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1. Wstęp)*

*) Praca przedstawiona na Zebraniu Naukowym Zakładu Mechaniki Ośrodków 
Ciągłych IPPT PAN w dniu 8 marca 1954 r.

t.t. Teoria nośności granicznej płyt powstała z bezpośrednich obser­wacji układów pęknięć w zniszczonych ustrojach płytowych, w szczegól­ności w konstrukcjach żelbetowych. Systematyczne obserwacje, a następ­nie szczegółowa analiza układów linij załomów pozwoliły wykryć szereg prawidłowości, występujących w ustrojach płytowych w końcowym sta­dium wyczerpania się ich nośności; stadium to praktycznie równoznaczne jest ze zniszczeniem tego rodzaju konstrukcyj.Szereg prac — począwszy od pierwszych, nie wolnych od błędów, sfor­mułowań A. Ingę r s 1 e v a, [7], poprzez cenne spostrzeżenia K. W. J o- h a n s e n a, [8], [9], [10], [11], (szczególnie w odniesieniu do poprawnego ujęcia obrazu kinematycznych zależności w stadium złamania płyty), na­stępnie poprzez prace A. A. G w o z d i e w a, [6], L. S. G i Im a na, [5], W. Olszaka, [15], [16], [17], [18], [20], [21], [22], [23], i jego współpracowników, [12], [13], [14], [29], [30], [31], — wyjaśniło zasady i sprecyzowało metody tej szczególnej gałęzi teorii plastyczności, którą ująć można mianem teorii granicznej ustrojów. Warto przy tym na mar­ginesie zaznaczyć, że problemy nośności granicznej były atakowane przez szereg badaczy niezależnie od siebie- Świadczy to o tym, że stan wiedzy, a w szczególności rozwój teorii plastyczności, stworzył obiektywne wa­runki do rozwoju tego szczególnego jej odcinka, który, co zdaje się nie ulegać wątpliwości, posiada duże znaczenie teoretyczne i praktyczne.1.2. Mimo iż teoria nośności granicznej powstała na gruncie potrzeb praktyki inżynierskiej i rychło doczekała się praktycznego potwierdzenia od strony weryfikacji jakościowego przebiegu zjawisk, długo pozosta­wały niesprawdzone te zależności, które od strony ilościowej charaktery­zują stany graniczne, związane z ostateczną fazą wyczerpania nośności ustroju płytowego.1.3. Z uwagi na korzyści techniczne i gospodarcze, jakich należy się spodziewać na skutek szerokiego wprowadzenia do praktycznego stoso­
181



wania wyników teoretycznych badań nośności granicznej płyt, narzuca się konieczność weryfikacji doświadczalnej tych wyników w sposób moż­liwie wszechstronny.Realizacja programu badań eksperymentalnych, które by potwierdziły słuszność założeń i pozwoliły na zaakceptowanie wyników teoretycznych zarówno od strony jakościowej, jak i ilościowej, pozwoliłaby zamknąć krąg cyklu poznawczego: od obserwacji faktów, występujących w prak­tyce, poprzez teorię z powrotem do praktyki w sensie zarówno potwier­dzenia teorii, jak i jej wykorzystania i uogólnienia.Przeprowadzenie jednak doświadczalnych badań tego typu jak bada­nia nad stanami granicznymi układów powierzchniowych wymaga — z uwagi na mnogość zmiennych parametrów — odpowiedniej skali (w sen­sie zakresu badań); badania takie związane są zatem ze sporymi kosztami i wymagają dużo czasu.
1.4. Były, co prawda, prowadzone już badania eksperymentalne nad płytami żelbetowymi, ale badania te — o znaczeniu dziś już tylko histo­rycznym — nie były podbudowane żadną koncepcją teoretyczną.Mimo to niektóre ich wyniki, odpowiednio interpretowane, stanowić będą, jak zobaczymy, wcale pożyteczny materiał, umożliwiający weryfi­kację założeń, budowy i wyników teorii zjawisk towarzyszących wyczer­paniu nośności ustrojów płytowych.Zważyć przy tym jednak należy, że prace doświadczalne nad płytami żelbetowymi, począwszy od pierwszych opublikowanych wyników badań C. Bacha, [1], i O. Grafa, [4], mimo iż zawierają wiele rzeczo­wego materiału, tylko częściowo nadają się do wykorzystania do naszych celów. Wynika to stąd, że badania te nie zawsze były prowadzone w wa­runkach, które można z naszego stanowiska przyjąć za odpowiednie, jak też i z tego, że nie we wszystkich dostępnych nam publikacjach scharak­teryzowane są dostatecznie dokładnie interesujące nas parametry (jak np. komplet mechanicznych własności stosowanych materiałów itp.).Niemniej jednak uważaliśmy za swój obowiązek (niezależnie od pro­wadzonych specjalnie pod kątem widzenia teorii nośności granicznej wła­snych badań doświadczalnych) przejrzeć krytycznie dotychczasowe do­stępne nam rezultaty badań i wyciągnąć z nich wnioski, o ile można by­ło przy tym interpretować wyniki tych badań w świetle teorii nośności granicznej. Z materiałów tych korzystaliśmy z rozmysłem, stanowią one bowiem dodatkowe potwierdzenie słuszności założeń teoretycznych. Szcze­gólnie pod tym względem cenną jest praca K. W. J o h a n s e n a, [10].

1.5. Przypadki, spotykane w praktyce, wykazują duże bogactwo zmien­nych warunków; dotyczy to w szczególności:(1) struktury płyt (izotropia, ortotropia, ortotropia «podwójna» itd.);182



(2) ich ukształtowania geometrycznego i warunków podparcia (płyty prostokątne, płyty w postaci wieloboków umiarowych, płyty jedno- przęsłowe i ciągłe, podparcie swobodne, utwierdzenie, brzegi wolne itp.);(3) ich obciążenia (układy sił skupionych, obciążenia ciągłe itp.).
2. Prace polskieDotychczasowe prace polskie w dziedzinie nośności granicznej płyt szły w następujących zasadniczych kierunkach.2.1. Pierwszy z nich dotyczył sformułowania podstaw tej teorii, przy czym okazało się, że są one słuszne nie tylko dla problemu nośności gra­nicznej płyt, lecz dla szerszej klasy problemów teorii ustrojów nośnych. Dotyczy to np. poprawnego kinematycznego obrazu stanu granicznego, twierdzenia o maksymalnym oporze plastycznym itd.

2.2. Drugim podstawowym zagadnieniem, które ma doniosłe znaczenie za­równo dla rozbudowy teorii, jak i dla jej praktycznych zastosowań, jest zagadnienie anizotropii struktury płyt.Dla praktyki projektodawczej szczególne znaczenie ma przypadek ani­zotropii ortogonalnej (ortotropii).Udowodnić można, że w teorii nośności granicznej każdy przypadek ortotropii bez względu na zachodzące warunki, tzn. przy dowolnym ukształtowaniu płyty, przy dowolnym jej obciążeniu i przy dowolnych warunkach brzegowych, sprowadzić można do zagadnienia płyty izotro­powej i to przez zastosowanie prostej transformacji liniowej.Transformację tę rozszerzyć można również na płyty «podwójne orto- tropowe». Zagadnienie powyższe omawia szczegółowo oddzielna praca pierwszego z autorów, [17].Podano przy tym nowe rozwiązania szeregu trudniejszych przypad­ków, jak np. obciążenie siłami skupionymi płyt eliptycznych w dowolnym punkcie na osi dłuższej, [17]; zagadnienie to zostało następnie uogólnio­ne dla przypadku obciążenia w dowolnym punkcie elipsy, [14]; podano rozwiązanie dla płyt wielobocznych o ukształtowaniu foremnym, [29], [31].
2.3. Ważnym zagadnieniem jest problem płyt ciągłych.W pracy [22] przedstawiono ujęcie teoretyczne tego problemu w przy­padku ciągłości «dwuwymiarowej», a zatem takiej, jaka charakteryzuje ustroje płytowe «wielopolowe» w dwóch kierunkach (np. x oraz y). Wy­niki podobne jak dla («dwuwymiarowo») ciągłych płyt uzyskuje się dla 

zbiorników prostokątnych, które, w rzeczy samej, złożone są z tego rodzaju płyt ciągłych. Istotną różnicę stanowi przy tym konieczność równoczesne­go uwzględnienia stanu membranowego. Zagadnienie to jest obecnie w trakcie opracowywania, [30]. 183



Nieco bardziej złożone zagadnienie spotykamy w analizie stropów 
«grzybkowych», kiedy to ujęcie siatki zniszczenia z punktu widzenia ki­nematyki wymagać będzie na ogół rozwiązania tego zagadnienia w prze­strzeni (a nie w płaszczyźnie).I ten problem jest obecnie w opracowaniu.

2.4. Ostatnio zwrócono również uwagę na problem niejednorodności struktury płyt. Podstawy ogólnej teorii ciał sprężysto-plastycznych przed­stawione przez W. Olszaka, [24], [25], doznają znacznego uproszcze­nia, gdy chodzi o ich zastosowanie do tej klasy zagadnień, które są zwią­zane z analizą stanów granicznych.Okazuje się przy tym, że w fazie końcowej, charakteryzującej wy­czerpanie się nośności ustroju, zagadnienie niejednorodności (przy zało­żeniu schematu sztywno-plastycznego), [15], [16], [20], [21], wyraża się przez pewne proste zależności całkowe, polegające na operowaniu pew­nymi wielkościami, które można by — przez analogię do zagadnień spo­tykanych w «klasycznej» nauce o wytrzymałości materiałów — nazwać wielkościami «wypadkowymi», [13], [30], [31].Zależności te wyrażają się w sposób prosty.2.5. Wspomnieć wreszcie należy o pewnej analogii mechanicznej, któ­ra umożliwia rozwiązywanie złożonych zagadnień z dziedziny teorii no­śności granicznej płyt.Mamy na myśli analogię «wzgórza piaskowego», która — jak wykaza­no to na innym miejscu — znajduje zastosowanie zarówno w zagadnie­niu płyt izotropowych, jak i ortotropowych.
2.6. Zainteresowanie, jakim się cieszą obecnie problemy nośności gra­nicznej, skłoniło nas do opracowania obszernego planu badań doświad­czalnych.Pierwszą serię tych badań eksperymentalnych, na razie dość skromną, można w zasadzie uznać za zakończoną. Dotyczyła ona przede wszystkim weryfikacji doświadczalnej założeń podstawowych teorii nośności gra­nicznej płyt i to zarówno w sensie poszukiwania jej potwierdzenia pod względem jakościowym (kinematyka stanów granicznych, siatka zni­szczenia), jak i pod względem ilościowym (wartości parametrów, charak­teryzujące siatkę zniszczenia, wartości obciążeń granicznych).Badania doświadczalne dalsze, już rozpoczęte, dotyczą układów bar­dziej złożonych (płyty ciągłe, struktura ortotropowa, zagadnienie naro­ży itd.).
') Zagadnienie to, na którego charakter zwrócił uwagę jednemu z autorów W. N o- 

w a c k i, omówiono w pracy W. Olszaka, [23], w której podano możliwości sto­
sowania tej analogii przede wszystkim w przypadkach obciążenia równomiernego.184



2.7. Celem niniejszej pracy jest przedstawienie części wyników do­świadczeń własnych (z serii pierwszej) oraz niektórych, nadających się do wykorzystania do naszych celów, badań zagranicznych.
5. Ogólne założenia teorii nośności granicznej płyt5.1. Zanim przystąpimy do omówienia przeprowadzonych doświadczeń oraz do analizy wyników, uzyskanych w oparciu o te doświadczenia, wy- daje się nam rzeczą wskazaną podać krótką charakterystykę ogólnych za­łożeń i zasad teorii nośności granicznej płyt.5.2. Wyobraźmy sobie w tym celu płytę o strukturze izotropowej lub ortotropowej, znajdującą się w pewnych warunkach podparcia. Mówiąc o płytach ortotropowych mamy przede wszystkim na uwadze krzyżowo zbrojone płyty żelbetowe, będące najbardziej charakterystycznym re­prezentantem tego typu struktury.Załóżmy, że zbrojenie ułożone jest równomiernie w dwóch prostopad­łych do siebie kierunkach, przy czym ilość tego zbrojenia na jednostkę długości przekroju poprzecznego może być w obu kierunkach prostopad­łych różna. Założenia takie prowadzą do postulatu rozpatrywania ukła­dów zarówno izotropowych, jak i ortotropowych. W przypadku gdy wa­runki podparcia narzucają konieczność stosowania zbrojenia górnego, za­kładamy, że płyta może być inaczej (krzyżowo) zbrojona górą, a inaczej (krzyżowo) zbrojona dołem; stanowi ona wtedy układ «warstwowo» albo «podwójnie» ortotropowy.Założenia powyższe, dotyczące układu zbrojenia, mają swoje uzasad­nienie praktyczne. Płyty krzyżowo zbrojone posiadają na ogół cztery róż­ne charakterystyki, odnoszące się do mocy zbrojenia.5.5. Równomierność rozkładu zbrojenia w każdym z kierunków przy stałej grubości płyty powoduje, iż płytę tę rozpatrywać można jako jed­norodną ). Prowadzi to z kolei do wniosku, że moment łamiący, obliczo­ny na jednostkę długości, charakteryzuje się stałą wartością, przy czym za moment łamiący uważa się wartość występującą w chwili wyczerpania nośności układu i przekształcenia go w (ruchomy) mechanizm- Moment jednostkowy posiada tę samą wartość we wszystkich przekrojach równo­ległych do danego kierunku.

2

2) Badania nad ustrojami zbrojonymi nierównomiernie prowadzą do pojęcia jego 
niejednorodności. Zagadnienie to omawiają w swych pracach: W. Olszak, [24], [25], 
D. Niepostyn, [13], i A. S a w c z u k, [30], [31]. Por. p. 2.4. 185



3.4. W miarę wzrostu obciążenia ustroju obserwować można od­kształcenia sprężyste i to aż do chwili, gdy w pewnym miejscu moment osiągnie wartość graniczną, charakteryzującą uplastycznienie tej partii płyty. Z tą chwilą uplastycznienie zaczyna rozchodzić się wzdłuż pew­nych linij, zwanych liniami załomów.W okresie tym występują obok siebie w płycie odkształcenia plastycz­ne w liniach załomów oraz odkształcenia sprężyste na pozostałym obsza­rze.Nośność układu nie jest jeszcze wówczas wyczerpana i możliwy jest dalszy wzrost obciążeń. Obciążenie przybierze swą wartość graniczną z chwilą, kiedy linie załomów dojdą do krawędzi płyty, wskutek czego ustrój nośny zamieni się w mechanizm; odkształcenia plastyczne w liniach załomów narastać bowiem mogą bez przyrostu obciążenia.Przyjęcie tego schematu przebiegu zjawiska wynika z pominięcia wpływu «utwardzenia» stali, obserwowanego w czasie badania próbek na rozciąganie. Ograniczamy się tym samym do przyjęcia zależności między odkształceniem a naprężeniem, przedstawionej schematycznie na rys. 1.Doświadczenia wykazują—będzie mowa o tym szczegółowiej w dal­szej części pracy — że w przypadku elementów żelbetowych przy od­kształceniach, które charakteryzują chwilę wyczerpania nośności, przy­jęcie zależności 'przedstawionej na rys. 1, a charakteryzującej związek między naprężeniami i odkztałce- niami znajduje swe fizykalne uza­sadnienie.3.5. W teorii nośności granicznej, rozwiniętej w pracach polskich, pomija się z zasady odkształcenia sprężyste ustroju, ograniczając się do uwzględniania odkształceń plastycznych. Takie stanowisko — którego słuszność potwierdzają badania eksperymentalne — prowadzi do roz­patrywania modelu sztywno-plastycznego. W naszym przypadku przyję­cie uproszczonego modelu sztywno-plastycznego oznacza, że odkształce­nia (w szczególności zakrzywienia) «koncentrują» się w miejscach, w któ­rych naprężenia osiągnęły wartość, odpowiadającą granicy plastyczno­ści, a więc wzdłuż linij załomów. Obszary ograniczone liniami załomów, lub liniami załomów i bokami płyty, pozostają — przy pominięciu odkształceń sprężystych — płaskie. Oznacza to w konsekwencji, że linie załomów muszą być liniami prostymi, gdyż jedynie wówczas jest możli­we przeprowadzenie układu w mechanizm.186



3.6. Z przyjęcia powyższych założeń wynika, że odkształcenie płyty rozpatrywane być może jako zespół kątowych obrotów płatów płaskich wokoło chwilowych osi obrotu.Położenie osi obrotu każdego z płatów jest przy tym zależne od wa­runków podparcia. Oś obrotu przechodzić bowiem musi np. przez punkty podparcia płyty, jak to ma miejsce w przypadku swobodnego oparcia płyty na głowicach słupów, albo też przez prostą podparcia — w przy­padku płyt podpartych liniowo, albo wreszcie pokrywać się z linią załomu.Proste załomów, które — jak widzieliśmy — są krawędziami przecię­cia się płaskich płatów, muszą każdorazowo przechodzić przez punkt prze­cięcia się odpowiednich osi obrotu sąsiadujących ze sobą płatów.Układ prostych załomu albo — jak układ ten chcemy nazywać w dal­szym ciągu — siatkę zniszczenia można więc przewidzieć bezpośrednio z analizy warunków podparcia płyty. Należy tu dorzucić, że określa się w ten sposób z warunków geometrycznych jedynie ogólny zarys siatki zniszczenia bez określenia jej wymiarów i kątów nachylenia odpowiednich linij względem siebie. Ponadto są niejednokrotnie możliwe różne typy (konfiguracje) tej siatki.Wybór siatki właściwej oraz wyznaczenie parametrów, na podstawie których można będzie ściśle — w danych warunkach podparcia i obcią­żenia — określać rzeczywistą siatkę zniszczenia, nastąpić może w oparciu o metodę postępowania, której poświęcimy nieco uwagi w dalszej części niniejszej pracy.3.7. Dla zilustrowania faktu, iż siatka zniszczenia (w przypadku obcią­żeń ciągłych) dana jest przez warunki geometryczne, przedstawiono na rysunkach 2-5 kilka przykładów siatek zniszczenia bez ściślejszego pre­cyzowania określających je parametrów.Nie wszystkie jednak typy obciążeń pozwalają na podstawie warun­ków geometrycznych określić kształt siatki zniszczenia. Nie będzie tak między innymi wówczas, gdy mamy do czynienia z płytą poddaną dzia­łaniu pojedynczych sił skupionych, układów obciążeń, zbliżonych w swym działaniu do działania sił skupionych, bądź zespołów sił skupionych. Dla tych obciążeń figury załomów tworzą układ zbliżony do szeregu trójką­tów o wspólnym wierzchołku w miejscu zaczepienia siły oraz trapezów — w zależności od obciążenia. Ilustracją powyższego stwierdzenia niech bę­dzie rys. 6, na którym podana jest siatka zniszczenia tafli ze szkła zbro­jonego, obciążonej siłą skupioną.Cztery inne przykłady takich siatek zniszczenia przedstawiają rysun­ki 7, 8, 9 i 10.3.8. Warto tu — w związku z omawianym problemem siatek zniszcze­nia — przytoczyć jako rzecz charakterystyczną fakt, że również niektóre187



Rys. 3

Rys. 5

Rys. 6
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Rys. 10typy płyt niezbrojonych wykazują figury zniszczenia podobne do figur, występujących w przypadku płyt zbrojonych, mimo że mechanizm ich destrukcji jest odmienny.

Rys. 13 Rys. 14Rysunki 11, 12, 13 i 14 przedstawiają prostoliniowe załomy szeregu płyt betonowych według obserwacji, przeprowadzonych na jednym z chod­ników. W przypadku, którego dotyczą owe ilustracje, o załomach prosto­liniowych stanowiły 91,2% ogólnej ilości płyt złamanych, [16]. 189



3.9. Następne z kolei zagadnienie, które należy wyjaśnić po omówieniu siatek zniszczenia, to zagadnienie związku, jaki istnieje między układem linij załomów i ich długością a nośnością płyty.Stwierdziliśmy poprzednio, że decyzja przyjęcia sztywno-plastycznego modelu odkształcenia oznacza prostoliniowość siatki załomów; wyraża ona zarazem okoliczność, że linie załomów są równocześnie osiami obro­tu momentu łamiącego.. Weźmy pod uwagę ogólny przypadekV(Mv) in {___ znamienny tym, ze lima załomu jest nachy- 11 łona do obydwu wzajemnie prostopadłych-= kierunków zbrojenia (rys. 15). Z uwagi na __ i fakt, że moment graniczny («łamiący») na ______ /___________________ _ . długości tej linii charakteryzuje się warto- ' _ ___g » u<Mu) ścią stałą, również i jego składowe, związa- Rys 15_____________ ne z odpowiednimi osiami układu odniesie­nia, będą stałe.Wynika to zresztą bezpośrednio z faktu, że momenty Mu i Mv są funk­cjami mocy zbrojenia: |M„=F(^), (3.9.1 , ,I Mv = F(fa).W zapisie tym f. i oznaczają moc zbrojenia w kierunkach równoleg­łych do osi danego układu współrzędnych (u, v).Wychodząc z wzajemnego stosunku mocy zbrojenia dołem fu i fv oraz górą fa i f, przynależne momenty łamiące, obliczane na jednostkę szero­kości zbrojenia dołem będą Mu i Mv, natomiast dla zbrojenia górą 
Mu i M?.Ustalając wzajemne stosunki momentów otrzymamy. I M? = x MH , (3.9.2) I Mn = A Mu.Gdy ponadto zachodzi zależność Mu — ,uMn, oznacza to zarazem, że(3.9.3) M^ = A/zM„.Jeśli jako przypadek szczególny układu izotropowego przyjmiemy płytę o jednakowej mocy zbrojenia w obydwu wzajemnie prostopadłych kierunkach, wówczas zachodzi równość momentów składowych Mu i M-. (liczonych na jednostkę długości), co zapisać możemy w postaci(3.9.4) M,, = MV = M.190



Całkowity moment M, związany z określonym odcinkiem linii załomu,, będzie funkcją jednostkowego momentu wypadkowego M i długości tego odcinka s:(3.9.5) M = M ■ s.Gdy rozpatrywać będziemy momenty graniczne jako wielkości wek­torowe, stwierdzimy łatwo, że sama siatka zniszczenia stanowi naoczny wektorowy obraz momentów łamiących w chwili osiągnięcia granicy no­śności płyty.Gdy natomiast, w przypadku ogólniejszym, będziemy mieli do czy­nienia z płytami ortotropowymi o stałych wartościach momentów skła­dowych Mu i Mv, przy czym Mv — hM„, wówczas układ linij załomów nie będzie bezpośrednio przedstawiał wartości całkowitego momentu M, ale pewne wartości do niego proporcjonalne. Współczynniki proporcjonal­ności są łatwe do wyznaczenia.
3.10. Zatrzymując się nad wyznaczeniem dla przypadku ortotropii od­powiednich składowych momentu całkowitego, związanego z danym od­cinkiem, zauważymy, że jeśli przez a i b oznaczymy odpowiednie składowe odcinka w układzie osi współrzędnych (u, u), otrzymamy bezpośrednio
Analogiczne zapisy są słuszne w przypadku występowania momentów ujemnych, jak również w przypadku najogólniejszym, tzn. przy uwzględ­nieniu ortotropii warstwowej (podwójnej).Wskazana proporcjonalność między wartością momentu całkowitego (charakteryzującą w istocie nośność graniczną) a długością odcinków siat­ki zniszczenia ułatwi analizę wielkości sił, powodujących graniczne sta­dium wyczerpania nośności rozpatrywanego ustroju.
3.11. Aby uwolnić się od konieczności ewentualnego uwzględnienia momentów skręcających i sił poprzecznych, które, co prawda, w liniach załomów -— w interesujących nas przypadkach — nie występują, mogą jednak powodować powstanie tzw. sił węzłowych w punktach zbiegu większej ilości linij załomów, posłużymy się dla określenia wartości mo­mentu łamiącego zasadą prac przygotowanych.Zapiszemy ją tutaj w postaci(3.11.1) ÓL = ÓV,co wyraża, że dla ciała będącego w równowadze, przy jego przesunięciu przygotowanym, połączonym z odkształceniem, praca sił zewnętrznych 191



jest równa pracy sił wewnętrznych na odpowiednich przyrostach od­kształceń.Gdy jako najstosowniejsze w rozpatrywanym problemie weźmiemy pod uwagę wzajemne obroty kątowe poszczególnych płatów płyty, to w wyrażenie na pracę wejdą jedynie wyrazy pochodzące z działania mo­mentów. Praca wyrażona będzie wtedy każdorazowo przez iloczyn, utwo­rzony z kąta obrotu ó(p płata wokół odpowiedniej osi obrotu oraz rzutu wy­padkowej momentu łamiącego na kierunek tej osi M cos (M, ó cp).Daje to w rezultacie iloczyn skalarny<3.11.2) M <5 q\= M dtp cos (M, Ó ę»)albo, operując składowymi wektorów obrotu i momentu.<3.11.3) M ó = Mu Ó (pu + M? <5 <p ,gdzie Mu i Mv oznaczają odpowiednie składowe, przy czym pamiętać na­leży o znaczeniu wskaźnika ortotropii x, określonego np. wyrażeniem (3.10.1).W podanych wyżej wzorach założyliśmy, że obrót, wywołany danym momentem, charakteryzuje się tym samym znakiem co i odpowiedni mo­ment; za dodatnie uważać będziemy przy tym takie momenty, które wy­wołują występowanie sił wewnętrznych rozciągających po stronie «dol­nej». Tak. więc np. załomy na podporach płyt utwierdzonych przyjmować będziemy za ujemne, w przęsłach natomiast za dodatnie.5.12. Występujące w wyrażeniu (3.11.3) składowe wektora de przedsta­wić można na podstawie rys. 16, przy obrocie danego płata wokół osiobrotu i przy udzieleniu pewne­mu punktowi przemieszczenia przygotowanego ów, w postaci<, ów c ów(3.12.1) ó<pu =——, ó<p? =—Praca sił wewnętrznych jest więc łatwa do określenia i przedstawi się jako suma ilo­czynów typu (3.11.3).Jeśli natomiast chodzi o pra­cę sił zewnętrznych, to w przy­padku sił skupionych będzie ona sumą iloczynów typu(3.12.2) d LP = IP, ó Wi,przy czym Pi oraz ów, oznaczają odpowiednio siłę i jej przesunięcie w kie­runku działania siły, wywołane przemieszczeniem przygotowanym ów, 192



natomiast przy działaniu rozłożonego na powierzchni płyty obciążenia o intensywności p {u, u) otrzymuje się wyrażenie<3.12.3) ó Lp = Jj p (u, u) ó w (u, v) du d u ,gdzie Ów (u, u) oznacza przynależne przemieszczenie związane z przemie­szczeniem przygotowanym.Oczywiście, odpowiedni bilans prac objąć powinien wszystkie biorące udział w obrotach płaty, podobnie jak wzór (3.12.2) dotyczył wszystkich punktów zaczepienia sił P,.Ostatecznie na podstawie przytoczonych wzorów otrzymamy rów­nanie * ,(3.12.4) 5) P, ó Wi + JJ p (u, u) ów (u, u) dudv — £M dq> cos (M, ó (p) = 0 ,z którego przy znanej siatce zniszczenia wyznaczyć możemy wielkość mo­mentu łamiącego M.5.13. Wyjaśnić jeszcze należy sposób postępowania, gdy siatka zni­szczenia nie będzie z góry znana co do długości poszczególnych jej odcin­ków itp. (choć, o ile chodzi o jej kształt to określony on jest — jak wie­my — warunkami podparcia i obciążenia). Należy wówczas przedstawić siatkę za pomocą funkcji zależnej od odpowiedniej ilości nieznanych pa­rametrów (a?i, x2, ..., a?„), co z kolei pociągnie za sobą to, że wyrażenie na moment M będzie funkcją obciążenia Q oraz tychże parametrów:(3.13.1) M = F(Q, x1;x2......xn).W celu wyznaczenia wielkości momentu charakteryzującego stan gra­niczny danej płyty posłużymy się zasadą maksymalnego oporu plastycz­nego, [16], [22], która mówi, że ze wszystkich geometrycznie możliwych układów linij załomu ważna jest ta siatka, której odpowiada największa wartość momentu M3); dla poprawnej siatki załomów muszą więc być spełnione warunki

3) Jest to równoznaczne ze stwierdzeniem, że obciążenie spełnia wówczas waru­
nek minimum.

4) Prosty przykład liczbowy, objaśniający sposób postępowania w konkretnych 
zagadnieniach, podany jest na końcu pracy (patrz str. 244).

(3.13.2) dM _ dM _ dM 
d d x2 d xnZ powyższych warunków otrzymujemy n równań, pozwalających wy­znaczyć n nieznanych parametrów xlt x2,..., xn, gdy zaś znana będzie siatka zniszczenia, nic nie stoi na przeszkodzie wyznaczeniu wielkości mo­mentu łamiącego M 4).Przejdziemy teraz do omówienia problemów związanych bezpośrednio z techniką wykonywania doświadczeń nad nośnością graniczną płyt.
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4. Zasady badań laboratoryjnych nad teoria nośności granicznej

4.1. Moment zginający «graniczny» w linii załomów posiada wartość stałą wzdłuż całej długości tej linii. Takie przyjęcie stałości momentu ła­miącego, oparte na znanej platformie plastycznej z wykresu zależności (c,e) dla stali, upraszcza znacznie obliczenia przy wyznaczaniu momen­tów łamiących 3).Dla przypadku elementów zginanych interesującą będzie zależność — wynikająca ze wspomnianego wykresu relacji — między krzy­wizną a momentem zginającym w okresie pojawienia się odkształceń plastycznych. Zależność tę możemy przedstawić na podstawie znanychzwiązków między krzywizną a mo-
r /I
J-___ r
/ g

— — - Fala sprężysta

---------------- Faza plastyczna

Rys. 17

mentem zginającym w formie wy­kresu przedstawionego na rys. 17.Prosta przerywana przedstawia funkcję M = f (o) dla ciała spręży­stego, prosta pełna dla ciała ideal­nie plastycznego. Wartości momen­tów M i M' określone są między in­nymi zdolnością materiału do przej­mowania sił wewnętrznych rozcią­gających w jego warstwach, położo­nych odpowiednio poniżej względniepowyżej osi zgięcia plastycznego.Dla elementów zbudowanych z materiału elasto-plastycznego wykres przedstawionej zależności będzie odpowiednią kombinacją obu faz; rozu­mieć to należy w ten sposób, że platforma rosnącej krzywizny przy sta­łym momencie powstanie z chwilą osiągnięcia w materiale granicy pla­styczności.Nasuwa się pytanie, w jakiej mierze tego rodzaju założenie odkształ­ceń plastycznych znajduje potwierdzenie przez zachowanie się żelbeto­wego pasma płytowego. Doświadczenia, wykonane nad pasmem płyty żelbetowej o podanej grubości i zbrojeniu ułożonym «dołem», wykazały, że jeśli oś odciętych przedstawiać będzie krzywiznę, a więc — w założe­niu sztywno-plastycznego schematu odkształcenia — nachylenie płatów względem siebie, zaś oś rzędnych — wartość momentu «granicznego», to zależność między momentem a krzywizną linii załomu przedstawi się jak na rys. 18.
194

5) Oznacza to zarazem, że pomijamy w ten sposób niedużą nadwyżkę nośności, 
wynikającą z faktu «utwardzenia» materiału.



Krzywa 1 dotyczy płyty zbrojonej stalą miękką, zaś krzywa 2 odnosi się do zbrojenia drutem stalowym, który przy próbie rozciągania po zer­waniu wykazywał wydłużenie około 5°/o i nie posiadał wyraźnej grani­cy plastyczności. Jak widać z rysunku, w obydwu przypad­kach istnieje znacznej długości platforma, którą uważać można za poziomą, a która wskazuje, iż wartość momentu od chwili osiągnięcia pewnej wielkości jest stała i niezależna od krzy­wizny.
4.2. Następnym problemem, któremu należy poświęcić nieco uwagi, jest problem odkształceń sprężystych oraz ich wpływu na układ linij za­łomów płyty. Na innym miejscu, [16], stwierdzono, iż odkształcenia sprę­żyste, w szczególności zaś zakrzywienia płyty w tych częściach, w któ­rych naprężenia nie osiągnęły granicy plastyczności, można w pierwszym przybliżeniu pominąć w porównaniu z odkształceniami plastycznymi, wy­stępującymi w przekrojach, w których nastąpiło osiągnięcie stanu gra­nicznego. Takie założenie jest równoznaczne z przyjęciem tzw. sztywno- plastycznego modelu odkształcenia w chwili zniszczenia (por. [15], [16], [27]), co pozwala uważać poszczególne płaty za płaskie. Stąd bezpośred­nio wynika, że linie załomu są liniami prostymi (por. [6], [7], [8], [9], [10], |15], [16], [22]).Problem ten wymaga nieco innego potraktowania dla dwu różnych praktycznie ważnych typów obciążeń, mianowicie obciążeń rozłożonych równomiernie i obciążeń skoncentrowanych w formie sił skupionych.Jeśli chodzi o płyty obciążone w sposób równomierny na całej po­wierzchni, to założenie, że płaty pozostają płaskimi, nie jest w rzeczywi­stości w pełni spełnione, lecz w przybliżeniu jest ono uzasadnione. Jako ilustracja powyższego problemu niech posłuży rys. 19, [10].Na rysunku 19a przedstawiony jest charakter odkształceń płatów pły­ty kwadratowej w płaszczyźnie jednej osi symetrii powierzchni płyty, na­tomiast na rys. 19b odkształcenia, występujące wzdłuż przekątnej. Prze­sunięcie się punktu B z pierwotnego położenia na osi długości l do poło­żenia B' świadczy o podniesieniu się naroża B w stosunku do położenia w stanie nieobciążonym. Zagadnienie podnoszących się naroży omówione zresztą będzie na innym miejscu. Oczywiście, przedstawienie odkształ­cenia płyty w rozpatrywanym przekroju w postaci linii łamanej ACD 195



jest schematyczne i ma na celu jedynie zwrócenie uwagi na rząd wiel­kości odkształceń sprężystych w stosunku do plastycznych w linii zało-

Rys. 19

mu, reprezentowanej na ry­sunku przez punkt D.Przypadek obciążenia pły­ty kwadratowej, podpartej na obwodzie w sposób po­zwalający na unoszenie się naroży, siłą skupioną dzia­łającą w środku płyty, po­twierdza w zupełności zało­żenie pozostawania płatów płaskimi. Rysunek 20 przed­stawia analogiczną — jak reprezentowana na rysunku poprzednim — zależność dla omawianego typu obciążeń, uzyskaną na podstawie wła­snych doświadczeń.Inny przypadek potwierdzający założenie prostoliniowości linij zało­mów przedstawia rys. 21.Należy się tu jednak zastrzec, że w przypadku płyty o dużej po­wierzchni, a małej przy tym sztywności, obciążonej pojedynczą siłą sku­pioną, zagadnienie przedsta­wiać Się może nieco inaczej, gdyż linie załomów nieko­niecznie muszą dojść do krawędzi podparcia. Powsta- je w tym przypadku inny układ siatki zniszczenia oraz inny nieco obraz odkształceń, który może nie odpowiadać wykresom, przedstawionym na rys. 19, niemniej jest onrównież zgodny z założenia- Rys. 21mi teorii granicznej.4.5. Po tym omówieniu doświadczalnego sprawdzenia słuszności zało­żeń teorii nośności granicznej należy z kolei wyjaśnić niektóre zagadnie­nia, związane z metodyką prowadzenia doświadczeń nad weryfikacją tej teorii.196



Jest rzeczą wiadomą, że o wielkości obciążenia łamiącego według teo­rii nośności granicznej świadczy układ linij załomów oraz wartość jednost­kowego momentu łamiącego. Jeśli chodzi o pierwszy z wymienionych czynników, nie będziemy go w chwili obecnej bliżej rozpatrywali, a to dlatego, że metoda wyznaczania układu linij załomów dla danych wa­runków podparcia i obciążenia omówiona została już uprzednio dość szczegółowo®). Należy tu jedynie przypomnieć, że posługuje się ona kry­terium maksymalnego oporu plastycznego, co pozwala ustalić niezbęd­ną liczbę parametrów charakteryzujących siatkę zniszczenia.Ze stanowiska eksperymentalnego uzasadnienia teorii nośności gra­nicznej ważnym jest drugi ze wspomnianych czynników, mianowicie war­tość momentu łamiącego na jednostkę długości linii załomu, czyli — jak wartość tę będziemy nazywali — tzw. moment jednostkowy. Znajomość momentu jednostkowego jest ważna z tego względu, iż pozwoli ona przy właściwej w danych warunkach obciążenia i podparcia siatce zni­szczenia na wyznaczenie wielkości obciążenia łamiącego na drodze teore­tycznej i porównanie go z rzeczywistym obciążeniem niszczącym, co za­tem pozwoli ustalić stopień zgodności wyników teoretycznych z wynikami doświadczeń. Znajomość momentu jednostkowego jest przeto nieodzowna w tym celu, aby można było na podstawie układu linij załomów wnio­skować o wielkości obciążenia łamiącego.Jak o tym powiedzieliśmy już na innym miejscu ([16] oraz p. 3.2 pra­cy niniejszej) przyjmuje się zazwyczaj, iż nośność płyty żelbetowej okre­ślona jest między innymi przez moc zbrojenia, mającego przenieść po­wstałe w elemencie naprężenia rozciągające; pomija się przy tym zwykle ten dodatkowy czynnik, który, w sposób co prawda nieznaczny, niewątpli­wie jednak zwiększa nośność ustroju, mianowicie wytrzymałość betonu na rozciąganie.Aby uniezależnić się od konieczności wyznaczania momentu jednost­kowego na drodze teoretycznej w oparciu o jedną z metod z dziedziny tzw. teorii żelbetu, wskazane jest poszukiwanie tego momentu dla obec­nych naszych potrzeb na drodze doświadczalnej. Wyznaczanie w ten spo­sób momentu jednostkowego, przyporządkowanego płycie o danej gru­bości, mocy zbrojenia i rodzaju mieszanki betonowej, pozwala pominąć szereg czynników nie mających dla naszych badań znaczenia, a występu­jących przy wyznaczaniu tego momentu na podstawie którejkolwiek z metod wymiarowania zginanych elementów żelbetowych.Konieczność zrealizowania największego wytężenia w punktach, po­łożonych na linii prostej, narzuca określony schemat prowadzonego do-
•) Por. np. [16] oraz podany na końcu pracy przykład liczbowy. 197



świadczenia. Jest to schemat belki swobodnie podpartej, obciążonej siłą skupioną;, w zastosowaniu do pasma płytowego o szerokości równej pew­nej jednostce liniowej, np. 1 m, oznacza to, że obciążenie powinno być rozłożone w sposób równomierny wzdłuż pewnej linii. Schemat taki przedstawia rys. 22. W bilansie jednak sił wewnętrznych i zewnętrznych należy uwzględnić również ciężar własny płyty g.

Rys. 22

Rozpatrując zagadnienie jako «li­niowe» udzielamy punktowi zaczepie­nia . siły P w kierunku jej działania przesunięcia równego jednostce. Wów­czas bilans prac sił wewnętrznych i zewnętrznych można zapisać w po­staci
P-l + ^ I 2 =Mstąd(4.3.1) 4 8Dla wykonywanych przez nas doświadczeń wartość momentu jednost­kowego przy procencie zbrojenia 99 = 0,126% wyznaczana była na podsta­wie wyników obciążenia i łama­nia pasma płytowego, którego szerokość miała 68 cm, odstęp punktów podparcia a = 70 cm i grubość 3 cm. Stosowano prasę hydrauliczną; siła roz­łożona była wzdłuż prostej w środku rozpiętości pasma za pomocą dźwigarka rozdzielcze­go INP 8 (rys. 23).Średnia wartość siły łamią­cej, przeliczona na 1 mb sze­rokości pasma przy uwzględ­nieniu ciężaru belki rozkłada­jącej obciążenie, wynosiła P = 109 kG/m; ciężar własny płyty (wyko­nanej ze zbrojonej zaprawy cementowej) wynosił g = 1.900 • 0,03 = = 57 kG/m2; daje to wartość momentu109 ■ 0,7 m= 4 57:0,72 "8 = 19,1 + 3,5= 22,6 kGm m.198



4.4. Wartość momentu jednostkowego zależy oczywiście od odległości zbrojenia od ściskanej krawędzi przekroju płyty. Powoduje to taki sku­tek, że żelbetowa płyta o jednakowej mocy zbrojenia w dwu wzajemnie prostopadłych kierunkach staje się, ściśle rzecz biorąc, układem ortotropowym j—----------------------- j—o różnych wartościach momentów przy- J < Beton pisanych tym kierunkom ortotropii. Sto- sunek tych momentów możemy traktować jako zależny w sposób istotny jedynie od Rys- 24grubości prętów zbrojenia (przy założeniu, że zbrojenie w dwu prostopadłych do siebie kierunkach układane jest bezpośrednio jedno na drugim, rys. 24).Jeśli więc został wyznaczony doświadczalnie np. moment Mv, to 
MU = MV h„ hv 7) względnie, wstawiając hu=hv— d,

7) Por. treść odsyłacza 6).

(4.4.1) = —W celu jednak uproszczenia przeliczeń, dokonywanych przy opraco­wywaniu wyników doświadczeń, będzie rzeczą korzystną posługiwać się pewną wartością momentu jednostkowego średniego (oczywiście tylko dla warunku zbrojenia jednakowego w obu kierunkach). Taki średni moment «zredukowany» pozwoli wnosić o wielkości obciążenia łamiącego bezpo­średnio z długości linij załomów.Jeśli więc Mu = F (fv) wprowadzimy do bilansu prac, jako działający na długości a, zaś Mv = F (fu).na długości b, to średni moment na jednostkę długości linii załomu dla płyty podpartej na obwodzie jestb 4- /1— d i.(44.21 „  M, » + M,b _ _ k M
a + b a + bTak więc dla płyty kwadratowej (a = b) przy grubości płyty h = 30 mm. 

hv = 28,9 mm, <p — 0,126% i średnicy prętów zbrojenia d = 2,2 mm zredukowany moment jednostkowy wyznacza się, posługując się współ­czynnikiem k o wartości
= i—-4 = i—9 2;2« Q = °-962; 

Z rtv Z • Zo,y.stąd wartość momentu zredukowanego wynosiM = 22,6 • 0,962 = 21,7 kGm m.
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4.5 Należy jeszcze kilka słów poświęcić sposobowi realizacji obciążeń w badaniach laboratoryjnych, dotyczących teorii nośności granicznej. Obciążenie rozłożone w sposób równomierny, będące jednym z głównych przypadków praktycznie występujących obciążeń, jest w laboratorium trudne do zrealizowania, szczególnie w przypadku badań nad nośnością graniczną. Nie może być tu mowy o stosowaniu takich prostych sposo­bów obciążenia jak np. stosowanie warstwy piasku, a to z kilku powo­dów. Jednym z nich jest to, że obciążenie górnej powierzchni piaskiem czy innym podobnym materiałem (zarówno w workach lub skrzynkach, jak też nasypywanego bezpośrednio na płytę) uniemożliwia obserwację górnej powierzchni płyty, nie mówiąc już o braku dokładności, który przy takim sposobie jest nieunikniony. Drugim powodem, przemawiają­cym przeciwko takiemu typowi obciążenia, jest trudność właściwego uchwycenia zjawisk zachodzących w ułożonej pryzmie woreczków z pia­skiem bądź też w jeszcze bardziej złożonym przypadku bezpośredniego obciążenia piaskiem w skrzyni, której dnem jest badana płyta. Zachodzą­ce podówczas zjawiska tarcia materiału sypkiego o ścianki i inne objawy, znane z zagadnień rozkładu ciśnień w silosach, jak np. tworzenie się «skle­pień» materiału, «korków» itd., a to na skutek specyficznego układu po­wierzchni ciśnień — zmieniają w sposób istotny warunki wykonywania doświadczenia.Dla ilustracji przytoczymy wyniki przeprowadzonego przez nas ba­dania próbnego dla uzasadnienia niewłaściwości stosowania dla naszych badań tego typu obciążeń. Poddano w tym celu płytę 70 cm X 70 cm, sta­nowiącą dno skrzyni, obciążeniu luźno sypanym piaskiem. Jednostkowy moment łamiący dla tej płyty wynosił około 70 kG/m, (zbrojenie w oby­dwu kierunkach było jednakowe, podparcie swobodne na obwodzie). Ob­ciążenie łamiące wyznaczone na podstawie jednostkowego momentu wy­nosiło: 24 MP= b2 24-70 0,72 = 340kG m2
podczas gdy rzeczywiste obciążenie (rzeczywiste w rozumieniu całkowi­tego ciężaru warstwy piasku na «obciążoną» powierzchnię) wynosiło oko­ło 1000 kG/m2 w chwili pojawienia się pierwszych rys; ponadto stwier­dzono, że dalsze pogrubienie warstwy obciążającej piasku nie powodo­wało widocznego wpływu na strukturę pęknięć płyty.Analizowaliśmy szereg innych możliwości realizowania obciążeń cią­głych, między innymi za pomocą warstwy wody przy zastosowaniu od­powiednich uszczelnień gwarantujących, że nie będzie ona mogła wycie­kać; jednak mimo iż realizacja tego typu obciążenia jest możliwa i stan 200



parć jest tu łatwy do określenia, zrezygnowaliśmy z niego z uwagi na trud­ności w uzyskaniu niezbędnych materiałów.Tak więc jedynym praktycznie łatwym sposobem realizacji jest system obciążenia ustroju za pomocą sił skupionych, rozstawionych do­statecznie gęsto, tak by działanie szeregu tych sił można było uważać za obciążenie równomiernie rozłożone. Można taki typ obciążenia uzyskać przez działanie szeregu pras hydraulicznych sprzężonych bądź przez układ dźwigni, bądź też po dostosowaniu urządzenia wielokrążkowego do reali­zowania obciążeń powierzchniowych — za pomocą schematu z dwulinko- wym układem krążków, [3].
4.6 Zastąpienie obciążenia ciągłego przez siły skupione w pewnym sen­sie utrudnia właściwą interpretację wyników doświadczeń, a to przez, istniejącą w tych warunkach możliwość lokalnego przezwyciężenia wy­trzymałości betonu na ścinanie i przebicia płyty. Taki stan zniszczenia w teorii nośności granicznej płyt nie jest na ogół rozpatrywany, a to z te­go powodu, że teoria ta opiera się na założeniu występowania odkształceń plastycznych w stali lub też innym materiale ciągliwym (elasto-plastycz- nym), który ma za zadanie przejąć naprężenia rozciągające, występujące w ustroju. Jak się okaże w dalszym ciągu niniejszej pracy, «lokalne» zniszczenie płyty przez przebicie może być związane z graniczną warto­ścią siły znacznie niższej, niżby to wypływało z zależności, wynikających z teorii nośności granicznej (zniszczenie «pełne» przy zginaniu).Na tym miejscu ograniczymy się do zilustrowania zjawiska przebicia kilkoma fotografiami. I tak rys. 25 przedstawia zniszczenie przez prze­bicie płyty izotropowej kwadratowej swobodnie podpartej o mocy zbro­jenia (p = 0,505%, oglądane od strony górnej powierzchni płyty, zaś rys. 26 pokazuje dolną powierzchnię płyty po zniszczeniu. Podobne zjawisko ilu­strują również dla płyty o dwukrotnie mniejszej mocy zbrojenia rysun­ki 27 i 28, zaś rysunki 29 i 30 — dla płyty o innej grubości i jeszcze niż­szym procencie zbrojenia. Jeszcze inny przykład zniszczenia przez «prze­bicie» podaje rys. 31. Bliższa analiza reprezentowanych na fotografiach układów linij zniszczenia pozwala wyciągnąć tu jeszcze jeden — zresztą oczywisty — wniosek; okazuje się mianowicie, że w płycie o większej mo­cy zbrojenia (rys. 25 i 26) zniszczenie przez przebicie nastąpiło przed po­wstaniem w stali odkształceń plastycznych, wywołanych przez napręże­nia normalne. Dolna powierzchnia płyty — poza miejscem przebicia pły­ty — nie jest spękana tak, jak miałoby to miejsce w chwili powstania w zbrojeniu odkształceń plastycznych. Inny układ siatki zniszczenia re­prezentuje rys. 28, gdzie powstają już w sposób wyraźny pęknięcia cha­rakterystyczne dla tego typu podparcia i obciążenia, jednak i tu zniszcze­nie elementu nastąpiło przez przebicie. O tym, iż nie na całej długości linij201



Rys. 25

Rys. 29 Rys. 30
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załomów powstały w zbrojeniu naprężenia o = Qr, mówi również zjawi­sko, że po zdjęciu obciążenia rysy w ich partiach przy narożach znikały. Rysunki 29 i 30, dotyczące płyty ortotropowej, odznaczającej się jeszcze niższym procentem zbrojenia, wskazują, iż tu za pierwszy czynnik, po­wodujący powstanie trwałych odkształceń, uważać można zginanie, nie zaś przebicie (wyraźne linie załomów spowodowane zginaniem płyty).
1~. Przedstawienie powyżej kilku charakterystycznych zdjęć, doty­czących zniszczenia przez przebicie, ma na celu zwrócenie uwagi na czyn­niki, które należy brać pod uwagę przy zastępowaniu obciążeń ciągłychsiłami skupionymi. Dlatego też w na­szych doświadczeniach staraliśmy się posługiwać płytami o niskim procencie zbrojenia, co może nie jest uzasadnio­ne ze stanowiska ekonomiki, ale jest właściwe ze stanowiska warunków, w jakich przeprowadzane są doświad­czenia. Zjawisko to zresztą zostało tu może nieco przejaskrawione, gdyż zdjęcia dotyczyły niszczenia płyt jed­ną tylko siłą skupioną, a więc o dużej stosunkowo wartości. Wówczas, gdy działa szereg sił, wartości, jakie osiągną one w chwili przekształcenia układu w mechanizm, będą w pewien Rys. 31określony sposób mniejsze i zjawisko przebicia może nie wystąpić i wy­stąpić nie powinno. Tak więc w dalszej części, przy omawianiu zgodności strony doświadczalnej z teoretyczną, dla obciążeń ciągłych zagadnienie przebicia płyty nie będzie już omawiane, albowiem warunki przeprowa­dzania doświadczeń uzasadniają takie stanowisko.

5. Charakterystyka warunków doświadczeń

5.1 . Uzasadnienia doświadczalnego słuszności teorii nośności granicz­nej szukaliśmy nie tylko w doświadczeniach własnych, zresztą skromnych z uwagi na nasze możliwości w zakresie urządzeń i sprzętu, lecz również i w ogłaszanych wynikach doświadczeń obcych. Doświadczenia takie wy­konywane dla innych celów i interpretowane z innego stanowiska wyko­rzystane zostały obecnie dla naszych potrzeb. Do najstarszych badań nad zagadnieniem kształtowania się rys i wielkości obciążenia niszczącego należą badania C. Bacha, [1],|4|. Następnie opieraliśmy się na wynikach doświad­203



czeń przeprowadzonych przez instytucję Deutscher Ausschuts fur Eisenbeton*) i opublikowanych w jej wydawnictwach, w szczególności w pracy [4].Nie będziemy zatrzymywali się nad charakterystyką używanych w ob­cych badaniach materiałów (kruszywo, stal), natomiast podamy kilka cha­rakterystycznych danych na ten temat, odnoszących się do badań własnych.
5.2 Modele do własnych badań 9) wykonywane były z zaprawy cemen­towej o stosunku 1 : 4 i wskaźniku w/c = 0,7. Wytrzymałość na ściskanie walców 0 16 wahała się w granicach 60 do 75 kG/cm2, wytrzymałość na rozciąganie, mierzona na podobnych próbkach według metody «poprzeczne­go» ściskania walców, [26], zawierała się w granicach 10,0 do 12,4 kG/cm2.Modele zbrojone były siatką z drutu o średnicy d = 2,2 mm i Qr = 2210 kG/cm2 oraz Rr = 3440 kG/cm2, przy czym strefa pozioma na wykresie roboczym rozciągania w chwili osiągnięcia Qr była stosunkowo krótka (odpowiadała przyrostowi wydłużeń około 1%). Stal charaktery-

Rys. 32

zowała się dużym wydłużeniem względnym (ok. 20% przy długości próbki 20 cm), przy czym na obsza­rze utwardzenia (z chwilą przekro­czenia granicy plastyczności) wy­stępowała strefa, w której odkształ­cenia przyrastały znacznie przy ma­łym zwiększaniu siły. Jako charak­terystyczny dla tego rodzaju zbro­jenia wykres zależności między krzywizną a jednostkowym momen­tem łamiącym w paśmie płytowym należy przyjąć krzywą 2 spośród przedstawionych na rys. 18.Obciążania modeli siłą skupioną dokonywano za pomocą prasy hydrau­licznej do 2 t z dokładnością odczytów do 5 kG.Sposób przeprowadzania doświadczenia ilustruje rys. 32.Z kolei przejdziemy do bezpośredniego omówienia wyników doświadczeń.
6. Płyta kwadratowa obciążona w środku siłą skupioną

6.1. Przed przystąpieniem do analizy wyników doświadczeń należy jeszcze wyjaśnić niektóre problemy teorii w przypadku działania obcią­żeń skupionych.
8) Badania te przeprowadzone były w Stuttgarcie pod kierownictwem C. Bacha 

i O. Grafa, następnie w Dreźnie pod kierunkiem W. Gehlera i H. Amosa.
’) W badaniach brał również udział J. Pietrzykowski.204



Płyta prostokątna izotropowa przy zachowaniu pewnych warunków, mianowicie wtedy, gdy punkt działania siły znajduje się nie w jednako­wych odległościach od krawędzi podparcia, wykazuje siatkę zniszczeniajak przedstawiono na rys. 33, gdzie pęknięcia radialne dotyczą dolnej, obwodowe zaś górnej powierzchni płyty.Gdybyśmy chcieli obliczyć wiel­kość siły łamiącej, to, nadając punk­towi działania siły przesunięcie jed­nostkowe, otrzymamy1(6.1.1) P = I — (M+Mjrdy, J r oco da w rezultacie a

Rys. 33(6.1.2) P = 2ttM(1 + ż) .Wartości momentów jednostkowych M oraz M' = /.M uwarunkowane są możnością ich przejęcia przez żbrojenie «dolne» względnie «górne».Jeżeli przyjmiemy, że naprężenia rozciągające może przyjmować je­dynie zbrojenie, to w przypadku gdy 2=0, tzn. gdy nie ma zbrojenia górą, do bilansu prac przygotowanych nie wejdzie praca potrzebna do otwarcia pęknięcia obwodowego i wartość siły łamiącej przedstawi zna­na zależność(6.1.3) P = 2nM.Identyczną wartość otrzymuje się wychodząc ze ściślejszych założeń teorii odkształceń elasto-plastycznych 10).

10) Por. np. W. W. Sokołowski, [31].
n) Należy zaznaczyć, że nie są to jedynie możliwe formy zniszczenia, istnieją bo­

wiem pewne specjalne przypadki ogólniejszego rozwiązania, które dają linię za­
łomu według spirali logarytmicznej; por. [27] i [14].

6.2. Przy obciążaniu jedną siłą skupioną płyty izotropowej czy też ortotropowej, w przypadku gdy zabezpieczone są warunki, by nie na­stąpiło «przebicie», tworzy się wokół punktu zaczepienia siły stożek. Sto­żek ten scharakteryzowany jest — w przypadku płyt izotropowych ■— pewnym promieniem stałym, innymi słowy jest stożkiem, którego prze­kroje prostopadłe do osi są kołami. W przypadku płyt ortotropowych przekroje te są elipsami n). Równanie (6.1.2) mówi, że wielkość siły ni­szczącej (w założeniu, że płyta jest nieważka) nie zależy od wymiarów 
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geometrycznych (wielkości) płyty ani od promienia «stożka wyłomu» (gdy ograniczamy się do układów izotropowych). Określenie wielkości tego promienia i czynników, wpływających na jego wielkość, wiąże się z pro­blemami nośności granicznej płyt spoczywających na sprężystym podłożu; stanowi to oddzielne zagadnienie.

Jako ilustracja rozważań dotyczących «wyłamywania» się z płyty — niezależnie od jej wymiarów12) — pewnego skończonego obszaru, niech
I2) Istnieje jednak pewne ograniczenie ku dołowi (wymiary krytyczne), którego 

tu obecnie nie precyzujemy.206



posłużą rysunki 34, 35 i 36. Rysunek 34 przedstawia sposób przeprowa­dzenia badania płyty o średnicy 7 m i grubości 15 cm, zbrojonej górą i dołem; rys. 35 — układ pęknięć po stronie dolnej, zaś rys. 36 —- układ pęknięć od strony górnej. Widać tu w sposób wyraźny, że linie załomów nie dochodzą do krawędzi swobodnego podparcia. Płyta oparta była na podłożu z masy drzewnej.
6.3. Taki jednak układ zni­szczenia powstaje również w pły­tach o małych wymiarach w tym przypadku, gdy naroża mają uniemożliwioną swobodę podno­szenia się. Możność podnoszenia się naroży zmienia sposób podpar­cia płyty; wtedy bowiem płyta będzie podparta już nie na całym obwodzie, lecz jedynie na pew­nych jego partiach. Rysunek 37 przedstawia podniesione naroże Rys. 38i charakteryzuje rzeczywisty sposób podparcia oraz miejsca przecięcia sięlinij załomów z krawędzią podparcia

Rys. 39

przy sile działającej w środku płyty; rys. 38 jest charakterystyczny dla innego umiejscowienia siły.Aby uzyskać więc możność po­równania wyników doświadczeń z rezultatami rozważań teoretycz­nych, należy rozpatrzyć stan zni­szczenia płyty w przypadku podno­szących się naroży.Dla izotropowej płyty kwadra­towej (rys. 39) udzielenie punktowi zaczepienia siły przemieszczenia równego jedności prowadzi z uwagi na warunki symetrii układu, do wy­rażenia na bilans pracy sił wewnętrz­nych i zewnętrznych w postaci
a — 2 x

aP SM | 2=8M a 2x x
a a+ 4 M x | 2

a x 207



Stosując kryterium maksymalnego oporu plastycznego otrzymamy z wa­runku dM/dx = 0 po wykonaniu działań pośrednich
(6.3.1)a następnie(6.3.2)

J 2),
M = F6 1_V 2 1 •Wynika zatem, że wartość siły jest w rozpatrywanym przykładzie taka sama, jak dla płyty o kształcie ośmiokąta umiarowego w przypadku przytrzymania naroży.6.4. W toku naszych doświadczeń poddana została obciążeniu aż do zniszczenia seria płyt o mocy zbrojenia <p — 0,252 i 0,505, dla których momenty jednostkowe zestawione są w tablicy 1.

Tablica 1

Typ 
zbrojenia

Moc 
zbrojenia

/0

Moment jednostkowy kG Moment 
obliczeniowy 

M = kMv
obciążenie 
zewnętrzne

ciężar 
własny My

0 2,2 co 5 cm 0.252 38.2 3,5 41,7 40.1

G 2.2 co 2,5 cm 0.505 76.4 3.5 79.9 76,8

Na podstawie równania (6.3.2) po uwzględnieniu pracy ciężaru własne­go płyty na odpowiednich przesunięciach możemy napisać
P- i + 16 Mnastępnie zaś

P + ga2 • 0,276 = 6,62 M .Podstawiając teraz a = 0,7 m, g = 57 kG/m2 oraz G = ga2 otrzymuje my wartość teoretyczną6.4.1) P = 6,62M 0,276 G.Wyniki doświadczeń natomiast zestawione są w tablicy 2.208



Rys. 40 Rys. 41

Rys. 42

Rys. 43 Rys. 44
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Jest rzeczą interesującą, w jakiej mierze linie załomów rzeczywiste odpowiadają schematowi teoretycznemu. Rysunki 40, 41 i 42 obrazują rzeczywisty układ siatek zniszczenia na dolnej powierzchni płyty dla przy­padku mocy zbrojenia 7, = O,252°/o, zaś rysunki 43 i 44 dla = 0,505%.
Tablica 2

h
cm

Zbrojenie
M 

kGm in

Obciążenie łamiące P kG
Różnica

О' /0fО'/О
d

mm
oczka 
siatki 
cm

Qr
kG 'm2

obliczo­
ne

z do­
świad­
czenia

średnia 
z do­

świadcz.

3.0 0.252 2,2 55 2210 40,1 264

225
235
235
260

239 — 9,5

3.0 0.505 2.2 2,5 2.5 2210 79,9 501
■■

455
415 435 — 13.2

Fotografie te wykazują poprawność teoretycznego modelu zniszczenia potwierdzając tym samym teorię nośności granicznej od strony jako­ściowej.Należy powiedzieć tu jeszcze kilka słów na temat zgodności wyników doświadczalnych z teoretycznymi, o ile chodzi o stronę ilościową. Jak wi­dać z tablicy 2, rzeczywista siła niszcząca jest niższa, aniżeli wynika to z obliczeń. Jako zasadniczą przyczynę takiego stanu należy podać oma­wiane już poprzednio zniszczenie wskutek przebicia. Skutki przebicia są widoczne na załączonych fotografiach i to szczególnie wyraźnie dla większego procentu zbrojenia, gdzie różnice między obliczoną a wyzna­czoną siłą niszczącą są największe.
7. Płyta kwadratowa obciążoną siłami skupionymi rozmieszczonymi 

koncentrycznie wokół środka

7.t. Płyty o grubości 8112 cm, co do pozostałych wymiarów i rozłoże­nia obciążeń scharakteryzowane na rys. 45, zbrojone były stalą o Qr = 4080 kG/cm2 i podparte swobodnie na obwodzie; zbrojenie ukła­dane było w obu kierunkach w jednakowych odległościach od siebie, rów­nych 10 cm.Momenty jednostkowe dla tego rodzaju stali i rozstawu zbrojenia co 10 cm, uwzględniające odległości zbrojenia od górnej krawędzi (zbroje­nia poprzeczne dołem lub górą), są zestawione w tablicy 3.210



Tablica 3

Grubość 
pasma 

cm

d
mm

Rozstaw 
zbrojenia 

cm
7 
%

Qr 
kG/cm2

Moment łamiący Mv

doświadcz, 
tm m

średnio 
tm/m

Zbrojenie 
w dolnej 
warstwie 

(+,)

12,1
12,2
12,1
12.1

7,3
7,2
7,2
7,2

10 0,37 4080
2,06
2,02
2,03
1.90

2.00

Zbrojenie 
w górnej 
warstwie 
(hv — d}

12,2
12,1
12,1
12,2

7,3
7,2
7,3
7,2

10 0.37 4080
1,83
1,83
1.86
1,90

1,85

Zbrojenie 
w dolnej 
warstwie

8,1
8,0
8.1
8,1

7.2
7,3
7,2
7,2

10 0,58 4080
1,19
1,18
1,18
1.22

1,19

Zbrojenie 
w górnej 
warstwie 
(hv — d)

8.0
8,2
8,1
8,1

7,2
7,3
7,2
7,3

10 0,58 4080
1.01
1,12
1,09
1,09

1.08

Współczynnik redukcji momentu jednostkowego, z uwagi na warst­wowe ułożenie zbrojenia, obliczony jenia w dolnej warstwie, wynosi2,00 + 1,85 2-2,00 = 0,964.7.2. Za punkt wyjścia do obli­czenia siły niszczącej należy tu przyjąć wzór (6.1.3) odpowiednio dostosowany do układu sił; otrzy­mujemy w ten sposób (7.2.1)gdzie r jest promieniem koła, wzdłuż obwodu którego działają obciążenia, zaś R promieniem koła, na którego obwodzie wystąpi pęk­nięcie na górnej powierzchni płyty.

w stosunku do momentu dla zbro-

Koła te zaznaczone są na rys. 45 liniami przerywanymi w przeciwień­stwie do oznaczonych pełnymi liniami załomów promieniowych na dolnej 211



powierzchni, gdyż z uwagi na brak zbrojenia górą nie wnoszą one żad­nych wartości do bilansu pracy.Obliczona wartość siły łamiącej na podstawie wzoru (7.2.1) po uwzględ­nieniu udziału ciężaru własnego jestP = ~ 1 g- 1052j
Jo,b ' b /

— Walbo też wstawiając G — g-2102
Tablica 4

(7.2.2) P = 9,46 M — 0,39 G.
Grubość 

płyty 
cm

Zbrojenie
M 

tm/m

Obciążenie łamiące P t
Różnica 

%7 
%

d 
mm

oczka 
siatki 

cm
Qr 

kG/cm2
obli­
czone

z do­
świad­
czenia

średnie 
z do­

świadcz.

8,1
8,1
8,1

0,58 7,2 10 10 4080 1,14 11.1
12,5
12,2
12,0

12,0 8.1

12,1
12,3
12,2
12,1

0.37
7.3
7,2
7,2
7.1

10/10 4080 1,92 18,7
19,6 
19,0
19,5 
18,0

19.0 1.6

Obliczenie to nie jest jednak zupełnie ścisłe, płaty bowiem nie są so­bie całkiem równe; poprawniejsze obliczenie powinno uwzględnić fakt, iż wskutek działania sił skupionych linie załomów przejdą przez ich punk­ty zaczepienia. Poszczególne siły skupione przy nadaniu środkowi płyty przemieszczenia jednostkowego doznają przesunięć (R — a)/R = 0,7, zaś momenty odpowiednio na płatach A i B wykonają pracę na obrotach 
<Pa~ 1/100 i = 1/106. Tak więc po obliczeniu potrzebnych wartości z zależności trygonometrycznych bilans prac można przedstawić w postaci0,7P + 4.yp-105=+4- * p • 111 • 52,5 | 2 —1 i— 4 -y p-52,52- 3 1 4 105 , , 52,5 | 2= 4M-------l 4 - -t—-—2 100 106 stąd, podstawiając G jak poprzednio, otrzymujemy(7.2.3) P = 10 M — 0,35 G.Obliczona na podstawie tego wzoru siła niszcząca jest porównana z wynikami doświadczeń podanymi w tablicy 4.212



Rzeczywisty układ linij zniszczenia przedstawia się dla tych doświad­czeń, jak wskazują to rysunki 46 i 47; odpowiada on układowi teoretycz­nemu. Rysunek 46 przedstawia obraz siatki zniszczenia na górnej, następ­ny zaś na dolnej powierzchni płyty. Na tych fotografiach zwracają uwa­gę drobne rysy występujące wyraźniej, aniżeli jest to widoczne na zdję­ciach dotyczących poprzednich doświadczeń. Odnoszą się one do okresu naprężeń sprężystych w stali.

Rys. 47Te drobne pęknięcia zjawiają się jeszcze w okresie występowania w zbrojeniu naprężeń znacznie niższych od granicy plastyczności. Wzrost ustawionych w tak specjalny sposób obciążeń powoduje, że punkty, w których naprężenia najwcześniej osiągają granicę plastyczności, ukła­dają się według prostych, przechodzących przez punkty zaczepienia sił (rys. 45).7.3. Jako przykład zastosowania wzoru (7.2.1) posłuży doświadczenie, wykonane na płytach takiej samej grubości 8 cm i 12 cm, przy czym ob­ciążane one były siłą skupioną, działającą na małej (12 cm X 12 cm) po­wierzchni bezpośrednio wokoło środka płyty. Płyty te charakteryzowały się tym, iż zbrojenie nie było układane w równych od siebie odległościach, lecz w kierunku obu boków odległości te były zmienne (w jednym kierun­ku rozstaw Zbrojenia zmieniał się od 10 cm w środku do 14,3 cm przy brze­gu, w drugim zaś odpowiednio od 9,3 cm do 14 cm).Problem komplikuje tu zmienność momentu jednostkowego 13). Moż­na jednak przyjąć do dalszych obliczeń moment jednostkowy dla śred-
la) W sprawie rozwiązania ścisłego por. prace D. Niepostyna, [13], i A. Saw- 

czuka, [30], [31].



niego rozstawu w każdym kierunku. Upoważnia nas do tego — przybli­żonego tutaj — założenia zarówno rząd wielkości zmiany rozstawu, jak też i fakt, że dla płyty izotropowej — a rozpatrywaną płytę można uwa­żać za taką z dobrym przybliżeniem — siatka zniszczenia pozostanie ta­ka sama jak dla płyty o stałym momencie jednostkowym. Pamiętamy przy tym, że rozpatrujemy płytę kwadratową.Moment jednostkowy obliczony został jako średni z momentów jed­nostkowych, przyporządkowanych odpowiednim średnim rozstawom zbro­jenia, które wynoszą 11,7 cm i 11,0 cm dla omówionych wyżej kierun­ków [por. wzór (4.4.2)]. Tak więc moment jednostkowy wynosił dla płyt o grubości 12 cm
M = kM„ = J 10 + 10) = 1,69 tm m,

Z '11,/ 1.1. u *zaś dla płyt o grubości 8 cm
M = kMv = 10 + ^8 lo) = 1,00 tm m.

Z 'i 1, i 11, v 'Wartości momentów dla rozstawów wynoszących 10 cm wzięte są z ta­blicy 3.
Tablica 5

Grubość 
Płyty 
cm

Zbrojenie
M 

tm m

Obciążenie łamiące Pt
Różnica 

%

__
__

_ d
mm

oczka 
siatki 

cm
Qr 

kG/cm2
obliczone z doświad­

czenia

12,1 0,32 7,0 zmienne, 4080 1,69 10,8 11,0 . 1,8
8,1 0,50 7,1 11,7/11,0 4080 1.00 6.35 6,00 — 5,8 *)

*) Należy przypuszczać, żc zniszczenie zostało spowodowane przez przebicie (por. np. rys. 31).Ustawiając równanie bilansu prac zgodnie z równaniem (7.2.1) dla wymiarów płyty jak w przypadku poprzednim i dla r — 2/3-6 = 4 cm oraz R = 100 cm otrzymamy
(7.2.4) P=—— (m—* g) = 6,55 M — 0,25G. r \ 24 /

RWyniki doświadczalne dają dobrą zgodność z wynikami teoretycznymi; przedstawione są one w tablicy 5.214



8. Płyta kwadratowa podparta na trzech bokach, 
obciążona siłą skupioną w środku8.1. Obserwowana na modelach — w przypadku nie przytrzymywa­nych naroży — siatka zniszczenia sugeruje dla rozpatrywanego typu płyt przyjęcie układu linij załomów symetrycznego względem osi, przebiega­jącej prostopadle do swobodnego boku płyty, jak wskazuje to rys. 48.Pracę sił wewnętrznych można w przypadku płyty izotropowej przed­stawić w postaci 

n( 8.1.1) ó V = Ml, dtp,-,
i=lgdzie n jest ilością płatów, niezbędnych dla przekształcenia układu w me­chanizm, a I, długością- rzutu linii załomu na oś obrotu płata.W rozpatrywanym przykładzie

2 2 i2/—dV=M — (a — x)2+M — (a— 2z)+M ' x | 2-2, ÓL = P-1. a a a — zWarunek d M/d z = 0 dla takich układów, dla których praca sił ze­wnętrznych nie zależy od wielkości charakteryzujących siatkę zniszcze-

Jest to wartość identyczna jak w przypadku płyty podpartej swobodnie na czterech bokach.Obliczając teraz wartość siły niszczącej z zależności óL = óV otrzy­mujemy „ „ ,,;3a — 4z , 2zP = 2 Ml------------ 1-------i a a —; 215



co po wstawieniu wartości x, spełniającej warunek największego oporu plastycznego, wyrazi się w formie(8.2.1) P = 2M(4|2 —3).Przystępując do porównania wyników doświadczeń z rezultatami wy­żej przytoczonego rozwiązania teoretycznego należy wprowadzić w spo­sób podobny, jak czyniliśmy to w poprzednich przypadkach, pracę wy­konaną przez ciężar własny płyty. Wówczas wyrażenie na siłę niszczącą otrzymuje się w postaci(8.2.2) P = 2M(4p 2 — 3) — AG,gdzie A jest współczynnikiem, określającym udział sił ciężkości w ogól­nym bilansie pracy.Jeśli a = 70 cm i x = 21 cm, to742A = 2-352- * +14-35- l -2 + 28-35- * +j 2 • 21 • 35 • — • 2 = 1990. z b b 6Ostatecznie będzie zatem(8.2.3) P = 5,31 M — 0,35 G.8.3. Badane płyty były zbrojone siatką o oczkach 5 cm i o procencie- zbrojenia ę? = 0,252. Dla rozważanego typu podparcia wartość współ­czynnika k, przez jaki należy pomnożyć moment jednostkowy podany w tablicy 1, zgodnie z zasadą sformułowaną w p. 4, dla płyty cztero­stronnie podpartej wynosi
k =

2 a - a /1 — rf j- ’ +=1- -Ł=1_. 2,2 _2a + a 3 1t„ 3-28,9 ’
Tablica 6

Grubość 
płyty 

cm

Zbrojenie
M 

kGm m

Obciążenie łamiące P kG
Różnica 

%V ■
% ■

d
mm

oczka 
siatki 
cm

Qr 
kG/cm2

obli­
czone

z do­
świad­
czenia

średnie 
z do­

świadcz.

3
3
3

0,252 2,2 5 5 2210 40,6 216
260
265
240

255 18

Moment jednostkowy, zredukowany, wynosi wtedy M = kMv = = 0,975-41.7 = 40.6kGm/m.Tablica 6 przedstawia porównanie wartości obliczonych ze wzoru (8.2.3) z uzyskanymi na drodze doświadczalnej.216



Rzeczywisty przebieg linij załomów na podstawie tych doświadczeń przedstawiony jest na rysunkach 49 i 50 dolnej powierzchni płyty.

Rys. 49 Rys. 50

Należy jeszcze wyjaśnić stosun­kowo dużą procentową różnicę mię­dzy wynikami obliczenia teoretycz­nego a wynikami doświadczeń, jakie podaje tablica 6. Czynnikiem powo­dującym taki stan rzeczy jest działa­nie siły nie ściśle punktowo, lecz na pewnej powierzchni (rys. 51), co wpływa na zmianę wielkości obciąże­nia łamiącego, jak to widać chociaż­by z zależności (7.2.1) lub (7.2.4). Przy Rys. 51obliczeniu uwzględniającym powierzchniowe przenoszenie obciążenia róż­nica zmalałaby. Będzie o tym mowa niżej.
9. Płyta kwadratowa obciążona równomiernie9.1. Warto przytoczyć — przed przystąpieniem do analizy stopnia zgod­ności strony ilościowej teorii nośności granicznej z doświadczeniem dla interesującego nas tu przypadku — ciekawą fotografię zaczerpniętą z pra­cy C. Bacha, [1]. Rysunek 52 ilustruje stopień zgodności założeń od strony jakościowej i stanowi cenny materiał, ponieważ badania C. B a- c h a prowadzono z punktu widzenia innego stanowiska teoretycznego.217



9.2. Omówione poprzednio trudności w laboratoryjnym zrealizowaniu obciążeń rozłożonych w sposób ciągły spowodowały, że starano się je za­stąpić szeregiem sił skupionych. W omawianym obecnie doświadczeniu na płytę o rozpiętości w świetle podpór 2,0 m X 2,0 m działały siły skupio­ne w 16 punktach (rys. 53). Po nadaniu środkowi płyty przemieszczenia równego jedności poszczególne siły zewnętrzne wykonają pracę wskutek odpowiednich przesunięć ich punktów zaczepienia. Nie uwzględniając wpływu naroży otrzymujemy równanie pracy w postaci 
12S16 4 I G -304 4-100 4M 210100 ’stąd(9.2.1) P = 22,4 M — 0,8 G, gdzie G oznacza — jak poprzed­nio — ciężar własny płyty.Na podstawie obliczenia przyjmującego obciążenie za równomiernie rozłożone można by napisaćP- + 0,3 G — 4 M • 2,1; Ostąd(9-2.2) P = 25,2 M—0,9 G.Widać z porównania wzorów (9.2.1) i (9.2.2), że zastąpienieobciążenia ciągłego siłami Skupionymi daje różnicę wielkości siły niszczą­cej, wynoszącą około 12%.Wynika stąd oczywisty wniosek, że porównywanie wyników badań należy oprzeć na wzorze (9.2.1).

9.5. W celu uzyskania wyników jeszcze bardziej poprawnych należy uwzględnić w równaniu, z którego wyznaczamy siłę łamiącą w oparciu o wartość momentu jednostkowego, zmniejszenie pracy sił wewnętrznych wskutek utworzenia się specyficznego układu linij załomów w narożach. Temu zagadnieniu należy tu kilka słów poświęcić.Rozpatrzmy naroże płyty izotropowej (rys. 54); osie podparcia niech przecinają się pod kątem prostym, zaś siła skupiona niech będzie usytuo­wana na dwusiecznej tego kąta w pewnej odległości r od osi podparcia.218



Gdyby zjawisko podnoszenia się naroży nie występowało po prze sunięciu punktu działania siły o wielkość Ów, powstałoby na dolnej kra wędzi płyty pęknięcie, zaznaczo­ne linią przerywaną, i praca sił wewnętrznych odnosząca się do naroża wyniosłaby<9.3.1) ÓV^MÓ-r-2 = 2Mów. 
rWskutek jednak możliwości podnoszenia się naroża powsta­ną pęknięcia, zaznaczone linią pełną, i praca sił wewnętrznych będzie mniejsza (widać to cho­ciażby z rozpatrzonego w p. 6 problemu płyty kwadratowej, obciążonej siłą skupioną w środ­ku). Wartość x na podstawie (6.3.1) wynosi

x = r (2 — ]/ 2);praca sił wewnętrznych wyrazi się zatem w tym przypadku zależnościądV.,= Mr| 2(2—| 2) ÓW + 2M [r — r(2— J 2)| — = 
r T

= 2M ów— (2 — | 2^ Mów.Zmniejszenie się więc pracy sił wewnętrznych wskutek powstaniaoznaczonych linią ciągłą, wyniesieukładu linij zniszczenia,

Rys. 54

(9.3.2) dóV = ÓV, — dV2 == 2 M ów— 2M ów + + (2—| 2)-Mów = M(2— | 2)- ów.W rozpatrywanym przypadku należy to zmniejszenie się pracy momentów łamiących uwzględnić przez odpowiednią korektę wy­rażenia (9.2.1). Tak więc, ponieważ Ów jest w tym przypadku równe (przy przesu­nięciu środka o jednostkę), zmniejszenie siępracy sił wewnętrznych wskutek możliwości podnoszenia się naroża wy­raża się przez
Aóv = ~(2— | 2)2 M. 4 219



Ogólna liczba naroży w rozpatrywanym przypadku wynosi 4, tak więc wpływ ich wyrazi się jako(2 — p 2)- M = 0,346 M 0,35 M.Zależność (9.2.1) po wprowadzeniu powyższego wyrażenia do bilansu prac przyjmuje postać 3
— P + 0,3 G = (8,4 — 0,35) M, 
Oskąd(9.3.3) P = 21,5M — 0,8 G.

załomów, niż to ma miejsce na rys. 53, i odpowiada raczej schematowiDoświadczenia (rys. 55) wskazują jednak na nieco inny układ linij

Rys. 55 Rys. 56

Udzielając środkowemu płatowi, oznaczonemu na rys. 56 literą A,. przesunięcia pionowego ów=l otrzymujemy równanie pracy sił we­wnętrznych i zewnętrznych w postaci
p p i 80 27+ + 4p (210 + 50) =

16 Ib 3 z 7b

210 1= 4M 4M (2_|/2)+
Id O220



co prowadzi do wartości siły łamiącej<9.3.4) P = 21,5 M — 0,74 G.
Porównanie wzorów (9.3.3) i (9.3.4) wskazuje, że dla rozpatrywanej siatki zniszczenia uzyskujemy nieco większą siłę łamiącą. Praktycznie jednak różnica w wielkościach obciążenia łamiącego, obliczanego na pod­stawie wzorów (9.3.3) i (9.3.4), leży w granicach błędu rachunkowego i dotyczy tylko ciężaru własnego. Dla obciążenia realizowanego tu oby­dwa schematy zniszczenia praktycznie są równoważne.
9.4. W innych badaniach, prowadzonych na płytach o grubości 12 cm, o wymiarach 3,12 m X 3,12 m i rozpiętości w świetle podpór 3,0 m X 3,0 m, obciążenie realizowano również za pomocą sił skupionych, lecz wprowa­dzono większą ich ilość, mianowicie zaczepiono te siły w 64 punktach. W takim przypadku obciążenie można już z dostateczną dokładnością uważać za rozłożone równomiernie. Uwzględniając w równaniu podsta­wowym dla tej płyty wystawanie brzegów poza linie podparcia otrzy­mamy p+g = m3A2,24 3,0 ’skąd wynika(9.4.1) P = 25M— l,0G.Również i tutaj wysuwa się sprawa naroży i sprawa zmniejszenia się nośności wskutek ich powstawania. Nie wdając się obecnie na tym miejscu w szczegóły, dotyczące tego specjalnego zagadnienia, można stwierdzić, że dla przypadku równomiernie obciążonej i swobodnie pod­partej płyty, przy założeniu, że naroże nie jest przytrzymane (tzn. M' = 0, co oznacza, że nie ma zbrojenia górnego w narożu), podstawowa zależność ma postać(9.4.2) ,, P b2 M= .22W zastosowaniu do naszego przykładu otrzymujemy(9.4.3) P = 22,9 M— 1,0 G. 221



9.5. Wyniki opracowane na podstawie podanych zależności dla płyt o grubości 8 cm i 12 cm zestawione są w tablicach 7 i 8. Ponieważ zasady wyznaczania momentów jednostkowych dla różnych przypadków ułoże­nia zbrojenia w warstwie dolnej i w warstwie górnej oraz stosowane me­tody zostały dość szczegółowo omówione już poprzednio ), podamy tu14

14) Zakładamy przy tym, że zmiany w rozkładzie zbrojenia są nieznaczne, gdyż 
w przypadku przeciwnym musielibyśmy w celu uniknięcia większego błędu 
uwzględnić niejednorodność, ewentualnie również ortotropię (por. p. 4.4 oraz 7.3).

”) Cytujemy na podstawie [10].

Tablica 7.

Se­
ria

dnihnćń 1 Zbrojenie
M 

tm/m

Obciążenie łamiące Pt
płyty
cm ।

Różnica 
%d

mm
oczka 

f i siatki 
% : cm

Qr 
kG/cm-

obli­
czone

z do- I średnie 
świad- z doświad­
czenia l czenia

A
12,2 7.1
12,2 7,2
12,2 7.2

1

0,37 10 10 4080 1,92
40,0

40,3 39,0 40.3
42.0

0

B
12,1
12,2
12.1

7,1
7,2
7,1

0,37 10 9.3 4080 2,00
42,5

42,0 42.0 42,2
42,0

0

C

C'

12.1
12,1

12
12

7,0
7,0 zmienne, 

0,32 średnio
11.7 11,0

4080 1,69 35,3 37,0 37,5
i 38,0

5

7,0
7,0

3400 1,26 26,1 33,4 32,5
31.6

24

1 1

D
12,2 7.0
12,1 7,0
12,2 7,0

10 9.3 
0,37 | po prze­

kątnej
4446 2,06

1
| 42.0 I

43.3 41i0 , 41,3
41,0

— 6

E
12.1
12,1
12.1

10,0
10,0
10.0

0,8 10 8,9 3486 2,94 62,1
56,0
56,0 56,7
58,0

— 8,7

bezpośrednio zestawienie wyników. Wartości podane w tablicach 7 i 8 oparte są na wynikach doświadczeń drezdeńskich 1S).Tablica 7 dotyczy płyt o grubości 12 cm, zaś tablica 8 płyt o grubości 8 cm.
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Występujące w rzeczywistości obrazy zniszczenia ilustrują rysunki 57 i 58 odpowiednio dla dolnej i górnej powierzchni płyty.Naroża, jak powiedzieliśmy, nie były w badaniach tych przytrzymy­wane. Odrębne badania, dotyczące specjalnie problemu naroży, zostaną omówione w dalszej części.
Tablica 8

Se­
ria

Grubość 
płyty 
cm

Zbrojenie
M

tm m

Obciążenie łamiące P t
Różnica

ą
/0

d
mm %

oczka 
siatki

cm
Qr

kG cm
obli­

czone

z do­
świad­
czenia

średnia
z doświad­

czenia

8,1 7,2 26.25
A 8,1 7.2 0,58 10 10 4080 1.14 23.8 26.3 26,2 10,0

8,2 7,1 26.0

8.1 7,2 26.0
B 8,1 7.2 0.58 10 8.8 4080 1,19 24,9 26,0 26,2 5,2

8,1 7,2 26.5

C 8,1
8,1

7,1
7.1

0,50
zmienne, 
średnio

11.7/11.0
4080 1,00 20.8 24.0

24.0
24,0 15,9

8.1 7,0 10 8.8 27.0
D 8,2 7,0 0,58 po prze- 4446 1.23 25.7 27,0 26,7 7,7

8,1 7.0 kątnej 26.0

8.1 10.0 34.0
E 8.1 10.0 1.20 10 8,3 3490 1,75 36.9 34,0 34,0 — 7,8

8,1 10,0 34.0

8.1 10,0 10 8,3 34.0
F 8.1 10,0 1.20 po prze- 3490 1.75 36.9 34,0 34,0 — 7,8

8,1 10,0 kątnej 34.0

8,1 10,0 44.0
G 8,1 10.1 2,0 6/5 5290 2.05 43,4 45,0 43.0 0.9

8,1 10.2 40.0

H 8
8

5
5

0,29 10 10 5600 0.74 15,2 18,8
18.3

18.5 21,5Na ogół wyniki zestawione w tablicach są zgodne z wynikami teore­tycznymi. Dwie pozycje wykazują mniejsze rzeczywiste obciążenie ła­miące aniżeli obciążenie obliczone. Tłumaczy się to tym, że jednostkowy moment łamiący nie był tu wyznaczany doświadczalnie dla pasma o gru­bości 8 cm, lecz obliczany na podstawie wyników dla pasma 12 cm, zbro­jonego w identyczny (co do ilości, rozstawu i średnicy prętów) sposób, na podstawie stosunku
1 192,94-^- = 1,75 tm m.



Wartość 2,94 t przedstawia moment jednostkowy dla pasma o grubo­ści 12 cm przy Qr = 3490, zaś wyraz 1,19/2,00 określa stosunek momentów łamiących dla płyt o grubościach 8 cm i 12 cm według wyników, otrzy­mywanych przy zbrojeniu o innej wartości. Wartości te dotyczą badań oznaczonych w tablicach literą B (dla których Qr = 4080 kG/cm2).

Należy podkreślić, że seria G wykonana była ze słabego betonu, zbro­jona przy tym stalą twardą, lecz i tu zgodność z obliczonymi wartościami sił niszczących jest dobra, mimo iż założenia teorii nie są w pełni słuszne dla tego rodzaju przypadku.Fakt ten wskazuje (o czym zresztą wspominaliśmy już poprzednio, por. rys. 18), że odkształcenia plastyczne betonu mają podobne znaczenie w teo­rii nośności granicznej, jak plastyczne odkształcenia stali. Zbrojenie stalą twardą w grupie H spowodowało, że zniszczenie nastąpiło przez zerwanie prętów w chwili złamania, przy czym siła powodująca ten stan była znacz­nie wyższa od obliczonej.Jeszcze nieco uwagi należy poświęcić przypadkom, w których zbroje­nie ułożone było równolegle do przekątnych. Takie ułożenie zbrojenia nie może oczywiście mieć wpływu —- z punktu widzenia teorii stanów granicz­nych — na wielkość obciążenia łamiącego. Stwierdzenie to znajduje — jak widać z zestawienia odpowiednich pozycji z tablic 7 i 8 — należyte uzasadnienie doświadczalne. Ułożenie zbrojenia po przekątnej, jak wy­kazały badania radzieckie 16), wpływa jedynie na okres, w którym — li­cząc od początku obciążenia — pojawiają się pierwsze pęknięcia. Przy takim układzie zbrojenia pęknięcia pojawiają się wcześniej, niż to ma 
,6) Por. np. K. W. S a c h n o w s k i, [28].224



miejsce w przypadku ułożenia zbrojenia równoległe do boków płyty. Ba­dania radzieckie, przedstawione w cytowanej pracy, stwierdzają również, że nośność płyty w obu przypadkach nie ulega zmianie.Skoro jest mowa o badaniach radzieckich, należy jeszcze podać, iż przeprowadzane doświadczenia w przypadkach zagęszczonego zbrojenia w obszarze środkowym płyty dawały nieco większą siłę niszczącą, niż w przypadku równomiernego ich rozłożenia. Jest to w pewnej mierze uzasadnione faktem, iż praktycznie — jak widać to chociażby z podanych uprzednio fotografii — linie załomów nie zawsze osiągają krawędzie płyty, a więc pewne nieznaczne partie zbrojenia przy krawędziach podparcia nie zostają naprężone do granicy plastyczności. Pewną ilustracją takiego stwierdzenia mogą być również odpowiednie wyniki przedstawione w ta­blicach 7 i 8. Przytoczonej tu analizy nie ma w pracy [10], na podstawie której sporządzone zostały tablice 7 i 8.
10. Płyta izotropowa prostokątną obciążona równomiernieio .t. Przedstawione niżej doświadczenia wykonane były na płytach o grubości 12 cm i o stosunku boków (licząc w świetle podpór) b/a = fi, wynoszącym fi — -ls i fi = */2; uwzględniając zaś wystające brzegi płyty fi, = 2,%io = 0,676 i fi, = 21%io = 0,51.W przypadku płyty izotropowej x=l,wielkość momentu łamiącego moglibyśmy wyznaczyć dla obciążeń rozłożonych równomiernie na pod­stawie [16] ze Wzoru(10.1.1) .. pb2M=24gdzie y= | 3 + fi~ — fi', dla fi=2lS daje to y=l,19. Operując, jak poprzed­nio, obciążeniem łamiącym P = pb2 fi i uwzględniając przy ciężarze własnym wystające poza linię podpór brzegi płyty oraz pomijając wpływ naroży,otrzymamy(10.1.2) P/l_ Gfi-2 3-224 7 + 24 7 3,1-2,1 ’co po wstawieniu wartości liczbowych daje

2 P 2 G

Stąd wartość obciążenia łamiącego wyniesie (10.1.3) P = 25,4 M — 0,93 G,gdzie
G = g • 310 • 210 . 225



Układ teoretycznej siatki zniszczenia dla rozpatrywanego przypadku w założeniu obciążenia ciągłego przedstawia rys. 59, zaś rys. 60 układ pęknięć według jednego z doświadczeń C. Bacha, [1],17).

Rys. 60Odległość szczytu daszka załomów charakterystycznego dla /?< 1 jestb
2

^1,19 1,19 m,a więc linia załomu nie jest dwusieczną kąta między odpowiednimi bo­kami płyty.
”) Por. p. 9.1.226



Doświadczenie przeprowadzono obciążając płytę siłami skupionymi, działającymi punktowo; wskazuje na to rys. 59. Przy takim' rozłożeniu obciążeń linie załomów przechodzą przez punkty działania sił; otrzyma­ny doświadczalnie układ zniszczenia będzie nieco inny. Przedstawia go rys. 61. Wzgląd, by porównania wyników doświadczalnych z teoretycz­nymi dokonywać dla rzeczywiście realizowanych układów siatek zni­szczenia, powoduje, iż porównania takiego nie możemy dokonać na pod­stawie wzoru (10.1.3).

Rzeczywisty układ linij załomów przy danym typie obciążenia w 24 punktach daje równanie bilansu prac z uwzględnieniem naroży w postaci
p 3 p i i 30 47 58 24' 4 4 ^T9-'05'2'0 m

co prowadzi do wartości(10.1.4) P = 24,1 M — 0,84 G.Z analizy rys. 62 oraz 63, na których przedstawiona jest siatka zni­szczenia, nasuwać się może wniosek, że bardziej prawdopodobnym ukła­dem jest układ przedstawiony na rys. 64. 227



Stosując zasadę prac przygotowanych otrzymamy dla takiego schema­tu zniszczenia
8 li 4 + p-150-80-2-^ + p-50-80-2-^ + p • 150 • 50 • 1 +

i ó lu (U+ 9-80-80- = + 2M^ —4M| (2 — | 2)Sskąd(10.1.5) P = 24,1 M— 0,82 G.

Jak widać, siatka załomów według rys. 64 daje nieco wyższą wartość obciążenia łamiącego. Siatki zniszczenia, które widać na fotografiach, 228



są kombinacją przedstawionych dwóch schematów, a to dlatego, że wy­rażenia, dotyczące pracy sił zewnętrznych, są dla obu schematów jedna­kowe, wyrażenia zaś określające udział ciężaru własnego nieznacznie się różnią. Wyniki zestawione w tablicy 9 są słuszne dla obydwu wzorów z dokładnością odpowiadającą obliczeniom dokonywanym na suwaku lo- -garytmicznym.

W przeprowadzonych badaniach użyta była stal Qr = 4280 kG/cm2, przy czym średnica prętów wynosiła 7,0 mm. Przy danym rozstawie zbrojenia, jednakowym w obydwu kierunkach i wynoszącym 10 cm, wiel­kość momentu jednostkowego wyznaczono na podstawie danych z tablicy 3 z zależności M = kM,. = 0,964 • 2,03 • — 1,90 tm m.
Tablica 9

Grubość 
płyty 
cm

Zbrojenie Obciążenie łamiące P t

d
mm

y
/0

oczka „
siatki
cm kG cm

Mil [ Kozmca
. 1 Obli- z doświad- średnia ,tm m i cpni» z doswiad- %

| CZOne | CZen,a 1 cienia

12,2 7.0
12,1 7,0
12.1 7,0

0,37 10 10 4289
45,0

1,90 , 44,2 44,0 44,3 0.2
44.0Zestawienie wyników dla płyty, dla której /5 = 2/s, podane jest w ta­blicy 9 (/3 dla wymiarów płyty wynosi 0,676; 2/s dotyczyło rozpiętości w świetle podpór). 229



.2. Zajmijmy się teraz płytą prostokątną, dla której stosunek bo­ków fi — x/2- Wielkość y, określająca odległość punktu od jednego z boków punktu, w którym spotykają się trzy dodatnie linie załomów, wynosi w takim przypadku
y = ] 3 + 0,52 — 0,5 = 1,30 m ;będzie zatem x = 1,30 m. Z rysunku 65, na którym przedstawiona jest rozpatrywana płyta, widać, że wynikający z teorii układ linij załomów z uwagi na sposób obciążenia musi być dostosowany do obciążenia zacze­pionego w 32 punktach. Istnieje w tym przypadku możliwość występo­wania dwóch układów linij załomów, przedstawionych na prawej i lewej części płyty. Ogólnym kryterium wskazującym, która z proponowanych siatek odpowiadać będzie sile niszczącej, jest kryterium maksymalnego oporu plastycznego. Należy zatem sprawdzić, która z siatek czyni zadość temu kryterium.

Siatka przedstawiona na rys. 65 z lewej strony pozwala napisać rów­nanie pracy sił wewnętrznych i zewnętrznych w postaci
p 3 p 1 1 30 47 5

= 2H^+wHMZ(2-|2>’
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Do równania tego doszliśmy udzielając punktom, leżącym na «kalenicy» daszku załomów, przesunięcia jednostkowego. Wstawiając doń G = 
= g- 410 -210 otrzymamy wartość siły niszczącej(10.2.1) P = 27,6 M —0,88 G.Dla siatki przedstawionej na prawej części rysunku równanie prac przygotowanych, otrzymane przez udzielenie analogicznego przesunięcia ów=l bez uwzględnienia zmniejszającego wpływu naroży (linia przery­wana na prawej części rys. 65), przedstawi się, jak następuje:12 0,25 + 8 ™ 0,75 + 8 £ 0,15 + 4 £ 0,45 +

O Z o Z o Z o Z

1 0 75 1 0 75+ 2p • — • 210 • 172 • 52,3 ’ + 4 • —p • 105 • 172 • 30 +
Z 1Z3 Z 130,75 i 0,75 0,75 \+ 2 p • 66 • 105 • 47,5 • = 2 M 410 + 206 - ;

stąd obliczamy(10.2.2) P = 28,5 M — 0.89 G.10.5. Zastanowimy się obec­nie nad wpływem naroża (rys. 66). Rozpatrzyć zagad­nienie w tym przypadku jest stosunkowo łatwo, gdyż cha­rakter obciążenia wyznacza kształt tworzącego się naroża.Traktując wielkości x i y jako znane (co odpowiada naszemu przypadkowi) i po­stępując analogicznie jak w przypadku, gdy siła przesu­wała się po przekątnej kwa­dratu, otrzymamy na pracę sił wewnętrznych, wykonaną przy utworzeniu się załomu według
c d<W{=M dw + M d c 

Rys. 66linii kreskowanej, wyrażenie
s i c , d i só w = M - + ów, ' d c 231



zaś na pracę wykonaną przy pojawieniu się rzeczywistych linij załomów,.ów, \ , „„ów,, \ , „„ ów , „„ ów— (c — x) + M (d—y) + M x  \~My — a c---------------------- rv----------- r,,

Rys. 67

Rys. 68Różnica dV,—ÓV2 przedstawia skutek podnoszącego się naroża. Wiel­kość jej wynosi(10.3.1) IÓV = dVj — ÓV, = — Mówix + y — X — y | 
\ r., r„ d cl232



Wstawiając
. , , , x d xru — c + d — y) = c + — x

y yoraz
otrzymujemy(10.3.2)

, cyrv = d H--- - — y x— (x2 + y2) , X y
xd + y c — xy d ' c Mów.Podstawiając wartości z rozpatrywanego przykładu, tzn. ów = 3/4, 

x = 50 cm, y = 15 cm, d — 80 cm i c = 130 cm. obliczamy
Uwzględnienie wpływu czterech naroży we wzorze (10.2.2) prowadzi do siły łamiącej o wartości (10.3.3) P = 26,8 M —0.89 G ;jest to najmniejsza dla danego przypadku wartość siły łamiącej ze wszyst­kich wielkości według wzorów (10.2.1), (10.2.2) oraz (10.3.3).
10.4. Zestawienie wyników doświadczeń i porównanie wielkości sił ła­miących podane jest w tablicy 10. Stal w tych płytach charakteryzowała się takimi samymi własnościami jak w przypadku płyt o stosunku boków fi = 2/s (tzn. takich jak podano w tablicy 9). Rysunki 67 i 68 przedstawiają rzeczywisty układ linij załomów.

Tablica 10.

fi

Grubość 
Płyty 
cm

Zbrojenie
M 

tm m

Obciążenie łamiące P t Róż­
nica 

0/ /0
d

mm 0/ 
0

oczka 
siatki 
cm

Qr 
kG cm2

obli­
czone

z do­
świad­
czenia

średnie
z doświad­

czenia

12,2 7.0 50,00,50 12,1 7.0 0,37 10 10 4280 1.90 48,8 50,0 50,7 4
(0.51) 12,1 7.0 52.0

11. Płyta dwuprzęsłowa obciążona równomiernie

11.1. Płyta dwuprzęsłowa, składająca się z dwóch pól kwadratowych o rozpiętości dla osi podpór 200 cm X 200 cm, obciążona była 32 si­łami skupionymi. Grubość płyty wynosiła 12 cm; zbrojenie wykonano do­łem równomiernie prętami d = 7 mm, górą nad podporą pośrednią 
d = 8,8 mm; rozstaw zbrojenia nośnego wynosił 10 cm X 10 cm. Górne zbrojenie charakteryzowało się granicą plastyczności Qr = 2940 kG/cm2, dla dolnego było Qr = 4320 kG/cm2. 233



Wartości momentów jednostkowych wyznaczono na podstawie tabli­cy 3 dokonując przeliczeń z uwagi na inne Qr oraz d. Momenty jednost­kowe wynosiły zatem
—s 7,027---2 = ł,92 tm/m,1^, = 2,16 tm/m,

M' _ 2,16
M “ 1,92gdzie M' oznacza jednostkowy moment ujemny (tzn. związany ze zbro­jeniem górnym), zaś M posiada znaczenie objaśnione poprzednio.

Układ linij załomów, uwarunkowany typem obciążenia, dla tego ukła­du przedstawia rys. 69. Zasada prac przygotowanych daje tu równanie‘ 3 ^^32 4^2^ ’ 5 +2S,1 + 2,¥9’80'205'^r ++ 2'4 9802 + g • 50 • 80 • + 2 • * p-80-125- * +
Z 73 73 Z o

+ g • 50 • 125 • 4 = 2 M (205 - 45) • ^ + M 210 — 2 M4 (2 -| 2)2 + Z i 3 / 3 u

+ (M + M') (205 — 35) • 1 + 2 (M + M') • + 2 M • 45 • 1 ;1o I 3234



stąd(11.1.1) gdzie P = 44,6 M + 7.15 M' — 0,83 G,

G = p-410-210 .Wpływ naroża, oznaczonego na rysunku 69 literą A, jest uwzględnio­ny bezpośrednio przy zestawianiu bilansu prac. Składowe kąty obrotu wynoszą 1 : 375 i 4 : 375 odpowiednio dla obrotów wokół środkowej pod­pory i dłuższych boków.

Rys. 70

Rys. 7111.2. Tablica 11 zawiera zestawienie wyników dla omawianego przy­padku. 235



Rysunki 70 i 71 przedstawiają otrzymaną siatkę zniszczenia. Warto zwrócić uwagę na fakt, że na podporze pośredniej następowało zniszcze­nie przez zmiażdżenie betonu jedynie w pewnej partii środkowej, nato­miast przy brzegach — z uwagi na tendencję unoszenia się naroży — nie miało to miejsca.
Tablica 11

Grubość 
płyty 
cm

Zbrojenie
M
M'

Obciążenia łamiące P t
Różnica 

%
d

mm
7
/o

oczka 
siatki 
cm

Qr 
kG cm-

obli­
czone

z doświad­
czeń

średnia 
z doświad­

czeń

12.1 7,0
8 8 10 10 100,0

12,1 7.0
8,8

0,37
0,61

4320
2940

1,92
2.16 98.4 95,0 98.3 0,18

12.2 7.0
8,8 10 10 100,0

12. Płyta prostokątna ortotropowa obciążona równomiernie

12.1. Płytom o różnej mocy zbrojenia w dwu prostopadłych do siebie kierunkach odpowiadają różne wielkości momentów granicznych, przy­porządkowanych tym zbrojeniom; mamy więc do czynienia ze struktu­rą ortotropowa. Wskaźnik ortotropii jest określony z dostatecznym przy­bliżeniem bezpośrednio przez moc zbrojenia ). Wyraża się on stosunkiem wielkości momentów jednostkowych dla każdego z kierunków ortotropii.18

18) Pomijamy przy tym zmianę ramienia sił wewnętrznych: por. treść odsyłacza21).

Doświadczenia przeprowadzone były nad płytami 416 cm X 210 cm o grubości 12 cm, przy czym zbrojenie, ułożone prostopadle do boku dłuż­szego, obsługiwało partie długości 410 cm. Zbrojenie krótkie wykonane było z prętów o średnicy d = 70 mm, rozstawionych w odległościach 10 cm, natomiast zbrojenie podłużne wykonane było z prętów o średnicy d = 7 mm względnie 5 mm. To ostatnie było ułożone, w zależności od typu płyty, w odległościach od 10 cm do 26 cm. Zbrojenie posiadało granicę plastyczności Qf = 4280 kG/cm2. Wszystkie omawiane powyżej charakte­rystyki podane są w tablicy 12 (patrz str. 242) łącznie z opracowanymi wynikami doświadczeń.
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Wartość jednego z momentów łamiących dla płyty przedstawionej na rys. 72 wyznacza się w przypadku jej budowy ortotropowej z zależnościn b2 v2(12.1.1)gdzie
?=* (]/4+z natomiast oznacza wskaźnik ortotropii struktury płyty i przedstawia się dla poda­nych na rysunku kierunków osi wzorem

__ k fu
Ma — k ’Odległość punktu zetknięcia się trzech linij załomu w przęśle wyzna­czona jest równaniem (12.1.2)Wstawiając '0 = 210 410 = 0,51 otrzymujemy

Wartości z podane są w tablicy 12. I tak np. przy zbrojeniu krótkim rozstawionym co 10 cm, zaś długim — rozstawionym co 20 cm, oraz przy uwzględnieniu innej odległości zbrojenia długiego od górnej powierzchni płyty obliczamy 0,92 - l • 1,40 ' 1,40 = 0,46.
Dla płyty o współczynniku z wielkość y określająca kąt, pod jakim wychodzą linie załomów z punktu przecięcia się osi obrotów, jesty = ctga = 0,46(l/-|- + 0,26 — 0,51) = 0,96. 

\ W U, /Odległość x, liczona od osi obrotu płata, wynosi zatem x = 96 cm. 237



12.2. Postulat sprawdzenia doświadczalnego wielkości obciążenia ła­miącego nasuwa konieczność wyznaczenia tego obciążenia jako funkcji momentów granicznych; gdy więc podstawimy do wzoru (12.1.1)
i 4,0-2,0\p^ = ^p+g4i1.2j)otrzymamy(12.2.1) 24M„x 0,93 G.Tak więc dla przykładu rozpatrywanego powyżej, dla którego x = 0,46 i y = 0,96, wartość obciążenia łamiącego wyraża się przez(12.2.2) P = ^“’nwr “ °’93 G = 23’5 M" “ °’93 G' 0,51 • 0,96-

”) Por. np. W. Olszak, [17].

12.3. Obciążenie łamiące wyznaczyć można również rozpatrując oma­wianą płytę jako izotropową o odpowiednio zmienionych wymiarach. Na­leży przy tym wymiary płyty przekształcić przy zastosowaniu odpowied­niego współczynnika transformacji.Współczynnik ten pozostaje w określonym stosunku do wskaźnika ortotropii i — przy niezmienionych wymiarach w kierunku osi v — wy­nosi dla wymiarów w kierunku osi u 19) (12.2.3)Tak przekształcona płyta będzie teraz posiadała wymiary b i a ) x.Natężenie obciążenia w tym przypadku pozostaje niezmienione; jest onozatem nadal określone przez intensyw­ność p.Obraz transformowanej płyty przed­stawiony jest na rys. 73.Przystępując do wyznaczenia mo­mentów łamiących i posługując się po­wyższą transformacją liniową wyzna­czyć musimy = b/]/ x • a a następnie
Dla rozpatrywanej płyty o wymiarach 210 cm X 416 cm oraz cechach x = 0,46 i ^/ = 0,755 otrzymujemy

yt = /3 + 0,7552 —0,755 = 1,14,zaś wartość momentu granicznego Mu obliczamy ze wzoru (10.1.1) poda­nego dla płyty izotropowej.
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pb2
Ponieważ porównujemy wielkości Obciążeń łamiących, otrzymane- z doświadczeń i obliczone na drodze teoretycznej w oparciu o analogicz­ne rozważania, jak podaliśmy uprzednio dla płyty ortotropowej (nie trans­formowanej), otrzymamy Jp + g2..°-4-“U^Ł1\ 2,1 • 4,1 • ^0,46 'co prowadzi do siły łamiącej o wartości

24 MP = -o—“ — 0,93 G = 23,5 M — 0,93 G.Jest to zatem wynik identyczny z (12.2.2).
12.4. Przystępując do ustalenia siatki zniszczenia spowodowanej przez obciążenie siłami skupionymi, działającymi w 32 punktach powierzchni płyty, należy, podobnie jak w poprzednich przykładach, obliczyć pracę sił zewnętrznych i wewnętrznych przy uwzględnieniu odpowiedniej siat­ki zniszczenia. Siatkę tę można znaleźć na drodze teoretycznej (w sposób scharakteryzowany uprzednio) albo też można ją wziąć bezpośrednio z do­świadczenia (rys. 74 i 75). Obserwuje się w przypadkach małego x, iż nie występują tu pojedyncze naroża, tworzy się natomiast przy malejącym stosunku boków /9 jedno «naroże» wspólne (unosi się cały krótszy bok płyty). Schemat takiego układu siatki zniszczenia przedstawia rys. 76. Kąt nachylenia linii załomu względem boku poziomego określa wielkość y.Gdybyśmy rozpatrywali płytę obciążoną równomiernie, porównanie wyników doświadczeń z wynikami teoretycznymi byłoby łatwe; posługi­wanie się siłami skupionymi zmusza jednak do poszukiwania pew­nej charakterystycznej dla układu obciążeń siatki zniszczenia w oparciu o podaną poprzednio metodę. Niech taką siatką zniszczenia będzie siatka przedstawiona na rys. 76, przy czym na każdej z dwóch połówek płyty podano różne siatki, charakteryzujące się innym kątem linii nachylenia załomu,wychodzące z naroża. Wybór właściwej siatki następuje na pod­stawie zasady maksymalnego oporu plastycznego, z której określa się wartość y .Udzielając punktom zaczepienia sił przemieszczeń przygotowanych, związanych z sobą założeniem sztywno-plastycznego modelu odkształce­nia, równanie bilansu prac otrzymujemy w postaci

P PIP12 „„ + 12 „ + 8 „-(75 tg^-50) =
uZ OZ o = 2 M„ (250 + 2 • 80 tg <p) ~ + 2 x M„ • 210 • .239
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W równaniu tym nie uwzględniono tworzenia się pojedynczych naro­ży jak również pominięto ciężar własny. Ciężar własny wprowadzony zo­stanie na podstawie równania (12.2.2).Z podanej wyżej zależności wyznaczymy wielkość siły4,2 x + 5 tg® + 3,2 tg2® „ 4,2 x + 5y + 3,2 y2 „(12.4.1 P=16—?---- n s—M„=16—------n o M,9 tg (p — 2 9 y — 2gdzie y = tg (p = ctg a .Zasada maksymalnego oporu plastycznego daje równanie(9 y — 2) (5 — 6,4 y) — 9 (5 y + 3,2 y2 + 4,2 x) == y2 — 0,435 y — 0,347 — 1,31 x = 0 ,skąd(12.4.2) y = 0,217 + yl 1?57 + 5,24 x.
Zależność ta przy y S 1 (tylko wtedy bowiem linia załomu przecina dłuższy bok płyty) jest słuszna dla x S 0,165. Obliczając rzeczywistą war­tość siły dla x = 0,112 otrzymamy y = 0,952, zaś na podstawie (12.4.1)

6,55Przy uwzględnianiu ciężaru własnego według równania (12.2.1) siła ni­szcząca wynosi(12.4.3) P = 19,8 Mu — 0,93 G.W sposób analogiczny obliczyć można, jakie wartości y odpowiadać będą siatce zniszczenia przedstawionej na rysunku 76 z lewej strony i ja­kim to odpowiada wskaźnikom ortotropii20).

20) Postępując jak powyżej dla siatki przedstawionej na lewej części płyty otrzy­
malibyśmy, że przy y < 1 jest ona słuszna dla -z < 0,286.

12.5. Tablica 12 podaje wielkości sił łamiących, uzyskanych z do­świadczenia, oraz wyniki teoretyczne. W tablicy górna wartość siły ni­szczącej obliczona jest w założeniu równomiernego rozłożenia obciążeń, tzn. według wzoru (12.2.2) z uwzględnieniem odpowiednich współczynni­
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ków y, dolne zaś wartości odnoszą się do obliczeń przeprowadzonych we­dług siatki, przedstawionej na rys. 76 z równoczesnym uwzględnieniem wielkości y.

Rys. 77Jeszcze jeden przykład układu linij dla przypadku płyt typu omawia­nego w tym p. przedstawia rys. 77.
Tablica 12

*) Wartości podane bez uwzględnienia zmniejszającego wpływu naroży na podstawie (12.2.1).

Grubość płyty cm 12 12 12 12 12

Zbrojenie d mm 6,9 7,0 7,0 7,0 7,0
poprzeczne jv, odstęp wkładek cm 10 10 10 10 5.5

= kG/cm2 y % 0.37 0,37 0.37 0,37 0,7

Zbrojenie d mm 6.9 7.0 7,0 5,0 5,0
podłużne ja , odstęp wkładek cm. 10 .20 35 42 26.2
Qr = 4280 kG/cm2 (p % 0,37 0,19 0.11 0.047 0,075

Wskaźnik ortotropii z 0,92 0,46 0.263 0.112 0.098

Moment łamiący tm/m 1,40 1.40 1,40 1,50 2,45

/ 1.25 0.96 0.72 0,525 0,502

wyznaczone dla ob­
ciążeń ciągłych*) 36.5 33.1 31.1 27,1 43,0

Obciążenie 
łamiące P t

wyznaczone dla sił 
skupionych 33.8 29,3 27,6 27.5 46,2

z doświadczenia 35.0 31,0 29,0 28,0 48,0
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Przedstawione wyniki potwierdzają również i dla płyt ortotropo- wych słuszność teorii nośności granicznej. Zagadnienie płyt ortotropo- wych stanowi bardziej złożony problem obciążenia siłami skupionymi z punktu widzenia wpływu naroży w porównaniu z przypadkiem płyt izotropowych i wymaga odrębnego studium. Szersze opracowanie tego zagadnienia odkładamy do drugiej części pracy, gdzie zostanie ono przed­stawione na tle wyników ostatnich naszych prac teoretycznych, [16]. [17], [22], [14], [31].
15. Uwagi końcowe

Rys. 78

Rozpatrzony wyżej szereg prostszych przypadków płyt i obciążeń wskazuje na dobrą zgodność przedstawionej teorii z badaniami doświad­czalnymi. Otrzymane wyniki pozwalają przypuszczać, iż w przypadkach bardziej złożonych, jak np. przy rozpatrywaniu płyt ciągłych, płyt zamo­cowanych, układów o mieszanych warunkach brzegowych itp., rezultaty doświadczeń również potwierdzają słuszność teorii.Weryfikacja doświadczalna tych bardziej złożonych układów wymaga jednak dodatkowego opracowania paru jeszcze zagadnień natury teore­tycznej, jak np. wpływu naroży w płytach zamocowanych i ciągłych, układów linij załomów w płytach obustronnie zbrojonych a obciążonych siłą skupioną itp. Ten ostatni problem jest szczególnie interesujący, gdyż w trakcie prowadzonych przez nas doświadczeń otrzymaliśmy, w przy­padku obciążenia siłą skupioną przy po­wolnym jej wzroście, linię załomu na górnej powierzchni płyty w postaci spi­rali (rys. 78). Analiza teoretyczna już uprzednio dała wynik, który prowadził do linii spiralnej jako do jednego z moż­liwych rozwiązań. Gdy zatem obecnie doświadczenie potwierdziło jego słu­szność, zachodzi potrzeba sprecyzowa­nia warunków powodujących tego ro­dzaju zniszczenie.Wspomniane zagadnienia są obecnie w fazie badań doświadczalnych; ich wyniki przedstawione będą w czasie późniejszym.Warto dorzucić, że również i te z dostępnych nam dotychczasowych doświadczeń, które nie zawsze były przeprowadzane pod kątem widzenia teorii nośności granicznej (jak np. badania instytucji Deutscher Ausschuss 243



für Eisenbeton), pozwalają wysnuć wniosek o słuszności założeń tej teorii, jak wynika to z szeregu danych w poprzednich rozdziałach.Uzasadnienie słuszności założeń teorii nośności granicznej pozwoli wprowadzić przedstawioną metodę do praktyki inżynierskiej, co zarówno z uwagi na korzyści natury ekonomicznej, jak i ze względu na stosunko­wo prostą budowę samej teorii, przynieść powinno efekty gospodarcze.Należy przy tym wziąć również pod uwagę, że oparcie się o przedsta­wioną teorię, zdążającą do wyznaczenia sił wewnętrznych na podstawie analizy stanu zniszczenia, pozwoli usunąć w stosunku do płyt istnieją­cą obecnie niekonsekwencję między obliczaniem tych sił wewnętrznych na podstawie studium ustroju jako sprężystego, a wymiarowaniem ustro­ju według tzw. metody odkształceń plastycznych. W ten sposób teoria nośności granicznej rozpatruje konsekwentnie zagadnienie jako logiczną całość.
14. Dodatek do p. 5. Przykład liczbowyDla zilustrowania przedstawionej w p. 3 metody wyznaczania mo­mentów łamiących zastosujemy ją do obliczenia konkretnego przykładu, którego rozwiązanie na gruncie teorii sprężystości byłoby trudne.Z rozmysłem dobieramy przykład możliwie prosty dotyczący układu jednorodnego przy założeniu naj­prostszych warunków podparcia i obciążenia.Dana jest płyta prostokątna o bokach a = 3, b = 2 (jednostki dowolne), zamocowana na dwóch sąsiednich krawędziach, na dwóch pozostałych swobodna (rys. I), ob- 

o.(Mu) ciążona równomiernie rozłożonym obciążeniem p (u, v) = const, która w ogólnym przypadku zbrojona jest górą i dołem w obu kierun­kach równoległych do osi układu odniesienia w sposób różny; rozpatrzy­my zatem płytę o strukturze warstwowo ortotropowej.Dla uproszczenia zagadnienia zakładamy, że momenty związane ze zbrojeniem dolnym, te zatem, które nazywamy dodatnimi, a oznaczone odpowiednio Mu oraz Mv, są sobie równe. Współczynnik ortotropii cha­rakteryzujący «warstwę» dolną wynosi wtedy x = 1.Wskutek utwierdzenia płyty na krawędziach AB i AD oraz przewidy­wanego tam zbrojenia powstaną linie załomów ujemne (tzn. związane 244



z momentami ujemnymi). Odpowiednie momenty w warstwie górnej wy­noszą (14.1)
Załóżmy, że współczynnik ortotropii «warstwy» górnej wynosi ź = 0,5, zaś współczynnik charakteryzujący stosunek mocy zbrojenia równole­głego do osi u warstwy górnej i dolnej /z = 3 [tzn. moc zbrojenia «krót­szego» warstwy górnej jest trzykrotnie większa od analogicznej mocy warstwy dolnej 21)].

21) Dla uproszczenia zakładamy przy tym proporcjonalność między wartością 
momentu łamiącego a ilością zbrojenia. Łatwo byłoby uwzględnić ewentualne po­
prawki z uwagi na zmianę ramienia momentu sił wewnętrznych [por. p. 4, wzór 
(4.4.1)].

Na podstawie przytoczonych wyżej zależności możemy wyrazić wszyst­kie wielkości momentów w funkcji jednej wartości momentu Mu.Chcąc obliczyć tę wartość rozpatrzmy układ zniszczenia podany na rys. I. Nie jest to jedyny możliwy układ zniszczenia dla interesujących nas warunków obciążenia i podparcia płyty; do zagadnienia tego powró­cimy jeszcze później.W rozpatrywanej siatce zniszczenia mamy trzy linie załomów: dwie «ujemne» wzdłuż boków AB i AD oraz jedną «dodatnią», która przechodzi przez punkt A; nachylenie jej do układu osi odniesienia nie jest znane. Załóżmy, że położenie tej linii jest określone parametrem x.Jeśli teraz udzielimy punktowi E przemieszczenia przygotowanego ów ku dołowi, wówczas będziemy mogli napisać równanie pracy sił ze­wnętrznych i wewnętrznych stosownie do (3.11.3) i (3.12.3).Tak więc praca sił zewnętrznych wyniesie (pamiętając że a = 3, b = 2)
ów p(a— x)b(14.2) óL = p -w-2+ r ów =£ o £

ipab pxb\ / x\-(z—Vfw=i’v,-TrwPrzystępując do ujęcia wyrażenia na pracę sił wewnętrznych zauwa­żymy, że płat I obracać się może jedynie wokół osi u, zaś płat II wokół osi v. Na tej podstawie odpowiednie wyrażenia na kąty obrotu płatów przedstawiają się następująco:(14.3) ów ów
2 ’

.. ów 
4^11=
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Sumaryczna praca momentów będzie stosownie do (3.11.3) iloczy­nem momentu całkowitego przez kąt obrotu, gdzie moment całkowity jest proporcjonalny do długości prostej załomu.Pracę sił wewnętrznych zapisać zatem można następująco:(14.4) ó V = Mu x — F Mu ci , - -j- Mu b b b■Wprowadzając zależności podane przez (3.9.2) i (3.9.3) oraz wielkości geometryczne charakteryzujące układ, uzyskujemy stąd(14.5) = +\ b b x x I \ 2xPrzyrównując do siebie na'podstawie zasadniczego równania (3.11.1) 
dL oraz <5V, otrzymamy wyrażenie na moment jednostkowy(14.6) 18 x — 2 x23x2l^27 x - 30P’Do wyznaczenia nieznanego dotychczas parametru x posłużymy się zasadą maksymalnego oporu plastycznego, sformułowaną w (3.13.2). Przybierze ona w rozpatrywanym przykładzie postać(14.7) 18 a: — 2x2dx( 3 x2 + 27 x + 30 = 0,skąd otrzymujemy równanie na x w postaci(14.8) x~ + 1,11 x — 5,0 = 0.Rozwiązanie daje x = 1,75.Znając teraz już położenie linii załomu możemy dla danych stosun­ków ortotropii i «warstwowości» obliczyć wartości interesujących nas mo­mentów. Uzyskujemy w ten sposób
(14-9) Mu = Mv = 0,293 p kG m/m, 

M'lt = 3 • 0,293 = 0,879 p kGm/m,
M'v = 0,5 • 3 • 0,293 = 0,440 p kGm/m.Wspomnieliśmy już uprzednio, że figura załomów podana na rys. I nie przedstawia w rozpatrywanym przypadku jedynej kinematycznie możliwej siatki zniszczenia. Nastąpić może również zniszczenie tego typu, że odłamie się trójkąt BCD wzdłuż linii AD, która wtedy musi być linią załomu ujemną (rys. II).246



Przy zniszczeniu według podanego schematu wyrażenia na pracę sił zewnętrznych i wewnętrznych przy udzieleniu punktowi C przemieszcze­nia przygotowanego <5 w będą wynosiły
(14.10) --ów=p,Li o(14.11) óV = //M„ + źp M„ ^b = 5,5M„ .' ' r b aOtrzymamy stąd 2(14.12) Mlt = — p = 0,182 p kGm m.

Jest to wartość znacznie mniejsza aniżeli wartość uzyskana na pod­stawie analizy poprzednio rozpatrywanej siatki zniszczenia.Na zasadzie twierdzenia o maksymalnym oporze plastycznym może­my więc — porównując wyniki otrzymane dla dwóch kinematycznie moż­liwych siatek zniszczenia—wnosić o urze- czywistnieniu się pierwszej z rozpatry- t— wanych siatek zniszczenia.Można by również sprecyzować wa­runki (przy danym ukształtowaniu geome- o trycznym płyty), w których obydwie siat­ki zniszczenia byłyby równouprawnione. Wystarczyłoby, przy danych wskaźni- kach ortotropii warstwy górnej 2 i dol­nej x, wyrażenia na moment przedstawić w funkcji współczynnika p oraz poszuki­wać takiego p, dla którego równania (14.6) i (14.12) prowadzą do identycz­nych wartości momentu Mu.Warto tu może jeszcze nadmienić, że dla praktycznie występujących stosunków mocy zbrojenia założenie linij załomów wzdłuż dwusiecznej kąta między osiami obrotu płatów prowadzi do wartości momentów, zbli­żonych do wartości uzyskiwanych z warunku na extremum (3.13.2). Np. w rozpatrywanym wyżej przypadku założenie x = 2 prowadzi do warto­ści momentu Mu = 0,291 p przy dókładnej wartości Mu = 0,293 p. Zagad­nienie przybliżonych metod wyznaczania momentów łamiących nie sta­nowi jednak obecnie przedmiotu naszego zainteresowania i zostanie przed­stawione przy innej okazji. 247
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Резюме

ТЕОРИЯ НЕСУЩЕЙ способности пластинок 
В ОСВЕЩЕНИИ ЭКСПЕРИМЕНТАЛЬНОЙ ПРОВЕРКИ (1)Работа посвящена' экспериментальным проблемам теории несущей способности пластинок (изо- и анизотропных) и анализу степени со­гласованности предположений этой теории с результатами экспери­ментальных исследований.В начале работы, после замечаний по истории развития теории предельной несущей способности пластинок, рассматриваются про­блемы согласованности предположений этой теории, касающихся ка­чественной стороны явлений, с результатами экспериментов, прово­димых до сих пор с точки зрения различных теоретических предпо­ложений о поведении пластинок.Указывается, одновременно, на необходимость проведения в ши­роком масштабе количественной проверки обсуждаемой теории, при­чем разнообразие изменчивых условий (изотропная или ортотропная структура пластинок, их геометрическая форма, условия их закреп­ления, однородная или неоднородная структура, нагрузка) обусловли­вает обширность программы исследований. Проведение таких иссле­дований, принимая во внимание экономические выгоды, вытекающие из внедрения этой теории в непосредственную инженерную практику, весьма желательно. Для подтверждения правильности результатов соб­ственных исследований приводится ряд результатов зарубежных экс­периментальных работ.Во второй главе обсуждаются имеющиеся до сих пор польские работы по теории несущей способности пластинок. Первые работы были посвящены основным проблемам этой теории, как напри­мер, работы В. О л ь ш а к а, [15], [16], [18], [21] и [22]. В сле­дующих работах приводилось решение вопроса ортотропной струк­туры пластинок (также и случай «двойной» ортотропии; ср. работы того-же автора [16], [17], [20]). Были разработаны основные проблемы по «двумерной» беспрерывности (работа В. О л ь ш а к а, [22]), а также работы по структурной и вынужденной неоднородности (работы В. О л ь ш а к а, [24] и [25], Д. Н е п о с т ы н а, [13], и А. Савчука, [29]) 249



и по связанной с этой проблемой, несущей способности резервуаров (А. Савчук, [30]); наконец, приводится простая механическая ана­логия применимая к вопросам изотропных, равно как анизотропных пластинок и актуализирующая решение даже сложных конкретных случаев.Независимо от теоретических работ, проводились эксперименталь­ные исследования, которые внесли много материала.В третьей главе рассматриваются, главным образом, предположения теории несущей способности однородных пластинок и приводится гене­зис этих предположений в связи с наблюдениями механизма деструк­ции пластинчатых систем, в особенности железобетонных пластинок.В четвертой главе обсуждаются принципы лабораторных экспери­ментов над теорией несущей способности пластинок. Специфика проблемы и необходимость осуществления таких опытных усло­вий, которые создали бы возможность наблюдения за обеими по­верхностями пластинки, требует особого способа нагрузки. Важным является экспериментальное определение «единичного» предельного момента. Подчеркивается необходимость обращения внимания на явле­ние разрушения путем «пролома» и его влияние на несущую способ­ность изгибаемых пластинок.Пятая глава дает характеристику условий экспериментов.В последующих главах обсуждаются эксперименты над отдельными видами пластинок и случаями их нагрузки, начиная с квадратной пластинки толщиной в 3 см, нагруженной в центре сосредоточенной силой. Здесь анализируется проблема образования «конуса» перелома и влияние упругой стадии на изменение условий заделки системы этого типа. Сравнение теоретических результатов с эксперименталь­ными приводится для случая квадратной пластинки, нагруженной со­средоточенной силой в центре (таблица 2). Эту главу иллюстрирует ряд фотоснимков.В седьмой главе рассматриваются квадратные пластинки, нагру­женные сосредоточенными силами, размещенными концентрически во­круг центра пластинки. Здесь рассматриваются исследования над пла­стинками толщиной в 8 и 12 см. Эти случаи представлены в таблицах 3, 4 и 5.В следующей — восьмой главе приводится теоретическое решение для пластинки с тремя свободно опертыми сторонами, нагруженной сосредоточенной силой, приложенной в центре. Анализируются также результаты экспериментов над такого рода системой. Результаты ана­лизов, так как и в предыдущем случае, приведены в таблице 6.В девятой главе обсуждается квадратная пластинка, нагруженная равномерно, причем такая нагрузка заменена шестнадцатью сосре­250



доточенными силами. Приводится теоретический анализ системы та­кого рода и нагрузки, а также метод, позволяющий учитывать влия­ние углов, уменьшающих несущую способность. Результаты экспери­ментов над пластинками толщиной в 12 и 8 см. приводятся в таблицах 7 и 8.Подобный метод, но для прямоугольных пластинок, толщиной также в 8 и 12 см. и с отношением сторон = 0,5 и = 0,667 применяется в главе 10, содержащей таблицы 9 и 10.В главе 11 приводятся результаты исследований для двупролетной, свободно опертой пластинки (таблица 11).Наконец, приводятся теоретическое решение и анализ эксперимен­тальных результатов, касающихся прямоугольных ортотропных пла­стинок. Также для этого случая —согласованность между теорией и ре­зультатами экспериментов — удовлетворительна.Проблемы ортотропных пластинок будут рассматриваться более подробно во второй части работы, на основании проведенных экспе­риментальных исследований.Работа снабжена приложением, иллюстрирующим на простом при­мере, способ расчета несущей способности систем.
Resume

LA THEORIE DE LA CHARGE LIMITE DES PLAQUES SOUS L’ASPECT DE SA 
VERIFICATION EXPERIMENTALE (I)Le present memoire est consacre aux problemes experimentaux de la theorie de la charge limite des plaques (isotropes et anisotropes) ainsi qu’a la confrontation des hypotheses de la theorie avec les resultats expe­rimentaux.D’abord, apres quelques remarques historiques sur le developpement de la theorie de la charge limite, les auteurs discutent la conformite des hypotheses «qualitatives» de la theorie aux resultats d’experiments qui, jusqu’a present, ont ete effec'tues pour verifier d’autres problemes theori- ques.On indique en meme temps la necessite de recherches sur une grande echelle, ayant pour but la verification «quantitative» de la theorie. Le grand nombre de parametres (la structure isotrope ou anisotrope des pla­ques, leur forme geometrique, leur structure homogene ou non-homogene, les conditions d’appui, le mode de solicitation etc.) exige un programme de recherches tres vaste. La realisation de telles recherches est d’une im­portance particuliere etant donne que les avantages economiques condi- tionnes par l’application de la theorie consideree dans la pratique d’in- genieur sont considerables. Les resultats experimentaux dont il est que­251



stion concernent surtout les plaques isotropes. Pour confirmer ces resul- tats on les compare ä quelques resultats de recherches etrangeres.Dans le chapitre 2 on discute les travaux polonais sur la theorie de la charge limite das plaques. Les premiers de ces travaux, ceux de W. O 1 s z a k, etaient consacres aux problemes de base de la theorie, [15], [16], [18], [21], [22]. Dans les travaux suivants on a donne la solution du probleme de 1’orthotropie des plaques, y compris 1’orthotropie «double» (les memoires [16], [17], [20] du meme auteur). On a egalement etudie les problemes fondamentaux de la continuite «bidimensionnelle» des plaques et de l’heterogeneite structurale et «forcee» (les travaux de W. O 1 s z a k, [24], [25], D. Niepostyn, [13], et A. S a w c z u k, [29], ainsi que les problemes associes de la charge limite des reservoirs (A. S a w c z u k, [30]). Enfin on a etabli une simple analogic mecanique (de la «colline de sable») qui peut etre appliquee aux problemes des pla­ques isotropes et anisotropes et facilite la solution meme des cas com­plexes.A cöte des travaux theoriques on a poursuivi des recherches experi­mentales qui ont fourni des resultats interessants.Dans le chapitre 3 on discute les hypotheses de la theorie de la charge limite des plaques homogenes et on explique 1’origine de ces hypotheses en se basant sur l’observation du phenomene du mecanisme de destruc­tion des plaques, en particulier des plaques en beton arme.Le chapitre 4 est consacre aux principes de recherches experimentales relatives ä la theorie de la charge limite des plaques. Les conditions spe- ciales du probleme et la necessite d’arranger les recherches d’une maniere ä pouvoir observer les deux surfaces de la plaque exigent une methode speciale de solliciter 1’element etudie. La determination experimentale du moment limite (de rupture) unitaire est d’une grande importance. On souligne la necessite d’etude du phenomene de la destruction par «poin- connement» et son influence sur la resistance des plaques flechies.Dans le chapitre 5 les auteurs donnent une caracteristique des condi­tions de leurs travaux de recherches.Les chapitres qui suivent concernent les recherches experimentales sur les divers types des plaques et les divers modes de sollicitation, en commensant par une plaque carree de 3 cm d’epaisseur, sollicitee par une force concentree situee au centre de la plaque. On analyse le probleme de la formation d’un «cone de rupture» et 1’influence de la phase elastique sur le changement des conditions d’appui des plaques. La table 2 permet de faire une comparaison entre les resultats theoriqus et experimentaux dans le cas d’une plaque carree sollicitee par une force concentree agissant au centre de la plaque. Le chapitre est illustre par quelques photographies.252



Le chapitre 7 concerne les plaques carrees sollicitees par des forces concentrees, disposees concentriquement autour du centre de la plaque.La discussion concerne les recherches sur les plaques de 8 et 12 cm d’epaisseur. Les tables 3, 4 et 5 illustrent le meme cas.Le chapitre 8 contient la solution theorique d’une plaque simplement appuyee sur trois de ses cotes et sollicitee par une force concentree au centre ainsi qu’une analyse des resultats experimentaux obtenus pour ce genre de construction. Les resultats sont resumes dans la table 6.Le chapitre 9 concerne une plaque carree avec une charge uniforme- ment repartie, remplacee ensuite par 16 forces concentrees. Les auteurs donnent une analyse theorique d’une structure et d’une sollicitation de ce type et presentent une methode, permettant de tenir compte de 1’influence des coins reduisant la charge limite. Les resultats experimen­taux pour les plaques de 12 et 8 cm d’epaisseur sont resumes dans les tables 7 et 8.Une methode pareille est appliquee dans le chapitre 10 aux plaques de 8 et 12 cm d’epaisseur avec rapports des cotes /3 = 0,5, /3 = 0,677 (tab­les 9 et 10).Le chapitre 11 concerne les resultats pour une plaque a deux travees, simplement appuyee (tabi. 11).Les plaques rectangulaires orthotropes representent le dernier type discute dans la presente partie du travail. On presente la solution theo­rique et une analyse des resultats experimentaux. La conformite des re­sultats theoriques a ceux d’experiments est, ici encore, satisfaisante. Une plus ample discussion des problemes relatifs aux plaques orthotropes basee sur des experiments sera donnee dans la II de partie de ce travail.Dans l’annexe on explique, au moyen d’un simple exemple, la metho­de de calcul de la charge limite.
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1. Uwagi ogólne)*

*) Praca przedstawiona na Kursie Naukowym Zakładu Mechaniki Ośrodków Ciąg­
łych IPPT PAN w Międzyzdrojach w sierpniu 1954 r.

l.i. Podstawowe założenia teorii nośności granicznej płyt znalazły za­dowalające potwierdzenie doświadczalne w szeregu przeprowadzonych dotychczas badań laboratoryjnych. Obserwacje linij załomów elementów płytowych, znajdujących się pod działaniem złożonych obciążeń, pozwa­lają przypuszczać, że również przypadki zginania, połączonego z działa­niem sił rozciągających, rozpatrywać można ze stanowiska teorii nośno­ści granicznej.Zastosowanie jednak teorii nośności granicznej do płaskich układów, poddanych rozciąganiu i zginaniu, wymaga wstępnego wyjaśnienia sze­regu zagadnień oraz określenia zakresu stosowalności teorii.Zajmiemy się analizą stanu równowagi granicznej płyt poddanych działaniu obciążenia, rozłożonego w sposób ciągły i skierowanego prosto­padle do ich powierzchni, oraz sił rozciągających, działających w płaszczy­źnie tych płyt. Ściślejsze sprecyzowanie miejsca działania sił rozciągają­cych w przekroju poprzecznym zostanie dokonane później. Co do warun­ków podparcia nie ma potrzeby wprowadzania tu jakichkolwiek ogra­niczeń.1.2. Należy na wstępie zaznaczyć, że nie będzie tu spełnione, ogólnie rzecz biorąc, założenie stałości momentu łamiącego na jednostkę długości linii załomu, a tym samym będziemy mieli do czynienia z układami nie­jednorodnymi, charakteryzującymi się w każdym punkcie inną wartością momentu łamiącego. Ponieważ jednak przedmiot naszych rozważań sta­nowią elementy, zbudowane z materiałów ciągliwego i kruchego, przy czym zakłada się, że materiał kruchy zdolny jest przenosić jedynie na­prężenia ściskające, zaś ciągliwy umieszczony jest w sposób pozwalający na wykorzystywanie go dla przejęcia naprężeń rozciągających, przeto niejednorodność ta dla elementów zginanych może być ściśle określona. Działanie sił rozciągających skomplikuje nieco zagadnienie niejednorod­ności, nie uniemożliwi jednak analizy stanu równowagi granicznej.
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Rozpatrywanie układów niejednorodnych ze stanowiska teorii nośno­ści granicznej narzuca automatycznie przyjęcie sztywno-plastycznego schematu, odkształcenia, tzn. pominięcie wszystkich odkształceń spręży­stych. Taki bowiem schemat leży u podstaw tej teorii. Wynika stąd rów­nież konieczność rozpatrywania ustroju w takiej chwili, gdy naprężenia w materiale poddanym rozciąganiu osiągnęły na całej długości linii za­łomu, ściślej, na długościach wszystkich linij załomów, wartość równą granicy plastyczności, niezależnie od koncentracji włókien rozciąganych na odpowiednich odcinkach, a więc niezależnie od funkcji, określającej niejednorodność struktury (w sensie zdolności przenoszenia momentów łamiących). Niejednorodność struktury elementu ma duże znaczenie przy traktowaniu zagadnienia według sprężysto-plastyczmego modelu odkształ­cenia, pozwalającego na uwzględnienie wszystkich faz, jakie ustrój prze­chodzi od chwili rozpoczęcia działania obciążeń aż do chwili jego zniszcze­nia. W tym przypadku niejednorodność budowy ma znaczenie dlatego, że są od niej uzależnione odkształcenia sprężyste. Zagadnienia niejedno­rodności nie będą tu jednak stanowiły przedmiotu naszych zainteresowań i są one omówione jedynie ogólnie w zakresie niezbędnym do dalszych rozważań, a szczególnie do określenia wpływu sił podłużnych na wielkość jednostkowego momentu łamiącego.1.3. Nasuwa się tu jeszcze pytanie, czy układy niejednorodne charak­teryzować się będą załomami prostoliniowymi, czy też będzie tu należało rozpatrywać załomy krzywoliniowe. Ograniczymy się do omówienia przy­padków obciążeń rozłożonych w sposób ciągły na całej powierzchni pły­ty. Jest to ważne z uwagi na fakt, że w przypadku występowania sił sku­pionych bądź też obciążeń działających tylko na pewną część powierzchni płyty, geometrycznie możliwa siatka zniszczenia nie składa się wyłącznie z samych tylko linij prostych.Przy naszych założeniach i dla sztywno-plastycznego schematu od­kształcenia można przyjąć, z taką samą dokładnością jak w przypadku stałego momentu łamiącego, że załomy są prostoliniowe, bowiem jedynie linie proste stanowią geometrycznie możliwe formy zniszczenia dla ob­ciążeń ciągłych.
1.4. Teoria nośności granicznej płyt, zbudowanych z materiału ciągli- wego, rozciąganego oraz kruchego, ściskanego — opiera się na założeniu, że we wszystkich punktach leżących na linii załomu naprężenia w mate­riale, przenoszącym siły rozciągające, osiągnęły granicę plastyczności op! i wyrażają się jako funkcje wielkości charakteryzujących strukturę ele­mentu oraz momentu, występującego w liniach załomów bądź też przez jego składowe, w postaci(1.4.1) Ou = fi (Mp, s) = Opt, . Ov == (Mn, s) = api.258



Symbole i M„ oznaczają odpowiednio składowe naprężenia i momentu na osi u w układzie współrzędnych (u, u), zaś av i Mv odpowiednie składowe na osi u; s jest wielkością określającą strukturę elementu.W przypadku płyty jednorodnej i stałych naprężeń we włóknach roz­ciąganych uzyskujemy moment łamiący stały; nie badamy przy tym bli­żej rozkładu wewnętrznego naprężeń w materiale przenoszącym ciśnienia.1.5. Podobnie rozpatrując elementy poddane nie tylko zginaniu, ale również działaniu sił osiowych, można stwierdzić, że siły te muszą speł­niać pewien warunek. Mianowicie muszą one wywoływać w elemencie ta­ki stan naprężeń, aby w punktach linij załomu naprężenia wypadkowe warstwy dolnej posiadały ten sam znak jak w przypadku zginania. Przy­padek sił rozciągających warunek taki spełnia. Można tu będzie nie wni­kając na razie w zależności między momentem a siłą w stanie wyczerpania nośności stwierdzić, że w przypadku działania sił rozciągających N,, i Nv, skierowanych zgodnie z układem osi odniesienia, stan graniczny będzie osiągnięty, gdy naprężenia we włóknach rozciąganych przedstawią się w postaci
। Ou = f (My, Nu, s) = a pi,(1.5.1)
' Oy — f (Mu, Ny, s) = Op/.Zależności (1.4.1) i (1.5.1) określają naprężenia jedynie w stanie granicz­nym, nie można ich natomiast stosować dla fazy przejścia od stanu nieob- ciążonego (przez obszar odkształceń sprężystych) do stanu wyczerpania nośności.

1.6. Powyższe uwagi pozwalają na rozpatrywanie problemu nośności elementów rozciąganych i zginanych na podstawie teorii nośności gra­nicznej, odnoszącej się do analizy stanu zniszczenia elementów zginanych. Jeśli natomiast chcielibyśmy rozpatrywać układy zginane oraz dodatkowo ściskane i rozciągane w kierunkach wzajemnie prostopadłych, to (pomi­jając problem stateczności) istniałyby ograniczenia w stosowaniu teorii nośności granicznej do takich układów. Ogólnie biorąc naprężenia po­wstające na skutek zginania musiałyby być większe co do bezwzględnej wartości od naprężeń, wywołanych przez siły ściskające.
2. Nośność graniczna elementów rozciąganych i zginanych

2.1. W przypadku pręta, zbudowanego z materiału elasto-plastycznego, obciążonego momentem zginającym i siłą podłużną, stan graniczny osiąg­nięty zostanie z chwilą, kiedy w całym przekroju naprężenia osiągną gra­nicę plastyczności (ściśle biorąc pozostanie pewien rdzeń sprężysty wokół punktu, w którym naprężenia zmieniają znak; pomijając ten rdzeń nie259



robimy dużego błędu). Sposób narastania naprężeń i przechodzenia od fazy sprężystej w plastyczną dla materiału elasto-plastycznego bez uwzględnienia ewentualnego «utwardzenia» materiału przedstawiony jest na rys. 1 (przy zginaniu symetrycznym).

Rys. 1Warunki równowagi zastosowane do stanu granicznego przekroju da­dzą równania(2.1.1') JapidA = N, jopiydA = M.
A ARównania te pozwolą wyznaczyć zależność między momentem a siłą po­dłużną w chwili osiągnięcia stanu równowagi granicznej, jak również po­łożenie osi obojętnej, jeśli znany jest kształt geometryczny przekroju. War-

Rys. 2

to przypomnieć, że w przypadku przekrojów o jednej tylko osi symetrii zmieniać się będzie punkt działania siły osicwej; przesuwać się on będzie po csi symetrii i nie zawsze leżeć będzie w środku ciężkości figury przedstawiającej prze­krój. Utrudnia to rozpatrywanie zależności mię­dzy siłą a mementem w stadium granicznym. Dcdać należy, że w fazie sprężysto-plastycznej nie jest zachowana w ogólnym przypadku za­sada niezależności działania sił1).Ograniczając Się do rozpatrzenia przekroju prostokątnego o bokach h i b można będzie uważać, że siłę podłużną przenesi część przekroju, położona wokół środka ciężkości o wysokości równej 2 a, zaś moment zginający reprezentowany jest przez pozostałe części wykresu naprężeń (rys. 2).Równania równowagi przedstawiają się w postaci
(2.1.2) N = 2 a b Opi,/ h“M = b opt I —-----------a2

0 Zagadnienia te analizuje np. A. A. G w o z d i e w, [5].260



Wyznaczając z pierwszego wartość a i wstawiając ją do drugiego z po­wyższych równań otrzymamy(2.1.3) „ №M = — - opi —-——4 F 4 apt bUzyskaną zależność przedstawia rys. 3 w postaci paraboli. Na osi pio­nowej podane są stosunki momentu do momentu granicznego, na osi zaś poziomej analogiczne zależności dla siły niszczącej.W przypadku rozpatrywania jedynie fazy sprężystej warunek na ma­ksymalną wartość momentu w chwili osiągnięcia w skrajnych włóknach naprężeń równych granicy plastyczności przedstawić można w postaci(2.1.4) = opi bh2 _ Nh 6 6Odpowiedni wykres (rys. 3) ma postać trójkąta, którego wnętrze charak­teryzuje fazę sprężystą pracy pręta.Dla przypadku zmiany znaku momentu wykre­ślić można analogiczną za­leżność poniżej osi N/Ngr. . Tak więc w przypadku pręta z materiału elasto- plastycznego możemy dla każdej wartości siły 
N < Ngr określić odpo­wiednią wartość momen­tu, który dla rozpatrywa­nego przykładu będzie momentem łamiącym; będzie on mniejszy od mo­mentu łamiącego w przypadku, gdy siła podłużna nie działa.2.2. Zastanówmy się, jak przedstawiać się będzie zależność momentu od siły podłużnej dla elementów, w których naprężenia rozciągające wy­stępować mogą jedynie we włóknach z materiału ciągliwego, zaś mate­riał kruchy pracuje tylko na ściskanie. Znajomość tej zależności pozwoli na sprowadzenie zagadnienia rozciągania połączonego ze zginaniem do zagadnienia samego zginania o innej jednak wartości momentu łamiące­go. Spowodowane to jest zmniejszeniem momentu na skutek działania podłużnych sił rozciągających.Najpierw należy sprecyzować założenia dotyczące rozkładu naprężeń w przekroju poprzecznym określonego wyżej elementu. Choć zagadnienie to należy — ściśle biorąc — do teorii żelbetu, która zajmuje się właśnie 261



ustrojami zbudowanymi z materiałów kruchych i ciągliwych w założeniu właściwego ich wykorzystania, to jednak krótkie omówienie tego zagad­nienia potrzebne jest dla ujęcia całokształtu rozpatrywanego problemu.W przypadku zginania bez działania sił podłużnych dany przekrój materiału kruchego i materiału ciągliwego (np. betonu i stali) w stadium zniszczenia zdolny jest przenieść pewną wartość momentu, którą uważa-

Rys. 4

my za moment graniczny. Tak rozu­miany moment jednostkowy ozna­czamy przez M. Przyjmując dla uproszczenia prostokątny wykres naprężeń ściskających w materiale kruchym2) oraz prostokątny prze­krój elementu, moment łamiący wyrazimy zależnością (rys. 4)

2) Wiadomo, na podstawie np. prac A. F. L o 1 e j t a, że kształt wykresu naprę­
żeń w ściskanej strefie belki żelbetowej przy zginaniu nie ma istotnego wpływu na 
wyniki obliczeń; por. [5].

(2.2.1) M = opifzr—Rl xbr.Gdy rozpatrzymy przekrój rozciągany siłą zaczepioną mimośrodowo, przy czym mimośród jest stały (co spotykamy np. w przypadku zbior­ników prostokątnych obliczanych jako ramy poziome), otrzymamy (rys. 5) zależności(2.2.2)(2.2.3) Opt fz — N — Rc b x, = 0 ,
Ne — R, bx, r, = 0,gdzie Rc oznacza wytrzymałość ma­teriału na ściskanie.Na podstawie zależności, poda­nych wzorami (2.2.1) i (2.2.2), moż­na uzyskać związek 

oraz
Rys. 5Uwzględniając powyższe zależności we wzorze (2.2.3) oraz uważając wartość Ne za jednostkowy moment łamiący dla przypadku zginania łącz­
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nie z rozciąganiem (wartość tę oznaczymy przez NM) otrzymamy(2.2.4) / N \ / N \NM = RC Lr— r + = R, xrA \ R< b i\ 2 R< b /
Nr Nx N2 b 1 Tb ~ 2 R. b2 ’Biorąc pod uwagę wartość jednostkowego momentu w przypadku sa­mego tylko zginania z równania (2.2.1) uzyskujemy poszukiwaną zależność na wielkość momentu jednostkowego przy obecności sił osiowych

NM N N N

<2-251 »•Powyższy wzór przedstawia analogie zbudowanych z materiałów ciągliwego i 1 mocy wzoru (2.1.3) dla elementów z ma­teriałów elasto-plastycznych.Bezpośrednio z podanego wzoru wy­nika, że w przypadku gdy(1) N — 0, to xM=Mgr = M;(2) N = apifz = Ngr, to xM=0.Ilustrację zależności (2.2.5) przedsta­wia rys. 6.Wykres taki dotyczy związanych ze sobą wartości MRr = M, Ngr, N oraz Rc. Rysunek 6 został wykonany dla stosunku 
apilRc = 11,5 oraz Ngr/M == 13,1 m—k Nie należy do naszego tematu zagadnienie, a graniczny od wartości R,. .

zależność dla elementów, lego, do podanej przy po-

jaki sposób zależy moment2.3. Z przeprowadzonych obliczeń wynika, że wyrażenie
N

2r;^ - N)
w przypadkach praktycznych wpływa niewiele na wartość NM. Dla uza­sadnienia tego wniosku przytoczymy następujący przykład liczbowy.

Płyta o grubości h = 10 cm wykonana z betonu Rc = 200kG/cm2 zbrojona jest na 
metr bieżący prętami ze stali o granicy plastyczności 2300 kG/cm2 o łącznym prze­
kroju 6 cm2, tzn. Ngr = 13 800 kG. Jednostkowy moment łamiący obliczony dla tego 
przykładu wyniesie

M = 6-2300-0.95 (10 - 2) 105 000 kGcm m. 263



Jeśli pasmo płyty poddane jest działaniu sił rozciągających o wielkości 4000 kG/mb, 
to moment jednostkowy wyniesie

NM = 1050 - - (2300-6 - 4000) = 756 kGm/m.A 2300-6 1 2-200-100-Wpływ badanego trzeciego składnika będzie tym mniejszy, im bar­dziej wielkość siły N zbliżać się będzie do wartości granicznej. Wpływ ten będzie również niewielki, gdy N -> 0.Największe znaczenie ma omawiany czynnik, jak łatwo się przekonać z warunku ekstremum — dla N — 1/2 Ngr. Dla omawianego wyżej przy­kładu maksymalna wartość liczbowa tego czynnika wyniesie 12 kGm m.
2.4. Należy tu zwrócić uwagę na jedno jeszcze zagadnienie wiążące się z przyjęciem prostokątnego wykresu naprężeń w materiale kruchym (np. w betonie). Bliższa analiza wpływu wykresu naprężeń na wielkość momentu wykazuje, że w przypadku nieprostokątnego wykresu na­stępuje zmiana ostatniego składnika we wzorze (2.2.5). Odpowiednia war­tość momentu zwiększa się nieznacznie (orientacyjnie dla betonu w sto­sunku około 1,2 zależnie od stosunku Można uważać, że przezzastąpienie wielkości Rc przez wielkość Rm korekta ta jest uwzględniona należycie.
2.5. Przeprowadzona wyżej analiza wielkości momentu łamiącego w przypadku zginania łącznie z rozciąganiem wykazała wpływ wielkości siły podłużnej na wartość tego momentu. Odrzucenie ostatniego składni­ka w otrzymanym wzorze doprowadza do zależności liniowej między mo­mentem a siłą podłużną (na rys. 6 linia przerywana). Na pytanie, czy składnik ten istotnie można pominąć, odpowiedzieć może jedynie doświad­czenie. Pomijając go działamy na korzyść bezpieczeństwa ustroju. Stopień zwiększenia współczynnika bezpieczeństwa waha się — w zależności od parametrów apilRc oraz N^/N — teoretycznie w granicach do około lO°/o dla zmieniającego się w żelbecie stosunku api/Rc od 9,0 do około 25,0.
2.6. Omawianą zależność (2.2.5) dobrze będzie dla dalszych rozważań przedstawić w nieco innej, następującej formie:(2.6.1) NM = M [1— W(N,s)] ,gdzie przez ^(N, s) oznaczono wielkość

N N
=~N~— ZMRb’^^' N)‘Wzór (2.6.1) pozwala stwierdzić, że moment jednostkowy dla przypad­ku zginania łącznie z rozciąganiem przedstawić można jako funkcje mo­mentu jednostkowego, obliczonego dla elementu zginanego, przy czym mo­ment ten należy zmniejszyć tak, jak to określa funkcja P (N, s).264



3. Ortotropia wymuszona

3.1. Przejdźmy teraz do rozpatrzenia stanów granicznych układów pły­towych. Rozpocznijmy od najprostszego układu, mianowicie od płyty o zbrojeniu krzyżowym mocy fu w kierunku równoległym do osi u i w kierunku osi v. Moc zbrojenia jest stała, jak to przyjmuje się w zało­żeniach teorii nośności granicznej, a więc odpowiednim kierunkom przy­porządkowane są składowe momentu łamiącego Mv i Mu.Załóżmy, że płyta jest swobodnie podparta oraz że na mimośrodzie eliczonym od osi zbrojenia dolnego na podporze (to znaczy, że pomijamyzmianę mimośrodu wskutek odkształ­cenia ustroju) zaczepione są siły roz­ciągające nu i nv skierowane odpo­wiednio zgodnie z kierunkami osi 
u i u (rys. 7).Natężenie sił rozciągających nu i nv jest stałe, można więc oznaczyć siły, przypadające na jednostkę dłu­gości obwodu odpowiednio przez Nu i Nv (rys. 7).Na płytę działa prostopadle do jej powierzchni obciążenie ciągłe o natężeniu q (u, v) = const.Zakładając z kolei, że odkształcenia w płaszczyźnie prostopadłej do powierzchni płyty są rzędu pozwalającego pominąć je w stosunku do mi- mośrodu e, możemy napisać odpowiednie wyrażenia dla pracy przygoto­wanej sił zewnętrznych i wewnętrznych (rozpatrywanych jako funkcje parametrów x, y, z) na możliwym przesunięciu ów odcinka AB linii za­łomu.Równanie pracy sił zewnętrznych będzie tu takie samo, jak dla przy­padku płyty zginanej, natomiast siły podłużne pojawią się w wyrażeniu dla pracy sił wewnętrznych przez wprowadzenie zamiast momentów 
Mu i Mv odpowiednich momentów \MU oraz nMv na podstawie wzoru (2.6.1). Tak więc zagadnienie nośności granicznej w przypadku stałych sił rozciągających nu i nv, zaczepionych na obwodzie elementu, dało się spro­wadzić do przypadku nośności granicznej elementów zginanych.

3.2. Aby omówić dokładniej ten wniosek, napiszmy odpowiednie skła­dowe momentu jednostkowego w przypadku działania sił rozciągających przy użyciu wzoru (2.6.1) w formie następującej:(3.2.1) AM,. = MP|1 —^(W,„s)]. 265



Płyta zginana charakteryzuje się wskaźnikiem ortotropii
Działanie sił rozciągających zmieniło wyrażenie dla jednostkowych momentów, które przyjęło obecnie postać podaną w (3.2.1); zmieniło więc tym samym jak gdyby ortotropię struktury elementu, dając w wyniku element o innej strukturze. Ortotropię tej struktury nazwiemy ortotropią wymuszoną, rozumiejąc przez to, że wywołana ona została przez wspom­niane siły rozciągające.Wskaźnik ortotropii wymuszonej, oznaczmy go przez ^K, wyniesie/o o 1 *Pu (Nu, s) __  »t \(3.2.3) x uj tKt oY~ F(Nu, Nv,s)xM„ 1—(Nv,s)i wyraża się przez wskaźnik ortotropii dla zbrojenia w kierunkach pokry­wających się z kierunkami osi odniesienia (u, v) oraz za pomocą pewnej funkcji zależnej od sił rozciągających Nu i Nv oraz struktury płyty s.3.3. Dla przypadku równomiernie rozłożonych sił rozciągających funk­cja F (Nu, Nv, s) jest stała i stanowi pewien współczynnik. Zachowany jest więc w tym przypadku warunek stałości momentu granicznego na jed­nostkę długości i obliczanie zależności charakteryzujących stany granicz­ne tak obciążonych układów przeprowadzać można w oparciu o znane wzory z teorii stanów granicznych ustrojów płytowych zginanych ). Wy­kazaliśmy więc, że układy poddane zginaniu i rozciąganiu za pomocą przekształcenia wskaźnika ortotropii rozpatrywać można jako elementy zginane. Przy stałych wartościach momentów i sił podłużnych jest to przekształcenie liniowe określone przez równanie F (Nu, Nv, s) = const.

3
3.4. Dla ilustracji rozpatrzymy następujący przykład. Płyta kwadrato­wa o boku a jest obciążona równomiernie i posiada zbrojenia równej mo­cy w obydwu kierunkach. Siły rozciągające na jednostkę wynoszą 

Nlt = Nv~N, a więc Nx = x = l. Przy V/= 1/2 natężenie obciążenia granicznego wyniesie

3) Por. np. W. Olszak, [9], [10].

_ 24 nM _ 24 M 11 ^(N, s)J _ 12 M
a2 d~ - a2 ’gdzie M oznacza wartość momentu granicznego, wyznaczonego dla płyty zginanej bez działania sił rozciągających.
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4. Niejednorodność struktury elementu

4.1. W pierwszym punkcie niniejszej pracy stwierdziliśmy, że przy roz­patrywaniu stanów granicznych układów mimośrodowo rozciąganych wy­niknie konieczność zajęcia się problemami niejednorodności struktury układu. Wniosek ten stanie się oczywisty, gdy wyobrazimy sobie płytę prostokątną znajdującą się w dowolnych warunkach podparcia a pod-daną poza działaniem obciążeń q (u, v) również działaniu sił rozcią­gających nu i nv zależnych od miej­sca. Załóżmy jeszcze, że funkcja określająca zmianę tych sił jest iden­tyczna na obydwu równoległych do siebie bokach płyty (rys. 8).Założenia takie dla interesują­cych nas zbiorników o rzucie po­ziomym prostokątnym dla celów praktycznych są spełnione w przy­padku symetrii układu i obciążenia.Siły jednostkowe rozciągające Nu Rys. 8

Nv, działające w kierunku równo-ległym do osi układu odniesienia, są odpowiednio funkcjami zmiennej u i u; oznaczać je w dalszym ciągu będziemy
(4.1.1) t>+i

Nu — I n (u) d v,
V
u + 1

Nv — I n(u)du.
UTak więc na podstawie związków (2.2.5) oraz (3.2.1) możemy napisać wyrażenie określające moment jednostkowy na odcinku (u + 1) — u oraz 

(u + 1) —uw formie
V+1

M v+i f n(v)dv
nMv = Mv——- | n(u)dv + -——------[Wg,—- f n(v)du|,

IV rrf • Zi Lic ”
V v(4-1.2)

M «+i f n(u)du a+1
nMu = Mlt — AI u (u) d u+ “ ----- [Ngr I n(u)du].

& u • u

4.2. Bezpośrednio z podanych wzorów wynika, że i wartości odpowied­nich momentów NMU oraz nie są stałe, mimo iż zbrojenie płyty jest rozłożone równomiernie, dzięki czemu Mu, Mv i Ngr są stałe. 267



Zapisując powyższe wzory w skróconej postaci otrzymamy
(4.2.1) NMU = MU [1—^s)],

NMV = MV [1 — ^(u, s)] ,gdzie np.
V 4 1

v+t f n(v)dv V+1(4.2.2) ^(v,s) = — I n(v)dv + 17 —[Wgr- I n(u)dv] ,
IV gr J lVlv K>C Js V Vprzy czym y>(v,s) jest inną funkcją niż poprzednio występująca ip(N,s) Ogólna postać wzorów ulega odpowiednim uproszczeniom zależnie od kształtu funkcyj n (u) i n (r).Badanie układów o jednorodnej strukturze, poddanych działaniu sił rozciągających, może być zastąpione badaniem układów niejednorod­nych4). Jak już wyjaśniliśmy, niejednorodność tę nazwiemy wymuszoną.

4) Podstawy teorii plastyczności ciał elasto-plastycznych niejednorodnych wyło­
żone są w pracy W. Olszaka, [13].

4.3. Ponieważ zagadnienie stanów granicznych układów niejednorod­nych nie jest jeszcze w pełni opracowane, poświęcimy nieco uwagi temu tematowi. Nawiążemy przy tym do prac [18] oraz [9]. Według tych prac stan graniczny układu niejednorodnego osiągnięty będzie wówczas, gdy w każdym punkcie linii załomu naprężenia w materiale ciągliwym (stali) osiągną granicę plastyczności, zaś w materiale kruchym (betonie) wystą­pią odpowiednie naprężenia równe granicy wytrzymałości na ściskanie (rys. 4 i 5). Szczegóły dotyczące wymiarowania takiego przekroju pomi­jamy.Stosując do układu w chwili jego przekształcenia się w mechanizm przez wyczerpanie nośności zasadę zesztywnienia możemy rozpatrzyć wa­runki równowagi poszczególnych płatów. Ograniczmy się na razie do płyty prostokątnej o siatce zniszczenia podanej na rys. 8.Zastosowanie równań równowagi zmusza do uwzględnienia po­za momentami zginającymi również występujących w rzeczywistych ukła­dach sił poprzecznych i momentów skręcających, które działając w fazie sprężystej mają wpływ na ukształtowanie się siatki zniszczenia (w tej sprawie por. pracę [14], p. 4 i 5). Działanie tych uogólnionych sił zastąpić można działaniem pewnych umownych wielkości, zwanych siłami węzło­wymi, które uważamy za zaczepione w miejscach zbiegania się linij zało­mów. Odkładając do następnego p. 5 omówienie tych zagadnień ograni­czymy się tu jedynie do stwierdzenia, że w punktach, gdzie linie jedna­
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kowego znaku zbiegają się, zaś obciążenie jest ciągłe, te siły węzłowe rów­ne są zeru. Ma to więc miejsce np. w przypadku przedstawionym na rys. 7.Odpowiednie równania równowagi przyjmują dla płata pierwszego i drugiego odpowiednio postać następującą:
a,

I \M„ (u) + M, (v)| d u = JJ q(u,v)vdudv, 
ó i(4.3.1)

I + M2(u)l dv = J | q (u, u) u dudv ó uoraz analogicznie dla pozostałych płatów.W podanych wzorach przez Mu i Mv oznaczono momenty w pewnym przęśle, zaś przez Mi (i = 1, 2, 3, 4) odpowiednie momenty na podporach. Na podstawie (4.3.1) uzyskujemy 4 zależności, z których przy zna­nych stosunkach momentów Mu, Mv i Mt wyznaczyć można już bezpośred­nio interesujące nas parametry x, y, z, charakteryzujące siatkę zniszcze­nia. Ponieważ jednak układ otrzymanych równań jest na ogół zawiły, wygodniej jest przyjąć odpowiednie wartości parametrów, a następnie znaleźć wartości odpowiednich stosunków (por. np. [11]).
Zilustrujemy przedstawione postępowanie przykładem (rys. 9). Wyobraźmy so­

bie płytę prostokątną, zginaną, swobodnie podpartą, której zbrojenie f równoległe 
do osi u oraz zbrojenie fv równoległe do osi v zmieniają się według zależności

Równania równowagi są następujące:

(4.3.4)

(4.3.5)

pbXj pb^>

M„„ I 7 du=^ (3a 4x,■ o “ 269



Z równania (4.3.4) bezpośrednio wynika, że = x2. Przyjmując = Mv i przyrów­
nując odpowiednie wyrażenia dla momentów, otrzymamy

a(3a — 4x|
X'~ 8

Stąd x = 0,415 a. Dla przypadku jednorodnej płyty izotropowej (Mu = Mv = const) 
odpowiednia odległość wynosi x = 0,325 a.4.4. Teoretycznie jest rzeczą obojętną, czy mamy do czynienia [z nie­jednorodnością wywołaną, jak w rozpatrywanym wyżej przykładzie, od­powiednim ułożeniem zbrojenia, czy też działaniem sił rozciągających, a więc niejednorodnością wymuszoną.Warto nadmienić, że z punktu widzenia teorii stanów granicznych układów zginanych obojętnym jest również dla nośności układu miejsce ułożenia zbrojenia, ważną jest jedynie jego ilość 5)- Stopień dokładności tego wniosku sprawdza się doświadczalnie- Problem ten jest szerzej omó­wiony w pracach [9], [14] i [18].

5) Pochodzi to stąd, że o zachowaniu się ustroju decyduje pewna wielkość wy­
padkowa.

Natomiast niejednorodność struktury ma wpływ na układ linij zało­mów. Wynika to z równań (4.2.2).Tak na przykład dla płyty prostokątnej swobodnie podpartej i obcią­żonej równomiernie oraz poddanej działaniu sił rozciągających wyraże­nie na odległość daszku x jest funkcją odpowiadającą niejednorodności. Gdy weźmiemy pod uwagę płytę o niejednorodności wymuszonej, dla której na przykład wielkość NMU dana jest przez (4.2.1), odległość daszku linij załomów będzie
b

1/ 6.1 Ma x 11 — ’7yi (u, s)] d v
'' ,

Warto zaznaczyć, że powyższy sposób pozwala wyznaczyć szereg zależności po­
między parametrami w funkcji momentów łamiących. Tak na przykład bardzo żmud­
ne rachunkowo rozwiązanie płyty prostokątnej swobodnie podpartej wzdłuż trzech 
boków i zamocowanej na czwartym boku można znacznie uprościć korzystając z ana­
logicznych zależności do podanej w (4.3.4) i (4.3.5). Gdy mamy do czynienia ze stałymi 
momentami Mn i Mv w polu oraz M'v na zamocowanej podporze, stosunek odległości 
daszku x2 od krawędzi zamocowanej do odległości X] oraz od krawędzi swobodnie 
podpartej do tejże odległości jest

(4.4.2) V1 + ż.
Ponieważ wartość stosunku momentu M'v Mv = X jest zawsze określona, zagad­

nienie prowadzi do równania z jedną niewiadomą, znacznie prostszego od równań
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znalezionych na innej drodze. W przypadku obciążeń nie rozłożonych równomiernie 
stosunek tych odległości wyraża się wzorem bardziej skomplikowanym na skutek 
występowania funkcji rozkładu obciążeń. Niemniej jednak podana metoda i w tym 
przypadku może być zastosowana.4.5. W przypadku układów o niejednorodnej strukturze można również posługiwać się wyprowadzonymi równaniami stosując zasadę prac przy-' gotowanych. Parametry siatki zniszczenia znajdujemy z warunku maksy­malnego oporu plastycznego:.. _ dA’M„ dA-M„(4.5.1) ~= dr dr "°-1/ । Iz łC 2 Lz i]Ponieważ wyrażenia dla NMU są często funkcjami złożonymi, droga ta okazać się może dłuższa niż przy stosowaniu równań równowagi. Dobre wyniki daje kombinowanie obydwu sposobów. Korzystanie z równań równowagi wymaga wzięcia pod uwagę tzw. sił węzłowych.To zagadnienie omówimy dokładniej, gdyż wymagają tego podane dalej metody obliczania stanów granicznych zbiorników prostokątnych.

5. Zagadnienie sił węzłowych5.1. Zagadnienie sił węzłowych wiąże się z działaniem sił poprzecznych wzdłuż linij załomów oraz momentów skręcających na odcinkach mię­dzy sąsiednimi punktami przecięcia się kilku takich linij. Rozpatrywać będziemy układy, znajdujące się pod działaniem obciążeń ciągłych. Po­stępowanie przedstawione tutaj oparte będzie na rozważaniach K. W. Johansena, [6], [7], dotyczących zagadnień płyt o strukturze jed­norodnej z zastosowaniem do układów niejednorodnych.5.2. Siatka zniszczenia układu jednorodnego i izotropowego o stałej wartości momentu granicznego jest wektorowym obrazem momentów zniszczenia. Na odpowiednich odcinkach linij załomów między poszcze­gólnymi węzłami, w których zbiega się więcej jiiż dwie linie załomów, prócz momentów zginających wskutek przechodzenia ustroju przez fazę sprężystą mogą działać siły poprzeczne i momenty skręcające (por. np. [4], [6]). Działanie ich na danym odcinku zastąpić można przez dwie siły zaczepione w węzłach. Zgodnie z K. W. Johansenem, [6], oznaczać będziemy te siły przez Q i Q', przy czym siły skierowane ku górze oznaczać będziemy kropką, zaś działające ku dołowi krzyżykiem.Rysunek 10 (por. [6]) przedstawia właśnie taki fragment siatki zniszcze­nia, gdzie płaty oznaczone są literami A, B, C, zaś odpowiednie odcinki linij załomów między węzłami przez a, b, c. Strzałki oznaczają kierunek wektora momentu. Ponieważ układ jest w równowadze granicznej, wie- lobok momentów jest zamknięty. 271.



Ustalić można następujące związki (rys. 10):
(5.2.1) Qi — Qb Qc,Q = Q c Q« , 

Qc == Ca Qb •Ponieważ w rozpatrywanym obszarze nie działa żadna siła zewnętrzna, to(5.2.2) Q.i + Qb + Qc —0 .Aby wyznaczyć siły węzłowe w zależności od ukształtowania linij za­łomów, weźmy pod uwagę węzeł o układzie linij przedstawionym na rys. 11. Ponieważ mamy układ niejednorodny i anizotropowy, wprowa­dzimy składowe momentów granicznych, przedstawione w postaci pew­nych funkcyj, których tu nie precyzujemy. W sąsiedztwie linij załomów momenty te są bliskie wartościom granicznym.

Aby wyznaczyć wielkość siły węzłowej załóżmy, że przesunięcie wę­zła A o współrzędnych (0, 0) do punktu A' (u0, v0) jest takim przesunię­ciem, dla którego momenty wzdłuż linij załomów oznaczonych na rysun­ku kreską przerywaną nie uległy zmianie.Kierunki załomów AB i AC są dodatnie, zaś kierunek AD jest ujemny. Wektory momentów mają więc kierunki przeciwne. Wskutek przesunię­cia węzła do punktu A' zaobserwujemy przyrost siły poprzecznej. Przyrost ten możemy pominąć, gdy d s -> 0. Równocześnie wzdłuż linii AA' dzia­ła pewien moment skręcający d 9)ł..272



Równanie sumy momentów względem osi AB jest następujące:
VB(5.2.3) Q, ds sin a = d 3)1 sin a + J Mv sin ó dv — I Mv sin ó dv + ó v„

uB uB u„
+ I M'v sin <5 dv + I Mu cosódu + I Mu cos ó du + / M'ucos Ód u = 0 0 u0 o s

«0= d3)i sin a + I (Mu + МУ sin ó dv + f (Mu + МУ cos Ó d u . o oPonieważ odcinek AA' jest równy ds można wielkości du i dv przed­stawić w zależności od ds. Gdy ds—> O, wartość siły węzłowej, związanej z linią załomu AB, wyrazić można jako funkcję składowych momentu łamiącego, obowiązującego w rozpatrywanym węźle A. Tak więc siła wę­złowa jest następująca:
(5.2.4) d

Q] = ~ + (Mue + M'J sin ó sin (ó — u) sin a
+ (Mu., + Mu) cos Ó cos (ó — a) sin aW sposób podobny z trójkąta АСА' ułożymy równanie momentów wzglę­dem prostej AC:

(5.2.5) dD)i
ds -(м„ + му

— (M„° + Mu) cos у cos (fi —y)
sin (i

Na podstawie (5.2.1) otrzymamy wyrażenie na siłę węzłową Q.i
(5.2.6) вл - C, — Q. = (M,, + МУ U“ - sin 0 — «Н sin a siny 1

+ (Mu„ + Mu) cos ó ,—--- cos (o — a) +sin a cos у sin 3 cos (fi — y)
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Na podstawie analogicznych rozważań uzyskać można wyrażenia na 
Qb i Qc- sin ó cos ó= —(M^ + M^sin^ —a) .----- (M«.+ MUcos(d —a) . ,sin a sm a(5.2.7)

Qc = — (Mv„ + Mijsin (^ - y) -m y -(M„. + Mi)cos (0 — y) C°S£. sm p sm pWe wzorach (5.2.4) - (5.2.7) wielkości momentów oznaczone Mu., dotyczą jednostkowych momentów w punkcie A (0, 0).5.3. Pomijając obliczenia sił węzłowych dla przypadku ogólnego ogra­niczymy się jedynie do przykładów ważnych dla obliczania płyt prosto­kątnych.Jeśli chodzi o linie załomów w polu między podporami, gdy środkowa linia załomu wyznaczona przez kierunek AA' jest równoległa do osi u, to wówczas ó — a oraz y—^ i wzór na wartość siły węzłowej Qa znacz­nie się upraszcza z powodu zniknięcia wyrazu związanego ze składową Mv.Będziemy mieli(5.3.1) QA = (MU, + Mi) (ctga + ctg£).Dla tego samego przypadku, gdy środkowa linia jest równoległa do osi u, odpowiednie siły węzłowe QB i Qc będą
(5.3.2) “I” Mu„) ctg a , 

Qc = — (M^ + Mi) ctg/ł.Powyższe przypadki ilustruje rys. 12- W przypadku rozpatrywanej klasy ukła­dów niejednorodnych ważne jest więc również następujące twierdzenie dla ukła­dów jednorodnych: jeśli zbiegające się 
w węźle linie załomów mają ten sam znak,

a nie działa w nim żadna siła skupiona, to wszystkie siły węzłowe są tam 
równe zeru. Słuszności powyższego twierdzenia można dowieść wstawiając do równań (5.2.6)-(5.3.2) wartość M' =— M (momenty M i M' miały z za­łożenia znaki różne).Dla rozpatrywanego w poprzednim rozdziale przykładu można było na podstawie powyższego napisać równania (4.3.4)-(4.4.2).Ze wzoru (5.2.6) wynika bezpośrednio, że gdy a + fi = n, QA = 0, co jest oczywiste dla przypadku swobodnego brzegu lub swobodnego pod­parcia. Stąd też(5.3.4) Qn = — Qc-274



Jeśli jeszcze przyjmiemy warunek a+fl = ó = 7T, to ze wzoru (5.2.6) (nie­zależnie od tego, która linia załomu jest równoległa do osi u) otrzymamy następujący wzór na wartość sił węzłowych w przypadku swobodnego brzegu zbiornika:(5.3.5) Qß = — (M„„ + ctg a .Podane wzory, pozwalające wyznaczyć wielkość sił węzło­wych dla płyt ze swobodnym brzegiem, odnoszą się do przy­padku, gdy brzeg swobodny jest równoległy do osi u (np. rys. 13).Dla bardziej skomplikowa- wanego podparcia i dla płyt o strukturze niejednorodnej odpowiednie wyrażenia mogą ulec zmianie.Wzór (5.3.5) jest interesują­cy, gdyż wskazuje na zależność siły węzłowej jedynie od momentu jednostkowego na krawędzi; łatwo ją wobec tego wyznaczyć.5.4. Należy zwrócić uwagę, iż niezależność siły węzłowej od struktury Ptyty (jednorodnej lub niejednorodnej) jest tylko pozorna. Charakter siat­ki zniszczenia wpływa na wielkość siły. We wspomnianym wzorze zależ­ność tę reprezentuje kąt nachylenia linii załomu do danego układu. Jak wynika z poprzednich rozważań oraz przykładu, jest to zależność związa­na z niejednorodnością układu.Gdybyśmy założyli, że momenty jednostkowe wzdłuż linij AB i AC (rys. 11) nie są równe, to wzory na wielkości siły węzłowej byłyby po­dobne do wzorów (5.2.6) z tą jednak różnicą, że przed nawias kwadratowy nie można by wynieść czynnika Mv, gdyż mielibyśmy teraz dwie różne wielkości Mv„ (.A B) i Mv„ (B C). Samo wyznaczenie sił węzłowych nie na­stręczałoby trudności.5.5. Dla obliczeń jest ważny kierunek działania sił węzłowych. Na pod­stawie zależności (5.3.5) dla płyty na trzech bokach swobodnie podpartej bądź też utwierdzonej, a na pozostałym boku swobodnej, przy M,',„ = 0 wielkość siły, występującej przy brzegu (rys. 13), będzie(5.5.1) Qs = — Mu„ ctg a = — Ma^.
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W płacie, w którym linia załomu tworzy z wolnym brzegiem kąt ostry, siła ta jest skierowana ku dołowi, zaś w narożu o kącie dopełniającym do 180° siła ta na podstawie (5.3.4) jest skierowana ku górze. Pamiętając o sposobie znakowania możemy napisać(5.5.2) Qs — Mu„

Powyższe wiadomości o siłach węzłowych, które koniecznie należy uwzględniać, gdy zależności występujące w stadium granicznym chcemy zbadać za pomocą równań równowagi, wystarczą do rozwiązywania pew­nych zadań, w szczególności do opracowania metody obliczania stanów granicznych zbiorników prostokątnych.Warto zwrócić uwagę, że za pomocą sił węzłowych można badać wpływ tworzących się naroży na nośność płyty.
6. Stany graniczne zbiorników prostokątnychOgraniczymy się jedynie do podania kilku przykładów obliczania sta­nów granicznych zbiorników prostokątnych.Zakładać będziemy, że rozkład obciążeń prostopadłych do powierzchni w chwili osiągnięcia stanu granicznego jest taki sam, jak na początku. Oznacza to, że pomimo powstawania przegubów (czy «zawiasów») pla­stycznych, ciśnienie wewnętrzne w zbiorniku nie spada. Pomijamy rów­nież wpływ odkształceń przy wypisywaniu równań równowagi płatów.

Przykład pierwszy. Weźmy pod uwagę zbiornik o wymiarach w rzucie poziomym a X a i wysokości b, poddany ciśnieniu typu hydrostatycznego. Ściany boczne zamocowane są w dnie, zaś u góry podparte przegubowo (rys. 14).Na rysunku podana jest jedna ze ścian bocznych zbiornika. Symetria układu i obciążenia pozwala na rozpatrzenie stanu granicznego omawia­nego Zbiornika na podstawie stanu jednej ściany bocznej. Momenty jed­nostkowe My i Mu określone przez moc zbrojenia są znane. Siły rozciąga­jące działają tylko na boki 2 i 4, zaś funkcja rozkładu tych sił wzdłuż boków nie jest znana. Znana natomiast może być całkowita wartość siły rozciągającej, działającej na ściankę na odcinku a. Aby tę wartość obliczyć, wprowadzimy zastępczą funkcję rozkładu sił wewnętrznych, określoną na podstawie warunku równowagi płata typu II. Z powodu symetrii ukła­du i obciążenia oraz niewystępowania sił węzłowych całkowita siła rozcią­gająca na rozpatrywaną ściankę w kierunku osi u jest dana przez obcią­żenie, przypadające na bliźniaczy płat sąsiedniej ścianki.276



Funkcja obciążeń ścianek zbiornika jest określona przez kształt wy­kresu obciążeń oraz kształt płata II 6) i wyraża się wzorem

6) Słuszne jest to jedynie dla zbiornika kwadratowego, gdyż przy prostokątnym 
funkcja sił rozciągających określona będzie — poza obciążeniem — przez kształt 
odpowiedniego płata sąsiedniej ścianki zbiornika.

(6.1) p(v) = pjl—yj.Zastępcze siły rozciągające określone są przez zależność(6.2) u* (v) = p (u) x (v).Na odcinku jest

Rys. 14Po określeniu sił rozciągających znamy funkcję określającą zastępczą niejednorodność momentów NMU i NMV- Znajomość dokładnej funkcji nie jest konieczna, gdyż występuje ona pod całką. Funkcja zastępcza musi być tak dobrana, aby całka na długości odpowiedniego boku dawała takie same wartości, jak dla ścisłej funkcji niejednorodności. Postulat ten jest speł­niony przy zachowaniu warunków równowagi. Możemy teraz wyznaczyć parametry siatki zniszczenia, jeżeli dodatkowo znane są Mu, Mv oraz Mi 
(i = 1, 2, 3, 4).
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Wyprowadzimy równania równowagi rozpoczynając od płata III.Na pasku o szerokości dy i długości a — 2£ płata III działa obciążenie
d P, = p0 (a — 2 5) d i/.

Ponieważ f = to równanie równowagi przy stałym M„ jest
yr ri I 2 x n\ u? ia x.\(6.5) M„a = Jp— a--------- \ridr) = _ ).o b \ yi / b \ 3 2 /W sposób analogiczny napisać możemy równanie dla płata I, przy czym wykres obciążenia w kształcie trapezu można będzie uważać za sumę ob­ciążenia równomiernego i trójkątnego. Pozwoli to skorzystać z wyniku podanego przez (6.5) oraz z prostych zależności dla obciążeń równomier­nych.Będziemy mieli

Pn yi Pn yź(6.6) M„a +M,a= —2(3a —4x)---- --(2a-3rl.
Podobnie dla płatów II i IV znajdziemy równania*(6.7) f(xMl, + xMi)dv = 0 f Po'/ £2 , , f L V\^ poX\,9 >= •' + Po i-h Td®= 94 *b + •o 2 o o \ u iW powyższym wzorze składowe momentów sił wewnętrznych wystę­pują w równaniach równowagi pod całką. Pozwala to zastąpić układ nie­jednorodny przez jednorodny, gdzie funkcja 77, określona wzorem (4.2.2), będzie stałym współczynnikiem na całej wysokości boku b. Określmy całkowitą siłę rozciągającą, działającą na bok b. Z równań (6.3) i (6.4) uzyskujemy(6.8) Nb = fp0/l — +
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Średnia wartość siły na jednostkę wysokości ścianki zbiornika wy­niesie(6.9)Poszukiwanie siatki zniszczenia, spełniającej warunek maksymalnego oporu plastycznego, jest uciążliwe, łatwiej natomiast przyjąć, że parame­try tej siatki są znane i szukać związanych z nimi wartości momentów granicznych na odpowiednich liniach załomów (por. np. [10]). Decydując się na taką zasadę postępowania i odkładając do innej okazji traktowaniezagadnienia z uwzględnieniem twierdzenia o maksymalnym oporze pla-stycznym przyjmiemy, że x = y = b/2, a = 2 b. Wówczas z równania (6.5) otrzymamy wartość momentu(6.10) .. p(, b3 /2 b b \ 5 ,Mu — 8 ba ( 3 — 4 ) — 192 Po * ’
Podobnie wartość Mi na podstawie (6.6) będzie(6.11) M„ + M{= —P° -----—gy P„ b2 = ~~ P„ b- .

■fu Xy 1 yStąd(6.12)
O £Na podstawie (6.9) średnia wartość siły na jednostkę wyniesie dla boku b

(6.13)
Z zależności (6.7) przy założeniu działania siły równomiernie rozłożonej o wartości podanej przez (6.13) otrzymamy średnią wartość momentu ła­miącego(6.14) n b2 /, b \ n b24.24b (b + 2 yl = 48 •
Zakładając, że zbrojenie w kierunku osi u na górze i na dole jest iden­tyczne, otrzymamy(6.15)
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Jeśliby przyjąć liniową zależność między momentem łamiącym a siłami rozciągającymi (linia przerywana na rys. 5), tzn. jeżeli pominiemy drugi wyraz we wzorze (4.2.2) określającym wpływ sił rozciągających na niejed­norodność wymuszoną ustroju, zadanie można uważać za rozwiązane.Podstawiając wartości liczbowe b = 2m w przypadku ciśnienia hy­drostatycznego przy materiale o ciężarze na jednostkę objętość’ y = 0,8 t/m2 (p0 = 1,6 t/m2) znajdziemy5M„ = 1600-2,o-= 167 kGm/m,
J. «7 ZuM, = -1- 1600 • 2,02 = 200 kGm/m, 
O Z

NMV = ,vMt = g- 1600 • 2,02 = 67 kGm m.
W projekcie przewidujemy ze względu na powyższe momenty od­powiednie zbrojenie. Obliczamy je nie zwracając uwagi na obecność sił rozciągających. Poza tym w kierunku równoległym do osi u projektuje­my odpowiednie zbrojenie przenoszące siłę rozciągającą Nb, która na ca­łej wysokości ścianki wynosi

3 3Nb = pb2 = 1600 • 2,02 = 800 kG.24 24Projektowanie zbrojenia przy uwzględnianiu obydwu wyrazów we wzorze (4.2.2) jest nieco dłuższe, ale również nie przedstawia trudności, jeśli znamy wszystkie wielkości występujące w tym wzorze.
Przykład drugi. Określimy siły występujące w stanie wyczerpania nośności zbiornika o jednym brzegu swobodnym. Wymiary przyjmujemy takie same jak w przykładzie poprzednim (rys. 15).Zastępczą funkcją rozkładu sił podłużnych na podstawie zależności (6.3) oraz (6.4) będzie (6.16) n (u) = p„Siła węzłowa jest stała, ponieważ Mu = const, a linia załomu, docho­dząca do swobodnego brzegu, jest skierowana dodatnio; wartość siły wy­nosi (6.17) Q,s — Mn
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Równania równowagi są następujące: dla płata I

Rys. 15Przyjmując a = 2b, x = 2b/3 oraz MU = M} i ,\MV = yM2 = aM4 otrzy­mamy
4 2 / 2 2 h \(6.20) - M„b+M„2b+—M„b = p„b’ - b ,O O \ U O Zi I

M„ = M, = kGm m1 oraz(6.21) 2 f NMv dv= kGm.
1 o

0Tak więc średni moment na wysokości ścianki b tak na podporze, jak i w przęśle wyniesie(6.22) .vM„ = a-M« = a-M4 = P°^~ kGm m.
36Chcąc znaleźć całkowity moment działający na całej wysokości ścian­ki należy powyższą wartość pomnożyć przez wysokość b i odpowiednio dla tego momentu zaprojektować wymiary i całkowite zbrojenie prze­kroju. 281



Przyjmujemy, podobnie jak w przykładzie poprzednim, liniową zmia­nę momentów «M, sił rozciągających. Prowadzi to do niezależnego zbro­jenia na zginanie oraz niezależnego zbrojenia na rozciąganie. Jak wynika z rozważań w p. 3 i 4, takie założenie jest dopuszczalne i nieznacznie wpływa na zwiększenie stopnia bezpieczeństwa (por. rys. 6).Całkowita siła działająca wzdłuż boku wyniesie
(I ' 'Przytoczone obliczenie opierało się na założeniu, że w punkcie zbiegu boków zamocowanych Mu =— Mu. Tak więc siła węzłowa w tym naro­żu płata trójkątnego nie występuje. Możemy się o tym również przeko­nać zestawiając równania równowagi, tj. rzutując siły na płaszczyznę prostopadłą do powierzchni rozpatrywanej płyty.Podane przykłady wskazują, jak jasny jest tok obliczania zbiorników w stanie granicznym. Nadto mamy możność wyznaczenia w sposób pro­sty wielkości, co prawda sumarycznych, sił rozciągających. O ile chodzi o funkcję rozkładu zbrojenia przejmującego siły rozciągające, to kiero­wać się należy oczywiście rozkładem tych sił w fazie sprężystej, co nie do­prowadzi do nagłych przegrupowań sił wewnętrznych.Bliższe badania zbiorników wykazują, że istnieje możliwość uproszczeń wzorów dla najbardziej typowych funkcyj ciśnień (mury oporowe, silosy), i opracowania odpowiednich tablic współczynników określających wypadkowe sił rozciągających oraz momenty jednostkowe- Analiza «eko­nomicznego» stosunku ortotropii w oparciu o sprężyste stadium pracy układu pozwoli wyznaczyć parametry, wiążące się z wymiarami tego układu i określające siatki załomów. Parametry te, określone w formie współczynników, ułatwią praktyczne stosowanie teorii stanów granicz­nych do obliczania zbiorników. Projektowane badania doświadczalne po­zwolą ocenić poprawność przyjętych założeń.
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Резюме

ВОПРОСЫ НЕСУЩЕЙ СПОСОБНОСТИ 
РАСТЯГИВАЕМЫХ И ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ

С ПРИМЕНЕНИЕМ К ТЕОРИИ ПРЯМОУГОЛЬНЫХ РЕЗЕРВУАРОВРабота касается вопросов несущей способности элементов, под­вергаемых одновременному изгибу и растяжению. Здесь учиты­ваются системы, построенные из хрупкого и тягучего материалов, так что хрупкий материал работает как сжимаемый, а тягучий — как растягиваемый, именно так, как В. О л ь ш а к рассматривал предель­ное равновесие пластинок, [10], [11] и [12].Рассмотрение предельного состояния элемента такой системы по­зволяет установить, что учет растягивающих сил (мембранного состоя­ния) ведет к изменению показателя ортотропии системы, вызывая так называемую вынужденную ортотропию. Одновременно (в зависимо­сти от формы функции, задающей распределение растягивающих сил по периметру пластинки) может возникнуть изменение структуры эле­мента из однородной на неоднородную. Эта неоднородность точно определена условиями нагрузки и параметрами, изображающими струк­туру рассматриваемого элемента.В связи с учетом — кроме учета изгиба — действия растягиваю­щих сил, рассматривается вопрос узловых сил для неоднородных си­283



стем, подобным образом, как это сделал К. В. Иогансен для одно­родных изгибаемых пластинок.После выяснения теоретических вопросов несущей способности рас­тягиваемых и изгибаемых элементов, рассматриваются предельные со­стояния двух прямоугольных резервуаров,’ основываясь на существу­ющих решениях для изгибаемых пластинок.
Summary

SOME PROBLEMS OF LIMIT ANALYSIS OF ELEMENTS SUBJECTED
TO TENSION AND BENDING AND THEIR APPLICATION TO THE THEORY 

OF RECTANGULAR TANKSThis paper concerns the problems of the limit loads of elements sub­jected to simultaneous bending and tension. Structures made from two materials, brittle and ductile, are considered, the brittle material being subjected to compression and the ductile one — to tension on the same way as W. Olszak had considered the limit analysis of bending plates, [10], [11] and [12].An investigation of the limit state of such an element permits to observe that if tensile forces (the membrane state) are taken into consi­deration, a change of the index of orthotropy of the structure occurs resuting in the so called «forced» orthotropy. At the same time the phe­nomenon of change of the homogeneous structure of the element into a heterogeneous one can occur, depending on the form of the function determining the distribution of tensile forces on the periphery of the plate. This heterogeneity is strictly determined for the given conditions of load and the given parameters determining the structure of the consi­dered element.Considering the action of the tensile forces,, the problem of knot for­ces for heterogeneous system is investigated in a way similar to that of K. W. Johansen for homogeneous plates subjected to bending.After the explanation of the theoretical problems concerning limit load of elements subjected to tension and bending, limit states of two rectangular tanks are considered on the basis of existing solutions for plates subjected to bending.
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1. Sformułowanie zagadnienia)*

*) Praca przedstawiona na Kursie Naukowym Zalkładu Mechaniki Ośrodków Ciąg­
łych IPPT PAN w Międzyzdrojach w sierpniu 1954 r.

Teoria nośności granicznej pręta o przekroju kołowym, poddanego jednoczesnemu rozciąganiu i skręcaniu, została opracowana przez N a- d a i a, [8], [9], oraz Rżanicyna, [11], którzy posłużyli się rów­naniami Hencky’ego (teorią odkształceń plastycznych); do analo­gicznych wyników doszedł H i 1 1, [4], biorąc za punkt wyjścia równania R e u s s a (teorię płynięcia plastycznego). Rozważania te uogólnił G a y- d o n, [3], zajmując się przypadkiem jednoczesnego rozciągania i skrę­cania pręta o przekroju kołowym w zakresie sprężysto-plastycznym G a y d o n, podobnie jak i H i 1 1, posłużył się teorią plastyczności R e u s s a, przyjmując dla uproszczenia, że współczynnik P o i s s o- n a v wynosi ’/2 i jest stały zarówno w zakresie sprężystym, jak i pla­stycznym. Rozważył on różne przypadki kolejności działania obciążeń, ograniczając się jednak do wyznaczenia rozkładu naprężeń i znalezienia zależności momentu skręcającego i siły podłużnej od wydłużenia i kąta skręcenia, a nie zajmując się np. równie interesującym wyznaczeniem za­leżności odwrotnych.Celem niniejszej pracy jest rozwiązanie inaczej postawionego za­gadnienia.Przypadek jednoczesnego rozciągania i skręcania pręta można scha­rakteryzować pięcioma parametrami: momentem skręcającym Ms, siłą podłużną N, promieniem granicznym c (oddzielającym strefę plastyczną od sprężystej), wydłużeniem względnym e i kątem skręcenia na jednost­kę długości 0. Parametry te są uzależnione od siebie za pomocą trzech związków — dwóch równań równowagi myślowo odciętej części pręta oraz warunku plastyczności; G a y d o n przyjmuje b i 0 za zmienne niezależne, ujmując pozostałe jako ich funkcje. W niniejszej pracy posu­niemy się dalej; ponieważ wspomniane wyżej związki przedstawione są funkcjami monotonicznymi ze względu na obie występujące w nich zmienne niezależne i dają się, przynajmniej teoretycznie, odwrócić, moż­na nie wyróżniać specjalnie zmiennych zależnych i niezależnych, uwa­żając wszystkie za równouprawnione. Dojdziemy w ten sposób do dzie­
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sięciu związków uwikłanych, wiążących poszczególne trójki zmiennych 
Ms, N, c, e i 0. Każdy z tych związków daje się, przynajmniej teoretycznie, rozwikłać ze względu na wszystkie trzy zmienne, zatem otrzymamy 30 jawnych funkcji dwóch zmiennych. Uzyskane tą drogą rozwiązanie umoż­liwi efektywne wyznaczanie dowolnych trzech parametrów przy znajo­mości dwóch pozostałych.Uogólnienie polegać będzie również na opuszczeniu założenia v=1/2 i zbadaniu wpływu współczynnika Poissona na rozkład naprężeń.Ograniczymy się natomiast do działania obciążenia «prostego» w sen­sie I 1 j u s z i n a., bowiem oprzemy się na teorii odkształceń plastycz­nych (H e n c k y’ e g o).

2. Wyprowadzenie równań podstawowychPrzyjmiemy, że jeden koniec pręta jest utwierdzony, drugi swobod­ny. Zagadnienie rozwiążemy we współrzędnych walcowych r, O , z; po­czątek układu umieścimy w środku przekroju utwierdzonego, oś z skie­rujemy zgodnie z osią pręta.Punktem wyjścia naszych rozważań będą następujące założenia od­nośnie do przemieszczeń ur, u® i uz:(1) w zakresie sprężysto-plastycznym i czysto plastycznym, podobnie jak i w sprężystym, słuszne będą wzory !)(2.1) u.0 = (Prz ,(2.2) uz = ez,gdzie kąt skręcenia na jednostkę długości 0 i wydłużenie względne e nie zależą od współrzędnych;(2) przemieszczenie ur zależy jedynie od współrzędnej r:(2.3) ur = f(r).Przy przyjęciu tych założeń składowe stanu odkształcenia określą wzory (por. np. [5])
dur urer = ~, , Su =—> e, = e = const, (2.4) ir

Spośród sześciu składowych stanu odkształcenia cztery są więc w zupeł­ności określone, a pozostałe dwie, sr i e@, są związane wynikającym 
z dwóch pierwszych równań (2.4) warunkiem nierozdzielności
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’) Zagadnieniem stateczności pręta nie będziemy się zajmowali. Założymy, że po­

szczególne parametry nie osiągają wartości krytycznych.



Odkształcenia wyrazimy teraz przez naprężenia pisząc równania teorii plastyczności Hencky’ego w postacila)1 '
Cr = (p Gr -- 99 ' 3K ośr, = 2 <p

(2.6) 1? 3 K aśr, = 2 V1 '= (p o, — 99 3K > y,-^

2) Podobnie postępuje np. Mieżłumjan, [7], nazywając współczynnik 
Poissona zmienny w zakresie plastycznym, a więc funkcję materiałową, «funk­
cją odkształcenia poprzecznego».

gdzie(2.7) EK = -3(1 —2 r)jest modułem odkształcenia objętościowego (modułem ściśliwości), który teoria H e n c ky’ego przyjmuje za stałą materiałową zarówno w za­kresie sprężystym, jak i plastycznym, cp jest wielkością zmienną [można by ją nazwać «funkcją materiałową» 2)], równą w zakresie sprężystym(2.8) <p = (ps =
12G ’a więc w zakresie tym stałą, E, G i v są stałymi sprężystymi materiału, wreszcie(2.9) a^r = y •Z trzech ostatnich równań układu (2.6), przy uwzględnieniu związków (2.4), otrzymujemy od razu

(l>r<2-10) = T- = 0, =
7Wykorzystamy teraz warunki równowagi wewnętrznej. Z pierwszych trzech równań (2.6) wobec (2.4) wynika, że naprężenia g mogą być jedynie

,a) Oznaczenia są w większości zgodne z używanymi przez Lejbienzona, [6], 
gdzie omyłkowo wydrukowano K = E/(l — 2/J zamiast związku (2.7). Sokołowski, 
[14], używa oznaczenia zamiast rp. /
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funkcjami współrzędnej r; zatem, z uwagi na (2.10), dwa ostatnie rów­nania układu równań równowagi (por. np. [4] lub [5])
(2.11) dr r

. + — (<b — <7») =d z r

, 1
dr r

da± + 
d&

d rM ' 2- . “ H---- °>d z r

+ £ dr»z_ 
d0

da 1-^ + -^ = 0 
d z rdr rsą spełnione tożsamościowe, a pierwsze możemy przepisać w postaci(2.12) d 1

dr rOtrzymaliśmy w ten sposób układ pięciu równań, mianowicie (2.5), trzy pierwsze układu (2.6) oraz (2.12) o sześciu funkcjach niewiadomych: £r> e«> ar’ i V- Brakujące równanie będzie miało inną postać w stre­fie sprężystej, inną w plastycznej. W strefie sprężystej będzie to rów­nanie (2.8), zamieniające równania Hencky’ego (2.6) na równania H o o k e’ a; w strefie plastycznej brakującym równaniem będzie wa­runek plastyczności.Zajmiemy się strefą plastyczną. Założymy, że materiał pręta jest ideal­nie plastyczny (nie podlegający wzmocnieniu plastycznemu), i przyj mie­rny warunek plastyczności w postaci Hubera-Misesa-Hencky’ego 
^azred~ który w naszym przypadku zredukuje się do(2.13) a, + + a\ — ar a^ — a^ az— az ar + 3 = ,gdzie aPi oznacza granicę plastyczności przy czystym rozciąganiu lub ściskaniu.Zanim przystąpimy do kolejnego rugowania niewiadomych, sprowa­dzimy równania do postaci bezwymiarowej. Oznaczmy najpierw 
(2.14)i odpowiednio(2.15)

6K9>= 1
6 K q>s = — • 

y>s290



Wprowadzona przez nas wielkość y? jest więc funkcją materiałową, równą w zakresie sprężystym stałej materiałowej Wykorzystując (2.7) i (2.8) oraz znany związek między E i G otrzymujemy zależność3)

3) Stałą posługuje się np. Sokołowski, [14], oznaczając ją przez W. 
Oznaczenie zmieniono dla uniknięcia nieporozumień, bowiem tą samą literą oznacza 
się często siłę podłużną.

(2.16) 1 — 2v—2(1 +r)‘Stała ips zależy zatem jedynie od stałej Poissona v i przyjmuje war­tości w granicach od 0 (gdy v = do V2 (gdy r = 0), stanowiąc jej «negatyw». Wartości funkcji y> leżą również w przedziale 01Sy>5Sł/2. W przypadku materiału nieściśliwego (r = 1/2): = w = 0 ; w przypadkunieznacznej ściśliwości (r bliskie V2) można przyjąć, że ip i y>s są «nie­skończenie małymi», co umożliwia uzyskiwanie rozwiązań przybliżonych.Wprowadzimy następnie oznaczenia(2.17)
(2.18)

E
- e = e , 

OplGa [ 3 ,
--------— ^ = 9, 

Oplprzy czym przez a oznaczyliśmy promień zewnętrzny pręta; e i g są więc wielkościami bezwymiarowymi, odpowiednio proporcjonalnymi do wydłu­żenia i kąta skręcenia pręta, przy czym współczynniki proporcjonalności są tak dobrane, że e = 1, gdy pojawiają się pierwsze odkształcenia pla­styczne przy czystym rozciąganiu, natomiast g = 1, gdy pojawiają się pierwsze odkształcenia plastyczne przy czystym skręcaniu.Dalej oznaczymy (2.19) -------= 8) ,  = S2 , 
Opl------------------------Opl

Oz

Oploraz wprowadzimy bezwymiarową współrzędną (2.20) r - = o; apozostałe współrzędne nie będą nam potrzebne. Pochodne względem o bę­dziemy oznaczali przecinkiem u góry.
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Po wprowadzeniu powyższych oznaczeń do równań (2.5), trzech pierw­szych układu (2.6), (2.12) oraz (2.13), otrzymujemy układ sześciu rów­nań o sześciu niewiadomych er, , s(, s2, s3 i ;

(2.21)
oe^ + — er = 0 ,
q Sj + Sj — s, — 0 ,

8“ + 8; + 83 — Sj s2 — 8, S3 — S3 Sj + = 1 .

3 y\ e 8, 1 1 J2L' 2(l+^)e y> 3 y3 ips e 8., 1 1 — 2 (s, +s„ + s3)® 2.(1-H/^e y> 33 8.. 1 U-----2 (s, +s2 + s3)2 (1 +y<^ e L y 3 7’

Przejdziemy teraz do kolejnego rugowania niewiadomych. Najłatwiej jest wyrugować odkształcenia er i e&: wystarczy w tym celu podstawić pierwsze dwa równania do czwartego. Otrzymany układ czterech równań uprości się nieco, gdy wprowadzimy nową funkcję materiałową (2.22) Vs
Wrówną jedności w zakresie sprężystym, a zawartą w przedziale 0 < p S 1 w zakresie plastycznym 4). Oczywiście w przypadku materiałów nieściśli­wych ma sens tylko druga część równości (2.22).

4) Sokołowski, [14], wprowadza funkcję 1/p oznaczając ją przez i/> . Wy­
godniej jednak posługiwać się funkcją przyjmującą wartości z przedziału (0,1 >, 
niż < 1, 00).

Niewiadomymi układu
(2.23)

gSid-Sj — s2 = 0 ,3 Sy — (1 — 2 pyj (Si+Sad-Sa) — 2 e(l+y>5) p = 0 ,— 3 p' s., + 3 psź+p' (Sj +s2+s3) — (1 — 2 y>s p) p (si+sź+sś) ++ — - (s., — 8j) = 0 .OSl+S2 + S|   Sj So   S2S3   S3 Sj +g2 o2 p- — 1=0są teraz s,, s2, sa i p. Z pierwszego równania (2.24) s2 = 8, +psi,
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a z drugiego
(2.25) S3

2 e (l+yP p+(l — 2 ys p) (2 Sj + os{) 2 (1+^p)Podstawienie (2.24) i (2.25) do dwóch ostatnich równań układu (2.23) do­prowadzi nas do układu dwóch równań o dwóch niewiadomych sx i p. Po dość żmudnych przeliczeniach otrzymujemy
(2.26) (4 ip2 q p3 5 ips g p2 + g p) sl' + (— 4 ip2 g p2 p +12 ip2 p3 — 2 ips g p p' + + 15 ys p2 — op' + 3 p)sj — 6 ^;p2 p svĄ-2 <ps (l+y>5) ep-p' = 0 ,(12 ip2 o2 p2 + 6 tps d1 p + 3 o2) s'2 + 36 ip2 gp2 st s'i 36 ip2 p2 s2 —— 12(1 + ips) ep2 (2 Sj + os)) + 4 g2 ip2 o2 p1 + 8 g2 y>s o2 p3 ++ 14 g2 o2 — 4 tp2 + 4 (1 + ip^2 e2| p2 — 8 ip^ p — 4 = 0.Równanie pierwsze z otrzymanych jest równaniem różniczkowym li­niowym drugiego rzędu ze względu na niewiadomą funkcję st, a równa­niem różniczkowym nieliniowym pierwszego rzędu ze względu na nie­wiadomą funkcję p, drugie natomiast jest równaniem różniczkowym nie­liniowym pierwszego rzędu ze względu na sn a równaniem algebraicznym czwartego stopnia ze względu na p.Ścisłe rozwiązanie, układu (2.26) natrafia na poważne trudności; trud­ności te nastręczają się już przy sprowadzaniu układu do jednego rów­nania o jednej funkcji niewiadomej. Ograniczymy się do podania rozwią­zań przybliżonych, przy czym wykorzystamy okoliczność, że stała mate­riałowa yp jest znacznie mniejszą od jedności.

5. Warunki brzegoweRozwiązanie układu (2.26) wymaga znajomości dwóch warunków brze­gowych. Warunki te uzależnione są od rozpatrywanego zakresu pracy pręta.W przypadku prostego obciążania pręta, jednocześnie rozciąganego i skręcanego, wykonanego z materiału idealnie plastycznego, wyróżnimy następujące stany:(1) stan sprężysty — w każdym punkcie ciała naprężenie zastępcze (intensywność naprężeń) a\ < oPt, a funkcja materiałowa p= 1;(2) granica odkształceń sprężystych — w każdym punkcie ciała u„^aPi, p = 1, przy czym istnieje co najmniej jeden punkt, w którym <rn = opi (tworzy się strefa plastyczna); 293



(3) stan sprężysto-plastyczny — obszar całego ciała można podzielić na dwa podobszary, przy czym w jednym z nich a0<aPi, p = l (strefa sprężysta), w drugim a0 = api, p •< 1 (strefa plastyczna); obszary te roz­granicza powierzchnia o własnościach o,, = api, p = 1;(4) granica odkształceń plastycznych — w każdym punkcie ciała = p^l, przy czym istnieje co najmniej jeden punkt, w którym p = 1 (strefa sprężysta zanika) );5(5) stan czysto plastyczny — w każdym punkcie ciała a0 = api, p< 1.

5) Pojęcia granic odkształceń sprężystych i plastycznych, związane ze stanem 
naprężenia w całym ciele, są oczywiście różne od lokalnych (związanych z określo­
nym punktem ciała) pojęć granicy sprężystości czy plastyczności.

O parametrach, których wartości odpowiadają stanowi sprężystemu, sprężysto-plastycznemu i czysto plastycznemu pręta, będziemy mówili, że znajdują się odpowiednio w zakresie sprężystym, sprężysto-plastycz- nym itd.Zajmiemy się najpierw zakresem sprężysto-plastycznym.W naszym przypadku — pręta o przekroju kołowym — powierzchnią rozgraniczającą strefę plastyczną od sprężystej będzie oczywiście po­wierzchnia walca kołowego; promień tego walca oznaczymy przez c oraz wprowadzimy oznaczenie (3.1) c - = w. aStrefę sprężystą — walec kołowy pełny — określimy zatem nierównością 0 <p < w,, natomiast strefę plastyczną — walec kołowy drążony (pierście­niowy) — nierównością w < p < 1 .Powierzchnia pobocznicy pręta musi być wolna od naprężeń promie­niowych, zatem pierwszym warunkiem brzegowym będzie(3.2) s, = 0 dla p = 1 .Postać matematyczną drugiego warunku brzegowego otrzymamy ze złożenia kilku warunków fizycznych, wynikających ze stykania się strefy plastycznej ze sprężystą wzdłuż powierzchni o = w. Wielkości odnoszące się do strefy sprężystej będziemy wyróżniali wskaźnikami s, plastycz­nej — wskaźnikami p. Na powierzchni styku muszą mianowicie zacho­dzić równości naprężeń promieniowych w obu strefach.(3-3) arp —ors,oraz równości przemieszczeń promieniowych, czyli, jak widać z drugiego równania układu (2.4), równości odkształceń obwodowych (3.4) S&P E<->S’

294



wydłużenie strefy sprężystej musi wreszcie wynosić(3.5) £zs — 8 — COnst.W strefie sprężystej — walcu, poddanym działaniu równomiernego ob­ciążenia ciągłego qr na pobocznicy i qz na obu podstawach (jednoczesne skręcanie nie ma tu żadnego wpływu) — panuje jednorodny stan naprę­żenia, określony składowymi{3.6) arS = >

zatem, zgodnie z prawem H o o k e’ a,
(3.7) ^rs = E0s = E K1 — r) — »"łj >

Po podstawieniu do (3.3), (3.4) i (3.5) odpowiednich wyrażeń, przy uwzględnieniu drugiego z równań (2.6) oraz związku (2.4) i oznaczeń (2.17) i (2.19), otrzymujemy więc układ trzech równań o dwóch niewia­domych qr i qz
S] — Qr ,(3.8) 19? s2 aP/-------$

13K + sj ap/ =qz — 2 v qr = e api, bowiem na powierzchni granicznej(3.9) o = w,dlap = 1czyli(3.10) 1 
f^^=2Gjest wielkością znaną. Rugując niewiadome qr i qz mujemy po wykorzystaniu związków (2.24) i (2.25) gowy w bardzo prostej postaci z układu (3.8) otrzy- drugi warunek brze-

(3.11) s, = 0 dla o = w, 295



przy czym samą wartość w będziemy mogli obliczyć z (3.9) dopierb po rozwiązaniu układu (2.26) (znalezieniu jego całek ogólnych).W zakresie czysto plastycznym warunki brzegowe przedstawią się pro­ściej: warunek (3.2) pozostanie bez zmiany, a drugim warunkiem będzie ograniczoność funkcji sx w punkcie (a raczej wzdłuż linii) q = 0 jak zwykle w zagadnieniach tego typu.
4. Rozwiązanie w zakresie sprężysto-plastycznym. Przybliżenie zeroweRozwiążemy najpierw układ (2.26) przy założeniu dodatkowym tps — 0. Mamy wtedy v = V2, czyli materiał nieściśliwy, co odpowiada przypad­kowi rozważanemu przez G a y d o n a. Równania (2.26) przybiorą postać uproszczoną

( q p sj' + (— o p' + 3 p) si = 0 ,I 3 q2 sj2 + 4 g2 q2 p2 + 4 e2 p2 — 4 = 0i, jak widać, układem całek szczególnych, spełniających warunki brzego­we (3.2) i (3.11) jest tutaj
(4.2) si — 0 > 1P = / 2 ,| e- + g2 o- przy czym wykazanie jednoznaczności rozwiązania nie nastręcza trud­ności. Promień graniczny określimy teraz z warunku (3.9):(4.3) 1 1 — e;w =---------

9a zatem w strefie plastycznej 
będziemy mieli następujący rozkład naprężeń:= 0 ,

a pi e = opiep = —------ ,(4.4) j/e2 + s-V
_^pi9QP °pi9Q

7-Z / “ --  / z—- ---- ;--/3 ]/3je2 + p2o2Tzr = Rw = 0>296



i odkształceń
6 pl 

= - 2E e,

e =(4.5) 2 E ’

, — 9 — °>z 9 2‘’»z ‘‘Vl9z C , 1 ’Lr | 3

7zr = = 9 .Powyższe wzory są ścisłe w przypadku materiału nieściśliwego, na­tomiast posłużą nam jako przybliżone w przypadku v 7^ '/2, Będziemy je- wtedy zwali przybliżeniem zerowym.Wykreślnego przedstawienia rozkładu naprężeń w przybliżeniu zero­wym nie będziemy zamieszczali, ponieważ podaje je w swej pracy G a y d o n.Zajmiemy się natomiast szczegółowo związkami, zachodzącymi po­między odkształceniami i wywołującymi je obciążeniami: siłą podłużną 
N i momentem skręcającym Ms. Wyjdziemy z równań
(4.6) fj o,dF = N, 

F

f ( rrH,dF = Ms,

gdzie F jest polem przekroju pręta; ponieważ składowe stanu naprężenia zależą jedynie od zmiennej r, możemy napisać
(4.7) r JI r^dr= ’̂ or •’ M*
Wprowadzimy teraz, podobnie jak poprzednio, wielkości bezwymiarowe..Oznaczymy mianowicie(4.8) N 

a2 % a pi = n

(4-9) 2 /3 Ms
a3 opi

ms. 297



Parametry n i ms są więc odpowiednio proporcjonalne do siły podłużnej i momentu skręcającego, przy czym współczynniki proporcjonalności są tak dobrane, że n = 1, gdy pojawiają się pierwsze odkształcenia plastycz­ne przy czystym rozciąganiu, natomiast ms = 1, gdy pojawiają się pierw­sze odkształcenia plastyczne przy czystym skręcaniu. Wprowadzając jeszcze bezwymiarową zmienną g, określoną wzorem (2.20), i całkując osobno po strefie sprężystej, osobno po plastycznej, możemy [przy uwzględnie­niu oznaczeń (2.17) i (2.18), zależności (2.8), (2.10) i (4.4)] zamiast (4.7) napisać
(4.10)

W 1 3 J
r , c e d8 g I ^do+g I - . _ 
o w 1 e-+g-o- 4 ’a po scałkowaniu

/A 1 1 A 9 i 2 /* 9 i 9 2 /" 9 I 9 9(4.11) w + ) e_+ g2— —2 ] e-+g- w2 = —,

(4.12) 8 . „ , „,7j 4 w2 r-^-.—,— o „r(e’ + sr) ----- „2 F e-+p-w- +
y y

8 , 9 , 2

Tak więc pięć parametrów: e, g, w, n i ms związaliśmy trzema równa­niami (4.3), (4.11) i (4.12). Równania te są w zasadzie zgodne z wynikami G a y d o n a, otrzymanymi z równań R e u s s a przy założeniu sta­łego stosunku wydłużenia do kąta skręcenia, a różnią się jedynie tym, iż G a y d o n otrzymuje odkształcenie liniowe wyrażone w mierze loga­rytmicznej.Zajmiemy się teraz zbadaniem zakresu ważności rozwiązania. Zgod­nie z rozważaniami, przeprowadzonymi w p. 3, stan sprężysto-plastycz- ny pręta jest zawarty między granicą odkształceń sprężystych a granicą odkształceń plastycznych. Zależności na granicy odkształceń sprężystych otrzymamy podstawiając do równań (4.3), (4.11) i (4.12) w = 1, ponieważ odpowiada to tworzeniu się strefy plastycznej. Trzy zależności wiążą te­raz cztery zmienne, zatem drogą rugowania możemy otrzymać same funk­cje jednej zmiennej. Zostały one zestawione w tablicy 1.Podobnie, podstawiając w = 0, otrzymujemy zależności na granicy od­kształceń plastycznych — strefa sprężysta zanika. Z równania (4.3) wy­298



nika, że e = 16), a trzy pozostałe parametry, g, n i ms, są związane dwo­ma równaniami (4.11) i (4.12). W wyniku rugowania otrzymujemy więc znowu funkcje jednej zmiennej, jednak tym razem nie wszystkie dadzą się przedstawić w postaci skończonej kombinacji funkcji elementarnych: w dwóch przypadkach otrzymujemy do stopnia o ujemnym wyróżniku (choć tylko jeden pierwiastek spełnia warun­ki zagadnienia). Zestawienie podaje ta­blica 2. Niemożność wyrażenia odpo­wiedniej zależności za pomocą funkcyj elementarnych została zaznaczona w ta­blicy kreską poziomą.Znając granice ważności rozwiąza­nia możets-y przystąpić do zestawienia zależności w zakresie sprężysto-pla- stycznym. Rugując ze związków (4.11) i (4.12) zmienną w, otrzymujemy z ła­twością funkcje n = f (e, g) oraz ms — = f (e> 9), uzależniające obciążenia od odkształceń. Są to funkcje monotonicz- ne ze względu na obie zmienne [podob­nie, jak funkcja w — f (e, g), określona równaniem (4.3)] i dają się, przynaj­mniej teoretycznie, odwrócić, określając ważne dla zastosowań zależności od­wrotne e = f (n, ms) oraz g = f (n, ms).

rozwiązania równania trzeciego
Tablica 1. Zestawienie zależności 
na granicy odkształceń sprężystych

Zmienne Zależności

W W = 1 = const,

e, g e = Vi — g2,

g = \ 1—e2.
e, n e = n,

n — e,

e, ms e = V 1 —m2,

ms = \/l-e2,

9, n g = 1 — n~,
n = Vl-g2.

9, ms g = ms’

ms = g,

n, ms n = V 1- m2.
ms = V1 —n2.Niestety praktyczne wykonanie tego odwrócenia jest poważnie utrudnione koniecznością rozwiązywania równań algebraicznych wysokich stopni (do dwunastego włącznie), toteż w celu efektywnego uzyskania poszukiwanych zależności będziemy musieli pójść nieco inną drogą.Zamiast jawnych funkcyj dwóch zmiennych postaramy się najpierw uzyskać związki uwikłane, łączące poszczególne trójki spośród parame­trów e, g, n, ms i w. Łatwo stwierdzić, iż związków tych będzie 10. Na­pisanie ośmiu spośród nich nie przedstawia zasadniczych trudności; są to równania algebraiczne stopnia 2-12 ze względu na poszczególne zmienne. Pozostałe dwie zależności, mianowicie F (ms, n, w) — 0 oraz 

F (ms, n, g) = 0, dadzą się otrzymać z tamtych przez rugowanie zmiennych metodą Fermata lub za pomocą wyznaczników S y 1 w e s t e r a '), jednak metody te prowadzą do nadzwyczaj długich rachunków, a rów-
8) Dla uproszczenia będziemy zakładali g 0 oraz e 0 (rozciąganie). W przy­

padku ściskania rozwiązanie nie podlega jednak żadnym zmianom.
7) Por. np. [12]. 299



nania wynikowe z powodu swej zawiłości nie mogą być przydatne dla celów praktyki.Niektóre z otrzymanych związków dadzą się rozwikłać ze względu na poszczególne zmienne przy użyciu funkcyj elementarnych. Zestawienie uzyskanych w ten sposób wzorów podaje tablica 3.
Tablica 2. Zestawienie zależności 

na granicy odkształceń plastycznych

Zmienne Zależności

w
e

n, g

n, ms

9, ms

w = 0 = const, 
e = 1 = const, 

2 n =------ , 
i + v i + g- 

_ 2-- 
g-----ii — n ■ n

4
m, = [2 — (2 - - p-) V 1 + h

9

g = f (rns): — ,

ms~ 3 (2j-n) V 1 — n = 3Ą 1 4 n

n — f Imj: - .

Tak więc uzyskaliśmy jedynie dwanaście spośród trzydziestu możli­wych związków. Liczba ta jest niewątpliwie zbyt mała dla zastosowań praktycznych, tym bardziej że brak zależności odkształceń (a więc e i g) od obciążeń (n, ms). Jednak podane równania stanowią dostateczną pod­stawę do uzyskania poszukiwanych zależności na drodze numerycznej lub graficznej, czym zajmiemy się w p. 6.
5. Rozwiązanie w zakresie czysto plastycznym. Przybliżenie zeroweRozważania nasze uzupełnimy teraz rozwiązaniem postawionego za­gadnienia w zakresie czysto plastycznym. Założymy = 0, uzyskując rozwiązanie ścisłe w przypadku materiału nieściśliwego, a przybliżenie zerowe w przypadku ściśliwego.Układ (2.26) redukuje się znowu do (4.1) przy zmienionych warun­kach brzegowych, które omówiliśmy szczegółowo w p. 3. Jednak widać od razu, że układ całek szczególnych (4.2) spełnia i te warunki i w całym obszarze 0 o 1 stan naprężenia określą wzory (4.4), a stan odkształce­nia wzory (4.5).300



Tablica 5. Zestawienie zależności obowiązujących w zakresie sprężysto-plastycznym

[301]

Zmienne Zależności

e, g,w 1 — e2 w =------------,
g

V 1 — e2

e = V 1 ~ 0’ w' >
e, g, n n = (2 Ve2 + g- — 1 — e- ),

\ e ~ , - -
g — n y 2 e — n — n e2 -|~ 2 y e (1 — e n) (e — n) > 
e = f (g, n): —,

e, g, ms ms = 3V ~ 2 e2) + ^ — T + T e' + T e' I ’

g = f (e, ms): — , 
e = f Ig, mj: —,

e, w, n
■

n — —-—- 12 VI — e2 + e- w- — w (1 + e2)] ,
- H r-----------------------r—T—

w — ------- -  \ 2 e — n — ne- — 2 \ e(l — en) (e — n) >ye(l — e-)
e = flw,n): —

4 tir / 1—e- — 2e-w- ,--------------------- 1 . 3 . 3
e, w, mc ° ws = —- ( -< y 1 H-e’w2 — e- — y + „ e-+ e'),s 3(1 — e-)3/2 ' w' ’ 1 4 2 4 /’

w = fie. ms): — ,
,e = f (w, ms): —,

g, w, n n = ----—(2 V 1 + g~ — g~ W-' — 2 + g- w2), 
g-

w = f(g,n): —
g = f(w,n):—,

g, w, ms = ■3^» [(g- + g' w2 — 2) t/ 1 + g2 — g- w2 + 2 — 3 g= w2 + y 9' w' 1 > 
w = / (g, ms): —,
g = f (w, ms): — ,

4
e, n, ms m = " ,-------------- -—----- -------; 13/2 ?3[2e — n — ne! + 2\e(l — en)(e—n)r‘

1 / 1 1 3 . 3 \ i .4 + 2 e-+ 4 ej + |2e—71 —ne—2en- +

+ 2 Veil — en) {e — n)|V2e — n — ne24* en2 + 2\/e (1 — en)(e — n)j, 

e = i (n, ,
n = f(e, nig): —,

g, n, ms ms = f(g,n): —, 
g = f(n, ms); — , 
n = f (g, ,

w, n, ms ms = f (w, n): —, 
w = f (n, ,
n = f (w, .



Zmianie ulegną dopiero zależności między odkształceniami i obciąże­niami. Zamiast (4.10) napiszemy teraz
, r pdp n8 I —7— -------= f

$ \/e-+g2o2 2(5.1)
4 

o

g3dg ms
^e2+g2Q2 4a po scałkowaniu(5.2)(5.3)

A^e2 + 
g~4 /—r 2 87ve +9 - W

ms 
g

e ’

Otrzymaliśmy dwa związki między czterema zmiennymi e, g, n i ms, z których, przez rugowanie, można na ogół uzyskać cztery związki uwi­kłane, łączące poszczególne trójki zmiennych. Okazuje się jednak, że bez względu na wartości parametrów e i g pomiędzy parametrami n i ms w całym zakresie plastycznym istnieje odpowiedniość wzajemnie jedno­znaczna (ta sama, z którą mieliśmy do czynienia już na granicy odkształ­ceń plastycznych) 8), co redukuje ilość związków uwikłanych do trzech: 
F (e, g, n) = 0, F (e, g, ms) = 0 oraz F (n, ms) = 0. Niektóre z tych związ­ków dają się rozwikłać ze względu na poszczególne zmienne przy użyciu funkcyj elementarnych; uzyskane w ten sposób wzory podaje tablica 4.
Tablica 4. Zestawienie zależności obowiązujących w zakresie czysto plastycznym

Zmienne Zależności

2ee. g. n n — --------  ,
e + ^/e2-f-g2
2 e /------

g = - - C 1 — n >n ’

e 2^/1 — n ’

e. g, ms ms = [2 e3 + (g- — 2 e-) ^e2 + g2],

9 = / (e, ms): —,

e = / (g. ms): — ,

2 4 . /. 3 1
n, ms ms = y (2 + n) V' 1 - n = y y 1 - 4 n- - y n3, 

n = 1 (m5): —.

8) Określa ona nośność graniczną pręta. Por. np, [11].302



6. Uzupełnienie rozwiązania na drodze graficznej i numerycznejTablice 3 i 4 uzupełnimy teraz na drodze graficznej i numerycznej. Rysując np. wykres funkcji ms = f (e, n) w płaszczyźnie e - ms (przy ustalonych wartościach parametru n), otrzymujemy zarazem wykres funk­cji odwrotnej, mianowicie e = f (n, mj; także wartości liczbowe funkcji 
e = f (n, ms) uzyskujemy stosunkowo łatwo na drodze interpolacji funkcji jednej zmiennej. Teraz uzyskujemy łatwo wartości funkcji g = f (n, ms), jako funkcji złożonej g = f [e (n, ms) n], funkcji w = f (n, ms), wykorzy­stując związek (4.3) itd.Wartości ważniejszych dla zastosowań funkcyj w = f(e, g), n = f (e, g), 

= j (e> g)> w = f(ms,n), e—'f(ms,n) oraz g — f (ms, n) określonych w zakresie sprężysto-plastycznym (i ewentualnie czysto plastycznym) po­dają tablice 5-10.Zamieszczone tablice pozwolą obliczyć odkształcenia pręta przy da­nych obciążeniach i na odwrót, nie rozwiązują jednak wszystkich zagad­nień, związanych z wyznaczaniem parametrów, charakteryzujących przy­padek jednoczesnego rozciągania i skręcania pręta. Korzystne okaże się tu wykreślne przedstawienie zależności, bardziej poglądowe, chociaż mniej dokładne. Wykresy wszystkich trzydziestu funkcyj w zakresie sprężysto- plastycznym i ośmiu w zakresie czysto plastycznym podają rysunki 1-10. Umożliwiają one łatwe wyznaczenie trzech parametrów za pomocą dwóch pozostałych.
Tablica 5. Wartości funkcji w = f(e. g]

<e 
g \ 0,0 0,1 0,2 0,3 0.4 0,5 0,6 0,7 0,8 0.9 1,0

0,0
0.1
0,2
0,3
0,4
0,5
0,6 
0,7
0.8 
0.9 
1,0 1,000 0,995

za

0,980

kres sj

0.954

jrężyst

0,917

y, w n

0,962
0,866

e istni

1,000
0,889
0.800

eje

0.893
0,793
0,714

1,000
0,857
0,750
0,667
0.600

0,872
0.726
0,623
0,545
0.484
0.436

nieozn. 
0,000 
0,000 
0,000 
0.000 
0.000 
0.000 
0,000 
0.000 
0,000 
0,000

1,2 0.833 0,82S 0,816 0,795 0,764 0,722 0,667 0.595 0,500 0,363 0,000
1,5 0,667 0.663 0,653 0,636 0,611 0.577 0,533 0,476 0,400 0,291 0,000
2,0 0,500 0,497 0.490 0.477 0,458 0,433 0,400 0,357 0,300 0.218 0,000
2,5 0,400 0,398 0,392 0,382 0,367 0.346 0,320 0,286 0,240 0,174 0,000
3,0 0.333 0,332 0,327 0,318 0.305 0,289 0,267 0.238 0.200 0,145 0,000
5.0 0,200 0,199 0.196 0,191 0.183 0,173 0,160 0,143 0,120 0,087 0,000

10.0 0,100 0.099 0.098 0,095 0,092 0,087 0,080 0,071 0,060 0.044 0,000
oo 0.000 0.000 0.00Q 0,000 0,000 0,000 0.000 0.000 0.000 0,000 0,000303



Tablica 6. Wartości funkcji n — f (e, gj

0,0 0,1 0,2 0,3 0,4 0,5 | 0.6 0.7 0,8 0.9 1,0 1,2 1.5 2.0 2.5 3,0 5,0 10,0 OO

0.0 1.000 1,000 1,000 1.000 1,000 1,000 1,000 1,000 1,000

0.1 0.998 0.998 0.999 0,999 1,000 1.000 1.000 1,000 1,000

0,2 Z3 kres sprężysty, n = e 0,990 0.993 0.996 0.998 0,998 0,999 1.000 1,000 1,000

0.3 0,978 0,985 0,990 0,994 0,996 0,998 0.999 1,000 1,000

0,4 0,963 0.974 0.983 0.990 0,994 0,996 0,998 1,000 1,000

0.5 0,897 0,944 0.960 0,974 0.985 0,990 0,993 0,998 0,999 1,000

0,6 0,800 0.883 0.923 0,944 0.963 0,978 0.986 0,990 0,996 0,999 1,000

0.7 0,793 0,864 0,901 0,927 0,951 0,971 0.981 0,987 0,995 0,999 1,000

0,8 0,600 0,696 0.779 0,841 0.877 0,908 0,938 0,963 0.976 0.983 0,994 0,998 1,000

0,9 0,499 0.595 0,683 0,759 0,817 0,853 0.889 0,923 0,954 0.970 0,978 0.992 0,998 1.000

1,0 0,000 0.100 0,200 0,299 0,398 0,493 0.583 0,666 0.737 0,793 0,828 0.869 0,908 0,944 0.963 0.974 0,990 0,998 1,000

1,2 0,000 0.097 0,194 0.288 0,381 0.469 0,551 0,626 0.691 0,744 0,781 0,828 0,877 0.923 0,948 0,963 0.986 0,996 1,000

1,5 0,000 0,089 0,177 0,263 0,346 0.425 0,499 0.566 0,626 0.675 0,714 0,769 0,828 0,889 0,923 0,944 0,978 0,994 1.000

2,0 0.000 0.075 0.149 0,222 0,292 0,359 0,422 0.481 0,534 0,580 0.618 0,679 0,750 0.828 0.877 0,908 0,963 0,990 1.000
2.5 0.000 0.064 0.127 0,189 0,250 0,308 0.363 0.415 0.462 0,505 0,542 0.604 0,679 0,769 0.828 0.869 0.944 0,985 1,000
3,0 0.000 0,056 0,111 0,165 0,218 0.268 0,317 0,363 0,406 0,445 0,481 0,542 0.618 0,714 0.781 0,828 0.923 0,978 1,000
5,0 0.000 0,036 0,072 0.107 0,142 0,176 0,209 0,241 0,272 0,301 0,328 0.378 0,446 0,542 0,618 0,679 0,828 0.944 1,000

10,0 0,000 0,019 0.038 0,057 0,075 0,094 0,112 0,130 0,147 0,164 0,181 0,213 0,258 0,328 0,390 0.446 0,618 0,828 1,000
oo 0,000 0.000 0,000 0,000 0,000 0,000 0,000 0,000 0.000 0.000 0,000 0,000 0.000 0,000 0.000 0.000 0,000 0,000 nieozn.



Tablica ”. Wartości funkcji mf=f(e,g)

[305]

0,0

0,0

0,1
0.2
0,3

0,4
0,5
0.6
0,7
0,8
0,9

1,0
1,2
1,5
2.0
2,5

3,0
5.0

10,0

zakres sprężysty. ms = g

1.000
1,140
1,235

1.292
1,312
1,321
1.331
1.333
1.333

1.000

1,138
1,232
1.289
1,310
1,320
1.330
1.333
1.333

0.999 0.996

1.131
1,223

1,282
1,304

1,315
1,328

1.332

1,119
1,208
1.269
1,295

1,308
1,325
1.331

1,333 1,333

0,898
0,989 0,975

1,100 1.074
1,187 1,161

1,253 1,231
1,282 1.266
1.298 1.285
1,321 1,315
1,330 1.329
1.333 i 1,333

0,6 0.7 0,8 0.9 1,0 1,2 1,5 2.0 2.5 3,0 5.0 10.0 oo

0.000 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0,100 0,083 0,067 0.050 0.040 0.033 0.020 0,010 0.000

0.197 0.165 0,133 0.100 0.080 0.067 0.040 0.020 0,000
0,291 0,245 0,197 0.149 0,119 0.100 0.060 0,030 0.000

0.380 0,322 0.261 0.197 0,159 0.133 0,080 0.040 0,000
0.497 0.463 0,395 0,322 0.245 0.197 0.165 0.100 0,050 0.000

0,600 0.581 0,540 0,463 0.380 0,291 0.236 0.197 0,119 0,060 0.000
0.690 0,656 0.610 0.528 0.436 0,337 0.273 0.229 0,139 0,070 0,000

0.800 0.791 0,763 0.721 0,673 0,587 0.490 0.380 0,310 0.261 0.159 0.080 0,000

0,886 0,862 0.825 0,779 0,730 0,642 0.540 0,422 0,345 0.291 0,178 0,090 9,000

0,952 0.919 0,878 0,831 0,781 0,692 0,587 0,463 0,380 0,322 0,197 0.100 0.000
1,044 1,006 0,963 0,916 0.868 0.781 0,673 0,540 0,447 0.380 0,236 0.119 0,000
1.129 1,093 1,053 1,011 0,968 0.887 0,781 0,642 0,540 0.463 0.291 0.1-49 0.000
1.206 1,177 1,146 1,113 1,079 1,011 0,917 0.781 0,673 0.587 0.380 0,197 0.000
1,246 1,224 1,200 1,174 1,147 1.092 1,011 0,887 0,781 0,692 0,463 0,245 0.000
1,270 1,253 1,234 1.213 1.192 1,147 1.079 0,968 0,868 0,781 0,540 0,291 0.000
1.308 1,301 1,292 1.283 1,272 1,250 1,213 1,147 1,079 1,011 0,781 0,463 0,000
1,327 1,324 1.322 1,319 1,316 1.309 1.297 1.272 1.244 1,213 1.079 0.781 0.000
1.333 1.333 1.333 1,333 1.333 1,333 1.333 1,333 1.333 1,333 1,333 1,333 nieozn.



Tablica 8. Wartości funkcji w = f(ms,n)

[306]

0,10 0,15 0.20

0.947 0,946
0,888' 0.886

1,05 
1,10 
1,15 
1,20
1,25 
1,30
4/3

0,995 0,988
0,941 0,934
0,881 0,872
0,811 0,800

0,25 0,95 , 1,000,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90

zakres sprężysty, w nie istnieje

0,982
0.992] 0,960 0,918

nieozn.

0,948

0,876
0,675

0.979 0,966
0,923 0,908

1,000
0,912

0,819 0,817 (. , .
0,737 0,734 0,726, 0,713
0,630 0,626
0,464 0,457 0.436 0,397

0,615! 0,596

0,859 
0,784 
0,692
0,567
0.324

0,841
0,762
0,664
0,523

0,950
0,888
0.818
0,733
0,625
0.457

0.962] 0,932, 0,894; 0,845
0,928 0.901! 0,866 0,821 f”'’"
0,986

0,863 0,830 
0,787, 0,747 
0,694 0,642 
0,570 0.488 
0,336,

0,760
0,788 0,733
0,694 0,620
0,568 0,445
0,326

0,655
0.504

1,000 
0,935 
0,862 
0,778 
0,676
0,533

0,940, 0,817
0,856] 0,702

0,955] 
0,8531 
0,732, 
0,562

0,967
0,845
0,697
0,433

0,000'

0,946: 0,870 0,758 0,530
0,871 0,781, 0,628
0,785j 0,670' 0.404’
0,682 0,511
0.538



Tablica 9. Wartości funkcji e = f (ms, n)

[307]

0,05 0,10 0,15 0.20 0,25 0,30 0,35 0,40 0.45 0,50 0.55 0.60 0.65 0.70 0,75 0,80 0.85 0.S0 0,95 1,00

0,00 
0,05 
0.10 
0.15 
0,20 
0.25 
0,30 
0,35 
0.40 
0,45 
0,50 
0,55 
0.60 
0,65 
0,70 
0,75 
0,80 
0,85 
0.90 
0,95 
1,00 
1,05 
1,10 
1,15 
1.20 
1,25 
1,30
4/3

1,000

zakres sprężysty, e = n

0,450 0,501
0,550
0,553

0,600 0,651

0,952
0,961

0.0001 
o,oooj 
0,000’
0,000 
0,000 
0.000 
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Rys. 1. Wykres w płaszczyźnie e-g Rys. 2. Wykres w płaszczyźnie w-e



Rys. 3. Wykres w płaszczyźnie w-g Rys. 4. Wykres w płaszczyźnie n-w
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Rys. 5. Wykres w płaszczyźnie w-ms Rys. 6. Wykres w płaszczyźnie n-e
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Rys. 7. Wykres w płaszczyźnie tn -g Rys. 8. Wykres w płaszczyźnie m -e §



Rys. 9. Wykres w płaszczyźnie n-g Rys. 10. Wykres w płaszczyźnie n-m,



7. Rozwiązanie w zakresie sprężysto-plastycznym. Przybliżenie pierwszeRozwiązanie w zakresie sprężysto-plastycznym, uzyskane w p. 4, jest ścisłe tylko w przypadku materiału nieściśliwego (tps = 0, v = Va); w przy­padku materiałów ściśliwych, z jakimi zazwyczaj mamy do czynienia w praktyce, rozwiązanie to nazwaliśmy przybliżeniem zerowym. Posłuży ono bowiem teraz do uzyskania rozwiązań dokładniejszych, umożliwiają­cych ocenę błędu przybliżenia.W tym celu zastosujemy metodę pokrewną metodzie «małych para­metrów» (zakłóceń) 9). Założymy mianowicie, że ścisłe rozwiązanie układu (2.26) przy warunkach brzegowych (3.2) i (3.11) daje się rozwinąć w sze­reg potęgowy (Maclaurina) zmiennej ^v, czyli

9) Por. np. [2] oraz [13].
10) Por. np. [10].

u | S1 — S10 + S11 + S12 V's + • • •l P = Po + Pi Vs + P2 + • • •Ponieważ wielokrotnie stwierdzono, że wartość stałej P o i s s o n a v, a więc i stałej ips [związanej z nią równaniem (2.16)], ma nieznaczny wpływ na rozkład naprężeń 18), możemy się spodziewać szybkiej zbieżności sze­regów (7.1).Podstawiając do (7.1) yę = 0, otrzymujemy s,=s10, p = p0; slu i p0 są zatem rozwiązaniami, uzyskanymi przez nas w p. 4, określonymi rów­naniami (4.2). Zajmiemy się teraz wyznaczeniem funkcyj sI: i p^ będą one stanowiły główną część błędu przybliżenia zerowego, ponieważ dla więk­szości materiałów konstrukcyjnych v = 0,3 , y>s = 0,154 i wyraz zawie­rający = 0,023 możemy już zazwyczaj pominąć wobec jedności. Funk­cje powstałe z zachowania w odpowiednim szeregu Maclaurina zmiennej ip jedynie wyrazów zerowego i pierwszego będziemy zwali pierwszym przybliżeniem.Do układu (2.26) podstawimy więc
Sj = Sn ,(7.2) 

i przyrównamy do zera wyrażenia przy pierwszej potędze ips. Wygodnie będzie tutaj wprowadzić nową funkcję niewiadomą i], określoną wzorem(7.3) p e1+g1Qi = ri,
Po
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bowiem będzie wtedy wprost błędem procentowym zerowego przy­bliżenia funkcji p. Otrzymujemy stosunkowo łatwy do rozwiązania układ dwóch równań niezależnych
(7.4) (> (e2+g2 o2)2 +(3 e2 + 4 g2 o2) (e2+p2 o2)s[t = 2 eg2 q ,(e2+p2 g2)8/2 7)+e2 y e2+g2 q2 — e2 = 0.Najpierw musimy rozwiązać drugie równanie, by sprecyzować warunki brzegowe dla pierwszego (nie znamy promienia granicznego w):

e^^+g2 o2 — 1)
(e2+g2g2)3'2(7.5)a stąd(7.6) 1 e2+p2 o2— 1)P — /e2+gV (e2+p2o2)2Warunek (3.9) napiszemy więc w postaci1 (V e2+o2 w2 — 1)(7.7) 1 = r___ ____ -------- ------------------------- ,y e2^g2w2 (e2+g2w2Ya rozwiązanie tego równania ze względu na w daje 

czyli że pierwsze przybliżenie pokrywa się w tym przypadku z przybli­żeniem zerowym [wzór (4.3)].Możemy teraz przystąpić do całkowania pierwszego równania (7.4). Całka ogólna tego równania ma postać
w 1 C-e o" g- q

+ c.(< In _t+shŁj + c„
\ e- q e~ q /a warunki brzegowe (3.2) i (3.11) z podstawieniem (7.8) wyznaczają war­tości stałych Cj i C2 315



(7.10) r —
■ g2(7.11) Co ---- — ln(e2+g2)+ 2f+ e g-

więc ostatecznie(7.12) {Ł+£ In±1 - ± In +I e o (l e2 + gr + e) e (e--(-g-)g2+ 2e/ ł _1\d+e2)(| e3+g3 g3 — g2/e2 + g2) | 
g2\e~ ' eg- o2 IZnamy już zatem rozkład naprężeń promieniowych i obwodowych, bo­wiem — w pierwszym przybliżeniu —

(713) ar = s^apioraz, zgodnie z (2.24),(7-14) = (Sn + osń)^,apl = s2X Vsap/,przy czym funkcje sń określa stosunkowo prosty wzór(71rx / 2e(|-e2+g2g2 —l)(]/e'2+g2g'2 —e'2)
(7.15) 811= -------------------- 2 3/ 2'7—r~2\----------------- •g- o1 (e“+g- o-)Naprężenia promieniowe i obwodowe są wynikiem mniejszej wartości współczynnika P o i s s o n a (funkcji odkształcenia poprzecznego) w wewnętrznej, sprężystej strefie pręta niż w zewnętrznej, plastycznej: przy rozciąganiu strefa plastyczna «kurczy» się silniej i wywiera nacisk na strefę sprężystą. Podobny rozkład naprężeń uzyskalibyśmy, rozcią­gając gumową rurkę, nałożoną na sztywny, pasowany trzpień. Rozkład ten przedstawiają rys. 11 i 12.Przejdziemy do obliczenia ważniejszych dla nas naprężeń a, i rHz oraz oszacowania błędów przybliżenia zerowego. Podstawienie (7.2) do wzoru (2.25), rozwinięcie uzyskanego wyrażenia na szereg Maclaurina zmiennej i zachowanie jedynie wyrazów zerowego i pierwszego daje,„^1 e । eg2g2(/e2+g2g2 —1) , 1(7.16) s31— > =• + ———~+sn + v £S11 '/71 e-+g-o- L (e-+g-o-)- 2 J316



lub inaczej(7.17) S;u = «30 U + ,gdzie 830 i s31 oznaczają, jak zwykle, zerowe i pierwsze przybliżenie funk­cji s3, natomiast
_1O. <. g1 Q-(} q-—1) («n+l osu) | e^+g1»1

decyduje o błędzie zerowego przybliżenia w stosunku do pierwszego w przypadku naprężeń osiowych a z.

(zakres sprężysto-plastyczny).
Przybliżenie pierwsze

Rys. 12. Rozkład naprężeń obwo­
dowych <r@ w przypadku e=0,5 (za­
kres sprężysto-plastyczny). Przy­

bliżenie pierwszeNaprężenie styczne określa wzór(7.19) »z — 1 3zatem, wykorzystując (7.2) i (7.3), możemy napisać wprost(7.20)gdzie poprawkę określa wzór (7.5). Warto zauważyć, że wobec związku (7.8) ri jest równe zeru na granicy strefy plastycznej i sprężystej (podob­317



nie jak w całej strefie sprężystej), natomiast w strefie plastycznej jest stale dodatnie; £ jest w strefie sprężystej ujemne, w strefie plastycznej zmienia znak.Wykresy funkcyj i C podają rysunki 13 i 14.Jak widać, błędy przy obliczeniu w przybliżeniu zerowym naprężeń 
Oz są (w podanym przypadku e = 0,5) wielokrotnie większe niż przy obli­czaniu naprężeń r^. Jednak w całym zakresie sprężysto-plastycznym C<1 i błąd nie przekracza czyli np. 15,4°/o w przypadku materiału o stałej Poissona v = 0,3, a przy niewielkich kątach skręcenia (np. 
g = 1) jest znacznie mniejszy.

naprężenia osiowego w przy­
bliżeniu zerowym w przypadku 
e = 0.5 (zakres sprężysto-plastycz-

naprężenia stycznego w przy­
bliżeniu zerowym w przypadku 
e = 0,5 (zakres sprężysto-plastycz-

ny) ny)

Wspomnimy wreszcie, że zależność siły podłużnej i momentu skręca­jącego od wydłużenia i kąta skręcenia daje się w pierwszym przybliżeniu wyrazić za pomocą skończonej kombinacji funkcji elementarnych podob­nie jak w przybliżeniu zerowym. Uzyskane wyniki są jednak długie i nie­wygodne do analizy błędów, którą wygodniej jest przeprowadzić w opar­ciu o znajomość błędów w rozkładzie naprężeń.318



8. Rozwiązanie w zakresie czysto plastycznym. Przybliżenie pierwszePrzybliżenie pierwsze uzyskamy w zakresie czysto plastycznym po­dobnie jak w zakresie sprężysto-plastycznym. Podstawiając (7.2) do (2.26) otrzymujemy znowu układ (7.4), bez zmiany pozostają (7.5), (7.6) oraz całka ogólna (7.9). Zmienią się dopiero wartości stałych Ci i C2 wobec zmiany warunków brzegowych, musimy bowiem warunek (3.11) zastąpić warunkiem ograniczoności su dla o = 0:(8.1) C1=-^,
i 2 e 2 ___(8.2) C2 =---- ln(e2+p2)4----r + In (| e2 + g2 +e)c p ea całka szczególna przybierze postać(8.3) s,. 2 i„(/e2+s,ae8 + e)/e2+s'2 । 2e /1e (y e“+p2 + e) y e2+p“ o- 9" \ Q'

2 ________z"e2+sro2— o21 e2 + g2) .W przybliżeniu zerowym układ (2.26) rozwiązywały te same funkcje s, i p w obu zakresach: sprężysto-plastycznym i czysto plastycznym; w przy­bliżeniu pierwszym funkcja s, w zakresach tych jest przedstawiona różny­mi wzorami. Warto jednak zauważyć, że «przechodzi» ona z zakresu do zakresu w sposób ciągły, bowiem na granicy odkształceń plastycznych, gdy e = 1, obie stałe C, i C2, obliczone ze wzorów (7.10) i (8.1) oraz (7.11) i (8.2), mają te same wartości, a zatem i całka szczególna jest wspólna.Naprężenia promieniowe i obwodowe są określone wzorami (7.13) i (7.14), do których należy teraz wstawić (8.3). Pochodna jest równa(8.4) sn =
2 eg2 o 

(e2+g2 e2) (]/ e2+g2 g2 + e)2i jest stale nieujemna, a równa zeru, gdy o = 0. W tym punkcie funkcja sn osiąga wartość najmniejszą (co do modułu największą), wynoszącą(8.5) 1 + __(y e2 + g2 + e)2 2(y e2+p2 + e)2 jRozkład naprężeń promieniowych i obwodowych w przypadku e = 2 przedstawiają rys. 15 i 16. 319



Rys. 15. Rozkład naprężeń pro­
mieniowych or w przypadku e = 2 
(zakres czysto plastyczny). Przy­

bliżenie pierwsze

Rys. 16. Rozkład naprężeń obwo­
dowych w przypadku e = 2 (za­
kres czysto plastyczny). Przybli­

żenie pierwsze

Rys. 17. Błędy przy obliczaniu 
naprężenia osiowego a, w przy­
bliżeniu zerowym w przypadku 
e = 2 (zakres czysto plastyczny)

Rys. 18. Błędy przy obliczaniu na­
prężenia stycznego w przybliżeniu 
zerowym w przypadku e = 2 (zakres 

czysto plastyczny)
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Funkcje £ i»], decydujące o wielkości błędów przy obliczaniu naprężeń 
o, i z przybliżeniem zerowym, są w zakresie czysto plastycznym okreś­lone tymi samymi wzorami, c'o w sprężysto-plastycznym, mianowicie (7.18) i (7.5), z tą różnicą, że do (7.18) należy wstawić (8.3) zamiast (7.12).Rozkład błędów w przypadku e = 2 jest przedstawiony na rys. 17 i 18. Obserwujemy nieznaczne różnice w wartościach £, natomiast gwałtowny wzrost (co do modułu) wartości ł? w porównaniu z zakresem sprężysto- plastycznym. Moduły obu funkcji, C i w całym zakresie czysto plastycz­nym nie przekraczają jednak jedności (podobnie jak w zakresie sprężysto- plastycznym), zatem przy v = 0,3, błędy nie przekraczają 15,4%.W zakresie czysto plastycznym zależność siły podłużnej i momentu skrę­cającego od wydłużenia i kąta skręcenia daje się również wyrazić przy pomocy skończonej kombinacji funkcyj elementarnych, jednak i tu ana­lizę błędów przybliżenia zerowego łatwiej przeprowadzić w oparciu o zna­jomość błędów w rozkładzie naprężeń. W przypadku v = 0,3 można przy­jąć, że siła podłużna jest o kilka procent większa, a moment skręcając}7 o kilka procent mniejszy od obliczonego wzorami przybliżenia zerowego.

Literatura cytowana w tekście

[1] N. I. B i e z u c h o w, Tieorja uprugosti i płasticznosti, Gostiechizdat, Mo­
skwa 1953.

[2] L. C o 11 a t z, Eigenwertaufgaben mit technischen Anwendungen, Akad 
Veriagsges., Lipsk 1949.

[3] F. A. G a y d o n, On the Combined Torsion and Tension of a Partly Plastic 
Circular Cylinder, Journ. Mech. Appl. Math. 1 (1952) Oksford.

[4] R. H i 11, The Mathematical Theory of Plasticity, Clarendon Press, Oksford 
1950.

[5] M. T. Huber, Teoria sprężystości, t. 1, PAU, Kraków 1948.
[6] L. S. L e j b i e n z o n, Kurs tieorji uprugosti, Gostiechizdat, Moskwa-Le­

ningrad 1947.
[7] R. A. M ież i u m.j a n, O funkcji popieriecznoj dieformacji, Prikł. Mat. 

Miech., t. 16, Moskwa 1952, str. 491.
[8] A. Nädai, Trans. Am. Soc. Mech. Eng. 52 (1930), str. 193; cyt. według [4].
[9] A. Nädai, Plasticity, Mc Graw-Hill. New York i Londyn 1931.

[10] J. Nowiński i W. Olszak, O podstawach teorii sprężystości ciał 
fizykalnie nieliniowych, Arch. Mech. Stos. 1 (1954).

[11] A. R. R ż a n i c y n, Rasczot soorużenij s uczotom płasticzeskich swojstw 
matieriałow, Strojwojenmorizdat, Moskwa 1949.

[12] W. Sierpiński, Zasady algebry wyższej, Monogr. Matem., Warszawa- 
Wrocław 1946.

[13] M. Sokołowski, Zastosowania metody małych parametrów w zagad­
nieniach płyt, Arch. Mech. Stos. 3 (1953).

[14] W. W. Sokołowski, Tieorja płasticznosti, Gostiechizdat, Moskwa-Le­
ningrad 1950. 321



Резюме
СЛУЧАИ ОДНОВРЕМЕННОГО РАСТЯЖЕНИЯ И КРУЧЕНИЯ СТЕРЖНЯ 

КРУГЛОГО СЕЧЕНИЯ В УПРУГО-ПЛАСТИЧЕСКОМ СОСТОЯНИИРабота решает поставленный вопрос, основываясь на теории пласти­ческих деформаций Генки. Выводятся общие уравнения и фор- мирируются краевые условия. Общие уравнения интегрируются точно в случае несжимаемого материала, которого коэффициент Пуассона равен V2, и приближенно, в случае сжимаемого материала, причем при­водится оценка погрешности.Случай одновременного растяжения и кручения стержня можно охарактеризовать пятью параметрами: скручивающим моментом Ms, продольной силой N, предельным радиусом с, отделяющим пласти­ческую, зону от упругой, относительным удлинением е и углом за­кручивания на единицу длины Ф. В работе подробно рассматриваются зависимости между этими параметрами. Зависимости нагрузок от де­формаций выражаются при помощи элементарных функций, обратные же зависимости не обладают этим свойством. Они представляются графически и нумерически.Результаты работы дают возможность определить три любых пара­метра, имея два остальных, так в упруго-пластическом состоянии, как и в чисто пластическом.
Summary

THE PROBLEM OF COMBINED TENSION AND TORSION OF A CIRCULAR 
BAR IN THE ELASTO-PLASTIC RANGEThe problem is solved on the basis of H e n c k y’s theory of plastic deformations. General equations are derived and boundary conditions stated. The general equations are integrated in an exact manner in the case of an incompressible material having P о isson’s ratio equal to V2. In the case of a compressible material an approximate integration is car­ried out together with the evaluation of error.The problem of simultaneous tension and torsion of a bar can be cha­racterized by means of five parameters: torque Ms, longitudinal force N, radius c of the boundary separating the plastic region from the elastic region, unit elongation e and unit angle of twist Ф. The relations between these parameters are considered in detail. The stresses can be expressed in terms of strains by means of elementary functions. The inverse rela­tions however have not this property. They are expressed graphically and numerically.The results permit to determine any three parameters in the elasto- plastic and plastic range, when two other parameters have a known value.
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III. Z. Klębowski, Podstawy uwzględniania wzmocnień obwodo­
wych w wytrzymałościowym obliczaniu rury poddanej działaniu 
wewnętrznego ciśnienia

IV. M. Zyczkowski, Ugięcie pręta ściskanego mimośrodowo pod 
działaniem siły krytycznej

V. E. Szczepaniak, Nowa metoda rozwiązywania statycznie nie- 
wyznaczalnych ustrojów prętowych na modelach bez wykonywa­
nia przecięć

VI. W. Olszak, Z zagadnień podstawowych teorii stanów granicz­
nych w ortotropowych ustrojach płytowych (Plastyczne wyczer­
panie nośności)

VII. A. Lisowski, Płyty na-sprężystym podłożu
VIII. J. Nowiński, Wyznaczenie przybliżonej wielkości ugięcia płyt 

na podstawie metody Ritza
IX. W. F i s z d o n, O pewnej metodzie obliczania amplitud drgań
X. Z. Wasiutyński, O kształtach pęknięć powierzchniowych

XI. W. Wierzbicki, Dźwigary załamane w planie
XII. W. Wierzbicki, O powstawaniu wyboczenia prętów, prostych

XIII. W. Wierzbicki, Kierunki możliwych usprawnień w oblicze­
niach łuków

XIV. W. Zenczykowski, Podstawy wytrzymałościowe obliczeń 
statycznych konstrukcji murowanych z cegły

XV -1. W. Wierzbicki, Zastosowanie różnic skończonych w przy­
padkach dwukierunkowych stanów naprężeń w budowlach

Tom II zeszyt 1
XVI. I. Małecki, Metody zastosowania rachunku tensorowego 

w technice
XVII. J. Nowiński, Podstawy teorii plastyczności (I). Siedem wy­

kładów
XVIII. W. Nowacki, Statyka rusztów płaskich

Tom II zeszyt 2
XIX. W. Bogusz, Z teorii płyt ortotropowych
XX. J. S z m e 1 t e r, Rozwiązanie zagadnienia błony metodą różnic 

skończonych z użyciem specjalnego liczydła
XXI. M. Sokołowski, Dwustopniowy sposób obliczania pewnego 

typu płyt ortotropowych
XXII. M. Zyczkowski, Wyboczenie sprężysto-plastyczne niektó­

rych prętów pryzmatycznych



Cena zł 20,—

Tom III zeszyt 1

XXIII. M. P. W o 1 a r o w i c z, Badania nad własnościami Teolo­
gicznych układów rozproszonych

XXIV. W. P o g a n y, O pewnych zagadnieniach mechaniki gruntów
XXV. J. Nowiński, Szlakami teorii sprężystości

XXVI. K. Wolski, Metoda punktów kinetycznych
XXVII. J. T. P i n d e r a,. Technika elastooptycznych badań płaskiego 

stanu naprężenia

Tom III zeszyt 2

XXVIII. W. Olszak i A. Sawczuk, Teoria nośności gra­
nicznej płyt w świetle weryfikacji doświadczalnej (I)

XXIX. A. Sawczuk, Zagadnienia nośności granicznej elementów 
rozciąganych i zginanych w zastosowaniu do teorii zbiorników 
prostokątnych

XXX. M. Życzkowski, Przypadek jednoczesnego rozciągania 
i skręcania pręta o przekroju kołowym w zakresie sprężysto-pla- 
stycznym

W DRUKU

XV-2. W. W i e r z b i c k i, O geometrycznych metodach badania kon­
strukcji prętowych

XXXI. M. Bieniek, Metody teorii stateczności ruchu
XXXII. W. P r o s n a k, Struktura fali uderzeniowej

XXXIII. W. Wierzbicki, Analiza schematów statycznych kon­
strukcji drewnianych

W PRZYGOTOWANIU

XXXIV. J. K 1 o 11, J. N a 1 e s z k i e w i c z, J. R u t e c k i i K. W i tu­
sz y ń s k i, Studia wstępne z dziedziny skręcania kadłuba na 
fali skośnej

ARCHIWUM MECHANIKI STOSOWANEJ ukazuje się jako kwartalnik 
i kosztuje w prenumeracie rocznej 60 zł.

ROZPRAWY INŻYNIERSKIE ukazywały się do połowy 1954 r. jako wy­
dawnictwo seryjne. Zeszyty od I do XV ■ 1 są do nabycia w księgarniach na­
ukowych Domu Książki. Zamówienia za zaliczeniem przyjmuje Księgarnia 
Naukowa, Warszawa, Krakowskie Przedmieście 7.

Poczynając od III kwartału 1954 r. ROZPRAWY INŻYNIERSKIE ukazują 
się jako kwartalnik i kosztują w prenumeracie rocznej 80 zł.

Sprzedaż bieżących numerów odbywa się w księgarniach naukowych Do­
mu Książki i w placówkach «Ruchu».
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