwszym przyblizeniu nie
wymagajace obliczania wyznacznikéw H ur w it z a. Kryterium to
zostalo uzupelnione i rozszerzone na uktady automatycznej regulacji ma-
szyn przez Michajlowa. Podamy je tutaj w formie roéznigcej sie
nieznacznie od formy spotykanej w literaturze.

Rozpatrzmy funkcje '

1

.1 _ S B
(10 ) K(l) (1'()111_'_(:"I l” I_|_ +anw1/1+a,,’

przy czym
a A"+ a, A" 4.+ a—1d+an

jest lewa strong rownania charakterystycznego pierwszego przyblizenia
(7.5). Funkcje K(2) bedziemy uwazali za pewna funkcje w(z) zmiennej
zespolonej z=x 4+ iy

1
a,z"+a, 2" '+ ...t a1zt an

(10.2) w(z) =

y Jak wiemy, koniecznym warunkiem statecz-
no$ci uktadu sg ujemne cze$ci rzeczywiste pier-
r wiastkéw réwnania

+# (10.3) ayz"+a; 2" '+ ...+ ar12+a,=0.

N - Wynika z tego bezposredni wniosek, ze funk-
cja w () w przypadku ukladu statecznego nie
posiada biegunow w prawej pélptaszczyznie x y.
A zatem jezeli wezmiemy pod uwage kontur I”
na plaszczyznie x vy (rys. 2), to przy przejsciu
Rys. 2 wzdluz tego konturu argument zmiennej w nie
zmienia sie.
Odwzorowanie konturu /' na plaszczyzne w = u + iy otrzymamy
w formie krzywej S okre$lonej rownaniem

1
a(Gy) +a, iy ... Fan1iy Fa,

(10.4) w(iy)=

Poniewaz przyrost argumentu w wzdluz krzywej S musi by¢ réwny zeru,
warunkiem statecznosci jest polozenie punktu w = 0 poza obszarem
ograniczonym konturem S.
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Na rysunku 3a przedstawiona jest krzywa S dla ukladu niestatecznego, na
rys. 3b — krzywa S dla ukladu w stanie krytycznym; rys. 3a i 3b przed-
stawiajg krzywe S dla uktadéw statecznych. Linie cigglte odpowiadaja war-
toéciom y > 0, linie przerywane odpowiadajgce y <<0 sa do nich syme-
tryczne.

Rys. 3

Niezaleznie od powyzszego w r. 1938 Michajlow wypro-
wadzit inaczej sformulowane kryterium w zastosowaniu do uktadow
automatycznej regulacji. Znalez¢ je mozna nie tylko w wymienionej pracy
Michajtowa, leczréwniez na przyktad w podreczniku [12].

11. Przyklady

Rozpatrzmy najpierw najprostszy typ regulatora przedstawiony sche-
matycznie na rys. 4.

Oznaczajgc przez ¢ odchylenie predkosci katowej walu silnika od sta-
nu ustalonego oraz przez 7 odchylenie tachometru mozemy napisaé
rownania ruchu zakléconego w postaci

(11.1) T%5}+Tk57+517:q), Tog+Op=—n,
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przy czym parametry T;, Tk, 6 charakteryzuja dynamiczne wlasnoéci ta-
chometru, natomiast T,,® wlasnosci silnika.

Roéwnanie charakterystyczne ma
postaé¢

(11.2) 1774 = (TaTx - T,0)4 +
+ 0T, +OTri+060+1=0.

Warunki Routha-Hurwitza

sa nastepujace (por. p. 9):
== Doplyw paliwa

2 2
Rys. 4 (113)‘TrTa>0y (TaTk+Tr(')) >0,
0Ta+OT)>0, 40>=>0
oraz !
(11.4) T2 Thd+ TaTiO + O T2 Ty — T2 Ty > 0.

Nieréwnosci (11.3) sa spelnione zawsze. Z nieréwnosci (11.4) otrzy;
mamy nastepujace okreslenie granicy statecznosci:
TaTed | THO L O T

(11.5) T S T2 T 1.
Wynika z niego, ze nalezyta statecznos¢ ukladu mozna uzyskaé przez do-
bér duzych wartosci 6 1 T, (to znaczy zmniejszenie czulo$ci regulatora
i zwiekszenie tlumienia) oraz matych TS (tzn. matej bezwladnosci tacho-
metru). Zbadamy jeszcze, jaki wplyw mna statecznos¢ ma parametr T,
(«czas rozbiegu» silnika). Traktujac lewa strone réwnania (11.5) jako
funkecje T, znajdziemy przez rézniczkowanie, ze osigga ona minimum przy

(11.6) T: = 0;1 .

W celu zwiekszenia statecznosci nalezy wielkos¢ T, dobra¢ tak, aby moz-
liwie duzo réznita sie od wartosci (11.6).
Rozpatrzmy teraz uktad z silownikiem regulacyjnym bez odwodzenia

(rys. 5).
Rownania ruchu zakléconego maja postac
(11.7) T+ Ten+on=¢, Tsp=n, Ti¢g+Op=—pu.

Oznaczenia przyjeto takie same, jak w przyktadzie poprzednim, a po-
nadto T, i u oznaczaja parametr i argument sitownika.
Rownanie charakterystyczne jest

(11.8) ToTsTo 2 + Ts(@Tr +TaTe) ° + Ts (0Ta+0OTr) 2+ 60T 2 +1=0.
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Warunki Routha-Hurwitza beda spelnione, jezeli spelniona
bedzie nierownos¢

(11.9) (OT:+T.Te) X
X 60 Ts(6To+ O Tr)—
—(OT: +TaTy)] —

— ST T =0,

Wynikaja z niej dwa
whnioski:

(a) aby uktad byt statecz-
ny, musi by¢é Kkoniecznie
Ty # 0 i mozliwie duze,

(b) w przypadku gdy ©=0, ! S A
co oznacza, ze silnik nie po- ——= Doplyw patiwa
siada zdolnosci samoczynnego Rys. 5
wyréwnania predkosci kato-
wej ruchu, uklad regulacyjny jest niestateczny przy dowolnych wartosciach

innych parametréow. 4

Wal
silnika
L —
T 1
j’_;“—f/ : :
—L__
——=Doplyw paliwa Rys. 6

Przy silnikach, dla ktéorych ®& = 0, jedynie statecznym typem regu-
latora jest uklad z odwodzeniem (rys. 6).
Z rownan ruchu zakiéconego

T i+ Ten+dn=0g,
(11.10) Tsp+pu=n,
Ta(l-’z'—ﬂ
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mozna Wyprowadzié réwnanie charakterystyczne
Ji T Te\,2, Ta T Tw Ta T
(11.11) i z‘f‘ k)l-{- k2(1+i);~2 k2 LI ki__k__*
0T, Tso 0T, 0Ts 0T, 0T OTs 0T 8 T,

oraz warunek statecznosci

RETTE YOS
(11.12) 6T"+_— W( +§T;) SFTT,

(Ti Tk) T; T,
ot s, wne

—0.

Jak wida¢, koniecznym warunkiem statecznosci jest istnienie ttu-
mienia TY.

Wszystkie powyzsze rozwazania dotyczace statecznosci ukladéw me-
chanicznych oraz wyprowadzone kryteria mogg by¢ rozszerzone na ukla-
dy elektryczne. Rozpatrzmy tu najprostszy przyklad generatora triodo-
wego o sprzezeniu zwrotnym. Schemat generatora przedstawiony jest na
rys. 7. Uklad rezonansowy wilaczony jest w obwodd siatki.

Charakterystyke lampy przyjmujemy w postaci

(11.13) ia=Sug + f(ug),

przy czym f (ug) nie zawiera w swoim roz-
winieciu wyrazéw stopnia mnizszego niz
drugi. Zatem przy rozpatrywaniu zagad-
nienia w pierwszym przyblizeniu f (ug)

" moze by¢ pominiete. Potencjal siatki ug
57 wyrazamy przez tadunek kondensatora g
%
11.14) Ug = - .
Rys. 7 ( ' ¢ C

Zmiana natezenia pradu anodowego i, powoduje w obwodzie rezonanso-
wym site elektromotoryczng o wielkosci

diq

dt -’

(11.15) M

Zatem réwnanie drgan w obwodzie rezonansowym ma postac
diq
dt -’

(11.16) L§+Ré+%=— M

Wykorzystujac liniowg cze§¢ réwnania (11.13) oraz zalezno$¢ (11.14) otrzy-
mamy

MS

(11.17) Lg + (R + v—) g+t

ca=

o
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Rownanie charakterystyczne ma postaé

MS

(11.18) LA* +(R—|——C—

1
\ ) A+ T 0.
Kryteria statecznosci stanu g = 0 sa wiec

(11.19) R+i‘/1c§ =0, CL=0.

Drugi z tych warunkéw jest zawsze spelniony. Zatem, aby uklad byt ge-
neratorem drgan, musi by¢
(11.20) RC +MS < 0.

Stad wniosek, ze musi byé M << 0 oraz musi by¢ M S dostatecznie duze
co do bezwzglednej wartosci

(11.21) IMS|>RC.

Rys. 8

Warunek ilustruje rys. 8a i 8b. Uktad na rys. 8a nie jest generatorem,
gdyz M > 0; natomiast uktad na rys. 8b moze by¢ generatorem, gdyz
M < 0.
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Pes3wome
METO/bI TEOPHHU YCTOHUYHMBOCTHU OBUHKEHHUA

B pabore mpMBOAATCA OCHOBHBIE TEOPEMBI M METOIbI TEOPUY YCTONUN-
BOCTM JIBMKEHMs, OTPAHMUYMBAACH IIPM 9TOM YCTONYUMBOCTBIO B CMBICJIE
JiAnyHOBa U OIpUBEAEHNEM OYEepPKa €ro TEOPUM.

B oTgmensHBIX IaBax paboThl pacCMaTPMBAIOTCH CJIEAYIOIME BOIIPOCHI:

(1) ocHOBHBIE IOHATHA ¥ AePUMHUIMM, a TakxKe 00Ilasg XapakTepuc-
TUKa METOJOB MCCJIEZOBAHMUA YCTONYMBOCTH;

(2) Teopempl JIATMYyHOBA AJA YCTAHOBUBIIMXCSI ¥ HEYCTAHOBUB-
mmMxcd ABUKEHMA. DTM TeopeMbl IIPUMBOLATCA B HEKOTOPOM COKpPAILEHMNN,
OCHOBBIBafACH Ha (PyHIaMeHTaJbHOM Tpyzae JlanmyxHoBa c 1892 r.;

(3) TeopembI 00 YCTOMYMBOCTM B IIEPBOM NPUOIMKEHUM, KPUTEPUN
Payca u Typsuna u xpurepuiti HuKBUCTA, NTPUBOAUTCA He-
CKOJIBKO IIPMMEPOB JICCJIENOBAHMA YCTOMYMBOCTY B IIEPBOM IIPUOIMIKEHUMU
¥ Ipy noMoluy obumx Teopem JIAmy HO B a.

Summary

METHODS OF THE THEORY OF STABILITY OF MOTION

Basic theorems and methods of the theory of stability of motion are
discussed. The considerations are confined chiefly to stability as presented
by Lyapunov andto the principles of this theory.

The following problems are treated in the successive sections.

(1) Basic notions, definitions and general characteristics of investiga-
tion methods of stability.

(2) Lyapunov’s theorems for steady and unsteady motion. These
are treated somewhat briefly, on the basis of the fundamental work of
Lyapunov (1892).

(3) The stability theorems in the first opproximation, the criteria of
Routh and Hurwitz and the criterion of Nyquist are discussed.
Also some examples are given of stability investigations in the first
approximation and by means L y ap un o v's general theorems.

Praca zostata ztozona w Redakcji dnia 25 maja 1954 7.
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Celem niniejszej pracy jest przedstawienie aktualnego stanu wiado-
mosci o plaskiej, ustalonej fali uderzeniowej, wystepujacej w gazie lep-
kim i przewodzacym cieplo *).

Szczegbdlng uwage zwrocono na wyniki uzyskane na gruncie mecha-
niki osrodkow ciagtych, poniewaz nadaja sie one do przedyskutowania ze
wzgledu na swa przejrzysto$¢, za$ jakoSciowo sa najzupelniej pra-
widlowe — zwlaszcza w przypadku fal stabych. Wyniki otrzymane w opar-
ciu o teorie kinetyczng gazéw oraz prace do$wiadczalne oméwiono bardziej
pobieznie, traktujac je — w istocie — jako podstawe do krytyki wynikéw,
jakie daje mechanika o$rodkéw ciaglych.

1. Wstep

Zjawisko fali uderzeniowej polega na pojawieniu sie w obszarze wypel-
nionym przeplywajacym gazem bardzo cienkich warstw, w ktorych ule-
gaja gwaltownej zmianie parametry hydrodynamiczne gazu, takie jak
predko$é, cisnienie i temperatura. Grubo$¢ tych warstw — jak zobaczy-
my — jest rzedu swobodnej drogi czasteczki gazu i z tego wzgledu
wspomniana warstwa bywa czesto traktowana jako powierzchnia niecig-
gtoéci parametrow.

Na zjawisko pojawiania sie niecigglto$ci w gazie $cisliwym, nielepkim
i nieprzewodzacym ciepta wskazaty przede wszystkim badania teoretyczne,
przeprowadzone mniej wiecej 100 lat temu przez Riem anmn a, [1].
Badajac zjawisko rozchodzenia sie w gazie nielepkim fal plaskich o skoii-
czonej amplitudzie R ie m an n dowiédl, ze rozwigzanie okreslajace
ruch fal zgeszczeniowych jest jednoznaczng funkcja drogi (x) tylko
w skonczonym przedziale czasu 0<t<<T (rys. 1).

Poczynajac od chwili t=T w gazie pojawia sie nieciggtos¢, na co wska-
zuje nieskonczenie wielki gradient parametréw ruchu gazu (np. gradient
predkosci Ou/dx=co na rys. 1). Dla t>T rozwigzanie staje sie wielowarto-
Sciowe tracac tym samym sens fizyczny i $§wiadczac, ze po czasie T prze-
bieg zjawiska staje sie jakosciowo odmienny.

*) Praca przedstawiona na Kursie Naukowym Zakladu Mechaniki OS$rodkéw
Cigglych IPPT PAN w Miedzyzdrojach w sierpniu 1954 r.
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Od 1870 roku ukazuje sie wiele prac teoretycznych, poSwieconych ba-
daniu wspomnianej nieciagloéci, przy czym — w miare rozwoju mecha-
niki plynéw — uwzgledniano w coraz to wyzszym stopniu rzeczywiste
wlasciwosci gazu, uzyskujac coraz blizszy rzeczywisto$ci obraz zjawiska.

u ]‘u_ AU
1
| |
1 | : s N A
\ £ l‘ \I x —T X
i t=T t>T
Rys. 1

Najprostszy model fali uderzeniowej, podany przez Hugoniot a,
przedstawia ja jako powierzchnie nieciggtosci, na ktérej zachodzi «skok»
parametrow ruchu gazu, miedzy innymi skok temperatury (rys. 2). Model
ten obowiazuje tylko dla gazu doskonalego, tzn. nielepkiego i nieprzewo-
dzacego ciepla; zasluguje on jednak na szczegdlng uwage, poniewaz ze

wzgledu na swa prostote jest

Uy bardzo wygodny w praktycz-
1i_ _Gal—‘ﬁ-”’—“’—”‘zly- _ nych obliczeniach, a précz
\W' tego nie SFO} byna]mmej"

0| 1 i w sprzeczno$ci z wynikami
{ prostszych do$wiadczen, po-

0 X legajacych np. na obserwo-

Rys. 2 waniu fali metoda cieniow,
metoda TOpplera lub inng.

Jednak juz bardzo wczesnie, bo w 1870 r. R amk in e, [2], zauwa-
zyl, ze w gazie przewodzacym cieplo nie moze wystepowac niecigglosc
temperatury. Przypadek ten (gaz nielepki, ale przewodzacy cieplo) zo-
stal szczeg6ltowiej zbadany przez P r amn d t 1 a, [4], ktory istotnie
stwierdzil ciqgto$¢ zmian parametréow okreslajacych ruch gazu w fali
uderzeniowej, a ponadto oszacowal grubos¢ warstwy, w ktorej zachodzi
najbardziej gwattowna zmiana parametréw (tzw. «grubos$¢ fali uderzenio-
wej»). Oszacowana na 0,0005 mm grubosé¢ fali uderzeniowej stanowita
teoretyczne potwierdzenie trafno$ci niecigglego modelu fali.

Po Prandtlu podat Rayleigh, [5], rozwigzanie w postaci
skonczonej dla gazu lepkiego, ale nieprzewodzacego ciepta, a ponadto do-
wiodl w spos6b przyblizony istnienia rozwigzan ciagtych dla gazu lepkie-
go 1 przewodzacego cieplo (stale wspotczynniki lepko$ci i przewodnosci).
Prawie réwnoczeénie z nim, bo réwniez w r. 1910, opublikowal T a y-
1 o r, [6], rozwiazanie przyblizone uwzgledniajace zaréwno lepko$é¢, jak
i przewodno$¢ cieplng gazu, ale obejmujace tylko zakres stabych fal
uderzeniowych. Po nim — w kolejno$ci chronologicznej — oglosili swe
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prace Becker, [8], ktory podal rozwigzanie w formie skonczonej
dla statych wspoélczynnikow lepkoséci i przewodno$ci cieplnej przy
szczegblnej wartosci liczby Prandtla Pr=23/4; Thomas, [10],
ktory pierwszy uwzglednil zmiennos¢ wspélczynnikéw lepkosci u i prze-
wodnoséci 4 z temperaturg (u ~ V TR ]/;f), nie podajac jednak rozwigzania
w formie skonczonej, lecz tylko dyskutujac jego istnienie, i wreszcie
Morduchow i Libby, [11], ktérzy zbadali przypadek stalej
liczcby Pramdtla Pr=3%i zmiennych wspoétczynnikéw lepkosci
i przewodnosci wedlug prawa p~ T", 42~ T", gdzie 0=n==1. Najnowsze
prace (Misesa, [13], i Grada, [18]) dotycza bardziej ogolnego
przypadku, mianowicie dowolnej wartosci liczby Prand t1 a.

Wszystkie wymienione prace (nie wspominamy tu o mniej waznych,
ktorych obszerny wykaz zamieszczony jest na koncu publikacji) opieraja
sie na rownaniach mechaniki o$rodka ciaglego i odnosza sie do fali uderze-
niowej ustalonej i ptaskiej. Wspélny ich wynik mozna zamkngé w dwu
nastepujacych stwierdzeniach: (1) funkcje opisujace fale uderzeniowsg
w gazie lepkim i przewodzacym cieplo sa ciagle wraz ze swymi pierw-
szymi pochodnymi wzgledem drogi; (2) grubo$¢ fali uderzeniowej, tzn. gru-
bos¢ warstwy, w ktorej zachodzi gléwnie zmiana parametrow ruchu gazu,
jest rzedu swobodnej drogi czasteczki gazu.

Ten drugi wynik $wiadczacy o tym, ze mieciggly model fali uderzenio-
wej stanowi bardzo dobre przyblizenie rzeczywisto$ci, nasunal jednak
juz Beckerowi zrozumialg watpliwosé co do stosowalno$ci réwnan me-
chaniki os$rodka ciggtego do opisu zjawiska fali uderzeniowej ).

Watpliwo$¢ ta stata sie — z kolei — impulsem do badan fali uderze-
niowej metodami teorii kinetycznej, uwzgledniajacymi «ziarnistg», mo-
lekularng strukture gazu. Stosunkowo nieliczne prace, [16], [17], [18],
z wynikami takich badan ukazuja sie dopiero od r. 1950, przy czym —
w zakresie fal stabych — potwierdzaja one na ogét wyniki otrzymane przy
zatozeniu cigglosci gazu.

Jedyna znang dzisiaj podstawa sprawdzenia wynikéw wspomnianych
wyzej prac teoretycznych drogag ich konfrontacji z do$wiadczeniem sta-
nowia pomiary grubosci fali uderzeniowej, przeprowadzone przez C o-
wana i Hormniga, [19]1i[20]. Z tego wzgledu — cho¢ obarczone
sa one bledem okoto 25% i nic nie moéwig o samej strukturze fali — za-
sluguja na blizszag wzmianke. Jak zobaczymy, wyniki pomiaréw potwier-
dzajg wyniki prac teoretycznych, przynajmniej w zakresie fal stabych.

1) Réwnania oparte na zatozeniu cigglo$ci gazu nie nadaja sie oczywiscie do opisu
zmian zachodzacych na odleglo$ciach rzedu drogi swobodnej.
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2. Struktura fali uderzeniowej w Swietle rownan mechaniki ptynu ciaglego

Jako podstawe do rozwazan niniejszego p. przyjmiemy znane réwna-
nia mechaniki gazu ciagltego, lepkiego i przewodzacego cieplo, odniesio-
ne do przypadku ruchu ustalonego, jednoparametrowego, prostoliniowego,
o réwnoleglych liniach pradu, [12]. Dla uproszczenia zalozymy, ze réw-
nanie stanu gazu doskonalego pozostaje w mocy. Ponadto wprowadzimy
znany z termodynamiki zwigzek miedzy lepkos$cig i temperatura, albo —
co na jedno wychodzi wobec ¢, =const, » =const — miedzy lepkoscig
i entalpig. Otrzymamy nastepujacy ukitad réwnan:

rownanie ciggltosci

(2.1) LI —

dx '~
rownanie zachowania pedu (ré6wnanie Naviera-Stokesa)

du  dp 4 d [ du
(22) Uyr = dz T3 dz (’“ dx)’

rownanie zachowania energii
A . u? d [ 1 4 u?
Qu(l—f_ 2) _—‘Ildx<7)7+——3 2)

rownanie stanu gazu doskonatego

(2.3) Ed;

(2.4) p_u—1,

Y “

i zwiazek miedzy lepkoscia i entalpia

(2.5) # (i) .
M

W réwnaniach tych oznaczaja:

gesto$¢ gazu,

predkos¢ gazu,

ci$nienie gazu,

lepkos$¢ dynamiczng gazu (zalezna od temperatury),

liczbe Prandtla (niezalezng od temperatury),

wspoétezynnik przewodno$ci cieplnej (zalezny od temperatury),

ciepto wlasciwe gazu przy stalym ci$nieniu (niezalezne od tem-

peratury),

wyktadnik izentropy,

entalpie,

wyktadnik okres$lajacy zaleznos$¢ lepkosci od entalpii (lub *tem-

peratury).

QN?‘Q@Q’D

3 & X
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Znajdziemy obecnie rozwigzanie szczegdlne ukladu réwnan (2.1)-(2.5) od-
powiadajace nastepujacym warunkom: (1) dla x — — oo przeplyw ma da-
zy€ asymptotycznie do pradu jednostajnego okres§lonego wartosciami u,,
Py 01, 4, 1y, (2) dla x> + co przeplyw ma réwniez dazy¢ asymptotycznie
do pradu jednostajnego, okreslonego wartosciami us, P, 09, i, s rézZnymi
od poprzednich, (3) rozwiazanie ma by¢ ograniczone w obszarze
— oo << << oo.

Zadane rozwigzanie znalez¢ mozna droga nastepujacego postepowania.

Rownanie (2.1) posiada widoczng caltke

(2.6) ou=const =p,u,.

Podstawiamy (2.6) do (2.2) i catkujemy otrzymujac
4 du
(2.7) o Uyu——9p+ 3‘“35+C"

Nastepnie wstawiamy (2.6) do (2.3), calkujemy (2.3) jednokrotnie i po
przeksztalceniach dochodzimy do wyrazenia
L ARd
Cp 0 U,y d.r

., 4 u?
(1+ = Pr 2)_0._,.

(2.8) (li L 1"2 ) =

Liczba P rand tla przybiera dla gazéw, ktérych stan jest od-
legly od punktu skroplenia, warto$ci od okofo 0,66 do okoto 0,9 i jest dla
takich gazow prawie stalg funkcja temperatury. Dla przykiadu podamy, iz
dla powietrza o temperaturze 0°C wartos¢ Pr = 0,720, za$ dla powietrza
o temperaturze 1000°C — Pr = 0,727, [12].

Przyjmujac Pr = cost = /4, co jest w pelni usprawiedliwione w Swie-
tle powyzszych danych, otrzymujemy réwnanie (2.8) w postaci umozli-
wiajgcej rozdzielenie zmiennych i znajdujemy jego catke ogdlng

X
2 dx
(2.9) i+ =C+Cye?* ] T

Catka ta zostala podana po raz pierwszy przez M orduchow a
i Libby’ego, [11]; poprzedni badacze ograniczali sie do calki
szczegblnej bez cztonu ostatniego zawierajacego C..

W oparciu o sformutowane uprzednio warunki wyznaczymy obecnie
state C,, C,, C,.

Poniewaz dla x=-—co musi by¢ u=wu,, za§ du/dxr=0, wiec
z rownania (2.7), odniesionego do * =—co, wypada
(2.10) C,=np, + o0,1}.
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Do okre§lenia statej C; postuzymy sie warunkiem ograniczonos$ci roz-
wiazania. W rownaniu (2.9) funkcja A(x) jest ograniczona i dodatnia, wo-
bec czego catka w wykladniku

f%—)—f—(}:,

X o

gdy * — + co, a to pociaga za soba zdazanie calej prawej strony réowna-
nia (2,9) do mieskonczonosci, i — odpowiednio do tego — sprzeczny z za-
tozonym warunkiem nieograniczony wzrost funkcji i oraz u. Musi by¢ 2)
zatem

C,=0.
Statg C, okreslamy — podobnie jak C;, — z warunkow dla x=—co
otrzymujac
ui
(2.11) Cy=1; +—2—.

Rugujemy obecnie z (2.7) wszystkie funkcje oproécz u, wykorzystujac
przy tym zaleznosé¢ (2.4) i(2.11) i otrzymujac jako wynik tych przeksztal-
cen réwnanie

(2.12) 14+ 5 —57) gz =5

21, 21,
x—1 v xt+1( u
—|—itu) i+ ).
x u, P 2

4 u, ( u? u2)” du x+1

30y uy

Rownanie (2.12) doprowadzamy do postaci bezwymiarowej przyjmujac
jako skale predkosci wielkos¢ u,, a jako skale dtugosci wielkosé

(2.13) 1, = 1,955 ) m —22—,

0104

przedstawiajaca Srednig droge swobodng czasteczki gazu, [12], w wa-
runkach odpowiadajacych x =-—co.

Wprowadzajac nowe funkcje i wielkosci bezwymiarowe U = u/u,
X=2, Ma=2", (x—1)i,—a?, gdzie a, jest predkoscia dzwiek
=1 a, = o % i,=a?, gdzie a, jest predkoscig dzwicku

2) Przypadki C,>0 i C;<<0 sg szczegdlowo przedyskutowane w [11]; odpowiada-
jace im rozwiazania maja sens fizyczny tylko w ograniczonym obszarze zmienno$ci x.
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w warunkach odpowiadajgcych x=-—co, otrzymamy ostatecznie

4 1 w—1_ . NG
(2.14) s 1255y, maE|lT Mal(l—U)] vie=
ol 1 x—1, 1
T 2% L <1+%Ma%)U+< 2% +%Maf)'

Przedyskutujmy obecnie réwnanie (2.14).
Zauwazymy przede wszystkim, ze wyréznik tréjmianu kwadrato-
wego stanowigcego prawa strone réwnania

(2.15) A—~1— 1— ! )2>0
' T ox? Mai| —
Wobec tego trojmian mozna — niezaleznie od warto$ci » oraz Mar —

roztozy¢ na czynniki rzeczywiste i przedstawi¢ go w postaci

x+1

(2.16) —U—-Uy)(U—U,),
2%

przy czym

(2.16.1) Ui=1,

za$

Ma2 (x—1) + 2
(2.16.2) U,= &)

Rozpatrywany trojmian kwadratowy jest ujemny przy wartosciach U
zawartych miedzy pierwiastkami U, i U,, natomiast wspoétczynnik przy
dU/dX na lewe] stronie réwnania (2.14) jest dodatni, je$li tylko
U?<<1+ [x%/(x—1)Md?], co jest oczywiscie spelnione zawsze przy U =1,
a takze w dostatecznie malym =zakresie U>1. Wobec tego pochodna
dU/dX << 0 miedzy pierwiastkami i jest w tym obszarze ograniczona.
Zauwazymy ponadto, ze dU/dX — 0(dX/dU — —co) dla U—U,,U—U,-
Z tych wilasciwosci pochodnej wynika, ze U, odpowiada punktowi
X =—o00, U, — punktowi X = 4 oo, funkcja U(X) jest stale malejaca
i wobec tego

(2.17) Uy=Ui=1.

Réwnanie (2.14) daje wiec funkcje U(X) odpowiadajgca postawionym
warunkom (1), (2) i (3). Jej przebieg podany jest na rys. 2 linig ciagla.
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Podstawiajac do nieroéwno$ci (2.17) obliczong uprzednio wartos¢ U,
i rozwigzujgc otrzymang nieréwnosé¢ wzgledem Ma, stwierdzimy, iz musi
by¢

(2.18) . Ma, >1.

Znaczy to, ze przeplyw o wlasciwo$ciach okreslonych przyjetymi wa-
runkami, asymptotycznie zdazajacy do jednostajnego przy x— — ©o
oraz dla x — + co i przy tym rézny od banalnego przeptywu, okres§lonego
przez u(x) = const, p(x) = const, o (x)=const..., istnieje tylko wtedy, gdy

jest poczatkowo (tzn. dla =— c0) naddZwiekowy.
Znajdziemy obecnie zalezno$¢ miedzy liczbami M a c ha Ma, i Ma,
okre$lajgcymi przeplyw — odpowiednio — przy & =—co oraz & = -+ oo.

Korzystajgc z rownania (2.9) spelnionego dla x= -+ co 1 uwzgledniajgc
C,=0 oraz (2.11) otrzymujemy po podzieleniu przez u}

+ﬁl:i2 u3 1 w2

2 2 m2 9 2
uj 2 us Uy 2 uj

a nastepnie podstawiajac (x—1)i, =a}, (x—1)i,=q;

2, May=u/a, ,
Ma, = u,/a,

1
(V—I)Ma

1 1
?+ [(“ )Ma2+?]U2'

Rozwiazujac wzgledem Ma3 po uprzednim wstawieniu wartosci U, z (2.16.2)
otrzymujemy ostatecznie

1 + — Ma2

(2.19) Ma§=———.
& x—1

/Ma1—ffz—

Latwo sprawdzi¢, ze dla Ma, >> 1 zgodnie z warunkiem (2.18) wypad-
nie Ma, <1, co $§wiadczy o tym, ze rozpatrywany przeplyw ma charakter
fali uderzeniowej zgeszczeniowej.

Nalezy podkresli¢, ze wniosek ten wysnuliSmy bez stosowania drugiego
prawa termodynamiki, co bylo natomiast rzecza niezbedna w przypadku
badania fal uderzeniowych w gazie nielepkim i nieprzewodzacym ciepta.
Z samych bowiem tylko rownan hydrodynamicznych gazu doskonalego
wynikata — wskutek ich odwracalnosci — mozliwo$é istnienia zaréwno
zgeszczeniowych, jak i rozrzedzeniowych fal uderzeniowych, co wymagato
wziecia pod uwage dodatkowych kryteriéw termodynamicznych.
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Zaleznos¢ (2.19) jest znana z teorii fali uderzeniowej w gazie nielep-
kim i niescisliwym; podobnie moglibySmy wykaza¢, ze miedzy wszystkimi
parametrami ruchu gazu dla *x =—co (wskaznik 1) oraz dla *x = + co
(wskaznik 2) zachodza w przypadku gazu lepkiego i przewodzacego cie-
plo zwigzki identyczne ze znanymi z teorii fali uderzeniowej w gazie
nielepkim i niesci§liwym, w szczegdélnosci ze zwigzki Rankin e’ a -
Hugoniota pozostajg wazne. Wida¢ wiec, ze uwzglednienie lepkos$ci
i przewodnosci cieplnej powoduje ciagto$¢ przejscia parametréow od
jednej warto$ci granicznej (dla @ = — co) do drugiej (dla * = + co), nie
zmieniajac jednak samych warto$ci granicznych (rys. 2, linia przerywana).

Na podstawie réwnania (2.19) mozemy oceni¢ wplyw, jaki wywiera
warto$¢ n na przebieg U(X).

Wyktadnik n jest dodatni i waha sie w granicach 0,64 - 0,95 dla gazow
rzeczywistych, [12], jest przy tym prawie niezmienny z temperatura.
Z teorii kinetycznej gazéw wynika n = '/2, za$ zalozenie n = 0 jest row-
nowazne z zalozeniem stalych, niezaleznych od temperatury wspolczyn-
nikéw lepkosci i przewodnos$ci cieplnej.

Traktujac w rownaniu (2.14) pochodna dU/dX jako funkcje n, a pozo-
state wielko$ci jako state, stwierdzimy latwo, iz

d (dU\_( dU e e

dla U, <<U <1, a zatem dla rosnacego n linia U(X) staje sie mniej stro-
ma, co widaé wyraznie na rys. 4 (przypominamy, ze dU/dX < 0).

Konczac omoéwienie rownania (2.14) zauwazymy jeszcze tylko, ze mie
nadaje sie ono do przedyskutowania wplywu samej tylko lepkos$ci
(t#0, A=0) lub samej tylko przewodnosci cieplnej (u=0, A% 0)
na przebieg funkcji U(X). Dzieje sie tak dlatego, ze u oraz A sg zwigzane
ze sobg liczbg Prandtla, Pr= 3%/4 i nie mozna ich w réwnaniu (2.14)
oddzieli¢ od siebie.

Wplyw samego tylko x badz samego tylko 4 przedyskutujemy wpro-
wadzajac od razu do rownan (2.1) - (2.5) = 0 albo A= 0, przy czym po
przeprowadzeniu przerobek i przeksztalcen analogicznych do tych, ktére
postuzyty do wyprowadzenia réownania (2.14), otrzymamy

(2.14.1)

4 (z — 1)” x"—1’5 U:_)_ 1 .
3-1,255 Ma%_‘ln [? 2 (1 -+ ma}) U+ = +

1

= (U—THU—Us),

1 "y QU _%+1
x—1)Ma?| ~dX ~ 2%«
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dla przypadku 4=0, p+ 0 izmiennego z temperatura, oraz

A
C, 04Uyl

(2.14.2)

1 dU _ =+1 . L
ZU_(1+?1W—(1%)]€X_ P Uu—1)U-—U,)

dla przypadku A#0, pu=0°3%).

Predko$¢ U wystepujaca we wszystkich trzech réwnaniach [(2.14),
(2.14.1) i (2.14.2)] wyraza sie wzorem (2.16.1).

Tréjmian kwadratowy po lewej stronie réwnania (2.14.1) jest dodatni,
jesli tylko Maj ™= (x—1)/2x~="/,, co latwo stwierdzi¢ badajac jego wy-
roznik. Wobec tego w interesujacym nas zakresie Ma, > 1 pochodna
dU/dX <0 i funkcja U (X) ma przebieg identyczny z przedstawionym na
rys. 2, wyniktym z dyskusji réwnania (2.14). Uwzglednienie samej tylko
lepkosci 1 = 0 wystarcza wiec do uzyskania ciagglosci parametréw hydro-
dynamicznych opisujacych fale uderzeniows i to zaréwno dla przypadku
stabych, jak i mocnych fal.

Nieco inaczej przedstawia sie sprawa w przypadku uwzglednienia sa-
mej tylko przewodnos$ci cieplnej 4 0.

Wprowadzajgc oznaczenie

1 1!
(2.20) U,= 5 (1 = %M‘a]g)

mozemy przepisa¢ réwnanie (2.14.2) w postaci

(2.21) au _ =« +1lcpouly (U—l)(U—Uz)
i dX 2% 24 U—U, :

Jesli w zakresie U, << U << 1 ma by¢ dU/dX <0, podobnie jak to mia~
1o miejsce w réwnaniach (2.14) i (2.14.1), to musi by¢

U—U,>0
w tym zakresie, co pocigga za sobg w sposéb oczywisty warunek

(2.22) Uy =U,.

%) W réownaniu (2.14.2) uzyskano zmienng bezwymiarowg X dzielac x przez I,
podobnie jak to mialo miejsce w przypadku rownan (2.14) i (2.14.1.). Wielko$¢ I, nalezy
tu jednak traktowa¢ — odmiennie niz poprzednio — jako dowolng diugosé porow-
nawcza, a nie jako $rednig droge swobodna, bo ta ostatnia jest — formalnie rzecz
biorgc — zerem wobec u = 0. Nie wplywa to oczywiscie na wyniki dyskusji row-
nania (2.14.2).
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Podstawiajac do (2.22) warto$ci (2.20) i (2.16.1) otrzymamy po rozwig-
zaniu wzgledem Ma,
3x—1

(2.22.1) Maf";’;—(?;?),

co daje Ma; =1,195 dla x» = 14.

Stad wniosek, ze uwzglednienie samej tylko przewodnosci cieplnej
A # 0 wystarcza réwniez do uzyskania cigglosci parametréw (wraz z ich
pierwszymi pochodnymi), opisujacych fale uderzeniowa, ale tylko w za-
kresie fal stabych
e R
1 \Mal\x——-(g_%).

Dla dostatecznie mocnych fal warunek (2.22) nie jest spelniony, wskutek
czego pochodna (2.21) zmienia znak w punkcie U,, przypadajgcym wowczas
miedzy U, i U,, stajac sie w tymze punkcie nieskonczenie wielka. W kon-
sekwencji funkcja U(X) ma przebieg podany na rys. 3 linig ciagla, jest
wiec dwuwartoSciowa i nie istnieje w calym obszarze — co <X << - co.

Warto nadmienié¢, ze przy bardziej subtelnym rozpatrzeniu zagadnienia
(polegajacym na przejsciu z lepkoscia do granicy réwnej zeru zamiast
przyjecia wprost p = 0) otrzymuje sie, [18], w przypadku 1= ( graniczng
funkcje U(X) istniejgca w calym obszarze zmiennosci X. Funkcja ta jest
przedstawiona ma rys. 3 linig
przerywana. 7

W Swietle powyzszych wy- |
wodoéw  stuszne wydaje sie
stwierdzenie, ze wplyw lepko- )
$ci jest «mocniejszy» od wply-
wu przewodnosci cieplnej, jesli I
chodzi o uzyskanie ciggtosci pa-
rametrow opisujacych fale ude-
rzeniowaq.

Calke réwnania (2.14) mozna poda¢ w postaci skonczonej tylko dla
pewnych szczegélnych warto$ci wyktadnika n, a mianowicie dla n = 0,
n = 1/, [18], oraz n = 1. Dla wartosci n innych niz podane trzeba prze-
prowadzi¢ catlkowanie numeryczne.

Poniewaz warto$¢ n nie ma wplywu jakosciowego na przebieg funkcji
U(X), za$ wplyw iloSciowy okreéliliémy juz uprzednio, wiec podamy —
dla przyktadu — tylko catke dla n = 0. Ma ona postac.

A#0

Rys. 3

1—-U
U—Uy)%

31,2551/ / 1
——]—/ Mai’(l——m;_,) X=In C4

(2.23) ix

\
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gdzie C, zalezy od wyboru ukiadu odniesienia i dla przeptywu o zadanych
uprzednio warunkach brzegowych musi by¢ dodatnia. (Przypadek C: <0
zostal przedyskutowany w [11]; nie ma on sensu fizycznego, poniewaz
dla x— + oo rowniez U-—+ 00, za§ i—>-—o00; ponadto entropia maleje
tu ze wzrostem x).

Stalg C: okre$limy przyjmujac poczatek ukitadu odniesienia w punkcie
przegiecia d2U/dX? = 0; punkt ten odpowiada wartosci U = J/U,.

Otrzymamy

ma(i= Y% (fU,—U)% _ 1—U

Ma? _ _—

3-1,255¢ %

(2.24) e i

Latwo sprawdzi¢, ze catka (2.23) posiada istotnie wtasciwosei prze-
widziane ma podstawie analizy rownania (2.14).

Znajac U(X) mozemy z tatwoscia znalezé pozostale niewiadome funk-
cje, a wiec p(x), o(x), i(x) oraz u(x). Powiadamy czesto, ze zespdl tych
wszystkich funkcji przedstawia (opisuje) strukture fali uderzeniowej.

" T lid S-S
u=4L T 1T = 29791
i = T
L -~ # e 21
)
wTla=2 / i
40 i 18 s
6 ’l Ma,=2 i
» 35 ’ 15 a2 1
] N=
05 30 12
04 N\ 25 g
83
—n=0768{ 20 — =068, 6 | —n-078
02 -=n=0 - j| ——n=0 g+ —=n=0
o 15 pitll] s LA [
i VAR D% Ma=11
0 = . Uéf,] f 1_‘j
8 4 0 4 8 X Wi 5 o 7 <X ¢ -2 0 2 4 7%
Rys. 4 Rys. 5 Rys. 6

Rysunek 4, [11], przedstawia wykres U(X) wykonany dla dwu réznych
liczh M acha idwu réznych wartosci n. Nalezy zaznaczyé, ze dla
n = 0,768 (powietrze) znaleziono U(X) drogg calkowania numerycznego.

Rysunki 5 i 6, zaczerpniete z tego samego zrédia, przedstawiajg roz-
klad ci$nien oraz przebieg entropii w fali uderzeniowej dla tych samych
wartosci n i Ma,.
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Jako podstawa do wykonania wykresu cisnien postuzyl wzér

(2.25) _U[1+ 5 Ma2 (1 U)J,

by

stanowiacy przeksztalcenie wzoru (2.4) za pomocg zaleznosci (2.6), (2.9)
1 (2.11). U oznacza tu funkcje otrzymang w wyniku scalkowania réwna-
nia (2.14).

Wzér stuzacy do wykonania wykresu entropii wyprowadza sie na pod-
stawie znanej z termodynamiki zaleznosci

S—S,=c¢p lnfl—(cp-cz,)lnﬂ,

L& D1
ktéora po uwzglednieniu (2.6), (2.9) i (2.11) przybiera postac

§;SJ — 1ln (U" p) —1n (Uz—I'_2 .
Co P Y

Podstawiajac (2.25) do (2.26) otrzymujemy ostatecznie

(2.26)

(2.26.1) S5 {[1 42l Ma? (1 — Uﬂ)] U”—l}.
Cy 2

Obrazem funkcji (2.26.1) jest rys. 6, na ktéorym zwraca uwage fakt
spadku entropii w zakresie X > 0, co wydaje sie na pierwszy rzut oka po-
gwalceniem drugiej zasady termodynamiki.

Morduchow i Libby, [11], ktérzy — o ile wiemy —
pierwsi stwierdzili ten fakt, wyrazili przypuszczenie, iz moze on $wiad-
czy¢ o braku réwnowagi termicznej gazu w pewnych obszarach, nie zaj-
mowali sie nim jednak blizej.

W gruncie rzeczy zaobserwowany spadek entropii nie stoi bynajmnie]
w sprzeczno$ci z druga zasada termodynamiki, poniewaz elementy gazu
nie moga by¢ — wobec 4+ 0 — traktowane jako uklady odosobnione. Spa-
dek entropii w obszarze X > 0 $wiadczy jedynie o tym, ze kazdy element
gazu, znajdujacy sie w tym obszarze, oddaje drogg przewodnictwa wiecej
ciepla elementowi sgsiedniemu, polozonemu «przed nim» (tzn. blizej po-
czatku ukladu odniesienia na rys. 6), niz go otrzymuje od elementu po-
lozonego «za nim» (tzn. dalej od poczatku ukladu) 4).

Potwierdzimy prawdziwo$¢ powyzszego rozumowania wykazujgc, ze
dla przypadku u# 0, A=0 wspomniany spadek entropii nie wystepuje.

‘) Do wniosku tego doszliSmy wspélnie z Z. Szymanskim. Podczas przygo-

towywania niniejszej pracy do druku stwierdziliSmy, ze identyczny poglad wyrazil
H. C. Levey, [21], nie badajac go jednak blizej.
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Przyjmujac mianowicie w réwnaniu (2.3) A=0 albo — co na jedno

wychodzi — Pr = oo i catkujac je jednokrotnie otrzymamy
. ouf) 4 du
(2.27) 0, Uy (H— E‘)_?“”dx:c“
gdzie C: okreslone z warunkow dla x =-—oo ma wartos¢ (2.11) iden-

tyczng jak dla przypadku u#0, A#0.
Rugujemy nastepnie z (2.7) p oraz ¢ korzystajac z zaleznosci (2.6) i (2.4);
wszystkie te trzy zalezno$ci pozostaja prawdziwe w przypadku 2=0, co lat-

two spostrzec. Jako wynik rugowania wypada
x—1 - i n 4 du

« Oy T3 ax

(2.28) 01U U= — +C,.
Dodajac do (2.27) réwnanie (2.28) po uprzednim pomnozeniu go przez
u otrzymamy
i u? C, Ciu

)
2 01Uy 01Uy

skad po podstawieniu (2.10) i (2.11) wynika

KIS 7or-) AN, 4 USRS S SUHY [ SIS S
(229) =G DM U(1+zMaf)+|2+(x—1)Ma'f]['

Wreszcie — po podstawieniu (2.29) do (2.26) i zrézniczkowaniu otrzy-
manej zaleznosci wzgledem X — otrzymujemy:

\

(2.30) dS __dUlxr—1 ( Ly
‘ dX dX| U »U:—U(l‘ 1 )+L,__1_w
2 T uMat) T2 T (x—1) Ma?
lub
%41
2301 45_dU o U — L)l T)
U dx dXx [ UP ' 1 1 1
Ul “U(1+7;‘M;g)+‘z‘+(7:1>—mg

Z dyskusji réwnania (2.14.1) wynikato, ze dU/dX <<0 w obszarze
U,<<U <1, zaé wyrazenie w nawiasie kwadratowym tegoz roéwnania
[wyrazenie to wystepuje rowniez w mianowniku réwnania (2.30.1)] jest
wieksze od zera dla Ma?>>'/,. Poniewaz licznik (2.30.1) jest w obszarze
U,<<U<1 stale ujemny, wiec z zestawienia tych faktéw wynika
dS/dX >0; wobec tego dla A=0, u7#0 entropia jest funkcja stale rosnaca,
co wilasnie chcieliémy wykazac.
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Na zakonczenie niniejszego rozdzialu zauwazymy, ze przedstawiona
w nim struktura fali uderzeniowej w gazie lepkim i przewodzacym cieplo
zostala otrzymana dla szczegbélne] warto$ci liczby Prandtl a,
Pr = 3/s. Obraz jej pozostaje jednak prawdziwy (w sensie jako§ciowym)
rowniez dla innych liczb P ran d tl a, jak o tym $wiadczg prace
Misesa, [13], i Grada, [18]. Obaj autorzy ograniczyli sie do
czysto jakosciowej analizy ukladu réwnan (2.1) - (2.5).

3. Grubos¢ fali uderzeniowej w Swietle rownan mechaniki osrodkow ciaglych

Grubosciq fali uderzeniowej®) nazywamy grubos$¢ warstwy, w ktorej
zachodzi najbardziej gwaltowna zmiana parametrow hydrodynamicznych
gazu. Oczywiscie, grubo$é fali uderzeniowej musi by¢ okreslona umow-
nie; rys. 7 przedstawia najczesciej stosowane definicje.

Uk
U=7___ﬁ\*i ey =
N U,
L \ax? l
LN 01(1-U,)1 |
U=lh=—=—=i= L—f—--f————ﬁ —

Rys. 7

Definicja 4, pochodzi od Prandtla, [4], definicja 4, od Tay-
1 or a [6], definicje 4, spotykamy u Lojcjanskiego, [12],
i Grada, [18]. Nalezy podkresli¢, ze obliczajac grubos¢ pewnej fali
uderzeniowej na podstawie kazdego z podanych trzech schematéw docho-
dzi sie do wynikéw mato rézniacych sie od siebie ([11] i [18]).

Najwygodniejszy w zastosowaniu praktycznym jest jednak schemat
Prandtla, poniewaz w oparciu o niego mozna okresli¢ grubosé fali
uderzeniowej bez potrzeby znajdowania calki réwnania (2.14). Wystarczy
w tym celu obliczy¢ [dU/dX]|mer z warunku d2U/dX? = 0; otrzymamy
wowcezas

(3.1) A, :@
k dX max

%) Zdajemy sobie sprawe z niewlasciwosci tej nazwy: fala uderzeniowa jest zjawi-
skiem fizycznym, rozciggajacym sie w dodatku na obszar nieskonczony, nie ma wigc
sensu mowié o jej «grubosci». Nazwe podang zachowujemy jednak z braku lepszej.
Analogiczne nazwy stosowane w literaturze obcojezycznej (np. Stossdicke, shock
front thickness) réwniez nie sg zadowalajgce i nie dajg wobec tego podstaw do utwo-
rzenia nazwy prawidlowej.

1—Ug
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Nadmienimy, ze warunek d*U/dX? = 0 daje latwe do rozwiazania réw-
nanie tylko w przypadku n = 0; dla n == 0 prowadzi on do réwnania

1\ 1 1 1\

G T R -] = SO SN, W3 | .
(3.2) (n 2) Un(l+U)+U [2 - ey U (n 2”
1 .

‘Uf[z PR

o budowie dos¢ zlozonej.

Obliczong na podstawie wzoru (3.1) grubos¢ fali uderzeniowej przed-
stawiajg wykresy na rys. 8, [11].

Linie ciggle na tym rysunku oznaczaja grubosc¢ fali uderzeniowej, od-
niesiona do $redniej swobodnej drogi czasteczki w warunkach odpowiada-

jacych X =-—oco. Linia prze-

80 T T T T T ‘ rywana przedstawia grubosc

A, —%m ugg 3}92'27«‘3&3’-’”"”5??-‘% cgsteczki | fali, odniesiona do $redniej

— —Odniesione do srednisj swjgggdnej drogi cznsteczki swobodnej drogi czasteczki

e zawmﬁﬂlfjf}xl;dwwm@hfyfh punklowi przegie-—| w warunkach odpowiadajacych

80 “T—*_““L__'_"”'*ﬂ—:‘ punktowi pr'zeglema linii U(X);

60 @ w tym drugim przypadku gru-

\ } t bosé fali uderzeniowej wypada
40— \\—i nieco wieksza.

\'\ Jak wida¢, przy n = 0 (lep-

S 0768 _ ko$¢ p i przewodno$¢ cieplna 7

W \‘ —————— ==t == niezalezne od temperatury)

\ \.\ gﬂ‘i | _— grubos¢ fali uderze‘niovs'zej. dai;y

; N | do zera przy rospace] liczbie

ail N~ |p-g5 Ma,, co do,pr’owadzmo Be c k g—

| r a, [8], ktory badat to zjawi-

06— AN sko, do stwierdzenia, ze w przy-

‘1 padku  dostatecznie  silnych

% ., fal uderzeniowych grubos¢ ich

‘ = staje sie mniejsza juz nie tylko

| \ od $redniej drogi swobodnej, ale

¥ 2 3 4 5 6 7 MC‘l nawet od Sredniej odleglosci

)
Rys. 8 miedzy czgsteczkami. Wniosek

ten zostal zakwestionowany
przez T hom as a, [10], ktéory stwierdzil, ze przyjecie bardziej zblizo-
nego do rzeczywistosci modelu gazu, odznaczajacego sie wspolczynnikami
lepkos$ei i przewodnos$ci cieplnej zmiennymi z temperatura wedlug zalez-
nos$ci ‘uf\/]/i A~ ]/ T, prowadzi do wnioskéw zupelnie odmiennych, mia-
nowicie (dla n = !/2 grubos¢ fali uderzeniowej dazy przy Ma,— ©o do
wartos$ci stalej, réznej od zera; przy tym wartos¢ ta pozostaje rzedu sred-
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niej swobodnej drogi czasteczki gazu. Pozniejsze badania wykazaly po-
nadto, ze dla /2 << n << 1 grubo$¢ fali uderzeniowej jest niemonotonicz-
ng funkecja liczby Ma,, ze, mianowicie, grubos$¢ fali dazy do nieskonczo-
nosci dla Ma, — co po przejsciu przez minimum, ktére lezy w okolicy
Ma, = 5 i ktérego wielkos$¢ jest rzedu drogi swobodnej. Wida¢ to wy-
raznie ma rys. 4.

Wyniki obliczen grubo$ci fali uderzeniowej sa moze najwazniejszym
osiggnieciem przedstawionej powyzej teorii. Z jednej strony potwierdzaja
one, jak juz wspomniano, trafno$¢ nieciagtego modelu fali uderzeniowej,
Swiadczg bowiem, ze grubo$é fali jest rzedu swobodnej drogi czasteczki
gazu. Z drugiej strony jednak nasuwajg pewne zastrzezenie.

Zastrzezenie to — niezwykle istotne — dotyczy stosowalnosci réwnan
mechaniki o$rodkéw ciggtych do opisu zjawiska fali uderzeniowej, podwa-
zajac tym samym przedstawione wyzej wnioski; wynika ono z rozwazan
nastepujacych.

Zatozenie cigglosci osrodka jest rownowazne warunkowi postulujgce-
mu, ze skonczone zmiany parametréw hydrodynamicznych gazu zachodza
na odlegloéciach duzych w porownaniu z dlugoscia $redniej swobodne]
drogi czasteczki gazu. Jednak warunek ten, jak wida¢ z rys. 8, jest spel-
niony tylko dla bardzo stabych (mate Ma,) fal uderzeniowych, wobec cze-
go wiadomosci o strukturze fali uderzeniowe], otrzymane na podstawie
rownan (2.1) - (2.5) mechaniki osrodkéw ciaglych, moga by¢ bez dal-
szych zastrzezen uznane za prawdziwe tylko dla przypadku dostatecznie
stabych fal (np. dla fal okres§lonych przez Ma,= 1,2, jeSli — w sposob
do$¢ dowolny — zalozymy, ze grubos$é¢ fali réwna 10 diugosciom drogi
swobodnej wystarcza do spelnienia warunku ciggtosci oérodka). Natomiast
w zakresie Ma, > 1, 2, traktowa¢ nalezy strukture fali uderzeniowej, wy-
nikajgca z rownan mechaniki osrodkéw ciagltych, jako niepewna — przy-
najmniej pod wzgledem iloSciowym.

Nawiasem mowiac na rys. 8 wida¢, ze grubos¢ fali uderzeniowe]j staje
sie znowu duza dla liczb Ma,, tzn. dla silnych fal uderzeniowych. Wyda-
waé by sie wiec moglo, ze dla takich fal zalozenie ciggtosci jest utrzyma-
ne, a wiec ich struktura, wynikajgca z rownan opartych na tym zatozeniu,
odpowiada rzeczywistosci. Wniosek taki bylby oczywiScie nadzwyczaj nie-
pewny. Wspomniany obszar bardzo duzych liczb Ma, lezy za zakresem
$rednich liczb Ma,, w ktérym zalozenie cigglosci na pewno nie obowigzu-
je; w obszarze tym réwnania mechaniki osrodkow ciggtych mogty straci¢
stusznoéé nawet z punktu widzenia jako$ciowego opisu zjawiska, trzeba
zatem traktowaé z duzym zastrzezeniem zar6wno obserwowany na rys. 8
fakt ponownego wzrostu grubosci fali w zakresie duzych Ma,, jak i —
tym bardziej — wyplywajacy zen wniosek, iz réwnania «odzyskuja» stu-
szno$¢ w tym zakresie Ma,.
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4. Struktura fali uderzeniowej w Swietle teorii kinetycznej gazow

Teoretyczne zbadanie zjawiska fali uderzeniowej poza zakresem sto-
sowalno$ci rownan mechaniki osrodka cigglego i wyjasnienie tg droga
watpliwosci, sformutowanych w p. poprzednim, mogto by¢ dokonane tylko

10 ——
e e
\

106

05}

04+

w oparciu o teorie kinetyczna, nie korzystajaca
z zalozenia ciaglosci gazu i uwzgledniajgcg jego
«ziarnistg» strukture.

W punkcie niniejszym zostang omoéwione wy-
niki trzech prac, [16], [17] i [18], opartych na
teorii kinetycznej ). Dwie z tych prac, mianowicie
[16] i [18], opieraja sie na rozszerzonych réwna-
niach hydrodynamiki, otrzymanych w oparciu
o pewne rozwiniecia funkecji rozkladu na szereg
i odniesionych do przypadku plaskiej ustalonej
fali uderzeniowej. Trzecia praca natomiast spro-
wadza sie do bezpos$redniego wyznaczenia funkeji
rozktadu jako szczegblnego rozwigzania réwnania
Boltzmanmna, rozwigzania odpowiadajgcego
zjawisku plaskiej fali uderzeniowej.

Praca Zollera, [16], stanowi zastosowa-
nie metody Enskoga-Chapmana-Bur-
n e tta; funkcja rozkladu jest tu rozwinieta
na szereg wielomianéw S on in a. Otrzymany
uklad réwnan rézniczkowych zwyczajnych zostal
scatkowany numerycznie dla przypadkéw p./p; =
= 1,5; 41 6,5, co odpowiada liczbom M a c h a
Ma, =~ 1,2; 1,89 i 2,4. Wyniki catkowania dla przy-
padku p./p, = 6,5 przedstewia rys. 9.

Wprowadzone przez Z ol1le r a wielkoSci bezwymiarowe sg zwigza-
ne z wielko$ciami stosowanymi w nminiejszym artykule zalezno$ciami na-

stepujacymi:

% Mag
:——-——2~U,
1+« M

___*Ma /2R
"Titame Y e VT

31,255 %* Ma}
fi—

4y  (1+=Ma}?

%) Na Kursie Naukowym w Miedzyzdrojach (sierpien 1954 r.) strona teoretyczna
tych prac zostatla omoéwiona w referacie Z. Szymanskie g o Rownanie Boltz-
manna i jego znaczenie w teorii gazow.
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Na rysunku 9 zwraca uwage niemonotoniczno$é¢ funkeji z(¢) [dotyczy
to roéwniez funkeji o ({)]. Zoller faktu tego nie wyjasnia. Fakt ten
obserwuje sie, [16], réwniez w przypadku stabszej fali okreslonej przez
p./p; = 4,0, jednak wystepuje on w stabszym stopniu. Natomiast dla naj-
slabszej fali (po/p; = 1,5) funkcje w i v sa monotoniczne i linia w(()
ma przebieg zupelnie identyczny jako$ciowo z przedstawionym na rys. 4
przebiegiem U(X).

Zauwazmy jeszcze, ze grubos$ci fali uderzeniowej, wynoszace odpo-
wiednio A4¢= 5,29, 1,850 i 1,438 dla p,/p; = 1,5; 4 i 6,5 sa znacznie wiek-
sze od otrzymanych na podstawie rownan mechaniki osrodkéw ciggtych.
Po przeliczeniu na oznaczenia stosowane w p. poprzednich wynoszg one:
A = 17,5; 6,36 1 5,5, podczas gdy wedlug rys. 8 wyniostyby dla tych sa-
mych Ma, okolo 10, 3 i 2.

w=4,33U-3,33
\‘ 10
T - 08
\\\ Navier-Stokes Na’;,,,m' Pr=%
~{ 06—— = 1,66
N Dy-
\\ - 08 —— zp1___2
\ N Py
N \\ a2 [ J l
13 momentdw,/ | ]\ 1T
il NN, 1 2 3 4 5 6 7
-8 -7 -6 -5 -4 -3 -2 -1 N\ X
S
N
—04 \‘
06 \\>
— 0 NG
\\\\
-08 ~\\.\
Rys. 10

Drugi z cytowanych, [18], autoréw, G r a d, opart sie na swej me-
todzie trzynastu momentow, ktéra ostatecznie prowadzi w przypadku pta-
skiej fali uderzeniowej do uktadu pieciu réwnan rézniczkowych zwyczaj-
nych.

W wyniku numerycznego calkowania tego ukladu dla Ma, = 1,611
otrzymano wykres predkosci podany na rys. 10 linig ciggla.

Poréwnanie go z analogicznym wykresem uzyskanym w oparciu o row-
nania mechaniki osrodkéw ciaglych (linia przerywana) wykazuje zupeing
zgodno$¢ jakos$ciowa oraz niewielkie iloSciowe réznice, wyrazajace sie
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bardziej tagodnym przebiegiem wykresu otrzymanego na podstawie me-
tody trzynastu momentow.

Grubosci fali uderzeniowej, obliczane na podstawie metody trzynastu
momentéw, takze mie réznig sie wiele od obliczonych na podstawie réw-
nan mechaniki o$rodka ciagtego. Liczbowe réznice wynoszg ok. 2% dla
Ma, = 1,18 i =~ 15%9 dla Ma, = 1,61 z tym, ze metoda trzynastu momen-
tow daje grubosci wieksze.

Dla silniejszych fal uderzeniowych (tzn. dla Ma, =1,65) G r a d nie
przeprowadzal obliczen, poniewaz stwierdzit droga bardzo wnikliwe]
i drobiazgowej analizy jako$ciowej wspomnianego ukiadu pieciu réwnan
rozniczkowych, ze rownania te dajg jedyne rozwigzanie na fale uderzenio-
wa tylko dla Ma, = 1,65. Powyzej tej warto$ci Ma, istnieje mianowicie
nieskoniczenie wiele linii calkowych lgczacych punkty osobliwe, odpowia-
dajgce stanowi gazu w 4+ co i —oo. Wykresy predkosci dla Ma, > 1,65
staja sie niemonotoniczne, co pokrywa sie z wynikiem Zoller a.

Praca [177 Mott-Smith a zajmuje sie wyznaczeniem funkcji
rozktadu, bedacej sumg dwu makswellowskich funkeji rozkladu, z kté-
rych jedna okresla stan gazu w —co (przed falg uderzeniowg), druga
w + oo (tzn. za falg). Wyniki ograniczajg sie do obliczen grubosci fali ude-
rzeniowej w funkeji liczby M a ¢ h a Ma, dla dwu réznych réwnan
transportu. Obliczone grubosci fali
wypadaja tu znacznie wieksze od u-

l T
4| Argon ﬂ zyskanych na podstawie rownan me-
% ! chaniki o$rodkéw ciagglych (por. rys.
o l 3 11); roéznice wynoszg Kkilkadziesiat

i & | procent.

0 T T
/ 2 | Reasumujac wyniki p. 4 stwier-
/M——f"‘ dzamy, ze teoria kinetyczna potwier-
a5 // Mott-Smith— dza rezultaty otrzymane dla przypad—
// ku stabej ptaskiej fali uderzeniowej
Wz Chang na podstawie roéwnan mechaniki
. . 5 - 5 o osrodkow cigglych: jakosciowa zgod-
no$¢ jest zupeina, ilosciowo za$ teo-

Rys. 11

ria kinetyczna daje wieksze grubosci
fali uderzeniowej.

W zakresie silnych fal uderzeniowych teoria kinetyczna daje miemono-
toniczne parametry hydrodynamiczne, co stanowi juz jakoSciowa roéznice
w poréwnaniu z wynikami mechaniki oérodkéw ciagtych. Fakt ten trakto-
waé jednak nalezy z duzg ostroznoscia, zwazywszy ze funkcje rozkladu,
zastosowane w omowionych wyzej pracach, [16], [18], obowiazuja przy
zalozeniu matych odstepstw gazu od stanu réwnowagi, ktore nie jest spet-
nione w fali uderzeniowej (i to tym mniej, im silniejsza jest fala). By¢
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moze zatem, ze funkcje te w ogéle nie nadajg sie do badania fal silnych.
Co prawda, funkcja rozkladu otrzymana przez Mott-Smitha jest
wolna od wspomnianego zatozenia, niestety jednak autor nie podal odpo-
wiadajacego jej rozkladu predkosci, nie wiemy zatem, czy bylby on —
dla dostatecznie silnych fal — réwniez niemonotoniczny.

5. Pomiary grubosci fali uderzeniowej

Wyniki przedstawionych wyzej réwnan teoretycznych nie mogg by¢
oczywiscie uznane za pewne, dop6ki nie potwierdzi ich do§wiadczenie. Nie-
stety, nie znamy dotychczas metod, ktoére pozwolilyby zbada¢ doswiad-
czalnie strukture fali uderzeniowej w calej rozciaglosci, a wiec uzyskac
obraz predkosci, temperatury i innych parametréw hydrodynamicznych
gazu. Istnieje natomiast metoda pozwalajgca zmierzy¢ grubosé¢ fali ude-
rzeniowej i przynajmniej pod tym jednym wzgledem (w pewnym sensie
«z grubsza») skonfrontowaé¢ wyniki teorii z rzeczywistoscia.

s
&

o ——t—

= —————

004} !
‘ o Punkt pomiarowy ]| o Punkt pomiarowy
) 12 14 16 Ma, 00 12 14 16 Ma,
Rys. 12

Metoda, o ktérej mowa, opiera sie na zastosowaniu tzw. «rury uderze-
niowej» i zostala opublikowana w pracy Cowana i Hornig a,
[19], z 1950 r. Praca nastepna, [20], z 1951 r. zawiera konkretne wyniki
pomiaréw grubosci fali uderzeniowej w argonie i azocie dla liczb
Ma, < 1,4.

Wyniki tych pomiaréw przedstawia rys. 12, zaczerpniety z [20]. Po-
twierdzaja one, jak widaé, wyniki uzyskane na drodze teoretycznej, przy
czym najlepsza zgodnoé¢ z doswiadczeniem daje teoria Mot t-S m i-
t h a. Nalezy podkresli¢, ze wyniki pomiaréw obarczone sa biedem do-
chodzacym do 25%o.
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Niestety, pomiary obejmuja zakres malych liczb Ma,, w ktérym roz-
bieznos$ci miedzy poszczegdélnymi teoriami nie sa duze, jesli chodzi o gru-
bosé fali uderzeniowej. Byloby rzeczg o duzym znaczeniu przeprowadze-
nie pomiaréow grubo$ci fal, charakteryzujacych sie wiekszymi liczbami
Macha, i-— tym samym — sprawdzenie wynikéow poszczegélnych teo-
rii w zakresie ich wiekszej rozbieznosci.
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Peszome

CTPYKTYPA IIJIOCKOH YJAPHOW BOJIHBI

Pabora aByAeTCA CBOAKONM PE3yJbTaTOB MUCIBITAHMII CTPYKTYPBI ILJIOC-
KOJI yCTaHOBMBIIENCA YAApPHOM BOJIHBI B BA3KOM ¥ NIPOBOAIIEM TEILIO
rase. ’ .

B 1. 2-om, sABisOLIIEMCA OCHOBHOM 4YacTbio paboThI, pacCMOTPEHBI pe-
3yJIBTATHI, IIOJy4YeHHble HA OCHOBAHMM YPABHEHMII MEXaHMKY CILJIOLIHON
cpenpl. ObGcyskmaercsa BIMAHME PA3JIMYHBIX (PAKTOPOB Ha XapakTep M3-
MEHYMBOCTY TUAPOAMHAMMYECKMX TIapaMeTPOB, MEZKAY TIPOYMM i BIIMSHMEC
OIHOJ TOJIBKO BA3KOCTHM ¥ OJHOM TOJIBKO TeIJIOIIPOBOJHOCTI.

Ocobennoe BHMMaHue obpairaercd Ha (pakT, YTO B BA3KOM ¥ TIPOBO-
IAIEeM TerJo rase, Ha (poHe OOIIlero IIOBBIIIEHMA SHTPONNMM, BBICTYIIAET
ee JIOKaJIbHOe yMmeHblIeHue, [11]. OTo HM B KOeM ciaydae He IIPOTUBO-
PeYNT BTOPOMY IIPMHLIMILY TEPMOAMHAMMKM, TaK KaK SJEMEHTbI IIPOBOJA-
IIIero TeIJIo Ta3a He SABJAITCA M30JMPOBAaHHBIMM cucreMamy. KocBeHHBIM
[IOATBEPKAECHMEM ABJIACTCS JOKA3aHHbI HAaMM (PAKT, YTO yAapHAaA BOJHA —
B BA3KOM ¥ HENPOBOAAIIEM TEIIJI0 ra3e — OTAMYAETCS MOHOTOHHBIM TIO-
BBIIIEHMEM SHTPOIIVIN,

PesysibTaThl, TOJyJYeHHbIE METOJAaMV MEXaHMKM CILJIOIIHOM CpPenbl, CO-
TTOCTABJAIOTCA 3aTeM C Pe3yJbTaTaMy KWHETHMYIeCKOV TeOopuy M JaHHBIMMA
9KCIIEPVIMEHTOB.

YcTaHOBISHO, 9TO MEXaHMKAa CILJIOLIHOV Cpedbl JaeT, B obaacTy mocTa-
TouHO cyaberx BoaH (mo Ma, =~ 1,6), IpaBMIbHYIO KadyeCTBEHHO M3MEHYN-
BOCTBL TMAPOAMHAMMYECKMX [IapaMeTPOB; BIPOYeM KOJIMYECTBEHHbIE Pa3HM-
LIbI HeBEJIMKI 11 BhIpazKaroTcsa 6osiee OTBECHBIMYM DOPMaMM KPUBBIX COOTBET-
CTBYIOUWMX (DYHKIMIL, 4eM 9TO BBITEKAeT M3 KMHEeTHYeCcKoi Teopyn. Becema
BEpPOSATHO, YTO B 06J1aCTM OBOJIBHO CMJIBHBIX BOJIH OyayT BBICTyIATh Kaye-
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CTBEHHbIE PA3HMUIIbI; KMHETHYECKas Teopus, [16], maer 3geck — B npoTuBO-
IOJIOZKHOCTY MEXaHMKEe CILJIOIIHOM Cpenbl — HEeMOHOTOHHBIE M3MEHEeHUS
TMIPOAMHAMMYeCKMX NapamMeTpoB. OJHAKO pe3yabTaThl KMHETUYECKOI Teo-
pyu, [16] u [18], B 06s1acTy CUIIBHBIX BOJIH HEHAEXKHBI, TaK KaK COCTOSHME
raza MOZKET 3/1eChb CMJIBHO OTKJIOHATBCA OT COCTOAHMS TePMMUYECKOTO paB-
HOBecuAa. Kpome TOro 5Ty pe3yabTaThl CIMIIKOM OTPBIBOYHBI, 4TOOBLI HA
X OCHOBAHMM MOZKHO ObLI0 OBI NPMHATE IPEACTABIJIEHNE O CTPYKTYPE CHIb-
HOJ yZapHOJ BOJHBI M IPOBECTM KPUTIMKY Pe3yJIbTATOB PACCYIKICHMI Me-
XaHMKM CIJIONIO0O0I cpensl (Hanpumep [17] He comepzkut obpasza CTPYKTYPHI,
@ TOJIBKO JIMIIIb BBIYMCJIEHVE TOJILVHELI BOJIHLI).

JI3mepeHua TOJIUMHBI yaapHO BOJHBI, [20], mpou3BeneHHBIE s
Ma, = 1,4, gBisomyecs eQUHCTBEHHBIM M HECOBEPIIEHHBIM OCHOBAHMEM
IJIsl COTICCTABJIEHMS TEOPUM M 9KCIEPUMEHTA, IIOATBEPIK/IAIOT Pe3yJIbTaThl
TEoPUIL,

Summary
TWO-DIMENSIONAL SHOCK WAVE STRUCTURE

This paper constitutes a summary of results of investigations of steady
plane shock wave in a viscous heat conducting gas.

Sec. 2 the principal part of the paper contains a discussion of the
results obtained on the basis of the equations of mechanics of continuous
media. The influence of various factors on the type of variability of
hydrodynamic parameters are discussed, including the influence of
viscosity and of heat conductivity.

Special consideration has been given to the phenomenon of local
decrease of entropy, [11], accompanying the overall increase of entropy.
This phenomenon is not contrary to the second law of thermodynamics,
because the elements of a heat conducting gas do mot constitute isolated
systems. This is confirmed indirectly by the fact that the shock wave in
a viscous non conducting gas is characterized by a monotonic increase of
entropy.

Next, the results based on the principles of mechanics of continuous
media are compared to those of the kinetic theory and to experimental
data.

It was found that the principles of mechanics of continuous media
yield, for a sufficiently weak shock wave (up to Ma: = 1,6), a qualilatively
correct variability of hydrodynamic parameters, the quantitative
differences being insignificant and consisting in steeper curves than those
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resulting from the kinetic theory. On the other hand, it appears that in
the range of sufficiently strong waves qualitative differences will appear:
the kinetic theory, [16], indicates here contrarily to the principles of
mechanics of continuous media — nonmonotonic variations of hydrody-
namic parameters. The results of the kinetic theory, [16] and [18], are
uncertain, however, in the range of strong waves, because in this case
the state of gas can be different from that of thermal equilibrium;
moreover, these results are too fragmentary to be taken as a basis for an
opinion on the structure of a strong wave and to allow the results of the
mechanics of continuous media to be discussed ([17] does not present any
information on the structure, but only calculations of wave thickness).

Measurements of shock wave thickness, [20], for Ma: = 1,4, which
constitute the unique and imperfect basis of comparison between theory
and practice, confirm the results of the theory.
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1. Istota zagadnienia

Niejednorodnos¢, a zwlaszcza anizotropia drewna jako materiatu bu-
dowlanego, badz wywoluje potrzebe stosowania przy obliczaniu naprezen
w konstrukcjach wzorow specjalnie ustawianych dla drewna, badz tez wy-
maga wprowadzenia przy ustalaniu naprezen dopuszczalnych pewnych
wspolczynnikow wzietych z doswiadcezenia. Gdy za$ chodzi o wyznaczenie
wielko$ci statycznie niewyznaczalnych lub o wyznaczenie sit krytycznych
przy wyboczeniu stupoéw drewnianych, rozpatrujemy drewno jako ma-
terial podlegajacy prawu H oo k e’ a liczac sie jednak wowczas ze spe-
cjalnymi warunkami pracy konstrukecji drewnianych.

Ze wzgledu na rzeczywiste wlasnosci fizyczne i technologiczne drewna
typ konstrukeji z tego materiatu, a rowniez typ wykonanych z niego ele-
mentéw budowlanych, rézni sie od konstrukeji wykonanych z materiatéw
jednorodnych i izotropowych. Z tego powodu mamy tu do czynienia ze
schematami statycznymi odmiennymi od wystepujacych w tamtych wy-
padkach. Typowymi w tym sensie dla konstrukeji drewnianych schema-
tami statycznymi sa stupy o ksztalcie stozkéw, belki klinowane i uklady
zastrzatowo-rozporowe.

Analiza tych schematow obliczanych na podstawie prawa Hook e’ a,
lecz pod katem widzenia rzeczywistych warunkéow pracy konstrukeji
drewnianych, stanowi gtéwna tres¢ niniejszej rozprawy.

Obliczenia omowionych wyzej schematéw musza, z jednej strony, czy-
ni¢ zado$¢ wymaganiom ostrozno$ci ze wzgledu na niedoskonalo$é danych
materialowych i na mniejszg zwykle niz w innych wypadkach kompeten-
cje projektantow — z drugiej jednak dopuszczaja $miate koncepcje tech-
niczne ze wzgledu na stosunkows tanio$¢ materiatu i krotki okres pracy
konstrukeji. Te okolicznosci odroézniaja omawiane tu obliczenia od obli-
czen konstrukeji z innych materialéw i dajg podstawe do zalecanych da-
lej uproszczen w obliczeniach statycznych konstrukeji z drewna.

Przy opracowaniu tej rozprawy autor korzystal z nastepujacych swoich
dawniejszych publikacji:

(1) Wielokrotne dZwigary drewniane jako uktady hiperstatyczne, War-

szawa 1931,
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(2)
szawa 1933,
3)
krytycznej, £.6dz 1946,
4)

wyznaczalny, Warszawa

1947.

Sprawa wymiarowania drewnianych mostéw zastrzalowych, War-
Sposéb momentéw wtédrnych w zastosowaniu do wyznaczenia sity

Wyboczenie niesprezyste pretéw podpartych w sposéb statycznie

2. Stupy stozkowate

Najczestszym przypadkiem dziatania sit podiuznych na elementy kon-
strukcyjne z drewna jest przypadek osiowego $ciskania stupéw stozkowa-
tych. Dopodki sita krytyczna dzialajaca na stup drewniany nie wywoluje

o 4

: !

P |
|
[0 8

w nim naprezen Kkrytycznych
przekraczajacych granice spre-
zystosci drewna, dopéty wybo-
czenie stupow stozkowatych jest
wyboczeniem sprezystym, do
ktérego oceny stuzg wzory
typu Eulerowskiego. Dopiero po
przekroczeniu przez naprezenia

krytyczne granicy sprezystosci drewna na $ciskanie powstaje trudnosé¢
rozwigzania zagadnienia sity krytycznej w stupie drewnianym. Do roz-

wigzania tego pomocna jest teo-
ria Karmana dotyczaca
wyboczenia niesprezystego, kto-
ra byla wprawdzie kwestiono-
wana w szczegodlach, nie wzbu-
dza jednak istotnych zastrzezen
i jest przejrzysta w ujeciu. Pod-
stawy tej teorii sg nastepujace.

Bierzemy pod uwage pret
pryzmatyczny w dwoéch punk-
tach swobodnie podparty, $ci-
skany silami podluznymi P
(rys. 1). W chwili wyboczenia,
kiedy o$ preta wybaczanego do-
piero zaczyna sie zakrzywiag,
rzedne jej sa tak mate, ze roz-
kitad naprezen w poszczegélnych

Ao

Y 8,

przekrojach preta, niezaleznie od polozenia w stosunku do podpér, od-
powiada typowi wykresu przedstawionego na rys 2, przy czym polozenie
punktu O jest we wszystkich przekrojach preta w stosunku do krawedzi

to samo.
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Przyjmujemy, ze w rozpatrywanym przypadku zalozenie plaskich
przekrojow moc swojg zachowuje i oznaczamy odpowiednio przez C, i C,
wspolczynniki proporcjonalnosci miedzy odksztalcenrami i naprezeniami
w dwoch czesciach przekroju rozdzielonych punktem O. Wobec tego na-
prezenia spowodowane zginaniem wynoszg w poszczegdlnych przekrojach
w odleglosci % od punktu O odpowiednio

(2.1) c=C,L
0

od strony wypuklej wygietego preta (miedzy A i O) i

(2.2) o=0C,L
0

od strony wkleslej (miedzy O i B).
Tu p oznacza promien krzywizny osi preta przy wyboczeniu, przy
czym przyjmujemy dalej, ze

(2.3) —

Z warunkéw réwnowagi XX =0 i XY M=0 czeSci preta zawartej
miedzy jedna z podp6r a przekrojem aa wynika, ze

(2.4) HRMLC1 %—)dA+ J (Rk—f—Cg%)dA:P,

A B

(2.5) ’ (Rk+c1 L)naa+ J (Rk+c._, ")ndA:P<y+e),

A ¢ B
skad
(2.6) CLSa €, 8=
oraz
(2.7) (CyJa+C,yJp) gfx@ﬁ — o

gdzie S4 1 Sp oznaczaja momenty statyczne p6l czesci przekroju, polozo-
nych na rysunku na lewo i na prawo od punktu O wzgledem osi przecho-
dzacej przez ten punkt prostopadle do plaszezyzny rysunku, J, i Jp sa
momentami bezwtadnosci tych samych p6l, Ry naprezeniem krytycznym,
e odlegloscig punktu O od osi.
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O ile wielkosci C1 i C2 sa znane, z réwnania (2.6) mozemy wyznaczyc
polozenie punktu O, po czym wyznaczamy Ja i Jp oraz J, moment bezwlad-
noéci pola catego przekroju poprzecznego preta wzgledem osi Srodkowe].

Wprowadzajac oznaczenie

_CiJa+ CiJs

(2.8) N 7

mozemy réwnaniu (2.7) nada¢ posta¢

T
(2.9) NJ&x2 = —Py.

Poniewaz réwnanie (2.9) z matematycznego punktu widzenia nie roz-
ni sie od réwnania

z ktérego moze by¢ wyprowadzony wzéor E ul e r a na sile krytyczng
przy wyboczeniu sprezystym preta przedstawionego na rys. 1, tj. wzor

(211) Pr=—;—,

musi ono doprowadzi¢ do wzoru na sile krytyczna

a*NJ

(2.12) Po="5",

ktory rozni sie od wzoru (2.11) tylko tym, ze tu wielko$¢ N zastepuje
wspbiczynnik sprezystosci E.

Sposréd stupéw drewnianych narazonych na wyboczenie niesprezyste
najczes$ciej] mamy do czynienia ze stupami stuzgcymi do obudowy kory-
tarzy w kopalniach. Stupy o takim przeznaczeniu posiadajg zwykle diu-
go$¢ zawartg w granicach od 1,8 m do 2,8 m i $rednice wahajacg sie w gra-
nicach od 15 cm do 30 cm. Wobec trudno$ci wyznaczenia w sposéb ogél-
ny sity krytycznej dla stupéw tego rodzaju dalsze rozwazania opieramy
na obliczeniu przypadku szczegdlnego, mozliwie najbardziej miarodajnego.
Za taki uwazamy przypadek stupa o dlugosci 2 m majacego ksztalt stozka
o podstawach eliptycznych przy $rednicach elipsy réwnych 15 cm i 17 ecm
w cienszym koncu stupa i o S$rednicach odpowiednio réwnych 17 cm.
i 19 cm w jego grubszym koncu. Przyjmujemy, ze $rednice elipsy zmie-
niajg sie wzdluz preta w sposéb liniowy (rys. 3). Konce stupéw uwaza--
my za podparte w sposob przegubowy.

392



Aczkolwiek dla przyjetych w ten sposéb wymiaréw stupa wyboczenie
jest niesprezyste, wyznaczymy tu przede wszystkim site krytyczng w za-
tozeniu, ze mamy do czynienia z wyboczeniem sprezystym. Poszukujemy
wiec wzoru dla sity krytycznej P, w postaci wzoru Eulera

n*EJ
(0720

(2.13) P, =

gdzie ¢ oznacza wspotczynnik diugosci.

2b'=ﬂc{n
0
;?
|

|
|
|
1
\

1
F
“2 -
7

17cm

Rys. 3

W tym celu dzielimy wyzej omdéwiony pret na odcinki po 25 cm (punk-
ty podziatu 1, 2, 3, ...) i obliczamy w $rodkach tych odcinkéw (punkty I,
II, III, ...) najmniejsze momenty bezwladnos$ci poszczegélnych elips prze-
kroju poprzecznego (rys. 4) oraz stosunki
Jf

(2.14) J—=k,

gdzie J jest to najmniejszy moment bezwladnosci przekroju poprzecznego
oddalonego o x od cienkiego konca preta, a J. = 2820 cm* najmniejszy mo-

ment bezwladnos$ci na cienkim koncu B.

525 _ 25 %5 _ 25 95 _ 25 _ 25 _ 15

~ T—*N—ﬂ‘—~—f>?<-»- PA— -
| [ | | | |
\ ' | ‘ ]
A’TI4112H1311/4V5W6W17WI]4;\—5
L L=8x25=200cm J

Rys. 4

Przyjmujemy jako pierwsza przyblizong posta¢ osi odksztalconej preta
po wyboczeniu linie lamana A'B’C’ (rys. 5b) o najwiekszej nieznanej
rzednej 6 i sporzadzamy odpowiedni wykres momentéw zginajacych M
(rys. 5c). Rzedne wykresu na rys. 5c zmieniamy w punktach 1, 2, 3,

w stosunku 1 : k (rys. 5d) i przyjmujemy otrzymany w ten sposéb wykres
za wykres jednostkowego obcigzenia wtornego preta q = M :k. Dla ob-
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cigzenia q znajdujemy moment zginajacy w $rodku preta (moment wtor-
ny Ms,)i dochodzimy w ten sposéb do nowego wyrazenia na ugiecie preta
w $rodku po wyboczeniu

MNie
2.15 = —a.
( ) Ysr EJ,
a
p_A 1 2 3 4 5 6 7 8 p
X yayd
b g 5
4//
\ld/ly///
x
"—-————-’1
!8”

Bm

QA=

0227P6 \
0,243Pg

Przyjmujemy dalej jako druga posta¢ odksztalconej osi preta po wy-
boczeniu sinusoide o najwiekszej rzednej ys,

el

(2.16) Y = Yy, sin ]

Przyréwnujac do siebie Srednig rzedna osi odksztalconej pierwszego
przyblizenia do $redniej rzednej osi drugiego przyblizenia, czyli przyrow-
nujgc do siebie pole A'B'C’ i pole ograniczone krzywg (2.16), docho-
dzimy do nastepujacego wzoru na sile krytyczna rozpatrywanego preta:

ﬂzEJ(;
(2.17) P, = W .

Przechodzac do niesprezystego wyboczenia stupéw drewnianych opie-
ramy sie na wzorze do$wiadczalnym Tetmajera-Jasinskie-
g o, ktory dla drewna wszelkich gatunkéw przybiera postac

(2.18) Pr— A(293—1,94 1),
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gdzie A oznacza pole przekroju poprzecznego Sciskanego silupa pryzma-
tycznego, a 4 jego smuklosé.

Aby wyzyska¢ material doSwiadczalny, zawarty we wzorze (2.18) do
obliczenia sity krytycznej ze wzoréw typu (2.12), ustalamy wartosci
wspoéiczynnika N droga przyréwnania do siebie sit krytycznych obliczo-
nych ze wzorow (2.12), a wiec z rownania

(2.19) Aa ~~b;.)="'ll.§"],
skad

a2 .
(2.20) N=2(a—b3).

T

Wyniki obliczen przedstawione sg na wykresie rys. 6 i w tablicy 1,
gdzie wielko$ci N wyrazone sa w kilogramach na cm?.

kN wtysigcach

100 (—

T T T ] A

90 ¢ =

(|l

70 | | -

S |

80 |

50! |
[ |

40
‘ /
| /

10

0 1;7 2 30 40 50 60 70 80 90 M A

Rys. 6

Wracajac do wyznaczenia sity krytycznej w przypadku niesprezystego
wyboczenia stupa drewnianego stozkowatego ustalamy, ze wedlug wzo-
réw (2.11) i (2.17) stosunek sity krytycznej preta stozkowatego o podsta-
wie eliptycznej i stupa walcowatego o tej samej podstawie wynosi

Py 1

k )
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Ze wzgledu na stabg zmienno$¢ przekrojow stupow drewnianych mo-
zemy stosowaé tu bez zastrzezen zaré6wno réwnanie (2.10) jak i réwnanie
(2.9), a ze wzgledu na matematyczng identycznosé¢ tych réwnan mozemy

uwazaé¢ zalezno$é (2.21) za stuszng nie

Tablica 1 tylko dla stupéw sprezystych, lecz i dla
‘ niesprezystych.
2 N | 4 N Poniewaz smukio$¢ omawianego stu-
— — —— pa walcowatego o podstawie eliptycznej
10 | 2712 60 | 64413 wynosi w danym wypadku
20 10 301 70 78 042
30 | 21410 | 80 | 89353 i=—1 533,
40 34917 | 90 97 167 JJ: A
50 49645 | 100 | 100303 o .
znajdujemy z tablicy lub z wykresu od-

powiednig wartos¢ N = 54 515.
Stosujac wzor (2.12) na sile krytyczng dla wyboczenia niesprezystego
stlupa walcowatego o podstawie eliptycznej znajdziemy

22NJ  2%54515- 2820
2.22 e
\2:22) P 12 2002

=38 t,

skad dla stupa stozkowatego ma podstawie wzoru (2.21) znajdujemy

38
2.23 = 90
( ) Py 0,84 45,2 t.

Mozemy obliczy¢ site krytyczna w tym ostathnim wypadku réwniez
bezposrednio ze wzoru (2.17) wstawiajac N zamiast E:

754 515 - 2820

(224) P, = (0,92 . 200)_,

=45,2 t.

Sposéb uzyty przy wyprowadzeniu wzoru (2.17) moze by¢ zastosowany
dla dowolnych wymiaréw stupa Sciskanego, a wiec moze byé wyzyskany
i w przypadku stupéw podlegajacych wyboczeniu sprezystemu.

3. Dzwigary wielokrotne

Typowym dla konstrukeji drewnianych schematem belki zginane} jest
dzwigar wielokrotny. Powstaje on w drodze nakiadania na siebie szeregu
belek z drewna kantowego lub okragtego. Poszczegdlne belki dzwigara
wielokrotnego badz potozone sa bezposrednio jedna na drugiej, badz tez
za posrednictwem Kklinow.

Kliny tgczgce poszczegblne belki dzwigara wielokrotnego majg dwoja-
kie znaczenie: stuzg one, mianowicie, albo do uniemozliwienia przesuwa-
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nia sie po sobie poszczegélnych belek dzwigara i do wytworzenia z nich

w ten sposob dzwigara, ktéry by mozna, z pewnymi zreszty zastrzezenia-

mi, uwaza¢ za dzwigar jednolity, albo tez do wytworzenia wolnej prze-

strzeni miedzy poszczeg6lnymi belkami dzwigara dla zabezpieczenia im

potrzebnego przewiewu i zapobiezenia w ten sposéb gniciu drewna (rys. 7).
Kliny wykonane w ten sposéb, iz moga zabezpieczyé¢ dzwigarowi zto-

zonemu niezmienno$é ptaskiego przekroju poprzecznego, powoduja znacz-

ne koszta i wymagaja stalej konser-

wacji. Niewielkie nawet niedoktadno-

$ci w dziataniu takich klinow, wywo- %GZMZD:‘,

tane niepoprawnym wykonaniem lub e T2

zuzyciem, powoduja przesuwanie sie Rys. T

po sobie poszczegoélnych belek dzwi-

gara i nie pozwalaja go juz uwazaé¢ za jednolity. Poza tym w dzwigarach

silnie obcigzonych juz samo rozmieszczenie klinéw natrafia na trudnosci

z powodu powstajacych w nich wielkich sit $cinajacych.

W ten sposob celowo$é zastosowania dzwigarow wielokrotnych, pracu-
jacych jako jednolite, staje sie w wielu wypadkach watpliwa i dlatego
w budowlach bardziej odpowiedzialnych wlasciwsze jest rozpatrywac
belki dzwigara jako pracujace samodzielnie, a kliny uwaza¢ jedynie za
urzadzenia zabezpieczajace przed szkodliwym ze wzgledu ma trwatosé
konstrukeji drewnianej bezposrednim stykaniem sie poszczegélnych be-
lek na calej ich diugosci. Kliny majace takie przeznaczenie moga dopu-
szczaé wzajemne przesuwanie sie belek, a rozstaw ich jest przewaznie réw-
nomierny.

Podstawowym schematem statycznym dzwigara wielokrotnego, np. po-
dwéjnego o klinach mogacych sie przesuwa¢, jest wiec belka ciagla na
podporach a, b, c itd. spoczywajacych na drugiej belce sprezystej w dwéch
punktach swobodnie podpartej (rys. 8).

W utartych obliczeniach dzwigaréw wielokrotnych mniejednolitych
przyjmujemy zwykle, ze moment zginajacy rozklada sie miedzy poszcze-

gb6lne belki proporcjonalnie do wskaz-

A"[u b c d e F]ﬁ" nikéw wytrzymatosci przekrojéow po-
F = = = — i przecznych poszczegdlnych belek, a
AL 28 wiec przy tych samych przekrojach

Rys. 8 belek przypada w jednakowych cze-

$ciach na kazda z nich. Dalej wykaze-
my, ze rozklad momentu zginajacego pomiedzy poszczegélne belki dzwi-
gara jest inny i ze wobec tego naprezenia w belkach dZwigara moga by¢
znacznie wieksze, nizby to wynikalo z powyzszego uktadu.

Punktem wyjscia do rozwazan nad rozkladem momentéw zginajacych
miedzy poszczegélne belki dzwigara wielokrotnego o klinach przesuw-
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nych lub bez klinéw sa doswiadczenia, ktére mialy zreszta za cel raczej
ustalenie jako$ciowej niz ilo$ciowej strony zjawiska. Chodzito mianowi-
cie o przekonanie sie, czy w przypadku podwoéjnego dzwigara drewnia-
nego nieklinowanego poszczegélne belki jego nie znajdujg sie jednak
w warunkach pod wzgledem wytrzymalosciowym korzystniejszych niz
dwie belki obok siebie potozone. Jako przyczyne oczekiwanego faktu bra-
no pod uwage tarcie miedzy poszczegdélnymi belkami dzwigara, pewnego
rodzaju wgniatanie sie ich jedna w drugg itd.

Doswiadczenie wykonano w sposéb nastepujacy.

Beleczki o dlugosci wynoszacej w $wietle miedzy podporami cylin-
drycznymi 600 mm obcigzano w $rodku naczyniem z woda przy tempera-
turze 4°. Przekrdj poprzeczny beleczek drewnianych mial ksztalt kwa-
dratu o wymiarach 15 mm X 15 mm. Beleczki byly wykonane z drewna
skrupulatnie dobranego, bez sekéw.

Zlamano przede wszystkim 3 beleczki pojedyncze, przy czym $rednia
sita lamigca wynosita 19,5 kG (kilogramow), nastepnie tamano po dwie
beleczki poltozone obok siebie, co dawalto $rednig sile tamigca 38,9 kG.

Wreszcie przystapiono do tamania beleczek utozonych jedna na drugiej
po dwie, przy czym w dwoch wypadkach ukladono beleczki bezposrednio
jedna na drugiej, w trzech za$ ukladano je za posrednictwem kawatkéw
grubego drutu, majgcych za zadanie usuniecie bezpos$redniego stykania
sie beleczek na calej ich dlugosci, odgrywajacych wiec w ten sposéb role
przesuwnych klinow.

Sita tamigca wyniosta w pierwszych dwéch wypadkach 39,1 kG oraz
39,3 kG, w trzech zas nastepnych odpowiednio 38,1 kG, 38,3 kG i 38,8 kG,
przy czym w tych ostatnich wypadkach zawsze jako pierwsza pekata be-
leczka goérna.

Opisane doswiadczenia, aczkolwiek wykonywane niezbyt dokladnie
oraz w malej liczbie, nasuwajg jednak pewne wnioski, ktére narzucajg sie
w sposéb dos¢ wyrazny.

Przede wszystkim wiec wytrzymalo$¢ dwoch beleczek polozonych bez-
posrednio jedna ma drugiej mato rézni sie od wytrzymatosci takich sa-
mych beleczek potozonych obok siebie, co nalezy zapewne wytlumaczy¢
faktem, ze tarcie miedzy beleczkami bylo mate zaréwno ze wzgledu na
ich staranne wyheblowanie, jak i wskutek zwilzenia ich woda.

Nastepnie wytrzymalos¢ dwoéch beleczek polozonych jedna na drugiej
za posrednictwem podporek (drutéw) jest na ogdt cokolwiek mniejsza od
wytrzymalosci beleczek polozonych obok siebie, co mozna wytlumaczy¢
tym, ze moment zginajgcy nie rozklada sie ré6wnomiernie miedzy obie be-
leczki i ze ta z nich, na ktérg przypada wiecej niz polowa momentu, la-
mie sie predzej i wywoluje w ten sposdb zniszczenie dzwigara mniejsza
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sila niz przy bardziej rownomiernym rozkladzie momentu zginajacego na
beleczki polozone obok siebie.

Dalsze obliczenia oparte sg na wskazéwkach ustalonych na podstawie
doswiadczenia. Dotycza one dzwigaréw wielokrotnych o klinach prze-
suwnych.

Statycznie wyznaczalny schemat zastepczy dzwigara wielokrotnego
przyjmujemy w sposOb nastepujacy.

Odrzucamy podpory posrednie b, c, d, ... (rys. 8) i zastepujemy dziata-
nie ich na dolna i gérng belke dzwigara przez sily wzajemnego oddzialy-
wania na siebie tych belek X, X,

X4, ... (rys. 9). Uwazamy, ze belki sa @ i" e
niescisliwe w kierunku dziatania sit L \ I
zewnetrznych i ze wobec tego osie ich s I f r =
mozna uwazaé za rownolegte do kra- X Xe Xa

wedzi rowniez i po ich odksztalceniu. X, X %%
Przesuniecia pionowe punktow b, c, l l &

d, ... zar6wno goérnej AB, jak i dol- AZ —8
nej A, B, belki dZwigara oznaczone Rys. 9

sa na rys. 10 literami ».

Poniewaz w rzeczywistosei w punktach podpér b, c, d, ... odlegtosci
pionowe osi obydwoch belek (tzn. prostopadie do osi belki) nie moga wsku-
tek przyjetych zalozen

vy ’ : . ‘e
= . L i wobec nieodksztatcalnosci
LAy e L ————=b—= klinéw ulec zmianie, do-
;y ‘ chodzimy wiec do réwnan
b ’g vy + 'U:; =0,
ASS—_ ] I_—_—8 %X
Vo [ I (3.1) ve +v.=0,
fys: 10 l va+vi=0,..,

gdzie przesuniecia (ugiecia) pionowe belek AB i A,B, wyobrazamy sobie
jako funkcje sit X, X, X4 ... 1 oznaczamy odpowiednio przez v’ i v".

W przypadku przylegania gornej belki do dolnej na calej jej diugosci
liczba réwnan (3.1) staje sie nieskonczonoscia. Catkowite przyleganie obu
belek byloby jednak mozliwe tyl-
ko w tym wypadku, gdyby byty
one ze sobag polgczone w ten spo-
s6b, zeby nie mogly sie oddzielaé.
Poniewaz jednak sruby dzwigara
wielokrotnego takiego polaczenia nie zabezpieczaja, powstaja wiec w belce
gérnej odcinki oddzielajace sie od belki dolnej (rys. 11). Obliczenie diugo-
$ci tych odcinkéw natrafia na duze trudnosci.

Rys. 11
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W dzwigarach klinowanych nie natrafiamy na podobne trudnosci, gdyz
w tym wypadku latwo mozemy doprowadzi¢ do tego, aby poszczegdlne
belki dzwigara, dotykajace sie wzajemnie tylko w miejscach klinéw, byly
zabezpieczone przed oddzieleniem sie od siebie. Ograniczymy sie do zba-
dania rozkladu momentéw zginajacych miedzy belki dzwigara wielokrot-
nego tylko w tych warunkach.

Wyznaczenie sit X w dzwigarze wielokrotnym klinowanym odbywa sie
na podstawie réwnan (3.1), w kiérych przesuniecia v sa funkcjami sit X.
Przedstawienie przesunie¢ v w postaci funkcyj X stanowi giéwng trud-
no$¢ rachunkows zadania, ktéra przezwyciezamy stosujac przyblizong me-
tode wariacyjna Ritza 1 Timoszenki

Przesunieciom v"" dolnej belki AB dzwigara (rys. 10) w punktach pod
klinami b, ¢, d, ... nadajemy postac

I v;:—XI)éZ—Xcé?)_Xdég’
s | o= —x, 00— x 60— x,50...,
! v,=—X,0,—X, 65— X,64 ...,

gdzie symbol ¢} oznacza np. ugiecie spowodowane w punkcie b przez site 1
zaczepiong w punkcie c.

Jezeli oznaczymy przez vy, V., V4, ... Ugiecia gérnej belki A, B, dzwi-
gara pod dziataniem sit zewnetrznych bezposrednio zaczepionych P, wow-
czas dla catkowitych przesunie¢ pionowych tej belki. w miejscach klinéw
znajdziemy wzory

[ v;):Ub—XbéZ __XC(SZ—X(IaZ""

(3.3) v, =v,—X,6! — X, 6 —X,0..,

v, =v,— X, 00—X_ 8,—X,64...

W zwigzku z wyrazeniami (3.2) i (3.3) réwnania (3.1) przybierajg po-
sta¢ kanoniczng

X, 00 + X, 00+ X,00.. =

804+ X 65+ X

b~

6. =

d=c

X

v
X, ‘SZ + X, 05+ X, 5§ eesi== 9’




Stosujac dalej spos6b Ritza i Timoszenki bedziemy po-
szukiwali odksztalconej gérnej belki A,B, pod postacia sumy sinusoid

(3.5) Y= y Ai smﬂ,

odksztalconej za$ dolnej belki AB pod postacia

(36) Yy = V Al S]..n%)

1

gdzie n oznacza liczbe przyjetych w obliczeniu sinusoid i przedstawia
liczbe tym wieksza, im wieksza jest wymagana dokladnos¢ obliczenia.
W razie symetrycznego obcigzenia belki odksztalcona jej bedzie réwniez
symetryczna wzgledem $rodka, wobec czego przyjmujemy dla i tylko licz-
by nieparzyste 1, 3, 5, ... Odleglo$ci x odmierzamy od lewej podpory dzwi-
gara.

Do obliczenia energii sprezystej belek korzystamy z réwnania

[/ [/

_ ~M:dx EJ [ )

(3.7) V=M 28] 2 (y")dzx,
0 0

gdzie M, oznacza moment zginajacy w danym przekroju belki, a y” druga
pochodna ugiecia y. Stad otrzymujemy dla energii sprezystej gornej i dol-
nej belki dzwigara odpowiednio

d o IOlO NaYCa Ao
(38) v 41:—; _1_‘ 1A1 2
1 E']'/ - g . 19
(3.9) V== AR,
1

Dla pracy sil X, ktére mozemy uwazaé za zewnetrzne w stosunku do
belek A, B, i AB, znajdujemy odpowiednio wyrazenia

310) T= VP X 4% sin ?—71"”’ VX, VAl ’;“g
T 1 B T

'lTGg

(3.11) T'=— VXg Y‘A, =

1
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w ktoérych P, oznacza jedna z sit zaczepionych w liczbie m do diZwigara
wielokrotnego, x; odleglo$¢ tej sity od lewej podpory dzwigara, X, jedna
z sit wzajemnego oddzialywania na siebie belek dzwigara, a, odleglos¢
punktow zaczepienia tych sit od lewej podpory dzwigara i s liczbe klinéw.

Znajdujemy dalej roznice miedzy energia sprezysta V a praca sil ze-
wnetrznych
(3.12) U=V—T
i przyrownujac do zera pochodne funkcji U wzgledem parametrow A,
czyli ustawiajac réwnania typu

oU ouU

‘0—141':0, ()A3:0 g seey

(3.13)

obliczamy z nich wszystkie potrzebne wielkosci A; i Ai:

20 “ ima
(3.14) Al = ( Y P; sin 2% __ V Xg sin g
EJ at = |
. 2 lx $ .
(8.1} Aff = EJa'it ,l 5 ‘l_zlgf '
1

Wstawiamy wyrazenia (3.14) i (3.15) w rownania (3.5) 1 (3.6):

. _ v ( Y‘ 'L’Ix/ YS’ . si ffﬁ&) i Z:[,:T,
(3.16) y= ‘EJ"[I \-1‘ P;sin — ] Tszm i /Vsm o
(3.17) — % el \i‘ X, sin Lmag in e

- S le(\EJn“i“LlJ LR T

Aby otrzymaé stad przesuniecia v, i v,,nalezy np. wstawi¢ we wzory
(3.16) i (3.17) x = a,, gdzie a, oznacza odleglo$¢ klina b od lewej podpory
dzwigara; w podobny sposéb dochodzimy do wyrazen dla v, v, v, v, itd.
W zwigzku z tym réwnania uktadu (3.1) przybieraja posta¢

n ;) m . o
o) . 1T T g . lmap
NN P;sin =2 vX{r si Lifiog sin———=20,
T\ i

Z ( V' Pjsinz—zl—’— —2 V X, smf——a) sinﬂla—(-zo,
(3.18) 1
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Bierzemy jako przykitad obliczenie dzwigara przedstawionego na
rys. 12. Dzwigar ten jest obciazony symetrycznie sitami zaczepionymi
w odlegltosci 0,2 | jedna od dru- o
giej, przy czym’ kliny dzwigara ~ U%]_ 02 | 02

p p P
| oz 02 fon

rozstawione sa réwniez w odle- L A /

gtosdci 0,2 1 od siebie. Sztywnose 7 :

belki EJ jest taka sama dla X ‘ L : o

obydwéch belek dzwigara. Loz Vaou ¥oou Voga lagy
Przyjmujemy dla osi od- [ C !

ksztalcon,eJ gornej belki dzwiga- Rys. 12

ra postac

(3.19) y— Alsin ”li‘ + A sin 3;’0 + A, sin 75—7155 + Al sin 3%’“ ,

dla dolnej za$ postac¢

(3200 y=a4ysin ™" + Asin 341”" + Al sin 5—?“” s e

Energia sprezysta nagromadzona w obydwoéch belkach dzwigara wyra-
za sie w tych warunkach wzorami:
EJ ot

(3.21) e i (A2 +31A2 454421 T4 A},

4
e V== (A7 + 31 A BUAR T AP,

Dla pracy sil P i X zaczepionych do gornej belki i dla pracy sit X za-
czepionych do dolnej belki znajdujemy odpowiednio wyrazenia:
(3.23) T =2P(A;sin0,1n+ A;sin0,3xn + A;sin0,5x 4 A;sin 0,7 %) 4
+2P(A;sin0,37 + A;sin0,9x + A sin 1,5x + A;sin2,1x) +
+ P(A{sin0,5x + A;sinl,5x + A sin2,57 4 A;sin 3,5 7) —
— X, (A;sin0,2x + A;sin0,6 7 + Assin1,0 + A;sinl,47) —
— X, (A7sin 0,47 + A;sin1,27 + Aysin2,0x 4+ A;sin2,87),

(3.24) T’ —=—X,(Asin0,27 + A,sin 0,6 x + A,sin 1,0z + A;sin1,47)—
— X, (A;sin0,4 7 + A}sin1,27 + A.sin2,07 + Asin2,87).
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Ze wzoréw (3.14) i (3.15) obliczamy wspdlczynniki A:

, 1
A E2J —;(1,61804 P — 0,58779 X, — 0,95106 X,),
. 21:} _
= Sl (0,61804 P — 0,95106 X, — 0,58779 X,),
, 213
&= EI O
A= -—211—(0 61804 P -~ 0,95106 X, — 0,58779 Xj)
(3.25) T 2401EJ A ’ “ o
" 2 l3
A= (— 0,58779 X, — 0,95106 X,
" 2 l3
Al=0,
" 2 l.;
A= o1 5 g (0:95106 Xo — 0,58779 X,).

Zakladajac kolejno ag = 0,2 1 i ag= 0,4 1 oraz biorgc pod uwage, ze x;
przybiera tu wartosci 0,1 1, 0,3 1 i 0,5 | ustawiamy réwnania typu (3.18):
(3.26) (1,61804 P —2-0,58779 X, — 2 - 0,95106 X;) sin 36° +

+(0,61804 P — 2 - 0,95106 X, + 2 - 0,58779 X5) Sigfﬁ +

+ (—0,61804 P — 2 0,95106 X, + 2+ 058779 X5) SL 1% —o,
(3.27) (1,61804 P — 2 - 0,58779 Xz — 2 - 0,95106 X,) sin 72° —
— (0,61804 P— 2 0,95106 X, + 2 0,58779 X,) S220
g ‘ sin 72°
+ (—0,61804 P— 2 0,95106 Xo + 2+ 0,58779 X,) 5 =0,

czyli rownania:
(3.28) 0,71331 X, + 1,10378 X — 0,95808 P =0,
(3.29) 1,10378 X, + 1,81786 X, — 1,563451 P = 0.
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Z réwnan tych znajdujemy nastepujace wartosci sil X wzajemnego od-
dzialywania na siebie gornej i dolnej belki dzZwigara wielokrotnego:

(3.30) Xa=0,610 P, Xy, =10,473 P.
Reakcja na podporze A gérnej belki dzwigara rowna sie wobec tego

5P

(3.31) R8 = 5 0,610 P— 0,473 P =1,42 P,
dolnej za$
(3.32) R:=0,610P 0,413 P — 108 P

Moment zginajacy w $rodku calego dzwigara i odpowiednie momenty
zginajace w goérnej i dolnej belce wynosza w tych warunkach:
5P

(3.33) My=",051—P-041—P-021=065PL,

(3.34) M, —=142P-051—P-041 0,61P-0,31—
—P-0214+047P-0,11— 0,34 P,
(3.35) M‘ -=1,08P-0,51— 0,61 P-0,31— 0,47 P- 0,11~ 0,31 Pl,

skad wynika, ze moment M§ wigkszy jest od momentu M¢, o 10%o. Dla in-
nych przekrojow dzwigara réznica miedzy momentem zginajacym w gor-
nej i dolnej belce dochodzi do 30%.

W ten sposob wynik obliczen statycznych potwierdza spostrzezenia
zdobyte droga dos$wiadczen.

Fakt, ze w dzwigarze wielokrotnym naprezenia zginajace wypadaja
w gornej belce wieksze niz w dolnej w tym samym przekroju poprzecz-
nym obydwéch belek, wskazuje na celowo$é umieszczania gorszych pod
wzgledem gatunku drewna belek w dolnym pietrze dzwigara wielokrot-
nego, a lepszych w gérnym.

4. Uklady zastrzalowe

Konstrukcje rozporowe, a wiec konstrukcje podlegajace w zasadzie
jednoczesnemu zginaniu i Sciskaniu, sa reprezentowane wsréd konstruk-
cji z drewna przez uklady zastrzalowe. Sposréd ukladéw zastrzalowych
majg najczestsze zastosowanie w budownictwie uklady jednozastrzatowe,
czyli tréjkatno-zastrzalowe. Bardziej skomplikowane uklady zastrzalowe
znajduja zastosowanie tylko w przypadkach, gdy mamy zapewniony bar-
dzo dobry materiat drzewny i dobra robocizne.
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Aby moéc méwi¢ o mozliwych uproszczeniach w obliczeniu konstrukeji
zastrzalowych, nalezy sie zastanowi¢ nad schematem $cislego obliczenia
uktadu zastrzalowego.

Na rysunku 13 proste a A i ¢C oznaczaja stupy ukladu =zastrza-
towego, A C helke gtowng, a EB
i BD zastrzaly.

A L8 c Przyjmujemy, ze zastrzaly pod-

trzymujgce belke glownag uktadu

C w punkcie B sg rozmieszczone wzgle-

/ \ dem tego punktu w sposéb syme-
£

0 tryczny. Ze wzgledu na wlasciwosci

LSTISY
©

- polaczen drzewnych nie mozemy
'/9’1”” 747 Uuwazat polaczen w punktach B, E i
Rys. 13 D za sztywne, wobec czego zaktada-

my tu istnienie przegubow.
O ile belka glowna ma polozenie poziome, to pionowe obcigzenie jej
wywoluje w obu zastrzatach sity rowne

(4.1) I

~ 2sine’
gdzie Rp oznacza reakcje belki glownej w punkcie zbiegania sie zastrza-
16w.
Sity S dzialajgce w zastrzatach powodujg ich skréty réowne

R[; S
4.2 -
) = T

gdzie s oznacza dlugo$c¢ zastrzatu, A pole jego przekroju poprzecznego,
E za$ wspolezynnik sprezystosci drewna przy $ciskaniu.
W zwiazku ze skrétem (4.2) punkt B doznaje pionowego przesuniecia

_4s _ Ras
e P = Ginw 2EA sinw’

Belke gléwna ukladu A C mozemy rozpatrywaé jako belke swobodnie
podparta w punktach A i C i obcigzong poza ciezarami znajdujgcymi sie
na belce AC jeszcze silg Rp, zaczepiong w jej $rodku i skierowana ku goé-
rze. Ugiecie w punkcie B tej belki wyniesie

Rp1?

(4.4) Ys =Y~ @y

gdzie y, oznacza ugiecie, jakiego doznataby w punkcie B belka swo-
bodnie podparta w dwoch punktach A i C, gdyby na nig dzialaty tylko
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ciezary znajdujace sie na belce, drugi zas dodajnik prawej czeSci réwna-
nia (4.4) dotyczy zginania belki A C silg Rp.

Rowniez i po odksztalceniu ukladu miedzy zastrzalami a belkg gltowng
przerwy by¢ nie moze, wobec czego pionowe przesuniecie sie punktu prze-
ciecia zastrzaléow musi by¢ réwne ugieciu w $rodku belki, skagd mamy za-
leznos¢

(4.5) Vp =Yg,

ktéra doprowadza do wyrazenia

Yy
(4.6) Rp—— 2 s B

5AEsin’e T 48EJ

Wyrazenie to uwzglednia wplyw sprezysty skrotu zastrzatow na wiel-
kos$¢é Rp 1 wobec tego traci sens dla zastrzalow nie ulegajacych skrotowi,
gdyz wowezas mamy do czynienia z belkg ciggla na podporach sztywnych.
Wyrazenie to nie uwzglednia, jak wida¢, niesprezystego przesuniecia pio-
nowego punktu B.

Mowiac o obliczaniu belek konstrukeji zastrzalowych przyjmujemy, ze
skrajne punkty uktadu A i C podparte stupami nie ulegaja pionowym prze-
sunieciom ani sprezystym, ani tez trwalym. Zalozenie to nie jest na ogoét
dalekie od rzeczywistosci; gdybysmy jednak pionowe przesuniecie punk-
t6w A i C cheieli w obliczeniu uwzgledni¢, to otrzymaliby$my, jak tego
dowodza obliczenia, réznice w reakcji Rp dochodzaca do 13%.

Po wyznaczeniu reakcji Rg ze wzoru (4.6) dalsze sprawdzenie wymia-
row glownej belki uktadu odbywa sie na podstawie momentu zginajacego,
obliczonego ze wzoru

Ry
9

&

(4.7) M, = Mox —

gdzie x oznacza odleglo$¢ pewnego przekroju belki A C od podpory A,
Mo za$ moment zginajacy, ktéry by w tym przekroju miat miejsce, gdyby
belka byla swobodnie podparta w punktach A i C.

Wplyw sprezystego skrotu zastrzaléow E B i B D na wielko$¢ reak-
cji Rp jest niewielki, nie dochodzi zwykle do 20°. Wplyw ten moze byt
$émialo pominiety przy korzystaniu z tego rodzaju materialu budowlanego
jak drewno, ktorego wlasciwosci sprezyste nie sa jednorodne.

Pominiecie sprezysto$ci zastrzaléw sprowadza schemat statyczny belki
glownej ukltadu przedstawionego na rys. 13 do schematu belki ciaglej dwu-
przestowej na trzech podporach niesprezystych A, B, C.
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Moment zginajacy Mp nad podporg B moze by¢ wyznaczony z réwna-
nia trzech momentoéw, ktére w danym wypadku przybiera postaé

(4.8) 4 Mpa=—6 (2, +2,),

gdzie ¥, i ¥, wyrazaja odpowiednio reakcje wtérne podpory B belek A B
i BC.

Zachodzi tu pytanie, czy nie mozna by zastapi¢ obliczenia belki A C
wedlug réwnania (4.8) przez obliczenie jej jako belki rozcietej w punk-
cie B.

Obliczanie belek ukladu zastrzalowego jako cigglych zmniejsza wpraw-
dzie momenty zginajgce i pozwala na stosowanie poprzecznych wymiarow
belki mniejszych niz przy obliczaniu jej jako rozcietej w punkcie B, na-
suwa jednak watpliwo$¢, czy punkt B moze by¢ uwazany, pomimo zalo-
zenia niesprezystosci zastrzalow, za
nieprzesuwny w kKierunku pionowym,
co jest warunkiem koniecznym, aby
belke A C mozna byto uwazac¢ za bel-
ke ciagta na podporach sztywnych.

Zestawmy na przykladzie maja-
cym ogolniejsze znaczenie wyniki

i‘_ o "’g obydwoch sposobow obliczenia.
. VA% Wezmy wiec pod uwage uktad
Rys. 14 przedstawiony na rys. 13 i wyobraz-

my sobie, ze przesto A B belki glow-
nej A C obcigzone jest w Srodku silg skupiong P (rys. 14) i ze ciezar wia-
sny belki moze by¢ w poréwnaniu z ta sita pominiety.
Gdybysmy uwazali, ze belka A B jest rozcieta nad podpora B, wowczas
moment zginajacy w $rodku tej belki wyniostby

(4.9) M, = Iff ~ 0,250 Pa,
reakcja za$ podpory B

P
(4-10) Rp= E .

Gdyby belka A C byla belka ciaglta na podporach sztywnych, nad pod-
pora B dziatalby moment zginajacy, obliczony ze wzoru (4.9) i réwny

(4.11) Mg = 0,094 Pa,
a wowczas w przeSle A B dzialalby najwiekszy moment

(4.12) M, = 0,203 Pa,
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a w prze$le B C moment
(4.13) M, = 0,047 Pa, .

ktory mialby tendencje do wyginania tego przesta ku gorze.
Odpowiednio reakcja podpory B wyniostaby w danym razie

(4.14) R—

Z poréwnania momentéw zginajacych, podanych we wzorach (4.9),
(4.11), (4.12) 1 (4.13) wida¢, ze moment zginajacy w $rodku przesla A B,
obliczanego jako belka swobodnie podparta w punktach A i B, jest wiek-
szy od najwiekszego z momentéw powstajacych w tym samym przesle
rozpatrywanym jako przesto belki ciaglej A C. Stad wynika, ze obliczenie
momentéw zginajacych w belce gléwnej dzwigara tréjkatno-jednozastrza-
towego, jako w belce rozcietej w punkcie zbiegania sie zastrzaléow, daje pe-
wien zapas bezpieczenstwa pociagajac za sobg jednoczesnie dodatkowy na-
kiad materiatu.

Rzecz ma sie inaczej, gdy chodzi o wyznaczenie wartosci reakcji Rp
w punkcie B zbiegania sie zastrzalow. Jak widaé z poréwnania wzorow
(4.10) i (4.14), wieksza wartos¢ tej reakceji otrzymamy przy obliczeniu gtow-
nej belki dzwigara jako cigglej.

Poniewaz sily w zastrzalach dzwigara tréjkatno-jednozastrzalowego,
jak to wynika ze wzoru (4.1), sa proporcjonalne do reakcji Rp, wiekszy
wigc zapas bezpieczenstwa w zastrzalach otrzymamy obliczajac reakcje te
w zalozeniu, ze belka A C nie jest w punkcie B rozcieta.

Zdawa¢ by sie moglo, ze stoimy jedynie przed kwestia, czy warto jest
poswieci¢é pewna ilo$¢ materiatu dla uzyskania uproszczen w obliczeniu
statycznym konstrukeji zastrzalowej. Kwestia ta przestaje by¢ jednak
kwestiag czysto ekonomiczng i staje sie kwestig bezpieczenstwa, jezeli wez-
miemy pod uwage okolicznos¢, ze punkt B na rys. 13 moze ulec przesu-
nieciu w kierunku pionowym i ze woéwczas stosowanie réwnania trzech
momentéw do obliczenia momentéw zginajacych w belkach gléwnych
ukladéw zastrzatowych staje sie juz ryzykowne.

Jezeli przesuniecia pionowe punktéw B wywolane przez sprezyste
skréty zastrzaldéw mogg by¢ pominiete, pozostajg jednak przesuniecia nie-
sprezyste. Przesuniecia te powstaja wskutek wysychania drewna, wsku-
tek niescisto$ci roboty ciesielskiej itp. Zastandéwmy sie nad ich wplywem
na wielko$¢ momentéw zginajacych i reakeyj belki gléwnej mostu zastrza-
fowego.

Przypusémy, ze w ukladzie przedstawionym na rys. 14 rozpietos¢ A B
belki gtéwnej wynosi a = 2 m, ciezar P = 5000 kG, moment bezwladnosci
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belki J == 25 000 cm* Wspodlczynnik sprezystoéci przy S$ciskaniu drewna

przyjmujemy za réwny E = 100 000 kG/cm?.
Przy obliczeniu belki A B jako swobodnie podpartej w punktach A i B
wykres momentéw zginajgcych mialby ksztalt przedstawiony na rys. 15
linia pelna. Tu rzedna wykresu

d d w $rodku odcinka A B belki

. 0 £—~~~,_hh_ 4 glownej wynosi w mysl wzoru
S, s Z (4.9) 00" = 0,250 P a. Przy obli-
s czeniu belki gléwnej jako bel-

9 0 - o . G N

ki cigglej otrzymalismy wykres

Rys. 15 przedstawiony na rys. 15 linia
przerywang, przy czym Srodko-
wa rzedna wykresu wyniostaby w mysl wzoru (4.12) 00" = 0,203 Pa,
rzedna za$ nad podpora B w my$l wzoru (4.11) Bb = 0,094 P a.
Skoro podpora B osigdzie, belka gtowna dozna dodatkowego ugiecia ku
dotowi, ktére zmniejszy wygiecie belki wypukioscia do gory.
Roéwnanie trzech momentéw dla belki ciaglej na podporach sprezystych
przybiera w danym razie postac

Pa a 2
— iy =ty
(4.15) 4 Mpa 6 4 4 6EJf P

gdzie f oznacza osiadanie belki w punkcie B.

Ze wzoru (4.15) mozemy obliczy¢ te wartosé f, przy ktérej moment Mp
nad podpora B réwny jest zeru. W danym razie f = 0,5 cm.

Zmniejszenie momentu podporowego powoduje jednoczesnie zwieksze-
nie momentu zginajacego w S$rodku przesla A B, zmniejsza wiec bezpie-
czenstwo gltownej belki dzwigara zastrzalowego obliczonej jako belka
ciggta.

Jak wida¢ ze wzoru (4.14), zmniejszenie momentu zginajacego Mz
wplywa na zmniejszenie reakcji Rp.

Osiadanie f belki gléwnej w punkcie B, otrzymane w rozwigzanym
poprzednio przykiadzie, nie jest dla belki o przyjetych wyzej wymiarach
bynajmniej niemozliwe, z wykresu za$ przedstawionego na rys. 15 oraz ze
wzoru (4.15) wynika, ze réwniez osiadanie mniejsze od 0,5 cm powoduje
zwiekszenie momentu zginajacego w $rodku przesia A B belki gléowne]
oraz zmniejszenie reakcji R. Zwiekszenie osiadania belki ponad wartos¢ f
otrzymang z rownania (4.15) jest zazwyczaj tatwe juz do zauwazenia i mu-
si byé usuwane drogg wprowadzenia podkiadki miedzy zbiegajace sie
w punkcie B zastrzaly i belke.

Z powyzszego wynika, ze reakcja Ry bedzie wieksza wowczas, gdy bel-
ka gltowna osiada¢ nie bedzie, moment zas zginajacy w Srodku A B prze-
sta, przeciwnie, bedzie wiekszy w razie osiadania belki. Nalezy wiec uwa-
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zaé za bezpieczniejsze, lecz zgola nie za przesadnie bezpieczne, obliczanie
momentéw zginajacych w $rodku belki jak dla belki swobodnie podpar-
tej w punktach A i B, a I‘eakC_]l Rp jak dla belki ciggtej A C nierozcigte]
w punkcie B.

Poniewaz wielkos¢ Ry jest glownie potrzebna do wymiarowania
zastrzalow, ktére podlegaja $ciskaniu, a wiec moga sie znalez¢ w niebez-
pieczenstwie wyboczenia, pewien zapas bezpieczenstwa jest tu pozyteczny.
Na podstawie przytoczonych przykladéw mozna ustalié¢ liczbe 40%a jako
wielko$¢, o ktora nalezy przy

0
wymiarowaniu zastrzaléw po- /T .
: , : 0
wiekszy¢ reakcje Rp w stosun- " " .
ku do reakcji belki A B podpar- "r‘w‘\—\_l/’ 8 /é
tej swobodnie w punktach A i B. 0" 0"
Gdybysmy uklad jednoza- Rys. 16

strzalowy obcigzyli symetrycz-

nie z dwéch stron punktu B, otrzymaliby$Smy zamiast wykresu na rys. 15
wykres przedstawiony na rys. 16, wzory za$ (4.9)-(4.14) dalyby wartosci
nastepujace:

M, = 0,250 Pa, M, — 0,156 Pa,
(4.16) M, 0,188 Pa, R,= P,
M| = 0,156 Pa, R, = 1,376 P.

Przesuniecie pionowe punktu B, przy ktérym moment My obliczony dla
belki cigglej o jednej podporze obnizonej réwna sie zeru, otrzymamy
z rdwnania trzech momentéw dla belki na podporach sprezystych:

Pa a Pa a
(4.17) — 6 1 4 - 4 +6EJf—»—-- ,

skad znajdziemy f = 0,25 cm.
Jezeli ciezary P zaczepione w $rodku przeset A B i B C belki glownej
roztozymy w sposéb réwnomierny
2 na calym przesle, wowczas otrzy-
2\ i A‘ {  mamy wykres momentéw zginaja-
e §g T~ " cych przedstawiony na rys. 17.
Zamiast wartosci (4.9) - (4.14)

Rys. 17 = .

otrzymamy wowczas wartosci:
M, = 0,125 qa?, M, = 0,070 ga?,
(4.18) M, = 0,125 qa?, M; = 0,070 qa?,
R; =1,000 qa, R, = 1,250 qa,
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a odpowiednie rownanie trzech momentéw przybiera postac
(1% a9\ | pe2
(4.19) . 6(24+24)‘Efa 0,

skad wyznaczymy te warto$¢ osiadania f, dla ktéorej moment M = 0; wy-
nosi ona 0,12 cm.

Jak widzimy, obliczenia poréwnawcze doprowadzaja do wniosku, ze
wyznaczenie momentéw zginajacych w poszezegdlnych przestach belki
gléwnej ukladu zastrzalowego powinno byé¢ wykonywane w zalozeniu, ze
przesta te sa belkami w dwoch punktach swobodnie podpartymi, wyzna-
czenie za$ reakcji belki gtownej w punkeie przecinania sie zastrzalow
w zalozeniu, ze mamy do czynienia z belka na podporach stalych.

Peszome
AHAJIN3 CTATHYECKHX CXEM JEPEBAHHBIX KOHCTPYHLHHA

OnpeneneHne cTaTUYECKM HEOMNPENENMMbIX BENIMYMH B JI€PEBAHHbIX
KOHCTPYKUMAX ¥ OIpeJieJieHNie KPUTUYECKNUX CUJI B JIePEeBAHHBIX CTOMKAX
xoTa u Tpebyer obocHoBaHMA Ha 3akoHe I'y K a, HO, OJHOBPEMEHHO, IIPH-
HY>X/laeT YYMTHIBATH CIIeIMaJibHble yCJOBUA pPaboOThl [epPeBAHHBIX KOH-
CTPYKIMIA, a TaKKe HEeOJHOPONHOCTh ¥ aHM30TPONMIO ApeBecuHEBI. IlosTomy
CTaTH4YecKye CXEeMbl JIePEBAHHBIX KOHCTPYKIMII PA3HATCA OT CXeM APYIMX
KOHCTPpyKIMiZ. PaboTa mocBsAleHa aHaan3y TPeX, CaMbIX XapaKTEPHbIX JAJIA
JPEBECHHbBI, KOHCTPYKLMOHHBIX JIEMEHTOB: HEMPU3MAaTUIeCKUX CTOEK, CO-
cTaBHBIX 0aJIOK M PaCKOCHBIX cucTeM. AHAIM3 TPUBOAUT K YCTAHOBJIIEHMIO
psAna KOHCTPYKIMOHHBIX CBOVICTB YIIOMAHYTBIX CHCTEM, & B YaCTHOCTM:

B ryase II — nmpMBOIMTCA BBIUMCIIEHME JEPEBAHHBIXI KOHYCOOOPa3HbIX
CTOEK, MEXKY TIPOYMM J KPEemezKHOTO Jieca;
B rnase III — obGocHOBRIBaeTCsH, UTO BepXHMe GalKy COCTABHBIX DaJIOK

JOJI3KHBI OBITH M3TOTOBJIEHBI U3 JIYULIEH JPEBECUMHBI, YeM HUIKHIE;

B riaase IV — obbAcHAETCA, IPU KaKOM, MMEHHO, TOYHOCTY BbIYMCJIEH-
Hble 6aJIK}M PACKOCHBIX CMCTEM MOXKHO TPAKTOBaTh KaK pPa3pe3Hble — Ipu
orpenesieHny u3TMOAIIMX MOMEHTOB, ¥ KakK HepaspesHble 0ajiky — mpu
OIIpesieJIeHMUM PEeaxrLUn.

Summary

AN ANALYSIS OF STATICAL COMPUTATION METHODS
OF TIMBER STRUCTURES

The computation of redundat quantities in timber structures and the
determination of critical forces in timber struts are based on Hook e’'s
law. It is necessary, however, to take into consideration, at the same
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time, the special conditions for timber structures, as well as the hetero-
geneity and the anisotropy of wood. The methods of statical computation
of timber structures differ therefore from those for other materials. This
paper is concerned with the analysis of the three most typical elements
for timber structures. These are: nonprismatic struts, built-up girders
and brace structures. The analysis results in the determination of a num-
ber of structural properties of those systems.

Sec. II contains a description of a calculation method of conical timber
struts, in particular pit-props.

In Sec. III a conclusion is reached that upper beams of built-up gir-
ders should be made of better material than the lower ones.

In Sec. IV the degree of exactness is determined, for which the beams
of brace systems can be treated as composed of segments, for the deter-
mination of bending moments, and as continuous beams, for the determi-
nation of the reactions.

Praca zostala ztozona w Redakcji dnia 10 grudnia 1954 r.
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