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Geodezja © Kartografia. Tom IV. Zeszyt 3

Wiodzimierz Krysicki

O pewnym zastosowaniu 1 o oszacowaniu
rozktadu Studenta

1. Zastosowanie rozktadu Studenta do eliminacji pomiaru budzacego
watpliwosci

Gdy dokonujemy pewnej ilosci niezaleznych, jednakowo dokladnych
pomiaréow tej samej wielko$ci, to kazdy wynik pomiaru uwaza¢ mozna
za wartoSci tej same]j zmiennej losowej; zakladamy w dalszym ciggu
naszych rozwazan, ze zmienna ta podlega rozkladowi normalnemu
(Gaussa) o nieznanej $redniej m i nieznanej wariacji 02, to znaczy, ze
gestos¢ prawdopodobienstwa jej rozktadu wyraza sie wzorem

1
¢(x)= e e : (1)

Zalozenie takie mozna przyja¢ np. w przypadku, gdy wszystkie pomiary
sa dokonane tym samym przyrzgdem.

Na temat prawa bledéw Gaussa warto przytoczyé tutaj cytat Poin-
carégo !: ,,wszyscy przekonani sg o stusznosci prawa bledéw, zakomuni-
kowat mi pewnego dnia M. Lippmann, eksperymentatorzy — poniewaz
sadza, ze jest to twierdzenie matematyczne, matematycy — poniewaz
uwazaja to za fakt eksperymentalny“. I obie strony wlasciwie majg racje:
przy pewnych bowiem zatozeniach [np. 1) taki sam (dowolny) rozklad
prawdopodobienstwa n zmiennych losowych, 2) skonczona jednakowa war-
to$¢ Sredniej m, 3) skonczona jednakowa warto$¢ wariacji ¢?] twierdze-
nie, o ktérym mowa (jedno z tak zwanych centralnych twierdzen gra-
nicznych), moéwi, ze rozklad sumy tych zmiennych losowych przy n
rosngcym nieograniczenie dazy do rozkladu normalnego, z drugiej za$
strony wiele rozkladéw spotykanych w praktyce da sie z zadowalajacym
przyblizeniem zastapié¢ przez odpowiedni rozklad normalny.

! Poincaré H., Calcul des probabilités, Paris 1912, str. 171.
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160 Wtodzimierz Krysicki

W odniesieniu do bledow przypadkowych 2 powszechnie przyjmuje sie
tzw. ,hipoteze bledéw elementarnych® przyjeta przez Bessela i Hagena,
wedlug ktérej laczny blad popelniony przy pomiarach astronomicznych lub
fizycznych traktuje sie jako sume duzej liczby wzajemnie niezaleznych
elementarnych btedéw. Z przyjecia tej hipotezy na podstawie centralnego
twierdzenia granicznego wynika, ze lgczny blad posiada rozktad prawdo-
podobienstwa w przyblizeniu normalny.

Zal6zmy nastepnie, ze wykonaliSmy (n-+1) pomiaréw tej samej wiel-
kosci, ktore jako wyniki daly x,,%,, ... ,%n,%n+1, oraz niechaj jeden
zZ pomiardw, np. xnt1, rozni sie na tyle od kazdego z pozostatych, ze
powstaje podejrzenie, iz blad, ktérym obarczony jest 6w pomiar, nie jest
przypadkowy.

Rozstrzygniecie tego zagadnienia jest mozliwe przy uzyciu rachunku
prawdopodobienstwa, tzn. mozna okaza¢, z jakim prawdopodobienstwem
mozna twierdzi¢, ze budzacy watpliwo$¢ pomiar x,+1 powstal nie na sku-
tek popelnienia btedu przypadkowego.

W matematycznej statystyce znana jest metoda® oceny rozbieznosci
dwoéch $rednich (arytmetycznych), pochodzacych z préb od siebie nieza-
leznych, ktére zostaly pobrane z normalnej zbiorowosci generalnej. Jezeli
liczno$¢é pierwszej probki wynosi n,, drugiej n, oraz $rednie (arytme-
tyczne) wyniké6w pomiaréw wynosza dla pierwszej prébki &, dla drugiej
Z,, to wielkosé
Za Ly

Sz
jest zmienng losowsa, podlegajaca rozkladowi Studenta z k=mn,+n,—2
stopniami swobody; we wzorze (2) wielkos¢ S, winna by¢ obliczona na

podstawie zaleznosci
se=r])/ St ®
1° T

no 7,
I/Z(x?’—fl)z+Z(«’C§2’ﬁ502)2
= 1 1 .

ny+1n,—2

t= (2)

gdzie

(4)

Zagadnienie postawione na poczatku da sie sprowadzi¢ do oceny roz-
bieznoéci dwoéch $rednich, pochodzacych z prob od siebie niezaleznych:
jednej o liczno$ci n,=n , drugiej o licznosci n,=1.

2 Patrz np. Mechanik T. I, cz. I S. I M. P., Warszawa 1949; J. Obalski, Rachunek
bledéw, § 2 Teoria bledow przypadkowych, str. 336 i dalsze.

3 Patrz np. W. Romanowski, Zastosowanie statystyki matematycznej w doswiad-
czalnictwie. Ttumaczenie z rosyjskiego, Pol. Wyd. Gosp. Warszawa 1951, str. 82—85.
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Niech wiec

T, = y  XTe=Xp+1. (5)

Z wzoru (4) otrzymujemy

/j(xt_i'1;2
—]/ T, (6)

n—1

wzor (3) na podstawie (6) przyjmie teraz posta¢

ﬁ‘(xt_ j1)2
/n+ n+1 1 )

l/ n——l_.

Tak wiec zmienna losowa

z=]/ L BT )
n—+1 I//Z(x1 )
n——l

podlega rozkladowi Studenta z (n—1) stopniami swobody, to znaczy ze
gestos¢ prawdopodobienstwa tej zmiennej losowej wyraza sie wzorem

t2 -n/2
Sn-1(t)= (1 + . 9)
n—1 n—1
]/n(n— 1) F
Postepowanie praktyczne da sie podzieli¢ na nastepujace etapy:
obliczamy $rednig arytmetyczna z n pomiaréw x,,x,,...,%, nie bu-

dzgcych podejrzenia, Ze sa obciazone bledem nieprzypadkowym.
obliczamy wielko$¢ s podiug wzoru (6) (wzér ten w rozpatrywanym
przypadku jest identyczny ze wzorem na odchylenie standardowe
(Srednie) z prébki liczacej n sztuk).

obliczamy wielko$¢ Sz z wzoru (7).

obliczamy réznice pomiedzy Srednig obliczona w 1. a (n+1)-ym wy-
nikiem pomiaru x,+;; oznaczmy jej warto$¢ bezwzgledna przez a

le_xn-}—l I=a

obliczamy wielko$¢ t z wzoru (8), odpowiadajaca obliczonej réznicy;
oznaczmy jej wartos¢ bezwzgledng przez t,
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6. przy obliczonej wartosci t, oraz ilosci stopni swobody k=n—1 znaj-
dujemy prawdopodobienstwo przyjecia przez zmienng losowg t war-
toSci spelniajgcej nieréwnosé |t|>t,; jest ono réwne

tn o0
P[lt]> ta]z1—2fsn_1(t)dt=zfsn_1(t)dt, (10)
0

t

gdzie gestosé prawdbpodobier'lstwa S n—1(t) okre$lona jest wzorem (9).
Wartosci catki wystepujacej we wzorze (10) sg stablicowane i znajduja
sie w kazdym podreczniku statystyki matematycznej.

2. Przyktad

Jednakowo dokladne pomiary dokonane tym samym przyrzadem pewnego kata
daty ponizsze rezultaty

x; x—x (x; —x)?
35° 43' 16,8" +1 1
35°43' 15,3" —-0,5 0,25
35°43'18,5" +2,7 7,29
35°43'10,8" -5 25,
35° 43" 31,8"
357 43' 18,8" +3 9,
35°43' 21,4" +5,6 31,36
35°43'18,4" +2,6 6,84
35° 43’ 10,9" —4,9 24,01
35°43'11,3" . —45 20,25
125,00

Pigty pomiar rézni sie od pomiaru najblizszego o 10,4” co moze budzi¢ watpli-
wo$¢, czy pomiar ten jest obciazony tylko bledem przypadkowym. Zbadajmy tg
sprawe za pomoca metody podanej powyzej. Obliczamy kolejno:

1. $Srednia arytmetyczna z dziewieciu pomiaréw (procz zakwestionowanego po-
miaru, ktory oznaczymy przez xi)

X, =35°43"15,8" oraz x,,=%,=35"43"31,8"

L
/125 —
2. s= V ?=]/15,625

/10 — 125
3. Sz=7/ — V15,625 = - =4,1667
9 3
4. T, —xo=—16"; a=[Z—x,|=16"
Ty —Xyg —16
5, t=————=-——=-384., t,=384
S= 4,1667

6. przy danych t,=3,84 oraz k=n,;+n.—2=8 odczytujemy z tablic* prawdopodo-
bienstwo dane wzorem (10), wynosi ono okolo 0,006. Prawdopodobienstwo otrzy—

4 Romanowski loco cit. str. 220.
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mania wyniku pomiaru nie mniej odchylajacego sie w jedng lub w drugg strone
od $redniej (otrzymanej z pozostalych 9 pomiaréw) niz zakwestionowany -pomiar
wynosi wiec okoto 6°/o

P[|®,—x,| > 16"] ~= 0,006,

a prawdopodobienstwo otrzymania wyniku pomiaru nie mniejszego niz kwestiono-
wany wynosi oczywiscie potowe tego, to znaczy

Plx;—%; >16"]1~0,003.

Prawdopodobienstwo to jest na tyle matle, ze otrzymanie takiego wyniku pomiaru
(przy danych dziewieciu pomiarach jak wyzej) uwaza¢ mozemy praktycznie za nie-
mozliwe. Wobec tego z prawdopodobienstwem przeciwnym, tzn. okoto 99,7%/o, mozemy
twierdzi¢, ze pomiar kwestionowany nie moze by¢é uwazany za obcigzony tylko
btedem przypadkowym i dlatego winien by¢ odrzucony.

3. Trzy twierdzenia graniczne o rozkladzie Studenta

Jak wiadomo przy n dostatecznie duzym rozklad Studenta moze by¢
zastgpiony przez rozklad normalny o Sredniej réwnej zeru i standardzie
réwnym jednosci, ktérego gesto$¢ prawdopodobienstwa

IE

1. T2 )
X)=—F—8 11
@,(x) . /271: (11)

jest niezalezna od n.
Jest bowiem
lim Sy(x) =@, (x) ° (12)
n—roo

dla kazdej ustalonej wartosci x.
Celem niniejszego jest rozstrzygniecie zaréwno rzedu tej zbieznos$ci

1
wzgledem—n—, jak i oszacowanie réznicy ¢, (x)—Sn(x). Precyzujac doklad-

niej:
Nalezy znalez¢ takg liczbe rzeczywista k>0 oraz takag funkcje S(x),
nie ré6wng tozsamosciowo zeru, aby spelniony byt warunek:

iﬂ {n*[@,(x) — Sn(x)]}=S(x) (13)

dla kazdej ustalonej wartosci x.
Azeby oszacowat wyrazenie S,(x), otrzymane z prawej strony wzoru
(9) przez zastgpienie n—1 przez n, rozwazymy In Sn(x).

5 Patrz np. Cramer H., Matiematiczeskije Mietody Statistiki, Moskwa 1948,
str. 279.
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W tym celu uzyjemy nastepujacych rozwinieé

lnF(a):ln]/Zz—.l-(a—l)lna—a-i— 4 5 (14)
2 12a
0<H<1
oraz
22

1n(1+z)=z—?+z’*"-@,,
gdzie

o<@1<% dla 0<z<1. (15)

2
Wzoru (15) uzyjemy do rozwiniecia In ( 1+§—) przy ustalonej war-
\ n
tosci x i takich wartosci n, aby bylo
xz
—<1, to znaczy dla n>x*. (16)
n

Wykonujac wszystkie obliczenia wedlug wzoréw (14) i (15) otrzymamy
przy zalozeniu (16)

2 4__ 2__
1nsn(x)=—1n;/2n—%+£—%"~—1+o(—1;), (17
n n

gdzie 0 (%) dazy do zera przy n—oo tak jak L) .
n n®

Na podstawie (17) bedzie

1 = I; 6% [t — 2x2—1 1
() —Salx)= — O R =1,
@,(x) (x) I/_27t e [1 exp ( i +0 (n2 ))]

Rozwinmy teraz funkcje wykladniczg w nawiasie podlug wzoru

2

3-4

2 s
ez=1+z+%(1+-§—+ +...)=1+z+22(')2,

gdzie, jak latwo wyliczy¢ przy 0<<z<1, jest —21-< 0, < %

Teraz otrzymamy dla dostatecznie duzych n

- Y | 2 7
1_ez[ x+2x+1+0(_1_)l'
V2 _ 4n n?

8* Symbol exp x oznacza e<.

2

@1(x) —S(x)=
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Z postaci tej natychmiast wnioskujemy, ze jezeli we wzorze (13) przyj-
miemy k=1, to otrzymamy nastepujace

twierdzenie graniczne I. Jezelix#—)/1+y2 oraz x#)1+y2, to
-7 —at 2%+ 1
4

Prawa strona jest rézna od zera dla wszelkich rzeczywistych war-
tosci x, z wyjatkiem dwoch réznych wartosci

lim {n[¢,(2) — Su(@)]} = —— e 0. M
n-»x V 2=

2 0=2)/14+V2. (18)

Jesli wiec x= il/ 1 _h/ﬁj, to cel naszego zagadnienia nie zostal jeszcze
osiggniety, bo wéwczas prawa strona wzoru (I) jest rowna zeru. Wowczas
nalezy w rozwinieciach (14) i (15) wzig¢ jeden wyraz wiecej. Okaze sie

wowczas, ze wyrazenie 0 —,| we wzorze (17) nalezy zastapi¢ przez
n

1 ¢ 1 (1)
x : x 4y 19 B + 0( ) )
4n®* 60  6n° 6n(n—+1)

n®

W tym przypadku nalezy we wzorze (13) przyja¢é k=2 i wowczas
otrzymamy nastepujace

twierdzenie graniczne II. JeZelix= — Vi+ V2 albo x= V/I:_;/é—, to

)

12 &

< 1
lim {n®[g,(x) = Sa(@)]}=——e
n—oo ]/27'6
Obliczajgc prawa strone przy podanych wartosciach = otrzymamy
warto$¢ nastepujaca
_1+V2

_
1 2 . AV2+5 106, (19)
]/2n

Prawa strone wzoru granicznego (I) mozna traktowaé jako funkcje
zmiennej x w dowolnym skonczonym przedziale i zbadac¢ jej przebieg dla
| x| < X <+o00. Niechaj

x'é
S@= - (~x+ 24 e

4y 2%

i obliczmy jej pochodna
x?
T2

1
S'(x)= —— x(x*—6x2+3) e
(x) 1y )
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Pochodna zeruje sie przy pieciu roéznych wartosciach x, Kktoére
oznaczymy

X1,5— ?Vﬁl/—é, Xa4= F l/3_—;/:6, x3=0.

Wowcezas przebieg zmiennoS$ci funkeji S(x) bedzie nastepujacy

x |—oo....7cl...:c2... Tyg... Xy... Xg...+00
S@| = 04+ 0 —0 + 0 — 0+
S@) | 0 Sy 7 S S —— 7 S Szy) 0
4y 2n
gdzie
-1 . . ]
S@x)=8(xs)=—==(2+V6)e * ~_0,117,
]/27:
1 3-V6
S(x,)=S(x)=——(6—2)e * ~0,136,
V 2n
1
——~20,099.
4y 27
Bez wzgledu na wartos¢ xr mamy oszacowanie
| S(x) | < S(x,) =S(x,) ~ 0,136. (20)

Udowodnilismy wiec

Twierdzenie III. Funkcja S(x) réwna prawej stronie wzoru granicznego (I)
jest dla wszelkich rzeczywistych wartosci x ograniczona; nieréwnosé (20)
podaje dokladne oszacowanie (ostre)? tej funkcji.
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PE3IOME

B nyHrte 1 paGoTbl NMpUBENEHO NPUMEHEHHE MeToJa OLEHKH PacXOLMMOCTH MNBYX
CpenHHX 3HaYeHHH, MOoJyYEHHbIX U3 B3AUMHO HE3aBMCHMbIX HCTLITAHHIH, B3SThIX C HOpMallb-
HOW reHepanbHOW COBORYMNHOCTH, AJISi HCKJIOYEHHS COMHHTE/IbHOTO HAGJIONEHHS C MpH-
MEHEHHEM . pacnpefesieHHss MIOTHOCTH BepostHoctH Crymenra S,(x), onpeneneHHoi
dbopmysioit (9); B myHKTe 2 npHBedeH NpHUMEp NpUMeHeHHs 3Toro metoma ans 10 Ha6aio-
NEeHUIIaHHOro yria, Npou3BENEHHbIX TEM € CaMblM WHCTPYMEHTOM.

" B BHMAY TOro, 4To MpH M — ©© MIOTHOCTb S,(T) CTPEMHMTCS K MJIOTHOCTH HOPMA/bHOIO
pacnpenesieHuss @,(xr) cO cpenHei paBHOW HY/IIO W CTAHOAPTHbIM OTKIOHEHHEM paBHbLIM
enunuue (bopmyna 11), MccrepoBaH psi CXOOMMOCTH K HYJIIO pasHOCTH @;(x)—S,(x) no

1
OTHOLUEHHIO K — W MOJIyYEHbI MPH 3TOM CJIEAYIOLIME PE3YbTaThl :
n

Teopema |: Ecnm x;&—l/1+]/§ M x5~ ]//1 +]/E TOrAa OJsi Ray[4oro onpenenMoro
3HAYEeHHUd X

1 Y 241
lim {n [p,(x)—S, @]} =——e¢ z- #0 I
n—>0 ]/2712 4
Teopema Il: Eciu :c=—]/1+]/—§ WK x=]/1+}/—g
Torga
1 - pi2ar—3)
lim {n* ['Pl(s'c)—sn(x)]}=[ = 4. ] — ~0,106 II
Van 12 r=+V1+y 2
Teopema Ill: ®yuruus S(xr) paBHa npaBoii CTOpoHE rpaHWyHOW ¢opmynbl | mns

BCEX NEeHCTBHUTE/IbHbIX 3HAYEHHUH T OrpaHH4YeHa:
[S(x) | < S(x,) =S(x,) =~ 0,136

npH4YeM MarCHMasbHOE 3HayeHWe [OoCTUraeTr Ipu

tpa= V375 .

RESUME

Dans le premier article du travail on discute l'application-de la méthode de
l’appréciation de la divergence de deux moyennes provenant des épreuves indépen-
dantes, lesquelles ont été pris d’'une normale collectivité générale pour élimination
du mesurage, qui inspire de lincertitude en appliquant la répartition de la densité
de probabilité de Student S, (x) déterminée par la formule (9).

L’article 2 du travail contient un exemple de l'application de cette méthode
pour 10 mesurages du méme angle et qui ont été executé avec le méme appareil.
Etant donné que pour n — o densité S,(x) tend vers densité de la repartition
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normale ¢,(x) avec la moyenne égale zéro et avec la déviation standart égale un
(formule 11); on a examiné le degré de la convergence jusqu'au zéro de la différence
@,(x)—S,(x) par rapport a 1/n et on a obtenu les résultats suivants:

Théoréme I.

Si x¢——]’/fl+]7§ et x= ]/I:_'/;z , ily a pour chaque valeur fixé

1 T —pi2xt41
lim {n [¢1($)—S,,($)]} =———e 2 _.H—’l+
]/Zn 4

Théoréme II.

Si x=—V1:ﬁ ou x=]//;17§ ilya
I == ~‘(2x*—3)]

2

—=1@ ——~=0,106 .
V2n 12

x=+V1+y2

lim {n? [¢,(x)— S, (x)]} = [

Théoréme III.
La fonction S(x) égale au coété droit de la formule (I) est pour toutes les valeurs
réelles x limitée:
[S@) | < S(xn) =S(xy) =~ 0,136

pendant que la plus grande valeur est atteinte quand

2y,= V375
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Wiadystaw Batkiewicz

Obliczenie sieci triangulacyjnej
zbudowanej z trojkatéw ,,wyliczeniowych®

I

Dotychczas stosowana triangulacja sklada sie z przylegajacych do sie-
bie tréjkatow, w ktéorych pomierzono wszystkie katy. Diugosci bokow
tych trojkatow okreslane sg za pomocg pomiaréw liniowych i rozwinie¢
bazowych dokonanych dla boku wyjSciowego. Poza tym mierzy sie jeszcze
szereg baz dla innych bokéw sieci, ktore stanowig kontrole pomiarow
katowych. Material ten jest jednak szczuply w pordéwnaniu z przewaza-
jaca iloécig pomiaréw katowych, a w dodatku ze wzgledoéw obliczeniowych
nie jest on odpowiednio wykorzystywany. Celem unikniecia bardzo ucia-
zliwych i dlugich prac obliczeniowych sie¢ taka, jak wiadomo, dzieli sie
na sie¢ wiencows, sieci lgczne i wypelniajace. Jest to tzw. triangulacja
I rzedu, ktorg z kolei — dla dokladniejszego pokrycia terenu punktami
pomiarowymi — uzupelnia sie triangulacja rzedu II, III i IV. Przy wy-
réwnaniu i obliczeniu sie¢ II rzedu nawigzana jest do sieci rzedu I, trze-
ciego rzedu do II itd. Metoda ta jest wiec metoda przyblizona, gldéwnie
uzgadniajgcg pomiary sieci rzedéw wyzszych z nizszymi, a nie wy-
réwnujgcg ich wedlug warunku [pvv] = min. Cala zatem triangulacja I,
1I i III rzedu jest tylko triangulacja kontrolujaca i wzmacniajacg trian-
gulacje rzedu IV. Kontrola ta jest bardzo kosztowna, bowiem jest ona
polaczona ze zmudnymi pomiarami katéw przy diugich celowych, ucia-
zliwg lokalizacjg punktow, budowa wysokich wiez itp. Rozciagniecie takiej
triangulacji na caty kontynent i wyréwnanie jej metodami dotychczaso-
wymi jest pracg niezmiernie ciezkg i nie gwarantuje dostatecznej doktad-
nos$ci, doktadno$¢ bowiem pomiaréw w tancuchu tréojkatow bardzo szybko
maleje w miare oddalania sie od boku wyjSciowego.

II

Prof. T. Kochmanski zaproponowat wiec nowa metode pomiaréw trian-
gulacyjnych oparta na tzw. tréjkatach , wyliczeniowych. Metoda ta zo-
stala opracowana i przeanalizowana pod wzgledem dokladno$ci w sposéb
przyblizony, podany ponizej.
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Caly obszar, ktéory ma by¢ objety triangulacja, pokrywamy siecig tr6j-
katéw o bokach np. okoto 8 km, a nastepnie z tej sieci wybieramy punkty
odlegte o okolo 5 bokéw tréjkatéw, czyli okoto 40 km i tworzymy z nich
tréjkaty wyliczeniowe (rys. 1). W trojkatach tych nie wykonujemy zadnych
pomiaréw katowych, a jedynie obliczamy dlugosci ich bokéw z bokow
troéjkatow 8-kilometrowych. Za diugo$¢ wyjsciowa w kazdym trojkacie
wyliczeniowym lub w co drugim tréjkacie przyjmujemy jeden bok
trojkata  8-kilometrowego otrzymany z
rozwiniecia bazowego lub w miare
mozno$ci z bezposredniego pomiaru. Bok
ten nalezy wybra¢ jak najblizej s$rodka
ciezko$ci tréjkata wyliczeniowego, tak by
boki tego ostatniego zostaly obliczone
mniej wiecej z jednakowa dokltadnoS$cia
1 nie przez zbyt duza ilos¢ trojkatow tacza-
cych je z bazg. W ten sposoéb diugos¢ kaz-
dego boku tréjkata wyliczeniowego moze
by¢ okreslona dwa razy z dwu sasiednich
trojkatéw, co stanowi doskonala kontrole
pomiaréw i lokalizuje bledy w sieci. Za
ostateczng wartos¢ bierzemy Srednig aryt-
metyczng, wartosci te bowiem pochodza z dwu niezaleznych pomiarow.
Wewnatrz kazdego tréjkata wyliczeniowego pozostaje grupa trojkatow
w iloéci okoto 25. Grupe te wyréwnujemy niezaleznie od podobnych grup
w tréjkatach sagsiednich, a dopiero po wyréwnaniu obliczamy diugosci
bokéw tréjkata wyliczeniowego. Tak wiec sie¢ trojkatow 8-kilometrowych
spelnia podwoéjne zadanie, a mianowicie stanowi ona sie¢ triangulacyjna
w danym trojkacie wyliczeniowym

oraz rozwiniecie bazowe dla jego STTTTI\
bokéw. Postepowanie to prowadzi vvxvxevagv‘
wiec do uzyskania sieci triangula- /, e /

cyjnej ztozonej z trojkatow, w kto-
rych znane sg diugosci wszystkich
bokow (rys. 2). Sie¢ te orientujemy
w sposob przyblizony i wyréwnu-
jemy rownocze$nie dla catego
obszaru objetego triangulacja,
opierajac sie na metodzie podanej
przez prof. E. Warchatowskiego
v ,,Przegladzie Geodezyjnym‘ nr 7—8 z 1948 r. Po tym wyrdéwnaniu
obliczamy ostateczne wspoéirzedne punktow polozonych w wierzcholkach
tréojkatéw wyliczeniowych. Nastepnie wyréwnujemy ponownie grupy
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trojkatow w liczbie okolo 25 kazda, polozone wewnatrz trojkatow wyli-
czeniowych. W tym celu rozszerzamy tylko kazdy z poprzednio ulozonych
systeméw réwnan warunkowych o warunki wynikajace z nawigzania do
trzech punktéw statych. Dla punktéw znajdujacych sie na linii rozgrani-
czajgcej dwie sgsiednie grupy tréjkatéw 8-kilometrowych otrzymamy po
dwie pary wspoéirzednych, z ktérych tworzymy $rednig arytmetyczng dla
otrzymania ostatecznych wspéirzednych.

Dla sieci obejmujacych cate kontynenty nalezaloby (celem zmniejsze-
nia iloSci warunkéw uwzglednianych réwnocze$nie) z wyzej wymienio-
nych tréjkatéw wyliczeniowych utworzy¢ jeszcze wieksze trojkaty wyli-
czeniowe i tak dopiero otrzymana sie¢ wyréwnaé rownoczes$nie. Diugosé
bokéw tych tréjkatow umotywowana bylaby iloScia warunkow, ktore
decydujemy sie rozwigza¢ roéwnocze$nie, oraz dokladnoscia, ktérg chcemy
uzyska¢ (patrz wykres nr 1). Jest to zatem podobny speséb wyrdéwnania,
jak wyzej opisany, z ta tylko réznicg, ze sktada sie on z dwu etapow pro-
wadzacych do utworzenia jednolitej sieci dla calego obszaru.

III

Obecnie zajmiemy sie analiza dokladnosci proponowanej sieci. Na
wstepie nalezy zaznaczyé¢, ze jest to sie¢ katowa skontrolowana i wzmoc-
niona przez znaczng ilo$¢ pomiaréw liniowych (baz). W sieci tej biad
pomiaréw katowych nie przenosi sie i nie narasta poprzez dlugie tancuchy
tréjkatow do takich wartosci, jak w triangulacjach dotychczasowych. Po-
miary katowe w dwu sasiednich grupach tréjkatéw, potozonych wewnatrz
odpowiednich tréjkatéw wyliczeniowych, sa wzajemnie kontrolowane.
Kazdy btad, przekraczajgcy przewidywane granice dokladnosci, moze byé
od razu wykryty, tak ze nie wywrze on szkodliwego wplywu na calg sie¢.
Jest to metoda niewiele odbiegajgca od metody S$cistej, wplyw bowiem
wszystkich pomiaréw katowych i liniowych w calej sieci na wynik wy-
réwnania jest ujety w réwnoczesnym wyréwnaniu sieci ztozonej z trojkg-
tow wyliczeniowych. Przy tworzeniu za$ tréjkatéw wyliczeniowych
popelniamy nieznaczng nieScisto$¢,” gdyz na obliczenie dlugosci bokéw
tych tréjkatéw maja wplyw dwie najblizej polozone bazy, co uwzgled-
niamy biorgc 3Srednig odpowiednich wynikéw. Wplyw dalszych baz
(zreszty szybko zanikajacy) pomijamy za cene o wiele ekonomiczniejszego
pod wzgledem nakladu pracy sposobu wyréwnania. Podobng nie$cistosé
popelniamy takze przy postepowaniu odwrotnym, kiedy, majac wyrow-
nane wspoélrzedne sieci tréjkatéw wyliczeniowych, przystepujemy do wy-
réwnania wspoirzednych pozostatych punktéw.

Nizej podajemy wartosci bledéw S$rednich przy zalozeniu ze rozpatru-
jemy sie¢ zbudowang z trojkatéw réwnobocznych, w ktérych biad $redni
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’”

4

jednostkowy m omiaru kata wynosi + ————
. ¥ dity K d 412000

, czyli + 0,5” bledy za$

pomiaru bokéw wyjsciowych (b=8 km) wynoszg + m , czyli
mp= +16 mm, oraz ze boki tréojkatow wyliczeniowych podane sg z jedna-
kowa dokladnoscig. Jezeli chodzi o to zalozenie, to przeprowadzono tutaj
obliczenie, ktére wykazalo, ze dla prostoty rachunkowej mozna je uczynié¢
~ bez zadnego praktycznego uszczerbku dla cato$ci wyréwnania.

Przy tych zalozeniach, jak zobaczymy ponizej, otrzymano blad Sredni
po wyrdéwnaniu boku 40-kilometrowego trojkata wyliczeniowego nie
wiekszy od okolo 13 cm (dokladnie 128 mm) jako $rednia arytmetyczna
z dwu sgsiednich trojkatéw. Dlugosé takiego boku da sie wyrazi¢ za
pomocg funkceji

p1=bfla;,as,...... an) .

a po zamianie na funkcje liniows:

" of.
@, =bofila;.0s,....an)e+filay,as,.... an),db+b, l( 8f1 ) da,+
a] 0
- (—8—:{1—) o TR R + (B_f,_) dan] ,
o0y [o 29n o
czyli
@,=byfo,+fo.db+byla,da,+a,da,+...... +anday,) = fo,db+by(fo, +df,) -

Btlad s$redni tej funkcji réwna sie

mg, =)/ f: -mi+b2-m2,  gdzie my=m,-Fy,.
Jak wida¢, sktada sie on z dwu niezaleznych wyrazéw: z btedu wywota-
nego pomiarem bazy oraz z bledu wywolanego niedokladno$cia pomiaru
katow. Wyraz pierwszy nie wymaga dalszego omoéwienia. Jest on, jak
wiadomo, wynikiem zmiany skali tréjkata wyliczeniowego przy zachowa-
niu jego podobienstwa do trojkata, w ktérym diugosé bazy bytaby podana
bezbtednie. Wyraz drugi natomiast jest wynikiem bledéw pomiaru ka-
tow. Ze wzgledu na to, ze wyréwnanie przeprowadzono metoda warun-
kowa w ujeciu krakowianowym, blad rozpatrywanej funkeji po wyréwna-
niu obliczono z pierwiastka krakowianowego wzorem podanym przez
prof. T. Kochmanskiego. Wzér ten w zastosowaniu praktycznym daje
kilkakrotng oszczednos$¢ czasu niezbednego dla wykonania obliczen oraz
zezwala na proste obliczenie bleddéw $rednich nawet bardzo skompliko-
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wanych funkcyj. I tak jezeli wezmiemy funkcje f,, wystepujaca w ¢, po
zamianie jej na funkcje liniowa, czyli

fi=fota,da,+a,day+....... +anday ,

wtedy blad $redni tej funkeji po wyréwnaniu okresla wzor:

m} =mila-p~'-a—(a-tw':r)’],

czyli
mys,=mg- Fy, ,
1
a, —
a, Py ]
gdzie a= , P7= —_— ., , W =1tw-p';
: P2
: 1
an R
Pn

Tw jest transponowanym krakowianem wspéiczynnikéw przy niewiado-
mych w rownaniach warunkowych,
r jest pierwiastkiem krakowianowym z réwnan korelat.

Mozna zauwazy¢, ze obliczenie blednosci F, w praktyce sprowadza
sie do spierwiastkowania jeszcze jednej kolumny dolaczonej do krako-
wianu réwnan korelat.

Ze wzgledu na fakt, ze przy dalszej analizie dokladnosciowej bedziemy
zmuszeni z powodu trudnoéci rachunkowych traktowaé wyniki otrzymane
dla kazdego z trzech bokéw tréjkata jako spostrzezenia niezalezne, cho-
ciaz w rzeczywisto$ci sg one zwigzane wyréwnaniem i pomiarem wspél-
nej podstawy, wydaje sie sluszne wprowadzenie pojecia zastepczego boku.
Przyjeto przy tym zalozenie, ze blad $redni zastepczego boku bedzie taki,
ze suma trzech takich (zastepczych) bokéw traktowanych jako spostrze-
zenia niezalezne bedzie obarczona bledem $Srednim réwnym bledowi
$redniemu sumy bokéw, lezacych na obwodzie tréjkata, poniewaz suma
taka jest spotrzezeniem bezpos$rednim.

Oznaczmy wiec dlugos¢ obwodu przez funkcje ¢, (analogiczng do
funkcji ¢,), a jej btad $redni przez m,, woOwczas z prawa przenoszenia

My,

V3

sie btedow wynika, ze blad Sredni boku zastepczego m, =

Przyjmujac teraz, jak juz wspomniano:

b,=8 km, mp==*16 mm oraz my=+0,5"

12 Geodezja Kartografia
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otrzymano analogicznie do wzoru dla m :

m<p,=]/152 6”—{-80000002(05) -8,23% =
e

=~1/57600+160%=1/57 600+ 25 600 = /83 200 =~+288 mm
a stad
My
Mp. = —— =167 mm.
P, 1/3
Srednia z dwu niezaleznych pomiaréw w dwu przylegajacych trojkatach
bedzie obarczona bledem $rednim

Mo,
m =—=%128mm.

% /3
Obliczono takze m,, dla funkceji @, i otrzymano przy powyzej przyjetych
wartosciach dla bo,mb, oraz my :

m%:]/ 62—1—80000002(05 ) +3,71222)/6400+4 900 =~+106 mm
e

; My,
m =—2=+75mm.

" /2
W ten sposéb okreslono dolng i gorng granice bledu $redniego diugosci
boku tréjkata wyliczeniowego. Dolng granicg jest wartos¢ = 75 mm, po-
niewaz do jej uzyskania przyjeto taki przypadek, jak gdyby dla kazdego
boku trojkata wyliczeniowego pomierzona byla osobna podstawa,
a w funkeji , przenoszacej dltugosé¢ tej podstawy na bok trojkata wyli-
czeniowego wystepowalyby wielko$ci niezwigzane wyréwnaniem z wiel-
kosciami wystepujacymi w podobnych funkcjach utworzonych dla pozo-
stalych bokéw trojkata. Wartos¢é + 128 mm jest gérng granica rozpatry-
wanego bledu z tego wzgledu, ze w kazdej funkcji ksztattu

vV oo L R +x2 =const.

przecietna wartos¢

|y |+ 2o |+ ...+ 2n |

|x|= osigga max. dla

Wobec tego w funkceji:
mg,=my,)/ 3= ‘/"—53» +mg +mg
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my, jest maksymalnym przecietnym bledem s$rednim. Dla wyréwnania
sieci zlozonej z tr6jkatéw wyliczeniowych m;z jest przyjety za blad $redni
jednostkowy.

Bledy $rednie najwiekszej odleglosci — w sieci w ksztalcie tréjkata
rownobocznego o dowolnej wielko$ci — charakteryzuje. wykres 1. Na osi
pionowej podano tu wartosci blednosci dla jednostki wagi, na osi za$
poziome] odleglo$¢ miedzy dwoma punktami oraz ilosé bokow (40-kilo-
metrowych) Iaczacych te dwa punkty !. Na tym wykresie krzywa (1) po-
daje wartosci blednosci dla sieci niewyréwnanej. Jest to wykres prawa
przenoszenia si¢ bledéw o postaci F=y/p,

Wykres 1
S
3
3‘
7SS
SV 5
S.& S
REL B
s S
SR g \ .
l Ste S| £, (1:_ Krzywa dia sieci nie-
8 S | wyrownanegy
~Q E : |
N 3
&S 5§
S = 5
S ] £ 21 Krzywa dlu sieci wy-
s I S /a'w%anej dia alzeg}z
RS obszard
26 (3 Hrzywa dia siect wy-
§ —_— : fuld) rmgnang/ dla wdz
— Obszary
Ry e
P
// -~
z
7 v 0 15 20 2%
200km 400km G00km 800km 1000km Odleglosc dia madutde 40km

1l0S¢ modutin ———wm

Krzywa (2) przedstawia wykres blednosci dla sieci wyréwnanej.
Powstal on w ten sposéb, ze wyliczono na podstawie wyréwnania metoda
prof. Warchatowskiego wartosci bledno$ci dla najdiuzszej i najniekorzy-
stniej potozonej (na brzegu) odleglo$ci w sieci o ksztalcie trojkata o wy-
miarach 1X1 modul, nastepnie w sieci 3 X3 moduty, 5X5 i 7X7 modutéow
(rys. 3a, b, ¢, d).

W metodzie prof. E. Warchalowskiego pomierzonymi i wyréwnywa-
nymi elementami sieci sa dlugosci bokéw. Jest to wiec metoda wyréwnania
sieci triangulacyinej liniowej, za ktéra mozemy uwazaé¢ takze sie¢ zbudo-
wang z tréjkatow wyliczeniowych. Przy wyréwnaniu ta metoda wyrazamy

1 W dalszym ciaggu ilo$¢ bokow laczacych dwa punkty bedziemy nazywali ilo-
$cig modutow.

12*
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najpierw katy w funkcji bokéw odpowiednich tréjkatow. Jak wida¢, jest
tc rozwigzanie jednoznaczne, tak ze jedynymi warunkami nadliczbowymi,
jakie nalezy uwzgledni¢ w sieci przy jej wyréwnaniu, sa warunki hory-

JAVAVAVAVAVAVAY
% JAVAVAVAY AVAVAVA
N \VAVAVAVAVAVAVAV/

Rys. 3a Rys. 3b Rys. 3c Rys. 3d

zontu. Ilo$¢é warunkow w sieci trojkatowej prostej jest zatem réwna ilosci
punktéw wewnetrznych sieci, co niezmiernie utatwia wyréwnanie tak pod
wzgledem mys$lowym, jak i pod wzgledem nakladu pracy.

Ksztalt tych warunkéw podanych juz w formie liniowej i zgodnie
z rys. 4 jest nastepujacy:

1 A 1 1 1 1
(ay9) s — —t (+ — + + = *\) +
4 ag Qo D1 Qoq P17 Qs Py —0y P,
1 A, 1 1 1 1
+(a,s) = (+ e = ‘)Jr .....
Qoo * Qo3 Po— 0o Pe—a P2 Q3 D.
1 A 1 1 1
..... +(ag) — —° (+ = oot L *L)+
4 apsrag Ps—Qos Ps— Aoy Pe—Ugq Ps
1 Ay 1 1 1 1
+(a0,)[~ e -(+ - - ——=J+
4 apet Qo Pe— Qs Ps— Aoy Pe— g P/
1 A [ 1 1 1 1\
+ '-'*’"(— + — ——)]-}- .........
4 ag @y \ Py Qo P Qo2 P1—ay, P/
1 A, 1 1 1 1
Y R S T S S U
4 Gg;° Qg Ps—Qcs Ps—ag P5— 05 Ps

1 A 1 1 1 ' 3
NS0 U S ) o
4 oy Ps— Qog Ps— Aoy Ps— Qg Ps/

2 Dla wyréwnania sieci na powierzchni elipsoidy zmienig sie jedynie wyrazy
wolne.
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gdzie: w= (Z arc tg —180° ) -sin1”,

P—Qix
(amn) — poprawka boku P,,—P,,

Am — powierzchnia trojkata m,

pm — polowa obwodu tréjkata m,
aik—bok Pi—Pk, "

Toin = /(_Pm o aoi) * (pm = aok) * (Pm — Qi)
oik — l -
Pm Rys. 4

Dla tréjkatow réwnobocznych o bokach jednomodutowych wspoétezyn-
niki przy poprawkach przybieraja wartosci + 0,57 lub — 0,57.
Za str. 178 zalaczono przyklad wyrdéwnania i obliczenia btednosci dla

sieci o wymiarze 3X3 modutly.

Tablica I zawiera warto$ci uzyskane z obliczen, ktore postuzyly do konstrukcji
nrl1i?2

Tablica I
| Odlegto$¢é na brzegu obszaru QOdlegto$¢é w srodku obszaru
SN BT B e
| Tlogé | i . ’ \
moq, | Fn | Fu | FamFy Py =Fy | P { Fyp | FuFop [Py —Fos,
| _ 7’v SR ’ } ) ! N
o fofof o | — JoJof o | -
| 1 |1 oool 0957| 10,043 | 0957 | 1,000 0957 0,043 | 0957
3 1 1732 1,569 | 0163 | 0612 | 1732] 1432 0300 | 0475
| ; — - - - -
5 | 2,236]1925| 0311 | 035 |2236] 1,612] 0628 | 0,180
| 7 2646\ 2 177‘ 0469 | 0252 | 2646! 17291 0,917 L0117

gdzie F, jest blednoscia przed wyréwnaniem, a F, blednoscia po wyréwnaniu.
Nastepnie z réznic (Fr. — Fw) z tab. I skonstruowano wykres nr 2. Na wykresie tym
przeekstrapolowano krzywa roéznic (2)’ przyjmujac, ze miedzy dwoma ostatnimi punk-
tami pochodzacymi z wyliczenia krzywa ta jest juz linig prosta. Jest to konstrukcja
dostatecznie dokladna dla wykonywanej analizy. Z warto$ci krzywej roznic i krzywej
dla sieci niewyréwnanej tworzymy krzywa (2) na wykresie nr 1 dla sieci wyréwnanej.
Z kolei przeprowadzono podobne badania dla takich samych odlegtosci, lecz poto-
zonych mozliwie najkorzystniej na obszarze objetym triangulacja, czyli wewnatrz tego
obszaru (rys. 3a, b, ¢, d) i otrzymano krzywa (3) — wykres nr 1. Warto$ci tej krzywej
obliczone dla odcigtych wigkszych od 9 modutéw praktycznie nie wykazuja wzrostu.
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Wnioski wyplywajgce z krzywych 2 i 3 dla triangulacyj liniowych:
a) Calg sie¢ w miare mozno$ci nalezy wyréownaé rownocze$nie.

b) Przy sieciach o ksztalcie zbliZzonym do kota lub kwadratu naj-
wigkszy wymiar sieci moze zawiera¢ dowolnie duzg ilos¢ bokow,

co nie wplywa ujemnie na doktadnos$¢ sieci.

¢) Dla sieci niezbyt rozlegtych nalezy zwiekszy¢ ilos¢ bokow, przez
ich skrécenie. Wyplywaja stad nastepujace korzysci: zwieksza sie
doktadno$¢ pomiaru kazdego boku (m,, maleje), zwieksza sie do-
ktadno$¢ wyznaczenia odlegto$ci miedzy dwoma punktami sieci
krotszej od odleglosci maksymalnej (schematycznie zaznaczone
liniami kreskowanymi na wykresie nr 2), a doktadno$¢ wyznacze-

nia tej ostatniej nie maleje 3.
d) Najwieksza dokladno$¢ uzyskujemy w centrum sieci.

e) Dokladno$é pomiaré6w radarowych jest juz prawdopodobnie w tej
chwili wystarczajaca dla triangulacji pod warunkiem, ze do
réwnoczesnego wyréwnania bedg brane sieci dowolnych rozmia-_
réow, lecz o krotkich bokach obarczonych niewielkimi bledarm

Srednimi.

Znaczny wspoélczynnik bezpieczenstwa dla przewidywanej dokladnosci
stanowi fakt, ze do konstrukeji krzywych przyjeto — ze wzgledu na ilosé
c obliczeniowych — sieci o wymiarach trojkatnych, wykazujgcych
mniejszg ilo§¢ warunkéw nadliczbowych, niz tak samo rozleglte sieci
sztalcie owalnym, spotykanym na og6t w praktyce (np. obszar Polski).
Jest to wiec rekompensata za zmniejszenie doktadno$ci w sieci rzeczywi-
stej, wywolane znieksztalceniem tréjkatow (tréjkaty roéznoboczne).

3 Podobna mys$l rzucit ostatnio w odniesieniu do sieci wypelniajacej katowej
prof. S. Hausbrandt. Przeanalizowal on sie¢ triangulacyjng za pomocg 4 Scistych kry-
teriow charakteryzu;acych ja pod wzgledem dokladno$ciowym. Zadne z nich nie

przemawiato za siecig wielkotrojkatowa.

W pracy niniejszej oprocz analizy obliczeniowej ujetej w formie wykresu nr 2

zbadano proponowang sie¢ za pomocg wzoru A. Otrebskiego.

m
o w Nk
W=g "
n
m., w
gdzie mw — blad $redni spostrzezenia po wyrownaniu
Ma — przed wyrownamem,
Nk — 1105c spostrzezen komecznych do wyrownania sieci,
nw — , wszystkich spostrzezen dokonanych w sieci.

W sieci tréjkatowej prostej

=2n?+5n—1; nw=23n*+3,5n dla n parzystego.
2n%+5n—1 2

Wobec tego: lim ———=—.
I tak dla:

n-oo  3n*+43,5n 3

2 4 6 8 10 oo 20
0,895 0,823 0,783 0,759 0,743 ... ... 0,708

n
M2

([l



Przyklad wyréwnania sieci o wymiarach 3 X3 moduty
(Obliczenie wykonano metodg warunkowg w ujeciu krakowianowym)

' 1 | 2 3 | 4 I 5 | 6 | 7 | 8 | 9 ! 10 ’ 1 \ 12 | 13 I 14 | 15 | 16 l 17 \ 18 l 19 | 20 | 21 | 22 I 23 I 2 [ 25 f 26 | 27 I 28 l 29 i 30 [ 31 I 32 | 33 | 34 ’ 35 | 36 [ 37 ] 38 I 39
B, +1 +1 +1 . . .
B, - +1 +1 +1
B; +1 +1 +1
B, +1 . +1 . . . . . . . . +1
I | +057 : +0,57 | —0,57 | —0,57 | +0,57 | —0,57 | —0,57 +0,57 | —0,57 | —0,57 | +0,57 | +0,57 @
11 +0,57 | +0,57 | —0,57 | —0,57 | +0,57 | * —0,57 | —0,57 | +0,57 | —0,57 | —0,57 | +0,57 . . . . . . +0,57
11 +0,57 . : +0,57 | —0,57 | —0,57 | +0,57 —0,57 | —0,57 | +0,57 | —0,57 | —0,57 | +0,57 | +0,57
v +0,57 40,57 | —0,57 | —0,57 | +0,57 —0,57 | —0,57 y +0,57 | —0,57 | —0,57 | +0,57 . . . +0,57 -
v > +0,57 +0,57 | —0,57 | —0,57 | +0,57 . —0,57 | —0,57 +0,57 | —0,57 | —0,57 | 40,57 | 40,57
VI ‘e 40,57 40,57 | —0,57 | —0,57 | +0,57 . . . . —0,57 | —0,57 | 40,57 | —0,57 | —0,57 | +0,57 +0,57 |
s | +157 | +1.57 | +157 | +0.57 | —0,57 | | | +1.00 | | —0.57 | +0,57 | —0,57 | —0,57 | —0,57 | 0,57 | +0,57 | | —0.57 | +1,00 | - | —057] | +1,57 | +1,00 | +1,00 | +1,00 | +057 | +1,00 | —0,57 | —0,57 | | +1,57 | | | +0.57 | —0,57 | —0,57 | +157 | +0,57
Krakowian réwnan korelat (dolne liczby w kratkach) Krakowiany a-tw':r (gérne liczby)
oraz pierwiastek r (gérne liczby) Krakowiany a-tw’ (dolne liczby)
1,2, 3, ......=Nr spostrzezenia (boku) L,, Lo, Ly, . .. . ..
) 3§ O 6 ARSI =Nr réwnania warunkowego I ’ I o I v v VI B B, B, B, S
Funkcja: B,=L, +L, +L, =
By= Loy +Los + Las . +1,9745 { . . —0,4936 —0,4936 40,1645 +0,2887 +0,2887 +0,2887 +0,2887 42,3066
By=Ly;+Lyp+Lys — Kontrola dla B, +3,8988 . . —0,9747 —0,9747 +0,3249 +0,57 +0,57 +0,57 40,57 +4,5543
B,=Ly +L,,+L,; — Kontrola dla B, =
- +1,9745 co —0,4936 +0,1645 —0,4936 +0,2887 40,2887 40,2887 +2,0179
+3,8988 . —0,9747 40,3249 —0,9747 +0,57 +0,57 +0,57 +3,9843
3E +1,9745 +0,1645 —0,4936 —0,4936 +0,2887 40,2887 +0,2887 42,0179
+3,8988 +0,3249 —0,9747 —0,9747 +0,57 +0,57 +0,57 +3,9843
5 +1,8397 —0,5740 —0,5740 +0,4647 +0,0516 40,4389 —0,4906 +1,1563
+3,8988 —0,9747 —0,9747 +0,57 . +0,57 —1,14 +0,3249
0 +1,7479 —0,7926 +0,2070 +0,5061 —0,3722 +0,3009 +1,5971
+3,8988 —0,9747 . +0,57 —1,14 +0,57 +0,3249
o~ +1.5578 +0,3375 +0,3375 —0,6070 ~0,6070 +1,0188
+3,8988 - - —1,14 —-1,14 —1,9551
Fo=Vap—lea—(am' : r)t= 1,5686 1,5686 1,4319 14319
2 — " 3,0000 3,0000 3,0000 3,0000
F,=ap '‘a=

Zestawienie wspotczynnikéw przy
spostrzezeniach w funkcjach
B, By, By, B; -

| (Krakowiany a wypisane dla pros-

toty obliczenia w formie wierszy)

Zestawienie wspélczynnikéw przy
poprawkach w ré6wnaniach warun-
kowych (krakowian tw')
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Na podstawie wykresu nr 1 mozna takze natychmiast ustali¢, jak duze
nalezy tworzy¢ tréjkaty wyliczeniowe (z juz raz utworzonych tréjkatow
mniejszych) przy wyréwnywaniu sieci tego typu dla calego kontynentu,
aby nie przekroczy¢ zadanych granic dokladnosci.

Wykres 2

Arzywa dia Srodka obszaru

l w ' Krzywa dla orze-
<
u\t

. . (@ qu obszaru
= 05 /

o '/.

02 %. _—

ilos¢ modutow

v

Podamy teraz kroétkie poréwnanie sieci nowego typu z siecia dotych-
czas stosowang biorac pod uwage nastepujace wzgledy:
1) ilo$¢ prac pomiarowych i obliczeniowych,
2) szybko$¢ wykonania,
3) uzyskana doktadnosc.
ad 1) Przy triangulacji nowego typu odpada koniecznosé tworzenia trian-
gulacji T i II rzedu, a w zamian za to nalezy pomierzy¢ np. dla
Polski 300—400 baz o diugosci srednio ok. 2,5 km wraz z przenie-
sieniem bazowym na bok 8-kilometrowy. Wyréwnanie za$ ograni-
cza sie do rozwigzania ok. 400 zespoléw réwnan warunkowych o ok.
30—40 rownan w kazdym i jednego zespoiu o ok. 200 réwnaniach
warunkowych.
ad 2) Wykonanie pomiaru 300—400 baz i ich rozwinie¢ jest niewatpliwie
praca mniej czasochlonng niz wykonanie triangulacji I i II rzedu.
Bardzo wazne jest tu znaczne uniezaleznienie sie od warunkéw
atmosferycznych. Wyrdwnanie sieci nowego typu mozna by po-
wierzy¢ szeregowi grup obliczeniowych, ktére moga pracowac réw-
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noczes$nie. Wyrownanie ostateczne, obejmujace rownoczesnie obszar
catego panstwa, jest znacznie uproszczone.

ad 3) Dokladno$¢ pomiaréw i obliczenia sieci nowego typu jest wielo-

krotnie wyzsza niz sieci dotychczas stosowanych, co obrazuje wykres

nr 1. Nalezy tutaj zaznaczy¢ takze, ze sie¢ nowego typu sklada sie

tylko z krotkich celowych, ktére, jak wykazuje do$wiadczenie, cha-

rakteryzujg sie wiekszg dokladnoscig pomiaréw niz celowe dtugie.

W przypadku gdyby sie¢ nowego typu miala znalezé¢ zastosowanie na

terenie juz objetym triangulacja, nalezaloby pomierzy¢ brakujgcag ilo$c

baz. Przy wyréwnaniu i obliczeniu pomiary dotychczasowe, wykonane dla

triangulacji I i II rzedu, zostalyby uwzglednione z odpowiednimi wagami.
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PE3IOME

Llenbto naHHOM CTaTby 9BISETCS MCCIIEOBaHUE BO3MOKHOCTH 3aMEHUTh RJIAaCCHYECKYIO
cxeMy rocymapcTBeHHOU Tpuanrynsiuuu I-1ll RIaccoB ceTblo, ‘cocTosiuieil U3 BbIYMCIHUTE-
JIbHbIX TPEYroJbHUKOB, NMpensiokeHHylo npodeccopom T. KoxmaHckuM. CornacHo 3Toro
npenJjioxkeH s TEPPUTOPHS, Ha KOTOPOM JOKHA ObITb NMOCTPOEHA TPHAHTYJSILMS, NOKpPbI-
Baercs CeTbIO TPEYroJibHUKOB CO CTOPOHAMW [OJIMHOW OK. 8 KM., B KOTOpOW H3MEpSIOTCS
BCE€ YrJbl; B MOCNENYIOLIEM W3 3TOH CETH COo3haercd CeTb T. Has. ,,BbIYUCIIUTENBHLIX Tpey-
roJlbHMKOB* CO CTOpPOHaMH MJIMHOK OK. 40 KM. [1pu 3TOM nonaraercs, 4TO B KamAOM, HIH
B Ra»OOM HAPYroM BblYHCIMTENbHOM TPeyrojibHHRe GYHeT U3MepeHa TeM MJIM WHbIM Co-
co60M ofHa 8-KWIIOMETPOBas CTOpPOHA C LENbl OnpefeseHus OJIMH CTOPOH COOTBETCTBY-
IOLLETO BbIYUCIIMTENBHOIO TPEYroibHHKA.

YpaBHHBaHHWE TaKkoO# ceTH cnaraercss M3 3-X 3Tanos:

1. ypaBHMBaHHWe ok. 400 cucrtem, cocrosdwrx u3 30—40 ycnoBHbIX ypaBHEHWH H BbIYMC-
JieHHe OJIMHbI CTOPOH BbIYHCJIMTENIBHBIX TPEYroJbHUKOB; KamAas U3 3THX CUCTEM OXBaThi-
BaeT CeTb 8-KRWIIOMETPOBbLIX TPEYrOJIbHUKOB, paclo/IOKEHHbIX BHYTPH COOTBETCTBYIOLIErO
BbIYMC/IMTENIBHOIO . TPEYroJibHUKa.

2. COBMECTHOE ypaBHHWBaHWe CETH BbIUMC/IUTENIbHbLIX TPEYroJIbHWKOB MO MeToAy mnpodg
3. BapxanoBckoro (okr. 200 yc/oBHbLIX ypaBHEHMH),

3. NOBTOpPHOE YpaBHHBaHHE CUCTEM, TEPeYHC/IEHHbIX B MEPBOM 3Tane, ¢ BR/IIOYEHHEM
ypaBHEHHH, BbITERAIOLIUX M3 MPHUBA3KM K 3-M TBEPAbIM NYyHKTaM — BEpLIMHaAM COOTBET-
CTBYIOLLIMX BbIYHCJIMTEIbHBIX TPEYrOJIbHHKOB, COBMECTHO YpaBHEHHbIX BO BTOPOM 3Tamne.
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AHain3 TOYHOCTH NMpHUBENEHHbIH B CTaTbU B popme rpadpukOB NpUBEN aBTOpa K y6ex-
I€HHIO, 4YTO npejjaraeMas C€Tb Ha MHOroO NMPEBOCXOAMT MO TOYHOCTH NPHMEHSEMble [0
CHUX TOP CXeMbl NMOCTPOEHHS TpHaHrynsuuu. O6beM H3MEpPHUTENbHBbIX U BbIYMCIIMTENbHBIX
pa6or, a Takke CTOMMOCTb MX ObllM Obl 3HAUHUTENbHO MeHbLUMMH. Kpome Toro, cetb Ta-
ROro THMa MOMKHO Obl JIETKO NMPUMEHMUTb [JIS 3HAYMTENIbHO GOJIbLUMX NMPOCTPAHCTB, Harmp.
IS LeJIoro MaTepuka.

RESUME

L’objet de cet article que l'auteur voulait atteindre est 'examen des possibilités
de remplacement de la triangulation classique d’Etat (du ler jusqu’au 3e rang) par
le réseau de triangles établis moyennant les calculs dont la conception fut proposée
par le professeur T. Kochmanski. D’aprés ce systéme 1'étendue, sur laquelle doit
étre effectuée la triangulation, doit étre couvert par le réseau de triangles aux cotés
huit kilomeétres longs environ. Dans ce réseau il faut mesurer tous les angles et puis
par la voie de calculs on établi de ce réseau un nouveau réseau soi-disant de
.Triangles calculés* et dont les coétés ont une longueur de 40 kilomeétres environ.
11 faut admettre que dans chaque ou chaque deuxieme ,triangle calculé“ on mesure
par n'importe quel systéme un 8-kilometres long c6té afin d’établir la longueur des
cotés du correspondant ,triangle calculé“.

La compensation de ce réseau implique trois phases du travail, a savoir:

10 La compensation de 400 ensembles environ dont chacun est composé de
30 a 40 équations de condition et le calcul du longueur des co6tés des ,triangles
calculés“. Chacun de ces ensembles contient le réseau des triangles de huit kilo-

meétres qui sont situés a l'intérieur du respectif ,,triangle calculé®;

20 La compensation simultanée du réseau des ,,triangles calculés® par la méthode
élaborée par le professeur E. Warchatowski (200 équations de condition environ);

30 La compensation nouvelle des ensembles cités dans la premiere phase mais
qui sont élargies par les équations qui résultent de la liaison avec les trois points
fixes comme les sommets des ,triangles calculés“ correspondants et qui ont été
simultanement compensés dans la seconde phase.

Par une analyse approfondie de l'exactitude, presentée dans cet article sous la
forme des diagrammes, l'auteur est arrivé a une conviction que le réseau proposé
surpasse de quelques fois, quant a son exactitude, tous les réseaux précédents.
I1 faut souligner aussi que la quantité des travaux de mesurage et de calcul ainsi
que les frais y relatifs seraient dans cette nouvelle proposition réduits considérable-
ment.

De plus, il serait tres facile appliquer ce réseau pour l'étendue beaucoup plus
vaste, par exemple pour le continent entier.
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Zbigniew Czerski

O zmianach w polozeniu osi obrotu lunety w teodolitach Wilda T4

W kwartalniku ,,Geodezja i Kartografia®“ tom IIT, zeszyt 2 1954 r. ukazala sie
praca mgra ins Blazeja Duliana na temat zmian w polozeniu osi obrotu lunety
w teodolitach astronomicznych oraz sposobu ich wyznaczania!.

W pracy tej autor omawia dwa charakterystyczne zjawiska, ktére przez niego
zostaly stwierdzone w teodolitach astronomicznych.

Pierwsze z nich polega na tym, ze naprowadzajac lunete na jakikolwiek odlegly
cel raz ruchem lunety z dotu do gory, a drugi raz z géry na dot — otrzymuje sie
rézne odczyty azymutalne. Nalezy przy tym uwazaé, aby kierunek obrotu leniwki
kota wierzcholkowego byt zgodny z obranym Kkierunkiem naprowadzenia lunety.
Zmiana ruchu, chociazby najdrobniejsza, jest niedopuszczalna. Z podanych zesta-
wien badan teodolitow Wilda T4 i Zeissa 100/100 m wynika, ze zjawisko to powoduje
réznice odezytow azymutalnych rzedu kilku sekund (od 2” do 4”). Wplyw tego zjawi-
ska na wyniki pomiaréow azymutalnych eliminuje sie, jesli przestrzega sie zasady
réznokierunkowego, lecz systematycznie powtarzalnego naprowadzania lunety na cel.

Drugie zjawisko jest $ci$le zalezne od odlegtos$ci zenitalnej osi celowej i polega
na systematycznej zmianie odczytu azymutalnego. Wplyw tego zjawiska nie elimi-
nuje sie w Sredniej arytmetycznej z pomiaréw w obu polozeniach lunety, wchodzi
wiec do ostatecznego wyniku pomiaru jako blad systematyczny. W szczegdlnosci
znieksztatca np. azymut przedmiotu ziemskiego z obserwacyj Polaris. Specjalne
badania przeprowadzone przez inz. Duliana pozwolily na ustalenie wielkosci tego
btedu dla trzech teodolitow Wilda T4 starego typu (dla odleglosci zenitalnej Polaris
z=37°) i wprowadzenie poprawki do zaobserwowanych azymutow.

Powtarzamy ponizej ostateczne zestawienie wynikéw podane przez autora na
str. 70 omawianego artykutu:

Numer teodolitu 16969 16956 16957
Sredni azymut obserwo-
wany i $redni blad jego 2°920'41,37" +0,23" | 40,69” +0,44" 40,71 +0,20”

Poprawka na zmiane w
potozeniu osi obrotu lu-
nety —0,68" ’ —0,39 +0,02"

40,30" { 40,73"

{ S
Azymut poprawiony | 40,69"

Wystepowanie pierwszego zjawiska tlumaczy inz. Dulian zmiang polozenia osi
obrotu lunety przy réznych kierunkach jej naprowadzania na cel, przy czym zmiana
ta ma by¢ spowodowana:

! Praca dotyczy glownie teodolitow Wilda T4.
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1. ,,CzeSciowym toczeniem sie¢ czopoéw w lozyskach zamiast wylacznego obrotu
lunety dokota swej osi“.

2. ,Wypychaniem czop6w z lozysk alidady wskutek szkodliwego napiecia sit wy-
stepujacych w czasie obrotu lunety dookota swej osi®.

W teodolitach Wilda T4 starego typu, ktore byty badane przez inz. Duliana, kazdy
czop spoczywa na dwoch podstawkach walcowych: Kat srodkowy kazdej z tych pod-
stawek wynosi 26°, za§ kat miedzy ich promieniami centralnymi 90° (rys. 1). Jest to
konstrukcja lozyska typu Y, ktora, jak wiadomo, wyklucza mozliwo§¢ potoczenia sig
osi do stanu rownowagi statej. Istotnie, gdyby takie toczenie miato zachodzi¢, czop
musialby sie oderwaé od jednej podstawki. Rozklad sit dziatajacych w punkcie

Rys. 1

styczno$ci czopa z lozyskiem przedstawialby sie jak na rys. 2. Oznaczajac przez p sitg
ciezko$ci czopa lgcznie z innymi masami, ktére na nim spoczywaja, otrzymaliby$my
na wartos¢ sity stycznej:

p,=p-sin 45° =~ 0,7 p.

Sila ta wynositlaby w praktyce kilka kilogramow i w zadnym razie nie mogtaby by¢
rownowazona silg tarcia czopa w lozysku. Trudno réwniez przypusci¢, aby moégt dzia-
la¢ na czop jednostronny nacisk tej wielko$ci rownowazacy omawiang site.

Stan rownowagi stalej przy potaczaniu mozliwy jest w innej konstrukeji tozyska,
gdy mianowicie styczno$¢ czopa z lozyskiem zachodzi w punkcie najnizszym czopa.
Wowezas skladowa styczna jest niewielka i moze by¢ zrownowazona silg tarcia lub
jednostronnym naciskiem. »

Fizyczne wytlumaczenie zjawiska pierwszego, stwierdzonego przez inz. Duliana,
jest zagadnieniem trudnym. Mozna by przypuszczaé, ze przy jednokierunkowym
obrocie czopa oraz na skutek jednostronnych naciskow, ktoére inz. Dulian nazywa
prawdopodobnie ,,szkodliwymi napieciami sit“, smar wyciska sie na jednej podstawce,
gromadzi za$§ na drugiej, umozliwiajgc przesuniecie czopa w plaszczyznie poziomej.
Rowniez przypuszczaé mozna, ze obrot czopa moze powodowaé odksztalcenia spre-
zyste podstawek, zalezne od kierunku obrotu. Obie te przyczyny moga dawaé¢ zmiany
w polozeniu osi obrotu lunety, lecz o charakterze ro6wnowagi niestatej. Totez byloby
interesujace zbada¢, czy zjawisko stwierdzone przez inz. Duliana nie cofa sie po
pewnym okresie czasu (nawet do$¢ diugim).

Jesli chodzi o wyeliminowanie szkodliwego wpltywu zjawiska pierwszego na po-
miary azymutalne, nasuwa sig logiczne pytanie, czy nie byloby najprosciej stosowaéc
regule jednokierunkowego nastawiania lunety na cel przez przestrzeganie klasycznej
zasady obracania leniwka kota pionowego zawsze zgodnie ze wskazowkami zegara.
Regula, ktéra zaleca stosowa¢ inzynier Dulian, jest bardziej skomplikowana i obcigza
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pamigé obserwatora dodatkowymi czynno$ciami; uzasadnienie tej reguly pomija
autor milczeniem.

Wystepowanie drugiego z kolei zjawiska mozna wytlumaczy¢ niecylindrycznos$cia
czopow. Profil czopa nie jest w rzeczywistoSci kolem, lecz inng linig krzywa.
Przyjmujac pewien staly promien odniesienia r mozna przedstawi¢ te krzywa
w ukladzie biegunowym (@) =14+ dr(@).

Je$li przyrosty promienia dr w obu miejscach styku B, i B, nie sg jednakowe,

nastapi przesuniecie Srodka czopa z punktu O do punktu O, (rys. 3). Rzut tego prze-
suniecia na plaszczyzne pozioma wyrazimy

A=d,r-cos 45°—d, r-cos 45°. (\/ \,vo
. . . SO A
Zal6zmy przypadek najbardziej niekorzys- /‘\ NG, //(\
tny gdy oba przyrosty przyjmuja wartosci 6/

maksymalne dla danego profilu(c) i maja
znaki przeciwne, wowczas

A=y 2-c.

Zalozmy z kolei, ze réwnocze$nie przesu-
niecie drugiego czopa jest identyczne co do
wielkosci i1 kierunku. Odlegto$¢ miedzy
czopami w teodolicie T4 wynosi 310 mm,
wobec czego na zmiane kierunku osi celo - Rys. 3
wej lunety w azymucie otrzymujemy

gy= 2V e

310

Idac dalej po linii najbardziej niekorzystnej przyjmijmy, ze w drugim polozeniu
lunety efekt byt identyczny co do wielkosci i znaku. W $redniej arytmetycznej otrzy-
mamy zatem:

8,

ertey
£y=—— =1880c.
. 2

Dotychczasowe rozwazania dotyczyly, powiedzmy, miry. Zalézmy w dalszym ciggu,
ze przy obserwacji gwiazdy wystepuje ten sam maksymalny wplyw, lecz znaku prze-
ciwnego eg=—1880c.

Poprawka do azymutu wyniesie zatem

€, —€¢=3760c. (12)
W teodolicie Wilda T4 ¢=0,0001 mm otrzymujemy wiec

e—es=0,38".
Zwrotmy uwage, ze prawdopodobienstwo wystepowania tego maksimum maksimo-
rum jest niezmiernie mate, a nawet mozna powiedzie¢, ze przypadek ten jest prak-
tycznie niemozliwy. Istotnie w przeprowadzonych rozwazaniach zatozyliSmy, ze
maksymalne i minimalne przyrosty promieni wystepujg po cztery razy na obwodzie
kazdego czopa, nie mdéwigc o tym, ze sa w pewien okreslony sposob wzgledem
siebie usytuowane i ze réwnoczesnie usytuowane sg w okreSlony sposob wzgle-
dem siebie profile obu czopéw. W rzeczywisto$ci profile czopéw moga miec

* Poréwnaj: Odermatt — Introduction a la détermination des lieux — 1954.
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ksztalty zupelnie rozmaite z pewna tendencjg do ksztaltu eliptycznego (ostatnie
badania metoda elektronowa wykonane przez De Munck’a — Kongres Unii Geode-
zyjno-Geofizycznej, Rzym, 1954 r.), rownoczesne zas usytuowanie tych profili wzgle-
dem siebie w sposéb najbardziej niekorzystny jest bardzo mato prawdopodobne. Prze-
ciwnie w cyklu obserwacji mira — gwiazda musi nastapi¢ zawsze pewna kompen-
sacja przesunieé czopdéw, dzieki czemu nalezy sie liczy¢ w praktyce z poprawka do
azymutu znacznie mniejszg od 0,38”. _

Tak czy inaczej kilka dziesigtych sekundy tuku jest to wielko$¢, ktora lezy poni-
zej lub na granicy osiagalnej dokiadnosci wyznaczenia azymutu najbardziej precy-
zyjnymi metodami i instrumentami.

Z podanego na poczatku zestawienia wynikéw badan inz. Duliana wynika, ze
tylko w jednym przypadku poprawka przekracza $redni biad wyznaczenia” azymutu,
w pozostalych dwodch jest mniejsza od tych btedéw. Metodzie wyznaczenia poprawek
pomystu inz. Duliana nie mozna postawi¢ logicznych zarzutéw, jednakze jest to
metoda nader skomplikowana i nasuwa stad mozliwosci wystepowania dodatkowych
bledéw instrumentalnych, systematycznych i przypadkowych. Inz. Dulian nie charak-
teryzuje stopnia niepewnosci wyznaczonych poprawek, z uwagi jednak na to (str. 64),
,ze ilo§¢ serii nie powinna by¢ mniejsza od 100“, mozna przypuszczaé¢, iz roznice
miedzy poszczegdélnymi wynikami pomiaréw sa znaczne.

Ponadto mozna sie spodziewa¢, ze wplyw rodzaju i iloSci smaru oraz temperatury,
0o czym zreszta mowa rowniez na wspomnianej stronie 64, nie jest bez znaczenia

‘ dla warto$ci poszukiwanej po-

! prawki, stad mozna wnioskowaé¢, ze

poprawka ta, wyznaczona w pew-

d nych okreélonych warunkach, nie

’ jest stalg wielkoscia charaktery-
styczna dla danego teodolitu.

Na podstawie powyzszych roz-
wazan mozna mie¢ watpliwosci, czy
proponowane na str. 70 wyznacza-
nie poprawek do azymutow w kaz-

d dym teodolicie jest celowe w zesta-
N—— . . . . -
1.2 wieniu z duzym trudem, jaki trzeba
wtozy¢ w badania, i realnymi korzy-
3i4

Sciamiy~jakie te ba ia przynosza.
Na rys. 4 przedstawiona jest
konstrukcja osi w teodolicie Wilda
T4 nowego typu (aktualnej pro-
dukcji). Kazdy z czopdéw spoczywa
tutaj na dwéch walcowych rolkach,
z ktéorymi styka sie wzdluz tworzg-
cych. Przy obrocie czopa kazda
Rys. 4 rolka obraca sie na swojej osi. Czopy
tych osi spoczywaja dopiero w nie-

ruchomych lozyskach, stykajac sie z nimi wzdiluz dwéch tworzacych.

W konstrukeji tej niecylindryczno$¢ wystepuje nie tylko na czopie osi lunety, ale
réwniez na rolkach i ich czopach. Poniewaz jednak po kazdej stronie mamy w prze-
kroju 5 punktow styku (jak pokazano na rysunku), razem po obu stronach 10, zamiast
2 w konstrukcji starego typu, statystycznie biorgec w kazdym przypadku nastepuje
tutaj znacznie wieksza kompensacja przesunieé o réznych znakach, co w rezultacie
sprowadza praktycznie wplyw niecylindrycznosci do zera.




Geodezja i Kartografia. Tom IV. Zeszyt 3

Kolokwium Komitetu Geodezji Polskiej Akademii Nauk

Dnia 19 lutego 1955 r. odbylo sie w Akademii Gorniczo-hutniczej w Krakowie
II kolokwium Komitetu Geodezji PAN, poswiecone zagadnieniu wyrownania trian-
gulacji wypelniajgcej. W zebraniu wzieli udzial liczni specjalisci z tej dziedziny
z nastepujacych instytucji: Politechniki Warszawskiej, Akademii Gorniczo-hutniczej,
Geodezyjnego Instytutu Naukowo-badawczego oraz Panstwowego Przedsigbiorstwa
Geodezyjnego. Zebraniu przewodniczyt mgr inz. Jerzy Jasnorzewski, cztonek Komitetu
Geodezji PAN. Ogolna ilo$¢ uczestnikéw wyniosta 46 oséb.

Na zebraniu zostaly wygloszone dwa referaty: 1) prof. dra Stefana Hausbrandta
pt.: Analiza poréwnawcza dokladnosci wielkotréjkatowych i matotréjkatowych siect
triangulacyjnych, nawiazana do prac geodezyjnych w Polsce (praca wykonana w Geo-
dezyjnym Instytucie Naukowo-badawczym), oraz mgra inz. Wiadystawa Batkiewicza
pt.: Sieé¢ triangulacyjna zbudowana z tréjkqtéw obliczeniowych (praca wykonana
w Katedrze Geodezji Wyzszej i Obliczen Geodezyjnych AGH na zlecenie Komitetu
Geodezji PAN).

Prof. S. Hausbrandt, miedzy innymi, zajmuje sie w swojej pracy obliczeniem
bledu wyznaczenia potozenia punktu w sieciach mato- i wielkotrojkatowych w zalez-
nosci od przyjetego teoretycznie parametru m, (Sredni btad pomiaru kata). Autor
podkres$la na wstepie, ze zagadnienie to nie jest nowe, gdyz bylo juz rozpatrywane
swego czasu przez Jordana (w r. 1916). Nie zostato ono jednak catkowicie wyczerpane,
prawdopodobnie ze wzgledu na uzycie do analizy metody spostrzezen zawarunkowa-
nych, ktora w takich przypadkach jest mato przejrzysta. Jordan rozwazal sieci
elementarne jedno i czterotréjkgtowe (rys. 1 i 2). Przeprowadzone badania wykazaty,
ze typ drugi daje lepsze wyniki dla boku c. Sredni btad boku ¢ dla typu pierwszego
wyniost 0,000 003 96 m,, a dla typu drugiego 0,000 003 79 m,,.

a, ds
Rys. 1 Rys. 2

Prof. Hausbrandt przyjal w swojej pracy jako wyjscie do analizy krakowian
wspotczynnikowy réwnan bledéw (oznaczony symbolem a). Znajac ten krakowian
i przyjmujac, ze obserwacje katowe w sieci bedg prowadzone ze $rednim bledem
pojedynczej obserwacji m,, mozna przeprowadzi¢ analize dokladnosciowg dowolnej
sieci, opierajgc sie na metodzie najmniejszych kwadratow. Rozpatrzono cztery
kryteria, charakteryzujace sie¢ triangulacyjng pod wzgledem dokladnosci:
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1. wielkos$é $redniego btedu polozenia punktu (ktérego odcieta jest i-ta, zas rzedna
k-ta niewiadoma w ukladzie biedow):

m, =m, V(@) + @)y’

2. wielko$¢ wplywu bledéw nieprzypadkowych, tj. wielkos¢ zmiany dx;, jakiej
dozna i-ta niewiadoma w ukladzie wyréwnanym metoda najmniejszych kwadratow,
jezeli zmienimy k-ta obserwacje (nadajac jej przyrostek dl;) i ponownie wyréwnamy
uklad metoda najmniejszych kwadratow:

dx;=dli- agwa®) g’

3. wielko$¢ sredniego bledu biedu $redniego, okreslong przez znany od czasu
Gaussa wzoér ogélny m,=m: 1/2‘n,, (gdzie n, — ilo$¢ spostrzezen nadliczbowych), ktéry
dla sieci triangulacyjnej wyznaczajacej p punktow z n obserwacyj katowych ma postac:

o m
" VYan—4p

4. warto$¢ przecietna stosunku kwadratu btedu $redniego obserwacji po wyrow-
naniu do kwadratu bledu s$redniego obserwacji przed wyrownaniem. Wielkos¢ ta
(M2) réwna sie — wedlug A. Otrebskiego — stosunkowi iloSci obserwacyj niezbednych
do wyznaczenia uktadu do ilo$ci obserwacyj dokonanych w uktadzie. Dla sieci wyzna-
czajacej p punktow z n obserwacyj:

m

m=22
n

Ze wzgledu na cel prac triangulacyjnych jest najbardziej istotne kryterium
pierwsze, jednak aby unikng¢ zejs$cia na btedne drogi, musi ono by¢ stosowane 1acznie
z kryterium drugim i trzecim. Ogoélnie: kryterium I dotyczy dokladno$ci rezultatow,
a II i III ich realno$ci czy tez pewnosci. Kryterium IVI ma charakter statystyczny
i opiniuje, w jakim stopniu dany uktad obserwacyjny wplywa na zmniejszenie btedow
obserwacyjnych, a to jest celem wyréwnania. Stosujgc powyzsze kryteria do omawia-
nych na poczatku sieci elementarnych jedno- i czterotrojkatowych, autor stwierdza,

ze pierwsze kryterium omawia obydwie sieci jako rownorzedne, natomiast kryteria II,
III i IV wskazywatly zdecydowanie na typ drugi(malotréjkatowy) jako lepszy. Przy
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stosowaniu np. kryterium II stwierdzono dla sieci typu drugiego przesunigcie
punktu n razy mniejsze niz przy typie pierwszym. Rozwazanie zagadnienia doklad-
nosci wyznaczenia punktéw przez zespoly sieci elementarnych (nazwanych przez
autora ,sieciami okrazajacymi“ — rys. 3) doprowadzily do takich samych wynikoéw,
co i poprzednio.

Ponizej jest podane zestawienie poréwnawcze wielko$ci $redniego biedu biedu
$redniego dla sieci okrazajacych typow od a do f:

Ilosé sieci elementarnych | 1 | 2 | 3 | 4 ] 5.] 6 |

a) jednotrojkatowych 0,71m | 0,35m | 0,27Tm | 0,22m | 0,20m | 0, 18m ‘
b) czterotrojkgtowych 0,35 0,20 0,16 ‘ 0,13 0,12 0,10 i

] c) dziewieciotréjkatowych | 0,21 0,13 ‘ 0,11 ! 0,09 0,08 ‘ 0,07 |

Z zestawienia powyzszego wida¢ wyrazZnie wyzszosé sieci matotréjkatowych nad
sieciami wielkotréjkatowymi.

W pracy swej prof. Hausbrandt poza powyzszymi badaniami teoretycznymi
przeprowadzil analize jednej z wykonanych w Polsce sieci triangulacyjnych po-
wierzchniowych. Pomimo zasadniczych brakéw w tej sieci, jak: nieksztattne tréjkaty
o bokach 4—12 km, nierdwnomierne roztozenie punktéw nawigzania, niezbyt dobre
obserwacje (§redni blad pomiaru kata 2,7¢¢) otrzymano dobre wyniki. Sredni btad
potozenia punktu wyniést bowiem 5,1 cm, wobec 55 cm w niemieckich sieciach
podstawowych, przytoczonych w andbuch der Vermessungskunde Jordana—Eggerta.

Praca mgra inz. W. Batkiewicza zostata zainicjowana przez pref. dra T. Koch-
manskiego. Autor, ze wzgledu na duze koszty prac polowych i obliczeniowych oraz
ze wzgledu na mata doktadno$é¢, proponuje zastapienie klasycznej triangulacji I—IV
rzedu sieciag zbudowang z trojkatow obliczeniowych. Poniewaz praca ta zostata
wydrukowana w niniejszym zeszycie kwartalnika, przeto staje sie zbedne omawianie
jej tresci.

W dyskusji, jaka rozwinela sie nad obydwoma referatami, zabierali gtos (w kolej-
nosci wypowiedzi): Rektor AGH prof. dr Z. Kowalczyk, prof. dr T. Kochmanski
(AGH), mgr inz. S. Krynski (GINB), prof. dr S. Hausbrandt (GINB), prof. dr Cz. Ka-
mela (Polit. Warsz.), dr inz. T. Kluss (PPG), mgr inz. W. Senisson (Polit. Warsz.),
prof. dr S. Milbert (AGH), mgr inz. R. Wtodarczyk (PPG), mgr inz. B. Dulian (GINB),
prof. dr J. Piotrowski (Polit. Warsz.), mgr inz. W. Batkiewicz (AGH), mgr inz.
W. Gedliczka (PPG), mgr inz. J. Borysowski (PPG).

7Z wypowiedzi dyskutantow wynika, ze obydwie referowane metody nie sa
przeciwstawne. Pierwsza jest Scista i wyréwnuje obserwacje katowe, druga — pét-
Scisla i na pierwsze miejsce wysuwa pomiary bazowe. Z punktu widzenia praktycz-
nego jest zasadniczo obojetne, jaka metoda wyrdéwnania zostanie zastosowana do
sieci wypelniajgcych, gdyz rzeczg istotnag jest wielkos¢ $redniego btedu potozenia
punktu. W metodzie W. Batkiewicza przy obliczaniu bokéw duzych tréjkatow
nalezy wykorzystywa¢ zachodzgce na siebie pasy trojkatow matych. Bada-
nia GINB potwierdzily stuszno$¢ tez zawartych w pracy W. Batkiewicza, otrzy-
mane bowiem $rednie btedy katéw obliczonych byty ponizej 1cc, przy 3cc dla katow
mierzonych. Wypowiedzi przedstawicieli produkcji réwniez dawaly pierwszenstwo
metodzie malych tréjkatow, ktéra w praktyce data dobre wyniki dokladno$ciowe przy
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duzej oszczednosci kosztow. Uznano potrzebe prowadzenia dalszych badan naukowych
oraz zacies$nienia wspoélipracy o$rodkéow badawczych miedzy sobg i z produkecja.

W wyniku przeprowadzonej dyskusji przyjeto nastepujgce wnioski:

1. Konferencja Naukowa, zorganizowana przez Komitet Geodezji PAN, rozwa-
zajaca koncepcje tzw. sieci wypelniajacych budowanych badz z tréjkgtéw matych,
badz z wielkich stwierdza, ze wyniki badan Katedry Geodezji Wyzszej i Obliczen
Geodezyjnych AGH w Krakowie oraz Geodezyjnego Instytutu Naukowo-badawczego
w linii zasadniczej pokrywaja sie w zupelnosci. Oba osrodki badawcze doszly do
wniosku, iz sieci budowane z trojkatéw matych sg doktadniejsze od sieci budowanych
z tréjkatéw duzych, co potwierdza stusznos¢ koncepcji sieci triangulacyjnej, zbudo-
wanej przez Geodezje Polska w latach 1947—1955. Konferencja uwaza, ze dalsze
badania, zmierzajace do sprecyzowania zagadnienia wyrownania ostatecznego sieci
polskiej, sg aktualne i winny wychodzi¢ z zalozenia jak najmniejszego znieksztatcenia
uktadow obserwacyjnych i oparcia rachunkéw na nowoczesnych maszynach rachun-
kowych. Konferencja uwaza za celowe wykorzystanie w tym kierunku prac Instytutu
Matematycznego w Warszawie, jak réwniez koncepcji maszyny rachunkowej do
dziatan krakowianowych pomysiu prof. T. Kochmanskiego (wniosek prof. S. Haus-
brandta).

2. Uznaje sie za celowe kontynuowanie pracy naukowej mgra inz. W. Batkie-
wicza dla pelnego opracowania metody wyréwnania triangulacji obejmujacej wielkie
obszary (wniosek dyr. S. Krynskiego).

3. W pracy mgra inz. W. Batkiewicza nalezy opracowaé sposob obliczania
dtugosci bokow duzych trojkatéw oraz wykorzystanie punktéow Laplace’a (wniosek
doc. dra S. Milberta).

4. W pracy mgra inz. W. Batkiewicza nalezy:

a) rozciggnac¢ diugos¢ bokow oblikczeniowych tak, Zeby laczyly one punkty
Laplace’a,

b) dotychczasowa sie¢ wypelniajaca wyrowna¢ metoda Pranis-Praniewicza
(w grupach) w ujeciu krakowianowym,

c) po zakonczeniu wyrdéwnania sieci astronomiczno-geodezyjno-grawimetrycznej,
azeby nie obnizy¢ dokladnos$ci sieci wypelniajgcej, nalezy ja wyrdwnaé jak pod b),
lecz jako sie¢ niezalezng; po uwzglednieniu na tym obszarze pomiaréw grawimetrycz-
nych i astronomicznych lacznie z materialami geodezyjno-astronomiczno-grawime-
trycznymi z sieci wiencowych i 1gcznych podda¢ wyrdéwnaniu sie¢ obejmujgcg caly
kraj (wniosek prof. Cz. Kameli).

5. Pozadany bylby taki wybér ukladu sieci wypelniajacej pod wzgledem ilosci
punktow, warunkéw brzegowych i sposobu wyrdéwnania, by przy mozliwie matym
nakladzie pracy, tj. bez powtarzania wyrownania sieci wypelniajgcej (matotroj-
katowej) otrzymacé jej ostateczne wspoélirzedne. Rozumie¢ to nalezy nastepujgco: ilosc
punktéw sieci wypelniajacej winna uwzgledniaé¢ praktyczne mozliwosci wyréwnain
wielkiej ilo$ci punktow. Punkty na stykach sieci wypeiniajacych winny wejs¢ do
niezaleznych wyrdéwnan stykajacych sie sieci. Przed niezaleznym wyrdéwnaniem sieci
wypetniajacych nalezy przeprowadzi¢ wyréwnania stacyjne na wszystkich punktach
sieci wypelniajacych. Oba te warunki sa pewnego rodzaju sprowadzeniem do réwnych
wag stykajacych sie z soba obszaréw sieci wypelniajacych. Powtérnego wyrdéwnania
sieci wypelniajacej mozna unikngé¢ stosujac do niezaleznie wyréwnanej sieci metode
dostosowania do wspoélrzednych wyrdéwnanej sieci obliczeniowej. Metoda ta poza
wielkg wartoécig praktyczng posiada jednocze$nie cenne kryteria, pozwalajace na
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poréwnywanie otrzymanych wynikéw, przez co staje sie mozliwe wprowadzanie

zmian w przypadkach stwierdzonej konieczno$ci (wniosek dra inz. T. Klussa).

6. Nalezy poré6wnaé obserwacje bezpos$rednie triangulacji gtownej z wielkoSciami

uzyskanymi z trojkatéw obliczeniowych i zaleznie od wynikéw:
a) wykorzysta¢ wielkosci obliczone do triangulacji gtéwnej,

b) rozszerzyé¢ triangulacje glowng za pomocg obserwacyj obliczonych do sieci

wypelniajgcej wlacznie (wniosek mgra inz. W. Gedliczki).

7. Z uwagi na dokladno$¢ celowania jak i mozliwos§¢ korzystnego zageszczenia
sieci oraz obnizenia putapu zabudowy nalezy przyja¢ optymalne dlugosci

okoto 7 km (wniosek mgra inz. H. Wlodarczyka).
Na podstawie protokolu zebrania sprawozdanie opracowal

mgr ing. Janusz Tatarkowski (AGH)

Errata do tomu IV zeszyt 2 ,,Geodezja i Kartografia®
strona wiersz wydrukowano powinno by¢
152 T ob | drg db i dr,
i s g =0
3 oc g0y oz = oz az. ' az
ow ow ow cw
23 od gor, £,=C(z) —+C —_— e, =C(Z) — +C{(Z)—
132 gory (2) % +Cy(2) or z ( o -—Cy 210
ob dr, db dr,
1 od gé Z)=—1 C|(2)= C(Z)y=— 1 G(Z)=—
133 od goéry C(2) oz 1(2) iz (2) iz 1(Z) iz

boku
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