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1. Wstep™)

t.1. Teoria nosnosci granicznej ptyt powstala z bezposrednich obser-
wacji uktadéw peknie¢ w zniszczonych ustrojach plytowych, w szczegdl-
no$ci w konstrukcjach zelbetowych. Systematyczne obserwacje, a nastep-
nie szczegdlowa analiza ukladow linij zalomoéw pozwolily wykry¢ szereg
prawidlowosci, wystepujacych w ustrojach ptytowych w koncowym sta-
dium wyczerpania sie ich no$nosci; stadium to praktycznie réwnoznaczne
jest ze zniszczeniem tego rodzaju konstrukeyj.

Szereg prac — poczawszy od pierwszych, nie wolnych od biedow, sfor-
mulowan A. Ingersleva, [7], poprzez cenne spostrzezenia K. W. J o-
hansena, [8], [9], [10], [11], (szczegblnie w odniesieniu do poprawnego
ujecia obrazu kinematycznych zalezno$ci w stadium zlamania ptyty), na-
stepnie poprzez prace A. A. Gwozdiewa, [6], L. S. Gilmana, [5],
W. Olszaka, [15], [16], [17], [18], [20], [21], [22], [23], i jego
wspoéipracownikéw, [12], [13], [14], [29], [30], [31], — wyjasnilo zasady
i sprecyzowalo metody tej szczegoblnej galezi teorii plastycznosci, ktéra
uja¢é mozna mianem teorii granicznej ustrojow. Warto przy tym na mar-
ginesie zaznaczy¢, ze problemy nosnos$ci granicznej byly atakowane przez
szereg badaczy niezaleznie od siebie- Swiadczy to o tym, ze stan wiedzy,
a w szczegoOlnosci rozwoj teorii plastycznosci, stworzyt obiektywne wa-
runki do rozwoju tego szczegdlnego jej odcinka, ktory, co zdaje sie nie
ulega¢ watpliwosci, posiada duze znaczenie teoretyczne i praktyczne.

1.2. Mimo iz teoria no$nos$ci granicznej powstata na gruncie potrzeb
praktyki inzynierskiej i rychto doczekala sie praktycznego potwierdzenia
od strony weryfikacji jako$ciowego przebiegu zjawisk, dlugo pozosta-
waly niesprawdzone te zaleznosci, ktére od strony ilosciowej charaktery-
zujg stany graniczne, zwigzane z ostateczna faza wyczerpania no$nosci
ustroju ptytowego.

1.5. Z uwagi na korzys$ci techniczne i gospodarcze, jakich nalezy sie
spodziewa¢ na skutek szerokiego wprowadzenia do praktycznego stoso-

*) Praca przedstawiona na Zebraniu Naukowym Zakladu Mechaniki Os$rodkéw
Ciaglych IPPT PAN w dniu 8 marca 1954 r.
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wania wynikéw teoretycznych badan no$no$ci granicznej plyt, narzuca
sie koniecznos¢ weryfikacji doswiadczalnej tych wynikéow w sposéb moz-
liwie wszechstronny.

Realizacja programu badan eksperymentalnych, ktére by potwierdzity
stuszno$¢ zatozen i pozwolily na zaakceptowanie wynikéw teoretycznych
zarowno od strony jakoSciowej, jak i iloSciowej, pozwolilaby zamknaé
krag cyklu poznawczego: od obserwacji faktow, wystepujacych w prak-
tyce, poprzez teorie z powrotem do praktyki w sensie zaréwno potwier-
dzenia teorii, jak i jej wykorzystania i uogolnienia.

Przeprowadzenie jednak doswiadczalnych badan tego typu jak bada-
nia nad stanami granicznymi ukladéw powierzchniowych wymaga —
z uwagi na mnogos¢ zmiennych parametréw — odpowiedniej skali (w sen-
sie zakresu badan); badania takie zwiazane sg zatem ze sporymi kosztami
i wymagaja duzo czasu.

t.4. Byty, co prawda, prowadzone juz badania eksperymentalne nad
plytami Zelbetowymi, ale badania te — o znaczeniu dzi$ juz tylko histo-
rycznym — nie byly podbudowane zadng koncepcjg teoretyczna.

Mimo to niektére ich wyniki, odpowiednio interpretowane, stanowié¢
beda, jak zobaczymy, wcale pozyteczny materiat, umozliwiajacy weryfi-
kacje zalozen, budowy i wynikéw teorii zjawisk towarzyszacych wyczer-
paniu no$nosci ustrojéow ptytowych.

Zwazy¢ przy tym jednak nalezy, ze prace do$wiadczalne nad ptytami
zelbetowymi, poczawszy od pierwszych opublikowanych wynikéw badan
C. Bacha, [1], i O. Grafa, [4], mimo iz zawierajg wiele rzeczo-
wego materialu, tylko czeSciowo nadajg sie do wykorzystania do naszych
celéw. Wynika to stad, ze badania te nie zawsze byly prowadzone w wa-
runkach, ktére mozna z naszego stanowiska przyjaé¢ za odpowiednie, jak
tez i z tego, Ze nie we wszystkich dostepnych nam publikacjach scharak-
teryzowane s3a dostatecznie dokladnie interesujace nas parametry (jak
np. komplet mechanicznych wlasnosci stosowanych materialéw itp.).

Niemniej jednak uwazaliémy za swéj obowiazek (niezaleznie od pro-
wadzonych specjalnie pod kgtem widzenia teorii nosnosci granicznej wta-
snych badan doswiadczalnych) przejrze¢ krytycznie dotychezasowe do-
stepne nam rezultaty badan i wyciagna¢ z nich wnioski, o ile mozna by-
lo przy tym interpretowa¢ wyniki tych badan w $wietle teorii no$nosci
granicznej. Z materialow tych korzystaliSmy z rozmystem, stanowig one
bowiem dodatkowe potwierdzenie stusznosci zalozen teoretycznych. Szcze-
gblnie pod tym wzgledem cennga jest praca K. W. Johansena, [10].

1.5. Przypadki, spotykane w praktyce, wykazuja duze bogactwo zmien-
nych warunkéw; dotyczy to w szezegdlnosei:
(1) struktury plyt (izotropia, ortotropia, ortotropia «podwojna» itd.);
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(2) ich uksztaltowania geometrycznego i warunkéw podparcia (plyty
prostokatne, plyty w postaci wielobokéw umiarowych, ptyty jedno-
przestowe i ciagle, podparcie swobodne, utwierdzenie, brzegi wolne itp.);

(3) ich obciazenia (uktady sit skupionych, obcigzenia ciagte itp.).

2. Prace polskie

Dotychczasowe prace polskie w dziedzinie no$nosci granicznej plyt
szty w nastepuja,cych zasadniczych kierunkach.

2.1. Pierwszy z nich dotyczyl sformulowania podstaw tej teorii, przy
czym okazalo sie, Ze sa one stuszne nie tylko dla problemu nosnosci gra-
nicznej plyt, lecz dla szerszej klasy problemoéw teorii ustrojéw nosnych.
Dotyczy to np. poprawnego kinematycznego obrazu stanu granicznego,
twierdzenia o maksymalnym oporze plastycznym itd.

2.2. Drugim podstawowym zagadnieniem, ktére ma donioste znaczenie za-
rowno dla rozbudowy teorii, jak i dla jej praktycznych zastosowan, jest
zagadnienie anizotropii struktury plyt.

Dla praktyki projektodawczej szczegdlne znaczenie ma przypadek ani-
zotropii ortogonalnej (ortotropii).

Udowodnié mozna, ze w teorii nosnosci granicznej kazdy przypadek
ortotropii bez wzgledu na zachodzace warunki, tzn. przy dowolnym
uksztaltowaniu ptyty, przy dowolnym jej obciazeniu i przy dowolnych
warunkach brzegowych, sprowadzi¢ mozna do zagadnienia plyty izotro-
powej i to przez zastosowanie prostej transformacji liniowej.

Transformacje te rozszerzy¢ mozna réwniez na plyty «podwodjne orto-
tropowe». Zagadnienie powyzsze omawia szczegélowo oddzielna praca
pierwszego z autoréw, [17].

Podano przy tym nowe rozwigzania szeregu trudniejszych przypad-
kow, jak np. obciazenie sitami skupionymi ptyt eliptycznych w dowolnym
punkcie na osi diuzszej, [17]; zagadnienie to zostalo nastepnie uogdlnio-
ne dla przypadku obcigzenia w dowolnym punkcie elipsy, [14]; podano
rozwigzanie dla ptyt wielobocznych o uksztattowaniu foremnym, [29], [31].

2.5. Waznym zagadnieniem jest problem plyt ciaglych.

W pracy [22] przedstawiono ujecie teoretyczne tego problemu w przy-
padku ciaglo$ci «dwuwymiarowej», a zatem takiej, jaka charakteryzuje
ustroje plytowe «wielopolowe» w dwoéch kierunkach (np. x oraz y). Wy-
niki podobne jak dla («dwuwymiarowo») ciggtych plyt uzyskuje sie dla
zbiornikéw prostokatnych, ktére, w rzeczy samej, zlozone sg z tego rodzaju
plyt ciaglych. Istotng roznice stanowi przy tym koniecznos$¢ réwnoczesne-
go uwzglednienia stanu membranowego. Zagadnienie to jest obecnie
w trakcie opracowywania, [30].
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Nieco bardziej zlozone zagadnienie spotykamy w analizie stropéw
«grzybkowych», kiedy to ujecie siatki zniszczenia z punktu widzenia ki-
nematyki wymagaé¢ bedzie na ogét rozwigzania tego zagadnienia w prze-
strzeni (a nie w plaszczyznie).

I ten problem jest obecnie w opracowaniu.

2.4. Ostatnio zwrécono réwniez uwage na problem niejednorodnosci
struktury ptyt. Podstawy ogélnej teorii ciat sprezysto-plastycznych przed-
stawione przez W. Olszakua, [24], [25], doznaja znacznego uproszcze-
nia, gdy chodzi o ich zastosowanie do tej klasy zagadnien, ktoére sa zwia-
zane z analiza stanéw granicznych.

Okazuje sie przy tym, ze w fazie koncowej, charakteryzujacej wy-
czerpanie sie nosno$ci ustroju, zagadnienie niejednorodnos$ci (przy zalo-
zeniu schematu sztywno-plastycznego), [15], [16], [20], [21], wyraza sie
przez pewne proste zaleznosci catkowe, polegajace na operowaniu pew-
nymi wielko$ciami, ktére mozna by — przez analogie do zagadnien spo-
tykanych w «klasycznej» nauce o wytrzymalo$ci materialoéw — nazwaé
wielko$ciami «wypadkowymi», [13], [30], [31].

Zaleznodci te wyrazajg sie w sposob prosty.

2.5. Wspomnie¢ wreszcie nalezy o pewnej analogii mechanicznej, kto-
ra umozliwia rozwigzywanie zlozonych zagadnien z dziedziny teorii no-
$nosci granicznej ptyt.

Mamy na mysli analogie «wzgorza piaskowego», ktora — jak wykaza-
no to na innym miejscu!) — znajduje zastosowanie zar6wno w zagadnie-
niu piyt izotropowych, jak i ortotropowych.

2.6. Zainteresowanie, jakim sie cieszg obecnie problemy no$nos$ci gra-
nicznej, sklonito nas do opracowania obszernego planu badan do$wiad-
czalnych.

Pierwsza serie tych badan eksperymentalnych, na razie do$é skromna,
mozna w zasadzie uznac¢ za zakonczona. Dotyczyla ona przede wszystkim
weryfikacji doswiadczalnej zalozen podstawowych teorii nosno$ci gra-
nicznej plyt i to zaréwno w sensie poszukiwania jej potwierdzenia pod
wzgledem jako$ciowym (kinematyka stanéw granicznych, siatka zni-
szczenia), jak 1 pod wzgledem iloSciowym (wartosci parametrow, charak-
teryzujace siatke zniszczenia, wartos$ci obciazen granicznych).

Badania do$wiadczalne dalsze, juz rozpoczete, dotycza ukladéow bar-
dziej zlozonych (plyty ciagle, struktura ortotropowa, zagadnienie naro-
zy itd.).

') Zagadnienie to, na ktérego charakter zwrocit uwage jednemu z autorow W. N o-
wacki, oméowiono w pracy W. Olszaka, [23], w ktorej podano mozliwosci sto-
sowania tej analogii przede wszystkim w przypadkach obciazenia réwnomiernego.
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2.7. Celem niniejsze] pracy jest przedstawienie czesci wynikow do-
$wiadczen wilasnych (z serii pierwszej) oraz niektérych, nadajgcych sie
do wykorzystania do naszych celow, badan zagranicznych.

3. Ogolne zalozenia teorii noSnosci granicznej plyt

5.1. Zanim przystgpimy do omowienia przeprowadzonych doswiadczen
oraz do analizy wynikow, uzyskanych w oparciu o te do$wiadczenia, wy-
daje sie nam rzeczg wskazang poda¢ krotka charakterystyke ogélnych za-
lozen i zasad teorii no$nosci granicznej plyt.

5.2. Wyobrazmy sobie w tym celu plyte o strukturze izotropowej lub
ortotropowej, znajdujaca sie w pewnych warunkach podparcia. Méwiac
o plytach ortotropowych mamy przede wszystkim na uwadze krzyzowo
zbrojone plyty zelbetowe, bedace najbardziej charakterystycznym re-
prezentantem tego typu struktury.

Zalézmy, ze zbrojenie ulozone jest rownomiernie w dwodch prostogad—
tych do siebie kierunkach, przy czym ilo$¢ tego zbrojenia na jednostke
dtugosci przekroju poprzecznego moze by¢ w obu kierunkach prostopad-
lych rézna. Zalozenia takie prowadza do postulatu rozpatrywania ukta-
dow zaréwno izotropowych, jak i ortotropowych. W przypadku gdy wa-
runki podparcia narzucaja koniecznos$¢ stosowania zbrojenia goérnego, za-
ktadamy, ze plyta moze by¢ inaczej (krzyzowo) zbrojona goéra, a inaczej
(krzyzowo) zbrojona dotem; stanowi.ona wtedy uktad «warstwowo» albo
«podwojnie» ortotropowy.

Zalozenia powyzsze, dotyczace ukladu zbrojenia, maja swoje uzasad-
nienie praktyczne. Plyty krzyzowo zbrojone posiadaja na ogét cztery réz-
ne charakterystyki, odnoszgce sie do mocy zbrojenia.

5.3. ROwnomierno$¢ rozkltadu zbrojenia w kazdym z kierunkéw przy
stalej grubosci plyty powoduje, iz plyte te rozpatrywaé mozna jako jed-
norodng ?). Prowadzi to z kolei do wniosku, ze moment lamiacy, obliczo-
ny na jednostke diugosci, charakteryzuje sie stala wartoscia, przy czym
za moment tamiagcy uwaza sie warto$¢ wystepujaca w chwili wyczerpania
nosnos$ci ukladu i przeksztalcenia go w (ruchomy) mechanizm. Moment
jednostkowy posiada te samg warto$¢ we wszystkich przekrojach rowno-
leglych do danego kierunku.

¥) Badania nad ustrojami zbrojonymi nieréwnomiernie prowadza do pojecia jego
niejednorodnosci. Zagadnienie to omawiaja w swych pracach: W. Olszak, [24],[25],
D.Niepostyn, [13],i A. Sawczuk, [30], [31]. Por. p. 2.4.
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5.4. W miare wzrostu obcigzenia ustroju obserwowaé mozna od-
ksztalcenia sprezyste i to az do chwili, gdy w pewnym miejscu moment
osiggnie warto$¢ graniczna, charakteryzujgca uplastycznienie tej partii
piyty. Z ta chwila uplastycznienie zaczyna rozchodzi¢ sie wzdtuz pew-
nych linij, zwanych liniami zalomoéw.

W okresie tym wystepuja obok siebie w ptycie odksztalcenia plastycz-
ne w liniach zalomoéw oraz odksztalcenia sprezyste na pozostalym obsza-
rze.

Nosnos¢ uktadu nie jest jeszcze woéwczas wyczerpana i mozliwy jest
dalszy wzrost obcigzen. Obcigzenie przybierze swag wartos¢ graniczng
z chwila, kiedy linie zalomoéw dojda do krawedzi plyty, wskutek czego
ustréj nosny zamieni sie¢ w mechanizm; odksztatcenia plastyczne w liniach
zalomo6w narasta¢ bowiem moga bez przyrostu obciazenia.

Przyjecie tego schematu przebiegu zjawiska wynika z pominiecia
wplywu «utwardzenia» stali, obserwowanego w czasie badania probek
na rozciaganie. Ograniczamy sie tym samym do przyjecia zalezno$ci miedzy
odksztalceniem a naprezeniem, przedstawionej schematycznie na rys. 1.

Doswiadczenia wykazuja—bedzie
mowa o tym szczegbélowiej w dal-
szej czeSci pracy — ze w przypadku
elementow zelbetowych przy od-
ksztatceniach, ktére charakteryzuja
chwile wyczerpania nosnosci, przy-
% jecie zalezno$ci ‘przedstawionej na
}‘ rys. 1, a charakteryzujacej zwiazek
1 & miedzy naprezeniami i odkztatce-
niami znajdujé swe fizykalne uza-
sadnienie.

b

Rys. 1

55. W teorii no$noSci granicznej, rozwinietej w pracach polskich,
pomija sie z zasady odksztalcenia sprezyste ustroju, ograniczajac sie do
uwzgledniania odksztalcen plastycznych. Takie stanowisko — ktérego
stusznoéé potwierdzaja badania eksperymentalne — prowadzi do roz-
patrywania modelu sztywno-plastycznego. W naszym przypadku przyje-
cie uproszezonego modelu sztywno-plastycznego oznacza, ze odksztalce-
nia (w szczegdlnosci zakrzywienia) «koncentruja» sie w miejscach, w kto-
rych naprezenia osiagnely wartos¢, odpowiadajaca granicy plastyczno-
$ci, a wiec wzdluz linij zalomoéw. Obszary ograniczone liniami zalomow,
lub liniami zalomoéw i bokami plyty, pozostaja — przy pominigciu
odksztalcen sprezystych — plaskie. Oznacza to w konsekwencji, ze linie
zalom6éw musza byé liniami prostymi, gdyz jedynie wowczas jest mozli-
we przeprowadzenie ukladu w mechanizm.
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5.6. Z przyjecia powyzszych zalozen wynika, ze odksztalcenie plyty
rozpatrywane by¢ moze jako zespo6l katowych obrotéw platéw plaskich
wokolo chwilowych osi obrotu.

Polozenie osi obrotu kazdego z platow jest przy tym zalezne od wa-
runkow podparcia. O$ obrotu przechodzi¢ bowiem musi np. przez punkty
podparcia ptyty, jak to ma miejsce w przypadku swobodnego oparcia
plyty na glowicach slupow, albo tez przez prostg podparcia — w przy-
padku plyt podpartych liniowo, albo wreszcie pokrywac sie z linig zatomu.

Proste zalomoéw, ktére — jak widzieliSmy — sa krawedziami przecie-
cia sie ptaskich ptatéw, musza kazdorazowo przechodzi¢ przez punkt prze-
ciecia sie odpowiednich osi obrotu sasiadujacych ze soba platow.

Uktad prostych zatomu albo — jak uklad ten chcemy nazywac¢ w dal-
szym ciggu — siatke zniszczenia mozna wiec przewidzie¢ bezposrednio
z analizy warunkow podparcia ptyty. Nalezy tu dorzuci¢, ze okre$la sie
w ten spos6b z warunkéw geometrycznych jedynie ogélny zarys siatki
zniszczenia bez okreslenia jej wymiarow i katéw nachylenia odpowiednich
linij wzgledem siebie. Ponadto sa niejednokrotnie mozliwe roézne typy
(konfiguracje) tej siatki.

Wybdr siatki wlasciwej oraz wyznaczenie parametréw, na podstawie
ktorych mozna bedzie $cisle — w danych warunkach podparcia i obcia-
zenia — okresla¢ rzeczywistg siatke zniszczenia, nastapi¢ moze w oparciu
o metode postepowania, ktérej poswiecimy nieco uwagi w dalszej czesci
niniejszej pracy.

5.7. Dla zilustrowania faktu, iz siatka zniszczenia (w przypadku obcig-
zen ciggltych) dana jest przez warunki geometryczne, przedstawiono na
rysunkach 2-5 kilka przyktadéow siatek zniszczenia bez $cislejszego pre-
cyzowania okre$lajacych je parametrow.

Nie wszystkie jednak typy obciazen pozwalaja na podstawie warun-
kow geometrycznych okresli¢ ksztatt siatki zniszczenia. Nie bedzie tak
miedzy innymi woéwcezas, gdy mamy do czynienia z plytg poddang dzia-
taniu pojedynczych silt skupionych, uktadéw obciagzen, zblizonych w swym
dziataniu do dziatania sil! skupionych, badz zespoléw sit skupionych. Dla
tych obciazen figury zatoméw tworza uktad zblizony do szeregu tréjka-
tow o wspolnym wierzchotku w miejscu zaczepienia sity oraz trapezéw —
w zaleznos$ci od obciazenia. Ilustracja powyzszego stwierdzenia niech be-
dzie rys. 6, na ktérym podana jest siatka zniszczenia tafli ze szkta zbro-
jonego, obciazonej sila skupiona.

Cztery inne przyklady takich siatek zniszczenia przedstawiaja rysun-
ki, 8,91 10.

5.8. Warto tu — w zwigzku z omawianym problemem siatek zniszcze-
nia — przytoczy¢ jako rzecz charakterystyczng fakt, ze réwniez niektore
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R A A

Rys. 9 Rys. 10
typy plyt niezbrojonych wykazuja figury zniszczenia podobne do figur,
wystepujacych w przypadku plyt zbrojonych, mimo ze mechanizm
ich destrukceji jest odmienny.

Rys. 11

Rys. 13

Rysunki 11, 12, 13 i 14 przedstawiaja prostoliniowe zalomy szeregu
plyt betonowych wedlug obserwacji, przeprowadzonych na jednym z chod-
nikow. W przypadku, ktorego dotycza owe ilustracje, o zatomach prosto-
liniowych stanowily 91,2%/0 ogdlnej ilosci plyt ztamanych, [16].

189



3.9. Nastepne z kolei zagadnienie, ktore nalezy wyjasni¢ po oméwieniu
siatek zniszczenia, to zagadnienie zwigzku, jaki istnieje miedzy ukladem
linij zalomoéw i ich dlugos$cia a nosnoscig piyty.

StwierdziliSmy poprzednio, ze decyzja przyjecia sztywno-plastycznego
modelu odksztalcenia oznacza prostoliniowo$¢ siatki zaloméw; wyraza
ona zarazem okoliczno$é, ze linie zalomow sa rownoczesnie osiami obro-
tu momentu tamigcego.

Wezmy pod uwage ogoélny przypadek
znamienny tym, ze linia zalomu jest nachy-
lona do obydwu wzajemnie prostopadlych

< kierunkow zbrojenia (rys. 15). Z uwagi na
Y fakt, ze moment graniczny («lamigcy») na
. dlugosci tej linii charakteryzuje sie warto-
{La“, UM seig stata, rowniez i jego skladowe, zwigza-
ne z odpowiednimi osiami uktadu odniesie-
nia, beda state.

Wynika to zreszta bezposrednio z faktu, ze momenty M, i M. sg funk-
cjami mocy zbrojenia:

V(Mv) My

Mu

Rys. 15

‘ Mu - F(f\) )

(3.9.1) | M. = F(f).

W zapisie tym fs i f, oznaczaja moc zbrojenia w kierunkach réwnoleg-
lych do osi danego ukladu wspoirzednych (u, v).

Wychodzac z wzajemnego stosunku mocy zbrojenia dotem f, i f» oraz
gorg fu i fu przynalezne momenty lamiace, obliczane na jednostke szero-
ko$ci zbrojenia dotem beda M, i M., natomiast dla zbrojenia goéra
M. i M.

Ustalajac wzajemne stosunki momentéw otrzymamy

. l M;l - XMu 5
(3.9.2) ‘ , ;
M, = /i M,.
Gdy ponadto zachodzi zalezno$¢ M) = uM,, oznacza to zarazem, ze

(3.9.3) My=2uM,.

Jesli jako przypadek szczegdélny ukladu izotropowego przyjmiemy
plyte o jednakowej mocy zbrojenia w obydwu wzajemnie prostopadtych
kierunkach, wowczas zachodzi rownos¢ momentéow sktadowych M, i M.
(liczonych na jednostke dtugosci), co zapisa¢ mozemy w postaci

(3.9.4) M,=M,=M.
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Calkowity moment M, zwiazany z okreslonym odcinkiem linii zatlomu,
bedzie funkcja jednostkowego momentu wypadkowego M i dlugosci tego
odcinka s:

(3.9.5) M=M-s

Gdy rozpatrywac bedziemy momenty graniczne jako wielko$ci wek-
torowe, stwierdzimy latwo, ze sama siatka zniszczenia stanowi naoczny
wektorowy obraz momentéw lamiacych w chwili osiagniecia granicy no-
$noSci plyty.

Gdy natomiast, w przypadku ogoélniejszym, bedziemy mieli do czy-
nienia z plytami ortotropowymi o stalych warto$ciach momentow skla-
dowych M, i M., przy czym My, = xM,, wowczas uklad linij zalom6éw nie
bedzie bezposrednio przedstawial wartosci calkowitego momentu M, ale
pewne warto$ci do niego proporcjonalne. Wspoiczynniki proporc?onal—
nosci sa tatwe do wyznaczenia.

5.10. Zatrzymujac sie nad wyznaczeniem dla przypadku ortotropii od-
powiednich skltadowych momentu calkowitego, zwiazanego z danym od-
cinkiem, zauwazymy, ze je$li przez a i b oznaczymy odpowiednie sktadowe
odcinka w uktadzie osi wspoirzednych (u, v), otrzymamy bezposrednio

‘Mu:aMu,

(3.10.1)
| M, =bM.—bxM,.

Analogiczne zapisy sa sluszne w przypadku wystepowania momentow
ujemnych, jak rowniez w przypadku najogélniejszym, tzn. przy uwzgled-
nieniu ortotropii warstwowej (podwojnej).

Wskazana proporcjonalno$¢ miedzy warto$cia momentu catkowitego
(charakteryzujaca w istocie no$nosé graniczng) a dtugoscia odcinkoéw siat-
ki zniszczenia ulatwi analize wielkosci sil, powodujacych graniczne sta-
dium wyczerpania no$nosci rozpatrywanego ustroju.

5.41. Aby uwolni¢ sie od koniecznosci ewentualnego uwzglednienia
momentéw skrecajacych i sit poprzecznych, ktére, co prawda, w liniach
zatlomOw — w interesujacych nas przypadkach — nie wystepuja, moga
jednak powodowaé¢ powstanie tzw. sit wezlowych w punktach zbiegu
wiekszej ilosci linij zaloméw, postuzymy sie dla okres$lenia warto$ci mo-
mentu lamigcego zasadg prac przygotowanych.

Zapiszemy ja tutaj w postaci

(3.11.1) , SL=0V,

co wyraza, ze dla ciala bedacego w réwnowadze, przy jego przesunieciu
przygotowanym, polaczonym z odksztalceniem, praca sil zewnetrznych
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jest réwna pracy sil wewnetrznych na odpowiednich przyrostach od-
ksztalcen. . '

Gdy jako najstosowniejsze w rozpatrywanym problemie wezmiemy
pod uwage wzajemne obroty katowe poszczegdlnych platow plyty, to
w wyrazenie na prace wejda jedynie wyrazy pochodzace z dziatania mo-
mentéw. Praca wyrazona bedzie wtedy kazdorazowo przez iloczyn, utwo-
rzony z kata obrotu d¢ plata wokét odpowiedniej osi obrotu oraz rzutu wy-
padkowej momentu lamigcego na kierunek tej osi Mcos (M, d¢).

Daje to w rezultacie iloczyn skalarny '

(3.11.2) Mog:=Moqpcos(M, 0 ¢)
albo, operujac sktadowymi wektorow obrotu i momentu,
(3.11.3) Moo —M,0q, + Moo,

gdzie M, i M. oznaczajg odpowiednie sktadowe, przy czym pamietaé¢ na-
lezy o znaczeniu wskaznika ortotropii », okreslonego np. wyrazeniem
(3.10.1).

W podanych wyzej wzorach zalozyliSmy, ze obroét, wywotany danym
momentem, charakteryzuje sie tym samym znakiem co i odpowiedni mo-
ment; za dodatnie uwaza¢ bedziemy przy tym takie momenty, ktore wy-
woluja wystepowanie sit wewnetrznych rozciagajacych po stronie «dol-
nej». Tak wiec np. zalomy na podporach plyt utwierdzonych przyjmowac
bedziemy za ujemne, w przestach natomiast za dodatnie.

542, Wystepujace w wyrazeniu (3.11.3) sktadowe wektora 0 ¢ przedsta-
wi¢ mozna na podstawie rys. 16, przy obrocie danego ptata wokol osi
obrotu i przy udzieleniu pewne-
mu punktowi przemieszczenia
przygotowanego ow, w postaci

AV

)W YW
u - (3.12.1) dgu="r, Oqo=—o

;ﬁ-’: / Ty Tu ’
: o Praca sit wewnetrznych jest

! \‘\\ < ¢ wiec tatwa do okres$lenia
0&\0‘% ’v i przedstawi sie jako suma ilo-

czynow typu (3.11.3).
Jesli natomiast chodzi o pra-
'~ ce sil zewnetrznych, to w przy-
Rys. 16 padku sit skupionych bedzie
ona suma iloczynow typu
(3.12.2) OLp= > P;dw:,

przy czym P; oraz 0w; oznaczaja odpowiednio sile i jej przesuniecie w kie-
runku dziatania sily, wywolane przemieszczeniem przygotowanym dw,
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natomiast przy dziataniu rozlozonego na powierzchni piyty obciazenia
o intensywnos$ci p (u, v) otrzymuje sie wyrazenie

(3.12.3) 0L,=[[p(u,v)dw(u,v)dudv,

gdzie ow(u,v) oznacza przynalezne przemieszczenie zwiazane z przemie-
szczeniem przygotowanym.

Oczywiscie, odpowiedni bilans prac obja¢ powinien wszystkie biorace
udzial w obrotach platy, podobnie jak wzér (3.12.2) dotyczyt wszystkich
punktow zaczepienia sit P;.

Ostatecznie na podstawie przytoczonych wzoréw otrzymamy réow-
nanie

(3.12.4) YPiowi+ [[pu,v)oww,v)dudv— YMdgcos(M,dqp) =0,

z ktérego przy znanej siatce zniszczenia wyznaczy¢ mozemy wielko$¢ mo-
mentu tamigcego M.

5.13. Wyjasni¢ jeszcze nalezy sposob postepowania, gdy siatka zni-
szczenia nie bedzie z gory znana co do dlugodci poszczegélnych jej odein-
kéw itp. (choé, o ile chodzi o jej ksztalt to okreSlony on jest — jak wie-
my — warunkami podparcia i obciazenia). Nalezy wowczas przedstawic
siatke za pomocg funkcji zaleznej od odpowiedniej ilosci nieznanych pa-
rametrow (x;, &, ..., x,), co z kolei pociagnie za soba to, ze wyrazenie na
moment M bedzie funkcja obcigzenia @ oraz tychze parametréow:

(3.13.1) M=F(Q, 2,y ..., Tn).

W celu wyznaczenia wielkosci momentu charakteryzujacego stan gra-
niczny danej ptyty postuzymy sie zasada maksymalnego oporu plastycz-
nego, [16], [22], ktéora mowi, ze ze wszystkich geometrycznie mozliwych
uktadéw linij zalomu wazna jest ta siatka, ktérej odpowiada najwieksza
warto$¢ momentu M 3); dla poprawnej siatki zalomoéw musza wiec byc¢
spelnione warunki
oM oM  0M
ox, Ox,  Ox, -

(3.13.2) 0.

Z powyzszych warunkéow otrzymujemy n réwnan, pozwalajacych wy-
znaczy¢ n nieznanych parametréow xi, X, ..., x,, gdy za$ znana bedzie
siatka zniszczenia, nic nie stoi na przeszkodzie wyznaczeniu wielko$ci mo-
mentu tamiacego M *).

Przejdziemy teraz do omowienia probleméw zwigzanych bezposrednio
z technikg wykonywania do$wiadczen nad no$no$cia granicznag plyt.

3) Jest to rownoznaczne ze stwierdzeniem, ze obciazenie spelnia woéwczas waru-
nek minimum.

4) Prosty przyklad liczbowy, objasniajacy sposob postepowania w konkretnych
zagadnieniach, podany jest na koncu pracy (patrz str. 244).
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4. Zasady badan laboratoryjnych nad teoria nosnosci granicznej

4.1. Moment zginajacy «graniczny» w linii zalomoéw posiada wartos¢
stala wzdluz catej dtugosci tej linii. Takie przyjecie stato$ci momentu ta-
miacego, oparte na znanej platformie plastycznej z wykresu zaleznosci
(6, ¢) dla stali, upraszcza znacznie obliczenia przy wyznaczaniu momen-
tow tamiacych ).

Dla przypadku elementéw zginanych interesujaca bedzie zaleznos¢ —
wynikajaca ze wspomnianego wykresu relacji (0,&) — miedzy krzy-
wiznag a momentem zginajacym w okresie pojawienia sie odksztalcen
plastycznych. Zalezno$¢ te mozemy przedstawi¢ na podstawie znanych
zwigzkéw miedzy krzywizng a mo-
mentem zginajacym w formie wy-

Mo
| // kresu przedstawionego na rys. 17.

/ Prosta przerywana przedstawia

/‘ A funkcje M = f(p) dla ciala sprezy-

b stego, prosta pelna dla ciata ideal-

/ nie plastycznego. Warto$ci momen-

‘I:T ' g tow M i M’ okreélone sa miedzy in-

= / . nymi zdolno$cia materiatu do przej-
7 — — — faza sprezysta . . .

/ o0l st e mowania sil wewnetrznych rozcia-

gajacych w jego warstwach, potozo-
R nych odpowiednio ponizej wzglednie
powyzej osi zgiecia plastycznego.

Dla elementéw zbudowanych z materiatu elasto-plastycznego wykres
przedstawionej zalezno$ci bedzie odpowiednia kombinacja obu faz; rozu-
‘mie¢ to nalezy w ten sposob, ze platforma rosnacej krzywizny przy sta-
lym momencie powstanie z chwila osiagniecia w materiale granicy pla-
stycznosci.

Nasuwa sie pytanie, w jakiej mierze tego rodzaju zalozenie odksztal-
cen plastycznych znajduje potwierdzenie przez zachowanie sie zeibeto-
wego pasma plytowego. Doswiadczenia, wykonane nad pasmem plyty
zelbetowe] o podanej grubosei i zbrojeniu utozonym «dotem», wykazatly,
ze je$li o$ odcietych przedstawiac¢ bedzie krzywizne, a wiec — w zatoze-
niu sztywno-plastycznego schematu odksztalcenia — nachylenie ptatow
wzgledem siebie, za$ 0§ rzednych — warto$¢ momentu «granicznego», to
zalezno$¢é miedzy momentem a krzywizng linii zalomu przedstawi sie jak
na rys. 18.

%) Oznacza to zarazem, ze pomijamy w ten sposéb nieduza nadwyzke no$nosci.
wynikajacg z faktu «utwardzenia» materiatu.
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Krzywa 1 dotyczy plyty zbrojonej stala miekka, za$ krzywa 2 odnosi
sie do zbrojenia drutem stalowym, ktory przy probie rozciagania po zer-
waniu wykazywal wydluzenie okolo 5% i nie posiadat wyraznej grani-
cy plastycznosci. Jak widaé¢

M[k
z rysunku, w obydwu przypad- Lra]
kach istnieje znacznej dlugosci ™%
: gy . 1200 |— A L7

platforma, ktéra uwaza¢ mozna e
za pozioma, a ktéra wskazuje, [ A
N . . 400
iz warto$¢ momentu od chwili /

0
osiagniecia pewnej wielkosci g 0 20 %[m-‘c,,,-«]

jest stata i niezalezna od krzy- Rys. 18
wizny.

42. Nastepnym problemem, ktéremu nalezy poswieci¢ nieco uwagi,
jest problem odksztalcen sprezystych oraz ich wplywu na uktad linij za-
toméw plyty. Na innym miejscu, [16], stwierdzono, iz odksztalcenia spre-
zyste, w szczegdlnosci za$ zakrzywienia ptyty w tych czeSciach, w kto-
rych naprezenia nie osiggnely granicy plastycznosci, mozna w pierwszym
przyblizeniu pomingé w poréwnaniu z odksztalceniami plastycznymi, wy-
stepujacymi w przekrojach, w ktéorych nastapilo osiagniecie stanu gra-
nicznego. Takie zalozenie jest réwnoznaczne z przyjeciem tzw. sztywno-
plastycznego modelu odksztalcenia w chwili zniszczenia (por. [15], [16],
{27]), co pozwala uwaza¢ poszczegllne platy za plaskie. Stad bezposred-
nio wynika, ze linie zalomu sa liniami prostymi (por. [6], [7], [8], [9], [10],
{15], [16], [22]).

Problem ten wymaga nieco innego potraktowania dla dwu roéznych
praktycznie waznych typow obciazen, mianowicie obciazen rozlozonych
réwnomiernie i obcigzen skoncentrowanych w formie sit skupionych.

Jesli chedzi o plyty obciazone w sposoéb réwnomierny na catej po-
wierzchni, to zalozenie, ze platy pozostaja plaskimi, nie jest w rzeczywi-
sto$ci w pelni spelnione, lecz w przyblizeniu jest ono uzasadnione. Jako
ilustracja powyzszego problemu niech postuzy rys. 19, [10].

Na rysunku 19a przedstawiony jest charakter odksztalcen platow ply-
ty kwadratowej w plaszczyznie jednej osi symetrii powierzchni ptyty, na-
tomiast na rys. 19b odksztatcenia, wystepujace wzdluz przekatnej. Prze-
suniecie sie punktu B z pierwotnego polozenia na osi diugosci | do polo-
zenia B’ $wiadezy o podniesieniu sie naroza B w stosunku do polozenia
w stanie nieobcigzonym. Zagadnienie podnoszacych sie narozy omowione
zreszta bedzie na innym miejscu. Oczywiscie, przedstawienie odksztal-
cenia plyty w rozpatrywanym przekroju w postaci linii tamanej ACD
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jest schematyczne i ma na celu jedynie zwrocenie uwagi na rzad wiel-
kosci odksztalcen sprezystych w stosunku do plastycznych w linii zalo-

a b
N\

B
[ 8|

F

———— Schemat sztywno plastt yezny

Odksztalcenie rzeczywiste

Rys. 19

n__ TN

/

% /M; N\

F ['cmﬁ

B e R

Rys. 20

/

N

mu, reprezentowanej na ry-
sunku przez punkt D.

Przypadek obciazenia pty-
ty kwadratowej, podpartej
na obwodzie w sposdb po-
zwalajacy na unoszenie sie
narozy, sitg skupiong dzia-
tajacg w S$rodku ptyty, po-
twierdza w zupelnosci zato-
zenie pozostawania platow
ptaskimi. Rysunek 20 przed-
stawia analogiczng — jak
reprezentowana na rysunku
poprzednim — zalezno$¢ dla
omawianego typu obcigzen,
uzyskang na podstawie wia-
snych doswiadczen.

Inny przypadek potwierdzajacy zalozenie prostoliniowoS$ci linij zalo-

moéw przedstawia rys. 21.

Nalezy sie tu jednak zastrzec, ze w przypadku plyty o duzej po-
wierzchni, a malej przy tym sztywnosci, obcigzonej pojedyncza sita sku-

piona, zagadnienie przedsta-
wiaé sie moze nieco inacze],
gdyz linie zatoméw nieko-
niecznie musza dojs¢ do
krawedzi podparcia. Powsta-
je w tym przypadku inny
uktad siatki zniszczenia oraz
inny nieco obraz odksztalcen,
ktéory moze nie odpowiadac
wykresom, przedstawionym
na rys. 19, niemniej jest on
réwniez zgodny z zalozenia-
mi teorii granicznej.

Rys. 21

45. Po tym omoéwieniu doswiadczalnego sprawdzenia stusznosci zato-
zen teorii nos$nosci granicznej nalezy z kolei wyjasni¢ niektére zagadnie-
nia, zwigzane z metodyka prowadzenia doswiadczen nad weryfikacja tej

teorii.
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Jest rzeczg wiadoma, ze o wielkosci obciazenia tamiacego wedlug teo-
rii no$nosci granicznej swiadczy uklad linij zaloméw oraz wartosé jednost-
kowego momentu lamiacego. Jesli chodzi o pierwszy z wymienionych
czynnikéw, nie bedziemy go w chwili obecnej blizej rozpatrywali, a te
dlatego, ze metoda wyznaczania ukiadu linij zaloméw dla danych wa-
runk6w podparcia i obcigzenia omoéwiona zostala juz uprzednio dosc¢
szczegotowo 6). Nalezy tu jedynie przypomnie¢, ze postuguje sie ona kry-
terium maksymalnego oporu plastycznego, co pozwala ustali¢ niezbed-
na liczbe parametrow charakteryzujacych siatke zniszczenia.

Ze stanowiska eksperymentalnego uzasadnienia teorii nosnoSci gra-
nicznej waznym jest drugi ze wspomnianych czynnikéw, mianowicie war-
to$¢ momentu lamigcego na jednostke diugosci linii zalomu, czyli — jak
warto$é te bedziemy nazywali — tzw. moment jednostkowy. Znajomos¢
momentu jednostkowego jest wazna z tego wzgledu, iz pozwoli ona
przy wlasciwej w danych warunkach obcigzenia i podparcia siatce zni-
szezenia na wyznaczenie wielkosci obciazenia tamiacego na drodze teore-
tycznej i porownanie go z rzeczywistym obcigzeniem niszczacym, co za-
tem pozwoli ustali¢ stopien zgodnosci wynikow teoretycznych z wynikami
doswiadczen. Znajomo$¢é momentu jednostkowego jest przeto nieodzowna
w tym celu, aby mozna bylo na podstawie uktadu linij zaloméw wnio-
skowac¢ o wielko$ci obcigzenia tamiacego.

Jak o tym powiedzieliSmy juz na innym miejscu ([16] oraz p. 3.2 pra-
cy niniejszej) przyjmuje sie zazwyczaj, iz no$nos¢ ptyty zelbetowe]j okre-
Slona jest miedzy innymi przez moc zbrojenia, majacego przenies¢ po-
wstale w elemencie naprezenia rozciggajace; pomija sie przy tym zwykle
ten dodatkowy czynnik, ktory, w sposéb co prawda nieznaczny, niewatpli-
wie jednak zwieksza nos$no$¢é ustroju, mianowicie wytrzymalos¢ betonu
na rozciaganie.

Aby uniezalezni¢ sie od koniecznosci wyznaczania momentu jednost-
kowego na drodze teoretycznej w oparciu o jedna z metod z dziedziny
tzw. teorii zelbetu, wskazane jest poszukiwanie tego momentu dla obec-
nych naszych potrzeb na drodze doswiadczalnej. Wyznaczanie w ten spo-
s6b momentu jednostkowego, przyporzadkowanego ptycie o danej gru-
bosci, mocy zbrojenia i rodzaju mieszanki betonowej, pozwala pominaé
szereg czynnikow nie majacych dla naszych badan znaczenia, a wystepu-
jacych przy wyznaczaniu tego momentu na podstawie ktéorejkolwiek
z metod wymiarowania zginanych elementéw zelbetowych.

Konieczno$¢ zrealizowania najwiekszego wytezenia w punktach, po-
lozonych na linii prostej, narzuca okres$lony schemat prowadzonego do-

%) Por. np. [16] oraz podany na koncu pracy przyktad liczbowy.
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swiadczenia. Jest to schemat belki swobodnie podpartej, obciazonej silg
skupiong; w zastosowaniu do pasma plytowego o szeroko$ci rownej pew-
nej jednostce liniowej, np. 1 m, oznacza to, ze obcigzenie powinno by¢
roztozone w sposéb rownomierny wzdluz pewnej linii. Schemat taki
przedstawia rys. 22. W bilansie jednak sil wewnetrznych i zewnetrznych
nalezy uwzgledni¢ réowniez ciezar wlasny plyty g.

Rozpatrujac zagadnienie jako «li-
niowe» udzielamy punktowi zaczepie-
nia sity P w kierunku jej dziatania
przesuniecia rownego jednostce. Wow-
czas bilans prac sit wewnetrznych
1 zewnetrznych mozna zapisa¢é w po-

) 74'2‘1 staci
p.14 99 1 95— M 4 :
2 a
= stad
Pa ga’
Rys. 22 (4.3.1) M= 7 AL =

Dla wykonywanych przez nas doswiadczen warto$¢ momentu jednost-
kowego przy procencie zbrojenia ¢ = 0,126%0 wyznaczana byla na podsta-
wie wynikow obcigzenia i tama-
nia pasma ptytowego, ktorego
szerokos¢ miata 68 cm, odstep
punktéw podparcia ¢ = 70 cm
i grubo$¢ 3 cm. Stosowano
prase hydrauliczng; sita roz-
tozona byta wzdluz prostej
w érodku rozpietosci pasma za
pomoca dzwigarka rozdzielcze-
go INP 8 (rys. 23).

Srednia warto$é sitly lamia-
cej, przeliczona na 1 mb sze-
roko$ci pasma przy uwzgled- Rys. 23
nieniu ciezaru belki rozktada-
jacej obciazenie, wynosita P = 109 kG/m; ciezar wilasny ptyty (wyko-
nanej ze zbrojonej zaprawy cementowej) wynosit g = 1.900-0,03 =

= 57 kG/m?; daje to warto$¢ momentu

M= 1094; 0T 9742"7" —19,1 + 3,5 = 22,6 kGm m.
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+4. Warto$¢ momentu jednostkowego zalezy oczywiscie od odleglosci
zbrojenia od Sciskanej krawedzi przekroju plyty. Powoduje to taki sku-
tek, ze zelbetowa plyta o jednakowej mocy zbrojenia w dwu wzajemnie
prostopadtych kierunkach staje sie, Scisle

rzecz biorac, ukladem ortotropowym 7 I
s h t Gl h t, . | BEtDn (:i] =~
o réznych wartoSciach momentéw przy o 2 <y {
pisanych tym kierunkom ortotropii. Sto- e ‘Zcif—:.;*
sunek tych momentéw mozemy traktowac
Rys. 24

jako zalezny w sposo6b istotny jedynie od
grubosci pretéw zbrojenia (przy zatozeniu,
ze zbrojenie w dwu prostopadlych do siebie kierunkach ukladane jest
bezposrednio jedno na drugim, rys. 24).

Jesli wiec zostal wyznaczony doswiadczalnie np. moment M., to
M,= M h, h,") wzglednie, wstawiajac h, =h,—d,

q
(4.4.1) M, = My (1— h)

W celu jednak uproszczenia przeliczen, dokonywanych przy opraco-
wywaniu wynikow doswiadczen, bedzie rzecza korzystna postugiwac sie
pewng wartoscia momentu jednostkowego $redniego (oczywiscie tylko dla
warunku zbrojenia jednakowego w obu kierunkach). Taki §redni moment
«zredukowany» pozwoli wnosi¢ o wielkosci obciazenia tamiacego bezpo-
$rednio z dtugosci linij zalomow.

Jesli wiec M, = F (f») wprowadzimy do bilansu prac, jako dzialajacy
na dlugosci a, zas M. = F (f,).na dtugosci b, to Sredni moment na jednostke
dlugosci linii zatomu dla ptyty podpartej na obwodzie jest

d
M.a+ M.b b+“(1_' hz.)

e ’ — Jos VI8
M a+b M- a-t+b

(4.4.2)

Tak wiec dla ptyty kwadratowej (¢« = b) przy grubosci ptyty h = 30 mm,
ho = 28,9 mm, ¢ = 0,126, i S$rednicy pretow zbrojenia d = 2,2 mm
zredukowany moment jednostkowy wyznacza sie, postugujac sie wspot-
czynnikiem k o wartosci

Ic=l—f~d =1 22

2he —2-28,9:0’962;

stad wartos¢é momentu zredukowanego wynosi

M=226-0,962=21,7kGm m .
7) Por. tres¢ odsytacza ®).
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45 Nalezy jeszcze kilka slow poswieci¢ sposobowi realizacji obciazen
w badaniach laboratoryjnych, dotyczacych teorii nos$noéci granicznej.
Obcigzenie rozlozone w sposéb réwnomierny, bedace jednym z gltéwnych
przypadkow praktycznie wystepujacych obciazen, jest w laboratorium
trudne do zrealizowania, szczego6lnie w przypadku badan nad nos$no$cig
graniczng. Nie moze by¢ tu mowy o stosowaniu takich prostych sposo-
bow obcigzenia jak np. stosowanie warstwy piasku, a to z kilku powo-
déw. Jednym z nich jest to, ze obciazenie gérnej powierzchni piaskiem
czy innym podobnym materialem (zaré6wno w workach lub skrzynkach,
jak tez nasypywanego bezposrednio na ptyte) uniemozliwia obserwacje
gérnej powierzchni plyty, nie moéowiac juz o braku dokladnosci, ktory
przy takim sposobie jest nieunikniony. Drugim powodem, przemawiaja-
cym przeciwko takiemu typowi obciazenia, jest trudnos¢ wiasciwego
uchwycenia zjawisk zachodzacych w ulozonej pryzmie woreczkéw z pia-
skiem badz tez w jeszcze bardziej zlozonym przypadku bezpos$redniego
obciazenia piaskiem w skrzyni, ktérej dnem jest badana plyta. Zachodza-
ce podéwcezas zjawiska tarcia materiatu sypkiego o $cianki i inne objawy,
znane z zagadnien rozkladu ci$nien w silosach, jak np. tworzenie sie «skle-
pien» materiatu, «korkéw» itd., a to na skutek specyficznego uktadu po-
wierzchni ci$nien — zmieniaja w sposo6b istotny warunki wykonywania
doSwiadczenia.

Dla ilustracji przytoczymy wyniki przeprowadzonego przez nas ba-
dania prébnego dla uzasadnienia niewlasciwosci stosowania dla naszych
badan tego typu obcigzen. Poddano w tym celu ptyte 70 em X 70 em, sta-
nowigcg dno skrzyni, obcigzeniu luzno sypanym piaskiem. Jednostkowy
moment tamigcy dla tej ptyty wynosit okoto 70 kG/m, (zbrojenie w oby-
dwu kierunkach bylo jednakowe, podparcie swobodne na obwodzie). Ob-
cigzenie lamiace wyznaczone na podstawie jednostkowego momentu wy-
nosito:

24 M 24-70 .
= b T on = 340kG m?*,
podczas gdy rzeczywiste obcigzenie (rzeczywiste w rozumieniu catkowi-
tego ciezaru warstwy piasku na «obcigzong» powierzchnie) wynosito oko-
lo 1000 kG/m? w chwili pojawienia sie pierwszych rys; ponadto stwier-
dzono, ze dalsze pogrubienie warstwy obcigzajacej piasku nie powodo-
walo widocznego wplywu na strukture peknie¢ plyty.

Analizowali$my szereg innych mozliwosci realizowania obcigzen cig-
glych, miedzy innymi za pomoca warstwy wody przy zastosowaniu od-
powiednich uszczelnien gwarantujacych, ze nie bedzie ona mogta wycie-
kaé¢; jednak mimo iz realizacja tego typu obciazenia jest mozliwa i stan
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par¢ jest tu latwy do okres$lenia, zrezygnowaliSmy z niego z uwagi na trud-
nosci w uzyskaniu niezbednych materiatow.

Tak wiec jedynym praktycznie latwym sposobem realizacji jest
system obcigzenia ustroju za pomoca sil skupionych, rozstawionych do-
statecznie gesto; tak by dziatanie szeregu tych sil mozna bylo uwazaé za
obciazenie réwnomiernie roztozone. Mozna taki typ obciazenia uzyskac
przez dzialanie szeregu pras hydraulicznych sprzezonych badz przez uktad
dzwigni, badz tez po dostosowaniu urzadzenia wielokrazkowego do reali-
zowania obcigzen powierzchniowych — za pomoca schematu z dwulinko-
wym ukiadem krazkow, [3].

4.6 Zastgpienie obcigzenia ciggltego przez sity skupione w pewnym sen-
sie utrudnia wlasciwa interpretacje wynikéw do$wiadczen, a to przez
istniejgca w tych warunkach mozliwo$¢ lokalnego przezwyciezenia wy-
trzymatosci betonu na $cinanie i przebicia ptyty. Taki stan zniszczenia
w teorii no$nos$ci granicznej plyt nie jest na ogo6t rozpatrywany, a to z te-
go powodu, ze teoria ta opiera sie na zalozeniu wystepowania odksztalcen
plastycznych w stali lub tez innym materiale ciggliwym (elasto-plastycz-
nym), ktéry ma za zadanie przeja¢ naprezenia rozciggajace, wystepujace
w ustroju. Jak sie okaze w dalszym ciggu niniejszej pracy, «lokalne»
zniszczenie plyty przez przebicie moze byé zwigzane z graniczng warto-
Scig sily znacznie nizszej, nizby to wyplywato z zaleznosci, wynikajacych
z teoril no$nosci granicznej (zniszczenie «pelne» przy zginaniu).

Na tym miejscu ograniczymy sie do zilustrowania zjawiska przebicia
kilkoma fotografiami. I tak rys. 25 przedstawia zniszczenie przez prze-
bicie plyty izotropowej kwadratowej swobodnie podpartej o mocy zbro-
jenia ¢ = 0,505%, ogladane od strony gérnej powierzchni ptyty, zas rys. 26
pokazuje dolng powierzchnie plyty po zniszczeniu. Podobne zjawisko ilu-
struja rowniez dla ptyty o dwukrotnie mniejszej mocy zbrojenia rysun-
ki 27 1 28, za$ rysunki 29 i 30 — dla plyty o innej grubosci i jeszcze niz-
szym procencie zbrojenia. Jeszcze inny przyktad zniszczenia przez «prze-
bicie» podaje rys. 31. Blizsza analiza reprezentowanych na fotografiach
ukladow linij zniszczenia pozwala wyciggna¢ tu jeszcze jeden — zreszta
‘oczywisty — wniosek; okazuje sie mianowicie, ze w plycie o wiekszej mo-
cy zbrojenia (rys. 25 i 26) zniszczenie przez przebicie nastapilo przed po-
wstaniem w stali odksztalcen plastycznych, wywolanych przez napreze-
nia normalne. Dolna powierzchnia ptyty — poza miejscem przebicia ply-
ty nie jest spekana tak, jak mialoby to miejsce w chwili powstania
w zbrojeniu odksztalcen plastycznych. Inny uktad siatki zniszczenia re-
prezentuje rys. 28, gdzie powstaja juz w sposdb wyrazny pekniecia cha—
rakterystyczne dla tego typu podparcia i obciazenia, jednak i tu zniszcze-
nie elementu nastapito przez przebicie. O tym, iz nie na catej dtugos$ci linij
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zalomoéw powstaly w zbrojeniu naprezenia ¢ = Q,, mowi rowniez zjawi-
sko, ze po zdjeciu obciazenia rysy w ich partiach przy narozach znikaty.
Rysunki 29 i 30, dotyczace piyty ortotropowej, odznaczajace]j sie jeszcze
nizszym procentem zbrojenia, wskazuja, iz tu za pierwszy czynnik, po-
wodujacy powstanie trwalych odksztalcen, uwaza¢ mozna zginanie, nie
za$ przebicie (wyrazne linie zalomoéw spowodowane zginaniem plyty).
4.7. Przedstawienie powyzej kilku charakterystycznych zdjeé¢, doty-
czgcych zniszczenia przez przebicie, ma na celu zwrécenie uwagi na czyn-
niki, ktore nalezy bra¢ pod uwage przy zastepowaniu obcigzen ciaglych
sitami skupionymi. Dlatego tez w na-
szych do$wiadezeniach staraliSmy sie
postugiwaé plytami o niskim procencie
zbrojenia, co moze nie jest uzasadnio-
ne ze stanowiska ekonomiki, ale jest
wlasciwe ze stanowiska warunkow,
w jakich przeprowadzane sa doswiad-
czenia. Zjawisko to zreszta zostalo tu
moze nieco przejaskrawione, gdyz
zdjecia dotyczyly niszczenia plyt jed-
na tylko sita skupiona, a wiec o duzej
stosunkowo wartosci. Wowcezas, gdy
dziala szereg sil, wartosci, jakie
osiggna one w chwili przeksztalcenia
uktadu w mechanizm, beda w pewien
okre$lony sposéb mniejsze i zjawisko przebicia moze nie wystapic 1 wy-
stgpi¢ nie powinno. Tak wiec w dalszej czesci, przy omawianiu zgodnosci

strony dos$wiadczalnej z teoretyczna, dla obcigzen cigglych zagadnienie
przebicia plyty nie bedzie juz omawiane, albowiem warunki przeprowa-
dzania do$wiadczen uzasadniaja takie stanowisko.

5. Charakterystyka warunkow doswiadczen

5.1. Uzasadnienia do$wiadczalnego stusznosci teorii nos$nosci granicz-
nej szukaliSmy nie tylko w do$wiadczeniach wtasnych, zresztag skromnych
z uwagi na nasze mozliwosci w zakresie urzadzen i sprzetu, lecz réowniez
1 w oglaszanych wynikach do$wiadczen obcych. Do$wiadczenia takie wy-
konywane dla innych celéw i interpretowane z innego stanowiska wyko-
rzystane zostaly obecnie dla naszych potrzeb. Do najstarszych badan nad
zagadnieniem ksztaltowania sie rys i wielkosci obciazenia niszczacego naleza
badania C. Bacha, |1],]4]. Nastepnie opieraliémy sie na wynikach doswiad-
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czen przeprowadzonych przez instytucje Deutscher Ausschuss fiir Eisenbeton®)
i opublikowanych w jej wydawnictwach, w szczeg6lnosci w pracy [4].

Nie bedziemy zatrzymywali sie nad charakterystyka uzywanych w ob-
cych badaniach materiatow (kruszywo, stal), natomiast podamy kilka cha-
rakterystycznych danych na ten temat, odnoszacych sie do badan wtasnych.

5.2 Modele do wtasnych badan 9 wykonywane byly z zaprawy cemen-
towej o stosunku 1 :4 i wskazniku w/c = 0,7. Wytrzymatosé na Sciskanie
walcow () 16 wahata sie w granicach 60 do 75 kG/ecm? wytrzymaloéé na
rozcigganie, mierzona na podobnych prébkach wedlug metody «poprzeczne-
go» Sciskania walcodw, [26], zawierata sie w granicach 10,0 do 12,4 kG/cm?.

Modele =zbrojone byly siatka z drutu o $rednicy d = 2,2 mm
i @ = 2210 kG/cm? oraz R, = 3440 kG/cm?, przy czym strefa pozioma na
wykresie roboczym rozciagania w chwili osiagniecia @, byla stosunkowo
krotka (odpowiadala przyrostowi wydluzen okolo 1%). Stal charaktery-
zowala sie duzym wydluzeniem
wzglednym (ok. 20% przy dlugosci
~ probki 20 cm), przy czym na obsza-
- rze utwardzenia (z chwila przekro-
czenia granicy plastycznosei) wy-
stepowala strefa, w ktéorej odksztal-
cenia przyrastaly znacznie przy ma-
lym zwiekszaniu sily. Jako charak-
terystyczny dla tego rodzaju zbro-
jenia wykres zalezno$ci miedzy
krzywizna a jednostkowym momen-
tem lamiacym w pasmie plytowym
nalezy przyja¢ krzywa 2 sposrod
przedstawionych na rys. 18.

Obcigzania modeli silg skupiong dokonywano za pomoca prasy hydrau-
licznej do 2 t z doktadnoscig odczytéw do 5 kG.

Sposéb przeprowadzania dos$wiadczenia ilustruje rys. 32.

Z kolei przejdziemy do bezposredniego omowienia wynikéw do$wiadczen.

Rys. 32

6. Plyta kwadratowa obciazona w Srodku sita skupiona

6.1. Przed przystapieniem do analizy wynikéow doswiadczen nalezy
jeszcze wyjasni¢ niektore problemy teorii w przypadku dziatania obcia-
zen skupionych.

f) Badania te przeprowadzone byly w Stuttgarcie pod kierownictwem C. Bacha
i O. Grafa, nastepnie w Dreznie pod kierunkiem W. Geh lera i H Amosa.
9 W badaniach brat réwniez udziat J. Pietrzykowski.
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Plyta prostokatna izotropowa przy zachowaniu pewnych warunkow,
mianowicie wtedy, gdy punkt dzialania sity znajduje sie nie w jednako-
wych odleglosciach od krawedzi podparcia, wykazuje siatke zniszczenia
jak przedstawiono na rys. 33, gdzie
pekniecia radialne dotycza dolnej,
obwodowe za$§ goérnej powierzchni 7
plyty.

Gdybysmy chcieli obliczyé¢ wiel-
ko$é sity tamigcej, to, nadajac punk-
towi dziatania sily przesuniecie jed-
nostkowe, otrzymamy

i

n

(6.1.1) P= ;' %—(M+M’)rd},.,

0

s

co da w rezultacie

(6.1.2) P=2aM(1+27). Rys. 33

Wartosci momentéw jednostkowych M oraz M = /M uwarunkowane sa
mozno$cig ich przejecia przez zbrojenie «dolne» wzglednie «gbrne».

Jezeli przyjmiemy, ze naprezenia rozciggajace moze przyjmowac je-
dynie zbrojenie, to w przypadku gdy 4=0, tzn. gdy nie ma zbrojenia
gbérg, do bilansu prac przygotowanych nie wejdzie praca potrzebna do
otwarcia pekniecia obwodowego i wartos¢ sity tamiacej przedstawi zna-
na zaleznos¢

(6.1.3) P=2aM.

Identyczng warto$¢ otrzymuje sie wychodzac ze Scislejszych zalozen
teorii odksztalcen elasto-plastycznych !9).

6.2. Przy obciazaniu jedna sita skupiona plyty izotropowej czy tez
ortotropowej, w przypadku gdy zabezpieczone sg warunki, by nie na-
stapilo «przebicie», tworzy sie wokét punktu zaczepienia sity stozek. Sto-
zek ten scharakteryzowany jest — w przypadku plyt izotropowych —
pewnym promieniem statym, innymi slowy jest stozkiem, ktérego prze-
kroje prostopadle do osi sa kotami. W przypadku ptyt ortotropowych
przekroje te sa elipsami '!). Réwnanie (6.1.2) méwi, ze wielkos¢ sity ni-
szczace] (w zalozeniu, ze plyta jest nieWaika) nie zalezy od wymiaréw

10) Por. np. W. W. Sokotowski, [31].

1) Nalezy zaznaczy¢, ze nie sg to jedynie mozliwe formy zniszczenia, istnieja bo-
wiem pewne specjalne przypadki ogolniejszego rozwiazania, ktére daja linie za-
tomu wedtug spirali logarytmicznej; por. [27] 1 [14].
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geometrycznych (wielkosci) ptyty ani od promienia «stozka wylomu» (gdy
ograniczamy sie do ukladéw izotropowych). Okreslenie wielkosci tego
promienia i czynnikéw, wplywajacych na jego wielkoS¢, wiagze sie z pro-
blemami no$nosci granicznej plyt spoczywajacych na sprezystym podlozu;
stanowi to oddzielne zagadnienie.

v

Rys. 35 Rys. 36

Jako ilustracja rozwazan dotyczacych «wylamywania» sie z plyty —
niezaleznie od jej wymiarow ') — pewnego skonczonego obszaru, niech

12) Istnieje jednak pewne ograniczenie ku dolowi (wymiary krytyczne), ktérego
tu obecnie nie precyzujemy.
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postuza rysunki 34, 35 i 36. Rysunek 34 przedstawia sposéb przeprowa-

dzenia badania plyty o Srednicy 7
i dotem; rys. 35 — uklad peknie¢
po stronie dolnej, zas rys. 36 —
uklad peknie¢ od strony gornej.
Wida¢ tu w spos6b wyrazny, ze
linie zalomow nie dochodza do
krawedzi swobodnego podparcia.
Plyta oparta byla na podiozu
z masy drzewnej.

6.5. Taki jednak uktad zni-
szczenia powstaje rowniez w ply-
tach o malych wymiarach w tym
przypadku, gdy naroza maja
uniemozliwiong swobode podno-
szenia sie. Mozno$¢ podnoszenia
sie narozy zmienia sposob podpar-
cia plyty; wtedy bowiem plyta
bedzie podparta juz nie na calym
obwodzie, lecz jedynie na pew-
nych jego partiach. Rysunek 37

przedstawia podniesione naroze

m i grubos$ci 15 cm, zbrojonej gorg

Rys. 37

1 charakteryzuje rzeczywisty sposob podparcia oraz miejsca przeciecia sie
linij zalomdéw z krawedzia podparcia przy sile dzialajacej w Srodku plyty;

- =

A

f
l
\
I
|
|
j

X

T e

rys. 38 jest charakterystyczny dla
innego umiejscowienia sity.

Aby uzyska¢ wiec mozno$¢ po-
wynikow - doswiadczen
z rezultatami rozwazan teoretycz-
nych, nalezy rozpatrzy¢ stan zni-
szczenia plyty w przypadku podno-
szacych sie narozy.

Dla izotropowe] plyty
towej (rys. 39) udzielenie punktowi
zaczepienia sily  przemieszczenia
rownego jedno$ci prowadzi z uwagi
na warunki symetrii ukladu, do wy-
razenia na bilans pracy sit wewnetrz-
nych i zewnetrznych w postaci

réwnania

kwadra-
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Stosujac kryterium maksymalnego oporu plastycznego otrzymamy z wa-
runku dM/dx = 0 po wykonaniu dzialan posrednich

(6.3.1) =, 2—v2)),
a nastepnie

{6.3.2) M= _ i
o 16 /2

Wynika zatem, ze warto$¢ sily jest w rozpatrywanym przykladzie
taka sama, jak dla plyty o ksztalcie o$miokata umiarowego w przypadku
przytrzymania narozy.

6.4. W toku naszych do$wiadczen poddana zostala obcigzeniu az do
zniszczenia seria plyt o mocy zbrojenia ¢ = 0,252 i 0,505, dla ktérych
momenty jednostkowe zestawione sg w tablicy 1.

Tablica 1

Moc | Moment jednostkowy kG

T ‘ . Moment
, P zbrojenia ‘obciaienie ciezar | u obliczeniowy
ZotoiS 9 | zewnetrzne |  wiasny v M = kM,
B _ PO PN S — . - — -
22 co5cem | 0252 382 | 35 417 | 40.1
2,2 co 2,5 cm ' 0.505 ‘ 76,4 3.5 | 79.9 76,8

Na podstawie rownania (6.3.2) po uwzglednieniu pracy ciezaru wtasne-
go plyty na odpowiednich przesunieciach mozemy napisac

W2 D 8 smp2 1),

a
P-1tg™ "9, 3

nastepnie zas
P+ ga®- 0,276 = 6,62 M .

Podstawiajac teraz a = 0,7m, g = 57 kG/m? oraz G = ga® otrzymuje-
my wartos$¢ teoretycznag

6.4.1) P=662M 0,276 G.

Wyniki do$wiadczen natomiast zestawione sa w tablicy 2.

208



Rys. 44
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Jest rzeczg interesujgca, w jakiej mierze linie zaloméw rzeczywiste
odpowiadajg schematowi teoretycznemu. Rysunki 40, 41 i 42 obrazuja
rzeczywisty uklad siatek zniszczenia na dolnej powierzchni plyty dla przy-
padku mocy zbrojenia ¢ = 0,252%, za$ rysunki 43 i 44 dla ¢ = 0,505%.

Tablica 2
i ~ Zbrojenie ) ‘ Obcigzenie famiace P kG L
I d oczka | 0 | obliczo- | Z do- | Srednia Hoznica
em | % 0 siatki | ®  kGm/m | °° 797 $wiad- | z do- 9
- e | ecm Mgl | czenia | Swiadcz.
| |
225 ‘
i ‘ 235 ‘
3.0 ‘ 0.252 | 22 5/5 | 2210 ’ 40,1 264 235 239 ‘ — 95
, 260 |
\ | \ N 1 | ‘ B
1 ! - 455
3.0 0.505 i 2,2 \ 2,5/2.5 2210 | 79,9 501 1 415

Fotografie te wykazuja poprawnos¢ teoretycznego modelu zniszczenia
potwierdzajac tym sémym teorie nosno$ci granicznej od strony jako-
Sciowej. '

Nalezy powiedzie¢ tu jeszcze kilka stéw na temat zgodnosci wynikow
doswiadczalnych z teoretycznymi, o ile chodzi o strone iloSciowa. Jak wi-
daé z tablicy 2, rzeczywista sila niszczaca jest nizsza, anizeli wynika to
z obliczen. Jako zasadniczg przyczyne takiego stanu nalezy poda¢ oma-
wiane juz poprzednio zniszczenie wskutek przebicia. Skutki przebicia
s3 widoczne na zalaczonych fotografiach i to szczegolnie wyraznie dla
wiekszego procentu zbrojenia, gdzie roznice miedzy obliczona a wyzna-
czong silg niszczaca sa najwieksze.

Plyta kwadratowa obciazona sifami skupionymi rozmieszczonymi
koncentrycznie wokol srodka

T.4. Plyty o grubosci 8 i 12 ¢m, co do pozostatych wymiaréw i roztoze-
nia obcigzen scharakteryzowane na rys. 45, zbrojone byly stala
0 Q. = 4080 kG/cm? i podparte swobodnie na obwodzie; zbrojenie ukta-
dane bylo w obu kierunkach w jednakowych odlegtosciach od siebie, réw-
nych 10 cm.

Momenty jednostkowe dla tego rodzaju stali i rozstawu zbrojenia co
10-cm, uwzgledniajace odleglo$ci zbrojenia od goérnej krawedzi (zbroje-
nia poprzeczne dolem lub goéra), sa zestawione w tablicy 3.
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Tablica 3

|
| Grubos¢ d | Rozstaw |
; pasma 'zbrojenia |
' cm mm ‘ cm
|
Zbrojenie 12,1 73
w dolnej 12,2 {fer i 10
warstwie 12,1 72 |
(hy) 12.1 72 |
Zbrojenie 12,2 : 7.3
w gornej 12515 752 10
warstwie 12,1 7.3
(hy —d) 12,2 7,2
Zbrojenie ’ 81 | 752
w dolnej 8,0 | 7,3 i
warstwie | 3 79
h) | b 5
Y \ 8.1 7,2
- |
Zbrojenie go | T2
w gornej 8.2 i 7.3
warstwie 81 79 10 |
(h, —d) 8.1 l 7,3 ‘

0,37

0.37

0,58

! Qr
i kG/em*

4080

4080

Moment tamigcy M.,

| doswiadcez.
‘ tm/m

2.06
2,02
2,03
1.90

1,83
1,83
1.86
1,90

; 1,19
’ 1,18
‘v 1,18
| 1.22
1,01
11
1,09
1,09

Srednio
tm/m

2.00
1,85
|
|
|
119
|
|

1.08

Wspo6tezynnik redukcji momentu jednostkowego, z uwagi na warst-
wowe ulozenie zbrojenia, obliczony w stosunku do momentu dla zbro-
jenia w dolnej warstwie, wynosi

[t
=

22,00

2,00 +1,85

—0,964.

7.2. Za punkt wyjsécia do obli-
czenia sily niszczacej nalezy tu
przyja¢ wzor (6.1.3) odpowiednio
dostosowany do uktadu sit; otrzy-
mujemy w ten sposéb

({6231

r
2= —
7(1 R

)

gdzie r jest promieniem Kkotla,
wzdiuz obwodu ktérego dzialaja
obciagzenia, za§ R promieniem kotla,
na ktérego obwodzie wystgpi pek-
niecie na gérnej powierzchni ptyty.

210

[—-—_ .

X w

AL

7
/_R_ -

I . 4x15 A |
EYANN ' |
¢ o ~.. 7\ __ |
525 | 105 | 525
-t !
210
Rys. 45

Kota te zaznaczone sg na rys. 45 liniami przerywanymi w przeciwien-
stwie do oznaczonych pelnymi liniami zaloméw promieniowych na dolnej
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powierzchni, gdyz z uwagi na brak zbrojenia goéra nie wnoszg one zad-
nych wartosci do bilansu pracy.

Obliczona warto$é sity tamigcej na podstawie wzoru (7.2.1) po uwzgled-
nieniu udzialu ciezaru wilasnego jest

27 1 =
P = —~3’3’6 M— 69'100)

100

albo tez wstawiajac G = g-210?
(7.2:2) P =946 M — 0,39 G.

Tablica 4

Grubosé ‘ Zbrojenie ; Obcigzenie tamiace Pt
= ¥ —1 | M o T 1 A | Avedeia | R(’)inlca
Ivt ‘ oczka . | zdo- | $rednie
i g d siatki Q ,  tm/m E o Swiad- z do- | %
cm @ mmij cm: kG/em?® | | czone | czenia | $wiadez. |
81 l | | | 12,5 }
8,1 ‘ 058 | 72 | 10/10 4080 1 1,14 11,1 \ 12,2 ‘ 12,0 | 8.1
81 | ? } ‘ | 120 | ;
| i — }
12,1 7.3 ‘ 19,6
123 | 937 72 10110 | 4080 | 192 | 187 190 19.0 16
12,2 7,2 * ‘ 19,5
12,1 7.1 ‘ ‘ 18,0

Obliczenie to nie jest jednak zupelnie $ciste, platy bowiem nie sg so-
bie catkiem roéwne; poprawniejsze obliczenie powinno uwzgledni¢ fakt,
iz wskutek dzialania sil skupionych linie zalomoéw przejda przez ich punk-
ty zaczepienia. Poszczeg6lne sity skupione przy nadaniu Srodkowi plyty
przemieszczenia jednostkowego doznaja przesunie¢ (R —a)/R = 0,7, za$
momenty odpowiednio na platach A i B wykonaja prace na obrotach -
@a1=1/100 i pp==1/106. Tak wigc po obliczeniu potrzebnych wartosci
z zaleznosci trygonometrycznych bilans prac mozna przedstawi¢ w postaci

1

07P+4-—g-105°+ 4 ég-111-52,5| 9
1 1 1 105 52,5} 2
—4. 5252, T . T —4 M L Lt .
499525 o Moo HaM ==

stad, podstawiajac G jak poprzednio, otrzymujemy
(7.2.3) P=10M—0,35G.

Obliczona na podstawie tego wzoru sila niszczaca jest poréwnana
z wynikami do$wiadczen podanymi w tablicy 4.
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Rzeczywisty uktad linij zniszczenia przedstawia sie dla tych doswiad-
czen, jak wskazuja to rysunki 46 i 47; odpowiada on ukladowi teoretycz-
nemu. Rysunek 46 przedstawia obraz siatki zniszczenia na gérnej, nastep-
ny za$ na dolnej powierzchni plyty. Na tych fotografiach zwracaja uwa-
ge drobne rysy wystepujace wyrazniej, anizeli jest to widoczne na zdje-
ciach dotyczacych poprzednich do$wiadczen. Odnosza sie one do okresu
naprezen sprezystych w stali.

832 .

Rys. 46 Rys. 47

Te drobne pekniecia zjawiaja sie jeszcze w okresie wystepowania
w zbrojeniu naprezen znacznie nizszych od granicy plastyczno$ci. Wzrost
ustawionych w tak specjalny sposéb obciazen powoduje, ze punkty,
w ktoérych naprezenia najwczesniej osiagaja granice plastycznoscei, ukla-
daja sie wedlug prostych, przechodzacych przez punkty zaczepienia sit
(rys. 45).

©3. Jako przyklad zastosowania wzoru (7.2.1) postuzy doswiadczenie,
wykonane na ptytach takiej samej grubosci 8 ecm i 12 e¢m, przy czym ob-
cigzane one byly sila skupiona, dzialajaca na matej (12 em X 12 em) po-
wierzchni bezpo$rednio wokolo $rodka plyty. Plyty te charakteryzowaty
sie tym, iz zbrojenie nie bylto ukladane w réwnych od siebie odleglo$ciach,
lecz w kierunku obu bokéw odlegtosci te byty zmienne (w jednym kierun-
ku rozstaw zbrojenia zmienial sie od 10 cm w §rodku do 14,3 ¢cm przy brze-
gu, w drugim za$ odpowiednio od 9,3 ¢cm do 14 cm).

Problem komplikuje tu zmienno$¢ momentu jednostkowego 1%). Moz-
na jednak przyja¢ do dalszych obliczenh moment jednostkowy dla $red-

18y W sprawie rozwiazania S$cislego por. prace D. Niepostyna, [13],i A. Sa w-
czuka, [30], [31].

o
=
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niego rozstawu w kazdym kierunku. Upowaznia nas do tego — przybli-
zonego tutaj — zalozenia zardéwno rzad wielkosSci zmiany rozstawu, jak
tez i fakt, ze dla plyty izotropowej — a rozpatrywang plyte mozna uwa-
zaé za takg z dobrym przyblizeniem — siatka zniszczenia pozostanie ta-
ka sama jak dla plyty o stalym momencie jednostkowym. Pamietamy przy
tym, ze rozpatrujemy plyte kwadratowa.

Moment jednostkowy obliczony zostat jako sredni z momentéw jed-
nostkowych, przyporzadkowanych odpowiednim $rednim rozstawom zbro-
jenia, ktére wynoszg 11,7 cm i 11,0 em dla oméwionych wyzej kierun-
kéw [por. wzoér (4.4.2)]. Tak wiec moment jednostkowy wynosit dla pityt
o grubosci 12 cm

1 (2,00 185 |\
M=1kMo= 5 (177 10+ 1T 10)_ 1,69 tm m,
zas dla piyt o grubosci 8 cm
11,19 1,08 \
M= oM (s 10)_ 1,00 tm m.

Wartosci momentéw dla rozstawdéw wynoszacych 10 cm wziete sa z ta-
blicy 3.

Tablica 5
Grubosé Zbrojenie | Obciazenie tamiace Pt |
g S 6 T M T “ Roznica
vt ; | oczka | -: S
PV , d siatki | Q | tmm obliczone | % dosw.lad b
£ o mm cm | kG/em® | czenia
= - == _,.,_, x R — : — . i,,,
zmienne, |
12,1 0,32 7,0 Srednio 4080 1,69 1 10,8 11,0 . 1,8 .
8,1 0,50 1 11,7/11,0 4080 1.00 ‘ 6.35 : 6,00 \ —5,8%)
*) Nalezy przypuszczaé, zc zniszezenie zostalo spowodowane przez przebicie (por. np. rys. 31).

Ustawiajac rownanie bilansu prac zgodnie z roéwnaniem (7.2.1) dla
wymiaréw plyty jak w przypadku poprzednim i dla r = 2/3.-6 = 4cm
oraz R = 100 cm otrzymamy

(7.2.4) p—_2% (M— 1 G)=6,55M—0,25G.
r 24

e

Wyniki doswiadczalne dajg dobra zgodnosé z wynikami teoretycznymi;
przedstawione sa one w tablicy 5.
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8. Plyta kwadratowa podparta na trzech bokach,
obciazona sila skupiona w Srodku

8.1. Obserwowana na modelach — w przypadku nie przytrzymywa-
nych narozy — siatka zniszczenia sugeruje dla rozpatrywanego typu plyt
przyjecie ukladu linij zalom6éw symetrycznego wzgledem osi, przebiega-
jacej prostopadle do swobodnego boku ptyty, jak wskazuje to rys. 48.

Prace sil wewnetrznych mozna w przypadku plyty izotropowej przed-
stawi¢ w postaci

(8.1.1) SV = Y Mlidg:,
i—1
gdzie n jest iloscig ptatow, niezbednych dla przeksztalcenia uktadu w me-
chanizm, a l; dtugoscia- rzutu linii zalomu na o$ obrotu ptata.
W rozpatrywanym przyktadzie

) 2

2 2
V=M-"(a—x)2+M-—(a—2x) +M 2)2:2 SL=P-1.
a a X

Warunek d M/d x = 0 dla takich uktadéw, dla ktéorych praca sil ze-
wnetrznych nie zalezy od wielkoSci charakteryzujacvch siatke zniszcze-
nia — a taki przypadek tutaj
zachodzi — mozna zastgpi¢ wa-
runkiem minimum pracy silt we-
wnetrznych, a wiec

|
|
|
AL 1M
@12 SOV __ s |\ l
dx | A
|
I/
|

0

; : e i dw=1
8.2. Rownanie (8.1.2) dla roz- o : ~ 3
patrywanego konkretnego przy- .
padku prowadzi do wzoru }&
dOV)_[—4@—a) +2a¢%]_ | \ Sl
GE ala— x)? IR ﬁ l
| .
Stad otrzymujemy = —
P a-x
a = a
=-—(2—V2).
* 2 ( V'2) Rys. 48

Jest to wartos¢ identyczna jak w przypadku plyty podpartej swobodnie
na czterech bokach.
Obliczajac teraz warto$¢ sily niszczacej z zaleznosci oL =0V otrzy-
mujemy
PRy (et
a a—=x

i

4x 235)



co po wstawieniu warto$ci x, spelniajacej warunek najwiekszego oporu
plastycznego, wyrazi sie w formie

(8.2.1) P=2M(4})2—3).

Przystepujac do poréwnania wynikéw doswiadczen z rezultatami wy-
ze] przytoczonego rozwigzania teoretycznego nalezy wprowadzi¢ w spo-
s6b podobny, jak czyniliSmy to w poprzednich przypadkach, prace wy-
konana przez ciezar wilasny plyty. Wowcezas wyrazenie na site niszczaca
otrzymuje sie w postaci

(8.2.2) P=2M(4)2—3)— AG
gdzie A jest wspolczynnikiem, okreslajacym udziat sit ciezkoSci w ogol-
nym bilansie pracy.

Je§lia=T70cm i x = 21 em, to

1 = 1
T4°A=2-35" é +14-35- é -2+ 28-35- 6 +y2-21-35- 6 - 2=1990.

Ostatecznie bedzie zatem
(8.2.3) P =531 M—0,35G.

8.5. Badane plyty byly zbrojone siatka o oczkach 5 cm i o procencie
zbrojenia ¢ = 0,252. Dla rozwazanego typu podparcia warto$é wspo6l-
czynnika k, przez jaki nalezy pomnozy¢ moment jednostkowy podany

w tablicy 1, zgodnie z zasadg sformutowana w p. 4, dla plyty cztero-
stronnie podpartej wynosi

2a r%a(l— d)

ho d 29
Toi— =] — - =1——"__—0,975.
2a+a 3 ho 3-28,9 ’
Tablica 6
Gruboéé Zbrojenie \ Obciazenie tamiace P kG
' T o b ) M "1 Z do- | $rednie |ROznica
Tyt | oczka l z do- | érednie
PYW LT 4 ki Q" kgmim| P | swind- | z do- 9
o | mm | em | }{G cm® ‘ czone | czenia |$wiadez. |
3 \ | 260
3 0,252 | 2.2 ) 55 2210 40,6 216 265 255 18
3 | | | 240

Moment jednostkowy, zredukowany, wynosi wtedy M = kM, =
= 0,975-41,7 = 40,6 kGm/m.

Tablica 6 przedstawia pordéwnanie warto$ci obliczonych ze wzoru
{8.2.3) z uzyskanymi na drodze doswiadczalnej.
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Rzeczywisty przebieg linij zaloméw na podstawie tych doswiadczen
przedstawiony jest na rysunkach 49 i 50 dolnej powierzchni plyty.

Rys. 49 Rys. 50

Nalezy jeszcze wyjasni¢ stosun-
kowo duzg procentowa roéznice mie-
dzy wynikami obliczenia teoretycz-
nego a wynikami do$wiadczen, jakie
podaje tablica 6. Czynnikiem powo-
dujacym taki stan rzeczy jest dziala-
nie sily nie $cisle punktowo, lecz na
pewnej powierzchni (rys. 51), co
wplywa na zmiane wielkoSci obcigze-
nia lamigcego, jak to widaé chociaz- Rys. 51
by z zalezno$ci (7.2.1) lub (7.2.4). Przy
obliczeniu uwzgledniajacym powierzchniowe przenoszenie obciazenia roz-
nica zmalalaby. Bedzie o tym mowa nizej.

9. Plyta kwadratowa obciazona rownomiernie

9.1. Warto przytoczyé — przed przystapieniem do analizy stopnia zgod-
nos$ci strony iloSciowe] teorii nosno$ci granicznej z doswiadczeniem dla
interesujacego nas tu przypadku — ciekawa fotografie zaczerpniety z pra-
cy C. Bacha, [1]. Rysunek 52 ilustruje stopien zgodnosci zalozen od
strony jako$ciowej i stanowi cenny material, poniewaz badania C. B a-
cha prowadzono z punktu widzenia innego stanowiska teoretycznego.
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9.2. Omoéwione poprzednio trudnosci w laboratoryjnym zrealizowaniu
obciazen roztozonych w sposob ciagly spowodowaly, ze starano sie je za-
stapi¢ szeregiem sil skupionych. W omawianym obecnie doswiadczeniu
na plyte o rozpietosci w swietle podpoér 2,0 m X 2,0 m dziataty sity skupio-
ne w 16 punktach (rys. 53). Po nadaniu $rodkowi plyty przemieszczenia
rownego jednos$ci poszczegdlne sity zewnetrzne wykonaja prace wskutek
odpowiednich przesunie¢ ich punktéw zaczepienia. Nie uwzgledniajac
wplywu narozy otrzymujemy rownanie pracy w postaci

P 3 P* 1 G-30 210
Boo D ) :
16 4 .16 4+44-100 4M100
stad
[;‘\ vy < N ;] SR
[
[Tk [ - 7 -51 (9.2.1) P=224M—08G,
k; ' \\.\\ — f//’;//%/‘ 2/
X '°\ OO £ — LA N 2 %, ? gdzie G oznacza — jak poprzed-
:}: i\ ] T A . ///, | nio — ciezar wlasny plyty.
RN Do e Sl 4V | Na podstawie obliczenia
YQ\ oo ”~/‘~4/ przyjmujacego obciazenie za
/}7;;/‘;2»_ [ i réwnomiernie rozlozone mozna
Pn x4 ""‘\\( by napisaé
s ~ N - ’
B j//// STl N 5 +03G=4M-2];
A 777 NN T
A E ///-"’//"_'\"'\‘ 2 NN
A // P/;' i \\\ N £ stad
{_F- /'/'/ B AN ]

— JLJ (9.22) P=252M—09G.

Rys. 52 Wida¢ z poréwnania wzorow

(9.2.1) 1 (9.2.2), ze zastagpienie

obciazenia cigglego sitami skupionymi daje réznice wielkos$ci sity niszcza-
cej, wynoszacg okolo 12%.

Wynika stad oczywisty wniosek, ze poréwnywanie wynikéw badan
nalezy oprze¢ na wzorze (9.2.1).

9.5. W celu uzyskania wynikow jeszcze bardziej poprawnych nalezy
uwzgledni¢ w réwnaniu, z ktérego wyznaczamy sile tamigcg w oparciu
o warto$¢é momentu jednostkowego, zmniejszenie pracy sil wewnetrznych
wskutek utworzenia sie specyficznego ukladu linij zaloméw w narozach.
Temu zagadnieniu nalezy tu kilka stow poswiecié.

Rozpatrzmy naroze plyty izotropowej (rys. 54); osie podparcia niech
przecinaja sie pod katem prostym, za$ sita skupiona niech bedzie usytuo-
wana na dwusiecznej tego kata w pewnej odlegtosci r od osi podparcia.
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Gdyby zjawisko podnoszenia sie narozy nie wystepowalo po prze-
sunieciu punktu dziatania sily o wielkos$¢ ow, powstaloby na dolnej kra-
wedzi plyty pekniecie, zaznaczo-
ne linig przerywang, i praca sit
wewnetrznych odnoszaca sie do
naroza wynioslaby

(9.3.1) (SV,:M";" r.2—2Mbw.

Wskutek jednak mozliwosci
podnoszenia sie naroza powsta-
na pekniecia, zaznaczone linig
pelna, i praca sil wewnetrznych
bedzie mniejsza (wida¢ to cho-
ciazby z rozpatrzonego w p. 6
problemu ptyty kwadratowej,
obcigzonej sila skupiong w $rod-
ku). Warto$¢ x na podstawie
(6.3.1) wynosi

2= (2— 2); Rys. 53

210
200

praca sil wewnetrznych wyrazi sie zatem w tym przypadku zaleznoscig

)W 5
OV,=Mry 22— °Y +2M[r—r@2— ) 2)] "g@__
=2Mow—(2— ) 2)° M ow.

Zmniejszenie sie wiec pracy sil wewnetrznych wskutek powstania
uktadu linij zniszezenia, oznaczonych linia ciggla, wyniesie

(9.3.2) AV =0V,—oV,=
—2Mow—2Mow+

+(2— )V 2°Mow=M(2—) 2)F dw.

W rozpatrywanym przypadku nalezy to
zmniejszenie sie pracy momentéw lamigeych
e — uwzgledni¢ przez odpowiednig korekte wy-
razenia (9.2.1). Tak wiec, poniewaz dw jest
w tym przypadku rowne. !/s (przy przesu-
nieciu $rodka o jednostke), zmniejszenie sie
pracy sil wewnetrznych wskutek mozliwo$ci podnoszenia sie naroza wy-
raza sie przez

e

Rys. 54

AV ==-(2—1/2) M.

L
4
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Ogolna liczba narozy w rozpatrywanym przypadku wynosi 4, tak wiec
wplyw ich wyrazi sie jako

(2—1/2* M= 0,346 M ~ 0,35 M.
Zalezno$é (9.2.1) po wprowadzeniu powyzszego wyrazenia do bilansu
prac przyjmuje postac
387 P+03G=(84—0,35 M,
skad
(9.3.3) P—=215M—0,8G.

Doswiadczenia (rys. 55) wskazuja jednak na nieco inny uklad linij
zaloméw, niz to ma miejsce na rys. 53, i odpowiada raczej schematowi
przedstawionemu na rys. 56.

kg
RIS
Y
M 200
= o
Rys. 55 Rys. 56

Udzielajge $rodkowemu platowi, oznaczonemu na rys. 56 literg A,
przesuniecia pionowego dw =1 otrzymujemy réwnanie pracy sil we-
wnetrznych i zewnetrznych w postaci

P P - 80 27
-~ ] g =l 24 = e
4161 H12 55 +50°g + 49 (210 +50)
210 1 /
—4 M (9 — 2
M75 4M3(2 }2)%,
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co prowadzi do wartoSci sily tamigce]

{9.3.4) P=215M—0,74 G.

Poréwnanie wzoréw (9.3.3) i (9.3.4) wskazuje, ze dla rozpatrywanej
siatki zniszczenia uzyskujemy nieco wieksza sile lamigca. Praktycznie
jednak roznica w wielkosciach obcigzenia famigcego, obliczanego na pod-
stawie wzorow (9.3.3) i (9.3.4), lezy w granicach bledu rachunkowego
i dotyczy tylko ciezaru wtasnego. Dla obciazenia realizowanego tu oby-
dwa schematy zniszczenia praktycznie sg rownowazne.

9.4. W innych badaniach, prowadzonych na ptytach o grubosci 12 c¢m,
o wymiarach 3,12 m X 3,12 m i rozpietosci w $wietle podpér 3,0 m X 3,0 m,
obcigzenie realizowano roéwniez za pomoca sil skupionych, lecz wprowa-
dzono wieksza ich ilo$¢, mianowicie zaczepiono te sily w 64 punktach.
W takim przypadku obcigzenie mozna juz z dostateczna doktadnos$cia
uwazaé za rozlozone réwnomiernie. Uwzgledniajgc w rownaniu podsta-
wowym dla tej plyty wystawanie brzegéw poza linie podparcia otrzy-
mamy

P+G . 3,12
24 7 307
skad wynika
(9.4.1) P=25M—1,0G.

Rowniez i tutaj wysuwa sie sprawa narozy 1 sprawa zmniejszenia
sie no$nosci wskutek ich powstawania. Nie wdajgc sie obecnie na tym
miejscu w szczeg6ly, dotyczace tego specjalnego zagadnienia, mozna
stwierdzi¢, ze dla przypadku réwnomiernie obcigzonej i swobodnie pod-
partej plyty, przy zalozeniu, ze naroze nie jest przytrzymane (tzn. M" = 0,
co oznacza, ze nie ma zbrojenia gérnego w narozu), podstawowa zaleznosc
ma postac

(9.4.2) D

W zastosowaniu do naszego przykladu otrzymujemy

(9.4.3) P20 =] 0ic



9.5. Wyniki opracowane na podstawie podanych zalezno$ci dla piyt
o grubosci 8 em i1 12 cm zestawione sa w tablicach 7 i 8. Poniewaz zasady
wyznaczania momentéw jednostkowych dla réznych przypadkéw uloze-
nia zbrojenia w warstwie dolnej i w warstwie gornej oraz stosowane me-
tody zostaly dosé¢ szczegdtowo omoéwione juz poprzednio !*), podamy tu

Tablica 7.

Grubosé ! ~ Zbrojenie ’ i | Obcigzenie tamiace Pt | Ros
Tl opiyty | | oczka | @ [, do. | sednie | RO2Znica
ria Py | d ¥ | siatki QT . [tm/m gl éwind- | = dodwiad- | b
cm |lmm | % cm kG/cm* czone! czenia czenia
| | T ]
I 120 7 a ; 40,0 | ‘
Al 122 72 | 0,37 1010 4080 | 1,92 | 40,3 390 | 403 | 0
\ \ ‘ ‘
| 122 7o ‘ 420 |
| 77} i [ | e
] e
bo12,1 | 71 | ; ! | 425 |
B! 122 | 72 |037 | 1093 4080 2,00 {42,0 | 420 422 0
12,1 | 71 : \ | 420 “
. i ! | aE
- i ’ |
- 0 4080 | 1,69 | 353 30 | 375 5
12,1 7,0 i ‘ | 38.0 | ‘
| zmienne, [ i : |
| ; = | 0,32 | Srednio | I
| |
Il & [ 11,7/11,0 | ‘ l
c| 12 | 70 1 3400 | 1,26 26,1 F33’4 325 | 24
| 12 | 70 | ‘ 316 |
| | | ‘ |
‘ | l
| 122 70 | 1093 | : 420
D | 121 70 037 |poprze-| 4446 | 2,06 433 410 413 — 6
} 12,2 7.0 | katne; ‘ 41,0 |
\ | |
12.1 10,0 f ‘ | 56,0 ‘
E 121 100 08 | 1089 3486 | 2,94 | 621 56,0 56,7 | —87
I12.1 10.0 ? ; 58,0 |

bezposrednio zestawienie wynikow. Wartosci podane w tablicach 7 i 8
oparte sg na wynikach do$wiadczen drezdenskich 7).

Tablica 7 dotyczy plyt o grubosci 12 ¢cm, za$ tablica 8 plyt o grubosci
& cm.

1) Zakladamy przy tym, ze zmiany w rozkladzie zbrojenia sg nieznaczne, gdyz
w przypadku przeciwnym musielibySmy w celu uniknigcia wigkszego Dbiledu
uwzgledni¢ niejednorodno$¢, ewentualnie rowniez ortotropie (por. p. 4.4 oraz 7.3).

%) Cytujemy na podstawie [10].



Wystepujace w rzeczywisto$ci obrazy zniszczenia ilustruja rysunki
57 1 58 odpowiednio dla dolnej i gérnej powierzchni plyty.

Naroza, jak powiedzieliSmy, nie byly w badaniach tych przytrzymy-
wane. Odrebne badania, dotyczace specjalnie problemu narozy, zostana
omoéwione w dalszej czesci.

Tablica 8

Grubosé | Zbrojenie Obcigzenie lamigce P t |
Se- D e e - =17 do- | ceq. | RoZnica
- | plyty ; oczka | ( | i | 2 Srednia |
ria | d y | siatki £ m m | obli $wiad- |, (oswiad- | %
cm | mm /4 cm kG em |CzZONne | czenia | ¢ eniy [
— - S T N “ D S = e = — e 4'77 ‘ S == =
8,1 7,2 \ 1 | | 26.25 | ‘
A 8,1 72 | 058 | 1010 4080 1.14 | 238 | 263 | 262 10,0
82 | 71 | ! | | | 260 |
e L ‘
81 | 72 ; ‘ | | 26.0
B 81 | 72 | 058 | 1088 | 4080 | 1,19 | 249 | 260 262 5,2
8.1 72 | | | . | 265
R | [ e enne; ) | [ |
c ! 81 | 711 950 sreanio’ | 4080 | 1,00 208 240 240 15,9
g1 | 1.1 11.7/11.0 ‘ 24.0 |
T ‘ :
81 | 70 1088 | | 27,0 |
D | 82 7,0 0,58 po prze- 4446 1,23 | 25.7 | 27,0 267 | 17
81 7.0 katnej | 1 26.0 ;
8.1 10,0 | 34.0
E 81 | 100 | 120 1083 3490 1,75 36.9 | 34,0 340 —\7/8
8,1 ‘ 10,0 | 34.0
) D e \ [
8.1 10,0 | | 1083 | 34.0 \
F 81 10,0 1.20 po prze-, 3490 175 | 369 | 340 340 | —178
8.1 10.0 katnej | 34.0 |
8,1 10,0 | 44,0
G 81 101 . 20 | 6/5 5290 2.05 43,4 450 43.0 0.9
L 81 10.2 | f ‘ | 40.0
H 8 5 | 020/ 1010 | 5600 | 074 152 B8 185 | 215
8 5 | 1 | | 18.3 1

Na ogél wyniki zestawione w tablicach sg zgodne z wynikami teore-
tycznymi. Dwie pozycje wykazuja mniejsze rzeczywiste obcigzenie ta-
migce anizeli obcigzenie obliczone. Ttumaczy sie to tym, ze jednostkowy
moment tamigcy nie byt tu wyznaczany do$wiadczalnie dla pasma o gru-
bosci 8 cm, lecz obliczany na podstawie wynikéw dla pasma 12 cm, zbro-
ionego w identyczny (co do ilo$ci, rozstawu i Srednicy pretéw) sposdb,
na podstawie stosunku

1,19

2,94 - 72,400_ =158 tm/m.

0o
%)
o



Wartos$¢ 2,94 t przedstawia moment jednostkowy dla pasma o grubo-
Sci 12 em przy Q. = 3490, za$ wyraz 1,19/2,00 okresla stosunek momentéw
tamigcych dla plyt o grubosciach 8 cm i 12 em wedlug wynikéw, otrzy-
mywanych przy zbrojeniu o innej wartosci. Wartosci te dotycza badan
oznaczonych w tablicach literg B (dla ktorych Q.= 4080 kG/cm?).

Rys. 58

Nalezy podkresli¢, ze seria G wykonana byta ze stabego betonu, zbro-
jona przy tym stala twarda, lecz i tu zgodno$¢ z obliczonymi wartosciami
sit niszezgeych jest dobra, mimo iz zalozenia teorii nie sg w pelni stuszne
dla tego rodzaju przypadku.

Fakt ten wskazuje (o czym zresztg wspominaliSmy juz poprzednio, por.
rys. 18), ze odksztatcenia plastyczne betonu majg podobne znaczenie w teo-
Tii no$nosci granicznej, jak plastyczne odksztalcenia stali. Zbrojenie stala
twarda w grupie H spowodowalo, ze zniszczenie nastapilo przez zerwanie
pretéw w chwili ztamania, przy czym sita powodujaca ten stan byla znacz-
nie wyzsza od obliczonej.

Jeszcze nieco uwagi nalezy poswieci¢ przypadkom, w ktérych zbroje-
nie utozone bylo réwnolegle do przekatnych. Takie ulozenie zbrojenia nie
moze oczywiscie mie¢ wplywu — z punktu widzenia teorii stanéw granicz-
nych — na wielko$¢ obciazenia tamigcego. Stwierdzenie to znajduje —
jak wida¢ z zestawienia odpowiednich pozycji z tablic 7 i 8 — nalezyte
uzasadnienie do$wiadczalne. Ulozenie zbrojenia po przekatnej, jak wy-
kazaly badania radzieckie '%), wplywa jedynie na okres, w ktéorym — li-
czac od poczatku obcigzenia — pojawiaja sie pierwsze pekniecia. Przy
takim uktadzie zbrojenia pekniecia pojawiaja sie weczeéniej, niz to ma

16) Por. np. K. W. Sachnowski, [28].
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miejsce w przypadku ulozenia zbrojenia réwnolegle do bokéw plyty. Ba-
dania radzieckie, przedstawione w cytowane] pracy, stwierdzajg rowniez,
ze no$nos¢ plyty w obu przypadkach nie ulega zmianie.

Skoro jest mowa o badaniach radzieckich, nalezy jeszcze podac iz
przeprowadzane do$wiadczenia w przypadkach zageszczonego zbrojenia
w obszarze srodkowym plyty dawaly nieco wiekszg sile niszczacy, niz
w przypadku réwnomiernego ich roziozenia. Jest to w pewnej mierze
uzasadnione faktem, iz praktycznie — jak wida¢ to chociazby z podanych
uprzednio fotografii — linie zaloméw nie zawsze osiagaja krawedzie ptyty,
a wiec pewne nieznaczne partie zbrojenia przy krawedziach podparcia nie
zostaja naprezone do granicy plastycznosci. Pewng ilustracja takiego
stwierdzenia moga by¢ rowniez odpowiednie wyniki przedstawione w ta-
blicach 7 i 8. Przytoczonej tu analizy nie ma w pracy [10], na podstawie
ktorej sporzadzone zostaly tablice 7 i 8.

10. Plyta izotropowa prostokatna obciazona rownomiernie

10.1. Przedstawione nizej doswiadczenia wykonane byly na ptytach
o grubosci 12 em i o stosunku bokéw (liczac w $Swietle podpoér) b/a = f,
wynoszacym f = */3 1 f = !/2; uwzgledniajac za$ wystajace brzegi plyty
By = 2%/310 = 0,676 i B, = 2'%/410 = 0,51.

W przypadku plyty izotropowej x = 1,wielkos¢ momentu tamiacego
mogliby$my wyznaczyé¢ dla obcigzen roztozonych réwnomiernie na pod-
stawie [16] ze wzoru

pb* -
(10.1.1) M= 2 )
gdzie y=—)'3 + 2—p; dla f="2/, daje to y=1,19. Operujac, jak poprzed-

nio, obciazeniem lamigcym P=pb® f i uwzgledniajac przy ciezarze wiasnym
wystajgce poza linie podpoér brzegi plyty oraz pomijajagc wplyw narozy,
otrzymamy

D PB G~ 32
(10.1.2) M=y 24 © 3,1-21
co po wstawieniu wartosci liczbowych daje
20 G
M47-3‘24119—}- 119 - 0,93.

Stad warto$¢ obciazenia tamiacego wyniesie
(10.1.3) P=254M — 0,93 G,

gdzie
G=g-310-210.



Uklad teoretycznej siatki zniszczenia dla rozpatrywanego przypadku
w zalozeniu obcigzenia ciaglego przedstawia rys. 59, za$ rys. 60 uklad
peknieé wedtug jednego z doswiadczen C. Bacha, [1],17).

~ —‘—i
l o o _£ o o |
l 74 |
| l
: o o o o :
g | |
| o e o |
| 25 5 5x50 25 |
I ‘ f
, ; o o o o ' f
‘ | A |
N |
300
Rys. 59
5 N Ve S /i
MY \‘\\\ ( ////////' ”/ Z
e N et /_%. / /
= R o A
N \ — Lo , /// '_/_
"‘\\ - < _,L/ ////
\‘\ N Th o ; Yy
S %
p = [ 1 o t.\)
/ \
2 Z S QE
77 ., N
0 5 \i\\ X ﬁ\\
. & A N \ N
&= . L " ~
Ryvs. 60

Odleglosé szezytu daszka zaloméw charakterystycznego dla f-= 1 jest

b 200 ..
r=o 7="27119=119m,

a wiec linia zalomu nie jest dwusieczng kata miedzy odpowiednimi bo-
kami plyty.

‘;) Por. p. 9.1.
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Doswiadczenie przeprowadzono obcigzajac plyte silami skupionymi,
dzialajacymi punktowo; wskazuje na to rys. 59. Przy takim  rozlozeniu
obcigzen linie zalomo6w przechodza przez punkty dzialania sil; otrzyma-
ny doswiadczalnie uklad zniszczenia bedzie nieco inny. Przedstawia go
rys. 61. Wzglad, by poréwnania wynikéw doswiadczalnych z teoretycz-
nymi dokonywa¢ dla rzeczywiScie realizowanych ukladéw siatek zni-
szczenia, powoduje, iz poréwnania takiego nie mozemy dokonaé na pod-
stawie wzoru (10.1.3).

i

210
200

300

Rys. 61

Rzeczywisty uktad linij zaloméw przy danym typie obcigzenia w 24
punktach daje réwnanie bilansu prac z uwzglednieniem narozy w postaci

P 3 P 1 475
. S TG —
824 o 1624 n +4 5 9" 105-210- 100 +2¢g-100-105- J00 —
5y 310] 210 v
2M1001+ MlOO 4M 4 (2 Ji2)2
co prowadzi do wartoSci
(10.1.4) P=241M—0,84 G.

Z analizy rys. 62 oraz 63, na ktéorych przedstawiona jest siatka zni-
szczenia, nasuwaé sie moze wniosek, ze bardziej prawdopodobnym uk?a-
dem jest uklad przedstawiony na rys. 64.

227



Stosujac zasade prac przygotowanych otrzymamy dla takiego schema-
tu zniszczenia

P P 1 35 35
. . Ak, . . I NS . . . vl . . o =k
824 1+1624 3 79 150-80-2 75+g 50-80-2 70 +¢g-150-50-1-
‘ 1 22 310 | 210 L e
+ ¢g-80-80- 5 8-75—2M n5 2 M 75 4M3(2 V2)7,
skad
(10.1.5) P =241M—0,82G.

Rys. 63

Jak wida¢, siatka zaloméw wedtug rys. 64 daje nieco wyzszg wartosc
obciazenia tamiacego. Siatki zniszczenia, ktore wida¢ na fotografiach,
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sg kombinacja przedstawionych dwoch schematéw, a to dlatego, ze wy-
razenia, dotyczace pracy sit zewnetrznych, sa dla obu schematow jedna-
kowe, wyrazenia za$ okre$lajace udzial ciezaru wlasnego nieznacznie sie
roznig. Wyniki zestawione w tablicy 9 sa situszne dla obydwu wzoréw
z dokladnoscia odpowiadajgca obliczeniom dokonywanym na suwaku lo-
garytmicznym.

W przeprowadzonych badaniach uzyta byta stal Q. = 4280 kG/cm?,
przy czym S$rednica pretéw wynosila 7,0 mm. Przy danym rozstawie
zbrojenia, jednakowym w obydwu kierunkach i wynoszacym 10 cm, wiel-
kos¢ momentu jednostkowego wyznaczono na podstawie danych z tablicy 3
z zaleznoSci

4280 [ 17,0\*
M =kM,=0964-2,00- ( : 27) —1,90 tm m.
Tablica 9
Grubosé Zbrojenie | Obciazenie tamigce Pt
Ty oczka - M T i ) Roznica
piyiy | d q iatki Q, t obli- |z doswiad- “",‘"f,‘" 0
em 2 , slatkil i mm, e Tin z ({mw'lvud- v
mm b cm kG'cm czone csenia
12.2 7.0 | 45,0 | }
12,1 7,0 | 0,37 10 10 4289 ‘ 1,90 44,2 440 | 443 | 0.2
12.1 7,0 | , 440 ;
Zestawienie wynikow dla ptyty, dla ktorej f = */3, podane jest w ta-

. blicy 9 (f dla wymiaréw ptyty wynosi 0,676; /3 dotyczylo rozpietosci
w $wietle podpor).
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2. Zajmijmy sie teraz plyta prostokatna, dla ktérej stosunek bo-
kéw f="'/,. Wielkos¢ y, okreslajgca odleglo$¢ punktu od jednego z bokow
punktu, w ktérym spotykaja sie trzy dodatnie linie zalomoéw, wynosi
w takim przypadku

7=134+0,52—0,5=1,30 m;

bedzie zatem x = 1,30 m. Z rysunku 65, na ktérym przedstawiona jest
rozpatrywana plyta, wida¢, ze wynikajacy z teorii ukiad linij zatomoéw
z uwagi na sposoéb obciazenia musi by¢ dostosowany do obcigzenia zacze-
pionego w 32 punktach. Istnieje w tym przypadku mozliwo$¢ wystepo-
wania dwéch ukladéw linij zalomoéw, przedstawionych na prawej i lewe]
czeSci plyty. Ogélnym kryterium wskazujacym, ktoéra z proponowanych
siatek odpowiada¢ bedzie sile niszczacej, jest kryterium maksymalnego
oporu plastycznego. Nalezy zatem sprawdzi¢, ktéra z siatek czyni zadosé
temu kryterium.

200

Siatka przedstawiona na rys. 65 z lewej strony pozwala napisa¢ row-
nanie pracy sil wewnetrznych i zewnetrznych w postaci

P 3 P 1 1 30 475
S e () . - . o . Qe - . . bR —
1245+ 5+ 2055« ;- +4- 59105210+ 705 + 29+ 200105 % =
410 210 1 —
—2 M= /9)2.

2M oo+ To0 ) —4M T 2—V2)
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Do réwnania tego doszliSmy udzielajac punktom, lezacym na «kalenicy»
daszku zalomoéw, przesuniecia jednostkowego. Wstawiajac don G =
= ¢g-410-210 otrzymamy warto$¢ sily niszczacej

(10.2.1) = 27,6 M — 0,88 G.

Dla siatki przedstawionej na prawej czeSci rysunku rownanie prac
przygotowanych, otrzymane przez udzielenie analogicznego przesuniecia
dw =1 bez uwzglednienia zmniejszajagcego wplywu narozy (linia przery-
wana na prawej czesci rys. 65), przedstawi sie, jak nastepuje:

P o5 +

P P P |
1255 0,25 +8 550,75+ 850,15+ 4 o

32 32

1 0,75 1 0,75
i Seetein . . F = + e . SITD AL L
-2g 2 210-172-52,3 195 4 9 g-105-172-30 75 t
5 /
7‘—29-66-105-47,5~*0T;}:2M 410 0,;’;5 -+ 206 _(;,2763)

stad obliczamy

(10.2.2) P =285M—0,89 G.

10.3. Zastanowimy sie obec- L
nie nad wplywem naroza
(rys. 66). Rozpatrzy¢ zagad-
nienie w tym przypadku jest
stosunkowo latwo, gdyz cha-
rakter obcigzenia wyznacza
ksztatt tworzacego sie naroza.

Traktujac wielko$ci x i1 y
jako znane (co odpowiada
naszemu przypadkowi) i po-
stepujac analogicznie jak w X LY
przypadku, gdy sita przesu- N
wala sie po przekatnej kwa- ~
dratu, otrzymamy na prace Rys. 66
sit wewnetrznych, wykonana
przy utworzeniu sie zalomu wedlug linii kreskowanej, wyrazenie

‘:ﬁ
>
\

g

Y
F .
X

el

d
OV, =M § dw+ M Ow:M(c

d -+ (:)éw,



za$ na prace wykonana przy pojawieniu sie rzeczywistych linij zalomoéw

ow ow 0w ow

oV,=M (c—x)+ M (d—y)+ Mx +My—

d ‘ c T Ty

Roéznica 0V,—0V, przedstawia skutek podnoszacego sie naroza. Wiel-
kos$¢ jej wynosi

(10.3.1) A0V =0V,—oV,=—Mow|* + ¥ T _ Y
To &

(8]
w
o



Wstawiajac

w=c+(d—y)—=cl ——2x
v Y Yy
oraz
. Cy
y=d+ —=
T - Y
otrzymujemy
= ety x|y \
(10.3.2) A6V =|—— e Mow.
xd+yc—xy d (&
Podstawiajac warto$ci z rozpatrywanego przykladu, tzn. dw = 3/,
x=050cm, y =15cm, d = 80cm i ¢ = 130 cm, obliczamy
— (152 ¢ 5
I«SV:—S—M —({15° + 50%) S R I 3M-O,215.

4°780-50+15-130 —15-50 ' 80 ' 130 4

Uwzglednienie wplywu czterech narozy we wzorze (10.2.2) prowadzi
do sity tamiagcej o wartosci

(10.3.3) P=268M—089G;

jest to najmniejsza dla danego przypadku wartosc¢ sily lamiacej ze wszyst-
kich wielkosci wedlug wzorow (10.2.1), (10.2.2) oraz (10.3.3).

10.4. Zestawienie wynikoéw do$wiadczen i porownanie wielkos$ci sit la-
miacych podane jest w tablicy 10. Stal w tych ptytach charakteryzowala
sie takimi samymi wlasno$ciami jak w przypadku plyt o stosunku bokow
f# = 2/3 (tzn. takich jak podano w tablicy 9). Rysunki 67 i 68 przedstawiaja
rzeczywisty uktad linij zalomow.

Tablica 10.
lGrbocal Zbrojenie { - | Obciazenie tamiace Pt| Rgs-
1yt ‘ oczka | “ i_ |z do- srednie | nica
s d i siatki Qr ) Etm m! obli é/\\ :::J /:1:():\:‘1];l 0
} cm mm % cm kG em?* | \czone | czenia | czenia 0
] 777"‘ - T T - |
| 122 |10 ] } | 50,0 |

0,50 | 12,1 7.0 0.37 | 1010 4280 1 1.90 | 48,8 | 50,0 50,7 | 4
0.51) 121 7.0 ‘ | 52.0

11. Plyta dwuprzestowa obciazona rownomiernie

t1.1. Plyta dwuprzestowa, sktadajaca sie z dwoch poél kwadratowych
o rozpietosci dla osi podpér 200 cm < 200 cm, obciazona byta 32 si-
fami skupionymi. Grubo$¢ plyty wynosita 12 ¢m; zbrojenie wykonano do-
fem rownomiernie pretami d = 7mm, goéra nad podpora posrednia
d = 8,8 mm; rozstaw zbrojenia no$nego wynosit 10 cm > 10 cm. Gorne
zbrojenie charakteryzowalo sie granicg plastycznosci @, = 2940 kG/cm?,
dla dolnego bylo @, = 4320 kG/cm?.
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Wartosci momentow jednostkowych wyznaczono na podstawie tabli-
<y 3 dokonujac przeliczen z uwagi na inne Q. oraz d. Momenty jednost-
kowe wynosily zatem

4320 7,0 |
M7;1’92.4@6 . 7’22——1,92 tm/m,
,___ 2040 8,8
M = 2,00 - 4080 722;2,16tm m,

- M 2,16
M T 102 B

gdzie M’ oznacza jednostkowy moment ujemny (tzn. zwigzany ze zbro-
jeniem gérnym), za$ M posiada znaczenie objasnione poprzednio.

[ A

M0

Uktad linij zaloméw, uwarunkowany typem obcigzenia, dla tego ukla-
du przedstawia rys. 69. Zasada prac przygotowanych daje tu réwnanie

3;2- ; +431;- ; 4251-; +2§2-1 +2-fé~g-80-205 2%-«7+
+2‘;g- 22;5,)7+g-50-80-3£—5+2-(1)9-80-125-;T
+g-50-125- ; =2 M (205 —45) - - +M2771'§*~2M~;—(27 1 2) +
~L(M+M')(205—35)°1215 4‘2(M+M’)-§z‘,’§~‘-2M'45'3,?5;



stad
(11.1.1) P—=446M + 715 M —0,83 G,

gdzie
G = g-410-210 .

Wplyw naroza, oznaczonego na rysunku 69 literg A, jest uwzglednio-
ny bezposrednio przy zestawianiu bilansu prac. Sktadowe katy obrotu
wynoszag 1:375 i 4:375 odpowiednio dla obrotéw wokoét srodkowej pod-
pory i dtuzszych bokow.

11.2. Tablica 11 zawiera zestawienie wynikéow dla omawianego przy-
padku.
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Rysunki 70 i 71 przedstawiaja otrzymana siatke zniszczenia. Warto
zwroci¢ uwage na fakt, ze na pbdporze posredniej nastepowalo zniszeze-
nie przez zmiazdzenie betonu jedynie w pewnej partii srodkowej, nato-
miast przy brzegach — z uwagi na tendencje unoszenia sie narozy — nie
mialto to miejsca.

Tablica 11

Grubosé Zbrojenie | Obciazenia tamiace Pt
7 N M | e Roéznica
piyty d q O.(:le({a. Q,_ ;| obli- |z do§wiad- | srufln_m 0
o p . siatki o | | o z doSwiad- | 0
| mm © | em | kKG/em*® | czone czeh czei
‘ ‘ | 1
7,0 ‘ | ! ! \
12.1 : | 10/10 | \ 100,0
8.8 | | ; l 3 } }
70 | 037 4320 | 192 ?
121 SEe = | == | |
. s \‘ 0.61 2940 | 216 ‘ 98,4 1 95,0 98.3 ‘ 0,18
| | i |
7.0 ‘
122 \ 10 10 | ! 1000 !

8,8 ‘

| \

12. Plyta prostokatna ortotropowa obeciazona rownomiernie

t2.1. Plytom o réznej mocy zbrojenia w dwu prostopadlych do siebie
kierunkach odpowiadaja rézne wielko$ci momentéw granicznych, przy-
porzadkowanych tym zbrojeniom; mamy wiec do czynienia ze struktu-
ra ortotropowa. Wskaznik ortotropii jest okreslony z dostatecznym przy—
blizeniem bezposrednio przez moc zbrojenia '%). Wyraza sie on stosunkiem
wielkosci momentow jednostkowych dla kazdego z kierunkéw ortotropii.

Dos$wiadczenia przeprowadzone byly nad plytami 416 cm < 210 cm
0 grubosci 12 em, przy czym zbrojenie, ulozone prostopadle do boku diuz-
szego, obstugiwalo partie diugosci 410 cm. Zbrojenie krotkie wykonane
byto z pretéw o s$rednicy d = 70 mm, rozstawionych w odleglosciach
10 ecm, natomiast zbrojenie podtuzne wykonane bylo z pretéw o srednicy
d = 7mm wzglednie 5 mm. To ostatnie bylo ulozone, w zaleznos$ci od typu
plyty, w odleglosciach od 10 cm do 26 c¢m. Zbrojenie posiadato granice
plastycznosci @; = 4280 kG/cm? Wszystkie omawiane powyzej charakte-
rystyki podane sa w tablicy 12 (patrz str. 242) lacznie z opracowanymi
wynikami do$wiadczen.

') Pomijamy przy tym zmiane ramienia sit wewnetrznych; por. tre$¢ odsytacza *').
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Wartos¢ jednego z momentow lamigcych dla plyty przedstawionej na
rys. 72 wyznacza sie w przypadku jej budowy ortotropowej z zaleznos$ci

pb*
(12.1.1) My="- ", v

odzichE T

/3
p= (]/ o 55 /’)""—P’),
» natomiast oznacza wskaznik
ortotropii  struktury plyty
i przedstawia sie dla poda-

e

nych na rysunku kierunkow O A

osi wzorem :zé;':;‘ _____ . “
L M. kfu
’ M, ko Rys. 72

Odleglo$¢ punktu zetkniecia sie trzech linij zalomu w przesle wyzna-
czona jest réwnaniem

(12.1.2) Ti—

Wstawiajac = 210 410 = 0,51 otrzymujemy

T (] f L 026— 0,51).

Wartosci » podane sa w tablicy 12. I tak np. przy zbrojeniu krotkim
rozstawionym co 10 cm, za$ dtugim — rozstawionym co 20 c¢m, oraz przy
uwzglednieniu innej odlegtosci zbrojenia dlugiego od goérnej powierzchni
plyty obliczamy

0,92.---1,40

x = 1.40 = (,46.

e Do

Dla plyty o wspoélczynniku » wielko$¢  okreslajgca kat, pod jakim

i

wychodzg linie zaloméw z punktu przeciecia sie osi obrotow, jest
y=ctga= 046(]/ + 0,26 — 0,51 ) = 0,96.

Odlegtos¢ x, liczona od osi obrotu plata, wynosi zatem x = 96 cm.

bo
(V]
-1



12.2. Postulat sprawdzenia do$wiadczalnego wielkosei obcigzenia la-
migcego nasuwa konieczno$¢é wyznaczenia tego obcigzenia jako funkcji
momentéw granicznych; gdy wiec podstawimy do wzoru (12.1.1)

; 4,0 - 2,0
pb“:ﬂ(PJr G4,1 2’1 y

otrzymamy

(12.2.1) peatMar ]
Br*

Tak wiec dla przykladu rozpatrywanego powyzej, dla ktorego » = 0,46
i y = 0,96, warto$¢ obcigzenia tamiacego wyraza sie przez

0,93 G.

24M,- 0,46
(12.2.2) P= 0.51 - 0.96°
12.3. Obciagzenie lamigce wyznaczy¢ mozna réwniez rozpatrujac oma-
wiang plyte jako izotropowa o odpowiednio zmienionych wymiarach. Na-
lezy przy tym wymiary plyty przeksztalci¢ przy zastosowaniu odpowied-
niego wspoélczynnika transformacji.
Wspbétezynnik ten pozostaje w okre$lonym stosunku do wskaznika
ortotropii i — przy niezmienionych wymiarach w kierunku osi v — wy-
nosi dla wymiaréow w kierunku osi u 1)

—0,93G=235M,—0,93G.

(12.2.3) e

Tak przeksztalcona piyta bedzie teraz posiadala wymiary b i a ) x.
Natezenie obciazenia w tym przypadku pozostaje niezmienione; jest ono
————————————————— zatem nadal okreélone przez intensyw-
nos¢ p.
Obraz transformowanej plyty przed-
stawiony jest na rys. 73.
Przystepujac do wyznaczenia mo-
mentéw lamiacych i postugujac sie po-
wyzszg transformacjg liniowa wyzna-
[ czy¢ musimy fr= b/} % - a a nastepnie

|
| :
| |
I |
| |

|
| i
| #
| |
‘ r

e —————

P

Rys. 73 T — '/737;}7_73—?_ 8,.

Dla rozpatrywanej ptyty o wymiarach 210 cm X 416 cm oraz cechach
x=0,46 i f; = 0,755 otrzymujemy

ye=1V 3 + 0,755 — 0,755 — 1,14,

za$ warto$§¢ momentu granicznego M, obliczamy ze wzoru (10.1.1) poda-
nego dla plyty izotropowej.

) Por. np. W. Olszak, [17].
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Poniewaz porownujemy wielkosci obciazen lamiacych, otrzymane
z do$wiadczen i obliczone na drodze teoretycznej w oparciu o analogicz-
ne rozwazania, jak podaliSmy uprzednio dla ptyty ortotropowej (nie trans-
formowanej), otrzymamy

pb?— §; (P e U
2,1-4,1-1/0,46

co prowadzi do sily tamiacej o wartosci

— 24M: —0,93G=235M — 0,93G.
Biyi

Jest to zatem wynik identyczny z (12.2.2).

P

12.4. Przystepujac do ustalenia siatki zniszczenia spowodowanej przez
obcigzenie silami skupionymi, dzialajacymi w 32 punktach powierzchni
plyty, nalezy, podobnie jak w poprzednich przykladach, obliczyé prace
sit zewnetrznych i wewnetrznych przy uwzglednieniu odpowiedniej siat-
ki zniszczenia. Siatke te mozna znalez¢ na drodze teoretycznej (w sposéb
scharakteryzowany uprzednio) albo tez mozna ja wzia¢ bezposrednio z do-
Swiadczenia (rys. 74 i 75). Obserwuje sie w przypadkach matego x, iz nie
wystepuja tu pojedyncze naroza, tworzy sie natomiast przy malejacym
stosunku bokéw f jedno «naroze» wspoélne (unosi sie caly krotszy bok
plyty). Schemat takiego ukladu siatki zniszczenia przedstawia rys. T6.
Kat nachylenia linii zalomu wzgledem boku poziomego okreSla wielko$§é y.

Gdybysmy rozpatrywali plyte obcigzong réwnomiernie, poréwnanie
wynikow doswiadezen z wynikami teoretycznymi byloby tatwe; postugi-
wanie sie sitami skupionymi zmusza jednak do poszukiwania pew-
nej charakterystycznej dla ukladu obciazen siatki zniszczenia w oparciu
o podang poprzednio metode. Niech taka siatka zniszczenia bedzie siatka
przedstawiona na rys. 76, przy czym na kazdej z dwoch potéwek plyty
podano rézne siatki, charakteryzujace sie innym katem linii nachylenia
zalomu,wychodzace z naroza. Wyboér wlasciwej siatki nastepuje na pod-
stawie zasady maksymalnego oporu plastycznego, z ktorej okresla sie
wartos¢ y .

Udzielajac punktom zaczepienia sil przemieszczen przygotowanych,
zwiazanych z soba zalozeniem sztywno-plastycznego modelu odksztalce-
nia, réwnanie bilansu prac otrzymujemy w postaci

T +8;;(75tgq)—50):

l232 ' 32 3

1 ctgg
— 1 .9. 1 . el
2 M., (250 + 2-80 tg ¢) 75 2xM,-210 T
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74

Rys.

75

Rys.

s. 76

Ry
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W réwnaniu tym nie uwzgledniono tworzenia sie pojedynczych naro-
7y jak réwniez pominieto ciezar wiasny. Ciezar wilasny wprowadzony zo-
stanie na podstawie réwnania (12.2.2).

Z podanej wyzej zalezno$ci wyznaczymy wielkos¢ sity

42+ 5tge + 3,2tg%¢
4. e A e =16
(12.4.1) P=16 9tgp—2 M 9,

42%+ 5y + 3,2 9°
2

M.,

gdzie y =tgp =ctg a.
Zasada maksymalnego oporu plastycznego daje réwnanie

9y—2)(5—6,4y) —9(5y +3,29*+ 4,2%) =
5 i g e
skad
LAl e
(12.4.2) y=0,217+ - /157 + 524 .

Zaleznos¢ ta przy y =1 (tylko wtedy bowiem linia zalomu przecina
dluzszy bok plyty) jest stuszna dla » = 0,165. Obliczajac rzeczywista war-
tosé sity dla » = 0,112 otrzymamy y = 0,952, za$ na podstawie (12.4.1)

p_ 16-812

6,55 M.

Przy uwzglednianiu ciezaru wlasnego wedlug réownania (12.2.1) sita ni-
szczaca wynosi

(12.4.3) P=198M,—093G.

W spos6b analogiczny obliczy¢ mozna, jakie wartosci y odpowiadac
beda siatce zniszczenia przedstawionej na rysunku 76 z lewej strony i ja-
kim to odpowiada wskaznikom ortotropii 2°).

12,5. Tablica 12 podaje wielkosci sil lamigcych, uzyskanych z do-
$wiadczenia, oraz wyniki teoretyczne. W tablicy gérna warto$¢ sity ni-
szczgce] obliczona jest w zalozeniu réwnomiernego roziozenia obcigzen,
tzn. wedlug wzoru (12.2.2) z uwzglednieniem odpowiednich wspétezynni-

20) Postepujac jak powyzej dla siatki przedstawionej na lewej czeSci plyty otrzy-
maliby$my, ze przy y — 1 jest ona stuszna dla » = 0,286.
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koéw v, dolne za$ warto$ci odnosza sie do obliczen przeprowadzonych we-
dlug siatki, przedstawionej na rys. 76 z roéwnoczesnym uwzglednieniem
wielkosei .

Rys. 77

Jeszcze jeden przyktad uktadu linij dla przypadku plyt typu omawia-
nego w tym p. przedstawia rys. 77.

Tablica 12

| | |
Grubo$é¢ plyty cm | 12 | 12 12 12 12
- ) - r J |
Zbrojenie | d mm 6,9 7,0 70 | 17,0 7,0
poprzeczne f,, | odstep wktadek c¢m 10 10 10 10 8.5
Q, = 4280 kG/cm?® ¢ % 0.37 0,37 0.37 0,37 0,7
Zbrojenie ; dmm| 69 70 | 7.0 5,0 5.0
podiuzne f,, | odstep wkladek cm. | 10 .20 35 42 26.2
Qr — 4980 kG, /em? i P % 0.37 0,19 0.11 0.047 0,075
Wskaznik ortotropii » 0,92 0.46 0.263 0.112 0.098
Moment tamiacy M, tm/m 1,40 1.40 1,40 1,50 2,45
” 125 | 096 0.72 0,525/ 0,502
| wyznaczone dla ob- .
| ciazen ciaglych*) | 365 33.1 31.1 271 | 43,0
Obcia?enie | wyznaczone dla sit
tamiace Pt . skupionych 33,8 29,3 27,6 275 | 46,2
z dosSwiadczenia 35.0 31,0 29.0 28,0 48,0

#) Wartosci podane bez uwzglednienia zmniejszajgcego wplywu narozy na podstawie (12.2.1).
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Przedstawione wyniki potwierdzaja rowniez i dla plyt ortotropo-
wych stuszno$¢ teorii nos$nosci granicznej. Zagadnienie plyt ortotropo-
wych stanowi bardziej zlozony problem obciazenia silami skupionymi
z punktu widzenia wplywu narozy w porownaniu z przypadkiem piyt
izotropowych i wymaga odrebnego studium. Szersze opracowanie tego
zagadnienia odktadamy do drugiej cze$ci pracy, gdzie zostanie ono przed-
stawione na tle wynikow ostatnich naszych prac teoretycznych, [16]
[17], [22], [14], [31].

15. Uwagi koncowe

Rozpatrzony wyzej szereg prostszych przypadkéw plyt i obciazen
wskazuje na dobra zgodno$¢ przedstawionej teorii z badaniami doswiad-
czalnymi. Otrzyma.ne wyniki pozwalaja przypuszcza¢, iz w przypadkach
bardziej zlozonych, jak np. przy rozpatrywaniu plyt ciaglych, plyt zamo-
cowanych, ukladéw o mieszanych warunkach brzegowych itp., rezultaty
doswiadczen roéwniez potwierdzaja stuszno$e teorii.

Weryfikacja do$wiadezalna tych bardziej ztozonych ukladéw wymaga
jednak dodatkowego opracowania paru jeszcze zagadnien natury teore-
tveznej, jak np. wplywu narozy w plytach zamocowanych i ciaglych,
ukladoéw linij zalomoéw w plytach obustronnie zbrojonych a obciazonych
sila skupiona itp. Ten ostatni problem jest szczegdlnie interesujacy, gdyz
w trakcie prowadzonych przez nas do$wiadczen otrzymaliSmy, w przy-
padku obciagzenia sila skupiong przy po-
wolnym jej wzroscie, linie zalomu na
gornej powierzchni plyty w postaci spi-
rali (rys. 78). Analiza teoretyczna juz
uprzednio data wynik, ktéry prowadzit
do linii spiralnej jako do jednego z moz-
liwych rozwiazan. Gdy zatem obecnie
doswiadczenie potwierdzito jego siu-
sznos$¢, zachodzi potrzeba sprecyzowa-
nia warunkéw powodujacych tego ro-
dzaju zniszczenie. '

Wspomniane zagadnienia sa obecnie
w fazie badan do$wiadczalnych; ich
wyniki przedstawione beda w czasie Rys. 78
pézniejszym.

Warto dorzuci¢, ze rowniez i te z dostepnych nam dotychczasowych
doswiadczen, ktore nie zawsze byly przeprowadzane pod katem widzenia
teorii no$nosci granicznej (jak np. badania instytucji Deutscher Ausschuss
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fiir Eisenbeton), pozwalaja wysnu¢ wniosek o stusznos$ci zatozen tej teorii,
jak wynika to z szeregu danych w poprzednich rozdziatach.

Uzasadnienie stuszno$ci zalozen teorii nos$nosci granicznej pozwoli
wprowadzi¢ przedstawiong metode do praktyki inzynierskiej, co zaréwno
z uwagi na korzysci natury ekonomicznej, jak i ze wzgledu na stosunko-
wo prostg budowe samej teorii, przynies¢ powinno efekty gospodarcze.

Nalezy przy tym wzigé¢ rowniez pod uwage, ze oparcie sie o przedsta-
wiong teorie, zdgzajaca do wyznaczenia sil wewnetrznych na podstawie
analizy stanu zniszczenia, pozwoli usuna¢ w stosunku do plyt istnieja-
ca obecnie niekonsekwencje miedzy obliczaniem tych sit wewnetrznych
na podstawie studium ustroju jako sprezystego, a wymiarowaniem ustro-
ju wedlug tzw. metody odksztalcen plastycznych. W ten sposob teoria
nos$no$ci granicznej rozpatruje konsekwentnie zagadnienie jako logiczna
calose.

14. Dodatek do p. 3. Przyklad liczbowy

Dla zilustrowania przedstawionej w p. 3 metody wyznaczania mo-
mentéw lamigcych zastosujemy ja do obliczenia konkretnego przykiadu,
ktorego rozwiazanie na gruncie teorii sprezystosci byloby trudne.

Z rozmystem dobieramy przykiad
AvIiMy) mozliwie prosty dotyczacy ukladu
X jednorodnego przy zalozeniu naj-
prostszych warunkéw podparcia
Bw i obcigzenia.

=]
™

Al

I Dana jest plyta prostokatna

o bokach a=3, b=2 (jednostki

® I dowolne), zamocowana na dwoéch

sgsiednich krawedziach, na dwoch

pozostalych swobodna (rys. I), ob-

cigzona réwnomiernie roziozonym

obcigzeniem p (u, v) = const, ktora

Rys. I w ogbélnym przypadku zbrojona

jest gorg i dotem w obu kierun-

kach réwnoleglych do osi ukiadu odniesienia w spos6éb rézny; rozpatrzy-
my zatem plyte o strukturze warstwowo ortotropowej.

Dla uproszczenia zagadnienia zakladamy, ze momenty zwigzane ze
zbrojeniem dolnym, te zatem, ktére nazywamy dodatnimi, a oznaczone
odpowiednio M, oraz M., sa sobie rowne. Wspoétczynnik ortotropii cha-
rakteryzujacy «warstwe» dolng wynosi wtedy » = 1.

Wskutek utwierdzenia plyty na krawedziach AB i AD oraz przewidy-
wanego tam zbrojenia powstana linie zalomoéw ujemne (tzn. zwigzane

NN

0]

RAizcqzczisiizzzz44 ufMu)
Q

B

(-
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z momentami ujemnymi). Odpowiednie momenty w warstwie gérnej wy-
noszg
(14.1) [ M= M

l My=/AuM,.

Zaldézmy, ze wspblezynnik ortotropii «warstwy» gornej wynosi 4= 0,5,
za§ wspblezynnik charakteryzujacy stosunek mocy zbrojenia réwnole-
gtego do osi v warstwy gornej i dolnej x = 3 [tzn. moc zbrojenia «kro6t-
szego» warstwy goérnej jest trzykrotnie wieksza od analogicznej mocy
warstwy dolnej 21)]. :

Na podstawie przytoczonych wyzej zalezno$ci mozemy wyrazi¢ wszyst-
kie wielko$ci momentéow w funkcji jednej warto$ci momentu M,.

Chcac obliczye te warto$¢ rozpatrzmy uklad zniszezenia podany na
rys. 1. Nie jest to jedyny mozliwy uklad zniszczenia dla interesujacych
nas warunkow obciazenia i podparcia ptyty; do zagadnienia tego powro-
cimy jeszcze pozniej.

W rozpatrywanej siatce zniszczenia mamy trzy linie zaloméw: dwie
«ujemne» wzdtuz bokéw AB i AD oraz jedna «dodatnig», ktéra przechodzi
przez punkt A; nachylenie jej do ukladu osi odniesienia nie jest znane.
Zalézmy, ze polozenie tej linii jest okre$lone parametrem x.

Jesli teraz udzielimy punktowi E przemieszczenia przygotowanego dw
ku dotowi, wowczas bedziemy mogli napisa¢ réwnanie pracy sil ze-
wnetrznych i wewnetrznych stosownie do (3.11.3) i (3.12.3).

Tak wiec praca sit zewnetrznych wyniesie (pamietajac ze a = 3, b = 2)

— )b
(142) dL= pbzx‘)_w_z‘Lp(azx)

3 ow=—

__(pab _pxby, . X
74( 5 6 )Ow-fp(\S 3)6w.

Przystepujac do ujecia wyrazenia na prace sit wewnetrznych zauwa-
zymy, ze piat I obracaé sie moze jedynie wokol osi u, zas pfat II wokél
osi v. Na tej podstawie odpowiednie wyrazenia na katy oBrotu platow
przedstawiaja sie nastepujaco:

ow  ow « ow
(14.3) OPr = === 9 ')(]»’n:';c'

21y Dla uproszczenia zakladamy przy tym proporcjonalno$¢ miedzy wartoscig
momentu lamigcego a iloScia zbrojenia. Latwo byloby uwzgledni¢ ewentualne po-
prawki z uwagi na zmiane ramienia momentu sil wewnetrznych [por. p. 4, wzér
(4.4.1)].
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Sumaryczna praca momentéw bedzie stosownie do (3.11.3) iloczy-
nem momentu caltkowitego przez kat obrotu, gdzie moment calkowity
jest proporcjonalny do dlugosci prostej zalomu.

Prace sit wewnetrznych zapisa¢ zatem mozna nastepujaco:

v ow , ow ow ) 0w
(14.4) oV=DM,x b + Mua b + M. b - + My b =
Wprowadzajac zaleznoéci podane przez (3.9.2) i (3.9.3) oraz wielkosci
geometryczne charakteryzujace uktad, uzyskujemy stad

; ' ‘ 2 10'

(s AP dl 4 L i )./(—b—):M,, ow(x L O).
b b 56 il ; 2x

Przyrownujac do siebie na podstawie zasadniczego réwnania (3.11.1)

0L oraz 0V, otrzymamy wyrazenie na moment jednostkowy
18x —2x?

hB) Me= 32 ore 1 30P

Do wyznaczenia nieznanego dotychczas parametru z postuzymy sie
zasadg maksymalnego oporu plastycznego, sformulowana w (3.13.2).
Przybierze ona w rozpatrywanym przyktadzie postaé

d 18 x — 2x* _ 0,

(14.7) dx \322 + 27x + 30
skad otrzymujemy réwnanie na x w postaci
(14.8) x?+ 1,11x—5,0 = 0.

Rozwiazanie daje x = 1,75.

Znajac teraz juz polozenie linii zatomu mozemy dla danych stosun-
kéw ortotropii i «warstwowosci» obliczyé wartosci interesujacych nas mo-
mentéw. Uzyskujemy w ten sposob

’ M/::Mz.=0,293kam‘ m,
(14.9) l w=3:0,293=0,879 p kGm/m,
My =0,5-3-0,293 = 0,440 p kG m/m.

WspomnieliSmy juz uprzednio, ze figura zalomoéw podana na rys. I
nie przedstawia w rozpatrywanym przypadku jedynej kinematycznie
mozliwe]j siatki zniszczenia. Nastapi¢ moze réwniez zniszczenie tego typu,
ze odlamie sie tréjkat BCD wzdluz linii AD, ktéra wtedy musi by¢ linig
zalomu ujemna (rys. II).
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Przy zniszczeniu wedlug podanego schematu wyrazenia na prace sit
zewnetrznych i wewnetrznych przy udzieleniu punktowi C przemieszcze-
nia przygotowanego ow beda wynosily

(14.10) u:’lgi’ éww:p,

(14.17) OV = u M. "g” @+ 4 u M, "-;gb —55M,.
Otrzymamy stad

(14.12) M,,:121p=0,182kam m.

Jest to warto$é znacznie mniejsza anizeli warto$¢ uzyskana na pod-
stawie analizy poprzednio rozpatrywanej siatki zniszczenia.

Na zasadzie twierdzenia o maksymalnym oporze plastycznym moze-
my wiec — porownujac wyniki otrzymane dla dwéch kinematycznie moz-
liwych siatek zniszczenia—wnosi¢ o urze- 0 0
czywistnieniu sie pierwsze] z rozpatry-

y - : dw
wanych siatek zniszczenia.

Mozna by réwniez sprecyzowa¢ wa-
runki (przy danym uksztattowaniu geome- =
trycznym plyty), w ktéorych obydwie siat-
ki zniszczenia bylyby réwnouprawnione.
Wystarczyloby, przy danych wskazni- 777 70 7R g
kach ortotropii warstwy gérnej 4 i dol- a
nej », wyrazenia na moment przedstawic Rys. II
w funkcji wspétezynnika p oraz poszuki-
wac takiego u, dla ktérego rownania (14.6) i (14.12) prowadza do identycz-
nych warto$ci momentu M,.

Warto tu moze jeszcze nadmieni¢, ze dla praktycznie wystepujacych
stosunkéw mocy zbrojenia zalozenie linij zaloméw wzdluz dwusiecznej
kata miedzy osiami obrotu platéw prowadzi do warto$ci momentow, zbli-
zonych do wartosci uzyskiwanych z warunku na extremum (3.13.2). Np.
w rozpatrywanym wyzej przypadku zalozenie x = 2 prowadzi do warto-
$ci momentu M, = 0,291 p przy dokladnej wartosci M, = 0,293 p. Zagad-
nienie przyblizonych metod wyznaczania momentéw lamigcych nie sta-
nowi jednak obecnie przedmiotu naszego zainteresowania i zostanie przed-
stawione przy innej okazji.
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Pesdwme

TEOPHA HECYIIEHM CIIOCOBHOCTH IIJIACTHHOR
B OCBEHIEHWH SHCIIEPUMEHTAJIBHOW I[MPOBEPHH (I)

Pabora nmocBsieHa SKCIEpUMMEHTAJIbHBIM IIpobieMaM Teopmy Hecylleit
CcriocoOHOCTH TMJIACTMHOK (M30- M aHM3OTPOIIHBIX) M AHAJM3Yy CTENeHU CO-
IJIACOBAHHOCTY ITPEAIIOJNIOKEHMIT 9TOM TeOpuMmu ¢ pe3yJbTaTaMy 9SKCIIepu-
MEHTaJbHEIX MCCJIEOBAHMIA.

B nHawasme paboThl, mocje 3aMEYaHMII TI0 MCTOPMM Pa3BUTUA TEOPUN
IIpeeJIbHOM HeCyIeil CIIOCOOHOCTM IIJTaCTMHOK, pacCMaTpyUBaIOTCA IIPO-
6J1eMbI COTJIACOBAHHOCTY TIPEAIIOJIOXKEHMII 9TOM TEeopyy, KacalolMXCcs Ka-
YEeCTBEHHOJ CTOPOHbLI ABJEHMI, ¢ pe3yJsbTaTaMy SKCIIEPMMEHTOB, MPOBO-
IMMBIX JI0 CMX IIOp € TOYKM 3PEHMA PA3JIMYHBIX TEOPETUYECKMUX IIPeIIto-
JIOZKEHMII O ITOBEJIEeHMM IIJACTHMHOK. '

YKaspIBaeTcd, OJHOBPEMEHHO, Ha HEOOXOAMMOCTH IIPOBEAEHMA B ILN-
poKOM MacuITabe KOJMYEeCTBEHHOV IIPOBEPKM O00CYIKIaeMOil TeOpmM, IIpin-
4eM pas3HooOpasye M3MEHYMBBIX YCJIOBMII (M30TPOITHAS MJIM OPTOTPOITHAA
CTPYKTypa MJIACTMHOK, MX TeoMeTpuuecKas (popMa, YCJIOBMA MX 3aKperi-
JIEHMS, OJHOPOJHAS MM HEOAHOPOAHAdA CTPYKTypa, HArpyska) 00yCJIOBJIM-
BaeT OOLIMPHOCTBL MPOTPaMMbl MccsenoBaHmil. IIpoBemeHme TakmMx ucciie-
JOBaHMI, MPUMHMMasA BO BHMUMaHME 9KOHOMMYECKME BBITOJbI, BBITEKAIOLINE
U3 BHEAPEHMS 9TOM TEOPMM B HEIOCPEACTBEHHYIO MHIKEHEPHYIO IPaKTHUKY,
BecbMa KeJiaTeJbHO. I TOATBePKACHNUA IIPABUJIBHOCTY PE3yIbTaTOB CO0-
CTBEHHBIX JCCJIEAOBAHMII IIPUBOAUTCA PAJL PE3yJIbTAaTOB 3apy0erKHbIX 9KC-
IIepMMeHTaJIbHBIX paboT.

Bo Bropoit riaBe oOCy:KAalOTCA MMeEIOLecAd 0 CUX II0P IIOJIbCKME
paboThl IO TEOpMM HECYLIeH CII0COOHOCTM IJIacTMHOK. IlepBble paboThI
ObLYt IIOCBAIIEHBI OCHOBHBIM IIpobjseMaM 9TOJ TeopwuyM, KakK Hamnpu-
Mmep, paborer B. O s b ura xa, [15], [16], [18], [21] u [22]. B cae-
AyIOIMX paborax NPMBOAMIIOCH peEILIeH)e BOIpoca OPTOTPOITHOM CTPYK-
Typbl IJIACTMHOK (TaKKe M CJydYail <«[ABOMHOI» OPTOTPOIMM; Cp. PaboTsI
Toro->ke aBtopa [16], [17], [20]). Belom paspaboTaHbl OCHOBHBIE NPOOJIEMBbI
[0 «AByMEepHOi» OecnpepbiBHOcTN (pabora B. O mbmrax a, [22]), a Takxke
paboTbl IO CTPYKTYPHOM ¥ BBIHYXKIEHHO) HeomHopogHocTy (paborTer B.
Onsmaxka, [24] n [25], . HenocToeiHa, [13], n A. CaBuyKka, [29])
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M TI0 CBA3AHHOM ¢ 9TON IIPoOJIEMOM, Hecyllell CHoCODHOCTM pe3epByapoB
(A. CaBuyk, [30]); HakOHel, IPUMBOAUTCH HIpPOCTAs MeXaHM4YecKas aHa-
JIOTMA TIPMMEHMMAasi K BOIIPOCAM M3OTPOIHBIX, PAaBHO KaK aHM30TPOIIHBIX
JIACTMHOK M aKTyaJM3MpyIollas pelleHye Jazke CJIO0MKHBIX KOHKPEeTHBIX
coIy4aes.

HezaBucumo ot Teopermyeckux padoOT, IIPOBOAMINCH 9KCIIEPUMEHTAb-
Hble JMCCJIeOBaHMSA, KOTOPble BHECJM MHOIO MaTepuasia.

B rperweii rimaBe paccMaTpuBarOTCH, IJIaBHBIM 06pa30M, MPEAoI0KeH
TEOPUM HeCcyIlei CrrocoOHOCTM OQHOPOAHBIX IJIACTUHOK 11 IPUBOIMUTCH TeHe-
3MC 9TUX NPEAIIOJIOKEHMI B CBA3M ¢ HADJIIOAEHMAMMU MEeXaHU3Ma JECTPYK-
UMY IJIACTMHYATBIX CHCTEM, B OCODEHHOCTU 3KeJyie300eTOHHBIX IJIACTUHOK.

B yerseproit riaBe 00CyIKIAIOTCA TPUMHIMIIBI JIAGOPATOPHBIX IKCIIEPVI-
MEHTOB HaJ Teopueil Hecylel crocodHocTy ItacTMHOK. Crermmdnka
mpobsieMbl ¥ HEOOXOAMMOCTb OCYILECTBJIEHMSA TaKUX ONBITHBIX YCJIO-
BMII, KOTOpPble cO37ay ObI BO3MOIKHOCTH HabJaogeHMa 3a o00emMm I10-
BEePXHOCTAMM IIJIACTMHKY, TpedyeT ocoboro crocoba HArpys3KM. BazKHbIM
ABJIAETCS 9KCIIEPVMEHTAJbHOE ONpeAeseHre «eIAMHUYHOI0» IIPEeJIBHOIO
MoMeHTa. [loguepkyuBaeTca HEOOXOAMMOCTD ODpaleHna BHUMAHMA Ha ABJIe-
Hye pa3pylUeHUsa IMyTeM «IIPOJOoMa» ¥ ero BJMAHME Ha HEeCYLIYIO CII0COD-
HOCTb M3rMOAEMbIX ILJIACTVHOK,

Ilarasa r;maea JaeT XapakTEePUCTUKY YCJIOBUII 9KCIIEPUMEHTOB.

B nocseayrommx raaBax 00CyKIAIOTCA SKCIEPUMEHTDBI HaJ OTAeIbHBIMIL
BUJaMM TIIACTMHOK M CJydasMy WX, HArpy3Ky, HadMHAsd € KBaJpaTHONA
MIJIACTMHKM TOJIUMHOM B 3 CM, HAIPY2KEHHOJ B LIEHTPe COCPEAOTOUYEHHOI
cuyon. 3xeck aHaIm3upyercsa npobsema obpaz3oBaHMA «KOHYCa» IIepesoMa
W BJIVSAHME YIIPYTO¥ CTaguy Ha M3MEHEHMe YCJOBUMII 3aJeJIKV CUCTEMbI
sroro tuma. CpaBHeHMe TEOPeTUYECKUX Pe3yJbTaTOB € SKCHEPUMEHTAJIb-
HBIMM [IPMBOAUTCA AJIA CJIydas KBAJPAaTHOI TIJACTVHKM, HAarpy>KeHHOM CO-
CPeoTOYEeHHOI €U0l B LeHTpe (tabmmua 2). OTy rjaaBy MIIIOCTPUPYET
pAnL POTOCHUMKOB.

B cenpmoil riaBe paccMaTpyMBAIOTCA KBaJpaTHbIe ILJIACTUMHKIM, Harpy-
ZKeHHbIe COCPeJOTOYEHHBIMM CUJIAMH, PA3MEIIeHHbIMM KOHI[EHTPUYECKN BO-
KPyT LEHTpa NJIACTMHKN. 3JeCh pacCMaTPUBAIOTCA MCCJIEJI0BaHUA HAJl ILaa-
CTMHKaMy TOJIMHOMI B 8 1 12 cM. Oty coayday mpejcTaBieHbl B Tabimiax
3,4 mnbd.

B cuenyromieit — BOCBMOM TJIaBe MNPUBOAUTCA TEOPETUYECKOE pellIeHNe
OJIA TIJIACTMHKM € TPeMA CBOOOJHO OIEPTBIMM CTOPOHAMM, HArpyzKeHHOIT
COCPENOTOYEHHON CMUJION, IIPUJIOZKEHHOI B IIeHTpe. AHAIM3MPYIOTCA TaKzKe
pe3yJbTaThl S5KCIIEPMMEHTOB HaJl TAKOro poja cucreMmoit, PesynbraThl aHa-
JM30B, TaK KakK ¥ B TIPEABIAVILIEM cJiydae, IIpuBeaeHbl B tabiuie 6.

B nmeBAToi riaBe obcyzKAaeTcs KBaJpaTHAA IIJACTMHKA, HaTrpyIKeHHAf
PaBHOMEpPHO, NpMYeM TakKasd HarpysKa 3aMeHeHa IIeCTHaJIlaThIo cocpe-



JOTOYEeHHBbIMM cyyaMu. IIpMBOAMTCA TEOpeTMHeCKMiI aHaJM3 CUCTEMbI Ta-
KOro poja M Harpys3kKM, a TakzKe MeTOJ], ITO3BOJIAIOLIMII YYMUTBIBATH BJIMA-
HMe YIJIOB, YMEHBIIAIOUMX HECYIIYIO CIOCOOHOCTb, Pe3yJsbTaThl SKCIepy-
MEHTOB HAJ IJIACTMHKAaMM TOJIMHON B 12 i 8 cM. mpuBoaArca B Tabumuax
7T u 8.

ITomoOHBI METO, HO JJIA IPAMOYTOJBHbBIX IIJIACTMHOK, TOJIIMHON TaK3Ke
B 8 u 12 cm. u ¢ orHoweHnem ctopor g = 0,5 u g = 0,667 nmpumenserca
B raaBe 10, comepzkarmeir Tadsmusl 9 u 10.

B ruase 11 mpuBopATcsa pe3yabTaThl MCCJIELOBAHMII /14 ABYIPOJIETHON,
CcBODOJHO OmIEPTOI TIACTHHKM (Tabia 11).

Haxkonell, npMBOAATCA TEOPETUUECKOe PelleHNMe ¥ aHaJIU3 KCIIePUMEeH-
TaJIbHBIX PEe3YJIbTATOB, KacalolMXCA MPAMOYTOJbHBIX OPTOTPOIHBIX Ilja-
cTuHOK. TakKe JJIS 9TOTO CJIydas — COIJIACOBAHHOCThL MEXKAYy TeOpMen 1 pe-
3yJbTATAMY 9KCIEPYMEHTOB — Y/JIOBJIETBOPUTEIBHA.

ITpo6yieMbl OPTOTPOIHBIX IIIACTMHOK OyAyT paccMaTpmpartbea 6Gosee
11oApobHO BO BTOPOI HacTyu PpaboThl, HA OCHOBAHMM ITPOBEIEHHBIX 9KCIIe-
PUMEHTAJBHBIX JCCJIIeI0OBAHMIA.

Pabora cHabkeHa TIPMIIOKEHMEM, MJJIIOCTPUPYIOIIMM Ha IIPOCTOM IIpH-
Mepe, criocod pacyera HeCyIei CIIOCOOHOCTM CUCTEM,

Résumé

LLA THEORIE DE LA CHARGE LIMITE DES PLAQUES SOUS L’ASPECT DE SA
VERIFICATION EXPERIMENTALE (I)

Le présent mémoire est consacré aux probléemes expérimentaux de la
théorie de la charge limite des plaques (isotropes et anisotropes) ainsi
qu’a la confrontation des hypothéses de la théorie avec les résultats expé-
rimentaux.

D’abord, apres quelques remarques historiques sur le développement
de la théorie de la charge limite, les auteurs discutent la conformité des
hypothéses «qualitatives» de la théorie aux résultats d’expériments qui,
jusqu’a présent, ont été effectués pour vérifier d’autres problémes théori-
ques.

On indique en méme temps la nécessité de recherches sur une grande
echelle, ayant pour but la vérification «quantitative» de la théorie. Le
grand nombre de parameétres (la structure isotrope ou anisotrope des pla-
ques, leur forme géomeétrique, leur structure homogene ou non-homogene,
les conditions d’appui, le mode de solicitation etc.) exige un programme de
recherches trés vaste. La réalisation de telles recherches est d’une im-
portance particuliere étant donné que les avantages économiques condi-
tionnés par l'application de la théorie considérée dans la pratique d’in-
génieur sont considérables. Les résultats expérimentaux dont il est que-
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stion concernent surtout les plaques isotropes. Pour confirmer ces résul-
tats on les compare a quelques résultats de recherches étrangeres.

Dans le chapitre 2 on discute les travaux polonais sur la théorie de la
charge limite das plaques. Les premiers de ces travaux, ceux de
W. O1ls z ak, étaient consacrés aux problemes de base de la théorie,
[15], [16], [18], [21], [22]. Dans les travaux suivants on a donné la
solution du probléme de 'orthotropie des plaques, y compris 'orthotropie
«double» (les mémoires [16], [17], [20] du méme auteur). On a également
étudié les problémes fondamentaux de la continuité «bidimensionnelle»
des plaques et de I'hétérogéneité structurale et «forcée» (les travaux de
W. Olszak, [24], [25], D. Niepostymn, [13], et A. Sawczuk, [29],
ainsi que les problemes associés de la charge limite des réservoirs
(A. Sawczuk, [30]).Enfin on a établi une simple analogie mécanique
(de la «colline de sable») qui peut étre appliquée aux problémes des pla-
ques isotropes et anisotropes et facilite la solution méme des cas com-
plexes.

A coté des travaux théoriques on a poursuivi des recherches expéri-
mentales qui ont fourni des résultats intéressants.

Dans le chapitre 3 on discute les hypothéses de la théorie de la charge
limite des plaques homogenes et on explique 'origine de ces hypothéses
en se basant sur l'observation du phénomeéne du mécanisme de destruc-
tion des plaques, en particulier des plaques en béton armé.

Le chapitre 4 est consacré aux principes de recherches expérimentales
relatives a la théorie de la charge limite des plaques. Les conditions spé-
ciales du probléme et la nécessité d’arranger les recherches d’'une maniere
4 pouvoir observer les deux surfaces de la plaque exigent une méthode
spéciale de solliciter 1'élément étudié. La détermination .expérimentale
du moment limite (de rupture) unitaire est d’une grande importance. On
souligne la nécessité d’étude du phénomene de la destruction par «poin-
connement» et son influence sur la résistance des plaques fléchies.

Dans le chapitre 5 les auteurs donnent une caractéristique des condi-
tions de leurs travaux de recherches.

Les chapitres qui suivent concernent les recherches expérimentales
sur les divers types des plaques et les divers modes de sollicitation, en
commencant par une plaque carrée de 3 cm d’épaisseur, sollicitée par une
force concentrée située au centre de la plaque. On analyse le probléme
de la formation d'un «cone de rupture» et 'influence de la phase élastique
sur le changement des conditions d’appui des plaques. La table 2 permet
de faire une comparaison entre les résultats théoriqus et expérimentaux
dans le cas d’une plaque carrée sollicitée par une force concentrée agissant
au centre de la plaque. Le chapitre est illustré par quelques photographies.
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Le chapitre 7 concerne les plaques carrées sollicitées par des forces
concentrées, disposées concentriquement autour du centre de la plaque.

La discussion concerne les recherches sur les plaques de 8 et 12 c¢m
d’épaisseur. Les tables 3, 4 et 5 illustrent le méme cas.

Le chapitre 8 contient la solution théorique d’une plaque simplement
appuyée sur trois de ses cotés et sollicitée par une force concentrée au
centre ainsi qu’une analyse des résultats expérimentaux obtenus pour ce
genre de construction. Les résultats sont résumés dans la table 6.

Le chapitre 9 concerne une plaque carrée avec une charge uniforme-
ment repartie, remplacée ensuite par 16 forces concentrées. Les auteurs
donnent une analyse théorique d’'une structure et d’une sollicitation
de ce type et présentent une méthode, permettant de tenir compte de
I’influence des coins réduisant la charge limite. Les résultats expérimen-
taux pour les plaques de 12 et 8 cm d’épaisseur sont résumés dans les
tables 7 et 8.

Une méthode pareille est appliquée dans le chapitre 10 aux plaques
de 8 et 12 cm d’épaisseur avec rapports des cotés f=0,5, f=0,677 (tab-
les 9 et 10).

Le chapitre 11 concerne les résultats pour une plaque a deux travées.
simplement appuyée (tabl. 11).

Les plaques rectangulaires orthotropes représentent le dernier type
discuté dans la présente partie du travail. On présente la solution théo-
rique et une analyse des résultats expérimentaux. La conformité des ré-
sultats théoriques a ceux d’expériments est, ici encore, satisfaisante. Une
plus ample discussion des problemes relatifs aux plaques orthotropes
basée sur des expériments sera donnée dans la II de partie de ce travail

Dans I’annexe on explique, au moyen d’un simple exemple, la métho-
de de calcul de la charge limite.
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1. Uwagi ogolne %)

i.1. Podstawowe zalozenia teorii no$nosci granicznej ptyt znalazly za-
dowalajace potwierdzenie do$wiadczalne w szeregu przeprowadzonych
dotychczas badan laboratoryjnych. Obserwacje linij zaloméw elementéw
plytowych, znajdujacych sie pod dzialaniem zlozonych obciazen, pozwa-
lajg przypuszczaé¢, ze rowniez przypadki zginania, polaczonego z dziala- .
niem sil rozeiggajacych, rozpatrywaé mozna ze stanowiska teorii nosno-
sci granicznej.

Zastosowanie jednak teorii nos$nosci granicznej do ptaskich ukltadéw,
poddanych rozcigganiu i zginaniu, wymaga wstepnego wyja$nienia sze-
regu zagadnien oraz okreslenia zakresu stosowalnosSci teorii.

Zajmiemy sie analiza stanu réwnowagi granicznej plyt poddanych
dziataniu obciazenia, rozlozonego w sposob ciagly i skierowanego prosto-
padle do ich powierzchni, oraz sif rozciagajacych, dziatajagcych w plaszezy-
Znie tych ptyt. Scislejsze sprecyzowanie miejsca dzialania sit rozciggaja-
cych w przekroju poprzecznym zostanie dokonane pézniej. Co do warun-
kow podparcia nie ma potrzeby wprowadzania tu jakichkolwiek ogra-
niczen.

1.2. Nalezy na wstepie zaznaczy¢, ze nie bedzie tu spelnione, ogélnie
rzecz biorac, zalozenie stato$ci momentu tamiacego na jednostke diugosci
linii zalomu, a tym samym bedziemy mieli do czynienia z ukladami nie-
jednorodnymi, charakteryzujacymi sie w kazdym punkcie inng warto$cia
momentu tamigcego. Poniewaz jednak przedmiot naszych rozwazan sta-
nowia elementy, zbudowane z materialow ciggliwego i kruchego, przy
czym zaktada sie, ze material kruchy zdolny jest przenosi¢ jedynie na-
prezenia $ciskajgce, za$ ciggliwy umieszczony jest w sposéb pozwalajacy
na wykorzystywanie go dla przejecia naprezen rozciagajacych, przeto
niejednorodno$¢ ta dla elementéw zginanych moze by¢ Scisle okreslona.
Dziatanie sit rozciggajacych skomplikuje nieco zagadnienie niejednorod-
nosci, nie uniemozliwi jednak analizy stanu réwnowagi granicznej.

*) Praca przedstawiona na Kursie Naukowym Zaktadu Mechaniki Osrodkow Cigg-
lych IPPT PAN w Miedzyzdrojach w sierpniu 1954 r.
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Rozpatrywanie ukiadéw niejednorodnych ze stanowiska teorii no$no-
$ci granicznej narzuca automatycznie przyjecie sztywno-plastycznego
cschematu. odksztalcenia, tzn. pominiecie wszystkich odksztalcen sprezy-
stych. Taki bowiem schemat lezy u podstaw tej teorii. Wynika stad row-
niez konieczno$¢ rozpatrywania ustroju w takiej chwili, gdy naprezenia
w materiale poddanym rozcigganiu osiagnely na calej diugosci linii za-
tomu, S$cislej, na diugos$ciach wszystkich linij zalomoéw, warto$¢ réwna
granicy plastycznosci, niezaleznie od koncentracji wlokien rozcigganych
na odpowiednich odcinkach, a wiec niezaleznie od funkcji, okre$lajace]
niejednorodno$é struktury (w sensie zdolno$ci przenoszenia momentow
tamigcych). Niejednorodnos¢ struktury elementu ma duze znaczenie przy
traktowaniu zagadnienia wedlug sprezysto-plastycznego modelu odksztai-
cenia, pozwalajgcego na uwzglednienie wszystkich faz, jakie ustr6j prze-
chodzi od chwili rozpoczecia dziatania obciazen az do chwili jego zniszcze-
nia. W tym przypadku niejednorodno$¢ budowy ma znaczenie dlatego, ze
sg od niej uzaleznione odksztalcenia sprezyste. Zagadnienia niejedno-
rodnosci nie beda tu jednak stanowily przedmiotu naszych zainteresowan
i sa one omdéwione jedynie ogélnie w zakresie niezbednym do dalszych
rozwazan, a szczeg6lnie do okreslenia wpltywu sit podtuznych na wielkos¢
jednostkowego momentu tamigcego.

1.5. Nasuwa sie tu jeszcze pytanie, czy uklady niejednorodne charak-
teryzowac sie beda zalomami prostoliniowymi, czy tez bedzie tu nalezalo
rozpatrywac¢ zalomy krzywoliniowe. Ograniczymy sie do omdéwienia przy-
padkéw obcigzen roztozonych w sposéb ciagly na calej powierzchni ply-
ty. Jest to wazne z uwagi na fakt, ze w przypadku wystepowania sit sku-
pionych badz tez obcigzen dziatajacych tylko na pewna czes$é powierzchni
plyty, geometrycznie mozliwa siatka zniszczenia nie sklada sie wylacznie
z samych tylko linij prostych.

Przy naszych zalozeniach i dla sztywno-plastycznego schematu od-
ksztalcenia mozna przyja¢, z taka sama doktadnoscia jak w przypadku
stalego momentu tamigcego, ze zatomy sa prostoliniowe, bowiem jedynie
linie proste stanowia geometrycznie mozliwe formy zniszczenia dla ob-
cigzen ciaglych.

1.4. Teoria nos$nosci granicznej plyt, zbudowanych z materiatu ciagli-
wego, rozcigganego oraz kruchego, $ciskanego — opiera sie na zalozeniu,
ze we wszystkich punktach lezacych na linii zalomu naprezenia w mate-
riale, przenoszacym silty rozciagajace, osiagnety granice plastycznos$ci o/
i wyrazaja sie jako funkcje wielkosci charakteryzujacych strukture ele-
mentu oraz momentu, wystepujacego w liniach zaloméw badz tez przez
jego skladowe, w postaci

(141) O'"::fl (M{;,S):O’p[, -U:’jfg (Mn,S):o'pz.

258



Symbole ¢,1 M, oznaczajg odpowiednio skladowe naprezenia i momentu
na osi u w ukladzie wspotrzednych (u, v), za$ oy i My, odpowiednie sktadowe
na osi v; s jest wielko$cig okreslajaca strukture elementu.

W przypadku plyty jednorodnej i statych naprezen we wloknach roz-
cigganych uzyskujemy moment tamigcy staty; nie badamy przy tym bli-
zej rozkladu wewnetrznego naprezen w materiale przenoszacym cisnienia.

1.5. Podobnie rozpatrujac elementy poddane nie tylko zginaniu, ale
rowniez dziataniu sil osiowych, mozna stwierdzi¢, ze sily te muszag spet-
nia¢ pewien warunek. Mianowicie musza one wywolywa¢ w elemencie ta-
ki stan naprezen, aby w punktach linij zalomu naprezenia wypadkowe
warstwy dolnej posiadaly ten sam znak jak w przypadku zginania. Przy-
padek sit rozciagajacych warunek taki speinia. Mozna tu bedzie nie wni-
kajac na razie w zaleznoSci miedzy momentem a silag w stanie wyczerpania
nos$nosci stwierdzié, ze w przypadku dziatania sit rozciggajacych N, i No,
skierowanych zgodnie z ukladem osi odniesienia, stan graniczny bedzie
osiggniety, gdy naprezenia we wldéknach rozciaganych przedstawia sie
w postaci
((O== f My, Nu\ S) = op1,

(L1
| 60 = f (M., No,s) = opi.

Zaleznosci (1.4.1) i (1.5.1) okres$laja naprezenia jedynie w stanie granicz-
nym, nie mozna ich natomiast stosowa¢ dla fazy przejécia od stanu nieob-
cigzonego (przez obszar odksztalcen sprezystych) do stanu wyczerpania
nosnosci.

1.6. Powyzsze uwagi pozwalaja na rozpatrywanie problemu nosnosci
elementdéw rozcigganych i zginanych na podstawie teorii nosnosci gra-
nicznej, odnoszacej sie do analizy stanu zniszczenia elementéw zginanych.
Jesli natomiast cheieliby$my rozpatrywac ukltady zginane oraz dodatkowo
$ciskane i rozciggane w kierunkach wzajemnie prostopadlych, to (pomi-
jajac problem stateczno$ci) istnialyby ograniczenia w stosowaniu teorii
no$no$ci granicznej do takich uktadéw. Ogoélnie biorac naprezenia po-
wstajace na skutek zginania musiatyby by¢ wieksze co do bezwzgledne]
wartos$ci od naprezen, wywotanych przez sity $ciskajace.

2. Nosno$¢ graniczna elementow rozciaganych i zginanych

2.1. W przypadku preta, zbudowanego z materiatu elasto-plastycznego,
obcigzonego momentem zginajacym i silg podiuzna, stan graniczny osigg-
niety zostanie z chwila, kiedy w calym przekroju naprezenia osiagna gra-
nice plastycznosci ($cisle biorac pozostanie pewien rdzen sprezysty wokol
punktu, w ktérym naprezenia zmieniajg znak; pomijajac ten rdzen nie
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rcbimy duzego bledu). Sposéb narastania naprezen i przechodzenia od
fazy sprezystej w plastyczng dla materiatu elasto-plastycznego bez
uwzglednienia ewentualnego «utwardzenia» materialu przedstawiony jest
na rys. 1 (przy zginaniu symetrycznym).

M |
g
i

Warunki réwnowagi zastosowane do stanu granicznego przekroju da-
dza réwnania
(2.1.1) JopdA=N, | opiydA =M.

A A
Réwnania te pozwolg wyznaczy¢ zaleznos¢ miedzy momentem a sila po-
dtuzna w chwili osiggniecia stanu réwnowagi granicznej, jak réwniez po-
lozenie osi obojetnej, jesli znany jest ksztatt geometryczny przekroju. War-
G to przypcmnieé, Ze w przypecku przekrojéw

% 1 o jednej tylko osi symetrii zmieniz¢ sie bedzie
] punkt dzialenia sily osicwej; przesuwe¢ sie on
1 Sl ' ’ ktedzie po csi symetrii i nie zawsze leze¢ bedzie
i

|
a_ia

w frodku ciezkosci figury przedstawiajgcej prze-
== kréj. Utrudnia 1o rozpatrywanie zaleznofci mie-
[ “ dzy sila a mcmentem w stedium grenicznym.
L) Dcdeé nalezy, ze w fazie sprezysto-plesiycznej
Rys. 2 nie jest zechcwesna w ogélnym przypedku za-
sada niezaleznosci dzialania sit').

(5]
by
low

Ograniczajgc sie do rozpairzenia przekroju prostckatnego o bokach hib
mozna bedzie uwszaé, ze sile podiuzna przencsi czeé¢ przekroju, potozona
wokét érodka ciezko$ci o wysckoéei réwnej 2a, ze§ mcement zginajgcy
reprezentowany jest przez pozcstale czefci wykresu neprezen (rys. 2).

Rownania rownowagi przedstawiaja sie w postaci

N =2abo,
(2.1.2) l

M:b()‘,;[(]j;’—ag\).

') Zagadnienia te analizuje np. A. A. Gwozdiew, [5].
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Wyznaczajac z pierwszego wartos¢ a i wstawiajac ja do drugiego z po-
wyzszych rownan otrzymamy

(2.1.3) M= ou gy

Uzyskang zalezno$¢ przedstawia rys. 3 w postaci paraboli. Na osi pio-
nowej podane sa stosunki momentu do momentu granicznego, na osi za$
poziomej analogiczne zalezno$ci dla sity niszczacej.

W przypadku rozpatrywania jedynie fazy sprezystej warunek na ma-
ksymalng warto$¢ momentu w chwili osiagniecia w skrajnych wléknach
naprezen rownych granicy plastycznosci przedstawi¢ mozna w postaci

O'p[ bhl Nh

2-1.4 e
( ) M = -

Odpowiedni wykres (rys. 3) ma posta¢ trojkata, ktérego wnetrze charak-
teryzuje faze sprezysta pracy preta.
Dla przypadku zmiany

znaku momentu wykre- \
sli¢ mozna analogiczng za-
leznos¢ ponizej osi N/Ng,. 1.0 Granica_plastycznosei
. Tak wiec w przypadku
preta z materiatu elasto-
plastycznego mozemy dla

faza_elasto-plastyczna

Granica_sprezystosci

kazdej wartosci sity , l N
N <N, okresli¢ odpo- -1 05 05 7. Nar
wiednig warto$¢ momen- Rys. 3

tu, ktéry dla rozpatrywa-
nego przyktadu bedzie momentem tamigcym; bedzie on mniejszy od mo-
mentu tamigcego w przypadku, gdy sila podiuzna nie dziala.

2.2, Zastandwmy sie, jak przedstawia¢ sie bedzie zalezno$¢ momentu
od sity podiuznej dla elementéw, w ktérych naprezenia rozciagajace wy-
stepowa¢ moga jedynie we wildknach z materiatu ciggliwego, za$s mate-
rial kruchy pracuje tylko na $ciskanie. Znajomos$é tej zalezno$ci pozwoli
na sprowadzenie zagadnienia rozciggania polaczonego ze zginaniem do
zagadnienia samego zginania o innej jednak warto$ci momentu tamiace-
go. Spowodowane to jest zmniejszeniem momentu na skutek dziatania
podtuznych sit rozciggajacych.

Najpierw nalezy sprecyzowac zalozenia dotyczace rozkladu naprezen
w przekroju poprzecznym okreslonego wyzej elementu. Cho¢ zagadnienie
to nalezy — $cisle biorgc — do teorii zelbetu, ktéra zajmuje sie witasnie
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ustrojami zbudowanymi z materiatow kruchych i ciagliwych w zalozeniu
wlasciwego ich wykorzystania, to jednak krétkie oméwienie tego zagad-
nienia potrzebne jest dla ujecia caloksztaltu rozpatrywanego problemu.
W przypadku zginania -bez dziatania sil podiuznych dany przekroj
materiatu kruchego i materiatu ciggliwego (np. betonu i stali) w stadium
zniszezenia zdolny jest przenies¢ pewna warto$¢ momentu, ktéra uwaza-
my za moment graniczny. Tak rozu-
miany moment jednostkowy ozna-
czamy przez M. Przyjmujac dla
uproszczenia prostokatny wykres
naprezen S$ciskajgcych w materiale
kruchym ®) oraz prostokatny prze-
kroj -elementu, moment lamiacy
wyrazimy zaleznoscig (rys. 4)

Rys. 4
¥s (2.2.1) M= op f:r = R. xbr.

Gdy rozpatrzymy przekrdj rozeiagany sila zaczepiong mimo$rodowo,
przy czym mimosrod jest staly (co spotykamy np. w przypadku zbior-
nikéw prostokatnych obliczanych jako ramy poziome), otrzymamy (rys. 5)
zaleznoSci

(2.2.2) oot fe— N— R:bx,— 0,
(2.2.3) . Ne—R.bx,r,—0,

gdzie R, oznacza wytrzymato$¢ ma-
terialu na $ciskanie.

Na podstawie zaleznosci, poda-
nych wzorami (2.2.1) i (2.2.2), moz-
na uzyska¢ zwigzek

X A N —
: R.b
oraz @
N - N
r=r+ :
I 2R:b Rys. 5

Uwzgledniajgc powyzsze zaleznosci we wzorze (2.2.3) oraz uwazajac
warto$¢é Ne za jednostkowy moment tamigcy dla przypadku zginania 1gcz-

?) Wiadomo, na podstawie np. prac A. F. Lolejta, ze ksztalt wykresu napre-
zen w Sciskanej strefie belki zelbetowej przy zginaniu nie ma istotnego wplywu na
wyniki obliczen; por. [5].

o
D
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nie z rozcigganiem (wartos$¢ te oznaczymy przez yM) otrzymamy

U
2be

\)le»xr NT+Nx N®

" R.b b ' 2b 2R.b°

N

(224 L M=R. (x ) 7
Biorac pod uwage wartos¢ jednostkowego momentu w przypadku sa-

mego tylko zginania z rownania (2.2.1) uzyskujemy poszukiwang zalezno$¢

na wielko$¢ momentu jednostkowego przy obecnosci sit osiowych

NM N

N N
O‘p[fz : 7E;?(Uplf:_N)—dM_MNgr+2Rrb2(Ngr - N)

(2.2.5) y\M=M —

Powyzszy wzoOr przedstawia analogiczna zalezno$¢ dla elementow,
zbudowanych z materialéw ciagliwego i kruchego, do podanej przy po-
mocy wzoru (2.1.3) dla elementéw z ma-

ey M
teriatow elasto-plastycznych.
Bezposrednio z podanego wzoru wy- ’g 5
: . Gt
nika, ze w przypadku gdy i e 7 15
Ngr =
(1) N = 0, to M = Mgr —= i a8 \ ﬁgg;=13'1m 1
05 3612
= f, — or 4 == a'B
@) N=opf:=Ny, to sM=0. \W
. 04 -
Ilustracje zalezno$eci (2.2.5) przedsta- ’ \\g,m
wia rys. 6. e 02
Wykres taki dotyczy zwigzanych ze

soba wartogci Mg, = M, Ng, N oraz R.. 0z g4 05 08 10Mgr

Rysunek 6 zostal wykonany dla stosunku Rys. 6
opti/Rc = 11,5 oraz Ng/M=13,1 m~'. Nie
nalezy do naszego tematu zagadnienie, w jaki sposob zalezy moment
graniczny od wartoSci R.. .
2.5. Z przeprowadzonych obliczen wynika, ze wyrazenie

N

2R};b‘é‘N”" 1)

w przypadkach praktycznych wplywa niewiele na wartos¢ yM. Dla uza-
sadnienia tego wniosku przytoczymy nastepujacy przyktad liczbowy.

Plyta o grubosci h = 10 cm wykonana z betonu R, = 200 kG/cm? zbrojona jest na
metr biezgcy pretami ze stali o granicy plastycznosci 2300 kG/cm? o lacznym prze-
kroju 6 cm? tzn. N = 13800 kG. Jednostkowy moment tamiacy obliczony dla tego
przyktadu wyniesie

M = 6-2300-0.95(10 — 2) ~ 105 000 kGem/m.
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Jesli pasmo plyty poddane jest dziataniu sit rozciggajacych o wielkosci 4000 kG/mb,
to moment jednostkowy M wyniesie

4000-1050 4000

"M — 1050 - T —
rallei ey 23006 Jr2»200-100'—‘

(2300-6 — 4000) = 756 KGm/m.

Wplyw badanego trzeciego skladnika bedzie tym mniejszy, im bar-
dziej wielkosé sity N zblizaé sie bedzie do wartosci granicznej. Wplyw ten
bedzie rowniez niewielki, gdy N — 0.

Najwieksze znaczenie ma omawiany czynnik, jak tatwo sie przekonac
z warunku ekstremum — dla N=1/2 N,,. Dla omawianego wyzej przy-
ktadu maksymalna wartos¢ liczbowa tego czynnika wyniesie 12 kGm/m.

24. Nalezy tu zwro6ci¢ uwage na jedno jeszcze zagadnienie wiazgce
sie z przyjeciem prostokatnego wykresu naprezen w materiale kruchym
(np. w betonie). Blizsza analiza wplywu wykresu naprezen na wielko$¢
momentu yM wykazuje, ze w przypadku nieprostokatnego wykresu na-
stepuje zmiana ostatniego skladnika we wzorze (2.2.5). Odpowiednia war-
to§¢ momentu zwieksza sie nieznacznie (orientacyjnie dla betonu w sto-
sunku okoto 1,2 zaleznie od stosunku R,/R,). Mozna uwaza¢, ze przez
zastapienie wielko$ci R, przez wielko$¢ R, korekta ta jest uwzgledniona
nalezycie.

2,5. Przeprowadzona wyzej analiza wielkosci momentu lamigcego
w przypadku zginania lacznie z rozcigganiem wykazala wplyw wielkosci
sity podtuznej na warto$¢ tego momentu. Odrzucenie ostatniego sktadni-
ka w otrzymanym wzorze doprowadza do zalezno$ci liniowe]j miedzy mo-
mentem a silg podiluzng (na rys. 6 linia przerywana). Na pytanie, czy
sktadnik ten istotnie mozna poming¢, odpowiedzie¢ moze jedynie doSwiad-
czenie. Pomijajac go dzialamy na korzy$¢ bezpieczenstwa ustroju. Stopien
zwiekszenia wspolczynnika bezpieczenstwa waha sie — w zaleznodci od
parametréw o,/R. oraz N4/N — teoretycznie w granicach do okolo 10%
dla zmieniajacego sie w zelbecie stosunku ¢,/R. od 9,0 do okoto 25,0.

2.6. Omawiang zalezno$¢ (2.2.5) dobrze bedzie dla dalszych rozwazan
przedstawi¢ w nieco innej, nastepujacej formie:

(2.6.1) MM =M |[1— ¥ (N,s)|,
gdzie przez Y (N, s) oznaczono wielko$¢
Y (N, s) N il (Ngr N).

" N., 2MR.b®

Wzor (2.6.1) pozwala stwierdzi¢, ze moment jednostkowy dla przypad-
ku zginania lacznie z rozcigganiem przedstawi¢ mozna jako funkcje mo-
mentu jednostkowego, obliczonego dla elementu zginanego, przy czym mo-
ment ten nalezy zmniejszy¢ tak, jak to okresla funkcja ¥(N,s).
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3. Ortotropia wymuszona

5.1. PrzejdZzmy teraz do rozpatrzenia stanéw granicznych ukltadow pty-
towych. Rozpocznijmy od najprostszego uktadu, mianowicie od ptyty
o zbrojeniu krzyzowym mocy f, w kierunku réwnoleglym do osi w i f.
w kierunku osi v. Moc zbrojenia jest stala, jak to przyjmuje sie w zalo-
zeniach teorii nosnosci granicznej, a wiec odpowiednim kierunkom przy-
porzadkowane sg sktadowe momentu tamigcego M, i M,.

Zalézmy, ze plyta jest swobodnie podparta oraz ze na mimos$rodzie e
liczonym od osi zbrojenia dolnego na podporze (to znaczy, ze pomijamy
zmiane mimosrodu wskutek odksztal-

. : . . V(Mv) B
cenia ustroju) zaczepione sa sity roz- ny=const
ciagajace m, i n, skierowane odpo- T f T r T ? T T H ?
wiednio zgodnie z kierunkami osi ) |

: — q(uy) L
uiv (rys. 7). v =—] =

Natezenie sil rozciggajacych mn, N §: A 7 :g
1 ny jest stale, mozna wiec oznaczy¢ < ' | o &
sity, przypadajace na jednostke diu- =L ’ =N

4 ;i i —= e
gosg obwodu odpowiednio przez — | l l l l l BB l B o
Ny i Ny (rys. 7). ' Tvrine

: i n, =const |

Na ptyte dziata prostopadle do * Z ~

je] powierzchni obciazenie ciggte Rys. 7

0 natezeniu q (u, v) = const.

Zaktadajac z kolei, ze odksztalcenia w plaszczyznie prostopadlej do

powierzchni piyty sa rzedu pozwalajacego pominaé¢ je w stosunku do mi-

noSrodu e, mozemy napisa¢ odpowiednie wyrazenia dla pracy przygoto-
wanej sit zewnetrznych i wewnetrznych (rozpatrywanych jako funkcje
parametrow x, y, z) na mozliwym przesunieciu dw odcinka AB linii za-
fomu.

Roéwnanie pracy sil zewnetrznych bedzie tu takie samo, jak dla przy-
padku plyty zginanej, natomiast sity podiuzne pojawiag sie w wyrazeniu
dla pracy sit wewnetrznych przez wprowadzenie zamiast momentéow
M, i M, odpowiednich momentéw AM, oraz yM. na podstawie wzoru
(2.6.1). Tak wigc zagadnienie nosnosci granicznej w przypadku statych sit
rozciggajacych n, i no, zaczepionych na obwodzie elementu, dalo sie spro-
wadzi¢ do przypadku nosnosci granicznej elementow zginanych.

5.2, Aby omowi¢ dokladniej ten wniosek, napiszmy odpowiednie skta-
dowe momentu jednostkowego w przypadku dzialania sil rozciagajacych
przy uzyciu wzoru (2.6.1) w formie nastepujacej:

(3.2.1) s I
AMy= My [1 — ¥ (N, 9)] -
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Plyta zginana charakteryzuje sie wskaznikiem ortotropii

M.
(3.2.2) 9 = M,

Dzialanie sit rozciggajacych zmienilo wyrazenie dla jednostkowych
momentoéw, ktore przyjelo obecnie posta¢ podang w (3.2.1); zmienilo wiec
tym samym jak gdyby ortotropie struktury elementu, dajac w wyniku
element o innej strukturze. Ortotropie tej struktury nazwiemy ortotropia
wymuszong, rozumiejac przez to, ze wywolana ona zostala przez wspom-
niane sily rozciagajace.

Wskaznik ortotropii wymuszonej, oznaczmy go przez yK, wyniesie

\ o AVM"L' e = ylu (Nln S)
(3.2.3) NH = WM, A——‘—l %, (No. )

= % F(Nu, No, s)

i wyraza sie przez wskaznik ortotropii dla zbrojenia w kierunkach pokry-
wajacych sie z kierunkami osi odniesienia (u,v) oraz za pomoca pewnej
funkeji zaleznej od sit rozciagajacych N, i No oraz struktury plyty s.

5.3. Dla przypadku réwnomiernie rozlozonych sil rozciggajacych funk-
cja F (N, No,s) jest stata i stanowi pewien wspo6tczynnik. Zachowany jest
wiec w tym przypadku warunek stalo$ci momentu granicznego na jed-
nostke dtugosci i obliczanie zalezno$ci charakteryzujacych stany granicz-
ne tak obcigzonych ukladéw przeprowadza¢ mozna w oparciu o znane
wzory z teorii stanéw granicznych ustrojow plytowych zginanych 3). Wy-
kazaliémy wiec, ze uklady poddane zginaniu i rozcigganiu za pomoca
przeksztalcenia wskaznika ortotropii rozpatrywa¢ mozna jako elementy
zginane. Przy stalych wartosciach momentéw i sit podiuznych jest to
przeksztatcenie liniowe okres$lone przez réownanie F (N, No, ) = const.

5.4. Dla ilustracji rozpatrzymy nastepujacy przyklad. Plyta kwadrato-
wa o boku a jest obcigzona réwnomiernie i posiada zbrojenia réwnej mo-
cy w obydwu kierunkach. Silty rozciggajace na jednostke wynosza
N,=N.= N, a wiec yx=x=1. Przy ¥="', natezenie obcigzenia
granicznego wyniesie

_ 24yM _ 24M |1  Y¥(N,s)] _12M
a? B a - @2

N4 5
gdzie M oznacza warto$¢ momentu granicznego, wyznaczonego dla plyty
zginanej bez dziatania sil rozciagajacych.

3) Por. np. W. Olszak, [9], [10].
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4. Niejednorodnos¢ struktury elementu

4.1. W pierwszym punkcie niniejszej pracy stwierdziliSmy, ze przy roz-
patrywaniu stanéw granicznych ukladéw mimosrodowo rozciaganych wy-
niknie konieczno$¢ zajecia sie problemami niejednorodnos$ci struktury
uktadu. Wniosek ten stanie sie oczywisty, gdy wyobrazimy sobie ptyte
prostokatna znajdujaca sie w dowolnych warunkach podparcia a pod-
dang poza dzialaniem obcigzen

q (u, v) rowniez dziataniu sil rozcig- I‘——‘———""
: : . o [

gajacych n, i n, zaleznych od miej- nfu)

sca. Zalézmy jeszcze, ze funkcja / M,

okreslajgca zmiane tych sit jest iden- @

tyczna na obydwu réwnolegtych do My My

siebie bokach plyty (rys. 8). | <o © (0 | nfv) -
Zalozenia takie dla interesujg- 2 9@ 5

cych nas zbiornikéw o rzucie po-

ziomym prostokatnym dla celéw Aty

praktycznych sa spelnione w przy- Rys. 8

padku symetrii uktadu i obcigzenia.

Sity jednostkowe rozciggajace N, i N+, dziatajagce w kierunku réwno-
legtym do osi ukladu odniesienia, sa odpowiednio funkcjami zmiennej u
i v; oznacza¢ je w dalszym ciagu bedziemy

v+1
lNu: ' n(v)dv,

e

(4.1.1)

l Ny = "fln(u)du

Tak wiec na podstawie zwigzkow (2.2.5) oraz (3.2.1) mozemy napisa¢
wyrazenie okreSlajgce moment jednostkowy na odcinku (v + 1) — v oraz
(v + 1) —u w formie

v+1

M. 041 ;" n(v)dv o1
I \ = ZV*QL: :! ‘n(’U)d’U + — éRif'*‘ INgr T:J d’l)l
(4.1.2) ! s
‘ M” u+1 ‘ "‘ n(u)du u ‘1 ;
NMy = M, "N;,,f n(uw)dut T'N“’ ,;’ n(u)dul .

4.2. Bezposrednio z podanych wzoréw wynika, ze i wartosci odpowied-
nich momentéw yM, oraz xyM, nie sa stale, mimo iz zbrojenie plyty jest
rozlozone réwnomiernie, dzieki czemu M,, M, i N, sa state.
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Zapisujac powyzsze wzory w skroconej postaci otrzymamy

NMy =M, [1— ¥ (u,s)],

(4.2.1)
NM»zr == M'zr [1 lII(’U,S)] y
gdzie np.
v+1
zvﬂl ’ n(v)dv T’,.]
(4.2.2) ¥(v,s) = Ngr;,J n(v)dv+—2—m—~ [Ngr— } n(v)dv]|,

v

v

przy czym v (v, s) jest inng funkcjg niz poprzednio wystepujaca = y (N,s)

Ogodlna postaé wzorow ulega odpowiednim uproszczeniom zaleznie od
ksztattu funkcyj n (u) i n (v).

Badanie ukladéw o jednorodnej strukturze, poddanych dziataniu sii
rozciggajacych, moze by¢ zastgpione badaniem ukladéw niejednorod-
nych 4). Jak juz wyjasniliSmy, niejednorodnos¢ te nazwiemy wymuszong.

43. Poniewaz zagadnienie standéw granicznych uktadéw niejednorod-
nych nie jest jeszcze w pelni opracowane, poswiecimy nieco uwagi temu
tematowi. Nawigzemy przy tym do prac [18] oraz [9]. Wedlug tych prac
stan graniczny ukladu niejednorodnego osiagniety bedzie woéwczas, gdy
w kazdym punkcie linii zalomu naprezenia w materiale ciagliwym (stali)
osiagng granice plastycznosci, za§ 'w materiale kruchym (betonie) wysta-
pia odpowiednie naprezenia réwne granicy wytrzymatosci na Sciskanie
(rys. 4 i 5). Szczegdly dotyczgace wymiarowania takiego przekroju pomi-
jamy.

Stosujac do uktadu w chwili jego przeksztalcenia sie w mechanizm
przez wyczerpanie nos$nosci zasade zesztywnienia mozemy rozpatrzy¢ wa-
runki rownowagi poszczeg6lnych ptatéw. Ograniczmy sie na razie do plyty
prostokatnej o siatce zniszczenia podanej na rys. 8.

Zastosowanie rownan rownowagi zmusza do uwzglednienia po-
za momentami zginajacymi rowniez wystepujacych w rzeczywistych ukta-
dach sit poprzecznych i momentéw skrecajgcych, ktore dzialajac w fazie
sprezystej maja wplyw na uksztaltowanie sie siatki zniszczenia (w te]
snrawie por. prace [14], p. 4 i 5). Dzialanie tych uogélnionych sit zastapi¢
mozna dziataniem pewnych umownych wielkosci, zwanych silami wezlo-
wymi, ktére uwazamy za zaczepione w miejscach zbiegania sie linij zalo-
mow. Odktadajac do nastepnego p. 5 omdwienie tych zagadnien ograni-
czymy sie tu jedynie do stwierdzenia, ze w punktach, gdzie linie jedna-

1) Podstawy teorii plastycznos$ci cial elasto-plastycznych niejednorodnych wyto-
zone sa w pracy W. Olszaka, [13].
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kowego znaku zbiegaja sie, za$ obcigzenie jest ciggtle, te sity weztowe row-
ne sg zeru. Ma to wiec miejsce np. w przypadku przedstawionym na rys. 7.

Odpowiednie réwnania réwnowagi przyjmuja dla plata pierwszego
i drugiego odpowiednio posta¢ nastepujgca:

a,

’ (M, (v) + M, ( )IduZ_J'fq(u,v)vdudv,
1

0

' [Mo (w) + M Idv—«Hquv ududv

0 I

|
K
(4.3.1) :
|
I

oraz analogicznie dla pozostatych platéw.

W podanych wzorach przez M, i M, oznaczono momenty w pewnym
przesle, zas przez M; (i = 1, 2, 3, 4) odpowiednie momenty na podporach.
Na podstawie (4.3.1) uzyskujemy 4 zalezno$ci, z ktoérych przy zna-
nych stosunkach momentéw M,, M, i M; wyznaczy¢ mozna juz bezposred-
nio interesujgce nas parametry x,y, 2z, charakteryzujace siatke zniszcze-
nia. Poniewaz jednak uktad otrzymanych réwnan jest na og6él zawily,
wygodniej jest przyja¢ odpowiednie wartosci parametréw, a nastepnie
znalez¢ wartosci odpowiednich stosunkéw (por. np. [11]).

Zilustrujemy przedstawione postepowanie przykitadem (rys. 9). Wyobrazmy so-
bie plyte prostokatna, zginang, swobodnie podparta, ktérej zbrojenie _fu réwnolegle
do osi u oraz zbrojenie f, rownolegte do osi v zmieniaja sie wedlug zaleznoSci

[ onst,
(4.3.2)
l - F[ g=const I
| ) |
. o i &/ |
Poniewaz Mu = F (f,), otrzymamy na 3|;":J | ® ® | = consl
podstawie (4.3.2) 1 \ N 1 |
P | ﬁ lQlN “\U LXZ ._}
P i
u |
[ Mu = IVIH0 a’ | a |
(4.3.3) e
l M, = const. Rys. 9
Roéwnania rownowagi sg nastepujgce:
ba? b 2
(4.3.4) M. b= RO Bods
. 6
. b*
(4.3.5) 1 Ldu= LR )

o 24



Z réwnania (4.3.4) bezposrednio wynika, ze x; = a,. Przyjmujac M, = M,, i przyrow-
nujgc odpowiednie wyrazenia dla momentow, otrzymamy
a(3a—4x)
8
Stad x = 0,415 a. Dla przypadku jednorodnej plyty izotropowej (M, = M, = const)
odpowiednia odlegto$¢ wynosi x = 0,325 a.

4.4. Teoretycznie jest rzecza obojetna, czy mamy do czynienia \z nie-
jednorodno$cig wywotana, jak w rozpatrywanym wyzej przykladzie, od-
powiednim ulozeniem zbrojenia, czy tez dzialaniem sil rozciggajacych,
a wiec niejednorodno$cia wymuszona.

Warto nadmienié, ze z punktu widzenia teorii stanéw granicznych
uktadéw zginanych obojetnym jest rowniez dla nos$no$ci ukladu miejsce
ulozenia zbrojenia, wazna jest jedynie jego ilos¢ ). Stopien dokladnosci
tego wniosku sprawdza sie do$wiadczalnie- Problem ten jest szerzej omo-
wiony w pracach [9], [14] i [18].

Natomiast niejednorodnos$é¢ struktury ma wplyw na uktad linij zato-
mow. Wynika to z réwnan (4.2.2).

Tak na przyklad dla ptyty prostokatnej swobodnie podpartej i obcig-
zonej rownomiernie oraz poddanej dziataniu sil rozciagajacych wyraze-
nie na odlegtos¢ daszku x jest funkcja odpowiadajaca niejednorodnoSci.
Gdy wezmiemy pod uwage plyte o niejednorodno$ci wymuszonej, dla
ktorej na przyklad wielko$¢ yM, dana jest przez (4.2.1), odleglo$¢ daszku
linij zalomoéw bedzie

/~ b o
/6 Mux|l— ¥ (u,s)]dv
(4.4.1) x = I .
qb

Warto zaznaczyé, ze powyzszy sposob pozwala wyznaczy¢ szereg zaleznosci po-
miedzy parametrami w funkcji momentéw lamiagcych. Tak na przyklad bardzo zmud-
ne rachunkowo rozwiazanie plyty prostokatnej swobodnie podpartej wzdluz trzech
bokow i zamocowanej na czwartym boku mozna znacznie upros$ci¢ korzystajac z ana-
logicznych zaleznoSci do podanej w (4.3.4) i (4.3.5). Gdy mamy do czynienia ze stalymi
momentami M, i M, w polu oraz My na zamocowanej podporze, stosunek odleglosci
daszku x, od krawedzi zamocowanej do odlegtosci x, oraz od krawedzi swobodnie
podpartej do tejze odleglo$ci x, jest

|8

8|t
i
Niss
F
|
y

(4.4.2)

1

Poniewaz warto$¢ stosunku momentu M/ M, = 2 jest zawsze okreslona, zagad-
nienie prowadzi do roéwnania z jedna niewiadoma, znacznie prostszego od rownan

%) Pochodzi to stad, ze o zachowaniu sie ustroju decyduje pewna wielko$¢ wy-
padkowa.



znalezionych na innej drodze. W przypadku obcigzen nie roztozonych réwnomiernie
stosunek tych odleglosci wyraza sie wzorem bardziej skomplikowanym na skutek
wystepowania funkcji rozkiadu obciazen. Niemniej jednak podana metoda i w tym
przypadku moze by¢ zastosowana.

45. W przypadku ukladow o niejednorodnej strukturze mozna réwniez
postugiwa¢ sie wyprowadzonymi réwnaniami stosujac zasade prac przy-
gotowanych. Parametry siatki zniszczenia znajdujemy z warunku maksy-
malnego oporu plastycznego:

OA'MN _=m deM” e — 0\_M”

e e el

(4.5.1)

Poniewaz wyrazenia dla yM, sa czesto funkcjami ztozonymi, droga ta
okaza¢ sie moze diuzsza niz przy stosowaniu réwnan réwnowagi. Dobre
wyniki daje kombinowanie obydwu sposobow. Korzystanie z réwnan
réwnowagi wymaga wziecia pod uwage tzw. sit wezlowych.

To zagadnienie omdéwimy dokladniej, gdyz wymagaja tego podane
dalej metody obliczania stanéw granicznych zbiornikéw prostokatnych.

5. Zagadnienie sil wezlowych

5.1. Zagadnienie sit wezlowych wiaze sie z dziataniem sit poprzecznych
wzdluz linij zalomoéw oraz momentéw skrecajacych na odcinkach mie-
dzy sasiednimi punktami przeciecia sie kilku takich linij. Rozpatrywacé
bedziemy uklady, znajdujace sie pod dzialaniem obciazen cigglych. Po-
stepowanie przedstawione tutaj oparte bedzie na rozwazaniach K. W.
Johansena, [6], [7], dotyczacych zagadnien plyt o strukturze jed-
norodnej z zastosowaniem do ukladéw niejednorodnych.

5.2. Siatka zniszczenia ukladu jednorodnego i izotropowego o stalej
warto$ci momentu granicznego jest wektorowym obrazem momentow
zniszezenia. Na odpowiednich odcinkach linij zaloméw miedzy poszcze-
gélnymi weztami, w ktorych zbiega sie wiecej niz dwie linie zalomow,
préocz momentéw zginajacych wskutek przechodzenia ustroju przez faze
sprezysta mogg dziala¢ sily poprzeczne i momenty skrecajgce (por. np.
[4], [6]). Dziatanie ich na danym odcinku zastapi¢ mozna przez dwie sity
zaczepione w weztach. Zgodnie z K. W. Joh ansenem, [6], oznaczac
bedziemy te sity przez Q i @', przy czym sity skierowane ku gérze oznaczaé
bedziemy kropka, za$ dziatajace ku dotowi krzyzykiem.

Rysunek 10 (por. [6]) przedstawia wiladnie taki fragment siatki zniszcze-
nia, gdzie platy oznaczone sg literami A, B,C, za$ odpowiedriie odcinki
linij zalomoéw miedzy weztami przez a, b, c. Strzalki oznaczajg kierunek
wektora momentu. Poniewaz uklad jest w réwnowadze granicznej, wie-
lobok momentéw jest zamkniety.
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Ustali¢ mozna nastepujace zwiazki (rys. 10):

RQa=Qr— Qc,
(5.2.1) Q= Q:—Qa,

Qc=Qu— Q.
Poniewaz w rozpatrywanym obszarze nie dziata zadna sila zewnetrzna, to
(5:2:2) Q1+ Qs+ Qc=0.

Aby wyznaczy¢ sity weztowe w zalezno$ci od uksztattowania linij za-
lomoéw, wezmy pod uwage wezet o ukladzie linij przedstawionym na
rys. 11. Poniewaz mamy uklad niejednorodny i anizotropowy, wprowa-
dzimy skladowe momentéw granicznych, przedstawione w postaci pew-
nych funkcyj, ktérych tu nie precyzujemy. W sasiedziwie linij zalomow
momenty te sa bliskie warto$ciom granicznym.

B(ug,vg)
v / 2
/dy
/——/
/
/
/ © AB=a
/// AC=b

A
g{ h os _ds { x(lla,Va)
>/ N \d&i\ u
v ia’ \
/
\
N\
\
\
\
\
Clug,v)
Rys. 10 Rys. 11

Aby wyznaczy¢ wielkos¢ sity wezlowej zalézmy, ze przesuniecie we-
zla A o wspélrzednych (0, 0) do punktu A’ (u,, v,) jest takim przesunie-
ciem, dla ktérego momenty wzdtuz linij zaloméw oznaczonych na rysun-
ku kreska przerywang nie ulegly zmianie.

Kierunki zaloméw AB i AC sa dodatnie, za$ kierunek AD jest ujemny.
Wektory momentéw maja wiec kierunki przeciwne. Wskutek przesunie-
cia wezta do punktu A" zaobserwujemy przyrost sity poprzecznej. Przyrost
ten mozemy pomina¢, g'dy d s — 0. Rownoczes$nie wzdtuz linii AA" dzia-
la pewien moment skrecajacy d M.
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Roéwnanie sumy momentéw wzgledem osi AB jest nastepujgce:

UB! YR

(523) Q@ dssina—=dNsina+ | Mysinddv— [Mesinodo +
0

v

Yy up up ik

+."M'U sin d dv —|—_} M, cosddu —Jr_} Mucosddu —f—_}-M,'Icos odu=

0 0 Uy 0

v u,

—dWsina+ | (Mo + Mo)sinddv + [ (M, + M%) cosdd u .

0 0

Poniewaz odcinek AA" jest réwny ds mozna wielkosci du i dv przed-
stawié w zalezno$ci od ds. Gdy ds— 0, wartos$¢ sity wezlowej, zwigzane]
z linig zalomu AB, wyrazi¢ mozna jako funkcje skladowych momentu
famigcego, obowigzujacego w rozpatrywanym wezle A. Tak wiec sila we-
zlowa @, jest nastepujaca:

O

(5.2.4) @, :fld sin 0 sin (0 — a)

= 4 (Mo, + Ma) e
S Sin a
cos 0 cos (0 — a)

+ (My, + Ma,) :
Sin a

W sposéb podobny z tréjkata ACA” utozymy réwnanie momentéw wzgle-
dem prostej AC:

. o
(Bon) Gy=— 1 (¢ M) SR

cos y cos (f —y)
sin 8

- (Mun _1L Ml’l“)

Na podstawie (5.2.1) otrzymamy wyrazenie na site wezlowa Q4

(5.26)  Qu=Q, — Q= (Mo, + My) 322 sin (0 — a) + g%; sin (ﬁ_y)] I
+ (My, + Muz,) [gnis cos (0 — a) + ;i;%; cos (B —y)l,
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Na podstawie analogicznych rozwazan uzyska¢ mozna wyrazenia na

Qs i Qc:

' Qb= — (Mo, -+ M5 sin (6 — a) S0 (M, + Mj,) cos (—a) 252
Sin a Sin a

(5.2.7) I
= — o : i  — oy §1n;/— 4 —_ CQ'S}}
Qc (Mo, + My,)sin (p ’)sin_ﬁ (My,+ Mz,) cos (B — )sin X

We wzorach (5.2.4)-(5.2.7) wielko$ci momentow oznaczone M, dotycza
jednostkowych momentéw w punkcie A (0, 0).

53. Pomijajac obliczenia sit weztowych dla przypadku ogdlnego ogra-
niczymy sie jedynie do przykiladéw waznych dla obliczania ptyt prosto-
katnych.

Jesli chodzi o linie zaloméw w polu miedzy podporami, gdy $rodkowa
linia zalomu wyznaczona przez kierunek AA’ jest réwnolegla do osi u,
to wéwczas d =a oraz y =f 1 wzor na warto$¢ sity wezlowej Qa1 znacz-
nie sie upraszcza z powodu znikniecia wyrazu zwigzanego ze sktadowa M ..

Bedziemy mieli

(5.3.1) Q4= (My, + My, (ctg a + ctgp).

Dla tego samego przypadku, gdy $rodkowa linia jest rownolegta do
osi u, odpowiednie sity wezlowe Qp i Q¢ beda

Qli — o (Mu,, + M:I,‘) Ctg a,

(5.3.2)
QC = — (M., + Ml,l‘,) Ctgﬂ .

Powyzsze przypadki ilustruje rys. 12.
W przypadku rozpatrywanej klasy ukla-
dow niejednorodnych wazne jest wigc
rowniez nastepujace twierdzenie dla uktla-
Rys. 12 dow jednorodnych: jesli zbiegajace sie
w weile linie zatloméw majg ten sam znak,
a nie dziala w nim zadna sita skupiona, to wszystkie sily wezlowe sa tam
réwne zeru. Stuszno$ci powyzszego twierdzenia mozna dowie$¢ wstawiajac
do réwnan (5.2.6)-(5.3.2) warto$¢ M'=-—M (momenty M i M mialy z za-
fozenia znaki rézne). .
Dla rozpatrywanego w poprzednim rozdziale przykladu mozna bylo
na podstawie powyzszego napisa¢ réownania (4.3.4)-(4.4.2).
Ze wzoru (5.2.6) wynika bezpo$rednio, ze gdy a+f=x, Qa=0, co
jest oczywiste dla przypadku swobodnego brzegu lub swobodnego pod-
parcia. Stad tez

(5.3.4) Qs —— Qc.
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Jesli jeszcze przyjmiemy warunek a+4p=0=umx, to ze wzoru (5.2.6) (nie-
zaleznie od tego, ktora linia zalomu jest réwnolegla do osi u) otrzymamy
hastepujacy wz6r na warto$¢ sit wezlowych w przypadku swobodnego
brzegu zbiornika:

(553%5) Qs =—(M,, + M,)ctga.

Podane wzory, pozwalajace g '

a y Z | X X
wyznaczy¢ wielkos$¢ sil wezto- ) H ‘ :
wych dla plyt ze swobodnym / i oA [ .
brzegiem, odnosza sie do przy- 7 /
padku, gdy brzeg swobodny 7 /
jest réwnolegly do osi u (np. .
rys. 13). = /

Dla bardzie]j skomphkowa— 7 /
wanego podparcia i dla plyt | 7 2
o strukturze niejednorodne]j | 7 f
odpowiednie wyrazenia moga L My
ulec zmianie. e !

Wzor (5.3.5) jest interesuja- Rys. 13

cy, gdyz wskazuje na zalezno$¢
sity wezlowej jedynie od momentu jednostkowego na krawedzi; latwo ja
wobec tego wyznaczy¢.

5.4. Nalezy zwro6ci¢ uwage, iz niezalezno$¢ sity weztowej od struktury
plyty (jednorodnej lub niejednorodnej) jest tylko pozorna. Charakter siat-
ki zniszczenia wpltywa na wielko$é sity. We wspomnianym wzorze zalez-
nos¢ te reprezentuje kat nachylenia linii zalomu do danego uktadu. Jak
wynika z poprzednich rozwazan oraz przyktadu, jest to zalezno$é zwiaza-
na z niejednorodnoscia uktadu.

Gdybys$my zaltozyli, ze momenty jednostkowe wzdiluz linij AB i AC
(rys. 11) nie sa réwne, to wzory na wielkosci sity weztowej bylyby po-
dobne do wzoréw (5.2.6) z ta jednak réznica, ze przed nawias kwadratowy
nie mozna by wynie$¢ czynnika M, gdyz mielibySmy teraz dwie rézne
wielkosci Mo, (AB) i My, (B C). Samo wyznaczenie sit weztowych nie na-
streczatoby trudnosei.

55. Dla obliczen jest wazny kierunek dziatania sit wezlowych. Na pod-
stawie zaleznosci (5.3.5) dla ptyty na trzech bokach swobodnie podparte]
badZ tez utwierdzonej, a na pozostalym boku swobodnej, przy M, = 0
wielko$¢ sily, wystepujacej przy brzegu (rys. 13), bedzie

(551) Q.\- =S Mu“ Ctg Qi—= == Mlll, :;; .
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W placie, w ktorym linia zatomu tworzy z wolnym brzegiem kat ostry,
sita ta jest skierowana ku dotowi, za$§ w narozu o kacie dopelniajacym
do 180° sita ta na podstawie (5.3.4) jest skierowana ku gérze. Pamietajac
0 sposobie znakowania mozemy napisac

(5.5.2) Qs == My, .
b
Powyzsze wiadomos$ci o sitach wezlowych, ktore koniecznie nalezy
uwzgledniaé¢, gdy zalezno$ci wystepujace w stadium granicznym chcemy
zbadaé¢ za pomocg réwnan réwnowagi, wystarczg do rozwigzywania pew-
nych zadan, w szczego6lnosci do opracowania metody obliczania stanéw
granicznych zbiornikéw prostokatnych.

Warto zwroci¢ uwage, ze za pomoca sit wezlowych mozna bada¢ wplyw
tworzacych sie narozy na nos$nos¢ ptyty.

6. Stany graniczne zbiornikow prostokatnych

Ograniczymy sie jedynie do podania kilku przykladow obliczania sta-
noéw granicznych zbiornikéw prostokatnych.

Zaklada¢ bedziemy, ze rozklad obciazen prostopadlych do povs}ierzchni
w chwili osiggniecia stanu granicznego jest taki sam, jak na poczatku.
Oznacza to, ze pomimo powstawania przegubdéw (czy «zawiasdéw») pla-
stveznyceh, ci$nienie wewnetrzne w zbiorniku nie spada. Pomijamy réw-
niez wplyw odksztaicen przy wypisywaniu réwnan réwnowagi ptatow.

Przyktad pierwszy. Wezmy pod uwage zbiornik o wymiarach w rzucie
poziomym a ¥ a i wysokosci b, poddany ci$nieniu typu hydrostatycznego.
Sciany boczne zamocowane sa w dnie, za$ u gory podparte przegubowo
(rys. 14).

Na rysunku podana jest jedna ze $cian bocznych zbiornika. Symetria
ukltadu i obciazenia pozwala na rozpatrzenie stanu granicznego omawia-
nego zbiornika na podstawie stanu jednej $ciany bocznej. Momenty jed-
nostkowe M. i M, okreSlone przez moc zbrojenia sa znane. Sily rozcigga-
jace dzialaja tylko na boki 2 i 4, za$ funkcja rozkladu tych sil wzdiuz
bokéw nie jest znana. Znana natomiast moze by¢ catkowita wartosc sity
rozciggajacej, dziatajacej na $cianke na odcinku a. Aby te warto$é obliczyc,
wprowadzimy zastepczg funkcje rozkladu sit wewnetrznych, okreslong
na podstawie warunku réwnowagi ptata typu II. Z powodu symetrii ukla-
du i obciagzenia oraz niewystepowania sit wezlowych catkowita sita rozcia-
gajaca na rozpatrywang $cianke w kierunku osi uw jest dana przez obcia-
zenie, przypadajace na blizniaczy ptat sasiedniej Scianki.
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Funkcja obciazen sScianek zbiornika jest okreSlona przez ksztalt wy-
kresu obcigzen oraz ksztalt ptata II6) i wyraza sie wzorem

’ v

Zastepcze sily rozciaggajace okreslone sg przez zaleznose

(6.2) u*(v) =p @) x(v).

Na odcinku < 0,y, = jest

VINEZD
o oi=nfi= )22
za$ na odcinku (¥, b
6.4) ( ) "'1 v\ xb—0v)
5 u(v)— — g
( Po b o
A
Wykres obcigzen Jr ______________
2 3 Z N, - wykres srednigj
7 Sy } ] J ~ wartoscl sil rozcig-
1¢ Ll ajgoych
4 61 xS 7
12 m 4 =
al 7 & .
/;: I ﬁ IV _se 3
J ).
= X = nfy, -2aslepeza
f = l p > =— F_tlm‘;()cja. rozkladu
i/,/// i /i/iddddiéiiiiiiiiiiliddddldd Z u \———Sl /UZCLLI,gd_/aCyL‘h

Rys. 14

Po okresleniu sit rozciggajacych znamy funkcje okreslajgca zastepcza
niejednorodnos¢ momentéw yM, i yM.. Znajomosé doktadnej funkeji nie
jest konieczna, gdyz wystepuje ona pod caltky. Funkcja zastepcza musi by¢
tak dobrana, aby catka na diugosci odpowiedniego boku dawata takie same
wartosci, jak dla $cistej funkcji niejednorodnos$ci. Postulat ten jest spel-
niony przy zachowaniu warunkéw réwnowagi. Mozemy teraz wyznaczy¢
parametry siatki zniszczenia, jezeli dodatkowo znane sa M,, M, oraz M;
(i=1,2,3,4).

%) Stuszne jest to jedynie dla zbiofnil«:a kwadratowego, gdyz przy prostokatnym
funkcja sit rozciagajacych okre§lona bedzie — poza obciazeniem — przez ksztalt
odpowiedniego ptata sasiedniej $cianki zbiornika.

277



Wyprowadzimy réwnania rownowagi rozpoczynajac od ptata IIL
Na pasku o szerokosci d# i dlugosci @ — 2¢& plata III dziala obcigzenie

dP, = p, g (@—28&dy.

Poniewaz &= x1/y,, to rownanie réwnowagi przy stalym M, jest

(6.5) Mia=[p (a~2xi’)7,du=p—"2ﬁ(a~'1").
o b Y, b \3 2
W sposob analogiczny napisa¢ mozemy réwnanie dla ptata I, przy czym
wykres obciazenia w ksztalcie trapezu mozna bedzie uwaza¢ za sume ob-
cigzenia réownomiernego i trojkatnego. Pozwoli to skorzysta¢ z wyniku
podanego przez (6.5) oraz z prostych zaleznosci dla obcigzen réwnomier-

nych.
Bedziemy mieli

Po Y> P Y

(6.6) M,a+ Ma=" (2a—3x).

(Ba—4x)

Podobnie dla ptatéw II i IV znajdziemy réwnania

[P, 7 ( v\ & Pyt
= | —&dn+ 1— — = :

’ 2b£ N B'po b)zdv 22 (b4 2y,

W powyzszym wzorze skladowe momentéw sil wewnetrznych wyste-
puja w rownaniach réwnowagi pod catky. Pozwala to zastgpi¢ uklad nie-
jednorodny przez jednorodny, gdzie funkcja ¥, okres$lona wzorem (4.2.2),
bedzie stalym wspoétezynnikiem na calej wysokosci boku b. OkreSlmy
catkowita site rozciggajaca, dzialajaca na bok b. Z réwnan (6.3) i (6.4)
uzyskujemy

2 v\xv

6.8 Ny = ——— dv +
( / : b‘ p.,(‘l b) Yo v
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Srednia wartos¢ sily na jednostke wysokos$ci Scianki zbiornika wy-

niesie
__Box
(6.9) N,= 6b 2b — y,.

Poszukiwanie siatki zniszczenia, spelniajacej warunek maksymalnego
oporu plastycznego, jest ucigzliwe, latwiej natomiast przyjaé¢, ze parame-
try tej siatki sa znane i szuka¢ zwigzanych z nimi warto$ci momentow
granicznych na odpowiednich liniach zaloméw (por. np. [10]). Decydujac
sie na taka zasade postepowania i odkladajac do innej okazji traktowanie
zagadnienia z uwzglednieniem twierdzenia o maksymalnym oporze pla-
stycznym przyjmiemy, ze x = y = b/2, a = 2 b. Woéwczas z réwnania (6.5)
otrzymamy warto$¢ momentu

3 4

l

(6.10) Mu =T 71‘95 Py bR

p, b* "2b b 5
8ba )

Podobnie wartos¢ M, na podstawie (6.6) bedzie

__4p, b"’___577 g 11 5
(6.11) Mll =—M| — 48 192 p\'b — 192 p”b 2
Stad
1 g

Na podstawie (6.9) srednia warto$¢ sity na jednostke wyniesie dla boku b

Cpb L b8

Z zaleznos$ci (6.7) przy zalozeniu dzialania sily réwnomiernie rozlozonej
o warto$ci podanej przez (6.13) otrzymamy Srednig warto$¢ momentu ta-
miacego

. Mo Pb 19,2):20’?“’
(6.14) WMo+ M=, (bT‘z e

Zaktadajac, ze zbrojenie w kierunku osi u na gorze i na dole jest iden-
tyczne, otrzymamy '

b_
(6.15) AMo = vM, = B2
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Jesliby przyjaé liniows zalezno$é miedzy momentem lamigcym a sitami
rozciagajacymi (linia przerywana na rys. 5), tzn. jezeli pominiemy drugi
wyraz we wzorze (4.2.2) okreslajacym wplyw sif rozciggajacych na niejed-
norodnos$¢ wymuszona ustroju, zadanie mozna uwazaé za rozwiazane.

Podstawiajac warto$ci liczbowe b = 2m w przypadku ci$nienia hy-
drostatycznego przy materiale o ciezarze na jednostke objetosc’
y=10,8 t/m?* (p,= 1,6 t/m?) znajdziemy

5 3
M,= 192 1600 - 2,0 =167 kGm/ /m,

1 >
M, = 39 1600 -2,0° =200 kGm/m,
NMo =M, = 1 1600-2,0* =67 kGm/m.

96

W projekcie przewidujemy ze wzgledu na powyzsze momenty cd-
powiednie zbrojenie. Obliczamy je nie zwracajac uwagi na obecnos$é sit
rozciggajacych. Poza tym w kierunku réwnoleglym do osi u projektuje-
my odpowiednie zbrojenie przenoszace site rozciggajaca N;, ktora na ca-
tej wysokosci scianki wynosi

3 s__ 3 902 —
N,,;~2~4-pb ——241600 2,0° =800 kG.

Projektowanie zbrojenia przy uwzglednianiu obydwu wyrazéow we
wzorze (4.2.2) jest nieco diuzsze, ale rowniez nie przedstawia trudnosci,
jesli znamy wszystkie wielko$ei wystepujace w tym wzorze.

Przyktad drugi. Okre$limy sily wystepujgce w stanie wyczerpania
nos$noéci zbiornika o jednym brzegu swobodnym. Wymiary przyjmujemy
takie same jak w przyktadzie poprzednim (rys. 15).

Zastepcza funkcja rozkladu sit podtuznych na podstawie zaleznosci
(6.3) oraz (6.4) bedzie

v\ 2V
(6.16) n) =, (1—3) -

Sita wezlowa jest stata, poniewaz M, = const, a linia zalomu, docho-

dzgca do swobodnego brzegu, jest skierowana dodatnio; wartosé sity wy-
nosi '

X
6.17 s=M, —.
(6.17) Qs=M b



Réwnania rownowagi sg nastepujace:
dla ptata I

b \
x Y X1 ) 53[0 X
6.18 2 M, 0= e — — | ndy= A= = o
(6.18) x+Ma+2M. (;'p,b(a = /o]d)/ p‘,b(3 2),
dla ptatéw II i IV
b b - o
- r ~ /) - ~ x-
6.19 M, + vM,) d = e
(6.19) b‘(‘\ + ~M,) dov M. bjp‘,bgzd,, e b.
n*(v) zaslepcza
Funkcja rozkladu
sil rozciggajgeych

dmgt
7
;*{fi//,"//);«.%////oy// T2

Rys. 15

Przyjmujac « =2b, x=2b/3 oraz M,=M, i AM,= M, =M, otrzy-
mamy

4 9 2 2 b
e e =
(6.20) 3M,,b+M,,2b | 3M,,b P, b 3 b = )
M
oraz
(6.21) 2(4 ~NModv=- o kGm.

Tak wiec $redni moment na wysokosci $cianki b tak na podporze, jak
i w przes$le wyniesie

(6.22) NMo = xMy = xM, = pgé’i kGm 'm.

Cheace znalezé catkowity moment dzialajacy na catej wysokosci $cian-

ki nalezy powyzsza warto$¢ pomnozy¢ przez wysokos¢ b i odpowiednio
dla tego momentu zaprojektowa¢ wymiary i calkowite zbrojenie prze-
kroju.
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Przyjmujemy, podobnie jak w przykladzie poprzednim, liniowg zmia-
ne momentéw yM. sit rozciagajacych. Prowadzi to do niezaleznego zbro-
jenia na zginanie oraz niezaleznego zbrojenia na rozciaganie. Jak wynika
7z rozwazan w p. 3 i 4, takie zalozenie jest dopuszczalne i nieznacznie
wplywa na zwiekszenie stopnia bezpieczenstwa (por. rys. 6).

Catkowita sita dzialajgca wzdluz boku wyniesie

= Vpu b2

b 2 2 2
623 No=p, ¢ [ (v p—)dm‘—M,, =R L LANT pi’é’— -
0

b b 9 6

Przytoczone obliczenie opieralo sie na zalozeniu, ze w punkcie zbiegu
bokéw zamocowanych M, = — M,. Tak wiec sita wezlowa w tym naro-
zu plata tréjkatnego nie wystepuje. Mozemy sie o tym réwniez przeko-
na¢ zestawiajgc rownania rownowagi, tj. rzutujac sily na plaszczyzne
prostopadla do powierzchni rozpatrywanej plyty.

Podane przykilady wskazuja, jak jasny jest tok obliczania zbiornikow
w stanie granicznym. Nadto mamy mozno$¢ wyznaczenia w sposéb pro-
sty wielkos$ci, co prawda sumarycznych, sil rozciggajacych. O ile chodzi
o funkcje rozkladu zbrojenia przejmujacego sily rozciagajace, to kiero-
wac sie nalezy oczywiscie rozktadem tych sit w fazie sprezystej, co nie do-
prowadzi do naglych przegrupowan sit wewnetrznych.

Blizsze badania zbiornikow wykazuja, ze istnieje mozliwos$¢ uproszczen
wzordéw dla najbardziej typowych funkcyj ci$nien (mury oporowe, silosy),
i opracowania odpowiednich tablic wspoélczynnikéw okreslajacych
wypadkowe sil rozciagajgcych oraz momenty jednostkowe. Analiza «eko-
nomicznego» stosunku ortotropii w oparciu o sprezyste stadium pracy
ukladu pozwoli wyznaczy¢ parametry, wigzace sie z wymiarami tego
uktadu i okreslajgce siatki zalomoéw. Parametry te, okreslone w formie
wspotezynnikow, ulatwig praktyczne stosowanie teorii stanéw granicz-
nych do obliczania zbiornikéw. Projektowane badania do$wiadczalne po-
zwola oceni¢ poprawnos¢ przyjetych zalozen.
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Pe3dwmme

BOIIPOCBI HECVYIIIEH CIIOCOBHOCTH
PACTSITUBAEMBIX U HU3THBAEMBIX 3JEMEHTOB
C NMPUMEHEHHEM K TEOPHH I[NPAMOVYI'OJIbHBIX PE3EPBYAPOB

Pabora kacaeTcAa BOMPOCOB HeCyILEM CIOCOOHOCTM 9JEMEHTOB, II0/-
pePraeMbIX OJHOBPEMEHHOMY M3rulOy ¥ PACTAKEHMIO. 37eCh y4MuThbl-
BAIOTCA CUCTEMbI, [IOCTPOEHHBbIE M3 XPYIKOI0 M TATCYYEro MaTepuaJios,
TaK 4TO XPYIIKMI Marepyuas padoTaeT Kak CKMMAeMblil, a TATyYMiA — Kak
pacTArnBaeMblif, MMEHHO Tak, Kak B. O b 1ra K paccMaTpmMBag NIpenesb-
HOe paBHOBecye IactuHOK, [10], [11] m [12].

PaccmoTpeHue mTpenesIbHOTO COCTOAHMSA 9JIEMEHTa TaKOM CUCTEeMbl I10-
3BOJIAET YCTAHOBUTH, YTO yYE€T PACTATMBAIOIIMX CUJI (MEMOPaHHOIO COCTOA-
HMSA) BEIEeT K M3MEHEHMIO T0Ka3aTessd OPTOTPOIMM CUMCTEMBI, BbI3bIBasd Tak
Ha3bIBAEMYIO0 BBIHYKIEHHYIO OpTOTpormioo. OJHOBPEMEHHO (B 3aBUCHMMO-
¢ty oT (POPMBI (PYHKIMM, 3aJalOLIEil pacrpejeseHne PacTATUMBAKOIINX CUJI
110 [IEPUMETPY IJIACTMHKM) MOXKET BO3HMKHYTb U3MEHEeHMe CTPYKTYPbhI 3J1e-
MEHTa M3 OTHOPOJHOJ Ha HEOJHOPOAHYI0. OTa HEOJHOPOAHOCTH TOYHO
ompejiesieHa yCJA0BUAMM HATPY3KU 1 [1apaMeTpaMy, n300pazkarolluMy CTPY K-
Typy paccMaTpMBaeMoro 3Je€MEeHTA.

B cBA3zu ¢ yyerom — Kpome ydera u3ruba — JefCTBUA PACTATUBAIO-
LMX CWJI, PACCMATPMBAETCs BOIPOC Y3JOBBIX CHMJ JJI HEOJHOPOAHBIX CH-
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creM, TogoOHBIM obOpa3oM, Kak 9To chesays K. B. MorauceH Ans 0JHO-
POJHBIX M3rMbaeMBbIX; I1JIACTUHOK.

Ilocne BBIACHEHMA TEOPETHMUECKMX BOMIPOCOB HECYI[EH CITOCOOHOCTI pac-
TATMBAEMBIX ¥ M3TMOAEMBIX 9JIEMEHTOB, PACCMATPMUBAIOTCA MIPEHEeILHBIC CO-
CTOSHMS ABYX IPAMOYTOJBHBIX PE3EPBYapOB, OCHOBBIBAACH HA CYILECTBY-
IOUMX PEUIeHUAX IJs M3TMDAeMbIX T1JIaCTHMHOK.

Summary

SOME PROBLEMS OF LIMIT ANALYSIS OF ELEMENTS SUBJECTED
TO TENSION AND BENDING AND THEIR APPLICATION TO THE THEORY
OF RECTANGULAR TANKS

This paper concerns the problems of the limit loads of elements sub-
jected to simultaneous bending and tension. Structures made from two
materials, brittle and ductile, are considered, the brittle material being
subjected to compression and the ductile one — to tension on the same
way as W. Olszak had considered the limit analysis of bending plates,
{10], [11] and [12].

An investigation of the limit state of such an element permits to
observe that if tensile forces (the membrane state) are taken into consi-
deration, a change of the index of orthotropy of the structure occurs
resuting in the so called «forced» orthotropy. At the same time the phe-
nomenon of change of the homogeneous structure of the element into
a heterogeneous one can occur, depending on the form of the function
determining the distribution of tensile forces on the periphery of the
plate. This heterogeneity is strictly determined for the given conditions
of load and the given parameters determining the structure of the consi-
dered element.

Considering the action of the tensile forces, the problem of knot for-
ces for heterogeneous system is investigated in a way similar to that of
K. W. Johansen for homogeneous plates subjected to bending.

After the explanation of the theoretical problems concerning limit
load of elements subjected to tension and bending, limit states of two
rectangular tanks are considered on the basis of existing solutions for
plates subjected to bending.

KATEDRA WYTRZYMALOSCI MATERIALOW
WYDZ. BUD. PRZEM. P. W.
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1. Sformufowanie zagadnienia®)

Teoria nosnosci granicznej preta o przekroju kotowym, poddanego
jednoczesnemu rozciaganiu i skrecaniu, zostala opracowana przez N a-
daia, [8], [9], oraz R Zanicyn a, [11], ktéorzy postuzyli sie row-
naniami H en c k y' e g o (teoria odksztatcen plastycznych); do analo-
gicznych wynikow doszedt H ill, [4], biorac za punkt wyjscia rownania
Reussa (teorie ptyniecia plastycznego). Rozwazania te uogdlnit G a y-
d on, [3], zajmujac sie przypadkiem jednoczesnego rozciggania i skre-
cania preta o przekroju kolowym w zakresie sprezysto-plastycznym.
G aydon, podobnie jak i H il1l postuzy? sie teoria plastycznosci
R e u s s a, przyjmujac dla uproszczenia, ze wspolczynnik P ois s o-
na » wynosi '/, 1 jest staly zaré6wno w zakresie sprezystym, jak i pla-
stycznym. Rozwazyl on roézne przypadki kolejnosci dzialania obcigzen,
ograniczajac sie jednak do wyznaczenia rozkladu naprezen i znalezienia
zaleznosci momentu skrecajacego i sily podiuznej od wydluzenia i kata
skrecenia, a nie zajmujac sie np. rOwnie interesujacym wyznaczeniem za-
leznosci odwrotnych.

Celem niniejszej pracy jest rozwiazanie inaczej postawionego za-
gadnienia.

Przypadek jednoczesnego rozciagania i skrecania preta mozna scha-
rakteryzowa¢ piecioma parametrami: momentem skrecajacym M, sita
podtuzng N, promieniem granicznym c (oddzielajacym strefe plastyczna
od sprezystej), wydtuzeniem wzglednym e i katem skrecenia na jednost-
ke dlugosci @ . Parametry te sa uzaleznione od siebie za pomoca trzech
zwigzkow — dwoch réownan rownowagi mys$lowo odcietej czesci preta
oraz warunku plastycznosci; G a y d on przyjmuje ¢ i @ za zmienne
niezalezne, ujmujac pozostate jako ich funkcje. W niniejszej pracy posu-
niemy sie dalej; poniewaz wspomniane wyzej zwigzki przedstawione sa
funkcjami monotonicznymi ze wzgledu na obie wystepujace w nich
zmienne niezalezne i daja sie, przynajmniej teoretycznie, odwroéci¢, moz-
na nie wyréznia¢ specjalnie zmiennych zaleznych i niezaleznych, uwa-
zajac wszystkie za réwnouprawnione. Dojdziemy w ten spos6éb do dzie-

*) Praca przedstawiona na Kursie Naukowym Zakltadu Mechaniki Osrodkow Ciag-
lvch IPPT PAN w Miedzyzdrojach w sierpniu 1954 r.
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sieciu zwigzkéw uwiklanych, wigzgcych poszezegélne tréjki zmiennych
M, N, c,e i @. Kazdy z tych zwiazkéw daje sie, przynajmniej teoretycznie,
rozwiklaé ze wzgledu na wszystkie trzy zmienne, zatem otrzymamy 30
jawnych funkcji dwoch zmiennych. Uzyskane tgq droga rozwiazanie umoz-
liwi efektywne wyznaczanie dowolnych trzech parametréow przy znajo-
mosci dwéch pozostalych.

Uogblnienie polega¢ bedzie rowniez na opuszczeniu zalozenia »="/,
i zbadaniu wptywu wspétczynnika P ois s on a na rozklad naprezen.

Ograniczymy sie natomiast do dziatania obcigzenia «prostego» w sen-
sie I1juszina, bowiem oprzemy sie na teorii odksztatcen plastycz-
nych (Hencky’' ego).

2. Wyprowadzenie rownan podstawowych

Przyjmiemy, ze jeden koniec preta jest utwierdzony, drugi swobod-
ny. Zagadnienie rozwigzemy we wspéirzednych walcowych r, @, z; po-
czgtek ukltadu umiescimy w $rodku przekroju utwierdzonego, o$ z skie-
rujemy zgodnie z osig preta.

Punktem wyjscia naszych rozwazan beda nastepujgce zatozenia od-
nosnie do przemieszczen u,, Uy i U,:

(1) w zakresie sprezysto-plastycznym i czysto plastycznym, podobnie
jak 1 w sprezystym, stuszne beda wzory 1)

(2.1) U= Drz,
(2.2) U —e¢ez,
gdzie kat skrecenia na jednostke dlugosci @ i wydiuzenie wzgledne ¢ nie
zalezg od wspolrzednych;

(2) przemieszczenie u, zalezy jedynie od wspoélrzednej r:
(2.3) u, = f(r).

Przy przyjeciu tych zalozen skiladowe stanu odksztalcenia okresla
wzory (por. np. [5])

Ur Ur ¢
& = Epu — — &, — &= cons
r dr ’ (2] r Z 2 ’
(2.4)
)’("): — (Z)'r S }‘:I‘ — 0 p '}1('(_) — O .

Sposrod szesciu sktadowych stanu odksztatcenia cztery sg wiec w zupet-
no$ci okreslone, a pozostale dwie, ¢, i ¢,, sa zwigzane wynikajacym
z dwoch pierwszych réwnan (2.4) warunkiem nierozdzielnosci

_;d(Ts(_))

{2.9) €, - -
dr

1) Zagadnieniem statecznosci preta nie bedziemy sie zajmowali. Zalozymy, ze po-
szczegolne parametry nie osiggaja wartosci krytycznych.
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Odksztalcenia wyrazimy teraz przez naprezenia piszac réwnania teorii
plastycznosci Henck y'ego w postaci!?)

’ 1
1 Ep—200pr == ((/,? = ~3K Osr , Vor — D @ Tg, ,
T
(2.6) I Ep= Q0y— ((/' — 3K ) o, Vir == 2¢ Tz,
1l
l &z — @Oz — ((/' - -3 K ’ Osr , ‘l‘"r&') - 2 P Trﬂ‘) ’
gdzie
E
e K=31=2)

jest modutem odksztalcenia objetosciowego (modulem Scisliwosci), ktory
teoria Hencky ego przyjmuje za stala materiatowa zaro6wno w za-
kresie sprezystym, jak i plastycznym, ¢ jest wielkos$cia zmienng [mozna
by ja nazwac¢ «funkcja materialowa» )], rowna w zakresie sprezystym

(2.8) Q=5 = 21G ;
a wiec w zakresie tym statg, E, G i » sa stalymi sprezystymi materiatuy,
wreszcie

(2.9) o, = :13 (¢, + 0g +0,).

Z trzech ostatnich rownan uktadu (2.6), przy uwzglednieniu zwiazkow
(2.4), otrzymujemy od razu

Or

(2.10) 0: = g s
Wykorzystamy teraz warunki réwnowagi wewnetrznej. Z pierwszych
trzech réwnan (2.6) wobec (2.4) wynika, ze naprezenia ¢ moga by¢ jedynie

'a) Oznaczenia sa w wiekszosci zgodne z uzywanymi przez I.ejbienzona, [6],
gdzie omytkowo wydrukowano K = E/(1 — 2») zamiast zwigzku (2.7). Sokotows ki,
[14], uzywa oznaczenia ; zamiast ¢.

?) Podobnie postepuje np. M i e z 1t u m j a n, [7], nazywajac wspodiczynnik
Poissona zmienny w zakresie plastycznym, a wiec funkcje materiatowa, «funk-
cja odksztatcenia poprzecznego».



funkcjami wspolrzednej r; zatem, z uwagi na (2.10), dwa ostatnie réw-
nania uktadu réwnan rownowagi (por. np. [4] lub [5])

da,.+1 01,, drrz+ 1( —
= o L 6 —0a=—0,
or r 06 0z r 7 %6

0t 1 Odo 01, 2
(2.11) ro 1 0% , 9%, , 2
or  r 06 0z rT'”
or,, 1 OT‘"’{ (,),a‘" 1

or  r 06 70727=r

7., =0

rz

35 spelnione tozsamo$ciowo, a pierwsze mozemy przepisa¢ w postaci .

dor | 1
ar

(2.12)

— 0, =0.

OtrzymaliSmy w ten sposoéb uklad pieciu réwnan, mianowicie (2.5),
trzy pierwsze ukladu (2.6) oraz (2.12) o sze$ciu funkcjach niewiadomych:
£,, €y, O,, 0g, 0, 1 ¢. Brakujace rownanie bedzie mialo inng posta¢ w stre-
fie sprezystej, inng w plastycznej. W strefie sprezystej bedzie to row-
nanie (2.8), zamieniajace rownania H enc k y'ego (2.6) na réwnania
H oo k ea; w strefie plastycznej brakujacym réwnariem bedzie wa-
runek plastyczno$ci.

Zajmiemy sie strefg plastyczna. Zalozymy, ze material preta jest ideal-
nie plastyczny (nie podlegajacy wzmocnieniu plastycznemu), i przyjmie-
my warunek plastycznosci w postaci Hubera-Misesa-Hencky ego

2 2)  Ltor S
(02,4 =0, ktory w naszym przypadku zredukuje sie do
2 | ~2 2 2 — 42
(2.13) 0208 6. —0.0g—0u0,—0,0, 7375, 0.5

gdzie op; oznacza granice plastycznosci przy czystym rozcigganiu lub
sciskaniu.

Zanim przystgpimy do kolejnego rugowania niewiadomych, sprowa-
dzimy réwnania do postaci bezwymiarowej. Oznaczmy najpierw

1
(2.14) 6 Kgp=——
P

i odpowiednio

(2.15) 6K g — .

Ps
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Wprowadzona przez nas wielko$¢ y jest wiec funkecja materialowa, ré6wna
w zakresie sprezystym statej materiatowej y;. Wykorzystujgc (2.7) i (2.8)
oraz znany zwiazek miedzy E i G otrzymujemy zaleznos¢ 3)

1—2»
(216) !/’\y-—m.
Stala ys zalezy zatem jedynie od statej Poissona »iprzyjmuje war-
tosei w granicach od 0 (gdy » = !/2) do !/2 (gdy » = 0), stanowigc jej
«negatyw». WartoSci funkeji y leza rowniez w przedziale 0=y = 1/,.
W przypadku materiatu niescisliwego (v ="'/,): y =y,=0; w przypadku
nieznacznej $cisliwosci (v bliskie '/,) mozna przyja¢, ze y i ws sa «nie-
skonczenie malymi», co umozliwia uzyskiwanie rozwiazan przyblizonych.

Wprowadzimy nastepnie oznaczenia

E
(2.17) ' e=—e,
Opl
(2.18) GaVa .,
Opl

przy czym przez a oznaczyliSmy promien zewnetrzny preta; e i g sg wiec
wielko$ciami bezwymiarowymi, odpowiednio proporcjonalnymi do wydtu-
zenia i kata skrecenia preta, przy czym wspoélczynniki proporcjonalnosci
sa tak dobrane, ze e = 1, gdy pojawiaja sie pierwsze odksztalcenia pla-
styczne przy czystym rozciaganiu, natomiast g = 1, gdy pojawiaja sie
pierwsze odksztalcenia plastyczne przy czystym skrecaniu.

Dalej oznaczymy

. or Gg o
(2.19) —— =8 g = =, — ==y
Opt Opi Opt

oraz wprowadzimy bezwymiarowa wspoéirzednag

(2.20) ; =0;

pozostate wspoéirzedne nie beda nam potrzebne. Pochodne wzgledem o be-
dziemy oznaczali przecinkiem u gory.

%) Stala v, postuguje sie np. S o k ot o w s ki, [l4], oznaczajac ja przez N.
Oznaczenie zmieniono dla unikniecia nieporozumien, bowiem ta sama litera oznacza
si¢ czesto site podiuzna.
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Po wprowadzeniu powyzszych oznaczen do réownan (2.5), trzech pierw-
szych ukladu (2.6), (2.12) oraz (2.13), otrzymujemy ukiad szesciu row-
nan o szesciu niewiadomych e, ¢4, s, S, Sy 1 y:

3y & 7 ]
Vs S 1 ( 1‘2\) (S\+Si+s::)

ST L e, :
3 P, € § 3 1 ( 1 \

0 ‘\ = = — o800 |,

0™ 9 1+yp)elp oR 2) (s;+Ss+s5,)
3, S 1

(2.21)

- —2)
= Sitn — e
1 2(1+l/{\_)e " 3 (I/‘ 2) (s, +8.+83) |,

0ty - e—¢,— 0,

0s; s —s,=0,

g ey

2
Vs

S aP Cem =G e SO A

Przejdziemy teraz do kolejnego rugowania niewiadomych. Najlatwie]
jest wyrugowa¢ odksztalcenia e, i g, wystarczy w tym celu podstawi¢
pierwsze dwa rownania do czwartego. Otrzymany ukiad czterech réwnan
uprosci sie nieco, gdy wprowadzimy nowa funkcje materialowa
(2.22) AL S
I/'A\_ @

rowng jednosci w zakresie sprezystym, a zawartg w przedziale 0 <<p = 1
w zakresie plastycznym *). Oczywiscie w przypadku materialow niescisli-
wych ma sens tylko druga cze$¢ réwnosci (2.22).

Niewiadomymi ukladu

081+8 —s,=0,
3s,—(1—2py,)(sitsy+s;)—2e(l+p)p=0,

(2.23) —3p s, F3pshtp (s;+8.ts) — (1 — 2y, p)p(si+si+si) +

= R (s,—s))=0,

0

S +si-s2 — 518, — S8, —8;: 8,9 e pF—1=0

sg teraz s, S, S, 1 p. Z pierwszego roéwnania

(2.24) Sy =8, + 081,

9 Sokotows ki [l14], wprowadza funkcje 1/p oznaczajac ja przez v . Wy-
godniej jednak postugiwaé¢ sie funkcja przyjmujaca wartosci z przedziatu (0,1 >,
niz <<1,00).
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a z drugiego

2e(1+y)p+(1—2y,p)(2s,+osi)
(2.25) e idls YsPIESITOs
214y . p)
Podstawienie (2.24) i (2.25) do dwoch ostatnich rownan uktadu (2.23) do-
prowadzi nas do ukladu dwoéch réwnan o dwéch niewiadomych s; i p. Po
do$¢ zmudnych przeliczeniach otrzymujemy

(4y20p’ +5y,0p*+op)si' + (—4yiep’p' +129ip* — 2y, 0pp” +

(2.26) I + 15y, p* —op +3p)si—6yip*p's,+29,(1+y)ep’p’ =0,
l (1243 0*p* + 6y 0*p + 30%) 85 4 36 7 op™s si + 3693 p*si —

— 12y (1 +p)ep®(2s, + os1) +4g°y o p* + 8g°p, 0°p* +

g =y SRS glsed|ipt == Gy SpE= SR

Roéwnanie pierwsze z otrzymanych jest rownaniem rézniczkowym li-
niowym drugiego rzedu ze wzgledu na niewiadoma funkcje s,, a rowna-
niem roézniczkowym nieliniowym pierwszego rzedu ze wzgledu na nie-
wiadoma funkcje p, drugie natomiast jest rownaniem rézniczkowym nie-
liniowym pierwszego rzedu ze wzgledu na s,, a rownaniem algebraicznym
czwartego stopnia ze wzgledu na p.

Sciste rozwigzanie ukladu (2.26) natrafia na powazne trudnosci; trud-
nosci te nastreczaja sie juz przy sprowadzaniu ukladu do jednego row-
nania o jednej funkcji niewiadomej. Ograniczymy sie do podania rozwia-
zan przyblizonych, przy czym wykorzystamy okoliczno$¢, ze stata mate-
rialowa p_ jest znacznie mniejsza od jednosci.

3. Warunki brzegowe

Rozwigzanie ukladu (2.26) wymaga znajomosci dwoéch warunkéw brze-
-gowych. Warunki te uzaleznione sg od rozpatrywanego zakresu pracy
preta.

W przypadku prostego obcigzania preta, jednoczeS$nie rozcigganego
i skrecanego, wykonanego z materiatu idealnie plastycznego, wyréznimy
nastepujace stany:

(1) stan sprezysty — w kazdym punkcie ciatla naprezenie zastepcze
(intensywnos$¢ naprezen) o, o, a funkcja materialowa p=1;

(2) granica odksztalcen sprezystych — w kazdym punkcie ciala o,~ g/,
p = 1, przy czym istnieje co najmniej jeden punkt, w ktorym o, = g,/
(tworzy sie strefa plastyczna);

N
O
ce



(3) stan sprezysto-plastyczny — obszar calego ciala mozna podzieli¢
na dwa podobszary, przy czym w jednym z nich ¢,<Zop/, p=1 (strefa
sprezysta), w drugim o, =o0,;, p << 1 (strefa plastyczna); obszary te roz-
granicza powierzchnia o wilasnosciach ¢,=op;, p=1;

(4) granica odksztalcen plastycznych — w kazdym punkcie ciata
g,==0p;, p =1, przy czym istnieje co najmniej jeden punkt, w ktérym
p = 1 (strefa sprezysta zanika) %);

(5) stan ezysto plastyczny — w kazdym punkcie ciata oy=0p;, p<_1.

O parametrach, ktérych wartosci odpowiadaja stanowi sprezystemu,
sprezysto-plastycznemu i czysto plastycznemu preta, bedziemy mowili,
ze znajduja sie odpowiednio w zakresie sprezystym, sprezysto-plastycz-
nym itd.

Zajmiemy sie najpierw zakresem sprezysto-plastycznym.

W naszym przypadku — preta o przekroju kolowym — powierzchnia
rozgraniczajaca strefe plastyczna od sprezystej bedzie oczywiscie po-
wierzchnia walca kolowego; promien tego walca oznaczymy przez ¢ oraz
wprowadzimy oznaczenie

(3.1) =

I
5

Strefe sprezysta — walec kolowy pelny — okreslimy zatem nieréwnoscia
0 <~ o < w, natomiast strefe plastyczna — walec kolowy drazony (pierscie-
niowy) — nieréwnosciag w-Zo0<_1.

Powierzchnia pobocznicy preta musi byé wolna od naprezen promie-
niowych, zatem pierwszym warunkiem brzegowym bedzie

(3.2) sy —0 dla o=1.

Posta¢ matematyczna drugiego warunku brzegowego otrzymamy ze
zlozenia kilku warunkow fizycznych, wynikajacych ze stykania sie strefy
plastycznej ze sprezysta wzdiuz powierzchni ¢ = w. Wielko$ci odnoszace
sie do strefy sprezystej bedziemy wyré6zniali wskaznikami s, plastycz-
nej — wskaznikami p. Na powierzchni styku musza mianowicie zacho-
dzié réwnosci naprezen promieniowych w obu strefach,

(3.3) 0pp=0\5»

oraz rownosSci przemieszezen promieniowych, czyli, jak wida¢ z drugiego
ré6wnania uktadu (2.4), rownosci odksztalcen obwodowych

(34) F(-)/) = 8("}.\‘;
5) Pojecia granic odksztalcen sprezystych i plastycznych, zwiazane ze stanem
naprezenia w calym ciele, sa oczywiscie rozne od lokalnych (zwiazanych z okreslo-

nym punktem ciata) poje¢ granicy sprezystosci czy plastycznosci.
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Wydiuienie strefy sprezystej] musi wreszcie wynosic
(3.5) &:s— & = const.

W strefie sprezystej — walcu, poddanym dziataniu rownomiernego ob-
ciazenia cigglego g, na pobocznicy i g, na obu podstawach (jednoczesne
skrecanie nie ma tu zadnego wplywu) — panuje jednorodny stan napre-
zenia, okreslony skladowymi

(3.6)

l Gr.\' = Ul‘)x — Qr )

O-.’A' - q:’

zatem, zgodnie z prawem H o o k €’ a,
1
I &%= g {=vligr=2g |l
(3.7)
S VR
25 E q. rq,) -

Po podstawieniu do (3.3), (3.4) i (3.53) odpowiednich wyrazen, przy
uwzglednieniu drugiego z réwnan (2.6) oraz zwiazku (2.4) i oznaczen
(2.17) i (2.19), otrzymujemy wiec uklad trzech réwnan o dwoch niewia-
domych q. i q,

S (i =Gl

1 1 1
P SoOpt— 3 (’/ T 3K )(31 + 85 + 83) op1 = E |(1’_") QI"—q:I:

(3.8)

q:—21'qr=e(7,,/,

bowiem na powierzchni granicznej

(3.9) =l dla o=w,
czyli
(3.10) ( L
. P—= Qs — ——
| P 2G

jest wielkoscig znang. Rugujgc niewiadome q, i g, z ukiadu (3.8) otrzy-
mujemy po wykorzystaniu zwiazkow (2.24) i (2.25) drugi warunek brze-
gowy w bardzo prostej postaci

(3.11) s,=0 dia =1



przy czym sama wartos¢ w bedziemy mogli obliczy¢ z (3.9) dopiero po
rozwiazaniu ukladu (2.26) (znalezieniu jego calek ogélnych).

W zakresie czysto plastycznym warunki brzegowe przedstawia sie pro-
¢ciej: warunek (3.2) pozostanie bez zmiany, a drugim warunkiem bedzie
ograniczono$¢ funkecji s, w punkcie (a raczej wzdluz linii) ¢ = 0 jak
zwykle w zagadnieniach tego typu.

4. Rozwiazanie w zakresie sprezysto-plastycznym. Przyblizenie zerowe

Rozwigzemy najpierw uklad (2.26) przy zalozeniu dodatkowym s = 0.
Mamy wtedy » = '/, czyli materiat niescisliwy, co odpowiada przypad-
kowi rozwazanemu przez G a y d o n a. Rownania (2.26) przybiora
postaé uproszczong '

| epsi +(—op +3p)si—0,

(4.1)
'7 302812 +4g2p°p> + 4e*p*—4=0

i, jak wida¢, uktadem catek szczegdlnych, spelniajacych warunki brzego-
we (3.2) i (3.11) jest tutaj

(4.2)

przy czym wykazanie jednoznacznosci rozwiazania nie nastrecza trud-
noSci. Promien graniczny okreslimy teraz z warunku (3.9):
1—e
(4.3) e e
Y

a zatem w strefie plastycznej

0,=0,==0,
Up/e
Je = TpiEDES e
. e 4 g° p”
Gp19gop opt g0
To - = == e
& V3 Ve +g’o’
T-/ :Tfl~) *O,



i odksztalcen

= - el

& =8 = (/‘G\‘r'g_ZE'e’

Opl
—_— —E— e’
(4.5)

W -9 __Op1g 0

Vo 49T, — EI_E BE]

'}I:’.:'}/,‘(.):O .

Powyzsze wzory sa Sciste w przypadku materiatu niescisliwego, na-
tomiast postuza nam jako przyblizone w przypadku » 4 !/2. Bedziemy je
wtedy zwali przyblizeniem zerowym.

Wykre$lnego przedstawienia rozkladu naprezen w przyblizeniu zero-
wym nie bedziemy zamieszczali, poniewaz podaje je w swej pracy
Gaydon.

Zajmiemy sie natomiast szczegélowo zwiazkami, zachodzacymi po-
miedzy odksztalceniami i wywolujacymi je obciazeniami: sila podituzna
N i momentem skrecajacym M, Wyjdziemy z réwnan

| [ n.ar=n.

(4.6) £

l ([ r74,dF =M,
R

gdzie F jest polem przekroju preta; poniewaz sktadowe stanu naprezenia
zaleza jedynie od zmiennej r, mozemy napisac
a N

‘.)’ T()': dn— 2*7’ 9

l ‘ 1, ,dr= 9

(4.7)

0

Wprowadzimy teraz, podobnie jak poprzednio, wielkosci bezwymiarowe.
Oznaczymy mianowicie

N
(4.8) =0 =1y
a~-mTopt
2V 3M,
(£.9) Caoy

o
Nej
-3



Parametry n i mg sa wiec odpowiednio proporcjonalne do sity podiuznej
i momentu skrecajgcego, przy czym wspdlczynniki proporcjonalnosci sag
tak dobrane, ze n = 1, gdy pojawiaja sie pierwsze odksztalcenia plastycz-
ne przy czystym rozcigganiu, natomiast m; = 1, gdy pojawiaja sie pierw-
sze odksztalcenia plastyczne przy czystym skrecaniu. Wprowadzajac jeszcze
bezwymiarowag zmienna ¢, okre$long wzorem (2.20), i catkujac osobno
po strefie sprezystej, osobno po plastycznej, mozemy [przy uwzglednie-
niu oznaczen (2.17) i (2.18), zaleznosci (2.8), (2.10) i (4.4)] zamiast (4.7)
napisac

e iedwe;—f’i%:;,
l 0 w Ve+gior
(4.10)
4 1 3
lq [e'dotg [L20 T
0 w ] e-+g_9_ 4
a po scatkowaniu
2 - 2 = n
(411) uﬁ'—’f - e‘--’T 2___ = e‘_’+ 2w = e
g J g g J g 2
4 T 8 ¥a 4w: 7
(4]2) 1 T o2l 2 2 | 2 o L ESETE ST
w+g._.lerg 3g,1(efg) gg|e+gw+~

S

8 2 o, o\ __ 7T
i 3gl(eJrg w) = .

Tak wiec pie¢ parametrow: e, g, w, n i mg zwigzaliSmy trzema réwna-
niami (4.3), (4.11) i (4.12). Réwnania te sa w zasadzie zgodne z wynikami
G aydona, otrzymanymi z rownan R e u s s a przy zalozeniu sta-
lego stosunku wydluzenia do kata skrecenia, a réznia sie jedynie tym, iz
G aydon otrzymuje odksztalcenie liniowe wyrazone w mierze loga-
rvtmicznej.

Zajmiemy sie teraz zbadaniem zakresu waznos$ci rozwiazania. Zgod-
nie z rozwazaniami, przeprowadzonymi w p. 3, stan sprezysto-plastycz-
ny preta jest zawarty miedzy granica odksztalcen sprezystych a granica
odksztatcen plastycznych. Zaleznosci na granicy odksztalcen sprezystych
otrzymamy podstawiajac do rownan (4.3), (4.11) i (4.12) w = 1, poniewaz
odpowiada to tworzeniu sie strefy plastycznej. Trzy zaleznos$ci wiaza te-
raz cztery zmienne, zatem droga rugowania mozemy otrzymac same funk-
cje jednej zmiennej. Zostaly one zestawione w tablicy 1.

Podobnie, podstawiajac w = 0, otrzymujemy zaleznosci na granicy od-
ksztatcen plastycznych — strefa sprezysta zanika. Z réwnania (4.3) wy-
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nika, ze e = 1°9), a trzy pozostale parametry, g, n i mg, sa zwiazane dwo-
ma rownaniami (4.11) i (4.12). W wyniku rugowania otrzymujemy wiec
znowu funkcje jednej zmiennej, jednak tym razem nie wszystkie dadza
sie przedstawi¢ w postaci skonczonej kombinacji funkeji elementarnych:
w dwéch przypadkach otrzymujemy do rozwigzania réwnania trzeciego
stopnia o ujemnym wyrézniku (choé
tylko jeden pierwiastek spelnia warun-
ki zagadnienia). Zestawienie podaje ta-

blica 2. Niemozno$¢ wyrazenia odpo- |

wiedniej zaleznosci za pomoca funkey] w ' w=—1— const,

Tablica 1. Zestawienie zaleznosci
na granicy odksztalcen sprezystych

Zmienne Zaleznosci

elementarnych zostata zaznaczona w ta- ; :
o 3 e g e — \ 1-— g2
blicy kreska pozioma. e
Znajac granice wazno$ci rozwigza- gisSiVal="les;
nia mozen-y przystapi¢ do zestawienia e,n e=mn,
zaleznosci w zakresie sprezysto-pla- n=e,
styeznym. Rugujac ze zwigzkéw (4.11) e,m, A= '1_77,13‘
i (4.12) zmienng w, otrzymujemy z fa- | m = Vi_e
twoscig funkcje n = f (e, g) oraz mg = * ' R
= f (e, g), uzalezniajace obciazenia od g, n I=Vi-—n,
odksztatcen. Sa to funkcje monotonicz- D=V g7,
ne ze wzgledu na obie zmienne [podob- g, m, L g=m,.
nie, jak funkcja w = f (e, g), okreslona | m,=g,
rowngnlem (4.3)]. i daJa’ S.II’Q, przlynja]— - ":\:1 e,
mniej teoretycznie, odwrécié, okreslajgc ‘ , 0‘
mg = \"’ 1—n'.

wazne dla zastosowan zaleznosci od-
wrotne e = f (n, m;) oraz g = f (n, my).
Niestety praktyczne wykonanie tego odwrocenia jest powaznie utrudnione
konieczno$cig rozwigzywania réwnan algebraicznych wysokich stopni (do
dwunastego wilgcznie), totez w celu efektywnego uzyskania poszukiwanych
zaleznosci bedziemy musieli p6j$¢ nieco inng droga.

Zamiast jawnych .funkcyj dwéch zmiennych postaramy sie najpierw
uzyska¢ zwiazki uwikltane, taczace poszczegélne trojki sposréod parame-
trow e, g, n, mg i w. Latwo stwierdzi¢, iz zwiazkéw tych bedzie 10. Na-
pisanie o$miu spos$réd nich nie przedstawia zasadniczych trudno$ci; sa
to réwnania algebraiczne stopnia 2-12 ze wzgledu na poszczegb6lne
zmienne. Pozostale dwie zalezno$ci, mianowicie F (mg n, w) = 0 oraz
F (mg, m, g) = 0, dadza sie otrzyma¢ z tamtych przez rugowanie zmiennych
metodg Ferm ata lub za pomoca wyznacznikdéw Sylwesterad),
jednak metody te prowadzg do nadzwyczaj dlugich rachunkéw, a réw-

%) Dla uproszczenia bedziemy zaktadali g >0 oraz e =0 (rozciaganie). W przy-
padku $ciskania rozwiazanie nie podlega jednak zadnym zmianom.
7 Por. np. [12].

0
o
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nania wynikowe z powodu swej zawilosci nie moga by¢ przydatne dla
celow praktyki.

Niektére z otrzymanych zwiazkéw dadza sie rozwiklac ze wzgledu na
poszczegblne zmienne przy uzyciu funkeyj elementarnych. Zestawienie
uzyskanych w ten sposéb wzoréw podaje tablica 3.

Tablica 2. Zestawienie zaleznoS$ci
na granicy odksztalcen plastycznych

Zmienne ‘ Zaleznosci
w ) —l0'=consts
e e =1 —iconst,
2
n, g n—=———
1-+-y14g°
g=2i—n
L V1—n
n, = 4—|2 —(2-—-g}) Vv 1+ g}
g, mg mg 3g° g-)\ g .
g=7Fmg):—
n, m m, = 2 4 = : ne 1 n'
] S S '3(24—7’”\1—17‘:3\ 4 4 ’
n= Af(m.\.) :

Tak wiec uzyskaliSmy jedynie dwanascie spos$rdéd trzydziestu mozli-
wych zwiazkow. Liczba ta jest niewatpliwie zbyt mata dla zastosowan
praktycznych, tym bardziej ze brak zaleznos$ci odksztalcen (a wiec e i g)
od obciazen (n, m,). Jednak podane rownania stanowia dostatecznag pod-
stawe do uzyskania poszukiwanych zalezno$ci na drodze numerycznej lub
graficznej, czym zajmiemy sie w p. 6.

5. Rozwiazanie w zakresie czysto plastycznym. Przyblizenie zerowe

Rozwazania nasze uzupelnimy teraz rozwigzaniem postawionego za-
gadnienia w zakresie czysto plastycznym. Zalozymy u = 0, uzyskujac
rozwiazanie S$ciste w przypadku materialtu niescis§liwego, a przyblizenie
zerowe w przypadku S$cisliwego.

Uktad (2.26) redukuje sie znowu do (4.1) przy zmienionych warun-
kach brzegowych, ktére omowiliSmy szczegélowo w p. 3. Jednak widac
od razu, ze uklad calek szczegolnych (4.2) spetlnia i te warunki i w catvm
obszarze 0 = p = 1 stan naprezenia okresla wzory (4.4), a stan odksztatce-
nia wzory (4.5).
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Tablica 3. Zestawienie zaleznosci obowiazujacych w zakiesie sprezysto-plastycznym

e gn

e, g, mg

e,w,n

e, w, mg

g, w,n

g, w, mx

g,m, mg

w, N, M

Zaleznosm

e=y1—g*w?,

":';—" (2ye+g*—1—e2),

e —— —
g:\n V2e—n—mne*+2ye(l—en)le—n)>

e=f(gmn):—,

4 1 3 .3

, == - 20 2 Bl e L

mg 3g"|‘g 2e’) Vet + g T 5 4e|,
= fle,m):—
e={flg,my:—,

,n:,lf4_|2\1-—e +etwt —w(l--ey],

1 -
w‘\gf’('{*'——\2e—n—ne-—2\e(l——rem(e—m»
e=flw,n):—

m 4w (1—e'—‘—2e'~‘w‘-’ SO % 1, 393;_,3(31
ST 31 —eyt w? ViTew —e—"4T5 )
w=7f(le.mg):—,
e=Ff(wmy:—,

n:—r\ L= gg v — (2 ¥ 1—~g-—g w—2 4 Egrw?),

w=f(g,n):—,
g=7Flwn):—,

4 - 3
My =3 g llg* +g*w* —2) v 1+g’——g‘-‘w‘-‘+2—3g'-‘w'-'+74—g'w'|,
w = flg,my): —
g=Fflw,my):—,

S R

3[Ze—n—ne'-‘+2\&{71;-er;szrjﬁ)|“ ’

| Lo 8 314 ,

lfej:_f 4 2C'+'4'€ I !2e——n—ne-—2en-—y—

o | 9 / l

+2Ve(l—en) (e—n)] \'2e—n—ne-‘+en>—}~2\e‘1—em (e—n)|
e=7fnmy):—,
n=f(emg:—,
mg=f(g,n): —,
g=7fmmy;—,
n= flg,mg):—,
my = flw,n):—,
w =f(n,mg:—
n = f(w, my): —

My —




Zmianie ulegna dopiero zaleznosci miedzy odksztalceniami i obciaze-
niami. Zamiast (4.10) napiszemy teraz
1
K
¢
l / o’dp my
} Vel g o? 4

ode

i AL
VeTge 2
(5.1)

b

0
a po scatkowaniu

2 / e \ n
= /a2 2___ o) — —
(5.2) gg(\e Sh—a—
4 8 : . M
(5.3) sVer+ g — e’tg?)—e|l =—.
g_\ g 394 [( g g

Otrzymali$my dwa zwigzki miedzy czterema zmiennymi e, g, n 1 m,,
z ktérych, przez rugowanie, mozna na ogo6t uzyska¢ cztery zwiazki uwi-
klane, laczace poszczegdlne tréjki zmiennych. Okazuje sie jednak, ze bez
wzgledu na warto$ci parametréow e i g pomiedzy parametrami n i m;
w calym zakresie plastycznym istnieje odpowiednio$¢ wzajemnie jedno-
znaczna (ta sama, z ktéra mieliSmy do czynienia juz na granicy odksztal-
cen plastycznych) 8), co redukuje ilo$¢ zwigzkéw uwiktanych do trzech:
F(e,g,n) =0, F(e, g ms) = 0oraz F (n, mg) = 0. Niektore z tych zwigz-
kow daja sie rozwikla¢ ze wzgledu na poszczegélne zmienne przy uzyciu
funkcyj elementarnych; uzyskane w ten sposéb wzory podaje tablica 4.

Tablica 4. Zestawienie zaleznosci obowiazujacych w zakresie czysto plastycznym

Zmienne ; ZaleznoS$ci
eon | ne— 28
; e +ye+g
2e
= 2 A —
; g n y1—mn,
| an
*Tayi—n"
| 4 o ° 2}, /22 . 2
e. g, m, | my =gz 2e'+(0° —2e)y\/et 497,
g=17F( my:—.
e=f(@my):—,
2 = 4 /. 3 . 1
n. mg 771‘\-:?(2—;‘%)\"1—‘71:'3’ ,"1_4‘""*4"'3
n=7Ff(mg):—.

%) Okres$la ona no$nos¢ graniczng preta. Por. np. [11].
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6. Uzupelnienie rozwiazania na drodze graficznej i numerycznej

Tablice 3 i 4 uzupelnimy teraz na drodze graficznej i numerycznej.
Rysujac np. wykres funkecji m; = f (e, n) w plaszczyznie e-m, (przy
ustalonych wartoSciach parametru n), otrzymujemy zarazem wykres funk-
cji odwrotnej, mianowicie e = f(n, my); takze wartosci liczbowe funkecji
e = f (n, mg) uzyskujemy stosunkowo tatwo na drodze interpolacji funkclji
jednej zmiennej. Teraz uzyskujemy latwo wartosci funkeji g = f (n, my),
jeko funkeji zlozonej g = f [e (n, my) n], funkeji w = f (n, my), wykorzy-
stujac zwiazek (4.3) itd.

Wartosci wazniejszych dla zastosowan funkcyj w = f(e, g), n = f (e, g),
mg = f(e,g), w=f(mgn), e=""Ff(mgn) oraz g = f(ms,n) okreslonych
w zakresie sprezysto-plastycznym (i ewentualnie czysto plastycznym) po-
daja tablice 5-10.

Zamieszczone tablice pozwola obliczy¢ odksztalcenia preta przy da-
nych obciazeniach i na odwrét, nie rozwigzuja jednak wszystkich zagad-
nien, zwigzanych z wyznaczaniem parametréow, charakteryzujacych przy-
padek jednoczesnego rozciagania i skrecania preta. Korzystne okaze sie
tu wykreslne przedstawienie zaleznos$ci, bardziej pogladowe, chociaz mniej
dokladne. Wykresy wszystkich trzydziestu funkcyj w zakresie sprezysto-
plastycznym i o$miu w zakresie czysto plastycznym podaja rysunki 1-10.
Umozliwiaja one tatwe wyznaczenie trzech parametréw za pomoca dwoch
pozostatych.

Tablica 5. Wartosci funkeji w=f (e, g)

\g\'\eg 00 | 01 | 02 03 | 04 05|06 07 |08 09 | 10
0,0 ; | [ 1 | ‘ \[ ‘ nieozn.
0.1 | ‘ _ j 0,000
0.2 ‘ ? ‘ 0,000
03 | ‘ i ; j 0,000
0,4 ! ' | ’ 0.000
05 | zakres sprezysty, w nie istnieje ‘ 0,872 | 0,000
06 | | | | | | 1,000 | 0,726 l 0.000
0,7 | ‘ ! ‘ 0,857 | 0,623 | 0,000
08 ‘ 11,000 0,893 | 0,750 | 0,545 | 0.000
09 | f 0,962 | 0,889 | 0,793 | 0,667 | 0.484 - 0,000

1,0 | 1,000 | 0,995 0,98010,954 0,917 0,866 | 0,800 | 0,714  0.600 | 0.436 | 0,000
1,2 10.833: 0,828 | 0,816 | 0,795 | 0,764 0,722 | 0,667 | 0.595 | 0,500 | 0,363 | 0,000

1,5 \0,6671 0.663 | 0,653 | 0,636 | 0,611 0.577 | 0,533 | 0,476 | 0,400 0,291 | 0,000
20 | 0500 0497 0490 0477 0,458 0,433 |0,400 | 0,357 | 0,300 | 0,218 | 0,000
2,5 | 0,400 0,398 0,392’ 0,382 | 0,367 0.346 0,320 | 0,286 | 0,240 | 0,174 | 0,000
3,0 | 0333 0,332| 0,327 0,318 0,305 0,289 | 0,267 | 0.238 | 0.200 0,145| 0.000

0,120 | 0,087 | 0,000
0,060 | 0.044 0,000
0,000 | 0,000 0,000

5.0 | 0,200 0,199 0.196 0,191 0.183 0,173 0,160 | 0,143
100 | 0,100 0.099 o.ossi 0,095 | 0,092 0,087 | 0,080 | 0,071
co | 0,000 0.000' 0,000 0,000 | 0,000 0,000 ' 0.000 ' 0.000
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[vog]

Tablica 6.

Wartosci funkeji n = f (e, g)

0.0
0.1
0.2
0.3
0,4
0.5
0,6
0.7
0.8
0,9
1,0
1,2
15
2,0
2.5
3.0
5,0

10,0

1 0,000
0,000
0,000
0.000
0.000

10.000
0.000

0,000
0,000

|
|
|
|

|
|
|
|

0.100 | 0,200 | 0,299 0,398
0.097 0,194 0.288 0,381

0,089 0,177
0.075 0,149
0.064 0.127
10,056 0,111
0,036 0,072
0.019 0038
0,000 | 0,000

0,263 0,346
0,222 0,292
0,189 | 0,250
0,165 0,218
0.107;0,142
0,057 0,075
0,00050,000

0,499
0,493
0.469
0.425
0,359
0,308
0.268
0,176
0,094
10,000

i zakres sprezysty. n =e

0,600
0.595
0.583
0,551
0,499
0,422
0.363
0,317
0,209
0,112
0,000

0,696
0,683
0,666
0,626
0.566
0.481
0.415
0,363
0,241
0,130
0,000

0,800
0,793
0.779
0,759
0,737
0.691
0,626
0,534
0.462
0,406
0,272
0,147
0,000

0.9 } 1,0 ! 1,2 ‘ 1.5

i ‘

0,897
0,883
0,864
0,841
0,817
0,793
0,744
0.675
0,580
0,505
0,445
0,301
0,164
0,000

11,000 1,000
10,998  0.998
0,990 | 0,993

0,878 0,985 |

10,963 0.974
0944 0.960
0.923 ‘ 0,944
0,901 0,927

10.877 0,908
0,853 | 0.889
0.828 ‘ 0.869
0781 0,828
0,714 | 0,769
0.618 0,679
0,542 | 0.604
0,481 0,542

10,328 0.378
0,181 0,213

10,000 0,000
|

1,000
0.999
0.996
0,990
0.983
0,974
0.963
0,951

{ 0,938

0,908

‘ 0,828
0,750
0,679
0.618
0,446
0,258
‘ 0.000

(0,923
10,944
0,877 |

‘ 2.0

1.000
0,999
0.998
0,994
0.990
0.985
10,978
0.971
0,963
0,954

0,923
0,889
0.828

10,769

0,714
0,542
0,328
0,000

1,000

1,000

0,998
10,996
} 0,994
10,990
0,986
0981
1 0.976
10.970
0.963
l 0,948
10,923
0877
0,828
0.781
0,618
0,390

|

1,000 | 1,000 | 1,000 1,000
1,000 1,000 1,000 1,000

0,999 1,000

0,998 ‘ 0.999
‘ ‘
0,996 | 0,998

0,993 0,998
0,990 | 0,996
0,987 | 0,995
0.983 0,994
0,978 | 0.992
0.974 | 0,990
0,963 0.986
0,944 0,978
0,908 0,963
0.869 | 0.944

0923

0,828
0,679 | 0,828

0.446 ‘ 0,618

0.000 0,000 0,000

1,000 1,000
1,000 1,000
1,000 1,000
10,999 1,000
0,999 1,000
0,999 1,000
0,998 1,000
0,998 : 1.000
0,998 | 1,000
0,996 | 1,000
0,994 1.000
0,990  1.000
0,985 1,000
0,978 1,000
0,944 ‘ 1,000
0,828 1 1,000
0,000 | nieozn.
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Tablica 7. WartoSci funkeji mg — f (e. g)
e ‘ 0,0 0,1 0,2 0,3 0.4 0,5 06 | 0.7 0,8 ‘ 0,9 1,0 1,2 1,5 2.0 2.5 ‘ 3,0 | 5.0 ‘ 10.0
g & A ; ; S 81091012715 .2f !
| | | \ |
; BER o
0,0 | : 0,000 0,000 0,000 0.000|0.000 ‘ 0.000 ‘ 0.000 | 0.000 | 0.000
0,1 ‘ 0,100 0,083 0,067 0.050|0.040 0,033 0.020 0,010 ; 0.000
0.2 T e T = 0,197 0.165 0,133 0,100|0.080 | 0,067 0040|0020 0,000
0.2 ‘ ; : . k 0,291 0,245 0,197 0,149(0,119 0.100 0.060 | 0,030 : 0.000
0,4 0.380 0,322 0.261 0,1970,159 ‘ 0.133 0,080 |0.040 | 0,000
0,5 0.497 ‘ 0,463 0,395 0,322 0.245|0.197 | 0.165 0.100 | 0,050 } 0.000
0.6 10,600 0581 0,540 0463 0,380 0,291 0,236 ‘ 0.197 0,119 0,060 0.000
0.7 0.690 0,656 | 0.610 0.528 0,436 0,337 ]0.273 ‘ 0,229 0,139 0,070 ‘ 0,000
0,8 0.800 0,791 0,763 | 0.721 0,673 0,587 0,490 0.380 0,310 0,261 0,159 |0.080 0,000
0,9 0,898 0,886 0,862 0.825 0,779 0,730 0,642 0.540 0,4220,345 0.291 0,178 | 0,090 0,000
1,0 1 000 1,000  0.999 0.996 0,989 0,975 0,952 0.919 0,878 0,831 0,781 0,692 0,587 0,463 0,380 0,322 0,197 |0.100 0,000
1,2 1, 140 1, 138 1.131 1,119 | 1,100 1.074 1,044 , 1,006 0,963 0,916 ‘ 0.868 0.781 0,673 0,540 | 0,447 i 0.380 0,236|0.119 0,000
1,5 1 235 | 17 232 1,223 15 208 1,187 1,161 1.129 ‘ 1,093 1, 053 ‘ 1,011 ‘ 0,968 0.887 0,781 0,642 0,540 0,463 0.291 | 0.}49 - 0.000
2,0 i 2‘)2 1.289 1, 989 iy 269 1,253 1,231 1.206 | 1,177 1,146 i 1,113 | 1,079 1,011 0,917 0.7810,673 | 0.587 0.380 | 0,157  0.000
2,5 15 312 1,310 | 1, 304 1,295 1,282 1.266 1,246 | 1,224 1,200 1,174 1,147 1,092 1,011 0,887|0,781 0,692 0,463 |0,245  0.000
3.0 1,321 1,320 | 1 315 il 308 1.298 1.285 1.270 1,253 1,234 | 1.213 1.192 1,147 1.079 0,968 0,868 0,781 0.540 0,291 0,000
5.0 l 1.331 | 1.330 | 1, 328 1L; 325 1,321 1,315|1.308 | 1,301 ' 1,292 1 1,283 | 1,272 1,250 1,213 1,147 l 1,079 1.011 0,781 0,463 0,000
10,0 1.333 1 1.333 | 1. 332 1.331 1,330 1,329 1,327 | 1,324 1,322 (1,319 1,316 1,309 1.297 1.272|1,244 1,213 /1.079|0,781 | 0.000

¢ 1.333 ‘ 1,333 1,333 1,333 } 1,333 1,333[1.333 | 1.333 | 1.333 | 1,333 | 1.333 1,333 1.333 1.333|1.333 | 1,333 | 1,333 | 1,333 | nieozn.

1 ! f i , ! | | : | |

; | | | s |
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Tablica 8. WartoSci funkeji w = f(mg,n)

mg

0,00
0,05
0,10
0,15
0,20
0,25
0,30
0,35
0.40
0,45
0,50
0.55
0,60
0,65
0.70
0.75
0,80
0,85
0,90
0,95
1,00
1,05
1,10
1,15
1,20
1,25
1,30
4/3

0,00 | 0.05
| l

1,000, 0,999, 0,995| 0,988
0,947{ 0,946 0,941! 0,934
0,888 0.886 0,881 0,872
0,819, 0,817 0, 811 0,800
0. 737 0, 734 0, 726 0,713
0. 630 0,626 0 615\ 0,596
0, 464 0,457 0.436 0,397
0, 000,

10,10 0,15

0.20 0,25
]

|

zakres sprezysty, w nie istnieje

| T ]
’\ ‘ \
|

.
0,982 0,935 0871 0.781/ 0,628
10,992 0,960 0.918 0,862 0.785 0,670 0.404

‘ 10,986 0.962 0,932 0, 894l 0 845\ 0,778 0,682 0,511

0919 0,966 0950 0.928 0.901 0866{0821\0760 0676 0.538
0, 923 0, 908 0 8881 0, 863 0,830/ 0,788 0,733| 0,655 0, 533

0, 859 0,841/ 0.818, 0 7871 0,747
0784 0,762/ 0,733| 0694 0,642

0,692 0,664 0, 625 0, 570 0. 488

0, 567 0.523| 0.457 0, 336
0.324

0,694 0,620\ 0.504
0,568 0,445
0.326 ‘

|
|
|

| 0,940 0.817 0,562,
| 0,948 0, 856/ 0, 702‘
1,000/ 0,946 0,870 0,758/ 0,530, 3

10,967

| 0,845

0955 0,697
1,000 0,853 0,433
0,912/ 0, 732 1

| ‘ i

0.675

0,876/

0,30'0,3510,4010,45 0,50 050‘060w06510"10 0,75 080[085 0,90 | 0,95 1,00

1T

nieozn.
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Tablica 9.

Wartosci funkcji e = f(mg,n)

n

0,00
0,05
0.10
0.15
0,20
0.25
0,30
0,35
0.40
0,45
0,50
0.55
0.60
0,65
0,70
0,75
0,80
0,85
0.90
0,95
100
1,05
1,10
115
1.20
1.25
1.30

4/3

~

10,000
| nie-

0,00 0,05 0,10 0,15 0.20

0.000
0,000
0,000]
0,000
0,000
0.000

0,050, 0,100,
0,050 0,100
0,051 0,101
0,052 0,104
0, 054\ 0,108
0, 058 0,117
0,070 0,146

0,150 0,200
0,151 0,201
0.152 0,204
0,156/ 0,209
0,163] 0,220
0,179 0,244
0,236/ 0,368

ozn. : { ‘

025 0,30 0,35 040]045 0,50 055 0.60 0.65 0.70 0,75 0,80 085 0,50 0,95 1,00

\
1

zakres sprezysty, e—=n |
|

10,550
0.450 0,501 0,553
0.452! 0,504 0,559
0,457 0,513 0,574

0,350 0,400
0,250 0.301| 0,352 0,403
0,252 0,304 0,356 0,410
0,256 0,310 0,365 0,423
0,264 0,321 0.382| 0,450
0,280 0,345 0,420/ 0,512
0.318 0,413/ 0.557

0,487 0,563 0,664
0,530 0,651
0,691 1

0,466 0,530 0,604;

|
|

0,900
0,905
0.851 0,918
| 0,800 0,856 0,958
i 0.802/ 0,869 |
‘ 10,751 0,810/ 0,901
‘ 0,701 0,757 0,829

3 0,600l 0,651 0,707 0,771 0.874

0.602, 0657 0719 0,804 ‘
0, 608 0,669 0,745 0,890

0, 621 0,695 0,803

0,641‘ 0,746 ’

0,702

0,952
0,961
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Tablica 10.

Wartosei funkeji g =

f 1771‘, n)

n

| ! \
m.\»\\ 0,00  0.05 0,10

| |
0,00 ’ | l
0,05 | ‘
o0
015 | w 1
0,20 |
0,25
0.30
0,35
0,40
0.45
0.50
0,55 N
0,60
0,65
0,70
0,75
0,80
0,85 ‘
0.90 ;
0,95
1.00
1,05
1,10
1,15
1,20
1,25
1,30
43

1,000 1,000
1,056 1,056
1.126] 1,127
1,221 1,222
1.357 1.360
1.587 1,594
2,154| 2.183

1.000
1.057
1.129

1.226
1.369
1,614
2,269,

1.000
1,059
1.133
1,234
1,385
1,651
2.446

1,001 1,002
1,062 1,066
1.140 1,149
1,247, 1.265,
1,409 1,447
1,712 1,813

2,873

1

zakres sprezysty,

1,993 2,468

g=m

|
|
|
|

015 0.20 | 025 0.30 035 0,40 045 0,50 0,55 | 060 0,65

|
0,800 0,803
0.850 0, 354‘ 0,866,

0,900, 0.902 0.908 0,921/ 0,945
0 950 0,952 0, 957 0,965 0,981 1,007 1.054

1.004 1,009 1,016 1,028 1,046 1,077 1,129 1.237

1.073 1,083 1.098 1 122 1,158 1,216 1.337

;1163 1183 1212 1258 1,332 1,483 |

1,291 1,331| 1, 391 1,494 1,705

11,503 1,593/ 1.761 2,215

T ]

0.70 | 0,75 | 0.80 | 0,85 0,90 | 0.95
| \ I

0.550
0.600 0.607
‘ 0.654 0,676
10,702 0,717 0,771
0.752 0.763 0,798
0,813 0,840 0,918
0,890 0,946
0.994 1,130
1.167

\
1.0

- 0.000

0,351
0.408

0,450,

0,503

0,568

0.660
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granice zakresow
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Rozwiazanie w zakresie sprezysto-plastycznym. Przyblizenie pierwsze

Rozwigzanie w zakresie sprezysto-plastycznym, uzyskane w p. 4, jest
$ciste tylko w przypadku materialu niescisliwego (p, =0, »=",); W przy-
padku materialow ¢cisliwych, z jakimi zazwyczaj mamy do czynienia
w praktyce, rozwigzanie to nazwaliSmy przyblizeniem zerowym. Postuzy
ono bowiem teraz do uzyskania rozwiazan dokladniejszych, umozliwiajg-
cych ocene btedu przyblizenia.

W tym celu zastosujemy metode pokrewng metodzie «matych para-
metrow» (zaklocen) ?). Zatozymy mianowicie, ze Sciste rozwigzanie ukladu
(2.26) przy warunkach brzegowych (3.2) i (3.11) daje sie rozwina¢ w sze-
reg potegowy (M aclaurina) zmiennej p , czyli

(7.1) | $; =S840+ Sy ¥, + Sp¥2+ ...

l p*—“p(,w,L Dy Y, ~‘rp21/)f~{;...

Poniewaz wielokrotnie stwierdzono, ze warto$¢ statej Poissona v,
a wiec i stalej ¢, [zwigzane] z nig rOwnaniem (2.16)], ma nieznaczny wplyw
na rozklad naprezen '), mozemy sie spodziewa¢ szybkiej zbieznos$ci sze-
regow (7.1).

Podstawiajgc do (7.1) » =0, otrzymujemy s, =S8, P=1P, S, 1 P,
sa zatem rozwigzaniami, uzyskanymi przez nas w p. 4, okreSlonymi row-
naniami (4.2). Zajmiemy sie teraz wyznaczeniem funkeyj s,, i p,; beda one
stanowity gléwna czes¢ bledu przyblizenia zerowego, poniewaz dla wiek-
szosci materiatow konstrukcyjnych »=10,3, » = 0,154 i wyraz zawie-
rajacy > — 0,023 mozemy juz zazwyczaj poming¢ wobec jednosci. Funk-
cje powstate z zachowania w odpowiednim szeregu Maclaurina
zmiennej y, jedynie wyrazéow zerowego i pierwszego bedziemy zwali
pierwszym przyblizeniem.

Do uktadu (2.26) podstawimy wiec

I S1 =31 ¥
1

D= "F—== T P1¥
) e g o

(7.2)

i przyrownamy do zera wyrazenia przy pierwszej potedze p . Wygodnie
bedzie tutaj wprowadzi¢ nowa funkcje niewiadoma #, okreslona wzorem

3 B oY FFFE =1,

9) Por. np. [2] oraz [13].
10y Por. np. [10].
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bowiem 7y, bedzie wtedy wprost bledem procentowym zerowego przy-
blizenia funkcji p. Otrzymujemy stosunkowo tatwy do rozwiazania uktad
dwoch réwnan niezaleznych

(€497 0°)* s, +(3e*+4 g% 0%) (e +g° 05}, = 2 eg% 0,

(€+g* 022 y+e ‘e_:_m: —e?2—0.

)

t

(7.4)

Najpierw musimy rozwigza¢ drugie réwnanie, by sprecyzowa¢ warunki
brzegowe dla pierwszego (nie znamy promienia granicznego w):

» ¢ 0/etge —1)

(7.5) W= (3_?6?\:)% 2 )
a stad
1 v, @ (V e+gi o’ —1)
(7.6) De=Sr———— : 2 9 3\
Jotee | @reo

Warunek (3.9) napiszemy wiec w postaci

1 w, e ( /e*+gtuwt — 1)
(7'7) 1: /o o B — / ‘ > yg D\ 9
)y e*+g*w* (e*+g* w?)?

a rozwigzanie tego réwnania ze wzgledu na w daje
Yy 1—e?

(7.8) =
g

czyli ze pierwsze przyblizenie pokrywa sie w tym przypadku z przybli-
zeniem zerowym [wzor (4.3)].

Mozemy teraz przystgpi¢ do calkowania pierwszego rownania (7.4).
Catka ogoélna tego rownania ma postac

2 1 ~2 2
(1.9) s, —LmErge 2e
e 0’ g° o’

e g mYetgete evgel, o

0 e’ o*

a warunki brzegowe (3.2) i (3.11) z podstawieniem (7.8) wyznaczaja war-
tosei statych C, i C,
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7.10) Ci=— ———,
7
j 3 o 2
(T.11) © €3———1n(e?+ g8+ 22 4+
(<] g-
1 S Lt
+(14e)| s In( e+ gi+e)—V T}
e~ eg;
wiec ostatecznie
L0 oIy 0 Il 2y 23
(7.12) s,lz—{lv!—.,f mhetoete 1, etge ,
e o()ye+g°+e € (e*+g~) o*

2e(1 | (e STty o |
g‘_’ 2 eg.’ 02

0
%

+

Znamy juz zatem rozklad naprezen promieniowych i obwodowych, bo-
wiem — w pierwszym przyblizeniu —
(7.13) 0, == S11 s 0y

oraz, zgodnie z (2.24),

(7.14) 0y == (8,11 0511) v, Opr == S21 Y 0y

przy czym funkcje siy okresla stosunkowo prosty wzor

2e() €+g" 0’ — 1) () e+ 0 —e)

7.15 1=
(7.15) St1 7 @ Lg? oY)

Naprezenia promieniowe i obwodowe sa wynikiem mniejszej wartosci
wzpoOlczynnika P o i s s o n a (funkecji odksztalcenia poprzecznego)
w wewnetrznej, sprezystej strefie preta niz w zewnetrznej, plastycznej:
przy rozciaganiu strefa plastyczna «kurczy» sie silniej i wywiera nacisk
na strefe sprezysta. Podobny rozklad naprezen uzyskaliby$my, rozcia-
gajac gumowa rurke, nalozong na sztywny, pasowany trzpien. Rozklad
ten przedstawiaja rys. 11 i 12.

Przejdziemy do obliczenia wazniejszych dla nas naprezen o, i 7, oraz
oszacowania bledéw przyblizenia zerowego. Podstawienie (7.2) do wzoru
(2.25), rozwiniecie uzyskanego wyrazenia na szereg M aclaurin a
zmiennej y, i zachowanie jedynie wyrazéw zerowego i pierwszego daje

(7.16) s, = __e — + leg" 0° (l.; e-fg: ?‘ —1) +S”_{_L 9511J P,
) e +go® (e*+g* 0*) 2 ‘

316



lub inaczej

(TLT) Sa1 = 830 (1 + Cyy),

gdzie s, i 85, 0znaczaja, jak zwykle, zerowe i pierwsze przyblizenie funk-
cji s, natomiast

- g°0* () m"—— 1) 4 ($y,+ 1 0si) ] g"—%-—g:?é

(7.18) 8 (e2+g° 0*)*?

decyduje o bledzie zerowego przyblizenia w stosunku do pierwszego
w przypadku naprezen osiowych o-.

o pr—
a1 a1 V4 =
Y
~
r
r A
|
- A SRy
& |
-5 — / a5 Pz —»/
A o5 | 9-a 1 0 f— f
[
9-1 A1 A [ ———
A A i I 1 ;
7
/| =L
/
A |4 L
y-2 [T A
/ a
};L{,—_/ .
Rys. 11. Rozklad naprezen pro- - Rys. 12. Rozktad naprezen obwo-
mieniowych ¢, w przypadku e=0.5 dowych g w przypadku e=0,5(za-
(zakres sprezysto-plastyczny). kres sprezysto-plastyczny). Przy-

Przyblizenie pierwsze blizenie pierwsze

Naprezenie styczne 7., okresla wzor

(7.19) T — Jepops

: V3 o
zatem, wykorzystujac (7.2) i (7.3), mozemy napisa¢ wprost
(7.20) Ton = Toz (1 T1%),

gdzie poprawke 7 okresla wzér (7.5). Warto zauwazy¢, ze wobec zwiazku
(7.8) 1 jest rowne zeru na granicy strefy plastycznej i sprezystej (podob-
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nie jak w calej strefie sprezystej), natomiast w strefie plastycznej jest
stale dodatnie; { jest w strefie sprezystej ujemne, w strefie plastycznej
zmienia znak.

Wykresy funkcyj # i ¢ podaja rysunki 13 i 14.

Jak wida¢, bledy przy obliczeniu w przyblizeniu zerowym naprezen
o: sa (w pedanym przypadku e = 0,5) wielokrotnie wieksze niz przy obli-
czaniu naprezen 7,,. Jednak w calym zakresie sprezysto-plastycznym
£<<1 i blad nie przekracza v, czyli np. 15,4% w przypadku materiatu
ostatej Poissona »=0,3, aprzy niewielkich katach skrecenia (np.
g = 1) jest znacznie mniejszy.

0
e el 3
Uk ~
—
-005 |
|
a1 |
[
Rys. 13. Bledy przy obliczaniu Rys. 14. Btledy przy obliczaniu
naprezenia osiowego o, W przy- naprezenia stycznego rg, W przy-
blizeniu zerowym w przypadku blizeniu zerowym w przypadku
e = 0,5 (zakres sprezysto-plastycz- e = 0,5 (zakres sprezysto-plastycz-
ny) ny)

Wspomnimy wreszcie, ze zalezno$¢ sity podiuznej i momentu skreca-
jacego od wydluzenia i kata skrecenia daje sie w pierwszym przyblizeniu
wyrazi¢ za pomoca skonczonej kombinacji funkcji elementarnych podob-
nie jak w przyblizeniu zerowym. Uzyskane wyniki sa jednak diugie i nie-
wygodne do analizy bledow, ktéra wygodniej jest przeprowadzi¢ w opar-
ciu o znajomo$¢ bltedéw w rozkladzie naprezen.

318



8. Rozwiazanie w zakresie czysto plastycznym. Przyblizenie pierwsze

Przyblizenie pierwsze uzyskamy w zakresie czysto plastycznym po-
dobnie jak w zakresie sprezysto-plastycznym. Podstawiajac (7.2) do (2.26)
otrzymujemy znowu uklad (7.4), bez zmiany pozostaja (7.5), (7.6) oraz
catka ogolna (7.9). Zmienia sie dopiero wartosci statych C; i C, wobec
zmiany warunkoéw brzegowych, musimy bowiem warunek (3.11) zastapic
warunkiem ograniczonosci s;; dla 0 =10:

2 2
(8.1 C,=— ) ’

g

1 e 2 S 91/ 5
(8:2)BNE;—F==In (et Fofl-ta=rEft=Tnl{llct Fot-e) | +9

e g o :
a calka szczegolna przybierze postac

-_L X 5 )
83 5= |2imWETEEtAVEre | 2e(1 )
@ (l e*+g° +e)) e“LQ“ o: g~ \p° ‘

W przyblizeniu zerowym uklad (2.26) rozwigzywaty te same funkcje s, 1 p
w obu zakresach: sprezysto-plastycznym i czysto plastycznym; w przy-
blizeniu pierwszym funkcja s; w zakresach tych jest przedstawiona rézny-
mi wzorami. Warto jednak zauwazy¢, ze «przechodzi» ona z zakresu do
zakresu w sposob ciagly, bowiem na granicy odksztalcen plastycznych,
gdy e = 1, obie state C, i C,, obliczone ze wzorow (7.10) i (8.1) oraz
(7.11) i (8.2), maja te same wartosci, a zatem i catka szczegdlna jest
wspolna.

Naprezenia promieniowe i obwodowe sg okreslone wzorami (7.13)
i (7.14), do ktérych nalezy teraz wstawi¢ (8.3). Pochodna s, jest réwna
(8.4) S OP . Ui

1 (e4g20%) (Ve Fg% 0® + e

i jest stale nieujemna, a réwna zeru, gdy o = 0. W tym punkcie funkcja
sy, osiaga warto$¢ najmniejsza (co do modutu najwieksza), wynoszaca

2 |1y g ' g |

(8.5) S| L — .
I”lo 0 e | | (1 o2 g_ +e)? 2() ez+g:+e)zl

Rozklad naprezen promieniowych i obwodowych w przypadku e = 2
przedstawiaja rys. 15 i 16.
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Rys. 15. Rozklad naprezen pro-

mieniowych o, w przypadku e =2

(zakres czysto plastyczny). Przy-
blizenie pierwsze
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Rys. 17. Bledy przy obliczaniu

naprezenia osiowego o, W przy-
blizeniu zerowym w przypadku

e = 2 (zakres czysto plastyczny)
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Rys. 16. Rozklad naprezen obwo-

dowych og w przypadku e=2 (za-

kres czysto plastyczny). Przybli-
zenie pierwsze '
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Rys. 18. Bledy przy obliczaniu na-

prezenia stycznego rg, W przyblizeniu
zerowym w przypadku e = 2 (zakres
czysto plastyezny)



Funkcje ¢ i1, decydujace o wielkosci btedow przy obliczaniu naprezen
o, i 14, z przyblizeniem zerowym, sa w zakresie czysto plestycznym okres-
lone tymi samymi wzorami, co w sprezysto-plastycznym, mianowicie
(7.18) i (7.5), z tg r6znica, ze do (7.18) nalezy wstawic¢ (8.3) zamiast (7.12).

Rozktad btedéw w przypadku e = 2 jest przedstawiony na rys. 17 i 18.
Obserwujemy nieznaczne réznice w wartosciach ¢, natomiast gwattowny
wzrost (co do modutu) warto$ci # w porownaniu z zakresem sprezysto-
plastycznym. Moduty obu funkeji, £ i 5, w calym zakresie czysto plastycz-
nym nie przekraczaja jednak jednos$ci (podobnie jak w zakresie sprezysto-
plastycznym), zatem przy » = 0,3, bledy nie przekraczajgy 15,4%.

W zakresie czysto plastycznym zalezno$é sity podiuznej i momentu skre-
cajacego od wydluzenia i kata skrecenia daje sie rowniez wyrazi¢ przy
pomocy skonczonej kombinacji funkeyj elementarnych, jednak i tu ana-
lize btedow przyblizenia zerowego tatwiej przeprowadzi¢ w oparciu o zna-
jomosé btedéw w rozkladzie naprezen. W przypadku » = 0,3 mozna przy-
iaé, ze sila podtuzna jest o kilka procent wieksza, a moment skrecajacy
o kilka procent mniejszy od obliczonego wzorami przyblizenia zerowego.

Literatura cytowana w tekscie

[1] N. I. Biezuchow, Tieorja uprugosti i ptasticznosti, Gostiechizdat, Mo-
skwa 1953.

[2] L. Collatz, Eigenwertaufgaben mit technischen Anwendungen, Akad
Verlagsges., Lipsk 1949.

[31 F.A. Gaydon, On the Combined Torsion and Tension of a Partly Plastic
Circular Cylinder, Journ. Mech. Appl. Math. 1 (1952) Oksford.

[4] R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, Oksford
1950.

[3] M. T. Huber, Teoria spredystosci, t. 1, PAU, Krakéw 1948.

[6] L. S. Lejbienzon, Kurs tieorji uprugosti, Gostiechizdat, Moskwa-Le-
ningrad 1947.

[71 R. A. Mieztumjan, O funkcji popieriecznoj dieformacji, Prikl. Mat.
Miech., t. 16, Moskwa 1952, str. 491. .

[8] A. Nadai, Trans. Am. Soc. Mech. Eng. 52 (1930), str. 193; cyt. wedlug [4].

[91 A. Nadai, Plasticity, Mc Graw-Hill. New York : Londyn 1931.

[10] J. Nowinskii W. Olszak, O podstawach teorii sprezystodci cial
fizykalnie nieliniowych, Arch. Mech. Stos. 1 (1954).

[11] A. R. Rzanicyn, Rasczot sooruzenij s uczotom plasticzeskich swojstw
matieriatow, Strojwojenmorizdat, Moskwa 1949.

[12] W. Sierpinski, Zasady algebry wyzszej, Monogr. Matem., Warszawa-
Wroctaw 1946.

[13] M. Sokotowski, Zastosowanic metody malych parametrow w zagad-
nieniach ptyt, Arch. Mech. Stos. 3 (1953).

[14] W. W. Sokolowski, Tieorja plasticznosti, Gostiechizdat, Moskwa-Le-
ningrad 1950.

321



Pes3wme

CJIIYV4AN OJHOBPEMEHHOTI'O PACTAMKEHHNA W KPYYEHHA CTEPHHA
EPYTJIOTO CEYEHUA B YIIPYTO-IINIACTUYECHKOM COCTOSAHHUHU

Pabora perraer mocTaBJIEeHHBIV BOIIPOC, OCHOBBIBAACH HA TEOPUU ILIACTH-
yeckux gedpopmammii I' e H K . Bemojarca obupre ypaBHeHMS u Pop-
MUPUPYIOTCS KpaeBble ycJioBud, O0le ypaBHEHMUA MHTETPUPYIOTCS TOUTHO
B CJIyYae HeCXXMMaeMOro MaTepuasa, KoToporo Kosdduument Il yacco H a
paBeH /2, m npubIMMIKEHHO, B cilydae CKUMAEMOT0 MaTepuasa, MpuIeM Ipiu-
BOJMUTCA OLI€HKA ITOTPELTHOCTH,

Caydail OZHOBPEMEHHOTO PACTKEHMA ¥ KPYUEHMA CTepIKHA MOZKIO
CXapakTepu30BaTh IATHI0 IIApaMeTpaMM: CKPYy4MBarommM wMomeHToMm M,
POJOJIBHOM cmitoii N, mpefespHBIM paguycoM C, OTAeJIAIOIIVM ILJacTi-
YECKYIO, 30HY OT YIPYroi, OTHOCUTEJBHBIM YJVHEHMeM & 3 YIJIOM 3a-
KpyuMBaHMA Ha egyEmily mymHbl @. B pabore rmogpobHO paccMaTpUBaIOTCA
3aBMCUMOCTY MEKIY 9TUMM [apaMeTpaMi. 3aBMCUMOCTHM HATPY30K OT Jie-
dopmarmit BEIPpAXKAIOTCA IIPY IOMOII dJIEMEHTAPHBIX (PYyHKIMI, obpaTHBIS
3Ke 3aBMCUMMOCTM He obOjazaoT 9TmM cBojicTBOM. OHM TIpe/ICTaBJIAIOTCS
rpadpmyecKy ¥ HyMepUYeCKN.

PesyabpraThl paboThl aI0T BO3MOXKHOCTD ONPEJEUTE TPHM JIIOOBIX mapa-
MeTpa, MMes OBa OCTAJIbHBIX, TAK B YIPYTO-IJIACTMYECKOM COCTOSHMUM, KAK
¥ B YMCTO ILJTACTUYIECKOM.

Summary

THE PROBLEM OF COMBINED TENSION AND TORSION OF A CIRCULAR
BAR IN THE ELASTO-PLASTIC RANGE

The problem is solved on the basis of Hencky’s theory of plastic
deformations. General equations are derived and boundary conditions
stated. The general equations are integrated in an exact manner in the
case of an inéompressible material having Poisson’s ratio equal to /2.
In the case of a compressible material an approximate integration is car-
ried out together with the evaluation of error.

The problem of simultaneous tension and torsion of a bar can be cha-
racterized by means of five parameters: torque M, longitudinal force N,
radius c¢ of the boundary separating the plastic region from the elastic
region, unit elongation ¢ and unit angle of twist @. The relations between
these parameters are considered in detail. The stresses can be expressed
in terms of strains by means of elementary functions. The inverse rela-
tions however have not this property. They are expressed graphically
and numerically.

The results permit to determine any three param'et‘ers in the elasto-
plastic and plastic range, when two other parameters have a known value.
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