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Geodezja i Kartografia. Tom IV. Zeszyt 3

Włodzimierz Krysicki

O pewnym zastosowaniu i o oszacowaniu 
rozkładu Studenta

1. Zastosowanie rozkładu Studenta do eliminacji pomiaru budzącego 
wątpliwościGdy dokonujemy pewnej ilości niezależnych, jednakowo dokładnych pomiarów tej samej wielkości, to każdy wynik pomiaru uważać można za wartości tej samej zmiennej losowej; zakładamy w dalszym ciągu naszych rozważań, że zmienna ta podlega rozkładowi normalnemu (Gaussa) o nieznanej średniej m i nieznanej wariacji u2 to znaczy, że gęstość prawdopodobieństwa jej rozkładu wyraża się wzorem

= e 2ff2 ■ (1)
a pZałożenie takie można przyjąć np. w przypadku, gdy wszystkie pomiary są dokonane tym samym przyrządem.Na temat prawa błędów Gaussa warto przytoczyć tutaj cytat Poin- carego1: „wszyscy przekonani są o słuszności prawa błędów, zakomuni­kował mi pewnego dnia M. Lippmann, eksperymentatorzy — ponieważ sądzą, że jest to twierdzenie matematyczne, matematycy — ponieważ uważają to za fakt eksperymentalny". I obie strony właściwie mają rację: przy pewnych bowiem założeniach [np. 1) taki sam (dowolny) rozkład prawdopodobieństwa n zmiennych losowych, 2) skończona jednakowa war­tość średniej m, 3) skończona jednakowa wartość wariacji er2] twierdze­nie, o którym mowa (jedno z tak zwanych centralnych twierdzeń gra­nicznych), mówi, że rozkład sumy tych zmiennych losowych przy n rosnącym nieograniczenie dąży do rozkładu normalnego, z drugiej zaś strony wiele rozkładów spotykanych w praktyce da się z zadowalającym przybliżeniem zastąpić przez odpowiedni rozkład normalny.

u*



160 Włodzimierz KrysickiW odniesieniu do błędów przypadkowych 2 powszechnie przyjmuje się tzw. „hipotezę błędów elementarnych11 przyjętą przez Bessela i Hagena, według której łączny błąd popełniony przy pomiarach astronomicznych lub fizycznych traktuje się jako sumę dużej liczby wzajemnie niezależnych elementarnych błędów. Z przyjęcia tej hipotezy na podstawie centralnego twierdzenia granicznego wynika, że łączny błąd posiada rozkład prawdo­podobieństwa w przybliżeniu normalny.

2 Patrz np. Mechanik T. I, cz. I S. I M. P., Warszawa 1949; J. Obalski, Rachunek 
błędów, § 2 Teoria błędów przypadkowych, str. 336 i dalsze.

3 Patrz np. W. Romanowski, Zastosowanie statystyki matematycznej w doświad­
czalnictwie. Tłumaczenie z rosyjskiego, Pol. Wyd. Gosp. Warszawa 1951, str. 82—85.

Załóżmy następnie, że wykonaliśmy (n+1) pomiarów tej samej wiel­kości, które jako wyniki dały x1, x2 , ... ,xn,xn+i, oraz niechaj jeden z pomiarów, np. xn+i, różni się na tyle od każdego z pozostałych, że powstaje podejrzenie, iż błąd, którym obarczony jest ów pomiar, nie jest przypadkowy.Rozstrzygnięcie tego zagadnienia jest możliwe przy użyciu rachunku prawdopodobieństwa, tzn. można okazać, z jakim prawdopodobieństwem można twierdzić, że budzący wątpliwość pomiar xn^ powstał nie na sku­tek popełnienia błędu przypadkowego.W matematycznej statystyce znana jest metoda3 oceny rozbieżności dwóch średnich (arytmetycznych), pochodzących z prób od siebie nieza­leżnych, które zostały pobrane z normalnej zbiorowości generalnej. Jeżeli liczność pierwszej próbki wynosi , drugiej n2 oraz średnie (arytme­tyczne) wyników pomiarów wynoszą dla pierwszej próbki xt, dla drugiej 
x2, to wielkość t= (2)Sijest zmienną losową, podlegającą rozkładowi Studenta z k = n]+n2—2 stopniami swobody; we wzorze (2) wielkość S£ winna być obliczona na podstawie zależności
gdzie

8= 1/ -l----------------- Ł-------------- (4)
" nj+n2 — 2Zagadnienie postawione na początku da się sprowadzić do oceny roz­bieżności dwóch średnich, pochodzących z prób od siebie niezależnych: jednej o liczności n1 = n , drugiej o liczności n2=l.



O pewnym zastosowaniu rozkładu Studenta 161Niech więc
1
n (5)Z wzoru (4) otrzymujemy £2 —Xn+1 ■

(6)
wzór (3) na podstawie (6) przyjmie teraz postać

(7)
(8)

,-------— /n—1\\ n—1/l)r( )
podlega rozkładowi Studenta z (n — 1) stopniami swobody, to znaczy że gęstość prawdopodobieństwa tej zmiennej losowej wyraża się wzorem

n 2
Postępowanie praktyczne da się podzielić na następujące etapy:1. obliczamy średnią arytmetyczną z n pomiarów x1, x2,..., xn nie bu­dzących podejrzenia, że są obciążone błędem nieprzypadkowym.2. obliczamy wielkość s podług wzoru (6) (wzór ten w rozpatrywanym przypadku jest identyczny ze wzorem na odchylenie standardowe (średnie) z próbki liczącej n sztuk).3. obliczamy wielkość Ss z wzoru (7).4. obliczamy różnicę pomiędzy średnią obliczoną w 1. a (n+l)-ym wy­nikiem pomiaru xn+1; oznaczmy jej wartość bezwzględną przez a|Xi-Xn+l| = a5. obliczamy wielkość t z wzoru (8), odpowiadającą obliczonej różnicy; oznaczmy jej wartość bezwzględną przez ta



162 Włodzimierz Krysicki6. przy obliczonej wartości ta oraz ilości stopni swobody k=n — 1 znaj­dujemy prawdopodobieństwo przyjęcia przez zmienną losową t war­tości spełniającej nierówność jest ono równe
ooP[| t i > ta] = 1 - 2f Sn-Mdt=2 f Sn-Mdt, (10)

o t„gdzie gęstość prawdopodobieństwa Sn—i(t) określona jest wzorem (9).Wartości całki występującej we wzorze (10) są stablicowane i znajdują się w każdym podręczniku statystyki matematycznej.
2. Przykład

Jednakowo dokładne pomiary dokonane tym samym przyrządem pewnego kąta
dały poniższe rezultaty

xi (^-a:)2

35° 43’ 16,8" +1 1
35° 43' 15,3" -0,5 0,25
35° 43' 18,5” + 2,7 7,29
35° 43' 10,8” -5 25,
35° 43'31,8”
35° 43’ 18,8" + 3 9,
35° 43' 21,4" + 5,6 31,36
35° 43' 18,4” + 2,6 6,84
35° 43' 10,9" -4,9 24,01
35° 43' 11,3” -4,5 20,25

125,00

Piąty pomiar różni się od pomiaru najbliższego o 10,4" co może budzić wątpli­
wość, czy pomiar ten jest obciążony tylko błędem przypadkowym. Zbadajmy tę 
sprawę za pomocą metody podanej powyżej. Obliczamy kolejno:
1. średnia arytmetyczna z dziewięciu pomiarów (prócz zakwestionowanego po­
miaru, który oznaczymy przez re10)

x1 = 35°43'15,8” oraz x10 = x2 = 35c'43'31,8”

/ 125 ,-------
8=1/ — = F 15,625

3.
/10 ,-------- 12,5

S==l/ —-V15,625 =-----=4,1667* J/ 9 3

4. x, — x10= —16" ; a= [xt—x10| =16”

5.
xi—xI0 —16

Si ~ 4,1667 t„ = 3,84

6. przy danych t0=3,84 oraz k=nL +n2-2=8 odczytujemy z tablic  prawdopodo­
bieństwo dane wzorem (10), wynosi ono około 0,006. Prawdopodobieństwo otrzy­

4

4 Romanowski loco cit. str. 220.
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mania wyniku pomiaru nie mniej odchylającego się w jedną lub w drugą stronę 
od średniej (otrzymanej z pozostałych 9 pomiarów) niż zakwestionowany pomiar 
wynosi więc około 6oo/o

P [ I Sj - x101 > 16"] 0,006 ,

a prawdopodobieństwo otrzymania wyniku pomiaru nie mniejszego niż kwestiono­
wany wynosi oczywiście połowę tego, to znaczy

P[x10 —Si 16"] »» 0,003 .

Prawdopodobieństwo to jest na tyle małe, że otrzymanie takiego wyniku pomiaru 
(przy danych dziewięciu pomiarach jak wyżej) uważać możemy praktycznie za nie­
możliwe. Wobec tego z prawdopodobieństwem przeciwnym, tzn. około 99,7%, możemy 
twierdzić, że pomiar kwestionowany nie może być uważany za obciążony tylko 
błędem przypadkowym i dlatego winien być odrzucony.

3. Trzy twierdzenia graniczne o rozkładzie StudentaJak wiadomo przy n dostatecznie dużym rozkład Studenta może być zastąpiony przez rozkład normalny o średniej równej zeru i standardzie równym jedności, którego gęstość prawdopodobieństwa_ 5* ■?’i(x) = -4=-e 2 (11)jest niezależna od n.Jest bowiem limSn(x) = 991(x) 5 (12)

s Patrz np. Cramer H., Matiematiczeskije Mietody Statistiki, Moskwa 1948, 
str. 279.

n->oodla każdej ustalonej wartości x.Celem niniejszego jest rozstrzygnięcie zarówno rzędu tej zbieżnościwzględem — , jak i oszacowanie różnicy <p1(x)—Sn(^)- Precyzując dokład- 
nniej:Należy znaleźć taką liczbę rzeczywistą k>0 oraz taką funkcję S(x), nie równą tożsamościowe zeru, aby spełniony był warunek:limin^j^)—Sn(x)]}=S(x) (13)

n->oodla każdej ustalonej wartości x.Ażeby oszacować wyrażenie Sn(x), otrzymane z prawej strony wzoru (9) przez zastąpienie n—1 przez n, rozważymy In Sn(x).
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W tym celu użyjemy następujących rozwinięćIn r(d)=In ]/ 2n + 1 1a - —\ 2, j Ina—a + 012a ’ (14)0 <0<1oraz In (l + z)=z— Z2
— +z3-2 ą,gdzie 10 < 0. < —3 dla 0<z<1. (15)

(„2 \H-----1 przy ustalonej war- n /tości x i takich wartości n, aby było
X2— < 1, to znaczy dla n>x2. (16)
nWykonując wszystkie obliczenia według wzorów (14) i (15) otrzymamy przy założeniu (16)

.___ ---  O -y.2__  1 / 1 \In Sn(x)= -In V 2n - — + ------------- + 0 — , (17)2 4n \n2!gdzie 0 | — । dąży do zera przy n->o© tak jak —.\n2 / n2Na podstawie (17) będzie
~Sn& = e”T [1 -exp6* + o ( - W|.

6* Symbol exp X oznacza ex.

y 2% \ 4n \n2//]Rozwińmy teraz funkcję wykładniczą w nawiasie podług wzoru
z2 I z z2 \ez=l + z+— 1 + —+ •—- + ... =l + z+z202, 2 \ 3 3-4 /gdzie, jak łatwo wyliczyć przy 0<z<l, jest — < 02 < —.Teraz otrzymamy dla dostatecznie dużych n1 "1 f-x4 + 2x2 + l , / 1 \= "7^ e -------------- :----F 0 | — |

y 2a 4n \n2 /



O pewnym zastosowaniu rozkładu Studenta 165Z postaci tej natychmiast wnioskujemy, że jeżeli we wzorze (13) przyj- mierny k=l, to otrzymamy następujące
twierdzenie graniczne I. Jeżeli x^~1/1+ /2 OTCLZ tolim {n [yt(x)-Sw(x)]} = e~ 2 • —— + 0. (I)

n->x j/ 2yt 4Prawa strona jest różna od zera dla wszelkich rzeczywistych war­tości x, z wyjątkiem dwóch różnych wartości^,2=±]/l + l/2. (18)Jeśli więc ^=±p/l+y'2 , to cel naszego zagadnienia nie został jeszcze osiągnięty, bo wówczas prawa strona wzoru (I) jest równa zeru. Wówczas należy w rozwinięciach (14) i (15) wziąć jeden wyraz więcej. Okaże się wówczas, że wyrażenie 0 I— j we wzorze (17) należy zastąpić przez \n2/
-- i_+0|ą4n2 6n2 6n2 6n(n + l) \n3 /W tym przypadku należy we wzorze (13) przyjąć k — 2 i wówczas otrzymamy następujące

twierdzenie graniczne II Jeżelix= —V 1+^2 albo x=I' l+j/2, to
x2 .i- r ar / % o / .n 1 “T ^4(2x2 — 3) /TT.lim {n2 [^(rr) - Sn(x)]} = — e-------------- . (II)

n-wo ]/ 12Obliczając prawą stronę przy wartość następującą podanych wartościach x otrzymamy
1 + V 2

1 ~ 2

^2n e
4 1 2 + 512 0,106. (19)Prawą stronę wzoru granicznego (I) można traktować jako funkcję zmiennej x w dowolnym skończonym przedziale i zbadać jej przebieg dla 

| x | < X < + oo. NiechajS(x) = —=(-x4+2x2 + l)e 24 |/2%i obliczmy jej pochodną _ i2
S\x) = —x(xi — 6x2 + 3) e 2 4}/ 2%



166 Włodzimierz KrysickiPochodna zeruje się przy pięciu różnych wartościach x, które oznaczymy xi,5=+]/3 +/6 , x2,4=+ ]/3 — j/6 , x8 = 0.Wówczas przebieg zmienności funkcji S(x) będzie następujący

gdzie
x —oo...x1...x2... x3... x4.. . x5...+oo

S'(x) - 0 + 0 - 0 + 0 - 0 +
S(x) 0 \ Sto) / S(x2) Sto) S(x5) z o4

Sto) = ^to)=-77—-(2+j/6) e 2 ^-0,117,
]/27t

3-p6Sto)='Sto)=—= (1/6-2) e 2 ~ 0,136, 2rc—^=^0,099.4 |Bez względu na wartość x mamy oszacowanie| S(x) | < S(z2) = Sto) ^0,136. (20)Udowodniliśmy więc
Twierdzenie III. Funkcja S(x) równa prawej stronie wzoru granicznego (I) 
jest dla wszelkich rzeczywistych wartości x ograniczona; nierówność (20) 
podaje dokładne oszacowanie (ostre)7 tej funkcji.
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Oszacowanie ostre jest to oszacowanie, którego nie da się już poprawić.
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PE3IOME

B nyHKTe ł paóorbi npMBeneHO npHMeHeHue Merona opeHKn pacxonwMocTH nayx 
CpegHHX 3HaHeHHH, nOnyHCHHWX M3 B33HMHO H63aBMCHMblX MCnbnaHHH, B3SlTblX C HOpMajlb- 
hoh reHepaJibHOH coBOKynHoc™, mis HCKJUOHeHHs coMHHTenbHoro HaóruoneHHsi c npn- 
MeueHHeM pacnpeneneHMSt nnoTHOCTH BeposTHOCTH CryneHTa S^z), onpenejieHHOH 
4>opMyjioił (9); b nyHKTe 2 npHBeneH npHMep npHMeHeHMB 3Toro Merona nna 10 Hadmo- 
neHHHnaHHOro yrna, npon3BeneHHbix TeM >Ke caMbiM HHcrpyMeHTOM.

B BHny TOTO, HTO npH n -> oo nJlOTHOCTb S^Z) CTpeMHTCSl K nnOTHOCTH HOpManbHOTO 
pacnpeneneHHB (p^z) co cpenHeii paBHofi Hynto w craHnaprHbiM OTKnoHeHHeM paBHbiM 
enHHHpe (<J>opMyna 11), HccnenoBaH pan cxonnMOCTH k Hynio pasHoern <p1(z') — Sn(.z') no

1
OTHOtiieHHio k — u nonyHeHbi npn 3tom cnenytoiuHe peayjibraTbi : 

n
TeopeMa I: Eonu z 1 + 2 u x^]/l + )/2 Torna nas Kawnoro onpenenHMoro

3HaHCHHS Z

1 —— — z4 + 2x2 +1
lim (n [?>,(z)-S„(x)]} = ■■ e 2------------------- 0

n->=o 4
I

Teopewa II : Ecjih x=—}/l+^ 2 min x=]/1 + )/ 2
Torna

lim {n- [?’1(*)-S„(x)]} =
1 x4(2x2 —3)

-------e 2 •--------------
12

,-----0,106
z=±yi+y2

ii

TeopeMa III: cPyHKUHS S(z) paBHa npaooH cropoHe 
Bcex neHCTBHTenbHwx 3HaqeHHH z orpaHHHeHa:

' S(x) |< S(x2)=S(x„) 0,136

rpaHHHHOM tjjopMyjibi I nas

npHHeM MaKCHManbHoe 3HaqeHne nocrnraer npn 

x2>4=±1/3-}/’6 .

RESUME

Dans le premier article du travail on discute 1’application de la methode de 
l’appreciation de la divergence de deux moyennes provenant des epreuves indepen- 
dantes, lesquelles ont ete pris d’une normale collectivite generale pour elimination 
du mesurage, qui inspire de 1’incertitude en appliquant la repartition de la densite 
de probabilite de Student S^z) determinee par la formule (9).

L’article 2 du travail contient un exemple de 1’application de cette methode 
pour 10 mesurages du meme angle et qui ont ete execute avec le meme appareil. 
Etant donnę que pour n -> densite Sn(x) tend vers densite de la repartition 
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normale avec la moyenne egale zero et avec la deviation standart egale un 
(formule 11); on a examine le degre de la convergence jusqu’au zero de la difference 
<pSx)—Sn(x) par rapport a 1/n et on a obtenu les resultats suivants: 

Theoreme I.

Si x#:-l/l + j/2 et x^F'l + /2 , il y a pour chaque valeur fixe

1 — x4 + 2x2 + l
lim {n [<A(x)-S„(x)]} = e 2--------- -—— 0.

l/2n 4
Theoreme II.

Si X= —]/l + ^2 ou x=]/l+/2 il y a

I i x4(2x2_ 3)1
lim {n2 [y1(x)-Sn(x)]}= I —— e 2 ----- —---- 1 —— ^0,106.

L 12 Jx=±yi + j/2

Theoreme III.

La fonction S(x) egale au cóte droit de la formule (I) est pour toutes les valeurs 
reelles x limitee:

|S(x)|<S(X2)=S(x«) 0,136

pendant que la plus grandę valeur est atteinte quand

*23=
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Władysław Batkiewicz

Obliczenie sieci triangulacyjnej 
zbudowanej z trójkątów „wyliczeniowych”IDotychczas stosowana triangulacja składa się z przylegających do sie­bie trójkątów, w których pomierzono wszystkie kąty. Długości boków tych trójkątów określane są za pomocą pomiarów liniowych i rozwinięć bazowych dokonanych dla boku wyjściowego. Poza tym mierzy się jeszcze szereg baz dla innych boków sieci, które stanowią kontrolę pomiarów kątowych. Materiał ten jest jednak szczupły w porównaniu z przeważa­jącą ilością pomiarów kątowych, a w dodatku ze względów obliczeniowych nie jest on odpowiednio wykorzystywany. Celem uniknięcia bardzo ucią­żliwych i długich prac obliczeniowych sieć taką, jak wiadomo, dzieli się na sieć wieńcową, sieci łączne i wypełniające. Jest to tzw. triangulacja I rzędu, którą z kolei —• dla dokładniejszego pokrycia terenu punktami pomiarowymi — uzupełnia się triangulacją rzędu II, III i IV. Przy wy­równaniu i obliczeniu sieć II rzędu nawiązana jest do sieci rzędu I, trze­ciego rzędu do II itd. Metoda ta jest więc metodą przybliżoną, głównie uzgadniającą pomiary sieci rzędów wyższych z niższymi, a nie wy­równującą ich według warunku [puu] = min. Cała zatem triangulacja I, II i III rzędu jest tylko triangulacją kontrolującą i wzmacniającą trian- gulację rzędu IV. Kontrola ta jest bardzo kosztowna, bowiem jest ona połączona ze żmudnymi pomiarami kątów przy długich celowych, ucią­żliwą lokalizacją punktów, budową wysokich wież itp. Rozciągnięcie takiej triangulacji na cały kontynent i wyrównanie jej metodami dotychczaso­wymi jest pracą niezmiernie ciężką i nie gwarantuje dostatecznej dokład­ności, dokładność bowiem pomiarów w łańcuchu trójkątów bardzo szybko maleje w miarę oddalania się od boku wyjściowego.IIProf. T. Kochmański zaproponował więc nową metodę pomiarów trian­gulacyjnych opartą na tzw. trójkątach „wyliczeniowych". Metoda ta zo­stała opracowana i przeanalizowana pod względem dokładności w sposób przybliżony, podany poniżej.



170 Władysław BatkiewiczCały obszar, który ma być objęty triangulacją, pokrywamy siecią trój­kątów o bokach np. około 8 km, a następnie z tej sieci wybieramy punkty odległe o około 5 boków trójkątów, czyli około 40 km i tworzymy z nich trójkąty wyliczeniowe (rys. 1). W trójkątach tych nie wykonujemy żadnych pomiarów kątowych, a jedynie obliczamy długości ich boków z boków trójkątów 8-kilometrowych. Za długość wyjściową w każdym trójkącie wyliczeniowym lub w co drugim trójkącie przyjmujemy jeden boktrójkąta 8-kilometrowego otrzymany z rozwinięcia bazowego lub w miarę możności z bezpośredniego pomiaru. Bok ten należy wybrać jak najbliżej środka ciężkości trójkąta wyliczeniowego, tak by boki tego ostatniego zostały obliczone mniej więcej z jednakową dokładnością i nie przez zbyt dużą ilość trójkątów łączą­cych je z bazą. W ten sposób długość każ­dego boku trójkąta wyliczeniowego może być określona dwa razy z dwu sąsiednich trójkątów, co stanowi doskonałą kontrolę pomiarów i lokalizuje błędy w sieci. Zaostateczną wartość bierzemy średnią aryt­metyczną, wartości te bowiem pochodzą z dwu niezależnych pomiarów. Wewnątrz każdego trójkąta wyliczeniowego pozostaje grupa trójkątów w ilości około 25. Grupę tę wyrównujemy niezależnie od podobnych grup w trójkątach sąsiednich, a dopiero po wyrównaniu obliczamy długości boków trójkąta wyliczeniowego. Tak więc sieć trójkątów 8-kilometrowych spełnia podwójne zadanie, a mianowicie stanowi ona sieć triangulacyjnąw danym trójkącie wyliczeniowym oraz rozwinięcie bazowe dla jego boków. Postępowanie to prowadzi więc do uzyskania sieci triangula­cyjnej złożonej z trójkątów, w któ­rych znane są długości wszystkich boków (rys. 2). Sieć tę orientujemy w sposób przybliżony i wyrównu­jemy równocześnie dla całego obszaru objętego triangulacją, opierając się na metodzie podanej przez prof. E. Warchałowskiego 
w „Przeglądzie Geodezyjnym11 nr Rys. 2'—8 z 1948 r. Po tym wyrównaniuobliczamy ostateczne współrzędne punktów położonych w wierzchołkach trójkątów wyliczeniowych. Następnie wyrównujemy ponownie grupy 



Obliczenie sieci triangulacyjnej 171trójkątów w liczbie około 25 każda, położone wewnątrz trójkątów wyli­czeniowych. W tym celu rozszerzamy tylko każdy z poprzednio ułożonych systemów równań warunkowych o warunki wynikające z nawiązania do trzech punktów stałych. Dla punktów znajdujących się na linii rozgrani­czającej dwie sąsiednie grupy trójkątów 8-kilometrowych otrzymamy po dwie pary współrzędnych, z których tworzymy średnią arytmetyczną dla otrzymania ostatecznych współrzędnych.Dla sieci obejmujących całe kontynenty należałoby (celem zmniejsze­nia ilości warunków uwzględnianych równocześnie) z wyżej wymienio­nych trójkątów wyliczeniowych utworzyć jeszcze większe trójkąty wyli­czeniowe i tak dopiero otrzymaną sieć wyrównać równocześnie. Długość boków tych trójkątów umotywowana byłaby ilością warunków, które decydujemy się rozwiązać równocześnie, oraz dokładnością, którą chcemy uzyskać (patrz wykres nr 1). Jest to zatem podobny spoęób wyrównania, jak wyżej opisany, z tą tylko różnicą, że składa się on z dwu etapów pro­wadzących do utworzenia jednolitej sieci dla całego obszaru.
IIIObecnie zajmiemy się analizą dokładności proponowanej sieci. Na wstępie należy zaznaczyć, że jest to sieć kątowa skontrolowana i wzmoc­niona przez znaczną ilość pomiarów liniowych (baz). W sieci tej błąd pomiarów kątowych nie przenosi się i nie narasta poprzez długie łańcuchy trójkątów do takich wartości, jak w triangulacjach dotychczasowych. Po­miary kątowe w dwu sąsiednich grupach trójkątów, położonych wewnątrz odpowiednich trójkątów wyliczeniowych, są wzajemnie kontrolowane. Każdy błąd, przekraczający przewidywane granice dokładności, może być od razu wykryty, tak że nie wywrze on szkodliwego wpływu na całą sieć. Jest to metoda niewiele odbiegająca od metody ścisłej, wpływ bowiem wszystkich pomiarów kątowych i liniowych w całej sieci na wynik wy­równania jest ujęty w równoczesnym wyrównaniu sieci złożonej z trójką­tów wyliczeniowych. Przy tworzeniu zaś trójkątów wyliczeniowych popełniamy nieznaczną nieścisłość, gdyż na obliczenie długości boków tych trójkątów mają wpływ dwie najbliżej położone bazy, co uwzględ­niamy biorąc średnią odpowiednich wyników. Wpływ dalszych baz (zresztą szybko zanikający) pomijamy za cenę o wiele ekonomiczniejszego pod względem nakładu pracy sposobu wyrównania. Podobną nieścisłość popełniamy także przy postępowaniu odwrotnym, kiedy, mając wyrów­nane współrzędne sieci trójkątów wyliczeniowych, przystępujemy do wy­równania współrzędnych pozostałych punktów.Niżej podajemy wartości błędów średnich przy założeniu że rozpatru­jemy sieć zbudowaną z trójkątów równobocznych, w których błąd średni



172 Władysłaiv Batkiewicz

jednostkowy mn pomiaru kąta wynosi ± qqq ’ czy^ ± , błędy zaśpomiaru boków wyjściowych (b = 8 km) wynoszą - ’ czylimb= ±16 mm, oraz że boki trójkątów wyliczeniowych podane są z jedna­kową dokładnością. Jeżeli chodzi o to założenie, to przeprowadzono tutaj obliczenie, które wykazało, że dla prostoty rachunkowej można je uczynić bez żadnego praktycznego uszczerbku dla całości wyrównania.Przy tych założeniach, jak zobaczymy poniżej, otrzymano błąd średni po wyrównaniu boku 40-kilometrowego trójkąta wyliczeniowego nie większy od około 13 cm (dokładnie 128 mm) jako średnia arytmetyczna z dwu sąsiednich trójkątów. Długość takiego boku da się wyrazić za pomocą funkcji ^1 = b • , a2,............ «»)>a po zamianie na funkcję liniową:
<Pi = bo -A(«ir «2, • • • • «n)o + A(ai> a2.........an)o db + b0 dat + /o+ i—da., +.................+ I A dan ,\ 8a2 /o \ /oczyliTh — b0 • fOi + j01 db + b0(aj da±4- a2 da, +...........+ an dan)=fC[db + b0(f0l + df^ .Błąd średni tej funkcji równa się , gdzie mf=m0-Ffl.Jak widać, składa się on z dwu niezależnych wyrazów: z błędu wywoła­nego pomiarem bazy oraz z błędu wywołanego niedokładnością pomiaru kątów. Wyraz pierwszy nie wymaga dalszego omówienia. Jest on, jak wiadomo, wynikiem zmiany skali trójkąta wyliczeniowego przy zachowa­niu jego podobieństwa do trójkąta, w którym długość bazy byłaby podana bezbłędnie. Wyraz drugi natomiast jest wynikiem błędów pomiaru ką­tów. Ze względu na to, że wyrównanie przeprowadzono metodą warun­kową w ujęciu krakowianowym, błąd rozpatrywanej funkcji po wyrówna­niu obliczono z pierwiastka krakowianowego wzorem podanym przez prof. T. Kochmańskiego. Wzór ten w zastosowaniu praktycznym daje kilkakrotną oszczędność czasu niezbędnego dla wykonania obliczeń oraz zezwala na proste obliczenie błędów średnich nawet bardzo skompliko­



Obliczenie sieci triangulacyjnej 173wanych funkcyj. I tak jeżeli weźmiemy funkcję flt występującą w po zamianie jej na funkcję liniową, czyli
fi = fo, + “i dai + a? da2 + “H dndctn ,wtedy błąd średni tej funkcji po wyrównaniu określa wzór:p-1 • a~{a-rw: r)2],czyli

gdzie , riv'=tw-p^ ;1
Pn

rw jest transponowanym krakowianem współczynników przy niewiado­mych w równaniach warunkowych,
r jest pierwiastkiem krakowianowym z równań korelat.Można zauważyć, że obliczenie błędności F^ w praktyce sprowadza się do spierwiastkowania jeszcze jednej kolumny dołączonej do krako- wianu równań korelat.Ze względu na fakt, że przy dalszej analizie dokładnościowej będziemy zmuszeni z powodu trudności rachunkowych traktować wyniki otrzymane dla każdego z trzech boków trójkąta jako spostrzeżenia niezależne, cho­ciaż w rzeczywistości są one związane wyrównaniem i pomiarem wspól­nej podstawy, wydaje się słuszne wprowadzenie pojęcia zastępczego boku. Przyjęto przy tym założenie, że błąd średni zastępczego boku będzie taki, że suma trzech takich (zastępczych) boków traktowanych jako spostrze­żenia niezależne będzie obarczona błędem średnim równym błędowi średniemu sumy boków, leżących na obwodzie trójkąta, ponieważ suma taka jest spotrzeżeniem bezpośrednim.Oznaczmy więc długość obwodu przez funkcję <p2 (analogiczną do funkcji cp^, a jej błąd średni przez wówczas z prawa przenoszenia się błędów wynika, że błąd średni boku zastępczego .Przyjmując teraz, jak już wspomniano:b0=8 km, mb = ±16 mm oraz mo=±0,5"
12 Geodezja Kartografia



174 Władysław Batkiewiczotrzymano analogicznie do wzoru dla m v :

/ /O 5" \zw=-|/ 152.162 + 8 000 0002 —— • 8,232 = 
r \ Q" !^1/57 600 +1602 = ]/57600+25600 = 1/83 200 =±288 mm a stąd

mr = = ± 167 mm .
‘ 1/3Średnia z dwu niezależnych pomiarów w dwu przylegających trójkątach będzie obarczona błędem średnim

m<p
m' = —^ = ±128 mm.

1/2Obliczono także dla funkcji <p1 i otrzymano przy powyżej przyjętych wartościach dla bQ, mb , oraz m0:
/ To 5" \2 z-----------------mv = 1/ 52.162 + 8 000 0002 — • 3,712 = |/6 400 + 4 900 =±106 mm

f \ e" /

, mv,m. = —= ±75 mm .
”■ >/2W ten sposób określono dolną i górną granicę błędu średniego długości boku trójkąta wyliczeniowego. Dolną granicą jest wartość ± 75 mm, po­nieważ do jej uzyskania przyjęto taki przypadek, jak gdyby dla każdego boku trójkąta wyliczeniowego pomierzona była osobna podstawa, a w funkcji „przenoszącej" długość tej podstawy na bok trójkąta wyli­czeniowego występowałyby wielkości niezwiązane wyrównaniem z wiel­kościami występującymi w podobnych funkcjach utworzonych dla pozo­stałych boków trójkąta. Wartość ± 128 mm jest górną granicą rozpatry­wanego błędu z tego względu, że w każdej funkcji kształtulór2 + x2 +.......... +x2 = const.przeciętna wartośćl i I l+l ^2 1+ • ■ • +1 xn | . ,,। x | =!!——---------- ----- ! osiąga max. dla

n

1^11 = 1^1 =................. = |x„|.Wobec tego w funkcji:
=m^]/ 3 = j/m2s + m2, +



Obliczenie sieci triangulacyjnej 175jest maksymalnym przeciętnym błędem średnim. Dla wyrównania sieci złożonej z trójkątów wyliczeniowych m? jest przyjęty za błąd średni jednostkowy.Błędy średnie największej odległości — w sieci w kształcie trójkąta równobocznego o dowolnej wielkości — charakteryzuje.wykres 1. Na osi pionowej podano tu wartości błędności dla jednostki wagi, na osi zaś poziomej odległość między dwoma punktami oraz ilość boków (40-kilo- metrowych) łączących te dwa punkty k Na tym wykresie krzywa (1) po­daj e wartości błędności dla sieci niewyrównanej. Jest to wykres prawa przenoszenia się błędów o postaci F=

Krzywa (2) przedstawia wykres błędności dla sieci wyrównanej. Powstał on w ten sposób, że wyliczono na podstawie wyrównania metodą prof. Warchałowskiego wartości błędności dla najdłuższej i najniekorzy- stniej położonej (na brzegu) odległości w sieci o kształcie trójkąta o wy­miarach 1X1 moduł, następnie w sieci 3X3 moduły, 5X5 i 7X7 modułów (rys. 3a, b, c, d).W metodzie prof. E. Warchałowskiego pomierzonymi i wyrównywa­nymi elementami sieci są długości boków. Jest to więc metoda wyrównania sieci triangulacyjnej liniowej, za którą możemy uważać także sieć zbudo­waną z trójkątów wyliczeniowych. Przy wyrównaniu tą metodą wyrażamy
1 W dalszym ciągu ilość boków łączących dwa punkty będziemy nazywali ilo­

ścią modułów.
12*



176 Władysław Batkiewicznajpierw kąty w funkcji boków odpowiednich trójkątów. Jak widać, jest to rozwiązanie jednoznaczne, tak że jedynymi warunkami nadliczbowymi, jakie należy uwzględnić w sieci przy jej wyrównaniu, są warunki hory-

Rys. 3a Rys. 3bzontu. Ilość warunków w sieci trójkątowej prostej jest zatem równa ilości punktów wewnętrznych sieci, co niezmiernie ułatwia wyrównanie tak pod względem myślowym, jak i pod względem nakładu pracy.Kształt tych warunków podanych już w formie liniowej i zgodnie z rys. 4 jest następujący:
——M +

, Z X 1+ (a2s) ■ ~ 4 zl3 / 1 1 1--------- -— । ------------------ 1------------------1_------------  
a02 ' fl03 ' Pi a01 Pi a 3 Pi ®23Z1B

°06 ’ a0l Pb —aoi Ps
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1 \ 
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a06 ’ doi Pb a0B Pb aoi P6-«61

1
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1

1
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1 1 2« = 0
2 Dla wyrównania sieci na powierzchni elipsoidy zmienią się jedynie wyrazy 

wolne.



Obliczenie sieci triangulacyjnej 177gdzie: w = / Y arc tg —---- 180° j ■ sin 1" ,
P &ik /

(amn) — poprawka boku Pm~Pn, 

Am — powierzchnia trójkąta m, 

Pm — połowa obwodu trójkąta m, 
aik—bok Pi — Pk,/ (p»n dot) ‘ (Pm dok) ’ (pm dik) 

^oik— 1/---------------------- :---------------I PmDla trójkątów równobocznych o bokach jednomodułowych współczyn­niki przy poprawkach przybierają wartości + 0,57 lub — 0,57.
Za str. 178 załączono przykład wyrównania i obliczenia błędności dla sieci o wymiarze 3X3 moduły.
Tablica I zawiera wartości uzyskane z obliczeń, które posłużyły do konstrukcji 

nr 1 i 2.
Tablica I

Odległość na brzegu obszaru Odległość w środku obszaru

j Ilość 
mod.

FŁ n Fw F — Fwn + 1 L wn F x n F x w F — F * n w F — Fw„+i 1 w„

0 0 0 0 - 0 0 0 —

1 1,000 0,957 0,043 0,957 1,000 0,957 0,043 0,957

3 1,732 1,569 0,163 0,612 1,732 1,432 0,300 0,475

5 2,236 1,925 0,311 0,356 2,236 1,612 0,624 0,180

7 2,646 2,177 0,469 0,252 2,646 1,729 0,917 0,117 |

gdzie F„ jest błędnością przed wyrównaniem, a Fw błędnością po wyrównaniu.
Następnie z różnic (Fn — Fw) z tab. I skonstruowano wykres nr 2. Na wykresie tym 
przeekstrapolowano krzywą różnic (2)' przyjmując, że między dwoma ostatnimi punk­
tami pochodzącymi z wyliczenia krzywa ta jest już linią prostą. Jest to konstrukcja 
dostatecznie dokładna dla wykonywanej analizy. Z wartości krzywej różnic i krzywej 
dla sieci niewyrównanej tworzymy krzywą (2) na wykresie nr 1 dla sieci wyrównanej.

Z kolei przeprowadzono podobne badania dla takich samych odległości, lecz poło­
żonych możliwie najkorzystniej na obszarze objętym triangulacją, czyli wewnątrz tego 
obszaru (rys. 3a, b, c, d) i otrzymano krzywą (3) — wykres nr 1. Wartości tej krzywej 
obliczone dla odciętych większych od 9 modułów praktycznie nie wykazują wzrostu.



178 Władysław ButkiewiczWnioski wypływające z krzywych 2 i 3 dla triangulacyj liniowych:a) Całą sieć w miarę możności należy wyrównać równocześnie.b) Przy sieciach o kształcie zbliżonym do koła lub kwadratu naj­większy wymiar sieci może zawierać dowolnie dużą ilość boków, co nie wpływa ujemnie na dokładność sieci.c) Dla sieci niezbyt rozległych należy zwiększyć ilość boków, przez ich skrócenie. Wypływają stąd następujące korzyści: zwiększa się dokładność pomiaru każdego boku (m^_ maleje), zwiększa się do­kładność wyznaczenia odległości między dwoma punktami sieci krótszej od odległości maksymalnej (schematycznie zaznaczone liniami kreskowanymi na wykresie nr 2), a dokładność wyznacze­nia tej ostatniej nie maleje .3d) Największą dokładność uzyskujemy w centrum sieci.e) Dokładność pomiarów radarowych jest już prawdopodobnie w tej chwili wystarczająca dla triangulacji pod warunkiem, że do równoczesnego wyrównania będą brane sieci dowolnych rozmia­rów, lecz o krótkich bokach obarczonych niewielkimi błędami średnimi.

3 Podobną myśl rzucił ostatnio w odniesieniu do sieci wypełniającej kątowej 
prof. S. Hausbrandt. Przeanalizował on sieć triangulacyjną za pomocą 4 ścisłych kry­
teriów charakteryzujących ją pod względem dokładnościowym. Żadne z nich nie 
przemawiało za siecią wielkotrójkątową.

W pracy niniejszej oprócz analizy obliczeniowej ujętej w formie wykresu nr 2 
zbadano proponowaną sieć za pomocą wzoru A. Otrębskiego.

iw
M2=------= — ,

gdzie m» — błąd średni spostrzeżenia po wyrównaniu,
— ,, „ „ przed wyrównaniem,

ru —• ilość spostrzeżeń koniecznych do wyrównania sieci,
„ wszystkich spostrzeżeń dokonanych w sieci.

W sieci trójkątowej prostej

łu = 2n2+5n —1; nw = 3n2 + 3,5n dla n parzystego.

2n2 + 5n-l 2
Wobec tego: lim ------------= — . 

n >x. 3n2 3,5n------- 3
I tak dla: 

n = 2 4 6 8 10 ............... 20
M3 = 0,895 0,823 0,783 0,759 0,743 ................ 0,708

Znaczny współczynnik bezpieczeństwa dla przewidywanej dokładności stanowi fakt, że do konstrukcji krzywych przyjęto — ze względu na ilość prac obliczeniowych — sieci o wymiarach trójkątnych, wykazujących mniejszą ilość warunków nadliczbowych, niż tak samo rozległe sieci o kształcie owalnym, spotykanym na ogół w praktyce (np. obszar Polski). Jest to więc rekompensata za zmniejszenie dokładności w sieci rzeczywi­stej, wywołane zniekształceniem trójkątów (trójkąty różnoboczne).



Przykład wyrównania sieci o wymiarach 3X3 moduły 
(Obliczenie wykonano metodą warunkową w ujęciu krakowianowym)

Zestawienie współczynników przy 
spostrzeżeniach w funkcjach 
Bi । B2, Ba, Bt •
(Krakowiany a wypisane dla pros­
toty obliczenia w formie wierszy)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Br +1 +1 +1

b2 +1 +1 + 1

B, +1 + 1 + 1
Bt + 1 + 1 +1

I + 0,57 + 0,57 -0,57 -0,57 + 0,57 -0,57 -0,57 + 0,57 -0,57 -0,57 + 0,57 + 0,57 ■ •

II + 0,57 + 0,57 -0,57 -0,57 + 0,57 -0,57 -0,57 + 0,57 -0,57 -0,57 + 0,57 + 0,57

III + 0,57 + 0,57 -0,57 -0,57 + 0,57 -0,57 -0,57 + 0.57 -0,57 -0,57 + 0,57 + 0,57

IV + 0,57 + 0,57 -0,57 -0,57 + 0,57 -0,57 -0,57 + 0,57 -0,57 -0,57 + 0,57 + 0,57

V - + 0,57 + 0,57 -0,57 -0,57 + 0,57 -0,57 -0,57 + 0,57 -0,57 -0,57 + 0,57 + 0,57

VI •e + 0,57 + 0,57 -0,57 -0,57 + 0,57 -0,57 -0,57 + 0,57 -0,57 -0,57 + 0,57 + 0,57

=4= + 1,57 , + 1,57 + 1 57 + 0,57 -0,57 • + 1,00
_______

-0,57 +0,57 -0,57 -0,57 -0,57 +0,57 -0,57 + 1,00 -0,57 +1,57 + 1,00 +1,00 + 1,00 +0,57 + 1,00 -0,57 -0,57 • +1,57 + 0,57 -0,57 -0,57 +1,57 +0,57

Zestawienie współczynników przy 
poprawkach w równaniach warun­
kowych (krakowian iw')

1. 2, 3...............= Nr spostrzeżenia (boku) L,, L2, L,,
I, II, III............... = Nr równania warunkowego
Funkcja: B,=Lt +L, +L3

B? = Lu +L25 +L21j
Bj—Lm+Lm+Lm — Kontrola dla Bt 
Bt = L, +L„+L2, — Kontrola dla B2

Krakowian równań korelat (dolne liczby w kratkach) 
oraz pierwiastek r (górne liczby)

Krakowiany a-rw':r (górne liczby)
Krakowiany a-iw' (dolne liczby)

Rys. 5

1 n III IV V VI B. B, B, B, S

I + 1,9745
+ 3,8988

-0,4936
-0,9747

-0,4936
-0,9747

+ 0,1645
+ 0,3249

+ 0,2887
+ 0,57

+ 0,2887
+ 0,57

+ 0,2887
+ 0,57

+ 0,2887
+ 0,57

+ 2,3066
+ 4,5543

II + 1,9745
+ 3,8988

-0,4936
-0,9747

+ 0,1645
+ 0,3249

-0,4936
-0,9747

+ 0,2887
+ 0,57

+ 0,2887
+ 0,57

+ 0,2887
+ 0,57

+ 2,0179
+ 3,9843

III + 1,9745
+ 3,8988

+ 0,1645
+ 0,3249

-0,4936
-0,9747

-0,4936
-0,9747

+ 0,2887
+ 0,57

+ 0,2887
+ 0,57

+ 0,2887
+ 0,57

+ 2,0179
+ 3,9843

IV
+ 1,8397
+ 3,8988

-0,5740
-0,9747

-0,5740
— 0,9747

+ 0,4647
+ 0,57

+ 0,0516 + 0,4389
+ 0,57

-0,4906
-1,14

+1,1563
+ 0,3249

V + 1,7479
+ 3,8988

-0,7926
-0,9747

+ 0,2070 + 0,5061
+ 0,57

-0,3722
-1,14

+ 0,3009
+ 0,57

+ 1,5971
+ 0,3249

VI + 1,5578
+ 3,8988

+ 0,3375 + 0,3375 -0,6070
-1,14

-0,6070
-1,14

+ 1,0188
-1,9551

}^a-p

2 _1F„=a-p Ja =

— (a-tw' : r)2 = 1,5686

3,0000

1,5686

3,0000

1,4319

3,0000

1,4319

3,0000
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------- INa podstawie wykresu nr 1 można także natychmiast ustalić, jak duże należy tworzyć trójkąty wyliczeniowe (z już raz utworzonych trójkątów mniejszych) przy wyrównywaniu sieci tego typu dla całego kontynentu, aby nie przekroczyć żądanych granic dokładności.

IV
Podamy teraz krótkie porównanie sieci nowego typu z siecią dotych­czas stosowaną biorąc pod uwagę następujące względy:1) ilość prac pomiarowych i obliczeniowych,2) szybkość wykonania,3) uzyskaną dokładność.ad 1) Przy triangulacji nowego typu odpada konieczność tworzenia trian- gulacji I i II rzędu, a w zamian za to należy pomierzyć np. dla Polski 300—400 baz o długości średnio ok. 2,5 km wraz z przenie­sieniem bazowym na bok 8-kilometrowy. Wyrównanie zaś ograni­cza się do rozwiązania ok. 400 zespołów równań warunkowych o ok. 30—40 równań w każdym i jednego zespołu o ok. 200 równaniach warunkowych.ad 2) Wykonanie pomiaru 300—400 baz i ich rozwinięć jest niewątpliwie pracą mniej czasochłonną niż wykonanie triangulacji I i II rzędu. Bardzo ważne jest tu znaczne uniezależnienie się od warunków atmosferycznych. Wyrównanie sieci nowego typu można by po­wierzyć szeregowi grup obliczeniowych, które mogą pracować rów­



180 Władysław Batkiewicznocześnie. Wyrównanie ostateczne, obejmujące równocześnie obszar całego państwa, jest znacznie uproszczone.ad 3) Dokładność pomiarów i obliczenia sieci nowego typu jest wielo­krotnie wyższa niż sieci dotychczas stosowanych, co obrazuje wykres nr 1. Należy tutaj zaznaczyć także, że sieć nowego typu składa się tylko z krótkich celowych, które, jak wykazuje doświadczenie, cha­rakteryzują się większą dokładnością pomiarów niż celowe długie.W przypadku gdyby sieć nowego typu miała znaleźć zastosowanie na terenie już objętym triangulacją, należałoby pomierzyć brakującą ilość baz. Przy wyrównaniu i obliczeniu pomiary dotychczasowe, wykonane dla triangulacji I i II rzędu, zostałyby uwzględnione z odpowiednimi wagami.
LITERATURA

I. H a z a y, O wyrównaniu sieci trygonometrycznych państwowych i kontynentalnych.
W. Jordan, Handbuch der Vermessungskunde, III t., 5 wyd.
T. Kochmański, Zarys rachunku krakowianowego, Warszawa 1948.
E. R e g o c z i, Sieć triangulacji I rzędu, utworzona z sieci III rzędu.
E. Warchałowski, Triangulacja nowego typu („Przegląd Geodezyjny1' nr 7—8, 

1948).

PE3K)ME

Llenbjo gaHHoii CTaTbH SBjiseTCsi MCcnegOBaHHe bosmoikhocth 3aMeHHTb KnaccHnecKyio 
cxeMy rocynapcTBeHHOH TpnaHryjismHH I-III KJiaccoB ceTbio, 'cocTosmieH H3 BbiHHCJiHTe- 
jibHbix TpeyrojibHHKOB, npegnoJKeHHyio npocjieccopoM T. Koxm3HCkhm. CorjiacHO 3Toro 
npeftno>KeHnsi TeppHTopHS, na KOTopoii flon>KHa dbiTb nocrpoeHa TpHaHryjismma, nonpbi- 
BaeTCS ceTbio TpeyrojibHHKOB co CTopoHaMH ajihhoh ok. 8 km., b KOTOpon M3MepsnOTCS 
Bce ymbi; b nocnegytomeM H3 stoh ceru coagaeTca ceTb t. Has. ,,BbiHHCJiHTeJibHbix Tpey- 
rOJlbHHKOB" CO CTOpOHaMH flJlHHOH OK. 40 KM. PIpH 3TOM nOJiaraeTCS, HTO B KaiKflOM, HJ1H 
b Ka>KHOM flpyroM BbiHHCJiHTejibHOM TpeyrojibHHKe 6ygeT n3MepeHa tcm ujm hhmm cno- 
co6om oflHa S-KH/ioMeTpoBas CTopoHa c nejibio onpeneneHHsi p,jihh cropoH cooTBeTCTBy- 
tomero BbiHHCJiHreJibHoro TpeyrojibHHKa.

YpaBHHBaHHe tokoh ceru CJiaraeTcn H3 3x 3TanoB:

1. ypaBHHBaHHe ok. 400 chctcm, cocto5hhhx H3 30—40 ycnoBHbix ypaBHeHHH u bbihhc- 
neHHe HJlHHbl CTOPOH BbIHHCJlHTCJlbHblX TpeyrOJIbHHKOB ; KałKgaa H3 3THX CHCieM OXB3Tbl- 
BaeT ceTb 8-KnnoMeTpoBbix TpeyrojibHHKOB, pacnono>KeHHbix BHyrpn cooTBeTCTByiomero 
BblHHCJlHTejlbHOTO TpeyTOTlbHHKa.

2. coBMecTHoe ypaBHHBaHHe ceru BbiHHCJiHTejibHbix TpeyrojibHHKOB no MeTogy npo<t> 
3. BapxajioBCKoro (ok. 200 ycjioBHbix ypaBHeHHH),
3. noBTopHoe ypaBHHBaHHe chctcm, nepeHHcneHHbix b nepBOM 3Tane, c BKJiiOHeHHeM 
ypaBHCHMH, BbITeKaiOmHX H3 npHB513KH K 3-M TBepftblM nyHKT3M — BepillHHaM COOTBeT- 
CTByK>mHX BblHHCJlHTejlbHbIX TpeyrojibHHKOB, COBMeCTHO ypaBH6HHblX BO BTOpOM 3Tane.
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HHann3 tohhocth npHBeneHHbifi b daTbH b 4>opwe rpatjjHKOB npHBen aBTopa k yóem- 

AeHHto, hto npeg-naraeMas ceTb Ha MHoro npeBocxogHT no tohhocth npHMeHseMbie go 
CHX nop CXeMbl noCTpO6HM5l TpHaHTyJlSUHH. OÓbeM H3MepHTCJlbHblX H BblHHCBHTegbHblX 
paóoT, a Tan>Ke ctohmoctb hx Gm/im Gm 3HaqHTejibHO MeHbuiHMH. Kpowe toto, ceTb Ta- 
Koro THna mowho 6bi nenio npMMeHHTb gna 3HanHTegbHO 6ogbuiHx npocTpaHCTB, Hanp, 
gna geaoro MaTepHKa.

RESUME

L’objet de cet article que 1’auteur voulait atteindre est rexamen des possibilites 
de remplacement de la triangulation classique d’Etat (du ler jusqu’au 3e rang) par 
le reseau de triangles etablis moyennant les calculs dont la conception tut proposee 
par le professeur T. Kochmański. D’apres ce systeme 1’etendue, sur laquelle doit 
etre effectuee la triangulation, doit etre couvert par le reseau de triangles aux cótes 
huit kilometres longs environ. Dans ce reseau il faut mesurer tous les angles et puis 
par la voie de calculs on etabli de ce reseau un nouyeau reseau soi-disant de 
..Triangles calcules" et dont les cótes ont une longueur de 40 kilometres environ. 
II faut admettre que dans chaque ou chaque deuxieme „triangle calcule" on mesure 
par n'importe quel systeme un 8-kilometres long cóte afin d’etablir la longueur des 
cótes du correspondant „triangle calcule".

La compensation de ce reseau implique trois phases du travail, a savoir:
1° La compensation de 400 ensembles environ dont chacun est compose de 

30 a 40 equations de condition et le calcul du longueur des cótes des „triangles 
calcules". Chacun de ces ensembles contient le reseau des triangles de huit kilo­
metres qui sont situes a 1’interieur du respectif „triangle calcule";

2° La compensation simultanee du reseau des „triangles calcules" par la methode 
elaboree par le professeur E. Warchałowski (200 equations de condition environ);

3° La compensation nouvelle des ensembles citós dans la premiere phase mais 
qui sont elargieś par les equations qui resultent de la liaison avec les trois points 
fixes comme les sommets des „triangles calcules" correspondants et qui ont ete 
simultanement compenses dans la seconde phase.

Par une analyse approfondie de l’exactitude, presentee dans cet article sous la 
formę des diagrammes, 1’auteur est arrive a une conviction que le reseau propose 
surpasse de quelques fois, quant a son exactitude, tous les reseaux precedents. 
II faut souligner aussi que la quantite des travaux de mesurage et de calcul ainsi 
que les frais y relatifs seraient dans cette nouvelle proposition reduits cońsiderable- 
ment.

De plus, il serait tres facile appliquer ce reseau pour l’etendue beaucoup plus 
vaste, par exemple pour le continent entier.



Geodezja i Kartografia. Tom IV. Zeszyt 3

Zbigniew Czerski

O zmianach w położeniu osi obrotu lunety w teodolitach Wilda T4

W kwartalniku „Geodezja i Kartografia" tom III, zeszyt 2 1954 r. ukazała się 
praca mgra inar Błażeja Duliana na temat zmian w położeniu osi obrotu lunety 
w teodolitach astronomicznych oraz sposobu ich wyznaczania

W pracy tej autor omawia dwa charakterystyczne zjawiska, które przez niego 
zostały stwierdzone w teodolitach astronomicznych.

Pierwsze z nich polega na tym, że naprowadzając lunetę na jakikolwiek odległy 
cel raz ruchem lunety z dołu do góry, a drugi raz z góry na dół — otrzymuje się 
różne odczyty azymutalne. Należy przy tym uważać, aby kierunek obrotu leniwki 
koła wierzchołkowego był zgodny z obranym kierunkiem naprowadzenia lunety. 
Zmiana ruchu, chociażby najdrobniejsza, jest niedopuszczalna. Z podanych zesta­
wień badań teodolitów Wilda T4 i Zeissa 100/100 m wynika, że zjawisko to powoduje 
różnice odczytów azymutalnych rzędu kilku sekund (od 2" do 4"). Wpływ tego zjawi­
ska na wyniki pomiarów azymutalnych eliminuje się, jeśli przestrzega się zasady 
różnokierunkowego, lecz systematycznie powtarzalnego naprowadzania lunety na cel.

Drugie zjawisko jest ściśle zależne od odległości zenitalnej osi celowej i polega 
na systematycznej zmianie odczytu azymutalnego. Wpływ tego zjawiska nie elimi­
nuje się w średniej arytmetycznej z pomiarów w obu położeniach lunety, wchodzi 
więc do ostatecznego wyniku pomiaru jako błąd systematyczny. W szczególności 
zniekształca np. azymut przedmiotu ziemskiego z obserwacyj Polaris. Specjalne 
badania przeprowadzone przez inż. Duliana pozwoliły na ustalenie wielkości tego 
błędu dla trzech teodolitów Wilda T4 starego typu (dla odległości zenitalnej Polaris 
z = 37°) i wprowadzenie poprawki do zaobserwowanych azymutów.

Powtarzamy poniżej ostateczne zestawienie wyników podane przez autora na 
str. 70 omawianego artykułu:

Numer teodolitu 16969 16956 16957
Średni azymut obserwo­
wany i średni błąd jego 2° 20’41,37''±0,23" 40,69" ±0,44” 40,71"+ 0,20"
Poprawka na zmianę w 
położeniu osi obrotu lu­
nety -0,68" -0,39 + 0,02"

Azymut poprawiony 40,69" 40,30” 40,73”

Występowanie pierwszego zjawiska tłumaczy inż. Dulian zmianą położenia osi 
obrotu lunety przy różnych kierunkach jej naprowadzania na cel, przy czym zmiana 
ta ma być spowodowana:

1 Praca dotyczy głównie teodolitów Wilda T4.
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1. „Częściowym toczeniem się czopów w łożyskach zamiast wyłącznego obrotu 

lunety dokoła swej osi“.
2. „Wypychaniem czopów z łożysk alidady wskutek szkodliwego napięcia sił wy­

stępujących w czasie obrotu lunety dookoła swej osi“.
W teodolitach Wilda T4 starego typu, które były badane przez inż. Duliana, każdy 

czop spoczywa na dwóch podstawkach walcowych. Kąt środkowy każdej z tych pod­
stawek wynosi 26°, zaś kąt między ich promieniami centralnymi 90° (rys. 1). Jest to 
konstrukcja łożyska typu Y, która, jak wiadomo, wyklucza możliwość potoczenia się 
osi do stanu równowagi stałej. Istotnie, gdyby takie toczenie miało zachodzić, czop 
musiałby się oderwać od jednej podstawki. Rozkład sił działających w punkcie 

styczności czopa z łożyskiem przedstawiałby się jak na rys. 2. Oznaczając przez p siłę 
ciężkości czopa łącznie z innymi masami, które na nim spoczywają, otrzymalibyśmy 
na wartość siły stycznej:

P!=p-sin 45°«=! 0,7 p.

Siła ta wynosiłaby w praktyce kilka kilogramów i w żadnym razie nie mogłaby być 
równoważona siłą tarcia czopa w łożysku. Trudno również przypuścić, aby mógł dzia­
łać na czop jednostronny nacisk tej wielkości równoważący omawianą siłę.

Stan równowagi stałej przy potaczaniu możliwy jest w innej konstrukcji łożyska, 
gdy mianowicie styczność czopa z łożyskiem zachodzi w punkcie najniższym czopa. 
Wówczas składowa styczna jest niewielka i może być zrównoważona siłą tarcia lub 
jednostronnym naciskiem.

Fizyczne wytłumaczenie zjawiska pierwszego, stwierdzonego przez inż. Duliana, 
jest zagadnieniem trudnym. Można by przypuszczać, że przy jednokierunkowym 
obrocie czopa oraz na skutek jednostronnych nacisków, które inż. Dulian nazywa 
prawdopodobnie „szkodliwymi napięciami sił“, smar wyciska się na jednej podstawce, 
gromadzi zaś na drugiej, umożliwiając przesunięcie czopa w płaszczyźnie poziomej. 
Również przypuszczać można, że obrót czopa może powodować odkształcenia sprę­
żyste podstawek, zależne od kierunku obrotu. Obie te przyęzyny mogą dawać zmiany 
w położeniu osi obrotu lunety, lecz o charakterze równowagi niestałej. Toteż byłoby 
interesujące zbadać, czy zjawisko stwierdzone przez inż. Duliana nie cofa się po 
pewnym okresie czasu (nawet dość długim).

Jeśli chodzi o wyeliminowanie szkodliwego wpływu zjawiska pierwszego na po­
miary azymutalne, nasuwa się logiczne pytanie, czy nie byłoby najprościej stosować 
regułę jednokierunkowego nastawiania lunety na cel przez przestrzeganie klasycznej 
zasady obracania leniwką koła pionowego zawsze zgodnie ze wskazówkami zegara. 
Reguła, którą zaleca stosować inżynier Dulian, jest bardziej skomplikowana i obciąża 
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pamięć obserwatora dodatkowymi czynnościami; uzasadnienie tej reguły pomija 
autor milczeniem.

Występowanie drugiego z kolei zjawiska można wytłumaczyć niecylindrycznością 
czopów. Profil czopa nie jest w rzeczywistości kołem, lecz inną linią krzywą. 
Przyjmując pewien stały promień odniesienia r można przedstawić tę krzywą 
w układzie biegunowym r(<p)=r0+dr(<p).

Jeśli przyrosty promienia dr w obu miejscach styku BŁ i J32 nie są jednakowe, 
nastąpi przesunięcie środka czopa z punktu O do punktu O2 (rys. 3). Rzut tego prze­
sunięcia na płaszczyznę poziomą wyrazimy 

d =d, r-cos 45°—d2r-cos 45°.

Załóżmy przypadek najbardziej niekorzys­
tny gdy oba przyrosty przyjmują wartości 
maksymalne dla danego profilu (c) i mają 
znaki przeciwne, wówczas 

d=j/2-c.

Załóżmy z kolei, że równocześnie przesu­
nięcie drugiego czopa jest identyczne co do 
wielkości i kierunku. Odległość między 
czopami w teodolicie T4 wynosi 310 mm, 
wobec czego na zmianę kierunku osi celo - 
wej lunety w azymucie otrzymujemy 

2 / 2 • c 
£7~   ‘ 310

Idąc dalej po linii najbardziej niekorzystnej przyjmijmy, że w drugim położeniu 
lunety efekt był identyczny co do wielkości i znaku. W średniej arytmetycznej otrzy­
mamy zatem: 

si+en 
sw =----------- =1880 c..v 2

Dotychczasowe rozważania dotyczyły, powiedzmy, miry. Załóżmy w dalszym ciągu, 
że przy obserwacji gwiazdy występuje ten sam maksymalny wpływ, lecz znaku prze- 
ciwneg0 e5= —1880c.

Poprawka do azymutu wyniesie zatem

e)/-«5 = 3760 c. (12)

W teodolicie Wilda T4 c=0,0001 mm otrzymujemy więc

eę = 0,38" .

Zwróćmy uwagę, że prawdopodobieństwo występowania tego maksimum maksimo- 
rum jest niezmiernie małe, a nawet można powiedzieć, że przypadek ten jest prak­
tycznie niemożliwy. Istotnie w przeprowadzonych rozważaniach założyliśmy, że 
maksymalne i minimalne przyrosty promieni występują po cztery razy na obwodzie 
każdego czopa, nie mówiąc o tym, że są w pewien określony sposób względem 
siebie usytuowane i że równocześnie usytuowane są w określony sposób wzglę­
dem siebie profile obu czopów. W rzeczywistości profile czopów mogą mieć

2 Porównaj: Odermatt — Introduction a la dćtermmation des lieux — 1954. 



O zmianach w położeniu osi obrotu lunety 185
kształty zupełnie rozmaite z pewną tendencją do kształtu eliptycznego (ostatnie 
badania metodą elektronową wykonane przez De Munck’a — Kongres Unii Geode- 
zyjno-Geofizycznej, Rzym, 1954 r.), równoczesne zaś usytuowanie tych profili wzglę­
dem siebie w sposób najbardziej niekorzystny jest bardzo mało prawdopodobne. Prze­
ciwnie w cyklu obserwacji mira — gwiazda musi nastąpić zawsze pewna kompen­
sacja przesunięć czopów, dzięki czemu należy się liczyć w praktyce z poprawką do 
azymutu znacznie mniejszą od 0,38".

Tak czy inaczej kilka dziesiątych sekundy łuku jest to wielkość, która leży poni­
żej lub na granicy osiągalnej dokładności wyznaczenia azymutu najbardziej precy­
zyjnymi metodami i instrumentami.

Z podanego na początku zestawienia wyników badań inż. Duliana wynika, że 
tylko w jednym przypadku poprawka przekracza średni błąd wyznaczenia azymutu, 
w pozostałych dwóch jest mniejsza od tych błędów. Metodzie wyznaczenia poprawek 
pomysłu inż. Duliana nie można postawić logicznych zarzutów, jednakże jest to 
metoda nader skomplikowana i nasuwa stąd możliwości występowania dodatkowych 
błędów instrumentalnych, systematycznych i przypadkowych. Inż. Dulian nie charak­
teryzuje stopnia niepewności wyznaczonych poprawek, z uwagi jednak na to (str. 64), 
„że ilość serii nie powinna być mniejsza od 100“, można przypuszczać, iż różnice 
między poszczególnymi wynikami pomiarów są znaczne.

Ponadto można się spodziewać, że wpływ rodzaju i ilości smaru oraz temperatury, 
o czym zresztą mowa również na wspomnianej stronie 64, nie jest bez znaczenia

dla wartości poszukiwanej po-
prawki, stąd można wnioskować, że 
poprawka ta, wyznaczona w pew­
nych określonych warunkach, nie 
jest stałą wielkością charaktery­
styczną dla danego teodolitu.

Na podstawie powyższych roz­
ważań można mieć wątpliwości, czy 
proponowane na str. 70 wyznacza­
nie poprawek do azymutów w każ­
dym teodolicie jest celowe w zesta- 
wieniu z dużym trudem, jaki trzeba 
włożyć w badania, i realnymi korzy- 
ściami^jakie te-badania przynoszą.

Na rys. 4 przedstawiona jest
konstrukcja osi w icie Wilda
T4 nowego typu (aktualnej pro­
dukcji). Każdy z czopów spoczywa 
tutaj na dwóch walcowych rolkach, 
z którymi styka się wzdłuż tworzą­
cych. Przy obrocie czopa każda

Rys. 4 rolka obraca się na swojej osi. Czopy
tych osi spoczywają dopiero w nie­

ruchomych łożyskach, stykając się z nimi wzdłuż dwóch tworzących.
W konstrukcji tej niecylindryczność występuje nie tylko na czopie osi lunety, ale 

również na rolkach i ich czopach. Ponieważ jednak po każdej stronie mamy w prze­
kroju 5 punktów styku (jak pokazano na rysunku), razem po obu stronach 10, zamiast 
2 w konstrukcji starego typu, statystycznie biorąc w każdym przypadku następuje 
tutaj znacznie większa kompensacja przesunięć o różnych znakach, co w rezultacie 
sprowadza praktycznie wpływ niecylindryczności do zera.



Geodezja i Kartografia. Tom IV. Zeszyt 3

Kolokwium Komitetu Geodezji Polskiej Akademii Nauk

Dnia 19 lutego 1955 r. odbyło się w Akademii Górniczo-hutniczej w Krakowie 
II kolokwium Komitetu Geodezji PAN, poświęcone zagadnieniu wyrównania trian- 
gulacji wypełniającej. W zebraniu wzięli udział liczni specjaliści z tej dziedziny 
z następujących instytucji: Politechniki Warszawskiej, Akademii Górniczo-hutniczej-, 
Geodezyjnego Instytutu Naukowo-badawczego oraz Państwowego Przedsiębiorstwa 
Geodezyjnego. Zebraniu przewodniczył mgr inż. Jerzy Jasnorzewski, członek Komitetu 
Geodezji PAN. Ogólna ilość uczestników wyniosła 46 osób.

Na zebraniu zostały wygłoszone dwa referaty: 1) prof. dra Stefana Hausbrandta 
pt.: Analiza porównawcza dokładności wielkotrójkątowych i małotrójkątowych sieci 
triangulacyjnych, nawiązana do prac geodezyjnych w Polsce (praca wykonana w Geo­
dezyjnym Instytucie Naukowo-badawczym), oraz mgra inż. Władysława Batkiewicza 
pt.: Sieć triangulacyjna zbudowana z trójkątów obliczeniowych (praca wykonana 
w Katedrze Geodezji Wyższej i Obliczeń Geodezyjnych AGH na zlecenie Komitetu 
Geodezji PAN).

Prof. S. Hausbrandt, między innymi, zajmuje się w swojej pracy obliczeniem 
błędu wyznaczenia położenia punktu w sieciach mało- i wielkotrójkątowych w zależ­
ności od przyjętego teoretycznie parametru m„ (średni błąd pomiaru kąta). Autor 
podkreśla na wstępie, że zagadnienie to nie jest nowe, gdyż było już rozpatrywane 
swego czasu przez Jordana (w r. 1916). Nie zostało ono jednak całkowicie wyczerpane, 
prawdopodobnie ze względu na użycie do analizy metody spostrzeżeń zawarunkowa- 
nych, która w takich przypadkach jest mało przejrzysta. Jordan rozważał sieci 
elementarne jedno i czterotrójkątowe (rys. 1 i 2). Przeprowadzone badania wykazały, 
że typ drugi daje lepsze wyniki dla boku c. Średni błąd boku c dla typu pierwszego 
wyniósł 0,000 003 96 mn, a dla typu drugiego 0,000 003 79 m0.

Rys. 1 Rys. 2

Prof. Hausbrandt przyjął w swojej pracy jako wyjście do analizy krakowian 
współczynnikowy równań błędów (oznaczony symbolem a). Znając ten krakowian 
i przyjmując, że obserwacje kątowe w sieci będą prowadzone ze średnim błędem 
pojedynczej obserwacji m0, można przeprowadzić analizę dokładnościową dowolnej 
sieci, opierając się na metodzie najmniejszych kwadratów. Rozpatrzono cztery 
kryteria, charakteryzujące sieć triangulacyjną pod względem dokładności:
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1. wielkość średniego błędu położenia punktu (którego odcięta jest i-tą, zaś rzędna 

k-tą niewiadomą w układzie błędów):

mp=m0 /(ct^-Ha2)^1

2. wielkość wpływu błędów nieprzypadkowych, tj. wielkość zmiany dxh jakiej 
dozna i-ta niewiadoma w układzie wyrównanym metodą najmniejszych kwadratów, 
jeżeli zmienimy k-tą obserwację (nadając jej przyrostek dlk) i ponownie wyrównamy 
układ metodą najmniejszych kwadratów:

dxi—dU • a^w(a2)^

3. wielkość średniego błędu błędu średniego, określoną przez znany od czasu 
Gaussa wzór ogólny mm=m : 2nn (gdzie nn — ilość spostrzeżeń nadliczbowych), który 
dla sieci triangulacyjnej wyznaczającej p punktów z n obserwacyj kątowych ma postać:

m

)/2n —4p

4. wartość przeciętna stosunku kwadratu błędu średniego obserwacji po wyrów­
naniu do kwadratu błędu średniego obserwacji przed wyrównaniem. Wielkość ta 
(M2) równa się — według A. Otrębskiego —■ stosunkowi ilości obserwacyj niezbędnych 
do wyznaczenia układu do ilości obserwacyj dokonanych w układzie. Dla sieci wyzna­
czającej p punktów z n obserwacyj:

Ze względu na cel prac triangulacyjnych jest najbardziej istotne kryterium 
pierwsze, jednak aby uniknąć zejścia na błędne drogi, musi ono być stosowane łącznie 
z kryterium drugim i trzecim. Ogólnie: kryterium I dotyczy dokładności rezultatów, 
a II i III ich realności czy też pewności. Kryterium IVi ma charakter statystyczny 
i opiniuje, w jakim stopniu dany układ obserwacyjny wpływa na zmniejszenie błędów 
obserwacyjnych, a to jest celem wyrównania. Stosując powyższe kryteria do omawia­
nych na początku sieci elementarnych jedno- i cztero trój kątowych, autor stwierdza,

Rys. 3

że pierwsze kryterium omawia obydwie sieci jako równorzędne, natomiast kryteria II, 
III i IV wskazywały zdecydowanie na typ drugi (małotrójkątowy) jako lepszy. Przy
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stosowaniu np. kryterium II stwierdzono dla sieci typu drugiego przesunięcie 
punktu n razy mniejsze niż przy typie pierwszym. Rozważanie zagadnienia dokład­
ności wyznaczenia punktów przez zespoły sieci elementarnych (nazwanych przez 
autora „sieciami okrążającymi1' — rys.. 3) doprowadziły do takich samych wyników, 
co i poprzednio.

Poniżej jest podane zestawienie porównawcze wielkości średniego błędu błędu 
średniego dla sieci okrążających typów od a do f:

Ilość sieci elementarnych 1 2 3 4 5 6
a) jednotrójkątowych 0,71m 0,35 m 0,27m 0,22m 0,20 m 0,18m
b) czterotrójkątowych 0,35 0,20 0,16 0,13 0,12 0,10
c) dziewięciotrójkątowych 0,21 0,13 0,11 0,09 0,08 0,07

Z zestawienia powyższego widać wyraźnie wyższość sieci małotrójkątowych nad 
sieciami wielkotrójkątowymi.

W pracy swej prof. Hausbrandt poza powyższymi badaniami teoretycznymi 
przeprowadził analizę jednej z wykonanych w Polsce sieci triangulacyjnych po­
wierzchniowych. Pomimo zasadniczych braków w tej sieci, jak: niekształtne trójkąty 
o bokach 4—12 km, nierównomierne rozłożenie punktów nawiązania, niezbyt dobre 
obserwacje (średni błąd pomiaru kąta 2,7cc) otrzymano dobre wyniki. Średni błąd 
położenia punktu wyniósł bowiem 5,1 cm, wobec 5,5 cm w niemieckich sieciach 
podstawowych, przytoczonych w Handbuch der Vermessungskunde Jordana—Eggerta.

Praca mgra inż. W. Batkiewicza została zainicjowana przez prof. dra T. Koch­
mańskiego. Autor, ze względu na duże koszty prac polowych i obliczeniowych oraz 
ze względu na małą dokładność, proponuje zastąpienie klasycznej triangulacji I—IV 
rzędu siecią zbudowaną z trójkątów obliczeniowych. Ponieważ praca ta została 
wydrukowana w niniejszym zeszycie kwartalnika, przeto staje się zbędne omawianie 
jej treści.

W dyskusji, jaka rozwinęła się nad obydwoma referatami, zabierali głos (w kolej­
ności wypowiedzi): Rektor AGH prof. dr Z. Kowalczyk, prof. dr T. Kochmański 
(AGH), mgr inż. S. Kryński (GINB), prof. dr S. Hausbrandt (GINB), prof. dr Cz. Ka- 
mela (Polit. Warsz.), dr inż. T. Kluss (PPG), mgr inż. W. Senisson (Polit. Warsz.), 
prof. dr S. Milbert (AGH), mgr inż. R. Włodarczyk (PPG), mgr inż. B. Dulian (GINB), 
prof. dr J. Piotrowski (Polit. Warsz.), mgr inż. W. Batkiewicz (AGH), mgr inż. 
W. Gedliczka (PPG), mgr inż. J. Borysowski (PPG).

Z wypowiedzi dyskutantów wynika, że obydwie referowane metody nie są 
przeciwstawne. Pierwsza jest ścisła i wyrównuje obserwacje kątowe, druga — pół- 
ścisła i na pierwsze miejsce wysuwa pomiary bazowe. Z punktu widzenia praktycz­
nego jest zasadniczo obojętne, jaka metoda wyrównania zostanie zastosowana do 
sieci wypełniających, gdyż rzeczą istotną jest wielkość średniego błędu położenia 
punktu. W metodzie W. Batkiewicza przy obliczaniu boków dużych trójkątów 
należy wykorzystywać zachodzące na siebie pasy trójkątów małych. Bada­
nia GINB potwierdziły słuszność tez zawartych w pracy W. Batkiewicza, otrzy­
mane bowiem średnie błędy kątów obliczonych były poniżej lcc; przy 3CC dla kątów 
mierzonych. Wypowiedzi przedstawicieli produkcji również dawały pierwszeństwo 
metodzie małych trójkątów, która w praktyce dała dobre wyniki dokładnościowe przy 
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dużej oszczędności kosztów. Uznano potrzebę prowadzenia dalszych badań naukowych 
oraz zacieśnienia współpracy ośrodków badawczych między sobą i z produkcją.

W wyniku przeprowadzonej dyskusji przyjęto następujące wnioski:
1. Konferencja Naukowa, zorganizowana przez Komitet Geodezji PAN, rozwa­

żająca koncepcję tzw. sieci wypełniających budowanych bądź z trójkątów małych, 
bądź z wielkich stwierdza, że wyniki badań Katedry Geodezji Wyższej i Obliczeń 
Geodezyjnych AGH w Krakowie oraz Geodezyjnego Instytutu Naukowo-badawczego 
w linii zasadniczej pokrywają się w zupełności. Oba ośrodki badawcze doszły do 
wniosku, iż sieci budowane z trójkątów małych są dokładniejsze od sieci budowanych 
z trójkątów dużych, co potwierdza słuszność koncepcji sieci triangulacyjnej, zbudo­
wanej przez Geodezję Polską w latach 1947—1955. Konferencja uważa, że dalsze 
badania, zmierzające do sprecyzowania zagadnienia wyrównania ostatecznego sieci 
polskiej, są aktualne i winny wychodzić z założenia jak najmniejszego zniekształcenia 
układów obserwacyjnych i oparcia rachunków na nowoczesnych maszynach rachun­
kowych. Konferencja uważa za celowe wykorzystanie w tym kierunku prac Instytutu 
Matematycznego w Warszawie, jak również koncepcji maszyny rachunkowej do 
działań krakowianowych pomysłu prof. T. Kochmańskiego (wniosek prof. S. Haus- 
brandta).

2. Uznaje się za celowe kontynuowanie pracy naukowej mgra inż. W. Batkie- 
wicza dla pełnego opracowania metody wyrównania triahgulacji obejmującej wielkie 
obszary (wniosek dyr. S. Kryńskiego).

3. W pracy mgra inż. W. Batkiewicza należy opracować sposób obliczania 
długości boków dużych trójkątów oraz wykorzystanie punktów Laplace’a (wniosek 
doc. dra S. Milberta).

4. W pracy mgra inż. W. Batkiewicza należy:
a) rozciągnąć długość boków obliczeniowych tak, żeby łączyły one punkty 

Laplace’a,
b) dotychczasową sieć wypełniającą wyrównać metodą Pranis-Praniewicza 

(w grupach) w ujęciu krakowianowym,
c) po zakończeniu wyrównania sieci astronomiczno-geodezyjno-grawimetrycznej, 

ażeby nie obniżyć dokładności sieci wypełniającej, należy ją wyrównać jak pod b), 
lecz jako sieć niezależną; po uwzględnieniu na tym obszarze pomiarów grawimetrycz­
nych i astronomicznych łącznie z materiałami geodezyjno-astronomiczno-grawime- 
trycznymi z sieci wieńcowych i łącznych poddać wyrównaniu sieć obejmującą cały 
kraj (wniosek prof. Cz. Kameli).

5. Pożądany byłby taki wybór układu sieci wypełniającej pod względem ilości 
punktów, warunków brzegowych i sposobu wyrównania, by przy możliwie małym 
nakładzie pracy, tj. bez powtarzania wyrównania sieci wypełniającej (małotrój- 
kątowej) otrzymać jej ostateczne współrzędne. Rozumieć to należy następująco: ilość 
punktów sieci wypełniającej winna uwzględniać praktyczne możliwości wyrównań 
wielkiej ilości punktów. Punkty na stykach sieci wypełniających winny wejść do 
niezależnych wyrównań stykających się sieci. Przed niezależnym wyrównaniem sieci 
wypełniających należy przeprowadzić wyrównania stacyjne na wszystkich punktach 
sieci wypełniających. Oba te warunki są pewnego rodzaju sprowadzeniem do równych 
wag stykających się z sobą obszarów sieci wypełniających. Powtórnego wyrównania 
sieci wypełniającej można uniknąć stosując do niezależnie wyrównanej sieci metodę 
dostosowania do współrzędnych wyrównanej sieci obliczeniowej. Metoda ta poza 
wielką wartością praktyczną posiada jednocześnie cenne kryteria, pozwalające na 
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porównywanie otrzymanych wyników, przez co staje się możliwe wprowadzanie 
zmian w przypadkach stwierdzonej konieczności (wniosek dra inż. T. Klussa).

6. Należy porównać obserwacje bezpośrednie triangulacji głównej z wielkościami 
uzyskanymi z trójkątów obliczeniowych i zależnie od wyników:

a) wykorzystać wielkości obliczone do triangulacji głównej,
b) rozszerzyć triangulację główną za pomocą obserwacyj obliczonych do sieci 

wypełniającej włącznie (wniosek mgra inż. W. Gedliczki).
7. Z uwagi na dokładność celowania jak i możliwość korzystnego zagęszczenia 

sieci oraz obniżenia pułapu zabudowy należy przyjąć optymalne długości boku 
około 7 km (wniosek mgra inż. H. Włodarczyka).

Na podstawie protokołu zebrania sprawozdanie opracował

mgr inż. Janusz Tatarkowski (AGH)

Errata do tomu IV zeszyt 2 „Geodezja i Kartografia"

strona wiersz wydrukowano powinno być

db . 8r„ db dr0
132 18 od góry az 1 az~

8w 8w

dZ 1 ~dZ

8w 8w
132 23 od góry e,=C(z)-—+C1(z)—-

8b 8r0

8b dr0

r. = C(Z)+ (^(Z)——
8b 8r0

db . _ dr0
133 1 od góry C(Z)=—- i C,(Z)= — C(2> 1̂ G'<z>=^'

Politechniki.©5
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